Seminari del Dipartimento

 

Analisi Matematica

Impact of localization of the Hardy potential on the stability of Pohozaev obstructions in low dimensions

Frederic Robert


31-05-2022 - 15:00
Largo San Leonardo Murialdo, 1

 

Regarding the scalar curvature equation or the Brezis-Nirenberg problem, the classical existence results involve either local terms (in large dimension) or global terms (in low-dimension). Conversely, the Pohozaev obstructions yield nonexistence results. Druet-Laurain proved that these obstructions are stable in low-dimension. 
In this talk, we will discuss the same issue for Hardy-Sobolev equations. It turns out that when the singularity is in the domain, then a similar low-dimensional phenomenon occurs. When the singularity is on the boundary of the domain, we show that there is a universal stability independent of the dimension. Joint work with Nassif Ghoussoub (UBC) and Saikat Mazumdar (Bombay).

Il seminario avra' luogo in presenza presso il Dipartimento di Matematica e Fisica
Largo San Leonardo Murialdo 1 - Pal. C - Aula 311
org: ESPOSITO Pierpaolo

Copyright© 2014 Dipartimento di Matematica e Fisica