
Università degli Studi Roma Tre
Dipartimento di Matematica

Université Paris Diderot (Paris 7)
U.F.R. d’Informatique

Tesi

per l’ottenimento del titolo di
Dottore di Ricerca in Matematica

Thèse

pour l’obtention du diplôme de
Docteur de l’Université Paris Diderot

spécialité informatique

Nets between

Determinism and Nondeterminism

Paolo Tranquilli

Direttori
Directeurs Lorenzo Tortora de Falco / Antonio Bucciarelli

Data della discussione
Date de soutenance 23/04/2009

Commissione e revisori
Jury et rapporteurs

Edoardo Sernesi, Presidente / Président
Antonio Bucciarelli
Thomas Ehrhard
Martin Hyland
Simone Martini
Laurent Regnier
Lorenzo Tortora de Falco

Ringraziamenti
Remerciements
Acknowledgements

Voglio innanzitutto ringraziare Lorenzo Tortora de Falco per avermi appog-
giato e guidato in questi anni. I suoi consigli e la sua amicizia sono stati un
continuo impulso ad andare avanti.

Grazie anche ad Antonio Bucciarelli: ha accettato di codirigere questa tesi
e mi ha aiutato molto in quel di Parigi. Oltre alla sua simpatia, ammiro molto
(e, seriamente, non lo dico con ironia) il suo modo di scomparire quando parte.

Grazie a Marco Pedicini. Mi ha accompagnato nel primo anno del dottorato,
e anche se poi ho preso una strada leggermente diversa, devo comunque molto
a lui. Sul piano della ricerca spero ancora di poter lavorare con lui in futuro, se
non altro per essere a distanza 3 da Erdös!

Thanks to Martin Hyland, Thomas Ehrhard and Simone Martini for taking
the time in reviewing this thesis. To Martin goes also my gratitude for my stay
in Cambridge early in my Ph.D, and his incredible willingness to discuss and
give insightful pieces of advice. En outre de ma gratitude, mon admiration va
à Thomas pour sa considérable activité de recherche, qui a donné la base pour
la plupart de cette thése.

Thanks to the other members of the jury, Edoardo Sernesi and Laurent
Regnier, for accepting to take part in it. Cette thèse doit autant à la recherche
passée et présente de Laurent, à lui vont donc ultérieurs remerciements.

Questa tesi è stata parzialmente finanziata dall’Università Italo-Francese
nell’ambito del Programma Vinci, ringrazio dunque per il supporto ricevuto.

Ringrazio indistintamente tutti i “romani” della logica, oltre ai già citati
Lorenzo e Marco: Michele Abrusci, Stefano Guerrini, Roberto Maieli, Beniamino
Accattoli, Paolo Di Giamberardino, Damiano Mazza, Michele Pagani, Gabriele
Pulcini. L’ambiente romano è stato sempre stimolante grazie a loro.

E dopo i ringraziamente indistinti, ecco quelli distinti. Ringrazio Beniamino,
tra l’altro, per come tira fuori dei discorsi interessanti anche senza nessuno
spunto: averlo conosciuto in quel di Marsiglia è stato un ottimo valore aggiunto
a questo dottorato. Ho sempre apprezzato la compagnia e la simpatia di Paolo,
un’amicizia che, ti dico guarda, metti tipo lei contro un lavandino, guarda vince
lei. Damiano, grazie per l’allegria, l’entusiasmo, l’occasionale aiuto, e come non
nominare il Supciné Hebdo, di cui porto con orgoglio il titolo (vitalizio, non
dimentichiamoci) di “frequentatore il più assiduo”. Ringrazio infine Michele sia

i

ii RINGRAZIAMENTI

per gli interminabili discorsi di Scienza, faccia a faccia o su gmail, ma soprattutto
per la sua amicizia. Non si direbbe che sia cos̀ı vecchio :P.

Autres remerciements vont aux “français” rencontrés au PPS. L’ambiance de
ce labo a toujours été plus qu’agréable, grace à tous eux.

Innanzitutto gli italiofoni, vuoi per nascita o per “infusione”, vi ringrazio
anche se mi avete impedito in tutti i modi di imparare il francese (s̀ı s̀ı, è
proprio tutta colpa vostra). Séverine Maingaud, grazie per il tocco di allegria
dato all’ufficio. Giulio Manzonetto, un ottimo compagnone, lo ringrazio con
immutata stima. E tutti gli altri, mi raccomando, continuiamo l’invasione!

No i nawet mog ↪e napisać coś po polsku, aby podzi ↪ekować Juliuszowi Chro-
boczkowi: fajny kumpel, piwko z nim to zawsze przyjemność, jak również pra-
cować dla niego jako chargé de TD.

Je remercie les autres qui ne parlent pas (assez) l’italien (pour le moment,
je parie que ça ne durera pas longtemps) : toute la joyeuse troupe du bureau
6C12, particulairement Stéphane Gimenez (merci pour les discussions “linéai-
res”), Christine Tasson (merci aussi pour le coupe des cheveux) et Gregoire
Henry (merci pour l’instructif travail ensemble sur le TD) ; de l’autre côté du
couloir Samuel Mimram (merci pour les incursions de contrôle sur mes activités
à l’ordinateur) ; et enfin Philippe Hesse (merci, man !).

Altri ringraziamenti vanno a tutti gli amici di vecchia data, quelli che sento
ancora e quelli che ho perso di vista. Non ne faccio la lista perché ne dimenti-
cherei sicuramente qualcuno. La mia vita è fatta anche di voi e non vorrei mai
altrimenti.

Un grazie speciale a mamma e a papà. Sulla mia tesi di laurea scrissi che se
c’è qualcosa di buono in me, lo devo a loro, e qui lo ripeto. E grazie anche per
la pazienza con la quale, quando ero in casa immerso totalmente nel lavoro, mi
hanno sopportato e supportato in modo unico.

E un grazie enorme va a Mari Giò: questa tesi è spesso stata una rivale, ma
il suo appoggio e la sua fiducia sono linfa per me. Le devo più di un semplice
ringraziamento.

Contents

1 Introduction 1
1.1 Plan and Presentation of the Results 11
1.2 Notation . 13

I Tools, Questions and Aims 15

2 Nets 16
2.1 Statics . 16

2.1.1 Ports, Cells and Wires . 16
2.1.2 Sums . 27
2.1.3 Boxes . 30

2.2 Dynamics . 33
2.2.1 Subject Reduction . 35
2.2.2 Structural Congruence . 35
2.2.3 Confluence . 37

2.3 Invariants . 38
2.3.1 Denotational Semantics by Experiments 39
2.3.2 Webbed Semantics and Semantic Correctness 41

3 Linear Proof Nets 43
3.1 The Multiplicatives . 43

3.1.1 Sequent Calculus and Desequentialization 44
3.1.2 Correctness Criterion and Sequentialization 45
3.1.3 MLL nets as linkings . 46

3.2 The Additives . 47
3.2.1 Sequent Calculus and Desequentialization 48
3.2.2 MALL Nets as Sets of Linkings 49
3.2.3 Correctness Criterion and Sequentialization 51
3.2.4 Cut reduction . 57

3.3 Invariants and Semantic Correctness 59
3.3.1 The Interpretation . 59
3.3.2 Coherent Spaces . 59
3.3.3 Hypercoherent spaces . 64

iii

iv CONTENTS

4 Exponential Proof Nets and Lambda Calculus 69
4.1 Rewriting Theory Modulo Equivalence 70
4.2 The Exponentials . 71

4.2.1 Correctness and Properties of Reduction 72
4.2.2 Accommodating the Contractions: Associativity, Neutral-

ity, Push and Pull . 74
4.2.3 λ-nets and λ-calculus . 75

4.3 Differential Nets, Differential λ-nets and Resource Calculus . . . 80
4.3.1 Differential Interaction Nets 80
4.3.2 Resource Calculus . 82
4.3.3 Differential Nets and Boxes 84
4.3.4 Lax typing . 88

II Determinism: Hypercoherent Spaces and Linearity 93

5 Hypercorrectness 95
5.1 The Criterion . 95

5.1.1 Jumping from Contractions 95
5.1.2 &-oriented and Compatible Paths 96

5.2 Hypercorrectness Implies HCoh-correctness 98
5.3 HCoh-correctness Implies Hypercorrectness 102
5.4 Complements . 104

5.4.1 Cut Exposure . 105
5.4.2 Stability Under Reduction 106

III Nondeterminism: Differential Operators and Re-
sources 109

6 Church-Rosser Theorem for Pure DiLL 110
6.1 Marking New Cuts: DiLL◦ . 110
6.2 Finiteness of Developments . 112

6.2.1 Measuring Exponential Reduction 112
6.2.2 The Proof, Case by Case 120

6.3 Confluence of Developments . 126
6.3.1 Local Confluence Modulo 127
6.3.2 Local Coherence . 130

7 Standardization and Conservation Theorems 133
7.1 Proof of the Standardization Theorem 135
7.2 DiLL∂% . 136

7.2.1 Labelled Nets and Reduction 137
7.2.2 Confluence of Labelled Non Erasing Reduction 139

7.3 Proof of the Theorem . 140
7.3.1 Conservation for DiLL∂% 142
7.3.2 Transferring Conservation from DiLL∂% to DiLL 146

CONTENTS v

8 Full Resource Calculus 154
8.1 The Language . 154
8.2 Giant Step and Baby Step Reductions 155
8.3 The Translation . 160

8.3.1 Statics: Definition and Sequentialization 160
8.3.2 Dynamics: Bisimulation 162

Index 170

List of Figures 172

Bibliography 174

Reference Figures 179

Chapter 1

Introduction

A team of sociologists decides to conduct an experiment. Inside an
empty room they put a gas stove and a table. On the table they put
a lighter and a saucepan with some water in it. Then in succession
they let into the room a physic, an engineer and a mathematician,
with the task of boiling the water.

The physic begins to fiddle with the stove, turning the knobs. He
hears and scents the hissing of the gas. He turns his attention to
the lighter, turns it over in his hands, and after some trials he lights
it. He returns to the stove, approaches the lighter to the open gas,
and slightly burns himself in a small burst of flames. Sucking on his
finger, he puts the saucepan on the stove and boils the water.

The engineer looks around, opens a drawer of the stove and searching
through it he happily comes out with an instructions handbook. He
reads through it, paying particular attention to security warnings.
After picking up the lighter, he lights it near the cooker and then
opens the gas. He puts the saucepan upon the flame and boils the
water.

The mathematician takes a look and then begins to think for a long
time, at times walking nervously around the room, at times scribbling
on a crumpled piece of paper he accidentally found in his pockets.
Then, alight with understanding, he purposefully gets the lighter,
lights the stove and boils the water.

After some time, the sociologists conduct the experiment again, this
time putting the saucepan and the lighter on the floor.

The physic gets the lighter from the floor, turns the flame on without
incidents, lifts the saucepan on the stove and he is done.

The engineer remembers the instructions he read and does the same.

The mathematician, as soon as he grasps the situation, without fur-
ther ado picks the lighter and the saucepan, puts them on the table
in order to reduce to a problem he has already solved, and then boils
the water, quod erat demonstrandum.

1

2

Before explaining why we started with this light joke, let us introduce the
main question around which this thesis revolves.

What is the meaning of computational correctness?

Computation, which in its most intuitive sense is using a set of instruction in
order to accomplish something, is a concept as old as mathematics, if not older.
However one must wait until the beginning of the previous century before the
subject gets an organic approach, whence comes the field of computer science.

It must be stressed that this came quite before actual modern computers
came into being, and that the primary concern at the time was of logical na-
ture: Hilbert’s program for a clean foundation of mathematics. And it should
also be noted that such early theoretical endeavours were not independent of
the later development of digital computers. It is not a coincidence that the
mathematician usually designated as the father of computer science, Alan Tur-
ing, deeply involved in Hilbert’s program, was also involved in the design and
project of the first digital computers.

From a certain point of view, correctness is what computation is all about:
a procedure is correct if blindly following it we get an expected answer or be-
haviour. So the question turns into another form: what do we expect of a
program? Various answers are possible, depending on what are the practical or
theoretical aims.

Modus ponens and cut elimination. Before going into what are the partic-
ular issues and answers contained in this thesis, let us introduce our background,
returning to our mathematician concerned with boiling water.

What did the mathematician just do? He blindly applied the modus ponens
rule of reasoning, formally described by

A⇒ B B ⇒ C
A⇒ C

If we have that B (“lighter and saucepan on the table”) implies C (“boiled
water”), and moreover that A (“lighter and saucepan on the floor”) implies B,
then we can combine the two “proofs” (for B ⇒ C taking the lighter and the
saucepan from the table, using the former to light the stove and putting the
latter on, for A ⇒ B lifting lighter and saucepan from the floor to the table)
and obtain one for A⇒ C. In proof theory such rule is called cut since Gentzen’s
sequent calculus [Gen67], as it cuts away a proposition (B) from the result of
the reasoning. In mathematics this is the basic concept of applying a lemma to
get a new result.

What did the physic and the engineer do? They too (at least unconsciously)
applied modus ponens by relying on previous experience. However they did
not provide the actual “formal” composition of the two proofs, but rather a
reduced one, going directly from A to C. Gentzen’s most important result
is his Hauptsatz (fundamental theorem): if A is provable in intuitionistic or
classical logic, then it is so without the use of cuts. In particular the absurd
or contradiction ⊥, which can only be introduced by a cut, cannot be proved,
and the logical system is consistent. Gentzen’s objective was in fact proving the
consistency of arithmetics.

Introduction 3

One heritage of Gentzen’s theorem is its proof. He provided a reduction
procedure that, given a proof π of A with cuts, gives another proof π′ of A, such
that we can iterate this step and eventually normalize to a proof without cuts.
Such procedure is the cut elimination, and the main contents of the proof of the
Hauptsatz is that we can make cut elimination terminate, arriving to a normal
form, i.e. a proof from which we cannot proceed further, which is necessarily
cut free.

So, modus ponens and lemmas are useless? Quite the contrary. We may
say that lemmas are the true creative and intelligent contents of rigorous and
non rigorous thinking. Without going into the philosophical and psychological
implications, the evident advantages of reasoning by lemmas are the possibility
of taking a lemma “as is”, like a black box, without having to reprove it, and
most importantly of using it as many times as we please. This reuse of lemmas
is granted by the structural rules of contraction and weakening. We will come
back to those later.

From the point of view of a human prover and actual mathematical proving,
cut elimination turns in fact an intelligent proof into a dumb, repetitive and
usually huge one, where every single statement is reproved every time it is used,
and all are traced back to the founding axioms of the theory.

So, is cut elimination useless? Not at all. Let us return to our mathemati-
cian. After he has obtained his proof of A⇒ C, he has A, the actual situation
with saucepan and lighter on the floor. The two can be combined with another
cut rule to obtain a proof of C. But he is not content with just having this
proof, something like “it is possible to boil the water”. He executes it, following
his proof (so passing by the table) and arriving to what we can see as the cut
free proof of “boiled water”: that specific water, actually boiled.

Curry-Howard

Proofs as programs. This suggests that the mathematician’s proof on the
scribbled piece of paper can be in fact regarded as a program, and cut elimination
is the execution of such a program. In fact the consequences of the Hauptsatz
originated another historic leap forward in proof theory, one that reconciled
logic and computer science, long after the beginning of the century had seen
them so close. We are speaking about the Curry-Howard isomorphism [How80],
after observations of Curry in the ‘30s and ‘50s, and Howard in the late ‘60s.

Their core observation was that there was a logical system, a fragment of
natural deduction, which was in complete correspondence with Church’s typed
λ-calculus [Kri93], the functional model of computation at the time seemingly
unrelated. The achievements are the following.

� Proofs as programs: a bijection between proofs of natural deduction and
λ-calculus programs.

� Propositions as types: a proof of a formula A is mapped to a λ-term of
type A. In particular the proof of an implication A⇒ B correspond to a
program of type A → B, i.e. one taking objects of type A as inputs and
outputting objects of type B.

� Cut elimination as execution: a step of cut elimination of a proof in natural
deduction corresponds to a step of β-reduction of the related λ-term.

4

The Curry-Howard isomorphism gave rise to a common ground between mathe-
matical logic and computer science that has sprouted and is continuing to sprout
a wide spectrum of research, fruitfully bridging results and techniques from one
side to the other.

Correctness by specification. After this long detour we come again in touch
with our central topic. One of the early research direction in this field was pro-
gram extraction. A notable result in the wake of the Curry-Howard isomorphism
is that given a function f defined in logical terms then from a proof of totality,
i.e.

∀x∃y : N x =⇒ N f(x),

where N x is the predicate stating that x is a natural number, one can extract
a program calculating the function f [KP90] and always terminating. In fact,
the program is the function. The logical description of f a specification of a
program, i.e. the conditions that the output must satisfy given a certain input.
In other words, a condition of correctness, in the sense that it does what it
is expected to do. Here the Curry-Howard correspondence ships a proof of
correctness as the program calculating f . This is about the correctness of a
single program, but what can we say of a general logical system or programming
language?

Correctness by good reduction behaviour. If we shift our viewpoint to
rewriting theory, then we see both cut elimination and program execution as
a rewriting relation on some language. We thus naturally inherit a number of
other notions that can be taken singularly or altogether as a measure of the
correctness of a logical system or a programming language:

� the already mentioned weak normalization, i.e. every proof/program can
be reduced to a normal form, a cut free proof/value;

� strong normalization, i.e. no matter how we reduce a proof/program, the
cut elimination/computation always terminates;

� confluence, also called Church-Rosser property, i.e. if we reduce in two
different ways we can reduce to a common form; in particular if there is a
normal form then it is unique, i.e. normalization is deterministic.

As a side note, the last point was proved for λ-calculus for a logical reason, in
order to prove consistency of the theory of λ-calculus, which was a try at, again,
giving solid mathematical foundations along Hilbert’s program.

In computer science type theory is the the field that studies just what cor-
rectness can be imposed on programs by typing them in some logical system
(in fact, establishing instances more or less strong of the Curry-Howard iso-
morphism). This is a standard tool to certify that a program has correctness
properties like the three we mentioned. Examples of the achievements on this
line are the functional programming languages, such as CAML.

Invariants. As for both proofs and programs studying the reduction becomes
the most important issue, a great importance is given to the study of invariants
of the transformation given by reduction. For example if a system has weak

Introduction 5

normalization and confluence, then the normal form is an invariant. However,
in order to find tools that truly add something in the picture, one really needs
to look for some solid foundation outside the system.

In logic and computer science the study of invariants of reduction is called de-
notational semantics, with Scott domains [Sco72] among its first achievements.
Its basic idea is to interpret formulas/types A with some kind of mathematical
structure JAK, and a proof/program of type A → B with a morphism between
the two structures JAK → JBK. The requirement will then be that if π reduces
to π′, then JπK = Jπ′K. Denotational semantics can therefore be inserted as a
third agent of the Curry-Howard correspondence, giving a (possibly) convincing
mathematical framework to the dynamics of the systems.

Proofs Programs

Semantics

Again the three sides can act as a bridge between all the actors involved, trans-
porting notions, results and also questions between a domain and the other, as
we hope will be made clear by some examples we will show next.

Linear Logic

From invariants to linear logic. While the three-sided Curry-Howard cor-
respondence described above flourished for natural deduction, intuitionistic logic
and functional programming, sequent calculus remained for long out of the pic-
ture. Its main shortcomings are the absence of the strong normalization property
and more importantly confluence, so that convincing invariants for reduction are
hard to find. In fact for Gentzen’s sequent calculus the only invariant is prov-
ability: i.e. all proofs of A are identified. Such a behaviour can be traced back
to an inherent non determinism of cut-elimination: reducing a proof of A may
give different normal forms by non confluence.

But it was right from the semantical analysis of intuitionistic logic that came
an answer: the discovery by Girard of linear logic (LL, [Gir87]). The observation
was based on the fact that on coherent spaces and stable functions, a model of
system F, second order intuitionistic logic, the implication can be decomposed
into two different operations

A→ B = !A(B

where

� A(B are semantically linear morphism from A to B;

� !A denotes in a sense a space of reusable “packages” of A.

On the semantics side the morphisms !A(B should be entire analytical func-
tions, though at this stage the correspondence is shaky, and we will come back
to it later.

6

Why linear? This behaviour of the semantics side of the correspondence,
where linearity in the mathematical sense is (somewhat) recovered, can be lifted
to the other two sides. Summarizing: linearity corresponds in logic to forbidding
the structural rules weakening and contraction, and in computer science to using
inputs exactly once.

Linear logic is the logical system that acknowledges such distinction, relegat-
ing the structural rules only to formulas explicitly introduced to accept them,
the exponentials. The system then is seen to split the connectives in two classes,
the multiplicatives ⊗ and ` (tensor and par), and the additives & and ⊕ (with
and sum), with ⊗ and & playing the role of conjunctions and ` and ⊕ that
of disjunctions. Then we have the two exponential modalities !A and ?A (bang
or of course and why not), with structural rules allowed on ?A. However the
most important operation is arguably the involutive negation A⊥ (the dual) for
which the above connectives satisfy De Morgan’s duality, each in their class.

Duality and Proof Nets. It is evident in classical logic that a proof of A⇒ B
proves also ¬B ⇒ ¬A. However if such proof effectively turns hypotheses A into
the thesis B, in general we will not be able to see the same in the inverse, i.e.
an effective way of turning ¬B into ¬A. The structure of a proof of A⇒ B can
be seen as a tree with multiple leaves for where the A hypotheses are used in
the proof. Turning such tree upside down is far from giving the same picture.

On the other hand a proof of A(B is one that uses exactly one hypothesis
A to provide exactly one thesis B. We can intuitively see the significance of
having a duality with respect to such arrow: B⊥ (A⊥ is again the space of
proofs bringing one B⊥ into one A⊥. This leads to see that there is no preferred
order in such proofs: proof trees can become a more general object with a more
relaxed structure, proof nets.

In this new syntax proofs of sequent calculus get quotiented with respect to
commutation of logical rules in the tree. As such it is a desequentialized version
of sequent calculus, much closer to the computational contents of the proof.

As the exponentials break the pure linear nature of the logic, in proof nets
they are responsible for the appearance of boxes, i.e. areas of the proof that are
in a way marked to be together and not dispersed by the unsequential nature
of the nets.

Back to computer science. As we have already said, linearity in computer
science corresponds to arguments which are used only once, i.e. that are not du-
plicated or erased. Linear logic gives a precise logical framework where one can
dissect the behaviour of programs on this issue. For an example of the novelty
of this approach we have logical systems for implicit computational complexity,
the so called light logics (the first being light linear logic [Gir98]). To put it
in Girard’s words “the abuse of structural rules may have damaging complexity
effects”. This gives by the way yet another possible interpretation of correct-
ness: the one relative to good complexity behaviour, as poly or elementary time,
which is granted by typing in light logics.

Another example, more strictly related to proof nets, is the fact that as
intuitionistic logic translates into linear one, we recover a translation of λ-terms
in proof nets, where we can profit from the local and desequentialized nature
of such system. Danos [Dan90] and Regnier [Reg92] studied this translation,

Introduction 7

arriving to define an untyped version of proof nets that give to λ-calculus a
syntax akin to Lamping graphs for optimal reduction, though in a completely
logical setting.

In such translation exponential boxes become the arguments, so that they
can be used as many times as is necessary. We get here the intuition that a box
is a sort of package, marked so that we know what must be copied or deleted
when such operation must be executed.

Discerning correctness among mistakes. One great novelty of proof nets
is that they live in a richer syntax, nets (usually called proof structures in the
literature [Gir87]), where cut elimination is defined. Basically, it is a perfectly
defined syntax where errors are allowed, beyond just typing mismatches. This
opens a totally new point of view in regarding correctness. After all, giving a
uniform setting in which we can do mistakes can indeed add up to the study of
what is not a mistake.

In proof nets one typically gives a geometric criterion characterizing “true”
proof nets. What can be asked from such criterion?

� logical correctness: the net is indeed a proof, which means that it is the
desequentialization of a sequent calculus proof;

� dynamical correctness: the criterion is invariant (stable) under reduction,
which means we can truly compute with these objects;

� semantical correctness: the criterion tightly corresponds to the semantics.

While the first two points are woven in the twenty years of linear logic tradition,
the third is quite a recent point of view. It makes sense due to the fact that not
only cut elimination but also semantics is perfectly defined on nets, giving in
general plain sets. Then the semantics of choice can distinguish “right” objects
out of those sets. For example coherent spaces, which are just unoriented graphs
built upon sets called webs, distinguish a set of atoms of the web if it is a clique,
i.e. points pairwise coherent. Such investigation is thus in the spirit of ferrying
properties and notion in the three-sided correspondence between logic, computer
science and mathematics. For MLL there is the early work by Retoré [Ret97],
while our most recent point of reference is Pagani’s one for MELL [Pag06a] and
differential linear logic [Pag08], a system we will introduce up next.

During the preliminary Part I we will address the question of which relation
exists between these different notions, taking the multiplicative additive frag-
ment of LL and Ehrhard’s hypercoherent spaces [Ehr95] as the targets of our
investigations, whose results will be the object of Part II.

Differential Linear Logic

Back to invariants: vector spaces. Let us go back to linearity and analyt-
icity in semantics. Such notions clearly need a linear algebra setting, a setting
from which linear logic has always borrowed its jargon. Ehrhard has introduced
in [Ehr02, Ehr05] new models of linear logic that convincingly use such setting.

Formulas get interpreted by vector spaces, while proofs (and programs) by
continuous linear maps. Such intuitions were indeed already present in coherent
spaces. Namely, the operations on webs underlying tensor, dual or (direct)

8

sum of coherent spaces are the same done on bases in their counterparts of
finite-dimensional vector spaces. However the exponential modality breaks this
parallel as it necessarily introduces infinite webs, and thus infinite bases.

It is well known in linear algebra that such infinite dimensional spaces have a
series of quirks with respect to their finite dimensional cousins, unless we endow
them with some kind of topology. The works of Ehrhard succeed in finding
one good enough for the purpose of modelling linear logic. In the spaces of
[Ehr02, Ehr05] the correspondence between the connectives and the operations
on topological vector spaces becomes totally precise, so that

� the tensor ⊗ is indeed the tensor product of two spaces;

� the linear implication (gives the space of continuous linear maps;

� the dual A⊥ gives the dual in the topological sense, i.e. the space of linear
continuous maps from A to the field (which therefore takes on the role of
the unit ⊥).

� the finite cartesian product & and coproduct ⊕ get identified in the di-
rect sum of vector spaces; again, just like in vector spaces, the two get
distinguished in the infinite case in the infinite direct product and sum of
spaces respectively.

Finally, morphisms in !A(B can be seen as analytical functions. As such,
we may glint yet another refinement of the intuitionistic arrow. An analytical
function can in fact be seen as its Taylor expansion, i.e. as an infinite sum of
multilinear forms. This expansion is obtained by iterating derivation on such
morphism, a notion that makes perfect sense in this semantical setting.

Can all this be lifted by the three sided correspondence (semantics, logic
and computer science) to the other two fields? The affirmative answer came
from Ehrhard and Regnier who presented extensions with syntactic differential
operators for both linear logic [ER06b] and λ-calculus [ER03].

Back to computer science: derivating programs. What does taking a
derivative mean? One explanation is that it gives the best linear approximation
of a function in a point. Intuitively we may think of a way of getting such a
linear approximation of a function without looking into it: feeding it with an
input that is inherently linear, and just see how the function handles it.

This is exactly the behaviour in programs that the derivative corresponds to
by the three sided Curry-Howard. Given a program t of type !A(B derivating
it means feeding it a linear argument u which can be used exactly once. Let us
stress the difference with the linear functions A(B we already wrote about.
Those are functions where the input is structurally bound to be used once. Here
instead we are speaking about an ordinary program that uses multiple times its
input, which finds itself with a one-use argument.

In this sense ∂t
∂x · u is indeed the linear approximation of t applied to u, as

u must be used in the usual computer science sense of linearity. This naturally
gives non-determinism, as there is a choice as to where such one-use u should
go among the possibly many queries for x. Such non-determinism exactly cor-
responds to the sum of vector spaces, therefore it is natural to model it on the
syntactic level with the use of formal sums.

Introduction 9

Let us see a simple parallel with calculus to explain the above point: if we
consider the function x2, we can see it as the bilinear form x1 ·x2 applied to x and
x again, so that we can see the distinction between the two linear occurrences
of x. Then taking the derivative along a can be seen as non deterministically
choosing one of the two occurrences and substituting a for it, i.e. a · x2 + x1 · a.
Contracting back together the occurrences, we get the known 2x · a.

So it should be clear by now that while linearity was bridged to the concept
of unduplicable and unerasable input, derivation does so to the concept of de-
pletable input. There already where a few efforts to study such computational
behaviour (like Boudol’s calculus with resources [Bou93], on which we will return
in Part I and then in Part III, or Kfoury’s linearization of λ-calculus [Kfo00]),
however we think that such study may take new life from the link with these
novelties in linear logic, much like the study of linearity in λ-calculus did after
Girard’s discovery.

Taylor expansion. The correspondence of derivation has a deep consequence.
Iterated derivation may be used to extract the Taylor expansion of an analytical
function, and the same can be done for a term of λ-calculus. We can perform
such expansion t∗ inductively by setting x∗ = x, (λx.s)∗ := λx.s∗ and finally

((u) v)∗ =
+∞∑
n=0

1
n!
〈u∗〉(v∗)n (1.1)

where 〈u〉 v is the linear application of resource calculus, a fragment of differen-
tial λ-calculus dealing only with one-use resources, strongly related to Boudol’s
one, hence the name. Then all terms of ordinary λ-calculus are indeed analytical
in a precise sense [ER08, ER06a]. Application is an operation which is linear
in the function but not in the argument: the Taylor expansion may be seen as
decomposing this non linear operation lying behind !A(B into an infinite sum
of linear operations.

Back to logic: derivating proofs. Just like ordinary λ-calculus can be
endowed with differential operators, so are proof nets. Just like the non linear
application of λ-calculus can be decomposed in an infinite sum of linear pieces,
so can the non linear exponential box of LL. This requires to give linear rules for
introducing and managing the exponential modality !. Surprisingly, the result
is a system where ! and ? are completely symmetric, just like the linear ⊗ and
` are. So as ? was introduced from a linear formula with the dereliction rule,
was introduced out of nothing with weakening one and joined with contraction,
we have the symmetric rules for !: codereliction (which represents derivation in
0), coweakening and cocontraction.

In these nets, introduced as differential interaction nets in [ER06b], we find,
twenty years after LL was discovered, that indeed the exponential box is. . . the
exponential. In fact provided certain conditions one can Taylor expand the nets

10

of LL, as shown in [dC07]. We then have

!

π
*
=

+∞∑
n=0

1
n!

!

! !

?

π∗ π∗
n times

The symbols will be explained later in the thesis. If however we take the ad-
dends to be powers of π∗ (in a sense related to a convolution product), we exactly
get the known expansion of the exponential. In this light the exponential iso-
morphism, known since the beginning of linear logic, stating the equivalence
!A ⊗ !B ∼= !(A & B), is explained by ex · ey = ex+y. By the way, we will deal
with a syntactic counterpart to such isomorphism in Part I and II.

Differential interaction nets and π-calculus. Though devoid of what
made LL so expressive, the exponential box, this system has proven to be a
highly interesting one in itself. In [EL07] Ehrhard and Laurent have translated
into it a relevant fragment of calculus of processes, the finitary π-calculus. The
dual rules of dereliction and codereliction take then the meaning of sending or
expecting a signal on a channel, with contraction and cocontraction acting for
routers, and weakening and coweakening turning off the channels.

We have seen how such logical framework seems to be apt at describing non
determinism by depletable resources. This other result shows promise in also
capturing another kind of non determinism, the one due to concurrency. It is
the first time that we get a glimpse of the Curry-Howard correspondence in the
realm of non-deterministic computation, and it could be the starting point for
a fruitful analysis, if not renewing, of the paradigm.

Mixing linear and exponential. Though the seminal paper of differential
interaction nets deals only with the linear exponential rules, the definition of
the extension to the ordinary box of linear logic is straightforward, giving rise
to differential linear logic. Even though such box can be replaced by its Taylor
expansion, such procedure totally voids the system of its finitary (or, we would
say, uniform) nature.

So, even though there is not yet a publication similar to Girard’s [Gir87] for
differential linear logic, there is already a lot of ongoing research being done on
this system. Some first results may be seen in Vaux’ extension to the polarized
paradigm in [Vau08], or the already cited work on differential liner logic and
finiteness spaces by Pagani [Pag08].

Reduction correctness in differential linear logic. However, due to the
youth of this research area, there is still a lack of fundamental results about the
good computational behaviour of the system, its correctness from this point of
view.

Clearly the first question that comes to mind is whether the system is nor-
malizing, clearly setting oneself in the typed case. Pagani in [Pag09] shows weak
normalization for first order differential linear logic. Can we infer more?

Introduction 11

What can be said when we abandon types? Such a setting is ideal for
showing results which persist whatever the type system one might later put on
the objects, though it is clearly a harder one. Many results of rewriting theory
rely on termination. Most importantly, confluence becomes a subtler issue.

We have strived to fill this gap, and our results are the object of Part III.
These achievements may be seen as parallel to the ones given by Danos and
Regnier for MELL in their theses [Dan90, Reg92] in the wake of LL and proof
nets, and by Pagani and Tortora de Falco much later in [PTdF08] for the whole
of LL.

As a sidenote, one could wonder why one searches confluence in a non de-
terministic paradigm. The catch is that confluence of sums ensures that the
divergence of reduction is due to the inherent forking of single steps, rather
than by a choice of which part of the program to reduce.

To illustrate how such reduction correctness can be employed, we studied
the natural extension of resource calculus (as presented by Ehrhard and Regnier
in [ER06b]) to a mixture of depletable and perpetual arguments. We will see
in Part III how we can translate this calculus into differential proof nets, and
how the results proved about their reduction correctness can be lifted to such
calculus.

1.1 Plan and Presentation of the Results

In the first part of the thesis we will pose the formal framework in which all our
successive endeavours will take place.

In Chapter 2, we will give the unifying definition of nets. We will thus
introduce nets, slice nets (sets of nets, like MALL nets) and polynets (multisets
of nets, like differential interaction nets). Great care is given to the formal
definition also of exponential boxes, containing other nets or polynets. The
definitions revolve around the concept of context, which permits to easily define
reduction of nets, which is done in Section 2.2. We also provide a very general
formal definition of set denotational semantics for nets, and webbed semantics
with, most importantly, the first definition of semantic correctness (Section 2.3).

In Chapter 3, we present the systems of MLL and MALL inside the frame-
work built in the previous one. The logical correctness of the system is stressed,
by presenting the correctness criteria, the Danos-Regnier one for MLL, and its
extension by Hughes and van Glabbeek for MALL, together with their sequential-
ization theorems. In the last part of the chapter we speak about the invariants
of these system, introducing coherent and hypercoherent spaces. The relation
between semantic correctness and MLL correctness is stated (Theorems 3.16
and 3.18). We also give a polished proof of the first which is the starting point
for the proof of Theorem 5.7 in Chapter 5. The positive and negative results
that propelled our research are presented.

In Chapter 4 we switch to MELL and DiLL. Our viewpoint changes: we
define logical correctness, but our interest does not lie in the logical contents
like the sequentializability theorem, but rather in the good reduction properties
it entails. We thus begin with a short introduction to more advanced rewriting
theory notions, namely normalization and confluence modulo an equivalence re-
lation. We then introduce MELL, its correctness criterion, and the intuitionistic
pure nets, which we call λ-net to stress their tight relation with λ-calculus. Such

12 1.1. Plan and Presentation of the Results

relation, as studied by Danos and Regnier, is presented in Section 4.2.3.
The second part of the chapters deals with the status quo for differential

proof nets. We thus present: Ehrhard’s and Regnier differential interaction nets
(DiLL0, as they are the 0-depth fragment of DiLL), and their relation with re-
source calculus, a linear revisiting of Boudol’s calculus. We finally move on to
defining the syntax of differential proof nets with boxes. We will define a set of
(optional except the associative one) equivalence relations, among which the ex-
ponential isomorphism equating a box with a um inside with the“multiplication”
of two boxes. Motivated by the net shown in Figure 4.12, a counterexample to
the striction lemma (stating that a pure net is SN iff it is WN by non erasing
steps, a property fundamental for normalization proofs) we conclude the section
by defining a form of typing we call lax, which does not exclude any net but
rather excludes reductions, namely on those cuts that somewhere before were
clashes.

In the second part of the thesis, Chapter 5, we present a new criterion
on MALL nets, hypercorrectness (Definition 5.1). This is a geometric charac-
terization of semantic correctness for hypercoherent spaces, and comes also in
an apparently weaker form which we call weak hypercorrectness. The latter is
seen to be directly implied by Hughes and van Glabbeek’s correctness (Propo-
sition 5.2).

The following section is devoted to the proof that weak hypercorrectness im-
plies HCoh-correctness for saturated MALL nets (Theorem 5.3). Combined with
Proposition 5.2 this gives the first proof of semantic soundness of MALL proof
nets entirely based on paths in the net. Next, we prove that HCoh-correctness
of a cut free MALL net implies its strong hypercorrectness (Theorem 5.7). In the
last section we establish by semantical means that the two form of hypecorrect-
ness are equivalent also in the case of nets with cuts (Proposition 5.10) and more
importantly that hypercorrectness is stable under reduction (Theorem 5.11).

The third part of the thesis begins with Chapter 6, completely devoted
to prove the Church-Rosser theorem for pure DiLL proof nets (modulo equiva-
lence). We arrive at such result by defining a parallel reduction which is strongly
Church-Rosser (confluency and Church-Rosser are not equivalent in reductions
modulo, see Section 4.1). In order to prove this, we need a finite development
theorem (Theorem 6.1, which takes the most part of the chapter. Such theorem
is rephrased as SN and CR∼ for a system, DiLL◦, that locks “new” cuts. The
first is obtained by means of a decreasing measure (Proposition 6.8), the sec-
ond by using a variant of Newman’s Lemma due to Huet, thus checking local
confluence and local coherence with ∼ (Proposition 6.9).

Chapter 7 goes on and contains the proofs of the standardization theo-
rem and the conservation one, in λ-calculus’ jargon. The first states that every
reduction chain can be turned into a standard one, where no reduction is per-
formed if it involves something that was already reduced. The second states
the equivalence of strong normalization and the weak one for non erasing reduc-
tions, for any given pure DiLL proof net. The proof is carried out using Gandy’s
method: if a term is normalizable and confluent, and we define a strictly in-
creasing measure, then the term is strongly normalizing. However in order to
do this one needs confluence of non erasing reduction, at which DiLL fails. We
therefore pass via another system, DiLL∂%, which replaces symmetrically codere-
liction and dereliction with new cells ∂ (linear substitution) and % (linear query),
using translations to bring back and forth results between the two systems.

Introduction 13

Finally in Chapter 8 we present the full resource calculus. This is a calculus
having exactly the syntax of Boudol’s λ-calculus with resources, with mixed
perpetual and depletable resources. The difference is the reduction, an algebraic
one directly taken from differential λ-calculus. A notable difference is that we
are able to totally rule out sums inside arguments, by converting on the fly a
perpetual sum in various perpetual resources, by setting (∞u+ v) = u∞v∞.

As with resource calculus, the target of the Taylor expansion of ordinary
λ-terms, reduction comes in two flavours, giant step

g→ and baby step b→. How-
ever, having fully recovered the whole of λ-calculus, results on such reduction
again become non trivial. However, a translation is established between such
terms and DiLL λ-nets, t◦. Then it is shown that such a translation is bijective
(Theorem 8.8, on ec normal nets without exponential axioms) and that two
strong forms of simulation hold. First, s

g→ t if and only if s◦ m→ec� t◦ (Propo-
sition 8.12), which suffices to transport normalization results from DiLL to the
calculus. Then if s◦ reduces in any way to a normal net t◦ then s

g∗→ t (Theo-
rem 8.16), which suffices to show confluence of both reductions (Corollary 8.17
for g and Theorem 8.6 for b from it).

1.2 Notation

Mfin(X) is the set of finite multisets over X, i.e. functions A : X → N with
support |A| < ω finite. Depending on the context multisets will be presented
either in additive (multiset union is A+B) or in multiplicative (AB) notation.
In any case

∑
a∈ADa stands for a sum with multiplicities, i.e.

∑
a∈|A|A(a) ·Da.

For example cardinality is #A =
∑
a∈A 1. If we need to denote a particular

multiset, we do so by enclosing the elements in brackets, as in [a, a, b, c, c, c].
Given a sequence ~a = (a1, . . . , an), the sequence (a1, . . . , âi, . . . , an) denotes

the sequence obtained from ~a by skipping ai.
The disjoint union of two sets A and B is denoted by A+B, with canonical

injections given by a 7→ a.0 ∈ A+B for a ∈ A and b 7→ b.1 ∈ A+B for b ∈ B.

Basic notions of rewriting theory. An abstract reduction system is a set
S together with a relation (the reduction) →⊆ S × S. Composition of relations
is denoted by juxtaposition, so that for example →→ is a two step reduction.
We define the following derived relations:

� ← for the transpose of →;

�
=→, +→, ∗→ for its reflexive, transitive and reflexive-transitive closures;

� ≡ for its generated equivalence relation, i.e. its transitive, reflexive and
symmetric closure (← ∪ →)∗.

We say that → is

� strongly confluent if ←→ ⊆ =→ =←;

� locally confluent if ←→ ⊆ ∗→ ∗←;

� confluent if ∗→ is strongly confluent.

14 1.2. Notation

Such conditions are usually drawn by a diagram. For example local confluence
is depicted by stating that for term s, t u:

s

t u

v
∗ ∗

The dashed lines indicate that such reduction exist, together with their target
v.

A normal form is an element of S which is not in the left projection of →,
i.e. such that no further reduction is possible from it. We write u� v if u ∗→ v
and moreover v is normal. If for a given u such v exists and is unique, we write
NF(u) := v. We will then say that

� u is weakly normalizing, or u ∈WN, if ∃v | u� v;

� u is strongly normalizing, or u ∈ SN, if there is no infinite reduction
u→ u1 → . . .→ uk → . . . ;

� → is weakly normalizing, or WN (resp. strongly normalizing, or SN) if
every object of S is.

Said in other words, → is SN if ← is well founded. For a strongly normalizing
system, we will thus be able to use well founded induction (implicitly with
respect to the reduction). If we can infer a property on t from the same property
for all t′ with t→ t′, then the property holds for all terms.

In Section 4.1 we will discuss more advanced notions of rewrite theory, deal-
ing with reduction modulo equivalence, presenting the results we need.

Part I

Tools, Questions and Aims

15

Chapter 2

Nets

In this chapter we will outline the absolute protagonists of this work: nets.
Starting from the presentation of proof nets in [Gir87] a wealth of redefini-
tions and extensions were made based on them [Dan90, Reg92, Gir91b, Gir96,
Joi93, TdF00, Lau02, Pag06b, HvG03, ER06b] (and many others. . .). A gener-
alization on which the nets we will use are based upon has been developed by
Lafont in [Laf90], abstracting away the logical contents and concentrating on
the computational one. These nets were later generalized to multiport interac-
tion nets introduced by Mazza in [Maz06], introducing cells that could interact
on more than one port, and interaction structures, thouroughly described by
Vaux in [Vau07], in which differential interaction nets [ER06b] are described, as
well as joins the previous two, introducing moreover the exponential boxes that
are central to Part III. Also MALL proof nets as presented by Hughes and van
Glabbeek in [HvG03], can be seen in this framework, though we will keep the
slightly different definition of cut reduction there described (see 3.2.4).

We will therefore present here the formal framework in which subsequent
chapters will move. We will strive to give a unifying framework in which all
relatives of proof nets can be described. The definitions are mainly based on
Vaux’ ones in [Vau07]. Our main difference and contribution is the definition
in all variants (interaction nets, sums, boxes and boxes with sums) of contexts.
Especially when dealing with boxes this can give a uniform approach, as the
reductions and conversions get defined exactly as in λ-calculus, by context clo-
sure.

Also in Section 2.3 we present in the most general way possible the frame-
work in which semantical interpretation of nets takes place, by defining what in
general a set denotational semantics is.

2.1 Statics

We will concentrate here on the static description and definition of our objects.

2.1.1 Ports, Cells and Wires

Intuitively nets are defined as circuits composed of cells whose ports are con-
nected by wires. Cells come from sorts indicated by symbols in an alphabet,

16

Chapter 2. Nets 17

and have a certain number (the arity) of input ports, one output principal port
and a number (the coarity) of non-principal output ports1.

Definition and Representation

A signature is given by an alphabet Σ and two functions a, a : Σ → N called
arity and coarity respectively. The degree of a symbol α is deg(α) := a(α) +
a(α) + 1. For brevity, a signature will be denoted by its alphabet. Inclusion of
signatures Σ ⊆ Σ′ is naturally given by the inclusion of the alphabets and by
aΣ′�Σ= aΣ and aΣ′�Σ= aΣ .

Let us fix a countable set, the set P of ports. A cell c in Σ over P is an
tuple

c = (α, p0, . . . , pk)

where α ∈ Σ, k = deg(α) and p0, . . . , pdeg(α) ∈ P are distinct ports. We write

σ(c) := α, its symbol,
a(c) := a(α), a(c) := a(α), deg(c) := deg(α), its arity, coarity and degree,
p(c) := { p0, . . . , pdeg(α) } its ports,
actv(c) := (p0, . . . , pa(α)), its active ports,
pasv(c) := (pa(α)+1, . . . , pdeg(α)), its passive ports.

We denote by ci with 0 ≤ i ≤ a(c) the i-th active port, and by c[i] with 1 ≤
i ≤ a(c) the i-th passive port. The active port c0, always present, is called
principal port, the others are called auxiliary.

A net µ on a signature Σ is given by a quadruple

(p(µ), c(µ), pw(µ), dl(µ)).

Ports: p(µ), the ports of µ, is a finite set in P.

Cells: c(µ) is a set of cells with p(c) ⊆ p(µ) and disjoint two by two, i.e. if
a 6= b ∈ c(µ) then p(a) ∩ p(b) = ∅.

Proper wires: pw(µ), the set of proper wires of µ, is a partition of p(µ) into
sets of cardinality 2, i.e. each port lies exactly in one proper wire.

Deadlocks: dl(µ) ∈ N is the number of deadlocks of µ.

The bounded and free ports of µ are respectively the sets

bp(µ) :=
⋃

c∈c(µ)

p(c), fp(µ) := p(µ) \ bp(µ).

It may be noted that p(µ) is completely determined by c(µ) and fp(µ), so that we
may equivalently define these two sets and infer p(µ) from them. The wires of µ
are w(µ) := pw(µ)∪dl(µ) (where n = { 0, . . . , n− 1 }, so that we are saying that
wires are the proper ones plus dl distinguished ones called deadlocks). The set
of internal wires is iw(µ) := { e ∈ pw(µ) | e ⊆ bp(µ) }, i.e. the ones connecting
bounded ports, while the external ones ew(µ) are the proper and non internal

1There is no real distinction between the principal port and the other output ports, other
than a naming convenience when it comes to our main use of multiple output ports: expo-
nential boxes of linear logic.

18 2.1. Statics

µ =

α β

ε

γ δ

β γ

γ

δ

γ

γ

γ

ε

Figure 2.1: An example of net.

ones, thus the ones over the free ports. An external wire is said to be dormant
if it does not link a passive port (these are the wires that can become cuts when
the net is plugged in a context).

We adopt the idea of not giving a homogeneous definition for proper wires
and deadlocks (as opposed to other treatments of the subject like [Maz06,
Vau07]) as the latter play practically no role in our work. In such a case in
many ways it is better to set them apart. Most notably, we thus have that ports
are either free or belonging to a cell.

The above precise definition we be extensively used when proofs are carried
out. However it somewhat hides the intuitive idea of net. So we use the following
graphical representation, which bijectively characterizes nets.

Cells that have a single active port (also called unicells) as triangles con-
taining their symbol where the active port is a vertex and the passive ones are
placed on the opposite side left to right (relative to the vertex).

α

c0

c[1] c[a(α)]

Cells that have more than one active port can be drawn with rectangles, with
angles protruding from one side on whose vertexes active ports are placed, while
passive ones are on the opposite side (left to right relative to the active side).

c0 ca(α)

c[a(α)]c[1]

α

We will not however use much this notation, as the multicells (i.e. cells that
are not unicells) that we will employ will only be boxes, which use a particular
representation (see Section 2.1.3).

Wires, as their name suggests, are represented by edges between ports, and
deadlocks by dl(µ) circles somewhere in the net. As each port is contained in
exactly one wire, we can spot them as the extremities of wires, and we usually do
not have to mark them as we did in the above drawings. Free ports, in particular,
appear as extremities of dangling wires. So for example the net in Figure 2.1
has 8 free ports, 1 deadlock, is built on the signature Σ = {α, β, γ, δ, ε } where

Chapter 2. Nets 19

α and β are the only multicell symbols with

a(α) = 0, a(α) = 1, a(β) = 2, a(β) = 1,

while for unicell symbols

a(δ) = 1, a(γ) = 2, a(ε) = 0.

As can be seen in the graphical representation we do not give names to ports.
Free ports can be identified by their position on the border, while we really do
not want to make differences about what names are given to bounded ports,
much like is done for bounded variables in λ-calculus. So the following notion
is the equivalent of α-equivalence for nets, in order to abstract away the actual
names of bounded ports.

Given two nets λ and µ with dl(λ) = dl(µ) an α-conversion from λ to µ is
a bijection φ : p(λ)→ p(µ) such that

� ∀p ∈ fp(λ) : φ(p) = p, so that fp(λ) = fp(µ),

� ∀(α, p0, . . . , pk) ∈ c(λ) : (α, φ(p0), . . . , φ(pk)) ∈ c(µ),

� ∀{p, q} ∈ pw(λ) : {φ(p), φ(q)} ∈ pw(µ).

λ and µ are then said to be α-equivalent. From now on all we say has to be
considered up to α-equivalence. It is not hard (and will not be shown explicitly)
to see that all definitions and results are valid under such equivalence.

The set of (α-equivalence classes of) nets over a signature Σ is denoted by
NΣ (dropping the subscript if it is clear from the context). There is a unique
net with c(ε) = ∅, fp(ε) = ∅ and dl(ε) = 0 (so that w(ε) = ∅ also): we call ε
the empty net.

Given a proper wire e we write e(p) = q if e = { p, q } (so e2(p) = p). Given
a net µ and a port p in it, we denote by p⊥µ (dual of p in µ) the port e(p) where
e is the unique wire in µ containing p. We drop the µ in subscript if it is clear
from the context. Rather than defining pw(µ), we can equivalently define on
p(µ) the involutive function (−)⊥µ without fixpoints, and recover from it pw(µ).

The set cw(µ) of cuts is the set of internal wires {p, q} such that both p
and q are active ports of different cells. The set aw(µ) of axioms is the set
of wires {p, q} with both p and q non-active (but not necessarily passive, i.e.
bounded). In the graphical representation, cuts are wires between pointed parts
of the cells, while axioms are between flat joints and/or free ports.

A subnet λ ⊆ µ is a net λ such that c(λ) ⊆ c(µ), iw(λ) ⊆ iw(µ) and
dl(λ) ≤ dl(µ). Notably, a subnet may have free ports that are not present in the
main net, not even as bounded ports. We consider two subnets equal if they
differ only by a renaming of free ports. In general we do not consider them up
to α-equivalence also, as we want to be able to tell where exactly a subnet lies
in a representant µ of an α-equivalence class. The set of subnets of a net µ is
denoted by ℘(µ). There is a canonical injection from c(µ) into ℘(µ): to each
cell c it associates the unique subnet with only c as cells, with no internal wires,
no deadlocks and exactly deg(c) free ports. We then can regard every cell as a
subnet also. There is also an injection cw(µ)→ ℘(µ) that associates to each cut
e = {ci, dj} the smallest deadlock-free subnet containing c, d and e, denoted by
µ�e.

20 2.1. Statics

One asks that only internal wires be inside the main net be able to say:

γ ⊆ γ
.

There is no way of finding the two top dangling wires in the right net, though
intuition rightly tells that the left is indeed a subnet of the right.

A directed proper wire d ∈ dpw(µ) is a pair (p, q) with {p, q} ∈ pw(µ).
The dual d⊥ is defined as the transpose (q, p), the source and target by usual
projections s(d) := p and t(d) := q.

The directed wire graph ~G(µ) associated to a net µ is the one that has

� fp(µ) + c(µ) + dl(µ) as nodes;

� dpw(µ) + dl(µ) as arrows;

� the following as source and target functions

sG(d) :=

d if d ∈ dl(µ),
s(d) if s(d) ∈ fp(µ),
c if s(d) ∈ p(c) with c ∈ c(µ),

tG(d) :=

d if d ∈ dl(µ),
t(d) if t(d) ∈ fp(µ),
c if t(d) ∈ p(c) with c ∈ c(µ).

In other words, one adds loops for deadlocks, and collapses all ports of a cell to
a single node. An undirected version G(µ) of the above definition can be easily
derived. Paths in µ are the edges d1 . . . dn of the free category generated by
~G(µ). By abuse of notation we will write

� di ∈ φ for every i;

� e ∈ φ if e is an undirected wire {p, q} such that either (p, q) ∈ φ or
(q, p) ∈ φ;

� p ∈ φ if p is a port with p ∈ e ∈ φ;

� c ∈ φ if c is a cell with one of its ports p ∈ p(c) with p ∈ φ.

A path φ is said to be elementary if it is not empty, no undirected wire is
repeated (i.e. if i 6= j then neither di = dj nor d⊥i = dj), and no three different
ports of the same cell c are in φ (so that the path does not intersect itself,
though it may still cycle). The dual of a path φ = d1 . . . dn is its reversal, i.e.
φ⊥ := d⊥n . . . d

⊥
1 . A non-empty path φ is a cycle if

sG(φ) = sG(e1) = tG(en) = tG(φ).

A directed wire d is upward if s(di) is non active and t(di) is active. We may
refer to d in this case with the notation ↑ d. Clearly d is downward (denoted
by ↓ d) if φ⊥ is upward. A path is upward or downward if all its wires are
respectively upward or downward.

Chapter 2. Nets 21

An elementary path φ bounces on a cell c if two auxiliary ports of c appear
both in φ. This by elementarity condition means that the path enters through
one of the two and exits immediately after from the second. An elementary
path is straight if it never bounces.

An (elementary) path in G(µ) is obtained from a directed path by forgetting
the directions and quotienting by path reversal. Bouncing and being straight are
properties that can also apply to undirected paths, while upward and downward
are not.

A deadlock loop, or a cycle φ that is upward or downward is called vicious
cycle. Vicious cycles made only of unicells are parts of the net that cannot
participate in a non-generalized reduction (see Section 2.2). The following net
on the left is the smallest subnet of the one presented in Figure 2.1 that contains
a vicious cycle. The one on the right is an example of vicious cycle consisting
of only one wire.

γ

γ

γ

α

Glueing and Contexts

Many of the following definitions and results are usually quite obvious when
interpreted in the graphical representation. So we first give an intuitive idea of
definitions and facts that are used later. If one feels content with it and prefers
not to delve too much in splitting hairs he may safely read just the next part
and jump over the following one, that gives the rigorous definitions and proofs.

Ideas and Properties In the following, we will graphically denote general
nets as in

µ

where external wires are drawn as dangling wires that may start from any of
the sides.

The juxtaposition of two nets λ and µ is the result of putting them side
by side

λ ‖ µ := λ µ

This is a commutative operation that has ε as neutral element and such that
both nets are subnets of it.

An interface is just an ordering of some ports of the net. Giving two
interfaces of the same length to two nets lets us define the glueing 〈λ, I |
J, µ〉 of the two nets along their interfaces I and J . The idea is that we join

22 2.1. Statics

the corresponding external wires of the two interfaces. This is obtained from
juxtaposition by identifying the interfaces. So if

λ = λ I µJ = µ

then

〈λ, I | J, µ〉 := λ µ

We point out as a particular case of this operation the notions of context and
module. A context ω[] is just a net ω with an interface Iω, called its inner
interface or hole. The only difference is that we redefine fp(ω[]) := fp(ω) \ Iω.
In order to distinguish this notion of context from its generalization to boxes,
we call such a context linear (as the hole is not inside a box). A module µ is
a net together with a total interface Iµ, i.e. one that covers all free ports. We
thus have the very natural idea of plugging a module µ inside a context ω[] as
ω[µ] := 〈ω, Iω | Iµ, µ〉, if the two interfaces match. While the symmetric notion
of glueing may seem enough, it is not so if we want to extend it to boxes.

We call a module proper if it has no axiom between ports of its inter-
face. Their main property is that it is not possible to plug them into different
contexts and obtain the same net. In fact there is the following very simple
counterexample

λ = , ω1[] = δ1 δ2
, ω2[] = δ1 δ2

,

ω1[λ] = ω2[λ] = δ1 δ2 .

where we have ω1[λ] = µ = ω2[λ] but ω1[] 6= ω2[]. Though their underlying net
is the same, their interfaces differ, as they themselves do extensionally (there is
a net we can plug into them giving different results).

The most important property is then that if λ ⊆ µ is a proper module, there
is a unique way of writing µ = ω[λ] (Lemma 2.2). Given a local part of the net,
there is an unambiguous way of speaking about what “the rest of the net” is.
We may safely draw

λ ⊆ µ =⇒ µ =

λ

ω[]

This leads the way to neatly define rewriting as substituting a part (the redex)
leaving the rest unchanged, i.e. context closure. This will be done in Subsec-
tion 2.2.

Chapter 2. Nets 23

Unicells and Trees A tree is a net having a distinguished free port (the
root), and inductively defined as being either a wire, or a unicell with its prin-
cipal port connected to the root and with a tree on each of its passive ports.
Graphically a tree is depicted as follows

λ

So the inductive rules can be depicted as

λ = or ,

where a(α) = k and λ1, . . . , λk are trees.

Remark 2.1. Given a port p in a net λ with only unicells we can locate the
maximal net µ ⊆ λ that is a tree rooted at p, by taking all wires and cells
contained in all the maximal upward paths starting from p. Using this con-
struction we can “factorize” every net made of unicells without vicious cycles in
the following shape:

ρ

λ1 λk µ1 µh

ω

where λ1, . . . , λk, µ1, . . . , µh are trees, while ω and ρ are linkings, i.e. nets with
no cells and no deadlocks, made only by wires between free ports. If we impose
that no µi is a single wire, we have (by Lemma 2.2, shown in the following) that
this factorization is unique, and ω contains all the axioms of the net, while ρ all
the cuts.

Definition and Proofs What we passed under silence in the previous part is
how to define glueing using the rigorous definition of nets. The process recalls
how composition of strategies in games is carried out (starting from Blass games
[Bla92] and onwards): glued ports are like moves on the interface that need to
be forgotten about.

A pseudo-net is the same as a net, where however there is another set
of ports pp(µ) (the pseudo-ports), pw is a multiset rather than a set, and
the condition on wires becomes that for each regular port there is exactly one
wire containing it, while for each pseudo-port there are exactly two (which is
the only case permitting repetition of wires). Intuitively a pseudo-net is a net
where some wires have ports along them apart from the two extremities. A
pseudo-net without pseudo-ports can be identified with a net (no repetition of
wires is possible, so the multiset of proper wires can be identified with a set). We
define a rewriting relation (pseudo-port elimination) on pseudo-nets: µ µ′

if c(µ) = c(µ′), fp(µ) = fp(µ′), µ has a pseudo-port b in wires e and f and

24 2.1. Statics

� if e and f are parallel, i.e. e = f (and so e(b) = f(b) ∈ pp(µ)) then
pp(µ′) = pp(µ) \ {b, e(b)}, pw(µ′) = pw(µ)− [e, f] and dl(µ′) = dl(µ) + 1;
notice that in this case choosing b or e(b) as redex gives the same reduct;

� otherwise pp(µ′) = pp(µ) \ {b}, pw(µ′) = pw(µ)− [e, f] + [e ∪ f \ {b}] and
dl(µ′) = dl(µ).

This is to represent the two following graphical rewriting rules that just weld
wires together:

{ , { .

This relation is easily seen to be strongly confluent and normalizing (the number
of pseudo-ports decreases), so given a pseudo-net µ there is a unique net µ̃ which
is its “simplification”, the normal form with respect to , with no pseudo-ports.

Given two nets λ and µ their juxtaposition λ ‖ µ is defined by the disjoint
union of all the components of the nets (and thus sum of deadlocks). Clearly
λ ‖ µ = µ ‖ λ, λ ⊆ λ ‖ µ, µ ‖ ε = µ.

An interface I = ~p of a net λ is a non repeating sequence in fp(λ). An
interface is called total if it covers all fp(λ). Interfaces are, as their name
suggests, just a way to use the net in a standard way, i.e. know what ports
are to be plugged where. Given two nets λ and µ with interfaces I = ~p and
J = ~q with # I = # J , the glueing of λ and µ along I and J is defined as
〈λ, I | J, µ〉 := λ̃ where λ is the pseudo-net obtained from λ ‖ µ by identifying
pi with qi in the two interfaces, i.e. λ = λ ‖ µ/I∼J (quotient by the smallest
equivalence relation equating I and J).

A linear context ω[] is a net ω together with a fixed partial interface
I

[]
ω called inner interface or hole. For linear contexts we redefine the set

fp(ω[]) := fp(ω) \ I []
ω . As fp is redefined on contexts, a total interface of ω[]

is not a total one of the underlying net ω. A module µ is a net together
with a total interface Iµ on it. A module is said to be proper if for p ∈ Iµ
we have p⊥µ 6∈ Iµ (i.e. there is no axiom directly over the interface). Notice
that cells seen as subnets can canonically get an interface (by the order of the
ports), and are indeed proper modules. We define the plugging of a module in
a context by ω[µ] := 〈ω, I []

ω | Iµ, µ〉 along the two interfaces (if they match), so
that fp(ω[µ]) = fp(ω[]). These notations are just a convenient way to denote a
particular case of the symmetric glueing operation.

Lemma 2.2. Given a proper module λ with λ ⊆ µ, then there is a unique linear
context ω[] such that ω[λ] = µ.

Proof. Uniqueness is an application of [Vau07, Lemma 1.12] (there is no diffi-
culty in adapting the result to our very slightly different syntax). For existence
we build ω[] as follows. If Iλ = (p1, . . . , pn) by hypothesis (Iλ)⊥λ ⊆ bp(λ) ⊆
bp(µ). Let:

� c(ω[]) := c(µ) \ c(λ);

� fp(ω[]) := fp(µ); I []
ω := (p1, . . . , pn) with pi “fresh” ports;

� pw(ω[]) := { f ∈ pw(µ) | f ∩ bp(λ) = ∅ }∪{ {q, p} | p ∈ Iλ, q ∈ p(ω[]), {q, p⊥λ } ∈ pw(µ)
}∪{ {q, p} | q, p ∈ Iλ, {q⊥λ , p⊥λ } ∈ pw(µ)

}
;

Chapter 2. Nets 25

� dl(ω[]) = dl(µ)− dl(λ).

Now it is clear from the definitions that c(ω[λ]) = c(µ) and fp(ω[λ]) = fp(µ).
For every q ∈ p(µ) we show that q⊥ω[λ] = q⊥µ . Three cases are possible:

� q, q⊥µ 6∈ bp(λ), then {q, q⊥µ } ∈ iw(ω[]) ⊆ pw(ω[λ]);

� q ∈ bp(λ) and q⊥µ 6∈ bp(λ) (or similarly viceversa) implies that p := q⊥λ ∈
Iλ, and q⊥µ ∈ p(ω), so in ω ‖ λ we have the two wires {q⊥µ , p} and {p, q}
which in ω ‖ λ/pi∼pi reduce by to {q⊥µ , q} ∈ pw(ω[λ]);

� q, q⊥µ ∈ bp(λ): if {q, q⊥µ } ∈ iw(λ) then such wire survives in ω[λ]; otherwise

by definition of subnet both p := q⊥λ , p
′ := (q⊥µ)⊥

λ
∈ Iλ and therefore in

ω ‖ λ we have {q, p}, {p, p′}, {p′, q⊥µ } that simplify to {q, q⊥µ } ∈ pw(ω[λ]).

As a last thing, we also clearly have dl(ω[λ]) = dl(µ).

Typing

Following [Vau07], a type system for a signature Σ is given by

� a set of types T with an involutive negation (−)⊥ : T → T (i.e. such that
τ⊥⊥ = τ);

� a relation �α⊆ Tdeg(α) for each α ∈ T, represented as

A1, . . . , Aa(α) �α B0, . . . , Ba(α).

In the following examples we will use the signature for multiplicative linear logic,
MLL. All symbols of such signature are unicell ones, so we can define only the
arity:

connectives: ⊗, `, a(⊗) = a(`) = 2,
units: 1, ⊥, a(1) = a(⊥) = 0.

So, the usual type system for it is the one generated by

TMLL ::= V | V⊥ | 1 | ⊥ | TMLL ⊗ TMLL | TMLL ` TMLL,

where V is a countable set of type variables, with involutive negation defined on
units and connectives by De Morgan’s duality:

1⊥ := ⊥, (A⊗B)⊥ := A⊥ `B⊥.
Relations are quite obviously defined by

�1 := {1}, �⊗ := { (A,B,A⊗B) | A,B ∈ TMLL } ,
�⊥ := {⊥}, �` := { (A,B,A`B) | A,B ∈ TMLL } .

Given a net µ a typing on it is a function τ : p(µ)→ T such that

� ∀c ∈ c(µ) : τ(c[1]), . . . , τ(c[a(c)]) �σ(c) τ(c0)⊥, . . . , τ(ca(c))
⊥;

� ∀p ∈ p(µ) : τ(p⊥) = τ(p)⊥.

26 2.1. Statics

A typed net is just a net µ with a fixed typing τµ on it. The type of µ is then
the multiset τ(µ) := τµfp(µ). Such a multiset is as usually called sequent. The
set of typed nets is denoted by NΣ,T, again dropping the signature or the type
system or both if they are clear from the context. Clearly we can equivalently
give τ only on bp(µ) and extend it to fp(µ).

A typing τ induces a function τ : dpw(µ) → T by τ(d) := τ(t(d)), such
that τ(d⊥) = τ(d)⊥. In fact we can equivalently define such a function and
retrieve back from it the typing of ports: given a port p contained in the unique
wire {p, q} we set τ(p) := τ((q, p)). This is the way how a typing is usually
graphically represented. One chooses for each wire a direction (drawn with an
arrow) and labels it with the corresponding type. Here is an example:

X ⊗ X⊥

X⊥

X
⊗ ` X

Remark. Note how again deadlocks are purposely left out of the discussion.
Deadlocks are usually uninteresting from the point of view of typing, as they
are always typable, no matter the system. Though in some contexts it may
make sense assigning a type to a deadlock, it is of no interest here. Also in this
way one can forget about them when proving results of subject reduction, as
deadlocks pose no constraints on typing, and are inert from the point of view of
reduction.

If T is freely generated from a set of atoms, we say that a typed net µ is
η-expanded if for all {p, q} ∈ aw(µ), τµ(p) and τµ(q) are atomic.

If �α are partial functions for all α ∈ Σ we say that T is axiomatic. For
example MLL (and in fact all type system we will use in this work) is axiomatic.

Lemma 2.3. If T is axiomatic and µ has no vicious cycles then typings on µ
are completely determined by their values on axioms.

Proof. For each non active port p let n(p) be the maximal length of upward
paths φ with s(φ) = p, 0 if there is none (when p⊥ is non active also). This
is always defined, as directed paths are non repeating and we move in a finite
graph. What absence of vicious cycles gives is that for each p such that p⊥ is an
active port of a cell c, for each q ∈ pasv(c) we have n(q) < n(p). If n(p) = n(q)
it means that we cannot add {p, p⊥} at the beginning of the longest upward
path from q, and this happens only if either {p, p⊥} is already in it, or the cell
c is already a target in it. In any case there is a cycle starting and ending in c.
Therefore in a net with no vicious cycles we can easily reason by induction on
n(p).

Suppose now that we have two typings τ1 and τ2 that have the same values
on axioms. Let us show that for every non active port p we have τ1(p) = τ2(p),
by induction on n(p). If n(p) = 0 then p is in an axiom. Otherwise, p⊥ = ci, and
by induction hypothesis τ1 and τ2 are equal on all the passive ports ~q of c. Then
by definition τ1(p⊥) = τ2(p⊥) = �σ(c)(τ1(~q)). Now take any directed wire d. If
it contains a non active port we are done. Otherwise it is a cut, and its type is
the type of its target which is an active port, which as above is determined by
the passive ports on the corresponding cell.

Chapter 2. Nets 27

So a typing in an axiomatic type system on nets without vicious cycles is
a dual-preserving function from directed axioms to types such that it can be
extended to the whole net, where the conditions are dictated by the domains of
�α and by equality on cuts.

If T is freely generated from a set of variables V, we call atomic the types
in V ∪ V⊥. We say that a typed net µ is η-expanded if for all {p, q} ∈ aw(µ),
τµ(p) and τµ(q) are atomic.

Given an interface I = ~p on a typed net µ, then the type of the interface
is naturally defined as τµ(I) := (τµ(p1), . . . , τµ(pn)). The type τ(µ) is then
redefined as the sequence τµ(Iµ), and the inner type of a typed context ω[] is

just τ [](ω) := τ(I []
ω)
⊥

(the brackets in superscript differentiate this type from
the usual one of interfaces, and the dual operation is carried out componentwise).
The type of a typed linear context with a total interface is taken on such interface
(therefore without taking into account the inner interface).

Lemma 2.4. Given a typed linear context ω[] and a typed module µ such that
τ [](ω) = τ(µ) then ω[µ] is a typed net with typing τω[µ] := (τω + τµ)�p(ω[µ]) (so
if ω[] has a total interface the type of ω[µ] is the same as the one of ω[]).

Proof. One easily extends the definition of typing to pseudo-nets as a duality
preserving function from directed wires to types, extended to ports as usual but
only to regular (i.e. non-pseudo) ones, and adding the constraint that given a
pseudo-port p contained in wires {r, p} and {p, q} then τ((r, p)) = τ((p, q)). If
a pseudo-net is a net the definition is indeed the same.

The condition that the inner type of ω and the type of µ must match amounts
then to τω + τµ (as functions on directed wires) being a typing on ω ‖ µ/

I
[]
ω ∼Iµ .

The simplification reduction is easily seen to preserve typing (by restriction
to remaining wires). So τω + τµ restricted to the remaining ports is a typing on
ω[µ].

If τ is a typing on µ, and λ ⊆ µ then τ�bp(λ) defines a typing τ�λ on λ, so
that the above lemma is in fact an equivalence.

2.1.2 Sums

A polynet is a finite multiset of nets π = [µ1, . . . , µn] that share free ports,
i.e. such that fp(π) := fp(µ1) = · · · = fp(µn). c(π) and w(π) are defined as the
sets of occurrences of the corresponding elements in the nets of π (by means of
disjoint sums). Additive notation is used for these multisets, and simple nets µ
are implicitly seen as the singleton nets [µ] (so that nets are canonically regarded
as polynets also). When we want to explicitly distinguish a singleton polynet we
may call it simple. We can and usually will write µ1 + · · ·+µn := [µ1, . . . , µn]
and kµ = k[µ]. By definition the net 0 = [] can be assigned any set of free
ports.

The set of polynets over Σ is denoted by N+
Σ . In fact N+

Σ ⊆ N (NΣ) (i.e. the
N-module generated by NΣ).

Lemma 2.5. The operations N and N+ from signatures to sets are monotone
increasing and continuous, i.e.

Σ ⊆ Σ′ =⇒ NΣ ⊆ NΣ′

28 2.1. Statics

and if Σi is an increasing sequence of alphabets then

N∪n∈NΣn = ∪n∈NNΣn ,

and simirarly for N+.

Proof. The first claim is trivial from the definitions. For the second one, as
NΣn ⊆ NS

n Σn
right-to-left inclusion is trivial.

Take a net µ ∈ N∪n∈NΣn and consider

k := max
c∈c(µ)

min {h | σ(c) ∈ Σh } ,

i.e. the maximal “index” of its cells with respect to
⋃
nΣn, and we have that

µ ∈ NΣk . The proof for N+ is no different (it is paramount that the sums be
finite).

The set ℘(π) of subnets of π is defined as
⋃
λ∈π ℘(λ) (we do not consider

“subpolynets”). Juxtaposition of nets is defined as

π ‖ θ := [λi ‖ µj | λi ∈ π, µj ∈ θ]

(counted with multiplicities).

Contexts

An affine polycontext is ω[] = kδ[]+π (a linear context δ[] repeated k times
plus a polynet π), where the occurrences of the internal interface are identified.
Recall that the inner interface of contexts does not add up to free ports, so
the inner interface I []

ω = I
[]
δ is not shared by π. We call ω[] linear if π = 0.

If ω[] is an affine polycontext and θ is a polymodule, (i.e. a polynet with a
total interface) we can define ω[θ] applying the generalized definition of glueing.
In fact if ω[] = kδ[] + π and if θ =

∑
i µi with δ[] and µi are simple, then

ω[θ] = k
∑
i δ[µi] +π. The nomenclature linear and affine is now clear: if ω[] is

linear then ω[0] = 0 and ω[θ1 + θ2] = ω[θ1] +ω[θ2]; if it is affine then ω[]−ω[0]
is linear.

An affine polycontext ω[] is monic if ω[] = δ[] + π with δ[] simple and
linear (i.e. the coefficient of the net with the inner interface is 1). When pluggin
a net θ =

∑
i µi in a monic context ω[] = δ[] + π for each p ∈ p(ω[]) \ I []

ω we
call residuals of p in ω[θ] =

∑
i δ[µi] + π the set:

� res(p) := {p} if p ∈ p(π);

� otherwise, if p ∈ bp(δ)\I []
δ , res(p) := {p1, . . . , pn} where pi are the different

occurrences of p in all δ[µi].

Similarly we can define residuals of the cells of ω[].

Lemma 2.6. For each proper module λ ∈ ℘(π) there is a unique monic affine
polycontext ω[] such that ω[λ] = π.

Proof. There is a simple µ ∈ π with λ ⊆ µ. An immediate application of
Lemma 2.2 gives a simple linear context δ[] such that ω[] = δ[] +π−µ (which
is defined as µ ∈ π, so [µ] ≤ π as multisets) is the looked for polycontext.

Given a cut e in π we generalize π�e to be µ�e where µ is the (occurrence
of) net containing e.

Chapter 2. Nets 29

Typing

A typed polynet π is a multiset of typed nets µ1 + · · ·+ µn such that for all
p ∈ fp(π) then τµi(p) is the same for all i. We refer by τπ to the direct union
of the various functions τµi on p(π). Notice that 0 is a typed net of any type.
There is no difficulty in extending all typing related definitions to polynets.
Lemma 2.3 for axiomatic type systems directly applies to polynets, and also
Lemma 2.4 seamlessly extends to typed affine polycontexts.

Lemma 2.7. If ω[] = kδ[] + π is a typed affine polycontext and θ is a typed
polymodule such that τ [](ω[]) = τ(θ) then ω[θ] is typed with

τkδ[θ]+π = k
∑
µ∈θ

((τω�δ +τθ)�δ[µ]) + τπ.

Notice that for a typed monic polycontext the residuals of a port p have thus
the same type of p. Contrary to Lemma 2.4, the above one is not necessarily
an equivalence. In order to show a brief counterexample let us sketch (a version
of) the system MLL2 of second order MLL. It is obtained by adding two unary
unicells ∀ and ∃ and the corresponding binding unary connectives ∀X and ∃X to
the type grammar. The type system (which ceases to be axiomatic) is expanded
with

�∀ = { (A,∀X.A) | A ∈ T, X ∈ V } , �∃ = { (A[B/X],∃X.A) | A ∈ T, X ∈ V } ,
where A[B/X] denotes as usual the formula A where B substitutes X. Then if

θ :=
⊗

1 1

+ 1 , ω[] := ∃ .

we have θ untypable, while

ω[θ] =
∃X.X

1 ⊗ 1

1 1

∃

⊗
1 1

+
∃X.X

1
∃

1

.

is typable.

Slices

Polynet closely resemble (and are a generalization) of another paradigm already
studied in linear logic proofnets: slice nets. First hinted in [Gir87], then finely
developed in [LTdF04] and [HvG03], their main application has been to model
additives of linear logic. Slice nets are sets of nets sharing free ports. As is
evident, the only difference with respect to polynets is the use of sets rather then
multisets. In fact all the definitions and results shown for polynets seamlessly
adapt to slice nets. This also follows from the fact that finite sets may be
regarded as vectors in an R-module, where R is the unitary semiring {0, 1} with

30 2.1. Statics

1+1 = 1, while the finite multisets we studied in the preceding sections are just
vectors in an N-module.

In particular we point out that juxtaposition has for slice nets the following
definition:

θ ‖ φ := {λ ‖ µ | λ ∈ θ, µ ∈ φ } ,
and that glueing is defined accordingly.

2.1.3 Boxes

Let N∗Σ (resp. N+∗
Σ) denote modules (resp. polymodules) with at least one free

port. Let Σ be a signature. Then let Σ� (resp. Σ�) be the signature given by

� the alphabet Σ� := Σ+N∗Σ (resp. Σ� := Σ+N∗Σ); so whole nets become
also symbols;

� arity and coarity are extensions to those of Σ with moreover, for π ∈ N∗Σ
(resp. N∗Σ), a(π) = 0 and a(π) = # Iπ − 1.

A cell B whose symbol is a net is called box, and its symbol σ(B) is called its
contents. Intuitively, Σ� is a signature for boxes containing simple nets, while
Σ� is one for boxes with whole sums inside them. Following the definition there
is a natural bijection between the # Iπ active ports of B and the interface Iπ
itself. We indicate by (−)B such bijection, or by (−)π if no confusion is possible.
b(λ) denotes the subset of c(λ) that contains all boxes.

Boxes are represented by drawing their corresponding content. . . inside a box.
For boxes of linear logic (the only ones we will use), the representation of a box
of Σ� with symbol π is done by

!

π

where the port marked by the “fake” unicell with symbol ! is the principal one.
The correspondence (−)B is therefore shown by the actual wires “exiting” the
box. For boxes of Σ�, we may use the same notation by implying that π is a
sum, or, if a literal sum is present, by drawing the sum of nets inside without
actually linking the ports outside with the ones inside, as in

!

π + θ

where the correspondence (−)B is determined by position. In any case, we may
draw ports also on other sides of the box, though they keep being active ones.

We now define over Σ the box signatures Σ! (single-threaded) and Σ!+

(multi-threaded) by

Σ! :=
⋃
n∈N

Σ�n, Σ!+ :=
⋃
n∈N

Σ�n,

Chapter 2. Nets 31

where Σ�n := (· · · (Σ�)� · · ·)� repeated n times, and similarly for Σ�n. As
Σ ⊆ Σ� and Σ ⊆ Σ� the above infinite unions are in fact limits of monotone
sequences of sets. For this reason defining arity and coarity pose no problems.

By Lemma 2.5 we have that

NΣ! =
⋃
n∈N

NΣ�n ,

and similar equalities for other combinations between N/N+ and ! /!+. It makes
therefore sense to define the depth d(π) of a (simple) net over Σ! or Σ!+ as
the minimal integer such that π ∈ NΣ�n (and analogously for all other combi-
nations). Depth is in fact the maximal nesting of boxes in one another. It is
the main parameter over which one reasons by induction when defining notions
or proving propositions for nets with boxes.

Let F be any function from (poly)nets to finite sets (for example pw, cw or
b). Then we inductively define:

F0(π) := F (π), Fi+1(π) :=
∑

B∈b(π)

Fi(σ(B)).

It is immediate that Fk(π) = ∅ for k > d(π), so it is natural to define F!(π) :=∑d(π)
i=0 Fi(π). So for example c!(π) is the set of all cells occurring in π, inside

and outside boxes, or ℘!(π) is the set of all subnets occurring in π. For any
element x of a net π (cell, wire, port, or even subnet and so on, i.e. x ∈ F!(π)
for some F), then x ∈ Fk(π) for a unique k. We say that k is the depth of x,
writing d(x) = k. The codepth of x is cod(x) := d(π)− d(x).

Contexts

Given a net µ over (Σ+Ξ)! (or !+), we say that µ uses Ξ exactly once if there is
a unique cell c ∈ c!(µ) such that σ(c) ∈ Ξ. Given Σ, let Ξ (resp. Ξ+) be the set
of linear contexts (resp. affine polycontexts) with a total non-empty interface.
Arities and coarities on Ξ and Ξ+ are defined as in Σ�: given a context ω[]
with total interface Iω then a(ω[]) = 0 and a(ω[]) = # Iω − 1.

A context on Σ! is either a linear context on Σ!, or a net on (Σ +Ξ)! that
uses Ξ exactly once. A polycontext on Σ!+ is either an affine polycontext on
Σ!, or a polynet on (Σ +Ξ+)!+ that uses Ξ+ exactly once. The inner interface
I

[]
ω is either trivially defined in the first cases, or else it is the inner interface of

the element of Ξ/Ξ+ uniquely appearing in ω[].
In fact it is the case that ω[] is a context on Σ! iff it is a linear context

(in which case we say that the inner interface is at depth 0) or it is a simple
net µ containing a single box B such that σ(B) is inductively a context on Σ!

(the inner interface is at the depth of it in σ(B) plus one), and similarly for
Σ!+ contexts2. This allows us to easily define ω[π] for matching ω[] and π by
induction on the depth of the inner interface of ω[].

A polycontext onΣ!+ is monic if it is either a monic affine one, or inductively
if σ(B) is monic, where B is the single box containing a context. A context on Σ!

2This is the equivalent of the definition of context in λ-calculus, where it is asked that
the hole be used exactly once. The more liberal syntax of nets asks however for such a long
detour.

32 2.1. Statics

is always considered monic. Given a monic context ω[] and a net θ, the residuals
of p ∈ p!(ω[]) in ω[θ] have already been defined if ω[] is affine, otherwise they
are {p} if p is not in the box B whose symbol σ(B)[] is a context, the residuals
of p in σ(B)[θ] otherwise. Notice that extending similarly the definition to cells,
contrary to what happens in affine contexts,the symbol of a cell may change in
its residuals (namely boxes containing the hole change symbol).

Lemma 2.8. Given a proper module λ such that λ ∈ ℘!(π) then there is a
unique monic (poly)context ω[] such that ω[λ] = π.

Proof. Straightforward induction on the depth of λ in π, by applying Lemma 2.6
in the base case.

Typing

A typing system T with boxes is a typing system on a signature with boxes
together with a relation ��⊆

(∪nTn)2 such that

�
~A �� ~B implies # ~A = # ~B;

� for π symbol for a box (recall a(π) = 0, a(π) = # Iπ − 1):

�π B0, . . . , Ba(π) ⇐⇒ ∃τπ typing on π such that
τπ(Iπ) �� B0, . . . , Ba(π).

Note that �� can implement a boxing discipline, i.e. it can forbid the formation
(at least in a typed setting) of boxes from nets that are not typed in a certain
way. A box can be typed iff its content can be typed and the type of the content
appears in π1(��).

Given a typing τ on a polynet π in a typing system with boxes there is a
typing τσ(B) for each B ∈ b(π) witnessing the typing of B. By abuse of notation
we extend τ on c!(π) with all these τσ(B), to obtain a typing on the whole net3.

A type system with boxes is axiomatic if �α is a partial function for every
non-box symbol, and moreover �� is a partial function. Lemma 2.3 extends to
such a system.

Lemma 2.9. In an axiomatic type system with boxes, if a net π has no vicious
cycles at any depth, a typing is completely determined by its values on axioms.

Proof. Easy adaptation of the one for Lemma 2.3, carried out by induction on
the depth of the net. When considering a cell c we have to distinguish: if c
is not a box then the types of its active ports are determined by those of the
passive ones; if it is a box then they are determined by the typing inside the
box, and inductive hypothesis kicks in.

The following lemma is an immediate consequence of the definitions and of
Lemma 2.7.

Lemma 2.10. Given a typed context ω[] on Σ! or Σ!+ and a typed module θ
such that τ [](ω[]) = τ(θ), then ω[θ] is typed with

3In fact such extension depends on the choice of witnesses, as there may be multiple ones
to the same typing of a given box. We are practically redefining a typing to take into account
also box contents.

Chapter 2. Nets 33

� τω[θ] as already defined for affine contexts if ω[] is affine;

� otherwise τω[θ](p) := τω(p) for p 6∈ p(σ(B)[]) where B is the box with the
context, and inductively τω[θ](p) := τσ(B)[](p) otherwise.

2.2 Dynamics

Objective of this section is to finally define what nets are all about and how one
computes with them: we define the cut reduction relation.

Let Σ be a signature, whether with boxes or not. An active pair on Σ is
a quadruple 〈αi, βj〉 ∈ (Σ × N)2 such that 0 ≤ i ≤ a(α) and 0 ≤ j ≤ a(β). The
set of active pairs is denoted by AP(Σ). Given a (poly)net π every directed cut
e = (ci, dj) in it induces:

� the interfaced subnet π�e∈ ℘(π) (or ℘!(π)) which is the smallest containing
c, d and e with free ports ordered by (c, d); formally it is defined by

– c(π�e) := {c, d};
– fp(π �e) := { p | p fresh, p ∈ bp(π�e) \ e }; they are put in the total

interface Iπ�c by order of appearance first in actv(c) and then pasv(c),
actv(d) and pasv(d);

– pw(π�e) := {e} ∪ { {p, p} | p ∈ bp(π�e) \ e };
– dl(π�e) := 0;

� a unique monic context ω(π, e)[] (linear or affine or else depending on
the system) such that ω(π, e)[π�e] = π, as π�e satisfies the hypotheses of
Lemma 2.2 (or its equivalents Lemma 2.6 for sums and Lemma 2.8 for
boxes);

� an active pair AP(e) := 〈σ(c)i, σ(d)j〉.
A reduction system r over nets (resp. polynets) of a signature Σ is a

partial function going from active pairs to modules (resp. polymodules) such
that

� αi r βj has deg(α) + deg(β)− 2 free ports and has no cuts at depth 04;

� αi r βj is defined iff βj r αi is;

� αi r βj and βj r αi have the same underlying net;

� if Iαirβj = (p1, . . . , pdeg(α)−1, q1, . . . , qdeg(β)−1) then
Iβjrαi = (q1, . . . , qdeg(β)−1, p1, . . . , pdeg(α)−1).

Given a net π a r-redex in it is a subnet π�e for a directed cut e such that r is
defined on AP(e).

Finally, having fixed a signature Σ and a reduction system r on it, we define
the reduction relation r→ on nets by context closure, i.e. π r→ π′ iff there is a
redex π�e∈ ℘!(π) and π′ = ω[r(AP(e))] where ω[] is the unique monic context

4Usually one asks that the reducts be cut free. However this would break the definition of
reduction for boxes (if we consider a net with a box with cuts to have cuts).

34 2.2. Dynamics

such that π = ω[µ�e]. Given a port or a cell, its residuals in π′ are its residuals
with respect to ω[] if it is in ω[], and ∅ otherwise.

Graphically reduction rules are represented by drawing the redexes on one
side and the reducts on the other. For example MLL has the following reduction
rules:

⊗ ` m→ ` ⊗ 1 ⊥ m→ ε

where m stands for multiplicative reduction, and is easily seen to be compatible
with typing.

For example we have the following reduction.

⊗ ` m→ ⊗ ` =

Remark. Lafont’s interaction nets are simple nets over a finite signature such
that a ≡ 0. Note that the reduction on nets with boxes also goes out of Mazza’s
multiport interaction nets paradigm: when we reduce a redex at depth greater
than zero from the point of view of the zero depth net there is a cell (the box
containing the cut) that changes (i.e. reduces) without interacting with any cell.

The reduction relation presented reduces, as expected, cuts and nothing else.
The presentation of a reduction system is neat and very general, but at times
other ways of rewriting nets is needed, where cuts are not central. We address
such issue with the following definition.

A generalized reduction system s over a signature Σ is given by

� a set R(s) (the s-redexes) be a set of cut-free proper simple modules,
such that no two redexes share the same underlying net; an s-redex in π
is then a proper module µ ⊆ π such that µ ∈ R (up to isomorphism);

� a function denoted by s from R(s) to modules such that s(µ) has # Iµ
free ports and ℘0(s(µ)) ∩ R = ∅.

One could ask some more properties from a generalized reduction system, like
connectedness of redexes, or some degree of “simpleness”. However we just need
here a general definition, properties will be proved case by case in the future.

Again, s→ is defined by context closure: π s→ π′ iff there is an s-redex
µ ∈ ℘!(π) and π′ = ω[s(µ)] where ω[] is the unique context with π = ω[µ].

Clearly a reduction system can be seen as a generalized one, by choosing one
redex for each two symmetric active pairs.

Given two redexes λ and µ in π, they are said to be orthogonal if µ is a
subnet of ω where ω[] is the unique context with ω[λ] = π. The main property
of unicell nets with a standard reduction is that all redexes are orthogonal, as
each cell has at most one cut and so is in at most one redex. Two overlapping
redexes, i.e. non orthogonal, are called a critical pair.

Given a reduction system, the relations e∗→, e=→, e+→ and ≡e mean respectively
the reflexive-transitive, reflexive, transitive and reflexive-transitive-symmetric
closures of e→. Given two reductions r and s with disjoint domains (i.e. sets
of redexes), then rs is the union of the two functions. In fact we then have
rs→ = r→ ∪ s→.

Chapter 2. Nets 35

2.2.1 Subject Reduction

A reduction system r has the property of subject reduction with respect to
a type system T if for each active pair 〈αi, βj〉 such that αi r βj and for each
choice of types ~A and ~B with

Aa(α)+1, . . . , Adeg(α) �α A0, . . . , Aa(α), Ba(β)+1, . . . , Bdeg(β) �β B0, . . . , Ba(β)

and Ai = Bj there is a typing τ on αi r βj such that

τ(αi r βj) = (A0, . . . , Âi, . . . , Adeg(α), B0, . . . , B̂j , . . . , Bdeg(β)).

For a generalized reduction systems, this extends to saying that for each µ ∈
R(r) there is a function

(−)r(µ) : { τ | τ typing on µ } → { τ ′ | τ ′ typing on r(µ) }

such that τr(µ)(r(µ)) = τ(µ).

Lemma 2.11. If r has subject reduction so does r→, i.e. given a typed net π
with π r→ π′, then there is a typing τπ′ such that for each port p in π and each of
its residuals p′ in π′ we have that τπ′(p′) = τπ(p). In particular τπ′(π′) = τπ(π).

Proof. This is a direct consequence of Lemma 2.10. If π = ω[µ] and µ ∈ R(r)
then τπ induces a typing on both ω[] and µ. The latter induces by definition a
typing of r(µ) with type equal to τπ(µ). Therefore π′ = ω[r(µ)] is typed, and
the type of the residuals p′ of a port p is τω(p) = τπ(p).

2.2.2 Structural Congruence

At times the structure of nets is in some way more “rigid” than it should, in the
system we want to implement. In this case one needs a way to easily equate up to
some equivalence different nets, in a way that is consistent with other definitions,
like typing or reduction. Suppose fixed a type system T and a reduction system
r. A cell structural equivalence ≡ is given by pairs λ ≡ µ of simple proper
modules with equal number of free ports and such that both λ and µ are made
of a single cell and no internal wire. The relation ≡ on nets then denotes the
smallest equivalence relation closed by contexts, that is if π ≡ θ then ω[π] ≡ ω[θ]
for any context ω[]. We now further ask that

� for each generating pair λ ≡ µ then each typing of λ induces one of µ and
viceversa with same type on the interface;

� for each generating pair λ ≡ µ and each r-redex ν such that λ ⊆ ν (which
implies uniquely ν = δ[λ]) then δ[µ] is a r-redex such that r(δ[µ]) ≡ (ν).

Note that as we required the generating pairs to be single cells, there are no
critical peaks between congruence coversion and reduction, so we can check
singularly each reduction rule separately, and such verification is generally very
straightforward. This check is a very strict requirement which leaves out many
equivalences that can be found in the literature, but which is really safe from
the point of view of reduction. It implies that reduction is well defined on ≡-
classes, and that converting a net into an equivalent one does not change which

36 2.2. Dynamics

reductions we can do, and the length of each of them. So it is safe from every
point of view to redefine nets to be in N/≡ (and N/≡).

We are very strict as we will use just two instances of structural equivalence
which we define in the following and that fall in such formalism. Other “tradi-
tional” equivalences such as associativity of contraction are treated by means of
generalized reductions in this work.

Commutativity. Every permutation σ ∈ Sn induces naturally a simple mod-
ule (also called σ) with interface Iσ := (p1, . . . , pn, q1, . . . , qn), no cells, no dead-
locks and

pw(σ) :=
{ {pi, qσ(i)} | 1 ≤ i ≤ n

}
.

As an example, here is a permutation of six elements and the corresponding
module (pi ports drawn above, qi ports drawn below, both left to right):

σ =

(
1 2 3 4 5 6
2 1 3 5 6 4

)
7→ σ =

Given a set of unicell symbols Ξ ⊆ Σ, and if ≡ is a cell structural congruence
generated by pairs

γ ≡ γ

σ

with γ ∈ Ξ and σ ∈ Sa(γ) we say that Ξ are commutative cells in NΣ/≡ and
NΣ/≡. This can be reworded by saying that the passive ports of cells with
symbols γ ∈ Ξ are treated as sets, rather than as sequences, and that the type
and reduction systems are well defined with respect to this.

Box port exchange. Another structural equivalence we use is a very natural
one arising with boxes. If one inspects the definition, one may note that the
symbols inside boxes are modules, thus are defined not only by the net, but also
by the order of conclusions, which then corresponds to the order of auxiliary
ports. The only thing that matters is however the correspondence between such
auxiliary ports and the ports inside. So we equate nets with boxes by means of
the following cell structural congruence.

!

π

≡ !

π

σ

σ−1

where σ ∈ S# Iπ−1. Notice that by definition of glueing the above definition is
valid also if π is a sum. Again, we can intuitively restate this as saying that
the content of a box is a net with a distinguished port (but with the other ones
unordered), and its auxiliary ports are, in a way, the set of the other free ports
of the contents (and again unordered, though distinguishable).

Chapter 2. Nets 37

2.2.3 Confluence

We here address confluence issues. We will restrict ourselves to a signature Σ
with only unicells (so in particular no boxes). In other cases confluence must be
rather addressed case by case. In our particular case the proof of such property
will occupy the whole of Chapter 6.

The following is a very straightforward property of Lafont’s interaction nets,
following from the orthogonality of all redexes.

Proposition 2.12 (Lamont [Laf95]). Any (non generalized) reduction r on nets
of a signature of unicells is strongly confluent.

When moving on to polynets there comes a slight nuisance. Reducing a cut
may give a non-simple polynet, and so it may duplicate or erase (if the result is
0) other redexes in the same simple addend. This should pose no problem, as
in case of duplication the copies are completely independent. In order to tackle
such problem we introduce a more parallel version of the reduction, closer to
what seen in [ER06b, Vau07].

The sum reduction relation Σr→ on polynets is defined as

π Σr→ σ ⇐⇒ π =
k∑
i=1

λi, σ =
k∑
i=1

µi, ∀i : λi
r=→ µi.

We can restrict (but need not to) all λis in the definition to be simple. Note
that

r→ ⊆ Σr→ ⊆ r∗→. (2.1)

The last inclusion follows from the independence of reduction in various addends,
as

∀i : λi
r=→ µi =⇒ λ1 + · · ·+ λk

r=→ µ1 + λ2 + · · ·+ λk
r=→ · · · r=→

µ1 + · · ·+ µk−1 + λk
r=→ µ1 + · · ·+ µk.

Equation (2.1) assures that
(Σr→)∗ = r∗→, as it implies

r∗→ ⊆ (Σr→)∗ ⊆ (r∗→)∗ = r∗→. (2.2)

Lemma 2.13. Let r be a non generalized reduction on polynets of a signature
of unicells. If λ is a simple net, λ r→ π1, π2 then there is σ with π1, π2

Σr→ σ.

λ

π1

σ

π2

r

r

Σr

Σr

Proof. This is an easy generalization of the result on interaction nets. Suppose
the two reductions actually reduce different cuts c1 and c2. The cases in which
this does not happen are trivial. Suppose now r(λ �c1) =

∑
µi and r(λ �c2

) =
∑
νj . Then c1 ∈ iw(ω(λ, c2)) (the unique context of the cut c2), c2 ∈

iw(ω(λ, c1)), so we can define residuals of c1 in π2 and of c2 in π1.

38 2.3. Invariants

So in π1 =
∑
i ω(λ, c1)[µ1i] we can reduce each residual of c2 and get∑
i

ω(λ, c1)[µi]
Σr→
∑
i

∑
j

ω(ω(λ, c1)[µi], c2)[νj]. (2.3)

By associativity of glueing

ω(ω(λ, c1[µi]), c2)[νj] = ω(ω(λ, c2[νi]), c1)[µj]

so (by commuting sums) the right member of (2.3) is symmetrically the result
of reducing all residuals of c1 in π2.

Notice that the above result covers also the case in which λ is erased, i.e. π1

or π2 (or both) are 0. Reflexivity of Σr→ kicks in in such cases.

Corollary 2.14. For any (non generalized) reduction r on polynets of a signa-
ture of unicells, Σr→ is strongly confluent.

Proof. This easily follows from the fact that if Σr→ is compatible with sum, i.e.
if λ Σr→ π and µ Σr→ σ then λ + µ Σr→ π + σ. If a term π forks by means of
two sum reductions to two terms σ1 and σ2 by definition it means that each
of its addends fork with r=→, which by the above result can be joined with sum
reduction, which in turn by compatibility can be put together to a join of σ1

and σ2.

This corollary together with (2.2) easily gives confluence of r→, similarly to
what is done in untyped λ-calculus and parallel reduction. More generally we
have the following result.

Proposition 2.15. Every reduction whose reflexive closure contains r→ and
that is contained in Σr→ is confluent.

The above result comprises for example the strict sum reduction, i.e. the one
that as sum reduction can reduce multiple addends, but strictly reduces at least
one of them. This is the reduction defined in [ER06b, Vau07], which was done in
order to recover strong confluence and to define it with non trivial coefficients.
As we restrict ourselves to integer coefficients, and all results proved for such
an atomic reduction easily apply also to the sum reduction, we decided rather
to stick to the more intuitive idea of one step reduction.

2.3 Invariants

We will define in a very general way what a relational denotational semantics is.
Our definition is a generalization of experiments for linear logic proof structures:
introduced by Girard in [Gir87], they have been sutdied in [DdW94, TdF00,
Pag06b]. We will define them as a particular case of typing. In this way we can
rely on all the definitions and results we have already been through, the most
important of which is compositionality of typing with respect to contexts and
modules.

Though we will not deal with denotational semantics of exponential proof
nets, we will anyway give the basic notions needed to define such semantics.

Chapter 2. Nets 39

2.3.1 Denotational Semantics by Experiments

First of all we need to have at our disposal a slightly modified definition of
typing. The first applies only to polynets and slice nets, the second only to
signature with boxes.

A selective type system for polynets (resp. slice nets) is a type system
here typed polynets (resp. slice nets) are defined as multisets (resp. sets) of
untyped nets plus a single typed one. Formally, a typing τπ of π becomes a pair
(µi, τµi) where µi ∈ π and τµi is a typing of µi for some i (in fact the typings of
a net become the disjoint union of the typings of their simple nets). Then if Iπ
is a total interface for π, τ(π) := τµi(Iπ). Notice that in selective type systems
0 and ∅ are not typable.

An extended type system with boxes is a type system T with boxes
where however the typing relation �� associated with boxes is a relation between
Mfin(∪n≥1T

n) and ∪n≥1T
n. We recall that T is the set of types. The conditions

on the typing are changed to

� [~A1, . . . , ~Ak] �� ~B implies # ~Ai = # ~B for all i;

� for π symbol for a box:

�π B0, . . . , Ba(π) ⇐⇒ ∃[τ1, . . . , τk] typings on π such that
[τ1(Iπ), . . . , τk(Iπ)] �� B0, . . . , Ba(π).

One can refer to Section 2.1.3 to see the difference with the usual typing.
Extended type systems, apart from offering a common ground to the upcom-

ing definition of set denotational semantics, can also be the base for defining
intersection type systems on nets. Lemmas 2.7 and 2.10 are straightforwardly
seen to be valid for selective or extended type systems, or both.

Let us fix a signature (with or without boxes) and a reduction system r
on it. Take a class5 U (the universe of points). A relational denotational
semantics J . K is an extended selective type system having U as types, such that
it has the subject reduction property and for each redex µ the function (−)r(µ)

is surjective, i.e. not only every typing on a redex induces a typing on its reduct
with the same type, but also viceversa.

We recall that therefore a denotational semantics comes equipped with re-
lations �JαK⊆ Udeg(α) for each non-box symbol α, and a relation �J�K for boxes,
where we use J . K to distinguish from the usual notion of type system. In this
setting we call a typing e of a net π an experiment on π, and (if π has a
total interface) the type e(π) = e(Iπ) ∈ U# Iπ result of the experiment. The
interpretation of a module π is then

JπK := { e(π) | e experiment on π } ⊆ U# Iπ .

A relational denotational semantics for a type system T is one equipped with
a function

∣∣J . K∣∣ from T to sets of points in U. The meaning of the additional | . |
notation will be made clear later. An experiment e on a net π is then compatible
with a typing τπ on π if inductively (supposing e is taken on µ ∈ π):

� ∀p ∈ p0(µ) : e(p) ∈ ∣∣Jτπ(p)K∣∣;
5We use a class in order to be able to interpret nets in the whole of Rel.

40 2.3. Invariants

� ∀B ∈ b0(µ) : the experiments e1, . . . , en associated by e with B are com-
patible with τπ�σ(B).

The function (−)r(µ) from experiments on the redex µ to those of its reduct
is now required to preserve compatibility and to be surjective on compatible
experiments.

The interpretation of a typed module π is then

JπK := { e(π) | e experiment on π compatible with τπ } ⊆
∏
p∈Iπ

Jτπ(p)K .
The following lemma states that indeed our notion of denotational semantics

is a denotational semantics in the usual sense, i.e. it is invariant under reduction.

Lemma 2.16. If J . K is a relational denotational semantics (for a type system
T) and π r→ π′ then JπK = Jπ′K.

Proof. Let π = ω[µ] and π′ = ω[r(µ)] with µ ∈ R(r). If e is an experiment on
π, then by subject reduction (Lemma 2.11) there is an experiment e′ on π′ with
the same result. Viceversa let e′ be an experiment on π′, and let us reason by
induction on the depth of the inner interface of ω[]. Let r(µ) = λ1 + · · · + λn
simple nets.

� If ω[] = δ[] + ρ with δ[] simple and linear, then π′ =
∑
i δ[λi] + ρ. Then

e′ is either on ρ, and then it is also an experiment on π, or it is on a δ[λi],
in which case it induces an experiment e′�λi on λi and therefore on r(µ).
This in turn by surjectivity of the subject reduction function induces an
experiment on µ, which finally by compositionality of context plugging,
combined with e′�δ[] gives an experiment e on δ[µ] (so on π) with the same
result.

� Otherwise, let B[] ∈ b0(ω[]) be the box with the context inside, and
let φ[] + ρ be the unique monic affine context (with φ[] simple) such
that ω[] = φ[B[]] + ρ. Now again if e′ is on ρ there is nothing else to
prove. If instead e′ is on φ[B[r(µ)]], it induces k experiments e′1, . . . , e

′
k on

σ(B)[r(µ)]. These by induction hypothesis give experiments e1, . . . , ek on
σ(B)[µ] so that

[e1(σ(B)[µ]), . . . , ek(σ(B)[µ])] = [e′1(σ(B)[r(µ)]), . . . , e′k(σ(B)[r(µ)])].

So we are able to define an experiment e on B[µ] with the same result
of e′ �B[r(µ)]. The rest is again compositionality of context plugging, by
combining e with e′�φ[] and obtaining thus an experiment on φ[B[µ]] (so
on π) with the same result.

Throwing in compatibility with T does not change the above reasoning.

Usually relational denotational semantics are axiomatic, with Lemma 2.3
applying to experiments. Also in all our examples the dual of points is the
identity, but there is no a priori reason to ask such a condition. However from
now on we will implicitly have autodual universes. In particular we will not
need to specify directions when assigning points to wires.

Chapter 2. Nets 41

2.3.2 Webbed Semantics and Semantic Correctness

In the following we will apply the above definitions to the various fragments and
extensions of linear logic presented in the previous chapter. At the same time,
we will show some of the (fragments of the) main semantics of LL: coherent
spaces, hypercoherent spaces and finiteness spaces. All these models are webbed.
We here define the minimal notions that we need in this setting.

Let C be a category with a distinguished object 1 and an associative bifunctor
`. We call states of an object X its 1-valued points, i.e. the morphisms x : 1→
X, denoted by x : X. We say C is webbed if it comes with a faithful functor
| . | : C→ Rel such that |1| = {∗}, the set with one point, and |X` Y| = |X|×|Y|.

On objects X ∈ C, the set |X| is called web. Being faithful means that we
can identify a morphism f : X→ Y with its corresponding relation f : |X| →| |Y|,
so that C(X,Y) is a subset of Rel(|X| , |Y|). In particular the states of an object
X are just the {∗}-values points of |X| in Rel, which are the subsets of |X|.

Every object X of C therefore naturally induces the predicate s : X on subsets
s ⊆ |X|, indicating that s is (the image by | . | of) a state of X.

A C-denotational semantics for a type system T is a function J . K : T → C

such that | . | ◦ J . K =
∣∣J . K∣∣ is a relational denotational semantics for T. Given a

sequent Γ , its interpretation is

JΓ K :=
¸
τ∈Γ

JτK , so that
∣∣JΓ K∣∣ =

∏
τ∈Γ

∣∣JτK∣∣.
We will implicitly suppose that experiments are compatible with the C-denotational
semantics when we will be in a typed setting and will be considering a particular
C.

We now introduce one of the central notions of Part II, semantic correct-
ness. The interpretation defined above maps all nets of type Γ to a subset of∣∣JΓ K∣∣. The classical notion of semantics is recovered by results of soundness,
stating that given a proof net π, its interpretation JπK is a state of JΓ K.

However nets offer a more general syntax, mainly one where we are able also
to make “mistakes”. It is natural to ask oneself which nets correspond to states.
We will call a typed net C-correct, or simply semantically correct leaving C

implicit, if for all interpretations J . K in C, we have that JπK : Jτ(π)K.
This opens question we can ask about such semantics.

� Soundness results state that syntactic correctness implies the semantic
one: is it possible to inverse such relation?

� If the above is not true, is it possible to characterize semantic correct-
ness with a syntactic criterion, much as for example switching acyclicity
corresponds to sequentializability in MLL?

� Does semantic correctness give “good” properties to the system, in partic-
ular with respect to reduction?

The first question is very near to the one of full completeness (every morphism
in the category has a term/proof/net interpreted into it). The subtle difference
is that we ask such result already on a restriction of morphisms, by looking only
at those that interpret possibly incorrect nets. In particular usually the models
inspected are very far from being fully complete per se, and the typical step in

42 2.3. Invariants

proving full completeness results such as in [AM99, BHS05] is in fact showing
that the morphism (concurrent games in the work by Abramski and Melliès,
dinatural transformation of double glued hypercoherent spaces in the one by
Blute, Hamano and Scott) are indeed proof structures, i.e. nets of the system.

Chapter 3

Linear Proof Nets

In this chapter we will use the abstract machinery presented in the previous
chapter to present the linear fragment of LL, where structural rules are com-
pletely forbidden. First we present the core fragment, multiplicative LL (MLL),
then we will move on to the multiplicative additive one (MALL).

3.1 The Multiplicatives

In the previous chapter we already defined the MLL system as a running example.
Let us recall it here. The MLL type system is defined by the grammar

TMLL ::= V | V⊥ | 1 | ⊥ | TMLL ⊗ TMLL | TMLL ` TMLL,

where V is a countable set of type variables, and types α or α⊥ with α type
variable are said to be atomic. Duality is defined by usual De Morgan’s duality,
with

1⊥ = ⊥, (A⊗B)⊥ = A⊥ `B⊥.
Figure 3.1 shows cells together with typing rules, and reduction rules. As MLL
has an axiomatic type system, types may be shown on axioms only. An MLL
net is a typed net in NMLL.

Cells and typing rules

A ⊗ B

A B
⊗

A` B

A B
`

1
1

⊥
⊥

Tensor Par One Bottom

Reductions

⊗ ` m→ ` ⊗ 1 ⊥ m→ ε

Figure 3.1: Cells, typings and reductions of MLL.

43

44 3.1. The Multiplicatives

Rules

` A⊥,A
(ax) ` Γ,A ` A⊥, ∆

` Γ, ∆ (cut)

` 1
(1) ` Γ

` Γ,⊥ (⊥)

` Γ,A,B
` Γ,A` B

(`)
` Γ,A ` B, ∆
` Γ,A ⊗ B, ∆

(⊗)

Desequentialization

Des
(
` A⊥,A

(ax)
)

:=
A

Des
(
π1 : ` Γ,A π2 : ` A⊥, ∆

` Γ, ∆ (cut)
)

:= Des(π1) Des(π2)
A

Des
(
` 1

(1)
)

:= 1
1

Des
(
π : ` Γ
` Γ,⊥ (⊥)

)
:=

⊥
⊥Des(π)

Des
(
π : ` Γ,A,B
` Γ,A` B

(`)
)

:=

A` B

A B
`

Des(π)

Des
(
π1 : ` Γ,A π2 : ` B, ∆
` Γ,A ⊗ B, ∆

(⊗)
)

:=

A ⊗ B

A B
⊗

Des(π1) Des(π2)

Figure 3.2: Inference and desequantialization rules for proofs of MLL.

3.1.1 Sequent Calculus and Desequentialization

We will now investigate the logical content of MLL nets.
We first introduce MLL sequent calculus on the same alphabet. As already

defined in the previous chapter, a sequent is a multiset of types. A proof is
then a tree with nodes labeled by ` Γ where Γ is a sequent. Labels of parents
and childs must follow the rules shown in Figure 3.2. A proof π of a sequent
Γ is denoted by π : ` Γ . The reduction rules are easily seen to have subject
redution.

As shown in [Gir87], there are some inessential rule commutations that can
be quotiented by desequentializing a sequent calclulus proof into a typed (simple)
net. We show such desequentialization function Des(π), defined by induction,
in Figure 3.2 under the inference rules. The free ports of Des(π) ar in cor-
respondence with the type occurrences in Γ , which correponds exactly to the

Chapter 3. Linear Proof Nets 45

type they get. They are shown in the same order of appearence in Γ . We call
MLL proof nets, or sequentializable MLL nets, the elements of the image of the
desequantializable funcion.

We may note that with the interaction net paradygm of [Laf95] one quotients
also with respect to sequences of axiom and cuts, so that for example

Des

(
` A,A⊥ (ax)

π : ` A,Γ
` A,Γ (cut)

)
= Des(π : ` A,Γ).

It is immediately apparent that the uentialization function is not surjective,
i.e. there are typed MLL nets that are not sequentializable. For example simple
nets containing deadlocks, or the following ones

X ⊗ X⊥
⊗
X

,

X X

⊗ `
Y

X ⊗ Y

Not only these nets are not sequentializable, but they are also unreliable from
the point of view of reduction. Béchet has shown in [Béc98] that as soon as a
simple net λ is not sequentializable there is another, sequentalizable, that cut
against λ reduces to a net with deadlocks. So sequentialization can be seen as
a kind of certificate assessing that the net can safely interact with other correct
(i.e. sequentializable) simple nets.

One therefore feels the need to be able to state this correctness in an in-
dependent way with respect to sequent calculus. This need is fulfilled by cor-
rectness criterions, the most famous of which are the long trip one given by
Girard in [Gir87], and the so called Danos-Regnier one, given by the two au-
thors in [DR89].

3.1.2 Correctness Criterion and Sequentialization

In order to state Danos and Regnier’s criterion, we need to introduce the concept
of switching graph, and we may do it in general for all nets. Let us choose a
subset Ξ ⊆ Σ of symbols that we call switching. A switching on a simple net
λ is then a function

S : { c ∈ c(λ) | σ(c) ∈ Ξ } → bp(λ)

such that S(c) ∈ pasv(c). The switching graph GS(λ) is the subgraph of G(λ)
obtained by disconnecting all passive ports of switching cells apart from the one
chosen by S, i.e. GS(λ) has the same nodes of G(λ) and all of its edges but the
ones that have at least a port p ∈ pasv(c) \ {S(c)} for some c.

For MLL the only switching symbol is `.

Definition 3.1 (Danos-Regnier criterion for MLL). A net λ is said to be
strongly correct if for all of its switchings S the graph GS is acyclic and
connected.

46 3.1. The Multiplicatives

` Γ ` ∆
` Γ,∆ (mix2) ` (mix0)

Des
(
π1 : ` Γ π2 : ` ∆

` Γ,∆ (mix2)
)

:= Des(π1) ‖ Des(π2)

Des
(
` (mix0)

)
:= ε

Figure 3.3: The mix inference and desequentialization rules.

This in reality is not equivalent to sequentializability because of problems
with the unit ⊥. For example a single ⊥ cell is strongly correct, or on the other
hand a correct net with a ⊥ cell at one side is not. So one has in fact the
following result.

Theorem 3.2 (Danos and Regnier, [DR89]). If λ is an MLL net with no ⊥ cell,
then λ is sequentializable iff it is strongly correct.

We can work around this quirk by shifting the perspective on the system, in
a way that also semantics strongly supports (see Section 2.3). We add two rules
that though are logically “wrong” (we have the possibility of inferring ⊥, logical
contradiction!), they have a very good and natural computational meaning and
behaviour. These rules are the binary and zeroary mix rules, shown in Figure 3.3
with their respective desequentialization rules, that are juxtaposition and the
empty net. Introducing them is equivalent to setting 1 ∼= ⊥ (i.e. symmetrizing
their rules). The zeroary mix rule is usually called daimon. In this framework
we can relax the correctness criterion dropping connectedness.

Definition 3.3 (Danos-Regnier criterion for MLL+mix). A net λ is said to be
correct if for all of its switchings S the graph GS is acyclic.

We can also easily restate this criterion in terms of paths in the net, dropping
the definition of switchings. A switching path in G(µ) is an elementary one
that never bounces on a switching cell. In other words, no two passive ports
of a switching cell appear in it. The above criterion becomes equivalent to
switching acyclicity, i.e. the absence of switching paths that are cycles.

Theorem 3.4 (Danos-Regnier, [DR89]). If λ is an MLL net, then λ is sequen-
tializable in MLL + mix iff it is correct.

It is important now to see that such correctness criterion is stable under cut
reduction. This is a fundamental property, as it entails that the criterion does
not only describe a static and inert property of the nets, but rather one that is
invariant under reduction.

3.1.3 MLL nets as linkings

Every MLL net has an equivalent η-expanded form. Without going much into
detail, such a form is obtained by substituting non η-expanded axioms induc-

Chapter 3. Linear Proof Nets 47

tively by

A ⊗ B
{

A

` ⊗

B

1
{

⊥ 1

It suffices us to say that restricting ourselves to η-expanded nets does not restrict
the computational and logical expressiveness of the system.

Given an MLL sequent Γ , an MLL net (which we also call Γ) can be naturally
recovered from it as its syntactic forest. More formally, to each formula A
we inductively associate a tree by assigning wires to atomic types, and the
corresponding cells to binary connectives ⊗, ` and 0-ary connectives 1, ⊥. So
for example the formula (X ` 1)⊗ Y can be represented as

X
Y

⊗
`

1

Then we assign to a sequent the juxtaposition of its formulas as trees.
An axiom linking on Γ is a partition of the leaves of Γ (i.e. the ports

corresponding to its atomic subformulas) into pairs of leaves having dual type.
In fact an axiom linking is exactly a typed linking having as free ports the leaves
of Γ .

If we glue a sequent Γ with an axiom linking, we obtain an η-expanded cut-
free MLL net without vicious cycles. Remark 2.1 assures us that such operation
is bijective: every η-expanded vicious cycle and cut free MLL net with type Γ
correspond uniquely to a cut sequent [Σ]Γ and an axiom linking on it. Therefore
the latter provide an equivalent syntax to describe the nets in the system.

3.2 The Additives

In the previous section we addressed the multiplicative linear fragment of linear
logic, we now move on with the so-called additive connectives. Contrary to what
we have done with the multiplicatives, we will omit additive units (> and 0), as
until now no way of implementing them in nets is known1.

In order to describe MALL in nets, we adopt the idea of slicing the proofs.
This idea (first described by Girard in [Gir96], further developed in [LTdF04]
and finally in [HvG03]) consists in seeing an additive net as a set of separate
quasi-multiplicative nets. As we already introduced multisets of simple nets, we
will use the multiset sum construction to group together slices. The correctness
criterion will in fact reject repetition of slices, so one can equivalently use sets
(as is the usual way in the literature) rather than multisets.

1This is true in the general case. In polarized proof nets there is a correctness criterion
taking into account also such units, described in [LQTdF05].

48 3.2. The Additives

Cells and typing rules

A1 & A2

Ai
&i

A1 ⊕ A2

Ai
⊕i with i = 1 or 2.

Reductions

&i ⊕ j
w→

∅ if i , j,

if i = j.

Notation for cells

& := &1 & := &2 ⊕ := ⊕1 ⊕ := ⊕2

Figure 3.4: Cells, typing rules and reductions of MALL nets. We also show the
alternative and intuitive notation, where the symbols &1 and &2 (resp. ⊕1 and
⊕2) are identified, but recovered from the position of the auxiliary port: left for
&1 (resp. ⊕1) and right for &2 (resp. ⊕2).

The type system of MALL adds the connectives & and ⊕:

TMALL ::= V | V⊥ | 1 | ⊥ | TMALL ⊗ TMALL | TMALL ` TMALL

| TMALL & TMALL | TMALL ⊕ TMALL.

A MALL net is a slice net, built from the multiplicative symbols of Figure 3.1
together with the new symbols depicted in Figure 3.4.

3.2.1 Sequent Calculus and Desequentialization

MALL sequent calculus extends the rules of MLL (as presented in Figure 3.2) with
new rules for the two additive connectives shown in Figure 3.5. Notice that by
employing the desequentialization rules already defined for the multiplicatives
we implicitly use the definition of glueing for slice nets. So for example in the
case for tensor we are saying in fact that

Des
(
π1 : ` Γ,A π2 : ` B, ∆
` Γ,A ⊗ B, ∆

(⊗)
)

:=

A ⊗ B

A B
⊗

λ µ

| λ ∈ π1, µ ∈ π2

 .

From the remainder of this part we will, for now, consider all sequential
MALL proofs and MALL nets to be both cut-free, η-expanded and (for nets)
deadlock-free. Cuts will be treated up next in Section 3.2.4.

We will be addressing the issues already confronted about MLL. So again
we will call MALL proof nets the ones that are in the image of the desequen-
tialization function.

Chapter 3. Linear Proof Nets 49

Rules ` Γ,Ai

` Γ,A1 ⊕ A2
(⊕i) i = 1, 2

` Γ,A ` Γ,B
` Γ,A & B

(&)

Desequentialization

Des
(
π : ` Γ,Ai

` Γ,A1 ⊕ A2
(⊕i)

)
:=

A1 ⊕ A2

Ai
⊕i

Des(π)

Des
(
π1 : ` Γ,A1 π2 : ` Γ,A2

` Γ,A1 & A2
(&)

)
:=

A1 & A2

A1
&1

Des(π1)

∪
A1 & A2

A2
&2

Des(π2)

Figure 3.5: Sequent calculus rules for MALL additive connectives, and the
respective desequentialization rules for nets.

As represinting MALL nets by listing all of their simple nets is quite cum-
bersome, we first reintroduce the way they were reprepresented in [HvG03].

3.2.2 MALL Nets as Sets of Linkings

We cannot directly apply the approach used with MLL, as MALL cells are unary,
therefore they cannot completely take the role of the connectives. However
once we factorize an η-expanded MALL net as shown in Remark 2.1, the forest
deriving from it is clearly a subforest of the sequent Γ seen as a syntactical
forest, by using the following convention

A1 & A2

A1

&1 =
A1 & A2

A1

& ⊆ &

A1 & A2

A1 A2

and similar conventions for &2, ⊕1 and ⊕2. The equality on the left is the
graphic convention described in Figure 3.4, while the tree on the left is the
syntactical branching corresponding to the binary & connective.

Such subforests are called additive resolutions. More in general, we call
a resolution G of a sequent Γ a subforest of Γ such that

� G and Γ have the same roots;

� all ⊗s and `s are binary, i.e. if they are in G both their children are too.

In fact a resolution can be determined by choosing to erase some children (the
left, the right or both) of every additive connective & or ⊕.

It is straightforward, given a resolution G and an additive connective c in Γ
and in G, to define the arity of c in G, which can be either 0, 1 or 2. We will
therefore denote by

50 3.2. The Additives

� &0(G) (resp. ⊕0(G)) the set of zeroary &s (resp. ⊕s);

� &1(G) (resp. ⊕1(G)) the unary ones, and

� &2(G) (resp. ⊕2(G)) the binary ones.

All the &s (resp. ⊕s) in G (that need not be all the ones of Γ) are denoted by

&(G) := &0(G) ∪&1(G) ∪&2(G), (resp. ⊕(G) := ⊕0(G) ∪ ⊕1(G) ∪ ⊕2(G)).

A union and the intersection of two resolutions is still a resolution, thus they
form a bounded lattice, where the greatest element is Γ and the least one is the
unique resolution with all zeroary additive connectives.

We say that a resolution G is proper if &0(G) = ∅ and ⊕0(G) = ∅. Equiv-
alently, G is proper if its leaves are contained in those of Γ . Finally, a proper
resolution is equivalently determined by a subset S of the leaves of Γ by taking
all nodes and edges of Γ under S, provided that at least a leaf is chosen above
each root, and that if a leaf is chosen over one child of a ⊗ or `, one is chosen
also above the other. We say in this case that G is generated by S. A union
of two proper resolutions is still proper, and their generating set of leaves is the
union of the two.

We distinguish two types of proper resolutions that play an important role
in MALL.

� The additive resolutions are the minimal proper ones, where all &s and
⊕s are unary, i.e. &1(G) = &(G) and ⊕1(G) = ⊕(G).

� The &-resolutions are the proper ones where only &s are unary, i.e.
&1(G) = &(G) and ⊕1(G) = ∅.

Additive resolutions precisely characterize the subforests that can appear
in the factorization of a MALL simple net. Therefore a MALL simple net is
completely determined by an axiom linking and an additive resolution. On the
other hand, the additive resolution is generated by the leaves selected by the
axiom linking plus a choice of type constants. By abuse of terminology, we will
call linking over Γ a partition of some of the type variables of Γ into sets of
two dual types, together with a subset of multiplicative constant types in Γ ,
such that the resulting subset of leaves of Γ generates an additive resolution
G(λ).

Summing up, each (typed, cut and deadlock-free) simple MALL net λ is
equivalently defined by a linking which we call `(λ), which in turn defines a
unique additive resolution G(λ) of Γ . In fact glueing `(λ) with G(λ) (identifying
multiplicative constants), we obtain back the net λ.

So finally a (cut and deadlock-free) MALL net can be represented by just
drawing the set of linkings, one above the other, over the sequent. An example
is shown in Figure 3.6.

Given any MALL net Λ = {λ1, . . . , λk } we have the following notations:

G(Λ) ≡ G(λ1, . . . , λk) :=
k⋃
i=1

G(λi)

&(Λ) := &(G(Λ)), ⊕(Λ) := ⊕(G(λ))

and similar notations for &i and ⊕i with i = 0, 1, 2.

Chapter 3. Linear Proof Nets 51

(X & 1) & X

&

&

X ⊕ 1

⊕

X⊥ ⊗ (⊥ ⊕ X⊥)

⊗

⊕

1 ⊥

1 ⊥

Figure 3.6: An example of MALL net, showing the compact representation.

3.2.3 Correctness Criterion and Sequentialization

Again we address here the problem of determining whether a given MALL
net is sequentializable. The definitions and main results of this section come
from [HvG03].

MLL and resolution conditions

The first naive idea sprouts from the fact that one can easily apply the MLL
correctness criterion to MALL simple nets, as the new cells are unary. So, by still
defining as switching only the symbol `, we can have the following definition.

Definition 3.5 (MLL condition). A MALL net θ is said to satisfy the strong
MLL condition (resp. the MLL condition) if for every λ ∈ θ and every switching
S on it, the graph GS is acyclic and connected (resp. acyclic).

It is quite immediate to see that this condition does not suffice. A first
problem is that there may not be enough simple nets in θ to describe all the
possible branchings of &s. The simplest counterexample is the empty slice net ∅,
which trivially satisfies the strong MLL condition but is not a proofnet. Another
related problem is that there may be too much simple nets. A straightforward
example of this is two linkings on the same MLL sequent: clearly there is no
way that a proof using only MLL rules can give rise to two simple nets.

This problems are addressed by the following definition.

Definition 3.6 (Resolution condition). A MALL net θ over a sequent Γ is said
to satisfy the resolution condition if for every &-resolution H of Γ there is
a unique net λ ∈ θ such that G(λ) ⊆ H. We can divide this condition in the
following two:

&-compatibility: if λ, µ ∈ θ have a &-resolution in common such thatG(λ), G(µ) ⊆
H then λ = µ (uniqueness);

&-fullness: for every &-resolution H there is at least a net λ ∈ θ such that
G(λ) ⊆ H.

52 3.2. The Additives

The following is a lemma easily restating the &-compatibility condition.

Lemma 3.7. A MALL net θ is &-compatible if and only if

∀λ, µ ∈ θ, λ 6= µ : &2(λ, µ) 6= ∅.

Proof.

⇒) Suppose two different λ, µ ∈ θ have &2(λ, µ) = ∅. This means that

&1(G(λ) ∪G(µ)) = &(G(λ), G(µ))

which easily implies the existence of a &-resolution H containing G(λ) ∪
G(µ), as it suffices to add missing branches to ⊕s in ⊕1(λ, µ), possibly
choosing arbitrarily which branch to keep of &s above them. Thus G(λ) ⊆
H and G(µ) ⊆ H which contradicts &-compatibility.

⇐) Given any &-resolution H with G(λ) ⊆ H and G(µ) ⊆ H then

G(λ, µ) = G(λ) ∪G(µ) ⊆ H =⇒ &2(λ, µ) ⊆ &2(H) = ∅

which implies that λ and µ cannot be different.

But again, a net satisfying both the MLL condition and the resolution one
need not be a proof net. Take for example the following MALL net.

⊗
& ⊕

(1 & 1) ⊗ (1 ⊕ 1)

1 1

1 1

(3.1)

Both simple nets in it are strongly MLL correct, and they correspond exactly to
the two &-resolutions of (1 & 1)⊗ (1⊕ 1). However if one tries to sequentialize,
one find it impossible to separate the premises of the ⊗, which must be the last
applied rule. The impossibility to separate the contexts of a tensor (or a cut) is
what is captured by switching cycles. Here one must be able to capture another
type of cyclic dependency.

Jumps and the toggling condition

The tool usually employed to expose dependencies not explicitly present in the
graph of the proof is the notion of jump. First appeared to implement second or-
der quantifiers in proof nets in [Gir91b], then for linear logic additives in [Gir96],
we here present how they are used in [HvG03]. Jumps will play a central role
in the results of Part II. Recently jumps have been thoroughly studied as a tool
to get different degrees of sequentiality, for example in [DG08].

Given a subset Λ ⊆ θ we will build the correctness graph GHvG(Λ) by,
informally speaking, adding special jump edges to

⋃
Λ, the superposition of the

Chapter 3. Linear Proof Nets 53

nets in Λ. HvG stands for Hughes and van Glabbeek, as this is their version of
correctness graph (we will use a different one in the future).

Formally, GHvG(Λ) is defined extending the forest
⋃
λ∈ΛG(λ) with the fol-

lowing new edges:

axioms: an edge between two leaves a, a′ for every axiom {a, a′} in
⋃
λ∈Λ `(λ);

notice axioms connecting the same leaves in different linkings are identi-
fied;

jumps: an edge between a leaf a and w ∈ &2(Λ) if there are λ, µ ∈ Λ

a ∈ e ∈ `(λ) \ `(µ) and &2(λ, µ) = {w},

where e is an axiom if a is atomic, and the singleton {a} if a is a type
constant.

Jumps register a direct dependency of the existence of certain axioms from the
choice made on a given &.

In the upcoming definitions we will adapt to such correctness graphs (which
are not interaction nets) the definitions already employed in MLL nets. More
precisely note that there are nodes (the leaves of Γ) which do not correspond
to actual cells of any λ.

In GHvG(Λ) we may define elementary and switching paths as we did for
the graphs corresponding to usual interaction nets. For this purpose, jumps are
considered to connect a passive port of the corresponding &, which is considered
switching when binary. We are just saying that switching paths traversing a
jump or a premise of a & cannot have another jump or a premise of the same
&, and that the leaves and binary ⊕s which are not switching nodes.

We are finally ready to define the last (and hardest) part of the correctness
criterion.

Definition 3.8 (toggling condition). A MALL net θ is said to satisfy the tog-
gling condition if and only if

∀Λ ⊆ θ, #Λ ≥ 2 : ∃w ∈ &2(Λ) | ∀φ switching cycle in GHvG(Λ) : w 6∈ φ.

In other words: for every choice of MALL nets in θ, there is a binary & which
lies outside all switching cycles in GHvG(Λ).

The following are the results exposed in [HvG03], easily adapted to cover
multiplicative units in the same way they are in the multiplicative case.

Definition 3.9 (Hughes-van Glabbeek correctness for MALL). We say that an
MALL net θ is strongly correct (resp. correct) if θ satisfies the resolution, strong
MLL and toggling conditions (resp. resolution, MLL and toggling).

Proposition 3.10. A MALL net is correct if and only if

� it satisfies the resolution condition;

� for every Λ ⊆ θ and every non empty union S of switching cycles in
GHvG(Λ) there is w ∈ &2(Λ) with w 6∈ S.

54 3.2. The Additives

Proof. For λ ∈ θ we have that GHvG(λ) is G(λ) up to contracting all nodes
that are leaves. As &2(λ) = ∅ the second point above restricted to Λ singleton
is equivalent to the MLL condition, as it disallows non empty union of cycles.
If we then restrict to Λ non singleton we practically get exactly the toggling
condition.

We still need to control the MLL condition separately if we want strong
correctness.

Theorem 3.11 (MALL sequentialization, [HvG03]). If θ is an MALL cut free
net with no ⊥ cell (resp. an arbitrary MALL net), then it is sequentializable in
MALL (resp. in MALL+mix) if and only if it is strongly correct (resp. correct).

Proof. We sketch how to account for multiplicative units in the proofs of [HvG03].
As already stated there, the unit 1 is easily implementable by translating the
formula with X ` X⊥, and the corresponding cell with an axiom between the
two literals. One easily shows that both

θ is strongly correct ⇐⇒ θ

[
`

/
1

]
is strongly correct

andθ is sequentializable in MALL ⇐⇒ θ

[
`

/
1

]
is also.

This covers the case for MALL nets with no ⊥ cell. For the second part it
should be noted that the mix0 rule can only be followed by a ⊥ rule, the only
one possible with an empty sequent. Thus, as expected, ⊥ plays exactly the
same role of 1 in MALL+mix, and we can employ exactly the same translation
for ⊥, getting the same equivalencies as before for plain correctness.

For example let θ be the MALL net in (3.1). Then we have the following
cycle in GHvG(θ) that covers the unique binary & in θ.

⊗
&

1 1

⊕
1 1

We have drawn only one of the four jumps of GHvG(Λ). Apart from it t here
is the one from the other premise of ⊕, and the two “redundant” ones from the
premises of &. A wealth of other examples are shown in [HvG03], and we will
have other ones in Section 2.3 after we have presented denotational semantics.

Saturated MALL nets

We present in this section a tool which was extensively used in the proof of the
sequentialization theorem in [HvG03] and that is also useful in the results of
Part II.

A subset of Λ ⊆ θ of a MALL net θ is said to be saturated (in θ) if

∀λ ∈ θ \ Λ : &2(λ,Λ) 6= &2(Λ),

Chapter 3. Linear Proof Nets 55

i.e. we cannot add to Λ any net in θ without increasing binary &s.
If θ satisfies the resolution condition, we can give a characterization of its

saturated subsets without mentioning θ itself. We call Λ a saturated MALL
net if one that satisfies the following condition, which is a weakened form of the
resolution one.

∀H &-resolution s.t. &2(H,G(Λ)) = &2(Λ) : ∃!λ ∈ Λ | G(λ) ⊆ H.

We are in fact restricting the resolution condition to &-resolutions that in a way
are already known to not disagree with any net in Λ.

Lemma 3.12. If θ is a net satisfying the resolution condition, then Λ ⊆ θ is a
saturated set if and only if it is a saturated MALL net.

Proof.

=⇒) &-compatibility is clearly inherited by Λ from θ, so uniqueness is trivial.
For existence, take H such that &2(H,G(Λ)) = &2(Λ). By &-fullness
there is λ with G(λ) ⊆ H. We show that λ ∈ Λ. If not, as

&2(Λ) ⊆ &2(λ,Λ) ⊆ &2(H,Λ) = &2(Λ),

we get a contradiction to Λ being a saturated subset.

⇐=) Suppose there is λ ∈ θ \ Λ such that &2(λ,Λ) = &2(Λ). Take any
&-resolution H that

� on &s in &(λ) chooses as G(λ),

� on &s in &1(Λ) chooses as G(Λ),

� on all other &s chooses randomly.

The first two clauses do not conflict as if w ∈ &(λ) ∩ &1(Λ) and λ and
G(Λ) choose differently on it, then w ∈ &2(λ,Λ) = &2(Λ) which is a
contradiction. We have then that both G(λ) ⊆ H and &2(H,G(Λ)) =
&2(Λ). By saturation of Λ we get µ ∈ Λ (which implies λ 6= µ) where
both G(λ) and G(µ) are in H, which contradicts &-compatibility.

A construction typically used in the proofs is the following. Take Λ saturated
and w ∈ &2(Λ), and define

Λw := {λ ∈ Λ | the right premise of w is in G(λ) } .

So one keeps only the nets that either choose the left side of w, or do not
choose at all. Furtherly, given two MALL simple nets λ and µ, define λ

w
– µ

iff &2(λ, µ) ⊆ {w}, i.e. if either they are equal or w is the only & binary in
their superposition. Clearly &2(Λw) (&2(Λ), as w ∈ &1(Λ): this lets us
use Λw as a tool to reason by induction on # &2(Λ). We have the following
three properties [HvG03] (which we show independently of having a net θ with
resolution containing Λ).

Proposition 3.13. If Λ is saturated then

(S1) Λw is saturated;

56 3.2. The Additives

(S2) for every λ ∈ Λ there exists a λw ∈ Λw with λ
w
– λw;

(S3) for every λ, µ ∈ Λ, if λ
x
– µ then λw

x
– µw for some λw, µw ∈ Λw with

λw
w
– λ and µw

w
– µ.

Proof.

(S1) Take H such that &2(H,G(Λw)) = &2(Λw). There are two cases: either
&2(H,G(Λ)) = &2(Λ) or not. In the first case, there is a unique λ ∈ Λ
with G(λ) ⊆ H. If λ 6∈ Λw then λ (and therefore H too) chooses the
right premise of w, so that w ∈ &2(H,G(Λw)) but w 6∈ &2(Λw) which is a
contradiction.

In the other case, take a &-resolution H ′ which chooses

� as H in all &s in &(H) ∩&2(Λ),

� as G(Λ) in &1(Λ),

� left on w,

� arbitrarily in all other &s.

The third clause can contradict neither the first, as if w ∈ &(H) then H
chooses left, lest w ∈ &2(H,G(Λw)), nor the second as w ∈ &2(Λ).

Clearly &2(H ′, G(Λ)) = &2(Λ), so by saturation there is a λ ∈ Λ with
G(λ) ⊆ H ′, which by construction implies λ ∈ Λw. Suppose G(λ) 6⊆ H,
that is ∃w′ ∈ &2(H,G(λ)). Now, w′ ∈ &2(H,G(Λw)) = &2(Λw) ⊆ &2(Λ),
and therefore by the first clause H ′ (and so λ) must agree with H on w′,
which is a contradiction.

Similarly for uniqueness, if λ ∈ Λw then one has G(λ) ⊆ H, then also
G(λ) ⊆ H ′. If ∃w′′ ∈ &2(H ′, G(λ)) ⊆ &2(H ′, H) then w′′ 6∈ &2(Λ) or
the first clause would be contradicted. But then, as w′′ ∈ &(λ), we have
w′′ ∈ &1(Λ) and therefore H ′ must choose as Λ, i.e. as λ, which is a
contradiction.

(S3) Take H ′ and H ′′ &-resolutions built so that

� on &1(λ, µ)\{w, x} = &(λ)∪&(µ)\{w, x} both choose as G(λ)∪G(µ);

� on w they both choose left;

� on x H ′ chooses as λ and H ′′ as µ;

� on &1(Λ) they both choose as G(Λ),

� on other &s they both choose the same, arbitrarily.

Then by saturation we get λw and µw such that:

&2(λ, λw) ⊆ &2(G(λ), H ′) ⊆ {w}
and similarly for µ and µw, while

&2(λw, µw) ⊆ &2(H ′, H ′′) ⊆ {x}.

(S2) This is a particular case of (S3).

Chapter 3. Linear Proof Nets 57

` []A⊥, A
(ax)

` [Σ]Γ,A ` [Π]A⊥, ∆

` [Σ,A ∗A⊥,Π]Γ,∆ (cut)

` [] 1
(1)

` [∆]Γ
` [∆]Γ,⊥ (⊥)

` [∆]Γ,A,B
` [∆]Γ,A`B (`)

` [Σ]Γ,A ` [Π]B,∆
` [Σ,Π]Γ,A⊗B,∆ (⊗)

` [∆]Γ,Ai
` [∆]Γ,A1 ⊕ a2

(⊕i) i = 1, 2
` [∆,Σ1]Γ,A ` [∆,Σ2]Γ,B
` [∆,Σ1, Σ2]Γ,A&B

(&)

` [Σ]Γ ` [Π]∆
` [Σ,Π]Γ,∆

(mix2) ` []
(mix0)

Figure 3.7: Sequent calculus rules for MALLcut.

3.2.4 Cut reduction

Though the nets we have presented have a cut reduction perfectly defined, it
does not behave well with respect to the logical contents of such nets, as it is
completely independent in each simple net, so that sequentialization is easily
lost. We will here present the definitions given in [HvG03], skipping over most
of the details. Though these definitions could be carried out on nets in general,
it is simpler and best to view them in this specific setting.

A cut formula is a commutative pair of dual formulas, denoted by A ∗A⊥.
A cut sequent is a regular sequent together with a multiset of cut formulas.
We denote a cut sequent by enclosing the cut formulas in square brackets, as
in [∆]Γ where ∆ = A1 ∗ A⊥1 , . . . , Ak ∗ A⊥k . In order to desequentialize MALL
proofs, an intermediate sequent calculus is provided, MALLcut, whose rules are
presented in Figure 3.7. This calculus simply “remembers” cuts, and on the
& rules they can be either identified or not. Every proof of MALLcut is easily
associated with a proof of MALL by deleting all information about cuts. This
function is surjective but not injective, due to the different choices that can be
done when identifying cuts in the & rule.

MALL nets with cuts. A cut sequent is again a forest. A resolution G of a
cut sequent [∆]Γ is a subforest of ∆‖Γ (the juxtaposition of the two syntactic
forests) such that

� the roots of G are all those of Γ plus some of ∆;

� all ⊗s, `s and cut formula roots are binary.

All the definition we made on regular sequents adapt seamlessly to this setting,
by using these resolutions. An additive resolution is still one where all withs
and pluses are unary, while &-resolutions are those that contain all cut formula
roots, and all ⊕s are binary and &s unary.

Then a MALL simple net λ on a cut sequent [∆]Γ will then be given by
a linking `(λ), i.e. a partition of the leaves of an additive resolution G(λ) into

58 3.2. The Additives

pairs of dual leaves (axioms) for all variable types, and singletons of the rest
(constants).

A MALL net θ is a set of simple nets on the same cut sequent. At any time
we delete a cut formula from [∆]Γ if it does not appear in any G(λ) for λ ∈ θ.

Defining desequentialization on MALLcut is straightforward. For the details
the reader is referred to [HvG03]. Such sequentialization gives a relation between
MALL sequent calculus proofs and MALL nets with cuts, which is not a function.
However it still makes sense to characterize the image of such desequentialization
relation. The answer is given again exactly by the conditions stated in the
previous pages.

Theorem 3.14 (MALLcut sequentialization, [HvG03]). If θ is an MALL net on
a cut sequent [∆]Γ with no ⊥ cell (resp. an arbitrary MALL net), then it is
sequentializable in MALLcut (resp. in MALL+mix) if and only if it is strongly
correct (resp. correct).

We are more interested in actual cut reduction. This is defined by the fol-
lowing procedure. We select a cut formula C in the cut sequent, and depending
on its type we perform the following procedure.

� C = A⊗B∗A⊥`B⊥: substitute C by A∗A⊥, B∗B⊥, keeping in θ the same
simple nets. This is defined, as the leaves of C are all in A ∗A⊥, B ∗B⊥,
and if the resolution of λ is an additive one on [C,∆]Γ , then so is on[
A ∗A⊥, B ∗B⊥, ∆]Γ as G(λ) must be binary on ⊗s and `;

� C = A⊕B ∗A⊥&B⊥: again substitute C by A∗A⊥, B ∗B⊥, and consider
the linkings of θ on the new cut sequent. If such a linking λ is not on a
resolution anymore, then delete the whole linking. This happens only if λ
chose A on ⊕ and B⊥ on &, or B and A⊥ respectively.

� C = 1 ∗ ⊥: remove C, and any reference to these constants from any
linking containing them.

� C = α ∗ α⊥: let a and a′ be the two leafs. For each λ ∈ θ that selects C,
define λ′ by substituting in λ the two axioms {λ(a), a}, {a′, λ(a′)} with
{λ(a), λ(a′)}. Then substitute each λ with λ′ (and remove C by garbage
collection).

Let us call this procedure shared cut reduction. We will still denote the
reduction by mw→.

This cut reduction can be carried out using the interaction net rules given
in Figure 3.1 and 3.4, however we have two notable differences.

� We here have back the axiom cut reduction which was abstracted away
by interaction nets. Our main reason for letting it stay is that without it
some definitions and results we present in Chapter 5 get needlessly more
complicated.

� The reduction is called shared because it reduces cuts in more than one
slice at a time. Fundamentally this kind of reduction is a sort of synchrony
constraint, telling that a certain cut in a certain simple net can be reduced
only if we do it in all nets where such cut is present.

Chapter 3. Linear Proof Nets 59

Multiplicatives and additives

(a, b)

a b
⊗

(a, b)

a b`
∗

1
∗
⊥

a.i

a
&i

a.i

a
⊕i

Figure 3.8: Rules for the experiments for all the cells of MALL.

It must be noted however that the normal forms obtained by following the two
paradigms of reduction are the same.

We finally cite the non trivial result about stability under reduction.

Proposition 3.15 (Stability of correctness). If θ is a (strongly) correct MALL
net with cuts and θ mw→ θ′ then θ′ is also.

3.3 Invariants and Semantic Correctness

We will here define the semantics of MLL and MALL, and investigate what we
indicated by semantic correctness.

3.3.1 The Interpretation

Let U be a class of points containing a distinguished point ∗ and closed with
respect to finite tuples (x1, . . . , xn) and finite disjoint union injections x.i. The
axiomatic rules interpreting untyped MALL with points of U are shown in Fig-
ure 3.8. Notice that as the system is axiomatic, we only need to specify
experiments on axioms (if vicious cycles are excluded, which is automatically
the case for multiplicatives and additives by typing), provided that equality on
cuts is satisfied.

It is straightforward to see that the one defined above is indeed a denotational
semantics, by checking each pair redex-reduct in Figures 3.1 and 3.4. As shared
cut reduction is given by reducing multiple simple nets in the usual sense (apart
from the axiom cut rule which however does not pose any problem), we have
that J . K is an invariant also under shared cut reduction.

3.3.2 Coherent Spaces

Since the beginning there was a tight pairing between linear logic and the se-
mantic model that brought the intuitions necessary for its discovery: coherent
spaces. They first where introduced in [Gir87], later refined with the multiset
based exponential in [Gir91a]. We present them here and state their relation
with the systems introduced in the previous chapters.

The Spaces

The category Coh of coherent spaces has as objects unoriented graphs. There-
fore a coherent space X is given by

� its web |X|, a set;

60 3.3. Invariants and Semantic Correctness

� a reflexive and symmetric relation ¨X, called coherence.

The statement x ¨X y is usually denoted by x ¨ y (X), or simply x ¨ y if no
confusion is possible. The states of X are its cliques, i.e. the sets s ⊆ |X| such
that for every x, y ∈ s : x ¨ y (X).

The coherence defines, and is in turn equivalently recoverable from, the
following relations:

� strict coherence ˝ := ¨ \=, i.e. x ˝ y (X) iff x ¨ y (X) and x 6= y;

� incoherence ˚ := |X|2 \˝, i.e. x ˚ y (X) iff not x ˝ y (X);

� strict incoherence ˇ := |X|2 \¨, i.e. x ˇ y (X) iff x ˚ y (X) and x 6= y.

The objects of Coh are given the structure of a ∗-autonomous linear category
[Bie94] by the following constructs.

Dual:
∣∣X⊥∣∣ := |X|, and x ¨ y (X⊥) iff x ˚ y (X).

Multiplicatives: |X⊗ Y| = |X` Y| := |X| × |Y|, and

(x, y) ¨ (x′, y′) (X⊗ Y) ⇐⇒ x ¨ x′ (X) and y ¨ y′ (Y),
(x, y) ¨ (x′, y′) (X` Y) ⇐⇒ x ˝ x′ (X) or y ˝ y′ (Y).

The units enjoy 1 = ⊥, with |1| = |⊥| := {∗}.

Additives: |X0 ⊕ X1| = |X0 & X1| := |X0|+ |X1|, the disjoint sum. We denote
an element of such a disjoint sum as x.i, with i = 0 or i = 1 and x ∈ |Xi|.

x.i ¨ y.j (X0 ⊕ X1) ⇐⇒ i = j and x ¨ y (Xi),
x.i ¨ y.j (X0 & X1) ⇐⇒ i = j implies x ¨ y (Xi),

so that we have always x.1 ˇ y.2 (X0 ⊕ X1) and x.1 ˝ y.2 (X0 & X1).
Again the units are identical, with |>| = |0| := ∅.

Exponentials: |!X| := {u ∈Mfin(|X|) | |u| : X }, i.e. the final multisets whose
support is a state. And

u ¨ v (!X) ⇐⇒ u+ v ∈ |!X| ⇐⇒ ∀x ∈ u, y ∈ v : x ¨ y (X).

One then defines ?X := (!X⊥)⊥. In fact

u ˝ v (?X) ⇐⇒ ∃x ∈ u,∃y ∈ v | x ˝ y (X).

Notice that the web of |?X| is the multisets having as support cliques of
X⊥, not X.

The operations defined above respect De Morgan’s duality.
The morphisms are the states of X (Y := X⊥ ` Y, which are relations

|X| →| |Y|, so that Coh is indeed a webbed category, and the notions of state
coincide.

Chapter 3. Linear Proof Nets 61

Interpretation and Semantic Correctness

A Coh-interpretation J . K on LL types is given by defining it on type variables
V and then extending it to T by inductively applying the constructors described
above to all corresponding connectives. We then combine it with the rules shown
in Figure 3.8 as explained in Section 2.3.2. Notice the following.

� If we restrict to MLL or MALL as we are doing here there is no further re-
striction for compatibility, other than checking it on axioms. We mean that
if for every axiom e = {p, q} we assign e(e) ∈ ∣∣Jτ((p, q))K∣∣ =

∣∣Jτ((q, p))K∣∣
such that for every cut {p′, q′} we have e(p′) = e(q′), then we automatically
have e(r) ∈ ∣∣Jτ(r)K∣∣ for every port r.

� The above is not true anymore when extending to exponentials, where
the operations on webs are not independent of the coherence of the space.
This is an important point: it is said that Coh is uniform for this rea-
son. One of the main consequences of this is the loss of injectivity of the
interpretation2.

We will not show it here, but an important point is that if we define a denota-
tional semantics (for Coh or other models) on the various sequent calculi in the
classic compositional way, the desequentialization preserves the interpretation.
This tells us among other things that the quotient expressed by the nets is sup-
ported by the semantics, as sequential proofs with the same desequentialization
must have the same interpretation.

From now on when considering the coherence of experiments on a port p, if
(and only if) we omit the space we implicitly intend Jτ(p)K for it.

We have the following soundness result.

Theorem 3.16 (Girard, [Gir87]). Every MLL proof net is Coh-correct.

Notice therefore that Coh (and in fact all models we consider here) validates
the mix rules. From now on we will consider both MLL and MALL as having
the mix rules. We give here proof in our setting, as though it is an easy one the
concepts we will use in it will return in the proof of Theorem 5.3 in Chapter 5.

Proof. Take two experiments e and f, we show that e(π) ¨ f(π).
Based on such experiments, we build a directed graph H out of G(π), fol-

lowing these steps:

1. we erase all wires d such that e(d) = f(d), and all “orphaned” nodes there-
after, i.e. those not connected to any wire;

2. for every ` or contraction c such that for the two passive ports p and q we
have e(p) ˝ e(p) and e(q) ˇ e(q) we turn q into a new node disconnected
from c;

3. finally, we direct every remaining wire d so that e(t(d)) ˝ f(t(d)).

2It is conjectured but not known yet if non-uniform models, such as Rel, nuCoh (non
uniform coherent spaces), Fin, have such property. See [TdF00, Pag06b] for more details on
this issue.

62 3.3. Invariants and Semantic Correctness

First thing, H is a dag, a directed acyclic graph, as every directed path in it is
a switching one in G(π): bounces on switching cells are explicitly forbidden by
step 2. Because of it, as soon as H is non empty, which happens in particular if
e(π) 6= f(π), H must have at least a sink, i.e. a node with only incoming edges.
If we show that only a free port of π can be a sink then we conclude, as such
port p would have an incoming wire by point 1, and by point 3 we would have
e(p) ˝ f(p).

Take then any node c and let us see by cases that it cannot be a sink. Notice
that all units 1 and ⊥ and all weakenings are necessarily erased by step 1, and
that the new nodes introduced in step 2 cannot be sinks by construction.

c tensor. Suppose e(c0) ˚ f(c0) (X⊗ Y) (otherwise we trivially get a way out)
then if e(c0) = f(c0) then c is erased by step 1, therefore there must be
a strict incoherence on one of the premises, which concludes this case.
e(c[i]) ˇ f(c[i]) for i either 1 or 2.

c par. the only other case for now. If e(c0) ˚ f(c0) (X` Y) then e(c[i]) ˚ f(c[i])
for i both 1 and 2, so neither of the two is detached by step 2. Also they
cannot have both equality, otherwise c is erased by steps 1.

What the above proof does can be basically seen as choosing a wire where
the two experiments disagree and following from it the coherence, necessarily
ending on a conclusion.

We also have the following result for MALL.

Proposition 3.17. Every MALL proof net is Coh-correct.

Proof. Indirectly Coh is a model of MALL sequent calculus, therefore it must be
such for MALL proof nets also. Alternatively, this is a corollary of Theorem 3.19
together with Proposition 3.20.

In MLL we also have the inverse result, therefore answering positively to the
first question raised at the end of Section 2.3.2, so that in fact Coh-correctness
and sequentializability correctness coincide.

Theorem 3.18 (Retoré, [Ret97]). Every cut-free Coh-correct MLL net is a
proof net.

The absence of cuts is necessary as they may hide deviant configurations
from the results collected at the conclusions. Anyway it is typical of denotational
semantics to not be able to express such properties of non normal elements, as
the invariance is expressedly designed to rather describe the resulting normal
forms.

The inverse assertion fails instead for both MALL and, on a sidenote, for
MELL, as explained up next.

The Gustave MALL Net

For the latter there is a counterexample derived from Berry’s so called Gustave
function [Ber78]. This is a stable function in the Scott-continuous hierarchy

Chapter 3. Linear Proof Nets 63

α β P :=

α β α⊥ ⊗ β⊥
⊗

(a)

(α& α) ⊕ α

⊕
&

(β& β) ⊕ β

⊕
&

(P & P) ⊕ P

⊕
&

(b)

Figure 3.9: The Gustave MALL net γ is shown in Figure (b). P stands for
α⊥⊗β⊥, and the link with three wires is shorthand for the trivial linking shown
in Figure (a).

that is not sequentializable. It is defined such that for every x:

G(t, f, x) = t,

G(x, t, f) = t,

G(f, x, t) = t,

end is undefined otherwise. The fact that such function is not sequentially
implementable comes from the fact that there is no first variable to look at. If
for example one gives an implementation inspecting the first one, then if the
input is (equivalent to) ⊥, t, f where ⊥ denotes divergence, we would have a
divergent computation instead of one evaluating to t.

This idea was studied in the context of models of LL in [Gir99, AM99], and
was given the following syntactical representation in [HvG03]. The link with
Gustave function lies in what leaves are chosen by the linkings. In fact if we
assign t to the left premise of the &, f to the right one and ⊥ to the right one
of the ⊕, then the three top linkings correspond to

{ (t, f,⊥), (⊥, t, f), (f,⊥, t) } ,
i.e. the trace of G (omitting the output). The other two linkings are there to
satisfy the resolution condition.

The Gustave MALL net is not correct. In fact taking the correctness graph
of the first three linkings gives the following cycle covering all &s, which does
not even use jumps.

⊕
&

⊕
&

⊕
&

64 3.3. Invariants and Semantic Correctness

However γ is Coh-correct. Given any two experiments e and f, if they are on
the same simple net they are coherent because of Theorem 3.16. If on the other
hand they are taken on different slices, say λ, µ ∈ γ, then one of the three
&s is binary, say w ∈ &2(λ, µ). We then have e(w0) ˝ f(w0), which implies
e(w0).1 ˝ f(w0).1 on the corresponding conclusion, which in turn gives strict
coherence on the whole of the sequent.

The Gustave function is rejected by Bucciarelli and Ehrhard’s strongly stable
model [BE91], from which Ehrhard developed in [Ehr95] a new model of LL,
hypercoherent spaces, which we present up next. One turns to such a model
hoping for a better account of LL additives.

3.3.3 Hypercoherent spaces

The idea at the base of hypercoherent spaces is to shift from graphs to hyper-
graphs, adapting the various operation thereafter.

The category HCoh of hypercoherent spaces has objects X given by

� its web |X| is a set;

� a predicate ¨X on P∗<ω (|X|), the finite non-empty subsets of |X|, called
the hypercoherence of X, which is reflexive in the sense that it contains
the set of singletons P=1 (|X|).

The statement s ∈ ¨X is written ¨ s (X), or simply ¨ s if no confusion is
possible. As with ordinary coherence, apart from ¨, one defines the following
relations, from which ¨ can be in turn recovered

� strict hypercoherence ˝ := ¨ \P=1 (|X|);
� hyperincoherence ˚ := P∗<ω (|X|) \˝;

� strict hyperincoherence ˇ := P∗<ω (|X|) \¨.

The states of X are the hypercliques of X i.e. h : X if and only if

∀s ⊆∗<ω h : ¨ s (X)

where s ⊆∗<ω h indicates that s is a finite non empty subset of h.
The following are the operations on hypercoherent spaces corresponding to

LL connectives, giving HCoh the structure of a ∗-autonomous linear category.
For reference we include the definition of the exponential modalities, though it
will be not used in the present work.

Dual:
∣∣X⊥∣∣ := |X|, and ¨X⊥ := ˚X.

Multiplicatives: |X⊗ Y| = |X` Y| := |X| × |Y|, and given s ⊆∗<ω |X| × |Y| we
set

¨ s (X⊗ Y) ⇐⇒ ¨π0(s) (X) and ¨π1(s) (Y),
˝ s (X` Y) ⇐⇒ ˝π0(s) (X) or ˝π1(s) (Y),

with π0 and π1 the usual left and right projections. Units have again
1 = ⊥, |1| = |⊥| = {∗} and clearly ¨1 = {{∗}}.

Chapter 3. Linear Proof Nets 65

Additives: |X0 ⊕ X1| = |X0 & X1| := |X0|+ |X1|. Given s ⊆∗<ω |X0|+ |X1|, let
si := {x ∈ |Xi| | x.i ∈ s }. Then we set

¨ s (X0 ⊕ X1) ⇐⇒ s1−i = ∅ and ¨ si (Xi) for i = 0 or 1,
¨ s (X0 & X1) ⇐⇒ s1−1 = ∅ implies ¨ si (Xi), for both i = 0 and 1.

Note therefore that if s0 and s1 are both non-empty, one has ˝ s (X0 &X1)
and ˇ s (X0 ⊕ X1) regardless of the elements of s. Units are again |>| =
|0| = ∅.

Exponentials: |!X| := {u ∈Mfin(|X|) | |u| : X }. Given s ⊆∗<ω |!X| we set

¨ s (!X) ⇐⇒ ∀u C s : ¨u (X),

where u C s (u is a multisection of s), means that ∀b ∈ s we have u∩|b| 6= ∅,
i.e. u contains at least an element from every multiset in s. The why not
modality is defined by ?X := (!X⊥)⊥.

The operations defined above respect De Morgan’s duality. Again, morphisms
are the states of X(Y = X⊥ ` Y, thus HCoh is webbed.

From [Ehr95] we have an injection functor I mapping each coherent space
X to the hypercoherent space having

|IX| := |X| , ¨ s (IX) ⇐⇒ s : X

which is left adjoint to functor PN mapping a hypercoherent space Y to

|PNY| := |Y| , x ¨ y (PNY) ⇐⇒ ¨{x, y} (Y).

The name PN is due to the fact that this operation decomposes in two polar-
ity changing functors. PN preserves all the operations defined above but the
exponential ones, which suffices us [Ehr95, Proposition 30].

Interpretation and Semantic correctness

The interpretation is again defined by interpreting type variables and applying
the various linear constructs. He here restrict ourselves to MALL, so there are
no uniformity issues.

Theorem 3.19 (Soundness). Every MALL proof net is HCoh-correct.

Proof. We can through the Sequentialization theorem, as HCoh is a model of
LL. We will however have this as a corollary of Theorem 5.3, which has a direct
proof much in the style of that of Theorem 3.16.

Also we have the following relation with Coh-correctness.

Proposition 3.20. HCoh-correctness is strictly stronger than Coh-correctness.

Proof. Take a HCoh-correct MALL net θ, and any Coh-interpretation J . K.
Then take the HCoh-interpretation J . K′ generated by I(J . K). Now

JθK = JθK′ : JΓ K′ =⇒ JθK : PN(JΓ K′) = JΓ K .

66 3.3. Invariants and Semantic Correctness

The implication comes directly from the definition of PN , while the last equality
comes from the fact that PN preserves linear connectives and PN ◦ I is the
identity.

Strictness comes from the fact that the Gustave MALL net of Figure 3.9 is
not HCoh-correct. It suffices to take a set made by points from the top three
linkings and the hypercoherence law on ⊕ givesstrict hyperincoherence on all
three conclusions.

Proposition 3.21. A MALL simple net λ is HCoh-correct if and only if it is
Coh-correct. In particular on MLL nets the two notions coincide.

Proof. One direction comes from the above result. The inverse one is obtained
by canonically turning λ into an untyped MLL net λ′, by contracting all unary
connectives in a single wire. If we assign to the axioms of λ′ the variable type
they had in λ (we recall we are speaking about η-expanded nets), it is possible
that there is a mismatch on a cut. In such a case however the interpretation
of λ is empty (as we get the same mismatch in experiments) and the result
is trivial. Suppose therefore that λ′ is typed. There is a bijection φ between
experiments on λ and λ′ by just assigning the same values to axioms. As unary
additives preserve both hypercoherence and coherence, ¨φ({ e1(λ), . . . , ek(λ) })
if and only if ¨ { e1(λ), . . . , ek(λ) }, and the same for plain coherence. Therefore
λ′ is Coh-correct, and by Theorem 3.18 it is switching acyclic, which in turn
by the soundness theorem implies it is HCoh-correct, which finally implies that
also λ is such.

Once again, however, the answer to the first question raised in Section 2.3.2
is negative.

A first tedious obstacle is due to the set nature of MALL nets. If in fact we
take any MALL proof net θ, then any Γ (θ is necessarily a MALL net that does
not satisfy the resolution condition. However as JΓ K ⊆ JθK, we have that Γ is
HCoh-correct.

One way out of it is to just take nets satisfying the resolution condition to
be the basic structures, as considered in [HvG03]. From the point of view of
reduction this is quite unsatisfactory, as the resolution condition in itself is not
stable under reduction. However we will for now leave it be, and mainly restrict
ourselves to MALL nets satisfying such condition. We will anyway precisely state
when we use such condition.

However it is not the resolution condition alone that gives problems. The
counterexample, described in [Pag06b], is shown in Figure 3.10: it is a MALL
net satisfying the resolution condition, unsequentializable as the final rule must
be ⊗, while it cannot split the ε ⊕ ε, ε⊥ part of the context as it depends on
both &s. In fact an illegal cycle in such a structure is also shown. Notice that
the cycle traverses the &s in opposite directions.

Proposition 3.22. The MALL net δ shown in Figure 3.10 is HCoh-correct.

Proof. Take any interpretation, and any s ⊆∗<ω JδK, given by experiments {ei}.
If all experiments in s are taken on a single linking, then ¨ s by Proposition 3.21.
If the linkings involved are three or four, then necessarily both &s above the ten-
sor are binary, which gives strict coherence under the tensor. Suppose therefore
that exactly two linkings are involved, and by symmetry we can suppose it is the
top two. If a is the α⊥ typed free port, then if ˚{ei(a)} we get hypercoherence

Chapter 3. Linear Proof Nets 67

α⊥, (α& α) ⊗ (β& β),

⊗
& &

β⊥, ε ⊕ ε,

⊕

ε⊥
(a) The linkings of δ

⊗
& & ⊕

(b) An illegal cycle in the cor-
rectness graph GHvG(δ)

Figure 3.10: The proof structure δ: an unsequentializable structure such thatJδK is a hyperclique.

on the left premise of the tensor, which together with strict hyperincoherence
under the binary & gives strict hyperincoherence of all.

Notice that the right ⊕ is not considered at all by the above proof. One thing
that jumps to the eye is that the net is disconnected. The only way to build
the cycle is then to go back and forth on the edges added by the correctness
graph. It has therefore been conjectured [Pag06b, Conjecture 70] that such
fracture between sequential correctness and hypercoherent semantics is due to
the intrinsic unconnectedness of the counterexample.

Conjecture 3.23 (Pagani). If θ is a cut free MALL net satisfying the resolution
condition and the strong MLL one, then if θ is HCoh-correct it is a proof net.

We decided to “factorize” the conjecture by first finding the criterion for
semantic correctness. Such new criterion, which we call hypercorrectness (Defi-
nition 5.1) is for HCoh in MALL what visible acyclicity is for nuCoh in MELL
and for Fin in DiLL (see the bottom paragraph).

More from a distance, a similarity can be established with what happened in
the study of models of PCF: once it was clear that Scott-continuous functions,
or even stable ones, were not fully abstract for PCF, two directions were taken.
One was to refine the models (from continuity to stability and from stability
to strong stability), while the other, similar to what we do here, was to find
which languages were fully abstract for these same models (parallel PCF for
the continuous one [Plo77] and stable PCF for the stable one [Pao06]). One
difference is that in our work and that of [Pag06a, Pag08] one really finds a dis-
cerning geometrical criterion (something that has sense because of the presence
of generally “incorrect” syntactic objects) corresponding to an algebraic one,
apparently distant (hypercliques here, finitary relations in [Pag08]).

A Short Detour: MELL, DiLL and Visible Acyclicity

Also in MELL the inverse result of 3.16 fails. We sketch here the discussion
which was developed in [Pag06a]. The idea is that while box borders are blindly
seen as a sort of connected wall, coherent spaces may in some cases (but not
all) consider two auxiliary ports as not connected.

68 3.3. Invariants and Semantic Correctness

The idea now is, rather than refining the semantics to fit the correctness cri-
terion, to change the correctness criterion to fit the semantics, trying to answer
the second question at the end of Section 2.3.2. In this case visible acyclicity,
described in [Pag06a, Pag06b], is what is needed. As switching acyclicity char-
acterizes in fact semantic correctness for nuCoh, the non-uniform variant (i.e.
with |!X| = Mfin(|X|)) of coherent spaces introduced by Bucciarelli and Ehrhard
in [BE01]3. So we have that a visible acyclic MELL net is nuCoh-correct and,
vice versa, a cut-free nuCoh-correct MELL net is visible acyclic, and such cri-
terion is stable under reduction.

Surprisingly, the result extends also to finiteness spaces Fin, the semantics
of choice for differential linear logic. Fin correctness then becomes equivalent
to visible acyclicity.

We will look for these kind of results in MALL and hypercoherent spaces, as
explained in following sections.

3There is a technical difficulty in extending the result to Coh, due to the uniformity
requirement.

Chapter 4

Exponential Proof Nets and
Lambda Calculus

We will see in this chapter how the reintroduction of structural rules on the
controlled expoential modalities brings back the expressive power of the sys-
tem. This chapter is devoted to presenting exponential proof nets, both the
traditional MELL (multiplicative exponential LL) ones and their extension do
DiLL, differential linear logic. Particular attention is given to the results of
MELL which are expected for DiLL and which will be proved in Part III.

Among these, we will present how λ-calculus translates in MELL, and how
resource calculus does in differential interaction nets, which we denote by DiLL0.

Together with the expressive power come also non trivial reduction be-
haviours. Most importantly, while the linear fragments we presented in the
previous chapter were confluent (in a sense strongly so) and normalizing, even
without asking for correctness, as soon as boxes enter the picture this is not
true anymore (see Figure 4.2).

Even with correctness in hands, proving these results is at least as hard as
proving them for λ-calculus. The good news is that nets give a framework which
is apt to translate many aspects of computation. So such fundamental results
are apt to be then trasnferred to other systems. As an example, polarized proof
nets by Laurent [Lau99] profit from such approach, as can, going out of LL,
calculi with explicit subsitutions, as shown in [CKP03].

Before going on to the main topic of the chapter, we will take the opportunity
to present some advanced notion of rewriting theory that are needed to reason
about reduction modulo equivalence. The proof nets we use will necessarily
have such equivalence (see Figure 6.3 for a critical peak in DiLL reduction that
is not joinable without associativity equivalence). Unsurprisingly, this approach
works with the equivalences shown in [CKP03]. Surprisingly however we will
be able to also account for what we call bang sum equivalence: an equivalence
peculiar to DiLL derived from LL exponential isomorphism (see Figure 4.10),
which splits a box containing a sum.

69

70 4.1. Rewriting Theory Modulo Equivalence

4.1 Rewriting Theory Modulo Equivalence

The aim of this section is making the reader acquainted with the notion of
rewriting modulo equivalence, to the extent needed for our purposes. We refer
to [Ter03, Section 14.3] and [Ohl98] for more indepth details and proofs. One
must thread lightly, as rewriting modulo equivalence has some differences with
respect to usual rewriting, the most notable being the fact the the Church-
Rosser property is not equivalent to confluence. Also all confluence result are
not a trivial adaptation of those regarding regular reduction, as soon as ∼ is
not a structural congruence, which can be described by ∼→ ⊆ →∼.

Let (S,→) be an abstract reduction system and let ∼ be an equivalence
relation on S. Take also a symmetric relation 7− [such that 7− [∗ = ∼, possibly ∼
itself. Let s Y t (t and s are joinable modulo ∼) if s →∼← t. We say then
that → is

� locally confluent modulo ∼ if ←→ ⊆ Y;

� confluent modulo ∼ if ∗←∼ ∗→ ⊆ Y;

� locally coherent with 7− [if 7− [→ ⊆ Y;

� Church-Rosser modulo ∼ (or CR∼) if ≈ ⊆ Y, where ≈ := (→ ∪ ← ∪ ∼)∗;

� strongly normalizing modulo ∼ (or SN∼) if →∼ is SN, where →∼ :=∼→∼;

� strongly Church-Rosser modulo ∼ if =→∼ has the diamond property, i.e.
∼ =←=→∼ ⊆ =→∼ =←;

The last definition is our terminology, while the rest follows [Ter03]. Notice
that such definitions are stronger, and more useful, than the various forms of
confluence of →∼ . The latter require to use conversion during the reductions to
join a divergent peak, whereas for the former equivalence is only at the end.

Being Church-Rosser modulo ∼ is the most important property of all those
concerning confluence. In particular it implies the unique normal form modulo
∼ property, that is that ≈ coincides with ∼ on normal forms, which again implies
that in order to compute the normal form one can use just regular reductions,
without ever be forced to ∼-convert in order to get the result.

Contrary to what happens in regular reduction, CR∼ is strictly stronger than
plain confluence in general, with the following ARS being a quick example

. . . .

where equivalences are denoted by arrowless edges. We have however the fol-
lowing condition for equivalence between the two.

Lemma 4.1 (Huet, [Hue80]). If → is WN, then → is CR∼ if and only if it is
confluent modulo ∼.

The following instead is an important generalization of Newman’s lemma in
this setting.

Lemma 4.2 (Huet, [Hue80]). If → is SN∼, locally confluent modulo ∼ and
locally coherent with 7− [, then it is CR∼.

Chapter 4. Exponential Proof Nets and Lambda Calculus 71

Notice the quite strong hypothesis of the reduction being strongly normal-
izing modulo ∼, which cannot be dropped lest one incurs in a counterexample.
Huet in the same work proved another version for the same result with differ-
ent hypotheses: plain SN, again local confluence modulo, but local coherence
must be checked with the full relation ∼, severely complicating the reasoning
by critical pairs.

The following instead is an observation by van Oostrom.

Lemma 4.3. → is CR∼ if and only if ∗→ is strongly CR∼.

The following is a result we did not find in the literature, but is useful to
prove the Church-Rosser modulo property using parallel reduction.

Lemma 4.4. If → is strongly CR∼, then it is CR∼.

Proof. First we prove that ∼ =← ∗→∼ is joinable, by induction on the length of
the reduction on the right. In case it is zero it is a direct application of strong
CR∼ (hence we use a reflexive closure). So suppose the length is greater than
zero. In the following we draw equivalence by arrowless edges. We have the
following confluence diagram.

=

∗
==

∗ ∗

The top hexagon is from strong CR∼, while the bottom heptagon is by induction
hypothesis.

Now we move on to prove that ∗→ is strongly CR∼, concluding by the previous
lemma. Again, we reason by induction on the length of one of the two branches.
If it is zero, joinability can be recovered from the previous step. Otherwise
we have a confluence diagram that is identical to the previous one, save for
substituting ∗→ for the top =→.

4.2 The Exponentials

In this section we will redirect our attention to another fragment of LL. While
leaving aside the additives, we move to MELL, by reintroducing in MLL the
structural rules. These rules correspond from the computational point of view
to the duplication and erasure of resources. In the first subsection we present
the system, while in the second we show the strong link with λ-calculus which
is the starting point of some of the results in Part II.

Clearly the first potentialities of this fragment were studied in [Gir87]. Later
developed by Danos and Regnier in their theses [Dan90, Reg92], giving a par-
ticular emphasis to their relation with λ-calculus (which is the basis for the
second subsection). In particular Danos developed an alternative syntax which
abstracted away trees of contractions and weakening and their interleaving with
box borders. From a categorical point of view, this syntax quotients associativity
of contraction and neutrality of weakening with respect to contraction, together
with equations concerning the relations between the two and the exponential
comonad !.

72 4.2. The Exponentials

From the point of view of the calculus, weakenings correspond to the in-
troduction of dummy variables, and contractions to the identification of two
occurrences of the same variable. These usually do not correspond to actual
constructs of the syntax. The equations hinted above can therefore be seen as
corresponding to the fact that there is no precise “place” in the programs where
variables are explicitly introduced as dummy, or identified. Seen dually, there
is not, often, explicit constructs to discard or duplicate inputs.

Later Di Cosmo and Kesner introduced a variant of MELL in [DCK97] that
was aimed at extending the pairing between proof nets and λ-calculus to λ-
calculi with explicit substitutions. In this variant of proofnets such equations
are dealt with using actual reductions.

In other works by Di Cosmo and Guerrini [DCG99], and again the first author
with Kesner and Polonovski [CKP03] introduce yet another approach, using real
equivalences. A little nuisance is that the equivalences concerning weakenings
cannot be implemented, lest one get infinite reductions (see Remark 4.9). So it is
turned into a reduction. However the real problem is that proving normalization
modulo such equivalences is quite delicate.

We will want to deal with differential proof nets, and we will show during
the proof of 6.13 that at least associativity cannot be ignored, lest we loose con-
fluence (Figure 6.3. Thus we would want to apply one of the above approaches.

The first approach seems (for now) impracticable. We will get back to this
when we will have introduced the rules of differential MELL in Section 4.3.
Among the other two, we initially used the second in [Tra08b], but we will here
move on to the more elegant third one, introducing. In order to do so we need
however to introduce the basic notions of rewriting modulo equivalence. We will
also take the opportunity to state the lemmas we need to prove the results in
Chapter 6.

MELL types are defined by the grammar

TMELL ::= V | V⊥ | 1 | ⊥ | TMELL ⊗ TMELL | TMELL ` TMELL | !TMELL | ?TMELL,

with (!A)⊥ = ?A⊥. The two new modalities are indeed called exponential.
MELL (multiplicative exponential linear logic) is the single-threaded box sig-
nature which adds to MLL the cells and the axiomatic typing rules shown in
Figure 4.1. Below them the exponential reduction rules are shown.

An important point is that, contrary to (even incorrect) MLL or MALL nets,
MELL nets are neither confluent nor normalizing, as shown by the counterexam-
ples in Figure 4.2. We have to state the correctness criterion to get such results.

4.2.1 Correctness and Properties of Reduction

Though also for MELL there is a sequent calculus and a notion of sequential-
ization, it is beyond the scope of the present work. However, as already seen
in the previous section, the correctness criterion is paramount for having good
properties of the rewriting system. For this we can completely disregard the
connectedness part of the criterion, and concentrate on switching acyclicity.

We thus have to extend the criterion stated for multiplicatives in Section 3.1.
This is done with an inductive definition. Intuitively, after correctness is checked
inside boxes, their contents are completely disregarded, and correctness is checked
at depth zero considering the boxes as simple nodes.

Chapter 4. Exponential Proof Nets and Lambda Calculus 73

Cells and typing rules

?A

A
?

?A

?A ?A
?

?A
?

!A

A ?B1 ?Bk

?B1 ?Bk

!

π

Dereliction Contraction Weakening Exponential box
(commutative)

Reduction rules

? ! π
e→ π ? ! π

e→
?

?

? ! π
e→

! π ?

! π ?

! π

! σ
e→

! π

! σ

Figure 4.1: Cells of MELL, together with typing rules for cells and for the box
and the reduction rules. Recall that in the box on box reduction the two boxes
must be different (a condition that is not trivial in incorrect MELL nets).

?

?

⊥

?

⊥

!

1

e→ ?

⊥

!

1

?

?

⊥

?

⊥

!

1

e→

⊥ 1

?

?

⊥

?

⊥

!

1

(a) Non-termination.

?

1

!

⊥
me� ?

⊥

!

1

!

⊥

?

1

me� ?

⊥

!

1

(b) Non-confluence.

Figure 4.2: Examples of non-termination (a), and non-confluence (b). Multi-
plicative units are not really necessary, but simplify the examples.

74 4.2. The Exponentials

We have the following formal definition, after we set as switching symbols
both pars and contractions.

Definition 4.5 (Danos-Regnier correctness for MELL). A MELL net λ is said
to be correct if

� for each b ∈ b0(λ) box, its contents σ(λ) is correct, and

� for every switching S on λ, the graph GS(λ) is acyclic, or equivalently
there are no switching cycles in G(λ).

Such definition is carried out by induction on the depth of λ.

As usual “correct net” and “proof net” will mean the same thing. Clearly an
MLL+mix proof net is also a MELL one.

Theorem 4.6 (Confluence and normalization). The reduction me→ on MELL
proof nets is confluent and strongly normalizing.

The above result is practically contained in Danos’ thesis [Dan90]. For an-
other published proof, the reader is referred to [PTdF08], where also additives
are accounted for.

In reality one can generalize the above results in two direction. An untyped
MELL net which satisfies the correctness criterion is called a MELLpure proof
net. We cannot hope for termination as we will see that a fragment of pure
proofnets encodes pure λ-calculus. We have the following results.

Theorem 4.7 (Confluence of pure proof nets). MELL pure proof nets are con-
fluent under the reduction r.

Let ¬er−→ be the subset of reductions without the case weakening against box.
This reduction is called non erasing: it is the only reduction that can destroy
other redexes, the ones inside the box.

Theorem 4.8 (Conservation). For λ a MELL pure proof net, λ ∈WN¬er ⇐⇒
λ ∈ SNme.

Said in other words, if λ ¬er−→ µ and µ ∈ SNme, then λ ∈ SNme. If we find
a strategy reducing a net without ever erasing, until only erasing steps are
available, then the net is strongly terminating.

The nomenclature refers to the analogous theorem of λ-calculus proved by
Church and later by Barendregt, Bergstra, Klop and Volken[Bar84]. For MELL it
has been called striction lemma in [Dan90]. This result is the ideal launching pad
for results of normalization. For example [PTdF08], which is the first complete
proof of strong normalization for full second order linear logic proves and uses
such result, completing it with a proof of non erasing weak normalization by
candidates of reducibility.

4.2.2 Accommodating the Contractions: Associativity, Neu-
trality, Push and Pull

We now introduce the equivalences, dealing with associativity and commutation
of contractions with respect to box borders. For each of these two equivalences

Chapter 4. Exponential Proof Nets and Lambda Calculus 75

Associative equivalence and neutral reduction

?
?

a7− � ?
?

?
?

n→

Push equivalence and pull reduction

! π
? p7− � ! π

?
! π

? p→ ! π
?

Figure 4.3: The generating pairs for associative and push equivalences, and
the neutral and pull reductions.

we have corresponding generalized reduction rules for weakenings. The asso-
ciative and push equivalences a∼ and

p∼, together with the neutral and pull
reductions n and p are shown in Figure 4.3. The full relations a7− [and

p7− [are
defined by context and symmetric closure of the ones shown, while the full
equivalences a∼ and

p∼ ten generated by transitive reflexive closure of their 7−[
versions. We wil call c (canonical reduction) either the p one alone, or the np
one, union of n and p, the one, denoted by c. Similarly, we will simply denote
by ∼ either a∼ or

ap∼.

Remark 4.9. Neither n nor p can be turned into equivalences. Figure 4.4 shows
examples of infinite e reductions once we are allowed to reverse one of the two.
The inherent reasons for this can be explained. The reversal of n can clearly
turn any normal form (at least one having an exponentially typed wire) in a
redex. For p the reason is more subtle: such rule would connect parts otherwise
unconnected, introducing more possible reduction. The example of Figure 4.4
show that even if we restrict the reduction only when it does not introduce
switching cycles, still this new connectedness can be dangerous on the long run.

Theorem 4.10 (normalization of me modulo
ap∼, [CKP03]). The reduction me→

on MELL proof nets is strongly normalizing modulo
ap∼.

It must be noted that in MELL the main interest in considering the ap-
equivalence and the c-reduction is the strong relation with λ-calculi with explicit
substitutions. This is a hint for a possible future exploitation of the results
presented in Part III. In any case, a-equivalence and n-reduction are definitely
needed for confluence in DiLL.

4.2.3 λ-nets and λ-calculus

In this section we explore the link between proof nets and λ-calculus. We give
two versions of the system which we call λMELL, a typed and untyped one.
The first, typed λMELL, is none other than the image of the → fragment of

76 4.2. The Exponentials

!1
n← !1 ?

?
e→ !1

!1 ?

e→ !1

(a) Looping e-reduction when reversing n.

?
?

?
!1?!1

p← ?
?

?
!1?!1

e→ ?
?

?
!1

?!1

?!1
e→ ?

?

?
!1

?!1

p→ ?
?

?
!1?!1

(b) Looping e-reduction when reversing p.

Figure 4.4: Examples of infinite reductions modulo n∼ and
p∼. The use of the

multiplicative unit 1 simplifies the counterexamples but is not required.

intuitionistic logic into intuitionistic linear logic via Girard’s translation:

X◦ := X, (A→ B)◦ := !A◦(B◦, (Γ ` A)◦ := !Γ ◦ ` A◦.
The second, to which we will usually refer simply as λMELL, is not untyped
in the sense of proof nets, but rather as providing the framework for untyped
λ-calculus. We still need some notion of type in order to avoid clashes (which
in λ-calculus cannot occur).

The Nets

Let us give the following two mutually recursive grammars of anti-output types
I and output types O:

I ::= V⊥ | !O⊗ I, O ::= V | ?I` O.

Let us moreover call types of the form ?I input types, and those of the form !O
anti-input types. The types for λMELL are the subset of MELL types obtained
by restricting types to input, output, anti-input and anti-ouput ones.

In light of Girard’s translation of the intuitionistic arrow in linear logic, the
grammar for output types is seen as being

?I` O = !O(O = O→ O,

that is the grammar for the types of (first order) λ-calculus.
Types for pure λMELL are the four types ı (anti-output), ?ı, (input), o

(output) and !o (anti-input), with duality set to ı = o⊥ and clearly (⊥!o) = ?ı.

Chapter 4. Exponential Proof Nets and Lambda Calculus 77

ı

!o ı
⊗

o

?ı o
`

?ı

ı
?

?ı

?ı ?ı
?

?ı
?

!o

o ?ı ?ı

?ı ?ı
!

π

Figure 4.5: Typing rules for pure λMELL.

These types can be seen as the quotient of the above ones with respect to
identifying all variables and moreover

o→ o ≡ o, i.e. ?ı` o ≡ o,
extended by compatibility with duality. This is exactly what is needed to “type”
pure λ-calculus.

A typed λ-net µ is a MELL proof net where all types are in λMELL1, that
moreover satisfies the following constraints:

λ1) for every switching S the graph GS(µ) has a number of connected com-
ponents equal to the number of weakenings in c0(µ) plus one; every box
contents has inductively the same property;

λ2) no input formula appears in τµ(µ).

Pure λ-nets (or simply λ-nets) are obtained from the same cells of typed λMELL,
with the type system of pure λMELL and the typing rules depicted in Figure 4.5.
These typing rules are the usual ones quotiented by the equivalence classes of
pure λMELL. Again one requires correctness (i.e. switching acyclicity) and the
two points above.

Every typed λ-net can be easily mapped to a pure λ-net, by canonically
mapping each type to its equivalence class. So in fact all results proved for pure
λ-nets are valid also for the typed version.

It is known in graph theory that given a graph G = (V,E) with nodes V and
edges E, if we define by #G the number of connected components of G, then

� if G is acyclic, then #V = #E + #G;

� viceversa if #V = #E + k, then G is acyclic iff #G = k.

As for all switchings the number of nodes and the number of edges of GS(µ)
is the same, it follows that we can equivalently substitute point λ2 above with
a version that checks only a single arbitrarily chosen switching. Moreover it
turns out that the conditions stated above implicitly shape the sequent in an
intuitionistic form, as explained by the following result.

Proposition 4.11 ([Dan90]). A λ-net has exactly one conclusion typed either
with o or with !o.

In fact more in general, we have the following property.
1We therefore leave out the constants 1 and ⊥.

78 4.2. The Exponentials

Proposition 4.12. A switching acyclic net µ with types in λMELL (either
typed or pure) enjoys λ1 and λ2 if and only if τ(µ) = ?ı, . . . , ?ı, o or τ(µ) =
?ı, . . . , ?ı, !o.

Proof. Let us take a principal swithching S, that is a switching that for every
` chooses the o typed port. Because of switching acyclicity the graph GS(µ) is
a forest. Let w be the number of weakenings of µ, and k the number of o/!o
conclusions. Let us show that # GS(µ) = w + k, which concludes the proof.
More precisely we show that every connected component contains exactly one
weakening or o/!o conclusion.

For uniqueness, let us consider an elementary directed path φ in GS(µ)
starting with a directed edge d with τ(d) = ı or ?ı. By definition of principal
switching one sees that all wires in φ are also typed ı or ?ı. It follows that a
connected component of GS(µ) contains at most one node which is a weaken-
ing or a o/!o conclusion, as there cannot be a path between two such nodes.
For existence, in every connected component let us take any maximal straight
path which traverses tensors through the linear ports. All directed wires in it
are typed the same, so one extremity must be typed as o or !o, and the only
possibility is that such extremity is a conclusion or a weakening.

The Calculus and the Translation

Alonzo Church’s λ-calculus is sufficiently standard to skip over most of the
details. The main references are [Bar84] and [Lam92]. Terms are defined by the
grammar

Λ ::= P | λP.Λ | (Λ)Λ,

where the three constructs are variables, abstractions and applications. As
can be seen we are using Krivine’s notation, and reusing the set of ports of nets
as the set of variables, as it will come in handy when we will do the translation
up next. The α-equivalence and the substitutions, denoted by u [x := v] for
subsituting v for x in u, are defined as usual. We use the notation x ∈ u to
denote that x is a free variable in u. β-reduction, denoted by

β→, or simply →,
is defined by the usual context closure of

(λx.r) s
β→ r [x := s] .

We present here the mapping from pure λ-terms to λ-nets, as thouroughly
studied by Danos and Regnier in [Dan90, Reg92].

They use a syntax for nets quotienting associativity of contraction, neutrality
of weakening and commutation of contractions and weakenings with respect to
box border. This quite exactly corresponds to the behaviour of λ-calculus. As
we will extend the translation to differential λ-nets and resource calculus, and
we are not yet able to adopt such a syntax, we use Di Cosmo and Guerrini’s
approach, as already explained.

In order to proceed, we first introduce an equivalence between λ-nets equat-
ing two nets differing only by conclusions directly below weakenings. That is,
we adopt the smallest equivalence relation containing

µ w∼ ?
µ

Chapter 4. Exponential Proof Nets and Lambda Calculus 79

x◦ := ?
x

, (λx.s)◦ := `
s◦

x
,

(
(r) s

)◦
:= NFc

 ⊗
r◦?

!s◦?

yk

y1

yk

y1

yk

y1

Figure 4.6: Inductive rules for the definition of t◦. Labels give names to
ports, which are identified with the variables of the translated term. Conversion
modulo w∼ is implicitly used.

In this way, any net µ can be given any set fp(µ) of ports, provided it contains
the non weakened ones. Notice that we do not close w∼ by context.

The translation comes in two flavours, t◦ and t•. The first is an exact
representation of the terms, the second quotients terms with an operational
equivalence. The inductive definition of the translation t◦ is shown in Figure 4.6.
Here are some observations.

� We label the ports with their name, identified with the name of the variable
to which they correspond.

� In the typed case the translation is in fact none other then the desequen-
tialization of the translation into intuitionistic linear logic of the natural
deduction proofs behind the terms.

� The equivalence w∼ is implicitly used. In abstraction we thus introduce x
with a weakening if it is not among the ports of s◦. In application we add
enough ports to both r◦ and s◦ to unify them.

� The canonical normalization in the application steps does none other than
pull the weakenings from the box containing the argument s◦ and turning
the corresponding contractions into wires with neutrality. This ensures
that the translation is well-defined with respect to w∼: any weakenings we
add to s◦ do not change the resulting λ-net.

� The box in which one places the argument in application denotes the fact
that while the function position is linear, the argument one is not. This
will be seen more in detail in the resource λ-calculus.

Here are the properties of the t◦ translation.

Theorem 4.13 (Bijective sequentialization). The translation t◦ is bijective on
ec-normal λ-nets with no exponentially typed axiom and with an o conclusion,
modulo w∼ and ∼.

The condition on axioms ensures that no application to a variable is hid-
den by a sort of η-contracted axiom. The one on the conclusion is to avoid
translations of terms inside boxes.

80 4.3. Differential Nets, Differential λ-nets and Resource Calculus

Theorem 4.14 (One-step bisimulation). s
β→ t if and only if s◦ m→ec�∼ t◦.

Theorem 4.15 (Simulation). s
β+→ t if and only if s◦ mec+−−−→∼ t◦.

These theorems will be reproved in the context of differential nets and full
resource calculus, in Chapter 8.

The second translation (the one truly presented in [Dan90]), is simply ob-
tained by

t• := NFm(t◦).

This destroys a certain degree of sequentialization between redexes. Regnier
introduced in [Reg94] the equivalence relation corresponding to the identification
of the terms with the same • translation. However we will not yet introduce it
here, leaving it for future work. The t◦ translation however proves to already
be a potent tool.

4.3 Differential Nets, Differential λ-nets and Re-
source Calculus

The first steps towards a differential linear logic were made in two works by
Ehrhard and Regnier.

The first, [ER03], pertained to the world of λ-calculus, presenting an ex-
tension with differential operators. This provided a tool to study ordinary λ-
calculus as well. In [ER06a] and [ER08] the two authors fully introduce the
notion of Taylor expansion of an ordinary λ-terms, already hinted in their pre-
vious work. One fundamental tool for the Taylor expansion is the resource
calculus, a linear revision of Boudol’s λ-calculus with resources [Bou93], which
we will shortly present.

The second, [ER06b], brings forth the idea of introducing syntactic differen-
tial operators in linear logic proof nets. The objects presented there, differential
interaction nets, are promotion-free but have formal sums of nets. We there-
fore move (if we restrict ourselves to natural coefficients) in polynets without
boxes. One of the most important achievements in this formalism has been
gained by translating into it (via other process calculi) the replication-free π-
calculus in [EL07]. This has gained particular attention, as it could be the
starting point for extending the Curry-Howard isomorphism to concurrent and
nondeterministic computation.

In this section we first outline differential interaction nets, and then briefly
present the translation into them of the resource calculus. Finally, we present
the full system of differential nets, the main characters of Part III.

4.3.1 Differential Interaction Nets

The system of differential interaction nets, which we call DiLL0 (as it is in fact
DiLL restricted to 0-depth nets) is obtained by depriving MELLof the box and
adding two new rules for the ! modality, presented in Figure 4.7, together with
the needed reduction rules. A DiLL0 net is a polynet built from such cells.

Proposition 2.15 applies, so the system is confluent. Correctness is estab-
lished by keeping ` and ?k as switching symbols. We therefore call a DiLL0

proof net without switching cycles. We therefore have the expected theorem.

Chapter 4. Exponential Proof Nets and Lambda Calculus 81

Cells, typing rules and notation

!A

A
!

!A

!A !A
!

!A
!

Codereliction Cocontraction Coweakening
(commutative)

Reduction rules

? !
e→

? !
e→ ? !

?
+ ? !

?
? !

e→ 0

! ?
e→ ! ?

!
+ ! ?

!
! ?

e→ 0

? !
e→

! ?

! ?

!?
e→ !

!
?!
e→ ?

?

Figure 4.7: The additional cells, typing ad reduction rules for differential
interaction nets, DiLL0. Rules for ! and ? are totally symmetric.

82 4.3. Differential Nets, Differential λ-nets and Resource Calculus

Theorem 4.16. DiLL0 proof nets are confluent and strongly normalizing under
the me reduction.

In [ER06b] the a-equivalence relation is proposed (though not investigated)
to handle associativity and neutrality. Here we extend the a-equivalence and
the n-reduction to cocontractions, in the trivial way. All our results for DiLL◦

about normalization or confluence will be done modulo at least a∼, and thus
such results seamlessly apply to DiLL0.

4.3.2 Resource Calculus

Resource calculus is a fragment of differential λ-calculus [ER03] that is very
similar to the fragment of Boudol’s λ-calculus with resources [Bou93] without
infinitely available resources. This calculus is seen in later works by Ehrhard
and Regnier [ER08, ER06a] as the target language of the Taylor expansion of
ordinary λ-calculus.

This language places itself in a small streak of calculi where the use of argu-
ments is limited. Apart from the already cited λ-calculus with resources [Bou93],
the same author in the same work also defines the fragments with multiplicities,
and one can see further developments on the same calculus or a slightly different
calculus in [BCL99, Kfo00].

Resource calculus has in fact the same syntax of Boudol’s calculus, with-
out u∞ arguments. The main differences lie in the reduction. Firstly, non-
determinism is accounted for by means of formal sums. Secondly, the reduction
is not restricted to weak head reduction. This two differences are in fact fully
inherited from differential λ-calculus.

The set ∆ of simple terms of resource calculus is defined by the grammar

∆ := P | λP.∆ | 〈∆〉∆!

where ∆! := Mfin(∆) is the set of bags of arguments, or simply bags2. Bags
are presented in multiplicative notation. Differential terms, or simply terms,
of resources calculus are again finite multisets of simple terms, i.e. N〈∆〉. Though
terms and bags are in fact the same, we distinguish between them as they have a
fundamentally different role. Terms are therefore presented in additive notation.
Analogously, we write of differential bags for N〈∆!〉. We write ∆(!) (resp.
N〈∆(!)〉) when we do not want to specify whether we are dealing with simple
terms or bags (resp. terms or differential bags).

The constructors are all extended by multilinearity to N〈∆(!)〉. So

〈u+ v〉A = 〈u〉A+ 〈v〉A, (u+ v)A = uA+ vA, 〈s〉(A+B) = 〈s〉A+ 〈s〉B.
(4.1)

As usual by x ∈ t for t ∈ ∆(!) or t ∈ N〈∆(!)〉, we mean that x appear free in (any
simple term in) t. Of the ordinary substitution of λ-calculus that substitutes all
occurrences of a variable, only the special case u [x := 0] remains, which can be
defined in a single step by

u [x := 0] :=

{
u if x 6∈ u,
0 otherwise.

2They are called polyterms in the works by Ehrhard and Regnier, but we have decided to
follow Boudol’s terminology to avoid confusion with the notion of polynet that has a different
meaning.

Chapter 4. Exponential Proof Nets and Lambda Calculus 83

Its role is taken by linear substitution ∂u
∂x · v that substitutes v in u for a

single occurrence of x. u is a simple term, v is a differential one and the result
is differential. The inductive definition is as follows

∂y

∂x
· v := δy,xv,

∂λy.s

∂x
· v = λy.

(∂s
∂x
· v) where x 6= y and y 6∈ v,

∂〈r〉A
∂x

· v :=
〈 ∂r
∂x
· v〉A+ 〈r〉(∂A

∂x
· v), ∂A

∂x
:=
∑
u∈A

(∂u
∂x
· v)A/u.

The clause for abstraction can always be achieved by α-conversion. The “quo-
tient” A/u is the multiset A without u. In fact the addends of the last sum
are just obtained by substituting each of the terms in the bag with its linear
substitution.

The linear substitution can be viewed, how the notation suggests, as the
differential of u with respect to the variable x, linearly applied to v. This is
hinted by the rule for linear application, which relates to the rule for composition
of the differential. Also we have that if x 6∈ u, i.e. u is constant with respect to
x, then ∂u

∂x ·v = 0. This intuition is furtherly strengthened by the validity of the
Schwartz lemma, as if x 6∈ u and y 6∈ v then

∂

∂x

(∂s
∂y
· v) · u =

∂

∂y

(∂s
∂x
· u) · v.

In particular, for an iterated differential with respect to a variable x

∂

∂x

(
. . .
(∂s
∂x
· u1

)
. . .
) · uk

the order of the ui is irrelevant if x 6∈ ui for all i. Then we are allowed to write

∂ks

∂xk
· (u1 . . . uk)

with u1 . . . uk a bag of arguments A with x 6∈ A.
We are now ready to define the reduction, which comes in two flavours.
Baby-step reduction bs→ is defined by the context closure of

〈λx.s〉(uA) bs→ 〈
λx.

∂s

∂x
· u〉A, 〈λx.s〉 1 bs→ s [x := 0] .

The intuitive idea is that this reduction takes one resource from the bag at
a time, performing a single linear substitution at a time, leaving the redex
behind. When a bag is exhausted, we reduce to zero if the bounded variable is
still present, or erase the redex if it is a K-redex, i.e. a redex with no occurrence
of the bounded variable.

This atomic reduction is closer to the one in Boudol’s calculus with resources.
We have however two striking differences. When the resources provided are more
than the occurrences of the bounded variable we have seen that we reduce to
0. This does not happen in Boudol’s calculus, as it is an affine one. On the
other hand when less resources than needed are provided, again we here have a
reduction to 0, while in Boudol’s calculus the reduction was stopped and deemed
a deadlock.

84 4.3. Differential Nets, Differential λ-nets and Resource Calculus

Giant-step reduction
gs→ empties a whole bag in one step. It is thus the

context closure of the following step:

〈λx.s〉A gs→ ∂#As

∂x#A
·A [x := 0] .

We can informally tell what the result of the above step is. If we denote by
x1, . . . , xh all the occurrences of x in s, then

∂ks

∂xk
· (u1 . . . uk) [x := 0] =

{
0 if k 6= h,∑
σ∈Sk s[uσ(1)/x1, . . . , uσ(k)/xk], if k = h.

with the square brackets taking the usual role of substitution.
This calculus, even in the untyped case, is strongly normalizing under both

reductions, having a unique normal form for both, so that it is also confluent.

Linear Differential λ-nets and the Translation

Following the definition of λ-nets given in Section 4.2.3, we define linear differ-
ential λ-nets, based on DiLL0. In fact, we do not have to add anything to the
definition, and that is way we denote the nets with the same name. A typed
(resp. pure) linear differential λ-net is simply a DiLL0 proof net with types in
λMELL (resp. in pure λMELL) satisfying properties λ1–2. Proposition 4.12 still
holds, so equivalently we can require the proof net to have conclusion ?I,. . . ,?I,
O or !O (resp. the corresponding pure types).

We therefore translate differential terms and bags of resource calculus with
the inductive rules presented in Figure 4.8, again considering differential λ-nets
up to ≡w equivalence. Again ≡w conversion is implicitly used, the same way as
was done for ordinary λ-calculus, and c-reduction eliminates useless weakenings
and coweakenings (the latter disappear from a bag as soon as it is not empty).

We here have another issue: the definition corresponds to a function only if
we consider nets up to a-equivalence, as otherwise we get different nets depend-
ing on the different ordering of a bag.

Notice that differential and simple terms get a translation typed with o
(apart from the ?ı conclusions), while bags of arguments get an !o conclusion.

The simulation result sketched in [ER06b] is a bit imprecise, as they state the
simulation of the baby-step reduction. More precisely we have real simulation
for the giant-step one, as any reduction step requires a multiplicative redex to
be burnt, so that we cannot simulate the progressive emptying of a bag done in
the bs-reduction.

Theorem 4.17. If s
gs→ t then s◦ m→ e�∼ t◦.

In Section 8.3, we will extend the results seen in Section 4.2.3 to the full
resource calculus, and therefore to resource calculus also.

4.3.3 Differential Nets and Boxes

This last section is dedicated to briefly show the syntax of DiLL proof nets. Some
remarks are made, but the main and original results will be shown in Part III.

DiLL is the signature with multi-threaded boxes obtained from the cells and
typings of DiLL0 together with the box from MELL. The missing reduction rules

Chapter 4. Exponential Proof Nets and Lambda Calculus 85

Differential terms (∑
ti

)◦
:=

∑
t◦i ,

Simple terms

x◦ := ?
x

, (λx.s)◦ := `
s◦

x
,

(
〈r〉A

)◦
:= NFc

 ⊗
r◦?

A◦?

yk

y1

yk

y1

yk

y1

Bags of arguments

1◦ := ! , (uA)◦ := NFc

 !
!u◦?

A◦?

yk

y1

yk

y1

yk

y1

Figure 4.8: Inductive rules for the definition of t◦ for resource calculus.

are shown in Figure 4.9. It must be noted that due to the fact that boxes now
contain sums, and the way we have defined glueing, both the dereliction against
box reduction already shown in Figure 4.1 and the codereliction against box one
of Figure 4.9 may in fact introduce sums, or even 0.

We report here a remark we will see in Chapter 6 when proving local con-
fluence.

Remark 4.18. The e-reduction (and the me-reduction) is not confluent without
the associative equivalence or the neutral reduction.

This is a striking difference from LL, due to the particular shape of the
codereliction against box reduction, which introduces binary contractions and
cocontractions. We therefore definitely have to consider the a-equivalence and
the n-reduction.

The introduction of the push equivalence and the pull reduction need some
particular attention in this setting where sums are found inside boxes.

Firstly, permitting p-equivalence when the box contains 0 would incur in the
same problem shown in Remark 4.9 for n-reduction. A box containing 0 could
spawn by equivalence an arbitrarily big contraction tree under its auxiliary ports,
as 0 is equal to 0 glued to a contraction. Again there could be a net which is
never normal due to a 0 box inside it. We therefore restrict the p-equivalence
to boxes with non-zero contents.

Secondly, n-reducing a contraction in a single addend of a sum may break
the local coherence of the reduction with respect to p-equivalence. More on this
will be clear when local coherence diagrams will be checked in Section 6.3.2.

86 4.3. Differential Nets, Differential λ-nets and Resource Calculus

!π
!

e→ !

!π
!

!π
!

?

?

!π
!

e→ !π
!

!π
!

e→ !π
!

Figure 4.9: Additional exponential reduction rules for DiLL.

This can be briefly depicted by the following divergence.

!

λ? + π

?

p∼

!

λ

?

? +
π

?

n→

!

λ
+
π

?

In LL such local coherence is ensured by p-reduction, which here is unable to
join the two members on the left and right as it cannot be applied on the left.
There should be a way to separate the internal sum on the left.

This introduces us to another important equivalence specific to DiLL. It
equates a sum inside a box with two boxes side by side linked by a cocontrac-
tion under a principal port and contractions under the auxiliary ones. This
equivalence comes in fact from the so called exponential isomorphism of LL
!(A & B) ∼ !A ⊗ !B, as the sum of DiLL can be modeled by a biproduct (i.e. a
product and coproduct at the same time)3

The new version of the push equivalence and pull reduction are shown in
Figure 4.10, together with the bang sum equivalence s∼. Once more, this
equivalence has a corresponding reduction dealing with a “degenerate” case, the
bang zero reduction z which turns a box containing 0 into a coweakening.

Once again, the new reduction z here introduced cannot be reversed.

3This isomorphism gets in this way an even stronger relation with the equality ex+y =
ex · ey , as the box has in fact the Taylor expansion of the exponential. Also related is the
equivalence !(P +Q) ∼ !P | !Q of the π-calculus.

Chapter 4. Exponential Proof Nets and Lambda Calculus 87

Bang sum equivalence and bang zero reduction

!

σ

+

π

s7− � !

! σ

! π

?

?

with σ, π , 0,

! 0
z→ !

?

?

Push equivalence and pull reduction

! π
? p7− � ! π

?
with π , 0,

! π
? p→ ! π

?

!

σ

+

π
?

p→ !

! σ

! π

?

?

with π, σ , 0,

Figure 4.10: The pairs generating the push and sum equivalences, and the
pull and zero reductions.

88 4.3. Differential Nets, Differential λ-nets and Resource Calculus

?
?

?
!?!

z← ?
?

?
!0!

e→ ?!

?!0

?!0

e→ ?
?

!

?!0

z→ ?
?

?
!?!

Figure 4.11: Example of looping e-reduction with the reversal of the z-
reduction.

Remark 4.19. The z-reduction cannot be reversed. Once again, as for the
p-reduction (see Remark 4.9), the reason lies in the creation of switching paths,
and once again even if we restrict the rules only when the result is correct, we
can easily get an infinite reduction. See Figure 4.11 for the example.

We would like to stress the fact that while the associative equivalence and
neutral reduction are necessary for confluence, these other ones may be employed
or not. The bang sum and zero ones may be used without the push and pull
ones, but not viceversa.

As usual, we will denote by ∼ the equivalence generated by the a, p and s
ones, and by c→ the canonical reduction given by n, p and z.

Remark 4.20. A good point in favour of the use of the proposed equivalences
and reductions is that η-equivalence is not an observational equivalence without
them, i.e. one can provide two η-equivalent forms which normalize to non-η-
equivalent ones.

The following reduction shows the point.

! ≡η !?!
e� !

?

?

+
?

?

c� !
!?

!?

(4.2)

This is interesting in itself, as it is known from finiteness spaces [Ehr05] that
on the categorical level the cocontraction is !a ◦ n where a is the codiagonal of
the biproduct + and n is the exponential isomorphism. Equation (4.2) gives a
syntactical evidence of this by the analog of the βη-equivalence, as the categor-
ical interpretation of the third member turns out to be just !a ◦ n. See [Bie94]
for more details on the categorical interpretation of LL.

4.3.4 Lax typing

When embarking in the proof of the analog of Theorem 4.8 for DiLL, one unfor-
tunately stumbles on a counterexample if truly pure nets are employed. This is
shown in Figure 4.12: the subnet on the right is a known diverging switching
acyclic pure net (it is directly derived from (δ)δ of λ-calculus), with however its
cut exposed. If the par fires with the tensor the net “explodes”, and this can
be achieved by firing the dereliction. If we however fire the codereliction the

Chapter 4. Exponential Proof Nets and Lambda Calculus 89

⊗
! ?

?

?
?

`
? !

!

Figure 4.12: A counter example to being weakly normalizable by non erasing
steps being equivalent to being strongly normalizing.

clash on the tensor becomes permanent (unless we erase the box), and the net
normalizes by non erasing steps.

We will see in Chapter 7 that this is due to the fact that non erasing reduction
is not confluent per se in DiLL, it must rely on erasing steps. This is a striking
difference with LL, which in [PTdF08] was shown to have the theorems regardless
of these “Lazarus” clashes.

In order to circumvent this problem, we introduce a very weak notion of typ-
ing, not to be confused with the weak typing presented by Ehrhard and Regnier
in [ER06b]. We will therefore call it lax typing, as it does not impose a disci-
pline: every net will be typed, and rather it will be used to render exponential
clashes permanent.

We introduce a set of five types: ?, !, •, Ω and f, with ?⊥ = ! and all the rest
autodual. The type • will stand for a multiplicative type, inferred from ` and
⊗. We make it autodual because multiplicative clashes do not pose any threat.
The types Ω and f are respectively a sort of polymorphic type indicating that
the wire is not really typed yet, while f will indicate that the wire is, or most
importantly was, an exponential clash.

These types are endowes with an order v, with ?, ! and • incomparable and
Ω and f the top and bottom elements respectively.

Ω

! ? •

f

It is not really a subtyping order as it is not reversed by duality. However given
two such types the type αu β is defined as the meet of the two. So for example
? u ! = f and • u Ω = u.

The typing rules are shown in Figure 4.13. All must be intended downward
closed with respect to v, so that for example

•

? !
⊗

f

f ?
?

are both admissible typings.
Up to now there is no real difference with the usual definition of typing,

though we may already see that every net is typable in this way, by just assigning
f to all wires. What changes is the behaviour during glueing and thus reduction.

90 4.3. Differential Nets, Differential λ-nets and Resource Calculus

•

Ω Ω
⊗

•

Ω Ω

`
•

1

•
⊥

?

Ω
?

?

? ?
?

?
?

!
!

!

Ω
!

!

! !
!

!

Ω ? ?

? ?
!

π

Figure 4.13: Rules for lax typing.

We relax the condition on glueing, permitting it with any type of the internal
interface of ω[] and the interface of a module µ. However the typing of ω[µ]
will be obtained from the one of ω and the one of µ by setting for each directed
wire e the type α1 u · · · u αn where αi are all the types of the directed wires
that got melded together during glueing.

This entails that lax typing can change during reduction, and the point is
exactly that: we are far from asking that clashes do not occur, that would be
too strong a typing in our view. We just want to register when a clash occurs.

In fact we may only mark on the net when a wire is typed by f (which
is independent of the direction of the wire), and we do so by drawing a cross
on it. Then, we redefine our reduction to never reduce f-typed wires. This
applies to all cut reduction and also to n-redexes, requiring that the wire between
(co)contraction and (co)weakening be exponentially typed4. It is important to
note that therefore such typing is part of the net to be reduced, and is not
simply an inert certificate we can throw away after typing. However it is simple
enough to consider such nets with lax typing as the pure nets of DiLL, as we
will do in this thesis from now on.

So for example the net in Figure 4.12 gets minimally two marks in the
following way:

⊗
! ?

?

?
?

`
? !

!

Now when we open the box with the dereliction, the f type remains on the wire
and the net is seen both to weakly normalize by non erasing steps and strongly
normalizing by regular ones.

Notice that whenever a type system is clash-free, it can be safely mapped

4There is a counterexample analogous to the one we showed also for n-reduction.

Chapter 4. Exponential Proof Nets and Lambda Calculus 91

to this one without the f-type ever arising (and thus without changing the
reduction).

92 4.3. Differential Nets, Differential λ-nets and Resource Calculus

Part II

Determinism:
Hypercoherent Spaces and

Linearity

93

94

In this part we will develop the issue presented in Chapter 2.3, working on
the semantic correctness of MALL with respect to hypercoherent spaces.

We will define a new geometrical criterion, hypercorrectness (Definition 5.1),
such that

� every hypercorrect saturated MALL net θ is HCoh-correct (Theorem 5.3;

� every cut free HCoh-correct MALL net θ is hypercorrect (Theorem 5.7.

Moreover we will prove by semantical means that such criterion is stable under
reduction (Theorem 5.11). The results of this part were the object of [Tra08a].
However the proofs presented here, especially the one for soundness, are a sig-
nificant improvement to that work.

Chapter 5

Hypercorrectness

We will now go on defining the geometric counterpart to HCoh-correctness.
The criterion will be a variation on the one by Hughes and van Glabbeek
from [HvG03], much like visible acyclicity is a variation on plain switching
acyclicity [Pag06a].

5.1 The Criterion

In this section we will redefine the correctness graph. The main difference with
GHvG (see page 3.2.3), is that rather than draw jumps as high as possible, we
draw them as low as possible, on the cells where two simple nets meet. A short
discussion on our reasons to adopt such a convention is given after the proof of
Theorem 5.3, at page5.2.

5.1.1 Jumping from Contractions

Let us fix a MALL net Λ, not necessarily satisfying the resolution condition.
Given two simple nets λ and µ in it, we say that c 6∈ &2(λ, µ) is an additive
contraction (or simply contraction here that we speak solely of MALL) if

� either c is in both λ and µ but has an incident edge that is not in one of
the two1,

� or c is a positive node (⊕ or ⊗2) just above a cut in λ which is not shared
with µ.

The second case is a technical one: if we want to jump as low as possible, we
also need to jump from cuts. The set of all contraction of all pairs λ, µ ∈ Λ is
denoted by contr(Λ). It is clear that a contraction can only be either a leaf with
discording axioms over it, or a binary ⊕.

Let G(Λ) (the correctness graph) be G(Λ) with

axioms: an edge added between a and a′ for every axiom {a, a′} ∈ ⋃λ∈Λ `(λ);

1We called these partial contractions in [Tra08a], but we concentrate on these here.
2Recall that in nets there is no axiom cut, though adding it back in as in [HvG03] poses

no problems.

95

96 5.1. The Criterion

jumps: an edge between c and w ∈ &2(Λ) if there are λ, µ ∈ Λ with

� &2(λ, µ) = {w};
� c is a contraction for λ and µ.

So with respect to GHvG(Λ), the difference is that we jump from ⊕s and cuts,
and from axioms only if the leaf is in both the simple nets. We identify the
axiom edges with the axioms in

⋃
λ∈Λ `(λ).

Switching paths are defined just like in GHvG: pars and binary withs are
switching, and jumps are premises to their &.

In G(Λ) we call total every node and edge in
⋂
G(Λ) and every axiom in⋂

λ∈Λ `(λ), otherwise it is said to be partial. In particular all jumps are partial.

5.1.2 &-oriented and Compatible Paths

The equivalent restating of the toggling condition given in Proposition 3.10
states that every union of switching cycles has a binary with outside it “jus-
tifying” it. We will now prune the unions of cycles to be considered, by both
restricting the paths and when they can be united.

First, we consider oriented paths rather than unoriented ones. The two
restrictions we impose, &-orientedness of each path and compatibility between
them, rely in fact on direction. They may be summarized by the following
picture, showing what we do not allow for the union of cycles we consider.

&
φ

φ ψ

Formally, we say that an oriented switching path φ in G(Λ) is &-oriented if
every binary & in it is traversed downward, i.e. if w ∈ &2(Λ) and w ∈ φ and
(w, x) ∈ φ if and only if (w, x) comes from the principal port of w. In particular
jumps in φ are always oriented towards their &.

We furtherly say that two oriented paths φ and ψ are compatible if every
edge in both of them are oriented the same, i.e. if d ∈ φ then its reversal d⊥ 6∈ ψ.
A union S of oriented paths is said to be compatible if its cycles are two by
two compatible.

Definition 5.1 (Hypercorrectness). A MALL net θ is said to be hypercorrect
if for every Λ ⊆ θ and every non empty compatible union S of &-oriented cycles
in G(Λ), there is w ∈ &2(Λ) with w 6∈ S.

The idea that oriented paths describe in a better way what is visible to
semantics in general is not new. Visible paths are oriented, and in MALL the
results in both [AM99] and [BHS05] rely on orienting paths in Girard’s additive
proof structure just like that. Also in [MM08] there is a similar idea in the
context of game semantics and MLL.

We will also use an even stronger restriction of paths which we call strictly
&-oriented. These are &-oriented ones that furtherly have for each d ∈ φ
partial:

� if d is not an axiom or cut, then d = ↓ d is downward;

Chapter 5. Hypercorrectness 97

� if d is a cut then it is oriented towards a positive node, ⊕, ⊗ or non negated
variable;

� if d is an axiom, it is oriented towards the positive leaf;

� if d is a jump from a contraction c, then c is either the positive node of a
cut, or a total contraction.

The last condition follows the intuition of really going as low as possible in the
net before jumping, and can be enforced by deleting other jumps from G(Λ).
The condition on axioms is to forbid paths going up and down axioms and cuts.

We will call weak hypercorrectness the usual hypercorrectness condition
where strict &-orientedness takes the place of the ordinary one. It is indeed an a
priori weaker condition, however we will prove in Proposition 5.10 by semantical
means (after we prove both sides of the equivalence) that the two are equivalent.
Lax hypercorrectness will suffice for the analog of Theorem 3.16, i.e. it implies
HCoh-correctness.

Weak hyper correctness also gives us the following implication.

Proposition 5.2. The toggling condition implies weak hypercorrectness.

Proof. We transform any strictly &-oriented cycle φ in G(Λ) into a switching
cycle in GHvG(Λ) containing the same &s. In particular, take any jump j ∈ φ
from a contraction c to a with w. Suppose the jump is justified by simple nets
λ and µ. If c is a leaf then j is in GHvG(Λ) also. If it is a total binary plus there
are leaves a and b above c so that a ∈ λ\µ and b ∈ µ\λ, so that both must have
a jump to w in GHvG(Λ). If finally it is the positive node of a partial cut, then
there must be a above the left of the cut and b above the right with a, b ∈ λ \µ,
again both with jumps. Now let ψac and ψbc be the two straight paths in G(Λ)
from c to a and b respectively, with appended their respective jumps to w. Such
paths depart from c in different directions.

One of the two must not intersect φ, as otherwise by strict &-orientedness
φ would have three incident edges of c: once ψac and ψbc touch φ their initial
segments must both be in φ (as it must go as low as possible), and j would be
the third edge. Let therefore ψj be such path in these two cases (total ⊕ and
partial cut), and j itself when c is a leaf.

For any jumps i and j, ψi and ψj cannot intersect, as they can do so only if
the contraction of i is nested over the one of j or viceversa, which is forbidden by
the third clause of strict &-orientedness. Therefore, substituting in φ all jumps
j with ψj gives a cycle in GHvG(Λ), which clearly traverses at least the same
binary &s.

Without strictness of &-orientedness it would be much more difficult to prove
the above proposition in such a direct way, though such implication is true by
Proposition 5.10.

Two examples. Revisiting the examples shown in Figures 3.9 and 3.10, we
show in Figures 5.1(a) and 5.1(b) respectively one of their correctness graphs.

98 5.2. Hypercorrectness Implies HCoh-correctness

⊕
&

⊕
&

⊕
&

(a) The correctness graph of three
linkings of the Gustave PS. Only
three out of six jumps are shown,
and axiom nodes are omitted.
The cycle shown is strictly &-
oriented.

⊗
& & ⊕

(b) The correctness graph Gδ.
The only way to form a cy-
cle would be to bounce on the
tensor, but that would not be
a &-oriented one.

Figure 5.1: Two examples of our version of correctness graphs. The first
one shows the rejection of the Gustave net by the criterion, while the second
structure, is hypercorrect.

5.2 Hypercorrectness Implies HCoh-correctness

Theorem 5.3. A saturated weakly hypercorrect MALL net is HCoh-correct.

The rest of this section is dedicated to prove the above result. Notice the
saturation condition, very similar to the resolution one. This theorem together
with Proposition 5.2 gives the first proof of Theorem 3.19 entirely based on
switching paths.

Before going into the actual proof, we need some lemmas.
We here clearly make use of the properties S1–3 described at page 55. For

reference we write them again here. If Λ is saturated then

(S1) Λw is saturated;

(S2) for every λ ∈ Λ there exists a λw ∈ Λw with λ
w
– λw;

(S3) for every λ, µ ∈ Λ, if λ
x
– µ then λw

x
– µw for some λw, µw ∈ Λw with

λw
w
– λ and µw

w
– µ.

Let a bottom contraction be one from which jumps are admissible in strictly
&-oriented paths, i.e. either a total one or a positive node above a partial cut.
We write c w to mean that there is a jump from c to w.

Lemma 5.4. For Λ saturated, w ∈ &2(Λ), c a bottom contraction, e any edge
of c in G(Λ), if c ∈ G(Λ) but e 6∈ G(Λw) then c w in GΛ.

Proof. This is the version in our setting of Hughes and van Glabbeek’s Lemma
4.31 in [HvG03].

Let us first settle the case in which e is not a jump. It must be an edge
above c, or c would not persist in G(Λw). e must be in a simple net λ which is
not in Λw, so let us fix it, and let us take λw ∈ Λw from property S2, so that
necessarily &2(λ, λw) = {w}. Let us inspect the three cases.

Chapter 5. Hypercorrectness 99

� If c is the positive node of a cut d, then d 6∈ λ, so λ and λw justify c w.

� If c is a total leaf, then e is an axiom in `(λ). By totality also λw has an
axiom over it, and it cannot be e, so again the jump c w is in G(Λ).

� If c is a total ⊕ then λw must pick an edge above it, and it does not pick
e, so c is binary in G(λ, λw) and we have the jump c w.

Now suppose e is a jump c x. There are λ
xX – µ with c ∈ contr(λ, µ), and

if we take λw and µw we know by S3 that &2(λw, µw) ⊆ {x}. Now, as e is not
in GΛw , c cannot be a contraction for either of the pairs λ, λw and µ, µw.

� if c is the positive node of a partial cut, then the latter means that c ∈ λ
iff c ∈ λw, and the same for µ and µw. Therefore c ∈ contr(λw, µw).

� if c is total, then the above implies that λ and λw (and similarly µ and
µw) have the same edges above c, so again c ∈ contr(λw, µw).

In any case, c e is in G(Λ).

Lemma 5.5. For Λ saturated, every c bottom contraction has a jump c w
in GΛ.

Proof. For a positive node of a partial cut this is trivial by definition. For a
total contraction, take a minimal saturated Λ0 ⊆ Λ such that c ∈ contr(Λ0).
Take any w ∈ &2(Λ) (it cannot be empty) and consider Λw0 , which is saturated
by S1. By hypothesis c 6∈ contr(Λ0), but c ∈ G(Λw0) by totality, so we are in the
hypotheses of Lemma 5.4, and c w in G(Λ0) ⊆ G(Λ).

Lemma 5.6. If Λ is saturated and weakly hypercorrect, then every non empty
compatible union S of strictly &-oriented cycles has a strictly &-oriented jump
out of it, i.e. ∃w ∈ &2(Λ) \ S and c ∈ S bottom contraction such that c w ∈
GΛ.

Proof. This is our equivalent of Lemma 4.32 in [HvG03].
Take a minimal saturated Λ0 ⊆ Λ with S still in G(Λ0). By weak hypercor-

rectness, there is w ∈ &2(Λ0), w 6∈ S. Consider the saturated Λw0 : S cannot
exist anymore in G(Λw0) by minimality, so there is e ∈ S such that e 6∈ G(Λ0),
so e is necessarily partial. Consider the cycle φ containing e. Backtracking on
φ the opposite way with respect to its direction, starting from e, means to go
up in the partial part of G(Λ0) through edges that also are not in G(Λw0), or e
would be also. The cases are the following

� We arrive to (or e itself was) an axiom a. By strictness φ cannot neither
have mounted upward a partial edge, nor traversed a partial cut before
going into a. So a must come from a total contraction c, and a and c lie
in the hypothesis of Lemma 5.4.

� Otherwise we arrive to (or e itself was) a jump j from a bottom contraction
c. Again c and j, which still cannot be in G(Λw0), satisfy the hypothesis of
Lemma 5.4, and c w.

The jump is in G(Λ0) and therefore also in G(Λ).

We are now ready to prove the main theorem of the section. The following
is a much simpler proof than the one we gave in [Tra08a], which gave an actual
algorithm for a trip in G(Λ), involving a termination proof.

100 5.2. Hypercorrectness Implies HCoh-correctness

Proof of Theorem 5.3

Let us fix an interpretation J . K and experiments e1, . . . , ek in Λ. Without loss of
generality, we may suppose that Λ is minimal with respect to being saturated
and containing all the linkings λ1, . . . , λk on which the experiments are taken.
By minimality, &2(Λ) = &2(λ1, . . . , λk). Also, for every total edge e of G(Λ), all
the experiments are defined. If furtherly e is oriented, it makes sense to speak
about the hypercoherence of {ei(e)} in Jτ(e)K.

As we did in the proof of Theorem 3.16, we first build a directed graph H

out of G(Λ), following these steps:

� delete all total edges e such that ={ei(e)} (i.e. it is a singleton), and all
orphaned nodes thereafter;

� for each total ` with auxiliary ports p and q such that ˝{ei(p)} and
ˇ{ei(q)}, turn q into a separate node disconnected from the `;

� orient all remaining total edges e so that ˝{ei};
� orient all partial edges that are not axioms or cuts downward;

� orient all partial cuts and axioms towards their positive node.

Contrarily to MELL, H need not be acyclic. But we have the following proper-
ties:

� each directed elementary path in H is strictly &-oriented;

� every two paths in H are compatible.

The second point is immediate. For the first, take an elementary path φ in H. φ
cannot bounce on `s because we explicitly forbid it with step 2. It also cannot
bounce on a & because all the edges above a binary & are necessarily partial and
directed downward. Finally, all the edges of &s are directed according to strict
&-orientedness, as if the edge under a binary & is total its strict hypercoherence
orients it away from the &.

Now, we turn H into a dag by collapsing all cycles. Let ∼ be the relation
on nodes of H defined by

x ∼ y ⇐⇒ x→∗ y →∗ x,

i.e. if there is path from x to y and vice versa. This relation is clearly an
equivalence one by transitivity of the transitive closure →∗. It is important to
note that x →+ y iff there is a non empty elementary path from x to y, also
when the two are equal3.

Now take the graph H/ ∼, where the nodes are the equivalence classes [x],
and we have edges [x] → [y] if [x] 6= [y] and ∃x′ ∈ [x], y′ ∈ [y] with x′ → y′ in
H. H/ ∼ is a dag, as if there was

[x0]→ [x1]→ · · · → [xk]→ [x0]

3This is always true in directed graphs: take the first node z along the path that appears
multiple times in it. Then if we concatenate the initial segment from x to z and the final
segment from the last occurrence of z to y we get an elementary path.

Chapter 5. Hypercorrectness 101

then we would have

x0 →∗ x1 →∗ · · · →∗ xk →∗ x0

which would give xi ∼ xi+1 for all i, which is explicitly forbidden.
Now, H/ ∼ must have a sink, and once again, if we prove that only conclu-

sions p (which necessarily form a singleton equivalence class {p} in H/ ∼) can
be sinks, we are done, as we would have ˝{ei(p)} as soon as H is not empty,
which certainly happens if 6 = {ei(Λ)}.

So let us inspect all the cases for node [c] of H/ ∼. Total multiplicative units
have necessarily been deleted by step 1, and the new nodes introduced by step
2 cannot be sinks by construction.

� [c] = {c} with c total tensor, giving type A⊗B. All of the edges of c are
total, and if the total edge d under c has ˝{ei(d)} (JAK ⊗ JBK) then we
are done. If otherwise ˇ{ei(d)} (JAK⊗ JBK) (as equality would mean the
erasure of c in step) then ˇ{ei(p)} or ˇ{ei(q)} for the two auxiliary ports
of c, as the two latter sets are the projections of the former, so we have
an outgoing edge from c.

� [c] = {c} with c total par, giving type A`B. As above, if ˇ{ei(d)} then
˚{ei(p)} and ˚{ei(q)}, (so in particular neither of the two is detached by
step 2) and one of the two must be strict.

� [c] = {c} with c a total unary additive. Both edges above and under it are
total, and hypercoherence and equality are preserved between the edge
above and under c, so [c] cannot be a sink. The same applies to total
leaves that are not contractions.

� [c] = {c} with c a total binary with with type A & B. The edge d under
it has necessarily ˝{ei(d)} (JAK & JBK);

� [c] = {c} with c partial and not the positive node of a cut. Then either it
is the negative node of a cut, in which case both the cut and the axiom
leads away from it, or it has a partial edge under it that does the job.

� [c] = {c} with c a bottom contraction. By Lemma 5.5 it has a jump out.
This ends the cases for singleton nodes, as total binary ⊕ are necessarily
bottom contractions.

� #[c] ≥ 2. Each node x ∈ [c] lies in a non empty cycle, as there is x 6= y ∈ [c]
with x →+ y →+ x. By the above remarks, we get an elementary non
empty Cx with x ∈ Cx which is strictly &-oriented. Also for every y ∈ Cx
we have x ∼ y. Therefore, by looking at nodes only, we clearly have

[c] =
⋃
x∈[c]

Cx,

and such union is compatible. By Lemma 5.6 we get a jump [c] 3 x w
with w /∈ [c], i.e. [w] 6= [c] so that [c]→ [w].

We briefly explain now why we changed the correctness graph. We have seen
that in the proof we need to give an orientation to all partial wires, for which

102 5.3. HCoh-correctness Implies Hypercorrectness

we do not have a direction given by hypercoherence. As we need the jumps, in
GHvG(Λ) we would be tempted to orient such wires upward to the axioms, but
this could break the switching of &s. So one would have to fiddle with different
orientation of partial wires. At this point drawing jumps from anywhere in the
net could do the trick (such a variation is already proposed in [HvG03], and
is what happens in Girard’s additive proof nets in [Gir95]), but this would not
ease much the way, as we would anyway have to deal with what we call bottom
contractions.

5.3 HCoh-correctness Implies Hypercorrectness

Theorem 5.7. A cut free MALL net which is HCoh-correct is hypercorrect.

Notice that we do not ask saturation for this result. We want to prove that
if there is an illegal union of cycles, then we can build an interpretation and
experiments in it that give strictly hyperincoherent results.

The following is the main lemma leading us to the proof of the theorem.

Lemma 5.8. Let Λ be a MALL net, and φ1, . . . , φk pairwise compatible &-
oriented paths in G(Λ). There exists an interpretation J . K and experiments
e1, . . . , en such that

(E1) for each total directed axiom a in some φj we have ˝{ei(a)} (Jτ(a)K);
notice that the direction of the axiom is fixed because of compatibility;

(E2) for each other total axiom a we have ={ei(a)};

(E3) for each total contraction leaf x, ˇ{ei(x)} (Jτ(c)K).
Proof. We will build an ad-hoc hypercoherent space with the web based on some
partial axioms of Λ.

Let A be the graph that has total contractions as nodes and an edge between
x and y if the axiom {x, y} is in

⋃
λ∈Λ `(λ). Such graph is bipartite, as we can

divide its nodes into the set A+ of nodes typed with a type variable and the one
A− characterized by negated atoms, and axioms are only between dual types.

Given a contraction leaf x, let A(x) be the set of edges of A incident in x,
and let E be the set of all edges of A. It is important that if x 6= y then

A(x) = A(y) ⇐⇒ A(x) = ∅ or A(x) =
{{x, y}}.

Suppose in fact that # A(x) ≥ 2, then
⋂

A(x) = {x}, so that A(x) identifies x.
If # A(x) = 1 then necessarily A(x) = {x, y}.

Let X be the hypercoherent space given by

� web |X| := E+{c, i, n} (which stand for coherent, incoherent and neutral);

� hypercoherence, given s ⊆∗<ω |X|, 6= s, defined by

˝ s :⇐⇒ c ∈ s or

s = A(x) for x ∈ A−.

Chapter 5. Hypercorrectness 103

Note that i ∈ s, c 6∈ s implies ˇ s. Let Λ = {λ1, . . . , λk} and take the interpre-
tation that maps all variables to X. We define experiments e1, . . . , ek, with ei
on λi (taking λ1 = λ2 and two different experiments if #Λ), with the following
laws on every axiom a.

1. If a = {x, y} is total and (x, y) ∈ φj for some j, then if τ((x, y)) = α (resp.
α⊥) set e1(a) := c (resp. i) and ei(a) := n for i > 1. Experiments are
well defined here because of compatibility.

2. If a = {x, y} ∈ λi is partial and both x and y are total contraction leaves
(therefore a ∈ E), set ei(a) := a.

3. If a = {x, y} ∈ λi is partial only x is a total contraction, with τ(x) = α
(resp. α⊥), then if A(x) = ∅ and i = 1 set e1(a) := n, else set ei(a) := i
(resp. c).

4. In every other case, for a ∈ λi set ei(a) = n.

Now let us prove that these definitions satisfy the requirements.
E1 is a direct consequence of point 1 above, as ˝{c, n} (JαK) and ˝{i, n}

(
q
α⊥

y
). A total axiom a as in E2 falls into case 4 of the definition, so {ei(`)} =

{n}.
Now take a total contraction x, with τ(x) = α (resp. α⊥). There are

two cases. One is that x is not connected to any other contraction leaf (i.e.
A(x) = ∅), in which case {ei(x)} = {i, n} (resp. {c, n}) by the special case of
point 3, and we have strict hyperincoherence. If A(x) 6= ∅ it is easy to see that

A(x) ⊆ {ei(f)} ⊆ A(x) ∪ {i}

(resp. {c}), where the last point may be included or not depending on A(x)
being all the axioms above x or not. Note that such a point must be included
if A(x) is a singleton, as no contraction leaf can have a single axiom on it by
definition. Now if x ∈ A+: if i ∈ {ei(f)}, as c 6∈ {ei(f)} we have ˇ{ei(f)}
(JαK), and the same if i 6∈ {ei(f)} (i.e. {ei(f)} = A(x)), as the non-singleton
A(x) cannot be equal to any A(y) for y ∈ A− (and therefore different from x).
If the type is α⊥ then we have more directly strict hyperincoherence in

q
α⊥

y
whether c ∈ {ei(f)} or {ei(f)} = A(x) by definition.

One could notice that in case of #Λ = 1, the above proof becomes the core
of Retoré’s proof of Theorem 3.18 in [Ret97]. In fact in such a case we get that
PNX is the coherent space with |X| = {c, i, n}, c ˝ n and i ˇ n, which is the
minimal coherent space needed for Retoré’s proof.

We are ready for the proof of the theorem.

Proof of Theorem 5.7

Suppose the net Λ is not hypercorrect. There are then compatible &-oriented
cycles φ1, . . . , φn (n ≥ 1) in G(Λ) such that &2(Λ) ⊆ ⋃φi. We apply Lemma 5.8
feeding the φis to it, and from properties E1–3 we deduce the following ones:

(P1) for every d total edge, if there is an edge d′ above d (i.e. with an upward,
possibly empty, path from d to d′) such that d′ ∈ φj for some j, then
6= {ei(d)}, i.e. it is not a singleton;

104 5.4. Complements

(P2) for every directed total edge ↓ d directed downward if ∀j : ↓ d 6∈ φj , then
˚{ei(d)} (Jτ(d)K).

If we prove such properties we are done, as for all conclusions p, of Λ if {x, q}
is the total wire on it then clearly (x, q) is not in any cycle so ˚{ei(q)} by P2.
Notice as a technicality that every conclusion has a downward wire above it in
G(Λ) (while it is not strictly true in the interaction net λ). Also, and here is the
point where cut freeness kicks in, there must be at least a conclusion which has
a cycle passing somewhere above it, so P1 gives in particular strict incoherence.

Let us prove the two properties. For P1, if d′ ∈ φj for a j, one can go up d′

following φj (regardless of its direction) and find a the last d′′ along φj which
is still above d. If d′′ is partial, then there must be either a binary additive or
a contraction leaf between d and d′′: in the first case, the resulting experiment
cannot be a singleton by construction on additives, and also in the second one,
because of property E3. If d′′ is total, then there are only three cases possible
for it to be maximal. Two of them are that it is a total contraction from which
φj jumps or a binary & φj jumps to, and these by the same arguments as above
give 6= {ei(d)}. Last case is that d′′ is the edge of a total axiom, to which
property E1 gives a non-singleton that tracked down to d again gives 6= {ei(d)}.

We prove P2 by induction on the type of d, and as usual reasoning by cases.

Atomic formula: d is under a total leaf x: either x is a total contraction, and
we are settled by property E3 which makes the thesis of P2 always true, or
it is under a total axiom a = {x, y}. Now as ↓ d 6∈ φj fot all j, necessarily
(y, x) 6∈ φj either. So if a 6∈ φj for all j by E2 we get a singleton for d,
otherwise (x, y) ∈ φj and we get ˝{ei(d)} (Jτ((x, y))K) by E1, so ˇ{ei(d)}
(Jτ(d)K).

Par: Suppose the par x above d has above it the downward edges f0 and f1,
necessarily total. As no path φj can bounce on x, ∀j : ↓ d 6∈ φj implies the
same for f0 and f1. Applying induction hypothesis gives hyperincoherence
on both and therefore hyperincoherence on d.

Tensor: suppose x has premises f0 and f1. If the hypothesis ∀j : ↓ d 6∈ φj
applies for both f0 and f1 then inductive hypothesis gives us hyperinco-
herence on both that implies hyperincoherence on d. Otherwise, suppose
that for one of the two, say f0, there is h with ↓ f0 ∈ φh. Because of the
hypothesis on d this path must bounce on the tensor and go up f1 (im-
plying 6= {ei(f1)} by P1). By compatibility ∀i : ↓ f1 6∈ φ, which together
by inductive hypothesis gives us ˇ{ei(f1)} and therefore ˇ{ei(d)}.

Unary additive: Straightforward application of inductive hypothesis.

Binary with: By hypothesis such x is in some φj , and by &-orientedness ↓ d ∈
φj , so the hypothesis of P2 never applies.

Binary plus: by definition of hypercoherence, the thesis of P2 is always true.

5.4 Complements

We here prove two additional results. The first is that weak hypercorrectness is
equivalent to plain one. While this result is trivial for cut free nets by applying

Chapter 5. Hypercorrectness 105

the two main theorems, it is not so in the presence of cuts.
The other very important for the future study of the computational contents

of such criterion, is the proof of stability under shared cut reduction.
Both results are achieved by semantics means, employing the equivalence

proved in the previous sections. In order to do so we need to statically describe
nets with cuts using cut free ones. The tool used for this is exposing cuts.

5.4.1 Cut Exposure

Given a cut formula A∗A⊥, with A positive, then its exposure is Ex(A∗A⊥) :=
(A⊗A⊥)⊕⊥, and is extended to cut sequents by

Ex([C1, . . . , Ck]Γ) := Ex(C1), . . . ,Ex(Ck), Γ.

Clearly the leaves of Σ are contained in Ex(Σ). Finally, the exposure of a simple
net λ on a cut sequent Σ is the simple net Ex(λ) on Ex(Σ) defined by adding
to `(λ) the ⊥ of Ex(C) for each C cut formula in Σ not selected by λ. Clearly

Ex(Λ) := {Ex(λ) | λ ∈ Λ } .

As an informal graphical example, here is what happens when exposing a cut
of a slice net with two linkings and one shared cut selected by only one linking.

Σ
A⊥A

µ

λ

Ex7−→

⊕
⊗

A⊥A
Σ

µ

λ⊥

Notice (though we do not use it here) that cutting all exposed cut formulas in
Ex(Λ) against the trivial MALL (strongly) correct net having (A⊥ ` A) & 1 as
sequent reduces to Λ. Trivially Λ is saturated if and only if Ex(Λ) is.

Lemma 5.9. Λ is (weakly) hypercorrect if and only if Ex(Λ) is (weakly) hyper-
correct.

Proof. Take a (strictly) &-oriented path φ in G(Λ), and for each shared cut
C = A ∗A⊥ in Σ, let φC be the minimal portion of φ that touches the roots of
A and A⊥. φC is a path, i.e. φ cannot touch the cut two separate times, because
it should bounce on both roots which is impossible as one is switching. We give
a path Ex(φC) (empty if φC is empty) with the same extremities, all inside the
formula subsituted for C, and traversing the same &s. So if Ex(φ) is defined by
substituting Ex(φC) for φC for every shared cut C, yields a (strictly) &-oriented
path in G(Ex(Λ)). If in the end we prove that there is a similar mapping in the
inverse direction for both strictly and regular &-oriented paths, and that φ is
compatible with ψ if and only if Ex(φ) and Ex(ψ) are, we are done.

Let c be the positive node of the cut, d be the cut wire, t and p the ⊗ and
⊕ added by exposure. We have the following cases.

106 5.4. Complements

� φC bounces on c without traversing any jump: then Ex(φC) = φC .

� φC bounces on c using a jump j c w: if j is also in G(Λ) (and in case we
are considering weak hypercorrectness if additionally c is still a bottom
contraction), then Ex(φC) = φC . Otherwise the jump was necessarily
justified by d being a partial cut, which is equivalent to p being a binary
plus with a jump j′ from p to w in G(Ex(Λ)). Subsitute j in φC with the
path from c to p with j′.

� φC traverses d without later traversing any jump from c: substitute d in
φC with a bounce on t.

� φC traverses d and then a jump j from c to w: as above, if j is also in G(Λ)
(and is admissible if we are using strictness) then leave φC be, otherwise
descend from the negative node of d down to p and jump to w.

(Strict) &-orientedness is clearly preserved. Also if φC and ψC are compatible,
then so are their replacements. Finally, the above mapping is easily seen to be
almost surjective, the only case not covered being when the jumps c w and
p w both exist in G(Ex(Λ)), and a path ψ jumps from p. In such a case we
can safely map it to one using c w in G(Λ), bouncing on c if ψ came from c,
traversing d if ψ came from the negative node.

We immediately get the equivalence between the two forms of the criterion
(in case Λ is saturated).

Proposition 5.10. If Λ is saturated, its weak hypercorrectness and hypercor-
rectness are equivalent.

Proof. One implication is trivial. For the other, is Λ is weakly hypercorrect then
Ex(Λ) is also. By Theorem 5.3, Ex(Λ) is HCoh-correct, and as it is cut free,
by Theorem 3.18 it is hypercorrect. Therefore also Λ is.

One should be aware of the fact that that there surely is a way to prove
the above by transforming cycles (just apply some cut elimination steps to the
chain of implications of the proof!), but it appears to be a very difficult task,
while the semantic way is quite easy.

5.4.2 Stability Under Reduction

Theorem 5.11. If Λ is a saturated hypercorrect MALL net and Λ → Λ′, then
Λ′ is saturated and hypercorrect.

This section is dedicated to proving that the syntactic hypercorrectness cri-
terion is sound from the point of view of reduction, and is not only an ad-hoc
criterion to give equivalence on cut free proofs.

If one takes a look at the proof of stability under reduction of Hughes and
van Glabbeek’s correctness criterion [HvG03, Section 5.4] one could be surprised
by its complexity, especially comparing to the proof in MLL or even MELL. The
impression is that part of the sequentialization theorem is reproved. Here, while
a similar proof based on paths can be provided, we will give a proof that is in
fact completely based on the semantical equivalence. This will give a nice local

Chapter 5. Hypercorrectness 107

proof of stability (while the one on paths must rely on seeing what happens on
& far from the redex and reduct).

First, let us see fix the part about saturation.

Lemma 5.12. If Λ is saturated and hypercorrect, and Λ → Λ′, then Λ′ is
saturated.

Proof. The proof is practically identical to the one of [HvG03, Lemma 5.10].
Reducing an axiom or multiplicative cut does not change the &-resolutions and
their relation with linkings. The same happens on an additive cut A⊕B ∗A⊥&
B⊥, with p the plus and w the with, if w is unary in Λ. Suppose therefore that
w ∈ &2(Λ).

If there are in Λ′ two linkings λ and µ with &2(λ, µ) = ∅, then in Λ necessarily
&2(λ, µ) = {w} by &-compatibility. As both survived in the reduction, they
must choose different premises of p, so the jump p w is in G(λ, µ) and forms
with the cut a &-oriented cycle containing the only binary with.

Now for the (pseudo) &-fullness part. Now suppose there is W &-resolution
with &2(W,Λ′) = &2(Λ′) with no corresponding linking. This induces two &-
resolutions W1 and W2 for Λ, given by making the same choices of W and then
left and right respectively for w. We have &2(W1, Λ) = &2(W2, Λ) = &2(Λ)
as &2(Λ′) ⊆ &2(Λ) and w ∈ &2(Λ). So we get λ, µ ∈ Λ with G(λ) ⊆ W1 and
G(µ) ⊆ W2. Now neither of the two can have survived in the reduction step,
or they would be on W . So they must choose on p in the opposite way as they
do on w (and must therefore select the cut), and we end up again with a trivial
illegal cycle in G(λ, µ).

Proof of Theorem 5.11

First we can exclude the case of the multiplicative unit and axiom cut reductions,
as clearly all paths in G(Λ′) correspond to paths in G(Λ) with the same &s.

For the other cases, we show that if we suppose that Ex(Λ′) is not HCoh-
correct, and Ex(Λ) is, we arrive at a contradiction. In such a case we can
conclude combining Lemma 5.9 and the two main Theorems 5.3 and 5.7. For
the purpose of this proof if a cut formula C gets erased during the reduction
step because no remaining linking selects it, we can suppose it is still exposed
in Ex(Λ′) by making all linkings choose ⊥ on Ex(C). This is just not to make
special cases for when the cut is erased. Let Γ and Γ ′ the exposed sequents of
the two nets, which differ only by the reduced exposed cuts.

Multiplicative reduction. C = A⊗B ∗A⊥`B⊥. The following is the local
picture of the exposure of the redex and of the reduct, without drawing the trees
above the cut.

⊕
⊗

⊗ `
t1 t2 p1 p2 b

c

p
{

⊕
⊗

⊕
⊗

t1 t2 p1 p2

b1 b2

c1 c2

Suppose we have experiments ei on linkings λi ∈ Ex(Λ′) with ˇ{ei(Λ′)} (JΓ ′K)
for a given interpretation J . K. These experiments can also be viewed as being on

108 5.4. Complements

Ex(Λ) as all axioms in Λ′ are also in Λ. Also the results on every other conclusion
different from the ones of the involved exposed cuts must coincide, and the ⊕s
are whether all binary or all unary (depending on whether the linkings choose
or not the ports ti and pj). In particular the result on Λ cannot be a singleton
either.

By HCoh-correctness of Λ we get ˝{ei(Λ)}, and as we have ˚ on all free
ports different from c, we necessarily have ˝{ei(c)}. Therefore all the ⊕s are
unary (i.e. the exposed cut was total). Now chasing up the hypercoherence we
get ¨ on both t1, t2 and p (the latter in JAK ` JBK), and at least one is not a
singleton. If we have = on p then the strict hypercoherence of a tj is inherited
by cj in Λ′. Otherwise we have ˝{ei(pj)} which again goes down to cj .

Additive reduction. C = A⊕B ∗A⊥ &B⊥.

⊕
⊗

⊕ &
p1 p2 w1 w2 b

c

p w
{

⊕
⊗

⊕
⊗

p1 p2 w1 w2

b1 b2

c1 c2

As above from ˇ{ei(Λ′)} we get ˝{ei(c)} (again inequality lifts from Λ′ to Λ).
Chasing up hypercoherence we get ¨ on p and w, which implies particularly
that the top ⊕ in Λ is not binary for λi. As the λis are all linkings that survived
during the reduction step, also the & must be unary and choose the same side.
We thus get ¨ on pj and wj for a j, with at least one inequality. This gives us
strict hypercoherence on cj , unless bj is selected by ei, but this cannot happen
as they would have to select b in Λ.

Part III

Nondeterminism:
Differential Operators and

Resources

109

Chapter 6

Church-Rosser Theorem for
Pure DiLL

This chapter is devoted to proving confluence of pure DiLL◦ nets. Being in
the untyped case means that this result is extremely general, but also that we
cannot rely on lemmas based on normalization, such as the modulo version of
the Newman’s lemma, Lemma 4.2.

We thus obtain it by proving two results on the so called developments, i.e.
the reductions of all the redexes present in a term. In λ-calculus such results,
a full proof of which can be found on Schroer’s thesis [Sch65], states that if we
take a pure λ-term t, we can reduce all the redexes of t with freely chosen single
reduction steps, obtaining a unique result.

More precisely, reducing only the residuals of redexes of t, leaving alone the
redexes created along, is strongly normalizing and confluent. This is not at all
trivial, due to the possibility that redexes of t be duplicated.

As the reduction of proof nets is more atomic than the one of λ-calculus,
the definition is not transferred verbatim. In the next section we will define
what are to be considered new redexes, we will then state the result and infer
confluence from it.

6.1 Marking New Cuts: DiLL◦

In [Dan90], Danos proved the counterpart of the finite development theorem
for MELL, and Pagani and Tortora de Falco did the same for the whole of
second order LL in [PTdF08]. In this setting the actual technical definition of
development takes another form, that however exactly correspond to the one of
λ-calculus when translating it into nets.

The idea is that only the reductions that in a typed setting would decrease
the logical complexity of the cut formula are those to be considered creating
actual new redexes. In MELL this means the multiplicative reduction and the
dereliction against box rule, while all the other exponential reduction are to be
considered creating “old” cuts.

We thus define a notion of new and old cuts, by marking with a circle the
wires created by rules that in typed nets would reduce the logic complexity (⊗
on `, dereliction on box, dereliction on codereliction), see Figure 6.1), and by

110

Chapter 6. Church-Rosser Theorem for Pure DiLL 111

⊗ ` m→ ` ⊗
? ! π e→ π

? !
e→

Figure 6.1: The marking rules of DiLL◦.

restricting the reduction on unmarked wires only. The effect is the same as for
clash wires typed by f with a lax typing discipline, however we distinguish the
two as we need the lock on new cuts to be temporary, while the lock on clash
wires must be permanent. We will call DiLL◦ the system thus obtained. From
now on, let ∼ and c be either a∼ and n→, or

asp∼ and
nzp→, or finally

asp∼ and
nzp→. See

Figure 4.10 at page 87, and Figure 4.3 For their definition.
In fact the multiplicative reduction does not pose many problems, and the

great part of the proof is taken up dealing with the exponential reduction. The
proof will be totally combinatorial.

Theorem 6.1 (Finite and unique developments). Reduction on DiLL◦ pure
proof nets is strongly normalizing modulo ∼ and Church-Rosser modulo ∼. The
reductions ec→ and m→ are also CR∼ on their own.

We naturally split the proof of the theorem in two parts, the strong nor-
malization and the confluence ones. The remainder of the chapter will be thus
devoted to the proof of the two parts, with Propositions 6.8 and 6.9 being such
final results. For now, we show how it implies its most important corollary: the
Church-Rosser modulo property for the whole of pure DiLL.

Theorem 6.2 (Church-Rosser). Reduction on DiLL pure proof nets is CR∼,
and so are m and ec taken alone.

Proof. Finite developments make it really easy to define a parallel reduction to
infer confluence. Clearly DiLL proof nets can be embedded in DiLL◦, and DiLL◦

can be surjected on DiLL. Let here be ψ the latter surjection, that just deletes
all the markings. Now in DiLL define π →q σ if and only if π mec∗−→ σ′ in DiLL◦

and σ = ψ(σ′). Fundamentally, →q reduces any number of redexes, but all must
be already present at the start, exactly the way parallel reduction does. Now
we have that

�
mec→ ⊆→q ⊆ mec∗−→, so that →q ∗ = mec∗−−−→;

� →q is strongly CR∼ (see page 70): this is because mec→ is CR∼ in DiLL◦, so
that mec∗−→ is strongly so.

Then we conclude, as →q is CR∼ by Lemma 4.4 (→q is reflexive), which means
that→q ∗=mec∗−→ is strongly CR∼, which in turn by Lemma 4.3 gives Church-Rosser
modulo ∼ for the ordinary reduction1.

It is not hard to give parallel reductions for the ec and m ones and do the
same.

1Notice that we cannot infer CR∼ of →q directly from the same property in DiLL◦, as
chained parallel reductions are not necessarily in DiLL◦

112 6.2. Finiteness of Developments

Another interesting direct corollary of the developments theorem is the fol-
lowing.

Corollary 6.3. The ec-reduction is strongly normalizing and Church-Rosser
modulo ∼ on differential λ-nets.

Proof. Because of the typing discipline the wires that in the e-reduction of
DiLL◦ would be marked are multiplicative, and as such cannot be reduced by e.
Therefore every chain of ec-reductions of differential λ-nets is an ec-reduction
in DiLL◦.

6.2 Finiteness of Developments

The most technical point of the proof is defining a measure which strictly de-
creases on e-reductions. The other reductions will be far easier to handle, as
will be seen in the proof of Lemma 6.7. We will now consider the full version
of ∼ and c, i.e. ∼ will be

asp∼ and c will be nzp, as any normalization result on
those transfers to all subequivalences and subreductions.

6.2.1 Measuring Exponential Reduction

Ideally, we may regard exponential reduction as a procedure that “slides” cells
along exponential straight paths in the net, with ! and ? cells sliding in opposite
direction.

We thus try to assign to each cut a natural number, indicating how far the
two cells around it are from the end of the path they are sliding on. After a cut
is fired, the cuts created by the reduction would have a lesser weight, but there
may be many of them. So we will employ the multiset of the weights of the cuts
and the multiset order. Another problem arises: sums make it so that when a
reduction creates addends, there is a sort of global duplication of the net.

In [Tra08b] we settled this by employing multisets of multisets. Here we will
however be able to estimate how many addends can sprout during reduction, so
we can use this value and count each cut as many times as there can be addends
containing it.

Another kind of duplication is the one of the box: this happens both because
of contractions and because of the codereliction rule, as they extract a linear
copy. We will therefore give an estimate of the number of copies that can be
made out of a box.

All these estimates are made by inspecting exponential straight paths, and
after defining those we will define the measures we need.

Exponential paths. An exponential path is a directed path φ such that
all wires in it are not ◦-marked and are either all laxly typed with ? or all
with !. By typing is is clear that such a path is straight, i.e. one that traverses
each cell from the principal port to an auxiliary one or viceversa. Also every c
internal to φ, i.e. not at its extremities, must either be a box, a contraction or
a cocontraction. Clearly φ does not contain clashes.

Depending on the common type of their wires, we distinguish accordingly
between !-paths and ?-paths. Because of switching acyclicity exponential paths

Chapter 6. Church-Rosser Theorem for Pure DiLL 113

p ?(e) = ?(p), the variable associated with the free port p;

e

e2

e2

? ?(e) = ?(e1) + ?(e2);

f e

e
! ?(e) = ?(f);

f
! π

e1

ek

?(ei) =

{
?(f)(1 +

∑
j !(ej)) if π = 0,

?(f)(1 +
∑
j !(ej))

∑
λ∈π sp(λ)?(eλ) otherwise;

otherwise: ?(e) = 1.

Table 6.1: Rules for the ?-weight. ?(e) = 1 if e is not exponential.

are non repeating, so no loops are possible and the length of paths is bounded.
An exponential wire is a wire typed with !/? and not ◦-marked.

The measures. We will define by mutual induction three basic measures on
which we will base the measure of the whole net. Two of them, the ?-weight
?(e) and the !-weight !(e), are on wires. The third, the spread sp(λ), is defined
on simple nets.

Morally they are natural numbers, however we will need to make the induc-
tion work we will need rather to define the dependence of such measures from
the environment. Therefore we assign variables ?(p) (resp. !(p)) for each free
port p laxly typed with ? (resp. !), and all the measures will be polynomials
in such variables. This also ease us when plugging a module in a context, as
intuitively we will be able to instantiate such variables.

First we give all the conditions, then we will later prove that they indeed
define functions by induction.

Weighting wires and sums. We will define our weights and the spread.
First, ?(e) = 1 if e is not exponential (and in particular if it is ◦-marked);
otherwise, let e be oriented so that its type is !, and let c be the node in the
graph of the simple net to which e points.

In Table 6.1 we provide the laws for ?(e), giving them depending on the
symbol of c, drawing it on the left of e. By eλ we denote the wire corresponding
to e inside a box, in the net λ of the box contents.

Dually, when e is exponential let e be oriented so that its type is !, or
otherwise set !(e) = 1. Then Table 6.2 provides all the laws for the !-weight.

The spread sp(λ) of a simple net λ is finally defined by the following formula.

sp(λ) =
∏

c∈%0(λ)

!(c) ·
∏

c∈δ0(λ)

?(c)

where

� %0(λ) (resp. δ0(π)) is the set of all derelictions (resp. coderelictions) at
depth 0 in λ;

114 6.2. Finiteness of Developments

p !(e) =

!(p) if p ∈ fp0(π),

!(f) if p ∈ fp0(σ(B)) for a box B, p is above

an auxiliary port, and f is the wire cor-

responding to p outside the box,

1 if p ∈ fp0(σ(B)) for a box B and p is

above the principal port;

e

e2

e2

! !(e) = !(e1) + !(e2);

f e

e
! !(e) = !(f);

e
!π

fk

f1

!(e) =

{
1 +

∑
j !(fj) if π = 0,

(1 +
∑
i !(fi))

∑
λ∈π sp(λ) otherwise.

otherwise: !(e) = 1.

Table 6.2: Rules for the !-weight. !(e) = 1 if e is not exponential.

� the (! or ?) weight of a cell is the weight of the wire connecting the principal
port.

Notice that here is a circular dependency between the three measures, so the
next lemma is not trivial.

Lemma 6.4. Given a DiLL◦ proof net π, ?(e), !(e) and sp(λ) are defined and
unique for all e ∈ w!(π) and all λ ∈ ℘!(π).

Proof. Uniqueness is clear. We prove that we can define all of the measures by
a nested induction. Suppose we have defined them for all DiLL◦ proof nets of
depth strictly less than d(π).

First we show that !(e) is defined for all w!(π), and at the same time that ?(e)
and sp(λ) are for e ∈ wk(π) and λ ∈ ℘k(π) with k ≥ 1. This is done by induction
on the length of maximal ?-paths at depth 0: starting with e for e ∈ w0(π), or
with the wire f on the principal port of the box B ∈ b0(π) containing e or λ
otherwise. In fact all measures inside boxes are already defined by induction
hypothesis, but they depend on variables ?(p) and !(p) with p ∈ fp1(π). However
by lax typing (as a variable is assigned only if the port is typed in the “right”
way):

� all the variables ?(p) upon which the measures depend must be on the
ports over a principal port of a box, and we can instantiate them with 1;

� all the variables !(p) are over auxiliary ports, and we can instantiate them
with !(f) with f ∈ w0(π), defined by secondary induction hypothesis, as
these are wires further down ?-paths than the wire on the principal port.

In the other case, e ∈ w0(π), !(e) is defined from the !-weight on wires further
down ?-paths, and possibly the spread of nets inside a box which have just been
seen to be defined, all by secondary induction hypothesis.

Chapter 6. Church-Rosser Theorem for Pure DiLL 115

Next, ?(e) for e ∈ w0(π) can now be defined by induction on the maximal
length of !-paths starting with e, as they depend: on !-weights; on weights ?(f)
with either f ∈ w1(π) or further down !-paths; and on sp(λ) with λ ∈ ℘1(π).

Finally, taken any λ ∈ ℘0(π), its spread depends on ! and ?-weights.

Notice that sp(λ ‖ µ) = sp(λ) sp(µ), and most importantly each measure is
a non-zero polynomial in N[?(pi), !(qj)] where pi (resp. qj) are all the ports in
fp0(π) with type ? (resp. !). It is also very important that !-weights are poly-
nomials in variables !(p) only: their dependence on ?-weights (as they depend
on the spreads) does not “exit” boxes. Finally, being polynomials with posi-
tive coefficients, all measures are monotonous functions on their variables, and
if we take as domain the non zero positive integers N∗ then each measure is
extensionally greater or equal than 1.

Weighting nets and polynets. The weight |e| of a wire is ?(e) + !(e).
The weight |C| of a set of wires C is the multiset of weight of its elements. Let
! cw0(λ) be the set of exponential cuts at depth 0 of a simple net λ. Let us fix
a polynet π. Then for each λ ∈ ℘!(π) define by induction on its depth (or its
codepth in π)

|λ| := |! cw0(λ)|+
∑

B∈b0(λ)
µ∈σ(B)

#(B) sp(µ)|µ|,

where #(B), the count of the box, is ?(e)(1 +
∑
j !(fj)) with e and fj the wires

on the principal and the auxiliary ports respectively.
Finally, let

‖π‖ :=
∑
λ∈π

sp(λ) |λ| .

Notice that this measure depends monotonously from the weight of each
part of the net. This intuition will be given a solid ground by the modularity
Lemma 6.6.

We now try to give an intuitive idea of why the measures are defined in this
way. Morally !(e) measures the size of the tree of cocontractions above e (which
is invariant under associativity). The most important feature is that it counts
all the coderelictions linked to e. On boxes we count

� the !-weight on the auxiliary ports because the codereliction against box
rule creates a contraction and a codereliction; plus one to count the box
itself, especially if it has no auxiliary ports;

� multiplied by the spread of the contents in order to be invariant by s-
conversion, and keep such invariants even if the sum inside. . . spreads.

Dually ?(e) measures the size of the tree of contractions above e. The rule
when e is on an auxiliary port of a box B contains:

� ?(f) because the contractions on the principal port of B may shift to
auxiliary ports during reduction;

� the sum of !-weights of the auxiliary wires because codereliction against
box creates contractions; plus 1 to provide something to decrease when a
cut enters a box (box against box and those similar);

116 6.2. Finiteness of Developments

� the ?-measures inside because either by opening the box or by p-conversion
the contraction trees inside can pour outside; summed to respect both p-
conversion and s-conversion; however the sum is weighted with the internal
spread to avoid that a reduction generating a sum inside could raise such
weight.

As already hinted, sp(λ) estimates how many addends may have a reduct of
λ. This is achieved by morally multiplying all the possible number of choices
potentially to be done in λ. Now sums arise

� on (co)dereliction against co(co)ntraction reductions, so the size of the
tree of co(co)ntractions on the principal port of a (co)dereliction should
estimate what choices that (co)dereliction may do;

� on (co)dereliction against box rules, when the box contains an actual sum;
however the spread of a box contents are already accounted for in both
“moral” contraction and cocontraction trees.

Finally, in a simple net we weight cuts with a multiset. However we make
the cuts inside a box B count #(B) times as this number estimates how many
regular and linear copies of its contents may be done (by contraction against
box and codereliction against box rules respectively), and all cuts count sp(λ)
times to account for “additive duplication”.

Replacement and modularity lemmas. The achievements of this part will
be some standardized hypotheses to apply to each reduction rule to show that
the measure decreases. What in general will be left to check is

� when replacing a redex with a reduct the measures on the interface do not
increase, ensuring what is outside does not increase either;

� the spread gets divided among the addends of the reduct, i.e. the sum of
the spreads of the reducts is lower than the spread of the redex;

� locally each addend of the redex has less size.

So we will here define when a module can safely replace another (the relation
µ 4 λ), prove that this yields the first point in the replacement lemma 6.5, and
finally show with the modularity lemma 6.6 that the basic hypotheses on redex
and reduct imply that replacing the latter for the former decreases the measure
‖ . ‖. Due to the complex nature of the system and of the measures we have
defined, this proofs are far from trivial.

In the following, when comparing two measures we employ the extensional
(pointwise) order on polynomials N[Xi]. Given a simple module λ, let ?Iλ) and
!Iλ be the set of the ? and ! laxly typed ports of the interface Iλ respectively.
Define analogously ?I�ω and !I�ω for a context ω[]. We extend the weights to
free ports, in the sense that if p ∈ !Iλ (resp. ?Iλ) we define ?(p) (resp. !(p)) to
be the measure of the wire above it, the other weight being already defined as
a variable.

For different simple modules λ, µ, we distinguish the weights calculated on
one or the other by putting them as superscripts, as in ?λ(e). If λ and µ have
the same interface I (with the same lax typing) we say that µ can replace
λ (written µ 4 λ) if for all p ∈ !I and q ∈ ?I we have ?µ(p) ≤ ?λ(p) and
!µ(q) ≤ !λ(q) respectively.

Chapter 6. Church-Rosser Theorem for Pure DiLL 117

Lemma 6.5 (replacement). If ω[] is an affine context, λ 4 µ, ω[λ] and ω[µ]
are proof nets, then for each e ∈ w!(ω) we have ?ω[µ](e) ≤ ?ω[λ](e) and !ω[µ](e) ≤
!ω[λ](e).

Proof. We can easily reduce to the case of a linear context. We reason by
induction on the size of ω: if there is a cell c with a wire on the internal
interface, detach it from ω obtaining a smaller context ω′. One must then check
that glueing c to both simple nets obtaining λ′ and µ′ yields still µ′ 4 λ′.
This really poses no problem because we are adding cells with a single wire
attached to the hole for now, and all the measures are defined with monotonous
operations. For example (drawing !I left and ?I right) in

f
!σ~f

~g
~e

when we check the replacement condition on ~e we get that

!µ
′
(e) = !µ(e)

[
(1 +

∑
!(~f))

∑
ν∈σ sp(ν)!(f)

]
which by the hypothesis µ 4 λ is less than !λ

′
. The other cases for checking !

and ? weights are analogous. Also checking the spread is straightforward, once
the weights have been settled.

The slightly harder part comes if ω has no cells on I�ω , and we suppose that
there is a wire e which connects I�ω to itself. Supposing that glueing e to λ/µ
yields an exponential wire (otherwise it is trivial), the situation can be depicted
by the following picture.

~f ~d

e

p q

There cannot be then any exponential path in neither λ nor µ, as it would form
an exponential loop with e. Therefore the variable !(p) (resp. ?(q)) does not
appear in !λ(q) and !µ(q) (resp. ?λ(q) and ?µ(q)). We can therefore safely write

!µ
′
(~d) = !µ(~d)

[
!µ(p)/!(q)

] ≤ !λ(~d)
[
!λ(p)/!(q)

]
= !λ

′
(~d),

?µ
′
(~f) = ?µ(~f)

[
!µ(p)/!(q), ?µ(q)/?(p)

] ≤ ?λ(~f)
[
!λ(p)/!(q), ?λ(q)/?(p)

]
= ?λ

′
(~f).

If in ω there are no cells nor wires on the interface, it means that ω[λ] = ω′ ‖
λ, with ω′ the net ω without the wiring on the hole. In any case it is done.

Lemma 6.6 (modularity). Take λ and µ1, . . . , µn with simple modules and ω[]
a context such that ω[λ] and ω[µi] are all DiLL◦ pure proof nets. Suppose the
following points are satisfied:

� for every i we have µi 4 λ;

�

∑
i sp(µi) ≤ sp(λ);

� if n = 0, then |λ| > [];

118 6.2. Finiteness of Developments

� otherwise, for every i we have |µi| + |Di|µi < |λ| pointwise, where Di is
the set of dormant wires in µi that are not dormant in λ.

Then we have the pointwise inequality∥∥ω[∑i µi
]∥∥ < ‖ω[λ]‖ .

Moreover if the inequality in the last point of the hypotheses is replaced by ≤,
then so is the above one.

We recall that a dormant wire is one over a free port which is not an axiom,
the only kind that can become cut after glueing.

Proof. Let us reason by induction on the depth of the hole in ω[]. Let µ =
∑
i µi.

Base step. If ω[] = δ[] + π is affine with δ[] linear, then it suffices to
show the thesis for δ[]. If n = 0 then trivially

‖δ[λ]‖ ≥ |λ| > [] = ‖0‖ = ‖δ[0]‖ .

Suppose therefore n ≥ 1. By the replacement lemma we have that for every i,
all the weights of wires in δ are less in δ[µi] than in δ[λ], so |δ|δ[µi] ≤ |δ|δ[λ]. If
moreover C denotes the set of cuts of δ[λ] that are on the interface, and Ci the
same for δ[µi], then clearly Ci ⊆ C ∪ Di, and |Ci \Di|δ[µi] ≤ |C|δ[λ], as such
wires are in δ and the replacement lemma applies. For the same reason when
we instantiate the variables we get |µi|δ[µi] + |Di|δ[µi] < |λ|δ[λ]. We thus have

|ω[µi]| = |ω|δ[µi] + |Ci|δ[µi] + |µi|
≤ |ω|δ[λ] + |Ci \Di|δ[µi] + |Di|δ[µi] + |µi|

< |ω|δ[λ] + |C|δ[λ] + |λ|δ[λ] = |δ[λ]| .

As for the spread, we have∑
i

sp(δ[µi]) = spδ[µi](δ)
∑
i

spδµi ≤ spδ[λ](δ) · spδλ = sp(δ[λ]).

So we conclude this step by∥∥δ[∑i µi]
∥∥ =

∑
i sp(δ[µi]) |δ[µi]| <

(∑
i sp(δ[µi])

)·|δ[λ]| ≤ sp(δ[λ]) |λ| = ‖λ‖ .

Clearly replacing ≤ for < is still valid.

Inductive step. Suppose now that ω is not affine, let B[] ∈ b!(ω) be the
box containing the hole with maximal depth, so that its contents is an affine
context δ[] + π, and let ψ[] be the context in ω relative to the subnet B, i.e.
ω[] = ψ[B[]]. If n = 0 by inspecting the laws of the measures one easily sees
that B[π] 4 B[δ[λ] + π], sp(B[π]) = 1 = sp(B[δ[λ] + π]) and

|B[π]| = #(B) ‖π‖ < #(B)(‖δ[λ]‖+ ‖π‖) = |B[δ[λ] + π]| ,

so we can apply inductive hypothesis and get the result.

Chapter 6. Church-Rosser Theorem for Pure DiLL 119

If n ≥ 1, applying the replacement lemma we get that the measures in δ[µi]
are pointwise lower than the ones in δ[λ], and we can instantiate them with the
variables of B[] (and 1 for the one above the principal port). The measures in
π are clearly oblivious of the changes. Let % = B[

∑
i δ[µi] +π], σ = B[δ[λ] +π],

and

B[] = ! p
rk

r1

qk

q1

We have

!%(p) = (1 +
∑
j !(qj))

(∑
i sp%(δ[µi]) +

∑
ν∈π sp(ν)

)
= (1 +

∑
j !(qj))

(
sp%(δ)

∑
i sp%(µi) +

∑
ν∈π sp(ν)

)
≤ (1 +

∑
j !(qj))

(
spσ(δ)

∑
i spσ(λ) +

∑
ν∈π sp(ν)

)
= !σ(p),

?%(qh) = ?(p)(1 +
∑
j !(qj))

(∑
i sp%(δ[µi])?%(rh) +

∑
ν∈π sp(ν)

)
≤ ?(p)(1 +

∑
j !(qj))

(
spσ(δ)

(∑
i sp%(µi)

)
?σ(rh) +

∑
ν∈π sp(ν)

)
≤ (1 +

∑
j !(qj))

(
spσ(δ) spσ(λ)?σ(rh) +

∑
ν∈π sp(ν)

)
= ?σ(qh),

so that % 4 σ. We can see here how the sum weighted with the spread value
makes sure that the measures do not grow if the number of addends inside the
box grows. As for the rest of the hypotheses, sp(%) = 1 = sp(σ), there are no
new dormant wires and in fact

|%| = #(B)
∥∥∑

i δ[µi] + π
∥∥ < #(B) ‖δ[λ] + π‖ = |σ| ,

using the base step. The box count depends solely on the variables outside the
box. We can now apply inductive hypothesis, and get that∥∥ω[∑i µi

]∥∥ = ‖ψ[%]‖ < ‖ψ[σ]‖ = ‖ω[λ]‖ .

Again replacing < with ≤ poses no problems.

A short note about lax typing. We have used lax typing to define the
measures. In fact the only point where it is relevant is when there is a clash
between a ? active port and an auxiliary port of a box, that could be repaired
by opening the box, like in the following example.

e
!σ

?

The catch is that we do not want to make the measure of the box contents
dependent on the ?-weight of e, because it could possibly break or complicate the
induction on which the definitions are based. Also there can be no interaction
before the box is opened, and all steps on the box that are not dereliction ones
bar the possibility of interaction for ever (as a contraction-contraction clash is
created). Moreover the !-weight on eσ should appear in the ! one of e (as the
box could be opened), but applying s-conversion if σ is a sum would put a

120 6.2. Finiteness of Developments

second contraction on e, so !(eσ) would not appear anymore. Invariance under
∼-conversion would be broken, unless we overtly complicate the measures.

We indeed feel that the finite development theorem is valid also without lax
typing: after all the configurations lax typing prohibits cannot be duplicated
and interact with each other (as box linear or regular duplication renders the
clash permanent). However, also because of the counterexample to the striction
lemma shown in Section 4.3.4, which is our main reason for introducing lax
typing, we feel it is right to restrict ourselves to reduction of laxly typed nets.

6.2.2 The Proof, Case by Case

Lemma 6.7. ‖ . ‖ has the following properties.

� if π e→ π′ then ‖π′‖ < ‖π‖;

� if π mc→ π′ then ‖π′‖ ≤ ‖π‖;

� if π ∼ π′ then ‖π′‖ = ‖π‖.

Because of the modularity lemma the proof of all the points above will boil
down to checking the hypotheses on all pairs generating by context closure the
relations above. Before getting to the cases, let us give the complete proof of
the finiteness of developments supposing the above result.

Proposition 6.8 (SN of DiLL◦). Reduction on DiLL◦ is SN.

Proof. Let us consider the measure given by (‖π‖ ,#m(π)+#c(π)) where #m just
counts the multiplicative cells in c!(π), and #c weights coweakenings, weakenings
and boxes contining 0 in the following way:

#c = # { c ∈ c!(π) | σ(c) = !0 }+
∑

c∈c!(π)
σ(c)=?0

(1 + d(c)) +
∑

B∈b!(π)
σ(B)=0

2 deg(B)(1 + d(B)).

Then

� if π e→ π′ the first component strictly decreases;

� if π m→ π′ then ‖π′‖ = ‖π‖, #m(π′) < #m(π) and #c(π) = #c(π′);

� if π n→ π′ then a (co)weakening disappears, so #c(π′) < #c(π), and the
rest is unchanged;

� if π
p→ π′ then either one or more weakenings have their depth strictly

lowered, or, if we are creating a weakening out of a box B with σ(B) = 0,
we have

1 + d(B) + 2(deg(B)− 1)(1 + d(B) = (1 + 2(deg(B)− 1))(1 + d(B))
< 2 deg(B)(1 + d(B)),

and the rest is unchanged;

Chapter 6. Church-Rosser Theorem for Pure DiLL 121

� if π z→ π′ then let B be the reduced box: 1 coweakening and deg(B) − 1
weakenings at depth d(B) are created, but

1 + (deg(B)− 1)(1 + d(B)) ≤ deg(B)(1 + d(B)) < 2 deg(B)(1 + d(B)),

while the rest remains unchanged;

� if π ∼ π′ then all multiplicative, weakening and coweakening cells are in
both polynets and at the same depth, so also #c is constant.

We now begin dealing with the cases.

Multiplicative and dereliction against codereliction.

⊗ ` m→ ` ⊗ 1 ⊥ m→ ε ? !
e→

There is not much to say: all exponential measures clearly remain the same.
The ◦-mark avoids that new exponential path be opened.

Dereliction against box.

λ := d
? !

∑
j ν j ~qp e→

∑
j

ν j ~qp =:
∑

i

µi

If
∑
i µi = 0 then we are done, as |λ| = [|d|] > []. Suppose then that the

contents are not 0. There are no new dormant wires.

Replacement:
!µi(p) = 1 = !λ(p),
?µi(qj) = ?(qνij) ≤ ?(p)(1 +

∑
j !(qj))

∑
i sp(νi)?(qνi) = ?λ(qj).

Spread:∑
i sp(µi) =

∑
i sp(νi) ≤ (1 +

∑
j !(qj))

∑
i sp(νi) = !λ(d) = sp(λ).

Weight:
|µi| = |νi| < [|d|] + (1 +

∑
j !(qj))

∑
i sp(νi) |νi| = |λ| .

Weakening against box.

λ := d
? !

∑
j ν j ~q

e→
?

?
~q =: µ

No new dormant wires.

Replacement: ?µ(qj) = 1 ≤ ?λ(qj),
Spread: sp(µ) = 1 = sp(λ),
Weight: |µ| = [] < |λ| .

122 6.2. Finiteness of Developments

Contraction against box.

λ := ?p2

p1
! π ~q

e→

e1

e2

! π ?

! π ?p2

p1

~q =: µ

The new dormant wires are e1 and e2. Both the nets π in µ have exactly the
same measures as π in λ (because of !-weight on auxiliary contraction ports is
the same as that on the principal one).

Replacement:
?µ(qj) = ?(p1)(1 +

∑
j !(qj))

∑
ν∈π sp(ν)?(qλ)

+ ?(p2)(1 +
∑
j !(qj))

∑
ν∈π sp(ν)?(qλ)

= (?(p1) + ?(p2))(1 +
∑
j !(qj))

∑
ν∈π sp(ν)?(qλ) = ?λ(qj),

!µ(pi) = !λ(d).
Spread:

sp(µ) = 1 = sp(λ).
Weight:
|ei|µ = ?µ(pi) + !µ(pi) < (?λ(p1) + ?λ(p2))!λ(d) = |d| ,
|µ|+ [|e1| , |e2|] = [|e1| , |e2|] + ?(p1)(1 +

∑
j !(qj)) ‖π‖µ + ?(p2)(1 +

∑
j !(qj)) ‖π‖µ

< [|d|] + (?(p1) + ?(p2))(1 +
∑
j !(qj)) ‖π‖λ = |λ| .

Box against box.

λ := d

!
∑

i νi

! σ

p

~q

~r

e→ dνi

! νi

! σ

∑
i ν
′
i

p

~q

~r

=: µ

No new dormant wires. All measures inside both boxes are constant during
this reduction. We suppose

∑
i νi 6= 0, or else the step is trivial. Let ν′i be the

addend inside the second box in µ, corresponding to νi. If B is the box with
the νis inside in both nets then

#λ(B) = ?(p)(1+!λ(d)+
∑
k(rk)) = ?(p)(1+(1+

∑
h !(fh)) sp(σ)+

∑
k !(rk))

> ?(p)(1 +
∑
h !(fh) +

∑
k !(rk)) = #µ(B),

where sp(σ) = 1 if σ = 0, and the sum of its spreads otherwise.

Chapter 6. Church-Rosser Theorem for Pure DiLL 123

Replacement:
?µ(qj) = #µ(B)

∑
i sp(ν′i)?

µ(qν
′
i)

= #µ(B)
∑
i

(
sp(νi)?µ(dνi)(1 +

∑
h !(qh))

∑
κ∈σ ?µ(qκ)

)
<
(
#λ(B)

∑
i sp(νi)?λ(dνi)

)
(1 +

∑
h !(qh))

∑
κ∈σ ?λ(qκ)

= ?λ(d)(1 +
∑
h !(qh))

∑
κ∈σ ?λ(qκ) = ?λ(qj),

?µ(rj) = #µ(B)
∑
i sp(ν′i)?

µ(rν
′
i) < #λ(B)

∑
i sp(νi)?λ(rνi) = ?λ(rj).

Spread:
sp(µ) = 1 = sp(λ).

Weight:
|dνi |µ = ?µ(dνi) + !µ(dνi) < #λ(B)

∑
i sp(µi)?λ(dνi) + !λ(d) = |d|λ ,

|µ| ≤ #µ(B)
∑
i sp(ν′i)

(|νi|+ [|dνi |µ] + ?µ(dνi)(1 +
∑
h !(qh)) ‖σ‖)

< #λ(B)
∑
i sp(νi) [|νi|] + #λ(B)

∑
i sp(νi) |νi|

+
(
#λ(B)

∑
i sp(νi)?λ(dνi)

)
(1 +

∑
h !(qh)) ‖σ‖

< |d|λ + #λ(B) ‖∑i νi‖+ ?λ(d)(1 +
∑
h !(qh)) ‖σ‖ = |λ| .

Contraction against cocontraction

λ := d
? !p2

p1 q1

q2

e→
e1 f1

e2 f2

! ?

! ?

p1

p2

q1

q2

=: µ

The new dormant wires are all e1, e2, f1 and f2.

Replacement:
!µ(pi) = !(q1) + !(q2) = !λ(pi), ?µ(qi) = ?(p1) + ?(p2) = ?λ(qi).

Spread:
sp(µ) = 1 = sp(λ).

Weight:
|ei|µ = !(pi)(?(q1) + ?(q2)) < (!(p1) + !(p2))(?(q1) + ?(q2)) = |d|λ ,
|fi|µ = ?(qi)(!(p1) + !(p2)) < (?(q1) + ?(q2))(!(p1) + !(p2)) = |d|λ ,
|µ|+ [|e1| , |e2| , |f1| , |f2|] < [] + |d|λ = |λ| .

Dereliction against cocontraction. (and codereliction against contraction)

λ := d
? !

q1

q2
p e→

f2

? !
?

f1
q1

q2
p +

f1

? !
?

f2

q1

q2
p =: µ1 + µ2

f1 and f2 are the new dormant wires.

Replacement:
!µi(p) = 1 = !λ(p), ?µi(qj) = 1 = ?λ(qj).

Spread:
sp(µ1) + sp(µ2) = !(q1) + !(q2) = sp(λ).

Weight:
|µ|+ [|f1|, |f2|] = [1 + !(q1), 1 + !(q2)] < [1 + !(q1) + !(q2)].

124 6.2. Finiteness of Developments

Dereliction against coweakening. Trivial, as it is a reduction to 0, and the
same for codereliction against weakening.

Codereliction against box.

λ :=

d

!
∑

i νi

!
p

~q

r
e→ ∑

i =:
∑

i µi

No new dormant wires. We may suppose
∑
i νi 6= 0, as otherwise it is trivial.

In µi both the νi outside the box and the νjs inside get the same measures. If
B is the box, then

#λ(B) = ?(p)(2 +
∑
h !(qh)) = ?(p) + #µ(B) ≥ 1 + #µ(B).

Replacement:
!µi(p) = 1 + (1 +

∑
h !(qh))

∑
j sp(νj) ≤ (2 +

∑
h !(qh))

∑
j sp(νj) = !λ(p),

?µi(qh) = ?µi(qνih) + #µi(B)
∑
j sp(νj)?µ(qνjh)

≤∑j sp(νj)?λ(qνjh) + #µi(B)
∑
j sp(νj)?λ(qνjh)

≤ #λ(B)
∑
j sp(νj)?λ(qνjh) = ?λ(qh),

?µ(r) = 1 = ?λ(r).
Spread:∑

i sp(µi) =
∑
i ?(p) sp(νi)?µi(d) = ?(p)

∑
i sp(νi)?λ(dνi)

≤ ?(p)(1 +
∑
h !(qh))

∑
i sp(νi)?λ(dνi) = ?λ(d) = sp(λ).

Weight:
|d|µi = ?µi(d) + 1 = ?λ(dνi) + 1 < ?λ(d) + 1 = |d| ,
|dνj |µi = ?µi(dνj) + 1 = ?λ(dνj) + 1 < |d| ,
|µi| ≤ |νi|+ [|d|µ] + #µ(B)

∑
j sp(νj)([|dνj |] + |νj |)

≤ [|d|µ] + #µ(B)
∑
j sp(νj)[|dνj |] + (1 + #µ(B))

∑
j sp(νj) |νj |

< [|d|λ] + #λ(B)
∥∥∥∑j νj

∥∥∥ = |λ| .

Cocontraction against box

λ :=

d

!
∑

i νi

!
p

~q

r1

r2 e→ dνi

e1

e2

!
∑

i νi

!
p

~q

r1

r2
=: µ

As usual, we consider only the case in which
∑
i νi 6= 0. Let B be the box, and

e1 and e2 the new dormant wires.

Chapter 6. Church-Rosser Theorem for Pure DiLL 125

Replacement:
!µ(p) = (1 +

∑
h !(fh))

∑
i sp(νi) = !λ(p),

?µ(qh) = #µ(B)
∑
i sp(νi)?µ(qνi) = ?λ(qh),

?µ(rj) = #µ(B)
∑
i sp(νi)?µ(dνi) = ?λ(rj).

Spread:
sp(µ) = 1 = sp(λ).

Weight:
|dνj |µ = ?µ(dνj) + !(r1) + !(r2) ≤ #λ(B)

∑
j sp(νj)?λ(dνj) + !(r1) + !(r2) = |d| ,

|µ| ≤ #µ(B)
∑
j sp(νj)([|dνj |µ] + |νj |) = #λ∑

j sp(µj)[|dνj |µ] + #λ(B)
∥∥∥∑j νj

∥∥∥
< [|d|] + #λ(B)

∥∥∥∑j νj

∥∥∥ = |λ| .

Coweakening against box. No different, if easier, than the previous step.
Now we check that the measure is invariant under equivalence and non in-

creasing for the corresponding reductions. The modularity lemma can be applied
a second time exchanging the roles of λ and µ, so it can be used also for checking
equality.

Associative conversion. This is completely straightforward, as the opera-
tion on weights assigned to (co)contractions is sum, which is associative.

Neutral reduction.

λ := !
!

p
q
n→ p q =: µ

Clearly !µ(p) < 1 + !(q) = !λ(p) and ?µ(q) = ?λ(q), which suffices.

Bang sum conversion.

λ := !

∑
i νi

+∑
j κ j

p ~q s∼ !

!
∑

i νi

!
∑

j κ j

?

?

p ~q =: µ

The conversion does not create new dormant wires. Moreover if B is the box
on the left, then #λ(B) is the count also of both boxes on the right. Also the
contents of the boxes, which we denote by B′ and B′′, get the same measures.
Recall that such contents are required to be non zero.

Replacement:
?µ(qh) = #µ(B)

(∑
i sp(νi)?(eµ(qνih) +

∑
j sp(κj)?(eµ(qκjh)

)
= ?λ(qh),

!µ(p) = (1 +
∑
h !(qh))

(∑
i sp(νi) +

∑
j sp(κj)

)
= !λ(p),

Spread:
sp(µ) = 1 = sp(λ);

Weight:
|µ| = #µ(B′)‖∑i νi‖+ #µ(B′′)‖∑j κj‖ = #λ(B)(‖∑i νi‖+ ‖∑j κj‖) = |λ|

126 6.3. Confluence of Developments

Bang zero reduction. Straightforward check.

Push equivalence.

λ := !
∑

i νi
?

d
e

p
~q

r
p∼ !

∑
i νi

?
dνi

eνi
p

~q

r
=: µ

Here we have only to check for ?(r), as the rest is trivial.

?µ(r) = #µ(B)
∑
i sp(νi)(?µ(dνi) + ?µ(eνi))

= #λ(B)
∑
i sp(νi)?λ(dνi) + #λ(B)

∑
i sp(νi)?λ(eνi) = ?λ(r).

Pull reduction. The total extraction, which does not split the box, is a
straightforward simplification of the above point. The partial one can be re-
covered from the total applying an s-conversion, a total p-reduction and a num-
ber of n-reductions. Combining these steps we can infer the decrease of the
measures.

6.3 Confluence of Developments

Recall that∼ and c may be a-equivalence and n-reduction, or full asp-equivalence
and nzp-reduction. We will see we cannot separate s-equivalence from the p one
(and similarly for their associated reductions).

Proposition 6.9. Reduction on DiLL◦ is CR∼. Moreover:

� ec is CR∼;

� m is strongly confluent;

� ec commutes with m, i.e. m∗←ec∗→ ⊆ ec∗→ m∗←.

The last point can be furtherly strengthened by m←ec→ ⊆ ec→ m∗←.

Notice that, as expected, the two points about multiplicative reduction do
not rely on ∼. The proof relies on the strong normalization property of DiLL◦ we
proved in the previous section, and the analog of Newman’s lemma in reduction
modulo, Lemma 4.2. We therefore have to prove the two remaining hypotheses,
as usual by going through the cases: local confluence modulo ∼ (Lemma 6.13),
and local coherence with the generating relation 7−[. Before going into that we
first cut on the critical pairs to look at, and then settle the two easy points of
the proposition.

Lemma 6.10. If π′ x← π ec→ π′′ with the left reduction being one of any kind on
a redex contained in a box B, and the right one a reduction on B, then π′ and
π′′ are joinable by π′ ec→ x∗← π′′, with the sole exception of the left reduction being
an e one turning an addend of σ(B) to 0, and right one being a pull reduction
on that addend. In this very special case we can join by π′ e→c∗→ p=← π′′.

Chapter 6. Church-Rosser Theorem for Pure DiLL 127

Proof. Let 1← and 2→ be the two diverging reductions. The special case is the
only one in which the redex of 2→ is deleted by 1←. In every other cases firing 2→
the contents of B are either deleted or glued in one or two copies in the reduct
(after which the copies may be even more due to additive “duplication”), and
the same happens when we fire the unique redex of 2→ in π′. We may then fire
all copies of the redex of 1← in π′′ and join the peak, without even relying on ∼.

As for the special case, if the p reduction is total the confluence diagram
is trivial, as we can still extract a weakening from B if σ(B) turns to 0. For
the partial one, if the detached box in the p-reduct gets its contents reduced to
0, then we can make such box disappear by a z-reduction and several n ones,
reducing to π′′.

We get as a direct consequence the commutation of ec and m, for the whole
of DiLL in effect.

Lemma 6.11. We have m←ec→ ⊆ ec→ m∗←, which in particular implies m∗←ec∗→ ⊆ ec∗→ m∗←.

Proof. For the first part, suppose π′ m← π ec→ π′′. If the redexes are completely
orthogonal then π′ ec→Σm← π′′: the ec reduction may introduce sums (see page 37
for the definition of the sum reduction), while the m cannot. If they are not
orthogonal then they must fall in the hypotheses of the above lemma and we
again get ec→ m∗←.

For the implication, it is a direct consequence of a lemma by Huet [Hue80],
stating that given two reductions 1→ and 2→ such that 1← 2→ ⊆ 2=→ 1∗← then the two
reductions commute.

As usual, dealing with m→ is straightforward.

Lemma 6.12. The m reduction is strongly confluent.

Proof. Direct consequence of Proposition 2.12 for interaction nets.

6.3.1 Local Confluence Modulo

So finally we embark on the proof of local confluence of ec alone.

Lemma 6.13. The ec reduction is locally confluent modulo ∼ in DiLL◦.

Here c and ∼ can either be n and a∼ alone, or the full ones.
Because of Lemma 6.10, we need only to look for peaks happening at the

same depth. Most of the numerous critical pairs are straightforward and left to
the reader. We just give a complete list with a short description for those2.

� Box on box on dereliction, weakening or contraction, or two boxes on a
third: these are in LL and therefore are known. The one with dereliction
just needs to take into account the sums that may have arisen. One just
takes uses the Σe→ version of the steps taken in LL.

� Any combination of substituting boxes with coweakenings and cocontrac-
tions in the cases above: coweakenings and cocontractions on a box behave
the same way as a box, so the confluence diagrams are identical.

2More cases will be added in an imminent revision of the thesis.

128 6.3. Confluence of Developments

� Codereliction and either box, coweakening or cocontraction on box: easy
by duplicating the box, coweakening or cocontraction with the contraction
created by the codereliction, and making a copy enter inside the box (all
this on each addend created by the codereliction).

� Codereliction on box on weakening: both sides of the peak reduce to 0.

� Neutral reduction against a reduction on the relative (co)contraction: join-
able using (co)weakening steps.

� z reducible box against (co)dereliction: both sides reduce to 0, either
by opening (a linear copy of) the 0 box or by (co)dereliction against
(co)weakening.

� z reducible box on contraction or weakening: easy, the former needs n-
reductions.

� z reducible box on box: straightforward, but needs a total pull reduction,
as if we z-reduce the box inside we need to get the created weakenings
outside.

� Every other reduction on a z-reducible box: easy, anything entering a 0
box disappears, but so does when cutting against a weakening.

� Total pull reduction and a reduction on the same box but not the same
wire: straightforward by pulling all the residuals of the weakening (or
leaving them be if the box got opened).

� Total pull reduction and a codereliction on the same wire: both reduce to
0.

� Total pull reduction and any other cell on the same wire: straightforward,
the result of reducing a weakening inside or outside is the same, provided
we then pull all the produced weakenings out.

� Partial pull reduction: using the same reasoning we will do for s-equivalence
in the proof of Lemma 6.14, together with the above one gets all the con-
fluence diagrams needed.

� Codereliction on box on dereliction: the confluence diagram is shown in
Figure 6.2. We use the fact that

?!
!

e∗→
?

as the other addend reduces to 0. Notice that we must use the neutral
reduction of weakening.

� Codereliction on box on contraction: Figure 6.3 shows this confluence dia-
gram. Here we need both the neutral rule of coweakening and associativity
of contraction.

� Two coderelictions on box: the resulting reduction is shown in Figure 6.4.
The two diverging one step reductions are joined symmetrically, but only
if we and have associativity of (co)contractions.

Chapter 6. Church-Rosser Theorem for Pure DiLL 129

?!π!

π!

→

e

π!

?
?

d n∗

?!
!π!

!π!

?
?

?!
!π!

!π!

?

d

e∗

→e

ce∗

Figure 6.2: Confluence diagram of codereliction on box on dereliction.

!π!
?

!π

!π
?!

?

→

e

!π!

!π!

!π!

?
? !

d

e∗

!π!

!π!

!π!

?
? !

!π!

!π!

!π!

?
?

?

!

!

!

!π!

!π!

?
?

· · ·+ + · · ·

d

e∗

d

en∗

e→

a∼

Figure 6.3: Confluence diagram of codereliction on box on contraction. The
+ . . . part indicates a symmetric addend.

130 6.3. Confluence of Developments

!π!

!

b

a
e→ !

!π!

!π
!

?

?!

e∗→ !

!π!

!

!π!

!

?

+ !
!

!π!

!

!π!

!

!π!

!

??

Figure 6.4: Reduction of a box with two coderelictions on it. Starting with
codereliction b swaps the two linear copies of the box contents and therefore
both the cocontraction and contraction trees in the last addend.

6.3.2 Local Coherence

Lemma 6.14. The ec reduction is locally coherent with both a7− [and
asp7− [in DiLL◦.

Lemma 6.10 applies also by replacing the ec-reduction by a 7− [conversion,
except the reduction to zero, given that all the equivalences are explicitly for-
bidden on boxes containing 0. Also the p-conversion forms a critical pair with
a reduction deleting a contraction by neutrality.

The actual confluence diagrams are left to the reader. Here is a complete
list with sketched explanations.

� All critical pairs with associativity: trees of contractions and cocontrac-
tions are known to behave like generalized n-ary (co)contractions. In
particular when dealing with a tree of two nested (co)contraction, it suf-
fices to complete the reduction on both to join the peak. Neutrality on
associativity is trivial.

� Box, coweakening or cocontraction on a s conversion: on one side they
enter the box getting additively duplicated inside, while on the other they
are duplicated by a contraction before entering. In any case another s
conversion closes

� Dereliction on a s conversion: on one side the net is additively split by
opening the box, on the other the net is split first by the dereliction on co-
contraction rule, then depending on the box chosen the other gets deleted,
and finally closing with n-reductions we obtain the same net.

� Contraction or weakening on a s conversion: both traverse the two sides
doing the same operations, on one side by being duplicated by the leading
cocontraction.

Chapter 6. Church-Rosser Theorem for Pure DiLL 131

� s-convertible box on another box: both sides may enter the box, safe for
the trailing contractions, which must be settled by a push conversion.

� Codereliction on a s conversion: this diagram is shown in Figure 6.5.

� Reduction to zero taking an addend of the conversion: on the side where
the box is split, we z-reduce the box and by n-reductions we get exactly
to the other side.

� Pull reduction on s-conversion: the pull is designed to integrate a sort of
s-conversion step, so that it may be always performed on two sides of a
conversion. n-conversion does the rest.

� Box, coweakening or cocontraction on a p conversion: the cell gets dupli-
cated and enters the box on both sides, but in opposite order.

� Dereliction on a p conversion: the reductions on the two sides are equal.

� Contraction or weakening on a p conversion: the way in which contrac-
tions are stacked may change, but a-conversion (and n-reduction) ensures
joinability.

� p-convertible box on another box: apart from having to exit/enter two
boxes on one side, the two are the same.

� Codereliction on a p conversion: additive splitting and box opening happen
on both sides, but in different order.

� Reduction to zero of the p-converted box: by c-normalization we get just
weakenings and coweakenings on both sides.

� Pull reduction on p-conversion, on different auxiliary ports: we can p-
convert all boxes involved, we just have to reorganize the stack of contrac-
tions by a-conversion.

� Pull reduction on p-conversion, with the weakening on an auxiliary port
interested by the conversion: pull and neutral reductions join the two
sides.

� Neutral reduction on p-conversion: n-reduction can block the conversion
on one side by destroying the contraction of an addend. This is joined by
a possibly partial p-reduction and then by a full asp conversion.

132 6.3. Confluence of Developments

!π1 + π2
! p7− [!

!π1

!π0

!

!!

→
e

→

e

∑
i=0,1

!

!π1 + π2

!πi
!

! !

∑
i=0,1

!

!π1−i

!πi
!

!

!

s∼

99K e∗

∑
i=0,1

!
!

!π1
!

!π0
!

!πi
!

?
?

a∼ ∑
i=0,1

!
!

!π1
!

!π0
!

!πi
!

?
?

!
!

Figure 6.5: Coherence diagram between the bang sum equivalence and a co-
dereliction.

Chapter 7

Standardization and
Conservation Theorems

In this chapter we will prove other fundamental properties borrowed from λ-
calculus and LL. Following Barendregt’s terminology for λ-calculus, as found
in [Bar84], we will prove standardization (Theorem 7.1) and conservation (The-
orem 7.2). The first states that each reduction chain can be turned into a
standard which, in LL terms, proceeds in order of depth. The latter states that
non erasing reduction (in λ-calculus those redexes where the bound variable
occurs at least once) conserves infinite reductions, and that weak normalization
for non erasing reductions is therefore equivalent to strong normalization of the
usual one. Like the finite developments for confluence, the conservation theorem
is a stepping stone for results of strong normalization, with the advantage of
being set in the (essentially) untyped case (see [PTdF08]).

First of all let us define what exactly erasing reductions are. These must
clearly contain the following one:

� weakening on box (this was the only erasing one in MELL);

� all those reducing to 0, namely weakening (resp. coweakening) on codere-
liction (resp. dereliction) and (co)dereliction on a box containing 0;

� all reductions which erase a box, cocontraction or coweakening by making
them enter a box containing 0;

For a number of technical reasons, we generalize and add in more reductions. We
denote by er→ all the ones reducing redexes containing at depth 0 a weakening,
coweakening or box containing 0, together with all the canonical reductions. By
¬er−→ (non erasing reduction) we denote all the other ones.

Standardization is broken by ps-conversions and pz-reductions (as is in LL
for the push and pull rewriting rules), and we need it also for non erasing reduc-
tions in the proof of the conservation theorem. Therefore just in the following
statement let → denote either ¬er−→ or mec−→∼ with c just the neutral reduction and
∼ just the a-equivalence.

Theorem 7.1 (Standardization). Given a laxly typed DiLL proof net π, if π ∗→
π′, where then there is a reduction chain (called standard) from π to π′ such
that if ci is the sequence of cuts fired, the depth d(ci) is monotone increasing.

133

134

The following is valid for the full reduction.

Theorem 7.2 (Conservation). Given a laxly typed DiLL proof net π, it is
strongly normalizing modulo ∼ if and only if it is weakly normalizable for non
erasing steps.

Combining the result by Pagani of weak normalization for simply typed DiLL
contained in [Pag09] we get the following.

Corollary 7.3. Simply typed DiLL proof nets are strongly normalizing mod-
ulo ∼.

The next section will be devoted to the proof of the standardization theorem,
which mirrors from a distance the corresponding one for λ-calculus as shown
in [Bar84]. In particular it makes use of the finite developments theorem.

For the conservation property the basic idea is to adapt the proof of the same
result for LL [PTdF08]. So we want to use the method employed by Gandy in
his proof of normalization of Gödel’s system T, based on an increasing measure.
In fact, Gandy’s work is based on a lemma usually attributed to Nederpeld.

Lemma 7.4 (Nederpeld). Let (A,→) be an abstract reduction system such that

� → is confluent;

� there is a measure ‖ . ‖ such that t→ t′ implies ‖t‖ < ‖t′‖.
Then t is weakly normalizable if and only if it is strongly so.

The following is the same result adapted to reduction modulo.

Lemma 7.5. Let (A,→) be an abstract reduction system with an equivalence
relation ∼ on A such that

� → is Church Rosser modulo ∼;

� there is a measure ‖ . ‖ such that t → t′ implies ‖t‖ < ‖t′‖ and t ∼ t′

implies ‖t‖ = ‖t′‖
Then t is weakly normalizable if and only if it is strongly normalizable modulo ∼.

Proof. Suppose t is WN, with a normal form n (unique modulo ∼). For every
t′ with t ∗→∼ t′ we have t′ ∗→∼ n by CR∼, and thus ‖t′‖ ≤ ‖n‖. Therefore no
reduction from t can infinitely increase ‖ . ‖. In fact no reduction can be longer
than ‖NF(t)‖ − ‖t‖.

Gandy’s method amounts to applying this lemma to non erasing reduction,
by enriching the language with increasing counters. The final result is achieved
by applying a delaying lemma stating that erasing steps can always be post-
poned.

DiLL however suffers from a serious drawback, contrary to what happens in
LL: the confluence property fails for non erasing reduction. In fact the same
net shown in Figure 4.12 to justify lax typing, shows how confluence fails. The
unjoinable critical peak is the one of dereliction on box on codereliction, as
shown in Figure 6.2. One can notice there that the erasure of a box is definitely
needed, in fact together with a reduction to 0 of an addend.

Chapter 7. Standardization and Conservation Theorems 135

In Section 7.2 we will therefore present a modified version of the system,
DiLL∂%, where the roles of dereliction and codereliction are replaced by new
cells and where non erasing reduction is confluent. Section 7.3 uses Gandy’s
method on DiLL∂%, and a final lemma (Lemma 7.26) is used to then transfer
conservation to DiLL.

7.1 Proof of the Standardization Theorem

For the remainder of this section only,→ denotes ¬er−→ ormec→∼ , with just n-reduction
and a-conversion. In the following let us denote by →0 (resp. →>0) a → step
happening at depth 0 (resp. greater than 0).

Lemma 7.6. If in DiLL◦ we have π ∗→ σ, then π ∗→0
∗→>0 σ.

Proof. Using the finite developments theorem (Theorem 6.1), we can reason
by well founded induction on π. If π = σ we are done. Otherwise by in-
ductive hypothesis we have π ¬er−→ ∗→0

∗→>0 σ. We can suppose the reduc-
tion is π →>0

+→0
∗→>0 σ, otherwise we are finished. If we thus show that

→>0→0 ⊆ →0
¬er∗−→ we can conclude: we get π →0 π′′ ¬er∗−→ σ, and applying

again the inductive hypothesis on π′′ gives the needed shape of reduction.
The only interesting case is when →0 touches a box B and →>0 happens

inside it, as otherwise they are orthogonal and reorderable. In such cases it is
straightforward by inspection of the rules that the 0-depth redex is present at the
start and we have →>0→0 ⊆ →0

¬er∗−→ by firing all the copies of the redex inside
B, where such copies may have an increased or decreased depth. a-conversions
do not interfere with this reasoning.

Lemma 7.7. Also in DiLL, if π ∗→ σ, then π ∗→0
∗→>0 σ.

Proof. Let →q (resp. →q 0 and →q >0) be the parallel version of → (resp. for depth
0 and greater than 0, see page 111). Namely, λ →q µ if and only if λ ∗→ µ′ in
DiLL◦ and µ is µ′ without the marks (and similarly for →q 0 and →q >0). Now
notice the following:

� →q >0→q 0 ⊆ →q : no reduction inside →q 0 can be blocked by a mark created
by →q >0;

� Lemma 7.6 directly assures that →q ⊆ →q 0→q >0, so →q >0→q 0 ⊆ →q 0→q >0.

It is then immediate, by iterating such inclusion, that

(→q 0 ∪→q >0)∗ ⊆ (→q 0)∗(→q >0)∗ = ∗→0
∗→>0.

As
¬er−→ =→0 ∪→>0 ⊆ →q 0 ∪→q >0,

we finally get that ¬er∗−→ ⊆ ∗→0
∗→>0.

Proof of Theorem 7.1. We prove that π ∗→ σ can be turned into a standard
reduction by induction on the depth of σ. First, apply Lemma 7.7 to get π ∗→0

π′ ∗→>0 σ. We notice here that π′ has the same structure at depth 0 than σ, i.e.
they are equal up to the contents of boxes at depth 0. Let µi be all the polynets

136 7.2. DiLL∂%

Cells and typing rules

?A

A ?A
%

!A

A !A
∂

Linear query Linear substitution

Translation πM from DiLL to DiLL∂%

? 7→ %

?

! 7→ ∂

!

Translation πO from DiLL∂% to DiLL

% 7→ ?

?

∂ 7→ !

!

Figure 7.1: The cells ∂ and % of DiLL∂%, and the translation from and to DiLL.
The cells are not commutative, but may be drawn with swapped inactive ports,
hence the special marking of the left port. % is switching, ∂ is not.

inside boxes in b0(π′), which therefore have each a corresponding polynet νi in
b0(σ) with µi

¬er∗−→ νi.
By inductive hypothesis there are standard chains Ri from µi to νi. Then

we can go from π′ to σ′ by taking all reductions in the Ris in order of depth (as
reductions in different boxes can be safely reordered), and we conclude.

Notice that ps-equivalences and pz-reductions break this result, as these rely
on the contents of a box, so they cannot be brought before reductions at greater
depth in general.

7.2 DiLL∂%

DiLL∂% is obtained by removing from DiLL the dereliction and codereliction
cells and adding in the two cells ∂ (linear substitution) and ρ (linear query)
shown together with their lax typing rules in Figure 7.1. In the same figures
are defined two translations from DiLL nets to DiLL∂% ones and back, defined
by substituting the missing cells. We denote these translations by πM and πO

respectively. DiLL∂% proof nets are defined by setting also % as switching, as
hinted by the corresponding translation into DiLL. It is in fact straightforward
then that π in DiLL∂% is correct iff πO is, and the same for σM.

The translation should already give an idea of what the missing reduction
rules are. However we will introduce them already together with the labelling
needed by Gandy’s method.

Chapter 7. Standardization and Conservation Theorems 137

7.2.1 Labelled Nets and Reduction

Given a polynet π, let fn(π) be the set of occurrences of its nets. By the
definitions given in Section 2.1.3, this gives for polynets with boxes a function
fn!(π), the flat nets of π, giving the set of all nets occurring in π, whether
at depth 0 or in a box. We define a labelling ` of a DiLL∂% π a function
` : fn!(π)→ N \ 0, and a labelled DiLL∂% net σ as one having a labelling `σ.

Reduction rules then act also on the label of the unique net containing the
redex at depth 0. More precisely, labelled contexts are defined in the same way
as for regular polynets, but for the lack of a label for the net containing the hole
at depth 0. Module plugging is defined as usual on the underlying nets, while
the label of each simple module expands to be the label missing in the context.
The precise definition goes as follows: for ω[] = ψ[δ[]+π] where δ[] is linear (so
the only flat net of ω[] missing a label), and µ =

∑
µi with µi simple modules,

then

`ω[µ](σ) =

`ω[](σ) if σ ∈ fn!(ω[]) \ {δ[]},
`µ(σ) if σ ∈ res(σ′) with σ′ ∈ fn!(µ) \ {µ},
`µ(µi) if σ = δ[µi].

Reductions become a function from labelled simple modules to labelled poly-
modules. We will draw the label of a flat net by writing it inside a circle. Such
reductions are shown in Figure 7.2, where also the markings of the variant DiLL◦∂%
are shown, where “new” cuts are blocked (see Section 6.1). Accompanying the
reductions is also the needed associative equivalence. A notable difference with
DiLL will be however having confluence without the neutral reduction, which
will be considered among the erasing reductions1. Figure 7.3 shows the new
pairs generating the associative equivalence, on top of the ones already known.

Lemma 7.8 (DiLL◦ simulates DiLL◦∂%). For π a DiLL◦∂% proofnet, if π e→∼ σ, then

πO en+−→∼ σO in DiLL◦, where in both ∼ = a∼.

Proof. It suffices to translate all redexes (and conversion instances) and reduce
(resp. convert) them. We show only the linear substitution on linear query and
the linear substitution on box. The others are straightforward.

Regarding the former, we have

% ∂
O
= ?

?
!

!
e→ ! ?

! ?

? !

e→ ! !

!

!

?

?
+

! !

!

!

?

? en∗−→ 0 + +
!

!

?

?

=
O
+

∂ %
O
.

1In fact, considering neutral reduction would even introduce some complications. As it
stands, neutral reduction breaks local coherence in DiLL∂%.

138 7.2. DiLL∂%

⊗ `
n
m→ ` ⊗

n + 1

% ∂

n
e→

n + 1
+

∂ %

n

% !
n
e→

!
%

n

+
! %

n

, ∂ ?

n
e→ 0

∂ ?
n
e→

?
∂

n

+
? ∂

n

, % !

n
e→ 0

! π%

n

e→
π

! π

?

?

n + 1

!π
∂ n

e→ ∂

!π

π
∂

?

?

?
n

Figure 7.2: Reduction rules of labelled DiLL◦∂%. All combinations not shown
are the same as in DiLL, with labels left unchanged.

?
%

a7− � %
?

%
%

a7− � %
%

!
∂

a7− � ∂
!

∂
∂

a7− � %
%

Figure 7.3: The new associative equivalences.

Chapter 7. Standardization and Conservation Theorems 139

As for the latter, we have (with a box with only two auxiliary ports for brevity)

!π
∂

O

= !πO
!

!
e→ !πO

!!

e→ !

!πO
!!

!πO
!

!

?

?
n∗→ ∂

!π

π
∂

?

? O

.

A direct consequence of the above lemma and of Theorem 6.1 is the finiteness
of developments of (unlabelled as well as labelled) DiLL∂%.

Proposition 7.9. The reduction me on labelled DiLL◦∂% proofnets is strongly
normalizing modulo a∼.

Lemma 7.10 (DiLL∂% simulates DiLL). If in DiLL π e→∼ σ then πM en+−→∼ σM in
DiLL∂%.

Proof. Not much different from the proof of Lemma 7.8.

7.2.2 Confluence of Labelled Non Erasing Reduction

Having in hand Proposition 7.9, we aim at proving confluence of the labelled
and non erasing reduction in DiLL∂%, by refollowing the steps taken for proving
confluence of DiLL. In DiLL∂% the erasing and non erasing reductions have the
same definition as in DiLL, just replacing the roles of dereliction and codereliction
with the new cells.

The rest of this section will be dedicated to prove the following result. As
usual, ∼ denotes either a∼ or

asp∼ .

Lemma 7.11 (Confluence of ¬er). The non erasing reduction is CR∼ for `-
DiLL∂%.

As we have Proposition 7.9 (finite developments), and lemmas 6.10, 6.11 and
6.12 are trivially still valid in DiLL◦∂%, again it suffices to check the two following
results in DiLL◦∂%.

Lemma 7.12 (Local confluence of ¬er). The non erasing reduction is locally
confluent modulo ∼ on DiLL◦∂%.

Proof. First let us note that we cannot use the simulation result (Lemma 7.8),
as it, together with CR∼ of DiLL◦, gives indeed CR∼ in DiLL◦∂%, but of plain
e reduction (simulating DiLL reduction uses erasing reductions). Apart the
confluence diagrams in common with DiLL (which can be seen to using only
non erasing reductions if the critical peak is non erasing), the only non trivial
diagrams are those of two ∂ cells against a box and ∂ on box on %.

140 7.3. Proof of the Theorem

!π∂

∂

¬er−→ ∂

!π

π
∂

?∂

?

?

¬er∗−→
∂

!π

π∂

∂

?

?

?

+
∂

∂

!π

π∂

π
∂

?

?

??

?

?

Figure 7.4: Reduction of the critical peak with two ∂ cells on a box. The box
has only one other auxiliary port for brevity. Starting with the other ∂ cell is
completely symmetric, and an a-conversion equates the two results. Labels are
omitted as they are unaffected.

For the former, Figure 7.4 shows the reduction starting with one of the two
∂ cells. The other ∂ cell leads to a symmetric form where the only difference
is the order of the rightmost ∂ cells and the shape of the contraction trees, so
that an a-conversion equates the two results. We do not write the labels as they
remain unchanged throughout the reduction.

For the latter, Figure 7.5 shows the confluence diagram. We recall that Σr→
is the reduction that make at most a step in each simple addend.

Lemma 7.13 (Local coherence of 7− [with ¬er). The relation 7−[generating ∼
is locally coherent with non erasing reduction.

Proof. Again, we must check all coherence diagrams. The majority is trivial,
or a variant over the ones we have shown for local confluence. We show an
interesting one in Figure 7.6, a ∂ cell on a s-convertible box. This is the only
diagram that needs the “mixed” associativity rule between cocontraction and
linear substitution. Labels are omitted as they are unaffected. Recall that
π1, π2 6= 0 is required by the s-conversion, so that no step is forbidden by non
erasing discipline.

7.3 Proof of the Theorem

In the first part of this section, we will briefly finalize the proof of the conserva-
tion theorem for DiLL∂%, while the second will show how to transport the result
to DiLL.

Chapter 7. Standardization and Conservation Theorems 141

!π

π

?

?∂

n + 1

¬er∗99K
!π

π∂

?

?

n + 1

+
∂

!π

π

π

∂

?

?

?

?

n + 1

¬er → a∼

!π
∂

%

n

!π

π∂

?

?

n + 1

+

!π

π

π∂

?

?

?

?

∂

n + 1

¬er

→

99
K¬er∗

∂

!π

π∂

%

?

?

n

¬er∗99K
!π

π∂

?

?

n + 1

+
!π

π∂

?

?

% ∂

n

Figure 7.5: Confluence diagram of the ∂ on box on % critical peak.

142 7.3. Proof of the Theorem

!π1 + π2
∂

s7− [
!

!π2

!π1

?

?∂

¬er ↓ ↓ ¬er

∑
i=1,2

∂

!π1 + π2

πi
∂

?

? ∑
i=1,2

!

!π3−i

!πi
∂

?

?

s∼

99K ¬er∗

∑
i=1,2

∂
!

!π3−i

!πi

πi
∂

?
?

?
? a∼ ∑

i=1,2

!

!π3−i

∂
!πi

πi
∂

?
?

?
?

Figure 7.6: Coherence diagram of a ∂ cell on an s-conversion.

For the remainder of this section we make a slight change to the reduction
rules: we will consider only total pull reductions, leaving out the partial one.
This breaks the Church-Rosser property, but we have the following easy property.

Lemma 7.14. If π is strongly normalizing for all reductions without the partial
pull one, then it is so for all reductions.

Proof. Straightforward, as the partial p-reduction can be recovered as an s-
conversion followed by a total p-reduction and an n one.

This change is required for Lemma 7.18.

7.3.1 Conservation for DiLL∂%

Proposition 7.15. Given a net π in DiLL∂%, we have that π ∈ SN∼ ⇐⇒ π ∈
WN¬er .

In order to arrive to this result we employ as already explained Gandy’s
method. We thus first prove the following intermediate result. The proof of the
proposition is postponed to the end of this section.

Lemma 7.16. Given a net π in DiLL∂%, if π ∈WN¬er then π is SN∼ for ¬er−→.

Proof. We define a measure JπKG ∈ N on labelled DiLL∂% nets, and show it is

Chapter 7. Standardization and Conservation Theorems 143

increasing on reductions and invariant on conversions. Let

`!(π) :=
∑

λ∈fn(π)

`π(λ), #∂(π) := #{ c ∈ c!(π) | σ(c) = ∂ },

#!
i(π) := # { c ∈ ci(π) | σ(c) = !2 }+

∑
B∈bi(π)
σ(B) 6=0

(2 #σ(B)− 1). (7.1)

The parameter i lets us slice #! by depth. We then let

JπKG := `!(π) + #∂(π) +
d(π)∑
i=0

(1 + i) #!
i

Put in words, we sum all labels, and then the number of ! cells (cocontractions
!2 and boxes), weighted by their depth and, in the case of boxes, by 2n−1 where
n is the number of addends in them.

Suppose ω[] has its hole at depth d, and let λ be a simple module. We
clearly have

`!(ω[λ]) = `!(ω[]) + `!(λ),

#∂(ω[λ]) = #∂(ω[]) + #∂(λ),

#!
i(ω[λ]) =

{
#!
i(ω[]) if i < d,

#!
i(ω[]) + #!

i−d(λ) otherwise.

In case λ is a non zero polymodule then the last two of the above equalities
become inequalities≥, because of the possible additive duplication of the context
and also the possible increase of the number of addends in a box. This shows
us that we can always check each of the measures defined in (7.1) on the redex-
reduct pairs alone. If all increase and at least one does so strictly then J . KG

increases strictly.
Let therefore ω[λ] ¬er−→ ω

[∑k
i=1 µi

]
, with λ the redex fired. Let us see all the

cases.

� Multiplicative reduction: only `! changes, and `!(µ1) = `!(λ) + 1 > `!(λ).

� ∂ on %: we have #∂(µ1 +µ2) = 1 = #∂(λ), #!
i(µ1 +µ2) = 0 = #!

i(λ), and
`!(µ1 + µ2) = 2`!(λ) + 1 > `!(λ).

� % on cocontraction: we have #∂(µ1 + µ2) = 0 = #∂(λ), #!
0(µ1 + µ2) =

2 > 1 = #!
0(λ), the other #!

i are zero, and `! is unaffected.

� ∂ on contraction: as above, but it is the number of ∂ cells that increases.

� % on a box B: we have k = #σ(B) ≥ 1. We then have #∂(
∑
i µi) ≥

#∂(µ1) ≥ #!(σ(B)) = #!(λ), #!
0(
∑
i µi) ≥ #!

i(µ1) ≥ 2k − 1 = #!
0(λ),

while for i > 0 we have #!
i(
∑
i µi) ≥ #!

i(µ1) ≥ #!
i−1(σ(B)) = #!

i(λ), and
finally `!(

∑
i µi) ≥ `!(µ1) ≥ 1 + `(λ) + `!(σ(B)) > `!(λ)

� ∂ on a box B: as above nothing can decrease, while the total number of
∂ cells increases.

144 7.3. Proof of the Theorem

� Box or cocontraction on box: labels are unchanged, but the contribution
of the cell entering the box increases as its depth does. Note that it is true
because the box must be non 0.

� Box or cocontraction on contraction: labels do not decrease (in fact in
case of box on contraction, they do increase by duplication), while the
contribution of the ! cell is redoubled.

Next, we can see it is invariant on conversions.

� Associative equivalence: labels are constant, while ! cells are clearly unaf-
fected when moving them around at the same depth.

� Push equivalence: contractions do not play any role in the measure.

� Bang sum equivalence: suppose we have a box B containing σ + π (both
non zero) which is being splitted into two boxes B1 and B2, and suppose
this happens at depth d. The context is clearly unchanged, and the flat
nets are exactly the same. Then the only difference can be equated by the
following chain of equalities (the 1 + d at the start is the contribution of
the cocontraction joining boxes B1 and B2):

(1 + d) + (1 + d)(2 #σ(B1)− 1) + (1 + d)(2 #σ(B2)− 1)
= (1 + d)(2(#π + #σ)− 1) = (1 + d)(2 #σ(B)− 1).

We can therefore conclude by employing Lemma 7.5.

Lemma 7.17. In DiLL∂% if π er∗−→∼ π′ then π ∼ er∗−→ π′.

Proof. In other words, we must prove that the erasing reduction can be delayed
with respect to the conversions 7− [. First thing, we can reason separately for
canonical and non canonical reductions. In fact if 1∗→∼ ⊆ ∼1∗→ and 2∗→∼ ⊆ ∼2∗→ for
two reductions then 12∗→∼ ⊆ ∼12∗→, by shoving right each consecutive group of 1 or
2-reductions.

For erasing non canonical reductions for the conversion instance to be present
after erasure it must be the case that the two are orthogonal, so →7− [⊆ 7− [→
and the result is straightforward.

Now take π c∗→∼ π′. By direct inspection of the rules one can see that c→7−[⊆
(7− [)k c+→, where k ≤ 2. The particular cases arising are:

� when a neutral redex “blocks” a conversion instance: it is there that k = 2,
as an additional conversion is needed for the additional (co)contraction;

� a pull redex is then object of an s-conversion: the diagram is closed by a
first s-conversion followed by two p-reductions and an n one.

We will use this inclusion as a rewriting of the sequence taking π to π′. Let
ak · · · a1a0 be a sequence of c-reductions and single-step conversions form π to
π′. Define by induction the following function:

i(0) := 0, i(h+ 1) :=

{
i(h) + 1 if ah = 7−[,
2i(h) if ah = c→.

Chapter 7. Standardization and Conservation Theorems 145

Now consider

|ak · · · a0| :=
(

#c(π)−#
{
h | ah = c→} , ∑

ah= c→
i(h)

)

where #c is the measure defined in the proof of Proposition 6.8. The number
#c maximizes the number of consecutive c-reductions, as c-reductions cannot
leave DiLL◦. The first component of |~ah| is therefore always positive.

Now, |~ah| decreases for lexicographic ordering for each rewriting of c→7− [into
the corresponding (7−[)k c+→. Suppose such rewriting happens at position h from
the end of the sequence. If the first component of | . | remains constant we have
that the contribution of the second component (7− [)k c→ is i(h) in place of i(h)+1.
For the previous elements of the sequence, if k = 1 all i(h′) decrease. If k = 2
all the elements are shifted by one, but as after rewriting i(h + 2) = 2i(h) + 2
just as i(h+ 1) was before it, all the contributions are unchanged.

Lemma 7.18. In DiLL∂% if π er∗−→∼ ¬er−→∼ π′ then π ¬er−→∼ ∗→∼ π′.

Proof. First by the above lemma we can transform the reduction chain into
π ∼ er∗−→¬er−→∼ π′. Then we proceed by induction on the length of the initial
chain of erasing reductions. The base step is trivial, and the inductive one boils
down to showing er→¬er−→ ⊆¬er+−→ er∗−→.

For all erasing reductions but the n one, the result is achieved by noticing that
the erasing step cannot have created the non erasing redex fired immediately
afterwards. Most of the times, the two reductions are orthogonal and therefore
commute easily. This does not happen only when the erasing step is one on
an auxiliary port of a box (a box entering step) and the non erasing one is
on the box itself. All cases for the non erasing step (dereliction, contraction,
codereliction and cocontraction) are then easily handled. Partial pull reduction
would break the result, so we have explicitly left it out.

The n reduction is peculiar as it can “create” the wire where the following
non erasing reduction takes place. By lax typing however, one of the cells taking
place in the non erasing step can also interact with the (co)contraction of the
n-reduction. The situation is the following

ε
ε

β
α

where ε is either ? or ! and α can interact both with the (co)contraction and
with β. Then

� if α is duplicated by ε2 (i.e. α is a box, cocontraction and contraction):
one copy can then reduce by a non erasing step with β, the other will be
erased by ε0 and n-reductions will close the diagram;

� if α is a (co)dereliction, the reduction against ε2 generates a sum: in one
addend we can follow with the non erasing α on β, then close by erasing
the other addend by ε0 on (co)dereliction and the weakening-coweakening
pair in the addend left.

146 7.3. Proof of the Theorem

� if α is a box and ε2 a cocontraction, then we can make ε2 enter α, fire the
α on β redex, and then make all the residuals of ε0 n-reduce with all the
residuals of ε2.

Lemma 7.19. In DiLL∂% erasing reduction is SN∼.

Proof. Erasing reduction can all be carried out in DiLL◦∂%, so Proposition 7.9
gives the desired result.

Proof of Proposition 7.15. Clearly only the part π ∈ WN¬er =⇒ π ∈ SN∼ is
to be shown.

Let π ∈WN¬er , which by Lemma 7.16 means that π ∈ SN∼ for non erasing
reduction. Suppose we have an infinite chain R of mec-reductions interleaved by
∼-conversions starting from π. If we are able to build by induction an infinite
chain of non erasing reductions starting from π we can conclude by contradiction.

Let R0 be the empty chain of reductions. Now suppose we have a reduction
Rk of the shape π (¬er−→∼)k πk (π0 := π) and an infinite reduction R′ starting
from πk. By Lemma 7.19 R′ cannot be solely made of erasing steps, so it
must necessarily start with a segment of the shape πk

er∗−→∼ ¬er−→∼ π′, with an
infinite reduction starting from π′. Now Lemma 7.17 ensures that we have
π (¬er−→∼)k+1 πk+1 with πk+1

∗→ π′, so that πk+1 also has an infinite reduction.

7.3.2 Transferring Conservation from DiLL∂% to DiLL

Objective of this section is to use DiLL∂% to finally prove Theorem 7.2.

Dead ends. We will call dead end any DiLL net λ with one free port such
that for any linear context ω[] which is normal for non erasing reduction, also
ω[λ] is normal for ¬er−→.

Remark 7.20. In fact, dead ends can be characterized as those nets that are
normal for ¬er−→ and the port above the only free one is either inactive, or the
principal port of a weakening, coweakening or 0-box.

We will denote any dead end by a vertical bar interrupting a wire:

The simplest examples of dead ends are weakenings and coweakenings.

Lemma 7.21. For any DiLL∂% proof net π, if π is weakly normalizable for non
erasing rules, then so is in DiLL∂% a polynet π′ obtained from π by interrupting
certain wires by any two dead ends:

7→

Proof. Because of Proposition 7.15, we just need to prove that π ∈ SN∼ implies
π′ ∈ SN∼ by well founded induction on π. In fact if we take any σ′ with π′ →∼ σ′

then the redex fired must be in π also. Thus, there is σ with π →∼ σ where σ′

is obtained by interrupting some wires of σ, so that σ′ ∈ SN∼ by inductive
hypothesis. We conclude, as therefore π′ is in SN∼ also.

Chapter 7. Standardization and Conservation Theorems 147

Lemma 7.22. Suppose π′ is a DiLL∂% polynet obtained from a polynet π by
performing a number of subsequent substitutions of the shape

α α or !π !π

where α is any unicell symbol, i.e. any symbol but a box. Then π′ ∈WN¬er =⇒
π′ ∈ WN¬er . In particular, the hypothesis apply if π ∗→ π′ by reductions of
weakening and coweakening excluding the weakening on box one.

Proof. Let us reason by induction on the normalizing reduction of π′. If π′ is
normal then clearly so is π. Otherwise, the redex fired in π′ ¬er−→ σ′ must also
be in π. Once such redex is fired and we get π ¬er−→ σ we must show that σ′ can
be obtained from σ with the above rules. The box of (various instances of) the
right rule might have been

� duplicated by a contraction: the dead end is then found in front of a
contraction, which can be “eaten” by the left rule, and by making the two
resulting dead ends enter their boxes with the second one;

� duplicated linearly by a ∂ or %: as above, but one dead end need not enter
the box.

Apart from that, one may need to repeat both rules several times to account
for any kind of duplication.

The / order. Given polynets π and σ in DiLL∂%, we define σ / π when each
λ ∈ σ is obtained from a net µ ∈ π by

1. substituting some of the ∂ cells or contractions at depth 0 in µ in the
following way, where the lax type of the new wire is obtained as usual by
the meet of the lax types of the melded wires:

∂ 7→ ∂ ? 7→ ?

(notice that commutativity gives two choices for the substitution of a
contraction);

2. taking then a subnet not containing any of the dead ends introduced in
the previous point, and not introducing any new free ports.

We see that / is closed by affine contexts. Also / is a preorder, as it is transitive
and reflexive. Moreover it is an order, as antisymmetry holds. Indeed, if π/σ/π
then no substitution can be done in step 1 as they make the number of cells
strictly decrease. However we will not make use of this ordering structure.

Lemma 7.23. If σ / π and π ¬er−→ π′, then there is σ′ / π′ such that σ ¬er∗−→ σ′.

Proof. Take any λ/π simple, we show there is λ′ /π′ with λ¬er=−→ λ′ by cases on
the reduction. If it does not touch any cell substituted with a dead end, then
it is straightforward. Notice that if the redex is preserved through the point
1 of the construction, then either it is entirely preserved or entirely deleted by

148 7.3. Proof of the Theorem

point 2 because of the condition on free ports. In the latter case there will be
no reduction in λ.

Now take any non erasing redex µ containing at least a ∂ or a contraction
changed in point 1, and let µ′ be its reduction. It suffices then to see that if
ν / µ and ν is normal (because the ∂ or contraction cell generating the redex
has been substituted), then ν / µ′ also. We show the cases, where we indicate
how substitution can be carried out to gain the result:

� ∂ on %:

∂ % ¬er−→
% ∂

+

∂ % =
% ∂

� ∂ on contraction: here we have 3 combinations for an actual substitution
(∂, contraction or both); the first two are the same as above, the third is
the following:

∂ ?
¬er−→

? ∂
+

?
∂

∂ ? =
% ∂

� ∂ on box:

!π
∂ ¬er−→ ∂

!π

π∂

?

?

!π
∂ ⊆ ∂

!π

π∂

?

?

� contraction on box:

!π ?
¬er−→

!π

!π

?

?

!π ?

!π

!π

?

?

as any net obtained from the right one cannot contain any of the dead
ends (and cannot introduce new free ports), then it cannot contain the
whole box; it can then be obtained also from the right.

Chapter 7. Standardization and Conservation Theorems 149

The following is the central point where lax typing makes a true difference.

Lemma 7.24. If σ /π and π is normal for non erasing reduction, then so is σ.

Proof. Suppose σ 3 λ / µ ∈ π with λ not normal, and take the two cells a and b
(none of which can be a weakening, coweakening or 0-box) which are active in it
and c the cut wire connecting them (non erasing reduction is not a generalized
one). The wire c cannot be f-typed. In µ, which is normal, the wire c must be
thus interrupted by cells that got substituted in point 1. As c is not f-typed,
so must be all its segments in µ. Furtherly, as none of its segments in µ can
therefore be a cut, it means that along it there are either only contractions, or
only ∂ cells, and all in the same direction. So in µ we have, without loss of
generality:

d
βε

ε
α

b
a

where ε = ?2 or ∂. Now d must necessarily be a non f-typed cut. As b
cannot be part of an erasing redex, d is a non erasing reducible cut which is a
contradiction.

Lemma 7.25. Take

� a polymodule π in DiLL∂%, with interface divided into Iπ = I1 + . . . Ik + J
(the linear ones and the exponential one) with k ≥ 1, so that all the wire
above J are laxly typed by ? or f,

� and a corresponding linear context ω[] where all Ii are not linked neither
with Ij for j 6= i nor with J2,

such that ω[π] is SN∼ for non erasing reduction. Then take any net σ of the
shape

λ1 λk

∑
i µi !

? ?

I1 Ik J

where λi / π and µi / π for all i, the n-ary contractions stand for any tree
of contractions with n leaves, and the wires above J are laxly typed like the
corresponding ones in π.

We then have that ω[σ] ∈WN¬er .

Proof. We proceed by well founded induction on ω[π], with a secondary induc-
tion on the size of ω[].

Using secondary induction, we reduce to a case where no wire between ω[]
and σ is a non erasing reducible cut in ω[σ]. Suppose there is such a cut
c between cells a and b, we show how to build π′, ω′[], λ′i and µ′i so that
ω′[π′] = ω[π] and ω′[] is smaller than ω[]. Several cases are possible.

2We are implicitly identifying Iπ with the hole I�
ω .

150 7.3. Proof of the Theorem

� c traverses Ii, at least one among a and b is in ω (suppose a): π′ and λ′i are
then obtained by glueing a to π and λi respectively, adding all the other
ports of a to Ii, and leaving all other λj and µj unchanged; ω′[] is ω[]
without b. We have that λj/π′ for j 6= i as c is not in λj , and λ′i/π

′ trivially.
Moreover any “illegal” switching path linking the hole of ω′[] would either
be one also for ω[], or could be completed by passing through a (active
ports are always reachable by switching paths ending on other ports of the
same cell). By secondary inductive hypothesis, ω′[σ′] = ω[σ] is WN¬er .

� c traverses Ii, none of a and b are in ω[]: by the constraint on switching
paths c must be between two ports in Ii, so we can safely move c inside π
and λi without breaking the shape of σ.

� c traverses J , and a is one of the contractions of σ on J . b must be in ω[],
otherwise the condition on paths would be broken. We have two subcases.

– If b is a duplicable cell, i.e. a cocontraction or a box, then (simplifying
a bit the picture for the sake of clarity) glueing b to σ we obtain

λ1 λk

∑
i µi

!
?

b

I1 Ik J

¬er∗−→

λ1 λk

∑
i µi

!

? ?

b b b

I1 Ik J

=: σ′.

If ω′[] is ω[] deprived of b, then ω[σ] ¬er∗−→ ω′[σ′]. Glueing b to π
then gives the secondary inductive hypothesis which in turns offers
ω[σ′] ∈WN¬er .

– If b is a ∂ cell, by setting ω′[] as before and performing reduction we
get ω[σ]¬er∗−→∑

i ω[σ′i] +
∑
j ω[σ′′j] where

σ′i :=

λ1 λi λk

∑
i µi

!

?

∂

I1 Ii Ik J

σ′′j :=

λ1 λk
µj

∑
i µi

∂

!

?

∂

I1 Ik Ik+1 J

For each i, glue b to π′ by moving its linear port to Ii (notice this
cannot break the path condition): we have then that σ′i falls into
the hypotheses. Indeed, for h 6= i we have λh / π

′ by breaking b

Chapter 7. Standardization and Conservation Theorems 151

with step 1 of the definition. Then, for each σ′′j also falls into the
hypotheses by the same reasoning (notice the ∂ underneath the box
is a dead end by definition), where however the linear wire of b is
moved to a new linear interface Ik+1.

The absence of cuts between ω[] and σ implies by lax typing constraints that
there cannot be any reducible cut between ω[] and π also. We have thus three
cases: either ω[π] is normal for non erasing reduction, or it has a non erasing
redex entirely in ω[], or it has one in π. In the first case, Lemma 7.24 assures
us that ω[σ] is also normal.

In the second one, let us reduce the redex in ω[] in all addends of ω[π],
getting ω[π] ¬er+−→ ω′[π]. By primary induction this gives ω′[σ] ∈ WN¬er . As
ω[σ] ¬er−→ ω′[σ] we are done.

In the last case with π ¬er−→ π′, Lemma 7.23 assures the existence of λ′i
with λi

¬er=−→ λ′i, so that we get σ′ with ω[σ] ¬er∗−→ ω[σ′] which by induction is
WN¬er .

Main lemma and proof. We can finally arrive to the main lemma opening
the way for the central theorem.

Lemma 7.26. Let π be a pure DiLL proofnet. If π ∈WN¬er then πM ∈WN¬er
in DiLL∂%.

Proof. First, using Theorem 7.1, consider a standard normalizing reduction of
π to normal form. Let us reason by induction on the length of such reduction,
by cases on the first reduction. If π is normal for ¬er−→, then so is πM.

First of all, we can consider without loss of generality that the first reduction
is at depth 0. Indeed, suppose that the first reduction of the chain R is at
depth i > 0. As R is standard, it means that there is no non erasing redex
with depth lesser than i in π, and therefore in πM also. Now consider the sum
σ := µ1 + · · · + µk where {µi} = ℘i(π), i.e. all the nets at depth i of π. Free
ports might not match, but we can just ignore it, as it is just a convenient way
to consider all reductions on such nets together3. All R takes place in σ and
normalizes it, now starting from depth 0. Once the result is proved for σ, we
have σM = µM1 + · · ·+ µMk is WN for non erasing reduction. Replugging all nets
back into their place in πM, we obtain that it is WN¬er also.

Suppose therefore that π ¬er−→ σ ∈WN¬er , with the reduction at depth 0. For
every reduction which does not touch derelictions or coderelictions, the inductive
step is immediate, as the translation in DiLL∂% leaves the redex untouched, so
that πM ¬er−→ σM. Let us see all the remaining cases. Let π = ω[λ] with λ the
redex fired, and µ its reduct. We can suppose that ω[] is linear, as closing by
sum is trivial.

Dereliction on codereliction.

! ?
¬er−→

M

∂
!

%
?

¬er−→
! ?

+
%! ∂ ?

 + =: µ′1 + µ′2

3We can in fact add in the needed conclusions with some dead ends.

152 7.3. Proof of the Theorem

The last passage is backed up by Lemma 7.22. Now ωM[µM] ∈ WN¬er implies
that both ωM[µ′1] = ωM[µM] and ωM[µ′2] weakly normalizable, the latter by using
Lemma 7.21.

(Co)dereliction on co(co)ntraction

! ?
¬er−→ ! ?

!
+ ! ?

!

M

∂
!

?
¬er−→

?!
∂ +

?! ∂

A direct application of Lemma 7.22 gives the result, as ωM[λM] ¬er−→ ∗→ ωM[µM]
with the latter being (co)weakening on co(co)ntraction reductions.

Dereliction on box

? ! ν ¬er−→ ν

M

! νM%
?

¬er−→
νM

! νM?

?

?

Apply Lemma 7.25 by taking

π := I1 νM + νM J σ :=
νM

! νM?

?

?

as π and σ. Notice that ωM[σ] ∈ WN¬er implies ωM[µM] ∈ WN¬er by a trivial
simulation of the normalizing chain.

Codereliction on box

!π! ¬er−→ !

!π!

!π!

?

M !

!πM!

∂
πM∂

!!

?

M

∼

a→

n∗

!πM∂

!

¬er−→ ∂

!πM

πM!

?

?!
e∗→ ∂

!πM!

πM!

?

!

By inductive hypothesys, ωM[µM] (top right) is weakly normalizable for non
erasing steps, which by Proposition 7.15 is then SN∼. This allows to reduce

Chapter 7. Standardization and Conservation Theorems 153

a-convert and n-reduce µM to the bottom right net (let us call it µ′) to get rid
of the linear substitution and coweakening, still having an SN∼ (and therefore
WN¬er) polynet. On the other hand, ωM[λM] ¬er−→ ∗→ ωM[µ′] where the erasing
steps are only “safe” coweakening, where a final application of Lemma 7.22 gives
the wanted result.

Proof of Theorem 7.2. The proof is now immediate. Take a DiLL proof net π.
Then

π ∈WN¬er =⇒ πM ∈WN¬er =⇒ πM ∈ SN∼ =⇒ π ∈ SN∼,

where

� the first implication is the above Lemma 7.26;

� the second is Proposition 7.15, conservation for DiLL∂%;

� the third is due to DiLL∂% simulating DiLL, Lemma 7.10.

Chapter 8

Full Resource Calculus

In this section we will redefine Boudol’s λ-calculus with resources [Bou93] ex-
tending it with sums and two kinds of non lazy reduction. We will thus have
both depletable and perpetual resources, the latter being the main difference
from the resource calculus as described in [ER06b] and presented in Section 4.3,
so we will here call it the full resource calculus. Once again we will totally
turn our attention to only natural coefficients, skipping the issues with generic
coefficients. Our main novelty is a presentation that “hard codes” the exponen-
tial isomorphism of DiLL, so that we can have a calculus without sums inside
the arguments.

8.1 The Language

Let P be the countable set of ports, which we recycle as variables. The set ∆
of simple terms of full resource calculus is defined by the grammar

∆ := P | λP.∆ | 〈∆〉(∆!)

exaclty as the resource calculus we presented at page 82. However we define the
set of bags as ∆! := Mfin(A) with arguments generated by

Ak ::= ∆ | ∆∞.
A differential term, or simply term, is an element of N 〈∆〉. We will also deal
with N〈∆!〉, called differential bags. An argument of the form t)∞ is called
perpetual or exponential, otherwise it is linear. Again, bags are multisets
presented in multiplicative notation. As we did for resource calculus, we will
use the notation ∆(!) (resp. N〈∆(!)〉) to mean either simple terms or bags (resp.
terms or differential bags).

The above constructors are all extended to sums, all by multilinearity except
the one for boxed argument, which is extended by mapping sum to product.
More in detail, we add to the linearity equations 4.1 given to resource calculus
the following ones

(u+ v)∞ = u∞v∞, 0∞ = 1.

Given a bag A, its linear part L(A) (resp. perpetual or exponential
part E(A)) is the multiset of its linear (resp. exponential) arguments. As usual

154

Chapter 8. Full Resource Calculus 155

terms are considered identical up to α-conversion. . A (monic) context is a
differential term or bag that uses a distinguished variable called its hole exactly
once, similarly to what was done for nets. Formally the simple contexts ∆[] are
generated by the grammar

∆[] ::= [] | λV∆[] |
〈
∆[]

〉
∆! | 〈∆〉∆!

[]

with
∆!

[] := ∆[]∆
! | (∆[])∞∆!.

The latter are called bag contexts. Finally, a context will be a simple one in
∆[] summed to any differential term. Given a context C[] and a differential term
t, C[t] is defined as usual by blindly substituting t for the hole (allowing variable
capture), applying the generalizations for sums described above. Clearly for each
simple subterm u ⊆ s there exists a unique context Cs,u[] such that s = Cs,u[u].
A relation R from ∆ to N 〈∆〉 can then be extended to one from N∆(!) to N∆(!)

by context closure by setting

s R̃ t ⇐⇒ ∃u ⊆ s,∃v ∈ N 〈∆〉 | u R v, t = Cs,u[v].

The resource calculus presented in Section 4.3 is clearly embedded in full
resource calculus: it corresponds to the subset of terms that have no exponential
arguments. Classical terms of λ-calculus can instead be embedded in this one
by

x∗ := x, (λx.s)∗ := λx.s∗,
(
(s)t

)∗ := 〈s∗〉(t∗)∞.

8.2 Giant Step and Baby Step Reductions

In order to define an operational semantics we have to define the substitution
operator, which as in differential λ-calculus takes different forms.

Substitution s [x := t] with s, t ∈ N 〈∆〉 is defined as usual, applying the
generalizations of constructors by multilinearity, so that for example

(〈x〉x∞) [x := u+ v] = 〈u+ v〉(u+ v)∞ = 〈u〉u∞v∞ + 〈v〉u∞v∞.
Linear substitution ∂

∂x generalizes the one given in Section 4.3. Inductive
rules are:

∂y

∂x
· t := δx,y · t, ∂λy.u

∂x
· t := λy.

∂u

∂x
· t with y 6∈ t,

∂〈r〉A
∂x

· t :=
〈
∂r

∂x
· t
〉
A+ 〈r〉 ∂A

∂x
· t,

∂A

∂x
· t :=

∑
a∈A

(
∂a

∂x
· t
)
A/a,

∂u∞

∂x
· t :=

(
∂u

∂x
· t
)
u∞.

The definition for applications and bags can be compacted into

∂〈r〉A
∂x

· t =
〈
∂r

∂x
· t
〉
A+

∑
u∈L(A)

〈r〉
(
∂u

∂x
· t
)
A/u+

∑
v∞∈E(A)

〈r〉
(
∂v

∂x
· t
)
A. (8.1)

Note how the linear substitution operator distributes among linear terms, and
extracts a linear copy from a boxed argument if needed. This reflects the

156 8.2. Giant Step and Baby Step Reductions

derivation property of the exponential in calculus. Given y = y(x) we have
∂ey

∂x = ∂y
∂x · ey. Such substitution is linear in both u and t, and if x 6∈ u then

∂u
∂x · t = 0.

Non linear and linear substitutions enjoy the same properties found in [ER03],
though due to the simpler syntax proofs are somewhat easier. We state the re-
sults needed in the definition of the reductions.

Lemma 8.1 (Schwartz). For t ∈ N
〈
∆(!)

〉
, u, v ∈ N 〈∆〉, and x, y such that

y 6∈ u, then

∂

∂x

(
∂t

∂y
· v
)
· u =

∂

∂y

(
∂t

∂x
· u
)
· v +

∂t

∂y
·
(
∂v

∂x
· u
)
.

In particular if also x 6∈ v, the second addend is equal to 0 and we have the
classic Schwartz’s lemma about commutation of partial derivatives.

Proof. Standard induction on t. The case for application will work because of
the way we linearize on the fly exponential arguments. Abstraction is trivial.
For variable, we have

∂
∂y

(
∂z
∂x · u

) · v+ ∂z
∂y ·

(
∂v
∂x · u

)
= δx,z

∂u
∂y · v+ δy,z

∂v
∂x · u = δy,z

∂v
∂x · u = ∂

∂x

(
∂z
∂y · v

)
,

where we have used x 6∈ v. For application let us deal separately with the three
addends appearing in (8.1) for ∂〈r〉A

∂y · v.
For the first one we have

∂
∂x

(〈
∂r
∂y · v

〉
A
)
· u =〈

∂
∂x

(
∂r
∂y · v

)
· u
〉
A+ (S1)∑

p∈L(A)

〈
∂r
∂y · v

〉(
∂q
∂x · u

)
A/q+ (S2)∑

p∞∈E(A)

〈
∂r
∂y · v

〉(
∂q
∂x · u

)
A (S3)

and let us call S1, S2, S3 these addends. By induction hypothesis

S1 =
〈
∂
∂y

(
∂r
∂x · u

) · v〉A+
〈
∂r
∂y ·

(
∂v
∂x · u

)〉
A, (S11 + S22)

so let us call these addends S11 and S12.
The second one gives

∂
∂x

(∑
p∈L(A) 〈r〉

(
∂p
∂y · v

)
A/p

)
· u =∑

p∈L(A)

〈
∂r
∂x · u

〉 (
∂p
∂y · v

)
A/p+ (L1)∑

p∈L(A) 〈r〉
(
∂
∂x

(
∂p
∂y · v

)
· u
)
A/p+ (L2)∑

p∈L(A)

∑
q∈L(A)/p 〈r〉

(
∂p
∂y · v

)(
∂q
∂x · u

)
A/(pq)+ (L3)∑

p∈L(A)

∑
q∞∈E(A) 〈r〉

(
∂p
∂y · v

)(
∂q
∂x · u

)
A/p. (L4)

Again by induction hypothesis

L2 =
∑
p∈L(A) 〈r〉

(
∂
∂y

(
∂p
∂x · u

)
· v
)
A/p+

∑
p∈L(A) 〈r〉

(
∂p
∂y ·

(
∂v
∂x · u

))
A/p =: L21+L22

Chapter 8. Full Resource Calculus 157

Note also that L3 is symmetric in p and q.
Finally the third is

∂
∂x

(∑
p∞∈E(A) 〈r〉

(
∂p
∂y · v

)
A
)
· u =∑

p∞∈E(A)

〈
∂r
∂x · u

〉 (
∂p
∂y · v

)
A+ (E1)∑

p∞∈E(A) 〈r〉
(
∂
∂x

(
∂p
∂y · v

)
· u
)
A+ (E2)∑

p∞∈E(A)

∑
q∈L(A) 〈r〉

(
∂p
∂y · v

)(
∂q
∂x · u

)
A/q+ (E3)∑

p∞∈E(A)

∑
q∞∈E(A) 〈r〉

(
∂p
∂y · v

)(
∂q
∂x · u

)
A. (E4)

E2 =
∑
p∞∈E(A) 〈r〉

(
∂
∂y

(
∂p
∂x · u

)
· v
)
A+
∑
p∞∈E(A) 〈r〉

(
∂p
∂y ·

(
∂v
∂x · u

))
A =: E21+E22.

Now if we write ∂〈r〉A
∂x · u as

R1+R2+R3 :=
〈
∂r
∂x · u

〉
A+
∑
q∈L(A) 〈r〉

(
∂q
∂x · u

)
A/q+

∑
q∞∈E(A) 〈r〉

(
∂q
∂x · u

)
A,

it becomes straightforward to check that

∂R1
∂y · v = S11 + L1 + E1,

∂R2
∂y · v = S2 + L21 + L3 + E3,

∂R3
∂y · v = S3 + E21 + L4 + E4,

∂〈r〉A
∂y · (∂v∂x · u) = S12 + L22 + E22,

which covers the result.

If u1, . . . , un are such that x 6∈ ui, then by the above lemma for any permu-
tation σ ∈ Sn we have

∂
∂x

(· · · (∂∂x (∂t∂x · u1

) · u2

) · · ·) · un = ∂
∂x

(· · · (∂∂x (∂t∂x · uσ(1)

) · uσ(2)

) · · ·) · uσ(n).

This justifies an iterated notation with multisets: suppose A is a linear bag,
that is a bag with E(A) = 1, and that x 6∈ A, that is x 6∈ u for every u ∈ |A|.
Then, if A = u1 · · ·un, we write

∂nt

∂xn
·A :=

∂

∂x

(
· · ·
(
∂t

∂x
· u1

)
· · ·
)
· un

which by Schwartz’s lemma is well defined regardless of the order in which we
write A.

In order to give a uniform presentation to define reduction, we employ one
more substitution directly based on the regular one: the partial substitution
of u for x in t is simply t [x := x+ u]. When using it we will always imply that
x 6∈ u. Then this easily gives results similar to the Schwartz lemma when mixing
the two types of substitution.

158 8.2. Giant Step and Baby Step Reductions

Lemma 8.2. If y 6∈ u, then

∂

∂x
(t [y := y + v]) · u =

(
∂t

∂x
· u
)

[y := y + v] +
∂t

∂y
·
(
∂v

∂x
· u
)

[y := y + v] .

In particular if also x 6∈ v then ∂
∂x (t [y := y + v]) · u =

(
∂t
∂x · u

)
[y := y + v].

Proof. For t = z variable, note z [y := y + v] = z + δy,z · v. Then

∂

∂x
(z + δy,z · v) ·u =

∂z

∂x
·u+ δy,z · ∂v

∂x
·u =

∂z

∂x
·u+

∂z

∂y
·
(
∂v

∂x
· u
)

[y := y + v] ,

where the last substitution can be safely applied as y does not appear freely in
the term. Abstraction and application are straightforward.

In calculus this commutation corresponds to a precise property. Take a
regular function f(x). The derivative of f in a is f ′(a). If we define fa(x) :=
f(x + a), then we easily get the equality (provided a does not depend on x)
f ′a(0) = f ′(a). What calculus hides is that this equality correspond to a different
scheduling of operations – f ′(a) is “calculate the derivative and then evaluate
in a”, while f ′a(0) is “evaluate in x + a, and then calculate the derivative, and
evaluate in 0”. Here it will be possible to distinguish such a scheduling through
the baby-step reduction defined below.

Finally, in order to unify the notation, let the generalized substitution of
a for x in t, with a = u or a = u∞ an argument, be

Sx t · u :=
∂t

∂x
· u, Sx t · u∞ := t [x := x+ u] .

Using partial substitution instead of the regular one allows us to state the fol-
lowing generalized Schwartz’s lemma.

Lemma 8.3. For t ∈ R 〈∆〉, a, b arguments and x, y such that y 6∈ a and x 6∈ b,
we have Sx(Sy t · b) · a = Sy(Sx t · a) · b.
Proof. There are three combinations to check (partial-partial, linear-linear and
linear-partial). For the first one let a = u∞, b = v∞. When x 6= y it is a known
property of substitution. Here however we can also have x = y:

t [x := x+ v] [x := x+ u] = t [x := x+ u+ v] = t [x := x+ u] [x := x+ v] .

The second is Lemma 8.1. The third is Lemma 8.2.

Given any bag A = a1 · · · a#A and a variable x 6∈ A, we can define

S#A
x t·A := Sx (· · · (Sx t · a1) · · ·)·a#A =

(
∂# L(A)t

∂x# L(A)
· L(A)

)[
x := x+

∑
u∞∈E(A)

u

]
.

We are now ready to define the reductions, which as for resource calculus
come in baby-step and giant-step forms. Baby-step is more local and natural,
and more close to the reduction defined for Boudol’s calculus. However giant-
step, which empties a bag altogether, is the reduction whose bisimulation result
reflects the one for the t◦ translation of λ-calculus and proof nets.

Chapter 8. Full Resource Calculus 159

Definition 8.4 (g and b). Giant-step β-reduction (g) is generated by context
closure of

〈λx.s〉A g→ S#A
x s ·A [x := 0] .

Baby-step β-reduction (b) is generated by context closure of

〈λx.s〉 aA b→ 〈λx. Sx s · a〉A, 〈λx.s〉 1 b→ s [x := 0] .

Clearly while there are as many ways as #A to b-reduce a redex, there is
only one way to [b]-reduce it, namely giving

S#A
x s ·A [x := 0] =

(
∂# L(A)s

∂x# L(A)
· L(A)

)[
x :=

∑
u∞∈E(A)

u

]
.

Notice that reducing a redex may have duplicating effects at any depth of
the term, even greater than the redex itself. However all the properties shown
in the previous chapters let us easily deal with such duplications.

Partial substitutions break strong confluence of the sum reduction. However
we will be able to infer confluence for g (Corollary 8.17) using the translation
in nets. We here derive from it the confluence of b.

Lemma 8.5. We have b∗→ ⊆ g∗→ g∗←.

Proof. Let u b∗→ v. We proceed by induction on the length of such reduction. If
it is zero, the result is trivial. Otherwise:

u
v′

v

w′′

w′
w

b∗
b

g∗

g∗g∗
g∗ g

g∗

(I)

(II)

(III)

We have (I) by inductive hypothesis, (II) is clear from the definition, as g-
reducing a redex before or after a single step of b on the same redex is the same.
The second g-reduction appears multiple times as we may have to g-reduce in
all copies possibly arisen by additive substitution. Then (III) is confluence of
g.

Theorem 8.6. The baby-step β-reduction is confluent.

Proof. Suppose u b∗→ v1, v2. We get the following confluence diagram:

u

v1 w1

s

v2 w2

b∗

b∗

g∗

g∗

g∗

g∗

g∗

g∗

The left triangles are from the above lemma, while the right square is simply
confluence of g. As [g∗] is contained in b∗→, we get the result.

160 8.3. The Translation

Differential terms (∑
ti

)◦
:=

∑
t◦i ,

Simple terms

x◦ := ?
x

, (λx.s)◦ := `
s◦

x
,

(
〈r〉A

)◦
:= NFc

 ⊗
r◦?

A◦?

yk

y1

yk

y1

yk

y1

Bags of arguments

1◦ := ! , (uA)◦ := NFc

 !
!u◦?

A◦?

yk

y1

yk

y1

yk

y1

(u∞A)◦ := NFc

 !
!u◦?

A◦?

yk

y1

yk

y1

yk

y1

Figure 8.1: Inductive rules for the definition of t◦ for full resource calculus.

8.3 The Translation

We will now extend both the translation of λ-terms to MELL λ-nets [Dan90,
Reg92] presented in Section 4.2.3 and that of resource calculus in DiLL0 λ-nets
as done in [ER06b] and presented in Section 4.3 to one from full resource calculus
to DiLL λ-nets.

We will draw all nets with the o/!o conclusion right and the rest left, so types
will be omitted. If we label a port with a set of ports, it must be intended to
stand for multiple ports, together with the cells above (we will use it only with
contractions). And once again, w∼ will denote the equivalence modulo weakened
conclusions.

8.3.1 Statics: Definition and Sequentialization

Using the rules in Figure 8.1 for each t term (resp. bag or argument) we define
t◦, a net with conclusions x1 : ?ı, . . . , xk : ?ı, o (resp. !o) where the free ports
x1, . . . , xn contain the free variables in t (in fact the free variable of t are the free
ports that are in all w∼-representants of t◦). The fact that t◦ is indeed correct is
straightforward. Adding freely weakened conclusions is used in the definition
to unify the sets of variables. It is important to note that the translation is
well defined with respect to equality modulo weakened conclusions only because

Chapter 8. Full Resource Calculus 161

of pull reductions performed on boxes. Also we see that the translation is a
function only on a-equivalence classes, because of the possible ways to order a
multiset. Finally, the translation is compatible with the generalizations of the
constructors to sums, with the special case of a perpetual argument covered by
sp∼ for a proper sum and z reduction for the 0 case.

Remark 8.7. For every term t its translation t◦ is ec-normal. Moreover each
redex in t corresponds exactly to an m-redex in t◦. So in fact t is normal iff t◦

is normal.

Also we easily see that if u is a term of plain resource calculus the translation
coincides with Ehrhard and Regnier’s one, and if t is a term of ordinary λ-
calculus then (t∗)◦ = t◦, the translation of Danos and Regnier. As in that one,
sequentialization (i.e. surjectivity) is valid for nets without exponential axioms.

Theorem 8.8 (sequentialization of ec-normal nets). For every ec-normal DiLL
λ-net π with no exponential axiom there is uniquely either a term t or a bag A
such that t◦ = π (resp. A◦ = π), modulo weakened conclusions and ∼.

Proof. Let’s reason by induction on the depth of π, and suppose it is simple
(afterwards we can sum again the terms obtained). We can suppose by

asp∼
conversion that all box contains a simple net and that no contraction tree has
two or more leaves on a same box.

Assign a port name to each ` at depth 0. As there are no exponential cuts
every dereliction and auxiliary port at depth 0 in π has only one ?-path coming
out of it, and it can end only on a ` or a conclusion. In the We then label
each dereliction with the name of the port or ` to which this path leads, and
similarly for the conclusions at depth 1.

We use the inductive hypothesis on the box contents, naming their free ports
with such labels (by the conversion we did above no name is repeated), and get
for each box a term translating into its contents.

Now take a principal switching of π. Delete all weakenings at depth 0, that
because of a-normality and the particular switching we have chosen make up
each a connected component in itself. Delete also all downward ?-paths and the
cells internal to it: we delete all contraction trees, as by the above labelling we
need not to remember these sharing anymore. By the hypothesis on axioms,
the wires above tensors and cocontractions cannot be deleted by this procedure.
We are left with an acyclic connected graph, which therefore is a tree. If we
take the unique o or !o conclusion as a root, the leaves are necessarily labelled
derelictions or boxes.

What we obtained is in fact the syntactic tree of a term, as we replace

� each ` labelled by x is a λx node,

� each ⊗ cell by an application node where the tree on the principal port
goes in functional position and the one on the !o port in argument position,

� each cocontraction is a multiset product of the above trees,

� each box with t∞ where t is what (by inductive hypothesis) translates into
its contents,

� each codereliction is erased,

162 8.3. The Translation

This term is easily seen as translating into the same net we started from.

Notice that the property about exponential axioms is not stable under one-
step e-reduction, because of the contraction-cocontraction step. One could

� either consider on the contrary only η-contracted nets, i.e. nets without
identity boxes, boxes containing a single wire with a dereliction; this has
also the positive side effect on cutting down on reduction steps;

� or substitute the contraction on cocontraction rule with one having four
boxes on the wires, to the detriment of both readability and reduction
steps.

However let us say that π is essentially without exponential axioms if
NFe(π) is without exponential axioms. Then this property is stable by reduc-
tion, as we will prove in Lemma 8.15.

8.3.2 Dynamics: Bisimulation

We want to show that reductions in the two systems are strongly linked by this
translation. This is done in two steps, showing the two directions of bisimulation.
First we have to state a substitution lemma.

Lemma 8.9 (argument substitution). Given an argument a, a simple term u
and a variable x 6∈ a, we have that

u◦
!a◦?

S

x
S

S

x

ec� (Sx u · a)◦ .

Proof. Clearly we have to deal separately with the two possible types of substi-
tution.

First suppose x 6∈ u, which implies (by canonicity) that x is a weakened
conclusion. Then

u◦
!

!t◦?S

x

u◦

?
en�

u◦

?x

S
= u◦ =

(
u [x := t]

)◦
and

u◦
!

!t◦?S

x

u◦

?
e� 0 =

(
∂u
∂x
· t

)◦
.

where we have thus covered the cases where a = t∞ and a = t linear.
Suppose therefore x ∈ u, and let us reason by induction on u.
If u is a variable then u = x. Then, if a = t∞

u◦
!

!t◦?S

x

?

?
en�

?

?

S

x
+

t◦

?S

x
= (x + t)◦ = (x [x := x + t])◦,

Chapter 8. Full Resource Calculus 163

while for a = t linear

u◦
!

!t◦?S

x

?

?
en�

t◦

?S

x
=

(
∂x
∂x
· t

)◦
.

The inductive step for abstraction (as well as for linear argument) is imme-
diate.

If u = 〈r〉A then and σ is the starting net then we have

σ c∗← ⊗
r◦?!

!t◦
A◦?

?
x
S

x
S

S

x

en∗→ a∼ ⊗
r◦!

!t◦

A◦!
!t◦

?

?

?

?

x

S

ec� NFc

 ⊗(
r [x := t]

)◦
(
A [x := t]

)◦
?

?

x

S

 =
(
〈r [x := t]〉A [x := t]

)◦
which is what we were looking for. The first expansion is due to the definition
of the translation, while in the last chain of reductions induction hypothesis is
used. Church-Rosser modulo ∼ ensures the normal form at the end is the the
same of the starting net.

For the same case with linear substitution, we have simlarily

σ c∗← ⊗
r◦?!

!t◦
A◦?

?
x
S

x
S

S

x

en∗→ a∼

⊗
r◦!

!t◦

A◦

?

?

?

x

S

+

⊗
r◦

A◦!
!t◦?

?

?

x

S

ec�
(〈
∂r
∂x
· t

〉
A + 〈r〉 ∂A

∂x
· t

)◦
.

The same steps apply for multiplication of bags.
Therefore we are left with the case of the perpetual arguments. Observe

first that the translation respects the euqalities (∞s + t) = s∞t∞ and 0∞ = 1
by means of the bang sum equivalence and the bang zero reduction, so we can
safely apply induction hypothesis to the contents of the box, even if the result
is 0 or a sum.

164 8.3. The Translation

For a = u∞ we have

!u◦!
!t◦?

x
S

S

x

e∗→ !u◦!
!t◦?

x
S

S

x

which p-converts (taking the contraction inside the box) and ec-normalizes to
(u [x := x+ t])∞.

For a = u linear we have

!u◦!
!t◦?

x
S

S

x

e∗→ a∼ !
!u◦

!u◦!
!t◦??

?

S

x

ec∗→ !
!u◦

!
(
∂u
∂x · t

)◦
?

?

S

x
c�

((
∂u
∂x
· t

)
u∞

)◦
=

(
∂u∞

∂x
· t

)◦
,

which concludes the proof.

Lemma 8.10 (0 substitution). Given an argument a, a simple term or bag u
and a variable x 6∈ a, we have that

u◦
!

S

x

ec� u [x := 0]

Proof. Straightforward by the rules of coweakening.

We can now prove the main substitution lemma.

Lemma 8.11 (substitution). If A is a bag of arguments and u is a simple term,
then

u◦A◦?
S
xS

S ec�
(
S# A

x u · A
)

[x := 0] .

Proof. Let σ be the net under consideration. If A = a1 · · · an, then we have

σ n← a∼ u◦!!
a◦2

a◦1
!!

a◦n
S
x

SSS =: σ′

where we do not draw all the contraction trees joining together the S ports.
The initial n-expansion is not there only if n = 0.

Now a repeated application of Lemma 8.9 and a final one of Lemma 8.10
gives

σ n←∼ec�
(
S#A
x s ·A [x := 0]

)◦
.

By CR∼, we get that NFec(σ) is the member on the left (up to ∼).

Chapter 8. Full Resource Calculus 165

Note how the reduction on nets involved in the next theorem has a particular
shape, so that even if the result is a logical equivalence it does not yet mean that
one can compute with nets. A priori there could be reductions in nets which do
not correspond to any reduction in terms. Such result is truly achieved by the
result after it.

Proposition 8.12 (one step simulation). s◦ m→ec� σ if and only if σ = t◦ (up
to ∼) and s

g→ t.

Proof. Because of a minor technical point we cannot yet extract t directly from
σ with the sequentialization theorem, as we are not sure σ has no exponential
axioms.

The if part is a direct consequence of Lemma 8.11, as firing the m-redex
corresponding to the redex fired in s makes the net fall into the hypothesis of
the substitution lemma.

Vice versa let s
g→ t be the result of firing the redex corresponding to the

multiplicative cut fired at the beginning of the reduction s m→ π
ec� σ. Because

of the first part of the proof, s◦ m→ π
ec� t◦, where the intermediate step π must

be the same as before. By uniqueness of normal form we get σ = t◦.

We get a first feedback on the properties of the calculus, as the above result
suffices to show strong normalization of the calculus. We will not go into the
details of defining the typing of full resource calculus. Let it suffice to say that
an intuitionistic typing on a term s lifts to a MELL typing of s◦.

Corollary 8.13. If s◦ is strongly normalizing in DiLL, then so is t for
g→ reduc-

tion. In particular simply typed full resource calculus is strongly normalizing.

Proof. The above proposition states that if u
g→ v then u◦ mec+−−−→ v◦, so no

infinite chains are possible from s, as they are simulated by infinite chains from
s◦.

As DiLL simply typed nets are strongly normalizing modulo ∼, we also get
strong normalization of all typed terms.

Before going on, let us prove an intermediate lemma that generalizes the
above result.

Lemma 8.14. If s◦ m∗→ec� σ then σ = t◦ and s
g∗→ t.

Proof. Let M be the sequence of multiplicative reductions in the reduction R :
s◦ m∗→ π

ec� t◦. Let us reason by structural induction on s.
If s is a differential term we can reason independently on its simple terms.

If s is a variable there is no redex and the result is trivial. Also passing to the
induction hypothesis if s = λx.u is an abstraction is easy, as all reductions in
the net cannot touch the terminal `-cell which corresponds to the abstraction.

Take the case of an application 〈r〉 a1 · · · an. First suppose that all reductions
in M happen either in r◦ or in either of the a◦i s. We can partition M into
L : r◦ m∗→ ν and Ni : a◦i

m∗→ τi, and we can freely commute all reductions which
happen in different subnets. By ec-normalizing ν and the τis we get, using
induction hypothesis, r◦ L→ e� s◦ and a◦i

Ni→ e� b◦i with r
g∗→ s and ai

g∗→ bi.
Applying these reductions on on the whole (〈r〉 a1 · · · an)◦ we can commute

L and Ni back into their place in M , possibly using Σm→ versions of them. The

166 8.3. The Translation

exponential reductions on one subnet cannot duplicate the redexes in the other
if not by splitting the whole term with a sum. Then the reduction substitutes
each of the subnets by the translation of their redexes:

(〈r〉 a1 · · · an)◦ M→ec� (〈s〉 b1 · · · bn)◦,

and 〈r〉 a1 · · · an g∗→ 〈s〉 b1 · · · bn.
Suppose now that M reduces also a multiplicative cut outside of r◦ or either

ai. This means s = 〈r〉A is itself a redex, with r = λx.u. Reducing the
corresponding multiplicative cut cannot create other multiplicative cuts, (the
multiplicative wire is on a conclusion) so that we can commute it back and forth
along M . We can still partition the multiplicative reduction into L : u◦ m∗→ ρ,
Ni : ai

m∗→ πi and the single reduction µ on the external cut. If we exclude µ
from the reduction we have by a reasoning identical to the one above

(〈λx.u〉 a1 · · · an)◦ L→N1→ . . .
Nn→ec� (〈λx.v〉 b1 · · · bn)◦

with s
g∗→ 〈λx.v〉B (as u

g∗→ v and ai
g∗→ bi).

Now in (〈λx.v〉B)◦ we execute µ and then ec-normalize, and by Propo-

sition 8.12 we get
((

S#A
x v ·B

)
[x := 0]

)◦
. By commuting all multiplicative

reductions back into their place in M and before the exponential-canonical ones
(the ones triggered by µ remain at the bottom), by uniqueness of ec-normal
form we conclude that

(
S#B
x v ·B

)
[x := 0] (to which s reduces) translates into

t.

Lemma 8.15. If for a net π we have NFec(π) = s◦ (equivalent by sequentializa-
tion to π being essentially without exponential axioms) π mec→ σ then NFec(σ) = t◦

with s
g∗→ t (in particular also σ is essentially without exponential axioms).

Proof. If π ec→ σ there is nothing to prove, as the two normal forms coincide. If
instead π m→ σ we get

π σ

NFec(π)σ′NFec(σ)

m

ec
ec

m∗

ec∗

ec

The left square is commutation of m and ec (Lemma 6.11), while the right
triangle is confluence to the ec-normal form. By sequentialization, as NFec(π)
is without exponential axioms, we get NFec(π) = s◦, which combined with the
above result gives NFec(σ) = t◦, which in turn gives that σ is essentially without
exponential axioms.

Theorem 8.16 (giant-step bisimulation). If s◦ mec∗−→ec� σ if and only if σ = t◦

and s
g∗→ t.

Proof. The if part is just iteration of Proposition 8.12. For the only if part let

s◦ = π0
mec→ π1

mec→ . . . mec→ πn = σ

Chapter 8. Full Resource Calculus 167

be the reduction taken into account, let σi := NFec(πi), with therefore σ0 = π0

and σn = σ.
By repeatedly applying the previous lemma we get σi = s◦i with si

g∗→ si+1

which composed give what we are looking for.

We can now get confluence of full resource calculus deriving it from what
was proved for DiLL.

Corollary 8.17. The reduction g on terms is confluent.

Proof. Take s
g∗→ u, v. By simulation s◦ mec∗−→ u◦, v◦, so that by confluence of the

mec reduction we further get u◦, v◦ mec∗−→ π. We then have u◦, v◦ mec∗−→ NFe(π)
which by full simulation gives NFe(π) = t◦ and u, v
redto[g∗]t.

Annexes

169

Index

∂, 136
4, 116
%, 136
MALL net, 48

additive, 50
additive contraction, 95
α-conversion, 19
α-equivalence

on nets, 19
anti-input, 76
anti-output, 76
argument, 154

bags
exponential part, 154
linear part, 154

differential bags, 154
exponential, 154

arity, 17
axiom, 19

bag of arguments, 82
box, 30

cell, 17
cell structural equivalence, 35
coarity, 17
codepth, 31
coherence, 60
coherent space, 59
compatible paths, 96
context, 31

linear, 24
polycontext, 28
term, 155

correction, 46
strong, 45

correctness
graph, 52
semantic, 41

correctness graph, 95

critical pair, 34
cut, 19
cut formula, 57
cut sequent, 57

dead end, 146
deadlocks, 17
degree, 17
depth, 31

equivalence
associative, 75
bang sum, 86
push, 75

experiment, 39
exponential, 72
exposure, 105

flat nets, 137

glueing, 24

hypercliques, 64
hypercoherence, 64
hypercoherent space, 64
hypercorrectness, 96

weak, 97

input, 76
interface, 24

labelling, 137
λ-net, 77
λ-calculus, 78
linking, 47
linkings, 23

module, 24

net, 17
η-expanded, 26, 27
slice net, 29

170

INDEX 171

output, 76

path
exponential, 112

polycontext, 31
polymodule, 28
polynet, 27
port, 17

active and passive, 17
auxiliary, 17
bounded, 17
free, 17
principal, 17

proof, 44
proof nets

MALL, 48
pure, 74

redex, 33
orthogonal, 34

reduction
baby step, 159
baby-step, 83
bang zero, 86
canonical, 75
erasing and non erasing, 133
exponential, 72
giant step, 159
giant-step, 84
neutral, 75
non erasing, 74
pull, 75
sum, 37

reduction system, 33
residual, 28
resolution, 49

additive, 49
proper, 50
&-, 50

saturated
MALL net, 55
set of MALLnets, 54

sequent, 26, 44
shared cut reduction, 58
signature, 17
spread, 113
state, 41
strictly &-oriented, 96
subject reduction, 35

substitution
generalized, 158
linear, 83, 155
partial, 157

switching, 45
acyclicity, 46
graph, 45
path, 46

term
differential, 82, 154

toggling, 53
tree, 23
type

atomic, 27
type system, 25

axiomatic, 26
typing, 25

webbed, 41
weight

?-weight, !-weight, 113
wire, 17

dormant, 18
external, 17
internal, 17

List of Figures

2.1 An example of net. 18

3.1 Cells, typings and reductions of MLL. 43
3.2 Inference and desequantialization rules for proofs of MLL. 44
3.3 The mix inference and desequentialization rules. 46
3.4 Cells, typing rules and reductions of MALL nets. We also show

the alternative and intuitive notation, where the symbols &1 and
&2 (resp. ⊕1 and ⊕2) are identified, but recovered from the
position of the auxiliary port: left for &1 (resp. ⊕1) and right for
&2 (resp. ⊕2). 48

3.5 Sequent calculus rules for MALL additive connectives, and the
respective desequentialization rules for nets. 49

3.6 An example of MALL net, showing the compact representation. . 51
3.7 Sequent calculus rules for MALLcut. 57
3.8 Rules for the experiments for all the cells of MALL. 59
3.9 The Gustave MALL net γ is shown in Figure (b). P stands for

α⊥⊗β⊥, and the link with three wires is shorthand for the trivial
linking shown in Figure (a). 63

3.10 The proof structure δ: an unsequentializable structure such thatJδK is a hyperclique. 67

4.1 Cells of MELL, together with typing rules for cells and for the box
and the reduction rules. Recall that in the box on box reduction
the two boxes must be different (a condition that is not trivial in
incorrect MELL nets). 73

4.2 Examples of non-termination (a), and non-confluence (b). Mul-
tiplicative units are not really necessary, but simplify the examples. 73

4.3 The generating pairs for associative and push equivalences, and
the neutral and pull reductions. 75

4.4 Examples of infinite reductions modulo n∼ and
p∼. The use of the

multiplicative unit 1 simplifies the counterexamples but is not
required. 76

4.5 Typing rules for pure λMELL. 77
4.6 Inductive rules for the definition of t◦. Labels give names to

ports, which are identified with the variables of the translated
term. Conversion modulo w∼ is implicitly used. 79

4.7 The additional cells, typing ad reduction rules for differential in-
teraction nets, DiLL0. Rules for ! and ? are totally symmetric. . . 81

172

LIST OF FIGURES 173

4.8 Inductive rules for the definition of t◦ for resource calculus. . . . 85
4.9 Additional exponential reduction rules for DiLL. 86
4.10 The pairs generating the push and sum equivalences, and the pull

and zero reductions. 87
4.11 Example of looping e-reduction with the reversal of the z-reduction. 88
4.12 A counter example to being weakly normalizable by non erasing

steps being equivalent to being strongly normalizing. 89
4.13 Rules for lax typing. 90

5.1 Two examples of our version of correctness graphs. The first one
shows the rejection of the Gustave net by the criterion, while the
second structure, is hypercorrect. 98

6.1 The marking rules of DiLL◦. 111
6.2 Confluence diagram of codereliction on box on dereliction. 129
6.3 Confluence diagram of codereliction on box on contraction. The

+ . . . part indicates a symmetric addend. 129
6.4 Reduction of a box with two coderelictions on it. Starting with

codereliction b swaps the two linear copies of the box contents
and therefore both the cocontraction and contraction trees in the
last addend. 130

6.5 Coherence diagram between the bang sum equivalence and a co-
dereliction. 132

7.1 The cells ∂ and % of DiLL∂%, and the translation from and to DiLL.
The cells are not commutative, but may be drawn with swapped
inactive ports, hence the special marking of the left port. % is
switching, ∂ is not. 136

7.2 Reduction rules of labelled DiLL◦∂%. All combinations not shown
are the same as in DiLL, with labels left unchanged. 138

7.3 The new associative equivalences. 138
7.4 Reduction of the critical peak with two ∂ cells on a box. The box

has only one other auxiliary port for brevity. Starting with the
other ∂ cell is completely symmetric, and an a-conversion equates
the two results. Labels are omitted as they are unaffected. 140

7.5 Confluence diagram of the ∂ on box on % critical peak. 141
7.6 Coherence diagram of a ∂ cell on an s-conversion. 142

8.1 Inductive rules for the definition of t◦ for full resource calculus. . 160

Bibliography

[AM99] Samson Abramsky and Paul-André Melliès. Concurrent games and
full completeness. In LICS, pages 431–442. IEEE Computer Society
Press, 1999.

[Bar84] Henk Barendregt. The lambda calculus, its syntax and semantics.
Number 103 in Studies in Logic and the Foundations of Mathemat-
ics. North-Holland, second edition, 1984.

[BCL99] Gérard Boudol, Pierre-Louis Curien, and Carolina Lavatelli. A se-
mantics for lambda calculi with resources. MSCS, 9(4):437–482,
1999.

[BE91] Antonio Bucciarelli and Thomas Ehrhard. Sequentiality and strong
stability. In LICS. IEEE Computer Society Press, 1991.

[BE01] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and
denotational semantics: the exponentials. Ann. Pure Appl. Logic,
109(3):205–241, 2001.

[Béc98] Denis Béchet. Minimality of the correctness criterion for multi-
plicative proof nets. Mathematical Structures in Computer Science,
8(6):543–558, 1998.

[Ber78] Gérard Berry. Stable models of typed lambda-calculi. In Inter-
national Colloquium on Automata, Languages and Programming,
volume 62 of Lecture Notes in Computer Science. Springer, 1978.

[BHS05] Richard Blute, Masahiro Hamano, and Philip J. Scott. Softness
of hypercoherences and MALL full completeness. Ann. Pure Appl.
Logic, 131(1-3):1–63, 2005.

[Bie94] Gavin Bierman. On intuitionistic linear logic. PhD thesis, Univer-
sity of Cambridge Computer Laboratory, December 1994.

[Bla92] Andreas Blass. A game semantics for linear logic. Annals of Pure
and Applied Logic, 56:183–220, April 1992.

[Bou93] Gérard Boudol. The lambda-calculus with multiplicities. INRIA
Research Report 2025, 1993.

[CKP03] Roberto Di Cosmo, Delia Kesner, and Emmanuel Polonovski. Proof
nets and explicit substitutions. Mathematical Structures in Com-
puter Science, 13(3):409–450, 2003.

174

BIBLIOGRAPHY 175

[Dan90] Vincent Danos. La Logique Linéaire appliquée à l’étude de divers
processus de normalisation (principalement du λ-calcul). Thèse de
doctorat, Université Paris VII, 1990.

[dC07] Daniel de Carvalho. Sémantiques de la logique linéaire et temps
de calcul. PhD thesis, Université Aix-Marseille II, 2007. Thèse de
Doctorat.

[DCG99] Roberto Di Cosmo and Stefano Guerrini. Strong normalization of
proof nets modulo structural congruences. LNCS, 1631:75–??, 1999.

[DCK97] Roberto Di Cosmo and Delia Kesner. Strong normalization of ex-
plicit substitutions via cut elimination in proof nets. In LICS,
page 35. IEEE Computer Society, 1997.

[DdW94] Eric Duquesne and Jacques Van de Wiele. Modèles cohérents des
réseaux purs. Archive for Mathematical Logic, 33(2):131–158, 1994.

[DG08] Paolo Di Giamberardino. Jump from parallel to sequential proofs:
on polarities and sequentiality in Linear Logic. PhD thesis, Univer-
sità Roma Tre / Université Aix-Marseille II, 2008.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplica-
tives. Archive for Mathematical Logic, 28:181–203, 1989.

[Ehr95] Thomas Ehrhard. Hypercoherence: A strongly stable model of lin-
ear logic. In Advances in Linear Logic, pages 83–108. Cambridge
University Press, 1995.

[Ehr02] Thomas Ehrhard. On Köthe sequence spaces and linear logic.
MSCS, 12:579–623, 2002.

[Ehr05] Thomas Ehrhard. Finiteness spaces. Mathematical. Structures in
Comp. Sci., 15(4):615–646, 2005.

[EL07] Thomas Ehrhard and Olivier Laurent. Interpreting a finitary
pi-calculus in differential interaction nets. In Lúıs Caires and
Vasco Thudichum Vasconcelos, editors, CONCUR, volume 4703 of
Lecture Notes in Computer Science, pages 333–348. Springer, 2007.

[ER03] Thomas Ehrhard and Laurent Regnier. The differential lambda-
calculus. Theor. Comput. Sci., 309(1):1–41, 2003.

[ER06a] Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s ma-
chine and the Taylor expansion of lambda-terms. In Arnold Beck-
mann, Ulrich Berger, Benedikt Löwe, and John V. Tucker, editors,
CiE, volume 3988 of Lecture Notes in Computer Science, pages 186–
197. Springer, 2006.

[ER06b] Thomas Ehrhard and Laurent Regnier. Differential interaction nets.
Theor. Comput. Sci., 364(2):166–195, 2006.

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor
expansion of ordinary lambda-terms. Theor. Comput. Sci., 403(2-
3):347–372, 2008.

176 BIBLIOGRAPHY

[Gen67] Gerhard Gentzen. The Collected Works of G. Gentzen. North-
Holland, 1967.

[Gir87] Jean-Yves Girard. Linear logic. Th. Comp. Sc., 50:1–102, 1987.

[Gir91a] Jean-Yves Girard. A new constructive logic: classical logic. Math-
ematical Structures in Computer Science, 1(3):255–296, 1991.

[Gir91b] Jean-Yves Girard. Quantifiers in linear logic II. In Corsi and
Sambin, editors, Nuovi problemi della logica e della filosofia della
scienza, pages 79–90, Bologna, 1991. CLUEB.

[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In Girard
et al. [GLR95], pages 1–42.

[Gir96] Jean-Yves Girard. Proof-nets: the parallel syntax for proof-theory.
In Logic and Algebra, volume 180 of Lecture Notes in Pure and
Appl. Math., pages 97–124, 1996.

[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation,
143(2):175–204, June 1998.

[Gir99] Jean-Yves Girard. On the meaning of logical rules I: syntax vs.
semantics. In Ulrich Berger and Helmut Schwichtenberg, editors,
Computational Logic, pages 215–272. Springer, 1999. NATO series
F 165.

[GLR95] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors. Ad-
vances in Linear Logic, volume 222 of London Mathematical Society
Lecture Note Series. Cambridge University Press, 1995.

[How80] William Alvin Howard. The formulae-as-types notion of construc-
tion, volume to H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, 1980.

[Hue80] Gérard P. Huet. Confluent reductions: Abstract properties and
applications to term rewriting systems. J. ACM, 27(4):797–821,
1980.

[HvG03] Dominic Hughes and Rob van Glabbeek. Proof nets for unit-free
multiplicative-additive linear logic. In LICS, pages 1–10. IEEE
Computer Society Press, 2003.

[Joi93] J-.B. Joinet. Étude de la Normalisation du Calcul des Séquents
Classique à Travers la Logique Linéaire. Thèse de doctorat, Uni-
versity of Paris VII, 1993.

[Kfo00] Assaf J. Kfoury. A linearization of the lambda-calculus and conse-
quences. Journal of Logic and Computation, 10(3):411–436, 2000.

[KP90] Jean-Louis Krivine and Michel Parigot. Programming with proofs.
J. Inf. Process. Cybern., 26(3):149–167, 1990.

[Kri93] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Hor-
wood, 1993.

BIBLIOGRAPHY 177

[Laf90] Yves Lafont. Interaction nets. In POPL ’90: Proceedings of the
17th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 95–108, New York, NY, USA, 1990.
ACM.

[Laf95] Yves Lafont. From proof nets to interaction nets. In Girard et al.
[GLR95], pages 225–247.

[Lam92] François Lamarche. Sequentiality, games and linear logic (an-
nouncement). In Workshop on Categorical Logic in Computer Sci-
ence. Publications of the Computer Science Department of Aarhus
University, DAIMI PB-397-II, 1992.

[Lau99] Olivier Laurent. Polarized proof-nets: proof-nets for LC (extended
abstract). In Jean-Yves Girard, editor, Typed Lambda Calculi and
Applications ’99, volume 1581 of Lecture Notes in Computer Sci-
ence, pages 213–227. Springer, April 1999.

[Lau02] Olivier Laurent. Étude de la polarisation en logique. Thèse de
doctorat, Université Aix-Marseille II, March 2002.

[LQTdF05] Olivier Laurent, Myriam Quatrini, and Lorenzo Tortora de Falco.
Polarized and focalized linear and classical proofs. Annals of Pure
and Applied Logic, 134(2–3):217–264, July 2005.

[LTdF04] Olivier Laurent and Lorenzo Tortora de Falco. Slicing polarized
additive normalization. In Linear Logic in Computer Science, pages
247–282, 2004.

[Maz06] Damiano Mazza. Interaction Nets: Semantics and Concurrent Ex-
tensions. Ph.D. Thesis, Université de la Méditerranée/Università
degli Studi Roma Tre, 2006.

[MM08] Paul-André Melliès and Samuel Mimram. Asynchronous games
without alternation. Submitted for pubblication, 2008.

[Ohl98] Enno Ohlebusch. Church-Rosser theorems for abstract reduction
modulo an equivalence relation. In Rewriting Techniques and Appli-
cations, volume 1379 of Lecture Notes in Computer Science, pages
17–31. Springer, 1998.

[Pag06a] Michele Pagani. Acyclicity and coherence in multiplicative and ex-
ponential linear logic. volume 4207 of Lecture Notes in Comput.
Sci., pages 531–545, 2006.

[Pag06b] Michele Pagani. Proof nets and cliques: towards the understanding
of analytical proofs. PhD thesis, Università Roma Tre / Université
Aix-Marseille II, April 2006.

[Pag08] Michele Pagani. Visible acyclic nets: between interaction and se-
mantics. In preparation, 2008.

[Pag09] Michele Pagani. The cut-elimination theorem for differential nets
with boxes. Submitted for publication, 2009.

178 BIBLIOGRAPHY

[Pao06] Luca Paolini. A stable programming language. Inf. Comput.,
204(3):339–375, 2006.

[Plo77] Gordon D. Plotkin. LCF considered as a programming language.
Theor. Comput. Sci., 5(3):225–255, 1977.

[PTdF08] Michele Pagani and Lorenzo Tortora de Falco. Strong normalization
property for second order linear logic. To appear on Theor. Comput.
Sci., 2008.

[Reg92] Laurent Regnier. Lambda-Calcul et Réseaux. Thèse de doctorat,
Université Paris VII, 1992.

[Reg94] Laurent Regnier. Une équivalence sur les lambda-termes. Th.
Comp. Sc., 126:281–292, 1994.

[Ret97] Christian Retoré. A semantic characterisation of the correctness of a
proof net. Mathematical Structures in Computer Science, 7(5):445–
452, October 1997.

[Sch65] David Edward Schroer. The Church Rosser Theorem. PhD thesis,
Cornell University, Ithaca N.Y., 1965. Ph.D. thesis.

[Sco72] Dana Scott. Continuous lattices. In Lawvere, editor, Toposes, Al-
gebraic Geometry and Logic, volume 274 of Lecture Notes in Math-
ematics, pages 97–136. Springer, 1972.

[TdF00] Lorenzo Tortora de Falco. Réseaux, cohérence et expériences obses-
sionnelles. Thèse de doctorat, Université Paris VII, January 2000.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 2003.

[Tra08a] Paolo Tranquilli. A characterization of hypercoherent semantic cor-
rectness in multiplicative additive linear logic. In Michael Kaminski
and Simone Martini, editors, CSL, volume 5213 of Lecture Notes in
Computer Science, pages 246–261. Springer, 2008.

[Tra08b] Paolo Tranquilli. Intuitionistic differential nets and lambda calcu-
lus. Conditionally accepted to Theor. Comput. Sci., 2008.

[Vau07] Lionel Vaux. λ-calcul différentiel et logique classique : interactions
calculatoires. Thèse de doctorat, Université de la Méditerranée,
2007.

[Vau08] Lionel Vaux. Differential linear logic and polarization. Submitted
for publication, 2008.

Reference Figures

Cells and typing rules

A ⊗ B

A B
⊗

A` B

A B
`

1
1

⊥
⊥

Tensor Par One Bottom

Reductions

⊗ ` m→ ` ⊗ 1 ⊥ m→ ε
Figure 3.1: Cells, typings and reductions of MLL.

Cells and typing rules

A1 & A2

Ai
&i

A1 ⊕ A2

Ai
⊕i with i = 1 or 2.

Reductions

&i ⊕ j
w→

∅ if i , j,

if i = j.

Notation for cells

& := &1 & := &2 ⊕ := ⊕1 ⊕ := ⊕2

Figure 3.4: Cells, typing rules and reductions of MALL nets. We also show the
alternative and intuitive notation, where the symbols &1 and &2 (resp. ⊕1 and
⊕2) are identified, but recovered from the position of the auxiliary port: left for
&1 (resp. ⊕1) and right for &2 (resp. ⊕2).

179

180 REFERENCE FIGURES

Multiplicatives and additives

(a, b)

a b
⊗

(a, b)

a b`
∗

1
∗
⊥

a.i

a
&i

a.i

a
⊕i

Figure 3.8: Rules for the experiments for all the cells of MALL.

Cells and typing rules

?A

A
?

?A

?A ?A
?

?A
?

!A

A ?B1 ?Bk

?B1 ?Bk

!

π

Dereliction Contraction Weakening Exponential box
(commutative)

Reduction rules

? ! π
e→ π ? ! π

e→
?

?

? ! π
e→

! π ?

! π ?

! π

! σ
e→

! π

! σ

Figure 4.1: Cells of MELL, together with typing rules for cells and for the box
and the reduction rules. Recall that in the box on box reduction the two boxes
must be different (a condition that is not trivial in incorrect MELL nets).

REFERENCE FIGURES 181

Associative equivalence and neutral reduction

?
?

a7− � ?
?

?
?

n→

Push equivalence and pull reduction

! π
? p7− � ! π

?
! π

? p→ ! π
?

Figure 4.3: The generating pairs for associative and push equivalences, and
the neutral and pull reductions.

ı

!o ı
⊗

o

?ı o
`

?ı

ı
?

?ı

?ı ?ı
?

?ı
?

!o

o ?ı ?ı

?ı ?ı
!

π

Figure 4.5: Typing rules for pure λMELL.

Cells, typing rules and notation

!A

A
!

!A

!A !A
!

!A
!

Codereliction Cocontraction Coweakening
(commutative)

Reduction rules

? !
e→

? !
e→ ? !

?
+ ? !

?
? !

e→ 0

! ?
e→ ! ?

!
+ ! ?

!
! ?

e→ 0

? !
e→

! ?

! ?

!?
e→ !

!
?!
e→ ?

?

Figure 4.7: The additional cells, typing ad reduction rules for differential
interaction nets, DiLL0. Rules for ! and ? are totally symmetric.

182 REFERENCE FIGURES

!π
!

e→ !

!π
!

!π
!

?

?

!π
!

e→ !π
!

!π
!

e→ !π
!

Figure 4.9: Additional exponential reduction rules for DiLL.

REFERENCE FIGURES 183

Bang sum equivalence and bang zero reduction

!

σ

+

π

s7− � !

! σ

! π

?

?

with σ, π , 0,

! 0
z→ !

?

?

Push equivalence and pull reduction

! π
? p7− � ! π

?
with π , 0,

! π
? p→ ! π

?

!

σ

+

π
?

p→ !

! σ

! π

?

?

with π, σ , 0,

Figure 4.10: The pairs generating the push and sum equivalences, and the
pull and zero reductions.

184 REFERENCE FIGURES

•

Ω Ω
⊗

•

Ω Ω

`
•

1

•
⊥

?

Ω
?

?

? ?
?

?
?

!
!

!

Ω
!

!

! !
!

!

Ω ? ?

? ?
!

π

Figure 4.13: Rules for lax typing.

⊗ ` m→ ` ⊗
? ! π e→ π

? !
e→

Figure 6.1: The marking rules of DiLL◦.

p ?(e) = ?(p), the variable associated with the free port p;

e

e2

e2

? ?(e) = ?(e1) + ?(e2);

f e

e
! ?(e) = ?(f);

f
! π

e1

ek

?(ei) =

{
?(f)(1 +

∑
j !(ej)) if π = 0,

?(f)(1 +
∑
j !(ej))

∑
λ∈π sp(λ)?(eλ) otherwise;

otherwise: ?(e) = 1.

Table 6.1: Rules for the ?-weight. ?(e) = 1 if e is not exponential.

REFERENCE FIGURES 185

p !(e) =

!(p) if p ∈ fp0(π),

!(f) if p ∈ fp0(σ(B)) for a box B, p is above

an auxiliary port, and f is the wire cor-

responding to p outside the box,

1 if p ∈ fp0(σ(B)) for a box B and p is

above the principal port;

e

e2

e2

! !(e) = !(e1) + !(e2);

f e

e
! !(e) = !(f);

e
!π

fk

f1

!(e) =

{
1 +

∑
j !(fj) if π = 0,

(1 +
∑
i !(fi))

∑
λ∈π sp(λ) otherwise.

otherwise: !(e) = 1.

Table 6.2: Rules for the !-weight. !(e) = 1 if e is not exponential.

Cells and typing rules

?A

A ?A
%

!A

A !A
∂

Linear query Linear substitution

Translation πM from DiLL to DiLL∂%

? 7→ %

?

! 7→ ∂

!

Translation πO from DiLL∂% to DiLL

% 7→ ?

?

∂ 7→ !

!

Figure 7.1: The cells ∂ and % of DiLL∂%, and the translation from and to DiLL.
The cells are not commutative, but may be drawed with swapped inactive ports,
hence the special marking of the left port. % is switching, ∂ is not.

186 REFERENCE FIGURES

⊗ `
n
m→ ` ⊗

n + 1

% ∂

n
e→

n + 1
+

∂ %

n

% !
n
e→

!
%

n

+
! %

n

, ∂ ?

n
e→ 0

∂ ?
n
e→

?
∂

n

+
? ∂

n

, % !

n
e→ 0

! π%

n

e→
π

! π

?

?

n + 1

!π
∂ n

e→ ∂

!π

π
∂

?

?

?
n

Figure 7.2: Reduction rules of labelled DiLL◦∂%. All combinations not shown
are the same as in DiLL, with labels left unchanged.

?
%

a7− � %
?

%
%

a7− � %
%

!
∂

a7− � ∂
!

∂
∂

a7− � %
%

Figure 7.3: The new associative equivalences.

REFERENCE FIGURES 187

Differential terms (∑
ti

)◦
:=

∑
t◦i ,

Simple terms

x◦ := ?
x

, (λx.s)◦ := `
s◦

x
,

(
〈r〉A

)◦
:= NFc

 ⊗
r◦?

A◦?

yk

y1

yk

y1

yk

y1

Bags of arguments

1◦ := ! , (uA)◦ := NFc

 !
!u◦?

A◦?

yk

y1

yk

y1

yk

y1

(u∞A)◦ := NFc

 !
!u◦?

A◦?

yk

y1

yk

y1

yk

y1

Figure 8.1: Inductive rules for the definition of t◦ for full resource calculus.

	Introduction
	Plan and Presentation of the Results
	Notation

	I Tools, Questions and Aims
	Nets
	Statics
	Ports, Cells and Wires
	Sums
	Boxes

	Dynamics
	Subject Reduction
	Structural Congruence
	Confluence

	Invariants
	Denotational Semantics by Experiments
	Webbed Semantics and Semantic Correctness

	Linear Proof Nets
	The Multiplicatives
	Sequent Calculus and Desequentialization
	Correctness Criterion and Sequentialization
	MLL nets as linkings

	The Additives
	Sequent Calculus and Desequentialization
	MALL Nets as Sets of Linkings
	Correctness Criterion and Sequentialization
	Cut reduction

	Invariants and Semantic Correctness
	The Interpretation
	Coherent Spaces
	Hypercoherent spaces

	Exponential Proof Nets and Lambda Calculus
	Rewriting Theory Modulo Equivalence
	The Exponentials
	Correctness and Properties of Reduction
	Accommodating the Contractions: Associativity, Neutrality, Push and Pull
	Lambda-nets and lambda-calculus

	Differential Nets, Differential Lambda-nets and Resource Calculus
	Differential Interaction Nets
	Resource Calculus
	Differential Nets and Boxes
	Lax typing

	II Determinism: Hypercoherent Spaces and Linearity
	Hypercorrectness
	The Criterion
	Jumping from Contractions
	With-oriented and Compatible Paths

	Hypercorrectness Implies HCoh-correctness
	HCoh-correctness Implies Hypercorrectness
	Complements
	Cut Exposure
	Stability Under Reduction

	III Nondeterminism: Differential Operators and Resources
	Church-Rosser Theorem for Pure DiLL
	Marking New Cuts: DiLL°
	Finiteness of Developments
	Measuring Exponential Reduction
	The Proof, Case by Case

	Confluence of Developments
	Local Confluence Modulo
	Local Coherence

	Standardization and Conservation Theorems
	Proof of the Standardization Theorem
	DILL-partial-rho
	Labelled Nets and Reduction
	Confluence of Labelled Non Erasing Reduction

	Proof of the Theorem
	Conservation for DiLL-partial-rho
	Transferring Conservation from DiLL-partial-rho to DiLL

	Full Resource Calculus
	The Language
	Giant Step and Baby Step Reductions
	The Translation
	Statics: Definition and Sequentialization
	Dynamics: Bisimulation

	Index
	List of Figures
	Bibliography
	Reference Figures

