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Preamble

During the three years of my Ph.D. I had the fruitful opportunity to take part in the activities
of two independent research groups. These two collaborations are interconnected even if they
deal with different research topics. In particular, at the beginning of my Ph.D. course I started
to study a reversible parallel dynamics, called shaken dynamics, introduced in [3] jointly
with R. D’Autilia, B. Scoppola, E. Scoppola and A. Troiani. This dynamics is inspired
by a collection of probabilistic cellular automata on spin systems, considered in previous
papers [36, 37, 84, 65], characterized by the presence of an inertial term q preventing
the simultaneous update of a too large set of spins. In particular, the shaken dynamics is
the composition of two consecutive parallel updating defined through a pair Hamiltonian
H(σ,τ) which contains an asymmetric interaction with the neighboring spins associated to
an interaction weight J plus a self-interaction controlled by the inertial parameter q and,
possibly, an external magnetic field λ.
The shaken dynamics allows to extend the results obtained in [36, 84]. Indeed, we control
explicitly its invariant measure π on general graphs and with non zero external field.
Moreover, in the case of the square lattice we identify the invariant measure for different
boundary conditions.
Besides the robust control of the stationary measure, the shaken dynamics is characterized
also by a peculiar interplay among different geometries. Indeed, the introduction of a pair
Hamiltonian in the definition of the dynamics has interesting effects on the geometry of the
system. First, the configuration space is doubled and it is possible to define a new interaction
graph, called doubling graph which has a different geometry with respect to the one of the
original graph and is bipartite by construction. In particular, the shaken dynamics turns
out to be the marginal of a parallel alternate dynamics on the Ising model defined on the
doubling graph.
The geometry of the system can be tuned also by changing the self-interaction parameter q.



2 Introduction

This approach is completely new. Namely, considering the limits q→ 0 and q→∞ we are
able to interpolate between different geometries of the doubling graph. More precisely, when
q tends to zero the corresponding edge in the doubling graph is cutted, whereas when q tends
to infinity the two extremal vertices of the corresponding edge collapse. In both cases a new
doubling graph is obtained. Finally, taking the self-interaction parameter q to be equal to the
interaction parameter J , the doubling graph becomes homogeneous.

The geometric interpolation induced by the shaken dynamics inspired a second research
project with V. Jacquier, F. R. Nardi and A. Troiani concerning the study of the metastability
for the 2d Ising model on the homogeneous hexagonal lattice. Indeed, when the original
graph is the regular square lattice, the shaken dynamics turns out to be the marginal of an
alternate dynamics on the Ising model defined on the non homogeneous hexagonal lattice.
Thus, the analysis of the metastability for the 2d Ising model on the homogeneous hexagonal
lattice wants to be a first step towards the study of the convergence to equilibrium of the
parallel alternate dynamics associated to the shaken dynamics in the low temperature regime
and at fixed volume, when the original graph is the regular square lattice.

The organization of the thesis reflects the journey of my Ph.D. course. Indeed, it is divided
into two independent parts:

I) The Shaken dynamics
Chapter 1 provides an introduction to the shaken dynamics. In particular, the motiva-
tions that inspired this research project are introduced. In addition, a formal definition
of the dynamics and the main results obtained jointly with R. D’Autilia, B. Scoppola, E.
Scoppola and A. Troiani in the paper [2] and in the preprint [3] are provided. Chapter 2
is devoted to proofs and discussions.

II) Metastability for the Ising model on the homogeneous hexagonal lattice
Chapter 3 provides an introduction to the problem of metastability for the 2d Ising
model. In particular, the motivations that inspired the study of metastability are
introduced. In addition, a formal definition of the model and the main results of the
preprint [4], which is a joint work with V. Jacquier, F. R. Nardi and A. Troiani are
provided.
Chapter 4 contains the proof of those theorems related to metastability, while in
Chapter 5 the results concerning polyiamonds are given with the intent of providing a
self contained set of tools that may be of use whenever the volume-surface competition
plays a role in determining the properties of a statistical mechanics system living on
the hexagonal lattice.



1 The Shaken dynamics

1.1 Motivations

According to plate tectonics, Earth’s litosphere is broken into many pieces, called plates.
These fragments lie on Earth’s mantle, moving relative to one another and relative to the
underlying mantle. In particular plates move at different velocities and these velocity
gradients are responsible for earthquakes occurrence at plate boundaries. The relative
movement of fault planes and the associated energy release show a characteristic pattern
when considered as a function of time. Indeed, fault planes move relative one to another,
not smoothly, but their motion exhibits a peculiar trend characterized by a loading phase
followed by a sudden (with respect to the loading time scale) displacement with consequent
energy release (see Fig. 1.1). This pattern, in jerks known as stick-slip, is quite universal and
it appears in a variety of natural phenomena ranging from the sound produced by a bowed
violin string to the one coming from a creaking door, from screeching brakes to the sound of
tearing and grinding teeth.

All the previous systems, and in particular earthquake events, concern two mechanical
objects sliding one relative to another, affected by friction at the contact interface. Therefore,
understanding friction mechanism turns out to be a key step to get an insight into those
phenomena governed by stick-slip dynamics.
A wide range of sliding friction models may be found in the literature. Mainly, most of them
are based on Newtonian and classical dynamics and differ in the theoretical approach they
apply. Here we provide a short review on the current models in tribological theory and refer
to the rich Colloquium [91] for a further discussion on friction modeling.
In minimalistic models the studies are restricted to describe microscopic dynamics in terms

of a very small number of degrees of freedom and the resulting equations of motion are those
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Figure 1.1 Typical time series of shear force values recorded by a digital force sensor for a
gelatin–sand paper system considered in [35].

characterizing one or two dimensional systems. Among these models, the most successful are
certainly the Prandl-Tomlinson (PT) [83, 90] and the Frenkel-Kontorova (FK) [49] models.
PT model assumes that a point mass m is dragged over a one-dimensional periodic potential
by means of a spring of effective elastic constant k with a constant velocity v0 (see Fig 1.2a).
Thermal effects can be taken into account by adding a viscous damping term ηẋ and a random
force Γ(t). The associated equation of motion is

mẍ= k(v0t−x)−ηẋ−U0 sin(2πx/a)+Γ(t)

where x is the coordinate of the particle, U0 the amplitude of the periodic force and a

the spatial period of the potential. This model is, probably, the most widely used in the
interpretation of tribological experiments due to its simplicity and ability of accounting for
the main physical features of atomic-scale friction.
FK model describes a one dimensional chain of N harmonically coupled particles placed
into a periodic potential (see Fig. 1.2b). The Hamiltonian of the model is

H =
∑

i

[
p2

i

2m + k

2(xi+1−xi−ac)2 + U0
2 cos 2πxi

ab

]
.

The parameters k and ac identify respectively the elastic constant and the equilibrium distance
of the harmonic interaction among the nearest neighbors in the chain, whereas the parameters
U0 and ab represent the amplitude and the spatial period of the external potential. One of the
main interesting features characterizing the static and dynamic properties of the FK model
is the competition between the harmonic interaction among the particles and the substrate
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periodic potential. Indeed, if the former favors a uniform separation ac between particles, the
latter tends to pin the atom positions to the bottom of the wells, evenly spaced by the period
ab. This competition is often referred to as frustration.
Even though both PT and FK models can account for many physical properties of atomic-scale
friction, their simple mechanical descriptions can provide only qualitative interpretations of
the underlying tribological processes.

(a) (b)
Figure 1.2 The Prandl-Tomlinson model (a) and the Frenkel-Kontorova model (b).

Recent experimental studies of dynamics of cold welds [17] and adhesive boundary lubrica-
tion [40] have suggested that macroscopic friction might be the result of the formation and
rupture of a huge number of microscopic bonds that form between surfaces in close vicinity.
Furthermore, these findings indicate that stick-slip motion is connected to a collective behav-
ior of the bonds [17]. A class of models, known as multicontact models, leverage on these
experimental results and provide an alternative approach to the study of friction. Indeed,
the description of sliding motion is given in terms of dynamical formation and rupture of
elastically coupled contacts. Usually, each contact is modeled as an elastic spring connecting
a slider and the underlying surface. Intact contacts go on stretching with a speed equal to the
velocity of the slider and motion is inhibited until a critical threshold of rupture is reached.
Once the contact is broken, it relaxes rapidly to its unstretched equilibrium state.
As a representative for this class we mention the Burridge-Knopoff (BK) model [18] for
earthquakes. In BK model a set of frictional blocks of mass M coupled by springs is driven
over a substrate (see Fig 1.3). In one dimension, the equation of motion for the displacement
ui of block i is given by

Müi = k0(ui+1 +ui−1−2ui)+kd(ui− ia−vt)+f(u̇i)

where k0 and kd are the stiffnesses of the springs connecting the blocks between themselves
and with the loading plate that moves at constant velocity v. Here a is the rest length of the
springs connecting the blocks and f(v) is a phenomenological friction force that weakens as
the velocity of the block increases. The Burridge-Knopoff model shows a very rich dynamical
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Figure 1.3 The Burridge-Knopoff model.

behavior with widely distributed slip events.
Even though multicontact models allow to
extend the results obtained in minimalistic
models, one main problem of their approach
is the multiplicity of empirical parameters

they involve. Moreover the microscopic mechanism underlying the collective behavior of the
bonds is an open problem.
Despite the growing efforts in understanding friction behavior and the advanced technologies
(such as molecular dynamics simulations), most of the present models rely on phenomeno-
logical laws and a microscopic theory of friction is still lacking.
One of the main difficulties in understanding and predicting frictional response is the com-
plexity of highly nonequilibrium processes going on in any tribological contact and the
associated difficulty to treat nonequilibrium problems within traditional mechanics theory.
We propose an alternative approach to understand friction mechanism via a statistical
mechanics model.

A mechanical system consisting of two sliding surfaces may be considered as a macroscopic
system composed by a large number of interacting microscopic constituents representing
its contact bonds. In particular, the macroscopic features observed in this system, indicat-
ing a collective behavior of the bonds, may be related to the properties of its microscopic
constituents via the powerful probabilistic approach of Statistical Mechanics, providing a
microscopic justification for stick-slip motion.
In this spirit, we represent the contact interface between two sliding surfaces via a finite
simple graph G = (V,E). A spin variable σ(x) = {−1,+1} may be associated to each
element x ∈ V . The spins at the vertices of V correspond to the microscopic bonds joining
together the two sliding surfaces and they are responsible for sliding properties and inertia.
If σ(x) = −1 we say that the bond at x is intact and the surfaces are locally locked at x,
whereas if σ(x) = +1 we say that the bond is broken and the surfaces may locally move from
x.
We are interested in constructing a Markovian dynamics for this spin system on arbitrary
graphs G= (V,E). The spin updating rule may be defined in terms of an Ising-like Hamil-
tonian. The value of the parameters in the Hamiltonian can be tuned to take into account
different physical aspects:

1. one may consider a nearest neighbor interaction where the interaction parameter J
may be constant or it may depend on the spin position. It is reasonable to choose J > 0.
A positive J accounts for the tendency of the spins to be aligned with each other;
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2. one can also consider the action of an external field, which may be constant or may
depend on time and position. This parameter takes into account the strain produced
by the relative sliding of the two surfaces acting either as a stress component which
contributes to the bonds rupture or as an ordering component which restores the broken
bonds.

The dynamics should be parallel, i.e. the spins must be synchronously updated in discrete
time steps. This seems to be a quite natural choice from a physical point of view. Indeed,
it is reasonable to think that the bonds along the contact interface can either break or fix
themselves simultaneously depending only on the current state of their neighborhood. On the
other hand, parallel Markovian dynamics on finite volume are a challenging topic in MCMC
methods and Statistical Mechanics and the relative literature is quite vast. These algorithms
may be naturally implemented both on distributed architectures (e.g., computing clusters)
and on massively parallel architectures (e.g., GPUs) and the efficiency of parallel computing
can be exploited in their simulation.
Motivated by these broad perspective, we define a parallel dynamics, the shaken dynamics,
for a class of spin systems on general interaction graphs, we investigate its properties in the
context of Equilibrium Statistical Mechanics and extend some results obtained in previous
works (see [36, 37, 84]).

1.2 Parallel dynamics and pair Hamiltonians: a short re-
view on the literature

From a theoretical point of view, studies on parallel dynamics imply two natural questions:

• Is it possible to control their invariant measure?

• How fast is their convergence to equilibrium?

Indeed, parallelization can drastically change the relaxation time. In some particular cases of
dynamics updating all the spins at every step, rigorous results are available. We mention here
two examples where the efficiency of parallel dynamics has been proved to be clearly higher
than the efficiency of single-spin-flip dynamics. The first relevant example is given by the
Swendsen-Wang (SW) cluster dynamics where a polynomial relaxation time in the size of
the problem is proven [55]. Another particular example is given in [37] where an irreversible
parallel dynamics related to the 2d Ising model is introduced in terms of a Probabilistic
Cellular Automaton (PCA) (see definition(1.2.1) below). In this second example, the control
of the mixing time is given in a particular regime of low-temperature in a finite box of
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side Lwith periodic boundary conditions and the mixing time turns out to be polynomial in L.

The control of the invariant measure for parallel dynamics is a difficult task too. Hereafter
we refer to the case of parallel Markovian dynamics introduced in terms of Probabilistic
Cellular Automata (PCA), i.e. homogeneous discrete time Markov chains on a product space
SV with transition probabilities:

P (σ,τ) :=
∏
i∈V

pi(τi|σ) (1.2.1)

where pi(τi|σ) is a probability on S for all i ∈ V and σ ∈ S. Given a probability measure µ
on SV , the question is whether it is possible to construct a PCA whose stationary measure
is µ. Usually we are interested in the case in which µ is a Gibbs measure. While Markov
Chains with sequential dynamics having these features can always be constructed, the
existence of a PCA with the given invariant measure µ is not granted. We shortly recall some
related results. In [44] examples of infinite volume PCA whose invariant measures are not
Gibbsian are provided. In [28] it has been proved that, in general, the stationary measure
defined by a local PCA may be rather different from the Gibbs measure, giving rise to stable
chessboard configurations.
In [64] explicit conditions on the measure µ for the existence of a reversible, with respect to
µ, and ergodic PCA are provided and it is shown that no PCA can be designed in such a
way to be reversible with respect to the stationary distribution of a 2d Ising model. In [67,
28] a PCA with a heat bath updating rule for the standard Ising interaction is defined as
follows: spins on the even (odd) sublattice, i.e. those (i, j) ∈ Z2 with i+ j even (odd), are
simultaneously updated at even (odd) times. The invariant measure of this Markov chain is
proved to be a Gibbs measure, however it turns out to be completely different with respect to
the Gibbs measure defined with the standard Ising Hamiltonian.
Following the ideas introduced in [58], a simple way to modify and extend the PCA in
[28], is presented in [36]. The invariant measure of this PCA is proved to converge, in the
thermodynamic limit, to the Gibbs measure of the Ising model at high temperature. In [84] a
similar result is obtained in the low-temperature regime.

Both in [36] and [84] pair Hamiltonians turn out to be a necessary ingredient to define the
dynamics. This is still true in the shaken dynamics.
In [36], the Hamiltonian of the 2d Ising model defined on a finite volume V ⊂ Z2 with
symmetric ferromagnetic interaction Jij = Jji ∀ i, j ∈ V , zero external field and empty
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boundary conditions
H(σ) =−

∑
i, j∈V :

i ̸=j

Jijσiσj (1.2.2)

is lifted to the pair Hamiltonian

H(σ,σ′) =−
∑

i, j∈V :
i̸=j

Jijσiσ
′
j + q

∑
i∈V

(1−σiσ
′
i) (1.2.3)

where q > 0. Clearly, the Hamiltonian (1.2.3) is symmetric, i.e. H(σ,τ) = H(τ,σ), by
definition. The PCA dynamics, introduced via the following transition probability

P PCA(σ,τ) := e−H(σ,τ)

Zσ
with Zσ :=

∑
σ′
e−H(σ,σ′) = wPCA(σ) (1.2.4)

is reversible with respect to the measure

πPCA(σ) =
∑

τ e
−H(σ,τ)∑

τ,τ ′ e
−H(τ,τ ′) ≡

wPCA(σ)∑
τ wPCA(τ) = wPCA(σ)

ZPCA (1.2.5)

which turns out to be the marginal of the Gibbs measure on the space of pairs of configurations

µ2(σ,τ) = e−H(σ,τ)

ZPCA . (1.2.6)

Moreover, it is shown that when the volume goes to infinity, |V | →∞, the total variation
distance between πPCA and the usual Gibbs measure πG, associated to the Ising Hamiltonian
(1.2.2) at high temperature, goes to zero when q is such that the mean density of flipped spins,
δ := e−2q, satisfies lim|V |→∞ δ2|V |= 0. The main tool used in the proof for the convergence
is the Dobrushin uniqueness Theorem.
In [84] a similar result in the low-temperature regime is proved via a polymer expansion
based on suitably defined Peierls-type contours in the following cases, always assuming a
zero external field:

• with plus boundary conditions in the reversible case (ie. with symmetric pair Hamilto-
nian);

• with periodic boundary conditions in the reversible case;

• with periodic boundary conditions in the irreversible case.
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In the irreversible case, when H(σ,τ) ̸=H(τ,σ), the identification of the stationary measure
of the dynamics follows immediately from the following weak symmetry condition

∑
τ∈X

e−H(σ,τ) =
∑
τ∈X

e−H(τ,σ). (1.2.7)

The arguments in the proof of identity (1.2.7) are based on Peierls-type contours suitably
defined and they strongly rely on the translational invariance of the system (i.e., periodic
boundary conditions). This is the reason why the case of plus boundary conditions turns out
to be not feasible.
The shaken dynamics extend the results of [36, 84]. First, the dynamics can be defined on
general graphs, other than the square lattice considered in the previous works. Moreover, the
control of the invariant measure is much more robust including the case of non-zero external
field and different boundary conditions.

1.3 Definition of the dynamics

In this Section we give the formal definition of the shaken dynamics both on the square
lattice Z2 and on arbitrary graphs and we present the results obtained in [3, 2].

1.3.1 The dynamics on Z2

Let Λ be a two-dimensional L×L square lattice in Z2 and let BΛ denote the set of all
nearest neighbors in Λ with periodic boundary conditions. We denote by XΛ the set of spin
configurations in Λ, i.e., XΛ = {−1,+1}Λ.
We identify a subset B ∈ Λ where the spins are frozen throughout the evolution, providing
the boundary conditions. This means that we will consider the state space XΛ,B = {σ ∈ XΛ :
σx = +1 ∀x ∈B}.

To introduce the Markov chain defining the dynamics, following the same ideas used in [36,
65, 84], we consider the pair (doubled) Hamiltonian with asymmetric interaction

H(σ,τ) =−
∑
x∈Λ

[Jσx(τx↑+ τx→)+ qσxτx +λ(σx + τx)]

=−
∑
x∈Λ

[Jτx(σx↓+σx←)+ qτxσx +λ(σx + τx)]
(1.3.1)

where x↑,x→,x↓,x← are, respectively, the up, right, down, left neighbors of the site x on
the torus (Λ, BΛ), J > 0 is the ferromagnetic interaction, q > 0 is an inertial constant and λ
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represents an external field. We can write

H(σ,τ) =−
∑
x∈Λ

σxh
ur(τ)−λ

∑
x∈Λ

τx =−
∑
x∈Λ

τxh
dl(σ)−λ

∑
x∈Λ

σx (1.3.2)

where the local up-right field hur
x (τ) due to the configuration τ is given by

hur
x (τ) =

[
J(τx↑+ τx→)+ qτx +λ

]
(1.3.3)

and the local down-left field hdl
x (σ) due to the configuration σ is given by

hdl
x (σ) =

[
J(σx↓+σx←)+ qσx +λ

]
(1.3.4)

Define the asymmetric updating rule

P dl(σ,τ) := e−H(σ,τ)
−→
Z σ

with
−→
Z σ =

∑
σ′∈XΛ,B

e−H(σ,σ′) (1.3.5)

Due to the definition of the pair Hamiltonian, the updating performed by the transition
probability P dl(σ,τ) is parallel, i.e. it can be written in the form (1.2.1). Indeed, given a
configuration σ, at each site x ∈ Λ the spin τx of the new configuration τ is chosen with a
probability proportional to ehdl

x (σ)τx so that

P dl(σ,τ) := e−H(σ,τ)
−→
Z σ

=
∏

x∈Λ

ehdl
x (σ)τx

2coshhdl
x (σ)

Note that H(σ,τ) ̸= H(τ,σ) and actually, by (1.3.2), H(τ,σ) corresponds to the opposite
direction of the interaction for the transition from σ to τ . We define

P ur(σ,τ) := e−H(τ,σ)
←−
Z σ

with
←−
Z σ =

∑
σ′∈XΛ,B

e−H(σ′,σ) (1.3.6)

Similarly for P ur(σ,τ) with the up-right field hur
x (σ) we get

P ur(σ,τ) := e−H(τ,σ)
←−
Z σ

=
∏

x∈Λ

ehur
x (σ)τx

2coshhur
x (σ)

Note that in the definition (1.3.2) of H(σ,τ) the term proportional to λ could be canceled
obtaining the same value for the transition probabilities P dl(σ,τ) and P ur(σ,τ). We included
it in the pair Hamiltonian for symmetry reasons. In particular, the fact that H(τ,σ) is the
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correct pair Hamiltonian to define P ur(σ,τ) is due to this symmetry. Note also that

H(σ,σ) =H(σ)− q|Λ|

where we define H(σ) to be the usual Ising Hamiltonian with magnetic field 2λ

H(σ) =−J
∑

⟨x,y⟩∈BΛ

σxσy−2λ
∑
x∈Λ

σx (1.3.7)

With these asymmetric transition probabilities we define on XΛ,B the shaken dynamics as the
Markov chain with transition probabilities

P sh(σ,τ) =
∑

σ′∈XΛ,B

P dl(σ,σ′)P ur(σ′, τ) =
∑

σ′∈XΛ,B

e−H(σ,σ′)
−→
Z σ

e−H(τ,σ′)
←−
Z σ′

(1.3.8)

The shaken dynamics is, hence, the composition of two asymmetric steps, with interactions
in opposite directions. Strictly speaking it can not be considered a PCA: it is a composition
of PCAs since both the asymmetric steps have factorized transition probabilities.
Note that reversing the order of the “down–left” and the “up–right” updating rules one would
obtain the chain with transition probabilities

P sh′(σ,τ) =
∑

σ′∈XΛ,B

P ur(σ,σ′)P dl(σ′, τ).

1.3.2 The dynamics on a general graph

Let G= (V,E) be a finite weighted graph and XV = {−1,+1}V be the set of spin configura-
tions on V . We consider the nearest neighbor interaction between spins given by the Ising
Hamiltonian in the general form:

H(σ) =−
∑

e={x,y}∈E

Jxyσxσy−2
∑
x∈V

λxσx (1.3.9)

=−
∑
x

∑
y

1
2Jxy1{x,y}∈Eσxσy−2

∑
x∈V

λxσx =−⟨12J σ+2λ,σ⟩

where the weight Jxy ∈ R associated to the edge {x,y}, represents the interaction, and can be
written in compact form as a symmetric matrix J and we denote by ⟨·, ·⟩ the scalar product.
The vector λ= {λx}x∈V is an external field, possibly non uniform.
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We introduce a class of bipartite weighted graphs Gb = (V b,Eb) doubling the interaction
graph G. The idea is to duplicate the vertex set into two identical copies, V (1) and V (2),
representing the two parts of the vertex set of the bipartite graph. For each x ∈ V we denote
by x(1),x(2) the vertices corresponding to x ∈ V in V (1) and in V (2) respectively. The edges
between x(1) and x(2) are all present, for any x ∈ V . On the other hand the edges between
x(1) and y(2), with x ̸= y, or between y(1) and x(2), can be present only if {x,y} ∈E. Exactly
one edge among the two possibilities (x(1),y(2)) and (y(1),x(2)) is in Eb if {x,y} ∈ E. This
means that for any graph G there are many doubling graphs Gb. Note that doubling graphs
are already present in the literature (see [64]). However the characteristic feature of our
construction is that one and only one among (x(1),y(2)) and (y(1),x(2)) is present. More
precisely:

Definition 1.3.1. A bipartite weighted graph Gb = (V b,Eb) is the doubling graph of G =
(V,E) if

- the vertex set V b = V (1)∪V (2) where the two parts V (1) and V (2) are two identical
copies of V ;

- for any x ∈ V the edge (x(1),x(2)) ∈Eb with weight q and we call it a self-interaction
edge;

- if {x,y}∈E then one, and only one, between the two edges {x(1),y(2)} and {y(1),x(2)}
is in Eb. We call this kind of edge an interaction edge.

To construct a doubling graph starting from the interaction graph G = (V,E), choose an
arbitrary orientation on the edge set and define a new oriented graph Go = (V,Eo). Using
the oriented edges the set Eb is constructed as follows. For any x ∈ V we have the self-
interaction edge (x(1),x(2)) ∈ Eb with weight w(x(1),x(2)) = q and for x ̸= y ∈ V we have
(x(1),y(2)) ∈ Eb if and only if (x,y) ∈ Eo with weight w(x(1),y(2)) = Jxy.

Note that the edges in Eb are not oriented. However, by construction, the graph is bipartite,
so that for any e= {x,y} ∈Eb we have x∈ V (1),y ∈ V (2) or viceversa and so we consider in
the definition the natural order in the edges in Eb by setting e= (e(1), e(2)) with e(1) ∈ V (1),
e(2) ∈ V (2). For this reason we can use the oriented edges in Eo in order to define Eb.

We will sometimes omit the superscripts (1) and (2) and we will always consider (x,y) the
ordered pair with x ∈ V (1), y ∈ V (2), and {x,y} the unordered pair with x,y ∈ V b.

In the case of Λ ∈ Z2, presented in Section 1.3.1, the graph Gb is the hexagonal graph, i.e.,
the space of pairs of configurations with interaction given by H(σ,τ) can be represented as
the configuration space XH for the Ising model on a hexagonal lattice H.
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Figure 1.4 The doubling graph of Z2 represented in the figure turns out to be a hexagonal lattice.
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by considering two subsequent updating defined as follows:

P 1!2(�,�0) :=
e�H(�,�0)

�!
Z �

with
�!
Z � =

X

⇣2XV

e�H(�,⇣) (9)

P 2!1(�0, ⌧) :=
e�H(⌧,�0)

 �
Z �0

with
 �
Z �0 =

X

⇣2XV

e�H(⇣,�0) (10)

P sh(�, ⌧) =
X

�02XV

P 1!2(�,�0)P 2!1(�0, ⌧) =
X

�02XV

e�H(�,�0)

�!
Z �

e�H(⌧,�0)

 �
Z �0

(11)

2.3 Results

We first state our result in the general context.

On XV we can consider the Gibbs measure ⇡G(�) = e��H(�)

ZG and also the measure

⇡(�) =

�!
Z �

Z
with

�!
Z � :=

X

⌧

e��H(�,⌧) and Z :=
X

�,⌧

e��H(�,⌧)

For q large we expect that these two measures are close to each other (see later Theorem
** in the case of ⇤ 2 Z2). Indeed in the limit q !1 the graph Gp, collapses to the graph
G, at least in terms of random cluster model.

The measure ⇡(�) turns out to be the marginal of the Gibbs measure on the space XV p

with hamiltonian (8).

More precisely the following theorem holds.

Theorem 2.1 The stationary measure of the shaken dynamics is ⇡(�) and reversibility

4

(a)

1

2

3

4

5

6

Figure 2: Il grafo diretto

holds. This stationary measure is the marginal of the Gibbs measure on the space XV p of
pairs of configurations � := (�1,�2) defined by:

⇡2(�) :=
1

Z
e�H(�1,�2) (12)

The shaken dynamics on XV corresponds to an alternate dynamics on Gp in the following
sense

P sh(�1, ⌧1) =
X

⌧22{�1,+1}V 2

P alt(�,⌧ ) (13)

with

P alt(�,⌧ ) =
e�H(�1,⌧2)

�!
Z �1

e�H(⌧1,⌧2)

 �
Z ⌧2

(14)

the stationary measure of P alt is

⇡2(�, ⌧) :=
1

Z
e�H(�,⌧)

that is the Gibbs measure on the space XV p of pairs of configurations. This dynamics is in
general non reversible.

In the case of ⇤ 2 Z2 the graph Gp is the hexagonal graph, i.e., the space of pairs of
configurations with interaction given by H(�, ⌧) can be represented as the configuration
space XH for the Ising model on an hexagonal lattice H. The shaken dynamics defined in
(11) is the marginal of the alternate dynamics on the hexagonal lattice.

Hereafter we remain in ⇤ 2 Z2 and we set B = ;, i.e., we consider the standard periodic
boundary conditions and we denote by ⇡⇤ ⌘ ⇡⇤,; =

�!
Z �
Z the invariant measure of the

shaken dynamics in the case B = ;. Note that, in this case,
�!
Z � =

 �
Z � = Z� (see [?, ?]).

5

(b)
Figure 1.5 An undirected graph (a) and a possible choice for the related directed graph (b)

Definition 1.3.2. The pair Hamiltonian H(σ(1),σ(2)) is the doubling of the Hamiltonian
(1.3.9) with interaction graph G if there exists a doubling graph Gb = (V b,Eb) of G such
that H(σ), defined on the spin configurations σ ≡ (σ(1),σ(2)) ∈ XV b = {−1,1}V b

, can be
written as

H(σ) =−
∑

{x,y}∈Eb

w(x,y)σxσy−
∑

x∈V b

λxσx (1.3.10)

with w(x,y) = q if {x,y} is a self-interaction edge and w(x,y) = Jxy otherwise and with
λx(1) = λx(2) = λx.
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Figure 3: Il grafo bipartito

8

Figure 1.6 The doubling of the graph of Fig. 1.5a obtained from the directed graph of Fig. 1.5b

More explicitly we can write

H(σ)≡H(σ(1),σ(2))

=−
∑

{x(1),y(2)}∈Eb

Jxyσ
(1)
x σ(2)

y −
∑
x∈V

(
qσ(1)

x ·σ(2)
x +λx(σ(1)

x +σ(2)
x )

)

=−
∑
x∈V

(
σ(1)

x h2→1
x (σ(2))+λxσ

(2)
x

)

=−
∑
x∈V

(
σ(2)

x h1→2
x (σ(1))+λxσ

(1)
x

)
(1.3.11)

with
h2→1

x (σ(2)) =
∑

y∈V :{x(1),y(2)}∈Eb

(
Jxyσ

(2)
y

)
+ qσ(2)

x +λx

and
h1→2

x (σ(1)) =
∑

y∈V :{y(1),x(2)}∈Eb

(
Jxyσ

(1)
y

)
+ qσ(1)

x +λx
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By defining J o the matrix of oriented interaction, i.e., J o
xy = Jxy1(x,y)∈Eo , and its trans-

posed J oT corresponding to the opposite orientation, we can write

h2→1
x (σ(2)) = (J oσ(2))x + qσ(2)

x +λx

h1→2
x (σ(1)) = (J oTσ(1))x + qσ(1)

x +λx

and

H(σ(1),σ(2)) =−⟨σ(1),J oσ(2)⟩+ q⟨σ(1),σ(2)⟩+ ⟨λ,σ(1)⟩+ ⟨λ,σ(2)⟩
=−⟨J oTσ(1),σ(2)⟩+ q⟨σ(1),σ(2)⟩+ ⟨λ,σ(1)⟩+ ⟨λ,σ(2)⟩

If we consider the case σ(1) = σ(2) = σ, i.e., σ(1)
x = σ

(2)
x for any x ∈ V , then we have

H(σ)≡H(σ,σ) =H(σ)− q|V |. Indeed we have immediately J = J o +J oT .
We construct now the shaken dynamics on the state space XV by considering two subsequent
updating defined as follows:

P 1→2(σ,σ′) := e−H(σ,σ′)
−→
Z σ

=
∏

x∈V

eh1→2
x (σ)σ′

2coshh1→2
x (σ) with

−→
Z σ =

∑
ζ∈XV

e−H(σ,ζ) (1.3.12)

P 2→1(σ′, τ) := e−H(τ,σ′)
←−
Z σ′

=
∏

x∈V

eh2→1
x (τ)σ′

2coshh2→1
x (τ) with

←−
Z σ′ =

∑
ζ∈XV

e−H(ζ,σ′) (1.3.13)

P sh(σ,τ) =
∑

σ′∈XV

P 1→2(σ,σ′)P 2→1(σ′, τ) =
∑

σ′∈XV

e−H(σ,σ′)
−→
Z σ

e−H(τ,σ′)
←−
Z σ′

(1.3.14)

We conclude this section with the following observation concerning the choice of the pair
Hamiltonian for the interaction and the doubling construction.
On one hand the introduction of a pair Hamiltonian in the dynamics defined on G suggests
to represent the configuration space XV as a doubled configuration space XV b for the Ising
model on the graph Gb.
On the other hand the dynamics in (1.3.14) turns out to be an alternate dynamics on the
doubling graph Gb, i.e.

P alt(σ,τ ) := P 1→2(σ(1), τ (2))P 2→1(τ (2), τ (1)) (1.3.15)
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Therefore the construction of the doubling graph makes always possible to get a bipartite
graph from the original one, whatever it is, and to exploit an alternate dynamics on the new
graph.

1.4 Main results

Our first result concerns the identification of the stationary measure of the shaken dynamics
defined in the general context of Section 1.3.2, i.e.

P sh(σ,τ) =
∑

σ′∈XV

e−H(σ,σ′)
−→
Z σ

e−H(τ,σ′)
←−
Z σ′

(1.4.1)

with the pair Hamiltonian given in (1.3.10) which can be written as follows

H(σ,τ) =−
∑

x̸=y∈V :
{x(1),y(2)}∈Eb

Jxyσxτy−
∑
x∈V

qσxτx +λx(σx + τx) (1.4.2)

whereGb = (V b,Eb) is the doubling graph of the original graphG= (V,E) and (σ,τ)∈XV b .

Theorem 1.4.1. The stationary measure of the shaken dynamics is

π(σ) =
−→
Z σ

Z
with

−→
Z σ :=

∑
τ
e−H(σ,τ) and Z :=

∑
σ,τ
e−H(σ,τ) (1.4.3)

and reversibility holds. This stationary measure is the marginal of the Gibbs measure on the
space XV b of pairs of configurations σ := (σ(1),σ(2)) defined by:

πb(σ) := 1
Z
e−H(σ). (1.4.4)

The shaken dynamics on XV corresponds to an alternate dynamics on Gb in the following
sense

P sh(σ(1), τ (1)) =
∑

τ (2)∈{−1,+1}V (2)
P alt(σ,τ ) (1.4.5)

with

P alt(σ,τ ) = e−H(σ(1),τ (2))
−→
Z σ(1)

e−H(τ (1),τ (2))
←−
Z τ (2)

(1.4.6)

the stationary measure of P alt is πb(σ). This dynamics is in general non reversible.
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.
On general graphs and under suitable choice of the parameters, the measure π(σ) concen-
trates on the configurations minimizing the Hamiltonian H(σ) defined in (1.3.9). Thus the
shaken dynamics provides a parallel algorithm to solve discrete optimization problems. This
is the statement of the next corollary, which immediately follows from Theorem 1.4.1.

Corollary 1.4.2. Given a Hamiltonian H(σ) of the form given in (1.3.9) on {−1,+1}V , for
any Hamiltonian H(σ,τ) which is the doubling of H(σ), corresponding to a bipartite graph
Gb = (V b,Eb), if

q >max
x∈V

{[ ∑
y:{x,y}∈Eb

|Jxy|+ |λx|
]}

(1.4.7)

then the alternate dynamics defined withH(σ,τ) is a parallel algorithm to find configurations
σ minimizing H(σ). Indeed for q satisfying (1.4.7) we have

min
σ,τ

H(σ,τ) = min
σ
H(σ,σ) = min

σ
H(σ)− q|V |

.
Consider now the two-dimensional square lattice Λ ∈ Z2 with J > 0 and B = ∅, i.e. with
the standard periodic boundary conditions. Denote by πΛ =

−→
Z σ
Z the invariant measure of the

shaken dynamics defined on Λ and note that under periodic boundary conditions we have
−→
Z σ =←−Z σ = Zσ (see [37, 65]).
We denote by πG

Λ the Gibbs measure

πG
Λ (σ) = e−H(σ)

ZG
with ZG =

∑
σ∈XΛ

e−H(σ)

with H(σ) defined in (1.3.7) and we define the total variation distance, or L1 distance,
between two arbitrary probability measures µ and ν on XΛ,B as

∥µ−ν∥T V = 1
2

∑
σ∈XΛ,B

|µ(σ)−ν(σ)| (1.4.8)

In the following Theorem 1.4.3 we control the distance between the invariant measure of the
shaken dynamics and the Gibbs measure at low temperature and for q positive and large. We
notice that this theorem is an extension of Theorem 1.2 in [84] to the case of Hamiltonians
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with non zero external field. This result could be extended to the case B ̸= ∅.

Theorem 1.4.3. Set δ = e−2q, and let δ be such that

lim
|Λ|→∞

δ2|Λ|= 0 (1.4.9)

Under the assumption (1.4.9), there exists J̄ such that for any J > J̄

lim
|Λ|→∞

∥πΛ−πG
Λ∥T V = 0 (1.4.10)

This result suggests that the shaken dynamics may provide a parallel algorithm for
approximate sampling from the Gibbs measure.

The following theorem characterizes the measure π(σ) from a static point of view. More
precisely, we explicitly compute the average magnetization and the correlation functions with
respect to π(σ). In the remainder we will simply refer to these quantities as thermodynamical
relations of π(σ).

Consider the hexagonal lattice H = (V b,Eb), i.e. the doubling graph of the square lattice
Λ∈Z2 and recall that any doubling graph is bipartite by construction. According to Definition
1.3.1 we distinguish two types of edges, Eb = EJ ∪Eq (see Fig. 1.4), where EJ is the set
of the interaction edges and Eq is the set of the self-interaction edges and we denote the
corresponding edge-weights by

Je =

 J if e ∈ EJ

q if e ∈ Eq.

Assume periodic boundary conditions and consider the Gibbs measure on the space XV b :=
X 2

Λ = XΛ×XΛ of pairs of configurations σ = (σ(1),σ(2)) on the hexagonal lattice

π2(σ) = π2(σ(1),σ(2)) = e−H(σ(1),σ(2))

Z
(1.4.11)

associated to the pair Hamiltonian (1.3.10) in the case of zero external field (i.e. λ= 0)

H(σ(1),σ(2)) =−
∑

e={x,y}∈Eb

w(x,y)σxσy =−
∑

e∈Eb

Jeσ
(1)
e(1)σ

(2)
e(2) (1.4.12)
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where x= e(1),y = e(2) are the two sites in H connected by the edge e.

The analysis of the thermodynamical relations is based on the connection between π(σ) and
the Gibbs measure of the Ising model on the hexagonal lattice π2(σ) defined in (1.4.11).
Leveraging on the standard coupling between the Ising model and the random-cluster model
(RCM) we can extend the thermodynamical relations and the control of the critical behavior
obtained for the measure π2(σ) to the marginal measure π(σ).
Before stating our results concerning the thermodynamical relations we shortly recall some
fundamental definitions of the RCM. A more detailed discussion on the random-cluster
model and its powerful coupling with the Ising model is deferred to Section 2.4.1.
Let Ω = {0,1}Eb

and denote by ω the elements of this set. We say that the edge e ∈ Eb

is open (in ω ∈ Ω) if ω(e) = 1, and it is closed if ω(e) = 0. For ω ∈ Ω let η(ω) = {e ∈
E : ω(e) = 1} ⊆ E be the set of open edge and denote by k(ω) the number of connected
components (or open clusters) of the graph (V b,η(ω)).
We consider the random-cluster measure defined on Ω

Φpe(ω) = 1
ZRC

{ ∏
e∈Eb

pω(e)
e (1−pe)1−ω(e)

}
2k(ω) (1.4.13)

with partition function

ZRC =
∑
ω∈Ω

{ ∏
e∈Eb

pω(e)
e (1−pe)1−ω(e)

}
2k(ω)

where for any e ∈ Eb the edge-weight pe ∈ [0,1] is defined as follows

pe =

 pJ = 1− e−2J if e ∈ EJ

pq = 1− e−2q if e ∈ Eq

In what follows for any x, y ∈ V b we will denote by {x↔ y} the set of ω ∈ Ω = {0,1}Eb

for which there exists a path, composed of edges with ω = 1 only, joining the vertex x with
the vertex y. We call such a path an open path.

Theorem 1.4.4. Consider the measure π2 defined in (1.4.11) and its marginal measure π
defined in (1.4.3). The following relations hold:

1) The average magnetization with respect to the measure π and π2 is the same, that is

m := π
(∑

x∈Λσ

|Λ|

)
=m2 := π2

(∑
x∈Λ(1)∪Λ(2) σ

2|Λ|

)
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2) Let π+ (π−) be the previous measure with plus (minus) boundary conditions, then for
any x ∈ Λ

π±(σx) =±Φpe(x(1)↔ ∂Λ(1))

3) For any x, y ∈ Λ
π(σxσy) = Φpe(x(1)↔ y(1))

with the obvious notation x(1), y(1) ∈ Λ(1) for the sites in the part V (1) corresponding
to vertices x and y in Λ, respectively.

4) If the parameter q is sufficiently small, for any integer ℓ ∈ (0,L) there exist two
constants c1 < c2 such that

π(σ(0,0)σ(ℓ,ℓ))≤ c1 < c2 ≤ π(σ(0,ℓ)σ(ℓ,0)).

.
The powerful connection with the random-cluster model makes possible to prove that our
model exhibits phase transition. In the following theorem we identify the critical equation
relating the parameters J and q of the Ising Hamiltonian

H(σ) =−
∑

{x,y}∈E

w(x,y)σxσy. (1.4.14)

defined on the space of pairs of configurations σ = (σ(1),σ(2)) in the case of the hexagonal
lattice H.

Theorem 1.4.5. The critical equation relating the parameters J and q in the measure π
associated to the Hamiltonian (1.4.14) is given by the equation:

Jc(q) = tanh−1
(
− tanhq+

√
tanh2 q+1

)
(1.4.15)

Remark 1.4.6. It is well know that the Gibbs measure πG on the square lattice exhibits a
phase transition at

JG
c = tanh−1

(√
2−1

)
= 0.441...

Note that
lim

q→∞Jc(q) = JG
c

Furthermore, the curve Jc(q) intersects the line J = q for J = tanh−1
(√

3
3

)
,corresponding

to the critical value of J in the homogeneous hexagonal lattice (see Fig. 1.7) .
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Figure 1.7 The function Jc(q).

The inertial parameter q tunes the geometry of the system. In fact the limit q→ 0 corresponds
to erasing the q-edges obtaining, from the hexagonal lattice, independent copies of 1-d Ising
model. Indeed for q→ 0 we find Jc→∞ showing the absence of phase transition for the
one-dimensional Ising model. The opposite limit, q→∞, corresponds to the collapse of the
hexagonal lattice into the square one, by identifying the sites connected by the q-edges. The
case J = q corresponds to the homogeneous hexagonal graph.
The interpolation between lattices induced by the shaken dynamics may be applied to derive
results on the critical behavior in the case of planar graphs different from the hexagonal
lattice.
Consider for instance the Ising model on the triangular lattice. On this lattice we divide
the 6 nearest neighbors of each vertex x into two sets, e.g. ℓ(x) left and r(x) right nearest
neighbors of x, and define a shaken dynamics with self interaction q. Hence the doubled
Hamiltonian is

H△(σ,τ) =−
∑
x

[ ∑
y∈ℓ(x)

(
Jσyτx

)
+ qσxτx

]
=−

∑
x

[ ∑
y∈r(x)

(
Jτyσx

)
+ qσxτx

]
(1.4.16)

The corresponding alternate dynamics turns out to be defined on the square lattice (see
Fig. 1.8 ) with invariant measure the Gibbs one. In particular the square lattice is regular
when we set J = q. The parameter q can be used to move through different geometries. The
triangular lattice (q→∞) and the hexagonal lattice (q = 0) can be derived from the original
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Λ1

Λ2

q

J

J

J

Figure 1.8 Interaction in the pair Hamiltonian for the shaken dynamics on the triangular lattice. Each
spin of configuration σ (living on the solid lattice) interacts with the spin at the same location and the
three spins on its left in τ (living on the dashed lattice). The red lines show that the pair interaction
lives on a square lattice. For q = J this lattice is homogeneous. As q→∞ the square lattice collapses
onto the triangular lattice. If q = 0 the interaction graph becomes the homogeneous hexagonal lattice.

square lattice just tuning the value of q.
A more precise statement of this interpolation is given by the following

Theorem 1.4.7. The critical equation relating the parameters J and q in the measure π
associated to the Hamiltonian (1.4.16) is given by the equation:

1+tanh3(J)tanh(q) = 3tanh(J)tanh(q)+3tanh2(J) (1.4.17)

In the case q = J we obtain the Onsager critical temperature for the square lattice, for q = 0
we obtain the critical temperature for the hexagonal lattice and in the limit q→∞ we obtain
the critical temperature for the triangular lattice.

1.5 The generalized shaken dynamics

We can generalize the construction of the shaken dynamics. Starting from a symmetric
interaction J defining the Hamiltonian H(σ), as in (1.3.9), we can define an arbitrary
decomposition of the interaction matrix J in a sum of two matrices with non negative entries

J = J o +J oT . (1.5.1)

This means that every non oriented edge {x,y} with weight Jxy is decomposed in a pair of
oriented edges (x,y) and (y,x) with weight respectively J o

xy and J o
yx. Call Eo the set of all
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these oriented edges and apply the construction presented in Section 1.3.2 to construct the
doubling graph by using this set Eo of oriented edges.

Figure 1.9 The construction of the doubling graph in the case of the generalized shaken dynamics.

We proceed as before defining the doubling Hamiltonian

H(σ(1),σ(2)) =−⟨σ(1),J oσ(2)⟩+ q⟨σ(1),σ(2)⟩+ ⟨λ,σ(1)⟩+ ⟨λ,σ(2)⟩
=−⟨J oTσ(1),σ(2)⟩+ q⟨σ(1),σ(2)⟩+ ⟨λ,σ(1)⟩+ ⟨λ,σ(2)⟩.

In the case σ(1) = σ(2) = σ by equation (1.5.1) we have again H(σ,σ) =H(σ)− q|V |.

The corresponding alternate dynamics on the state space XV is defined with two subsequent
updating as follows:

P 1→2(σ,σ′) := e−H(σ,σ′)
−→
Z σ

, P 2→1(σ′, τ) := e−H(τ,σ′)
←−
Z σ′

(1.5.2)

and
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P sh(σ,τ) =
∑

σ′∈XV

P 1→2(σ,σ′)P 2→1(σ′, τ) =
∑

σ′∈XV

e−H(σ,σ′)
−→
Z σ

e−H(τ,σ′)
←−
Z σ′

(1.5.3)

The results obtained in Theorem 1.4.1 can be immediately extended to this more general case.

The choice of the shaken dynamics discussed in Section 1.3.2 is a particular case of
generalized shaken dynamics in which J o

xyJ o
yx = 0 for any pair x,y. In the general case the

geometrical discussion of the doubling graph of interaction is much more complicated. Also
the interpolation between different geometries obtained for different values of the parameter
q, as discussed in Section 1.4, is more involved in this generalized case.

Another particular choice in this class of generalized shaken dynamics is J o = 1
2J corre-

sponding to the PCA discussed in [36].





2 The invariant measure: a dynamical and a
static point of view

The present chapter contains the proofs of the results presented in Chapter 1. In Section 2.1
we briefly recall the main features of two classical statistical mechanics models that turn out
to be necessary to prove our results in the remaining sections.

2.1 Preparatory tools

2.1.1 The random-cluster model and Edwards-Sokal coupling

The random-cluster model was introduced by Cees Fortuin and Piet Kasteleyn in the seventies
[47] as an extrapolation of electrical networks and as common ground between percolation,
Ising and Potts models. We provide here a short introduction to this model and we refer to
the clear review by Grimmett [53] of the Fortuin–Kasteleyn construction for a more rigorous
discussion and to the rich papers [1] and [41] for further developments.

Let G = (V,E) be a finite graph and consider the elements ω of the set Ω = {0,1}E . We
say that the edge e ∈ E is open (in ω) if ω(e) = 1, and it is closed if ω(e) = 0. For ω ∈ Ω
let η(ω) = {e ∈ E : ω(e) = 1} ⊆ E be the set of open edges. Note that the correspondence
between the elements ω ∈ Ω and the sets η(ω) is one to one. We denote by k(ω) the number
of connected components (or open clusters) of the graph (V,η(ω)). Isolated vertices, that is
vertices incident to no open edge, are included in this definition.
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A random-cluster measure onG is a member of a class of probability measures on Ω identified
by two parameters, an ‘edge-weight’ p ∈ [0,1] and a ‘cluster-weight’ q ∈ (0,∞)

ϕp,q(ω) = 1
ZRC

{ ∏
e∈E

pω(e)(1−p)1−ω(e)
}
qk(ω) (2.1.1)

where ZRC is the partition function and it is given by

ZRC = ZRC(p,q) =
∑
ω∈Ω

{ ∏
e∈E

pω(e)(1−p)1−ω(e)
}
qk(ω). (2.1.2)

Remark 2.1.1. Note that the parameter q in (2.1.1), commonly used in the literature, is
different from the inertial parameter q in the pair Hamiltonian of the shaken dynamics. We
will warn the reader whenever there could be a case of ambiguity.

Note that when q = 1 this measure is a product measure, that is edges are open or closed
independently of one another and we recover the Bernoulli percolation model.
On the other hand, when q < 1 (respectively q > 1) configurations ω with fewer (respectively
larger) clusters are favoured.

More precisely, it can be shown that for q ∈ Z and such that q > 1, the random-cluster model
is strictly linked to the Potts model with q local states. Namely, there exists an extremely
powerful coupling, introduced by Edwards and Sokal in 1988 [41] which allows to express
magnetization properties in the Potts model (on a general graph G) as percolation properties
in the random-cluster model. In particular this successful relationship between the two
systems may be used to study phase transitions in Potts models leveraging on known results
for the random-cluster model. Let us recall the Edwards and Sokal coupling and some
important related results.
Let G= (V,E) be a finite graph, p ∈ [0,1] and q ∈ {2,3, ...}. We define a probability mass
function µ on the product space Σ×Ω, where Σ = {1,2, ..., q}V and Ω = {0,1}E

µ(σ,ω) = 1
Z

∏
e∈E

{(1−p)δω(e),0 +pδω(e),1δe(σ)}, (σ,ω) ∈ Σ×Ω (2.1.3)

where δe(σ) = δσx,σy for e= {x,y} ∈ E and the constant of normalization Z is defined such
that

∑
(σ,ω)∈Σ×Ω

µ(σ,ω) = 1. By construction, µ can be expressed in terms of the following

product measure
µ∝ ψ(σ)ϕp(ω)1F (σ,ω), (σ,ω) ∈ Σ×Ω (2.1.4)
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where ψ is the uniform probability measure on Σ, ϕp is the product measure on Ω with
density p and 1F is the indicator function of the event

F = {(σ,ω) : δe(σ) = 1 for any e satisfying ω(e) = 1} ⊆ Σ×Ω

This is equivalent to say that µ is equal (up to a renormalization constant) to the product
measure ψ×ϕp conditioned on the event F .

The following theorems clarify how the measure µ is a coupling of a Potts measure on V ,
together with the random-cluster measure on Ω.

Theorem 2.1.2 (Marginal measures of µ). Let q ∈ {2,3, ...}, p= 1− e−β ∈ [0,1).

1. The marginal measure µ1(σ) =∑
ω∈Ωµ(σ,ω) on Σ is the Potts measure

µ1(σ) = 1
ZP

exp[β
∑
e∈E

δe(σ)] σ ∈ Σ

2. The marginal measure µ2(ω) =∑
σ∈Σµ(σ,ω) on Ω is the random-cluster measure

µ2(ω) = 1
ZRC

{ ∏
e∈E

pω(e)(1−p)1−ω(e)
}
qk(ω) ω ∈ Ω

3. We have that

∑
ω∈Ω

{ ∏
e∈E

pω(e)(1−p)1−ω(e)
}
qk(ω) =

∑
σ∈Σ

∏
e∈E

exp[β(δe(σ)−1)]

which is equivalent to say

ZRC(p,q) = e−β|E|ZP (β,q)

Theorem 2.1.3 (Conditional measures of µ). Let q ∈ {2,3, ...}, p= 1− e−β ∈ [0,1).

1. For ω ∈ Ω the conditional measure µ(·|ω) on Σ is obtained by putting random spins
on entire clusters of ω. These spins are constant on given clusters, are independent
between clusters, and each is uniformly distributed on the set {1,2, ..., q}.

2. For σ ∈ Σ the conditional measure µ(·|σ) on Ω is obtained by setting ω(e) = 0 if
δe(σ) = 0 and otherwise ω(e) = 1 with probability p.

Edwards and Sokal coupling may be used to show that correlations in Potts models correspond
to open connections in random-cluster models: this is one of the most powerful features of
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this coupling. In particular, in the case of infinite graphs, this correspondence implies that
the phase transition of a Potts model corresponds to the creation of an infinite open cluster in
the random-cluster model. Thus, arguments and results developed for the random-cluster
model may be exploited in order to understand the correlation structure of the Potts system.

2.1.2 The dimer model and the critical temperature for the 2d Ising
model

The dimer model is a two-dimensional statistical mechanics model introduced for the first
time in a paper by Fowler and Rushbrooke [48] in 1937 with the aim to describe the adsorption
of diatomic molecules (here the name dimer) on the surface of a crystal. It has been applied to
model several other physical systems and to study combinatorics problems too. As discovered
by Kasteleyn and Temperley-Fisher in the ’60s it is exactly solvable in the sense that in finite
volume, there exist explicit close formulas for its partition function and correlations that can
be written in terms of determinants or Pfaffians. Moreover, the dimer model turns out to be
strictly linked to the Ising model. The main result on the critical temperature for the 2d Ising
model in [25], that we recall in this section, leverage on this successfull connection.

The dimer partition function: explicit computation

Let G= (V,E) be a finite graph. We will assume that G is simple, that is self-loops (edges
having two coinciding endpoints) and multiple edges between two vertices are not allowed.
Anyway all the results presented hereafter can be extended to the case of non-simple graphs.

Definition 2.1.4. A dimer configuration, or equivalently a perfect matching, on a graph G
is a set M ⊂ E whose elements are vertex-disjoint and cover all the vertices of the graph.
Edges in M are called dimers.

We denote byM(G) the set of dimer configurations on the graph G. Let ν : E→ (0,+∞)
be an edge weight system on G. We can define the corresponding measure on the set of all
dimer coverings as follows

µ(M) := ν(M)
Z

(2.1.5)

where
ν(M) :=

∏
e∈M

ν(e) ZD = ZD(G,ν) :=
∑

M∈M(G)
ν(M). (2.1.6)

The dimer model concerns the study of the measure µ and particularly of the dimer partition
function ZD.
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The first exact results about the dimer partition function on either Z2 or the hexagonal lattice,
date back to the 1960’s and are due to Kasteleyn [61] and independetly to Temperley and
Fisher [89]. Using the so called Pfaffian method Kasteleyn extended these results to the case
of any planar graph, where planar means that the graph can be embedded in the plane. This
method has been extended later by Cimasoni-Reshetikhin to graphs embedded in orientable
surfaces [26] and to graphs embedded in non-orientable surfaces [22].
In this section we provide a short description of the Pfaffian method which allows to write
the partition function of dimers on planar graphs as the Pfaffian of a suitable adjacency
matrix. We refer to the lecture notes given by David Cimasoni on the subject [24] for a
further discussion.
Let A be a skew-symmetric matrix (i.e. AT =−A) and let S2n be the set of permutations of
2n objects.

Definition 2.1.5. The Pfaffian of A is

Pf(A) := 1
2nn!

∑
σ∈S2n

sign(σ)aσ(1)σ(2)aσ(3)σ(4)...aσ(2n−1)σ(2n) (2.1.7)

if A has size 2n (i.e. even size) otherwise Pf(A) = 0.

A well-known fact is that the square of the Pfaffian of any skew-symmetric matrix A is equal
to the determinant of A. Moreover, if the matrix A is a block matrix of the form

A=
 0 K

−KT 0


where K is a matrix of size n, then the following property holds

Pf(A) = (−1)
n(n−1)

2 det(K). (2.1.8)

Consider now a finite weighted graph (G,ν) with 2n vertices and let ω be an arbitrary
orientation on its edges.

Definition 2.1.6. The adjacency matrix Aω of the graph G is a 2n× 2n skew-symmetric
matrix whose entries are given by

aω
i,j =

{
εω

i,j ν(e) if e= {i, j} ∈ E
0 otherwise

(2.1.9)
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where

εω
i,j =

{
+1 e oriented by ω from i to j
−1 e oriented by ω from j to i

We are interested in relating the Pfaffian of adjacency matrices of the graph G to the dimer
partition function of G.
Let us compute the Pfaffian of Aω. It can be shown that the only nonzero contributions to
the sum (2.1.7) are those coming from matchings of the vertices of G realised by a dimer
configuration of G. This observation implies that the sum in (2.1.7) is equivalent to a sum on
the setM(G)

Pf(Aω) =
∑

M∈M(G)
εω(M)

∏
e∈M

ν(e) (2.1.10)

where
εω(M) := sign(σ)εω

σ(1)σ(2)ε
ω
σ(3)σ(4)...ε

ω
σ(2n−1)σ(2n)

and σ is a permutation identifying the perfect matching M ∈M(G).
By equation (2.1.10) we can conclude that |Pf(Aω)|= Z(G,ν) if and only if the orientation
ω is such that εω(M) = εω(M ′) ∀M,M ′ ∈M(G). In other words, if one can find an orien-
tation ω on G such that the signs in the sum (2.1.10) are constant for all dimer configurations
then it is possible to write an explicit formula relating the dimer partition function of the
weighted graph (G,ν) to the Pfaffian of the adjacency matrix of G with respect to the orien-
tation ω. To this end, first observe that if M,M ′ ∈M(G), then their symmetric difference
M∆M ′ := (M ∪M ′)\ (M ∩M ′) is given by the disjoint union of cycles of even lenght with
edges alterned between M and M ′. We denote by

⋃
iCi the disjoint union of the cycles Ci,

that are called superposition cycles. The following lemma holds.

Lemma 2.1.7. Given M,M ′ ∈M(G), consider their symmetric difference M∆M ′ = ⋃
iCi

and let nω(Ci) be the number of edges in Ci oriented backwards by ω when running along
Ci, then

εω(M)εω(M ′) =
∏
i

(−1)nω(Ci)+1 (2.1.11)

Note that, since Ci has even lenght, the parity of nω(Ci) does not depend on the way one
runs along Ci.

Note that if C is a superposition cycle thenM(G\C) ̸= ∅, i.e. the graph obtained removing
C from G still admits a perfect matching.

Definition 2.1.8. The orientation ω is a pfaffian orientation if for any cycle C of even lenght
such thatM(G\C) ̸= ∅, nω(C) is odd.
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A graph is said to be Pfaffian if it admits a pfaffian orientation. By lemma (2.1.7) it follows
that if one can find a pfaffian orientation ω on G, then it is possible to write the partition
function for the dimer model on G in terms of the Paffian of the adjacency matrix Aω.
More precisely, if the graph G is planar the following theorem holds.

Theorem 2.1.9 (Kasteleyn’s Theorem). Given any planar graph G, there exists an orien-
tation ω such that nω(∂f) is odd for each face f , where ∂f is the boundary of f oriented
counterclockwise. Furthermore such an orientation can be constructed in polynomial time
and it is pfaffian.

An orientation satisfiyng the conditions of Theorem 2.1.9 is said to be a Kasteleyn orientation
and the corresponding adjacency matrix is called Kasteleyn matrix.
Given a Kasteleyn orientation, the dimer partition function of the graph G is equal to the
absolute value of the Pfaffian of the corresponding Kasteleyn matrix. More precisely we
have the following

Corollary 2.1.10. If G is planar, one can compute Z(G,ν) = |Pf(Aω)| in polynomial time.

In particular, if G is bipartite, from property (2.1.8) it follows that Z(G,ν) = |detK|.
The proof of Kasteleyn’s Theorem is based on the crucial assumption that the graph is planar.
In [26] Cimasoni and Reshetikhin extended the Kasteleyn method for the computation of the
dimer partition function of any planar graph to graphs embedded in orientable surfaces [26].
In particular, if the graph G can be embedded in an orientable surface of genus g, its dimer
partition function can be computed as an alternated sum of the Pfaffians of 22g well-chosen
skew-adjacency matrices. The same authors extended Kasteleyn’s result to graphs embedded
in non-orientable surfaces [22].

The critical Ising temperature via the dimer model

One of the main features of the dimer model is that its partition function may be related to
the partition function of the Ising model. There exist two equivalent approaches.
The first one concerns the so called Fisher correspondence. Following the ideas of Hurst-
Green [57], Kasteleyn [61] and Fisher [45, 46], it can be established a correspondence
between a given graph G and an auxiliary graph G′ such that the dimer partition function on
G′ is equal to the Ising partition function on G. Once this correspondence, has been defined,
one can apply the dimer model technology to solve the Ising model on G.
There is another combinatorial method to solve the 2d Ising model. It was originally
introduced for planar graphs by Kac-Ward [60] and after extended to any finite graph in [68,
23]. With this method, no auxiliary graph is needed: the Ising partition function on a finite
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graph G is computed as an alternated sum of the square roots of the determinants of 22g

Kac-Ward matrices associated to the graph G.
Kac-Ward matrices and dimer model are the main tools used in the rich paper [25] where
a simple characterization of the critical temperature for the Ising model on an arbitrary
planar doubly periodic weighted graph is provided. More precisely, the authors show that the
Kac-Ward determinants of a planar doubly periodic graph are proportional to the Kasteleyn
determinants of a suitable associated bipartite graph and they leverage on this result to express
the free energy of the 2d Ising model in terms of the Kac-Ward determinants, see Lemma
2.1.2 below. This Lemma turns out to be a key ingredient to show that the free energy is twice
differentiable except possibly at criticality and to state the result on the critical temperature.
Here, we recall the statement of [25, Theorem 1.1] and we provide a sketch of the proof.
Interested readers are referred to [25] for more details.
The statement of [25, Theorem 1.1] is given in terms of the high-temperature expansion of
the Ising partition function

Z
high
I (G) =

∑
γ∈E(G)

x(γ) (2.1.12)

where G= (V,E) is a finite graph, E(G) is the set of even subgraphs of G, that is, the set of
subgraphs γ of G such that every vertex of G is adjacent to an even number of edges of γ
and x(γ) :=∏

e∈γ xe with xe := tanh(βJe).
Denote by (G,J) a planar non-degenerate locally-finite doubly periodic weighted graph, and
call G the embedding of G in the torus T2.

Theorem (Theorem 1.1 in [25]). The critical inverse temperature βc for the Ising model on
the weighted graph (G,J) is the unique solution 0< β <∞ to the equation

∑
γ∈E0(G)

x(γ) =
∑

γ∈E1(G)
x(γ) (2.1.13)

where E0(G) denotes the set of even subgraphs of G that wind around each of the two
directions of the torus an even number of times and E1(G) = E(G)\E0(G).

The proof relies on the following arguments. We denote by x ∈ (0,1)E an edge weight
system on the graph G, with xe := tanh(βJe). The free energy logZx can be expressed
in terms of Kac-Ward determinants P z,w(G,x), each identified by a pair of non-vanishing
complex numbers (z,w). This is the object of the following

Lemma (Lemma 4.3 in [25]). For any x ∈ (0,1)E ,

logZx = 1
2(2πi)2

∫
T2

logP z,w(G,x)dz
z

dw

w
(2.1.14)
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For any x such that P z,w(G,x) has a zero on T2 := {(z,w) : |z|= 1, |w|= 1}, the free energy
is shown not to be twice differentiable at x. [25, Lemma 4.1] shows that the only zeros
of P z,w(G,x) are localized at (1,1). The statement of this lemma is the main technical
difficulty. The result is achieved by showing that the Kac-Ward determinants are proportional
to the Kasteleyn determinants of an associated bipartite graph (see [25, Theorem 3.1]).
By standard arguments on the Ising model logZx is proved to be twice differentiable at any
Je except at criticality β = βc. The proof is completed by observing that Equation (2.1.13) is
equivalent to the vanishing of the Kac-Ward determinant at (z,w) = (1,1), which translates
into the free energy not being twice differentiable in some variable Je at β = βc.

2.2 The invariant measure

In this section we first provide the proof of Theorem 1.4.1. We then discuss an interesting
feature induced by the doubling construction, i.e. the relation between the shaken dynamics
and the corresponding alternate dynamics.

Proof of Theorem 1.4.1. We have immediately the detailed balance condition w.r.t. the
measure π(σ) indeed

∑
σ′∈XV

e−(H(σ,σ′)+H(τ,σ′))
←−
Z σ′

=−→Z σP
sh(σ,τ) =−→Z τP

sh(τ,σ) =
∑

σ′∈XV

e−(H(τ,σ′)+H(σ,σ′))
←−
Z σ′

(2.2.1)
It is straightforward to prove that πb(σ(1),σ(2)) is the stationary measure of P alt

∑
σ(1),σ(2)

πb(σ(1),σ(2))P alt(σ,τ ) =
∑

σ(1),σ(2)

e−H(σ(1),σ(2))

Z

e−H(σ(1),τ2)
−→
Z σ(1)

e−H(τ (1),τ (2))
←−
Z τ (2)

= e−H(τ (1),τ (2))

Z
= πb(τ (1), τ (2))

(2.2.2)

Note that, in general

πb(σ(1),σ(2))P alt(σ,τ ) ̸= πb(τ (1), τ (2))P alt(τ ,σ).

For instance consider the bipartite complete graph Kn,n with equal weights on all edges and
where, for all i, (σ(1)

i ,σ
(2)
i ) = (+1,+1) and (τ (1)

i , τ
(2)
i ) = (+1,−1).
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In the case Λ ∈ Z2 the shaken dynamics defined in Section 1.3.1 is the marginal of the
alternate dynamics on the hexagonal lattice.
In this square case we could have directly used the alternate dynamics, since Z2 is already a
bipartite graph. Indeed we can consider the chessboard splitting of the sites in Λ =V (1)∪V (2),
in black and white sites, with |V (1)|= |V (2)|= |V |= |Λ|/2. Black sites interact only with
white sites and viceversa with the usual Ising Hamiltonian

H(σ)≡H(σ(1),σ(2))

=−
∑

x∈V (1)

(
σ(1)

x h2→1
x (σ(2))+λxσ

(2)
x

)

=−
∑

x∈V (2)

(
σ(2)

x h1→2
x (σ(1))+λxσ

(1)
x

)
.

By Theorem 1.4.1 we immediately obtain that the invariant measure of the alternate
dynamics is the Gibbs measure πG(σ) = e−H(σ)/Z.
Anyway, one of the main interesting features of the doubling construction is that it makes
always possible to perform an alternate dynamics since it allows to pass from the original
graph to a new one which is bipartite by construction. In particular, the geometry of the
doubling graph is strictly linked to the explicit form of the interaction given in the doubling
Hamiltonian. Consider the case of the two dimensional square lattice Z2 and let Λ ⊂ Z2

be a finite box. Starting from this interaction graph we can define the graph Λo = (V,Eo)
orienting the edges down-left. The associated doubling graph turns out to be the hexagonal
lattice and the corresponding doubling Hamiltonian coincides with the Hamiltonian (1.3.1)
of the shaken dynamics. The same doubling graph would have been obtained by choosing
the orientation up-right, with a pair Hamiltonian of the same form but with opposite direction
for the interaction. Clearly, by choosing a different orientation instead of down-left and
up-right in Λ ∈ Z2, a different doubling graph for the interaction can be derived with a
resulting different pair Hamiltonian.
The shaken dynamics, as already said, turns out to be the marginal of the alternate dynamics
defined on the doubling graph. Alternate dynamics on even and odd sites are already present
in the literature (see [27]). Actually, in the shaken dynamics, the idea of alternate dynamics
is combined with that of the doubling Hamiltonian and this interconnection enables to
explore different geometries in the system moving from the original graph to its doubling,
usually very different from the first.
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2.3 Dynamical point of view

In the past, several approaches have been proposed to use the capabilities of parallel ar-
chitecture to simulate statistical mechanics lattice models in an effective way and to apply
Monte Carlo methods to solve discrete Optimization Problems. However, these methods
are strongly tied to the particular architecture used for the simulation and make use of the
similarities between the structure of the graph and the structure of the hardware in use. The
literature on the topic is quite vast, especially in the computer engineering and applied physics
communities. Some attention, though, should be paid to the theoretical foundation of these
methods. Indeed, the control of the stochastic dynamics, or at least of its stationary measure,
seems to be a minimal requirement in order to develop random algorithms in combinatorial
optimization.
One of the main achievements of the shaken dynamics is that we are able to control explicitly
its invariant measure in a more robust way with respect to the dynamics introduced in [36, 84].
First, we identify the stationary measure of the shaken dynamics defined on arbitrary graphs
and not only on the regular square lattice. Moreover, this result holds when the dynamics is
defined in the presence of an external field. Finally, in the case of Z2 we control the invariant
measure also for different boundary conditions.
Another relevant feature of our dynamics is that its algorithm is natively parallel and it is not
bound to any particular architecture or graph structure. Therefore its performances are likely
to benefit from the development of parallel computing.
Even if the efficiency and the convergence to equilibrium of the shaken dynamics are not
analyzed in this thesis, some preliminary numerical tests suggest that, comparing the single
spin flip (SSF) dynamics, the PCA dynamics and the shaken (Sh) dynamics, their efficiency
depends on the particular considered regime. A comparison between these dynamics defined
on Z2 is discussed in Section 2.3.1. In Section 2.3.2 a possible application of the shaken
dynamics to discrete optimization problems is described. Finally, Section 2.3.3 is devoted to
the proof of Theorem 1.4.3.

2.3.1 Convergence to equilibrium: a comparison

We present here, as a remark, a comparison among the single spin flip (SSF) dynamics, the
PCA dynamics and the shaken (Sh) dynamics in a simple case of “metastable regime”: finite
volume Λ ∈ Z2 with periodic boundary conditions and low temperature. More precisely let
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0< q < λ < J and consider, for each x ∈ Λ, the local fields

hSSF
x (σ) =

[
J

2 (σx↑+σx→+σx↓+σx←)+2λ
]

hP CA
x (σ) =

[
J

2 (σx↑+σx→+σx↓+σx←)+ qσx +λ
]

hur
x (σ) and hdl

x (σ) defined in (1.3.3) and (1.3.4), and the local transition probabilities

p∗x(σ,τ) := eβh∗x(σ)τx

2coshβh∗x(σ) , ∗= SSF,PCA,ur,dl

we have

PSSF (σ,τ) = 1
|Λ|p

SSF
x (σ,τ) with τy = σy ∀y ̸= x

PP CA(σ,τ) =
∏

x∈Λ
pP CA

x (σ,τ)

PSh(σ,τ) =
∑

σ′∈XΛ

∏
x∈Λ

pdl
x (σ,σ′)

∏
x∈Λ

pur
x (σ′, τ).

For large inverse temperature β we have p∗x(σ,τ)∼ 1 if τx is parallel to the local field h∗x(σ).
We call such a local move “along the drift”. On the other hand p∗x(σ,τ)∼ e−2β|h∗x(σ)| if τx is
anti-parallel to the local field h∗x(σ). We call such a local move “against the drift”.

The SSF dynamics is reversible with Gibbs invariant measure

πG
Λ (σ) = eβ

∑
x hSSF

x (σ)σx

Z

and the invariant measure of PCA and shaken dynamics is π(σ) given in (1.4.3). All these
measures, in the regime of large β, concentrate on the configuration with all positive spins
+1 representing the stable state. The configuration −1 with all spins −1 represents, in this
regime of low temperature, a metastable state. Indeed, by considering the first hitting time
τ+1 to +1 starting from −1, for the SSF dynamics we have for any δ > 0 (see for instance
[82], [12]):

lim
β→∞

PSSF
−1 (τ+1 > eβ(Γ−δ)) = 1 (2.3.1)

with
Γ = 4Jℓc−2λℓ2c +2λ(ℓc−1)
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and critical size ℓc =
[

J
λ

]
+ 1, where

[
·
]

denotes the integer part. The typical exit paths
from the metastable state −1 follow a sequence of growing squares and rectangles (quasi
squares) of plus spins up to the critical size ℓc. Starting from a rectangular droplet of plus
spins a move against the drift is necessary to create a new line, and the line is completed with
subsequent moves along the drift. A similar result holds for the PCA dynamics following the
same arguments since again moves along the drift lead to rectangular droplets of plus spins
and parallel updating against the drift has small probability for large β.

A different growth takes place in the case of shaken dynamics. Indeed using a similar
argument as in [37] it is simple to prove that configurations with complete diagonals of plus
spins can be used to construct a competitive way to go from the metastable to the stable state.
Starting from the metastable state we have hdl

x (−1) =−2J− q+λ for any x and so with a
probability of order e−2β(2J+q−λ) a spin is flipped in a site x0. In the subsequent semi-step
(up–right interaction) of the dynamics with probability of order one we have plus spins in the
sites x←0 and x↓0. The diagonal containing these sites grows with probability of order one in
the subsequent moves of the shaken dynamics and it is complete after L/2 steps, with L the
side of the volume Λ. To destroy a complete diagonal of plus spins a first move of probability

e−2β(2J−q+λ)

is necessary and every successive erosion has a probability e−2β(λ−q). On the other hand, the
probability to construct a new plus diagonal near the first one has a probability

e−2β(2J−q−λ).

Comparing these probabilities, we can obtain the estimate

PSh
σ (τ+1 < T0)> a

with T0 = e2β[(2J+q−λ)] and a not exponentially small in β, for any starting configuration
σ. Indeed, it is sufficient to require that no move of probability asymptotically smaller than
e−2β(2J+q−λ) takes place within T0, a first complete diagonal is formed in the time interval
[0,T0/2] and L− 1 other complete diagonals are formed in the remaining time. We can
conclude that for any δ > 0

lim
β→∞

PSh
−1 (τ+1 < e2β[(2J+q−λ)+δ]) = 1.
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(d) β = 4.0, q = 0.1,λ = 0.15
Figure 2.1 Comparison of the magnetization over time for PCA and shaken dynamics for several
values of the inverse temperature β.

This means that the crossover takes place for the shaken dynamics, typically, within a time
corresponding to the time it takes, for the SSF and PCA, to flip the first spin to +1. In other
words, the metastable behavior is no more present in the shaken dynamics (see Figure 2.1
for a numerical simulation). The asymmetric nature of the interaction gives the shaken
dynamics a higher mobility with respect to its symmetric counterpart (“standard” PCA). This
is the reason of shorter tunneling times. Note also that this higher mobility causes a slightly
smaller magnetization at equilibrium.

This fact has been highlighted in [65, 66] where a comparison between the symmetric PCA
and an irreversible PCA with totally asymmetric interaction has been performed in the
case λ = 0. In Figure 2.2 a comparison between the evolution of the magnetization for a
system subject to a symmetric PCA evolution and to shaken dynamics is shown for the same
values of the parameters of [66]. It is clear that, with respect to the tunneling behavior, the
shaken dynamics retains the same features of the irreversible PCA. However, in the case
of the shaken dynamics the control of the invariant measure is more manageable thanks to
reversibility.

On the other hand, with the same choice of parameters, if we compare the time necessary to
reach the stable state +1 starting from a configuration given by a supercritical square of plus
spins in a see of minuses, the PCA dynamics is more rapid than the shaken dynamics if J > 2q.

This means that it is not possible to establish, a priori, whether the PCA or the shaken
dynamics is faster, but it is necessary to take into account both the application and the starting
configuration. This will be the subject of further investigations.
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Figure 2.2 Comparison of the evolution of the magnetization for a spin system evolving according to
a shaken dynamics (black) and according to a symmetric PCA (red). The values of the parameters are
such that both dynamics exhibit the same spontaneous magnetization and are consistent with those of
[66].

2.3.2 A parallel algorithm for discrete optimization problems

Corollary 1.4.2 shows how the definition of the shaken dyanmics on a general graph and its
relation with the alternate dynamics gets the possibility to look for the minimum of a general
Hamiltonian

H(σ) =−
∑

e={x,y}∈E

Jxyσxσy−2
∑
x∈V

λxσx (2.3.2)

defined on {−1,+1}V , by means of a parallel dynamics. In combinatorial optimization this
result can be used as a parallel approach to the Quadratic Unconstrained Binary Optimization
(QUBO) i.e., the problem of minimizing a quadratic polynomial of binary variables.

To assess the effectiveness of the strategy presented in Corollary 1.4.2, we put forward some
preliminary numerical tests on a simplified version of the Edward-Anderson model where
the weight of the edges connecting neighboring sites is set to J = +1 with probability 1

2
and J = −1 with probability 1

2 and where the external field is zero. In this case, setting
q > 2 is sufficient to satisfy the hypotheses of the corollary. We compared the results with
those obtained with single spin flip heat bath dynamics simulations and considered “grids”
with side length 128 and 256. With this setting, the heuristic minima that we obtained with
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the shaken dynamics are essentially equivalent to those obtained with the single spin flip
dynamics. However the speed up with respect to the single spin flip dynamics was significant.
To be as fair as possible in this comparison, we renormalized the time of the single spin flip
dynamics with the number of vertices in the graph so to have the same number of “attempted
spin flips”. We observed a speed-up of about 10 times when considering, for both algorithms,
a CPU implementation and up to 200 times when comparing the CPU implementation of the
single spin flip dynamics with a GPU implementation of the shaken dynamics. We believe
these preliminary numerical results to be rather encouraging and we plan to perform a more
thorough investigation of the performances of the shaken dynamics to find the minimizers of
H(σ) in a future work.

2.3.3 A parallel algorithm for approximate sampling from the Gibbs
measure

We provide the proof of Theorem 1.4.3 stating that on the regular square lattice Z2 and with
homogeneous ferromagnetic interaction, the invariant measure of the shaken dynamics is
close in total variation distance to the Gibbs measure with Hamiltonian (1.3.7)

H(σ) =−J
∑

⟨x,y⟩∈BΛ

σxσy−2λ
∑
x∈Λ

σx. (2.3.3)

Proof of Theorem 1.4.3. To prove Theorem 1.4.3 it is possible to argue as in the proof of
Theorem 1.2 in [84].
In our notation πΛ and πG

Λ have the role, respectively, of πP CA and πG used in [84]. Further
let gx(σ) := J(σx↓ +σx←) be the analogue of hi(σ) in [84]. Here we assume λ < 0. The
case λ > 0 can be treated likewise.
Recalling that δ = e−2q, it is possible to write Zσ in the following way:

Zσ =
∑
τ
e−H(σ,τ) =

∑
τ
e−H(σ,σ)e−[H(σ,τ)−H(σ,σ)]

= eq|Λ|e−H(σ)∑
τ
e
∑

x:σx ̸=τx
−2gx(σ)σx−2q−2λσx

= eq|Λ|e−H(σ) ∑
I⊂Λ

δ|I|
∏
x∈I

e−2gx(σ)σx−2λσx

= eq|Λ|e−H(σ) ∏
x∈Λ

(1+ δe−2gx(σ)σx−2λσx)

(2.3.4)
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where the sum over τ has been rewritten as the sum over all subsets I ⊂Λ such that τx =−σx

if x ∈ I and τx = σx otherwise. The factor eq|Λ| does not depend on σ and cancels out in the
ratio Zσ

Z .
Call f(σ) := ∏

x∈Λ(1 + δe−2gx(σ)σx−2λσx), w(σ) := e−H(σ)f(σ) = wG(σ)f(σ). Then
(2.3.4) can be rewritten as

πΛ(σ) = w(σ)∑
τ w(τ) = wG(σ)f(σ)∑

τ wG(τ)f(τ) =
wG(σ)

ZG f(σ)∑
τ

wG(τ)
ZG f(τ)

= πG
Λ (σ)f(σ)
πG

Λ (f)

with πG
Λ (f) =∑

σ π
G
Λ (σ)f(σ).

As in [84], using Jensen’s inequality the total variation distance between πΛ and πG
Λ can be

bounded as

∥πΛ−πG
Λ∥T V ≤

√√√√ πG
Λ (f2)

(πG
Λ (f))2 −1 =:

√
(∆(δ)).

To prove the theorem, it will be shown that ∆(δ) =O(δ2|Λ|).
By writing ∆(δ) = elog(πG

Λ (f2))−2log(πG
Λ (f))−1, the claim follows by showing that the argu-

ment of the exponential divided by |Λ| is analytic in δ and that the first order term of its
expansion in δ cancels out.
In other words the claim follows thanks to the following lemma.

Lemma 2.3.1. There exists Jc such that, for all J > Jc

1. log(πG
Λ (f2))
|Λ| and log(πG

Λ (f))
|Λ| are analytic in δ for |δ|< δJ

2. log(πG
Λ (f2))
|Λ| −2 log(πG

Λ (f))
|Λ| =O(δ2)

Proof of Lemma 2.3.1. The analyticity of log(πG
Λ (f2))
|Λ| and log(πG

Λ (f))
|Λ| is proven by showing

that these quantities can be written as partition functions of an abstract polymer gas. The
analyticity is obtained using standard cluster expansion.
To carry over this task, we will rewrite πG

Λ (fk) in terms of standard Peierls contours. Divide
the sites in Λ according to the value of the spins and number of edges of the Peierls contour
left and below the site in the following way:

• Λ−−
−

: {x ∈ Λ : σx =−1∧ (σx← =−1,σx↓ =−1)};

• Λ+−
−

: {x ∈ Λ : σx =−1∧ ((σx← = +1,σx↓ =−1)∨ (σx← =−1,σx↓ = +1))};

• Λ+−
+

: {x ∈ Λ : σx =−1∧σx← = +1,σx↓ = +1};



44 The invariant measure: a dynamical and a static point of view

• Λ++
+

: {x ∈ Λ : σx = +1∧ (σx← = +1,σx↓ = +1)};

• Λ−+
+

: {x ∈ Λ : σx = +1∧ ((σx← = +1,σx↓ =−1)∨ (σx← =−1,σx↓ = +1))};

• Λ−+
−

: {x ∈ Λ : σx = +1∧ (σx← =−1,σx↓ =−1)};

With this notation, f(σ) can be written as

f(σ) = (1+ δe−4J+2λ)|Λ|
∏

x∈Λ +−
−

(1+ δe+2λ)
(1+ δe−4J+2λ)

∏
x∈Λ +−

+

(1+ δe+4J+2λ)
(1+ δe−4J+2λ)

∏
x∈Λ ++

+

(1+ δe−4J−2λ)
(1+ δe−4J+2λ)

∏
x∈Λ−+

+

(1+ δe−2λ)
(1+ δe−4J+2λ)

∏
x∈Λ−+

−

(1+ δe+4J−2λ)
(1+ δe−4J+2λ)

= (1+ δe−4J+2λ)|Λ|ξ̃(σ,λ)

(2.3.5)

with

ξ̃(σ,λ) =
[

(1+ δe+2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ +−
−

∣∣∣∣ [(1+ δe+4J+2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ +−
+

∣∣∣∣
[

(1+ δe−4J−2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ ++
+

∣∣∣∣ [ (1+ δe−2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ−+
+

∣∣∣∣ [(1+ δe+4J−2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ−+
−

∣∣∣∣ (2.3.6)

For a given a configuration σ ∈ XΛ, we denote by γ(σ) its Peierls contour in the dual
B∗Λ = ∪(x,y)∈BΛ(x,y)∗

γ(σ) := {(x,y)∗ ∈ B∗Λ : σxσy =−1} (2.3.7)

Noting that e−H(σ) = e(2J−2λ)|Λ|e−2J |γ(σ)|+4λ|V+(σ)|, with |V+(σ)|=∑
x∈Λ 1{σx=+1} is the

number of plus spins in Λ of configuration σ, we have

πG
Λ (fk) = 1

ZG
e(2J−2λ)|Λ|(1+ δe−4J+2λ)k|Λ|∑

σ

[
e−2J |γ(σ)|+4λ|V+(σ)|ξ̃k(σ,λ)

]
(2.3.8)
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Setting

ξ(σ,λ) =
[

(1+ δe+2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ +−
−

∣∣∣∣ [(1+ δe+4J+2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ +−
+

∣∣∣∣
[
e+2λ(1+ δe−4J−2λ)

(1+ δe−4J+2λ)

]∣∣∣∣Λ ++
+

∣∣∣∣ [e+2λ(1+ δe−2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ−+
+

∣∣∣∣ [e+2λ(1+ δe+4J−2λ)
(1+ δe−4J+2λ)

]∣∣∣∣Λ−+
−

∣∣∣∣
(2.3.9)

allows us to write, for k ∈ {1,2},

∑
σ

[
e−2J |γ(σ)|+4λ|V+(σ)|ξ̃k(σ,λ)

]
=
∑
σ

[
e−2J |γ(σ)|

(
e+2λ|V+(σ)|

)2−k
ξk(σ,λ)

]
(2.3.10)

A straightforward computation yields ξk(σ,λ)≤ ξk(σ,0) and then

∑
σ

[
e−2J |γ(σ)|

(
e+2λ|V+(σ)|

)2−k
ξk(σ,λ)

]
≤
∑
σ
e−2J |γ(σ)|ξk(σ,0) = 2

∑
γ
e−2J |γ|ξk(γ,0)

where ξk(γ,0) coincides with ξI
k(Γ) in the proof of Lemma 2.3 in [84], with∣∣∣∣Λ+−

−

∣∣∣∣+ ∣∣∣∣Λ−+
+

∣∣∣∣= |l1(Γ)| and
∣∣∣∣Λ+−

+

∣∣∣∣+ ∣∣∣∣Λ−+
−

∣∣∣∣= |l2(Γ)|.

This implies that the proof can be concluded following the same steps as in [84].

2.4 Static point of view

The present section is devoted to the study of the thermodynamical relations (i.e. average
magnetization and correlation functions) and the critical behavior of the measure π, defined
in (1.4.3), in the case of the square and triangular lattices and with no external field.
In Section 2.4.1, we first illustrate how the powerful connection between the Ising model
and the random-cluster model may be applied to our model by exploiting the representation
of the doubling construction. Sections 2.4.2 and 2.4.3 are devoted to the proofs of those
theorems concerning the analysis of the measure π from the static point of view.

2.4.1 The coupling

Consider the hexagonal lattice H = (V b,Eb), i.e. the doubling graph of the square lattice
Λ∈Z2. As already discussed in Section 1.4, we distinguish two types of edges,Eb =EJ ∪Eq
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and we denote the corresponding edge-weights by

Je =

 J if e ∈ EJ

q if e ∈ Eq.

Exploiting this representation, we can apply to our model the successful connection between
the Ising model and the random-cluster model.
Assume periodic boundary conditions and for any e ∈ Eb define the edge-weight pe ∈ [0,1]
as follows

pe =

 pJ = 1− e−2J if e ∈ EJ

pq = 1− e−2q if e ∈ Eq

Consider the measure on Ω

Φpe(ω) = 1
ZRC

{ ∏
e∈Eb

pω(e)
e (1−pe)1−ω(e)

}
2k(ω) (2.4.1)

with partition function

ZRC =
∑
ω∈Ω

{ ∏
e∈Eb

pω(e)
e (1−pe)1−ω(e)

}
2k(ω)

and consider the Gibbs measure on the spaceXV b :=X 2
Λ =XΛ×XΛ of pairs of configurations

σ = (σ(1),σ(2)) on the hexagonal lattice

π2(σ(1),σ(2)) = e−H(σ(1),σ(2))

Z
(2.4.2)

associated to the pair Hamiltonian (1.3.10) in the case of zero external field (i.e. λ= 0)

H(σ(1),σ(2)) =−
∑

e={x,y}∈Eb

w(x,y)σxσy =−
∑

e∈Eb

Jeσ
(1)
e(1)σ

(2)
e(2) (2.4.3)

where x= e(1),y = e(2) are the two sites in H connected by the edge e.

Following the general theory described in Section 2.1.1 we define now a coupling between
our pairs of configurations σ = (σ(1),σ(2))∈X 2

Λ and the random-cluster configuration ω ∈Ω
by the following probability mass on X 2

Λ×Ω:

µ(σ,ω)∝
∏
e∈E

{
(1−pe)δω(e),0 +peδω(e),1δe(σ)

}
(2.4.4)
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where
δe(σ) = δ

σ
(1)
x ,σ

(2)
y

for e= (x,y), with x ∈ V (1), y ∈ V (2)

The classical results of Theorems 2.1.2 and 2.1.3 may be stated now as follows:

Proposition 2.4.1. If pJ = 1− e−2J and pq = 1− e−2q

1) the marginal on X 2
Λ of µ(σ,ω) is

µ1(σ) =
∑
ω∈Ω

µ(σ,ω) = π2(σ(1),σ(2))

2) the marginal on Ω of µ(σ,ω) is

µ2(ω) =
∑

σ∈X 2
Λ,B

µ(σ,ω) = Φpe(ω)

3) the conditional measure on X 2
Λ given ω is obtained by putting uniformly random spins

on entire clusters of ω. These spins are constant on given clusters, are independent
between clusters and each is uniformly distributed on the set {−1,+1}.

4) the conditional measure on Ω given σ is obtained by setting ω(e) = 0 if
δe(σ) = 0 and otherwise ω(e) = 1 with probability pJ (pq) for e ∈ EJ (e ∈ Eq).

With this construction we can easily prove that our model exhibits a phase transition and we
can compute the strong anisotropy of the correlation functions.

2.4.2 Thermodynamical relations

We provide the proof of Theorem 1.4.4 concerning the thermodynamical relations of the
measures π.

Proof of Theorem 1.4.4. .

1) The statement immediately follows from direct computation, indeed:

m=
∑
σ

∑
x∈Λσx

|Λ| ·
∑
τ

e−H(σ,τ)

Z
= 1

2
∑

(σ,τ)

∑
x∈Λ(σx + τx)
|Λ| · e

−H(σ,τ)

Z
=m2

where the second equality follows by a symmetry argument.
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2) The standard coupling between Ising and the RCM on H yields

π+(σx) =
∑
σ

∑
τ
σxπ

+(σ) =
∑
σ
σ

(1)
x(1)π

+
2 (σ) = π+

2 (σ(1)
x(1))

=
∑
ω∈Ω

∑
σ
µ(σ,ω)σ(1)

x(1)

(
1x(1)↔∂Λ(1) +1x(1)↮∂Λ(1)

)
= Φpe(x(1)↔ ∂Λ(1))+

∑
ω∈Ω

∑
σ

[
µ(σ,ω|ω)σ(1)

x(1)1x(1)↮∂Λ(1)

]
Φpe(ω)

= Φpe(x(1)↔ ∂Λ(1))

since by Proposition 2.4.1 the square bracket vanishes. The minus boundary conditions
can be treated in the same way.

3) The proof of point (3) can be obtained following the same argument.

4) Let γ ⊂ Eb be a path of open edges connecting two vertices x(1), y(1) ∈ V (1). We
introduce the notation η(ω) ⊃ γ to identify all the configurations ω ∈ Ω such that
ω(e) = 1, ∀e ∈ γ. By definition

Φpe(x↔ y) =
∑

γ:x↔y

∑
ω∈Ω:

η(ω)⊃γ

Φpe(ω)

= 1
ZRC

∑
γ:x↔y

∏
e∈γ

pe

 ∑
ω′∈{0,1}Eb\γ

 ∏
e∈Eb\γ

pω′(e)
e (1−pe)1−ω′(e)

2k(η(ω′)∪γ)

= 1
ZRC

∑
γ:x↔y

∏
e∈γ

pe

Zγ

where

Zγ =
∑

ω′∈{0,1}Eb\γ

 ∏
e∈Eb\γ

pω′(e)
e (1−pe)1−ω′(e)

2k(η(ω′)∪γ)
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Figure 2.3 The lattice H with the slices used for the estimation of the correlation functions. Picture
(a) shows an example of path γ : (0,0)↔ (ℓ,ℓ). Picture (b) shows the diagonal path γ∗.

Upper bound
For any path γ and any configuration ω ∈ Ω we denote by ω′ the restriction of ω to the
set of edges in Eb \γ and by ω′′ its restriction to the set of edges in γ.

Since k(η(ω))≥ k(η(ω′)∪γ) we can state the following inequality for the partition
function

ZRC ≥
∑
ω∈Ω

∏
e∈γ

pω(e)
e (1−pe)1−ω(e)

 ∏
e∈Eb\γ

pω(e)
e (1−pe)1−ω(e)

2k(η(ω′)∪γ)

=
∏

e∈γ

∑
ω′′∈{0,1}|γ|

pω(e)
e (1−pe)1−ω(e)

Zγ = Zγ

This observation implies

Φpe(x↔ y)≤
∑

γ:x↔y

(∏
e∈γ

pe

)
(2.4.5)

Now let us suppose to slice the lattice H as in Fig. 2.3. It is easy to see that each path
γ : (0,0)↔ (ℓ,ℓ) must visit all slices separating (0,0) and (ℓ,ℓ) and therefore it crosses
at least 2ℓ q-edges (see Fig. 2.3a). We give an upper bound for the sum in (2.4.5) in
terms of possible crossing-paths that start in (0,0) and stop in the slice which contains
(ℓ,ℓ).
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The transition from one slice to the other is determined by the crossing of a q-edge.
After a q-edge has been crossed the path must traverse an arbitrary number of J-edges,
either on the left or on the right, before crossing the next q-edge. Denoting by Γ(n,2ℓ)
the number of one dimensional random walks between slices of lenght n arriving at
distance 2ℓ from the origin, we can write

Φpe((0,0)↔ (ℓ,ℓ))≤
∞∑

n=2ℓ

Γ(n,2ℓ)(2pqpJ)n

 ∞∑
m=0

pm
J

n

=
∞∑

n=2ℓ

Γ(n,2ℓ)(2pqpJ)n

 1
1−pJ

n

=
∞∑

n=2ℓ

(
n

n+2ℓ
2

) 2pqpJ

1−pJ

n

≤
∞∑

n=2ℓ

 4pqpJ

1−pJ

n

.

The last sum converges if q is sufficiently small so that the parameters pJ and pq satisfy
the condition 4pqpJ

1−pJ
< 1 and we get

c1 =

(4pqpJ
1−pJ

)2ℓ

1−
(4pqpJ

1−pJ

) ·
Lower bound
We introduce the diagonal path γ∗ connecting (0, ℓ) and (ℓ,0) remaining in the same
slice as in Fig. 2.3b and γ̄ = γ∗ ∪ ∂γ∗. Let ZEb\γ̄ be the partition function of the
random-cluster model defined on the graph Hγ̄ = (V b,Eb \ γ̄). By Theorem (3.60) in
[53] we have that ZEb\γ̄ ≥ ZEb = ZRC and hence we can give a lower bound for the
correlation function as follows

Φpe((0, ℓ)↔ (ℓ,0))≥

≥ 1
ZRC

 ∏
e∈γ∗

pe

 ∑
ω′′∈{0,1}E\γ̄

 ∏
e∈∂γ∗

(1−pe)

 ∏

e∈Eb\γ̄
pω′′(e)

e (1−pe)1−ω′′(e)

2k(ω′′)+1

= 1
ZRC

 ∏
e∈γ∗

pe

 ∏
e∈∂γ∗

(1−pe)
2ZE\γ̄

≥ 2
 ∏

e∈γ∗
pe

 ∏
e∈∂γ∗

(1−pe)


= 2e−4J(1− e−2J)2ℓe−2q(2ℓ+1) = c2.
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If q is sufficiently small such that, for instance,

4pq

(1−pq)(1−pJ) <
1
2

and (
pq

1−pq

)2
<

(1−pJ)3(1−pq)
16 ,

we immediately get c1 < c2. Note that the first of these two conditions is stronger than
4pqpJ
1−pJ

< 1 and, therefore, c1 is well defined.

2.4.3 Critical behavior

We prove Theorem 1.4.5 concerning the critical behavior of the measure π on the hexagonal
lattice. The proof of Theorem 1.4.7 which provides the critical curve for the shaken dynamics
defined on the triangular lattice follows by similar arguments.

Proof of Theorem 1.4.5. This is an application of Theorem 1.1 in [25] holding for a planar
non-degenerate locally-finite doubly periodic weighted graph G. Here we consider the
case where G is the hexagonal lattice H. We denote by G = (V,E) the embedding of the
hexagonal lattice in the torus which can be obtained by periodically glueing on the torus the
cell represented in Fig. 2.4. As shown in [25] the critical curve relating the parameters J and
q of the Hamiltonian (1.4.14) is the unique solution of the equation (2.1.13), which assumes
the following explicit form in the hexagonal case

J J
q

J
q

J
q

J J

Figure 2.4 The periodic cell on the torus and the three corresponding even subgraphs γ ∈ E1.

1 = 2tanhJ tanhq+tanh2J (2.4.6)
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where on the r.h.s. we have the sum of the contributions from the three even subgraphs in E1

shown in Fig. 2.4 while on the l.h.s. 1 is the contribution of the unique graph in E0 without
edges. We refer to Section 2.1.2 for the formal definition of E0 and E1.
Solving equation (2.4.6) w.r.t. J gives the curve

J(q) = tanh−1
(√

tanh2 q+1− tanhq
)

(2.4.7)

represented in Fig. 1.7.

q

J

J J

(a)

q

J

(b)

q

J

(c)

J J

(d)

q

J

(e)

J

J

(f)

J

J

(g) (h)
Figure 2.5 The elementary cell (a) for the shaken interaction on the triangular lattice and the corre-
sponding even subgraphs. Subgraphs (a) and (h) wind around the torus an even number of times and
are, therefore, in E0 whereas the remaining subgraphs are in E1.

Proof of Theorem 1.4.7. Again, this is an application of Theorem 1.1 in [25].
The square lattice induced by the shaken dynamics on the triangular lattice, with Je = q for
the self–interaction edges and Je = J for the other edges, satisfies the hypotheses of the
theorem and can be obtained by periodically repeating the elementary cell of Figure 2.5. A
direct application of (2.1.13) yields the claim.



3 Metastability for the Ising model on the
hexagonal lattice

3.1 Motivations and overview on the literature

A thermodynamical system, subject to a noisy dynamics, exhibits metastable behavior when
it remains for a long time in the vicinity of a state that is a local minimum of the energy
before reaching a more stable state through a sudden transition. On a short time scale, the
system behaves as if it were in equilibrium whereas, on a long time scale, it moves between
regions of its state space. This motion, linked to first order phase transitions, is triggered
by the appearance of a critical microscopic configuration of the system via a spontaneous
fluctuation or some external perturbation.
Several termodynamical systems, ranging from magnets immersed into an external magnetic
field to supercooled liquids to supersaturated gases, may show metastability. However this
phenomenon is not exclusive of thermodynamical systems, but it appears in a plethora of
diverse fields including biology, chemistry, computer science, economics.

Given the peculiar features of metastability outlined above, when studying the metastable be-
havior of a system one is typically interested in studying the properties of the transition time
towards the stable state, the features of the critical configurations and the characterization of
typical paths along which the transition takes place.
A first dynamical approach to the rigorous study of metastability, known as pathwise ap-
proach, was initiated in [19] and developed in [80, 81, 88], see also [82, 20]. This approach
derives large deviation estimates of the first hitting time, of the critical configurations and
of the tube of typical trajectories. It is based on the notions of cycles and cycle paths and it
hinges on a detailed knowledge of the energy landscape. The pathwise approach was further
developed in [69, 29, 31, 42, 43] to disentangle the study of transition time from the one of
typical trajectories and to treat irreversible systems. This method has been applied to study
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the metastable behavior for the Ising model with isotropic and anisotropic interaction, in
different dimensions, with different external magnetic fields evolving according to Glauber
dynamics in [8, 63, 62, 74, 78, 79, 82, 59]. Pathwise approach has been used also for a
variety of models evolving according to Glauber dynamics: Blume Capel model in [34, 29],
Potts model in [76] and hard-core model in [77, 92, 56].
Another approach is the potential-theoretic approach, initiated in [13]. We refer to [12]
for an extensive discussion and applications to different models. The potential-theoretical
approach is based on the study of the hitting time through the use of the Dirichlet form and
spectral properties of the transition matrix. One of the advantages of this method is that it
provides an estimate of the expected value of the transition time including the prefactor, by
exploiting a detailed knowledge of the critical configurations, see [14, 12]. This method was
applied for Ising-like models evolving according to Glauber dynamics [5, 16, 33].
Recently other approaches are described in [6, 7, 51] and in [11].
Metastability for the Ising model in different regimes: infinite volume limit, at low tempera-
ture or vanishing magnetic field, was studied for Glauber dynamics via pathwise approach in
[21, 39, 71, 72, 86, 87] and via the potential-theoretical approach in [15, 52].
However, though several approaches to the study of metastability have been proposed, the
understanding of how the transition from a mestastable state to the stable one takes place for
a given system can not be completed without investigating the effects of the peculiar features
of the statistical mechanics model under consideration. For instance, the shape of the critical
configurations is heavily dependent on the temperature and on the geometry of the space
where configurations live (e.g. the possible anisotropy of the space or the features of the
interaction graph in the case of discrete models). Another fundamental aspect to take into
account is the type of dynamics according to which the system evolves. It is indeed possible
that, even if two models have the same Hamiltonian and the same state space, different
dynamics may have a completely different set of metastable states. This is especially true
when parallel dynamics are taken into account, see [32, 9].

3.2 Definition of the model

3.2.1 Ising model on hexagonal lattice

Consider the discrete hexagonal lattice H2 embedded in R2 and let T2 be its dual, i.e. the
triangular lattice. Let Λ be the subset of H2 obtained by cutting a parallelogram of side length
L along two of the coordinate axes of the triangular lattice so that |Λ|= 2L2. On Λ we impose
periodic boundary conditions. To each site i∈Λ we associate a spin variable σ(i)∈ {−1,+1}
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and, on the configuration space X := {−1,+1}Λ, we consider the Hamiltonian function
H : X −→ R defined as

H(σ) :=−J2
∑

i,j∈Λ
d(i,j)=1

σ(i)σ(j)− h2
∑
i∈Λ

σ(i), (3.2.1)

where J > 0 represents the ferromagnetic interaction between two spins, h > 0 is the external
magnetic field and d(·, ·) is the lattice distance on H2.
We consider a Markov chain (Xt)t∈N on X defined via the so called Metropolis Algorithm.
The transition probabilities of this dynamics are given by

Pβ(σ,η) = q(σ,η)e−β[H(η)−H(σ)]+ , for all σ ̸= η, (3.2.2)

where [·]+ denotes the positive part and q(σ,η) is a connectivity matrix independent of β,
defined, for all σ ̸= η, as

q(σ,η) =


1
|Λ| if ∃ x ∈ Λ : σ(x) = η

0 otherwise
(3.2.3)

where

σ(x)(z) =

 σ(z) if z ̸= x

−σ(x) if z = x
(3.2.4)

In the remainder we will omit the symbol β in Pβ(σ,η) and we will write the transition
probability between the states σ and η simply as P (σ,η).
Table 3.1 shows all possible single spin flip probabilities.
It is possible to check that (Xt)t∈N is an ergodic aperiodic Markov chain on X satisfying the
detailed balance condition

µ(σ)P (σ,η) = µ(η)P (η,σ), (3.2.5)

with respect to the Gibbs measure

µ(σ) = e−βH(σ)∑
η∈X e−βH(η) , (3.2.6)

where β := 1
T > 0 is the inverse temperature.

Let +1, −1 be respectively the configurations in which all the spins have value +1, −1.
It is straightforward to check that +1 maximizes both sums in (3.2.1) and, consequently, we
have the following
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+

−

−−

e−β(3J−h)

Table 3.1 Transition probabilities when the local configuration on the right is obtained from the
local configuration on the left by changing the value of the central spin for all possible values of the
neighboring spins. The probability that the change happens at the site at the center is uniform over all
sites of Λ.

Lemma 3.2.1. +1 is the global minimum (or ground state) of the Hamiltonian (3.2.1).

In the remainder we will show that −1 is the unique metastable state, that is the deepest local
minimum of the Hamiltonian (see Theorem 3.3.3).

3.2.2 Definitions and notation

The problem of metastability is the study of the first arrival of the process (Xt)t∈N to the set
of the stable states, corresponding to the set of absolute minima of H , when starting from
an initial local minimum. Local minima can be ordered in terms of their increasing stability
level, i.e., the height of the barrier separating them from lower energy states. More precisely,
for any σ ∈ X , let Iσ be the set of configurations with energy strictly lower than H(σ), i.e.,

Iσ := {η ∈ X |H(η)<H(σ)}. (3.2.7)
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Let ω = {ω1, . . . ,ωn} be a finite sequence of configurations in X . We call ω a path from ω1

to ωn and we denote by Θ(ω1,ωn) the set of all these paths. We say that n is the length of
the path ω and we write |ω|= n. The communication height between two configurations σ
and η is the maximal height along the minimal path in Θ(σ,η), i.e.,

Φ(σ,η) := min
ω∈Θ(σ,η)

max
ζ∈ω

H(ζ). (3.2.8)

By Φ(ω) we denote the communication height along the path ω = {ω1, . . . ,ωn}, i.e.
Φ(ω) = maxi=1,...,nH(ωi). Similarly, we also define the communication height between two
sets A,B ⊂X as

Φ(A,B) := min
σ∈A,η∈B

Φ(σ,η). (3.2.9)

Now we are able to formally define the stability level of a state σ as

Vσ := Φ(σ,Iσ)−H(σ). (3.2.10)

If Iσ is empty, we set Vσ =∞. Note that the stability level Vσ of σ is the minimal cost that,
starting from σ, has to be payed in order to reach states at energy lower than H(σ). We
denote by X s the set of global minima of the energy, and we refer to these as ground states.
To define the set of metastable states, we introduce the maximal stability level

Γm := max
σ∈X\X s

Vσ. (3.2.11)

The metastable states are those attaining the maximal stability level Γm <∞, that is

Xm := {y ∈ X |Vy = Γm}. (3.2.12)

Since the metastable states are defined in terms of their stability level, a crucial role in our
proofs is played by the set of all configurations with stability level strictly greater than V ,
that is

XV := {σ ∈ X | Vσ > V }. (3.2.13)

To study the transition between Xm and X s, we define the first hitting time to A⊂X for the
process Xσ

t starting from σ ∈ X

τσ
A := inf{t > 0 |Xσ

t ∈ A}. (3.2.14)
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Whenever possible we shall drop the superscript denoting the starting point σ from the
notation and we denote by Pσ(·) and Eσ[·] respectively the probability and the average along
the trajectories of the process started at σ. Now we define formally the energy barrier Γ as

Γ := Φ(m,s)−H(m) with m ∈ Xm, s ∈ X s. (3.2.15)

In what follows we consider the set of paths realizing the minimal value of the maximal
energy in the paths between any metastable state and the set of the stable states. To this end,
we define the set of optimal paths.

Definition 3.2.2. We write (A→B)opt to denote the set of optimal paths, i.e., the set of all
paths from A to B realizing the min-max (3.2.8) in X between A and B.

Another basic notion is the set of saddles defined as the set of all maxima in the optimal
paths between two configurations.

Definition 3.2.3. The set of minimal saddles between σ,η ∈ X is defined as

S (σ,η) := {ζ ∈ X |∃ω : σ→ η, ω ∋ ζ such that max
ξ∈ω

H(ξ) =H(ζ) = Φ(σ,η)}. (3.2.16)

S (A,B) :=
⋃

σ∈A,η∈B:
Φ(σ,η)=Φ(A,B)

S (σ,η). (3.2.17)

We focus on the subsets of saddles that are typically visited during the last excursion from
a metastable state to the set of the stable states. To this end, we introduce the gates from
metastability to stability, defined as the subsets of S visited by all the optimal paths. More
precisely,

Definition 3.2.4. Given a pair of configurations σ,η ∈X , we say thatW ≡W(σ,η) is a gate
for the transition from σ to η ifW(σ,η)⊆S (σ,η) and ω∩W ̸= ∅ for all ω ∈ (σ→ η)opt.

Moreover,

Definition 3.2.5. A gateW is a minimal gate for the transition from σ to η if for anyW ′⊂W
there exists ω′ ∈ (σ→ η)opt such that ω′∩W ′ = ∅.
For a given pair η,η′, there may be several disjoint minimal gates. We denote by G (η,η′) the
union of all minimal gates:

G (η,η′) :=
⋃

Wminimal gate for (η,η′)
W (3.2.18)
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Obviously, G (σ,σ′)⊆S (σ,σ′) and S (σ,σ′) is a gate (but in general it is not minimal). The
configurations ξ ∈S (η,η′)\G (η,η′) (if any) are called dead ends.

In words, a minimal gate is a minimal (by inclusion) subset of S (σ,η) that is visited by all
optimal paths. The configurations in the minimal gates have the physical meaning of critical
configurations and are central objects both from a probabilistic and from a physical point of
view.

i

Figure 3.1 The solid lines show the hexagonal lattice, whereas the dashed lines show its dual, the
triangular lattice. The solid triangle highlights the triangular face centered at site i. The thicker
vertices are the nearest neighbors of site i on the hexagonal lattice.

To study the function H(σ) it is convenient to associate to each configuration σ ∈ X certain
geometrical objects and, then, to study their properties.
To this end, recall that H2 is the discrete hexagonal lattice embedded in R2 and its dual, T2,
is the discrete triangular lattice embedded in R2. Given a configuration σ ∈ X , consider the
set C(σ)⊆ Λ defined as the union of the closed triangular faces centered at sites i with the
boundary contained in T2 and such that σ(i) = +1 (see Figure 3.1) and look at the maximal
connected components C1, . . . ,Cm,m ∈ N, of C(σ). If a maximal connected component
wraps around the torus it is called a plus strip, otherwise it is called a cluster (of pluses).
This construction leads to a bijection that associates to each configuration a collection of
its clusters and plus strips. Likewise, other geometrical objects may be associated to a
configuration σ by considering the connected components of triangular faces centered at
the sites of the lattice with spin value minus one. Among these, there could be a connected
component which contains two or three lines that wrap around the torus parallel to the
coordinate axes of T2. If this is the case, the component is called a sea of minuses. Similarly,
if there is only one line that wraps around the torus we call it a minus strip. The other
connected components of triangular faces centered at minus spins are called holes.
Given a configuration σ ∈X we denote by γ(σ) its Peierls contour that is the boundary of the
clusters. Note that Peierls contours live on the dual lattice T2 and are the union of piecewise
linear curves separating spins with opposite sign in σ. In particular in each dual vertex there
are 0, 2, 4, 6 dual bonds contained in γ(σ).
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In this setting, it is immediate to see that for each configuration σ we have

H(σ)−H(−1) = J |γ(σ)|−hN+(σ), (3.2.19)

where

N+(σ) =
∑
x∈Λ

σ(x)+1
2 , (3.2.20)

represents the number of plus spins and |γ(σ)| is the lenght of the Peierls contour γ(σ). In
this way the energy of each configuration is associated to the area and the length of the
boundary of a suitable collection of triangular faces.
Call r∗ the critical radius:

r∗ :=
⌊ J
2h −

1
2
⌋
, (3.2.21)

and let δ ∈ (0,1) be the fractional part of J
2h −

1
2 , that is

δ = J

2h −
1
2 − r

∗. (3.2.22)

We will show that for our model the energy barrier Γ is equal to

ΓHex :=

−6r∗2h+6r∗J−10r∗h+7J−5h if 0< δ < 1
2

−6(r∗+1)2h+6(r∗+1)J−2(r∗+1)h+3J−h if 1
2 < δ < 1

(3.2.23)

The value of ΓHex is obtained by computing the energy of the critical configurations. We
will see that these configurations consist of a cluster having a shape that is close to a hexagon
of radius r∗ and, in particular, we will compute the critical area to be

A∗1 =6r∗2 +10r∗+5 if 0< δ <
1
2 ,

A∗2 =6(r∗+1)2 +2(r∗+1)+1 if
1
2 < δ < 1. (3.2.24)
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Figure 3.2 On the left, S(A∗
2) with A∗

2 = 6(r∗ + 1)2 + 2(r∗ + 1) + 1 and 1
2 < δ < 1. On the right,

S(A∗
1) with A∗

1 = 6r∗2 +10r∗ +5 and 0 < δ < 1
2 .

3.3 Main results

Our results concerning the metastable behavior of the model are given under the assumption
that the torus is large compared to the size of the critical clusters. More precisely, we assume
the following

Condition 3.3.1. The magnetic field h, the ferromagnetic interaction J and the torus Λ are
such that 0< h < 1, J ≥ 2h, J

2h + 1
2 is not integer, and |Λ| ≥ (4J

h )2 finite.

Note that the assumption J
2h + 1

2 not integer is common in literature and is made so to avoid
strong degeneracy of the critical configurations.

We say that a function β 7→ f(β) is super exponentially small (SES) if

lim
β→∞

1
β

logf(β) =−∞.

With this notation we can state our first theorem concerning the recurrence of the system to
either the state −1 or +1.

Theorem 3.3.2 (Recurrence property). Let V ∗ = 2J , we have XV ∗ = {−1,+1} and for any
ϵ > 0 and sufficiently large β, we have

sup
σ∈X

Pσ(τXV ∗ > eβ(V ∗+ϵ)) = SES. (3.3.1)

Equation (3.3.1) implies that the system reaches with high probability either the state −1
(which is a local minimum of the Hamiltonian) or the ground state in a time shorter than
eβ(V ∗+ϵ), uniformly in the starting configuration σ for any ϵ > 0. In other words we can say
that the dynamics speeded up by a time factor of order eβV ∗ reaches with high probability
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{−1,+1}. In Corollary 4.2.6 we give a geometrical description of XV for V = J−h and we
discuss the behavior of the speeded up dynamics by a time factor of order eβ(J−h).
In the next theorem we identify the metastable state and we compute the maximal stability
level. Recalling the Definition of ΓHex in Equation (3.2.23) we have

Theorem 3.3.3 (Identification of metastable state). Xm = {−1} and Γm = ΓHex.

In the next theorems, we give the asymptotic behavior (for β→∞) of the transition time for
the system starting at the metastable state. In particular, in Theorem 3.3.4 we give an upper
and lower bound for the transition time, in Theorem 3.3.5 we estimate the expected value of
the transition time and in Theorem 3.3.6 we give its asymptotic distribution.

Theorem 3.3.4 (Asymptotic behavior of τ+1 in probability). For any ϵ > 0, we have

lim
β→∞

P−1(eβ(ΓHex−ϵ) < τ+1 < eβ(ΓHex+ϵ)) = 1. (3.3.2)

Theorem 3.3.5 (Sharp estimates of τ+1). For β large enough, we have

E−1[τ+1] = 1
k
eβΓHex

(1+o(1)), (3.3.3)

where

k =

5(l−1) if δ ∈ (0, 1
2),

10(l−1) if δ ∈ (1
2 ,1).

(3.3.4)

Theorem 3.3.6 (Asymptotic distribution of τ+1). Let Tβ := inf{n ≥ 1 |P−1(τ+1 ≤ n) ≥
1− e−1}

lim
β→∞

P−1(τ{+1} > tTβ) = e−t (3.3.5)

and

lim
β→∞

E−1(τ{+1})
Tβ

= 1. (3.3.6)

The following theorem concerns the long-run behavior of the Metropolis Markov chain
(Xt)t∈N of our model. In particular, we give an estimate of the mixing time of the chain
and its spectral gap. Both these quantities are classical notions that may be used to examine
the speed of convergence of Markov chains to their stationary distribution. Mixing time
describes the time required for the distance to stationarity to become small and it is defined
as

tmix
β (ϵ) := min{n≥ 0 |max

σ∈X
∥Pn

β (σ, ·)−µβ(·)∥T V ≤ ϵ} (3.3.7)
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where Pn
β (·, ·) is the transition probability defined in (3.2.2) at time n, µβ(·) is the stationary

measure of the chain and ∥ · ∥T V denotes the total variation distance among two probability
measures (see definition (1.4.8)).
Spectral gap is defined as

ρβ := 1−a(2)
β (3.3.8)

where 1 = a
(2)
β > a

(2)
β ≥ ...≥ a

(2)
β ≥−1 are the eigenvalues of the matrix (Pβ(σ,τ))σ,τ∈X .

Theorem 3.3.7 (Mixing time and spectral gap). For any 0< ϵ < 1 we have

lim
β→∞

1
β

log tmix
β (ϵ) = ΓHex, (3.3.9)

and if ρβ is the spectral gap, there exist two constants 0 < c1 < c2 <∞ independent of β
such that for every β > 0

c1e
−β(ΓHex+γ1) ≤ ρβ ≤ c2e−β(ΓHex−γ2), (3.3.10)

where γ1,γ2 are functions of β that vanish for β→∞.

In the theorem below, we characterize the gate for the transition from −1 to +1. To do this,
we give an intuitive definition of the configurations denoted by S̃(A∗i ) and D̃(A∗i ) that play
the role of critical configurations. S̃(A∗i ) is a configuration with a cluster such that its area is
A∗i and its shape is that in Figure 3.3 (a)-(c); D̃(A∗i ) is a configuration with a cluster such that
its area is A∗i and its shape is that in Figure 3.3 (b)-(d). We refer the reader to Notation 4.1.21
for a precise definition of S̃(A∗i ) and D̃(A∗1) and to Corollary 4.3.6 for the values of A∗i with
i ∈ {1,2}. We observe that ΓHex is equal to H(S̃(A∗i ))−H(−1). See Figure 3.2 to have the
two pictures of standard clusters with area A∗i according to the values of parameters.

(a) (b) (c) (d)
Figure 3.3 On the left there are two examples of two configurations S̃(A∗

1), D̃(A∗
1) belonging to the

gate for δ ∈ (0,1/2). On the right there are other two examples S̃(A∗
2), D̃(A∗

2) for δ ∈ (1/2,1).
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Theorem 3.3.8 (Gate). Given δ ∈ (0,1), A∗i ∈ {A∗1,A∗2} in (3.2.24). We have that any
optimal path ω ∈ (−1→ +1)opt visits S̃(A∗i )∪D̃(A∗i ) , i.e. there exists an integer j such
that ω ∋ ωj ≡ S̃(A∗i ) or ω ∋ ωj ≡ D̃(A∗i ). In other words S̃(A∗i )∪D̃(A∗i ) is the union of all
minimal gates from −1 to +1.

From a physical point of view, the configurations in the gate are those that must be visited,
for a system at very low temperature, in order for the transition to the stable state to take
place. Moreover, the characterization of the gate allows to compute the sharp estimates
for the transition time in Theorem 3.3.5 using a potential theoretic approach. Using solely
a pathwise approach, exponential asymptotics for the expected transition time could have
been obtained as well without this detailed description of the gate. To this purpose, using
the model dependent results of Theorem 3.3.3, one could apply [70, Theorem 4.9] (setting
η0 = {−1}) to get

lim
β→∞

1
β

logE−1[τ+1] = ΓHex. (3.3.11)



4 Transition time, critical configurations
and typical paths

4.1 Preparatory tools

Since the faces of a cluster live naturally on the triangular lattice it is beneficial to asso-
ciate clusters to plane polyforms obtained by joining equilateral triangles along their edges
(polyiamonds). In this way it will be possible to characterize spin configurations that are
relevant for the dynamics under consideration in terms of the area and the perimeter of the
polyiamond associated to their clusters. Though we will consider polyiamonds to study the
Ising model on the hexagonal lattice, the properties that will derive may be of use to study
other statistical mechanics lattice models for which the notion of clusters may be linked to
that of polyiamonds.

Definition 4.1.1. A polyiamond P ⊂ R2 is a finite maximally edge-connected union of faces
of the lattice T2. Each face belonging to the polyiamond is called triangular unit whereas the
faces of T2 outside of P are called empty triangular units.

We remark that two faces are not connected if they share a single point.
Note that with this construction there is a bijection between clusters of plus spins not
wrapping around the torus and polyiamonds. Analogously, minus spins are associated to the
empty triangular units of the lattice T2. Strictly speaking, this mapping is different from the
one introduced before which is a bijection between the configuration space X and the set of
sea of minuses, strips, clusters and holes. Both these bijections are relevant.

Definition 4.1.2. An elementary rhombus is a set of two triangular units sharing an edge.
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In the remainder of the section we will give the definitions and the key results concerning
polyiamonds that are used in Sections 4.2 and 4.3 whereas a more comprehensive and
self-contained discussion on polyiamonds is deferred to Section 5.

Definition 4.1.3. The area A of a polyiamond is the number of its triangular units. For any
polyiamond P , we denote its area by ||P ||. Analogously for any cluster C, we denote by
||C|| the number of plus spins in C.

Definition 4.1.4. The boundary of a polyiamond P is the collection of unit edges of the
lattice T2 such that each edge separates a triangular unit belonging to P from an empty
triangular unit. The edge-perimeter p(P ) of a polyamond P is the cardinality of its boundary.

In other words the perimeter is given by the number of interfaces on the discrete triangular
lattice between the sites inside the polyiamond and those outside. If not specified differently,
we will refer to the edge-perimeter simply as perimeter.

Definition 4.1.5. The external boundary of a polyiamond consists of the connected compo-
nents of the boundary such that for each edge there exists a hexagonal-path in H2 which
connects this edge with infinity. The internal boundary of a polyiamond consists of the con-
nected components of the boundary that are not external. The external perimeter, respectively
the internal perimeter, of a polyiamond is the cardinality of the external, respectively internal,
boundary.

Definition 4.1.6. A hole of a polyiamond P is a finite maximally connected component of
empty triangular units surrounded by the internal boundary of P .

We refer to holes consisting of a single empty triangular unit as elementary holes.

Definition 4.1.7. Orient the external boundary counter-clockwise and the internal boundary
clockwise. For each pair of oriented edges, the angle defined rotating counter-clockwise the
second edge on the first edge is called internal angle. See Figure 4.1.

Definition 4.1.8. A polyiamond is regular if it has only internal angles of π and 2
3π and it

has no holes.

We note that a regular polyiamond has the shape of a hexagon.

Definition 4.1.9. A polyiamond is a regular hexagon if it is a regular polyiamond with all
equal sides. We denote by E(r) the regular hexagon, where r is its radius.

Definition 4.1.10. A bar B(l) with larger base l is a set of ||B(l)||= 2l−1 triangular units
obtained as the difference between an equilateral triangle with side length l and another
equilateral triangle with side length l−1.
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Figure 4.1 An example of polyiamond with in black the external boundary oriented counter-clockwise,
and in gray the internal boundary oriented clockwise. In red, some internal angles of the polyiamond.

Definition 4.1.11. We denote by EB1(r) the polyiamond obtained attaching a bar B(r)
along its larger base to the a side of the regular hexagon, see Figure 4.2, so that EB1(r) is
contained in E(r+1). Analogously, we denote by EBi

(r) for i= 2, . . . ,5 the polyiamonds
obtained attaching a bar B(r+ 1) along its larger base to a suitable side of EBi−1(r) so
that, again, EBi

(r) is contained in E(r+1). Finally, we denote by EB6(r) the polyiamond
obtained attaching a bar B(r+2) along its larger base to EB5(r) so to obtain E(r+1). We
call EBi

(r) a quasi-regular hexagon, where r is the radius of the regular hexagon E(r) and
i ∈ {1, . . . ,6} is the number of bars attached to it.

Note that EBi
(r) is defined up to translations and rotations of z π

3 for z ∈ Z. Moreover
EB0(r) := E(r) and E(r+1)≡ EB6(r).

Definition 4.1.12. An incomplete bar of cardinality k < 2l−1 is an edge-connected subset
of a bar B(l) attached to a hexagon along its longest base, see Figure 4.3.

Observe that an incomplete bar has either the shape of a trapeze or of a parallelogram with
unitary height.

Definition 4.1.13. For any A ∈ N, the minimal quasi-regular hexagon RA is the smallest
quasi-regular hexagon containing at least A triangular units.
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Figure 4.2 On the left the quasi-regular hexagon EB1(4). On the right the quasi-regular hexagon
EB4(3).

Figure 4.3 On the left an incomplete bar having the shape of a trapeze and of cardinality k = 5
attached to the regular hexagon E(4). We observe that the cardinality of the bar containing the
incomplete bar is ||B1||= 7 > k. On the right an incomplete bar with the shape of a parallelogram of
cardinality k = 4, attached to the quasi-regular hexagon EB5(3). We observe that the cardinality of
the bar containing the incomplete bar is ||B6||= 9 > k. Both configurations are examples of standard
polyiamonds.

Thus, RA has area A+k, where k is the smallest number of triangular units added to P to
build a quasi-regular hexagon.

Definition 4.1.14. For any A ∈ N, the maximal quasi-regular hexagon R′A is the largest
quasi-regular hexagon containing at most A triangular units.

Thus, R′A has area A− q, where q is the smallest number of triangular units that must be
removed from P to build a quasi-regular hexagon.

Definition 4.1.15. A canonical polyiamond of area A, denoted by S̃(A), is a quasi-regular
hexagon EBi

(r), for i ∈ {0, . . . ,5}, with possibly an additional incomplete bar of cardinality
k and such that it is contained in EBi+1(r) (see Fig. 4.3).

Definition 4.1.16. Orient the external boundary clockwise and attach an incomplete bar
to EBi

(r), for i ∈ {0, . . . ,5}, following this orientation. We call this canonical polyiamond
standard polyiamond and denote it by S(A), where A is its area.
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Definition 4.1.17. A polyiamond consisting of a quasi-regular hexagon with two triangular
units attached to one of its longest sides at triangular lattice distance 2 one from the other is
called defective and is denoted by D̃(A), where A is its area.

Note that a standard polyiamond S(A) is determined solely by its area A. We characterize
S(A) in terms of its radius r, the number i of bars attached to the regular hexagon E(r) to
obtain EBi

(r) and the cardinality k of the possibly incomplete bar. The values of r, i and k
for any value of A, together with the minimal and the maximal quasi-regular hexagons RA

and R′A, can be obtained with the following:

Algorithm 4.1.18. Construction of standard polyiamond with area A. Given A as input, the
outputs r, k, i, RA, R′A are obtained as follows:

1) Set r = [
√

A
6 ].

2) Let l be the difference between A and 6r2, i.e., l = A−6r2:

a) If l = 0, then RA =R′A = E(r); i= 0, k = 0.

b) If l− (2r−1)< 0, then RA = EB1(r) and R′A = E(r); i= 0, k = A−∥R′A∥.
c) If l− (2r−1) = 0, then RA =R′A = EB1(r); i= 1, k = 0.

d) If l− ((2r− 1) + (2r+ 1)) < 0, then RA = EB2(r) and R′A = EB1(r); i = 1,
k = A−∥R′A∥.

e) If l− ((2r−1)+(2r+1)) = 0, then RA =R′A = EB2(r); i= 2, k = 0.

f) If l− ((2r− 1) + 2(2r+ 1)) < 0, then RA = EB3(r) and R′A = EB2(r); i = 2,
k = A−∥R′A∥.

g) If l− ((2r−1)+2(2r+1)) = 0, then RA =R′A = EB3(r); i= 3, k = 0.

h) If l− ((2r− 1) + 3(2r+ 1)) < 0, then RA = EB4(r) and R′A = EB3(r); i = 3,
k = A−∥R′A∥.

i) If l− ((2r−1)+3(2r+1)) = 0, then RA =R′A = EB4(r); i= 4, k = 0.

j) If l− ((2r− 1) + 4(2r+ 1)) < 0, then RA = EB5(r) and R′A = EB4(r); i = 4,
k = A−∥R′A∥.

k) If l− ((2r−1)+4(2r+1)) = 0, then RA =R′A = EB5(r); i= 5, k = 0.

l) If l−((2r−1)+4(2r+1)+(2r+3))< 0, thenRA =EB6(r) andR′A =EB5(r);
i= 5, k = A−∥R′A∥.

Once the standard polyiamonds of area A have been described in the previous terms, it is
straightforward to write their perimeter as follows:

Remark 4.1.19. The perimeter of S(A) is p(A) = 6r+ i+1{k>0}+1{k>0 even} with r, i and
k given by the previous algorithm.



70 Transition time, critical configurations and typical paths

Notation 4.1.20. We denote by E(r) the configuration σ ∈X such that σ has a unique cluster
(of pluses) with shape E(r). We denote by EBi

(r) the configuration σ ∈ X such that σ has a
unique cluster (of pluses) with shape EBi

(r).

Notation 4.1.21. We denote by S̃(A) (respectively S(A), D̃(A)) the configuration σ ∈ X
such that σ has a unique cluster (of pluses) with shape S̃(A) (respectively S(A), D̃(A)).

Each of these geometrical definitions and properties can be extended from polyiamonds to
clusters. So, for example, when we call a cluster standard cluster, our meaning is that the
cluster has the shape and the properties of a standard polyiamond.
The next theorem states that the set of polyiamonds of minimal perimeter and area A contains
the set of standard polyiamonds with area A. In other words, standard polyiamonds minimize
the perimeter for any given number of triangular units.

Theorem 4.1.22. For any A ∈ N the perimeter of a polyiamond P of area A is at least
p(S(A)) where p(S(A)) is the perimeter of a standard polyiamond S(A).

The proof of Theorem 4.1.22 is deferred to Chapter 5.

Considering the construction of minimal RA and maximal R′A quasi-regular hexagons given
in the Algorithm 4.1.18, we get immediately the following:

Corollary 4.1.23. For any A positive integer there exist four positive integers r, k1, k2 and
k3 such that one of the following conditions applies:

1. A= 6r2 +k1 with 0≤ k1 < 2r−1. Then the set of polyiamonds of area A and minimal
perimeter contains the polyiamond S(6r2 +k1).

2. A = 6r2 + 2r− 1 +k2 with 0 ≤ k2 < 2r+ 1. Then the set of polyiamonds of area A
and minimal perimeter contains the polyiamond S(6r2 +2r−1+k2).

3. A = 6r2 + 4r+k2 with 0≤ k2 < 2r+ 1. Then the set of polyiamonds of area A and
minimal perimeter contains the polyiamond S(6r2 +4r+k2).

4. A = 6r2 + 6r+ 1 +k2 with 0 ≤ k2 < 2r+ 1. Then the set of polyiamonds of area A
and minimal perimeter contains the polyiamond S(6r2 +6r+1+k2).

5. A = 6r2 + 8r+ 2 +k2 with 0 ≤ k2 < 2r+ 1. Then the set of polyiamonds of area A
and minimal perimeter contains the polyiamond S(6r2 +8r+2+k2).

6. A= 6r2 +10r+3+k3 with 0≤ k3 < 2r+3. Then the set of polyiamonds of area A
and minimal perimeter contains the polyiamond S(6r2 +10r+3+k3).



4.2 Recurrence proposition 71

Moreover, the next lemma, proved in Section 5, states that for some specific values of the
area A there exists a unique class of polyiamonds that minimize the perimeter, namely the
class of quasi-regular hexagons with area A.

Lemma 4.1.24. If the area A of a polyiamond is 6r2 + 2mr+ (m− 2)1{m>0} for m ∈
{0,1, . . . ,5} the set of polyiamonds of area A and minimal perimeter contains only the
quasi-regular hexagons.

Proof of Lemma 4.1.24. Note that areas of the form 6r2 + 2mr+ (m− 2)1{m>0} for m ∈
{0,1, . . . ,5} are compatible with the area of quasi-regular hexagons. Let A be the area of
a quasi-regular hexagon and let p̄ be its edge-perimeter. The Lemma is clearly implied by
Lemma 5.2.3.

4.2 Recurrence proposition

The goal of this section is to prove Theorem 3.3.2. To achieve it we give some preliminary
definitions. Recalling Definitions (3.2.21) and (3.2.24), we divide the set of standard clusters
into three classes: supercritical, critical and subcritical clusters.

Definition 4.2.1. We call a standard cluster supercritical (respectively subcritical) if it has
the shape of S(A) with area A>A∗i (respectively A<A∗i ) for i ∈ {1,2}. A critical standard
cluster is a standard cluster which has the shape of S(A) with area A= A∗i .

We will see that supercritical standard clusters have the tendency to grow with high probability,
whereas subcritical standard clusters have the tendency to shrink with high probability.
The following definition distinguishes if two or more regular clusters of a configuration do
interact or they do not.

Definition 4.2.2. Two regular clusters Q and Q̃ are non-interacting if d(Q,Q̃)> 2, where
d(·, ·) is the lattice distance. Otherwise, the two regular clusters are called interacting.

Definition 4.2.3. We call a corner of a standard cluster C the pair of triangular faces of C
contained in the internal angle of 2

3π.

4.2.1 Recurrence property to the set XJ−h

In this section we identify the configurations in XJ−h, that is those configurations having a
“small” stability level, and partition this set into five subsets. This partition will turn out to be
convenient in the next section.
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Lemma 4.2.4. A configuration σ that satisfies at least one of the following conditions is not
in X0:

1. σ has either a cluster or a plus strip C with an internal angle of 5
3π;

2. σ has either a cluster or a plus strip C with an internal angle of 1
3π.

Moreover, a configuration σ is not in XJ−h if the cluster or the plus strip C has an internal
angle of 4

3π.

Proof of Lemma 4.2.4. Suppose that C has an internal angle α = 5
3π. Let j be the site at

distance one from a site in C such that σ(j) =−1 and that belongs to the closed triangular
face intersecting the boundary of C in two or more edges, see Figure 4.4, case (a). Since by
Table 3.1

H(σ(j))−H(σ) =−(J +h)< 0, (4.2.1)

σ(j) belongs to Iσ. Thus the stability level is equal to Vσ = 0 and it follows that σ ̸∈ X0.
Suppose now that C has an internal angle α= 1

3π. Let j be a site such that σ(j) = +1 and

j j
j1

j2

(a) (b) (c)
Figure 4.4 On the left hand side (respectively in the middle) we depict the site j as in case 1
(respectively case 2). On the right hand side we depict the two sites j1, j2 when σ has an internal
angle of 4

3π.

that belongs to the closed triangular face of C intersecting its boundary in two edges, see
Figure 4.4, case (b). Since by Table 3.1

H(σ(j))−H(σ) =−(J−h)< 0, (4.2.2)

σ(j) belongs to Iσ. Thus the stability level is equal to Vσ = 0 and it follows that σ ̸∈ X0.
Next we prove that if a configuration σ has a cluster or a plus strip C with an internal
angle of 4

3π, then σ ̸∈ XJ−h. Suppose that C has an internal angle α = 4
3π. We construct a

path that starts from σ ≡ ω0 and we define ω1 as follows. Let j1, j2 be two sites such that
σ(j1) = σ(j2) =−1, d(j1, j2) = 1 and let each of them belong to one closed triangular face
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intersecting the boundary of C in one edge, see Figure 4.4, case (c). Pick one of the two sites,
for example j1 and flips its spin, i.e., ω1 := ω

(j1)
0 . Then flip the spin of j2, i.e. ω2 := ω

(j2)
1 .

The stability level is bounded above by

Vσ ≤H(ω1)−H(ω0) = J−h, (4.2.3)

indeed the configuration ω2 is in Iσ since

H(ω2)−H(ω0) = (H(ω2)−H(ω1))+(H(ω1)−H(ω0))

=−(J +h)+(J−h) =−2h < 0.
(4.2.4)

Thus σ ̸∈ XJ−h.

Corollary 4.2.5. A configuration σ ∈ XJ−h if it only has non-interacting clusters or plus
strips with internal angles of 2

3π or π only.

Proof of Corollary 4.2.5. Suppose σ ∈ XJ−h. By Lemma 4.2.4, it follows that the clusters
(or the plus strips) of σ do not have angles of 5

3π, 1
3π and 4

3π. So, either σ ≡ +1 or the
clusters (or the plus strips) of σ have only internal angles of π and 2

3π.
We observe that if two clusters C1 and C2 are interacting, there exists a triangular face with
minus spin that shares a side with the external boundary of C1 and a side with the external
boundary of C2. This case can be treated as the case of clusters with an internal angle of 5

3π,
therefore by Lemma 4.2.4 these configurations do not belong to XJ−h.

Partition of XJ−h. We partition the set XJ−h \{−1,+1} into four subsets Z,R,U,Y . Let
Z be the set of configurations consisting of a single quasi-regular hexagonal cluster, see
Figure 4.5. More precisely, Z = Z1∪Z2, where:

• Z1 is the collection of configurations such that there exists only one cluster with shape
EBm(r)⊂ Λ with r ≤ r∗ and m ∈ {0,1,2,3,4,5};

• Z2 is the collection of configurations such that there exists only one cluster with shape
EBm(r)⊂ Λ with r ≥ r∗+1 and m ∈ {0,1,2,3,4,5}.

We define the set R to be the set of configurations consisting of a single regular cluster see
Figure 4.5. Formally, R =R1∪R2, where:

• R1 is the collection of configurations such that there exists only one cluster with
hexagonal shape E ⊂ Λ such that it contains the greatest quasi-regular hexagon with
radius r ≤ r∗;
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• R2 is the collection of configurations such that there exists only one cluster with
hexagonal shape E ⊂ Λ such that it contains the greatest quasi-regular hexagon with
radius r ≥ r∗+1.

Z1, Z2

−1

+1

R1, R2

−1

+1

Figure 4.5 On the left an example of configuration in Z, on the right an example of configuration in
R.

Let U be the set of configurations with more than one hexagonal cluster of the types in Z1,
Z2, R1, R2, see Figure 4.6. More precisely, we have U = U1∪U2, where:

• U1 is the collection of configurations such that there exists a family of non-interacting
clusters with hexagonal shape such that it contains the greatest quasi-regular hexagon
with radius r ≤ r∗;

• U2 is the collection of configurations such that there exists a family of clusters with at
least one having hexagonal shape containing the greatest quasi-regular hexagon with
radius r ≥ r∗+1.

In other words U1 contains a collection of clusters of the same type of those in Z1 or R1, and
U2 contains a collection of clusters where at least one is of the same type of those in Z2 or
R2.
Let Y be the set of all possible (plus or minus) strips with only π internal angles on their
boundary and, possibly, some hexagonal clusters, see Figure 4.6.

Corollary 4.2.6. We have XJ−h = Z ∪R∪U ∪Y ∪{+1,−1} and for any ϵ > 0 and suffi-
ciently large β,

sup
σ∈X

Pσ(τXJ−h
> eβ(J−h+ϵ)) = SES. (4.2.5)

Equation (4.2.5) implies that the system visits with high probability a state with a stability
level greater than J−h in a time shorter than eβ(J−h+ϵ). In other words, the states in XJ−h

are the relevant ones for a dynamics speeded up by a factor eβ(J−h).
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U1, U2

−1

+1

+1

+1

Y

−1 −1

+1+1

+1

Figure 4.6 On the left an example of configuration in U , on the right an example of configuration in
Y .

Proof of Corollary 4.2.6. By the partition described above, Definition (3.2.13) and Corollary
4.2.5 it follows that XJ−h =Z∪R∪U ∪Y ∪{+1,−1}. By [70, Theorem 3.1] for V = J−h
and by the partition of XJ−h, we get (4.2.5).

4.2.2 Proof of Theorem 3.3.2

Lemma 4.2.7 (Estimate of stability levels). For every η ∈ XJ−h \ {−1,+1}, there exists
V ∗ = 2J such that Vη ≤ V ∗.

Proof of Lemma 4.2.7. We begin by considering the set Z.

Case Z1. For any configuration σ ∈ Z1 we construct a path ω ∈ Θ(σ,Iσ ∩ (Z1∪{−1}))
that dismantles the bar on one of the shortest sides of the quasi-regular hexagon starting
from one of its corners. Starting from σ ≡ ω0 ∈ Z1, we define ω1 as follows. Consider a
corner in one of the shortest sides of the cluster in EBm(r) and let j be a site belonging to
this corner. Flip the spin in j, i.e., ω1 := ω

(j)
0 . Define ω2 := ω

(j1)
1 , where j1 is the other site

belonging to the same corner. From the values in Table 3.1, H(ω1)−H(ω0) = J +h and
H(ω2)−H(ω1) = −(J −h). By iterating this procedure along the considered side, a bar
of the cluster is erased and we obtain the configuration η ≡ ωk such that η = EBm−1(r) for
m ̸= 0, otherwise η = EB5(r−1) for m= 0. Note that the length of the path is equal to the
cardinality k of the bar.
In order to determine where the maximum is attained, we rewrite for n= 2, . . . ,k

H(ωn)−H(ω0) =


∑n

t=2, teven(H(ωt)−H(ωt−2)) if even n,∑n−1
t=2, teven(H(ωt)−H(ωt−2))+H(ωn)−H(ωn−1) if odd n.

(4.2.6)
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From the values in Table 3.1, we obtain for every s= 2, · · · ,k−1

H(ωs)−H(ωs−2) = [H(ωs)−H(ωs−1)]+ [H(ωs−1)−H(ωs−2)] = 2h. (4.2.7)

The previous result can also be obtained by using (3.2.19) and observing that flipping two
spins, as described above, corresponds to decreasing N+(σ) and leads to a cluster with a
Peierls contour of the same length. Thus, we have

H(ωn)−H(ω0) =


2hn−1

2 +(J +h) = J +nh if odd n= 1, · · · ,k−2,
2hn

2 = nh if even n= 2, · · · ,k−1,
−J +nh if n= k.

(4.2.8)

The absolute maximum is attained in ωk−2. By Remark 4.1.19 it follows

• k = 2r−1, if the initial configuration is EB1(r);

• k = 2r+1, if the initial configuration is EBm(r) for m= 2,3,4,5;

• k = 2r+3, if the initial configuration is E(r+1).

and we have

Φ(ω)−H(ω0) =H(ωk−2)−H(ω0) = J +(k−2)h. (4.2.9)

Thus Φ(ω) depends only on the cardinality k, that is an increasing function of the radius r of
the quasi-regular hexagon. The cardinality of the longest bar among those of the quasi-regular
hexagon in a configuration in Z1 is 2r∗+ 1 (obtained removing B5 from EB5(r∗)). Note
that the maximum is not obtained for k = 2r∗+ 3, since E(r∗+ 1) ̸∈ Z1. Let us check that
ωk ∈ Iσ ∩ (Z1∪{−1}). Since k ≤ 2r∗+1 with r∗ = ⌊J/2h−1/2⌋ and by (4.2.8), we get

H(ω0)−H(ωk) = J−kh≥ J− (2r∗+1)h > 0. (4.2.10)

Finally, by equations (4.2.10) and (4.2.9), we have

Vσ ≤ Φ(ω)−H(σ) = J +(k−2)h. (4.2.11)

Thus, we find V ∗Z1 = maxσ∈Z1 Vσ by choosing k− 2 = (2r∗+ 1)− 2 and recalling r∗ =
⌊J/2h−1/2⌋, we have

V ∗Z1 ≤ 2J−2h. (4.2.12)
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Case Z2. For any configuration σ ∈ Z2 we construct a path ω ∈ Θ(σ,Iσ ∩ (Z2∪{+1})).
Starting from σ ≡ ω0 ∈ Z2, let us define ω1. Consider a corner in one of the longest sides of
the cluster in EBm(r) and let j be a site belonging to this corner. Let j1 be the site at distance
one from j such that σ(j1) =−1. We define ω1 := ω

(j1)
0 , i.e., σ(j1) switches the sign. We

consider j2 the site at distance one from j1 such that σ(j2) = −1 and d(j2, j′) = 2 where
j′ ̸= j is another site of the initial cluster. We define ω2 := ω

(j2)
1 , ω3 := ω

(j3)
2 , where j3 is the

site at distance one from j2 such that σ(j3) =−1 and d(j3, j′) = 1 where j′ ̸= j is another
site of the initial cluster. By iterating this procedure along the considered side, a bar is added
to the initial cluster. We obtain the configuration η ≡ ωk such that η = EBm+1(r) for m ̸= 5,
otherwise η = E(r+1) for m= 5. Note that the length of the path is equal to the cardinality
k of the bar.
In order to determine where the maximum is attained, we rewrite for n= 2, . . . ,k

H(ωn)−H(ω0) =


∑n

t=2, teven(H(ωt)−H(ωt−2)) if even n,∑n−1
t=2, teven(H(ωt)−H(ωt−2))+H(ωn)−H(ωn−1) if odd n.

(4.2.13)

From the values in Table 3.1 we obtain H(ω1)−H(ω0) = J−h, H(ω2)−H(ω0) = 2J−2h,
and for every s= 3, · · · ,k

H(ωs)−H(ωs−2) = [H(ωs)−H(ωs−1)]+ [H(ωs−1)−H(ωs−2)] =−2h. (4.2.14)

The previous result can also be obtained by using (3.2.19) and observing that flipping two
spins, as described above, corresponds to increase N+(σ) and leads to a cluster with a Peierls
contour of the same length. Thus, we have

H(ωn)−H(ω0) =



J−h, if n= 1,
2J−2h, if n= 2,
−2hn−2

2 +(2J−2h) = 2J−nh, if even n= 4, · · · ,k−1,
−2hn−1

2 +(J−h) = J−nh, if odd n= 3, · · · ,k.
(4.2.15)

The absolute maximum is attained in ω2 and we have

Φ(ω)−H(ω0) =H(ω2)−H(ω0) = 2J−2h. (4.2.16)
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Finally, let us check that ωk ∈ Iσ ∩ (Z2∪{+1}). If σ ∈ Z2 \E(r∗+1), then the cardinality
of the smallest bar among those of the quasi-regular hexagon in a configuration in Z2 is
kmin = 2(r∗+1)+1. Since r∗ = ⌊J/2h−1/2⌋ and by (4.2.15), we have

H(ω0)−H(ωk) = kh−J ≥ kminh−J > 0, (4.2.17)

thus

Vσ ≤ Φ(ω)−H(σ) = 2J−2h. (4.2.18)

Now we consider E(r∗+ 1), we note that H(E(r∗+ 1)) <H(EB1(r∗+ 1)). Thus we need
to consider a new path ω that consists of the previously defined (E(r∗+1), . . . ,EB1(r∗+1))
connected with an additional part depending on the value of δ, where δ ∈ (0,1) is such that
r∗ = J/2h− 1/2− δ. If 0 < δ < 1

2 then we add the bar B2 as we have done above for B1

obtaining ω = (E(r∗+1), . . . ,EB1(r∗+1), . . . ,EB2(r∗+1)). If 1
2 < δ < 1 in the same manner

we add the bars B2,B3,B4,B5,B6 obtaining ω = (E(r∗+ 1), . . . ,EB1(r∗+ 1), . . . ,EB6(r∗+
1)≡ E(r∗+ 2)). In both cases the last configurations of the new paths belong to IE(r∗+1),
indeed

H(E(r∗+1))>H(EB2(r∗+1)), if δ ∈ (0, 12),

H(E(r∗+1))>H(E(r∗+2)), if δ ∈ (1
2 ,1).

Thus, using equations (4.2.15), (4.2.16) and (4.2.18), we obtain

Vσ ≤ 2J−2h+H(EB1(r∗+1))−H(E(r∗+1)) = 2J−2h+2hδ < 2J−h, for δ ∈
(

0, 12

)
,

Vσ ≤ 2J−2h+H(EB5(r∗+1))−H(E(r∗+1)) = 2J−10h+10hδ < 2J, for δ ∈
(1

2 ,1
)
.

Thus we find
V ∗Z2 = max

σ∈Z2
Vσ < 2J. (4.2.19)

In conclusion, we have V ∗Z = max{V ∗Z1 ,V
∗

Z2}< 2J .

Case R1. For any configuration σ ∈ R1 we construct a path ω ∈ Θ(σ,Iσ ∩ (R1 ∪Z1))).
Starting from σ ≡ ω0 ∈R1, let us define ω1. Consider the corner in one of the shortest sides
of the cluster and let j be a site belonging to it. We define ω1 := ω

(j)
0 , i.e., σ(j) switches the

sign. Consider j′ the other site belonging to the corner and define ω2 := ω
(j′)
1 , in this way

σ(j′) switches the sign. By iterating this procedure along the shortest side, a bar of the cluster
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is erased and we obtain the configuration η ≡ ωl, where l is the cardinality of the considered
bar. We observe that the greatest value of l is always smaller than the cardinality k of the
greatest bar of the quasi-regular hexagon contained in the cluster, that is l < k. Analogously
to the case Z1, ωl ∈ Iσ. Then Vσ < 2J−2h. Therefore,

V ∗R1 = max
σ∈R1

Vσ < 2J−2h. (4.2.20)

Case R2. For any configuration σ ∈ R2 we construct a path ω ∈ Θ(σ,Iσ ∩ (R2 ∪Z2 ∪
{+1})). Starting from σ ≡ ω0 ∈ R2, let us define ω1. Consider the corner in one of the
shortest sides of the cluster and let j be a site belonging to it. If the cardinality of the bar
l of the shortest side is smaller than 2(r∗+ 1)−1, we define ω1 := ω

(j)
0 , i.e. σ(j) switches

the sign. Consider the other site j′ belonging to the corner and define ω2 := ω
(j′)
1 , in this

way σ(j′) switches the sign. By iterating this procedure along the shortest side, a bar of the
cluster is erased and we obtain the configuration η ≡ ωl, where l is the cardinality of the
considered bar. Since l < 2(r∗+ 1)− 1, we observe that the greatest value of l is always
smaller then the cardinality k of the greatest bar of the quasi-regular hexagon contained in
the cluster, that is l < k. Analogously to the case Z1, ωl ∈ Iσ. Thus Vσ < 2J−2h.
If the cardinality of the bar l of the shortest side is bigger than 2(r∗+1)−1, consider the site
j1 at distance one from j and such that σ(j1) =−1. We define ω1 := ω

(j1)
0 , i.e. σ(j1) switches

the sign. Consider j2 the site at distance one from j1 such that σ(j2) =−1 and d(j2, j′) = 2
where j′ ̸= j is another site of the initial cluster. We define ω2 := ω

(j2)
1 , ω3 := ω

(j3)
2 , where

j3 is the site at distance one from j2 such that σ(j3) =−1 and d(j3, j′) = 1 where j′ ̸= j is
another site of the initial cluster. By iterating this procedure along the considered side, a bar
is added to the initial cluster. Analogously to the case Z2, ωl ∈ Iσ since l > 2(r∗+ 1)− 1.
Thus Vσ ≤ 2J−2h and

V ∗R2 ≤ 2J−2h. (4.2.21)

In conclusion, we have V ∗R = max{V ∗R1 ,V
∗

R2}< 2J .

Case U1. For every configuration σ in U1, all clusters are non-interacting and are of the
same type of those in Z1 or R1. If σ contains a cluster that is not a quasi-regular hexagon,
then we take our path to be the path that cuts a bar, analogously to what has been done for
R1. We get a configuration in Iσ ∩U1. Otherwise, if all clusters are quasi-regular hexagons,
then we take our path to be the path that cuts a bar of the cluster, analogously to what has
been done for Z1. We get a configuration in Iσ ∩ (U1∪Z1). So, we have

V ∗U1 = max{V ∗R1 ,V
∗

Z1}< 2J−2h. (4.2.22)
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Case U2. For every configuration σ in U2, there exists at least a cluster of the same type
of those in Z2 or R2. If σ contains a cluster of the type of those in R2, i.e. σ contains a
cluster that is not a quasi-regular hexagon, we take our path to be the path that cuts a bar as
it has been done for R2. We get a configuration in Iσ ∩U2. Otherwise, if the cluster is like
those in Z2, i.e. the cluster is a quasi-regular hexagon, then we take the path that adds a bar
to the quasi-regular hexagon, alike the cases encountered when considering Z2. We get a
configuration in Iσ ∩ (U2∪{+1}). So, we have

V ∗U2 = max{V ∗R2 ,V
∗

Z2}< 2J. (4.2.23)

We conclude that
V ∗U = max{V ∗U1 ,V

∗
U2}= V ∗Z .

Case Y . We analyze four different kinds of configurations.

1. If σ1 ≡ ω0 is a configuration in Y such that it has a minus strip that contains at least
a hexagon of the type of those in Z2 or R2, then we take our path to be as that in the
case U2 and we obtain a configuration in Iσ ∩ (Y ∪{+1}). So, we have

Vσ1 = V ∗U2 < 2J (4.2.24)

2. If σ2 ≡ ω0 is a configuration in Y such that it contains a plus strip with width greater
than one, then we take our path as follows. Pick a site j with σ(j) =−1 at distance
one from the strip. We define ω1 = ω

(j)
0 , i.e., σ(j) switches the sign. Then pick a site j1

at distance one from j such that σ(j1) =−1 and define ω2 = ω
(j1)
1 . Consider a site j2

nearest neighbor of j1 such that σ(j2) =−1 and define ω3 = ω
(j2)
2 . By iterating these

last two steps, we obtain a configuration in Iσ ∩ (Y ∪{+1}). In order to determine
where the maximum is attained we write for n= 2, · · · ,L−1

H(ωn)−H(ω0) =


∑n

t=2, teven(H(ωt)−H(ωt−2)) if even n,∑n
t=2, teven(H(ωt)−H(ωt−2))+H(ωn)−H(ωn−1) if odd n.

(4.2.25)

From the values in Table 3.1 we obtain

H(ω1)−H(ω0) = J−h, (4.2.26)

H(ω2)−H(ω0) = 2J−2h, (4.2.27)

H(ωL)−H(ωL−1) =−(J +h), (4.2.28)
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and for every t= 3, · · · ,L−1

H(ωt)−H(ωt−2) = [H(ωt)−H(ωt−1)]+ [H(ωt−1)−H(ωt−2)] =−2h. (4.2.29)

The previous result can also be obtained by using (3.2.19) and observing that flipping
two spins, as described above, corresponds to increasing N+(σ) and leads to a cluster
with a Peierls contour of the same length. Thus, we have

H(ωn)−H(ω0) =



J−h, if n= 1,
2J−2h, if n= 2,
−2hn−2

2 +(2J−2h) = 2J−nh, if even n= 4, · · · ,L−1,
−2hn−1

2 +(J−h) = J−nh, if odd n= 3, · · · ,L−1,
−2hn−4

2 +(2J−2h)− (2J +2h) =−Lh, if n= L.

(4.2.30)

The maximum of the last equations is obtained for n= 2 and it is attained in ω2. Using
(4.2.30), we prove that ωL ∈ Iσ ∩ (Y ∪{+1})

H(ω0)−H(ωL) = Lh > 0. (4.2.31)

Thus

Vσ2 ≤H(ω2)−H(ω0) = 2J−2h. (4.2.32)

3. If σ3 ≡ ω0 is a configuration in Y such that it contains a plus strip with width one,
then we take our path as follows. Pick a site j in the strip and define ω1 := ω

(j)
0 ,

i.e., σ(j) switches the sign. The difference of the energy given by the Table 3.1 is
H(ω1)−H(ω0) = J+h. Considering j2, j3, . . . the nearest sites in the strip, we define
ω2 := ωj2

1 , ω3 := ω
(j3)
2 and so on until we obtain a configuration in Iσ∩ (Y ∪Z1∪U1∪

{−1}). Finally, let us check that ωL ∈ Iσ ∩ (Y ∪{+1}). Using Table 3.1, we get

H(ωL)−H(ω0) = [H(ωL)−H(ωL−1)]+
L−1∑
t=2

(H(ωt)−H(ωt−1)+ [H(ω1)−H(ω0)]

=−(3J−h)− (L−2)(J−h)+(J +h) =−L(J−h)< 0.
(4.2.33)
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Thus
Vσ3 ≤ J +h. (4.2.34)

We conclude that
V ∗Y = max{Vσ1 ,Vσ2 ,Vσ3}< 2J.

Proof of Theorem 3.3.2. By applying [70, Theorem 3.1] for V ∗ = 2J and Lemma 4.2.7, we
get (3.3.1).

4.3 Identification of maximal stability level

4.3.1 Reference path

In this section we define our reference path, that is a sequence of configurations from −1 to
+1, that are increasing clusters as close as possible to quasi-regular hexagonal shape. We
first describe intuitively this path: starting from −1 we flip the spin at the origin and then
consecutively fill (flipping the spins from minus to plus) a standard cluster, see Figure 4.7.
More precisely, let ω∗ ∈Θ(−1,+1) be the path defined as follows. Starting from the origin,
we add clockwise six triangular units to obtain the first regular hexagon with radius r = 1,
that is E(1). Then for each r = 1, . . . ,m we construct the bar on the top of the hexagon E(r),
adding consecutive triangular units until we obtain EB1(r). Next we fill the bar on the top
right adding consecutive triangular units until we get EB2(r). We go on in the same manner
adding bars clockwise, until we get EB3(r),. . . ,EB6(r)≡ E(r+1). We iterate this procedure
until the hexagon is large enough to wrap around the torus along one direction, giving rise to
two triangles of minuses with side length L

2 . Now the reference path fills six triangular units
“covering” all the 5

3π angles. As a result, it is possible to identify six bars of length two, each
adjacent to one of the filled triangular units. For each initial triangle of minuses choose only
one of the previous bars and fill it. We obtain two bars of length three, each intersecting the
previous bars in the external boundary. Iterate this procedure filling at each step the bars of
length four, five, . . . , L

2 .
All configurations in this path contain a standard cluster with radius r < L

2 . Note that the
standard cluster E(L

2 ) wraps around the torus.

Proposition 4.3.1. The maximum of the energy in ω∗ between two consecutive quasi-regular
hexagons Φω∗(EBi

(r),EBi+1(r)) for every i= 0, . . . ,5 is achieved in the standard polyiamond
obtained adding to EBi

(r) one elementary rhombus with two pluses along the longest side
consecutive to Bi clockwise.
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Figure 4.7 The construction of a standard polyiamond.

Proposition 4.3.2. The maximum of the energy in ω∗ between two consecutive quasi-regular
hexagons Φω∗(EBi

(r),EBi−1(r)) for every i= 1, . . . ,6 is achieved in the standard polyiamond
obtained removing counter-clockwise from EBi

(r) a number of triangular units equals to
||Bi||−2.

Proof of Proposition 4.3.1. Let EBi
(r) and EBi+1(r) be two quasi-regular hexagons for

some r ∈ N and some i= 0, . . . ,5. Let An be the area obtained adding n triangular units to
the area of the quasi-regular hexagon EBi

(r), where n = 0, . . . , ||Bi+1||. Note that An

is the area of the standard polyiamond S(An). We observe that S(A0) ≡ EBi
(r) and

S(A||Bi+1||)≡ EBi+1(r). By Table 3.1, we have

H(S(An))−H(S(An−1)) =


J−h, if n= 1,
J−h, if n is even,

−(J +h), if n ̸= 1 is odd.

(4.3.1)

It follows that

H(S(An))−H(EBi
(r)) =

J−nh, if n is odd,

2J−nh, if n is even.
(4.3.2)

Since the r.h.s. of the last equation decreases with n in both the odd and the even case, it is
immediate to check that the maximum is attained for n= 2 namely in S(A2).

Proof of Proposition 4.3.2. Let EBi
(r) and EBi−1(r) be two quasi-regular hexagons for

some r ∈ N and some i= 1, . . . ,6. Let An be the area obtained adding n triangular units to



84 Transition time, critical configurations and typical paths

the area of the quasi-regular hexagon EBi−1(r), where n = 0, . . . , ||Bi||. Note that S(An)
can be obtained either by removing ||Bi||−n triangular units from EBi

(r) or by adding n
triangular units to EBi−1(r). We recall that removing a triangular unit means to flip a plus
spin into a minus spin. By Table 3.1, we have

H(S(An−1))−H(S(An)) =


J +h, if n ̸= ||Bi|| is odd,

−(J−h), if n is even,

−(J−h), if n= ||Bi||.

(4.3.3)

It follows that

H(S(An))−H(EBi
(r)) =


J +nh, if n ̸= ||Bi|| is odd,

nh, if n is even,

−(J−nh), if n= ||Bi||.

(4.3.4)

Since the r.h.s. of the last equation increases with n in all three cases and since ||Bi|| is
odd by Definition 4.1.11, the maximum is attained removing ||Bi||−2 triangular units from
EBi

(r), namely in S(A2).

Recalling Definition (3.2.21), from now on the strategy of the proof is to divide the reference
path ω∗ into three regions depending on r:

• the region r ≤ r∗ will be considered in Proposition 4.3.3;

• the region r = r∗+1 will be considered in Proposition 4.3.5;

• the region r ≥ r∗+2 will be considered in Proposition 4.3.4.

Proposition 4.3.3. If r ≤ r∗, then the communication height between two consecutive
regular hexagons Φω∗(E(r),E(r+ 1)) along the path ω∗ is achieved in a configuration
with a standard cluster such that the number of its triangular units is Ã = 6r2 + 10r+ 5,
that is Φω∗(E(r),E(r + 1)) = Φω∗(EB5(r),E(r + 1)) = H(S(Ã))−H(−1). Moreover,
Φω∗(−1,E(r∗+1)) = Φω∗(E(r∗),E(r∗+1)) =H(S(A1))−H(−1) is achieved in a config-
uration with a standard cluster S(A1) such that A1 := 6r∗2 +10r∗+5.

Proposition 4.3.4. If r ≥ r∗+ 2, then the communication height between two consecutive
regular hexagons Φω∗(E(r),E(r+ 1)) along the path ω∗ is achieved in a configuration
with a standard cluster such that the number of its triangular units is Ã = 6r2 + 2, that
is Φω∗(E(r),E(r+ 1)) = Φω∗(E(r),EB1(r)) = H(S(Ã))−H(−1). Moreover, Φω∗(E(r∗+
2),+1) = Φω∗(E(r∗+ 2),E(r∗+ 3)) = H(S(A2))−H(−1) is achieved in a configuration
with a standard cluster S(A2) such that A2 := 6(r∗+2)2 +2.
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Proposition 4.3.5. If r = r∗+ 1, then r = ⌊J/2h+ 1/2⌋ and the communication height
Φω∗(E(r∗+1),E(r∗+2)) along the path ω∗ is achieved in a configuration with a standard
cluster S(A3) with A3 := 6(r∗+1)2 +2(r∗+1)+1.

Proof of Proposition 4.3.3. Let m be the number of site pairs (i, j) such that d(i, j) = 1 with
i, j ∈ Λ, and let p(S(A)) be the perimeter of the standard hexagon S(A). By Definition
3.2.19, we have:

H(S(A))−H(−1) = Jp(S(A))−hA. (4.3.5)

By Remark 4.1.19, it follows that:

H(S(A))−H(−1) =



−6r2h+6rJ +2J−2h for A= 6r2 +2
−6r2h+6rJ−2rh+3J−h for A= 6r2 +2r+1
−6r2h+6rJ−4rh+4J−2h for A= 6r2 +4r+2
−6r2h+6rJ−6rh+5J−3h for A= 6r2 +6r+3
−6r2h+6rJ−8rh+6J−4h for A= 6r2 +8r+4
−6r2h+6rJ−10rh+7J−5h for A= 6r2 +10r+5

(4.3.6)

We compare Φω∗(E(r),EB1(r)) with Φω∗(EB1(r),EB2(r)). By Proposition 4.3.1, we have:

Φω∗(E(r),EB1(r)) =H(S(6r2 +2))−H(−1)

Φω∗(EB1(r),EB2(r)) =H(S(6r2 +2r+1))−H(−1).

Using (4.3.6) we get that if r ≤ J
2h + 1

2

Φω∗(E(r),EB1(r))≤ Φω∗(EB1(r),EB2(r)) (4.3.7)

Since we assume r ≤ r∗, the inequality (4.3.7) is satisfied.

We compare Φω∗(EB1(r),EB2(r)) with Φω∗(EB2(r),EB3(r)). By Proposition 4.3.1, we have:

Φω∗(EB1(r),EB2(r)) =H(S(6r2 +2r+1))−H(−1)

Φω∗(EB2(r),EB3(r)) =H(S(6r2 +4r+2))−H(−1).
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Using (4.3.6) we get that if r ≤ J
2h −

1
2

Φω∗(EB1(r),EB2(r))≤ Φω∗(EB2(r),EB3(r)). (4.3.8)

Since we assume r ≤ r∗, the inequality (4.3.8) is satisfied.

We compare Φω∗(EB2(r),EB3(r)) with Φω∗(EB3(r),EB4(r)). By Proposition 4.3.1, we have:

Φω∗(EB2(r),EB3(r)) =H(S(6r2 +4r+2))−H(−1)

Φω∗(EB3(r),EB4(r)) =H(S(6r2 +6r+3))−H(−1).

Using (4.3.6) we get that if r ≤ J
2h −

1
2

Φω∗(EB2(r),EB3(r))≤ Φω∗(EB3(r),EB4(r)). (4.3.9)

Since we assume r ≤ r∗, the inequality (4.3.9) is satisfied.

We compare Φω∗(EB3(r),EB4(r)) with Φω∗(EB4(r),EB5(r)). By Proposition 4.3.1, we have:

Φω∗(EB3(r),EB4(r)) =H(S(6r2 +6r+3))−H(−1)

Φω∗(EB4(r),EB5(r)) =H(S(6r2 +8r+4))−H(−1).

Using (4.3.6) we get that if r ≤ J
2h −

1
2

Φω∗(EB3(r),EB4(r))≤ Φω∗(EB4(r),EB5(r)). (4.3.10)

Since we assume r ≤ r∗, the inequality (4.3.10) is satisfied.

We compare Φω∗(EB4(r),EB5(r)) with Φω∗(EB5(r),E(r+ 1)). By Proposition 4.3.1, we
have:

Φω∗(EB4(r),EB5(r)) =H(S(6r2 +8r+4))−H(−1)

Φω∗(EB5(r),E(r+1)) =H(S(6r2 +10r+5))−H(−1).

Using (4.3.6) we get that if r ≤ J
2h −

1
2

Φω∗(EB4(r),EB5(r))≤ Φω∗(EB5(r),E(r+1)). (4.3.11)
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Since we assume r ≤ r∗, the inequality (4.3.11) is satisfied.
Thus the communication height between two consecutive regular hexagons along the path ω∗

is achieved in S(Ã) with Ã= 6r2 +10r+5, that is

Φω∗(E(r),E(r+1)) = Φω∗(EB5(r),E(r+1)) =H(S(Ã))−H(−1).

The maximum of the function H(S(Ã))−H(−1) = −6r2h+ 6rJ − 10rh+ 7J − 5h is
obtained in rmax = J

2h −
5
6 . However r must be integer and r ≤ r∗, therefore the maximum is

attained in r∗ and

Φω∗(−1,E(r∗+1)) = Φω∗(E(r∗),E(r∗+1)) =H(S(A1))−H(−1)

where S(A1) is a configuration with a standard cluster such that A1 := 6r∗2 +10r∗+5.

Proof of Proposition 4.3.4. We compare Φω∗(E(r),EB1(r)) with Φω∗(EB1(r),EB2(r)). By
Proposition 4.3.1 we have:

Φω∗(E(r),EB1(r)) =H(S(6r2 +2))−H(−1)

Φω∗(EB1(r),EB2(r)) =H(S(6r2 +2r+1))−H(−1).

Using (4.3.6) we get that if r ≥ J
2h + 1

2

Φω∗(E(r),EB1(r))≥ Φω∗(EB1(r),EB2(r)). (4.3.12)

Since we assume r ≥ r∗+2, the inequality (4.3.12) is satisfied.

We compare Φω∗(EB1(r),EB2(r)) with Φω∗(EB2(r),EB3(r)). By Proposition 4.3.1 we have:

Φω∗(EB1(r),EB2(r)) =H(S(6r2 +2r+1))−H(−1))

Φω∗(EB2(r),EB3(r)) =H(S(6r2 +4r+2))−H(−1).

Using (4.3.6) we get that if r ≥ J
2h −

1
2

Φω∗(EB1(r),EB2(r))≥ Φω∗(EB2(r),EB3(r)). (4.3.13)

Since we assume r ≥ r∗+2, the inequality (4.3.13) is satisfied.
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We compare Φω∗(EB2(r),EB3(r)) with Φω∗(EB3(r),EB4(r)). By Proposition 4.3.1 we have:

Φω∗(EB2(r),EB3(r)) =H(S(6r2 +4r+2))−H(−1)

Φω∗(EB3(r),EB4(r)) =H(S(6r2 +6r+3))−H(−1).

Using (4.3.6) we get that if r ≥ J
2h −

1
2

Φω∗(EB2(r),EB3(r))≥ Φω∗(EB3(r),EB4(r)). (4.3.14)

Since we assume r ≥ r∗+2, the inequality (4.3.14) is satisfied.

We compare Φω∗(EB3(r),EB4(r)) with Φω∗(EB4(r),EB5(r)). By Proposition 4.3.1 we have:

Φω∗(EB3(r),EB4(r)) =H(S(6r2 +6r+3))−H(−1)

Φω∗(EB4(r),EB5(r)) =H(S(6r2 +8r+4))−H(−1).

Using (4.3.6) we get that if r ≥ J
2h −

1
2

Φω∗(EB3(r),EB4(r))≥ Φω∗(EB4(r),EB5(r)). (4.3.15)

Since we assume r ≥ r∗+2, the inequality (4.3.15) is satisfied.

We compare Φω∗(EB4(r),EB5(r)) with Φω∗(EB5(r),E(r+ 1)). By Proposition 4.3.1 we
have:

Φω∗(EB4(r),EB5(r)) =H(S(6r2 +8r+4))−H(−1)

Φω∗(EB5(r),E(r+1)) =H(S(6r2 +10r+5))−H(−1).

Using (4.3.6) we get that if r ≥ J
2h −

1
2

Φω∗(EB4(r),EB5(r))≥ Φω∗(EB5(r),E(r+1)). (4.3.16)

Since we assume r ≥ r∗+2, the inequality (4.3.16) is satisfied.
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Thus the communication height between two consecutive regular hexagons along the path ω∗

is achieved in S(Ã) with Ã= 6r2 +2, that is

Φω∗(E(r),E(r+1)) = Φω∗(E(r),EB1(r)) =H(S(Ã))−H(−1).

The maximum of the function H(S(Ã))−H(−1) =−6r2h+6rJ +2J−2h is obtained in
rmax = J

2h , but r must be integer and r ≥ r∗+2, therefore the maximum is attained in r∗+2
and

Φω∗(E(r∗+2),+1) = Φω∗(E(r∗+2),E(r∗+3)) =H(S(A2))−H(−1)

where S(A2) is a configuration with a standard cluster such that A2 := 6(r∗+2)2 +2.

Proof of Proposition 4.3.5. We analyze Φω∗(E(r∗+1),E(r∗+2)). With the same arguments
of the proofs of Propositions 4.3.3 and 4.3.4, we consider the Equation (4.3.12) which holds
if and only if r ≥ J

2h + 1
2 . In this case, we consider r = r∗+1 = ⌊ J

2h + 1
2⌋, thus we have

Φω∗(E(r),EB1(r))< Φω∗(EB1(r),EB2(r)). (4.3.17)

Equations (4.3.13) - (4.3.16) hold if and only if r ≥ J
2h −

1
2

Φω∗(EB1(r),EB2(r))>Φω∗(EB2(r),EB3(r))
>Φω∗(EB3(r),EB4(r))
>Φω∗(EB4(r),EB5(r))
>Φω∗(EB5(r),E(r+1)).

Then the communication height along the path ω∗ between two consecutive regular hexagons
with radius r∗+1 is

Φω∗(E(r∗+1),E(r∗+2)) = Φω∗(EB1(r∗+1),EB2(r∗+1))

and, by Proposition 4.3.1, it is achieved in S(A3), such that A3 := 6(r∗+1)2 +2(r∗+1)+
1.

Corollary 4.3.6. Let δ ∈ (0,1) such that J
2h −

1
2 − δ is integer. The maximum Φω∗(−1,+1)

along the path ω∗ is achieved in a configuration with a standard cluster with area A∗i for
i ∈ {1,2} (see Figure 4.8 and 4.9), where

1. A∗1 = A1 = 6r∗2 +10r∗+5, if 0< δ < 1
2 ;

2. A∗2 = A3 = 6(r∗+1)2 +2(r∗+1)+1, if 1
2 < δ < 1.
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Figure 4.8 An example of the energy landscape between E(r∗) and E(r∗ + 3) for the values of the
external magnetic field h = 5/7 and the ferromagnetic interaction J = 7, thus δ ∈ (0,1/2). We zoom
in some part of the energy landscape, in order to compare the saddles and we highlight the maximal
saddle in blue.

Proof of Corollary 4.3.6. We compare Φω∗(−1,E(r∗+ 1)), Φω∗(E(r∗+ 1),E(r∗+ 2)) and
Φω∗(E(r∗+2),+1). By Proposition 4.3.3, we have

Φω∗(−1,E(r∗+1)) =H(S(A1))−H(−1)
=−6r∗2h+6r∗J−10r∗h+7J−5h. (4.3.18)

By Proposition 4.3.5, we have

Φω∗(E(r∗+1),E(r∗+2)) =H(S(A3))−H(−1)
=−6(r∗+1)2h+6(r∗+1)J−2(r∗+1)h+3J−h. (4.3.19)

By Proposition 4.3.4, we have

Φω∗(E(r∗+2),+1) =H(S(A2))−H(−1)
=−6(r∗+2)2h+6(r∗+2)J +2J−2h. (4.3.20)
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Figure 4.9 An example of the energy landscape between E(r∗) and E(r∗ + 3) for the values of the
external magnetic field h = 1, the ferromagnetic interaction J = 21/2, thus δ ∈ (1/2,1). We zoom in
some part of the energy landscape, in order to compare the saddles and we highlight the maximal
saddle in blue.

Recalling Definition 3.2.21 and comparing equations (4.3.18), (4.3.19), (4.3.20), we obtain

Φω∗(−1,E(r∗+1))> Φω∗(E(r∗+2),+1), (4.3.21)

Φω∗(E(r∗+1),E(r∗+2))> Φω∗(E(r∗+2),+1). (4.3.22)

Thus Φω∗(E(r∗+2),+1) can not be the maximum. As it can be seen in the figures 4.8 and
4.9 and by standard computations, we have

Φω∗(−1,E(r∗+1))> Φω∗(E(r∗+1),E(r∗+2)), if 0< δ <
1
2 (4.3.23)

Φω∗(E(r∗+1),E(r∗+2))> Φω∗(−1,E(r∗+1)), if
1
2 < δ < 1 (4.3.24)

So, if 0 < δ < 1
2 , then the maximum Φω∗(−1,+1) = Φω∗(−1,E(r∗+ 1)) is achieved in a

configuration with the standard cluster S(6r∗2 +10r∗+5). If 1
2 < δ < 1, then the maximum

Φω∗(−1,+1) = Φω∗(E(r∗+ 1),E(r∗2 + 1)) is achieved in a configuration with the standard
cluster S(6(r∗+1)2 +2(r∗+1)+1). Moreover, we observe that if δ = 1

2 , then the maximum
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Φω∗(−1,+1) = Φω∗(−1,E(r∗+1)) = Φω∗(E(r∗+1),E(r∗+2)) is achieved in two configu-
rations with the standard clusters S(6r∗2 +10r∗+5) and S(6(r∗+1)2 +2(r∗+1)+1).

4.3.2 Lower bound of maximal stability level

Let σ ∈ X and denote by F(Q) the set of ground states in Q⊆X , that is

F(Q) := {y ∈Q|min
x∈Q

H(x) =H(y)}. (4.3.25)

For n integer, 0≤ n≤ |Λ|, we introduce the following set

Vn := {σ ∈ X |N+(σ) = n}, (4.3.26)

namely Vn is the set of configurations with a number of plus spins fixed at the value n. The
number of pluses corresponds to the area of the cluster.

Lemma 4.3.7. Assume that Condition 3.3.1 is satisfied. We have

1. Let σ ∈ VA∗i
for i ∈ {1,2}, we have that the set N+(σ) is not a nearest neighbor

connected subset of Λ winding around the torus Λ;

2. VA∗i
⊃ S(A∗i ), for i ∈ {1,2};

3. H(F(VA∗i
)) =H(−1)+ΓHex, for i ∈ {1,2}.

Proof of Lemma 4.3.7. 1. Recalling the two cases of critical area in Corollary 4.3.6 and
observing that r∗ < J

2h , we have

a. Consider A∗1 = 6r∗2 +10r∗+5 and let σ ∈ VA∗1

|N+(σ)|= 6r∗2 +10r∗+5< 6(r∗+1)2 < 6
(
J

2h +1
)2

≤ 6
(
J

h

)2
<
(4J
h

)2
(4.3.27)

where in the third inequality we have used that, by Condition 3.3.1, J ≥ 2h. The

item follows since, by Condition 3.3.1, we have that |Λ| ≥
(

4J
h

)2
.

b. Consider A∗2 = 6(r∗+1)2 +2(r∗+1)+1 and let σ ∈ VA∗2

|N+(σ)|= 6(r∗+1)2 +2(r∗+1)+1< 6(r∗+2)2 < 6
(
J

2h +2
)2

≤ 6
(3J

2h

)2
<
(4J
h

)2
(4.3.28)
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where in the third inequality we have used that, by Condition 3.3.1, J ≥ 2h. The

item follows since, by Condition 3.3.1, we have that |Λ| ≥
(

4J
h

)2
.

2. By Equation (4.3.26) and Definition 4.1.16 of standard polyamond S(A∗i ) and the
corresponding cluster in S(A∗i ), we have VA∗i

⊃ S(A∗i ), for i ∈ {1,2}.

3. Let m be the number of site pairs of Λ at lattice distance one, and let p(C) be the
perimeter of the cluster C in a configuration σ(C) ∈ VA∗i

. By (3.2.19) we have:

min
σ(C)∈VA∗

i

H(σ(C)) = min
σ(C)∈VA∗

i

[
H(−1)+Jp(C)−hA∗i

]
=H(−1)−hA∗i +J min

σ(C)∈VA∗
i

p(C)

=H(−1)−hA∗i +Jp(S(A∗i )), (4.3.29)

where in the last equality we use Theorem 4.1.22. Using Remark 4.1.19 and the values
of A∗i given in Corollary 4.3.6, we compute p(S(A∗i )) for i= 1,2, obtaining

−hA∗i +Jp(S(A∗i )) =

−6r∗2h+6r∗J−10r∗h+7J−5h for i= 1
−6(r∗+1)2h+6(r∗+1)J−2(r∗+1)h+3J−h for i= 2

Recalling Definition 3.2.21, we observe that these values correspond to the Definition
3.2.23. Therefore

H(F(VA∗i
)) =H(−1)+ΓHex. (4.3.30)

Lemma 4.3.8. Assume that Condition 3.3.1 is satisfied. We have that Φω∗(−1,+1)−
H(−1) = ΓHex.

Proof of Lemma 4.3.8. By Corollary 4.3.6, we have two values of A∗i depending on the two
parameters J,h. We analyze two different cases:

• A∗1 = 6r∗2 +10r∗+5. By Corollary 4.3.6, we have

Φω∗(−1,+1)−H(−1) =H(S(A∗1))−H(−1) =−6r∗2h+6r∗J−10r∗h+7J−5h
(4.3.31)

and this value corresponds to that of Definition 3.2.23.

• A∗2 = 6(r∗+1)2 +2(r∗+1)+1. By Corollary 4.3.6, we have

Φω∗(−1,+1)−H(−1) =H(S(A∗2))−H(−1)



94 Transition time, critical configurations and typical paths

=−6(r∗+1)2h+6(r∗+1)J−2(r∗+1)h+3J−h
(4.3.32)

and this value corresponds to that of Definition 3.2.23.

4.4 Metastable state, gate, transition time and spectral gap

The present Section is devoted to the proofs of those theorems introduced in Section 3.3
concerning respectively: the identification of the metastable state (Theorem 3.3.3), the
behavior of the transition time (Theorems 3.3.4, 3.3.5 and 3.3.6), the estimates for the mixing
time and the spectral gap (Theorem 3.3.7) and the identification of the critical configurations
that exhibit a gate property (Theorem 3.3.8).

Proof of Theorem 3.3.3. In Section 4.3.1 we computed the value of Γ to be ΓHex, see Defi-
nition (3.2.23). There, we also proved that

Φ(−1,+1)−H(−1) = ΓHex. (4.4.1)

Thus, the first assumption of [30, Theorem 2.4] is satisfied for the choice of A= {−1} and
a= ΓHex. The second assumption of [30, Theorem 2.4] is satisfied thanks to Lemma 4.2.7,
since either X \{−1,+1}= ∅ or

Vσ < ΓHex for all σ ∈ X \{−1,+1}. (4.4.2)

Finally, by applying [30, Theorem 2.4], we conclude that Γm = ΓHex and Xm = {−1}.

Proof of Theorem 3.3.4. Apply [70, Theorem 4.1] with η0 = {−1} and Γ = ΓHex.

Proof of Theorem 3.3.6. By Theorem 3.3.2, the assumptions of [70, Theorem 4.15] are
verified taking η0 = {−1} and T ′β = eβ(V ∗+ϵ). Then (3.3.5) and (3.3.6) follow from [70,
Theorem 4.15].

Proof of Theorem 3.3.7. By [77, Lemma 3.24 and Example 3], since Γm = ΓHex thanks to
Theorem 3.3.3, we get the result.

Proof of Theorem 3.3.8. Recalling the two cases in Corollary 4.3.6, we analyze for i∈ {1,2}
the elements of VA∗i

with minimal perimeter (otherwise the configuration has, at least, energy
H(−1) + ΓHex + 2h). By Lemma 5.2.5, we have that every optimal path from −1 to +1
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intersects the configurations with cluster of area A∗i −2 and minimal perimeter (otherwise
the configuration has, at least, energy H(−1)+ΓHex +2h) consisting of the quasi-regular
hexagons EB5(r∗) if i = 1 and EB1(r∗+ 1) if i = 2. Adding two triangular units to these
quasi-regular hexagons, we obtain an element σ(C∗) of VA∗i

, see Figure 4.10. σ(C∗) is a
configuration with a cluster C∗ which is composed by a quasi-regular hexagonal cluster and
two triangular units attached to it according to one of the following cases:

(1) the two triangular units form an elementary rhombus which is attached to one of the
longest sides of the quasi-regular hexagonal cluster, S̃(A∗i );

(2) the two triangular units are attached to one of the longest sides of the quasi-regular
hexagonal cluster at triangular lattice distance 2, D̃(A∗i );

(3) the two triangular units are attached to the same side of the quasi-regular hexagonal
cluster at triangular lattice distance grater than 2;

(4) the two triangular units are attached to two different sides of the quasi-regular hexago-
nal cluster;

(5) the two triangular units form an elementary rhombus which is attached to one of the
sides, other than the longest, of the quasi-regular hexagonal cluster;

(6) the two triangular units are attached at triangular lattice distance 2 to the same side,
other than the longest, of the quasi-regular hexagonal cluster.

We note that in all the above casesC∗ has minimal perimeter, sinceC∗ has the same perimeter
of a standard hexagon with the same area. In the remainder we analyze the previous cases
from a dynamical point of view. We will show that all optimal paths must go through a
configuration as in case (1) or (2), whereas optimal paths visiting configurations as those of
cases (3), (4), (5), and (6) (dead ends) must go back to configurations as those of the first two
cases before reaching +1.
Let ω0 be the configuration that contains the quasi-regular hexagon of area A∗i − 2. ω1 is
obtained from ω0 flipping a minus spin adjacent to the cluster and ω2 is obtained from ω1

flipping another minus spin to reach a configuration as those of the cases described above.
By Table 3.1, we have

H(ω2)−H(ω0) = [H(ω2)−H(ω1)]+ [H(ω1)−H(ω0)] = 2J−2h. (4.4.3)

We observe that H(ω2)−H(−1) =H(σ(C∗))−H(−1) is equal to ΓHex by Corollary 4.3.6,
Lemma 4.3.7 and Lemma 4.3.8. Next, we consider a configuration ω3 obtained from ω2

flipping another minus spin. We observe that the perimeter of the cluster decreases only if
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we add a plus spin in a site belonging to an internal angle of 5
3π (of the cluster). This spin

flip can be done only in the cases (1) and (2) above, see Figure 4.10. In these two cases, we

Figure 4.10 From left to right we depict configurations in cases (1),(2),(3),(4) where two triangular
units are added to the quasi-regular hexagon. In red the third triangular unit that can be added only in
cases (1) and (2) decreasing the energy.

obtain ω3 adding the third triangular unit to cover the internal angle of 5
3π. Therefore, the

energy of the system is lowered by J +h, see Table 3.1:

H(ω3)−H(ω2) =−(J +h). (4.4.4)

Thus, we have

H(ω3)−H(−1) = [H(ω3)−H(ω2)]+ [H(ω2)−H(−1)] =−(J +h)+ΓHex < ΓHex.

(4.4.5)
In cases (3) and (4) the cluster does not have an angle of 5

3π. This implies that when we add
another triangular unit, the energy of the system can only increase. Thus, we have

H(ω3)−H(ω2)≥ J−h, (4.4.6)

and

H(ω3)−H(−1) = [H(ω3)−H(ω2)]+[H(ω2)−H(−1)]≥ J−h+ΓHex > ΓHex. (4.4.7)

To rule out cases (5) and (6), we show that the two triangular units have to be attached
along one of the longest sides of the quasi-regular hexagon. In particular, recalling Corollary
4.3.6 and Definition 3.2.24, if δ ∈ (0, 1

2) we must attach the two triangular units along the
longest side of EB5(r∗). Indeed, recalling Definition 4.1.11, the longest side of EB5(r∗)
has length r∗+ 2 and it has the same length of the larger base of the bar B6, that has
cardinality 2r∗+ 3. Any other side s of EB5(r∗) has length r∗+ 1, so the bar B with the
larger base r∗+1 has cardinality l= 2r∗−1. Suppose by contradiction that there exits a path
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ω̃ := (ω0, . . . ,ω2, . . . ,ωl, . . . ,ωl+2, . . . ,ω2r∗+3) that intersects the configurations described in
case (5) and (6) with Φω̃ ≤H(−1)+ΓHex. Let ω0 := EB5(r∗), ω2 be the configuration with
the two triangular units attached along s, ω3, . . . ,ωl be the configurations obtained filling the
new bar B and let ωl+2 be the configuration obtained from ωl attaching two triangular units.
Recalling (4.2.15) and (3.2.21), we have the following contradiction

H(ωl+2)−H(−1) = [H(ωl+2)−H(ωl)]+ [H(ωl)−H(ω2)]+ [H(ω2)−H(−1)]
= [2J−2h]+ [−J− (l−2)h]+ΓHex = J− lh+ΓHex =
= J− (2r∗−1)h+ΓHex = 2h(δ+1)+ΓHex > ΓHex. (4.4.8)

Analogously, if δ ∈ (1
2 ,1) we must attach the two triangular units along one of the longest

sides of EB1(r∗+ 1). Indeed, recalling Definition 4.1.11, there exist two longest sides of
EB1(r∗+1) with length r∗+2 and each of these sides has the same length of the larger base
of a bar with cardinality 2(r∗+1)+1. The other sides s of EB1(r∗+1) have length r∗+1
and the corresponding bars have cardinality 2(r∗+1)−1. Suppose by contradiction that there
exits a path ω̃ := (ω0, . . . ,ω2, . . . ,ωl, . . . ,ωl+2, . . . ,ω2r∗+3) that intersects the configurations
described in case (5) and (6) with Φω̃ ≤H(−1) + ΓHex. Let ω0 := EB1(r∗+ 1), ω2 be the
configuration with the two triangular units attached along s, ω3, . . . ,ωl be the configurations
obtained filling the new bar B and let ωl+2 be the configuration obtained from ωl attaching
two triangular units. Recalling (4.2.15) and (3.2.21), we have the following contradiction

H(ωl+2)−H(−1) = [H(ωl+2)−H(ωl)]+ [H(ωl)−H(ω2)]+ [H(ω2)−H(−1)]
= [2J−2h]+ [−J− (l−2)h]+ΓHex = J− lh+ΓHex =
= J− (2(r∗+1)−1)h+ΓHex = 2hδ+ΓHex > ΓHex. (4.4.9)

Therefore, the two triangular units have to be attached along one of the longest sides of
the quasi-regular hexagon as in case (1) and (2). Recalling Definition 3.2.4 and 3.2.5, let
W(−1,+1) be a minimal gate for the transition from −1 to +1. By the previous analysis,
we have that all configurations as those in the cases (3), (4), (5), (6) are not inW(−1,+1).
Moreover, observing that configurations as those of case (1) correspond to the configurations
S̃(A∗i ) and configurations as those of case (2) correspond to the configurations D̃(A∗i ) (see
Figure 3.3), we concludeW(−1,+1) = S̃(A∗i )∪D̃(A∗i ).
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4.4.1 Sharp estimate of the transition time

To prove Theorem 3.3.5, we estimate the capacity between −1 and +1 which is linked to the
mean hitting time of the stable state through the following formula (see [12, Corollary 7.11]):

E−1[τ+1] = 1
CAP(−1,+1)

∑
σ∈X

µ(σ)h−1,+1(σ). (4.4.10)

For a detailed discussion of the strategy outlined below to estimate the capacity refer to [12].

Capacity as the minimum of the Dirichlet form. Let h :X → R and consider the follow-
ing Dirichlet form

E(h) = 1
2
∑

σ,η∈X
µ(σ)p(σ,η)[h(σ)−h(η)]2 (4.4.11)

= 1
2
∑

σ,η∈X

e−βH(σ)

Z

e−β[H(η)−H(σ)]+

|Λ| [h(σ)−h(η)]2 (4.4.12)

where Z is the partition function Z :=∑
η∈X e

−βH(η) .
Given two non-empty disjoint sets A, B the capacity of the pair A, B is defined by

CAP(A,B) := min
h:X→[0,1]

h|A=1,h|B=0

E(h). (4.4.13)

From this definition it follows immediately that the capacity is a symmetric function of the
sets A and B.
The right hand side of (4.4.13) has a unique minimizer h∗A,B called equilibrium potential of
the pair A, B given by

h∗A,B(η) = Pη(τA < τB), (4.4.14)

for any η /∈ A∪B.

Hence, inserting a general test function h in the Dirichlet form, one obtains an upper bound
for the capacity. Obviously, the closer h is to the equilibrium potential, the sharper is the
bound.

Capacity as the maximum of the expectation of a flow dependent variable. A remark-
able property of capacity is that it can be characterized also by another variational principle,
useful to obtain a lower bound. Think to X as the vertex set of a graph (X ,L) whose edge
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set L consists of all pairs (σ,η) with σ,η ∈ X for which P (σ,η) > 0 (see also [75, 15, 10]
for further details and applications to several models).

Definition 4.4.1. Given two non-empty disjoint sets A,B ⊂X , a loop-free non-negative unit
flow, f , from A to B is a function f : E→ [0,∞) such that:

(a) (f(e)> 0 =⇒ f(−e) = 0) ∀e ∈ E.

(b) f satisfies Kirchoff’s law:

∑
σ′∈X

f(σ,σ′) =
∑

σ′′∈X
f(σ′′,σ), ∀σ ∈ X\(A∪B). (4.4.15)

(c) f is normalized:

∑
σ∈A

∑
σ′∈X

f(σ,σ′) = 1 =
∑

σ∈X

∑
σ∈B

f(σ′′,σ). (4.4.16)

(d) Any path from A to B along edges e such that f(e)> 0 is self-avoiding.

The space of all loop-free non-negative unit flows from A to B is denoted by UA,B .

A loop-free non-negative unit flow f is naturally associated with a probability measure Pf

on self-avoiding paths, γ. To see this, define F (σ) =∑
σ′∈X f(σ,σ′), σ ∈ X \B. Then Pf

is the Markov chain (σn)n∈N0 with initial distribution Pf (σ0) = F (σ0)1A(σ0), transition
probabilities

qf (σ,σ′) = f(σ,σ′)
F (σ) , σ ∈ X \B, (4.4.17)

such that the chain is stopped upon arrival in B. In terms of this probability measure, we
have the following proposition:

Proposition 4.4.2 (Berman–Konsowa principle: flow version). Let A,B ⊂ X be two non-
empty disjoint sets. Then, with the notation introduced above,

CAP(A,B) = sup
f∈UA,B

Ef


∑

e∈γ

f(el, er)
µ(el)p(el, er)

−1 , (4.4.18)

where e= (el, er) and the expectation is with respect to γ.

Thanks to this variational principle, any flow provides a computable lower bound for the
capacity.
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Upper bound. Consider the following sets:

• X ∗ ⊂X defined as the subgraph obtained by removing all vertices σ with Φ(−1,σ)>
ΓHex +H(−1) or with Φ(+1,σ) > ΓHex +H(−1) together with all edges incident
to these vertices (note that, in particular, X ∗ does not contain vertices with H(σ) >
ΓHex +H(−1)); and all edges incident to these vertices;

• A := {σ ∈ X |Φ(−1,σ)< ΓHex +H(−1)} ⊂ X ∗;

• B := {σ ∈ X |Φ(σ,+1)< ΓHex +H(−1)} ⊂ X ∗;

• Gi ⊂X ∗, i= 1, . . . , I a collection of sets such that, for all i, Φ(−1,σ) = Φ(+1,σ) and
σ ∼ η and σ ∼ η′, for all η ∈ A, η′ ∈B for all σ ∈ Gi;

• NA
j ⊂ X ∗, j = 1, . . . ,JA a collection of sets such that, for all j and for all σ ∈ NA

j ,
Φ(−1,σ) = Φ(+1,σ) and any path ω : σ→+1 must be such that ω∩A ̸= ∅;

• NB
j ⊂ X ∗, j = 1, . . . ,JB a collection of sets such that, for all j and for all σ ∈ NB

j ,
Φ(+1,σ) = Φ(−1,σ) and any path ω : σ→−1 must be such that ω∩B ̸= ∅.

In words, setsA andB are the cycles with stability level ΓHex around−1 and +1 respectively.
Further sets Gi consists of those configurations belonging to some minimal gate whereasNA

j

and NB
j are dead ends, that is, to achieve a transition between −1 and +1 starting from one

of these sets the dynamics must go back to A or B.
Note that sets Gi, NA

j and NB
j are not connected via allowed moves.

By standard arguments (see [12, Chapter 16]) it is straightforward to check that the sum over
σ,η ∈ X in (4.4.11) can be substituted by a sum over X ∗ at the price of a factor [1+o(1)].
To find an upper bound for the capacity we choose a test function hU defined in the following
way:

hU (σ) :=



1 σ ∈ A∪{⋃JA
j=1NA

j }

ci σ ∈ Gi, i= 1, . . . , I

0 σ ∈B∪{⋃JB
j=1NB

j }

(4.4.19)

It is convenient to call XA := A∪{⋃JA
j=1NA

j }, XB :=B∪{⋃JB
j=1NB

j }.
Consider the case δ ∈ (0, 1

2). By Theorem 3.3.8, it follows that I = 2 and G1 ≡ S̃(A∗1) and
G2 ≡ D̃(A∗1). Define (C∗)− as the set of configurations where the cluster has the shape
of EB5(r∗) with attached a triangular unit along the longest side and (C∗)+ as the set
of configurations where the cluster has the shape of EB5(r∗) with an incomplete bar of
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cardinality 3 along the longest side. Note that (C∗)− ⊂ A and (C∗)+ ⊂B.

CAP(A,B)≤ (1+o(1))
[

min
c1,c2∈[0,1]

min
h:X ∗→[0,1]

h|XA
=1,h|XB

=0,

h|G1=c1,h|G2=c2

1
2

∑
σ,η∈X ∗

µ(σ)P (σ,η)[h(σ)−h(η)]2
]

= (1+o(1))
[

min
c1,c2∈[0,1]

∑
σ∈XA,

η∈Gi, i=1,2
σ∼η

e−βH(σ)

Z|Λ| (1− ci)2 +
∑

σ∈XB ,
η∈Gi, i=1,2

σ∼η

e−βH(σ)

Z|Λ| c2i

]

= (1+o(1))
[
e−βΓHex

Z|Λ| min
c1,c2∈[0,1]

∑
σ∈(C∗)−,

η∈Gi, i=1,2

(1− ci)2 +
∑

σ∈(C∗)+,
η∈Gi, i=1,2

c2i

]

= (1+o(1))
[
e−βΓHex

Z|Λ| min
c1,c2∈[0,1]

∑
η∈Gi,
i=1,2

|(C∗)− ∼ η|(1− ci)2 +
∑

η∈Gi,
i=1,2

|(C∗)+ ∼ η|c2i
]

(4.4.20)

where we used the definition of the Gibbs measure (3.2.6) and the expression of the transition
probability (3.2.2) and we observed that σ ∈ XA and η ∈ Gi are neighbors only if σ ∈ (C∗)−

and σ ∈ XB and η ∈ Gi are neighbors only if σ ∈ (C∗)+.
For all η ∈ G1 we have that |(C∗)− ∼ η|= 1, whereas for all η ∈ G2 we have that |(C∗)− ∼
η|= 2. Moreover, we have |(C∗)+ ∼ η|= 1 for all η ∈ G1∪G2. Therefore, we obtain

CAP(A,B)≤ (1+o(1))
[
e−βΓHex

Z|Λ| min
c1,c2∈[0,1]

∑
η∈G1

(1− c1)2 + c21 +
∑

η∈G2

2(1− c2)2 + c22

]

≤ (1+o(1))
[
e−βΓHex

Z|Λ| min
c1,c2∈[0,1]

|G1|(2c21−2c1 +1)+ |G2|(3c22−4c2 +2)
]

(4.4.21)

The functions f(c1) := 2c21−2c1 +1 and f(c2) := 3c22−4c2 +2 are minimized respectively
at c1 = 1

2 and c2 = 2
3 . Moreover, |G1| = 6(l− 1)|Λ| and |G2| = 3(l− 1)|Λ| where l is the

length of the longest side of EB5(r∗), i.e., l = r∗+2. Finally, we have

CAP(A,B)≤ (1+o(1))
[
e−βΓHex

Z|Λ| (6(l−1)|Λ|12 +3(l−1)|Λ|23)
]

= (1+o(1))
[
5(l−1)e

−βΓHex

Z

]
. (4.4.22)
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The case δ ∈ (1
2 ,1) can be treated likewise with the following modifications: the critical

area A∗1 becomes A∗2; EB5(r∗) is replaced by EB1(r∗+ 1); |G1| = 12(l− 1)|Λ| and |G2| =
6(l−1)|Λ| where l is the length of the longest side of EB1(r∗+1), i.e., again l = r∗+2. We
these changes we get

CAP(A,B)≤ (1+o(1))
[
10(l−1)e

−βΓHex

Z

]
. (4.4.23)

Lower bound. For the symmetry of the capacity, it is possible to consider a loop-free
unitary flow from −1 to +1 to estimate CAP(−1,+1) = CAP(+1,−1).
If δ ∈ (0,1/2), choose the unitary flow f as follows. Distribute the mass of the test flow
equally among a suitable subset of optimal paths. Consider a configuration σ ∈ (C∗)+,
consisting of a cluster with the shape of a quasi-regular hexagon EB5(r∗) with an incomplete
bar of cardinality 3 attached along its longest side.
Observe that the triangular units in the incomplete bar of σ are of two types: the first type
consists of those triangular units at lattice distance one from EB5(r∗) (the two extreme of the
incomplete bar) whereas the second type consists of those triangular units at lattice distance
two from EB5(r∗) (the central triangular unit of the incomplete bar). Each σ ∈ (C∗)+ can
be univocally identified by the coordinate x of the triangular unit of second type of the
incomplete bar. Further, for each σ ∈ (C∗)+ with incomplete bar centered at x, it is possible
to define a (optimal) path in a deterministic way from σ to +1. In this way it is possible to
find a bijection between the set of configurations (C∗)+ and the set of paths from σ to +1 for
σ ∈ (C∗)+. Call γx the time reversal of the deterministic path from the configuration σ with
incomplete bar centered at x to +1. Note that from (C∗)+ the path γx can be extended towards
−1 either by flipping one of the two spins of the first type (with probability 1/a), or by
flipping the spin of the second type (with probability 1/b). If one of the two spins of the first
type is flipped, creating an elementary rhombus, then the path is extended deterministically
by flipping the remaining spins from plus to minus starting from the spin belonging to the
second type. Otherwise, if the flipped spin is that of the second type, then the path can
be extended by flipping one of the spins of the first type (with probability 1/2) and then
proceeding deterministically to flip the remaining spins from plus to minus.



4.4 Metastable state, gate, transition time and spectral gap 103

Let K be the number of negative spins in configurations in S̃(A∗1)∪D̃(A∗1), set ν0 := 1
|Λ| and

consider the unitary flow from +1 to −1, defined as follows

f(σ′,σ′′) =



ν0 if σ′ = γx(k), σ′′ = γx(k+1)
for some x ∈ Λ,0≤ k ≤K−1

ν0
a if σ′ = γx(K−1), σ′′ = γi

x(K) ∈ S̃(A∗1)
for some x ∈ Λ

ν0
b if σ′ = γx(K−1), σ′′ = γi

x(K) ∈ D̃(A∗1)
for some x ∈ Λ

ν0
a if σ′ = γx(K) ∈ S̃(A∗1), σ′′ = γi

x(K+1)
for some x ∈ Λ

ν0
2b if σ′ = γx(K) ∈ D̃(A∗1), σ′′ = γi

x(K+1)
for some x ∈ Λ

ν0 if σ′ = γx(k), σ′′ = γx(k+1)
for some x ∈ Λ, K+1≤ k ≤ |Λ|−1

0, otherwise.

(4.4.24)

where γx(k) is the k-th configuration visited by the path γx and a and b must be chosen so
that the flow is unitary.
The flow described above can be used to assign to each path γ = (γ(0), ...,γ(|Λ|)) with
γ(0) = +1 and γ(|Λ|) =−1 a probability P(γ) defined as

P(γ) := Pf (X = γ) =
∏|Λ|

i=1 f(γ(i−1),γ(i))∏|Λ|
i=1F (γ(i−1))

. (4.4.25)

Non null probability paths +1→−1 can be partitioned into two sets IS̃ and ID̃. IS̃ contains
those paths such that γ(K) is in S̃(A∗1) whereas IS̃ contains those paths such that γ(K) is in
D̃(A∗1). Further let NS̃ and ND̃ the cardinality of IS̃ and ID̃ respectively.
Equation (4.4.25) yields

P(γ) = f(γ(K−1),γ(K)), (4.4.26)

so that for γ ∈ IS̃

P(IS̃) =NS̃f(γ(K−1),γ(K) ∈ S̃(A∗1)). (4.4.27)
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and for γ ∈ ID̃

P(ID̃) =ND̃(λ−2)f(γ(K−1),γ(K) ∈ D̃(A∗1)). (4.4.28)

By Proposition 4.4.2 and by the choice of the flow (4.4.24), we have

CAP(+1,−1)≥
∑

γ∈IS̃∪ID̃

P(γ)
|Λ|−1∑

k=0

f(γ(k),γ(k+1))
µ(γ(k))p(γ(k),γ(k+1))

−1

≥ P(γ ∈ IS̃)e
−βΓHex

Z|Λ|
1

f(γ(K−1),γ(K) ∈ S̃(A∗1))
(1+o(1))

+P(γ ∈ ID̃)e
−βΓHex

Z|Λ|
1

f(γ(K−1),γ(K) ∈ D̃(A∗1))
(1+o(1))

≥ e−βΓHex

Z|Λ|

[
NR

2
a + 1

b

+ NT
2
a + 1

b

]
(1+o(1)) (4.4.29)

The number of the paths in both IS̃ and ID̃ is equal to 6|Λ|(l−1). Hence, it follows

CAP(+1,−1)≥ e−βΓHex

Z

12ab(l−1)
2b+a

(1+o(1)). (4.4.30)

Choosing a= 1 and b= 5/2, yields

CAP(+1,−1)≥ e−βΓHex

Z
5(l−1)(1+o(1)). (4.4.31)

that matches the upper bound (4.4.22).
If δ ∈ (1/2,1), it is possible to construct a flow similar to the one described above. In this
case, the incomplete bar of length 3 can be attached on one of the two longest sides of
EB1(r∗+1). The same arguments allow to write

CAP(+1,−1)≥ e−βΓHex

Z

24ab(l−1)
2b+a

(1+o(1)). (4.4.32)

where the factor 24 instead of 12 is due to the fact that the incomplete bar can be attached to
either of the longest sides of the quasi-regular hexagons and the number of paths from +1 to
−1 is, therefore, doubled. Choosing again a= 1 and b= 5/2, we have

CAP(+1,−1)≥ e−βΓHex

Z
10(l−1)(1+o(1)). (4.4.33)
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that matches the upper bound (4.4.23).





5 Polyiamonds with minimum
edge-perimeter and maximal area

The problem of finding the shape minimizing the perimeter of a polyiamond given its area
is relevant in a handful of fields and a vast literature on the topic has flourished in several
communities (see for instance [50, 54, 73, 38, 85]). However, depending on the application,
different definitions of perimeter may be taken into account. For instance, one may wish to
consider, for the perimeter of a polyiamond, the number of neighboring vertices or, as we
do above, the number of boundary edges. The problem of minimizing the perimeter might,
therefore, be different.
In this section we leverage on the results in [50] where the properties of the site-perimeter of
polyiamonds are studied. More formally,

Definition 5.0.1. Given a polyiamond P, its site-perimeter s(P) is the number of empty
triangular units sharing at least one edge with the polyiamond.

In [50] both polyiamonds with fixed site-perimeter and maximal area and polyiamonds
with fixed area and minimal site-perimeter are identified. In particular, they prove that
those polyiamonds referred to as quasi-regular hexagons in the previous Sections have both
maximal area for fixed site-perimeter and minimal site-perimeter for fixed area. Moreover,
they show that those polyiamonds that here we called standard have minimal site-perimeter
and provide an explicit formula for its value. Here we will show, on one hand, that quasi-
regular hexagons are the only polyiamonds of maximal area for fixed site-perimeter and, on
the other hand, that standard polyiamonds not only minimize the site-perimeter for fixed
area, but they also minimize the edge-perimeter establishing Theorem 4.1.22. Moreover,
we show that quasi-regular hexagons maximize the area for fixed edge-perimeter as well.
In the remainder of this Section we first recall the definitions and the results of [50] (see
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Subsection 5.1) and then we show how these results can be extended as mentioned above
(see Subsection 5.1.1). Finally we give the proof of Theorem 4.1.22.

5.1 Site-perimeter of polyiamonds: known results

In [50] hexagons, living on the triangular lattice, are identified starting from an equilateral
triangle and “cutting the corners” (see [50, Definition 2.1]). In particular hexagons are
parametrized by quadruples (a,b,c,d) and T d

a,b,c denotes a hexagon obtained from an equilat-
eral triangle with side length d and removing from its corners the equilateral triangles of side
lengths a,b and c (see Figure 5.2). This parametrization allows to express in a straightforward
manner the area and the site-perimeter of any hexagon as follows:

s(T d
a,b,c) = 3d−a− b− c

∥T d
a,b,c∥= d2−a2− b2− c2

(5.1.1)

Note that degenerate hexagons are included in this definition. If this is the case the “hexagon”
may, indeed, be a triangle, a quadrilateral or a pentagon (see Figure 5.1).

Figure 5.1 Examples of degenerate hexagons.

Remark 5.1.1. In general there exist two possible parametrizations identifying the same
hexagon.

In [50, Proposition 3.4] the shape of those polyiamonds maximizing the area for a given
site-perimeter is identified. In the following we show that these shapes are those that in this
paper we called quasi-regular hexagons.
Order the set of quasi-regular hexagons by increasing values of their area and note that
going from one quasi-regular hexagon to the next in this sequence, the perimeter (both edge
and site) increases by exactly one unit. Consequently each quasi-regular hexagon can be
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d−
(b
+
c)

b

a

c

d
−
(a
+
c)

d− (a+ b)

Figure 5.2 The side lengths of the hexagon obtained from the equilateral triangle of side length d
cutting the equilateral triangles of side lengths a, b and c.

identified univocally by its perimeter. Write all possible values of the site-perimeter of a
quasi-regular hexagon as

s= 6r+ i, r ≥ 1, i ∈ {0,1,2,3,4,5}. (5.1.2)

Note that here s(P ) denotes the site-perimeter of polyiamond P whereas in [50] the same
notation identifies the area of P .
Since s= 6r is the site-perimeter of the regular hexagon of radius/side length r, s= 6r+ i

is the site-perimeter of the quasi-regular hexagon obtained by adding i bars to the regular
hexagon of radius r.
By constructing, explicitly, the shapes referred to in [50, Proposition 3.4], it is straightforward
to check that these are the quasi-regular hexagons (see Fig. 5.3). In particular there is the
following correspondence between the notation used in [50] and the notation used in the
previous Sections to denote quasi-regular hexagons

T
⌊ s

2⌋
r,r,r, i= 0 corresponds to E(r),

T
⌊ s

2⌋
r−1,r,r, i= 1 corresponds to EB1(r),

T
⌊ s

2⌋
r,r,r+1, i= 2 corresponds to EB2(r),

T
⌊ s

2⌋
r,r,r, i= 3 corresponds to EB3(r),

T
⌊ s

2⌋
r,r+1,r+1, i= 4 corresponds to EB4(r),

T
⌊ s

2⌋
r,r,r+1, i= 5 corresponds to EB5(r).

(5.1.3)



110 Polyiamonds with minimum edge-perimeter and maximal area

r

r

r − 1

T
b s2c
r−1,r,r

r

r

r + 1

T
b s2c
r,r,r+1

Figure 5.3 Two examples of the correspondences in (5.1.3). On the left the correspondence between
T

⌊ s
2 ⌋

r−1,r,r and EB1(r). On the right the correspondence between T
⌊ s

2 ⌋
r,r,r+1 and EB5(r).

Since there is only a quasi-regular hexagon for each value of s, the Proposition amounts to
saying that quasi-regular hexagons maximize the area for a given site-perimeter.
As a consequence, [50, Proposition 4.5] states, in our notation, that the minimal site-perimeter
for a polyiamond of area A is the site-perimeter of the smallest quasi-regular hexagon of area
at least A.

5.1.1 Site-perimeter of polyiamonds: further results

We extend the result of [50, Proposition 3.4] as follows

Proposition 5.1.2. Quasi-regular hexagons are the unique polyiamonds of maximal area for
fixed site-perimeter.

Proof. Let s = 6r+ i be the site-perimeter of a hexagon T d
a,b,c and consider the function

M = s2−6∥T d
a,b,c∥. If the site-perimeter is fixed, polyiamonds of maximal area are those

that minimize M . By (5.1.1) one can compute M in terms of the parameters identifying the
hexagon as M = 3(d−a−b−c)2 +2((a− b)2 +(a−c)2 +(b−c)2). In [50] it is shown that
the minimum of M depends on the value of the remainder i (modulo 6). Calling M⋆ the
minimum of M , by the proof of [50, Proposition 3.4] we know that

M⋆ =



0 if i ∈ {0}
3 if i ∈ {3}
4 if i ∈ {2,4}
7 if i ∈ {1,5}

(5.1.4)
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Call α = d−a− b− c and β = (a− b)2 + (a− c)2 + (b− c)2. This implies that M can be
written as M = 3α2 +2β where α and β are integers. Therefore for i ∈ {0, . . . ,5} there is a
unique pair of integers (α2,β) for which the optimal value of M is attained.
If i= 0, we see from (5.1.4) that M⋆ = 0 and, hence, it must be α = 0 and β = 0. This, in
turn, implies a= b= c= v for some positive integer value v and d= a+ b+ c= 3v. Hence,
recalling that s= 3d−a−b−c, we must have 0 = α= d−a−b−c= 1

3(s−2(a+b+c)) =
1
3(s−6v). The unique solution of this equation is v = r . This yields d= 3r = s

2 ∈ N and,
therefore, the unique quadruple (a,b,c,d) parametrizing a hexagon for which the minimum
of M is attained is (r,r,r, s

2).
If i = 1, from (5.1.4) we have M⋆ = 7 amounting to saying α2 = 1 and β = 2. Assuming,
without loss of generality, a ≤ b ≤ c, the latter implies that, for some v it must be either
a= v−1; b= c= v or a= b= v−1; c= v.
Consider, first, the case, a = v−1; b = c = v. We have α = 1

3(s−2(a+ b+ c)) = 1
3(6(r−

v) + 3). If α = +1, then the solution of the equation is v = r implying d= 3r = ⌊ s
2⌋. This

solution corresponds to the quadruple (r−1, r,r,⌊ s
2⌋). If α =−1, then it must be v = r+1

and the associated quadruple is (r,r+1, r+1,⌈ s
2⌉).

If we consider the case a= b= v−1; c= v, then α= 1
3(6(r−v)+5). However no acceptable

quadruple can be obtained in this case since α must be integer and 1
3(6(r−v)+5) /∈ N.

Arguing in the same manner for i = 2,3,4,5 it is possible to determine all quadruples for
which the minimum of M is attained. In particular we have:

if i= 2 the only quadruple minimizing M is (r,r,r+1, s
2);

if i= 3 the two quadruples minimizing M are (r,r,r,⌊ s
2⌋) and (r+1, r+1, r+1,⌈ s

2⌉);
if i= 4, M is minimized only by the quadruple (r,r+1, r+1, s

2);
if i= 5 the two quadruples minimizing M are (r,r,r+1,⌊ s

2⌋) and (r+1, r+1, r+2,⌈ s
2⌉).

Note that, for i even, there is only one quadruple minimizing M and, therefore, in these cases
the hexagon maximizing the area for fixed site-perimeter is obviously unique.
On the other hand, for i odd, there are two quadruples minimizing M . However, these two
quadruples identify the same hexagon. To see this we argue as follows. The parameters a,b
and c are the lengths of three non consecutive sides of the hexagon. Therefore there is another
parametrization T d′

a′,b′,c′ , in principle different from T d
a,b,c, for a hexagon with site-perimeter

s, given in terms of the lengths of the other three non consecutive sides for a suitable value
d′. Since i is odd, s

2 /∈ N thus it is not possible to have a = a′, b = b′ and c = c′ because
s = a+a′+ b+ b′+ c+ c′ would be even. Thus for each hexagon with odd site-perimeter
there are, indeed, two quadruples. Since for i odd the minimum of M is always attained
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only in two quadruples they must identify the same hexagon (if the two quadruples identify
different hexagons, then there should exist four quadruples minimizing M ).

5.2 Proof of Theorem 4.1.22

Edge-perimeter and site-perimeter are closely related. It is straightforward to check that
s(P )≤ p(P ). Indeed, as shown in Figure 5.4, an empty triangular unit, giving unitary
contribution to the site-perimeter, may share 1, 2 or 3 edges with the polyiamond each giving
a unitary contribution to the edge-perimeter. More precisely the following proposition holds:

Proposition 5.2.1. Let ν(P ) be the number of 5
3π internal angles that are not part of an

elementary hole and e(P ) the number of elementary holes in P . Then

p(P ) = s(P )+ν(P )+2e(P ) (5.2.1)

Proposition 5.2.1 immediately implies

Proposition 5.2.2. If s(P ) is minimal (that is there is no polyiamond with the same area and
a smaller site-perimeter) and p(P ) = s(P ), then p(P ) is minimal as well (that is there is no
polyiamond with the same area and a smaller edge-perimeter).

The proof of this statement is straightforward, indeed, call α(P ) = ν(P )+2e(P ) and note
that α(P )≥ 0. Let P̄ be a minimizer of s such that α(P̄ ) = 0 (it, obviously, exists). Assume
there is a polyiamond P̃ such that p(P̃ )< p(P̄ ). This is equivalent to saying s(P̃ )+α(P̃ )<
s(P̄ )+α(P̄ ) = s(P̄ ) and this is clearly a contradiction since α≥ 0.

Proof of Proposition 5.2.1. For the proof we refer to Figure 5.4. Note that in case (c) the
contribution of the empty triangular unit to the site-perimeter of the polyiamond is the same
(one unit) that the shared edge gives to the edge-perimeter. In case (a) the three edges on
the boundary of the polyiamond are adjacent to the same empty triangular unit. Therefore,
for each elementary hole the edge-perimeter of the polyiamond increases by two extra units
with respect to the site-perimeter. Finally, in case (b) the two edges on the boundary are
adjacent to the same empty triangular unit. Hence, for each 5

3π angle the edge-perimeter of
the polyiamond increases by one extra unit with respect to the site-perimeter.

We have already seen that all quasi-regular hexagons have minimal site-perimeter for fixed
area and maximal area for fixed site perimeter. Thanks to Proposition 5.2.1 it is possible to
show that these two properties holds also for the edge-perimeter. Moreover, we show that
quasi-regular hexagons are the unique polyimonds of maximal area for fixed edge-perimeter.
Denote by Q the set of all quasi-regular hexagons. More formally we have:
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x

y

z
w

(a) (b) (c)
Figure 5.4 The three possible cases for the number of edges shared by an empty triangular unit
and the polyiamond. If the number of shared edges is 3 (case (a)) the empty triangular unit is an
elementary hole of the polyiamond. The empty triangular unit shares 2 edges with the polyiamond if
and only if the two edges identify a 5

3π internal angle (case (b)). The case where the empty triangular
unit and the polyiamond share a single edge is represented in (c). Note that this case may correspond
to different values of the internal angle (that is an angle of π

3 when the polyiamond contains only the
triangular unit w; an angle of 2π

3 when the polyiamond contains the triangular units w, z; an angle
π when the polyiamond contains the triangular units w, z, y; an angle of 4π

3 when the polyiamond
contains the triangular units w, z, y and x).

Lemma 5.2.3. Let E be a quasi-regular hexagon and P /∈ Q a polyiamond such that
||P || ≥ ||E||. Then p(P )> p(E) and s(P )> s(E).

Proof of Lemma 5.2.3. We give the proof for p(P ). The proof for s(P ) is analogous. Let
A be the area of the quasi-regular hexagon of edge-perimeter p⋆. We prove the equivalent
statement: if p(P )≤ p⋆, then ∥P∥<A for all P /∈Q.
Denote by s(P ) the site-perimeter of P and by Amax(s) the largest possible value of the
area for a polyiamond of site-perimeter s. We consider the cases p(P )< p⋆ and p(P ) = p⋆

separately.
Let p(P ) < p⋆. By Proposition 5.2.1, we have s(P ) ≤ p(P ) < p⋆. Then ∥P∥ ≤
Amax(s(P ))<Amax(p⋆) =A. The last inequality follows from [FuSie] stating that Amax(·)
is a strictly increasing function.
Let p(P ) = p⋆, then s(P )≤ p⋆ and ∥P∥ ≤ Amax(s(P ))≤ Amax(p⋆) = A for all P /∈ Q by
Lemma 5.1.2 and, again, by noting that Amax(·) is increasing.

The previous results serve as building blocks to show that, fixing the area, also all standard
polyiamonds, other than quasi-regular hexagons, have minimal edge-perimeter establishing
Theorem 4.1.22.

Proof of Theorem 4.1.22. Let E be a quasi-regular hexagon of edge-perimeter p(E) and
area ∥E∥. Consider, at first, the standard polyiamonds obtained by adding an incomplete
bar with an odd number of triangular units to E. These polyiamonds have edge-perimeter
p(E) + 1 and area strictly larger than ∥E∥ and, therefore, their edge-perimeter is minimal
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by Lemma 5.2.3. It remains to show that also standard polyiamonds obtained by adding
an incomplete bar with an even number of triangular units to a quasi-regular hexagon have
minimal edge-perimeter.
Write A= A0 + ℓ where A0 is the area of the greatest quasi-regular hexagon R′A containing,
at most, A0 triangular units (that can be obtained via Algorithm 4.1.18) and ℓ ≥ 2 is the
(even) number of triangular units in the incomplete bar.
Let p⋆ = p(R′A) and consider a standard polyiamond P̃ with areaA and perimeter p(P̃ ) = p⋆ +
2. We will show that there is no polyiamond P such that ∥P∥=A and p(P )< p(P̃ ) = p⋆ +2.
If a P as such existed, then it would be immediate to check that it could not have neither
5
3π internal angles nor elementary holes. Indeed, the polyiamond P+ obtained by adding a
triangular unit in the “corner” or in the elementary hole would have perimeter p(P+)< p⋆ +1
and area ∥P+∥ = A0 + ℓ+ 1 > A0. This would contradict Lemma 5.2.3. Similarly, it can
be seen that P can not have “protuberances” (1

3π internal angles). Indeed, the polyiamond
P− obtained from P by removing the protuberance would have perimeter p(P−) < p⋆ + 1
and area ∥P−∥= A0 + ℓ−1>A0, since ℓ≥ 2 and, also in this case, Lemma 5.2.3 would be
contradicted. Therefore P can only have 2

3π and 4
3π internal angles. Consider the sequence

of polyiamonds P =: P0,P1, . . .Pm where each Pi is obtained from Pi−1 by adding an
elementary rhombus to a corner corresponding to a 4

3π internal angle until no 4
3π internal

angle is present. Then p(Pi) = p(Pi−1) for all i and ∥Pi∥ = ∥Pi−1∥+ 2 = ∥P∥+ 2i. Note
that, if some of the Pi had elementary holes, 5

3π or 1
3π internal angles we could argue as above

and obtain a contradiction. Then Pm should be, necessarily, a (non degenerate) hexagon.
To conclude, we rely on the following

Lemma 5.2.4. Area and perimeter (both site and edge) of every hexagon have the same
parity.

Proof of Lemma 5.2.4. As already mentioned above, the area and both the site-perimeter
and edge-perimeter of a hexagon E are computed to be ∥E∥ = d2− (a2 + b2 + c2) and
p(E) = 3d− (a+ b+ c) respectively, where a,b,c,d are parameters identifying the hexagon.
The conclusion follows by observing that d has the same parity of d2 and (a+ b+ c) has the
same parity of (a2 + b2 + c2).

Observe that ∥Pm∥ has the same parity of ∥R′A∥ (both ℓ and 2i are, indeed, even) whereas the
edge-perimeters of these two polyiamonds differ by one and, hence, have different parities.
Since Pm is a proper hexagon, this contradicts Lemma 5.2.4 completing the proof.

We conclude this section by providing a lower bound for the edge-perimeter of non standard
polyiamonds with area equal to the area of a quasi-regular hexagon.
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Lemma 5.2.5. Let p̄ be the edge-perimeter of a quasi-regular hexagon and let Ā be its area.
Then, for all P /∈Q such that ∥P∥= Ā, p(P )≥ p̄+2.

Proof. The proof can be done following the same strategy of the proof of Theorem 4.1.22.
Let P /∈ Q be a polyiamond of area Ā where Ā is the area of a quasi-regular hexagon. By
Lemma 5.2.3 it follows that p(P )≥ p̄+1. We will show that p(P ) = p̄+1 can not hold.
To this end, suppose p(P ) = p̄+ 1. Then P can not have neither 5

3π internal angles nor
elementary holes. Indeed, if it were the case, the polyiamond obtained by filling the angle or
the hole would have area Ā+1 and edge-perimeter at most p̄ contradicting Proposition 5.1.2.
Consider, then, the sequence of polyiamonds P =: P0,P1, . . .Pm where each Pi is obtained
from Pi−1 by adding an elementary rhombus to a corner corresponding to a 4

3π internal
angle until no 4

3π internal angle is present. Then p(Pi) = p(Pi−1) for all i and ∥Pi∥ =
∥Pi−1∥+ 2 = ∥P∥+ 2i. Note that, if some of the Pi had either elementary holes or 5

3π

internal angles we could argue as above and obtain a contradiction. Then Pm must be,
necessarily, a hexagon, possibly degenerate, and, therefore, p(Pm) and ∥Pm∥ must have the
same parity by Lemma 5.2.4. By construction, ∥Pm∥ has the same parity of Ā and p(Pm)
has the same parity of p̄+1. Since p̄ is the edge-perimeter of a quasi-regular hexagon of area
Ā, p̄+1 and Ā have different parities contradicting the hypothesis that Pm is a hexagon.

Remark 5.2.6. Note that, in the case of site-perimeter, the analogue of the property of the
previous lemma does not hold.

Indeed, a counterexample is given by the polyiamond obtained by removing an elementary
rhombus from one corner of the hexagon and moving it on top of a side of the hexagon. The
polyiamond obtained in this way has site-perimeter p̄+1.





Conclusions

With the shaken dynamics we exhibit a reversible parallel dynamics which can be defined on
arbitrary graphs and whose invariant measure is explicitly given. In particular, this is one of
the main features of this dynamics. Indeed, we identify the stationary measure under general
conditions, that is in the presence of an external field and on general graphs. Moreover, in
the case of the square lattice we control this measure for different boundary conditions.
The second interesting property of our dynamics concern the possibility to tune the geometry
of the system. Indeed, the shaken prescription allows to explore different geometries in the
systems in two ways:

• with the doubling construction the shaken dynamics turns out to be the marginal of
a parallel alternate dynamics defined on a new bipartite graph usually very different
from the original one;

• modifying suitably the parameters appearing in the doubled Hamiltonian, it is possible
to compare spin systems defined on different geometries. Indeed, when the self-
interaction parameter q tends to zero or tends to infinity, the doubling graph changes,
cutting the corresponding edge or collapsing the two extremal vertices respectively. In
particular, the limit q→ 0 leads to a system whose geometry has a different dimension.
Finally, when q = J , the doubling graph is homogeneous.

Another relevant aspect of the shaken dynamics is the possibility to use this parallel algorithm
to solve optimization problems on arbitrary graphs and to sample from the Gibbs measure on
the square lattice.
The shaken dynamics belongs to a wide research program aiming at constructing a statistical
mechanics model for friction. Even though our dynamics shows interesting properties, clearly
this toy model is very far from describing real systems affected by friction. A further step
consists in considering a time-dependent external field in the interaction Hamiltonian. With
R. D’Autilia, B. Scoppola, E. Scoppola and A. Troiani, we are now studying a simple Curie
Weiss model where the Hamiltonian is defined on the set of spin configurations XN on the
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complete graph KN , i.e., XN = {−1,1}N

H(σ) =−J2
∑

i,j∈{1,...,N}
σiσj−h(t)

∑
i∈{1,...,N}

σi (5.2.2)

with ferromagnetic interaction J > 0 and external field depending on time

h(t) =−α0 +F (t) (5.2.3)

with α0 > J , βJ > 1 and F (t) evolving with the following rule depending on the evolution
of the mean magnetization m(t)

F (t+1) =
(
F (t)+ v

N

)
1{m(t)<m∗}, F (0) = 0 (5.2.4)

where m∗ =
√

1− 1
βJ . In particular, the mean magnetization evolves according to a random

dynamics in terms of a random walk on

AN := {−1,−1+ 2
N
, · · ·−1+ 2k

N
, . . . ,1− 2

N
,1}

corresponding to a random flip of a single spin of the complete graph. This model
seems to be more realistic and some preliminary theoretic results seem to be consis-
tent with the physics characterizing stick-slip events. This is the object of a forthcoming work.

Another open problem concerning the shaken dynamics is the study of its convergence to
equilibrium. In this regard, it is interesting to investigate the role of the parameter q when
studying the decay of metastable states in the low temperature regime. This could lead to
detailed estimates of the mixing time. In particular, it is possible to show that the parameter q
tunes the shape of the critical droplet. Indeed, in the case of the non homogeneous hexagonal
lattice with q = 2J the clusters having minimal perimeter for fixed area have no more the
shape of a hexagon but they are diamond clusters. Thus, an extension of the analysis presented
in [4] could involve a non uniform interaction among the spins in the Ising Hamiltonian,
i.e. a non homogeneous hexagonal lattice, and could represent a preliminary step towards
the study of the tunneling time of the shaken dynamics in the low temperature regime. On
the other hand, the phenomenology of metastability for a stochastic dynamics with parallel
updating rule may be different from the one observed in the case of the serial implementation
of the single spin flip dynamics. This is the case of the parallel alternate dynamics on the
square lattice considered in [28]. Therefore, the analysis of metastability for the stochastic
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parallel alternate dynamics on the hexagonal lattice associated to the shaken dynamics could
extend the results obtained for the homogeneous square lattice in [28].
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