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The multidimensional East model:
a multicolour model and a front evolution problem

Yannick Couzinié†

Abstract
In this thesis we consider two problems related to the multidimensional East model on Zd, a well
studied kinetically constrained model (KCM). KCM are interacting particle models in which the local
configurations are updated with equilibrium only if the configuration in the neighbourhood of the update
satisfies certain constraints. Usually KCM are defined on a local 0-1-state space where the 0s (or vacancies)
are the facilitating states and the 1s (or particles) are the neutral ones. For the East model the constraints
for the update at x ∈ Zd require a vacancy on a smaller neighbour y in the lexicographic order.

The first problem is a front evolution problem as the equilibrium density q of the facilitating vertices
vanishes. Starting with a unique unconstrained vertex at the origin, let C(t) consist of those vertices which
became unconstrained within time t and, for an arbitrary positive direction x ∈ Rd

+, let vmax(x), vmin(x)
be the maximal/minimal velocities at which C(t) grows in that direction. If x is independent of q,
we prove that vmax(x) = vmin(x)(1+o(1)) = γ

(1+o(1))
d as q → 0, where γd is the spectral gap of the

process on Zd. We also analyse the case in which some of the coordinates of x vanish as q → 0. In
particular, for d = 2 we prove that if x approaches one of the two coordinate directions fast enough, then
vmax(x) = vmin(x)(1+o(1)) = γ

(1+o(1))
1 = γ

d(1+o(1))
d , i.e. the growth of C(t) close to the coordinate

directions is dictated by the one-dimensional process. As a result the region C(t) becomes extremely
elongated inside Zd

+. Using these bounds on the front speed we identify an elongated subset S(t) ⊂ C(t)
that grows in t and which is mixing in t → ∞. In fact, remarkably, these bounds on the front speed
together with past results also imply a cutoff result for the East process on a box in Zd.

The second problem is a coarse-grained model of glass forming liquids introduced by Chandler and
Garrahan [28] which is closely related to the East model. Instead of fixing a facilitation direction in the
model, we consider multiple types of facilitating vertices that evolve on the same lattice, where each
type behaves like a rotated version of the East process, e.g. in d = 2 one type requires a vacancy in the
south-west neighbourhood of updating vertices, one south-east, one north-east and one north-west. The
crux is that the neutral vertices, i.e. the particles in the East model, are shared for all types of facilitating
vertex. We call this model the multicolour East model (MCEM). We prove that if the number of species is
equal to the maximum amount of possible rotations the associated process, the MCEM process, is not
ergodic. We then provide sufficient conditions so that the MCEM process is ergodic and the spectral gap
positive in Zd. For example we show that in d = 2 any MCEM process with three types of facilitating
vertices has a positive spectral gap. Further, for d = 2, we analyse the scaling of the spectral gap when
the minimum density qmin of the facilitating vertex types tends to zero. We show sufficient conditions on
the equilibrium distribution of the vertex types that the spectral gap tends to γ2(qmin) as qmin → 0. In
particular, we show that this is also the case when vertices of the least frequent facilitating vertex type are
surrounded by vertices of different types that inhibit their movement. We do this through a fine analysis,
whereby the frequent vertex type move and remove each other in such a way as to clear the way for an
effective two-dimensional motion of the infrequent types.

A novel technical ingredient is a detailed analysis of the asymptotics of a principal Dirichlet eigenvalue
based on the renormalisation technique of Chleboun, Faggionato and Martinelli [13]. This analysis enters
in both sets of results.
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Chapter 1

Introduction

In this chapter we seek to give a high-level introduction to and motivation for the problems treated in
this thesis. A more formal introduction and contextualising of the main results can be found respectively
in Chapter 3 for the front evolution problem and in Chapter 4 for the MCEM. This section may be safely
skipped if no further motivation to read the thesis is needed.

1.1 Motivation and physical background

The liquid-glass transition is a fundamental problem of condensed matter physics that is still open. In
the 1980s [24, 25, 48] physicists introduced an interacting particle system that evolves according to very
simple rules that reflect some key features of glass forming liquids like non-Arrhenius behaviour of the
relaxation time, dynamical heterogeneities and ergodicity breaking transitions among others. We call
this interacting particle system a kinetically constrained model (KCM) and its evolution on Zd can be
described in two sentences:

With rate one the local configurations on the vertices of Zd try to update with equilibrium. This is only
possible if the configuration in the neighbourhood of the updating vertex satisfies certain constraints.

Usually KCM are defined on a local 0-1-state space where the 0s (vacancies) are the facilitating states
and the 1s (particles) are the neutral ones. The simplicity of this models stems from the fact that it is
reversible with respect to the product Bernoulli measure locally assigning 0 with probability q and 1
with p = 1 − q. Despite they exhibit the above mentioned unorthodox features making them interesting
candidates for both the physical and mathematical community.

A classic example for a KCM is the East process on Z [31] where an update on x only happens if there
is a vacancy on x − 1 and its Zd counterpart, the multidimensional East model or East-like model, looking
at any smaller vertex in the lexicographic order. The analysis of its properties and models derived from it
are the subject of this thesis.

Other classic representatives are the FA-jf model on Zd [24] where updates are legal if there are at
least j vacancies in the neighbourhood of an updating vertex or the North-East model on Z2 [49] in which
an update is legal if the south and west neighbours are vacancies.

Glass-forming liquids Let us make a small detour into the physics of glasses and explain how KCM
fit into the picture, to motivate their mathematical analysis. In the liquid-solid transition, a liquid that
is cooled below its melting temperature undergoes a phase transition into a new equilibrium state by
arranging its molecules in a crystalline structure. In the case of a viscous glass-forming liquid, when
cooled below its melting temperature instead of crystallising the liquid will increase its viscosity by
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CHAPTER 1 Motivation and physical background

multiple orders of magnitude as it is getting cooled until finally reaching a state where movement almost
completely is arrested. This final state is called a glass and can either be seen as an amorphous solid or a
frozen liquid that will not reach its equilibrium on any reasonable time scale[6, 27, 45].

The intuition behind seeing KCM as models for the liquid-glass transition is based on the following
idea: with decreasing temperatures we can assume the average particle density in the liquid to increase
or equivalently the vacancy density (i.e. space between particles) to decrease. At the beginning of the
cooling process, in a low particle density environment, molecules in a liquid are not inhibited by other
molecules in their movement. As the liquid gets cooled the neighbourhoods of the molecules get more
and more crowded until the density is so high that only very few molecules still have space to move so
that we slowly approach a dynamically arrested state without undergoing a transition in the dynamics
between the molecules, i.e. the dynamics are still essentially that of a liquid. In this interpretation, it is the
free space between the molecules, that we call vacancies, that governs the dynamics at low-temperatures
and we may relate the inverse temperature β to the average vacancy density by q ≈ e−β .

KCM as models for glass-forming liquids While it certainly sounds like KCM are a reasonable way to
model what might happen in glass-forming liquids, any physical model is to be judged on its capability
of reproducing experimental observations. A core characteristic of low-temperature glass-formers is
how non-Arrhenius their relaxation is. One can calculate average relaxation times through Trel ∼ eβ∆E

where ∆E is the activation energy. In strong glasses, like the common window in our houses for example,
relaxation is close to Arrhenius, i.e. ∆E is roughly temperature independent. For fragile glasses that is
not the case [19, 28]. This breadth in the behaviour as q → 0 is reflected in KCM. Indeed, while the
FA-1f for example features Arrhenius behaviour, the East model is strongly non-Arrhenius as we find that
∆E ∼ β [13].

Another interesting property of KCM is that despite their simple dynamics they can exhibit ergodicity
breaking transitions as q → 0. For the East model and FA-jf this is not the case as they are ergodic for
any j ≤ d and q ∈ (0, 1) (see [11]), but the North-East model on Z2 has a critical qc ∈ (0, 1) so that the
process is not ergodic anymore for q ≤ qc (see [36]). For further treatment of the relevance of ergodicity
breaking in glasses see [34] and KCM see [52].

Further that any transition needs to be facilitated. On large islands of particles the cost (in time) of
bringing a vacancy to the middle of the island to facilitate can scale prohibitively with the size of the
island so while a region with a distribution of vacancies and particles may perform legal updates relatively
freely other regions can be frozen for long periods of times. These dynamical heterogeneities are also a
property exhibited by glass formers [6, 14, 20, 35] so that altogether KCM can be seen as an interesting
toy model to model them.

KCM as interesting mathematical models and related works

Now that we might be convinced that KCM have merit as a physical model we come to the mathematical
challenges KCM pose, making them an interesting research subject in the field of mathematics and thus
justifying the existence of this thesis.

Ergodicity breaking As mentioned above there is an ergodicity breaking transition in KCM in e.g.
the north-east model on Z2 or a choice of constraints called the spiral model [28], meaning that entire
regions completely freeze [36]. This opens up research possibilities to study, for relatively simple models,
persistence times at the critical density [11] or hitting times in the non-ergodic region [50], which in the
ergodic-region is related to the relaxation time (which is ∞ in the non-ergodic region).

2



CHAPTER 1 Motivation and physical background

Unusual behaviour of spectral gap and universality For KCM in the ergodic region (which for FA-jf
or East) the spectral gap is non-zero. In particular, it has been proved in great generality that when they
are ergodic they are exponentially ergodic with a positive spectral gap. However, often the spectral gap
decreases sharply in q. This is in part due to the large cooperative movements necessary in the small q
regime to facilitate single transitions. Recently a large body of work has been produced that identifies
universality classes of models that exhibit the same scaling in q of their spectral gaps. These classes
originated in the study of bootstrap percolation: Bootstrap percolation is a cellular automaton with the
same constraints as KCM, but at every round of the cellular automaton unconstrained vertices switch to
become vacancies and never become particles again (see [46] for a semi-recent review on just bootstrap
percolation). Remarkably, the universality classes for infection times in bootstrap percolation can be
refined and applied to the KCM case.

While we could cite some representative individual papers we refer the reader to [30] which is a recent
PhD thesis on the topic that, aside from a seemingly exhaustive literature review on bootstrap percolation
and KCM, also contains many of these new results and the open problems for this particular line of
research.

Non-attractiveness KCM are not attractive models, i.e. vacancies do not necessarily favour more
vacancies. Consider for example two East processes where one starts with more vacancies than the other,
then this order is not maintained as the process evolves in time. This is because having more vacancies
also facilitates legal updates that put particles. This makes out-of-equilibrium calculations much harder
since attractiveness allows for a basic coupling between processes started from different states. Without
such a coupling proving any kind of convergence to equilibrium becomes considerably more difficult.
Nonetheless through the years some knowledge on the out-of-equilibrium case has been accumulated of
which we present a non-exhaustive selection.

For d = 1, exponential convergence to equilibrium is shown for the classic KCM like East and FA-1f
in [8, 10, 47]. In particular, front progressions and mixing results for the FA-1f and East model have been
proven in [7, 9] and subsequently even cutoff was shown [21, 26].

For d ≥ 2 much less is known and what is known seems to be limited to the East model or derivatives
of it [14, 22, 23]. In the high temperature regime exponential convergence to equilibrium has been shown
for the multidimensional East model [15, 40] and then even for the universality class containing the
multidimensional East model in [41].

There is no front-progression or shape theorem analogous to the d = 1 results for d ≥ 2. In [13] the
speed of propagation along the axes and the diagonal of boxes with side length 1/q1/d is found for the
multidimensional East model. There is no prior work on finding a d-dimensional analogue for the sets
behind the front that are mixing as in [7], a cutoff result as in [26] or a comprehensive shape theorem
(ibid.).

Variations of KCM In KCM the constraints are always considered translation invariant throughout
the lattice and the vacancies are independent. Interacting KCM, where a weak interaction between
vacancies is added, have been considered in [12]. Recently KCM with random constraints have been
studied in [50, 51]. In this, two models are chosen and at the beginning each vertex gets assigned the
constraints from one of the two models. It is the first research of KCM in random environments and the
open questions here are still abound. The considerations were for example only for d ∈ {2, 3} and a select
amount of models so that little is known for d > 3 and the other cases. Further, one could also consider a
system with a dynamic random environment in which the constraints change in time.

3



CHAPTER 1 Our contributions

FIGURE 1.1 A simulation of the set C(t) of vertices that had a legal update before some
time t for q = 0.04 suggesting the existence of a limit shape.

1.2 Our contributions

Front evolution problem

Our first problem deals with a front progression of the multidimensional East process, identifies a
mixing set behind the front and shows the mixing time cutoff phenomenon, so it lines up with previous
research on the out of equilibrium East model and tackles the immediate open problems there.

Consider the East model on Zd
+ started from a vacancy-free state with only the origin unconstrained

and consider the set of vertices C(t) ⊂ Zd
+ that had legal updates before time t. As mentioned above, an

open problem is the question whether, in d ≥ 2, we can find a shape C∞ ⊂ Rd
+ such that C(t)/t → C∞

almost surely as t → ∞ (see Figure 1.1). Let vmax(x), vmin(x) be the maximal/minimal velocities at
which C(t) grows in the direction of the unit vector x.

In the vanishing q regime we show that if x is independent of the vacancy density q then vmax(x) =
vmin(x) = γ

1+o(1)
d with γd the spectral gap of the d-dimensional East process. If x = x(q) approaches

one of the coordinate axes as q → 0 we distinguish two cases. If it approaches one of the axis slowly
enough then we still find that vmin(x) ≫ γ

1+o(1)
1 = γ

d(1+o(1))
d , but if the approach is too quick, in d = 2,

we prove that vmax(x) = vmin(x)(1+o(1)) = γ
(1+o(1))
1 . Thus, we don’t identify the shape but identify

directions where the propagation speed is maximized (i.e. γd) and directions in which it tends to the
minimum (i.e. γ1). Using this we identify a set S(t) ⊂ C(t) that is extremely elongated around the main
diagonal which mixes as t → ∞, and remarkably note that the East process on an equilateral box exhibits
a cutoff.

Multicolour East model

Recall that usually in KCM each vertex can only have two-states and the evolution is dictated by
constraints that are fixed at the beginning of the process. An interesting problem is considering multicolour
KCM in which there are multiple types of vacancies that come with their own specific constraints and
only communicate with each other through the shared neutral state (which was the particle state before).
An example of this, which is the other main subject of this thesis, is the multicolour East model (MCEM)

4



CHAPTER 1 Structure of the thesis

in which there are multiple vacancy types that propagate individually like rotated multidimensional East
model vacancies and the motion is mutually exclusive so that a vacancy can only be removed by a vacancy
of the same type at the correct place.

As far as we know this is the first time that such a model is considered in the mathematical literature,
but it is in fact inspired by a model introduced in the physical literature by Chandler and Garrahan in [27].
Their model has multiple kinds of vacancies that act on their own like rotated East model vacancies
with the possibility of a ring that does not strictly respect the vacancy type limitations. It addresses the
conceptual shortcomings of the East model that local movement inside the low-temperature glass-forming
liquid globally has a single direction and that this direction cannot change.

We prove sufficient conditions for the positivity of the spectral gap, e.g. in d = 2 we prove that the
spectral gap is positive for any MCEM with three vacancy types. Still in d = 2 we analyse the scaling of
the spectral gap when the minimum density qmin of the vacancy types tends to zero. We prove sufficient
conditions so that the spectral gap of the MCEM process with at most three vacancy types converges to
γ2(qmin).

1.3 Structure of the thesis

This thesis is structured into two parts an expository part and a technical part. The expository part is
split into four chapters. In Chapter 2 we formally construct the East process together with some past
results. The next two expository chapters then introduce the two problems and our results.

In Chapter 3, we start with an introduction in Section 3.1 to the topic of shape theorems and the progress
made towards finding front progression speeds. In Section 3.2 we present the propagation speed result in
Theorem 1, the mixing set result in Theorem 3 and the cutoff result in Theorem 4. The proof of these
results is contained in the second chapter of the technical part, Chapter 7. Understanding the proof only
requires the reading of Chapter 6.

We start Chapter 4 in Section 4.1 by giving a more detailed physical motivation for introducing MCEM
and give some heuristic arguments for ergodicity and spectral gap bounds for the two colour case on Z2.
Section 4.2 contains the formal construction of the MCEM process. We end with the presentation of the
results in Section 4.3, the first being an ergodicity result and the second an analysis of the spectral gap
behaviour in given limiting cases for the equilibrium distribution. The proofs of the results are contained
in the technical second part of the thesis. The ergodicity result is proved in Chapter 8 and can be read
independently. The proof of the spectral gap behaviour result, Theorem 6, is contained in Chapter 9 and
relies again on the results from Chapter 6.

Thus, apart from Chapter 6 that is shared for both problems the exposition and proof sections for the
front evolution problem and for the MCEM can be read independently.

Chapter 5 serves as an overview for the employed techniques and a high-level guide to the main
ideas behind the proofs contained in the technical part. It also naturally motivates Chapter 6 since
Proposition 6.6, contained therein, solves an underlying question for both Theorem 1 and Theorem 6. It is
recommended but not strictly necessary to read this chapter.

In Chapter 10 we close the thesis with a short review of the results presented in the thesis and discuss
remaining conjectures and open questions resulting from them.
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The two main problems
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Chapter 2

The d-dimensional East process

The d-dimensional East process is the fundamental model behind both the front evolution problem and
the multicolour East model so let us now come to the precise definition and some important past results.

2.1 Notation

• For m, n ∈ N with m ≤ n we write [m, n] := {m, m + 1, . . . , n} and [n] := [1, n] if n ≥ 1.

• Let Rd
+ = {x = (x1, . . . , xd) ∈ Rd : xi ≥ 0∀i ∈ [d]} and for any x ∈ Rd

+ let ⌊x⌋ ∈ Zd
+ be such

that ⌊x⌋i = ⌊xi⌋ for all i ∈ [d]. Unit vectors of Rd
+ will be written in bold. Given x, y ∈ Zd

+ we
will write x ≺ y iff xi ≤ yi ∀i, x ≺ V , V ⊂ Zd

+, if x ≺ y ∀y ∈ V , and ∥x − y∥1 :=
∑

i |xi − yi|
for their ℓ1-distance. We shall also write x = 0 to denote the origin of Zd

+. We use the letters
x, y, z to denote vertices in Zd and subscripts i, j, k to denote the components (x1, . . . , xn).

• We use B to denote the canonical basis of Zd comprised of the vectors e1 = (1, 0, 0, . . . , 0),
e2 = (0, 1, 0, . . . , 0),. . . , ed = (0, 0, . . . , 0, 1) and use · for the canonical dot product so that
x · ei = xi.

• For Λ ⊂ Zd we define its oriented boundary as ∂↓Λ := {x ∈ Zd \ Λ : x+e ∈ Λ for some e ∈ B}
and if Λ ⊂ Zd

+ we define its positive oriented boundary as ∂+
↓ Λ := {x ∈ Zd

+ \ Λ : x + e ∈
Λ for some e ∈ B}.

• Given integers (L1, . . . , Ld) the set Λ =
∏d

i=1{0, . . . , Li} will be called the box with side lengths
(L1, . . . , Ld). We will write xΛ for the vertex (L1, . . . , Ld). Notice that ∂+

↓ Λ = ∅. Given a box Λ
with side lengths (L1, . . . , Ld) the set x + Λ will be called the box with side lengths (L1, . . . , Ld)
and origin at x. Unless otherwise specified a box will always have its origin at x = 0.

• ΩΛ will denote for the product space {0, 1}Λ endowed with the product topology of the discrete
topology on {0, 1}. We will write ωx ∈ {0, 1} for the state at x ∈ Λ of the configuration ω ∈ ΩΛ
and we will refer to the vertices of Λ where ω ∈ ΩΛ is equal to one (zero) as the particles
(vacancies) of ω. If V ⊂ Λ we will write ω ↾V for the restriction of ω ∈ ΩΛ to V . In particular we
will write ω ↾V = 1 if ω(x) = 1 ∀ x ∈ V . We use the Greek letters ω, σ, η to denote configurations
in ΩΛ.

• For any Λ ⊂ Zd, a configuration σ ∈ Ω∂↓Λ and for Λ ⊂ Zd
+ a configuration σ ∈ Ω∂+

↓ Λ will be
referred to as a boundary condition for Λ. If σ contains no particles it will be referred to as maximal
boundary condition. If Λ is a box with side lengths in Z+ ∪ {∞} and origin at x, we call σ a

7



CHAPTER 2 Construction and main properties

minimal boundary condition if the only vacancy in σ is in {x − e : e ∈ B}. Finally, for any given
boundary condition σ ∈ Ω∂↓Λ and ω ∈ ΩΛ, we will write σ · ω ∈ Ω∂↓Λ∪Λ for the configuration
equal to σ on ∂↓Λ and to ω on Λ (respectively with ∂+

↓ Λ for Λ ⊂ ∂+
↓ ).

• Given Λ ⊂ Zd
+ we will write µΛ for the product Bernoulli(p) measure on ΩΛ and µΛ(f), VarΛ(f)

for the average and variance of f : ΩΛ 7→ R w.r.t. µΛ.

• Constants, when not immediately relevant to the results being proved may change from line to line
without explicitly mentioning it, so for example we might write

ℓ · 2θ2
q+κθq = 2θ2

q+κθq

if ℓ is of the order 2θq instead defining a new constant κ′ > κ.

2.2 Construction and main properties

Given Λ ⊂ Zd, σ ∈ Ω∂↓Λ and ω ∈ ΩΛ, define the constraint cΛ,σ
x (ω) at x ∈ Λ as

cΛ,σ
x (ω) =

{
1 if ∃e ∈ B : x − e ∈ ∂↓Λ ∪ Λ and (σ · ω)x−e = 0,
0 otherwise.

If ω is such that cΛ,σ
x (ω) = 1 we say that x satisfies the constraints and if there is an x such that

minω cΛ,σx
x (ω) = 1 we say that x is unconstrained.

Say that a function f : ΩΛ → R is local if its value only depends on finitely many variables in Λ. We
define the infinitesimal generator Lσ

Λ of the East process1 on Λ with vacancy density parameter q ∈ (0, 1)
and boundary configuration σ through its action on local functions f as

Lσ
Λf(ω) =

∑
x∈Λ

cΛ,σ
x (ω)

[
ωxq + (1 − ωx)p

]
·
[
f(ωx) − f(ω)

]
=
∑
x∈Λ

cΛ,σ
x (ω)

[
µx(f) − f

]
(ω),

where ωx is the configuration in ΩΛ obtained from ω by flipping its value at x. We are not going into
the details of how to build continuous-time processes out of the action of generators on local functions
(see for example [36, 39] for that) and assume some familiarity with the subject as we are only going to
recall some notions and results as they are useful to us. In particular, we are not going to differentiate
between functions in the domain of L and local functions for which the action is well defined and use
these terms interchangeably. Let f ∈ L2(µΛ), we define the state ω(t) of the process at a time t ∈ R+

started at η := ω(0) through the probability semi-group etLσ
Λ as

EΛ,σ
η (f(ω(t))) := etLσ

Λf(η)

and we write PΛ,σ
η for the corresponding probability measure, i.e. the probability over A(ω(t)) if

f(ω(t)) := 1A(ω(t)). If instead of a fixed configuration our starting state is distributed according to some
measure ν on ΩΛ we write

EΛ,σ
ν (f(ω(t))) =

∑
η∈ΩΛ

ν(η)EΛ,σ
η (f(ω(t))).

1We adopt the convention of speaking of processes for general Λ, and of chains for finite Λ.
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CHAPTER 2 Construction and main properties

As the local constraint cΛ,σ
x (·) does not depend on the state of the process at x, the process is reversible

w.r.t. µΛ. In fact, thanks to the orientation of the constraints a stronger property holds [15, Section 3]. We
say that the process is ergodic with stationary measure µ if for any f ∈ L2(µ) and any starting state η
with at least a vacancy we have

lim
t→∞

EΛ,σ
η (f(ω(t))) = lim

t→∞
etLσ

Λf(η) = µ(f)

in L2(µ).

Remark 2.1. For d ≥ 2 and any integer d′ ∈ [1, d − 1] the projection of the East process on Zd onto
Zd′

= {x ∈ Zd : xj = 0 ∀j > d′} coincides with the East process on Zd′
. Similarly, for any finite

V ⊂ Zd and any box Λ ⊃ V the projection of the East process on Zd onto V coincides with the same
projection of the East process on Λ.

Graphical construction Instead of using infinitesimal generators, there is an explicit construction of
the East process, which helps in getting a clearer idea of the dynamics. Consider a finite subset Λ ⊂ Zd

and associate to each vertex x ∈ Λ a marked Poisson process with rate one. The marks are given by
i.i.d. Bernoulli(p) variables on the local {0, 1}-state space so that with probability p they give the state 1
and with probability q they give the state 0. Assume that at time t there is a ring of the Poisson process
associated to x ∈ Λ. If the constraints are satisfied at x for the configuration ω(t−) at time a time t−
infinitesimally smaller than t, i.e. cΛ,σ

x (ω(t−)) = 1, we say that we have a legal ring, and otherwise
that we have an illegal ring. If the ring is illegal, nothing happens. If the ring is legal, we replace the
state ωx(t) with the outcome of the Bernoulli(p) variable (i.e. the mark associated to that ring). We will
frequently use this construction, especially the notion of legal rings, in the sequel.

It is not obvious that this construction results in the same process as the one induced by the infinitesimal
generator. Further, we assumed that it is possible to know the state of the neighbours of x at time t− to
evaluate the constraints cΛ,σ

x (ω(t−)), which is an assumption that requires justification in the case of
infinite Λ. Indeed, it is possible to show that the amount of rings on which a state ωx(t−) depends is
finite, so that ωx(t−) is well defined. We omit the details of this proof and the discussion of the relation
between both constructions of the process and refer the reader to [36].

Dirichlet form and spectral gap We end the construction with some central objects for the results of
this thesis. For f : ΩΛ 7→ R define the Dirichlet form or the quadratic form of −Lσ

Λ as

Dσ
Λ(f) := µΛ(−fLσ

Λf) =
∑
x∈Λ

µΛ(c
Λ,σ
x Varx(f)),

where

Varx(f)(ω) = pq(∇xf)2(ω) = pq(f(1 · ωΛ\{x}) − f(0 · ωΛ\{x}))
2.

We then define the spectral gap through its variational characterisation as

γσ(Λ; q) = γσ(Λ) := inf
f∈Dom(Lσ

Λ)
f ̸=const

Dσ
Λ(f)

VarΛ(f)
.

If Λ = Zd we write γ(Zd; q) = γd(q). We call any inequality of the form

VarΛ(f) ≤ CDσ
Λ(f) ∀f ,

a Poincaré inequality and note that the inverse spectral gap (i.e. the relaxation time) is the best constant in
the above inequality. A well known result then connects the spectral gap to ergodicity.
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Theorem 2.2 ([38, Section IV, Theorem 4.13]). The following statements are equivalent

(i) The East model is ergodic with stationary measure µ.

(ii) 0 is a simple eigenvalue of Lσ
Λ.

Thus, ergodicity is implied by showing that the spectral gap is strictly larger than 0. In fact, a
strictly positive spectral gap even implies mixing with exponentially decaying correlations (see for
example [11, 37])

Var(etLσ
Λf) ≤ e−2tγσ(Λ)Var(f).

Finding tight bounds on the spectral gap is one of the central interests in the study of KCM and is our
main concern for the multicolour East model section of this thesis. Before introducing the bounds on the
spectral gap we use for the East model we introduce two further bits of notation, first θq := log2(1/q)
and we write g(q) = O(h(q)), g(q) = Θ(h(q)), g = o(1) to mean that there are constants c, C and δ
such that |g(q)| ≤ C|h(q)| for any q < δ, c|h(q)| ≤ |g(q)| ≤ C|h(q)| for q < δ and g(q) → 0 as q → 0
respectively. For the multidimensional East model on boxes we have precise bounds on the spectral gap
for minimal and maximal boundary conditions.

Theorem 2.3 ([13, Theorem 1 and 2]). Let Λ be an equilateral box of side length L − 1 with L ∈
(2n−1, 2n] and n = n(q) such that limq↓0 n(q) = +∞. We then have

γσmax
(Λ) =

2−(nθq−d(n
2))(1+o(1)) : n ≤ θq/d,

2−θ2
q (1+o(1))/2d : else,

γσmin
(Λ) =

2−(nθq−(n
2))(1+o(1)) : n ≤ θq/d,

2−θ2
q (1+o(1))/2 : else,

where σmax is a maximal boundary condition and σmin a minimal one. If Λ = Zd we have γd =
2−θ2

q /2d(1+o(1)).

Remark 2.4. To simplify the notation we adopt the following convention for dropping the various super-
and subscripts in the sequel. In chapters and sections concerning the multicolour East model specifically,
we leave out the explicit mention of Λ if Λ = Zd and in this case there is no oriented boundary so we also
omit the boundary conditions. Minimal boundary conditions are implied if we omit the explicit mention
of the boundary conditions on boxes in Zd.

In the rest of the thesis, which deals with the East model as defined above we only consider the model
on Zd

+ or subsets thereof with minimal boundary conditions, i.e. where the origin is unconstrained. Notice
that in this case the positive oriented boundary ∂+

↓ Λ may be empty or σ = 1 for σ ∈ ∂+
↓ Λ and the

assumption would still be that the origin is unconstrained (otherwise the model would not be ergodic).
Minimal boundary conditions are again implied if we omit the explicit mention of the boundary conditions
on boxes in Zd with origin x > 0.
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Chapter 3

A front evolution problem for the
multidimensional East model

We now come to a more in-depth introduction to the problem of shape theorems, front speeds and
mixing sets which will give the necessary context to fully appreciate the results that we present in
Section 3.2. The results in this chapter have been (pre)published by Fabio Martinelli and the author
in [16].

3.1 Introducing the problem

Let ω∗ ∈ Ω be the configuration with no vacancy and write τx, x ∈ Rd
+, for the hitting time of the

set {ω : ω⌊x⌋ = 0}. More generally, for any A ⊂ Zd
+ we will write τA for the hitting time of the set

{ω : ω ↾A ̸= 1}. Given a unit vector x ∈ Rd
+, it is known [15, Theorem 5.1] that for any fixed q ∈ (0, 1)

Eω∗(τnx) = Θ(n), as n → +∞. (3.1)

Further recall that the mixing time T
(n)
mix(ε) on Λn := {0, . . . , n − 1}d is defined as the smallest t such

that
dn(t) = max

ω∈ΩΛn

∥Pt
ω(·) − µΛn∥T V < ε

where ∥ · ∥T V is the total variation distance, Pt
ω(·) denotes the law at time t of the East process on

Λn with initial condition ω (see [37] for more details on the mixing time). In particular, we write
T
(n)
mix = T

(n)
mix(1/4). Then we know that T

(n)
mix = Θ(n) (ibid.). In these Θ(n) terms there are constants

hiding that are of interest to us, as they tell us how fast equilibrium propagates, so it is natural to define

1
vmax(x)

= lim inf
n→∞

Eω∗

(
τnx
)

n
, 1

vmin(x)
= lim sup

n→∞

Eω∗

(
τnx
)

n
,

and denote them as the maximal, respectively the minimal, front velocity in the direction of x. Using
Equation (3.1), 0 < vmin(x) ≤ vmax(x) < +∞ for all x.

In analogy with the classic shape theorem for first passage percolation discussed below we conjecture
that vmax(x) = vmin(x) := v(x) and in that case v(x) represents the front velocity in the direction x.
Similarly, for any t > 0 we define the random set (see Figure 1.1)

C(t) = {x ∈ Rd
+ : τx ≤ t},

11



CHAPTER 3 Introducing the problem

and conjecture that there exists a compact subset Ĉ ⊂ Rd
+ such that

∀ ε > 0 lim
t→∞

Pω∗

(
(1 − ϵ)tĈ ⊆ C(t) ⊆ (1 + ϵ)tĈ

)
= 1.

Remark 3.1. For d ≥ 2, Remark 2.1 together with the law of large numbers in d = 1 imply that
vmax(e) = vmin(e) ∀e ∈ B. For all other directions both conjectures are still widely open.

In absence of a proof for the above conjectures it is natural to ask whether there is any information
we can get on vmax, vmin depending on x. In particular, we investigate the physically relevant regime
when q → 0, which we recall is the low-temperature regime. Recalling the simulation results shown
in Figure 1.1 we expect that vmin(x) ≫ vmax(x′) when x points in a somewhat diagonal direction
and x′ points in a direction almost parallel to an axis. Further, one expects there to be a shift from a
‘two-dimensional speed’ to a ‘one-dimensional speed’ with x approaching an axis. Indeed, our first result,
Theorem 1, proves bounds identifying directions clearly in the one-dimensional mode and directions in
which propagation is clearly quicker.

We show that when x is independent of q we have vmax(x) = vmin(x)1+o(1) = γ
(1+o(1))
d as q → 0. If

x = x(q) slowly approaches an axis we have vmin(x) ≫ v(e1) as q → 0 and if x approaches the axis
quickly we get vmax = vmin(x)1+o(1) = v(e1)1+o(1) = γ

1+o(1)
1 .

Above we said that T
(n)
mix = Θ(n). Given that the diagonal modes propagate with speed γd ≫ γ1 it

begs the question whether we can find a subset Λt ⊂ Zd
+ that grows in time with speed γd and such that

for νt the marginal of the East process on Λt at time t starting from the empty state we have

lim
t→∞

∥νt − µΛt∥T V = 0. (3.2)

Such a set Λt obviously could not include the axis as, let alone mixing1, the propagation speed would not
suffice. Finding such a set for q → 0 is the object of Theorem 3.

Finally, let us recall the mixing time cutoff phenomenon:

Definition 3.2. We say that a Markov process on Λn exhibits cutoff with a window of size O(wn) if
wn = o(T

(n)
mix) and

lim
α→−∞

lim inf
n→∞

dn(T
(n)
mix + αwn) = 1,

lim
α→∞

lim inf
n→∞

dn(T
(n)
mix + αwn) = 0.

In words the transition from an unmixed state, i.e. ∥Pt
ω(·) − µΛn∥ ≈ 1, to a completely mixed state,

i.e. ∥Pt
ω(·) − µΛn∥ ≈ 0, happens at T

(n)
mix in a time window of wn. We refer the reader to [1, 18, 37] for

more details on the cutoff phenomenon.
As we discuss further below, in d = 1 we know that the East process mixes in time linear in n with a

cutoff of window
√

n. For d > 1 we only know that T
(n)
mix is linear in n but not whether there is cutoff.

This is the subject of Theorem 4 which proves a cutoff result for d = 2 on equilateral boxes with minimal
boundary conditions for the same mixing time with a window smaller than n2/3.

1We use the term mixing w.r.t. a set Λ to mean that the marginal νt of the East process at time t converges to the equilibrium
marginal on Λ in the total variation distance, i.e. in this case Λt is mixing if Equation (3.2) holds.
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3.1.1 Motivation

Shape theorem for first passage percolation

We start our exposition on the subject with the classic result for first passage percolation first given
in [17] and present here a simplified version from [42] adapted to the first passage percolation case (see [5]
for a recent review of first passage percolation). In this section let {T (z)}z∈Zd

+
denote an i.i.d. family of

positive weights distributed as an exponential random variable with parameter 1. Let Γ(z1, z2) be the set
of directed paths (going up and right) from z1 to z2 and Γ(z1) = Γ(0, z1). Define

S(z, z′) = min
π∈Γ(z,z′)

∑
z′′∈π

T (z′′), S(z) = S(0, z), h(x) = inf
n∈N

1
n
E(S(⌊nx⌋)).

If we consider T (z) as the time it takes to go through the vertex z, then the model takes its name from the
fact that S(z) is the first time we could pass through z starting at the origin. The analogous set C(t) for
this model is then

C(fpp)(t) = {x ∈ Rd
+ : S(⌊x⌋) ≤ t}, C(fpp) = {x : h(x) ≤ 1}.

The following shape theorem holds.

Theorem 3.3 (Proposition 2.1 [42]). For any ε > 0 there is a tε such that

(1 − ε)C(fpp) ⊂ C(fpp)(t)

t
⊂ (1 + ε)C(fpp),

almost surely for all t > tε.

Write x ≺ y if xi ≤ yi for i ∈ [d]. The crucial property for the proof of this theorem is the subadditivity
of S(z), i.e. for any z1, z2, z3 ∈ Zd

+ z1 ≺ z2 ≺ z3 we have

S(z1, z2) + S(z2, z3) ≥ S(z1, z3).

Subadditivity combined with Kingman’s subadditive ergodic theorem (see [33]) imply that

lim
n→∞

S(nz)/n → h(z),

almost surely. The proof then requires a few more analytical steps that we omit here.

Subadditive quantities for the multidimensional East model When trying to tackle a shape theorem
for the East model the natural approach would be to find a subadditive quantity representing the front.
While Eω∗(τnx) might not be subadditive, T̂ (z1, z2) := supω,ωz1=0Eω(τz2) is for z1 ≺ z2. Indeed, by
the strong Markov property, for z1 < z2 < z3

T̂ (z1, z3) = sup
ω,ωz1=0

Eω(τz3(1τz2 <τz3
) + τz31τz2 ≥τz3

)

≤ sup
ω,ωz1=0

Eω(τz31τz2 <τz3
) + sup

ω,ωz1=0
Eω(τz2)

≤ T̂ (z2, z3) + T̂ (z1, z2),

where we used the strong Markov property and that ω(τz2) has a 0 in z2. Thus, we get that v̂(x)−1 :=
limn→∞ supω,ω0=0 Eω(τnx)/n exists. Clearly vmax(x) ≤ v̂(x), but this is also the extent of information
on the front we get through this approach.

13



CHAPTER 3 Introducing the problem

Subadditivity through attractiveness Trying to find a subadditive relation without the supremum in
the setting of more general interacting particle systems (see [4, 32] for example) often leads to arguments
based on attractiveness (see [32] for a recent example of using subadditivity without attractiveness).
Consider for example the frog model from [4] defined as follows: In the starting state we have a sleeping
particle on each vertex in Zd apart from some x ∈ Zd which is active. The active particle performs a
simple random walk and when it lands on a vertex with a sleeping particle, it wakes the sleeping particle
on the vertex up so the newly active particle also starts to perform an independent simple random walk.
Let T (x, y) be the time it takes to wake the particle at y up starting with a single active particle at x, then
we have

T (x, z) ≤ T (x, y) + T (y, z).

Indeed, if z is reached before y this is obvious and if y is reached first consider that the process started
with a single active particle at x, at the time it reaches y has many more active particles than the process
started with a single active particle in y. By using the same jumps for both processes, what we call the
basic coupling, it is easy to see that the above inequality holds.

The property that T (y, z) being larger than T (x, z) − T (x, y) is what we call attractiveness2. For the
East model we do not have attractiveness, as having more vacancies, implies that legal updates that put
particles get more likely, which in turn implies that more vacancies at the beginning might be detrimental
to the progression of the front. In fact, all KCM are not attractive rendering this approach unusable.

Shape theorem and cutoff for the one-dimensional East model

In d = 1 we have a shape theorem for the East model for which the concept of the distinguished zero,
first introduced in [2], is a central notion. Consider the East process on Z started from some state ω(0)
with a vacancy on some ζ0 ∈ Z that we call the distinguished zero. Let τx be the first time, the vacancy
on ζ0 gets removed, then this implies that there is a vacancy on ζ0 − e that made the ring legal. We then
move the distinguished zero ζt at time t to ζ0 − e. Thus, ζt is a west-moving function in time such that
ωζt = 0 for all t. In particular, the following important property holds:

Lemma 3.4 ([2, Lemma 4] or [12, Lemma 3.5]). Fix an interval V0 = (x0, x1]. Suppose that for the
starting state ω(0) we have ωx0(0) = 0 and that ωV0(0) ∼ µV0 . If ζ0 = x0 then the distribution of
Vt = (ζt, x1] is µVt for any time t ≥ 0.

Sketch of proof. The proof is inductive: By stationarity the distribution on Vt is always µt since the
boundary condition is fixed at 0. Whenever the distinguished zero moves, the newly added vertex to Vt is
distributed like a Bernoulli(q) random variable independent of the config on Vt since there was just a legal
update on it and hence the distribution on Vt is still that of a product Bernoulli measure.

Using the distinguished zero, Blondel was able to show in [7] that far behind the front the process is
mixing. Additionally to the distinguished zero, Blondel also introduced the process as seen from the front,
defined as the regular East process shifted so that the right-most vacancy ξt is always at the origin. By
constructing a non-trivial coupling for ξt the existence of an invariant measure ν and ergodicity of the
process as seen from the front is shown implying the existence of a shape, i.e. that vmax = vmin = v. In
fact, a law of large numbers for ξt is shown.

This is the first proof of a shape theorem for KCM, but little was known of the invariant measure of
the process seen from the front and as a consequence also of v. As mentioned above, in [26], Ganguly,

2More precisely, it is a consequence of what one usually calls attractiveness, the formal definition of attractiveness itself we
leave out here, see for example [38] for that.
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Lubetzky and Martinelli then proved a precise CLT for ξt showing that the East process exhibits cutoff in
a window of

√
n. We explicitly recall the theorem here as it is often cited later.

Theorem 3.5 ([26, Theorem 2]). There is a v such that the East process on Λn with parameter 0 < q < 1
exhibits cutoff at v−1n with window

√
n, i.e. for 0 < ε < 1 and n large enough we have

T
(n)
mix(ε) = v−1L + O

(
Φ−1(1 − ε)

√
n
)

where Φ is the c.d.f. of N (0, 1) and the implicit constant in the O(·) depends only on q.

Generalising the to d-dimensions The concept of the distinguished zero is a concept that may be
generalised to d-dimensions. This was done in [15] and used to prove a sort of convergence to equilibrium
result. Notice that the proof of Lemma 3.4 critically relies on the distribution right of ζt to be independent
of the distribution left of it. In d ≥ 2 this is obviously not the case anymore so that to recover an analogous
result to Lemma 3.4 (see [15, Proposition 3.5]) the authors had to condition on all the information that
could influence the path of the distinguished zero to maintain equilibrium. The main contribution the
distinguished zero gives in d = 1 is that there is an interval where we reasonably can expect to find
vacancies. The distinguished zero does not give an analogue for this in d ≥ 2. Instead we use that if we
start with a vacancy at origin, for any time t there is an x ∈ [−ℓ, 0]d, that spends at least ℓ−d/t time in
the vacancy state (see [15, Remark 4.4 and Corollary 4.2] or Equation (7.2) below).

Further, also the process as seen from the front promises to be a much more delicate object to define in
d > 1. In d = 1 it suffices to shift the East process but in d > 1 there is no obvious shift anymore as the
front is now a d − 1 dimensional hyperplane rather than a point.

3.1.2 Previous result on scale O(2θq/d)

In [13], Chleboun, Faggionato and Martinelli introduced an idiosyncratic way of partitioning Zd, the
Knight lattice, together with a bottleneck construction which allowed them to prove Theorem 2.3 using
a renormalisation group technique. The Knight lattice is heavily used in Proposition 6.6 in Chapter 6
and the bottleneck in Chapter 7 so we postpone their introduction here. They further prove the following
bound, more closely resembling what we are looking for.

Theorem 3.6 ([13, Theorem 3]). Consider the equilateral box Λ with side length L ∈ (2n−1, 2n] and
n = n(q) with limq→0 n(q) = ∞. Then, as q → 0

Eω∗(τxΛ) = 2nθq−d(n
2)+O(θq log(θq)),

for all n ≤ θq/d.

The proof relies on the above mentioned bottleneck and capacity methods combined with a sophisticated
combinatorial analysis. This in particular does not give bounds on vmax(1) or vmin(1) since n depends
on q. Further, extending the analysis of the mean hitting time Eω∗(τx) to arbitrary vertices x of the form
x = nx, where x is unit vector of Rd

+ and n ∈ N, using capacity methods as in [13] seems prohibitive.

3.2 Main results

Let us now come to the contributions of this thesis.
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CHAPTER 3 Main results

3.2.1 Front velocity bounds

Theorem 3.6 served as a main inspiration for our first result in which we sought to get rid of the
dependence of n on q and generalise the possible directions x. Specifically, our main result concerns the
small q behaviour of vmax(x), vmin(x) as a function of x ∈ Rd

+. We will distinguish between the case
in which the direction x is fixed independent of q and the case in which x = x(q) and mini xi → 0 as
q → 0.

Theorem 1. Fix d ≥ 2.

(A) Let x ∈ Rd
+ be a unit vector with mini xi > 0. Then

lim
q→0

− 2
θ2

q

log2(vmax(x)) = lim
q→0

− 2
θ2

q

log2(vmin(x)) =
1
d

.

(B) Let 0 < β < 1, κ ≥ 1 and let {x(q)}q∈(0,1) be a family of unit vectors in Rd
+ such that

maxi,j xi(q)/xj(q) ≤ κ2βθq . Then

1/d ≤ lim sup
q→0

− 2
θ2

q

log2(vmin(x(q))) < 1.

(C) Assume d = 2 and let α > 0. Let {x(q)}q∈(0,1) be a family of unit vectors in R2
+ such that

maxi,j xi(q)/xj(q) ≥ 2αθ2
q . Then

lim inf
q→0

− 2
θ2

q

log2(vmax(x(q))) ≥ (1 + 4α) ∧ 2
2 .

Moreover, if α > 1/4 then

lim
q→0

− 2
θ2

q

log2(vmax(x(q))) = lim
q→0

− 2
θ2

q

log2(vmin(x(q))) = 1.

The same results apply to v̂(x) from Section 3.1.1.

Remark 3.7. Part (C) is presented here only for d = 2 for simplicity. Remark 2.1 and the same proof
ideas give similar, although more involved, results also for d ≥ 3.

By combining (A) above together with Remark 2.1 we immediately get

Corollary 2. Fix d ≥ 2 and let x ∈ Rd
+ be a unit vector such that mini xi = 0. Then

lim
q→0

− 2
θ2

q

log2(vmax(x)) = lim
q→0

− 2
θ2

q

log2(vmin(x)) =
1

d(x) ,

where d(x) := #{i ∈ [d] : xi > 0}.

Remark 3.8. In order to better understand Theorem 1, let us write the full lattice Zd spectral gap from
Theorem 2.3 for d ≥ 1 in the same form:

lim
q→0

− 2
θ2

q

log2(γd) = 1/d.

Notice that γd+1 = γ
(1+o(1))d/(d+1)
d and that this also holds for the East process on equilateral boxes

with maximal boundary conditions by Theorem 2.3. Then:
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(A) if the direction x points towards the bulk of Rd
+ uniformly in q as q → 0, then vmax(x) =

vmin(x)1+o(1) = γ
1+o(1)
d ;

(B) if x = x(q) points to a lower dimensional space slowly enough as q → 0, then vmin(x) is much
larger than the velocity v(e), e ∈ B, in any coordinate direction;

(C) for d = 2 if x = x(q) approaches one of the coordinate directions fast enough, then vmax(x) is
much smaller than the minimal velocity in the bulk and if this convergence is strictly fast enough,
then vmax(x) = vmin(x)1+o(1) = v(e1)1+o(1).

3.2.2 Mixing set behind the front

The second result analyses the law at large times of the East process with initial condition ω∗, which
we recall is the state with no vacancy so that at the start only the origin is unconstrained by assumption.
It proves that for q small enough the region of Zd

+ where the East process at time t has relaxed to the
reversible measure µ is extremely elongated in the bulk of Zd

+ (see Figure 1.1).

Theorem 3. Fix d ≥ 2, 0 ≤ δ < 1 and ε > 0. Let

Λ(δ, ε, t) = {x ∈ Zd
+ : min

i,j
xi/xj ≥ δ and ∥x∥1 ≤ 2−

θ2
q

2d
(1+ε) × t}, t > 0,

and let νδ,ε
t be the marginal on ΩΛ(δ,ε,t) of the law of the East process at time t with initial condition ω∗.

Then,

lim sup
ε→0

lim sup
q→0

lim sup
t→∞

∥νδ,ε
t − µΛ(δ,ε,t)∥T V = 0 if δ > 0, (3.3)

lim inf
ε→0

lim inf
q→0

lim inf
t→∞

∥νδ,ε
t − µΛ(δ,ε,t)∥T V = 1 if δ = 0.

Remark 3.9. A slightly more refined formulation of Theorem 3 avoiding the lim sup on ε, q would have
been possible. However, we opted for the present version for simplicity.

3.2.3 Cutoff phenomenon

Let us come to our final result which is on the cutoff on Λn = {0, . . . , n}2. Consider the time

Tn = n/v,

where v is the front velocity along any coordinate direction e ∈ B which we recall is given by the velocity
of the one dimensional East process (see Remark 3.1). Recall that dn(t) = maxω∈ΩΛn

∥Pt
ω(·)− µΛn∥T V ,

where Pt
ω(·) denotes the law at time t of the East process on Λn with initial condition ω.

Theorem 4. There exists q0 ∈ (0, 1) such that for any 0 < q ≤ q0

lim
α→∞

lim inf
n→+∞

dn(Tn − α
√

n) = 1, (3.4)

lim sup
n→+∞

dn(Tn + n2/3) = 0. (3.5)

Remark 3.10. Above we didn’t try to optimise the cutoff window size. Using Theorem 3.5, Tn is the
mixing time of the standard one dimensional East chain on the interval {0, . . . , n}. Hence, in a very
precise sense, the one dimensional evolution along the coordinate axes dominates the mixing process of
the multidimensional East chain in Λn.
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Chapter 4

Multicolour East models

This chapter introduces the multicolour East model (MCEM). We start in Section 4.1 with a physical
motivation for the definition and present some heuristics for the two colour case on Z2. Then, in
Section 4.2 we give the formal construction showing the parallels to the East model construction from
Chapter 2. Finally, in Section 4.3 we present a result giving positivity of the spectral gap in Zd for specific
choices of the geometry of the model. Further, we show sufficient conditions for the spectral gap of the
three colour model to tend to γ2 as the minimum equilibrium density goes to 0.

4.1 Introduction

We start with the conceptual shortcomings that the East model has, as a physical model for glass-
forming liquids and which the MCEM tries to remedy. Then we come to ergodicity considerations on Zd

and show a first bound on the spectral gap in Z2 for the two colour model.

4.1.1 Physical motivation

Let us recall the physical motivation for analysing the East model and use that to motivate the definition
of MCEM loosely following the arguments given in [27]. The modelling of supercooled glass-forming
liquids by the East model relies on three assumptions.

The first is that most movement in the liquid is not through diffusion but vibration, so atoms do not
wander through the lattice but get locally excited. The second is that atom mobility is facilitated and that
most atoms are jammed. Facilitated in this case means that an atom can move if there is a neighbouring
excited space (i.e. a vacancy). The assumption that most atoms are jammed, or alternatively that the
temperature is low, is necessary because it is to be assumed that in the high-temperature region other
dynamics are more prevalent than the glass-forming dynamics that lead to non-Arrhenius relaxation. The
third assumption is that facilitated mobility carries a direction. If an atom vibrates in a way to create
a gap in a south-western direction then the resulting gap should facilitate movement in the north-east
neighbourhood of this atom.

The first assumption is modeled in the East model as a vacancy induces another vacancy rather than
having a diffusive motion like the simple exclusion process through the lattice. The second assumption is
modeled through the constraints of the East model where the assumption that most vertices are jammed
is given if we take q ∼ e−β small where β is the inverse temperature. The third assumption is again
modeled in the constraints of the East model in which only the north-east neighbours of a vacancy are
unjammed. A priori there is no reason to impose a unique direction of facilitation throughout a whole
lattice, as it might be that an atom gets excited such that its north and west neighbours get unjammed,
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while somewhere else completely an excitation that unjams the south and east neighbours takes place. The
MCEM seeks to remedy this by allowing for multiple vacancy types that each have a different associated
direction to them of neighbours that they unjam.

We first present the model introduced by Chandler and Garrahan in [27], which we call the isotropic
MCEM and then present the version used in this thesis, the MCEM. The isotropic MCEM is a two-
parameter model with parameters q, ξ ∈ [0, 1]. On Zd the state space consists of a neutral state ⋆ and
2d vacancy types where each vacancy type unjams d neighbours. The set of facilitated neighbours is
given by a rotation of the original d-dimensional East model constraints associated to each vacancy type,
e.g. for d = 2 there is a vacancy type that respectively facilitates transitions in the respective north-east,
north-west, south-east and south-west neighbourhood (corresponding to the four π/2 rotations of the
original East constraints).

The isotropic MCEM dynamics only allow transitions from the neutral state ⋆ to a vacancy state with
rate q/2d and from a vacancy state back to the neutral state with rate 1 − q, but no transitions in between
vacancy states of different types. There are two types of transitions governed by the parameter ξ. With
rate ξ the vacancy-neutral state transitions happen if facilitated by a vacancy of one of the above 2d

vacancy types in the correct spot. With rate 1 − ξ we ignore interactions between the vacancy types. More
precisely, if there is a vacancy of some type on x then only a vacancy of the same type on the appropriate
spot can facilitate a transition to ⋆. Conversely if x is in state ⋆ it can only transition to those vacancy
types that facilitate its transition.

We call the model isotropic MCEM since there is no preferred propagation direction inherent in the
model. Physically the model with ξ ∈ (0, 1) mirrors the fact that directionality in the facilitation dissipates
on a time scale 1/ξ. If ξ = 0 the model rigidly requires a chain in space-time on the lattice of equal
vacancy types, if ξ = 1 no directionality is inherited throughout chains of facilitation. In fact, for ξ = 1
the dynamics resemble that of the FA-1f KCM since diffusive motion of vacancy types is possible if more
involved than in the FA-1f case (see Figure 1 of [27]). For ξ = 0 it resembles that of multiple rotated
versions of the East process evolving on the same lattice only sharing their particle state as the neutral
state ⋆.

In this picture, the various East-models block each other since if there is a frequent vacancy type it
might completely block the infrequent vacancy types from evolving on the lattice. In fact, this mutual
blocking leads to the natural conjecture that the spectral gap for the ξ ∈ {0, 1} cases is much lower than
for their respective KCM counterparts. Contrary to this, in [27] it is conjectured, based on simulation, that
for ξ = 1 the spectral gap does indeed scale similarly to the FA-1f model and for ξ = 0 similarly to the
East model and for ξ ∈ (0, 1) the spectral gap exhibits a scaling given by an interpolation between the
scaling of the two edge cases. It seems to have been missed in [27] that for ξ = 0 the isotropic MCEM is
not ergodic (see Theorem 5(A) further down).

The ξ = 0 case is the basis for the definition of the MCEM and is the subject for the second main
problem dealt with in this thesis, and the first result identifies versions of it with less vacancy types that
are exponentially ergodic, i.e. have positive spectral gap (Theorem 5(B)). In the MCEM we do not fix
the rate of transition to the vacancy types to be uniform, hence our model is also anisotropic. Further, in
Theorem 6 we consider the two-dimensional three vacancy type case and we show sufficient conditions
on the equilibrium distribution for the spectral gap to tend to γ2 as the equilibrium density of the least
frequent vacancy type tends to 0. Unexpectedly, we also show this for cases where there are other frequent
vacancy types.
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4.1.2 Heuristic analysis of the two colour case

Consider first the MCEM on Z1 with a vacancy type that behaves like the regular East vacancy, call it
A-vacancy, and another, call it B-vacancy, that behaves like a mirrored East vacancy, i.e. requiring that
the right neighbour has a B-vacancy. This model is not ergodic. Indeed, let qA > 0 and qB > 0 be the
appropriate equilibrium densities and consider a starting state in equilibrium. Almost surely there is a pair
of vertices x, x + e1 such that there is a B-vacancy on x and an A-vacancy on x + e1. To remove the
B-vacancy x + e1 needs to have a B-vacancy and vice-versa for x + e1 and A-vacancies. Thus, in the
MCEM process as described above there is no legal transition for a pair like this, and thus this MCEM is
not ergodic.

This is generalisable to Zd and indeed the reason why the isotropic MCEM with ξ = 0 is not ergodic.
Showing ergodicity is a more involved process requiring the cooperation of the various vacancy types and
we state our results for this in Theorem 5.

Consider an MCEM on Z2 with the analogous two vacancy types, i.e. A-vacancies that have regular
East model constraints and B-vacancies that are mirrored. Let qA = 1/2 and qB = ε for ε ≪ 1. We
want to argue that the spectral gap is lower bounded by the spectral gap γ1(qB) of the one-dimensional
East model with vacancy density qB . Indeed, we will see that it suffices to find a very likely event so that
the origin relaxes, i.e. can transition to both the A-vacancy and B-vacancy state, on a time scale γ−1

1 (qB)
given that event1.

For small ε it is not hard to convince oneself that it is exponentially likely that there is a x ≺ 0 not too
far from the origin with an A-vacancy and such that on a shortest path from x to 0 there is no B-vacancy.
For the B-vacancies this is not possible, since any B-vacancy is submersed in a sea of A-vacancies.

The question is how, despite this, a B-vacancy can travel to the origin in the time-window of a regular
one-dimensional relaxation. Consider the first vertex with a B-vacancy in the e2 direction from the origin
and call it ξ. We can consider any A-vacancy between 0 and ξ as a neutral state at little cost in relaxation
time. Indeed, similarly to transitioning the origin to the A-vacancy state, any A-vacancy between 0 and ξ
is exponentially likely to have a short down-left path to an A-vacancy on which there is no B-vacancy.
The average waiting time to create A-vacancies or neutral states is roughly the expectation of a geometric
variable and given by 1/qA = 2 and 1/(qA + qB) ≤ 3 respectively. Removing the A-vacancies between
0 and ξ thus has a constant cost. The dynamics of this models are thus given by the B-vacancy that starts
to move down from ξ to 0 in a one-dimensional East fashion while occasionally having to wait for a
constant time until an A-vacancy in the way gets removed.

Already for two-vacancy types and just showing one-dimensional East relaxation we see that some
cooperation is necessary. In Theorem 6 we show sufficient conditions on the equilibrium distribution that
the three vacancy type model has two-dimensional East relaxation. This requires complex constructions
that show that cooperation is possible allowing the least frequent vacancy types to relax two-dimensionally
while the frequent vacancy types eliminate each other.

4.2 Construction of the MCEM process

Some notation will be recycled since the construction of the MCEM will be analogous to the definition
of the standard East model given in Chapter 2.

Definition 4.1 (Vacancy types and their constraints). The set of vacancy types is a finite set V of cardinality
2d. We identify V with the hypercube Hd := {0, 1}d ⊂ Zd and refer to the vacancy type corresponding

1For those who know: this is done using the exterior condition theorem from [44], otherwise see Chapter 5 for some more
details.
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(0, 0)

(0, 1) (1, 1)

(1, 0)

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(1, 0, 1)

(1, 1, 1)

(0, 1, 1)

(0, 0, 1)

(1, 0, 0)

FIGURE 4.1 Hd for d = 2 (left) and d = 3 (right) together with the vacancy types as
coloured corners and the propagation directions of the corners as arrows pointing away
from the appropriate corner, the length of the propagation directions is less than half the

actual length for rendering reasons.

to the vertex h ∈ Hd as the vacancy of type h or the h-vacancy. We say that v is a propagation direction
for the h-vacancy, and write v ∈ P(h), if ∥v∥ = 1 and h + v ∈ Hd. For h ∈ Hd we say that x ≺(h) y if
x · v ≤ y · v for every v ∈ P(h).

Given G ⊂ Hd which we identify with a collection of vacancy types in V , the single vertex state space
S(G) will consist of G and a neutral state denoted by ⋆. For ω ∈ S(G)Z

d

, h ∈ G and x ∈ Zd the
constraint ch

x(ω) is given by

ch
x(ω) =

{
1 if ∃ v ∈ P(h) : ωx−v is a h-vacancy,
0 otherwise.

We refer to Figure 4.1 for an illustration of H2 and H3 with the associated propagation directions for each
vacancy type.

Remark 4.2. If G = {(0, 0, . . . , 0)}, we can identify ⋆ with 1 and (0, 0, . . . , 0) with 0 to recover the state
space of the d-dimensional East model with the corresponding constraints on Zd. Notice in particular the
difference to the situation for the front evolution problem, discussed in Remark 2.4. Where for the front
evolution problem it makes sense to consider the East model on Zd

+ and fix minimal boundary conditions
so that the origin is always unconstrained, for the MCEM we consider Zd as the base case.

Notation warning: In the sequel, for a given ω ∈ S(G)Z
d

and h ∈ G, we will often write ωx = h
meaning that ωx is a vacancy of type h.

For G ⊂ Hd we call vectors q = {qh : h ∈ G} with qh > 0 for h ∈ G, and
∑

h∈G qh < 1, valid
parameter sets and write p = 1 −

∑
h∈G qh. Given a valid parameter set q let ν denote the probability

measure on S(G) that assigns probability p to the state ⋆ and qh to h for all h ∈ G. For any Λ ⊂ Zd

define the state space ΩΛ = S(G)Λ and the measure µΛ := ⊗x∈Λν, where we recall the notational
convention that we leave away Λ if Λ = Zd. We also omit the dependence on q and G in the notation of
p, ν and ΩΛ as they will be clear from context.

Definition 4.3 (The G-MCEM process). Given a subset G ⊂ Hd and a valid parameter set q we define
the continuous time G-MCEM process on Zd via the infinitesimal generator, which we define through its
action on local functions f : Ω → R, as

Lf(ω) =
∑
h∈G

∑
x∈Zd

ch
x(ω)[1ωx=⋆qh + 1ωx=hp]∇(h)

x f(ω),
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where

∇(h)
x f(ω) :=


f(h · ωZd\{x}) − f(ω) : if ωx = ⋆,
f(⋆ · ωZd\{x}) − f(ω) : if ωx = h,
0 : else.

We write ω(t) for the state at time t and Eη and Pη for the corresponding expectation and law for the
process started at η ∈ Ω.

Remark 4.4. It might be surprising that the sum of the rates qh + p < 1 as opposed to usual KCM
case in which no matter what state a vertex was in the rings came in with rate 1. In fact, here the
missing rate 1 − qh − p is hidden in ∇(h)

x f(ω) = 0 if ωx ̸∈ {h, ⋆}, thus we could have added a term
1ωx ̸∈{h,⋆}(1 − qh − p) for the ring that does nothing.
Remark 4.5. Notice that in the G-MCEM process a state can transition from ⋆ to h iff there is a vector
v ∈ P(h) such that x − v has an h-vacancy justifying the name propagation direction for v. In particular,
an h-vacancy at x can only influence those vertices y such that x ≺(h) y. Further, there is no transition
from one vacancy type to another. The process, in order to change the state of a vertex from one vacancy
type to another, first has to go through the neutral state ⋆ (justifying its name). In particular, when |G| ≥ 2
an h-vacancy can be blocked by a cluster of nearby vacancies of type in G \ {h}. This blocking interaction
requires some new ideas w.r.t. the standard multidimensional East process in order to prove the main
results below.

Reversibility in the case of KCM followed from the fact that the constraints did not depend on x,
which is also the case here, but as opposed to KCM, for the transition term, ∇(h)

x f(ω), to not be zero
requires ωx ∈ {⋆, h}. Reversibility with respect to µ still follows (analogously to the KCM case) since
for ω′ ∈ ΩZd\{x} we have∑

ω∈Ωx

µx(ω)f(ω · ω′)[1ω=⋆qh + 1ω=hp]∇(h)
x g(ω · ω′)

= pqh(f(⋆ · ω′) − f(h · ω′))(g(h · ω′) − g(⋆ · ω′)),

and thus

µ(fLg) = µ(gLf),

from which reversibility follows since f ,g were arbitrary. The associated Dirichlet form is then

D(f) := µ(−fLf) =
∑
h∈G

∑
x∈Zd

pqhµ

[
ch

x(∇(h)
x f)

2
]

=
∑
h∈G

∑
x∈Zd

pqhµ

[
ch

x1ωx∈{⋆,h}(f(⋆ · ω) − f(h · ω))2
]

(4.1)

and we define the spectral gap as

γ(G; q) = γ(G) := inf
f∈Dom(L)

f ̸=const

D(f)

Var(f) . (4.2)

The proof for Theorem 2.2 holds for general interacting particle system so that ergodicity of the MCEM
process follows if 0 is a simple eigenvalue of L and in particular follows if the spectral gap is positive.
Remark 4.6. We will sometimes write LΛ and DΛ in which the sum

∑
x∈Zd is replaced with a sum over∑

x∈Λ and the measure µ with the measure µΛ. The associated process on Λ is, in general, not ergodic
due to the lack of specified boundary conditions.
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Graphical construction

An alternative to the construction via the infinitesimal generator is again via a graphical construction.
Put a marked Poisson process on each vertex in Zd. The k-th ring at the vertex x ∈ Zd occurs at
time tx,k and for each ring we have the mark Ux,k ∼ µ so that Ux,k ∈ S(G) and {Ux,k}x,k is an i.i.d.
family. Consider a starting state ω(0) ∈ Ω and denote by ω(t) the state at time t ∈ R+. With tx,k− an
infinitesimally smaller time than tx,k, the graphcially constructed process evolves as follows:

(i) At tx,k we say that we have a Ux,k-legal ring if any of the following conditions is satisfied

(a) Ux,k = ⋆ and there is an h ∈ G such that ωx(tx,k−) = h and ch
x(ω(tx,k−)) = 1, or

(b) Ux,k ̸= ⋆, ωx(tx,k−) = ⋆ and c
Ux,k
x (ω(tx,k−)) = 1, or

(c) Ux,k = ωx(tx,k−) and c
Ux,k
x (ω(tx,k−)) = 1 (i.e. nothing changes).

(ii) If tx,k is an Ux,k-legal ring, we set ωx(tx,k) equal to Ux,k.

As for the East process, showing that this construction is well defined on Zd and leads to the same process
as the one constructed above through the infinitesimal generator is analogous to the calculation done
in [36] for the North-East model so we omit it again.

We find reversibility again since a transition in the graphically constructed process from ⋆ to h or vice
versa keeps the local state in {⋆, h} and does not change the neighbourhood configuration thus maintaining
reversibility.

Remark 4.7. To model the isotropic MCEM heuristically introduced in Section 4.1 let G = Hd and
qh = q/2d for all h ∈ G. We can add a mark U

(0)
x,k which is uniform in [0, 1] and have an additional

parameter ξ ∈ [0, 1]. Before checking step (i) say that you have a diffusive ring on x at tx,k if U
(0)
x,k ≤ ξ

and an exclusive one otherwise. The exclusive one behaves as detailed above. For the diffusive ring step
(i) is modified as follows:

(i) At tx,k we say that we have a Ux,k-legal ring if there is an h ∈ G with ch
x(ω(tx,k)) = 1 and

(a) Ux,k = ωx(tx,k) or,

(b) Ux,k = ⋆ and ωx(tx,k) ̸= ⋆ or,

(c) Ux,k ̸= ⋆ and ωx(tx,k) = ⋆.

4.3 Main results

We now come to the main results.

4.3.1 Conditions for non-ergodicity and positivity of the spectral gap

The first result shows that the isotropic MCEM from Section 4.1 is not ergodic if ξ = 0 and gives
sufficient conditions on G for the G-MCEM to be ergodic. Recall for this that any G ⊂ Hd inherits the
graph structure of Zd.

Theorem 5. Consider all the following G-MCEM with an arbitrary valid parameter set q.

(A) If G = Hd then the G-MCEM process is not ergodic.

(B) Suppose G ⊊ Hd is such that either condition holds:
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(B.i) there is an e ∈ B such that for any two h, h′ ∈ G we have h · e = h′ · e.

(B.ii) there is a superset G′ ⊊ Hd of G such that G′ is isomorphic to a star-graph.

Then the G-MCEM process has a positive spectral gap.

Example 4.8. Any G ⊂ H3 that is a subset of a single face satisfies (B.i) and any G ⊂ H2 with |G| < 4
satisfies (B.ii). In particular note that this gives complete information about ergodicity in d = 2 but leaves
gaps for d ≥ 3.

4.3.2 Asymptotics as qmin → 0 of the spectral gap in d = 2

In Theorem 5 we establish the positivity of the spectral gap for specific choices of G, in fact for
d = 2 we can do better than that. Given a valid parameter set q we define qmin = minh∈G qh, qmax =
maxh∈G qh and if |G| = 3 we write qmed for the qh ∈ G that is not in {qmax, qmin}. If there are multiple
qh with qh = qmax or qh = qmin w.l.o.g. make a choice for which to call qmed. We further define
θh = θqh

:= | log2(qh)| and we recall that γd = γd(q) denotes the spectral gap of the d-dimensional East
model with vacancy density q and γ(G; q) the spectral gap of the G-MCEM.

Theorem 6. Fix ∆ > 0 and consider a G-MCEM on Z2 with |G| ∈ {2, 3} and a valid parameter set q
such that p > ∆. Then,

lim
qmin→0

γ(G; q)
γ2(qmin)

= 1

in the following cases.

• Any 2-subset G and either one of the following conditions holds:

(2.i) limqmin→0 qmaxθ3
qmin = 0,

(2.ii) limqmin→0 qmaxθ3
qmin / log2(θqmin) = ∞.

• Any 3-subset G ⊂ H3 and either one of the following conditions holds:

(3.i) limqmin→0 qmaxθ3
qmin = 0,

(3.ii) limqmin→0 qmaxθ3
qmed / log2(θqmin) = ∞ and limqmin→0 qmedθ6

qmin = 0,

(3.iii) G is such that the vacancies associated to qmed and qmax share a propagation direction and
lim infqmin→0 qmed > 0.

Remark 4.9. We exclude the one vacancy type case because it coincides with the (possibly rotated version)
standard two-dimensional East model on Z2.

Heuristic considerations on Theorem 6 The cases are ordered from the easiest to the hardest regime.
The first cases are the easiest since in these cases even the highest density qmax is relatively low so that
most vacancies in equilibrium (from which the starting state is sampled) are surrounded by large neutral
state patches. Thus for these cases it is natural to conjecture the conclusion of Theorem 6.

The next harder case is if there is one vacancy type that is frequent in equilibrium. Recalling the
heuristic considerations on the AB-model in Section 4.1 the conclusion of Theorem 6 still presents itself
as a natural conjecture if we consider that any vacancy of the frequent type will see large patches of either
neutral vertices or its own vacancy type. Thus, any vacancy of the frequent type that blocks the infrequent
vacancies is likely to be removable by close vacancies of the same type allowing the infrequent vacancies
to evolve according to their respective two-dimensional East model dynamics.
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The hardest case is for |G| = 3 when two vacancy types are frequent. In this case the frequent vacancy
types might block each other and we only manage to find configurations that remove the blocking frequent
vacancies if they share a propagation direction.

We end the section with a remark on the requirement p > ∆ in Theorem 6. As just described our scheme
to lower bound the spectral gap relies on finding configurations such that any interfering vacancies can be
removed so as to allow the vacancies with the lowest density to relax in a two-dimensional way. Thus,
these schemes imply that we need to wait for vacancies to become neutral, which means a contribution of
order at least p to the spectral gap. In the limit p → 0 we thus expect the spectral gap to go to 0 as well,
and in fact, depending on the case we get a contribution to the lower bound of p or p2 (see Remark 8.6).
Since this neither constitutes the physically most interesting regime nor do we have matching upper
bounds we decided to focus the presentation on the simpler case with p > ∆.
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High-level overview of the main techniques

In this chapter we give an overview of the main ideas behind the proofs in this thesis, hopefully giving
an idea why they should be true. The presentation will naturally lead to an underlying principal Dirichlet
eigenvalue problem that is shared for both the proof of Theorems 1 and 6 and is solved in Chapter 6.

5.1 Front evolution problem

We present the proofs of the theorems in order.

Front velocity bounds (Theorem 1)

Part (A)

Fix a unit vector x ∈ Rd
+ independent of q with mini xi > 0.

Lower bound on vmin(x) We wish to upper bound the average hitting time of nx. We use an iterative
argument and start by defining x(n) = ⌊nℓx⌋ for some ℓ = ℓ(q). Since x is fixed, x(⌊n/ℓ⌋) is not too far
from nx and using the strong Markov property we find roughly that

Eω∗(τnx) ≥ n max
ω∈{ω : ω

x(i−1)=0}
Eω(τx(i)),

for some i. Thus, we need to find a good upper bound on the hitting time of a general τ
(i)
x starting with

a vacancy in x(i−1) without specifying the state outside x(i−1). We choose ℓ such that with relatively
little cost we can consider the equilibrium problem (cf. Equation (7.5)), i.e. where on the smallest
box Λ containing x(i−1) + e1 and x(i) there is equilibrium and the boundary condition otherwise is
unknown. Notice that Λ is not equilateral but ‘almost’ equilateral, a condition we call (0, κ)-squeezed
(cf. Definition 6.3). It is a small technical exercise (cf. Lemma 6.1) from this point to find that this
equilibrium problem is upper bounded by e−λD(Λ)t where λD(Λ) is the smallest eigenvalue for the
Dirichlet problem

−LΛf = λf , f ↾{ω: ωxΛ=0}= 0.

Notice that the generator here has minimal boundary conditions, which we indicate by leaving away the
superscript σ for the boundary condition.

Crucial in lower bounding λD(Λ) for almost square sets is its connection to the spectral gap (see
Equation (6.3)):

λD(Λ) ≥ q max{γ(V ) : V ⊆ Λ, V ⊃ {0, xΛ}}, (5.1)
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CHAPTER 5 Front evolution problem

so the bound on λD(Λ) follows by identifying a subset of Λ that has a spectral gap like γd. Using the
renormalisation techniques first presented in [13] we iteratively find such a set V in Chapter 6 that, as one
might expect, is concentrated around the main diagonal of Λ.

Upper bound on vmax(x) The goal is to find a lower bound on the time it takes to put a vacancy
on a vertex nx when starting from the state ω∗ with no vacancies. To that end we construct triangles
Λy = {z ∈ Zd

+ : z ≺ y, ∥y − z∥1 ≤ ℓ} for some ℓ = ℓ(q) such that y is its unique largest point in
the ≺-order. By definition of the East model we have that τy ≥ τ∂+

↓ Λy
. Iteratively construct a sequence

{ξ(i)}i with ξ(0) = nx and ξ(i) = {y ∈ ∂+
↓ Λξ(i−1) : τ∂+

↓ Λ
ξ(i−1)

= τy} (see Figure 5.1).

Λξ(n)

ξ(n)

FIGURE 5.1 Example trajectory a vacancy could take in the upper bound on vmax(x) for
part (A). For simplicity we just draw a path instead of the more correct two-dimensional
shape. In dashed we have the triangles Λy together with the red points where the trajectory

first hits ∂+
↓ Λy .

The side length ℓ(q) of the triangles is chosen independent of n so that we get Θ(n) many of them.
Using the exponential Chebyshev inequality Equation (7.9) we can then reduce the problem of bounding
Eω∗(τnx)/n to the problem of Θ(n) times lower bounding the propagation speed on a single triangle,
where the n then cancels. More precisely, on a triangle Λy with side length ℓ(q) and top right corner y we

want to show that maxω : ωΛy ≡1Pω(τy < t) → 0 if t = o(2
θ2

q
2d ) (see W (λ) in Equation (7.9)).

We do this using a bottleneck. Indeed, in [13, Section 4] it is shown that there is an event A on Λy with

µ(A) ≤ 2−
θ2

q
2d

(1+ε) and τA < τy. Using this bottleneck the bound follows after some small calculations.

Part (B)

Repeat the same proof steps for the lower bound on vmin as in part (A). The main difference is that the
set between x(i) and x(i+1) in the lower bound is not almost square but decidedly more rectangular than a
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line, we call it (β, κ)-squeezed with 0 < β < 1. The corresponding upper bound for λD(Λ) for such Λ
is given in Proposition 6.6(ii) and is based on the bound in Proposition 6.6(i) through an interpolating
renormalisation between the result for almost equilateral boxes and the one-dimensional case.

Part (C)

If x is such that maxi,j xi(q)/xj(q) ≤ κ2κθq ≥ 2αθ2
q , then for small q this means that nx is pretty

close to an axis (recall that d = 2). Intuitively, we should find large stretches in which the vacancies that
come to put a vacancy on nx evolve completely one-dimensionally.

To quantify this, we define a set Uy as in Figure 5.2 (which is the actual set we use from Definition 7.8).
As before, starting at nx we consider the first vertex ξ(1) ∈ ∂+

↓ Unx that had a vacancy and then consider
the first vertex ξ(2) ∈ ∂+

↓ Uξ(1) that had a vacancy and so on until this sequence reaches the origin
(cf. infection sequence Definition 7.9). We thus can find the desired bound by considering the infection
time of ξ(i) started from a state with the only vacancy on Uξ(i) being ξ(i+1).

h(y) y

FIGURE 5.2 Example for a set Uy (the grey region). The red vertices denote ∂+
↓ Uy . For

rendering purposes the distance between h(y) and y is drawn comparable in size to the
distance of h(y) from ∂+

↓ Uy \ {h(y)}, when in reality the former is much smaller (see
text).

We distinguish two cases: the case when ξ(i+1) = h(ξ(i)) and the case when not. The former case is
the interesting one since, if the first vacancy in ∂+

↓ Uy is h(y) then, no matter what the boundary condition
outside of Uy, even the diagonal mode cannot influence the one-dimensional vacancy propagation that
goes from h(y) to y. This is because the boundary ∂+

↓ Uy \ {h(y)} is chosen far enough away from the
linear strip that connects h(y) to y.

Thus, the propagation speed from h(y) to y is given by the one-dimensional East process and we can
use the comparatively tighter bottleneck for the one-dimensional process as opposed to the d-dimensional
one. Finally we combinatorially prove that the number of i such that h(ξ(i)) = ξ(i+1) is high enough for
the lower bound to follow (Lemma 7.11).

Mixing behind the front (Theorem 3)

Consider Figure 5.3 in which we zoomed into the lower left 100 × 100 vertices of the simulation results
from Figure 1.1. We roughly added the area covered by Λ(1/2, ε, t′) for some t′ < t. The closer δ gets to
0 the closer the two longest sides run along the axes. Knowing that the mixing time on the equilateral box
of side length n is Θ(n) and now knowing that the propagation speed in any q-independent direction tends
to γd it should not be surprising that we relax to equilibrium in Λ(δ, ε, t) ⊂ Zd

+ if it does not include
the axes, i.e. δ > 0 and do not if it includes the axes, i.e. δ = 0. In fact, the proof follows exactly this
intuition by relating the total variation at time t with the probability of hitting any vertex in Λ(δ, ε, t) in
less than t/3 which then leaves enough time to reach equilibrium (cf. Equation (7.14)).
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As discussed above, the bound in Theorem 1(A) depends on Proposition 6.6(i) which in turn depends
on the original result of Theorem 2.3 given in [13, Theorem 2] which was fairly precise as it also included
lower order corrections. Here we only consider the highest order so taking t → ∞ is crucial to ensure that
Λ(δ, ε, t) ⊂ C(t).

Λ(1/2, ε, t′)

FIGURE 5.3 Cropped lowest 100 × 100 part of Figure 1.1. In red we drew (approximately)
the vertices included in Λ(1/2, ε, t′) for appropriate ε and t′. Attention: For the time
in this particular simulation, the t′ relative to the set Λ(1/2, ε, t′) and the time t for the
process are not the same, usually for small t we have C(t) ⊂ Λ(δ, ε, t) where we recall
that C(t) is the set of vertices that had a ring before t (i.e. the grey and black ones). We

draw the image here to give an idea of the shape of Λ(δ, ε, t′).

Cutoff on the box (Theorem 4)

Recall from Theorem 3.5 that the mixing time T
(n)
mix on Λn = {0, 1, . . . , n} exhibits a cutoff with

window
√

n. We exploit the geometry of the boxes Λn together with the chosen boundary conditions for
the East chain, which we recall is minimal, and again use the fact that for small q the front velocity along
the coordinate axes is much smaller than the minimal velocity in any other direction pointing towards the
bulk of Λn. This implies that the part of Λn not on the axes is already mixed long before every vertex on
the axis had a legal ring, so that the mixing time is governed by the one-dimensional mode for which we
know that there is cutoff. Indeed, this intuition is supported by Figure 5.3 in which we see large parts of
Λn already in C(t) while less than a quarter of {0, . . . , 99} · e for e ∈ B is in C(t).

5.2 MCEM

Ergodicity and positivity of the spectral gap (Theorems 5 and 6)

Both results for the MCEM rely on the exterior condition theorem [44, Theorem 2] that we recall in
Theorem 8.2. Roughly, it says that if we find a family of high probability events {Ax}x∈Zd that only
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depend on vertices ‘on one side of’ x (the exterior condition) then

Var(f) ≤ 4
∑

x∈Zd

µ(1AxVarx(f)). (5.2)

The goal is then to find such events that let us upper bound the r.h.s. by the Dirichlet form of the G-MCEM
while only paying with an appropriate term depending on q. This term then is the lower bound on the
spectral gap. We do this by identifying configurations that allow us to define legal paths to transition x
between any two states (recall the discussion of the AB-model in Section 4.1). Let us thus describe the
main ideas behind finding the legal paths, the detailed analysis of how to go from a legal path to a lower
bound on the spectral gap is left to the proofs.

In the proof of Theorem 2.2 we do not care about the nature of this term as long as it strictly positive
for any q since we only want to prove the positivity of the spectral gap. Thus, we find configurations of
vacancy types on boxes Λ together with some high-probability conditions on the environment of Λ such
that we can clear any vacancy from Λ + kv for some direction v for any k. Looking far enough w.h.p. we
find an m such that Λ − mv + x has this good configuration. Reversibility tells us that if we can remove
any configuration from Λ + kv then we can also put any configuration so that we get the sought after
legal path. The nature of these configurations is quite different for the cases when all vacancies share a
direction (Theorem 5(B.i)) and when G is a star graph (Theorem 5(B.ii)) so we leave it at this point.

Spectral gap bounds in two dimensions (Theorem 6)

The proof of the various cases in Theorem 6 has two parts. First we need to argue that

lim
qmin→0

γ(G, q)/γ2(qmin) ≤ 1.

Behind this is the intuitive notion that, the more vacancy types you introduce into your model the smaller
the spectral gap should be. The spectral gap of the two-dimensional East process, being an MCEM with a
single vacancy type, should thus upper bound γ(G, q) (see Lemma 8.4).

This monotonicity in G of the spectral gap also means that for the upper bound it suffices to prove the
cases (3.x), as they then imply the corresponding cases (2.x). Let us first discuss the case (3.i) in which,
we recall, qmaxθ3

qmin → 0 as qmin → 0. For simplicity we give the two-dimensional vacancy types names
and call A = (0, 0), B = (1, 1), C = (0, 1), D = (1, 0) in agreement with the A- and B-vacancy type
introduced in Section 4.1.2.

The mathematical tools we use are the same as for the proof of the positivity of the spectral gap above.
The difficulty lies in trying to keep proportionality term between the r.h.s. of Equation (5.2) and the
Dirichlet form of the order O(γ2(qmin)) for small qmin.

(3.i) Let us discuss the salient ideas behind the proof of (3.i) by discussing the AD-model in the case
(2.i), i.e. qminθ3

qmax → 0 as qmin → 0. In particular let us discuss the salient notions for the construction of
the event on which we can use the exterior condition and which shows that the relaxation of A-vacancies
follows chiefly two-dimensional East dynamics (see Figure 5.4).

First notice that A-vacancies propagate to the north and to the east. We thus start by identifying a set of
Θ(q−1/2

A ) north-east paths in the negative (or third) quadrant that start on the horizontal axis at a pairwise
distance of Θ(θ3/2

A ), do not pairwise intersect and have a length of Θ(q−1/2
A ) (see non-transparent paths in

Figure 5.4). We call these the vertical paths and we then identify paths with the same parameters starting
from the vertical axis and call them horizontal paths. Together they form the grid (see Definition 9.8).

Constructed as such, every horizontal path intersects each vertical path and so there is a graph isomor-
phism Φ that maps the last intersection points of the paths to an equilateral square (see Definition 9.9).
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Θ(θ3/2
A )Θ(q−1/2

A )

Θ(q−1/2
A )

Φ⇐⇒ Θ(q−1/2
A )

0 x

y

FIGURE 5.4 The construction for the A-vacancies (in orange here) in the proof of part
(2.i) for the AD-model. The striped paths are the (random) paths on which there is no
D-vacancy. We call the slightly transparent ones the horizontal and the others the vertical
paths. Under the isomorphism Φ select intersection points of these paths are isomorphic

to a 2D-square.

W.h.p using a Peierls-type argument we find such a grid such that there is no D-vacancy on the entire
grid. Further since the side length of the square given by Φ has side length Θ(q−1/2

A ) w.h.p. there is an
A-vacancy on the lower-left half of this square, so that we can use the exterior condition on the event that
there is a grid with no D-vacancies and at least one A-vacancy on the intersection points.

We then consider an auxiliary model (Lemma 9.17) on the intersection points with the two-dimensional
East constraints concatenated with Φ−1 where the A-vacancies play the role of vacancies and ⋆ the role
of the particles (possible since we have no D-vacancies on the grid).

By the assumption that there is an A-vacancy in the lower left half, this auxiliary model has minimal
boundary conditions. We again resort back to Proposition 6.6(i) and in particular use that we find subsets
of boxes on which the East chain with minimal boundary conditions has the maximal spectral gap (recall
the discussion around Equation (5.1)). In our case this means that we find a subset V of the intersection
points such that the auxiliary model has spectral gap γ2(qA).

To recover a Dirichlet form of the AD-model we finally need to propagate the A-vacancies between
intersection points. We chose their pairwise distance low enough so that we can just take the one-
dimensional East model on the paths between the intersection points and still have the two-dimensional
dynamics on the intersection points dominate.

This brings the A-vacancy to the closest intersection point on the origin but not quite to the origin, so a
simple extra construction is needed doing this last step.

Of course, we cannot use the exterior condition theorem just for the A-vacancies so we repeat the same
construction with the mirrored events for the D-vacancies in the second quadrant and get part (2.i) for the
AD-model.

This is the big picture idea for every configuration in part (2.i) and (3.i). There is a slight complication
in the case of the AB-model (or a G-MCEM with |G| = 3 and {A, B} ⊂ G) since we need to do the
construction for both A- and B-vacancies simultaneously. This is a problem since their dynamics are
opposite, so that we need to do the construction in the positive and simultaneously in the negative quadrant
while remaining ‘on one side’ of the origin as required by the exterior condition theorem. We solve this by
always staying ‘above’ the main diagonal and adapting the construction correspondingly (see Figure 9.2).
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The definition of a grid thus is more complex but the salient ideas are the same as the ones presented
above.

(3.ii) Consider again the AD-model and assume that qDθ3
qA

/ log2(θqA) → ∞ as qA → 0. The goal is
again to get a grid as in Figure 5.4, but this time we cannot find long paths that do not contain D-vacancies.
Instead we consider the renormalised lattice in the negative quadrant of boxes of side length L = L(qA).
We identify three possible configurations in these boxes that we call A-traversable, A-super and A-evil
(see Definition 9.19).

The property of A-super boxes is that they contain a A-vacancy and on north-east paths of A-traversable
boxes the A-super boxes can propagate like A-vacancies, i.e. if x is an A-traversable box and there is a
e ∈ B such that x − e is A-super then there is a legal path that makes x A-super.

We choose L(qA) such that A-traversability has increasing probability in decreasing qA so that we can
apply the construction from the case (3.i) in the negative quadrant on the renormalised lattice for the
auxiliary model where A-super vertices play the role of the A-vacancies, A-traversable vertices the role
of the neutral state and A-evil vertices the role of D-vacancies (Corollary 9.22). The probability of being
A-super is given in highest order by qA so that we recover the spectral gap bound γ2(qA).

The proof ends by showing that the two-dimensional East dynamics on the renormalised lattice
dominates the spectral gap contribution gotten from considering the dynamics inside the boxes that
propagate the A-super state on paths of A-traversable boxes (Lemma 9.26) and the adapted construction
around the origin (Lemma 9.27).

(3.iii) This case is particular to the case where we have three-vacancy types so let us consider the
ABC-model. Assume that qB = qmin so that lim infqB→0 qA > 0 and lim infqB→0 qC > 0. To satisfy
the exterior condition, that we recall, requires that the event Ax remains on ‘one side of’ x we do not need
to take the diagonal anymore, since A-vacancies are very frequent so w.h.p we find them on a path that
goes mostly left from x.

The main idea is still the same: We want to identify configurations on paths that allow a B-vacancy to
travel horizontally and vertically and such that the relaxation time for the horizontal and vertical transitions
is much smaller than the γ2(qB) resulting from the grid of intersection points of these paths.

To do this, recall that A-vacancies propagate north and east while C-vacancies propagate south and
east. This means that if north of a vertex x there is a C-vacancy and south there is an A-vacancy, then we
can remove any non-B-vacancy from x, and in particular, if there was no B on x we can also remove any
non-B-vacancy from x + e1, since e1 is the propagation direction A- and C-vacancies share. This means
that in the above situation we can clear a horizontal line of vertices until we meet the first B-vacancy. This
B-vacancy can then travel without hindrance since any A- or C-vacancies to its left have been removed.
This is the horizontal propagation scheme we use.

The vertical case is analogous: in that we use that A and C vacancies are very frequent and remove any
other non-B-vacancies in the e1 direction clearing the way for −e2 propagation of B-vacancies.

Notice in particular the difference to the first two cases, that here we find a grid of straight paths.
Further, there are some intricacies here w.r.t. the exact conditions that we put onto the paths but this is the
main idea to recover γ2(qB) as the dominant term in the spectral gap.
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Technical results and proofs
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Chapter 6

Asymptotics of Dirichlet Eigenvalues via
coarse graining and renormalisation group
methods

This chapter gives the centerpiece technical result of this thesis which enters the proofs of Theorems 1,
3 and 6. It gives an improved solution on a suitable Dirichlet eigenvalues problem on boxes, w.r.t. the
eigenvalue obtained by taking the spectral gap of the full box. We do this by using the Knight lattice
and RG-group procedure introduced in [13] iteratively finding subsets of Λ with improved spectral gap
bounds. We start in Section 6.1 by presenting the main result, Proposition 6.6, which contains three parts
that are proved in order in Sections 6.2 to 6.4. We end the section by presenting Proposition 6.20, a
slightly more nuanced version of Proposition 6.6.

6.1 The Dirichlet eigenvalue problem and its solution

It is a small technical exercise to link the hitting times of a specific event starting from equilibrium
to the generator. Recall the convention for the East process on Zd

+ that if either σ is absent because
∂+

↓ Λ = ∅ or σ ≡ 1, then the superscript σ is dropped from the notation and that in the East process the
origin is always unconstrained.

Lemma 6.1 (See e.g. [3, Section 6]). Let Λ ⊂ Z2 be a finite subset, A ⊂ ΩΛ an event on Λ and denote
by P and E the laws of a Markov chain on Λ with generator L and equilibrium measure µ. For the hitting
time τ of Ac (note: the complement, not A) we find∑

η∈A

µ(η)Pη(τ > t) = ⟨1, etLD 1⟩,

where t ∈ R+, the scalar product is with respect to ℓ2(ΩΛ, µ) and LD = 1AL1A is the generator with
boundary conditions given by A.

Proof. Recall that
etLD

f(ω(0)) = Eη(f(ω(t))),

and

etLD
=

∞∑
m=0

(t1AL1A)
m

m!
= 1AetL1A,
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and note that in our notation the state ω(s) of the chain at time s is always given by the immediate
surrounding measure Eη/Pη (so the time is relative to η and there can be multiple ω referring to different
starting times). Using these properties we find for s, t ∈ R+

e(t+s)LD
f(η) =

[
1AetL1AesL1Af

]
(η)

= 1η∈AEη

([
1AesL1Af

]
(ω(t))

)
= 1η∈AEη

(
1ω(t)∈AEω(t)

(
1ω(s)∈Af(ω(s))

))
= 1η∈AEη

(
Eω(t)

(
1ω(0),ω(s)∈Af(ω(s))

))
= 1η∈AEη

(
Eη

(
1ω(t),ω(s+t)∈Af(ω(s + t)) | Ft

))
= 1η∈AEη

(
1ω(t),ω(s+t)∈Af(ω(s + t))

)
,

where Ft is the σ-algebra containing all the rings until time t, use the Markov property and the tower
property. Square brackets are used to emphasize that η is the argument to the result of the operators
applied to f , and not the argument just to f . In particular, for f = 1 we find

e(t+s)LD 1(η) = 1η∈APη(ω(t), ω(s + t) ∈ A).

This calculation immediately generalizes to arbitrarily many time steps so that, for a partition S(i) :=
[si−1, si) of [0, t) with i ∈ [0, k] for k ∈ N and si ∈ [0, t) with s0 = 0, sk = t and si−1 < si < si+1
for i ∈ [1, k − 1], we find

etLD 1(η) =
k∏

i=1
e(si−si−1)LD 1(η) = 1η∈APη(ω(si) ∈ A∀i ∈ [1, k]) .

In particular, since both k and the end-points si are arbitrary we find

etLD 1(η) = 1η∈APη(τ > t).

The claim follows by taking the scalar product.

Given a box Λ possibly depending on q, a simple consequence of Lemma 6.1 is that the hitting time
τxΛ satisfies

Pµ(τxΛ > t) ≤ e−λD(Λ)t,

where
λD(Λ) = inf{DΛ(f)/µΛ(f

2) : f : ΩΛ → R, f ↾{ω : ωxΛ=0}= 0} (6.1)

is the smallest eigenvalue for the Dirichlet problem

−LΛf = λf , f ↾{ω: ωxΛ=0}= 0.

A lower bound on λD(Λ) is obtained via the spectral gap γ(Λ) > 0 of the East process in Λ. For any f
such that f ↾{ω:ωxΛ=0}= 0 we have

VarΛ(f) = VarΛ(f(1 · ωΛ\{xΛ})1ωxΛ=1)

= µΛ(f
2(1 · ωΛ\{xΛ}))p − p2µΛ(f(1 · ωΛ\{xΛ}))

2
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≥ pqµΛ(f
2(1 · ωΛ\{xΛ}))

= qµΛ(f
2)

where we used independence in the second equality and Jensen’s inequality. Thus,

λD(Λ) ≥ q γ(Λ). (6.2)

Using Theorem 2.3 it follows that γ(Λ) = γ
(1+o(1))
d=1 as soon as maxi Li ≥ 2θq because of the slow

relaxation mode along the edges of Λ on the coordinate axes.
If Λ is balanced, i.e. maxi,j(Li ∨ 1)/(Lj ∨ 1) = O(1) as q → 0, Equation (6.2) is a very pessimistic

bound when d ≥ 2 because λD(Λ) should be mostly influenced by the d-dimensional bulk dynamics
rather than by the one-dimensional dynamics along the edges of Λ. In this case it is natural to conjecture
that, to the leading order as q → 0, λD(Λ) is lower bounded by γd. The following provides a better
bound than Equation (6.2) in order to prove the conjecture.

Claim 6.2.

λD(Λ) ≥ max{λD(V ) : V ⊆ Λ, V ⊃ {0, xΛ}}
≥ q max{γ(V ) : V ⊆ Λ, V ⊃ {0, xΛ}} > 0. (6.3)

Proof of the claim. Clearly max{γ(V ) : V ⊆ Λ, V ⊃ {0, xΛ}} ≥ γ(Λ) > 0. Let Λ ⊇ V ∋ {0, xΛ}
and observe that monotonicity in the constraints implies that

DΛ(f) ≥
∑

ω∈ΩΛ\V

µΛ\V (ω)DV (f(ω ·)),

where we recall that we leave away the explicit writing of the boundary condition to mean the boundary
condition with no vacancy for both the Dirichlet form on Λ and V . Take now an f : ΩΛ → R such
that f ↾{ω : ωxΛ=0}= 0. For any subset V ⊂ Λ such that xΛ ∈ V , we have that f(ω · ω′) = 0 for any
ω ∈ ΩΛ\V and ω′ ∈ ΩV if ω′

xΛ
= 0. Therefore, Equation (6.1) implies for such f that

DV (f(ω
′·)) ≥ λD(V )

∑
ω′′∈ΩV

µV (ω
′′)f2(ω′ · ω′′) = λD(V )µ(f2),

proving the first inequality of the claim. The second inequality follows from the general inequality
Equation (6.2).

In order to bound from below the r.h.s. of Equation (6.3) according to whether maxi,j(Li ∨ 1)/(Lj ∨
1) = O(1) as q → 0 or not, it is convenient to introduce the following geometrical definition.

Definition 6.3. Fix d ≥ 2, β ≥ 0, and κ ≥ 1. For any given q ∈ (0, 1) let S(β, κ; θq) be the collection of
d-tuple of integers (L1, . . . , Ld) such that maxi,j(Li ∨ 1)/(Lj ∨ 1) ≤ κ2βθq . We say that a box Λ with
side lengths (L1, . . . , Ld) is (β, κ; θq)-squeezed if (L1, . . . , Ld) ∈ S(β, κ; θq).

In the sequel, the parameters β, κ will always be chosen independent of q. Moreover, whenever the
value of q is understood we will simply write (β, κ)-squeezed instead of (β, κ; θq)-squeezed.

Definition 6.4. Given β ≥ 0 we say that λ > 0 satisfies condition H(β) and write λ ∼ H(β) if for any
κ ≥ 1, ε > 0 there exists q(β, κ, ε) > 0 such that for each q ≤ q(β, κ, ε) the following occurs: For any

(β, κ; θq)-squeezed box Λ there exists a subset V ⊂ Λ with V ⊃ {0, xΛ} such that γ(V ) ≥ 2−(1+ε)λ
θ2

q
2 .

We then let ϕ(β; d) = min{λ > 0 : λ ∼ H(β)}.
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Thus, if λ ∼ H(β) then Claim 6.2 implies that for all ε > 0 the Dirichlet eigenvalue λD(Λ) is greater

than 2−(1+ε)λ
θ2

q
2 for all (β, κ; θq)-squeezed box Λ and for all q small enough depending only on β, κ, ε.

In particular,

λD(Λ) ≥ 2−(1+ε)ϕ(β;d)
θ2

q
2 . (6.4)

A major problem is then to bound the constant ϕ(β; d) for d ≥ 2. Since the set of (β, κ)-squeezed boxes
is an increasing set with increasing β, we immediately get monotonicity of ϕ(β; d).

Lemma 6.5. Let d ≥ 2 and β > β′ ≥ 0, then ϕ(β; d) ≤ ϕ(β′; d).

So while it might be confusing for example that we call the equilateral cube (β, κ)-squeezed for any
choice of β ≥ 0 and κ ≥ 1, to get bounds on ϕ(β; d) only the ‘truly’ (β, κ)-squeezed boxes matter, i.e.
the ones that are (β, κ)-squeezed but not (β′, κ′)-squeezed for any β′ < β and any κ′.

Let us then come to the main concern of this chapter, which lies in bounding ϕ(β, d). Theorem 2.3
implies that ϕ(β, d) ≤ 1. The next result, is the technical core of this paper that lies behind the results of
both problems treated in this thesis and the proof of which occupies the rest of this chapter.

Proposition 6.6. For d ≥ 2 the coefficient ϕ(β; d) satisfies:

(i) ϕ(0; d) = 1/d,
(ii) ϕ(β; d) < 1 ∀β ∈ (0, 1),
(iii) ϕ(β; d) = 1 ∀β ≥ 1.

In particular, for any d ≥ 2 and any (β, κ)-squeezed box Λ with β < 1 the Dirichlet eigenvalue
λD(Λ) ≫ γd=1 as q → 0.

6.2 Dirichlet EV of balanced boxes: Proof of Proposition 6.6(i)

We proceed in two steps: we first prove that ϕ(0; d) ≥ 1/d using a bottleneck argument and then that
ϕ(0; d) ≤ 1/d.

The lower bound. Let Λ be the equilateral box of side length L = ⌊2θq/d⌋ and let Λ ⊃ V ⊃ {0, xΛ}
be such that γ(V ) > 0. We recall the construction of the bottleneck from [13, Section 4]. Given ω ∈ ΩΛ
we define the gap gx(ω) of x ∈ Λ as

gx(ω) = (∥x∥1 + 1) ∧ min{g > 0 : ∃z ∈ Λ with z ≺ x, ωz = 0, ∥x − z∥1 = g}.

The minimum over the empty set is assumed to be ∞ here. We take the minimum with ∥x∥1 + 1 since the
origin is always unconstrained, which is in contrast to the construction in [13] in which maximal boundary
conditions were assumed. Starting from ω remove the vacancies from all vertices x ∈ Λ with gx(ω) = 1,
then remove all vacancies with gap two and so on until all vacancies with gap dL − 1 have been removed.
Notice that removing all vacancies with gap dL or less always give rise to the configuration with no
vacancies. Removing all vacancies with gap dL − 1 or less allows two different states, the one with no
vacancies and the one with a single vacancy at xΛ which we call 10. Let A∗ ⊂ ΩΛ be all configurations
such that at the end of this procedure we are left with the state 10.

Claim 6.7. ∀ ε > 0 ∃ q(ε) > 0 such that ∀ q ≤ q(ε) we have γ(V ) ≤ 2−(1−ε)
θ2

q
2d .
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Proof. Let AV = {ω ∈ ΩV : 1V c · ω ∈ A∗}, where 1V c denotes the configuration in ΩV c identically
equal to one. We have 1V /∈ AV while the configuration with exactly one vacancy at xΛ belongs to AV .
Therefore, Var

(
1AV

)
≥ (1 − q)2|V |−1q = Θ(q) because |V | ≤ 1/q. Next we bound the Dirichlet form

of 1AV
. Let ∂AV consists of those elements of AV which are connected to Ac

V via a legal update for the
East process on V . Then

DV (1AV
) ≤ |Λ|µV (∂AV ) ≤ |Λ|µV c(1V c)−1µΛ(∂A∗) ≤ 2−(1−o(1))

θ2
q

2d ,

where we used [13, Section 4.3] to bound µΛ(∂A∗) which works in analogous fashion for minimal
boundary conditions. The claim follows from the variational characterization of the spectral gap γ(V ).

Since the box Λ is (0, 1; θq)-squeezed, the claim implies that λ ∼ H(0) ⇒ λ ≥ 1/d. Hence
ϕ(0; d) ≥ 1/d.

The upper bound. The proof that ϕ(0; d) ≤ 1/d requires a bootstrap procedure like the one introduced
in [13]. The base case is Theorem 2.3 which gives that λ = 1 ∼ H(0). We then prove the recursive step,
namely that λ ∼ H(0) ⇒ F (λ) ∼ H(0), where

F (λ) = ((2d − 1)λ − 1)/(d2λ − 1) < λ ∀λ ∈ [1/d, 1]. (6.5)

Since the mapping F has an attractive fixed point in 1/d, the sought claim follows by iteration.

Proof of the recursive step The proof of the recursive step relies on the following coarse graining
to lattices of boxes. In the sequel we assume that we have a fixed q∗ ∈ (0, 1) and a family of finite
probability spaces {Ω∗

x, µ∗
x}x∈Zd

+
together with a family of facilitating events {G∗

x ⊂ Ω∗
x}x∈Zd

+
such that

µ∗
x(G

∗
x) = q∗ for each x ∈ Zd

+.

Definition 6.8 (The *East chain). Let V ⊂ Zd
+ be a finite subset that contains the origin. The ∗East chain

on Ω∗
V := ⊗x∈V Ω∗

x with parameters {Ω∗
x, µ∗

x, q∗}x∈V is the continuous time Markov chain reversible
w.r.t. µ∗

V = ⊗x∈V µ∗
x whose generator is given by L∗

V f(ω) =
∑

x∈V c∗
x(ω)[µ

∗
x(f) − f ](ω), where

c∗
x(ω) =

{
1 if x = 0 or ∃ e ∈ B such that x − e ∈ Λ and ωx−e ∈ G∗

x−e,
0 else.

As in [13, Proposition 3.4] it is possible to prove that the spectral gap γ∗(V ) of the ∗East chain in V
coincides with the spectral gap γ(V ; q∗) of the standard East chain with vacancy density q∗. We find it
easier to work with equilateral boxes, i.e. (0, 1; θq)-squeezed boxes. For this purpose we first introduce a
new condition, equivalent to H(0), which only requires a check on the spectral gap of suitable subsets of
equilateral boxes.

Definition 6.9. We say that λ ∼ H′(0) if ∀ ε > 0 there exists q(ε) > 0 such that ∀ q ≤ q(ε) and for any

equilateral box Λ there exists Λ ⊃ V ⊃ {0, xΛ} such that γ(V ) ≥ 2−λ(1+ε)
θ2

q
2 .

To prove the equivalence of H′(0) and H(0) we need a technical ingredient that we use frequently
throughout this thesis so that we explicitly recall it here and give it a name. It is an upper bound on
the variance if we don’t have ergodic boundary conditions for the East model over a set V , but have a
condition that ensures that if we extend the set V far enough at some point the East chain is going to be
ergodic.
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Lemma 6.10 (Enlargement trick, [13, Lemma 3.6]). Let Λx = Λ + x where Λ is a box of Zd
+ and x an

arbitrary vertex. Let V ⊂ Λx and let A = {∃z ∈ Λx, z ≺ V : ωz = 0}. Then,

µΛx

(
1AVarV (f)

)
≤ γ(Λ)−1DΛx(f).

With this we can prove the equivalence.

Lemma 6.11. λ ∼ H′(0) ⇔ λ ∼ H(0).

Proof. Clearly, λ ∼ H(0) ⇒ λ ∼ H′(0). Suppose that λ ∼ H′(0), fix κ ≥ 1, ε > 0 and let Λ be a
(0, κ, θq)-squeezed box with side lengths (L1, . . . , Ld). Let N = minj Lj and for any i ∈ [d] choose
a partition of the discrete interval {0, 1, . . . , Li} into N + 1 discrete intervals, B

(i)
0 , . . . , B

(i)
N , ordered

from left to right, each one containing at least one vertex and at most κ + 1 vertices. For j ∈ ΛB :=
{0, . . . , N}d write Bj =

∏d
i=1 B

(i)
ji

so that ∪j∈Λb
Bj = Λ. Furthermore, let Ω∗

j := ΩBj , µ∗
j := µBj and

choose as facilitating event Gj the event that the smallest vertex in Bj in the ≺-ordering (for example the
lowest-left corner if d = 2) has a vacancy. Clearly µ∗

j (Gj) = q ∀ j ∈ ΛB , i.e. q∗ = q. Consider the ∗East
chain on Ω∗

ΛB
. Using λ ∼ H′(0) there exists V ∗ ⊂ ΛB containing the origin and xΛB

such that

γ∗(V ∗) = γ(V ∗; q∗) = γ(V ∗) ≥ 2−λ(1+ε/2)
θ2

q
2 .

Hence, if we set V = ∪j∈V ∗Bj and write Var∗ for the variance w.r.t. µ∗ we get

VarV (f) = Var∗
V ∗(f) ≤ 2λ(1+ε/2)

θ2
q
2
∑

j∈V ∗

µV (c
∗
j VarBj(f)).

Using the enlargement trick (Lemma 6.10), Theorem 2.3 and the fact that each box Bj contains at most

κd vertices, we get that the r.h.s. above is not larger than 2λ(1+ε/2)
θ2

q
2 2O(κd)θq DΛ(f) so that

VarV (f) ≤ 2λ(1+ε/2)
θ2

q
2 2O(κd)θq DV (f) ≤ 2λ(1+ε)

θ2
q
2 DV (f).

Hence, for any q small enough depending on (ε, κ), γ(V ) ≥ 2−λ(1+ε)
θ2

q
2 implying that λ ∼ H(0).

Next, motivated by [13, Definition 5.2], we introduce another useful auxiliary Markov chain dubbed
the *Knight Chain. To that end, we first need to define the Knight graph (see Figure 6.1).

Definition 6.12 (The Knight graph). Given two vertices x, y ∈ Zd we say that they form a Knight edge if
there exists a j ∈ [d] such that yi = xi − 1 for all i ̸= j and yj = xj − 2 or vice versa. We then consider
the unique graph G = (W , E), W ⊂ Zd, constructed as follows. The vertex set W contains the origin
and those x ∈ Zd which are connected to the origin via a path of Knight edges. The edge set E consists of
all the Knight edges of W × W . It is easy to see that G is isomorphic to Zd via the natural isomorphism
Φ which is unique if we set Φ(0) = 0.

The graph G will inherit the notation used so far for Zd via the isomorphism Φ. We write W+ =
Φ−1(Zd

+) and we say that ΛK ⊂ W+ is a Knight equilateral box containing the origin if Φ(ΛK) is
an equilateral box in Zd

+ containing the origin. In the latter case we write xΛK ∈ ΛK for the vertex
Φ−1(xΦ(ΛK )). Notice that ∃ c > 0 such that for any equilateral box Λ ⊂ Zd

+ containing the origin there
exists a Knight equilateral box Λ ⊃ ΛK ∋ 0 such that ∥xΛ − xΛK ∥1 ≤ c (see Figure 6.1(B)).

Notice that that ∥z − z′∥1 = d + 1 for all z, z′ ∈ W connected by a Knight edge. For x ∈ W let
Ex = {y ∈ W c : y ≻ x, ∥x − y∥1 ≤ d} be the enlargement of x. The enlargement of V K ⊂ W is the
set EV K = ∪x∈V K Ex.
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Φ(xΛK )

Φ(ΛK)

FIGURE 6.1 (A) A piece of the Knight graph (the black dots and the Knight edges) for
d = 2. The gray triangle corresponds to the enlargement Ex of x. (B) The graph of the
largest Knight equilateral box ΛK of side length 4 inside an equilateral box of side length

13. (C) Under the natural isomorphism Φ the graph ΛK becomes an equilateral box.

Definition 6.13 (The Knight and the *Knight chains). Given an equilateral box Λ with origin at 0 and
V ⊂ Λ, V ∋ 0, let V K := Φ−1(V ). Then the Knight chain on Ω∗

V K is the image under Φ−1 of the
∗East chain on ΩV . The *Knight chain on ΩEV K∩Λ is the continuous time Markov chain evolving as
follows. At any legal update at z ∈ V K of the Knight chain on Ω∗

V K the whole configuration in Ez ∩ Λ
is sampled from µ∗

Ez∩Λ.

Notice that we define this in general for the ∗East chain we fixed before Definition 6.8, the set of
facilitating events that we use will be specified in the proof of Proposition 6.15. It is immediate to verify
that the *Knight chain is reversible w.r.t. µ∗

EV K∩Λ with a positive spectral gap γ∗K(EV K ∩ Λ), this
spectral gap in turn is equal to the spectral gap of the standard East model on V with vacancy density q∗

as we now verify.

Lemma 6.14. γ∗K(EV K ∩ Λ) = γ(V ; q∗).

Proof. Consider a partition {Qx}x∈V K of (EV K \ V K)∩ Λ such that Qx ⊂ Ex for each x and such that
the sets {Qx}x∈V K are mutually disjoint, a feature not necessarily shared by the sets {Ex \ {x}}x∈V K

(see Figures 6.1 and 6.2). Instead of the *Knight chain on Ω∗
EV K∩Λ consider the (very closely related)

chain which at any legal update of the Knight chain at x ∈ V K resamples the whole configuration
in x ∪ Qx. This chain can be viewed as a new Knight chain on Ω∗

V K with new parameters Ω̃∗
x =

⊗z∈x∪Qx Ω∗
z, µ̃∗

x = ⊗z∈x∪Qxµ∗
z, x ∈ V K , and the same facilitating events as the original Knight chain.

Of course ⊗x∈V K (Ω̃∗
x, µ̃∗

x) = (Ω∗
V K , µ∗

V K ). Hence, the spectral gap of the new chain, as discussed after
Definition 6.8, coincides with γ(V ; q∗) and for all f

Var∗
VK

(f) ≤ γ(V ; q∗)−1 ∑
x∈V K

µ∗
V K

(
KxVar∗

x∪Qx
(f)
)

≤ γ(V ; q∗)−1 ∑
x∈V K

µ∗
V K

(
KxVar∗

Ex
(f)
)
.

where Kx = cx ◦ Φ is the Knight constraint at x. Above we used the fact that Kx does not depend
on {ωz}z∈x∪Qx

and that in average µ∗
Ex

(
Var∗

x∪Qx
(f)
)

≤ Var∗
Ex

(f) (see Lemma 9.15 for a slightly
more general form of this). The sum in the r.h.s. above is the Dirichlet form of the *Knight chain and
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we conclude that its spectral gap is at least γ(V ; q∗). The reverse inequality follows immediately by
projection onto the variables ηx = 1 − 1{ωx∈G∗

x}, x ∈ V K , where G∗
x is the facilitating event.

We can finally state the main result of this section.

Proposition 6.15. Fix λ ∈ (1/d, 1] and let F (·) be the mapping in Equation (6.5). Then λ ∼ H′(0) ⇒
F (λ) ∼ H′(0).

Proof. Let λ ∈ (1/d, 1] with λ ∼ H′(0) and let Λ ⊂ Zd
+ be an equilateral box with side length L.

Using a suitable λ-dependent *Knight chain, we will now construct a set V ⊂ Λ such that γ(V ) ≥

2−F (λ)
θ2

q∗
2 (1+ε).

Let ℓ = ⌊2mθq ⌋, where m = (dλ − 1)/(d2λ − 1) and observe that ℓ ≤ 2θq/d. If L ≤ ℓ we can use
Theorem 2.3 to get that

γ(Λ) ≥ 2−(m−m2/2)θ2
q (1+o(1)) ≥ 2−F (λ)

θ2
q
2 (1+o(1)).

In this case we simply choose V = Λ. If instead L > ℓ we proceed as follows. Let B0 be the

•

•
•

Γ

Λ

Bj

xΛ

(⌊L/ℓ⌋, . . . , ⌊L/ℓ⌋)

FIGURE 6.2 The setting in the proof of Proposition 6.15 with ℓ = 3 and L = 30. The
3 × 3 boxes Bj are those with j ∈ ΛB , the coloured (red/green) ones are those with
j ∈ ΛK

B , the green ones are those with j ∈ V K , and the dashed ones are those with

j ∈ (EV K ∩ ΛB) \ V K . The set V with γ(V ) ≥ 2−F (λ)
θ2

q
2 (1+o(1)) is the union of the

green and dashed boxes together with the path Γ.

equilateral box with side length ℓ, let ΛB := {0, . . . , ⌊L/ℓ⌋}d and for j ∈ Zd
+ let Bj = B0 + jℓ. Thus

∪j∈ΛB
Bj ⊂ Λ and minx∈BjΛB

∥x − xΛ∥1 ≤ O(ℓ). We say that Bj is good if it contains at least one
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vacancy and observe that the density q∗ = 1 − (1 − q)ℓd

of good boxes satisfies

qℓd/2 ≤ q∗ ≤ qℓd ≤ 1 ⇒ θq∗ ∈ [θq(1 − dm), θq(1 − dm) + 1],

where we use the Bonferroni inequality for the lower bound. In the sequel we will use the Knight chain
and the *Knight chain with Ω∗

j = {0, 1}Bj , µ∗
j = ⊗x∈Bjµx, and facilitating events G∗

j = {Bj is good}.
Let ΛK

B ⊂ ΛB be the largest Knight equilateral box containing the origin and for V K ⊂ ΛK
B consider

the *Knight chain on ΩEV K∩ΛB
. Using λ ∼ H′(0) we can choose V K ⊂ ΛK

B such that V K ⊃ {0, jΛK
B

}
and such that ∀ε > 0 and q small enough depending on ε we have

γ∗K(EV K ∩ ΛB) = γ(Φ(V K); q∗) ≥ 2−λ
θ2

q∗
2 (1+ϵ/2), (6.6)

where in the equality we used Lemma 6.14. We then take V = V1 ∪ Γ ⊂ Λ, where V1 = ∪j∈EV K∩ΛB
Bj

and Γ = (x(0), x(1), . . . , x(N)) is any path in Λ satisfying: (i) x(0) ∈ V1, x(N) = xΛ, (ii) x(i−1) ≺
x(i) ∀i ∈ [N ], and (iii) N = O(ℓ). By construction such a path always exists.

Claim 6.16. For any ε > 0 there exists q(ε) > 0 such that for all q ≤ q(ε)

γ(V ) ≥ 2− 1
2 (λθ2

q∗+(2m−m2)θ2
q )(1+ϵ) = 2−F (λ)

θ2
q
2 (1+ϵ).

Clearly the claim proves the proposition.

The proof of the claim requires another of our often used tools, so let us again explicitly recall it
and give it a name. Consider two sets V1, V2 ⊂ Zd together with some state space Ω(i) and measures
ν(i) on Vi for i ∈ [2]. Write V = V1 ∪ V2 and ν = ν(1) ⊗ ν(2). Consider an event A on Ω(1) such
that ν(1)(A) > 0. The first result gives a Poincaré-inequality for the block KCM on V where V1 is
unconstrained and every ring the state is sampled according to ν(1). On V2 the rings are legal if V1 is in
state A and if this is the case then the state on V2 is sampled according to ν(2).

Lemma 6.17 (Block relaxation Lemma, [11, Proposition 4.4]). In the above situation we have for
f : Ω(1) ⊗ Ω(2) → R

Varν(f) ≤ 2
ν(1)(A)

ν(Varν(1)(f) + 1AVarν(2)(f)).

We can now proceed with the proof of Claim 6.16.

Proof of the claim. Fix ε > 0 and choose q small enough depending on ε. Let V2 = Γ \ {x(0)}. Using
the block relaxation Lemma gives

VarV (f) ≤ 2θq+1µ(VarV1(f) + 1ω
x(0)

=0VarV2(f)). (6.7)

Given the boundary constraint σ ∈ Ω∂+
↓ V2

that consists of a unique vacancy at x(0) the one-dimensional
East model on V2 is ergodic so using Theorem 2.3 we have

µ(1ω
x(0)

=0VarV2(f)) ≤ 2(2m−m2)
θ2

q
2 (1+ε)

N∑
i=1

µ
[
1ω

x(i−1)=0Varx(f)
]

≤ 2(2m−m2)
θ2

q
2 (1+ε)µ(DV2(f)),
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0

xΛ

Λ1

Λ2

FIGURE 6.3 The boxes Λ1, Λ2. The two black dots denote xΛ1 and the origin of Λ2 at
xΛ1 + e1 respectively.

where we use that 1ω
x(i−1)=0 ≤ cV

x , and thus γσ(V2) ≥ 2−(2m−m2)
θ2

q
2 (1+ε). Moreover, using the

enlargement trick (Lemma 6.10) together with Equation (6.6) and the fact that γ(B0) ≥ 2−(2m−m2)
θ2

q
2 (1+ε)

gives γ(V1) ≥ 2− 1
2 (λθ2

q∗+(2m−m2)θ2
q )(1+ϵ). Finally, observe that γ(V ) ≥ 2−θq−2 min(γ(V1), γσ(V2))

and
(λθ2

q∗ + (2m − m2)θ2
q ) = F (λ)θ2

q (1 + o(1)) as q → 0

so that the claim follows.

Remark 6.18. Note that in the lower bound of γ(V ) instead of 2−θq−1 we have 2−θq−2 which we did
not further elaborate on as it is absorbed into the ε in the claim anyway. The term appears because
if V1 ∩ V2 ̸= ∅ then any vertex x ∈ V1 ∩ V2 appears once in both upper bounds of the variances in
Equation (6.7). We call this the overcounting of x and while it is a relatively benign contribution here,
controlling it is of vital importance for the lower bounds of the spectral gap of the MCEM process in
Chapter 9.

The recursive step λ ∼ H(0) ⇒ F (λ) ∼ H(0) now follows immediately from Proposition 6.15 and
Lemma 6.11.

6.3 Dirichlet EV of slightly unbalanced boxes: Proof of Proposition 6.6(ii)

The proof consists of two steps. We first prove that ϕ(β; 2) < 1 for all β < 1 implies that the same
holds for any d ≥ 3 by induction and then we deal with the initial two-dimensional case.

6.3.1 The induction step

Fix d ≥ 3 and β < 1 and assume ϕ(β; d′) < 1 for any 2 ≤ d′ ≤ d − 1. We are going to prove that
ϕ(β; d) < 1 as well. Fix κ ≥ 1 together with a (β, κ)-squeezed box Λ with side lengths (L1, . . . , Ld)
and set (see Figure 6.3)

Λ1 = {x ∈ Λ : x1 ≤ ⌊L1/2⌋, xd = 0},
Λ2 = {x ∈ Λ : x1 > ⌊L1/2⌋, xi = Li, 2 ≤ i ≤ d − 1}.

By construction, the origin of the box Λ2 is at xΛ1 + e1 and xΛ2 = xΛ. Moreover, both Λ1 and Λ2 are
(β, κ)-squeezed boxes in Zd−1

+ and Z2
+ respectively. The induction hypothesis implies that for all ε > 0

and all q small enough depending on ε, β, κ there exist Vi ⊂ Λi, i = 1, 2, such that

43



CHAPTER 6 Dirichlet EV of slightly unbalanced boxes: Proof of Proposition 6.6(ii)

• V1 ⊃ {0, xΛ1} and V2 ⊃ {xΛ1 + e1, xΛ};

• γ(V1) ≥ 2−(1+ε)ϕ(β;d−1)
θ2

q
2 and γσ(V2) ≥ 2−(1+ε)ϕ(β;2)

θ2
q
2 , where σ ∈ Ω∂+

↓ V2
has a unique

vacancy at xΛ1 .

Using the block relaxation Lemma analogously to how it was used in the proof of Claim 6.16 then implies

that γ(V ) ≥ 2−(1+2ε)(ϕ(β;d−1)∨ϕ(β;2))
θ2

q
2 , i.e. ϕ(β; d) ≤ ϕ(β; d − 1) ∨ ϕ(β; 2)) < 1.

6.3.2 The base case d = 2

We will prove that for any β ∈ (0, 1)

ϕ(β; 2) ≤ 1
2 (1 − β)2 + 2β − β2, (6.8)

which, in particular, implies that ϕ(β; 2) < 1 for any β < 1. The main idea here is to partition a
(β, κ)-squeezed box Λ into suitably chosen mesoscopic boxes in such a way that the coarse-grained
version of Λ becomes a (0, 2)-squeezed box on which the control of the Dirichlet eigenvalue gap is
assured by part (i) of the proposition.

Fix 0 < β < 1, κ ≥ 1 together with a (β, κ)-squeezed box Λ with side lengths (L1, L2), and assume
w.l.o.g. that L1 = mini Li. We set ℓ = ⌈(L2 + 1)/2(L1 + 1)⌉ ≤ (κ/2)2βθq , and by Lemma 6.5 we
can even assume ℓ = Θ(2βθq ). Assume further w.l.o.g. that (L2 + 1)/ℓ ∈ N. We then partition Λ
into vertical one dimensional boxes Bj = B + xj, B = {0} × {0, . . . , ℓ − 1}, xj = (j1, j2ℓ) where
j ∈ Q = {0, . . . , L1 − 1} × {0, . . . , (L2 + 1)/ℓ − 1}. We also write Ω∗

j , µ∗
j for ΩBj and µBj respectively.

Let Q̃ be the subset of Q lying between the two 45◦-lines, one through the origin and the other through
the point xQ and declare that j, j′ ∈ Q̃ form an edge if either j2 = j′

2 + 1 and j1 ∈ {j′
1, j′

1 + 1} or vice
versa (see Figure 6.4). The corresponding graph over the vertex set Q̃ is isomorphic via the natural graph
isomorphism Φ to the box Φ(Q̃) ⊂ Z2

+ with origin at x = 0 and side lengths L1 − 1, (L2 + 1)/ℓ − L1.
In particular, we write j′ ≺ j iff Φ(j′) ≺ Φ(j).

On any subset V of Q̃ we consider the image of the *East chain on Φ(V ) (or rather a slightly altered
version of it as we see below) with parameters Ω∗

j , µ∗
j and facilitating event Gj = {ωBj ̸= 1}. Thus

q∗ = 1 − (1 − q)ℓ and θq∗ = (1 − β)θq + Θ(1). As the box Φ(Q̃) is (0, 2)-squeezed, part (i) of
Proposition 6.6 implies the existence of W ⊂ Φ(Q̃), containing the origin and xΦ(Q̃) such that, for any
ε > 0 and any q sufficiently small depending on ε,

γ(W ; q∗) ≥ 2−(1+ε/2)
θ2

q∗
4 . (6.9)

Recall the definition of enlargements Ex from above Definition 6.13. We define EΦ−1(W ) :=
∪j∈Φ−1(W )Ej ∩ Q and V = ∪j∈EΦ−1(W )Bj ⊂ Λ and observe that V contains the origin and the
vertex xΛ.

Claim 6.19. For any ε > 0 and any q sufficiently small depending on ε

γ(V ) ≥ γ(W ; q∗) × 2−(β−β2/2)θ2
q (1+ε).

The claim together with Equation (6.9) finally implies that γ(V ) ≥ 2−((1−β)2/2+2β−β2)
θ2

q
2 (1+ε),

∀ q ≤ q(ε), i.e. Equation (6.8).
The proof of the claim is analogous to the proof of Lemma 6.14. For the Knight chain the enlargements

were necessary to build a connected V (i.e. to interpolate between the green boxes in Figure 6.2). Here,
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0

xQ = xQ̃

•

Q

Q̃

(A) (B)

Φ

0

x
Φ
(

Q̃

)

Φ
(
Q̃
)

•

FIGURE 6.4 (A). The box Q and the region Q̃ with its graph structure. Each vertex j ∈ Q
represents the box Bj. (B). Under the natural isomorphism Φ the graph Q̃ becomes an

equilateral square in Z2.

Φ−1(W ) is already connected, but using enlargements allows us to use the enlargement trick to get
Equation (6.11) below, rather than proving an analogous result to the enlargement trick applying to the
unenlarged Φ−1(W ).

Proof of the claim. On V we define an auxiliary dynamics to the *East chain. Consider for that a
partition of EΦ−1(W ) into disjoint connected subsets Uj for j ∈ Φ−1(W ) such that j ∈ Uj ⊂ Ej and
∪j∈Φ−1(W )Uj = EΦ−1(W ). In the sequel we write BUj := ∪j′∈UjBj′ and analogously for BEj . For the
constraints with c∗

j (ω) = 1 iff either j = 0 or there exists a neighbor j′ ≺ j such that there exists at least a
vacancy in Bj′ (note: not BUj′ ). For such constraints we define the auxiliary dynamics that update BUj

with a configuration sampled from µBUj
if c∗

j (ω) = 1 and otherwise do nothing. The spectral gap of
this chain is, as the one for the enlarged East chain, given by γ(W , q∗), since the j that participate in the
dynamics are only the ones in Φ−1(W ). The Poincaré inequality reads

VarV (f) ≤ γ(W ; q∗)−1 ∑
j∈Φ−1(W )

µV

(
c∗

j VarBUj
(f)
)
, ∀ f . (6.10)

We now bound a generic term µV

(
c∗

j (ω)VarBUj
(f)
)

. Using the enlargement trick (Lemma 6.10),

Theorem 2.3, and ℓ ≤ O(κ)2βθq , for any ε > 0 and any q small enough depending on ε we get

µV

(
c∗

j (ω)VarBUj
(f)
)

≤ 2(β−β2/2)θ2
q (1+ε/2) ∑

z∈BEj′
j′=j or j′≺j,∥j′−j∥=1

µV

(
cV

z Varz(f)
)
. (6.11)

45



CHAPTER 6 Dirichlet EV of unbalanced boxes: Proof of Proposition 6.6(iii)

By combining Equation (6.10) and Equation (6.11) and using that |Ej| = O(ℓ) (implying that the
overcounting is of the same order), we conclude for q small enough that

VarV (f) ≤ γ(W ; q∗)−1 × 2(2β−β2)
θ2

q
2 (1+ε)DV (f) ∀ f ,

and the claim follows from the variational characterization of γ(V ).

6.4 Dirichlet EV of unbalanced boxes: Proof of Proposition 6.6(iii)

We already know (cf. Theorem 2.3) that ϕ(β; d) ≤ 1 ∀β. Fix β ≥ 1 and consider the (β, 1)-squeezed

one dimensional box Λ = ∪⌊2βθq ⌋
k=0 {k e1}. The only subset V ⊂ Λ containing the origin and xΛ and such

that γ(V ) > 0 is V = Λ. But γ(Λ) = 2−
θ2

q
2 (1+o(1)) (see again Theorem 2.3) so that ϕ(β; d) ≥ 1.

6.5 Spectral gap maximizing subsets of small boxes

Recall that we say that λ ∼ H(β) if we have the corresponding lower bound on the Dirichlet Eigenvalue
for all (β, κ; θq)-squeezed Λ. The way we proved this is by showing that there is a subset V of any such
Λ such that the spectral gap of the East chain with minimal boundary conditions on this V satisfies this
lower bound. If instead of any Λ first we look only at a single (0, κ; θq)-squeezed Λ (or rather a family
{Λq}q∈(0,1) to be exact) we get the following more nuanced result.

Proposition 6.20. Let Λ be a (0, κ; θq)-squeezed box of side lengths (L1, . . . , Ld) with mini Li ∈
(2n−1, 2n] and n = n(q) with limq→0 n(q) = ∞. We have that as q → 0 we can find a subset V ⊂ Λ
with {0, xΛ} ⊂ V such that

γ(V , q) =

2−(nθq−n2+O(nθ1/2
q )) : n < θq/d,

2−(θ2
q /2d+O(θ3/2

q /d)) : else.

if q small enough.

Sketch of proof for d = 2. The proof is analogous to Proposition 6.6(i) and, in fact, implies it and only
the proof for the lower bound changes (the upper bound still follows from the bottleneck).

Recall that the original version of Theorem 2.3, i.e. [13, Theorem 2] contained more precise lower
order terms in the spectral gap with minimal boundary conditions, than we have cited here. Using the
same construction as in the proof of Lemma 6.11 we can w.l.o.g. assume that Λ is equilateral. Starting
from a V ⊂ Λ such that

γ(V , q) ≥
{

2−(nθq−n2+λn2+n log2(n)+O(θ1/2
q )) : n < θq/2,

2−(λθ2
q+θq log2(θq)+O(θq)) : else,

we want to identify a subset V ′ ⊂ V such that the same holds with λ 7→ F̃ (λ) where

F̃ (λ) =

{
λ/(1 + 2λ) : n < θq/2,
F (λ) : else.

The proof for n > θq/2 is unchanged (see Proposition 6.15). For n < θq/2 we get that with each iteration
λ → F̃ (λ) the coefficient decreases and we can repeat the proof completely analogously starting from the
n < θq/2 bound and using m = (1 + 2λn)/(1 + 2λ).
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Chapter 7

Front evolution: proofs

In this chapter we prove Theorems 1 and 3. In Section 7.1 we present two tools that enter the proofs of
these theorems. The first tool is an upper bound on the hitting time of the top-right corner of boxes of
given side length. Using Proposition 6.6 we show that this hitting time is governed by the two-dimensional
mode, along the diagonal, of the East process. The second result is an adaptation of the bottleneck
from [13, Section 4] that we already used in Chapter 6 and which gives us a lower bound on a different,
but related, hitting time.

These tools allow us to say that the two-dimensional modes are dominating in the proof of Theorem 1(A),
by giving the corresponding upper bound on vmax and lower bound on vmin. The proof for Theorem 1(B)
is completely analogous only that in this case the two-dimensional mode is not dominant anymore (i.e. we
cannot use Proposition 6.6(i)) but still dominant enough for the front speed to be distinguishably different
from the front speed of the one-dimensional mode (i.e. we use Proposition 6.6(ii)). For Theorem 1(C)
we construct a set which allows us to quantify how much the two-dimensional and how much the one-
dimensional mode enters the propagation speed giving the speed depending on α given in the statement.

In Section 7.3 we use similar techniques to establish the region behind the front in which the process is
mixing and close the section in Section 7.4 with the proof of the cutoff.

7.1 Two key tools

Let us thus come to the two auxiliary results described above.

7.1.1 Upper bounds on the hitting times

The next result is a direct consequence of Proposition 6.6 and Lemma 6.1.

Lemma 7.1. Fix β ≥ 0, κ ≥ 1, and let Λ = Λq be a (β, κ; θq)-squeezed box of side lengths (L1, . . . , Ld)

such that 2θ3/2
q /2 ≤ mini Li ≤ 2θ3/2

q . Then, uniformly in x ∈ Zd
+, the following holds. For any

ε > 0 ∃ q(ε, β, κ) such that for any q ≤ q(ε, β, κ)

sup
ω∈{ω: ωx=0}

Eω(τx+xΛ) ≤ 2(1+ε)ϕ(β;d)
θ2

q
2 .

Proof. Fix x ∈ Zd
+, ε > 0 and let T (ε) = 2(1+ε)ϕ(β;d)

θ2
q
2 , T ∗ = 22θ2

q . Then

Eω(τx+xΛ) =
∫ T (ε)

0
dt Pω(τx+xΛ > t) +

∫ T ∗

T (ε)
dt Pω(τx+xΛ > t)
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+
∫ +∞

T ∗
dt Pω(τx+xΛ > t)

≤T (ε) + T ∗Pω(τx+xΛ > T (ε)) +
∫ +∞

T ∗
dt Pω(τx+xΛ > t). (7.1)

We will now prove that the supremum over ω ∈ {ω : ωx = 0} of the second and third term in the r.h.s. of
Equation (7.1) tend to zero as q → 0.

Given ℓ ∈ N let Vx,ℓ = {x1 − ℓ, . . . , x1} × · · · × {xd − ℓ, . . . , xd} ∩ Zd
+ and let G(t, ℓ), t > 0, be the

event that there exists z ∈ Vx,ℓ such that

Tt(z) =
∫ t

0
ds 1{cz(ω(s))=1} > t/ℓd. (7.2)

In other words z is unconstrained for a fraction ℓ−d of the time t. When such a vertex exists we will write
ξ ∈ Vx,ℓ for the smallest one in the lexicographical order1. In [15, Corollary 4.2] it has been proved2 that
there exist constants c, c′ > 0 such that

sup
ω∈{ω: ωx=0}

Pω(G(t, ℓ)c) ≤ c′tℓde−cqℓ. (7.3)

Armed with the above result we now deal with the term T ∗Pω(τx+xΛ > T (ε)) in the r.h.s. of Equa-
tion (7.1). Fix ω ∈ {ω : ωx = 0} and choose ℓ = ⌊1

2 mini Li⌋. All the bounds proven below will be
uniform in ω. Using Equation (7.3)

T ∗Pω(τx+xΛ > T (ε)) ≤ c′(T ∗)
2
ℓd e−cqℓ + T ∗ Pω(τx+xΛ > T (ε); G(T (ε), ℓ)). (7.4)

The assumption mini Li = Θ
(
2θ3/2

q

)
and the choice of ℓ imply that the first term in the r.h.s. above is

o(1) as q → 0.
Next, write Pω(τx+xΛ > T (ε); G(x, ℓ)) =

∑
y∈Vx,ℓ

Pω(τx+xΛ > T (ε); ξ = y) and let Λy =
{y1, . . . , x1 + L1} × · · · × {yd, . . . , xd + Ld}. Notice that the choice of ℓ together with the fact that Λ is
(β, κ)-squeezed imply that Λy is (β, κ+ 1)-squeezed. Let Fy be the σ-algebra generated by the variables
{ωz(s) : z ∈ ∂+

↓ Λy, s ≤ T (ε)} and observe that {cy(ω(s))}s≤T (ε) is measurable w.r.t. Fy. Then

Pω(τx+xΛ > T (ε); ξ = y) = Eω(1{ξ=y}Pω(τx+xΛ > T (ε) | Fy)).

The orientation of the East process implies that, conditionally on Fy, the event {τx+xΛ > T (ε)} coincides
with the same event for the time-inhomogeneous East chain in ΩΛy with deterministic, time-dependent
boundary conditions on ∂+

↓ Λy. We denote the law of the latter chain with initial state ω ↾Λy by P̂ω(·).
Thus,

Pω(τx+xΛ > T (ε) | Fy) = P̂ω(τx+xΛ > T (ε))

≤ µ(ω ↾Λy )
−1 ∑

η∈ΩΛy

µ(η)P̂η(τx+xΛ > T (ε))

≤ 2θq |Λy | ∑
η∈ΩΛy

µ(η)P̂η(τx+xΛ > T (ε)).

(7.5)

1The lexicographical order here means a total order version of the ≺-partial order where we say that x is larger than y if for
the smallest i ∈ [d] such that xi ̸= yi we have xi ≥ yi.

2Technically the proof concerns the East model on Zd not on Zd
+ with an unconstrained origin, but the proof carries over.
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Let t0 ≡ 0 < t1 < t2 < · · · < tn < tn+1 ≡ T (ε) be the times at which the boundary conditions on ∂+
↓ Λy

change and let σ(i), i ∈ [n+ 1], denote the boundary condition during the time interval (ti−1, ti). Let also
L̂(i) be the generator of the East chain on ΩΛy with boundary conditions σ(i) and let A(i) = 1AcL̂(i)1Ac

be the generator L̂(i) with Dirichlet boundary condition on A = {η ∈ ΩΛy : ηx+xΛ = 0}.
Then apply Lemma 6.1 with Λy, Ac, and L̂ the generator for the time-inhomogeneous chain. Split the

exponential into the smaller time steps on which the chain is homogeneous, thus recovering L̂i. This can
be done since etL̂ is a probability semi-group and for t ∈ [ti−1, ti], etL̂ is the probability semi-group for
the time-homogeneous chain with boundary conditions σ(i). Thus,∑

η∈ΩΛy

µΛy (η)P̂η(τx+xΛ > T (ε)) = ⟨1A, et1A(1) × e(t2−t1)A(2) × · · · × e(tn+1−tn)A(n+1)1A⟩.

Let λi ≥ 0 be the smallest eigenvalue of −A(i). Clearly,

⟨1, et1A(1) × e(t2−t1)A(2) × · · · × e(tn+1−tn)A(n+1)1⟩ ≤ e−
∑n+1

i=1 (ti−ti−1)λi .

If during the time interval (ti, ti+1) the constraint cy at the vertex y is zero then we simply use λi ≥ 0. If
instead cy = 1 we use monotonicity of λi in the boundary conditions σ(i) together with Equation (6.4),
the definition of ϕ(β; d), and the fact that Λy is (β, κ + 1)-squeezed to get that

λi ≥ λD(Λy) ≥ 2−(1+ε/2)ϕ(β;d)
θ2

q
2 ,

for all q small enough depending only on ε, β, κ. In conclusion, recalling that∫ T (ε)

0
ds 1{cy=1} ≥ T (ε)ℓ−d,

we get

⟨1, et1A(1) × e(t2−t1)A(2) × · · · × e(tn+1−tn)A(n+1)1⟩

≤ exp
(

−
( ∫ T (ε)

0
ds 1{cy=1}

)
× 2−(1+ε/2)ϕ(β;d)

θ2
q
2

)
≤ exp

(
− T (ε)ℓ−d 2−(1+ε/2)ϕ(β;d)

θ2
q
2
)

≤ exp
(

− 2εϕ(β;d)
θ2

q
4
)
,

for q ≤ q(ε, β, κ). Putting all together we obtain that the second term in the r.h.s. of Equation (7.4) is
bounded from above by

22θ2
q × 2θq2O(θ3/2

q )

× e−2εϕ(β;d)
θ2

q
4 = o(1) as q → 0.

We finally examine the third term in the r.h.s. of Equation (7.1). In order to bound from above Pω(τx+xΛ >
t), t ≥ T ∗, we proceed exactly as above except that now the parameter ℓ of the box Vx,ℓ ⊂ Zd

+ has to be
chosen depending on t, ℓt = t1/4d. Using the same notation we get

Pω(τx+xΛ > t) ≤ c′tℓd
t e−cqℓt + 2θq(ℓt+maxi Li)

d−tℓ−d
t miny∈Vx,ℓt

λD(Λy). (7.6)
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Notice that if t is so large that Vx,ℓt coincides with the box of side lengths (x1, . . . , xd), then the event
Gc(t, ℓt) = ∅ because the origin is always unconstrained. In this case the first term in the r.h.s. above is
absent while the second term becomes 2θq maxi (xi+Li)

d−λD(Λx)t where Λx is the box with side lengths
(x1 + L1, . . . , xd + Ld).

Back on track, in order to bound from below miny∈Vx,ℓt
λD(Λy) we are no longer allowed to appeal to

Proposition 6.6 because the box Λy could be extremely squeezed in some directions and we are forced
the use the spectral gap bound, Equation (3.3),

min
y

λD(Λy) ≥ 2−(1+ε)
θ2

q
2 .

In conclusion, we obtain

Pω(τx+xΛ > t) ≤ c′tℓd
t e−cqt1/4d

+ eO(θq)t1/4−t3/42−
θ2

q
2 (1+ε)

≤ c′tℓd
t e−cqt1/4d

+ e−t3/42−
θ2

q
2 (1+ε)/2 ∀ t > T ∗.

We finally observe that

∫ +∞

T ∗
dt
[
c′tℓd

t e−cqt1/4d
+ e−t3/42−

θ2
q
2 (1+ε)/2

]
= o(1) as q → 0.

7.1.2 The bottleneck on scale 2
θq
d with maximal boundary conditions

Recall the bottleneck from [13, Section 4] that we used in the lower bound in the proof of Proposi-
tion 6.6(i) in Section 6.2. We can use the analogous bottleneck with maximal boundary condition, as it was
defined originally in [13, Section 4], as opposed to the minimal boundary conditions used in Section 6.2
to get a bound on the hitting time τxΛ started from a state with no vacancy in the equilateral box Λ with
side length L ≤ 2θq/d.

Definition 7.2 (Legal path). A sequence (ω(1), . . . , ω(n)) of configurations (in Ω or ΩΛ, Λ ⊂ Zd
+,) such

that ω(i+1) is obtained from ω(i) by means of a (non-trivial) legal update will be referred to as a legal
path joining ω(1) to ω(n).

Before discussing the core of this section, we point out the following monotonicity property of legal
updates. Take two sets Λ ⊂ Λ′ ⊂ Zd

+ together with two boundary conditions σ, σ′ on ∂+
↓ Λ and ∂+

↓ Λ′

respectively such that σx = 0 ∀ x ∈ ∂+
↓ Λ ∩ Λ′ and σx ≤ σ′

x ∀ x ∈ ∂+
↓ Λ ∩ ∂+

↓ Λ′. Then a legal update at
x ∈ Λ of the East process in Λ′ with boundary condition σ′ is a legal update at x of the East process in Λ
with boundary condition σ.

Definition 7.3 (Bottleneck). Let ΛL = {0, . . . , L}d, and for x ∈ Zd
+ \ ΛL let Vx,L = (ΛL + x −

xΛL
) ∩ Zd

+. We say that A ⊂ ΩVx,L is an (x, L)-bottleneck if any legal path joining Ex,L ≡ {ω ∈ Ω :
ω ↾Vx,L= 1} with {ω : ωx = 0} hits {ω : ω ↾Vx,L∈ A}.

Proposition 7.4. In the setting of Definition 7.3 ∀ε > 0 ∃ q(ε) > 0 such that for q ≤ q(ε) the
following holds. For any L ≤ 2θq/d and x ∈ Zd

+ \ ΛL there exists a (x, L)-bottleneck A with µ(A) ≤
2−(nθq−d(n

2))(1−ε) where n := ⌊log2(L)⌋.
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Proof. Fix L ≤ 2θq/d and x ∈ Zd
+ \ ΛL, and w.l.o.g. suppose that Vx,L ⊂ Zd

+. The case when this
assumption fails follows immediately from the monotonicity property of legal updates described above.
Fix also ω ∈ Ex,L, ω̂ ∈ {ω : ωx = 0}, together with a legal path Γ = (ω(1), . . . , ω(k)) joining them.
Finally, write ω

(j)
V = ω(j) ↾Vx,L , j ∈ [k], and let 1 ≤ j1 < j2 < · · · < jm ≤ k be those indices

such that the legal update occurs inside Vx,L. Using the monotonicity of legal updates the sequence
Γ̂ = (ω

(j1)
V , . . . , ω

(jm)
V ) connects ωVx,L ≡ 1 to {ω ∈ ΩVx,L : ωx = 0} via legal updates of the East chain

in Vx,L with maximal boundary conditions. The results of [13, Section 4] then imply that Γ̂ must hit a
fixed subset A of ΩVx,L whose equilibrium probability satisfies the required bound.

Corollary 7.5. In the same setting

max
ω∈Ex,L

Pω(τx < t) ≤ O(t) × 2−(nθq−d(n
2))(1−ε).

Notice that for L = 2θq/d the r.h.s. above becomes equal to O(t) × 2−
θ2

q
2d

(1−ϵ).

Proof. We only give a quick sketch because the proof of similar statements has already appeared elsewhere
(see e.g. [14]). Fix L ≤ 2θq/d and x ∈ Zd

+ \ ΛL. Using Proposition 7.4 there exists A ⊂ ΩVx,L such that

max
ω∈Ex,L

Pω(τx < t) ≤ max
ω∈Ex,L

Pω(τA ≤ t).

For a given ω ∈ ΩV c
x,L

write δω ⊗ µVx,L for the product measure on Ω whose marginals on ΩV c
x,L

and

ΩVx,L are the Dirac mass at ω and µVx,L respectively. Using L ≤ 2θq/d we get µVx,L(ω ↾Vx,L= 1)−1 =
O(1) as q → 0. Hence we can do a large deviation bound on the number of rings in Vx,L and a union
bound in the rings to get,

max
ω∈Ex,L

Pω(τA ≤ t) ≤ O(1) × max
ω∈ΩV c

x,L

Pδω⊗µVx,L
(τA ≤ t)

≤ O(t Ld) max
ω∈ΩV c

x,L

sup
s≤t

Pδω⊗µVx,L
(ω(s) ↾Vx,L∈ A).

It is easy to check (see [15, Section 3]) that µVx,L is stationary for the marginal on ΩVx,L of the East
process with initial distribution δω ⊗ µVx,L . Hence, the r.h.s. above is equal to

O(tLd)µ(A) ≤ O(t)2−(nθq−d(n
2))(1−2ε)

for q small enough depending on ε.

7.2 Front velocity bounds: Proof of Theorem 1

We split the proofs for the various parts into their own subsections.

7.2.1 Bulk velocity: Proof of Theorem 1(A)

In the sequel x ∈ Rd
+ will denote a unit vector independent of q with mini xi > 0.
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CHAPTER 7 Front velocity bounds: Proof of Theorem 1

Lower bound on vmin(x)

Let ℓ = ⌊2θ3/2
q ⌋ and let x(n) = ⌊nℓx⌋, n ∈ N. We begin by proving that

lim sup
n→∞

Eω∗(τx(n))

n
≤ 2

θ2
q

2d
(1+o(1)) as q → 0. (7.7)

Clearly
τx(n+1) ≤ inf{s ≥ τx(n) : ωx(n+1)(s) = 0},

so that, using the strong Markov property,

Eω∗(τx(n+1)) ≤ Eω∗(τx(n)) + max
ω∈{ω: ω

x(n)=0}
Eω(τx(n+1)).

Let Li = x
(n+1)
i − (x

(n)
i + 1), i ∈ [d]. Clearly the box with sides length (L1, . . . , Ld) is (0, κ)-squeezed

with κ = maxi,j xi/xj + 1 and Lemma 7.1 implies that, uniformly in n, for any ε > 0

max
ω∈{ω: ω

x(n)=0}
Eω(τx(n+1)) ≤ 2

θ2
q

2d
(1+ε), (7.8)

for any q sufficiently small depending on ε. Equation (7.7) now follows immediately.
In order to complete the proof of (A) we write

Eω∗(τnx) ≤ Eω∗(τx(⌊n/ℓ⌋)) + max
ω∈{ω: ω

x(⌊n/ℓ⌋)=0}
Eω(τnx).

By using the arguments entering into the proof of Lemma 7.1 it is easy to see that

sup
n

max
ω∈{ω: ω

x(⌊n/ℓ⌋)=0}
Eω(τnx) < +∞.

Therefore,

lim sup
n→∞

Eω∗(τnx)

n
≤ ℓ−12

θ2
q

2d
(1+o(1)) = 2

θ2
q

2d
(1+o(1)),

because of the choice of ℓ. In conclusion we have proved that vmin(x) ≥ 2−
θ2

q
2d

(1+o(1)) as q → 0.

Upper bound on vmax(x).

Let ℓ = ⌊2θq/d⌋ and for any y ∈ Zd
+ with ∥y∥1 ≥ ℓ let Λy = {z ∈ Zd

+ : z ≺ y, ∥y − z∥1 ≤ ℓ}.
Clearly, if the starting configuration of the East process on Zd

+ is ω∗, then τ∂+
↓ Λy

< τy a.s. Hence, for all
λ > 0 the strong Markov property gives

Eω∗(e−λτy ) = Eω∗

(
e

−λτ
∂+

↓ Λy
Eωτ

∂+
↓ Λy

(e−λτy )
)

(7.9)

≤ W (λ)
∑

z∈∂+
↓ Λy

Eω∗(e−λτz ),

where W (λ) := supz: ∥z∥1≥ℓ maxω∈{ω: ω↾Λz=1} Eω(e−λτz ). Iterate Equation (7.9) using |∂+
↓ Λy| ≤

O(ℓd−1) to get that

Eω∗(e−λτy ) ≤
(

O(ℓd−1)W (λ)

)⌊∥y∥1/ℓ⌋
.
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Claim 7.6. For any ε > 0 sufficiently small let T (ε) = 2
θ2

q
2d

(1−ε) and choose λ = λ(ε, q) = εθ2
qT (ε)−1.

Then W (λ(ε, q)) ≤ e−Ω(εθ2
q ) as q → 0.

Proof of the claim. Using Corollary 7.5, for any z with ∥z∥1 ≥ ℓ and any q small enough depending on ε,
we get

max
ω∈{ω: ω↾Λz=1}

Eω(e
−λτz ) ≤ e−λT (ε) + max

ω∈{ω: ω↾Λz=1}
Pω(τz ≤ T (ε))

≤ e−εθ2
q + O(T (ε))2−

θ2
q

2d
(1−ε/2) = e−Ω(εθ2

q ).

Using Jensen’s inequality, e−λEω∗ (τy) ≤ Eω∗(e−λτy ), and choosing λ as in the claim, we finally obtain

Eω∗(τy) ≥ Ω
(
2

θ2
q

2d
(1−ε)

)
⌊2−θq/d∥y∥1⌋. (7.10)

In particular, Equation (7.10) implies that vmax(x) ≤ 2−
θ2

q
2d

(1−o(1)) as q → 0.

Remark 7.7. Exactly the same proof applies to get the following result. For any ε > 0 there exists
q(ε) > 0 and c(ε) > 0 such that the following holds for q ≤ q(ε). For any y ∈ Zd

+ and n ≤ ∥y∥1 let
B(y, n) = {z : z ≺ y, ∥y − z∥1 ≤ n}. Then

max
ω:ω↾B(y,n)=1

Pω(τy ≤ nT (ε)) ≤ e−cεθ2
q⌊n2−

θq
d ⌋.

7.2.2 Approaching the axis slowly: Proof of Theorem 1(B)

The proof is identical to that of Section 7.2.1 with the following modification. The box Λ with side
lengths Li = x

(n+1)
i − (x

(n)
i + 1), i ∈ [d], is now (β, κ + 1)-squeezed because of the assumption on the

direction x = x(q). Using again Lemma 7.1 we get the analogue of Equation (7.8):

max
ω∈{ω: ω

x(n)=0}
Eω(τx(n+1)) ≤ 2ϕ(β;d)

θ2
q
2 (1+ε).

The rest of the argument remains unchanged and the conclusion is that

lim sup
n→∞

Eω∗(τnx)

n
≤ ℓ−12ϕ(β;d)

θ2
q
2 (1+ε),

i.e.

lim sup
q→0

− 1
θ2

q

log2(vmin(x)) ≤ ϕ(β; d)

2 <
1
2 (7.11)

because ϕ(β; d) < 1 if β ∈ [0, 1).
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h(y) y

FIGURE 7.1 Example for a set Uy (the grey region). The red vertices denote ∂+
↓ Uy .

7.2.3 Approaching the axis quickly: Proof of Theorem 1(C)

Fix a q-dependent unit vector x ∈ R2
+ such that 0 < x2 ≤ x12−θ2

qα with α > 0. In order to track how a
vacancy can propagate from the origin to the vertex ⌊nx⌋ ∈ Z2

+ we introduce the following construction.
Let 0 < ε ≪ 1 and let L = L(ε, α, q) = ⌊2θ2

qα(1−ε/2)⌋. W.l.o.g. we assume that q is so small that
L ≫ 2θq .

Definition 7.8. For y = (y1, y2) ∈ Z2
+ such that 1 ≤ y2 ≤ 2−θ2

qα y1 let By,L ⊂ Z2 be the box of side
lengths (L, L) and upper-right corner at y and let (see Figure 7.1)

Uy = (By,L \ ∪L
i=⌊1/q⌋+1{y − ie1}) ∩Z2

+.

Let also h(y) := y − (⌊1/q⌋ + 1)e1 and note that h(y) ∈ ∂+
↓ Uy.

If the starting configuration of the East process on Z2
+ is ω∗, then τ∂+

↓ Uy
< τUy < τy. This observation

justifies the following definition. In the sequel {ωt}t≥0 denotes the East process in Z2
+ with ω0 = ω∗.

Definition 7.9 (Infection sequence for y). Let ξ(0) = y and define recursively ξ(i) as the unique vertex
z ∈ ∂+

↓ Uξ(i−1) such that ωτ
∂+

↓ U
ξ(i−1)

(z) = 0. We also let ν := inf{i ∈ N : 0 ∈ Uξ(i)} and call the

random sequence ξ(y) = {ξ(i)}i∈[ν] the infection sequence for y. The collection of all possible infection

sequences is denoted by S(y). Given v = {v(i)}i ∈ S(y) we say that v(i) is good if v(i+1) = h(v(i))
and bad otherwise.

Remark 7.10. By construction any possible infection sequence v is such that ∥v(i) − v(i+1)∥1 ≥ ⌊1/q⌋.

Lemma 7.11. For any q small enough, any infection sequence in S(y) contains at most y2 bad points
and at least ⌊y1

q
2⌋ good points.

Proof. Given an infection sequence v let ng be the number of its good points and observe that if v(i) is
bad then v

(i+1)
2 < v

(i)
2 and v

(i)
1 − v

(i+1)
1 ≤ L. Hence, (n − ng) ≤ y2 and

(n − ng)L + ng/q ≥ y1 − L,

i.e. ng ≥ q(y1 − L(1 + y2)). In particular, if 1 ≤ y2 ≤ 2−θ2
qαy1 then ng ≥ ⌊y1q/2⌋ for q small

enough.

Given v ∈ S(y) let (w(1), w(2), . . . , w(ny)) be the collection of the first ny := ⌊y1
q
2⌋ good points of v

ordered from the last one to the first one. By construction, w(k−1) ≺ h(w(k)) ∀k. Using Definition 7.9,
the event {ξ(y) = v} implies the event

Gv := ∩k{τU
w(k)

= τh(w(k)); τh(w(k)) ≥ τw(k−1)},
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and τy ≥
∑

k(τw(k) − τh(w(k))). Therefore, ∀λ > 0 the definition of the event Gv together with a repeated
use of the strong Markov property implies that

e−λEω∗ (τy) ≤ Eω∗(e
−λτy ) ≤

∑
v∈S(y)

Eω∗(1Gve
−λ
∑ny

k=1(τw(k)−τ
h(w(k))

)
) (7.12)

≤ |S(y)| max
v

Eω∗

(
1Gv

ny∏
k=1

e
−λ(τ

w(k)−τ
h(w(k))

)
)

≤ |S(y)|F (λ)ny ,

where |S(y)| denotes the cardinality of S(y) and

F (λ) := max
z∈Z2

+ : h(z)∈Z2
+

max
ω: ω(h(z))=0, ω↾Uz=1

Eω

(
e−λτz

)
.

The next two lemmas provide the necessary bounds on |S(y)| and F (λ).

Lemma 7.12. For any y ∈ Z2
+ with 1 ≤ y2 < y12−αθ2

q as q → 0, we have

|S(y)| ≤
(
y1/y2

)O(y2).

Proof. Recall that a good point of an infection sequence specifies uniquely the next point of the sequence.
Hence, we can reconstruct the full infection sequence by specifying which points are bad together with
their relative position w.r.t. the previous point. Using Lemma 7.11 and Remark 7.10, it also follows that
the length n of any infection sequence satisfies n ∈ [ny, q(y1 + y2)]. Thus for q small enough

|S(y)| ≤
⌈q(y1+y2)⌉∑

n=ny

y2∑
m=0

(
n

m

)
(2L)m ≤

⌈q(y1+y2)⌉∑
n=ny

(
n

y2

)
(y2 + 1)(2L)y2

≤ eO(θ2
q )y2 × O(q)y1 ×

(
⌈q(y1 + y2)⌉

y2

)
≤
(
y1/y2

)O(y2).

Lemma 7.13. Fix 0 < ε ≪ 1 and let Tα = Tα(ε, q) = 2
θ2

q
4 ((1+4α)∧2)(1−2ε). Then for any q sufficiently

small and any λ > 0
F (λ) ≤ e−λTα + 2−Ω(ε)θ2

q .

Proof. Fix z ∈ Z2
+ such that h(z) ∈ Z2

+ together with ω such that ω(h(z)) = 0 and ω ↾Uz= 1. Let also
A := {h(z) + e1 − e2, h(z) + 2e1 − e2, . . . , z − e2}. Then,

Eω(e
−λτz ) ≤ e−λTα + Pω(τz < Tα)

≤ e−λTα + Pω({τz < Tα} ∩ {τA > Tα}) + Pω(τA ≤ Tα)

≤ e−λTα + Pω({τz < Tα} ∩ {τA > Tα}) +
∑
a∈A

Pω(τa ≤ Tα).

Let FTα be the σ-algebra generated by the variables ωz(s), s ∈ [0, Tα] where z ∈ {a ∈ Z2
+ : a ≺

h(z)} ∪ {a ∈ Z2
+ : a ≺ b for some b ∈ A}. Clearly {τA > Tα} ∈ FTα . Moreover, conditionally on FTα

and on the event {τA > Tα}, the East process on A+ e2 coincides up to time Tα with the one-dimensional
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CHAPTER 7 Mixing behind the front: Proof of Theorem 3

East chain on A + e2 with a boundary value at {ωh(w)(s)}s≤T
which is measurable w.r.t. FTα . We can

then apply Corollary 7.5 with d = 1 and n = ⌊θq⌋ to obtain:

Pω({τz < Tα} ∩ {τA > Tα}) ≤ O(Tα)2−
θ2

q
2 (1−ε) = O

(
2−

θ2
q
4 ((2−(1+4α)∧2)(1−2ε)+2ε)

)
≤ 2−Ω(ε)θ2

q .

Let nA = mina∈A minz′≺a, z′ /∈Uz
∥a − z′∥1, and observe that ∃ ε(α) > 0 such that ∀ ε ≤ ε(α) and all q

small enough depending on ε, Tα ≤ nA 2
θ2

q
4 (1−ε). We can then use Remark 7.7 to get that

∑
a∈A

max
ω: ω↾Uz=1

Pω(τa ≤ Tα) ≤ e−Ω(εθ2
q⌊nA2−

θq
2 ⌋) ≤ 2−Ω(ε)θ2

q ,

because nA ≥ L − 2θq ≫ 2θq/2.

We can now conclude the proof. By combining the two lemmas above and choosing λ = λα(q) =
T −1

α εθ2
q , we get from Equation (7.12) that

e−λEω∗ (τy) ≤ |S(y)|F (λ)ny ≤
(
y1/y2

)O(y2)
e−Ω(ε)θ2

qny ,

where we recall that ny := ⌊y1
q
2⌋. If y = ⌊nx⌋ with x such that 0 < x2 ≤ x12−θ2

qα, the above inequality
implies

Eω∗(τ⌊nx⌋) ≥ Ω(q Tα) × n as n → ∞.

In particular vmax(x) ≤ 2−
θ2

q
4 ((1+4α)∧2)(1−o(1)).

7.3 Mixing behind the front: Proof of Theorem 3

Let us now come to the proof that for t → ∞, q → 0 and ε → 0 we find equilibrium in

Λ(δ, ε, t) = {x ∈ Zd
+ : min

i,j
xi/xj ≥ δ and ∥x∥1 ≤ 2−

θ2
q

2d
(1+ε) × t},

if δ > 0 and do not if δ = 0. We begin with the case δ = 0.

Recall Remark 2.1 and that vmin(ei) = vmax(ei) = 2−
θ2

q
2 (1+o(1)) ∀ i ∈ [d]. Take 0 < ε ≪ 1 and let

xt = ⌊2−
θ2

q
2d

(1+ε) t⌋ e1, t ≫ 0. By construction xt ∈ Λ(δ = 0, ε, t). Let also

At = {ω : ∃ y ∈ {xt − ⌊22θq ⌋e1, . . . , xt} such that ωy(t) = 0},

and use
∥νδ,ε

t − µΛ(δ,ε,t)∥T V ≥ |µ(At) − νδ,ε
t (At)|.

For any t large enough µ(At) = 1 − e−Ω(2θq ), while Remark 7.7 gives lim supt→∞ νδ,ε
t (At) = 0. Hence,

lim inf
q→0

lim inf
t→∞

∥νδ,ε
t − µΛ(δ,ε,t)∥T V = 1.

Next we consider the case 0 < δ < 1. Fix 0 < ε ≪ 1 and let us begin by following [15]. The
first observation (see [15, Lemma 5.5]) is that equilibrium in the region Λ(δ, ε, t) is achieved very
rapidly, within a time O(log(|Λ(δ, ε, t)|)4d), if the initial configuration has a vacancy in every interval
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of Λ(δ, ε, t) parallel to a coordinate direction and containing O(log(|Λ(δ, ε, t)|)2) vertices. Hence, if
the above condition is satisfied by the East process at time t/2 then at time t the measure νδ,ε

t will be
very close to µΛ(δ,ε,t) in the total variation distance. The second observation (cf. [15, Lemma 5.3]) is the
following. Recall that τx is the first time a vacancy appears at x. Then the above requirement for the East
process at time t/2 will be satisfied with w.h.p. if τx ≤ t/2 − O(log(|Λ(δ, ε, t)|)2) ∀ x ∈ Λ(δ, ε, t). A
more precise formulation of the above two steps is as follows.

Lemma 7.14. For any t large enough depending on q, δ, ε

∥µΛ(δ,ε,t) − νδ,ε
t ∥T V ≤ ε +

∑
x∈Λ(δ,ε,t)

Pω∗(τx > t/3). (7.13)

We decided to skip the proof of the lemma as it follows very closely the proofs of Lemma 5.3 and 5.5
of [15].

The proof of the theorem then boils down to proving that the second term in the r.h.s. of (7.13) vanishes
as t → ∞. For future needs we actually prove a slightly stronger result.

Lemma 7.15.
lim sup

t→∞
sup

y∈Zd
+

∑
x∈Λ(δ,ε,t)+y

sup
ω: cy(ω)=1

Pω(τx > t/3) = 0. (7.14)

Proof of the lemma. Fix y ∈ Zd
+ together with ω such that cy(ω) = 1. All the estimates in the sequel

will be uniform in y, ω. Fix x ∈ Λ(δ, ε, t) + y and let x = (x − y)/|x − y| be the associated unit
vector in Rd

+. Clearly mini,j xi/xj ≥ δ. Let ℓ = 2θ3/2
q , nx = ⌊|x − y|/ℓ⌋, and set x(0) = y, x(n) =

⌊nℓx⌋, n ∈ [nx], x(nx+1) = x. By construction |x(n+1) − x(n)| ≤ ℓ+ 1, and ∃ κ(δ) ≥ 1, q(δ) < 1 such
that ∀ q ≤ q(δ)

max
0≤n≤nx

max
i,j

(x(n+1) − x(n))i

(x(n+1) − x(n))j
≤ κ(δ).

For the East process with initial condition ω recursively define

τ (0) = inf{s ≥ 0, ωx(0)(s) = 0}, τ (n) = inf{s ≥ τ (n−1) : ωx(n)(s) = 0},

and set ∆n = τ (n) − τ (n−1). Finally, let M = log(t)5d × 2
θ2

q
2d

(1+ε/2). Using τx ≤
∑nx+1

n=1 ∆n we write

Pω

(
τx ≥ t/3

)
≤ Pω

( nx+1∑
n=1

∆n1{∆n≤M} ≥ t/3
)
+

nx+1∑
n=1

sup
ω: ω

x(n−1)=0
Pω

(
∆n ≥ M

)
. (7.15)

In order to bound from above the second term in Equation (7.15) we use Equation (7.6) with ℓt = log2(t)
and maxi Li = ℓ to get

sup
ω: ω

x(n−1)=0
Pω

(
∆n ≥ M

)
≤ tℓd

t e−cqℓt + 2θq(ℓt+ℓ)d−Mℓ−d
t 2−

θ2
q
2 (1+ε)

.

Hence, for any t large enough depending on q, the second term in the r.h.s. of (7.15) satisfies

nx+1∑
n=1

sup
ω: ω

x(n−1)=0
Pω

(
∆n ≥ M

)
≤ e−Ω(q log2(t)).
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We tackle the first term in the r.h.s. of (7.15) via the exponential Chebyshev inequality with λ =

2−
θ2

q
2d

(1+ε/2) log2(t)/t. Using the strong Markov property and λM ≤ 1 for any large enough t we obtain

Pω

( nx+1∑
n=1

∆n1{∆n≤M} ≥ t/3
)

≤ e−λt/3 × Eω

( nx+1∏
n=1

eλ∆n1{∆n≤M}
)

≤ e−λt/3 ×
(

sup
n

sup
ω: ω

x(n−1)=0

Eω

(
eλ∆n1{∆n≤M}

))nx+1

≤ e−λt/3 ×
(

1 + eλ sup
n

sup
ω: ω

x(n−1)=0
Eω

(
∆n

))nx+1
,

where we used ea ≤ 1 + ea, ∀ 0 ≤ a ≤ 1 in the last inequality. We can finally appeal to Lemma 7.1 to
get that for all q small enough depending on δ, ε

1 + eλ sup
n

sup
ω: ω

x(n−1)=0
Eω

(
∆n

)
≤ 1 + eλ 2(1+ε/2)

θ2
q

2d ≤ ee log2(t)/t.

In conclusion,

Pω

( nx+1∑
n=1

∆n1{∆n≤M} ≥ t/3
)

≤ e−λt/3+e(nx+1) log2(t)/t ≤ e−λt/6,

where we used (nx + 1) ≤ |x − y|+ 1 ≤ t 2−
θ2

q
2d

(1+ε) + 1 to obtain the last inequality for q small enough
depending on ε.

Summarizing, we have proved that ∃ q(δ, ε) > 0 such that for any q ≤ q(δ, ε) and all t large enough

∑
x∈Λ(δ,ε,t)+y

Pω

(
τx > t/3) ≤ e

−Ω
(

2−(1+ε/2)
θ2

q
2d log2(t)

)
(7.16)

and (7.14) follows.

7.4 Cutoff phenomenon: Proof of Theorem 4

Using Remark 3.1 d(t) ≥ d̄(t), where d̄(t) is defined as d(t) but for the one dimensional East
chain on {0, . . . , n}. Hence Equation (3.4) follows directly from the cutoff result for the latter chain
(see Theorem 3.5). We now turn to the proof of Equation (3.5).

Let wn = n2/3 and let T̂n = Tn + wn/2. As in the proof of Theorem 3 (see Equation (7.13)) the
following can be proved by following very closely the proof of Lemma 5.3 and Lemma 5.5 of [15].

Lemma 7.16. For any q ∈ (0, 1)

lim sup
n→∞

d(Tn + wn) ≤ lim sup
n→∞

max
ω∈ΩΛn

Pω(∃ x ∈ Λn : τx ≥ T̂n). (7.17)

We will prove that for q small enough the r.h.s. of Equation (7.17) is zero. In the sequel ε will be a small
positive constant and q will be assumed to be sufficiently small, depending on ε. Using the symmetry of
the East chain w.r.t. the line x1 = x2 and the union bound, it is enough to prove that

lim sup
n→∞

max
ω∈ΩΛn

∑
x∈Λ̄n

Pω(τx ≥ T̂n) = 0, (7.18)
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where Λ̄n = {x ∈ Λn : x1 ≥ x2}.
The intuition behind Equation (7.18) is as follows. For any x ∈ Λ̄n the infection time τx should be

dominated by the infection time of the vertex (x1 − x2, 0) plus the infection time of x given that the
chain starts with a vacancy at (x1 − x2, 0). Using Theorem 3.5 the first time is, with great accuracy,
(x1 − x2)/v, while part (A) of Theorem 1 suggests that w.h.p. the second time is O

(
x2/vmin(ê)

)
where

ê = ( 1√
2 , 1√

2 ). Hence, we expect τx to satisfy w.h.p.

τx ≲ (x1 − x2)/v + O
(
x2/vmin(ê)

)
≲ n/v ∀x ∈ Λ̄n,

because vmin(ê) ≫ v. In other words, the time needed to infect all vertices of Λ̄n should be dominated
by the time needed to infect all vertices on the horizontal side of Λn. In turn, using the one dimensional
cutoff result the latter time is smaller than T̂n w.h.p.

We will now detail the intuition above. We cover Λ̄n with three regions:

Λ(1)
n = {x ∈ Λ̄n : x2 ≥ x1/3},

Λ(2)
n = {x ∈ Λ̄n : x2 ≤ log(n)4},

Λ(3)
n = {x ∈ Λ̄n : log(n)4 ≤ x2 ≤ x1/3},

and we will prove that

lim sup
n→∞

max
ω∈ΩΛn

∑
x∈Λ(i)

n

Pω(τx ≥ T̂n) = 0, ∀ i ∈ [3]. (7.19)

i = 1. In this case Equation (7.19) follows from Equation (7.14) together with the observation that

Λ(1)
n ⊂ Λ(δ, ε, t) if δ = 1/3 and t = 2

θ2
q
4 (1+ε)2n, and that T̂n ≫ t/3.

i = 2. Fix x ∈ Λ(2)
n and write x̂ for the vertex (x1, 0). Then, τx ≤ τx̂ + σx, where σx = inf{s ≥ τ̂x :

ωx(s) = 0}. Using the strong Markov property we get

max
ω

Pω(τx ≥ T̂n) ≤ max
ω

Pω(τx̂ ≥ T̂n − wn/4) + max
ω: ωx̂=0

Pω(τx > wn/4).

Using once again Theorem 3.5

lim sup
n→∞

∑
x∈Λ(2)

n

max
ω

Pω(τx̂ ≥ T̂n − wn/4) = 0.

Notice that ∥x − x̂∥1 = x2 ≤ log(n)4 ≪ wn/4. Hence, the term maxω: ωx̂=0 Pω(τx > wn/4) can be
bounded from above exactly as in the derivation of Equation (7.6) with parameter t = wn/4. The final
result is

max
ω: ωx̂=0

Pω(τx > wn/4) ≤ e−c(q)w1/8
n , c(q) > 0,

so that
lim sup

n→∞

∑
x∈Λ(2)

n

max
ω: ωx̂=0

Pω(τx > wn/4) = 0.
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i = 3. For any x ∈ Λ(3)
n let ϕ(x) = x1 − x2 and set x̂ = (ϕ(x), 0). By construction, the direction

of the vector x − x̂ is the ( 1√
2 , 1√

2 )-direction and 2 log(n)4 ≤ 2x2 ≤ ϕ(x) ≤ n − log(n)4. As in the
previous step we write τx ≤ τx̂ + σx to get

max
ω

Pω

(
τx ≥ T̂n

)
≤ max

ω
Pω

(
τx̂ ≥ ϕ(x)

v
+

ϕ(x)2/3

4
)

+ max
ω: ωx̂=0

Pω

(
τx > T̂n − (

ϕ(x)

v
+

ϕ(x)2/3

4 )
)
. (7.20)

Using Theorem 3.5 applied to the interval {0, . . . , ϕ(x)} together with ϕ(x) ≥ 2 log(n)4, we get that the
first term in the r.h.s. of Equation (7.20) is bounded from above by e−c(q)ϕ(x)1/3 ≤ e−c′(q) log(n)4/3

for
large n, so that

lim sup
n→∞

∑
x∈Λ(3)

n

max
ω

Pω

(
τx̂ ≥ ϕ(x)

v
+ ϕ(x)2/3

)
= 0.

We finally deal with the second term in the r.h.s. of Equation (7.20). Here the key observation is that

T̂n − (
ϕ(x)

v
+

ϕ(x)2/3

4 ) ≥ wn

2 +
x2
v

≫ 2
θ2

q
4 (1+ε)x2,

because v = 2−
θ2

q
2 (1+o(1)). Hence we can apply Equation (7.16) with

y = x̂ + e1, δ =
1
3, t = 3

(
T̂n − (

ϕ(x)

v
+

ϕ(x)2/3

4 )
)

to get that

max
ω: ωx̂=0

Pω

(
τx > T̂n − (

ϕ(x)

v
+

ϕ(x)2/3

4 )
)

≤ e
−Ω
(

2−(1+ε/2)
θ2

q
4 log2(T̂n− ϕ(x)

v
− ϕ(x)2/3

4 )

)
≤ e−cq log(wn)2 .

In conclusion,

lim sup
n→∞

∑
x∈Λ(3)

n

max
ω: ωx̂=0

Pω

(
τx > T̂n − (

ϕ(x)

v
+

ϕ(x)2/3

4 )
)
= 0.
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Chapter 8

MCEM Ergodicity result: Proof of
Theorem 5

In this chapter we prove the non-ergodicity of the G-MCEM if G = Hd and positivity of the spectral
gap in the two cases outlined in Theorem 5(B). Non-ergodicity for G = Hd follows from a geometric
argument by defining a state on Hd for which there is no legal transition possible. To find positivity of the
spectral gap we first require four tools presented in Section 8.1.

The first is the exterior condition theorem in Section 8.1.1 that gives us a Poincaré-inequality of auxiliary
models with constraints that have low failure probability and satisfy a geometric condition. Then in
Section 8.1.2 we prove that the spectral gap is monotone in G. Using this, we identify configurations on
boxes Λ that allow for legal paths of finite length that flip vertices in Λ + v for some vector v. The final
two tools are small mathematical Lemmas that find use throughout the thesis.

We start with the proof of part (A).

Proof of Theorem 5(A). If G = Hd say that ω ∈ ΩHd
is in a blocked state if ω1−h = h for each h ∈ Hd.

By construction, there is no legal transition out of a blocked state since to transition the h-vacancy at
1 − h to ⋆ you need another h-vacancy inside Hd but every vertex in Hd is already occupied by a different
vacancy type. Say that ω ∈ A if ω ↾Hd

is in a blocked state. Then 1A is not a constant function but
D(1A) = 0 while µ(A) > 0 so that Varµ(1A) > 0 and so by Theorem 2.2 we get the claim.

8.1 Four key tools

Before coming to the finiteness of the spectral gap we need to introduce some key tools.

8.1.1 A constrained Poincaré inequality for product measures

Let us recall the notion of exterior conditions and a Poincaré inequality based on it from [44, Sec-
tion 2.3 and 2.4]. We state it here again without proof as it is one of the main ingredients to bound the
spectral gap in the following chapters. We define the support Supp(A) of an event A as the set of vertices
the event depends on. As with all chapters on the G-MCEM given a G ⊂ Hd, the associated state space is
Ω = S(G)Z

d

and we assume there to be a valid parameter set q and the equilibrium measure µ without
explicitly specifying it every time.

Definition 8.1 (Exterior condition). Given an increasing and exhausting collection of subsets {Vn}n∈Z
of Zd (i.e. Vn ⊂ Vn+1 for all n and ∪nVn = Zd), let the exterior of x ∈ Vn be the set Extx :=
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∪∞
j=nVj+1 \ Vj . We then say that the family of events {Ax}x∈Zd satisfies the exterior condition w.r.t.

{Vn}n∈Z if Supp(Ax) ⊂ Extx for all x ∈ Zd.

Let {A(i)
x }x∈Zd , i = 1, . . . , k be a family of events and for any nonempty I ⊂ [k] let Supp(A(I)

x ) =⋃
i∈I Supp(A(i)

x ).

Theorem 8.2 (Exterior condition theorem, [44, Theorem 2]). Assume that

(2k − 1) sup
z∈Z2

∑
J⊂[k]
J ̸=∅

∑
x∈Z2

{x}∪Supp(A(J)
x )∋z

µ

(∏
i∈J

(1 − 1A(j)
x
)

)
< 1/4. (8.1)

Suppose in addition that there exists an exhausting and increasing family {Vn}n∈Z of subsets of Zd such

that, for any i ∈ [k], the events {A(i)
x }x∈Zd satisfy the exterior condition w.r.t. {Vn}n∈Z. Then, for any

local function f : Ω → R we have

Var(f) ≤ 4
∑

x

µ

 k∏
j=1
1A(j)

x

Varx(f)

 . (8.2)

In particular, the same conclusion holds if, instead of Equation (8.1) we have that

lim
qmin→0

max
j∈[k]

[
sup

x∈Z2
|Supp(A(j)

x )| sup
x∈Z2

µ
(
1 − 1A(j)

x

)]
= 0 (8.3)

Proof. Equation (8.3) implies Equation (8.1) and the proof how Equation (8.1) implies Equation (8.2) is
in [44]. Note that [44] made the statement with KCM in mind, but the proof only uses that µ is a product
measure so applies equally to MCEM.

Remark 8.3. We added Equation (8.3) as in the proof of Theorem 6 we always take qmin → 0 and this
condition is more straightforward to check since we can analyse the families {A(i)

x }x∈Zd for the various
i ∈ [k] independently from each other.

8.1.2 Monotonicity in G of the spectral gap

Naturally one conjectures that the more vacancy types are added to the G-MCEM the lower the spectral
gap should be as the model gets progressively more jammed through the interaction of the various vacancy
types. Indeed, the next result shows this is the case.

Lemma 8.4. For any G′ ⊂ G ⊂ Hd and valid parameter set q for the G-MCEM we have

γ(G, q) ≤ γ(G′, q′)

with q′ = {qh : h ∈ G′} and in particular

γ(G, q) ≤ γd(qmin).

Proof. Let G′ ⊂ G ⊂ Hd and fix a parameter set q for the G-MCEM. Recall that S(G) = G ∪ {⋆}.
Define the projection φ on S(G) to S(G′) that maps G′ onto itself and S(G) \ G′ to ⋆. We then have,
through the variational characterisation of the spectral gap Equation (4.2), that

γ(G, q) = inf
f∈Dom(L(G,q))

f ̸=const

D(f)

Var(f) ≤ inf
g∈Dom(L(G′,q))

g ̸=const

D(g ◦ φ)

Var(g ◦ φ)
,
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where we write L(G,q) for the generator of the G-MCEM to make the G-dependence explicit in this proof.
Write ν ′ for the measure on S(G′) that assigns probability qh to h ∈ G′ and p′ := 1 −

∑
h∈G′ qh to ⋆

and let µ′ be the product measure of ν ′. Since µ(g ◦ φ) = µ′(g) and (g ◦ φ)(·)2 = g2 ◦ φ(·) we get
Var(g ◦ φ) = Varµ′(g). For the Dirichlet form we get (recall Equation (4.1))

D(g ◦ φ) =
∑
h∈G

∑
x∈Z2

µ

[
ch

xqhp(∇(h)
x (g ◦ φ))

2
]

≤
∑

h∈G′

∑
x∈Z2

µ′
[
ch

xqhp′(∇(h)
x (g))

2
]

where we used that the constraints ch
x only check whether a qualified neighbour is h or not, and thus is the

same for the G-MCEM and the G′-MCEM if h ∈ G′. Further ∇(h)
x (g ◦ φ)(ω) = 0 if ωx ̸∈ G′ and so we

could replace µ with µ′. The r.h.s. is equal to the Dirichlet form of the G′-MCEM with parameter set q so
we get the first part of the claim.

The second part follows analogously by mapping the h with the lowest equilibrium density to 0 and
all the other states to 1 thus recovering the spectral gap γd(qmin) of the East model with vacancy density
qmin.

8.1.3 Variance as transition terms and the path method

Given the valid parameter set q, recall the measure ν, defined in Section 4.2 as the measure on
S(G) = {⋆} ∪ G that assigns probability qh to h ∈ G and p to ⋆.

Lemma 8.5 (Variance as transition terms). For any function f : S(G) → R we find

Varν(f)(ω) ≤ 2
∑
h∈G

qh(∇(h)(f))
2
(ω). (8.4)

Proof. Writing p = q⋆ in this proof we have

1
2

∑
ω,ω′∈S(G)

qωqω′(f(ω) − f(ω′))
2
=

∑
ω∈S(G)

qωf(ω)2 −

 ∑
ω∈S(G)

qωf(ω)

2

= Varν(f).

Applying Cauchy-Schwarz gives

(f(ω) − f(ω′))
2 ≤ 2

(
(f(ω) − f(⋆))2 + (f(⋆) − f(ω′))

2
)

and thus the claim.

Remark 8.6. Recall the discussion after Theorem 6 about the case p → 0 and why we made the assumption
that p ≥ ∆ > 0. We will often revwrite variances over sets as transition terms using Lemma 8.5. Instead
of the form presented here we often need a term corresponding to the Dirichlet form of an East process on
the r.h.s. in Equation (8.4). For this, we are missing a p, so that the r.h.s. can be rewritten to 2/pD(f).
This means that in the final estimate we have at least a contribution of 1/p, and often we apply the above
Lemma twice in the same proof leading to a contribution of 1/p2 which diverges as p → 0 so it would
need to be included in Theorem 6 if we did not make the assumption that p > ∆ giving an estimate of the
spectral gap between γ2(qmin) and γ2(qmin)/p2. This contribution can be interpreted as the necessary

63



CHAPTER 8 Vacancies with a common direction: Proof of Theorem 5(B.i)

waiting time for a ⋆-ring (recall the graphical construction), since 1/p is the expectation of the geometric
variable with success probability p. While there has to be a contribution in γ(G, q) that diverges with
p → 0 if |G| ≥ 2 (if we never go to the neutral state, the colours can never change), in the absence of a
fitting lower bound we decided that the more interesting part was showing that the dynamics are dominated
by the two-dimensional East dynamics with parameter qmin in the cases (2.i),(2.ii) or (3.i)-(3.iii) if p > ∆.

Analogously to Definition 7.2, say that a family of configurations {(ω(i))}i∈[n] is a legal path if each

transition from ω(i) to ω(i+1) is legal for the G-MCEM, where the specific G will be clear from context.
Recall further that x ≺(h) y for h ∈ Hd if x · v ≤ y · v for any v ∈ P(h).

Our second tool, the path method, is a well known trick in estimating the spectral gap see for exam-
ple [11, Proposition 6.6] or [29] for uses in other contexts. Recall for this the notation of DΛ introduced in
Remark 4.6 where the sum over all vertices in Zd is replaced by the sum over Λ ⊂ Zd and the equilibrium
measure µ by µΛ.

Lemma 8.7 (The path method). Let ω, η ∈ Ω and let Γ = (ω(1), . . . , ω(n)) be a legal path such that
ω(1) = ω and ω(n) = η and let Λ ⊂ Zd consist of those vertices x such that ω

(i)
x ̸= ω

(i+1)
x for some

i ∈ [n]. Then, for any f : Ω → R

µΛ(ω)(f(ω) − f(η))2 ≤ n

min(q, p)
max
i∈[n]

µΛ(ω)

µΛ(ω(i))
DΛ(f).

Proof. Write f(ω)− f(η) =
∑

i∈[n−1] f(ω
(i))− f(ω(i+1)) as a telescopic sum and use Cauchy-Schwarz

to get

µΛ(ω)(f(ω) − f(η))2 ≤ n
∑

i∈[n−1]
µΛ(ω)(f(ω

(i)) − f(ω(i+1)))
2

≤ n max
i∈[n]

µΛ(ω)

µΛ(ω(i))

∑
i∈[n−1]

µΛ(ω
(i))(f(ω(i)) − f(ω(i+1)))

2

≤ n

min(q, p)
max
i∈[n]

µΛ(ω)

µΛ(ω(i))
DΛ(f),

where in the last inequality we used that for ω(i) → ω(i+1) to be a legal transition there is exactly one x

such that ω
(i)
x ̸= ω

(i+1)
x . Assume without loss of generality that ω

(i)
x = ⋆ and ω

(i+1)
x = h for h ∈ G then

we have to extend by qh/qh which results in the Dirichlet form plus the extra term qh which we estimate
by min(q, p).

In the proofs of part (B) and (C) of Theorem 5 we do not explicitly mention the length of the involved
paths as the important thing is that they are finite not how they scale. In Theorem 6 instead it is of crucial
importance to know the exact scaling.

8.2 Vacancies with a common direction: Proof of Theorem 5(B.i)

In this section we present the proof of part (B.i) in which G is such that all h ∈ G share a propagation
direction.

Using Lemma 8.4, w.l.o.g. we can assume that G = {hj : j ∈ {0, 1}d−1 ≃ Hd−1} where hj =
(j1, . . . , jd−1, 0) ∈ Hd−1 ⊗ {0} ⊂ Hd. For any j we have ed ∈ P(hj) and for i ∈ [d − 1] we have
(−1)jiei ∈ P(hj).
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We first identify a configuration on Hd that allows us to remove any vacancies in the direction Hd + ked

for k ≥ 1 and for which we can apply the exterior condition theorem, Theorem 8.2. Then we use the path
method to conclude.

Recall from the construction of the MCEM that we associate a corner of the hypercube to each vacancy
type. We call a configuration ω ∈ Ω Hd-good if ωx for x ∈ Hd is either in the state of its associated
vacancy type or in the neutral state if there is no associated vacancy type, i.e. if ωh = h for every h ∈ G
and ωx = ⋆ for x ∈ Hd \ {G} (see Figure 8.1 for the d = 3 case). By the above assumption on G
this means that if ω is Hd-good, then any vertex v ∈ Hd with v · ed = 1 is in the neutral state, i.e.
ωHd−1⊗{1} ≡ ⋆.

Given an Hd-good ω and a vacancy type h ∈ G there is a legal path starting from ω and ending in a
state η with ηx = h for x ∈ Hd−1 ⊗ {1} and ηx = ωx otherwise. Indeed, assume h = (0, 0, . . . , 0), then
we can put h on ed = h + ed since ed ∈ P(h). Subsequently, we can put h on any ed + ei for i ̸= d
since P(h) consists of all positive propagation directions. Iterate this procedure adding another ej with
j ̸= i, d and so on until all of Hd−1 ⊗ {1} is in state h. By construction this is possible for any h ∈ G.

Then, there is a legal path starting from ω ending in a state η such that ηHd−1⊗{2} ≡ ⋆. Indeed, this is a
consequence of ed being a propagation direction of any vacancy type h and the fact that we can bring h to
any vertex in Hd−1 ⊗ {1} as discussed in the previous paragraph. By reversibility, this implies that we
can construct a legal path that puts Hd−1 ⊗ {2} into any state.

For any k ∈ N, k ≥ 2 we can iterate this argument to find a legal path from ω to σ where σx = ⋆ if
x ∈ ∪j∈[2,k](Hd−1 ⊗ {j}) and σx = ωx otherwise. By reversibility we can thus find a legal path to any
σ that agrees with ω outside of ∪j∈[2,k](Hd−1 ⊗ {j}).

⋆

⋆

⋆

⋆

(1, 1, 0)

(0, 1, 0)

(0, 0, 0)

(1, 0, 0)e3
⋆

⋆

⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

FIGURE 8.1 Path from proof of part (B.i) for d = 3. The first image (top left) shows the
part on Hd of a Hd-good configuration with the propagation directions of the involved
vacancies. To remove the (0, 0, 1)-vacancy on (0, 1, 2) we use the red path from the second
image. Iterating this procedure to put ⋆ on all the black vertices (of initially arbitrary state)
at (·, ·, 2) (third image). This procedure iterates to any (·, ·, k) for k ≥ 2 (fourth picture).

We define (Hd + x)-good ω analogously to Hd-good ω by translating the conditions to the hypercube
translated by x ∈ Zd. Let Vn = {x ∈ Zd : x · ed ≥ −n} for n ∈ Z so that {Vn}n∈Z is an increasing and
exhausting family of subsets of Zd. With Ax,j := {ω : ω is (Hd + x − (j + 1)ed)-good} we find that
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the family A′
x(N) = ∪j∈[N ]Ax,j for N ≥ 1 satisfies the exterior condition with respect to {Vn}n∈Z. The

support of A′
x(N) increases linearly in N but the equilibrium failure probability decreases exponentially

in N . Thus, we can choose N large enough for Equation (8.1) to hold and with Lemma 8.5 we get

Var(f) ≤ 4
∑

x∈Zd

µ
(
1A′

x(N)Varx(f)
)

≤ 4
∑

x∈Zd

∑
j∈[N ]

µ
(
1Ax,j Varx(f)

)
≤ C(q)

∑
x∈Zd

∑
j∈[N ]

∑
h∈G

∑
ω∈Ax,j

µ(ω)(∇(h)
x f(ω))

2
.

Fix some x ∈ Zd, j ∈ [N ], h ∈ G and ω ∈ Ax,j and assume w.l.o.g. that ω0 = h. By the above
observations and translation invariance of the dynamics we find a legal path (σ(1), . . . , σ(m)) with
m = O(N222d), σ(1) = ω and σ(m) = σ where σ is the state given by σx = ⋆ and σZd\{x} = ωZd\{x}.
Using the path method gives

µ(ω)(∇(h)
x f(ω))

2
≤ C(q, m)µZd\Λj(x)(ω)DΛj(x)(f)(ω)

where Λj(x) is the smallest box containing both the support of Ax,j and the origin. Using that Λj(x) is
finite for any x and j we get

Var(f) ≤ C(q, m)
∑

x∈Zd

∑
j∈[N ]

∑
h∈G

∑
ω∈Ax,j

µZd\Λj(x)(ω)DΛj(x)(f)(ω)

≤ C(q, m)
∑

x∈Zd

∑
j∈[N ]

µ(−fLΛj(x)f)

≤ C(q, m)D(f).

By the variational characterisation of the spectral gap we thus have

γ(G, q) > 1/C(q, m).

which is the claim.

8.3 G as a star graph: Proof of Theorem 5(B.ii)

By Lemma 8.4, assume w.l.o.g. that G = {hc, h1, . . . , hd} where hc = 0 is the central vertex of G
and hi = ei, i ∈ [d]. We have P(hc) = {e1, . . . , ed} and P(hi) = {e1, . . . , ei−1, −ei, ei+1, . . . , ed}
so that the direction −ei is unique to hi.

Let Λ be the equilateral box of side length 2 and origin at 0. We call the vertex x ∈ Λ a corner of Λ if
xi ∈ {0, 2} for all i ∈ [d] and write Fi = {x ∈ Λ : xi = 0}. For a configuration ω ∈ Ω we say that Λ is
good if ω2h = h for every h ∈ G and ωx = ⋆ for x ∈ ∪iFi \ {2h : h ∈ G}. Analogously define good
boxes Λ + x for any x ∈ Zd.

Lemma 8.8. If ω ∈ Ω is such that Λ is good and for each i ∈ [d] there is a smallest ki ≥ 2 with
ωv+kiei

= hi, where we write v =
∑

i∈[d] ei, then there is a legal path starting at ω and ending a σ such
that

(i) Λ + v is good in σ, and
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(ii) σx = ⋆ for any x between Λ and v + kiei, i.e. any x ∈ ∪i{v + jei : 3 ≤ j ≤ ki − 1} (if ki ≥ 4),
and

(iii) ω and σ agree otherwise.

Proof. We start by showing that there is a legal path that puts any state on Λ \ ∪iFi and then we show
how to use this to get that Λ + v is good. The steps are outlined in Figure 8.2 for d = 2.

Relax Λ \ ∪iFi: Fix an ω as in the claim. Consider the vertex hc + v = v ∈ Λ. For any i ∈ [d]
we have v − ei ∈ Fi \ {2h : h ∈ G} and thus ωv−ei = ⋆. Now let j ∈ [d], j ̸= i. Since −ej is the
only negative unit vector in P(hj), there is a path1 from ej to v − ei contained in Fi \ {2h : h ∈ G}
consisting only of steps in P(hj). Similar considerations apply to paths from the origin containing only
steps in P(hc). Thus, recalling that ei ∈ P(hj), if Λ is good there is a legal path that removes any
non-hi-vacancy from v. Since i was arbitrary any vacancy type on v can be removed and by reversibility
also any vacancy type can be put. Hence, we can also remove any non hi-vacancy from v + ei.

Now use that v + ei − ej for j ̸= i is in Fj (Fj \ {2h : h ∈ G} if d > 2) again and there is a path
contained in Fj \ {2h : h ∈ G} from ei to v + ei − ej consisting only of steps in P(hi) so that there is a
legal path that removes any vacancy from v + ei. Since i was arbitrary again we find a legal path that
can put or remove any vacancy from v + e, e ∈ B. Analogously, it follows by induction in n that we can
remove or put any vacancy type on x ∈ Λ \ ∪iFi with ∥x − v∥1 = n, where we just proved the base case
n = 1.

Make Λ + v good: For i ∈ [d] we want to find a legal path which puts hi on 2ei + v and, if ki ≥ 4,
also puts the neutral state ⋆ on {v + jei : 3 ≤ j ≤ ki − 1}. Then remove any other vacancies from
∪i(Fi + v) \ {2h + v : h ∈ G}.

Let i ∈ [d] and assume w.l.o.g. that ki > 2 since otherwise the hi-vacancy is already at the correct
position for Λ + v to be good. We already know that we can put any vacancy on v and since ei ∈ P(h)
for every h ∈ G \ {hi} there is a legal path that removes any vacancy from {v + jei : j ∈ [1, ki − 1]}
(that are by assumption not hi-vacancies since ki is the smallest integer such that ωv+kiei

= hi). Then,
use that −ei ∈ P(hi) to bring the hi from v+ kiei to v+ 2ei and put ⋆ in between v+ 2ei and v+ kiei.

Since i was arbitrary we can put hi on v + 2ei for any i. Using again that we can put v into any state
we can, in particular, put hc on v. Thus, we get a legal path that puts h on v + 2h for each h ∈ G and ⋆
on ∪i{v + j : j ∈ [3, ki − 1]} where the final state still agrees with ω outside these vertices.

Let x ∈ (Fi + v) \ Λ such that x is not a translated corner v + 2ej , j ∈ [d]. Then xi = 1, further
there is at least a j1 ∈ [d] with xj1 = 3, at least a j2 ̸= j1 with xj2 ≥ 2 and xj ∈ {1, 2, 3} otherwise.

Assume that there is exactly one such j1 and j2 with j2 = 2. Then x − ej1 is in Λ \ ∪iFi and by the
above observations we thus find a legal path that removes any h-vacancy from x for h ∈ G \ {hj1}. To
remove an hj1-vacancy use that x − ej2 = 2ej1 + v on which we already know that there is a legal path
to put an hj1-vacancy.

Building on this, the argument is analogous if j2 = 3 or there are two j with xj = 2. The claim follows
by iterating these analogous arguments.

The Lemma tells us that we can move a good Λ in the direction v, given enough non-central vacancies
outside of Λ. To satisfy the exterior condition this is too lose a condition as we cannot always assume that
we find these vacancies for each step. The next Lemma gives another construction that does not require
new vacancies after every step.

1We use the term path to mean paths on the latticeZd or on subsets Λ and the term legal path to mean paths of configurations
in Ω that are legal in the G-MCEM.
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F1

F2

v
⋆

⋆

⋆

⋆

⋆

⋆ ⋆

⋆ ⋆

⋆⋆

⋆

⋆

⋆ ⋆

⋆

⋆ ⋆

⋆

FIGURE 8.2 Example configuration from Lemma 8.8 in the top-left. The black circles
indicate the vertices to which we need to bring the (0, 1)-vacancy (blue) resp. (1, 0)-
vacancy (red). The squares indicate the vacancies we replace with ⋆ in the course of the
proof. From the first to the second image any vacancy on Λ \ ∪iFi is replaced with ⋆. For
the third image we then bring the necessary vacancies to Λ + v and the final image shows

how this gives a good configuration on Λ + v.

Lemma 8.9. Fix an N ∈ 2N, N ≥ 4. Let ω ∈ Ω be such that Λ is good and for each i ∈ [d] there is a
ki ∈ [N , 3N/2] with ωv+kiei

= hi and such that ωy = ⋆ for each y ∈ {v + nei : n ∈ [ki − 1]}. Then,
there is a legal path starting at ω and ending at σ such that Λ + (N − 2)v is good and that agrees with
ω otherwise.

Proof. Figure 8.3 illustrates a state ω as in the claim and the steps of the following proof. We start by
clearing the line {2v + nei : n ∈ [N − 1]} of any vacancies and then move the good box by v so that we
recover the initial situation and can iterate the argument.

Fix an i ∈ [d] and j ̸= i. We can bring the hi-vacancy from v + kiei to v + nei for any n ∈ [N ].
Thus, we can remove any hi-vacancy from {v + nei + ej : n ∈ [N ]}. Since v + ej ∈ Λ \ ∪iFi, we can
put any h-vacancy on it. Thus, there is a legal path to remove any vacancy from {v+ nei + ej : n ∈ [N ]}
using that ei ∈ P(h) for h ̸= hi. The chosen j ̸= i was arbitrary so we can remove any vacancy from
any such line.

Prove analogously that we can remove any vacancy from {v + nei +
∑

i∈I ei : n ∈ [N − 1], I ⊂
[d] \ [i], |I| = m} for any m ≤ d − 1 by induction in m. This is done by using that if the statement holds
for m − 1, then we can remove any hi vacancy from the line with some |I| = m by subtracting ej for
j ∈ I so that we land on a line with |I| = m − 1 and finally use that v +

∑
i∈I ei ∈ Λ \ ∪iFi again,
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⋆

⋆

(N , N)

0

⋆
⋆

⋆

⋆

(N , N)

0

⋆
⋆

⋆

⋆

⋆

⋆

(N , N)

0

⋆
⋆

N 7→ N − 1

⋆

⋆

(N , N)

(1, 1)

⋆
⋆

FIGURE 8.3 The first image (top left) shows an example ω as in Lemma 8.9 for two
dimensions using the colour and shape code from Figure 8.1. The second image shows
the paths used to get rid of any vacancies on {2v + jei : j ∈ [n]}. The third image then
shows the paths to move the good ∪iFi and put the (0, 1)- resp. (1, 0)-vacancy at the end
of {2v + jei : j ∈ [n]}. The fourth image then shows how the resulting state is the same

as in Lemma 8.9 translated by v so we can iterate the proof by setting N 7→ N − 1.

resulting in a legal path that removes any vacancy.
In particular, we can remove any vacancy from y ∈ 2v + (n − 1)ei for n ∈ [N ] since y = v + nei +∑
i∈[d]\{ei} ei is included above for m = d − 1. The choice of i ∈ [d] was arbitrary so that we can

construct a legal path that ends in a state σ(1) on which ∪i{2v+ nei : n ∈ [N − 2]} is in the neutral state
and 2v + (N − 1)ei has an hi-vacancy.

Further, by Lemma 8.8 there is a path starting at σ(1) and ending in a state σ(2) in which Λ + v is good
and which does not change ∪i{2v + nei : n ∈ [N − 1]}. The state σ(2) is now in the configuration of
the claim for N − 1 so that we can iterate the proof until we find a legal path that ends in a state with
Λ + (N − 2)v good.

With this we can come to the proof of the theorem.

Proof of (B.ii). We start by defining an event with which we can apply the exterior condition theorem,
Theorem 8.2, and that allows us to use Lemma 8.8 and Lemma 8.9. For N ∈ 4N define the event E (N) as
the set of configurations ω such that

• For any i ∈ [d] there is an ni ∈ [N , 3N/2] such that ω−Nv+niei = hi.
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• For each y ∈ ∪i{−Nv + jei : j ∈ {0, . . . , ni − 1}} there is an my ≥ 2 such that Λ + y − myv
is good and such that for each j ∈ [my − 1] and each i ∈ [d] there is an hi-vacancy on {y − jv +
kei : k ∈ [N/4]}.

0

y

FIGURE 8.4 Example configuration in the event E (N) in d = 2 and for N = 4. The
dashed region is V0, the bigger square is the square on which we use Lemma 8.9. The
smaller square is the good box needed with my = 5 for the representative y we chose on
the boundary of the big square. Contrary to the definition of E (N), the hi vacancies for
the good boxes have a distance further than N/4 from {y − jv : j ∈ [5]} to illustrate the

example better since N/4 = 1 results in a diagonal of vacancies.

See Figure 8.4 for an illustration in d = 2. Let E (N)
x be the correspondingly translated event for x ∈ Zd.

We start by checking that the family {E (N)}N∈N satisfies the exterior condition, then calculate the failure
probability and conclude with the path method.

Exterior condition On Zd consider the d − 1 dimensional hyperplane U0 perpendicular to v that goes
through the origin. We claim that Supp(E (N)) ∩ U0 = ∅. Indeed, any vertex x ∈ U0 is characterized by
the equation x · v = 0. To have −Nv + ℓei ∈ U0 we thus need ℓ = N · d. By definition of E (N) the
furthest vertices on which we look for vacancies are on y + k ≤ 7N/4 so that Supp(E (N)) ∩ U0 = ∅ for
d ≥ 2 and since the support is connected we also have Supp(E (N)) ⊂ V c

0 where V0 := ∪∞
ℓ=1(U0 + ℓv).

Then, the family {E (N)
x }x∈Zd satisfies the exterior condition w.r.t. {Vn}n∈Z where Vn = V0 − nv.

Failure probability To apply the exterior condition theorem it remains to show that Equation (8.1)
holds. The support of E (N)

x is O(N) while the failure probability is, by translation invariance, upper
bounded by the union bound of O(N) events that require O(N) Bernoulli-trials of probability qmin to
fail, so that we find constants C, κ > 0 giving

Supp(E (N))µ(1 − 1E (N)) ≤ CN2(1 − qmin)
κN .
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Now choose N (depending on q, C and κ) big enough so that Equation (8.1) holds. Theorem 8.2 then
gives

Var(f) ≤ 4
∑

x∈Zd

µ(1E (N)
x

Varx(f)).

Path method The proof concludes analogously to the proof of (B.i) once we have defined the paths
that allow us to remove or put any vacancy type on x. W.l.o.g. consider only the case x = 0 and fix
ω ∈ E (N) with the associated {ni}i and {my}y from the definition of E (N). For each i we want to remove
any vacancy from y ∈ ∪i{−Nv + jei : j ∈ {1, . . . , ni − 1}}, and we start with the biggest one in the ≺
order, i.e. y = −Nv + (ni − 1)ei.

We have that Λ + y − myv is good and that for each i ∈ [d] there is an hi-vacancy on {y − (my −
1)v + kei : k ∈ [N/4]}. Thus, by Lemma 8.8 there is a legal path that only depends on and changes
the states of the vertices on Λ + y − myv and {y − (my − 1)v + kei : k ∈ [N/4]} and which ends in a
state in which Λ + y − (my − 1)v is good. Since the vertices on {y − (my − 2)v + kei : k ∈ [N/4]}
remain the same, by definition of E (N) we have again hi-vacancies on them.

We can iteratively apply Lemma 8.8 resulting in a legal path that ends in a state where Λ + y − 2v is
good, so that y is a corner of this box. Then, we can flip y to any state and in particular to the neutral state
⋆.

By reversibility and using that all the flips on this path are independent of the state of y we can reverse
the transitions to get a path from ω to σ where σy = ⋆ and σx = ωx for x ̸= y.

Let y′ = −Nv+ (ni − 2)ei and note that y ̸∈ ∪m∈[2,my′ ] ∪k∈[N/4] {y′ − mv+ kei} (which in d = 2
only works since we go from largest to smallest), so that the relevant surrounding configuration guaranteed
by E (N) is untouched by the first step and repeating the same construction for y′ leaves y untouched.

Thus, we can repeat the same path construction, using ω ∈ E (N), to remove the vacancy of y′ and iterate
to get a legal path that ends in a state where ωy = ⋆ for each y ∈ ∪i{−Nv + jei : {0, . . . , ni − 1}}
and finally add a piece to the path that makes Λ − (N + 1)v good by the same argument just instead
of putting the neutral state and moving the good box back by reversibility we keep the good box at
Λ − (N + 1)v. From this state we can use Lemma 8.9 to find the desired legal path with which we can
conclude analogously to (B.i).

71



Chapter 9

Spectral gap bounds for the
two-dimensional MCEM: Proof of
Theorem 6

The upper bound in Theorem 6 follows by Lemma 8.4. The steps to prove the corresponding lower
bound are analogous to the proof of Theorem 5(B). The main difference is that we have to be careful
about the cost of our intermediate steps. Where before we were fine estimating γ(G, q) > C(q) for some
constant we now want a specific bound. This means that we need some intricate constructions and events.

In Section 9.1 we construct a grid of points together with paths connecting them so that we get a set
isomorphic to a box in Z2 on which the vacancies can travel such that the two-dimensional motion on the
grid of points dominates the one-dimensional motion between the points. This is enough to prove part
(3.i) of Theorem 6 in Section 9.2 in which, we recall, there is no frequent vacancy type. To prove (3.ii) in
Section 9.3, for which there is one frequent vacancy type, we do the same construction but this time on the
renormalised lattice of boxes and identify box configurations that travel like the infrequent vacancy types.

Finally, in the proof of Theorem 6(3.iii), contained in Section 9.4, where there are two frequent vacancy
types we need a different construction altogether that exploits the fact that the frequent vacancy types have
a common direction and are disseminated throughout the lattice to identify high probability configurations
that allow the infrequent vacancy type to move two-dimensionally.

9.1 Preliminary constructions

Note that by Lemma 8.4 the cases (3.i) and (3.ii) imply the cases (2.i) and (2.ii). Using this and
symmetry considerations, w.l.o.g. we can assume in the following that G = {(1, 1), (0, 0), (0, 1)}. We
call the associated MCEM the ABC-model and call A = (0, 0), B = (1, 1), C = (0, 1) and D = (1, 0).
As noted in the introduction, by Lemma 8.4 we have

lim
qmin→0

γ(G, q)
γ2(qmin)

≤ 1

to prove Theorem 6 we thus need the corresponding lower bound.
Analogously to bounding the spectral gap from zero our strategy for finding good lower bounds on

the spectral gap relies on the exterior condition theorem, Theorem 8.2. Fix a G ⊂ H2 and consider a
family {Ax}x∈Z2 of events that satisfies the requirements of the exterior condition theorem so that with
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Lemma 8.5 we have

Var(f) ≤ 4
∑

x∈Z2

µ(1AxVarx(f)) ≤ 4
p

∑
h∈G

∑
x∈Z2

µ

[
1Axpqh(∇(h)

x f)
2
]
.

Since pqh(∇
(h)
x f)

2
= Varx(f1{⋆,h}) =: Varx(f | {⋆, h}) we can treat the transition for each vacancy

type separately. The main difficulty in finding good lower bounds on the spectral gap is then to identify
events Ax that satisfy the exterior condition, have a low failing probability and such that for each h ∈ G
we have

µ[1AxVarx(f | {⋆, h})] ≤ 2θ2
qmin (1+ε)/4µ[DΛh

(f)], (9.1)

for some Λh such that the overlap of the various Λh for the different x (and thus the overcounting term)
can be absorbed into the ε in 2θ2

qmin (1+ε)/4 for qmin small enough. We do this by defining events A(h)
x for

each h ∈ G and setting Ax = ∩h∈GA(h)
x . Each A(h)

x is defined such that it allows the rewriting of the
local variance with indicator 1A(h)

x
to a Dirichlet form by using a mixture of auxiliary models that behave

like the standard one- or two-dimensional East model and the path method.
This section introduces the construction of the grid that we use for the proofs of part (3.i) and (3.ii). In

Section 9.1.1 we do the geometric construction and in Section 9.1.2 we introduce the events together with
their failing probability for which we use the exterior condition theorem.

9.1.1 Geometric construction

Let us start by introducing the notion of oriented paths for h ∈ G.

Definition 9.1 (h-paths). For h ∈ H2 we say that Γ = (x1, . . . , xn) ⊂ Z2 is an h-path if xi − xi+1 ∈
P(h) for i ∈ [n − 1], i.e. starting from xn we can reach x1 staying on Γ and only using steps in P(h).

Remark 9.2. Note that we want xi − xi+1 to be a propagation direction of P(h) instead of the more
intuitive direction from xi to xi+1 (i.e. xi+1 − xi). Defining it this way we can find an h-path starting
from some vertex x ∈ Zd and ending in a vertex containing an h-vacancy which can then travel on the
h-path back to x.

We build the h-grid first for B-vacancies and then explain how to generalise to h ∈ {A, C}. We do the
construction incrementally by starting with a base cell for B-vacancies.

Definition 9.3 (B-Base cell Q). Let ℓ ∈ 8N. Define D(1) ⊂ Z2 as the B-path starting at e1 + 3e2 that
first does an e1-step, then zigzags north and east for 2 steps respectively until ℓ steps east have been made
with the last step being a single one. Then define D(2) ⊂ Z2 as the path starting again at e1 + 3e2 which
starts with 4 steps north, goes one step east and then zigzags 8 steps north and one step east until ℓ steps
north have been made with the last step 4 long instead of 8. Then, define D(3) = D(1) + ℓ/8e1 + ℓe2
and D(4) = D(2) + ℓe1 + ℓe2, i.e. the paths D(1) resp. D(2) shifted to start at the end point of D(2) resp.
D(1). We then define the B-base cell Q with side length ℓ as the set of vertices enclosed by and including
the boundaries D(i) for i ∈ [4]. We refer to D(i) as the bottom, left, top and right boundary of Q for
i = 1, 2, 3, 4 respectively (see left side of Figure 9.1).

For the rest of this section fix a side length ℓ. In this base cell we define the notion of interior crossing
paths in the horizontal and vertical direction.

Definition 9.4 (Interior B-crossings and cross). Let Q be the B-base cell. We say that a B-path
(x(1), . . . , x(n)) ⊂ Q is a vertical interior B-crossing for Q if x(1) ∈ D(1), x(n) ∈ D(3) and x(i) ̸∈
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0

Q

D(2)

D(1)

D(4)D(3)

ℓ

0

FIGURE 9.1 Left and right: B-Base cell Q with side length ℓ = 16. Left: Notation
as introduced in Definition 9.3. Right: Base cell Q with cross as in Definition 9.4 with

horizontal interior crossing in blue and vertical interior crossing in red.

⋃
i∈[4] D

(i) for i ∈ [2, n − 1]. Similarly, we say that it is a horizontal interior B-crossing if x(1) ∈ D(2),
x(n) ∈ D(4) and x(i) ̸∈

⋃
i∈[4] D

(i) for i ∈ [2, n − 1] (see right side of Figure 9.1). We call a pair

C0 = (C(v)
0 , C(h)

0 ) of a vertical interior crossing and horizontal interior crossing of Q a cross in Q.

We translate the cell Q to construct larger square grids of cells.

Definition 9.5 (Qi,j). Let b1 = ℓ(e1 + e2) and b2 = (ℓ/8)e1 + ℓe2. For i, j ∈ Z we then let
Qi,j = Q0 + ib1 + jb2. Given a square side length N ∈ N we define the rectangle of grids Q(B) as

Q(B) =
⋃

(i,j)∈[0,N ]2

Qi,j .

Remark 9.6. Notice that Q0,0 = Q and that neighbouring cells share a boundary.

In what follows consider the square side length N ∈ N fixed. On sets of neighbouring cells we
introduce a notion of hard interior B-crossing, as opposed to the local one which only dealt with paths in
one cell.

Definition 9.7 (B-strips and hard interior B-crossing). For i ∈ [0, N ] we call the set of cells

Q
(v)
i =

⋃
j∈[0,N ]

Qi,j

the i-th vertical B-strip and for j ∈ [0, N ] we define the j-th horizontal B-strip as

Q
(h)
j =

⋃
i∈[0,N ]

Qi,j .
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0

Q0,0

Q0,1

Q0,2

Q1,0

Q1,1

Q1,2

Q2,0

Q2,1

Q2,2

0

FIGURE 9.2 Left: Qi,j for i ∈ [0, 2] and j ∈ [0, 2], side length ℓ = 8. The first vertical
and second horizontal strip are shaded in gray. Right: A grid C with N = 2. The hard
vertical interior crossings are red and hard horizontal interior crossings are blue and the
intersections points X(C) are black. Notice that the colours here have nothing to do with
the vacancy colours and are just used to distinguish better horizontal from vertical paths.

A B-path Γ ⊂ Qi is a hard vertical interior B-crossing of Qi if Γ ∩ Qi,j is a vertical interior B-crossing
of Qi,j for any j ∈ [0, N ]. Analogously for hard horizontal interior B-crossings (see Figure 9.2).

The set of hard interior crossings induce a grid C.

Definition 9.8 (B-grids). For i ∈ [0, N ] let C(v)
i be a hard vertical interior crossing for the i-th vertical

B-strip and for j ∈ [0, N ] let C(h)
j be a hard horizontal interior crossing of the j-th horizontal strip. We

call C = (C(v), C(h)) a B-grid of Q(B) where C(v/h) = {C(v/h)
i }i∈[0,N ]. Given a grid C of Q(B) we call

Ci,j = (C(v)
i , C(h)

j ) the cross induced in Qi,j .

The intersection points of the induced crosses in each Qi,j form a set that is isomorphic to an equilateral
box in Z2.

Definition 9.9 (Intersection points associated to grid). Given a B-grid C of Q(B) we denote by xi,j the
highest point in C(v)

i ∩ C(h)
j in the ≺(B)-partial order1 and call it an intersection point of C. We write

X(C) for the set of intersection points. We call xi,j and xi′,j′ neighbours in X(C) if (i, j) and (i′, j′) are
neighbours in [0, N ]2. Analogously we call xi′,j′ an oriented neighbour of xi,j in X(C) if xi′,j′ and xi,j
are neighbours in X(C) such that (i′, j′) ≺(B) (i, j). We call xi+1,j (if it exists) the east neighbour of
xi,j in X(C) and xi,j+1 (if it exists) the north neighbour of xi,j in X(C) and analogously for the south
and west neighbours.

1The ≺(B)-partial order corresponds to the usual order where x ≺(B) y if xi ≤ yi for all i ∈ [d], we write ≺(B) to make it
easier to generalise to A- and C-grids.
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Remark 9.10. The ≺(B)-ordering is only partial but since we look at intersection points of B-paths there
is always a unique highest point on C(v)

i ∩ C(h)
j , and since C induces a cross in each Qi,j , xi,j is well

defined for any i, j ∈ [0, N ].

The A-base cell is defined analogously by exchanging the role of e1 with −e2 and e2 with −e1 and
for the C-base cell exchange e1 with −e1. Do the analogous exchanges in the following definitions for
h-crossings and h-grids. When changing the base vectors like this the horizontal A-crossing would cross
the base cell vertically so change the names appropriately.

Further, this construction can be translated to be based at any x ∈ Z2 by replacing the origin in
the definitions with x. We will denote this as an explicit argument so Qi,j(x) := Qi,j + x. Since by
translation invariance we can apply the results for the origin to any x ∈ Z2 this notation is rarely used.

Consider the set V0 given by the points x ∈ Z2 such that −x1 + x2 ≤ 0 (i.e. the set that is ‘below’
the main diagonal going through the origin) and for n ∈ Z let Vn = V0 + (−n, n), then {Vn}n∈Z is an
increasing and exhausting set of Z2. The following Lemma is the principal reason to construct the h-grid
as we did.

Lemma 9.11. Let Ax be an event with support in ∪h∈[A,B,C]Q
(h)
x , then the family {A}x∈Z2 satisfies the

exterior condition w.r.t. {Vn}n∈Z.

Proof. Follows from the construction of the grids.

9.1.2 Crossing probabilities and grid relaxation

Let q be a parameter set for the ABC-model and set ℓ = ⌈θ3/2
B ⌉, N = 2⌈θB/2+log2(θB)⌉ as the

parameters for any base cells and grids. The goal for this section is to define an event so that we can use
the exterior condition theorem, Theorem 8.2.

We say that a set Λ is B-traversable if it does not contain A or C vacancies, and we define correspond-
ingly A- and C-traversability. The event for which we want to apply the exterior condition theorem will
require the existence of an appropriately traversable grid C for each vacancy type so let us upper bound
the probability of not finding B-traversable B-crossings as a first step.

Lemma 9.12. Let A be the event of finding a B-traversable hard interior B-crossing in a strip Q. If q is
such that qA + qC → 0 as qB → 0 then we find a constant C > 0 so that

µ(Ac) ≤ C2−θ3/2
B

for qB small enough.

Proof. We follow the arguments from [43] to apply a Peierls-type argument. We will deal with the vertical
case first, the horizontal one being analogous. Consider a vertical strip Q

(v)
i with left boundary D(2) and

right boundary D(4). Define on it the dual graph Q∗
i as the faces of Q

(v)
i , i.e. the graph given by

Q∗
i = {x∗ ∈ Q

(v)
i + 1/2(±e1 ± e2) : ∥{x ∈ Q

(v)
i : ∥x∗ − x∥1 = 1}∥ = 4},

with neighbourhood relations induced by Z2 + 1/2(e1 + e2). We define the left boundary D(2,∗) as the
set of x∗ ∈ Q∗

i for which there exists an x ∈ D(2) such that ∥x∗ − x∥1 = 1 and analogously for the
right boundary D(4,∗) with D(4). Say that the horizontal directed edge (x∗, x∗ + e1) in Q∗

i is closed in a
configuration ω ∈ Ω if x∗ + 1/2(e1 + e2) (north-east corner) is not B-traversable, i.e. has an A- or C-
vacancy and open otherwise. Similarly for the vertical edge (x∗, x∗ + e2) with vertex x∗ + 1/2(e1 − e2)
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D(2,∗)

D(4,∗)

FIGURE 9.3 Example for a closed dual path together with W shaded in grey. The implied
A- or C-vacancies are in blue.

(south-east corner). For convenience call all other directed edges in Q∗
i closed. We call a dual path in Q∗

i

connecting D(2,∗) to D(4,∗) closed iff all its edges are closed.
For ω ∈ Ω consider the set W of vertices in Q

(v)
i \ (D(2) ∪ D(4)) that are reachable by a B-traversable

B-path (recall: up-right path) starting at D(1) \ (D(2) ∪ D(4)) and let the contour be the set of faces
x∗ that have a vertex inside and a vertex outside of {W ∪ D(1) \ (D(2) ∪ D(4))} incident to them. Not
finding a B-traversable hard interior B-crossing on Q

(v)
i then, by construction, implies that the contour is

a closed dual path in Q∗
i connecting D(2,∗) to D(4,∗) (see Figure 9.3).

For a fixed ω ∈ Ω let Γ = Γ(ω) be a closed non-backtracking dual path connecting the left to the right
boundary and nn, ne, ns, nw be the amount of north, east, south and west steps in it respectively. Γ being
closed then implies the existence of at least (ne + ns)/2 A- or C-vacancies, only half since if an east
step follows a south step they have the same associated vertex. Further note that by construction of Q

(v)
i

every eighth step north an additional step east or south has to be made to reach the right boundary while
any step west immediately implies another step east. So, Γ being closed implies the existence Θ(|Γ|) A-
or C-vacancies2. Let Πx∗ be the set of dual paths starting at x∗ ∈ D(2,∗) and ending at D(4,∗). We then
have for some constants κ, C,

µ(Ac) ≤
∑

x∗∈D(2,∗)

∑
Γ∈Πx∗

µ(Γ is closed)

≤
∑

x∗∈D(2,∗)

∑
Γ∈Πx∗

(qA + qC)
Θ(|Γ|)

≤
∑

x∗∈D(2,∗)

∞∑
k=κℓ

3k(qA + qC)
Θ(k)

≤ CNℓ2−ℓ

2Note, we are not saying that there are only Θ(|Γ|) vacancies, but that the directly implied amount is of this order
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where we chose qB small enough and use that qA + qC → 0 as qB → 0. The proof for horizontal strips is
analogous and the claim follows.

With this we can calculate the failing probability of finding a B-traversable grid.

Corollary 9.13. Let E (B,1) be the event that

• there is a B-traversable B-grid,

• there is an intersection point xi,j in the above grid with i, j > N/2 such that there exists e ∈ B =
{(0, 1), (1, 0)} with ωx(i,j)+e = B,

Then, for parameter sets such that (qA + qC) → 0 as qB → 0 we have

lim
qB→0

|Q(B)|µ(1 − 1E (B,1)) = 0.

Proof. Recall the event A from Lemma 9.12 that a strip is B-traversable. We can take a union bound to
find a constant κ such that

µ(no B-traversable B-grid) ≤ 2(N + 1)µ(Ac) ≤ 2−κθ3/2
B

for qB small enough. For a B-grid C we then have

µ(no i, j > N/2 such that ∃e ∈ B : ωx(i,j)+e = B | C B-traversable)

≤ (1 − qB)
Θ(N2) ≤ e−κθ2

B .

Using that |Q(B)| = O((Nℓ)2) the claim follows.

This gives us a B vacancy on an intersection point and the necessary B-traversable paths to bring it
into Q0,0. The intersection point x0,0 is still random though so we require another set of B-traversable
paths to bring the B-vacancy to a deterministic point.

Lemma 9.14. Let E (B,2) be the event that the boundary D
(1)
0,0 is B-traversable. Then we have for

parameter sets such that ℓ2(qA + qC) → 0 as qB → 0 that

lim
qB→0

Supp(E (B,2))µ(1 − 1E (B,2)) = 0.

Proof. Follows immediately since

µ(1 − 1E (B,2)) = 1 − (1 − (qA + qC))
ℓ ≤ (qA + qC)ℓ

and Supp(E (B,2)) = |D(1)
0,0 | = ℓ.

To show that E (B) = E (B,1) ∩ E (B,2) allows us to find an inequality like Equation (9.1) we need to
introduce another tool.

Lemma 9.15 (Extending the variance). Let A = A1 ∩ A2 ∩ A3 be an event on Ω, let Vi := Supp(Ai)
for i ∈ [3] and assume that Vi ∩ Vj = ∅ for any pair i ̸= j. Then, for any f ∈ L2(µ) and for the
conditional variance Varx(f | A) = µx(f2 | A) − (µx(f | A))2 we find

µ(1AVarV1(f | A)) ≤ µ(1AVarV (f | A))

for V = V1 ∪ V2.
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Remark 9.16. The usual use case is that we have an event A with a large support that we split into two
smaller events A1, A2 and the ‘rest’ A3 which is why V only contains V1 and V2.

Proof. Write A′ = A1 ∩ A3 and calculate directly

µ(1AVarV1(f | A)) = µV2(A2)µV c
2
[1A′µV2(VarV1(f | A) | A2)]

= µV2(A2)µV c
2

[
1A′µV2(µV1(f

2 | A) − (µV1(f | A))2 | A2)
]

≤ µV2(A2)µV c
2

[
1A′

(
µV (f

2 | A) − (µV (f | A))2
)]

= µ[1AVarV (f | A)],

where in the first inequality we used Jensen’s inequality and in the last equality we used that VarV (f | A)
does not depend on spins in V2 anymore.

Any configuration in E (B) potentially contains many conforming B-grids so let us introduce a partial
order on them. Let Γ = (x(1), . . . , x(n)) and Γ′ = (y(1), . . . , y(m)) be two hard interior crossings of the
same strip that cross in a single point x(i) = y(j). If x(i+1) ≺ y(j+1) then we say that Γ is smaller than Γ′.

This generalises to a partial order on any family of hard interior crossings of the same strip with multiple
crossing points if the above condition is fulfilled after every crossing point. Note that this is only a partial
order but there is a unique smallest crossing. For ω ∈ E (B) we write G(ω) for the B-grid with the smallest
crossings in each strip conforming to E (B).

A final remark about notation: We will write µ(h)(·) := µ(· | {⋆, h}) and Var(h)(·) := Var(· | {⋆, h})
for the measure resp. variance conditioned to be in the state space {⋆, h}. Recall further that Q(B) is the
grid of base cells with parameters N , ℓ of which the smallest vertex in the ≺-partial order (i.e. the closest
vertex to the origin) is zB := e1 + 3e2.

Lemma 9.17. Let f ∈ L2(µ). For any ε > 0 we find a q(ε) > 0 such that

µQ(B)(1E (B)Var(B)
zB

(f)) ≤ 2θ2
B(1+ε)/4 ∑

y∈Q(B)

µQ(B)

[
cB

y qBp(∇(B)
y f)

2
]
,

for qB < q(ε).

Proof. For simplicity we write µQ(B) = µ in this proof. There might be many intersection points

xi,j ∈ X(G(ω)) such that ωx(i,j)+e = B for some e ∈ B. Introduce the constraint c
(G)
xi,j that there is an

e ∈ B such that ωx(i,j)+e = B and denote by ξ(ω) the vertex in X(G(ω)) with the highest coordinate in

the lexicographic order such that c
(G)
ξ(ω) = 1. Since this uniquely identifies a grid and an intersection point

we have
µ
[
1E (B)Var(B)

zB
(f)
]
=
∑

C grid

∑
x∈X(C)

µ
[
1G=C,ξ=x,E (B,2)Var(B)

zB
(f)
]
.

Let us upper bound a generic summand µ
[
1G=C,ξ=x,E (B,2)Var(B)

zB (f)
]

and assume without loss of gener-
ality that x = xN ,N−1. Let V ⊂ X(C) be a subset with x0,0, xN ,N−1 ∈ V . The event G = C on V ∩ zB

reduces to requiring B-traversability so that we can extend the variance (Lemma 9.15)

µ
[
1G=C,ξ=x,E (B,2)Var(B)

zB
(f)
]
= µ

[
1G=C,ξ=x,E (B,2)Var(B)

V ∪zB
(f)
]
.

Using block relaxation (Lemma 6.17) we have

µ
[
1G=C,ξ=x,E (B,2)Var(B)

V ∪zB
(f)
]

≤ 2
qB

µ
[
1G=C,ξ=x,E (B,2)

(
1ωx0,0=BVar(B)

zB
(f) + Var(B)

V (f)
)]

. (9.2)
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Let us deal with both these terms separately and start with the first summand. For any ω ∈ E (B,2) ∩ {G =

C} there is a unique shortest B-traversable B-path Γ(ω) ⊂ D
(1)
0,0 ∪ C from zB to x0,0 − e for some e ∈ B.

As before, the event E (B,2) ∩ {G = C} on Γ simplifies to Γ being B-traversable. Thus, we can extend the
variance again to get

µ

[
1G=C,ξ=x,E (B,2),ωx0,0=B

Var(B)
zB

(f)

]
≤ µ

[
1G=C,ξ=x,E (B,2),ωx0,0=B

Var(B)
Γ (f)

]
. (9.3)

Consider the auxiliary model on Γ with equilibrium measure µ
(B)
Γ that is given by the one-dimensional

East model where B-vacancies are the vacancy state and any other state is the particle state and note that
with ωx0,0 = B this has ergodic boundary conditions. Since |Γ| = O(ℓ) we find a constant κ > 0 with
Theorem 2.3 such that

1ωx0,0=BVar(B)
Γ (f) ≤ 2κθB log2(θB)

∑
y∈Γ

µ
(B)
Γ

(
cB

x (1 − qB)qB(∇(B)
y f)

2
)

,

for qB small enough, where we used that the one-dimensional constraints on Γ lower bound the two-
dimensional constraints cB

x for x ∈ Γ and that p > ∆ to bound the 1/(qB + p) term coming from the
conditional density of vacancies and particles in the East model. Inserting back into Equation (9.3) gives
terms like∑

y∈Γ

µ

[
1G=C,ξ=x,E (B,2)cB

y pqB(∇(B)
y f)

2
]

≤
∑

y∈Q0,0

µ

[
1G=C,ξ=x,E (B,2)cB

y pqB(∇(B)
y f)

2
]
.

Contrary to Γ, Q0,0 is not dependent on the specific C and ξ anymore so that we can resolve the sum over
them to get that the first summand Equation (9.2) gives a contribution of

2κθB log2(θB)
∑

y∈Q0,0

µ

[
cB

x qBp(∇(B)
y f)

2
]
.

For the second summand in Equation (9.2) note that we have not yet specified the subset V ⊂ X(C).
X(C) is isomorphic to a (0, 1)-squeezed box in Z2 and the dynamics with the constraints c

(G)
y are

equivalent to a two-dimensional East process on that box. Thus by Proposition 6.6(i) we find a subset
{x0,0, xN ,N−1} ⊂ V ⊂ X(C) such that

Var(B)
V (f) ≤ 2θ2

B(1+ε/2)/4 ∑
y∈V

µ
(B)
V

[
c(G)y qBp(∇(B)

y f)
2
]

for qB small enough. Given the events {G = C} ∩ {ξ = x} we can again extend to B-traversable paths
this time between points on X(C) and using completely analogous calculations to the first summand we
get.

µ
[
1G=C,ξ=x,E (B,2)Var(B)

V (f)
]

≤ 2κθB log2(θB)
∑
y∈C

µ

[
1G=C,ξ=x,E (B,2)cB

y qBp(∇(B)
y f)

2
]

≤ 2κθB log2(θB)
∑

y∈Q(B)

µ

[
1G=C,ξ=x,E (B,2)cB

y qBp(∇(B)
y f)

2
]
.

Resolve the sum over C and ξ again and note that Q0,0 is counted twice leading to an additional term of
the order O(ℓ2) that we absorb into κ to get the claim.
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Remark 9.18. For simplicity we limited the discussion in this section to B-grids. The results generalise to
h-grids with qh going to 0 and the conditions for qA + qC are substituted with conditions for 1 − qh − p.

Notice that there are multiple ways to choose ℓ and still have this proof work. In fact, any ℓ = 2α

with for example α ∈ (θB + 10 log2(θB), θ2−ε
B / log2(θB)) gives analogous results for correspondingly

adapted conditions on qA and qC . As that would have complicated the exposition for little gain in
generality of the result, in the sense that Theorem 6 would still not hold for any parameter set q, we chose
to limit the exposition in this thesis to ℓ = ⌊θ3/2

qmin⌋.

9.2 Low vacancy density: Proof of Theorem 6(3.i)

Fix an ε > 0, let q be a parameter set such that minh∈G qh = qB and (qA + qC)θ3
B → 0. By

Lemma 8.4 we have γ(G, q) ≤ γ2(qB), so using Theorem 2.3 we need to show that there is a δ > 0 so
that for qB < δ we have

γ(G, q) ≥ 2−θ2
B(1+ε)/4.

For h ∈ G let E (h) = E (h,1) ∩ E (h,2) be the events from Section 9.1, let E (h)
x be the correspondingly

translated event and let zh be the analogous vertices to zB . Using the results from Section 9.1 we can get
h-vacancies to zh. We thus need an event that allows us to bring the vacancies back to the origin.

Let E (0)
x be the event that there is no vacancy on {x + ie1 : i ∈ [3]} ∪ {x − ie2 : i ∈ [3]} and

Ex := E (0)
x ∩

⋂
h∈G E (h)

x . By construction the family {Ex}x∈Z2 satisfies the exterior condition with
respect to the exhausting and increasing family of sets {Vn}n∈Z given in Lemma 9.11. By assumption on
the parameter set and Corollary 9.13 and Lemma 9.14, Equation (8.1) holds for the family {Ex}x∈Z2 for
qB small enough. Thus, we can apply the exterior condition theorem, Theorem 8.2, and Lemma 8.5 to get

Var(f) ≤ 4
∑

x∈Z2

µ(1ExVarx(f)) ≤ C
∑

x∈Z2

∑
h∈G

µ(1E (0)
x ∩E (h)

x
Var(h)x (f)). (9.4)

Let us consider w.l.o.g. only the term for h = B and x = 0 and leave away the subscript x. Recall that we
write zB = e1 + 3e2 which by E (B,2) is B-traversable so that we can extend the variance, Lemma 9.15,
and apply the block relaxation Lemma, Lemma 6.17:

µ(1E (0)∩E (B)Var(B)
0 (f)) ≤ µ(1E (0)∩E (B)Var(B)

{0,zB}(f))

≤ C

qB
µ
[
1E (0)∩E (B)µ

(B)
0

(
1ωzB

=BVar(B)
0 (f) + Var(B)

zB
(f)
)]

=
C

qB
µ
[
1E (0)∩E (B)

(
1ωzB

=BVar(B)
0 (f) + Var(B)

zB
(f)
)]

,

where in the last equality we used that Supp(E) ∩ {0} = ∅ and the tower property. By Lemma 9.17 we
can upper bound the second summand by

µ
(
1E (0)∩E (B)Var(B)

zB
(f)
)

≤ 2θ2
B(1+ε)/4µ

(
DQ(B)(f)

)
,

where we added the missing A- and C-transition terms to get a contribution to the Dirichlet form. For the
first summand let Γ = {0, e2, . . . , 3e2}. Consider the auxiliary model on Γ with B-vacancies as the good
state and non-B-vacancy states as bad states with one-dimensional East model constraints. This model
has good boundary conditions if ωzB = B. Use that E (0) on Γ reduces to requiring B-traversability and
use Theorem 2.3 to get a constant κ > 0 such that

µ(1E (0),E (B),{ωzB
=B}Var(B)

0 (f)) ≤ µ(1E (0),E (B),{ωzB
=B}Var(B)

Γ (f))
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≤ 2κθB log2(θB)
∑
y∈Γ

µ

(
cB

y pqB(∇(B)
y f)

2
)

≤ 2κθB log2(θB)µ(DΓ(f))

for qB small enough. By translation invariance we get analogous terms for any x ∈ Z2. When taking the
sum over x we need to account for the overcounting, which we recall is how many times a single vertex
y ∈ Z2 appears in the various Dirichlet forms that we get in the above way for the different x ∈ Z2. In
this case, for any y ∈ Z2 there are O(|QB|) different x ∈ Z2 such that y ∈ Q(B)

x we can absorb3 the
overcounting into ε for qB small enough. Thus for h = B the r.h.s. in Equation (9.4) is upper bounded by∑

x∈Z2

µ(1E (0)∩E (B)Var(B)
0 (f)) ≤ 2θ2

B(1+ε)/4D(f),

for qB small enough. The calculation works analogously for each h ∈ G and we get the claim for
the chosen q by arbitrariness of ε. Further, the proof also works analogously for any q such that
qmaxθ3

qmin → 0 as qmin → 0 so that we have part (3.i) of Theorem 6.

9.3 Single frequent vacancy type: Proof of Theorem 6(3.ii)

Throughout this section assume that q is a parameter set such that qmin = qB , qmaxθ3
qmed / log2(θB) →

∞ and qmedθ6
B → 0 as qB → 0 where we recall that qmed is the remaining element of q \ {qmax, qmin}.

In this case the above results do not apply anymore. We resolve this problem by working on boxes and
defining traversable configurations on them that do not exclude the frequent vacancy type. We then show
that on this coarse grained lattice we can apply the results from Section 9.1 again and conclude the proof
by using auxiliary models and the path method to go from the coarse grained lattice back to Z2.

We start with the proofs for the case where qmin = qB . We will see later that this is sufficient as the
proofs for qmin ∈ {qA, qC} are analogous.

9.3.1 The case qmax = qA

Assume for this subsection that qmax = qA and qmed = qC . We start by defining the coarse graining
and the states on the coarse-grained lattice.

Definition 9.19. For j ∈ Z2 and L = ⌊θ3
B⌋ let Λj be an equilateral box of side length L − 1 and origin

(L+ 1)j and let Wj be the outline of it, i.e. the shortest cycle containing (L+ 1)j+ {0, (L − 1)e1, (L −
1)e2, (L − 1)(e1 + e2)}. Let the enlargement EWj of Wj be the union of Wj with the set Λ̃ \ Λj where
Λ̃ is an equilateral box of side length L, origin (L + 1)j and denote the top right corner of EWj by
xj = (L + 1)j + L(e1 + e2). For a ω ∈ Ω we call EWj

• B-traversable (see Figure 9.4) if

– ωx ∈ {⋆, A} for any x ∈ Wj,

– ωx ∈ {⋆, A, B} for any x ∈ EWj \ Wj and

– for any i ∈ [2] there is at least one x ∈ (L + 1)j + {ei, 2ei, . . . , (L − 1)ei} (i.e. parts of the
left respectively bottom boundary of Wj) such that ωx = A.

3We often use the term absorb in this context, where we either mean make the constant larger/smaller or here specifically,
where ε is fixed, do the whole proof for ε/2 and only in the final step write ε upper bounding any lower order term by 2θ2

Bε/4.
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Wj

{A, ⋆}

EWj \ Wj

{A, B, ⋆}

(L + 1)j

xj

FIGURE 9.4 Illustration of a B-traversable EWj. Note that the A-vacancies on the bottom
and left boundary can be anywhere on that boundary.

Let qBT := µEWj(B-traversable).

• B-super if EWj is B-traversable and ωxj = B. Let qBS := µEWj(B-super).

• B-evil4 if it is not B-traversable. Let qBE := µEWj(B-evil).

Attention: Previously, if we said that EWj was B-traversable, we meant that ωx ∈ {⋆, B} for any
x ∈ EWj instead of the above definition. In the context in which qA ≫ qB this notion of B-traversability
has a very small equilibrium probability so it is not useful for the proof of part (3.ii). We justify the
recycling of the name since the two notions of traversability play analogous roles. In Section 9.1 we
looked for grids of paths with vertices only in {⋆, B}. In this section we look for grids where each vertex
is a EWj that is B-traversable in the above sense.

To be able to use the results from Section 9.1 on the coarse-grained lattice we need to show that B-super
boxes play the role of B-vacancies and B-evil boxes the role of A and C vacancies.

Lemma 9.20. For EWj as in Definition 9.19 we have

θqBS

θB
→ 1, θ3

qBS
qBE → 0,

as qB → 0.

Proof. It is immediate to see that the right limit implies the left one. Indeed, if θ3
qBS

qBE → 0 then in
particular qBE → 0 so that qBT → 1 which implies

qBS

qB
≥ qBT

(1 − qC)
2 → 1.

Let us come to the right limit. A union bound gives for qB small enough

qBE ≤ 1 − (p + qA)
4(L−1) + 1 − (1 − qC)

2L−1 + 1 − (1 − (p/(p + qA))
L−1)

2

≤ O(L(qB + qC)) + 2(p/(p + qA))
L−1

≤ O(L(qB + qC)) + 2/(1 + 5 log2(θB)/θ3
B)

L−1,

so that qBEθ3
qBS

≤ qBEθ3
B → 0 for qB → 0.

4We use super and evil instead of the more common good and bad to avoid confusion in the notation with G ⊂ Hd and
B-vacancies.
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Remark 9.21. While qAθ3
B → ∞ as qB → 0 we thus find a renormalisation such that we again have the

equivalent of (qA + qC)θ3
B → 0 from Section 9.1 on the renormalised lattice.

For j ∈ Z2 let Ω∗
j = S(G)EWj , µ∗

j (·) = µEWj(· | B-traversable) and let Var∗
j (f) be the associated

variance. We will only use the letter j in bold font to refer to indices of EWj and thus say interchangeably
that j or EWj is B-traversable, B-super or B-evil. Let us come to the analogue statement of Lemma 9.17,
for which we need to define the analogue of the events E (B,i) for the lattice of boxes. We define
Q(B,∗) = {EWj : j ∈ Q(B)} for Q(B) with side length ℓ = ⌈θ3/2

qBS
⌉ and square side length N =

2⌈θqBS
/2+log2(θqBS

)⌉. The vector zB = e1 + 3e2 we now write as jB .
Let E (B,1,∗) be the event that we find a B-grid C in Q(B) such that EWj is B-traversable for any j ∈ C

and such that there is an intersection point ji,j ∈ X(C) with i, j > N/2 and e ∈ B such that EWj(i,j)+e
is B-super.

Let E (B,2,∗) be event that for each j on the boundary D
(1)
0,0 , EWj is B-traversable. We write E (B,∗) =

E (B,1,∗) ∩ E (B,2,∗). The support is included in Q(B,∗), i.e. Supp(E (B,∗)) ⊂ Q(B,∗) and E (B,∗) satisfies
the exterior condition with respect to the same {Vn}n∈Z as in Lemma 9.11.

The auxiliary model for which we state the analogue of Lemma 9.17 is given by the constraints c∗,B
j

defined as the indicator over the event that there exists an e ∈ B such that j + e is B-super. Analogous to
the µ(h) notation we write µ(AB)(·) = µ(· | {⋆, A, B}) and Var(AB)(f) := Var(f | {⋆, A, B}).

Corollary 9.22. For any ε > 0 we find a δ > 0 such that

µ(1E (B,∗)Var(AB)
xjB

(f)) ≤ 2θ2
B(1+ε)/4 ∑

j∈Q(B)

µ
[
1j B-traversablec

∗,B
j Var(AB)

xj
(f)
]

for qB < δ.

Remark 9.23. Normally when defining the East model on block lattices (see for example [13]) instead of
Corollary 9.22 we expect statements of the form

µ∗
Q(B)(1E (B,∗)Var∗

jB
(f)) ≤ 2θ2

B(1+ε)/4 ∑
j∈Q(B)

µ∗
Q(B)

[
c∗,B

j Var∗
j (f)

]
.

To upper bound the r.h.s. with a Dirichlet form of the ABC-model we need to be able to relax an entire
B-traversable EWj given that a neighbour is B-super, but this is not possible since we do not have an
A-vacancy that can reach all of Wj. The set EWj \ Wj on the other hand can be fully relaxed which is
why we limit ourselves to the top-right points xj ∈ EWj \ Wj.

Proof. As in the proof of Lemma 9.17 let G be the smallest B-grid with B-traversable crossings and ξ the
vertex with the highest coordinate in the ≺-partial order such that if ji,j = ξ then there is an e ∈ B with a
B-vacancy on xj(i,j)+e . Then,

µ(1E (B,∗)Var(AB)
xjB

(f)) =
∑

C B-grid

∑
j′∈X(C)

µ
[
1G=C,ξ=j′,E (B,2,∗)Var(AB)

xjB
(f)
]
.

To save some space let us write Ẽ := {G = C} ∩ {ξ = j′} ∩ E (B,2,∗). We upper bound a generic summand
so fix a C and a j′. Consider the subset C(T R,∗) := {xj : j ∈ C} of top right corners of EWj. The event
{G = C} reduces to ωxj ∈ {A, B, ⋆} on any xj ∈ C(T R,∗). In an analogous proof to Lemma 9.17 we find

µ
[
1ẼVar(AB)

xjB
(f)
]

≤ 2θ2
B(1+ε)/4 ∑

y∈C(T R,∗)

µ
[
1Ẽc(G)y Var(AB)

y (f)
]
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{A, B, ⋆}

{A, ⋆}

FIGURE 9.5 Starting situation from Lemma 9.24.

for qB small enough where c
(G)
xj is the constraint that there is an e ∈ B such that j+ e ∈ G and xj+e has a

B-vacancy. Given Ẽ any EWj for j ∈ G is B-traversable so that 1Ẽc
(G)
y ≤ 1Ẽc∗,B

j . We can thus upper
bound the sum in the r.h.s. by∑

y∈C(T R,∗)

µ
[
1Ẽc(G)y Var(AB)

y (f)
]

≤
∑

j∈Q(B,∗)

µ
[
1Ẽ,j B-traversablec

∗,B
j Var(AB)

xj
(f)
]
.

We get the claim after resolving the sum over G and ξ and taking into account the overcounting which we
can absorb into the ε.

Given a B-traversable box with a neighbouring B-super box we want to recover from a generic term in
the r.h.s. in Corollary 9.22 a Dirichlet form of the ABC-model. To that end, let us isolate two generic
situations first. The first explains how to use the A-vacancies on Wj to relax EWj.

Lemma 9.24. Let C2, C1 = O(θ3
B) be two constants and consider two paths

Γ1 = {0, e1, . . . , C1e1},
Γ2 = {−C2e1 − e2, −(C2 − 1)e1 − e2, . . . , C1e1 − e2}.

On these paths define the event A that on Γ1 we find no C-vacancies, on Γ2 no B- or C-vacancies, there
is an A vacancy on Γ2 \ (Γ1 − e2) and ω(C1+1)e1 = B (see Figure 9.5). Then we find a constant κ > 0
such that for any y ∈ Γ1

µ(1AVar(AB)
y (f)) ≤ 2κθB log2(θB)µ(1ADΓ1∪Γ2(f)).

Proof. Consider the auxiliary model on Γ1 with constraints cB
x that samples from µ(AB) at a legal ring.

If the starting state is in A then any later state is as well and the spectral gap of the auxiliary process
agrees with that of a one-dimensional East model with good boundary conditions. Thus, we can extend
the variance (Lemma 9.15) and find a constant κ with Theorem 2.3 such that

µ(1AVar(AB)
y (f)) ≤ µ(1AVar(AB)

Γ1
(f)) ≤ 2κθB log2(θB)

∑
x∈Γ1

µ(1AcB
x Var(AB)

x (f)),

for qB small enough. For each x we can extend the variance and use block relaxation, Lemma 6.17, to get

µ(1AcB
x Var(AB)

x (f)) ≤ C

qA
µ
[
1AcB

x (1ωx−e2=AVar(AB)
x (f) + Var(A)

x−e2(f))
]
,

for qB small enough. For the first summand we can write the variance as transition terms (Lemma 8.5)
and use that 1ωx−e2=A ≤ cA

x to recover a term of the Dirichlet form. For the second summand we can use
the enlargement trick (Lemma 6.10) so that

µ(1AVar(AB)
y (f)) ≤ 2κθB log2(θB)

∑
x∈Γ1

µ(D{x}∪Γ2).

The overcounting is of order O(θ3
B) and can thus be absorbed into the κ and we recover the claim.
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{A, ⋆}
{A, B, ⋆}

{A, ⋆}
{A, B, ⋆} 1

⋆

2 3

⋆

4

⋆

5

⋆
⋆

6

⋆

FIGURE 9.6 Left: Two enlarged boxes next to each other, the left is B-traversable, the right
B-super. Right: The sequence of legal moves that brings B from a neighbouring B-super
box to a B-traversable box, or alternatively removes it, indicated by the two-coloured

node.

Being able to relax EWj means that we can move the B-vacancy freely on it using the block relaxation
Lemma. The second of our isolated results moves the B-vacancy from a neighbouring B-super box to a
B-traversable box. This requires the path method since xj does not neighbour a vertex in Wj and so we
can not use Lemma 9.24 together with the block relaxation Lemma to move a B-vacancy here.

Lemma 9.25. Consider the set V = {0, −e2, −e1 − e2} and the event A given by the ω ∈ Ω such that
ω−e1−e2 = A, ωe1−e2 = ⋆ and ωe1 = B. Further define the event A′ given by the configurations ω such
that ωx ∈ {⋆, A, B} for x ∈ {−e2, 0, e1} and ωx ∈ {⋆, A} for x ∈ {−e1 − e2, e1 − e2}. Then, for qB

small enough we find a constant κ such that

µV

[
1AVar(AB)

0 (f) | A′
]

≤ 2κθB
∑
x∈V

DV (f).

Proof. The proof is straightforward when looking at Figure 9.6. The vertex e1 − e2 starts in the neutral
state and e1 has a B-vacancy. So we can put a B-vacancy on e1 − e2 (Figure 9.6(2)). This means that
−e2 neighbours an A- and a B-vacancy so we can put ⋆ on it (Figure 9.6(3)), in particular we can put an
A-vacancy (Figure 9.6(4)) so that the origin neighbours an A- or a B-vacancy and we can put it into any
state. Notice that all these transitions are independent from the state of the origin so for any ω ∈ A and
any σ, that agrees with ω outside of the origin, we find a legal path of constant length connecting them
and conclude with the path method.

Armed with these results we can upper bound the right hand side in Corollary 9.22. For this we
introduce the notation EW (V ) = ∪j∈V EWj for any subset V ⊂ Z2.

Lemma 9.26. Let j ∈ Z2 and V = {j, j + e1, j + e2}. We find a constant κ > 0 such that

µ
[
1j B-traversablec

∗,B
j Var(AB)

xj
(f)
]

≤ 2κθB log2(θB)DEW (V )(f)

for qB small enough.

Proof. W.l.o.g. consider only the case j = 0 and where the constraint on the l.h.s. of the claim is replaced
by c̃ = 1EWe1 is B-super. Let U = x0 + {0, e1, −e2 − e1, −e2, −e2 + e1} and let A be the event from
Lemma 9.25 translated by x0, so that Supp(A) ⊂ U . Analogously define A′ as the translated version of
A′ from Lemma 9.25. The event that EW0 and EWe1 are B-traversable on U reduces to A′. Thus, we
can extend the variance, Lemma 9.15, and use the block relaxation Lemma 6.17,

µ
[
c̃1EW0 B-traversableVar(AB)

x0 (f)
]

≤ µ[c̃1EW0 B-traversableVarU (f | A′)]
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≤ 2κθB µ
[
c̃1EW0 B-traversable

(
1AVar(AB)

x0 (f) + VarU\{x0}(f | A′)
)]

for qB small enough. The first summand can be upper bounded using Lemma 9.25. For the second
summand write

µ
[
c̃1EW0 B-traversableVarU\{x0}(f | A′)

]
≤ µ

c̃1EW0 B-traversable
∑

y∈U\{x0}
Vary(f | A′)

.

For y ∈ (EW0 \ W0) ∪ (EWe1 \ We1) we can use Lemma 9.24 and for the others we can use the
enlargement trick (Lemma 6.10) to get the claim.

Combining the previous results we thus have

µ(1E (B,∗)Var(AB)
xjB

(f)) ≤ 2θ2
B(1+ε)/4µ

[
DQ(B,∗)(f)

]
, (9.5)

for qB small enough. For C-vacancies we can use the same construction of EWj and Wj with length
parameter ⌊θ3

C⌋ and define C-traversable, -super, and -evil by replacing the B-vacancies with C-vacancies.
Recall that we assume qAθ3

qC
/ log2(θB) → ∞ as qB → 0 so that the results follow analogously for

C-vacancies with minor adjustments. We omit details here that lead to the result that

µ(1E (C,∗)Var(AC)
xjC

(f)) ≤ 2θ2
B(1+ε)/4µ

[
DQ(C,∗)(f)

]
, (9.6)

for jC = −3e1 + e2 and qB small enough.
As in the low vacancy density case we need a final event that brings the B- resp. C-vacancy from

Q(h,∗)(x) to x. To that end, let us define some paths (see Figure 9.7).

• Let Γ(B) be a shortest path starting at e2 and ending at the first vertex neighbouring EWjB
\ WjB

that first goes straight up and then right.

• Let Γ(B,left) be the path that starts at −⌊θ3
C⌋e1 + e2 and is straight until −e1 + e2 and then equal

to (Γ(B) − e1) \ Γ(B). Let Γ(B,right) be the path starting at e1 + ⌊θ3
B⌋e2 that goes straight up until

it hits Γ(B) − e2, which it then follows to the right.

• Let Γ(C) be the shortest path that starts at −e1 and goes straight left and then up that ends up at a
vertex neighbouring EWjC

\ WjC
. Let x(C) be the point where the path switches from going left to

going up.

• Let Γ(C,left) be the union of Γ(C) − e1 − e2 and {x(C) − ⌊θ3
C⌋e1, . . . , x(C) − e1}.

Notice that since Γ(B,left) starts at −⌊θ3
C⌋e1 + e2 the various paths do not intersect. We define E (0) as

the ω ∈ Ω such that

• ωx ∈ {⋆, A, B} for any x ∈ Γ(B).

• ωx ∈ {⋆, A} for any x ∈ Γ(B,left) ∪ Γ(B,right) and there is at least one A-vacancy on Γ(B,left) \
{Γ(B) − e1} and on Γ(B,right) \ {Γ(B) − e2}.

• ωx ∈ {⋆, A, C} for any x ∈ Γ(C).

• ωx ∈ {⋆, A} for any x ∈ Γ(C,left) at least one A-vacancy on Γ(C,left) \ (Γ(C) − e1 − e2).
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Q(B,∗)
Q(C,∗)

Γ(B)

Γ(B,right)

Γ(B,left)

Γ(C)

Γ(C,left)

FIGURE 9.7 Image of the various Γ paths and the exemplary A-vacancies where E (0)

requires them. Note the different sizes of Q(B,∗) and Q(C,∗).

The support of E (0) by construction has no intersection with Q(B,∗) and Q(C,∗). Let E (∗) := E (0) ∩
E (B,∗) ∩ E (C,∗) and let E (∗)

x be the translated version by x ∈ Z2. Then the family {E (∗)
x }x∈Z2 satisfies the

exterior condition w.r.t. to the same family of sets as given in Lemma 9.11. Using the assumptions on q it
is straightforward to check that

lim
qB→0

Supp(E (0))µ(1 − E (0)) = 0.

Combining this with Lemma 9.20 and the results from Section 9.1.2 we can apply the exterior condition
theorem, Theorem 8.2. Further, E (0) fulfills that analogous role to the eponymous event in Section 9.2 as
we see in the next Lemma.

Lemma 9.27. Let A be the event defined by the intersection

A := E (0) ∩ {EWjB
B-super} ∩ {EWjC

C-super}.

Then,
µ(1AVar0(f)) ≤ 2κθB log2(θB)DSupp(A)(f).

for qB small enough.

Sketch of the proof. We only give a sketch since the employed techniques are always the same. Extending
the variance, Lemma 9.15 and using block relaxation, Lemma 6.17, gives

µ(1AVar0(f)) ≤ C

qB
µ
[
1A
(
Var(AB)

e2 (f) + 1ωe2=BVar0(f)
)]

.

For the first summand, given A, we can use a combination of the block relaxation Lemma (Lemma 6.17)
and Lemma 9.24 to get an appropriate upper bound. For the second summand we can repeat the calculation
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for the C-vacancy side to get a term

C

qAqBqC
µ(1A,ωe2=B,ω−2e1=C,ω−2e1−e2=AVar0(f)).

Write Var0(f) as a sum of transition terms using Lemma 8.5, for the B-transition use that 1ωe2=B ≤ cB
0

and for the A and C transition terms we can use the path method recalling that for ω ∈ A we have
ω−e1 ∈ {⋆, A, C} (analogously to, for example, the situation in Figure 9.6). The claim follows.

Now we can finally prove that in the case of qA = qmax we get the correct upper bound on the relaxation
time.

Proposition 9.28. For parameter sets as fixed in the beginning of the section with qmax = qA we have

lim
qB→0

γ(G, q)
γ2(qB)

≥ 1.

Sketch of proof. We can use the exterior condition theorem to get

Var(f) ≤ 4
∑

x∈Z2

µ(1E (∗)
x

Varx(f))

for qB small enough. Let us bound a generic summand and w.l.o.g. consider x = 0. We can extend the
variance and use the block relaxation Lemma (twice) to get

µ(1E (∗)Var0(f)) ≤ 2κθB µ(1AVar0(f) + 1E (B,∗)Var(AB)
xjB

(f) + 1E (C,∗)Var(AC)
xjC

(f))

for qB small enough with A from Lemma 9.27. The claim follows by using Lemma 9.27 for the first
summand, Equation (9.5) for the second summand and Equation (9.6) for the third summand and the
fact that the intersection between Supp(E (∗)

x ) for the various x ∈ Z2 in the sum over x is of the order
2O(θB).

We never explicitly used that qC > qB so the same result also holds in the case qB = qmed and
qC = qmin. Further, by symmetry this also covers the case qB = qmax.

9.3.2 The case qmax = qC

Recall that the single frequent vacancy type case, part (3.ii) of Theorem 6, deals with parameter sets
such that qmaxθ3

qmed / log2(θqmin) → ∞ and qmedθ6
qmin → 0 as qmin → 0. By symmetry Section 9.3.1

covers the cases when one of the non-central vacancies has the maximum equilibrium so we are left with
the case when the central vacancy, i.e. the C-vacancy, has the highest equilibrium density. The proof
is, in fact, analogous and we will just discuss how to adapt the enlarged boxes EWj. How to adapt the
analogous results based on these new definitions should be evident from that point on.

Definition 9.29 (h-traversable). Let L = ⌊θ3
h⌋, let Λj be the equilateral box of side length L − 1 and origin

at (L + 1)j and let Wj be its outline, i.e. the shortest cycle containing (L + 1)j + {0, (L − 1)e1, (L −
1)e2, (L − 1)(e1 + e2)}. Further let EWj = Λ̃ \ Λj where Λ̃ is the equilateral box of side length L such
that the top-left corner of Λ̃ and Λj coincide (instead of the origin as in the previous section). Write xj
for the bottom-right corner of EWj. For h ̸= C we call EWj

• h-traversable if
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– ωx ∈ {⋆, C} for any x ∈ Wj,

– ωx ∈ {⋆, C, h} for any x ∈ EWj \ Wj and

– for any i ∈ [2] there is at least one C-vacancy on the top and left boundary of Wj.

• h-super if EWj is h-traversable and ωxj = h.

• h-evil if it is not h-traversable.

Wj

{C, ⋆}

EWj \ Wj

{C, B, ⋆}

(L + 1)j

xj

FIGURE 9.8 Illustration of a B-traversable EWj in the case qmax = qC . Note that the
C-vacancies on the top and left boundary can be anywhere on that boundary.

Now EWj is h-traversable if the bottom and right boundaries of EWj are in the state {⋆, C, h} since
C-vacancies move down and right, so we need to find the C-vacancies on the left and top boundary to free
the path for any h-vacancy on EWj \ Wj. Apart from changing these small details in the constructions
the rest is equivalent so that Theorem 6(3.ii) follows together with the result from the last section.

9.4 Single low density vacancy type: Proof of Theorem 6(3.iii)

In this section consider again the G-MCEM with G = {A, B, C} this time with a parameter set q such
that qmin = qB and lim infqB→0 qmed > 0, i.e. there is a constant λ > 0 with qA, qC > λ for qB small
enough. This covers case (3.iii) since both A- and C-vacancies share the direction e1, the other case in
which qmin = qA, is equivalent to the present case by symmetry.

Using that both A- and C-vacancies have a high equilibrium density, we find configurations that clear
any non-B-vacancy in the e1-direction. As in previous proofs we work with block lattices. In this section
we let {Wj}j∈Z2 be the block lattice given by boxes

Wj = (j1, 3j2) + {0, e2, 2e2}.

We call (j1, 3j2) the lower vertex of Wj, (j1, 3j2 + 2) the upper vertex, the set of lower and upper vertices
we then call the outer vertices and (j1, 3j2 + 1) the central vertex. The associated local state space is
Ω∗

j := {0, 1}Wj , the equilibrium measure is µ∗
j = µ∗

Wj
and the variance is Var∗

j (f) = VarWj(f). For
ω ∈ Ω∗ we say that Wj

• is B-traversable, if there is no B on the outer vertices.

• is B-super, if it is B-traversable and the central vertex is B.
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• is AC-traversable, if there is no B on Wj.

• is AC-super, if it is AC-traversable, the lower vertex is A and the upper vertex is C.

Remark 9.30. To justify the above definitions and the recycling of the traversable and super names let
us give a high level overview of what we do with these states to prepare the reader for the detailed
calculations. Recall that A-vacancies propagate north and east, while C-vacancies propagate south and
east. In an AC-super box the central vertex is always facilitated for any transition from A or C to the
neutral state and vice versa. By A- and C-vacancies sharing the east propagation direction this extends to
any vertex in an AC-traversable box to the east of an AC-super box (see Lemma 9.32).

Further, if there are any B-traversable or B-super boxes to the East of an AC-super box, following at
least one AC-traversable box, we can also remove any non B-vacancy from the central vertex. This is
what allows us in Lemmas 9.33 and 9.35 to propagate the B-vertices from B-super boxes on paths of
B-traversable boxes given an appropriate configuration of AC-super and traversable boxes.

As in the previous proofs our goal is to define a set of events {Ej}j∈Z2 on which we can use the exterior
condition theorem and where Ex allows us to recover a Dirichlet form of the ABC-model starting from a
term like µ(1EjVarWj(f)) at a cost 2θ2

B(1+ε)/4 for qB small enough.
For this we cannot use Q(B) anymore since there is no obvious relaxation scheme that allows us to

transport B-vacancies on coarse-grained B-paths (as in the proof of part (3.ii)). Since the A-vacancies
have a high frequency we also do not have to make a construction that stays above the diagonal as in
Lemma 9.11 to satisfy the exterior condition. We can work with the set V0 given by the vertices ‘below’
the line that goes through the origin and 2θ2

B e1 and define Vn = V0 + ne2 for any n ∈ Z2 so that
{Vn}n∈N is an increasing and exhausting set. This allows us to construct a lattice of straight lines of side
length at most 2θ2

B in the positive quadrant and still put a condition on the line going in the −e1 direction
while satisfying the exterior condition.

Let ℓ = ⌈θ3/2
B ⌉ and N = 2⌈θqB

/2+log2(θB)⌉. For i ∈ [N ] we call the box of side lengths (Nℓ − 1, N −
1) with origin at iℓe1 + e2 the i-th vertical strip Q

(v)
i . For j ∈ [0, N ] we call the box with side lengths

(N − 1, Nℓ − 1) and origin at (jℓ+ 1)e2 the j-th horizontal strip Q
(h)
j . We denote by Qi,j the equilateral

box of side length ℓ − 1 given by Q
(v)
i ∩ Q

(h)
j . The union Q(B) of all strips is an equilateral box of side

length Nℓ − 1 and origin e2. In particular, note that any family of events {Ex}x∈Z2 with Ex supported on
Q(B) + x satisfies the exterior condition w.r.t. the above family {Vn}n∈Z.

The dynamics to propagate B-vacancies on horizontal and vertical paths is different. A- and C-
vacancies only share the e1 direction so that AC-super boxes can only propagate in an e1 directions,
which means that for each row we want to move a B-super box vertically, we need an AC-super box
somewhere that removes any A- or C-vacancies. To propagate B-super boxes horizontally a single
AC-super box suffices. Thus vertically we need boxes that guarantee us the AC-super vertices.

Definition 9.31 (Vertical crossing). Consider a box Λ ⊂ Q
(v)
i of side lengths (⌊θ5/4

B ⌋ − 1, N − 1) with
origin j0. Let ∂(r)Λ be the right boundary of Λ, i.e. the j ∈ Λ such that j · e1 = j0 · e1 + ⌊θ5/4

B ⌋ − 1. For
ω ∈ Ω∗

Q(B) , Λ is a vertical crossing of Q
(v)
i if

• Wj is B-traversable for any j ∈ ∂(r)Λ.

• Wj is AC-traversable for any j ∈ Λ \ ∂(r)Λ.

• There is at least one j per row in Λ \ (∂(r)Λ ∪ (∂(r)Λ − e2)) such that Wj is AC-super.
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θ5/4
B

N

FIGURE 9.9 One of the N horizontal sections of a vertical crossing (see Definition 9.31).
Three vertically aligned vertices (e.g. the rectangles drawn) are one box Wj. The right
box is on the right boundary and thus by assumption B-traversable, so that there is no
condition on the central vertex (black dot). All other vertices have no B-vacancy, indicated
by the striped path, orange for A-vacancies, blue for C and black for neutral state. The left

box is the AC-super box implied by the definition of vertical crossings.

The main idea behind this definition is the following: To propagate a B-super box on the right boundary,
we use that on each row there is an AC-super box on a line of AC-traversable boxes. This AC-super
box can remove any A- or C-vacancy from the AC-traversable part and then in particular also from the
B-traversable part on the right boundary of Λ, which then allows the B-vacancy in the B-super box to
move down. Let us isolate this horizontal motion of AC-super boxes. Recall for this, that we write µ(AC)

and Var(AC) to denote the measure resp. variance conditioned on there only being A and C vacancies and
that by definition

Var∗
j (f | AC-traversable) = Var(AC)

Wj
(f).

Lemma 9.32. We find a constant such that

µ(1W−e1 AC-superVar∗
0(f | AC-traversable) ≤ Cµ(DW−e1 ∪W0(f)).

Proof. We can write the variance as transition terms (Lemma 8.5)

µ(1W−e1 AC-superVar(AC)
W0

(f)) ≤
∑

x∈W0

µ(1W−e1 AC-superVar(AC)
x (f)

≤ C
∑

x∈W0

∑
h∈{A,C}

µ(1W−e1 AC-superpqh(∇(h)
x (f))

2
.

Let ω be such that W−e1 is AC-super and W0 AC-traversable (see Figure 9.10 for an example with the
legal path we now construct). Consider the case x = 2e2 and some h ∈ {A, C}. Since the upper vertex
of W−e1 is C and the lower vertex is A, the central vertex of W−e1 can legally transition to ⋆ and then in
particular to any state. Since e1 ∈ P(h) then also the central vertex of W0 can transition to any state in
a legal path of length O(1). Thus there is a legal path putting any state on 2e2. Indeed, by assumption
ω2e2−e1 = C and we just showed that we can put ωe2 = A.

We can conclude with the path method since this argument applies analogously to the lower vertex of
W0 and the cost of changing measures is a term depending on qA and qC which we can estimate by a
constant by assumption on q.

With this we can show how B-super boxes propagate vertically on vertical crossings.
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1

W−e1

W0

⋆

⋆

2

W−e1

W0

⋆

⋆

⋆

3

W−e1

W0

⋆

⋆

⋆

⋆

FIGURE 9.10 Example of the sequence of transitions in a legal path that ends in a
configuration in which W0 is in a neutral state using that W−e1 is AC-super.

Lemma 9.33 (Vertical propagation). Let Λ ⊂ Q
(v)
i as in Definition 9.31, and let j(1) ∈ ∂(r)Λ ∩ Qi,0. Let

A(v) be the event given by the ω such that Λ is a vertical crossing of Q
(v)
i and there is a j(2) ∈ ∂(r)Λ ∩ Qi,1

such that Wj(2) is B-super. Then,

µ
(
1A(v)Var∗

j(1)(f | A(v))
)

≤ 2κθB log2(θB)µ(DQi,0∪Qi,1(f)).

Proof. W.l.o.g. assume that the right boundary ∂(r)Λ of Λ is on the vertical axis such that j(1) = 0 and
assume also w.l.o.g. that the B-super j(2) implied by A(v) is on the furthest vertex in ∂(r)Λ ∩ Qi,1 from
the origin, i.e. j(2) = (2ℓ − 1)e2. Let Γ = {0, e2, . . . , j(2) − e2} be the part of the right boundary starting
at j(1) and stopping right before j(2). Let c

(v)
j be the constraint given by the indicator over the event that

Wj+e2 is B-super if j ̸= j(2) − e2 and 1 if j = j(2) − e2.

Consider the auxiliary process on Γ with the constraints c
(v)
j that, if Wj is unconstrained, samples

from all B-traversable states on Wj. The equilibrium measure of this process is given by µ
(∗,BT )
Γ :=

⊗j∈Γµ∗
j (· | B-traversable). Since µ

(∗,BT )
j (B-super) = µ∗

j (B-super | B-traversable) = qB the spectral
gap of this process is equal to the spectral gap of the one-dimensional East model with vacancy density
qB on Γ with good boundary conditions.

Hence, we can extend the variance (Lemma 9.15) and use Theorem 2.3 to get

µ
(
1A(v)Var∗

j(1)(f | A(v))
)

≤ µ

(
1A(v)Var

µ
(∗,BT )
Γ

(f)

)
≤ 2κθB log2(θB)

∑
j∈Γ

µ

(
1A(v)c

(v)
j Var

µ
(∗,BT )
j

(f)

)
.

Consider the summand for j = 0 and let ω ∈ A(v). Let V (0) = ∪3
j=0je2 be the union of vertices in W0

together with the lower vertex of We2 and recall that by c
(v)
0 the vertex 4e2 has a B-vacancy. Further, let

V (i) = ∪j={0,1}W−ie1+je2 for i ∈ [2] and let V = V (0) ∪ V (2). Recall that by A(v) the boxes in V (i)

are AC-traversable and define further Ã as the event that Wj is AC-super for j ∈ V (2). We can extend
the variance to V and use the block relaxation Lemma (Lemma 6.17) to get

µ

(
1A(v)c

(v)
0 Var

µ
(∗,BT )
0

(f)

)
≤ µ

(
1A(v)c

(v)
0 VarV (f | A(v))

)
≤ Cµ

[
1A(v)c

(v)
0

(
1ÃVarV (0)(f | A(v)) + VarV (2)(f | A(v))

)]
. (9.7)

We upper bound the two summands separately. For the first term we get

µ
(
1A(v),Ãc

(v)
0 VarV (0)(f | A(v))

)
≤ 2κθB µ

(
D∪i∈[0,2]V

(j)(f)
)
. (9.8)
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This is done through the path method analogous to Lemma 9.32. Indeed, by A(v) we know that the boxes
in V (1) are AC-traversable and by Ã that the boxes in V (2) are AC-super. Start by writing the variance
as a sum of transition terms. Any transition on V (1) from h to ⋆ or vice versa for h ∈ {A, C} can be
done at a constant cost since we can, following the proof of Lemma 9.32, put any {A, C, ⋆} state on V (1).
This also gives us a legal path for transitions from ⋆ to a vacancy type in {A, C} on V (0), since e1 is a
propagation direction of both A- and C-vacancies. For the B-vacancy transition on the central vertex of
W0 we can use the same legal path to put ⋆ between central vertex of W0 and the one of We2 and finally
move the B-vacancy of the B-super We2 to the central vertex of W0. Equation (9.8) then follows from
the path method where the main cost comes from the change of measure giving the term 2κqB .

For the second summand in Equation (9.7) first split up the variance

VarV (2)(f | A(v)) ≤ µV (2)(Var∗
−2e2(f | A(v)) + Var∗

−e2+e1(f | A(v)) | A(v))

and consider the variance over W−2e2 . The upper bound for the second term follows analogously.
Consider an auxiliary process with the constraints c

(h)
j given by the indicator over the event that Wj−e1

is AC-super. If Wj is unconstrained in this process, sample it from all AC-traversable states at a legal
ring. This process has the same spectral gap as the East model with vacancy density qAqC

(qA+qC )2 . Using

that A(v) implies that there is an AC-super box to the left of We2 we can use the enlargement trick
([13]*Lemma 3.6, which immediately generalises to this case), to get

µ
(
1A(v)Var∗

−2e2(f | A(v))
)

≤ C

⌊θ5/4
B ⌋−2∑
j=2

µ(c
(h)
−je1

Var∗
−je1(f | AC-traversable))

≤ C

⌊θ5/4
B ⌋−2∑
j=2

µ(DW−je1 ∪W−(j+1)e1
(f))

where in the second inequality we used Lemma 9.32. Combining the two estimates gives the claim after
taking into account that the vertices in V (2) are counted twice which we absorb into κ.

Remark 9.34. Notice that here we lose the indicator over A(v) since it requires there to be no B-vacancy
between the central vertices but the path method adds these transitions. This will be important later, as
keeping the indicators was important for taking the sum over the possible grids C.

The horizontal paths will consist of B-traversable Wj that connect the vertical crossings. We isolate
here the result that allows us to propagate a central B on these horizontal paths.

The basic situation is as follows. Let Γ = Γ(l) ∪ Γ(r) with Γ(l) = [−⌊θ5/4
B ⌋e1, . . . , −e1] and Γ(r) =

[0, . . . , ℓe1 − 1]. Let A(h) be the event that wj for j ∈ Γ(l) is AC-traversable, that there is an AC-super
W−ie1 for i ≤ −3, that Wj for j ∈ Γ(r) is B-traversable and that Wℓe1 is B-super (see Figure 9.11).

Lemma 9.35 (Horizontal propagation). For Γ and A(h) as above we find a constant κ such that

µ(1A(h)Var∗
0(f | A(h))) ≤ 2κθ3/2

B µ(DW (Γ)(f)),

where W (Γ) = ∪j∈ΓWj

Proof. Split W (Γ(r)) into W (ro) ∪ W (rc) of respectively the set of outer and central vertices. Define
the event Ã that there are only C-vacancies on the upper vertices of W (ro) and only A-vacancies the
lower vertices. Then, we can extend the variance (Lemma 9.15) and use the block relaxation Lemma
(Lemma 6.17) to find a constant κ such that

µ(1A(h)Var∗
0(f | A(h))) ≤ µ(1A(h)Var∗

Γ(r)(f | A(h)))
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Γ(l) Γ(r)

FIGURE 9.11 Path Γ in the context of the horizontal propagation Lemma 9.35. The right
box is the B-super box and the left box the AC-super box. The black path indicates that
the boxes in Γ(r) are B-traversable so that there is no condition on the central vertices.

≤ 2κθ3/2
B µ

[
1A(h)

(
1ÃVarW (rc)(f) + Var(AC)

W (ro)(f)
)]

. (9.9)

Consider the first summand. On A(h) there is a B-vacancy to the right of W (rc), so consider the auxiliary
model with the standard B-vacancy constraints cB

x that samples from µx at a legal ring on x ∈ W (rc).
Given 1A(h) this auxiliary model has good boundary conditions and the same spectral gap as the East
model with vacancy density qB so that

µ(1A(h),ÃVarW (rc)(f)) ≤ 2κθB log2(θB)
∑

x∈W (rc)

µ(1ÃcB
x Varx(f)).

Now write the variances as transition terms using Lemma 8.5 and use that with Ã and cB
x every x ∈ W (rc)

is unconstrained for every transition so that∑
x∈W (rc)

µ(1ÃcB
x Varx(f)) ≤ Cµ(DW (rc)(f)).

For the second summand in Equation (9.9) write Var(AC)

W (ro)(f) as a sum of transition terms for A- and
C-vacancy transitions. We saw in Lemma 9.32 how an AC-super state can put any state on an AC-
traversable state to its right. Given an AC-super and then an AC-traversable state we can thus put any state
in {⋆, A, C} onto the upper or lower vertices of boxes right to them, if they don’t contain B-vacancies.
The legal path dynamic is completely analogous to the one in Lemma 9.32 so we omit the details. The
lengths of the paths are O(|W (ru)|) = O(θ3/2

B ), so the path method gives an upper bound of the order
2κθ3/2

B and the claim follows.

We now come to the grids we use in this section (see Figure 9.12).

Definition 9.36 (Grid). Call a union of C = ∪i∈[N ]C
(h)
i ∪ C(v)

j a grid if C(h)
i ⊂ Q

(h)
i is a box of side

length (Nℓ − 1, 0) and C(v)
i ⊂ Q

(v)
j is a box with side lengths (⌊θ5/4

B ⌋ − 1, Nℓ − 1). We call the grid

good if Wj is B-traversable for any j ∈ ∪iC
(h)
i and C(v)

j is a vertical crossing for each j ∈ [N − 1].

We have that |C(h)
i ∩ C(v)

j | = O(θ5/4
B ) and that on a grid we require this part to be B-traversable,

AC-traversable and to contain an AC-super box at the same time. This is well-defined since AC-super
states are a subset of AC-traversable states which in turn are subsets of B-traversable states.

For a grid C let X(C) be the vertices given by ji,j = ∂(r)C(v)
i ∩ C(h)

j for i, j ∈ [N − 1], where we
recall that ∂(r) is the right boundary. We define the event E (1) as the ω ∈ Ω∗ such that there is a good
grid C and there are i, j ∈ [N − 1] with i, j > N/2 such that Wji,j is B-super.
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FIGURE 9.12 Grid C as defined in Definition 9.36. The horizontal configurations from
Lemma 9.35 are in blue, the vertical crossings from Definition 9.31 in red, a bit thicker to
represent the horizontal extension of θ5/4

B . The black circles form the set X(C). The striped
area indicates the area on which we cannot condition by the exterior condition theorem

together with the exhausting family of sets {Vn}n∈Z defined above Definition 9.31.

Lemma 9.37. For any ε > 0 we find a q(ε) such that

(Nℓ)2µ(1 − 1E (1)) ≤ ε

if qB < q(ε).

Proof. We take the union bound of µ(1 −1E (1)) of the event of not finding all the horizontal paths, vertical
crossings or the B-super intersection point. Not finding all the horizontal paths is upper bounded with
the union bound of there being one Q

(h)
i such that each row contains a B on the outer vertices, i.e. upper

bounded by

CN(1 − (1 − qB)
κNℓ)

ℓ
≤ CN(κqBNℓ)ℓ ≤ 2−O(θ5/2

B )

for qB small enough. Multiplied by (Nℓ)2 this is still decreasing in qB . For the vertical crossings we look
at the ℓ/⌊θ5/4

B ⌋ = O(θ1/4
B ) disjoint boxes in each strip that could be vertical crossings and upper bound

the failure probability to find any vertical crossing by the probability that none of these disjoint boxes
are vertical crossings. The probability of not being a vertical crossing is upper bounded by either having
B-vacancy outside the central vertex on the right boundary or if there is no AC-super state. Thus,

(
1 − (1 − qB)

κNℓθ5/4
B + (1 − qAqC(1 − qB))

κθ5/4
B

)Nℓ⌊θ1/4
B ⌋

≤ 2−κθ5/4
B

for qB small enough, which still decreases after multiplying with (Nℓ)2. Finally, the probability of not
finding a B-super Wji,j is upper bounded by

(1 − qB)
(N/2)2

≤ e−O(θ2
B)

which again decreases even after multiplying with (Nℓ) and the claim follows.
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Combining these events we can bring a B-super vertex to j0,0 for the respective good grid given by
E (1). As before, we need to bring the B-super box to a deterministic vertex. Since the grid this time starts
at e2 we can immediately bring it back to the origin. Let E (2) be the event that Wj is

• AC-traversable for j either in Γ(1) := {−⌊θ5/4
B ⌋e1, . . . , −e1} or Γ(2) := Γ(1) + e2 and there is at

least one j in both Γ(1) and Γ(2) with Wj AC-super.

• B-traversable for j in Γ(3) := {e2, . . . , (ℓ − 1)e2} (i.e. the left boundary of Q0,0).

In an analogous calculation to Lemma 9.37 we get.

Lemma 9.38. For any ε > 0 we find a q(ε) such that

ℓµ(1 − 1E (2)) ≤ ε

if qB < q(ε).

Let E := E (1) ∩ E (2) and let Ex be the event translated by x ∈ Z2. {Ex}x satisfies the exterior condition
w.r.t. the {Vn}n∈Z defined above and thus using Lemmas 9.37 and 9.38 we get that we can apply the
exterior condition theorem, Theorem 8.2, with this family of events. We come to the proof of part (3.iii).

Proof of Theorem 6(3.iii). By the exterior condition theorem we have

Var(f) ≤ 4
∑

x∈Z2

µ(1ExVarx(f)).

Let us upper bound the summand for x = 0. First use that Supp(E0) ∩ W0 = ∅ to extend the variance
(Lemma 9.15)

µ(1E0Var0(f)) ≤ µ(1E0Var∗
0(f)).

For ω ∈ E let G(ω) denote the unique good grid in ω consisting of the lowest horizontal paths and vertical
crossings in the ≺-order that make a good grid. Further let ξ ∈ X(G) be the largest intersection point that
is B-super in the lexicographic order. Let EC,ji,j be the event E with G = C and ξ = ji,j . We have

µ(1E0Var∗
0(f)) =

∑
C grid

∑
n,m∈[N ]

µ(1EC,jn,m
Var∗

0(f)).

Further let E (i,j)
C,jn,m

for (i, j) ∈ [0, n] × [0, m − 1] be the part of the event EC,jn,m that depends on the

vertices outside the i-th vertical strip and j-th horizontal strip, if i > n or j > m − 1 let E (i,j)
C,jn,m

= EC,jn,m .
We have ∑

C grid

∑
n,m∈[N ]

1E (i,j)
C,jn,m

≤ 2ℓ

since only the grid outside of the Q
(h)
i and Q

(v)
j is fixed and inside these strips there are at most ℓ choices

of straight horizontal paths or boxes that could be vertical crossings respectively (in the latter case ℓ is a
rough estimate of ℓ/⌊θ5/4

B ⌋).
Fix a grid C and n, m ∈ [N ], extend the variance (Lemma 9.15) and use the block relaxation Lemma

(Lemma 6.17) to get

µ(1EC,jn,m
Var∗

0(f)) ≤ 2κθB µ
[
(1EC,jn,m

(
1Wj0,0 B-superVar∗

0(f) + Var(∗,BT )
j0,0

(f)
)]

. (9.10)
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We extend the variance in the first summand to {0, e2} and then use the block relaxation Lemma again:

µ(1EC,jn,m ,Wj0,0 B-superVar∗
0(f)))

≤ 2κθB µ
[
1EC,jn,m ,Wj0,0 B-super(1We2 B-superVar∗

0(f) + Var(∗,BT )
e2 (f))

]
. (9.11)

For the second summand in Equation (9.11) there is a unique shortest path Γ from e2 to j0,0 first on the
bottom boundary of D0,0 and then following the grid C. Through a combination of extending the variance,
the block relaxation Lemma, Lemmas 9.33 and 9.35 we get

µ
[
1EC,jn,m ,Wj0,0 B-superVar(∗,BT )

e2 (f)
]

≤ 2κθ3/2
B µ

[
1E (0,0)

C,jn,m
DΓ∪Supp(E (2))(f)

]
.

Analogously for the first term in Equation (9.11) using Lemma 9.33. We can then take the sum over C, n
and m and absorb the overcounting of the vertices in Supp(E (2)) into κ above for qB small enough.

For the second summand in Equation (9.10) assume without loss of generality that n = m = N

and define the constraints c
(C)
ji,j

for ji,j ∈ X(C) that there is a B-super state on ji+1,j ∈ X(C) or on

ji,j+1 ∈ X(C) and c
(C)
jN−1,N

≡ 1. The auxiliary dynamics on ∪i∈[N−1],j∈[N ]ji,j with constraints c
(C)
ji,j

is
equivalent to a two-dimensional East process with minimal boundary conditions on (0, 2)-squeezed box.
By Proposition 6.6(i) we find a subset V ⊂ X(C) such that

µ(1EC,jN ,N
Var(∗,BT )

j0,0
(f)) ≤ µ(1EC,jN ,N

Var(∗,BT )
V (f))

≤ 2θ2
B(1+ε)/4 ∑

ji,j∈V

µ(1EC,jN ,N
c
(C)
ji,j

Var(∗,BT )
ji,j

(f))

≤ 2θ2
B(1+ε)/4 ∑

i∈[N−1],j∈[N ]

µ(1EC,jN ,N
c
(C)
ji,j

Var(∗,BT )
ji,j

(f)).

Now 1EC,jN ,N
c
(C)
ji,j

is upper bounded by the constraints that either the top or right neighbour of ji,j is
B-super. Taking this upper bound we recover Dirichlet forms of the ABC-model analogously to the first
summand in Equation (9.10) by using Lemmas 9.33 and 9.35 and finally summing 1E (i,j)

C,jn,m
. We end up

with an estimate
Var(f) ≤ 2θ2

B(1+ε)/4 ∑
x∈Z2

µ(DSupp(E (2)
x )∪Q(B)

x
(f)).

Thus the overcounting of each term is of order O(Nℓ) which we can absorb into ε to get the claim.
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Chapter 10

Conclusions and open problems

In the first part of this thesis (Chapters 3 and 7) we proved bounds on the front evolution speed of the
multidimensional East process in certain q-dependent directions in the limit of q → 0 and a mixing result
behind the front in Zd. In the second part (Chapters 4, 8 and 9) we introduced a process, the MCEM,
which roughly can be described as multiple mutually exclusive East processes evolving on the same lattice.
For this process we proved finiteness of the spectral gap in certain cases and for d = 2 showed that for
a wide range of vacancy density configurations, the spectral gap is comparable to the spectral gap of a
two-dimensional East process in the limit qmin → 0.

The technical backbone behind both results (Chapter 6) is the result that for the East process on Zd,
even if starting from minimal boundary conditions, there is a set around the main diagonal which relaxes
on the same time scale as the East process started from maximal boundary conditions. This agrees with
the intuition that near the diagonal there are exponentially more oriented paths that can reach any one
vertex compared to vertices near the axes.

These results leave a set of open questions that we were not be able to solve. We present these with
short paragraphs on why our methods fail or alternatively potential routes to tackle the problems.

10.1 Front evolution problem

Conjecture 10.1. For any direction x ∈ Rd
+ we have vmax(x) = vmin(x).

Let us discuss where our proof methods fall short of proving this conjecture. Theorem 1(B) only bounds
the minimal front speed from the front speed of the one-dimensional East process, but in fact our proof
implies a lower bound on vmin. Recall that in Equation (7.11) for the front velocity in directions slowly
approaching the axis we found the bound

lim sup
q→0

− 1
θ2

q

log2(vmin(x)) ≤ ϕ(β; d)

2 ,

and then used Proposition 6.6(ii) saying that ϕ(β; d) < 1 for β ∈ (0, 1). If we go back to the proof of
Proposition 6.6(ii) we see that this resulted from the induction in d giving ϕ(β; d) ≤ (ϕ(β; d − 1) ∨
ϕ(β; 2)) < 1 and Equation (6.8) that says that

ϕ(β; 2) ≤ 1
2 (1 − β)2 + 2β − β2.

Thus, included in our results already is a slightly stronger result saying that

lim sup
q→0

− 1
θ2

q

log2(vmin(x)) ≤ 1
4 (1 − β)2 + β − 1

2β2.
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This is a bound that goes from 1/4 when β = 0 to 1/2 when β = 1 i.e. from a one-dimensional to a
two-dimensional lower bound for vmin.

If we want to get a d-dimensional bound when β = 1 instead of doing an induction in d we need to
make an explicit d-dimensional construction, i.e. a d-dimensional version of Figure 6.4. To do this, the
partition of the (β, κ)-squeezed box into a coarse grained (0, 2)-squeezed box is analogous. Then instead
of the construction in Figure 6.4 we could have taken the ∗Knight chain and repeat the same steps we took
for (i), leading to a bound

ϕ(β; d) ≤ 1
d
(1 − β)2 + 2β − β2.

Given such a lower bound on vmin(x) as above we would like to find the fitting upper bound for
vmax(x), but using our techniques we are still far from that goal. Indeed in d = 2, the upper bound
given in Theorem 1(C) on vmax goes from the one-dimensional to the two-dimensional bound for angles
that scale with θ2

q , i.e. if maxi,j xi(q)/xj(q) ≥ 2αθ2
q , the one-dimensional bound is given for α = 1/4

and the two-dimensional for α = 0. The lower bound on vmin on the other hand scales linearly in θq,
i.e. if maxi,j xi(q)/xj(q) ≤ 22αθq , and again gives the one-dimensional bound for α = 1/4 and the
two-dimensional for α = 0.

Thus, there is a large gap between the bounds. In the bulk or close to the axis they are comparable but
for the transition from the bulk to the axes the question is still wide open. Furthermore, the bounds that
we provide do not suggest whether one of the two bounds is closer to reality.

Related to this is the following question:

Question 10.2. If Conjecture 10.1 holds, can we identify the function of the velocity v(x) = vmax(x) =
vmin(x) depending on x.

Indeed, Conjecture 10.1 does not necessarily imply an answer to this question as we saw in the one-
dimensional case. We recall that in [7] Blondel proved the existence of a front by proving that the process
seen from the front had a stationary measure. So if it is possible the generalise the proof in [7] to Zd

or otherwise prove the conjecture the question of the exact scaling of v(x) still remains. As mentioned,
above our results do not give a hint to which scaling is the more accurate one.

Recall that we define

C(t) = {x ∈ Rd
+ : τx ≤ t}.

Answering these two questions above then leads to the conjecture already stated in Section 3.1

Conjecture 10.3. There exists a compact subset Ĉ ⊂ Rd
+ such that

∀ ε > 0 lim
t→∞

Pω∗

(
(1 − ϵ)tĈ ⊆ C(t) ⊆ (1 + ϵ)tĈ

)
= 1.

Generalising Theorem 1(C) to d-dimensions In Remark 3.7 we said that Theorem 1(C) could have
been presented in d-dimensions as well with a similar proof. Indeed, it seems that a construction of a Ux

analogous to Figure 7.1 in which the top-right part is a hyperplane of dimension at most d − 1, chosen
correspondingly depending on how x approaches the axes, i.e. whether it approaches just one axis or
multiple at the same time. The proof and statement are analogous albeit more involved, but in light of the
above mentioned open questions it seems that the more pressing open problem is to bring vmax and vmin
closer in d = 2 before aiming for d > 2 constructions.

Relating to the cutoff result, we only give cutoff in a specific case that is governed by the one-
dimensional mode. Thus the next question suggests itself.
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Question 10.4. Is there cutoff for the East process on Zd with maximal boundary conditions on Λn or for
other geometries than Λn.

Our proof of Theorem 4 crucially relied on the fact that, given minimal boundary conditions, the modes
along the axes are much slower than in any other direction so we could use the one-dimensional cutoff
result, Theorem 3.5, to get cutoff on Λn. When we have different boundary conditions on Λn or we
consider other geometries like Λ(δ, ε, t) for δ > 0 from Theorem 3 this obviously does not work anymore
and at the very least we would probably need an answer to Conjecture 10.1.

10.2 MCEM process

Conjecture 10.5. The G-MCEM process is ergodic for any |G| ≤ 2d − 1.

Theorem 5 shows that the G-MCEM for G = Hd is not ergodic and then shows positivity of the
spectral gap, and thus in particular ergodicity, for G such that all h ∈ G share a propagation direction
(case (B.i)), in which case |G| ≤ 2d−1, or that G (or a superset thereof) is a star graph (case (B.ii)), in
which case |G| ≤ d + 1. An immediate question that arises from this is whether the chain for G = 2d − 1
is ergodic or not. In the case of d = 2 the answer is yes since any G of cardinality 2d − 1 = 3 is a star
graph, but for d ≥ 3 we have no result.

It is clear that the proof for the case (B.i) cannot be used for G where all vacancy types share a direction.
Let us outline the proof only of ergodicity in the star graph case to showcase how a generalisation to G
with |G| = 2d − 1 might look.

Lemma 8.8 is sufficient to show the ergodicity of the model where G is a star graph. Indeed, consider
the event Ax(n, m) comprised of the configurations for which Λ + x − nv is good and that in the box
Λx(n, m), of side length n + m that contains x and of which x − nv is a corner, every interval of length
m contains every vacancy type. Then, it is not hard to see that µ(∪n,mAx(n, m)) = 1 for any x and that
given a Ax(n, m) and using Lemma 8.8 repeatedly, it is possible to find a legal path of length depending
on n, m and d that allows to put any vacancy type on x. Instead of using the exterior condition theorem,
which is not applicable since A(n, m) does not satisfy the exterior condition, we can then use

Var(f) ≤
∑

x

µ(Varx(f)) =
∑

x,n,m
µ(1Ax(n,m)Varx(f))

and the path method to upper bound any summand in the right hand side by a term proportional to
DΛx(n,m)(f). Assuming that D(f) = 0 implies that DΛx(n,m)(f) = 0 and thus Var(f) = 0 which in
turn implies that f is constant and thus the chain associated to the G-MCEM is ergodic by Theorem 2.2.

The question is thus how the proof methods of Lemma 8.8 can be generalised to apply to G with
|G| = 2d − 1. If we take the analogous definition of good Λ for equilateral boxes Λ of side length 2 as
the configuration ω such that ω2h = h for each h ∈ G and ωx = ⋆ for all x ∈ ∪iFi \ G, where we note
that G ⊂ ∪iFi.

The first part of the proof of Lemma 8.8, relaxing Λ \ ∪iFi, then applies equally to this case with 2d − 1
vacancy types. The problem is with making Λ + v good since on the paths {v + jei : j ∈ [ki − 1]},
we were looking for the only vacancy type such that ei ̸∈ P(h), i.e. hi, but if G = 2d−1 then there are
up to 2d−1 − 1 such vacancy types we could meet. Further, 2h + v does not immediately neighbour
Λ \ ∪iFi anymore which we used before to argue that we can clear the paths in the ei direction of any
non-hi-vacancy.

So it is not clear that defining good Λ in this way can be used to prove ergodicity for |G| = 2d − 1
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Question 10.6. In the ABC-model are there parameter sets q with qmin = qC and lim infqC→0 qmed > 0
such that

lim
qC→0

γ(G, q)
γ2(qC)

= 1?

Theorem 6 does not treat the case of having many A- and B-vacancies in the ABC-model. This is
because their propagation directions are exactly opposite. It was crucial that A and C vacancies share a
direction in the proof of Theorem 6(3.iii). Since they shared a direction it sufficed to require that there
be a single AC-super box in every row, since this excludes A- and C-vertices on the top and bottom
vertices respectively this is not an event we can require for every vertex in a row and in fact it sufficed that
we require that the rest of each row contains no B-vacancy to allow two-dimensional relaxation of the
B-vacancies.

In the case of many A- and B-vacancies we have not managed to find a configuration that facilitates
two-dimensional motion of C-vacancies, but it seems likely that we can prove one-dimensional motion,
i.e. prove that there for any ε there is a qC(ε) such that

γ(G, q) ≥ γ1(qC)
(1+o(1))

for all q with qC < qC(ε) and lim infqC→0 qmed > 0. To see this, recall the proof of Theorem 5(B.ii) and
in particular Figure 8.4. In that case we considered the ACD-model. Notice that the good event E (N)

only required one A-vacancy (the central vacancy, i.e. the analogue of the C-vacancy in the ABC-model),
while it required O(N) C- and D-vacancies. Thus, if qC , qD > λ for some λ > 0 it seems probable that
we can use the path method at a constant cost to remove any C or D vacancies in the way and then move
the A-vacancy one-dimensionally to the origin.

If we can affirmatively answer Question 10.6 the next conjecture is the logical next step.

Conjecture 10.7. Fix ∆ > 0 and consider a G-MCEM on Z2 with |G| ≤ 3 and let q be a valid parameter
set with p > ∆. Then,

lim
qmin→0

γ(G, q)
γ2(qmin)

= 1.

Proving this does not only require an answer to Question 10.6, but also a more refined construction
in the cases (3.i) through (3.iii) since the conditions we require on q for these cases leave some gaps.
Consider for example the case where qmaxθ10

qmin → 0 as qmin → 0. Morally, we would still say that there
is no frequent vacancy type, but Theorem 6 makes no statement about this case. Thus, a more refined
construction for the various cases would be necessary to prove Conjecture 10.7.

This would solve the two-dimensional case and begs the question: how does this generalise to d-
dimensions.

Question 10.8. What conditions can we put on G and q such that

lim
qmin→0

γ(G, q)
γd(qmin)

= 1?

Related to this is, of course, Conjecture 10.5. At first glance it seems the methods from Chapter 9
generalise to d-dimensions once a d-dimensional version of the h-grid Q(h) is constructed. Consider
(3.i) in which the salient point is that we find paths that contain only one vacancy type at most, which
generalises to the d-dimensional case where each vacancy type has a low density. The analogue of (3.ii)
is the case where at most one vacancy type is frequent. In this case, it seems again like the ideas from
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the two-dimensional case should be recyclable since we can always require there to be boxes with the
frequent vacancy type on boundaries of the boxes as we did in Section 9.3. Now for any higher number of
frequent vacancy types, it might be possible to recycle the construction from (3.iii) which needed mainly,
as discussed above, that the frequent vacancy types share a direction but this needs some more careful
thought.

Recall that the initial inspiration for the MCEM was the model given in [27], in which additionally to
the East mechanics it was also possible that for example a B-vacancy facilitated by an A-vacancy could
flip back to the neutral state. We called this ring on a vertex a diffusive ring and there was a rate parameter
ξ ∈ [0, 1] choosing between the classic MCEM and the diffusive ring (see Remark 4.7). We called this
the isotropic MCEM and the parameter ξ ∈ [0, 1] was the rate of diffusive rings.

Question 10.9. What is the scaling of the spectral gap of the isotropic MCEM as qmin → 0 for ξ ∈ (0, 1).

In [27] Chandler and Garrahan conjecture, based on simulations, that the resulting spectral gap of
this model is an interpolation with parameter ξ between the spectral gap of FA-1f and that of the
multidimensional East model. In fact, it seems natural to conjecture that for ξ > 0 at least ergodicity
should not be a problem anymore, even though G = Hd, since there is a non-zero chance that previously
blocking vacancy types can remove each other. The author is not aware of any research in this direction
currently ongoing making this an open problem.
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