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Chapter 1
Introduction

Given 1 < p < N and a bounded domain Q C RY, N > 2, with z € Q,

we are interested to nonnegative distributional solutions of
—AGA=AGE =0 inQ\ {2}, (1.1)

where A,(-) = div(|]V(-)[P72V(-)) is the p-Laplace operator and A < A;.
Here, to have (T.I) meaningful, Gy € W P(Q\ {z}) N W'~1(Q) and ), is

loc

the first eigenvalue of —A, given by

VulP
M= AoV (1.2)
wewgr@\0y Jo [ul”
By elliptic regularity theory (see [30,33]) we have G € L2 (Q2\{z}) and then
Gy € CL(Q\ {z}) for some o € (0,1). If G, is singular at z, application of

Theorem 1 in [31] guarantees that there exist positive constants C’, C” such

that
G

¢ < T < in Q. (1.3)
Here T is the fundamental solution of p-laplacian in R”, that is
C —1 1
[(y) = —0N7p7 Co = ]Z\)/ (Nwy) 71 (1.4)
ly — x| -P

wy being the measure of the unit ball in RY. Then, using Theorem 3 in [31],

we have that G, solves
~A,G\—AGY ' =KS,  inQ,
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where ¢, is the Dirac measure at x and K > 0 is a constant. Without loss

of generality, consider the case K = 1. Thus we deal with the problem

—A,Gy = \GE =6, in Q
G,\ =0 on 0f).

A Green function G is a distributional solution of problem (L.5]).

Let us first discuss the case A = (0. By a combination of scaling arguments
and regularity estimates, Kichenassamy and Veron [23] showed that in the
singular situation G differs from I' by a locally bounded function H = G —T
in Q (where the index A is omitted since A\ = 0). The function G, whose
existence as a solution of —A,G = J, can be established in many different
ways (see for example [23], [30]), turns out to be unique thanks to a simple
argument based on the property |VH| = o(|VI'|) as y — z. As noticed in
[23], the same approach via scaling arguments leads to a continuity property
of H at x.

The first aim of the present thesis is to establish the Holder continuity of
the so-called reqular part Hy = G, — I' at x and to include the case \ < A;.
Holder properties will represent a crucial ingredient in the second part of this
thesis, when we will assume A > 0 to treat the quasilinear Brezis-Nirenberg

problem [20] in the most difficult low-dimensional case N < p?.

The main underlying idea to show the regularity result is to consider H) as
the solution of

AT+ H)+AT=XGE" inQ (1.6)

and to apply the Moser iterative scheme in [30] to derive Holder estimates
on H, thanks to the coercivity of the operator —A,(I' + H) + A, in H.

In the case A # 0 we first establish an existence result for the problem ,
where G is found as a solution obtained as limit of approximations (the
so-called SOLA, see for example [4, [5]). It will be useful to decompose the
Green function as G, = yI'+ H,, where Y is a cut-off function which is equal
to 1 in Be(z) C Q for some radius £ > 0 and equal to 0 near the boundary.
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We have that, in a weak sense, —A,(xI') = d, + ¢, with ¢ vanishing near z
and g = A,(xI') = div(|[V(xI) P2V (xI")) away from x. Thus g € L>=(Q)
and —A,G\ + A,(xI') — )\G’/{_l — ¢. In particular, one may consider H, as
the weak solution of the problem

—A,(XT 4 Hy) + A,(xT) = A\GZ ' + ¢ in

. (1.7)
H>\ =0 on 0f).

It is worth noting that H, = H, in Be(z), being x = 1. It turns out an
integrability condition on VH, which in particular reads as VH, € L?(Q)
for p > 2 and which always guarantees (even when 1 < p < 2) VH, € Li(Q),
qg= %. Since VI' € L1(Q) for all ¢ < g, the exponent ¢ represents the
threshold situation and the assumption VH, € L(Q) will reveal crucial to
use appropriate functions of H) as test functions in the weak formulation of
(1.6) when running the Moser iterative scheme. The main regularity result

in this thesis reads as follows.

Theorem 1.0.1. Let Q C RY be a bounded domain, A\ < \; and 1 < p < N.

Assume
) N 3 YfN=2
L ifN>4
when X\ # 0. Problem (1.5) has a solution G with
_ N(p—1
VG -mer,  g="0"D (1.9

which is unique for p > 2 in the class of solutions satisfying (1.9). Moreover,
the regular part Hy = G\ — ' is Hélder continuous at xq.

Let us discuss assumption (1.8]) when A\ # 0. Since

N(p-1)

I' e L1(Q) forall1<¢<q", ¢ = N ,
-p

(1.10)

notice that p > % gives Gﬁfl € L1(Q) for some q > %, a natural condition
arising in [30] to prove L>-bounds. Condition G} € L*(Q), ensured by p >
VN, guarantees that distributional solutions of —A,Gy — )\Gi_l =0 are in
WhP(Q). The technical condition p > 2 — + guarantees that g = % > 1.
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As already mentioned, the regularity result established by Theorem will
be crucial to study the quasilinear Brezis-Nirenberg problem in the second
part of this thesis.

Given 2 < p < N and a bounded domain Q C RY, we are concerned with

the existence of a function u satisfying

—Apu — APt =P 1 in
u>0 in O (1.11)
u=>0 on 0.

where p* = NN—_P;, and X is a real number in (0, \;), A; being defined by (T.2).
Solutions of ([1.11)) correspond to critical points of the functional

1 1 . A
ol = [V — = [l =2 [ jup, wewir@).
P Ja P Ja P Ja

It is not possible to obtain critical points of ® using variational methods,
because ® does not in general satisfy the Palais-Smale condition. Indeed p*
is the critical Sobolev exponent and the embedding of W, (Q) into L”" ()
is non-compact. Thus other arguments will be needed.

It is known that problem admits a solution in the semilinear case for
N > 4 (Brezis and Nirenberg [6]) and also when p*> < N (Guedda and Veron
[20]). In the case of lower dimension, the situation could change: according
to [6], the semilinear problem with N = 3 admits a solution when € is a ball
for A € (&, \). It is possible to extend this result to a general domain
with A € (A, A1), for some A\, > 0.

Our goal is to treat the quasilinear case 2 < p < N, following the same ideas
as in Brezis-Nirenberg [6] and Guedda-Veron [20]. We define for A € R

Vull? — Alull?
S\ = inf{ IVelle = Alllly ¢ o), w2 0}. (1.12)

[l

Then S = Sy is the best Sobolev constant for the embedding W,?(Q) —
LP"(Q). It is known that S is independent of Q and is never achieved (see
[20]). Observing that Sy decreases from S to 0 as A ranges in [0, A;), then

the critical parameter A, can be defined as
A =1nf{X € (0,\): S\ < S}. (1.13)
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Since Sy, = S for A € [0,\,) and S\ < Sy for A € (A, A1), then S, is not
attained for A\ € [0, \,). For what concerns the case A = \,, we will work

under the following hypothesis:
Sy, is not achieved. (1.14)

Then the second main result of the thesis reads as follows.

Theorem 1.0.2. Assume 2 < p < N with p > max{\/ﬁ,%}. Then the
implications (i) = (i1) = (iii) do hold, where

(i) there exists x € Q such that Hy(z,z) > 0, where H\(-,x) denotes the
reqular part of the Green function G with pole at x

(ZZ) Sy < S()
(1i1) Sy is attained.

Moreover, the implication (iii) = (i) does hold under the assumption ([1.14)

and in particular A\, > 0.

Under the assumption , in the proof of Theorem We will show that
Hy, (z,z) = 0 for some x € 2, a stronger property which implies the validity
of the implication (i74) = (z). Since Sy is not attained, notice that
always holds in the case A\, = 0 and then A\, > 0 follows by the property
Hy(y,y) <0 for all y € Q. Moreover, since

sup Hy, (y,y) = max Hy, (y,y) =0 (1.15)
yeN yeN

and H) (y, y) is strictly increasing in A for all y € €2 (see Appendix|A.3)), under
the assumption (1.14) the critical parameter A, is the first unique value of
A > 0 attaining (1.15)) and can be rewritten as

A = sup{\ € (0, A1): Hxa(y,y) <0 for all y € Q}.

In the rest of this chapter we state the main known results on singular solu-
tions of the p-Laplace equation and then on Brezis-Nirenberg type problem
in the case 1 < p?> < N.



In Chapter 2 we first prove the existence of Green functions. We show also
the global L*>-regularity of H), and we discuss some structural properties of
problem (1.6) which will be repeatedly used throughout the thesis.

In Chapter 3 we give the proof of Theorem about the Hélder continuity
of H, at the pole. This regularity result can be extended to the whole domain
Q when 1 < p < 2, as shown at the end of the chapter.

Chapter 4 deals with existence issues related to the Brezis-Nirenberg type
problem and the proof of Theorem [1.0.2]

In the Appendix we present the proof of some technical estimates, involving
the operator —A,(I' + H) + A,I' in H. Moreover we extend Theorem 1
in [4] to non-homogeneous boundary values and we give the proof of some

propositions omitted in Chapter 2.

1.1 Main known results for singular solutions

of the p-Laplace equation

This section deals with the known results on the p-Laplace equation (1.5
with A = 0. We focus on the article [23] by Kichenassamy and Veron.

A function u € WHP(Q) is p-harmonic in § if
/quyp?vu, Voyder =0 VYo e CHQ).
This means that u is a weak solution of the p-Laplace equation
—Apu=0 in €, (1.16)

which formally corresponds to the Euler-Lagrange equation for

/ |VulPdz.
0

In their paper, Kichenassamy and Veron continued the work of Serrin on the

singularity problem associated to the equation (1.16), by improving (1.3)).
Assuming 0 € © and u p-harmonic in ', where Q' = Q\ {0}, their aim is to

describe the behaviour of u near 0 and to find an equation for u in €.



1.1.1 The Isotropy Theorem

Let © be an open subset of RY | containing 0, and let ' = Q\ {0}. We assume
that pis a real number such that 1 < p < N and I is the fundamental solution
for the p-laplacian ]

This section deals with the proof of the Isotropy Theorem. The method used
by the authors consists of a combination of scaling arguments and regularity

estimates, together with a sharp maximum principle.

Theorem 1.1.1. Let u be a p-harmonic function in Q' such that % remains
bounded in some neighborhood of 0. Then there exists a real number v such
that

u—~I e L. (Q). (1.17)

loc

Moreover, when v # 0 the following relation holds

i S+l pagy, — -
lim |z D%u—~T")(z) =0 (1.18)

xz—0
for all multi-indices o = (a1, a, ..., ay) with |a] = a1 + @ + -+ +ay > 1,

(VulP~! € LL.(Q) and u satisfies the following equation (even if v =0)

loc
— Apu = |y[P7%6 (1.19)
in the sense of the distributions in ).

Without any loss of generality we may assum B, C Q. The following

elementary estimates will be useful in the sequel.

Lemma 1.1.2. Under the hypotheses of Theorem there exist two con-
stants o = a(N,p) € (0,1) and C = C(N,p,u) > 0 such that for any x,x’
satisfying 0 < |z| < |z’'| <1 we have

|Vu(x)] < Clz|™'T(z), (1.20)

|Vu(x) — Vu(')| < Clz — 2'|%z| 7T (z). (1.21)

'We shall frequently write I'(r) for I'(x) whenever |z| = 7.
2For ease of notation, we continue to write B, to indicate the ball of radius r centered

at 0, that is B,(0).




In the proof of Theorem we will also use the following strict comparison
principle due to Tolksdorf (see [32]).

Lemma 1.1.3. Let G be a connected open subset of RY. Assume that u;
and uy are p-harmonic functions in G such that u; > us in G.

If uy and us are not identical in G, then
up >uy in G. (1.22)
As a consequence we obtain the following sharp maximum principle.

Corollary 1.1.4. Let G be a connected open subset of RN which does not
contain 0 and let u be p-harmonic in G. If # or u—1T" achieves its mazimum

in G, then ¢ is constant.
At this point we are able to prove Theorem [I.1.1]
Proof of Theorem [1.1.1. We define v and v~ by

+ . . — — . .
v =lmsup oS, o7 = mint e
If v© = ~~ = 0 then lim,_, % = 0. So we can assume that y* > 0. Let 8

be the supremum of v on 0B;. Thus the function ug = u — [ still satisfies

- ug(z) +
lim su = and sup ug(z) =0
x—>0p F([E) xeagl B( )
and for the sake of simplicity we still call it u. Now we define the following

function on [0, 1]: @)

3 u(z

7@)—9§§215(3-
We observe that the function 7 is nonnegative, being nonincreasing and such
that 4(1) = 0. Moreover, if there exist some r € (0,1] and some y with
r < ly| < 1 such that 3(r) = %, then u(x) = A(x)['(x) for any x in
G, = {&:r < [¢] < 1}. With the aid of Corollary we obtain that ¥

is constant in G,. As a consequence, recalling that (1) = 0, we get ¥ = 0



on [r,1] and v = 0 in G,. Thus 7 is constructed as a nonincreasing function
with the following properties:

- u(z)
3(r) = sup 2
jaf=r 1'()
lim 5(r) ="
lim 5(r) =5
and there exists z, such that |z,| = r and

0= 1y

At this point we define the function u, on A, = {£: 0 < [¢] < 1} by

up(§) = ?Zf))

The function u, is p-harmonic in A, and we have from Lemma [1.1.2

(@) < €| 1| < cre ‘
[V, ()] < m (Vu)(rg)| < Cl¢)7 T,

Vur () = Vaur(€)] < Clé — € (min(le]. J¢')) 5.

(1.23)

where C' does not depend on r. From the Arzela-Ascoli’s Theorem there exist

a p-harmonic function v defined in RV \ {0} and a sequence 7,, — 0 such that

U, —> v in C’fOC(RN \ {0}).

Moreover we have

u(§) _ _urd)  u(rg) T(rE)

0E) TOD©  TeeTrIE ~ Trerd)
If we set & = =, then

u (&) ()

L) ray

From the compactness of 0B; we can suppose that there exists £, € 9B such
that lim,, _0&., = &. This yields

W) At e o
fe) M ™ T ST




Application of Lemma gives
v _ "

L) ray

Then, recalling the definition of v, we obtain

ling 1, (€) = o6) =7+ (1.24)

uniformly on every compact subset of R\ {0}. In particular, if we set z = ¢
with & € 0By, we have

In order to prove the boundedness of u — vyI' we consider, for ¢ > 0, the

following p-harmonic functions in By \ {0}:

)= G+ - (4T + s a). (129
V(@)= (190~ (- W) + inf u(x). (120
By definitions (1.25]) and ((1.26)) we have that (u —v)T =0= (v —u)~ on

OB;. Moreover v- (z) < u(z) < ul(x) in B; \ {0}. Letting € to 0 we obtain

(L.17). Indeed

inf w(z) —~IT'(1) <u—9I' < sup u(z) —~I'(1).

T€dB1 r€0B
At this point we want to show (1.18)). Using (1.23)) and (1.24) we have
. _ 7
lim Vu,(£) = —F(I)VF(S), (1.27)

uniformly on every compact subset of RY \ {0}. Settin z = r¢ with [£] = 1,
we get forn any « such that || = 1. From (1.27) we also get that
there exists ro such that Vu, never vanishes on G = {&: 1 < |¢] < 2} for
0 <7 < 1ro. Therefore u, satisfies a nondegenerate elliptic equation in G and
is C*°. Using the same device as in Lemma we deduce

D%, (©)] < J¢] 51
for any multi-indices « such that || > 2. This implies ([1.18).
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In order to prove ([1.19), we observe that Green formula gives

/| (|VulP~2Vu, Vo)dr = —/ ©|VulP~?u,dS
x|>r

|x|=r

for any p € C}(2) and 0 <r < 1. As

1-N I

Vu(z) ~ —y(Nwy) 7|z 71—  as z — 0,

||

we finally get

/Q (VuP~2V, Vi) = Ay P 2(0).

This concludes the proof of Theorem [I.1.1] O

Remark 1.1.5. It is possible to prove something stronger than the bounded-
ness of u—~I": we are able to show that u(z) —4I'(x) admits a limit as x tends
to 0. In order to prove this result, we look for the point where the bounded
function u — AI" achieves its supremum on B;. If it achieves this supremum
in B; then it is constant from Lemma [I.1.3] and everything is done. So we
can suppose that it is not constant. Then we have two different possibilities:
either this supremum is achieved at 0 and

sup (u(r) —7I'(z)) = limsup(u(z) —yT'(x)), (1.28)

r€B; z—0

or it is achieved for |z| = 1. We will discuss the cases separately.
Assume (|1.28) and let A be the value of this supremum. We define

A(r) = sup (u(z) —T(2)) = sup (u(x) —T'(2)),

r<|z|<1 |z|=r

the function A(r) being non-increasing. Moreover there exists z, such that
|z.| =7 and A(r) = u(z,) — yI'(x,). At this point, for £ € A, and 0 <r <1
in such a way that 0 < r|¢| < 1, we set

vr(§) = u(rg) —~I'(r). (1.29)

The function v,(§) is p-harmonic and bounded on any compact subset of A,
as we have I'(r§) = I'(r)['(¢) and

T(E)+C1 = u(rg) =AI(r&)] < vp(§) < AT(E)+Cot|u(rg) —I'(rE)]. (1.30)

11



We observe that the definition of I' implies the improvement of estimates in

Lemma [1.1.2] that is
[Vu(z)| < Cla| Y,
|Vu(z) — Vu(az')| < Clx — 2 |*|z) 17,

for 0 < |z| < |2'| < 1. Returning to (1.29) we have
Ve (&)l < Cle ™,

[V (§) = Vo (€)] < Cle = €'1%lel

for 0 < [¢] < |¢| < % As a consequence, the set of functions {v,} is
relatively compact in the C! topology of any compact subset of A,: there
exist v € CH*(RY \ {0}) and a sequence r,, — 0 such that v, converges to v
in this topology. Moreover we can assume that &, = % converges to some
& € 0By. As we have u(r€) —~I'(r€) < X and u(r,é,,) —yL(rpé.,) — A as

n — +o00, we deduce

v(€) < TE) +A  and (&) =T(&) + A (1.31)

Application of Corollary gives that v = vI' + A and v, converges to
AT + X as 7 goes to 0 in the C! topology of any compact subset of RY \ {0}.
Returning to ((1.29)), this means that

lim(u(z) —y0(x)) = A (1.32)

z—0

Assume now sup,ep, (u(r) —I'(x)) = supj,—; (u(x) — T (x)). We perform
the scaling transformation and there exists a p-harmonic function v
and a sequence 7, — 0 such that v, converges to v in the C! topology of
any compact subset of R \ {0}. Moreover, from ((1.30)), v satisfies

Ci < (&) —T() < Co.

We look at the points where v — 4T" achieves its supremum in RV \ {0}. If

this supremum is achieved at some &y, then v —~I" is equal to some constant
A. Returning to ((1.29), we obtain

lim (u(rnf) - W/F(Tng)) = A

rn—0

12



in the C!

loc

(RY\ {0}) topology. For ¢ > 0 fixed, there exists ny such that for

n > ng we have
YL(r8) + A — e < u(ré) <AT(ré) + A + ¢,

for £ € OB;y. Application of the maximum principle in {z: r, < || < 7}
yields

W(z)+ A —e <ulzx) <Al(z) + A +e.
As ¢ is arbitrary we obtain again (1.32). So we are left with the case where
the supremum of v — 41" is achieved either at 0 or at infinity. In the second
case we perform the inversion ¢ of RY \ {0} defined by d(x) = rE Which
leaves equation invariant and exchanges 0 and infinity. Let ¥ be v or v o ¢

and assume that v achieves its supremum v at 0. If ¥ = v then we have
lim(v(£) —T'(E)) = v,
£—0

which implies
lim lim (u(r,§) — I (rn.€)) = v.

£—=0r,—0

With the maximum principle as above we get (1.32)). If o = v o ¥, then
lm (u(6) A7) = v,

€] —=+o0

which means
li li &) — L)) = v.
g Jim, (u(rag) —AT(mg)) = v
For € > 0 there exists K > 0 such that for |{| = K we have
v—e< limo(u(rnﬁ) —I(r,K) <v-+e.
Tn—>

With the aid of the maximum principle as before we deduce ((1.32]).

1.1.2 The singular Dirichlet problem

We assume that € is a bounded open subset of RY, containing 0, with a

regular boundary 0€2. This section deals with the problem of finding a dis-

tributional solution of the following problem
—Ayu = Ko in )

(1.33)
u=gqg on 0f).

13



Here 1 <p < N, K € R and g € L>*(Q) N WP(Q). We are going to prove

the following result.

Theorem 1.1.6. There exists a unique function u € CY*(QV) such that
VulP~t € LY (), Vu € LP(Q\ B,) for r > 0 small enough and

%eszan, (1.34)

satisfying (1.33). Moreover the following estimates hold:

u— | K| isgn(K)T € L®(Q), (1.35)
V(u — [K|7 sgn(K)T) = of|z| ), (1.36)
D*(u— | K7 sgn(K)L) = of || 71 1) (1.37)

if K #0 for any multi-indices o with |a| > 1.

Proof. (Uniqueness) Let u; and uy be solutions of (1.33). From Theorem
they both satisfy

()
ili% [(x)

Moreover they also satisfy (1.35) and (L.37]), so we have

U —ug € L>(Q),

= |K|7Tsgn(K).

V(u —us) = of|z| 1) asz — 0.

From the equation we have, for all » > 0 small enough,
/ (|Vup [P2Vuy — |Vug[P2Vug, V(up — up))de
O\B,
= —/ (w1 — u2)(|Vur [P20,u1 — |Vua[P~20,u0)dS, (1.38)
|z|=r

and the right-hand side of (1.38) goes to 0 as r — 0. As for the left-hand
side, it is greater than
C|V('U,1 — UQ)|p lfp 2 2,

(1.39)
C(1+ |Vuy| + |[Vua )P4V (u; —ug)]?* if1<p<2

14



Thus V(u; —uz) = 0 a.e. in Q and so u; = uy a.e. in €.

(Ezistence) If K = 0, (1.33)) is the classical Dirichlet problem. For this reason
we assume K # 0 and, without any loss of generality, K > 0. For ¢ > 0

small enough, let u. be the solution of

—Apyu. =0 in Q\ B.
u. = K 1T(e)  on 0B. (1.40)
Us = ¢ on 0f).

Such a u. can be obtained by minimizing the functional fQ\BE |VoulPdz in
WP(Q\ B.), with the boundary conditions of (1.40). We define

A=Kt sup |I'| + sup |g| > 0.
o9 o9
Application of the maximum principle to the functions wu., K#1T — A and
K#1T + A yields
Kril—A<u.<KriT+A inQ\B.. (1.41)

If G is any compact subset of €', then there exists n > 0 small enough such

that G C Q\ B,. For 0 < e < in < n, (L.41), (1.22) and [25] imply the

following estimates
[Vuellere@ < C, (1.42)

Vel es,) < C, (1.43)

where C' does not depend on €. Then there exists a subsequence ¢,, going to

0 and a function u which is p-harmonic in €2’ such that
u., »u in Cp () and Vu,, — Vu in LY (Q\ {0}).

Thus the boundary condition on 9f is preserved and u also satisfies (1.43)
in Q. Application of Theorem gives

—Apu = Kdy in €,

in the sense of distribution. Hence w is the solution of ([1.33)) and u. converges

to u. Moreover the following properties hold

(1+ |Vu| + |[VT|)P2|V (u — ]K]Tllsgn(K)F)P e L'(Q) if1<p<2
V(u — |K|7Tsgn(K)T) € L?(Q) if p > 2,
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in virtue of (1.39).
This concludes the proof of Theorem [1.1.6] O]

1.2 Main results for Brezis-Nirenberg type prob-
lem when p* < N

This section deals with the existence result related to problem

—Aju — APl =Pt in Q
u>0 in Q (1.44)
u=0 on 0f)

with 1 < p? < N and 0 < A < )y, proved by Guedda and Veron in [20].

Theorem 1.2.1. Let Q) be a bounded open subset of RN with a C? boundary
Q. Assume 1 < p*> < N. Then problem (1.44) admits a solution in Wy (Q)
for any X € (0, \1).

In order to prove Theorem some preliminary regularity results are
needed. Then the proof follows ideas and techniques of Brezis-Nirenberg [6],
Aubin [2] and Trudinger [34].

1.2.1 Uniform C!“ estimates
Let €2 be as in Theorem and p > 1. Consider the following problem

—Ayu=f in Q

(1.45)
u =70 on 02,

f being a given function defined on ). If the data are not regular enough,
recalling the definition of the operator A,, it is traditional to approximate
(1.45) by the following non-degenerate problem

—div((e + |[Vue|) T Vu) = £ in Q

(1.46)
u: =0 on 0f),

where ¢ is a positive constant.
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Proposition 1.2.2. Assume f. € CY(Q) and u. € C*°(Q). Then there
erist « = a(p, N) € (0,1) and C = C(p, N, || f-|lc) > 0 such that

tellcra@ < C for any € € (0,1).
Proof. See Proposition 1.1 in [20]. O

Next consider the problem

—Aju+ K(@)|ulf?u=f inQ

(1.47)
u =0 on 0f).

Proposition 1.2.3. Assume 1 <p < N, f € L%(Q) and K € L%(Q).There
exists Cy = Cy(t,p, N, Q, K, || f||~x) such that

[ullre@) < Gy (1.48)
for any u € WyP(Q) solution of and t € [1,400).
Proof. See Proposition 1.2 in [20)]. O
Remark 1.2.4. Notice that still holds for solutions u. € Wy*(Q) of
—div((e + ]Vu6|2)p772Vu€) + K(2)|ucP?u. = f in Q,

and C; is independent of ¢ € (0, 1].

Proposition 1.2.5. Assume 1 < p < N and f € L*(Q) for some s > %.
There exists C = C(N,p, |Q|) such that
lullLo@) < CllflIZeq
for any u € WyP(Q) solution of (T.45).
Proof. See Proposition 1.3 in [20)]. O
As an application we get Corollary involving the problem
—Aju=g(-,u in
P g(-; u) (1.49)

u=0 on 0,

which represents the main regularity result of this section.
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Corollary 1.2.6. Assume 1 < p < N. Let g be a continuous function in
Q x R which satisfies

lg(z,7)| < Clr" "t +D forall (v,7) € QA xR, (1.50)
C and D being real constants. If u € Wy (Q) solves (1.49), thenu € C*(Q).
Proof. Setting K(x) = sign(u)g(z,u)/(1 + |u|P~!), we have from (1.50) that

p*—1
K (z)| < Cl“‘—JFD

!/
= T <O

p*—p —I—D’,

C’, D' being constants. As p* —p = Np—ip and u € LP () we deduce that

K e L%(Q) The equation in (1.49) rewrites as
—Ayu = K(z)|u|"?u + sign(u) K ().

Application of Proposition yields u € ;o0 LH(R), in view of K|ulP~>u+-
sigh(u) K € (Ni<jeqoo L'(22). Then, from Proposition we deduce that
u € L®(1). Finally Proposition [1.2.2] gives the C**-regularity of u in Q. O

At this point we are able to prove the following nonexistence result.

Corollary 1.2.7. Assume 1 < p < N. Let Q be starshaped with respect to

some point. Then the equation
—Apu = [ulf" Tt in Q,
admits no nonzero solution in W, (Q).

Proof. As u € WyP(Q), w>0in Q and v € L=(Q) from Corollary . If
w is nonzero then u > 0 in Q and d,u > 0 on 99 (see [32] or [36]), which
implies (x,v) = 0 on 0N in view of the Pohozaev identity for the p-laplacian
(see [12]). Hence Q cannot be bounded otherwhile we consider the smallest
ball with center 0 containing €2; such a ball is tangent to 00 at zy and

(€0, Vay) > 0, a contradiction. O

18



1.2.2 Proof of the existence theorem

We are going to prove Theorem We define for A € R

Sy = inf{/(|Vu|p — MulP)dx: u € ng’p(Q),/ |u
Q Q

Then

de::l}. (1.51)

So=S5= inf{/ |VulPdz: u € Wol’p(ﬂ),/ |ul?"dx = 1}
Q Q
is the best Sobolev constant for the embedding Wy”(Q) < L (Q).
Lemma 1.2.8. S is independent of ) and is never achieved.

Proof. The fact that S is independent of €2 is clear as ‘hzrrnf is independent
p

of the scaling transformation k — ug(z) = u(kx).
Assume by contradiction that S is achieved by some u € VVO1 P(Q2). We can
suppose v > 0 in €2 and, if B is a ball containing €2, we define @ in B by

U in €2

0 in B\ Q.

=g
I

As @ achieves S in B there exists a Lagrange multiplier p such that
~Ayi = pa” "' in B

and @ € WyP(B). As [,4” =1 and [, |Val’ = u, we deduce that > 0
(u = S) which is impossible from Corollary [1.2.7] O

Remark 1.2.9. When  is replaced by RY then S is achieved by the functions

P

o) = (wo(222)") P el ()

p—1

for some a > 0 (see [19]). Moreover the functions U, are the only positive
solutions in D'P(RY) off]

—Apu =uP -1 in RV,

as proved by Damascelli-Merchan-Sciunzi and Vétois (see [9] and [37]).

3We recall that DYP(RY) is the completion of C5°(RY) with respect to the norm
1
lull pro@yy = (fan [VulPda)?.
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Lemma 1.2.10. Let 1 < p?> < N. Then for any X\ > 0 we have Sy < S.

Proof. Following Aubin’s method [2] we define
Val[f = Allull

Q)\('LL) = ‘
for u € Wy?(Q), u # 0. We assume 0 € Q and we define
P
ue(z) = (xp) = (1.53)
+ )

for some ¢ € (0,1] and ® € C5°(Q2), 0 < ® <1 and ® = 1 in some neighbor-
hood of 0. The idea is to estimate Q(u.).

Step 1. We claim that

[Vullh = Ke™ S+ 0(1), (1.54)
where K = K(N,p) > 0. From (1.53)) we have
Vo(z p—N x®(x
Vu.(z) = (L) vt 7 ( )ﬂ 5
(e+lalm) 7 P (et [z]5T) 7 [z

As ® =1 in a neighborhood of 0 we obtain

_ p ﬁ D
[ivupy = (322) [ 2 s oq)
9) p o (e + |z|#P-T)

Then, writing ®? = 1 + ®? — 1, we get (1.54]) with

N —p\” 7T
K:(__£>/i_iﬂﬁfﬂm:MWMM> (1.55)
p—1) Jev (e 4 |z|pm1)N

Uy being defined as in (1.52)) and L = L(N, p).

Step 2. We claim that
K N—p

po= ST o), (1.56)

K being as in (1.55). From 1.53 we have

/up / d:c
5—1—]95\? T)
or” —1
I/—er/(x—)pdfC
o (e+[z[= )Y Ja(e+ |a|r )N
N dl‘

=€ 7 / = T 0(1)7
&~ (& + af7T)Y

20

| ue



and finally we get ((1.56) as

dLU P* *
—— 5 = L7 Ul d VUL = S|UL|%
/RN At gy o N0l end VO = SIEA,

Step 3. We claim that

lucl? = Kie™ "5 +0(1) if1<p® <N, (1.57)
1
lull, = Kilog - +0(1) if p* = N, (1.58)
where K7 = K;(N,p) > 0. In the ﬁrst case we have

[ i LS
€+|x|p ) a (& + |a[=r)NP

+ O(1),

_/RN (€+|x|%1) —p

and we get the desired result with

d
Kl — / «Tp .
gy (14 [z|7o1)N-p

In the second case we have

/ng:()(lH/ (8+|:L"|Ci$1) o)

Setting (e fQ — 88— it is clear that there exist 0 < Ry < Ry such
g+\m|p 1)17(17 n’
that

dx dx
<I(e) < . :
jwl<rs (€ + |z[7T )P e|<Rs (€ + |z|p-1)p(~1)

Moreover, for a fixed R > 0 we have

p—1

d.T Ré_T 8p2_1
/ = WN/ 5 dx
lz|<R (€ + |x|p 1)p(p—1) 0 (1+ s7-1)p(p-1)

wy being the measure of the unit sphere in R, Hence I(g) = % log £+

O(1), which gives (1.58).
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Step 4. From Steps 1-3 we obtain

N—p

S — A=l L O(e77 ) if1<p?*<N
Qalue) = I]; 1 1 —1\  ip a2
S —AG2eP og s +0(eP™) if p? = N.
As S\ < Qx(u.) < S we get our result. O

Lemma 1.2.11. If 0 < S\ < S, then S\ is achieved.

Proof. Following Aubin |2] and Trudinger |34] we consider the following func-
tional on W, ?(Q) \ {0}

IVullz = Alull
Q4 (u) = e A
' ull?

for p <t < p*, and we set
S' = inf{Q}(u): u € Wy*(2)\ {0}}

which always exists.

Step 1. For p <t < p* there exists u, € W, (Q) satisfying

—Ajuy = Ml Syl in Q

(1.59)
u >0, Q4(u) =S5 |wll, =1

Indeed the compactness of the embedding W, () into L*(2) implies that
the infimum of Q% is achieved on the unit sphere in L'(2) by a nonnegative

function u, € Wy (Q) which solves
—Ayuy — Ml = Cul!
and C' = S’. From Vazquez strict maximum principle we get u; > 0 in (.

Step 2. The function ¢ — S’ is continuous on the left from [p, p*] into
(0, 400).

In order to prove this claim, first we notice that S > 0 as S\ > 0. For w
fixed in W, ?(Q)\ {0}, we have that ¢ — Q% (w) is continuous from [p, p*] into

(0,400). Hence ¢t — S* is upper semi-continuous, that is S* > lim sup, _,, S*.
Set ¢ > 0 and ® € Wy(Q) \ {0} such that

(@) < S+, St<QL(D),
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where p <t <t <p*. As
@] < [[@]]Qf7 7,

we get
l 1
t t’

(@) > QA(@)

L)

Thus S* 4 & > SYQIP (=), which implies the continuity on the left as

liminf S* + & > S* > limsup S*.
vt t

Step 8. The set of functions u, € W, (Q) satisfying (L.59) is bounded in
Wy (Q) independently of ¢ € [p, p*).
Indeed, it is clear that the LP” norm of wu; is bounded independently of ¢ €
[p, p*) as
1.1
Juellp < [luelle2]»" < C,

and
||Vut||§ < \CP + S,

Moreover if we fix ug in W, 7(Q) \ {0}, then S* < Q% (uo). As t — QY (ug) is
continuous, there exists M such that

St < max Q%(up) = M, te[p,p,

p<t<p*

which implies the uniform boundedness of {u;} in W, ().

Step 4. The set of functions {u;} is bounded in C*%(Q).
In order to prove this claim, we set K; = S* — u! ? in such a way that
rewrites as

~Ayu; — Kl =0,

Step 3 and Propositions - yield that u; € C1%(Q). Moreover, from
Step 1 we get

5+1/Vu P=)\ /up+ﬂ+Dt/ut+B
(M) Vi = [ K
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. 142 o .
for any 3 > 0. Setting v =, ”, then [, utt? < (fyvh)T in view of Holder
inequality and [ju]|; = 1. As a consequence we get

p P
E3

S(ﬁ)’”(ml)(/ng)“ < A/Qvustmyz’(%—pi)(/gvp’“)” .

As (ﬁ)p(ﬁ +1)=1- gp_ﬁé +0(4?), 0 < Sy < S and limy s« S* = Sy from

Step 2, there exist ¢ > 0, § > 0 with p+ § < p* and ty € (p,p*) such that

for any ¢ € (to,p*)
b
14+8)p*\ P*
8(/71,5 ”)p) §€/uf+ﬁ.
Q Q

Hence the set of functions {u;} is bounded in Lp*+%(9). Finally, proposi-
tions [1.2.5 and [1.2.2] imply the C1*(Q) boundedness.

Step 5. We are able to end the proof. From Step 4 there exists an increasing
sequence {t,} and a function u € C**(Q) vanishing on 9Q such that u,,
converges to u in CY (Q) for any o/ € (0,a). From Step 2 we have that
lim,, ;5 S’ = Sy. In order to prove that u # 0, we get from (1.59)

P

VP — ) =St > S uf” ’ -\ [ b
t t t
Q Q Q

Letting t = t,, go to p* we obtain

S — /\/ uP S S)\,
Q

that is

S—5,< )\/ u?,

Q
and then u # 0. Hence
— Aju— P = Sy (1.60)

ue WyP(Q) and u > 0 in Q. O

Proof of Theorem [1.2.1, As A > 0 we have S\ < S and as A < A\; we have
Sy > 0. If u achieves the infimum (|1.51)) we can assume u > 0 and we have
(1.60). Replacing u by ku we obtain a solution of problem (|1.44]). O
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Chapter 2

Existence of Green functions and

main properties

This chapter deals with existence and uniqueness results related to ,
with A < A; and 1 < p < N. We will use the decomposition Gy = xI' + H,
of the Green function in order to have H = 0 on 9%, as already explained in
the Introduction.

For the sake of simplicity, we will assume the pole being at 0. All the results

that we are going to prove can be easily generalized to the case of pole at x.

In Section we prove the existence of a solution G, of problem . In
particular, we adopt the notion of solution obtained by limits of approxi-
mations (SOLA), which are solutions obtained via an approximation scheme
using solutions of regularized problems. We follow the approach of the SOLA
used by Boccardo and Gallouet in [4] and [5]. In the case A # 0 we have to
require the technical condition p > 2 — % to guaranteee that ¢ = % > 1.
Then we show that a SOLA G of satisfies condition (1.9).

Section is devoted to the global L*>-regularity of the regular part H) of
any solution to satisfying the natural condition (1.9)).

Finally, Section deals with uniqueness issues. We will show that, if p > 2,

the solution of (1.5) is unique among those satisfying (1.9).
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2.1 The existence of a SOLA G,

Let {f;} be a sequence in C§°(2) of nonnegative functions converging to &y

in the distribution sense, with || f;||; uniformly bounded, and such that
fi = 0 uniformly in K € Q\ {0} as j — +o0. (2.1)

It is possible to choose such a f; satisfying (2.1)) by setting f;(z) = jf(jz)
where f e C5°(2), suppf C By and [, f(y)dy = 1.
It is known by [24] that there exists a weak solution G; of the problen]

—AG = AGP = ) in O
G;=0 on 051,

that is G; € Wy (Q) such that

[ werwe,vo -a [arte= [ 1o veewr@. @3

We can assume G; > 0. Indeed G; minimizes the functional

1 A
@) = [19or =2 [l [ g vewir@,
P Ja P Ja Q

and it is easy to check that if u minimizes J, then the same holds for |u|,
being f; > 0.

Lemma 2.1.1. Let G; be a solution of (2-2). Assume p > max{v/N,2—+}
if A\#£0. Then G?fl is uniformly bounded in L*(9).
Proof. Assume by contradiction that ||G||,—1 — +00. We define

e
TGt

By the equation in (2.2)) we have that G; solves

i
[reX i

— NG —AG = in Q. (2.4)

'In the sequel we will omit the dependence on ) for ease of notation.
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We observe that the right-hand side of (2.4]) is bounded in L'(€) and con-
verges to 0. Application of the results in [4] yields that there exists G such

that, up to a subsequence,

A A N({p-1

Moreover G solves
—AG=AGPT=0  inQ (2.5)
Using G as test function in the weak formulation of (2.5), we obtain

/yvéw—x/ép:o.
Q Q

Recalling the definition of \;, we have
/ IVG]P > A / Gr.
Q Q

(Al—A)/GPSO,
Q

from which follows G = 0 a.e., since A < A\;. Application of Sobolev inequal-

Thus

ity gives ||G;,—1 — 0, contradicting the definition of G according to which
1Gjllp-1 = 1.

Tt is worth noting that G is admissible as test function in the weak formulation
of (2:5), when A # 0. Indeed G € WyU(Q) for all ¢ < g. By Sobolev

embedding G € L*(Q) for all s < ¢* = 2= Since p* > N, then p < '

and so G € LP(Q). We use T)(G) as test function in the weak formulation

of (2.5), T; being defined as in (2.39). By definition (2.39)), we have that
V(T)(®)) = VG in {|G] < I} and V(T}(G)) = 0 outside this set. Moreover
IT)(G)| < G. Finally we obtain

/ IVGIP < A/ GP. (2.6)
{la<iy Q
Since the right-hand side of (2.6]) is uniformly bounded in [, we can pass to

the limit [ — +o00 in this inequality and we obtain

/ IVG]P < C.
Q

Thus G € W, (). Our claim is so established. O
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A generalization of Lemma (2.1.1) can be found in Appendix (see Lemma
A.2.3). At this point we are going to prove the existence of a SOLA of

problem (1.5)).

Theorem 2.1.2. Assume p > max{v/N,2 — <} if A # 0. Then there exists
a distributional solution Gy of problem (1.5). Moreover, Gy € Wy U(Q) for
all g < q and G > 0.

Proof. Setting h; = f; + )\G§_1, by Lemma we deduce that ||h;||; is
uniformly bounded and h; € W= (Q) N LY(Q). Therefore, from the appli-
cation of the results in [4] we have that, up to a subsequence, there exists G
such that
G; — Gy in WY(Q). (2.7)
Thus
G; - Gy ae. inQ and VG; — VG, ae. in Q. (2.8)

The continuous embedding of W, %(Q) in L9 (Q) for ¢ < N implies that

: w_Np-1)
; L"(Q = :
G; — G, in L"(€2), r<q N

N(p-1)

Since p — 1 < N o We have that

Gj — G)\ in Lpil(Q»
Moreover
IVG;P2G; — [VGAP2VGy  in LY(Q).

Therefore we can pass to the limit in (2.3)) for ¢ € C3(2) and we obtain that
the limit function G is a distributional solution of problem (L.5)). Moreover
Gy € Wy9(Q) for all ¢ < g and G, > 0. O

Let G be a solution of (L.5), given by Theorem (2.1.2)). Consider the de-
composition G = xI'+ lfl,\. Our aim now is to define I:I,\ as limit of suitable
regularized functions and to prove that I, satisfies condition (1.9).

Let I'; be the solution of problem

(2.9)
Fj =T on 89,
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f; being defined as in (2.2)). For any fixed j, there exists unique I'; solution
of the problem (2.9). This solution is obtained using the variational method,

by minimizing the functional

J(U):l/‘vmp—/fjv, v e W(Q), v=T on 9Q.
b Ja Q

The strict convexity of the function ¢ — |¢|? and the fact that f; > 0 imply

the uniqueness of the minimum of J, from which it follows the uniqueness of

the solution of ((2.9).

The following proposition allows us to consider {I';} as a sequence of regu-

larized function of T".

Proposition 2.1.3. Let {I';} be a sequence of solutions of (2.9). Then
;=T in WH(Q) for all ¢ < q.

Proof. Using the results in [5], we obtain the precompactness of {I';} in
Wha(Q) for all ¢ < §. Moreover any limit T' of I'; is a solution of the limit

problem

B (2.10)

AT =5 in Q
r=r

on 0f),

and I € Wh(Q) for all ¢ < q.

Application of the uniqueness result due to Kichenassamy and Veron (see
[23]) guarantees the uniqueness of the solution of problem (2.10), and so
[ =T, yielding that

;=T in WH(Q) Vg<g.

At this point, let flj be defined by
We recall by (12.8) that

VG; — VG, ae. in ()
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and, up to a subsequence,
I'y =T ae. inQ and VI; = VI a.e. in ).
in view of Proposition Thus
V(xI';) = V(xI') a.e. in Q.
So we have that
VH; = VG, — V(xT;) = VG\ — V(xI') = VH, a.e. in Q.
Then the following result holds.

Proposition 2.1.4. Let Hy, = Gy—xT, where Gy is a SOLA of (L3)). Under
the hypothesis of Theorem then Hy € WyY(Q). In particular, if p > 2,
we have a stronger resull that is Hy € WP (9).

Proof. By definition (2.11]), it follows that H ; solves the problem

—A,(XT; + H)) + A, (xT;) = AGY !+ g, in 0

(2.12)
Hj =0 on aQ,

where g; = f; + A,(xI';). In particular, g; vanishes near 0 and g = A, (xI)
away from 0; by the properties of f;, it follows that we have a good control
on I'; away from 0 and thus g € L>*(Q).

We multiply equation in by ﬁj and we integrate on (). Hence

/ﬂ (VT + B) P2V OE, + ) — [VOT)P 2V (O T,), V)

Q Q

The right-hand side of is uniformly bounded. This fact is a conse-
quence of the boundedness of g; if A = 0. If A # 0 we use that G, is
uniformly bounded in L"() for all r < ¢*, and also in L?(Q), being N < p*.
We study the left-hand side of and we apply the estimates in Appendix

(A.1)). If p < 2 we have that
C'/§2(|V(XFj)| + |VH,|) 2 v ;)

< /(’V(XFJ + H) P2V (XD + Hy) — V(X)) P2V (xLy), VH;).
Q
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On the other hand, if p > 2 we observe that
c" [IVP < [(TOEA )PV +) [V O P2 (L), VAL,
Q Q

Thus the following estimates hold uniformly in j:

[avea+ Vi <e psa (ag
Q
/ IVH,P<C  ifp>2. (2.15)
Q
Application of Fatou’s lemma to (2.14)) and (2.15)) yield
[avan+ vy Avip e itpge (210
Q
/ IVH, P <C  ifp>2. (2.17)
Q

Using (2.17)) and the fact that ¢ < p, we have that H, e Wol’q(Q) if p > 2.
Now we prove that (2.16) guarantees that H, € Wy%(Q) also when p < 2.
We observe that

(p—2)q (2—p)q

L9 = [V O0]+ (98 AT + V)
Q

Application of Holder inequality with exponents
2(N-1)

3N—2-Np
N(p—1) 3N—2—Np

[remp
Q
<2p>N(p1>) 2(N-1)

< ( / <|v<xr>|+|vm|>p-2|vw) o ( / (IV (D) [+ |V ) 25

ST

0  (2)

yields

(2.18)
At this point we observe that

(2—p)N(p—1)

/ (VD) + [VH) 555 < 4o
9]

% < ¢. Indeed this inequality is equivalent to N > 3%1) being

p < 2, which holds in view of N > p > 3% This fact together with (2.16)
and (2.18)) finally yield

since

/ IVH,|" < C.
0
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As a consequence, recalling the definition of both H, and H, as explained in

the Introduction, we get the following result.

Corollary 2.1.5. Under the hypothesis of Theorem[2.1.2, there exists a dis-
tributional solution G of problem (L.5)) satisfying (1.9).

2.2 The global L*>*-regularity of H)

The aim is now to prove the L*-regularity of H) as solution of . We
include also the case 1 < p < 2, which is particularly meaningful when A =0
providing a different proof than in [23]. The singular character of equation
has to be controlled thanks to the assumption VH, € LI(Q).

Before turning to the main result of this section, we discuss the main prop-
erties related to problem (1.6, which will be repeatedly used throughout the

thesis.

2.2.1 Structural properties of the problem

The first result deals with the asymptotic behaviour of VH, at the pole.

Proposition 2.2.1. Let Hy be a solution of (1.6). Then
\VH,|=O(|VI']) asz—0. (2.19)

Proof. Let R be a small positive radius. We set

QR:{Z: z:}%,yeQ} (2.20)

and we define, for z € Qg,

Grr(z) = Rvt Gy(R2),
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Let pr € C3(QR) be such that pr(z) = p(Rz) for some ¢ € CH(Q). We

observe that

/ VG 2(VGrn Vor) = | RN|[VGA(R2)P-2(VGr(R2), Vo(R2))d>
QR

Qr

- / VG2V Gy, Vo)
(9]
= A/ﬂGi_lsOvLsO(O),

using in the last passage the weak formulation of problem (1.5)). We have
/ GYly = RYNGY Y (Rz2)p(Rz)dz
Q Qg
=R’ | RNPGE N (Rz)p(R2)dz
Qg

_ p—1
= Rp G,\RQOR-
Qr

Moreover p(0) = pg(0). Thus, for all o € C3(QR)
/ |VG)\’R|p_2<VG>\7R,Vg0R> = )\Rp/ Gijlzlch'f‘ﬁ,DR(O).
Qr Qr

Then G g solves the problem

NG — ARPGE ;= 0y in Qg
Gar>0 in Qp (2.21)
Gar=0 on 00p.

With the aid of the decomposition G\ =I' + H,, we write
Ganr(z) = Rv 1 Gy(Rz) = Rv 1 (D(R2)+ Hy(Rz)) = T(2) + Hyn(2), (2.22)

in view of the definition of Gy g, I'r and H, g. Moreover, condition (]I.3)
yields

S O”,

that is



Thus, condition (1.3]) is invariant by scaling and we obtain
G
' < TR < C" in Qg (2.23)

At this point, recalling (2.21)), we have that G, g solves

_ApG)\,R = )\RPGI)):RI in QR \ {0}
Grn >0 in Qp \ {0}
GA,R =0 on 8QR,

and G g is uniformly bounded in L2 (Bs\ {0}) for R small in view of ([2.23)).
Application of regularity results in Tolksdorf [33] yields that G g is uniformly
bounded in CL%(B, \ {0}) for R small. In particular

loc

VG Rllooom, < C. (2.24)

Using (2.22), we write VG g = VI'+ VH, g. As a consequence, the bound-
edness of VI' on 9B, leads to

IVH) rllccom <C. (2.25)
Observing that

N-1 N-1
sup |VHy r(z)| = sup |[R»=1VH,\(Rz)| = sup |y|»~t |VH\(y)|,

z€0B; 2€0B, yEOBR

we finally arrive at

C
IVH(y)| < = CIVI(y)|  forall [yl = R,
yprt
in view of (2.25)). This concludes the proof. O

To complete this section, we show a consequence to the structural properties
of problem ([1.6)). Before turning to a description of results, we point out the

weak formulation of problem (1.6]), that is
/ V(T + Hy)[F2V(T + Hy) — [VTP-29T, Vi)
Q

Y / Gy Ve eChQ). (2.26)
Q

and Hy = —TI" on 0.
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Remark 2.2.2. Tn (2.26) we consider ¢ € C}(2) in order to make sense of
the left-hand side in the equality. On the other hand, we observe that ¢ €
W, ?(Q) such that 0 ¢ suppy can be used as test function in (2.26). Indeed
the fact that 0 does not belong to the support of ¢ guarantees that integration
is made away from the singular point; then, the regularity properties of ¢
make sense of the formulation. In what follows, we will consider admissible

the functions with these properties.

Now we prove a lemma which, applied to our problem, will allows us to derive
estimates starting from the weak formulation . For later convenience,
let us write the result in a sufficiently general way.

Let A be an open subset of {2 such that 0 € A and let n be a nonnegative
smooth function supported in A. For € > 0, consider a sequence of smooth

functions {7n.}, converging to n as ¢ — 0, with the following properties
ne =noutside B, 0<n.<n, n=0inBs, max|Vn|~ é (2.27)
Lemma 2.2.3. Let H be a solution of
- AT +H)+A =G in A (2.28)

such that VH is LP-integrable away from 0 and G € L'(A). Let n and n. be
as previously described. Consider a bounded function ¥: R — R such that
U’ > 0 is bounded. Assume n = 0 either V(H) = 0 on 0A. Then we have

the following estimates:

- Case p < 2
/Ang[Wﬂ +VH|T T (1) | VH

SC(/A775|V775|!\IJ(H)|UVF|+|Vﬂ|]p—2,v’H|+/A|g\n§y\y(7{)|),
(2.29)

- Case p > 2
[mvoorwne + [ wwory v
A A
<o [ w0l orywre ) vids [ gw).
A A
(2.30)
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Proof. We observe that the function

V(M) ifp<2
(p =
e (H) if p>2

is admissible in (2.28)), in view of the properties of 7. and V.

Assume p < 2. Using ¢ as test function in (2.28)) we obtain

/A (IV(T + )2V + H) — [VTP2VE, V(2U(H))) = / GrPu(H).
(2.31)
We have that

V(n2U(H)) = 20.Vn.U(H) + 2V (H)VH.
Thus rewrites as
/A V(T +H)P2V(T + H) — VI[PV, 2.V U (H))
+ /A<|V(F +H)P2V(T +H) — |[VLP 2V, 2V (H)VH)
= /Agn?‘l’(%)- (2.32)

Application of estimates (A.I)) and (A.2)) in the Appendix with = VT
and y = VH yields

/AWS[IVFI + [ VH|]" W (H) | VH?
SC(/AMV%H\P(H)H\VN+|V7-[|]P—2,vH|+/A|g|n§|\1/(g)|),

This proves inequality (2.29).

Now we assume p > 2. Using ¢ as test function in (2.28]) we obtain

/A<!V(F +H)PPV(C+H) = [VIPEVE Ve (H) = [ GEU(H).

We observe that
V(PU(H)) = pnt ' VW (H) + V' (H)VH.
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Similarly to the case p < 2, we rewrite as
[V + 30290 +30) — VTPV V()
+ /A<|V(F + H)PAV(I +H) — |[VTP2VE, PV (H)VH)
_ /A GIPU(H). (2.34)

We study the first term in the left-hand side of (2.34]). Application of (A.4))
in the Appendix with = VI' and y = VH yields

J AV A2V 4 2) = VTPV ()
<C [ TRl [VTPE 4 [T VR
For what concerns the second term in the left-hand side of , we have
(VT +H)P V(T +H) — |[VT|P2VT, VH) > C'([VHP + VT [P2|VH),
in view of (A.3). Then one may write
/A<|V(F +H)P 2V (T +H) — VI[P 2V, PV (H)VH)
>0 [wwvoorwnr+ [ wwoorrvug).
With the aid of we get
[ wveovnr« [ v vr
<o [wwnivrr=+ v wuiee + [ ignveo)

that is (2.30)). O

In addition to the above result, we shall prove that (2.29) and (2.30]) hold
letting € — 0, provided VH € Li(A).

Corollary 2.2.4. Assume VH € Li(A). Under the hypothesis of Lemma
we have the following estimates.
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- Case p < 2
/A PIVT] + VA0 () TR

< c( [ avalveoier + g va - rg\n%(w),
(2.35)

- Case p > 2
/ P (H)[VHP + / P ()| VTPV H]?
A A

SC(/A%AIVUH\P(HM[|VF|p—2+|VH|P—2}|V”H|+/A|g|np|\1,(H)|).
(2.36)

Proof. Assume p < 2. Application of Fatou’s lemma gives
/ P [[VT VA7 (M) |VH]? < lim_jglf/ 2 [[VT VA (H)|VH.
A € A

Since VU is bounded and |VI'| 4+ |[VH| > |V*H]|, a simple use of Hélder in-
equality yields

- C _
| wvaweoler + jor) v < S [ wue
B:\Bg € B:\Bg

<Sipoaspr([ wue) T —o( [ wmr) T
€ B:\Bg B:\Bg

in view of the properties of 7.. This implies that

[ mIVa IV + [VHVH 0 ass 0,
B.\Bg
in view of VH € L7(A). As a consequence

/A e Ve [ B (R)|[[VT] + (V|2 V|

—>/17\V77H\If(%)][|VF|+|V7-L|]pQ\VH\ as £ 0,
A
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Moreover, Lebesgue’s theorem yields

[ igieivei— [ 1ghAeeol s o
A A

Therefore, letting ¢ — 0 in (2.29) we obtain (2.35)).

Assume p > 2. With the aid of Fatou’s lemma, we have that

/ PV (H)IVH]? < limind / R (H)| VA,
A £ A

/ WV ()| VD P VAP < limind / U () |V P2 VH .
A € A

Similarly to the case p < 2 we observe that

/ BV W) [[VTP2 + VAPV
B:\Bg

[ 1 1
S C (N—1)(p—2) / ’VH' -+ _/ |V7—[|p1:|
1+ £
Le p—1 Bg\B% BE\B%

[|B.\ B:|'" N7 |B.\ B:|¥ N
SO\ —mza— / IVH|") +——7— / [VH|
15 p—1 BE\B% € BE\B%

= 7+ (s, 7))
L BE\B% Bg\B%

since ¢ > p — 1 and p > 2. This leads to

[ RO (A9 0 s o
in view of VH € Li(A). As a consequence
IR LA e e
— /An”_l\VnH\Il(”HH [[VT[P=% + [VH|P?]|[VH| ase — 0.
Moreover, Lebesgue’s theorem implies that
[ teveo) = [ ighww) ase—o
Thus, letting ¢ — 0 in , we obtain (12.36)). O
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2.2.2 Proof of the global boundedness

Our goal in this section is to prove the boundedness of H) in ).

We recall that Hy, = G — I'. Since both G and I' are bounded away from
0, then it will be enough to prove the L*>-regularity of Hy near 0. We will
take different approaches depending on whether A =0 or A > 0.

Proposition 2.2.5. Let H be a solution of problem (1.6|) with A = 0. Assume
condition (1.9). Then there exists a constant ¢y > 0 such that

—co < H<0 in. (2.37)
Proof. The right-hand side of ([1.6)) is equal to 0, being A = 0. Then H solves

—A,(T+ H)+A,T =0 in O

(2.38)
H=-T on 0f.

Recalling the definition of I', we have that ' < ¢q on 02 for some ¢o > 0.
For k,l € R, k <[, consider the function 7T} ; defined as follows

k if s <k
Trals] = s ifk<s<lI (2.39)
l if 5> 1.

For [ > 0 we set W(s) = Ty;(s). Then ¥ has the properties required in
Lemma In particular, we have

0 it H <0
V(H)=<(H o< H<]
l if H>1.

Since H < 0 on 0f) guarantees that W(H) = 0 on 0%, we can apply Corollary
with A =Q, H = H, G =0 and n = 1. Observing that ¥'(s) = 1 in
{0 < s <1} and ¥'(s) = 0 outside this set, we get

/‘ [V + [VH|"?|VH]? <0 ifp<2, (2.40)
{o<H<I}
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/ IVHP <0 ifp>2. (2.41)
{o<H<I}
Letting [ — +oo in (2.40) and (2.41)), we obtain

/ [[VT| + \VH]]”_Q\VH]Q <0 ifp<2, (2.42)
{H>0}

/{H>0} IVH[P <0  ifp>2. (2.43)

We have H* = H in {H > 0}, being H* = max{H,0}. As a consequence

(2.42) and (2.43)) imply that VH™ = 0 a.e. in {H > 0}. Moreover since
VH* =0 also in {H < 0}, we have that VH" =0 a.e. in Q. Thus H* =0

a.e. in €). This implies that H < 0 a.e. in (2.
At this point we want to prove that H > —cy. We set for [ > 0

\I’(S) = _T—l,O(S + Co).

Then —W has the properties required in Lemma In particular, we have

[ it H+cy< -l
W(H) = —(H+co) it —1<H+c<0
0 1fH+CO>O

Since H = —I' > —¢p on 052, then V(H) = 0 on 0€2. With the aid of the same
techniques as before, application of Corollaryyields V(H+c¢)” =0a.e.
in Q, where (H + ¢9)” = max{—(H + ¢),0}. It follows that (H 4+ ¢)” =0
a.e. in ). Thus H + ¢y > 0 a.e. in €, that is H > —c¢j a.e. in €. O

We are going to prove the global boundedness of Hy when A > 0. It will be
useful the following result, known as the Caffarelli-Kohn-Nirenberg inequality
(see [1]).

Theorem 2.2.6. Let N > 1 and a, b and c be such that

(i) z'fNZ?):—oo<a<¥,a§b§a+landc:#g(b_a)
o _ 2
(ii) if N=2: —o0c<a<0,a<b<a+1 and c= 3=
(iti) if N =1: —oo<a< -3, atz<b<atl and c= 5.
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Then there ezists a constant Cyp, = C(a,b) > 0 such that

c % 2 %
/ M) <, / Vul” )
gy |2[% "\ Jry |T]%

for any u € C°(RY).

Proposition 2.2.7. Let H, be a solution of problem (1.6) with VN < p and
X # 0. Assume condition (1.9). Moreover we require p > ]\2,—11 if p <2 and
p > % if p> 2. Then Hy is bounded in ).

Proof. Since H) is bounded away from 0, it will be enough to study the

regularity in Br. We define, for z € By,

~ N—p

[(z)=RriT(Rz)  and  Hy(2) = Rot Hy(R)

and we set G(z) = G(Rz). Thus H, solves

—A, T+ Hy\) + AT =ARNGY™"  in B,
which can be rewritten in the form

—A, (T + Hy) +A,T = RVGE™  in By,
in view of

VI(z) = Rv T'VI(Rz) = R G _ _Co = VI(2).

N—-1 N-1
EEE R

Let h and h' be real numbers such that 1 < b’ < h < 2. Let n be a

nonnegative smooth function such that
n=1in B, 0<n<1lin By, n =0 outside By, (2.44)

max |Vn| ~ (h — k)7, (2.45)

and let 7. be a sequence converging to n as ¢ — 0, satisfying properties
2:27). We set G = ARNG% ™" and u = |H,| + k, where

19 2. ifp<2
_1
19175, itp>2,

p—eg’
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for some gy > 0. We observe that k is well-defined in view of the assumptions

on p. Indeed, condition vV N < p guarantees that G € LP(Q2). If p > 2,
N

the right-hand side of (1.6) belongs to Lr=<0 (Q) if Ne=l) o Ne—b - yhat s

P—¢o N—p
N | e
p > 2+ 5

For any 3 > [y > 0 and [ > k the function

n2sgnHy\[(T_u)’® — kP if p<?2
nPsgn Hy[(T_u)’® — kP ifp>2

is admissible in (2.26)), the function 7_;; being defined as in (2.39). For
ease of notation, we will write Tju instead of T_;;u. We define the following
functions

B+1 B+1 B—1+p

u=Twu) 2z, v=uz, w=u r . (2.46)

We would apply Lemma or Corollary with % = Hy and ¥(s) =
sens[(Ty(|s| + k))? — kP]. We observe that

U'(s) = B(|s|+k)°" in [-(1—k),I—k], and T'(s) =0 outside this set.

Moreover |W(s)| < (Ty(|s| + k))?. We study the cases p < 2 and p > 2
separately.

Case p < 2. Thanks to (2.19), application of (2.29) gives

s n?| VI [P~2|V Hy | 2Pt
{u<i}

SC( / 1| Ve | (Tw) P [| VT | + |VHL|P2 |V Hy| + |g|n§<Tlu>5),
Bs

Bs

that is

B _

SC(/ ns(TzU)ﬁ|Vns|[|VF|+|VHA|]”_2|VU!+/ |Q|U§(Tlu)5)7 (2.47)
Bs Ba
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being |VH,| = |Vu| and using the definition of v;. We observe that
/B e ()| |[VT] + [V B[PVl
2
< / e ()| |[VT] + [V EL [PVl
{u<l}
L1 / VIV + [VEA P2Vl (2.48)
{u>1}

Then, using that |VI| 4+ |[VH,| > |VI'| and p < 2, we can estimate the first
term of the right-hand side of (2.48) as follows:

/ 1 (Ty) |V [IVT + [V P2Vl
{u<l}

<c / e (T) 2 |V | VT P2 V| (Th) 5
{u<l}
~2C
B +1
B
< =
S TCESE

2(p—2)

/ngvl\vmnvm 2|
Bs

C
/ 2V vl + S [ VT,
By 5 {u<l}

applying in the last passage the Young inequality. Thus (2.47) rewrites as

1
g f, T v <o (o) [, e

e /{ VIV [V 9
u>

L [ | |g|n2<Tlu>ﬂ (2.49)
(B+1)? Jiusn : Bo, : S

At this point let a = —%. Since p < 2, then a < 0. Moreover a > —1

being p > ﬁ—fl We observe that |[VI'|P~2 = \x%a' Since n.v; is supported
away from 0, notice that n.v; € Hj(Bs). Thus we can consider v; € C5°(Bs)
converging to n.v; in Hy(Bsy) as j — +oo. Application of Caffarelli-Kohn-

Nirenberg inequality to v; gives

(/ W) el v e (2.50)

Bg
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where 27 is defined by
a N — P :
Now we pass to the limit j — +oo in (2.50). By Fatou’s lemma we get

= =
* 2a . . * 2a
R < liminf / lv;[>e ) .
B J=Ho0 \J By

Being p < 2, as j — +o©
VPR > [ VTPV g
Bs

(2.51)

B2

Thus (22.50) becomes

2

2% .
( |navz|23) <& [ Vo vmw . (2.52)
BQ BQ

With the aid of (2.52)), inequality (2.49) becomes

1 +1)? B
([ o)™ <c(1e V55) [ wrpiong
Bs {u<l}

CIP(B+ 1) .
ISl Chiy /{ VBT DA
u>l

o}
C(B +1)2
+ 015“/ T2 o, 4 8D
{u>1} 6 By

Now we let ¢ — 0 at fixed [ in (2.53)). Application of Fatou’s lemma gives

G2 (Tiw)”. (2.53)

[0, Sliminf/ VTP~ .
Ba e—0 Bo

Recalling the properties of V1. and the definition of I', we get
[ ore v
{usly
= [ vrprep e [ erpe g
{u<i}\Be {u<l}NB:

_ CeN
= / |Vr|p 2|V77|2U12 + O (Z/B—i_l 21 (N—1)(p—2) )
{u<I}\B. A

:/ VT2 T2t + O(1P+5E),
{u<i}\B:
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in view of v? < [Pl As a consequence we obtain that
/ VT P3| V. |*v} — / IVT|P2|Vn|?v} ase — 0.
{u<l} {u<l}

Similarly, we observe that
| wlVal(VI]+ VA vl
{u>1}
= [ VI + VA
{u>1}\B:
# [ On (VI + VPl
{u>1}NB;
and, since V7. = 0 outside B. \ Bg, we have that

/ D[V (VT + [V P2 V| < / e[|V E P
{u>I}NB. {

u>l}m(Bs\B%)

C N N N N\
< —[B\ Bg[v [VH,[* <C IVHN")
8 BE\B% BE\B%

in view of p < 2 and |VT'|+ |V H,| > |VH,|. Using condition (I.9) we obtain

/ D[Vl (VT] 4 VA2V = [ gl Val(VT] + [V P2Vl
{u>1} {u>1}
as € — 0. Similarly
/ VTPVl = [ VTPV
{u>1) (w1}

as ¢ — 0. Moreover, Lebesgue’s theorem implies that
GIn2(T)” — | GIn*(Tru)” as e — 0.
BQ BZ
We obtain the following estimate
(B+1)> _
Il < 01+ Y5 VP2l
{u<i}
Cl°(6+ 1)
MRS

+ozﬁ+1/ VT2V +
{u>1}

/ D Vnl(VT| + [VH )PVl
{u>l}

C(B+1)>

. / IgT). 230
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We study the second term and the third one in the right-hand side of (2.54]).
Since Viy = 0 in By and u = |Hy| +k < C 4+ k < C" away from 0, then

/ DVl (IVT] 4 [VEL P2Vl = 0 and / VTP VP = 0
{u>1} {u>1}

for I > 1. As for the last term in the right-hand side of (2.54)), since k£ < Tju

and recalling the definition of k£, we have that
- 4
Gln*(Tiw)” = | |GIn*(Tru)” 17 < / == < —HQH 2 [muilla, = lnvill2,.
BQ B2 B2
Since Tju / u as | — +00, by the monotone convergence theorem we get
B+ 1) i C(B+1)>
bo< ofue BE) [vrrwnpe + SO,
B B, s

where v is defined as in (2.46]). Recalling the definition of I" and using that
p < 2, we obtain

1)? C 1)?
b <o(ie P vt + g, ey

|nv

llnv

that is

1)2} % 2
(/ u“”) < O(H—w +21) )(h—h/)*/ uP!
Bh’ 6 By,

+—C(6; 2 (/B uf’W“))p, (2.56)

in view of the properties of 17 and the definition of v.

At this point we define

2% N(p—1
R ]E[p_ p> (2.57)
Since > [y > 0, estimate (2.56|) becomes
lallf s < COB+ 12— 1) 2 ull3t, + a5 ,). (2.58)
from which follows
||U||55+1 w < C(B+1)2*(h—h')" 2||U||55+1 (2.59)
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being p > 1. We put u = p(f+1) and k = % in such a way that (6+1)&k = kpu.

By definition (2.57), we have that x > 1 when p > V/N. Indeed x > 1 is

equivalent to & > p, which gives p*> > N. Taking the (8 + 1)-th roots in
(2.59) we have

. 2

[l < [Cralh— 1)~

The required conclusion follows by iteration of inequality (2.60). We set for
v=0,1,2,...

| - (2.60)

Hy = ’%Vp(l + 60)7 hu =1+ 27”7 h:, = hqul'
Hence ([2.60) becomes
& e
’lu“ﬂu+lyhu+l S C{h CQK CSH HuH/'LV7hV7

where
N 2 2 1
C, = (C’p(l + 50)) 5, Oy =k, (=47,
Iteration yields

v 1 v i v i+1
1=0 .17 1=0 1 =0 7
|’uHIJ/l/+l7hV+l S Cl " 02 " 03 "

u”#o,ho < CHUHP(1+5O)72’
because all series are convergent. Since

lulloos = Tim fulloy < Tl

letting v — +o00 there results

[ulloo < Cllullpaso).2s
that is
1\ o < CUHHAlp+50)2 + K), (2.61)
in view of u = |H,| + k. Recalling the definition of Hy, we have that

N—p

1l = R (| Hxllso,

~ N-p N
[ H M p(1150).2 = R7= R P05 [|Hy || p(14.59).2R-

Moreover,

p—1

~ _ . p N _
kz|!g\|ng,z=ARN\|GA\£;=ARN< RN|GA<y>\de) = AR |GAll} 21

Bagr
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in view of the definition of Gy. Thus inequality (2.61)) becomes

N—-p

N=p ___N_ N _
R | Hyloo,n < C(R» R 75 || Hy ||y 50 20 + R7 [Galloor).  (2.62)

N-—p
Dividing both members of (2.62) by R»=1 we finally obtain
N P2-N _
|Hallook < CORF0 | H sz + REI GG, (2.69

Recalling that Hy € L*(Q) for all s < ¢* and since p < ¢* in view of N < p?,
then we are able to choose 8y small such that p(1+ () < ¢* and then (2.63)

gives a bound of H) in Bg. This concludes the discussion of the case p < 2.

Case p > 2. Application of (2.36) with W(s) as before gives

/ B (Ty) |V + / B |VTP2 |Vl (Tre) P~

{u<ily {u<iy

sc( [ VAT - (92l (T + |g|np<Tlu>ﬁ).
B>

(2.64)

B>

We study the first term in the right-hand side of ([2.64)).

c / PVl [V TP V| (Tyu)
Bo

e / P VIV V| (Ti)? + C1° / PVl VTP2
{u<l} {u>1}
B+1

=C [ fyS || VT (D) 7 (D) |Vl
{usl}

+sz3/{ l}np1]V77\|VF]p2]Vu]
u>

< B
2 Jiusny

el /{ Rl
u>

C//
IV (T) Yl + /{ I e R

by virtue of Young’s inequality. Similarly

c / P\l [V P2 Val (Tr)
B>

=C V[ VulP~ (Tw)? + C1° / V[ VulP
{u<ly {u>1}
B D B-1 P c” p B—1+p B p—1 p—1
<= P (Tiu)” " |Vul’ + 1 V[P (Tiu) +Cl P V| [VulP~.
{u<i} {u<i} {u>1}

49



As in the case p < 2, we observe that

/ nP V|| VI|P~2|Vu| = 0 for I > 1,
{u>1}

/ [Vt = 0 for I 1.
{u>1}

Then, letting | — 400 we get

B PVl + 8 [ P | VP Yl
B>

B>

1
< C(— VT2V 2u? T +
B Js,

‘puﬁflﬂl + |g’77pu,3> )
Bs

(2.65)
Since k < u, recalling the definition of k, we have that
‘gmpuﬁ — ‘glnpu/o’flﬂ)ulfp
BQ B2
1 Py P 1 €0 p—¢o

< kp,l \an v |G1(nw)™ (nw)

< - 1HQH |l = [lnwll; :
where we have used the Holder inequality with exponents 2 P for

p— 80’ €0’ p—eo’
some ¢y > 0 small. The Sobolev embedding together with the Young in-
equality yield

C [ 1GInPu” < Cllpwllz (lw¥nl, + [nVw],) ==

Bs
p—eg
B _1+ P\ e
p vl o (P T

S .
2(8—1+p) B
c's
+ — || wVn|?.
el
(2.66)
Recalling the definition of w, we get
_ pp”
15} npu’B Waoulp = ——————— n?|VwlP.
B, [Vl (B—=1+p) Jp, Vel
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Moreover, since

40
B | nP|VI|P~ 2~ Vul? = /ﬁnPVFWQVU2>Q
. VI [Vl CESVES [VI[P=5| Vo
then estimates (2.65)) and (2.66|) imply

B (1 ) 2 9
_— V(inw)|lP < C| = VI'[P=#|Vn|“v
Gy L e <c(5 [ err

6 1 p,,.D (6_1_'_29)10)1?;060 D p)
+(W—1+mf+w*>éﬂmﬂw+< 3 éﬂ“”

which can be rewritten as

rv<nw>\psc<ﬁ—1+p>%( vr vl [ vapers | npw”),
B B

(2.67)
being > [y > 0 and p > 2. At this point we observe that a simple use of

Ba Ba

the Holder inequality gives

B+1

B=1+p
‘Vr|p72|vn|2v2 < C(h—h/)2/ uPt! < C(h— h/)p</ wp) ’
By, By,

By,

since By, C By and C being a constant which does not depend on 3. Then,
recalling the properties of  and being p > 2, (2.67) yields

2 Up,
rvmw)\pscw—lw)m(h—h»p( / wp) |
BQ Bh

where ¥, € (0, 1] is defined by

1 if [, w’ > 1

B+1
B—1+p

I =

otherwise.

Application of Sobolev inequality to nw yields

o< C(B—1+p)= (h—1)P|lw|h.

[lnw

We set k = NL_ > 1. We finally obtain
p

lpw|h, < C(B =1+ p)= (h = K') 7 |lw|y. (2.68)
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Recalling the definition of w and the properties of 7, (2.68)) becomes

% 2 "9h
(/ u(ﬁ—H—p)H) < C’(ﬂ -1 —l—p) 0 (h — h/)—p (/ u6—1+p> 7
By By,

that is, defining u = 8 — 1 + p,

"@

2
r - 9
[l < Cpo (b= BY) P[]l

Taking the u-th roots, we have

1 2 _p
[l iy < Cior (b — h') 7o |7, (2.69)

The required conclusion follows by iteration of inequality (2.69) for 8 > 1 in
such a way that u > p. To this purpose, we set for v =0,1,2, ...

My = Hypa hu =1+ 2_V7 h:/ = hu—i—l-

Hence (22.69) becomes

1 v
T
||u||uu+1,hu+1 < Clﬁy O2HV ”uHu:I;h,,v

2

where C = 2(Cp%0)% and Cy = 2k . Since 9, < 1 and Cy, Cy > 0, iteration

yields

v 1oswod 1% 9. -
||U||uy+1,hu+1 <Cy” 0“102 o U||mf,h§ ' < C”U”gm

because both series are convergent, where 9 = lim, o H;:o 19hj € [0,1].

Similarly to the case p < 2, this leads to

1 ooq < CUHAD, + K + k), (2.70)
where
~ N-p
[ H)lloor = R777 || Hall oo, s
~ N-p N
[Hxllp2 = R» R™7 |[Hallp2r-
Moreover,
1 1 ~ 1 N—p+e
k= G175, = ORM)# T ||Gallvon , = A7 TR 71 [|[Gall ves) o
p—eqp’ p—eg ’ p—eg ’

02



Thus inequality (2.70) becomes

N-=p N—p N
Ry ||Hy||oo,p < C|RP T R™7 ||Hy|p2r

_1 N—p+teg v 1 N—p+eg
4+ (AP TR P T HG)\HN(pfl) 9R + AT R -1 ||GA||N(p71) or |- (2.71)
p—egg p—egg ’
Dividing both members of (2.71) by R, we finally obtain

| Hllor < c[ S NH on
+ )\ﬁR%HGAH N(p—1) QR((AI:IRPE_Ol“G)\”N(p—l) 2R>1§_1 + 1)} , (2.72)
p—eg p—eg

which gives the bound of Hy in Bg. It is worth noting that ¥ depends in

general on u through the position of fB} wP = fB u? with respect to
v r(1+277)

1. This means that estimate (2.72)) is not universal, but it depends on the

solution H,. O

Remark 2.2.8. In the proof of Proposition we use different approaches
depending on whether p < 2 or p > 2. In the case p < 2 we apply Lemma
m and we obtain an estimate of n.v; in a weighted H} space. Thus, we are
able to apply Theorem which yields (2.54). Letting [ — +o0, we arrive
at the iteration process. In the case p > 2, we apply Corollary that
gives an estimate not depending on e, from which we deduce the iterative

scheme.

Remark 2.2.9. We briefly discuss the continuity of & defined by (3-5). When
N = 2,3 the hypothesis G € Lo is stronger than G € Lp o, If N =4,
there is no discontinuity in p = 2. When N > 5, since we require p > v/N,

N
then we have to consider G € Lr—=0.

2.3 A uniqueness result when p > 2

This section is devoted to discuss the uniqueness part in Theorem when
p > 2, among solutions satisfying the natural condition (1.9). When A = 0

maximum and comparison principle in weak or strong form are well known,
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see for example [36], and have been extended in various forms to the case
A < Aj in connection with existence and uniqueness results, see [, 10, 16} 17]

just to quote a few.

To extend the previous uniqueness results to the singular situation, the cru-
cial property is the convexity of the functional
1 1 . 1
= | |Vwe |P if w>0and V(wr) € LP()
Hwy = |3 Ja V07 > wher®) o
400 otherwise,
proved in [I0] for all p > 1. A quantitative form is established here giving

a positive lower bound for I” when p > 2, crucial to be applied on €, =
Q\ B.(0) as e — 0.

Lemma 2.3.1. Let [ : L'(Q) — (—o0, +00] be defined by (2.73), with p > 2.

Then we may write

d

I(w)lp, o] = —1'(wi)[e]

o :/Qg(w,gp)da: (2.74)

where

2(1—p)

P O0) 5 (V. V)

o(w, @) = [Vws [P~%w
2
Moreover, o(w, ) > 0.

Proof. Given w and ¢, we let w, = w +tp, t € R, and we assume w; > 0
and V(w?) € LP(Q) for t > 0 small. Since

Vws]? = [|Vws 5,
then we can compute
d 1 1 d 1
I'(w =—I(w :—/ Vw? P2 —=[|Vw/} |? dz
wliel = gt = [ Ivwip ey
1 1 d 1L
= [ |[Vwr[P~(Vwr, V| —w} |) dx
dt
Q t=0+

1 1 1 1—p
= —/ |Vw? |P~2(Vw?, V(w7 ¢))d.
P Ja

o4



Similarly, we can compute

1-p

Il = =2 [ 1k Pt V' o) P
+E/Q|pr|p_2|V(ngo)|2da:

P PVwr, V(w » ¢?))de. (2.76)

We expand the expressions V(w%), V(w%w) and V(w%gﬁ) in (2.76)). The
first term in (2.76)) becomes

— 2 1 1 1—p
2 rvm\p-‘*wwav<ww>>]2dx
Q

~ 2 /|pr|p 102" |Vw|ida
(Yo, Vo) Pda
2 2 2—3p
+ (p p2 /Q Vs P2 pw s (Vw, Vi)de. (2.77)

The second term in (2.76)) becomes

= [ [vetr 9 s
1
= PR [ Wb (wuf + L [ [vubrtu®s (voPas
p Q P’ Jo
2(1 — —3p
i % / Vs 2w s (Vw, Vig)da.
Q
(2.78)

The third term in (2.76]) becomes

I—p
p2

1—2p

P2 (Vwr, V(w7 ?))dz

— (]‘ _p)(l _2p) / ’va|1) 280 w (;2p)|Vw|2dx
Q

p4

2 1 - 1 2—3p
+ - ( p3 p) / (Vwe [P 2pw > (Vw, V)dr. (2.79)
Q
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We may write the full expression of I”(w)[p, ], using that (Vw,Vy) =

cos a| Vw|| V|, as follows

(W), 0] = Ci(p) / Vb P2 ow’ s (Vu, Vi) da

2(1—2p)

+ Cy(p /|prp 20w 7 |[Vwl|?

 Cylp,a) / Vol 2™
Q

where 2(1 )
Cilp) = = Pl —2p+2) <o,

—1
Co(p) = %(ps — 32 +5p—2) >0,

1 p—
03(29706) = Z? +

2
| cos al® > 0.

We observe that (2.80) can be written in the following form

Il = [ 19wt (G0 2V, V)

2
1 cz(p)%ywﬁ + Cs(p, )| Vel

Completing the square, we have that

Ci(p)

@Iﬁ

2
(Vw, V) + Calp )—QIVUJI2 +Cs(p, )|Vl

_ ( G Livul + D C*gf()p)

2
cosa|Vgo\)

+ (03<p, a) — (@) @> V|2,

4Cy(p)

At this point we study the inequality

(Ch (p))2
4C5(p)

that is, recalling the definition of Cs(p, a),

cos® o > 0,

C3<pa a) -

1 p-2
4C5(p (——|—
2(p) p? p

cos? a) — (C1(p))? cos* a > 0.

o6

—p)
v Vel

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)



Thus we have
4C(p)
p
The left-hand side of is

4C,(p) _ 4(19; 1) (p® — 3p% + 5p — 2). (2.86)
p p

The right-hand side of (2.85) is

> [(C1(p)p — ACa(p)(p — 2)] cos” (2.85)

[(C1(p))*p — 4C5(p)(p — 2)] cos® a

_ (40 =" =20 +2)° A - -2 =3p* +5p -2)] o

P° pt

(2.87)

We multiply both members of (2.85) for P’ . the left-hand side (2.86)

4(p-1)
becomes

p’—3p* +5p -2, (2.88)
while the right-hand side (2.87) becomes

[(p— 1)(p* — 4p® +8p” — 8p+4) — (p* — 2p)(p® — 3p” + 5p — 2)] cos® a
= (p® —4p* +8p — 4) cos” a. (2.89)

Therefore, inequality (2.83)) can be rewritten as
p® —3p® +5p—2> (p* — 4p* + 8p — 4) cos” . (2.90)

Since p > 1 then p* — 4p® + 8 — 4 > 0. Thus we may assume cos®> o = 1 in
(2.90) and we need

p> —3p* +5p—2>p° —4p* + 8p — 4, (2.91)

that is
PP =3p+22>0, (2.92)

which holds for all p > 2. All these facts imply that
I"(w)le, ¢] = /Qg(w, p)dz
with o(w, ¢) > 0 being defined as in (2.75)). O]
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An application of Lemma yields the validity of a weak comparison
principle, which can be found in Appendix (see Proposition |A.3.1]).

Before turning to the main result of this section, we show that every solution
G, of problem (|1.5)) is strictly positive.

Proposition 2.3.2. Let G be a solution of (L.5). Then Gy > 0 in Q.

Proof. We observe that there exists € > 0 such that Gy ="'+ H), > 0 in B,

in view of I' — +o00 as |y| — 0. Moreover, G solves

—A,Gy = AGE =0 in Q.
G)\ Z 0 in QE
GA =0 on 8(2,

with Q. = Q\ B.. If A > 0 then )\G’;_l > 0. Application of the strong
maximum principle for the p-laplacian yields Gy > 0 in .. Thus G, > 0
in Q2. If A < 0, application of the strong maximum principle for quasilinear

elliptic equation in [36] leads to the desired conclusion. O

Theorem 2.3.3. Assume p > 2 and p > max{\/N, % if X\ #0. Then the
solution of problem (1.5 is unique among those satisfying condition (1.9).

Proof. Letting G and G be two solutions of satisfying (1.9), by elliptic
regularity theory [11, 27, B0, B3] we know that G; € C**(Q\ {0}),i = 1,2,
for some « > 0. By [31] we know that G;, i = 1,2, satisfies and by the
strong maximum principle [36] 0,G; < 0, i = 1,2, on 0f2, where n denotes
the outward unit normal vector. Set w; = G, we = G5, » = w; — wy and
ws = swy + (1 — s)wy for s € [0,1]. We have that for each s € [0, 1] there
hold ws +ty > 0 in © and V(ws + tgo)% € LP(Q) for ¢ small, in view of the
properties of GG; and Gb.

Letting I. be the functional I defined on Q. = Q \ B., we have that

1-p

I'e(w)[] = I'e(w2)[ip] = % U Vuf [PVl V(w,” () - )

A [Vwg [P72(Vws, V(wy” (w1 —w2)))]
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that is

1 1
1 -Aywy —Aywd
I'e(un)lg] = e(wo)[g] = = / ( i >(w1 — ws)
p 5 wlp w2p
1 1 1 1-p 1 1 1-p
- 1_7 /aB ( )vaf P2 (Vw! njw, " — [V [P7H(Vws n)jw,” |(wy — ws)
= (0

(2.93)

1 1
in view of ¢ = 0 on 0. Since w{ = G; and wy = G5, using the equation

(1.5) satisfied by G; and G5, we obtain that

1 1

/E(_Aﬁﬂff - _Afzfg)(wl — wy) =/ (A = A\)(w; — wy) =0

wy” wy” <

and the second term on the right-hand side of (2.93]) can be written as

L [WGAP-?@nel ) |VGz!”‘23nG2]<fo—cs>.
0B:(0)

—1 -1
P Gy G

Therefore, (2.93) rewrites as

, , 1 |VG1|p_28nG1 \VG2|p‘28nG2
]s wy)|¥ _Ie w = __/ |: — - —
(w1)]e] (w2)[¢] 05,0 ar 1 G 1

: Jcr-cp).

(2.94)
Notice that .
I (wn)lg] — Li(wn)lg] = / 17w, s

with 17 (ws)[p, ] = [ o(ws, @) in view of Lemma Since o(ws, ) > 0
when p > 2 in view of Lemma by the Fatou’s convergence theorem we
deduce that

1 -2 -2
. |\VGs|P~20,Gs  |[VG1[P20,G4
ds/g ws, ) < lim ( — — — GY—-Gb).
/0 Q ( ) e=0% JaB.(0) G? 1 G? 1 (GY 5)
(2.95)

Now we are going to prove that the right-hand side in (2.95) vanishes. For
i = 1,2 notice that H; = G, — I' € L>(Q) follows by Proposition in
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view of the assumption (1.9)) for G;. Once H; € L>(Q2), we have that H;
satisfies |V H;| = o(]VI'|) near 0 and then

GI =T+ 0 h), |VGi|P20,G; = |VT|P20,T + o |[VTP™)  (2.96)

as © — 0 with ¢ € {p — 1,p}. By (2.96) we deduce that G} — G5 = O(T?™!)
and

|VG;[P~20,G; B VP20, |VI|Pt
Gt Tl o\ )
which imply

‘ / (]VGQV’_Q&LGQ _ ‘VGl ’p_2anG1
9B.(0) a5 G

)ty

as ¢ — 07, as claimed. As a consequence, o(ws, ) = 0 for s € [0, 1].
If p > 2 then

(Cl(p)>2
4C(p)

and so Vw; = Vws a.e. in view of the definition of p. If p = 2 we have
_ C1(2) ’
Wy, :wsl( C 2£sz+1—cosozv )
o(ws, ) V Caf )wsl | N0 Vel

_ 1o (|sz’ ‘V¢’)2
= —w, ¢| —— —cosa——
2 B %)

cos?a > 0

03(]9, Oé) -

1
= éws_lcpﬂv log w| — cos |V log ¢|)?.

If p = w; —wy =0, we end the proof. Otherwise we need
|V log ws| = cos |V 1og |,

which implies Vw; = ¢Vw, a.e. in (), being ¢ a constant. Recalling the
definition of w; and wy, we obtain ¢ = 1. Thus V(w; — ws) = 0 a.e., using
that wy; = wy = 0 on 02, we finally arrive at w; = ws a.e., that is G; = G,
a.e. in (2.

The uniqueness result is so proved. O
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Chapter 3
The regularity result

In this chapter we prove the main regularity result of this thesis, that is the
Holder continuity of H, at the pole. We will continue to assume A < Aq,
1 < p < N and the pole being at 0. All that we are going to prove hold even
if the pole is at z € Q with x # 0.

In Section [3.1] we will use the Moser iterative scheme in [30] to establish local
estimates for the solution Hy of at 0.

Section is devoted to the proof of an inequality of Harnack type, which
is the crucial tool to show Holder estimates at 0.

In Section we will show that when 1 < p < 2 we are able to extend the

regularity result to the whole domain 2.

3.1 Local bound of H,

This section is devoted to the proof of local a priori estimates on Hy. Such

bounds are a consequence of the following rather general proposition.

Proposition 3.1.1. Let H € L>(By), with VH € Li(Bsy), be a solution of
- AT +H)+A =G in Ba, (3.1)

_1
such that [VNH| = O(|VT]) if p < 2 and | H||w2 < 1= ||G||"~ ., when p > 2.

N_o
P—ep

Assume G € L%(B2> whenp <2 and G € L%(Bg) for some gy > 0 when

p>2. When G # 0 we require p > ]\2[_1):1
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Then we have a universal bound for H in B;.

- Case p < 2
[Hlloon < ClH|14p02 G =0, (3.2)
[Hlloor < CUHllpars02 + 191 2:2) G #0. (3.3)
- Case p > 2 )
[H]locn < C([Hl[140.2 + [|9] I’Eg,g)v (3.4)

for some [y > 0.

In the proof of Proposition we will use two lemmas which will be crucial
tools to show the Harnack inequality. The first one will apply to problem
(L.6) in the case A = 0 with p > 2 and in the case A\ # 0. The second one
will apply to problem ([1.6) when A =0 and p < 2.

Given a weight function g, for real numbers h > 0, s # 0 and for x € () we

define )
D,(s,h) = (/ g|u\sdx> N
B ()

Notice that for s > 1 we have ®,(s,h) = ||u||ys,n, that is the norm of u in

the weighted space L*(o, By(x)). In particular, ®;(s, h) represents the norm
of u in L*(Bp(x)).

Lemma 3.1.2. Let H and G be as in Proposition [3.1.1. We set u = |H| +
k+ ¢, with € > 0 and k being defined as

IGll.2, 2 ifp<2
1
IGlI°% , fp>2

p—eq’

(3.5)

for some g9 > 0. Let h and h' be real numbers such that 1 < h' < h < 2.

We define
= ifp<2
2 ifp>2,

K being as in (2.57)). Then the following estimates hold.

K =

(3.6)
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- Case p < 2
B (g, ) < [Cpa(h = W)~ % @1 (1, ) if € (0,p) U (p, +00), (3.7)

1 (rpr, ) = [Culh = W) TE@ (i h) if pe (—00,0),  (3.8)
uniformly for p away from 0 and p.

- Case p > 2:

Oy (rpa, B) < [Clu+p—2]*(h—h)P]edy (u, h) if g € (0,1)U(1, +00),
(3.9)
®y (rja, 1) > [Clutp—2|"(h—h') PPy (u, h) if p € (—o00,2—p)U(2—p,0),
(3.10)
(p—e0)

uniformly for u away from 2 —p, 0 and 1, where a = 2 + I’T.

Proof. Let n and 7. be nonnegative smooth functions satisfying properties

(2.44)), (2.45) and (2.27) with » = 1. Since H € L>*(B,) and VH € Li(Bs),

then for any S € R the function

n?sgnH (u® — (k +¢')P) ifp<2
nPsgnH (u® — (k +¢')P) ifp>2

is admissible in (3.1). Notice that if § < 0 then u > & > 0 and the problem
is well-posed. We are going to prove universal estimates for u provided that
£ is uniformly away from 1 —p if p > 2, 0 and —1.

We define v = v and w = u We will apply Lemmaor Corollary
with W(s) = sgn(s)sgn(B)[(|s| + k +&')® — (k + &’)P]. We observe that

V'(s) = [B](Is| +k +€)7" " and [U(s)| < (|s| + k +€)".
Assume p < 2. Application of (2.29)) gives

18]
(6+1)

/ 2IVT P2 Vo
Bs

gc( [ e 919+ [V HI Tl + [ |g\n3uﬁ). (3.11)
BQ BQ
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Then, using that |VI'| + |VH| > |VI'| and p < 2, we can estimate the first
term of the right-hand side of (3.11) as follows:

c / 0l [V [V + [VH[P V)
Ba

< (J/ ngu%wngwﬂp—?wum%
Bs

2C 2(p—2)
= n-0|Vn| [V~ 2 |V
1B+1] /g,
!/

’ﬁ| / 2 -2 2 C / -2 2.2
< SIVTPP= | Vol* + — VI[P~ |Vn.|7v7,
2(8+1)2 an| vl 18 B2| v

applying in the last passage the Young inequality. Thus (3.11)) rewrites as

18]
(6+1)

1 |6| ) -2 2,2 2[3:|
=+ -2 VT|P~2|Vn. 28], (3.12
<c|(G+ o) Lrrenee [ op]. @

/ VTPV (.0)
Bo

At this point let a = —%. Since p < 2, then a < 0. Moreover

we observe that |VI'|P~2 = —<.. Since H € L>(B,) and n.v is supported

- ‘x|2a

away from 0, notice that n.v € H}(Bs). Thus we can consider v; € C5°(Bs)
converging to n.v in H}(Bs) as j — +oo. Application of Caffarelli-KKohn-
Nirenberg inequality to v; with b =0 (see Theorem [2.2.6) gives

2
([ wp)" <c [ vrrwp
BQ B2

where 2% is defined as in (2.51]). Using the same calculations as in the proof
of Proposition when p < 2, we arrive at

(/B, W) ’ < [Cu(h — W)™ (/Bh u#) i)

in terms of 1 = p(8 4+ 1). In order to apply estimates (2.58), and
(2.60]), we require that 8 € (—1,0)U (0, +00), i.e. p € (0,p)U(p,+00). Then
is proved. As for (3.8), we observe that taking the (3 +1)-th roots with
B € (—oo,—1) in (2.59)) implies that the sign in (2.60) is reversed. This gives

(/Bh/ uw)'“l“ > [Cu(h — 1)+ (/Bh u#>i
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for u € (—o00,0), that is (3.8]).
Now we assume p > 2. We assume in addition that § # 1 — p. Application

of (2.36)) gives
Bl [Vul? + [ B[P VTPVl
B2 Bs

< C(/ P V|| VT|P2 + |V7—[|p_2]|Vu|uB—|—/ |Q|npuﬁ). (3.13)
Bg B2

Moreover, since supp,, 5, |[VI'[P~* < 400,

C’/ 777’_1|V77||VF|7’_2U'8|VU| :C/ 775 " Bgluﬁgl|Vu|
BQ BQ
Cf/
< 18] P |V P20~ V> + = [ P72 |Vp2u’ T
2 Jp, ’ﬁ| By
C/
< @ p‘vr"p 2 ﬁ 1\Vu\2 ‘szuﬁﬂ’
2 B |ﬁ| B>
by virtue of Young’s inequality. Similarly
B-1)(p—=1) ﬁ
C | VIR 2V = C | Ve e |
B2 B2
C//
< ‘ﬁl 77P|Vu|puﬂ_1 4+ uﬂ—1+p|vn|p_
2 Jg, 18| J B,

As a consequence, (3.13) can be written as

8] | PVl + 18] [ P IV Vaf?
Bs

Bs

1 1
_C(|B|p—l/ ul~ 1+P|V7]|P |,8| |V77|2uﬂ+1+ |Q|npuﬁ). (3.14)
82 32 B2

Since k < u, recalling the definition of k, we have that

/ |g\77pUﬁ=/ |G |nPul 1Pyl P
Bg Bo
1
/ G|nPuw? = G| (nw)=° (nw)P~=° (3.15)

—1
kr=t Jpg,

<
= kp_l

1G1_a_[lmeoll

= |lnwl;

)

_kP1
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where we have used the Hoélder inequality with exponents P ,% = for

some £9 > 0. The Sobolev embedding together with the Young inequality
yield

GlPu? < Cllnw| (lwVnll, + (InVawl],)? =

B>
|8[p? ,(\ﬂ 1+ plP )
< ——— |InWwWw||l + " m——oxr—"—— wl|?
STl LY g

¢'|g|

- p
o1 el

(3.16)

Recalling the definition of w, we get

p IV P __ |ﬁ|pp / pv P
R s sl I

Thus, estimates ) and ([3.16)) imply

8 nﬂvrw*w%wvmzsc( VPt
Bo |6| B
pP—eg
18— 14"+ 8P (W—1+W>SO/‘ )
+ VilPw? + (12— TPD PP ), (3.17
B =15 Jy V" 3 L) B

which can be rewritten, recalling the definition of v, as

" / - < 2o 8= 142 + 18P
_— \V4 <C \V Vn|Pw?
Grie Ly, TV =g L, Y s — ey, Y

() o) o

in view of [VI|P™2 > § > 0. Since ||lullc < 1 and p > 2, we can consider
wP = vl uP=2 <o? in (3.18). Since |3| > By > 0, we obtain

t/7ﬂvm2scw—1+ma( V[ + |vm%9+/‘mw),@1m
Ba Ba B2

Bs

where o = 2 + p(pe;oso). Moreover, letting v = 7%, we have that |V7|? =
25 ~1Vn[2 < O|Vn|?. Application of Sobolev inequality to yv yields

wwwwsc(/WVﬂ%?+/wﬂvmﬁ.
N2 Q Q
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Using all these facts in (3.19)), it turns out that

||7v||3,;§0|6—1+p|“( Vot + [ 19+ n) (3.20)
B>

BQ BQ

Recalling the definition of v and the properties of v and 7, (3.20) becomes

1
(/ u“w“)) <CIB-=1+p|*h-— h')_p/ uf
Bh’ Bp

Set i = g + 1. Taking the p-th roots, we have

(/ u”") " < C’i|u+p— 2| (h — h')fg (/ u“) ’ (3.21)
Bh/ By

if € (—1,0)U (0,+00),i.e. p€ (0,1)U(1,+00), and

1 1
</ W> D> Culptp—20E(h— ) (/ uu>” (3.22)
By, By,

if € (—o0,1 —p)U (1 —p,—1),ie. pu€ (—00,2—p)U(2—p,0). This
concludes the proof of Lemma [3.1.2] n

Lemma 3.1.3. Let H,h,h be as in Lemma with u = |H| +¢€'. We
assume G =0 and p < 2. We define

N -2
K= N———;p and o= |VIL[P2

Then the following estimates hold:

2

y(rp, 1) < [Cplh — 1)y h)  if pe (0,1)U(1,+00), (3.23)
y(ript, h) > [Cpu(h— W) i@y, ) if € (—00,0), (3.24)

uniformly for u away from 0 and 1.

Proof. The first part of the proof goes as in Lemma [3.1.2] except that now
G = 0. Then (3.12) rewrites as

1
s [ wrpvep s o G ) [ wrpeae
’ ’ (3.25)
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(N=1)(2-p)
2(p—1)

v; € C§°(B2) converging to n.v in Hj(By) as j — —+oo. Application of

Caffarelli-Kohn-Nirenberg inequality to v; with b = a — N2_“2a, be (a,a+1)

Letting a = — and observing that n.v € H}(By), we can consider

gives
2
< |Vr|p2|7}j\c> <C [ [ VP =C [ VTPV, (3.26)
Bs Bs Ba

where ¢ is defined as

o N 2N -2a) 2N -2+p)
- N-2+42b-a) N-2—-2a  N-p

in view of

N-DC-pN=-p) o _ N-1)2-p

20— 1)(N —2+p) p—1 =2

h=—

Now we pass to the limit j — +oo in (3.26). By Fatou’s lemma we have

([ wrpnat)” < tmint([ 900210l
Bs J—=+00 \JB,

Being p < 2, as j — +o0

c

| TR [ v?
BQ BQ
Thus (3.26]) becomes
2
( |vryp—2|ngv|c) <C / VT2V (.0 2. (3.27)
BQ B2
With the aid of (3.27)), the inequality (3.25)) becomes
2 1 9
( |VF|p_2|nev|c> < 0(1 + (ﬁ‘%)) VTP~V >0 (3.28)
BQ BQ

At this point we let € — 0 in (3.28). Application of Fatou’s lemma gives

/ |VF|p_2|77v|C§hminf/ VT |P~2|n.v|°.
Bo e—0 Bo
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Recalling the properties of V7. and the definition of I', we get

|VF|P*2’VT]€|2 2 :/

B2\B:

N
= [ e+ o bl )
By\B:

N=D(p=2)
2

VD2 V|22 + / VD2V, [

Bs Bg\B%

N—p

= / VT2 Vn*v® + O (e 1).
By\B.

As a consequence we obtain that

VTP~ | Ve *0? — IVT|P~2|Vn|20? ase — 0.
Bo Ba

Thus we have the following estimate

% 1 2
( \vn“mvr) so(1+ (B+1) ) VP2V,
B2 /8 Bs

that is

1)c % 1 2
(/ VT P20 75 ) < 0(1 + M) (h — h’)‘Q/ |V [P~2u T,
Bh’ 5 Bh
(3.29)

c

in view of the properties of 17 and the definition of v. Observing that x = £,
setting 11 = 4+ 1 and recalling the definition of p, estimate (3.29) becomes

(/ Qu"‘“) K < COp*(h— h’)Z/ out, (3.30)
Bh’ By,

being || > By > 0. Taking the u-th roots in (3.30)), we have

(/Bh/ Quw) o < [Cpu(h —1)™] 2 (/Bh Wﬂ)/i

if u e (0,1) U (1,+00), which yields (3.23), and

ES 1
(o) s i ()
By By
if u € (—00,0), which yields ([3.24). O
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Proof of Proposition[3.1.1. Assume p < 2. If G = 0, the required conclusion
follows by iteration of inequality in Lemma for © > 1, which
rewrites as

lall g < [Cralh = H) 7]l g (3.31)

We set for v =0,1,2,...
My = K'V(l + 50)7 h, =1+ 2_V7 hly - hV+l'

Hence (3.31]) becomes

1 v ovtl
”uHQvHu+17hu+1 < Olﬂl’ C;V C3NV ||u||QvﬁLu7hu7

where
G = Cﬁ(l +50)ﬁ, Ch= kT, (=475

[teration yields

S0 1 im0 T im0
HUHQ:NV+1JLV+1 S C(1 ; C2 " CS "

Wlonono < Cllullor+so.2,

because all series are convergent. Since

HuHoo,l = uhToo [|u ol S VEIJPOO HuHQvﬂu,hu7

letting v — +o00 there results

[elloor < Cllullontso2 < Cllulliys.e;

in view of o < gg. Recalling that u = |H| + &’ and letting &’ — 0, we finally
obtain
[Hloo,r < ClH 148025

that is (3.2)).
On the other hand, if G # 0 we apply (3.7)) in Lemma [3.1.20 Iteration goes as
in the proof of Proposition when p < 2, except that now we are working

with H in Bs. Then we finally obtain
[Hloon < CU[Hllpa+60)2 + k),

that is (3.3)).
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Assume p > 2. Application of inequality (3.9) in Lemma for p > 1

gives
[llpwas < [Clie+p = 2% (h = B) P [l p- (3.32)

We set for v =0,1,2, ...
o, = k(1 + Bo), h,=1+27", h!, = h,y1.

Hence (3.32]) becomes

1 v
]y i1 i < O C37 ully

where Cy = [C2P(1 + Bo)a]ﬁ and Cy = (2p/€a)ﬁ. Tteration yields

L .
22020 7T r2mi=0 nT

||uHHu+17hu+l < Ol 02 Hu“uo,ho < OHU||1+50727

because both series are convergent. Similarly to the case p < 2, this leads to
[Hllocn < C([H14+0,2 + F),
that is (3.4)). O

We are going to specialize the argument in Proposition to a solution
H) of problem (1.6). Our goal is to obtain a local bound of H), as shown by

Serrin in Theorem 1 (see [30]).

Corollary 3.1.4. Let Hy be a solution of problem (L.6) such that condition
(L.9) holds. If A # 0, assume

VN if N=2,3
N if N > 4.

2

p >

We define
p(1+ Bo) if A>0andp <2
1+ By otherwise,

Po =

Bo being as in the previous section.
Then we have a bound of Hy in Bgr for R > 0 small.
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- Case p < 2

_N .

[Holloo,g < CR 7 ||Hollpoor  if A=0, (3.33)
_N p2-N p—1 )
Mloo,R = PO\ || po,2R plp= Mpor () . (3.
[Hxlloo,p < C(R 70 [[Hallpy2r + R GAl[50r) i A#0. (3.34)
- Case p > 2

_N .

[Holloo,g < CR 70 |[Hollpo2r  if A= 0. (3.35)

_N _€0_ .
|Hilloo.r < C(R™ %0 | Hllpoor + R7T||Gall veo-n) o) if A 0.
p—eg ’
(3.36)

Proof. Consider Hy in Byr. We define, for z € B,

[(z) = R»iT(Rz) and  Hy(2) = R» 1t H\(Rz2),

and we set G,(z) = GA(Rz). By Proposition this scaling implies that
Hy € L®(B,) and VH)y € LI(B,). In particular Hy solves

—A, T+ H)\) +A,T=ARNGE™"  in B,
which can be rewritten in the form
—A,(T + Hy\) + AT =ARNGY™"  in B,
by using that
Vi(z) = B3EHVI(Re) = RO S0 G0 gppy,

N—1 — N-—1
Reft o

Moreover |V Hy| = O(|VI|). Notice that if A # 0, setting G = ARNGY !, we
have that G € Lp%l(BQ), in view of p > v/N. When p > 2, condition p > %
guarantees that G € L%(Bg) for some gy small. Therefore, we are able to

apply Proposition [3.1.1]
Assume p < 2. If A = 0, application of (3.2)) to H, vyields

1 Holloo1 < C||Hollpo - (3.37)

Observing that

N—
p

~ P
[Holloo,x = B#=1|[Holloo, R
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~ N-p N
[ Hollpo,2 = R7=1 R 70 |[Hol|p 2R,
inequality (3.37)) becomes
N
R

—p N-p _ N
P |Holloo,pg < CR»=1 R0 || Hollpg 25- (3.38)

Dividing both members of (3.38) by R we obtain (13.33)).
On the other hand, if A # 0 we apply (3.3) to H, and we get

1o < U HAllpo2 + 1G]] 2, 2)- (3.39)

Here we have

p—1
P Np  ~ p ~ _
160,200 = ([ AF5RSIGP) T < ARVIGAI
Bs

p—1 p—1

= /\RN< |C~¥)\(z)|pdz) C = )\RN(
B>

|G>\(RZ)|de) ’

By
([ weswpay) T = aRFIGg
Bar
Thus inequality (3.39) becomes
N-p N-p _ N N p—1
Rt Hylloop < C(R#T R 70 | Halpg 2r + B {| Gl 25)- (3.40)

N—p
Dividing both members of (3.40) by R»=1 we obtain ({3.34)).
Now assume p > 2. Application of (3.4) to H, yields

1\ oo < CUHHA o2 + IG17S ), (3.41)

p—ep’

8 1
provided [|Hx[lco2 <1—[G||"x . We have that

P—€Q

pP—¢€Q
pil — N Ap—1 7})1\2 M=y
G117, ARG 7=
p—eq’ Bs

pP—€gQ
~ (p—1) N(p—1)
= om0 ([ 16 )

By

Nl Ny |\ No-D
= (AR")?T |GA(R2)| 720 dz

B>

P—€Q
1 _ N(p—1) N(p—1)
— (ARM)i ( [ RGw) 7 dy)
Bar

1 N-pteg
= A 1R 1 HG)\HN(;;A) 9R"
p—eq ’

73



_1 N —p+e
In particular we have that [|G[|"y , = O(R T 0) in view of G, € =y (BQR)

p—eq’

for 0 < g9 < 2p — N and || Hy oo = O(Rﬁ): these facts yield that
| H) ooz < 1 — ||QH" , for R small as required to have the validity of

(3-41)). Inequality - becomes

R || Hyloop < C(R¥ R0 Halppom + AFTR 71 IIGAIIN@ D op):
©(342)
Dividing both members of by R we obtain for A = 0 and
for X\ # 0 when R small. O

3.2 The Harnack inequality and Holder conti-
nuity of H), at the pole

Proposition 3.2.1. Let Hy be a solution of problem (1.6) satisfying condi-
tion (1.9). Assume (1.8) when A # 0. Then

max Hy < C'min H, if A=0, (3.43)
Br Br
max Hy < C(min Hy + kg) if A#£0. (3.44)
Br Br

Here R > 0 is a small radius, C' is a positive constant depending on the

structure of the problem and

¥ 1>||Gx|sz ifp<2
R#T)| G|y o UDP>2
p—eg ’

Remark 3.2.2. Tt is worth noting that in the definition of kr the exponent

of R is positive. Indeed, if p < 2 we have ;’(p 0> 0 in view of p > v/N. If

p > 2 we have trivially p‘gfl > 0.

The proof of Proposition requires an iteration process which uses Lemma
3.1.2] together with another result that we are going to show.

Lemma 3.2.3. Under the hypothesis of Proposition let Hy, T and G,
be as in the proof of Corollary . In particular Hy, solves

A+ H)+AT=G  in B, (3.45)
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where G = )\RNégfl. We set u = H, — ming, H, +k+¢e, withe >0 and k
being defined as in (3.5). If v =logu and v = |B|™" [, vdx, we have

1 -
u?l/ lv —o|de < C VB C By, B open ball. (3.46)
B

Proof. Let B = Bp(xy) C By. Since |zg] < 1 —h and h < 1 imply |y| <
ly — 0| + |zo| <14+ 4 < 2forall y € Bs,(w0), we have that B, (zo) C Bs.
Let n be a nonnegative smooth function with compact support in B%h(xo)
such that

3

n=1inB, 0<n<1in th(:co), n = 0 outside B%h(xo), V| < 7

We define ns = n(d + |y|2)(N4_<;)*(€>_2)_1|y\g, 6 > 0. Since Hy € L*(B,) and
VH, € LU(By), then ¢ = —p2u~" is admissibldl] in and we are able to
apply Corollary with U(s) = —1 and 7; as cut-off function.

Using ¢ as test function in the weak formulation of (3.84), we obtain

[ ovrriwe <o [ vl wrrvis [ gigt). an
B2 Bs

Ba

in view of [V H,| = O(|VT|) if p > 2. Application of Young’s inequality gives
1 .
C [ wlonslVop el < 5 [ VTpepee [ vaPvep
Bo By Bs
As a consequence, (3.47) becomes

/ n§|vrrp-2|w|2so( [ 1vwpvre s |g|n§u—1). (3.48)
Bs Bs Bo

We deal with the first term in right-hand side of (3.48]). We observe that

(N-1)(p—2)

Vs 2V c[/ | 1( v ) T
Ns = Yy n
By By d+ |y|?
(N-1)(p—2)

+/( ly|? )2 2y 77_2]
By \0 + [y/? yl]’

!'Notice that now we are studying the case 3 = —1 of the proof of Lemma
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(N—-1)(p—2)
Glnju™ = [ |yl(6+ [y[*) @0 n?Glu".
B2 Bs

using the definitions of s and VI'. Thus ([3.48]) rewrites as

(N=1)(p=2)

2 T ak-1)
2| |P-2 2<C’/ Y| 2
/BQWV P Vol” < [32 i 5t [l V]

9 (N1 (p=2)

|y|2 ) 2(p—1) 772 9 (N—1)(p—2) 9 1
- [ ( Ty 6+ ) ST g .
B, \0 + |y|? |y By
(3.49)

Since (6%;2)& < Oly|~max{=220} " we have that

‘ ’2 7(N2—(1)(Ii—2)
p— (N=1)(p—2)
|y|( y < Cly| S0 ¢ )
N2) (3.50)

(
|ly|? -0 s (YD @=2)
(5 - ‘|y|2 m < C|y| (== 3,1} c LI(Q)

in view of % < N. Since G = )\Rprfl(y)[1+O(R%|y|%)] in view

of ||Hy|lee < +00, when X\ # 0 there holds £ > CR' for some ¢ty < p and
C > 0in view of p > max{\/ﬁ, % , where k is given by (3.5)), and then

IN=1)(p
2(p—1

(N-1)(p—2) B 1 —2)
0166+ 1) "5 gl < & [ 1wl + 1) T
2

<c | N+ ) T g,
Bs

Bs

(3.51)

Since

PN [y?) T < Jy N RSN ¢ 1(0) (352

in view of p+ 1 + (N;D# > 0 thanks to p > VN > 1*N+W7 we
can use (3.50), (3.52)) and the Lebesgue’s convergence theorem in (3.49) and
(3-51) to get

2

i _ N-1
[otiver ([ s [ Do [ uprse) e
B By B, Y]

B>
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thanks to the Fatou’s convergence theorem. Since by (3.53)) one deduces

/|v—17]§0’h/ yvu\gm(/ ) (/ |y||Vv|2)
B B |y|
1 > N-1 >
<Ch</ ) ( ly||Vn|* + / ” \y!p b= 1772)
|yl B |y|

and p — % > —1 thanks to p > v/N, for |zo| < 3h one has that

/]v—'u\ <o <hN Ly hp—*“V) — O(h™)

in view of Bg(x) C Bsn(0), while for |zo| > 3h there holds

fe=ele(f g
cofi(2

s 3h  |zol
in view of 5t < 5% < |y

>( |y||V77|2) NI (RN g it AT
%
(’fL‘U|hN_2> + h2N:| — O(hN)
<

2|zo| for all z € Bsy, (o). The proof is complete.
[

Proof of Proposition[3.2.1. Let Hy and u be as in Lemma . The proof
is divided into 5 steps.

Step 1. Lemma and John-Nirenberg Lemma (see Lemma 7 in [30]),
imply that there exist A and it depending on N such that

/ ep(’”d:v/ e Pvdy < 22N 2 with py =
By Ba

C being the same as in (3.46). Using the definition of ® and recalling that
v = logu, we obtain

In Step 2 and 3 we will apply Lemma with # = Hy — ming, Hy and we
will use the iteration process as described in the proof of Proposition [3.1.1]
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We will omit some technical calculations, that have already been discussed.
We set
N_2+p ifp<2and A\=0

N—p
K=o ifp<2and A>0
N .
N3 otherwise,

p(B+1)  ifp<2,A>0
B+1 otherwise.

Step 2. Beginning with ®(po, 2), we iterate estimate (3.7)) if p < 2 and X # 0,
estimate (3.23) if p < 2 and A = 0, estimate (3.9) if p > 2. Therefore,
application of the iterative scheme with

1, = K po, h,=1+27", h!, = hy,y1,
for v =0,1,2,..., leads to the inequality

maxu < CP(po,2). (3.55)
1

Step 3. Beginning with ®(—py,2), we iterate estimate (3.8)) if p < 2 and
A # 0, estimate (3.24]) if p < 2 and A = 0, estimate (3.10) if p > 2. Then,
the iteration process with

My = _"{Vp()a hu =1+ 2—1/’ hly - hu+17
for v =0,1,2,..., leads to the inequality

r%inu > C®(—po, 2). (3.56)
1

Remark 3.2.4. In order to have (3.7) applicable at each stage, the successive
iterates u, must avoid the point 4 = p. To accomplish this in a definite
way we shall choose a new initial value pj, < po so that the point p = p lies
midway between some two consecutive iterates of p. The same procedure
can be also applied in and to avoid the point ;4 = 1. In particular
we have that ®(p,2) < C®(po,2). In relation to (3.10]), we can use a similar
argument to avoid the point y = 2 — p, with —p > —py in such a way that
®(—po,2) < CP(—pp, 2).
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Step 4. Putting together (3.54), (3.55) and (3.56)), recalling that v = H —
ming, Hy + k + ¢ and letting ¢/ — 0, we finally obtain

max H, < C(min Hy + k), (3.57)
Bl Bl

that is the Harnack inequality for H \In Bj.
Step 5. If we assume A\ = 0, then k£ = 0 by definition of G. Consequently,

(3.57)) rewrites as

IHBETXf{() < C’I%ilnﬁo
and, by scaling, we obtain (3.79)).
Assume A\ # 0. We have that

19 25 ifp<2
_1
16175, itp>2.

p—eg’

that is
B )\RPHGAHPQR if p<2

- —p+eg

)\P 1R p—1 ”G)\”N(pfl) 9R ifp> 2.
p—eg ’

Therefore, if p < 2 then ( m yields
Rt maxH,\ < C’(Rp r IIllIlH)\-i-RP ||G,\||p2R)

that is, dividing by R»,
I%&XH)\ < C(mln Hy + R”(” D |Gl pQR)
Similarly, if p > 2 we obtain
max Hy < C(Igngx + R%||GA||1\;(37;(]1)72R)-

This concludes the proof of Proposition [3.2.1] O

We are now ready to establish the Hélder continuity of H), at 0.
We set for r > 0
M(r) = H}BaXH,\ and p(r) = HgnH,\.

T T

Then we define the oscillation of Hy in B, by



Theorem 3.2.5. Let Hy be a solution of problem (1.6) satisfying condition
(L.9). Assume (L.8) if X # 0. Then there exist a € (0,1) and &y > 0 so that

w(o) < Cho® for all o < 4. (3.58)

Proof. We observe that M (r) and pu(r) are well defined for 0 < r» < 1. It
follows that both functions

H, =M — H, and Hy=H),—pu

are nonnegative in B,.

Remark 3.2.6. We have always worked with a function H which solves
—A(T+H)+ Al =G. (3.59)

We observe that H, satisfies the same equation as H. On the other hand,

H; solves
— Al = H)+ AT =4G. (3.60)

Even if and are different equations, it can be easily verified that
the respective weak formulations lead to the same estimates, as described in
Lemmal[2.2.3]and Corollary [2.2.4] Therefore we are able to apply the Harnack
inequality to H;.

Application of Proposition to H; in the open ball B, gives

M — ' = max Hy < C(min Hy +k,) = C(M — M' + k), (3.61)

where M' = M'(r) = M(r/2), i/ = /() = p(r/2) and

p2—N
rp(p*l)HG)\Hg_l 1fp <2
IR R feN . if p > 2.
p—eo

Similarly, by applying Proposition to Hy, we have

M’—ugr%ang§C(r%ian+kzr):C(u’—u+kr). (3.62)
; ;

Adding (3.61) and (3.62) and transposing terms then gives

-1 2Ck,

M — < —=(M — . .
“—O+1( “)+C+1 (3:63)
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We define 9 = €= < 1,

C+1
S lIGAlE! ifp <2 P if p<2
T=19 90 . and o=""
c-1lGallxe-n ifp>2 . if p> 2.

Recalling that » < 1, then (3.63]) becomes

w(g) <Hw(r)+71r7), 0<r<l.

Since w(r) is an increasing function representing the oscillation of H in B,,

it is clear that for any number s > 2 one has also

w(5> <I(w(r)+7r7), 0<r<l. (3.64)

S

Iteration of relation (3.64) from r = 1 to successively smaller radii yields

w(s™) < [w(l) + TVZ(ﬁs")—J}, forv=1,2,.... (3.65)

=0

Now we choose s according to the relation
¥s? = 2,
whence from follows
w(s™) < 9(w(1) 4 27). (3.66)

For any fixed p, 0 < o < 57!, let v be chosen such that s~ ! < p < s77%.
Thus, by virtue of (3.66) we have

w(o) Sw(s™) <V (w(l) +27) < CY, (3.67)

using also the boundedness of w(1) and 7. At this point, if 7 is defined by the

relation 277 = o, then we have ¢ = s7* where a = 017 € (0,1). Therefore

(3.67) implies

w() £Co”,  o<277,
that is (3.58) with dy = 2"+ . 0
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Corollary 3.2.7. Under the hypothesis of Theorem[3.2.5, Hy is Hélder con-

tinuous at the pole i.e.

[Hx(y) — HA(0)] < Cly|*  near 0, (3.68)

« being as in (3.58)).
Proof. Assume by contradiction that (3.68)) does not hold. Then there exist
sequences ¥, € {2 such that
| H(yn) — HA(O)]
|yn]®
Since H) is bounded, (3.69)) implies that

— 400 asn — +oo. (3.69)

Yo — 0 as n — +o0. (3.70)

We define o, = |y,|. Then y,, € B,, and there exists ny such that g, < &
for all n > ng. Application of (3.58)) yields

|H(yn) — H(0)] < Coof VYn > ny,
in contradiction with (3.69). This proves (3.68)). u

3.3 A stronger result when p < 2

In the previous sections we always worked in balls centered at 0. Conse-
quently, the function I had radial symmetry and it was singular in 0.
When p < 2, our aim is to to generalize the Harnack inequality, making it
hold in Br(yo) with yo # 0. As a consequence, we will show the global Holder
continuity of H, when p < 2.

We define for y € By
~ N1
L(y) = [yol ™ R™'T(Ry + o). (3.71)
Then
No1
Clyol >+ ¢
Nol T N-1 -
[Ry +yol vt |7 o | o
0

[yol

~ N—

VI(y) = |yo| »* VI'(Ry + o) =

Let ry = yTol. We observe that if R < rg then % < % and VT does not have
singularity in Bs.
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Proposition 3.3.1. Assume p < 2. Let H € L*®(Bs), with VH € L1(B,),

be a solution of
AL +H)+AT =G  in By, (3.72)

such that |VH| = O(|VT|) and G € L1 (B,y). When G # 0 we require

p > ]\Qf—ﬂ\rfl Then we have a universal bound for H in Bi(yo). In particular,

estimates (3.2) and (3.3) hold.

The proof of Proposition is a consequence of the following Lemma.

Lemma 3.3.2. Let H be as in Proposition . Assume p > \/N, N =23
ifG#0andp <2. IfG#0, estimates (3.7) and [3.8) of Lemma[3.1.9 hold

with Kk = TR Otherwise

2

Oy (ki B') < [Cp(h — K i dy (k) if e (0,1)U (1, +00),  (3.73)

Oy (rpa, B) > [Cp(h — W) 5 dy(p,h)  if p € (—o0,0), (3.74)

; - N
with Kk = -

Proof. We will follow the proof of Lemma then some details will be
omitted. We will get better estimates due to the regularity of VI in Bs.

Assume G # 0. Using in ([3.12) that VI' = O(1) in B,, we get

vt < ¢ (147 ;”2) [+ % /[ gl
(3.75)

B>

Notice that we are able to use 7 instead of 7., because of the regularity of

the problem in B,. Since k < u we have that
28 2, f-1+1 - ‘glzz<l 2 _ 2
Gln*u” = [ |GIn"u < | ot = Gl lnvlly, =l
Bo By B>

Thus, application of Sobolev inequality and (3.75) yield

1)2 1)2
oLy )vamr% (8 t otz ]

ol < €| (1+
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that is

(/Bh/ u(ﬁfjl)ZN)N < C[(l + Gk ;21)2)(}1 — h')7? /Bh uPt

+ % (/Bh upw“)) 1 . (3.76)

in view of the properties of n and the definition of v. Thus inequality (3.76])
yield (3.7) and (3.8) as in Lemma [3.1.2] with x = ﬁ > 1 in view of
VN <p<2and N =2,3.

Assume G = 0. Similarly to the previous case, we obtain

(EIUN o (5+1)2> =2 B+1
(/Bu ) gc(1+ ) (=) /Bu (3.77)

Weset pu=p+1and k = % Since |B| > fo > 0, then (3.77) rewrites as

()

Taking the p-th roots in (3.78)) we obtain (3.73) if € (0,1) U (1, +00) and
BT i 1 € (—o00,0). .
Corollary 3.3.3. Let Hy be a solution of problem (1.6) with p < 2 and let
A, p, po be as in Corollary|3.1.4 Then we have a bound of Hy in Br(yo) for

R <1y and yo # 0. In particular, estimates (3.33) and (3.34) hold except
that now balls are centered at .

%)=

< [Cu(h - h’)1]2/ ut. (3.78)

By,

Proof. We set for y € By
~ u _ ~
H)\(y) = ‘yoyl’*lR 1H,\(Ry+yo) and G,\(y) :G)\(Ry—l-yo).

By Proposition this scaling implies that Hy, € L®(B,) and VH, €
Li(B5). Moreover

—A,(T+ Hy) + A, = Ny 'RGY™ in By,

Application of Proposition m to H, with G = /\|y0]N_1Ré§_1, with the
aid of the same arguments used in the proof of Corollary [3.1.4] yields the

desired estimates. OJ
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We are going to generalize Proposition |3.2.1] proving the Harnack inequality
in Br(yo) with yo # 0 and R < ry.

Proposition 3.3.4. Let p < 2 and yo # 0. Under the hypothesis of Propo-
sition we have that

max Hy < C min H if A=0, (3.79)
Br(yo) Br(yo)
max H, < C( min H) + kg) if A #0. (3.80)
Br(yo) Br(yo)
Here R > 0 is a small radius such that R < rq, C is a positive constant

N(p=1) _
depending on the structure of the problem and kp = R*™ g |Gl §,2}%'

Remark 3.3.5. It is worth noting that in the definition of ki the exponent

of R is positive. Indeed, the condition 2 — W > 0 is equal to require
p < %, which is satisfied being VN < p < 2 and N = 2,3.

The proof of Proposition [3.3.4]requires an iteration process which uses Lemma
B.3.2] together with the generalization of Lemma [3.2.3]to the case yo # 0 that
we are going to show.

We consider the following scaling for y € Ba:

Hy\(y) = |yo| 7+ R H\(Ry + wo), (3.81)
L(y) = lyol »* R'T(Ry + yo), (3.82)
C?/\(y) = GA(Ry + o). (3.83)
Then FI)\ solves
— AT+ Hy)+AT=G in By, (3.84)
G being defined as
G(y) = Ayol " RGE ! (y). (3.85)

Lemma 3.3.6. Under the hypothesis of Proposition let Hy be as in
(3-81), (3.84). We set u = Hy — ming, Hy + k + &, with ¢’ > 0 and k =
Gl 2, - If v=logu and v = |B|™! [, vdx, we have

1 N
|§|/ v —olde < C VB C By, B open ball. (3.86)
B
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Proof. The proof is the same as in Lemma [3.2.3
Since |VI'| ~ C, then application of (3.48) with 7 instead of 7 yields

/ nz\Vv|2§C< [ vnes rgwul). (3.87)
Bo Bs By

Moreover, since k < u, recalling the properties of 7, we have that
2,1 < 1 2 1 2 2 1 N
Gl < 7 [ 16l < I, I0l13, = Inll3, < [Basl? = Ch
Ba k Bo P 2

As a consequence, (3.87) becomes

/ Vol < O+ hv) < CRN2,
By

in view of N —2 < % being VN < p < 2. Then we get

[ro=dzen [iwen( [ #9e) By
B B Ba :

< Ch*E 4% = op
that is (3.86) with B = Bj,(xo). O

Proof of Proposition[3.3.4. Let H, be as in (3.81)), (3.84). The proof is di-
vided into 5 steps and goes as in Proposition [3.2.1. In particular, in Step

2 and 3, application of Lemma with H = H, — ming, H) is needed,
together with the iteration process as described in the proof of Proposition
3.3.1) with

N

) Iﬁ if A >0
e if A =0.
Step 4 yields
max H, < C/(min Hy + k), (3.88)

that is the Harnack inequality for H, in B;. Finally, Step 5 deals with the
rescaling of (3.88)). We have that

N(p—1)

b= 1G] 2,2 = Myl R Gk
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Therefore, (3.88) gives

lyol 7T R jnax Hy < C(Jyol = R m(ln)HA + yol ™ R ||GA||sz)
that is, dividing by |yo| > R,
D=2 o
masc Hy < C(min Hy + Aol "5 B 52 Gy 50,
Br(yo) Br(yo)
This concludes the proof of Proposition [3.3.4] O

At this point we are able to show the global Holder continuity of H). By
Corollary we know that H) is Holder continuous at 0.
We set for z € Qand r > 0

M(r,z) = max H d = min H
(r,2) max fy  an pu(r, z) = min H.

Then we define the oscillation of H) in B,.(z) by
W(T, Z) = M(T7 Z) - N(ﬁ Z)

Theorem 3.3.7. Let Hy be a solution of problem (1.6|) with p < 2 satisfying
condition (1.9) holds. Assume (1.8) if X\ # 0. Then there exist o € (0,1)
and oy > 0 such that

w(r,z) < Cyr® for all r < dgro, (3.89)

Yol

where ro = 2.

Proof. We observe that M(r, z) and pu(r, z) are well-defined for 0 < r < r.
Then the functions

H, =M — H, and Hy=H),—pu

are nonnegative in B,.(z). For 0 < o <1 we set &(p, z) = w(oro, 2) and

2C
C—-1

As in the proof of Proposition [3.2.5] application of Proposition to Hy
and H, yields

7= rolGllyen.

W(s™") < 9¥(w(1) + 27)
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for any s > 2 and v = 1,2,.... It follows that
w(9) < (@w(1) + 27)0¢, 0 < dp.

Letting r = drg, (3.90) rewrites as

w(re) + é—ngGH No-)T§
w(r) < P~%0

o

Recalling the definition of «, we observe that

U—&:U(l—i): ? >0,
v+ 1 v+1

being v > 0 in view of 277 =9 < 1. Moreover, since rqg = |y4—°‘,

BTO(Z) C BT0+47“0(0) - B5T0(O)'

This implies that
w(re, 2) < w(bro,0) < Co(bro)?,

with the aid of (3.58]). As a consequence, (3.91)) yields

w(r, z) < Cyre r < doTo-

- >7“a, r < doTp.

(3.90)

(3.91)

]

Corollary 3.3.8. Under the hypothesis of Theorem[3.3.7, H) is Hélder con-

tinuous t.e.
|Hx(2) — Ha(y)| < Clz —y|* Vz,y €,

 being as in (355), (359).

(3.92)

Proof. Assume by contradiction that (3.92)) does not hold. Then there exist

sequences z,,y, € €2 such that
[ Hx(2n) — Ha(yn)]
|Zn - yn|a

Since H) is bounded, (3.93)) implies that

— +00 as n — +o0o.

Zn —Yn — 0 as n — 4o0.

38

(3.93)

(3.94)



By compactness, there exists z, €  such that z, — z9 as n — +o0.
Since (3.94) holds, then y, — x¢ as n — +o0o. Moreover, from classical
regularity results we have that 2o = 0. We define o, = max{|z,|, |yn|}. Then

Zn, Yn € B,, and there exists ng such that o, < 7o for all n > ny.
Application of (3.58) yields

|Hx(2,) — Hy(ya)| < Coo2  Vn > ny.

This implies that
20 — Yl K 00 V1 > o, (3.95)

i.e. there exists a constant M > 1 such that |z, — y,| < Mo, for all n > ny.
It follows that

|2 — yn| < |20| and |z, — yu| < |yn| Y1 > no. (3.96)
Indeed, assume g, = |2z,|. Then

in view of (3.95), and we get (3.96). At this point we observe that y, €
B\ —yn|(2n) for all n > ng, with 2|z, —y,| < dyrg in view of (3.96).
Application of (3.89) with respect to z, gives

|H)\<Zn) - HA(?JR)‘ < Cl(2|zn - yn|)av

in contradiction with (3.93). This proves (3.92)). O

Remark 3.3.9. Tt is worth noting that the global Hélder continuity does not
hold when p > 2. Indeed, if p > 2 we have to require |yo|% < R to

- 1

guarantee ||Hy|loo5, < 1—]G||"~_ 5, and to be able to adapt the calculations
p—eg’
of Proposition [3.1.1} ’
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Chapter 4

Application to Brezis-Nirenberg
type problem

This chapter is devoted to the discussion of existence issues related to
the quasilinear Brezis-Nirenberg problem (1.11)), in the low-dimensional case
N < p?. Throughout this chapter we assume p > 2 and 0 < A < ;.

In Section we will introduce an approximated problem whose solution
admits an expansion in terms of H,(-, x), which is the solution of with
pole at x € Q. A priori estimates on approximating solution are needed and
for that we will adapt the result proved in the first part of this thesis.
These approximating solutions will be crucial in Section where we will
show Theorem . The most delicate point is to prove the implication
(44¢) = (¢) under the hypothesis (1.14). A blow-up analysis will be needed,
together with the application of integral identities of Pohozaev type.

4.1 The approximated problem

For x € €2, we consider the solution PU.  of the problem

—A,PU., = APUY' + U1 in Q
PU., >0 in Q (4.1)
PU.»=0 on 0f),
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the function U, being the so-called standard bubble, defined as

N—p

Ud(y) = Cl( © > Toeso, (4.2)

er + |y — afr

N—p (p—1)(N—p)
where ) = N »? (%) »* . We know by Remark [1.2.9 that U, solves
—~ AU =0 inRY. (4.3)

We decompose the solution PU, ) of (4.1)) as

O N—p
PU&)\ = UE + —1€NP H&)\, (44)

Cy being the same constant as in (1.4). Setting

Co “5PPU., and T. = %5—19"(/5, (4.5)
1

then (4.4)) rewrites as
Gp=T.+H.,.

In particular, recalling the definition of U., we obtain that
Co
—.
(&7 + Jy — 2|7=1) 7"

I'. =

At this point we observe that

C L\t C S\
—A,(G.y) = (—%Np ) (—A,PU.») = AGZ,! + (F%Np ) Ut

in view of (4.1)). Thus G. ) solves the problem

—AGen =G+ f. inQ

G.>0 in (4.6)
Ger=0 on 0f2,
_ (C _N—-p p—1 *_q
where f, = (0_15 v )L

Lemma 4.1.1. f. — 0, weakly as € — 0 in the sense of measures in €.
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Proof. Let ¢ € C§°(R2). We define Q. = {2: z = £5,y € Q}. Then

&

— @ *% - p*—1
[re= (@) [orweta

N(p—1) +1

Co _np\P! CP ey
55 P ) / : e N(p71)+190<3/)dy
! (P + |y —a[rT)

_ (Q) / O et a)
CJ o (1 o)
Co\" C vl
(&) [ (—8s) -
o S\ )

as ¢ — 0, since €. converges to the whole space R, and in view of the
definition of Cy and (. O

Remark 4.1.2. It is known by [24] that there exists a weak solution G. ) of
(4.6), that is G, € W, ?(Q) such that

/Q VG2 (Ve Vi) = A /Q Gl + /Q fo Ve W(Q).

With the aid of the definition of G, , and (4.6, we can consider H. ) as the

weak solution of the following problem

AT+ Hop) + AT = AGY in Q (47)
H.,=-I. on 0f). .
It will be useful also the following decomposition of G. y:

Ge,)\ = Xra + fis,)v (48)

Here y is a cut-off function which is equal to 1 in Be(z) C € for some radius

¢ > 0 and equal to 0 near the boundary. We have that, in a weak sense,

—A,(xIe + IA{EA) +A,(xIe) = )‘Gg;\l + 9 in {2

(4.9)
H.»=0 on 0f,

where g. = f. + A,(xI:).
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Lemma 4.1.3. The function g. in (4.9) converges uniformly to the function

g in (L.7) ase — 0.

Proof. We observe that g. = g = 0 in B¢(x) where x = 1. In Q\ B¢(z)
we have that I'. — I' does hold uniformly (even for the derivatives). Then,
recalling the definition of I',, we get

CO _N-p pil p*—l
9= = f- + Ap(XIc) = ?5 i U2+ Ap(xTe)

1

C\V7 .
:(é) eTE 1+ A, (xT:) = A (xT) =g

uniformly as ¢ — 0. O]

We are going to prove an expansion for PU. y, solution of , which will
be crucial in the proof of Theorem [I.0.2]

Before turning to the main result of this section, we show that a uniform
estimate holds for H. 5. We will use the following lemma, the proof of which

is the same as in Lemma [2.1.1] provided that j is replaced by e.

Lemma 4.1.4. Let G be a solution of (4.6). Assume p > V'N. Then

IGE3 |1 s uniformly bounded.
Now we are able to prove the uniform local bound of H, ).

Proposition 4.1.5. Let H. , be a solution of (4.7). Assumep > max{V'N, I }.
Then there exist positive constants pg, €9 and C', which do not depend on ¢,
such that for R > P~ small

_N €0
1H. Al < C(R 70 | Heallpo2r + R7T). (4.10)

Proof. Before turning to the estimates it is worth noting that we are not
able to apply Proposition and Corollary since I' is replaced by
I'.. Even if the hypothesis |[VH. | = O(]VI.|) is not needed being p > 2,
we observe that in the proof of Proposition we use that |[VI'| > ¢ > 0,
which does not hold for I'.. Then we adapt the proof as follows.

93



Inequality (3.19)) rewrites as

|Vf’5|p_2np|Vv|2 < C|B—1+p|a( |Vn2v® + |V77|pv2—i—/ 77”1}2),
B2 BQ

(4.11)

B2 B2

where oo = 2 + p(pa;ogo) and T.(2) = R%FS(RZ). We observe that

1 1
~ _ R —1 p—1
|VF5| — Rijg\;]—ll ’ Z’p _ = p|Z’p ; _
T @R )

Assuming R > e?~', we have that |VI.|P~2 > 5|z|g%§ for some 0 > 0. Thus

(4.11) yields

p=2 2 _ a 2,2 P,,2 D42
|2[r=1n?|Vol* < OB — 1+ p (Vnl*v™ + [ [Vpffo® + [ nPo® ),
B2 Bo Bs B2

that is, letting v = 72,

[N4S)

V0P <l - Ll ([ [k [ eipe s [ ).
B2 B>

(4.12)
Consider v; € C§°(By) converging to yv in Hy(Bs) as j — +oo. Application
of Caffarelli-Kohn-Nirenberg inequality to v; with a = p;_Ql) and b = 0 (see

T 2p
Theorem [2.2.6)) gives

(/ w)csé [ v, (4.13)
BQ BQ

_ _2N  _ 2N(p—1)
where ¢ = 55—~ = N1 -p"

lemma and Lebesgue’s theorem in (4.13]) we obtain

( / |vv|c>CSC|ﬂ—1+p|O‘( Voot + [ 9l n) (4.14)
Bo Bao B> By

in view of (4.12)). Since ¢ > 2, we are able to apply the iterative scheme and
then we obtain

Bs B>

Letting 7 — 400, with the aid of Fatou’s

_N €0
gAMlloo,R > 0 eMpo,2R P= eMIN@=1 5p)- .
[Henlloo,p < C(R F0[[He|po,2r + RPT|Ge | or) (4.15)

At this point, Lemma together with the results in [5] yield the uniform
boundedness of G.  in Wol’q(Q) for all ¢ < @, and then in L"(Q) for all r < ¢*
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in view of the Sobolev embedding. Since p > %, we are able to choose g9 > 0

such that ]\;(fgol) < M=) " Thys there exists a constant C, which does not

N—p B
depend on ¢, such that ||G. || ne-1y < C. Therefore, using (4.15]), we obtain
p—€Q
the desired conclusion. ]

Remark 4.1.6. Proposition holds even if we consider H, ) + c instead of
H. ), ¢ being a constant, in view of the form of problem (4.7).

With the aid of [4] as in Section we have that, for all ¢ < ¢, G.\ — G
in W,%(2), Gy = G(-, ) being the Green function with pole at z, and
H.) — Hy, in W"(Q) as € — 0, (4.16)

where Hy = H,(-,x) is the regular part of G,. Taking into account these

facts, we get the following convergence result for H. .

Proposition 4.1.7. Let H. , and H) be solutions of problems (4.7) and (1.6)
respectively. Assume p > max{V/N, %} Then

|Hex — Hylloo — 0 as € — 0. (4.17)

Proof. Assume by contradiction that (4.17)) does not hold. Then there exist
d > 0 and a sequence &,, converging to 0 such that ||H., x — Hy||ooc > 6. Then

we can find a sequence z,, € () which satisfied]|

|H., \(xn) — Hx(x)] > 0. (4.18)
By compactness, there exists o € {2 such that z,, — x¢ as n — +oo. Using
the regularity of H. , away from the pole x, we get xo = x. Thus (4.18]) gives

J

[Hey a(e) = Ha(w)] > 3, (4.19)

in view of the continuity of H) in €.
Application of Proposition and Remark with ¢ = —H)(z) yields

_N _€0_ _
|Hepn — Ha(2)||loor < C(R || Hep x — Ha(2)||po2r + R7T), R >l L,

LFor ease of notation we will write H(-) instead of Hy(-,z).
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As a consequence, for a small radius R > P! we obtain

e, 2(20) — Hy(z)] < C(R 7 ||He, » — Hy(2)|lpo2r + R71)  Yn > no,

(4.20)

no being chosen in such a way that z,, € Bg(x) for all n > ny,. We observe

that the right-hand side of is uniformly bounded in n. Indeed H., is

uniformly bounded in W4(Q) for all ¢ < g, and then in L"(2) for all r < g*

by virtue of the Sobolev embedding applied to ., . Recalling ([A.16), we
can pass to the limit n — +o0 in and we get

lim |H., \(z,) — Hy(x)] < C(R_%HHA — Hy(2)||po2r + R%) (4.21)

n—-+0o

since we are able to choose py < ¢*. Notice that (4.21) holds for any R > 0,
since lim,, £, = 0.

At this point we let R — 0 in (4.21). We study the first term in the right-

hand side of (4.21)).
Do
| Ho — H(@) ot = ( [ - HA<a:>|p°dy)
Bog(x)

1

< C(/ ly — xlapoczy) " < GROR
Bar(x)

in view of the Holder continuity of H at the pole . Then (4.21)) becomes

1

lim |H., \(2) — Hy(z)| < C(R*+ Rv1) -0 as R—0,  (4.22)

n—-+o00

since a and g are positive constants. This concludes the proof, being (4.22))
in contradiction with (4.19). O

Corollary 4.1.8. Assume p > max{V/N, %} Then the expansion
N—p N—p
PU.N=U.+—¢ 7 Hy+o(c») (4.23)

does hold uniformly as ¢ — 0.

Proof. We recall that PU, ) decomposes as

C
PU., =U.+ —te 7 H.,.
Co

Thus, application of Proposition yields (4 . ]

96




4.2 Proof of Theorem

We are going to discuss the implications in Theorem [1.0.2]

Proof of (i) = (ii) in Theorem[1.0.4 In order to show Sy < S, we define

[Vullp — Allull?
p*

for u € Wy*(Q), u # 0. For ease of notation we assume = = 0. The idea is
to estimate Q,(PU. ), using the expansion and the properties of the
standard bubble U, defined in (4.2).

Since PU. , is a solution of (4.1, we have that

IVPUAE — A|PU AL = / (A, PU..» — APUP;V)PUL, = / Ur-1pUL
Q Q

:/Uf* ﬁngp/Uf*—lﬂﬁo(e]ﬁ”/sz*—l),
Q CO Q Q

(4.25)

in view of (4.23). We set Q. = {z: 2 = J%5,y € Q}. We observe that
C;D N
LY = s
(er + [yl 1)
Op

:/ s S B TR
Q. (14 [z|7-T)N RN

1
/ Np O(&‘N).
{|z|>e~ (-1} |Z’P—1

in view of
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Moreover

€N;p / Uf“lHA _ ngP+N(p_1)+NPpN“’—(Np—N+p)/ Uf*71<Z)HA(8p712)dZ
Q

£

B 5N_p/ UV (2)[HA(e"™'2) — HA(0) + Hx(0)]
Qe

— NP H, (0) / Uf*—1+o(sN—p+a<p—1> / Uf*—1|z|a)

]RN
+0 (eN_p / U{’*‘l)
{|z|>e= (P~ 1)}

= NP H,(0) / UP = 4 (NP £ O(eN)

RN

=N rHy(0) [ UF T O ),

RN
where we have used the Holder continuity of Hy with respect to 0 and the
fact that [, U 72]* < +00. As for the last term in ([£.25), we get

o<ngp /Q Ug*-l) = o(eNP). (4.26)

Cp**lng7N+p
- P Np—N+p
fort= [ Sy = 0
Q Q (gp —+ |y‘p—1) P

and then (4.26)) follows, in view of

/{ 1—*_1) =0(e e )

jef>e=-1) |2]7o1

Indeed

being p > % As a consequence, letting L = [,y Uf*_l, (4.25) rewrites as

. C
IV PUAL = M| PU |2 = /R UT LF;HA(O)gN—p Fo(eN P, (4.27)

At this point we are going to study ||PU:

b+, With the aid of Taylor ex-

pansion, we get

|PUAP = U +prUr ! [ﬁaNﬂH
) CO

#0725 o )+ [t o)),
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in view of (4.23). Then, using the boundedness of H), we obtain

[Pt = [0 ey [armsof i [1r-)
e e

We observe that

_2 Np—2N+2p

2(N p) 2(pr) Cp P
£ / Up P / Np—2N+2p dy
Q Q (5p+|y|p—1) P

_ €2<1\;p>+2(N—p+1—1;,])/ U = O(2N-P),

Using the same calculations as before, we obtain
* p* * O N—p N—p
[PUA = | U+ p" L HA(0)eN 7 + o(77). (4.28)
Q RN C()

At this point, expansions ) and (4.28) yield

Li+ LQH,\(O)SN*Z’ + o(eN7P)
QA(PU.,) = e — (4.29)
(L1 +p*Lg—(1)H)\(O>€N7p+O(€N7p)) N

where Ly = [pn U} ". With the aid of Taylor expansion, ([#.29) gives

A(PUY) = L = (= LT L2 H,0) 40 7). (430)

Recalling the definition of S, we have that

fRN \VUlfp Ly
p(N—p)
fRN Ul Ll Np

~zk

=L

Y

in view of —A,U; = UP "' in RY. Thus (#.30) rewrites as

Q\(PU.,) =S —(p— 1)L Lgl NP, (0) + o(eV7P). (4.31)

0

Since H,(0) > 0 and recalling (1.12), then for £ > 0 small the expansion
(4.31)) yields Sy < QA(PU. ) < S and we get (i1). O
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The implication (i¢) implies (#i7) in Theorem is classical and it is given
by Lemma [1.2.11

At this point we assume (1.14). Let A\, = A\, + % Since A, > A, we have
that S, < S. Thus S), is achieved and, up to a normalization, we can find
some smooth positive function u, € W,?(Q) verifying
— Ay — Aubt =P 1 in O
N
Joub =S
Our goal now is to study u, as n — 4o00. Since A, < A1, by (4.32) w, is
uniformly bounded in W, 7() and then, after passing to a subsequence, u,,

(4.32)

converges weakly to some u, in Wol’p(Q). Observing that

A — ) ||ul]|P
Qx, (u) = Qx, (u) + w = Qx,(u) + O(%)

[l

we deduce that Sy — Sy, as n — +oo. By passing to the limit in (4.32),

we obtain that w, verifies
—Apu, — Al =Pt in

N
p* P
Joulm < S\

Sy, < Qu, (u) = < / u) < Sy,
Q

if ug # 0, which would imply that S, is achieved by u,. Since this is not

(4.33)

Thus

possible, we get that u, = 0 and

U, — 0in WyP(Q), u, — 0in LY(Q) for 1 < ¢ < p* and a.e. in €,
(4.34)
in view of the Sobolev embedding theorem.

We observe that 0 < u,, € C1*(Q) for some « € (0,1) as follows by elliptic
regularity theory [11], 130, 33] to (4.32). Using and since [, uf = S/\%n,
we have that ||u,||.c — +00 as n — +oo. For this reason we will start a
blow-up analysis to describe the behavior of u,. To this purpose, let z,, be a

point of {2 where u,, achieves its maximum. We set

N—p

oy, = [un(:vn)rﬁ and  U,(2) = pun® un(pnz + ), (4.35)
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for z € Q,, = {% y € Q}. In particular p, represents the blow-up speed,
while U, is the blow-up profile. Since

/ufz* < (un<xn))p —p/ uy, = ,unp/ Uy,
Q Q Q

it is clear by (4.34) that p, — 0 as n — 4o00. Moreover, U, satisfies

— AUy — Ay U, = UP" ! in Q,

(4.36)
U,=0 on 0f),,

with 0 < U, < U,(0) = 1 and sup,ey [, UF + [, [VUL[P < +oo. By
standard elliptic estimates [111, B0, B3|, we get that U, is uniformly bounded
in CH*(K NQ,), for all compact subset K of RY. Then, for all z € 9Q,:

1=Un(0) = Un(2) = (VUn(&n), —=2) < Clz].

As a consequence, we obtain that

dist(x,,, 09) _ 1
——— =dist(0,09,) > —=.
o ist (0, ) > -

Hence, up to a subsequence, we can assume that

lim M =L € |:l,+00}
n—+4o0o Hn, C

and then, up to a subsequence,
Up = U in CL.(Qs0), (4.37)

where Q. is an half-space so that dist(0, 9 ) = L and U solves

AU =01 in Qg
U=0 on aQooa

with U € D*(Q,) such that 0 < U < U(0) = 1 in Q. If L < 400, then
U € D{?(Qs) and by [29] results U = 0, contradicting U(0) = 1. Hence

i Q
i J80E00) (4.38)

n—400 ,un
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.. . p__N-p _Np721
and we have that U coincides with Uy, = (1+Aly|71)" 7 , A = C; " PFY,
P
in view of (4.2)) with z = 0 and ¢ = O """ to have U, (0) = 1. Since

N-p P -p
Un(y) = pin” ta(pny +20) = (1+ Aly|77) ™7 uniformly for y € By
(4.39)
as n — +oo for all R > 0, then
* * N
lim lim ub = / U, =8y. (4.40)
R—+00 n—+00 Bry, (zn) RN *

N
As a consequence, recalling the energy information lim,,_, fQ ub = Sy,
we obtain

lim lim u? = 0.
R—+00 n—+00 Q\BRH (zn)

This property will reveal crucial in the blow-up description of w,,.

Up to a subsequence, assume that z,, — x € €. The following lemma will be
useful to establish the main technical point in the proof of the implication
(73) = (4) in Theorem that is a comparison between wu,, and the bubble

N—p
p(p—1) 2

Un(y) = - , A=c, T (4.41)

N—p

B p
i+ My — )

Thanks to such a fundamental estimate, we will be able to obtain (7) by using

Pohozaev-type identities.

Lemma 4.2.1. Under the hypothesis of Theorem let u, be as i (4.32)).
Then
U, =0 in Cie(Q\ {z}). (4.42)

Moreover, the following pointwise estimates do hold:

lim sup |y — | Np_p Uy, < 400, (4.43)
n—+oo
N—p
lim lim sup |y —x,| 7 u, =0. (4.44)

R—+00 n——+o00 Q\BRu (xn)
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Proof. In order to prove (4.42)), assume that B, C RV \ {z}. Let h and h' be
real numbers such that 1 < h < A’ < 2 and let n be a nonnegative smooth
function satisfying (2.44) and (2.45)). Using nPu? with 3 > 1 as test function
in the weak formulation of (4.32), we get

o ()
/Q<ﬁ—1+p>p” VU

B—=14p

Set w, =u, * . Observing that

p
+p/u5np_1(Vn, Vu,) |V, [P~
Q

— / ApPul 1P 4 / nPul ~1P (4.45)
Q Q

(p=1)(8-1)
UV U, | V[P < 0l |V, [P = woun 7 [V, [P

we obtain

1
ug =LV, Vu,) | Vu, p_2—0(/ P~ nlw, | Vw, p_l).
p [ V0, Vu) Va, R e T

We study the right-hand side of (4.45). Application of Holder inequality
yields, for ¢ > 0 sufficiently small,

s ()

/ N = / AP, < Cllwon |2 < C o,
Q (9]

p—eg

N
/ npuz—HBSO( J ) a2l a2
Q Q\ B2

With the aid of these estimates and since

Cllmwnll = Imwnll5 < Cllmwnll3 1V 7wl + 17V wnl,)P~

gz(ﬁ_Hp)p/Qmwnuc ; /ann

+C’/ |Vn|pw£+0/npw£,
Q Q
(4.45) rewrites as

o /
S S— VP < C | [ViPwr
CESETL in W Q! nfPw

+C[1+( 5 /anna
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in view of fQ\BZ ul’ =1 = O(1). Since 3 > 1, it follows that

p(p—eq)
/np|an|p§C(5—1+p)pV|Vn\pw£+(6—1+p) /npwﬁ}'
Q Q Q

Application of Sobolev inequality yields

pz(pfs)
<0[(<5—1+p /\vmpwp B-14p) 5" /npwﬁ].
Q

(4.46)
At this point we observe that (4.34)) implies that w? = u?~1*? — 0in L(ByN

B=14p,

Q)if1 < B < p*—p+1. Then, using (4.46), w?" = u, * " 5 0in LY(B,NQ),
yielding u,, — 0 in L*(B; N Q) for s < Ni_pp*. Now, for ¢y sufficiently small

[
Q

< O(

p)N)H

pso

.
. . —)N
in view of %

as in the proof of Proposition yields

=p* < Ni_pp*. Application of the iterative scheme in [30]

||Un||oo,BmQ < CH“an,Bng — 0,

from which follows (4.42)).

In order to prove(4.43)), assume by contradiction that there exists y, € €
such that

N— N—
Y — | 7 () = max ly — 2| 7 Uy — 400 asn — +oo.  (4.47)

|yn—2n|
7'L

Setting v, = [un Yn ] = , we have that v, — 0 and — 400 as n —

N—
+00. Since |yn—In|NTUn<yn) = (M) P U (e I") is bounded if ‘y”u 2ol

Hn
N—p

is bounded, then w*’;—f”' — 400 as n — +00. Set Vi, (2) = vn” un(Vnz + yn)
for z € Q,, = {22 y € Q}. Then V,,(0) =1 and

N =2 _N-p N—p
0 S Vn( ) < Vn |Vny+yn n| P |yn - $n| P un(yn)

N—p

:( 192 — 2l ) <2
|Vny+yn_$n|
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1 |yn*$n|

5 . Moreover V,, satisfies

holds uniformly for |y| <

AV, = A VPl = in Q,
V. =0 on 9N,

with [5 VP < 1and [ [VV,[? < C. By standard elliptic estimates [L1}
30, B3], we get that V,, is uniformly bounded in C**(K N§Q,) for all compact
subset K of RY. Then 1 = V,,(0) — V,,(2) < Clz| for all z € 0Q,. As a
consequence

dist(yy,, 0N2) , ~ 1
————= =dist(0,090,) > —.
Up, ist (0, )2 C
Hence, up to a subsequence, we have that

dist(y,, 0)
m —_—

n—-4o0o Vp

1
=Le€ {—,—i—oo}

C
and V,, — V in CL_(Q), where Q. is an half-space so that dist(0, 9Qs) = L.

Moreover, V € Dy?(Qs) solves
—A)V =Vl in O
V=0 on 9O,

with 0 <V < 2" in Qoo. If L < 400, by [29] results V = 0, contradicting

V(0) = 1. Hence L = 400, V = Uy and limpg_s ;o lim, o fBR o U =

N
Sy . This implies

N
lim lim vl > lim lim ub + ub | =257,
R—+oon—+o0 [ R—+00 n—400 B (zn) Bro, (yn) *

N
which contradicts [, u?” = Sy . Thus (4.43) is proved.

A simple adaptation of the proof of (4.43) gives (4.44)) In this case we assume
by contradiction that there exist y,, € 2 and § > 0 such that

Ryn

|y, — :Un\%un(yn) = sup |y— xn\¥un > asn— +oo. (4.48)
Q\BRun(xn)

This implies that y, — = and then u,(y,) — +00 as n — +o00. Using the
same notation as before, we have that v, — 0 as n — 400 and

Tn — Yn
Un

—p asn — +o0,

105



with p # 0,400 in view of (4.43) and (4.48). Let n be a radius such that
B (y5) C Q\Bpy, () for all R > 0 provided n is sufficiently large. Assume

zeQ,\ B, (2=¥~)_ Then it is easy to check that

Vn

N-—p
p

N—p

77 7 Vn(2>§ xn_yn

Up

z— Va(z) = ]Vnz+yn—mn|¥un(l/nz+yn) <C

in view of (4.43). Thus

V,<Cn 5 i\ Bn<x" — y").

Un,

As a consequence, passing to the limit as n — 400 we get
Vo=V in Qo \ {p}

Since V' > 0 solves —A,V = Ve lin Q. by the strong maximum principle
in [36] we obtain that V' > 0 in Q. in view of V(0) = 1 thanks to 0 € Q.

In particular
/ VP> 0. (4.49)
By
2

Recalling the definition of V,,, we have that

p* p* p* p*
/Vn —/ un—/ un—i—/ ub =0,
By B%(yn) B%(yn)mBRﬂn(]j") B%(%)\BRM(%)

which contradicts (4.49)). This concludes the proof of (4.44]). O

At this point we give the proof of the comparison between w,, and the bubble

U, defined by (4.41]).

Lemma 4.2.2. Under the hypothesis of Theorem|[1.0.9, let u,, be as in (4.32).
Then there exists C' > 0 so that

N—p

Cﬂg(pfl)
Up < —5— — v,
(it + Ay —z,|771) 7

in §2 (4.50)

does hold for all n € N.
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Proof. Since the inequality (4.50)) clearly holds in Bpg,, (z,) for all R > 0
in view of (4.39), it remains to prove that it is true in Q\ Bgy, (z,). Then
(4.50) is equivalent to establish the estimate

N—p

C«Mﬁ(z}fl)

- |y — |7

for some C, R > 0 and for all n € N.
Forg>0and0<5<%wedeﬁne

pi\;ﬂi)_a
n M,
M, = sup u,, @n:C"u N—i:p .
OB, ()N |y — xn\ﬁ—5
The proof of (4.51)) is divided into 3 steps.
Step 1. Our aim is to prove the following estimate:
u, < P, in Q\ Bgy, (2n). (4.52)

We observe that
N — N-op__s p—
vq)n - O(_—f + 5) (Mﬁ(p_l) + Mn) |y - xn|pf]¥+6_2(y - xn)
p J—
Then

N — Hp 5 -
p_

Easy computations lead to

N _ N—p p—1
_qu)n _ {C( p 5) (,uﬁ(pl) g n Mn>:| diV(’y . xn‘fNJré(pfl)(y B xn))

p—1
N — N—p _ p—1
— [O<r1p o )(Mﬁ(p_l) 5+Mn>:| 5(1)_ 1)|y_xn|—N+5(p—1)
N—p )p_l or—1
(222 5) sp-1)——n
(p—l ( )Iy—wnP’

Thanks to (4.44), we may choose R such that, for all n large,

€

uP TP <
" ly — @, |?

in Q\ Bgy, () (4.53)
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for some 0 < € < 1. We observe that

— Apuy, — ()\n + . )uﬁl = (uﬁ*p s )vﬁl. (4.54)

|y_$n|p - |y—xn|p

Let L, be the operator

Lyu=—Ayu— ()\ + L) uP~

"yl
Then (4.53)) and (4.54)) yield
L,u, <0 in Q\ Bgy, (x,). (4.55)

We have that

Lo®, = —A,®, — <)\n n L) !

|y—xn|p

N—p )pl (I)p—l
(2225 - 1) = Oy — @l o) |
(= 0=1) = Oy = +9)| 2

Then, for a suitable choice of o, we obtain
L,®,>0 in B,(z) N Q\ Bgy, (x,). (4.56)

Thus Lyu, < L,®, in B,(x) N Q\ Bgy,(z,), in view of (4.55)) and (4.56).

Since it easily seen that
u, < o, on 6(9 N By(z,) \ Bry, (xn)),
in view of applied on 0Bgy,, (z,), we obtain
u, < b, in QN By(z) \ Bru, (%) (4.57)

Our aim now is to extend the validity of (4.57) from QN B,(x) \ Brp, (n)
to 2\ Bry, (z,). We set A =Q\ By(x). Letting v, = 7, we have that

—Apv, — APt = f, in

v, =0 on 0f) (4.58)

sup v, =1,
QNOB,(x)
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*

o
MP1

where f, = We observe that the equation in (4.58)) can be rewritten

p2

as —Apv, — a,vk~t =0, with a, = A, +u, ”. In particular, using (4.42)), we
have that a, converges to A\, in L>(A) as n — oo, with A, < A1(Q2) < A\ (A).
Since 0 < v, < 1 on QA, we are able to apply Lemma in Appendix,
yielding sup,,cy [[vpllp-1,4 < +00. Moreover, since v, € W, ?(A) for some
g € L*®(a) N W'P(A) such that g < 1 on dA, application of Theorem
in Appendix provides a universal bound on v, —g¢ in Wol’q(A) foralll < g < g,
and then on v, in L*(A) for all 1 < s < ¢* in view of Sobolev embedding
theorem. In particular sup,,cy |[vE7!|40.4 < +o00 for some gy > % in view of
p‘% > % thanks to p > % Let w,, be the solution of

—Apw, = fp in A

(4.59)
wy, =0 on OA.

Observing that sup,,cy || full1,4 < 400 thanks to (4.42), with the aid of [5]
and the Sobolev embedding theorem we deduce that sup,,cy ||wn|lqa < +00
for all 1 < ¢ < g@*. At this point, using (4.58)) and (4.59), we obtain

—Apvy + Apw, = A\vE! in A
Uy —w, =0 on QN A.

Using ¢ = (v, — w, — 1)53;, B > 0, as test function in the weak formulation
B—=1+p

of (4.60), we get the following estimat in terms of w = (v, —w, — 1),

(6——1+ / Vul? < 1A BT o2 a0l
as a consequence of Holder inequality with exponents %,

9o (B~ 1+P)
(go—1)8

qo and
By Sobolev embedding theorem we deduce that

p < C(B—1+p)|w| ﬂpft(l)+p-

qp—1

2Calculations are similar to those in section [2.2.2] based on Serrin’s iterative scheme.
Then some details will be omitted.
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1+p

Recalling the definition of w and taking the 2 -th roots, we get

1(on = wn = 1) [l @-ramp < [C(B =1+ p)]7=157 =557 (v, ~ D,

qp—1

which is equivalent to

-1 1" n

0 ’ m

1600 = = el < €] o, =, = 121

where k = %, "= % and p; = qﬁqo Since gy > ¥, then x > 1

and we are able to find 5, > 0 so that u < ¢*. Apphcatlon of iteration
process finally yields [[(v, — w, — 1)1 |loc,a < C for some universal C' > 0,
and then sup,,cy ||[vn — Wn|lcoa < +00. Therefore sup,,cy || fnllga < +oo for
some ¢ > % in view of qu*l > %. With the aid of [30], we obtain that
SUPpen || Wnlloo,a < +00, from which follows that sup,,cy ||vnl/eo,a < +00.

As a result

Sup u, < C sup u,
QOBQ( )

for some positive constant C, and is so established.

Step 2. Let us now prove that

_N-p_

N-p

-5

M, =o(ui® " ") forall0<d< (4.61)

Assume that, on the contrary, there exists C' > 0 such that
N—-p -5
M, > Cpui® " (4.62)
so that we may rewrite (4.52)) as
CM, )
ly — zn| P17
We observe that
N—p N—p

up*—l MnT . ,Unp
fn:/ n__— /Ug—lzo — 1,
/Bm(xn) Bi ) MR+ MR Jy, My
in view of (4.35) and (4.37). Application of (4.62) gives

/ fn—0 as n — +00.
BRP«n(x’ﬂ)
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On the other hand, inequality (4.63) yields

Mrg:*—l—p—i-l
/ fn = O(/ (M,(s)( *1)>
O\BRru, (zn) \BRru,, (Tn) |y - -Tn| p=l P

2
Mn -r
0 / N+-25—=5(p*~1)
ON\Bpy, (an) |y — Tp| " 771

p2 __Db_ *__
0 <Man mex{ 2 44(p 1)’ 1})

. . » B
In particular, if § > e — do, we have that

2
/ fn = O(MnN_"> —0 as n — —+0o00.
Q\BRruy, (zn)

Since g < %, assuming § € (dy, %’), we have that || f,|[1 = 0asn — +o0.
By [5] it turns out that v, converges to a limit function v in Wy%(€2) for all
1 <g<qandin L*(Q) for all 1< s < §* as n — +oo, with

— Ay —AP =0 in Q. (4.64)

Using ¢ = Tj(v,,) as test function in the weak formulation of (4.58]), we obtain
/ VonlP < An/ o + U fulln. (4.65)
{lvn<8} Q
Letting n — +o0 and then | — 400 in (4.65)), we deduce

/ |[VolP < )\*/v” < 400.
0 0

Thus v = 0, since v € W, ?(Q) would solve (£.64) with A, < \;. But this is

impossible in view of the definition of v,,. Hence

N—p -5 N _
M, <" e <50, = f) (4.66)

This estimate is true even if 6 = §y. Indeed in this case we get
2

2 5
/ fa=0 (Man log ,un> =0 (u”(’"l) 7P Jog un) — 0
Q\BR#n (z’n)
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as n — +o0, for some 0 € (J, %) in view of (4.66). Thus

Nep 5 N —
M, < 27", 5e[50,p_f>. (4.67)

At this point we set 6; = W(So Assume 9§ € (d1,0p). Then

2
/ £, = O(MN P i 7 1+5(p*1)) _ O(Mn%zvppﬂ(p*l)) 0
Q\BRHn(x’ﬂ)

as n — +o00, in view of (4.67)). Arguing as before, we obtain

N-p 5 N —
M, < i@ §e (51, f) (4.68)

We can improve this estimate by observing that, if § = ¢y,

/ fn = O(MNpr_fﬁw&Qp*n%(P*‘l))
Q\BRHn(I“«)

for some 4§ € (01, 8) in view of (£.68). Thus

Nop 5 N —
M, < ub®" § € [51, p). (4.69)
p—1
We set 9, = (W) do. We observe that 6, — 0 as k — +oo, being

W < 1. With the same arguments than above, we will clearly have

N—p

N=p__5s N —
M, < uh*™" = [5k, f)

Then (4.61)) easily follows.

Step 3. Step 1 and Step 2 lead to a weaker form of (4.51)), i.e. there exist
C, R > 0 so that

270
CMPP
Un € ———%—
’y_$n|p_l

in Q\ Bgy, (zn) (4.70)
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does hold for alln e N, 0 < § < %. In order to establish (4.51]), we repeat
. We have that

the previus argument for v, =

HTZ;(@—I)
—Ayv, — APt " in Q
P =/ (4.71)
v, =0 on 0f),
where f, = uh . Notice that f, satisfies
un”
—(p*—1)é
C’un .
fa < | |(N irET——— in Q2 (4.72)
Y—Tn

where we have extendend (£.70) to Bg,, () in view of the definition of f,.
Thus f,, is uniformly bounded in L'(Q). Indeed

—(p*=1)8

/Qf” =0+ O(/Q u’m_@*_l)é) —O(1). (4.73)

\BRyy (@n) |y — | 71

Letting h,, be the solution of

SN — in Q
h, =0 on 0,
we deduce that sup,,cy ||vn — hnllee < +00, or equivalently
_N—-p_
[, — R D holoe = ("), (4.74)

For a > N the radial function
1
o [N 1)
W(y) = (a - N) 7 / DTy
|yl tr-t
is a positive and strictly decreasing solution of —A,W = |y|=® in RV \ {0}
so that

Tim [y () = ]@__;(a _ Ny s, (4.75)
Taking 6 > 0 small in such a way that a = (N*Z)# —(p*—1)0 > N, then
wy(y) = u;%W(%) satisfies
o (T =1)8
—Apyw, = fn in RV \ {z,}.

‘y _ xn|(N p)p -1) —(p*—1)8
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Since

__N—-p N—p _
P (y) = pin ™" un(y) + O(1) = pn 71 U, (y [ wn) + 0(1) < Crwy(z)

for some Cy > 0 and for all y € 0Bg,, (z,) in view of (4.39)), (4.74) and
W(R) > 0, we have that ¥,, = C'w, satisfies

—A, > fo in Q\ Bgy, ()
v, > h, on 0Q U 0BRgy, (zn)

_1
for C = Cf™" + C} thanks to (4.72), and then by weak comparison principle

we deduce that

h, <V, < ¢ in Q\ Bgy, () (4.76)

=~ N—p
|y - xn’ Pt

for some C' > 0 in view of (4.75). Inserting (4.74) into (4.76) we finally

deduce the validity of (4.51)).
The proof of Lemma is complete. ]

Now we are going to conclude the proof of Theorem [1.0.2] We will use
the blow-up analysis of u,, discussed above. In particular, the fundamental
estimate in Lemma will allow us to apply a Pohozaev identity in the
whole €2, in order to exclude boundary blow-up. Then, still by a Pohozaev

identity on a ball, we will obtain an information as n — 400 from which the
statement (i) of Theorem will follow.

Proof of implication (iii) = (i) in Theorem[1.0.4 It is enough to show that
there exists x € Q such that H,, (z,x) = 0. (4.77)

Indeed, Proposition in the Appendix yields the monotonicity of H)
with respect to A\. As a consequence we have that (4.77) yields Hy(z,z) >0
being A > A, that is (7).

First we prove that the accumulation point x cannot be on the boundary of
Q2. Assume by contradiction that

d, = d(x,,00) -0 asn— +oo. (4.78)
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We set © = x — v,, v, being the outward unit normal vector at = € 0f).
We apply now the Pohozaev identity to u, on {2, obtained by integration of
(4.32) against (y — &, Vu,) on €. This leads to

N — A\, N N .
p/ |vunv’+/ It [P~ 20,0, (y — &, Vi) = /ug+_*/ug,
p Q o0 p Q P Ja

that is

N - AN N [ .
S 1wl [ gl — =2 [ S [ @
p Q o0 P Ja P Ja

in view of Vu, = 0,u,v on 02, being u,, = 0 on 9§2. On the other hand,
using u, as test function in the weak formulation of (4.32), we obtain

/|Vun|p—/\n/uﬁ:/uf:. (4.80)
) Q Q
Using (4.80) in (4.79), we get
/ |0, un Py — 2, v) < )\n/ ul. (4.81)
09 Q
We study the right-hand side of (4.81)). We have that

w [ =o(ui )
Q

in view of Lemma [4.2.2] As for the left-hand side of (4.81)), we rewrite it as

/ |0, un|P(y — &, v) :/ lﬁyun|p<y—§c,u>+/ |0, un|P(y — 2, v).
o0 OO\ By () 0QNB,(x)

N—p
. p(p—1) . .. ~
Being |Vu,| ~ 42— and using the definition of Z, then
ly—zn| P=1

) N:IP 1 N:f
/ |auun|p<y_$ay> N'uﬁ / p(N—1) N'urf :
D0\ B,(a) 0B, (@) [y — |71

As a consequence, (4.81) gives

N-—p
/ Ounl? = O (u ) | (4.82)
00N B, ()
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~ N-p
At this point we set I',(2) = dn” un(dnz + x,) for 2 € Q, = {472 2 € OQ}.
By Lemma [4.2.2] it turns out that

=y =y

~ d 4 p(p—1 ~ p(p—1

Moo — = (4.83)
di " |z| P- 2|7~

where fi, = 4. In particular i, — 0 as n — +oo in view of (4.38). Letting

I, = —k=—, we rewrite (4.83)) as

'a’rl:(p_l)
1
Iy < —x= in €2,,.
21
Moreover, I',, solves the following problem

— AT, — A\pdPTE™ = pp et in Q,

I'y>0 in Q, (4.84)
r,=0 on 0f),,.

Since 2 is smooth and by (4.78)), we have that, up to a rotation,

lim Q, = Q = RV x (—o0, 1).

n—-+o0o

Letting n — +o0 in (4.84]), we get that I';, converges to the solution I' of the

limiting problem

—APF = 50 in Qoo
>0 in Q. (4.85)
r=o0 on 0.

Indeed it is clear that —A,I' =0 in Q \ {0}. Moreover

N—p

P
~p—1 p*—1 _ T p p*—1 __ p*—1
fln /Fn = Hn Uy = Uy
Bs B5dn (In) Bédn

Hn

in view of the definition of I';,, fi,, and U,,. Then

_p_ N .
9, = lim ﬁg—l/ re —1=/ ur -t
dB; n—=00 Bs RN

116



We observe that

1 dr " ar
avrn(y) D al/rn(y) = "N —x—0 un( ny+xn> = 1\7 > 0 un(dny"i‘xn)’
ﬂﬁ(p 1) ﬂﬁ(p ) Iug(p )]
With the aid of (4.82)) we obtain
dN
/ 10,T,F <C / 10,u,|P < CdY.
0nNB o P*l InNB o
n Hn an
As a consequence, using Fatou’s lemma and (4.78), we have that
| e <o
Qoo

and then 0,I" = 0 a.e. on 0Q. Application of the Hopf lemma yields I' = 0,
which is not possible in view of (4.85)). Thus x ¢ 09.

The final step is to prove that (4.77)) holds. For ease of notation, we assume
x = 0. Then we are going to show that H,, (0) = 0. Application of the
Pohozaev identity to u, on Bs leads to

Vu,|P An
/ (—|Vun\p_1(y,Vun>8yun + [V (y, vy — —ul(y, 1/))
8B p

N — AN
(e
Bs p p

:/ SAnup*<y,V>_/ Mup*.
oB; P* Bs p

On the other hand, using u, as test function in the weak formulation of
(4.32]), we get

/ (|Vun\p—SAnuf:) = )\n/ uﬁ—i—/ U | VU P20,y
Bs Bs 8Bs

Thus we obtain

A (N —p) / u? = u {/ (Nui — S)\nup*) _/ un|Vun\p2&,un]
P Bs p Bs 0B

P
B /83 <_’vun|p (Y, Vun)0yun + |Vun‘ (Y, V>)
5

An
- Uﬁ(y, >+— up / ya >
p 0Bs Bs 0Bs
N —
- —p/ un’vun‘p_zauuna
p OBy
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that is

An/ Up, = / ('Vun|p_2<y, vun>al/un -
Bs 0Bs

S . N —
+/ ( mu (y, v) + pun|Vun|p_23yun). (4.86)
aBs \ P p

|Vu,|?

)\np ,
@m%+;wA%>)

Observing that —g2— converges to the solution G, of (1.5) as n — o0,

p(P=1)

passing to the limit in (4.86) we get

)\*/ ar —5/ (\VGA*
Bs 0Bs

1 As
P=2(9,G,)? — §|VGA* P4 ;G§*>
N _
L N-p

p dB;s

G |VG [P720,G..  (4.87)

At this point we consider G, as in (4.5) with A = A, and we apply the
Pohozaev identity to G. », on B;. This leads to

Co _np\P7h .
/ (_APGE)\* - A*G§;1)<y7 VGE,)\*> = / (_Og_Np ) Uf 71<y7 VGE,A*>'
Bs ' Bs Ch
(4.88)
We study the left-hand side of (4.88). We have that
N — AN
/ (_ApGe,A*_)‘*Gg:i)<yaVGa,/\*> :/ (_—p|VG6,>\* P+ GﬁA*)
Bs ’ Bs p p ’
|VG6,)\*

P2 <y7 VGE,A* >8VG6,>\* +

+[ (-v6n
dB;

P M
(y,v)— ?Gm* (y,v) |
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As for the right-hand side, since G\, =1'. + H. ), and I'.'VU, = U. VT,

/ GE,)\* Uf*_2<y7 VU€> = / FEUS*_QQ/’ VU5> +/ Ha,)\* Uf*_2<ya VU5>
Bs Bs Bs

£

Py, VT + / Hop U 2(y, VL)
Bs

1)

£

UMy, VG.,) — / U Ny, VH.,,) + / H. U 2(y, VU.)
Bs Bs

)

I
S — 5

UP "y, VGp.) + /[NUP ' (pf = 1)Uy, VU] H. .

£
5

) / H.,, U ™' ¢ / H.\, U2y, VU.)
0Bs Bs

(U£*71<y7 VGE,)\*> + Nng 71H€,)\* + p*HE,/\* U§*72<y7 VU€>)

8

5 H.,UM .
dBs

I
S

Then
/ Uy, VGe )
Bs

—5 / UP Gy, — (7 - 1) / G U7 2y, VU — N [ U7 iG.,
0Bs Bs

Bs

:5/ Uf*_ng,,\*—(p*—l)/ UP "y, VG.,,) — N Up*‘lGa,A*
0Bg
—N(p*—l)/ Hop UV~ p*(p — 1) / H. U ~2(y, VUL)
Bs Bs

+(p* —1)6 H. ) U,
9B;

which rewrites as

/ Py, VG )
Bs

) N
= — Up _le)\ I

*
p 835 p Bé

p _1 / He)\*Uf _2<y7VU p — / 5)\* 5_1'
Bs 0Bs

Ug)*_lGE,)\* _ ]\[(p—*_l)/ Hg’A* Ug)*_l
Bs
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Thus (4.88) rewrites as follows:
1 s
0 (_‘VGE,)\* P72(0,Gen)? + = IVGep [P = — G2 A*)
9Bs p p

717 p_l 6 N *
(OO ) [— [ oG- [ v,
Cy dB; P* JB;
—1) .
Ny 1) / U = (= 1) / Hop .U ~2(y, VL)
Bs Bs

+ p—* / H.,U? 1} GYy, +—— VG, [P
0Bg b Bs p Bs
(4.89)

Using G ,, as test function in the weak formulation of (4.6)), we obtain

C() N—p p-1 *
/ [|VG5,>\* p_ (—6_ P > Uf _IGE,A*}
Bs Ch

= )\*/ G]EJ As +/ G€7)\*|VG57>\*
Bs; dBs
Using (4.90)) in (4.89), we get

1 Ay
g (—!VGE,A* HD,Ge ) 4 VG [ = G )
5 |

9Bs

P729,G. . (4.90)

N
- G+~ [ (G IV Gen [ 0,Gn. + G £)
Bé p 8B§
C -p p_l N * *
- (p* - 1) (_Og_Np> |:/ (_*Hs,)\*Ug - + HE,A*US 72<y7 VU€>):|
Ch Bs \P
(4.91)
Recalling the definition of U., we have that
Co _xp\"! N
(H%NP) U ( H_\ U ™'+ H_, U 2y, VUE)H
1
p—1
_ N — E
(@) [ (N 70
B(; UE
(N=p)(p* —p) _p_
e v N—p (p—1)eP —[y[>T

_ p—1-p*—p
- CO Cl / H&/\*
Bs

(7 + |yl )N PP =) e [y
(N = p)l(p = 1) = |2/77]
P N-p, q°
plp = (1 + [N

—cper [ Haey
B_s

ep—1
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As a consequence, passing to the limit as € — 0 in (4.91)), it turns out that

w @ -negter .o [ fv‘pmp'l**”p*
RN p

B p—D)(1+ [ 1)V 5
=J QVGM
0Bs

)

: N — -
+/ (A 5G§* + eN\eNL 281,GA*> (4.92)
OBs p

1
P=2(9,Gy,)? — }_?|VG/\*

p

in view of

— 0

2

p
(co N_,,>p1Up*_1 _orloyrer
(7 + lyl7 )" 5

on 0Bs as € — 0. At this point we observe that

2771 p—1 / 1
P .. _ <Z,V 5 — )
/RN (14|50 p(V = 578) S (14|27 )N 5"

_ Np-1 / L+ |z
Np=N+p Jan (1 4|27 )N 54

Then
O‘ Np—1) )/ 217
Np—N-+p) Jg~ (1+ |Z|ﬁ)N—N;P+1

~ N(p—-1) / 1
Np = N+p Jan (14 |o[p"1)V =550

which implies

/ 27T _N@—D/ 1
BY (L4 [o7 )V P ey (L [N

It follows that

/ (p—1) — |z <p_1_N(p—1))/ 1 <0
p N—p - D N—p
RY (14 [2)p-1)" 5 * p RY (14 [2[p=1)" 775 7

(4.93)
being p — 1 — N(’;l) = —(pr;(pfl) < 0. Comparing (4.87) with (4.92) and
using (4.93), we deduce that H,, (0) = 0. O
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Appendix A

Technical and generalized results

A.1 Some upper and lower bounds

We present details of some technical estimates which will be applied to the
operator of problem ([1.6]).

Lemma A.1.1. Let p be a real number such that p > 1. Then the following
estimates hold for any x,y € RN,

- Case p < 2:

(e +yl (@ +y) — 22, y) = (0= D=+ )yl (AT

o4+ 92 + ) — 2P %] < 6(lal + )Pl (A2)

- Case p > 2:
(o +y[" (@ +y) — |22, y) > (o] + [y |yl (A.3)
||z +yl" (2 +y) — [P < 3P (|2fP7% + |y P72yl (A.4)

Proof. Assume p < 2. To prove inequality (A.1)), we observe that

1
- - d -
o4yl ot o) — ol = [ (ot ok ) e
0

1 1
= y/ |+ tyP~2dt + (p - 2) / |2+ ty["~Hz + ty, y) (z + ty)dt. (A.5)
0 0
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Thus, using that 1 < p < 2 together with Cauchy-Schwarz inequality and

triangle inequality, we obtain the statement:
1
(fo+y (o +3) ~ ol o) = o [ o+ 1ol 2de
0
1
+0-2) [ ot o+ )
0
1 1
> [ ety ek -2l [ o+ R
0 0

1
— (p— 1)yl / o+ tyPde
0

> (p— 1)(lz| + [y 2yl

To prove inequality (A.2)), we notice that if |z| > 2|y| then
Ld
Hx + y[P2 (2 + y)—|x|p_2x| = ‘/ a(bs + ty|P 2 (z + ty))dt'
0

1
d
< 2ofal| [ St | =2 iap2l
0

< AP (lz] + [y )Pyl

On the other hand, when |z| < 2|y|, we have that

||z +y[P=* (@ + y) — [P %] < 2(Jx| + [y)P" < 6(J2] + [y [yl.
These last two inequalities yield estimate (A.2)).
Assume p > 2. Then (A.5)) gives

1
(lz +yP2 (@ +y) — |22, y) > W’/ @+ ty"2dt > (|=] + [y ly [,
0

that is (A.3). To prove inequality (A.4]) we observe that, similarly to the case
p <2, if || > 2|y| then

1 1
—2 )
llz+yP2 (@ +y) — |zf %z < — =

< el 2yl <

(lz[P~2 + |yP )|yl

Otherwise we have that
|z +ylP 2 (x +y) — o2z <2(Ja]+ |y[)P <2377 (|22 + [yl )|yl

Therefore, we arrive at estimate (A.4)). O
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A.2 Generalization of some results in the thesis

Here we prove that Theorem 1 in [4], which is stated for homogeneous bound-

ary value, can be easily extended to non-homogeneous ones as done in [I]
when p=N. Then we show a result which generalizes Lemma (2.1.1]), crucial
to show the existence of a SOLA in Section .11

Given g € L®(Q) N WP(Q), we set W}H1(Q) = g + Wy (Q) for all ¢ > 1.
When necessary, we can asssume g to minimize [, |[Vul? in W () and then

g to be p—harmonic in 2.

Consider the following problem:

—Apu=f in 2
u=g on 012,

where g is nonnegative and p-harmonic in  and f € L'(Q).

Proposition A.2.1. Let u € W;P(Q) be a solution of (A.6), with g and f
as previously described. There exists a constant C, depending on || f||1, such

that for any k in N the following estimate holds:

/ Vu—g)P <. (A7)
{k<|u—g|<k+1}
Proof. Since g is p-harmonic in €2, we have that

—Apju+Ayg=f in 2

(A.8)
u—g=20 on Of).

We set By, = {y € Q: k < |u(y) — g(y)| < k+1}. Usingl] Ty pr1(u — g) as
test function in the weak formulation of problem (A.8), we obtain

; V(u—g)l(|[Vul + [Vgl)'* < C (A.9)

in view of V[T y4+1(u — g)] = 0 outside By, for some constant C' depending
on ||f|li. If p > 2 then (A.9) easily leads to (A.7). If p < 2, using the Holder
!The function T} k+1(-) is defined as in .
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inequality with exponents }—27 and 2%17, we get

p(p—2) p(2—p)
Vu—=g)l"= | [V(u=g)"(IVul+|Vgl) 7 ([Vu|+|Vy|) =

By, By,

. (/Bk |V(u—g)|2(IVU!+|V9|>p_2>i</Bk(|vu’+|vg|>p> z

As a consequence, since % < 1, we finally have

</Bk V(u— g)|p>p1 < IV(u—g)?(|Vu| + |Vg|)P 2 < C,

By,

in view of (A.9). O

Proceeding as in the proof of Theorem 1 in [4] and using Proposition

we arrive at the desired conclusion, that is the following result.

Theorem A.2.2. Under the hypothesis of Proposition u € Whi(Q)

NG
forall g < § = 55~

Lemma A.2.3. Let p > max{2 — =,V N}. Let u, € W, P(Q) be a sequence
of solutions to
— Aju, — n |tn P2 uy = f  in S (A.10)

Assume that

lim ayp = a ZTL LOO(Q), sug [anHLI(Q) —+ HgnHLoo(Q)mWLp(Q)} < 400
ne

n——+00
(A.11)
with supa < A;. Then sup ||[u,|[,—1 < +o0.
Q neN
Proof. Assume by contradiction that
|tn|lp—1 — +o0 as n — +00. (A.12)

Setting 0, = —&»— fn = I and Jn = , we have that u,, solves

gn
llunllp—1" lunll® lunllp—1

— Ay, — ay, i, P24, = f, in 0
P | | f (A13)
Up = Gn on 0f)
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with
||anHp,1 =1, anHLl(Q) + HgnHLoo(Q)mwl,p(Q) —0asn— +o0 (A.14)

in view of (A.11)-(A.12). Since h,, = Fo + @i [P~ 24, is uniformly bounded
in L'(Q2) and g, is p—harmonic in Q, we can use the results in [4] extended
to non-homogeneous boundary values to show that, up to a subsequence,
lin — Gn — G in W3 9(Q) for all 1 < ¢ < § as n — 400, where § > 1 in view
of p > 2 — . Moreover @ solves

—A, 0 — al|aP~20 =0 in 2
P 4 (A.15)
=0 on 0f2.
In particular, by Sobolev embedding theorem we have that
Up — U in L9(Q) (A.16)

asn%+ooforalll§q<q‘*:%:;)asn%Jroo. Using T)(ty, — gn) €

Wy (Q) as a test function in (A.13), we get
[ ViV, - [V.P V5. Vi - )

éWMR/W#ﬂ%—%HMMh
Q

in view of the p-harmonicity of g,. Since

Hmu/mmﬂ%—%HMMw%wm/mw
Q

Q

as n — oo in view of (A.11), (A.16) and ¢* > p thanks to p > V/N, by
(A.1) and the Fatou’s convergence Theorem we deduce that

5/’ |VMPsnww/me
{|a|<i} Q

for some § > 0. Letting [ — 400 we get that & € Wy"(Q) in view of
G € LP(Q2) and then @ is an admissible test function in (A.15) leading to

/|va|p—/a|av’:o.
Q Q

Since supa < A; one finally deduce that & = 0 and then 4, — 0 in LP~(Q)
Q
thanks to (A.16), in contadiction with ||y, |,—1 = 1. O
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A.3 A weak comparison principle

Here we discuss the validity of a weak comparison principle, obtained as ap-
plication of Lemma|2.3.1] which guarantees that H,(y,y) is strictly increasing
in A for all y € Q.

Proposition A.3.1. Let p > 2, a, f1, f» € L®(Q) and g1,90 € C*(Q). Let

u; € CH(Q), 1 = 1,2, be solutions to
— Ayu; — auf_l =fi inQ, wu =g; ondf, (A.17)
so that
w; >0 Q,  Oyu; <0 on 0QN{u; =0}. (A.18)
If fi < fo, g1 < g2 and fo > 0 in Q, then uy < uy in .
Proof. Setting wy; = u}, wy = ub and ¢ = (w; — wy)™", consider w, = sw; +
(1 — s)wy for s € [0,1]. By the properties of u; and uy, it is easily seen that

for each s € [0, 1] there hold ws +t¢ > 0 in Q and V(w, + ttp)% € LP(Q) for
t small. Then we can apply (2.74) at s = 0,1 to get

1— 1—p

I%@M—FWMﬂZLWMN”W%5W%J@%14W@P%WQNMWw»

Q Uy Q Uy

Since ¢ € W,P() we deduce that

Funlel - Pl = [ (- 24 ) -y <o

U‘Tl)i Uy
in view of (A.17) and f; < fo with fo > 0. Since
1 1
NMWFTWMQ=/F@Mm—wﬂwz/I%MMﬂ%
0 0

in view of 1" (wg)[w; — we, @] = 1" (ws)[e, ¢|, by Lemmam I"(ws)[p, ¢ =

Jo 0(ws, ) with o(ws, @) > 0. Then, we deduce that o(w,, ) = 0 for s €
[0,1]. If p > 2, then Vo = 0in Q. If p = 2, (Vw,, V) = gp%, which
implies (V(w; — wsq), Vi) = SQOW for all 0 < s < 1. In both cases

Vi =01in Q and then w; < wy in €2, or equivalently u; < uy in €. O
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