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Abstract

This PhD thesis is driven by the aim of utilizing electronic devices in Earth orbit mis-
sions, incorporating embedded artificial intelligence on these devices. Given that electronics
interact with particles from various sources in Earth orbits, it’s crucial to study their be-
havior under radiation, as significant issues can arise without proper precautions. Artificial
intelligence has proven to be one of the most powerful informatic tools, but if it is to be
implemented in space embedded systems, the consequences of radiation on networks must be
thoroughly investigated alongside the electronics. The disturbances induced in the network
inputs, coupled with the constraints of resources due to power requirements and limited
computational capabilities, need to be examined. Optimising the network architecture while
considering the limited computational resources in these small networks is essential for
enhancing performance.
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1 Introduction

1.1 Overview of electronics and neural networks in physics

Electronics is a field of research that has been expanding rapidly since the last century.
Since the experiments performed by physicists become smaller, more complex or delve
wider and deeper into the unknown, electronics has become a mandatory tool to accomplish
their purposes. With breakthroughs such as transistors, the computer industry, and Field
Programmable Gate-Arrays (FPGA), physicists have been able to achieve discoveries and
progress that were not attainable before. Electronics mainly assists in the capturing, analysing
and interpretation of data.

More than a helpful tool for physicists, it has nowadays become the backbone of
modern physics experiments. The precision and efficiency it provides cannot be overstated,
especially in fields demanding the highest accuracy rates. In modern experiments of particle
physics, like accelerators, advanced electronic systems can handle vast amounts of data gen-
erated while performing other tasks, such as classification and tracking. Physics experiments
extend beyond terrestrial facilities to outer space for various objectives, such as probing the
Universe without being constrained by the terrestrial atmosphere or studying the Earth for
diverse aims. Even if the work differs from the ones done on Earth, electronics are still
needed in satellites to help exploring distant exoplanets or to help studying cosmic radiations,
for instance.

As we stand on the precipice of technological innovation, the integration of neural
networks into electronic devices emerges as a transformative frontier in scientific research.
Neural networks, inspired by the intricate architecture of the human brain, bring a new
dimension to data processing and analysis. These artificial intelligence constructs have
demonstrated remarkable capabilities in recognizing patterns, learning from complex datasets,
and making predictions, attributes that align seamlessly with the demands of modern physics
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experiments. Not only are neural networks used for complex tasks, but researchers have
also been able to integrate them directly into the electronics used in the frontend part of the
experiments. This step into the use of neural networks and the development of electronics
in experimental physics has allowed for faster, stronger and more accurate jobs. However,
this new area has also brought problems that must be taken into consideration during the
development of the approach. Resource constraints, electronic noise, noise induced by
particle interactions are issues that demand careful consideration.

1.2 Surroundings of the Earth

1.2.1 The Van Allen belts

The Earth’s magnetic field extends into space and interacts with the solar wind, a stream
of charged particles (mainly protons, electrons and small amounts of low energy heavy
ions) flowing outward from the Sun. The interaction between the solar wind and the Earth’s
magnetic field leads to the formation of trapped charged particles regions like the Van Allen
Radiation Belts.

The Van Allen Radiation Belts, discovered by Geiger counters on Explorer 1 [1],
are two zones inside the region of Earth’s magnetic field, belt-shaped and composed of
charged particles coming from the solar wind. The inner belt is mainly composed of high-
energy protons (exceeding 100 MeV) and extends from 400 km to 6,000 km of altitude
above the Earth. The outer belt is constituted of high-energy electrons (0.1-10 MeV) and is
situated from 8,400 km to 36,000 km above the Earth surface [2]. A model of the Van Allen
belts is displayed in Fig. 1.1, using the data of two space missions (AP8 and AE8) for the
omnidirectional integral flux of protons (AP8) and of electrons (AE8). The particles trapped
in the Van Allen Radiation Belts move in spiralling paths along the magnetic field lines and
can have various effects and consequences. For example, when major disturbances in the
Earth’s magnetic field are caused by solar winds, the trajectory of the charged particles can be
altered to make them move towards the Earth’s poles and provoke ionization of atmospheric
components emitting light of diverse colours. These physic phenomenons are also known as
auroras.

1.2.2 Integral trapped particles spectra

The orbits between the Earth are divided into several geocentric orbits depending on
their altitude regarding the Earth. For example, the Low Earth orbit (LEO) gathers the ranges
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(a)

(b)
Figure 1.1: Models for the Van Allen Belts introduced in [3] where axes x and y are measured in
Earth radii, being of 6,378 km. a, stands for the inner, belt and b stands for the outer belt.

between 160 km and 2,000 km, or the Geosynchronous orbit (GEO) stands for an altitude
of 35,786 km, corresponding to an orbital period matching with a sidereal day. Since these
orbits are placed in the Van Allen belts, it is necessary to study the particles spectra if one
wants to characterise them.

The models AP8 and AE8 permitted the prediction for the integral particle spectra
for a circular 500 km and 60°inclination orbit for LEO and is presented in Fig.1.2 for the
protons and in Fig.1.3 for the electrons for both solar maximum and minimum activity [4].
The solar cycle is approximately 11-years long [5] where during four of them, the solar
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activity is the least, being solar minimum, and seven of them stand for the most active
conditions of the sun, being the solar maximum.

Figure 1.2: Low Earth orbit (LEO) proton fluxes from [4]

Figure 1.3: Low Earth orbit (LEO) electron fluxes from [4]

The AE8-MAX model permitted to display the integral electron spectrum for GEO
and is plotted in Fig.1.4. The maximum and minimum values are not reached because of
the solar activities in GEO but regarding the longitudes, corresponding to 160°W for the
maximum and 70°W for the minimum. The proton integral flux in the GEO is not displayed
because it has a significant proportion of lower-energy protons, while the number of high-
energy protons is significantly lowered. The electronics are then not concerned by the trapped
protons in the GEO because they can be stopped by thin material [4].
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Figure 1.4: Geosynchronous orbit (GEO) electron fluxes from [4]

A major consequence of these trapped charged particle is the radiation hazard for
spacecrafts. Indeed, they can be altered by damaging the electronics, with high-energy
particles penetrating the shielding of the spacecraft and interacting with the components,
which is critical for sensitive instruments and systems. Besides, the miniaturization of the
electronics, making the device more powerful, has also made them more vulnerable to
radiation, as the order of magnitude between the components and the charged particles are
now comparable (in the case of protons and charged heavy-ions).

1.2.3 Galactic cosmic rays and solar particle events in LEO

Trapped charged particles are not the only source of primary ionizing radiation in LEO;
galactic cosmic rays (GCR) bring charged particles from outer zones of the Universe into the
solar system, composed of protons, helium ions and heavy ions [6]. Coronal mass ejections
and strong solar flares can also produce fluxes of charged particles, called solar particle
events (SPE), that interacts with the material sent in LEO [7].
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In order to gather data about the flux of particles induced by GCR, we use Razaksat
satellite orbit data since it has a nominal altitude of 685 km with 9°inclination, which match
with our study of LEO. We observe in Fig.1.5 the comparison of particle flux of GCR
intensities at solar maximum and minimum levels.

Figure 1.5: GCR fluxes during solar maximum and solar minimum from [8]

Since data has also been gathered for proton and electron fluxes at the same altitude,
being 685 km, we are able to plot and compare the GCR flux with those of the trapped
particles. In Fig.1.6 the GCR and proton fluxes are plotted while Fig.1.7 is dedicated for
the GCR and electron fluxes. Both figures come from [8]. With these graphs, we observe

Figure 1.6: Fluxes for GCR and trapped protons at 685 km altitude from [8]

that GCR and trapped particles occupy different ranges of energies: in LEO, GCR are high
energy particles above 10 GeV, while trapped particles are less energetic, below 400 MeV
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for protons and 10 MeV for electrons. The main conclusion from these plots is that a wide
range of particles can be found in LEO, and it is necessary to prevent damages from both of
the cases.

Now that we have introduced the actors of our challenges, let’s demonstrate how
they affect the electronics and what the levels of hazards provoked by them are. To do so, we
will exploit the amount of energy transferred by the particles, also called the Linear Energy
Transfer, and the dosimetry.

Figure 1.7: Fluxes for GCR and trapped electrons at 685 km altitude from [8]
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1.3 Radiations measurements

The Linear Energy Transfer (LET) refers to the amount of energy transferred to a
material per unit length by ionizing radiation. It is a measure of the density of energy
deposition along the path of a charged particle, such as electrons, protons or charged heavy-
ions, as it travels through a material. This feature is directly linked to the absorbed dose,
representing the amount of energy deposited per unit mass in a material, which is directly
correlated to the hazards threatening the electronics set inside a spacecraft.

Figure 1.8: Scheme summarising the different primary particles interacting with the spacecraft skin,
and the resulting secondary particles, from [7].

When a particle hits a material, such as the skin of a spacecraft in the case of space
missions, a nuclear interaction occurs between the two, and the production of secondary
particles occurs. Depending on several factors such as the kinetic energy of the incoming
particle or its nature, the secondary particles will be of different composition with varying
characteristics [7] and can interact with the electronics inside the spacecraft. In Fig.1.8,
albedo trapped protons designates GCR protons reflected by the Earth’s atmosphere, HZE
stands for highly energetic heavy ions component, and SAA is short for the South Atlantic
Anomaly, a region where an anomaly in the geomagnetic field makes the protons trapped in
it have a high ratio of exposure for spacecraft passing in this zone.

Water, being a dense and hydrogen-rich material, can effectively slow down and
absorb high-energy particles, providing a protective barrier for spacecrafts. LET ∞H2O of
water is relevant because it describes how densely the energy is deposited along the path
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of the ionizing particles, and it is the main feature used for these kind of measurements. In
Fig.1.9, the integral LET flux spectra at four different altitudes in the SAA are shown: 338,
347, 379 and 391 km. This has been measured by the JSC-TEPC during the STS-63 mission
[9]. We witness first a non-negligible LET correlated to the integral fluxes we have observed
previously, and an altitude dependency in this region we also expect outside of this zone.

Figure 1.9: Integral LET flux spectra measured at four different altitudes. This data has been collected
in the SAA by the JSC-TEPC during the STS-63 mission, from [7].

Regarding the dose rate, Space Shuttle missions have gathered data [10] in three
different orbits since the atmospheric density is not homogeneous [10]: 28.5°, 38°-39°and
above 57°inclinations; and it is plotted in Fig.1.10 as a function of the altitude. We see the
dose not only increases with the altitude but also depends on the angle of inclination. The
conditions a spacecraft will face depend on both its altitude and inclination angle, and it is
mandatory to take it into account when computing the hazards impacting the electronics in
spacecraft.

The previous analysis has been conducted mainly in LEO, as this region is of interest
for many space missions. However, different studies have been conducted for various regions
in outer space [11], such as the data observed in Fig.1.4, or around the moon as described in
[12].
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Figure 1.10: Mean dose rate as a function of the altitude measured by the Space Shuttle in three
different orbits [10], from [7].
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1.4 Electronics in spacecrafts

The use of electronics, particularly embedded systems like FPGAs and Commercial
Off-the-Shelf components (COTS), in spacecraft represents a crucial aspect in modern space
missions. FPGAs allow high flexibility and adaptability, enabling the implementation of
custom digital circuits designed for specific mission requirements. COTS components,
readily available and designed for commercial applications, have also found utility in space
missions due to their cost-effectiveness and accessibility.

In the challenging environment of LEO, where spacecraft are exposed to intense
space radiations, as exposed in Sec.1.3, the choice of electronic components becomes
paramount. FPGAs, with their reconfigurable architecture, provide a way to optimize system
performance while fixing the effects of radiation-induced modifications. Their ability to
dynamically reconfigure circuits in response to changing conditions makes them well-suited
for adapting to the dynamic radiation environment encountered in LEO.

COTS components, while not being particularly radiation-hardened, have been
increasingly used in LEO missions for non-critical functions. However, the exposure to
ionizing radiations in space induces potential risks, such as Single Event Upsets (SEUs) and
latch-ups. As a result, spacecraft designers employ various techniques, including redundancy
and error-checking mechanisms, to enhance the reliability of COTS components to face
radiation challenges. Spacecraft electronics must undergo rigorous testing and qualification
processes to ensure their sturdiness in the harsh space environment. In Sec.2.1 we present the
results of the irradiation of a particular COTS by atmospheric-like neutrons and heavy-ions.
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1.5 AI in electronics

In Sec.3.1, Artificial Intelligence (AI) and its functioning are precisely described. In
essence, they are computer systems inspired by the way the human brain works. They consist
of interconnected nodes, or "neurons," organized in layers. These networks can learn patterns
from data, making them capable of tasks like recognizing images, understanding language,
or making predictions. Essentially, AI enables machines to learn and make decisions by
mimicking the brain’s interconnected structure. They can be integrated into electronic
devices, such as embedded platforms, bringing key aspects to be taken into consideration:

• Resource constraints: Embedded systems typically have limited processing power,
memory, and energy resources. Implementing AI on such systems requires optimization
and efficient algorithms to ensure that the AI models can run within these constraints.

• Power constraints: In some fields of applications, the total amount of power of a
system is finite, and no excess is allowed by any part of this system. AI algorithms
integrated into embedded platforms must not exceed allocated power consumption.

• Optimized algorithms: AI algorithms need to be optimized for embedded platforms.
This may involve using lightweight models, quantization techniques, and model com-
pression to reduce the computational and memory requirements while maintaining
acceptable performance.

• Continuous learning: Some embedded AI systems support continuous learning or
online learning, allowing the model to adapt and improve over time based on new data
without requiring a complete retraining process.
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1.6 Motivation for this Thesis

Since 2016, the session of the Italian national institute for nuclear physics Istituto
Nazionale di Fisica Nucleare (INFN) of the University of Roma Tre has worked with Thales
Alenia Space company regarding different studies. Requests such as the characterisation of
electronic devices in particle ambient or the development of firmwares for electronic studies
purposes has been performed.

A contract has been signed between the Italian Space Agency (ASI) and the company
Thales Alenia Space for the design, development, and qualification of a vehicle for the In-
Orbit Servicing (IOS) demonstrative mission.

In-Orbit Servicing is a demonstrative mission in LEO, scheduled for launch by 2026.
The contract is part of the resources invested through the Italian Government’s National
Recovery and Resilience Plan (PNRR), through which ASI has been able to finance several
significant national programs, such as the Space Factory, highlighted in the ASI 2019-2023
four-year report.

A growing number of satellites orbit the Earth to meet various needs, from geo-
localisation to connectivity, weather forecasting to environmental monitoring, and more. To
extend their operational life, these satellites would require periodic maintenance or assistance.

The demonstrative mission will test enabling technologies for future in-orbit servic-
ing missions by performing various robotic operations on satellites already in orbit: refuelling,
repairing or replacing components, orbital transfer, and atmospheric re-entry.

These operations will be carried out by a robotic arm, developed by Leonardo in
collaboration with SAB Aerospace, INFN, and the Italian Institute of Technology (IIT).

In-Orbit Servicing activities represent a paradigm shift, introducing unprecedented
system scalability and flexibility, providing opportunities for maintenance and updates in
orbit and fundamentally changing the entire approach to satellite design. [13]

This kind of project motivates a study focused on the integration of neural networks
in the newest generation of embedded platforms developed by Xilinx company: Versal ACAP.
A study over the sturdiness to particle ambient, optimisation of the neural network and the
resources must be undertaken.
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We have introduced in Chap.1 the need of studying the effect of particle ambient on
electronics before it is used in space missions. In this chapter, we start by presenting the
direct consequences of particles interacting with electronics in the case of COTS. This is
done through the exploitation of beams of particles from two different natures and the effects
of the radiations on electronics. This is presented in Sec.2.1 [14] and Sec.2.2 is dedicated
to the presentation of a Versal ACAP board provided by Thales Alenia Space company for
being studied in terms of resource consumption and potentiality for the insertion of AI. A
second board is presented, a transitional one, for raw and hazardous studies.

2.1 COTS Irradiation

2.1.1 Introduction

In the present time, electronic devices represent a fundamental part of our lives, and
they are the main elements for high energy physics experiments, medical applications and
space missions, just to name a few. Some of these fields of study take place in environments
subjected to various amounts of radiations that can compromise the electronics and the people
involved; it is then of paramount importance to study the radiation environment and the effect
that such radiations have on electronics, with a particular interest for COTS components, and
humans.

COTS components are beginning to be widely used for space missions due to their
reduced price and short procurement time. Therefore, a thorough radiation hardness study
must be performed on them, since the space environment presents radiation hazards from
particle fluxes that can produce effects like:
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• Single Event Effect (SEE),

• Latch-up,

• Erosion,

• Total Ionizing Dose effect (TID),

• Displacement,

• Charging,

• Interference.

As reported in [15] there are already some devices, such as the microcontroller
ATmegaS128 by ATMEL, that presents a radiation tolerance profile compliant with a LEO
orbit. In the same paper, an extensive report on validating SEE caused by protons on COTS
like the SPC56EL70L5 by STM, is also reported. The device tested with protons is the same
studied in this section.

Other studies on the space environment and its effect on electronic components are
reported in [16], where some solutions to mitigate the damages are presented. The most
relevant of these are: the implementation of two equivalent systems that work in redundancy,
in which a reset is performed if there is a disagreement between them; the application of a
watchdog timer, where the system is reset if a pre-settled action is not registered in a specific
time interval.

Our study will focus on the validation of a microcontroller by STMicroelectronics,
namely SPC56EL70L5. Two tests will be presented: one performed with heavy-ions, the
other with atmospheric-like neutrons. Protons, neutrons and heavy ions are present in space,
particularly in LEO, where many satellites and cube-seat constellation will be stationed in
the near future.

The paper is structured as follows: Sec.2.1.2 describes the tested device; the facili-
ties at which the tests were performed are illustrated in Sec.2.1.3; Sec.2.1.4 describes the
experimental methodology; the data analysis is reported in Sec.2.1.5 and finally Sec.2.1.6
summarizes the conclusions.

2.1.2 The SPC56EL70L5 Microcontroller

The Device Under Test (DUT) is the SPC56EL70L5, a 32- bit Power Architecture®
microcontroller, manufactured by STMicroelectronics, and developed for automotive chassis
and safety applications that require a high Safety Integrity Level (SIL). The device is designed
with the possibility to configure it as a dual lock-step and, thanks to this configuration, it can
achieve IEC61508 SIL3 and ISO26262 ASILD integrity levels.
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A detailed block diagram of the device is shown in Fig.2.1.
The dual lock-step is provided with dual redundancy for the essential components

of the device, represented by the cyan blocks in Fig.2.1; this redundancy allows the device to
reach the targeted SIL with minimal additional software and hardware.

The critical components receive the same initialization values and execute the same
operations; the outputs of these (displayed by the red blocks in Fig.2.1) are compared to
check for errors. An error is reported if there is a discrepancy of the outputs.

The chip is a CMOS device contained in a LQFP144 package of dimension
20mm×20mm×1.4mm, and has 144 pins useful for alimentation, I/O peripherals, power
management, ADCs (illustrated by the yellow blocks in Fig.2.1).

Each microcontroller is provided with the following memory:

• 2 MB of FLASH memory;

• 192 kB of SRAM memory.

The device operates at a frequency up to 120 MHz, and it is optimized for low power
consumption while maintaining high performance processing power.

A full explanation of the chip architecture is available in [17].

2.1.3 Laboratories

Laboratori Nazionali del Sud (INFN-LNS)

The Laboratori Nazionali del Sud (LNS) of INFN in Catania, Italy, hosted the ion
measurements, performed with the 0° beam line. The particles are accelerated in the vacuum
with the Superconducting Cyclotron (CS) up to 80 MeV/nucleon. Just before exiting in the
air, through a 50µm layer of Kapton, the beam is spread using a 15 µm foil of Tantalum.

To ensure that the energy deposition happens inside the device and to carefully
evaluate the energy deposition inside the silicon, the Integrated Circuits (ICs) were decapped
before the irradiation. Moreover, a 20 mm diameter beam was used to ensure that the whole
chip is irradiated homogeneously.

For the purpose of our measurements, two different ions were used: 84Kr acceler-
ated to 1,678.24 MeV and 84Kr accelerated to 780 MeV. The two ions have a LET of 45
MeV.cm2.mg−1 and of 34 MeV.cm2.mg−1 respectively.

ISIS Neutron and Muon Source

Neutron measurements were performed at ISIS Neutron and Muon Source at Rutherford
Appleton Laboratories (RAL) in Oxfordshire, UK [18][19].
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Figure 2.1: Block diagram of the SPC56EL70L5 microcontroller under test. Source: [17].

The ISIS spallation source uses a synchrotron (163 m of circumference) to accelerate
protons up to 800 MeV; the proton beam is extracted and directed on a tungsten target to
produce neutrons. There are two target stations used for different experiments. For our
measurements we used target station 2 where there is a dedicated beam line for irradiat-
ing microelectronics with atmospheric-like neutrons, the ChipIr instrument [20], that can
produce neutrons with energies En > 10 MeV and with a flux of 5 ·106 neutrons.cm−2.s−1

[21][22][23]. Through measurements, it has been shown the beam has a 70×70 mm2 shaped
uniform footprint. The energy spectrum of the neutron is shown in Fig.2.2.
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Figure 2.2: Neutron energy spectrum (continuous red line), evaluation of 2019, compared to the
atmospheric one (blue line). Source: [24][25].

2.1.4 Methodology and Data Acquisition

To perform the tests, we defined the two types of board used:

• Control board: a remote board, not irradiated, on which the electronics for controlling
and powering the microchips based on an FPGA device are mounted; this board is
shown in Fig.2.3.

• Test board: a printed circuit on which the DUT is mounted; this board is equipped
with the useful connector to bring the microchips pins to the control board and a BJT
transistor for internal voltage regulation; this board is shown in Fig.2.4 (front) and in
Fig.2.5 (back). After each irradiation, the test board was replaced with a new one.

The two boards communicate with each other via IDC connections. The control
board has a USB 2.0 connection to communicate with a pc for controlling the acquisition
software and for transferring the acquired data. The main panel of the acquisition software is
shown in Fig.2.6.

On the control board there are 14 voltage supply channels, each of these can be
monitored individually and, via shunt resistances or Hall-effect sensors, the corresponding
currents are acquired. These currents are listed in Tab.2.1.

On the FPGA there is a control firmware that checks the sum of the measured
currents; if this sum is greater than a threshold, the power supply is turned off to protect the
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Figure 2.3: Control board. The IDC connectors on top bring the power supply to the test board. The
USB connector at the bottom gives access to the acquisition software. This board is put outside the
irradiation rooms.

Figure 2.4: Test board, front side. The DUT is highlighted by the red circle and is powered up by the
control board via IDC connectors.
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Figure 2.5: Test board, back side. The BJT transistor for internal voltage regulation is highlighted by
the red circle.

Figure 2.6: Main panel of the control software. It is possible to set the acquisition time, the current
threshold for latch-up, the clock frequency and parameters for the flux. The software monitors and
shows all the set parameters and gives feedback on the number of resets.
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DUT, this defines a Single Event Latch-up (SEL). After a SEL occurs, the power supply is
not available for 2 s.

Pin Number Current Current Description

6 I_IO I/O pin
16 I_REG_0 PMU regulator
21 I_IO I/O pin
27 I_OSC Internal oscillators
50 I_ADDR0 ADC0 reference
56 I_ADDR1 ADC1 reference
58 I_ADV Integrated ADC power supply
72 I_PMU Power Management Unit (PMU)
91 I_IO I/O pin
95 I_REG_1 PMU regulator
97 I_FLA 2 MB Flash memory

126 I_IO I/O pin
130 I_REG_2 PMU regulator

EXTERNAL I_Hall Whole current monitor

Table 2.1: Monitored currents with pins

The firmware installed inside the DUT generates a square pulse on pin GPIO 79.
This pin is monitored by the FPGA to check if the core is working correctly. When the chip
is positioned under the irradiating beam, an additional signal is required to ascertain that the
CPU is working: an acknowledgement signal in response to a control signal given by the
FPGA. This acknowledgment signal is not necessary, but it is rather an additional check.

If the chip does not receive any waveform on the GPIO for more than 6.7 s, a hard
reset is performed on the power supply because the execution of the firmware is considered
off. This process can be executed as long as desired, usually a 40 s cycle is selected, referred
to as a GPIO test.

The purpose of the experiment is to study the behaviour of the chip under accelerated
irradiation. During this irradiation, the currents are monitored in two different phases: GPIO
phase and Beam phase. The former is the phase when the DUT is irradiated, the latter is used
to monitor the beam flux intensity, since the ion beam flux was not monitored by the LNS
facility. In addition, the current absorption is measured while the samples are maintained at
80°C.
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2.1.5 Data Analysis

Both experiments have been performed following the descriptions made in Sec.2.1.4.

Heavy-ions beam test results

A total of eight samples were irradiated with a heavy-ion beam: five with 84Kr of energy
1,678.24 MeV and LET of 45 MeV.cm2.mg−1; and three with LET of 34 MeV.cm2.mg−1.
The values for the LET were obtained with a simulation using the software SRIM2013 [26].

To avoid attenuation on the surface of the LQFP144 package, the device was
decapped as shown in Fig.2.7. The decapping was performed by STMicroelectronics using a
mixture 3:1 of nitric acid (HNO3) and sulphuric acid (H2SO4), at room temperature, dosed
with an automatic dispenser.

Figure 2.7: Close-up of the deccaped chip. Part of the LQFP package was removed with the acid
solution.

For these tests, a mechanical device was implemented to control and measure the ion
flux. The DUTs were mounted on a mechanical translator that moves the microcontrollers
under or out of the beam. In line with the beam, behind the device, a scintillator crystal
coupled to a photomultiplier was positioned. The irradiation of the DUT lasts for about
10 minutes, then the DUT is moved away to let the ions impinge on the scintillator that is
irradiated for about 40 s. With this method, an ion counting was performed to verify and
validate the flux characteristics. A schematic of the procedure is shown in Fig.2.8. In the
figure, the movement of the translator is represented by the black double-headed arrow.

This mechanism represents the two phases of the test described in Sec.2.1.4: GPIO
phase and Beam phase. At the time of the experiment, it was not possible to directly
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Figure 2.8: Schematic of the irradiation and ion counting. When the translator moves down, the beam
hits the scintillator and the ion counting starts.

control the low fluxes of the ion beam, so it was crucial to implement a system that allowed
the measurements and permitted to monitor the irradiation received by the DUT. For both
irradiations, the latch-up threshold is set to 1 A.

In the two cases, the device is stabilized to (79.5±1.0)°C using a Peltier cell equipped
with a control loop, composed of a Proportional Integral Derivative (PID) controller, to
monitor the hysteresis. At this temperature the absorbed current by the DUT measured,
before irradiation, has a mean value of (50.0±0.5) mA.

In Tab.2.2 are reported the results of the tests with the ion 84Kr, and in Tab.2.3 the
results with the ion 78Kr. The absorbed current reported is the one after irradiation.

The flux has an uncertainty given by natural radioactivity produced by cement, equal
to (20±5) ions.s−1.cm−2.

The effective fluence is obtained by multiplying the mean flux by the irradiation time.
The uncertainty on this quantity is given by the integral over time of the natural radioactivity
fluence which is equal to (20±5)·104 ions.cm−2, for an interval of 104 s (ion 84Kr), and
(20±5).103 ions.cm−2, for an interval of 103 s (ion 78Kr).

A test is considered passed, i.e. the chips survived the irradiation, if the current
absorbed and the contents of the EEPROM match before and after the irradiation.

Of the eight microcontrollers irradiated, only one, ST02, did not pass the test; the
absorbed current for this was (30.0±0.5) mA.

For these samples, we computed the absorbed dose. Since this is proportional to the
fluence and the energy loss rate in a material [27], we computed it by using 2.1:
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Sample Fluence
(107ions.cm−2) Irradiation time (s) Absorbed current (mA) Test passed

ST01 1.01 6027 50.0±0.5 Yes
ST02 1.21 6321 30.0±0.5 No
ST03 1.33 8205 50.0±0.5 Yes
ST05 1.27 10790 50.0±0.5 Yes
ST06 0.21 3592 50.0±0.5 Yes

Table 2.2: 84Kr Irradiation results.

Sample Fluence
(107ions.cm−2) Irradiation time (s) Absorbed current (mA) Test passed

ST04 1.14 13813 50.0±0.5 Yes
ST07 0.23 2706 50.0±0.5 Yes
ST08 0.026 900 50.0±0.5 Yes

Table 2.3: 78Kr Irradiation results.

D = 1.602 ·10−7.ϕ.LET, (2.1)

where D is the dose (expressed in Gy=J.kg−1), ϕ is the fluence (expressed in
#particles.cm−2) and LET is the Linear Energy Transfer (expressed in MeV.cm2.mg−1).
The numerical factor is a conversion that changes MeV to J and mg to kg. The value obtained
is from 15.14 Gy to 95.9 Gy with the ion 84Kr, and from 1.4 Gy to 62 Gy with 78Kr.

For each sample we also evaluated the number of SEL, the number of firmware (FW)
blocks (corresponding to the number of times the DUT stuck) and the SEL-FW cross-section
defined as 2.2:

σ = #SEL+#FWblock

fluence
. (2.2)

The results of this computation are reported in Tab.2.4. From this table, it is clear
that the only events observed are due to FW blocks, and not to SEL occurred.

From Tab.2.2, 2.3 and 2.4 we can conclude that the DUT has a good resistance
to heavy-ions fluences up to 107 ions.cm−2, since only one of eight did not pass the test.
However, a hot redundancy is needed to ensure the service of the data acquisition because
we observed FW interruption during the irradiation.

The ion environment in a real orbit has much lower flux/fluence than our experiment
[28]. To compare our result with the real environment, we have computed the FW block
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Sample Fluence
(107ions.cm−2) #SEL #FW Block σ (cm2)

ST01 1.01 0 816 8.08 ·10−5

ST02 1.21 0 802 6.63 ·10−5

ST03 1.33 0 56 4.21 ·10−6

ST04 1.14 0 479 4.20 ·10−5

ST05 1.27 0 1248 9.83 ·10−5

ST06 0.21 0 130 6.19 ·10−5

ST07 0.23 0 120 5.22 ·10−5

ST08 0.026 0 15 5.77 ·10−5

Table 2.4: Number of SEL and FW block with cross-section.

rate for our experiment and the GEO and LEO environments [29]. The results of these
computations are shown in Tab.2.5, where we have taken as example samples ST01 and
ST04.

LET
(MeV.cm2.mg−1) Environment σ (cm2) Flux

(cm−2s−1)
FW Blocks rate

(s−1)

Experiment (ST01) 1.68 ·103 1.35 ·10−1

45 LEO 8.08 ·10−5 2.31 ·10−8 1.87 ·10−12

GEO 6.37 ·10−9 5.14 ·10−13

Experiment (ST04) 8.52 ·102 3.47 ·10−2

34 LEO 4.20 ·10−5 8.10 ·10−8 3.40 ·10−12

GEO 2.08 ·10−8 8.75 ·10−13

Table 2.5: Flux and event rates for the experiment, LEO and GEO.

In the case of the experiment performed, there are more FW blocks than the ones
expected in the real LEO and GEO environment; this is due to the higher fluxes used to
accelerate the experiment. Considering ST01, as an example, this sample registers 816 FW
blocks, which corresponds to a period between FW blocks of about 7.41 s which corresponds
to a period of 5.35·1011 s and 1.94·1012 s for the LEO and GEO respectively when computing
with the corresponding flux. For a three years mission, the FW block rates are 1.76·10−4 for
LEO and 4.85·10−5 for GEO.
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Neutron beam test results

The neutron beam experiment lasted 65 hours divided into four days, from the 27th of
April 2021 to the 30th of April 2021. Seven samples were tested with neutron fluences on a
single sample with a fluence up to 1011 neutrons.cm−2.

In order to keep the same configurations, the DUT and the acquisition software are
the same as those used in the heavy-ions tests but, in this case, there is no necessity to have
the GPIO phase and the Beam phase since the fluence of the beam is directly measured by
the hosting facility.

To begin with, the samples are tested in the experimental setup, with the neutron
beam off, for a couple of minutes to collect some references. In a second time, the samples
get irradiated for several hours. They get finally tested with the beam off again, to check the
state and the behaviour of the chips during ten minutes after the irradiation.

The total fluence irradiated during this period can be seen in Fig.2.9. The grey areas
represent the effective time under beam for each sample, labelled in the bottom left corner of
the area. The points indicate the breaking time of the damaged chips.

Figure 2.9: Total fluence registered by RAL. Each grey area represents the irradiation time of a chip,
whereas the points the time of break for samples: 7 (×), 9 (*) and 13 (+).

The exposure time of each sample is reported in Tab.2.6 alongside the fluence the
sample were exposed to, both total and before breaking, and a tag reporting if the chip has
broken during the irradiation or not.
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Sample Total fluence
(neutrons.cm−2)

Fluence before breaking
(neutrons.cm−2) Irradiation time (s) Broken

S3 3.78 ·1010 – 13,885 No
S5 1.98 ·1011 – 62,220 No
S7 1.34 ·1011 5.89 ·109 50,365 Yes
S9 3.06 ·1010 2.31 ·1010 10,543 Yes

S10 3.27 ·1010 – 11,938 No
S13 2.86 ·1010 3.78 ·1010 a 11,361 Yes
S15 1.82 ·1011 – 59,886 No

a During the whole post-irradiation test, S13 acted broken, whereas it did not during the irradiation test. We
assumed this chip broke at the end of the acquisition, so the two fluences reported are the same.

Table 2.6: Neutron irradiation results

For our measurement, we defined a broken chip as one that resets continuously
-every 7 s- during the GPIO phase of the test because, as stated in Sec.2.1.4, this defines the
hard reset and in this situation the chip cannot recover the firmware.

We monitored the currents registered during the irradiation to check for this pattern
of resets, an example of which is shown in Fig.2.10. The vertical axis is the current,
registered on the ADC power supply, during irradiation time, expressed in mA; on the
horizontal axis the time from the start of acquisition, expressed in seconds. Before the
breaking point (represented by the dashed line) the device underwent resets, but these did
not occur continuously and every 7 s. Instead, after the break, the current dropped by 1.5
mA and the microcontroller started resetting continuously. Every bunch of resets after break
represents the GPIO phase of acquisition, and every bunch is 40 s away from the following,
as selected via the acquisition software.

The number and frequency of resets measured in each sample are the main parame-
ters to distinguish a chip has been broken during the irradiation from a chip which did not.
Among the seven we tested, three of them (samples 7, 9 and 13) behaved like broken ones
after a certain amount of time.

To check the status of all the chips after the irradiation, especially for the broken
ones, other tests without the beam were performed two months after the irradiation time. The
two-month time gap was necessary to allow the neutron-induced activity of the samples to
decay and ensure that they were safe to be handled manually.

The non-beam radiation-less tests lasted two hours and were performed connecting
the test board to the control board and monitoring the aforementioned 14 currents. For a
functioning chip, we expected no resets, whereas a damaged one should have shown resets
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Figure 2.10: Example of the current acquired by a broken chip (sample 9). The vertical dotted line
represents the breaking point, on the right side of this we can see the pattern of resets typical of a
broken chip. The current shown is the one from the ADC voltage supply during irradiation time.

even in a “no-radiation” environment. Thus, we defined a damaged chip as a sample which
provides resets during a test without radiation but does not show continuous resets.

After performing radiation-less tests on microcontrollers, S9 was still manifesting
the broken behaviour (a total of 547 resets) during the two-hours test. However, S7 and S13
did not show this pattern despite the presence of resets (respectively 8 and 30), which should
not occur for a functioning chip, not previously irradiated. Thus the radiations made these
samples at least partially damaged.

To explain this change in the number of resets, we supposed that an effect of self-
annealing occurred during the two months between the tests. No specific analysis were carried
out, but, from literature [28], we found some evidence of self-annealing in semiconductors at
room temperature that occurred over periods of 45, 60 and 100 days. Despite better results
regarding the number of resets, the annealing effect did not make the chips to fully recover.
Indeed, besides having currents behaving like working samples, the chips did not act like
broken ones, displaying a broken pattern. However, unexpected resets were observed, which
proves the chips were still partially damaged.

We can establish that the neutron beam irradiation didn’t result in SEL behaviour of
the DUT, taking into account that the used beam has an intensity several orders higher than
the natural LEO environment.

The reset pattern of the broken chips can derive either from the DUT in the front of
the test board, Fig.2.3, or from the BJT transistor on the back, Fig.2.4. As a consequence,
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it is possible that either only one of these components got broken, or both of them did. To
determine which of the two devices is the reason for this behaviour, a solution is to change
the transistor with a known-fine one. This modification was made on S7, S9, and S13.

Once again, a two-hours radiation-less test was made for these three samples, with
the transistors changed, and respectively 32, 16, and 12 resets were counted. The number of
resets for S9 decreased significantly, and the behaviour previously described was no longer
observed. The number of resets for S7 and S13 was still in the same range as previously
mentioned.

In Tab.2.7, the number of resets for each phase of the analysis are summarized:
irradiation, radiation-less and radiation-less after changing the transistor (this last one only
for samples 7, 9 and 13).

Sample Resets during
irradiation)

Resets during
radiationless tests

Resets after
60 days

Resets after
changing the transistor

S3 20 2 0 –
S3 29 20 0 –
S3 3,782 30 8 32
S3 194 18 547 16
S3 147 4 0 –
S3 181 62 30 12
S3 24 0 0 –

Table 2.7: Sample resets summary

These values mean the microcontroller was broken for each of these three samples.
Besides, during the irradiation tests, the transistors and the microcontroller broke, but the
two-month waiting made an annealing process occur for the transistors of S7 and S13.

The results from Tab.2.6 and Tab.2.7 allow us to say that the DUT has a moderate
resistance to neutron fluences up to 1011 neutrons.cm−2, since three out of seven appear to be
damaged. Changing the BJT helped to lower the number of resets for S9 and S13, whereas S7
increased the number of resets. In the case of S7, a functioning BJT could correctly polarize
the DUT and transmit the resets as it should. Thus, the right number of resets occurred and
are observed.

2.1.6 Conclusions

The purpose of this work was to study the resistance and the behaviour of the
SPC56EL70L5 microcontroller under irradiation of two different particle beams. In or-
der to do it, seven chips were exposed to atmospheric-like neutrons, and eight to heavy-ions.
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Such study was performed looking at the number of resets due to the chip, in the case of
neutrons. For heavy-ions, a comparison between the currents before and after irradiation was
done. We kept the same configuration for both experiments on purpose to keep a matching in
the bugs, the functioning and behaviours.

We observed that:

• The microcontroller shows sufficient resistance to neutron beam fluxes up to
1011neutrons.cm−2. Out of the seven samples tested, three (S7, S9, S13) showed
a broken pattern immediately after irradiation but, after two months, only one of these
(S9) maintained the broken pattern; S7 and S13 showed regular currents and a reduced
number of resets. A possible explanation is attributed to an annealing effect that took
place during the two months break between the irradiation and the radiation-less tests;
but no further analysis was conducted. Even if self-annealing effect could occur in
spacecraft, the objective of this study is to present the results without counting on
annealing. Since the origin of resets could be the chip as much as the transistor of the
board, we changed the latter. After this change, the current did not show the broken
pattern any more, but there were still resets, implying the chips were damaged.

• The DUTs show a good resistance to heavy-ion beam fluxes up to 107ions.cm−2. Only
one (ST02) out of eight samples did not pass the test, presenting an absorbed current
after irradiation lowered by 40%. All the observed events are due to firmware block,
no SEL occurred.

The main issue we can identify in these tests is that the tension regulator has been
placed inside the DUT, making it sensitive to interactions, and likely causing disruptions in
the patterns. It would be beneficial to utilise an external regulator with a voltage of 1.8 V.
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2.2 Embedded systems

In the same manner as COTS have been studied, understanding the response of em-
bedded systems to ambient particles is crucial before deploying them in space missions. In
this section, we introduce the two systems that will be utilised for future studies concerning
embedded systems.

2.2.1 VCK190es1

Thales Alenia Space has provided INFN Roma Tre with a Versal AI Core Series
VCK190es1 (shortened to VCK190), depicted in Figure 2.11, for the purpose of examining
power consumption and implementing AI utilising continuous learning for classification
tasks for space missions.

Figure 2.11: VCK190 board, from [30]

The AMD Versal™ XCVC1902 device is integrated into the VCK190 evaluation
board, enabling the developments of applications such as machine learning. It offers support
for various development tools, including optical transceiver supports, HDMI and USB plugs,
connectors and Peripheral Component Interconnect Express (PCIe) [31]. To assist data
scientists and developers in programming and optimizing their work, tools such as the
Processing System (PS) have been developed, providing numerous components for various
development activities [32]. Additionally, a Targeted Reference Design has been created for
embedded video processing applications, utilising the PS and AI Engines (AIE) [33].

Among the array of tools accompanying the Versal VCK190, AIE and Digital Signal
Processing (DSP) offer computing performance that exceeds current server-class CPUs by a
factor of a hundred [30]. While this embedded system is ideal for remote machine learning
and signal processing, its suitability for use in space missions, the impact on electronic
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components, and the implications for machine learning characteristics must be thoroughly
investigated.

Since this electronic board has been provided in only one exemplary, and it comes
at considerable cost, the risk of damage during irradiation tests cannot be taken. Therefore, a
secondary board, the Zybo-Z7 10, has been selected for initial testing purposes.

2.2.2 Zybo Z7-10

The criteria for selecting the secondary board were as follows: it should have a FPGA
with ample resources capable of implementing artificial intelligence, programmability for
tailored tasks, features enabling the addition of a camera, processing of video inputs, and an
affordable price.

The Zybo Z7 board with a Zynq-7010 System-on-Chip loaded (abbreviated as Zybo
Z7-10), displayed in Fig.2.12, is an embedded system that features programmable systems
with FPGA logic. It offers various video interfaces such as MIPI CSI-2 and HDMI inputs and
outputs, and is priced at less than C400 [34][35]. Featuring a 667 MHz dual-core Cortex-A9
processor tightly integrated with Xilinx FPGA and 270 KB block RAM, it emerges as an
ideal candidate for implementing AI through the utilisation of the open-source project PYNQ
from AMD company.

Figure 2.12: The Zybo Z7-10 board, from [34]

The PYNQ project enables programmers and engineers to leverage Adaptive Com-
puting platforms, facilitating updates after deployment and thus optimized for custom ap-
plications. PYNQ supplies a Jupyter-based framework including Python APIs for utilising
AMD Xilinx Adaptive Computing platforms and is compatible with the Zybo Z7-10 board,
allowing Python to be used for programming embedded processors [36]. Therefore, Python
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frameworks can directly assign AI components to the electronic device, and machine learning
can be correctly implanted using the Brevitas project, explained in Sec.3.2.
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3.1 Neural Networks

First created to model the brain neurons [37] and the way they work [38], Artificial
Neural Networks (ANN), or shortened neural networks, have evolved to reproduce [39] [40]
and surpass [41] [42] tasks that should only be achievable by humans. Mimicking the way
neurons transmit information to one another, they can learn and comprehend patterns and
connections in data through experience. Neural networks are composed of several units, or
neurons, often arranged in layers and all connected to one another [43]. The behaviour of a
network is defined by various options and metrics, and the possibilities of use are unlimited
[44]. We must introduce how a neural network is constructed for the comprehension of the
rest of the study.

3.1.1 Description of a neuron

The first step of understanding the functioning of a neural network is to comprehend
what neurons are. They are described as follows [43]:

A neuron receives several inputs xi, depicted as x1,x2, ...,xn−1,xn in the example
shown in Fig.3.1. All of these inputs are summed together while being assigned a value wi

called the weight and a constant, the bias b. The operation performed by a neuron is

y =
n∑
i

xiwi + b. (3.1)

The result of this operation y is then processed by a non-linear function called the
activation function [43], represented as f in Fig.3.1. The non-linearity of this function is
preferred for network learning, as it enhances the adaptability of the network to diverse
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Figure 3.1: Scheme describing how a neuron works. All the inputs x1,x2, ...,xn−1,xn provided are
summed by the neuron, and then processed by a function f that must be chosen. The output is then
transferred to the next step as an input.

datasets. Activation functions can take several forms with Rectified Linear Unit (ReLU),
Sigmoid and tanh [43] being among the most well-known, described as

σ(z) = 1
1+ e−z

,

tanh(z) = ez − e−z

ez + e−z
= 1− e−2z

1+ e−2z
,

Relu(z) = max(0, z),

(3.2)

and their representation is plotted in Fig.3.2.
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Figure 3.2: The activation functions

The result of such a function provides the output of the neuron, which can serve
as the input for an adjacent neuron and/or be studied by an external source. The choice
among the different activation functions is made regarding several parameters involved in the
computation [45].



3.1 Neural Networks 37

The processing of inputs by a neuron aims to assign different importance, with the
weights, to the many provided inputs. Subsequently, a threshold, the bias, is set to determine
how much of the value the neuron must "fire" as an output. In the case of the Relu function,
for example, the neuron sends 0 if the value is smaller than the bias.

3.1.2 Networks

Now we have seen that a neuron can process information by assigning weights relative
to a threshold, an interesting approach is to assign different weights and biases and verify the
output of these operations. However, to retain the data already obtained, the results could be
compared or handled by an external source. Consequently,we need to create several neurons
receiving the same inputs, as illustrated in an example in Fig.3.3.

Figure 3.3: Scheme describing how several neurons take the same inputs and process them in different
outputs.

As mentioned earlier, each neuron’s output can be analysed by an external source.
This means that if we assign weights to them, they can be processed as inputs by other
neurons. As a result, another layer of neurons can be established, succeeding the existing
one, and this process can be repeated. This part of a network is referred to as the hidden
layers [43].

In Figs. 3.1 and 3.3, the inputs denoted as x1,x2, ...,xn, represent values that can be
obtained from various results, such as coordinates, values of a dataset, flattened images or
texts for example [46]. It’s conventional to represent them in the same manner as neurons
and gather them in a layer called the input layer.
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Besides, in order to make this ordered aggregate of neurons useful, we require it
to yield results from all the calculations. Therefore, the last layer of neurons must provide
output values such as positions, binary results, or probabilities, for example. This final layer
is termed the output layer [43].

Figure 3.4: Scheme of a neural network.

When all these layers are gathered, we get an object called a neural network, which
can be seen in Fig.3.4.

3.1.3 Mechanisms of classification

As said previously, many different tasks can be asked to neural networks, one of them
being image classification. To manage such a study, one must give an image among a set
of several images ordered into different classes as input. In Fig.3.5 are displayed examples
of images coming from the weather set introduced in [47] where images can come from 11
different classes such as hail, rain or snow.

The network is aware of the number and names of the classes. When an image
is provided, the layers of colours are separated in case of RGB images, and the pixels are
flattened to shape the input layer. The output layer has the same dimension as the number of
classes; each neuron within it is associated to a specific class [43]. After processing the input
through the hidden layers, the index of the class corresponding to the neuron with the highest
value stored in the output layer is chosen as the prediction by the network.
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(a) (b) (c)
Figure 3.5: Three images coming from the weatherdataset [47]. a, image from the sandstorm class.
b, image from the lightning class. c, image from the fogsmog class.

If the weights have not been pre-trained to enhance network accuracy, either they
are initialised randomly, or they are initialised following a specific method [48], with a value
assigned to each connection (represented as a line between two neurons in Fig.3.4).

Figure 3.6: Scheme describing how training and testing sessions work on a neural network.

The network cannot make accurate predictions with all of its parameters set pseudo-
randomly. This is where the network training comes into effect. Datasets and network usage
sessions are separated into two distinct phases in supervised learning, the training and the
testing:

• The training session begins with input data passed along the network through the
different mathematical operations. The predicted output is obtained in the output layer;
this is known as forward propagation [43].
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Figure 3.7: The structure of neural network in which softmax is used as activation function and
Cross-Entropy is loss function, from [49].

From this point, the output is compared with the correct answer, and the difference
is measured using a loss function, such as binary cross-entropy Loss and Hinge loss
for example [50]. As they represent the gap between the prediction and the correct
answers, the objective is to minimize them. The gradient of the loss is computed and
used to update the weights and biases, multiplied by the learning rate, a parameter
inserted in advance to moderate the adjustment by the user. This is called the backward
propagation [51].

The previous steps are repeated for every image in the training set. This process is
reiterated several times, with each iteration called an epoch, aiming to minimise the
loss and maximise the accuracy of the network [52].

• The testing session involves presenting different images to the network, not encoun-
tered during training, and evaluating its performance through forward propagation [52].
Evaluation tasks include specific analysis such as accuracy or recall.

A scheme summarising what have been explained is shown in Fig.3.6, with a training
set of 60,000 images, and a testing set of 10,000 images and one showing an example with
softmax as an activation function and Cross-Entropy as a loss function is displayed in Fig.3.7,
from [49].

3.1.4 Convolutional neural networks

Convolutional neural networks (CNNs) are types of neural network specifically designed
for processing structured grid-like data, such as images. It’s a deep learning algorithm that
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has proven to be highly effective in various computer vision tasks like image classification,
object detection, segmentation, and more. A deep learning algorithm, in contrasts with
shallow neural networks, consist of multiple layers to model and understand complex data
representations (they usually have more than two hidden layers in their architecture).

Previously introduced neural networks are based on the connection of a flattened
image, which has each of his inputs connected to the first hidden layers, they are called
fully-connected networks. In contrast with fully-connected networks, requiring light resource
needs but losing spatial information because of the flattening of the image, CNNs show the
best results in terms of classification for some sets [53].

Before connecting the input and the neurons of the hidden layers, CNNs apply
several filters in order to modify the incoming signal into the network:

• A Convolutional layer performing dot products between the grid-liked structure data,
considered as a matrix, and a kernel, a smaller matrix being one of the learnable
parameters of the network. Performing this product for every spatial possibility, a
smaller resulting matrix is obtained. A scheme explaining the functioning of the
convolutional task is observed in Fig.3.8

• A Pooling layer down-samples the feature maps generated by the convolutional layers.
Most common pooling tasks retain the maximum value within each region of the
obtained matrix, or average pooling, computing the average value of the region. Pooling
helps reduce the dimensionality of the feature maps while retaining the most important
information. Between each operation for both of these tasks, the values of the input
matrix are shifted by a number, called the stride. A scheme explaining the functioning
of the pooling task is explained in Fig.3.9.

• Activation functions, that are the same as introduced earlier in this Section. Convo-
lution, pooling and activation task are considered a whole task, and can be repeated
various times for reducing the dimensionality of the input.

• Fully connected layers connect the resulting matrix with the neurons composing the
hidden layers, the same way fully-connected network do it with the flattened input.

While CNNs have better performance with image classification tasks, they also
require higher resources, and they are not the best candidates for applications on the Zybo
Z7-10 board. However, for widening our study, they will be used with the MobileNet
Architecture [56] [57].
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Figure 3.8: Scheme describing the operation of convolution made with an input image of 5x5 input
matrix, and a 3x3 kernel, from [54].

Figure 3.9: Scheme describing the operation of max pooling on a 4x4 matrix with a 2x2 filter and
stride 2, from [55]

3.1.5 Overfitting

One of the most prevalent and common challenges in supervised neural networks and
machine learning models is overfitting. This phenomenon arises when a model learns to
perform well on the training data but fails to generalise to new, unseen data. In other
words, the model memorises the training data instead of learning the underlying patterns
or relationships, resulting in poor performance on unseen data. This tendency often occurs
when the network is trained for too many epochs, causing it to excessively minimise the loss
function and closely fit the training set while failing to meet the requirements of the testing
set.

To illustrate this learning characteristic, an example is depicted in Fig.3.10, where
a supervised neural network is tasked with a classification assignment. The training set
is composed of 11 red dots and 11 grey stars, and the network is trained to learn a cut to
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Figure 3.10: Scheme describing how overfitting acts in machine learning.

distinguish between these elements. An optimised boundary would achieve a 77% accuracy
on the training set, whereas overfitting would result in 100% accuracy. When these cuts are
applied to a testing set consisting of 11 brown squares and 11 blue triangles, the optimised
cut yields an 82% accuracy, whereas the overfitted cut incorrectly applies the overfitting
phenomenon to unseen data, resulting in a 59% accuracy. Overfitting is a crucial consideration
in optimising network performance.

3.1.6 Neural Networks in physics

Neural networks and their derivatives, such as Modular Neural Network designed to
handle specific and distinct tasks to different modules of the network, or Recurrent Neural
Network optimised for the understanding of sequential or temporal data, have become so
powerful and handy they have been integrated in many physics experiments revolutionising
the interpretation of data [43] [58] [59]. One main field where neural networks are used in
experiments is particle physics [60]. Indeed, high-energy particle collisions emit a massive
amount of experimental data [61] and traditional methods prove not to be as robust as neural
network for analysis and event classification, first in [60] and enhanced in [62]. They have
shown exceptional results working in domains like tracking and identification of particles
in experiments occurring in the Large Hadron Collider, for example. Not only in particle
physics but also in domains like astronomy and cosmology, neural networks have been proven
valuable for works like the processing and the interpretation of astronomical observations
[63].

However, when neural networks are set on frontend facilities in particle experiments
or subject to cosmic rays in outer space, as seen in Chapter .1, the damages in the electronic,
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resulting not only from charged particles, have repercussion on the functioning of the
networks. If one wants to use neural networks in particle ambient, it is mandatory to study
the consequences on the performances of such an important analytical tool.

3.2 FINN and Brevitas projects

As discussed in Sec.2.2, our objective is to integrate a neural network into the Zybo
Z7-10 board. To achieve this goal, the initial step involves using the FINN framework [64],
an experimental project developed by Xilinx Research Labs aimed at optimising quantised
neural networks (QNNs) in embedded systems.

3.2.1 QNNs and BNNs

QNNs represent a type of neural network where weights and activations are encoded
with a reduced number of bits compared to traditional neural networks. In traditional
neural networks, weights and activations are typically represented as floating-point numbers,
necessitating higher precision and consuming more memory and computational resources.

QNNs offer a more efficient alternative, with Binary Neural Networks (BNNs)
representing a stronger form of QNNs proposed in [65]. In BNNs, weights and activations
are reduced to only binary values (+1 or -1), resulting in a significant reduction in memory
footprint and computational complexity of the network. This makes BNNs highly suitable
for deployment on resource-constrained devices such as microcontrollers, embedded systems,
and low-power edge devices, positioning them as ideal candidates for implementing neural
networks on the Zybo Z7-10 board.

However, while QNNs already achieve reduced costs while maintaining performance,
BNNs take this reduction to an even greater extreme. This efficiency comes with a trade-off,
as maintaining accuracy and performance becomes a challenge for BNNs compared to QNNs.

3.2.2 Brevitas library and functioning of the network

Prior to implementing the BNN into the Zybo Z7-10 using FINN, the BNN must be
created and trained in a manner that allows FINN to convert all characteristics of the trained
network into electronic format. To achieve this, the Brevitas library [66], a research project
developed by Xilinx, has been designed with the objective of ensuring that the trained model
files are compatible with FINN, and can be seamlessly integrated into the electronics.

The Brevitas library is written in Python and utilises common PyTorch functions for
creating different layers and computing methods, while also implementing the quantisation
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process. Subsequently, we will describe the network’s functionality and the functions utilised
to obtain the results presented in the following sections.

For Fully-Connected (FC) layers (in contrast to convolutional networks, explained in
Sec.3.1.4), which is the approach previously outlined for the functioning of neural networks
in image processing, the image is flattened and provided to the network as an input array.
Each element of the array corresponds to the value of a pixel. The various characteristics of
the network are summarised as follows:

• The dropout, which represents the probability of randomly setting elements of the
input tensor to zero, is set to 0.2. The input dimension is determined by the number of
pixels composing each image,

• The number of layers and neurons within each layer is selected. In the subsequent cases,
if not specified, the network consists of three layers, each with sixty-four neurons,

• The dimension of the output layer depends on the number of classes present in the
dataset,

• The number of bits allocated to the weights and activations is set to 1 for both,

• The number of epochs is set to 500 for having performance good enough, no risk
of overfitting and to reduce the time of computation, a plot showing the mean of
recognition in function of the number of epochs is observed in Fig.3.11,

• The learning rate is set to 0.02 and evolves according to the ADAM optimiser [67],

• Weights are initialised with a uniform distribution between -1 and 1,

• Biases are initialised to 0,

• The loss function employed is the Square Hinge loss. It computes the square of the
Hinge loss value.

The network is trained using the previously described characteristics, and the final
model of the trained network is saved into a file formatted to be read by the FINN framework.
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Figure 3.11: Plot displaying the mean of recognition of the network in function of the number of
epochs. The red line stands for 500 epochs.

3.2.3 FINN framework

Upon completion of the network training, a file is generated containing all the necessary
information for testing purposes. The FINN framework utilises this file and assigns various
neural components to different electronic modules. An illustration of the allocation of
different layers in the electronics is presented in Fig.3.12, and another illustration showing
the various connections between the neural components by the electronics is displayed in
Fig.3.13

By utilising specific software such as Vivado, a file is generated and implemented
into the Zybo Z7-10, which is readable by PYNQ. This file allocates the modules as de-
scribed by FINN. Once the model has been implemented into the FPGA, the board becomes
accessible via Jupyter Notebook for communication. Using Python commands, the model
can then be tested. A scheme summarising the functionning of Brevitas, FINN and PYNQ is
displayed in Fig.3.14.
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Figure 3.12: Display of the electronics composing the Zybo Z7-10 board. The network elements
allocated to electronic ones are coloured. Purple for the input layer, yellow, orange and khaki for the
hidden layers and bright green for the output layer.

Figure 3.13: Display of the electronics composing the Zybo Z7-10 board and the connections between
elements. Each of the 784 white arrows represents the communication of a single pixel to a neuron of
the input layer, in orange in this figure.
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Figure 3.14: Scheme describing the organisation between the Brevitas library, the FINN framework
and PYNQ, from [68].

3.3 MNIST dataset and performances

3.3.1 MNIST dataset

The Modified National Institute of Standards and Technology (MNIST) databset [69]
provides a 10-class database for image recognition with low-dimensional pictures, making
it suitable for initial tests with the Zybo and the Brevitas project, which supplies examples
using this database. We prefer using the optimised network using LFC, and allocating 1 bit
to input quantisation, 1 bit to weight quantisation and 1 bit to activation quantisation. This
preference is based on its support by the Zybo, and it has shown the highest accuracy results
in this configuration.

The MNIST dataset is a 10-class database of images displaying handwritten digits
from ’0’ to ’9’. The sample dimensions are 28x28 pixels, introduced in greyscale levels. The
total set comprises 60,000 training images and 10,000 testing images. Examples of samples
are shown in Fig.3.15

3.3.2 Accuracy, Fβ-Score and Mean of Recognition

The initial architecture used with the Brevitas project comprises an input layer with 784
neurons (equivalent to the number of pixels in a single image from the MNIST database),
three hidden layers with 64 neurons each, and an output layer of ten neurons. The selection
of the input and output layers is based on MNIST parameters, while the configuration of
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Figure 3.15: Samples of digits in the MNIST database.

the hidden layers is chosen for its effectiveness in the Brevitas project and adherence to
constraints arising from the limited resources of the Zybo board. A visual representation of
the architecture is shown in Fig.3.16.

Figure 3.16: Scheme displaying the architecture of the network used for the job with the MNIST
database. The input layer is composed of 784 neurons, three hidden layers of 64 neurons each are set,
and the output layer is composed of ten neurons.

When an image is input into the network and undergoes forward propagation, the
network generates a prediction. During a training session, this prediction is utilised to
calculate the loss function. In the case of a testing session, the result is stored and can be
visualised. By aggregating predictions for each image corresponding to a designated digit, a
vector is formed. An illustration of this result after the network has been trained is presented
in 3.3 for the digit ’0,’ where each element corresponds to the number of predictions made by
the network for the respective digit. In this example, 980 different images of ’0’ have been
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provided; 956 of them have been correctly predicted, one has been predicted as a ’2’, 6 as a
’5’ and so on.

digits 0 1 2 3 4 5 6 7 8 9
0 =

[
956 0 1 0 0 6 9 3 5 0

]
.

(3.3)

For each digit, a similar vector is obtained, and all these vectors can be consolidated
into a single table, Tab.3.1 is an example of it. The diagonal of this table summarizes the
correct predictions made by the network.

Input
Prevision

0 1 2 3 4 5 6 7 8 9

0 956 0 1 0 0 6 9 3 5 0
1 0 1115 4 2 0 1 3 0 10 0
2 11 5 959 10 11 4 8 8 15 1
3 4 4 22 882 1 35 1 13 39 9
4 2 5 4 0 895 0 18 3 3 52
5 10 2 6 18 7 819 8 3 12 7
6 16 3 7 1 5 15 907 0 4 0
7 2 13 21 4 6 1 0 947 5 29
8 6 6 14 14 12 22 8 11 872 9
9 8 9 4 8 20 8 3 14 13 922

Table 3.1: Table gathering all the predictions made by the network for a specific seed with 500 epochs.
In green are the True Positives, in blue are the False Positives and in red are the False Negatives for
the digit ’0’.

A feature indicating the precision of the network for a given testing session is the
Accuracy, defined as

Acc =
∑9

n=0 Corrn∑9
i=0 Lenn

, (3.4)

where Corrn is the number of correct predictions by the network for the digit ’n’ and
Lenn represents the total number of images in the testing dataset for the same digit. The
Accuracy for a given digit ’n’ is given as

Accn = Corrn

Lenn
. (3.5)

In the case of the results inserted in Tab.3.1, we observe an accuracy Acc = 0.93.
While Accuracy is relevant for assessing the precision of the network, the unequal distribution
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of images in the testing dataset across different digits prompts the introduction of two features
crucial for characterising the network.

To define the Fβ − score, we first need to introduce the precision and recall as:

precision = TP
TP+FP

recall = TP
TP+FN ,

(3.6)

where, for a digit n, TP stands for True Positive corresponding to values correctly
predicted by the network. FP stands for False Positive, indicating predictions of n when the
input is not, and FN stands for False Negative, representing the incorrect predictions when
n is the input. An example of these parameters with digit ’0’ are shown in Tab.3.1. The
precision represents the ratio of relevant items in the retrieved ones, while recall stands for
the retrieved items among the relevant ones.

The Fβ − score is then defined as:

Fβ = (1+β2) · precision · recall

(β2 ·precision)+ recall
. (3.7)

The preference for Fβ over Accuracy arises from the flexibility of choosing β to
assign more or less importance to False Positives and True Negatives. Accuracy, on the other
hand, considers only False Negatives with a fixed weight. While this may not be critical
for the MNIST dataset, it becomes significant in cases where predicting a certain class has
more impact than others. Additionally, since the number of images in the testing dataset is
not equally distributed among all digits, Fβ takes this into account in its computation. Both
parameters are computed in Tab.3.2, and it can be noticed the F1 score, which adds False
Positives and assign them a weight along with True Negatives, modifies some values. In
these examples, the F1 score for digits ’3’ and ’5’ have a difference of 0.003 whereas their
accuracies have a difference of 0.045. This difference is explained by the fact the digit ’3’ is
less predicted by the network when another class is provided as input. The last line of Tab.3.2
are the mean of the upper lines. The Mean for Accn corresponds to the Mean of Recognition.

The second feature we want to use instead of the Accuracy is called Mean of
Recognition (MR) and is defined as

MR = 1
10

9∑
i=0

Acci . (3.8)
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Digits Accn F1

0 0.976 0.958
1 0.982 0.971
2 0.930 0.925
3 0.873 0.905
4 0.911 0.923
5 0.918 0.908
6 0.947 0.943
7 0.921 0.933
8 0.895 0.893
9 0.914 0.904

Mean 0.935 0.926

Table 3.2: Table summarising the Accuracy and F1 score for the values provided in Table 3.1.

Unlike the Accuracy, the MR doesn’t take into account the difference in the number
of images for each digit, they are all considered equally in the final result.

Since we consider the MR more relevant than the Accuracy and the Fβ-score for
studying the effectiveness of the network with the MNIST dataset because it provides equal
proportion to each digit, we will prioritize the use of this metric.

3.4 Noise implementation

As demonstrated in Sec.2.1, cosmic waves do interact with electronics. Given that
the project’s objective is to connect the Versal VCK190 to a camera on a spacecraft, it is
essential to study the consequences of these interactions on both components. This section
will specifically delve into the effects of particles interacting with the camera and their
implications for the network’s operation.

3.4.1 Modification of the database

Technique of implementation

The camera used is a Pcam 5C designed around the Omnivision OV5640 5-megapixels
sensor, a Complementary Metal-Oxide-Semiconductor (CMOS) images sensor. Comprising
an array of light-sensitive diodes, CMOS sensors convert light into electrical signals, storing
them for computer-readable data. These signals serve the dual purpose of generating images
or videos and quantifying the light levels within a given scene, a deeper explanation of
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CMOS can be retrieved in [70]. CMOS sensors are sensible to cosmic rays as the radiation,
primarily composed of charged particles, interact not only with the diodes but also with the
electronic devices comprising the apparatus as showed in [71]. Given our goal to train a
network with images acquired by the camera set on satellites, it is essential to replicate this
interference [7] [8] [11] [12].

We base our approach on the methodology presented in [72], where we replicate
noise in the MNIST database by randomly switching the value of pixels in both the training
and testing sets. Although they use black and white images, their method seems coherent
with the results shown in [71].

To do so, we propose not only to add white pixels to the black background of the
images, but also to modify the grey and white pixels by switching their colour relatively to
the grey bar. In black and white images, each pixel corresponds to a value between 0 and
255, with 0 being black and 255 being white. The objective is to perform a symmetrical
switch on random pixels regarding the centre of the grey bar, which falls between 127 and
128, as illustrated in Fig.3.17. For instance, a pixel with a value of 0 becomes 255, one with
a value of 255 becomes 0, one with a value of 126 becomes 129 and so on.

Figure 3.17: Greyscale used for the switch of pixels.

The ratio of pixels switched in each image is adaptable and some examples are shown
in Fig.3.18 where implementations of noise with 0%, 5%, 10% and 100% are displayed.

Implementation of noise

During the experiment, the satellite will acquire images for training the network. While
some objects may appear in multiple images, the noise induced in the images will vary,
and the perturbation of the object will differ each time. Thus, to ensure exhaustive results,
considering that the training set is provided multiple times through the epochs, implementing
the noise directly into the dataset to obtain a noisy dataset is not suitable. This would result
in providing identical noisy images every time. To prevent this, we choose to inject the noise
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(a) (b)

(c) (d)

Figure 3.18: Examples of the random pixels implemented into the MNIST images to replicate noise
induced by cosmic-rays. The noise implementation is illustrated for a 0%, b 5%, c 10% and d 100%
noise injected.

into the image right before it is provided to the network for forward propagation, ensuring
that the switched pixels are always different.

Oppositely, the testing set is provided only once to the network. While injecting
noise right before forward propagation is not as crucial as it is in training, we prefer having a
noisy testing dataset. This allows us to use it again with other trained networks, comparing
the reliability of each regarding the same sample. Fig.3.19 illustrates how the noise has been
implemented to closely mimic real-life situations.

3.4.2 Repercussions on the network predictions

Now that the database has been modified, a thorough investigation into the ensuing
effects on the network and its predictions can be conducted. Even if the percentage of noise
implemented in the training and testing images in real situations should be close because
the flux of cosmic rays during both training and testing sessions is expected not to vary
significantly, variations can still occur as introduced in [73] with slow evolution with regard
to testing times. Thus, each variation situations need to be studied, at fixed amount of noise
since. In physics, the flux is defined as the number of particles crossing a unit area per unit
of time.
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Figure 3.19: Scheme describing how noise is injected into the MNIST dataset for training and testing
sessions.

In order to investigate this, we train the network with a noise injection ratio (R)
into the images, following the method described in Sec.3.4.1. Subsequently, we provide
the trained network with the noisy testing dataset injected with different ratios of switched
pixels r. We examine Accn for each digit and plot them together for a given R along with the
MR. This study is conducted with r = 0%, 1%, 2%, 5% and 10%. Due to the fact we have a
large number of samples, the probability of success is defined as Accn and each prediction is
values as ’correct’ or ’incorrect’ with independence between the results, the conditions to
compute the uncertainty using a binomial confidence interval are satisfied

C = ±
√

Accn(1−Accn)
Lenn

. (3.9)

Unmodified dataset

As illustrated in Fig.3.20, we initiate the network by running it with a noise injection
ratio R=0% in the training dataset, meaning it remains unmodified. For all digits, we
observe that as r increases, both Accn and the MR decrease, with different proportionalities.
Additionally, some digits n exhibit substantial discrepancies, while others show narrower
differences between the two extreme stages of noise implementation. For example, the
difference for Acc3 between r = 0% and r = 10% is less than 5% of accuracy, whereas the
same difference for Acc1 exceeds 40% of accuracy. As a result of these outcomes, higher
noise proportions injected in the testing dataset r leads to higher values of standard deviation,
which we aim to minimize for homogeneity. The standard deviation being computed as the
square root of sample variance, it is independent of the binomial confidence interval.
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Another noteworthy observation in Fig.3.20 is that the network trained without noise
performs better in recognizing some digits with noisy images than non-modified ones. This
is evident in the case of Acc4, which demonstrates a higher level of precision for r = 1% and
r = 2% of noise compared to clean images. Moreover, it achieves the lowest value among all
noise injection levels for Acc3. In certain cases, the network appears to be more robust when
provided with altered images rather than untouched ones.

Figure 3.20: Accn for all digits, using a network trained with a training dataset with a ratio R=0% of
switched pixels. The network is then tested with the testing dataset, which has r = 0%, 1%, 2%, 5%
and 10% of noise injected.
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R=1% and comparisons

Now we have observed the behaviour of the network trained with a non-modified set,
we can examine its response to noise injection. We initiate with a very low percentage of
perturbation, injecting only R = 1% of switched pixels into the training dataset. The results
are presented in Fig.3.21 again illustrating with the Accn for each digit at noise levels of r =
0%, 1%, 2%, 5% and 10% in the testing set.

Figure 3.21: Accn for all the digits, with a network trained with a training dataset with a ratio R=1%
of switched pixels. The network is tested with the testing dataset with a rate of 0%, 1%, 2%, 5% and
10% of noise injected.

While the difference in MR for the clean and the two lowest implementations of
noise in the testing set is negligible, the standard deviations show a slight improvement with
respect to the plots in Fig.3.20 . At r = 5% injection, the MR increases to a small extent, but
the standard deviation decreases slightly. The most significant improvement in the values
provided by the network occurs at r = 10% injection noise. Here, not only does the MR
increase by almost 4%, but the standard deviation decreases by more than 3. Digits with
initially low Accn (’1’, ’4’ and ’9’) noticeably increase despite the fact they remain lower
than the other digits. Despite adding only a small number of perturbations in the noisy
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training set, the impact on the network’s robustness when provided with highly perturbed
inputs is significant.

Another aspect of the network’s response to the injection of noise, not evident in
the values, is the behaviour of the curves relative to each other. The curves for r = 0%, 1%
and 2% almost overlap, and even the curve for r = 5% noise tends to follow this pattern.
In order to quantify this effect, we plot the difference between the curves relative to the
one with the highest MR, using r0, the curve corresponding to r=0%, as a reference. This
plot is shown in Fig.3.22 where the curve for r = 1% has six points within the confidence
interval and three outside with matching uncertainties. The curve for r = 2% has four points
inside the interval, four outside with matching uncertainties, and only one point fully outside.
The curve for r = 5% has only one point within the interval and another one outside with
matching uncertainties, giving clues about how similar are the curves.

Figure 3.22: Difference of Accn with a training dataset with R = 1% between values for r = 0% and
the values for r = 1%, 2% and 5%.

To illustrate the concepts introduced in Sec.3.4.1 regarding the methods of noise
injection, we can plot the Accn for different level of noise rate in the testing dataset while
the database supplied for training is modified by injecting noise and then provided with
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the same sample for every epoch. The results for this study are presented in Fig.3.23 and
Fig.3.24 shows the difference in percentages between the real-life situation method and the
percentages when the database is modified and provided several times with the same object.

Figure 3.23: Accn for all the digits, with a network trained with a training noisy dataset with a ratio
R=1% of switched pixels. The network is tested with the testing dataset with a rate of 0%, 1%, 2%,
5% and 10% of noise injected.

Regarding the MR, there is no significant modification for any ratio of noise injected
into the testing set. The highest variation is observed for the maximum noise level, and it does
not exceed a percent, which is negligible regarding the uncertainty. However, the standard
deviation has higher values for all proportions of noise implementation. This suggests that
the network has more heterogeneous correct predictions when noise is injected, and the
real-life injection brings more consistent predictions. Notably the negative peaks for r = 10%
injection noise are not consistent for the same digits. While they were observed for digits ’1’,
’4’ and ’9’ in Fig.3.21, they are observed for digits ’2’, ’6’ and ’9’ in Fig.3.23, indicating that
noise helps the network recognize some digits but hinders others.

In accordance with the observation brought with Fig.3.22 the curves with the smallest
proportion of noise tend to overlap. This is evident for r = 0%, 1% and 2% and even for r =
5% with a noticeably lower accuracy. The differences between the curves, using r = 1% as a
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reference for having the highest MR, are plotted in Fig.3.25. The points for the r = 0% curve
are all within the confidence interval of r = 1% while only three out of the nine points for r =
2% are outside the range, and the uncertainty of only one of them does not match the region
of interest. Regarding the r = 5% curve, no points are placed in the interval, but five of them
have matching confidence intervals.

Figure 3.24: Difference of Accn between the results obtained with a set injected with noise right
before the training, and a noisy dataset provided several times. This plot has been obtained, computing
the difference between the curves of Fig.3.21 and Fig.3.23 for a given ratio r.

This observation is even more perceivable in Fig3.24 where the curves for r = 0%,
1%, 2% and 5% are truly overlapping. In contrast, the curve for r = 10% noise has a very
important standard deviation induced by the difference in the negative peaks caused by the
modification of correct predictions introduced in the previous paragraph. We plot in Fig.3.26
the difference between the curves plotted in Fig.3.24 but excluding the curve for r = 10% for
better clarity. The difference has been computed by choosing the curve closest to zero as a
reference, which is for r = 2%. Among the twenty-seven points displayed in this graphic,
eleven are not within the confidence interval, and three of them have no matching uncertainty
with r = 2%.

Regarding the plot in Fig.3.23, aside from Acc6 for r = 10% noise, this behaviour
tends to be the same even with the highest proportion of noise injected: the negative peaks,



3.4 Noise implementation 61

as well as the positive ones, occur for the same digits. The curves seem to tighten together,
translated by a factor induced by the noise.

Now that the study has been conducted with R = 1% noise implemented in the
training dataset, we aim to reproduce this study by injecting higher proportions of noise.
This work has been conducted by implementing noise with ratios R = 2%, 5% and 10% with
real-life noise implementation selected, for relevancy with real-life situations.

Figure 3.25: Difference of Accn with a training noisy dataset with R = 1% between values for r = 1%
and the values for r = 0%, 2% and 5%.
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Figure 3.26: Difference of Accn with R = 1% for the difference between the two methods of noise
injection. This difference is computed between values for r = 2% and the values for r = 0%, 1% and
5%.
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R = 2%

In Fig.3.27, curves representing Accn for a ratio of noise injected in the training set R
= 2% are plotted, while the noise implemented in the testing set varies with r = 0%, 1%,
2%, 5% and 10%. Comparing it to the results obtained with R = 1%, the MR has slightly
decreased by less than 1% for the lowest amount of noise in the testing set (r = 0% and 1%),
while the standard deviation has increased. For r = 2%, the MR remains almost the same, but
the standard deviation has decreased, bringing homogeneity to the results. Meanwhile, we
observe that the results for higher ratios of noise r have improved; the MR has increased for
both r = 5% and 10%, while the standard deviation has decreased for both of them.

From these results, and those displayed in Fig.3.21, we notice that the higher the
noise R implemented in the training set, the better the results for higher implementations
of noise r. However, it stands out that with a fixed r, the results start to worsen as soon as
r < R, regarding both the MR and the standard deviation. Finally, the peak of good results
has been reach until now for r = R.

Figure 3.27: Accn for all the digits, with a network trained with a training dataset with a ratio R=2%
of switched pixels. The network is tested with the testing dataset with a rate of 0%, 1%, 2%, 5% and
10% of noise injected.
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In Fig.3.28 the difference in Accn between the curve with the highest MR in Fig.3.27
(representing r = 0%) and the various curves with less than r = 10% is displayed. Eighteen
out of the twenty Accn from r = 1% and 2% have uncertainties matching with r = 0%, which
is one less than the number in Fig.3.22. Besides, only three Accn values from the curve for r
= 5% match the uncertainty with r = 0%, while five of them matched in Fig.3.22.

For better visibility, the plots showing the Accn for a ratio of noise R = 2% with a
noisy dataset, the behaviour of the curves shown by the difference between the curves of such
a plot, the difference between the two methods of noise injection for a given ratio R = 2%,
and the behaviour given by the difference between the curves are all provided in Appendix A.
Accompanying the plots, detailed analyses are also presented.

Figure 3.28: Difference of Accn with a training dataset with R = 2% between values for r = 0% and
the values for r = 1%, 2% and 5%.
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R = 5%

In Fig.3.29, curves representing Accn for a ratio of noise injected in the training set R =
5% are plotted, while the noise implemented into the testing set varies with r = 0%, 1%, 2%,
5% and 10%. Comparing it to the results obtained with R = 2%, the MR has decreased by
more than 1% for the lowest amount of noise in the testing set (r = 0% and 1%), while the
standard deviation has once again increased. For r = 2% and 5%, the MR decreased slightly,
by less than 1%, and the standard deviation also increased. Meanwhile, we observe that the
results for r = 10% have improved; the MR has increased by almost 2% and the standard
deviation keeps decreasing.

Until now, increasing the ratio of noise injected in the training set by a ratio R
improved the results for both the MR and the standard deviation for r ≥ R. We notice this is
not verified in this case for r = R for both the MR and the standard deviation, while we keep
having this phenomenon for r = 10%.

Furthermore, the manifestation of deteriorating results with the condition r < R is
verified. Not only is the network less accurate regarding the MR, but also the decreasing
standard deviation makes the results more heterogeneous.

Figure 3.29: Accn for all the digits, with a network trained with a training dataset with a ratio R=5%
of switched pixels. The network is tested with the testing dataset with a rate of 0%, 1%, 2%, 5% and
10% of noise injected.
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In Fig.3.30, the differences of the Accn between the curve with the highest MR in
Fig.3.29 (standing for r = 0%) and the various other curves are displayed. Seventeen out of
the twenty Accn values from r = 1% and 2% have uncertainties matching with r = 0%, which
is one less than the number in Fig.3.28. Besides, five Accn values from the curve for r = 5%
match the uncertainty with r = 0%, which is the highest number reached until now. Even
though the results deteriorated for the lower injections of noise, we notice the higher ones
tend to fit the behaviour of the curves with the smaller ratio implementation r. The difference
with the curve representing the proportion of noise r = 10% has been plotted because of its
relevancy. Indeed, we denote the difference between r = 0% and r = 10% tends to hit values
smaller than 10%, and even for Acc2, the uncertainties match.

In the same way it has been done for R = 2%, the plots showing the Accn for a ratio
of noise R = 5 with a noisy dataset, the behaviour of the curves shown by the difference
between the curves of such a plot, the difference between the two methods of noise injection
of a given ratio R = 5% and the behaviour given by the difference between the curves are all
given in Appendix A for better visibility, along with the explanations.

Figure 3.30: Difference of Accn with a training dataset with R = 5% between values for r = 0% and
the values for r = 1%, 2%, 5% and 10%.
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R = 10%

In Fig.3.31, curves representing Accn for a ratio of noise injected in the training set R =
10% are plotted, while the noise implemented into the testing set varies with r = 0%, 1%, 2%,
5% and 10%. Comparing it to the results obtained with R = 5%, the MR has decreased by
more than 1% for the lowest amount of noise in the testing set (r = 0%, 1% and 2%), while
the standard deviation has once again increased. For r = 5%, the MR decreased slightly, by
less than 1%, and the standard deviation also increased. Meanwhile, we observe that the
MR for r = 10% has slightly improved by less than a percent, while the standard deviation
increased. We traded accuracy for homogeneity in the results by increasing the noise ratio R
from 5% to 10%.

The observation that the best results are reached with r = R is verified with the MR
but not with the standard deviation with the condition R = 10%.

Figure 3.31: Accn for all the digits, with a network trained with a training dataset with a ratio R=10%
of switched pixels. The network is tested with the testing dataset with a rate of 0%, 1%, 2%, 5% and
10% of noise injected.

In Fig.3.32, the differences of the Accn between the curve with the highest MR in
Fig.3.29 (standing for r = 0%) and the various other curves are displayed. Nineteen out of
the twenty Accn values from r = 1% and 2% have uncertainties matching with r = 0%, which
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is the best result observed until now. Besides, three Accn values from the curve for r = 5%
do not match the uncertainty with r = 0%, which is the lowest number reached. While the
result for the curve representing r = 10% has reached its closest performance with three Accn

values matching uncertainties, the curve is overall following the pattern of the other values of
r. Indeed, nine out of the ten points are below the 5% of proximity.

In the same way it has been done for R = 2% and R = 5%, the plots showing the
Accn for a ratio of noise R = 10% with a noisy dataset, the behaviour of the curves shown by
the difference between the curves of such a plot, the difference between the two methods of
noise injection of a given ratio R = 10% and the behaviour given by the difference between
the curves are all given in Appendix A for better visibility, along with the explanations.

Figure 3.32: Difference of Accn with a training dataset with R = 10% between values for r = 0% and
the values for r = 1%, 2%, 5% and 10%.
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Conclusions

While, for a network trained without noise, we observe the best predictions results when
no noise is injected into the testing images, we also notice the results worsening as the rate
of noise injected increases, regarding both the MR and the standard deviation.

Meanwhile, what is observed from the plots introduced in this section is the fact
that the predictions resulting for a given r generally reach a peak of performance for r = R.
However, this feature is not observed in certain cases, such as for R = 5%, for example. In
order to globally understand the behaviour of the network regarding the injection of noise
in the training and testing sets, we plot the MR and the mean of the standard deviation as a
function of R for a given r. The graphics displaying it with the MR is shown in Fig.3.33, and
Fig.3.34 presents the one with the standard deviation.

Figure 3.33: Mean of recognition for all R at given r.

One can observe from the plot in Fig.3.33 that the curves tend to converge towards
a single point, with different starting positions and convergence factors. Regarding the
behaviour of the curves, the means of recognition differentiated by the noise r could be ap-
proximated as overdamped oscillators with different factors towards a convergent decreasing
linear function [74]. This approximation could be strengthened with a deeper study over it.
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Figure 3.34: Standard deviation for all R at given r.

The curves plotted in Fig.3.34 tend to verify the approximation of the curves by
overdamped oscillator models [74], as they converge towards a non-linear function, with a
stronger factor, but different parameters. Again, this approximation could be the subject of a
deeper study.

Even though the standard deviations aggregate for R ≥ 5%, we observe from both
previous plots that the ratio R is of no consequence in the ranking of the robustness regarding
r. The smaller is the noise injected in the tested images r, the more accurate are the results.
Besides, the best results with a high rate of noise r = 10% are obtained when the network is
also trained with the same high ratio R = 10%, for the upcoming studies, the ratio of noise
implemented in both training and testing set will be set at 10%.



4 Optimisation of neural networks

In Sec.3.4, we observed the impact of injecting noise into the images provided on the
performances of the network. Since particles can affect electronics, and potentially influence
network performance, as seen in Sec.2.1, it is essential to first examine the direct conse-
quences of particle interactions with electronics on network performances. Subsequently,
efforts must be made to optimise these small networks to enhance performance.

4.1 Experiments at Legnaro facility

4.1.1 The CN accelerator

For inducting primary tests with the Zybo board, irradiation with particles have been
conducted at the accelerator Van de Graaff accelerator CN in Laboratori Nazionali di Legnaro
(LNL). It is a vertical accelerator, housed in a tower near the north-east border of the
laboratory. About 7 meters tall, at its top is placed the high-voltage terminal (in the past up
to about 7 million volts, since 2006 up to 5.5 million volts, operational on weekdays mainly
during the day), supported by a column (observed in Fig.4.1) and, inside it, crossed by the
accelerating tube, along which the electrostatic voltage is uniformly distributed, from the 5.5
MV of the head down to ground potential (0 V) at ground level.

The whole setup is contained in a large metal container (the ’tank’), filled with a
mixture of gas (N2+SF6) with insulating properties at a pressure of 12-14 bar. Inside the
accelerator head (called the ’high-voltage terminal’), there is space for the particle source
(positive ions of materials such as H, He, ...) and the equipment that feeds it (voltage
generators, power supplies, equipment to maintain the beam channel in a vacuum).

While the particles are inside the terminal, they are protected by its Faraday cage
and do not feel its voltage.
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Inside the 7 MV terminal, with the beam source,are the pre-acceleration system, and
all the instrumentation connected to them. However, as soon as they are conducted downward
by deflection and electrostatic focusing systems and exit the terminal zone, they feel the
electric field distributed along the tube and are accelerated up to a final energy (at the tube
exit) equal to E=qV, where q is the charge state of the ion (i.e., it is a number representing
how many electron charges the ion is away from neutrality) and V is the voltage between the
terminal and ground.

At this point, all that remains is to conduct the accelerated particles towards the
target and measurement point using deflectors and magnetostatic lenses. With the CN,
beams of protons, deuterium, and helium (single or double charge) are accelerated for
studies in fundamental and applied physics. The main application fields are: materials
science, radiobiology, radiation-matter interaction, radiation damage, and dosimetry. For
fundamental physics, for example, cross-sections and/or excitation functions for nuclear
reaction channels that are still poorly investigated are studied, as well as neutron/gamma
spectrometry. Moreover, it is possible to produce, from a specially equipped and appropriately
shielded target station, beams of medium-intensity neutrons, capable of exploiting the
maximum authorised proton current (3µA) [75].

Figure 4.1: Column of the CN accelerator being placed inside the tank, picture taken by Andrea
Alessio, from [75].
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4.1.2 Setup and experience

Neutron beam production involves bombarding a Beryllium target with a deuterium
beam. Using a 4 MeV beam with a current of 100 nA on the Beryllium target maintained
at 0°C, radiations levels can range from 109 to 5 · 1011 neutrons.cm−2. These values are
obtained considering the total Yield.sr−1.µC−1 from Fig.4.2, which depicts the total neutron
yield at 0°C. The following third-order polynomial is used to represent the data:

Yn(Ed) = 109 · (−0.3819+0.1740Ed −0.00137E2
d +0.01131E3

d), (4.1)

where the unit of Yn is neutrons.sr−1.µC−1 and the unit of Ed is in MeV [76]. From
this data, we extract 1.02.109 neutrons.sr−1.µC−1 for a deuteron energy of 4.0 MeV. Taking
into account a hardness factor of 1.146 at Ed = 4.0 MeV, a charge of 3.60.102 µC per hour,
and experimental positions ranging from 35 mm to 200 mm for the aperture of the beam,
predictions from LNL suggest fluxes ranging from 109 to 5 ·1011 neutrons.cm−2.

Figure 4.2: The 9Be(d,n) thick-target yield at 0°C, from [76].

The experiment took place from November 21st to 23rd, 2022 at LNL. Over the
course of three days, the Zybo board was exposed to the neutron beam, which was previously
shielded with 8 cm of plastic to prevent particle interactions with electronics not involved in
neural networks computing, as illustrated in Fig.4.3. The board was positioned at various
distances from the beam, ranging from 8 to 51.5 cm from the beam, a picture illustrating the
setup is displayed in Fig.4.4.
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Figure 4.3: Image of the Zybo Z7-10 board shielded by a 8 cm plastic shield. The column in the
centre is a hole dug aimed to let the beam interact with the electronics involved in the computations
related to the network.

The experimental procedure involved training a neural network with the same
properties as described in Sec.3.2 on a separate machine (training it on the Zybo board or
another machine has given the exact same results; for speed constraints, the training is done
on machines with more efficient resources). The trained network was then imported onto the
Zybo Z7-10. The FPGA was tasked with testing the network using a testing set, while being
irradiated by the neutron beam. Subsequently, comparisons between the results obtained
under irradiation and those obtained in a non-radiation environment were performed.

Figure 4.4: Image of the Zybo Z7-10 board shielded by a 8 cm plastic shield. The column in the
centre is a hole dug aimed to let the beam interact with the electronics involved in the computations
related to the network.
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For positions within a distance of 30 cm from the beam, the board crashed pre-
maturely, rendering it unable to handle any communication, thus no testing tasks were
manageable. Between 30 and 35 cm from the beam, differences were observed between tests
conducted under irradiation and those conducted without. However, no differences were
found above 35 cm. To illustrate the observed differences, we present the data in a format
similar to Tab.3.1 and compute Tab.4.1.

Input
Prevision

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 +2 0 0 -1 0 +1 0 0 -2 0
9 0 0 0 0 -1 -1 0 +2 0 0

Table 4.1: Table gathering all the differences between the test made under radiations and the
predictions made out of radiations.

Despite the small discrepancy between the two predictions, the neutron beam, even if
composed of uncharged particles, interacts with electronics and affects network performance.
This observation is directly related to modifications in the output layer values. Indeed, since
the network predicts the digit corresponding to the highest value among the ten output
values during a forward propagation, predictions are altered if these values are modified.
Approximately 5.9% of output vectors were modified, primarily for digits 8 and 9. While
most modifications did not affect predictions, some resulted in changes to the final results, as
shown in Tab.4.1. The largest modification recorded reached 5% in the output layer. Thus,
a greater discrepancy between the correct value and the highest remaining value indicates
greater robustness in the network. This will be further discussed in Section 4.2.1.
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4.2 Characterisations of a network

4.2.1 Confidence level

In order to gauge the robustness of the network, the MR cannot be the sole parameter
considered. As witnessed in the Legnaro experiment, the 10-value array output undergoes
modifications when the device is exposed to neutrons. To understand the significance of this
outcome, it is essential to first explain how it is obtained.

In a supervised learning, after the network is trained, weights and biases are fixed.
When an input is provided for testing, all the values are processed by the trained network,
following 3.1 until reaching the output layer. The output layer, being of the same dimension
as the number of classes (10 in the case of MNIST), each index is associated with a class. The
highest value in the final vector corresponds to the index of the guess made by the network.
For clarification, an illustrated example is pictured in Fig. 4.5

Figure 4.5: This scheme describes how a network predicts the class corresponding to the input
provided. A picture of a 2-digit is provided and then processed through the hidden layers.The output
array, where the highest value is chosen as the final prediction, is obtained out of the processing. In
this case, the highest value is 2.569 at index 2, corresponding to the class "2". The network provides a
correct answer for this input.

Thanks to the analysed results from the Legnaro experiment, we have witnessed
damages induced by particles hitting the chip repercuss into the output arrays through the
values. Examples of the consequences of such impacts can be observed in Table 4.2, where
the perturbations modify an initially incorrect prediction into a correct one in one case, and
conversely in another by changing the highest value of each output array. The final prediction
has been modified by the radiation.

The robustness of the network is directly related to the confidence of the network
before any interaction with neutrons. The higher the value of the correct prediction regarding
the highest one among the remaining corresponding digits, the more robust it becomes.
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Image of an "9" number 4673 Image of an "8" number 2152
Digits Array Array with

chip under
radiations

Difference Array Array with
chip under
radiations

Difference

0 0.25 0.23 -0.02 0.32 0.33 +0.01
1 0.27 0.29 +0.02 0.26 0.25 -0.01
2 0.27 0.25 -0.02 0.36 0.35 -0.01
3 0.20 0.20 0 0.47 0.46 -0.01
4 0.43 0.45 +0.02 0.24 0.25 +0.01
5 0.31 0.33 +0.02 0.36 0.37 +0.01
6 0.33 0.31 -0.02 0.22 0.21 -0.01
7 0.35 0.35 0 0.26 0.27 +0.01
8 0.37 0.37 0 0.46 0.47 +0.01
9 0.46 0.44 -0.02 0.31 0.32 +0.01

Table 4.2: Difference between the digit-normalised output arrays when the chip is exposed to radiation
and when it is not. These results are obtained with the 4673th for an image representing a "9" and the
2152th for an image representing a "8" from the MNIST test set. In the case of image number 2152,
the network initially predicted incorrectly the number "3" before irradiation and "8" during radiation
exposure. Reciprocally, the network’s prediction was correct for image 4673 with the prediction being
for "9" and became incorrect and predicted a "3" due to radiation. The green lines represent the index
of the digit predicted during the irradiation, while the red ones represent the prediction before the
irradiation.

Oppositely, in the case where the network provides an incorrect prediction, the closer the
value for the correct digit is to the highest one, the greater the likelihood that damages will
lead the network to produce the correct prediction.

In order to quantify this phenomenon, we will introduce a new parameter called
Confidence Level (CL), a metric more relevant than MR in our situation.

To do so, we start by working separately on digits for the same reasons as discussed
in Sec3.4. We aim to have a perfect comprehension on the work on each digit and prefer
independence between them. Each of the ten classes representing the MNIST digits, have a
label that we express with the index i ∈ {0,1, ...,9}. We call Mi the total amount of images
in the testing set for an i-digit. For each provided j-image in Mi, to be tested, an output layer
vector Vij is provided. We can define the set of its ten components as

Vij = {V ℓ
ij , ℓ = 0, · · · ,9} ,

only the highest V ℓ
ij is associated with the prediction ℓ.
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We introduce the parameter Ωi such as:

Ωi =
⋃

j∈Mi

Vij , (4.2)

where Ωi is a set gathering all the values of Vij for a given i. Since the values in Vij result
from Eq.3.1, min(Ωi) and max(Ωi) are obtained empirically. Examples of arrays Vij before
any normalisation are displayed in Table 4.3.

Digits 0_7699 1_9556 4_3133

0 0.97488785 -1.5613939 -1.5613939
1 -1.8512547 0.10530555 -1.199068
2 -1.1266026 -0.47441596 -1.4889287
3 -1.0541375 -1.7063242 -1.2715331
4 -1.5613939 -1.199068 -0.6193464
5 -1.1266026 -1.3439983 -1.4889287
6 -1.1266026 -1.3439983 -1.0541375
7 -1.3439983 -1.1266026 -1.4164635
8 -1.1266026 -0.32948554 -0.76427674
9 -1.2715331 -1.7787894 0.10530555

Table 4.3: Table displaying examples of output vectors Vij generated by the network. The highest
value in each array is selected as the predicted value according to the network. For the first and
second images, the predictions are correct because the highest values are respectively 0.97488785 and
0.10530555 and corresponding to the indices of the correct digit. However, the prediction in the last
example is incorrect because the highest value, 0.10530555, corresponds to the digit 9 and not 4.

The values in Table 4.3 are the results of successive operations based on the one
introduced in 3.1. As a result, negative and values close to 1 are obtained.

The next step in building the CL is to normalise the values while maintaining
independence between each digit. Thus, for each i, we create a function fi that normalises
over the smallest and highest value in Ωi:

fi(x) : R → R≥0 fi(x) = x−min(Ωi)
max(Ωi)−min(Ωi)

. (4.3)

.
Now, to quantify the effects of the radiations on the results, we need to distinguish

between two cases:

• First, when the network makes a correct prediction but radiation makes it incorrect by
switching the highest value of the vector, represented with image 4673 in Table 4.2.
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The value more likely to be chosen after modification is the one closest to the correct
value before any perturbation. Since the alteration is not constant, we attribute more
importance to greater differences between the value of the correct digit and the second
highest one, making the network more robust.

• The second case is when the network makes an incorrect prediction but radiation
amends it, represented with image 2152 in Table 4.2. Unlike the previous situation, the
smaller the difference between the higher value and the correct number corresponding
value, the higher the chances are to correct the prediction.

To summarise, in both the cases, the difference between the value of the correct
digit and the highest among the remaining ones should be as large as possible to enhance the
network’s robustness.

When the mean is calculated over the total number of images for each digit, it can
be formulated as the Confidence Level for a digit i:

CLi = 1
Mi

Mi∑
j=1

fi(V i
ij)−fi(maxℓ̸=i(Vij)), (4.4)

. where Leni is the number of images in the testing set for the digit i.
The mean of 10 CLi can be calculated to obtain the CL:

CL = 1
10

9∑
i=0

1
Mi

Mi∑
j=1

fi(V i
ij)−fi(maxℓ̸=i(Vij)) (4.5)

. expressing the robustness of the network to the perturbations induced by cosmic rays.
Examples of CLi and the overall CL are visualised in Table 4.4. It’s notable that CL5 is the
lowest Confidence Level at 0% noise and is close to be the lowest at 10%. This is because
the MR is the smallest for this digit in both implementations of noise. However, we notice
CL4 is the smallest for 10% noise despite having a relatively high MR. Most predictions for
digit 4 are close to the second-highest values and could be influenced by radiation, leading to
incorrect predictions.

The CL is a very strong metric that will lead us in the search for optimisation of the
architecture of the network in terms of robustness to perturbations.

4.2.2 Weights visualisation

In Sec.3.1, we introduced the concept of weights in neural networks and discussed their
function. Motivated by the desire to optimise finite-dimensional neural networks, along
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Digits CLi for 0% noise CLi for 10% noise

0 0.4759615 0.4443430
1 0.5897323 0.4044362
2 0.3962992 0.2990106
3 0.4146421 0.3143130
4 0.4204332 0.2110623
5 0.3600811 0.2192392
6 0.4936567 0.3581108
7 0.4069328 0.3039969
8 0.3999368 0.2685075
9 0.4103263 0.2568289

Total 0.4392423 0.3099597

Table 4.4: List of the CLi for the network at respectively 0% and 10% noise in the testing and training
sessions. The Total line corresponds to the CL. We denote all the values are higher with smaller
amount of noise injection

with works such as the one presented in [77], it becomes necessary to visualise the weights
comprising the trained network. Each neuron in a layer is connected to all neurons in the
following and layer, with each connection representing a weight. Therefore, the number of
weights between two layers is given by:

NWij
= Ni ·Nj , (4.6)

where Nk represents the number of neurons in layer k. As demonstrated in [77], one way to
assess the status of weights in a network is by plotting the weights between each layer in a
2D diagram. We have done so, and the resulting plots are depicted in Fig.4.6. While Figures
4.6b and 4.6c do not exhibit any particular pattern or distinct regions of weights, Figure 4.6a
reveals a repetitive behaviour.

To further investigate this pattern, we plot the values of the weight for a single row
of Fig.4.6a onto a 28x28 pixels 2D plot, as shown in Fig.4.7. The 2D plotting follows the
same process as reverting the flattened image to its original shape. Specifically, we analyse
the weights for the first and fifth neurons of the first hidden layer. It becomes evident that
each neuron exhibits minimal activity in areas corresponding to the positions of black pixels
in the MNIST dataset. Conversely, regions where gray and white pixels appear in the training
images display more pronounced weight values. Neurons located in the centre circle of 28
pixels in diameter demonstrate significantly higher activity, with absolute values at their peak.
Notably, neurons with values of -1 and +1 are closely intertwined, suggesting that further
investigation into the variance of weights would be pertinent.
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(a)

(b) (c)
Figure 4.6: 2D visualisation of the weights between a the input layer (columns) and the first hidden
layer (rows), b the first (columns) and the second (rows) input layers, and c the second (columns) and
third (rows) hidden layers.

4.2.3 Inverse temperature

Besides having metrics characterising the performance of the network, we could use
theoretical parameters to help us optimise the network. In Sec.4.2.2, we discussed the interest
in studying the variance of weights between the hidden layers, and to do so, we utilise the
inverse temperature.

For the present case, we consider supervised learning focused on classification. The
network we will investigate is made up of five components: input, output and three hidden
layers. The input and output layers are fixed, regarding the numbers of neurons composing
them. This is because the size of the samples inside the training set and the classification task
are strong constraints and cannot be modified. The hidden part of the network is considered a
Deep Boltzmann Machine (DBM) and can be described by the following Hamiltonian [78]:

H(σ) = −
√

2
N

K−1∑
p

β(p) ∑
(i,j)∈Lp×Lp+1

J
(p)
ij σiσj . (4.7)

Each σi represents one neuron of the pthlayer Lp while, in the approximation of centred
Gaussian learned weights, we can define W

(p)
ij =

√
2
N β(p)J

(p)
ij as the connections obtained

after the training procedure. In particular, each pair of layers is connected by a weight matrix
W , where entries W

(p)
ij are associated with an inverse temperature β(p).
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(a) (b)
Figure 4.7: 2D visualisation of the weights between the input layer and the first hidden layer for a the
first and b fifth neurons of the first hidden layer.

An estimate of the temperature β(p) can be added in order to help its study and
its integration into the relevant parameters of the network. It turns out that the variance of
the weight matrix of each pair of layers is linked to the inverse temperature [79], [80]. We
therefore evaluate the inverse temperature of a couple of layers as:

W2 = 1
NpNp+1

Np∑
i=1

Np+1∑
j=1

(W 2
ij − W̄ ) ∼ β2

p . (4.8)

where W̄ stands for the mean value of the weights Wij and Np describes the number of
neurons on the pth layer.

In our analysis, we denote Lp as the p− th layer that composes the network, among
the total number N = 3, and we consider two pairs of them. The first pair (L1,L2) is
associated to the inverse temperature β1, and the second pair (L2,L3) is associated to the
inverse temperature β2. For example, a training process ended up with having the couple of
values (β1,β2) being (8.438,8.301). We refer to the region associated with β1 as the cold area
(due to the higher value of the inverse temperature), while the region associated with β2 is
referred to as the hot area.

4.2.4 Spectral radius

Together with such a temperature parameter, another important thermodynamic quantity
can be introduced. Now that each pair of layers has an associated an inverse temperature βp,
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one can build the following matrix:


0 α2β2

1 0
α1β2

1 0 α3β2
2

0 α2β2
2 0

 ,

where the quantities αp = Np/N correspond to the form factors of the elements of the
network: the relative size of the number of neurons in one layer (Np) with respect to the total
number of neurons in the network (N ). The spectral radius (SR) (ρ(β,α)) of this matrix
turns out to be a function of the whole set of inverse temperatures β = (β1,β2, · · · ,βp, · · ·)
and the form factors α = (α1,α2, · · · ,αp, · · ·). When ρ(β,α) > 1, a phase where the network
correctly classifies is possible.

4.3 Modification of a network’s topology

4.3.1 Movement conjecture

As introduced in Sec.3.2, due to the limited processing capacities provided by the
hardware, the computational power of the model must be constrained to a small amount. This
computational power is defined as the number of neurons (N) available to fill each layer of a
Deep neural network.

Despite its small dimension, this network can achieve satisfactory results regarding
accuracy and computation speed. Since our goal is to achieve the highest accuracy, we
not only optimise the parameters (as this greatly depends on the datasets used) but also
perform architecture optimisation, as presented in [81]. To guide us toward the most accurate
topology, we use MR, CL, SR and the inverse temperature.

With reference to Fig.3.4, our aim is to find the correct number of neurons that
enter each one of the layers, compatible with the task that has to be performed. Then, with
αp = Np/N , we indicate the fraction of neurons populating the Lp layer, while N = ∑

p Np is
the total amount of neurons we can move. In the infinite computational power limit (N → ∞),
it is possible to show [78] that moving the neurons inside the couple of coldest layers Lp∗

and Lp∗+1, maintaining their form factors of the same amount αp∗ = αp∗+1 = 1/2, one can
avoid problematic working regimes (Annealed region).

Taking inspiration from this result, we try to apply a variation of the previous rule,
adapting it to the finite dimensional case of our classification problem. We are going to prove
that we can produce an improvement of the classification performance, if we choose to move
the neurons according to the following
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Conjecture 1 Denote with
β∗

p = max
p∈{1,2,...,K−1}

βp

the maximum of the inverse temperature between each couple of layers. Then if the neurons
are moved in the layers Lp∗ and Lp∗+1 , such that

λp∗ = λp∗+1

i.e. the width of the coldest couple of layers is of the same amount, then we assist to an
improvement of the classification metrics, MR (Eq.3.8) and CL (Eq.4.5).

4.3.2 Hot to cold shift

As introduced in 4.2.3, the pair of inverse temperatures for the network (β1,β2) is
(8.438,8.301). Since (β1 > β2) and the conjecture suggests moving neurons from the hotter
area toward the colder one, we redistribute two neurons from the last hidden layer to the
first two layers until no more neurons can be distributed as depicted in Fig.4.9, ensuring
that α1 = α2. We also compute MR and CL, the raw performance metrics for each of the
configurations, and plot them in Fig.4.8.

(a) (b)
Figure 4.8: Plots showing the raw performance metrics characterising the network, with the inverse
temperature when a movement of neurons is performed on the network. a shows MR and inverse
temperature function of the number of neurons on the last hidden layer. The yellow line stands
for the local maximum of MR around the thermal equilibrium. b shows MR and CL for the same
configurations.

We notice that the temperatures in the two different regions converge toward a
thermal equilibrium and then diverge. Due to the finite size of the problem, we do not reach
the condition β1 = β2. MR in the meantime tends to slowly increase from 86% to 87% until
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a drop when the number of neurons on the last hidden layer coincides with the number of
neurons on the output layer, probably due to a bottleneck effect. We also notice CL begins
fluctuating between 0.30 and 0.36 before dropping and fluctuates around 0.30 afterward,
and finally falls the same way MR did. We remark both parameters have a local maximum
matching with the thermal equilibrium and the beginning of the divergence of the inverse
temperatures.

The quantitative evaluation of the thermal equilibrium is computed by leveraging
the various samples that determine the uncertainties of the metrics. We compare the relative
distance ∆ = β1−β2

(β1+β1)/2 of the temperatures of the hidden layers, with their uncertainties
under repetitive training. If ∆ is less than the considered uncertainty, we assume β1 = β2.

Figure 4.9: Scheme describing the movement of neurons performed with the network architecture.

4.3.3 Different movements

Conjecture 1 stipulates the classification performance should improve if neurons are
moved from the hotter area towards the colder one. This conjecture tends to be verified for
MR and partially for CL, since some regions of fluctuations improve it. To verify if another
movement of neurons could give us better results, which would not fit with the conjecture, we
move neurons from the first hidden layer to the two last ones, corresponding to a movement
of neurons from the colder area toward the hotter one, as observed in Fig.4.10a. Additionally,
we move neurons from the middle hidden layer towards the first and third ones, as observed
in Fig.4.10b. The results of these movements are plotted in Fig.4.11, and we notice that
shifting the neurons from the colder area toward the hotter one worsens the results, while
reducing the number of neurons in the middle layer keeps the results relatively constant
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with fluctuations, and then drops due to the bottleneck effect. The addition of the horizontal
(yellow) line introduced in Fig.4.8 shows the difference of MR with respect to the movement
proposed by Conjecture 1. If a movement enhanced the performance of the network, it should
follow the instructions given by Conjecture 1.

(a) (b)
Figure 4.10: Scheme describing the other movements of neurons performed to the network. a shows
the motion of neurons from the hot area toward the cold area. b describes the movement of neurons
from the middle hidden layer toward the two outer ones.

(a) (b)
Figure 4.11: Plots showing MR and inverse temperatures when a movement of neurons is performed
on the network. a shows results for movements of neurons from the first hidden layer toward the two
other ones. b shows results for movements of neurons from the second hidden layer toward the two
outer ones. The yellow vertical line is the same as in Fig.4.8a, for comparison with movement from
the hot area toward the cold one.

4.3.4 Region of interest

As introduced in Sec.4.3.2, although MR shows a slight improvement, it comes at
the expense of reducing the confidence in classification accuracy. By conducting multiple
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training runs for each network, we gather statistics that confirm the stability of our results.
We consistently find the local maximum around the same network topology, at the thermal
equilibrium and the beginning of the divergence of the temperatures, as depicted in Fig.4.12

Figure 4.12: Scheme describing the movement of neurons performed with the network architecture.

In Fig.4.12, one can observe this particular region for training with different seed,
and the region always present a local maximum of MR. We therefore plot the different results
obtained where a mean and a statistic study is performed, and plot it in Fig.4.13, where CL
and SR are also displayed. The region presenting the local maximum is observable in the
gray area and present < 1% uncertainties for both CL and MR.

In our situation, this region is optimal because we value more low uncertainty and
the general maximum for CL rather than the general maximum of MR observable at 24
neurons on the last hidden layer, with higher uncertainty. Since the particles interacting with
the electronic systems affect the CL, it must be prioritised since CL value is in range for being
shifted with particle radiations. However, if one looks to increase the raw performance of the
network with increasing MR, then going for 24 neurons in the last hidden layer is optimal in
this singular situation. A notable result is that CL and SR have very similar behaviour, even
if the plot in Fig.4.13 show them at different values.

4.4 Variation of conditions

Since all the previous work has been performed utilising the same characteristics, such
as the datasets, the number of classes and the architecture of the code, we want to visualise
how the network would react to the modifications of these characteristics.
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Figure 4.13: Mean and statistics of the different parameters for the movements of neurons from
the hot area toward the cold one. On average, the local maximum is around the configuration
(72±1,72±1,48±2) (in gray).

4.4.1 Reduction of the number of classes

The first modification is to reduce the number of classes of the MNIST dataset. Instead
of setting every digit in its own class, we sort them into two classes, being odd/even digits.
The output layer of the network is then changed from 10 to 2 neurons. We perform the same
exercise done previously by moving neurons from the hotter area toward the colder one, the
hot area corresponding to the last two layers. The results can be visualised in Fig.4.14 where
a mean of three different trainings is displayed. We observe MR and CL have very high
values compared to the results with the standard MNIST, and the peak of performance of
MR corresponds to a local maximum of SR. Once again, the interesting region is noticed
around the superposition of temperatures, being the peaks of MR and global peaks of CL.
In the meantime, SR and CL keep increasing and peak at the very last architecture model,
since no bottleneck effect is expected any more because of the low number of neurons in
the output layer. We notice MR drops above 84 neurons on each layer of the cold area, and
SR has its global minimum at 85. In this case, for particle ambient optimisation, we value
more having high levels for MR since CL is high enough for not being influenced by particle
injecting variations in the output layer.
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(a) (b)
Figure 4.14: Plots showing the different parameters of the network for a odd/even classification. a,
Inverse temperatures and SR for moving neurons from the last hidden layer. b, SR, MR and CL for
moving neurons from the last hidden layer.

4.4.2 Fashion MNIST dataset

The second modification is made to the dataset, from MNIST to fashion MNIST [82],
a dataset with pictures of clothes, being of the same colours and dimensions as standard
MNIST. One can notice the total number of images in this set is homogenous among the
classes, thus, in this case, Accuracy and MR are the same metrics. The results of the study
with this set is displayed in the graphic in Fig.4.15, where the mean of the results of five
different studies is displayed. When CL and MR are significantly smaller compared to the
results obtained with standard MNIST, we notice again the same interesting area around
the superposition of the temperatures for CL and MR with very low statistics, and a general
maximum for CL. In the situation of optimising the architecture for particle ambient purposes,
we definitely value more the architecture reaching the maximum CL, being of 54 neurons
on the last hidden layer, and having the smallest uncertainties. We also notice a plateau for
MR, SR and CL between 62 and 28 neurons on the last hidden layer. Once again, CL and SR
show similar behaviours.

4.4.3 CIFAR10 dataset

The third modification has been performed on the dataset, the colours and dimensions
of the images, and the architecture of the code have been modified. The dataset is CIFAR10
[83], a set of RGB images of dimension 32x32 pixels gathering images of various animals
and human means of transport. Since the CIFAR10 set provides this kind of images, the
number of input is almost multiplied by 4 compared to MNIST entries, and the number of
parameters is drastically increased. Having a fully-connected network is not relevant any
more when the number of parameters is this high, since the Zybo Z7-10 must support it.
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Figure 4.15: Mean and statistics of the different parameters for the movements of neurons from the
hot area toward the cold one for the Fashion MNIST.

Thus, we decide to implement a convolutional network based on MobileNet [56] [57] and
reproduce the study made previously.

With this configuration, it appears the cold and hot areas are inverted, and implies
the cold area is for the couple of layers (L2,L3) and the hot one corresponds to the pair
(L1,L2). Therefore, we move neurons from the first hidden layer toward the two others in
order to follow the instructions of Conjecture1. Because of the modification of the model of
the implementation of the network, it was necessary to modify the code utilised. We have
not been able to obtain data from the output layer, and CL is not computable. We therefore
plot the inverse temperatures, SR and MR, in Fig.4.16. We notice MR is very low compared
to the other datasets results and to the global CIFAR performance, even if other resources are
involved in studies such as [84]. SR is also very low compared to the studies made previously,
increasing until reaching 28 neurons on the first hidden layer and then dropping. Finally,
we notice MR globally decreases, which is in opposition with the prevision of Conjecture1.
Results with CIFAR and CNN do not coincide with the results obtained previously.

4.4.4 Discussion

Inspired by [78], we formulated Conjecture 1 proposing movements of neurons within
the architecture to optimise finite-dimensional deep neural networks. It suggests moving
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Figure 4.16: Mean and statistics of the different parameters for the movements of neurons from the
hot area toward the cold one for the Fashion MNIST.

neurons from the hotter area towards the colder one, while maintaining the condition of
homogeneous shifts between the two layers composing the cold area.

We applied these modifications to the network already created and studied its
performance modifications through row metrics and theoretical parameters linked to the
variance of the weights. We observed the Conjecture is verified for fully-connected networks,
under the conditions in which we conducted the tests, primarily focusing on MR, but also
considering CL.

Since the purpose of the project is not only to optimise the architecture of finite-
dimensional deep neural networks, but also to study their behaviour regarding camera
and electronics noise, we identified regions of interest for the architectures optimising the
results. Specifically, for low MR and low CL, we prioritise the highest value of CL with low
uncertainties, while MR becomes more relevant for high values of CL.

The conjecture holds true in our situations of fully-connected networks, but we
observed limitations with more complex datasets coupled with CNNs. Future studies may
focus on generalising the conjecture and identifying regions of interest.

Finally, we found that CL and SR exhibit relatively similar behaviours, and a deeper
study of the correlations between these two parameters would be of interest for future studies.
With a more profound and comprehensive analysis, SR could become a strong candidate for
estimating CL, focusing solely on the variance of the weights.





Conclusions

This Ph.D. thesis addressed various aspects of science, including the study of electronics
interacting with particles, the effects of particle-induced noise on inputs in the performance
of neural networks, and the optimisation of deep networks with finite dimensions.

Studying the effect of particle interaction with electronics is crucial for space
missions, as these interactions can lead to significant unwanted consequences. In Chapter 1,
we initially investigated the interactions of a microcontroller with particles, focusing on the
electronics’ response to these interactions. During the tests conducted under the radiation
of heavy ions and neutrons, we observed a generally good resistance of the DUTs . Out of
the 15 samples tested, 73% did not crash during the process, despite the irradiation fluxes
being much higher than those witnessed in LEO, the orbit of interest. Although numerous
resets were forced on the electronics due to the interactions, the results, considering LEO
characteristics, were satisfactory. However, suggestions for enhancing the reliability of the
tests were proposed, such as relocating the tension regulator from inside the DUT to outside.

Thales Alenia Space provided us with a Versal AI Core Series VCK190es1 for
studying its resistance to particle interaction, its resource requirements, and its capabilities in
utilising artificial intelligence for classification tasks. Since we cannot afford to damage the
board during particle tests, it is necessary to switch the project to a cheaper and more easily
available option, the Zybo Z7-10.

The Zybo Z7-10, an FPGA, encompasses all the criteria required for the study:
the ability to embed neural networks, features electronic components enabling connection
with additional components like a video camera for real-time camera processing studies and
classification by the networks, and it comes at an affordable price, allowing for risks during
radiation experiments.

To embed the neural networks on this FPGA, we introduced the framework com-
posed of PYNQ, FINN, and Brevitas projects, proposed by Xilinx for such tasks. This
framework not only facilitates the implementation of the network into the electronics but also
enables the mapping of each of the different electronic components forming each network



94 Conclusions

element. Although not studied in this thesis, this feature allows for a deeper understanding of
the consequences of particle interactions on the network at the electronics level.

Future prospects in this area include studying the map of damaged components
during irradiations and utilising these results to model particle interactions with electronics.
This would enable the study of particle effects with models for better comprehension and
preparation before experiments. Further steps would involve having a real-time map of
the electronics and visualising particle interactions with the resulting consequences on the
electronics. If real-time communication with the electronic components is possible, one
could simply mitigate the bit flips caused by charged particles by reversing the undesired
effects.

Chapter 3 focused on the study of noise interacting with detectors, such as video
cameras, along with its consequences on network performance. Before conducting this study,
we introduced neural networks and the dataset used throughout the study of noise injection,
the MNIST dataset. We particularly explained the features exploited and studied in this thesis
for better understanding of the choices made later on. Performance metrics for characterising
a network were defined, and the motivations behind choosing these particular metrics were
explained. We also introduced the method of implementing noise into the images provided
for training and testing.

We studied different proportions of noise injected into the image, distinguishing
between different ratios of noise in the training session or the testing sessions. To study this
effect, we examined the Mean of Recognition and the Standard Deviations of the results,
focusing on the results obtained with the same ratio of noise in both the training and testing
sets. We were interested in the network’s performance and the behavior of the curves,
identifying similar patterns.

We plotted the final results together and found that the behavior of the network with
noise injection not only contradicts the previous conjecture stating that the best results of one
proportion of noise are obtained when both ratios are the same for the testing and training
sets, but also suggests that the Standard Deviation and Mean of Recognition tend to exhibit
an overdamped oscillator towards a non-linear function behavior. This phenomenon requires
further study for a better understanding and for developing prediction models.

Finally, the needs of implementing a network into embedded systems induce reduced
resources and oblige networks to have small dimensions. In Chapter 4, we introduced the
need of optimising the networks while constraining the resources, the dimension of the layers,
and thus the computing resources.

Chapter 4 addressed the need for implementing networks into embedded systems,
which entails reduced resources and necessitates networks with small dimensions. We



Conclusions 95

conducted an experiment at LNL with a Zybo Z7-10 board, in which a neural network was
implemented. These tests provided an overview of the Zybo’s resistance to neutrons and
mainly highlighted the issues of particles interacting with a network implemented into the
electronics. The results showed that radiation consequences modify the values in the output
layer, altering predictions when the network is not "confident enough".

Based on these results, we formulated the "Confidence Level," a raw metric ob-
serving the level of confidence of the network. This allows us to quantify the network’s
robustness to radiation consequences and provides an option for optimisation satisfaction
regarding real-life situations.

We also studied the weights composing the networks and their variance, which lead
to the construction of a conjecture about architecture optimisation preferences. We opted to
move neurons from one hidden layer to the other two layers, as our networks consist of three
hidden layers. This movement is based on the inverse temperature of the various areas of the
network, and the conjecture suggests moving neurons from hot layers towards cold ones.

We observed that this conjecture is verified in some cases with fully-connected
networks, and we also found specific architectures optimising the Confidence Level and
the Mean of Recognition. Different architectures are proposed based on individual needs,
enhancing one parameter or another, with varying uncertainties.

The Spectral Radius was also defined, using the variance of the weights, and appears
to be a good indicator of the Confidence Level. A correlation study between these two
parameters must be performed in the future, as it would provide performance suggestions
based solely on the weights of one’s network.

The focus was on the elements of the network related to the weights, while investi-
gating bias variances could provide even deeper understanding of network performance.





A
In Sec.3.4, besides introducing how we decided to implement the noise in the images to

reproduce the interference we will witness during space missions, we also study its effects on
the performance of the network. A comprehensive study has been presented, exploiting the
results in the case R=1% of noise implemented into the training set. Several plots have been
shown: the Acc_n for all digits n = 0, · · · ,9 with two different ways of implementing the noise
during the forward propagation, the difference between the curves with the smaller amount
of noise in the testing set r for both of the cases presented previously, and the difference
between the two approaches while also plotting the subtraction of the curves in this case. For
better clarity, not all of these plots have been inserted for all the noise implementations in the
training set R. This appendix aims to show these plots for R = 2%,5% and 10%.

R=2%

First of all, if we compare the plots presented in Fig.3.27 and A.1a we observe once
again that the results are generally better when the network is trained with a set modified
with the first method, in terms of MR and standard deviation. It emphasises the fact that
the network gets used to the pattern of noise implementation, and that the second method
is more robust in avoiding the consistency of the noise. Looking at the graphic in Fig.A.1b
and comparing it with the one observed in Fig.3.28 reveals that the curves for the smaller
amount of noise r are even more close from one to each other with the first method of noise
implementation. In order to compare both of the methods, we subtract the curves from
the first method with the ones from the second and plot it, as shown in Fig.A.1c. When
compared with the graphic in Fig.3.24, we observe that adding noise significantly increased
the difference of Accn between the two methods, and the standard deviation of it is also
enhanced. This means that raising the ratio of noise makes the network exploit the repetitive
position of noisy pixels even more than previously. This phenomenon is not verified for
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r = 10%. Finally, the subtraction of the curve for r = 2% with the other ones is shown in
Fig.A.1d. Even if the curve for r = 5% has a MR closer to 0 in FigA.1c, it is observed that
some of the digits show high discrepancies, for better comparison, it has been chosen to
compute the subtraction with r = 2% instead. The results observed are almost the same as
for Fig.3.26, all the points have matching uncertainties for the smallest r, and five points
match for r = 10%, which is two more compared to the results observed in Fig.3.26.

(a) (b)

(c) (d)
Figure A.1: Plots comparing the results of noise implementation with a ratio R=2% when using the
first methods and confronting it with the second method. a, Accn for all digits with the first method
of noise implementation. b, subtraction of the curves presented in a for r = 0%,2%and5% with the
curve for r = 1%. c, difference between the curves obtained with the second method and the first one.
d, subtraction of the curves presented in c for r = 0%,1%,5% and 10% with the curve for r = 2%
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R=5%

Again, we start by comparing the plots presented in Fig.3.29 and A.2a. We observe
the curves are significantly narrower with the first method, making the MR smaller for the
smaller r and larger for the larger r. The first method seems to improve the behaviour of the
converging curves with the augmentation of noise. Looking at the graphic in Fig.A.2b and
comparing it with the one observed in Fig.3.30, we observe the previous statement tends
to be verified. Indeed, twenty-nine out of the thirty points for the smaller r have matching
uncertainties, while only twenty-two were observed with the other method.

(a) (b)

(c) (d)
Figure A.2: Plots comparing the results of noise implementation with a ratio R=5% when using the
first methods and confronting it with the second method. a, Accn for all digits with the first method of
noise implementation. b, subtraction of the curves presented in a for r = 1%,2%,5%and10% with
the curve for r = 0%. c, difference between the curves obtained with the second method and the
first one. d, subtraction of the curves presented in c for r = 0%,1%,5% and 10% with the curve for
r = 2%
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In order to compare both of the methods, we subtract the curves from the first method
with the ones from the second and plot it, as shown in Fig.A.2c. When compared with the
graphic in Fig.A.1c, we observe that adding noise significantly increased the difference of
Accn between the two methods for r = 5% and decreased it for r = 1% and r = 2%, while it
slightly increased for r = 0%, fluctuating. However, the standard deviation of the difference
increased for all of these four results. A remarkable result is observed for r = 10% where the
MR increased importantly but the standard deviation almost halved. Visually speaking, we
notice the single peaks observed in Fig.A.1c tend to disappear, and the curve seems to get
closer to the behaviour of the other curves. This last statement is observed in Fig.A.2d where
the number of points for the curve representing r = 10% increased from five in Fig.A.1d
to seven points having matching uncertainties with the curve r = 2%. Regarding the other
curves, a perfect correspondence has been reached, with thirty points out of thirty have
matching uncertainties.

R=10%

Recurrently, we start by comparing the plots presented in Fig.3.31 and A.3a. For the first
time, the results worsen with the first method compared to the second one, either regarding
the Mr or the standard deviation. This is not true for the curve representing r = 10% where
both the Mr and the standard deviation have better results. It seems the network is overflowed
with noise, and is not able to exploit the redundancy of the perturbations when presented
fewer amount of noise. However, it is still true for r = R. The curves in Fig.A.3a seem
really tight, and to observe this, we plot the subtraction of the curve representing the results
for r = 1% with the other in Fig.A.3b. When we compare it with the results observed in
Fig.3.32, we witness the curves in Fig.A.3a are tighter, observed with the number of points
having uncertainty matching with the one of the highest MR from Fig.A.3a, r = 1%. Indeed,
this number has been increased from twenty-six to twenty-nine. For the case r = 10%, we
enhanced the number from three points to six matching uncertainties. Now we want to
compare both methods the way it has been done previously, and it observed in Fig.A.3c. As
stated previously, it confirms only the curve for r = 10% is better in the second method, all
the other have large differences and large standard deviation. Fig.A.3d shows this difference
between the curve for r = 10% and the others is mainly witnessed for the lower digits, while
from digit "4", all the points are matching with the uncertainty for the curve corresponding
to r = 1%.
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(a) (b)

(c) (d)
Figure A.3: Plots comparing the results of noise implementation with a ratio R=10% when using the
first methods and confronting it with the second method. a, Accn for all digits with the first method of
noise implementation. b, subtraction of the curves presented in a for r = 0%,2%,5%and10% with
the curve for r = 1%. c, difference between the curves obtained with the second method and the
first one. d, subtraction of the curves presented in c for r = 0%,2%,5% and 10% with the curve for
r = 1%

Conclusion

The first method is globally showing better results than the second one, induced by the
network getting used to the repetition of the pattern of noise injection. Although this is true
for R = 1%, R = 2% and R = 5%, it is not for R = 10% for the smaller amount for noise r.
These results comfort us in choosing the second method as the more relevant for simulating
the noise in the detecting of images in outer space.
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