Courses

Courses a.y. 2017-2018

 

 

Course: :  
Teacher:

 

Courses by Type
(click on type to see its courses)

BASIC    N : 16

Course nameNotePeriodTime
Table
I semester
 
  • Stefania Gabelli ( gabelli@mat.uniroma3.it - Universita degli Studi Roma TRE )  
Semester I
 
Semester I
 
Semester I
 

semester I
 
  • Pierpaolo ESPOSITO ( esposito@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
Semester I
 
  • to be defined -  
  • Andrea PIERINI - andrea.pierini@uniroma3.it  
Semester I
 
  • Guido Gentile ( gentile@mat.uniroma3.it - Università degli Studi Roma Tre )  

semester I
 
  • Pietro CAPUTO ( caputo@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  

Semester I
 
  • Vittorio Lubicz ( lubicz@fis.uniroma3.it - Universita degli Studi Roma TRE )  
II semester
 
  • Filippo VIVIANI ( viviani@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
II semester
 
Semester II
 
  • Renato Spigler ( spigler@mat.uniroma3.it - Università degli Studi Roma Tre )  

semester II
 
  • Lucia CAPORASO ( caporaso@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  

semester II
 
  • To be defined -  
Semester II
 

semester II
 
  • Pietro CAPUTO ( caputo@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  

INTERMEDIATE    N : 6

Course nameNotePeriodTime
Table

semester I
 
  • Marco FONTANA ( fontana@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
Semester I
 
Semester II -
 
  • Luigi CHIERCHIA ( luigi@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
Semester II
 
  • Alessandro VERRA ( verra@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
Semester II
 
  • Vito Michele ABRUSCI ( michele.abrusci@tlc.uniroma3.it, vitomichele.abrusci@uniroma3.it - Dipartimento di Matematica e Fisica )  
semester II
 
  • Pietro Caputo ( caputo@mat.uniroma3.it - Universita degli Studi Roma TRE )  

SPECIAL    N : 9

Course nameNotePeriodTime
Table
'TOPICS ON FANO MANIFOLDS'

'Topics on Fano manifolds'

1. Fano variety in general: definition and first examples
2. Surfaces
2.1 Sketches on Enriques-Kodaira classification
2.2 Classification of delPezzo surfaces
2.3 Projections and ancestral examples
3. Dimension 3
3.1 Mukai biregular classification (vector bundle methods)
3.2 10 families of prime Fano threefolds of index 1. The yoga of key varieties. Link to K3 and canonical curves
3.3 Fano 3-folds of higher index or higher picard rank
3.4 Q-Fano threefolds: state of the art (Tom&Jerry reprised, etc)
3.5 (extra) Rationality properties and Torelli problem
4. Dimension 4 and beyond
4.1 K"uchle classification of Fano 4-folds of index 1 from homogeneous vector bundles
4.2 Classification of Fano of higher index
4.3 delPezzo manifolds and Mukai manifolds
5. Extra
5.1 Fano varieties with special properties. Fano of K3 type. Link with hyperk"ahler geometry
 


 
  • ENRICO FATIGHENTI ( efatighenti@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
INTRODUCTION TO NUMERATION SYSTEMS NUMBER EXPANSIONS IN LATTICES
READING COURSE
READING COURSE')" />

Introduction to numeration systems Number expansions in lattices
Reading course

1. Fundamentals of number expansions, mathematical background
2. Decision and classification problems, algorithmical complexity
3. Fast computations: expansivity, congruences
4. Discrete dynamic, attractors and periodic elements 5. Optimizing by basis transformation 6. Generalized binary number systems 7. Construction problems, open questions 8. Block diagonal systems, simultaneous systems 9. Applications

 
Literature:
S. Akiyama , T. Borbély , H. Brunotte , A. PethÅ‘ , J. M. Thuswaldner:
On a generalization of the radix representation -- a survey (2004) IN ”HIGH PRIMES AND MISDEMEANOURS: LECTURES IN HONOUR OF THE 60TH BIRTHDAY OF HUGH COWIE WILLIAMS”, FIELDS INSTITUTE COMMUCATIONS
 
A. Kovács papers in
http://compalg.inf.elte.hu/~attila/Publications.html
 


 
  • Attila Kovacs ( - Eötvös Loránd University, Budapest )  
MINI-COURSE: POLYHEDRAL STRUCTURES IN ALGEBRAIC GEOMETRY

Mini-course: Polyhedral structures in algebraic geometry

Abstract: Algebraic geometry studies the zero locus of polynomial equations connecting the related algebraic and geometrical structures. 
In several cases, nevertheless the theory is extremely precise and elegant, it is hard to read in a simple way the information behind such structures. A possible way of avoiding this problem is that of associating to polynomials some polyhedral structures that immediately give some of the information connected to the zero locus of the polynomial. In relation to this strategy I will introduce Newton-Okounkov bodies and Tropical Geometry, underlying the connection between the two theories.
I will conclude stating a recent result in collaboration with E. 
Postinghel, where the interplay of tropical geometry and Newton-Okounkov bodies gives a flat degeneration for Mori Dream Spaces.
 


 
  • Urbinati Stefano ( urbinati.st@gmail.com - Università degli Studi di Padova )  
TIME SERIES ANALYSIS

Time Series Analysis

  1. We will recall the basic principles of applied and numerical Fourier analysis: Fourier series and transform, energy and power spectrum, mutual and autocorrelation and their numerical computation.
  2. Impulse and harmonic response of a system.
  3. Filtering of a time series.
  4. Time series as sampling of a continuous signal.

 
  • Roberto FERRETTI ( ferretti@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
LIE SYMMETRIES OF DIFFERENTIAL AND DIFFERENCE EQUATION

Lie Symmetries of Differential and Difference Equation

  1. Lie symmetries of differential equatios and their extensions and generalizations
  2. Lie point symmetries of Difference Equations; their derivation and their applications.
  3. From Point Symmetries to Generalized Symmetries for Difference Equations
  4. Generalized Symmetries from the Integrability of Difference Equations
  5. Formal Symmetries and Integrable Lattice Equations

semester I
 
  • Decio LEVI ( levi@roma3.infn.it - Dipartimento di Matematica e Fisica )  
ADVANCED GRAPHICS FOR SCIENTIFIC DATA

Advanced Graphics for Scientific Data

We will introduce some usefull tools for Scientific Data visualization, starting from GNUplot and MATLAB for drawing basic 1D and 2D functions, then moving to Paraview for exploring more complex features of 3D data sets


semester II
 
  • SIMONE CACACE ( cacace@mat.uniroma3.it - Universita degli Studi Roma TRE )  
CUBIC HYPERSURFACES
(READING COURSE)
(READING COURSE)')" />

Cubic hypersurfaces
(reading course)

Topics on cubics and rationality
 to be chosen in the following list:
1. The Century of cubic surfaces  
2. Basic history of rationality and cubics 
2.1. XIX Century: the Lueroth problem  
2.2. Cubics and unirationality  
2.3. XX Century: Fano on cubic threefolds  
2.4. XX Century: unirational non rational threefods  
2.5. Early XXI Century: Vosin on stable rationality  
3. Basic algebraic geometry of cubics  
3.1. The Jacobian ideal of a hypersurface  
3.2. The polar map of a cubic  
3.3. The Fano variety of lines  
3.4. Nodal cubic threefolds  
4. Which cubics are rational?  
4.1. Cubic threefolds and rationality  
4.2. Conic bundles and stable rationaliy  
4.3. Which cubics are rational? 
5. The examples of rational cubic fourfolds  
5.1. Morin and Fano  
5.2. Cubics as Pfaffians  
5.3. Rational cubics and OADP varieties  
5.4. Hassett’s quadric bundles 
5.5. Togliatti primal  
6. General geography of cubic fourfolds  
6.1. Hodge-Noether-Lefschetz theory 
6.2. The Fano variety of lines F (X ) 
6.3. Beauville-Donagi construction  
6.4. Hassett’s theory and main conjectures  
7. Geography of the rational locus  
7.1. Working with the Fano variety F (X )  
7.2. Some divisors and some special surfaces  
7.3. Cubic fourfolds and K3 moduli spaces  
7.4. Further work and examples 
 


semester II
 
  • Alessandro VERRA ( verra@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
K-THEORY IN CONDENSED MATTER PHYSICS

K-THEORY IN CONDENSED MATTER PHYSICS

In the last decades, solid state physics has witnessed a plethora of phenomena that have a topological origin: from the pioneering works of Thouless and collaborators to explain the quantization of the transverse conductivity in the quantum Hall effect, to the thriving field of topological insulators and superconductors. This field of research rapidly attracted the attention of mathematical physicists as well.
 
The methods involved in the theoretical understanding of these phenomena, at least in the one-particle approximation, rely on the theory of vector bundles and K-theory. The course will therefore be divided in two parts:

  • the first part of the course will cover topics from differential topology and geometry, in particular the classification of vector bundles, their invariants, and K-theory;
  • the second part will be devoted to the physical applications, discussing the periodic table of topological insulators, and the relation of their topological labels with quantum transport.
Some basic differential geometry and a first course in the mathematics of quantum mechanics will be assumed as prerequisites.
 
Depending on the inclinations, background and interests of the students, and if time permits, more advanced topics could also be covered, including for example:
  • K-theory for C*-algebras and applications to disordered topological insulators;
  • obstruction theory and constructive algorithms for Wannier functions;
  • universality of the Hall conductivity with respect to weak interactions via renormalization group methods.

semester II
 
  • DOMENICO MONACO ( dmonaco@mat.uniroma3.it - Dipartimento di Matematica e Fisica )  
FOUNDATIONAL THEMES

Foundational themes

Some themes of the last century research on foundations of logic and mathematics will be considered under the point of view of the current logical research: 1. Incompleteness theorems. 2.  Constructive omega-rule. 3.  Ordinal numbers and dilators


Nov-Dec 2017
 
  • Vito Michele ABRUSCI ( michele.abrusci@tlc.uniroma3.it, vitomichele.abrusci@uniroma3.it - Dipartimento di Matematica e Fisica )  

IN OTHERS UNIVERSITIES  

Institution





Questa pagina è disponibile in: itItaliano
Admin 04 Settembre 2019