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"Science is a field which grows continuously with ever expanding frontiers.
Further, it is truly international in scope. Any particular advance has been
preceded by the contributions of those from many lands who have set firm
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Abstract

In this thesis we consider a three-dimensional (3D) superlattice of metal-
lic layers of thickness L separated by a spacer of width W and periodicity
d. The presence of a confinement potential along the direction orthogo-
nal to the layers is reflected in an electronic multiband structure which, as
known, leads to multigap superconductivity and modulation of the critical
temperature. Parallelly, interfacing different materials in the direction of
confinement breaks the spatial inversion symmetry allowing a Rashba spin-
orbit coupling (RSOC). The electrons in-plane are, thus, subjected to an
effective magnetic field which orients the spin in a direction orthogonal to
the momentum. This is reflected in a spin-splitting of the subbands that
characterize the superlattice.

The main purpose of this thesis is to study the combined effect of multi-
gaps superconductivity and RSOC and to see how, by appropriately varying
the intensity of the Rashba coupling, the structural characteristics of the sys-
tem and the parameters that define the superconducting phase, it is possible
to obtain an amplification of the critical temperature.

As we will see, the interplay of the RSOC and superlattice structure
leads to an extended van Hove singularity in the density of states (DOS) at
the Brillouin zone edge with an unconventional Lifshitz transition for one
of the two helicity states of the spin-orbit split electron spectrum. This is
reflected in an amplification of the gaps and critical temperature where the
DOS shows a maximum. The evaluation of the superconducting gap and
the critical temperature is done by including in the Bogoliubov-de Gennes
equation the quantum configuration interaction between the gaps. This is
taken into account by considering an electron-phonon interaction dependent
both on the band indices and on the wavevectors along the confinement di-
rection. Therefore, unlike the Bardeen–Cooper–Schrieffer (BCS) theory, the
superconducting coupling is not constant but has a matrix structure. The
possibility to suitably vary each term of this matrix allows to study the effect
on the superconducting phase of the coexistence of different condensates in
different coupling regimes.

It is found that the presence of the RSOC amplifies both the gap and
the critical temperature when the Fermi energy crosses the band edge of
the higher energy subband. However, there is a limit to the variation of the
Rashba coupling constant, as we will see, this quantity is inversely propor-
tional to superlattice modulation parameter: increasing the first is equiva-
lent to decreasing the second, this reduces the separation between adjacent
subbands and generates overlapping and interference effects.
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Having fixed a maximum coupling constant and, therefore, a minimum
periodicity, we see how by suitably varying the thickness of the layers it is
possible to increase both the electron-phonon coupling constant and the cut-
off energy. This allows to reconstruct the superconducting dome typical of
materials at high critical temperatures and to obtain critical temperatures
close to room temperature.

Our results suggest, on the one hand, a method to effectively vary the
effect of the RSOC via the tuning of the superlattice modulation parame-
ter, on the other hand, they provide precise indications on the values of the
parameters involved in view of possible practical realizations in a way poten-
tially relevant for spintronics functionalities in several existing experimental
platforms and materials.
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1

Introduction

Several works [1–14] have shown that the critical temperature (TC) of multigap super-
conductivity in 3D heterostructures at atomic limit, made of a superlattice of atomic
layers with an electronic spectrum characterized by several quantum subbands, can be
amplified by a shape-resonance driven by the contact exchange interaction between dif-
ferent gaps. The TC amplification is achieved tuning the Fermi level near the singular
nodal point [15, 16] at a Lifshitz transition for opening a neck. Recently, high interest
has been addressed to the breaking of inversion symmetry which leads to spin-splitting
with a null magnetic field, the Rashba spin-orbit coupling (RSOC), also in 3D layered
metals [17–19]. However the physics of multigap superconductivity near unconventional
Lifshitz transitions in 3D heterostructures with RSOC, being in a non-BCS regime, is
not known. In this thesis we obtain the superconducting gaps by the Bogoliubov-de
Gennes theory and the 3D electron wavefunctions by solving the Schrödinger equation.
This shows the feasibility of tuning multigap superconductivity by suitably matching
the spin-orbit length with the 3D superlattice period. It is found that the presence of
the RSOC amplifies both the k-dependent anisotropic gap function and the critical tem-
perature when the Fermi energy is tuned near an electronic Lifshitz transition [20–22].

1.1 From the BCS theory to the multigap superconductiv-
ity with RSOC

The superconductivity is one of the most fascinating phenomena in solid state physics
and has important conceptual and technological implications: from super-fast comput-
ers to new memory devices, from levitation trains to new medical imaging applications
and many other possibilities. The key feature of the superconducting materials is to
exhibit zero electrical resistance and perfect diamagnetism below a characteristic tem-
perature, referred to as critical temperature and conventionally indicated with TC (Fig.
1.1) [23,24].

Since the discovery of superconductivity in 1911 [23], numerous studies have been
carried out in this field [1–14, 21, 22, 24–49, 49–91]. The purpose was both to find a
theoretical model for the microscopic description of the phenomenon, and to search
new materials with room critical temperature and ambient pressure superconductivity
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1. INTRODUCTION

A B

Figure 1.1: Two requirements for superconductivity : (A) vanishing of electrical resistivity below
a critical temperature TC , discovered in mercury by Kemerlingh Onnes et al. in 1911 [23]; and
(B) expulsion of magnetic flux below a critical field HC , discovered by Meissner and Ochsenfeld
in 1933 [24].

in order to make the experimental results more easily reproducible, especially in view
of practical applications.

In 1950 V. Ginzburg and L. Landau [26] developed a first phenomenological theory
of superconductivity, based on the Landau theory of second-order phase transitions.
The two scientists managed to formulate a series of equations that described the phe-
nomenon, although, it was not possible to explain at a microscopic level why this would
occur.

The first microscopic theory of superconductivity was proposed in 1957 by J. Bardeen,
L. Cooper and R. Schrieffer (BCS theory) [27]. The BCS theory captures the essential
physics which gives rise to the condensation of the Cooper pairs into a coherent super-
conducting macroscopic state. Specifically, it deals with homogeneous and single-band
three-dimensional systems, the so called conventional superconductors, and it is essen-
tially a self-consistent, mean-field treatment. In the original formulation, the attractive
interaction between opposite spin electrons is a time-retarded interaction mediated by
phonons. A passing electron, whose average velocity, given by the Fermi velocity, is
much larger than the propagation speed of the phonons, polarizes the local ions of the
lattice: before the lattice can relax, a second electron arrives and feels the attraction
from the still-polarized positive ions. This attraction produces a pairing of electrons.
The two electrons form a Cooper pair whose size is denoted by the superconducting
coherence length ξ0 (Fig. 1.2). In conventional superconductors the pair size is so large
that a huge number of pairs is contained on the average within that distance. The
large number of overlapping pairs permits to deal with the mutual effects of the pairs
on the average by introducing an appropriate version of the so-called mean-field theory
for phase transitions. The electron-phonon interaction leads to an effective electron-
electron attraction in a narrow region around the Fermi wavevector, kF , this attraction
is of the order of the characteristic average phononic frequency of the lattice. The
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1.1. FROM THE BCS THEORY TO THE MULTIGAP SUPERCONDUCTIVITY WITH RSOC

Cooper pair

Positive charge density

Figure 1.2: The formation of Cooper pairs. A conduction electron (red circle), passing through
the lattice, perturbs some positive ions (blue circles) with respect to their equilibrium position,
attracting them slightly towards it and forcing them to come closer. This creates a region of
higher positive charge density. Local perturbation of charges in the lattice produces a weak
short-range attractive potential capable of capturing a second electron. This causes an effective
attraction between the two electrons leading to the formation of Cooper pairs. Pairs can flow
faster in the lattice than unbound electrons.

Cooper pairs are, namely, strongly delocalized and interconnected in a weak coupling
configuration which is reflected in the appearance of an energy gap, ∆, in the spectrum
of the electronic excitations in correspondence with the Fermi wave vectors, ±kF (Fig.
1.3).

The standard BCS theory relies an many approximations about the metallic phase:
i) a simple homogeneous lattice; ii) a single electronic band; iii) a single value of
the density of states at the Fermi level (N(EF )), and iv) a constant electron-phonon
coupling constant (g). The basic assumption is the Migdal approximation [28]: the
phonon is supposed to have an energy, ω0, very small, while the electron density is very
high and the Fermi energy, EF , is considered the highest energy scale, hence ω0/EF � 1.

Several corrections, additions and clarifications have been introduced in the frame
of the standard BCS theory [29–31, 35], but it has been accepted that the supercon-
ducting critical temperature cannot be larger than 23 K. In fact, in the single band
approximation, TC increases with both the phonon energy and the coupling strength,
but for extreme strong electron-phonon coupling the electron liquid, at low temperature,
prefers to order in the real space, forming electronic crystals which compete with the
superconducting phase. Moreover if the superconductivity survives upon increasing the
electron-phonon coupling, the critical temperature decreases since the phonon energy is
pushed toward zero. In this regime the lattice structure collapses.

In 1986 G. Bednorz and K. A. Muller discovered that the LaBaCuO, a lanthanum,
barium and copper oxide, becomes superconducting about 35 K, above the limit pre-
dicted by the BCS theory. Given the relevance of the discovery, the two physicists
received the Nobel Prize for Physics in 1987.

In February 1987, a perovskite ceramic was identified capable of superconducting
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1. INTRODUCTION
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Figure 1.3: The energy spectrum of a conventional superconductor. The dashed lines represent
the spectrum of the normal state, while the continuous curves represent the quasi-particle
spectrum. ∆ is the superconducting order parameter.

at 90 K (chemical formula Y Ba2Cu3O7). This discovery was very important because
it showed that liquid nitrogen could be used as the refrigerant. Given the tempera-
tures involved, these materials began to be referred to as High Critical Temperature
Superconductors (HTCS). In the following years other materials were discovered with
increasingly higher critical temperature (Fig. 1.4).

The HTCS belong to the group of strongly correlated compounds. In these systems,
complex repulsive electron interactions and a large number of degrees of freedom lead to
a rich variety of states of matter. Exotic phases like the pseudogap, charge-, spin-, and
pair-density waves, but also the remarkable phenomenon of superconductivity emerge,
depending on the doping level and on the temperature.

The largest group of HTCS are the cuprates, which are compounds in which the
charge carriers are localized in copper oxide layers. Superconductivity in cuprates only
emerges within a specific doping range. Undoped compounds are Mott-insulators, which
indicates the existence of strong electronic correlations in these systems. The doping
parameter is generally the amount of free charge carriers, but other factors, like pressure,
can influence the doping level as well. The typical pair correlation length in these HTCS
is much smaller than in conventional superconductors. This indicates a different regime
of pairing, locating the HTCS in an intermediate regime between overlapping Cooper
pairs in the BCS weak coupling regime and more localized pairs with bosonic character
in the Bose-Einstein Condensation (BEC) strong coupling regime. Since there is no
obvious symmetry breaking in continuously varying the distance between the fermions
of the pairs, we expect to find a continuous transition between the two regimes, or a
crossover.

The fundamental properties of superconductivity may be explained without intro-
ducing any unnecessary approximation using the general theory of superconductivity
based on the self-consistent theory developed by Bogoliubov-de Gennes [35] and sub-
sequently extended by Gor’kov [2], Josephson [3], Kondo [4], Blatt [5], Leggett [6] and
others [7, 8]. This theory provides the spectrum of the excited quasiparticles and as-
sumes that the transition from the normal phase to the superconductive phase is a
real phase transition in which the electromagnetic gauge invariance is spontaneously
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1.1. FROM THE BCS THEORY TO THE MULTIGAP SUPERCONDUCTIVITY WITH RSOC

Figure 1.4: The time evolution of the TC of superconductors. The superconductivity at TC =
203 K is observed in the sulphur hydride system H3S under a pressure of 155 GPa [32].
Significant drops in resistivity on cooling up to 260 K and [180 − 200] GPa are observed
recently in lanthanum superhydride LaH10 [33]. Room-temperature superconductivity with
TC = 287.7 K at P = 267 GPa was reported in October 2020 in a carbonaceous sulphur
hydride CSHx [34].
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1. INTRODUCTION

broken [36]. The general theory of superconductivity allows the description of super-
conductors with complex anisotropic or granular structure in the momentum space and
in the real space [9]. The weak coupling limit of this theory reproduces the standard
BCS superconductivity or the Ginzburg Landau regime, while the strong coupling limit
gives the Bose-Einstein condensation.

In 2001 magnesium diboride MgB2 was found to be superconducting at a tem-
perature TC = 39 K. This discovery has been of great interest for its high critical
temperature, but mostly because it marked the formal and definitive appearance of a
new class of superconductors: multiband/multigap ones, to which many of discovered
iron-based superconductors also belong [77].

Multiband and multigap superconductivity is emerging as a complex quantum co-
herent phenomenon with physical properties which are different or cannot be found
in single-band conventional superconductors. In multiband and multigap systems the
total superconducting condensate results from the coherent mixture of partial conden-
sates forming in each band. Each partial condensate can have different properties with
respect to the others, leading to interesting interference and resonance effects. The fun-
damental interaction in the general theory [5,6], missing in the standard BCS scenario,
is the exchange terms due to configuration interaction between multiple condensate. It
was based on experimental results showing that multiple electronic components coexist
in cuprates at optimum doping level [10–13,13,14]. A first component is a Migdal con-
densate (ω0/EF � 1) in the BCS limit and a second component is a strong interacting
electronic liquid, where the Migdal approximation is violated, ω0/EF ∼ 1. The high
temperature superconductivity was assigned to the role of the shape-resonance which
is due to the exchange term between electrons in two different regime [67].

In 1996-1998 a theory for HTCS in cuprates was developed by Bianconi, Perali and
Valletta (the BPV theory) [62–66], in the frame of the general theory of superconduc-
tivity for multicomponents electronic systems. The variation of the critical temperature
with doping is predicted considering Lifshitz transitions [64] for a new appearing Fermi
arc driven by doping and misfit strain. While some Fermi arcs host BCS-like conden-
sates, the new Fermi arc, appearing at the Lifshitz transition, hosts a condensate in the
BEC or in the BCS-BEC crossover regime. The wavefunctions of electrons at the Fermi
level are obtained by solving the Schrödinger equation in an artificial lattice superstruc-
ture. The exchange contact interaction, due to configuration interaction between pairs
in different Fermi arcs, is evaluated numerically by the overlap of the pair wavefunc-
tions without approximations. The exchange contact interaction increases the critical
temperature giving high temperature superconductivity, with kBTC/EF ∼ 0.2, which
was experimentally identified [67,68] and fully explained by the theory [69–71].

In 2015 Drozdov et al. [32] showed that the sulphur hydride compound H3S reaches
a maximum critical temperature of 203 K at a pressure of 155 GPa. This experimental
discovery seems to agree with Ashcroft [49], Li et al. [50] and Duan et al. [51]. In
particular Ashcroft pointed out that the high vibrational frequency of hydrogen atoms,
linked to the small mass, provides a strong electron-phonon interaction. Subsequent
studies [52] showed that hydrogen can become a HTCS, TC = [100 − 240] K, in the
molecular state and will reach TC = [300 − 350] K in the atomic phase at pressures
of 500 GPa. The work of Li et al. [50] has, in fact, estimated a critical temperature
of about 80 K in high pressure sulphur hydride system. These compounds, such as
hydrogen, have a high Debye temperature, but lower pressures are required to metallize
them.

The latest research [32,48–52] has shown that hydrogen dominant materials apper to
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1.1. FROM THE BCS THEORY TO THE MULTIGAP SUPERCONDUCTIVITY WITH RSOC

be excellent candidates for the high critical temperature superconductivity. Therefore
the materials research for room-temperature superconductivity was not driven simply
by looking for a high phonon energy and a high coupling strength in the Cooper pairing.
The theoretical predictions of high TC in solid metallic hydrogen and hydrides at high
pressure [53–55] were based on the search of materials characterized by high frequency
phonons mediating the pairing and by a negative dielectric constant controlling the
electron-electron interaction and the Coulomb energy [49,53–60].

The discovery of a room-temperature in a pressurized ternary hydride CSHx metal
with the critical temperature at 15 degree Celsius has been reported recently [34] and
seems to be moving in this direction. As we will show below, the BPV theory is able
to provide a theoretical explanation for the recent results of critical room-temperature
superconductors, provides a numerical model capable of providing experimentally verifi-
able predictions and gives indications on the realization of new materials at high critical
temperatures.

A central and new aspect of the work presented in this thesis will be to extend the
concepts of the theory of multigap superconductivity in the presence of a spin-orbit
Rashba coupling.

Usually, the spin-orbit coupling (SOC) is classified as extrinsic or intrinsic mecha-
nism, depending on the origin of the electrical potential. The intrinsic SOC arises due
to the crystalline potential of the host material or due to the confinement potential
associated with the device structure. On the other hand, the extrinsic SOC is due to
the atomic potential of random impurities, which determine the transport properties
of a given material. The majority of the studies has focused on the Rashba spin-orbit
coupling (RSOC) for electrons moving in the xy-plane, which was originally introduced
by Rashba [92] to study the properties of the energy spectrum of non-centrosymmetric
crystals of the CdS type and later successfully applied to the interpretation of the two-
fold spin splitting of electrons and holes in asymmetric semiconducting heterostruc-
tures [93, 94]. RSOC is classified as being due to the structure inversion asymmetry
(SIA), which is responsible for the confinement of electrons in the xy-plane. In addition,
one may also consider the SOC arising from the bulk inversion asymmetry (BIA), which
is usually referred to as Dresselhaus SOC (DSOC) [95]. Both RSOC and DSOC modify
the energy spectrum by introducing a momentum-dependent spin-splitting [96]. This
can also be understood quite generally on the basis of symmetry considerations. In a
solid, the spin degeneracy for a couple of states with opposite spin direction, comes from
both time reversal invariance and space inversion invariance (parity). By breaking the
parity, as for instance, in a confined two-dimensional electronic gas (2DEG), the spin
degeneracy is lifted and the Hamiltonian requires an effective momentum-dependent
magnetic field, which is the SOC. As a result, electron states can be classified with their
helicity in the sense that their spin state depends on their wave vector.

An essential aspect that makes RSCO particularly attractive for spintronics and
quantum computation [92–95,97–108] is its ability to be controlled by an external gate
voltage placed on top of the 2DEG. Indeed, since the strength of the Rashba parameter
is directly related to the interfacial potential drop, applying a gate voltage modifies the
electron occupation, which in turn controls the magnitude of the RSOC, as experimen-
tally demonstrated in InGaAs/InAlAs heterostructures [107, 109]. The electric control
of spin states is higher to the magnetic field control due to a better scalability, lower
power consumption and the possibility for local manipulation of the spin states.

The spin-orbit interaction plays, moreover, a central role as a design element of
topological states of matter, both recently discovered and proposed [109–129]. In partic-
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1. INTRODUCTION

ular, the topological insulator and topological superconductor states, both remarkable
for their edge states, which are characterized by helical spin textures and Majorana
fermions [110,130,131].

Over the past thirty years, ideas based on the work of Rashba [93] have been lead-
ing to a vast number of predictions, discoveries, and innovative concepts far beyond
semiconductors. The past decade has been particularly creative with the realizations of
means to manipulate spin orientation by moving electrons in space, controlling electron
trajectories using spin as a steering wheel, and with the discovery of new topological
classes of materials. These developments reinvigorated the interest of physicists and
materials scientists in the development of inversion asymmetric structures ranging from
layered graphene-like materials to cold atoms.

Given the important implications highlighted above, the aim of the thesis project has
been the study of the RSOC in non-centrosymmetric superconductors starting from the
following pioneering works in the field [94,95,128,129,132–135]. In non-centrosymmetric
superconductors, where the crystal structure lacks a centre of inversion, parity is no
longer a good quantum number and an electronic antisymmetric spin-orbit coupling
(ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has pro-
found consequences on the superconducting state. For example, it generally leads to a
superconducting pairing state which is a mixture of spin-singlet and spin-triplet compo-
nents. The possibility of such novel pairing states, as well as the potential for observing
a variety of unusual behaviours, led to intensive theoretical and experimental investi-
gations. Here the focus is on evaluating the effect of ASOC on the superconducting
properties.

As pointed above, it is known that the SIA, which stems from the inversion asym-
metry of the confining potential in a 2DEG, induces a spin-orbit band splitting with
states of different helicity [17,18,93,136–141] without the need for magnetic field. Giant
spin-orbit induced spin splitting in the range [150−450] meV have been found in metal
alloys [142] and transition-metal dichalcogenides [143]. A three dimensional Rashba
spin splitting has been observed in PtBi2, BiTeX (X = Br, Cl, or I ) and GeTe
which show dispersion along the out-of-plane direction [144–146].

The realization of the three-dimensional Rashba-like spin splitting [19] in quantum
materials and heterostructures potentially unfolds numerous promising applications.
Following the first theoretical study of superconductivity [133] with spin-orbit band
splitting in a 2D metallic layer or at the surface of dopedWOx oxides, several theoretical
works have studied the emergence of superconductivity in the presence of spin-orbit
coupling in a 2D metallic layer [147–153].

Recently, experimental evidence that the strength of spin-orbit interaction is corre-
lated with quasi 2D superconductivity in the (111) LaAlO3/ SrT iO3 interface has been
reported [154] and confirmed in several systems [155–158]. The spin polarized energy
bands near a topological Lifshitz transition can be detected experimentally by ARPES
spectroscopy as it has been observed in complex oxide heterostructure interface [159]
and in layered cuprate perovskite superconductors [160]. Today there is a high interest
in the physics of quantum complex materials aimed at the realization of mesoscopic
quantum heterostructures for novel superconductor Josephson junctions [161,162].

The theoretical studies of superconductivity coexisting with spin-orbit coupling have
been limited to a 2D superconducting layer and to a single band metal [133, 147–153],
while it is not known how superconductivity will arise in a 3D Rashba system 1. More-

1In the work [17] have studied the spectral and the transport properties of a quantum well in the
presence of RSOC. The Hamiltonian they introduced is in some respects similar to the one proposed in

10



1.2. OUTLINE

over, previous theoretical investigations have considered single-gap superconductors
while, in multiband 3D superconductors, multigap superconductivity need to be con-
sidered in the presence of band spin splitting due to spin-orbit coupling.

In fact, in multigap superconductivity, it is no longer possible to neglect the key role
of quantum configuration interaction between superconducting gaps as, for example,
the BEC-BCS crossover gap at Lifshitz transitions near a band edge and other gaps in
the BCS limit far from band edges [64, 81, 163–169]. Finally, all theoretical approaches
have been developed in the BCS regime where the Fermi energy is much higher of both
the spin-orbit energy band splitting and the energy gap, while the most interesting
physics occurs in the regime where the Fermi energy is in the same energy range as the
superconducting energy gaps and the spin-orbit-splitting.

The main results of this thesis is the theoretical description of multigap supercon-
ductivity [64, 81, 163–170, 170] at the unconventional Lifshitz transition [22] in a 3D
heterostructure at the atomic limit with a periodicity of few nanometers with tunable
spin-orbit strength. Our aim is to show that the interplay between the Rashba spin-orbit
coupling and superlattice structure allows for a fine tuning of the critical temperature.

1.2 Outline

In this thesis, we will expand the numerical study proposed by A. Bianconi et al. in 1993
in the context of the BPV theory of HTCS near a Lifshitz transition, to the case where
there is a RSOC [170–174]. To this end, we will study the properties of the normal
phase and the superconducting phase of a three-dimensional superlattice of quantum
layers with RSOC.

The layout of the thesis is the following:

• The second Chapter is an introduction to the spin-orbit Rashba interaction.

Firstly, we explain how effective spin-orbit Hamiltonians terms arise in solid state
systems. At the end we pay some attention to two-dimensional systems which
play an important role in spintronics. Starting from the work of L. P. Gor’kov
and E. I. Rashba [133], in which the superconductivity theory for two-dimensional
metals without inversion symmetry has been developed, we study the effect of the
RSOC in the presence of a superconducting order in a two-dimensional system
when the the twofold spin degeneracy is lifted by RSOC and singlet and triplet
pairings are mixed in the wavefunction of the Cooper pairs.

• In the third Chapter we analyse the concepts and theoretical methods used in this
thesis to explain and derive the properties of the normal and the superconducting
phase in confined systems, both from an analytical and numerical point of view.
The Bogoliubov-de Gennes equation is generalized to systems for which quantum
size effects are not negligible. In particular, we study the BPV theory, proposed in
the context of HTCS near a Lifshitz transition in a multiband/multigap system in

this thesis, the differences consist in the fact that they have considered a reference system (x, z, y) rather
than (x, y, z) (we will see the implications of this choice in Appendix D) and a single-hole potential
rather than a periodic one, moreover the properties of the superconducting phase are not investigated.
Same thing goes for the work of V. Brosco et al. [19] although they introduce a RSOC coupling in a 3D
system, such a system is characterized by a Rashba coupling in the xy-plane and the electrons along
the z direction are supposed to be free. They also limit their study to dc conductivity in the presence
of static disorder (in Appendix E we will see how DOS and FS are obtained in this model) without
analysing the superconducting phase.
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1. INTRODUCTION

which the shape-resonance idea is centred on the coexistence of at least one large
Fermi surface and at least one small Fermi surface appearing or disappearing upon
small changes in the chemical potential. The shape-resonance in superconducting
gaps [171,175] is a type of Fano–Feshbach resonance between pairing channels at a
Bose-Einstein to Bardeen-Cooper-Schrieffer crossover in multiband superconduc-
tors, appearing when the chemical potential is tuned to the proximity of a band
edge. Here the Lifshitz transition occurs because of the variation of the Fermi
surface topology as a function of the chemical potential. By changing the chemi-
cal potential, the critical temperature decreases towards 0 K when the chemical
potential is tuned to the band edge, because of the Fano-antiresonance, and the
TC maximum appears (as in Fano-resonances) at higher energy, between one and
two times the pairing interaction above the band edge [170–173].

• In the fourth Chapter we analyse the recently observed room-temperature super-
conductivity in two hydrogen-dominant compounds: H3S and CSHx. Underlining
how the BPV theory, in the two-dimensional formulation, is able to explain the
observed experimental results and predict the realization of new high TC materials.

• The innovative idea of this work is to study the model described in the third
Chapter in the presence of a spin-orbit Rashba coupling. In the fifth Chapter
we describe the analytical and numerical results for the normal phase, while in
the sixth Chapter we report the theoretical treatment developed to describe and
subsequently implement the calculation of the quantities of interest in the super-
conducting phase. In this first phase we are interested in the calculation of the
gap, then we also derive the expression of the critical temperature.

• In the seventh Chapter we see what happens in the superconducting properties of a
quantum layered heterostructure as the superconducting coupling and, therefore,
the cut-off energy vary. For the first time we rebuild the superconducting dome
of a three-dimensional superconductor in the presence of a coupling RSOC.

• In the eighth chapter we see, instead, that it is possible to reach critical tem-
peratures of the order of those observed in hydrogen dominated compounds even
in a weak coupling regime as long as a Rashba spin-orbit coupling is considered
and the geometry of the heterostructure is suitably varied. This gives important
indications also in view of possible experimental realizations.

• Finally in ninth Chapter we list the salient results that this thesis work has allowed
to obtain.

1.3 Main results: a brief overview

In this thesis we study a 3D superlattice of weakly interacting quantum layers in the
presence of a RSOC coupling and a pairing interaction. The heterostructure is made
of nanoscale superconducting layers, of thickness L, intercalated by insulating spacers,
of amplitude W . The heterostucture can be described as superlattice of quantum wells
with periodicity d = L+W . The system can be described by the following Hamiltonian

H = H̃R +HI , (1.1)

12



1.3. MAIN RESULTS: A BRIEF OVERVIEW

where H̃R is the single-particle contribution, which includes both a periodic potential
along z, Vz = −V [θ(z − d)− θ(z − L)], and a RSOC coupling

H̃R = HKP +HRSOC =
p2
z

2mz
+ V (z) +

p‖
2

2m
− iα (σx∂y − σy∂x) , (1.2)

where p = −i~∇ is the usual momentum operator, p‖ its projection in the xy-plane
and α is the RSOC constant linked to the periodicity of the lattice by a relationship of
the type

α = 2
}2

2m

2π

d
αSO, (1.3)

αSO is a dimensionless parameter which describes the strength of the Rashba momentum
in units of the superlattice modulation parameter, d.

For the second contribution to the Hamiltonian in Eq.(1.1), we adopt the standard
contact interaction with a cut-off energy ~ω0

HI =
U0

2

∫
dr Ψ †α (r)Ψ †β (r)Ψβ (r)Ψα (r) , (1.4)

where Ψα (r) is the annihilation fermion field operator and summation over the repeated
spin indices (α, β) is understood.

In Chapter 2 we study the Rashba Hamiltonian, HRSOC + HI , and we derive the
dispersion relation for the electrons in the xy-plane

ελ(p‖) =
p2
‖

2m
+ λαp‖, (1.5)

where λ = ±1 is the helicity index.
The effect of RSOC is to remove the spin degeneracy, which this is reflected in a

doubling of the spectrum into two bands of opposite helicity (see Fig. 2.2). By adding
the electron-phonon interaction, that is HI , we obtain the equation of the gap and of
the critical temperature as a mean-field approximation (see Sec. 2.2).

The pairing potential in addition to allowing the formation of pairs only between
electrons with the same helicity is a mixture of singlet and triplet components. It is
therefore reasonable to expect an unconventional superconductivity.

In Chapter 3 we study only the contribution to the Hamiltonian of the confinement
potential, HKP+HI . The electrons in motion in the xy-plane of the layers are free, while
in the z-direction they are affected by a periodic potential of the Kronig-Penney form.
The geometry of the system is such that the quantum size effects are not negligible and
are reflected in a multiband electronic structure. In fact the dispersion relation obtained
has the following form

εn(p) = E(px, py) + En(pz),

where E(px, py) is the dispersion of free electron along the plane of the layers and En(pz)
is the dispersion along z that we calculate numerically.

The multiband structure means that the self-consistency equation for the gap (Sec.
3.2) has a BCS-like form in which, however, the electron-phonon coupling is no longer
constant, but is a matrix that depends on the band indices and the wavevectors along
the direction of the confinement. This allows to have a multicondensate system in
different BCS-BEC coupling regimes.

In Chapter 4 we see how the multicomponent structure is reflected in the properties
of the normal and superconducting phase of a simpler system of quantum wires.

13
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We show that the highest energy subband, in our case the third, has a two-dimensional
dispersion, indeed, in addition to having a parabolic dispersion along x, it has a dis-
persion along z. This is reflected in the DOS trend which shows a widening between
the band edge energy and the top of the third subband (Fig. 4.4). When the chemi-
cal potential reaches the top of the third subband there is a van Hove singularity that
justifies the DOS peak. The evolution of the topology of the Fermi surface shows that,
between the band edge and the van Hove singularity, the system undergoes two different
Lifshitz transitions [20–22]. The first Lifshitz transition is of the first type in which a
new 2D Fermi surface appears and a second Lifshitz transition in which the system
crosses from a 2D geometry to a 1D one, this happens in correspondence with the van
Hove singularity.

The unusual properties in the normal phase are reflected in the superconducting
phase, the critical temperature shows, indeed, an asymmetrical trend that can be mod-
elled with an antiresonance of the Fano-Fashbach type (Fig. 4.6). When the chemical
potential reaches the Lifshitz transition of the first type, a new Fermi surface (FS) ap-
pears and the coexistence of condensates in a BCS-like regime and a condensate in a
BEC-like regime becomes possible. In this case, the system is in an antiresonance regime
and the critical temperature reaches a minimum. When the chemical potential is at the
van Hove singularity, different BCS-like condensates coexist with a condensate in an
intermediate BEC-BCS regime. The system is in a resonant regime where the critical
temperature reaches the maximum. For large values of the chemical potential the sys-
tem tends to a multicondensate system in the BCS-like regime, the critical temperature
is indeed very small.

The model introduced allows to reproduce the critical temperature values recently
observed in two hydrogen-rich compounds, H3S to CSHx, and to obtain the supercon-
ducting dome. A characteristic of high critical temperature superconductors is that of
having a critical temperature value that is not univocal, but depends on the charge
density and pressure. In accordance with the works [168, 176–178] we have described
the variation of pressure with the simultaneous variation of the energy separation of the
chemical potential from the Lifshitz transitions and of the electron-phonon interaction.

Finally, we solve the complete Hamiltonian (see equation (1.1)) for a two-bands
system. In particular, in Chapter 5 we study the normal phase, while in Chapter 6 we
investigate the properties of the superconducting phase, both from a theoretical and
numerical point of view.

In the Fig. 1.5 we report the trend of the partial DOS for λ = ±1 for the second
subband as a function of the energy. In the case of positive helicity the DOS shows the
expected step trend for a generic 3D system in the absence of RSOC, while in the case
of negative helicity the DOS shows a peak at a precise energy value. We show that the
presence of this peak is related to an unusual variation in the topology of the FS. The
top panel of Fig. 1.5 shows that when the chemical potential reaches the band edge, a
3D Fermi surface begins to form, the system is therefore in a Lifshitz transition of the
first type. When the chemical potential reaches the top of the second subband we have a
3D-2D variation of the FS topology and finally for large values of the chemical potential
the FS becomes 2D. At the second Lifshitz transition (3D-2D) we see an unusual van
Hove singularity, we no longer have a single singular point, but a curve of singular points
(dashed green curve). In Chapter 5 we explain how this justifies the pronounced peak
in DOS, we show that as the RSOC increases the peak shifts by an amount equal to
the Rashba energy shift (E0 = −mα2/2) and the radius of the circumference of singular
points increases.
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Ebe EvH El

Figure 1.5: Partial DOS and evolution of the Fermi surface. In the bottom panel we plot the
DOS for λ = ±1 for the second subband. The partial DOS relative to λ = 1 has the step
behaviour expected for a normal 3D system, while the partial DOS relative to λ = −1 shows
a pronounced pick. The unusual pattern of the latter DOS can be explained by observing the
evolution of the FS for the three indicated energy values (top panel). When the DOS shows a
peak we see an unusual van Hove singularity in which the FS develops a line of singular points
dashed in green (the central FS).
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The unusual properties of the normal phase are reflected in the superconducting
phase. The trend of the gap and of the critical temperature have the form of a Fano-
Fashbach antiresonance, with a minimum corresponding to the first Lifshitz transition
and a maximum corresponding to the second Lifshitz transition (Fig. 6.3 and Fig.
6.4A). In this context, the increase of α amplifies the above parameters, while remain-
ing in a weak coupling regime (Fig. 6.4A and B). Moreover, both the gap ratio 2∆/TC
and the isotopic coefficient deviate significantly from the values predicted by the BCS
theory in an energy range close to the unusual van Hove singularity. With the choice of
parameters made in this first phase we see that it is possible to reach critical tempera-
tures of the order of 178 K.

In Chapters 7 and 8 we see how to appropriately vary the RSOC coupling, the
parameters that define the heterostructure and the parameters of the superconducting
phase we reach critical temperatures close to room temperature in a BCS-like cou-
pling regime. The most important result is to provide precise values of the parameters
involved in order to define an optimal condition for the amplification of the critical
temperature. We see that since the Rashba coupling is linked to the periodicity of the
lattice (equation 1.3) it is not possible to increase it arbitrarily, but there is a value be-
yond which there is an overlap of the subbands (Fig. 7.2) which generates interference
such as to limit the maximum value attributable to the energy cut-off (Fig. 7.2). In
order to overcome this problem we vary the width of the layers and we find that there
is a minimum value for this parameter that allows to work with cut-off energies such as
to reach critical temperatures of the order of 208 K (Fig. 8.1, Fig. 8.2 and Fig. 8.3).
The most surprising thing is that this is achieved in a weak coupling regime (Fig. 8.5).
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2

Rashba spin-orbit coupling

In 1984 Yu. A. Bychkov and E. I. Rashba [92] studied the effect of spin-orbit coupling
in a two-dimensional electron gas (2DEG). The absence of a centre of spatial inver-
sion symmetry, due to an asymmetry in the confinement potential, removes the spin
degeneracy by promoting spin-flipping with a null magnetic field. The most interesting
aspect is that this effect can be varied through a transverse electric field. This explains
the enormous interest that the works [92,93,179] have had over the past thirty years in
inspiring a large number of innovative predictions, discoveries and concepts.

In 2001 Lev P. Gor’kov and E. I. Rashba [133] developed a theory of supercon-
ductivity for a 2DEG in the presence of a Rashba coupling, underlining the profound
implications that it has on the superconducting state. For example, they showed how
the pair wavefunction becomes a mixture of singlet and triplet states. The possibility of
these new pairing states opens up an enormous variety of unusual behaviours and mo-
tivates the intensive theoretical and experimental research of recent years, summarized
in Ref. [132].

The purpose of this thesis is to extend these concepts to an anisotropic 3D het-
erostructures in the presence of a RSOC coupling. In this system the symmetry breaking
by inversion along the direction of the heterostructure generates a spin-orbit coupling.
The consequent lifting of the spin degeneracy can lead to an amplification of the density
of the states and therefore to unusual effects on the superconducting properties of the
system. Before doing this, let us consider the special case of two-dimensional systems
and we introduce the Rashba spin-orbit coupling Hamiltonians [180]. After, we discuss
some of the consequences that the RSOC interaction has on a two-dimensional (2D)
superconducting systems [92–94,109,133].

2.1 Intrinsic spin-orbit coupling in 2D systems: the Rashba
model

In this section we introduce the Rashba spin-orbit coupling in a 2DEG.
There is a general argument connecting the inversion symmetry and spin degeneracy.

Let us consider a state with wavevector p and spin ↑. In the presence of time reversal
symmetry, by Kramers theorem the energy of an electron state obeys the following
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2. RASHBA SPIN-ORBIT COUPLING

relationship
ε(p, ↑) = ε(−p, ↓).

If the system has space inversion symmetry it obeys also

ε(p, ↓) = ε(−p, ↓).

Thus, if the system has both symmetries there is a degeneracy of the spin states in
the absence of an external magnetic field. When space inversion symmetry is broken
the energy is no longer spin degenerate due to a p-dependent Zeeman-like internal
magnetic field. Then, the energy dispersion splits in two branches, ε+(p) and ε−(p).
In 2D systems, this splitting can be the consequence of a bulk inversion asymmetry
(BIA) of the underlying crystal (for example zinc blend structure [96, 181]), or of a
structure inversion asymmetry (SIA) of the confinement potential. In this work we
focus our attention on the latter case, which will be introduced in this section. For a
more general treatment we refer to [181].

In the last twenty years, one of the most studied systems in spin-orbit based trans-
port phenomena is the so-called 2DEG. This device is produced by growing materials
with different band structures, whose properties can be fine-tuned through strains,
external potential gates or doping, with the aim of creating a potential well for the
conduction electrons.

In a 2DEG, Yu. A. Bychkov and E. I. Rashba [92, 93, 179] have proposed that the
lack of inversion symmetry along the direction perpendicular to the gas plane, due to
the confining potential, leads to a momentum-dependent spin splitting usually described
by the so-called Rashba Hamiltonian (for a complete derivation see Appendix A)

HR =
p2

2m
− b(p) · σ, (2.1)

where p is the two-dimensional electron momentum, σ is the vector composed by Pauli
matrices, m is the effective mass of electrons in the conduction band and b(p) is an
internal magnetic field due to the p-dependent spin-orbit coupling. In a 2DEG Rashba
case the potential V is given by the confining potential V (z) due to the edge profile of
the valence band along the growth direction1. Therefore, we have (see equation (A.9))

b(p) · σ =
eλ̃2

4
[(∂zV (z)ez × p) · σ] = α̃[(ez × p) · σ], (2.2)

where ez is the unit vector directed along the growth direction, the parameter α̃ =
[∂zV (z)]eλ̃2/4 and λ̃ is the effective Compton wavelength, while e is the unit (positive or
negative) charge. The importance of this mechanism lies in the fact that the asymmetry
in the confinement potential can be varied by electrostatic means, allowing to tune the
RSOC strength, α̃, by an external voltage. Notice that the magnitude of the Rashba
parameter α̃ depends also on the crystal composition of the quantum well, in particular
we have that the larger the spin splitting energy ∆ERSOC = E0 is, the bigger α̃ is.

1A more detailed description, based on the so-called Kane model for the s-p bands, shows us that
the Rashba spin-orbit coupling is due to the confinement potential of the valence band V (z). Thus,
in a two-dimensional electron gas the coupling between the s-p bands leads to the effective conduction
band Hamiltonian (2.1) with the p-dependent Zeeman coupling, given by equation (2.2). For further
details we refer to [181].
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y

x

p

q

Figure 2.1: The momentum orientation of the e charges in the xy-plane.

We consider a 2DEG in the xy-plane. The non-interacting part of the Hamiltonian
including the RSOC reads

HR = H0 +HRSOC = − ~2

2m

(
∂

∂x2
+

∂

∂y2

)
+ α̃[(σ × p) · ez]

= − ~2

2m

(
∂

∂x2
+

∂

∂y2

)
+ α̃(σx∂y − σy∂x)

=
p2
‖

2m
− µ+ α̃(σxpy − σypx), (2.3)

where p = −i~~∇ is the momentum operator, α̃ = −i~α is the Rashba coupling in the
p-space and p‖ its projection in the xy-plane, ϑ is the angle formed by p and the x-axis
(see Fig. 2.1).

We define ξp‖ = p2
‖/2m − µ as the standard kinetic energy term, we introduce the

Pauli matrix and the basis of the spins (c+
p‖↑, c

+
p‖↓), so you can rewrite the Hamiltonian

in matrix form as

HR =
∑
p

(
c+
p‖↑ c+

p‖↓

)( ξp‖ iα̃p‖e
−iϑ

−iα̃p‖eiϑ ξp‖

)(
cp‖↑
cp‖↓

)
. (2.4)

In the absence of a transversal confinement potential, the wavenumbers kx = px/~,
ky = py/~ are still good quantum numbers. Then, the solutions of the time-independent
Schrödinger equation are

ψk‖λ(r‖) =
eik‖·r‖√
A

(
1

iλeiϑp

)
=
eik‖·r‖√
A

ηλ(ϑ), (2.5)

with λ = ±1 and the dispersion relations

ελ(k‖) =
~2k2
‖

2m
+ λαk‖ = ak2

‖ + bk‖. (2.6)

In the equation (2.5), A is the area of the two-dimensional quantum well and r = (x, y).
While the equation (2.6) represents a parabola with a = ~2/2m, b = λα and vertex
P = (∓mα/~2,−mα2/2~2).

The matrix that diagonalizes the Hamiltonian HR has the eigenvectors as columns

M =
1√
2

(
1 1
ieiϑ −ieiϑ

)
, Mαλ = ηαλk‖ (2.7)
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and allows you to define new operators in the helicity basis

ck‖α = ηαλk‖aλk‖ ; c†k‖α = (ηαλk‖)
∗a†λk‖ ; λ = ±1, α =↑, ↓

⇒ aλk‖ = (ηαλk‖)
∗ck‖α; a†λp = ηαλk‖c

†
k‖α

. (2.8)

Indeed, in this new basis
HR =

∑
k‖,λ

ελ(k‖)a
†
λk‖
aλk‖ . (2.9)

As we can see in Fig. 2.2A, each eigenstate (2.5) has its spin orientation perpendicular
to the direction of the momentum p. In fact, by calculating the spin projection on each
eigenstate we have

< +|σz|+ >=< −|σz|− >= 0,

< +|σx|+ >= − sin(ϑ), < −|σx|− >= sin(ϑ),

< +|σy|+ >= cos(ϑ), < −|σy|− >= − cos(ϑ),

where |+ >= ηα+1,k‖
and |− >= ηα−1,k‖

.
Hence, the spin lives in the xy-plane and its orientation with respect to the Fermi

surface rotates as shown in Fig. 2.2A. Thus, we can classify the eigenstates and eigen-
values with the helicity λ = ±1. Looking at the Fig. 2.2B and Fig. 2.2C we can
also see, as predicted in the previous section, that the twofold spin degeneracy is lifted
by the splitting energy E0 = 2αk‖, since these types of two-dimensional systems have
no inversion symmetry. Hence, a removal of spin degeneracy is observed except at the
invariant time-reversal point k‖ = 0 due to the removal of the parity symmetry. An
asymmetry in the interface potential breaks the spatial inversion symmetry allowing
a RSOC coupling whose effect is to remove the spin degeneracy while preserving the
T symmetry. In fact, acting as an effective magnetic field, it orients the spin of the
conduction electrons in the direction orthogonal to their momentum. The spectrum is
consequently doubled in the two bands of Fig. 2.2B. In Fig. 2.2C we have plotted the
spectrum defined in equation (2.6) as kx and ky vary. For a given energy, the Fermi
surface consists of two concentric circles with radii (see Fig. 2.2A)

k‖± =
√

2mµ+m2α2 ∓mα, (2.10)

with kF =
√

2mµ the standard Fermi wavevector, and µ the chemical potential that
a zero temperature is the Fermi energy, EF . We notice that the spin rotates as we go
along Fermi circles such that there is zero magnetic polarization.

As will be clarified below, the density of states (DOS) enters in the equation that
defines the superconducting critical temperature. Given, therefore, the importance of
this quantity we will first calculate it in this simple case and then for the more general
model proposed in this work.

In the case in question we can define the DOS as

N(E) =

∫
d2k‖

(2π)2
[δ(E − Ek‖+) + δ(E − Ek‖−)]

and we distinguish the two cases E ≶ 0. For E < 0 we have

N(E) =
m

2π

2mα√
(mα)2 + 2mE

. (2.11)
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Figure 2.2: The panel A shows that each eigenstate has its spin orientation in the xy-plane
and oriented perpendicular to momentum direction. As shown in panel B, the Rashba internal
magnetic field, reported in equation (2.2), removes the twofold spin degeneracy and gives rise
to two different energy bands: ε+(k‖) (blue line) and ε−(k‖) (red line). We have two different
Fermi surface corresponding to the two different Fermi momenta pF+ = ~k‖+ and pF− = ~k‖−.
At fixed positive energy, the wavevectors of the mode (+) and (-) are two concentric circles
with radius for (-) mode larger than that for the (+) mode. In the absence of Rashba spin-
orbit coupling the two bands reduce to the twofold degenerate quadratic dispersion relation.
In the panel C we have the spectrum of two-dimensional electron gas in the presence of RSOC
interaction as a function of the wavevectors kx and ky.
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N(E)

E-E0 0

m/p

Figure 2.3: The DOS for E R 0.

This function tends to +∞ when E = −E0 and to m/π for E = 0.
For E > 0 we have

N(E) =
m

π
. (2.12)

For a complete derivation of the DOS we refer to Appendix B, here instead we show the
plot (Fig. 2.3).

Therefore, a discontinuity in the derivative is observed at E = 0 and a van Hove
singularity at −E0. This supports the idea that the presence of a RSOC coupling is
reflected in the unconventional behaviour of the 2DEG.

In this thesis these concepts will be extended to the case of a three-dimensional
system in which a periodic confinement potential is present along the additional direc-
tion z. In previous works [17,18] a quasi-one-dimensional electron gas or quantum wire
(QW) has been considered, in which the potential along z can be approximated with
a single potential well, while in the work of V. Brosco et al. [19] a 3D Rashba metal
was considered in the presence of static disorder. In both cases the transport properties
have been studied without deepening the study of the superconducting phase, a central
theme of this work.

In the following we will be analysed the superconducting phase of a 2DEG in the
presence of RSOC.

2.2 The Nambu formalism in the presence of RSOC

In this section we see what it means to add a superconducting coupling to the Hamil-
tonian (2.9) that describes a 2DEG in the presence of RSOC [133]. Preliminarily, we
apply the Nambu formalism to equation (2.9).

In general the Nambu formalism is used to introduce the hole degree of freedom
besides the electron one. The basic idea is to consider states which are the time-reversal
version of each other. The eigenvectors, ηλ(ϑ) (equation (2.5)), have the following
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feature: at fixed λ (helicity band), a state of momentum p has as time-reversed the
state whit momentum −p as shown below (Fig. 2.4). The space of momenta can be

Figure 2.4: States with opposite moments have also opposite spin.

divided in two regions: s+ and s−. The momenta in s− are related to those in s+ by
the time-inversion. Then, remembering that k = p/~, we may write

HR =
∑
k‖λ

′
ελ(k‖)[a

†
λk‖
aλk‖ + a†λ−k‖aλ−k‖ ] =

∑
k‖λ

′
ελ(k‖)[a

†
λk‖
aλk‖ − aλ−k‖a

†
λ−k‖ ], (2.13)

where the
∑′

runs only on the region s+, i.e., half of the momentum space, while the
second equality is defined up to a constant term and exploits the standard Nambu trick
of reversing the order of operators2.

The Hamiltonian (2.13) can be rewritten in the spin basis by exploiting the relations
(2.8)

HR =
∑
k‖λ

′
(ξk‖ − λαk‖)[η

α
λk‖

(ηβλk‖)
∗c†k‖αck‖β]− (ξk‖ − λαk‖)[(η

α
λ−k‖)

∗ηβλ−k‖c−k‖αc
†
−k‖β].

(2.14)
At this point introducing the projector in the particle-hole channel

Pαβλ = ηαλk‖(η
β
λk‖

)∗ =
1

2
[σ0
αβ + λ(k̂‖ ∧ −→σ · ẑ)] (2.15)

and noting that ϑ(−k‖) = π + ϑ(k‖) so that ηαλk‖(η
β
λk‖

)∗ = (ηαλ−k‖)
∗ηβλ−k‖ , we have that

HR =
∑
k‖

′
ξk‖(c

†
k‖α

ck‖β − c−k‖αc
†
−k‖β)σ0

αβ

+
∑
k‖

′
(αk‖)[c

†
k‖α

ck‖β(σxαβ k̂y − σ
y
αβ k̂x) + c−k‖αc

†
−k‖β(σxαβ k̂y − σ

y
αβ k̂x)]. (2.16)

2In order to derive the Bogoliubov-De Gennes equation one could be tempted to go the real space
representation of the helicity Hamiltonian. This is a bit difficult to implement because the energy ελ(p)
only depends on the absolute value of the momentum and in real space is not a convenient differential
operator.
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The Hamiltonian (2.16) can be rewritten in matrix form by introducing the four-
component Nambu spinor, Ψ†p = (c†k‖↑ c

†
k‖↓ c−k‖↓ c−k‖↑), which explicitly includes the

electron and hole degrees of freedom. Thus one has3

HR =
∑
k‖

′
Ψ†k‖hk‖Ψk‖ , (2.17)

where

hk‖ =


ξk‖ iαk‖e

−iϑ 0 0

−iαk‖eiϑ ξk‖ 0 0

0 0 −ξk‖ −iαk‖e−iϑ
0 0 iαk‖e

iϑ −ξk‖

 . (2.18)

We now ready to introduce the interaction in order to have the superconductive pairing.
Assuming that the interaction is local and equal to U0, we can write the interaction
Hamiltonian in the basis of the spin states as

HI =
1

2

∑
k‖,k

′
‖,q,α,β

U0c
†
k‖α

c†−k‖−qβc−k
′
‖−qβ

ck′‖α
, (2.19)

while in the basis of helicity it will be equal to

HI =
1

2

∑
k‖,k

′
‖,q

Uλµυρ(k‖, k
′
‖, q)a

†
λk‖
a†µ−k‖−qaυ−k

′
‖−q

qρk′‖
(2.20)

and the interaction potential reads

Uλµυρ(k‖, k
′
‖, q) = U0 < ηλk‖ |ηρk′‖ >< ηµ−k‖−q|ηυ−k′‖−q > . (2.21)

Considering pairing only in the same branch with pairs having zero total momentum
[133], the full Hamiltonian reads

H =
∑
k‖λ

ελ(k‖)a
†
λk‖
aλk‖ +

1

2

∑
k‖k
′
‖

Uλλυυa
†
λk‖
a†λ−k‖aυ−k

′
‖
aυk′‖

. (2.22)

At this point we can use the standard pairing mean-field approximation

HMF =
∑
k‖

′
ελ(k‖)(a

†
λk‖
aλk‖ − aλ−k‖a

†
λ−k‖) +

∑
k‖

′
[∆λk‖a

†
λk‖
a†λ−p + ∆∗λpa

†
λ−k‖aλk‖ ],

(2.23)
where the pairing potential has been defined in each helicity band as

∆λk‖ =
1

2

∑
k′‖υ

[Uλλυυ(k‖, k
′
‖)− Uλλυυ(−k‖, k′‖)] < aυ−k′‖

aυk′‖
> . (2.24)

Notice that in the equation (2.24) there is no restriction on momentum in the sum. The
two terms in square brackets originate from the division of the sum over momenta p in

3The Hamiltonian (2.17) with the matrix (2.18) can be transformed back to real space with no
problems. ξk‖ gives the standard Laplacian operator while ik‖e−iϑ = ky + ikx, ik‖eiϑ = −ky + ikx.
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the two regions, as explained previously. By using the explicit form of the eigenvectors
the potential in the helicity basis reads

Uλλυυ(k‖, k
′
‖)− Uλλυυ(−k‖, k′‖) = U0λυe

−i(ϑ−ϑ′). (2.25)

The pairing potential becomes

∆λk‖ =
1

2

∑
k′‖υ

U0λυe
−i(ϑ−ϑ′) < aυ−k′‖

aυk′‖
>

or
∆λk‖ ≡ λe

−iϑ∆0, ∆0 =
∑
k′‖υ

U0

2
eiϑ
′
υ < aυ−k′‖

aυk′‖
> . (2.26)

One notices that the pairing potential has a dependence on momentum via the factor
eiϑ and a dependence on the helicity index via λ. The quantity ∆0 does not depend
explicitly on momentum and helicity.

It is useful to express the equation (2.26) in the origin basis. To this end we note
that in accordance with the equation (2.8) we can write

eiϑ
′∑
υ

υ < aυ−k′‖
aυk′‖

> = eiϑ
′∑
υ

υ(ηαυ−k′‖
)∗(ηβ

υk′‖
)∗ < c−k′‖α

ak′‖β
>

= σyαβ < c−k′‖α
ck′‖β

> . (2.27)

One sees that the pairing in the original basis has the standard form of a singlet and
the gap equation reads

∆0 =
U0

2

∑
k′‖

σyαβ < c−k′‖α
ck′‖β

> . (2.28)

It is useful at this point to express the total Hamiltonian, H = HR+HI in terms of the
original basis of the ck‖α and c†k‖α operators, in order to obtain a matrix representation
similar to equation (2.17), where, this time

h̃k‖ =


ξk‖ iαk‖e

−iϑ −i∆0 0

−iαk‖eiϑ ξk‖ 0 i∆0

i∆∗0 0 −ξk‖ −iαk‖e−iϑ
0 −i∆∗0 iαk‖e

iϑ −ξk‖

 . (2.29)

The equation (2.29) together with the equation (2.17) represents the pairing Hamilto-
nian with RSOC. By transforming back to the real space and assuming ∆0 to be space
dependent, one can write the Bogoliubov-De Gennes equation [133].

By using the relations (2.8) it is possible to examine the character of the pairing
with respect to the spin quantisation axis in the original basis. The pairing function in
the original basis is a matrix

Fαβk‖ =< ck‖αc−k‖β >=
∑
λ

ηαλk‖η
β
λ−k‖ < aλk‖aλ−k‖ >

=
∑
λ

1

2
(σ0
αγ + λ cos(ϑ)σyαγ − λ sin(ϑ)σxαγ)σyγβe

iϑλ < aλk‖aλ−k‖ > . (2.30)
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2. RASHBA SPIN-ORBIT COUPLING

Now we define the pairing function at fixed helicity λ as fλk‖ = λ < aλk‖aλ−k‖ > and
a new projector in the particle-particle channel

P̃ λαβ = ηαλk‖η
β
λ−k‖ =

1

2
(σ0 + λk̂‖ ∧ −→σ · ẑ)σyeiϑ

so that
Fαβk‖ =

∑
λ

P̃ λαβfλk‖ . (2.31)

The above equation expresses the decomposition of the pairing function in the original
spin basis in terms of the two pairing functions in the helicity basis.

Following [133] it is useful to single out the singlet and triplet component in the
following way

fλk‖ = fSk‖ + λfTk‖

so that
fSk‖ =

1

2

∑
λ

fλk‖ , fTk‖ =
1

2

∑
λ

λfλk‖ .

In such a way

Fαβp =
∑
λ

P λαβ(fSp + λfTp ) = fSp
∑
λ

P λαβ + fTp
∑
λ

λP λαβ.

Now ∑
λ

P̃ λαβ = σyαβe
iϑ,

∑
λ

λP̃ λαβ = [(k̂‖ ∧ −→σ · ẑ)σy]αβeiϑ.

Hence in the projector operator the first term describes the singlet component, while
the second the triplet component. So in each helicity band, the pairing is a mixture of
singlet and triplet with respect to the original spin basis.

As pointed out above, the pairing potential has a singlet structure, this is apparent
in the structure of the Hamiltonian (2.29), but the anomalous Green function has also
a triplet component. This can be made explicit by computing the Matsubara Green
function starting from the equation (2.29) (for more details see [133]).

The RSOC interaction by removing the spin degeneracy causes, on the one hand, the
energy spectrum to be split into two branches of opposite helicity (except at the invariant
time-reversal Dirac point), on the other hand, the pair wavefunction it is a mixture of
singlet and triplet components. As underlined in [132], in the limit of strong spin-orbit
coupling, magnetic field measurements are not able to give information on the relative
weight of the singlet and triplet components and therefore do not allow to distinguish
to which of the two components the superconducting behaviour is due. However, it has
been seen that the triplet component can give rise to zero energy Majorana modes if
suitable topological criteria are satisfied [124, 127, 130, 132]. This feature allows us to
understand if non-centrosymmetric superconductors have a predominance of triplet or
singlet components.

In the following chapter we will analyse in detail the multigap superconductivity that
is evident in geometries in which the quantum size effects are reflected in a multiband
electronic structure. We will then see how by varying the chemical potential close to
a Lifshitz transition it is possible to obtain an amplification in the parameters of the
superconducting phase, in particular, in the gap and in the critical temperature.
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3

Superconductivity at the nanoscale:
concepts and theoretical methods

Systems with dimension smaller than the Fermi wavelength, λF , in one direction are
called quasi-2D systems or layers and can be defined nanoscale systems. One of the
most important effect of reducing the size of materials to nanoscale dimensions is the
appearance of quantization effects due to the confinement of the motion of electrons: the
electron wavefunctions at the Fermi level near a band edge are strongly affected by the
detail of the quantum confinement. In particular, these effects lead to discrete energy
levels with consequent alteration of the electronic structure and a significant increase of
the electronic density of states at the Fermi level resulting in sizeable variations of the
physical properties.

In the BCS theory of superconductivity, the DOS at the Fermi level, N(µ)1, enters
into the expression of the energy gap and of the transition temperature

∆ = 1.76kBTC = 2~ω0e
− 1
N(µ)g , (3.1)

where ~ω0 is the Debye cut-off energy of the phonons, g is the phonon-mediated at-
tractive interaction between the electrons and µ is the chemical potential. As we will
see below, this relation no longer holds in reduced dimensions, but, when quantum size
effects become important, the basic trend of the dependence is preserved. Thus, oscil-
lations in the DOS can be reflected into sizeable oscillations in the energy gap, ∆, and
in the critical temperature, TC , particularly in the weak-coupling regime.

The study of superconductivity at nanoscale began in the 1963 with the pioneering
work of Blatt and Thompson, soon after the formulation of the BCS theory [182, 183].
The predictions of these works of the oscillatory behaviour of TC and of the energy
gap as a function of the system thickness has been confirmed experimentally for su-
perconducting nanofilms and nanowires [184] and was extended in 1993 by A. Bian-
coni, A. Perali and A. Valletta. The BPV theory provides a theoretical and numer-
ical model to explain the high critical temperature observed in different compounds
[10–14,62–66,69,71,73,74,81,163–165,167,170–172,175,185–191]. The innovative idea
of this work was to consider geometries in which the quantum size effects are reflected

1The chemical potential, µ, is equal to the Fermi energy, EF , in the zero temperature limit.
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on an electronic multiband structure. Under these conditions it is possible to vary the
chemical potential, µ, around the Lifshitz electronic topological transition (ETT)2, to
yield a shape-resonance in the superconducting properties, such as the TC and the gaps.

In these systems the shape-resonance is due to the configuration interaction between
a closed and an open scattering channel. So, when the chemical potential is tuned
between the band edge and the van Hove singularity, a new Fermi surface (FS) is made in
which a very small number of electrons are confined and a coupling between delocalized
(with a large Fermi wavevector) and localized (with a small Fermi wavevector) electrons
is possible. The condensate in the FS 1D is in a BCS regime and coexists with a second
condensate in small FS where the classical approximation BCS is violated. The Fermi
energy is close to the band edge where the new FS appears near the ETT 1D/2D. This
behaviour swings dramatically the critical temperature and becomes possible both an
interband and an intraband coupling. The shape-resonance is so determined by the
relative strength of these couplings.

Hence, in the BPV theory the maximum TC amplification is expected when two
conditions are verified:

• the materials are made up of the superquantum layers of dimensions such that
the quantum size effects generate a multiband electronic structure;

• the chemical potential is tuned near an ETT.

The shape-resonances and multicomponent effects in the presence of Lifshitz transi-
tions provide not only a mechanism for understanding the amplification of the critical
temperature in many superconductors, but also an approach to synthesize new super-
conductors with high critical temperature made of heterostructures of quantum stripes
without loss of superconducting coherence. These phenomena give a new approach to
the study of superconductivity, as well as technological applications.

In particular, the BPV theory considers heterostuctures formed by superconduct-
ing stripes, parallel to the xy-plane, separated by insulating (or metallic) block wires.
The electrons in the superconducting stripes form a two-dimensional electronic system
because the effective electron mass in the z-direction is very large and the separation
between superconducting wires is large enough to make small the single particle hopping
along the z-direction.

In a recent work [81] we showed that the crystal structure of the organic compound
p-Terphenyl can be modelled as a superlattice of quantum stripes. Also in this case, the
TC amplification seems being driven by shape-resonances between superconducting gaps
near a Lifshitz transition. In the Chapter 4, we will see how the BPV theory for such two-
dimensional (2D) heterostructures is suitable to reproduce also the experimental results
recently observed in hydrogen-dominant materials (H3S and CSHx) which manifest,
under appropriate conditions, critical temperature at room temperature [32, 34, 47].
Indeed, in this chapter we will extend the BPV theory to a heterostructure of quantum
layers or to a three-dimensional (3D) system.

2Originally the ETT were related to the electron transition at T = 0 in metals, at which the topology
of the Fermi surface (FS) changes abruptly. In the electronic materials (as topological semimetals,
topological insulators and topological superconductors) different types of the ETT take place. They
involve the other types of zeroes in the energy spectrum in addition to or instead of the FS, such as
flat bands, Weyl and Dirac point nodes, Dirac nodal lines, zeroes in the spectrum of edges states,
Majorana modes, etc. Each of these structures has its own topological invariant, which supports the
stability of a given topological structure (for more information see [21, 22, 91]). The consequences of
ETT are important in different areas of physics. The singularities emerging at the ETT may enhance
the transition temperature to superconductivity.
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The 3D structure of the superlattice has the advantage to suppress quantum fluctu-
ations [192,193], that reduce the critical temperature in low dimensions, while keeping
the key features of quantum confinement effects for superconductivity. While there are
works on the theory of shape-resonances in 2D superlattices of quantum wires, called su-
perstripes in cuprate superconductors, the theoretical investigation of shape-resonances
in superlattices of quantum layers is missing. These are now of high interest since a
3D superlattice of quantum layers provide the simplest case of a 3D system showing
multiband superconductivity near a band edge. Moreover, it has been recognized that
diborides, intercalated graphite and pnictides are practical realizations of a superlat-
tice of superconducting layers at atomic limit, where interband pairing is an essential
ingredient for high-temperature superconductivity.

In this work, we study the properties of the normal and superconducting phase in
a 3D multiband system with or without RSOC coupling, when the chemical potential
µ is tuned in a narrow energy range around the edge Eedge of the higher in energy
subband. This description applies to the situation when the first mini-bands produced
by quantum size effects in a superlattice of quantum layers are well separated, i.e.,
when the electron hopping between layers is small enough, so that the corresponding
transversal band dispersion is smaller than the energy separation between the subbands.

Theoretically, the shape-resonance makes some approximations of the BCS theory
are no longer valid. Hence, in this work we see that the crossover regime can be con-
sidered in a multiband scenario if the superconductive phase is treated avoiding all the
standard BCS theory approximations, so for example the following:

• The Fermi energy is far from the band edge (EF /}ω0 � 1), so that the DOS can
be considered constant in an energy range of ~ω0 order.

• Currently single band approximation is not expected for most high critical tem-
perature superconductors.

• In multibands superconductors in addition to the interband attraction, an inter-
band interaction, that can be repulsive or attractive, becomes relevant.

• In BCS theory the shift of the chemical potential from the normal to the super-
conducting phase is negligible, this approximation, here, is no longer valid.

In this Chapter we derive the equations of the BPV theory in the absence of RSOC
for a 3D system suitable to describe the properties of the normal and the superconduc-
tive phase. In the Chapter 4 we will see how this model is able to explain the recent
results obtained for the 2D systems H3S an CSHx, before introducing the RSOC cou-
pling in a 3D anisotropic system, i.e., in a superlattice of quantum layers. In both cases
we will analyze the numerical results obtained with a simulation implemented ad hoc
(Appendix G) [10, 14,62,64,66,81,163–165,170–172,175,185–189,191].

3.1 Electronic structure of a superlattice of quantum layers

In order to describe the properties of an electron confined in a potential well, for a
single quantum layer, we observe that in the plane parallel to the layer, (x, y)-plane,
the electron is free and has a parabolic dispersion. In the z-direction, perpendicular to
the layers, the motion of electron is quantized, with formation of discrete energy levels,
as given by the solution of the Schrödinger equation. Indeed, the electron wavevector

29
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in the this direction is quantized, kn(z) = nπ/L (where L is the thickness of the layer),
and the electron dispersion for the n-th subband is

εn(k) =
~2k2

2m
+ E(kn(z)), (3.2)

where E(kn(z)) = ~2/2m(nπ/L)2 is the minimum energy for the n-th subband and
k2 = (k2

x + k2
y). The number of occupied subbands is given by n = Int[2L/λF ]. If the

Fermi energy EF is close to the bottom of the n-th subband, only n main subbands will
cross the Fermi level.

The previous observation can be generalized to a superlattice of quantum layers. A
superlattice of quantum layers, like the one shown in the Fig. 5.1, can be modelled as
a periodic potential barrier. The one-electron potential V (z) for the superlattice is a
periodic function in the z-direction, as shown in the Fig. 5.1A.

The two-dimensional electronic gas (2DEG) in the xy-plane will therefore be sub-
jected to a potential of the form

V (z) =

{
−V −W ≤ z ≤ 0 I

0 0 ≤ z ≤ b II
, (3.3)

which compactly can be rewritten as

V (z) = V
∞∑
−∞

θ(W/2− |md− z|),

i.e., we consider a free electron gas with an effective mass m moving in a superlattice of
quantum wires of width L separated by a periodic potential barrier V (x, z) of amplitude
V and width W along the z-direction and constant in the xy-plane with periodicity d.

The Schrödinger equation for this system is

− ~2∇2

2m
ψ(x, y, z) + V (z)ψ(x, y, z) = Eψ(x, y, z), (3.4)

that is, the Hamiltonian of the system is separable

HKP = Hx +Hy +Hz = (− ~2

2m

∂2

∂2x
) + (− ~2

2m

∂2

∂2y
) + (− ~2

2m

∂2

∂2z
+ V (z)), (3.5)

and for the eigenstates and the eigenfunctions the following relations are valid

EKP = E(kx) + E(ky) + E(kz),

ψ(x, y, z) = ψ(x)ψ(y)ψ(z).

It is therefore possible to solve the three Hamiltonians, Hx,y,z, separately. Along the x-
direction the Hamiltonian that describes the motion is that the free particle (V (x) = 0)

d2ψ(x)

dx2
+ k2ψ(x) = 0, (3.6)

where kx =
√

2mE(kx)
}2 ⇒ E(kx) = }2

2mk2x

ψ(x) = 1
Lx
eikxx

. (3.7)
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An analogous result holds for the electrons in motion in the y-direction. Along the
z-direction, as we will see, we get subbands, En(kz) with wavefunctions which will be
linear combinations of plane waves, so the solution of the equation (3.4) will have the
following form

ψ(x, y, z) ∝ eikxx+ikyyψnkz(z). (3.8)

To determine the subbands along z we observe that the potential is periodic with peri-
odicity d = L+W and therefore the following condition must be verified

ψ(z + d) = eiϕψ(z) ϕ = kzd. (3.9)

Schrödinger equations for zones I and II are

d2ψI,nkz(z)

d2z
+α2ψI,nkz(z) = 0⇒

{
ψI,nkz(z) = Aeiαz +Be−iαz for −W ≤ z ≤ 0

α =
√

2mEn(kz)
}2

(3.10)
d2ψII,nkz(z)

d2z
+ β2ψII,nkz(z) = 0⇒

{
ψII,nkz(z) = Ceiβz +De−iβz for 0 ≤ z ≤ b

β =
√

2m(En(kz)+V )
}2

.

(3.11)
For negative energies α is an imaginary quantity, while the β root argument cannot take
negative values. The equation (3.10) and (3.11) are the wavefunction relative to the
first period, whereas in the second period, indicated by the condition L ≤ z ≤ L + d,
according to equation (3.9), we have

ψnkz(z) = eiϕ

{
Aeiα(z+d) +Be−iα(z+d) for L ≤ z ≤ d
Ceiβ(z+d) +De−iβ(z+d) for d ≤ z ≤ L+ d

(3.12)

By imposing the continuity of the wavefunction and its first derivatives in z = 0 and
the two conditions that connect the wavefunction and its first derivatives in z = −W
and z = L through the phase factor eiϕ = eikzd, as required by the Bloch theorem

ψI,n,kz(0) = ψII,nkz(0)
dψI,nkz (z)

dz

∣∣∣
z=0

=
dψII,nkz (z)

dz

∣∣∣
z=0

ψII,nkz(L) = eikzdψI,nkz(−W )
dψII,nkz (z)

dz

∣∣∣
z=L

= eikzd
dψI,nkz (z)

dz

∣∣∣
z=−W

(3.13)

the following conditions are obtained
A+B = C +D

α(A−B) = β(C −D)

C(eiβL +De−iβL) = eikzd(Ae−iαW +BeiαW )

β(CeiβL −De−iβL) = αeikzd(Ae−iαW −BeiαW )

(3.14)

Writing the coefficient matrix, the system admits non-trivial solutions if and only if
the determinant of the matrix that multiplies the vector of the coefficients is zero. By
imposing this condition we obtain that the solution of the implicit equation for positive
energies is given by

cos(kzd) = cos(αW ) cos(βL)− 1

2

(
ξ − 1

ξ

)
sin(αW ) sin(βL), (3.15)
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while for negative energies, we have

cos(kzd) = cosh(αW ) cos(βL)− 1

2

(
ξ − 1

ξ

)
sinh(αW ) sin(βL), (3.16)

where ξ = α/β. The solution of the eigenvalue equations from the electronic dispersion
for the n subbands is obtained numerically and provides the energy spectrum εn(k) =
E(kx, ky) + En(kz) where E(kx, ky) is the dispersion of electron free along the layers
plane and En(kz) is the dispersion along z. In Appendix C we considered the limit case
of a the Dirac Comb periodic potential.

Hence, in the periodic potential we assume that the full single-particle wavefunction
can be written as

ψn,k,α(r) =
1√

LxLyLz
eik‖·r‖ψnkz(z)χα, (3.17)

where A = LxLyLz are the spatial dimensions of the system, n is the band index,
k‖ = (kx, ky) is the wavevector, and χα is the spinor part with spin α =↑ or ↓. The
corresponding energy eigenvalues, independents from the spin, are given by

εn(k) =
~2k2
‖

2m
+ En(kz). (3.18)

The eigenfunctions ψnkz(z) and the eigenvalues En(kz) are computed numerically by
solving a corresponding Kronig-Penney model. The solution of the eigenvalues equation
gives the electronic dispersion for the n subbands.

3.2 Superconducting properties of a superlattice of quan-
tum layers

The key point of this thesis is to predict the properties of the superconducting phase
with numerical calculations, solving the Bogoliubov-de Gennes (BdG) equations with-
out standard approximations, using the theoretical model described in the following.
This provides high TC states with multicondensate and multigaps in different coupling
regimes.

Bogoliubov-de Gennes equations for nanoscale superconductors cannot be solved
analytically and even numerically the solution is very demanding. Then, we must
introduce an appropriate ansatz to get an approximate solution of the BdG equations.

A direct consequence of quantum confinement is a non-uniform spatial distribution
of the superconducting order parameter ∆ = ∆(r). The Bogoliubov-de Gennes (BdG)
equations are a very powerful formalism which is able to describe a position-dependent
order parameter. The BdG equations result to be(

H(r) ∆(r)
∆∗(r) −H(r)

)(
uk(r)
vk(r)

)
= E

(
uk(r)
vk(r)

)
, (3.19)

where the single-electron Hamiltonian is

H(r) = −~2∇2

2m
− µ+ Uext(r) (3.20)

and uk(r) and vk(r) are the eigenfunctions of the BdG equations and satisfy the or-
thonormalization condition, while ∆ = ∆(r) is the superconducting order parameter
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which has a non-uniform spatial distribution as a result of quantum confinement and is
related to the eigenfunctions uk, vk from the self-consistency relation

∆(r) = U0

∑
k

uk(r)v∗k(r), (3.21)

where U0 > 0 is the strength of the pairing potential.
In the approximation we will use below, the single particle Schrödinger equation is

solved
H(r)ψk(r) = ξk(r)ψk(r). (3.22)

Considering the following ansatz

uk(r) = ckψk(r); vk(r) = dkψk(r), (3.23)

with ∫
drψ∗k(r)ψk′(r) = δkk′ (3.24)

and defining

∆k =

∫
dr∆(r)|ψk(r)|2 (3.25)

we can reduce the equation (3.19) to the following system of equations rewritten in
matrix form as (

ξk ∆k

∆∗k −ξk

)(
ck
dk

)
= εk

(
ck
dk

)
. (3.26)

By solving this linear system it is possible to determine εk, ck e dk

εk =
√
ξ2
k + |∆k|2, (3.27)

ck =

√√√√1

2

(
1 +

ξk
εk

)
, (3.28)

dk =

√√√√1

2

(
1− ξk

εk

)
. (3.29)

Taking into account (3.23) and that

ckd
∗
k =
|∆k|
εk

,

we have

∆k =
∑
k′

Ukk′
|∆k′ |√
ξ2
k′ + ∆2

k′

. (3.30)

We have thus determined the equation of self-consistency at zero temperature for
the superconducting gap ∆k, whose expression turns out to be analogous to that of the
BCS model. The actual pairing is given by the following matrix elements

Ukk′ =
U0

2

∫
dr|ψk(r)|2|ψk′(r)|2. (3.31)
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In the approximation used, the actual pairing interaction, which enters in the definition
of the gap, is reconfigured by the effects of quantization through the single particle
wavefunctions, determined by the external confinement potential.

The BPV theory evaluates the properties of the superconductive phase by solving
the BdG equations numerically, without the standard approximations. The coupling is
due to an attractive interaction for each Fermi surface, while the interaction between
different Fermi surfaces can be both attractive and repulsive. The coupling terms are
calculated considering the interference between the electron wavefunctions in different
subbands, as will be clarified below.

In the previous section we saw that in a heterostructure of quantum layers the
wavefunctions also depend on the band indices, n, (see equation (3.17)) therefore the
interaction becomes a matrix whose elements are described by the following equation
obtained by generalizing the equation (3.31)

Unn
′

kzk′z
= −U0

2

∫
S
|ψnkz(z)|2|ψn′k′z(z)|

2dxdz = −U0I
nn′
kzk′z

. (3.32)

In this equation remains only a dependence on kz since, as seen in the equation (3.17),
the wavefunctions in the xy-plane are plane waves that cancel each other out in the
calculation of the square modulus of the wavefunctions. Inn′kzk′z

is the pair superposition
integral. The coupling terms are calculated considering the interference between the
electron wavefunctions in different subbands. Indeed, the intrinsic k-dependence of the
pairing interaction Unn′kzk′z

in the superlattice with wavevector kz induces a structure in
the k-dependent interband coupling interaction for the electrons that determines the
quantum interference between electron pair wavefunction in different subbands of the
superlattice.

In an homogeneous system the factor U0 is related to the effective coupling, g, and
the effective density of states per spin at Fermi energy, N(µ)

g = N(µ)U0.

In turn, we allow for the possibility that, in the modulated system, the effective
coupling has a dependence upon the band index, g = gnn′ . Hence the matrix elements
becomes

Unn
′

kzk′z
=

gnn′

N(µ)
Inn

′
kzk′z

. (3.33)

The coefficients A, B, C and D of the single-electron wavefunctions ψnkz(z) (3.14) in
the transverse direction of the superlattice are obtained by imposing the continuity
condition of the wavefunction and of its derivative at z = 0, the Bloch condition with
periodicity d and by normalization of the wavefunction in the period d (see equation
(3.14)). Then, single-electron wavefunctions ψnkz(z) are obtained in order to calculate
the pairing interaction matrix elements from the overlap integral.

The matrix elements Inn′kzk′z
depend on the subband index and on the wavevector kz

transversal to the stripes. For a periodic potential barrier associated with the superlat-
tice of layers, the density histogram of the pairing interaction matrix elements between
subbands is illustrated in Fig. 3.1. The interband and intraband distributions show
different shapes and widths and have different range of values.

The results here reported can be extended to any superconducting superlattice of
quantum layers.

In the equation (3.33) the dimensionless factor gnn′ = (−1)δnn′g0
nn′ assumes positive

values for n = n′ (intraband Cooper pairing) and negative values for (n 6= n′) (repulsive
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Figure 3.1: Density histograms of the pairing interaction matrix elements Inn
′

kzk′
z
.

exchange-like interband pairing, whit gnn′ = gn′n) and measures the relative intensity of
intraband and interband pairing strength. In fact, it multiplies the k-dependent integral
and therefore permits us to simulate the behaviour of different superconductive multi-
layer compounds controlling the ratio between intensities of intraband and interband
pairing.

In three dimensions it is assumed that N(µ) is equal to the density of states per spin
of a normal, three dimensional, homogeneous system. Hence, we use the value of the
barrier height V as a typical value for the Fermi energy for the particles in the system,
obtaining

N(µ) = N0,3D(µ ≈ V ) =
1

4π2

(
~2

2m

)−3/2√
V .

In order to determine the gaps self-consistently and to calculate the critical temper-
ature we use iterative solving methods for the coupled BCS-like equations, hence, as an
extension of equation (3.30) we get

∆nk = − 1

M

∑
n′k′

Unn
′

kzk′z
∆n′k′√

(εn(k′)− µ)2 + ∆2
n′k′

,

starting with an initial gap parameter equal to a constant and assuming that the conver-
gence occurred for relative variation of the gap less than 10−6. In the previous equation
for the gap,M is the total number of wavevectors k′ and is understood that the summa-
tion is made only on the states whose distance in energy from the Fermi level is smaller
than the cut-off energy ω0 (except in cases where it is specified from here on we will use
units such that ~ = 1).

The superconducting critical temperature is calculated by iteratively solving the
linearised equation

∆nk = − 1

2M

∑
n′k′

(Unn
′

kzk′z
tanh((εn(k′)− µ)/2TC))(∆n′k′)

(εn(k′)− µ)
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until the vanishing solution is reached with increasing temperature.
The BPV theory predicts hence complex superconductivity that shows anisotropic

gaps varying in the k-space and in the r-space.
In the following chapter we see how these theoretical results are able to provide

predictions in agreement with the experimental results observed for two compounds
in particular. These systems constitute a simplification of the equations previously
obtained by being approximable to 2D heterostructures of quantum wires.
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The superconducting dome in
sulphur hydrides driven by a
shape-resonance in a superlattice of
wires

In 2015, Drozov et al. have found that pressurized sulphur hydride H3S reaches a
maximum critical temperature TC = 203 K [32] higher than the record found before
in pressurized cuprate perovskites. Although this discovery does not provide indica-
tions on the superconducting mechanism responsible for very heigh TC , it confirms
predictions that manipulation of hydrogen-rich materials [49–52] could drive toward
room-temperature superconductivity.

In a recent paper it has been shown that in the pressurized compound CSHx, which
can be considered as a carbon dopedHyS, the critical temperature reaches the surprising
value of 15 °C [34]. This material is obtained by photodoping and pressurization of an
heterogeneous mixture of van der Waals solids, obtained by introducing methane CH4

at low pressures into the H2S+H2 mixture, needed for the synthesis of H3S [194]. The
superconducting transition temperature increases slowly from 140 GPa to 220 GPa
where it shows un upturn reaching the maximum of 287.7 K at 267 GPa [34]. The
present discovery falsifies a popular dogma that macroscopic quantum coherence in a
many-body system cannot occur at room temperature. This new compound belong to
the class of intrinsic inhomogeneous materials like perovskites [195, 196] and hydrides
[197]. Today there is the need for a roadmap for material design of room-temperature
superconductors which could be validated of falsified by experiments.

A characteristic feature of high temperature superconductors is that the critical tem-
perature does not have a unique value independent on the position of the Fermi level, like
in homogeneous BCS-crystalline superconductors. On the contrary, the critical temper-
ature is a function of the position of the Fermi level. Therefore, the critical temperature
in the room-temperature superconductors is aspected to show a superconducting dome
where the TC is a function of two main physical thermodynamic parameters: pressure
and charge density.
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Here we present a first principles theoretical prediction of the superconducting dome
for H3S and CSHx, by tuning doping and pressure in a multigap superconductor made
of a superlattice of wires forming an heterostructure at atomic limit.

The critical temperature, in a multigap superconductor, reaches the maximum of
the dome when the chemical potential is near a Lifshitz transition. In fact, the maxi-
mum critical temperature occurs near a Fano-resonance or Feshbach-resonance or shape-
resonance in the superconducting gaps.

According to the BPV theory [10–14, 62–66, 69, 71, 73, 74, 81, 163–165, 167, 170–172,
175, 185–191], the shape-resonances are driven by optimized repulsive or attractive ex-
change interaction between gaps in different regimes. The critical temperature decreases
out of the maximum of the dome by changing either i) the charge density which pushes
the chemical potential toward the band edge of one of the multiple bands, where its
Fermi energy goes toward zero or ii) the strain which drives the system toward a lattice
instability where the electron-phonon coupling increases with softening of the phonon.

The results may provide a theoretical explanation of the superconducting dome in
H3S and CSHx and show that this new experimental result validate the roadmap
proposed by the BPV approach.

In the Fig. 4.1 we plot the TC as a function of the pressure for three different
compounds: D3S, H3S and CSHx [32, 34, 47, 168, 176, 177, 198]. We can observe that
in the case of the H3S for pressures between 120 GPa and 160 GPa the critical
temperature increases rapidly until it reaches the maximum value of 203 K; while
in the case of CSHx the critical temperature, after a discontinuity, sharply increases
reaching the highest value of TC = 287.7 K at 267 GPa [34].

In panel B of Fig. 4.1 we report the compressive strain of the SHS bond in H3S at
120 GPa, where the sulphur hydrides start to show high temperature superconductivity
[199–201]. The band structure calculations have shown that the lattice compressive
strain (controlled by high pressure) tunes the chemical potential around a van Hove
singularity [14,32,168,188,199–203] which has been confirmed by several authors [198,
204]. Therefore, in a pressurized heterogeneous multigap superconductor, the external
pressure tunes the chemical potential near two topological Lifshitz transitions [20–22]:
the first type of Lifshitz transition (type I) occurs tuning the chemical potential near
the edge of a subband with a critical point where a new Fermi surface spot appears.
The second type of Lifshitz transition (type II) occurs at the opening of a neck in the
small Fermi surface with the appearing of a singular nodal point or nodal line.

Guige et al. [205] and Goncharov et al. [199] showed that the structure of H3S
depends on the pressure at which the sample is heated. In particular, at pressures
greater than 140 GPa, H3S has a Im3̄m lattice symmetry [51]. This justifies the
key role of short hydrogen bond SHS and it is consistent with the fact that high TC
materials are characterized by strong hydrogen bonds with high frequency modes in
the phonon spectrum. Moreover, the results mentioned confirm the idea that to reach
critical high temperatures it is necessary to compress H2S in order to have a molecular
dissociation into superconductive H3S and sulphur (3H2S → 2H3S + S).

Band structure calculations [168] have shown that, in the zero temperature limit,
the pressure induces a shift of the order of hundreds meV of the Lifshitz energy η̃
(according to the equation (4.6), η̃ = µ − EL). This parameter corresponds to the
energy difference between the chemical potential and the topological Lifshitz transition
at EL, where EL is the band edge energy of the highest energy subband. The Fig. 4.2
shows the linear relation between η̃, calculated by band structure calculation [168], and
the external pressure.
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Figure 4.1: The panel A shows the experimental results obtained for three different cuprates:
D3S, H3S and CSHx. The critical temperature expressed in Kelvin (left axis) and in Celsius
(right axis) is plotted as a function of the pressure expressed in GPa. Both D3S and H3S
reach a maximum critical temperature around 150 GPa. Although the values of TC remain
lower for the D3S the dependence as a function of the pressure is almost the same for the
two compounds. As for CSHx, the maximum critical temperature, about equal to 287.7 K, is
reached at 265 GPa. For this compound there are two phase transitions: one at about 150 GPa
(first phase transition) and one at about 250 GPa (second phase transition). In the panel B
we report the bond strength SHS as a function of the pressure. It is noted that as the pressure
increases, the bond strength increases until a saturation value equal to 8 percent is reached for
pressures greater than 200 GPa.
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Figure 4.2: The variation of the Lifshitz energy as a function of the applied external pressure.
The Lifshitz energy η̃ is given by the energy difference between the chemical potential at zero
temperature µ and the Lifshitz electronic transition for the appearing of a new Fermi surface
spot at EL calculated by band structure calculations [168]. The figure shows the linear relation
between the energy difference (µ− EL), and the pressure.

From the data shown in Fig. 4.1 and Fig. 4.2 for H3S and CSHx, we assume that
the variation of the external pressure induces the variation of i) the electron phonon
coupling driven by strain of the electrons in the small Fermi surface spot in the new
appearing upper subband and ii) the energy shift of the Lifshitz parameter. Therefore,
we propose a simple theoretical model of multigap superconductivity predicting the
variation of the critical temperature as a function of both i) the proximity to a Lifshitz
transition and ii) the electron phonon coupling for electrons in the upper subband.

The multigap superconductivity in H3S, is indicated by the unusual dependence of
the isotope coefficient on the pressure. In particular, in the range of 130 GPa < P <
200 GPa the isotope coefficient decreases from 2.37 to 0.31 [47,168,177,178], therefore it
deviates markedly from the 0.5 value predicted by the BCS theory, valid for a metal with
a single effective Fermi surface and for the energy cut-off much smaller than the Fermi
energy. The anomalous behaviour of the isotope coefficient in cuprate perovskites as a
function of the doping [163,171,190] and in hydrides as a function of the pressure [168,
176–178] has been associated by some authors to multigap superconductivity. In fact,
both the chemical doping and the compressive strain could lead the chemical potential
to cross a Lifshitz transition in a multiband system [171,191,198,204]. The anomalous
doping dependence of the isotope coefficient as function of charge density or pressure has
been considered to be a key experimental result which validates the proposed roadmap
for room temperature superconductivity driven by the shape-resonances [10, 62, 64, 81,
163–165,169,170,172,175,186,192,206–217].

The shape-resonances appear in room-temperature superconductors, where at least
two different electronic components with different symmetry coexist at the Fermi level
forming two different Fermi surfaces [10,62,64,81,163,164,164,165,169,170,172,175,186,
187, 192, 206–217]. The resonances can be tuned by changing either the charge density
or the strain. The chemical potential can be changed by a voltage gate or chemical
doping or by external pressure, chemical pressure or lattice misfit strain between two
different units of a composite material [61, 66, 185, 218–226]. Many works have shown

40



4.1. THE MODEL

that tuning of superconductivity by high pressure in hydrides can be described as tuning
the chemical potential near a Lifshitz transition [20–22] in a system where both the
electronic structure and the phonon branches are changed by pressure [28–31, 46, 47,
189,189,227–240]. Therefore, we present here a scenario where the pressure changes in
the same time the energy separation of the chemical potential from a Lifshitz transition
and the electron-phonon coupling.

In agreement with the BPV theory, here we assume that H3S and CSHx are multi-
gap superconductors in which condensates in the BCS regime, in the lower subbands,
coexist with a condensate in a regime in which the BCS approximations are no longer
valid. The key point is to solve the Bogoliubov-de Gennes equations in a multigap
system. The coupling terms, due to the contact exchange interaction between con-
densates and usually neglected in standard single band approximation, are calculated
by first principles. In particular, it is considered the interference between the electron
wavefunctions in different subbands. The wavefunctions are calculated by solving the
Schrödinger equation in the periodic potential determined by the lattice structure of
the heterostructure at atomic limit. The coupling is supposed due to an attractive in-
teraction due to Cooper pairing within each subband, while the exchange interaction
between different subbands can be both attractive, like in diborides, or repulsive, like in
iron based superconductors. The amplification of TC is, thus, determined by the rela-
tive strength of different retarded Cooper pairing mediated by phonons within different
subbands and the contact non retarded couplings between different condensates.

In the following we show how the BPV theory is able to explain both the high TC
observed in the H3S and in the CSHx, and the anomalous behaviour of the isotopic
coefficient with pressure. This could open up new directions for design of new room-
temperature superconductors made of heterostructures at atomic limit.

4.1 The model

The BPV theory goes beyond the standard BCS appoximations for simple homogeneous
metals and beyond the previous extensions of the BCS theory. In this way allows to
study the properties of the normal phase and the superconductive phase even for more
complex systems characterized by an electronic multiband structure.

The BPV theory has proposed a simple practical realization of multigap supercon-
ductivity near a Lifshitz transition: composite materials made of superlattice of weakly
interacting nanoscale units, where quantum size effects create a multiband electronic
structure. The superlattice is made up of insulating spacers, of amplitude W , between
superconducting nanoscale modules, of amplitude L. Therefore, the system can be mod-
elled with a periodic potential in the confinement z-direction, of periodicity d = W +L
and amplitude V . The theoretical model is the same as that introduced in Chapter 3
with the difference that, in this case, the system is 2D, i.e., we are in the presence of an
heterostructure of quantum wires rather than quantum layers, therefore the components
do not appear along the y-direction.

For this system we assume that: i) the periodicity of the quantum wires lattice is
comparable to the correlation length, so that the electrons in the transverse direction can
be considered weakly interacting; ii) the size of the conductive wires, L, is of the same
order as the Fermi wavelength. Hence, the effects of quantum size are not negligible.
This is reflected in the spectrum that appears splitted in n subbands characterized by
quantized values of the transverse moment that depend on the band index and the
dimensions of the wires.
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In an heterostructure of quantum wires the electrons along the x-direction are free,
while along the z-direction they are subjected to a periodic potential V (z) (equation
(3.3)).

According to the discussion in Chapter 3, in the periodic potential we assume that
the full single-particle wavefunction can be written as

ψn,k,α(r) =
1√
LxLz

eikxxψnkz(z)χα, (4.1)

where Lx and Lz are the spatial dimensions of the system, n is the band index,
k = (kx, kz) is the wavevector, and χα is the spinor part with spin α =↑ or ↓. The
corresponding energy eigenvalues, independents from the spin, are given by

εn(k) =
~2

2mx
k2
x + En(kz). (4.2)

The eigenfunctions ψnkz(z) and the eigenvalues En(kz) are computed numerically by
solving a corresponding Kronig-Penney model. The solution of the eigenvalues equation
gives the electronic dispersion for the n subbands.

In order to reproduce the experimental values of H3S we have chosen the following
values for the parameters of the model: L = 8.50 Å, W = 5.50 Å, V = 4.16 eV ,
ω0 = ∆E, gii = gij = 0.1, g33 = 0.25. Where ω0 is the cut-off energy and ∆E is the
dispersion along z of the third subband. Several papers show that there is an optimal
condition for the amplification of TC : ω0 = ∆E [14, 163, 188]. On the other hand, gnn′
is the superconducting adimesional coupling constant for a three-band system and has
a matrix structure that depends on the band indices n and n′. We, also, choose a value
equal to mb = 1.00 for the effective mass of the electron on the barrier, the effective
mass in the well is instead chosen equal to mw = 0.86, equal to the effective mass in
the free x-direction. The pressure induces a strain in superconducting modules and can
be tuned by changing the lattice parameters of the spacers.

As regards the superconducting phase we can refer to Sec.(3.2), in which we have
seen that the pairing interaction depends only on the band indices and on the wavevector
along the z-direction

Unn
′

kzk′z
= −U0

2

∫
S
|ψnkz(z)|2|ψn′k′z(z)|

2dxdz = −U0

2
Inn

′
kzk′z

, (4.3)

where Inn′kzk′z
is the pair superposition integral.

In Fig. 4.3A we show the dependence on the band indices of the exchange integral,
while in Fig. 4.3B we plot the dependence on the wavevectors. The diagonal elements
of the matrix defined by the equation (4.3) are greater than those off-diagonal except
for the term I33

kzk′z
and for the interband there is a curve of values of kz and k′z for which

Iijkzk′z
= Ijikzk′z

.
As seen in the Sec.(3.2), the self-consistent equation for the superconducting gap at

0 K can be written as

∆nkz = −1

2

∑
n′,k′x,k

′
z

Unn
′

kzk′z
∆n′k′z√

(εn′(k′)− µ)2 + |∆n′k′z |2
. (4.4)

Instead, the superconducting critical temperature is calculated by iteratively solving
the linearised equation

∆nk = − 1

2M

∑
n′k′xk

′
z

Unn
′

kzk′z
tanh((εn′(k

′)− µ)/2TC)(∆n′k′z)

(εn′(k′)− µ)
(4.5)
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Figure 4.3: Panel A: histogram of the superposition integral of equation (4.3). The numbers
indicate the different elements of the matrix of the intraband pairings In,n

′

kzk′
z
and the interband

couplings In,n
′

kzk′
z
. Panel B: the matrix elements of the exchange integral as a function of the

wavevectors in the direction of the confinement potential. The colours used correspond to those
of the histogram.
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until the vanishing solution is reached with increasing temperature (see Sec.(3.2)).

4.2 Numerical results of the BPV theory

In the heterostructure of quantum wires the quantum size effects yield a multiband
electronic structure, in which the subband with higher energy shows a two-dimensional
behaviour. Indeed, plotted the DOS as the Lifshitz parameter changes (Fig. 4.4), we
can be observe that the first and seconds subbands are an one-dimensional behaviour.
Instead, when the Lifshitz parameter is tuned between the bottom and the top of third
subband, the DOS shows a two-dimensional behaviour. For values greater than Lifshitz
parameter the behaviour returns to one-dimensional (diverge as E−1/2). The Lifshitz
parameter is defined as

η =
µ− EL

∆E
, (4.6)

where µ is the chemical potential, EL is the band edge energy for the third subband,
while ∆E is the dispersion along the confinement direction for the third subband, for
our choice of parameters ∆E = 145 meV = ω0

1.
When the Lifshitz parameter is tuned over the band edge (η1), there is a variation in

the topology of the Fermi surface, the electronic gas is subjected to topological transition
called first type Lifshitz transition or spot apparing. When the Lifshitz parameter
reaches the Von Hove singularity (η2) we have a second Lifshitz transition where the
Fermi surface changes her topology from 1D to 2D configuration, this transition is called
the second type Lifshitz transition or neck collapsing.

When the Lifshitz parameter is tuned between the band edge and the Von Hove
singularity, a new Fermi surface is made in which a very small number of electrons
are confined and a coupling between delocalized and localized electrons is possible.
The condensate in the large Fermi surface (second subband) is in a BCS-regime and
coexists with a second condensate in the small Fermi surface (third subband) where the
classical approximation BCS is violated. This behaviour swings dramatically the critical
temperature and becomes possible both an interband and an intraband coupling. The
TC amplification is, hence, determined by the relative strength of these couplings.

In the following we analyse the properties of the superconducting phase. For this
purpose, we suppose that the first and second subband are in a weak coupling regime,
i.e., we use for dimensionless coupling constants the following values: g11 = g22 = 0.1,
while in the third subband we change the coupling in the third subbands g33 = g, in
the range of values [0.100, 0.150, 0.200, 0.250, 0.300, 0.330, 0.400, 0.450, 0.460, 0.470,
0.486], parallel we vary the cut-off energy ω0 according to the Migdal theorem [28]. This
theorem gives a relation between the renormalized cut-off energy, ω0, the bare cut-off
energy, ω̃0, and the pairing constant g, according to the following relation:

ω0 = ω̃0

√
1− 2g, (4.7)

where we use ω0 = ∆E = 145 meV as renormalized cut-off energy at g = 0.4. At this
point it is necessary to make a clarification, in this thesis whit cut-off energy we refer
to the value of the renormalized cut-off energy, ω0, obtained by the Migdal theorem by
imposing g = 0.4.

1Several works [11–13,64,165,191] have shown that there is an optimal condition for the amplification
of the critical temperature in heterostructures of quantum wires, this corresponds to when the dispersion
in the confinement direction of the highest energy subband coincides with the pairing energy.
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Figure 4.4: Bottom panel : Density of states for the first (blue), for the second (orange) and
for the third subband (red) as a function of the Lifshitz parameter. For the third subband, in
correspondence with the three indicated renormalized energy values, we plot the corresponding
Fermi surfaces (top panel). For the third subband η1 corresponds to the value for which we
have the first Lifshitz transition called spot appearing, while η2 is the energy in which we have
in the DOS the van Hove singularity or a Lifshitz transition of the second type in which the
geometry of the system changes from 2D to 1D.
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The above relation is stems from the screening effect of the electrons in the phonon
propagator which was derived for the Fermi gas model of a typical metal. Hence the
relation contains the coupling constant for the 3D homogeneous metal forming the
superconducting layers and is strictly valid only in the BCS limit. With this warning
in mind, we use it here to qualitatively estimated the effect of the coupling constant on
the phonon frequency.

In Fig. 4.5 we plot the critical temperature as a function of the coupling in the
third subband and as a function of the Lifshitz parameter. The critical temperature
appears an asymmetric function of the Lifshitz parameter and reaches a maximum for
η = 1, when the system passes from a 2D to a 1D geometry in a Lifshitz transition
of the second type. Furthermore, the maximum of TC increases with coupling. The
superconductive dome obtained in this figure can represent the behaviour of different
compounds. In particular the experimental values obtained for the H3S and for the
CSHx are reproduced in the BPV theory for precise values of the Lifshitz parameter
and of the coupling on the third subband. Indeed, by plotting the critical temperature
as a function of the Lifshitz parameter (Fig. 4.6A), the maximum value of the critical
temperature obtained experimentally for the compound H3S is reached with our model
for η = 1 and g = 1/4, while the maximum value of the critical temperature obtained
experimentally for the compound CSHx is obtained for η = 1 if g = 1/3. In the Fig.
4.6B we show the critical temperature as a function of g and two fixed values of η. For
the H3S compound the critical temperature is maximum at η = 1.7 if g = 0.40, while
for the compound CSHx the critical temperature is maximum at η = 1.3 if g = 0.33.

The TC maximum is located at the 2D-1D dimensional crossover, or when the chem-
ical potential trough the second Lifshitz transition, and is an asymmetric function of the
Lifshitz parameter. We can observe that the values of the gap of the first and second
subband coincide, while the value of the gap of the third subband is about an order of
magnitude higher. Furthermore, an amplification of the superconducting parameters is
observed in a range of values 0 < η < 1, amplification that increases as g increases.

When the chemical potential, µ, is tuned around the band edge, different regimes
are reached, which can be distinguished by the Lifshitz parameters. In the first Lifshitz
transition there is a coexistence of a BCS-like condensate in the second subband with
a BEC-like condensate in the third subband. In this regime the critical temperature
is extremely low and small variations of the parameters can lead to large variations in
the gaps and in the TC . This determines a large peaked value of the isotope coefficient.
At the second Lifshitz transition, the resonant regime of maximum TC is obtained. A
BCS-like pair condensate of the second subband coexists with a condensate of the third
subband in a coupling regime in which the BCS approximations are no longer valid (as
we will see in Fig. 4.6). For larger chemical potential, a third regime of conventional
two-band superconductivity is reached with the coexistence of two-particles condensates
having both BCS-like character. This is confirmed by small values of the gaps, typical
of weakly coupled superconductors.

When the system switches from an antiresonant to a multiband BCS regime, TC
increases as the g (Fig. 4.5) up to a value of the coupling constant of the order of 0.4,
then TC starts to decrease again as the validity limit of the Migdal theorem is reached.
Furthermore, we observe that the critical temperature reaches high values even for small
coupling thanks to the exchange integral. The critical temperature vs g for different
values of the Lifshitz parameter, confirms that there are large variations of TC only
around the singularity of van Hove.

In Fig. 4.7 we summarize the properties of the superconducting phase. The panel
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Figure 4.5: In the panel A we plot the critical temperature predicted by the BPV theory as
a function of the coupling g and the Lifshitz parameter η. The panel B is a projection of the
dome obtained in the (η, g) plane. The critical temperature increases from blue (TC = 0 K)
to red (TC = 300 K) and can be varied either by changing the coupling on the third subband
or the Lifshitz parameter. The critical temperature reaches a maximum when the multiband
superconductor is close to a Lifshitz transition of the second type, for 0 < η < 1. For both
panels the yellow dashed line represents H3S, the green one CSHx.
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A

B

Figure 4.6: Panel A: the values of the critical temperature, for the proposed three-subband
system, as a function of the Lifshitz parameter in linear scale for the coupling values g =
1/4, 1/3 in the third subband. In this figure we compare the experimental values obtained
for the compounds H3S (yellow line) and CSHx (green line) with the data obtained from the
proposed model. If in the proposed theoretical model we choose a coupling g = 1/4 and then
ω0 = 1286 cm−1 we reproduce the experimental values of H3S and then we can be to reach
a maximum critical temperature of 203 K. If in the proposed theoretical model we choose a
coupling g = 1/3 and then ω0 = 1071 cm−1 we reproduce the experimental values of CSHx

and then we manage to reach a maximum critical temperature of 287.7 K. Panel B: the
critical temperature as a function of the coupling for a fixed value of the Lifshitz parameter
(η = 1.7, 1.3). It can be observed that the maximum critical temperature of 203 K and
287.7 K, observed in the cuprate H3S and CSHx, respectively, is reached for η = 1.7, 1.3 and
g = 0.40, 0.33.
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A shows the values of the gap ratio, 2∆/TC , for the second and third subband, while
the panel B shows the trend of the isotope coefficient as η varies. All these graphs
were obtained at a fixed coupling value equal to g = 1/4 for the H3S compound and at
g = 1/3 for the CSHx.

The gap ratio of the second and third subband coincide in η = 0 and reach the
value predicted by the BCS theory (2∆/TC = 3.5), above this value, the anisotropy of
the gaps becomes evident, in fact, 2∆2/TC reaches a very small value, between 0 and
1, while 2∆3/TC remains approximately constant at the BCS value. This behaviour
emphasizes the non-trivial role of the exchange integral.

Unlike the prediction of the BCS theory for which the isotope coefficient remains
constant at a value of 0.5, in this case there is a variation of the critical temperature as
a function of the cut-off energy which becomes marked in the range 0 < η < 1, that is,
when the system is in a Lifshitz transition of the second type.

Experimentally, the isotope coefficient shows an anomalous behaviour as a function
of pressure. In our case this translates into the fact that the pressure brings the energy
separation between the chemical potential at the Lifshitz topological transition [168].
In fact, in correspondence with the values of the Lifshitz parameter in which there
is a Lifshitz transition of the second type, the isotopic coefficient, obtained using the
BPV theory, deviates significantly from the value predicted by the BCS theory. The
data in Fig. 4.7 in addition to reproducing the experimental behaviour, therefore in-
dicate the possible presence of a topological transition showing near room-temperature
superconductivity.

Finally, in the Fig. 4.8 we plot the critical temperature as a function of the ratio
between the gap of the third subband and the gap of the second subband. In order to
have a high critical temperature, there must be a strong anisotropy2 between the gaps,
the graph shows, in fact, that the maximum of TC is reached when the ratio ∆3/∆2 is
maximum.

In this Chapter we have considered an heterostructure of quantum wires of dimen-
sions such that the quantum size effects determine a multibands electronic structure,
this system closely approximates the superlattice of nanoscale structural modules of
perovskites, in general, and of the H3S and CSHx, in particular. In this compounds
the pressure induces a strain in superconducting modules, in the model proposed, this
parameter can be tuned by changing the lattice parameters of the spacers inserted be-
tween the superconducting nanoscale modules. In this way, we have shown that it is
possible to reach very high critical temperatures at a critical point where the chemical
potential and strain tune the Fermi level at a Fano-Feshbach shape-resonance between
the multiple superconducting gaps in proximity of the Lifshitz transition.

In conclusion, this work shows that BPV theory is able to provide a theoretical
explanation for the recent results on high critical temperature superconductors, provides
a numerical model capable of providing experimentally verifiable predictions and gives
indications on the realization of new materials at high critical temperatures.

In the following Chapters we will see what happens both theoretically and nu-
merically for the quantum layers systems described in the Chapter 3, when a Rashba
spin-orbit coupling is introduced between the electrons in the xy-plane. To this end, we
will analyse both the normal and the superconductive phase.

2By anisotropy we mean that the studies we conducted have shown that by choosing g small for the
intraband and interband exchange integral and increasing the interaction only for the highest energy
subband, it is possible to amplify the gap for this subband, this is related to the factors Inn

′

kzk′z
that

appear in the gap equation.
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A1

B1

A2

B2

Figure 4.7: Panel A1: gap ratio as a function of the Lifshitz parameter for g = 1/4 (H3S)
for the second and third subband. Panel B1: isotope coefficient as a function of the Lifshitz
parameter for g = 1/4 (H3S). Panel A2: gap ratio as a function of the Lifshitz parameter for
g = 1/3 (CSHx) for the second and third subband. Panel B2: isotope coefficient as a function
of the Lifshitz parameter for g = 1/3 (CSHx).
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A

B

Figure 4.8: The critical temperature as a function of the ratio between the gap of the third
subband and the gap of the second subband. Panel A represents the trend for the compound
H3S, while panel B represents CSHx. It can be noted that in the range 2.6 < ∆3/∆2 < 2.9 (for
H3S) or 3.5 < ∆3/∆2 < 3.9 (for CSHx) the critical temperature increases as the anisotropy
between the gaps increases (blue arrows) until it reaches a maximum value when ∆3/∆2 is
maximum, from this point on then the TC decreases almost exponentially as the ratio between
the gaps decreases (red arrow). The blue circle represents the point where TC is maximum, the
red circle the point of intersection of the two opposite trends.
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5

Multigaps superconductivity at
unconventional Lifshitz transition in
a 3D Rashba heterostructure at
atomic limit: normal phase

The innovative idea of this work is to consider a three-dimensional superconductive
anisotropic system in the presence of a Rashba type coupling.

In this and subsequent chapters we introduce the model proposed that synthesizes
the properties of a 2DEG in the presence of RSOC and multigap superconductivity,
concepts introduced separately in Chapters 2 and 3. To this end, we consider a 3D
superlattice of metallic layers of thickness L separated by spacers of width W and
periodicity d, schematized in Fig. 5.1. For the first time, both an additional dimension
are added, passing from an heterostructure of quantum wires to one of quantum layers,
and the degree of freedom of spin, which in addition to making the discussion closer to
real systems has, as we will see, very important implications.

The electronic gas in the xy-plane is subjected to a Rashba spin-orbit coupling as
a consequence of the breaking of the inversion symmetry at the interface between the
insulating and conducting modules that characterize the heterostructure.

As seen in Chapter 2, spin degeneracy is a consequence of Hamiltonian symmetry
with respect to parity (P ) and time reversal symmetry (T ). Both of these operators
change the direction of the momentum, but T also acts with a spin-flip. However, if the
potential that confines the electrons at the interface is asymmetric, the spin degeneracy
is removed and the spectrum appears to be split into two bands with opposite helicity.
The system, therefore, while violating P preserves T . The general form of the Rashba
Hamiltonian can be derived with a very general argument: an electron in motion with
velocity v, subjected to an electric field E, perceives an effective magnetic field, B,
proportional to v×E. This, coupled with the intrinsic moment of the electron, modifies
the energy by a quantity proportional toB·σ, where σ is the vector of the Pauli matrices.
The Rashba Hamiltonian will therefore be equal to:
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Figure 5.1: Heterostructure of quantum layers made of conductive layers of thickness L (trans-
parent light green layers) separated by insulating slabs of width W (opaque green layers), with
periodicity d. In this systems the electron in the xy-plane are free, but we have an anisotropy
due to the fact that along the z-axis there is a potential for periodic confinement. In order for
quantum size effects to be obtained, the thickness of the layers must be of the same order as the
Fermi wavelength, while the periodicity must be of the order of the coherence length so that
the electrons in the z-direction are weakly interacting and therefore the hopping amplitude is
of the same order of magnitude as the superconducting pairing. The figure represents a three-
dimensional system: (panel A) along the z-direction the structure is periodic and the electrons
are confined to a periodic Kronig-Penney potential of periodicity d, (panel B) in the xy-plane
at the interface between insulating layers and conductors it forms a two-dimensional electronic
gas (highlighted with yellow dotted line).
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Figure 5.2: Helicity bands with a RSOC interaction. The arrows indicate the direction of the
spin eigenstates. The dashed lines indicate the Cooper pairs from these states [132].

HRSOC = α̃(p×E) · σ

The Rashba effect is therefore to orient the spin of the conduction electrons in the
direction orthogonal to their momentum. The energy spectrum is therefore split into
two branches. Thus, for a given energy the Fermi surface consists of two concentric
circles. We notice that the spin rotates as we go along Fermi circles such that there is
zero magnetic polarization (see Fig. 2.1).

Different works show that by adding to such a system a superconductive order you
can get a Cooper pair unconventional [19, 132, 241, 242]. As the Fig. 5.2 shows, it is
possible to couple only electrons with the same helicity or one time-reversal of the other.
In particular, the generic state will be a linear combination of the spin-singlet Cooper
pair and only one of the three possible spin-triplet Cooper pair (see Chapter 2 ).

Most of the theoretical studies on the coexistence of a Rashba spin-orbit coupling
and superconductivity have however limited themselves to considering a single-band
two-dimensional electronic system [133, 147–153]. There have been works that have
extended the analysis to three-dimensional systems. In the work [17], for example, C. A.
Perroni et al. have studied the spectral and the transport properties of a quantum well
in the presence of RSOC. The Hamiltonian they introduced is in some aspects similar
to the one proposed in this thesis, the differences consist in the fact that they have
considered a reference system (x, z, y) rather than (x, y, z) (we will see the implications
of this choice in Appendix D) and a single-hole potential rather than a periodic one,
moreover the properties of the superconducting phase are not investigated. Same thing
goes for the work of V. Brosco et al. [19] although they introduce a RSOC coupling in
a 3D system, such a system is characterized by a Rashba coupling in the xy-plane and
the electrons along the z-direction are supposed to be free. They also limit their study
to dc conductivity in the presence of static disorder (in Appendix E we will see how
DOS and FS are obtained in this model) without analysing the superconducting phase.

The most interesting and innovative purpose of this thesis is to see how the prop-
erties of the normal and superconducting phase are changed in a 3D Rashba system in
which the geometry of the system is such as to create a multiband electronic structure.
Indeed, the main results of this work is the theoretical description of multigap super-
conductivity [64,81,163–170,170] at the unconventional Lifshitz transition [22] in a 3D
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heterostructure at the atomic limit with a periodicity of few nanometers with tunable
spin-orbit strength.

Our aim is to show that the interplay between the Rashba spin-orbit coupling and
superlattice structure allows for a fine tuning of the critical temperature. To appreci-
ate this point, consider the energy splitting due to the RSOC and the corresponding
difference of the Fermi momenta of the two spin eigenstates. This difference introduces
a typical SOC length scale lSOC , which may be compared with the modulation of the
superlattice d. In a bulk system lSOC can be compared only with the Fermi wavelength,
which is typically of the order of 0.1 nm. In contrast in a superlattice, the modulation
is of the order of tens of nm, which matches the order of magnitude of the RSOC. The
RSOC energy is linear in the wavevector ε ∼ αk, with the constant α ∼ 0.01 eV nm. By
defining lSOC = 2π~2/ (αm), m being the electron mass, one estimates lSOC ∼ 10 nm.
As a result the tuning of the RSOC may be achieved via the variation of the modulation
of the superlattice structure.

In the next section, we introduce the model Hamiltonian of a 3D layered super-
conductor in the presence of RSOC. Later, we study the normal phase paying special
attention to the topology of the Fermi surface and to the associated features in the
single-particle density of states (DOS). Finally, in the Chapters 6, 7 and 8 we turn
our attention to the superconducting phase where we derive the superconducting gap
equation and discuss its numerical solution in the multiband case.

5.1 The Model

In this work we studied the properties of the normal and superconductive phase of
an heterostructure of quantum layers (Fig. 5.1) in which we have a two-dimensional
electron gas (2DEG) in the xy-plane and a periodic potential, V (z), in the z-direction
(for a different convention on axes see Appendix D).

Furthermore, along the z-axis there is an electrostatic field which induces a spin-
orbit Rashba coupling for the electrons in the xy-plane.

The system introduced can be described by the following Hamiltonian

H = H̃R +HI , (5.1)

where HI is the interaction Hamiltonian, as we will see later, while H̃R is the single-
particle contribution, which includes the RSOC (see Chapter 3 )

H̃R = HKP (z) +HR(x, y)

=

(
− }2

2m

∂2

∂z2
+ V (z)

)
+

[
− }2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ α(σ ∧ k) · n̂

]
=

(
− }2

2m

∂2

∂z2
+ V (z)

)
+

[
− }2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ α(σxky − σykx)

]
=
p‖

2

2m
+

p2
z

2mz
+ V (z)− iα~ (σx∂y − σy∂x) . (5.2)

In the above equation, p = −i~∇ is the usual momentum operator and p‖ = (px, py)
its projection in the xy-plane (see Fig. 2.1){

px = |p‖| cos(ϑ)

py = |p‖| sin(ϑ),
(5.3)
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V (z) = V (z + d) is the periodic potential modelling the superlattice structure V (z) =
−V [θ (z − d)− θ (z − L)], where d = L+W and V is a positive constant.

In the absence of interaction the Hamiltonian H̃R can be separated into a contribu-
tion of the Kronig-Penney form due to a periodic potential along z and a contribution
due to the RSOC which, on the other hand, acts only on the electrons in the xy-plane.
In the equation (5.2), σ is the vector of the Pauli matrices, α is the coupling constant
RSOC in eV ·Å {

KSO = 2αSOπ
d

α = 2 }2
2mKSO,

(5.4)

where αSO is a dimensionless constant which can be changed arbitrarily, while d is the
periodicity.

As a first step we solved the Hamiltonian in the absence of interaction, that is H̃R,
analysing separately the two contributions previously described, HKP and HR.

In particular we have solved the following two equations (see Sec.(3.1))

HKP (z)ψnkz(z) = En(kz)ψnkz(z), (5.5)

where n is the band index because the long confinement z determines a multiband
electronic structure characterized by discrete energy values, and (see Sec.(2.1))

HR[ψk‖(r‖)ηλ(ϑ)] = ελ(k‖)[ψk‖(r‖)ηλ(ϑ)], (5.6)

where λ = ±1 is the helix index, while ηλ(ϑ) is a two-component spinor as will be
clarified below and r‖ = (x, y).

Along the z-direction, as we will see, we get n subbands, En(kz), with wavefunctions
which will be linear combinations of plane waves, so the solution of the equation (5.5)
will have the following form

ψnkz(z), (5.7)

while, as seen, the eigenvalues can be obtained by solving the Kronig-Penney model
(Sec.(3.1)) which provides two implicit equations for energy:

1. cos(kzd) = cos(αW ) cos(βL)− 1

2

(
ξ − 1

ξ

)
sin(αW ) sin(βL), (5.8)

valid for positive energies, and

2. cos(kzd) = cosh(αW ) cos(βL)− 1

2

(
ξ − 1

ξ

)
sinh(αW ) sin(βL), (5.9)

valid for negative energies, where ξ = α/β.
In our model, both the eigenvalues and the eigenfunctions of HKP are computed

numerically with an ad hoc Fortran program (Appendix G).
Now all that remains is to solve the equation (5.6) relating to the RSOC contribution,

to this end we report below the basic steps of the calculation that we analysed in detail
in Chapter 2. As a first step we rewrite the Hamilonian in matrix form

HR(r‖) =

−
}2
2m

(
∂2

∂x2
+ ∂2

∂y2

)
α(ky + ikx)

α(ky + ikx) − }2
2m

(
∂2

∂x2
+ ∂2

∂y2

)
 = H0(r‖) +HRSOC(r‖). (5.10)
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H0 is the free particle Hamiltonian which admits the following eigenvalues

E(k‖) = − }2

2m
k2
‖ (5.11)

and the following wavefunctions

ψk‖(r‖) = − 1√
L‖
eik‖r‖ , (5.12)

where L‖ = LxLy represents the area of the layer section in the xy-plane.
All that remains is to resolve the Hamiltonian properly RSOC, HRSOC

HRSOC = αk‖

(
0 sin(ϑ) + i cos(ϑ)

sin(ϑ)− i cos(ϑ) 0

)
=

(
0 iαk‖e

−iϑ

−iαk‖eiϑ 0

)
.

(5.13)
Diagonalizing this Hamiltonian is obtained for the eigenvalues

Eλ(k‖) = λαk‖ λ = ±1 (5.14)

and for eigenvectors a two-component spinor is obtained in the helicity base

ηλ(ϑ) =
1√
2

(
1

iλeiϑ

)
. (5.15)

Finally, the solution of the non-interacting Hamiltonian, H̃R, is

H̃Rψn,λ,kx,ky ,kz(x, y, z) = (HKP (z)+HR(x, y))ψn,λ,k(r) = (En(kz)+ελ(kx, ky))ψn,λ,k(r),
(5.16)

with:

ελ(k‖) =
}2

2m
k2
‖ − λαk‖ = a(k‖ + λk0) + E0, (5.17)

where E0 = mα2/2, a = }2/m and k0 = mα/}.
Hence, overall we have that the single-particle Hamiltonian H̃R has solutions of the

form

εnλ(k) = En(kz) +
~2k2
‖

2m
+ λαk‖ ≡ En(kz) + ελ(k‖) (5.18)

and

ψnkλ (r) = ψnkz (z)
eik‖·r‖√
A

ηλ (θ) , (5.19)

where the wavevector components k = (kx, ky, kz) ≡
(
k‖, kz

)
label plane waves in the

xy-plane of area A and the Bloch functions ψnkz (z) along the z-axis, n being a subband
index.

As for the second contribution to the Hamiltonian in equation (5.1), we adopt the
standard contact interaction with a cut-off energy ~ω0

HI =
U0

2

∫
dr Ψ †α (r)Ψ †β (r)Ψβ (r)Ψα (r), (5.20)

where Ψα (r) is the annihilation fermion field operator and summation over the repeated
spin indices (α, β) is understood.

Before considering the superconducting phase in the Chapter 6, it is useful to analyse
first in the next section the effects of the RSOC in the normal phase and in particular
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on the density of states. To this end, we first consider a simplified tight-binding model
and then we turn our attention to the model defined in equation (3.10), by confining to
the two lowest subbands for numerical reasons.

For the following discussion it is useful to introduce two dimensionless parameters:
the Lifshitz parameter defined as

η =
µ− E2

∆E
(5.21)

and the rescaled Lifshitz parameter

η =
µ− ER

∆E
, with ER = E2 −∆ERSOC , (5.22)

where µ is the chemical potential which at zero temperature coincides with the Fermi
energy, E2 is the band edge energy of the second subband in the absence of RSOC. ∆E
is the dispersion of the highest energy band, in our case the second as we will limit our
analysis to a two-band system, which we will fix equal to the reference cut-off energy
~ω0 since, as previously said, several works have demonstrated that this is the optimal
condition for the amplification of superconducting parameters. Finally ∆ERSOC is the
energy shift due to the RSOC.

5.2 The Normal Phase

In the presence of a RSOC, the trend of the DOS can be understood by considering the
evolution of the Fermi surface. In this context we will limit our analysis to a two-band
system obtained by taking the two lowest subbands.

The starting point is the single-particle energy dispersion (5.18), which we report
here for the sake of clarity

εnλ(k) =
k2
‖

2m
+ λαk‖ + En(kz), (5.23)

where for simplicity we adopt units such that } = 1.
For both the first and second subband, the energy dispersion along the z-axis, which

is numerically solved as shown below, can be fitted in terms of a tight-binding model. In
particular, for odd n the agreement is obtained with a two-harmonic expansion, while
for n even the agreement is obtained with a three-harmonic expansion. All this can be
combined with the observation that, for the purpose of the subsequent discussion, we
do not need to specify the precise form of the dispersion along the z-axis, but for the
fact the En(kz) increases (for n odd) or decreases (for n even) monotonically between
kz = 0 and kz = π/d and, furthermore, is an even function with respect to kz −→ −kz,
for both even and odd n.

Hence, in order to illustrate the key features of the DOS, we start our analysis with
a simplified expression of En(kz), namely

E1(kz) = t(1− cos(d · kz)), t = 1 and 0 < kz < π/d, (5.24)

for the first subband, and

E2(kz) = t(1 + cos(d · kz)), t = 1 and 0 < kz < π/d, (5.25)

for the second subband.
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Figure 5.3: The dispersion along kx is shown together with the dispersion along kz, in arbitrary
units, both for n odd (top panel) and for n even (bottom panel). In this figure ∆Ezn is the
dispersion in the z direction equal to εz for both n even and odd (in the numerical model we
will assume that ∆Ez2 is equal to the cut-off energy ω0). ∆ERSOC = −k20 is, instead, the
shift of the Dirac point (defined as the point at which the in-plane dispersions with opposite
helicity meet) as a consequence of the dispersion along kz. The Γ and Z points are the center
and the edge of the first Brillouin zone (IZB). We then indicate the three different regimes in
which to study the system: I) εz < µ (light-yellow box); II) 0 < µ < εz (light-green box); III)
−k20 < µ < 0 (light-blue box).

To simplify the notation in the following discussion, the parameters of the in-plane
dispersion in equation (5.23) are expressed in units such that 2m = 1 and we define the
spin-orbit typical momentum k0 = mα.

For the sake of definiteness we assume that the minimum energy for the z-axis is zero
and the maximum is εz, i.e., E2n+1(0) = 0 and E2n+1(π/d) = εz for the odd subbands,
while we have E2n(0) = εz and E2n(π/d) = 0 for the even subbands. Hence from (5.23)
we take the zero of the energy at the origin in the in-plane momentum space. Thus the
dispersion along z for the first and second subband will be equal to ∆Ezn = εz.

The quasi-particle energy (5.23) has axial symmetry so that we may first study it
in the (k‖, kz)-plane. From the isoenergetic curves in this plane one can obtain the
isoenergetic surfaces by performing a rotation around the kz-axis. At a given chemical
potential µ, from the expression of the quasiparticle energy we derive the values of k‖
at fixed kz and helicity λ

k‖(kz, λ) = −λk0 ±
√
k2

0 + (µ− En(kz)), (5.26)

from which we start our discussion. It is useful to distinguish three separate regimes for
the Fermi energy: I) εz < µ; II) 0 < µ < εz; III) −k2

0 < µ < 0, where, in this simplified
model, ∆ERSOC = −k2

0 is the energy shift due to RSOC coupling (see the Fig. 5.3).

Let us examine them in detail.
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5.2.1 Regime I

When selecting the sign in equation (5.26) we must keep in mind that k‖ ≥ 0. Let us
start with the helicity λ = 1. In this case for both even and odd n the only allowed sign
is the positive one

k‖(kz, λ) = −k0 +
√
k2

0 + (µ− En(kz)). (5.27)

For n odd at kz = 0 one has k‖(0, 1) = −k0 +
√
k2

0 + µ, wehereas at kz = π/d one has
k‖(π/d, 1) = −k0+

√
k2

0 + (µ− εz), so that k‖(π/d, 1) < k‖(0, 1). Hence the isoenergetic
curve, when rotated around the kz-axis generates a corrugated cylinder wider in kz = 0
and narrower in kz = ±π/d. For n even we have a diametrically opposite situation, i.e.,
we still have a corrugated cylinder which, however, is narrower in kz = 0 and wider in
kz = ±π/d (Fig. 5.4).

Let us consider next the case λ = −1. Since µ > En(kz), the radicand is always
greater than k0, and, therefore, the only allowed sign is the positive one

k‖(kz, λ) = k0 +
√
k2

0 + (µ− En(kz)). (5.28)

For n odd at kz = 0, one has k‖(0,−1) = k0 +
√
k2

0 + µ, whereas at kz = π/d one has
k‖(π/d,−1) = k0 +

√
k2

0 + (µ− εz). Hence, also in this case, the isoenergetic curve,
when rotated around the kz-axis generates a corrugated cylinder, which is bigger than
the previous one.

For n even at kz = 0 one has k‖(0,−1) = k0 +
√
k2

0 + (µ− εz), whereas at kz =

π/d one has k‖(π/d,−1) = k0 +
√
k2

0 + µ. Hence, also in this case, the isoenergetic
curve, when rotated around the kz-axis generates a corrugated cylinder, with opposite
curvature compared to the case of odd n (Fig. 5.4).

5.2.2 Regime II

Let us begin again by considering first the helicity λ = 1. Clearly the only sign allowed
is the positive one. One notices that exactly at µ = εz one has k‖(π/d, 1) = 0, which
implies a Lifshitz transition for the Fermi surface. For the energies in this regime we
see that not all the values of kz are allowed. The maximum kz = k∗z is determined by
the condition k‖(k∗z , 1) = 0 i.e. k0 =

√
k2

0 + (µ− En(k∗z)). For odd n, the isoenergetic
curve starts at a point (0, k∗z) on the kz-axis and ends at a point k‖(0, 1), 0 in the k‖-axis.
The Fermi surface has a fuse-like shape (Fig. 5.4).

For even n, the isoenergetic curve starts at a point (0, k∗z) on the kz-axis and ends
at a point k‖(π/d, 1), π/d on the k‖-axis. In this case, for Fermi surfaces, we obtain half
of a spindle that has the tip in (0, 0) and reaches the maximum diameter in kz = π/d
(Fig. 5.4).

In this regime the case for helicity λ = −1 is more complex. The positive sign is of
course allowed. The branch with the positive sign starts at the point (k‖(π/d,−1), π/d)
and ends at the point (k‖(0,−1), 0) for odd n, while per even n the positive sign starts
at the point (k‖(0,−1), 0) and ends at the point (k‖(π/d,−1), π/d). In both cases these
curves generate corrugated cylinders by rotation around kz (Fig. 5.4). For this helicity
there is also a possibility of the other branch with the negative sign

k‖(kz, λ) = k0 −
√
k2

0 + (µ− En(kz)). (5.29)

However this branch is only allowed for a restricted range of kz values, i.e. (k∗z , π/d)
which is the complementary range with respect to that allowed for the other helicity.
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Figure 5.4: Top panel : contour plots in the (k‖, kz) plane for λ = −1 (left) and λ = +1 (right)
for a single-harmonic tight-binding model for the first subband of equation (5.24). Parameters
are d = 1, t = 1 so that εz = 2. The RSOC momentum k0 = 1.5. On top of some of the
isoenergetic curves are shown the corresponding Fermi surfaces. Bottom panel : contour plots
as above for the second subband of equation (5.25). The orange numbers are the values of the
Lifshitz parameter, defined in the equation (5.21) of the different level curves, for the choice of
the parameters made in this simplified model, while the dashed green curves on the 3D Fermi
surfaces of panels A) and C) are represents the nodal line of singular points at an unusual van
Hove singularity.
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Hence in this regime of energies the helicity λ = 1 does not exists for the range (k∗z , π/d),
when the helicityλ = −1 develops another branch exactly in this range. As a result the
Fermi surface for the λ = −1 gets a apple-like shape with the poles pushed inwards.
This is due to the fact that the points where the phase velocity vanishes are no longer
isolated points, but due to the rotation around kz they form circles with finite measure.

5.2.3 Regime III

In this regime there is only the helicity λ = −1, which however has two branches

k‖(kz, λ) = k0 −
√
k2

0 + (µ− En(kz)), (5.30)

k‖(kz, λ) = k0 +
√
k2

0 + (µ− En(kz)). (5.31)

If k2
0 + µ − εz = 0 then both branches start at the same point (k0, π/d) for odd n

((k0, 0) for even n) and from there depart ending at the points (k0 +
√
k2

0 + µ, 0) and
(k0 −

√
k2

0 + µ, 0) for odd n ((k0 +
√
k2

0 + µ, π/d) and (k0 −
√
k2

0 + µ, π/d) for even n)
in the k‖-axis, respectively. This is the case when the singularity in the phase velocity,
which in the absence of RSOC is at the isolated point (0, π/d) for odd n or (π/d, 0) for
even n, becomes a finite-measure manifold and develops a van Hove singularity in the
DOS (Fig. 5.4). Hence we may distinguish two cases: IIIa) 0 < k2

0 + µ < εz and IIIb)
0 < k2

0 +µ > εz. In the case IIIa) the argument of the square root is negative, hence the
two branches start at a point (k0, k

∗∗
z ) with k∗∗z given by the condition k2

0 +µ = En(k∗∗z ).
Then the two branches end on the k‖-axis. The Fermi surface generated by these curves
has a torus-like shape. In regime IIIb) instead, the two branches remain disconnected
from each other. The Fermi surface has an external and internal part and has a torus-like
shape, with the toruses of neighboring zones touching each other (Fig. 5.4).

Our aim is to evaluate the density of states in order to compare it with the detailed
calculations made with the more realistic periodic potential model. Therefore, we derive
the analytical DOS expression for both helicity values, λ = ±1.

The energy dispersion in suitable reduced units reads

E(p, k, λ) = t(1− cos(p)) + (k + λk0)2 − k2
0, (5.32)

where −π < p < π is the momentum along the z-axis, 0 < k < ∞ the momentum
in the xy-plane, λ = ±1 is the helicity index. Here t is the hopping parameter and
describe a tight-binding motion along the z-axis. This is the opposite limit with respect
to the parabolic dispersion considered by V. Brosco et al. [19] (see Appendix E ). Also
the parameter k0 describes the spin-orbit interaction. Let us start with the helicity
λ = −1. The DOS reads

N−(µ) =

∫ ∞
0

kdk

2π

∫ π

−π

dp

2π
δ(t(1− cos(p)) + (k − k0)2 − k2

0 − µ). (5.33)

In order to evaluate the integrals for the DOS, we observe that the dispersion in p is an
even function and we confine to positive values. Also it is useful to change varable

x = k − k0 ⇒ k = x+ k0. (5.34)

We can also make the following change of variable

η = t(1− cos(p))⇒ cos(p) = 1− η

t
(5.35)
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from which it is easy to get

dp =
dη√

t2 − (t− η)2
. (5.36)

Then, the DOS becomes

N−(µ) =
1

2π2

∫ ∞
−k0

dx(x+ k0)

∫ 2t

0
dη
δ(η + x2 − k2

0 − µ)

t2 − (t− η)2
. (5.37)

The evaluation of the integral over the variable η is trivial due to the Dirac delta
function, but because 0 < η < 2t one is left with a condition on the variable x to be
integrated next: 0 < µ+ k2

0 − x2 < 2t. As a result the DOS reads

N−(µ) =
1

2π2

∫ ∞
−k0

dx(x+ k0)

θ(µ+ k2
0 − x2)θ(x2 + 2t− µ+ k2

0)√
(µ+ k2

0 − x2)(x2 + 2t− µ+ k2
0)
. (5.38)

In the above θ(x) is the Heaviside step function. The evaluation of the integral depends
on the relative values of the parameters µ, t, k0. It is useful to define the following
integral, which depends parametrically on the integration limits a, b and implicitly on
all other parameters

I−(a, b) =

∫ b

a
dx(x+ k0)

1

(µ+ k2
0 − x2)(x2 + 2t− µ+ k2

0)
. (5.39)

Let us analyze the integral defined in equation (5.39). As a function of the variable x, the
integrand has singularities at x = ±

√
µ+ k2

0 and x = ±
√
µ+ k2

0 − 2t. All singularities
have index −1/2 and hence are integrable. When µ+k2

0 = 2t, the denominator acquires
a zero at the origin. In the absence of spin-orbit interaction, the 1/|x| behaviour of the
denominator is compensated by the numerator and the integral is finite. However, in the
presence of spin-orbit interaction, there is a term proportional to k0 in the numerator
and a van Hove singularity develops. The singularity has a logarithmic behaviour.

A better intuition can be developed by considering that the dispersion has an axial
symmetry in the xy-plane. Hence we may consider the Fermi surface projected in the k
and p plane. In such a plane the Fermi surface is a curve. The 3D Fermi surface (Fig.
5.5) is then obtained by rotating the curve around the p axis. This is shown in Fig. 5.6.
Given the dispersion (5.32) the band velocity reads

v(k, p) = (2(k − k0), t sin(p)). (5.40)

Then it is clear that for k0 = 0, the velocity vanishes at (0, π) and (0,−π). Clearly
these are two isolated points. They can be seen in the 3D representation of the left plot
of Fig. 5.5. For k0 = 0.3 the velocity of the s = −1 subband vanishes at point (0.3, π)
and (0.3,−π).

To evaluate equation (5.33) let us first distinguish two regime for the Fermi energy:
i) µ+k2

0 > 2t; ii) µ+k2
0 < 2t. Let us consider first regime i) µ+k2

0 > 2t. The Heaviside
functions in equation (5.33) restrict the integration over the variable x. For x > 0 the
restriction is

√
µ+ k2

0 − 2t < x <
√
µ+ k2

0. For x < 0, restriction depends on the value
of k0. One must distinguish in turn three cases: a)

√
µ+ k2

0 − 2t < k0 <
√
µ+ k2

0; b)
k0 <

√
µ+ k2

0 − 2t; c) k0 >
√
µ+ k2

0. For regime ii) µ+k2
0 < 2t the Heaviside functions

give the following restrictions. For x > 0, one has 0 < x <
√
µ+ k2

0. For x < 0, we
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Figure 5.5: The Fermi surfaces for µ = 2t with t = 1. The image on the left is in the absence of
spin-orbit interaction, k0 = 0. The image to the right has spin-orbit interaction with k0 = 0.3.
In the absence of spin-orbit interaction, at the zone edge, the Fermi surface shrinks to a point,
whereas with spin-orbit interaction there is a circle.

Figure 5.6: The contour plots of the 2D cut of the Fermi surface in the kp plane. The value
of the hopping is set t = 1. The plot on the left is for the case with no spin-orbit interaction,
k0 = 0. The other two case are for k0 = 0.3, for s = −1 (centre), s = 1 (right). The van Hove
singularity occurs at µ = 2 (in units of t) only for the helicity s = −1. This is clearly evident
in the centre plot at points (k0, π) and (k0,−π). These are the points where the band velocity
vanishes signalling the van Hove singularity.
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must consider two cases: a) k0 >
√
µ+ k2

0 one has −
√
µ+ k2

0 < x <
√
µ+ k2

0; b)
k0 <

√
µ+ k2

0 one has −k0 < x <
√
µ+ k2

0. We may then write the DOS in the final
following form

N−(µ) = θ(µ+ k20 − 2t)[θ(
√
µ+ k20 − k0)θ(k0 −

√
µ+ k20 − 2t)I−(

√
µ+ k20 − 2t,

√
µ+ k20)

+ I−(−k0,−
√
µ+ k20 − 2t) + θ(

√
µ+ k20 − 2t− k0)I−(

√
µ+ k20 − 2t,

√
µ+ k20)

+ θ(k0 −
√
µ+ k20)(I−(

√
µ+ k20 − 2t,

√
µ+ k20) + I−(−

√
µ+ k20,−

√
µ+ k20 − 2t))]

+ θ(2t− µ− k20)[θ(k0 −
√
µ+ k20)I−(−

√
µ+ k20,

√
µ+ k20) + θ(µ+ k20 − k0)I−(−k0,

√
µ+ k20)].

(5.41)

A similar analysis can be done for helicity λ = 1. One has

N+(µ) =
1

2π2

∫ ∞
k0

dx(x− k0)

θ(µ+ k2
0 − x2)θ(x2 + 2t− µ+ k2

0)√
(µ+ k2

0 − x2)(x2 + 2t− µ+ k2
0)
, (5.42)

where x = k‖ ∓ k0 for λ = ∓1 and θ(x) is the Heaviside step function.
The DOS expression can be computed with Mathematica by using the built-in Heav-

iside function and numerical integration command. In Fig. 5.7 are reported the plots
of N−, N+ (partial DOS), and N− + N+ (total DOS), respectively for four values of
k0 = 0.1, 0.2, 0.3, 0.41, 0.5, 0.6, 0.7, 0.8 and t = 1. The partial and the total DOS
are reported as a function of the rescaled Lifshitz parameter defined in the equation
(5.22) where, in this case, E2 = 0, ∆ERSOC = −k2

0 and ∆E = ω0 = ∆Ez2 = εz = 2t.
The black curve corresponds to the case when there is no spin-orbit present. Clearly,

the value ηR = 1 (in units of t) marks the point of the band edge for the dispersion
along the z-axis. The spin-orbit interaction develops a van Hove singularity exactly at
this point. This behaviour, as we will see below, appears in agreement with the more
realistic model. This point, ηR = 2t/∆Ez2, corresponds to the singularity in the two-
dimensional Rashba model at the bottom of the lower band with helicity λ = −1. In
the 3D case the singularity appears at the edge of the band due to the motion along z.

The Fig. 5.7, also, shows that as k0 increases, N+ increases while N− decreases, in
the sum this involves a change only in the proximity of the van Hove singularity. More
precisely, while at the Lifshitz transition the partial densities combine to yield a strong
change in the DOS, at high energies they compensate, so that the total DOS coincides
with the total DOS in the absence of RSOC. This means that in the high-energy limit
the parameters of the normal phase and, as we will see below, of the superconducting
phase do not depend on k0, in accordance with the work of Gor’kov and Rashba [133].

5.2.4 Numerical results for the full model

After the analysis of the simplified tight-binding model, we study the properties of
the normal phase starting from the solution of the model of equation (5.2) obtained
numerically.

For the numerical solution of the normal phase the chosen parameters are: the
barrier V = 0.5 eV , the thicknesses of the metallic and insulating layers L = 23 Å,
W = 7 Å, respectively, with total periodicity d = 30 Å, the effective masses m = mz =
me , the cut-off energy ω0 = 30 meV and the coupling constant g = 0.4.

According to the works [18, 137], we express the Rashba coupling constant in the
form of the equation (5.4).
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Figure 5.7: Total and partial DOS as a function of ηR (equation (5.22)). Top panel : the
partial DOS N− (equation (5.38)) and N+ (equation (5.42)) as function of the rescaled Lifshitz
parameter ηR. The black curve is k0 = 0. The other curves have increasing values of k0 =
0.1, 0.2, 0.3, 0.41, 0.5, 0.6, 0.7, 0.8. Here t = 1. Bottom panel : the total DOS N−+N+ given
in Eqs.(5.38), (5.42) as function of rescaled Lifshitz parameter ηR. The black curve is k0 = 0.
The other curves have increasing values of k0 = 0.1, 0.2, 0.3, 0.41, 0.5, 0.6, 0.7, 0.8. Here
t = 1.
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where αSO is a dimensionless parameter which describes the strength of the Rashba
momentum in units of the inverse lattice spacing along the z-direction.

Similarly to what has been done for the tight-binding model, we carry out the
analysis of the evolution of Fermi surfaces for E2(kz) obtained numerically by distin-
guishing for each of the listed regimes three distinct cases: ∆Ez2 T ∆ERSOC , where
∆Ez2 = E2,max(kz) − E2,min(kz) is the bandwidth of the dispersion along the axis of
confinement z in the presence of a potential of the Kronig-Penney form, while in this
case ∆ERSOC = E0 = −(mα2)/(2~2) is the energy shift due to the RSOC. The model
parameters are chosen so that ∆Ez2 is of the same order of magnitude as the cut-off
energy.

This study concerns a two-band system, where the first subband has a s-symmetry,
while the second one has p-symmetry. The results are shown in the Fig. 5.8: in the
panels A), B), C) and D) we plot the isoenergetic curves in the (k‖, kz)-plane for
λ = ±1 and for the first and the second subbands versus the Lifshitz parameter, η,
equation (5.21) where E2 = 163.64 meV is the band edge of the second subband in the
absence of RSOC and ω0 is the cut-off energy for } = 1. In this figure we also report the
evolution of Fermi surfaces for three distinct values of the parameter η. The analysis is
made for αSO = 0.41 value for which the condition ∆ERSOC = ∆Ez2 = ω0 is verified.
In the case of the second subband for an energy value close to the van Hove singularity
(ηL) we take into account that in the presence of RSOC the spinor (equation (5.15)),
and the gap (equation (6.18)), depend on a phase factor eiϑ and the removal of the spin
degeneracy splits the dispersion in two bands with opposite helicity. To take this into
account we plot the FS with a colour that varies with ϑ. In particular, for λ = 1 it
varies from red to purple, while for λ = −1 it varies from purple to red.

We highlight the three regimes analysed previously and a change in symmetry in
passing from the first to the second subband. Such a change, for the first subband,
occurs at the point Γ, origin of the first Brillouin zone (IBZ), while, in the second
subband, it occurs at the point Z, edge of the IBZ in the z-direction. As the Rashba
coupling changes (∆Ez T ∆ERSOC), only a flattening of the contour lines and Fermi
surfaces is observed to the left and a shift to the right of the singular points. The latter
are the points where the phase velocity vanishes and which generate, for rotation around
the kz-axis, circles whose radius increases with αSO. The energy in which this van Hove
unusual singularity occurs is indicated in the figure with ηL and in the literature it is
called neck opening energy. We can note that for the bands with positive helicity ηL is
independent of the value of αSO, while for the bands with negative helicity it varies as
the RSOC varies.

This behaviour is confirmed by Fig. 5.9 where we plot the partial DOS for αSO =
0.20 (∆ERSOC > ∆Ez2), αSO = 0.41 (∆ERSOC > ∆Ez2) and αSO = 0.50 (∆ERSOC >
∆Ez2). In this figure ηL coincides with the value for which the partial DOS relative to
λ = −1 for the first and second subband have a maximum. As you can see, as αSO
increases, the ηL parameter decreases while the value of the partial DOS peak λ = −1
increases. In particular, in the case of the first subband for λ = −1, ηL = −5.2 for
αSO = 0.50, ηL = −4.6 for αSO = 0.41 and ηL = −4.0 for αSO = 0.20. Indeed, in
the case of the second subband for λ = −1, ηL = −0.37 for αSO = 0.50, ηL = 0.11 for
αSO = 0.41 and ηL = 0.78 for αSO = 0.20. In the right panel of Fig. 5.9 we report
the projection of the Fermi surfaces in the plane (kx, ky) at the point Z of the IZB
for η = 3, where we have highlighted the two possible values of helicity with different
colours (light blue for λ = −1 and orange for λ = 1).

What can be seen from the graphs in the Fig. 5.9 is a peak in the partial DOS, and
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Figure 5.8: Isoenergetic curves, Fermi surfaces for the first and second subbands at three dif-
ferents values of Lifshitz parameter. The top panels show the case of λ = 1 (left) and λ = −1
(right) for the first subband and for ∆ERSOC = ∆E2z (αSO = 0.41). The bottom panels show
the same analysis carried out for the second subband. The DOS maximum is observed at ηL
where the system develops a van Hove singularity. In this case the Fermi surface develops a
nodal line highlighted in panels A) and C) with a dashed green line. For λ = 1, both for the
first and for the second subband, ηL is independently of the value of αSO and it’s equal to
−3.9 meV and 0.92 meV , respectively. While for λ = −1, ηL changes with αSO (as underlined
in Fig. 5.9), for the first subband ηL = −4.6 meV , for the second ηL = −0.11 meV . In the
panel C) and D), for η = ηL we highlight the phase factor with the colours of the rainbow and
the nodal line (white dashed curve) of the singular points.
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Figure 5.9: Partial density of the states vs η and projection of the FS in the plane (kx, ky) at
kz = Z. In the left panel the continuous curves represent the partial DOS for λ = −1, the
dots those for λ = 1, the shades of blue refer to the first subband for three different values of
αSO = 0.20, 0.41, 0.50, while the shades of red to the second subband. The figure shows that
the value of ηL, for which the FS have a nodal line (Fig. 5.8), decreases as αSO increases by an
amount equal to E0/ω0, while the peak of the partial DOS λ = +1 increases. In the right panel
the light blue curve represents the projection of the FS relative to λ = −1 in the (kx, ky)-plane
for the first subband, the light blue dashed curve is relative to λ = 1. Similarly, the orange
curves refer to the second subband. This panel is built for αSO = 0.41 and η = 3.
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Figure 5.10: Normalized band-edge energy as a function of the RSOC constant. The orange
empty circles represent the band edge energy vs αSO (bottom axis) or vs α (top axis) for the
second subband and λ = 1, while the blue empty squares are relative to the first subband at the
same helicity value. The red dots, on the other hand, represent the band edge energy for the
second subband at λ = −1, the light blue dots refer to the first subband for the same helicity
value. As noted earlier, a Rashba shift can only be observed for negative helicity bands.

then in the total DOS, corresponding to an energy value equal to E0/∆Ez2 = E0/∆E =
E0/ω0 = −(mα2)/(2ω0) which, as the coupling constant Rashba increases, it increases
and shifts to gradually smaller Lifshitz parameter values, and the shift involves only the
negative helicity bands. This is underlined in the Fig. 5.10, in which we have reported
the normalized band-edge energy, ER in the equation (5.22), for the first and the second
subband for the two distinct helicity values as a function of the RSOC constant.

Finally, note that, for the values of the normalized band-edge energy, from this point
on, we report the results in terms of the rescaled Lifshitz parameter (equation (5.22)).

In the normal phase for a two-band system we plot the total density of the states
(DOS) and the partial DOS as the Rashba coupling changes (∆Ez T ∆ERSOC) and
compare it with the case without RSOC (Fig. 5.11). In Fig. 5.11 the DOS is plotted
versus the rescaled Lifshitz parameter, ηR for different values of αSO.

In the case of positive helicity the DOS trend is that of a sloped step, very similar
to the trend observed in the absence of RSOC, while in the case of negative helicity
we can observe a peak in the density of the states and a shift of the latter towards the
left as the parameter αSO increases. This confirms what has been commented for the
figures 5.6, 5.7, 5.8, 5.9, or that the effects of a Rashba spin-orbit coupling become more
marked for the negative helicity subband.

In a generic 3D system with free-electron like dispersion relation, the DOS behaves
as the square root of energy, whereas in a quantum layer (2D) the DOS is constant
and so that it jumps sharply every time a new quantum number from a new layer takes
over. In present case, the DOS shows almost a 2D-like behaviour for the first subband.
In fact, this is nearly pure 2D subbands with a negligible transversal hopping between
the layers. Instead, at the bottom of the second subband appears a sharp step due to
contribution of the partial density of states of the second subband to the total density of
states. The total energy dispersion of the second subband, ∆Ez2 determines the energy
separation between the top and the band edge energy for the second subband. In the
energy range η2edge < η < η2top (where η2edge and η2top are, respectively, the Lifshitz
parameter at the edge and at the top of the second subband), the electronic structure
is like that of an anisotropic 3D electron gas, while the 2D character appears at higher
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Figure 5.11: The DOS for the first and the second subband as the αSO changes. In particular, we
have chosen values for this parameter between 0.2 and 0.8 in order to reproduce the three cases
previously discussed ∆Ez R ∆ERSOC and compare them with the case of no RSOC, αSO = 0.
What is observed is that as the RSOC increases, the DOS peak becomes more pronounced and
shifts to gradually smaller energies, since the peak occurs at E0/ω0.
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energy η > η2top.
The observed Rashba shift can be understood by considering the simplified model

previously introduced. In the absence of RSOC the vanishing of the energy gradient
occurs in an isolated point and, therefore, there are no singularities in the DOS. In
contrast in the presence of RSOC, the energy gradient vanishes at finite values of the
absolute values in-plane momentum, k‖, therefore we have singular points distributed
on circumferences that generate van Hove peaks in the DOS. As the RSOC increases,
the energy in which van Hove peaks occur move to the left, but, as underlined in the
discussion of the tight-binding model, the difference in energy between the band edge
and the maximum DOS value remains constant and equal to the dispersion along z.

The shape of the Fermi surface is crucial for understanding the electronic properties
of metals. As first noticed by Lifshitz [91], changes in the Fermi surface topology cause
anomalous behavior of thermodynamic, transport and elastic properties of materials.
Intuitively, the simplest way to observe such an electronic topological transition, also
known as Lifshitz transition, is by tuning the Fermi level to the singular point in the
band structure where the change of topology takes place. This requires considerable
variations of the electron density. A quantum critical point appears in the proximity of
a Lifshitz transition with typical quantum criticalities and possible quantum tricritical
behavior in itinerant electron systems.

There are two types of Lifschitz transition: type I, the appearance of a new detached
Fermi surface region or appearance or disappearance of a new Fermi surface (FS) spot,
and type II, the disruption of the neck-collapsing-type of Lifschitz transition that can be
induced by orbital symmetry breaking in lightly hole doped bands. In the Fig. 5.8 we
show that a new 3D FS opens when the chemical potential crosses the band edge energy,
and the electron gas in the metallic phase undergoes an electronic topological transition
(ETT). When the chemical potential is beyond the band edge in an anisotropic system
at a higher energy threshold, the electronic structure undergoes a second ETT, the
3D-2D ETT, where the FS changes topology from 3D to 2D or viceversa, called also
the opening or closing of a neck in a tubular FS or neck collapsing. This ETT is a
common feature of all existing high-temperature superconductors and novel materials
synthesized by material design in the search for room-temperature superconductivity.

However, the analysis made in this section highlights some surprising results, the
first is that there is a change in symmetry of the evolution of the FS topology in passing
from the first to the second subband. The second is that in the proximity of a second-
type Lifshitz transition we have a curve of critical points and no longer an isolated point,
this explains the appearance of a very pronounced peak in DOS values. The radius of
this curve increases with the intensity of the RSOC and this is reflected in an increase
and at the same time a true right shift of the DOS maximum. In this situation, the
variation in the Fermi surface (FS) topology is absolutely non-trivial.

Clearly, we want to see how the above features of the electron spectrum and of
the DOS are reflected in the properties of the superconducting phase. Therefore, after
having analysed in detail the structure of the FS and the DOS in the normal phase, we
turn, in the next section, to the study of the superconducting phase.
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Multigaps superconductivity at
unconventional Lifshitz transition in
a 3D Rashba heterostructure at
atomic limit: superconductive phase

In order to investigate how the shape of the Fermi surface and the behaviour of the DOS
manifest in the superconducting properties of the system with RSOC, we first derive
the equations for computing the energy gap. The approach used is the one illustrated
in Ref. [165, 170] by D. Innocenti et al., where the Bogoliubov-de Gennes equations
are solved analytically and numerically without the typical approximations of the BCS
theory and extended by us to the 3D case (Chapter 3 ). The entirely new thing in the
following discussion, however, consists in using non-relativistic Dirac wavefunctions in
order to take into account the additional spin degree of freedom.

The field operators of equation (5.20) can be written in terms of the single-particles
states

ψnkα (r) = ψnkz (z)
eik‖·r‖√
A

χα ≡ ψ̃nk (r)χα, (6.1)

where χα with α =↑, ↓ are the usual spinors associated to the quantization of the spin
along the z-axis. This is a legitimate expression for the field operators since the functions
ψnkα (r) are the eigenfunctions of the Hamiltonian H̃R obtained by setting α = 0 in
equation (5.2), i.e., completely neglecting the Rashba term. If we indicate with cnkα
the operators that destroy a particle in the state (6.1) then the field operators becomes

Ψα (r) =
∑
n,k

ψnkα (r) cnkα (6.2)
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and the interaction term can be written as1

HI =
U0

2

∑
k1,k2,k3,k4

∑
α,β

In1,k1;n2,k2

n3,k3;n4,k4
·

· c†n1,k1,α
c†n2,k2,β

cn3,k3,βcn4,k4,α, (6.3)

with the overlap integrals defined by

In1,k1;n2,k2

n3,k3;n4,k4
=

∫
ψ̃∗n1,k1

(r) ψ̃∗n2,k2
(r) ·

· ψ̃n3,k3 (r) ψ̃n4,k4 (r) dr. (6.4)

The integrals in equation (6.4) appear in the treatment of the superconductive phase
transition in the presence of a periodic potential and have been extensively discussed
[165]. The operators a†n,k,λ that create a particle in the state equation (6.1), are related
to the c†n,k,α operators by an unitary transformation

a†n,k,λ =
∑
α

c†n,k,αMα,λ (k) , (6.5)

where the matrix element of the change of basis is equal toMα,λ (k) = χ†α · ηλ
(
θk‖

)
.

As a result, the four operator products that appear in the expansion of the right hand
side of equation (5.20) can be written as

c†n1,k1,α
c†n2,k2,β

cn3,k3,βcn4,k4,α =∑
λ1,λ2,λ3,λ4

Mλ1,λ4

(
θk1‖ − θk4‖

)
Mλ2,λ3

(
θk2‖ − θk3‖

)
·

· a†n1,k1,λ1
a†n2,k2,λ2

an3,k3,λ3an4,k4,λ4 ,

(6.6)

where we have defined

Mλ1,λ4(θk1‖ − θk4‖) =
∑
α

U †λ1,α(k1)Uλ4,α(k4), (6.7)

and similarly for Mλ2,λ3

(
θk2,‖ − θk3,‖

)
. Since the ϕn,kz are Bloch wavefunctions, the

integral (6.4) is different from zero only for k1 + k2 = k3 + k4 and the expression for
HI becomes

HI =
1

2

∑
n1,n2,n3,n4,k1,k2,K

Un1,λ1;n2,λ2
n3,λ3;n4,λ4

(k1,k2;K)

a†n1,k1,λ1
a†n2,−k1+K,λ2an3,−k2+K,λ3an4,k2,λ4 , (6.8)

where the effective potential reads

Un1,λ1;n2,λ2
n3,λ3;n4,λ4

(k1,k2;K) = U0I
n1,k1;n2,−k1+K
n3,−k2+K;n4,k2

Mλ1,λ4(θk1‖ − θk2‖)Mλ2,λ3(θ−k1‖+K‖ − θ−k2‖+K‖). (6.9)

1In the Appendix F is it possible to find the complete derivation of the interaction Hamiltonian,
while in the Appendix D you can see what changes for a different choice of axes.
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Equation (6.8) is the expression of the interaction term when both RSOC and a periodic
potential are present. It can be viewed as the natural extension to a multiband system
of equation (4) of [133] and, from this point on, the computation of the superconducting
gap follows the same steps. In agreement with Gor’kov and Rashba [133] we assume
that the normal and the anomalous Green functions are diagonal in the helicity base.
Hence we consider only Cooper pairs with zero net momentum (K = 0), formed with
particles in the same band and with the same helicity, {(n,k, λ), (n,−k, λ)}, which
are connected by the time reversal symmetry operator. We allow for the contact ex-
change interaction HI to connect pairs in different bands with different helicity: the
pair {(n,k, λ), (n,−k, λ)} can be scattered into the pair {(l,q, ν), (l,−q, ν)} where n,
λ, l, and ν can assume any allowed value. We emphasize that, as discussed in Ref. [133],
the existence of a different pairing function in each helicity band implies a mixture of
singlet and triplet pairing. Symmetric and antisymmetric combinations (see equation
(22)) of Ref. [133]) of the pairing functions for the two helicity bands correspond to the
singlet and triplet component with respect to the original spin quantization axis taken
along the z-direction. This can be seen by using the transformation (6.5) connecting
the electron operators between the original spin basis and the helicity basis.

Following the standard Gor’kov approach at finite temperature, we introduce the
Matsubara imaginary time operators an,k,λ(τ) that follows the imaginary time evo-
lution equation −∂τan,k,λ(τ) = [an,k,λ(τ), H]. In terms of these operators the normal
[Gn,λ(k, τ−τ ′)] and the anomalous [F †n,λ(k, τ−τ ′) and Fn,λ(k, τ−τ ′)] Green’s functions
are defined as

Gn,λ(k, τ − τ ′) ≡ −〈Tτan,k,λ(τ)a†n,k,λ(τ ′)〉, (6.10)

F †n,λ(k, τ − τ ′) ≡ 〈Tτa†n,−k,λ(τ)a†n,k,λ(τ ′)〉, (6.11)

Fn,λ(k, τ − τ ′) ≡ 〈Tτan,−k,λ(τ)an,k,λ(τ ′)〉, (6.12)

where Tτ denotes the imaginary-time ordering operator. By using a mean-field ap-
proach, we arrive, after a lengthy algebra (see Appendix F for a complete derivation),
to the self-consistent gap equation

∆n,λ(k) = −1

2

∑
l,q,ν

U ′n,λ;l,ν(k,q)
∆l,ν(q)

2El,ν(q)
tanh

(
βEl,ν(q)

2

)
, (6.13)

where ∆n,λ(k) is defined as

∆n,λ(k) ≡ 1

2

∑
l,q,ν

U ′n,λ;l,ν(k,q)Fl,ν
(
q, 0+

)
, (6.14)

and the quasiparticle energy is

El,ν(q) =
√

(εν,q‖ + εl,qz − µ)2 + |∆l,ν(q)|2 (6.15)

and the pairing potential reads

U ′n,λ;l,ν(k,q) ≡ Un,λ;n,λ
l,ν;l,ν (k,q;0)− Un,λ;n,λ

l,ν;l,ν (−k,q;0)

= U0In,l(kz, qz)λνe
−i(θk‖−θq‖ )

, (6.16)

with the overlap integral
In,l(kz, qz) ≡ In,k;n,−k

l,q;l,−q . (6.17)
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Figure 6.1: Histogram of the matrix elements defining the superposition integral of equation
(6.17). The green and blue bars refer, respectively, to the intraband pairings I1,1(kz, qz) and
I2,2(kz, qz), while the red and yellow bars refer to, respectively, to the interband couplings
I1,2(kz, qz) and I2,1(kz, qz). The histogram shows a marked anisotropy.

The matrix elements defined in the equation (6.17) depend on the subband index (n
and l) and on the wavevector transversal to the layers (kz and qz). In the superposition
integrals (equation (6.17)) only the dependence on the transverse moment remains, since
the wavefunctions in the plane are plane waves which compensate for the choice made on
K. For a periodic potential barrier associated with the superlattice of layers the density
histogram of pairing interaction matrix elements between subbands is illustrated in the
Fig. 6.1. The intraband (diagonal elements of matrix) and interband (off-diagonal
elements of matrix) distributions show different shapes and widths and have different
range of values. In particular, the off-diagonal elements have a probability density
function which is about half of the diagonal elements which instead are of the same
order of magnitude.

While in the Fig. 6.1 the dependence on the band indices of the exchange integral
is highlighted, in the Fig. 6.2 the dependence on wavevectors is highlighted. This last
figure clearly shows that the diagonal elements of the matrix defined by the superposi-
tion integral are greater than those off-diagonal, whatever the value of the wavevectors.
Furthermore, for both the intraband and the interband there is a curve of values of kz
and qz for which I11 = I22 and I12 = I21, whereas on the right of this curve I11 < I22

and I12 < I21, the opposite being true on the left.

The integral equation (6.13) shows a dependence of the gap ∆n,λ(k), reminiscent
of the Rashba spinor equation (5.15), upon the helicity and the in-plane component
of the wavevector through a phase factor λeiθk‖ . To get rid of this dependence in the
self-consistent equation, we define an auxiliary gap function ∆nkz as

λe
iθk‖∆nkz ≡ ∆n,λ(k). (6.18)
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Figure 6.2: Terms of the matrix of the exchange integral defined in equation (6.17) as a function
of the wavevectors in the direction of the confinement potential. The green plan corresponds
to I1,1(kz, qz), the blue plan corresponds to I2,2(kz, qz), the red plan corresponds to I1,2(kz, qz)
and the yellow plan corresponds to I2,1(kz, qz).

Then, the self-consistent equation for ∆nkz can be cast in the form

∆n(kz) = −U0

2

∑
l,qz

In,l(kz, qz)∆l(qz)

×
∑
ν

∑
qx,qy

tanh

(
β
2El,ν(q)

)
2El,ν(q)

, (6.19)

where it is understood that the wavevector q appearing in the last term is q = (qx, qy, qz).
The solution of equation (6.19) is obtained numerically by starting with a guess for ∆nkz

and iterating until convergence is reached. Since the computational effort is consider-
able, it becomes important to speed-up the calculations by reducing the dimensionality
of the summations. In fact, once qz has been fixed, the argument of the last sum de-
pends on q‖ only trough the in-plane dispersion energy εν,q‖ . It is, then, convenient to
define a partial density of states gν(ε‖) that allows a transformation of the double sum
in equation (6.19) into a one-dimensional integral

∑
qx,qy

f(εν,q‖) =
A

4π2

∫ ε‖,max

ε‖,min

gν(ε‖)f(ε‖)dε‖. (6.20)

The integration extrema, ε‖,min and ε‖,max, are computed by introducing the contact
interaction energy cut-off in the sense that the condition ε‖,min < ε‖ < ε‖,max implies
the inequality |ε‖ + εl,qz − µ| < }ω0.

It is worth to point out that gν(ε‖) cannot be formulated as a single analytical
function but it has to be defined with a piecewise expression that reflects the topology
change of the Fermi Surface when switching from one regime to another (see sections

77



6. MULTIGAPS SUPERCONDUCTIVITY AT UNCONVENTIONAL LIFSHITZ TRANSITION IN A 3D
RASHBA HETEROSTRUCTURE AT ATOMIC LIMIT: SUPERCONDUCTIVE PHASE

III.A, III.B, and III.C). In fact, the expression defining the partial density of states is

A
4π2

gν(ε‖) =
∑
qx,qy

δ(ε‖ − εν,q‖)

=
A

4π2

∫ ∞
0

2πq‖δ
(
ε‖ − εν,q‖

)
dq‖, (6.21)

where the double sum has been transformed in a integral in polar coordinates in the
last line. This leads to the following expression for gν(ε‖)

gν(ε‖) =


4πm −2νk0√

2mε‖+k
2
0

if − k20
2m ≤ ε‖ < 0, ν = −1

4πm
νk0+
√

2mε‖+k
2
0√

2mε‖+k
2
0

if ε‖ > 0

0 otherwise

(6.22)

where k0 is defined as in the discussion preceding equation (5.26), but this time we do
not set 2m = 1.

The equation (6.19) has been solved both in the limit T → 0, (that is β →∞), and
in the limit T → TC , (that is ∆nkz → 0 for every n and kz). The first limit allows to
determine the gaps while the second allows to determine the critical temperature.

The results of the numerical computations for the gaps are shown in the Fig. 6.3A,
in which we plot both partial DOS and ∆nkz for the first and second subbands in
kz = π/2d as a function of the rescaled Lifshitz parameter, ηR (equation (5.22)). The
numerical values of the shift due to the Rashba coupling are indicated in the various
panels which differ in the value of the αSO parameter. Furthermore, in this discussion,
we set the value of the superconducting coupling at g = 0.4, where g is defined as
g = g3D(µ)U0 with g3D = 1

(2π)2(
√

}2/2m)3

√
µ being the DOS at the Fermi level for

a homogeneous system (no RSOC, no periodic potential along z). In the numerical
simulation we assume that g is a constant, so as the chemical potential changes both
g3D and U0 are continuously recalculated.

We emphasize that, in order to have the full gap, i.e., ∆λn(k), we must also consider
the dependence on the phase factor and on the helicity, for this purpose we keep in
mind the Fig. 5.8.

The Fig. 6.3A shows that both for the gap of the first subband (∆1) and for the
gap of the second subband (∆2) it is possible to distinguish three distinct regimes of
multigap superconductivity as a function of the rescaled Lifshitz parameter when is
tuned around the unusual van Hove singularity: an antiresonant regime in which the
gaps reach a minimum value for ηR < ηL, where ηL is the value of the van Hove energy
for which the DOS shows a peak, a resonant regime for ηR = ηL in which the gaps reach
their maximum value and, finally, a multiband BCS-like regime for ηR > ηL.

In particular, it can be observed that ∆1 has a minimum when the chemical potential
is near the bottom of the second subband. The partial DOS relative to the first subband,
both for λ = 1 and for λ = −1, does not change as the chemical potential changes,
therefore, the presence of a such pronounced minimum may be due to the existence of a
Fano-type antiresonance in superconducting gaps. An antiresonance can be due to an
interband exchange term that generates interference effects between the wavefunctions of
a single particle by coupling in a non-trivial way the parameters of the superconducting
phase relating to different bands. Both the depth and the position of the minimum in
the ∆1 depend on this term.
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Figure 6.3: Properties of the normal phase and the superconductive phase vs the rescaled Lifshitz
parameter without and with RSOC for different αSO values such that ∆ERSOC T ∆E2z. Panel
A: starting from the bottom, the first panel shows the DOS for the first subband (blue curve)
and the second subband (red curve) and the trend of the gap relative to the first subband
(blue curve) and to the second subband (red curve) as a function of the rescaled Lifshitz
parameter. The other panels are related to the four values of αSO previously discussed, αSO =
0.30, 0.41, 0.50, 0.70, and show the partial DOS for the first subband with positive helicity
(light blue curves) and with negative helicity (blue curves) and the partial DOS for the second
subband with positive helicity (orange curve) and with negative helicity (red curves). We also
report the trend of the gap relative to the first subband (blue curve) and to the second subband
(red curve) as a function of the rescaled Lifshitz parameter. An anomalous behaviour and an
amplification of the parameters of the superconductive phase are observed in a range of rescaled
Lifshitz parameter 0 < ηR < 1, i.e., in the proximity to the unusual van Hove singularity. Panel
B: the values of the gaps for the second subbands at αSO = 0 and αSO = 0.41 versus the
rescaled Lifshitz parameter for different values of kz = 0, π/2d, π/d show a small variation in
a neighbourhood of van Hove unusual singularity. We have highlighted this variation on the
Fermi surface in ηR = ηL and ηR = ηL± 0.5 by choosing the black colour for kz = π/d, the red
colour for kz = π/2d and the orang colour for kz = 0 consistent with the trends of the gaps.
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A minimum in ∆1 appears below the band edge where the DOS of the second
subband changes abruptly and the Fermi surfaces, as seen above, are in a Lifshitz
transition of the first type. That is, the partial filling of the second subband is reflected in
the appearance of two new three-dimensional (3D) Fermi surfaces, one for each helicity.

As for the gap of the second subband (∆2), the Fig. 6.3A shows that it starts to
assume non-zero values when the chemical potential has not yet reached the bottom of
the second subband. This effect emphasizes, once again, the non-banal role of interband
coupling in a multicomponent system.

∆2 reaches the maximum corresponding to the maximum of the partial DOS relative
to the second subband and to a negative helicity, i.e., when the chemical potential is
near the unusual van Hove singularity, in which the Fermi surfaces changes topology
passing from a 3D to a two-dimensional (2D) geometry. As the Rashba parameter αSO
varies, as seen previously, the radius of the circumference of the singular points that
characterizes the Fermi surface in a Lifshitz transition of the second type (3D-2D ETT)
increases, and, as shows the Fig. 6.3A, the maximum values of ∆1 and ∆2 also increase.
By varying the parameter αSO, we distinguish three different regimes: if αSO is such
that ∆ERSOC < ∆Ez2 the maximum of ∆1 has a value greater than the maximum of
∆2, for ∆ERSOC = ∆Ez2 = ω0 the maximum of the two gaps coincide within the limits
of the numerical approximations made and, finally, for ∆ERSOC > ∆Ez2 the maximum
of ∆2 exceeds the value of the maximum of ∆1.

It can also be noted that in the high energy limit the values of the gaps are to a
good approximation close to the BCS limit, i.e., in the high energy limit the gaps no
longer depend on α [133].

In Fig. 6.3B, we plot the values of ∆2 as a function of ηR for different values of
kz. It can be observed that ∆1 does not vary as kz varies from point Γ to point Z of
the IZB, while it is possible to notice a small variation of ∆2 in a neighbourhood of ηL,
where the role of exchange integrals (equation (6.4)) becomes crucial.

For values of the Lifshitz parameter close to the van Hove singularity, for the second
subband and for a helicity λ = −1 (the only one present) we plot the corresponding FS
highlighting the dependence of ∆2 from kz with three different colours. In proximity of
the unusual van Hove singularity the gap is not constant in kz since the partial filling of
the second subband causes the weight of εl,qz in the equation (6.15) to be not negligible.

By solving the equation (6.19) in the limit ∆nkz → 0 we can be compute the critical
temperature, TC .

In the Fig. 6.4, panel A, we plot the values of the critical temperature at different
values of the Rashba parameter, αSO, as a function of the rescaled Lifshitz parameter.
The critical temperature appears as an asymmetric function of the Lifshitz parameter
regardless of the value of the αSO parameter and shows the typical trend of a Fano
antiresonance with a minimum at the first Lifshitz transition and a maximum at the
second Lifshitz transition where the Fermi surfaces switch from 3D geometry to 2D
geometry. From the Fig. 6.4A one can observe that in the presence of RSOC the
energies are shifted to the left by an amount equal to E0 = −(mα2)/(2~2) and that
the values of the TC are amplified with respect to the case in which there is no RSOC.
In particular, a maximum TC value is observed in correspondence with the van Hove
singularity in the DOS because we have assumed the energy cut-off and the energy
dispersion in the z-direction to be the same. The BCS theory predicts a value of about
32 Kelvin for the critical temperature, with the model parameters chosen in this work,
for αSO = 0.4 this value increases about four times.

In the panel B of Fig. 6.4 we show in a log-log plot the critical temperature TC
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as a function of the effective Fermi temperature TF = EF /kB where the Fermi level is
calculated from the bottom of the first subband and kB is the Boltzmann constant. The
critical temperature is calculated for different values of the Rashba coupling constant,
αSO = 0, 0.30, 0.41, 0.50, 0.70. The Fano-resonance at the bottom of the second
subband occurs in this so called Uemura plot [243] TC versus TF . In this figure the
dashed line indicates the BEC-BCS crossover predicted to be TC = TF /(kF ξ0) [71,244,
245]. The Fano-resonance clearly occurs on the BCS side of the BCS-BEC crossover
where the ratio between TF and TC is in the range between 10 and 20. The calculated
Fano resonance in the white region occurs on the BCS side up to the largest spin-orbit
coupling. In fact the Fano-resonance occurs in the range between the BEC crossover
and the line TC = TF /20 in the BCS side. From the figure it can be seen that the
critical temperature values remain included in a BCS regime although as αSO increases
the Fano-resonance appears increasingly shifted towards the BEC limit.

Furthermore, it is possible to observe that the value of αSO for which ∆ERSOC =
∆Ez2 = ω0 i.e. αSO = 0.41 marks the boundary between two distinct situations: if
αSO < 0.41 the maximum of TC grows slowly, while if αSO > 0.41 it grows faster and
faster. All this is highlighted in the Fig. 6.5 in which we report the maximum of the
TC as a function of the Rashba coupling constant (red curve). The maximum of critical
temperature increases linearly with RSOC for αSO ≥ 0.41.

Previously we underlined the fact that near ηL the gaps vary with kz, this being
strongly reflected in the calculation of the gap ratio, 2∆/TC . Therefore, in order to plot
this parameter correctly we consider ∆ averaged over kz. So, starting from the bottom
of the Fig. 6.6 we plot the gap ratio, 2∆/TC , where TC is the critical temperature, for
the first and the second subband for different values of the αSO parameter as a function
of the rescaled Lifshitz parameter.

We observe that the gap ratio differs from the constant value 3.5 foreseen by the BCS
theory when the rescaled Lifshitz parameter is closed to 0 < ηR < 1. In particular, the
2∆1/TC ratio for the first subband reaches a minimum, greater than the value predicted
by BCS theory, when the rescaled Lifshitz parameter is approximately equal to zero.
That is, when ∆1 is in an antiresonant regime and the system is close to a Lifshitz
transition of the first type. The 2∆1/TC ratio reaches a maximum value for ηR ≈ 1,
when the superconducting parameter ∆1 is in a resonant regime, this occurs close to
the second-type Lifshitz transition.

Regarding to the gap ratio for the second subband, 2∆2/TC , we observe a significant
deviation from the value predicted by the BCS theory in a range of values of the rescaled
Lifshitz parameter equal to 0 < ηR < 1. In particular, when the system is in an
antiresonant regime 2∆2/TC diverges, while when ∆2 is in a resonant regime it shows a
maximum. By contrast, such a maximum is not present in the absence of the RSOC as
the bottom panel of Fig. 6.6 shows. As the parameter αSO changes, the maximum of
2∆2/TC increases and, as in the case of the Fig. 6.3, we observe three distinct regimes:
when ∆ERSOC < ∆Ez2 we have 2∆2/TC < 2∆1/TC , when ∆ERSOC < ∆Ez2 = ω0 the
two gap ratios intersect and, finally, for ∆ERSOC > ∆Ez2 we have 2∆2/TC > 2∆1/TC .

We see in Fig. 6.6 that the gap ratio to the transition temperature 2∆2/TC < 3.9
in the second subband, at the maximum critical temperature, in spite of the peak of
the partial DOS in the second subband due the van Hove singularity brought about
by the largest spin-orbit coupling αSO = 0.7, does not show a large deviation from
the standard weak coupling universal value 3.52 predicted by the single-band BCS
theory. This is in agreement with the corresponding gap ratio 2∆1/TC = 3.4 in the first
subband. We plot TC versus the ∆2/∆1 ratio for different values of the parameter αSO
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6. MULTIGAPS SUPERCONDUCTIVITY AT UNCONVENTIONAL LIFSHITZ TRANSITION IN A 3D
RASHBA HETEROSTRUCTURE AT ATOMIC LIMIT: SUPERCONDUCTIVE PHASE

A)

B)

Figure 6.4: Panel A: the critical temperature TC versus Lifshitz parameter for different values
of Rashba coupling αSO on a semi-logarithmic scale. The critical temperature appears as an
asymmetric function of the Lifshitz parameter and if αSO < 0.41 the maximum of TC grows
slowly, while if αSO > 0.41 it grows faster and faster. Panel B: In this Uemura plot the
critical temperature TC is plotted on a log-log scale versus the Fermi temperature for different
values of Rashba coupling αSO. The white box refers to the Fano-resonance appearing near the
BEC-BCS crossover indicated by the dashed line.
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Figure 6.5: The maximum value of the critical temperature (red curve) and the critical tempera-
ture predicted by the BCS theory ratio for different values of αSO parameter. What is observed
is a marked amplification of the maximum of the TC when a Rashba coupling is introduced
into the system. In particular, the maximum of the critical temperature increases slowly for
αSO < 0.41 and always becomes faster for αSO > 0.41.

in Fig. 6.7, which shows that ∆2/∆1 ratio is only 1.12, at maximum TC , for αSO = 0.7.
Moreover we want to point out that for αSO = 0.41 the gap ratio ∆2/∆1 < 1, while
the ratio between the partial DOS N2/N1 > 1 due to the van Hove singularity in the
second subband. These results show that the present superconducting scenario is in
the weak coupling regime where the mean field approximation is valid. In fact the
aim of this work is to show a scenario with weak electron-phonon coupling, where the
amplification of the critical temperature has been driven by interband pairing in the
presence of strong spin-orbit coupling. It is well known that in the multigap Bogoliubov-
de Gennes superconductivity [246–248] the ∆2/∆1 ratio becomes proportional to N1/N2

where the contact non retarded-exchange interaction (interband pairing) becomes more
relevant that the retarded bosonic exchange pairing. From Fig. 6.7 we can see a
marked anisotropy in the trend of the critical temperature which shows a maximum
corresponding to the maximum value of the ∆2/∆1 ratio.

Further work is in progress to study the cooperative role of contact and retarded in-
teractions in anisotropic superconductivity related with the anisotropic k-space pairing
in the Fermi surface topology at unconventional Lifshitz transitions.

As we have just seen, the Fig. 6.3 and the Fig. 6.6 clearly show a quantum reso-
nance characterized by a Fano-type asymmetry in the superconducting parameters and
a considerable deviation from the predictions of the BCS theory. To further highlight
this last aspect we plot the isotopic coefficient, γ = ∂lnTC/∂lnM , as a function of the
rescaled Lifshitz parameter for different values of the parameter αSO, assuming that the
cut-off energy depend on the isotopic mass as ω0 ∝M−1/2 [171,191] (Fig. 6.8).

In the BCS theory, the isotope coefficient has a constant value as the chemical po-
tential changes equal to 0.5, in our case instead we can notice a considerable deviation
from this value when the rescaled Lifshitz parameter is in the range 0 < ηR < 1 (for
this range of values, the behavior of the γ parameter is that typical of the Fano an-
tiresonance), that is, when the system is close to a Lifshitz transition. These deviations
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Figure 6.6: Properties of the superconductive phase vs the Lifshitz parameter without and with
RSOC for different αSO values such that ∆ERSOC T ∆E2z. This figure shows both the trend of
the gap ratio for the first subband (blue curves) and the second subband (red curves) compared
to the constant value predicted by the BCS theory (black curves).
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Figure 6.7: The trend of the critical temperature versus the ∆2/∆1 ratio for different values of
the parameter αSO. The TC trend shows a strong asymmetry which becomes maximum when
the ∆2/∆1 ratio is maximum.

from the BCS theory increase as the Rashba coupling, αSO, increases, therefore there
exists an unconventional dependence of the critical temperature on the cut-off energy
unlike what is proposed in the BCS theory.

In the high-energy limit, the gap ratio and the isotope coefficient tend to the values
predicted by the BCS theory, so we are dealing with two BCS-like condensates.

In Fig. 6.9 we plot the isotope coefficient as a function of the critical temperature
for different values of αSO for the range of energies delimited in Fig. 6.8 by the dashed
lines. This parameter, in this range of energies, can be measured and this prediction
can be experimentally verified.

These results confirm that in correspondence with the van Hove singularity there
is an amplification of the characteristic parameters of the superconductive phase which
becomes more and more evident when the Rashba coupling exceeds a limit value of 0.4.

In the works [165,170] D. Innocenti et al. investigated the superconducting proper-
ties for a superlattice of quantum wells and observed that there is an optimum condition
for the amplification of the critical temperature that is obtained when the cut-off energy
is equal to the dispersion along the confinement direction of the higher energy band.
The particular geometry considered creates, in fact, a multicomponent system. Here,
instead, by introducing the degree of freedom of spin in the solution of the Bogoliubov-
de Gennes equations, as well as having the possibility of dealing with realistic cases, we
can overcome the limit imposed by previous works simply by suitably increasing the
Rashba coupling that exists by definition at the interface between different materials
that make up an heterostructure.
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Figure 6.8: Properties of the superconductive phase vs the Lifshitz parameter without and with
RSOC for different αSO values such that ∆ERSOC T ∆E2z. This figure shows the variation of
the critical temperature with the cut-off energy via the isotope coefficient. The constant value
predicted by the BCS theory is the black line.
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Figure 6.9: The isotope coefficient as a function of the critical temperature for different values
of αSO.
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7

Variation of the critical
temperature as a function of the
parameters that characterize the
superconducting phase

In this chapter we will see how it is possible to increase the values of the critical tem-
perature by appropriately varying some parameters of the model. As a first step, we
will see what happens by varying the cut-off energy, ω0. Next we will reconstruct the
superconducting dome, as we did in Chapter 4, this time introducing a RSOC coupling
in a 3D heterostructure. This allows us to make predictions on the TC trend for the
design of new materials. To this end, in Chapter 8 we will see what is the effect of
the variation of the structural parameters of the heterostructure of quantum layers, in
order to provide precise indications for future practical applications.

7.1 Trend of the critical temperature by tuning the pairing
energy

The purpose of this section is to see how the trend of the critical temperature changes
by increasing the cut-off energy, ω0. Hence, we plot the TC as a function of the rescaled
Lifshitz parameter (equation (5.34)) which we report here for reasons of clarity

ηR =
µ− ER

∆E
, (7.1)

where µ is the chemical potential or the Fermi energy in the zero temperature limit,
ER = E2−E0, E2 is the energy of the bottom of the second subband in the absence of a
Rashba coupling, E0 is the energy shift due to RSOC splitting and ∆E is the dispersion
along z of the highest energy subband, in our case the second, having considered a two-
band system. In all the discussion that follows, we chose for the constant RSOC the
maximum acceptable value for our model, αSO = 0.7, value beyond which the first and
the second subband begin to overlap (see Fig. 7.1) and we will see what happens by
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7.2. CONSTRUCTION OF THE SUPERCONDUCTING DOME IN THE PRESENCE OF RSOC

Figure 7.1: The density of states for the first and the second subband for different values of
αSO. For αSO = 0.8 the band edge of the second subband coincides with the band edge of the
first subband in the absence of RSOC (black curve), therefore, from this value onwards, the
overlapping effects of the bands are not negligible.

varying the parameters that define the superconducting phase: ω0 and g. As a first step
we investigate the effect of the variation of the pairing energy.

The plot in Fig. 7.2 is obtained for different values of the cut-off energy, ω0 =
[30, 60, 90, 120] meV . What is observed is that as ω0 increases, the critical temperature
increase.

When ω0 = ∆E = 30 meV it is possible to observe the typical bell-shaped pattern
of the shape-resonance, while as ω0 increases the resonance widens to include that of the
first subband. For ω0 > 60 meV it is no longer possible to distinguish the typical bell-
shape as the unrevealing of the TC trend is due to a superposition of several resonances.
This is clear evidence that everything is governed by the difference in energy between
the first and second subband which in this case is approximately 150 meV . Therefore,
in order to reach a critical temperature typical of high TC superconductors we will see in
Chapter 8 that it will be appropriate to increase the separation between the subbands
without violating any requirement of quantum mechanics. In fact, for example, the
value of the coupling constant chosen is g = 0.4 less than the limit imposed by the
Migdal theorem of 0.5 [28].

The Fig. 7.2 shows that, with the choice of parameters made in this section, it is
possible to reach a maximum critical temperature equal to TC,MAX = 160 K, a value
typically observed in cuprates. Because the maximum electron-phonon interaction that
we can choose, before interference effects take place, is ω0 = 60 meV .

7.2 Construction of the superconducting dome in the pres-
ence of RSOC

As seen in the Chapter 4, the Migdal theorem [28] gives a relation between the renor-
malized cut-off energy, ω0, the bare cut-off energy, ω̃0, and the pairing constant, g,
according to the relation (4.7), than for convenience we recall here

ω0 = ω̃0

√
1− 2g. (7.2)
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7. VARIATION OF THE CRITICAL TEMPERATURE AS A FUNCTION OF THE PARAMETERS THAT
CHARACTERIZE THE SUPERCONDUCTING PHASE

Figure 7.2: Variable boson pairing strength This figure show the effect of the variable boson
energy in the range 30 meV < ω0 < 145 meV as a function of the chemical potential measured
from the bottom of the potential well normalized of the transversal energy dispersion (rescaled
Lifshitz parameter ηR) due to interlayer hopping modulated by the potential barrier due to
intercalated layers separating the superconducting layers. The green box highlights the typical
temperatures in which life can exist.

Here we fix ω̃0 ' 134 meV and, as shown in the Fig. 7.2, the renormalized cut-off
energy is ω0 = 60 meV at g = 0.4. The relation (7.2) tells us that it is not possible to
arbitrarily vary the pairing energy without appropriately modifying the electron-phonon
interaction constant. In the Fig. 7.3 we shows how ω0 varies as g varies in the range
0.150 < g < 0.495.

In Fig. 7.4 top panel we plot the trend of the critical temperature as a function of the
rescaled Lifshitz parameter, ηR (equation (7.1)), for different values of the dimensionless
coupling constant g by varying ω0 according to the Migdal theorem, setting as the
bare cut-off energy ω̃0 = 134 meV in order to avoid interference effects between the
resonances in the first two subbands that characterize our system. It can be observed
that as g increases the shape-resonance expands and the critical temperature values
increase up to a limit value of g equal to 0.4, for g greater the trend decreases and the
resonance tightens. All this is made even clearer by the bottom panel of Fig. 7.4 in
which we have reported the maximum value of TC as g varies.

As pointed out in the introduction to Chapter 4, in high TC superconductors the
critical temperature does not have a unique value but as the pressure and charge den-
sity vary it describes a dome. The dome allows to synthesize the properties of several
high critical temperature superconductors. In this work, for the first time, the su-
perconducting dome is constructed for a 3D superlattice that exhibits both multigap
superconductivity and strong RSOC coupling. To do this, we plot the trend of TC as
a function of the rescaled Lifshitz parameter (this is equivalent to varying the chemical
potential and therefore the charge density) and of the electron-phonon interaction (this
is equivalent to varying the thermodynamic parameter pressure). The result is shown
in Fig. 7.5. The theoretically traced superconducting dome could be useful for com-
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7.3. DISCUSSION

Figure 7.3: Variation of the renormalized cut-off energy as a function of the electron-phonon
coupling. In this figure we report the trend of ω0 vs g described by the equation (7.2) for three
different values of ω̃0 = [64, 134, 201] meV (which correspond to fix the cut-off energy, i.e. the
renormalized cut-off energy for g = 0.4, to the values ω0 = [30, 60, 90] meV ). All three trends
show a decrease of ω0 as g increases which becomes more pronounced as ω0 increases.

paring future experimental trends, which makes our theoretical-numerical model highly
predictive.

We stress that with the parameters chosen for our model it is possible to reach a
maximum TC of about 170 K. In order to increase this value, in Chapter 8 we change
the parameters that define the geometry of the heterostructure of quantum layers. This
allows us to increase the difference in energy between the first and second subband,
hence to reduce the interference effects between the resonances of the two subbands
and, in accordance with Fig. 7.2, to choose values of the cut-off energy, ω0, higher.

Finally, in Fig. 7.6 we plot in log-log scale the TC as a function of the effective
Fermi temperature TF = µ/kB, where µ is the Fermi energy in the zero-temperature
limit computed from the bottom of the first subband and kB is the Boltzmann constant.
The graph is obtained for αSO = 0.7 and for 0.150 < g < 0.495, i.e. for different cut-
off energies (see Fig. 7.2). The continuous curves, as before, represent the trends of
TC increasing with g, the others the trends that decreasing with g. In this figure we
also indicate the regimes of strong and weak superconducting coupling: the shape-
resonance clearly manifests in a BEC-BCS crossover regime, according to the fact that
the maximum of TC occurs in correspondence with the maximum of DOS, i.e., when the
chemical potential reaches the unusual van Hove singularity. For g which tends to the
value of 0.4, the resonance shifts towards a BEC regime, while for values of g greater,
the resonance gradually moves towards a BCS regime.

7.3 Discussion

The analysis conducted so far allows us to show that to increase the TC it is necessary to
increase both the RSOC coupling and the characteristic parameters of the superconduct-
ing phase, such as ω0 and g. At the same time it highlights how structural parameters
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g=0.495
0.490
0.480
0.450
0.410
0.300
0.250
0.200
0.150 

Figure 7.4: Top panel : the critical temperature vs ηR for several g in the range 0.150 < g <
0.495, for αSO = 0.7, ω̃0 = 134 meV and different values of ω0 obtained from equation (7.2).
The continuous curves represent the values of g for which the trend of TC increases as g increases,
while the square curves represent the opposite trend, as indicated by the arrow. Bottom panel :
we plot the maximum value reached by the critical temperature as g and therefore ω0 vary.
This parameter grows almost linearly up to g = 0.4, the point in which there is the maximum
critical temperature, above this value TC,MAX starts to decrease again.
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Figure 7.5: Superconducting dome in the presence of RSOC for αSO = 0.7. In the panel A we
report the projection of the critical temperature in the (g− ηR)-plane, the colours from blue to
red represent increasing critical temperatures. A marked anisotropy of the critical temperature
can be observed as a function of both g and the rescaled Lifshitz parameter. The maximum
of the critical temperature occurs in 0.40 < g < 0.45 and ηR = 1 where the DOS shows a
maximum, i.e. an anomalous van Hove singularity (see Chapter 5 ). The panel B represents
the same trend but in a 3D chart. A first shape-resonance is observed in ηR = 1 and a second,
less pronounced, in ηR < −1. The first shape-resonance is, as seen in the Chapter 5, due to
a Lifshitz transition of the second type, in which the Fermi surface passes from a 3D to a 2D
geometry. The second resonance is imputable to interference effects between the resonances in
the first and second subband in our two-band model (see Fig. 7.2).
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Figure 7.6: Uemura plot [243]. We plot in log-log scale the trend of TC vs TF for different
electron-phonon coupling values. The white box highlights that the shape-resonance occurs in
a crossover BEC-BCS regime, an intermediate regime between a strong coupling regime, BEC-
like, and the weak coupling regime, BCS-like. The dotted line indicates, in fact, this crossover
regime which is predicted to be TC = TF /kF ξ0, where ξ0 is the coherence length of the Cooper
pair [69,244,245].

considerably limit the increase of the critical temperature due to interference effects be-
tween shape-resonances in two different subbands. This is consistent with the fact that
with this thesis we have tried to unify two distinct fields of condensed matter, namely
multigap superconductivity and Rashba spin-orbit coupling. In the following Chapter
we will see how the critical temperature varies with the variation of the geometry of the
superlattice in order to provide precise indications for the fabrication of new materials
with an high critical temperature.
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8

Tuning the superlattice parameters
for materials design

As previously anticipated, in this chapter we will see what is the effect produced on the
properties of the superconducting phase by varying the structural characteristics of the
quantum layer heterostructure schematized in Fig. 5.1.

8.1 Study of the critical temperature as the potential bar-
rier width changes

In this section we analyse the trend of TC as the potential barrier width varies, or rather
as the parameter L changes (see Fig. 5.1) considering the periodicity of the superlattice
constant and equal to d = 30 Å. In equation (5.4) we have, in fact, seen that there is a
relationship between the constant Rashba, αSO and the periodicity of the confinement
potential along z. In this case, with the aim to limit ourselves to the case of strong
RSOC coupling (αSO = 0.7) we must impose that d remains constant. This allows to
isolate only the effect of the confinement geometry on the TC trend.

We therefore consider a potential barrier of amplitude V = 500 meV and width L
variable in the range 15 < L < 23. The well width will vary according to the formula
d = L + h = 30. We consider a Rashba coupling constant αSO = 0.7, a cut-off energy
ω0 = 60 meV and a phonon-electron interaction g = 0.4. For this choice of parameters,
the Fig. 8.1 represents the TC trend as a function of the Lifshitz parameter rescaled for
the different values of L1.

In Chapter 7 we underlined that it is not possible to increase the cut-off energy
beyond 60 meV because the difference in energy between the first and second subband
is such as to produce overlaps between the resonances of the two subbands of which it
is composed our system. The Fig. 8.1 shows that decreasing the width of the barrier
allows to widen the distance between two adjacent subbands as well as the range of

1With reference to equation (7.1) which defines the rescaled Lifshitz parameter, it is necessary to
consider that, having changed L, the energy distance between the first and second subband varies, but
at the same time, the dispersion of the second subband also varies along the z-direction that goes from
a value of 30 meV to a value of 25 meV
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L=23 Å
22 Å
21 Å
20 Å
19 Å
18 Å
17 Å
16 Å
15 Å

Figure 8.1: The critical temperature trend as a function of ηR for different L values. As the
width of the potential barrier decreases, the resonance widens and the maximum of the critical
temperature, while remaining almost constant, shifts to increasing values of the Lifshitz energy.
This is related to the fact that the distance between the first and second subband increases.
For the choice of parameters made so far, we have seen that this difference was approximately
equal to 150 meV now it turns out to be equal to 250 meV in the most extreme case of L = 15.
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8.2. CHANGES IN THE TREND OF THE CRITICAL TEMPERATURE AS A FUNCTION OF THE
CUT-OFF ENERGY

w0=164 meV

120 meV
90 meV

60 meV

145 meV

75 meV
64 meV

52 meV
30 meV

Figure 8.2: Variable boson pairing. The figure shows the effect on TC of the variation of the
pairing energy, made to vary in the range 30 meV < ω0 < 164 meV as a function of the
rescaled chemical potential (equation (7.1)) measured from the bottom of the potential well
V (z) (Fig.(5.1)).

energies in which the TC shows a shape-antiresonance. This results in a reduction of
the interference effects, as the shape-resonance of the first subband is more distant than
the second. All this has no significant effects on the maximum TC , but allows to work
with higher pairing energies and therefore to further increase the critical temperature,
as will be clarified below.

8.2 Changes in the trend of the critical temperature as a
function of the cut-off energy

In this section we choose a suitable value for L equal to 17 Å which allows us to have
a satisfactory separation in energy between the first and second subband, ∆E1,2 =
216 meV . We vary the cut-off energy. The aim is to find the optimal choice of the
parameters involved in order to reach a maximum critical temperature close to the
room temperature.

In Fig. 8.2 we plot the trend of the critical temperature as a function of the rescaled
Lifshitz parameter for different values of the pairing energy, setting αSO = 0.7 and
g = 0.4, in a completely similar way to Fig. 7.2. It can be noted that with this choice
of L it is possible to choose a cut-off energy greater than that seen in Chapter 7 and
precisely equal to 90 meV . So, with reference to equation (7.2) it is possible to fix
ω̃0 = 201 meV .

According to the Fig. 7.3 we plot, therefore, the critical temperature for different
values of the electron-phonon interaction and therefore for different values of ω0 (equa-
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tion (7.2)). By setting αSO = 0.7, ω̃0 = 201 meV , L = 17 Å and leaving all the other
parameters of the model unchanged we obtain the Fig. 8.3.

The same considerations made in the comment of Fig. 7.4 are valid, i.e. that the
critical temperature increases as g increases for values in the range 0.15 < g < 0.40 and
then decreases again. At the same time there is a widening of the shape-resonance for
this range of g values and a subsequent narrowing for g > 0.40. The whole is summarized
in panel B of Fig. 8.3. The TC , as seen in Chapters 4 and 5, is an asymmetric function
of the Lifshitz parameter with a maximum reached in correspondence of ηR = 1 where
the DOS shows a peak due to an anomalous van Hove singularity. The most surprising
thing is that the choice of parameters used for the model in question allows to work
with a pairing energy such that a maximum critical temperature of about 208 K can be
reached, the same value observed for the H3S and confirmed in several papers [32,47].

Also in this case we have reconstructed the superconducting dome. The Fig. 8.4
shows how RSOC coupling allows to work with 3D heterostructures of quantum layers
and not be limited to 2D systems of quantum layers as seen in Chapter 4. In fact, our
model is able to reproduce the experimental data collected for the H3S to predict the
behaviour of future materials with high TC and to provide precise indications on the
realization of new 3D heterostructures.

In Fig. 8.5 we report the Uemura plot, compared to what we saw in Chapter 7 it is
possible to notice a shift of the critical temperature trends towards the weak coupling
regime, BCS-like. The only resonances that completely fall into a BEC-BCS cross-
over regime (white box) are those that occur for g = 0.45 meV, 0.40 meV, 0.3 meV .
This fact is very important as it tells us that considering the RSOC effect in a 3D
heterostructure it is possible to reach critical temperatures typical of the most recent
experimentally reported high TC materials while remaining in a weak coupling regime
and considering model parameters easily reproducible experimentally.

8.3 Study of the isotope effect

In Chapter 4 we saw that sulfur hydride metal H3S reaches a maximum critical tem-
perature of about 208 K for pressures of the order of 160 GPa and we show how a 2D
heterostructure of quantum wires in the absence of RSOC is able to reproduce both the
high value of the TC and the anomalous trend of the isotopic coefficient. Experimen-
tally it has in fact been seen that the value of the isotopic coefficient of H3S deviates
significantly from the value of 0.5 predicted by the BCS theory [32], we have underlined
how this deviation occurs where the chemical potential reaches a topological Lifshitz
transition.

In this section we show that similar results, but for several more surprising aspects,
can be obtained in a 3D geometry, or in an heterostructure of quantum layers, as long as
a Rashba coupling is added in the equations that describe the system, also necessary to
describe in the behaviour of real systems is more realistic and accurate. In the previous
section we have already seen that our model allows to reach the critical temperatures
expected for compounds rich in hydrogen as well as to predict the possibility of finding
new materials with even higher TC . The new and most interesting aspect is that all
this can be achieved in a weak coupling regime (Fig. 8.5).

In the Fig. 8.6 we report the theoretical values of TC and of the isotopic coef-
ficient. The theoretical results are qualitatively in agreement with the experimental
results show in the Fig. 8.7. The behaviour of H3S and of D3S has been simulated by
choosing different values for the energy of the phonon: ω0 = 52 meV for the D3S and
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g=0.495
0.490
0.480
0.450
0.410
0.300
0.250
0.200
0.150 

A

B

Figure 8.3: The critical temperatures for different values of the electron-phonon interaction. The
Figure A shows how as g increases and therefore the pairing energy ω0 increases, the shape-
resonance gets wider. For 0.15 < g < 0.40 the maximum value of the critical temperature
increases, while for greater electron-phonon interactions the resonance decreases and tightens
again. In the panel B we plot the maximum value of the critical temperature as a function of
g, highlighting what was said previously, that is, there is an optimal value for g equal to 0.4.
With this choice we are able to reach the critical temperature expected for H3S, about equal
to 208 K (see Chapter 4).
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Figure 8.4: Superconducting dome. In panel A we plot the propjection of the critical temper-
ature in the (g − ηR)-plane, while panel B is the 3D reconstruction of the superconducting
dome. It can be observed that by choosing the parameters made it is possible to reach critical
temperatures close to the ambient temperature and observed in compounds rich in hydrogen,
such as H3S, and to predict the behaviour of future materials with an high TC .

100



8.3. STUDY OF THE ISOTOPE EFFECT

T
C

(K
e

lv
in

)

500

100

10

Fermi Temperature TF (Kelvin)

5 102 103 2 103 4 103

g=0.495
0.490
0.480
0.450
0.410
0.300
0.250
0.200
0.150 

BEC

BCS

Figure 8.5: Uemura plot. We plot in log-log scale the trend of the critical temperature as a
function of the Fermi temperature (defined in Chapters 6 and 7 ) for different values of the
electron-phonon interaction. The black continuous diagonal line represents the limit at which
a BEC-like regime begins, therefore it is possible to observe a shift of the TC towards a weak
coupling regime.
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ω0 = 90 meV for the H3S. The ratio of these values is, in fact, approximately equal
to the difference in mass between deuterium and hydrogen. As seen in the previous
sections, increasing the energy cut-off widens the shape-resonance producing unconven-
tional shape of the temperature dependent isotopic coefficient and a large variation by
changing the pressure from the expected BCS coefficient 0.5 2.

Fig. 8.7 shows the experimental data obtained for the isotope coefficient in the
pressure range between 120 GPa and 180 GPa [32, 168, 203]. The isotope coefficient
gradually decreases with increasing pressure passing from a value of 1 to a value of
about 0.3, showing a significant variation from the predicted value of the BCS theory of
0.5. As seen above, this anomalous behaviour can only be explained in the reference of
the general theory of multigap superconductivity near a Lifshitz transition. The same
thing can be said in reference to the experimental trends of the critical temperature. In
particular, TC decreases by about 40 K in H3S and by about 60 K in D3S in a range of
about 30 GPa, between 160 GPa and 130 GPa . While BCS calculations foresee that
in this range of pressures the variation of TC is of the order of 10 K [168], in a multigap
superconductor the TC tends to zero (see the antiresonance of shape in Fig. 8.3A) in
correspondence with a Lifshitz transition of the first type and a marked resonance in
correspondence with a Lifshitz transition of the second type; when the FS passes from
a 3D geometry to a 2D one and two condensed in different coupling regimes coexist.
In particular, the condensate in the first subband is in the BCS-like regime, while the
condensate in the second subband is in a BEC-BCS crossover regime.

The comparison between experimental and theoretical trends shows how the Rashba
interaction gives an important contribution to the theoretical explanation of supercon-
ductivity at room temperature in a weak coupling regime.

2As pointed out in Chapter 4, in a 2016 paper published in Scientific Reports T. Jarborg and A.
Bianconi [168] have seen that in the zero temperature limit, the pressure shifts the energetic distance
of the chemical potential from the Lifshitz transition by a few meV . In Fig. 4.2 we reconstruct the
relation between pressure and energy distance of the chemical potential with respect to the topological
Lifshitz transitions ((µ − EL) where EL is the band edge energy of the highest energy subband, in
our case the second). This allows us to simulate the pressure variation with a variation of the Lifshitz
parameter, ηR.
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Figure 8.6: The critical temperature and the isotope coefficient as a function of the pressure
and the Lifshitz parameter for two different compounds: H3S and D3S. The trend of TC vs
the pressure obtained theoretically by modelling the difference in the isotopic weight of the two
compounds with two different phononic frequencies, whose ratio is ω0(D3S)/ω0(H3S) = 0.59.
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Figure 8.7: The critical temperature and the isotope coefficient as a function of the pressure and
the Lifshitz parameter for two different compounds: H3S and D3S. The experimental results,
reported in [32, 47, 203], show a difference in the trend of the TC vs the pressure in the two
samples with different isotopic weight. The difference in mass between deuterium and hydrogen
is 90

√
1/2 = 63. This difference manifests itself in an isotope coefficient that varies a lot in a

small range of pressures. It is possible to note an excellent agreement between experimental
data and theoretical predictions.
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9

Conclusions and future prospectives

The aim of the work presented in this thesis has been to investigate theoretically and
numerically the electronic structure and the superconducting properties of a nano-
structured superlattice of quantum layers in the presence of RSOC. We have described
the unconventional Lifshitz transition in a 3D superlattice of metallic layers charac-
terized by the length of the circular nodal line increasing with RSOC in the negative
helicity states of the spin-orbit split electron spectrum. Here we have been able to
provide the theoretical description of tuning multigap Bogolioubov-de Gennes super-
conductivity near the bottom of the upper subband with the negative helicity shifted
by the RSOC. Our theory overcomes the limitations present so far due to common BCS
approximations used in previous theoretical works on superconductivity in the presence
of spin-orbit interactions which mostly describe superconductivity only at very high
Fermi energy. The work in Ref. [249] constitutes an important exception, focussing on
superconductivity in low-density semimetals in the presence of strong spin-orbit cou-
pling and analysing the superconducting instability in different pairing channels. This
latter work clearly shows the need to systematically develop the extension of the BCS
theory in strongly spin-orbit coupled systems (see also [250]). We have shown the key
role of quantum configuration interaction between the gaps in the self-consistent mean-
field equation which need the calculation of the exchange interactions between singlet
pairs in subbands with different quantum number and different helicity. The exchange
interactions are local contact interactions which have been shown to be essential in con-
densation phenomena in fermionic quantum ultracold gases. In our theory the contact
interactions are in action together with phonon exchange Cooper pairing. The key re-
sult of this work has been the calculations of the overlap of the electron wavefunctions
by solving the non relativistic Dirac equation in order to account for the spin-orbit
coupling. We believe that the results obtained here provide a roadmap for the quantum
material design of a superlattice of periodicity d made of superconducting atomic flakes
of thickness L separated by spacers of thickness W .

As a first step, we have shown that resonant and crossover phenomena in the normal
state are amplified when the transverse energy dispersion of electrons in the superlattice
is of the same order of magnitude of the energy cut-off ∆Ez ∼ }ω0 of the effective
pairing interaction. Under these conditions the introduction of a RSOC, of amplitude
of the order of the 3D superlattice period, creates a completely unexpected variation
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in the topology of the Fermi surface, especially for the negative helicity band. In
particular, the RSOC induces an unconventional Lifshitz transition with an associated
extanded van Hove singularity. For the non-BCS superconducting phase we have solved
the Bogoliubov-de Gennes equation for the multiple gaps numerically. The unusual
complexity in the properties of the normal phase is reflected in an amplification of
the gap and the critical temperature in precise energy ranges. We have found that the
enhancement of the superconducting parameters takes place when the chemical potential
is tuned around the Lifshitz transition. Under these circumstances it is necessary to
include the configuration interaction between different gaps in different subbands.

In the BCS theory the pairing interaction is assumed originated from an effective
contact interaction mediated by phonons between electrons with opposite momentum
and spin. The wavefunction of the superconducting ground state has been constructed
by the configuration interaction of all electron pairs on the Fermi surface in an en-
ergy window that is the energy cut-off of the interaction. In a multiband anisotropic
superconductor we have seen that the effective pairing interaction entering in the gap
equation needs to be reconfigured by the effects of the quantization through the single-
particle wavefunctions determined by the external confining potential. The BCS-like
self-consistency relation shows in this case a matrix structure whose elements depend
on the subband index and on the wavevector transversal to the layers. This implies
a structure in the k-dependence interband coupling interaction for the electrons that
determines interference effects between the single-particle wavefunctions of the pairing
electrons in different subbands of the superlattice. In this case, both a conventional
intraband coupling and an interband coupling strictly connected to the amplification of
the critical temperature become possible. We have shown that the interband and intra-
band distributions show different shapes and widths and have different range of values
and that in order to have a strong amplification of the critical temperature it is neces-
sary to create a strong anisotropy in the gaps. This can be achieved by increasing the
superconducting coupling in the higher energy subband with respect to the interband
and intraband term relating to the first subband.

The issue of superconducting fluctuations in a multiband and multigap configu-
ration deserves a comment at this point. Whereas amplitude and phase fluctuations
of the order parameter are in general detrimental and a source of large suppression
of the (otherwise enhanced) critical temperature in low dimensional and/or strongly
coupled superconductors, their effect can be reduced by the recently proposed mecha-
nism [192,193] of the screening of superconducting fluctuations in a (at least) two-band
system. References [192,193] demonstrated that a coexistence of a shallow carrier band
with strong pairing and a deep band with weak pairing, together with the exchange-
like pair transfer between the bands to couple the two condensates, realizes an optimal
and robust multicomponent superconductivity regime: it preserves strong pairing to
generate large gaps and a very high critical temperature but screens the detrimental
superconducting fluctuations, thereby suppressing the pseudo-gap state. The screening
is found to be very efficient even when the pair exchange is very small. Thus, a multi-
band superconductor with a coherent mixture of condensates in the BCS regime (deep
band) and in the BCS-BEC crossover regime (shallow band) offers a promising route
to enhance critical temperatures, eliminating at the same time the suppression effect
due to fluctuations. In the light of these considerations, a quantitative calculation of
the screening in the system here considered, requiring the inclusion of the spin-orbit
coupling terms in the fluctuation propagator, is postponed to a future work.

The coexistence of at least one large Fermi surface and at least one small Fermi
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surface appearing or disappearing with small changes in the chemical potential is the
key ingredient for the shape-resonance idea in superconducting gaps [164, 165] which
is a type of Fano-Feshbach resonance. By changing the chemical potential, the critical
temperature (TC) decreases towards 0 K when the chemical potential is tuned to the
band edge, because of the Fano antiresonance, and the TC maximum appears (as in
Fano resonances) at higher energy, between one and two times the pairing interaction
above the band edge [164,165,167].

The most interesting aspects that emerged from this thesis are the possibility of to
vary the RSOC by varying the parameters of the model and the possibility to obtain
a critical temperature typical of high TC compounds by suitably and parallel varying
the parameters that define the superconducting phase, the RSOC coupling and the
geometry of the heterostructure of quantum layers. This allows us to provide precise
indications for any experimental tests and practical applications. In a second phase of
our work, we have, indeed, seen that by choosing a RSOC of the order of the cut-off
energy and greater than the dispersion of the second subband and keeping the lattice
periodicity fixed, it is possible to suitably vary the electron-phonon interaction constant
in order to reach critical temperatures of the order of 208 K. Furthermore, our work
shows how by adding the spin degree of freedom in the equations describing the system
as well as being able to model the behaviour of real systems in a more realistic way, it
is possible to justify the most recent results on superconductors at room temperature
in a week coupling regime.

9.1 Future prospectives

The works [192,193], cited above, should first be extended to include the realistic elec-
tronic structure of the superlattice in the 3D-2D dimensional crossover, subject of this
thesis. This involves going beyond the parabolic-band approximation used in [192,193].
To this end, as a preliminary study, it is possible to consider an analytical fit-model
of the superlattice bands as obtained in the Section 5.2. Another aspect that should
be analysed is the extension of the Ginzburg-Landau theory (the GL theory) in the
presence of fluctuations for multiband systems [251]. The next step could be to study
the effect of thermal fluctuations in a multiband superconductor in the presence of a
spin-orbit coupling (SOC). This greatly complicates an already controversial problem,
but it could open up the possibility to study entirely new and fascinating phenomena.

The theory of GL in the presence of a Rashba spin-orbit interaction (RSOC) has
been investigated in several papers [48,149,252–264]. In the Ref. [256] it is emphasized
that for such systems there are two transition temperatures the higher of which is
the conventional critical temperature, TC , while the lower one, T ∗, corresponds to the
crossover from a mixed singlet-triplet phase, at lower temperatures, to only a spin-singlet
or spin-triplet (depending on the sign of the interband scattering potential) phase at
higher temperatures. Currently, the problem of superconducting fluctuations in the
presence of SOC has been addressed only for single-band [149, 252, 254–264] systems,
where the fluctuations with SOC are studied in BCS-BEC crossover, an important
aspect for our work. In fact, the crossing of a shape-resonance and the passage of the
chemical potential through a Lifshitz transition determines the tuning of the superlattice
through this crossover. In the works [149,252–254,256,257,259,262,264] the BCS-BEC
crossover in the presence of RSOC was analysed. It has been shown that the SOC
causes fluctuations to mediate an attractive pairing coupling, strongly dependent on
the momentum and the spin, in the channel with odd-parity (p- or f-wave). Contrary
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to what was expected, the addition of a transversal Zeeman field does not destroy the
superconductivity, but it suppresses the s-wave coupling promoting a coupling with odd-
parity that increases as the SOC increases. This behaviour supports an unconventional
topological superconductivity. As underlined in [255,261,263] for sufficiently large SOC
the singlet contribution improves in the BCS channel, but is suppressed in the BEC
channel, therefore, as the spin-orbit coupling increases the system passes from a BCS-
BEC superfluid to a condensate BEC.

The above leads, as a major effort, to the need to develop a new theoretical and
computational research project aimed at the study of BCS-BEC fluctuations and the
crossover phenomena in the presence of multiband systems, such as those generated
by a superlattice, and at the same time, in the presence of spin-orbit coupling and,
possibly, in the presence both parallel and transverse Zeeman magnetic fields. This will
be a promising future development of the work of this thesis.
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A

The origin of the spin-orbit
interaction

The spin-orbit interaction (SOI) arises in the non-relativistic limit of the Dirac equation.
The Dirac equation reads

i}∂tψ = (α · p + βmc2 + V )ψ, (A.1)

with

α =

(
0 σ
σ 0

)
, β =

(
1 0
0 −1

)
, V = eV

(
1 0
0 1

)
, ψ =

(
ψ1

ψ2

)
, (A.2)

where we consider the presence of a static electric field described by eV , ψ1 and ψ2

are the upper and lower components of the spinor ψ. While σ are the Pauli matrices
linked to the spin of the electron σ = 2S/~. Taking mc2 as the zero of energy, the Dirac
equation becomes {

i}∂tψ1 = eV ψ1 + c(σ · p)ψ2

i}∂tψ1 = (eV − 2mc2)ψ2 + c(σ · p)ψ1

(A.3)

which shows that when eV and cp are small compared to the so-called Dirac gap 2mc2

(the non-relativistic limit), ψ1 ∼ e−imc
2t/~ and ψ2 ∼ eimc

2t/~. Now we want to derive
an equation for the upper component ψ1 when the Dirac gap is the largest energy scale.
To this end we use the second equation in (A.3) expressing ψ2 in terms of ψ1, and we
make an expansion in the parameter 1/(2mc2).

ψ2 '
1

2mc

(
1− i}∂t

2mc2
+

eV

2mc2

)
(σ · p)ψ1. (A.4)

In this way we can eliminate ψ2 in the equation for ψ1. The normalization condition
for the original wavefunction < ψ|ψ >= 1 implies

< ψ|ψ >=< ψ1|ψ1 > + < ψ2|ψ2 >= 1. (A.5)

Therefore, if we define

ψ̃ =

(
1 +

(σ · p)2

8m2c2

)
ψ1, (A.6)
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where ψ̃ satisfies < ψ|ψ >= 1 at order 1/(2mc2). The equation for < ψ|ψ >= 1 reads

i}∂tψ̃ =

(
1− p2

8m2c2

)[
eV +

p2

2m
+ (σ · p)

eV

4m2c2
(σ · p)

](
1 +

p2

8m2c2

)
ψ̃. (A.7)

By calculating the product up to the terms of order 1/c2, we get

Heff = eφ+
p2

2m
− p4

8m3c2
+
e}∆V

8m2c2
+

e}
4m2c2

[σ · (∇V × p)], (A.8)

where the first two terms represent the classical non-relativistic Hamiltonian, the third
term is the first relativistic correction to the kinetic energy, the fourth term is the so-
called Darwin term, and finally the last one is the spin-orbit interaction. Let us examine
this term more carefully; it can be expressed as

HSO =
eλ̃2

0

4
(σ ×∇V ) · p, (A.9)

where λ̃0 = }/(mc) ' 1010cm is the Compton wavelength in a vacuum, which is very
small compared with the characteristic lengths in solids. However, when considering the
spin-orbit interaction in solids one must take into account that an effective Compton
wavelength, λ̃, may appear. In some cases this brings a big enhancement of the strength
of the spin-orbit interaction. For example, in GaAs the effective Compton wavelength
λ̃ is about three orders of magnitude larger than the vacuum value λ̃0. In atoms,
the potential eV , in equation (A.9), is the central field due to the nucleus and to the
screening of electrons and the SOI term is responsible for the fine structure of the atomic
spectra.

In solids, in principle, the Eq.(A.9) applies to all potentials acting on the electrons.
In this respect one may speak of different spin-orbit mechanisms depending on the origin
of the potential. Those which, due to the potential from impurities and defects, break
the translational symmetry of a periodic lattice, are called extrinsic mechanisms. On the
other hand, those mechanisms arising from the potential of the host lattice or from the
confining potential determining an electronic device, as in the case of a two-dimensional
electron gas, are called intrinsic. In the present thesis we are interested in the latter
class of mechanisms.
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B

The DOS and the occupation
number for a 2DEG in the presence
of RSOC

The density of states, commonly referred by the acronym DOS, tells us how many states
there are with an energy between E and E + dE, given a volume element dp

dE = N(p)dp =
dE

dp
dp ⇒ N(p) =

dE

dp
.

It is possible to introduce this quantity in a more formal way by defining

N(E) =
1

V

∑
p

δ(E − Ep).

This function gives the number of elements in the volume dE. In the case of infinite
volume we have

N(E) =

∫
d2p

(2π)2
δ(E − Ep)

and the important report holds true

1

V

∑
p

F (E − Ep) =

∫
dEN(E)F (E).

In the case under consideration

N(E) =
∑
p,α

δ(E − Eαp ). (B.1)

Eαp is a continuous function of p, hence

N(E) =

∫
d2p

(2π)2
[δ(E − E+

p ) + δ(E − E−p )].
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Since p is defined as in Fig.(2.2), we solve in polar coordinates

N(E) =

∫ ∞
0

pdp

(2π)2

∫ 2π

0
dϑ[δ(E − E+

p ) + δ(E − E−p )],

N(E) =
1

2π

∫ ∞
0

pdp[δ(E − p2

2m
− αp) + δ(E − E − p2

2m
+ αp)].

We take advantage of the properties of the δ −Dirac function and proceed as follows:

1. Let’s solve the equation p2±2mαp−2mE = 0⇒ p±(E) = ∓mα±
√

(mα)2 + 2mE
e dE
dp = p

m ± α.

2. We see what are the acceptable solutions

• p1(E) = mα+
√

(mα)2 + 2mE always > 0 ⇒ always valid,

• p2(E) = mα−
√

(mα)2 + 2mE > 0 ⇐⇒ E < 0,

• p3(E) = −mα−
√

(mα)2 + 2mE never > 0 ⇒ never valid,

• p4(E) = −mα+
√

(mα)2 + 2mE always > 0 ⇐⇒ E > 0.

3. We distinguish two cases: E ≶ 0.

• For E < 0 we have

N(E) =
1

2π

∫
pdp

δ(p− p1)

|p1m − α|
+
δ(p− p2)

|p2m − α|
=
m

2π

2mα√
(mα)2 + 2mE

. (B.2)

This function tends to +∞ when E = −E0 and to mπ for E = 0.

• For E > 0 we have

N(E) =
1

2π

∫
pdp

δ(p− p1)

|p1m − α|
+
δ(p− p4)

|p4m + α|
=

=
m

2π

mα+
√

(mα)2 + 2mE√
(mα)2 + 2mE

+
−mα+

√
(mα)2 + 2mE√

(mα)2 + 2mE
=

=
m

2π
N(E)− +N(E)+ =

m

π
, (B.3)

where we have defined

N(E)± =
m

2π
(1∓ mα√

(mα)2 + 2mE±
). (B.4)

The graphic result is shown in the Fig.(2.3). Therefore, a discontinuity in the derivative
is observed at E = 0 and a van Hove singularity at −E0.

Known the DOS, can determine the occupation number. In the standard case we
have

n =

∫ EF

−E0

N(E)dE =

∫ EF

−E0

m

π
dE =

m

π
(EF − E0).

In the RSOC case we will have instead

n =

∫ EF<0

−E0

N(E)dE =
m2α

π

∫ EF

−E0

dE√
(mα)2 + 2mE

=
mα

π

√
2m(E0 + EF ),
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if the Fermi energy is less than zero and

n =

∫ EF>0

−E0

N(E)dE =

∫ 0

−E0

N(E)dE +

∫ EF

0
N(E)dE =

m

π

∫ 0

−E0

mαdE√
(mα)2 + 2mE

+
m

π

∫ EF

0
dE =

m

π
(EF + 2E0),

if the Fermi energy is greater than zero.
What we have seen in this Appendix, supports the idea that in the presence of

a RSOC the 2DEG manifests an anomalous behaviour already in the properties that
define the normal phase.
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C

The Dirac Comb

In the Kronig-Penney model we consider a potential made of a repeated succession of
potential barriers with high V , wide W and sprawling of a distance L. The solution of
the Schrödinger equation is found by imposing the continuity of the wavefunction and
its first derivative on the discontinuities of the potential. Following this procedure you
will get to calculate the determinant of matrices 4×4 (if there is a RSOC these matrices
become 8× 8). The problem can be simplified by imposing a potential known as Dirac
comb: infinite sequence of Dirac delta-function centred in the nL sites (Fig. C.1).

The analytical form of the aforementioned potential is the following

V (z) = v0

∞∑
n=−∞

δ(z − nL),

where v0 is a positive constant with the dimensions of an energy for a length and n is
an integer or zero.

In each of the ranges (nL, (n + 1)L) the particle is free, so the time-independent
Schrödinger equation (3.4) admits plane-waves as fundamental solutions.

L
z

V(z)

2L 3L 4L 5L-5L -4L -3L -2L -L

Figure C.1: Periodic potential: Dirac comb.
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Formally

− ∂2
z

2m
ψ(z) + v0

∑
n

δ(z − nL)ψ(z) = Eψ(z). (C.1)

For z 6= nL:

− ∂2
z

2m
ψ(x) = Eψ(z)⇒


ψ(z) = e±ipz

p =
√

2mE forE > 0

q = i
√

2mE = ip forE < 0.

(C.2)

We are now search solutions of the form:

ψ(z) = Aeipz +Be−ipz. (C.3)

The first condition to impose is that ψ satisfies Bloch theorem

ψ(L) = eikLψ(0) I CONDITION. (C.4)

Given that on the border there is a δ-Dirac function as a further condition we can
impose the discontinuity of the first derivative. The idea is to integrate the stationary
Schrödinger equation from −ε to ε, with ε > 0, and analyse the behaviour in the limit
ε→ L (point where we find the first discontinuity)

lim
ε→0

(
− 1

2m

∫ ε

−ε

d2ψ(z)

d2z
dz +

∫ ε

−ε
V (z)ψ(z)dz

)
= lim

ε→0

(
E

∫ ε

−ε
ψ(z)dz

)
. (C.5)

Let’s analyse the different contributions

lim
ε→0

(
− 1

2m

∫ ε

−ε

d2ψ(z)

d2z
dz

)
= lim

ε→0

(
dψ

dz

∣∣∣
z=ε
− dψ

dz

∣∣∣
z=−ε

)
=

(
dψ

dz

∣∣∣
+
− dψ

dz

∣∣∣
−

)
. (C.6)

From the Bloch theorem and from the fact that the factor eikL does not depend on z,
we have that the relation (C.4) must also hold for the derivatives

dψ

dz

∣∣∣
z=0

= e−ikL
dψ

dz

∣∣∣
z=L

(C.7)

which replaced in equation (C.6) leads to

dψ

dz

∣∣∣
z=0
− e−ikLdψ

dz

∣∣∣
z=L

. (C.8)

Then, we used the Bloch theorem to replace the left derivative with the derivative
calculated in z = L, thus passing to a condition at the edges of the barrier. Now
consider the second contribution of the equation (C.5)

lim
ε→0

∫ ε

−ε
V (z)ψ(z)dz ⇒ v0

∫ ε

−ε
δ(z − ε)ψ(z)dz = v0ψ(ε) −→ε→0 v0ψ(0). (C.9)

Now consider the third contribution of the equation (C.5). For the first condition, ψ
is a continuous function, for the Weiestrass theorem, in the compact [−ε, ε], admits
minimum, m, and maximum, M

m

∫ ε

−ε
dz 6

∫ ε

−ε
ψ(z)dz 6M

∫ ε

−ε
dz.
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C. THE DIRAC COMB

For the theorem of the carabinieri it follows that

lim
ε→0

∫ ε

−ε
ψ(z)dz = 0.

In conclusion we have
− 1

2m

(
dψ
dz

∣∣∣∣
z=0

− dψ
dz

∣∣∣∣
z=L

e−ikL
)

+ v0ψ(0) = 0

⇒ ψ′(L)e−ikL = ψ′(0)− 2mv0ψ(0)

⇒ ψ′(L) = eikL(ψ′(0)− 2mv0ψ(0)) II CONDITION.

(C.10)

It is therefore necessary to solve the following system:{
ψ(L) = eikLψ

ψ′(L) = eikL(ψ′(0)− 2mv0ψ(0)).
(C.11)

For E > 0 we have {
AeipL +Be−ipL = eikL(A+B)

AeipL −Be−ipL = (A−B)− 2mv0
ip (A+B),

(C.12)

placing Z = 2mv0
ip , we have{

A(eipL − eikL) +B(e−ipL − eikL) = 0

A(ei(p−k)L − 1 + Z) +B(e−i(p+k)L + 1 + Z) = 0,
(C.13)

writing the coefficients matrix we have(
eipL − eikL e−ipL − eikL

ei(p−k)L − 1 + Z e−i(p+k)L + 1 + Z

)(
A
B

)
= 0. (C.14)

This system admits non-trivial solutions if the coefficient matrix has a null determinant,
or

(eipL − eikL)(e−i(p+k)L + 1 + Z)− (e−ipL − eikL)(ei(p−k)L − 1 + Z) = 0

⇒ −e−ikL + eipL + e−ipL − eikL + z(eipL − e−ipL) = 0

2 cos(pL)− 2 cos(kL) + 2Zi sin(pL) = 0

⇒ cos(pL) +
2mv0

p
sin(pL) = cos(kL) = F(E) Solution for E > 0. (C.15)

For E < 0 we have

(e−pL + epL)− (e−ikL + eikL)) + z(e−pL − epL) = 0

⇒ cosh(pL) +
2mv0i

p
sinh(pL) = cos(kL) = F(E) Solution for E < 0. (C.16)

The plot of the F(E) functions have been obtained with Mathematica software and
shown in the Fig. C.2.

We will now consider the case E > 0. Since that F(E) must equal a cosine function
(equation (C.14)), there are no values of k that satisfy this equation in the zones where
the left member is between −1 and 1, or

| cos(pL) +
2mv0

p
sin(pL)| ≤ 1. (C.17)
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Figure C.2: In the panel A and B we plot equation (C.15) for different values of the parameters
a = L and b = 2mv0. In particular in panel A, a = b = 1, while in panel B a = 2, b = 1. As
a increases, the periodicity of the function decreases, while damping increases as b increases.
In panels C and D we have plotted the real part of equation (C.16) for a = 0.1 and a = 2,
respectively. It is observed that as a increases, the parabola widens and squeezes against the
x-axis, while the effect of b is negligible. Similar considerations apply to the imaginary part of
equation (C.16).

Once the values of p satisfying this inequality have been found, in correspondence with
each of them it is possible to determine from the equation (C.14)the values of k which
characterizes the Bloch functions. While the level energy is derived from the equation
E = p2/2m. The graphic solution of equation (C.17) obtained with Mathematica
software is shown in the Fig. C.3.

A B C

1

-1

1

-1

1

-1

E E E

p
p

p

2 4 6 8

2 4 6 8

2 4 6 8

Figure C.3: In the panel A, B and C we plot the equation (C.17) for different values of the
parameters a = L and b = 2mv0. In particular in panel A, a = 2, b = 0, in panel B a = 2, b = 1
and in panel C a = 2, b = 10. As a increases the periodicity of the function decreases, while
as b increases the forbidden energies increase.

We see that there are ranges of energies in which the graph goes out of the allowed
interval (−1 ≤ F(E) ≤ 1), alternating with values in which it is included. This ulti-
mately means that we have allowed intervals of energies called "bands" and ranges of
forbidden energies called "gaps". For very high energies, 2mv0/p→ 0, the left member
tends to be a cosine function and, therefore, there are no prohibited energies. In reality
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C. THE DIRAC COMB

this is a limit behaviour, in fact the gaps are always present even at high energies, even
if, as can be seen from the results obtained with Mathematica, they are shrinking more
and more. The graphic solution is shown in Fig. C.4. The same result was obtained in
Fortran Fig. C.5.

A B C
E E E

k p p

200

100

0

0 1 2 3

200

100

0

200

100

0

0 1 2 3 0 1 2 3
p

Figure C.4: The energy bands in the Dirac Comb model obtained with Mathematica. In the
panel A, B and C we plot the dispersion obtained be inverted the equation (C.17) for different
values of the parameter b = 2mv0. In particular in panel A, b = 0, in panel B b = 2 and in
panel C b = 4. As b increases the forbidden energies increase.

E

p

Figure C.5: The energy bands in the Dirac Comb model with Fortran. We plot the dispersion
obtained be inverted the equation (C.17) for different values of the parameter b = 2mv0. As b
increases the forbidden energies increase.
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D

The effect of phase factor on the
gap equation

In this Appendix we consider the Rashba Hamiltonian with pairing interaction of the
BCS type. The aim is to clarify if and how the gap equation may change by changing the
orientation of the electric field responsible for the Rashba spin-orbit coupling (RSOC).
The Rashba Hamiltonian will be considered with two different orientations. The first, as
supposed in this thesis, has the traditional form with the electric field along the z-axis

Hz = α(σxpy − σypx), (D.1)

whereas the second, considered in the works [17, 148], has the electric field along the
y-axis

Hy = α(σxpz − σzpx). (D.2)

Let us consider now a rotation around the x-axis counterclockwise by π/2. The matrix
of the transformation reads

U =
1√
2

(σ0 − iσx) . (D.3)

Then one obtains the following transformation rules

σx → σx, σy → σz, σz → −σy

and the equivalent for the momenta

px → px, py → pz, pz → −py.

By using the above transformation rules, one has the transformation

Hz → Hy.

The eigenvalues of Hz are Eλ = λαp with λ = ±1. The corresponding eigenvectors read

ηλ(ϑ) =
1√
2

(
1

−iλeiϑ
)
. (D.4)
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D. THE EFFECT OF PHASE FACTOR ON THE GAP EQUATION

The angle ϑ defines the direction of the momentum px = p cos (ϑ) with respect to the
x-axis.

By applying the rotation U to the eigenvectors ηλ (ϑ) one gets

Uηλ (ϑ) −→ ξλ (ϑ) =
1√
2

( √
1− λ cos (ϑ)

λ
√

1 + λ cos (ϑ)

)
eiϑ/2e−iπ(λ+1)/2. (D.5)

The vectors ξλ (ϑ) are the eigenvectors of the rotated Hamiltonian Hy. The overall
phase factor of the eigenvectors ξλ (ϑ) is inherited by the eigenvectors ηλ (ϑ) . Of course
one could have diagonalized directly the Hamiltonian Hy getting as eigenvectors

ςλ (ϑ) =
1√
2

( √
1− λ cos (ϑ)

λ
√

1 + λ cos (ϑ)

)
. (D.6)

The eigenvectors ςλ (ϑ) and ξλ (ϑ) differ by an overall phase factor. A key observation
is that the choice of the phase factor determines the form of the gap function via the
effective interaction in the helicity basis.

By following Gor’kov and Rashba [133], one defines the effective interaction as

Uλλµµ
(
ϑ, ϑ′

)
=
U0

2

〈
ξλ (ϑ) |ξµ

(
ϑ′
)〉 〈

ξλ (ϑ+ π) |ξµ
(
ϑ′ + π

)〉
,

which leads to

Uλλµµ
(
ϑ, ϑ′

)
=
U0

4
e−i(ϑ−ϑ

′)e−iπ(λ−µ)/2
[
λµ+ cos

(
ϑ− ϑ′

)]
.

One may remember that the inversion of momentum amounts to shift the angle ϑ by π.
Within the gap equation one has the combination of the effective potential

Uλλµµ
(
ϑ, ϑ′

)
− Uλλµµ

(
ϑ+ π, ϑ′

)
=
U0

2
λµe−i(ϑ−ϑ

′)e−iπ(λ−µ)/2. (D.7)

The above form of the potential in the gap equation is precisely the one obtained by
Gor’kov and Rashba [133]. The second key observation is the following. Should one
have used the eigenvectors (D.6), which do not have the overall phase factor, one would
have obtained the combination

Uλλµµ
(
ϑ, ϑ′

)
− Uλλµµ

(
ϑ+ π, ϑ′

)
=
U0

2
cos
(
ϑ− ϑ′

)
. (D.8)

The two forms (D.7) and (D.8) lead to different gap equations. It may be useful to
recall the comment in the paper by Gor’kov and Rashba [133], soon after the equation
(17):

"Before we turn to the discussion of the nature of the order parameter in
the new SC state, let us mention that the “gap function” ∆ (p) depends on
p through its phase. This dependence is inherent in the non-perturbative
character of the spinor basis functions of equation (2) after spin degeneracy
is lifted. It cannot be eliminated but can be changed by a different choice
of phase factors in equation (2)."

Hence, one may use the eigenvectors (D.5) and obtain the same gap equation as in
Gor’kov and Rashba [133].
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E

Three-dimensional Rashba metal

Given the importance of the density of the states in the study of the properties of the
normal and superconducting phase of a quantum system, in the following we will analyse
the simple case of a three-dimensional (3D) system in the presence of RSOC, in which
the electrons along the direction of the Rashba electric field are supposed free [19]. We
start from the following Hamiltonian

H0 =
~2k2
‖σ0

2m
+

~2k2
zσ0

2mz
+ ~α(ẑ × k) · σ, (E.1)

where k = (kx, ky, kz) is the electron wave number, α = αẑ is the Rashba vector
pointing along the z-direction, k‖ =

√
k2
x + k2

y and σ0 is the identity matrix, while
σ = (σx, σy, σz) is the Pauli matrix vector.

Diagonalization of equation (E.1) gives an electron dispersion consisting of two
bands, that apart from a constant energy shift (as see in the following), are given
by

E(k, λ) =
~2k2

z

2mz
+

~2

2m
(k‖ + λk0)2, (E.2)

where k0 = αm/~ is the Rashba momentum, while E0 =
~2k20
2m = mα2/2 is the energy

splitting RSOC and λ = ±1. In the equation (E.2) by imposing that E(k, λ) = EF =
~2k2F
2m , where EF is the Fermi energy, we have

k2
F =

m

mz
k2
z + (k‖ + λk0)2 = k̃2

z + (k‖ + λk0)2. (E.3)

At this point we can distinguish two cases. The first case is k0 > kF in where the only
possible solution is that for λ = −1 and equation (E.3) is reduced to k2

F = k̃2
z+(k‖−k0)2.

This means that the surfaces of the retainers have a toroidal geometry (Fig. E.1 A).
For the second case, k0 < kF , we have both the solutions for λ = ±1, the equation
(E.3) is reduced to k2

F = k̃2
z + (k‖ + λk0)2 and the Fermi surface has a more complex

geometry (Fig. E.1 B).
Now we can to evaluate the DOS. Let us consider the case with λ = −1

N(EF ,−1) =

∫ ∞
0

k‖dk‖

2π

∫ ∞
−∞

dkz
2π

δ(k2
z + (k‖ − k0)2 − EF ). (E.4)
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E. THREE-DIMENSIONAL RASHBA METAL

A B

Figure E.1: Evolution of the Fermi surface. Panel A: case in which k0 > kF . Panel B: case
in which k0 < kF . For k0 > kF the Fermi level crosses only the λ = −1 band and the Fermi
surface is a torus. In the case in which k0 > kF we have two-solution and two toroidal Fermi
surfaces with inner and outer surfaces corresponding to λ = 1 (blue) and λ = −1 (orange).

Notice that we put the integration over kz first. It is equivalent and easier.
Let us make the change of variable k′ = k‖ − k0

N(EF ,−1) =

∫ ∞
−k0

dk′

2π
(k′ + k0)

∫ ∞
0

dkz
2π

δ(k2
z + (k′)2 − EF ). (E.5)

Define Ẽ = k2
z , hence, dkz = 1/

√
ẼdẼ

N(EF ,−1) =

∫ ∞
−k0

dk′

2π
(k′ + k0)

∫ ∞
0

dẼ

2π
√
Ẽ
δ(Ẽ − EF + k′)

=

∫ ∞
−k0

dk′

2π
(k′ + k0)

1

2π

θ(EF − k′2)√
EF − k′2

. (E.6)

The theta-function requires that −
√
EF < k′ <

√
EF . There is no problem for k′ > 0,

but for k′ < 0 we must distinguish:

•
√
EF < k0

N(EF ,−1) =
1

4π2

∫ −√EF
−k0

k′ + k0√
EF − k′2

=
1

4π2
2k0

∫ 1

0

x√
1− x2

=
k0

4π
≡
√
E0

4π
. (E.7)

•
√
EF > k0

N(EF ,−1) =
1

4π2

∫ −√EF
−k0

dk′
k′ + k0√
EF − k′2

=
1

4π2

[ ∫ √EF
−k20

dx
1

2
√
EF − x

+ k0

∫ 1

−k0/
√
EF

dx
1√

1− x2

]
. (E.8)
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Let us consider λ = 1

N(EF , 1) =

∫ ∞
0

dk‖k‖

2π

∫ ∞
−∞

dkz
2π

δ(k2
z + (k‖ + k0)2 − EF )

=

∫ ∞
k0

dk′

2π
(k′ − k0)

∫ ∞
0

dkz
2π

δ(k2
z + k′2 − EF )

=

∫ ∞
k0

dk′

2π
(k′ − k0)

1

2π

θ(EF − k′2)√
EF − k′2

=
1

4π2

∫ √EF
k0

dk′
k′ − k0√
EF − k′2

=
1

4π2

[ ∫ EF

k20

dx
1

2
√
EF − x

− k0

∫ 1

k0/
√
EF

dx
1√

1− x2

]
=

1

4π2

[√
EF − k2

0 − k0

(
π

2
− arcsin

(
k0√
EF

))]
. (E.9)

Finally

N(EF ) = θ(E0 − EF )

√
E0

4π
+ θ(EF − E0)

1

2π2

[√
EF − E0 +

√
E0 arcsin

(
E0

EF

)]
,

(E.10)

where arcsin( E0
EF

) = arctan( E0
EF−E0

).
In the k0 < kF regime the Fermi level crosses the bands of both helicity and the Fermi

surface is a spindle torus, with the inner and outer sheets corresponding respectively to
λ = 1 and λ = −1, as shown in the panel B of Fig. E.1. In this regime, the density
of state (DOS) at the Fermi level is given by reduces the well-known expression for the
density of states of a 3D electron gas asymptotically. In the k0 > kF regime the Fermi
level crosses only the λ = −1 band and the Fermi surface becomes a ring torus (Fig.
E.1 A). In this regime the DOS is independent of Fermi energy, as in 2D electron gases
(see Chapter 2 )1.

1The equation (E.2) is defined up to a constant term equal to −k20 this is reflected in DOS with the
simple substitution N(EF ) −→ N(EF + k20)
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F

Complete derivation of the gap
equation in a quantum layer
heterostructure with RSOC

In the Chapter 5 we have determined eigenvalues and eigenvectors of the Hamiltonian
Rashba, HRSOC(x, y), see equations (5.15) and (5.19). From this equation it is possible
to define the base change matrix that diagonalizes HRSOC , as is known, this matrix has
eigenvectors (equation (5.15)) for columns, therefore

M =
1√
2

(
1 1
−ieiϑ ieiϑ

)
=< s|λ >=

[
< 1/2|1 > < 1/2| − 1 >
< −1/2|1 > < −1/2|1 >

]
. (F.1)

As seen, we can therefore define a two-component spinor in the helicity base

ηsλ(ϑ) =< s|λ >=
1√
2

[
1

iλeiϑ

]
λ = ±1. (F.2)

The relationships that lead from the helicity to that spin base, and viceversa, therefore
will be {

aλ =
∑

s < λ|s > cs =
∑

s U
†
λ,scs =

∑
s(η

s
λ(ϑ))∗cs

cs =
∑

λ < s|λ > aλ =
∑

λ Us,λaλ =
∑

λ(ηsλ(ϑ))aλ
. (F.3)

At this point we can introduce the interaction Hamiltonian in order to study the prop-
erties of the superconductive phase

HI =
1

2

∫
Ψ†(r)Ψ†(r′)U0δ(r− r′)Ψ(r)Ψ(r′), (F.4)

where the interaction is supposed punctual, U(r− r′) = U0δ(r− r′) and Ψ are the field
operators

Ψ(r) =
∑
k,s

ψk(r)χscs(k), (F.5)

with:

• k = n, kx, ky, kz,
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• ψk(r) = 1√
LxLy

eikxxeikyyψnkz(z),

• χs is the two-component spinor in the spin base.

It is therefore possible to rewrite the interaction Hamiltonian as

HI =
U0

2

∑
k1,k2,k3,k4

∑
s1,s2,s3,s4

∫
[ψ∗k1(r1)χ†s1(1)ψ∗k2(r2)χ†s2(2)δ(r1 − r2)

ψk3(r2)χs3(2)]ψk4(r1)χs4(1)dr1dr2]c†s1(k1)c†s2(k2)cs3(k3)cs4(k4). (F.6)

The basic vectors in the case of spin 1/2 are
|+ >= χ+ =

(
1

0

)

|− >= χ− =

(
0

1

) , (F.7)

then {
χ†s1(1)χs4(1) = δs1,s4
χ†s2(2)χs3(2) = δs2,s3

. (F.8)

Therefore, it is possible to write the interaction Hamiltonian as

HI =
U0

2

∑
k1,k2,k3,k4

∑
s1,s2

∫
[ψ∗k1(r)ψ∗k2(r)ψk3(r)ψk4(r)dr]c†s1(k1)c†s2(k2)cs2(k3)cs1(k4).

(F.9)
First we calculated c†s1(k1)c†s2(k2)cs2(k3)cs1(k4), using the relationships (F.3)

c†s1(k1)c†s2(k2)cs2(k3)cs1(k4) =
∑

λ1,λ2,λ3,λ4

a†λ1(k1)a†λ2(k2)aλ3(k3)aλ4(k4)

< λ1|s1 >< s1|λ4 >< λ2|s2 >< s2|λ3 >. (F.10)

Now let’s calculate the sum on the spin indices in the equation (F.9)∑
s1,s2

< λ1|s1 >< s1|λ4 >< λ2|s2 >< s2|λ3 >

=
∑
s1

< λ1|s1 >< s1|λ4 >
∑
s2

< λ2|s2 >< s2|λ3 >

=
∑
s1

(ηs1λ1(k1))∗ηs1λ4(k4)
∑
s2

(ηs2λ2(k2))∗ηs2λ3(k3)

=
1

4
(1 + λ1λ4e

−i(ϑ1−ϑ4))(1 + λ2λ3e
−i(ϑ2−ϑ3))

= Mλ1,λ4(ϑk1 − ϑk4)Mλ2,λ3(ϑk2 − ϑk3) . (F.11)

We can now calculate the integral that appears in the equation (F.9)

Ik1,k2,k3,k4 =

∫
1

L2
‖
e−i(k1‖−k3‖)e−i(k2‖−k4‖)dr‖

∫
ψ∗n1k1z(z)ψ

∗
n2k2z(z)ψn3k3z(z)ψn4k4z(z)dz. (F.12)
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F. COMPLETE DERIVATION OF THE GAP EQUATION IN A QUANTUM LAYER
HETEROSTRUCTURE WITH RSOC

Exploiting the properties of the δ-Dirac function, the integral in dr‖ leads to the con-
servation law k1‖ + k2‖ = k3‖ + k4‖. We can therefore put: k1 = k, k2 = −k + q,
k3 = −k′ + q and k4 = k′, where k = {nkz}, in this case the equation (F.12) becomes

Ik,k′,q =
2π

L2
‖

∫
ψ∗k(z)ψ

∗
−k+q(z)ψ−k′+q(z)ψk′(z)dz. (F.13)

So for q = 0 we have

Ik,k′ =
2π

L2
‖

∫
ψ∗k(z)ψ

∗
−k(z)ψ−k′(z)ψk′(z)dz. (F.14)

Recalling that ψnkz(z) is a Bloch function that holds (ψnkz(z))
∗ = ψn−kz(z), we have:

Ik,k′ =
2π

L2
‖

∫
|ψk(z)|2|ψk′(z)|2dz =

2π

L2
‖

∫
|ψnkz(z)|2|ψn′k′z(z)|

2dz. (F.15)

In conclusion, the interaction Hamiltonian is

HI =
U0

2

∑
kk′q

Ik,k′,q
∑

λ1,λ2,λ3,λ4

Mλ1,λ4(ϑk − ϑk′)Mλ2,λ3(ϑ−k+q − ϑ−k′+q)

a†λ1(k)a†λ2(−k + q)aλ3(−k′ + q)aλ4(k′)

=
1

2

∑
kk′q

Uλ1,λ2,λ3,λ4(k, k′, q)a†λ1(k)a†λ2(−k + q)aλ3(−k′ + q)aλ4(k′) , (F.16)

where we have defined

Uλ1,λ2,λ3,λ4(k, k′, q) = U0Ik,k′,qMλ1,λ4(ϑk − ϑk′)Mλ2,λ3(ϑ−k+q − ϑ−k′+q). (F.17)

At this point it is necessary to determine the equations of motion for the creation and
destruction operators, a† and a. What we get is

i∂taλ(k, t) = ξkλaλ(k, t) +
1

2

∑
q,ν

[Uλµνν(k, q)− Uµλνν(−k, q)]a†µ(−k, t)aν(−q, t)aν(q, t),

(F.18)

i∂ta
†
λ(−k, t) = −ξ−kλa†λ(−k, t)+1

2

∑
q,ν

[Uλµνν(−k, q)−Uµλνν(k, q)]a†ν(q, t)a†ν(−q, t)aµ(k, t).

(F.19)
Starting from these equation we can determine the equations of motion of the normal
and anomalous Green function. Whose definitions are, respectively, the following

Gλ(k, t− t′) =− i < Taλ(k, t)a†λ(k, t′) >

=− iϑ(t− t′)aλ(k, t)a†λ(k, t′) + iϑ(t′ − t)a†λ(k,−t)aλ(k, t), (F.20)

−iF †λ(k, t− t′) = < Ta†λ(−k, t)a†λ(k, t′) >

=ϑ(t− t′)a†λ(−k, t)a†λ(k, t′)− ϑ(t′ − t)a†λ(k, t′)a†λ(−k, t). (F.21)

For these functions we have the following equations of motion

iδtGλ(k, t− t′) = δ(t− t′) + ξkλGλ(k, t− t′)+

+
i

2

∑
q,ν

[Uλλνν(k, q)− Uλλνν(−k, q)]Fν(q, 0+)F †(k, t− t′), (F.22)

126



iδt(−iF †λ(k, t− t′)) = −ξ−kλ(−iF †λ(k, t− t′))+

− 1

2

∑
q,ν

[Uλλνν(−k,−q)− Uλλνν(k,−q)](−iF †ν (q, 0+))(−iGλ(k, t− t′)).

(F.23)

Calling {
∆λ(k) = −1

2

∑
q,ν [Uλλνν(k, q)− Uλλνν(k,−q)]Fν(q, 0+)

∆†λ(k) = −1
2

∑
q,ν [Uλλνν(−k,−q)− Uλλνν(k,−q)]F †ν (q, 0+)

(F.24)

and solving the equations (F.22, F.23) in Fourier space, remembering that the anti-
transform is

Gλ(k, t− t′) = T
∑
ω

e−iω(t−t′)Gλ(k, ω)

and that

• ∂t → iω,

• ∇2 → k2,

• δ → f(ω, k) = 1 constant function,

where the choice ω = (2n+ 1)π/β guarantees that they are fermions.
What we get is

(ω − ξkλ)Gλ(k, ω) + i∆λ(k)F †λ(k, ω) = 1. (F.25)

Proceeding in a completely similar way, we obtain the equation of motion for the anoma-
lous Green function

(ω + ξ−kλ)F †λ(k, ω)− i∆†(λ)(k)Gλ(k, ω) = 0. (F.26)

In matrix form we have(
ω − ξkλ i∆λ(k)

−i∆†λ(k) ω + ξ−kλ

)(
Gλ(k, ω)

F †λ(k, ω)

)
=

(
1
0

)
. (F.27)

In compact form it is possible to write Ax = y ⇒ x = A−1y, where the inverse of a 2x2
matrix is calculated as

A =

(
a b
c d

)
⇒ A−1 =

1

det(A)

(
d −b
−c a

)
.

Then, we compute det(A)

det(A) = (ω − ξkλ)(ω + ξ−kλ)− |∆λ(k)|2 = ω2 − ξ2
kλ − |∆λ(k)|2.

Defining the quasiparticle energy of the superconducting state as

Ekλ =
√
ξ2
kλ + |∆λ(k)|2 ⇒ det(A) = (ω − Ekλ)(ω + Ekλ).

Then, the solution for the system (F.27) isGλ(k, ω) =
ω+ξ−kλ
ω2+E2

kλ

F †λ(k, ω) = i∆†∗λ(k)
ω2+E2

k,λ

. (F.28)

127



F. COMPLETE DERIVATION OF THE GAP EQUATION IN A QUANTUM LAYER
HETEROSTRUCTURE WITH RSOC

At this point from the definitions (F.24) it is possible to derive the gap equation.
First you need to calculate [Uλλνν(−k,−q)− Uλλνν(k,−q)], where{

Uλλνν(k, q) = U0Ik,−k,−q,qMλν(ϑk − ϑq)Mλν(ϑ−k − ϑ−q)
Uλλνν(−k,−q) = U0I−k,k,q,−qMλν(ϑ−k − ϑ−q)Mλν(ϑk − ϑq)

. (F.29)

By taking that ϑ−k − ϑ−q = ϑk − ϑq and that

Mλν(ϑk − ϑq) = U †(ϑk)U(ϑq) = e−i
ϑk−ϑq

2

(
cos(ϑk − ϑq/2) isin(ϑk − ϑq/2)
isin(ϑk − ϑq/2) cos(ϑk − ϑq/2)

)
,

(F.30)
we have

[Uλλνν(−k,−q)− Uλλνν(k,−q)] = U0Ikqλνe
i(ϑk−ϑq). (F.31)

In conclusion the gap equation becomes

∆†λ(k) = −U0

2

∑
q

∑
ν

Ikqλνe
i(ϑk−ϑq)T

∑
ω

∆†ν(q)

ω2 + E2
qν

. (F.32)

All that remains is to calculate the sum on the Matsubara frequencies, ω, we start
from the following equation

T
∑
ω

1

ω2 + E2
kλ

= T
∑
ω

1

(ω − Ekλ)(ω + Ekλ)
.

At this point it is possible to use the simple fract method:

1

ab
=

(
1

a
− 1

b

)
1

b− a
,

hence
T
∑
ω

1

ω2 + E2
kλ

= T
∑
ω

1

2Ekλ

(
1

(ω − Ekλ)
− 1

(ω + Ekλ)

)
.

Recalling that the function of Fermi is defined as

f(a) = T
∑
εn

1

ω − a
=

1

eβa + 1

and that the following property holds for it

f(−a) = 1− f(a).

In conclusion, we can write

T
∑
ω

1

ω2 + E2
kλ

=
tanh(βEkλ2 )

2Ekλ
. (F.33)

In the limit T → 0, βEkλ2 → ∞, remembering that limx→∞ tanh(x) = 1, in conclusion
the following relationships of self-consistency is obtained∆†λ(k) = −U0

2

∑
q

∑
ν Ikqλνe

−i(ϑk−ϑq) ∆†ν(q)
2Eqν

∆λ(k) = −U0
2

∑
q

∑
ν Ikqλνe

i(ϑk−ϑq) ∆ν(q)
2Eqν

. (F.34)
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Considering, for example, the second relationship of (F.34) it possible to write{
∆λ(k) = λe

iϑk‖∆(n, kz)

∆(n, kz) = −U0
2

∑
n′,k′z

Inn
′

kz ,k′z
∆(n′, k′z)

∑
ν

∑
k′x,k

′
y

1
2Ek′ν

. (F.35)

One notices that the pairing potential has a dependence on momentum via the ex-
ponential factor and a dependence on the helicity index via λ. The quantity ∆(n, kz)
does not depend explicitly on momentum and helicity according to Gor’kov and Rashba
paper [133].

In the equation (F.35)

Ek′ν =

√(
}2

2m
k′2‖ − να}k

′
‖ + En′(k′z)− EF

)
+ |∆ν(n′, k′z, ϑk′‖

)|2

=
√

(εν(k′x, k
′
y) + En′(k′z)− EF )2 + |∆ν(n′, k′z)|2 = f(εν(k′x, k

′
y)). (F.36)

The function f(εν(k′x, k
′
y)) is independent of ϑk′ so integration in k′x and k′y is reduced

to a single integration on k′ or, passing to the density of states (equation (F.37)), to an
integration on ε. Going to the density of the states simplifies the problem of calculating
the integrals that appear in the definition of the gap that would otherwise be elliptical
integrals. ∑

kx,ky

f(εν(k‖)) =
LxLy
(2π)2

∫
2πk‖f(εν(k‖))dk‖

=
LxLy
(2π)2

∫
2πkν(ε)f(ε)

∣∣∣∣dkν(ε)

dε

∣∣∣∣dε, (F.37)

where kν(ε) is obtained by inverting the following equation

εν(k‖) =
}2

2m
k2
‖ − }ναk‖ = a(k‖ − k0)2 + E0, (F.38)

with 
a = }2

2m

k0 = mνα
}

E0 = mα2

2 =
}2k20
2m

. (F.39)

In order to determine the gap equation we considered the zero temperature limit, that
is T −→ 0, βEkλ/2 −→∞, and thus obtained the equation (F.34). We want to see now
what happens at the finished temperature, that is, in the opposite limit: T −→ TC ,
∆ −→ 0.

In this case it is necessary to use the equation (F.35) for the sums on the Matsubara
frequencies and then evaluate the following equation numerically and in a self-consistent
way

∆(n, kz) = −U0

2

∑
n′,k′z

Inn
′

kzk′z
∆(n′, k′z)

∑
ν

∑
k′x,k

′
y

tanh(βEkλ2 )

2Ek′ν
. (F.40)

Taking into account the fact that the critical temperature is by definition the temper-
ature at which all the gaps cancel each other out.
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G

Numerical simulation

In the following we attach the numerical model implemented with Fortran to solve
the normal and superconducting phase of a heterostructure of quantum layers in the
presence of RSOC.

!_______________________________________________________________________

!************* SUPERLATTICE OF LAYERS WITH RSOC COUPLING****************

! This program compute, with BPV theory, the properties of the normal
! and superconductive phase of a superlattice of layers in the isotropic
! case (mx=mz) and in presence of an RSOC coupling.
! In this system the electrons in the plane (x,y) are free and the
! energy bands are split, depending on the helicity, by the RSOC
! coupling based, the electrons along the z direction are subjected to a
! Kronig-Penney potential and subjected to an electric field along z.
!_______________________________________________________________________

! Compile with
! parallel version:
! gfortran -O -Wno-align-commons -fopenmp
! -o RSOC_KP_3d RSOC_KP_3d.f dqags.f d1mach.f
!
! Serial version:
! gfortran -O -Wno-align-commons
! -o RSOC_KP_3d RSOC_KP_3d.f dqags.f d1mach.f
!_______________________________________________________________________

program 3D System with RSOC

include ’RSOC_KP_3d_inc.f’
!The global variables are defined in this file
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character*12 Name,Name1,Name2, Namex, Namez

Ending = ’.C04’

call Initialize

!_____Normal Phase______________________________________________________

BandBottom = minimum_energy - 0.01
BandTop = 2.0d0
Name = ’DOS’
call DensityStates(Name)

!____Superconductive Phase______________________________________________

Name = ’Gap’
Name1= ’NSuper’
Name2= ’DSuper’
call GapvsEf(Name)

Name = ’Tc’
call TcvsEf(Name)

stop
end

!***********************************************************************
!*************************** NORMAL PHASE ******************************
!***********************************************************************

!_______________________________________________________________________

! ______________ Initializes parametres of model _______________________
!_______________________________________________________________________

subroutine Initialize
include ’RSOC_KP_3d_inc.f’
integer n,i,nn,np
character*12 Name
real*8 deltaE_RSOC

Vb = 500.d-3 ! potential barrier (V)

h = 7.00d0 ! barrier width (A)
L = 23.00d0 ! well width (A)
d = h + L ! period (A)
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G. NUMERICAL SIMULATION

mw = 1.0d0 ! effective mass in the well (adim)
mb = 1.0d0 ! effective mass on the barrier (adim)
mx = 1.0d0 ! effective mass along x (adim)
mz = 1.0d0 ! effective mass along z (adim)

! Order of magnitude of the strength of the spin-orbit coupling
deltaE_RSOC = 2.0 * ht2up2m * (2.d0*Pi/d)

DensityLimit = 0.01d0

! Interval for Ef in the plots of Gap vs Ef and Tc vs Ef
BottomEf = -0.66
TopEf = -0.16
GapPlot = LeaveHighEnergy

! The following code defines the strength
! of the spin-orbit coupling
! for each subband alphaRSOC(n)
alphaRSOC(1) = 0.7 * deltaE_RSOC
alphaRSOC(2) = 0.7 * deltaE_RSOC

! The following code initializes the coupling SC: lambda(nn,np)
do nn = 1,NBands
do np = 1,NBands
if (nn .eq. np) then
lambda(nn,np) = 0.4
else
lambda(nn,np) = 0.4
end if
end do
end do

! The following code initializes the energy cut-off: omegad(nn,np)
do nn = 1,NBands
do np = 1,NBands
if (nn .eq. np) then
omegad(nn,np) = 60.0D-3 ! [eV]
else
omegad(nn,np) = 60.0D-3
end if
end do
end do

! omegadmax is the cut-off beyond which the gap is certainly zero
omegadmax = -1.d0
do nn = 1,NBands
do np = 1,NBands
if (omegad(nn,np) .gt. omegadmax) then
omegadmax = omegad(nn,np)
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end if
end do
end do

! End of inputs ___________________________________________________

! The bands are searched within this interval
BandBottom = -Vb
BandTop = -0.16d0

ZByExtended = 2.d0*Pi/d
ZBy = ZByExtended

Name = ’cqd’
call GraphCqd(Name)

call ExtremeBand
write (6,*) ’Found bands extrema:’
write (6,’ (4E18.10)’) ((EEdge(n,i),i=1,4),n=1,NBands)

ZBxExtended = 2.d0*dsqrt((EEdge(NBands,2)+2.d0*Vb)/ht2up2m*mx)
ZBx = ZBxExtended

ZBzExtended = 2.d0*dsqrt((EEdge(NBands,2)+2.d0*Vb)/ht2up2m*mz)
ZBz = ZBzExtended

Name = ’BandsKy’
call BandupKy(Name)
call compute_minimum_energy

write (6,*) ’Bands Compute’

call FunctionCoefficients
write (6,*) ’Calculated AutoFunctions Coefficients’

call CalculateCoupling
write (6,*) ’Calculated Coupling Coefficients’

end

! 1) DOS and Dispersion Equation

!_______________________________________________________________________

! _______________ Computes Bottom and Top of the bands _________________

!_______________________________________________________________________
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G. NUMERICAL SIMULATION

subroutine ExtremeBand
include ’RSOC_KP_3d_inc.f’
integer nb
real*8 ee,de,e1,e2,e3,emin,emax,minq,maxq

minq = 0.5d0*ZBy/2.d0/dfloat(NPointsZB)
maxq = (dfloat(NPointsZB)-0.5d0)*ZBy/2.d0/dfloat(NPointsZB)
write (6,*) minq,maxq
de = (BandTop-BandBottom)/50000.d0
write (6,*) ’BandTop ’,BandTop
write (6,*) ’BandBottom ’,BandBottom
ee = BandBottom+de
do nb = 1,NBands
call ThreePoints(ee,de,e1,e2,e3)
call BinaryResearch(dfloat((-1)**(nb+1)),
+ e1,e2,EEdge(nb,1),EEdge(nb,3),(-1)**nb)
call BinaryResearch(dfloat((-1)**(nb+2)),
+ e2,e3,EEdge(nb,2),EEdge(nb,4),(-1)**nb)
ee = e3

if ( mod(nb,2) .eq. 1) then
if ( EEdge(nb,3) .gt. minq .or. EEdge(nb,4) .lt. maxq) then
write (6,*) ’Problems ...’
stop
end if
else
if ( EEdge(nb,3) .lt. maxq .or. EEdge(nb,4) .gt. minq) then
write (6,*) ’Problems ...’
stop
end if
end if

end do
end

!_______________________________________________________________________
subroutine BinaryResearch(target,e1,e2,ee,q,verso)
include ’RSOC_KP_3d_inc.f’
integer verso,f,ss
real*8 target,emin,emax,ee,q,cqd,dq,pee,e1,e2

emin = e1
emax = e2

ee = (emin+emax)/2.d0
pee = ee + 1.d0

call EquationKP(ee,q,cqd,f)
ss = dsign(1.d0,cqd-target)
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do while (pee .ne. ee)

if (ss * verso .eq. 1) then
emax = ee
else
emin = ee
end if
pee = ee
ee = (emax+emin)/2.d0
call EquationKP(ee,q,cqd,f)
ss = dsign(1.d0,cqd-target)
end do
write (6,*) ’ee,q’,ee,cqd,q
end

!_______________________________________________________________________
subroutine ThreePoints(es,de,e1,e2,e3)
include ’RSOC_KP_3d_inc.f’
real*8 e1,e2,e3,es,de,q,dq,cqd,ee,emin,emax
integer scqd,pscqd,f

ee = es
e1 = ee
call EquationKP(ee,q,cqd,f)
pscqd = dsign(1.d0,cqd)
scqd = pscqd
do while ( scqd .eq. pscqd .or. dabs(cqd) .lt. 1.d0)
ee = ee + de
call EquationKP(ee,q,cqd,f)
scqd = dsign(1.d0,cqd)
end do
e3 = ee
emax = e3
emin = e1
ee = ( e1 + e3 )/2.d0
call EquationKP(ee,q,cqd,f)
scqd = dsign(1.d0,cqd)
do while ( dabs(cqd) .gt. 1.d0 )

if (pscqd * scqd .eq. 1) then
e1 = ee
else
e3 = ee
end if
ee = ( e1 + e3 )/2.d0
call EquationKP(ee,q,cqd,f)
scqd = dsign(1.d0,cqd)
end do
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G. NUMERICAL SIMULATION

e2 = ee

call EquationKP(e1,q,cqd,f)
write (6,*) e1,cqd
call EquationKP(e2,q,cqd,f)
write (6,*) e2,cqd
call EquationKP(e3,q,cqd,f)
write (6,*) e3,cqd
end

!_______________________________________________________________________

!__ Solution of the implicit Kronig-Penney equation for the energies ___

!_______________________________________________________________________
subroutine EquationKP(ee,q,cqd,f)
include ’RSOC_KP_3d_inc.f’
real*8 Kb,Kw,csi,cqd,dF,dKb,dKw,ee,q,dcsi
integer f

!For positive energies
if (ee .gt. 0.d0) then
Kb = dsqrt(mb/ht2up2m*ee)
Kw = dsqrt(mw/ht2up2m*(ee+Vb))
csi = Kb/Kw
cqd = dcos(Kw*L)*dcos(Kb*h)
+ -0.5*( csi+1.d0/csi)*dsin(Kw*L)*dsin(Kb*h)
end if

!For negative energies
if (ee .le. 0.d0) then
Kb = dsqrt(-mb/ht2up2m*ee)
Kw = dsqrt(mw/ht2up2m*(ee+Vb))
csi = Kb/Kw
cqd = dcos(Kw*L)*dcosh(Kb*h)
+ -0.5*(-csi+1.d0/csi)*dsin(Kw*L)*dsinh(Kb*h)
end if

!Check that |cos(qd)|<=1
if (dabs(cqd) .le. 1.d0) then
f = 1
q = dacos(cqd)/d
else
f = 0
end if
end
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!_______________________________________________________________________

!____ Graph of the implicit Kronig-Penney Equation for the energies ____

!_______________________________________________________________________

subroutine GraphCqd(Name)
include ’RSOC_KP_3d_inc.f’
real*8 ee,cqd,q,dq,de
integer f,i
character*12 Name

open (12,file=Name(1:Len_Trim(Name))//Ending,
+ form=’FORMATTED’,status=’UNKNOWN’)
de = ((BandTop - BandBottom)/500.d0)
do i = 0,500
ee = BandBottom+(dfloat(i))*de
call EquationKP(ee,q,cqd,f)
write (12,*) ee,cqd,dq,f
end do
close(12)
end

!_______________________________________________________________________

!____________ Density of states vs chemical potential (Mu) _____________

!_______________________________________________________________________

subroutine DensNormvsMu(Name)
include ’RSOC_KP_3d_inc.f’
character*12 Name,NameFile
real*8 de,ddos,A,dens,mu
integer n,i

de = (TopEf-BottomEf)/dfloat(NPointsGDvsMu)
ddos = (BandTop-BandBottom)/dfloat(NPointsDOS)

write (NameFile,"(A,A)")
+ Name(1:Len_Trim(Name)),
+ Ending(1:Len_Trim(Ending))
open (20,file=NameFile,
+ form=’FORMATTED’,status=’UNKNOWN’)

A = 32. * Pi**2 * d * (NPointsZBDOS ** 3.) / (ZBx*ZBz)
do i = NPointsGDvsMu,1,-1
Ef = BottomEf+(dfloat(i)-0.5d0)*de
n = 1
mu = BandBottom+(dfloat(n)-0.5d0)*ddos
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dens = 0.
do while (mu .lt. Ef)
dens = dens + DOS(0,n)*2./A
n = n+1
mu = BandBottom+(dfloat(n)-0.5d0)*ddos
end do
write (20,*) Ef,dens
end do
close(20)
end

!_______________________________________________________________________

!________ This routine computes the bands filling known the DOS ________

!_______________________________________________________________________

subroutine MuvsDens(Name)
include ’RSOC_KP_3d_inc.f’
character*12 Name,NameFile
real*8 n,dn,dens,dens1,EEf,dMu,A
integer i

write (NameFile,’(A,A)’) Name(1:Len_Trim(Name)),Ending
open (12,file=NameFile,form=’FORMATTED’,status=’UNKNOWN’)

A = 32. * Pi**2 * d * (NPointsZBDOS**3.) / (ZBx*ZBz)
dn = DensityLimit/NPointsMu
i = 0
dMu = (BandTop-BandBottom)/dfloat(NPointsDOS)
dens = 0.d0
n = 0.d0
do while (n .lt. DensityLimit)
do while (dens .le. n)
i = i + 1
dens1 = dens
dens = dens1 + dfloat(DOS(0,i))*2./A ! *dMu
end do
EEf = dMu*(n-dens1)/(dens-dens1)+
+ BandBottom+
+ dfloat(i-1)/dfloat(NPointsDOS)*(BandTop-BandBottom)
write (12,*) n,EEf
n = n+dn
end do

close (12)
end
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!_______________________________________________________________________

!_ This subroutine makes a histogram to find the density of the states _

!_______________________________________________________________________

subroutine DensityStates(Name)
include ’RSOC_KP_3d_inc.f’
real*8 dkx,dky,dkz, EE1, EE2
real*8 kx0,ky0,kz0
integer nkx0,nky0,nkz0
real*8 Enky0(NBands)
integer n,j
integer*8 conta
character*12 Name,NameBands,outputFile

common /privateDOS/ private_DOS
integer private_DOS(0:2*NBands,NPointsDOS)
write (*,*) ’Computing DOS ...’
call InitializesDOS

!----------------- If NPointsZBDOS < 70 --------------------------------
!--------opens n files where it saves the dispersion--------------------
if (NPointsZBDOS .lt. 70) then
do n = 1,NBands
write (NameBands,’(A,I2.2,A)’) ’Band’,n,Ending
open (FileBandsBase+n,file=NameBands,
+ form=’FORMATTED’,status=’UNKNOWN’)
end do
end if
!-----------------------------------------------------------------------

conta = 0
dkx = ZBx/dfloat(NPointsZBDOS)/2.d0
dkz = ZBz/dfloat(NPointsZBDOS)/2.d0
dky = ZBy/dfloat(NPointsZBDOS)/2.d0

! each thread clean its own private_DOS
do n = 0,(2*NBands)
do j = 1,NPointsDOS
private_DOS(n,j) = 0
end do
end do

do nky0 = 1,NPointsZBDOS
ky0 = (dfloat(nky0)-0.5d0)*dky
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call EdiQ(ky0,Enky0)

do nkx0 = 1,NPointsZBDOS
kx0 = (dfloat(nkx0)-0.5d0)*dkx
do nkz0 = 1,NPointsZBDOS
kz0 = (dfloat(nkz0)-0.5d0)*dkz
do n = 1,NBands
EE1= Enky0(n) + ht2up2m/mx*kx0**2 + ht2up2m/mz*kz0**2
+ + alphaRSOC(n)*sqrt(kx0**2 + kz0**2)
EE2= Enky0(n) + ht2up2m/mx*kx0**2 + ht2up2m/mz*kz0**2
+ - alphaRSOC(n)*sqrt(kx0**2 + kz0**2)

!Total DOS for the band with chirality + and -
call AddtoDOS(ee1,0)
call AddtoDOS(ee2,0)
!DOS for each upbband with chirality +
call AddtoDOS(ee1,n)
!DOS for each upbband with chirality -
call AddtoDOS(ee2,NBands+n)
if (NPointsZBDOS .lt. 70) then
write (FileBandsBase+n,*) kx0,ky0,kz0,ee1,ee2

end if
end do
end do
end do
end do

do n = 0,2*NBands
do j = 1,NPointsDOS
DOS(n,j) = DOS(n,j) + private_DOS(n,j)
end do
end do

call WriteDOS(Name)
if (NPointsZBDOS .lt. 70) then
do n = 1,NBands
close(FileBandsBase+n)
end do
end if
write (*,*) ’DOS computed!’
end

!_______________________________________________________________________

!___________ Initialize the histogram that calculates the DOS __________

!_______________________________________________________________________
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subroutine InitializesDOS
include ’RSOC_KP_3d_inc.f’
integer n,i
do n = 0,(2*NBands)
do i = 1,NPointsDOS
DOS(n,i) = 0
end do
! NStati(n) = 0
end do
end

!_______________________________________________________________________

!_______________________ DOS on the complete ZB ________________________

!_______________________________________________________________________

subroutine AddtoDOS(ee,nb)
include ’RSOC_KP_3d_inc.f’
real*8 ee
integer n,nb

common /privateDOS/ private_DOS
integer private_DOS(0:2*NBands,NPointsDOS)

n=1+(ee-BandBottom)/(BandTop-BandBottom)*dfloat(NPointsDOS)
if (n.ge.1 .and. n.le.NPointsDOS) then
private_DOS(nb,n) = private_DOS(nb,n) + 8
end if
end

!_______________________________________________________________________

!__________________ Writes the DOS histogram to file ___________________

!_______________________________________________________________________

subroutine WriteDOS(Name)
include ’RSOC_KP_3d_inc.f’
character*12 Name,NameDOS
real*8 ee,de,g,A
integer n,nb

de = (BandTop-BandBottom)/NPointsDOS

! A is the area of the system: to calculate it, we have that:
! 1) the number of kx vectors present overall in the ZBx is
! 2 * NPointsZBDOS, the 2 there is because in the DensityStates
! cycle we add only up the positive kx, but I must also take into
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! account the negative kx (as well as ky and kz).
! 2) ZBx = 2*Pi/Lx * (2*NPointsZBDOS).
! 3) ZBz = 2*Pi/Lz * (2*NPointsZBDOS).
! 4) Ly = (2*NPointsZBDOS) * d.
! Then A = Lx * Ly * Lz =

A = 32. * Pi**2 * d * (NPointsZBDOS**3.) / (ZBx*ZBz)
do nb = 0,(2*NBands)
write (NameDOS,’(A,I2.2,A)’) Name(1:Len_Trim(Name)),
+ nb,Ending

open (12,file=NameDOS,form=’FORMATTED’,status=’UNKNOWN’)
do n = 1,NPointsDOS
ee = (dfloat(n-1)+0.5d0)*de+BandBottom
g = dfloat(DOS(nb,n))/de/A
write (12,*) ee,g
end do
close(12)
end do
end

subroutine DOSAnalytical(Name)
include ’RSOC_KP_3d_inc.f’
real*8 de,ee,g,arg
integer iky,nb,i
character*12 Name

open(12,file=Name//Ending,form=’FORMATTED’,status=’UNKNOWN’)
de = (BandTop-BandBottom)/NPointsDOS
do i = 1,NPointsDOS
ee = BandBottom + (dfloat(i)-0.5d0) * de
g = 0.d0
do nb = 1,NBands
do iky = 1,NPointsZB
arg = ht2up2m/mx*(ee - Eq(nb,iky))
if (arg .gt. 0.d0) g = g + 1.d0/dsqrt(arg + 1.d-15)
end do
end do
g = g/(2.d0*Pi*d*NPointsZB)
write (12,*) ee,g
end do
close (12)
end

!_______________________________________________________________________

!___________ For each q, compute the corresponding energy ______________
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!_______________________________________________________________________

subroutine EdiQ(q,Enky)
include ’RSOC_KP_3d_inc.f’
real*8 q,qq,Emin,Emax,ee,cqd,dq,PrecEmax,PrecEmin
real*8 Enky(NBands)

!Verso takes in account all the possible band curvatures
integer Verso
integer nb,f

do nb = 1,NBands
verso = mod(nb,2)
Emin = EEdge(nb,1)
Emax = EEdge(nb,2)
PrecEmax = 1.d12
PrecEmin = 1.d12
qq = 1.d10
do while ( dabs(q-qq) .gt. 1.d-13 .and.
+ ( (PrecEmax .ne. Emax) .or. (PrecEmin .ne. Emin) ) )
ee = (Emax+Emin)/2.d0
call EquationKP(ee,qq,cqd,f)
PrecEmax = Emax
PrecEmin = Emin
if (Verso .eq. 1 .and. qq .gt. q) Emax = ee
if (Verso .eq. 1 .and. qq .le. q) Emin = ee
if (Verso .eq. 0 .and. qq .gt. q) Emin = ee
if (Verso .eq. 0 .and. qq .le. q) Emax = ee

end do
Enky(nb) = ee
end do
end

!_______________________________________________________________________

! Writes the first and second derivatives of energy and the energy vs q
!_______________________________________________________________________

subroutine BandsupKy(Name)
include ’RSOC_KP_3d_inc.f’
integer n,i,f
character*12 Name
character*20 NameBanda
real*8 q,cqd,deedq,d2eedq2,energy(NBands)

open (12,file=Name(1:Len_Trim(Name))//Ending,
+ form=’FORMATTED’,status=’UNKNOWN’)
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do n = 1,NPointsZB
q = (dfloat(n) - 0.5d0) * ZBy/2.d0/dfloat(NPointsZB)
call EdiQ(q,E)
do i = 1,NBands
Eq(i,n) = E(i)
call EquationKP(E(i),q,cqd,f)
write (12,’(2(E21.15,1X))’) q,Eq(i,n)
end do
end do
close(12)

do n = 1,NBands
write (NameBanda,’(A,I2.2,A)’)
+ Name(1:Len_Trim(Name)),n,Ending
open (12,file=NameBanda(1:Len_Trim(NameBanda)),
+ form=’FORMATTED’,status=’UNKNOWN’)
do i = 1,NPointsZB
q = (dfloat(i) - 0.5d0) * ZBy/2.d0/dfloat(NPointsZB)
write (12,’(4(E21.15,1X))’) q,Eq(n,i),dEdq(n,i),d2Edq2(n,i)
end do
close(12)
end do
end

! FDO

!_______________________________________________________________________

!___________ The following subroutines allow us to compute ____________
! the FDO along y
!_______________________________________________________________________

subroutine FunctionCoefficients
include ’RSOC_KP_3d_inc.f’
complex*16 Kb,Kw,x(4)
integer n,iky,i

do n = 1,NBands
do iky = 1,NPointsZB
ky = (dfloat(iky)-0.5d0)*ZBy/2.d0/dfloat(NPointsZB)
call SolutionSys(n,iky,x,Kb,Kw)
do i = 1,4
abgd(i,n,iky) = x(i)
end do
end do
end do
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end

!_______________ Definition of coefficients matrix _____________________

subroutine SolutionSys(n,iky,x,Kb,Kw)
include ’RSOC_KP_3d_inc.f’
complex*16 A(4,4),i,x(4),Kb,Kw
real*8 Enky,Ekx
integer n,iky

Enky = Eq(n,iky)
Ekx = kx**2*ht2up2m/mx

i = dcmplx(0.,1.)

Kb = cdsqrt(dcmplx(Enky/ht2up2m*mb))
Kw = cdsqrt(dcmplx((Enky+Vb)/ht2up2m*mw))

! The first period of the periodic potential is between -l/2 and L/2+h.
! The period is d = L + h
! Up the first period
! The well is between -L/2 and L/2 -> V(well) = 0
! The barrier is between L/2 ad L/2+h -> V(barr) = Vb
! Then we need to replicate this potential along the y axis,in this way
! the periodic potential is symmetrical (V(x) = V(-x))
! The FDO between -L/2 and L/2+h is
!
! for the well:
! psi(y) = psi_well(y) = A exp(i Kw y) + B exp(-i Kw y)
! on the barrier
! psi(y) = psi_barr(y) = C exp(i Kb(y-d/2)) + D exp(-i Kb(y-d/2))
!
! The d/2 in the psi_barr is an additional phase on C and D
!
! The condixction for compute A,B,C e D are:
! 1) psi_well(L/2) = psi_barr(L/2)
! 2) dpsi_well/dx(L/2) = dpsi_barr/dx (L/2)
! 3) exp(i ky d) psi_well(-L/2) = psi_barr(L/2+h)
! 4) exp(i ky d) dpsi_well/dx(L/2) = dpsi_barr/dx(L/2+h)
! A homogeneous system is obtained whose solution is normalized by
! imposing that the integral on the period of the square module
! of psi (x) is equal to 1

A(1,1) = cdexp( i*Kw*L/2.)
A(1,2) = cdexp(-i*Kw*L/2.)
A(1,3) = -cdexp(-i*Kb*h/2.)
A(1,4) = -cdexp( i*Kb*h/2.)

A(2,1) = i*Kw*cdexp( i*Kw*L/2.)
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A(2,2) = -i*Kw*cdexp(-i*Kw*L/2.)
A(2,3) = -i*Kb*cdexp(-i*Kb*h/2.)
A(2,4) = i*Kb*cdexp( i*Kb*h/2.)

A(3,1) = cdexp(-i*Kw*L/2.+i*ky*d)
A(3,2) = cdexp( i*Kw*L/2.+i*ky*d)
A(3,3) = -cdexp( i*Kb*h/2.)
A(3,4) = -cdexp(-i*Kb*h/2.)

A(4,1) = i*Kw*cdexp(-i*Kw*L/2.+i*ky*d)
A(4,2) = -i*Kw*cdexp( i*Kw*L/2.+i*ky*d)
A(4,3) = -i*Kb*cdexp( i*Kb*h/2.)
A(4,4) = i*Kb*cdexp(-i*Kb*h/2.)

call RisolviSysOmo(A,4,4,x,Kw,Kb)
end

!_________________________ Gauss Method ________________________________

subroutine RisolviSysOmo(A,n,m,x,Kw,Kb)
include ’RSOC_KP_3d_inc.f’
integer n,m,jm,cm,t,i,j,k,r(4),c(4)
complex*16 A(n,m),Am,Amm,x(n),Norm,Kw,Kb,iii,Norm1,Norm2

integer ii,jj
complex*16 det

real*8 PrecisionDet
parameter (PrecisionDet = 1.d-7)
do i = 1,n
r(i) = i
c(i) = i
end do

i = 1
call FindMax(A,n,m,jm,cm,Am,r,i)

do while (cdabs(Am) .gt. PrecisionDet .and. i .le. n)
t = r(i)
r(i) = r(jm)
r(jm) = t
do j = 1,m
if (c(j) .eq. cm) jm = j
end do
c(jm) = c(i)
c(i) = cm

do j = i+1,n
Amm = A(r(j),cm)
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do k = 1,m
A(r(j),k) = A(r(j),k) - A(r(i),k)/Am*Amm
end do
end do
i = i+1
call FindMax(A,n,m,jm,cm,Am,r,i)

end do
i = i-1

do j = 4,i+1,-1
x(c(j)) = 1.
end do
do j = i,1,-1
x(c(j)) = 0.
do k = j+1,4
x(c(j)) = x(c(j)) - A(r(j),c(k))*x(c(k))
end do

x(c(j)) = x(c(j))/A(r(j),c(j))
end do

iii = dcmplx(0.,1.)
if (dabs(dreal(Kw)) .gt. 1.d-10) then
Norm1 = (cdabs(x(1))**2+cdabs(x(2))**2)*L+
+ 2.*dreal(x(1)*dconjg(x(2))) * dsin(dreal(Kw*L))/Kw
else
Norm1 = (cdabs(x(1))**2+cdabs(x(2))**2)*
+ dsinh(dimag(Kw)*L)/dimag(Kw)+
+ 2.*dreal(x(1)*dconjg(x(2)))*L
end if
if (dabs(dreal(Kb)) .gt. 1.d-10) then
Norm2 = (cdabs(x(3))**2+cdabs(x(4))**2)*h+
+ 2.*dreal(x(3)*dconjg(x(4))) * dsin(dreal(Kb*h))/Kb
else
Norm2 = (cdabs(x(3))**2+cdabs(x(4))**2)*
+ (dexp(dimag(Kb)*h)-dexp(-dimag(Kb)*h))/(2.*dimag(Kb))+
+ 2.*dreal(x(3)*dconjg(x(4)))*h
end if

Norm = (Norm1+Norm2)*Lx*Ny

do j = 1,4
x(j) = x(j)/dsqrt(cdabs(Norm))
if ( isnan(dreal(x(j))) .or. isnan(dimag(x(j))) ) then
write (6,*) "IsNan x(j)"
stop
end if
end do
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end

!_______________________________________________________________________
subroutine FindMax(A,n,m,jm,cm,Am,r,i)
implicit none
integer n,m,jm,cm,i,j,k,r(n)
complex*16 A(n,m),Am
real*8 d,dm

dm = 0.
do j = i,n
do k = 1,m
d = cdabs(A(r(j),k))
if (d .gt. dm) then
dm = d
jm = j
cm = k
end if
end do
end do
Am = A(r(jm),cm)
end

!_______________________________________________________________________
!_______________________________________________________________________

!***********************************************************************
!************************SUPERCONDUCTIVE PHASE**************************
!***********************************************************************

!_______________________________________________________________________

!__ The following subroutines allow to determine the exchange integral__

!_______________________________________________________________________
subroutine CalculateCoupling
include ’RSOC_KP_3d_inc.f’
integer nn,ikyn,np,ikyp

do nn = 1,NBands
do np = 1,NBands
do ikyn = 1,NPointsZB
do ikyp = 1,NPointsZB
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call
+ CouplingFast(nn,ikyn,np,ikyp,Acc(nn,ikyn,np,ikyp))
write (12,*) nn,ikyn, np,ikyp, Acc(nn,ikyn,np,ikyp)
end do
end do
write (6,*) ’Ho fatto gli Accoppiamenti’,nn,np
end do
end do
end

!_______________________________________________________________________
subroutine CouplingFast(nn,ikyn,np,ikyp,a)
include ’RSOC_KP_3d_inc.f’
complex*16 Kbn,Kwn,Kbp,Kwp,aa
real*8 a,Enky
complex*16 an,bn,cn,dn,ap,bp,cp,dp,a1,a2
integer nn,np,ikyn,ikyp

an = abgd(1,nn,ikyn)
bn = abgd(2,nn,ikyn)
cn = abgd(3,nn,ikyn)
dn = abgd(4,nn,ikyn)
Enky = Eq(nn,ikyn)
Kbn = cdsqrt(dcmplx(Enky/ht2up2m*mb))
Kwn = cdsqrt(dcmplx((Enky+Vb)/ht2up2m*mw))

ap = abgd(1,np,ikyp)
bp = abgd(2,np,ikyp)
cp = abgd(3,np,ikyp)
dp = abgd(4,np,ikyp)
Enky = Eq(np,ikyp)
Kbp = cdsqrt(dcmplx(Enky/ht2up2m*mb))
Kwp = cdsqrt(dcmplx((Enky+Vb)/ht2up2m*mw))

call Coupling2(an,bn,Kwn,ap,bp,Kwp,L,a1)
call Coupling2(cn,dn,Kbn,cp,dp,Kbp,h,a2)

aa = a1+a2
if (dabs(dimag(aa)) .gt. 1.d-12) then
write(6,*) ’Coupling Complesso !!’
stop
end if
a = dreal(aa)
end

!_______________________________________________________________________
subroutine Coupling2(an,bn,kn,ap,bp,kp,ll,a)
include ’RSOC_KP_3d_inc.f’
complex*16 an,bn,kn,ap,bp,kp,a
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complex*16 a1,a2,a3,a4
complex*16 MySin
external MySin
real*8 ll

a1 = cdabs(an)**2* (
+ cdabs(ap)**2*MySin(-dcmplx(dimag(kn)),-dcmplx(dimag(kp)),ll)+
+ cdabs(bp)**2*MySin(-dcmplx(dimag(kn)),dcmplx(dimag(kp)),ll) +
+ dconjg(ap)*bp*MySin(-dcmplx(dimag(kn)),dcmplx(0.,-dreal(kp)),ll)+
+ ap*dconjg(bp)*MySin(-dcmplx(dimag(kn)),dcmplx(0.,dreal(kp)),ll) )

a2 = cdabs(bn)**2* (
+ cdabs(ap)**2*MySin(dcmplx(dimag(kn)),-dcmplx(dimag(kp)),ll)+
+ cdabs(bp)**2*MySin(dcmplx(dimag(kn)),dcmplx(dimag(kp)),ll) +
+ dconjg(ap)*bp*MySin(dcmplx(dimag(kn)),dcmplx(0.,-dreal(kp)),ll)+
+ ap*dconjg(bp)*MySin(dcmplx(dimag(kn)),dcmplx(0.,dreal(kp)),ll) )

a3 = dconjg(an)*bn * (
+ cdabs(ap)**2*MySin(dcmplx(0.,-dreal(kn)),-dcmplx(dimag(kp)),ll)+
+ cdabs(bp)**2*MySin(dcmplx(0.,-dreal(kn)),dcmplx(dimag(kp)),ll) +
+ dconjg(ap)*bp*MySin(dcmplx(0.,-dreal(kn)),
+ dcmplx(0.,-dreal(kp)),ll)+
+ ap*dconjg(bp)*MySin(dcmplx(0.,-dreal(kn)),
+ dcmplx(0.,dreal(kp)),ll) )

a4 = an*dconjg(bn) * (
+ cdabs(ap)**2*MySin(dcmplx(0.,dreal(kn)),-dcmplx(dimag(kp)),ll)+
+ cdabs(bp)**2*MySin(dcmplx(0.,dreal(kn)),dcmplx(dimag(kp)),ll) +
+ dconjg(ap)*bp*MySin(dcmplx(0.,dreal(kn)),
+ dcmplx(0.,-dreal(kp)),ll)+
+ ap*dconjg(bp)*MySin(dcmplx(0.,dreal(kn)),
+ dcmplx(0.,dreal(kp)),ll) )

a = a1 + a2 + a3 + a4
end

!__________________________________________________________________________
complex*16 function MySin(k1,k2,ll)
complex*16 k1,k2,z,z1
real*8 ll

z = k1+k2
if (cdabs(z) .le. 1.d-10) then
MySin = ll
else
z1 = cdexp(z*ll)
MySin = (z1-1./z1)/(2.*z)
end if
end
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!_______________________________________________________________________

!_______________________________________________________________________

!_________The following subroutines allow to determine the Gap__________

!_______________________________________________________________________

subroutine ComputeLambda(nn,np,ll)
include ’RSOC_KP_3d_inc.f’
integer nn,np
real*8 ll,x

! In this particular case, lambda has no dependence on Ef
! and this subroutine always returns the same values for lambda.
ll = lambda(nn,np)
end

!_________________________________________________________________________
subroutine GapvsEf (NameGap)
include ’RSOC_KP_3d_inc.f’
real*8 energy, rel_tol, abs_tol, de, gapBCS
real*8 deltaE,minimumEnergy,minBandsnergy
integer*4 maxiter,i,j
integer n,iky, Base

parameter (Base = 20)
character*12 NameGap,NameFile

rel_tol = 1e-5 ! relative (normalized) change at which two gap
!can be considere equal

abs_tol = 1e-9 ![eV] energy at which gap can be considered 0
maxiter = 1000

! Initialize gap, basically starts with a gap equal to omegad __________
call init_gap(omegadmax)

de = (TopEf-BottomEf)/(dfloat(NPointsGDvsMu))
do n = 1,NBands
write (NameFile,"(A,I2.2,A)")
+ NameGap(1:Len_Trim(NameGap)),
+ n,
+ Ending(1:Len_Trim(Ending))

open (Base+n,
+ file=NameFile,
+ form=’FORMATTED’,
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+ status=’UNKNOWN’)
end do

! We start the cycle on Ef, start with a very large value
! and go towards the bottom of the RSOC band
j = 0
do i = NPointsGDvsMu, 1,-1

Ef=BottomEf+(dfloat(i)-0.5d0)*de
write (*,*) ’Ef =’,Ef

call compute_homogeneous_DOS3D(Ef - minimum_energy)
call compute_gap(rel_tol, abs_tol, maxiter)

! the BCS gap makes sense only if lambda is a constant,
! so we use the lambda(1,1) value
gapBCS = 2.0d0 * omegadmax * dexp(-1.0d0 / dabs( lambda(1,1) ))

do n=1,NBands
do iky=1, NPointsZB
Gap(n,iky) = GapNG(n,iky)
end do
write (Base+n,*) Ef,gapBCS,
+ Gap(n,1),
+ Gap(n,NPointsZB/2),
+ Gap(n,NPointsZB)
call flush(Base+n)
end do

j = j + 1
write (6,*) ’Gap plot complete at’,
+ dfloat(j)/NPointsGDvsMu*100,’%’

end do

do n = 1,NBands
close(Base+n)
end do
end

!_______________________________________________________________________
subroutine compute_minimum_energy
include ’RSOC_KP_3d_inc.f’

real*8 deltaE, minBandsnergy
integer n,nmin

minimum_energy = 1.0d100
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do n = 1,NBands
deltaE = alphaRSOC(n) * alphaRSOC(n) / (4.0d0 * ht2up2m)
minBandsnergy = EEdge(n,1) - deltaE

write (6,’("alphaRSOC for band",I2," =",E18.10)’)
+ n, alphaRSOC(n)
write (6,’("deltaE for band",I2," =",E18.10)’)
+ n, deltaE
write (6,’("min energy for band",I2," =",E18.10)’)
+ n, minBandsnergy

if (minBandsnergy .lt. minimum_energy) then
minimum_energy = minBandsnergy
nmin = n
end if
end do
write (6,’("overall min energy =",E18.10," for band ",I2)’)
+ minimum_energy,nmin
end

subroutine compute_homogeneous_DOS3D(energy)
include ’RSOC_KP_3d_inc.f’

real*8 energy

g0 = 1.D0/(4.0d0 * pi**2) *
+ 1.D0/(ht2up2m**1.5d0) *
+ dsqrt(energy)

end

!_______________________________________________________________________
subroutine init_gap(g)
! set the whole matrix Gap() to g
include ’RSOC_KP_3d_inc.f’
real*8 g
integer nn,ikyn
do nn = 1,NBands
do ikyn = 1,NPointsZB
Gap(nn,ikyn) = g
end do
end do
end

! Function that calculates gap with a cycle from which you exit if
! we reach max interactions (no convergence)
! or if we have obtained convergence <rel_tol
subroutine compute_gap(rel_tol,abs_tol,max_iter)

153



G. NUMERICAL SIMULATION

include ’RSOC_KP_3d_inc.f’

integer*4 niter,max_iter
real*8 rel_tol,abs_tol,dG,average
integer n,iky

niter = 1
do while (niter .lt. max_iter)
call compute_selfcon_integral
call compute_normalized_deltaG(dG,abs_tol,average)
call copy_gap

write (*,*) ’ niter = ’, niter
write (*,*) ’ normalized_delta_G = ’, dG ,
+ ’ mean gap = ’, average

if (dG .lt. rel_tol) return

niter = niter + 1
end do
end

!_______________________________________________________________________
subroutine compute_normalized_deltaG(dG,abs_tol,average)
include ’RSOC_KP_3d_inc.f’

real*8 dG,abs_tol
integer n,iky,n_average
real*8 average

dG = 0.d0
average = 0.d0
n_average = 1
do n=1,NBands
do iky=1,NPointsZB
if (dabs(GapNG(n,iky)) .gt. 0.d0) then
dG = dG + dabs(GapNG (n,iky) - Gap(n,iky))
average = average+dabs(Gap(n,iky))
n_average = n_average+1
end if
end do
end do

average=average/n_average
dG = dG / (average + abs_tol)
end

subroutine copy_gap
include ’RSOC_KP_3d_inc.f’
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integer n,iky
do n = 1,NBands
do iky = 1,NPointsZB
Gap(n,iky) = GapNG(n,iky)
end do
end do
end

!______________This is the parallelized version of ComputeGap___________
subroutine compute_selfcon_integral()
include ’RSOC_KP_3d_inc.f’

real*8 S, deltaE, sum_nu,emin,emax,i1,s1
real*8 Enky, gg
integer*4 nu
integer n,iky,np,ikyp,NPointsy

!$OMP PARALLEL DEFAULT(PRIVATE)
!$OMP+ SHARED(ht2up2m,alphaRSOC,Eq,omegadmax,Ef)
!$OMP+ SHARED(Acc,Gap,GapNG,Jo,pi)

!$OMP DO
do iky=1,NPointsZB
do n=1,NBands
call compute_selfcon_integral_element(n,iky,gg)
GapNG(n,iky) = gg
end do ! next n
end do !next iky
!$OMP END PARALLEL
end

! compute the self consistency integral (gg) for a specific ky (iky)
! on a specific band (n)
subroutine compute_selfcon_integral_element(n,iky,gg)
include ’RSOC_KP_3d_inc.f’

integer n,iky
real*8 gg

real*8 S, deltaE, sum_nu,emin,emax,i1,s1
real*8 Enky, U0, omegad_n_np
integer*4 nu,np,ikyp,NPointsy

double precision abserr,epsabs,epsrel,result,work
integer ier,iwork,last,lenw,limit,neval
dimension iwork(100),work(4*100)

external SelfConIntegrand
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common /SelfConInt12/ k0,e0,a,Ef1,G,Enkyp,T
real*8 k0,e0,a,Ef1,G,Enkyp,T
!$OMP THREADPRIVATE( /SelfConInt12/ )

deltaE = (alphaRSOC(n)*alphaRSOC(n))/(4.0d0 * ht2up2m)
Enky = Eq(n,iky)
if ((Enky - deltaE) .gt. (Ef + omegadmax)) then
gg = 0.d0
return
end if

S = 0.0d0 ! S accumulate the sum over np and ikyp

Ef1 = Ef ! copy global variable in the THREADPRIVATE common block
T = Temp

do np =1,NBands
omegad_n_np = omegad(n,np)
do ikyp=1,NPointsZB

Enkyp = Eq(np,ikyp)

a = ht2up2m
e0 = - alphaRSOC(np) * alphaRSOC(np) / (4.0d0 * a)
sum_nu = 0

do nu = -1,1,2
k0 = dfloat(nu) * alphaRSOC(np) / (2.0d0 * a);
if (nu .eq. -1) then
emax = dmax1( omegad_n_np - (Enkyp - Ef) , 0.0d0 )
emin = dmax1( -omegad_n_np - (Enkyp - Ef) , 0.0d0 )
else ! nu=+1
emax = dmax1( omegad_n_np - (Enkyp - Ef) , e0)
emin = dmax1( -omegad_n_np - (Enkyp - Ef) , e0)
end if

if (emax .gt. emin) then
G = Gap(np,ikyp)
epsabs = 0.0E0
epsrel = 1.0E-5
limit = 100
lenw = limit*4
call DQAGS(
+ SelfConIntegrand,emin,emax, !***** Now SelfConIntegrad
+ EPSABS,EPSREL,
+ RESULT,ABSERR,
+ NEVAL,IER,
+ LIMIT,LENW,LAST,IWORK,WORK
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+ )
U0 = -lambda(n,np) / g0; ! g0 is the 3D density of states
i1= U0 * RESULT;
else
i1 = 0
end if

sum_nu = sum_nu + i1
end do

! Ink;n’k’ = Acc / (Ny * Lx * Lz)
! kydegeneracy
! ky = 0 and ky = pi/d should be counted once,
! all the others should be counted twice because energy and
! overlaps dont’t changes for ky -> -ky

s1 = 2.0d0 * Acc(n,iky,np,ikyp) * Gap(np,ikyp) * sum_nu
S = S + s1
end do
end do

NPointsy = 2.0d0 * NPointsZB
gg = -S/(4.0d0 * pi * NPointsy)
end

!_______________________________________________________________________
real*8 function SelfConIntegrand(energy)
real*8 energy,Ef
real*8 csi, absG,Ep,s,abs_dknu_de,knu,num

common /SelfConInt12/ k0,e0,a,Ef1,G,enkyp,T
real*8 k0,e0,a,Ef1,G,enkyp,T
!$OMP THREADPRIVATE( /SelfConInt12/ )

! e is the RSOC part of the energy
! e = ht2m * k .* k - nu * alphaRSOC(n) * k
! that has been written as
! e = a * (k - k0) + e0

! Ef is local in this function
! (the "global" include file is not included)
Ef = Ef1
absG = dabs(G)
csi = energy + enkyp - Ef
Ep = dsqrt(csi * csi + absG * absG)

s = dsqrt((energy - e0) / a)

abs_dknu_de = 1.0d0 / (2.0d0 * a * s)
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if (k0 .gt. 0) then !(k0 > 0) [ mean nu = +1, positive helicity ]
if (s .gt. k0) then !(k0 - s) < 0 and must be excluded
knu = k0 + s
num = knu * abs_dknu_de
else
! num = (k0 + s) * abs_dknu_de + (k0 - s) * abs_dknu_de
num = 2.0d0 * k0 * abs_dknu_de
end if
else !(k0 < 0) [ mean nu = -1, negative helicity ]
knu = k0 + s
num = knu * abs_dknu_de
end if

if ( T .eq. 0) then
SelfConIntegrand = num / (2.0d0 * Ep)
else
SelfConIntegrand = num / (2.0d0 * Ep) * dtanh(Ep/2./T)
end if

end

!_______________________________________________________________________
subroutine TcvsEf(NameTc)
include ’RSOC_KP_3d_inc.f’

integer i,j,iky
integer ciclostart,ciclostop,ciclostep
character*12 NameTc,NameFile
real*8 de,nn
real*8 TcBCS

real*8 rel_tol, abs_tol
integer maxiter

Temp = 0.d0
de = (TopEf-BottomEf)/dfloat(NPointsGDvsMu)

write (NameFile,"(A,A)")
+ NameTc(1:Len_Trim(NameTc)),
+ Ending(1:Len_Trim(Ending))
open (20,file=NameFile,
+ form=’FORMATTED’,status=’UNKNOWN’)

j = 0
if (GapPlot .eq. LeaveHighEnergy) then
ciclostart = NPointsGDvsMu
ciclostop = 1
ciclostep = -1
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else
ciclostart = 1
ciclostop = NPointsGDvsMu
ciclostep = 1
end if

rel_tol = 1e-4 ! relative (normalized) change at which
! two gap can be considere equal

abs_tol = 1e-9 ![eV] energy at which gap can be considered 0
maxiter = 20

do i = ciclostart,ciclostop,ciclostep
j = j+1

Ef = BottomEf+(dfloat(i)-0.5d0)*de
call compute_homogeneous_DOS3D(Ef - minimum_energy)

if (Temp .eq. 0.d0) then

call init_gap(omegadmax)
call compute_gap(rel_tol, abs_tol, maxiter)
Temp = Gap(1,NPointsZB/2)*2.d0/3.52d0
write (6,*) Temp/KBoltz

if (dabs(Temp/KBoltz) .lt. 1.d-3) Temp = 1.d0*KBoltz
call init_gap(1.d0*KBoltz) ! a gap "small"
end if

call compute_Tc(1.d-3,1500)
TcBCS = 1.14 * omegadmax * dexp( -1.0 / lambda(1,1) )

write (20,*) Ef, Temp/KBoltz, TcBCS/KBoltz
call flush(20)
write (6,*) ’ ***** Grafico Tc completo al’,
+ dfloat(j)/NPointsGDvsMu*100,’%’
end do
close(20)
end

!_______________________________________________________________________
subroutine compute_Tc(tol,maxiter)
include ’RSOC_KP_3d_inc.f’
integer maxiter,i
real*8 dd,sdd,psdd,Temp2,Temp1,l3,l2,l1,tol,Perc

Temp1 = 0.d0
Temp2 = 0.d0
l1 = 0.d0

159



G. NUMERICAL SIMULATION

l2 = 0.d0
write (6,*) ’Input: Temp ’,Temp/KBoltz,’ Ef ’,Ef

call MaxEigenvalue(l3,1.d-3,100)
dd = dabs(l3-1.d0)
sdd = dsign(1.d0,l3-1.d0)
psdd = sdd
if (sdd .eq. 1.d0) then
Temp2 = Temp
l2 = l3
else
Temp1 = Temp
l1 = l3
end if

i = 1
do while (sdd .eq. psdd .and. i .le. maxiter)
i = i+1
Perc = 0.2
if (dd .le. 0.10) Perc = 0.10
if (dd .le. 0.05) Perc = 0.05
Temp = Temp*(1.d0 + sdd * Perc)
call MaxEigenvalue(l3,1.d-3,100)
dd = dabs(l3-1.d0)
sdd = dsign(1.d0,l3-1.d0)
if (sdd .eq. 1.d0) then
Temp2 = Temp
l2 = l3
else
Temp1 = Temp
l1 = l3
end if
write (6,*) ’T1 ’,Temp1/KBoltz,’ l1 ’,l1
write (6,*) ’T2 ’,Temp2/KBoltz,’ l2 ’,l2
end do

write (6,*) ’compute_Tc init terminated sdd = ’,sdd,
+ ’ psdd = ’,psdd,’ i = ’,i

if (i .le. maxiter) then
i = 1
do while (dabs((Temp2-Temp1)/Temp1) .gt. tol .and.
+ i .le. maxiter)
Temp = Temp1 + (1.d0-l1)*(Temp2-Temp1)/(l2-l1)
call MaxEigenvalue(l3,1.d-3,100)
sdd = dsign(1.d0,l3-1.d0)
if (dabs(l3-1.d0) .le. 1.d-5) then
Temp1 = Temp
Temp2 = Temp
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write (6,*) ’T ’,Temp/KBoltz,’ l3 ’,l3
else
if (sdd .eq. 1.d0) then
Temp2 = Temp
l2 = l3
else
Temp1 = Temp
l1 = l3
end if
write (6,*) ’T1 ’,Temp1/KBoltz,’ l1 ’,l1
write (6,*) ’T2 ’,Temp2/KBoltz,’ l2 ’,l2
end if
i = i+1
end do
if (i .ge. maxiter) call init_gap(1.d0*KBoltz)
Temp = (Temp2+Temp1)/2.d0
else
Temp = 0.d0
end if
end

subroutine MaxEigenvalue(ll,tol,maxiter)
include ’RSOC_KP_3d_inc.f’
integer n,i,j,maxiter
real*8 ll,lmax,lmin,rap,atttol,tol

n = 0
write (6,*)
write (6,*) ’Temp,Ef’,Temp/KBoltz,Ef

call compute_selfcon_integral
call copy_gap
lmax = -100.d0
lmin = 1.d50
do while ( n .le. maxiter .and. dabs((lmax-lmin)/lmin) .gt. tol)
n = n+1
write (6,*) ’Massimo Autoval Iterazione n# ’,n
call compute_selfcon_integral

lmax = -100.d0
lmin = 1.d50
write (6,*) ’Gap’
write (6,"(6(E12.3,2X))") ((Gap(i,j)/KBoltz,j = 1,6),i=1,3)
write (6,*) ’GapNG’
write (6,"(6(E12.3,2X))") ((GapNG(i,j)/KBoltz,j = 1,6),i=1,3)
do i = 1,NBands
do j = 1,NPointsZB
if ( GapNG(i,j) .ne. 0.d0 .and. Gap(i,j) .ne. 0.d0) then
rap = GapNG(i,j)/Gap(i,j)
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if (rap .gt. lmax) lmax = rap
if (rap .lt. lmin) lmin = rap
end if
end do
end do
write (6,*) ’lmax,lmin’,lmax,lmin
call copy_gap
end do
if (n .gt. maxiter) write (6,*)
+ ’Massimo autovalore non ha convergiuto !’
write (6,*) lmax,lmin
ll = (lmax+lmin)/2.d0
write (6,*) ’ll -> ’,ll
end

!_______________________________________________________________________
!_______________________________________________________________________
block data CostantiFisicheFondamentali
include ’RSOC_KP_3d_inc.f’

data Pi / 3.1415926535897960d0 /
data dsqrt2 / 1.414213562373d0 /
data ht2up2m / 3.8100d0 / ! in eV * A**2
data Kboltz / 8.617718D-5 / ! in eV/K
data d / 18.33d0 /
data L / 12.83d0 /
data h / 5.50d0 /
data Lx / 1.d0 /
data Ny / 1 /
data mw / 1.d0 /
data mb / 1.d0 /
data mx / 1.d0 /
data mz / 1.0d0 /

end

In the file

RSOC_KP_3d_inc.f

we have defined the global variables as follows:

! RSOC_KP_3d_inc.f - Here are the definitions of the global variables

implicit NONE

integer
+ NBands,NDim,
+ NPointsDOS,NPointsZB,NPointsZBDOS,NPointsGDvsMu,
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+ NPointsBanda,NPointsMu,OgniQuanti,
+ FileBandsBase,LeaveHighEnergy,
+ PartoEnergieBasse,Debug
parameter (NBands = 2, ! Self-explanatory
+ NDim = 3, ! We are in NDim dimensions
+ NPointsDOS = 500, ! DOS array size
+ NPointsZB = 100, ! NPointsZB ** 3 on the ZB for the

! Gap are examined
+ NPointsZBDOS = 700, ! NPointsZBDOS ** 3 on the ZB for the

! DOS are examined
+ NPointsGDvsMu =500, ! Number of points for scanning in Ef
+ NPointsBanda = 150, ! N points with which the Band is

! drawn
+ NPointsMu = 150, ! N points fort the Mu vs Dens plot
+ OgniQuanti = 100000, ! Each (kx, ky, kz) one is transcribed
+ FileBandsBase = 30, ! Start numbering .TMP file
+ LeaveHighEnergy = 1, ! These are the two possible values

! of the variable
+ PartoEnergieBasse = 0, ! the variable GapPlot

common /Global/
+ Pi, ! Pi greek
+ dsqrt2, ! dsqrt(2.d0)
+ ht2up2m, ! ht**2/(2*me)
+ Kboltz, ! The Boltzmann constant
+ mb,mw,mx,mz, ! Effective masses of the electron
+ h,L,d, ! Geometry of the Potential
+ ! (L size well, h size barrier, d = L + h)
+ Lx,Ny, ! Length in x and Number of cells in y
+ GapPlot, ! Graf.Gap starting from en. high or low
+ Vb, ! Height of the Barrier (eV)
+ Jo, ! Coupling parameter
+ g0, ! density of states in an homogeneous system
+ kx,ky,kz,nkx,nky,nkz, ! Point of the ZB considered
+ altri_quattro_bytes, ! Padding required by the compiler
+ ZBx,ZBy,ZBz, ! Extension of the ZB long kx,ky e kz
+ ZBxExtended,ZByExtended, ! Extension of the ZB without sup-cell
+ ZBzExtended,
+ E, ! Eigenvalues (spectrum) for the point

! under consideration
+ gradEx,gradEy, ! Partial derivatives of the eigenvalues
+ Eq,UnE,EEdge, ! Scan on the ky axis
+ minimum_energy, ! lowest energy in the spectrum considering

! also RSOC
+ dEdq,d2Edq2, ! first and second derivatives of E (q)
+ abgd, ! Coefficients of the eigenfunctions
+ D0x,D0z,D0xNG,D0zNG, ! Gap BCS
+ prefattore, ! prefactor used in ValutaIntSelfCon
+ Temp, ! Temperature under examination
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+ DOS, ! Density of states
+ DensitaSuper, ! Electronic Density (when there is a Gap)
+ Ef, ! Fermi level set
+ omegadmax, ! Maximum Debye frequency (energy cutoff

! for the Gap)
+ omegad, ! Debye frequency (now it’s a matrix)
+ lambda, ! Dimensionless Coupling (now it’s a matrix)
+ Ending, ! Extension (.DAT .PAT etc ..) of the files
+ rho, ! superfluid density
+ Gap,GapNG, ! Gap BCS
+ ancora_quattro_bytes, ! Padding required by the compiler
+ BandBottom,BandTop, ! Energy extremes for DOS
+ BottomEf,TopEf, ! Extremes of variation of Ef
+ alphaRSOC, al, Kso,
+ DensityLimit ! Extremum sup for the mu vs dens graph

real*8
+ Pi,
+ dsqrt2,
+ ht2up2m,Kboltz,
+ mb,mw,mx,mz,
+ h,L,d,
+ Lx,
+ alphaRSOC(NBands), al, Kso
real*8
+ Gap(NBands,NPointsZB),GapNG(NBands,NPointsZB)

integer
+ Ny
integer
+ GapPlot
real*8
+ Vb,Jo,g0,
+ kx,ky,kz
integer
+ nkx,nky,nkz,altri_quattro_bytes
real*8
+ ZBx,ZBy,ZBz,
+ ZBxExtended,ZByExtended,ZBzExtended
real*8
+ E(NBands),
+ gradEx(NBands),gradEy(NBands),
+ Eq(NBands,NPointsZB),UnE(NBands),EEdge(NBands,4),
+ minimum_energy,
+ dEdq(NBands,NPointsZB),d2Edq2(NBands,NPointsZB)
complex*16
+ abgd(4,NBands,NPointsZB)
real*8
+ D0x(NBands,NPointsZB),D0z(NBands,NPointsZB),
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+ D0xNG(NBands,NPointsZB),D0zNG(NBands,NPointsZB),
+ prefattore,
+ Temp
integer
+ DOS(0:2*NBands,NPointsDOS)
real*8
+ DensitaSuper(NPointsGDvsMu),
+ Ef,omegadmax,omegad(NBands,NBands),lambda(NBands,NBands)
character*4
+ Ending

real*8
+ rho(0:NBands,0:NDim)
integer*8
+ ancora_quattro_bytes
real*8
+ BandBottom,BandTop,
+ BottomEf,TopEf,
+ DensityLimit

common Acc Couplings between the SubBands
real*8 Acc(NBands,NPointsZB,NBands,NPointsZB)
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