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Introduction

The subject of this thesis is to study the properties of smooth, complete toric varieties in a computational
way. This means that we build some algorithms whose answers give information about the geometry of
the varieties.

A toric variety X of dimension n is a normal algebraic variety that contains a torus T ∼= (C∗)n as
open subset, with an algebraic action of T on X extending the natural multiplication on T .

We always assume X smooth and complete.
Consider N = HomZ(C∗, T ) ∼= Zn and NQ = N ⊗Z Q. Then X is determined by its fan ΣX in

NQ, which is a finite collection of convex rational polyhedral cones in NQ. Geometric properties of X
correspond to combinatorial properties of ΣX . These can be easily translated in equivalent computational
ways.

Given X , we deal with the characterization of the group of 1-cycles in X modulo numerical equiv-
alence, denoted N1(X) and the associated vector space N1(X)Q = N1(X) ⊗Z Q. Recall that N1(X)Q
contains the Mori cone NE(X), the convex cone generated by classes of effective curves. We are able to
compute a basis of N1(X), whose elements are classes of invariant curves and to describe NE(X) giving
the coordinates of all classes of invariant curves with respect to the fixed basis.

Through the description of the Mori cone we are able to determine whetherX is projective and to find
its contractible classes. This means that we can describe all surjective toric morphisms f : X → Y with
connected fibers and with ρX−ρY = 1, where ρX and ρY are the Picard number ofX and Y respectively.

For a projective variety X , we also determine the extremal classes among the contractible classes of
X . These correspond to the morphisms f : X → Y as above, with moreover Y projective.

Finally we can compute the invariant blow-up of X along an invariant subvariety V . Conversely,
we can establish whether X is the blow-up of another toric variety Y and compute Y . This is important
because anyX as above can be obtained by blow-ups and blow-downs from Pn (see [AMR], [Ma], [Mo]).

We choose the programming language Mathematica 5.0 to write the algorithms.

A smooth complete toric variety X can be described by its fan either giving a complete description of
ΣX or using the language of primitive relations introduced by Batyrev in [Ba2] and [Ba4]. Our algorithms
work with both these representations of ΣX .

We choose either description for X according to the case that we want to study.
Our main tools are the toric Mori theory, the properties of primitive relations, and the theory of

resolution of systems of linear Diophantine equations and inequalities.
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In order to show how one can use our programs to study a toric variety, we describe some explicit
examples and applications in Chapter 7.

Moreover Appendix A is a user’s guide to our programs; one just needs to have Mathematica and the
file toricvar.m containing the programs.

We observe that there are some computational problems when working with a big Picard number, in
other words, when the number of generators of the fan ΣX is big. The reason is that we have to solve
systems of linear Diophantine equations whose number of variables grows with the number of generators
of the fan.

Now, we describe in more detail the algorithms.

DESCRIPTION OF A SMOOTH COMPLETE TORIC VARIETY

Let X be a smooth complete toric variety of dimension n. Its fan ΣX is completely described by its
maximal cones and the set of generators G(ΣX), which are the primitive elements in all 1-dimensional
cones in ΣX . We fix an identification N ∼= Zn, so that the generators are vectors in Zn.

Primitive collections and primitive relations are important when studying X , in particular in relation
with Mori theory. We recall that:

a subset P ⊆ G(ΣX) is called primitive collection if P does not generate a cone in ΣX , while any
proper subset of Pgenerates a cone in ΣX . For P = {x1, . . . , xk} we have a unique relation, called
primitive relation associated to P :

x1 + · · ·+ xk − (b1y1 + · · ·+ bhyh) = 0,

where y1, . . . , yh generate a cone in ΣX and bi are positive integers for i = 1, . . . , h.
Given ΣX , it is easy to find its primitive collections; our goal is to compute the relations.
Let’s fix a primitive collection P = {x1, . . . , xk}. We define the linear system associated to P as the

system: ∑
y∈G(ΣX)\P

vyy = u, (1)

where u = x1 + · · ·+ xk, vy are the unknowns of the system, y is a generator in G(ΣX)\P .
We look for solutions in Zp≥0, where p = card(G(ΣX)\P ).
In [AC] and in [CD] we find the theory to study the systems of linear Diophantine equations and

the techniques to find all positive integers which are solutions of a system of linear Diophantine equa-
tions. In general, given a p × n matrix C with entries in Z≥0 and a vector u in Zn, then vC = u
is a non-homogeneous system of Diophantine equations with p unknowns represented by the vector
v = (v1, . . . , vp). To characterize the set of solution of vC = u, denoted Sol(vC = u), we fix the
following partial order in Zp≥0:

(a1, . . . , ap) ≤ (b1, . . . , bp) if and only if ai ≤ bi ∀i ∈ {1, . . . , p}.

Then Sol(vC = u), is characterized by two finite sets: the set of minimal solutions Min(vC = u) of
vC = u and the set of minimal non-zero solutions Min(vC = 0) of the associated homogeneous system
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with respect to the fixed order. In fact, every solution a = (a1, . . . , ap) can be written as:

a = µ+
t∑
i=1

λiνi, (2)

where µ is a particular minimal solution in Min(vC = u), {ν1, . . . , νt} = Min(vC = 0) and λi ∈ Z≥0.
The set Min(vC = u) has a central part in finding primitive relations because we show that:

Theorem 2.2.1 Chapter 2. Let P = {x1, . . . , xk} be a primitive collection. The positive integers
b1, . . . , bh, such that x1 + · · · + xk − (b1y1 + · · · + bhyh) = 0 is the primitive relation associated to P ,
give a minimal solution of the system associated to P .

Given P , previous theorem allows to restrict our attention to the finite set of minimal solutions of the
linear system (1).

Mathematica has a built-in function which solves the system of linear Diophantine equations and
gives all possible solutions as in (2), (see [Wo]). We build a procedure giving the set of minimal solutions.
In order to find which is the minimal solution that gives the primitive relation we use the following:

Proposition 2.2.3 Chapter 2. In the set of minimal solutions of the system associated to P there is a
unique minimal solution m = (my)y∈G(ΣX)\P ∈ Zp≥0 such that the set G(m) = {y ∈ G(ΣX)\P |my 6=
0} generates a cone in ΣX .

A solution as in the previous proposition is called optimal solution and it determines the primitive
relation associated to P .

Using Theorem 2.2.1 and Proposition 2.2.3 in Chapter 2, we build the algorithm PrimRel which
computes, for every primitive collection P , its primitive relation.

When X is projective, the set of primitive relations determines X up to isomorphism. Let’s see how
we can compute ΣX explicitly. First, the maximal cones are the subsets of cardinality n which do not
contain a primitive collection. Then, we fix a basis B of N (given by the generators of a maximal cone)
and interpret the list of all primitive relations as a linear system of equations over Zcard(G(ΣX)) whose
unknowns are the coordinates of the generators in G(ΣX) \ B. Solving the system, we obtain the coor-
dinates of all generators of G(ΣX) with respect to B. Computationally, this process is simpler than the
other because it solves just one system of linear equations.

TORIC BLOW-UPS AND BLOW-DOWNS

The technique described above to determine the primitive relations is very useful also to describe the
blow-up Y of X along an invariant subvariety V = V (σ) of X:

ψ : Y → X

6



The fan of Y is easily computed from the fan of X . We would like to be able to compute the primitive
relations of Y from those of X .

The main reference about the argument is Theorem 4.3 in [Sa], which says how the primitive collec-
tions of Y can be computed by primitive collections of X .

There are four types of primitive collections for Y . For three of them, the primitive relations can be
determined rather easily from ones of X . For the last group of primitive collections, we have to use the
algorithm described in the previous paragraph. This is computationally longer, because it involves solving
systems of linear Diophantine equations.

The situation is simpler if we know Y and want to determineX . In this case we can compute all prim-
itive relations of X starting from those of Y and we do not need to solve systems of linear Diophantine
equations.

PROJECTIVITY AND MORI CONE

The description of ΣX with primitive relations is useful to characterize the projectivity of X . Let’s
consider the Mori cone and denote by NE(X)Z the intersection NE(X) ∩ Z.

Reid studies the toric Mori theory in [R]. He proves that NE(X)Z is generated as a semigroup by the
set I of all classes of invariant curves, hence I generates N1(X) as a group. Then the set I contains a
basis B of N1(X).

I is a set of 1-cycles and we interpret it as a set of linear polynomials in the generators of ΣX . If
G(ΣX) = {x1, . . . , xt}, then I ⊂ Z[x1, . . . , xt]1. In Mathematica, the built-in function Eliminate
computes a system of generators of the set of syzygies Syz(I) among the elements in I. We have written
an algorithm to compute a basis B ⊂ I of N1(X) using the generators of Syz(I).

Replacing in the syzygies the elements of B with the vectors ei of the canonical basis of QρX , we
obtain the vector wγ of the coordinates of every class γ ∈ I with respect to B. In this way, the Mori cone
can be seen in QρX as the cone generated by the vectors wγ , for γ ∈ I.

Under this identification, we want to use the characterization of projectivity given by Kleiman’s crite-
rion of ampleness (see [Kl]): X is projective if and only if NE(X) is strongly convex.

Then the condition of projectivity is translated in the following computational way:

Lemma 4.3.1 Chapter 4. X is projective if and only if the equation

d∑
i=1

viwi = 0

has only the trivial solution in Zd≥0.

Finally we are able to compute the set of contractible classes of X . Let γ ∈ I. It is contractible if
there exist a toric variety Xγ and an equivariant morphism ϕγ : X → Xγ , surjective and with connected
fibers, such that for every irreducible curve C ⊂ X ,

ϕγ(C) = {pt} ⇐⇒ [C] ∈ Q≥0γ.

7



We denote by C the set of all contractible classes. We can easily determine C using the criterion 4.1.3 (see
also [C2], [Sa]), in terms of the primitive relations of X .

THE MORI CONE IN THE PROJECTIVE CASE

When X is projective, we know that the set C of contractible classes generates NE(X)Z as a semigroup,
hence it contains a basis B of N1(X).

With the same techniques described in the previous paragraph, we can find such a basisB and compute
the coordinates of all elements of C with respect to B.

In this case we are interested in finding the extremal classes of NE(X), that is, the primitive elements
in R ∩NE(X)Z, where R is a 1-dimensional face of NE(X).

We know by Reid’s results that every extremal class is contractible. We remark that the set E of all
extremal classes generates NE(X) over Q, however it is not known whether it generates NE(X)Z as a
semigroup.

In order to determine which contractible classes are extremal, we use the following:

Proposition 4.4.1 Chapter 4. Let C = {γ1, . . . , γs} be the set of all contractible classes. Let
{w′1, . . . , w′s} be the set of vectors of the coordinates of all contractible classes with respect to a basis B
in C. Fixed i ∈ {1, . . . , s}, then γi is non extremal if and only if the equation

w′i =
∑
j 6=i

vjw
′
j

has a non-trivial solution in Zs−1
≥0 .

Then we can compute E by solving the linear system above.

Arguments of Chapters

In Chapter 1 we find an introduction of concepts which we use to study smooth, complete, toric
varieties. More precisely, we give the definitions of fan of X , of primitive relations, of the group N1(X)
and of the Mori cone of a smooth complete toric varietyX . Moreover we give the main results about these
arguments. Then, we consider the case of a smooth projective toric variety introducing the contractible
classes of curves.

The theory of systems of linear Diophantine equations is explained in Chapter 2. Here we distinguish
the case of homogeneous and non-homogeneous systems and in both cases we analyze the sets of solutions
characterizing them with the sets of minimal solutions. Then, we explain how this argument is related
with the toric varieties and more explicitly with the primitive relations of a toric variety X . This theory
is used to build the algorithm PrimRel. The algorithm and the commands that we use to write it are
described in the last sections of this chapter.
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In Chapter 3, we introduce the ways of representing a smooth, complete toric variety X and the
algorithms which describe X in Mathematica.

Chapter 4 is devoted to the classes of curves and their representation in the vector space N1(X)Q of
a smooth complete toric variety X . Here we explain how to associate a 1-cycle in N1(X) and how to find
the contractible classes of curves of X . In Section 2 we describe the techniques used to find a basis B
of N1(X) as a group and the algorithm which computes B and the coordinates of every class of curves
with respect to B. In Section 3 we consider the problem of the projectivity of X and the computational
formulation of it. Then, we describe the algorithm and the commands used to write the program ProjQ.
Finally, we consider a smooth projective toric variety X and explain how we can find the extremal classes
of curves among the contractible classes of curves.

In Chapter 5 we present the theory describing the algorithm which computes the blow-up Y of X
along an invariant subvariety V . The statements touch the problem of describing Y with its primitive
relations and of computing them from primitive relations of X . In this case we have to use the techniques
explained in Chapter 2 to compute some primitive relations.

Chapter 6 is devoted to the description of algorithm Blowdown and to the statements used to write
it. In this case we do not need to use the systems of linear Diophantine equations to describe the variety
obtained by the blow-down with primitive relations.

In Chapter 7, we present some interesting examples and applications. We describe them with our
programs. In this way we test the algorithms and see that in most cases they work very quickly.

In Appendix A, we describe all algorithms of the package “Toric Varieties” and we explain how one
can use them. For every command, we specify its input and output, we say what it does and give an
example.
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Chapter 1

Basic Notions

A toric variety X of dimension n is a normal complex algebraic variety that contains an algebraic group
T isomorphic to (C∗)n (a torus), as a dense open subset, with an algebraic action T ×X → X of T on
X which extends the natural action of T on itself (multiplication in T ).

This definition is a theoretic and does not allow to have a “computational” description of a toric
variety, so we introduce the concept of fan to give an equivalent, but combinatorial definition of toric
variety.

A fan can be represented by either the list of its maximal cones and generators or by the list of primitive
relations. Its combinatorial properties correspond to geometric properties of X .

Moreover we are interested in knowing if a smooth complete toric variety X is projective, so we in-
troduce the toric Mori theory.

The chapter is divided in five sections: in Section 1.1 we give the definitions of fan and cone and some
their properties. In Section 1.2 we analyze the correspondence among cones and toric subvarieties of X ,
in Section 1.3 we introduce the concepts of primitive collections and primitive relations. A more detailed
introduction about these arguments can be found in [Ba2], [Ba4], [F], [E2] and [O2]. In Section 1.4 we
find the main statements about the toric Mori theory for a smooth, complete, toric variety and then, in
Section 1.5, we consider the toric Mori theory for smooth, projective, toric varieties. The main references
about these arguments are [O2], [R] and [Wi].

1.1 Fans and Cones

Let N = HomZ(C∗, T ) be a free Abelian group of finite rank n, i.e. N ∼= Zn. Given N , we define its
dual lattice M = HomZ(N,Z). We also consider the vector space NQ = N ⊗Z Q, whose dual space can
be identified with MQ = M ⊗Z Q. We denote by ( , ) the natural pairing on MQ ×NQ.

Definition 1.1.1. A rational convex polyhedral cone (or a cone) in NQ is a set of the form:

〈x1, . . . , xk〉 =
{ k∑
i=1

λixi | λi ≥ 0, λi ∈ Q
}
,
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where {x1, . . . , xk} ⊂ N is a finite set.

Given a cone σ, we denote by G(σ) the unique set {y1, . . . , ym} such that:

• σ = 〈y1, . . . , ym〉;

• every yi is primitive in the lattice N ;

• for every i = 1, . . . ,m the cone 〈y1, . . . , ŷi, . . . , ym〉 is strictly smaller than σ.

We call the elements of G(σ) the generators of σ.
We define dimension of the cone σ as the dimension of the smallest linear subspace Span(σ) contain-

ing σ. Moreover we call RelInt(σ) the interior of σ in Span(σ).

Let σ ∈ NQ be a cone. Its dual cone is the set:

σ∨ = {y ∈MQ | (y, x) ≥ 0 for all x ∈ σ }.

Proposition 1.1.2 (Farkas’ Theorem, [F], page 11). The dual cone of a convex polyhedral cone is again
a convex polyhedral cone.

A cone σ is strongly convex if σ ∩ (−σ) = {0}. There are equivalent characterizations of strong
convexity.

Proposition 1.1.3 ([F], page 14). Let σ ⊂ NQ be a rational convex polyhedral cone. Then the following
are equivalent:

1. σ is strongly convex;

2. σ contains no positive-dimensional linear subspace;

3. dim(σ∨)=n.

Definition 1.1.4. A convex rational polyhedral cone σ ⊂ NQ is regular if its generators form a part of a
Z-basis of N .

Toric varieties are described by a set of strongly convex rational polyhedral cones called fan.

Definition 1.1.5. A fan Σ in NQ is a finite collection of strongly convex rational polyhedral cones such
that:

1. each face of a cone in Σ belongs to Σ;

2. the intersection of two cones in Σ is a face of each.

11



For every i ∈ {0, . . . , n}, Σ(i) denotes the set of cones in Σ of dimension i.
For every cone σ ∈ Σ(1), let xσ ∈ σ∩N be its primitive generator. The setG(Σ) = {xσ | σ ∈ Σ(1)}

is the set of generators of the fan.

Clearly, a fan Σ is determined by G(Σ) and by the set of its maximal cones.

Given a fan Σ, let X be the associated toric variety. We will then write Σ = ΣX . Then geometric
properties of X correspond to combinatorial properties of ΣX .

A toric variety is smooth if and only if every cone σ ⊂ Σ is regular. We also say that the fan is regular.

In this thesis we will deal with smooth and complete toric varieties. The completeness of a toric
variety is another geometric property that we can read on the fan: X is complete if and only if⋃

σ∈ΣX

σ = NQ.

Example 1.1.6. Consider N = Z2 and consider the points x1 = (1, 0), x2 = (0, 1), x3 = (−1,−1) in
NQ. Let Σ be the fan with G(Σ) = {x1, x2, x3} and Σ(2) = {〈x1, x2〉, 〈x1, x3〉, 〈x2, x3〉}.

All maximal cones are regular and the union is NQ. The variety X is P2.

The fan ΣX determines X up to isomorphism in the following sense:

Theorem 1.1.7. Let X and Y be two smooth and complete toric varieties with fans ΣX and ΣY in the
vector spaces (NX)Q and (NY )Q respectively.

Then X and Y are isomorphic as abstract varieties if and only if there exists a lattice isomorphism
ϕ : NX → NY such that for every σ ∈ ΣX , ϕ(σ) ∈ ΣY .

Proof. It is shown in [Ba4], Theorem 2.2.4 that the existence of an abstract isomorphism implies the
existence of an equivariant isomorphism (notice that the Fano assumption plays no role in the proof). The
rest is standard toric geometry (see [O2], Section 1.5).
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1.2 Correspondence among cones in ΣX and invariant subvarieties of X

Let X be a toric variety with fan ΣX .
There is a bijection between ΣX and the set of orbits of the torus T in X . If σ ∈ ΣX , we denote by

O(σ) the corresponding orbit in X , then O(σ) ∼= (C∗)n−dim(σ).
We will denote by V (σ) the Zariski closure of the orbit O(σ) in X . In the case of a one dimensional

cone 〈x〉, we use the notation V (x) for the subvariety. The subvarieties V (σ) are closed with respect to
the torus action and we will refer to them as invariant subvarieties.

The following proposition gives a more concrete way to describe this correspondence:

Proposition 1.2.1 ([O2], Corollary 1.7 on page 11). Let Nσ be the sub-lattice of N generated by σ ∩N
for every σ ∈ Σ and let N(σ) = N/Nσ be the quotient. For every τ ∈ Σ such that σ ⊆ τ , let τ̄ be the
image of σ in the quotient vector space N(σ)Q = NQ/Span(σ). Then

Σ(σ) = {τ | τ ∈ Σ, σ ⊂ τ }

is a fan in N(σ)Q and X(Σ(σ)) is isomorphic to V (σ).

Example 1.2.2. Fix N = Z3 and in NQ consider the fan Σ defined by following generators

x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), x4 = (−1,−1,−1),
x5 = (−1, 0,−1), x6 = (−1,−1, 0), x7 = (0,−1,−1), x8 = (0, 0,−1),

and maximal cones:

〈x1, x2, x3〉, 〈x1, x2, x8〉, 〈x1, x3, x6〉, 〈x1, x6, x7〉,
〈x1, x7, x8〉, 〈x2, x3, x5〉, 〈x2, x5, x8〉, 〈x3, x5, x6〉,
〈x4, x5, x6〉, 〈x4, x5, x7〉, 〈x4, x6, x7〉, 〈x5, x7, x8〉.

The variety X associated to Σ is the blow-up of P3 along four invariant curves.
We consider the cone 〈x8〉 and the corresponding subvariety Z. The maximal cones containing x8

are:
〈x1, x2, x8〉, 〈x1, x7, x8〉, 〈x2, x5, x8〉, 〈x5, x7, x8〉.

Let π be the projection π : N → N(〈x8〉) and let xi be the image of every generator xi under π. Then, in
N(〈x8〉)⊗Q the fan of Z is:

〈x1, x2〉, 〈x1, x7〉, 〈x2, x5〉, 〈x5, x7〉,

and generators are:

x1 = (1, 0), x2 = (0, 1), x5 = (−1, 0), x7 = (0,−1).

Z is isomorphic to P1 × P1.
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1.3 Primitive collections and primitive relations

Let X be a smooth, complete, toric variety of dimension n. Let ΣX be the fan associated to X .

We recall the definitions of primitive collections and relations introduced by Batyrev in [Ba2] and
[Ba4]. They describe toric varieties from another combinatorial point of view.

Definition 1.3.1. A subset P ⊆ G(ΣX) is a primitive collection if:

1. 〈P 〉 /∈ ΣX ;

2. for every x ∈ P , the set P \ {x} generates a cone in ΣX .

PC(ΣX) or PC(X) will denote the set of all primitive collections of ΣX .

Definition 1.3.2. Let P = {x1, . . . , xk} ⊆ G(ΣX) be a primitive collection. Since X is complete, there
exists a unique cone σP = 〈y1, . . . , yr〉 in ΣX such that x1 + · · ·+ xk ∈ RelInt(σP ). Hence, there exist
unique numbers a1, . . . , ar ∈ Z>0 such that

x1 + · · ·+ xk − (a1y1 + · · ·+ aryr) = 0. (1.1)

This is called primitive relation associated to the primitive collection P .
The number k − a1 − · · · − ar is the degree of the primitive relation.

We will call x1 + · · ·+ xk and a1y1 + · · ·+ aryr respectively positive part and negative part of the
primitive relation.

The cone σP is the cone associated to the primitive collection P .

Remark 1.3.3. A primitive collection is always a subset of G(ΣX) of cardinality k with 2 ≤ k ≤ n+ 1.
In fact the set {xi} ⊂ G(ΣX) always generates a 1-dimensional cone in ΣX .

Remark 1.3.4. By definition, it follows that for any subset S of G(ΣX), either S generates a cone in ΣX ,
or S contains a primitive collection.

Proposition 1.3.5 ([Ba4], Proposition 3.1). Let P ∈ PC(X) be a primitive collection in G(ΣX) and let
G(σP ) be the set of generators of the cone associated to P . Then P ∩G(σP ) = ∅.

1.4 The Mori cone of a smooth and complete toric variety

Let X be a smooth and complete toric variety and let ΣX be its fan.

Let N1(X) be the group of algebraic 1-cycles on X modulo numerical equivalence and define the
vector space N1(X)Q = N1(X)⊗Z Q.

The Mori cone is the convex cone generated by the classes of effective curves modulo numerical
equivalence in N1(X)Q:
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NE(X) =
{
γ ∈ N1(X)Q

∣∣∣∣ γ =
[∑

aiCi

]
, with ai ∈ Q≥0

}
⊆ N1(X)Q.

We use the notation NE(X)Z to denote the intersection of NE(X) with N1(X).
There is an exact sequence:

0 −−−→ N1(X)
φ−−−→ Zt ψ−−−→ N −−−→ 0

where t = card(G(ΣX)) and the maps φ, ψ are respectively defined by γ 7→ (γ · V (x))x∈G(ΣX) and
(ax)x∈G(ΣX) 7→

∑
x∈G(ΣX) axx.

Hence, φ defines a canonical isomorphism:

N1(X) ∼=
{ ∑
x∈G(ΣX)

axx = 0
∣∣∣∣ ax ∈ Z

}

that is N1(X) is identified with the lattice of integral relations among elements of G(ΣX).

We will then identify every γ ∈ N1(X) with the corresponding relation∑
x∈G(ΣX)

(γ · V (x))x = 0. (1.2)

Let’s recall how one can write the relation associated to the numerical class of an invariant curve.
Let σ ∈ ΣX(n− 1), then V (σ) ⊂ X is an invariant curve. It is isomorphic to P1. We denote by γ(σ)

the class modulo numerical equivalence of V (σ).
Write σ = 〈x1, . . . , xn−1〉. Let σ′ and σ′′ be the two maximal cones in ΣX such that σ′ ∩ σ′′ = σ:

σ′ = 〈x1, . . . , xn−1, xn〉,
σ′′ = 〈x1, . . . , xn−1, xn+1〉.

Since X is smooth, x1, . . . , xn−1, xn and x1, . . . , xn−1, xn+1 are two bases of N , hence, there exist
uniquely determined integers a1, . . . , an such that:

xn + xn+1 + a1x1 + · · ·+ an−1xn−1 = 0. (1.3)

By [R], (1.3) is the relation corresponding to γ(σ).
We can also read the normal bundle of V (σ) in (1.3), in fact:

NV (σ)/X
∼=

n−1⊕
i=1

OP1(ai).

The numerical classes of invariant curves allow to Reid to characterize NE(X)Z. In fact, he proves:
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Theorem 1.4.1 ([R], Corollary 1.7 - [O2] on page 106). Let X be a smooth complete toric variety of
dimension n with fan ΣX . Then

NE(X)Z =
∑

σ∈ΣX(n−1)

Z≥0γ(σ).

This means that the classes γ(σ) generate NE(X)Z as a semigroup. In particular, this says that NE(X)
is a closed rational polyhedral cone in N1(X)Q.

Observe that by definition every element of N1(X)Q is a linear combination of elements in NE(X),
namely dim NE(X) = ρX .

Proposition 1.4.2 ([C2], Lemma 1.4 - [Kr], Proposition 2.1). Let γ ∈ N1(X) given by the relation

a1x1 + · · ·+ akxk − (b1y1 + · · ·+ bryr) = 0,

with ai, bj ∈ Z>0 for each i, j. If 〈y1, . . . , yr〉 ∈ ΣX , then γ ∈ NE(X).

The primitive relations are relations among the generators of ΣX , hence they can be interpreted as
elements of N1(X). Moreover Proposition 1.4.2 says that for every primitive collection P ∈ PC(X)
the primitive relation r(P ) belongs to NE(X)Z .

There is another important type of classes in NE(X):

Definition 1.4.3. Let γ ∈ NE(X)Z be primitive in Z≥0γ and such that there exists some irreducible curve
inX having numerical class in Z≥0γ. We say that γ is contractible if there exist a toric varietyXγ and an
equivariant morphism ϕγ : X → Xγ , surjective and with connected fibers, such that for every irreducible
curve C ⊂ X ,

ϕγ(C) = {pt} ⇐⇒ [C] ∈ Q≥0γ.

Hence contractible classes correspond to “elementary” toric morphisms with connected fibers with
target X .

Theorem 2.2 in [C2] says that every contractible class is also a primitive relation and it is always the
class of some invariant curve.

Hence, we have three important subsets of NE(X)Z, which are all finite:

I = {classes of invariant curves}
∪

C = {contractible classes}
∩

PR = {primitive relations}

(1.4)

Let γ be a contractible class and suppose that

x1 + · · ·+ xk − (a1y1 + · · ·+ aryr) = 0

is the primitive relation associated to γ.
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We observe that if r = 0, that is the relation has the form:

x1 + · · ·+ xk = 0,

then Xγ is smooth and ϕγ : X → Xγ is a Pk−1-bundle.
If r > 0, then ϕγ is birational and its exceptional locus is V (〈y1, . . . , yr〉). Hence, ϕγ is divisorial if

and only if r = 1. Moreover, if r = 1 and a1 = 1, i. e. if the relation has the form

x1 + · · ·+ xk − y1 = 0,

then Xγ is smooth and ϕγ is the blow-up of an invariant subvariety of codimension k in Xγ .
Every blow-up of a smooth and complete toric variety along an invariant subvariety has this form.

In fact, given a toric variety Y and a subvariety V = V (〈x1, . . . , xk〉) in Y , we consider the variety X
defined by the blow-up of Y along V . The fan ΣX of X is obtained by a star subdivision of the cone
〈x1, . . . , xk〉 and of all cones which contain the cone 〈x1, . . . , xk〉 (see [O2], Proposition 1.26 on page
38). Then the set of generators of ΣX is given by the set of generators of fan of Y together with a new
generator y. This last is determined by the relation

x1 + · · ·+ xk − y = 0.

This is a primitive relation for ΣX and it is the relation associated to the class of invariant curves contracted
by the blow-up.

1.5 The Mori cone in the projective case

Let X be a smooth complete toric variety.
We define the group of divisors in X modulo numerical equivalence: N 1(X) and the vector space

N 1(X)Q = N 1(X)⊗Q obtained fromN 1(X). InsideN 1(X)Q, we consider the cone of nef Q-divisors.
It is denoted by Nef(X).

We observe that N 1(X)Q is dual to N1(X)Q and that Nef(X) is the dual cone of NE(X). By Propo-
sition 1.1.2, Nef(X) is a polyhedral rational cone.

By Kleiman’s criterion of ampleness (see [Kl]), we know that a divisor D is ample if and only if its
numerical class lies in the interior of Nef(X).

Then we have:

X is projective ⇐⇒ there exists an ample divisor D
⇐⇒ Nef(X) has non-empty interior
⇐⇒ dim Nef(X) = dimN 1(X)Q = ρX .

By Proposition 1.1.3 we get:

X is projective ⇐⇒ NE(X) is strongly convex.
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Assume now that X is projective. We call extremal ray a 1-dimensional face R of NE(X) and
extremal class the primitive element of R ∩NE(X)Z. Let E be the set of all extremal classes of X .

Then we can reformulate Reid’s results in toric Mori theory as follows:

Theorem 1.5.1 ([R], Theorem 1.5). Let X be a projective, smooth, toric variety. Any extremal class is
contractible.

The difference among contractible and extremal classes is given by the proposition:

Proposition 1.5.2 ([Bo], Lemma 1 - [C2], Corollary 3.3). Let X be a projective, smooth, toric variety.
Let γ ∈ NE(X) be a contractible class and let ϕγ : X → Xγ be the associated morphism. Then γ is not
extremal if and only if ϕγ is birational and the variety Xγ is not projective.

Finally, we notice that by definition of extremal classes, we have

NE(X) =
∑
γ∈E

Q≥0γ

but it is not known whether the same holds over Z, i. e. whether the set E generates NE(X)Z as semigroup.
If we consider all contractible classes we have:

Theorem 1.5.3 ([C2]). Let X be a projective, smooth, toric variety. Let C be the set of all contractible
classes. Then

NE(X)Z =
∑
γ∈C

Z≥0γ

that is C generates NE(X)Z as a semigroup.
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Chapter 2

Primitive relations and systems of linear
Diophantine equations

In this chapter we present some known results about systems of linear Diophantine equations. In fact,
given a smooth and complete toric variety X , described by the coordinates of generators and by maximal
cones, we can get its primitive relations solving a system of linear Diophantine equations.

In [AC] there is a detailed description of the new algorithm for solving linear Diophantine systems of
both equations and inequations. There, the authors remark that their algorithm solves a linear Diophan-
tine system of both equations and inequations directly, that is, without adding slack variables for encoding
inequalities as equations. Hence, it is a generalization of the algorithm due to Contejean and Devie for
solving systems of linear Diophantine equations (see [CD]).

The chapter is divided in four sections. In Section 2.1 we introduce the systems of linear Diophantine
equations analyzing the cases of homogeneous and non-homogeneous systems. In both cases the set of
solutions can be described only with the finite sets of minimal solutions with respect to fixed partial or-
der. Section 2.2 is devoted to relate the primitive relations with systems of linear Diophantine equations.
More precisely, we prove that the coefficients of the negative part of every primitive relation r(P ) are a
minimal solution of the system associated to P . In the last two sections we present the commands and the
algorithm which compute a primitive relation of a primitive collection P .

The main references about systems of linear Diophantine equations are [AC], [CD]. In [CP] we find
all references about the theory of semigroups used to characterize the set of solutions of a system of linear
Diophantine equations. In [dps] and [Wo] we find a detailed introduction to the commands and to the
techniques used in Mathematica to solve the systems of linear Diophantine equations. For other related
algebraic arguments we refer to [CLO1], [CLO2], [L] and [Se].

19



2.1 Systems of linear Diophantine equations

Let’s consider a system of linear Diophantine equations:

vC = u (2.1)

where v = (v1, . . . , vp) is the vector of unknowns, C = (cij) is a p × n matrix with cij ∈ Z, and u is a
vector in Zn.

We are going to search all solutions whose coordinates are non-negative integers. Hence, the solutions
of the system are in Zp≥0.

We will distinguish whether the linear system is homogeneous or not.
Observe that when the system is homogeneous, the set of all solutions in Zp≥0 has the structure of a

semigroup.

Ajili and Contejean explain (see [AC]) that using the theory of semigroups we can characterize the set
of all solutions of a system with a finite set of solutions.

Consider the semigroup of natural numbers (Zp≥0,+) and fix in Zp≥0 the following order:

(a1, . . . , ap) ≤ (b1, . . . , bp) if and only if ai ≤ bi ∀ i ∈ {1, . . . , p}.

Remark 2.1.1. This is a partial order on (Zp≥0,+) and the element 0 ∈ Zp≥0 is the minimum with respect
to this order. So given a decreasing chain of elements in Zp≥0, it has a minimal element.

Moreover the order is clearly compatible with the sum, this means that, given α = (a1, . . . , ap) and
β = (b1, . . . , bp) such that a ≥ b then for every γ = (c1, . . . , cp) ∈ Zp≥0, we have α+ γ ≥ β + γ.

2.1.1 Homogeneous systems

Let’s consider the case of a homogeneous system:

vC = 0. (2.2)

The set of solutions of the homogeneous system (2.2) is a sub-semigroup of Zp≥0 and we denote it by
Sol(vC = 0).

We want to show that Sol(vC = 0) is a finitely generated semigroup.

Theorem 2.1.2 ([CP], Theorem 9.18 on page 129). Let A ⊂ Zp≥0 be a subset. Then the set M of all
minimal elements of A is finite. Moreover, if α ∈ A, then there exists ν ∈M such that ν ≤ α.

We report it because it explains how we find minimal elements of A.
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Proof. We proceed by induction on p. The statement clearly holds for p = 1. Suppose that the statement
holds in Zp−1

≥0 .
Let j ∈ {1, . . . , p}. We consider the projection of A on the j-th component:

Aj = {z ∈ Z≥0 | z is the j−th component of some a ∈ A},

and let
lj = min{z | z ∈ Aj }.

Denote by Lj the set of all elements of A with j-th component equal to lj :

Lj = {a ∈ A | aj = lj }.

There is a bijection between Lj and the set:

L′j = {(a1, . . . , âj , . . . , ap) | (a1, . . . , ap) ∈ Lj }.

Hence, by induction, the set Kj of all minimal elements of Lj is finite.
Set K = K1 ∪ . . . ∪Kp. K is finite. Let

kj = max{aj | a ∈ K } ∀j = 1, . . . , p,

and define µ = (k1, . . . , kp). Then it is obvious that every element k ∈ K is such that k ≤ µ.
Denote by Mj the set of all minimal elements of A with j-th component pj satisfying lj ≤ pj ≤ kj .

From the inductive hypothesis, it follows that each set Mj is finite. Let M = M1 ∪ . . . ∪Mp, then M is
a finite set. Moreover, M is the set of all minimal elements of A.

Let γ = (c1, . . . , cp) be any minimal element of A. If γ /∈ M , then γ /∈ Mj for every j = 1, . . . , p.
By definition of Mj and of lj , we have cj > kj for j = 1, . . . , p. Thus γ > µ and each element of K is
consequently less then γ, contrary to the choice of γ as a minimal element of A.

The final assertion of the theorem follows because it is clear that any strictly descending chain of
elements of A is finite.

To conclude, we observe that Zp≥0 is contained in the free additive abelian group Zp and that the partial
order on Zp≥0 extends naturally on Zp defining that:

α ≥ β ⇐⇒ α− β ∈ Zp≥0

Proposition 2.1.3 ([CP], Corollary 9.19 on page 130). Let G be a subgroup of Zp and suppose that the
set S = G∩Zp≥0 contains at least one non-zero element. Then S is a finitely generated sub-semigroup of
Zp≥0; in fact the set of minimal elements of S finitely generates S.

Proof. Let M the set of minimal elements of S. Let α ∈ S\{0}. Then there exists an element β ∈ M
such that α ≥ β. Then α − β ≥ 0 and so α − β ∈ Zp≥0. Since β ∈ M and α ∈ S then α, β ∈ G and
α − β ∈ G too. Consequently, either α = β or α − β ∈ S\{0}. Hence, if α 6= β there exists β1 ∈ M
such that β1 ≤ α − β. It follows, as before, that α − β − β1 ∈ S\{0} or α = β + β1. This process
terminates in a finite number of steps because it determines a decreasing chain of elements in S\{0} and
it has always a minimal element (see Remark 2.1.1). At the end, the process gives: α = β+β1 + . . .+βk
and this shows that M generates the semigroup S.
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Applying these facts, we can prove that Sol(vC = 0) is finitely generated as a semigroup.

The zero-element 0 is always a solution of the system vC = 0. Moreover, it is the minimum among
the solutions of the system.

Proposition 2.1.4. Sol(vC = 0) is finitely generated as sub-semigroup in Zp≥0.

Proof. If 0 is the unique solution of vC = 0, then Sol(vC = 0) = {0} and it is finitely generated.
Suppose now that Sol(vC = 0) 6= {0}, namely that the homogeneous system has a non-zero solution.
Let Min(vC = 0) be the set of minimal elements of Sol(vC = 0) \ {0}. By Theorem 2.1.2 and

Proposition 2.1.3, Min(vC = 0) is a finite set and generates Sol(vC = 0).

We will always denote by Min(vC = 0) the set of minimal non-zero solutions of Sol(vC = 0). It is
empty when Sol(vC = 0) = {0}.

So every non-zero solution a of the system vC = 0 is a Z≥0-linear combination of elements of
Min(vC = 0):

a =
t∑
i=1

λiνi

where λi ∈ Z≥0 and Min(vC = 0) = {ν1, . . . , νt}.

2.1.2 Non-homogeneous systems

Let’s consider the case of non-homogeneous systems:

vC = u. (2.3)

Computing the set of solutions and their representation is more complicated because the set of solutions
is not a semigroup.

However, we can characterize the solutions using two sets: Min(vC = 0) and Min(vC = u).
Min(vC = 0) is the set of minimal non-zero solutions of the homogeneous system associated to vC = u,
Min(vC = u) is the set of minimal solutions of the system vC = u.

Moreover in this subsection we will suppose that Min(vC = 0) 6= ∅, hence Sol(vC = 0) 6= {0}.
By Theorem 2.1.2 we have that Min(vC = 0) and Min(vC = u) are finite subsets of Zp≥0.

Remark 2.1.5. In [AC] and [CD] the authors describe Min(vC = u) as the projection of a set in Zp+1
≥0 ,

called M1. M1 is the set of elements of type (m, 1), where (m, 1) is a minimal solution of a system
obtained introducing a new variable w:

v′C ′ = 0 (2.4)

with v′ = (v, w) and C ′ is the matrix C ′ =
(

C
−u

)
.
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The authors give this description for Min(vC = u) because they want to build an efficient algorithm
for solving systems of linear Diophantine equations.

Lemma 2.1.6. ConsiderM1 = {(m, 1) | (m, 1) ∈ Min(v′C ′ = 0)} ⊆ Zp+1
≥0 and let M̃1 be the projection

of M1 in Zp≥0. Then Min(vC = u) = M̃1.

Proof. Observe that for every m ∈ M̃1 we have:

(m, 1) ∈ Sol(v′C ′ = 0) ⇐⇒ m ∈ Sol(vC = u).

Moreover

(m, 1) is minimal in Sol(v′C ′ = 0) ⇐⇒ m is minimal in Sol(vC = u).

Explicitly, if we suppose that m is not minimal, then there exists s ∈ Sol(vC = u) such that s < m.
By definition, (s, 1) ∈ Sol(v′C ′ = 0) and we have that (s, 1) < (m, 1) because sk < mk for each
k = 1, . . . , p and the last coordinate is equal to 1. This contradicts that (m, 1) ∈ Min(v′C ′ = 0).

Viceversa, we consider s ∈ Min(vC = u) and suppose that (s, 1) /∈M1. Then, there exists (m, 1) ∈
M1 such that (m, 1) ≤ (s, 1). Since the last component of (m, 1) and of (s, 1) is equal, then

(m, 1) ≤ (s, 1) ⇐⇒ m ≤ s.

But this contradicts the assumption that s ∈ Min(vC = u).

Remark 2.1.7. We observe that the element

µ+
t∑
i=1

λiνi

where µ ∈ Min(vC = u), Min(vC = 0) = {ν1, . . . , νt} and λi ∈ Z≥0, is always a solution of the
system vC = u.

The converse is also true.

Proposition 2.1.8. Any solution a ∈ Zp≥0 of the system vC = u is the sum of an element of Min(vC = u)
and a Z≥0-linear combination of elements of Min(vC = 0).

The proof of the proposition recalls the process used to find the solutions of a linear non-homogeneous
system over a field (see [Se], [L]). The difference is that here we are working over the semigroup Zp≥0

and not over a group.

Proof. Let a be a solution of the system (2.3). By definition of Min(vC = u), we have

∃ µ ∈ Min(vC = u) such that µ ≤ a and µC = u. (2.5)

Consider the following element: a− µ. Since µ ≤ a, then a− µ ∈ Zp≥0. Moreover

(a− µ)C = aC − µC = u− u = 0
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that is, the element a − µ is a solution of the linear homogeneous system associated to the system (2.3).
So a − µ ∈ Sol(vC = 0). But Sol(vC = 0) is a semigroup finitely generated by Min(vC = 0), so if
Min(vC = 0) = {ν1, . . . , νk}, we have

a− µ =
k∑
i=1

λiνi with λi ∈ Z≥0

a = µ+
k∑
i=1

λiνi with λi ∈ Z≥0

and this proves the statement.

2.2 Optimal solutions of a system of linear Diophantine equations

In this section we explain why we consider the systems of linear Diophantine equations.
Let X be a smooth and complete toric variety of dimension n. Fix an isomorphism N ∼= Zn, so that

we can think of elements in N as vectors in Zn. Suppose that we know the set of generators G(ΣX)
and the list of maximal cones of ΣX . Given a primitive collection P = {x1, . . . , xk} of ΣX , we want to
compute its primitive relation r(P ).

By Proposition 1.3.5, we know that G(σP ) ⊆ G(ΣX) \ P . In order to find the set G(σP ) and the
negative part of r(P ), we consider the linear system:∑

yi∈(G(ΣX)\P )

viyi = x1 + · · ·+ xk (2.6)

where the elements xi and yi are known, while the elements vi are the unknowns of the system.

Rewrite (2.6) as vC = u, where u = x1 + · · · + xk and C is the matrix of coordinates of yi,
for i = 1, . . . , card(G(ΣX) \ P ). We refer to it as the linear system associated to the primitive
collection P .

For every solution a of this linear system, we define

G(a) = {yi ∈ (G(ΣX) \ P ) | ai 6= 0}.

This is the set of generators yi whose coefficients in (2.6) are non-zero.

The following theorem characterizes a primitive relation using the linear system associated to P :
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Theorem 2.2.1. Let P = {x1, . . . , xk} be a primitive collection in PC(X). Then the set of the coeffi-
cients of the negative part of r(P ) is a minimal solution of the system associated to P .

Proof. Write:
r(P ) : x1 + · · ·+ xk = a1y1 + · · ·+ asys.

Moreover suppose that the system associated to P is:

vC = u.

Write G(ΣX) \ P = {y1, . . . , ys, ys+1, . . . , yp}. The vector:

a = (a1, . . . , ap) with ai = 0 for i = s+ 1, . . . , p

is a solution of the system associated to P .
Suppose that Min(vC = u) is the set of minimal solutions of vC = u and that Min(vC = 0) =

{ν1, . . . , νt} is the set of minimal non-zero solutions of the homogeneous system associated to vC = u.
By Proposition 2.1.8, we know that there exist λ1, . . . , λt ∈ Z≥0 and µ ∈ Min(vC = u) such that:

a = µ+
t∑
i=1

λiνi. (2.7)

Let’s show that λi = 0 ∀ i = 1, . . . , t.

Since µ is minimal in Sol(vC = u) we have µ ≤ a and µC = u. Consider the set G(µ) and recall
that G(σP ) = {y1, . . . , ys}. Then G(µ) ⊆ G(σP ) and we have:

µ1y1 + · · ·+ µsys = x1 + · · ·+ xk.

Let H be the sub-group of N generated by G(σP ). Since X is smooth, G(σP ) is a basis for H . By
definition u = x1 + · · · + xk ∈ H . Its coordinates with respect to this basis are uniquely determined,
hence a = µ and λi = 0 for every i = 1, . . . , t.

Theorem 2.2.1 explains the importance of the set Min(vC = u) associated to the system of linear
Diophantine equations: it allows to find the primitive relation reducing the search to a finite set of Zp≥0.

Once constructed vC = u, we are going to compute the set Min(vC = u) of its minimal solutions.
Since the cardinality of Min(vC = u) can be greater than 1, we introduce:

Definition 2.2.2. A minimal solution (a1, . . . , ap) is called an optimal solution if G(a) = {yi | ai 6= 0 }
is a set of generators of a cone of ΣX .

Then we can prove:
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Proposition 2.2.3. There exists a unique optimal solution and it gives the coefficients of the negative part
of the primitive relation r(P ).

Proof. By Theorem 2.2.1, the set of coefficients of the negative part of r(P ) is a minimal solution a;
clearly it is also optimal.

Suppose now that b is another optimal solution and define σb = 〈G(b)〉 ∈ ΣX . Then

x1 + · · ·+ xk =
∑

yi∈G(b)

biyi

with all bi’s strictly positive, that is x1 + · · ·+xk ∈ RelInt(σb). The cone of ΣX containing x1 + · · ·+xk
in its relative interior is unique, hence σb = σP and G(b) = G(σP ) = G(a). Since the elements of
G(σP ) are linearly independent, we get a = b.

2.3 Commands in Mathematica computing minimal solutions of a linear
systems of Diophantine equations

In this section we describe how we obtain the minimal solutions of a system of linear Diophantine equa-
tions vC = u using the built-in function of Mathematica Reduce and the optimal solution of a linear
system associated to a primitive collection P .

The command Reduce uses the algorithm implemented by Ajili and Contejean in [AC]. The com-
mand always returns a complete description of the set of solutions. It answers in the following form:

{C[1], . . . ,C[h] ∈ Integers,C[1] ≥ 0, . . . ,C[h] ≥ 0,

a1(C[1], . . . ,C[h]), . . . , ak(C[1], . . . ,C[h]) }

Here C[j] are parameters in Z≥0, and a(C[1], . . . ,C[h]) are all solutions of the linear system, com-
puted as explained in 2.1.2. (See [Wo]).

By replacing every parameter C[j] with zero, we find the k distinct minimal solutions of vC = u.

If vC = u is the linear system associated to a primitive collection P of a variety X , then we use the
command Reduce to compute the set of all minimal solutions Min(vC = u).

Then for every minimal element µ = (µ1, . . . , µp) ∈ Min(vC = u) we consider the set:

G(µ) = {yi ∈ (G(ΣX) \ P ) | µi 6= 0}.

The optimal solution is the solution corresponding to the unique setG(µ) which verifies the following
condition:

no primitive collection in PC(X)\{P} is contained in G(µ). (2.8)

Notice that the condition (2.8) is equivalent to say that G(µ) generates a cone in the fan of X .

In this way we can determine the primitive relation associated to P .
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Remark 2.3.1. Observe that the command Reduce can have the following answers:

- 1-st: a unique solution: in this case Min(vC = u) has cardinality 1 and Min(vC = 0) is empty;

- 2-nd: a unique solution depending from h positive integers parameters: in this case Min(vC = u)
of cardinality 1 and Min(vC = 0) has cardinality h;

- 3-rd: a set of k different solutions and no parameters, this means that Min(vC = u) has cardinality
k while Min(vC = 0) is empty;

- 4-nd: the more general case when there are k solutions written in terms of h parameters: in this
case Min(vC = u) has cardinality k and Min(vC = 0) has cardinality h.

Hence, in the case 1 the minimal solution gives the optimal solution directly. In the case 2 it is sufficient
to replace the parameters C[j] with zero to obtain the optimal solution.

2.4 Algorithm computing a primitive relation

Let X be a smooth complete toric variety and suppose that its fan ΣX is described by its maximal cones
and its generators.

Moreover suppose that the set of all primitive collections PC(X) is known and that we want to
compute the primitive relation associated to a primitive collection P ∈ PC(X).

Algorithm 2.4.1. PrimRel[X, PC(X)]

1. Let P ∈ PC(X) be a primitive collection. Mathematica builds the linear system:∑
yi∈(G(ΣX)\P )

viyi =
∑
x∈P

x (2.9)

where x and yi are known because they are defined by their coordinates, vi are the unknowns of the
system.

2. Mathematica solves the system using the command Reduce. Its answer is:

{C[1], . . . ,C[h] ∈ Integers,C[1] ≥ 0, . . . ,C[h] ≥ 0,

a1(C[1], . . . ,C[h]), . . . , ak(C[1], . . . ,C[h]) }

3. Mathematica verifies if there are parameters which describe the solutions:

(a) If there is no parameter, then it computes the cardinality of the set of solutions:

i. if the cardinality equals one then the algorithm gives the primitive relation;
ii. if the cardinality equals k ≥ 2 then the algorithm has to compute the optimal solution:

A. for every solution ai computes the set G(ai) = {xj | aij 6= 0};
B. it tests if G(ai) generates a cone in ΣX using the condition (2.8);
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C. once found the set G(ai) which generates a cone in ΣX , the algorithm gives the
primitive relation.

(b) If there are parameters, then Mathematica computes the set of minimal solutions replacing the
parameters with 0.

(c) It computes the cardinality of the set of minimal solutions:

i. if the cardinality equals one then the algorithm gives the primitive relation;
ii. if the cardinality equals k ≥ 2 then the algorithm has to compute the optimal solution:

A. for every solution ai computes the set G(ai) = {xj | aij 6= 0};
B. it tests if G(ai) generates a cone in ΣX using the condition (2.8);
C. once found the set G(ai) which generates a cone in ΣX , the algorithm gives the

primitive relation.
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Chapter 3

Two ways to describe smooth complete
toric varieties

In this chapter we introduce the way of describing a smooth complete toric variety X of dimension n and
the algorithms to do it contained in the package Toric Varieties.

The chapter is divided in two sections: in the first we present how we can describe X: if X is a
projective variety we will see that X has two equivalent representations, if X is not projective we do
not know whether it is also true. We could give an affirmative answer understanding which link there is
between the primitive relations of X and the Z-module of syzygies among the generators of fan of X . In
the second section we give the schemes of the algorithms.

3.1 Smooth complete toric varieties: algorithms describing them

Let X be a smooth complete toric variety of dimension n with fan ΣX .
In Chapter 1 we introduced the concept of fan to describe a smooth complete toric variety because the

combinatorial properties of ΣX translate in a very efficient way the geometrical properties of X . Hence,
the problem is how to introduce a smooth and complete toric variety using its fan.

The fan ΣX is completely determined by its maximal cones and its generators, but when we study the
Mori cone associated to the variety X it is very useful to know the primitive relations also.

So, we chose to represent ΣX with a list where we can collect several information about X . The list
is given by these five elements:

{n, t,PR,G,MC} (3.1)

where

• n is the dimension of variety;

• t is the cardinality of G(ΣX);
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• PR is the set of all primitive relations;

• G is the set of generators, given as a list of elements of Zn;

• MC is the list of the maximal cones of ΣX .

For a detailed description of the lists PR, MC and G see Section A.2.
With the previous notation, we can say that the fan ΣX is completely determined by the data n, t, G

and MC. Given these data, it is possible to compute all primitive collections and primitive relations of
X . Computing the primitive collections is easy, in fact the primitive collections are the minimal subsets
of G(ΣX) which are not contained in a cone of ΣX . Then, for each primitive collection P , we compute
the primitive relation r(P ) using the techniques described in Chapter 2. This involves solving a system
of linear Diophantine equations.

On the other hand, suppose that we know the data: n, t and PR, i.e. we know the dimension of X ,
the number of generators of ΣX and all primitive relations. One could ask whether these data determine
X (up to isomorphism).

Clearly, the list of all primitive collections gives us the list of maximal cones in ΣX : they are the sub-
sets of G(ΣX) of cardinality n which do not contain a primitive collection. To complete the description,
we would have to know the coordinates of generators of ΣX with respect to a basis of N .

The question is: are these coordinates determined by all primitive relations?
This is equivalent to asking whether the set of primitive relations spans the vector space N1(X)Q of

linear relations among elements of G(ΣX).
The question has an affirmative answer in the projective case because if X is projective, the set of

extremal classes generates all N1(X)Q and the extremal classes are primitive relations. In fact, we have:

Proposition 3.1.1 ([Ba4], Theorem 2.2.4 - [Sa], Proposition 3.6). Let X1, X2 be two smooth, projective,
toric varieties, and let Σ1, Σ2 be their fans in NQ. Then X1 and X2 are isomorphic if and only if there
exists a bijection ϕ : G(Σ1) → G(Σ2) such that:
for every P = {x1, . . . , xk} ∈ PC(Σ1) with primitive relation

r(P ) : x1 + · · ·+ xk − (a1y1 + · · ·+ aryr) = 0,

the relation
ϕ(r(P )) : ϕ(x1) + · · ·+ ϕ(xk)− (a1ϕ(y1) + · · ·+ arϕ(yr)) = 0

is a primitive relation for Σ2 and this defines a bijection between the sets of primitive relations of the two
fans.

Suppose thatX is non projective and there exists an invariant subvariety V ofX such that the blow-up
BlV (X) of X along V is projective. In this case, it is known that the set of primitive relations generates
all N1(X)Q (see Corollary 5.6 in [C2]). Hence also in this case the question has a positive answer.

However, we were not able to give a positive answer to the question for any non-projective smooth
complete toric variety, but we conjecture that there is an affirmative answer also in this case.

Let’s consider the following example:
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Example 3.1.2. Let N ∼= Z3 and NQ ∼= Q3. Let X1 be the smooth, complete toric variety described in
Example 1 in [FP], (see also the variety X1 described in Section 7.2).

We denote by X the smooth complete toric variety of dimension 3, obtained by the blow-up of X1

along the invariant curve V (〈x[2], x[5]〉). X is a non-projective variety and has not a projective
blow-up along any toric subvariety V .

Let’s consider the description ofX given by its primitive relations (the letter C denotes the contractible
primitive relations of X):

x[1] + x[5] - x[2] - x[4] = 0
x[1] + x[7] - x[4] = 0
x[1] + x[8] - x[7] = 0
x[1] + x[9] -2 x[2] - x[4] = 0 C
x[2] + x[5] - x[9] = 0 C
x[2] + x[6] -2 x[3] -2 x[5] = 0
x[2] + x[7] - x[5] = 0
x[2] + x[8] - x[3] -2 x[5] = 0
x[3] + x[4] -2 x[1] - x[6] = 0 C
x[3] + x[7] - x[1] - x[6] = 0
x[3] + x[8] - x[6] = 0
x[4] + x[8] -2 x[7] = 0 C
x[6] + x[9] -2 x[3] -3 x[5] = 0 C
x[7] + x[9] -2 x[5] = 0 C
x[8] + x[9] - x[3] -3 x[5] = 0 C
x[4] + x[5] + x[6] - x[7] - x[8] = 0
x[5] + x[6] + x[7] -2 x[8] = 0 C

In this case we can observe that the set {x[1],x[2],x[3]} generates a maximal cone in the fan of
X , so we fix the following identification:

x[i]− > ei

where ei denotes the i-th vector of the canonical basis of Z3.
Replacing x[1], x[2], x[3] with e1, e2, e3 respectively in all primitive relations we can write the

other generators as Z-linear combination of the elements of the fixed basis of N :

x[4] = −e2 − e3

x[5] = −e1 − e3

x[6] = −2e1 − e2

x[7] = −e1 − e2 − e3

x[8] = −2e1 − e2 − e3

x[9] = −e1 + e2 − e3

Hence, in this case the linear system given by all primitive relations determines completely the structure
of the fan of the variety and the variety.
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Since for projective varieties we have two equivalent representations and for non-projective varieties
we conjecture that it should be true, we built some algorithms which present smooth complete toric
varieties considering the possibility of describing them with both representations.

3.2 Algorithms introducing varieties

In this section we present the algorithms of the package to introduce and describe a smooth complete toric
variety X . They are NewVariety, AddInput[X] and TabVar[X].

The first allows to obtain one of the representations of a toric variety X . The program allows to the
user to interact with Mathematica. In fact, it builds the list representing the variety X asking some simple
questions to the user.

The algorithm AddInput[X] was built to collect information about X . For example, if X is given
by the data n, t, G, MC, then it can be used to know the primitive relations of X .

Remark 3.2.1. Computing the list of primitive relations is always possible but it can request some time
because the algorithm has to solve a system of linear Diophantine equations for every primitive collection.
On the other hand, given the primitive relations, computing the coordinates of generators of ΣX could not
be possible. But, if we are able to do it, then we can see that the algorithm gives its answer very quickly.

The last algorithm allows to have an understandable description of primitive relations of X . In fact, it
transforms every list representing a primitive relation (see Section A.2), in a linear polynomial.

Let’s give the schemes of the three algorithms.

Algorithm 3.2.2. NewVariety.

1. Mathematica asks “Which is the dimension?”(of the variety)

2. Mathematica asks “Which is the the number of generators?”

3. Mathematica asks “Do you want to use either the primitive relation (p) or cones (c) to describe the
variety?”
If the user answers with p then

(a) Mathematica says “Give primitive relations”;

(b) Mathematica transforms every primitive relation in the list of type (A.2) (see Section A.2);

(c) Mathematica gives the output {n, t,PR,Null,Null}.

If the user answers with c then

(a) Mathematica says “Give generators”;

(b) Mathematica says “Give maximal cones”;

(c) Mathematica gives the output {n, t,Null,G,MC}.
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Algorithm 3.2.3. AddInput[X].
The algorithm checks if X is described by:

1. its generators and maximal cones (X = {n, t,Null,G,MC}), then Mathematica uses the algorithm
PrimRel (see Chapter 2) and computes every primitive relation;

2. its primitive relations and generators (X = {n, t,PR,G,Null}), then Mathematica computes all
maximal cones;

3. its primitive relations (X = {n, t,PR,Null,Null}), then:

(a) Mathematica computes all maximal cones;

(b) Mathematica verifies if the system of primitive relations admits a unique solution (it verifies
if the rank of the matrix of coefficients of generators in the primitive relations has rank ρ);

i. if the answer is True then it computes the coordinates of generators;
ii. if the answer is False then it remarks the fact.

In every case the answer is the list
{n, t,PR,G,MC}.

Algorithm 3.2.4. TabVar[X].

1. Mathematica transforms every primitive relation in a polynomial;

2. Mathematica determines all contractible primitive relations and puts beside them the letter C;

3. Mathematica answers with the table of primitive relations.
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Chapter 4

Classes of curves

In this chapter we present the statements and the algorithms related to the classes of curves. Given a
smooth complete toric variety X with fan ΣX , a numerical class of 1-cycles is represented by a linear
polynomial in the generators of ΣX with integer coefficients.

Then we explain how we can use this polynomial description of a numerical class to check whether
X is projective. It is connected with the Elimination theory and the problem of checking the existence of
a solution of a system of linear Diophantine equations.

The same arguments are used to determine which extremal classes there are in the Mori cone of a
projective smooth toric variety.

The chapter is divided in five sections: in the first we find the algorithms which compute the relation
associated to numerical classes of invariant curves and the relation associated to contractible classes of
invariant curves of a variety X . Section 4.2 is devoted to the statements which allow to compute the
vector of coordinates of a numerical class of curves either in the set of all invariant curves or in the set of
contractible classes (when X is projective). In the same section we find a brief description of the built-in
function of Mathematica which we use to compute the coordinates of a numerical class of curves. Section
4.3 presents the problem of finding an equivalent computational condition for verifying whether a smooth
and complete toric variety is projective and the description of the algorithm ProjQ. In the last section
we consider a smooth projective toric variety X and prove Lemma 4.4.1. It represents a computational
condition to verify whether a contractible class of X is extremal or not.

The references for toric Mori theory used throughout this chapter are [O2], [R], [Wi]. We refer to
[AL], [CLO1], [CLO2] for Elimination theory and to [Wo] for the study of existence of a solution of a
system of linear Diophantine equations.
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4.1 Invariant curves and contractible classes

Let X be a smooth complete toric variety with fan ΣX and generators {x1, . . . , xt}.
As explained in Section 1.4, there is a natural isomorphism among N1(X) (the group of numerical

classes of 1-cycles in X) and the group of the linear relations among x1, . . . , xt in N .
In this section we present the algorithm to compute the relation associated to a numerical class of

invariant curves.

Algorithm 4.1.1. Curve[X,cone].

1. Let σ be an (n − 1)-dimensional cone in ΣX generated by x1, . . . , xn−1. It determines the two
maximal cones σ′ and σ′′ such that σ′ ∩ σ′′ = σ:

σ′ = 〈x1, . . . , xn−1, xn〉,
σ′′ = 〈x1, . . . , xn−1, xn+1〉.

2. The algorithm builds the linear system on integers:

xn + xn+1 = −
n+1∑
i=1

vixi

where vi are unknowns.

3. It solves the system and finds the relation.

Remark 4.1.2. Observe that vi are uniquely determined (Section 1.4).

Let X be a smooth complete toric variety described by the list PR of all primitive relations.
We want to give a criterion to determine which relations are contractible. It is the following:

Proposition 4.1.3 ([Sa], Theorem 4.10 - [C2], Proposition 3.4). Let P = {x1, . . . , xh} be a primitive
collection in ΣX , with primitive relation:

r(P ) : x1 + · · ·+ xh − a1y1 − · · · − akyk = 0.

Then r(P ) is contractible if and only if for every primitive collection Q of ΣX such that Q ∩ P 6= ∅ and
Q 6= P , the set (Q \ P ) ∪ {y1, . . . , yk} contains a primitive collection.

Algorithm 4.1.4. ContractibleRel[X].

1. It applies Proposition 4.1.3;

2. It gives the list of all contractible primitive relations.

Observe that it is sufficient to know the set PC(X).
In the appendix, we find three different algorithms which compute the list of contractible relations,

and give the output in different forms. One builds a table where the primitive relations are given by linear
polynomials in the generators, one answers with the list of all contractible primitive relations, where each
is written as a linear polynomial in the generators. The last one gives a list where the primitive relations
have the form (A.2) (see Section A.2).
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4.2 The Mori cone

The section is devoted to show how we can describeN1(X) fixing a basisB. We do it using the properties
of Mori cone NE(X).

Observe that a subset S ⊂ NE(X)Z, which generates NE(X)Z as a semigroup, also generatesN1(X)
as a group because dim NE(X) = ρX . Then the subset S has to contain a basis of N1(X) (as a Z-
module).

We apply this fact in two cases:

1) when S is the set of all numerical classes of invariant curves, in this case we denote it by I (see
Theorem 1.4.1);

2) when X is projective and S is the set of all contractible classes: in this case we denote it by C (see
Theorem 1.5.3).

Recall from Section 1.4 that every γ ∈ N1(X) is represented by a linear polynomial in the generators
of ΣX . More precisely, write G(ΣX) = {x1, . . . , xt}. Then the assignment

γ 7→
t∑
i=1

(γ · V (xi))xi

gives injective homomorphisms N1(X) ↪→ Z[x1, . . . , xt] and N1(X)Q ↪→ Q[x1, . . . , xt].

Let S = {γ1, . . . , γd} be a subset of NE(X)Z which generates NE(X)Z as a semigroup as in 1) or
2). We want to extract from S a basis of N1(X).

Let p1, . . . , pd ∈ Z[x1, . . . , xt] be the relations associated to γ1, . . . , γd. Our goal is to write d−ρX of
the pi’s as an integral linear combination of the remaining ρX polynomials. In order to do this, we compute
the syzygies among p1, . . . , pd in Z[x1, . . . , xt]. This means that we consider the ring of polynomials
Z[f1, . . . , fd] and define the following ring homomorphism:

φ : Z[f1, . . . , fd] → Z[x1, . . . , xt]
fi 7→ pi for i = 1, . . . , d.

Then Ker(φ) is an ideal in Z[f1, . . . , fd] and it is the set of all polynomials g(f1, . . . , fd) such that
g(p1, . . . , pd) = 0. These are the syzygies among p1, . . . , pd: Ker(φ) = Syz(p1, . . . , pd). It is enough to
determine a system of generators of Ker(φ) to describe Syz(p1, . . . , pd) completely.

This problem can be solved working in the ring Z[f1, . . . , fd, x1, . . . , xt] and using Elimination theory.
We have:

Proposition 4.2.1 ([AL] Theorem 2.4.2 page 81 - [CLO1], Theorem 2 page 113). Let {p1, . . . , pd} be a
set of polynomials in Z[x1, . . . , xt]. Let F be the ideal generated by the polynomials f1− p1, . . . , fd− pd
in Z[f1, . . . , fd, x1, . . . , xt].

Then
Syz(p1, . . . , pd) = F ∩ Z[f1, . . . , fd].

36



Proposition 4.2.1 gives an algorithm for computing a system of generators of Syz(p1, . . . , pd). In
fact, it is sufficient to compute a Gröbner basis G for the ideal F with respect to an elimination or-
der in which the variables x1, . . . , xt are larger than the variables f1, . . . , fd. Then the polynomials in
G̃ = G ∩ Z[f1, . . . , fd] form a Gröbner basis for Syz(p1, . . . , pd) and hence a system of generators for
Syz(p1, . . . , pd) (see [CLO1] Definition 5 on page 74 for Gröbner bases, and Definition 1 on page 113 for
the elimination order).

In our case, the polynomials p1, . . . , pd are linear polynomials in the variables x1, . . . , xt and we can
compute a Gröbner basis for Syz(p1, . . . , pd) using Elimination theory for linear polynomials. It says that
the Gröbner basis G can be computed by applying Gauss elimination to the matrix of coefficients of the
polynomials f1 − p1, . . . , fd − pd ∈ Z[f1, . . . , fd, x1, . . . , xt] (see [CLO1] Chapter 2).

So we consider the matrix A of coefficients of polynomials f1 − p1, . . . , fd − pd and apply Gauss
elimination toA. In this way, we obtain a new matrix B which is the matrix of coefficients of the elements
of the Gröbner basis G of the ideal F . The polynomials in G̃ give a Gröbner basis for Syz(p1, . . . , pd).

Notice that the elements in G̃ are exactly d − ρX , because N1(X)Q has dimension ρX and the set S
contains a basis of N1(X).

Once determined G̃ we can find a basis of N1(X) contained in S. In fact by construction, up to
reordering the variables fi, we can deduce from G̃ some syzygies of the form:

fρX+1 −
∑ρX

i=1 a
ρX+1

i fi
...
fd −

∑ρX
i=1 a

d
i fi

Then by definition of syzygy we have:

pρX+1 =
∑ρX

i=1 a
ρX+1

i pi
...
pd =

∑ρX
i=1 a

d
i pi

(4.1)

This means that {γ1, . . . , γρX} is a basis of N1(X).
Moreover the equations (4.1) give the coordinates of γρX+1 , . . . , γd with respect to this basis.

This procedure is used to write the algorithms EsprVett[X,set], where X is the variety and set
is either the set C or I, and CoordClassesCurves[X], CoordContrClasses[X] where X is the
variety.
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4.2.1 Commands in Mathematica computing a basis B of N1(X)

In this section we introduce the built-in function Eliminatewhich allows us to find a basisB ofN1(X).
We use the same notations introduced in the previous section.
Let S = {γ1, . . . , γd}. Every γi is represented by a polynomial pi in Z[x1, . . . , xt].
The command Eliminate computes a system of generators for Syz(p1, . . . , pd).
The input of Eliminate are the polynomials f1−p1, . . . , fd−pd in Z[f1, . . . , fd, x1, . . . , xt], which

define the ideal F . The command eliminates the variables x1, . . . , xt using Elimination theory for linear
polynomials. Let’s analyze how it proceeds:

1. it computes the matrix A of coefficients of polynomials fi − pi for i = 1, . . . , d;

2. it applies Gauss elimination to A and determines the matrix B of coefficients of a Gröbner basis G
of F with respect to the elimination order;

3. it answers giving the polynomials g ∈ G ∩ Z[f1, . . . , fd].

Given the polynomials g ∈ G ∩ Z[f1, . . . , fd], we wrote some algorithms

1. to obtain the equations (4.1);

2. to obtain the set V of vectors wi of the coordinates of every γi ∈ S after the identification ofN1(X)
with ZρX .

4.2.2 Algorithm computing the coordinates of a numerical class of invariant curves

Algorithm 4.2.2. EsprVett[X,S].

1. The algorithm builds the polynomials fi − pi for i = 1, . . . , d = card(S).

2. The algorithm uses the command Eliminate to compute a system of generators of Syz(p1, . . . , pd):
G̃.

3. The algorithm uses G̃ to compute a basis B of N1(X).

4. It answers giving the set of vectors wj of coordinates of all numerical classes in S with respect to
the basis B:

V = {w1 = e1, . . . , wρX
= eρX , wρX+1

, . . . , wd},

where {e1, . . . , eρX} denotes the canonical basis of QρX .

Remark 4.2.3. The other two algorithms which compute the vectors of the coordinates of numerical
classes, CoordContrClasses[X] and CoordCurvesClasses[X], follow the same scheme but
they give their answer as a table. The first works only with projective varieties and considers the set C, the
second works with any variety and considers the set I.
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4.3 Projectivity

In Chapter 1 we considered the problem of verifying the projectivity of a smooth complete toric variety
X and we have seen that it is equivalent to show that NE(X) is strongly convex.

By definition, NE(X) is strongly convex if and only if NE(X) ∩ −NE(X) = {0}. Theorem 1.4.1
says NE(X)Z is generated by the set of numerical classes of invariant curves I. Suppose that I =
{γ1, . . . , γd}.

Using the algorithm introduced in the previous subsection, we compute a basisB ofN1(X), contained
in I, and then the coordinates of all γi with respect to B. Hence, we have the set

V = {wi | i = 1, . . . , d}

which contains the canonical basis of QρX .
The vectors wi allow to characterize the projectivity of X . We identify every class with the vector of

its coordinates, such that NE(X)Z = 〈w1, . . . , wd〉.

Lemma 4.3.1. The condition NE(X) ∩ −NE(X) = {0} is equivalent to verify that the equation

d∑
i=1

viwi = 0 (4.2)

has only the trivial solution in Zd≥0.

Proof. Suppose that there exists w ∈ NE(X) ∩ −NE(X). This means that:

w =
d∑
i=1

aiwi,

w =
d∑
i=1

bi(−wi),

where ai, bi ∈ Z≥0. Hence

d∑
i=1

(ai + bi)wi = 0,

then (a1 + b1, . . . , ad + bd) is a non-trivial solution for (4.2), a contradiction.
Conversely, let w be an element in NE(X) ∩ −NE(X). We are going to prove that w = 0. Since

w ∈ NE(X) ∩ −NE(X) then

w =
d∑
i=1

aiwi,

w =
d∑
i=1

bi(−wi),

39



where ai, bi ∈ Z≥0, then

d∑
i=1

(ai + bi)wi = 0. (4.3)

By hypothesis, the equation (4.3) has only the trivial solution, hence (ai + bi) = 0 for all i = 1, . . . , d.
This implies that ai = bi = 0 for all i = 1, . . . , d and that w = 0.

Geometrically, Lemma 4.3.1 says that X is projective if and only if there are no effective invariant
1-cycles which are numerically equivalent to zero.

In order to determine the projectivity we need to test the existence of non-trivial solutions of a system
of linear Diophantine equations. Since this can take a long time, we observe that in some cases we can
get an answer directly.

Proposition 4.3.2 ([O1], Proposition 8.1 page 51). Every smooth complete toric surface is projective.

Proposition 4.3.3 ([KlSt]). A smooth complete toric variety X of dimension n and with Picard number
ρX ≤ 3 is projective.

Proposition 4.3.4 ([Ba4], Proposition 3.2). Let X be a smooth complete toric variety and let PR be the
list of all primitive relations. If the negative part of every primitive relation in PR is not zero, then X is
not projective.

Using also these three propositions we have written the algorithm ProjQ[X]. It works in the follow-
ing way:

Algorithm 4.3.5. ProjQ[X].

1. The algorithm tests if X has dimension n ≤ 2. If it is verified then the output is True, otherwise it
proceeds with the next test.

2. The algorithm tests if X has ρX ≤ 3. If it is verified then the output is True, otherwise it proceeds
with the next test.

3. The algorithm tests if X is described by primitive relation and then tests if X verifies Proposition
4.3.4, then the output is False, otherwise it proceeds with the next test. (If X is described by the
data of maximal cones and generators the algorithm overlooks this step).

4. The algorithm computes the set I of all relations associated to all different numerical classes of
invariant curves with the algorithm AllInvCurves[X] (see Section A.13.6).

5. The algorithm computes a basis B of N1(X) and the vectors of the coordinates with respect to B
of all γi ∈ I with the algorithm EsprVett[X,I].

6. Given the set V = {wi | i = 1, . . . , d = card(I)} of vectors of coordinates of all numerical classes
in I, the algorithm builds the equation:

d∑
i=1

viwi = 0,
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and verifies whether it has a non-trivial solution. It uses FullSimplify[Exists[-,-]],
(where in the first - we set the unknowns of the system and in the second the equation). If there is
a non-trivial solution then the output is False otherwise it is True.

4.4 Extremal classes

In this section we consider a smooth projective toric variety X . In this case, we know that the set C of
all contractible classes generates NE(X)Z (see Section 1.5). We also know that the set E of all extremal
classes is a subset of C, and we can easily compute C as explained in Section 4.1. We will now explain
how one can determine E inside C.

We recall the definition of a non-extremal class:
A contractible class γ is non-extremal if and only if there exists Z1, Z2 ∈ NE(X) such that Z1 +Z2 ∈

Q≥0γ and Z1 /∈ Q≥0γ.
To build the algorithm we use the following:

Lemma 4.4.1. Let X be a projective variety. Let γ be a contractible class and let C = {γ1 = γ, . . . , γs}
be the set of all contractible classes in X . Then the following are equivalent:

i) γ is not extremal;

ii) there exist m2, . . . ,ms ∈ Q≥0 such that

γ =
s∑
i=2

miγi. (4.4)

Proof. ii) =⇒ i)
Since γ 6= 0 at least one mi is non-zero; we can assume that m2 6= 0. We set

Z1 = m2γ2 and Z2 =
s∑
i=3

miγi.

Then, Z1 + Z2 ∈ Q≥0γ.
Suppose that Z1 ∈ Q≥0γ. Then there exists λ ∈ Q≥0 such that m2γ2 = λγ. Since every contractible

class is primitive, this implies that γ = γ2. Contradiction.

i) =⇒ ii)
Let γ be a non-extremal contractible class. Let Z1, Z2 ∈ NE(X) be such that Z1 + Z2 ∈ Q≥0γ and
Z1 /∈ Q>0γ. Then

Z1 + Z2 = λγ, (4.5)

with λ ∈ Q>0.
Since

NE(X) =
∑
η∈E

Q≥0η
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and γ is non-extremal, we have

Zi =
s∑
j=2

aijγj

where i = 1, 2, aij ∈ Q≥0. Then

Z1 + Z2 =
2∑
i=1

s∑
j=2

aijγj

= λγ.

Since λ 6= 0, it follows that:

γ =
s∑
j=2

(
a1
j + a2

j

λ

)
γj (4.6)

and we have the statement.

We use Lemma 4.4.1 to build the algorithm ExtremalClasses[X].

Algorithm 4.4.2. ExtremalClasses[X].

1. The algorithm computes the set of all contractible classes C.

2. The algorithm computes the set V = {wi | i = 1, . . . , s} of all coordinates of contractible classes
in C with respect to a basis B of N1(X).

3. For every contractible class γi ∈ C the algorithm builds the following equation:

wi =
∑
j 6=i

viwj (4.7)

and verifies if (4.7) has a non-trivial solution. The index i for which the equation (4.7) has a non-
trivial solution says us that the class γi is non-extremal.

Also in this case, we solve the problem considering a system of linear Diophantine equations. Again
we use the command FullSimplify[Exists[-, -]], to know if (4.7) has a non-trivial solution.
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Chapter 5

Toric blow-ups

In this chapter we will present the algorithm to compute the blow-up of a smooth complete toric varietyX
along an invariant subvariety V . The new variety is again smooth, complete and toric. Let Y = BlV (X)
be the blow-up of X along V .

The algorithm works with both the two descriptions of the variety X and it answers giving the new
variety Y . The list, which describes Y , has the same form of the list representing X .

The main problem is the description of how the primitive relations change after the blow-up. In The-
orem 4.3 in [Sa] Sato enumerates primitive collections of Y and says how they derive from primitive
collections of X . In order to obtain all primitive relations of Y we will need the result of Chapter 2.

We compare our algorithm with the partial algorithm written by C. Casagrande in her Ph-D thesis
[C1]. Her algorithm is uncomplete, as she asserts in the appendix of her Ph-D thesis [C1], but it is a first
try to compute primitive relations of variety Y .

We present two examples in which her algorithm fails and we will try to explain how her program
works and why fails.

We will call Casagrande’s algorithm CBlowup and our algorithm Blowup.

This chapter is divided in following sections: in Section 5.1 we expose the construction of a blow-up
describing the maximal cones of the fans of X and Y . We introduce Sato’s Theorem and the techniques
to write our algorithm. In Section 5.2, we explain the algorithm written by Casagrande and present it in
two examples. In the last section we present our algorithm.

For the definitions of blow-up we refer to [E2], [O2] and [Sa]. For the statements of Section 5.1 we
find detailed references in articles [Sa] and [C2].

5.1 The blow-up of smooth complete toric variety

Let X be a complete, smooth, toric variety of dimension n and let ΣX be the associated fan.
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Fix the cone σ = 〈x1, . . . , xr〉 ∈ ΣX and let V = V (σ) the invariant subvariety corresponding to σ.
We denote by Y = BlVX the blow-up of X along V and by ΣY its fan. Let x = x1 + · · ·+xr be the new
generator in ΣY . Moreover we use the notation PC(X) and PC(Y ) for the sets of primitive collections
of X and Y respectively.

The construction of the variety Y is equivalent to a star subdivision of the cone σ in ΣX .

Definition 5.1.1. Under the above assumptions, the star subdivision of ΣX along σ is:

Σ∗ = ΣY =
{
τ ∈ ΣX | σ * τ

}
∪{

σi + ν | σ + ν ∈ ΣX , σ ∩ ν = {0}, i = 1, . . . , r
}
,

where σi = 〈x1, . . . , x̂i, . . . , xr, x〉 .

We describe a star subdivision with a simple example:

Example 5.1.2. Let N ∼= Z3 be. We defined the fan generated by:

x[1] = (1,0,0), x[2] = (0,1,0), x[3] = (0,0,1), x[4] = (-1,-1,-1),

and its maximal cones are:

〈x[1], x[2], x[3]〉, 〈x[1], x[2], x[4]〉,
〈x[1], x[3], x[4]〉, 〈x[2], x[3], x[4]〉.

This fan determines X = P3. We blowup X in the (invariant) point P = V (〈x[1],x[2],x[3]〉).
The fan of Y = BlP (X) is generated by G(ΣY ) = {x[1],x[2],x[3],x[4],x[5]}, where the new
generator is given by x[5] = x[1]+ x[2]+ x[3] and its maximal cones are:

〈x[1], x[2], x[4]〉, 〈x[1], x[3], x[4]〉, 〈x[2], x[3], x[4]〉,
〈x[1], x[2], x[5]〉, 〈x[1], x[3], x[5]〉, 〈x[2], x[3], x[5]〉.
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In the following theorem, Sato gives the relation among primitive collections of X and primitive
collections of Y :

Theorem 5.1.3 ([Sa], Theorem 4.3). The set of primitive collections of Y is given by:

1. G(σ) = {x1, . . . , xr};

2. every P ∈ PC(X) such that G(σ) * P ;

3. the minimal elements in the set {P ′ = (P \G(σ)) ∪ {x} | P ∈ PC(X), P ∩G(σ) 6= ∅}.

We get the following:

Corollary 5.1.4. Let P ∈ PC(X).

1. If P ∩G(σ) = ∅, then P is a primitive collection for ΣY .

2. If G(σ) is contained in P , then P ′ = (P \G(σ)) ∪ {x} is a primitive collection for ΣY .

3. If P ∩ G(σ) 6= ∅ and G(σ) * P then P is a primitive collection in ΣY . Moreover the minimal
elements in the set {P ′ = (P \ G(σ)) ∪ {x} | P ∈ PC(X), P ∩ G(σ) 6= ∅ } are primitive
collections for ΣY .

These three ways give all primitive collections of ΣY except G(σ).

Proof. It is sufficient to prove that every set P ′ = (P \ G(σ)) ∪ {x} for every P containing G(σ) is a
minimal set in {P ′ = (P \G(σ)) ∪ {x} | P ∈ PC(X), P ∩G(σ) 6= ∅}.

Suppose that P ′ is not minimal, then there exists a primitive collection Q in PC(X) \ {P} such that:

Q′ = (Q \G(σ)) ∪ {x} ⊂ P ′,

then Q \G(σ) ⊂ P \G(σ), hence Q ⊂ P . This is a contradiction.

Observe that if we know ΣX , we could first compute ΣY using Definition 5.1.1 and then compute
directly the primitive collections of Y . However, given the primitive collections of X , Corollary 5.1.4
gives a more efficient way to compute PC(Y ).

We divide the primitive collection of ΣX in three sets:

A = {P ∈ PC(X) | P ∩G(σ) = ∅ },
B = {P ∈ PC(X) | G(σ) ⊂ P},
C = {P ∈ PC(X) | P ∩G(σ) 6= ∅ and G(σ) * P}.

Every element of A is a primitive collection for Y also. Elements of the set B determine primitive
collections P ′ = (P \ G(σ)) ∪ {x}. At last, consider the set C. The element of set C are primitive
collections for Y , moreover these elements can determine other primitive collections. In fact, given the
set:

C ′ = {P ′ = (P \G(σ)) ∪ {x} | P ∈ B ∪ C },
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the minimal elements P ′ of C ′ are primitive collections for Y .

For shortness, we call primitive collections of Y coming from collections in the sets A, B, C as prim-
itive collections of type a), b), c), respectively. All minimal elements of the set C ′ which are not of type
b) will be called primitive collections of type c’).

We will denote rX(P ) the primitive relation of primitive collection P , if P ∈ PC(X) and rY (P ) if
P ∈ PC(Y ). We will use a similar notation for the cone associated to a primitive collection: σXP and σYP
will denote the cone associated to P ∈ PC(X) and the cone associated to P ∈ PC(Y ) respectively.

We are going to show that if one knows the primitive relations of X , it is possible to compute easily
the relation associated to any primitive collection of type a), b), c) in Y . (See also [C2], Section 5).

Lemma 5.1.5. Let P ∈ A be hence P ∈ PC(Y ) is a primitive collection of type a).

If G(σ) * G(σXP ) then rY (P ) = rX(P ).

If G(σ) ⊆ G(σXP ) let rX(P ) be:

z1 + · · ·+ zt − (a1x1 + · · ·+ arxr + br+1y1 + · · ·+ br+sys) = 0,

with s ∈ Z≥0. Let m = min{a1, . . . ar} be. Then rY (P ) is

z1 + · · ·+ zt − ((a1 −m)x1 + · · ·+ (ar −m)xr +mx+ br+1y1 + · · ·+ br+sys) = 0.

Proof. If G(σ) * G(σXP ), then by Definition 5.1.1, σXP ∈ ΣY , hence G(σYP ) = G(σXP ) and rY (P ) =
rX(P ).

Suppose that G(σ) ⊆ G(σXP ). Let {i1, . . . , ik} be the indices i ∈ {1, . . . , r} such that ai > m. Then
k < r. By Definition 5.1.1, the cone 〈x, xi1 , . . . , xik , y1, . . . , ys〉 ∈ ΣY . Moreover we have:

z1 + · · ·+ zt − ((ai1 −m)xi1 + · · ·+ (aik −m)xik +mx+ br+1y1 + · · ·+ br+sys) = 0.

So the above relation is rY (P ).

Lemma 5.1.6. Let P ∈ B and let P ′ ∈ PC(Y ) be the primitive collection of type b) coming from P .
Then rY (P ′) is obtained by replacing the sum x1+ · · ·+xr with x in the positive part of primitive relation
rX(P ).

Proof. Since G(σ) ⊆ P then G(σXP ) ∩G(σ) = ∅ by Proposition 1.3.5. Suppose that

rX(P ) : x1 + · · ·+ xr + xr+1 + · · ·+ xr+s − a1y1 − · · · − atyt = 0,

then 〈y1, . . . , yt〉 ∈ ΣY and

rY (P ′) : x+ xr+1 + · · ·+ xr+s − a1y1 − · · · − atyt = 0

is the primitive relation associated to P ′.
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Lemma 5.1.7. Let P ∈ C be. Then P ∈ PC(Y ) and its primitive relation rY (P ) is equal to rX(P ).

Proof. Since P is of type c) and by Proposition 1.3.5 then G(σ) * G(σP ), so σXP ∈ ΣY . Hence
G(σYP ) = G(σXP ) and rY (P ) = rX(P ).

For primitive collections of type c’) there is no known algorithm to compute rY (P ′) from rX(P ).

5.2 Casagrande’s algorithm

Algorithm 5.2.1. CBlowup[X, cone].

1. The algorithm computes all primitive collections of Y , using Corollary 5.1.4.

2. Then it computes the primitive relations associated to primitive collections of types a), b), c), using
Lemmas 5.1.5, 5.1.6 and 5.1.7.

3. It tries to compute the primitive relations of type c’). (We explain the proceeding of the algorithm
afterward). If the algorithm is not able to compute them it answers UNCOMPLETE.

Let’s analyze the proceeding used to compute the primitive relation of type c’) and see when it fails.

We consider the primitive collection P = {z1, . . . , zk, zk+1, . . . , zt}, where xi = zi, for i = 1, . . . , k
which determines the minimal element P ′ = {zk+1, . . . , zt, x}.

The idea of Casagrande is to obtain the primitive relation of P ′ modifying the primitive relation of
primitive collection P which determines P ′. Suppose that

rX(P ) = rY (P ) : z1 + · · ·+ zt − a1y1 − · · · − asys = 0, (5.1)

then, she modifies this relation a first time considering:

zk+1 + · · ·+ zt + x− a1y1 − · · · − asys − xk+1 − · · · − xr.

Then she sums the coefficients of same generators obtaining:

zk+1 + · · ·+ zt + x− b1y1 − · · · − bpyp.

At this point, she verifies if the generators with negative coefficient span a cone in ΣY : if the set of gen-
erators {y1, . . . , yp} generates a cone in ΣY then she stops the proceeding, otherwise, she determines all
primitive collections (could be more than one) which are contained in the negative part and modifies the
negative part another time. The change consists in summing mrX(Q), where Q is a primitive collection
such that Q ⊂ {y1, . . . , yp} and m = min{bi | yi ∈ Q }. Again, she verifies if the generators with nega-
tive coefficients span a cone in ΣY . If the check has an affirmative answer, then the algorithm collects the
primitive relation, otherwise it writes UNCOMPLETE in the list which represents the variety.
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Remark 5.2.2. The algorithm has been built to iterate the search of primitive collections contained in the
modified negative part almost two times.

The proceeding explained above produces in some cases the right solution but we have two simple
examples where the algorithm cannot compute the negative part of some primitive relations.

Example 5.2.3. Let X be the projective space of dimension 7 and consider the following blow-ups:

X1 = BLV1X

X2 = BLV2X1

X3 = BLV3X2

X4 = BLV4X3

X5 = BLV5X4

X6 = BLV6X5

X7 = BLV7X6

where V1, . . . , V7 are described by the following cones respectively

V1 = V (〈x[1], x[2], x[3], x[4]〉),

V2 = V (〈x[1], x[2], x[5], x[6]〉),

V3 = V (〈x[1], x[2], x[4], x[6], x[7]〉),

V4 = V (〈x[4], x[5], x[7]〉),

V5 = V (〈x[4], x[5], x[8], x[9]〉),

V6 = V (〈x[4], x[9], x[10]〉),

V7 = V (〈x[4], x[9]〉).

Now, consider X7. It is given by these primitive relations (the letter C denotes the contractible primitive
relations of X):
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x[3] + x[11] - x[6] - x[7] - x[9] = 0
x[3] + x[14] - x[5] - x[6] -2 x[9] = 0
x[4] + x[9] - x[15] = 0 C
x[5] + x[11] - x[4] - x[7] - x[10] = 0
x[7] + x[13] - x[8] - x[9] - x[12] = 0 C
x[10] + x[15] - x[14] = 0 C
x[11] + x[12] -2 x[4] -2 x[7] - x[10] = 0 C
x[11] + x[13] - x[1] - x[2] -2 x[4] = 0
x[3] + x[4] + x[10] - x[5] - x[6] - x[9] = 0
x[3] + x[10] + x[12] -2 x[5] - x[6] - x[7] - x[9] = 0 C
x[3] + x[10] + x[13] -2 x[5] - x[6] - x[8] -2 x[9] = 0 C
x[4] + x[5] + x[7] - x[12] = 0
x[5] + x[7] + x[14] - x[9] - x[10] - x[12] = 0 C
x[5] + x[7] + x[15] - x[9] - x[12] = 0
x[5] + x[8] + x[14] - x[10] - x[13] = 0 C
x[5] + x[8] + x[15] - x[13] = 0
x[6] + x[12] + x[13] -2 x[4] - x[5] = 0
x[7] + x[8] + x[14] - x[1] - x[2] - x[4] = 0
x[8] + x[11] + x[14] -2 x[1] -2 x[2] -2 x[4] - x[6] = 0 C
x[8] + x[12] + x[14] - x[1] - x[2] -2 x[4] - x[5] = 0
x[10] + x[12] + x[13] - x[1] - x[2] -2 x[4] -2 x[5] = 0
x[12] + x[13] + x[14] - x[1] - x[2] -2 x[4] -2 x[5] - x[15] = 0 C
x[1] + x[2] + x[3] + x[4] - x[9] = 0
x[1] + x[2] + x[3] + x[12] - x[5] - x[7] - x[9] = 0
x[1] + x[2] + x[3] + x[13] - x[5] - x[8] -2 x[9] = 0
x[1] + x[2] + x[3] + x[15] -2 x[9] = 0
x[1] + x[2] + x[5] + x[6] - x[10] = 0
x[1] + x[2] + x[6] + x[12] - x[4] - x[7] - x[10] = 0
x[1] + x[2] + x[6] + x[13] - x[8] - x[14] = 0 C
x[6] + x[8] + x[9] + x[12] - x[4] = 0
x[6] + x[8] + x[12] + x[15] -2 x[4] = 0
x[7] + x[8] + x[9] + x[10] - x[1] - x[2] = 0
x[8] + x[9] + x[10] + x[11] -2 x[1] -2 x[2]- x[4] - x[6] = 0
x[8] + x[9] + x[10] + x[12] - x[1] - x[2] - x[4] - x[5] = 0
x[1] + x[2] + x[4] + x[6] + x[7] - x[11] = 0
x[1] + x[2] + x[6] + x[7] + x[14] - x[9] - x[10] - x[11] = 0 C
x[1] + x[2] + x[6] + x[7] + x[15] - x[9] - x[11] = 0
x[5] + x[6] + x[7] + x[8] + x[9] = 0

We compute the blow-up ofX7 with respect to the variety V8 determined by the cone 〈 x[5], x[6],
x[7], x[9] 〉. We have that:
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set A P1, P2, P6, P7, P8, P9, P10, P11,
P19, P20, P21, P22, P23, P24, P25, P26

set B P38

P3, P4, P5, P12, P13, P14, P15,
set C P16, P17, P18, P27, P28, P29, P30,

P31, P32, P33, P34, P35, P36, P37

We consider and analyze the set A: the elements in A are primitive collections for X8 and all have the
same primitive relation associated except the primitive collection P10. In fact, σP10 contains the cone
〈x[5], x[6], x[7], x[9]〉. The primitive relation associated to P10 is:

rX8(P10) : x[3] + x[10] + x[12] - x[5] - x[16]=0.

Every primitive collection in C is a primitive collection forX8 and their primitive relation associated does
not change after the blow-up.

We compute the set C ′ of all sets (P \G(σ)) ∪ {x[16]} for P ∈ B ∪C and determine the minimal
elements of C ′:

P ′
3 = {x[4], x[16]},

P ′
4 = {x[11], x[16]},

P ′
5 = {x[13], x[16]},

P ′
12 = {x[4], x[16]},

P ′
13 = {x[14], x[16]},

P ′
14 = {x[15], x[16]},

P ′
15 = {x[8], x[14], x[16]},

P ′
16 = {x[8], x[15], x[16]},

P ′
17 = {x[12], x[13], x[16]},

P ′
18 = {x[8], x[14], x[16]},

P ′
27 = {x[1], x[2], x[16]},

P ′
28 = {x[1], x[2], x[12], x[16]},

P ′
29 = {x[1], x[2], x[13], x[16]},

P ′
30 = {x[8], x[12], x[16]},

P ′
31 = {x[8], x[12], x[15], x[16]},

P ′
32 = {x[8], x[10], x[16]},

P ′
33 = {x[8], x[10], x[11], x[16]},
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P ′
34 = {x[8], x[10], x[12], x[16]},

P ′
35 = {x[1], x[2], x[4], x[16]},

P ′
36 = {x[1], x[2], x[14], x[16]},

P ′
37 = {x[1], x[2], x[14], x[15], x[16]},

P ′
38 = {x[8], x[16]}.

The primitive collection P ′
38 is of type b) and its primitive relation is:

r(P ′
38) : x[8] + x[16]=0.

The minimal ones, which are not in B, are:

coll of type c’) P ′
3, P

′
4, P

′
5, P

′
13

P ′
14, P

′
27

The algorithm CBlowup is not able to compute the two primitive relations associated to the primitive
collections P ′

4 = {x[11],x[16]} and P ′
5 = {x[13],x[16]}. It gives the output UNCOMPLETE.

This happens because the algorithm would have iterated the process to determine the negative part for
three time not only twice.

Now we are going to present another example: in this case, there are two primitive collections whose
primitive relation can not be computed with CBlowup, because the technique used by CBlowup gener-
ates an infinity cycle.

Example 5.2.4. Let T be the Oda 3-fold (see [O2] on page 84). It is described by the following primitive
relations:

x[1] + x[4] - x[7] = 0
x[1] + x[5] - x[2] - x[7] = 0 C
x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C
x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C
x[5] + x[6] + x[7] -2 x[4] = 0 C

Consider the blow-up of T along the subvariety V = V (〈x[2], x[7]〉):
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x[1] + x[4] -x[7] = 0
x[1] + x[5] -x[8] = 0 C
x[2] + x[4] -x[5] = 0
x[2] + x[6] -x[3]-x[5] = 0 C
x[2] + x[7] -x[8] = 0 C
x[3] + x[4] -x[6] = 0
x[3] + x[7] -x[1]-x[6] = 0 C
x[3] + x[8] = 0
x[4] + x[8] -x[5]-x[7] = 0 C
x[6] + x[8] -x[4] = 0
x[5] + x[6] + x[7] -2x[4] = 0 C

In the lists the letter C denotes the contractible primitive relations of the varieties T and W respectively.

We try to compute all primitive relations of W = BlV (T ) working as the algorithm CBlowup.

Divide primitive collections of T in the sets A, B, C:

set A P1, P2, P5

set B /

set C P3, P4, P6, P7

Consider the setA: its elements are primitive collections for the fan ΣW and observe that the primitive
relations associated toP1 andP5 do not change after the blow-up. Instead, the primitive relation associated
to P2 changes because in the negative part we find all generators of the cone of the variety V . Then rY (P2)
is:

rY (P2) : x[1] + x[5] - x[8]=0.

We compute the elements of set C ′:

P ′
3 = {x[4], x[8]},

P ′
4 = {x[6], x[8]},

P ′
6 = {x[3], x[8]},

P ′
7 = {x[5], x[6], x[8]}.

The set P ′
7 is not minimal because it contains P ′

4, so the primitive collections of type c’) are: P ′
3, P

′
4, P

′
6.

Here CBlowup is not able to compute the relations associated to P ′
6 and P ′

4.
Let’s consider P ′

6:
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x[3] + x[8] = x[3] + x[2] + x[7]
= x[1] + x[2]+ x[6]
= x[1] + x[3]+ x[5]
= x[2] + x[3] +x[7]
= . . .

(5.2)

because x[2] + x[7] - x[8] = 0, then in the negative part we find all generators of primitive relation
{x[2], x[6]}, so we can use the primitive relation x[2] + x[6] - x[3] + x[5] = 0. In this way we
obtain a negative part which contains the primitive relation {x[1], x[5]}. Using its primitive relation
we observe that the first row is equal to the last one so we do not continue.

Let’s consider P ′
4:

x[6] + x[8] = x[6] + x[2] + x[7]
= x[3] + x[5] + x[7]
= x[1] + x[5] + x[6]
= x[2] + x[6] + x[7]
= . . .

(5.3)

because x[2] + x[7] - x[8] = 0 and x[2] + x[6] - x[3] - x[5] = 0. The set of generators in
the negative part contains {x[3], x[7]}. Its primitive relation, x[3] + x[7] - x[1] - x[6] = 0,
determines a new negative part. Its set of variables contains the primitive collection {x[1], x[5]}, so
when we sum the associated primitive relation we obtain a situation as in (5.2): again, we find that the
first row is equal to the last so we do not continue.

The cases (5.2) and (5.3) create an infinity cycle in the algorithm CBlowup.

5.3 The new algorithm: Blowup[X, cone]

In this section, we present the algorithm computing the blow-up Y = BlV (X).

Algorithm 5.3.1. Blowup[X, cone].

1. The algorithm tests if X is described by the primitive relations or not.

(a) If X is described by the data of generators and maximal cones then the algorithm uses Defi-
nition 5.1.1 to computes the list describing Y . Its answer is the list

{n, t+ 1,Null,GY ,MCY }.

(b) If X is described by primitive relations then the algorithm proceeds in the following way:

i. it computes all primitive collections of Y using Corollary 5.1.4;
ii. then it computes the primitive relations associated to primitive collections of types a), b),

c), using Lemmas 5.1.5, 5.1.6 and 5.1.7;
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iii. it computes the primitive relations of type c’) solving system of linear Diophantine equa-
tions;

iv. it gives the list which describes Y . The list has one among the following forms:

{n, t+ 1,PRY ,Null,Null};
{n, t+ 1,PRY ,GY ,Null};
{n, t+ 1,PRY ,GY ,MCY }.

If X is given by its fan ΣX we use Definition 5.1.1 and describe Y with ΣY .
If X is given by its primitive relations, we proceed as in CBlowup to compute PC(Y ) and all

primitive relations except those of type c’). In order to compute primitive relation of type c’), we use the
algorithm PrimRel (see Chapter 2 and Section A.13.3).

This algorithm is not very fast, because it requires of solving a linear system for every primitive
relation of type c’).
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Chapter 6

Toric blow-downs

In this chapter we will present the algorithm to compute the blow-down of a smooth complete toric variety
Y with respect to a contractible primitive relation of form x1 + · · ·+xr−x = 0. The new variety is again
a smooth, complete, toric variety.

Corollary 4.9 in [Sa] is a complete reference to enumerate all primitive collections of Y . Using
the properties of a primitive collection we have written an algorithm which says how primitive relations
change after a blow-down.

This chapter is divided in following sections: in Section 6.1 we expose the construction of a blow-
down analyzing the fans of varieties (see [E2]), then we explain the known results and the theory to write
our algorithm. In Section 6.2 we describe the algorithm.

6.1 The blow-down of toric variety from the point of view of fans and
primitive relations

Let Y be a smooth and complete toric variety of dimension n. Suppose that its fan ΣY has a contractible
primitive relation of type x1 + · · ·+ xr − x = 0.

Let ψ : Y → X be the contraction of this class. Then X is smooth and ψ is the blow-up of X along
an invariant subvariety V = V (σ), with σ = 〈x1, . . . , xr〉, namely Y = BlVX .

Here we are in the same situation of the previous chapter, but the point of view is different: given Y ,
we want an algorithm to describe X .

Definition 5.1.1 describes the relation among ΣX and ΣY .
For what concerns primitive collections, we have the following:

Theorem 6.1.1 ([Sa], Corollary 4.9). The primitive collections of X are given by:

1. P ∈ PC(Y ) such that P 6= {x1, . . . , xr} and x /∈ P ;

2. (P \ {x}) ∪ {x1, . . . , xr}, where P ∈ PC(Y ) verifies that x ∈ P and (P \ {x}) ∪ S /∈ PC(Y )
for any subset S ⊆ {x1, . . . , xr}.
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To find all primitive collections of X we can proceed in the following way. We define the following
sets:

A1 = {P ∈ PC(Y ) | x ∈ P },
A2 = {P ∈ PC(Y ) | x /∈ P and P 6= {x1, . . . , xr}},
A3 = {(P \ {x}) ∪ {x1, . . . , xr} | ∀P ∈ A1 },
A4 = {P ∈ A2| P ∩ {x1, . . . , xr} 6= ∅ } = {R1, . . . , Rm},

and the set

A5 = {Q ∈ A3| Rk * Q ∀ k = 1, . . . ,m }.

We can prove the following:

Proposition 6.1.2. The set of all primitive collections of X is equal to the union of the sets A2 and A5.

Proof. We have to prove that PC(X) = A2 ∪ A5. First we prove that A2 ∪ A5 ⊆ PC(X) and then the
other inclusion.

We prove that every element in A2 ∪A5 verifies one of the two conditions of Corollary 6.1.1.
Let P ∈ A2, then P 6= {x1, . . . , xr} and x /∈ P , so P satisfies the first condition of Corollary 6.1.1.

Let Q ∈ A5. In particular, Q ∈ A3, so Q = (P \ {x}) ∪ {x1, . . . , xr} for some P ∈ PC(Y ) such that
x ∈ P . Suppose by contradiction that P̃ = (P \ {x}) ∪ S ∈ PC(Y ) for some S ⊆ {x1, . . . , xr}. Since
P \{x} 6= ∅ we have P̃ 6= S, hence P̃ ∈ A2. Moreover by definition of primitive collection, P \{x} gen-
erates a cone in ΣY , hence S 6= ∅. This implies that P̃ ∩ {x1, . . . , xr} 6= ∅, namely P̃ ∈ A4. But P̃ ⊆ Q
and this contradicts the assumption Q ∈ A5. So Q satisfies the second condition of Corollary 6.1.1.

Viceversa we consider P ∈ PC(X). It satisfies either the first or the second condition of Corol-
lary 6.1.1.

Let’s suppose that it verifies the first one: then P ∈ A2.
Let Q ∈ PC(X) be such that Q = (P \ {x}) ∪ {x1, . . . , xr} for some P ∈ A1. Then Q ∈ A3 and

Q strictly contains {x1, . . . , xr} ∈ PC(Y ), hence Q /∈ PC(Y ). By what we proved above, we have that
A4 ⊆ A2 ⊆ PC(X). This implies that Q can not contain any element of A4, so Q ∈ A5.

To describe how primitive relation changes we denote by σXP , σYP the cone associated to the primitive
collection when P is a primitive collection for X and Y respectively. We use the same notation for prim-
itive relations: rX(P ) and rY (P ) is primitive relation associated to P when P is a primitive collection
for X and Y respectively.

Lemma 6.1.3. Let P ∈ A2 be. Then P is a primitive collection for X .

If x /∈ σYP then rX(P ) = rY (P ).
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If x ∈ σYP , let rY (P ) be:

z1 + · · ·+ zh − (ax+ b1y1 + · · ·+ bsys) = 0

with t, a, bi ∈ Z>0 and s ∈ Z≥0. Then P ∩ {x1, . . . , xr} = ∅ and

z1 + · · ·+ zh − (ax1 + · · ·+ axr + b1y1 + · · ·+ bsys) = 0

is rX(P ).

Proof. If x /∈ σYP then σYP is a cone in ΣX then σXP = σYP and r(P )X = r(P )Y .
Suppose that x ∈ σYP then P ∩ {x1, . . . , xr} = ∅. In fact, by contradiction, if P ∩ {x1, . . . , xr} 6= ∅

then P is a primitive collection of type c) for Y and σXP = σYP . It is impossible, hence the intersection
P ∩ {x1, . . . , xr} is empty and σXP 6= σYP . If rY (P ) is:

z1 + · · ·+ zh − (ax+ b1y1 + · · ·+ bsys) = 0

then rX(P ) is obtained replacing x with the sum x1 + · · ·+ xr in the negative part of rY (P ):

z1 + · · ·+ zh − (ax1 + · · ·+ axr + b1y1 + · · ·+ bsys) = 0.

Lemma 6.1.4. Let P ∈ A5, P = (Q \ {x}) ∪ {x1, . . . , xr} with Q ∈ A1.
Then σXP = σYQ , G(σXP ) ∩ {x1, . . . , xr} = ∅ and rX(P ) is obtained by replacing x with the sum

x1 + · · ·+ xr in the positive part of rY (Q).

Proof. Since P strictly contains {x1, . . . , xr} and by Proposition 1.3.5 then G(σXP ) ∩ {x1, . . . , xr} = ∅.
By definition, Q is a primitive collection of type b) then σXP = σYQ . Moreover rX(P ) is obtained by
replacing x with the sum x1 + · · ·+ xr in the positive part of rY (Q), by Lemma 5.1.6.

6.2 Algorithm constructing blow-down

In this section we present the algorithm to compute the blow-down. It works with both representations of
variety Y but it can verify that x1 + · · · + xk − x = 0 is contractible only if the variety is described by
the list of primitive relations.

Algorithm 6.2.1. Blowdown[Y, x].

1. The algorithm tests if Y is described by maximal cones or not.

(a) If Y is described by the data of generators and maximal cones then the algorithm uses Defini-
tion 5.1.1 to compute the list describing X . Its answer is the list

{n, t− 1,Null,GX ,MCX}.
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(b) If Y is described by primitive relations then the algorithm proceeds in the following way:

i. it computes the sets A1, . . . , A5 and, then, PC(X) using Proposition 6.1.2;
ii. it computes all primitive relations using Lemmas 6.1.3 and 6.1.4;

iii. the output of the algorithm is one of the following lists:

{n, t− 1,PRX ,Null,Null};
{n, t− 1,PRX ,GX ,Null};
{n, t− 1,PRX ,GX ,MCX}.

Notice that in this case we does not need to use the algorithm PrimRel to compute the primitive
relations.

See Section A.7 and next chapter for examples.
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Chapter 7

Examples and applications

In this section we present five interesting examples. We describe them using the algorithms of the package
Toric Varieties. Moreover we analyze the information which we obtain from the answers of the algorithms.

7.1 The Oda Threefold

The Oda threefold is a complete, non projective toric threefold with Picard number ρ = 4 described on
page 84 in [O2]. Since all complete toric manifolds with ρ ≤ 3 are projective (see [KlSt]), the Oda
threefold is one of the first examples of non-projective toric manifolds.

The Oda threefold is obtained from P3 by four blow-ups and one blow-down. Let’s construct it using
the programs of the package.

Let Z be the projective space of dimension 3 and consider the following blow-ups:

In[1]:= Z = ProjSpace[3]

In[2]:= Z1 = Blowup[Z, {x[2], x[4]}];

In[3]:= Z2 = Blowup[Z1, {x[3], x[4]}];

In[4]:= Z3 = Blowup[Z2, {x[1], x[4]}];

In[5]:= W = Blowup[Z3, {x[1], x[5]}];

W is a projective threefold with ρW = 5. Let’s see its primitive relations:

In[6]:= TabVar[W]
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x[1] + x[4] - x[7] = 0
x[1] + x[5] - x[8] = 0 C γ1

x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C γ2

x[2] + x[7] - x[8] = 0 C γ3

x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C γ4

x[3] + x[8] = 0
x[4] + x[8] - x[5] - x[7] = 0 C γ5

x[6] + x[8] - x[4] = 0
x[5] + x[6] + x[7] - 2x[4] = 0 C γ6

W has six contractible primitive relations: γ1, . . . , γ6.The associated contractions are all birational:
ϕγ1 and ϕγ3 are smooth blow-ups with the same exceptional divisor V (x8); ϕγ6 contracts a divisor to a
singular point, ϕγ2 , ϕγ4 and ϕγ5 are small contractions.

Let’s check which contractible classes are extremal:

In[7]:= TabExtremalCurves[W]

Out[7]:=

x[2] - x[3] - x[5] + x[6] − > -1 1 -1 0 0 E γ2

x[1] + x[5] - x[8] − > 1 0 0 0 0 E γ1

-x[1] + x[3] - x[6] + x[7] − > 0 0 1 0 0 E γ4

x[4] - x[5] - x[7] + x[8] − > 0 0 0 1 0 E γ5

-2 x[4] + x[5] + x[6] + x[7] − > 0 0 0 0 1 E γ6

x[2] + x[7] - x[8] − > 0 1 0 0 0 γ3

We see that γ3 is non-extremal: hence NE(W ) is a five dimensional simplicial cone generated by γ1, γ2,
γ4, γ5, γ6. We also see that γ3 = γ1 + γ2 + γ4. The equivariant morphism ϕγ3 : W → T is a smooth
blow-down. T is a smooth, complete toric variety, but by Proposition 1.5.2, not projective. This is the
Oda threefold:

In[8]:= T = Blowdown[W, x[8]];

The primitive relations of T are:

In[9]:= TabVar[T]

Out[9]:=

x[1] + x[4] - x[7] = 0
x[1] + x[5] - x[2] - x[7] = 0 C η1

x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C η2

x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C η4

x[5] + x[6] + x[7] -2 x[4] = 0 C η6
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We can see at once that T is not projective because there is no primitive relation with zero negative
part (see Proposition 4.3.4). In fact:

In[10]:= ProjQ[T]

Out[10]:= False

T has four contractible classes η1, η2, η4 and η6 which are images of the corresponding γj under the
push-forward ϕ∗ : N1(W ) → N1(T ). The morphism associated to η6 is a birational contraction sending
a divisor to a singular point. For i = 1, 2, 4, ηi is the numerical class of an invariant curve Ci ∼= P1 with
normal bundleNCi/T = OP1(−1)⊕2. Observe that C1 is the center of the blow-upW → T . We have that
η1 + η2 + η4 = 0, namely C1 + C2 + C4 is numerically equivalent to zero in T . The Mori cone NE(T )
has dimension 4 and contains the plane spanned by η1, η2. Notice that in this case, contractible classes do
not generate all N1(T ).

7.2 Threefolds with no non-trivial nef line bundles

In [FP], Fujino and Payne analyze some examples of smooth, complete toric threefolds with no non-trivial
nef line bundles. If X is such a threefold, we have Nef(X) = {0} and NE(X) = N1(X)Q, namely every
1-cycle in X is numerically equivalent to an effective curve. Such X is not projective, and it admits
no non-constant morphisms to projective varieties. In [FP], it is shown that ρX ≥ 5 and all cases with
ρX = 5 are described. They consist of two infinite families plus one exceptional example: X1.

We are going to describe X1 and the two families.
Since X1 is obtained by desingularization of a singular variety Y we begin to describe the fan of

variety Y and then its desingularization.
Let Σ be the fan in Q3 whose rays are generated by

x[1] = (1,0,0), x[2] = (0,1,0), x[3] = (0,0,1),
x[4] = (0,-1,-1), x[5] = (-1,0,-1), x[6] = (-2,-1,0),

and whose maximal cones are:

〈x[1], x[2], x[3]〉, 〈x[1], x[2], x[4]〉, 〈x[2], x[4], x[5]〉,
〈x[2], x[3], x[5]〉, 〈x[3], x[5], x[6]〉, 〈x[1], x[3], x[6]〉,
〈x[1], x[4], x[6]〉, 〈x[4], x[5], x[6]〉.

The fan Σ is not regular, in fact the last cone 〈x[4], x[5], x[6]〉 is not generated by a part of a
basis of the lattice N = Z3. The invariant point P corresponding to the cone 〈x[4], x[5], x[6]〉
is the unique singular point of Y , the variety associated to Σ. We replace it by the following three cones:

〈x[4], x[5], x[7]〉, 〈x[4], x[6], x[7]〉, 〈x[5], x[6], x[7]〉,

where x[7] = 2/3 x[4] + 1/3 x[5] + 1/3 x[6].
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We obtain a new fan Σ1 which is not yet regular, because the cone 〈x[5], x[6], x[7]〉 is not
generated by a basis of N . Let Y1 the variety associated to Σ1. Again, we define a new generator
x[8] = 1/2 (x[5] + x[6] + x[7]) and replace the cone 〈x[5], x[6], x[7]〉 with the
cones:

〈x[5], x[6], x[8]〉, 〈x[6], x[7], x[8]〉, 〈x[5], x[7], x[8]〉.

Then we obtain a new variety whose fan, denoted by ∆, is generated by

x[1] = (1,0,0), x[2] = (0,1,0), x[3] = (0,0,1),
x[4] = (0,-1,-1), x[5] = (-1,0,-1), x[6] = (-2,-1,0),
x[7] = (-1,-1,-1), x[8] = (-2,-1,-1).

Its maximal cones are:

〈x[1], x[2], x[3]〉, 〈x[1], x[2], x[4]〉, 〈x[2], x[4], x[5]〉,
〈x[2], x[3], x[5]〉, 〈x[3], x[5], x[6]〉, 〈x[1], x[3], x[6]〉,
〈x[1], x[4], x[6]〉, 〈x[4], x[5], x[7]〉, 〈x[4], x[6], x[7]〉,
〈x[5], x[6], x[8]〉, 〈x[5], x[7], x[8]〉, 〈x[6], x[7], x[8]〉.

We call X1 the variety associated to the fan ∆. It is a smooth, complete, toric variety, hence it is a
resolution of Y :

X1 −→ Y1 −→ Y.

If we compute the primitive relations ofX1, then we can verify thatX1 is not projective because there
is no primitive relation with zero negative part:

In[1]:= TabVar[X1]

Out[1]:=

x[1] + x[5] - x[2] - x[4] = 0 C γ1

x[1] + x[7] - x[4] = 0
x[1] + x[8] - x[7] = 0
x[2] + x[6] -2 x[3] -2 x[5] = 0 C γ2

x[2] + x[7] - x[5] = 0
x[2] + x[8] - x[3] -2 x[5] = 0
x[3] + x[4] -2 x[1] - x[6] = 0 C γ3

x[3] + x[7] - x[1] - x[6] = 0
x[3] + x[8] - x[6] = 0
x[4] + x[8] -2 x[7] = 0 C γ4

x[4] + x[5] + x[6] - x[7] - x[8] = 0
x[5] + x[6] + x[7] -2 x[8] = 0 C γ5

Let’s consider the set of all numerical classes of invariant curves in X1 and compute their coordinates
with respect to a basis B of N1(X) contained in I:
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In[2]:= CoordCurveClasses[X1]

Out[2]:=

x[2] + x[3] + x[4] → 1 0 1 1 1
2x[1] + x[2] + x[6] → 1 2 0 2 1
-2x[1] + x[3] + x[4] - x[6] → 0 -2 1 -1 0 γ3

x[1] + x[3] + x[5] → 0 1 1 1 1
x[1] - x[2] - x[4] + x[5] → -1 1 0 0 0 γ1

x[2] - 2x[3] - 2x[5] + x[6] → 1 0 -2 0 -1 γ2

x[2] - x[5] + x[7] → 1 0 0 0 0
x[1] - x[4] + x[7] → 0 1 0 0 0
2x[4] + x[5] + x[6] - 3x[7] → 0 0 0 2 1
x[3] - x[6] + x[8] → 0 0 1 0 0
x[4] - 2x[7] + x[8] → 0 0 0 1 0 γ4

x[5] + x[6] + x[7] - 2x[8] → 0 0 0 0 1 γ5

We can observe that in the basis above 3γ1 + 2γ2 + 2γ3 has coordinates (−1,−1,−2,−2,−2). The only
convex cone in Q5 containing the canonical basis and the point (−1,−1,−2,−2,−2) is the whole Q5,
so we see that Nef (X1) = {0} and NE(X1) = N (X1)Q.

Notice that X1 has five contractible classes: γ1, . . . , γ5. The morphism associated to γ5 is a birational
contraction sending a divisor to a singular point, instead one associated to γ4 is a birational contraction
sending a divisor to a singular curve. The other are small contractions. For every i = 1, . . . , 5, let Ci be
an invariant curve with numerical class γi. We can compute their normal bundle. We have that:

NC1/X1
= OP1(−1)⊕2,

NC2/X1
= OP1(−2)⊕2,

NC3/X1
= OP1(−2)⊕OP1(−1),

NC4/X1
= OP1(−2)⊕OP1 ,

NC5/X1
= OP1(−2)⊕OP1(1).

The variety X1 is labelled as [8-12] in [O1] on page 79, where the authors fix as basis of the lattice
the vectors n = (−1,−1,−1), n′ = (1, 0, 0), n′′ = (0, 0, 1).

Let’s consider now the two families constructed in [FP] Example 2 and Example 3. The first family
has the following generators:

x[1] = (1,0,0), x[2] = (0,1,0), x[3] = (0,0,1), x[4] = (0,-1,-a),
x[5] = (0,0,-1), x[6] = (-1,1,-1), x[7] = (-1,0,-1), x[8] = (-1,-1,0),

with a 6= 0,−1; and the maximal cones are:

〈x[1], x[2], x[3]〉, 〈x[1], x[3], x[4]〉, 〈x[1], x[4], x[5]〉,
〈x[1], x[5], x[6]〉, 〈x[1], x[2], x[6]〉, 〈x[2], x[3], x[8]〉
〈x[3], x[4], x[8]〉, 〈x[4], x[5], x[8]〉, 〈x[5], x[6], x[7]〉,
〈x[5], x[7], x[8]〉, 〈x[6], x[7], x[8]〉, 〈x[2], x[6], x[8]〉.
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This family is labelled [8-5′] in [O1] on page 78, we can prove it choosing n = (1, 0, 0), n′ = (0, 1, 0)
and n′′ = (0, 0, 1) as basis of the lattice.

Fix a = 1, then we obtain a smooth complete toric variety, calledX2. X2 is described by the following
primitive relations:

In[3]:= TabVar[X2]

Out[3]:=

x[1] + x[7] - x[7] = 0
x[1] + x[8] - x[3] - x[4] = 0 C
x[2] + x[4] - x[5] = 0
x[2] + x[5] - x[1] - x[6] = 0 C
x[2] + x[7] - x[6] = 0
x[3] + x[5] = 0
x[3] + x[6] -2 x[2] - x[8] = 0 C
x[3] + x[7] - x[2] - x[8] = 0
x[4] + x[6] - x[5] - x[7] = 0
x[4] + x[7] -2 x[5] - x[8] = 0 C
x[5] + x[6] + x[8] -2 x[7] = 0 C

In this case, we can observe that there is a primitive relation with negative part equal to zero, so we
can not conclude at once that X2 is not projective.

Let’s consider the set I of all numerical classes of invariant curves in X2, and compute their coordi-
nates with respect to a basis B contained in I:

In[4]:= CoordCurvesClasses[X2]

Out[4]:=

x[1] + x[3] + x[6] - x[2] → 1 0 0 0 0
x[2] + x[4] + x[3] → 1 -1 1 0 2
x[3] + x[5] → 1 -1 0 -1 1
x[1] + x[4] + x[6] - 2x[5] → 0 1 1 2 0
x[2] + x[5] - x[1] - x[6] → 0 -1 0 -1 1
x[1] + x[2] + x[8] → 0 1 1 1 1
x[3] + x[6] - 2x[2] - x[8] → 1 -1 -1 -1 -1
x[1] + x[8] - x[3] - x[4] → -1 2 0 1 -1
x[1] + x[5] + x[8] - x[4] → 0 1 0 0 0
x[1] + x[7] - x[5] → 0 1 0 1 0
x[5] + x[6] + x[8] - 2x[7] → 0 0 1 0 0
x[4] + x[7] - 2x[5] - x[8] → 0 0 0 1 0
x[2] + x[7] - x[6] → 0 0 0 0 1
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Analyzing the coordinates we can see that:

w5 + w7 + w8 + w11 + w12 + w13 = 0

where wi denotes the i-th vector in the list above. Moreover, any five of the six vectors above are linearly
independent, hence NE(X2) = N1(X2)Q. The algorithm ProjQ confirms that X2 is not projective:

In[5]:= ProjQ[X2]

Out[5]:= False

The second family constructed in [FP] has the following generators:

x[1] = (-1,b,0), x[2] = (0,-1,0), x[3] = (1,-1,0), x[4] = (-1,0,-1),
x[5] = (0,0,-1), x[6] = (0,1,0), x[7] = (0,0,1), x[8] = (1,0,a),

with a, b 6= 0 and (a, b) 6= (±1,±1). The maximal cones of the fan are:

〈x[1], x[2], x[3]〉, 〈x[1], x[3], x[4]〉, 〈x[1], x[4], x[5]〉,
〈x[1], x[5], x[6]〉, 〈x[1], x[2], x[6]〉, 〈x[2], x[3], x[8]〉,
〈x[3], x[4], x[8]〉, 〈x[4], x[5], x[8]〉, 〈x[5], x[6], x[7]〉,
〈x[5], x[7], x[8]〉, 〈x[6], x[7], x[8]〉, 〈x[2], x[6], x[8]〉.

The varieties of this family are labelled [8-13′] in [O1] on page 79, it is enough to chose n =
(1,−1, 0), n′ = (0, 1, 0), n′′ = (0, 0, 1) as basis of N .

7.3 Non projective threefolds that become projective after a blow-up

In this section we consider the last family of previous section because it is one of the simplest examples
of families of smooth, complete, toric varieties with ρ = 5 which becomes projective after a blow-up.
There is a detailed description of X in [O1] and in [Bo]. In [Bo], Bonavero studied the projectivity of this
family introducing it in a different way with respect to what Fujino and Payne do in [FP].

Let Σ be the fan in Q3 generated by:

x[1] = (-1,d,0), x[2] = (0,-1,0), x[3] = (1,0,0), x[4] = (-1,-1,-1),
x[5] = (0,0,-1), x[6] = (0,1,0), x[7]= (0,0,1), x[8] = (1,1,c),

where c and d are two integer parameters. Its maximal cones are:

〈x[1], x[2], x[3]〉, 〈x[1], x[3], x[4]〉, 〈x[1], x[4], x[5]〉,
〈x[1], x[5], x[6]〉, 〈x[1], x[2], x[6]〉, 〈x[2], x[3], x[8]〉,
〈x[3], x[4], x[8]〉, 〈x[4], x[5], x[8]〉, 〈x[5], x[6], x[7]〉,
〈x[5], x[7], x[8]〉, 〈x[6], x[7], x[8]〉, 〈x[2], x[6], x[8]〉.

Let Xc,d be the variety described by Σ.

65



Observe that we changed the names of two parameters because in this case we use Bonavero’s nota-
tion: he sets n = (1, 0, 0), instead of n = (1,−1, 0) when he fixes the basis of N . From this choice it
follows that the parameter b considered by Fujino and Payne in [FP] is equal to d + 1, while the other
parameter, c, coincides with a.

Bonavero proves that X is non-projective if and only if c 6= 0 and d 6= −1 (see [Bo], Proposition 3).
Let’s consider the variety X obtained for c = 1 and d = 0 (respectively a = 1 and b = 1). The fan of

X is generated by:

x[1] = (-1,0,0), x[2] = (0,-1,0), x[3] = (1,0,0), x[4] = (-1,-1,-1),
x[5] = (0,0,-1), x[6] = (0,1,0), x[7] = (0,0,1), x[8] = (1,1,1).

Let’s compute its primitive relations, hence X is described by:

In[1]:= TabVar[X]

Out[1]:=

x[1] + x[3] = 0
x[1] + x[5] - x[4] - x[6] = 0 C γ1

x[1] + x[8] - x[6] - x[7] = 0 C γ2

x[2] + x[5] - x[3] - x[4] = 0 C γ3

x[2] + x[6] = 0
x[2] + x[8] - x[3] - x[7] = 0 C γ4

x[3] + x[6] - x[5] - x[8] = 0 C γ5

x[4] + x[7] - x[1] - x[2] = 0 C γ6

x[4] + x[8] = 0
x[5] + x[7] = 0

In this case there are six contractible classes: γ1, . . . , γ6 and their associated morphisms ϕγi are all
small contractions.

Let’s consider the set I of all numerical classes of invariant curves inX , and compute their coordinates
with respect to a basis B contained in I:

In[2]:= CoordCurvesClasses[X]

Out[2]:=
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x[1] + x[3] − > -1 1 0 0 0
x[2] - x[3] - x[4] + x[5] − > -1 0 -1 0 -1
x[1] - x[4] + x[5] - x[6] − > -1 0 -1 -1 0
x[2] + x[6] − > -1 1 0 1 -1
x[3] + x[4] - x[5] + x[6] − > 0 1 1 1 0
x[1] + x[2] + x[3] - x[7] − > 1 0 0 0 0
- x[2] + x[3] + x[4] - x[7] − > 0 1 0 0 0
x[5] + x[7] − > -1 1 -1 0 -1
- x[1] + x[4] + x[6] + x[7] − > 0 1 0 1 -1
x[3] - x[5] + x[6] - x[8] − > 0 0 1 0 0
x[3] + x[6] + x[7] - x[8] − > -1 1 0 0 -1
x[4] + x[8] − > 0 1 0 1 0
x[2] - x[3] - x[7] + x[8] − > 0 0 0 1 0
x[1] - x[6] - x[7] + x[8] − > 0 0 0 0 1

Observe that there are two classes of curves such that their coordinates are all non positive with respect
to the fixed basis in N1(X)Q ∼= Q5. This allows us to conclude that the variety is not projective. Also the
command ProjQ confirms that fact:

In[3]:= ProjQ[X]

Out[3]:= False

In this case, the Mori cone of X does not coincide with the whole space N1(X)Q, but it contains a
linear subspace of N1(X)Q of dimension 4.

There are other three varieties in the familyXc,d with the same property, that is they are non projective
varieties but their Mori cone does not coincide with Q5. They are obtained for the following value of
parameters: (c, d) = (1,−2), (−1, 0), (−1,−2).

Notice that Fujino and Payne exclude these four cases choosing (a, b) 6= (±1,±1).

7.4 A 6-dimensional example

In this example, we present a smooth, complete, toric variety obtained considering some blow-ups of the
projective space of dimension 6 along three invariant subvarieties.

Let S be the projective space of dimension 6. We consider the following blow-ups:

S1 = BlC1S
S2 = BlC2S1

S3 = BlC3S2

where C1, C2, C3 are three curves in the varieties S, S1, S2 respectively. C1, C2, C3 respectively cor-
respond to the cones 〈x[1],x[2],x[3],x[4],x[5]〉, 〈x[1],x[2],x[3],x[4],x[6]〉 and
〈x[1],x[2],x[3],x[4],x[7]〉.
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In[1]:= S = ProjSpace[6];

In[2]:= S1 = Blowup[S, {x[1], x[2], x[3], x[4], x[5]}];

In[3]:= S2 = Blowup[S1, {x[1], x[2], x[3], x[4], x[6]}];

In[4]:= S3 = Blowup[S2, {x[1], x[2], x[3], x[4], x[7]}];

S3 is a variety of dimension 6 and ρ = 4. It is described by the following primitive relations:

In[5]:= TabVar[S3]

Out[5]:=

x[5] + x[9] - x[6] - x[8] = 0 C
x[5] + x[10] - x[7] - x[8] = 0 C
x[6] + x[10] - x[7] - x[9] = 0 C
x[6] + x[7] + x[8] = 0
x[7] + x[8] + x[9] - x[1] - x[2] - x[3] - x[4] = 0
x[8] + x[9] + x[10] -2 x[1] -2 x[2] -2 x[3] -2 x[4] = 0 C
x[1] + x[2] + x[3] + x[4] + x[5] - x[8] = 0
x[1] + x[2] + x[3] + x[4] + x[6] - x[9] = 0
x[1] + x[2] + x[3] + x[4] + x[7] - x[10] = 0 C

There are five contractible primitive relations, they are denoted by the letter C in the previous table.
The associated morphisms are all birational: the morphisms associated to the first three classes have an ex-
ceptional locus of dimension 4 and when they are restricted to the exceptional locus, they are P1-bundles.
The morphism associated to the fourth class contracts the surface V (〈x[1], x[2], x[3], x[4]〉)
to a singular point. The last one is a smooth blow-up with exceptional divisor V (x[10]).

Since S3 is obtained by a blowup of P6 then it is projective and we can compute which contractible
classes are extremals:

In[6]:= TabExtremalClasses[S3]

Out[6]:=

x[5] - x[6] - x[8] + x[9] − > 1 -1 0 0 E
x[6] - x[7] - x[9] + x[10] − > 0 1 0 0 E
-2 x[1] -2 x[2] -2 x[3] -2 x[4] + x[8] + x[9] + x[10] − > 0 0 1 0 E
x[1] + x[2] + x[3] + x[4] + x[7] - x[10] − > 0 0 0 1 E
x[5] - x[7] - x[8] + x[10] − > 1 0 0 0

There are four extremal classes and only one non-extremal.
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7.5 An almost Fano threefold with ρ = 35

In this section we present a smooth, projective and almost Fano toric varietyX of dimension 3 and ρ = 35.
A smooth, projective variety X is almost Fano if its anticanonical bundle −KX is nef and big. In

the toric case, we know that for every dimension n, toric almost Fano varieties are in finite number (see
[Ba3]).

In this case it is convenient to use the concept of polytope to introduce the variety. A polytope is the
convex hull of finitely many points.

When we consider Gorestein toric Fano varieties of dimension n, we see that they correspond bijec-
tively to some special polytopes: reflexive polytopes (the definition was introduced by Batyrev in [Ba3]).
Reflexive polytopes have the property that their vertices are integral (i. e. in Zn), and the origin is their
unique interior integral point. An almost Fano variety of dimension n is obtained by a crepant refinement
of a reflexive polytope (see [Ba3], [N]).

In dimension 3, Kreuzer and Skarke give a complete classification of all reflexive polytopes (see
[KrSk], [list]). They are 4319. After this classification, we know that any almost Fano threefold X has
ρX ≤ 35. We are now going to describe explicitly such X with maximal Picard number ρX = 35. In
[list], we see that there are only two 3-dimensional reflexive polytopes containing 39 integral points; both
are simplices. We consider one of them: the simplex P ⊂ Z3 with vertices:

v1 = (1, 0, 0), v2 = (1, 2, 0), v3 = (1, 2, 6), v4 = (−5,−4,−6).

In order to obtain our example, X we have to triangulate each facet of P . The vertices of each triangle
must be a basis of Z3. The fan of X will be given by the cones over all these triangles. We describe all 38
integral points on the facets of P and the triangulations that we have chosen.

On F1, the facet of vertices v1, v2, v3, we have the following integral points:

x[27] = (1,0,0), x[28] = (1,1,0), x[29] = (1,1,1),
x[30] = (1,1,2), x[31] = (1,1,3), x[32] = (1,2,0),
x[33] = (1,2,1), x[34] = (1,2,2), x[35] = (1,2,3),
x[36] = (1,2,4), x[37] = (1,2,5), x[38] = (1,2,6).

On F2, the facet of vertices v1, v2, v4 there are the following integral points:

x[1] = (-5,-4,-6), x[2] = (-4,-3,-5), x[4] = (-3,-2,-4),
x[7] = (-2,-2,-3), x[8] = (-2,-1,-3), x[12] = (-1,-1,-2),
x[14] = (-1,0,-2), x[19] = (0,0,-1), x[21] = (0,1,-1),
x[27] = (1,0,0), x[28] = (1,1,0), x[32] = (1,2,0).

On F3, the facet of vertices v1, v3, v4, we have these integral points:

x[1] = (-5,-4,-6), x[3] = (-4,-3,-4), x[6] = (-3,-2,-2),
x[7] = (-2,-2,-3), x[11] = (-2,-1,0), x[13] = (-1,-1,-1),
x[18] = (-1,0,2), x[20] = (0,0,1), x[26] = (0,1,4),
x[27] = (1,0,0), x[31] = (1,1,3), x[38] = (1,2,6).
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Figure 7.1: Triangulation of F1 (on the left) and of F2 (on the right).

On F4, the facet of vertices v2, v3, v4 we find the following integral points:

x[1] = (-5,-4,-6), x[2] = (-4,-3,-5), x[3] = (-4,-3,-4),
x[4] = (-3,-2,-4), x[5] = (-3,-2,-3), x[6] = (-3,-2, 2),
x[8] = (-2,-1,-3), x[9] = (-2,-1,-2), x[10] = (-2,-1,-1),
x[11] = (-2,-1,0), x[14] = (-1,0,-2), x[15] = (-1,0,-1),
x[16] = (-1,0,0), x[17] = (-1,0,1), x[18] = (-1,0,2),
x[21] = (0,1,-1), x[22] = (0,1,0), x[23] = (0,1,1),
x[24] = (0,1,2), x[25] = (0,1,3), x[26] = (0,1,4),
x[31] = (1,1,3), x[32] = (1,2,0), x[33] = (1,2,1),
x[34] = (1,2,2), x[35] = (1,2,3), x[36] = (1,2,4),
x[37] = (1,2,5), x[38] = (1,2,6).

The triangulations described in Figures 7.1 and 7.2, define the fan of X . Observe that ΣX has 38
generators, hence ρX = 35. Moreover −KX is nef and big.

Defined the fan, we have computed its primitive collections. They are 596 all of cardinality 2, except
one of cardinality 3. Since the set of the generators is too large, our program PrimRel is not able to
compute the associated primitive relations. In fact for every primitive collection the command has to solve
a linear system with 36 (or 35 ) unknowns. Given a primitive collection Q, we have solved the problem
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Figure 7.2: Triangulation of F3 (on the left) and of F4 (on the right).

considering for every maximal cone T ∈ ΣX(3) the following linear system:∑
x∈Q

x =
∑

yi∈G(T )

aiyi

where yi are the generators of T and ai are the unknowns of the system.
We consider a maximal cone such that the linear system above has a solution in Z3

≥0. In this way we
obtain the coefficients of the negative part of r(Q).

Using the algorithm ProjQ, we can verify that X is projective:

In[1]:= ProjQ[X]

Out[1]:= True

Using the command TabContrRel we found all contractible classes of X . Since they are 56, we
do not give the list, but we describe their properties. There are 51 classes of type:

x[i] + x[j] - x[h] - x[k] = 0

where i, j, k, h ∈ {1, . . . , 38}. The morphism associated to these classes are small contractions with
exceptional locus a curve C ∼= P1 with normal bundle NC/X = OP1(−1)⊕2.
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Then there are the following contractible classes:

γ1 : x[2] + x[8] -2 x[4] = 0

γ2 : x[20] + x[37] - x[38] = 0

γ3 : x[22] + x[28] - x[32] = 0

γ4 : x[36] + x[38] -2 x[37] = 0

The morphisms associated to the classes γ1 and γ4 are birational and send a divisor to a singular curve,
while the morphisms associated to the classes γ2, γ3 are two smooth blow-ups with exceptional divisor
given respectively by V (x[38]) and V (x[32]).

Finally, there is the contractible class

γ5 : x[2] + x[3] + x[7] -2 x[1] = 0

The associated morphism is birational and sends a divisor to a singular point.
Then, we used the command TabExtremalClasses to know which contractible classes are ex-

tremal and we see that all contractible classes are extremal except two. The non-extremal classes are:

x[2] - x[3] - x[5] + x[6] = 0

γ3 : x[22] + x[28] - x[32] = 0

Hence, NE(X) is a cone of dimension 35 with 54 edges. The hyperplane HKX
⊂ N1(X)Q of classes

which have intersection zero with KX cuts a facet of NE(X). Only two edges of NE(X) do not lie on
HKX

: those generated by γ2 and γ3.
Observe that γ2 and γ3 define smooth blow-ups X → Xγ2 = X2 and X → Xγ3 = X3. Since γ2 is

extremal and γ3 is not,X2 is projective andX3 is not. Let’compute them using the algorithm Blowdown:

In[2]:= X2 = Blowdown[X,x[38]];

In[3]:= X3 = Blowdown[X,x[32]];

We omit the results of the two commands because the varieties are described by more than 500 prim-
itive relations. Computed X2 and X3, we can check that −KX2 and −KX3 are not nef:

In[4]:= AnticanonicalNefQ[X2]

Out[4]:= False

In[5]:= AnticanonicalNefQ[X3]

Out[5]:= False
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7.6 Extremal rays of toric Fano manifolds

In this section we consider the problem of determining the possible number of extremal rays of the Mori
cone of a smooth toric Fano variety of dimension n ≤ 4 and Picard number ρ ≥ 3.

A smooth complete variety X of dimension n is Fano if its anticanonical bundle −KX is ample. By
definition X is a projective variety.

The Mori cone NE(X) of a smooth Fano variety X is a closed polyhedral cone of dimension ρ.
If NE(X) is simplicial, we know that there are exactly ρ extremal rays. However when ρ ≥ 3 the

cone NE(X) is not always simplicial, and there are no estimations on the number of its extremal rays.
We recall that polyhedral cones of dimension 1 or 2 are always simplicial.

Here we restrict our attention to the toric case. There is a finite number of smooth toric Fano varieties
for each dimension n. Moreover they are classified up to dimension 4.

In dimension 2 there are five smooth toric Fano varieties: P2, P1 × P1 and Si, the blow-up of P2 in i
points for i = 1, 2, 3. They are also called toric Del Pezzo surfaces. In this case the Mori cone is always
simplicial except for the variety S3. Its Mori cone has dimension 4 and 6 extremal rays.

There are 18 smooth toric Fano 3-folds and 13 varieties have ρ ≥ 3. In this case Batyrev and K.
Watanabe & M. Watanabe separately obtain the same classification (see [Ba1], [Ba4] and [WW]).

Smooth toric Fano 4-folds are classified by Batyrev in [Ba4]. In [Sa], Sato describes a toric Fano
4-fold which does not appear in the list given by Batyrev. Both authors use the language of primitive
relations to describe them. After these classifications, there are 124 toric Fano 4-folds, among which 114
with ρ ≥ 3.

We have computed all contractible and extremal classes of every Fano 3-fold and 4-fold using the
command ExtremalClasses (see Section 4.4). We present here our results.

Let X be a smooth toric Fano variety of dimension at most 4.
After our computations we see that X has no contractible non-extremal classes. Hence, if γ is a

contractible class of X and ϕγ : X → Xγ is the associated contraction, the variety Xγ is projective.
Another remark is that when ρ = 3 the Mori cone is always simplicial, hence there are exactly 3

extremal rays.
In dimension 3 there are only two cases with a non-simplicial Mori cone. These ones have maximal

Picard number 5 and 7 extremal rays.
Let’s consider the case of dimension 4. We sum up our results in the following table. In the table d2

is the number of toric Fano 4-folds with Picard number ρ, while d1 is the number of the ones with Picard
number ρ whose Mori cone is not simplicial. Moreover cardMAX(E) is the maximal number of extremal
rays among all Fano 4-folds with Picard number ρ.
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ρ d1/d2 cardMAX(E)
4 3/47 6
5 9/27 10
6 9/10 20
7 1/1 9
8 1/1 12

Table 7.1: Extremal rays in toric Fano 4-folds with ρ ≥ 4.

It is interesting to observe that the variety with the maximal number of extremal rays, that is 20, has
ρ = 6, which is not the maximal Picard number. This one is the Del Pezzo 4-fold (see [VK] and [E1], it
is denoted by n. 118 in Table 7.2).

We conclude enumerating all obtained results for the 114 smooth Fano 4-folds with ρ ≥ 3 in the next
table. For each one we list:

1. the name (in most cases we use Batyrev’s notation in Section 4 [Ba4]);

2. the Picard number ρ (it is ≥ 3);

3. the cardinality of the set of primitive relations PR;

4. the cardinality of the set of extremal classes E ;

5. the CPU-time in seconds (s), it is the CPU-time spent by Mathematica to compute the set of ex-
tremal classes of the variety.

The symbol (•) denotes the varieties with a non-simplicial Mori cone.

One can observe that the algorithm works quickly. The maximal CPU-time is 0.531 s. It is obtained
for the computation of extremal rays of the Del Pezzo toric 4-fold. In dimension 3 the bigger CPU-time
spent by Mathematica is 0.04 s. It is obtained when ExtremalClasses computes the extremal rays of
varieties with non-simplicial Mori cone.

Notice that in most cases the CPU-time is equal to 0 s. This means that the command executes some
elementary computations which do not involve the use of memory, hence Mathematica gives the results
easily and quickly.

Variety ρ card(PR) card(E) CPU-time
D1 3 3 3 0 s
D2 3 3 3 0 s
D3 3 3 3 0 s
D4 3 3 3 0 s
D5 3 3 3 0 s
D6 3 3 3 0 s

Table 7.2(i): Smooth toric Fano 4-folds with ρ ≥ 3.
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Variety ρ card(PR) card(E) CPU-time
D7 3 3 3 0.011 s
D8 3 3 3 0 s
D9 3 3 3 0 s
D10 3 3 3 0 s
D11 3 3 3 0.01 s
D12 3 3 3 0 s
D13 3 3 3 0 s
D14 3 3 3 0 s
D15 3 3 3 0 s
D16 3 3 3 0 s
D17 3 3 3 0 s
D18 3 3 3 0 s
D19 3 3 3 0 s
E1 3 5 3 0.01 s
E2 3 5 3 0.01 s
E3 3 5 3 0.01 s
G1 3 5 3 0 s
G2 3 5 3 0 s
G3 3 5 3 0 s
G4 3 5 3 0 s
G5 3 5 3 0.01 s
G6 3 5 3 0 s
L1 4 4 4 0 s
L2 4 4 4 0 s
L3 4 4 4 0 s
L4 4 4 4 0 s
L5 4 4 4 0 s
L6 4 4 4 0 s
L7 4 4 4 0 s
L8 4 4 4 0 s
L9 4 4 4 0 s
L10 4 4 4 0 s
L11 4 4 4 0 s
L12 4 4 4 0 s
L13 4 4 4 0 s
H1 4 6 4 0.01 s
H2 4 6 4 0 s
H3 4 6 4 0 s
H4 4 6 4 0.01 s
H5 4 6 4 0.01 s

Table 7.2(ii): Smooth toric Fano 4-folds with ρ ≥ 3.
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Variety ρ card(PR) card(E) CPU-time
H6 4 6 4 0 s
H7 4 6 4 0.01 s
H8 4 6 4 0.01 s
H9 4 6 4 0 s
H10 4 6 4 0 s
I1 4 6 4 0 s
I2 4 6 4 0 s
I3 4 6 4 0.01 s
I4 4 6 4 0 s
I5 4 6 4 0 s
I6 4 6 4 0 s
I7 4 6 4 0 s
I8 4 6 4 0 s
I9 4 6 4 0 s
I10 4 6 4 0.01 s
I11 4 6 4 0 s
I12 4 6 4 0 s
I13 4 6 4 0 s
I14 4 6 4 0 s
I15 4 6 4 0 s
M1 4 7 4 0 s
M2 4 7 4 0 s
M3 4 7 4 0 s
M4 4 7 4 0 s
M5 4 7 4 0 s
J1 4 9 5 (•) 0.03 s
J2 4 9 6 (•) 0.05 s
Z1 4 10 4 0 s
Z2 4 10 5 (•) 0.03 s
Q1 5 7 5 0.01 s
Q2 5 7 5 0.01 s
Q3 5 7 5 0 s
Q4 5 7 5 0 s
Q5 5 7 5 0 s
Q6 5 7 5 0 s
Q7 5 7 5 0 s
Q8 5 7 5 0 s
Q9 5 7 5 0 s
Q10 5 7 5 0 s

Table 7.2(iii): Smooth toric Fano 4-folds with ρ ≥ 3.
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Variety ρ card(PR) card(E) CPU-time
Q11 5 7 5 0 s
Q12 5 7 5 0 s
Q13 5 7 5 0.01 s
Q14 5 7 5 0 s
Q15 5 7 5 0 s
Q16 5 7 5 0.01 s
Q17 5 7 5 0 s

n. 108 5 10 5 0.01 s
K1 5 10 7 (•) 0.19 s
K2 5 10 7 (•) 0.03 s
K3 5 10 7 (•) 0.04 s
K4 5 10 7 (•) 0.041 s
R1 5 11 (?) 7 (•) 0.05 s
R2 5 11 (?) 7 (•) 0.05 s
R3 5 11 (?) 7 (•) 0.05 s

n. 117 5 14 10 (•) 0.14 s
HS (�) 5 18 9 (•) 0.1 s
S2 × S2 6 10 6 0 s
U1 6 11 8 (•) 0.04 s
U2 6 11 8 (•) 0.04 s
U3 6 11 8 (•) 0.04 s
U4 6 11 8 (•) 0.04 s
U5 6 11 8 (•) 0.04 s
U6 6 11 8 (•) 0.041 s
U7 6 11 8 (•) 0.04 s
U8 6 11 8 (•) 0.04 s

n. 118 6 25 20 (•) 0.531 s
S2 × S3 7 16 9 (•) 0.05 s
S3 × S3 8 18 12 (•) 0.12 s

Table 7.2(iv): Smooth toric Fano 4-folds with ρ ≥ 3.

(?): The varieties R1, R2, R3 have 11 primitive relations but in [Ba4] we find only 10. The missing
relation is v4 + v6 = v0 (see [Ba4]).

(�): HS is the variety described by Sato in [Sa].
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Appendix A

The package Toric Varieties: a user’s guide

In this appendix, we present all algorithms of the package Toric Varieties.

We refer for the definitions and statements which we have used to construct the algorithms to the
previous chapters of this thesis.

A.1 Loading the package

Before starting to work with the package Toric Varieties we have to load all commands which we will use.

All programs of package Toric Varieties are in the file toricvar.m, which is a text file and that you
have only to ask Mathematica to read it every time that you open a new session.

Mathematica assumes that the files on your computer are organized in a collection of directories, so
every time that you use Mathematica you have a current working directory and Mathematica will load
the package only if you specify the directory of the file. If you save the package in the current working
directory then the command to use is:

<<toricvar.m

Instead, if you save the file in another directory you have to specify the full path of file. For example,
we use the command:

<<"C:\\ToricVarieties\\toricvar.m"

In this case, ToricVarieties is the name of the directory where we saved the package.
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A.2 How to input a variety

Let X be a smooth, complete toric variety of dimension n.
In order to input X in Mathematica, you must know either the primitive relations of X or the coordi-

nates of generators with respect to some basis of N together with the maximal cones of the fan.
The easiest way to introduce X is using the command NewVariety. We see how it works with an

example.

Suppose you want F to be the Hirzebruch surface F1. You write:

In[1]:= F = NewVariety

Mathematica opens a window and asks you: Which is the dimension?(of the variety). You
answer writing 2, then the Mathematica opens another window and asks you: Which is the number
of generators? (of the fan of variety). You answer 4.

At this point, you have to decide if you want to describe the variety using the language of primitive re-
lations or the set of generators together with the set of maximal cones. In fact, Mathematica asks you: Do
you want to use primitive relations (p) or cones (c) to describe the variety?

Notice that if t is the number of generators you will have to call them x[1], . . . ,x[t]. In the case
of F1 they will be: x[1], x[2], x[3], x[4].

If you answer with p, then Mathematica opens a window and there you enumerate all primitive rela-
tions (as linear polynomials in the generators of the fan):

{x[2] + x[3], x[1] + x[4] - x[2]}.

Then the algorithm gives its output:

Out[1]:= {2, 4, {{{x[2], x[3]}, {{0, 0}}}, {{x[1], x[4]}, {
{{x[2], 1}}}}, Null, Null}

Instead, if you answer with c, then Mathematica asks you the coordinates of generators and the
maximal cones. First, you enumerate the coordinates:

{x[1] -> {1, 0}, x[2] -> {0, 1}, x[3] -> {0, - 1}, x[4] -> {- 1,
1}}

Then, in another window, you enumerate all maximal cones of the fan:

{{x[1], x[2]}, {x[1], x[3]}, {x[2], x[4]}, {x[3], x[4]}}

In this case the output of the algorithm is:
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Out[1]:= {2, 4, Null, {x[1] -> {1, 0}, x[2] -> {0, 1}, x[3] -> {0,
- 1}, x[4] -> {- 1, 1}}, {{x[1], x[2]}, {x[1], x[3]}, {x[2],
x[4]}, {x[3], x[4]}}}

Remark A.2.1. In some case the command NewVariety could answer with the following error mes-
sage:

Syntax:: sntxi:
Incomplete expression; more input is needed. More . . .

This means that the data which you want to enumerate is given by a list of symbols with a number
k of characters and k > 252. You can resolve the problem defining a list before using the command
NewVariety.

Suppose that you want to describe a variety X with the language of primitive relations. Then you can
define your variety proceeding in the following way:

1. you define a list L where you write all primitive relations as polynomials in the generators;

2. you use the command NewVariety to define X and when the algorithm asks you the primitive
relations you write in the opened window the name of the list L.

At the end you obtain the list which describes the variety.
Notice that if you want to describe X with the data of maximal cones and generators you have to

define two lists: the list of generators and the list of maximal cones. Then you have to write their names
in the windows that the algorithm opens.

Besides NewVariety, there are three commands to introduce specific varieties:

• ProjSpace[n], it gives the n-dimensional projective space;

• DelPezzo[n], it gives the n-dimensional Del Pezzo variety;

• PseudoDelPezzo[n], it gives the n-dimensional pseudo Del Pezzo variety.

Del Pezzo and pseudo Del Pezzo varieties are Fano varieties introduced by V. E. Voskresenskiı̆ and
Alexander Klyachko in [VK] and by Ewald in [E1] to prove some statements on Fano toric varieties.
Their dimension is even so n must be even.

Let’s consider in more detail the way of representing a toric variety X in Mathematica. In any case,
the output of Newvariety is a list of five elements:

{n, t,PR,G,MC} (A.1)

where:

• n is the dimension of variety;

• t is the cardinality of the set of generators of fan associated to X;
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• PR is the set of primitive relations;

• G is the set of the coordinates of the generators with respect to some basis of N ;

• MC is the set of maximal cones.

A primitive relation of the form:

x[i1]+ · · ·+x[ik]-(a1x[j1]+ · · ·+ahx[ih])=0

is represented in PR as the list:

{{x[i1], . . .,x[ik]}, {{x[j1],a1}, . . .,{x[ih],ah}} (A.2)

A toric varietyX is completely determined by the data n, t,G,MC. In the cases of a projective variety
and of a variety which has a projective blow-up, you can use also the data n, t,PR to determine X com-
pletely (see Chapter 3). Hence, the list (A.1) must contain at least n, t,PR or n, t,G,MC. Mathematica
will replace the missing entries with Null.

If you have a list with a Null entry and you want to know all elements of the list {n, t,PR,G,MC},
you can use the command AddInput[X].

Let F be the Hirzebruch surface F1:

In[1]:= F = {2, 4, Null, {x[1] -> {1, 0}, x[2] -> {0, 1}, x[3] ->
{0, - 1}, x[4] -> {- 1, 1}}, {{x[1], x[2]}, {x[1], x[3]}, {x[2],
x[4]}, {x[3], x[4]}}};

Here you know the coordinates of the generators and the cones of the fan.
Suppose that you want to know which primitive relations characterize the variety, then you write:

In[2]:= AddInput[F]

Out[2]:= {2, 4, {{{x[2], x[3]}, {{0, 0}}}, {{x[1], x[4]}, {
{{x[2], 1}}}}, {x[1] -> {1, 0}, x[2] -> {0, 1}, x[3] -> {0, - 1},
x[4] -> {- 1, 1}}, {{x[1], x[2]}, {x[1], x[3]}, {x[2], x[4]},
{x[3], x[4]}}}

Instead, if the Hirzebruch surface F1 is described by the language of primitive relations:

In[1]:= {2, 4, {{{x[2], x[3]}, {{0, 0}}}, {{x[1], x[4]}, {{x[2],
1}}}}, Null, Null}

Then you can know the list of the coordinates of generators and the set of maximal cones writing:
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In[2]:= AddInput[F]

Out[2]:= {2, 4, {{{x[2], x[3]}, {{0, 0}}}, {{x[1], x[4]}, {
{{x[2], 1}}}}, {x[1] -> {1, 0}, x[2] -> {0, 1}, x[3] -> {0, - 1},
x[4] -> {- 1, 1}}, {{x[1], x[2]}, {x[1], x[3]}, {x[2], x[4]},
{x[3], x[4]}}}

We specify that you can also describe the surface with the list {n, t,PR,G,Null}. In this case, the
algorithm AddInput adds only the list of maximal cones.

A.3 Describing cones in the fan

Cone Test

ConeQ[X, set] allows to know if a subset of generators of the fan of X spans a cone in the fan.
The input of the algorithm are:

1. the variety X;

2. a subset of the generators of the fan.

The output is True if the subset generates a cone in the fan, False otherwise.

Example A.3.1. Let F be the Hirzebruch surface F1:

In[1]:= F = {2, 4, {{{x[2], x[3]}, {{0, 0}}}, {{x[1], x[4]}, {
{{x[2],1}}}}, Null, Null};

In[2]:= ConeQ[F, {x[1], x[2]}]

Out[2]:= True

In[3]:= ConeQ[F, {x[1], x[4]}]

Out[3]:= False

Cones of dimension k

The algorithm Cones[X, k] gives the list of all k-dimensional cones in the fan of X .
The input are:

1. the variety X;

2. the dimension k.
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The output is the list of the sets of generators of k-dimensional cones.

Example A.3.2. Let F be the Hirzebruch surface F1 as in Example A.3.1:

In[1]:= Cones[F, 1]

Out[1]:= {{x[1]}, {x[2]}, {x[3]}, {x[4]}}

In[2]:= Cones[F, 2]

Out[2]:= {{x[1], x[2]}, {x[1], x[3]}, {x[2], x[4]}, {x[3], x[4]}}

A.4 Primitive relations and contractible classes

The table of primitive relations

The algorithm TabVar[X] gives a table in which we enumerate all primitive relations.
The input is the variety X given by the list of primitive relations.
The output of the program is a table of all primitive relations of the variety, given as linear polynomial

in the generators. If a primitive relation is contractible the program marks the fact putting the letter C after
the primitive relation.

Example A.4.1. Let T be the Oda 3-fold. T is a smooth complete toric 3-fold with Picard number 4. It
is not projective. A detailed description of T can be found on page 84 in [O2].

In[1]:= T = {3, 7, {{{x[1], x[4]}, {{x[7], 1}}}, {{x[1], x[5]},
{{x[2], 1}, {x[7], 1}}}, {{x[2], x[4]}, {{x[5], 1}}}, {{x[2],
x[6]}, {{x[3], 1}, {x[5], 1}}}, {{x[3], x[4]}, {{x[6], 1}}},
{{x[3], x[7]}, {{x[1], 1}, {x[6], 1}}}, {{x[5], x[6], x[7]},
{{x[4], 2}}}}, Null, Null};

In[2]:= TabVar[T]

Out[2]:=

x[1] + x[4] - x[7] = 0
x[1] + x[5] - x[2] - x[7] = 0 C
x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C
x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C
x[5] + x[6] + x[7] -2 x[4] = 0 C
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The table of contractible primitive relations

The algorithm TabContrRel[X] is similar, but it lists only the contractible primitive relations.
The input is the variety described by primitive relations.
The output is the table of the contractible primitive relations of the variety.

Example A.4.2. Let T be the Oda 3-fold as in Example A.4.1:

In[1]:= TabContrRel[T]

Out[1]:=

x[1] + x[5] - x[2] - x[7] = 0
x[2] + x[6] - x[3] - x[5] = 0
x[3] + x[7] - x[1] - x[6] = 0
x[5] + x[6] + x[7] -2 x[4] = 0

A.5 Invariant curves

Relation of an invariant curve

The algorithm Curve[X, cone] gives the relation associated to the numerical class of an invariant
curve C in X .

The input are:

1. the variety X;

2. the (n− 1)-dimensional cone corresponding to C given by the list of its generators.

The output of the algorithm is a linear polynomial whose variables are the generators of the fan of X .

Example A.5.1. Let T be the Oda 3-fold as in Example A.4.1. The 2-dimensional cones of T are:

In[1]:= Cones[T, 2]

Out[1]:= {{x[1], x[2]}, {x[1], x[3]}, {x[1], x[6]}, {x[1], x[7]},
{x[2], x[3]}, {x[2], x[5]}, {x[2], x[7]}, {x[3], x[5]}, {x[3],
x[6]}, {x[4], x[5]}, {x[4], x[6]}, {x[4], x[7]}, {x[5], x[6]},
{x[5], x[7]}, {x[6], x[7]}}

Then, for every 2-cone we can determine the relation associated to the class (modulo numerical equiv-
alence) of the corresponding invariant curve. For example, you can compute the relation associated to the
numerical class of the invariant curve C = V (〈x[1],x[6]〉), writing:
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In[2]:= Curve[T, {x[1],x[6]}]

Out[2]:= -x[1] + x[3] - x[6] + x[7]

We observe that if the variety X is described by the list of generators and maximal cones then the
algorithm gives its answer more quickly.

The table of all invariant curves

The algorithm TabInvCurves[X] enumerates all invariant curves of the variety X in a table.
The input is the variety X .
The output is a table of two columns:

1. in the first there is the cone which represents the invariant curve, it is given by the list of its genera-
tors;

2. in the second there is the linear polynomial in the generators of the fan corresponding to the numer-
ical class associated to the invariant curve.

Example A.5.2. Let T be the Oda 3-fold represented by the list:

In[1]:= T = {3, 7, Null, {x[1] -> {1, 0, 0}, x[2] -> {0, 1, 0},
x[3] -> {0, 0, 1}, x[4] -> {-1, -1, -1}, x[5] -> {-1, 0, -1}, x[6]
-> {-1, -1, 0}, x[7] -> {0, -1, -1}}, {{x[1], x[2], x[3]}, {x[1],
x[2], x[7]}, {x[1], x[3], x[6]}, {x[1], x[6], x[7]}, {x[2], x[3],
x[5]}, {x[2], x[5], x[7]}, {x[3], x[5], x[6]}, {x[4], x[5], x[6]},
{x[4], x[5], x[7]}, {x[4], x[6], x[7]}}};

In[2]:= TabInvCurves[T]

Out[2]:=

x[1]x[2] x[2] + x[3] + x[7] = 0
x[1]x[3] x[1] + x[2] + x[6] = 0
x[1]x[6] -x[1] + x[3] - x[6] + x[7] = 0
x[1]x[7] x[1] + x[2] + x[6] = 0
x[2]x[3] x[1] + x[3] + x[5] = 0
x[2]x[5] x[2] + x[3] + x[7] = 0
x[2]x[7] x[1] - x[2] + x[5] - x[7] = 0
x[3]x[5] x[2] - x[3] - x[5] + x[6] = 0
x[3]x[6] x[1] - x[3] + x[5] = 0
x[4]x[5] -2x[4] + x[5] + x[6] + x[7] = 0
x[4]x[6] -2x[4] + x[5] + x[6] + x[7] = 0
x[4]x[7] -2x[4] + x[5] + x[6] + x[7] = 0
x[5]x[6] x[3] + x[4] - x[6] = 0
x[5]x[7] x[2] + x[4] - x[5] = 0
x[6]x[7] x[1] + x[4] - x[7] = 0
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The representation of a numerical class of a curve in N1(X)Q

Given X , you can consider the set of all relations associated to all different numerical classes of invariant
curves. Every relation is an element of the vector space N1(X)Q. Moreover, the set contains a basis B of
N1(X)Q.

The algorithm determines a basis B ofN1(X)Q and computes the coordinates of every element of the
set with respect to B.

The input is the variety X .
The output is a table. If a[i1]x[i1] + · · ·+ a[ik]x[ik] is the relation associated to a numer-

ical class of an invariant curve C and {b1, . . ., bρ} are its coordinates, then, in the table, you find the
element:

a[i1]x[i1] + · · ·+ a[ik]x[ik] -> b1 . . . bρ

Example A.5.3. Let T be the Oda 3-fold as in the Example A.4.1:

In[1]:= CoordCurvesClasses[T]

Out[1]:=

x[2] + x[4] - x[5] -> 1 0 0 0
x[1] + x[3] + x[5] -> 2 2 1 1
x[3] + x[4] - x[6] -> 1 1 1 0
x[1] + x[2] + x[6] -> 2 1 0 1
x[2] - x[3] - x[5] + x[6] -> 0 -1 -1 0
x[1] + x[4] - x[7] -> 1 1 0 0
x[1] - x[2] + x[5] - x[7] -> 0 1 0 0
x[2] + x[3] + x[7] -> 2 1 1 1
-x[1] + x[3] - x[6] + x[7] -> 0 0 1 0
-2 x[4] + x[5] + x[6] + x[7] -> 0 0 0 1

A.6 Blowing up

The algorithm Blowup[X, cone] computes the blow-up Y of the variety X along an invariant subva-
riety V . The subvariety V is given by the corresponding cone in ΣX .

The input are:

1. the variety X;

2. the list of generators of the cone associated to V .

The output is a list of type (A.1), which represents Y .
The next example clarifies how the algorithm works.
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Example A.6.1. In this example we construct a projective varietyW whose blow-down is the Oda 3-fold.
W is obtained blowing up a P3 along four curves:

In[1]:= Z = ProjSpace[3];

Out[1]:= TabVar[Z]

x[1] + x[2] + x[3] + x[4] = 0 C

In[2]:= Z1 = Blowup[Z,{x[2], x[4]}];

Out[2]:= TabVar[Z1]

x[1] + x[3] + x[5] = 0 C
x[2] + x[4] - x[5] = 0 C

In[3]:= Z2 = Blowup[Z1,{x[3], x[4]}];

Out[3]:= TabVar[Z2]

x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C
x[3] + x[4] - x[6] = 0 C
x[1] + x[3] + x[5] = 0
x[1] + x[5] + x[6] - x[4] = 0 C

In[4]:= Z3 = Blowup[Z2,{x[1], x[4]}];

Out[4]:= TabVar[Z3]

x[1] + x[4] - x[7] = 0 C
x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C
x[2] + x[7] - x[1] - x[5] = 0 C
x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C
x[1] + x[3] + x[5] = 0
x[1] + x[5] + x[6] - x[4] = 0
x[5] + x[6] + x[7] -2 x[4] = 0 C

In[5]:= W = Blowup[Z3,{x[1], x[5]}];

Out[5]:= TabVar[W]
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x[1] + x[4] - x[7] = 0
x[1] + x[5] - x[8] = 0 C
x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C
x[2] + x[7] - x[8] = 0 C
x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C
x[3] + x[8] = 0
x[4] + x[8] - x[5] - x[7] = 0 C
x[6] + x[8] - x[4] = 0
x[5] + x[6] + x[7] -2 x[4] = 0 C

Notice that the output of algorithm can have four forms:

1. if X is described by the list: X = {n, t,PRX ,Null,Null}, then the blowup is given by the list
Y = {n, t+ 1,PRY ,Null,Null};

2. if X is described by the list: X = {n, t,PRX ,GX ,Null}, then the blowup is given by the list
Y = {n, t+ 1,PRY ,GY ,Null};

3. if X is described by the list: X = {n, t,PRX ,GX ,MCX}, then the blowup is given by the list
Y = {n, t+ 1,PRY ,GY ,MCY };

4. if X is described by the list of maximal cones, then Y = {n, t+ 1,Null,GY ,MCY }.

A.7 Blowing down

Suppose that the fan of Y has a contractible primitive relation of type:

x[1] + · · · + x[k] - x[h] = 0.

Then, the contraction of this class is a blow-down ψ : Y → X whose exceptional divisor is V (x[h]).
The variety X can be computed from Y with the command Blowdown[Y, x[h]].

Observe that we are only specifying the exceptional divisor of the blowdown. If there is more than one
contractible primitive relation of type x[1] + · · ·+ x[k] - x[h] = 0, then Mathematica shows the
possible choices and asks you to choose which relation you want to contract.

The input are:

1. the variety Y ;

2. the generator x[h].

The output is a list of type (A.1), which represents Y .
We show how the algorithm works in the next examples.
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Example A.7.1. LetW be the variety which we have constructed in Example A.6.1. It determines the Oda
3-fold when you consider its blow-down with respect to the primitive relation x[2]+x[7]-x[8]=0.

If you try to contract the generator x[8] and you have to write:

In[1]:= T = Blowdown[W, x[8]]

Since there are two possible contractible primitive relations, Mathematica asks you which primitive rela-
tion it has to contract. Mathematica opens a window and shows the following message:

{Which is the primitive relation to contract, (give the number)?,

{x[1] + x[5] - x[8], x[2] + x[7] - x[8]}}

If you answer to the question with the number 2 then the algorithm computes the blow-down:

Out[1]:= {3, 7, {{{x[1], x[4]}, {{x[7], 1}}}, {{x[1], x[5]},
{{x[2], 1}, {x[7], 1}}}, {{x[2], x[4]}, {{x[5], 1}}}, {{x[2],
x[6]}, {{x[3], 1}, {x[5], 1}}}, {{x[3], x[4]}, {{x[6], 1}}},
{{x[3], x[7]}, {{x[1], 1}, {x[6], 1}}}, {{x[5], x[6], x[7]},
{{x[4], 2}}}}, {x[1] -> {1, 0, 0}, x[2] -> {0, 1, 0}, x[3] -> {0,
0, 1}, x[4] -> {-1, -1, -1}, x[5] -> {-1, 0, -1}, x[6] -> {-1, -1,
0}, x[7] -> {0, -1, -1}}, {{x[1], x[2], x[3]}, {x[1], x[2], x[7]},
{x[1], x[3], x[6]}, {x[1], x[6], x[7]}, {x[2], x[3], x[5]}, {x[2],
x[5], x[7]}, {x[3], x[5], x[6]}, {x[4], x[5], x[6]}, {x[4], x[5],
x[7]}, {x[4], x[6], x[7]}}}

In[2]:= TabVar[T]

Out[2]:=

x[1] + x[4] - x[7] = 0
x[1] + x[5] - x[2] - x[7] = 0 C
x[2] + x[4] - x[5] = 0
x[2] + x[6] - x[3] - x[5] = 0 C
x[3] + x[4] - x[6] = 0
x[3] + x[7] - x[1] - x[6] = 0 C
x[5] + x[6] + x[7] -2 x[4] = 0 C

This is the Oda 3-fold.

The algorithm is able to compute the blow-down also when the variety is described by the list
{n, t,Null,GY ,MCY }.

Example A.7.2. Let W be the variety constructed in Example A.6.1 and suppose that it is described only
by the maximal cones and generators:

In[1]:= W = {3, 8, Null, {x[1] -> {1, 0, 0}, x[2] -> {0, 1, 0},
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x[3] -> {0, 0, 1}, x[4] -> {-1, -1, -1}, x[5] -> {-1, 0, -1}, x[6]
-> {-1, -1, 0}, x[7] -> {0, -1, -1}, x[8] -> {0, 0, -1}}, {{x[1],
x[2], x[3]}, {x[1], x[2], x[8]}, {x[1], x[3], x[6]}, {x[1], x[6],
x[7]}, {x[1], x[7], x[8]}, {x[2], x[3], x[5]}, {x[2], x[5], x[8]},
{x[3], x[5], x[6]}, {x[4], x[5], x[6]}, {x[4], x[5], x[7]}, {x[4],
x[6], x[7]}, {x[5], x[7], x[8]}}};

Suppose that you want to construct its blow-down with respect to x[8]:

In[2]:= Blowdown[W, x[8]]

Then Mathematica opens a window and asks you:

Which is the contractible primitive relation associated to

the blow-down?

You answer writing the polynomial: x[2] + x[7] - x[8] and then Mathematica computes the
blow-down:

Out[2]:= {3, 7, Null, {x[1] -> {1, 0, 0}, x[2] -> {0, 1, 0}, x[3]
-> {0, 0, 1}, x[4] -> {-1, -1, -1}, x[5] -> {-1, 0, -1}, x[6] ->
{-1, -1, 0}, x[7] -> {0, -1, -1}}, {{x[1], x[2], x[3]}, {x[1],
x[2], x[7]}, {x[1], x[3], x[6]}, {x[1], x[6], x[7]}, {x[2], x[3],
x[5]}, {x[2], x[5], x[7]}, {x[3], x[5], x[6]}, {x[4], x[5], x[6]},
{x[4], x[5], x[7]}, {x[4], x[6], x[7]}}}

Notice that in this case the algorithm is not able to test if the relation is contractible so it remembers
you asking for a contractible primitive relation.

Observe that the output of algorithm can have four forms:

1. if Y is described by the list: Y = {n, t,PRY ,Null,Null}, then the blow-down is given by the list
X = {n, t− 1,PRX ,Null,Null};

2. if Y is described by the list: Y = {n, t,PRY ,GY ,Null}, then the blow-down is given by the list
X = {n, t− 1,PRX ,GX ,Null};

3. if Y is described by the list: Y = {n, t,PRY ,GY ,MCY }, then the blow-down is given by the list
X = {n, t− 1,PRX ,GX ,MCX};

4. if Y = {n, t,Null,GY ,MCY } is described by the list of maximal cones and generators, then the
blow-down is X = {n, t− 1,Null,GX ,MCX}.
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A.8 Projectivity test

The algorithm ProjQ[X] says if the variety X is projective or not.
The input is the variety X .
The output is a string: True if the variety is projective, False otherwise.

Example A.8.1. Let T be the Oda 3-fold as in the Example A.5.2:

In[1]:= ProjQ[T]

Out[1]:= False

In[2]:= W = Blowup[T, {x[2],x[7]}];

W is the variety described in Example A.6.1. It is projective, in fact:

In[3]:= ProjQ[W]

Out[3]:= True

A.9 Extremal classes

The table of extremal and non-extremal classes

Let X be a projective variety. Suppose that you want to describe the Mori cone NE(X) ⊂ N1(X)Q. The
algorithm TabExtremalClasses[X] determines the extremal and non-extremal classes in the set of
contractible primitive relations.

The input of the algorithm is a projective variety X .
The output is the table of all contractible classes, together with their coordinates with respect to a

basis of N1(X)Q (the basis is chosen among the contractible classes).
The classes marked with the letter E are the extremal ones.
The following example shows how the algorithm works.

Example A.9.1. Let W be the variety described in Example A.6.1:

In[1]:= TabExtremalClasses[W]

Out[1]:=

x[2] - x[3] - x[5] + x[6] -> -1 1 -1 0 0 E
x[1] + x[5] - x[8] -> 1 0 0 0 0 E
-x[1] + x[3] - x[6] + x[7] -> 0 0 1 0 0 E
x[4] - x[5] - x[7] + x[8] -> 0 0 0 1 0 E
-2 x[4] + x[5] + x[6] + x[7] -> 0 0 0 0 1 E
x[2] + x[7] - x[8] -> 0 1 0 0 0

In this case there is only one non-extremal class, whose blow-down gives the Oda 3-fold.
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Example A.9.2. Let S be the following variety:

In[2]:= S = {{7, 12, {{{x[3], x[12]}, {{x[4], 1}, {x[5], 2},
{x[9], 1}}}, {{x[1], x[2], x[3]}, {{x[9], 1}}}, {{x[1], x[3],
x[11]}, {{x[4], 1}, {x[6], 1}, {x[9], 1}}}, {{x[1], x[4], x[5]},
{{x[10], 1}}}, {{x[1], x[4], x[12]}, {{x[2], 1}, {x[10], 2}}},
{{x[1], x[5], x[11]}, {{x[2], 1}, {x[6], 1}, {x[10], 1}}}, {{x[1],
x[11], x[12]}, {{x[2], 2}, {x[6], 1}, {x[10], 2}}}, {{x[2], x[3],
x[10]}, {{x[4], 1}, {x[5], 1}, {x[9], 1}}}, {{x[2], x[4], x[6]},
{{x[11], 1}}}, {{x[2], x[5], x[10]}, {{x[12], 1}}}, {{x[3], x[10],
x[11]}, {{x[4], 2}, {x[5], 1}, {x[6], 1}, {x[9], 1}}}, {{x[4],
x[6], x[12]}, {{x[5], 1}, {x[10], 1}, {x[11], 1}}}, {{x[5], x[7],
x[8], x[9], x[11]}, {{x[2], 1}}}, {{x[6], x[7], x[8], x[9],
x[10]}, {{x[1], 1}}}, {{x[6], x[7], x[8], x[9], x[12]}, {{x[1],
1}, {x[2], 1}, {x[5], 1}}}, {{x[7], x[8], x[9], x[10], x[11]},
{{x[1], 1}, {x[2], 1}, {x[4], 1}}}, {{x[7], x[8], x[9], x[11],
x[12]}, {{x[2], 2}, {x[10], 1}}}, {{x[4], x[5], x[6], x[7], x[8],
x[9]}, {{0, 0}}}}}, Null, Null};

S is a projective variety, has dimension 7 and Picard number 5.

In[3]:= TabExtremalClasses[S]

Out[3]:=

-x[1] -x[2] -x[4] +x[7] +x[8] +x[9] +x[10] +x[11] -> 0 0 0 -1 1 E
x[1] -2x[2] -x[6] -2x[10] +x[11] +x[12] -> 1 0 0 0 0 E
x[2] + x[5] +x[10] -x[12] -> 0 1 0 0 0 E
x[3] -2x[4] -x[5] -x[6] -x[9] +x[10] +x[11] -> 0 0 1 0 0 E
x[4] -x[5] +x[6] -x[10] -x[11] +x[12] -> 0 0 0 1 0 E
-x[1] -x[2] -x[5] +x[6] +x[7] +x[8] +x[9] +x[12] -> 0 0 0 0 1

In this case there are five extremal classes and one non-extremal contractible class.

The coordinates of contractible primitive relations in N1(X)Q

The algorithm CoordContrClasses[X] is similar to the algorithm CoordCurvesClasses[X],
but it works only with the contractible classes of curves.

Let X be a projective variety. Consider the set C of all contractible primitive relations. This set
contains a basis B of N1(X)Q. The algorithm determines the basis B and computes the coordinates of
every element with respect to B.

The input is the variety X .
The output is the table of all contractible classes, together with their coordinates with respect to a

basis of N1(X)Q (the basis is chosen among the contractible classes).
The following example shows how the algorithm works.
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Example A.9.3. Let W the variety of Example A.6.1:

In[1]:= CoordContrClasses[W]

Out[1]:=

x[1] + x[5] - x[8] -> 1 0 0 0 0
x[2] - x[3] - x[5] + x[6] -> -1 1 -1 0 0
x[2] + x[7] - x[8] -> 0 1 0 0 0
- x[1] + x[3] - x[6] + x[7] -> 0 0 1 0 0
x[4] - x[5] - x[7] + x[8] -> 0 0 0 1 0
-2 x[4] + x[5] + x[6] + x[7] -> 0 0 0 0 1

A.10 Isomorphism test

The algorithm IsomQ[X, Y] says if the two varieties X and Y are isomorphic.
The input are the varieties X and Y .
The output is the string True when X and Y are isomorphic, False otherwise.
The next example explains how the algorithm works.

Example A.10.1. Let F be the Hirzebruch surface F1:

In[1]:= F = {2, 4, {{{x[3], x[4]}, {{0, 0}}}, {{x[1], x[2]},
{{x[4], 3}}}}, Null, Null};

Let H be again the Hirzebruch surface F1, given by a different but isomorphic fan:

In[2]:= H = {2, 4, {{{x[5], x[2]}, {{0, 0}}}, {{x[1], x[4]},
{{x[2], 3}}}}, Null, Null};

They are isomorphic and the answer of algorithm confirms our assertion:

In[3]:= IsomQ[F, H]

Out[3]:= True

The algorithm tests if two varieties are isomorphic, it works applying Proposition 3.1.1 in Chapter 3,
so the answer can be wrong in the case of a smooth, complete, non-projective toric variety.
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A.11 Products

Given two smooth, complete, toric varieties X and Y , their product is again a smooth, complete, toric
variety Z. The algorithm Prod[X,Y] gives a representation of the variety Z obtained as the product of
X and Y .

The input are the two varieties X and Y .
The output of the algorithm is the variety Z and the description of Z depends on the description

of X and Y . If X and Y have the same representation, that is, if both the two varieties are described
by primitive relations (respectively by maximal cones), then Z will be described by primitive relations
(respectively by maximal cones).

Instead, if X is given by the data of maximal cones and Y by primitive relations, then you can
decide which representation you want for Z. Mathematica asks you: Do you want to use either
primitive relations (p) or cones (c) to describe the variety?.

If you answer c, then the solution Z will be described by using maximal cones, if you answer p then
Z will be described by primitive relations.

We give an example:

Example A.11.1. In order to input Z = P1 × P2, we write:

In[1]:= Z = Prod[ProjSpace[1],ProjSpace[2]]

Out[1]:= {3, 5, {{{x[1], x[2]}, {{0, 0}}}, {{x[3], x[4], x[5]},
{{0, 0}}}}, {x[1] -> {1, 0, 0}, x[2] -> {-1, 0, 0}, x[3] -> {0, 1,
0}, x[4] -> {0, 0, 1}, x[5] -> {0, -1, -1}}, {{x[1], x[3], x[4]},
{x[1], x[3], x[5]}, {x[1], x[4], x[5]}, {x[2], x[3], x[4]}, {x[2],
x[3], x[5]}, {x[2], x[4], x[5]}}}

A.12 Fano and anticanonical nef test

The algorithm FanoQ[X] says if a varietyX is Fano or not. The algorithm AnticanonicalNefQ[X]
tests if the anticanonical bundle is nef.

The input is the variety X .
The output is the string True when X is Fano (when the anticanonical bundle is nef), False other-

wise.

Example A.12.1. Let F2 be the Hirzebruch surface F2:

In[1]:= F2 = {2, 4, {{{x[1], x[2]}, {{0, 0}}}, {{x[3], x[4]},
{{x[1], 2}}}}, Null, Null};

F2 is not Fano toric variety, in fact the algorithm FanoQ answers negatively:
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In[2]:= FanoQ[F2]

Out[2]:= False

Its anticanonical bundle is nef, in fact the algorithm AnticanonicalNefQ answers:

In[3]:= AnticanonicalNefQ[F2]

Out[3]:= True

A.13 Technical commands

A.13.1 Algorithms studying properties of the fan and the lattice N

Generators

The algorithm Gen[X] gives the set of generators of fan of variety X .
The input is the variety X .
The output is the list of generators of the fan of the variety X .

Example A.13.1. Let Z = P2 × P3 be:

In[1]:= Z = {5, 7, {{{x[1], x[2], x[3]}, {{0, 0}}}, {{x[4], x[5],
x[6], x[7]}, {{0, 0}}}}, Null, Null}

In[2]:= Gen[Z]

Out[2]:= {x[1], x[2], x[3], x[4], x[5], x[6], x[7]}

Computing a basis of N

The algorithm Basis[X] computes a basis of the lattice N , contained in the set of generators of the fan
of X .

The input is the variety X .
The output is a list of elements of type x[i].

Example A.13.2. Let Z = P2 × P3 be:

In[1]:= Z = {5, 7, {{{x[1], x[2], x[3]}, {{0, 0}}}, {{x[4], x[5],
x[6], x[7]}, {{0, 0}}}}, Null, Null}

In[2]:= Basis[Z]

Out[2]:= {x[1], x[2], x[4], x[5], x[6]}
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In general, this algorithm is used when X is described by primitive relations, because when a variety
is described by maximal cones, it is known that the set of generators of every maximal cone is a basis for
the lattice N .

Basis test

The algorithm BasisQ[X, set] says if a subset of generators of the fan of X is a basis for N .
The input are:

1. the variety X;

2. a subset of generators of fan of X .

The output is True if the set is a basis, False otherwise.

Example A.13.3. Let F2 be the Hirzebruch surface F2 as in Example A.12.1:

In[1]:= BasisQ[F2, {x[1], x[4]}]

Out[1]:= True

In[2]:= BasisQ[F2, {x[3], x[4]}]

Out[2]:= False

Computing a basis of N and the coordinates of generators of the fan of X

BasisCoord[X] computes a basis of the lattice N , contained in the set of generators of the fan of X
and the coordinates of all generators of ΣX with respect to this basis.

The input is the variety X .
The output is a list of two sets:

1. the first set is a basis of the lattice N ;

2. the second set is the list of all coordinates of every generators, every element has the form:

x[i] -> {x[i]1, . . . ,x[i]n}.

Example A.13.4. Let F2 be the Hirzebruch surface F2 as in Example A.12.1:

In[1]:= BasisCoord[F2]

Out[1]:= {{x[1], x[3]}, {x[1] -> {1, 0}, x[2] -> {-1, 0}, x[3] ->
{0, 1}, x[4] -> {2, -1}}}

In general, this algorithm is used when X is described by primitive relations.
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Coordinates

The algorithm Coordinates[X, B] gives the coordinates of generators of the fan of X with respect
to a fixed basis B of the lattice N .

The input are:

1. the variety;

2. the basis of the lattice.

The output is a list of elements of type:

x[i] -> {x[i]1, . . . ,x[i]n}

Example A.13.5. Let F2 be the Hirzebruch surface F2 as in Example A.12.1:

In[1]:= base1 = Basis[F2]

Out[1]:= {x[1], x[3]}

In[2]:= Coordinates[F2, base1]

Out[2]:={x[1] -> {1, 0}, x[2] -> {-1, 0}, x[3] -> {0, 1}, x[4] ->
{2, -1}}

In general, we use this algorithm to compute coordinates of generators of the fan of the variety when
the variety is described by primitive relations.

A.13.2 Contractibility

Contractibility test

The algorithm ContractibleQ[X, rel] says if rel is a contractible primitive relation.
The input are:

1. the variety described by primitive relations;

2. the primitive relation (it can be represented either by a polynomial or by a list list of type (A.2)).

The output is: True if the primitive relation is contractible, False otherwise.
The following example shows how the algorithm works:

Example A.13.6. Let T be the Oda 3-fold as in Example A.4.1.

In[1]:= ContractibleQ[T, {{x[5], x[6], x[7]}, {{x[4], 2}}}]
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Out[1]:= True

In[2]:= ContractibleQ[T, x[1] + x[4] - x[7]]

Out[2]:= False

Set of contractible primitive relations as list of polynomials

The algorithm ContractibleRel[X] gives the list of all contractible primitive relations of X .
The input is the variety X described by the list of primitive relations.
The output is the set of all contractible primitive relations. In the list every primitive relation has the

form of a linear polynomial in the generators.

Example A.13.7. Let T be the Oda 3-fold as in Example A.4.1.

In[1]:= ContractibleRel[T]

Out[1]:= {x[1] - x[2] + x[5] - x[7], x[2] - x[3] - x[5] + x[6],
-x[1] + x[3] - x[6] + x[7], -2 x[4] + x[5] + x[6] + x[7]}

Contractible primitive relations as list of lists

The algorithm ListContractibleRel[X] gives the list of all contractible primitive relations of
variety X .

The input is the variety described by primitive relations.
The output is the list of all contractible primitive relation. In the list every primitive relation is repre-

sented by a list of type (A.2).

Example A.13.8. Let T be the Oda 3-fold, as in Example A.4.1.

In[1]:= ListContractibleRel[T]

Out[1]:= {{{x[1], x[5]}, {{x[2], 1}, {x[7], 1}}}, {{x[2], x[6]},
{{x[3], 1}, {x[5], 1}}}, {{x[3], x[7]}, {{x[1], 1}, {x[6], 1}}},
{{x[5], x[6], x[7]}, {{x[4], 2}}}}

A.13.3 Primitive relations

Computing primitive collections

LetX be a variety described by the data of generators and maximal cones. The algorithm PrimColl[X]
allows to have the list of primitive collections of X .

The input is the variety X described by the data of generators and maximal cones.
The output is the list of primitive collection of X .
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Example A.13.9. Let T be the Oda 3-fold as in Example A.5.2.

In[1]:= PrimColl[T]

Out[1]:= {{x[1], x[4]}, {x[1], x[5]}, {x[2], x[4]}, {x[2], x[6]},
{x[3], x[4]}, {x[3], x[7]}, {x[5], x[6], x[7]}}

Computing primitive relations

Let X be a variety described by the maximal cones of its fan and by generators. PrimRel[X, coll]
gives the list of all primitive relations of X .

The input is the variety X described by the list of maximal cones.
The output is the list of primitive relations. Every primitive relation is represented by a list of type

(A.2).

Example A.13.10. Let T be the Oda 3-fold as in Example A.5.2.

In[1]:= PrimRel[T, PrimColl[T]]

Out[1]:= {{{x[1], x[4]}, {{x[7], 1}}}, {{x[1], x[5]}, {{x[2], 1},
{x[7], 1}}}, {{x[2], x[4]}, {{x[5], 1}}}, {{x[2], x[6]}, {{x[3],
1}, {x[5], 1}}}, {{x[3], x[4]}, {{x[6], 1}}}, {{x[3], x[7]},
{{x[1], 1}, {x[6], 1}}}, {{x[5], x[6], x[7]}, {{x[4], 2}}}}

Set of primitive relations as list of polynomial

The algorithm gives a list of all primitive relations.
The input is the variety X described by primitive relations.
The output is the list of primitive relations of X represented by linear polynomials whose variables

are generators of the fan of X .

Example A.13.11. Let T be the Oda 3-fold as in Example A.4.1:

In[1]:= ListRelCycles[T]

Out[1]:= {x[1] + x[4] - x[7], x[1] - x[2] + x[5] - x[7], x[2] +
x[4] - x[5], x[2] - x[3] - x[5] + x[6], x[3] + x[4] - x[6], - x[1]
+ x[3] - x[6] + x[7], -2 x[4] + x[5] + x[6] + x[7]}
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Degree of a primitive relation

The algorithm DegRel[rel] gives the degree of a primitive relation.
The input is the primitive relation. It can have the form either of a linear polynomial or of a list.
The output is a number and it represents the degree of the primitive relation.

Example A.13.12. Let T be the Oda 3-fold as in Example A.4.1:

In[1]:= DegRel[{{{x[1], x[4]}, {{x[7], 1}}}]

Out[1]:= 1

In[2]:= DegRel[x[1] - x[2] + x[5] - x[7]]

Out[2]:= 0

A.13.4 Varieties

Describing a variety using primitive relations

Let X be a variety described by the data of generators and maximal cones of its fan. The algorithm
Varprimrel[X] adds the list PR to the list {n, t,Null,G,MC}.

The input is the variety described by generators and maximal cones of its fan.
The output is the variety X described by all possible descriptions.

Example A.13.13. Let T be the Oda 3-fold as in Example A.5.2.

In[1]:= Varprimrel[T]

Out[1]:= {3, 7, {{{x[1], x[4]}, {{x[7], 1}}}, {{x[1], x[5]},
{{x[2], 1}, {x[7], 1}}}, {{x[2], x[4]}, {{x[5], 1}}}, {{x[2],
x[6]}, {{x[3], 1}, {x[5], 1}}}, {{x[3], x[4]}, {{x[6], 1}}},
{{x[3], x[7]}, {{x[1], 1}, {x[6], 1}}}, {{x[5], x[6], x[7]},
{{x[4], 2}}}}, {x[1] -> {1, 0, 0}, x[2] -> {0, 1, 0}, x[3] -> {0,
0, 1}, x[4] -> {-1, -1, -1}, x[5] -> {-1, 0, -1}, x[6] -> {-1, -1,
0}, x[7] -> {0, -1, -1}}, {{x[1], x[2], x[3]}, {x[1], x[2], x[7]},
{x[1], x[3], x[6]}, {x[1], x[6], x[7]}, {x[2], x[3], x[5]}, {x[2],
x[5], x[7]}, {x[3], x[5], x[6]}, {x[4], x[5], x[6]}, {x[4], x[5],
x[7]}, {x[4], x[6], x[7]}}}

We observe that the algorithm computes the primitive collections and relations using the algorithms
PrimColl[X] and PrimRel[X, coll] respectively.
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Describing a variety using maximal cones

Let X be a variety described by primitive relations. The algorithm Varcones[X] adds the lists G and
MC to the list {n, t,PR,Null,Null}.

The input is the variety described by primitive relations.
The output is the variety X described by the list {n, t,PR,G,MC}.

Example A.13.14. Let T be the Oda 3-fold as in Example A.4.1:

In[1]:= Varcones[T]

Out[1]:= {3, 7, {{{x[1], x[4]}, {{x[7], 1}}}, {{x[1], x[5]},
{{x[2], 1}, {x[7], 1}}}, {{x[2], x[4]}, {{x[5], 1}}}, {{x[2],
x[6]}, {{x[3], 1}, {x[5], 1}}}, {{x[3], x[4]}, {{x[6], 1}}},
{{x[3], x[7]}, {{x[1], 1}, {x[6], 1}}}, {{x[5], x[6], x[7]},
{{x[4], 2}}}}, {x[1] -> {1, 0, 0}, x[2] -> {0, 1, 0}, x[3] -> {0,
0, 1}, x[4] -> {-1, -1, -1}, x[5] -> {-1, 0, -1}, x[6] -> {-1, -1,
0}, x[7] -> {0, -1, -1}}, {{x[1], x[2], x[3]}, {x[1], x[2], x[7]},
{x[1], x[3], x[6]}, {x[1], x[6], x[7]}, {x[2], x[3], x[5]}, {x[2],
x[5], x[7]}, {x[3], x[5], x[6]}, {x[4], x[5], x[6]}, {x[4], x[5],
x[7]}, {x[4], x[6], x[7]}}}

A.13.5 Smooth test

SmoothQ[X] says if the variety X is smooth or not.
The input is the variety X .
The output is a string: True if the variety is smooth and False otherwise.

Example A.13.15. Let T be the Oda 3-fold as in Example A.5.2.

In[1]:= SmoothQ[T]

Out[1]:= True

A.13.6 Curves

List of polynomial representing all different numerical classes of invariant curves

The algorithm AllInvCurves[X] gives the list of all relations associated to all different numerical
classes of invariant curves in X .

The input of algorithm is the variety X .
The output is a list of polynomials in the generators of the fan of X .

Example A.13.16. Let T be the Oda 3-fold as in Example A.5.2.
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In[1]:= AllInvCurves[T]

Out[1]:= {x[2] + x[4] - x[5], x[1] + x[3] + x[5], x[3] + x[4] -
x[6], x[1] + x[2] + x[6], x[2] - x[3] - x[5] + x[6], x[1] + x[4] -
x[7], x[1] - x[2] + x[5] - x[7], x[2] + x[3] + x[7], -x[1] + x[3]
- x[6] + x[7], -2 x[4] + x[5] + x[6] + x[7]}

The maximal cones associated to an invariant curves

Given the variety X , an (n − 1)-dimensional cone τ in the fan determines an invariant curve C, where
C = V (τ) in X .

The input are:

1. the variety;

2. the set of generators of the (n− 1)-cone τ .

The output of the algorithm MaximalCones[X, cone] is the list of the two maximal cones σ, σ′

such that τ = σ ∩ σ′. They are given by the list of their generators.
The next example shows how the algorithm works:

Example A.13.17. Let T the Oda 3-fold as in Example A.4.1.

In[1]:= MaximalCones[T, {x[1], x[2]}]

Out[1]:= {{x[1], x[2], x[3]}, {x[1], x[2], x[7]}}

A.13.7 Extremal classes

List of coordinates of numerical classes of invariant curves and of coordinates of contractible prim-
itive relations in N1(X)Q

Let I be the set of all different numerical classes of all invariant curves of the variety X . It contains a
basis B of N1(X)Q.

If X is also projective, we consider the set C of all contractible primitive relations, because it contains
a basis of N1(X)Q.

The algorithm determines the basis B and computes the coordinates of every element in I, (respec-
tively in C), with respect to B.

The input are:

1. the variety X;

2. either the set I or the set C, whose elements are polynomial in the generators of the fan.
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The output is a list of all elements of I, (respectively of C), with their coordinates. If you have the el-
ement ai1

x[i1] + · · ·+ aik
x[ik] in I, (respectively in C) and {b1, . . .,bρ} are its coordinates,

then, in the list you find:

ai1
x[i1] + · · ·+ aik

x[ik] -> b1, . . ., bρ

Example A.13.18. Let W be the variety of Example A.6.1:

In[1]:= EsprVett[W, ContractibleRel[W]]

Out[1]:={x[1] + x[5] - x[8] -> {1, 0, 0, 0, 0}, x[2] - x[3] - x[5]
+ x[6] -> {-1, 1, -1, 0, 0}, x[2] + x[7] - x[8] -> {0, 1, 0, 0,
0}, - x[1] + x[3] - x[6] + x[7] -> {0, 0, 1, 0, 0}, x[4] - x[5] -
x[7] + x[8]" -> {0, 0, 0, 1, 0}, -2 x[4] + x[5] + x[6] + x[7] ->
{0, 0, 0, 0, 1}}

In[2]:= EsprVett[W, AllInvCurves[W]]

Out[2]:= {x[1] + x[3] + x[5] -> {0, 1, 1, 2, 2}, x[3] + x[4] -
x[6] -> {0, 1, 0, 1, 1}, x[1] + x[2] + x[6] -> {1, 1, 1, 2, 2},
x[2] - x[3] - x[5] + x[6] -> {1, 0, 0, 0, 0}, x[1] + x[4] - x[7]
-> {0, 0, 0, 1, 1}, -x[1] + x[3] - x[6] + x[7] -> {0, 1, 0, 0, 0},
-2 x[4] + x[5] + x[6] + x[7] -> {0, 0, 1, 0, 0}, x[1] + x[5] -
x[8] -> {0, 0, 0, 1, 0}, x[2] + x[7] - x[8] -> {1, 1, 0, 1, 0},
x[3] + x[8] -> {0, 1, 1, 1, 2}, x[4] - x[5] - x[7] + x[8] -> {0,
0, 0, 0, 1}, x[1] + x[6] - x[7] + x[8] -> {0, 0, 1, 1, 2}}

The list of extremal and non-extremal classes

Let X be projective variety. Suppose that you want to describe the Mori cone NE(X). The algorithm
ExtremalClasses[X] is a “list-version” of the algorithm TabExtremalClasses[X].

The input of algorithm is the variety X .
The output is a list of two sets:

1. in the first, you find all extremal classes;

2. in the second, there are the non-extremal classes.

Every element is given together with its coordinates with respect to a basis B of N1(X)Q.
The following example shows how the algorithm works.

Example A.13.19. Let W be the variety as in Example A.6.1:

In[1]:= W = {3, 8, {{{x[1], x[4]}, {{x[7], 1}}}, {{x[1], x[5]},
{{x[8], 1}}}, {{x[2], x[4]}, {{x[5], 1}}}, {{x[2], x[6]}, {{x[3],
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1}, {x[5], 1}}}, {{x[2], x[7]}, {{x[8], 1}}}, {{x[3], x[4]},
{{x[6], 1}}}, {{x[3], x[7]}, {{x[1], 1}, {x[6], 1}}}, {{x[3],
x[8]}, {{0, 0}}}, {{x[4], x[8]}, {{x[5], 1}, {x[7], 1}}}, {{x[6],
x[8]}, {{x[4], 1}}}, {{x[5], x[6], x[7]}, {{x[4], 2}}}}, Null,
Null};

In[2]:= ExtremalClasses[W]

Out[2]:= {{x[2] - x[3] - x[5] + x[6] -> {-1, 1, -1, 0, 0}, x[1] +
x[5] - x[8] -> {1, 0, 0, 0, 0}, -x[1] + x[3] - x[6] + x[7] -> {0,
0, 1, 0, 0}, x[4] - x[5] - x[7] + x[8] -> {0, 0, 0, 1, 0}, -2 x[4]
+ x[5] + x[6] + x[7] -> {0, 0, 0, 0, 1}}, {x[2] + x[7] - x[8] ->
{0, 1, 0, 0, 0}}}

A.14 Error messages

Some algorithms also answer with a message of error. We present the list of error messages of every
algorithm and explain the reasons of this answer.

They are collected following the alphabetically order of the name of algorithms.

1. AddInput[X]:

Error: it is not possible to compute coordinates of generators.
The message is visualized if the system given by primitive relations of the variety X does not
allow to determine coordinates of generators of the fan.

2. AllInvCurves[X]:

Error: it is not possible to compute the relation associated to a curve.
It appears if it is not possible to know the relation associated to an invariant curve because the
system given by primitive relations of the varietyX does not allow to compute the coordinates
of every generator of the fan.

3. AnticanonicalNefQ[X]:

Error: it is not possible to compute the relation associated to a curve.
It is visualized if it is not possible to know the relation associated to an invariant curve be-
cause the system given by primitive relations of the variety X does not allow to compute the
coordinates of every generator of the fan.

4. BasisQ[X,set]:

Error: it is not possible to compute coordinates of generators.
The message is visualized if the system given by primitive relations of the variety does not
allow to determine the coordinates of the generators of the fan.
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5. BasisCoord[X]:

Error: it is not possible to compute coordinates of generators.
It appears if the system given by primitive relations of the variety does not allow to determine
the coordinates of the generators of the fan.

6. Blowdown[X,x[h]]:

(a) Error: there are not contractible primitive relations.
This message is visualized if the variety has not a contractible primitive relation of type
x[1] + · · · + x[k] - x[h] = 0 for the generator x[h].

(b) Error: the contraction of the class is not a smooth blow-down.
This string appears if there is only one contractible primitive relation r(P ) with x[h]∈ σP
but not having the form x[1] + · · · + x[k] - x[h] = 0.

7. Blowup[X,cone]:

(a) Error: the second input does not span a cone in the fan.
It is visualized if the second input does not generate a cone in the fan of the variety.

(b) Error: it is not possible to compute coordinates of generators.
It appears if the system given by primitive relations of the varietyX does not allow to compute
the coordinates of the generators of the fan.

8. Cones[X,k]:

Error: the second input is bigger than the dimension of the variety.
This message marks out that the choice for the dimension of the cones is wrong: it is a positive
integer k such that k ≤ n.

9. ContractibleQ[X, rel]:

Error: the variety is described by maximal cones.
This message appears if the variety is described by the data of generators and maximal cones.

10. ContractibleRel[X]:

Error: the variety is described by maximal cones.
The string is visualized if the variety is described by the data of generators and maximal cones.

11. CoordCurvesClasses:

Error: it is not possible to compute the relation associated to a curve.
It appears if it is not possible to know the relation associated to an invariant curve because the
system given by primitive relations of the varietyX does not allow to compute the coordinates
of every generator of the fan.
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12. Coordinates[X]:

Error: it is not possible to compute the coordinates of generators.
The message appears when the system given by primitive relations of the variety X does not
allow to determine coordinates of generators of the fan.

13. Curve[X, cone]:

(a) Error: the set cone does not span a cone in the fan.
It marks out that the second input does not generate a cone in the fan of the variety.

(b) Error: it is not possible to compute coordinates of generators.
It is visualized when the system given by primitive relations of X does not allow to determine
coordinates of generators of the fan of the variety.

14. DelPezzo[n]:

Error: the dimension is odd.
This message appears because the dimension of a Del Pezzo variety is even.

15. FanoQ[X]:

Error: it is not possible to compute the relation associated to a curve.
It is visualized if it is not possible to know the relation associated to an invariant curve because
the system given by primitive relations of X does not allow to compute the coordinates of
every generator of the fan.

16. ListContractibleRel[X]:

Error: the variety is described by maximal cones.
The string is visualized if the variety is described by the data of generators and maximal cones.

17. ListRelCycles[X]:

Error: the variety is described by maximal cones.
This message is visualized if the variety is described by the data of generators and maximal
cones.

18. Prod[X]

Error: it is not possible to compute the product.
It appears if the system given by primitive relations of the variety does not allow to determine
coordinates of generators of the fan.

19. ProjQ[X]:

Error: it is not possible to compute the relation associated to a curve.
It is visualized if it is not possible to know the relation associated to an invariant curve because
the system given by primitive relations of X does not allow to compute the coordinates of
every generator of the fan.
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20. PseudoDelPezzo[n]:

Error: the dimension is odd.
The string appears because the dimension of a pseudo Del Pezzo variety is even.

21. TabContrRel[X]:

Error: the variety is described by maximal cones.
This message is visualized if the variety is described by the data of generators and maximal
cones.

22. TabInvCurves[X]:

Error: it is not possible to compute the relation associated to a curve.
It appears if it is not possible to know the relation associated to an invariant curve because the
system given by primitive relations of X does not allow to compute the coordinates of every
generator of the fan.

23. TabVar[X]:

Error: the variety is described by maximal cones.
It is visualized if the variety is described by the data of generators and maximal cones.

24. Varcones[X]:

Error: it is not possible to compute coordinates of generators.
It marks out that the system given by primitive relations of the variety does not allow to
determine the coordinates of the generators of the fan.

A.15 Help messages

Every algorithm is equipped of an help, in this way you are made easier to use them.
If you want to know what a function computes, it is enough that you use the following command:

In[1]:= ? namefunction

where namefunction is the name of the command.

For example, suppose that you want to know what the command ProjSpace computes then you
write:

In[1]:= ? ProjSpace

and Mathematica answers with the string:

ProjSpace[n] constructs the projective space of dimension n.
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Notice that the string says you also the input of the function.

If you want to look at the text of the algorithm namefunction you have to use the following
command:

In[1]:= ?? namefunction

Suppose that you want to know the text of command ProjSpace then you write

In[1]:= ?? ProjSpace

Mathematica answers with:

ProjSpace[n_]:=Block[{coll, generat, sottoins, i, base, vett,
coord,risultato}, coll = Table[x[i], {i, 1, n + 1}]; generat
=Table[x[i], {i, n + 1}]; <<"DiscreteMath‘Combinatorica‘";
sottoins = KSubsets[generat, n]; base = IdentityMatrix[n]; vett =
Table[-1, {i, n}]; coord = Table[x[i] -> base[[i]], {i,n}]; coord
= AppendTo[coord, x[n + 1] -> vett]; risultato = {n, n + 1,{{coll,
{{0, 0}}}}, coord, sottoins}]

You find the following help messages (they are in the alphabetically order):

1. AddInput

AddInput[X] adds information to the list describing X replacing the Null
entries with the corresponding missing list.

2. AllInvCurves

AllInvCurves[X] computes all relations associated to all different numerical
classes of invariant curves in X.

3. AnticanonicalNefQ

AnticanonicalNefQ[X] says if the anticanonical bundle is nef or not.

4. Basis

Basis[X] computes a basis of lattice N contained in the set of generators
of the fan of X.

5. BasisCoord

BasisCoord[X] computes a basis B of lattice N contained in the set of
generators of the fan of X and the coordinates of all generators with
respect to B.
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6. BasisQ

BasisQ[X,set] verifies if set is a basis of lattice N.

7. Blowdown

Blowdown[X,z] computes the blowdown of X with respect to a contractible
relation of type x[1]+· · ·+x[k]-z=0.

8. Blowup

Blowup[X,set] computes the blowup of X along the invariant subvariety
corresponding to the cone generated by set.

9. ConeQ

ConeQ[X,set] verifies if set spans a cone in the fan of X.

10. Cones

Cones[X,k] computes the k-dimensional cones in the fan of X.

11. ContractibleQ

ContractibleQ[X,rel] says if rel is a contractible primitive relation.

12. ContractibleRel

ContractibleRel[X] computes all contractible primitive relations as linear
polynomials in the generators of the fan.

13. Coordinates

Coordinates[X,B] gives the coordinates of all generators of the fan of X
with respect to the basis B.

14. Curve

Curve[X,set] computes the relation associated the numerical class of
the invariant curve corresponding to the cone generated by set.
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15. CoordCurvesClasses

CoordCurvesClasses[X] computes a basis B in the set of numerical classes
of curves and the coordinates of all numerical classes of curves with
respect to B.

16. CoordContrClasses

CoordContrClasses[X] computes a basis B in the set of contractible classes
of the projective variety X and the coordinates of all contractible classes
with respect to B.

17. DelPezzo

DelPezzo[n] constructs the Del Pezzo variety of dimension n.

18. DegRel

DegRel[rel] computes the degree of the primitive relation rel.

19. EsprVett

EsprVett[X,set] computes a basis B and the coordinates with respect to B
of all classes in set. set is either the set of all numerical classes of
invariant curves or the set of all contractible classes of X. The answer
is a list.

20. ExtremalClasses

ExtremalClasses[X] gives the lists of all extremal and non-extremal classes
of the projective variety X.

21. FanoQ

FanoQ[X] says if X is Fano or not.

22. Gen

Gen[X] computes the set of generators of the fan of X.

23. IsomQ

IsomQ[X1,X2] says if X1 and X2 are isomorphic.
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24. ListContractibleRel

ListContractibleRel[X] computes all contractible primitive relations,
every relation has the form of a list.

25. ListRelCycles

ListRelCycles[X] gives all primitive relations as polynomials in the
generators of the fan.

26. MaximalCones

MaximalCones[X,set] computes the two maximal cones whose intersection
is the cone generated by set.

27. NewVariety

NewVariety allows to introduce a smooth complete toric variety.

28. PrimColl

PrimColl[X] computes all primitive collections of X.

29. PrimRel

PrimRel[X,coll] computes the primitive relations of all primitive
collections contained in the set coll.

30. Prod

Prod[X1,X2] computes the product of varieties X1 and X2.

31. ProjSpace

ProjSpace[n] constructs the projective space of dimension n.

32. ProjQ

ProjQ[X] verifies if X is projective or not.

33. PseudoDelPezzo

PseudoDelPezzo[n] constructs the pseudo Del Pezzo variety of dimension
n.
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34. SmoothQ

SmoothQ[X] says if X is smooth.

35. TabContrRel

TabContrRel[X] constructs the table of all contractible primitive
relations of X.

36. TabInvCurves

TabInvCurves[X] gives the table of all relations associated to the
numerical classes of the invariant curves together with the set of generators
of the corresponding cones in the fan.

37. TabExtremalClasses

TabExtremalClasses[X] constructs the table of all contractible
primitive relations together their coordinates and specifies that a class
is extremal adding the letter E.

38. TabVar

TabVar[X] constructs the table of all primitive relations of X.

39. Varcones

Varcones[X] adds the list of generators and of maximal cones to the list
which describes X.

40. Varprimrel

Varprimrel[X] adds the list of all primitive relations to the list which
describes X.
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