Colloquium di MatematicaMass, Scalar Curvature, Kähler Geometry, and All That
Claude LeBrun 22-05-2019 - 16:00 Aula M3 , Aule nuove - Largo S. L. Murialdo, 1
Given a complete Riemannian manifold that looks enough like Euclidean space at infinity, physicists have defined a quantity called the “mass" that measures the asymptotic deviation of the geometry from the Euclidean model. After first providing a self-contained introduction to the key underlying geometric concepts, I will go on to explain a simple formula, discovered in joint work with Hajo Hein, for the mass of any asymptotically locally Euclidean (ALE) Kähler manifold. When the metric is actually AE (asymptotically Euclidean), our formula not only implies the positive mass theorem for Kähler metrics, but also yields a Penrose-type inequality for the mass. I will also briefly indicate some recent technical improvements that allow one to prove these results assuming only minimal metric fall-off assumptions at infinity. |
Dipartimento di Matematica e Fisica
Via della Vasca Navale 84
00146 Roma - Italia
tel: +39 06 57330007
fax: +39 06 57337102
Dove siamo
Via della Vasca Navale 84
L.San Leonardo Murialdo 1
00146 Roma - Italia
Direttore : Prof. Roberto RaimondiContatti
direttore_matfis@fis.uniroma3.it
Responsabile Area Amministrativa: Rossella Mantini
amm.matematicafisica@uniroma3.it
Responsabile Area Ricerca: Virgilio Lo Presti
ricerca.matematicafisica@uniroma3.it
Responsabile Area Didattica: Valentina Feliciello
didattica.matematicafisica@uniroma3.it
Copyright© 2014 Dipartimento di Matematica e Fisica