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Introduction

Collective behaviour in biological systems is a fascinating field. In autumn
the skies of Rome are filled with black clouds displaying harmonious figures. An
observer is puzzled, it seams to him to see a single conscious body continuously
moving and changing shape. What he’s looking at is instead a flock of hundreds
or thousands birds, single individuals cooperating to defend themselves from
predators.

In general we refer to collective behaviour as all those natural phenomena
that involve large groups of animals that spontaneously perform coordinated
actions. Often this kind of behaviour occurs by means of individual interactions
that have a local nature: each individual interacts with a limited number of
neighbours.

The study of collective behaviour includes, in its facets, investigating the fea-
tures of individual behaviour, the advantages and disadvantages of belonging
to the group, the information transfer within it, the process of decision-making,
locomotion and synchronization. A fundamental condition for emergent be-
haviour is that each individual interacts with the others at the same level,
without leaders nor external elements that act globally on the system.

In my work I collaborated closely with the COBBS group at the Institute
for Complex Systems, CNR, whose objective is “to understand the fundamen-
tal mechanisms of collective behaviour in biological systems through a strong
interplay between quantitative empirical observations and theories”.

In the last years the work of the group has focused on the study of two very
different examples of collective behaviour: flocks of birds and swarms of midges.
In both cases the group performed worldwide-unsurpassed experiments con-
sisting in filming the system with high speed cameras and reconstructing the
three-dimensional trajectories of all the individuals in the system (swarm or
flock).

In the birds case this was the natural prosecution of the seminal work led by
the group within the STARFLAG project (2005-2008). The higher quality of
the new data permitted to study not only the statical properties of the flocks
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Introduction

(i.e. instantaneous positions and velocities), but also dynamical events such as
global changes of direction (turns). From the theoretical point of view, relevant
successes where achieved in statistical inference and in the understanding of
the transmission of information trough the flock.

The study on midges was instead completely novel. Indeed this was the first
study of this type about midges swarming in their natural environment. At the
beginning it was even unclear if swarms could be considered or not an example
of collective behaviour. We demonstrated that midges actually interact with
each other, and that they do so in a way that maximizes the collective response
of the system.

In this context my work consisted in part in a daily collaboration to solve
the technical problems of trajectories reconstruction; I contributed to the de-
velopment of the image segmentation algorithm, and provided synthetic data
used as a ground-truth for the whole tracking procedure.

My main work concerned the development, the implementation, and the
study of numerical models of self propelled particles. For many years the
lack of reliable experimental data restricted the study of collective behaviour
almost only to numerical models. They are usually based on assumptions
about the interaction between individuals, that despite being (in the best case)
reasonable, remain at the level of speculation.

I developed new models (and in some cases studied existing ones), incorpo-
rating the experimental findings and the consequent theoretical understanding
of the systems studied. My objective was to verify through numerical sim-
ulations the theoretical predictions, and the effectiveness of the models in
reproducing the real phenomenon.

My thesis is structured in three chapters:

In chapter 1 I will summarize the historical experimental results of the STAR-
FLAG project, I will describe an original model whose development was
started during my master thesis work and improved during my first year
of doctoral school. I will examine the role of the definition of the inter-
action neighbourhood in keeping the flock cohesive.

I will then present a method of statistical inference, the maximum en-
tropy method, its application to the problem of birds, and its validation
through numerical simulations.

Finally I will introduce a novel model directly inspired by the maximum
entropy theory. It was one of the first models inspired by these results
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whose definition is directly derived by the experimental results, and that
accounts for the speed of motion of the birds.

In chapter 2 I will summarize the more recent experimental results, whose
object of interest was the turning events, i.e. the collective turns per-
formed by flocks during aerial display. Performing a turn implies infor-
mation transfer through the flock, the analysis of the information flow
revealed the limits of the existing theories and led to a new one. I will
present a model that embodies the theoretical findings and verify the
consequent predictions.

In chapter 3 I will present the experimental results relative to the study of
midges swarms. Experiments revealed us that midges swarms belong to
the category of collective behaviour despite their lack of global order.
I will perform a finite size scaling analysis on a simple self propelled
particles model, the Vicsek model, to confirm the experimental indication
that midges swarms lie near the critical point of an order–disorder phase
transition.
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1 Collective behaviour in bird
flocks

Fig. 1.1: A flock of starlings at sunset. Rome, EUR 01/11/2012.

In the last decade a collection of experimental result on collective behaviour
was obtained in Rome using stereoscopic techniques to capture starling flocks.

European starlings spend their winter in Rome, feeding during the daylight
and coming back to several roosting sites in the city at sunset. It is possi-
ble, before roosting, to observe (and film) evolutions of flocks in a relatively
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Chapter 1. Collective behaviour in bird flocks

confined area in the sky.
Two different trifocal stereo-metric set-up [19, 4] (the second with higher

frame rate) were used to capture these evolutions during two observation cam-
paigns in the years 2005-2006 and 2010-2012.

From the collected images it was possible to reconstruct the individual three
dimensional positions of the birds and their trajectories over time intervals up
to 15 seconds.

In this chapter I will first summarize the results of this experimental study
and the theoretical framework developed to understand them, and then I will
describe the numerical models that I developed and implemented to test the
theory and incorporate the experimental findings.

1.1 Experimental findings

1.1.1 Three dimensional structure

The first possible investigation concerns the spatial structure of the flocks:
are they ordered and packed like in crystal lattice, as a eye observation would
suggest? Or are they randomly distributed in the flock volume?

The analysis of the packing fraction,

Φ =
4

3
πρ4

H < 0.012, (1.1)

and the pair correlation function,

g(r) =
1

4πr2

1

Ñ

Ñ∑
i=1

∑
j 6=i

δ(r − rij), (1.2)

shows that the system is much more similar to a gas than to a crystal (Fig. 1.2)
The packing fraction of equation (1.1) is the ratio between the total exclusion

volume of the birds Nr3 (being r approximately the wing length) and the total
volume of the flock (N/ρ). In a crystal its typical value is of order 0.5.

The pair correlation function (1.2) is a measure of the structure of the sys-
tem. It calculated as the number of pairs of birds at distance r from each other
(Ñ is the number of birds considered in the evaluation of g(r) after the correc-
tion of border effects, see [15, 18] for details). In a regular lattice it appears as
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1.1. Experimental findings

a periodic series of delta functions, in a liquid It is a damped oscillating curve,
while in a gas it’s a flat curve.

The g(r) displayed in figure 1.2, with very weak peaks, indicates a structure
in mutual distances which is almost gas-like.

As we will see, reproducing this apparently uninteresting result in a simula-
tion can be quite challenging.
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350 ume with density decreasing from border to centre as a power law.
351 The sphere is then mapped into an ellipsoid having approximately
352 the flock’s proportions. The exponent of the distribution has been
353 tuned to reproduce the function r1(d) of the real flock (see inset
354 in Fig. 4). Then, the function C(r) has been computed for the syn-
355 thetic samples. It corresponds to the continuous lines in Fig. 4.
356 The simulated line is consistent with the empirical data, confirm-
357 ing that the border-to-centre density gradient is at the same time
358 responsible of the increasing behaviour r1(d) as well as for the
359 anomalous decrease of C(r).
360 Therefore, the density gradient between centre and border in
361 starling flocks can be so large to suppress the homogeneity scale.
362 When this happens, the ‘naı̈ve’ density (total number of individuals
363 over total volume) is only a very coarse estimate, whereas the full
364 curve of the conditional density provides a more coherent descrip-
365 tion of the flock.

366 3.6. The pair distribution function

367 The conditional density gives important information on the
368 homogeneity of the system and, as we have discussed, is influ-
369 enced at short scales by the presence of correlations between indi-
370 viduals. There is however another two-point function, intimately
371 related to C(r), which is generally more appropriate to investigate
372 the structure of an aggregation. This is the so-called pair distribu-
373 tion function g(r) and it is typically used in liquid theory [13] to
374 quantitatively characterize the degree of spatial order (gas/liquid/
375 solid) in a system of particles. As we have seen the function C(r)
376 measures the average global density up to a distance r around a gi-
377 ven reference point/individual (the centre of the sphere). The func-
378 tion g(r) is defined similarly, but instead of looking at the density
379 up to scale r focuses on the density exactly at distance r. Formally
380 we have,

gðrÞ ¼ 1
4pr2

1
nc

Xnc

i

X
j 6¼i

dðr � rijÞ;
382382

383 where rij is the absolute distance between the centre i and a neigh-
384 bour j. Note that g(r) is a distribution function (it contains a Dirac
385 delta), meaning that to obtain a true density one needs to multiply
386 for an appropriate spatial increment dr. Operationally, to compute
387 g(r) we proceed similarly to the integrated conditional density:
388 we choose an individual i and a sphere of radius r around it. The
389 sphere is acceptable only if it is completely contained within the
390 border of the group. We then look in a small spherical shell of thick-
391 ness dr at the surface of the sphere and count how many birds are
392 found within this shell. We finally divide this number by the vol-
393 ume of the shell 4pr2dr. Note that to fix reasonably the ‘binning’
394 parameter dr we need to make a trade off: if too small the resolution
395 is high, but noise is too large (few points within the shells); if too
396 large noise is small, but resolution is too low.
397 The functions g(r) and C(r) are directly related one to the other
398 in the following way:

CðrÞ ¼ 1
4=3pr3

Z r

0
gðsÞ4ps2ds:

400400

401 The function g(r) is more sensitive than C(r) to the detailed spa-
402 tial structure of the aggregation. In a crystalline solid it exhibits
403 very sharp peaks corresponding to the fixed distances among par-
404 ticles. These peaks do not decay at large values of r. Liquids on the
405 other hand, unlike crystals have no long-range order. Yet, statisti-
406 cal correlations are still very strong: in liquids the pair correlation
407 function has a clearly oscillating shape, with well defined peaks
408 that flatten around the average density value for large r. It is zero
409 at small scales (due to short-range repulsion between particles)
410 and it exhibits a first very pronounced peak at the scale of the first

411shell of neighbours, with a few subsequent smaller peaks at the
412location of farther neighbours shells, whose amplitude decreases
413as r increases. On the other hand, in a gas-like system with hard-
414core, only the first peak is visible, and the function decays to the
415density without further oscillations after this. In a Poisson point
416process (randomly distributed particles with no correlations –
417not even the hard-core) the g(r) and the C(r) are completely flat
418and constant. Since C(r) is related to the integral of g(r), the peak
419structure, if not too pronounced, can be smoothed by the integra-
420tion. For this reason it is useful to look directly at the pair correla-
421tion function. On the other hand, being a differential quantity, the
422statistics used to compute g(r) is smaller and the effect of noise is
423more pronounced.
424In Fig. 5 we report the behaviour of g(r) for various flocks at sev-
425eral densities (low densities in the inset). Despite the fluctuations,
426a structure with at least two peaks is visible. This is also true also at
427low densities, where however the peaks are much broader. The
428first thing to note is that this kind of pair correlation function is to-
429tally incompatible with any bona fide crystalline structure. The
430‘crystal hypothesis’ put forward for fish schools in [14] has thus
431to be discarded for starling flocks. In fact, given the sparseness of
432the flocks, as quantified by the very low packing fraction of even
433the densest aggregations, one may have expected to find no struc-
434ture at all, as in a gas. On the other hand, we know there are strong
435correlations, giving rise to a sharp anisotropy, and this does not fit
436the gas paradigm. The pair distribution function shows an interme-
437diate behaviour: unlike a gas, it is not completely structureless,
438even though it does not show a clearly periodic liquid structure
439either. We believe that this is due to the fact that the interaction
440ruling starling flocks has a topological nature, which is completely
441different from the metric interaction ruling physical systems, like
442gas or liquids. A topological interaction is independent of the met-
443ric distance between birds, and it therefore introduces some effec-
444tive long-range correlations. Whenever the density becomes very
445low, distant birds may still interact with a bond as strong as when
446they are closer. Therefore, unlike most physical systems, flocks can
447sustain structure and correlation in spite of very small densities and
448packing fractions. However, the structure is not as simple as that
449of a liquid, since the pair correlation function shows only two,
450rather weak peaks. Again, this is probably due to the topological
451interaction: birds have well defined mutual orientations (com-
452pared to the direction of motion), irrespective of their metric dis-
453tance, so that the structure in shells, which shows off so clearly
454in liquids, is somewhat blurred in flocks.
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Fig. 5. Pair correlation function g(r) for several flocking events. Each curve
corresponds to a flock at a single instant of time. Flocks with low density are
shown in the Inset. Two peaks are clearly visible in all the curves.
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Fig. 1.2: Pair correlation function g(r) of some flocks. Each curve corresponds to
a flock at a single instant of time. Flocks with low density are shown in
the Inset. In a lattice structure it would appear as a periodic series of
delta functions, while in a liquid structure as a damped oscillating curve
and in a gas it would be flat. The weak peaks indicate an almost gas-like
structure. Figure from [15].

1.1.2 Topological interaction

Even tough the g(r) is gas-like, flocks have a non trivial spatial structure.
This can be seen by looking at angular distributions and taking into account
the mean direction of motion. For example if we look at the distribution of the
first nearest neighbour we find it clearly anisotropic; the probability of finding
the nearest neighbour in the direction of the wings is significantly higher than
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Chapter 1. Collective behaviour in bird flocks

in the direction of motion. The distribution of the tenth neighbour instead
is uniform in the solid angle, indicating that the anisotropy decays with the
order of neighbourhood [7].

This anisotropy gives a hint about the interaction range of the birds. If the
anisotropy is a consequence of interaction, then when it vanishes there should
be no more interaction.

To have a more precise measure of anisotropy decay, we define the anisotropy
factor γ(n) that measure the probability to find the nth neighbour along the
direction of motion; it is defined as the squared scalar product of the normalized
vectors v̂ and ŵ,

γ = (v̂ · ŵ)2 γ ∈ [0, 1] (1.3)

where v̂ is the mean direction of motion, and ŵ is the direction of minimal
crowding of the nth nearest neighbour. ŵ can be calculated as the eigenvector
relative to the lowest eigenvalue of the matrix M with elements:∑

β

Mαβvβ = uiα
∑
β

uiβvβ α, β = x, y, z (1.4)

whose components ûi are the normalized position of the nth nearest neighbour
of i relative to the position of i, ui = ((r)th−ri)/|(r)th−ri|. The value of γ(n)
for a isotropic distribution is 1/3 while in the case of birds it is significantly
higher than 1/3 for n . 7 as shown in (Fig. 1.3a).

The value of nc for which γ(n) decays to 1/3 is a proxy of the interaction
range.

Surprisingly this nc is constant for flocks of different densities or, in other
terms it doesn’t depend by the distance of neighbours. This was the first
evidence of a topological interaction: every birds interacts with a fixed and
small (nc ∼ 7) number of neighbours, independently of their distance. The
idea of topological interaction have a very reasonable efficiency meaning: if the
range of interaction is not dependent from the distance, then the probability
to maintain cohesion is enhanced (see section 1.2.3).

1.1.3 Velocity correlation functions

Flocks of birds appear to be very ordered even just to the naked eye ob-
servation, the birds fly all in the same direction. In fact if we evaluate the
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1.1. Experimental findings

among individuals, whatever this interaction is. To support this
claim, we compute the distribution of neighbors very far apart
from the reference bird (Fig. 2b). This distribution is uniform, as
for a completely isotropic, noninteracting aggregation of points.
This observation is a direct empirical indication that interaction
decays with the distance, and it demonstrates that we can use the
anisotropy to get information about the interaction (see also the
SI Text on this point). In fact, if we compute the angular map for
the second nearest neighbor, third nearest neighbor, and so on,
we observe that the anisotropic structure progressively fades
away as the order of the neighbor increases.

To quantify the decay of the anisotropy, we define a function
�(n) that measures to what extent the spatial distribution of the
nth nearest neighbor around a reference bird is anisotropic (see
Fig. 3’s legend). The value of � for an isotropic, noninteracting
aggregation is 1/3 (see the SI Text). A value larger than 1/3
indicates that the interaction among the birds makes the struc-
ture anisotropic. In Fig. 3a, we show that �(n) decays gradually
to 1/3 when n increases. Hence, for each flock, we can define an
interaction range nc, given by the value of n where � becomes 1/3.
By definition, birds farther than the ncth nearest neighbor are
isotropically distributed around the reference bird and do not
interact with it. Fig. 3a is an empirical determination of how the
interaction decays in a real instance of collective behavior in the

field. Previous work (26) was limited to 2D projections of very
small groups (�10) in the laboratory.

The nth nearest neighbor of a given bird is characterized not
only by its integer label n but also by its actual distance in meters
r from the reference bird. For example, in flock 32-06 (Fig. 3b)
the sixth nearest neighbor of a bird is found, on average, at 1.25 m
from it. Clearly, the relation between n and r depends on the
specific density of the flock. Whereas n measures the topological
distance from a reference bird, r measures the metric distance.
In addition to the topological interaction range in unit of birds,
nc, we can therefore introduce a metric range, in unit of meters,
rc. Going back to flock 32-06, we have nc � 6, and rc � 1.25 m
(Fig. 3a).

The flocks we analyzed differ greatly from one another in
density (the density not depending on the number of birds or on
the velocity of the flock). This difference implies that the
topological and metric ranges, nc and rc, cannot both be constant
from flock to flock. To elucidate this crucial point, let us
consider two flocks with different densities. If the interaction
depends on the metric distance, then the range in meters rc is the
same in the two flocks, although the number of individuals nc
within this range is large in the denser flock, and small in the
sparser flock. Conversely, if the interaction depends on the
topological distance, the range in units of birds nc is constant in
the two flocks, although the distance rc of the ncth nearest
neighbor is small in the denser flock, and large in the sparser
flock. The difference between topological and metric hypotheses
is stark: In the topological scenario, the number of interacting
individuals is fixed, whereas in the metric scenario, the number
varies with density. For example, within the same metric range
there are 10 birds in our densest f lock and only 1 bird in the
sparsest one. Topological and metric ranges therefore are not
interchangeable characterizations of the interaction. To under-
stand whether it is the metric or the topological distance that
matters, we must measure how rc and nc depend on the flocks’
density.

To cast, in a quantitative way, the two opposite scenarios, we
note that the average distance r of the nth nearest neighbor grows
with n according to the relation r � r1 n1/3 (see Fig. 3b). In this
equation, r1 is the average nearest-neighbors distance, which is
a direct measure of sparseness (the inverse of density); r1 varies
from 0.68 m in the densest f lock to 1.51 m in the sparsest f lock
(see SI Table 1). The equation above simply means that the
number n of individuals within a sphere of radius r is propor-
tional to r3. The two ranges are linked by the same relation, rc �
r1 nc

1/3. In a metric scenario, rc is a constant, and thus nc
�1/3� r1.

Conversely, in the topological scenario nc is a constant, and thus
rc � r1. We have measured nc and rc in each flock and have
studied how these two quantities depend on the flocks’ sparse-
ness r1. The experimental evidence clearly supports the topo-
logical scenario: There is no significant correlation between
nc

�1/3 and r1, whereas a clear linear correlation exists between rc
and r1 (Fig. 3c, 3d). The topological range is therefore approx-
imately constant from flock to flock. On average, we find nc �
6.5 � 0.9 SE.

We therefore showed that the structure, and thus indirectly the
interaction causing it, depends on the topological distance rather
than the metric distance. The interaction between two birds 1 m
apart in flock A is as strong as that between two birds 5 m apart
in flock B, provided that flock A is denser than flock B and that
the topological distance n is the same. Our empirical result
contrasts with the assumption of most models and theories. Even
though some models introduce a cut-off, or numerical prefer-
ence, in the number of interacting neighbors (so that this number
is fixed), they still ‘‘weight’’ these neighbors metrically (18, 27).
We must stress that this is not what we find here. It is the very
shape of the interaction that depends on the topological dis-
tance, not simply the cut-off, or the range (Fig. 3a). Our result

Fig. 3. Assessing the range of the interaction. Let u� i
(n) be the unit vector

pointing in the direction of the nth nearest neighbor of bird i. We define the
matrix, M��

(n) � 1/N � ui,�
(n) ui,�

(n), where the sum extends over all N birds in the flock,
and �,� � x,y,z. The unitary eigenvector W� (n) relative to the smallest eigen-
value of M(n) coincides with the direction of minimal density of the vectors u� i

(n),
i.e., the direction of minimal crowding of the nth nearest neighbor. To
measure the degree of anisotropy in the spatial distribution of the nth nearest
neighbor, we use the function �(n) � (W� (n)�V� )2, where V� is the velocity. The
value of � for an isotropic, noninteracting distribution of points is 1/3. (a) The
function �(n) is plotted for two different flocks (32-06 and 25-11); error bars
represent the standard error. For both flocks, the structure becomes approx-
imately isotropic between the sixth and the seventh nearest neighbor. The
topological range nc is defined as the point on the abscissa where a linear fit
of �(n) in the decreasing interval intersects the value 1/3. (b) The average
distance rn of the nth neighbor is plotted against n1/3 (error bars are smaller
than symbols size). The slope of these curves is proportional to the sparseness
r1 of the flock. (c) Topological range nc (to the power �1/3) vs. the sparseness
r1 of each flock. No significant correlation is present (Pearson’s correlation
test: n � 10, R2 � 0.00021, P � 0.97). (d) Metric range (in meters) rc vs.
sparseness r1. A clear linear correlation is present in this case (n � 10, R2 � 0.78,
P � 0.00072).

1234 � www.pnas.org�cgi�doi�10.1073�pnas.0711437105 Ballerini et al.

Fig. 1.3: (a) the function γ(n) measures the anisotropy of the angular distribution
with respect to the direction of motion. γ(n) is defined between 0 and 1.
A value of γ(n) close to 1 indicates that there is a very low probability to
find the nth nearest neighbour along the direction of motion (i.e. there is a
strong anisotropy). The value 1/3 corresponds to an isotropic distribution
of neighbours. The topological range nc is defined as the value of n for
which the function γ(n) reaches the value 1/3. (b) average distance of the
nth neighbour. (c) The topological range of interaction is uncorrelated
with the distance of the first neighbour (inverse of the density) while the
metric range (c) is. This is clearly indicating that the interaction is based
on the topological range. Figure from [7].
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Chapter 1. Collective behaviour in bird flocks

polarization of a flock as:

Φ =
1

N

∣∣∣∣∣
N∑
i=1

vi
|vi|

∣∣∣∣∣ , (1.5)

we find Φ ∼ 0.98. It seems very reasonable (quite obvious) that this high
alignment is a consequence of the interaction, but in principle this can happen
also for other reason, for example there can be an external force or the flock
can be driven by a leader.

The most reliable sign of a local interaction comes from the connected cor-
relation function [10]:

C(r) =

∑
ij ui · ujδ(r − rij)∑

ij δ(r − rij)
, (1.6)

with ui being the iths bird velocity in the flock’s centre of mass reference frame.

ui = vi −
1

N

N∑
k=1

vk (1.7)

Equation (1.6) measures how much the fluctuations of the velocities of two
birds at distance r are correlated.

It’s important to use the connected correlation function and take care of
all possible global motions because we want to measure only correlation that
are consequence of social interaction. If we instead omit to subtract the mean
motion in the correlation function e.g. calculating the non connected one:

C(r)nonconnected =

∑
ij vi · vjδ(r − rij)∑

ij δ(r − rij)
, (1.8)

we will obtain something that is clearly dominated by the mean velocity, and we
can get high correlation even without interaction (for example due to external
forces or leaders).

Equation (1.6) is the correlation of the full vectorial velocities, and it’s im-
portance is very clear when we think that alignment is the most evident conse-
quence of interaction, but it’s also possible, and indeed interesting, to evaluate
the correlation of speed:

Csp(r) =

∑
ij ϕi · ϕjδ(r − rij)∑

ij δ(r − rij)
(1.9)
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where ϕi is the fluctuation of the speed (the modulus of v).

ϕi = |vi| −
1

N

N∑
k=1

|vk| .

In figure 1.4a and 1.4b are shown the correlation function for orientation
and speed respectively. The correlation functions defined in equations (1.6)
and (1.9) have to cross the zero at least once because the integral of their
numerator is zero by construction; the value of ξ = r0 with C(r0) = 0 is
proportional to the correlation length of the system [16]. Looking at figure 1.4c
and 1.4d we find that the correlation lengths grow linearly with the distance.
Both correlation of speed and orientation are therefore scale free.

The correlation length is a measure of the capability of a system to respond
to external stimuli. In physical systems the correlation is proportional to
the response exhibited by the system to perturbations. Scale free correlation
therefore indicate that flocks respond collectively.

Scale free correlations can be expected for the orientations (it is possible to
prove that fluctuations transverse to the order parameter are scale free see:
Goldstone’s theorem [1], and SI in [8] for details), they are harder to explain
in the case of speed. The optimal speed of flight is reasonably determined
by physical constrains, flying too fast will result in an excessive energy con-
sumption, while flying too slow would mean to fall on the ground. But if the
optimal speed was only determined by the flying physics, one could expect
uncorrelated speed fluctuations, that are instead strongly correlated.

In statistical physics scale free correlations are often associated with crit-
icality. Evidences of criticality have been examined in biological systems as
diverse as bird flocks, neural networks and amino-acid chains [31], and also,
as we will see in chapter 3, midge swarms. The idea that criticality could be
a general features in biological systems is currently discussed by the scientific
community, it is however reasonable to think that being near the critical point
of a phase transition is advantageous. Being critical maximizes the collective
response to perturbations.

1.1.4 Summary of experimental results

Experiments revealed us some important properties of bird flocks that need
to be theoretically understood.
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Fig.2 A. The correlation function C(r) is the average inner product of the velocity fluctuations of 
pairs of birds at mutual distance r. This correlation function therefore measures to what extent the 
orientations of the velocity fluctuations are correlated. The function changes sign at r=ξ, which 
gives a good estimate of the average size of the correlated domains (flock 28-10). B. The 
correlation function Csp(r), on the other hand, measures the correlations of the fluctuations of the 
modulus of the velocity, i.e.  the speed. This correlation function measures to what extent the 
variations with respect to the mean of the birdsʼ speed are correlated to each other. The speed 
correlation function changes sign at a point r=ξsp, which gives the size of the speed-correlated 
domains (flock 28-10). Both correlation functions in panels A and B are normalized as to give 
C(r=0)=1. C. The orientation correlation length ξ is plotted as a function of the linear size L of the 
flocks. Each point corresponds to a specific flocking event and it is an average over several 
instants of times in that event. Error bars are standard deviations. The correlation length grows 
linearly with the size of the flock, ξ = aL , with a=0.35 (Pearson correlation test: n=24, r=0.98, 
P<10-16), signalling the presence of scale-free correlations. B. Also in the case of the correlation 
function of the speed, the correlation length ξsp grows linearly with the size of the flock, ξsp = aL, 
with a=0.36 (Pearson: n=24, r=0.97, P<10-15). Error bars are standard deviations. 

 

Fig. 1.4: a and b correlation function of direction and speed respectively. The first
crossing of the x axis gives an estimate of the correlation length, that is
showed in the lower panels in function of different flock sizes, where we
find a clear linear dependence with no sign of saturation. The correlation
length are therefore scale-free. Figure from [16].
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1.2. Numerical models of flocking

The three dimensional structure is much similar to a gaseous system than
to a crystalline one. Flocks are however not completely unstructured, they are
anisotropic with respect to the direction of motion; this revealed a fundamental
characteristic of their interaction: it is topological and not metric. Is the
topological interaction the key feature in keeping efficiently the cohesion of
the flock?

Flocks are strongly ordered, with scale free correlation of the fluctuations of
both orientation and speed. The correlation length is of order of the system
size. This implies a high degree of mutual influence even tough the interaction
is short range (6 ∼ 7 neighbours).

In the next section I will summarize the theoretical explanations of these
results and I will address the attention to the comparison between existing and
novel models with the experimental and theoretical results.

1.2 Numerical models of flocking

1.2.1 The Vicsek model

The Vicsek model [46] is the archetype of almost all flocking models. It
consists in a system of particles moving of lattice and updating their state,
defined by a position r and a direction v, via a simple interaction rule.

The Vicsek model is based upon three reasonable assumptions: i) since the
birds are strongly aligned, then each bird i has to adjust its direction evaluating
the mean direction of the others (alignment interaction); ii) a bird will not be
able to follow all the others, but only the neighbours within a certain radius
(short range interaction); iii) the bird’s motion will be subject to some sort of
noise due to environment perturbation or cognitive errors.

In its original formulation each particle tends to align its direction of motion
to that of its metric neighbours. More precisely, the direction of particle i at
time t + 1 is the average direction of all particles within a sphere of radius λ
around i (including i itself). The parameter λ is therefore the metric radius
of interaction, that is the perception range. The resulting direction of motion
is then perturbed with a random rotation, playing the role of noise. Particles
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Chapter 1. Collective behaviour in bird flocks

have all fixed velocity modulus |v| = v0. The update equation of the model is,

vi(t+ 1) = v0 Rη

[
Θ

(∑
j∈Si

vj(t)

)]
, (1.10)

where Si is the spherical neighbourhood of radius λ centred around i, Θ is
the normalization operator Θ(x) = x/|x| and Rη performs a random rotation
uniformly distributed around the argument vector with a maximum amplitude
of 4πη. The position ri is updated with the following rule,

ri(t+ 1) = ri(t) + vi(t+ 1). (1.11)

When the interaction radius λ is fixed (typically set equal to one) the behaviour
of the model is independent from the value of v0 if it is below a given threshold
(v0 . 0.5) meaning that in order to align with the others, a particle should not
change its neighbourhood too quickly. The remaining independent parameters,
the density ρ and the noise η, completely determine the behaviour of the
system. The density is implicitly set by the number of particles and by the
size of the box (usually with periodic boundary conditions) where the system
evolves.

The most widely studied property of the Vicsek model is its order-disorder
transition. This transition is driven either from the noise amplitude or from
the density of the system. When the noise (density) is above (below) a critical
value the system is disordered, while it is ordered vice versa. The critical value
of one parameter depends by the (fixed) other. In the limit of zero density
(open boundary conditions) there is no ordering.

The nature of this transition has been long debated [46, 21, 24, 25, 20], and
finally proved to be first order. However the phenomenology is indistinguish-
able from a second order transition up to very large system sizes.

In a first order transition the correlation length is generally finite even at
the critical point, nevertheless, if it is very large, it is possible to observe scale
free correlation up to large scales, exactly as if the transition was second order
[10].

A quantity that clearly displays the difference between continuous and dis-
continuous transition is the Binder cumulant,

G(η, L) = 1− 〈φ
4〉t

3〈φ2〉2t
, (1.12)
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(a) (b)

the discontinuous character of the transition was argued to
disappear in the limit of small v0 �39�. We now address the
problem of the nature of the transition in full detail.

Even though there is no rigorous theory for finite-size
scaling �FSS� for out-of-equilibrium phase transitions, there
exists now ample evidence that one can safely rely on the
knowledge gained in equilibrium systems �41–43�. The FSS
approach �44,45� involves the numerical estimation of vari-
ous moments of the order parameter distribution as the linear
system size L is systematically varied. Of particular interest
are the variance

���,L� = Ld�	
2
t − 	

t
2�

and the so-called Binder cumulant

G��,L� = 1 −
	
4
t

3	
2
t
2 , �8�

where 	·
t indicates time average. The Binder cumulant is
especially useful in the case of continuous phase transitions,
because it is one of the simplest ratios of moments which
takes a universal value at the critical point �t, where all the
curves G�� ,L�, obtained at different system sizes L, cross
each other. At a first-order transition point, on the other hand,
the Binder cumulant exhibits a sharp drop toward negative
values �46�. This minimum is due to the simultaneous con-
tributions of the two phases coexisting at threshold. More-
over, it is easy to compute that G�� ,L��2 /3 in the ordered
phase, while for a disordered state with a continuous rota-

tional symmetry one has G�� ,L��1 /3 in d=2 and G�� ,L�
�4 /9 in d=3.

A. Overture

As an overture, we analyze systems of moderate size in
two dimensions �N�104 particles� at the density �=2, typi-
cal of the initial studies by Vicsek et al., but with the slightly
modified update rule �2� and for both angular and vectorial
noise. The microscopic velocity is set to v0=0.5.

For angular noise, the transition looks indeed continuous,
as found by Vicsek et al. On the other hand, the time-
averaged scalar order parameter 	

t displays a sharp drop
for vectorial noise, and the Binder cumulant exibits a mini-
mum at the transition point, indicating a discontinuous phase
transition �Figs. 1�a� and 1�b��. Simultaneously, the variance
is almost  peaked. The difference between the two cases is
also recorded in the probability distribution function �PDF�
of 
 which is bimodal �phase coexistence� in the vectorial
noise case �Figs. 1�c� and 1�d��.

The qualitative difference observed upon changing the
way noise is implemented in the dynamics is, however, only
a finite-size effect. As shown in �38�, the transition in the
angular noise case reveals its asymptotic discontinuous char-
acter provided large enough system sizes L are considered
�Figs. 2�a� and 2�b��. Remaining for now at a qualitative
level, we show in Fig. 2�c� a typical time series of the order
parameter for the angular noise case in a large system in the
transition region. The sudden jumps from the disordered
phase to the ordered one and vice versa are evidence for
metastability and phase coexistence.

Note that the system size beyond which the transition re-
veals its discontinuous character for the angular noise case at
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Fig. 1.5: (a) and (b) snapshots of the Vicsek behaviour in the disordered and or-
dered phases. Figure from [46]. (c) Behaviour of the polarization with
respect to noise at fixed density (ρ = 2). The critical point is at η ∼ 0.46.
(d) Binder cumulant, a clear drop toward negative values is evident for
large system sizes, indicating the discontinuous nature of the transition.
Figure from [20].
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Chapter 1. Collective behaviour in bird flocks

where φ is the instantaneous polarization and 〈·〉t denotes the time average.
The Binder cumulant is G(η, L) ∼ 2/3 in the ordered phase, while in the
disordered one it is G(η, L) ∼ 1/3 in 2d ans G(η, L) ∼ 4/9 in 3d. If the phase
transition is second order the Binder cumulant has an universal value at the
critical point, so that for different system sizes L the curves G(η, L) cross each
others in the same point. On the other hand if the transition is first order
G(η, L) has a sharp drop toward negative values at the critical point, as a
consequence of the coexistence of the two phases (Fig. 1.5d).

There are indeed two immediately evident aspects of this model that deeply
differ from the real flocks of birds: the model has no attraction repulsion
interaction and it will evaporate (as a gas) in free boundary conditions, and
more importantly the interaction range is metric.

1.2.2 The Grègoire, Chatè and Tu model

An important modification of the Vicsek model was carried on by Grègoire,
Chatè and Tu in [26, 25]. They focused their attention on the cohesion of the
flock.

The cohesion of the flock in free boundary conditions is guaranteed (with
the right set of parameters) by an additional attraction repulsion term, that as
for Vicsek is based upon some reasonable assumption: a bird will try to avoid
collisions, and to maintain a fixed distance from the others.

The interaction rule is defined imposing that the interaction ensemble of
each particle is given by the links drawn building the Delaunay triangulation
of the points corresponding to the particles positions. The Delaunay triangu-
lation is the geometrical triangulation that maximize the internal angles of the
triangles (in 2d) or the simplexes (in arbitrary dimension). In two dimensions,
given a collection of points in the plane, a triangulation consists in drawing
triangles using all the points as vertices; such triangulation is a valid Delau-
nay triangulation if the circumscribed circle of each triangle does not contain
points other than the triangle vertices [34]. Additionally a metric cut-off of
the interaction is imposed to avoid the possibility of long range interaction.
Thus, this is a mixed metric-topological rule.
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G. Grégoire et al. / Physica D 181 (2003) 157–170 163

Fig. 6. Short-time trajectories of freezing droplets ofN = 512
boids (5000 timesteps are shown, the motion of the CoM and
the solid rotation around it have been substracted). (a) In the
moving phaseα = 3.0, β = 70: the inner part appears more solid,
while the head is clearly more liquid (the arrow indicates the
instantaneous direction of motion). (b) In the non-moving phase
α = 1.0, β = 50: one can distinguish an outer liquid layer from
the almost solid core.

on a square surface of linear sizeL = 180 (ρ =
1/16) with periodic boundary conditions. Using the
criteria defined above, we obtained the phase diagram
presented inFig. 7.

For each parameter value, we used an initially ag-
gregated flock. We let the system evolve during a time
τ ∝ Ld , and then we recorded each order parame-
ter and its histogram along time. The transition points
were determined by dichotomy, the precision of which
is reflected in the error bars.

The basic expected features are found: the hori-
zontal “gas/liquid” and “liquid/solid” transitions are
crossed by the vertical “moving/non-moving” line.
Near this line, however, one observes a strong defor-
mation of the “gas/liquid” and “liquid/solid” bound-
aries. This cannot be understood without a careful
study of the collective motion transition[12].

Fig. 7. Phase diagram atρ = 1/16, L = 180 (other parameters as
in Table 1). S: solid, MS: moving solid, L: liquid, ML: moving
liquid, G: gas, MG: moving gas. Dashed line: transition line of
collective motion.

Note also that the “gas” phase itself is crossed by
the line marking the onset of collective motion, using,
as explained above, the average velocityV of the n

particles of the largest cluster as the order parameter.

7.3. Finite size and saturated vapor effects

We are ultimately interested in the possibility of
collective and cohesive motion for an arbitrarily large
flock in an infinite space. The phase diagram ofFig. 7
was obtained at a fixed system size and constant den-
sity. Thus both limits of infinite-size and zero-density
have to be taken to reach the asymptotic regime of
interest. Of course this is mostly relevant to the on-
set of cohesion (the “gas/liquid” transition). Here we
first study each limit separately, i.e. we investigate
finite-size effects at fixed particle density and expan-
sion at fixed particle number. Then we discuss the
double-limit regime of interest.

Performing such a task for the whole parame-
ter plane far exceeds our available computer power.
We restricted ourselves to three typical cases: in the
non-moving phase (α = 1.0), in the moving phase

Fig. 1.6: Phase diagram of the Grègoire and Chatè model in the α − β plane (i.e.
at fixed noise and density). The two panels represent two regions far
from each other on the β axis. There are two horizontal separation be-
tween the gaseous G and the liquid L phases and between the liquid and
solid S ones depending by the parameter β, and a vertical separation
between the moving an non moving phases depending from α. The tran-
sition between moving and not moving is analogous to the order/disorder
transition in the standard Vicsek model (where it is the only possible tran-
sition), and it is mainly driven by the ratio between alignment and noise;
the gas–liquid–solid transitions are determined by the attraction repulsion
strength: when it is high the particles naturally arrange themselves in a
lattice–like distribution as a system of packed spheres would do, while if
the attraction force is low the system will evaporate. The parameters are:
ρ = 1/16, L = 180, v0 = 0.05, η = 1.0, rc = 0.2, re = 0.5, ra = 0.8 and
r0 = 1.0. Figure from [26].
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The Vicsek model is thus modified as follows,

vi(t+ 1) = v0Θ

[
α
∑
j∈Di

vj(t) + β
∑
j∈Di

fij + ncηi

]
(1.13)

xi(t+ 1) = xi(t) + vi(t), , (1.14)

where Di is the set of Delaunay neighbours of particle i, nc the number of
particles in Di (i.e. the number of i’s interacting neighbours) and fij is an
attraction repulsion term in the form,

fij = r̂ij


−∞ if rij < rc
1
4

rij−re
ra−rc if rc < rij < ra

1 if ra < rij < r0

, (1.15)

here rc is a hard sphere repulsion distance, re is the equilibrium of the elastic
potential, ra a threshold distance beyond which the attraction force becomes
constant, and r0 the maximum interaction range. Typical values for these
parameters are rc = 0.2, re = 0.5 and ra = 0.8, in order to have a balanced
proportion between attraction and repulsion zones when r0 = 1. The precise
form of the dependence of this attraction repulsion term has to be non crucial.
The underlying idea is to have an hard core repulsion term, an equilibrium dis-
tance, and a threshold on the maximum force that should not grow indefinitely
with distance.

The noise term was also redefined, introducing what was called vectorial
noise that, in contrast with the angular noise defined by Vicsek, it is dependent
from the number of interacting neighbours to mimic the error made by a bird
following one other.

This model has a richer phase diagram with respect to the Vicsek’s one.
In the α − β plane (i.e. fixed density and noise) we can observe horizontal
transition lines between the gas/liquid and liquid/solid phases and a vertical
transition between the not-moving/moving ones. (Fig. 1.6).

1.2.3 The topological Vicsek model

The Grègoire, Chatè model is a first step in the investigation of the role of
topological interaction in flocking, but to understand if topological interaction
enhances the efficiency of the system we need something different.
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Fig. 1.7: Topological model with angular resolution. The interaction ensemble S (i)
is defined in the following way. Let j and k be the first and second nearest
neighbours of particle i (rij < rik, rij = |rij |, rik = |rik|). If we call µ a

threshold parameter and α the angle ĵik, then i interacts only with j if α <
µ (a), while it interacts with j and k if α > µ (b). This rule is iteratively
applied to all the pairs of neighbours of i, choosing the nearest one every
time that the angle between the particles is smaller than the threshold.
The value of µ also fixes the average number of interacting neighbours
nc(µ) = (1/N)

∑
i n

i
c. One can show that approximately nc(µ) ∼ 2/(1 −

cos(µ)). Figure from [13].

In [7] was proposed a first comparison between a metric and topological
model, showing that in the topological case the probability to maintain the
cohesion is higher. Here I’ll present a further investigation in this direction.

The simplest possible definition of topological interaction consists in impos-
ing that each bird interacts only with the first nc nearest neighbours. In this
case there is indeed the possibility for a bird to be subject to a directionally
unbalanced transfer of information. If a bird’s neighbours are all on one side
except one on the other, the information coming from the isolated bird will
have an insignificant weight with respect to the information coming from the
many same-side others which will be indeed redundant.

I added to the simple topological rule an assumption: a bird will try to
gather information from all directions, neglecting redundancy to optimize its
cognitive capabilities.

I therefore defined [13] an interaction rule based on a threshold on the an-
gular distance between the neighbours of each bird: if two neighbours are
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Chapter 1. Collective behaviour in bird flocks

(angularly) too near to each other, a bird will interact only with one of them,
the nearest. A clear graphical explanation is given in figure 1.7.

To investigate the cohesion performance of metric and topological interaction
I used three variants of the model defined by the update rules of equations
(1.13) and (1.11), where the ensemble of interacting neighbours of each bird is
defined by a metric rule, by the simple topological rule and finally by the last
defined balanced topological rule. The model is thus redefined as,

vi(t+ 1) = v0Θ

[
α
∑
j∈Si

vj(t) + β
∑
j∈Si

fij + ncηi

]
(1.16)

xi(t+ 1) = xi(t) + vi(t), (1.17)

Where Si is the interaction ensemble defined either with the metric, simple
topological or balanced rule. fij has the same definition as the Grègoire, Chatè
model, with the value of r0 equal to infinity in the two topological variants.

fij = r̂ij


−∞ if rij < rc
1
4

rij−re
ra−rc if rc < rij < ra

1 if ra < rij < r0

(1.18)

Here is important to stress that the topological nature of the interaction is
relative to the rule used to determine the interaction ensemble of each particle,
and using a metric equilibrium distance doesn’t infringe this nature.

I compared [13] the behaviour of these three variants against noise and
against an external perturbation. This comparison consisted in simulating the
evolution of the system during a fixed time interval (with the appropriate set of
parameters) and counting the number of connected components (CC) formed
by the (eventual) splitting of the initially cohesive flock. A large number of
CC implies low stability, and vice-versa. Each experiment was repeated 400
times and averages were performed over all these runs.

When comparing the resilience of different models to noise, η, one must of
course use the same value of η in all three models, otherwise the comparison
would be unfair. In this case, thus, one must use the same value also for all
parameters other than noise. Concerning the range, this means fixing r0 and µ
such that the effective number of interacting neighbours, nc, is the same in all
three models. This ‘equal parameters’ comparison is a neutral (and natural)
path to be investigated.
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Fig. 1.8: g(r) function for the three models at equal observables. For all three
models, observables are polarization Φ = 0.99 and number of connected
components < CC >= 1. Fixing the observable means tuning the param-
eters individually for each model.
(a) Metric model: α = 35, β = 0.5, η = 0.25, rc = 0.65 (implying
nc(r0) = 21.2).
(b) Purely topological model: α = 35, β = 0.25, η = 0.25, nc = 20.
(c) Topologically balanced model: α = 35, β = 0.06, η = 0.125, µ = 0.7
(implying nc(µ) = 8.8).
Figure from [13].

However, using equal parameters is not the right thing to do when one
wants to test the stability against external perturbations. The three models
are different, and therefore same values of the parameters may imply different
biological observables. Hence, the second criterion I adopted was to use for
each model a different set of parameters (a sort of optimal set) (Fig. 1.8)
that ensures a realistic value of polarization and cohesion, and as realistic
as possible a radial correlation function, g(r). Once this calibration to the
biological observables is done, it’s possible to proceed with the comparison of
the model’s performance against external perturbation.

A summary of the results is presented in figure 1.9 where the probability
distribution of CC is showed against noise (Fig. 1.9a) and obstacle (Fig. 1.9b).

My analysis confirms that topological interaction perform better than met-
ric one. The problem with metric interaction is that individuals can easily
drop out of the interaction range, hence losing contact with the rest of the
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Fig. 1.9: (a) Probability that a flock splits into M connected components after 5000
iterations, for the three variants of the model (metric, green bars; simple
topological, red bars; and topological balanced, blue bars). An initially
cohesive flock is left to evolve unperturbed according to equations 1.16
and 1.17. Owing to the presence of noise, the flock can spontaneously
split giving rise to multiple sub-groups. nc = 22 for the simple topological
model; r0 = 0.72 for the metric model (corresponding to nc(rc) ∼ 22); and
µ = 0.411 for the topological balanced model (corresponding to nc(µ) ∼
22). N = 512, α = 35, β = 5, η = 1. The other parameters are (v0 = 0.05,
rc = 0.2, re = 0.5, ra = 0.8). 400 distinct simulation runs are performed
for each histogram. (b) same as (a), but with the system perturbed by
an obstacle. The obstacle is placed in the direction of motion of the flock
(in axis with its centre of mass) approximately at a distance of twice the
flock radius. The obstacle is modelled as a sphere of radius 2. When
a bird’s distance from the obstacle is smaller than the sphere radius, it
takes the opposite direction with respect to the obstacle, regardless of its
neighbours. Metric model: α = 35, β = 0.5, η = 0.25, r0 = 0.65 (implying
nc(r0) = 21.2). simple topological model: α = 35, β = 0.25, η = 0.25,
nc = 20. Topologically balanced model: α = 35, β = 0.06, η = 0.125,
µ = 0.7 (implying nc(µ) = 8.8). Figure from [13].
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1.2. Numerical models of flocking

group. However, even the purely topological model is unstable with respect
to fragmentation into sub-groups of size nc. The only way to respond to such
instabilities, for both metric and purely topological model, is to increase the
number of interacting neighbours, which may lead to flocks that are cohesive
but with too strong a structure compared to real ones. The radial correlation
function, which has been measured in real flocks, is the main tool I used to
check particles’ positional structure within the flock.

In figure 1.8 I show the g(r) obtained from the simulation of the three models
using the optimal set of parameters. In the metric and simple topological cases
the density (ideally the limit g(r → ∞)) is higher and the peaks of the g(r)
are still more pronounced than in the balanced case.

On the other hand, I found that using a topological rule that is balanced in
space, where neighbours are selected topologically, but at the same time they
are evenly distributed in angle, it is possible to achieve robust cohesion also
with a small number of interacting neighbours, still preserving a realistic struc-
ture for the flock, namely a realistic g(r). When I fix parameters independently
in each model in such a way that all three models have realistic polarization
and structure, and high unperturbed cohesion, it turns out that the topolog-
ically balanced mode has the highest stability against external perturbation
(Fig. 1.9).

Model implementation

To conclude this section I add a brief comment on the model implementa-
tion. The standard implementation of the Vicsek model (valid in general for
numerical simulations of particle systems with short range metric interactions)
consists in partitioning the space in a (usually) uniform grid. If the cell size of
the grid is chosen equal to the interaction radius, then to compute the interac-
tions for a given particle i is sufficient to explore the cell containing i and the
surrounding ones and compute the interaction with the particles j contained
in those cells.

This algorithm is intrinsically not suitable in the case of topological inter-
actions since there is no metric limit to the maximum distance of interaction
between two particles. An alternative (indeed used for k-nearest-neighbour
search [23]) is to compute the all pair distances, for each particle sort them by
distance, and use the first nc to compute the interactions. Obviously this al-
ternative has a high computational complexity (O(N2)) and can be reasonably

19



Chapter 1. Collective behaviour in bird flocks

y: 0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110

x:
0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

111111

Fig. 1.10: Graphical representation of the two dimensional Z-order space partition-
ing. A cell’s index consists in a binary number whose even bits are the
x coordinate of the cell and odd ones are the y coordinate.

used only for small Ns.

I instead implemented a Z-order space partitioning [33]. It consists in
defining a particle’s cell index interleaving the bits of the cell’s coordinates
(Fig. 1.10). For example, in 2d, a cell of coordinates (6,5) has in binary repre-
sentation coordinates (110,101); its index in the Z-order is 110110 = 54. The
Z-curve has scaling self-similarity (its pattern is repeated at different scales),
so cells are automatically arranged in levels of a tree structure; if one need to
know the index of a higher level is sufficient to shift the lowest level’s index
by two bits on the right; in the previous example it would be 110110 >> 2 =
1101 = 13 (where >> is the bit shift operator).

If now the particles are indexed by their cell coordinates following the z-
curve, and they are sorted by this index (at each simulation iteration), then
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1.3. The maximum entropy approach and a model for speed fluctuations

all the particles belonging to the same cell are contiguous in the ordered list,
and this is true for all the levels of the tree structure composed by cells and
sub-cells of arbitrary depth. This means that to iterate over the particles in a
cell it is sufficient to know the indexes of the first and last ones in that cell.

During the simulation, the distance of the furthest interacting neighbour
is known for each particle from the previous simulation step, and since the
speed is fixed this distance can not increment more than twice the speed (with
the two particles going in opposite directions). Accordingly it is known the
level of the cells tree that has a cell size greater or equal to the furthest inter-
acting neighbour’s maximum distance; the new interacting neighbours will be
searched exploring this level’s cell.

All the models I will present in this thesis are based on this algorithm whose
merit is also the flexibility: it works well also for the metric interactions.

To my knowledge this algorithm implementation for topological interaction
in self propelled particles is original, while the use of z-ordering to solve the
so called k-nearest-neighbour search problem was first described in a database
optimization work [37].

I implemented this algorithm on GPU using the CUDA C programming lan-
guage, taking advantage not only from the high GPU computing performance
(a deep performance analysis was out of my scope), but also from the possibil-
ity to have a graphical representation of the evolving system in real time on the
monitor. Some of my results originate from initial intuitions I had just looking
at coloured particles moving on my monitor during real time simulations.

1.3 The maximum entropy approach and a model
for speed fluctuations

The models presented in the previous section are based on assumptions
(e.g take the average direction of neighbours), these are reasonable but still
arbitrary ones.

In this section I will briefly introduce a theoretical statistical inference
method; I will describe how it can be applied to flocking experimental data,
and validate the method against numerical simulations; finally I will introduce
a novel self-propelled particle model whose interaction rules are inspired by
the theory rather than assumptions.

21



Chapter 1. Collective behaviour in bird flocks

1.3.1 Maximum entropy theory for the flight directions

The maximum entropy theory [28] provide us an analytical method to infer
the probability distribution of an observable using the experimental measures
with the minimum (ideally null) number of assumptions.

Given an observable ui, we can think that it is drawn from a probability
distribution P ({ui}). The maximum entropy method consists in finding the
less structured (most random) distribution P among the infinite possible ones.

From Shannon’s information theory [40] we know that the measure of ran-
domness (or the measure of information) is given by entropy:

S[P ] = −
∑
u

P (u) lnP (u). (1.19)

We wan to to maximize S[P ] subject to the constraint that the expectation
values computed with P match the experimental measures,

〈fµ(u)〉exp = 〈fµ(u)〉P ≡
∑
u

P (u)fµ(u) ∀µ, (1.20)

with the additional constraint that P (u) should be normalized, f0(u) = 1. We
can use the method of Lagrange multipliers to solve this optimization problem
introducing a generalized entropy function,

S[P ;λν ] = S[P ]−
K∑
µ=0

λµ

[
〈fµ(u)〉P − 〈fµ(u)〉exp

]
, (1.21)

where a multiplier λµ is added for each constraint. Maximizing S with respect
to P we obtain:

0 =
∂S
∂P

=
∂S

∂P
−

K∑
µ=0

∂ 〈fµ(u)〉P
∂P

= − lnP (u)− 1−
K∑
µ=0

λµfµ(u) (1.22)

⇒ P (u) =
1

Z({λν})
exp

[
−

K∑
µ=0

λµfµ(u)

]
, (1.23)
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1.3. The maximum entropy approach and a model for speed fluctuations

with,

Z({λν}) =
∑
u

exp

[
−

K∑
µ=0

λµfµ(u)

]
. (1.24)

Optimizing with respect to {λν} we obtain a set of K simultaneous equations

0 =
∂S
∂λµ

= 〈fµ(u)〉exp − 〈fµ(u)〉P

⇒ 〈fµ(u)〉exp =
1

Z({λν})
∑
u

fµ(u) exp

[
−

K∑
µ=0

λµfµ(u)

]
, (1.25)

We now want to apply this approach to flocks. Flocks of birds are intrin-
sically out of equilibrium systems, and using the maximum entropy method
to infer the probability distribution of flocks observables can appear risky, but
recent results with networks of neurons [39, 42, 44], ensembles of amino acid
sequences [32], and biochemical and genetic networks [30, 43], encouraged us
to use the maximum entropy approach as a path for constructing statistical
mechanics models of biological systems directly from real data. We saw in
the previous sections that some relevant observables are the correlations of the
orientations and speed fluctuations. Let’s start considering as input observable
for the maximum entropy method the flight directions (orientations), we shall
add the speeds at a second stage.

Let’s then identify ui = vi/|vi| as in equation (1.7), and fµ(u) = Cij =
ui · uj. Then replacing λµ with −Jij, we can rewrite equation (1.23) as

P (u) =
1

Z({Jij)
exp

[
1

2

N∑
i=1

N∑
j=1

Jijui · uj

]
. (1.26)

Now {Jij} are the parameters to be adjusted to satisfy 〈ui · uj〉P = 〈ui · uj〉exp.
P (u) has a a familiar form for physicists when written as:

P (u) =
1

Z(β)
e−βE(u). (1.27)

If a system has states described by the variable u and each state has energy
E(u), then equation (1.27) is the equilibrium distribution. The equilibrium

23



Chapter 1. Collective behaviour in bird flocks

distribution of equation (1.26) is a distribution whose energy is determined
by the mutual alignment between birds, for J > 0 energy is lowered when
the birds are aligned. This mechanistic interpretation is compatible with the
common assumption that birds interact aligning to each other. Considering a
system with Hamiltonian

H({ui}) = −1

2

N∑
i=1

N∑
j=1

Jijui · uj, (1.28)

we would obtain
dui
dt

= −∇H({ui}) =
∑

Jijuj, (1.29)

that is the basic interaction rule used in many models, starting from the Vicsek
one.

Solving this problem for the full interaction matrix J is not very meaningful,
particularly because birds are moving, the matrix J and the correlations Cij
are changing from an instant to the other, so that it is not possible to define
a static distribution for C. However, if we consider the average correlation
among pairs within a neighbourhood of size nc

Cint =
1

N

∑
i

1

nc

∑
j∈c

〈ui · uj〉 , (1.30)

then this quantity is stationary in time. Mathematically we have restricted the
problem to two parameters J and nc, indeed the maximum entropy distribution
consistent with the observable Cint is given by:

P (u) =
1

Z(J, nc)
exp

J
2

N∑
i=1

∑
j∈nic

ui · uj

 . (1.31)

Now, for a given value of nc, J has to be adjusted so the expected value
of Cint computed with the distribution (1.31) is equal to the experimentally
measured one. This can be done using a low temperature expansion (spin wave
approximation) to compute the partition function, and numerically solving the
equations for nc and J (for details see [9]).

In general there is a clear optimum value for nc that can be therefore in-
terpreted as the actual interaction range compatible with the measured corre-
lations. Once the parameters are fixed, the model is fully determined. In [9]
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1.3. The maximum entropy approach and a model for speed fluctuations

we showed that the model not only reproduces Cint as it should, but it also
correctly predicts the full two-point and four-point correlation functions of the
orientations on all scales. This indicates that alignment is indeed a crucial
ingredient in flocking. More importantly we can study the dependence of the
interaction range, the optimal nc, from the density of the flock (Fig. 1.11) we
find no correlation (constant nc), providing a confirmation of the topological
interaction with an analysis technique completely different from the one de-
scribed in the previous paragraphs. We notice that the value of nc obtained
by the maximum entropy approach is larger than the one obtained with the
anisotropy (nc ∼ 21) by a factor of order 3. In the next section I will address
again this point.

Finally we must stress that the input observables are not the the full cor-
relations, but Cint, that is restricted to the neighbouring birds. However the
two point and four point correlation functions can be reconstructed with high
accuracy using the maximum entropy probability distribution. Therefore the
theory gives the right predictions (this is shown in figure 1.13 for the correlation
function of the speed fluctuations).
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Fig. 1.11: (a) Inferred topological interaction range versus flock size, (b) Inferred
topological interaction range versus sparseness and (c) inferred metric
interaction range versus sparseness. Analogously to figure 1.3 the topo-
logical interaction range doesn’t depend on the density, while the metric
one does. This is an independent confirmation of the topological nature
of the interaction. Figure from [9].
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1.3.2 Numerical test of the maximum entropy approach

In the previous section I described how we applied the maximum entropy
method to flock data. This method had always been applied to cases of static
networks, while, as I discussed, flocks have a dynamical network. Therefore
we wanted to check that all the methodology and the theory worked in the
case of active out-of-equilibrium systems. We already showed that the theory
gives the right predictions for the c(r), now we focus on the significance of the
inferred parameters J and nc.

To do so, I considered the balanced topological model introduced in section
1.2.3. In this model the interaction of individuals is mainly based on alignment,
it is suitable for obtaining reasonably realistic flocks that simultaneously grant
cohesion and unstructured 3d distribution, and allows to vary the number of
interacting neighbours of a bird.

These ingredients are enough to perform a test on the maximum entropy
method. I simulated realistic flocks moving in three dimension with different
interaction ranges nc; I then applied the maximum entropy analysis to the
synthetic data obtained and compared the inferred pairs (jmem, nmemc ) with
the simulation ones (jsim, nsimc ).

The results of this comparison are shown in figure 1.12. I found for both
J and nc that the maximum entropy method returns overestimated values by
a factor of 2.2 and 2.7 respectively. Nevertheless I found an excellent linear
dependence between the real and inferred values of the parameters. Showing
that the inference procedure works well, apart from a renormalization factor.

A possible argument to explain the overestimation of J and nc reside in
the dynamic feature of the interaction network, that possibly enhances the
effectiveness of the interactions. When birds move move through the flock,
they may encounter new neighbours before losing memory of the earlier flight
directions and in so doing propagate information and correlation more effec-
tively than if they were sitting on a fixed network. On the other hand in
the maximum entropy model, interactions are static by construction, so the
dynamical nature of the true interaction network is compensated by giving a
larger effective value of nc.

If we use the proportionality factor obtained from the real and inferred
simulation parameters to rescale the parameters inferred for the birds we find
the value nc ∼ 8 that is compatible with the one obtained from the study of
anisotropy. We therefore had an independent confirmation not only for the
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Fig. 1.12: Comparison between the inferred parameter J (left) and nc (right) and
the corresponding simulation values. The excellent proportionality con-
firms the applicability of the maximum entropy method to an out-of-
equilibrium system, while the proportionality factor of ∼ 1/3 can be
interpreted as an effect of the continuous modification of the interaction
network. Figure from [9].
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topological nature of the interactions, but also for its range.

1.3.3 Maximum entropy for the full velocities

Following the same method used for the orientation correlations, it is possible
to infer the probability distribution for the full velocities [8], including also the
speed degrees of freedom. In this case we must look for the maximum entropy
distribution consistent with the following local correlation:

Qint =
1

2v2
0N

N∑
i=1

1

nc

∑
j∈nic

|vi − vj|2. (1.32)

where we changed notation to stress that vi are now the full velocities of the
birds, (e.g. including direction and speed).

We also want the distribution consistent with the measured average speed
of birds V = (1/N)

∑
i vi, and its variance (fixing the mean squared speed

V2 = (1/N)
∑

i v
2
i ). The maximum entropy consistent with Qint, V and V2 has

the form,

P ({vi}) =
1

Z
exp

[
− J

4v2
0

N∑
i,j=1

nij|vi − vj|2 +
µ

v0

N∑
i=1

vi −
g

2v2
0

N∑
i=1

v2
i

]
, (1.33)

with three parameters J , µ and g that have to be adjusted to fit the experi-
mental data for a given connectivity nc.

An interesting result concerns the inferred value of g, that is always near to
zero. To explain why this is interesting we need to introduce the Hamiltonian
derived from the mechanistic interpretation of P ({vi})

H({vi}) =
J

4v2

N∑
i,j=1

nij|vi − vj|2 +
g

2V 2

N∑
i=1

(vi − V )2, (1.34)

The first term in this Hamiltonian describes the tendency of the individual
velocities to adjust both direction and modulus to their neighbours, while the
second term forces the speed to have, on average, the value V . From this
perspective, we can interpret J as the stiffness of an effective “spring” that
ties each bird’s velocity to that of its neighbours, and g as the stiffness of a
competing spring that ties each speed to the desired mean i.e. to satisfy some
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1.3. The maximum entropy approach and a model for speed fluctuations

physical constraint. Larger J means a tighter connection to the neighbours,
and larger g means a tighter individual control over speed.

We have, in the limit of g going to infinity, that equation (1.34) reduces to
(1.28), while it can be shown that g = 0 represents a critical point for the
system, with the correlation length going as ξ ∼ r1

√
Jnc/g, where r1 is the

average nearest neighbour distance (Fig. 1.13).
The low inferred value of g represents therefore a strong indication to the

idea that the scale free correlations of speed fluctuations is the consequence of
being near criticality.
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Fig. 1.13: (a) Inferred correlation function of the speed fluctuations, for different
values of the control parameter g (increasing in the direction of the ar-
row). (b) Correlation length, defined as the point where the correlation
function crosses zero, in flocks of different sizes, for the experimental data
(blue diamonds) and for the inferred model (red circles). Figure from [8].

1.3.4 A new flocking model with variable speed

The maximum entropy model gives us an instantaneous (static) probability
distribution that is compatible with the observed data, and allows to infer the
parameters describing the system with high accuracy. It predicts the right full
correlation functions having as input just the short range correlation between
neighbouring birds. Nevertheless it doesn’t account for the dynamical evolu-
tion of the system, that implies a continuously changing interaction network.
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Chapter 1. Collective behaviour in bird flocks

To understand what happens when the full dynamical behaviour is taken in
account we can bring inspiration from the mechanistic interpretation we talked
about in previous paragraphs, and define of a novel model, whose equation of
motion is the Langevin equation relative to the Hamiltonian (1.34).

γ
dvi(t)

dt
= − J

2v2
0

∑
j

nij(vi − vj)−
g

v2
0

vi
vi

(vi − v̂)

+
1

nc

∑
j∈nic

fij + ηi(t) (1.35)

dxi(t)

dt
= vi. (1.36)

where we added the term fij to guarantee the cohesion of the flock, and the
term of noise ηi(t), a normally distributed random vector delta correlated in
time 〈ηαi (t)ηβj (t′)〉 = 2γTδi,jδα,βδt,t′ , where α, β = x, y, z, and T is an effective
temperature.

Using only the equation (1.35) on a fixed lattice (and with no attraction–
repulsion terms) we would obtain a spin–like model perfectly described by
the probability distribution (1.33). Our goal is to investigate the dynamical
behaviour obtained adding the equation (1.36).

Despite its similarity with other SPP models, the model I’m considering
has a crucial new ingredient, namely that the speeds of the individual birds
are not fixed but can change in time. Accordingly, equations (1.35) and (1.36)
describe the evolution of the full velocity (rather than just the flight direction),
with a term proportional to g that sets the scale of the speed fluctuations. In
addition, existing SPP models are usually defined as discrete dynamical update
equations, which do not have a well defined continuum limit. In contrast, I
have defined the model as a stochastic differential equation.

I simulated the model using a finite interval (Euler) discretization [12], ob-
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1.3. The maximum entropy approach and a model for speed fluctuations
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Fig. 1.14: Determining the simulation parameters. (a) The variance of the
speed σ2

v should not depend by the integration time-step h. The op-
timal value of h is the highest in the region where σ2

v(h) is flat. (b)
The parameter α in equation (1.39) determines the shape of the g(r);
the value α = 0.95 grants a realistic structure as in comparison with
figure 1.2. (c) The transient of σ2

v(g, t), the data sampling is started
at t0 = 100/(hg) corresponding to the vertical lines in the plot. (d)
Autocorrelation times; the sampling interval was chosen as ∆t = 103 so
that so that cv(t∆t) = 0 is satisfied for each value of g.
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Chapter 1. Collective behaviour in bird flocks

taining the following discrete equations.

vi(t+ h) = vi(t) + h
J

2v2
0

∑
j

nij(vj(t)− vi(t))− h
g

v2
0

vi
vi

(vi − v0)+

h
1

nc

∑
j∈i

fij(t) +
√
hηi(t) (1.37)

xi(t+ h) = xi(t) + hvi(t)., (1.38)

with,

fij = α
rij
rij

{
1
4

rij−re
ra−rc if rij < ra

1 otherwise
, (1.39)

The choice of the integration time-step h requires carefulness. A value too
high of h would produce a wrong integration of the equations of motion, but
reducing it means longer simulation times. A safe value of h can be obtained
computing the variance σ2

v of the speed, that in principle should not depend
by the integration time-step. In figure 1.14a the value of σ2

v(g, h) is plotted
against h for different values of g. Decreasing h corresponds to a decrease of
σ2
v until a steady value is reached. I choose the maximum value of h in the

flat region of σ2
v(h, g); this value is also dependent by g, the higher is g, the

lower is the corresponding maximum value of h. I found that a reasonable
compromise, in the range of interest of g was h = min(0.1, 0.005/g).

Even tough the model is intrinsically out of equilibrium, it reaches a station-
ary state for long enough times after the simulation start; we are interested
to study the model in this stationary regime. In figure 1.14c I show the time
dependence of σ2

v(g, t) from time, when the initial condition of vi = v0 ∀i.
σ2
v(g, t) grows from zero to a first peak until it relaxes to a stationary value.

I choose the transient time after the initial conditions as t0 = 100/(hg), and
started to record the simulation data after this transient.

To study the correlation function it’s important to average over uncorrelated
samples of the system. This can be done running as many different simula-
tions as the number of samples needed to obtain a good statistics, or, more
reasonably, to compute the (time dependent) autocorrelation

cv(t) =
1

N

∑N
i=1 vi(0)vi(t)

σ(v(0))σ(v(t))
, (1.40)

of the birds and determine the sampling interval t∆t so that cv(t∆t) = 0 (Fig.
1.14d).
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1.3. The maximum entropy approach and a model for speed fluctuations

Finally, recalling that the term of attraction repulsion force fij was added
to grant cohesive flocks and is absent from the maximum entropy theory, I
adjusted the simulation parameter α of equation (1.39) in order to reproduce
in figure 1.14b the experimental spatial distribution g(r) of figure 1.2, so that
the effect of this extra term was the most realistic possible.

With all other parameters fixed, I varied g, with the results shown in figure
1.15.
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Fig. 1.15: Simulations of the dynamical model. (a) Correlation function of
the speed fluctuations at different values of g, in a flock of N = 16384
birds. Inset: Correlation length, measured from the exponential decay
of the correlation functions at small r, as a function of g/(Jnc). (b) For
smaller g, correlation lengths are measured from the zero crossing of the
correlation function. For g/(Jnc) � 1, ξ approaches a maximum value
that depends on the size of the system. Inset: low-g maximum of ξ, as
a function of the system size; the linear dependence of ξ on L is typical
of scale–free behaviour. Figure from [8].

As expected from the analysis of the (static) maximum entropy model, the
fluctuations in speed have a correlation length that grows as g is reduced. If g is
not too small, we see correlations that decay exponentially, and the correlation
length varies with g/(Jnc) as expected. When g is lowered even further, the
exponential decay is modified by finite size corrections, and the correlation
length, computed as the zero–crossing point of the correlation function, keeps
increasing until a maximal, size dependent saturation value is reached. In this
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Chapter 1. Collective behaviour in bird flocks

regime, the correlations extend over a distance determined by the system size,
and ξ in fact grows linearly with L corresponding to scale–free behaviour (Fig
1.15b, inset).

This scenario confirms that the mechanism identified in the previous section
produces scale–free correlations in the speed even when the full dynamical
behaviour of the flock is taken into account.
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2 Collective turns and information
propagation in flocks

The maximum entropy approach indicates that flocks straight flight can
be described by means of simple interaction rules based on alignment. The
Vicsek model, which includes such rules, is an excellent base upon which it’s
possible to build models that reproduce many experimental evidences of real
flocks. In fact real flocks change their flying direction, and they do it almost
instantaneously at the naked eye observation. As I will discuss this is not
a feature that the simple Vicsek model can reproduce. A recent analysis of
the trajectories of turning flocks [3] shows that these changes of direction are
not instantaneous; it propagates through the flock from a first turning bird
to the last one. By studying collective turns we can therefore investigate one
of the most important issues in collective behaviour, namely how information
propagates through the system.

In this chapter I will first describe the experimental results on collective
turns, then I will briefly explain how these results gave rise to a novel theory
of flocking, and finally I will discuss the new model of flocking that I studied
numerically, which is based on these recent findings.

2.1 Experimental results

To study turns, i.e. collective changes of directions, the full trajectories of
all birds during the entire turning event are necessary (Fig. 2.1). From a rough
analysis of these trajectories it’s immediately evident that turns often occur
in a plane, that is more or less parallel to the ground, and that trajectories
curvatures have the same radius. Are they really simultaneous?

To answer the this question, we can study the modulus of the radial accel-
eration ai(t) of each bird (Fig. 2.1d); it has a clear peak whose position in
time changes from bird to bird. We can therefore calculate the mutual turning
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Chapter 2. Collective turns and information propagation in flocks

Fig. 2.1: Birds trajectories and turning delays. a, Reconstructed 3d trajec-
tories of three birds belonging to a flock performing a collective turn.
Sampling at 170Hz we capture fine details of the birds movement, such as
the zig-zag due to wing flapping (10Hz in starlings - inset). b, c, Trajec-
tories of all N = 176 birds of the same flock as in panel a. Each trajectory
lies approximately on a plane, justifying a simplified planar description of
the velocity. d, The radial acceleration of a turning bird displays a maxi-
mum as a function of time. In principle, given two birds i and j, one could
simply define the turning delay τij as the time shift between the peaks of
their accelerations. In practice, due to experimental noise, using just one
time point (the peak) gives an unstable estimate. To calculate τij in a ro-
bust way the entire trajectories are necessary. This can be done by asking
what is the delay τij by which we have to time-shift the radial accelerations
aj(t) to maximally overlap it with ai(t). This optimal shift corresponds
to the time where the correlation function Gij(τ) =

∫
dt ai(t) · aj(t − τ)

reaches its maximum (inset). e, In the absence of experimental noise, for
each triplet of birds, i, j, k we must have, τik + τkj = τij : if i turns 20ms
before k, and k turns 15ms before j, then i turns 35ms before j (Time
Ordering Relation - TOR). Due to noise TOR will not hold strictly, but
we still want it to be correct on average for τij to make biological sense.
We consider all triplets of birds and plot τik + τkj vs. τij . The data fall
on the identity line with relatively small spread, confirming the temporal
consistency of the turning delays. Figure from [3].
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2.1. Experimental results

delay τij for each pair of birds; τij will be greater than zero if bird i turned
before j and vice versa. To do this with sufficient precision we need the full
trajectories, in order to evaluate the cross correlation function between ai(t)
and aj(t):

[ai(t)× aj(t)](τ) =
∞∑

t=−∞

ai(t)aj(t+ τ), (2.1)

the delay τij corresponds to τ of the maximum of equation (2.1), in othe
words τij is the time shift needed to obtain the maximum overlap between the
acceleration curves.

Birds can now be ordered using these delays from the first who turned to
the last one. This has to be done carefully, because the delays are not always
consistent due to noise, e.g. given a triplet of birds i, j and k the time ordering
relation (TOR) τij + τjk = τik is not always satisfied as it would have been in
absence of noise. To overcome this frustration each bird is ranked according
to the total number of times it wins (has a positive delay) against the other
birds. The rank ri of bird i is given by,

ri = N −
∑
j 6=i

2

(
θ(τij)−

1

2

)
, (2.2)

being θ(x) the step function.
The absolute turning time is then defined as

ti =
1

ri − 1

∑
rj<ri

(ti + τij), ri > 1. (2.3)

From the rank versus absolute time plot (Fig. (Fig. ??)a) we obtain a convex
curve for early time, meaning that few birds started the turn, this few birds
are also physically close to each other, so the start of the turn is localized
in space, and the turning information is propagated through inter individual
interaction.

To understand how the signal propagates through the flock, we need a dis-
persion law. If we assume that equally ranked birds have the same distance
from the first turning bird, then we can define the distance travelled by the
signal as the radius x(t) of the sphere containing the first r(t) birds in the

rank, x(t) = (r(t)/ρ)1/3 where ρ is the density of the flock. Since the birds are
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Chapter 2. Collective turns and information propagation in flocks

Fig. 2.2: (a) The rank r of each bird in the flock, i.e. its order in the turning
sequence, is plotted vs its absolute turning delay t, i.e. the delay with
respect to the top bird in the rank (the first to turn). The convex toe of
the curve for early times indicates that few birds take initially the decision
to turn. (b) The average mutual distance D between the top 5 birds in
the rank does not increase with the linear size of the flock, L, hence
indicating that the first birds to turn are actually close to each other in
space. The result does not change using a different number of top birds.
Inset: the actual position of the top 5 birds (red) within a real flock. (c)
The distance x travelled by the information in a time t is proportional to
the radius of the sphere containing the first r(t) birds in the rank, namely
x(t) = [r(t)/ρ]1/3. The linear regime of x(t) allows us to define a ‘sound’
speed of propagation, cs, as the slope of x(t) for early-intermediate times.
The speed cs varies significantly from flock to flock. (d) The intensity of
the peak of the radial acceleration, amax, (solid symbols) decreases very
weakly in passing from the first to the last turning birds. In the inset,
we plot amax

i vs the rank ri for each bird. This slow decay indicates that
the information propagates through the flock with negligible attenuation.
Figure from [3].
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2.2. Theoretical modelling of information propagation in turns

moving off–lattice, this measure of distance is more robust with respect to a
metric one, that would have to be taken in an arbitrary instant of time. The
x(t) curve has a clear linear regime before it saturates due to border effects;
the distance travelled by information grows linearly in time, like a sound wave
would do (Fig. 2.2c).

2.2 Theoretical modelling of information
propagation in turns

What do existing models tell us about the experimentally measured linear
propagation of information?

As we have seen in the previous chapter, the study of Vicsek-like models
successfully explains many features of flocking, with even the model derived
from the maximum entropy model belonging to the same category.

On large time and length scales these models are described by Toner and Tu
hydrodynamical theory [45], and in a recent work [14] is presented a continuous
theory coupling the Toner and Tu theory with the new inertial model that I
will describe in this chapter. In the long wavelength limit (infinite system
size and zero wave-number) the two theories are showed to be equivalent, the
theory is universal and independent of the details of the microscopic dynamics.
In this regime the propagating orientational modes are always coupled with
density fluctuation.

But the flock turns we are studying are not in this regime. The turning
events occur in very short time scales, with negligible mutual diffusion between
the birds; The size of the flocks is relatively small (N < 1000) and, more
important, we measured no propagation of density fluctuation. The theory
described by Cavagna et al. in [14] reveals the emergence of a gap in the
dispersion relation, and shows that propagation phenomena in flocks have a
different nature in different size regimes: for large scales the propagation of
orientations is coupled with density fluctuation as in the standard Toner and
Tu theory, while for smaller scales a different kind of directional propagation
is predicted, with a linear dispersion law, compatible with the one observed in
real flocks; it is also predicted that at an intermediate range of system sizes
no propagation can occur at all.

In general any coarse grained theory is independent on the microscopic de-
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Chapter 2. Collective turns and information propagation in flocks

tails only in the thermodynamic limit. For finite sizes and time scales the
microscopic details of the dynamics are in fact crucial. For this reason it is
convenient to focus on a microscopic description of the system, like the one
given by self-propelled particle models. The first thing one can realize is that,
on short scales, the Vicsek model is not expected to exhibit propagation modes.
To see this, we consider (in analogy to what we saw in section 1.3) a general
continuous limit Hamiltonian for a Vicsek–like model,

H = −J
∑
<i,j>

vi · vj, (2.4)

that describes a system of interacting agents updating their velocity according
to the social force Fi = ∂H/∂vi.

To simplify the algebra we exploit the fact that the trajectories of birds
during a turn lie approximately on a plane (Fig. 2.1b and c). This allows us
to use a two-dimensional velocity, vi = (vxi , v

y
i ) = v eiϕi , where the phase ϕi is

the angle between the direction of motion of i and that of the flock (we make
the standard assumption that v is constant). In the highly ordered phase the
velocities vi differ little from the collective one, so that ϕi � 1. We can thus
expand H in equation (2.4). [9],

H =
J

2

∑
〈ij〉

(ϕi − ϕj)2 =
1

2
a2J

∫
d3x

a3
[∇ϕ(x, t)]2 , (2.5)

where a is the average nearest neighbours distance and a term v2 has been
reabsorbed into J . The Langevin equation associated to Hamiltonian (2.5) is,

∂ϕ

∂t
= −δH

δϕ
= a2J ∇2ϕ . (2.6)

Relation (2.6) is a diffusion equation for the phase ϕ, and it has dispersion
law ω = ik2. This result has two consequences, both in sharp contrast with
the empirical data: i) information travels much slower than linearly, x ∼√
t, at variance with the linear propagation we find in turning flocks; ii) the

frequency is imaginary, meaning that this is a non-propagating mode. Transfer
of information gets damped exponentially in space and time, again in stark
disagreement with the brisk, undamped propagation we observe in flocks.

This general argument is telling us that some critical ingredient is missing
from Vicsek–like models. It is necessary to develop a novel theory.
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2.2. Theoretical modelling of information propagation in turns

2.2.1 The Inertial Spin Model: a new model for
self-organized motion

The standard theory has two problems. First, it seems to be missing some
conservation law. Hamiltonian (2.4) is invariant under rotation of the velocities
vi (ϕi → ϕi + δϕ); all directions of flight are equivalent for a flock. Through
Noether’s theorem, a symmetry implies in general a conservation law, of which,
however, there is no trace in the standard theory. As a consequence a quantity
that should be conserved is instead relaxed and not transported across the
flock. Second, equation (2.6) completely neglects behavioural inertia, as the
social force, Fs = aJ∇2ϕ, controls directly ϕ̇, rather than ϕ̈. This is odd:
imagine that the interaction with the neighbours requires bird i to perform a
U-turn in one time step. This behaviour is allowed by the standard theory,
although it is clearly unreasonable.

In Attanasi et al. [3], a novel flocking theory is presented, showing that
considering the proper conservation law, and introducing a behavioural inertia
it is possible to explain the observed propagation of information and predict a
non trivial relation between polarization and speed of propagation.

Here I will follow the approach of [17] where a novel dynamical model re-
producing the experimental information transfer is discussed.

Even if the system as a whole (considering velocities and positions of the
birds) is not Hamiltonian, if we focus solely on the velocities, we can try
to describe it with a constrained deterministic model. Let’s start imposing
a constrain that fixes the modulus of the velocity |vi| = v0, and defining the
Hamiltonian of a system of interacting (by alignment) particles, that embodies
the conservation law for the generator of the velocity rotation. Let me stress
that we are considering rotations in the internal space of velocities and not, as
usual, in the external space of positions (i.e. the rotation of the velocity vector
and not of the position one). If we call si the local generator of rotations of
the velocity vi of bird i (i.e. internal momentum conjugated to the phase φi),
then the Hamiltonian reads as,

H(v, s) = − J

2v2
0

∑
ij

nijvi · vj +
1

2χ

∑
i

s2
i , (2.7)

where the first term is the familiar alignment interaction, while in the second
term we have a kinetic term with a generalized moment of inertia χ quantifying
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the resistance of a bird to a change of its spin. The global internal angular
momentum

∑
i si is a conserved variable.

The (deterministic) equation of motion derived from 2.7 are,

dvi
dt

= vi ×
∂H
∂si

= vi ×
1

χ
si (2.8)

dsi
dt

= −vi ×
∂H
∂vi

= vi × Fi (2.9)

dri
dt

= vi, (2.10)

where we must note that (vi, si) are not canonical variables; si is the conju-
gated moment to the phase ϕi, not to the velocity vector vi. Equations (2.8)
and (2.9) are obtained by the explicit relations between v, φ and s with the
constrain of constant modulus velocity (see [17] for details).

When the spin is equal to zero, equations 2.8, 2.9 and 2.10 describe a system
of particles moving in a straight line; while when s is different from zero,
but constant, the vector v performs a uniform circular motion, resulting in
a circular trajectory of constant radius R ∼ v0χ/|si|. Hence, the spin si
has a clear kinematic meaning being related to the instantaneous curvature
κ = 1/R of the trajectory. When there are forces acting on the particle the
local spin/curvature si changes in time, inducing a variation in the rate of
direction changes. The paths followed by the particles in real space depend on
the instantaneous realization of the forces.

However, the important point is that - whatever these forces are - in our
new model they act on the spin si and not directly on the velocity vi. In
other terms, forces cannot change the direction of motion abruptly, but there
is an inertial effect mediated by si. In this respect, we see that the generalized
inertia χ measures the resistance of the particle to change the instantaneous
radius of curvature of its trajectory.

Following the same argument of the last paragraph, we can easily check
that this new model exhibits an undamped linear propagation of orientation
information. For a strongly ordered flock we can write

H =
J

4

∑
i,j

nij [φi − φj]2 +
∑
i

s2
i

2χ
∼ Jnca

2[∇φ]2 +
∑
i

s2
i

2χ
, (2.11)

where nc is the average number of interacting neighbours nc = (1/N)
∑

ij nij.
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The deterministic equations reads in this case,

∂ϕ

∂t
=
s

χ
∂s

∂t
= nca

2J∇2ϕ. (2.12)

and retrieve the d’Alambert’s equation from the second derivative of φ,

χ
∂2ϕ

∂t2
= Jnca

2∇2ϕ . (2.13)

This equation can be easily solved in Fourier space to get the dispersion
relation, namely the law describing how directional information travels through
the system. We find,

ω = csk , (2.14)

with cs =
√
Jnca2/χ. A real value for the frequency ω corresponds to prop-

agating modes: what we find is therefore that a deterministic flock exhibits
undamped propagating modes of the phase. Besides, the dispersion law is lin-
ear, meaning that propagating modes travel at a well defined speed cs, which
is a function of the alignment strength and the generalized inertia. Linear
propagation is reminiscent of sound propagation in a medium. Here, however,
the modes that we are looking at are not related to density fluctuations, but
to phase fluctuations. In fact the same equations for the phase we are looking
at, and the same dispersion law, would also hold for a fixed network of parti-
cles, e.g. a regular lattice. Phase propagating modes mean that if in a flock a
particle starts turning, this change will affect through the alignment term the
spin/curvature of nearby particles, which will start turning themselves, and
the whole system will perform a collective turn.

The deterministic model we have just introduced conserves spin (through
the continuity equation), but it does so a bit too effectively, as in absence of
forces the angular velocity remains forever constant.

This is easily solved adding a dissipative term coupled with s, and associat-
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ing it to a noise term, making the model stochastic,

dvi
dt

=
1

χ
si × vi (2.15)

dsi
dt

= vi(t)×

[
J

v2
0

∑
j

nijvj −
η

v2
0

dvi
dt

+
ξi
v0

]
(2.16)

dri
dt

= vi(t), (2.17)

with vi ·si = 0. Here η is a generalized viscous coefficient and ξi is an normally
distributed vectorial noise with variance

〈ξi(t) · ξj(t′)〉 = (2d) η T δijδ(t− t′) , (2.18)

where we have introduced the generalized temperature T , in analogy to physi-
cal systems. Note that, the constraint |vi| = v0 is satisfied by these equations.

Finally we must explain the role of dissipation. We already saw that in
the deterministic limit η → 0 we get linear propagation of all possible modes
ω = csk. At the opposite limit χ/η2 → 0 we retrieve the Vicsek model limit,
with purely imaginary ω and diffusive dispersion law.

In the general case, where both dissipation and inertia are different from
zero, we obtain

ω = i/τ ± ω0

√
1− k2

0/k
2 , (2.19)

with

k0 ≡
η

2
√
Jnca2χ

, τ ≡ 2χ/η , (2.20)

and where ω0 ≡ csk is the zero dissipation frequency. k0 and τ are the two
relevant scales, respectively in wave number and time, related to the effect of
dissipation.

2.2.2 Numerical simulations

I implemented and studied the discrete version of equations (2.15), (2.16)
and (2.17) with the twofold objective of checking the model’s behaviour in the
different regimes and compare the result with the experimental data.
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The discrete equation of motion are,

vi(t+ h) = vi(t) + vi(t)×
1

χ
si(t)h (2.21)

si(t+ h) = si(t) + vi(t)×
J

v2
0

∑
j

nijvj(t)h (2.22)

− η

χ
si(t)h+ vi(t)×

ξi(t)

v0

√
h

ri(t+ h) = ri(t) + vi(t)h (2.23)

where the in the equation for v the term dvi/dt was replaced with si. The
noise variance is

〈ξi(t) · ξj(t′)〉 = (2d) η T δijδt,t′ . (2.24)

The interaction range is given by the simple topological model described in
the previous chapter: each particle interacts with its first nc neighbours, the
value of nc = 6 was fixed in all the simulations.

To chose the proper value of h I proceed as in section 1.3.4. I computed the
mean values and standard deviation of several quantities such as the deviation
from the mean direction and the amplitude of the spin |si| for different values
h. The clearest signal comes from the variance of the speed σ2

|s|, whose value
typically decreases when h is decreased, until it reaches a steady, parameters
dependent, value. I found that a reasonable value is h = 0.1

√
ξ/J , being√

ξ/J a characteristic time scale for the system (we have cs ∝
√
J/χ, or in

analogy with an harmonic oscillator χ ≡ mass and J ≡ spring constant, so
that

√
J/χ ≡ resonant frequency).

In real flocks turns start localized, namely from one bird (the initiator), and
information propagates through the flock at a constant rate. However we don’t
know the reason why the initiator starts to turn; it may be because of some
external perturbation, i.e. being threatened by a predator, or it can be the ef-
fect of random fluctuation. If we run simulations of the above model choosing
the parameters so that the polarization is high (Φ > 0.95) we eventually find
global fluctuations of the mean direction of motion initiated by random fluc-
tuation, but we will have no control on when this happens nor on the identity
of the initiator; it is even unclear if we can call these fluctuation turns.

To study the role of the parameters η, χ and J in the propagation of di-
rectional information, I used an external perturbation directly acting on the
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Chapter 2. Collective turns and information propagation in flocks

direction of one (known) particle. The perturbation rotates the velocity vec-
tor v0 of bird “0” by a time dependent angle θ(t) whose aperture follows a
smoothed ramp evolution rule,

cos θ(t) =

{
1
2

[1− cos (π(t− t0)/T )] if t0 < t < T
1 if t > T

, (2.25)

where t0 is the starting instant of the perturbation and T the duration of the
ramp (see red line in Fig. 2.3d,e,f).

In the simulation the initial condition consisted in flocks of particles uni-
formly distributed in a sphere and perfectly aligned. The initial values of s is
set to zero, so that the flock initially moves on a straight line. The system was
simulated in open space (no boundaries). The radius of the initial sphere (and
so the mean distance of interacting particles a) was chose so that the mutual
diffusion of the particles was (roughly) realistic in the time scales of interest.

The perturbed particle is put in the centre of the flock, and the perturbation
is applied after a short transient, necessary for the mean amplitude of s to reach
a steady value. This choice of the transient does not assure that the system
really reached a steady state, but I chose not to use an attraction repulsion
term to avoid complications in the interpretation of the result, and in absence
of an attraction repulsion term or boundaries we expect that the flock will
evaporate in the infinite time limit, so I decided a value of the transient that
assured a reasonable control on the volume of the flock. This compromise is
not worrying since my objective was to study a phenomenon, the turn driven
by a perturbation, that is intrinsically far from the steady state.

Finally the duration T of the ramp was chosen so that the delay between
the initiator and the rest of the flock, calculated as in equation (2.3), was
comparable with the delays observed in real flocks.

According to the analytical arguments given in the previous section, we
expect two different regimes, defined by the values of η and χ:

1) Overdamped regime: η2/χ > ncJ(a/L)2. In this regime, given a
system of size L, some attenuated propagation occurs up to certain spa-
tial scales (k ≥ k0, with k0 = 1/(2a

√
ncJχ) > 1/L). On larger scales

(k < k0) however, dissipation takes over leading to an exponential decay
of the signal. The extreme case occurs for η2/χ → ∞ (or χ/η2 → 0),
corresponding to the Vicsek model, when propagation of orientational
perturbations does not occur on any scale.
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2.2. Theoretical modelling of information propagation in turns

Fig. 2.3: Information propagation in different regimes. a. Strongly overdamped
regime, η2/χ = 28.8 × 102. The signal is quickly dissipated and there
is no collective turn. The trajectory of the initiator is displayed as a
thick black line. η = 60, χ = 1.25, J = 0.8. b. Overdamped regime,
η2/χ = 1.8× 102. Some propagation occurs, but the signal is strongly at-
tenuated before reaching throughout the whole group. As a consequence,
the flock looses cohesion and coherence while turning. η = 15, χ = 1.25,
J = 0.8. c. Underdamped regime, η2/χ = 7.2 × 10−2. The signal is
propagated unattenuated through the whole flock, which performs a neat
turn retaining shape and cohesion. η = 0.3, χ = 1.25, J = 0.8. d, e, f
Cosine of the individual velocities with the original flight direction of the
flock for the three cases displayed in panels a, b, c. The cosine curve of
the initiator is displayed as a red curve: at time t = t0 the flight direction
of the initiator is turned by 90 degrees following a smoothed ramp curve.
The inset in panel f shows the threshold used to compute the ranking
of the particles (see text). g, h, i Individual acceleration profiles for the
three cases displayed in panels a, b, c. The acceleration curves have been
low-pass filtered to cure noise and high frequency oscillations. The insets
display the intensity of the peak as a function of rank. The other param-
eters of the simulations are N = 512, T = 8×10−5, nc = 6, v0 = 0.1. The
integration time is chosen as dt = 0.1

√
χ/J to ensure proper simulation

time for all values of J and χ. Figure from [17].
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Chapter 2. Collective turns and information propagation in flocks

2) Underdamped regime: η2/χ� ncJ(a/L)2. In this regime there is lin-
ear propagation of the signal throughout the whole system with negligible
attenuation. The speed of information propagation is determined solely
by the ratio between alignment strength and inertia, cs = a

√
ncJ/χ.

As a first step I qualitatively checked the emergence of the two expected
regimes. To do so I fixed the values of temperature T , interaction strength J ,
moment of inertia χ and velocity modulus v0, so that the system was strongly
polarized, and the expected value of propagating speed cs was fixed. Then I
chose three values of the viscous coefficient in order to obtain underdamped,
slightly overdamped, and strongly overdamped (Vicsek limit) regimes.

The simulation result are shown in figure 2.3, where it is immediately evident
that in the two overdamped cases the perturbed particle was not followed by
all the rest of the flock.

In the strongly overdamped regime (Fig. 2.3a), there are few particles af-
fected by the perturbed one change of direction, but this effect is quickly
dissipated as is evident from figure 2.3d where the cosine of the angle between
the initial direction and direction at time t is plotted for all particles.

In the intermediate case (Fig. 2.3b), some of the neighbours of the initiator
follow it, but information doesn’t propagate to the entire flock, with the effect
of damping still evident in the acceleration curves (panel h).

Finally in the underdamped case (Fig. 2.3c), the whole flock quickly changes
its direction with very low damping effects.

This first positive result encouraged to carry on a deeper comparison with
real flocks.

2.2.3 Comparison with experimental data

To compare the model and experimental data, I studied it in the under-
damped regime, in condition of high polarization. In this regime, I quantify
the dispersion law using the method introduced in section 2.1. I ranked all the
particles according to their order of turning: the initiator has rank r = 0, then
the particle that first starts turning after the initiator has rank r = 1 and so
on. To determine the rank of a particle I followed two different procedures. I
looked at the cosine curve (namely the dot product vi(0) ·vi(t) shown in figure
2.3f) of the particle and determine its absolute turning delay from the initia-
tor (and therefore its rank) as the time when the cosine reaches a threshold
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2.2. Theoretical modelling of information propagation in turns

Fig. 2.4: Propagation curve and dispersion law. (a) Propagation curve. Distance x
travelled by the turning front vs time, for three different values of the pa-
rameters η, χ, J in the small dissipation regime. The distance x travelled
in a time t is proportional to the radius of the sphere containing the first
r(t) birds in the rank, namely x(t) = [r(t)/ρ]1/3. t = 0 corresponds to
the time when the initiator starts the turn. The three curves correspond
respectively to η = 0.3, χ = 0.83, J = 1.2 (red circles); η = 0.3, χ = 1.25,
J = 0.8 (green squares); η = 0.3, χ = 2.50, J = 0.4 (blue diamonds). The
rank is computed using the cosine curves (see text). The speed of prop-
agation, cs, is the slope of the propagation curve in linear regime. The
coloured straight lines show the linear fits for the three different curves.
(b) Speed of propagation cs, normalized by the typical distance a of the
interacting neighbours, as a function of

√
J/χ. For each value of J/χ we

run several simulations and estimate cs from the slope of the propagation
curve, the point corresponds to the average value and bars to standard
error. The speed of propagation depends on the ratio J/χ as predicted
by the analytic arguments in the previous section: more ordered flocks
transmit the turning information quicker. Inset: same curve as in main
panel, but using accelerations curves to compute ranks and propagation
curves. (c) Speed of propagation cs, normalized by a, as a function of
1/
√
χ(1− Φ). Inset: same curve as in main panel, but using accelerations

curves to compute ranks and propagation curves. Figure from [17].
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Chapter 2. Collective turns and information propagation in flocks

Fig. 2.5: Theoretical prediction in real flocks. a, The theory predicts that the
rescaled speed of propagation of the turn, cs/a, must be a linear function
of 1/

√
1− Φ, where Φ is the polarization. The prediction is verified by

the empirical data (P-value: P = 3.1×10−4; correlation coefficient: R2 =
0.74). Each point is a different turning flock. b, Polarization as a function
of time in three different flocks. The value of Φ reported in panel a
corresponds to the time average over the entire duration of the turn.
Figure from [3].

value (I choose 0.9 - see inset in figure 2.3f). Alternatively, I proceeded as in
section 2.1: from the acceleration curves I computed the relative time delays
between pairs of particles as the shift necessary to superimpose their curves
(calculating the cross correlation function). Once the relative delays are found
for all particles I ranked them accordingly to their mutual delays. The last
method is more robust when it is not known a priori who is the initiator (as
in experiments with real birds). The two procedures give equivalent results.

Looking at the rank as a function of delay time we get the ranking curve,
describing how the turn is executed through the group; since the turn starts
locally and the flock moves in three dimensions, x(t) = r1/3(t) is a measure of
the distance x travelled by the turning wave in time t. As can be seen from
figure 2.4a, x(t) displays a clear linear dependence corresponding to a linear
dispersion law, as predicted by the analytic argument in previous section.

The relation between the propagation speed and the parameters J and χ,

cs = a

√
ncJ

χ
, (2.26)
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discussed in section 2.2.1 can be numerically verified. To do so, I ran numerical
simulations for several values of the parameters in the underdamped regime.
I fixed η = 0.3 and varied J and χ to obtain propagation curves with different
slopes, but kept Jχ constant in order to have the same value of k0 < 1/L. I re-
call here that the condition for the underdamped regime is η2/χ� ncJ(a/L)2,
so in order to run simulation with different expected values of cs, but in the
same regime I changed the ration between J and χ keeping fixed their product,
namely k0. Then, for each simulation, I computed the x(x) and estimated cs as
the slope obtained from a fit of the linear part of the curve (Fig. 2.4a). As can
be seen from figure 2.4b, the dependence of cs on J/χ is very well reproduced
by numerical data.

Finally, the theory of Attanasi et al. [3] predicts a nontrivial relation be-
tween the propagation speed cs and the polarization Φ: when the spin-wave
approximation limit holds (as it is for birds) we have,

cs
a
∝ 1√

(1− Φ)χ
. (2.27)

The relation between propagation speed cs/a and 1/
√

(1− Φ)χ is shown in
figure 2.4c. Also in this case the numerical data agree very well with the
analytical prediction.

The behaviour displayed in figure 2.4 is analogous to what is observed in
natural flocks of birds (Fig. 2.5). The propagation curves look indeed very
similar to the ones computed for real flocks and shown in figure 2.2. Even
more importantly, figure 2.4c is remarkably similar to what was found in real
data, and the model correctly reproduces the experimentally found relationship
between propagation speed and degree of order in the system. We can therefore
conclude that Equations (2.15) , (2.16) ,(2.17) in the underdamped limit fully
describe the correlated collective turning exhibited by real flocks. I remind
that in this limit inertia and deterministic effects dominate over dissipation:
it is the Hamiltonian structure of the dynamical equations, and the connected
conservation law, that cause the linear dispersion law and the highly non-trivial
relationship between speed of propagation and degree of order in the system.
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3 Collective behaviour in Swarms
of Midges
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Fig. 3.1: Left A (cropped) frame from a midges acquisition. Right Reconstructed
trajectories for the same acquisition.

In this chapter I describe a completely different biological system: insect
swarms. While in birds the most striking evidence of collective behaviour is
global alignment, a swarm of insects appears to be completely disordered. It
is known [22] that the position where swarms of mosquitoes or midges form is
strongly influenced by the surrounding environment. The probability of finding
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Chapter 3. Collective behaviour in Swarms of Midges

a swarm is significantly increased with the presence of a zone of high contrast
between light and shade on the ground. The first question to be answered is
whether the single insects interact with each other, or they are independently
influenced only by the landmark.

A campaign of observations was performed in Rome in the 2012 and 2013
summer. Swarms of midges (Diptera:Chironomidae and Diptera:Ceratopo-
gonidae) were filmed in several public parks where they find their natural
habitat, and the individual trajectories were reconstructed with the same tech-
nique used for birds.

The study of correlation functions and susceptibility showed that the in-
dividual midges in the swarm do interact with each others, with a metric
interaction range. The comparison with simulations of the Vicsek model en-
forced the idea that the swarms are spontaneously poised to the critical point
of an order–disorder phase transition, leading to an estimate of the individual
interaction range. In this chapter I will first describe the experimental results
and then I will discuss the numerical analysis I performed on the critical be-
haviour of Vicsek model and how it helped us to understand what happens in
natural swarms.

3.1 Experimental results

The first feature to be investigated in midges swarm is the degree of order.
Swarms appear completely disordered to the naked eye, but they move very
fast. Are they really disordered or there is something not captured by the
human eye?

The standard order parameter normally used in collective behaviour is the
polarization, Φ = (1/N)|

∑
i vi/vi|, where N is the number of midges in the

swarm and vi is the velocity of insect i. The polarization measures the degree of
alignment of the directions of motion; it is a positive quantity and its maximum
value is 1. The average polarization over all swarms is quite small, Φ ∼ 0.21
(Fig. 3.2). As a reference, in starling flocks we have Φ ∼ 0.97, on average (see
section 1.1.3).

Clearly, swarms are not in a polarized state, but translation is not the only
possible collective mode. For example, it is well-known that fish school can
produce rotating (milling) configurations. Moreover, a group can expand/con-
tract, giving rise to dilatational (or pulsive) collective modes. For this reason a
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Fig. 3.2: Natural swarms lack global order. Order parameters in a typical
natural swarm. In all panels the grey band around zero is the expected
amplitude of the fluctuations in a completely uncorrelated system. The
left panels are relative to the time series of the order parameters, the
right ones to their probability distribution. Top: The alignment order
parameter, known as polarization, Φ ∈ [0 : 1]. In red is reported the refer-
ence value of the polarization in a flock of starlings. Middle: Rotational
order parameter, R ∈ [0 : 1]. Bottom: Dilatational order parameter
Λ ∈ [−1 : 1]. Figure from [2]
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rotational and a dilatational order parameter were also defined and measured;
finding, however, that these quantities too have very small values (Fig. 3.2).

The rotational order parameter is defined as,

R =
1

N

∣∣∣∣∣∑
i

y⊥i (t)× vi(t)
|y⊥i (t)× vi(t)|

· K̂

∣∣∣∣∣ , (3.1)

where y⊥i is the projection of yi(t) on the plane orthogonal to the axis of
rotation, the cross indicates a vectorial product, and K̂ is a unit vector in
the direction of the axis of rotation. In (3.1), y⊥i (t) × vi(t) is the angular
momentum of midge i with respect to the axis K̂. In a perfectly coherent
rotation all individuals would have angular momenta parallel to the axis, so
that R = 1. In a non coherent system, some of the projections of the angular
momentum on K̂ would be positive and some negative, so R ∼ 0.

The dilatational order parameter is defined as,

Λ =
1

N

∑
i

[Ryi(t)] · [yi(t+ ∆t)−Ryi(t)]
|Ryi(t)| |yi(t+ ∆t)−Ryi(t)|

. (3.2)

Λ ∈ [−1, 1] and it measures the degree of coherent expansion (positive Λ) and
contraction (negative Λ) of the swarm. The values of the order parameters
considered are in average very small, but their large fluctuations in time are
the first hint of a non trivial system.

The values of the global order parameters indicate that swarms are not in
an ordered state of any kind. Still, this does not mean that they are non-
interacting systems. If we want to understand better this issue we must look
at correlations.

Correlation is the most accessible sign of the presence of interaction between
the members of a group. The absence of interaction implies the absence of
correlation. Conversely, the presence of correlation implies the presence of
interaction [10].

The connected correlation function, C(r), measures to what extent the
change in behaviour of individual i is correlated to that of j at distance r.
Correlation can be measured for different quantities, but in the case of midges,
as with birds and other moving animals, the principal quantity of interest is
the velocity. The definition of the correlation function is the same given in
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equation 1.6, that I recall here,

C(r) =

∑
ij ui · ujδ(r − rij)∑

ij δ(r − rij)
, (3.3)

where ui is the (dimensionless) velocity fluctuation of midge i, namely the
difference between its full velocity and the mean motion of the swarm. In
the case of midges, all the possible global modes (Φ, R and Λ) have to be
considered to calculate ui, so that is negligible the probability to find global
or external effect in the correlation function C(r).

The form of C(r) in natural swarms is non-trivial (Fig 3.3): at short dis-
tances there is strong positive correlation, indicating that midges tend to align
their velocity to that of their neighbours; then, after some negative correlation
at intermediate distances, C(r) relaxes to no correlation for large distances.
The value of r0 where the C(r) crosses zero gives an estimate of the length scale
over which the velocity fluctuations are correlated (see section 1.1.3). The av-
erage value of this correlation length over all analysed swarms is, r0 ∼ 0.19m.
This value is about 4 times larger than the nearest neighbours distance, whose
average over all swarms is, r1 ∼ 0.05m. Previous works noticed the existence of
pairing manoeuvres and flight-path coordination between nearest neighbours
[36, 35, 11]. This results, however, indicate that midges influence each other’s
motion far beyond their nearest neighbour (Fig. 3.3), showing that coordina-
tion occurs at a truly collective level.

The observable that measures the capability of the system to react to an
external stimulus is the susceptibility. It can be defined as the maximum of
the space integral of the correlation function.

Q(r) =
1

N

N∑
i 6=j

ui · uj θ(r − rij) . (3.4)

The Q(r) reaches a maximum for r = r0 (Fig. 3.3). This maximum, χ ≡
Q(r0), is a measure of the total amount of correlation present in the system.
In statistical physics χ is called susceptibility [27, 10] and it is directly related
to the collective response of the system to external perturbations.
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red lines to simulations of swarms of non-interacting particles (NHS).
Each column refers to a different midge species. Top: Correlation func-
tion C(r) as a function of the distance at one instant of time. The dashed
vertical line marks the average nearest neighbour distance, r1, for that
swarm. The correlation length, r0, is the first zero of the correlation func-
tion. Red: correlation function in the NHS case. The value of r for the
NHS has been rescaled to appear on the same scale as natural distances.
Each natural swarm is compared to a NHS with the same number of par-
ticles. Middle: Cumulative correlation, Q(r). This function reaches a
maximum r = r0. The value of the integrated correlation at its maxi-
mum, Q(r0), is the susceptibility χ. Bottom: Numerical values of the
susceptibility, χ in all analysed swarms. For each swarm the value of χ is
a time average over the whole acquisition; error bars are standard devi-
ations. Red: the average susceptibility χNHS in the non-interacting case.
Figure from [2].
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(a) (b)

Fig. 3.4: Visual comparison between the noninteracting harmonic (a) swarm and a
real swarm (b) trajectories. It is hard to distinguish between the two just
looking at the trajectories (or looking at computer animations of real and
simulated midges), but the correlation functions are completely different,
with the non interacting particles being completely uncorrelated.

3.1.1 Comparison with the noninteracting harmonic swarm

In order to judge how large is χ, we need an effective zero value for it.
Following Okubo [35] (but see also [29] and [11]), I implemented and simulated
an elementary model of non interacting particles (NHS) performing a random
walk in a three-dimensional harmonic potential. The dynamics of each particle
is defined by the Langevin equation,

mẍi(t) = −γẋi(t)− kxi(t) +
√
ηγξi(t) , (3.5)

where xi(t) is the position of the i-th particle at time t, m is the mass, γ the
friction coefficient, k the harmonic constant and ξi(t) is a random vector with
zero mean and unit variance, 〈ξαi (t)ξβj (t′)〉 = δ(t − t′)δi,jδα,β, with α = x, y, z.
The parameter η tunes the strength of the noise. The equation of motion are
integrated with the Euler method [12]. I simulated the NHS in the critically
damped regime (γ2 = 4mk), which gives the best visual similarity to natural
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swarms (Fig. 3.4). The number of particles N is set equal to that of the
natural swarm we want to compare with. Parameters have been tuned to have
a ratio between the distance travelled by a particle in one time step (frame) and
the nearest neighbour distance comparable to natural swarms, ∆r/r1 ∼ 0.15:
m = 1, k = 12.75, γ = 7.14, η = 2.0.

Despite the visual similarities between the NHS and natural swarms, their
correlation functions and susceptibilities are completely different. In the NHS
the correlation function C(r) just fluctuates around zero, and the susceptibility
is two order of magnitude lower with respect to real swarms. The correlations
and susceptibility found in swarms can’t belong to a system of non interact-
ing particles just attracted by a marker; there should be some sort of inter
individual interaction.

3.1.2 Natural swarms have a metric interaction range

A first hint about the nature of interaction is given by the relation between
the value of χ and the nearest neighbour distance r1. χ, increases when r1,
decreases (Fig. 3.5). Denser swarms are more correlated than sparser ones.
This fact strongly suggests that midges interaction range is metric. If they
interact through a metric perceptive apparatus, then the strength of the per-
ception likely decreases with the distance, so that when midges are further
apart from each other (larger r1) the interaction is weaker and the susceptibil-
ity χ is lower. In a system ruled by metric interaction we expect all lengths
to be measured in units of the perception range, λ. This implies that the nat-
ural variable for the susceptibility is the rescaled nearest neighbour distance,
r1/λ. The problem is that we are considering different species, likely to have
different metric perception ranges. The simplest hypothesis we can make is
that λ is proportional to the insect body length l (which we can measure), so
that χ = χ(r1/l). This hypothesis is confirmed by the data: the susceptibility
is significantly more correlated to r1/l (P-value = 0.0004) than to r1 (P-value
= 0.07). The fact that the natural variable is r1/l is a further indication that
the interaction in swarms is based on a metric perception range.

This is very different from what we saw in birds (see section. 1.1.3), where
the interaction range is found to be topological: Each bird interact with a fixed
number of neighbours, independently of the distances.

The straight forward interpretation for the observed correlations and sus-
ceptibility is that midges interaction is based on alignment with individuals
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within a metric range. This doesn’t mean that other type of interaction (e.g.
attraction-repulsion) are not present, but a positive velocity correlation on
short distance implies that alignment plays a key role.

Since natural swarms have a low polarization, they live in the disordered
side of a phase diagram partitioned in ordered and disordered regions, but
they also have high correlation, this suggest that they are not too far from
the transition point. This hypothesis can be investigated with a comparison
between the experimental data and the numerical simulation of a self propelled
particles model.
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Fig. 3.5: Swarms susceptibility. Left: Susceptibility χ as a function of the
rescaled nearest neighbour distance, r1/l, where l is the body length. Each
point represents a single time frame of a swarming event, and all events
are reported on the same plot (symbols are the same for all species). The
full line is the best fit to equation (3.10). Right: Logarithm of the average
susceptibility as a function of r1/l. Dasyhelea flavifrons - blue squares;
Corynoneura scutellata - green circles; Cladotanytarsus atridorsum - red
triangles. The full line represents the best fit to equation (3.10). Each
data point represents the time average over the entire acquisition of one
swarming event. Error bars indicate standard deviations. Figure from [2].
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3.2 Comparison with Vicsek model

Among the many numerical models of collective behaviour, the original Vic-
sek model (see section 1.2.1) is the simplest one with all the needed ingredients
to make a comparison with the observed swarms.

It is based on alignment interaction rule, the interaction range is metric, and
exhibits a density driven phase transition between the ordered and disordered
phases.

Since it’s known that midges interact also with a landmark I added a central
potential to the Vicsek’s equations of motion to mimic this feature. equation
1.10 is thus modified as,

vi(t+ 1) = v0 Rη

[
Θ

(∑
j∈Si

vj(t)− βri(t)

)]
β ≥ 0, (3.6)

where the term βri(t) is a force directed toward the origin of the reference
frame. The parameter β determines the strength of this force and thus the
volume taken by the swarm in free boundary conditions. When β is zero, the
original model is recovered.

The update rule of the position remains the same as equation (1.11)

ri(t+ 1) = ri(t) + vi(t+ 1). (3.7)

I studied both variants of the model: the original Viksek’s one with periodic
boundary conditions, and the central potential one in open boundaries. The
two models result qualitatively similar with small differences in the critical
exponents that I will mention in the next section.

Both standard Vicsek and central potential models display an ordering tran-
sition: at large density, for x < xc the system is ordered and moves on a straight
line in the standard model with periodic boundary conditions, while it forms a
group that coherently orbits around the potential minimum when the central
force is active. Anyway, differently from birds, we are interested in the disor-
dered phase, as midges are disordered. And particularly we want to study the
behaviour of the system when it reaches the transition point from the disor-
dered side. The correlation function is nontrivial when x is sufficiently close to
xc (Fig. 3.6), indicating a correlation length higher than the interaction range.
I calculated the susceptibility χ, in the same manner as we did for natural
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Fig. 3.6: Vicsek model. Three-dimensional Vicsek model in a central potential.
Left: Correlation function C(r) in the disordered phase, but close to the
ordering transition. The dashed line is the nearest neighbour distance.
Inset: polarization as a function of time. For this value of x the system
is disordered. Right: Logarithm of the susceptibility as a function of
the rescaled nearest neighbour distance, x = r1/λ, where λ is the metric
interaction range. Figure from [2].

swarms, in the disordered phase, x > xc and find a clear increase of χ on
lowering x (Fig. 3.6).

The right panels of figures 3.6 and 3.5 are qualitatively consistent one with
each other. The natural question is if it’s possible to understand something
more about swarming midges from a deeper study of the Vicsek model, and if
a quantitative comparison is possible. I’ll try to address these question in the
next section.

3.2.1 Finite size analysis and critical behaviour in the Vicsek
model

Given the similarity between real data on midges and the behaviour of the
Vicsek model, we decided to use the Vicsek model to understand how the
various quantities change approaching the critical point in systems of finite
size (which is the case in real swarms).

In the Vicsek model, it’s possible to observe a phase transition between
the ordered and disordered state, using either noise or density as the control
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parameter. The nature of the Vicsek’s phase transition has been the subject
of an intense debate [46, 21, 24, 25, 20] and proved to be first order, but
unless N is very large it is indistinguishable from a second order transition
(weak first order [10]). To verify the criticality hypothesis on midges swarm, I
performed a finite size scaling analysis (FSS) on the Vicsek model, using the
rescaled nearest neighbour distance x = r1/λ as a control parameter (being λ
the interaction range). This was the first FSS analysis performed for the 3D
Vicsek model.

Finite Size scaling has been widely studied in equilibrium systems [38], and
more recently proved to hold also in some out of equilibrium ones [41] and in
particular in the 2D Vicsek model [46, 6]. In the 3D Vicsek model evidence of
FSS are shown in (Fig. 3.8a). The susceptibility χ was calculated as for real
data for different system sizes (N ∈ [128, 8192]), varying the control parameter
x. Decreasing x (increasing density) from a maximum (minimum) value, we
observe that χ has a peak at xmax(N). xmax(N) is the (size dependent) critical
value of the control parameter, marking the crossover between the ordered (low
x) and disordered (high x) phases. For large system sizes the peak of χ(x)
becomes sharper, and the xmax(N) decreases, according to the FSS equation,

xmax(N) = xc +N−
1
3ν , (3.8)

where ν is the critical exponent of the correlation length ξ. The scaling variable
(at fixed noise) is thus, y = (x − xc)N

1/3ν , so that χ = Nγ/3νf(y) and
ξ = Lg(y), where f and g are scaling functions (Fig. 3.8a inset).

An estimate of the values of xc, ν and γ can be obtained using the scaling
relations (Fig. 3.7). We first need an estimate of χmax(N) and xmax(N) corre-
sponding to the peaks of the susceptibility (Fig. 3.7a); then we easily obtain
the value of γ/3ν with a linear fit of log(χ) = γ/3ν log(N); and the values ν
and xc fitting 1/3ν log(N) = log(xmax − xc) and looking for the value of xc
that gives the lowest reduced chisquare of the fit (Fig. 3.7b).

I obtained xc = 0.421 ± 0.002, γ = 1.6 ± 0.1 and ν = 0.75 ± 0.02 for the
standard Vicsek model; and xc = 0.433±0.002, γ = 1.5±0.1 and ν = 0.74±0.05
for the central potential variant.

3.2.2 Using Vicsek to understand swarms

My FSS analysis of the Vicsek model gives us a general scenario where we
can check how the susceptibility changes with changing the size and the density
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of the system. This is an interesting point because we can then compare with
what happens in real swarms, where indeed size and density change from swarm
to swarm.

In figures 3.8b and 3.8c we observe that at a fixed value of x > xc both
the susceptibility and the correlation length grow when N is increased, until
they saturate to the (finite) bulk value. This is not what we observe in real
swarms, where the susceptibility scales with N and correlation length with L
up to largest observed sizes figures 3.9a and 3.9b.

In fact, there is no reason why natural swarms should maintain their control
parameter x fixed. While it is surely true that there could eventually be a
saturation of χ and ξ for larger (unobserved) swarms, the actual state-of-
the-art data shows no hint of such saturation. This suggest that, in natural
swarms, when N is increased then x is decreased, following the peak of the
susceptibility, and poising the system near criticality.

If N and x are tuned to keep constant the scaling variable y = (x−xc)N1/3ν ,
then the following relations must hold,

χ ∼ N
γ
3ν , (3.9a)

ξ ∼ L (3.9b)

x ∼ xc +N−
1
3ν . (3.9c)

As I show in figure 3.9(a, b and c) the experimental data are compatible
with these equation, particularly in figure 3.9c the correlation between the
control parameter and system size is evident. If the system is such that the
parameters N and x are naturally adjusted to stay near the critical region
(3.9c is satisfied), then the susceptibility χ must depend on x as (Fig. 3.9d),

χ ∼ 1

(x− xc)γ
. (3.10)

In the lower panels of (Fig. 3.9), results obtained with the Vicsek model
are shown for comparison. In this case N and x were manually set to keep
constant y = (x− xc)N1/3ν .

We can ask if there is some other quantitative conclusion we can catch about
the midges swarm from the comparison with the Vicsek model. If a Vicsek-like
ordering transition exist, we can use equation (3.10) to fit the swarms data for
χ (Fig. 3.5). As I already mentioned, we do not know the value of the metric
perception range, λ, in swarms. Therefore, we must use as scaling variable
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Fig. 3.9: Scaling behaviour in natural swarms. (a) Susceptibility as a function
of the number of midges N in the swarm.There is no evident sign of sat-
uration, suggesting that swarms are in a scaling regime. (b) Correlation
length, ξ, as a function of the linear system size, L. Also the correlation
length, consistently with the susceptibility, shows no saturation for large
systems. (c) Control parameter x = r1/l as a function of sister size N :
a clear correlation between these two quantities is present in the data in-
dicating that the system self-adjusts density and size. (d) Susceptibility
as a function of the control parameter x = r1/l: data are consistent with
a power law dependence, as predicted by finite-size scaling theory in the
near-critical region. Lower panels (e,f,g,h): same quantities as in upper
panels for the Vicsek model in the critical region. Figure from [5].

r1/l, where l is the body length. From the fit we obtain (r1/l)c = 11.0 ± 2.0
and γ = 1.0± 0.2.

If we make the hypothesis that the growth of the susceptibility is a universal
mechanism ruled by the ordering phase transition, we have that the critical
nearest neighbour distance (r1)c in its natural units must be the same in Vicsek
as in natural swarms. We conclude that, 0.43λ ∼ 11 l, that is (including
errors), λ ∼ 21 l − 26 l. The body length of the species we consider is in
the range, l ∼ 1.2mm−2.4mm. This implies a perception range of a few
centimetres, λ ∼ 2.5− 6.0cm.

Even if probably reasonable This estimate of the midges interaction range
has to be taken with maximum cautiousness, because the critical value of x
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in the Vicsek model depends by the chosen parameters, that remains quite
arbitrary even if I tried to tune the parameters to obtain a maximum value
of the (dimensionless) susceptibility χ(N) comparable to the one observed in
swarms (at same values of N). Moreover the values of (r1/l)c and γ, obtained
for the real swarms, have a large error due to the scatter of the data, the non
linear nature of the fit, and the relatively small range of the system sizes.

What is much more solid is the criticality of the system. Being near the
critical point of a phase transition has a clear advantage from the biological
point of view. At the critical point the system has the higher possible response
to a perturbation as it is particularly clear looking at the Vicsek’s χ(x) in figure
3.8. The information can propagate over long distances. Away from criticality,
a signal visible to one midge can influence just a handful of near neighbours; at
criticality, the same signal can spread to influence the behaviour of the entire
swarm.

There are two possible interpretations of this result. The first is that given
a size N the control parameter x is tuned to maximize correlations. This
would mean that individuals in the swarm are able to measure the size of the
system and modify their behaviour accordingly to it. It seam more plausible
the opposite, for a given value of x the system grows by aggregation of new
individuals until the optimal value of Nmax(x) is reached. If the swarm grows
so that N > Nmax(x), then it lose correlation since the ratio ξ/L decreases,
leading to statistically independent clusters, and deteriorating the collective
response.
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The numerical simulations of physical systems are a widely used instrument
in scientific investigation. When the laws governing the system are known
they allow to perform synthetic experiments and study the system’s behaviour;
while when the object of study in unknown they help to understand how likely
an intuition can be. This is particularly true in statistical mechanics where
linking the behaviour of the single particles with the behaviour of the whole
system can be extremely difficult.

In the field of collective animal behaviour the numerical models played an
unusual role, they where the main source of information before the availability
of experimental results.

Here I presented new results obtained from the study of numerical models
that are strongly connected with the experiments and the theories based upon
them.

The analysis of the spatial anisotropy of the neighbours distribution of a
bird revealed that the interaction range of starlings is topological rather than
metric: each bird interacts with its first 6 ∼ 7 neighbours independently from
their metric distances. This was also confirmed by the maximum entropy the-
ory through parameters inference. In section 1.2.3 I linked this experimental
finding with a plausible biological outcome: to grant the stability of the flock.
This is matter of life or death for the birds; being cohesive is in fact their
best defensive strategy against predators. In addition finding an optimal in-
teraction strategy is interesting in other fields; for example in robotics there
is a growing interest in the idea that many autonomous simple robots can col-
lectively perform complex tasks. I described and studied a novel topological
model, showing that the topological interaction outperforms the metric one
in granting the cohesion of the flock. I showed that a topological interaction,
being invariant with respect to local density fluctuations, makes the flock less
susceptible to fragmentation due to noise or external obstacles. The number
of interacting neighbours needed for each bird to ensure a cohesive flock is
significantly smaller if the interaction range is topological than if it is metric,
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saving the (supposedly) limited cognitive capacities of a single bird.
In section 1.3 I summarized a powerful statistical inference method: the max-

imum entropy method. It consists in finding the less structured probability dis-
tribution compatible with the experimental findings, and inferring the distribu-
tion’s parameter. The application of the maximum entropy method to the ex-
perimental data confirmed the topological nature of the interaction, providing
an inferred interaction range nc ∼ 21; three times bigger than the previously
discussed one. The maximum entropy theory was developed to study equi-
librium systems, while bird flocks are intrinsically out-of-equilibrium, I there-
fore used numerical simulations to test the method on active off-equilibrium
systems. I applied the inference equations to the synthetic data from a self-
propelled particle model and showed that they provide an excellent estimate of
the model’s parameters, biased only by a proportionality factor. Interestingly,
rescaling the value of nc of the birds by this proportionality factor we retrieve
the same interaction range previously obtained with a completely independent
method.

Historically all models of collective behaviour are based on assumptions.
One example over all is the Vicsek model; the birds in a flock are aligned,
so alignment interaction is the key assumption of the model. Although they
can be reasonable, assumptions need to be experimentally verified, and, again
in the Vicsek model, the assumption that interactions are based on a metric
range was instead proved wrong (in the case of bird flocks). In section 1.3.4 I
described a different approach to model definition consisting in deriving it from
data. I discussed an experimental result: the scale free correlation of speed
fluctuations; and a theoretical result: the probability distribution consistent
with the experiment. The new model is derived from a mechanistic interpre-
tation of the theoretical probability distribution limiting assumptions to the
lowest possible level (ideally null). This model reproduces the experimentally
measured long-range correlation of the speed of the birds; and it shows that,
in order to do it, the system has to be critical, i.e. a control parameter has to
be near to its critical value. Additionally I showed that a theory that provides
only static (instantaneous) probability distributions remains valid also when
the full dynamical features of the system are taken in account.

The second chapter concerns one of the most important issues in collective
behaviour: how information propagates through the system. Even being out-
of-equilibrium, a flock of birds flying on a straight line can be considered in a
stationary state, thus is well described by stationary probability distributions.
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Obviously bird flocks do not only flight on a straight line, but also change their
direction; they do it collectively and almost instantaneously. Experiments re-
vealed us that the turning information travels across the flock at a constant
rate with very low attenuation. This constant rate information transfer can
not be described by the classic theory due to the missing of two crucial ingredi-
ents: a conservation law associated with the rotational symmetry, and a term
of behavioural inertia. In section 2.2.1 I introduced a new model that accounts
for these two ingredients; I described how I implemented numerically this new
model and I provided a deep study of the role of the model parameters in the
information transfer process. I showed that the models exhibits two different
regimes, propagating and not-propagating directional information, depend-
ing on the damping parameter, and being in the strongly overdamped regime
equivalent to the Vicsek model. I also showed that the theoretically predicted
dependence of the speed of propagation of the signal from the parameters,
and its non-trivial relation with the alignment are correctly reproduced by the
model.

Finally in the third chapter I considered a system completely different from
bird flocks: the midge swarms. The collective nature of the behaviour of midge
swarms is not immediately evident as it is in flocks; they seem, and indeed
measured to be, disordered. I examined how order is not the key feature of
collective behaviour, while correlation is. Experiments revealed that midge
swarm are strongly correlated; that their interaction is based on alignment
and that their interaction range is metric. I showed that the experimental
correlations can be reproduced by the Vicsek model, in its original definition
with periodic boundary conditions and in a variant where a global central
force is applied to all the particles. I showed that such correlations are well
reproduced when the model lies in a particular region of the phase diagram:
the critical region. I reported the first finite size scaling analysis of the three-
dimensional Vicsek model and compared the scaling variables with the ones of
real swarms, supporting the criticality hypothesis. The analysis performed on
both real and synthetic data revealed that being critical in a finite size system
has a slightly different meaning with respect to what we are used to think in the
thermodynamic limit; the latter has a precise value of the control parameter
that define the critical point, while in a finite size system the pseudo-critical
value of the control parameter depends in a not trivial way by the system
size (i.e. the maximum of the susceptibility). Finally I proposed a parameter
fitting method to infer the interaction range of midges.
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As conclusion I would recall the striking title of a paper from Thierry Mora
and William Bialek: Are biological systems poised at criticality? [31]. There
is not an universal answer to this question, but the evidences of criticality
in two very different systems as flocks and swarms are intriguing. We don’t
know if the scale free correlation measured in experiments are so just because
the considered system sizes are too small and so we missed a saturation of
the correlation length. In this case however we can still say that the systems
studied are near the critical point, thus we can think that evolution favoured
this near criticality to maximize the efficiency of the system. On the other
side we can speculate that if evolution leads to efficiency then, for an arbitrary
size, a collective biological system must be as near to criticality as needed to
obtain long range correlations, and thus collective responses. This is likely to
be a general law.
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