Geometria The conjectures of Lang and Vojta Ariyan Javanpeykar 17-02-2022 - 10:00 Largo San Leonardo Murialdo, 1
Why do some polynomial equations have only finitely many solutions in the integers? Lang-Vojta's conjecture provides a conjectural answer and relates this number-theoretic question to complex geometry. Indeed, conjecturally, a variety has only finitely many rational points if and only if it is hyperbolic. I will start out this talk explaining the Lang-Vojta conjectures, and will then present new results on dynamical systems of hyperbolic varieties, rational points on ramified covers of abelian varieties, the fundamental group of a variety covered by many pointed curves, and rigidity results for families of canonically polarised varieties. These results are mathematically independent, but all guided by the conjectures of Lang-Vojta. |
Dipartimento di Matematica e Fisica
Via della Vasca Navale 84
00146 Roma - Italia
tel: +39 06 57330007
fax: +39 06 57337102
Dove siamo
Via della Vasca Navale 84
L.San Leonardo Murialdo 1
00146 Roma - Italia
Direttore : Prof. Roberto RaimondiContatti
direttore_matfis@fis.uniroma3.it
Responsabile Area Amministrativa: Rossella Mantini
amm.matematicafisica@uniroma3.it
Responsabile Area Ricerca: Virgilio Lo Presti
ricerca.matematicafisica@uniroma3.it
Responsabile Area Didattica: Valentina Feliciello
didattica.matematicafisica@uniroma3.it
Copyright© 2014 Dipartimento di Matematica e Fisica