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Introduction

Throughout the Thesis wewill work over the complex fieldC. In the first two chapters of
this work we analyze the moduli space of complex rational elliptic surfaces with a section
built by Miranda in [44]. Our purpose is to stratify this space in terms of the configurations
of singular fibers that the surfaces have. Given a configuration σ of singular fibers, what
are the main properties of the stratum parametrizing surfaces with σ as configuration of
singular fibers? Is it irreducible? When do two of these strata intersect? When is one
contained in another?
The main tool in the construction of this space is the Weierstrass model of the elliptic

surfaces with a section. Every surface X −→ C is associated to a triplet (A, B, L), where
L is a line bundle over the base curve C of nonnegative degree, A is a global section
of 4L and B is a global section of 6L. Through these data, it is possible to localize the
points of C over which the singular fibers lie and detect the types of singular fibers the
surface has. Basically, the information is encoded in the zeroes of the sections A, B and
D = 4A3 + 27B2 ∈ H0(C, 12L) and the type of singular fibers over a point q ∈ C only
depends on the triplet

(vq(A), vq(B), vq(D)),

where vq(A) is the order of vanishing of the section A at q and the same for vq(B) and
vq(D).
Since the moduli space we analyze is constructed by using the Weierstrass model, we

need to understand how these models behave in families, in order to stratify the moduli
space. In the case of the rational elliptic surfaces, the base curve C is isomorphic to P1,
and A, B and D are homogeneous polynomials in two variables. The goal of Chapter 1 is to
study the space of the pairs of polynomials of given degrees in terms of the configurations
of their multiple zeroes and of their common zeroes. We introduce the notion of generalized
coincident root locus, that is the main tool to stratify the moduli space of rational elliptic
surfaces.
In [49] and [46], Miranda and Persson prove that there is a list of 279 possible config-

urations of singular fibers for a rational elliptic surface with a section. The tools we use
in Chapter 2 do not allow us to take account of the fibers of type Ik with k > 1 and of
type I∗k , with k > 0, then our classification turns out to be weaker than the one of Mi-
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randa and Persson. However, our method controls some fibers, that we call special smooth
fibers, that are smooth elliptic fibers with invariant J equal to 1 or 0. Moreover, we take
account of the multiplicity of the J-map at the points of the discriminant locus, so that our
classification refines the Miranda-Persson one in this sense.
Although our analysis does not control the multiplicative fibers, we describe a strategy

to get the complete stratification of the moduli space W1 involving also the fibers Ik and
I∗k . Unfortunately, this solution is computationally too hard for the softwares we have.
The main objects of Chapter 3 are the complex Enriques surfaces of base change type,

a particular kind of Enriques surfaces introduced by Hulek and Schütt in [36]. Starting
from a complex rational elliptic surface, they produce nine-dimensional families of En-
riques surfaces having a genus 1 pencil with a (possibly singular) rational bisection which
splits in two smooth curves in the K3 cover. Much of the chapter is devoted to showing
that these bisections are generically nodal (meaning that they have just simple nodes as
singularities). The main result of the chapter is showing that the rational bisections on the
Enriques surfaces of base change type deform to rational curves over the very general En-
riques surface, positively answering a question posed by Galati and Knutsen in [29] about
the existence of rational curves on the very general Enriques surface.
A second interesting result we give concerns the Severi varieties of curves on Enriques

surfaces. In [13], the authors prove that if a Severi variety of curves on the very general
Enriques surface has dimension greater then expected (said nonregular), then the pullback
of its general members split in the K3 cover in two linearly equivalent curves, with a pre-
scribed number of nodes. We show that the assumption of very generality is necessary:
for instance, we find plenty of Severi varieties that violate the result of Ciliberto, Dedieu,
Galati and Knutsen in the Enriques surfaces of base change type.
Another relevant result concerns the classification of the genus 1 pencils over the K3

surfaces covering the Enriques surfaces of base change type. The genus 1 fibrations on
K3 surfaces with a non-symplectic involution over a rational elliptic surface or with an
Enriques involution have been intensively studied in the last decades (see for example [31]
for the rational case and [18] for the Enriques one), but never in the case in which the K3
carries both the involutions. Garbagnati and Salgado, in a series of works (see, for example,
[31] and [32]), perform a classification of the genus 1 fibrations on the very general K3
surface covering a rational elliptic surface. Such K3 surfaces form a 10-dimensional family
F in the moduli space of K3 surfaces. In the previously mentioned work by Hulek and



Schütt, the constructed Enriques surfaces form 9-dimensional families and they are covered
by K3 surfaces which also cover a rational elliptic surface. Thus, they are subfamilies of
F . In other words, the K3 covers are a limit case of the ones considered by Garbagnati and
Salgado: they admit both the rational and the Enriques involution, while the very general
just carries the rational one. We contribute to this classification by extending the results
by Garbagnati and Salgado to the limit case and by expanding it with the addition of new
classes of genus 1 pencils. These new classes are given by the pullback of some of the
nonregular Severi varieties of curves of the Enriques constructed by Hulek and Schütt that
we found. They are particularly interesting because of their behaviour with respect to the
rational involution: it sends one of these genus 1 pencils to another one. In the classification
by Garbagnati and Salgado the fibrations with this property are the hardest to find, while
in the limit case subfamilies we could systematically produce examples of these objects.
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Chapter 1

Polynomial spaces
In this chapter we explore the notion of coincident root locus, considered for the first

time by Cayley in [7] and investigated by Chipalkatti in [10] and by Fehér, Némethi and
Rimányi in [26]. It is a space that parametrizes polynomials with a given configuration
of the multiplicities of their roots. The author in [10] shows that one of these spaces is
contained in another if and only if the first is obtained from the second by collapsing some
roots in a sense that we explain.
In the second part of the chapter we generalize this description to spaces parametrizing

pairs of polynomials. We define the generalized coincident root loci, that parametrize pairs
of polynomials with given configuration of multiple and (possibly) common roots. The
main result of the chapter is Proposition 1.2.14, that states that a generalized coincident
root locus is contained in another if and only if the first is obtained from the second by
collapsing roots (common or not) of the two polynomials. This will be the main tool to
stratify the moduli space of the rational elliptic surfaces: every rational elliptic surface
is associated to two particular polynomials and to every stratum of the moduli space of
rational elliptic surface we associate a generalized coincident root locus.

1.1 Coincident root loci

Consider a homogeneous degree d polynomial in two variables over the complex num-

bers, that is, a binary form F(x, y) =
d
∑

i=0
aixiyd−i. It splits as a product of linear forms,

and it is classical that F has a repeated factor if and only if its discriminant vanishes. Sim-
ilarly, we can ask for algebraic conditions on the coefficients ai, so that F has say, a triple
factor or two double factors. More generally, we may fix a partition λ of d, and ask for
algebraic conditions so that the factors of F have multiplicities as dictated by the parts in
λ. The object of this section is to review the method for answering such questions given
by Chipalkatti in [10]: sometimes we add or extend some proofs not given by the author in
order to make the reader familiar with the ideas and the notations. For instance, Proposition
1.1.2 and Proposition 1.1.3 are just claimed and not proved by the author.
The polynomial F(x, y) as above will be identified with the point [a0, . . . , ad] ofPd. Let
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CHAPTER 1 Coincident root loci

then λ = (λ1, . . . , λn) be a partition of d, and consider the subset Pλ of Pd composed by

polynomials F that split as
n
∏
i=1

L
λj
j for some linear forms Lj. We see that Pλ is a projective

subvariety of Pd. This is the coincident root locus, the main object of the section.

1.1.1 The definition of the coincident root locus

In the sequel λ = (1e1 , 2e2 , . . . , ded) denotes a partition of d, having er parts of size r for
1 ≤ r ≤ d. The number of parts of λ is ∑d

r=1 er = n.
Let V denote a two dimensional C-vector space: with the choice of {x, y} as basis of

V, we identify a point of P(Symmer V) ∼= Per with a degree er polynomial Gr(x, y)
determined up to scalars.
Consider the maps

vr : Per −→ P(Symmrer V)

Gr 7−→ Gr
r

and the multiplication map

µ :
d

∏
i=1

Prer −→ Pd

(H1, . . . , Hd) 7−→
d

∏
r=1

Hr.

Finally, consider the composition fλ = µ ◦
d

∏
r=1

vr,

Yλ :=
d

∏
r=1

Per −→
d

∏
r=1

Prer −→ Pd

(G1, . . . , Gd) 7−→
d

∏
r=1

Gr
r

Definition 1.1.1. The coincident root locus Xλ is defined to be the image of fλ.

Proposition 1.1.2 (Chipalkatti). The coincident root locus Xλ is rational, its dimension is

n (the number of parts of λ) and its degree is n!
∏
r
(er !) ∏

r
rer .

Proof. The map fλ is a generically one to one morphism between projective varieties. In

fact, the general polynomial F in Xλ has n distinct roots: if

2



CHAPTER 1 Coincident root loci

f−1
λ (F) = {(F1, . . . , Fd), (G1, . . . , Gd)},

we have that Fi
i · Fj

j = Gi
i · Gj

j for some Fi 6= Gi, Fj 6= Gj and i 6= j (every exponent

appears just once by construction of fλ). This implies that Fi
i = Gj

j and Fj
j = Gi

i , then

deg(Fi) · i = deg(Gj) · j anddeg(Fj) · j = deg(Gi) · i. We can have this equalities only if

we impose that the polynomials have commonmultiple roots, but we chose F to be general,

thus its preimage f−1
λ (F) is composed only by the element (G1, . . . , Gd) ∈

d
∏
i=1

Per .

We actually proved that fλ has finite fibers, too. In fact, if F ∈ Xλ and f−1
λ (F) has

more than one element, we saw that we need to impose its factors G1, . . . , Gd having some

coincident roots, and we have a finite number of choice to do this.

The map fλ is a morphism and the domain is a projective variety, then the image Xλ is

closed. Hence, Xλ is a closed in a projective space, whence it is projective.

We can conclude that fλ is birational and thus that its image Xλ has dimension
d
∑

r=1
ed = n.

To prove the degree, we identify Pd with the set of effective divisors of degree d on P1.

LetΣ denote a general (d− n)-dimensional linear subspace ofPd, it corresponds to a linear

series gd−n
d on P1. The points of Σ ∩ Xλ correspond to those divisors in the series which

may be written as ∑
r

r(Pr,1 + Pr,2 + · · ·+ Pr,er), for some points Pr,j ∈ P1. According to

De Jonquières’ formula (see [2, p. 359]), the number of such divisors is the coefficient of

te1te2 · · · ted in (1 + t1 + 2t2 + · · ·+ dtd)
n, hence the assertion.

We want to understand the intersection between these coincident root loci: how do more
of them intersect? When is one contained in another? The next proposition gives an ex-
haustive answer to our questions.

Proposition 1.1.3 (Chipalkatti). Let λ and µ be two partitions of d. Then, Pµ ⊆ Pλ if and

only if λ is a refinement of µ.

Before proving the proposition, we give an intuitive explanation of the phenomenon:
say that µ is obtained by λ adding up the first two parts of λ = (λ1, . . . , λn), so that

3



CHAPTER 1 Coincident root loci

µ = (λ1 + λ2, λ3, . . . , λn). Roughly speaking, Xµ is the subset of Xλ corresponding
to the polynomials such that the roots of multiplicities λ1 and λ2 collapse to a root of
multiplicity λ1 + λ2. More precisely, the general polynomial F in Xλ splits in the product
of linear forms F = Lλ1

1 · Lλ2
2 · · · Lλn

n , while the general polynomial G in Xµ is of the form
G = Mλ1+λ2 · Mλ3

3 · · · Mλn
n for some linear forms M, M2, . . . , Mn.

Proof of Proposition 1.1.3. Let λ = (λ1, . . . , λn): we prove the first direction of the state-

ment just for the case in which µ is obtained by λ adding up the first two parts of λ. The

general case will follow from the fact that every refinement of a partition can be obtained

in a finite number of addition of two parts. So, we have µ = (λ1 + λ2, λ3, . . . , λn).

It is not restrictive to suppose that λ3 = · · · = λn = 1 and that λ1 6= λ2. This just

simplifies the notation: now, we can write λ = (1n−2, λ1
1, λ1

2), where n as always is the

number of parts of λ and µ = (1n−2, (λ1 + λ2)
1). We want to show that a polynomial

G(x, y) ∈ Xµ belongs to Xλ. We have the two defining maps

fλ : Pn−2 × P1 × P1 −→ Pn−2 × Pλ1 × Pλ2 −→ Pd

( f , h1, h2) 7−→ ( f , hλ1
1 , hλ2

2 ) 7−→ f · hλ1
1 · hλ2

2

and

fµ : Pn−2 × P1 −→ Pn−2 × Pλ1+λ2 −→ Pd

(g, h) 7−→ (g, hλ1+λ2) 7−→ g · hλ1+λ2

A polynomial G ∈ Xµ of the form g · hλ1+λ2 belongs to the image of fλ: in fact, it is

sufficient to take F of the form f · hλ1
1 · hλ2

2 and choose f = g ∈ Pn−2 and h1 = h2 =

h ∈ P1.

4



CHAPTER 1 Coincident root loci

To prove the other direction, let µ = (µ1 . . . , µm) and let f be a general polynomial in

Pµ, so that

f =
m
∏
i=1

f µi
i

for some linear forms fi. The generality of f implies that fi 6= f j for every i 6= j. Now,

since f ∈ Pλ, it can be written as

f =
n
∏
i=1

gλi
i .

Up to multiplication by a scalar, f can be written as a product of linear forms only in one

way. Hence, if gi 6= gj for every i 6= j, we have that, up to reordering the indices, fi = gi

and λi = µi for every i, from which λ = µ. Let us suppose that gj1 = · · · = gjp for

some indices j1, . . . , jp and that there are no other indices j with gj = gj1 . This implies

that fi = gj1 = · · · = gjp and λi = µj1 + · · ·+ µjp for an index i. By iterating the process

for every set of coincident linear forms in the written g =
n
∏
j=1

g
λj
j , we conclude that λ is a

refinement of µ.

We want to represent the stratification of Pd in terms of the coincident root loci with a
diagram.

Definition 1.1.4. The diagram of specialization of Pd is an oriented graph with all the

coincident root loci as vertices: for every two coincident root loci X1 and X2, there is an

arrow from X1 to X2 if and only if X2 ⊂ X1 and the codimension of X2 in X1 is 1.

Example 1.1.5 (Stratification of P4). The partitions of 4 are: (14), (12, 2), (22), (1, 3)

and (4).

As showed in Prop 1.1 the dimension of Xλ is the number of parts of λ. The specialization

diagram of P4 is

5



CHAPTER 1 Generalized coincident root loci

X(14)

X(12,2)

X(22) X(1,3)

X(4)

Example 1.1.6 (Stratification of P6). The partition of 6 are: (111111), (21111), (2211),

(3111), (222), (321), (411), (42), (33), (51) and (6). The specialization diagram of P6

is

X(16)

X(14,2)

X(13,3) X(22,12)

X(1,2,3) X(12,4) X(23)

X(32) X(1,5) X(2,4)

X(6)

1.2 Generalized coincident root loci
The aim of this section is to generalize the notion of coincident root locus to pairs of

polynomials.

6



CHAPTER 1 Generalized coincident root loci

Consider two binary forms F(x, y) =
n
∑

i=0
aixiyn−i and G(x, y) =

m
∑

j=0
bjxjym−j. They

split in product of linear forms and it is classical that F and G have a common factor if
and only if their resultant vanishes. Similarly, we can ask for algebraic conditions on the
coefficients ai and bj, so that F and G have say, two common factors or a common factor
that is double for F and triple for G. More generally, we may fix a partition of n, a partition
of m and a set of relations R (that is a set of pairs consisting of a part of λ and a part of
µ), and ask for algebraic conditions so that the factors of F and G have multiple roots and
common factors with multiplicities as dictated by the partitions and the relations.
The polynomials F(x, y) and G(x, y) as above will be identified with the points

[a0, . . . , an] of Pn and [b0, . . . , bm] of Pm. Let then λ = (λ1, . . . , λr) be a partition of
n, µ = (µ1, . . . , µs) be a partition of m and R = {((λi1 , µj1), . . . , (λic , µjc)} a set of
relations. Consider the set Xλ,µ,R, that we define as the subset of Pn × Pm composed
by pairs of polynomials (F, G) that split as products of linear forms F = Lλ1

1 · · · Lλr
r and

G = Mµ1
1 · · · Mµs

s such that Lik = Mjk for k = 1, . . . , c, which is a projective subvariety
ofPn ×Pm, as we will show. This is the generalized coincident root locus, the main object
of this section.

1.2.1 The definition of the generalized coincident root locus

In the sequel, λ = (λ1, . . . , λr) is a partition of n, µ = (µ1, . . . , µs) is a partition of m
and R = {(λi1 , µj1), . . . , (λic , µjc)} is the set of relations. Then, r and s are the numbers
of parts of λ and µ respectively.

Definition 1.2.1. With the notations as above, we call λC the set of parts of λ not involved

in the relations, that are the parts of λ not appearing in R. We define µC in the same way.

Moreover, we call t :=
c
∑

k=1
λik and u :=

c
∑

j=1
µjk the sums of the parts of λ and µ involved

in the relations in R.

Wewant to define the generalized coincident root locus in a similar way to the definition
of the simple coincident root locus we introduced in the previous section. We will define
it as the image of a generically one to one morphism from a product of suited projective
spaces to Pn × Pm. Before giving the final definition, we begin with a simpler setting,
making two assumptions. We assume that

7



CHAPTER 1 Generalized coincident root loci

(i) λC and µC are composed only by 1’s, so that we have λ = (λi1 , . . . , λic , 1, . . . , 1)
and µ = (µj1 , . . . , µjc , 1, . . . , 1), where the number of 1’s in λC is r − c and the
number of 1’s in µC is s − c;

(ii) there are not repeated relations in R: for instance, R does not contain two relations
(λik1

, µjk1
) and (λik2

, µjk2
) such that λik1

= λik2
and µjk1

= µjk2
.

The only purpose of these assumptions is to help the reader in getting familiar with the
notations and the definitions. Afterwards, we will remove them.
Now, we consider the map

fλ,µ,R : (P1)c × Pn−t × Pm−u −→ Pn × Pm

( f1, . . . , fc, g, p) 7−→ ( f
λi1
1 · · · f λic

c · g, f
µj1
1 · · · f

µjc
c · p).

Definition 1.2.2. The generalized coincident root locus Xλ,µ,R is defined to be the image

of fλ,µ,R.

Proposition 1.2.3. The generalized coincident root locus Xλ,µ,R is rational and its dimen-

sion is r + s − c, where r is the number of parts in λ, s is the number of parts in µ and c is

the number of relations in R.

Proof. The map fλ,µ,R is a generically one to one morphism between projective varieties.

Indeed, the general pair (F, G) = ( f
λi1
1 · · · f λic

c · g, f
µi1
1 · · · f

µjc
c · p) ∈ Xλ,µ,R is composed

by polynomials with no common zeroes other than the ones dictated by R and with no

multiple zeroes other than the ones dictated by their partitions. This implies that the general

fiber f−1
λ,µ,R(F, G) is composed only by the element ( f1, . . . , fc, g, p) ∈ (P1)c × Pn−t ×

Pm−u. In fact, otherwise, we would have another element ( f ′1, . . . , f ′c, g′, p′) sent by fλ,µ,R

to (F, G). But, under this assumption, the only possible case that does not violate the

generality of (F, G) is the one in which, for some i, j, we have f λi
i · f

λj
j = f ′λi

i · f ′
λj
j and

f µi
i · f

µj
j = f ′µi

i · f ′
µj
j . This means that fi = f ′j , f j = f ′i , λi = λj and µi = µj, but we

assumed that there are no repeated relations in R. So, the general fiber is composed only

by one element, hence the map is generically one to one. Moreover, fλ,µ,R has finite fibers

8



CHAPTER 1 Generalized coincident root loci

and this can be seen in the same way we proved the finiteness of the fibers of fλ in the

Proposition 1.1.2.

The map fλ,µ,R is a morphism and the domain is a projective variety, whence the image

Xλ,µ,R is closed. Hence, Xλ,µ,R is a closed in a projective space, than it is a projective

variety. Furthermore, since the morphism fλ,µ,R is generically one to one, Xλ,µ,R is a

rational variety. Its dimension is equal to the one of the domain (P1)c × Pn−t × Pm−u,

that is c + n − t + m − u = r + s − c, since n − t = r − c and m − u = s − c.

The next example shows how to construct the generalized coincident root locus for two
polynomials F and G of degree n and m, having two common zeroes, one simple for F and
G and the other simple for F and double for G. Recall that we assumed F and G having
only simple roots other than the common ones.

Example 1.2.4. Let λ = (1n), µ = (1m−2, 2) and R = {(1, 2), (1, 1)}. We have that

c = 2, t = 1 + 1 = 2 and u = 2 + 1 = 3. Our defining morphism is

fλ,µ,R : P1 × P1 × Pn−2 × Pm−3 −→ Pn × Pm

( f1, f2, g, p) 7−→ ( f1 · f2 · g, f1 · f 2
2 · p).

The dimension of Xλ,µ,R is n + m − 3.

We want now to remove our two assumptions to give the final definition. We start by
removing the condition (i), that ensures λC and µC to be composed only by 1’s. What we
do is to exploit the Definition 1.1.1 of simple coincident root locus of the previous section
to involve the partitions λC and µC in our definition.
Recall that r is the number of parts of λ and s is the number of parts of µ, then λC has v :=

r − c parts and µC has w := s − c parts. We write the partitions λC = (1a1 , 2a2 , . . . , (n −

t)an−t) and µC = (1b1 , 2b2 , . . . , (m − u)bm−u). Notice that
n−t
∑

i=1
ai = v and

m−u
∑

j=1
bj = w

Consider the morphisms defining the coincident root loci XλC ∈ Pn−t and XµC ∈ Pm−u:

fλC :
n−t
∏
i=1

Pai −→ Pn−t

9
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(g1, . . . , gn−t) 7−→
n−t
∏
i=1

gi
i

and

fµC :
m−u
∏
j=1

Pbj −→ Pm−u

(p1, . . . , pm−u) 7−→
m−u
∏
j=1

pj
j.

The morphism fλ,µ,R now has to take account of the configuration of the roots of F and G
other than the common ones, so that we define it in the following way

fλ,µ,R : (P1)c ×
n−t
∏
i=1

Pai ×
m−u
∏
j=1

Pbj −→ Pn × Pm

( f1, . . . , fc, g1, . . . , gn−t, p1, . . . , pm−u) 7−→ ( f
λi1
1 · · · f λic

c ·
n−t
∏
i=1

gi
i, f

µj1
1 · · · f

µjc
c ·

m−u
∏
j=1

pj
j).

This map can be seen as a generalization of the previous fλ,µ,R, so we denote it in the same
way because from now on we do not impose the condition (i) and then there will not be
ambiguity.

Definition 1.2.5. The generalized coincident root locus Xλ,µ,R is defined to be the image

of fλ,µ,R.

Proposition 1.2.6. The generalized coincident root locus Xλ,µ,R is rational and its dimen-

sion in Pn × Pm is c + v + w, where v is the number of parts in λC, w is the number of

parts in µC and c is the number of relations in R.

Proof. We just need to prove that fλ,µ,R is generically one to one, since the other steps of

the proof are the same of the ones in the proof of the Proposition 1.2.3. Notice that this

new fλ,µ,R behaves as the previous one except for the introduction of the factor
n−t
∏
i=1

Pai ×
m−u
∏
j=1

Pbj . It is sufficient to notice that fλ,µ,R acts on
n−t
∏
i=1

Pai as fλC and thus it behaves as

a generically one to one morphism, as showed in the proof of the Proposition 1.1.2. The

10
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same can be said for the factor
m−u
∏
j=1

Pbj . Hence, by Proposition 1.2.3, fλ,µ,R is birational.

The dimension of Xλ,µ,R is the one of the domain, that is r + s − c = c + v + w.

In order to produce a birational morphism in full generality, we need to remove the
assumption (ii), according to which R has no repeated relations. First of all, we want to
explain why we introduced this condition, with an example showing what kind of issues
one could face admitting the repetitions.

Example 1.2.7. Let λ = (1n), µ = (1m) and R = {(1, 1), (1, 1)}. In this case t =

1 + 1 = 2 and s = 1 + 1 = 2. The morphism

fλ,µ,R : P1 × P1 × Pn−2 × Pm−2 −→ Pn × Pm

( f1, f2, g, p) 7−→ ( f1 · f2 · g, f1 · f2 · p)

is not generically one to one: in fact, fλ,µ,R( f1, f2, g, p) = fλ,µ,R( f2, f1, g, p).

Now we remove the assumption (ii) and, in order to avoid the issue of the example,
we introduce a new notation for R that compacts the writing of the repeated entries and
indicate the number of times that relation appears in R.

Notation 1.2.1. If (λi, µj) ∈ R is a repeated relation appearing k times, we just write

(λi, µj)
k.

With this notation, R = {(λi1 , µj1)
e1 , . . . , (λih , µjh)

eh}, with h equal to the number of

different relations.

We have
h
∑

k=1
ek = c. Note that, with these new notations, the sums of the parts involved

in the relations, called t and u, are now t =
h
∑

k=1
ekλik and u =

h
∑

k=1
ekµik . Now consider

the morphism

fλ,µ,R :
h

∏
k=1

Pek ×
n−t
∏
i=1

Pai ×
m−u
∏
j=1

Pbj −→ Pn × Pm

( f1, . . . , fh, g1, . . . , gn−t, p1, . . . , pm−u) 7−→

( f
λi1
1 · · · f

λih
h ·

n−t
∏
i=1

gi
i, f

µj1
1 · · · f

µjh
h ·

m−u
∏
j=1

pj
j).

11
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Definition 1.2.8. The generalized coincident root locus Xλ,µ,R is defined to be the image

of fλ,µ,R.

The next example shows how this new definition solves the issue pointed out in the Exam-
ple 1.2.7.

Example 1.2.9. Let λ = (1n), µ = (1m) and R = {(1, 1)2}. The morphism

fλ,µ,R : P2 × Pn−2 × Pm−2 −→ Pn × Pm

( f , g, p) 7−→ ( f · g, f · p)

with this new definition is generically one to one.

Now we can state the proposition in the general form.

Proposition 1.2.10. The generalized coincident root locus Xλ,µ,R is rational and its di-

mension in Pn × Pm is c + v + w, where v is the number of parts in λC, w is the number

of parts in µC and c =
h
∑

k=1
ek is the total number of relations in R.

Proof. We just need to prove that fλ,µ,R is generically one to one, since the other steps

of the proof are the same of the ones in the proof of the Proposition 1.2.6. Again, notice

that this new fλ,µ,R behaves as the previous one except for the introduction of the factor
h

∏
k=1

Pek . Note that fλ,µ,R acts on
h

∏
k=1

Pek associating to ( f1, . . . , fh) the pair of polynomials

( f
λi1
1 · · · f

λih
h , f

µj1
1 · · · f

µjh
h ), where f

λi1
1 · · · f

λih
h ∈ Pt and f

µj1
1 · · · f

µjh
h ∈ Pu. Remember

that t =
h
∑

k=1
ekλik and u =

h
∑

k=1
ekµik . Suppose that this map is not generically one to one,

then a general pair (F, G) = ( f
λi1
1 · · · f

λih
h , f

µj1
1 · · · f

µjh
h ) ∈ Pt × Pu is such that its fiber

is composed by at least two elements ( f1, . . . , fh) and ( f ′1, . . . , f ′h) in
h

∏
k=1

Pek . The general

pair (F, G) ∈ Pt × Pu is such that every fi has distinct roots and such that, for every i, j,

fi and f j have not common roots: thus it follows, for some i, j, that f λi
i · f

λj
j = f ′λi

i · f ′
λj
j

12
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and f µi
i · f

µj
j = f ′µi

i · f ′
µj
j . This means that fi = f ′j , f j = f ′i , λi = λj and µi = µj, but

this implies we have repeated relations other than the ones in A and encoded in the factor
h

∏
k=1

Pek , violating our construction of fλ,µ,R.

The final goal is to find a stratification ofPn ×Pm in terms of the generalized coincident
root loci, so the next step is to understand when a generalized coincident root locus is
contained in another. We generalize the notion of coarsening for partitions to coarsening
for triplets (λ, µ, R). Let us start with an example.

Example 1.2.11. Let λ = (1n), µ = (1m) and R = {(1, 1)}. We have the morphism

fλ,µ,R : P1 × Pn−1 × Pm−1 −→ Pn × Pm

( f , g, p) 7−→ ( f · g, f · p).

The generalized coincident root locus Xλ,µ,R parametrizes pairs of polynomials with a

common root. Adding more relations or increasing the multiplicity of the roots in the re-

lations, we expect the corresponding generalized coincident root loci to be subvarieties of

Xλ,µ,R, and it is what actually happens.

For example, if we take λ′ = (1n) and µ′ = (1m−2, 2) and R′ = {(1, 2)}, we have the

morphism

fλ′,µ′,R′ : P1 × Pn−1 × Pm−2 −→ Pn × Pm

( f1, g1, p1) 7−→ ( f1 · g1, f 2
1 · p1).

The coincident root locus Xλ′,µ′,R′ is a subvariety of Xλ,µ,R. In fact, a point (F1, G1) =

( f1 · g1, f 2
1 · h1) ∈ Xλ′,µ′,R′ belongs to Xλ,µ,R: it is the image of ( f , g, p) under fλ,µ,R,

where f = f1, g = g1 and p = f1 · p1.

Similarly, taking λ′′ = (1n). µ′′ = (1m) and R′′ = {(1, 1)2}, we have the morphism

13
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fλ′′,µ′′,R′′ : P2 × Pn−2 × Pm−2 −→ Pn × Pm

( f2, g2, p2) 7−→ ( f2 · g2, f2 · p2).

The coincident root locus Xλ′′,µ′′,R′′ is a subvariety of Xλ,µ,R, since a point (F2, G2) =

( f2 · g2, f2 · h2) ∈ Xλ′′,µ′′,R′′ , with f2 = l1 · l2 for some linear forms l1 and l2, belongs to

Xλ,µ,R: it is the image of ( f , g, p) under fλ,µ,R, where f = l1, g = l2 · g2 and p = l2 · p2.

In the next definition we generalize the cases described in the Example 1.2.11.

Definition 1.2.12. Let λ = (λ1, . . . , λr) be a partition of n, µ = (µ1, . . . , µs) a partition

of m and R = {(λi1 , µj1), . . . , (λic , µjc)} a set of relations.

(a) We say that another set R′ = {(λi1 , µj1), . . . , (λjd , µjd)}, with d > c, is obtained

from R by adding relations if R′ \ R = {(λic+1 , µjc+1), . . . , (λid , µjd)}, where

λic+k ∈ λC and µjc+k ∈ µC, k = 1, . . . , d − c.

(b) Collapsing two relations (λip , µjp) and (λiq , µjq) in R means to consider the new

triplet (λ′, µ′, R′), such that

λ′ = (λ1, . . . , λ̂ip , . . . , λ̂iq , . . . , λip + λiq , . . . , λr),

µ′ = (µ1, . . . , µ̂jp , . . . , µ̂jq , . . . , µjp + µjq , . . . , µs)

and

R′ =

{(λi1 , µj1), . . . , ̂(λip , µjp), . . . , ̂(λiq , µjq), . . . , (λip +λiq , µjp + µjq), . . . , (λic , µjc)}.

We shall say that a set of relations R′ is obtained from R by collapsing relations if

it is constructed by iterating the operation of collapsing two relations of R a finite

number of times.

14
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(c) Increasing the multiplicity of a relation (λip , µip) in R from the side of λ means to

consider the new triplet (λ′, µ′, R′), such that

λ′ = (λ1, . . . , λ̂ip , . . . , λ̂iq , . . . , λip + λiq , . . . , λr),

µ′ = µ

and

R′ = {(λi1 , µj1), . . . , ̂(λip , µjp), . . . , (λip + λiq , µjp), . . . , (λic , µjc)}.

Increasing the multiplicity of a relation in A from the side of µ is defined in an anal-

ogous way.

We shall say that a set of relations R′ is obtained from R by increasing the multiplic-

ity of relations if it is constructed by iterating the previous two operations a finite

number of times.

Definition 1.2.13. We say that a triplet (λ′, µ′, R′) is a coarsening of (λ, µ, R) if λ′ and µ′

are coarsenings of λ and µ respectively, and R′ is obtained from R by adding, collapsing

or increasing the multiplicities of its relations.

Proposition 1.2.14. Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be partitions of n and m

respectively, and let R = {(λi1 , µj1)
a1 , . . . , (λih , µjh)

ah} be a set of relations. A general-

ized coincident root locus Xλ′,µ′,R′ is contained in Xλ,µ,R if and only if the triplet (λ′, µ′, R′)

is a coarsening of (λ, µ, R).

Proof. Assume R = {(λ1, µ1)
a1 , . . . , (λh, µh)

ah}. Since every coarsening is obtained

from R by adding, collapsing or increasing the multiplicity of its relations a finite number

of times, without loss of generality, to show the first direction, it is sufficient to prove the

assertion in the following three cases:

15
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(a) λ′ = λ, µ′ = µ and R′ = R
⋃{(λc+1, µc+1)}, where λc+1 ∈ λc and µc+2 ∈ µc.

(b) λ′ = (λ1 + λ2, λ3, . . . , λr), µ′ = (µ1 + µ2, µ3, . . . , µs) and R′ = {(λ1 + λ2, µ1 +

µ2)
h1,2 , (λ3, µ3)

a3 , . . . , (λh, µh)
ah}

(c) λ′ = (λ1 + λc+1, λ2, . . . , λr), µ′ = µ

and R′ = {(λ1 + λc+1, µ1)
a1,c+1 , (λ2, µ2)

a2 , . . . , (λh, µh)
ah}, where λc+1 ∈ λC.

In the case (a), assume for simplicity that the new relation (λc+1, µc+1) appears in R′ only

once and that λc+1 and µc+1 appear only once in λC and µC. Then, ec+1 = ac+1 = bc+1 =

1. We have the morphisms

fλ,µ,R :
h

∏
k=1

Pek ×
n−t
∏
i=1

Pai ×
m−u
∏
j=1

Pbj −→ Pn × Pm

( f1, . . . , fh, g1, . . . , gn−t, p1, . . . , pm−u) 7−→ ( f λ1
1 · · · f λh

h ·
n−t
∏
i=1

gi
i, f µ1

1 · · · f µh
h ·

m−u
∏
j=1

pj
j)

and

fλ,µ,R′ :
h

∏
k=1

Pek × P1 ×
n−t−λc+1

∏
i=1

Pai ×
m−u−µc+1

∏
j=1

Pbj −→ Pn × Pm

( f1, . . . , fh, f , g1, . . . , gn−t−λc+1 , p1, . . . , pm−u−µc+1) 7−→

( f λ1
1 · · · f λh

h · f λc+1 ·
n−t−λc+1

∏
i=1

gi
i, f µ1

1 · · · f µh
h · f µc+1 ·

m−u−µc+1

∏
j=1

pj
j).

A pair (F, G) = ( f λ1
1 · · · f λh

h · f λc+1 ·
n−t−λc+1

∏
i=1

gi
i, f µ1

1 · · · f µh
h · f µc+1 ·

m−u−µc+1

∏
j=1

pj
j) ∈

Xλ,µ,R′ belongs to Xλ,µ,R: in fact, we can choose gλc+1 = pµc+1 = f , where gλc+1 ∈

P1 is the linear polynomial in
n−t
∏
i=1

Pai corresponding to the factor associated to the part

λc+1 ∈ λC and pµc+1 ∈ P1 is the linear polynomial in
m−u
∏
j=1

Pbj corresponding to the

factor associated to the part µc+1 ∈ µC. gλc+1 and hλc+1 are linear because we assumed

ac+1 = bc+1 = 1.

For the case (b), assume that (λ1 + λ2, µ1 + µ2) appears once in R′ and λ1, λ2, µ1 and

µ2 appear once in λ and µ respectively, so that the exponent in R′ associated to the part
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(λ1 + λ2, µ1 + µ2) that we call for this time h1,2 is 1 and a1 = a2 = b1 = b2 = 1. We

have the morphism

fλ′,µ′,R′ : P1 ×
h

∏
k=3

Pek ×
n−t
∏
i=1

Pai ×
m−u
∏
j=1

Pbj −→ Pn × Pm

( f , f3 . . . , fh, g1, . . . , gn−t, p1, . . . , pm−u) 7−→

( f λ1+λ2 · f λ3
3 · · · f λh

h ·
n−t
∏
i=1

gi
i, f µ1+µ2 · f µ3

3 · · · f µh
h ·

m−u
∏
j=1

pj
j).

A pair (F, G) = ( f λ1+λ2 · f λ3
3 · · · f λh

h ·
n−t−λc+1

∏
i=1

gi
i, f µ1+µ2 · f µ3

3 · · · f µh
h ·

m−u
∏
j=1

hj
j) of

Xλ′,µ′,R′ is contained in Xλ,µ,R: in fact, we can choose the linear polynomials f1 and f2 in

such a way that f1 = f2 = f (all the three polynomials are linear because we assumed

h1,2 = a1 = a2 = b1 = b2 = 1).

For the case (c), assume that (λ1 + λc+1, µ1) appears once in R′ and that λ1, µ′ and λc+1

appear once in λ, µ and λC respectively. Then, the exponent in R′ associated to the part

(λ1 + λc+1, µ1) that we call for this time h1,c+1 is 1 and a1 = b1 = ac+1 = 1. We have

the morphism

fλ′,µ′,R′ : ×
h

∏
k=1

Pek ×
n−t−λc+1

∏
i=1

Pai ×
m−u
∏
j=1

Pbj −→ Pn × Pm

( f1, f2 . . . , fh, g1, . . . , gn−t−λc+1 , p1, . . . , pm−u) 7−→

( f λ1+λc+1 · f λ2
2 · · · f λh

h ·
n−t−λc+1

∏
i=1

gi
i, f µ1 · f µ2

2 · · · f µh
h ·

m−u
∏
j=1

pj
j). A pair

(F, G) = ( f λ1+λc+1 · f λ2
2 · · · f λh

h ·
n−t−λc+1

∏
i=1

gi
i, f µ1 · f µ2

2 · · · f µh
h ·

m−u
∏
j=1

pj
j) ∈ Xλ′,µ′,R′

is contained in Xλ,µ,R: in fact, we can chose the linear polynomials f1 and gλc+1 , where

gλc+1 ∈ P1 is the linear polynomial in
n−t
∏
i=1

Pai corresponding to the factor associated to the

part λc+1 ∈ λC, in such a way that f1 = gλc+1 (the two polynomials are linear because we

assumed h1,c+1 = a1 = 1).

To prove the other direction, let λ′ = (λ′
1, . . . , λ′

r′), µ′ = (µ′
1 . . . , µ′

s′) and R′ =

17
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{(λ′
i1

, µ′
j1
)a1 , . . . , (λ′

ih′
, µjh′ )

ah′} and let (F, G) be a general pair of polynomials inXλ′,µ′,R′ .

We have that F = f ′λ
′
1

1 · · · f ′
λ′

h′
h′ · g′

λ′
h′+1

h′+1 · · · g′
λ′

r′
r′ and G = f ′µ

′
1

1 · · · f ′
µ′

h′
h′ · p′

µ′
h′+1

h′+1 · · · p′
µ′

s′
s′

in such a way all the linear forms f ′i , g′j and p′k are pairwise distinct. The pair (F, G)

also belongs to Xλ,µ,R, so that F = f λ1
1 · · · f λh

h · gλh+1
h+1 · · · gλr

r and G = f µ1
1 · · · f µh

h ·

pµh+1
h+1 · · · pµs

s . Since there is only one way to write F and G in product of linear forms, if

all the polynomials fi, gj and pk are different, we have that f ′i = fi, g′i = gi and p′i = pi

and that λi = λ′
i and µi = µ′

i for every i, so that (λ, µ, R) = (λ′, µ′, R′). As in the

proof of Proposition 1.1.3, we can group all the coincident linear forms involved in the

writing of the pair (F.G) as a member of Xλ,µ,R and conclude that the triplet (λ′, µ′, R′)

is a coarsening of (λ, µ, R). For instance, if fi = f j for some i and j, R is obtained from

R′ by collapsing a relation; if fi = gj or fi = pk, R is obtained from R′ by increasing

the multiplicity of a relation; if gi = pj, R is obtained from R′ by adding a relation and if

gi = gj (or pi = pj) we have that λ′ (or µ′) is a coarsening of λ (or µ).

Corollary 1.2.15. Given generalized coincident root loci Xλ′,µ′,R′ ⊂ Xλ,µ,R, the codimen-

sion of Xλ′,µ′,R′ in Xλ,µ,R is equal to the number of simple operations from (λ, µ, R) to

obtain (λ′, µ′, R′), where by simple operation we mean adding a single relation, increas-

ing the multiplicity of a single relation, collapsing a single relation or adding up two parts

of λC or µC.

Proof. The dimension of Xλ,µ,R is c + v + w. If (λ′, µ′, R′) is obtained from (λ, µ, R) by

adding a single relation, the number of relations of R′ will be c′ = c + 1 and the number

parts of λC and µC will be v′ = v − 1 and w′ = w − 1. Hence, the dimension of Xλ′,µ′,R′

is c + v + w − 1: every time we collapse a relation, the codimension increases by 1.

If (λ′, µ′, R′) is obtained from (λ, µ, R) by collapsing a single relation, we will have c′ =

c − 1, v′ = v and w′ = w. If (λ′, µ′, R′) is obtained from (λ, µ, R) by increasing the
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multiplicity of a relation, say from the side of λ, we will have c′ = c, v′ = v − 1 and

w′ = w. Finally, if, say, λ′ is obtained from λ by adding up two parts of λC, we will have

c′ = c, v′ = v − 1 and w′ = w. Then, every time we perform a simple operation, the

codimension increases by 1.

Wewant to represent the stratification ofPn ×Pm in terms of the generalized coincident
root loci with a diagram.

Definition 1.2.16. The diagram of specialization of Pn × Pm is an oriented graph with

all the generalized coincident root loci as vertices: for every two generalized coincident

root loci X1 and X2, there is an arrow from X1 to X2 if and only if X2 ⊂ X1 and the

codimension of X2 in X1 is 1.
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Chapter 2

Elliptic surfaces
In this chapter we analyze the moduli space of rational elliptic surfaces in terms of the

special fibers the surfaces have. Once recalled the basic notions about elliptic surfaces,
their singular fibers and the Weierstrass model they admit, in Section 2.3 we review the
construction of the moduli space of rational elliptic surfaces performed byMiranda in [45].
Miranda and Persson in [49] and [46] developed a wonderful theory on the configu-

rations of the singular fibers that a rational elliptic surface can admit: in Section 2.4 we
add some other objects in this investigation, taking into account also some special smooth
fibers and another invariant of the singular fibers, i.e. the multiplicity of the J-map, not
considered by Miranda and Persson. The set of the configurations of singular fibers we
consider is listed in Theorem 2.4.13. The weakness of the method we develop in this chap-
ter, to study the aforementioned moduli space, relies in the fact that it does not allow us to
consider one specific type of singular fibers, that is, cycles of smooth rational curves. For
this reason, we give the notion of suitable rational elliptic surface.
In section 2.5We exploit the machinery of the generalized coincident root loci presented

in Chapter 1 to stratify the moduli space of (suitable) rational elliptic surfaces in terms of
the special fibers they can have. We treat the case of isotrivial rational elliptic surfaces,
defined as elliptic surfaces such that all the smooth fibers are isomorphic, separately. The
main results of this chapter are Theorem 2.5.13 and Corollary 2.5.25, in which we produce
the above mentioned stratifications. By taking into account the multiplicity of the J-map
allows us to refine the stratification of the strictly semistable locus of the moduli space of
rational elliptic surfaces performed by Miranda in [45]: we point out such a refinement in
Proposition 2.5.29.
We introduce the main object of the chapter, the elliptic surfaces. For the proofs of the

results we refer to [44] and [45].

Definition 2.0.1. An elliptic curve (E, O) is a smooth projective curve E of genus one,

together with a chosen point O called its origin.

The next result states that every elliptic curve can be embedded in the projective plane
P2 as a cubic curve.
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Theorem 2.0.2. [Weierstrass immersion] Let (E, O) be an elliptic curve. Then there exist

rational maps x, y ∈ C(E) such that the map

ϕ : E \ {O} → P2, ϕ = (x, y, 1)

gives an isomorphism ϕ̃ of E onto a plane cubic defined by the Weierstrass equation

Y2 = X3 + aX + b,

in the affine chart (X : Y : 1) with a, b ∈ C and satisfying ϕ̃ ∼= ϕ away from O and

ϕ̃(O) = (0 : 1 : 0).

Proof. See [52, Chapter III, Proposition 3.1].

Definition 2.0.3. Suppose X is an algebraic surface (smooth or singular). A genus one

fibration is a morphism f : X → C, where C is a smooth curve, such that the general

fiber is a smooth curve of genus one and all the fibers are connected. If there is a section

s : C → X, we say that f : X → C is an elliptic fibration (with a given section), and X

is an elliptic surface over C. A smooth elliptic surface f : X → C is relatively minimal if

there are no (−1)-curves lying on the fibers of f .

Given a smooth elliptic surface X → C over C, we can blow-down all the (−1)-curves
along the fibers and get a relative minimal model of X, which is also smooth. We will see
that a relatively minimal model of a smooth elliptic surface is unique in a sense described
below.

Definition 2.0.4. Let f1 : X1 → C and f2 : X2 → C be two elliptic surfaces over C. A

morphism of elliptic surfaces (over C) is a morphism of surfaces ψ : X1 → X2 such that

f1 = f2 ◦ ψ. If ψ is also an isomorphism of surfaces, we say that ψ is an isomorphism of

elliptic surfaces (over C) and that X1 and X2 are isomorphic as elliptic surfaces (over C).

Furthermore, X1 and X2 are birational as elliptic surfaces (over C) if there is a birational
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map f : X1 → X2 such that f1 = f2 ◦ f and we say that f preserves the elliptic structure

of X1 and X2.

Proposition 2.0.5. Suppose X1 and X2 are relatively minimal elliptic surfaces over C,

which are birational as elliptic surfaces over C. Let f : X1 → X2 be a birational map

that preserves the elliptic structure of X1 and X2. Then, f is an isomorphism of elliptic

surfaces over C.

Corollary 2.0.6. Suppose X → C is an elliptic surface over C, then there is a unique

relatively minimal elliptic surface X0 → X that is birational to X as elliptic surfaces over

C.

Kodaira classified all possible fibers of a relatively minimal elliptic surface as shown in
Table 1 (see [39]). The first column of the table lists the notations of the fiber types. In
the second column, a Dynkin diagram represents the intersection matrix of the irreducible
components of a fiber. Each solid dot of a Dynkin diagram represents an irreducible com-
ponent. The number in each solid dot denotes the multiplicity of the corresponding com-
ponent. There are three types of fibers that are irreducible: a smooth elliptic curve (I0),
a nodal rational curve (I1) and a cuspidal rational curve (I I). For a reducible singular
fiber, all its irreducible components are smooth rational curves with self-intersection equal
to (−2). Let f : X → C be a relatively minimal elliptic surface over C with a section
s : C → X. The image of the section S = s(C) is a divisor on X. Then for each fiber, S
intersects exactly one of its components with multiplicity 1.
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2.1 The Weierstrass model
We introduce the Weierstrass fibrations. Unless differently specified, the proofs are

given by Miranda in [44] and [45].

Definition 2.1.1. Let X be a surface and C be a smooth curve. A Weierstrass fibration is

a flat morphism f : X → C such that every fiber is either

• a smooth genus one curve,

• a rational curve with a node, or

• a rational curve with a cusp.

and the general fiber is smooth. Moreover, there is a given section S that does not pass

through nodes or cusps of any fiber.

Remark 2.1.2. Suppose that f : X → C is a relatively minimal elliptic surface with a

section S. We can contract the union of all components of each singular fiber that do

not intersect S (see [44]). Such contraction gives a singular surface X′ that admits a

Weierstrass fibration

X contraction−−−−−−→ X′ W. f ibration−−−−−−→ C

The singularities of X′ are rational double points of the type denoted by the Dynkin dia-

grams for the corresponding singular fibers of X, after removing the vertex corresponding

to the noncontracted component ([45]). On the other hand, X → X′ is the minimal reso-

lution of the singularities of X′.

Let f ′ : X′ → C be a Weierstrass fibration obtained from a relatively minimal elliptic
surface f : X → C with a section S. We still denote S the corresponding section of X′.
The normal bundle of S ⊂ X′ is denoted by NS/X′ . Since f ′|S is an isomorphism onto C,
f ′∗NS/X′ is a line bundle on C. We denote its dual bundle by

( f ′∗NS/X′)−1 = L.
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We call L the fundamental line bundle of the Weierstrass fibration f ′ : X′ → C. (See
[44]).
A Weierstrass fibration X′ → C, with its fundamental line bundle L, can be realized as a
divisor inside a P2-bundle over C.

Proposition 2.1.3. X′ is isomorphic to the divisor of Y = P(OC(−2L)⊕OC(−3L)⊕

OC) defined by

y2z = x3 + Axz2 + Bz3,

where A ∈ H0(C, 4L), B ∈ H0(C, 6L) and [x, y, z] are the coordinate of the P2-bundle

Y.

Definition 2.1.4. We say that (L, A, B) is the Weierstrass data of X′. We call the section

D = 4A3 + 27B2 ∈ H0(C, 12L) the discriminant of the fibration and the divisor (D) on

C the discriminant divisor of the elliptic surface X → C, where X → X′ is the minimal

resolution of X′ (and therefore is a relatively minimal elliptic surface over C). We also call

L the fundamental line bundle of the elliptic surface X → C and the triplet (L, A, B) the

Weierstrass data of X.

We have the canonical bundle formula for relatively minimal elliptic surfaces.

Theorem 2.1.5. Let f : X → C be a relatively minimal elliptic surface and L be its

fundamental line bundle. Then the canonical bundle of X is

KX = f ∗(KC + L),

where KC is the canonical bundle of C. Furthermore, deg(L) = χ(X), where χ(X) is

the Euler characteristic of X.

Corollary 2.1.6. Let e(X) denote the topological Euler characteristic of X. Then

e(X) = 12 deg(L)
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Proof. By the Noether’s formula we have

12χ(X) = K2
X + e(X).

Moreover, 2.1.5 implies that KX is a multiple of a fiber, then K2
X = 0.

We have a classification of minimal elliptic surfaces based on the genus of the base curve
and on the degree of the fundamental line bundle.

Lemma 2.1.7. Let f : X → C be a minimal elliptic surface with a section with fundamen-

tal line bundle L. Let g = g(C) be the genus of C.

(a) if g = 0, then X is

– a product of an elliptic curve and P1 if deg(L) = 0

– a rational surface if deg(L) = 1

– a K3 surface is deg(L) = 2

– a properly elliptic surface if deg(L) ≥ 3

(b) if g = 1, then X is

– an abelian surface (in particular a product of two elliptic curves) if L = OC

– a hyperelliptic surface if L is torsion of order 2,3,4 or 6.

– a properly elliptic surface if deg(L) ≥ 1

(c) if g = 2, then X is a properly elliptic surface.

Lemma 2.1.8. Let f : X → C be a relatively minimal elliptic surface with a section and

L be its fundamental line bundle. If X is not a product surface, then its Hodge diamond is
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1

g g

g + deg(L)− 1 10deg(L) + 2g g + deg(L)− 1

g g

1

If X is a product surface, then its Hodge diamond is

1

g g

g + deg(L) 10deg(L) + 2g − 2 g + deg(L)

g g

1

Proof. [44] (Lemma IV.1.1)

2.1.1 The singular fibers

Recall that we can associate to a relatively minimal elliptic surface f : X → C its
Weierstrass model f ′ : X′ → C, together with its defining equation

y2z = x3 + Axz2 + Bz3,

where A ∈ H0(C, 4L) and B ∈ H0(C, 6L). In the previous section we introduced the
discriminant D = 4A3 + 27B2 and the corresponding divisor (D) on C. A, B and D are
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global sections of some power of the line bundle L, then we can see these sections locally
as functions on the base curve C depending on a local parameter t of C. We can write

A = A(t)
B = B(t)

D = D(t).

The next proposition shows that the singular fibers of X → C lie over the points of the
discriminant divisor.

Proposition 2.1.9. Let f : X → C be a relatively minimal elliptic surface over C with

Weierstrass data (L, A, B). Then, the discriminant D = D(t) = 4A(t)3 + 27B(t)2

vanishes over a point Q = (t0) ∈ C if and only if the fiber XQ is singular.

Proof. See [44, see Theorem 2.1].

Remark 2.1.10. Since D is a degree 12 deg(L) line bundle over the curve C, X has

12 deg(L) singular fibers counted with multiplicity. In the next part of the section, we

explain what counted with multiplicity means.

We already mentioned that Kodaira in [39] classified all the types of the fibers that can
occur in a relatively minimal elliptic surface. Néron in [48] has taken Kodaira’s classifi-
cation one step further and has shown that the type of singular fiber that occur over a point
Q depends only on the order of vanishing of A, B and D at Q; moreover, he calculates ex-
plicitly, given the triplet (vQ(A), vQ(B), vQ(D)), the type of the fiber XQ. We reproduce
these results in the next table. Columns 3, 4, and 5 contain the orders of vanishing of A, B
and D at Q. For example, the data (0, 0, 1) corresponds to the simplest singular fiber, the
nodal one I1; (0, 0, k) to a cycle of k rational curves Ik, (1, 1, 2) to a cusp I I and so on.
Another fundamental notion that characterizes the elliptic surfaces is the J-map. First of

all, we give the Definition of J-invariant for an elliptic curve in Weierstrass form.

Definition 2.1.11. Let (E, 0) be a smooth elliptic curve defined by theWeierstrass equation

Y2 = X3 + aX + b

29



CHAPTER 2 The Weierstrass model

as in Theorem 2.0.2. Then, the J-invariant of E is the complex number

J(E) = 4a3/(4a3 + 27b2).

The J-map is a map from the base curve C of the fibration to P1, that associates to a
point Q of the curve, the J-invariant of the elliptic curve XQ, that is the fiber over Q.

Definition 2.1.12. The J-map of the elliptic surface X → C is defined as

J : C −→ P1

Q = t0 7→ J(Q) = J(t0) = 4A(t0)
3/(4A(t0)

3 + 27B(t0)
2)

The J-map extends to the singular fibers and in the table of singular fibers its value and
multiplicity are reported for every case, where by multiplicity of the J-map at a point we
mean the ramification order of J at that point. For our purposes it is important to take
account of this multiplicity: if it is different from the general case (in a sense that we will
precise in Definition 2.4.1), we will write it next to the Kodaira notation of the singular
fibers. The value of J at Q and its multiplicity m(J), as the type of singular fiber that
occurs, only depends on the order of vanishing of A, B and D at Q and all the information
are encoded in the table of the fibers.
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388 R. Miranda 

Table (6.1). Fibres of rational elliptic surfaces with section y2z = x 3 + A x z  z + B23 ; D = 4A 3 + 27 B 2 ; 
J = 4 A 3 / D  

Name Graph vq(A) vq(B) vq(D) J re(J) 

I o \ 0 0 0 #0, 1 ,~  - 

I o \ 0 K 0 1 2K 

I o \ L 0 0 0 3L 

I I > 0 0 1 ~ 1 

I N ~ N N )  0 0 N ~ N 

~ 2  2 3 6 4=0, 1, oo 
I~ L>3  3 6 0 3 L - 6  

2 K > 4  6 1 2 K - 6  

I* ~ - -  - ~ , ~ ,  2 3 N+6 oc N 

I I  ~- L > I  1 2 0 3 L - 2  

I I l  ~ 1 K >= 2 3 1 2 K  - 3 

I V  - - ~  L>2  2 4 0 3 L - 4  

I V *  + 2_~ 2_]_ 3 L>3  4 8 0 3 L - 8  

I l l *  3 K > 5 9 1 2 K  - 9 
2 

~ 3  5 3 4 6 
l I*  2 4 5 10 0 2 

Remark. A rational elliptic surface with section can also be constructed by taking 
a pencil of (generically smooth) cubics in IP z and blowing up the base points. If one 
analyses the stability of such pencils [under the action of Aut(Ip2)] one obtains the 
same answer as the above for Weierstrass fibrations : stability depends only on the 
singular fibres of the associated elliptic surface. For details, see [M]. 

Inspired by the above theorem, let us adopt the following terminology. 

Definition (6.3). Let X P,IP 1 be a rational Weierstrass fibration with a smooth 
generic fibre. We say that X is stable if the associated elliptic surface )( has only 
reduced fibres. 
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2.2 Elliptic surfaces over the projective line

From now on, the base curve C will be the projective line P1. We follow [45]. Let
f : X → P1 be a relatively minimal elliptic surface, with a section S and fundamental line
bundle L.

Proposition 2.2.1. L ∼= OP1(N) for some N ≥ 0 and N = 0 if and only if X is a product.

Moreover, S · S = −N.

Proof. See [45, Cor 2.4]

Proposition 2.2.1 allows us to be more specific in describing Weierstrass fibrations over
P1 by their Weierstrass form. Let us denote by VN the vector space H0(P1,OP1(N)).

Proposition 2.2.2. Let f : X → P1 be a relatively minimal elliptic surface with section

S contracting to the Weierstrass fibration f ′ : X′ → P1 and let N = deg(L). Then X′

is isomorphic to the divisor of the P2-bundle Y = P(OP1(−2N)⊕OP1(−3N)⊕OP1)

defined by

y2z = x3 + Axz2 + Bz3,

where A ∈ V4N and B ∈ V6N.

Moreover,

(i) D = 4A3 + 27B2 ∈ V12N is not identically zero and D vanishes at Q ∈ P1 if and

only if the fiber XQ is singular,

(ii) for every Q ∈ P1, either vQ(A) ≤ 3 or vQ(B) ≤ 5,

(iii) every pair of forms (A, B) ∈ V4N ⊕V6N satisfying (i) and (ii) defines a Weierstrass

fibrations X′ → P1 with only rational double points as singularities, which resolves

to a relatively minimal elliptic surface X → P1 with L ∼= OP1(N).

Proof. [45, Cor 2.5].
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Remark 2.2.3. In Remark 2.1.10 we noticed that a relatively minimal elliptic surface with

a section has 12 deg(L) singular fibers. If the base curve is P1, the singular fibers are

12N counted with multiplicity and we will see in the next section that the general elliptic

surface over P1 with deg(L) = N has exactly 12N singular fibers of type I1.

Since N = 1, a rational relatively minimal elliptic surface X → P1 has Weierstrass
data

(OP1(1), A, B),

where

A = A(s, t) ∈ V4 is a degree 4 homogeneous polynomial in two variables,
B = B(s, t) ∈ V6 is a degree 6 homogeneous polynomial in two variables

D(s, t) = 4A(s, t)3 + 27B(s, t)2 ∈ V12 is a degree 12 homogeneous polynomial in two
variables,

where [s, t] are the homogeneous coordinates of the base curve P1.

2.3 The moduli space of rational elliptic surfaces
For the construction of the moduli space of rational elliptic surfaces with a section, we

refer to [45].
Let T1 ⊂ V4 ⊕ V6 be the open set of the pairs of forms (A, B) satisfying (i) and (ii) of
Proposition 2.2.2. Given the Weierstrass fibration X′ as above, the pair (A, B) is unique
up to isomorphism, in the following sense. The multiplicative group C∗ acts on T1 by

(λ, (A, B)) = (λ2A, λ3B).

The group SL(V1) acts on T1 in the following way: for M ∈ SL(V1), the action is given
by

M · (x, y) = M

(
x
y

)
.

This action extends to Vk = Symmk(V1) in the obvious manner.
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Remark 2.3.1. The action of SL(V1) corresponds to change of coordinates in P1 and the

action of C∗ to the admissible changes of coordinates in the P2-bundle. As discussed in

[45, Section 2], these actions commute and then define an action of C∗ × SL(V1) on T1.

Lemma 2.3.2. Two pairs of forms in T1 give rise to isomorphic Weierstrass fibrations if

and only if they are in the same orbit of C∗ × SL(V1).

Corollary 2.3.3. The set of isomorphism classes of relatively minimal rational elliptic

surfaces with a section is in one to one correspondence with the set of orbits of T1/(C∗ ×

SL(V1)).

In order to put a geometric structure on this set of orbits, Miranda performed a GIT
quotient on T1 obtaining a coarse moduli space. In the next section we present it. Since
the actions of C∗ and SL(V1) commute, we can consider the quotient by the action of C∗

first.

The construction of the parameter space

We are just considering the weighted action of C∗ on V4 ⊕ V6 \ {0} given by

(λ, (A, B)) = (λ2A, λ3B),

where A =t
(

a0 a1 a2 a3 a4

)
∈ V4 and B =t

(
b0 b1 b2 b3 b4 b5 b6

)
∈ V6

represent the coefficients of the homogeneous polynomials A and B respectively.
This is the action on V4 ⊕ V6 \ {0} that defines the weighted projective space

P(25, 37),

where the bihomogeneous coordinates are [a0, . . . , a4, b0, . . . , b6].

Definition 2.3.4. We denote by M1 this weighted projective space and by E1 the image of

T1 under the quotient.

E1 is a parameter space for the rational elliptic surfaces with a section.
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The construction of the moduli space

The construction of the quotient of M1 by the action of SL(V1) is performed by Mi-
randa in [45] by using the techniques of geometric invariant theory (we refer to [28] for
the definitions of stability and semi-stability). By geometric invariant theory we have a
diagram

E1,s E1,ss E1

W1 W1

π1 π1

where W1 is open in W1. The maps π1 and π1 have the following properties:
(i) for x, y ∈ E1,s, π1(x) = π1(y) if and only if x and y are in the same orbit of SL(V1),
(ii) for x, y ∈ E1,ss, π1(x) = π1(y) if and only if the closure of the orbits of x and y

intersect in E1,ss.
The variety W1 is a geometric quotient of E1,s and it is an orbit space, while W1 is not an
orbit space and it is the compactification of W1.

Theorem 2.3.5. The variety W1 is a coarse moduli space for stable rational relatively

minimal elliptic surfaces with a section.

The stability and the semistability of a point r ∈ M1 represented by a pair (A, B) ∈
V4 ⊕ V6 only depends on the order of vanishing of A and B over the points of P1, as
showed in the next theorem.

Theorem 2.3.6. (i) The point r ∈ E1 represented by the pair (A, B) is not semistable

if and only if there exists a point Q ∈ P1 such that

vQ(A) > 2 and vQ(B) > 3.

(ii) The point r ∈ E1 represented by the pair (A, B) is not stable if and only if there

exists a point Q ∈ P1 such that

vQ(A) ≥ 2 and vQ(B) ≥ 3.
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Miranda gives a geometric characterization of stability and semi-stability.

Theorem 2.3.7. Let r be a point of E1 represented by the pair of forms (A, B). Let X be

the rational elliptic fibration defined by (A, B). Then, r is stable if and only if X has a

smooth general fiber and X has only reduced fibers.

Notice that the reduced fibers are the Ik-fibers and the fibers of type I I, I I I and IV.

Theorem 2.3.8. Let r be a point of M1 represented by the pair (A, B), and assume that the

fibration X defined by (A, B) has a smooth general fiber. Then, r is strictly semi-stable if

and only if X has a fiber of type I∗N for some N ≥ 0.

2.4 Special fibers
From now on, the definitions and the results are original. In this section we put emphasis

on some of the fibers of X → P1. First of all, we go into detail of the theory of the
singular fibers. Later, we investigate the smooth fibers over points of P1 over which the
J-map assumes the value 0 or 1, that we will call special smooth fibers. Our main goal is
to stratify the compactification W1 of the moduli space W1 in terms of the special fibers
the surfaces have, where by special we mean singular or special smooth fibers.

2.4.1 The singular fibers

First of all, we introduce a new notation, already mentioned in Section 2.1.1, for the
singular fibers, that take account of the multiplicity of the J-map. Looking at the table
of singular fibers, one can notice that more triplets (v(A), v(B), v(D)) give rise to the
same Kodaira type of singular fiber. For example, all the triplets of type (L, 1, 2), with
1 ≤ L ≤ 4 give rise to a cuspidal singular fiber I I. The difference between them is the
multiplicity of the J-map over the point of the base curve corresponding to the fiber, that
is equal to 3L − 2. For our future purposes, it is important to distinguish these cases.

Definition 2.4.1. We say that m(J) is general for a certain Kodaira type of singular fiber,

if the corresponding data (v(A), v(B), v(D)) take the minimum values to be associated

to the given Kodaira type.
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In the example above, (1, 1, 2) is the ”minimum triplet”, and the general multiplicity of
J for the cuspidal fiber is 1.

Notation 2.4.1. Given a singular fiber of a certain Kodaira type with m(J) = m, we shall

indicate themultiplicitym in subscript of the notation for the givenKodaira type of singular

fiber. If m(J) is general, we shall use the usual Kodaira notation.

Remark 2.4.2. We added the following notations:

(a) I I4, I I7, I I10

(b) I I I3, I I I5, I I I7, I I I9

(c) IV5, IV8

(d) I∗03
, I∗06,0

, I∗02
, I∗04

, I∗06,1

(e) IV∗
4

(f) I I I∗3

As already mentioned, the triplets of vanishings that correspond to the cuspidal fibers I I

are (L, 1, 2) for 1 ≤ L ≤ 4 and m(J) = 3L − 2 and this shows (a). Looking at the table

of singular fibers, one can notice that the triplets corresponding to the fiber I I I are of type

(1, K, 3), with 2 ≤ K ≤ 6, and in this case m(J) = 2K − 3, explaining the notations

given in (b). All the other cases are similar, except for the I∗0 one. In that case, the triplets

(4, 3, 6) and (2, 6, 6) give rise to a fiber I∗0 with m(J) = 6: in order to distinguish them,

we indicate the value of J, that is 0 for the first case and 1 for the second. We shall write

I∗06,0
for the first and I∗06,1

for the second.

As observed in Remark 2.2.3, the number of singular fibers of a relatively minimal ellip-
tic surface over P1 is 12N, thus a rational elliptic surface X has 12 singular fibers, counted
with multiplicity, with respect to the order of vanishing of D over the points of the dis-
criminant divisor. More precisely, if X has m singular fibers over m points Q1, . . . , Qm,
we must have

m
∑

i=1
vQi(D) = 12.
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The contribution of every Kodaira type of singular fiber is encoded in the table of singular
fibers.

Definition 2.4.3. The singular fibers of type Ik are called multiplicative and all the other

are called additive.

Definition 2.4.4. Let X be an elliptic surface. We call the configuration of singular fibers

of X the set of its singular fibers and we denote this set by σ(X).

Furthermore, we call the configuration of additive fibers of X the set of its singular additive

fibers and we denote it by Add(X).

Notice that the additive fibers are the ones that arise from common zeroes of the poly-
nomials A and B associated to the Weierstrass model of X.
Let us compute the total number of the fibers of type Ik and of type I∗k on an elliptic

surface over P1.

Proposition 2.4.5. Let X be an elliptic surface over P1 with a section. Let ik denote the

number of Ik-fibers and i∗k the number of I∗k -fibers in X. We have the formula

deg(J) = ∑
k

k(ik + i∗k ) = 12N − ∑
Q

vQ(D)− 6i∗k ,

where the second sum runs over the points Q such that the singular fiber XQ ∈ Add(X),

with XQ not of type I∗k .

Proof. The degree of the J-map is equal to the number of its poles, counted with multi-

plicity, then the first equality is proved. If A and B have no common roots, the degree of

J = 4A3/(4A3 + 27B2) is 12N. Every time A and B have a common root Q, the degree

of J decreases by min{vQ(4A3), vQ(4A3 + 27B2)}. By looking at the table of singular

fibers, one can deduce that this latter quantity is equal to vQ(4A3 + 27B2) = vQ(D) ex-

cept for the case in which the fiber over Q if of type I∗k , with k > 0: in this case, we have

vQ(4A3) = 6 and vQ(D) > 6. Hence, for every fiber of type I∗k , the quantity to subtract

from 12N is 6 and this completes the proof.
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Before deepening the theory of the configuration of singular fibers in a rational elliptic
surface, we prove that the general elliptic surface over P1 with deg(L) = 12N has 12N
singular fibers of type I1, as promised in Remark 2.2.3.

Proposition 2.4.6. Let X be a general relatively minimal elliptic surface over P1 with

fundamental line bundle L such that deg(L) = 12N. Then, X has 12N singular fibers of

type I1.

Proof. Let BN be the open subvariety of the weighted projective space

PN := P (2, . . . , 2︸ ︷︷ ︸
4N+1

, 3, . . . , 3)︸ ︷︷ ︸
6N+1

,

where the homogeneous degree 12N polynomial

4(a0x4N + a1x4N−1y + · · ·+ a4Ny4N)3 + 27(b0x6N + b1x6N−1y + · · ·+ b6Ny6N)2

has distinct roots. Since [1, 0, . . . , 0, 1] ∈ BN, it is nonempty. Since for a polynomial hav-

ing distinct roots is an open condition, this is sufficient to conclude that BN has dimension

10N + 1 and that the general elliptic surface with a section over P1 with deg(L) = 12N

has 12N singular fibers of type I1.

Miranda and Persson in their works [49] and [44] listed all the possible 279 configura-
tions of singular fibers that can occur in a rational elliptic surface. In their list, they do not
take account of the multiplicity of the J-map. In Theorem 2.4.13 we refine their because
we take account of the multiplicity of the J-map; on the other hand, we are not able to
consider the Ik-fibers different from I1 and the I∗k -fibers different from I∗0 .
Fixed the additive fibers, the natural expectation is that the general rational elliptic sur-

face with the given set of additive fibers has deg(J) distinct fibers of type I1. We will
prove this in Lemma 2.5.1.

Example 2.4.7. Let X be a rational elliptic surface associated to the pair of forms (A, B),

such that A and B have a common simple root. We have Add(X) = {I I} and since the

degree of J is 10, we expect σ(X) = {I I, 10I1}.

39



CHAPTER 2 Special fibers

Before stating the main theorem, we focus on the so-called isotrivial elliptic surfaces.

Isotrivial rational elliptic surfaces

Definition 2.4.8. An elliptic surface X is said to be isotrivial if all its smooth fibers are

isomorphic.

Remark 2.4.9. Since two elliptic curves are isomorphic if and only if they have the same

J-invariant (see [52, proposition 1.4]), we have that X is isotrivial if and only if the J-map

is constant.

The next proposition lists all the possible configurations of singular fibers that can occur
in an isotrivial rational elliptic surface with J = 1.

Proposition 2.4.10. The possible configurations of singular fibers in an isotrivial rational

elliptic surface X with a section with J = 1 are: 4I I I, I∗0 + 2I I I, 2I∗0 and I I I∗ + I I I.

Proof. Since J = 4A3/(4A3 + 27B2), we have that X is isotrivial with J = 1 if and only

if B = 0. Then, we have to take account only of the zeroes of the degree 4 polynomial A.

The proposition is proved by noticing that X has a fiber of type I I I over a simple root of

A, of type I∗0 over a double root and I I I∗ over a triple root.

Notice that, by Proposition 2.2.2 (ii), the degree 4 polynomials with a root of multiplicity
4 do not correspond to any rational elliptic surface.
Here we describe all the possible configurations of singular fibers that can occur in an

isotrivial rational elliptic surface with J = 0.

Proposition 2.4.11. The possible configurations of singular fibers in an isotrivial rational

elliptic surface X with a section with J = 0 are are 6I I, IV + 4I I, I∗0 + 3I I, 2IV + 2I I,

IV∗ + 2I I, I∗0 + IV + 2I I, 3IV, 2I∗0 , IV∗ + IV and I I∗ + I I.

Proof. Since J = 4A3/(4A3 + 27B2), we have that X is isotrivial with J = 0 if and only

if A = 0. Then, we have to take account only on the zeroes of the degree 6 polynomial B.
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The proposition is proved by noticing that X has a fiber of type I I over a simple root of B,

of type IV over a double root, of type I∗0 over a triple root, of type IV∗ over a quadruple

root and finally of type I I∗ over a quintuple root.

Again, notice that the degree 6 polynomials with a sextuple root do not correspond to
any rational elliptic surface.

Proposition 2.4.12. The only possible configuration of singular fibers in an isotrivial ra-

tional elliptic surface X with J 6= 0, 1 is

2I∗0

Proof. In order for J = 4A3/(4A3 + 27B2) to be constant and different from 0 and 1, we

need that

4A3 + 27B2 = 4cA3

for some c ∈ C \ {0, 1}, so that

27B2 = 4(c + 1)A3.

This implies that A is of the form A = λ f 2g2 and B of the form µ f 3g3 for some linear

forms f and g. Looking at the table of singular fibers, a pair (A, B) of this type gives rise

to a surface with two singular fibers of type I∗o .

Now, we list all the possible configuration of additive fibers, different from I∗k with k
greater than 0, that a rational elliptic surface can have, taking account of the multiplicity
of the J map.

Theorem 2.4.13. All the possible configurations of additive fibers in a rational elliptic

surface (having no I∗k -fibers other than I∗0 ) other than the isotrivial ones with J = 0 and

J = 1 for a relatively minimal rational elliptic surface with a section are I I, I I4, I I I,

I I + I I, I I + I I + I I, I I I + I I, I I4 + I I, I I I5, I I7, IV, I I + I I + I I + I I, I I I + I I + I I,
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I I I3 + I I, I I I + I I4, I I I + I I I, I I4 + I I + I I, IV + I I, I I7 + I I, I I4 + I I4, I∗0 , IV5,

I I I5, I I10, I I I + I I + I I + I I, IV + I I + I I, I I I + I I I + I I, I I I3 + I I + I I, I∗0 + I I,

I I I + I I4 + I I, IV + I I I, IV5 + I I, IV + I I4, I∗02
, I I I5 + I I, I I I3 + I I4, I I I3 + I I I,

I I I3 + I I + I I, I∗03
, I I I + I I7, IV8, I I I7, I∗0 + I I + I I, IV + I I I + I I, I I I3 + I I + I I + I I,

I I I + I I I + I I + I I, I∗03
+ I I, IV + IV, I∗02

+ I I, I∗0 + I I I, I I I3 + I I I + I I, I I I + I I I +

I I4, I I I + I I I + I I I, I∗0 + I I4, IV∗, I I I3 + I I4 + I I, IV5 + I I I, I∗06,0
, I∗04

, I I I7 + I I,

I I I5 + I I + I I, I I I5 + I I4, I I I5 + I I I, I I I3 + I I7, IV + I I I3, I I I3 + I I I3, I I I9, IV∗+ I I,

I∗0 + IV, I∗02
+ I I + I I, I∗0 + I I I + I I, I∗03

+ I I I, IV + I I I3 + I I, IV + I I I + I I I, IV∗
4 ,

I I I∗, I∗04
+ I I, I∗02

+ I I I, I∗0 + I I I3, I I I3 + I I I + I I4, I∗02
+ I I4, IV5 + I I I3, IV + I I I5,

I I I5 + I I4 + I I, I∗06,1
, I I I9 + I I4, I I I5 + I I7, I I∗, IV∗ + I I I, I I I∗ + I I, I∗02

+ IV, I∗0 + I∗0 ,

I∗03
+ I I I3, I I I∗3 , I∗04

+ I I4, IV5 + I I I5 and I I I9 + I I7.

Proof. We give a direct proof for some configurations.

The configuration I I I + I I I + I I I corresponds to a pair of forms (A, B) such that A and B

have three common roots such that for everyone of them (v(A), v(B), v(D)) = (1, 2, 3),

and no other common roots. The configuration IV∗ + I I I + I1 corresponds to a pair of

forms (A, B) such that A and B have two common roots, one such that (v(A), v(B), v(D)) =

(3, 5, 8) the other such that (v(A), v(B), v(D)) = (1, 2, 3) and no other common roots.

Consider the configuration I I I5 + I I7 + 7I1: it corresponds to a pair of forms (A, B) such

that A and B have two common roots, one such that (v(A), v(B), v(D)) = (1, 4, 3) the

other such that (v(A), v(B), v(D)) = (3, 1, 2) and no other common roots. The proof is

analogous for all the other 93 configurations.

To prove that there are no other configurations of additive fibers, it is sufficient to notice

that every configuration of additive fibers corresponds to a given configuration of common

roots for a pair of polynomials (A, B). The possible configurations of common roots be-

tween a degree 4 polynomial A and a degree 6 polynomial B are 97, while we have a list of
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96 configurations of additive fibers. But we have to remove the configuration consisting

of two polynomials with a common root that is quadruple for A and sextuple for B (that

does not correspond to any elliptic surface), so we have the assertion.

2.4.2 Special smooth fibers

In this section we explain how to localize and control some special smooth fibers, that
will help us to stratify the spaces parametrizing rational elliptic surfaces with a section.

Definition 2.4.14. A special smooth fiber of an elliptic surface X is a smooth fiber over

which the J-map assumes the value 0 or 1. We call them J0-fiber and J1-fiber respectively.

Lemma 2.4.15. Let X → P1 be a relatively minimal elliptic surface with a section asso-

ciated to the pair (A, B).

(a) The J-map assumes the value 1 in correspondence of smooth fibers over points where

the form B vanishes but A does not.

(b) The J-map assumes the value 0 in correspondence of smooth fibers over points where

the form A vanishes but B does not.

Proof. The proof is a trivial application of the Néron classification of the fibers in terms

of the orders of vanishing of A, B and D. The only smooth fibers with J = 0 occur in the

points such that (v(A), v(B), v(D)) = (0, K, 0) and the only smooth fibers with J = 1

occur when the triplet is (v(A), v(B), v(D)) = (L, 0, 0).

Notation 2.4.2. Looking at the table of singular fibers, one can notice that if Q ∈ P1

is a root of A (not in common with B) of multiplicity a, the J0-fiber XQ appears with

multiplicity 3a; if Q ∈ P1 is a root of B (not in common with A) of multiplicity b, the

J1-fiber XQ appears with multiplicity 2b. If the multiplicities are different from 2 and 3,
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we subscript them. For example, if A has a double root Q, then it appears with multiplicity

6 and we say that the fiber XQ is a J0,6-fiber for X.

We denote by r(A) the number of J0-fibers and by r(B) the number of J1-fibers (counted
with multiplicity). As showed in the next Proposition, they are invariant for surfaces with
the same configuration of singular fibers.

Proposition 2.4.16. The number of J0-fibers (counted with multiplicity) is

r(A) = 4 − ∑
Q∈(D)a

vQ(A)− 2z;

while the number of J1-fibers (counted with multiplicity) is

r(B) = 6 − ∑
Q∈(D)a

vQ(B)− 3z,

where the sums run over the subset (D)a of the points of the discriminant divisor (D)

giving rise to an additive fiber different from I∗k with k > 0 and z indicates the number of

I∗k -fibers with k > 0 .

Proof. The quantity of J0-fibers is equal to the number of zeroes of A (counted with mul-

tiplicity) that are not not in common with B, thus we have to subtract to 4 the number of

zeroes of A not involved in additive fibers. The proof for the number of J1-fibers is the

same.

Remark 2.4.17. Given a rational elliptic surface X with Add(X) as configuration of ad-

ditive fibers, we could have more configurations of special smooth fibers on X, according

to the orders of vanishing of A and B at their roots. The number of possible configurations

of special smooth fibers is the product of the number of partitions of r(A) and the number

of partitions of r(B). Indeed, for every pair of partitions of r(A) and r(B), we have a

different configuration of special smooth fibers.
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Example 2.4.18. Let us fix σ = {IV∗} as configuration of additive fibers. The fiber IV∗

corresponds to (v(A), v(B)) = (3, 4), then r(A) = 4 − 3 = 1 and r(B) = 6 − 4 = 2.

We have that the only partition of r(A) = 1 is (1) and the two partitions of r(B) = 2 are

(12) and (2). The pair of partitions ((1), (12)) corresponds to surfaces with a singular

fibers IV∗, four singular fibers I1, a J0-fiber and two J1-fibers. On the other side, the pair

of partitions ((1), (2)) corresponds to surfaces with a singular fibers IV∗, four singular

fibers I1, a J0-fiber and a J1,4-fiber.

Definition 2.4.19. We shall call the configuration of special fibers of X the union of

Add(X) and the set of its special smooth fibers and we denote this set by δ(X).

2.5 The stratification
In the last part of the chapter we discuss the problem of the stratification of the boundary

of the spaces E1 and W1, constructed by Miranda, in terms of the configurations of special
fibers the surfaces have. First of all, we see that working with the configurations of special
fibers is not restrictive.

Lemma 2.5.1. Let δ be a possible configuration of special fibers for a rational elliptic

surface. Then, a general rational elliptic surface X with δ as configuration of special

fibers, has deg(J)I1 singular fibers other than the ones in δ.

Proof. To prove the Lemma, we need to show that the general pair of polynomials (A, B)

with configuration of the roots as dictated by δ is such that the discriminant D = 4A3 +

27B2 has deg(J) distinct roots other than the multiple ones imposed by δ. It is sufficient

to show that for every δ there exists at least one pair (A, B) satisfying this open condition.

The set of possible configurations of additive fibers is large and for every one of them

there are a lot of compatible sets of special smooth fibers: for this reason, we do not report

a pair (A, B) satisfying the condition described above for every δ. We make a couple of

examples. Let us consider the configuration
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δ = {I I + 3J0 + J1 + 2J1,4}.

In this case A and B have a common root, A has three distinct other roots and B has other

two double roots and another root. We choose

A = xy(x − y)(x + y)

and

B = x(x − 2y)2(x + 2y)2(x − 3y),

so that

D = 4A3 + 27B2 = x2(4(xy3(x − y)3(x + y)3) + 27((x − 2y)4(x + 2y)4(x − 3y)2)).

The first factor has a double root in [0, 1] ∈ P1, while the second factor has ten distinct

roots different from [0, 1], proving that the set of pairs (A, B) giving rise to an elliptic

surface with configuration of special fibers δ and other ten fibers of type I1 is nonempty.

Let now consider the configuration

δ = {I∗0 + 2J0 + 3J1}.

In this case A and B have a common root that is double for A and triple for B, A has other

two distinct roots and B has other three distinct roots. We choose

A = x2y(x − y)

and

B = x3(x + y)(x + 2y)(x − 2y),

so that

D = 4A3 + 27B2 = x6(4y3(x − y)3 + 27(x + y)2(x + 2y)2(x − 2y)2).
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The first factor has a sextuple root in [0, 1] ∈ P1, while the second factor has six distinct

roots different from [0, 1], proving the the set of pairs (A, B) giving rise to an elliptic sur-

face with configuration of special fibers δ and other six fibers of type I1 is nonempty.

The proof will be complete once showed that the space parametrizing rational elliptic sur-

face with δ as configuration of special fibers is irreducible: we will prove it for every δ in

2.5.12.

Notation 2.5.1. Since in this work we do not consider the multiplicative fibers different

from I1 and the I∗k -fibers different from I∗0 , for the general rational elliptic surface X with

δ as configuration of special fibers, Lemma 2.5.1 allows us to call configuration of special

fibers and to indicate with δ(X) also the set consisting on the configuration of special fibers

of X and deg(J) fibers of type I1.

The machinery we will use to perform the stratification is the one of the generalized
coincident root loci presented in Chapter 1. For this reason, as already mentioned, we are
not able to control the fibers that came from multiple roots of the discriminant divisor D
that not directly come from common zeroes of A and B, namely the ones of type Ik or I∗k
other than I1 and I∗0 . In Remark 2.5.32, we explore this problem and show a method that
solves it theoretically, but computationally too hard to be taken into account.
All the discussion above leads us to give the following Definition.

Definition 2.5.2. A relatively minimal rational elliptic surface with a section is said to be

suitable if it is not isotrivial with J = 0 or J = 1 and if it does not have multiplicative

singular fibers different from I1 and I∗k -fibers different from I∗0 .

Definition 2.5.3. We call Ẽ1 the subset of E1 parametrizing suitable rational elliptic sur-

faces.

Now, we get into the problem of the stratification.

Definition 2.5.4. Given a possible configuration δ of special fibers, we denote as Eδ the
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subset of Ẽ1 corresponding to surfaces with δ as configuration of special fibers and Eδ its

Zariski-closure in Ẽ1. Furthermore, we call Wδ and Wδ the analogue subsets of W1

The questions we want to answer are: given a configuration δ of special fibers, how is
Eδ in the parameter space Ẽ1? Is it irreducible? When do two of them intersect? When is
one contained in the closure of another? The same questions are posed for Wδ ∈ W1. We
summarize the results with a diagram, that we call the stratification diagram of Ẽ1 (and of
W1).
As exhaustively explained, all the information about the special fibers are encoded in

the order of vanishing of A, B and D at their zeroes: stratifying the spaces E1 and W1 in
terms of the configurations of special fibers means understanding how the configuration
of (possibly common) zeroes of A and B change, while the pair (A, B) moves inside Ẽ1

(and W1) and how it affects the configuration of zeroes of D = 4A3 + 27B2.

Example 2.5.5 (The general configuration). In the general case, we have that both A and

B have distinct roots, A and B have not common roots and D has twelve distinct roots. This

corresponds to the configuration δ composed by twelve fibers of type I1, four J0-fibers and

six J1-fibers.

δ = 12I1 + 4J0 + 6J1

Example 2.5.6 (The first degenerations). We want to understand what happens in codi-

mension 1. Roughly speaking, we can have three types of degenerations:

(i) A and B have a common root, that is forced to be double for D. In this case we have

the configuration δ1 composed by a cuspidal fiber I I, ten fibers of type I1, three

J0-fibers and five J1-fibers. I1.

δ1 = I I + 10I1 + 3J0 + 5J1

(ii) A and B have not common roots but A has a double root. In this case the config-

uration δ2 of special fibers is composed by twelve I1, a J0,6-fiber, two J0-fibers and

six J1-fibers.
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δ2 = 12I1 + J0,6 + 2J0 + 6J1

(ii) A and B have not common roots but B has a double root. In this case the configu-

ration δ3 is composed by twelve I1, four J0-fibers, a J1,4-fiber and four J1-fibers.

δ3 = 12I1 + 4J0 + J1,4 + 4J1

We will see that Eδ1 , Eδ2 and Eδ3 are the three irreducible components of maximal dimen-

sion of the boundary of the parameter space Ẽ1 (and the same for the moduli space W1).

2.5.1 The stratification of the parameter space

The goal of this section is to show the stratification of the space Ẽ1 ⊂ E1 parametrizing
suitable rational elliptic surfaces in terms of the special fibers the surfaces have. We treat
the isotrivial cases with J = 1 and J = 0 separately. We exploit the machinery of the
generalized coincident root loci introduced in Chapter 1: we associate a configuration of
special fibers δλ,µ,R to every triplet (λ, µ, R) composed by a partition λ of 4, a partition µ

of 6 and a set of relations R. Hence, we associate a stratum Eδλ,µ,R of the parameter space
Ẽ1 to the generalized coincident root locus Xλ,µ,R in P4 × P6. We show that the stratum
Eδλ,µ,R of Ẽ1 is rational of dimension one more than Xλ,µ,R ⊂ P4 × P6; furthermore, we
prove that all the intersections between the strata in Ẽ1 are reflected by the intersections
between their corresponding generalized coincident root loci. The results are collected
in Theorem 2.5.12 and Theorem 2.5.13. Finally, we resume all the results in a diagram,
called the stratification diagram of Ẽ1: we notice that this diagram is very similar to the
specialization diagram of P4 × P6 defined in Chapter 1. The precise statement will be
presented in Theorem 2.5.15.
Let λ = (λ1, . . . , λr) be a partition of 4, µ = (µ1, . . . , µs) be a partition of 6 and R =

{(λi1 , µj1)
a1 , . . . , (λih , µjh)

ah} be a set of relations. Recall that the generalized coincident
root locus Xλ,µ,R ⊂ P4 × P6 is an irreducible and rational variety representing pairs of
polynomials with configurations of zeroes prescribed by λ and µ and common zeroes as
dictated by R.

Proposition 2.5.7. There is a one to one correspondence between the set of the possible

configurations of special fibers for a suitable rational elliptic surface and the set of triplets

(λ, µ, R) as above, other than (λ = (4), µ = (6), R = {(4, 6)}).
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Proof. The triplet (λ, µ, R) uniquely determines a configuration of special fibers. Indeed,

we associate a relation (λ1, µ1) to the type of singular fiber such that v(A) = λ1 and

v(B) = µ1. Moreover, we associate a part λ2 ∈ λC to a J0-fiber with m(J) = 2λ2 and a

part µ2 ∈ µC to a J1-fiber with m(J) = 3µ2. The case (λ = (4), µ = (6), R = {(4, 6)})

corresponds precisely to that pairs of polynomials that do not satisfy the condition (ii) of

the Proposition 2.2.2, then it is not associated to any elliptic surface. The other direction

is obvious.

Definition 2.5.8. Given a triplet (λ, µ, R), we denote by δλ,µ,R its associated configuration

of special fibers and by Eδλ,µ,R ⊂ Ẽ1 the subset corresponding to surfaces having δλ,µ,R as

configuration of special fibers.

Example 2.5.9. Let λ = (14), µ = (12, 22) and R = {(1, 1), (1, 2)}, so that λC = (12)

and µC = (1, 2). The relation (1, 1) indicates that A and B have a common simple zero,

corresponding to a singular fibers of X of type I I. The relation (1, 2) corresponds to a

singular fiber of type I I I. About the special smooth fibers: λC = (12), then X has two

J0-fibers, while µC = (1, 2), then X has a J1-fiber and a J1,4-fiber. Since deg(J) = 7, if

X is general in Eδλ,µ,R , it has other seven I1 fibers. The triplet

(λ, µ, R) = ((14), (12, 22), {(1, 1), (1, 2)})

is associated to the configuration of special fibers

δλ,µ,R = I I + I I I + 2J0 + J1 + J1,4 + 7I1.

Remark 2.5.10 (The correspondence between generalized coincident loci and strata of

the parameter space). Recall that the space E1 is an open dense subset of the weighted

projective space
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B = P(25, 37).

The strata of Ẽ1 lie in M1, while the coincident root loci are contained in P4 × P6: both

spaces represent pairs of polynomials, but in the first case the two polynomials are con-

sidered up to multiplication by a scalar, while in the second we just quotient by a single

weighted relation. This difference is reflected by the fact that the M1 has dimension 11,

while P4 × P6 has dimension 10.

Consider the morphism

Φ : Ẽ1 −→ P4 × P6

[(A, B)] 7−→ ([A], [B]),

where [(A, B)] denotes the class of the pair (A, B) under the weighted action of C∗, that

is

(λ, (A, B)) = (λ2A, λ3B);

and [A] ∈ P4 and [B] ∈ P6 represent the class of the polynomials up to the multiplication

by a nonzero constant.

Notice that Φ is well defined: the locus where the first five coordinates vanish and

the locus where the last seven coordinates vanish correspond to isotrivial rational elliptic

surfaces with J = 0 and J = 1 respectively, and they are disjoint from Ẽ1. We shall call

these spaces EA and EB.

The fiber

Φ−1([A], [B])

is the open subset of the pencil

p(A, B) := {[(αA, βB]} ⊂ M1,
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with [α, β] ∈ P1, given by the intersection with Ẽ1, that we call p̃(A, B).

The fact that the fibers of Φ are 1-dimensional is meaningful in the sense of the ratio-

nal elliptic surfaces. Given a pair of polynomials (A, B) ∈ P4 × P6, the morphism Φ

separates isomorphism classes of rational elliptic surfaces. What makes the members of

p̃(A, B) different is the J-map: given two points (α1A, β1B) and (α2A, β2B) of p̃(A, B),

the corresponding J-maps J1 and J2 are respectively

J1 = 4α3
1A3/(4α3

1A3 + 27β2
1B2)

and

J2 = 4α3
2A3/(4α3

2A3 + 27β2
2B2).

They are different unless there exists γ ∈ C∗ such that α1 = γ2 · α2 and β1 = γ3 · β2, but

this is in fact the equivalence relation defining the weighted projective space M1.

The next Lemma states how to associate a stratum of Ẽ1 to a generalized coincident root
locus of P4 × P6.

Lemma 2.5.11. Let λ and µ be partitions of 4 and 6, let R be a set of relations and let

Xλ,µ,R be the generalized coincident root locus associated to the triplet (λ, µ, R). Then

Φ−1(Xλ,µ,R) = Eδλ,µ,R .

Basically the result depends on the fact that the morphism Φ does not affect the config-
uration of the zeroes of the polynomials. Notice that, since Φ is a morphism and Xλ,µ,R is
an algebraic variety, this Lemma implies also that Eδλ,µ,R is an algebraic variety.

Proof. Let ([A], [B]) be a pair of forms belonging to Xλ,µ,R. The fiber Φ−1([A], [B]) is

either empty (in the case (λ = (4), µ = (6), R = {(4, 6)})), or p̃(A, B). This latter is

in contained in Eδλ,µ,R : let [α, β] ∈ P1 such that [(αA, βB)] ∈ p̃(A, B). The polynomials

αA and βB have the same (common or not) roots as A and B, thus, by definition of Eδλ,µ,R ,
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we have [(αA, βB)] ∈ Eδλ,µ,R .

On the other side, in the same way one sees that the image ([A], [B]) of a point [(A, B)] ∈

Eδλ,µ,R is composed by forms with the prescribed properties to belong to Xλ,µ,R.

For the next Theorem we use the notations of Chapter 1: c is the number of common
roots between A and B (the number of relations), r is the number of distinct roots of A (the
number of parts of λ) and s is the number of distinct roots of B (the number of parts of µ).

Theorem 2.5.12. For every triplet (λ, µ, R), the stratum Eδλ,µ,R ⊂ Ẽ1 is irreducible, ra-

tional and of dimension r + s − c + 1.

Proof. By Prop 1.2.10 Xλ,µ,R is irreducible and rational of dimension r + s − c. Further-

more, the fibers of Φ : Ẽ1 :→ P × P are are birational to lines. We can conclude that

Eσλ,µ,R is birational to Xλ,µ,R × P1, and then it is an irreducible rational variety of dimen-

sion r + s − c + 1.

The next Theorem is the main tool for the stratification of Ẽ1

Theorem 2.5.13. A stratum Eδλ,µ,R is contained in the closure of another stratum Eδλ′ ,µ′ ,R′

if and only if the triplet (λ, µ, R) is a coarsening of the triplet (λ′, µ′, R′) in the sense of

Definition 1.2.12.

Proof. Let Xλ,µ,R and Xλ′,µ′,R′ be the generalized coincident root loci associated to the

triplets (λ, µ, A) and (λ′, µ′, A′). Consider once again the morphism

Φ : Ẽ1 −→ P4 × P6.

By Lemma 2.5.11,

Φ−1(Xλ,µ,R) = Eδλ,µ,R

and

Φ−1(Xλ′,µ′,R′) = Eσλ′ ,µ′ ,R′ .
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Moreover, we proved in Proposition 1.2.14 that Xλ,µ,R ⊂ Xλ′,µ′,R′ if and only if (λ, µ, R)

is a coarsening of (λ′, µ′, R′), from which the assertion follows.

We know all the strata, all their dimension and all the intersection between them. In
other words, we have the complete stratification of Ẽ1.

Definition 2.5.14. We call stratification diagram of E1 the oriented graph having all the

strata Eδ ⊂ Ẽ1 as vertices and with an arrow from a stratum Eδ1 to another stratum Eδ2

when Eδ2 is a subvariety of Eδ1 of codimension 1.

We actually already proved the next theorem.

Theorem 2.5.15. The stratification diagram of Ẽ1 is the specialization diagram of P4 ×

P6, from which we remove the component X(4),(6),{(4,6)}.

Proof. By Proposition 2.5.7, there is a one to one correspondence between the set of the

strata of Ẽ1 and the coincident root loci in P4 × P6 other than X(4),(6),{(4,6)}. Moreover,

Theorem 2.5.13 tells to us that the inclusions between strata are preserved by this corre-

spondence, while Theorem 2.5.12 ensures that the codimension between the strata are also

preserved.

In the next example we show a family of rational elliptic surface with 12 I1 fibers, whose
boundary (in codimension 1) has an irreducible component parametrizing surfaces with a
I I∗-fiber.

Example 2.5.16. Let λ = (4), µ = (1, 5) and R = ∅.

The associated configuration of special fibers is

σ = 12I1 + J0,12 + J1,10 + J1.

The stratum E12I1+J0,12+J1,10+J1 has dimension 4.

Let now (λ′, µ′, R′) be the coarsening of (λ, µ, R) given by λ1 = λ, µ1 = µ and R′ =

{(4, 5)}. The associated configuration of special fibers is
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σ1 = I I∗ + 2I1 + J1

and the stratum

EI I∗+2I1+J1

has dimension 3 and then it has codimension 1 in

E12I1+J0,12+J1,10+J1 .

We complete the description of E1 by analyzing the components with constant J-map
equal to 1 and 0. Recall once again that E1 is contained in the weighted projective space
P(25, 37), where the first five coordinates a0, . . . , a4 correspond to the coefficients of the
degree 4 polynomial A = aox4 + · · ·+ a4y4 and the last seven correspond to the coeffi-
cients of the degree 6 polynomial B = b0x6 + · · ·+ b6y6. Now, notice that the morphism
Φ does not extend to the whole parameter space E1, since

Φ : E1 −→ P4 × P6

cannot be defined in the locus where the first 5 coordinates vanish and in the locus where
the last 7 coordinates vanish.

Definition 2.5.17. We denote these two loci EB and EA respectively.

As noticed in Remark 2.5.10, EA and EB parametrize isotrivial elliptic surfaces.

Lemma 2.5.18. EA parametrize isotrivial rational elliptic surfaces with J = 1 and is

isomorphic to P4, while EB parametrizes isotrivial rational elliptic surfaces with J = 0

and is is isomorphic to P6.

Proof. EA is the locus in which the last seven coordinates vanish, then it is isomorphic to

P(25) ∼= P4; analogously, EB is isomorphic to P(37) ∼= P6.

Corollary 2.5.19. All the strata inside of EA and EB representing isotrivial rational elliptic

surfaces with J ≡ 1 or J ≡ 0 are irreducible and rational.
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Proof. By Proposition 2.4.10 and Proposition 2.4.11, the components representing rational

elliptic surfaces with J ≡ 1 or J ≡ 0 are exactly the coincident root loci contained in P4

and P6 other than the curves representing polynomials with a quadruple root in P4 and

polynomials with a sextuple root in P6. By Proposition 1.1.2, they are all irreducible and

rational.

We give the stratification diagrams for EA and EB. These diagrams are oriented graphs
having all the strata in EA and EB as vertices and with an arrow from a stratum to another
if and only if the second is a subvariety of the first of codimension 1. The strata are listed
in Proposition 2.4.10 and Proposition 2.4.11, and the stratification diagrams are exactly
the specialization diagrams of P4 and P6 respectively, from which we remove the locus
corresponding to polynomials with just one root of maximal multiplicity.
The stratification diagram of EA is

E4I I I

EI∗0+2I I I

E2I∗0 EI I I∗+I I I

and the stratification diagram of EB is

E6I I

EIV+4I I

EI∗0+3I I E2IV+2I I

EI∗0+IV+I I EIV∗+2I I E3IV

E2I∗0 EI I∗+I I EIV∗+IV
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2.5.2 The stratification of the moduli space

Recall that W1 is the coarse moduli space for stable rational relatively minimal ellip-
tic surfaces with a section and that W1 is its compactification in the sense of geometric
invariant theory. Let us focus on the stable locus W1 first.

Definition 2.5.20. We call W̃1 the open subset of W1 parametrizing isomorphism classes

of stable suitable not isotrivial rational elliptic surfaces.

By Proposition 2.3.6, a rational elliptic surface is stable if and only if it has only reduced
fibers. Then, a stable surface X can have fibers of Kodaira type Ik, I I, I I I or IV. If X is
associated to the pair of forms (A, B), then there are no common roots of multiplicity at
least 2 for A and at least 3 for B. This leads us to give the following definitions.

Definition 2.5.21. A triplet (λ, µ, R) is stable if and only if there are not relations

(λi, µj) ∈ R with λi ≥ 2 and µj ≥ 3.

In order to exploit the stratification of Ẽ1, we want to point out that the orbit of a stable
element in a stratum Eδ is all contained in Eδ.

Lemma 2.5.22. Let λ = (λ1, . . . , λr) be a partition of 4, µ = (µ1, . . . , µs) be a partition

of 6 and R = {(λi1 , µj1)
a1 , . . . , (λih , µjh)

ah} be a set of relations such that (λ, µ, R) is a

stable triplet. Then, the stratum Eδλ,µ,R is invariant under the action of SL(V1).

The idea of the proof is that the elements of SL(V1) represent change of coordinates on
the base curve P1, whence its action does not change the configuration of the (possibly
common) roots for a pair of polynomials.

Proof. Let [A, B] ∈ Eδλ,µ,R and let M ∈ SL(V1). A and B split in product of linear forms,

so that, according with the triplet (λ, µ, R), we can write

A =
r
∑

i=1
(aix + biy)λi and B =

s
∑

j=1
(cjx + djy)µi .

Since the change of coordinates induced by M acts on the coefficients ai, bi, cj and dj but

not on the corresponding powers λi and µj, we conclude that (M · [A, B]) ∈ Eδλ,µ,R .
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Definition 2.5.23. If (λ, µ, R) is a stable triplet, we call Wλ,µ,R the image of the stratum

Eδλ,µ,R under the quotient of E1 by SL(V1).

Proposition 2.5.24. If (λ, µ, R) is a stable triplet, then Wλ,µ,R is irreducible of dimension

r + s − c − 2.

Proof. The dimension of Eδλ,µ,R is r + s − c + 1 and since it is composed by stable points,

the dimension of its image Wλ,µ,A under the quotient by SL(V1) is

dim(Wλ,µ,R) = dim Eδλ,µ,R − dim(SL(V1)) = r + s − c + 1 − 3 = r + s − c − 2.

Corollary 2.5.25. Let (λ, µ, R) and (λ′, µ′, R′) be two stable triplets. Then, the stratum

Wδλ,µ,R is contained in the closure of Wδλ′ ,µ′ ,R′
if and only if the triplet (λ, µ, R) is a coars-

ening of the triplet (λ′, µ′, R′).

Proof. Since Eδλ,µ,R ⊂ Eδλ′ ,µ′ ,R′
and they consist of stable points, we have that the inclusion

is preserved by the quotient by SL(V1), whence Wδλ,µ,R ⊂ Wδλ′ ,µ′ ,R′
.

This corollary gives us the complete stratification of W̃1. It is the same of the stratifcation
diagram of Ẽ1 up to some modifications: we just have to remove the non stable locus, then
all the configurations having fibers of Kodaira type I∗0 , IV∗, I I I∗ and I I∗ (corresponding
to non-stable triplets).

The strictly-semistable locus

Let us adopt the following notation: let Wsss denote the closed subvariety W1 \ W1;
similarly let Esss denote the corresponding locus in E1.

Proposition 2.5.26. Let r be a point of E1 represented by the pair (A, B). Then r is in Esss

if and only if the associated elliptic surface X has a fiber of type I∗N for some N ≥ 0.
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Proof. [45, Proposition 8.2]

Theorem 2.5.27. Let (A1, B1) and (A2, B2) be two points of Esss defining fibrations X1

and X2. Let J1 and J2 be the values of the J-map of the singular fibers on X1 and X2 of

type I∗N, whose existence is ensured by Proposition 2.5.26.

Then (A1, B1) and (A2, B2) have the same image in Wsss if and only if J1 = J2.

Proof. [45, Theorem 8.3]

This theorem implies that surfaces with a fiber of type I∗0 are classified in W1 by the
finite J-value of that fiber; however, surfaces with a fiber of type I∗N for N ≥ 1 are all
mapped to one point w∞ of W1. Since the map Es → W1 is surjective, Miranda in [45,
Section 8] stratified W1 as follows:

W1 = W1 ∩ Y ∩ w∞,

where points of W1 classify completely the stable rational Weierstrass fibrations up to
isomorphism, Y ∼= A1 classifies the fibrations with a singular fiber of type I∗0 by the J-
value of that singular fiber, and w∞ represents all the fibration with a singular fiber of type
I∗N, with N ≥ 1.
With our refined list of singular fibers that take account of the J-map and its multiplicity,

we can add some details about the contraction of the strictly semistable locus.

Definition 2.5.28. We call Y0 and Y1 the points of Y representing fibrations with a fiber of

Kodaira type I∗0 such that the value of the J-map is 0 or 1 respectively.

Looking at the table of the singular fibers, we can easily prove the following Proposition.

Proposition 2.5.29. Let (A, B) a point in Esss defining a rational elliptic surface X. If X

has a singular fiber of type I∗03
or I∗o6,0

, then it is contracted to Y0. If X has a singular fiber

of type I∗02
, I∗04

or I∗06,0
, then it is contracted to Y1

These properties of the strictly semistable locus lead us to give the following definitions.
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Definition 2.5.30. A triplet (λ, µ, R) is strictly semistable if there is a relation (λi, µj) ∈ R

with λi = 2 and µj ≥ 3 or λi ≥ 2 and µj = 3.

A triplet (λ, µ, R) is said unstable if there is a relation (λi, µj) ∈ R with λi > 2 and

µj > 3.

Proposition 2.5.31. If (λ, µ, R) is a strictly semistable triplet, then the stratum Eλ,µ,R is

contracted by π1 to the line Y. Moreover, if there is a relation (2, L) with L > 3, Eλ,µ,R is

contracted to Y1 and if there is a relation (K, 3) with K > 2, Eλ,µ,R is contracted to Y0.

Proof. Eλ,µ,R contains a fiber of Kodaira type I∗0 , then by the Theorem 2.5.27 it is con-

tracted to Y. Proposition 2.5.29 implies the second statement.

Remark 2.5.32 (The fibers Ik and I∗k ). We want to describe a strategy to stratify the moduli

space of rational elliptic surfaces with a section in terms of their singular fibers, without

restrictions on the type of fibers: this time we are involving the fibers Ik and I∗k . The method

we present exploits the stratification of the projective spaces, seen as spaces parametriz-

ing polynomials, in terms of the coincident root loci, that we presented in Chapter 1. In

particular, we use the stratification of P12, that will be the space of the discriminants of

the fibrations. We actually consider the hypersurface of P12 given by polynomials that are

sum of the square of a degree 6 polynomial and the cube of a degree 4 polynomial.

The stratification of P12 is not sufficient for our purpose for trivial reasons. For in-

stance, consider the partition (2, 110) of 12: the coincident root locus X(2,110) ⊂ P12

parametrizes polynomials with a double root. Choose a polynomial D ∈ X(2,110) and

assume that D can be written as a sum of the square of a degree 4 polynomial A and the

cube of a degree 6 polynomial B: a priori, it is not possible to understand if the double root

corresponds to a common root of A and B or not. In other words, given the discriminant

D, we are not able to understand if the fiber over the double root of D is of type I2 or I I.

In order to separate the cases and refine the stratification, consider the morphism ψ:
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ψ : E1 −→ P12

(A, B) 7−→ D = 4A3 + 27B2.

The ”pullback of the stratification” of the intersection between the coincident root loci

of P12 and the hypersurface of the polynomials that are sum of a cube and a square is

actually the stratification we are looking for. Coming back to the previous example, we

have that ψ−1(X110,2) is the union of the two strata EI2 and EI I parametrizing fibrations

with a I2-fiber and I I-fiber, respectively. In general, fixed a partition λ of 12 such that

the intersection between the image of ψ and Xλ is nonempty, through ψ we separate the

multiplicative fibers from the additive ones.

From the side of P12 we know very well the strata: for every λ, we know the dimension

of Xλ, its degree, its singular locus and we know all the intersections between the strata.

This method then completely solves the problem in theory. However, obtaining an explicit

solution is computationally too hard. X(110,2) is defined in P12 by a degree 22 polynomial

in 13 variables, and the other coincident root loci are huger (for a treatment of the ide-

als defining the coincident root loci see [10]). Moreover, the hypersurface representing

the discriminants of rational elliptic surfaces has degree 3762 (see [Theorem 6.2][55]).

Unfortunately, there are no softwares able to give us the equations defining these loci and

even less so their preimages under ψ.
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Chapter 3

Enriques surfaces of base change type
In Section 3.1 we review and introduce some properties of the elliptic curves and of the

rational elliptic surfaces: in particular, after recalling that every rational elliptic surface
arises as the blow-up of the plane at nine points that are base points of a pencil of cubic
curves, we give the notion of origin cutting linear system, which will be crucial for the rest
of the treatment, and lastly we recall what a base change for an elliptic surface is. As an
application, we compute the linear classes of the torsion multisections of a general rational
elliptic surface.
In Section 3.2 we present the main features of Enriques surfaces of base change type.

We firstly describe their construction due to Hulek and Schütt, then we will focus on the
rational bisections they have and lastly we show their connection with the origin cutting
bisections of some rational elliptic surfaces involved in their construction. Part of the
proofs have been performed by Hulek and Schütt: in order to make the reader familiar
with the geometric ideas and the notations, we report and sometimes extend them.
Section 3.3 collects most of the original results of the chapter. First of all, we introduce

the notion of Severi variety of curves on surfaces and we give the state of the art in the
literature, particularly focusing on the case of Enriques surfaces. Then, we relate the ex-
istence of the Enriques surfaces of base change type to the nonemptiness of some Severi
varieties of some rational surfaces (for instance the plane, the rational elliptic surfaces and
the Hirzebruch surfaces). Once introduced the logarithmic Severi varieties, we prove that
the above mentioned bisections are actually nodal. After that, we investigate the geometry
of the Enriques surfaces of base change type: we find some other particular Severi varieties
on them and we focus on the genus 1 pencils of the K3 cover of these surfaces.
In Section 3.5 we show that the rational bisections on the Enriques surfaces of base

change type deform to rational curves on the very general Enriques surface.

3.1 Elliptic curves and elliptic surfaces
We briefly recall the notions and the main properties of the elliptic curves and some

properties of the elliptic surfaces we did not point out in Chapter 2. As general references
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the reader might consult [52], [44] and [50]

3.1.1 Elliptic curves

We recall the Definition of a smooth elliptic curve.

Definition 3.1.1. An elliptic curve (E, O) is a smooth projective curve E of genus one,

together with a chosen point O called its origin.

It is a very well-known fact that every elliptic curve has a group law, that we denote by
⊞, with origin O. We saw in Chapter 2 that every smooth elliptic curve can be embedded
in the projective plane as a smooth cubic curve: the next classical result describes how the
group law works in this context.
Let (E, O) be a smooth plane cubic: we call PO the third intersection point between E

and the tangent line to E at O.

Proposition 3.1.2 (Group law for cubic curves). Let D1 and D2 be divisors in Pic(P2)

such that D1 ∼ D2, that

D1|E = a1Q1 + · · ·+ akQk

and that

D2|E = b1R1 + · · ·+ bmRm

with the ai’s and the bj’s integers. Then

a1Q1 ⊞ · · ·⊞ akQk = b1R1 ⊞ · · ·⊞ bmRm.

In particular, if D is a degree d curve in P2 intersecting E in 3d (not necessarily distinct)

points Q1, . . . , Q3d, then

Q1 ⊞ · · ·⊞ Q3d = dPO.

If the origin O is an inflection point for the cubic E, then the sum of the intersection
points between E and any curve is O.
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Definition 3.1.3. An n-torsion point of (E, O) is a point Q ∈ E such that Q⊞n = O.

Lemma 3.1.4. Every smooth elliptic curve has n2 − 1 nontrivial n-torsion points.

Every elliptic curve admits a natural involution (−1), that acts by interchanging opposite
points with respect to the origin O. The fixed locus of (−1) is composed by O and the
three nontrivial 2-torsion points.
The main object of the chapter, namely the Enriques surfaces of base change type, are

constructed starting from a rational elliptic surface: in the previous chapters we focused on
their singular fibers and their behaviour in families, while in the next section we are going
to investigate their geometry.

3.1.2 Rational elliptic surfaces

Aswe stated in Lemma 2.1.7, a relativelyminimal elliptic surface S → P1 with a section
E and fundamental line bundle OP1(N) is rational if and only if N = 1.

Example 3.1.5. Let C1 and C2 be two smooth cubic curves in P2 and consider the pencil

of cubic curves generated by C1 and C2. It has nine base points counted with multiplicity,

corresponding to the nine intersection points between C1 and C2. Let e : S = P̃2 → P2

be the blow-up of P2 at the base points of the pencil of cubics. Then the pullback of the

pencil is base point free and induces a morphism f : S → P1. A general fiber of f is

the strict transform of a general member of the pencil of cubics, which is a smooth elliptic

curve. Then f : S → P1 is a rational elliptic surface: the section E can be chosen to be

the exceptional divisor of the last blow-up of S → P2. Since E is a (−1)-curve in S, the

fundamental line bundle of S → P1 is OP1(1)

The next Lemma states that every rational elliptic surface arises in this way.

Lemma 3.1.6. Let f : S → P1 be a relatively minimal rational elliptic surface with a

section. Then X is the 9-fold blow-up of the plane P2 at the base points P1, . . . , P9 of a

pencil of generically smooth cubic curves which induces the fibration f .
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Proof. See [44, Lemma IV.1.2].

In Chapter 2 we deeply investigated the configuration of singular fibers that a rational
elliptic surface can have. From now on, unless differently specified, we will consider
rational elliptic surfaces with twelve nodal curves as singular fibers.

Definition 3.1.7. We say that a rational elliptic surface is general if it has twelve nodal

curves as singular fibers.

We call E1, . . . , E9 the exceptional divisors over the points P1, . . . , P9. With this nota-
tion, the Picard group of S is

Pic(S) ∼= ZL ⊕ ZE1 ⊕ · · · ⊕ ZE9.

Let X → C be an elliptic surface with a chosen section s0. Then the set of sections is
an abelian group with the group addition defined fiber by fiber.

Definition 3.1.8. The group of the sections of X → C is called Mordell-Weil group of the

elliptic surface, denoted by MW(X → C) or simply MW(X) if the surface has only one

elliptic fibration or if it is clear to what fibration we are referring. The chosen section s0,

which is the zero element of MW(X), is called the zero-section.

If S ∼= BlP1,...,P9 P2 is a general rational elliptic surface, we choose the last exceptional
divisor E9 to be the zero-section of the fibration. This in particular means that for every t
in the base P1, the origin of the fiber Ft is its intersection with E9. Let us call Ot this point
and At the third intersection point between Ft and the tangent line to Ft at Ot.
With the previous notations, the Mordell-Weil group of S is

MW(S) ∼= Z8,

and it is generated by the exceptional divisors E1, . . . , E8. The neutral element is the zero-
section E9.

Remark 3.1.9. Every rational elliptic surface S ∼= BlP1,...,P9 P2 carries a natural involu-

tion (−1) ∈ Aut(S), that acts fiber by fiber by interchanging opposite points with respect
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to the group law with origin Ot. This involution is known in the literature as the Bertini

involution. As pointed out in Section 3.1, for every t ∈ P1 such that Ft is smooth, the points

fixed by (−1) are Ot and the three nontrivial 2-torsion points of Ft. We will show that the

fixed locus of (−1) is the union of the zero-section E9 and a trisection parametrizing the

nontrivial 2-torsion points of any smooth fiber.

We give the definition of torsion multisection for an elliptic surface X → C with a given
section s0 that we choose to be the zero-section of the fibration.

Definition 3.1.10 (torsion multisection). Let X[m] be the closure of the locus in X of points

Pt ∈ Xt, with Xt smooth elliptic fiber, such that P⊞m
t = 0t.

We define X[m]0 := X[m]− s0 to be the m-torsion multisection of X.

It is clear that X[m]0 is an (m2 − 1)-section for X.

Remark 3.1.11. We want to point out that X[m]0 does not intersect the zero-section s0.

The proof is essentially performed by Miranda in [44, Proposition VII.3.2]: the author

proves that if a torsion section meets the zero-section in an elliptic fibration, then the two

section coincides; the identical argument shows that if a torsion multisection meets the

zero-section, then the multisection has the zero-section as irreducible component.

From now on, the Definitions and the results are original. We introduce the notion of
origin cutting linear systems for a general rational elliptic surface S.

Definition 3.1.12. Let L ∈ Pic(S) be a divisor such that

L|Ft =
r
∑

i=1
ai,tQi,t

with ai,t ∈ Z for every i and for every t ∈ P1.

We say that L is origin cutting if

Q⊞a1,t
1,t ⊞ · · ·⊞ Q⊞ar,t

r,t = Ot for every t ∈ P1.
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If L is effective and such that L · Ft = k, we sometimes refer to it as an origin cutting

k-section.

Remark 3.1.13. By Proposition 3.1.2, for a divisor to be origin cutting only depends on

its linear class. For this reason, we can extend the notion of origin cutting divisor to the

linear systems. In other words, the origin cutting linear systems consist of divisors cutting

each curve of the elliptic pencil in points whose sum in the group law is the origin.

Lemma 3.1.14. The torsion multisections are origin cutting.

Proof. The sum of the m2 − 1 nontrivial m-torsion points of an elliptic curve is the origin

of the group law.

The next Lemma states one of the main properties of these systems.

Lemma 3.1.15. If an origin cutting k-section B of a general rational elliptic surface S ∼=
BlP1,...,P9 P2 has a k-ple point Q, then either Q ∈ S[k]0 or Q ∈ E9.

Proof. If Q ∈ B is k-ple, then Q⊞k = 0 by definition of origin cutting divisor.

Remark 3.1.16. It is obvious that an origin cutting k-section B cannot have a (k + 1)-ple

point. In particular, this implies that an origin cutting bisection can just have double points

as singularities.

The next Proposition describes more precisely the origin cutting linear systems.

Proposition 3.1.17. Let S ∼= Bl{P1,...,P9} P2 be a general rational elliptic surface and let

L ∈ Pic(S) be an effective divisor. Then, L is an origin cutting k-section (without E9 as

irreducible component) if and only if it is of the form

L ∼ 3(c + k)L − (c + k)E1 − · · · − (c + k)E8 − cE9,

for some c ∈ Z+.
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Proof. We have

L ∼ aL − b1E1 − · · · − b8E8 − cE9

for some integers a, bi, with i = 1, . . . , 8, and c. Since L is origin cutting, we have that for

every t ∈ P1,

L|Ft = Q1,t + · · ·+ Qk,t

in such a way that

Q1,t ⊞ · · ·⊞ Qk,t = Ot.

If we call L and F the pushforwards of L and F under S ∼= Bl{P1,...,P9} P2 → P2, we have

that

L|Ft
= b1P1 + · · ·+ b8P8 + cP9 + Q1,t + · · ·+ Qk,t.

But L has degree a, then

b1P1 ⊞ · · ·⊞ b8P8 ⊞ cP9 ⊞ Q1,t ⊞ · · ·⊞ Qk,t = b1P1 ⊞ · · ·⊞ b8P8 = aAt for every t.

Furthermore, for every t, by Proposition 3.1.2

P1 ⊞ · · ·⊞ P8 = 3At:

indeed, P1, . . . , P9 are the base points of the pencil of cubics and by the choice of E9 as

zero-section, we have that the origin of Ft is P9. Now, the equality b1P1 ⊞ · · ·⊞ b8P8 =

aAt implies that 3b1P1 ⊞ · · ·⊞ 3b8P8 = 3aAt. Moreover, by Proposition 3.1.2, we have

aP1 ⊞ · · ·⊞ aP8 = 3aAt, from which

(3b1 − a)P1 ⊞ · · ·⊞ (3b8 − a)P8 = P9 = Ot for every t,

or, equivalently,

(3b1 − a)E1 ⊞ · · ·⊞ (3b8 − a)E8 = E9.
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Since MW(S) is a free abelian group generated by E1, . . . , E8 with neutral element E9, the

latter equality implies that 3bi = a for every i = 1, . . . , 8. We deduce

b1 = · · · = b8 =: b and a = 3b.

Lastly, since L is a k-section, we have that

3a − 8b − c = b − c = k,

so that

b = c + k

and this completes the proof.

As an application, we compute the linear class of the torsion multisection S[n]0 of a
general rational elliptic surface S ∼= Bl{P1,...,P9} P2 for every n ∈ Z+.

Proposition 3.1.18. For every n ∈ Z+, the n-torsion multisection is an (n2 − 1)-section

of the form

S[n]0 ∼ 3(n2 − 1)L − (n2 − 1)E1 − ... − (n2 − 1)E8.

Proof. Lemma 3.1.14 ensures that the torsion multisections are origin cutting. Then, for

every n ∈ Z+, we have that S[n]0 is of the form

S[n]0 ∼ 3(n2 + c − 1)L − (n2 + c − 1)E1 − ... − (n2 + c − 1)E8 − cE9

for some c ∈ Z+. Moreover, in Remark 3.1.11 we pointed out that the torsion multisec-

tions do not intersect the zero-section, so that c = 0.

Remark 3.1.19. In particular, Proposition 3.1.18 implies that the 2-torsion trisection S[2]0

is
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S[2]0 ∼ 9L − 3E1 − · · · − 3E8,

as showed by using other methods by Vakil in [55]. Notice that the union of S[2]0 and E9

is the fixed locus of the Bertini involution (−1).

We now discuss an example relevant to the rest of the treatment.

Example 3.1.20 (origin cutting bisections). For k = 2, the form of an origin cutting bi-

section Bm such that Bm · E9 = 2m for some m ∈ Z+ is

Bm ∼ 6(m + 1)L − 2(m + 1)E1 − · · · − 2(m + 1)E8 − 2mE9.

We will be interested in rational members of these bisections: by Proposition 3.1.15, the

double points of the bisections belong either to S[2]0 or to E9.

Lemma 3.1.21. The origin cutting bisections are invariant with respect to the involution

(−1).

Proof. Bm cuts every fiber Ft in two points Q1,t and Q2,t, in such a way Q1,t ⊞ Q2,t = Ot,

or, equivalently, Q1,t = ⊟Q2,t. This implies that for every origin cutting bisection B ∈

|Bm|, we have (−1)∗(B) = B.

We describe the quotient of a general rational elliptic surface by the involution (−1).
We call q the quotient map q : S → S/(−1). This result is classical: see for example [55,
Proof of Proposition 3.2], [18, Section 4.4, p.408] or [27, Section 2].

Proposition 3.1.22. The quotient S/(−1) is isomorphic to the second Hirzebruch surface

F2
∼= P(OP1 ⊕OP1(−2)).

In the last part of the section we recall what a base change for an elliptic surface is.
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3.1.3 Base change of an elliptic surface

Let f : S → C denote an elliptic surface. In order to apply a base change, we only need
another projective curve B mapping surjectively to C. Formally the base change of S from
C to B then is defined as a fiber product:

S ×C B B

S C

In practice, we simply pull-back theWeierstrass form (or in general the equation) of S over
C via the morphism B → C. Clearly this replaces smooth fibers by smooth fibers.
The effect of a base change on the singular fibers depends on the ramification of the mor-
phism B → C. Singular fibers at unramified points are replaced by a fixed number of
copies in the base change (the number being the degree of the morphism). If there is ram-
ification, we have to be more careful. Of course the vanishing orders of the polynomials
of the Weierstrass form and of the discriminant are multiplied by the ramification index.
This suffices to solve the base change problem for multiplicative fibers: a base change of
ramification index d replaces a fibre of type In by a fibre of type Idn. For additive fibers,
however, the pull-back of the Weierstrass form might become non-minimal. For a deeper
investigation of the singular fibers under base change, see [50].

3.2 Enriques surfaces of base change type
First of all, we recall the basics about K3 surfaces and Enriques surfaces. As general

references the reader might consult [3], [18] or [36].

Definition 3.2.1. A smooth projective surface X is called K3 surface if X is (algebraically)

simply connected with trivial canonical bundle ωX
∼= OX.

An Enriques surface Y is a quotient of a K3 surface X by a fixed point free involution τ.

Such an involution is also called Enriques involution.

Every K3 surface X is such that b1(X) = q(X) = 0 and h2,0(X) = pg(X) = 1. It
is easy to deduce that χ(OX) = 2 and that the topological Euler-Poincaré characteristic
e(X) = 24.
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In a K3 surface X algebraic equivalence is the same as numerical equivalence and the
Nerón-Severi group NS(X) is equipped with the structure of an even integral lattice of
signature (1, ρ(X) − 1), where ρ(X) is the Picard number of X. Also the cohomology
group H2(X, Z) is equipped with the structure of a lattice which is even, integral, non-
degenerate and unimodular of signature (3, 19). By lattice theory

H2(X, Z) ∼= 3U ⊕ 2E8(−1) = Λ

where U denotes the hyperbolic plane and E8 is the unique positive-definite unimodular
even lattice of rank 8. The lattice Λ is called the K3 lattice. The Néron-Severi group
NS(X) embeds primitively into H2(X, Z) as a lattice.
On the other hand, let L be a lattice of rank r ≤ 20 and signature (1, r − 1) admitting a

primitive embedding into the K3 lattice Λ. Moduli theory ensures that K3 surfaces having
Néron-Severi group isometric to L and containing an ample class form a moduli space of
dimension 20 − r. This moduli space is globally irreducible if and only if the primitive
embedding L ↪→ Λ is unique up to isometries.
Every Enriques surface Y is also such that b1(Y) = q(Y) = 0. It is not simply-

connected; its fundamental group is not trivial:

π1(Y) = Z/2Z.

The universal covering

g : X → Y

of Y is a K3 surface. Hence we have e(Y) = 1
2 e(X) = 12 and h2,0(X) = pg(X) = 0, as

well as ρ(Y) = b2(Y) = 10. Unlike in the K3 case, algebraic and numerical equivalence
of divisors do not coincide on an Enriques surface Y: there is two-torsion in NS(Y) repre-
sented by the canonical divisorKY. The quotientNS(Y) f ofNS(Y) by its torsion subgroup
is an even unimodular lattice, which is isomorphic to the so-called Enriques lattice:

Num(Y) = NS(Y) f
∼= U ⊕ E8(−1).

Via pull-back under the universal covering, this lattice embeds primitively into NS(X).
Here the intersection form is multiplied by two

U(2)⊕ E8(−2) ↪→ NS(X).
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As explained before, such K3 surfaces form a ten-dimensional moduli space that is in fact
irreducible (the embedding of U(2)⊕ E8(−2) into Λ is unique up to isometries because
the embedded Enriques lattice is 2-elementary).

Definition 3.2.2. We say that an Enriques surface Y is Picard very general if its universal

covering X is such that

NS(X) ∼= U(2)⊕ E8(−2)

Remark 3.2.3. An Enriques surface Y is Picard very general if and only if the Picard rank

of its universal covering X is equal to 10.

It is a special feature of K3 surfaces and Enriques surfaces that a single surface may
admit more than one genus 1 pencil. Exhibiting a genus 1 fibration on a K3 surface is
equivalent to finding a connected divisor D 6= 0 of self-intersection D2 = 0. Then D or
−D is effective by Riemann-Roch. After subtracting the base locus, the linear system of
the resulting effective divisor gives a genus 1 pencil.
The Enriques lattice contains the hyperbolic plane; in particular, there is a divisor D ∈

NS(Y) with D2 = 0. It follows that either ±D or ±2D induces a genus 1 pencil on Y.
Here the factor two comes into play since every genus 1 pencil on an Enriques surface
has exactly two fibers of multiplicity two, called half-fibers. The canonical divisor can be
represented as the difference of the supports of the half-fibers of a genus 1 pencil: if F is a
genus 1 pencil of Y and

2E1 = F and 2E2 = F, then KY ∼ E1 − E2.

We give the definition of ϕ-invariant for a nef line bundle of an Enriques surface, intro-
duced by Cossec in [16].

Definition 3.2.4. Let H ∈ Pic(Y) be a nef divisor of Y. Then, the ϕ-invariant of H is

defined to be

ϕ(H) := min{E · H|E2 = 0, E > 0} ∈ Z.
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Here E is a half-fiber of a genus 1 pencil of Y, whence 2ϕ is the minimum of the inter-
section between H and a genus 1 pencil.
In this work we mainly deal with line bundles with ϕ-invariant equal to 1: the next The-

orem due to Cossec and Dolgachev (see [Theorem 2.4.14][18]) recalls the main property
of such divisors.

Proposition 3.2.5. Let L ∈ NS(Y) be a big and nef linear system without fixed compo-

nents. Then, the following are equivalent:

(i) ϕ(L) = 1,

(ii) |L| has two base points.

If a line bundle L is such that ϕ(L) = 1, we have that L · E = 1 for a half-fiber of
a genus 1 pencil |F| on Y. Since F ∼ 2E, we obtain that L · F = 2 and therefore any
member of the linear system |L| is a bisection for the elliptic pencil |F|. Moreover, all the
smooth members of |L| are hyperelliptic curves, with the hyperelliptic series cut by the
elliptic curves of |F|.
The next result due to Galati and Knutsen (see [29, Theorem 1.1]) states a necessary

condition for the existence of a rational curve in the very general Enriques surface. Here
very general just means that there exists a set that is the complement of a countable union
of proper Zariski-closed subsets in the moduli space of Enriques surfaces satisfying the
given conditions.

Theorem 3.2.6. [Galati, Knutsen] Let Y be a very general Enriques surface. If C ⊂ Y is

an irreducible rational curve, then C is 2-divisible in Num(Y).

As a consequence of this Theorem, if C is a rational curve on the very general Enriques
surface, then ϕ(C) 6= 1.

3.2.1 K3 surfaces of base change type

Let S = Bl{P1,...,P9} P2 denote a rational elliptic surface. We let now

g : P1 → P1

be a morphism of degree two. Denote the ramification points by t0 and t∞.

75



CHAPTER 3 Enriques surfaces of base change type

Proposition 3.2.7. The pull-back X of S via g is a K3 surface

Proof. We have the following commutative diagram

X P1

S P1

g

The pull-back Ẽ of any section E of S is a section for the induced elliptic fibration on X and

Ẽ2 = −2. Hence X is an elliptic surface over P1 having a section with self-intersection

−2 (or, equivalently, the degree of the fundamental line bundle of the Weierstrass model

of X is 2) and then by Lemma 2.1.7 it is a K3 surface.

With abuse of notation, we denote by g also the double cover X → S and we denote
by Ẽi the pull-backs of the exceptional divisors Ei of S. With this notation, Ẽ9 is the zero-
section for the induced elliptic fibration on X.
Moreover, we denote by St the fiber on S over a point t ∈ P1 and by Xt and X−t the

two components of its preimage on X. Since St ∼= Xt ∼= X−t, if Qt ∈ St, we denote the
two points in its preimage g−1(Qt) by Q̃t and Q̃−t. Sometimes, we refer to the pair Xt

and X−t as twin fibers, to the pair Q̃t and Q̃−t as twin points in twin fibers and to the pair
Q̃t and ⊟Q̃−t as opposite points in twin fibers (with respect to Ẽ9).
Let ι denote the deck transformation for g, i.e. ι ∈ Aut(P1) such that g = g ◦ ι. Then ι

induces an automorphism of X that we shall also denote by ι. The quotient X/ι is exactly
the rational elliptic surface S we started with.

Remark 3.2.8. We obtain a ten-dimensional family of elliptic K3 surfaces: eight dimen-

sions from the rational elliptic surfaces and two dimensions from the base change, given

by the choice of the two ramification points of the corresponding double cover P1 → P1.

Definition 3.2.9. We say that such a base change g : X → S is very general if S is general,

St0 and St∞ are smooth elliptic curves and ι∗ acts as the identity on NS(X).

In this case we also say that X is base change very general as K3 surface of base change

type.
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Proposition 3.2.10. A base change very general K3 surface X does not carry any Enriques

involution.

Proof. We have that NS(X) ∼= U ⊕ E8(−2) (see [36, Section 3.2]). Twice the Enriques

lattice U(2)⊕ E8(−2) does not embed primitively into U ⊕ E8(−2): indeed, U cannot

be realized as primitive sublattice ofU(2). Hence, X cannot admit an Enriques involution.

3.2.2 Enriques surfaces of base change type

We saw that a very general K3 surface of base change type does not admit any Enriques
involution. Hulek and Schütt in [36] impose a geometric condition on the base change
g : X → S that allows to construct (a countable number of) families of K3 surfaces with
Enriques involution.
In order to exhibit K3 surfaces with Enriques involution within our family of K3 surfaces

of base change type, we need the following Lemma, that summarizes the discussion in [36,
Section 3.3].

Lemma 3.2.11 (Hulek-Schütt). Let S be a general rational elliptic surface, let X be a K3

surface of base change type obtained as the double cover of S and let g : X → S the

quotient map. Moreover, let R be a section for the elliptic fibration on X given by the

pullback of the elliptic fibration on S. Then

• either R is invariant with respect to ι∗,

• or R is anti-invariant with respect to ι∗ (meaning that ι∗(R) = (−1)∗(R),where

(−1) indicates the involution on X acting fiber by fiber by interchanging opposite

points with respect to the zero-section Ẽ9).

Moreover, in the former case, R is the pull-back of a section E ∈ MW(S) and it cuts twin

points in twin fibers, while in the latter R cuts opposite points in twin fibers.

We denote by⊞R ∈ Aut(X) the automorphism of X given by the translation by R fiber
by fiber. It acts as an automorphism on every smooth elliptic fiber and it is classical that it
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can be extended to the singular fibers (see, for example, [50, Section 7.6], or [17, Section
1.1]).

Proposition 3.2.12. Let R be an anti-invariant section with respect to i∗. Then, the quotient

g : X → S identifies R with its opposite section⊟R with respect to Ẽ9, as well as R⊞k :=

R ⊞ · · ·⊞ R with R⊟k := ⊟R ⊟ · · ·⊟ R.

Proof. For every t ∈ P1, if R cuts a fiber Xt in a point Q̃t, the opposite section ⊟R cuts

Xt in the opposite point ⊟Q̃t. Moreover, R intersects the twin fiber X−t in ⊟Q̃−t, while

⊟R cuts X−t in Q̃−t. To complete the proof, it is sufficient to notice that g identifies Q̃t

and Q̃−t as well as ⊟Q̃t and ⊟Q̃−t. In the same way one can prove that R⊞k is identified

with R⊟k.

Remark 3.2.13. If there exists R ∈ MW(X → P1) that is anti-invariant with respect to

ι∗, then X → S is not very general in the sense of Definition 3.2.9. Indeed, by Proposition

3.2.12 we have ι∗(R) = ⊟R � R, whence ι∗ does not act as the identity on NS(X).

Proposition 3.2.14 (Hulek-Schütt). Let R ∈ MW(X) be an anti-invariant section with

respect to ι∗ and consider the automorphism of X given by

τ := ι ◦ (⊟R).

Then, τ ∈ Aut(X) is an involution and it is an Enriques involution if and only if R does

not intersect Ẽ9 along Xt0 and Xt∞ .

Proof. The automorphism τ acts on a point xt ∈ Xt in the following way:

τ(xt) = (ι ◦⊟R)(xt) = ι(xt ⊟ Rt) = (x−t ⊞ R−t) ∈ X−t.

On the other hand,

τ(x−t ⊞ R−t) = (ι ◦⊟R)(x−t ⊞ R−t) = ι(x−t) = xt,
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from which we deduce that τ is an involution on X. We have to check whether τ has any

fixed points on X. Since ι exchanges fibers while translation by P fixes them, we clearly

have

Fix(τ) ⊂ Fix(ι) = {Xt0 , Xt∞}.

On the fixed fibers, say at t0, the involution τ acts as

τ(x) = x ⊞ Rt0 , where Rt0 = R ∩ Xt0 .

Hence deciding whether τ acts freely amounts to checking which points on the fixed fibers

R specialises to. If the fixed fibers are smooth, there are fixed points (even fixed fibers) if

and only if R ∩ Ẽ9 ∩ (Xt0 ∪ Xt∞) 6= ∅.

The case of non-smooth fibers requires some additional attention. For the complete proof,

see [36, Section 3.4].

Definition 3.2.15. We denote by Y = X/τ the Enriques surface obtained with the con-

struction described in Theorem 3.2.14. We say that Y is an Enriques surfaces of base

change type and we denote by f the quotient X → Y.

Remark 3.2.16. The given elliptic fibration on X induces a genus 1 pencil on Y. Here

the smooth fiber Yt of Y at t is isomorphic to the fibers Xt and X−t at g−1(t) as genus 1

curves or to the fiber of the rational elliptic surface St.

Lemma 3.2.17. [Hulek, Schütt] The sections Ẽ9 and R of the specified elliptic fibration

on X are identified under the quotient f : X → Y and give a rational bisection for the

induced genus 1 fibration on Y.

Proof. Let Xt and X−t be two twin fibers. The involution τ acts on a point xt ∈ Xt in the

following way:

τ(xt) = ι ◦⊟R(xt) = ι(xt ⊟ Rt) = x−t ⊞ R−t.
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A point 0t ∈ Ẽ9 is sent to 0−t ⊞ R−t = R−t and a point Rt ∈ R is sent to R−t ⊟
R−t = 0−t, where in this latter case the sign is changed because R is ι∗ anti-invariant,

whence ι(Rt) = ⊟R−t. Since R and Ẽ9 are rational, then their image is. Finally, we have

f (R) · Yt =
1
2(R + Ẽ9)(Xt + X−t) =

1
2(4) = 2, where the second equality holds since

Ẽ9 and R are sections for the elliptic pencil |Xt| on X, so that the image of R and Ẽ9 is a

bisection for the pencil |Yt| on Y.

The construction strongly depends on the choice of the ι∗ anti-invariant section R. One
could ask if such a section actually exists. The proof of their existence is performed by
Hulek and Schütt in a strongly lattice-theoretical way (see [36, Section 3]) and we omit it.
In particular, this Theorem collects their results in this context.

Theorem 3.2.18 (Hulek, Schütt). For every nonnegative integer m ∈ Z+, there exists a

9-dimensional family Σm of K3 surfaces of base change type such that, for every Xm ∈ Σm,

NS(Xm) ∼= U ⊕ E8(−2)⊕ < −4(m + 1) >.

Moreover, Xm covers an Enriques surface of base change type such that Rm · Ẽ9 = 2m,

where Ẽ9 is the zero-section of the elliptic fibration induced by the base change construc-

tion and Rm is an anti-invariant section with respect to the involution giving rise to the

base change.

Recall that Xm is constructed as a double cover g : Xm → S, where S is a rational
elliptic surface, and therefore Xm inherits the structure of elliptic fibration given by the
pullback of the elliptic fibration on S via g. Let us call F the class of a fiber in the Néron-
Severi group NS(Xm). Recall that if S ∼= BlP1,...,P9 P2, we denote by Ei, with i = 1, . . . , 9,
the exceptional divisors over the points Pi and by Ẽi their pullbacks under g. Finally, if
we choose E9 to be the zero-section for the elliptic fibration on S, the section Ẽ9 will
be the zero-section for the induced elliptic fibration on Xm. Here, the hyperbolic lattice
U is generated by the class of a fiber F and the zero-section Ẽ9 (more precisely, by F
and F + Ẽ9), the sublattice E8(−2) is generated, for example, by the classes Ẽ1 − Ẽ2,
Ẽ2 − Ẽ3, Ẽ3 − Ẽ4, Ẽ4 − Ẽ5, Ẽ5 − Ẽ6, Ẽ6 − Ẽ7, Ẽ7 − Ẽ8 and Ẽ8 − Ẽ1, while the generator
of < −4(m + 1) > is the class Rm − Ẽ9 − (2 + 2m)F (see [36, Section 3.7]).
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Remark 3.2.19. The group of sections MW(Xm) is generated by the pullbacks Ẽi under

the quotient g : X → S of the generators Ei of MW(S), for i = 1 . . . , 8, and Rm. One

could choose R⊞k
m (with k odd for reasons that we explain in Remark 3.2.26) to define the

Enriques involution. To avoid confusion in the notations, we will choose the section Rm to

be non-divisible in MW(Xm).

Corollary 3.2.20. The Enriques surfaces of base change type are not Picard very general.

Proof. By Theorem 3.2.18, the Néron-Severi group of Xm ∈ Σm is

NS(Xm) ∼= U ⊕ E8(−2)⊕ < −4(m + 1) >,

and in particular ρ(Xm) = 11.

Remark 3.2.21. We obtained that Xm is not base change very general and that Ym is

not Picard very general. Theorem 3.2.18 motivates the respective definitions we gave: a

countable set of codimension 1 families in the moduli of K3 surfaces of base change type

X such that i∗ does not act as the identity on NS(X) is the family of Σm’s; a countable set

of codimension 1 families in the moduli of K3 surfaces X with an Enriques involution such

that ρ(X) 6= 10 is again the family of the Σm’s.

We will focus on Σm and on the geometry of its members in the next sections.

Definition 3.2.22. We denote by BY,m := f (Rm) = f (Ẽ9) the induced rational bisection

on Ym and we say that BY,m is an m-special curve for Ym. Sometimes, we shall say that Ym

is an m-special Enriques surface and that the induced genus 1 pencil onYm is an m-special

genus 1 pencil.

Remark 3.2.23. BY,m has arithmetic genus m. Indeed,

B2
Y,m = 1

2(Rm + Ẽ9)
2 = 1

2(R2
m + Ẽ2

9 + 2Rm · Ẽ9) =
1
2(−2 − 2 + 4m) = 2m − 2,
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where the third equality holds since Rm and Ẽ9 are (−2)-curves with Rm · Ẽ9 = 2m, so

that

pa(BY,m) =
1
2 B2

Y,m − 1 = m.

The construction due to Hulek and Schütt is universal in the following sense:

Proposition 3.2.24 (Hulek, Schütt). Let Y be an Enriques surface with a genus 1 pencil

having a rational bisection which splits into sections for the induced fibration on the uni-

versal K3 cover X. Then X and Y arise through the base change construction described

above.

Proof. [36, Proposition 3.1].

The next Proposition links the rational bisection BY,m to the rational elliptic surface S
we started with to construct Ym.

Proposition 3.2.25. Let S ∼= Bl{P1,...,P9} P2 be a general rational elliptic surface, and

let Xm and Ym be a K3 surface and an Enriques surface obtained by the base change

construction. Let then g : Xm → S and f : Xm → Ym denote the corresponding quotients.

Finally, let BY,m be the m-special curve of Ym and let Rm and Ẽ9 be the two components of

its preimage under f . Then, BS,m := g(Rm) is a rational bisection for the elliptic pencil

on S. Moreover, BS,m ∼ Bm := 6(m + 1)L − 2(m + 1)E1 − · · · − 2(m + 1)E8 − 2mE9

is an origin cutting bisection.

Proof. The section Rm is anti-invariant with respect to ι∗, then it cuts opposite points Q̃t

and ⊟Q̃−t in twin fibers Xt and X−t with respect to Ẽ9. Hence, BS,m cuts the fiber St =

g(Xt) = g(X−t) in the opposite points Qt and ⊟Qt with respect to E9 and then it is an

origin cutting bisection. Moreover, since Rm is rational, then BS,m is.

In the following Remark, we give a geometrical interpretation of the phenomenon.
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Remark 3.2.26. By Proposition 3.2.12, the bisection BS,m ⊂ S splits in Rm and ⊟Rm in

Xm. This means that BS,m is tangent to the branch locus of g, that is the union of St0 and

St∞ . Geometrically, since BS,m is a bisection for the elliptic pencil, it carries a 2 : 1 map

over P1. By the Riemann-Hurwitz formula, it has two ramification points, that correspond

exactly to the two fixed fibers St0 and St∞ , to whom BS,m is tangent.

Since BS,m is origin cutting, it has to be tangent to St0 and St∞ along the 2-torsion

trisection S[2]0 or along E9. It is easy to see that it is tangent to the fixed locus along

S[2]0: in fact, by Proposition 3.2.14, to produce an Enriques involution τ, Rm cannot

intersect E9 along the fixed locus. For this reason in Remark 3.2.19 we claimed that one

could choose also R⊞k
m as section anti-invariant with respect to ι∗ to define an Enriques

involution, but with k odd: if k is even, then R⊞k
m intersects Ẽ9 along the fixed locus.

The previous Remark leads us to state the following Proposition, that is the converse of
Proposition 3.2.25.

Proposition 3.2.27. Let S ∼= Bl{P1,...,P9} P2 be a general rational elliptic surface and let

BS,m ∼ Bm := 6(m + 1)L − 2(m + 1)E1 − · · · − 2(m + 1)E8 − 2mE9 be a rational

origin cutting bisection, tangent to two fibers St0 and St∞ along the 2-torsion trisection

S[2]0. Consider the double covering g : Xm → S ramified over St0 + St∞ . Then, Xm

belongs to Σm and BS,m splits in two (−2)-curves Rm and ⊟Rm, that are opposite with

respect to Ẽ9 = g∗(E9) and anti-invariant with respect to the involution ι on Xm giving

rise to the double covering g. Moreover, we have Rm · Ẽ9 = 2m and if we denote by

f : Xm → Ym the Enriques quotient given by the involution τ = ι ◦⊟Rm, we have that

Ẽ9 is identified with Rm by f .

Proof. The origin cutting bisection BS,m is tangent to the branch locus St0 + St∞ of g,

hence it splits in two curves Rm and R′
m on Xm. Denoting by St a fiber for the elliptic

fibration on S and by Xt and X−t the two irreducible components of its preimage g−1(St),
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we have

BS,m · St = 2, from which (Rm + R′
m) · (Xt + X−t) = 4.

Since Xt and X−t are members of an elliptic pencil on the K3 surface Xm, every factor of

the intersection product (Rm + R′
m) · (Xt + X−t) is greater or equal to 1: otherwise, Rm

or R′
m would be fibers of the elliptic pencil |Xt| on Xm. Hence, Rm · Xt = R′

m · Xt = 1

and whence Rm and R′
m are sections for |Xt|, so they are smooth (−2)-curves. Moreover,

since BS,m is origin cutting, Rm and R′
m cut opposite points with respect to Ẽ9 in every fiber.

In other words, R′
m = ⊟Rm. This also proves that Rm (as well as R′

m) is anti-invariant

with respect to ι: indeed, ι∗(Rm) = ⊟Rm = (−1)∗(Rm), where (−1) indicates the

involution on Xm that acts fiberwise by interchanging opposite points with respect to Ẽ9.

Since BS,m ⊂ S is tangent to the branch locus St0 + St∞ along the 2-torsion trisection S[2]0,

we have that Rm intersects the ramification locus Xt0 + Xt∞ away from Ẽ9 and then, by

Theorem 3.2.14, the involution τ is an Enriques involution. Finally, since BS,m · E9 = 2m,

we have (Rm +⊟Rm) · Ẽ9 = 4m, from which Rm · Ẽ9 = 2m.

Corollary 3.2.28. The set of irreducible rational curves in |Bm| intersecting E9 in simple

nodes and tacnodes is nonempty.

Proof. First of all, since g−1(BS,m) = Rm +⊟Rm, we have that morphism g restricted

to Rm is birational. Now, Rm and ⊟Rm cut Ẽ9 in the same points: in fact, Rm and ⊟Rm

cut a fiber Xt in opposite points, and if Rm meets Xt along Ẽ9, the intersection point is

the origin of the group law of the fiber and whence it coincides with its opposite point.

This corresponds to a double point of BS,m along E9. Since Rm · Ẽ9 = 2m, we have that

BS,m · E9 = 2m and that this latter intersection is composed by (possibly not ordinary)

double points. The singularities of BS,m along E9 can just be (possibly not ordinary) nodes

but not cusps. Otherwise, it could not split. This means that the possible singularities are

simple nodes and tacnodes.
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Notice that if BS,m admitted a tacnode along E9 in the fiber St on S, then the curves Rm

(as well as ⊟Rm) and Ẽ9 would be tangent in Xm at the two preimages of the tacnode in
the fibers Xt and X−t. Since the m-special curve BY,m is the image of Rm and Ẽ9 under
the Enriques quotient f and since f is étale and identifies the fibers Xt and X−t, also BY,m

would admit a tacnode in the fiber Yt = f (Xt) = f (X−t) on Ym at the image of the two
points at which Rm and Ẽ9 are tangent. One of the aims of the next section is to prove that
generically this does not happen, meaning that generically the m-special curves are nodal.

Remark 3.2.29 (Description of the families). The ϕ invariant of every m-special curve

BY,m is equal to 1: indeed, as proved in Lemma 3.2.17, BY,m is a bisection for an elliptic

pencil |Fm| on Ym. Now, consider a half-fiber Em of the pencil |Fm|: since BY,m · Fm = 2

and 2Em ∼ Fm, we have BY,m · Em = 1.

There is a subcase of this setting that has been investigated extensively before, namely

nodal Enriques surfaces. In general, an Enriques surface is called nodal if it contains a

nodal curve, i.e. a curve of self-intersection −2, thus necessarily rational and smooth.

On the K3 cover, such a curve splits into two disjoint smooth rational curves, again with

self-intersection −2. It was proved by Cossec in [16] that the property of being nodal

always translates to genus 1 fibrations. Namely for an Enriques surface Y, it is equivalent

to contain a smooth (−2)-curve and to admit a special genus 1 fibration, i.e. a genus 1

fibration with a smooth (−2)-curve curve as bisection. For the case P ∩ E9 = ∅, whence

m = 0, the construction due to Hulek and Schütt thus leads exactly to nodal Enriques

surfaces.

Σ1 parametrizes K3 surfaces covering Enriques surfaces with a 1-special curve BY, that

is a rational curve of arithmetic genus 1. In other words, B2
Y = 0 and then either |BY| or

|2BY| is a genus 1 pencil onY1, with BY as one of its singular fibers. As usual f : X1 → Y1

indicates the Enriques quotient. Since BY splits in X1 in two (−2)-curves meeting at two

points, it is 2:1 covered by a member of | f ∗(BY)| and thus it is a half-fiber of the genus 1

pencil |2BY|. The Y1’s are precisely the Enriques surfaces having a genus 1 pencil with a
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nodal half-fiber: it is not surprising that they live in a subfamily of codimension 1 in the

moduli space of the Enriques surfaces.

By Theorem 3.2.6, every rational curve in a very general Enriques surface is 2-divisible.

For m ≥ 2, we have that Σm parametrizes K3 surfaces covering Enriques surfaces Ym

having at least a linear system L with pa(L) = m and ϕ(L) = 1, with a rational member.

Thus, the peculiarity of Ym is the existence of a not 2-divisible linear system of arithmetic

genus m having a rational member.

We conclude the section with the following Lemma, stating that the general Xm ∈ Σm

covers an Enriques surface Ym without (−2)-curves.

Lemma 3.2.30. Let Xm be a general member of Σm, with m ≥ 1. Then, Ym is nonnodal,

meaning that there are no smooth rational curves on Ym.

Proof. Let Xm ∈ Σm be general. Σ0 is the nine-dimensional irreducible family in the

moduli space of K3 surfaces parametrizing K3 surfaces covering a nodal Enriques surface,

whileΣm is the irreducible nine-dimensional family parametrizing K3 surfaces covering an

Enriques surface with anm-special curve. Suppose thatYm admits a smooth rational curve:

since Σm and Σ0 are irreducible of the same dimension, they coincide in an open subset.

In other words, the general member Xm of Σm belongs to Σ0 and the general member X0

of Σ0 belongs to Σm. But since

NS(Xm) ∼= U ⊕ E8(−2)⊕ < −4(m + 1) >

and

NS(X0) ∼= U ⊕ E8(−2)⊕ < −4 >,

this is a contradiction unless m = 0.
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3.3 Severi varieties
First of all, we recall the basics about Severi varieties of curves on surfaces.

Roughly speaking, the Severi varieties parametrize curves with a prescribed number of
nodes in a fixed linear system. Let S be a smooth complex projective surface and L a line
bundle on S such that the complete linear system |L| contains smooth, irreducible curves
(such a line bundle, or linear system, is often called a Bertini system). Let

p := pa(L) = 1
2 L · (L + KS) + 1

be the arithmetic genus of any curve in |L|.

Definition 3.3.1. For any integer 0 ≤ δ ≤ p, consider the locally closed, functorially

defined subscheme of |L|

V|L|,δ(S) or simply V|L|,δ

parametrizing irreducible curves in |L| having only δ nodes as singularities: this is called

the Severi variety of δ-nodal curves in |L|. We will let g := p − δ be the geometric genus

of the curves in V|L|,δ.

We will also consider, for any given integer g such that 0 ≤ g ≤ pa(L), the locally
closed subscheme of |L|

V|L|
g (S) or simply V|L|

g

whose geometric points parametrize reduced and irreducible curves C having geometric
genus g, i.e. such that their normalizations have genus g. We shall call such a family
the equigeneric Severi variety of genus g curves in |L|. When δ = pa(L)− g, we have
V|L|,δ ⊂ VL

g . It is well-known that, if V|L|,δ is nonempty, then all of its irreducible com-
ponents V have dimension dim(V) ≥ dim |L| − δ. If V|L|,δ is smooth of dimension
dim |L| − δ at [C] it is said to be regular at [C]. An irreducible component V of V|L|,δ
will be said to be regular if the condition of regularity is satisfied at any of its points,
equivalently, if it is smooth of dimension dim |L| − δ.
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Severi varieties were introduced by Severi in [51], where he proved that all Severi va-
rieties of irreducible δ-nodal curves of degree d in P2 are nonempty and smooth of the
expected dimension. Severi also claimed irreducibility of such varieties, but his proof con-
tains a gap. The irreducibility was proved by Harris in [34].
Severi varieties on other surfaces have received much attention in recent years, espe-

cially in connection with enumerative formulas computing their degrees (see for example
[4], [6] and [8]. Nonemptiness, smoothness, dimension and irreducibility for Severi vari-
eties have been widely investigated on various rational surfaces (see, e.g., [30], [53] and
[54], as well as K3, Enriques and abelian surfaces (see, e.g.,[11], [37], [38], [42], [5], [47],
[13] and [14]).
In this Section, we contribute to the study of the Severi varieties of curves on Enriques

surfaces and rational elliptic surfaces. We give the state of the art about the Severi varieties
of curves on these surfaces. About the Enriques case, we refer to [13] and [14]. The next
result states the main property of the Severi varieties on Enriques surfaces.
Let Y be an Enriques surfaces, X be its K3 cover, f : X → Y denote the quotient

map and τ denote the Enriques involution. Let now V be an irreducible component of
a Severi varieties of δ-nodal curves on Y. Ciliberto, Dedieu, Galati and Knutsen in [13,
Proposition 1] prove that if V is regular, then the curves in V are covered by irreducible
curves of X, while if V is nonregular, then each curve C of V splits in X in two curves
C′ and C′′. Moreover, they show that if Y is very general in moduli, then C′ and C′′ are
linearly equivalent. The precise statement is described in their following Proposition.

Proposition 3.3.2 (Ciliberto, Dedieu, Galati, Knutsen). Let L be a Bertini linear system,

with L2 > 0, on a smooth Enriques surface Y. Then the Severi variety V|L|,p(S) is smooth

and every irreducible component V ⊆ V|L|,δ(S) has either dimension g − 1 or g; in the

former case the component is regular. Furthermore, with the notation introduced above,

(a) for any curve C in a (g − 1)-dimensional irreducible component V, f−1(C) is irre-

ducible;

(b) for any g-dimensional component V, there is a line bundle L′ on X with (L′)2 =

2(p − d)− 2 and L′ · τ∗L′ = 2d for some integer d satisfying

p−1
2 ≤ d ≤ δ,
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such that f ∗L = L′ ⊗ τ∗L′, and the curves parametrized by V ⊆ V|L|,δ(S) are

the birational images under f of the curves in V|L′|,δ−d(X) intersecting their con-

jugates by τ transversely (in 2d points). In other words, for any [C] ∈ V, we have

f−1C = Y + τ(Y), with [Y] ∈ V|L′|,δ−d(X) and [τ(Y)] ∈ V|τ∗L′|,δ−d(X) inter-

secting transversely.

Furthermore, if L′ ∼= τ∗L′, which is the case if Y is very general in moduli, then

d = p−1
2 and L ∼ 2M, for some M ∈ Pic(Y) such that M2 = d.

Recall that any rational elliptic surface is isomorphic to the blow-up of P2 in nine points
that are base points of a pencil of cubics. There are some general results about the Severi
varieties on curves in blown-up planes (for example [30]), but in the setting in which the
blown-up points are in general position. This does not cover our case, in which P1, . . . , P9

are base points of a pencil of cubic curves.
From now on, most of the results are original (except for the digression about the loga-

rithmic Severi varieties).

3.3.1 The m-special curves

As noticed at the end of the previous section, proving that BY,m is nodal, consequently
that Rm (as well as ⊟Rm) and E9 intersect transversely, is equivalent to proving that the
singularities of BS,m lying along E9 are simple nodes.

Definition 3.3.3. Let S ∼= Bl{P1...,P9} P2 be a general rational elliptic surface and let

S[2]0 be the 2-torsion trisection. We call VS[2]0
Bm

(S) ⊂ V|Bm|,4m+2(S) the Severi variety of

irreducible rational curves in |Bm| with two simple intersection points with S[2]0.

The Definition of VS[2]0
Bm

(S) is motivated by the following Remark.

Remark 3.3.4. In the Example 3.1.20 we showed that an origin cutting bisection for a

rational elliptic surface S → P1 is of the form

Bm ∼ 6(m + 1)L − 2(m + 1)E1 − · · · − 2(m + 1)E8 − 2mE9.

The arithmetic genus of Bm is
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pa(Bm) =
1
2 [(6m + 5)(6m + 4)− 8(2m + 2)(2m + 1)− 2m(2m − 1)]) = 4m + 2.

and by Proposition 3.1.15 the double points of a curve in |Bm| belong to S[2]0 or to E9.

Moreover,

Bm · E9 = 2m and Bm · S[2]0 = 6(m + 1).

Let now BS,m be a rational member of Bm and let us assume that the singularities of BS,m

are simple nodes. We have pa(BS,m) = 4m + 2, whence it has 4m + 2 nodes. Since

BS,m · E9 + BS,m · S[2]0 = 8m + 6,

two free intersection points Q1 and Q2 between BS,m and S[2]0 + E9 remain. Since BS,m

can just have double points as singularities (see Remark 3.1.16) and BS,m · E9 and BS,m ·

S[2]0 are even, we have that Q1 and Q2 belong both to E9 or to S[2]0. In the proof of

Corollary 3.2.28 we saw that the rational bisections of our interest are the ones intersecting

E9 in double points, so we consider the case in which the two points belong to S[2]0.

In order to prove that VS[2]0
Bm

(S) is nonempty, we transfer the problem to the quotient
S/(−1) ∼= F2. Once again, the double points of BS,m all belong to E9 + S[2]0, that is the
ramification locus of the quotient map (as seen in Remark 3.1.19). Hence, the image of
BS,m, which we will see in Lemma 3.3.7 below is a smooth rational curve, is tangent to the
branch locus at the images of the singular points.
For this reason, we introduce the so-called logarithmic Severi varieties, parametrizing

nodal curves with given tangency conditions to a fixed curve. The definition and the main
results are given by Dedieu in [21] and they are based on the works of Caporaso and Harris
(see for example [8]).
Let us denote by N the set of all the sequences α = [α1, α2, . . . ] of nonnegative integers

with all but finitely many αi non-zero. In practice we shall omit the infinitely many zeroes
at the end. For a sequence α ∈ N, we let

|α| = α1 + α2 + . . .
Iα = α1 + 2α2 + · · ·+ nαn + . . .
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Definition 3.3.5. Let S be a smooth projective surface, T ⊂ S a smooth, irreducible curve

and L be a line bundle or a divisor class on S with arithmetic genus p. Let γ be an integer

satisfying 0 ≤ γ ≤ p, let α ∈ N such that

Iα = L · T.

We denote by Vγ,α(S, T, L) the locus of curves in L such that

• C is irreducible of geometric genus γ and algebraically equivalent to L,

• denoting by µ : C̃ → S the normalization of C composed with the inclusion C ⊂ S,

there exist |α| points Qi,j ∈ C, 1 ≤ j ≤ αi such that

µ∗T = ∑
1≤j≤αi

iQi,j.

Theorem 3.3.6 (Dedieu). Let V be an irreducible component of Vγ,α(S, T, L), [C] a gen-

eral member of V and µ : C̃ → S its normalization as in the Definition 3.3.5. Let now

Qi,j, 1 ≤ j ≤ αi points in C̃ such that

µ∗T = ∑
1≤j≤αi

iQi,j

and set

D = ∑
1≤j≤αi

(i − 1)Qi,j.

(i) If −KS · Ci−deg µ∗D|Ci| ≥ 1 for every irreducible component Ci of C, then

dim(V) = −(KS + T) · L + γ − 1 + |α|

(ii) If −KS · Ci−deg µ∗D|Ci| ≥ 2 for every irreducible component Ci of C, then

(a) the normalization map µ is an immersion, except possibly at the points Qi,j;

(b) the points Qi,j of C̃ are pairwise distinct.
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In our new setting, the surface we are focusing on is F2. We call f the class of the
members of the ruling and e the special section such that e2 = −2. We describe the
images of the origin cutting bisections under the quotient q : S → F2.

Lemma 3.3.7. Bm is sent to bm ∼ 2(m + 1) f + e and the branch locus consists of two

curves e and s2, where e is the special section and we have s2 ∼ 6 f + 3e.

Proof. Recall that the ramification locus consists of the union of E9 and S[2]0 ∼ 9L −

3E1 − · · · − 3E8. To prove the Lemma, it is sufficient to describe the map q∗ : Pic(F2) →

Pic(S). The quotient map q sends the cubics of the pencil to the lines of the ruling, then

q∗( f ) = F ∼ 3L − E1 − · · · − E9. Moreover, E9 is sent to e and it belongs to the

branch locus, then q∗(e) = 2E9. Now, Bm ⊂ S is an origin cutting bisection and then

it cuts a fiber on S in opposite points with respect to E9: since q identifies exactly the

opposite points with respect to E9, we have that q(Bm) is a section for the ruling f and

q∗q∗(Bm) = Bm. Finally, Bm ∼ 6(m+ 1)L− 2(m+ 1)E1 − · · · − 2(m+ 1)E8 − 2mE9

is sent to bm ∼ 2(m + 1) f + e, and the component of the ramification locus S[2]0 ∼

9L − 3E1 − · · · − 3E8 ∼ 3F + 3E9 is sent to 6 f + 3e.

The linear system bm consists of sections, thus each irreducible member is a smooth
rational curve and we shall omit the genus in the notation of the Severi varieties of curves
in it. We are interested in the images of curves of VS[2]0

Bm
(S): the singular points of BS,m

along E9 + S[2]0 become tangency points between q(BS,m) ∼ bm and e + s2. For this
reason, we set

α = [2, 4m + 2].

As we explained in Remark 3.3.4, VS[2]0
Bm

(S) consists of curves having two simple inter-
section points with S[2]0, so that we are interested in the members of Vα(F2, e + s2, bm)

totally tangent to e with even order at every intersection point and possibly intersecting
s2 transversely in two points. We call Vs2

bm
(F2) the logarithmic Severi variety contained

in Vα(F2, e + s2, bm) parametrizing such curves. In the following Theorem we prove that
the general member of Vs2

bm
(F2) is simply tangent to e and to s2 at every intersection point

except for two points in s2 at which the intersection is transverse.
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Theorem 3.3.8. VS[2]0
Bm

(S) is nonempty of dimension 1.

Proof. First of all, we prove that the logarithmic Severi variety Vs2
bm
(F2) of curves on F2

is nonempty and that its general member is tangent to e + s2 in pairwise distinct points.

Finally, we notice that there is a 1:1 correspondence between VS[2]0
Bm

(S) and Vs2
bm
(F2).

The nonemptiness follows from Corollary 3.2.28: indeed, let C be an irreducible curve

in the set of rational curves in Bm intersecting E9 in simple nodes and tacnodes. Since C

is a bisection, it cannot have triple points, whence it has just double points as singularities.

Moreover, since C is origin cutting, all of its double points other than the ones lying along

E9 lie along S[2]0. The image q(C) ∼ 2(m + 1) f + e is totally tangent to the special

section e and to the trisection s2 except for (possibly) two points, whence q(C) ∈ Vs2
bm
(F2)

.

Every irreducible curve of bm is a section and then it is smooth, so it is isomorphic

to its normalization. Let [c] be a general member of Vs2
bm
(F2). We have α1 = 2 and

α2 = 4m + 2, so we let Q1,1, Q1,2, Q2,1, . . . , Q2,4m+2 be points in c such that, denoting by

µ : c → F2 the inclusion c ⊂ F2, we have µ∗(s2 + e) = Q1,1 + Q1,2 + 2Q2,1 + · · ·+

2Q2,4m+2 as in Definition 3.3.5. We set D = Q2,1 + · · · + Q2,4m+2: by construction,

d := deg D|c = 4m + 2. The anti-canonical class of F2 is

−KF2 ∼ |4 f + 2e|.

We have

−KF2 · c − d = (4 f + 2e)(2(m + 1) f + e)− d = 4m + 4 − (4m + 2) = 2.

Thus, by Theorem 3.3.6(ii-b), we conclude that the points at which c is tangent to e and

s2 are pairwise distinct and that c intersects s2 transversely in two distinct points (distinct

also from the ones at which it is tangent).
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By construction, the pullback of a member of Vs2
bm
(F2) belongs to VS[2]0

Bm
(S). This in

particular implies that VS[2]0
Bm

(S) is nonempty. Furthermore, any member of VS[2]0
Bm

(S) be-

longs to the set of irreducible rational members of Bm intersecting E9 in simple nodes and

tacnodes and then it is sent to a member of Vs2
bm
(F2).

Finally, by Theorem 3.3.6(i), we have

dim(VS[2]0
Bm

(S)) = dim(Vs2
bm
(F2)) = −(KS + T) · L + γ − 1 + |α| =

−(| − 4 f − 2e + 6 f + 4e|) · |(2m + 2) f + e| − 1 + 4m + 4 =

−|2 f + 2e| · |(2m + 2) f + e|+ 4m + 3 = −4m − 2 + 4m + 3 = 1.

Remark 3.3.9. It is not surprising that VS[2]0
Bm

(S) is actually a curve: for every rational

elliptic surface S and for every m, we expected that we could construct a one-dimensional

family of Enriques surfaces of base change type. These curves parametrize the pairs

(Ym, EYm) of a m-special Enriques surface Ym and its genus 1 pencil EYm induced by the

one of S.

In Theorem 3.3.8, we showed that the Severi variety VS[2]0
Bm

(S) is nonempty for a gen-
eral rational elliptic surface S. In other words, for every such S and for every nonnegative
integer m, there exists a one-dimensional family of origin cutting rational bisections inter-
secting the zero-section E9 in m simple nodes. By Proposition 3.2.27, these origin cutting
bisections can be used to construct Enriques surfaces of base change type. Let [BS,m] be a
general element in VS[2]0

Bm
(S) and denote as usual by g : Xm → S the base change induced

by BS,m with the procedure described in Proposition 3.2.27, by f : Xm → Ym the corre-
sponding Enriques quotient and by Rm the irreducible component of g−1(BS,m) identified
with Ẽ9 = g−1(E9) by f . Since BS,m intersects E9 in simple nodes, we have that the in-
tersection between Rm and Ẽ9 is transverse and therefore that the induced m-special curve
on Ym is nodal. We proved the following Theorem, which finally states that the general m-
special Enriques surface constructed starting from a fixed general rational elliptic surface
S is such that BY,m is nodal.
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Theorem 3.3.10. Let S = Bl{P1,...,P9} P2 be a general rational elliptic surface. Denote

by q : S → F2 the quotient map over the second Hirzebruch surface F2 and let C be a

general member of Vs2
bm
(F2). Let us denote BS,m ∈ VS[2]0

Bm
(S) the preimage of C under q

and St0 and St∞ the fibers to whom BS,m is tangent. Let now Xm and Ym be the K3 surface

and the Enriques surface obtained by the base change construction with St0 and St∞ as

fixed fibers. Let then g : Xm → S and f : Xm → Ym denote the corresponding quotients.

Finally, denote by Rm ∈ MW(Xm) the component of g−1(BS,m) identified with Ẽ9 by f

and BY,m the corresponding m-special curve on Y.

Then, BY,m is nodal.

In the last part of the section we show that the m-special curves are not unique: for every
section E in the Mordell-Weil group of S, there exists a nodal rational curve BYE ∈ Ym of
arithmetic genus m, which we will refer to also as m-special curve.

Lemma 3.3.11. Let E ∈ MW(S) be a section for the rational elliptic surface S. Then,

Ẽ = g−1(E) ∈ MW(Xm) is identified with Ẽ⊞ Rm by f and their image BYE := f (Ẽ) =

f (Ẽ ⊞ Rm) is a nodal rational curve of arithmetic genus m.

Proof. Let us denote by ⊞Ẽ ∈ Aut(X) the automorphism of X given by the translation

by Ẽ. The curve Ẽ9 is sent to Ẽ and Rm to Ẽ ⊞ Rm by the translation ⊞Ẽ. To complete

the proof of the first part of the statement, it is sufficient to show that ⊞Ẽ commutes with

τ. Let Qt ∈ Xt: ⊞Ẽ(τ(Qt)) = ⊞Ẽ(Q−t ⊞ Rm−t) = Q−t ⊞ Rm−t ⊞ Ẽ−t = ι(Qt +

Ẽt − Rmt) = τ(Qt + Ẽt) = τ(⊞Ẽ(Qt)). Since Ẽ + Ẽ ⊞ Rm is obtained by translating

E9 + Rm for Ẽ and the transversality of the corresponding intersections is preserved under

the automorphism ⊞Ẽ, we conclude that BYE is nodal.

We compute some intersection numbers between these sections on the K3 surface Xm.

Lemma 3.3.12. For every E ∈ MW(S), Ẽ ⊞ Rm · Ẽ ⊟ Rm = 8m + 6.
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Proof. Since the translation by Ẽ is an automorphism of the K3 surface Xm, it is sufficient

to compute the intersection product Rm ·⊟Rm.

We have that

B2
S,m = 1

2(Rm +⊟Rm)2 = −2 + Rm ·⊟Rm)

and

B2
S,m = (6(m + 1)L − 2(m + 1)E1 − · · · − 2(m + 1)E8 − 2mE9)

2 = 8m + 4,

from which Rm ·⊟Rm = 8m + 6.

Remark 3.3.13. The intersection between Rm and⊟Rm consists of 8m+ 6 distinct points:

8m + 4 are the preimages of the 4m + 2 nodes of BS,m and the two remaining intersection

points correspond to the two points at which BS,m is tangent to the branch locus St0 ∪ St∞

of the double cover g : X → S.

We are able to find other rational curves on Ym. Recall that the Mordell-Weil group of
X is generated by Ẽi, with i ∈ {1, . . . , 8}, and Rm, with neutral element Ẽ9. Then, every
section in MW(Xm) is of the form Ẽ ⊞ R⊞k

m , with E ∈ MW(S).

Lemma 3.3.14. Every section Ẽ ⊞ R⊞k
m ∈ MW(Xm) is identified by f : Xm → Ym with

Ẽ ⊞ R⊞(1−k)
m ∈ MW(Xm). In particular, the section R⊞k

m is identified with R⊞(1−k)
m .

Proof. The proof is quite similar to the one of Lemma 3.3.11. It remains to show that R⊞k
m

is identified with R⊞(1−k)
m . Let Xt and X−t be two twin fibers. The involution τ acts on a

point xt ∈ Xt in the following way:

τ(xt) = ι ◦⊟Rm(xt) = ι(xt ⊟ Rmt) = x−t ⊞ Rm−t .

A point R⊞k
mt

∈ R⊞k
m is sent to ι(R⊞(k−1)

mt ) = R⊞(1−k)
m−t ∈ R⊞(1−k)

m , while a point R⊞(1−k)
mt ∈

R⊞(1−k)
m is sent to ι(R⊟k

mt
) = R⊞k

m−t
.

Definition 3.3.15. We call BE,k,m the image f (Ẽ ⊞ R⊞k
m ) = f (Ẽ ⊞ R⊞(1−k)

m ) ⊂ Ym
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Proposition 3.3.16. For every k ∈ Z+ and for every E ∈ MW(S), the curve BE,k,m ⊂ Ym

is rational of arithmetic genus

pa(BE,k,m) = (4k2 − 4k + 1)m + 4k2 − 4k.

Proof. First of all, since R⊞k
m is rational, then its image is. We have that

pa(BE,k,m) =
1
2 B2

E,k,m + 1 = 1
2(

1
2(R⊞k

m + R⊞(1−k)
m )2) =

=1
4(−2 − 2 + 2R⊞k

m · R⊞(1−k)
m ) = 1

2 R⊞k
m · R⊞(1−k)

m .

Moreover,

R⊞k
m · R⊞(1−k)

m = Rm · Ẽ9 + Rm · Xm[2k − 1]0,

where S[2k − 1]0 is the (2k − 1)-torsion multisection for the elliptic fibration on S and

Xm[2k − 1]0 ⊂ Xm is its preimage under g. Indeed, the intersection product

R⊞k
m · R⊞(1−k)

m

is the same as

R⊞(2k−1)
m · Ẽ9

and since Ẽ9 is the zero-section, this latter intersection is composed by the (2k− 1)-torsion

points (trivial or not) in every fiber. By Proposition 3.1.18, we have

S[2k − 1]0 ∼ 12k(k − 1)L − 4k(k − 1)E1 − · · · − 4k(k − 1)E8.

Finally,

Rm · Ẽ9 + Rm · Xm[2k − 1]0 = (8k2 − 8k + 2)m + 8k2 − 8k,

from which

pa(BE,k,m) = (4k2 − 4k + 1)m + 4k2 − 4k.
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3.3.2 Nonregular Severi varieties on Enriques surfaces of base change
type

In the previous Section, we defined the regular components of Severi varieties of curves
on an algebraic surface to be the smooth components of the expected dimension. Regarding
the Enriques surfaces, in Proposition 3.3.2 the authors prove that the regular components
have dimension g − 1 and that the nonregular ones have dimension g, where g is the geo-
metric genus of the general curve of the Severi variety. Moreover, the authors show that if
a component of a Severi variety of curves on a very general Enriques surface is nonregular,
then its members split in two linearly equivalent curves in the K3 cover.
We show that the assumption of very generality is necessary: in fact, in the Enriques

surfaces of base change type (that form a countable set of 9-dimensional subfamilies in the
moduli space of Enriques surfaces), there are plenty of nonregular Severi varieties violating
the result of Ciliberto, Dedieu, Galati and Knutsen.

Definition 3.3.17. We call special nonregular component a nonregular component of a

Severi variety of curves on an Enriques surface such that its members split in two nonlin-

early equivalent curves in the K3 cover. We call special nonregular curve (nonregular)

every member of a special nonregular (nonregular) component.

Proposition 3.3.2 does not say anything about the equigeneric Severi varieties of curves
on Y. Let C be an irreducible curve on an Enriques surface Y. We denote by νC : C → C
the normalization of C and define ηC := OC(KS) = OC(−KS), a nontrivial 2-torsion el-
ement in Pic0(C), and ηC := ν∗ηC. By standard results on covering of complex manifolds
(see [13, Section 2] or [3, Section 1.17]), two cases may happen:

• ηC � OC and f−1(C) is irreducible;
• ηC

∼= OC and f−1(C) consists of two irreducible components conjugated by the
Enriques involution.

Following [22, proofs of Thm 4.2 and Cor 2.7], the dimension of the equigeneric Severi
variety of genus g curves in |L| = |C| at the point |C| satisfies the inequality

dim[C] V|L|
g ≥ h0(ωC̃ ⊗ ηC̃) =

g − 1 if ηC̃ 6= ωC̃

g if ηC̃ = ωC̃
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Proposition 3.3.2 states exactly that the latter is in fact an equality when C is nodal. Since
by the results due to Dedieu and Sernesi (see [22]) the equigeneric Severi varieties of genus
g curves in a K3 surfaces have dimension g, we actually have that equality holds also for
non-nodal curves on Y that split in the K3 cover. In other words, an irreducible component
V of an equigeneric Severi variety of curves of genus g in an Enriques surface Y such that
the curves in V split in the K3 cover has dimension g. Notice that we cannot say anything
about the dimension of an irreducible component of an equigeneric Severi varieties of
curves whose general member is 2:1 covered by irreducible curves of the K3 cover. This
discussion leads us to give the following definition.

Definition 3.3.18. We shall call nonregular a component of an equigeneric Severi variety

of curves on an Enriques surface such that every curve splits in the K3 cover. Furthermore,

we shall call special nonregular a nonregular component of an equigeneric Severi variety

of curves on an Enriques surface such that its members split in two nonlinearly equivalent

curves in the K3 cover.

As in the nodal case, a nonregular irreducible component V of an equigeneric Severi
variety of curves of genus g has dimension g. The definition of special nonregular compo-
nent for a equigeneric Severi variety of curves is justified by the following Lemma, stating
that the fact that a nonregular curve on a very general Enriques surface Y splits in the K3
cover in two linearly equivalent curves holds in general and not only for nodal curves.
Part of the ideas we will use to show the existence of some special nonregular compo-

nents of some equigeneric Severi varieties of curves are similar to the ones developed by
Ciliberto and Dedieu in [12] and presented by Dedieu in [21, Section 5.2].

Lemma 3.3.19. Let Y be a Picard very general Enriques surface and X be is its univer-

sal cover. Moreover, let τ denote the Enriques quotient. Then, τ acts as the identity on

NS(X) ∼= U(2)⊕ E8(−2).

Proof. This is a very well-known fact. See, for example, [25, Section 11].

The first example of special nonregular curves are the m-special curves.
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Proposition 3.3.20. Let BY,m be an m-special curve on an m-special Enriques surface Ym.

Then, BY,m is a special nonregular curve.

Proof. First of all, every nodal rational curve is nonregular: the geometric genus of the

rational curves is 0, then they necessarily belong to nonregular components. As we proved

in Theorem 3.3.10, BY,m is nodal, then it is nonregular. Now, BY,m splits in two (−2)-

curves (that are never linearly equivalent) in the K3 cover, whence it is special nonregular.

Definition 3.3.21. Let D be an irreducible effective divisor on S. We denote by

DY := f∗(g∗(D))

the pushforward as cycle via f in Ym of the pull-back under g of D in Xm.

Furthermore, we denote by

|D|Y ⊂ f∗(g∗|D|)

the family of the divisors DY’s with D ∈ |D| irreducible, different from an elliptic fiber

and such that g−1(D) is irreducible.

Remark 3.3.22. We will see in Proposition 3.3.25 that if the preimage g−1(D) on Xm of

an irreducible effective divisor D on S different from an elliptic fiber is irreducible, then

g−1(D) is sent birationally to its image f (g−1(D)) on Ym. For this reason, we do not

have to worry about the multiplicity of the morphism f in the definition of DY as cycle.

Notice that g∗|D| is in general noncomplete:

h0(g∗OS(D)) = h0(g∗g∗OS(D)) = h0(OS(D)) + h0(OS(D + KS)),

whence we have

h0(g∗OS(D)) = h0(D)
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if and only if OS(D + KS) = OS(D − F)) does not have global sections, where F ∼
(−KS) is the class of a fiber.
The aim of the section is to prove that |D|Y is a special nonregular equigeneric family

of curves for every effective divisor D on S.

Lemma 3.3.23. Let D be an irreducible effective divisor on S different from an elliptic

fiber. Then, the general curve of g∗|D| is irreducible.

Proof. Let C be a curve in S. It splits in the K3 cover if and only if it intersects the branch

locus St0 + St∞ with even order at every intersection point and this is not the case for the

general curve of a complete linear system |D|.

Lemma 3.3.24. Rm ∈ MW(Xm) has infinite order.

Proof. It is a very well known fact that any two torsion section of a smooth relatively

minimal elliptic surface are disjoint (see, for example, [44, Proposition VII.3.2]). Let us

assume Rm of l-torsion for some l ∈ Z+: since the opposite of an l-torsion point is an l-

torsion point, also⊟Rm is an l-torsion section. But by Lemma 3.3.12Rm ·⊟Rm = 8m+ 6,

whence we have a contradiction and Rm has infinite order in MW(Xm).

Proposition 3.3.25. Let D be an effective divisor on S different from an elliptic fiber. Then,

for every irreducible curve C ∈ |D| such that g−1(C) ⊂ Xm is irreducible, we have that

g−1(C) is identified by f with g−1(C)⊞ Rm ⊂ Xm. In particular, |D|Y ⊂ f∗(g∗|D|) is

contained in an equigeneric nonregular Severi variety of curves on Ym.

Proof. g−1(C) cuts twin points in opposite fibers: indeed, if

C|St = a1Q1,t + · · ·+ akQk,t,

then

g−1(C)|Xt = a1Q1,t + · · ·+ akQk,t
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and

g−1(C)|X−t = a1Q1,−t + · · ·+ akQk,−t.

For every j ∈ {1, . . . , k}, we have

τ(Qj,t) = (ι ◦⊟Rm)(Qj,t) = ι(Qj,t ⊟ Rmt) = Qj,−t ⊞ Rm−t ∈ g−1(C)⊞ Rm.

Now, (g−1(C)⊞Rm)|Xt = a1(Q1,t ⊞Pt)+ · · ·+ ak(Qk,t ⊞Rmt): for every j ∈ {1, . . . , k},

we have

τ(Qj,t ⊞ Rmt) = (ι ◦⊟Rm)(Qj,t ⊞ Pt) = ι(Qj,t) = Qj,−t ∈ g−1(C).

In order to prove that |D|Y is nonregular, we need to show that g−1(C) and g−1(C)⊞
Rm do not coincide. Suppose g−1(C) = g−1(C)⊞ Rm: for every t and for every j ∈

{1, . . . , k}, Qj,t ⊞ Rm ∈ g−1(C) and, by iterating, Qj,t ⊞ R⊞r
m ∈ g−1(C) for every r ∈

Z+. This is a contradiction because the number of intersection points between C and Xt

is finite and by Lemma 3.3.24 Rm has infinite order in MW(Xm).

Theorem 3.3.26. For every irreducible effective divisor D on S different from an elliptic

fiber, |D|Y is contained in an equigeneric special nonregular Severi variety of curves on

Ym.

Proof. In the proof of Proposition 3.3.25 we saw that every C̃ ∈ |D|Y splits in the K3

Xm in g−1(C) + g−1(C)⊞ Rt for a member C ∈ |D| which is irreducible with g−1(C)

irreducible. For every t ∈ P1, we set g−1(C)|Xt = a1Q1,t + · · ·+ akQk,t. Suppose that

g−1(C) ∼ g−1(C)⊞Rt: it follows that for every t ∈ P1, the degree a1 + · · ·+ ak divisors

a1Q1,t + · · ·+ akQk,t and a1Q1,t ⊞ Rmt + · · ·+ akQk,t ⊞ Rmt are linearly equivalent in

the elliptic curve Xt. In other words, we have the equality

Q⊞a1
1,t ⊞ · · ·⊞ Q⊞ak

k,t = Q⊞a1
1,t ⊞ Rmt ⊞ · · ·⊞ Q⊞ak

k,t ⊞ Rmt = Q⊞a1
1,t ⊞ · · ·⊞ Q⊞ak

k,t ⊞ R⊞k
mt
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for every t, which implies that Rm is a k-torsion section. Since by Lemma 3.3.24 Rm has

infinite order in MW(Xm), this is a contradiction.

Now, we want to understand when |D|Y is a component of a an equigeneric special non-
regular Severi variety of curves and when |D|Y it is strictly contained in such a component.

Proposition 3.3.27. Let D be a k-section for the elliptic fibration on S of arithmetic genus

p. Then, |D|Y is a special nonregular component of an equigeneric Severi variety of curves

on Ym if and only if p = 0.

Proof. Since S is a rational surface and D is effective, we have χ(OS) = 1 and h1(D) =

h2(D) = 0. Hence, by Riemann-Roch for surfaces we have

dim |D| = 1
2(D2 − D · KS) =

1
2(D2 + D · St) = p + k − 1.

Then, dim |D|Y = dim |D| = p+ k− 1. Furthermore, since D is a k-section, it intersects

the branch locus St0 + St∞ of g : Xm → S in 2k points, so that by the Riemann-Hurwitz

formula, the arithmetic genus of g−1(D) is

pa(g−1(D)) = 2p + k − 1.

Since g−1(D) is sent birationally to its image f (g−1(D)) in |D|Y, the geometric genus of

the members of |D|Y is again 2p + k − 1. Finally, by the discussion above, we have that

a nonregular component of an equigeneric Severi variety of curves in an Enriques surface

has the dimension equal to the geometric genus of its members. Hence, we conclude that

|D|Y is a special nonregular component if and only if

p + k − 1 = 2p + k − 1,

then if and only if the genus of D is zero; otherwise, |D|Y is just contained in such a

component.
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A remarkable class of examples of linear system of genus zero on a rational elliptic
surface S is given by the conic bundles, which as we will see in the next section induce
genus 1 fibrations on the K3 surface X.
With the same arguments used to prove Proposition 3.3.25 and Theorem 3.3.26, one can

easily show that for every irreducible curve C ∈ |D| different from an elliptic fiber and
such that g−1(C) irreducible, the curve g−1(C)⊞ R⊞k

m is identified by f with g−1(C)⊞
R⊞(1−k)

m and conclude that the subfamily of f∗(g∗|D|⊞ R⊞k
m ) consisting of the divisors on

Ym obtained starting from an irreducible curve C ∈ |D| different from an elliptic fiber and
such that g−1(C) is irreducible is contained in an equigeneric special nonregular Severi
variety of curves on Y.
We produced a lot of examples of equigeneric special nonregular Severi varieties of

curves for every Enriques surface of base change type. It could be interesting to compute
the arithmetic genus of the curves in |D|Y that we denote by p(DY). The last part of
this subsection is devoted to introduce some tools through which we develop a method to
compute p(DY).
Recall that BS,m = g(Rm) = g(⊟Rm) ∈ S.

Definition 3.3.28. Let D be an irreducible effective divisor on S. We denote by

D ⊞ BS,m := g∗(g∗(D)⊞ Rm)

the pushforward as cycle via g in S of the translation by Rm of the pullback under g of D

in Xm.

Moreover, we denote by

|D|⊞ BS,m := g∗(g∗|D|⊞ Rm)

the family of the divisors D ⊞ BS,m with D ∈ |D| without an elliptic fiber as irreducible

component.

Remark 3.3.29. Proposition 3.3.30 will ensure that, for every effective divisor D on S

without an elliptic fiber as irreducible component, g−1(D)⊞Rm on Xm is sent birationally
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to its image g(g−1(D)⊞ Rm) on Ym. For this reason, we do not have to worry about the

multiplicity of the morphism g in the Definition of D ⊞ BS,m as cycle.

Lemma 3.2.12 and Lemma 3.3.11 can be generalized to every effective divisor D on S.

Proposition 3.3.30. Let D be an effective divisor on S. Then, for every C ∈ |D| without

an elliptic fiber as irreducible component, we have that g−1(C)⊞ Rm is identified by g

with g−1(C)⊟ Rm in S.

Proof. As in the proof of Proposition 3.3.25, the preimage g−1(C) cuts twin points in

opposite fibers. For every t ∈ P1 we let

g−1(C)|Xt = a1Q1,t + · · ·+ akQk,t

and

g−1(C)|X−t = a1Q1,−t + · · ·+ akQk,−t.

Now, (g−1(C) ⊞ Rm)|Xt = a1(Q1,t ⊞ Rmt) + · · · + ak(Qk,t ⊞ Rmt): for every j ∈

{1, . . . , k} we have ι(Qj,t ⊞ Rmt) = (Qj,−t ⊟ Rm−t) ∈ g−1(C)⊟ Rm. In the same way

one can prove that ι sends every point of g−1(C)⊟ Rm to points belonging to g−1(C)⊞
Rm. As in the proof of Proposition 3.3.25, if g−1(C)⊟ Rm and g−1(C)⊞ Rm were the

same curve, the section Rm would be a torsion section.

Notice that for a section E ∈ MW(S), we have the two notations BS,m ⊞ E, denoting
the translation of BS,m by E, and E⊞ BS,m, which is the pushforward via g : X → S of the
translation by Rm of the pullback under g of E, that do not indicate the same object.

Lemma 3.3.31. Let E ∈ MW(S) be a section for the rational elliptic surface S. Then,

E ⊞ BS,m = 2(BS,m ⊞ E).

Proof. Since g−1(D ⊞ E) = g−1(D)⊞ Ẽ for every effective divisor D on S, we have

that g−1(BS,m ⊞ E) = Rm ⊞ Ẽ +⊟Rm ⊞ Ẽ. Moreover, by Proposition 3.3.30 we have

105



CHAPTER 3 Severi varieties

g(Ẽ ⊞ Rm) = g(Ẽ ⊟ Rm) = BS,m ⊞ E,

from which

E ⊞ BS,m = g∗(Ẽ ⊞ Rm + Ẽ ⊟ Rm) = g∗(Ẽ ⊞ Rm) + g∗(Ẽ ⊟ Rm) = 2BS,m ⊞ E.

Remark 3.3.32. We proved that every curve C of |D|⊞ BS,m splits in Xm: it means that

C intersects St0 and St∞ with even order at every intersection point. In other words, for

every effective divisor D on S, there exists a family of splitting curves |D|⊞ BS,m. The

existence of the family |D|⊞ BS,m is due to the presence of the rational bisection BS,m and

then to the choice of the nongeneral pair (St0 , St∞).

We want to compute the arithmetic genus p(DY) of the curves in |D|Y and also the
arithmetic genus of the curves in |D|⊞ BS,m that we denote by p(D ⊞ BS,m) for every
effective D on S.

Proposition 3.3.33. Let D be a k-section on S. Then,

p(DY) = p(g∗(D)) + 1
2(g∗(D) · (g∗(D)⊞ Rm)) and

p(D ⊞ BS,m) = p(g∗(D)) + 1
2((g∗(D)⊞ Rm)(·g∗(D)⊟ Rm))− k.

Proof. We have that

p(DY) =
1
2 D2

Y + 1.

Let C ∈ |D|: we have

2D2
Y = (g−1(C) + g−1(C)⊞ Rm)2 = g−1(C)2 + (g−1(C)⊞ Rm)2 + 2g−1(C) ·

g−1(C)⊞ P = 2p(g−1(C))− 2+ 2p(g−1(C)⊞ Rm)− 2+ 2g−1(C) · g−1(C)⊞ Rm =

4p(g−1(C))− 4 + 2g−1(C) · g−1(C)⊞ Rm

and thus
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p(DY) = p(g∗(D)) + 1
2(g∗(D) · g∗(D)⊞ Rm).

Moreover, we have that

p(D ⊞ BS,m) =
1
2 D ⊞ BS,m · (D ⊞ BS,m + KS) + 1.

Let C ∈ |D|: we have

2(D ⊞ BS,m)
2 = (g−1(C)⊞ Rm + g−1(C)⊟ Rm)2 =

2p(g−1(C)⊞Rm)− 2+ 2p(g−1(C)⊟Rm)− 2+ 2(g−1(C)⊞Rm) · (g−1(C)⊟Rm) =

4p(g−1(C))− 4 + 2(g−1(C)⊞ Rm) · (g−1(C)⊟ Rm).

Furthermore, since D is a k-section,

(D ⊞ BS,m) · KS = −2k.

Finally,

p(D ⊞ BS,m) = p(g∗(D)) + 1
2(g∗(D)⊞ Rm) · (g∗(D)⊟ Rm)− k.

The next part of the Section is devoted to showing a method to perform the computation
of the arithmetic genus of |D|Y for some explicit divisors D on S.

Proposition 3.3.34. D · (D ⊞ BS,m) = g∗(D) · (g∗(D)⊞ Rm)

Proof. First of all, we prove that for every C ∈ |D|,

g−1(C) · (g−1(C)⊞ Rm) = g−1(C) · (g−1(C)⊟ Rm).

Let Qt ∈ Xt be a point belonging to the intersection between g−1(C) and g−1(C) ⊞
Rm. Thus, there exists another point Wt ∈ Xt ∩ g−1(C) such that Wt ⊞ Rmt = Qt,

or, equivalently, Wt = Qt ⊟ Rmt . Analogously one can prove that for every point in

the set g−1(C) ∩ g−1(C)⊟ Rm there corresponds a point in the set g−1(C) ∩ g−1(C)⊞
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Rm. Now, the morphism f has degree 2, then g−1(C) · (g−1(C ⊞ BS,m)) = g−1(C) ·

(g−1(C)⊞ Rm + g−1(C)⊟ Rm) = 2C · (C ⊞ BS,m) and then we have the assertion.

Now, computing the intersection (D · D ⊞ BS,m) for a given divisor D is not trivial and
we will need a formula due to Cantat and Dolgachev. In [17], the authors provide a formula
to compute the linear class of the translation by a section of a divisor on a rational elliptic
surface.

Proposition 3.3.35 (Cantat, Dolgachev). Let S be a rational elliptic surface, E ∈ MW(S)

be a section and D ∼ aL− b1E1 − · · · − b9E9 an effective divisor in on S. Then, denoting

as tE(D) the translation of D by E, we have

tE(D) ∼ D − (D · KS)(E − E9) + [D · (E − E9)− 1
2(D · KS)(E − E9)

2]KS.

Proof. See [17, Proof of Proposition 2.10]

Lemma 3.3.36. Let D be a k-section of S such that there exist k sections E1, . . . , Ek ∈

MW(S) with D ∼ E1 + · · ·+ Ek. Then,

D ⊞ BS,m ∼ BS,m ⊞ E1 + · · ·+ BS,m ⊞ Ek

.

Proof. The proof is an application of Lemma 3.3.31

Remark 3.3.37. We are able to compute the intersection D · D ⊞ BS,m for every explicit

effective line bundle D ∼ aL − b1E1 − · · · − b9E9 decomposable in sections. In fact, if

D ∼ E1 + · · ·+ Ek, since

D ⊞ BS,m = BS,m ⊞ E1 + · · ·+ BS,m ⊞ Ek,

thanks to the formula of Proposition 3.3.35, we can compute the linear class BS,m ⊞ Ej for

every j = 1, . . . , k and we can easily compute the product
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D · (D ⊞ BS,m) = (E1 + · · ·+ Ek) · (BS,m ⊞ E1 + · · ·+ BS,m ⊞ Ek).

Example 3.3.38. Let D ∼ L be the net of the strict transforms of the lines of P2 in the

rational elliptic surface S. Wewant to compute the arithmetic genus of LY = f∗(g∗OS(L))

in Ym.

L is a 3-section of the given elliptic pencil and we can decompose it, for example, in the

sum of the three sections L ∼ E1 + E2 + (L − E1 − E2).

By applying the formula of Cantat-Dolgachev, one can see that

BS,m ⊞ E1 ∼ 6(m + 1)L − 2mE1 − 2(m + 1)E2 − · · · − 2(m + 1)E9,

BS,m ⊞ E2 ∼ 6(m + 1)L − 2(m + 1)E1 − 2mE2 − 2(m + 1)E3 − · · · − 2(m + 1)E9

and

BS,m ⊞ (L − E1 − E2) ∼

(6m + 8)L − (2m + 4)E1 − (2m + 4)E2 − 2(m + 1)E3 − · · · − 2(m + 1)E9.

Now we can compute the product

L · L ⊞ BS,m = (E1 + E2 + (L − E1 − E2)) · ((6(m + 1)L − 2mE1 − 2(m + 1)E2 −

· · · − 2(m + 1)E9) + 6(m + 1)L − 2(m + 1)E1 − 2mE2 − 2(m + 1)E3 − · · · − 2(m +

1)E9 + (6m + 8)L − (2m + 4)E1 − (2m + 4)E2 − 2(m + 1)E3 − · · · − 2(m + 1)E9) =

18m + 20.

The arithmetic genus p(LY) is equal to

p(LY) =
1
2 D · D ⊞ BS,m + p(g∗(D)) = 9m + 10 + p(g∗(D)).

Since L is a 3-section, it intersects the branch locus St0 + St∞ in 6 points, so that by the

Riemann-Hurwitz formula, p(g∗(D)) = 2, and, finally,

p(LY) = 9m + 12.

Since the genus of L is zero, by Proposition 3.3.27 we have that |L|Y is a special non-

regular component of an equigeneric (with genus 2) Severi variety of curves in Ym.
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3.4 Genus 1 pencils on K3 surfaces with a non-symplectic

involution
In what follows, we consider K3 surfaces with a non-symplectic involution σ.

Definition 3.4.1. Let X be a K3 surface, then H2,0(X, Z) = ZωX where ωX is a nowhere

vanishing symplectic form. An involution σ on X is called symplectic if it does preserve

the symplectic structure on X, i.e., σ(ωX) = ωX.

If σ does not preserve the symplectic structure on X, i.e. σ(ωX) = −ωX, it is called

non-symplectic

The following classical result states that an involution on a K3 surface can be of three
types.

Proposition 3.4.2. Let X be a K3 surface and σ ∈ Aut(X) an involution. Then one of the

following holds

(i) X/σ is birational to a K3 surface, if σ is symplectic

(ii) X/σ is an Enriques surface if σ is non-symplectic and Fix(σ) = ∅

(iii) X/σ is a rational surface if σ is non-symplectic and Fix(σ) 6= ∅

For a reference, see [33, section 3], where the authors also provide a deep analysis of the
geometry of the quotient X → X/σ for every kind of fixed locus of σ. In the same work,
the authors collect their contribution on the classification of the genus 1 fibrations on K3
surfaces with a non-symplectic involution (given for example in [31] and [32]). Most of
their results hold under the hypothesis that σ∗ acts trivially on NS(X).
In particular, in the previous sections, we focused on the case (ii) and on the case (iii),

in which Fix(σ) is empty or consists of two elliptic curves lying in the same pencil. We
give our contribution by analyzing the genus 1 fibrations on a K3 surface Xm ∈ Σm: here
Xm carries both an involution with two linearly equivalent elliptic curves as fixed locus
(giving rise to a rational elliptic surface as quotient) and an Enriques involution. In this
setting, neither of the two involution acts trivially on NS(Xm).
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In general, we distinguish the genus 1 pencils on the K3 surfaces according to the action
of the involution on their fibers, and study the corresponding linear systems on the quotient
surface.
Let ϵ : X → P1 be a genus 1 pencil on X. We denote by [F] the class of the fiber of this

fibration and by Ft the fiber over the point t ∈ P1. The action of σ on the genus 1 pencil
ϵ can be of three different types:
(1) σ preserves the fibers of the fibration ϵ, i.e. i(Ft) = Ft for every t ∈ P1. In this case

the action of σ on the basis of the fibration is trivial.
(2) σ does not preserve the fibers of the fibration, but σ∗ preserves the fibration and

in particular the class of a fiber, i.e. i(Ft) = Ft′ for certain values t 6= t′, but
i∗([F]) = F. In this case σ restricts to an involution of the basis of the fibration. We
say that σ preserves the fibration.

(3) σ does not preserve the fibration and in particular i∗([F]) = [F′] where [F′] is the
class of another genus 1 pencil on X, ϵ′ : X → P1 which is not ϵ. In particular
[F] � [F′].

Definition 3.4.3. We say that a genus 1 pencil on X is of type 1), 2), 3) with respect to σ if

σ preserves the fibers, preserves the fibration but not the fibers, and does not preserve the

fibration respectively.

We are interested in the cases σ is an Enriques involution or X/σ is a rational elliptic
surface. Our purpose is to identify the linear systems on X/σ which induce genus 1 fi-
brations on X and to compare the two cases in the situation in which X carries both the
involutions, the Enriques and the rational one.
For the definitions and the results about the situation in which X carries the rational

involution but not the Enriques one, we refer to [31] and [32].
Let S ∼= Bl{P1,...,P9} P2 be a rational elliptic surface and denote by

ϵS : S → P1

the elliptic fibration. Let now X be a K3 surface obtained from S with the base change
construction, with St0 and St∞ as fixed fibers and denote by

ϵX : X → P1
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the elliptic fibration induced by ϵS. We call again ι the involution on X such that X/ι ∼= S.
Since a part of the genus 1 fibrations on X which are not induced by ϵS are induced

by conic bundles on S, we recall the definition of conic bundle on a rational surface. The
definition we give is the same as the ones in [31, Definition 3.1] and in [43, Definition 2.7].

Definition 3.4.4. A conic bundle on the surface S is a surjective morphism g : S → P1

such that the generic fiber is a smooth rational curve.

Wegive an interpretation of the definition above in terms of classes of divisors onPic(S).
In the following we denote by St the fiber of the elliptic fibration ϵS over t ∈ P1.
Let D be a smooth fiber of a conic bundle on S. Since the class of D gives the class of a
fiber, it is nef and has trivial self-intersection. Moreover, since it is rational, the adjunction
Formula implies that D · KS = −2 and since St ∼ −KS, one obtains D · St = 2. On
the other hand, given a base point free class D with the above intersection properties, the
induced map |D| : S → P1 is a conic bundle. From the above, on a surface endowed with
an elliptic fibration, we have the following equivalent definition of conic bundle.

Definition 3.4.5. A conic bundle on S is a base point free class D in Pic(S) such that

(i) D · St = 2,

(ii) D2 = 0.

Proposition 3.4.6 (Garbagnati, Salgado). Each conic bundle on S induces a genus 1 fibra-

tion on X.

Proof. Let D be a conic bundle on S. (g∗(D))2 = 2D2 = 0, then g∗(D) = 0 and since

it is clearly an effective class, it is a genus 1 pencil on X.

We saw above two constructions which produce genus 1 pencils on X: they can be in-
duced by the elliptic fibration ϵS or by conic bundles on S; but there might be also several
other genus 1 pencils on X which are neither induced by conic bundles nor by ϵS. Garbag-
nati and Salgado determine what are the conditions on the fibers of S which ensure that
all the genus 1 fibrations on X are induced either by ϵS or by conic bundles on S and they
describe the other admissible linear systems on S which can induce genus 1 fibrations on
X.

112



CHAPTER 3 Genus 1 pencils on K3 surfaces with a non-symplectic involution

For the proofs of the following results, see [31, Section 4].

Theorem 3.4.7 (Garbagnati, Salgado). Let ϵ : X → P1 be a genus 1 fibration on X. If ϵ

is of type 1) with respect to ι, then ϵ is induced by a conic bundle on S.

If ϵ is of type 2) with respect to ι then ϵ coincides with ϵX.

If ϵ is of type 3) with respect to ι then ϵ is induced by a 1-dimensional linear system on

S ∼= Bl{P1...,P9} P2, whose pushforward in P2 is noncomplete.

The next result due to Garbagnati and Salgado shows that genus 1 fibrations of type 3)
cannot appear if ι is the identity on the Neron–Severi group of X.

Corollary 3.4.8 (Garbagnati, Salgado). If the fixed fibers St0 and St∞ of ϵS are smooth

genus 1 curves and ι∗ is the identity on NS(X), then a genus 1 pencil on X which is not

ϵX is induced by a conic bundle on S.

The above conditions can be realized only if ϵS is an elliptic fibration without reducible

fibers.

Remark 3.4.9. Corollary 3.4.8 implies that if X is a base change very general K3 surface

(Definition 3.2.9), then every genus 1 pencil on X is induced by a conic bundle except for

ϵX.

The next Proposition describes the genus 1 pencils on a K3 surface covering a Picard
very general Enriques surface with respect to the Enriques involution.

Proposition 3.4.10. Let Y be a Picard very general Enriques surface and let X be its

K3 cover; let τ denote the Enriques involution and let f : X → Y denote the Enriques

quotient. Let ϵ : X → P1 be a genus 1 pencil and let [F] denote its algebraic class in

NS(X). Then, ϵ is of type 2) with respect to τ.

Proof. Since Y is very general, by Lemma 3.3.19 τ∗ acts as the identity on NS(X), then

τ∗([F]) = [F]. Let suppose that τ acts as the identity on the base P1. Then, since it is base
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point free, by the Riemann-Hurwitz formula we have that every smooth fiber Ft is sent by

f to a smooth genus 1 curve Yt on Y. Thus, the genus 1 pencil |Yt| is a Severi variety of

genus 1 curves of dimension 1, then it is nonregular. But since Y is very general and the

members of |Yt| are covered by irreducible curves, this is a contradiction and then τ acts

on the base P1 as a nontrivial involution, proving that ϵ is of type 2) with respect to τ.

Remark 3.4.11. We saw that the K3 surfaces Xm ∈ Σm carry both the involutions. As

we pointed out in the previous section, Xm is not base change very general and Ym is not

Picard very general: since ι∗(Rm) = ⊟Rm 6= Rm in NS(Xm), ι∗ does not act as the

identity on NS(Xm); the Picard number of Xm is 11.

In other words, the K3 surfaces covering the Enriques surfaces of base change type are

out of the range of the general results due to Garbagnati and Salgado and of the classical

results about the Picard very general Enriques surfaces.

In the next part of the section, we prove that the assumptions of very generality (in both
the senses) are necessary for the stated results. We find a lot of genus 1 pencils in every
Xm ∈ Σm behaving very differently with respect to the ones described on the base change
very general K3 surfaces and on the K3 surfaces covering a Picard very general Enriques
surface.

Lemma 3.4.12. Let S be a general rational elliptic surface, g : X → S be a base change

such that the fixed fibers St0 and St∞ are smooth and let D be a conic bundle on S. Then,

g∗|D| is a genus 1 pencil on X having at most eight irreducible singular fibers and least

eight reducible singular fibers consisting of two rational curves meeting at two points.

Proof. Every irreducible singular fiber of the elliptic pencil g∗|D| on X arises from a

smooth member C ∈ |D| tangent to the fixed locus in one point. The conic bundle |D| cut

a hyperelliptic series on St0 and on St∞ . Since St0 and St∞ are smooth elliptic curves, there

are four ramification points for both hyperelliptic series. Hence, there are four members
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of |D| tangent to St0 and four members of |D| tangent to St∞ . If the set of the members

of |D| tangent to St0 and the one of the four tangent members to St∞ are disjoint, the

pencil g∗|D| will have eight irreducible singular fibers of type I1. If some of the tangent

members coincide, the induced singular fibers will be less and more complicated (see [31]

for a precise statement and for a deeper investigation of the singular fibers of the conic

bundles).

A reducible fiber of the conic bundle, that consists of a chain of rational curves with

negative self-intersection, induces a reducible singular fiber on g∗|D|. If S is general, there

are no (−2)-curves lying on S and therefore the only singular fibers that can appear in |D|

are pairs of (−1)-curves meeting at one point, giving rise to singular fibers consisting of

two smooth rational curves meeting at two points (see [31, Theorem 5.3] for a reference

about the singular fibers induced by the ones of a conic bundle). Since every genus 1

pencil on a K3 surface is such that the sum of Euler characteristics of its singular fibers

is equal to 24 and the contribution given by the irreducible singular fibers to g∗|D| is at

most 8 (the Euler characteristic of a rational nodal curve is equal to 1), we need at least

other eight singular fibers of type I2 (whose Euler characteristic is equal to 2), whence |D|

admits at least eight reducible singular fibers that consist of two (−1)-curves meeting at

one point.

The next results show that the assumption ι∗ acting as the identity onNS(X) is necessary
for Corollary 3.4.8. For a K3 surface Xm ∈ Σm, we can systematically find examples of
genus 1 pencils on Xm of type 3) with respect to ι, even if S is general and St0 and St∞ are
smooth.

Proposition 3.4.13. Let Xm ∈ Σm and let D be a conic bundle on S.

Then, g∗|D|⊞ Rm is a genus 1 pencil of type 3) on Xm with respect to ι.

Proof. By Proposition 3.3.30 g∗|D|⊞ Rm is identified with g∗|D|⊟ Rm by g∗. Now, let

C ∈ |D|: for every t ∈ P1, we set g−1(C)|Xt = a1Q1,t + · · · + akQk,t. We have that
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g∗|D|⊞ Rm � g∗|D|⊟ Rm: suppose that g−1(C)⊞ Rm ∼ g−1(C)⊟ Rm. It follows that

for every t ∈ P1, the degree a1 + · · ·+ ak divisors a1Q1,t ⊞ Rmt + · · ·+ akQk,t ⊞ Rmt

and a1Q1,t ⊟ Rmt + · · ·+ akQk,t ⊟ Rmt are linearly equivalent in the elliptic curve Xt. In

other words, we have the equality

Q⊞a1
1,t ⊞ Rmt ⊞ · · ·⊞ Q⊞ak

k,t ⊞ Rmt = Q⊞a1
1,t ⊟ Rmt ⊞ · · ·⊞ Q⊞ak

k,t ⊟ Rmt ,

from which

Q⊞a1
1,t ⊞ · · ·⊞ Q⊞ak

k,t ⊞ R⊞k
mt

= Q⊞a1
1,t ⊞ · · ·⊞ Q⊞ak

k,t ⊞ R⊞k
mt

and thus

R⊞k
mt

= R⊟k
mt
,

or equivalently

R⊞2k
mt

= Ot,

for every t, which is a contradiction since by Lemma 3.3.24 Rm has infinite order in

MW(Xm).

We are able to find other genus 1 pencils of type 3) with respect to ι by starting from a
genus 1 pencil of the Enriques surface Ym covered by Xm ∈ Σm.

Proposition 3.4.14. Let Ym be a general m-special Enriques surface of base change type,

and let pY be a genus 1 pencil on Ym different from the one induced by ϵS. Thus, ϵ :=

f ∗(pY) is a genus 1 pencil on the universal cover Xm of Ym that is of type 3) with respect

to ι.

Proof. Let us assume m > 1. Since by Proposition 3.2.30 there are no (−2)-curves on

Ym, we have that pY has just irreducible singular fibers (since all the components of a
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reducible fiber are smooth rational curves) and the same for ϵ. By Lemma 3.4.12, every

genus 1 pencil on Xm induced by a conic bundle on S has reducible singular fibers, thus

ϵ cannot be of type 1). If m = 1, it could happen that one of the singular fibers of pY

is a nodal half-fiber, producing a singular fiber of ϵ consisting of two (−2)-curves. But

Lemma 3.4.12 states that every genus 1 pencil on Xm induced by a conic bundle on S has

at least eight reducible singular fibers.

If m = 0, since Y is general in Σ0, pY has at most one reducible fiber (see [24, Theorem

6.5.5]), while by Lemma 3.4.12 any genus 1 pencil on X induced by a conic bundle has at

least eight reducible singular fibers.

Moreover, by Theorem 3.4.7 the only genus 1 pencil of type 2) is ϵX, the elliptic fibration

induced by ϵS. Since by hypothesis pY is not the pushforward of ϵX, we can conclude that

ϵ is of type 3) with respect to ι.

We are able to show the first examples of genus 1 pencils on a K3 surface that covers an
Enriques surface not of type 2) with respect to the Enriques involution.

Proposition 3.4.15. Let Xm ∈ Σm and D be a conic bundle on S. Then, g∗|D| is a genus

1 pencil of type 3) with respect to τ and |D|Y = f∗(g∗|D|) is an equigeneric special

nonregular Severi variety of curves on Ym.

Proof. By Proposition 3.3.25 g∗|D| is identified with g∗|D|⊞ Rm by f∗, and by 3.3.26

we have g∗(D) � g∗(D)⊞ Rm. Finally, since the genus of D is zero, the proof is an

application of Proposition 3.3.27.

Remark 3.4.16. This result allows us to find other rational curves on Ym. In fact, since

the singular fibers of g∗|D| are rational, also their images on Ym are rational.

By applying the Cantat-Dolgachev Formula, we can compute the arithmetic genus of
DY for some conic bundles D on S.
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Proposition 3.4.17. Let D be a conic bundle on S of the form L − Ei, with i ∈ {1, . . . , 9}.

Then, DY has arithmetic genus 4m + 5.

Proof. Without loss of generality, we choose the conic bundle D ∼ L − E1.

D is a bisection of the elliptic pencil and we can decompose it in D ∼ L − E1 ∼

(L − E1 − E2) + E2.

By applying the formula due to Cantat-Dolgachev, one can see that

BS,m ⊞ E2 ∼ 6(m + 1)L − 2(m + 1)E1 − 2mE2 − 2(m + 1)E3 − · · · − 2(m + 1)E9

and

BS,m ⊞ (L − E1 − E2) ∼

(6m + 8)L − (2m + 4)E1 − (2m + 4)E2 − 2(m + 1)E3 − · · · − 2(m + 1)E9.

Now it is easy to compute the product

D · (D ⊞ BS,m) = (E2 + (L − E1 − E2)) · ((6(m + 1)L − 2(m + 1)E1 − 2mE2 −

2(m + 1)E3 − · · · − 2(m + 1)E9) + (6m + 8)L − (2m + 4)E1 − (2m + 4)E2 − 2(m +

1)E3 − · · · − 2(m + 1)E9)) =

= 8m + 8.

Finally, the arithmetic genus p(DY) is equal to

1
2 D · (D ⊞ BS,m) + p(g∗(D)) = 4m + 4 + 1 = 4m + 5.

The same result holds for every conic bundle of the form 2L − Ei1 − · · · − Ei4 , with
ij ∈ {1, . . . , 9} and for every conic bundle of the form 3L − 2Ei1 − Ei2 − · · · − Ei6 , with
ij ∈ {1, . . . , 9}. The proof is analogous to the one given for the conic bundles L − Ei and
we omit it: it is just an application of the Cantat-Dolgachev formula. We are not able to
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prove that for every conic bundle D on S the arithmetic genus of DY is 4m + 5, but the
computations we did lead us to formulate the following Conjecture.

Conjecture 3.4.1. Let D be a conic bundle on S. Then, DY has arithmetic genus 4m + 5.

Notice that to prove the Conjecture, it would be sufficient to show that every conic
bundle can be obtained as pushforward of a conic bundle of the form L − Ei, 2L − Ei1 −
· · · − Ei4 or 3L − 2Ei1 − Ei2 − · · · − Ei6 under an automorphism of S.

3.5 Rational curves on the very general Enriques surface
In this section we prove that the very general Enriques surface admits rational curves

of arbitrarily large arithmetic genus with ϕ = 2. We saw that an m-special curve BY,m is
such that ϕ(BY,m) = 1. A consequence of Theorem 3.2.6 is that a rational curve in the
very general Enriques surfaces cannot have ϕ = 1. What happens is that two m-special
curves on Ym deform together to give rise to an irreducible rational curve with ϕ = 2. We
will actually prove the phenomenon by looking at the deformations of the K3’s that cover
our special and very general Enriques surfaces. In particular, we exploit the ”regeneration”
results given by Chen, Gounelas and Liedtke in [20] about curves on K3 surfaces. We show
that the union of two suitable rational curves on Xm deforms to an irreducible rational curve
on the very general K3 surface with an Enriques involution. Actually, our proof holds for
every K3 surface that is a double covering of a smooth quadric.

3.5.1 Double coverings of quadrics

First of all, we review and comment the model of the K3 surfaces covering an Enriques
surface as a double cover of P1 ×P1 presented by Barth, Peters, Hulek and Van de Ven in
[3].
Let Q ∼= P1 × P1 be a smooth quadric in P3 and let ((xo : x1), (y0 : y1)) be bihomo-

geneous coordinates on it. We define the involution σ on Q by

σ((xo : x1), (y0 : y1)) = ((xo : −x1), (y0 : −y1)).

Theorem 3.5.1. [(Horikawa’s representation of nonnodal Enriques surfaces)] Let Y be

a nonnodal Enriques surface, f : X → Y be the universal covering, τ be the Enriques

involution and ϵ1, ϵ2 ⊂ Y be two half pencils with ϵ1 · ϵ2 = 1. If τ and σ are defined
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as above, then there is a σ-invariant bihomogeneous polynomial of bidegree (4, 4) in

(xo, x1), (y0, y1) with zero-set B on the smooth quadric Q, such that the universal cov-

ering X of Y is the minimal resolution of the double covering of Q ramified over B. The

curve B is reduced with at worst simple singularities and does not contain any fixed point

of τ. The involution τ on X is induced by the involution σ on Q. The two rulings of Q

define the two genus 1 pencils f ∗(ϵ1) and f ∗(ϵ2) on X.

Proof. See [3, Theorem 18.1].

We denote byπ : X → Q the described double covering. Theorem 3.5.1 has a converse:
as shown by the authors in [3, V, Section 23], given a σ-invariant curve as in the Theorem,
the K3 surface X and an Enriques surface Y = X/τ can be constructed from it.
We want now to apply this model to the case of Enriques surfaces of base change type.

In particular, we will see that also the general nodal Enriques surface admits such a model
with B smooth, completing the description due to Barth, Peters, Hulek and Van de Ven.
Sometimes, we shall write Bϵ1,ϵ2 to indicate the branch locus of the double cover π :

X → Q associated to the two genus 1 pencils ϵ1 and ϵ2. Recall that an Enriques surface
is said to be nonnodal if it does not admit any smooth rational curve.

Lemma 3.5.2. Let Ym be an m-special Enriques surface and let ϵY be an m-special genus

1 pencil of Ym. Then, there exists a half-fiber ϵ ⊂ Y such that ϵY · ϵ = 1.

Proof. The result holds for every genus 1 pencil on an Enriques surface, see for example

[15, Section 3].

Lemma 3.5.3. If Y is nonnodal, then Bϵ1,ϵ2 is smooth for every choice of ϵ1 and ϵ2. In

particular, the assertion holds for a general m-special Enriques surface Ym.

Proof. Suppose B has a singular point q, that by Theorem 3.5.1 turns out to be a simple

singularity. Let L1 ∈ |O(1, 0)| and L2 ∈ |O(0, 1)| be the two members of the rulings

intersecting B at q. Let us denote by π′ : X′ → Q the double covering of Q ramified
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over B. Since the branch locus B is singular at q, also X′ has a singularity at q. The

K3 surface X, that is the universal covering of Y, is the minimal resolution of X′: let us

denote by Eq ⊂ X the exceptional locus over q and by L̃1 ⊂ X and L̃2 ⊂ X the strict

transforms of (π′)−1(L1) ⊂ X′ and (π′)−1(L2) ⊂ X′ respectively. Since q is a simple

singularity, Eq consists of a chain of (−2)-curves. As usual f denote the Enriques quotient:

the genus 1 pencil f ∗(ϵ1) on X, that is the pullback of the ruling |O(1, 0)|, has a reducible

member consisting of the union of Eq and L̃1, while the genus 1 pencil f ∗(ϵ2) on X has

Eq + L̃2 as singular fiber. This proves that both the pencils f ∗(ϵ1) and f ∗(ϵ2) have a

member consisting of a configuration of at least two (−2)-curves. Since they share the

exceptional locus Eq, these singular members cannot be invariant with respect to τ. So τ

sends, say, Eq + L̃1 to another member of f ∗(ϵ1) and hence the genus 1 pencil ϵ1 on Y has

a member consisting of at least two smooth rational curves. Since Y is nonnodal, this is a

contradiction.

Recall that Σ0 is the nine-dimensional family parametrizing K3 surfaces that cover a
nodal Enriques surface. Let S ∼= Bl{P1...,P9} P2 be a general rational elliptic surface, Y0

and X0 be a nodal Enriques surface and a K3 surface in Σ0 obtained with the base change
construction ramified over two smooth fibers of S, and let ϵY0 and ϵX0 be the genus 1
pencils on Y0 and X0 induced by the one of S. Recall that Ẽ9 ∈ MW(X0) denote the
zero-section of ϵX0 and that R0 ∈ MW(X0) denote the section of ϵX0 identified with Ẽ9

by the Enriques quotient.

Lemma 3.5.4. The linear system |Ẽ9 + Ẽ1 ⊞ R0| is a genus 1 pencil on X0 of type 2) with

respect to τ. Consequently, f∗|Ẽ9 + Ẽ1 ⊞ R0| is an elliptic pencil on Y0.

Proof. First of all, by applying the Cantat-Dolgachev formula, one can see that

Ẽ9 · Ẽ1 ⊞ R0 = 2,

proving that |Ẽ9 + Ẽ1 ⊞ R0| is a genus 1 pencil. Now, since
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τ(Ẽ9) = R0 and τ(Ẽ1 ⊞ R0) = Ẽ1,

we have that

τ(Ẽ9 + Ẽ1 ⊞ R0) = Ẽ1 + R0.

Moreover, we have

(Ẽ9 + Ẽ1 ⊞ R0) · (R0 + Ẽ1) = 0,

whence Ẽ9 + Ẽ1 ⊞ R0 and R0 + Ẽ1 are linearly equivalent. This proves that

|Ẽ9 + Ẽ1 ⊞ R0|

is of type 2) with respect to τ.

We conclude the section by showing that also a general nodal Enriques surface admits a
model as quotient of a K3 surface that is a double covering of a smooth quadric Q ramified
over a smooth curve. Thanks to Lemma 3.5.4, we can choose ϵY0 and ϵR0 := f∗|Ẽ9 +

Ẽ1 ⊞ R0| to produce the model of X0 as a double covering of Q. Indeed, since ϵX0 · (Ẽ9 +

Ẽ1 ⊞ R0) = 2 (both Ẽ9 an Ẽ1 ⊞ R0 are sections for ϵX0), we have that a half-fiber of ϵY0

meets a half-fiber of ϵR0 exactly in one point.

Proposition 3.5.5. Let Y0 be a general nodal Enriques surface and let X0 be its universal

cover. Let π : X0 → Q be the double covering associated to the half-fibers ϵY0 and ϵR0 .

Then, the branch locus BϵY0 ,ϵR0
⊂ Q is smooth.

Proof. As in the proof of Lemma 3.5.3, the existence of a singular point of B would imply

the presence of a (−2)-curve as a component of a fiber of ϵY0 . But since ϵY0 is a special

genus 1 pencil (it admits a smooth rational bisection) and Y0 is general nodal, this is a

contradiction (see [24, Theorem 6.5.5 (vii)]).

122



CHAPTER 3 Rational curves on the very general Enriques surface

3.5.2 Rational curves

Let Y be a very general Enriques surface, X be its universal cover and Q be a smooth
quadric surface. Let f : X → Y denote the Enriques quotient, π : X → Q denote the
quotient over Q associated to two half-fibers on Y and B denote the branch locus of π. We
investigate the problem of the existence of rational curves on Y. Let us suppose Y has an
irreducible rational curve C.

Lemma 3.5.6. If C ⊂ Y is an irreducible rational curve, then f−1(C) consists of two

linearly equivalent rational curves C′
1 and C′

2 on X.

Proof. As in Section 3.3, we denote by νC : C → C the normalization of C and define

ηC := OC(KS) = OC(−KS), a nontrivial 2-torsion element in Pic0(C), and ηC := ν∗ηC.

By standard results on covering of complex manifolds (see [13, Section 2] or [3, Section

1.17]), two cases may happen:

• ηC � OC and f−1(C) is irreducible;

• ηC
∼= OC and f−1(C) consists of two irreducible components conjugated by the

Enriques involution τ.

Since C is rational, its normalization C is isomorphic to P1, whence any degree 0 line

bundle on it is linearly equivalent to OC: it implies that f−1(C) consists of two rational

curves C′
1 and C′

2. Moreover, since Y is very general, we have that τ∗ acts as the identity

on NS(X), so that C′
1 ∼ C′

2.

The images C′′
1 := π(C′

1) and C′′
2 := π(C′

2) on Q have to be rational curves. In order
to better understand the curves C ⊂ Y and C′ := C′

1 + C′
2 ⊂ X, we begin our analysis

by starting from C′′
i ⊂ Q. The curves C′′

i belong to the linear system |OQ(m, n)|, with
i = 1, 2, for some nonnegative integers m and n.

Lemma 3.5.7. Suppose that m = 1 or n = 1. Then, π−1(C′′
i ) = C′

i , for i = 1, 2, with C′
i

irreducible and rational on X. Equivalently, there exists an intersection point between C′′
i
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and the branch locus B of π : X → Q at which the intersection has odd order.

Proof. The first statement is equivalent to the second since a curve in Q splits in the K3

cover X if and only if it intersects the branch locus B with even order at every intersection

point. Suppose that π−1(C′′
i ) consists of two curves C′

i and C̃′
i . Now, if m = 1 or n =

1, we have that the curve C′′
i is a section for one of the rulings OQ(0, 1) or OQ(1, 0).

Hence, we have, say, C′′
i · OQ(1, 0) = 1, from which (C′

i + C̃′
i) · π∗OQ(0, 1) = 2. Since

C′
i · π∗OQ(0, 1) = 0 would imply that C′

i is a member of the elliptic pencil |π∗OQ(0, 1)|

and the same for C̃′
i , we have C′

i · OQ(0, 1) = C̃′
i · OQ(0, 1) = 1, so that the rational

curves C′
i and C̃′

i are sections for the elliptic pencil |π∗OQ(0, 1)| and therefore smooth

(−2)-curves. SinceX covers a very general Enriques surfaceY, this is a contradiction.

Proposition 3.5.8. Suppose that m = 1 or n = 1 and denote by p an intersection point

between C′′
i and B at which the intersection has odd order k. Then, there exists another

intersection point p′ between C′′
i and B at which the intersection has odd order k′. Further-

more, C′′
i ∈ |OQ(m, n)| is a rational curve tangent to B at r := 2m+ 2n− k−1

2 − k′−1
2 − 1

(possibly coincident) points q1, . . . , qr with even order.

Proof. In order to show the existence of p′, it is sufficient to notice that the intersection

number C′′
i · B = 4m + 4n is even. We have

C
′2
i = 2C

′′2
i = 2(OQ(m, n)2) = 2(2mn) = 2(2mn + 1 − 1),

from which the arithmetic genus of C′
i is

pa(C′
i) = 2mn + 1.

Since m or n is equal to 1, the curve C′′
i is smooth as well as the branch locus B, and

therefore the singularities of C′
i come from points at which C′′

i is tangent to B. Suppose

C′′
i is tangent to B at a point s with order ks and consider local coordinates (x, y) for Q in
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such a way B has local equation y = 0 at s: the curve C′′
i has local equation y − xks at

s. If the double covering is given by (x, t) 7→ (x, t2) in the local coordinates (x, y, t), we

have that C′
i has local equation t2 − xks in a neighborhood of π−1(s). This implies that

C′
i has an Aks−1 singularity at π−1(s). Now, if ks is even, an Aks−1 singularity imposes

ks
2 conditions on the genus of C′

i , while if ks is odd an Aks−1 singularity imposes ks−1
2

conditions. Since C′
i is rational, its geometric genus g(C′

i) is

g(C′
i) = 2mn + 1 − k−1

2 − k′−1
2 −

r′

∑
j=1

kj
2 −

r
∑

j=r′+1

kj−1
2 = 0,

where k j indicates the intersection order between C′′
i and B at the point qj, the first sum

runs over the points at which the intersection has even order and the second sum runs over

the points at which the intersection has odd order. We have
r′

∑
j=1

kj
2 +

r
∑

j=r′+1

kj−1
2 = 2mn + 1 − k−1

2 − k′−1
2 =

= 2m + 2n − 1 − k
2 −

k′
2 + 1 = 2m + 2n − k

2 −
k′
2 ,

where the second equality holds since for m = 1 or n = 1, we have 2mn + 1 = 2m +

2n − 1. But C′′
i · B = O(m, n) · O(4, 4) = 4m + 4n, so that we have

r
∑

j=1
k j = 4m + 4n − k − k′,

from which
r
∑

j=1

kj
2 = 2m + 2n − k

2 −
k′
2 .

Hence, r′ = r and the sum
r
∑

j=r′+1

kj−1
2 is empty, which means that the intersection order

between C′′
i and B at qj is even for every qj.

Remark 3.5.9. In the situation of our interest, at least one between m and n will be equal to

1: in this case, all the irreducible curves of |OQ(m, n)| are smooth, so they are isomorphic
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to their normalization. In other words, the condition of Proposition 3.5.8 is equivalent to

requiring that C′
i belongs to the logarithmic Severi variety V0,α(P

1 × P1, B,OQ(m, n)),

where α = [2, 2mn + 1].

Corollary 3.5.10. If C ⊂ Y is a rational curve, then its arithmetic genus p(C) is such that

p(C) ≡4 1.

Proof. ByTheorem 3.2.6,C is 2-divisible inNum(Y), i.e., there exists an effective divisor

D on Y such that C ∼ 2D. We have

pa(C) = 1
2C2 + 1 = 1

2(4D2) + 1 = 2D2 + 1.

Since for an Enriques surface D2 is even for every effective divisor D, we have the asser-

tion.

By reversing the process, to prove the existence of rational curves onY, it is sufficient to
find a curve in the linear system |OQ(m, n)| satisfying the conditions of Proposition 3.5.8.
The aim of the last part of the thesis is to show that the logarithmic Severi variety

V0,α(P
1 × P1, B,O(m, n)), with α = [2, 2m + 2n − 1], is nonempty for values of m

and n such that mn is arbitrarily large with m = 1 or n = 1, or, equivalently, that the very
general Enriques surface Y admits rational curves of arbitrarily large arithmetic genus.
From now on, we shall write just Vα to indicate V0,α(P

1 × P1, B,O(m, n)) (or Vα,B when
we want to focus on the curve B).

Lemma 3.5.11. If V0,α is nonempty, then its dimension is 0.

Proof. Suppose that there exists [C′′] ∈ V0,α. Since m = 1 or n = 1, we have that C′′ is a

smooth rational curve and therefore it is isomorphic to its normalization. We have α1 = 2

and α2 = 2m + 2n − 1, so we let Q1,1, Q1,2, Q2,1, . . . , Q2,2m+2n−1 be points in C′′ such

that, denoting by µ : C′′ → Q the inclusion C′′ ⊂ Q, we have µ∗(B) = Q1,1 + Q1,2 +

2Q2,1 + · · ·+ 2Q2,2m+2n−1 as in Definition 3.3.5. We set D = Q2,1 + · · ·+ Q2,2m+2n−1:

by construction, d := deg D|C′′ = 2m + 2n − 1. We have that
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−(KP1×P1) · C′′ − deg µ∗D|C′′ = O(2, 2) · O(m, n)− (2n + 2m − 1) =

2m + 2n − 2n − 2m + 1 = 1.

Then, by Theorem 3.3.6

dim(V0,α) = −(KP1×P1 +O(4, 4)) · O(m, n)− 1 + |α| =

−2m − 2n − 1 + 2m + 2n + 1 = 0.

The next result describes the images of the sections Ẽ9 and Rm of a K3 surface Xm ∈ Σm

in Q under π.

Proposition 3.5.12. Let Xm ∈ Σm be a K3 surface covering an m-special Enriques surface

Ym, let ϵX and ϵY be the genus 1 pencils on Xm and Yn respectively induced by the base

change construction, let ϵ be a genus 1 pencil on Ym with ϵY · ϵ = 4 (or, equivalently, such

that two respective half-fibers intersect in one point) and let π : Xm → Q be the model

associated to the pencils ϵY and ϵ. Then, π(Ẽ9) and π(Rm) belong to the linear system

|OQ(1, k(m))| for some nonnegative integer k(m). Moreover, they are totally tangent to

BϵY ,ϵ.

We point out that for what follows, we shall need the existence of two sections for ϵX

intersecting each other in 2m points and such that they are interchanged by τ but not by σ.
Without loss of generality, we can suppose that these two sections are Ẽ9 and Rm. Suppose
that Ẽ9 + Rm is invariant under the involution σ: since σ acts as the identity on the base
P1 of the elliptic pencil ϵX, the restriction of σ to any smooth fiber Xt is an involution
identifying the point Rmt with the point Ot. Since Rm ∈ MW(Xm) has infinite order, in
particular it is not a 2-torsion section: hence, there is an open subset Z1 ⊂ P1 for which
for every t ∈ Z1, the point Rmt where the section Rm meets Xt is not a 2-torsion point.
The only involution of an elliptic curve that sends the origin to a chosen point Q, that is
not 2-torsion, is the composition⊞Q ◦ (−1) (or, equivalently, (−1) ◦⊟Q) between (−1)
and the translation by Q. Now, consider the sections Ẽ1 and Ẽ1 ⊞ Rm in MW(Xm), where
E1 ∈ MW(S). Since Ẽ1 has infinite order in MW(Xm), we can also consider the open
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subset Z2 ⊂ P1 for which for every t ∈ Z2, the intersection E1t between E1 and the fiber
Xt is not a 2-torsion point. By Lemma 3.3.11, Ẽ1 and Ẽ1 ⊞ Rm are interchanged by τ

and Ẽ1 · (Ẽ1 ⊞ Rm) = 2m. Moreover, let t ∈ Z1 ∩ Z2: the involution σ restricted to Xt

acts as ⊞Rmt ◦ (−1)t, whence it sends the point Ẽ1t to ⊟Ẽ1,t ⊞ Rmt . This implies that σ

does not identify the two sections Ẽ1 and Ẽ1 ⊞ Rmt unless E1t = ⊟E1t for every t, but we
constructed the open subset Z1 ∩ Z2 of the base P1 in such a way for every t ∈ Z1 ∩ Z2

the point Ẽ1t is not a 2-torsion point.

Proof of Proposition 3.5.12. Every (−2)-curve s of X is identified by π with another

(−2)-curve: if, otherwise, the morphism π restricted to s was 2:1 to the image π(s),

we would have π(s)2 = −1, but this is a contradiction since by Lemma 3.5.3 the branch

locus BϵY ,ϵ of π is smooth. Hence, the image of s is a rational curve intersecting BϵY ,ϵ

with even order at every intersection point. Since Ẽ9 is a section for ϵX, the quotient map

π identifies it with another section s1 and their image π(Ẽ9) = π(s1) is a section for

π∗(ϵX) = O(0, 1), so that π(Ẽ9) ∈ |O(1, k(m))| for some k(m) ∈ Z+. The same hap-

pens to the section Rm: it is identified by π with another section s2. Furthermore, since

τ interchanges Ẽ9 and Rm, whence σ interchanges π(Ẽ9) and π(Rm). Finally, since σ

preserves the linear equivalence, also π(Rm) = π(s2) ∈ |O(1, k(m))|.

Lemma 3.5.13. s1 · s2 ≥ 2m and thus k(m) ≥ m.

Proof. We have

σ(π(Ẽ9)) = σ(π(Rm))

and

π−1(π(E9)) = Ẽ9 + s1 and π−1(π(Rm)) = Rm + s2,

whence τ interchanges s1 and s2. By Lemma 3.3.14 a section

Ẽ ⊞ R⊞k
m ∈ MW(Xm)
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is interchanged by τ with the section

Ẽ ⊞ R⊞(1−k)
m ∈ MW(Xm).

Furthermore,

Ẽ ⊞ R⊞k
m · Ẽ ⊞ R⊞(1−k)

m = R⊞k
m · R⊞(1−k)

m =

= Ẽ9 · R⊞(1−2k)
m = Ẽ9 · Rm + Rm · Xm[2k − 1]0 ≥ Ẽ9 · Rm = 2m.

Finally,

2O(1, k(m))2 = 4k(m)

and

2O(1, k(m))2 = (Ẽ9 + s1) · (Rm + s2) = 2m + Ẽ9 · s2 + s1 · Rm + s1 · s2 ≥

4m + Ẽ9 · s2 + s1 · Rm ≥ 4m,

from which

k(m) ≥ m.

We proved the following Corollary.

Corollary 3.5.14. For every m, there exists a family of curves Bm ⊂ |O(4, 4)| such that

for every Bm ∈ Bm, the logarithmic Severi variety V0,α(P
1 × P1, Bm,O(1, k(m))) is

nonempty for some k(m) ≥ m, with α = [2, 2k(m) + 1].

Remark 3.5.15. Actually, if Bm ∈ Bm, we have that Vα,Bm 6= ∅ even for α = [0, 2k(m) +

2], but for our purpose the nonemptiness of Vα,Bm for α = [2, 2k(m) + 1] is sufficient.

The next result states that on the very general Enriques surface there are rational curves
of arbitrarily large arithmetic genus and ϕ = 2.
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Theorem 3.5.16. Let Y be a very general Enriques surface. Then, for every n ∈ Z, there

is n ∈ Z, with n ≥ n, such that there exists a rational curve Cn ⊂ Y of arithmetic genus

n and with ϕ(Cn) = 2.

To prove Theorem 3.5.16, we need the following definitions and results about stable
maps on families of K3 surfaces. We follow [40] for the original Definitions of stable
maps and their moduli space and [20] for the regeneration results about curves on families
of K3 surfaces.

Definition 3.5.17. Let V be a complex algebraic variety.

A stable map is a structure (C, x1, . . . , xk, f ) consisting of a connected compact reduced

curve C with k ≥ 0 pairwise distinct marked nonsingular points xi and at most ordinary

double singular points, and a map f : C → V having no nontrivial first order infinitesimal

automorphisms, identical on V and x1, . . . , xk.

The condition of stability means that every irreducible component of C of genus 0 (resp.
1) which maps to a point must have at least 3 (resp. 1) special (i.e. marked or singular)
points on its normalization. There is a notion of isomorphism of stable maps and of moduli
space of stable maps due to Kontsevich: Mp(V, β) denotes the moduli stack of stable maps
to V of curves of arithmetic genus p ≥ 0 with k ≥ 0 marked points such that f∗[C] = β.
The next result, due to Chen, Gounelas and Liedtke, is our main tool to prove Theorem

3.5.16.

Theorem 3.5.18. Let F → V be a smooth projective family of K3 surfaces over an irre-

ducible base schemeV and letH be a line bundle onF . Then, every irreducible component

M ⊂ Mp(F/V ,H) satisfies

dim M ≥ p + dimV .

Proof. See [20, Theorem 2.11].

We are able to prove Theorem 3.5.16.
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Proof of Theorem 3.5.16. We consider a one-dimensional family Q over an irreducible

curve C such that for every t ∈ C,

Qt ∼= Q ∼= P1 × P1.

Moreover, we consider the line bundle over Q

R := (Q,OQ(4, 4))

defined in the following way: for every t ∈ C, the restriction ofR to Qt is

Rt ∼= (Qt,O(4, 4)).

For every m ∈ Z+, we consider another line bundleHm
Q over Q defined in the following

way: for every t ∈ C, the restriction ofHm
Q to Qt is

Hm
Q,t

∼= (Qt,O(1, k(m))).

Moreover, we fix a point t0 ∈ C and consider a curve Bm ∈ Rt0 = (Qt0 ,O(4, 4)) such

that V0,α(Qt0 , Bm,O(1, k(m))) 6= ∅ (then a curve Bm belonging to the family Bm ⊂

|O(4, 4)|). Finally, we letW with

W R

C

be a section of the relative line bundleR, such thatWt0 = Bm.

Let now X → C be the family over C of K3 surfaces such that for every t ∈ C, Xt is

the K3 surface obtained as the minimal resolution of the double cover ofQt ramified over

Wt and let π

X Q

C

π

131



CHAPTER 3 Rational curves on the very general Enriques surface

be the relative double covering. For every m ∈ Z+, we define the line bundle on X

Hm
X := π∗Hm

Q

to be the pullback of Hm
Q via π. In other words, the restriction of Hm

X to every Xt is the

pullback of (Qt,O(1, k(m))).

Since V0,α(Qt0 , Bm,O(1, k(m))) 6= ∅, the line bundle Hm
X ,t0

admits a special member

consisting of two smooth rational curves, that we call Ẽ9 and s1 to be consistent with the

notations of Proposition 3.5.12.

We want to show that this curve deforms in the family X → C as a rational curve by

using Theorem 3.5.18.

Let L be the union of two copies of P1 meeting at one point and consider the map f : L →

Xt0 such that f (L) = Ẽ9 + s1. Since there are no contracted components, ( f , L) is a stable

map. Now, consider the moduli stack

Mo(X/C,XH).

We proved that it is nonempty, whence by Theorem 3.5.18 every irreducible component of

it has dimension dim C, that is 1. By Lemma 3.5.11, the fibers over the points of C have

dimension 0, thus, for every t, the K3 surface Xt is such that the line bundle XH,t has a

rational member, that is sent to a rational member of Qt.

We actually proved that for every B ∈ |O(4, 4)|, V0,α(Q, B,O(1, k(m))) 6= ∅. SinceW

is an arbitrary section of the relative line bundleR over Q, in particular we have that, for

every m ∈ Z, the very general Enriques surface admits a rational curve Bk(m) of arithmetic

genus 4k(m) + 1. The ϕ-invariant of all these curves is 2 and it is computed by the genus 1

pencil on Y induced by the ruling O(0, 1) of Q. Indeed, with he notation of Lemma 3.5.6

and Proposition 3.5.8, we have

Bk(m) · f∗π∗O(0, 1) = 1
2(C

′
1 + C′′

2 ) · π∗O(0, 1) = (C′′
1 + C′′

2 ) · O(0, 1) =
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= O(2, 2k(m)) · O(0, 1) = 2.
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