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Chapter 1

Introduction

Given 1 < p < N and a bounded domain Ω ⊂ RN , N ≥ 2, with x ∈ Ω,

we are interested to nonnegative distributional solutions of

−∆pGλ − λGp−1
λ = 0 in Ω \ {x}, (1.1)

where ∆p(·) = div
(
|∇(·)|p−2∇(·)

)
is the p-Laplace operator and λ < λ1.

Here, to have (1.1) meaningful, Gλ ∈ W 1,p
loc

(Ω \ {x}) ∩W 1,p−1(Ω) and λ1 is

the �rst eigenvalue of −∆p given by

λ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω
|∇u|p∫

Ω
|u|p

. (1.2)

By elliptic regularity theory (see [30, 33]) we have Gλ ∈ L∞loc(Ω\{x}) and then
Gλ ∈ C1,α

loc
(Ω \ {x}) for some α ∈ (0, 1). If Gλ is singular at x, application of

Theorem 1 in [31] guarantees that there exist positive constants C ′, C ′′ such

that

C ′ ≤ G

Γ
≤ C ′′ in Ω. (1.3)

Here Γ is the fundamental solution of p-laplacian in RN , that is

Γ(y) =
C0

|y − x|
N−p
p−1

, C0 =
p− 1

N − p
(NωN)−

1
p−1 (1.4)

ωN being the measure of the unit ball in RN . Then, using Theorem 3 in [31],

we have that Gλ solves

−∆pGλ − λGp−1
λ = Kδx in Ω,
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where δx is the Dirac measure at x and K > 0 is a constant. Without loss

of generality, consider the case K = 1. Thus we deal with the problem
−∆pGλ − λGp−1

λ = δx in Ω

Gλ ≥ 0 in Ω

Gλ = 0 on ∂Ω.

(1.5)

A Green function Gλ is a distributional solution of problem (1.5).

Let us �rst discuss the case λ = 0. By a combination of scaling arguments

and regularity estimates, Kichenassamy and Veron [23] showed that in the

singular situation G di�ers from Γ by a locally bounded function H = G−Γ

in Ω (where the index λ is omitted since λ = 0). The function G, whose

existence as a solution of −∆pG = δx can be established in many di�erent

ways (see for example [23, 30]), turns out to be unique thanks to a simple

argument based on the property |∇H| = o(|∇Γ|) as y → x. As noticed in

[23], the same approach via scaling arguments leads to a continuity property

of H at x.

The �rst aim of the present thesis is to establish the Hölder continuity of

the so-called regular part Hλ = Gλ − Γ at x and to include the case λ < λ1.

Hölder properties will represent a crucial ingredient in the second part of this

thesis, when we will assume λ > 0 to treat the quasilinear Brezis-Nirenberg

problem [20] in the most di�cult low-dimensional case N < p2.

The main underlying idea to show the regularity result is to consider Hλ as

the solution of

−∆p(Γ +Hλ) + ∆pΓ = λGp−1
λ in Ω (1.6)

and to apply the Moser iterative scheme in [30] to derive Hölder estimates

on Hλ thanks to the coercivity of the operator −∆p(Γ +H) + ∆pΓ in H.

In the case λ 6= 0 we �rst establish an existence result for the problem (1.5),

where Gλ is found as a solution obtained as limit of approximations (the

so-called SOLA, see for example [4, 5]). It will be useful to decompose the

Green function as Gλ = χΓ+ Ĥλ, where χ is a cut-o� function which is equal

to 1 in Bξ(x) ⊂ Ω for some radius ξ > 0 and equal to 0 near the boundary.
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We have that, in a weak sense, −∆p(χΓ) = δx + g, with g vanishing near x

and g = ∆p(χΓ) = div(|∇(χΓ)|p−2∇(χΓ)) away from x. Thus g ∈ L∞(Ω)

and −∆pGλ + ∆p(χΓ) − λGp−1
λ = g. In particular, one may consider Ĥλ as

the weak solution of the problem−∆p(χΓ + Ĥλ) + ∆p(χΓ) = λGp−1
λ + g in Ω

Ĥλ = 0 on ∂Ω.
(1.7)

It is worth noting that Hλ = Ĥλ in Bξ(x), being χ = 1. It turns out an

integrability condition on ∇Ĥλ which in particular reads as ∇Ĥλ ∈ Lp(Ω)

for p ≥ 2 and which always guarantees (even when 1 < p < 2) ∇Ĥλ ∈ Lq̄(Ω),

q̄ = N(p−1)
N−1

. Since ∇Γ ∈ Lq(Ω) for all q < q̄, the exponent q̄ represents the

threshold situation and the assumption ∇Hλ ∈ Lq̄(Ω) will reveal crucial to

use appropriate functions of Hλ as test functions in the weak formulation of

(1.6) when running the Moser iterative scheme. The main regularity result

in this thesis reads as follows.

Theorem 1.0.1. Let Ω ⊂ RN be a bounded domain, λ < λ1 and 1 < p < N .

Assume

p > max

{
2− 1

N
,
√
N,

N

2

}
=


3
2

if N = 2√
3 if N = 3

N
2

if N ≥ 4

(1.8)

when λ 6= 0. Problem (1.5) has a solution Gλ with

∇(Gλ − Γ) ∈ Lq̄(Ω), q̄ =
N(p− 1)

N − 1
, (1.9)

which is unique for p ≥ 2 in the class of solutions satisfying (1.9). Moreover,

the regular part Hλ = Gλ − Γ is Hölder continuous at x0.

Let us discuss assumption (1.8) when λ 6= 0. Since

Γ ∈ Lq(Ω) for all 1 ≤ q < q̄∗, q̄∗ =
N(p− 1)

N − p
, (1.10)

notice that p > N
2
gives Gp−1

λ ∈ Lq(Ω) for some q > N
p
, a natural condition

arising in [30] to prove L∞-bounds. Condition Gp
λ ∈ L1(Ω), ensured by p >√

N , guarantees that distributional solutions of −∆pGλ − λGp−1
λ = 0 are in

W 1,p(Ω). The technical condition p > 2− 1
N
guarantees that q̄ = N(p−1)

N−1
> 1.

3



As already mentioned, the regularity result established by Theorem 1.0.1 will

be crucial to study the quasilinear Brezis-Nirenberg problem in the second

part of this thesis.

Given 2 ≤ p < N and a bounded domain Ω ⊂ RN , we are concerned with

the existence of a function u satisfying
−∆pu− λup−1 = up

∗−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω.

(1.11)

where p∗ = Np
N−p and λ is a real number in (0, λ1), λ1 being de�ned by (1.2).

Solutions of (1.11) correspond to critical points of the functional

Φ[u] =
1

p

∫
Ω

|∇u|p − 1

p∗

∫
Ω

|u|p∗ − λ

p

∫
Ω

|u|p, u ∈ W 1,p
0 (Ω).

It is not possible to obtain critical points of Φ using variational methods,

because Φ does not in general satisfy the Palais-Smale condition. Indeed p∗

is the critical Sobolev exponent and the embedding of W 1,p
0 (Ω) into Lp

∗
(Ω)

is non-compact. Thus other arguments will be needed.

It is known that problem (1.11) admits a solution in the semilinear case for

N ≥ 4 (Brezis and Nirenberg [6]) and also when p2 ≤ N (Guedda and Veron

[20]). In the case of lower dimension, the situation could change: according

to [6], the semilinear problem with N = 3 admits a solution when Ω is a ball

for λ ∈ (λ1

4
, λ1). It is possible to extend this result to a general domain Ω

with λ ∈ (λ∗, λ1), for some λ∗ > 0.

Our goal is to treat the quasilinear case 2 ≤ p < N , following the same ideas

as in Brezis-Nirenberg [6] and Guedda-Veron [20]. We de�ne for λ ∈ R

Sλ = inf

{‖∇u‖pp − λ‖u‖pp
‖u‖pp∗

: u ∈ W 1,p
0 (Ω), u 6= 0

}
. (1.12)

Then S = S0 is the best Sobolev constant for the embedding W 1,p
0 (Ω) ↪→

Lp
∗
(Ω). It is known that S is independent of Ω and is never achieved (see

[20]). Observing that Sλ decreases from S to 0 as λ ranges in [0, λ1), then

the critical parameter λ∗ can be de�ned as

λ∗ = inf{λ ∈ (0, λ1) : Sλ < S}. (1.13)
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Since Sλ = S for λ ∈ [0, λ∗) and Sλ < S0 for λ ∈ (λ∗, λ1), then Sλ is not

attained for λ ∈ [0, λ∗). For what concerns the case λ = λ∗, we will work

under the following hypothesis:

Sλ∗ is not achieved. (1.14)

Then the second main result of the thesis reads as follows.

Theorem 1.0.2. Assume 2 ≤ p < N with p > max{
√
N, N

2
}. Then the

implications (i)⇒ (ii)⇒ (iii) do hold, where

(i) there exists x ∈ Ω such that Hλ(x, x) > 0, where Hλ(·, x) denotes the

regular part of the Green function Gλ with pole at x

(ii) Sλ < S0

(iii) Sλ is attained.

Moreover, the implication (iii)⇒ (i) does hold under the assumption (1.14)

and in particular λ∗ > 0.

Under the assumption (1.14), in the proof of Theorem 1.0.2 we will show that

Hλ∗(x, x) = 0 for some x ∈ Ω, a stronger property which implies the validity

of the implication (iii) ⇒ (i). Since S0 is not attained, notice that (1.14)

always holds in the case λ∗ = 0 and then λ∗ > 0 follows by the property

H0(y, y) < 0 for all y ∈ Ω. Moreover, since

sup
y∈Ω

Hλ∗(y, y) = max
y∈Ω

Hλ∗(y, y) = 0 (1.15)

andHλ(y, y) is strictly increasing in λ for all y ∈ Ω (see Appendix A.3), under

the assumption (1.14) the critical parameter λ∗ is the �rst unique value of

λ > 0 attaining (1.15) and can be rewritten as

λ∗ = sup{λ ∈ (0, λ1) : Hλ(y, y) < 0 for all y ∈ Ω}.

In the rest of this chapter we state the main known results on singular solu-

tions of the p-Laplace equation and then on Brezis-Nirenberg type problem

in the case 1 < p2 ≤ N .

5



In Chapter 2 we �rst prove the existence of Green functions. We show also

the global L∞-regularity of Hλ and we discuss some structural properties of

problem (1.6) which will be repeatedly used throughout the thesis.

In Chapter 3 we give the proof of Theorem 1.0.1 about the Hölder continuity

of Hλ at the pole. This regularity result can be extended to the whole domain

Ω when 1 < p ≤ 2, as shown at the end of the chapter.

Chapter 4 deals with existence issues related to the Brezis-Nirenberg type

problem and the proof of Theorem 1.0.2.

In the Appendix we present the proof of some technical estimates, involving

the operator −∆p(Γ + H) + ∆pΓ in H. Moreover we extend Theorem 1

in [4] to non-homogeneous boundary values and we give the proof of some

propositions omitted in Chapter 2.

1.1 Main known results for singular solutions

of the p-Laplace equation

This section deals with the known results on the p-Laplace equation (1.5)

with λ = 0. We focus on the article [23] by Kichenassamy and Veron.

A function u ∈ W 1,p(Ω) is p-harmonic in Ω if∫
Ω

〈|∇u|p−2∇u,∇ϕ〉dx = 0 ∀ϕ ∈ C1
0(Ω).

This means that u is a weak solution of the p-Laplace equation

−∆pu = 0 in Ω, (1.16)

which formally corresponds to the Euler-Lagrange equation for∫
Ω

|∇u|pdx.

In their paper, Kichenassamy and Veron continued the work of Serrin on the

singularity problem associated to the equation (1.16), by improving (1.3).

Assuming 0 ∈ Ω and u p-harmonic in Ω′, where Ω′ = Ω \ {0}, their aim is to

describe the behaviour of u near 0 and to �nd an equation for u in Ω.
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1.1.1 The Isotropy Theorem

Let Ω be an open subset of RN , containing 0, and let Ω′ = Ω\{0}. We assume

that p is a real number such that 1 < p < N and Γ is the fundamental solution

for the p-laplacian.1

This section deals with the proof of the Isotropy Theorem. The method used

by the authors consists of a combination of scaling arguments and regularity

estimates, together with a sharp maximum principle.

Theorem 1.1.1. Let u be a p-harmonic function in Ω′ such that u(x)
Γ(x)

remains

bounded in some neighborhood of 0. Then there exists a real number γ such

that

u− γΓ ∈ L∞
loc

(Ω). (1.17)

Moreover, when γ 6= 0 the following relation holds

lim
x→0
|x|

N−p
p−1

+|α|Dα(u− γΓ)(x) = 0 (1.18)

for all multi-indices α = (α1, α2, . . . , αN) with |α| = α1 + α2 + · · ·+ αN ≥ 1,

|∇u|p−1 ∈ L1
loc

(Ω) and u satis�es the following equation (even if γ = 0)

−∆pu = γ|γ|p−2δ0 (1.19)

in the sense of the distributions in Ω.

Without any loss of generality we may assume2 B̄1 ⊂ Ω. The following

elementary estimates will be useful in the sequel.

Lemma 1.1.2. Under the hypotheses of Theorem 1.1.1, there exist two con-

stants α = α(N, p) ∈ (0, 1) and C = C(N, p, u) ≥ 0 such that for any x, x′

satisfying 0 < |x| ≤ |x′| ≤ 1 we have

|∇u(x)| ≤ C|x|−1Γ(x), (1.20)

|∇u(x)−∇u(x′)| ≤ C|x− x′|α|x|−1−αΓ(x). (1.21)

1We shall frequently write Γ(r) for Γ(x) whenever |x| = r.
2For ease of notation, we continue to write Br to indicate the ball of radius r centered

at 0, that is Br(0).
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In the proof of Theorem 1.1.1, we will also use the following strict comparison

principle due to Tolksdorf (see [32]).

Lemma 1.1.3. Let G be a connected open subset of RN . Assume that u1

and u2 are p-harmonic functions in G such that u1 ≥ u2 in G.

If u1 and u2 are not identical in G, then

u1 > u2 in G. (1.22)

As a consequence we obtain the following sharp maximum principle.

Corollary 1.1.4. Let G be a connected open subset of RN which does not

contain 0 and let u be p-harmonic in G. If u
Γ
or u−Γ achieves its maximum

in G, then u
Γ
is constant.

At this point we are able to prove Theorem 1.1.1.

Proof of Theorem 1.1.1. We de�ne γ+ and γ− by

γ+ = lim sup
x→0

u(x)

Γ(x)
, γ− = lim inf

x→0

u(x)

Γ(x)
.

If γ+ = γ− = 0 then limx→0
u(x)
Γ(x)

= 0. So we can assume that γ+ > 0. Let β

be the supremum of u on ∂B1. Thus the function uβ = u− β still satis�es

lim sup
x→0

uβ(x)

Γ(x)
= γ+ and sup

x∈∂B1

uβ(x) = 0

and for the sake of simplicity we still call it u. Now we de�ne the following

function on [0, 1]:

γ̃(r) = sup
r≤|x|≤1

u(x)

Γ(x)
.

We observe that the function γ̃ is nonnegative, being nonincreasing and such

that γ̃(1) = 0. Moreover, if there exist some r ∈ (0, 1] and some y with

r < |y| < 1 such that γ̃(r) = u(y)
Γ(y)

, then u(x) = γ̃(x)Γ(x) for any x in

Gr = {ξ : r ≤ |ξ| ≤ 1}. With the aid of Corollary 1.1.4 we obtain that γ̃

is constant in Gr. As a consequence, recalling that γ̃(1) = 0, we get γ̃ = 0

8



on [r, 1] and u = 0 in Gr. Thus γ̃ is constructed as a nonincreasing function

with the following properties:

γ̃(r) = sup
|x|=r

u(x)

Γ(x)

lim
r→0+

γ̃(r) = γ+


and there exists xr such that |xr| = r and

γ̃(r) =
u(xr)

Γ(xr)
.

At this point we de�ne the function ur on Λr = {ξ : 0 < |ξ| < 1
r
} by

ur(ξ) =
u(rξ)

Γ(r)
.

The function ur is p-harmonic in Λr and we have from Lemma 1.1.2

|ur(ξ)| ≤ C

∣∣∣∣Γ(rξ)

Γ(r)

∣∣∣∣ ≤ CΓ(ξ),

|∇ur(ξ)| ≤
r

Γ(r)
|(∇u)(rξ)| ≤ C|ξ|

1−N
p−1 ,

|∇ur(ξ)−∇ur(ξ′)| ≤ C|ξ − ξ′|α(min(|ξ|, |ξ′|))
1−N
p−1
−α,


(1.23)

where C does not depend on r. From the Arzelà-Ascoli's Theorem there exist

a p-harmonic function v de�ned in RN \{0} and a sequence rn → 0 such that

urn → v in C1
loc

(RN \ {0}).

Moreover we have

ur(ξ)

Γ(ξ)
=

u(rξ)

Γ(r)Γ(ξ)
=
u(rξ)

Γ(rξ)

Γ(rξ)

Γ(r)Γ(ξ)
=

u(rξ)

Γ(rξ)Γ(1)
≤ γ+

Γ(1)
.

If we set ξr = xr
r
, then

ur(ξr)

Γ(ξr)
=
γ̃(r)

Γ(1)
.

From the compactness of ∂B1 we can suppose that there exists ξ0 ∈ ∂B1 such

that limrn→0 ξrn = ξ0. This yields

v(ξ0)

Γ(ξ0)
=

γ+

Γ(1)
and

v(ξ)

Γ(ξ)
≤ γ+

Γ(1)
.
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Application of Lemma 1.1.3 gives

v(ξ)

Γ(ξ)
=

γ+

Γ(1)
.

Then, recalling the de�nition of v, we obtain

lim
r→0

ur(ξ) = v(ξ) = γ+ Γ(ξ)

Γ(1)
, (1.24)

uniformly on every compact subset of RN \{0}. In particular, if we set x = rξ

with ξ ∈ ∂B1, we have

lim
x→0

u(x)

Γ(x)
= γ+ = γ.

In order to prove the boundedness of u − γΓ we consider, for ε > 0, the

following p-harmonic functions in B1 \ {0}:

v+
ε (x) = (γ + ε)Γ(x)− (γ + ε)Γ(1) + sup

x∈∂B1

u(x), (1.25)

v−ε (x) = (γ − ε)Γ(x)− (γ − ε)Γ(1) + inf
x∈∂B1

u(x). (1.26)

By de�nitions (1.25) and (1.26) we have that (u− v+
ε )+ = 0 = (v−ε − u)− on

∂B1. Moreover v−ε (x) ≤ u(x) ≤ u+
ε (x) in B̄1 \ {0}. Letting ε to 0 we obtain

(1.17). Indeed

inf
x∈∂B1

u(x)− γΓ(1) ≤ u− γΓ ≤ sup
x∈∂B1

u(x)− γΓ(1).

At this point we want to show (1.18). Using (1.23) and (1.24) we have

lim
r→0
∇ur(ξ) =

γ

Γ(1)
∇Γ(ξ), (1.27)

uniformly on every compact subset of RN \ {0}. Settin x = rξ with |ξ| = 1,

we get (1.18) forn any α such that |α| = 1. From (1.27) we also get that

there exists r0 such that ∇ur never vanishes on Ḡ = {ξ : 1
2
≤ |ξ| ≤ 2} for

0 < r ≤ r0. Therefore ur satis�es a nondegenerate elliptic equation in G and

is C∞. Using the same device as in Lemma 1.1.2 we deduce

|Dαur(ξ)| ≤ |ξ|
p−N
p−1
−|α|

for any multi-indices α such that |α| > 2. This implies (1.18).
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In order to prove (1.19), we observe that Green formula gives∫
|x|>r
〈|∇u|p−2∇u,∇ϕ〉dx = −

∫
|x|=r

ϕ|∇u|p−2uνdS

for any ϕ ∈ C1
0(Ω) and 0 < r < 1. As

∇u(x) ∼ −γ(NωN)−
1
p−1 |x|

1−N
p−1

x

|x|
as x→ 0,

we �nally get ∫
Ω

〈|∇u|p−2∇u,∇ϕ〉dx = γ|γ|p−2ϕ(0).

This concludes the proof of Theorem 1.1.1.

Remark 1.1.5. It is possible to prove something stronger than the bounded-

ness of u−γΓ: we are able to show that u(x)−γΓ(x) admits a limit as x tends

to 0. In order to prove this result, we look for the point where the bounded

function u− γΓ achieves its supremum on B̄1. If it achieves this supremum

in B1 then it is constant from Lemma 1.1.3 and everything is done. So we

can suppose that it is not constant. Then we have two di�erent possibilities:

either this supremum is achieved at 0 and

sup
x∈B̄1

(u(x)− γΓ(x)) = lim sup
x→0

(u(x)− γΓ(x)), (1.28)

or it is achieved for |x| = 1. We will discuss the cases separately.

Assume (1.28) and let λ be the value of this supremum. We de�ne

λ(r) = sup
r≤|x|≤1

(u(x)− γΓ(x)) = sup
|x|=r

(u(x)− γΓ(x)),

the function λ(r) being non-increasing. Moreover there exists xr such that

|xr| = r and λ(r) = u(xr)− γΓ(xr). At this point, for ξ ∈ Λr and 0 < r ≤ 1

in such a way that 0 < r|ξ| ≤ 1, we set

vr(ξ) = u(rξ)− γΓ(r). (1.29)

The function vr(ξ) is p-harmonic and bounded on any compact subset of Λr

as we have Γ(rξ) = Γ(r)Γ(ξ) and

γΓ(ξ)+C1−|u(rξ)−γΓ(rξ)| ≤ vr(ξ) ≤ γΓ(ξ)+C2 +|u(rξ)−γΓ(rξ)|. (1.30)
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We observe that the de�nition of Γ implies the improvement of estimates in

Lemma 1.1.2, that is

|∇u(x)| ≤ C|x|−1,

|∇u(x)−∇u(x′)| ≤ C|x− x′|α|x|−1−α,

for 0 < |x| ≤ |x′| ≤ 1. Returning to (1.29) we have

|∇vr(ξ)| ≤ C|ξ|−1,

|∇vr(ξ)−∇vr(ξ′)| ≤ C|ξ − ξ′|α|ξ|−1−α,

for 0 < |ξ| ≤ |ξ′| ≤ 1
r
. As a consequence, the set of functions {vr} is

relatively compact in the C1 topology of any compact subset of Λr: there

exist v ∈ C1,α(RN \ {0}) and a sequence rn → 0 such that vrn converges to v

in this topology. Moreover we can assume that ξrn = xrn
rn

converges to some

ξ0 ∈ ∂B1. As we have u(rξ)− γΓ(rξ) ≤ λ and u(rnξrn)− γΓ(rnξrn) → λ as

n→ +∞, we deduce

v(ξ) ≤ γΓ(ξ) + λ and v(ξ0) = γΓ(ξ0) + λ. (1.31)

Application of Corollary 1.1.4 gives that v = γΓ + λ and vr converges to

γΓ + λ as r goes to 0 in the C1 topology of any compact subset of RN \ {0}.
Returning to (1.29), this means that

lim
x→0

(u(x)− γΓ(x)) = λ. (1.32)

Assume now supx∈B1
(u(x) − γΓ(x)) = sup|x|=1(u(x) − γΓ(x)). We perform

the scaling transformation (1.29) and there exists a p-harmonic function v

and a sequence rn → 0 such that vrn converges to v in the C1 topology of

any compact subset of RN \ {0}. Moreover, from (1.30), v satis�es

C̃1 ≤ v(ξ)− γΓ(ξ) ≤ C̃2.

We look at the points where v − γΓ achieves its supremum in RN \ {0}. If

this supremum is achieved at some ξ0, then v− γΓ is equal to some constant

λ. Returning to (1.29), we obtain

lim
rn→0

(u(rnξ)− γΓ(rnξ)) = λ

12



in the C1
loc

(RN \ {0}) topology. For ε > 0 �xed, there exists n0 such that for

n ≥ n0 we have

γΓ(rnξ) + λ− ε ≤ u(rnξ) ≤ γΓ(rnξ) + λ+ ε,

for ξ ∈ ∂B1. Application of the maximum principle in {x : rn < |x| < rn0}
yields

γΓ(x) + λ− ε ≤ u(x) ≤ γΓ(x) + λ+ ε.

As ε is arbitrary we obtain again (1.32). So we are left with the case where

the supremum of v − γΓ is achieved either at 0 or at in�nity. In the second

case we perform the inversion ϑ of RN \ {0} de�ned by ϑ(x) = x
|x|2 which

leaves equation invariant and exchanges 0 and in�nity. Let ṽ be v or v ◦ ϑ
and assume that ṽ achieves its supremum ν at 0. If ṽ = v then we have

lim
ξ→0

(v(ξ)− γΓ(ξ)) = ν,

which implies

lim
ξ→0

lim
rn→0

(u(rnξ)− γΓ(rnξ)) = ν.

With the maximum principle as above we get (1.32). If ṽ = v ◦ ϑ, then

lim
|ξ|→+∞

(v(ξ)− γΓ(ξ)) = ν,

which means

lim
|ξ|→+∞

lim
rn→0

(u(rnξ)− γΓ(rnξ)) = ν.

For ε > 0 there exists K > 0 such that for |ξ| = K we have

ν − ε ≤ lim
rn→0

(u(rnξ)− γΓ(rnK) ≤ ν + ε.

With the aid of the maximum principle as before we deduce (1.32).

1.1.2 The singular Dirichlet problem

We assume that Ω is a bounded open subset of RN , containing 0, with a

regular boundary ∂Ω. This section deals with the problem of �nding a dis-

tributional solution of the following problem−∆pu = Kδ0 in Ω

u = g on ∂Ω.
(1.33)

13



Here 1 < p < N , K ∈ R and g ∈ L∞(Ω) ∩W 1,p(Ω). We are going to prove

the following result.

Theorem 1.1.6. There exists a unique function u ∈ C1,α(Ω′) such that

|∇u|p−1 ∈ L1(Ω), ∇u ∈ Lp(Ω \Br) for r > 0 small enough and

u

Γ
∈ L∞(Ω), (1.34)

satisfying (1.33). Moreover the following estimates hold:

u− |K|
1
p−1 sgn(K)Γ ∈ L∞(Ω), (1.35)

∇(u− |K|
1
p−1 sgn(K)Γ) = o(|x|

1−N
p−1 ), (1.36)

Dα(u− |K|
1
p−1 sgn(K)Γ) = o(|x|

p−N
p−1
−|α|) (1.37)

if K 6= 0 for any multi-indices α with |α| ≥ 1.

Proof. (Uniqueness) Let u1 and u2 be solutions of (1.33). From Theorem

1.1.1 they both satisfy

lim
x→0

ui(x)

Γ(x)
= |K|

1
p−1 sgn(K).

Moreover they also satisfy (1.35) and (1.37), so we have

u1 − u2 ∈ L∞(Ω),

∇(u1 − u2) = o(|x|
1−N
p−1 ) as x→ 0.

From the equation we have, for all r > 0 small enough,∫
Ω\Br
〈|∇u1|p−2∇u1 − |∇u2|p−2∇u2,∇(u1 − u2)〉dx

= −
∫
|x|=r

(u1 − u2)(|∇u1|p−2∂νu1 − |∇u2|p−2∂νu2)dS, (1.38)

and the right-hand side of (1.38) goes to 0 as r → 0. As for the left-hand

side, it is greater thanC|∇(u1 − u2)|p if p ≥ 2,

C(1 + |∇u1|+ |∇u2|)p−2|∇(u1 − u2)|2 if 1 < p ≤ 2.
(1.39)

14



Thus ∇(u1 − u2) = 0 a.e. in Ω and so u1 = u2 a.e. in Ω.

(Existence) IfK = 0, (1.33) is the classical Dirichlet problem. For this reason

we assume K 6= 0 and, without any loss of generality, K > 0. For ε > 0

small enough, let uε be the solution of
−∆puε = 0 in Ω \Bε

uε = K
1
p−1 Γ(ε) on ∂Bε

uε = g on ∂Ω.

(1.40)

Such a uε can be obtained by minimizing the functional
∫

Ω\Bε |∇v|
pdx in

W 1,p(Ω \Bε), with the boundary conditions of (1.40). We de�ne

Λ = K
1
p−1 sup

∂Ω
|Γ|+ sup

∂Ω
|g| > 0.

Application of the maximum principle to the functions uε, K
1
p−1 Γ − Λ and

K
1
p−1 Γ + Λ yields

K
1
p−1 Γ− Λ ≤ uε ≤ K

1
p−1 Γ + Λ in Ω \Bε. (1.41)

If G is any compact subset of Ω′, then there exists η > 0 small enough such

that G ⊂ Ω \ Bη. For 0 < ε < 1
2
η < η, (1.41), (1.22) and [25] imply the

following estimates

‖∇uε‖C1,α(G) ≤ C, (1.42)

‖∇uε‖Lp(Ω\Bη) ≤ C, (1.43)

where C does not depend on ε. Then there exists a subsequence εn going to

0 and a function u which is p-harmonic in Ω′ such that

uεn → u in C1
loc

(Ω′) and ∇uεn ⇀ ∇u in Lp
loc

(Ω̄ \ {0}).

Thus the boundary condition on ∂Ω is preserved and u also satis�es (1.43)

in Ω′. Application of Theorem 1.1.1 gives

−∆pu = Kδ0 in Ω,

in the sense of distribution. Hence u is the solution of (1.33) and uε converges

to u. Moreover the following properties hold(1 + |∇u|+ |∇Γ|)p−2|∇(u− |K|
1
p−1 sgn(K)Γ)|2 ∈ L1(Ω) if 1 < p ≤ 2,

∇(u− |K|
1
p−1 sgn(K)Γ) ∈ Lp(Ω) if p ≥ 2,
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in virtue of (1.39).

This concludes the proof of Theorem 1.1.6.

1.2 Main results for Brezis-Nirenberg type prob-

lem when p2 ≤ N

This section deals with the existence result related to problem
−∆pu− λup−1 = up

∗−1 in Ω

u > 0 in Ω

u = 0 on ∂Ω

(1.44)

with 1 < p2 ≤ N and 0 < λ < λ1, proved by Guedda and Veron in [20].

Theorem 1.2.1. Let Ω be a bounded open subset of RN with a C2 boundary

∂Ω. Assume 1 < p2 ≤ N . Then problem (1.44) admits a solution in W 1,p
0 (Ω)

for any λ ∈ (0, λ1).

In order to prove Theorem 1.2.1, some preliminary regularity results are

needed. Then the proof follows ideas and techniques of Brezis-Nirenberg [6],

Aubin [2] and Trudinger [34].

1.2.1 Uniform C1,α estimates

Let Ω be as in Theorem 1.2.1 and p > 1. Consider the following problem−∆pu = f in Ω

u = 0 on ∂Ω,
(1.45)

f being a given function de�ned on Ω. If the data are not regular enough,

recalling the de�nition of the operator ∆p, it is traditional to approximate

(1.45) by the following non-degenerate problem−div((ε+ |∇uε|2)
p−2

2 ∇uε) = fε in Ω

uε = 0 on ∂Ω,
(1.46)

where ε is a positive constant.
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Proposition 1.2.2. Assume fε ∈ C1(Ω̄) and uε ∈ C3−δ(Ω̄). Then there

exist α = α(p,N) ∈ (0, 1) and C = C(p,N,Ω, ‖fε‖∞) > 0 such that

‖uε‖C1,α(Ω̄) ≤ C for any ε ∈ (0, 1).

Proof. See Proposition 1.1 in [20].

Next consider the problem−∆pu+K(x)|u|p−2u = f in Ω

u = 0 on ∂Ω.
(1.47)

Proposition 1.2.3. Assume 1 < p < N , f ∈ L
N
p (Ω) and K ∈ L

N
p (Ω).There

exists Ct = Ct(t, p,N,Ω, K, ‖f‖N
p

) such that

‖u‖Lt(Ω) ≤ Ct (1.48)

for any u ∈ W 1,p
0 (Ω) solution of (1.47) and t ∈ [1,+∞).

Proof. See Proposition 1.2 in [20].

Remark 1.2.4. Notice that (1.48) still holds for solutions uε ∈ W 1,p
0 (Ω) of

−div((ε+ |∇uε|2)
p−2

2 ∇uε) +K(x)|uε|p−2uε = f in Ω,

and Ct is independent of ε ∈ (0, 1].

Proposition 1.2.5. Assume 1 < p < N and f ∈ Ls(Ω) for some s > N
p
.

There exists C = C(N, p, |Ω|) such that

‖u‖L∞(Ω) ≤ C‖f‖
1
p−1

Ls(Ω)

for any u ∈ W 1,p
0 (Ω) solution of (1.45).

Proof. See Proposition 1.3 in [20].

As an application we get Corollary 1.2.6, involving the problem−∆pu = g(·, u) in Ω

u = 0 on ∂Ω,
(1.49)

which represents the main regularity result of this section.
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Corollary 1.2.6. Assume 1 < p < N . Let g be a continuous function in

Ω̄× R which satis�es

|g(x, r)| ≤ C|r|p∗−1 +D for all (x, r) ∈ Ω̄× R, (1.50)

C and D being real constants. If u ∈ W 1,p
0 (Ω) solves (1.49), then u ∈ C1,α(Ω̄).

Proof. Setting K(x) = sign(u)g(x, u)/(1 + |u|p−1), we have from (1.50) that

|K(x)| ≤ C|u|p∗−1 +D

1 + |u|p−1
≤ C ′|u|p∗−p +D′,

C ′, D′ being constants. As p∗ − p = p2

N−p and u ∈ Lp
∗
(Ω) we deduce that

K ∈ L
N
p (Ω). The equation in (1.49) rewrites as

−∆pu = K(x)|u|p−2u+ sign(u)K(x).

Application of Proposition 1.2.3 yields u ∈
⋂

1≤t<+∞ L
t(Ω), in view ofK|u|p−2u+

sign(u)K ∈
⋂

1≤t<+∞ L
t(Ω). Then, from Proposition 1.2.5 we deduce that

u ∈ L∞(Ω). Finally Proposition 1.2.2 gives the C1,α-regularity of u in Ω̄.

At this point we are able to prove the following nonexistence result.

Corollary 1.2.7. Assume 1 < p < N . Let Ω be starshaped with respect to

some point. Then the equation

−∆pu = |u|p∗−1 in Ω,

admits no nonzero solution in W 1,p
0 (Ω).

Proof. As u ∈ W 1,p
0 (Ω), u ≥ 0 in Ω and u ∈ L∞(Ω) from Corollary 1.2.6. If

u is nonzero then u > 0 in Ω and ∂νu > 0 on ∂Ω (see [32] or [36]), which

implies 〈x, ν〉 = 0 on ∂Ω in view of the Pohozaev identity for the p-laplacian

(see [12]). Hence Ω cannot be bounded otherwhile we consider the smallest

ball with center 0 containing Ω; such a ball is tangent to ∂Ω at x0 and

〈x0, νx0〉 > 0, a contradiction.
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1.2.2 Proof of the existence theorem

We are going to prove Theorem 1.2.1. We de�ne for λ ∈ R

Sλ = inf

{∫
Ω

(|∇u|p − λ|u|p)dx : u ∈ W 1,p
0 (Ω),

∫
Ω

|u|p∗dx = 1

}
. (1.51)

Then

S0 = S = inf

{∫
Ω

|∇u|pdx : u ∈ W 1,p
0 (Ω),

∫
Ω

|u|p∗dx = 1

}
is the best Sobolev constant for the embedding W 1,p

0 (Ω) ↪→ Lp
∗
(Ω).

Lemma 1.2.8. S is independent of Ω and is never achieved.

Proof. The fact that S is independent of Ω is clear as ‖∇u‖p‖u‖p∗
is independent

of the scaling transformation k 7→ uk(x) = u(kx).

Assume by contradiction that S is achieved by some u ∈ W 1,p
0 (Ω). We can

suppose u ≥ 0 in Ω and, if B is a ball containing Ω, we de�ne û in B by

û =

u in Ω

0 in B \ Ω.

As û achieves S in B there exists a Lagrange multiplier µ such that

−∆pû = µûp
∗−1 in B

and û ∈ W 1,p
0 (B). As

∫
B
ûp
∗

= 1 and
∫
B
|∇û|p = µ, we deduce that µ > 0

(µ = S) which is impossible from Corollary 1.2.7.

Remark 1.2.9. When Ω is replaced by RN then S is achieved by the functions

Ua(x) =

(
Na

(
N − p
p− 1

)p−1)N−p
p2

(a+ |x|
p
p−1 )

p−N
p (1.52)

for some a > 0 (see [19]). Moreover the functions Ua are the only positive

solutions in D1,p(RN) of3

−∆pu = up
∗−1 in RN ,

as proved by Damascelli-Merchán-Sciunzi and Vétois (see [9] and [37]).
3We recall that D1,p(RN ) is the completion of C∞

0 (RN ) with respect to the norm

‖u‖D1,p(RN ) =
(∫

RN |∇u|pdx
) 1

p .
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Lemma 1.2.10. Let 1 < p2 ≤ N . Then for any λ > 0 we have Sλ < S.

Proof. Following Aubin's method [2] we de�ne

Qλ(u) =
‖∇u‖pp − λ‖u‖pp

‖u‖pp∗

for u ∈ W 1,p
0 (Ω), u 6= 0. We assume 0 ∈ Ω and we de�ne

uε(x) =
Φ(x)

(ε+ |x|
p
p−1 )

N−p
p

(1.53)

for some ε ∈ (0, 1] and Φ ∈ C∞0 (Ω), 0 ≤ Φ ≤ 1 and Φ = 1 in some neighbor-

hood of 0. The idea is to estimate Qλ(uε).

Step 1. We claim that

‖∇u‖pp = Kε−
N−p
p +O(1), (1.54)

where K = K(N, p) > 0. From (1.53) we have

∇uε(x) =
∇Φ(x)

(ε+ |x|
p
p−1 )

N−p
p

+
p−N
p− 1

xΦ(x)

(ε+ |x|
p
p−1 )

N
p |x|

p−2
p−1

.

As Φ = 1 in a neighborhood of 0 we obtain∫
Ω

|∇uε|p =

(
N − p
p− 1

)p ∫
Ω

|x|
p
p−1 Φp(x)

(ε+ |x|
p
p−1 )N

dx+O(1).

Then, writing Φp = 1 + Φp − 1, we get (1.54) with

K =

(
N − p
p− 1

)p ∫
RN

|x|
p
p−1

(ε+ |x|
p
p−1 )N

dx = L‖∇U1‖pp, (1.55)

U1 being de�ned as in (1.52) and L = L(N, p).

Step 2. We claim that

‖uε‖pp∗ =
K

S
ε−

N−p
p +O(1), (1.56)

K being as in (1.55). From (1.53) we have∫
Ω

up
∗

ε =

∫
Ω

Φp∗(x)

(ε+ |x|
p
p−1 )N

dx

=

∫
Ω

dx

(ε+ |x|
p
p−1 )N

+

∫
Ω

Φp∗(x)− 1

(ε+ |x|
p
p−1 )N

dx

= ε−
N
p

∫
RN

dx

(ε+ |x|
p
p−1 )N

+O(1),
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and �nally we get (1.56) as∫
RN

dx

(1 + |x|
p
p−1 )N

= L
p∗
p ‖U1‖p

∗

p∗ and ‖∇U1‖pp = S‖U1‖pp∗ .

Step 3. We claim that

‖uε‖pp = K1ε
−N−p

2

p +O(1) if 1 < p2 < N, (1.57)

‖uε‖p = K1 log
1

ε
+O(1) if p2 = N, (1.58)

where K1 = K1(N, p) > 0. In the �rst case we have∫
Ω

upε =

∫
Ω

dx

(ε+ |x|
p
p−1 )N−p

+

∫
Ω

Φp(x)− 1

(ε+ |x|
p
p−1 )N−p

dx

=

∫
RN

dx

(ε+ |x|
p
p−1 )N−p

+O(1),

and we get the desired result with

K1 =

∫
RN

dx

(1 + |x|
p
p−1 )N−p

.

In the second case we have∫
Ω

upε = O(1) +

∫
Ω

dx

(ε+ |x|
p
p−1 )p(p−1)

.

Setting I(ε) =
∫

Ω
dx

(ε+|x|
p
p−1 )p(p−1)

, it is clear that there exist 0 < R1 < R2 such

that ∫
|x|≤R1

dx

(ε+ |x|
p
p−1 )p(p−1)

≤ I(ε) ≤
∫
|x|≤R2

dx

(ε+ |x|
p
p−1 )p(p−1)

.

Moreover, for a �xed R > 0 we have

∫
|x|≤R

dx

(ε+ |x|
p
p−1 )p(p−1)

= ωN

∫ Rε
− p−1

p

0

sp
2−1

(1 + s
p
p−1 )p(p−1)

dx,

ωN being the measure of the unit sphere in RN . Hence I(ε) = ωN (p−1)
p

log 1
ε

+

O(1), which gives (1.58).
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Step 4. From Steps 1-3 we obtain

Qλ(uε) =

S − λK1

K
εp−1 +O(ε

N−p
p ) if 1 < p2 < N

S − λK1

K
εp−1 log 1

ε
+O(εp−1) if p2 = N.

As Sλ ≤ Qλ(uε) < S we get our result.

Lemma 1.2.11. If 0 < Sλ < S, then Sλ is achieved.

Proof. Following Aubin [2] and Trudinger [34] we consider the following func-

tional on W 1,p
0 (Ω) \ {0}

Qt
λ(u) =

‖∇u‖pp − λ‖u‖pp
‖u‖pt

for p ≤ t ≤ p∗, and we set

St = inf
{
Qt
λ(u) : u ∈ W 1,p

0 (Ω) \ {0}
}

which always exists.

Step 1. For p ≤ t < p∗ there exists ut ∈ W 1,p
0 (Ω) satisfying−∆put = λup−1

t + Stut−1
t in Ω

ut > 0, Qt
λ(ut) = St, ‖ut‖t = 1.

(1.59)

Indeed the compactness of the embedding W 1,p
0 (Ω) into Lt(Ω) implies that

the in�mum of Qt
λ is achieved on the unit sphere in Lt(Ω) by a nonnegative

function ut ∈ W 1,p
0 (Ω) which solves

−∆put − λup−1
t = Cut−1

t

and C = St. From Vazquez strict maximum principle we get ut > 0 in Ω.

Step 2. The function t 7→ St is continuous on the left from [p, p∗] into

(0,+∞).

In order to prove this claim, �rst we notice that St > 0 as Sλ > 0. For w

�xed inW 1,p
0 (Ω)\{0}, we have that t 7→ Qt

λ(w) is continuous from [p, p∗] into

(0,+∞). Hence t 7→ St is upper semi-continuous, that is St ≥ lim supt′→t S
t′ .

Set ε > 0 and Φ ∈ W 1,p
0 (Ω) \ {0} such that

Qt′

λ(Φ) < St
′
+ ε, St ≤ Qt

λ(Φ),
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where p ≤ t′ < t ≤ p∗. As

‖Φ‖t′ ≤ ‖Φ‖t|Ω|
1
t′−

1
t ,

we get

Qt′

λ(Φ) ≥ Qt
λ(Φ)|Ω|p(

1
t
− 1
t′ ).

Thus St
′
+ ε ≥ St|Ω|p( 1

t
− 1
t′ ), which implies the continuity on the left as

lim inf
t′↗t

St
′
+ ε ≥ St ≥ lim sup

t′↗t
St
′
.

Step 3. The set of functions ut ∈ W 1,p
0 (Ω) satisfying (1.59) is bounded in

W 1,p
0 (Ω) independently of t ∈ [p, p∗).

Indeed, it is clear that the Lp norm of ut is bounded independently of t ∈
[p, p∗) as

‖ut‖p ≤ ‖ut‖t|Ω|
1
p
− 1
t ≤ C,

and

‖∇ut‖pp ≤ λCp + St.

Moreover if we �x u0 in W 1,p
0 (Ω) \ {0}, then St ≤ Qt

λ(u0). As t 7→ Qt
λ(u0) is

continuous, there exists M such that

St ≤ max
p≤t≤p∗

Qt
λ(u0) = M, t ∈ [p, p∗],

which implies the uniform boundedness of {ut} in W 1,p
0 (Ω).

Step 4. The set of functions {ut} is bounded in C1,α(Ω̄).

In order to prove this claim, we set Kt = St− ut−pt in such a way that (1.59)

rewrites as

−∆put −Ktu
p−1
t = 0.

Step 3 and Propositions 1.2.2 - 1.2.5 yield that ut ∈ C1,α(Ω̄). Moreover, from

Step 1 we get(
p

p+ β

)p
(β + 1)

∫
Ω

|∇u
1+β

p

t |p = λ

∫
Ω

up+βt +Dt

∫
Ω

ut+βt
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for any β > 0. Setting v = u
1+β

p

t , then
∫

Ω
ut+βt ≤ (

∫
Ω
vt)

p
t in view of Hölder

inequality and ‖ut‖t = 1. As a consequence we get

S

(
p

p+ β

)p
(β + 1)

(∫
Ω

vp
∗
) p

p∗

≤ λ

∫
Ω

vp + St|Ω|p(
1
t
− 1
p∗ )

(∫
Ω

vp
∗
) p

p∗

.

As
(

p
p+β

)p
(β + 1) = 1− p−1

2pβ2 + O(β2), 0 < Sλ < S and limt↗p∗ S
t = Sλ from

Step 2, there exist ε > 0, β > 0 with p + β ≤ p∗ and t0 ∈ (p, p∗) such that

for any t ∈ (t0, p
∗)

ε

(∫
Ω

u
(1+β

p
)p∗

t

) p
p∗

≤ ε

∫
Ω

up+βt .

Hence the set of functions {ut} is bounded in Lp
∗+ βN

N−p (Ω). Finally, proposi-

tions 1.2.5 and 1.2.2 imply the C1,α(Ω̄) boundedness.

Step 5. We are able to end the proof. From Step 4 there exists an increasing

sequence {tn} and a function u ∈ C1,α(Ω̄) vanishing on ∂Ω such that utn
converges to u in C1,α′(Ω̄) for any α′ ∈ (0, α). From Step 2 we have that

limn→+∞ S
tn = Sλ. In order to prove that u 6= 0, we get from (1.59)∫

Ω

(|∇ut|p − λupt ) = St ≥ S

(∫
Ω

up
∗

t

) p
p∗

− λ
∫

Ω

upt .

Letting t = tn go to p∗ we obtain

S − λ
∫

Ω

up ≤ Sλ,

that is

S − Sλ ≤ λ

∫
Ω

up,

and then u 6= 0. Hence

−∆pu− λup−1 = Sλu
p∗−1, (1.60)

u ∈ W 1,p
0 (Ω) and u > 0 in Ω.

Proof of Theorem 1.2.1. As λ > 0 we have Sλ < S and as λ < λ1 we have

Sλ > 0. If u achieves the in�mum (1.51) we can assume u ≥ 0 and we have

(1.60). Replacing u by ku we obtain a solution of problem (1.44).
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Chapter 2

Existence of Green functions and

main properties

This chapter deals with existence and uniqueness results related to (1.5),

with λ < λ1 and 1 < p < N . We will use the decomposition Gλ = χΓ + Ĥλ

of the Green function in order to have Ĥ = 0 on ∂Ω, as already explained in

the Introduction.

For the sake of simplicity, we will assume the pole being at 0. All the results

that we are going to prove can be easily generalized to the case of pole at x.

In Section 2.1 we prove the existence of a solution Gλ of problem (1.5). In

particular, we adopt the notion of solution obtained by limits of approxi-

mations (SOLA), which are solutions obtained via an approximation scheme

using solutions of regularized problems. We follow the approach of the SOLA

used by Boccardo and Gallouet in [4] and [5]. In the case λ 6= 0 we have to

require the technical condition p > 2− 1
N
to guaranteee that q̄ = N(p−1)

N−1
> 1.

Then we show that a SOLA Gλ of (1.5) satis�es condition (1.9).

Section 2.2 is devoted to the global L∞-regularity of the regular part Hλ of

any solution to (1.5) satisfying the natural condition (1.9).

Finally, Section 2.3 deals with uniqueness issues. We will show that, if p ≥ 2,

the solution of (1.5) is unique among those satisfying (1.9).

25



2.1 The existence of a SOLA Gλ

Let {fj} be a sequence in C∞0 (Ω) of nonnegative functions converging to δ0

in the distribution sense, with ‖fj‖1 uniformly bounded, and such that

fj → 0 uniformly in K b Ω \ {0} as j → +∞. (2.1)

It is possible to choose such a fj satisfying (2.1) by setting fj(x) = jf(jx)

where f ∈ C∞0 (Ω), suppf ⊂ B1 and
∫

Ω
f(y)dy = 1.

It is known by [24] that there exists a weak solution Gj of the problem
1

−∆pGj − λGp−1
j = fj in Ω

Gj ≥ 0 in Ω

Gj = 0 on ∂Ω,

(2.2)

that is Gj ∈ W 1,p
0 (Ω) such that∫

Ω

|∇Gj|p−2〈∇Gj,∇ϕ〉 − λ
∫

Ω

Gp−1
j ϕ =

∫
Ω

fjϕ ∀ϕ ∈ W 1,p
0 (Ω). (2.3)

We can assume Gj ≥ 0. Indeed Gj minimizes the functional

J(v) =
1

p

∫
Ω

|∇v|p − λ

p

∫
Ω

|v|p −
∫

Ω

fjv, v ∈ W 1,p
0 (Ω).

and it is easy to check that if u minimizes J , then the same holds for |u|,
being fj ≥ 0.

Lemma 2.1.1. Let Gj be a solution of (2.2). Assume p > max{
√
N, 2− 1

N
}

if λ 6= 0. Then Gp−1
j is uniformly bounded in L1(Ω).

Proof. Assume by contradiction that ‖Gj‖p−1 → +∞. We de�ne

Ĝj =
Gj

‖Gj‖p−1

.

By the equation in (2.2) we have that Gj solves

−∆pĜj − λĜp−1
j =

fj

‖Gj‖p−1
p−1

in Ω. (2.4)

1In the sequel we will omit the dependence on λ for ease of notation.
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We observe that the right-hand side of (2.4) is bounded in L1(Ω) and con-

verges to 0. Application of the results in [4] yields that there exists Ĝ such

that, up to a subsequence,

Ĝj → Ĝ in W 1,q
0 (Ω) ∀q < q̄ =

N(p− 1)

N − 1
.

Moreover G solves

−∆pĜ− λĜp−1 = 0 in Ω. (2.5)

Using Ĝ as test function in the weak formulation of (2.5), we obtain∫
Ω

|∇Ĝ|p − λ
∫

Ω

Ĝp = 0.

Recalling the de�nition of λ1, we have∫
Ω

|∇Ĝ|p ≥ λ1

∫
Ω

Ĝp.

Thus

(λ1 − λ)

∫
Ω

Ĝp ≤ 0,

from which follows Ĝ = 0 a.e., since λ < λ1. Application of Sobolev inequal-

ity gives ‖Ĝj‖p−1 → 0, contradicting the de�nition of Ĝj according to which

‖Ĝj‖p−1 = 1.

It is worth noting that Ĝ is admissible as test function in the weak formulation

of (2.5), when λ 6= 0. Indeed Ĝ ∈ W 1,q
0 (Ω) for all q < q̄. By Sobolev

embedding Ĝ ∈ Ls(Ω) for all s < q̄∗ = N(p−1)
N−p . Since p2 > N , then p < q̄∗

and so Ĝ ∈ Lp(Ω). We use Tl(Ĝ) as test function in the weak formulation

of (2.5), Tl being de�ned as in (2.39). By de�nition (2.39), we have that

∇(Tl(Ĝ)) = ∇Ĝ in {|Ĝ| ≤ l} and ∇(Tl(Ĝ)) = 0 outside this set. Moreover

|Tl(Ĝ)| ≤ Ĝ. Finally we obtain∫
{|Ĝ≤l}

|∇Ĝ|p ≤ λ

∫
Ω

Ĝp. (2.6)

Since the right-hand side of (2.6) is uniformly bounded in l, we can pass to

the limit l→ +∞ in this inequality and we obtain∫
Ω

|∇Ĝ|p ≤ C.

Thus Ĝ ∈ W 1,p
0 (Ω). Our claim is so established.
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A generalization of Lemma (2.1.1) can be found in Appendix (see Lemma

A.2.3). At this point we are going to prove the existence of a SOLA of

problem (1.5).

Theorem 2.1.2. Assume p > max{
√
N, 2− 1

N
} if λ 6= 0. Then there exists

a distributional solution Gλ of problem (1.5). Moreover, Gλ ∈ W 1,q
0 (Ω) for

all q < q̄ and Gλ ≥ 0.

Proof. Setting hj = fj + λGp−1
j , by Lemma 2.1.1 we deduce that ‖hj‖1 is

uniformly bounded and hj ∈ W−1,p′(Ω) ∩ L1(Ω). Therefore, from the appli-

cation of the results in [4] we have that, up to a subsequence, there exists Gλ

such that

Gj → Gλ in W 1,q
0 (Ω). (2.7)

Thus

Gj → Gλ a.e. in Ω and ∇Gj → ∇Gλ a.e. in Ω. (2.8)

The continuous embedding of W 1,q
0 (Ω) in Lq

∗
(Ω) for q < N implies that

Gj → Gλ in Lr(Ω), r < q̄∗ =
N(p− 1)

N − p
.

Since p− 1 < N(p−1)
N−p , we have that

Gj → Gλ in Lp−1(Ω).

Moreover

|∇Gj|p−2Gj → |∇Gλ|p−2∇Gλ in L1(Ω).

Therefore we can pass to the limit in (2.3) for ϕ ∈ C1
0(Ω) and we obtain that

the limit function Gλ is a distributional solution of problem (1.5). Moreover

Gλ ∈ W 1,q
0 (Ω) for all q < q̄ and Gλ ≥ 0.

Let Gλ be a solution of (1.5), given by Theorem (2.1.2). Consider the de-

composition Gλ = χΓ + Ĥλ. Our aim now is to de�ne Ĥλ as limit of suitable

regularized functions and to prove that Ĥλ satis�es condition (1.9).

Let Γj be the solution of problem−∆pΓj = fj in Ω

Γj = Γ on ∂Ω,
(2.9)
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fj being de�ned as in (2.2). For any �xed j, there exists unique Γj solution

of the problem (2.9). This solution is obtained using the variational method,

by minimizing the functional

J(v) =
1

p

∫
Ω

|∇v|p −
∫

Ω

fjv, v ∈ W 1,p(Ω), v = Γ on ∂Ω.

The strict convexity of the function t → |t|p and the fact that fj ≥ 0 imply

the uniqueness of the minimum of J , from which it follows the uniqueness of

the solution of (2.9).

The following proposition allows us to consider {Γj} as a sequence of regu-

larized function of Γ.

Proposition 2.1.3. Let {Γj} be a sequence of solutions of (2.9). Then

Γj → Γ in W 1,q(Ω) for all q < q̄.

Proof. Using the results in [5], we obtain the precompactness of {Γj} in

W 1,q(Ω) for all q < q̄. Moreover any limit Γ̃ of Γj is a solution of the limit

problem −∆pΓ̃ = δ0 in Ω

Γ̃ = Γ on ∂Ω,
(2.10)

and Γ̃ ∈ W 1,q(Ω) for all q < q̄.

Application of the uniqueness result due to Kichenassamy and Veron (see

[23]) guarantees the uniqueness of the solution of problem (2.10), and so

Γ̃ = Γ, yielding that

Γj → Γ in W 1,q(Ω) ∀q < q̄.

At this point, let Ĥj be de�ned by

Gj = χΓj + Ĥj. (2.11)

We recall by (2.8) that

∇Gj → ∇Gλ a.e. in Ω
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and, up to a subsequence,

Γj → Γ a.e. in Ω and ∇Γj → ∇Γ a.e. in Ω.

in view of Proposition 2.1.3. Thus

∇(χΓj)→ ∇(χΓ) a.e. in Ω.

So we have that

∇Ĥj = ∇Gj −∇(χΓj)→ ∇Gλ −∇(χΓ) = ∇Ĥλ a.e. in Ω.

Then the following result holds.

Proposition 2.1.4. Let Ĥλ = Gλ−χΓ, where Gλ is a SOLA of (1.5). Under

the hypothesis of Theorem 2.1.2, then Ĥλ ∈ W 1,q̄
0 (Ω). In particular, if p > 2,

we have a stronger result that is Ĥλ ∈ W 1,p
0 (Ω).

Proof. By de�nition (2.11), it follows that Ĥj solves the problem−∆p(χΓj + Ĥj) + ∆p(χΓj) = λGp−1
j + gj in Ω

Ĥj = 0 on ∂Ω,
(2.12)

where gj = fj + ∆p(χΓj). In particular, gj vanishes near 0 and g = ∆p(χΓj)

away from 0; by the properties of fj, it follows that we have a good control

on Γj away from 0 and thus g ∈ L∞(Ω).

We multiply equation in (2.12) by Ĥj and we integrate on Ω. Hence∫
Ω

〈|∇(χΓj + Ĥj)|p−2∇(χΓj + Ĥj)− |∇(χΓj)|p−2∇(χΓj),∇Ĥj〉

= λ

∫
Ω

Gp−1
j Ĥj +

∫
Ω

gjĤj. (2.13)

The right-hand side of (2.13) is uniformly bounded. This fact is a conse-

quence of the boundedness of gj if λ = 0. If λ 6= 0 we use that Gj is

uniformly bounded in Lr(Ω) for all r < q̄∗, and also in Lp(Ω), being N < p2.

We study the left-hand side of (2.13) and we apply the estimates in Appendix

(A.1). If p ≤ 2 we have that

C ′
∫

Ω

(|∇(χΓj)|+ |∇Ĥj|)p−2|∇Ĥj|2

≤
∫

Ω

〈|∇(χΓj + Ĥj)|p−2∇(χΓj + Ĥj)− |∇(χΓj)|p−2∇(χΓj),∇Ĥj〉.
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On the other hand, if p > 2 we observe that

C ′′
∫

Ω

|∇Ĥj|p ≤
∫

Ω

〈|∇(χΓj+Ĥj)|p−2∇(χΓj+Ĥj)−|∇(χΓj)|p−2∇(χΓj),∇Ĥj〉.

Thus the following estimates hold uniformly in j:∫
Ω

(|∇(χΓj)|+ |∇Ĥj|)p−2|∇Ĥj|2 ≤ C if p ≤ 2, (2.14)∫
Ω

|∇Ĥj|p ≤ C if p > 2. (2.15)

Application of Fatou's lemma to (2.14) and (2.15) yield∫
Ω

(|∇(χΓ)|+ |∇Ĥλ|)p−2|∇Ĥλ|2 ≤ C if p ≤ 2, (2.16)∫
Ω

|∇Ĥλ|p ≤ C if p > 2. (2.17)

Using (2.17) and the fact that q̄ < p, we have that Ĥλ ∈ W 1,q̄
0 (Ω) if p > 2.

Now we prove that (2.16) guarantees that Ĥλ ∈ W 1,q̄
0 (Ω) also when p ≤ 2.

We observe that∫
Ω

|∇Ĥλ|q̄ =

∫
Ω

(|∇(χΓ)|+ |∇Ĥλ|)
(p−2)q̄

2 |∇Ĥλ|q̄(|∇(χΓ)|+ |∇Ĥλ|)
(2−p)q̄

2 .

Application of Hölder inequality with exponents 2
q̄

= 2(N−1)
N(p−1)

and
(

2
q̄

)′
=

2(N−1)
3N−2−Np yields∫

Ω

|∇Ĥλ|q̄

≤
(∫

Ω

(|∇(χΓ)|+|∇Ĥλ|)p−2|∇Ĥλ|2
)N(p−1)

2(N−1)
(∫

Ω

(|∇(χΓ)|+|∇Ĥλ|)
(2−p)N(p−1)

3N−2−Np

) 3N−2−Np
2(N−1)

.

(2.18)

At this point we observe that∫
Ω

(|∇(χΓ)|+ |∇Ĥλ|)
(2−p)N(p−1)

3N−2−Np < +∞

since (2−p)N(p−1)
3N−2−Np < q̄. Indeed this inequality is equivalent to N > 2

3−p being

p ≤ 2, which holds in view of N > p > 2
3−p . This fact together with (2.16)

and (2.18) �nally yield ∫
Ω

|∇Ĥλ|q̄ ≤ C.
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As a consequence, recalling the de�nition of both Hλ and Ĥλ as explained in

the Introduction, we get the following result.

Corollary 2.1.5. Under the hypothesis of Theorem 2.1.2, there exists a dis-

tributional solution Gλ of problem (1.5) satisfying (1.9).

2.2 The global L∞-regularity of Hλ

The aim is now to prove the L∞-regularity of Hλ as solution of (1.6). We

include also the case 1 < p < 2, which is particularly meaningful when λ = 0

providing a di�erent proof than in [23]. The singular character of equation

(1.6) has to be controlled thanks to the assumption ∇Hλ ∈ Lq̄(Ω).

Before turning to the main result of this section, we discuss the main prop-

erties related to problem (1.6), which will be repeatedly used throughout the

thesis.

2.2.1 Structural properties of the problem

The �rst result deals with the asymptotic behaviour of ∇Hλ at the pole.

Proposition 2.2.1. Let Hλ be a solution of (1.6). Then

|∇Hλ| = O(|∇Γ|) as x→ 0. (2.19)

Proof. Let R be a small positive radius. We set

ΩR =

{
z : z =

y

R
, y ∈ Ω

}
(2.20)

and we de�ne, for z ∈ ΩR,

Gλ,R(z) = R
N−p
p−1 Gλ(Rz),

ΓR(z) = R
N−p
p−1 Γ(Rz) = R

N−p
p−1

C0

|Rz|
N−p
p−1

= Γ(z),

Hλ,R(z) = R
N−p
p−1 Hλ(Rz).
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Let ϕR ∈ C1
0(ΩR) be such that ϕR(z) = ϕ(Rz) for some ϕ ∈ C1

0(Ω). We

observe that∫
ΩR

|∇Gλ,R|p−2〈∇Gλ,R,∇ϕR〉 =

∫
ΩR

RN |∇Gλ(Rz)|p−2〈∇Gλ(Rz),∇ϕ(Rz)〉dz

=

∫
Ω

|∇Gλ|p−2〈∇Gλ,∇ϕ〉

= λ

∫
Ω

Gp−1
λ ϕ+ ϕ(0),

using in the last passage the weak formulation of problem (1.5). We have∫
Ω

Gp−1
λ ϕ =

∫
ΩR

RNGp−1
λ (Rz)ϕ(Rz)dz

= Rp

∫
ΩR

RN−pGp−1
λ (Rz)ϕ(Rz)dz

= Rp

∫
ΩR

Gp−1
λ,RϕR.

Moreover ϕ(0) = ϕR(0). Thus, for all ϕR ∈ C1
0(ΩR)∫

ΩR

|∇Gλ,R|p−2〈∇Gλ,R,∇ϕR〉 = λRp

∫
ΩR

Gp−1
λ,RϕR + ϕR(0).

Then Gλ,R solves the problem
−∆pGλ,R − λRpGp−1

λ,R = δ0 in ΩR

Gλ,R ≥ 0 in ΩR

Gλ,R = 0 on ∂ΩR.

(2.21)

With the aid of the decomposition Gλ = Γ +Hλ, we write

Gλ,R(z) = R
N−p
p−1 Gλ(Rz) = R

N−p
p−1 (Γ(Rz)+Hλ(Rz)) = Γ(z)+Hλ,R(z), (2.22)

in view of the de�nition of Gλ,R,ΓR and Hλ,R. Moreover, condition (1.3)

yields

C ′ ≤ Gλ(Rz)

Γ(Rz)
≤ C ′′,

that is

C ′ ≤ R
N−p
p−1 Gλ(Rz)

Γ(z)
≤ C ′′.

33



Thus, condition (1.3) is invariant by scaling and we obtain

C ′ ≤ GR

Γ
≤ C ′′ in ΩR. (2.23)

At this point, recalling (2.21), we have that Gλ,R solves
−∆pGλ,R = λRpGp−1

λ,R in ΩR \ {0}

Gλ,R ≥ 0 in ΩR \ {0}

Gλ,R = 0 on ∂ΩR,

and Gλ,R is uniformly bounded in L∞
loc

(B3\{0}) for R small in view of (2.23).

Application of regularity results in Tolksdorf [33] yields thatGλ,R is uniformly

bounded in C1,α
loc

(B2 \ {0}) for R small. In particular

‖∇Gλ,R‖∞,∂B1 ≤ C. (2.24)

Using (2.22), we write ∇Gλ,R = ∇Γ +∇Hλ,R. As a consequence, the bound-

edness of ∇Γ on ∂B1 leads to

‖∇Hλ,R‖∞,∂B1 ≤ C. (2.25)

Observing that

sup
z∈∂B1

|∇Hλ,R(z)| = sup
z∈∂B1

|R
N−1
p−1∇Hλ(Rz)| = sup

y∈∂BR
|y|

N−1
p−1 |∇Hλ(y)|,

we �nally arrive at

|∇H(y)| ≤ C̃

|y|
N−1
p−1

= C|∇Γ(y)| for all |y| = R,

in view of (2.25). This concludes the proof.

To complete this section, we show a consequence to the structural properties

of problem (1.6). Before turning to a description of results, we point out the

weak formulation of problem (1.6), that is∫
Ω

〈|∇(Γ +Hλ)|p−2∇(Γ +Hλ)− |∇Γ|p−2∇Γ,∇ϕ〉

= λ

∫
Ω

Gp−1
λ ϕ ∀ϕ ∈ C1

0(Ω). (2.26)

and Hλ = −Γ on ∂Ω.
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Remark 2.2.2. In (2.26) we consider ϕ ∈ C1
0(Ω) in order to make sense of

the left-hand side in the equality. On the other hand, we observe that ϕ ∈
W 1,p

0 (Ω) such that 0 /∈ suppϕ can be used as test function in (2.26). Indeed

the fact that 0 does not belong to the support of ϕ guarantees that integration

is made away from the singular point; then, the regularity properties of ϕ

make sense of the formulation. In what follows, we will consider admissible

the functions with these properties.

Now we prove a lemma which, applied to our problem, will allows us to derive

estimates starting from the weak formulation (2.26). For later convenience,

let us write the result in a su�ciently general way.

Let A be an open subset of Ω such that 0 ∈ A and let η be a nonnegative

smooth function supported in A. For ε > 0, consider a sequence of smooth

functions {ηε}, converging to η as ε→ 0, with the following properties

ηε = η outside Bε, 0 ≤ ηε ≤ η, ηε = 0 in B ε
2
, max |∇ηε| ∼

1

ε
. (2.27)

Lemma 2.2.3. Let H be a solution of

−∆p(Γ +H) + ∆pΓ = G in A (2.28)

such that ∇H is Lp-integrable away from 0 and G ∈ L1(A). Let η and ηε be

as previously described. Consider a bounded function Ψ: R → R such that

Ψ′ > 0 is bounded. Assume η = 0 either Ψ(H) = 0 on ∂A. Then we have

the following estimates:

- Case p ≤ 2:∫
A

η2
ε

[
|∇Γ|+ |∇H|

]p−2
Ψ′(H)|∇H|2

≤ C

(∫
A

ηε|∇ηε||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H|+
∫
A

|G|η2
ε |Ψ(H)|

)
,

(2.29)

- Case p > 2:∫
A

ηpεΨ
′(H)|∇H|p +

∫
A

ηpεΨ
′(H)|∇Γ|p−2|∇H|2

≤ C

(∫
A

ηp−1
ε |∇ηε||Ψ(H)|

[
|∇Γ|p−2+|∇H|p−2

]
|∇H|+

∫
A

|G|ηpε |Ψ(H)|
)
.

(2.30)
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Proof. We observe that the function

ϕ =

η2
εΨ(H) if p ≤ 2

ηpεΨ(H) if p > 2

is admissible in (2.28), in view of the properties of ηε and Ψ.

Assume p ≤ 2. Using ϕ as test function in (2.28) we obtain∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ,∇(η2
εΨ(H))〉 =

∫
A

Gη2
εΨ(H).

(2.31)

We have that

∇(η2
εΨ(H)) = 2ηε∇ηεΨ(H) + η2

εΨ
′(H)∇H.

Thus (2.31) rewrites as∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ, 2ηε∇ηεΨ(H)〉

+

∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ, η2
εΨ
′(H)∇H〉

=

∫
A

Gη2
εΨ(H). (2.32)

Application of estimates (A.1) and (A.2) in the Appendix A.1 with x = ∇Γ

and y = ∇H yields∫
A

η2
ε

[
|∇Γ|+ |∇H|

]p−2
Ψ′(H)|∇H|2

≤ C

(∫
A

ηε|∇ηε||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H|+
∫
A

|G|η2
ε |Ψ(H)|

)
.

This proves inequality (2.29).

Now we assume p > 2. Using ϕ as test function in (2.28) we obtain∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ,∇(ηpεΨ(H))〉 =

∫
A

GηpεΨ(H).

(2.33)

We observe that

∇(ηpεΨ(H)) = pηp−1
ε ∇ηεΨ(H) + ηpεΨ

′(H)∇H.
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Similarly to the case p ≤ 2, we rewrite (2.33) as∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ, pηp−1
ε ∇ηεΨ(H)〉

+

∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ, ηpεΨ
′(H)∇H〉

=

∫
A

GηpεΨ(H). (2.34)

We study the �rst term in the left-hand side of (2.34). Application of (A.4)

in the Appendix A.1 with x = ∇Γ and y = ∇H yields∣∣∣∣∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ, pηp−1
ε ∇ηεΨ(H)〉

∣∣∣∣
≤ C

∫
A

ηp−1
ε |∇ηε|

[
|∇Γ|p−2 + |∇H|p−2

]
|∇H||Ψ(H)|.

For what concerns the second term in the left-hand side of (2.34), we have

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ,∇H〉 ≥ C ′(|∇H|p + |∇Γ|p−2|∇H|2),

in view of (A.3). Then one may write∫
A

〈|∇(Γ +H)|p−2∇(Γ +H)− |∇Γ|p−2∇Γ, ηpεΨ
′(H)∇H〉

≥ C̃

(∫
A

ηpεΨ
′(H)|∇H|p +

∫
A

ηpεΨ
′(H)|∇Γ|p−2|∇H|2

)
.

With the aid of (2.34) we get∫
A

ηpεΨ
′(H)|∇H|p +

∫
A

ηpεΨ
′(H)|∇Γ|p−2|∇H|2

≤ C

(∫
A

ηp−1
ε |∇ηε|

[
|∇Γ|p−2 + |∇H|p−2

]
|∇H||Ψ(H)|+

∫
A

|G|ηpε |Ψ(H)|
)
,

that is (2.30).

In addition to the above result, we shall prove that (2.29) and (2.30) hold

letting ε→ 0, provided ∇H ∈ Lq̄(A).

Corollary 2.2.4. Assume ∇H ∈ Lq̄(A). Under the hypothesis of Lemma

2.2.3, we have the following estimates.

37



- Case p ≤ 2:∫
A

η2
[
|∇Γ|+ |∇H|

]p−2
Ψ′(H)|∇H|2

≤ C

(∫
A

η|∇η||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H|+
∫
A

|G|η2|Ψ(H)|
)
,

(2.35)

- Case p > 2:∫
A

ηpΨ′(H)|∇H|p +

∫
A

ηpΨ′(H)|∇Γ|p−2|∇H|2

≤ C

(∫
A

ηp−1|∇η||Ψ(H)|
[
|∇Γ|p−2+|∇H|p−2

]
|∇H|+

∫
A

|G|ηp|Ψ(H)|
)
.

(2.36)

Proof. Assume p ≤ 2. Application of Fatou's lemma gives∫
A

η2
[
|∇Γ|+|∇H|

]p−2
Ψ′(H)|∇H|2 ≤ lim inf

ε→0

∫
A

η2
ε

[
|∇Γ|+|∇H|

]p−2
Ψ′(H)|∇H|2.

Since Ψ is bounded and |∇Γ| + |∇H| ≥ |∇H|, a simple use of Hölder in-

equality yields∫
Bε\B ε

2

ηε|∇ηε||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H| ≤ C

ε

∫
Bε\B ε

2

|∇H|p−1

≤ C

ε
|Bε \B ε

2
|

1
N

(∫
Bε\B ε

2

|∇H|q̄
)N−1

N

= C

(∫
Bε\B ε

2

|∇H|q̄
)N−1

N

,

in view of the properties of ηε. This implies that∫
Bε\B ε

2

ηε|∇ηε||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H| → 0 as ε→ 0,

in view of ∇H ∈ Lq̄(A). As a consequence∫
A

ηε|∇ηε||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H|

→
∫
A

η|∇η||Ψ(H)|
[
|∇Γ|+ |∇H|

]p−2|∇H| as ε→ 0.
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Moreover, Lebesgue's theorem yields∫
A

|G|η2
ε |Ψ(H)| →

∫
A

|G|η2|Ψ(H)| as ε→ 0.

Therefore, letting ε→ 0 in (2.29) we obtain (2.35).

Assume p > 2. With the aid of Fatou's lemma, we have that∫
A

ηpΨ′(H)|∇H|p ≤ lim inf
ε→0

∫
A

ηpεΨ
′(H)|∇H|p,∫

A

ηpΨ′(H)|∇Γ|p−2|∇H|2 ≤ lim inf
ε→0

∫
A

ηpεΨ
′(H)|∇Γ|p−2|∇H|2.

Similarly to the case p ≤ 2 we observe that∫
Bε\B ε

2

ηp−1
ε |∇ηε||Ψ(H)|

[
|∇Γ|p−2 + |∇H|p−2

]
|∇H|

≤ C

[
1

ε1+
(N−1)(p−2)

p−1

∫
Bε\B ε

2

|∇H|+ 1

ε

∫
Bε\B ε

2

|∇H|p−1

]

≤ C

[ |Bε \B ε
2
|1−

1
q̄

ε
Np−2N+1

p−1

(∫
Bε\B ε

2

|∇H|q̄
) 1

q̄

+
|Bε \B ε

2
| 1
N

ε

(∫
Bε\B ε

2

|∇H|q̄
)N−1

N
]

= C

[(∫
Bε\B ε

2

|∇H|q̄
) 1

q̄

+

(∫
Bε\B ε

2

|∇H|q̄
)N−1

N
]
,

since q̄ > p− 1 and p > 2. This leads to∫
Bε\B ε

2

ηp−1
ε |∇ηε||Ψ(H)|

[
|∇Γ|p−2 + |∇H|p−2

]
|∇H| → 0 as ε→ 0,

in view of ∇H ∈ Lq̄(A). As a consequence∫
A

ηp−1
ε |∇ηε||Ψ(H)|

[
|∇Γ|p−2 + |∇H|p−2

]
|∇H|

→
∫
A

ηp−1|∇η||Ψ(H)|
[
|∇Γ|p−2 + |∇H|p−2

]
|∇H| as ε→ 0.

Moreover, Lebesgue's theorem implies that∫
A

|G|ηpε |Ψ(H)| →
∫
A

|G|ηp|Ψ(H)| as ε→ 0.

Thus, letting ε→ 0 in (2.30), we obtain (2.36).
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2.2.2 Proof of the global boundedness

Our goal in this section is to prove the boundedness of Hλ in Ω.

We recall that Hλ = Gλ − Γ. Since both Gλ and Γ are bounded away from

0, then it will be enough to prove the L∞-regularity of Hλ near 0. We will

take di�erent approaches depending on whether λ = 0 or λ > 0.

Proposition 2.2.5. Let H be a solution of problem (1.6) with λ = 0. Assume

condition (1.9). Then there exists a constant c0 > 0 such that

− c0 ≤ H ≤ 0 in Ω. (2.37)

Proof. The right-hand side of (1.6) is equal to 0, being λ = 0. Then H solves−∆p(Γ +H) + ∆pΓ = 0 in Ω

H = −Γ on ∂Ω.
(2.38)

Recalling the de�nition of Γ, we have that Γ < c0 on ∂Ω for some c0 > 0.

For k, l ∈ R, k < l, consider the function Tk,l de�ned as follows

Tk,l[s] =


k if s < k

s if k ≤ s ≤ l

l if s > l.

(2.39)

For l > 0 we set Ψ(s) = T0,l(s). Then Ψ has the properties required in

Lemma 2.2.3. In particular, we have

Ψ(H) =


0 if H < 0

H if 0 ≤ H ≤ l

l if H > l.

Since H < 0 on ∂Ω guarantees that Ψ(H) = 0 on ∂Ω, we can apply Corollary

2.2.4 with A = Ω, H = H, G ≡ 0 and η ≡ 1. Observing that Ψ′(s) = 1 in

{0 ≤ s ≤ l} and Ψ′(s) = 0 outside this set, we get∫
{0≤H≤l}

[
|∇Γ|+ |∇H|

]p−2|∇H|2 ≤ 0 if p ≤ 2, (2.40)
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∫
{0≤H≤l}

|∇H|p ≤ 0 if p > 2. (2.41)

Letting l→ +∞ in (2.40) and (2.41), we obtain∫
{H≥0}

[
|∇Γ|+ |∇H|

]p−2|∇H|2 ≤ 0 if p ≤ 2, (2.42)

∫
{H≥0}

|∇H|p ≤ 0 if p > 2. (2.43)

We have H+ = H in {H ≥ 0}, being H+ = max{H, 0}. As a consequence

(2.42) and (2.43) imply that ∇H+ = 0 a.e. in {H ≥ 0}. Moreover since

∇H+ = 0 also in {H < 0}, we have that ∇H+ = 0 a.e. in Ω. Thus H+ = 0

a.e. in Ω. This implies that H ≤ 0 a.e. in Ω.

At this point we want to prove that H ≥ −c0. We set for l > 0

Ψ(s) = −T−l,0(s+ c0).

Then −Ψ has the properties required in Lemma 2.2.3. In particular, we have

Ψ(H) =


l if H + c0 < −l

−(H + c0) if − l ≤ H + c0 ≤ 0

0 if H + c0 > 0.

SinceH = −Γ > −c0 on ∂Ω, then Ψ(H) = 0 on ∂Ω. With the aid of the same

techniques as before, application of Corollary 2.2.4 yields∇(H+c0)− = 0 a.e.

in Ω, where (H + c0)− = max{−(H + c0), 0}. It follows that (H + c0)− = 0

a.e. in Ω. Thus H + c0 ≥ 0 a.e. in Ω, that is H ≥ −c0 a.e. in Ω.

We are going to prove the global boundedness of Hλ when λ > 0. It will be

useful the following result, known as the Ca�arelli-Kohn-Nirenberg inequality

(see [7]).

Theorem 2.2.6. Let N ≥ 1 and a, b and c be such that

(i) if N ≥ 3: −∞ < a < N−2
2
, a ≤ b ≤ a+ 1 and c = 2N

N−2+2(b−a)

(ii) if N = 2: −∞ < a < 0, a < b ≤ a+ 1 and c = 2
b−a

(iii) if N = 1: −∞ < a < −1
2
, a+ 1

2
< b ≤ a+ 1 and c = 2

−1+2(b−a)
.
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Then there exists a constant Ca,b = C(a, b) > 0 such that(∫
RN

|u|c

|x|bc
dx

) 1
c

≤ Ca,b

(∫
RN

|∇u|2

|x|2a
dx

) 1
2

,

for any u ∈ C∞0 (RN).

Proposition 2.2.7. Let Hλ be a solution of problem (1.6) with
√
N < p and

λ 6= 0. Assume condition (1.9). Moreover we require p ≥ 2N
N+1

if p ≤ 2 and

p > N
2
if p > 2. Then Hλ is bounded in Ω.

Proof. Since Hλ is bounded away from 0, it will be enough to study the

regularity in BR. We de�ne, for z ∈ B2,

Γ̃(z) = R
N−p
p−1 Γ(Rz) and H̃λ(z) = R

N−p
p−1 Hλ(Rz)

and we set G̃λ(z) = G(Rz). Thus H̃λ solves

−∆p(Γ̃ + H̃λ) + ∆pΓ̃ = λRNG̃p−1
λ in B2,

which can be rewritten in the form

−∆p(Γ + H̃λ) + ∆pΓ = λRNG̃p−1
λ in B2,

in view of

∇Γ̃(z) = R
N−p
p−1

+1∇Γ(Rz) = R
N−1
p−1

C0

|Rz|
N−1
p−1

=
C0

|z|
N−1
p−1

= ∇Γ(z).

Let h and h′ be real numbers such that 1 ≤ h′ < h ≤ 2. Let η be a

nonnegative smooth function such that

η = 1 in Bh′ , 0 ≤ η ≤ 1 in Bh, η = 0 outside Bh, (2.44)

max |∇η| ∼ (h− h′)−1, (2.45)

and let ηε be a sequence converging to η as ε → 0, satisfying properties

(2.27). We set G = λRNGp−1
λ and u = |H̃λ|+ k, where

k =

‖G‖ p
p−1

,2 if p ≤ 2

‖G‖
1
p−1
N

p−ε0
,2

if p > 2,
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for some ε0 > 0. We observe that k is well-de�ned in view of the assumptions

on p. Indeed, condition
√
N < p guarantees that G ∈ Lp(Ω). If p > 2,

the right-hand side of (1.6) belongs to L
N

p−ε0 (Ω) if N(p−1)
p−ε0 < N(p−1)

N−p , that is

p > N
2

+ ε0
2
.

For any β ≥ β0 > 0 and l > k the function

ϕ =

η2
εsgnH̃λ[(T−l,lu)β − kβ] if p ≤ 2

ηpεsgnH̃λ[(T−l,lu)β − kβ] if p > 2

is admissible in (2.26), the function T−l,l being de�ned as in (2.39). For

ease of notation, we will write Tlu instead of T−l,lu. We de�ne the following

functions

vl = (Tlu)
β+1

2 , v = u
β+1

2 , w = u
β−1+p
p . (2.46)

We would apply Lemma 2.2.3 or Corollary 2.2.4 with H = H̃λ and Ψ(s) =

sgns[(Tl(|s|+ k))β − kβ]. We observe that

Ψ′(s) = β(|s|+k)β−1 in [−(l−k), l−k], and Ψ′(s) = 0 outside this set.

Moreover |Ψ(s)| ≤ (Tl(|s| + k))β. We study the cases p ≤ 2 and p > 2

separately.

Case p ≤ 2. Thanks to (2.19), application of (2.29) gives

β

∫
{u≤l}

η2
ε |∇Γ|p−2|∇H̃λ|2uβ−1

≤ C

(∫
B2

ηε|∇ηε|(Tlu)β[|∇Γ|+ |∇H̃λ|]p−2|∇H̃λ|+
∫
B2

|G|η2
ε(Tlu)β

)
,

that is

β

(β + 1)2

∫
B2

η2
ε |∇Γ|p−2|∇vl|2

≤ C

(∫
B2

ηε(Tlu)β|∇ηε|[|∇Γ|+ |∇H̃λ|]p−2|∇u|+
∫
B2

|G|η2
ε(Tlu)β

)
, (2.47)
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being |∇H̃λ| = |∇u| and using the de�nition of vl. We observe that∫
B2

ηε(Tlu)β|∇ηε|[|∇Γ|+ |∇H̃λ|]p−2|∇u|

≤
∫
{u≤l}

ηε(Tlu)β|∇ηε|[|∇Γ|+ |∇H̃λ|]p−2|∇u|

+ lβ
∫
{u>l}

ηε|∇ηε|[|∇Γ|+ |∇H̃λ|]p−2|∇u|. (2.48)

Then, using that |∇Γ|+ |∇H̃λ| ≥ |∇Γ| and p ≤ 2, we can estimate the �rst

term of the right-hand side of (2.48) as follows:∫
{u≤l}

ηε(Tlu)β|∇ηε|[|∇Γ|+ |∇H̃λ|]p−2|∇u|

≤ C

∫
{u≤l}

ηε(Tlu)
β−1

2 |∇ηε|∇Γ|p−2|∇u|(Tlu)
β+1

2

=
2C

β + 1

∫
B2

ηεvl|∇ηε||∇Γ|
2(p−2)

2 |∇vl|

≤ β

2(β + 1)2

∫
B2

η2
ε |∇Γ|p−2|∇vl|2 +

C

β

∫
{u≤l}

|∇Γ|p−2|∇ηε|2v2
l ,

applying in the last passage the Young inequality. Thus (2.47) rewrites as

β

(β + 1)2

∫
B2

|∇Γ|p−2|∇(ηεvl)|2 ≤ C

[(
1

β
+

β

(β + 1)2

)∫
{u≤l}

|∇Γ|p−2|∇ηε|2v2
l

+ lβ
∫
{u>l}

ηε|∇ηε|[|∇Γ|+ |∇H̃λ|]p−2|∇u|

+
βlβ+1

(β + 1)2

∫
{u>l}

|∇Γ|p−2|∇ηε|2 +

∫
B2r

|G|η2
ε(Tlu)β

]
. (2.49)

At this point let a = − (N−1)(2−p)
2(p−1)

. Since p ≤ 2, then a ≤ 0. Moreover a ≥ −1

being p ≥ 2N
N+1

. We observe that |∇Γ|p−2 = C
|x|2a . Since ηεvl is supported

away from 0, notice that ηεvl ∈ H1
0 (B2). Thus we can consider vj ∈ C∞0 (B2)

converging to ηεvl in H1
0 (B2) as j → +∞. Application of Ca�arelli-Kohn-

Nirenberg inequality to vj gives(∫
B2

|vj|2
∗
a

) 2
2∗a
≤ C̃

∫
B2

|∇Γ|p−2|∇vj|2, (2.50)
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where 2∗a is de�ned by

2∗a =
2N(p− 1)

N − p
. (2.51)

Now we pass to the limit j → +∞ in (2.50). By Fatou's lemma we get(∫
B2

|ηεvl|2
∗
a

) 2
2∗a
≤ lim inf

j→+∞

(∫
B2

|vj|2
∗
a

) 2
2∗a
.

Being p ≤ 2, as j → +∞∫
B2

|∇Γ|p−2|∇vj|2 →
∫
B2

|∇Γ|p−2|∇(ηεvl)|2.

Thus (2.50) becomes(∫
B2

|ηεvl|2
∗
a

) 2
2∗a
≤ C̃

∫
B2

|∇Γ|p−2|∇(ηεvl)|2. (2.52)

With the aid of (2.52), inequality (2.49) becomes(∫
B2

|ηεvl|2
∗
a

) 2
2∗a
≤ C

(
1 +

(β + 1)2

β2

)∫
{u≤l}

|∇Γ|p−2|∇ηε|2v2
l

+
Clβ(β + 1)2

β

∫
{u>l}

ηε|∇ηε|(|∇Γ|+ |∇H̃|)p−2|∇u|

+ Clβ+1

∫
{u>l}

|∇Γ|p−2|∇ηε|2 +
C(β + 1)2

β

∫
B2

|G|η2
ε(Tlu)β. (2.53)

Now we let ε→ 0 at �xed l in (2.53). Application of Fatou's lemma gives∫
B2

|ηvl|2
∗
a ≤ lim inf

ε→0

∫
B2

|∇Γ|p−2|ηvl|2
∗
a .

Recalling the properties of ∇ηε and the de�nition of Γ, we get∫
{u≤l}
|∇Γ|p−2|∇ηε|2v2

l

=

∫
{u≤l}\Bε

|∇Γ|p−2|∇η|2v2
l +

∫
{u≤l}∩Bε

|∇Γ|p−2|∇ηε|2v2
l

=

∫
{u≤l}\Bε

|∇Γ|p−2|∇η|2v2
l +O

(
lβ+1 CεN

ε2+
(N−1)(p−2)

p−1

)
=

∫
{u≤l}\Bε

|∇Γ|p−2|∇η|2v2
l +O

(
lβ+1ε

N−p
p−1
)
,
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in view of v2
l ≤ lβ+1. As a consequence we obtain that∫

{u≤l}
|∇Γ|p−2|∇ηε|2v2

l →
∫
{u≤l}

|∇Γ|p−2|∇η|2v2
l as ε→ 0.

Similarly, we observe that∫
{u>l}

ηε|∇ηε|(|∇Γ|+ |∇H̃λ|)p−2|∇u|

=

∫
{u>l}\Bε

η|∇η|(|∇Γ|+ |∇H̃λ|)p−2|∇u|

+

∫
{u>l}∩Bε

ηε|∇ηε|(|∇Γ|+ |∇H̃λ|)p−2|∇u|,

and, since ∇ηε = 0 outside Bε \B ε
2
, we have that∫

{u>l}∩Bε
ηε|∇ηε|(|∇Γ|+ |∇H̃λ|)p−2|∇u| ≤

∫
{u>l}∩(Bε\B ε

2
)

ηε|∇ηε||∇H̃λ|p−1

≤ C

ε
|Bε \B ε

2
|

1
N

(∫
Bε\B ε

2

|∇H̃λ|q̄
)N−1

N

≤ C̃

(∫
Bε\B ε

2

|∇H̃λ|q̄
)N−1

N

,

in view of p ≤ 2 and |∇Γ|+ |∇H̃λ| ≥ |∇H̃λ|. Using condition (1.9) we obtain∫
{u>l}

ηε|∇ηε|(|∇Γ|+ |∇H̃λ|)p−2|∇u| →
∫
{u>l}

η|∇η|(|∇Γ|+ |∇H̃λ|)p−2|∇u|

as ε→ 0. Similarly∫
{u>l}

|∇Γ|p−2|∇ηε|2 →
∫
{u>l}

|∇Γ|2|∇η|2

as ε→ 0. Moreover, Lebesgue's theorem implies that∫
B2

|G|η2
ε(Tlu)β →

∫
B2

|G|η2(Tlu)β as ε→ 0.

We obtain the following estimate

‖ηvl‖2
2∗a
≤ C

(
1 +

(β + 1)2

β2

)∫
{u≤l}

|∇Γ|p−2|∇η|2v2
l

+
Clβ(β + 1)2

β

∫
{u>l}

η|∇η|(|∇Γ|+ |∇H̃λ|)p−2|∇u|

+ Clβ+1

∫
{u>l}

|∇Γ|p−2|∇η|2 +
C(β + 1)2

β

∫
B2

|G|η2(Tlu)β. (2.54)
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We study the second term and the third one in the right-hand side of (2.54).

Since ∇η = 0 in Bh′ and u = |H̃λ|+ k ≤ C + k ≤ C ′ away from 0, then∫
{u>l}

η|∇η|(|∇Γ|+ |∇H̃λ|)p−2|∇u| = 0 and

∫
{u>l}

|∇Γ|p−2|∇η|2 = 0

for l� 1. As for the last term in the right-hand side of (2.54), since k ≤ Tlu

and recalling the de�nition of k, we have that∫
B2

|G|η2(Tlu)β =

∫
B2

|G|η2(Tlu)β+1−1 ≤
∫
B2

|G|
k
η2v2

l ≤
1

k
‖G‖ p

p−1
‖ηvl‖2

2p = ‖ηvl‖2
2p.

Since Tlu↗ u as l→ +∞, by the monotone convergence theorem we get

‖ηv‖2
2∗a
≤ C

(
1 +

(β + 1)2

β2

)∫
B2

|∇Γ|p−2|∇η|2v2 +
C(β + 1)2

β
‖ηv‖2

2p,

where v is de�ned as in (2.46). Recalling the de�nition of Γ and using that

p ≤ 2, we obtain

‖ηv‖2
2∗a
≤ C

(
1 +

(β + 1)2

β2

)
‖∇ηv‖2

2 +
C(β + 1)2

β
‖ηv‖2

2p. (2.55)

that is(∫
Bh′

u
(β+1)2∗a

2

) 2
2∗a
≤ C

(
1 +

(β + 1)2

β2

)
(h− h′)−2

∫
Bh

uβ+1

+
C(β + 1)2

β

(∫
Bh

up(β+1)

) 1
p

, (2.56)

in view of the properties of η and the de�nition of v.

At this point we de�ne

κ̃ =
2∗a
2

=
N(p− 1)

N − p
. (2.57)

Since β ≥ β0 > 0, estimate (2.56) becomes

‖u‖β+1
κ̃(β+1),h′ ≤ C(β + 1)2[(h− h′)−2‖u‖β+1

β+1,h + ‖u‖β+1
p(β+1),h], (2.58)

from which follows

‖u‖β+1
κ̃(β+1),h′ ≤ C(β + 1)2(h− h′)−2‖u‖β+1

p(β+1),h, (2.59)
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being p > 1. We put µ = p(β+1) and κ = κ̃
p
in such a way that (β+1)κ̃ = κµ.

By de�nition (2.57), we have that κ > 1 when p >
√
N . Indeed κ > 1 is

equivalent to κ̃ > p, which gives p2 > N . Taking the (β + 1)-th roots in

(2.59) we have

‖u‖κµ,h′ ≤
[
C̃µ(h− h′)−1

] 2p
µ ‖u‖µ,h. (2.60)

The required conclusion follows by iteration of inequality (2.60). We set for

ν = 0, 1, 2, . . .

µν = κνp(1 + β0), hν = 1 + 2−ν , h′ν = hν+1.

Hence (2.60) becomes

‖u‖µν+1,hν+1 ≤ C
1
κν

1 C
ν
κν

2 C
ν+1
κν

3 ‖u‖µν ,hν ,

where

C1 =
(
C̃p(1 + β0)

) 2
1+β0 , C2 = κ

2
1+β0 , C3 = 4

1
1+β0 .

Iteration yields

‖u‖µν+1,hν+1 ≤ C
∑ν
i=0

1

κi

1 C
∑ν
i=0

i

κi

2 C
∑ν
i=0

i+1

κi

3 ‖u‖µ0,h0 ≤ C‖u‖p(1+β0),2,

because all series are convergent. Since

‖u‖∞,1 = lim
ν→+∞

‖u‖µν ,1 ≤ lim
ν→+∞

‖u‖µν ,hν ,

letting ν → +∞ there results

‖u‖∞,1 ≤ C‖u‖p(1+β0),2,

that is

‖H̃λ‖∞,1 ≤ C(‖H̃λ‖p(1+β0),2 + k), (2.61)

in view of u = |H̃λ|+ k. Recalling the de�nition of H̃λ, we have that

‖H̃λ‖∞,1 = R
N−p
p−1 ‖Hλ‖∞,R,

‖H̃λ‖p(1+β0),2 = R
N−p
p−1 R

− N
p(1+β0)‖Hλ‖p(1+β0),2R.

Moreover,

k = ‖G‖ p
p−1

,2 = λRN‖G̃λ‖p−1
p,2 = λRN

(∫
B2R

R−N |Gλ(y)|pdy
) p−1

p

= λR
N
p ‖Gλ‖p−1

p,2R,
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in view of the de�nition of G̃λ. Thus inequality (2.61) becomes

R
N−p
p−1 ‖Hλ‖∞,R ≤ C(R

N−p
p−1 R

− N
p(1+β0)‖Hλ‖p(1+β0),2R +R

N
p ‖Gλ‖p−1

p,2R). (2.62)

Dividing both members of (2.62) by R
N−p
p−1 we �nally obtain

‖Hλ‖∞,R ≤ C(R
− N
p(1+β0)‖Hλ‖p(1+β0),2R +R

p2−N
p(p−1)‖Gλ‖p−1

p,2R). (2.63)

Recalling that Hλ ∈ Ls(Ω) for all s < q̄∗ and since p < q̄∗ in view of N < p2,

then we are able to choose β0 small such that p(1 + β0) < q̄∗ and then (2.63)

gives a bound of Hλ in BR. This concludes the discussion of the case p ≤ 2.

Case p > 2. Application of (2.36) with Ψ(s) as before gives∫
{u≤l}

βηp(Tlu)β−1|∇u|p +

∫
{u≤l}

βηp|∇Γ|p−2|∇u|2(Tlu)β−1

≤ C

(∫
B2

ηp−1|∇η|[|∇Γ|p−2 + |∇H̃λ|p−2]|∇u|(Tlu)β +

∫
B2

|G|ηp(Tlu)β
)
.

(2.64)

We study the �rst term in the right-hand side of (2.64).

C

∫
B2

ηp−1|∇η||∇Γ|p−2|∇u|(Tlu)β

= C

∫
{u≤l}

ηp−1|∇η||∇Γ|p−2|∇u|(Tlu)β + Clβ
∫
{u>l}

ηp−1|∇η||∇Γ|p−2|∇u|

= C

∫
{u≤l}

η
p
2 η

p−2
2 |∇η||∇Γ|

2(p−2)
2 (Tlu)

β−1
2 (Tlu)

β+1
2 |∇u|

+ Clβ
∫
{u>l}

ηp−1|∇η||∇Γ|p−2|∇u|

≤ β

2

∫
{u≤l}

ηp|∇Γ|p−2(Tlu)β−1|∇u|2 +
C ′′

β

∫
{u≤l}

ηp−2|∇Γ|p−2|∇η|2(Tlu)β+1

+ Clβ
∫
{u>l}

ηp−1|∇η||∇Γ|p−2|∇u|,

by virtue of Young's inequality. Similarly

C

∫
B2

ηp−1|∇η||∇H̃λ|p−2|∇u|(Tlu)β

= C

∫
{u≤l}

ηp−1|∇η||∇u|p−1(Tlu)β + Clβ
∫
{u>l}

ηp−1|∇η||∇u|p−1

≤ β

2

∫
{u≤l}

ηp(Tlu)β−1|∇u|p +
C ′′

βp−1

∫
{u≤l}

|∇η|p(Tlu)β−1+p + Clβ
∫
{u>l}

ηp−1|∇η||∇u|p−1.

49



As in the case p ≤ 2, we observe that∫
{u>l}

ηp−1|∇η||∇Γ|p−2|∇u| = 0 for l� 1,

∫
{u>l}

ηp−1|∇η||∇u|p−1 = 0 for l� 1.

Then, letting l→ +∞ we get

β

∫
B2

ηpuβ−1|∇u|p + β

∫
B2

ηp|∇Γ|p−2uβ−1|∇u|2

≤ C

(
1

β

∫
B2

|∇Γ|2|∇η|2uβ+1 +
1

βp−1

∫
B2

|∇η|puβ−1+p +

∫
B2

|G|ηpuβ
)
.

(2.65)

Since k ≤ u, recalling the de�nition of k, we have that∫
B2

|G|ηpuβ =

∫
B2

|G|ηpuβ−1+pu1−p

≤ 1

kp−1

∫
B2

|G|ηpwp =
1

kp−1

∫
B2

|G|(ηw)ε0(ηw)p−ε0

≤ 1

kp−1
‖G‖ N

p−ε0
‖ηw‖ε0p ‖ηw‖

p−ε0
p∗ = ‖ηw‖ε0p ‖ηw‖

p−ε0
p∗ ,

where we have used the Hölder inequality with exponents N
p−ε0 ,

p
ε0
, p∗

p−ε0 , for

some ε0 > 0 small. The Sobolev embedding together with the Young in-

equality yield

C

∫
B2

|G|ηpuβ ≤ C̃‖ηw‖ε0p (‖w∇η‖p + ‖η∇w‖p)p−ε0

≤ βpp

2(β − 1 + p)p
‖η∇w‖pp + C ′

(
(β − 1 + p)p

β

) p−ε0
ε0

‖ηw‖pp

+
C ′β

(β − 1 + p)p
‖w∇η‖pp.

(2.66)

Recalling the de�nition of w, we get

β

∫
B2

ηpuβ−1|∇u|p =
βpp

(β − 1 + p)p

∫
B2

ηp|∇w|p.

50



Moreover, since

β

∫
B2

ηp|∇Γ|p−2uβ−1|∇u|2 =
4β

(β + 1)2

∫
B2

ηp|∇Γ|p−2|∇v|2 > 0,

then estimates (2.65) and (2.66) imply

β

(β − 1 + p)p

∫
B2

|∇(ηw)|p ≤ C

(
1

β

∫
B2

|∇Γ|p−2|∇η|2v2

+

(
β

(β − 1 + p)p
+

1

βp−1

)∫
B2

|∇η|pwp +

(
(β − 1 + p)p

β

) p−ε0
ε0
∫
B2

ηpwp
)
,

which can be rewritten as∫
B2

|∇(ηw)|p ≤ C(β−1+p)
p2

ε0

(∫
B2

|∇Γ|p−2|∇η|2v2+

∫
B2

|∇η|pwp+
∫
B2

ηpwp
)
,

(2.67)

being β ≥ β0 > 0 and p > 2. At this point we observe that a simple use of

the Hölder inequality gives∫
Bh

|∇Γ|p−2|∇η|2v2 ≤ C(h− h′)−2

∫
Bh

uβ+1 ≤ C(h− h′)−p
(∫

Bh

wp
) β+1

β−1+p

,

since Bh ⊂ B2 and C being a constant which does not depend on β. Then,

recalling the properties of η and being p > 2, (2.67) yields∫
B2

|∇(ηw)|p ≤ C(β − 1 + p)
p2

ε0 (h− h′)−p
(∫

Bh

wp
)ϑh

,

where ϑh ∈ (0, 1] is de�ned by

ϑh =

1 if
∫
Bh
wp ≥ 1

β+1
β−1+p

otherwise.

Application of Sobolev inequality to ηw yields

‖ηw‖pp∗ ≤ C(β − 1 + p)
p2

ε0 (h− h′)−p‖w‖pϑhp,h .

We set κ = N
N−p > 1. We �nally obtain

‖ηw‖ppκ ≤ C(β − 1 + p)
p2

ε0 (h− h′)−p‖w‖pϑhp,h . (2.68)
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Recalling the de�nition of w and the properties of η, (2.68) becomes(∫
Bh′

u(β−1+p)κ

) 1
κ

≤ C(β − 1 + p)
p2

ε0 (h− h′)−p
(∫

Bh

uβ−1+p

)ϑh
,

that is, de�ning µ = β − 1 + p,

‖u‖µµκ,h′ ≤ Cµ
p2

ε0 (h− h′)−p‖u‖ϑhµµ,h .

Taking the µ-th roots, we have

‖u‖µκ,h′ ≤ C
1
µµ

p2

ε0µ (h− h′)−
p
µ‖u‖ϑhµ,h. (2.69)

The required conclusion follows by iteration of inequality (2.69) for β ≥ 1 in

such a way that µ ≥ p. To this purpose, we set for ν = 0, 1, 2, . . .

µν = κνp, hν = 1 + 2−ν , h′ν = hν+1.

Hence (2.69) becomes

‖u‖µν+1,hν+1 ≤ C
1
κν

1 C
ν
κν

2 ‖u‖
ϑhν
µν ,hν

,

where C1 = 2(Cp
p2

ε0 )
1
p and C2 = 2κ

p
ε0 . Since ϑh ≤ 1 and C1, C2 > 0, iteration

yields

‖u‖µν+1,hν+1 ≤ C
∑ν
i=0

1

κi

1 C
∑ν
i=0

i

κi

2 ‖u‖
∏ν
j=0 ϑhj

µ0,h0
≤ C‖u‖ϑ̄p,2,

because both series are convergent, where ϑ̄ = limν→+∞
∏ν

j=0 ϑhj ∈ [0, 1].

Similarly to the case p ≤ 2, this leads to

‖H̃λ‖∞,1 ≤ C(‖H̃λ‖ϑ̄p,2 + kϑ̄ + k), (2.70)

where

‖H̃λ‖∞,1 = R
N−p
p−1 ‖Hλ‖∞,R,

‖H̃λ‖p,2 = R
N−p
p−1 R−

N
p ‖Hλ‖p,2R.

Moreover,

k = ‖G‖
1
p−1
N

p−ε0
,2

= (λRN)
1
p−1‖G̃λ‖N(p−1)

p−ε0
,2

= λ
1
p−1R

N−p+ε0
p−1 ‖Gλ‖N(p−1)

p−ε0
,2R
.
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Thus inequality (2.70) becomes

R
N−p
p−1 ‖Hλ‖∞,R ≤ C

[
R

N−p
p−1 R−

N
p ‖Hλ‖p,2R

+

(
λ

1
p−1R

N−p+ε0
p−1 ‖Gλ‖N(p−1)

p−ε0
,2R

)ϑ̄
+ λ

1
p−1R

N−p+ε0
p−1 ‖Gλ‖N(p−1)

p−ε0
,2R

]
. (2.71)

Dividing both members of (2.71) by R
N−p
p−1 , we �nally obtain

‖Hλ‖∞,R ≤ C

[
R−

N
p ‖Hλ‖ϑ̄p,2R

+ λ
1
p−1R

ε0
p−1‖Gλ‖N(p−1)

p−ε0
,2R

(
(λ

1
p−1R

ε0
p−1‖Gλ‖N(p−1)

p−ε0
,2R

)ϑ̄−1 + 1

)]
, (2.72)

which gives the bound of Hλ in BR. It is worth noting that ϑ̄ depends in

general on u through the position of
∫
Bhj

wp =
∫
B
r(1+2−j)

uκ
jp with respect to

1. This means that estimate (2.72) is not universal, but it depends on the

solution Hλ.

Remark 2.2.8. In the proof of Proposition 2.2.7 we use di�erent approaches

depending on whether p ≤ 2 or p > 2. In the case p ≤ 2 we apply Lemma

2.2.3 and we obtain an estimate of ηεvl in a weighted H1
0 space. Thus, we are

able to apply Theorem 2.2.6 which yields (2.54). Letting l→ +∞, we arrive

at the iteration process. In the case p > 2, we apply Corollary 2.2.4 that

gives an estimate not depending on ε, from which we deduce the iterative

scheme.

Remark 2.2.9. We brie�y discuss the continuity of k de�ned by (3.5). When

N = 2, 3 the hypothesis G ∈ L
p
p−1 is stronger than G ∈ L

N
p−ε0 . If N = 4,

there is no discontinuity in p = 2. When N ≥ 5, since we require p >
√
N ,

then we have to consider G ∈ L
N

p−ε0 .

2.3 A uniqueness result when p ≥ 2

This section is devoted to discuss the uniqueness part in Theorem 1.0.1 when

p ≥ 2, among solutions satisfying the natural condition (1.9). When λ = 0

maximum and comparison principle in weak or strong form are well known,
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see for example [36], and have been extended in various forms to the case

λ < λ1 in connection with existence and uniqueness results, see [8, 10, 16, 17]

just to quote a few.

To extend the previous uniqueness results to the singular situation, the cru-

cial property is the convexity of the functional

I(w) =

1
p

∫
Ω
|∇w

1
p |p if w ≥ 0 and ∇(w

1
p ) ∈ Lp(Ω)

+∞ otherwise,
(2.73)

proved in [10] for all p > 1. A quantitative form is established here giving

a positive lower bound for I ′′ when p ≥ 2, crucial to be applied on Ωε =

Ω \Bε(0) as ε→ 0.

Lemma 2.3.1. Let I : L1(Ω)→ (−∞,+∞] be de�ned by (2.73), with p ≥ 2.

Then we may write

I ′′(w)[ϕ, ϕ] =
d

dt
I ′(wt)[ϕ]

∣∣∣
t=0+

=

∫
Ω

%(w,ϕ)dx (2.74)

where

%(w,ϕ) = |∇w
1
p |p−2w

2(1−p)
p
[
C1(p)

ϕ

w
〈∇w,∇ϕ〉

+ C2(p)
ϕ2

w2
|∇w|2 + C3(p, α)|∇ϕ|2

]
. (2.75)

Moreover, %(ω, ϕ) ≥ 0.

Proof. Given w and ϕ, we let wt = w + tϕ, t ∈ R, and we assume wt ≥ 0

and ∇(w
1
p

t ) ∈ Lp(Ω) for t ≥ 0 small. Since

|∇w
1
p |p = [|∇w

1
p |2]

p
2 ,

then we can compute

I ′(w)[ϕ] =
d

dt
I(wt)

∣∣∣∣
t=0+

=
1

2

∫
Ω

|∇w
1
p |p−2 d

dt
[|∇w

1
p

t |2]

∣∣∣∣
t=0+

dx

=

∫
Ω

|∇w
1
p |p−2〈∇w

1
p ,∇

(
d

dt
w

1
p

t

)
〉
∣∣∣∣
t=0+

dx

=
1

p

∫
Ω

|∇w
1
p |p−2〈∇w

1
p ,∇(w

1−p
p ϕ)〉dx.
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Similarly, we can compute

I ′′(w)[ϕ, ϕ] =
p− 2

p

∫
Ω

|∇w
1
p |p−4[〈∇w

1
p ,∇(w

1−p
p ϕ)〉]2dx

+
1

p2

∫
Ω

|∇w
1
p |p−2|∇(w

1−p
p ϕ)|2dx

+
1− p
p2

∫
Ω

|∇w
1
p |p−2〈∇w

1
p ,∇(w

1−2p
p ϕ2)〉dx. (2.76)

We expand the expressions∇(w
1
p ), ∇(w

1−p
p ϕ) and∇(w

1−2p
p ϕ2) in (2.76). The

�rst term in (2.76) becomes

p− 2

p

∫
Ω

|∇w
1
p |p−4[〈∇w

1
p ,∇(w

1−p
p ϕ)〉]2dx

=
(p− 2)(1− p)2

p5

∫
Ω

|∇w
1
p |p−4ϕ2w

2(2−3p)
p |∇w|4dx

+
p− 2

p3

∫
Ω

|∇w
1
p |p−4w

4(1−p)
p [〈∇w,∇ϕ〉]2dx

+
2(p− 2)(1− p)

p2

∫
Ω

|∇w
1
p |p−2ϕw

2−3p
p 〈∇w,∇ϕ〉dx. (2.77)

The second term in (2.76) becomes

1

p2

∫
Ω

|∇w
1
p |p−2|∇(w

1−p
p ϕ)|2dx

=
(1− p)2

p4

∫
Ω

|∇w
1
p |p−2ϕ2w

2(1−2p)
p |∇w|2 +

1

p2

∫
Ω

|∇w
1
p |p−2w

2(1−p)
p |∇ϕ|2dx

+
2(1− p)

p3

∫
Ω

|∇w
1
p |p−2ϕw

2−3p
p 〈∇w,∇ϕ〉dx.

(2.78)

The third term in (2.76) becomes

1− p
p2

∫
Ω

|∇w
1
p |p−2〈∇w

1
p ,∇(w

1−2p
p ϕ2)〉dx

=
(1− p)(1− 2p)

p4

∫
Ω

|∇w
1
p |p−2ϕ2w

2(1−2p)
p |∇w|2dx

+
2(1− p)

p3

∫
Ω

|∇w
1
p |p−2ϕw

2−3p
p 〈∇w,∇ϕ〉dx. (2.79)
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We may write the full expression of I ′′(w)[ϕ, ϕ], using that 〈∇w,∇ϕ〉 =

cosα|∇w||∇ϕ|, as follows

I ′′(w)[ϕ, ϕ] = C1(p)

∫
Ω

|∇w
1
p |p−2ϕw

2−3p
p 〈∇w,∇ϕ〉dx

+ C2(p)

∫
Ω

|∇w
1
p |p−2ϕ2w

2(1−2p)
p |∇w|2

+ C3(p, α)

∫
Ω

|∇w
1
p |p−2w

2(1−p)
p |∇ϕ|2, (2.80)

where

C1(p) =
2(1− p)

p3
(p2 − 2p+ 2) < 0,

C2(p) =
p− 1

p4
(p3 − 3p2 + 5p− 2) > 0,

C3(p, α) =
1

p2
+
p− 2

p
| cosα|2 > 0.

We observe that (2.80) can be written in the following form

I ′′(w)[ϕ, ϕ] =

∫
Ω

|∇w
1
p |p−2w

2(1−p)
p
[
C1(p)

ϕ

w
〈∇w,∇ϕ〉

+ C2(p)
ϕ2

w2
|∇w|2 + C3(p, α)|∇ϕ|2

]
. (2.81)

Completing the square, we have that

C1(p)
ϕ

w
〈∇w,∇ϕ〉+ C2(p)

ϕ2

w2
|∇w|2 + C3(p, α)|∇ϕ|2

=

(√
C2(p)

ϕ

w
|∇w|+ C1(p)

2
√
C2(p)

cosα|∇ϕ|
)2

+

(
C3(p, α)− (C1(p))2

4C2(p)
cos2 α

)
|∇ϕ|2. (2.82)

At this point we study the inequality

C3(p, α)− (C1(p))2

4C2(p)
cos2 α ≥ 0, (2.83)

that is, recalling the de�nition of C3(p, α),

4C2(p)

(
1

p2
+
p− 2

p
cos2 α

)
− (C1(p))2 cos2 α ≥ 0. (2.84)
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Thus we have

4C2(p)

p
≥ [(C1(p))2p− 4C2(p)(p− 2)] cos2 α. (2.85)

The left-hand side of (2.85) is

4C2(p)

p
=

4(p− 1)

p5
(p3 − 3p2 + 5p− 2). (2.86)

The right-hand side of (2.85) is

[(C1(p))2p− 4C2(p)(p− 2)] cos2 α

=

[
4(1− p)2(p2 − 2p+ 2)2

p5
− 4(p− 1)(p− 2)(p3 − 3p2 + 5p− 2)

p4

]
cos2 α.

(2.87)

We multiply both members of (2.85) for p5

4(p−1)
: the left-hand side (2.86)

becomes

p3 − 3p2 + 5p− 2, (2.88)

while the right-hand side (2.87) becomes

[(p− 1)(p4 − 4p3 + 8p2 − 8p+ 4)− (p2 − 2p)(p3 − 3p2 + 5p− 2)] cos2 α

= (p3 − 4p2 + 8p− 4) cos2 α. (2.89)

Therefore, inequality (2.83) can be rewritten as

p3 − 3p2 + 5p− 2 ≥ (p3 − 4p2 + 8p− 4) cos2 α. (2.90)

Since p > 1 then p3 − 4p2 + 8p− 4 > 0. Thus we may assume cos2 α = 1 in

(2.90) and we need

p3 − 3p2 + 5p− 2 ≥ p3 − 4p2 + 8p− 4, (2.91)

that is

p2 − 3p+ 2 ≥ 0, (2.92)

which holds for all p ≥ 2. All these facts imply that

I ′′(w)[ϕ, ϕ] =

∫
Ω

%(w,ϕ)dx

with %(w,ϕ) ≥ 0 being de�ned as in (2.75).
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An application of Lemma 2.3.1 yields the validity of a weak comparison

principle, which can be found in Appendix (see Proposition A.3.1).

Before turning to the main result of this section, we show that every solution

Gλ of problem (1.5) is strictly positive.

Proposition 2.3.2. Let Gλ be a solution of (1.5). Then Gλ > 0 in Ω.

Proof. We observe that there exists ε > 0 such that Gλ = Γ +Hλ > 0 in Bε,

in view of Γ→ +∞ as |y| → 0. Moreover, Gλ solves
−∆pGλ − λGp−1

λ = 0 in Ωε

Gλ ≥ 0 in Ωε

Gλ = 0 on ∂Ω,

with Ωε = Ω \ Bε. If λ ≥ 0 then λGp−1
λ ≥ 0. Application of the strong

maximum principle for the p-laplacian yields Gλ > 0 in Ωε. Thus Gλ > 0

in Ω. If λ < 0, application of the strong maximum principle for quasilinear

elliptic equation in [36] leads to the desired conclusion.

Theorem 2.3.3. Assume p ≥ 2 and p > max{
√
N, N

2
} if λ 6= 0. Then the

solution of problem (1.5) is unique among those satisfying condition (1.9).

Proof. Letting G1 and G2 be two solutions of (1.5) satisfying (1.9), by elliptic

regularity theory [11, 27, 30, 33] we know that Gi ∈ C1,α(Ω̄ \ {0}), i = 1, 2,

for some α > 0. By [31] we know that Gi, i = 1, 2, satis�es (1.3) and by the

strong maximum principle [36] ∂nGi < 0, i = 1, 2, on ∂Ω, where n denotes

the outward unit normal vector. Set w1 = Gp
1, w2 = Gp

2, ϕ = w1 − w2 and

ws = sw1 + (1 − s)w2 for s ∈ [0, 1]. We have that for each s ∈ [0, 1] there

hold ws + tϕ ≥ 0 in Ω and ∇(ws + tϕ)
1
p ∈ Lp(Ω) for t small, in view of the

properties of G1 and G2.

Letting Iε be the functional I de�ned on Ωε = Ω \Bε, we have that

I ′ε(w1)[ϕ]− I ′ε(w2)[ϕ] =
1

p

[∫
Ωε

|∇w
1
p

1 |p−2〈∇w
1
p

1 ,∇(w
1−p
p

1 (w1 − w2))〉

−
∫

Ωε

|∇w
1
p

2 |p−2〈∇w
1
p

2 ,∇(w
1−p
p

2 (w1 − w2))〉
]
,
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that is

I ′ε(w1)[ϕ]− I ′ε(w2)[ϕ] =
1

p

∫
Ωε

(
−∆pw

1
p

1

w
p−1
p

1

− −∆pw
1
p

2

w
p−1
p

2

)
(w1 − w2)

− 1

p

∫
∂Bε(0)

[|∇w
1
p

1 |p−2〈∇w
1
p

1 , n〉w
1−p
p

1 − |∇w
1
p

2 |p−2〈∇w
1
p

2 , n〉w
1−p
p

2 ](w1 − w2)

(2.93)

in view of ϕ = 0 on ∂Ω. Since w
1
p

1 = G1 and w
1
p

2 = G2, using the equation

(1.5) satis�ed by G1 and G2, we obtain that

∫
Ωε

(
−∆pw

1
p

1

w
p−1
p

1

− −∆pw
1
p

2

w
p−1
p

2

)
(w1 − w2) =

∫
Ωε

(λ− λ)(w1 − w2) = 0

and the second term on the right-hand side of (2.93) can be written as

−1

p

∫
∂Bε(0)

[
|∇G1|p−2∂nG1

Gp−1
1

− |∇G2|p−2∂nG2

Gp−1
2

]
(Gp

1 −G
p
2).

Therefore, (2.93) rewrites as

I ′ε(w1)[ϕ]−I ′ε(w2)[ϕ] = −1

p

∫
∂Bε(0)

[
|∇G1|p−2∂nG1

Gp−1
1

−|∇G2|p−2∂nG2

Gp−1
2

]
(Gp

1−G
p
2).

(2.94)

Notice that

I ′ε(w1)[ϕ]− I ′ε(w2)[ϕ] =

∫ 1

0

I ′′ε (ws)[ϕ, ϕ]ds

with I ′′ε (ws)[ϕ, ϕ] =
∫

Ωε
%(ws, ϕ) in view of Lemma 2.3.1. Since %(ws, ϕ) ≥ 0

when p ≥ 2 in view of Lemma 2.3.1, by the Fatou's convergence theorem we

deduce that∫ 1

0

ds

∫
Ω

%(ws, ϕ) ≤ lim
ε→0+

∫
∂Bε(0)

(
|∇G2|p−2∂nG2

Gp−1
2

−|∇G1|p−2∂nG1

Gp−1
1

)
(Gp

1−G
p
2).

(2.95)

Now we are going to prove that the right-hand side in (2.95) vanishes. For

i = 1, 2 notice that Hi = Gi − Γ ∈ L∞(Ω) follows by Proposition 2.2.7 in
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view of the assumption (1.9) for Gi. Once Hi ∈ L∞(Ω), we have that Hi

satis�es |∇Hi| = o(|∇Γ|) near 0 and then

Gq
i = Γq +O(Γq−1), |∇Gi|p−2∂nGi = |∇Γ|p−2∂nΓ + o(|∇Γ|p−1) (2.96)

as x→ 0 with q ∈ {p− 1, p}. By (2.96) we deduce that Gp
1 −G

p
2 = O(Γp−1)

and
|∇Gi|p−2∂nGi

Gp−1
i

=
|∇Γ|p−2∂nΓ

Γp−1
+ o

(
|∇Γ|p−1

Γp−1

)
,

which imply∣∣∣ ∫
∂Bε(0)

(
|∇G2|p−2∂nG2

Gp−1
2

−|∇G1|p−2∂nG1

Gp−1
1

)
(Gp

1−G
p
2)
∣∣∣ = o

(∫
∂Bε(0)

|∇Γ|p−1

)
= o(1)

as ε→ 0+, as claimed. As a consequence, %(ws, ϕ) = 0 for s ∈ [0, 1].

If p > 2 then

C3(p, α)− (C1(p))2

4C2(p)
cos2 α > 0

and so ∇w1 = ∇w2 a.e. in view of the de�nition of %. If p = 2 we have

%(ws, ϕ) = w−1
s

(√
C2(2)

ϕ

ws
|∇ws|+

C1(2)

2
√
C2(2)

cosα|∇ϕ|
)2

=
1

2
w−1
s ϕ

(
|∇ws|
ws

− cosα
|∇ϕ|
ϕ

)2

=
1

2
w−1
s ϕ(|∇ logws| − cosα|∇ logϕ|)2.

If ϕ = w1 − w2 = 0, we end the proof. Otherwise we need

|∇ logws| = cosα|∇ logϕ|,

which implies ∇w1 = c∇w2 a.e. in Ω, being c a constant. Recalling the

de�nition of w1 and w2, we obtain c = 1. Thus ∇(w1 − w2) = 0 a.e., using

that w1 = w2 = 0 on ∂Ω, we �nally arrive at w1 = w2 a.e., that is G1 = G2

a.e. in Ω.

The uniqueness result is so proved.
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Chapter 3

The regularity result

In this chapter we prove the main regularity result of this thesis, that is the

Hölder continuity of Hλ at the pole. We will continue to assume λ < λ1,

1 < p < N and the pole being at 0. All that we are going to prove hold even

if the pole is at x ∈ Ω with x 6= 0.

In Section 3.1 we will use the Moser iterative scheme in [30] to establish local

estimates for the solution Hλ of (1.6) at 0.

Section 3.2 is devoted to the proof of an inequality of Harnack type, which

is the crucial tool to show Hölder estimates at 0.

In Section 3.3 we will show that when 1 < p ≤ 2 we are able to extend the

regularity result to the whole domain Ω.

3.1 Local bound of Hλ

This section is devoted to the proof of local a priori estimates on Hλ. Such

bounds are a consequence of the following rather general proposition.

Proposition 3.1.1. Let H ∈ L∞(B2), with ∇H ∈ Lq̄(B2), be a solution of

−∆p(Γ +H) + ∆pΓ = G in B2, (3.1)

such that |∇H| = O(|∇Γ|) if p ≤ 2 and ‖H‖∞,2 < 1−‖G‖
1
p−1
N

p−ε0
,2
when p > 2.

Assume G ∈ L
p
p−1 (B2) when p ≤ 2 and G ∈ L

N
p−ε0 (B2) for some ε0 > 0 when

p > 2. When G 6= 0 we require p ≥ 2N
N+1

.
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Then we have a universal bound for H in B1.

- Case p ≤ 2:

‖H‖∞,1 ≤ C‖H‖1+β0,2 if G ≡ 0, (3.2)

‖H‖∞,1 ≤ C(‖H‖p(1+β0),2 + ‖G‖ p
p−1

,2) if G 6= 0. (3.3)

- Case p > 2:

‖H‖∞,1 ≤ C(‖H‖1+β0,2 + ‖G‖
1
p−1
N

p−ε0
,2

), (3.4)

for some β0 > 0.

In the proof of Proposition 3.1.1 we will use two lemmas which will be crucial

tools to show the Harnack inequality. The �rst one will apply to problem

(1.6) in the case λ = 0 with p > 2 and in the case λ 6= 0. The second one

will apply to problem (1.6) when λ = 0 and p ≤ 2.

Given a weight function %, for real numbers h > 0, s 6= 0 and for x ∈ Ω we

de�ne

Φ%(s, h) =

(∫
Bh(x)

%|u|sdx
) 1

s

.

Notice that for s ≥ 1 we have Φ%(s, h) = ‖u‖%,s,h, that is the norm of u in

the weighted space Ls(%,Bh(x)). In particular, Φ1(s, h) represents the norm

of u in Ls(Bh(x)).

Lemma 3.1.2. Let H and G be as in Proposition 3.1.1. We set u = |H| +
k + ε′, with ε′ > 0 and k being de�ned as

k =

‖G‖ p
p−1

,2 if p ≤ 2

‖G‖
1
p−1
N

p−ε0
,2

if p > 2,
(3.5)

for some ε0 > 0. Let h and h′ be real numbers such that 1 ≤ h′ < h ≤ 2.

We de�ne

κ =

 κ̃
p

if p ≤ 2

N
N−2

if p > 2,
(3.6)

κ̃ being as in (2.57). Then the following estimates hold.
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- Case p ≤ 2:

Φ1(κµ, h′) ≤ [Cµ(h− h′)−1]
2p
µ Φ1(µ, h) if µ ∈ (0, p) ∪ (p,+∞), (3.7)

Φ1(κµ, h′) ≥ [Cµ(h− h′)−1]
2p
µ Φ1(µ, h) if µ ∈ (−∞, 0), (3.8)

uniformly for µ away from 0 and p.

- Case p > 2:

Φ1(κµ, h′) ≤ [C|µ+p−2|α(h−h′)−p]
1
µΦ1(µ, h) if µ ∈ (0, 1)∪(1,+∞),

(3.9)

Φ1(κµ, h′) ≥ [C|µ+p−2|α(h−h′)−p]
1
µΦ1(µ, h) if µ ∈ (−∞, 2−p)∪(2−p, 0),

(3.10)

uniformly for µ away from 2− p, 0 and 1, where α = 2 + p(p−ε0)
ε0

.

Proof. Let η and ηε be nonnegative smooth functions satisfying properties

(2.44), (2.45) and (2.27) with r = 1. Since H ∈ L∞(B2) and ∇H ∈ Lq̄(B2),

then for any β ∈ R the function

ϕ =

η2
εsgnH(uβ − (k + ε′)β) if p ≤ 2

ηpεsgnH(uβ − (k + ε′)β) if p > 2

is admissible in (3.1). Notice that if β < 0 then u ≥ ε′ > 0 and the problem

is well-posed. We are going to prove universal estimates for u provided that

β is uniformly away from 1− p if p > 2, 0 and −1.

We de�ne v = u
β+1

2 and w = u
β−1+p
p . We will apply Lemma 2.2.3 or Corollary

2.2.4 with Ψ(s) = sgn(s)sgn(β)[(|s| + k + ε′)β − (k + ε′)β]. We observe that

Ψ′(s) = |β|(|s|+ k + ε′)β−1 and |Ψ(s)| ≤ (|s|+ k + ε′)β.

Assume p ≤ 2. Application of (2.29) gives

|β|
(β + 1)2

∫
B2

η2
ε |∇Γ|p−2|∇v|2

≤ C

(∫
B2

ηεu
β|∇ηε|[|∇Γ|+ |∇H|]p−2|∇u|+

∫
B2

|G|η2
εu

β

)
. (3.11)
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Then, using that |∇Γ| + |∇H| ≥ |∇Γ| and p ≤ 2, we can estimate the �rst

term of the right-hand side of (3.11) as follows:

C

∫
B2

ηεu
β|∇ηε|[|∇Γ|+ |∇H|]p−2|∇u|

≤ C

∫
B2

ηεu
β−1

2 |∇ηε|∇Γ|p−2|∇u|u
β+1

2

=
2C

|β + 1|

∫
B2

ηεv|∇ηε||∇Γ|
2(p−2)

2 |∇v|

≤ |β|
2(β + 1)2

∫
B2

η2
ε |∇Γ|p−2|∇v|2 +

C ′

|β|

∫
B2

|∇Γ|p−2|∇ηε|2v2,

applying in the last passage the Young inequality. Thus (3.11) rewrites as

|β|
(β + 1)2

∫
B2

|∇Γ|p−2|∇(ηεv)|2

≤ C

[(
1

|β|
+

|β|
(β + 1)2

)∫
B2

|∇Γ|p−2|∇ηε|2v2 +

∫
B2

|G|η2
εu

β

]
. (3.12)

At this point let a = − (N−1)(2−p)
2(p−1)

. Since p ≤ 2, then a ≤ 0. Moreover

we observe that |∇Γ|p−2 = C
|x|2a . Since H ∈ L∞(B2) and ηεv is supported

away from 0, notice that ηεv ∈ H1
0 (B2). Thus we can consider vj ∈ C∞0 (B2)

converging to ηεv in H1
0 (B2) as j → +∞. Application of Ca�arelli-Kohn-

Nirenberg inequality to vj with b = 0 (see Theorem 2.2.6) gives(∫
B2

|vj|2
∗
a

) 2
2∗a
≤ C

∫
B2

|∇Γ|p−2|∇vj|2,

where 2∗a is de�ned as in (2.51). Using the same calculations as in the proof

of Proposition 2.2.7 when p ≤ 2, we arrive at(∫
Bh′

uκµ
) 1

κµ

≤ [Cµ(h− h′)−1]
2p
µ

(∫
Bh

uµ
) 1

µ

,

in terms of µ = p(β + 1). In order to apply estimates (2.58), (2.59) and

(2.60), we require that β ∈ (−1, 0)∪ (0,+∞), i.e. µ ∈ (0, p)∪ (p,+∞). Then

(3.7) is proved. As for (3.8), we observe that taking the (β+1)-th roots with

β ∈ (−∞,−1) in (2.59) implies that the sign in (2.60) is reversed. This gives(∫
Bh′

uκµ
) 1

κµ

≥ [Cµ(h− h′)−1]
2p
µ

(∫
Bh

uµ
) 1

µ
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for µ ∈ (−∞, 0), that is (3.8).

Now we assume p > 2. We assume in addition that β 6= 1 − p. Application
of (2.36) gives∫

B2

|β|ηpuβ−1|∇u|p +

∫
B2

|β|ηp|∇Γ|p−2uβ−1|∇u|2

≤ C

(∫
B2

ηp−1|∇η|[|∇Γ|p−2 + |∇H|p−2]|∇u|uβ +

∫
B2

|G|ηpuβ
)
. (3.13)

Moreover, since supB2\B1
|∇Γ|p−2 < +∞,

C

∫
B2

ηp−1|∇η||∇Γ|p−2uβ|∇u| = C

∫
B2

η
p
2 η

p−2
2 |∇η||∇Γ|

2(p−2)
2 u

β−1
2 u

β+1
2 |∇u|

≤ |β|
2

∫
B2

ηp|∇Γ|p−2uβ−1|∇u|2 +
C ′

|β|

∫
B2

ηp−2|∇η|2uβ+1

≤ |β|
2

∫
B2

ηp|∇Γ|p−2uβ−1|∇u|2 +
C ′

|β|

∫
B2

|∇η|2uβ+1,

by virtue of Young's inequality. Similarly

C

∫
B2

ηp−1|∇η||∇H|p−2uβ|∇u| = C

∫
B2

ηp−1|∇u|p−1u
(β−1)(p−1)

p u
β−1+p
p |∇η|

≤ |β|
2

∫
B2

ηp|∇u|puβ−1 +
C ′′

|β|

∫
B2

uβ−1+p|∇η|p.

As a consequence, (3.13) can be written as

|β|
∫
B2

ηpuβ−1|∇u|p + |β|
∫
B2

ηp|∇Γ|p−2uβ−1|∇u|2

≤ C

(
1

|β|p−1

∫
B2

uβ−1+p|∇η|p +
1

|β|

∫
B2

|∇η|2uβ+1 +

∫
B2

|G|ηpuβ
)
. (3.14)

Since k ≤ u, recalling the de�nition of k, we have that∫
B2

|G|ηpuβ =

∫
B2

|G|ηpuβ−1+pu1−p

≤ 1

kp−1

∫
B2

|G|ηpwp =
1

kp−1

∫
B2

|G|(ηw)ε0(ηw)p−ε0

≤ 1

kp−1
‖G‖ N

p−ε0
‖ηw‖ε0p ‖ηw‖

p−ε0
p∗ = ‖ηw‖ε0p ‖ηw‖

p−ε0
p∗ ,

(3.15)
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where we have used the Hölder inequality with exponents N
p−ε0 ,

p
ε0
, p∗

p−ε0 , for

some ε0 > 0. The Sobolev embedding together with the Young inequality

yield

C

∫
B2

|G|ηpuβ ≤ C̃‖ηw‖ε0p (‖w∇η‖p + ‖η∇w‖p)p−ε0

≤ |β|pp

2|β − 1 + p|p
‖η∇w‖pp + C ′

(
|β − 1 + p|p

|β|

) p−ε0
ε0

‖ηw‖pp

+
C ′|β|

|β − 1 + p|p
‖w∇η‖pp.

(3.16)

Recalling the de�nition of w, we get

|β|
∫
B2

ηpuβ−1|∇u|p =
|β|pp

|β − 1 + p|p

∫
B2

ηp|∇w|p.

Thus, estimates (3.14) and (3.16) imply

|β|
∫
B2

ηp|∇Γ|p−2uβ−1|∇u|2 ≤ C

(
1

|β|

∫
B2

|∇η|2uβ+1

+
|β − 1 + p|p + |β|p

|β|p−1|β − 1 + p|p

∫
B2

|∇η|pwp +

(
|β − 1 + p|p

|β|

) p−ε0
ε0
∫
B2

ηpwp
)
, (3.17)

which can be rewritten, recalling the de�nition of v, as

|β|
(β + 1)2

∫
B2

ηp|∇v|2 ≤ C

(
1

|β|

∫
B2

|∇η|2v2+
|β − 1 + p|p + |β|p

|β|p−1|β − 1 + p|p

∫
B2

|∇η|pwp

+

(
|β − 1 + p|p

|β|

) p−ε0
ε0
∫
B2

ηpwp
)
, (3.18)

in view of |∇Γ|p−2 ≥ δ > 0. Since ‖u‖∞ ≤ 1 and p > 2, we can consider

wp = uβ+1up−2 ≤ v2 in (3.18). Since |β| ≥ β0 > 0, we obtain∫
B2

ηp|∇v|2 ≤ C|β− 1 + p|α
(∫

B2

|∇η|2v2 +

∫
B2

|∇η|pv2 +

∫
B2

ηpv2

)
, (3.19)

where α = 2 + p(p−ε0)
ε0

. Moreover, letting γ = η
p
2 , we have that |∇γ|2 =

|p
2
η
p
2
−1∇η|2 ≤ C|∇η|2. Application of Sobolev inequality to γv yields

‖γv‖2
2N
N−2
≤ C

(∫
Ω

|∇γ|2v2 +

∫
Ω

γ2|∇v|2
)
.
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Using all these facts in (3.19), it turns out that

‖γv‖2
2κ ≤ C|β − 1 + p|α

(∫
B2

|∇η|2v2 +

∫
B2

|∇η|pv2 +

∫
B2

ηpv2

)
. (3.20)

Recalling the de�nition of v and the properties of γ and η, (3.20) becomes(∫
Bh′

uκ(β+1)

) 1
κ

≤ C|β − 1 + p|α(h− h′)−p
∫
Bh

uβ+1.

Set µ = β + 1. Taking the µ-th roots, we have(∫
Bh′

uκµ
) 1

κµ

≤ C
1
µ |µ+ p− 2|

α
µ (h− h′)−

p
µ

(∫
Bh

uµ
) 1

µ

(3.21)

if β ∈ (−1, 0) ∪ (0,+∞), i.e. µ ∈ (0, 1) ∪ (1,+∞), and(∫
Bh′

uκµ
) 1

κµ

≥ C
1
µ |µ+ p− 2|

α
µ (h− h′)−

p
µ

(∫
Bh

uµ
) 1

µ

(3.22)

if β ∈ (−∞, 1 − p) ∪ (1 − p,−1), i.e. µ ∈ (−∞, 2 − p) ∪ (2 − p, 0). This

concludes the proof of Lemma 3.1.2.

Lemma 3.1.3. Let H, h, h′ be as in Lemma 3.1.2 with u = |H| + ε′. We

assume G ≡ 0 and p ≤ 2. We de�ne

κ =
N − 2 + p

N − p
and % = |∇Γ|p−2.

Then the following estimates hold:

Φ%(κµ, h
′) ≤ [Cµ(h− h′)−1]

2
µΦ%(µ, h) if µ ∈ (0, 1) ∪ (1,+∞), (3.23)

Φ%(κµ, h
′) ≥ [Cµ(h− h′)−1]

2
µΦ%(µ, h) if µ ∈ (−∞, 0), (3.24)

uniformly for µ away from 0 and 1.

Proof. The �rst part of the proof goes as in Lemma 3.1.2, except that now

G ≡ 0. Then (3.12) rewrites as

|β|
(β + 1)2

∫
B2

|∇Γ|p−2|∇(ηεv)|2 ≤ C

(
1

|β|
+

|β|
(β + 1)2

)∫
B2

|∇Γ|p−2|∇ηε|2v2.

(3.25)
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Letting a = − (N−1)(2−p)
2(p−1)

and observing that ηεv ∈ H1
0 (B2), we can consider

vj ∈ C∞0 (B2) converging to ηεv in H1
0 (B2) as j → +∞. Application of

Ca�arelli-Kohn-Nirenberg inequality to vj with b = a− 2a
N−2a

, b ∈ (a, a + 1)

gives(∫
B2

|∇Γ|p−2|vj|c
) 2

c

≤ C

∫
B2

|x|−2a|∇vj|2 = C̃

∫
B2

|∇Γ|p−2|∇vj|2, (3.26)

where c is de�ned as

c =
2N

N − 2 + 2(b− a)
=

2(N − 2a)

N − 2− 2a
=

2(N − 2 + p)

N − p

in view of

b = −(N − 1)(2− p)(N − p)
2(p− 1)(N − 2 + p)

and bc = −(N − 1)(2− p)
p− 1

= 2a.

Now we pass to the limit j → +∞ in (3.26). By Fatou's lemma we have(∫
B2

|∇Γ|p−2|ηεv|c
) 2

c

≤ lim inf
j→+∞

(∫
B2

|∇Γ|p−2|vj|c
) 2

c

.

Being p ≤ 2, as j → +∞∫
B2

|∇Γ|p−2|∇vj|2 →
∫
B2

|∇Γ|p−2|∇(ηεv)|2.

Thus (3.26) becomes(∫
B2

|∇Γ|p−2|ηεv|c
) 2

c

≤ C

∫
B2

|∇Γ|p−2|∇(ηεv)|2. (3.27)

With the aid of (3.27), the inequality (3.25) becomes(∫
B2

|∇Γ|p−2|ηεv|c
) 2

c

≤ C

(
1 +

(β + 1)2

β2

)∫
B2

|∇Γ|p−2|∇ηε|2v2. (3.28)

At this point we let ε→ 0 in (3.28). Application of Fatou's lemma gives∫
B2

|∇Γ|p−2|ηv|c ≤ lim inf
ε→0

∫
B2

|∇Γ|p−2|ηεv|c.
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Recalling the properties of ∇ηε and the de�nition of Γ, we get∫
B2

|∇Γ|p−2|∇ηε|2v2 =

∫
B2\Bε

|∇Γ|p−2|∇η|2v2 +

∫
Bε\B ε

2

|∇Γ|p−2|∇ηε|2v2

=

∫
B2\Bε

|∇Γ|p−2|∇η|2v2 +O

(
‖v‖2

∞
CεN

ε2+
(N−1)(p−2)

p−1

)
=

∫
B2\Bε

|∇Γ|p−2|∇η|2v2 +O
(
ε
N−p
p−1
)
.

As a consequence we obtain that∫
B2

|∇Γ|p−2|∇ηε|2v2 →
∫
B2

|∇Γ|p−2|∇η|2v2 as ε→ 0.

Thus we have the following estimate(∫
B2

|∇Γ|p−2|ηv|c
) 2

c

≤ C

(
1 +

(β + 1)2

β2

)∫
B2

|∇Γ|p−2|∇η|2v2,

that is(∫
Bh′

|∇Γ|p−2u
(β+1)c

2

) 2
c

≤ C

(
1 +

(β + 1)2

β2

)
(h− h′)−2

∫
Bh

|∇Γ|p−2uβ+1,

(3.29)

in view of the properties of η and the de�nition of v. Observing that κ = c
2
,

setting µ = β + 1 and recalling the de�nition of %, estimate (3.29) becomes(∫
Bh′

%uκµ
) 1

κ

≤ Cµ2(h− h′)−2

∫
Bh

%uµ, (3.30)

being |β| ≥ β0 > 0. Taking the µ-th roots in (3.30), we have(∫
Bh′

%uκµ
) 1

κµ

≤
[
C̃µ(h− h′)−1

] 2
µ

(∫
Bh

%uµ
) 1

µ

if µ ∈ (0, 1) ∪ (1,+∞), which yields (3.23), and(∫
Bh′

%uκµ
) 1

κµ

≥
[
C̃µ(h− h′)−1

] 2
µ

(∫
Bh

%uµ
) 1

µ

if µ ∈ (−∞, 0), which yields (3.24).
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Proof of Proposition 3.1.1. Assume p ≤ 2. If G ≡ 0, the required conclusion

follows by iteration of inequality (3.23) in Lemma 3.1.3 for µ > 1, which

rewrites as

‖u‖%,κµ,h′ ≤ [Cµ(h− h′)−1]
2
µ‖u‖%,µ,h. (3.31)

We set for ν = 0, 1, 2, . . .

µν = κν(1 + β0), hν = 1 + 2−ν , h′ν = hν+1.

Hence (3.31) becomes

‖u‖%,µν+1,hν+1 ≤ C
1
κν

1 C
ν
κν

2 C
ν+1
κν

3 ‖u‖%,µν ,hν ,

where

C1 = C
2

1+β0 (1 + β0)
2

1+β0 , C2 = κ
2

1+β0 , C3 = 4
1

1+β0 .

Iteration yields

‖u‖%,µν+1,hν+1 ≤ C
∑ν
i=0

1

κi

1 C
∑ν
i=0

i

κi

2 C
∑ν
i=0

i+1

κi

3 ‖u‖%,µ0,h0 ≤ C‖u‖%,1+β0,2,

because all series are convergent. Since

‖u‖∞,1 = lim
ν→+∞

‖u‖%,µν ,1 ≤ lim
ν→+∞

‖u‖%,µν ,hν ,

letting ν → +∞ there results

‖u‖∞,1 ≤ C‖u‖%,1+β0,2 ≤ C‖u‖1+β0,2,

in view of % ≤ %0. Recalling that u = |H|+ ε′ and letting ε′ → 0, we �nally

obtain

‖H‖∞,1 ≤ C‖H‖1+β0,2,

that is (3.2).

On the other hand, if G 6= 0 we apply (3.7) in Lemma 3.1.2. Iteration goes as

in the proof of Proposition 2.2.7 when p ≤ 2, except that now we are working

with H in B2. Then we �nally obtain

‖H‖∞,1 ≤ C(‖H‖p(1+β0),2 + k),

that is (3.3).
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Assume p > 2. Application of inequality (3.9) in Lemma 3.1.2 for µ > 1

gives

‖u‖µκ,h′ ≤ [C|µ+ p− 2|α(h− h′)−p]
1
µ‖u‖µ,h. (3.32)

We set for ν = 0, 1, 2, . . .

µν = κν(1 + β0), hν = 1 + 2−ν , h′ν = hν+1.

Hence (3.32) becomes

‖u‖µν+1,hν+1 ≤ C
1
κν

1 C
ν
κν

2 ‖u‖µν ,hν ,

where C1 = [C2p(1 + β0)α]
1

1+β0 and C2 = (2pκα)
1

1+β0 . Iteration yields

‖u‖µν+1,hν+1 ≤ C
∑ν
i=0

1

κi

1 C
∑ν
i=0

i

κi

2 ‖u‖µ0,h0 ≤ C‖u‖1+β0,2,

because both series are convergent. Similarly to the case p ≤ 2, this leads to

‖H‖∞,1 ≤ C(‖H‖1+β0,2 + k),

that is (3.4).

We are going to specialize the argument in Proposition 3.1.1 to a solution

Hλ of problem (1.6). Our goal is to obtain a local bound of Hλ, as shown by

Serrin in Theorem 1 (see [30]).

Corollary 3.1.4. Let Hλ be a solution of problem (1.6) such that condition

(1.9) holds. If λ 6= 0, assume

p >


√
N if N = 2, 3

N
2

if N ≥ 4.

We de�ne

p0 =

p(1 + β0) if λ > 0 and p ≤ 2

1 + β0 otherwise,

β0 being as in the previous section.

Then we have a bound of Hλ in BR for R > 0 small.
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- Case p ≤ 2:

‖H0‖∞,R ≤ CR
− N
p0 ‖H0‖p0,2R if λ = 0, (3.33)

‖Hλ‖∞,R ≤ C(R
− N
p0 ‖Hλ‖p0,2R +R

p2−N
p(p−1)‖Gλ‖p−1

p,2R) if λ 6= 0. (3.34)

- Case p > 2:

‖H0‖∞,R ≤ CR
− N
p0 ‖H0‖p0,2R if λ = 0. (3.35)

‖Hλ‖∞,R ≤ C(R
− N
p0 ‖Hλ‖p0,2R +R

ε0
p−1‖Gλ‖N(p−1)

p−ε0
,2R

) if λ 6= 0.

(3.36)

Proof. Consider Hλ in B2R. We de�ne, for z ∈ B2,

Γ̃(z) = R
N−p
p−1 Γ(Rz) and H̃λ(z) = R

N−p
p−1 Hλ(Rz),

and we set G̃λ(z) = Gλ(Rz). By Proposition 2.2.7 this scaling implies that

H̃λ ∈ L∞(B2) and ∇H̃λ ∈ Lq̄(B2). In particular H̃λ solves

−∆p(Γ̃ + H̃λ) + ∆pΓ̃ = λRNG̃p−1
λ in B2,

which can be rewritten in the form

−∆p(Γ + H̃λ) + ∆pΓ = λRNG̃p−1
λ in B2,

by using that

∇Γ̃(z) = R
N−p
p−1

+1∇Γ(Rz) = R
N−1
p−1

C0

|Rz|
N−1
p−1

=
C0

|z|
N−1
p−1

= ∇Γ(z).

Moreover |∇H̃λ| = O(|∇Γ|). Notice that if λ 6= 0, setting G = λRNG̃p−1
λ , we

have that G ∈ L
p
p−1 (B2), in view of p >

√
N . When p > 2, condition p > N

2

guarantees that G ∈ L
N

p−ε0 (B2) for some ε0 small. Therefore, we are able to

apply Proposition 3.1.1.

Assume p ≤ 2. If λ = 0, application of (3.2) to H̃0 yields

‖H̃0‖∞,1 ≤ C‖H̃0‖p0,2. (3.37)

Observing that

‖H̃0‖∞,1 = R
N−p
p−1 ‖H0‖∞,R,
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‖H̃0‖p0,2 = R
N−p
p−1 R

− N
p0 ‖H0‖p0,2R,

inequality (3.37) becomes

R
N−p
p−1 ‖H0‖∞,R ≤ CR

N−p
p−1 R

− N
p0 ‖H0‖p0,2R. (3.38)

Dividing both members of (3.38) by R
N−p
p−1 we obtain (3.33).

On the other hand, if λ 6= 0 we apply (3.3) to H̃λ and we get

‖H̃λ‖∞,1 ≤ C(‖H̃λ‖p0,2 + ‖G‖ p
p−1

,2). (3.39)

Here we have

‖G‖ p
p−1

,2 =

(∫
B2

λ
p
p−1R

Np
p−1 |G̃λ|p

) p−1
p

= λRN‖G̃λ‖p−1
p,2

= λRN

(∫
B2

|G̃λ(z)|pdz
) p−1

p

= λRN

(∫
B2

|Gλ(Rz)|pdz
) p−1

p

= λRN

(∫
B2R

R−N |Gλ(y)|pdy
) p−1

p

= λR
N
p ‖Gλ‖p−1

p,2R.

Thus inequality (3.39) becomes

R
N−p
p−1 ‖Hλ‖∞,R ≤ C(R

N−p
p−1 R

− N
p0 ‖Hλ‖p0,2R +R

N
p ‖Gλ‖p−1

p,2R). (3.40)

Dividing both members of (3.40) by R
N−p
p−1 we obtain (3.34).

Now assume p > 2. Application of (3.4) to H̃λ yields

‖H̃λ‖∞,1 ≤ C(‖H̃λ‖p0,2 + ‖G‖
1
p−1
N

p−ε0
,2

), (3.41)

provided ‖H̃λ‖∞,2 < 1− ‖G‖
1
p−1
N

p−ε0
,2
. We have that

‖G‖
1
p−1
N

p−ε0
,2

=

(∫
B2

|λRNG̃p−1
λ |

N
p−ε0

) p−ε0
N(p−1)

= (λRN)
1
p−1

(∫
B2

|G̃λ(z)|
N(p−1)
p−ε0 dz

) p−ε0
N(p−1)

= (λRN)
1
p−1

(∫
B2

|Gλ(Rz)|
N(p−1)
p−ε0 dz

) p−ε0
N(p−1)

= (λRN)
1
p−1

(∫
B2R

R−N |Gλ(y)|
N(p−1)
p−ε0 dy

) p−ε0
N(p−1)

= λ
1
p−1R

N−p+ε0
p−1 ‖Gλ‖N(p−1)

p−ε0
,2R
.

73



In particular we have that ‖G‖
1
p−1
N

p−ε0
,2

= O(R
N−p+ε0
p−1 ) in view ofGλ ∈ L

N(p−1)
p−ε0 (B2R)

for 0 < ε0 < 2p − N and ‖H̃λ‖∞,2 = O(R
N−p
p−1 ): these facts yield that

‖H̃λ‖∞,2 < 1 − ‖G‖
1
p−1
N

p−ε0
,2
for R small as required to have the validity of

(3.41). Inequality (3.41) becomes

R
N−p
p−1 ‖Hλ‖∞,R ≤ C(R

N−p
p−1 R

− N
p0 ‖Hλ‖p0,2R + λ

1
p−1R

N−p+ε0
p−1 ‖Gλ‖N(p−1)

p−ε0
,2R

).

(3.42)

Dividing both members of (3.42) by R
N−p
p−1 we obtain (3.35) for λ = 0 and

(3.36) for λ 6= 0 when R small.

3.2 The Harnack inequality and Hölder conti-

nuity of Hλ at the pole

Proposition 3.2.1. Let Hλ be a solution of problem (1.6) satisfying condi-

tion (1.9). Assume (1.8) when λ 6= 0. Then

max
BR

H0 ≤ C min
BR

H0 if λ = 0, (3.43)

max
BR

Hλ ≤ C(min
BR

Hλ + kR) if λ 6= 0. (3.44)

Here R > 0 is a small radius, C is a positive constant depending on the

structure of the problem and

kR =

R
p2−N
p(p−1)‖Gλ‖p−1

p,2R if p ≤ 2

R
ε0
p−1‖Gλ‖N(p−1)

p−ε0
,2R

if p > 2.

Remark 3.2.2. It is worth noting that in the de�nition of kR the exponent

of R is positive. Indeed, if p ≤ 2 we have p2−N
p(p−1)

> 0 in view of p >
√
N . If

p > 2 we have trivially ε0
p−1

> 0.

The proof of Proposition 3.2.1 requires an iteration process which uses Lemma

3.1.2, together with another result that we are going to show.

Lemma 3.2.3. Under the hypothesis of Proposition 3.2.1, let H̃λ, Γ̃ and G̃λ

be as in the proof of Corollary 3.1.4. In particular H̃λ solves

−∆p(Γ + H̃λ) + ∆pΓ = G in B2, (3.45)
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where G = λRNG̃p−1
λ . We set u = H̃λ−minB1 H̃λ + k+ ε′, with ε′ > 0 and k

being de�ned as in (3.5). If v = log u and v̄ = |B|−1
∫
B
vdx, we have

1

|B|

∫
B

|v − v̄|dx ≤ C̃ ∀B ⊂ B2, B open ball. (3.46)

Proof. Let B = Bh(x0) ⊂ B1. Since |x0| < 1 − h and h < 1 imply |y| ≤
|y − x0|+ |x0| < 1 + h

2
< 2 for all y ∈ B 3

2
h(x0), we have that B 3

2
h(x0) ⊂ B2.

Let η be a nonnegative smooth function with compact support in B 3
2
h(x0)

such that

η = 1 in B, 0 ≤ η ≤ 1 in B 3
2
h(x0), η = 0 outside B 3

2
h(x0), |∇η| ≤ 3

h
.

We de�ne ηδ = η(δ + |y|2)
(N−1)(p−2)

4(p−1)
−1|y| 52 , δ > 0. Since H̃λ ∈ L∞(B2) and

∇H̃λ ∈ Lq̄(B2), then ϕ = −η2
εu
−1 is admissible1 in (3.84) and we are able to

apply Corollary 2.2.4 with Ψ(s) = −1
s
and ηδ as cut-o� function.

Using ϕ as test function in the weak formulation of (3.84), we obtain∫
B2

η2
δ |∇Γ|p−2|∇v|2 ≤ C

(∫
B2

ηδ|∇ηδ||∇Γ|p−2|∇v|+
∫
B2

|G|η2
δu
−1

)
, (3.47)

in view of |∇H̃λ| = O(|∇Γ|) if p > 2. Application of Young's inequality gives

C

∫
B2

ηδ|∇ηδ||∇Γ|p−2|∇v| ≤ 1

2

∫
B2

η2
δ |∇Γ|p−2|∇v|2+C̃

∫
B2

|∇ηδ|2|∇Γ|p−2.

As a consequence, (3.47) becomes∫
B2

η2
δ |∇Γ|p−2|∇v|2 ≤ C

(∫
B2

|∇ηδ|2|∇Γ|p−2 +

∫
B2

|G|η2
δu
−1

)
. (3.48)

We deal with the �rst term in right-hand side of (3.48). We observe that

∫
B2

|∇ηδ|2|∇Γ|p−2 = C

[∫
B2

|y|
(
|y|2

δ + |y|2

)− (N−1)(p−2)
2(p−1)

|∇η|2

+

∫
B2

(
|y|2

δ + |y|2

)2− (N−1)(p−2)
2(p−1) η2

|y|

]
,

1Notice that now we are studying the case β = −1 of the proof of Lemma 3.1.2.
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∫
B2

|G|η2
δu
−1 =

∫
B2

|y|(δ + |y|2)
(N−1)(p−2)

2(p−1) η2|G|u−1.

using the de�nitions of ηδ and ∇Γ. Thus (3.48) rewrites as

∫
B2

η2
δ |∇Γ|p−2|∇v|2 ≤ C

[∫
B2

|y|
(
|y|2

δ + |y|2

)− (N−1)(p−2)
2(p−1)

|∇η|2

+

∫
B2

(
|y|2

δ + |y|2

)2− (N−1)(p−2)
2(p−1) η2

|y|
+

∫
B2

|y|(δ + |y|2)
(N−1)(p−2)

2(p−1) η2|G|u−1

]
.

(3.49)

Since
( |y|2
δ+|y|2

)α ≤ C|y|−max{−2α,0}, we have that

|y|
(
|y|2

δ + |y|2

)− (N−1)(p−2)
2(p−1)

≤ C|y|−max{ (N−1)(p−2)
p−1

−1,−1} ∈ L1(Ω)(
|y|2

δ + |y|2

)2− (N−1)(p−2)
2(p−1) 1

|y|
≤ C|y|−max{ (N−1)(p−2)

p−1
−3,1} ∈ L1(Ω)

(3.50)

in view of (N−1)(p−2)
p−1

< N . Since G = λRpΓp−1(y)[1+O(R
N−p
p−1 |y|

N−p
p−1 )] in view

of ‖Hλ‖∞ < +∞, when λ 6= 0 there holds k ≥ CRt0 for some t0 ≤ p and

C > 0 in view of p > max{
√
N, N

2
}, where k is given by (3.5), and then∫

B2

|y|(δ + |y|2)
(N−1)(p−2)

2(p−1) η2|G|u−1 ≤ 1

k

∫
B2

|y|(δ + |y|2)
(N−1)(p−2)

2(p−1) η2|G|

≤ C

∫
B2

|y|p+1−N(δ + |y|2)
(N−1)(p−2)

2(p−1) η2.

(3.51)

Since

|y|p+1−N(δ + |y|2)
(N−1)(p−2)

2(p−1) ≤ |y|min{p+1−N+
(N−1)(p−2)

p−1
,p+1−N} ∈ L1(Ω) (3.52)

in view of p + 1 + (N−1)(p−2)
p−1

> 0 thanks to p >
√
N > 1−N+

√
N2+6N−3
2

, we

can use (3.50), (3.52) and the Lebesgue's convergence theorem in (3.49) and

(3.51) to get∫
B2

η2|y||∇v|2 ≤ C

(∫
B2

|y||∇η|2 +

∫
B2

η2

|y|
+

∫
B2

|y|p−
N−1
p−1 η2

)
(3.53)
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thanks to the Fatou's convergence theorem. Since by (3.53) one deduces∫
B

|v − v̄| ≤ C ′h

∫
B

|∇v| ≤ C ′h

(∫
B

1

|y|

) 1
2
(∫

B

|y||∇v|2
) 1

2

≤ Ch

(∫
B

1

|y|

) 1
2
(∫

B2

|y||∇η|2 +

∫
B2

η2

|y|
+

∫
B2

|y|p−
N−1
p−1 η2

) 1
2

and p− N−1
p−1

> −1 thanks to p >
√
N , for |x0| < 3h one has that∫

B

|v − v̄| ≤ Ch
N+1

2

(
hN−1 + hp−

N−1
p−1

+N
) 1

2
= O(hN)

in view of B 3
2
h(x0) ⊂ B5h(0), while for |x0| ≥ 3h there holds

∫
B

|v − v̄| ≤ C

[
h2

(∫
B

1

|y|

)(∫
B2

|y||∇η|2
)

+ hN+1(hN−1 + hmin{p−N−1
p−1

+N,N})

] 1
2

≤ C

[
h2

(
hN

|x0|

)(
|x0|hN−2

)
+ h2N

] 1
2

= O(hN)

in view of 3h
2
≤ |x0|

2
≤ |y| ≤ 3

2
|x0| for all x ∈ B 3

2
h(x0). The proof is complete.

Proof of Proposition 3.2.1. Let H̃λ and u be as in Lemma 3.2.3. The proof

is divided into 5 steps.

Step 1. Lemma 3.2.3 and John-Nirenberg Lemma (see Lemma 7 in [30]),

imply that there exist λ̃ and µ̃ depending on N such that∫
B2

ep0vdx

∫
B2

e−p0vdx ≤ 22N µ̃2, with p0 =
λ̃

C̃
,

C̃ being the same as in (3.46). Using the de�nition of Φ and recalling that

v = log u, we obtain

Φ(p0, 2) ≤ CΦ(−p0, 2). (3.54)

In Step 2 and 3 we will apply Lemma 3.1.2 with H = H̃λ−minB1 H̃λ and we

will use the iteration process as described in the proof of Proposition 3.1.1.
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We will omit some technical calculations, that have already been discussed.

We set

κ =


N−2+p
N−p if p ≤ 2 and λ = 0

N(p−1)
p(N−p) if p ≤ 2 and λ > 0

N
N−2

otherwise,

µ =

p(β + 1) if p ≤ 2, λ > 0

β + 1 otherwise.

Step 2. Beginning with Φ(p0, 2), we iterate estimate (3.7) if p ≤ 2 and λ 6= 0,

estimate (3.23) if p ≤ 2 and λ = 0, estimate (3.9) if p > 2. Therefore,

application of the iterative scheme with

µν = κνp0, hν = 1 + 2−ν , h′ν = hν+1,

for ν = 0, 1, 2, . . . , leads to the inequality

max
B1

u ≤ CΦ(p0, 2). (3.55)

Step 3. Beginning with Φ(−p0, 2), we iterate estimate (3.8) if p ≤ 2 and

λ 6= 0, estimate (3.24) if p ≤ 2 and λ = 0, estimate (3.10) if p > 2. Then,

the iteration process with

µν = −κνp0, hν = 1 + 2−ν , h′ν = hν+1,

for ν = 0, 1, 2, . . . , leads to the inequality

min
B1

u ≥ CΦ(−p0, 2). (3.56)

Remark 3.2.4. In order to have (3.7) applicable at each stage, the successive

iterates µν must avoid the point µ = p. To accomplish this in a de�nite

way we shall choose a new initial value p′0 ≤ p0 so that the point µ = p lies

midway between some two consecutive iterates of p′0. The same procedure

can be also applied in (3.9) and (3.23) to avoid the point µ = 1. In particular

we have that Φ(p′0, 2) ≤ CΦ(p0, 2). In relation to (3.10), we can use a similar

argument to avoid the point µ = 2− p, with −p′0 ≥ −p0 in such a way that

Φ(−p0, 2) ≤ CΦ(−p′0, 2).
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Step 4. Putting together (3.54), (3.55) and (3.56), recalling that u = H̃λ −
minB1 H̃λ + k + ε′ and letting ε′ → 0, we �nally obtain

max
B1

H̃λ ≤ C(min
B1

H̃λ + k), (3.57)

that is the Harnack inequality for H̃λ in B1.

Step 5. If we assume λ = 0, then k = 0 by de�nition of G. Consequently,

(3.57) rewrites as

max
B1

H̃0 ≤ C min
B1

H̃0

and, by scaling, we obtain (3.79).

Assume λ 6= 0. We have that

k =

‖G‖ p
p−1

,2 if p ≤ 2

‖G‖
1
p−1
N

p−ε0
,2

if p > 2,

that is

k =

λR
N
p ‖Gλ‖p−1

p,2R if p ≤ 2

λ
1
p−1R

N−p+ε0
p−1 ‖Gλ‖N(p−1)

p−ε0
,2R

if p > 2.

Therefore, if p ≤ 2 then (3.57) yields

R
N−p
p−1 max

BR
Hλ ≤ C(R

N−p
p−1 min

BR
Hλ +R

N
p ‖Gλ‖p−1

p,2R),

that is, dividing by R
N−p
p−1 ,

max
BR

Hλ ≤ C(min
BR

Hλ +R
p2−N
p(p−1)‖Gλ‖p−1

p,2R).

Similarly, if p > 2 we obtain

max
BR

Hλ ≤ C(min
BR

Hλ +R
ε0
p−1‖Gλ‖N(p−1)

p−ε0
,2R

).

This concludes the proof of Proposition 3.2.1.

We are now ready to establish the Hölder continuity of Hλ at 0.

We set for r > 0

M(r) = max
Br

Hλ and µ(r) = min
Br

Hλ.

Then we de�ne the oscillation of Hλ in Br by

ω(r) = M(r)− µ(r).
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Theorem 3.2.5. Let Hλ be a solution of problem (1.6) satisfying condition

(1.9). Assume (1.8) if λ 6= 0. Then there exist α ∈ (0, 1) and δ0 > 0 so that

ω(%) ≤ C0%
α for all % ≤ δ0. (3.58)

Proof. We observe that M(r) and µ(r) are well de�ned for 0 < r ≤ 1. It

follows that both functions

H1 = M −Hλ and H2 = Hλ − µ

are nonnegative in Br.

Remark 3.2.6. We have always worked with a function H which solves

−∆(Γ +H) + ∆Γ = G. (3.59)

We observe that H2 satis�es the same equation as H. On the other hand,

H1 solves

−∆(Γ−H1) + ∆Γ = G. (3.60)

Even if (3.59) and (3.60) are di�erent equations, it can be easily veri�ed that

the respective weak formulations lead to the same estimates, as described in

Lemma 2.2.3 and Corollary 2.2.4. Therefore we are able to apply the Harnack

inequality to H1.

Application of Proposition 3.2.1 to H1 in the open ball Br gives

M − µ′ = max
B r

2

H1 ≤ C(min
B r

2

H1 + kr) = C(M −M ′ + kr), (3.61)

where M ′ = M ′(r) = M(r/2), µ′ = µ′(r) = µ(r/2) and

kr =

r
p2−N
p(p−1)‖Gλ‖p−1

p if p ≤ 2

r
ε0
p−1‖Gλ‖N(p−1)

p−ε0
if p > 2.

Similarly, by applying Proposition 3.2.1 to H2, we have

M ′ − µ ≤ max
B r

2

H2 ≤ C(min
B r

2

H2 + kr) = C(µ′ − µ+ kr). (3.62)

Adding (3.61) and (3.62) and transposing terms then gives

M ′ − µ′ ≤ C − 1

C + 1
(M − µ) +

2Ckr
C + 1

. (3.63)
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We de�ne ϑ = C−1
C+1

< 1,

τ =


2C
C−1
‖Gλ‖p−1

p if p ≤ 2

2C
C−1
‖Gλ‖N(p−1)

p−ε0
if p > 2

and σ =

 p2−N
p(p−1)

if p ≤ 2

ε0
p−1

if p > 2.

Recalling that r ≤ 1, then (3.63) becomes

ω

(
r

2

)
≤ ϑ(ω(r) + τrσ), 0 < r ≤ 1.

Since ω(r) is an increasing function representing the oscillation of H in Br,

it is clear that for any number s ≥ 2 one has also

ω

(
r

s

)
≤ ϑ(ω(r) + τrσ), 0 < r ≤ 1. (3.64)

Iteration of relation (3.64) from r = 1 to successively smaller radii yields

ω(s−ν) ≤ ϑν
[
ω(1) + τ

ν−1∑
j=0

(ϑsσ)−j
]
, for ν = 1, 2, . . . . (3.65)

Now we choose s according to the relation

ϑsσ = 2,

whence from (3.65) follows

ω(s−ν) ≤ ϑν(ω(1) + 2τ). (3.66)

For any �xed %, 0 < % ≤ s−1, let ν be chosen such that s−ν−1 < % ≤ s−ν .

Thus, by virtue of (3.66) we have

ω(%) ≤ ω(s−ν) ≤ ϑν(ω(1) + 2τ) ≤ Cϑν , (3.67)

using also the boundedness of ω(1) and τ . At this point, if γ is de�ned by the

relation 2−γ = ϑ, then we have ϑ = s−α where α = σ γ
γ+1
∈ (0, 1). Therefore

(3.67) implies

ω(%) ≤ C%α, % ≤ 2−
γ+1
σ ,

that is (3.58) with δ0 = 2−
γ+1
σ .
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Corollary 3.2.7. Under the hypothesis of Theorem 3.2.5, Hλ is Hölder con-

tinuous at the pole i.e.

|Hλ(y)−Hλ(0)| ≤ C|y|α near 0, (3.68)

α being as in (3.58).

Proof. Assume by contradiction that (3.68) does not hold. Then there exist

sequences yn ∈ Ω such that

|Hλ(yn)−Hλ(0)|
|yn|α

→ +∞ as n→ +∞. (3.69)

Since Hλ is bounded, (3.69) implies that

yn → 0 as n→ +∞. (3.70)

We de�ne %n = |yn|. Then yn ∈ B%n and there exists n0 such that %n ≤ δ0

for all n ≥ n0. Application of (3.58) yields

|Hλ(yn)−Hλ(0)| ≤ C0%
α
n ∀n ≥ n0,

in contradiction with (3.69). This proves (3.68).

3.3 A stronger result when p ≤ 2

In the previous sections we always worked in balls centered at 0. Conse-

quently, the function Γ had radial symmetry and it was singular in 0.

When p ≤ 2, our aim is to to generalize the Harnack inequality, making it

hold in BR(y0) with y0 6= 0. As a consequence, we will show the global Hölder

continuity of Hλ when p ≤ 2.

We de�ne for y ∈ B2

Γ̃(y) = |y0|
N−1
p−1 R−1Γ(Ry + y0). (3.71)

Then

∇Γ̃(y) = |y0|
N−1
p−1∇Γ(Ry + y0) =

C|y0|
N−1
p−1

|Ry + y0|
N−1
p−1

=
C∣∣ Ry

|y0| + y0

|y0|

∣∣N−1
p−1

.

Let r0 = |y0|
4
. We observe that if R ≤ r0 then

2R
|y0| ≤

1
2
and ∇Γ̃ does not have

singularity in B̄2.
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Proposition 3.3.1. Assume p ≤ 2. Let H ∈ L∞(B2), with ∇H ∈ Lq̄(B2),

be a solution of

−∆p(Γ̃ +H) + ∆pΓ̃ = G in B2, (3.72)

such that |∇H| = O(|∇Γ̃|) and G ∈ L
p
p−1 (B2). When G 6= 0 we require

p ≥ 2N
N+1

. Then we have a universal bound for H in B1(y0). In particular,

estimates (3.2) and (3.3) hold.

The proof of Proposition 3.3.1 is a consequence of the following Lemma.

Lemma 3.3.2. Let H be as in Proposition 3.3.1. Assume p >
√
N , N = 2, 3

if G 6= 0 and p ≤ 2. If G 6= 0, estimates (3.7) and (3.8) of Lemma 3.1.2 hold

with κ = N
p(N−2)

. Otherwise

Φ1(κµ, h′) ≤ [Cµ(h− h′)−1]
2
µΦ1(µ, h) if µ ∈ (0, 1) ∪ (1,+∞), (3.73)

Φ1(κµ, h′) ≥ [Cµ(h− h′)−1]
2
µΦ1(µ, h) if µ ∈ (−∞, 0), (3.74)

with κ = N
N−2

.

Proof. We will follow the proof of Lemma 3.1.2; then some details will be

omitted. We will get better estimates due to the regularity of ∇Γ̃ in B2.

Assume G 6= 0. Using in (3.12) that ∇Γ̃ = O(1) in B2, we get∫
B2

|∇(ηv)|2 ≤ C

[(
1 +

(β + 1)2

β2

)∫
B2

|∇η|2v2 +
(β + 1)2

|β|

∫
B2

|G|η2uβ
]
.

(3.75)

Notice that we are able to use η instead of ηε, because of the regularity of

the problem in B2. Since k ≤ u we have that∫
B2

|G|η2uβ =

∫
B2

|G|η2uβ−1+1 ≤
∫
B2

|G|
k
η2v2 ≤ 1

k
‖G‖ p

p−1
‖ηv‖2

2p = ‖ηv‖2
2p.

Thus, application of Sobolev inequality and (3.75) yield

‖ηv‖2
2N
N−2
≤ C

[(
1 +

(β + 1)2

β2

)
‖v∇η‖2

2 +
(β + 1)2

|β|
‖ηv‖2

2p

]
,
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that is(∫
Bh′

u
(β+1)N
N−2

)N−2
N

≤ C

[(
1 +

(β + 1)2

β2

)
(h− h′)−2

∫
Bh

uβ+1

+
(β + 1)2

|β|

(∫
Bh

up(β+1)

) 1
p
]
, (3.76)

in view of the properties of η and the de�nition of v. Thus inequality (3.76)

yield (3.7) and (3.8) as in Lemma 3.1.2, with κ = N
p(N−2)

> 1 in view of√
N < p ≤ 2 and N = 2, 3.

Assume G ≡ 0. Similarly to the previous case, we obtain(∫
Bh′

u
(β+1)N
N−2

)N−2
N

≤ C̃

(
1 +

(β + 1)2

β2

)
(h− h′)−2

∫
Bh

uβ+1 (3.77)

We set µ = β + 1 and κ = N
N−2

. Since |β| ≥ β0 > 0, then (3.77) rewrites as(∫
Bh′

uκµ
) 1

κ

≤ [Cµ(h− h′)−1]2
∫
Bh

uµ. (3.78)

Taking the µ-th roots in (3.78) we obtain (3.73) if µ ∈ (0, 1) ∪ (1,+∞) and

(3.74) if µ ∈ (−∞, 0).

Corollary 3.3.3. Let Hλ be a solution of problem (1.6) with p ≤ 2 and let

λ, p, p0 be as in Corollary 3.1.4. Then we have a bound of Hλ in BR(y0) for

R ≤ r0 and y0 6= 0. In particular, estimates (3.33) and (3.34) hold except

that now balls are centered at y0.

Proof. We set for y ∈ B2

H̃λ(y) = |y0|
N−1
p−1 R−1Hλ(Ry + y0) and G̃λ(y) = Gλ(Ry + y0).

By Proposition 2.2.7 this scaling implies that H̃λ ∈ L∞(B2) and ∇H̃λ ∈
Lq̄(B2). Moreover

−∆p(Γ̃ + H̃λ) + ∆pΓ̃ = λ|y0|N−1RG̃p−1
λ in B2.

Application of Proposition 3.3.1 to H̃λ with G = λ|y0|N−1RG̃p−1
λ , with the

aid of the same arguments used in the proof of Corollary 3.1.4, yields the

desired estimates.
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We are going to generalize Proposition 3.2.1, proving the Harnack inequality

in BR(y0) with y0 6= 0 and R ≤ r0.

Proposition 3.3.4. Let p ≤ 2 and y0 6= 0. Under the hypothesis of Propo-

sition 3.2.1, we have that

max
BR(y0)

H0 ≤ C min
BR(y0)

H0 if λ = 0, (3.79)

max
BR(y0)

Hλ ≤ C( min
BR(y0)

Hλ + kR) if λ 6= 0. (3.80)

Here R > 0 is a small radius such that R ≤ r0, C is a positive constant

depending on the structure of the problem and kR = R2−N(p−1)
p ‖Gλ‖p−1

p,2R.

Remark 3.3.5. It is worth noting that in the de�nition of kR the exponent

of R is positive. Indeed, the condition 2 − N(p−1)
p

> 0 is equal to require

p < N
N−2

, which is satis�ed being
√
N < p ≤ 2 and N = 2, 3.

The proof of Proposition 3.3.4 requires an iteration process which uses Lemma

3.3.2, together with the generalization of Lemma 3.2.3 to the case y0 6= 0 that

we are going to show.

We consider the following scaling for y ∈ B2:

H̃λ(y) = |y0|
N−1
p−1 R−1Hλ(Ry + y0), (3.81)

Γ̃(y) = |y0|
N−1
p−1 R−1Γ(Ry + y0), (3.82)

G̃λ(y) = Gλ(Ry + y0). (3.83)

Then H̃λ solves

−∆p(Γ̃ + H̃λ) + ∆pΓ̃ = G in B2, (3.84)

G being de�ned as

G(y) = λ|y0|N−1RG̃p−1
λ (y). (3.85)

Lemma 3.3.6. Under the hypothesis of Proposition 3.3.4, let H̃λ be as in

(3.81), (3.84). We set u = H̃λ − minB1 H̃λ + k + ε′, with ε′ > 0 and k =

‖G‖ p
p−1

,2. If v = log u and v̄ = |B|−1
∫
B
vdx, we have

1

|B|

∫
B

|v − v̄|dx ≤ C̃ ∀B ⊂ B2, B open ball. (3.86)
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Proof. The proof is the same as in Lemma 3.2.3.

Since |∇Γ̃| ∼ C, then application of (3.48) with η instead of ηδ yields∫
B2

η2|∇v|2 ≤ C

(∫
B2

|∇η|2 +

∫
B2

|G|η2u−1

)
. (3.87)

Moreover, since k ≤ u, recalling the properties of η, we have that∫
B2

|G|η2u−1 ≤ 1

k

∫
B2

|G|η2 ≤ 1

k
‖G‖ p

p−1
‖η‖2

2p = ‖η‖2
2p ≤ |B 3

2
h|

1
p = Ch

N
p .

As a consequence, (3.87) becomes∫
B2

η2|∇v|2 ≤ C(hN−2 + h
N
p ) ≤ ChN−2,

in view of N − 2 < N
p
being

√
N < p ≤ 2. Then we get

∫
B

|v − v̄| ≤ C ′h

∫
B

|∇v| ≤ C ′h

(∫
B2

η2|∇v|2
) 1

2

|B 3
2
h(x0)|

1
2

≤ Ch1+N−2
2

+N
2 = ChN ,

that is (3.86) with B = Bh(x0).

Proof of Proposition 3.3.4. Let H̃λ be as in (3.81), (3.84). The proof is di-

vided into 5 steps and goes as in Proposition 3.2.1. In particular, in Step

2 and 3, application of Lemma 3.3.2 with H = H̃λ − minB1 H̃λ is needed,

together with the iteration process as described in the proof of Proposition

3.3.1, with

κ =

 N
p(N−2)

if λ > 0

N
N−2

if λ = 0.

Step 4 yields

max
B1

H̃λ ≤ C(min
B1

H̃λ + k), (3.88)

that is the Harnack inequality for H̃λ in B1. Finally, Step 5 deals with the

rescaling of (3.88). We have that

k = ‖G‖ p
p−1

,2 = λ|y0|N−1R1−N(p−1)
p ‖Gλ‖p−1

p,2R.
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Therefore, (3.88) gives

|y0|
N−1
p−1 R−1 max

BR(y0)
Hλ ≤ C(|y0|

N−1
p−1 R−1 min

BR(y0)
Hλ + |y0|N−1R1−N(p−1)

p ‖Gλ‖p−1
p,2R),

that is, dividing by |y0|
N−1
p−1 R−1,

max
BR(y0)

Hλ ≤ C( min
BR(y0)

Hλ + λ|y0|
(N−1)(p−2)

p−1 R2−N(p−1)
p ‖Gλ‖p−1

p,2R).

This concludes the proof of Proposition 3.3.4.

At this point we are able to show the global Hölder continuity of Hλ. By

Corollary 3.2.7 we know that Hλ is Hölder continuous at 0.

We set for z ∈ Ω and r > 0

M(r, z) = max
Br(z)

Hλ and µ(r, z) = min
Br(z)

Hλ.

Then we de�ne the oscillation of Hλ in Br(z) by

ω(r, z) = M(r, z)− µ(r, z).

Theorem 3.3.7. Let Hλ be a solution of problem (1.6) with p ≤ 2 satisfying

condition (1.9) holds. Assume (1.8) if λ 6= 0. Then there exist α ∈ (0, 1)

and δ0 > 0 such that

ω(r, z) ≤ C1r
α for all r ≤ δ0r0, (3.89)

where r0 = |y0|
4
.

Proof. We observe that M(r, z) and µ(r, z) are well-de�ned for 0 < r ≤ r0.

Then the functions

H1 = M −Hλ and H2 = Hλ − µ

are nonnegative in Br(z). For 0 < % ≤ 1 we set ω̃(%, z) = ω(%r0, z) and

τ̃ =
2C

C − 1
rσ0‖G‖N(p−1)

p−ε0
.

As in the proof of Proposition 3.2.5, application of Proposition 3.3.4 to H1

and H2 yields

ω̃(s−ν) ≤ ϑν(ω̃(1) + 2τ̃)
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for any s ≥ 2 and ν = 1, 2, . . . . It follows that

ω̃(δ) ≤ (ω̃(1) + 2τ̃)δα, δ ≤ δ0. (3.90)

Letting r = δr0, (3.90) rewrites as

ω(r) ≤

(
ω(r0) + 4C

C−1
‖G‖N(p−1)

p−ε0
rσ0

rα0

)
rα, r ≤ δ0r0. (3.91)

Recalling the de�nition of α, we observe that

σ − α = σ

(
1− γ

γ + 1

)
=

σ

γ + 1
> 0,

being γ > 0 in view of 2−γ = ϑ < 1. Moreover, since r0 = |y0|
4
,

Br0(z) ⊂ Br0+4r0(0) = B5r0(0).

This implies that

ω(r0, z) ≤ ω(5r0, 0) ≤ C0(5r0)α,

with the aid of (3.58). As a consequence, (3.91) yields

ω(r, z) ≤ C1r
α r ≤ δ0r0.

Corollary 3.3.8. Under the hypothesis of Theorem 3.3.7, Hλ is Hölder con-

tinuous i.e.

|Hλ(z)−Hλ(y)| ≤ C|z − y|α ∀z, y ∈ Ω, (3.92)

α being as in (3.58), (3.89).

Proof. Assume by contradiction that (3.92) does not hold. Then there exist

sequences zn, yn ∈ Ω such that

|Hλ(zn)−Hλ(yn)|
|zn − yn|α

→ +∞ as n→ +∞. (3.93)

Since Hλ is bounded, (3.93) implies that

zn − yn → 0 as n→ +∞. (3.94)
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By compactness, there exists x0 ∈ Ω̄ such that zn → x0 as n → +∞.

Since (3.94) holds, then yn → x0 as n → +∞. Moreover, from classical

regularity results we have that x0 = 0. We de�ne %n = max{|zn|, |yn|}. Then
zn, yn ∈ B%n and there exists n0 such that %n ≤ r0 for all n ≥ n0.

Application of (3.58) yields

|Hλ(zn)−Hλ(yn)| ≤ C0%
α
n ∀n ≥ n0.

This implies that

|zn − yn| � %n ∀n ≥ n0, (3.95)

i.e. there exists a constant M � 1 such that |zn− yn| ≤M%n for all n ≥ n0.

It follows that

|zn − yn| � |zn| and |zn − yn| � |yn| ∀n ≥ n0. (3.96)

Indeed, assume %n = |zn|. Then

|yn| ≥ |zn| − |zn − yn| ≥ (M − 1)|zn − yn| ∀n ≥ n0,

in view of (3.95), and we get (3.96). At this point we observe that yn ∈
B2|zn−yn|(zn) for all n ≥ n0, with 2|zn − yn| ≤ δ0r0 in view of (3.96).

Application of (3.89) with respect to zn gives

|Hλ(zn)−Hλ(yn)| ≤ C1(2|zn − yn|)α,

in contradiction with (3.93). This proves (3.92).

Remark 3.3.9. It is worth noting that the global Hölder continuity does not

hold when p > 2. Indeed, if p > 2 we have to require |y0|
N−1
p−1 � R to

guarantee ‖H̃λ‖∞,B2 < 1−‖G‖
1
p−1
N

p−ε0
,B2

and to be able to adapt the calculations

of Proposition 3.1.1.
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Chapter 4

Application to Brezis-Nirenberg

type problem

This chapter is devoted to the discussion of existence issues related to

the quasilinear Brezis-Nirenberg problem (1.11), in the low-dimensional case

N < p2. Throughout this chapter we assume p ≥ 2 and 0 < λ < λ1.

In Section 4.1 we will introduce an approximated problem whose solution

admits an expansion in terms of Hλ(·, x), which is the solution of (1.6) with

pole at x ∈ Ω. A priori estimates on approximating solution are needed and

for that we will adapt the result proved in the �rst part of this thesis.

These approximating solutions will be crucial in Section 4.2, where we will

show Theorem (1.0.2). The most delicate point is to prove the implication

(iii) ⇒ (i) under the hypothesis (1.14). A blow-up analysis will be needed,

together with the application of integral identities of Pohozaev type.

4.1 The approximated problem

For x ∈ Ω, we consider the solution PUε,λ of the problem
−∆pPUε,λ = λPUp−1

ε,λ + Up∗−1
ε in Ω

PUε,λ > 0 in Ω

PUε,λ = 0 on ∂Ω,

(4.1)
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the function Uε being the so-called standard bubble, de�ned as

Uε(y) = C1

(
ε

εp + |y − x|
p
p−1

)N−p
p

, ε > 0, (4.2)

where C1 = N
N−p
p2
(
N−p
p−1

) (p−1)(N−p)
p2 . We know by Remark 1.2.9 that Uε solves

−∆pUε = Up∗−1
ε in RN . (4.3)

We decompose the solution PUε,λ of (4.1) as

PUε,λ = Uε +
C1

C0

ε
N−p
p Hε,λ, (4.4)

C0 being the same constant as in (1.4). Setting

Gε,λ =
C0

C1

ε−
N−p
p PUε,λ and Γε =

C0

C1

ε−
N−p
p Uε, (4.5)

then (4.4) rewrites as

Gε,λ = Γε +Hε,λ.

In particular, recalling the de�nition of Uε, we obtain that

Γε =
C0

(εp + |y − x|
p
p−1 )

N−p
p

.

At this point we observe that

−∆p(Gε,λ) =

(
C0

C1

ε−
N−p
p

)p−1

(−∆pPUε,λ) = λGp−1
ε,λ +

(
C0

C1

ε−
N−p
p

)p−1

Up∗−1
ε ,

in view of (4.1). Thus Gε,λ solves the problem
−∆pGε,λ = λGp−1

ε,λ + fε in Ω

Gε > 0 in Ω

Gε,λ = 0 on ∂Ω,

(4.6)

where fε =
(
C0

C1
ε−

N−p
p
)p−1

Up∗−1
ε .

Lemma 4.1.1. fε ⇀ δx weakly as ε→ 0 in the sense of measures in Ω.
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Proof. Let ϕ ∈ C∞0 (Ω). We de�ne Ωε = {z : z = y−x
εp−1 , y ∈ Ω}. Then∫

Ω

fεϕ =

(
C0

C1

ε−
N−p
p

)p−1 ∫
Ω

Up∗−1
ε (y)ϕ(y)dy

=

(
C0

C1

ε−
N−p
p

)p−1 ∫
Ω

Cp∗−1
1 ε

N(p−1)
p

+1

(εp + |y − x|
p
p−1 )

N(p−1)
p

+1
ϕ(y)dy

=

(
C0

C1

)p−1 ∫
Ωε

Cp∗−1
1 ϕ(εp−1z + x)

(1 + |z|
p
p−1 )

N(p−1)
p

+1
dz

→
[(

C0

C1

)p−1 ∫
RN

(
C1

(1 + |z|
p
p−1 )

N−p
p

)p∗−1

dz

]
ϕ(x) = ϕ(x)

as ε → 0, since Ωε converges to the whole space RN , and in view of the

de�nition of C0 and C1.

Remark 4.1.2. It is known by [24] that there exists a weak solution Gε,λ of

(4.6), that is Gε,λ ∈ W 1,p
0 (Ω) such that∫

Ω

|∇Gε,λ|p−2〈∇Gε,λ,∇ϕ〉 = λ

∫
Ω

Gp−1
ε,λ ϕ+

∫
Ω

fεϕ ∀ϕ ∈ W 1,p
0 (Ω).

With the aid of the de�nition of Gε,λ and (4.6), we can consider Hε,λ as the

weak solution of the following problem−∆p(Γε +Hε,λ) + ∆pΓε = λGp−1
ε,λ in Ω

Hε,λ = −Γε on ∂Ω.
(4.7)

It will be useful also the following decomposition of Gε,λ:

Gε,λ = χΓε + Ĥε,λ. (4.8)

Here χ is a cut-o� function which is equal to 1 in Bξ(x) ⊂ Ω for some radius

ξ > 0 and equal to 0 near the boundary. We have that, in a weak sense,−∆p(χΓε + Ĥε,λ) + ∆p(χΓε) = λGp−1
ε,λ + gε in Ω

Ĥε,λ = 0 on ∂Ω,
(4.9)

where gε = fε + ∆p(χΓε).
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Lemma 4.1.3. The function gε in (4.9) converges uniformly to the function

g in (1.7) as ε→ 0.

Proof. We observe that gε = g = 0 in Bξ(x) where χ = 1. In Ω \ Bξ(x)

we have that Γε → Γ does hold uniformly (even for the derivatives). Then,

recalling the de�nition of Γε, we get

gε = fε + ∆p(χΓε) =

(
C0

C1

ε−
N−p
p

)p−1

Up∗−1
ε + ∆p(χΓε)

=

(
C1

C0

) p2

N−p

εpΓp
∗−1
ε + ∆p(χΓε)→ ∆p(χΓ) = g

uniformly as ε→ 0.

We are going to prove an expansion for PUε,λ, solution of (4.1), which will

be crucial in the proof of Theorem 1.0.2.

Before turning to the main result of this section, we show that a uniform

estimate holds for Hε,λ. We will use the following lemma, the proof of which

is the same as in Lemma 2.1.1, provided that j is replaced by ε.

Lemma 4.1.4. Let Gε,λ be a solution of (4.6). Assume p >
√
N . Then

‖Gp−1
ε,λ ‖1 is uniformly bounded.

Now we are able to prove the uniform local bound of Hε,λ.

Proposition 4.1.5. Let Hε,λ be a solution of (4.7). Assume p > max{
√
N, N

2
}.

Then there exist positive constants p0, ε0 and C, which do not depend on ε,

such that for R ≥ εp−1 small

‖Hε,λ‖∞,R ≤ C(R
− N
p0 ‖Hε,λ‖p0,2R +R

ε0
p−1 ). (4.10)

Proof. Before turning to the estimates it is worth noting that we are not

able to apply Proposition 3.1.1 and Corollary 3.1.4 since Γ is replaced by

Γε. Even if the hypothesis |∇Hε,λ| = O(|∇Γε|) is not needed being p > 2,

we observe that in the proof of Proposition 3.1.1 we use that |∇Γ| ≥ δ > 0,

which does not hold for Γε. Then we adapt the proof as follows.
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Inequality (3.19) rewrites as∫
B2

|∇Γ̃ε|p−2ηp|∇v|2 ≤ C|β−1+p|α
(∫

B2

|∇η|2v2 +

∫
B2

|∇η|pv2 +

∫
B2

ηpv2

)
,

(4.11)

where α = 2 + p(p−ε0)
ε0

and Γ̃ε(z) = R
N−p
p−1 Γε(Rz). We observe that

|∇Γ̃ε| = R
N−1
p−1

|Rz|
1
p−1

(εp + |Rz|
p
p−1 )

N
p

=
|z|

1
p−1

(εpR−
p
p−1 + |z|

p
p−1 )

N
p .

Assuming R ≥ εp−1, we have that |∇Γ̃ε|p−2 ≥ δ|z|
p−2
p−1 for some δ > 0. Thus

(4.11) yields∫
B2

|z|
p−2
p−1ηp|∇v|2 ≤ C|β − 1 + p|α

(∫
B2

|∇η|2v2 +

∫
B2

|∇η|pv2 +

∫
B2

ηpv2

)
,

that is, letting γ = η
p
2 ,∫

B2

|z|
p−2
p−1 |∇(γv)|2 ≤ C|β − 1 + p|α

(∫
B2

|∇η|2v2 +

∫
B2

|∇η|pv2 +

∫
B2

ηpv2

)
.

(4.12)

Consider vj ∈ C∞0 (B2) converging to γv in H1
0 (B2) as j → +∞. Application

of Ca�arelli-Kohn-Nirenberg inequality to vj with a = − p−2
2(p−1)

and b = 0 (see

Theorem 2.2.6) gives(∫
B2

|vj|c
) 2

c

≤ C̃

∫
B2

|z|
p−2
p−1 |∇vj|2, (4.13)

where c = 2N
N−2−2a

= 2N(p−1)
N(p−1)−p . Letting j → +∞, with the aid of Fatou's

lemma and Lebesgue's theorem in (4.13) we obtain(∫
B2

|γv|c
) 2

c

≤ C|β−1+p|α
(∫

B2

|∇η|2v2 +

∫
B2

|∇η|pv2 +

∫
B2

ηpv2

)
(4.14)

in view of (4.12). Since c > 2, we are able to apply the iterative scheme and

then we obtain

‖Hε,λ‖∞,R ≤ C(R
− N
p0 ‖Hε,λ‖p0,2R +R

ε0
p−1‖Gε,λ‖N(p−1)

p−ε0
,2R

). (4.15)

At this point, Lemma 4.1.4 together with the results in [5] yield the uniform

boundedness of Gε,λ inW
1,q
0 (Ω) for all q < q̄, and then in Lr(Ω) for all r < q̄∗
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in view of the Sobolev embedding. Since p > N
2
, we are able to choose ε0 > 0

such that N(p−1)
p−ε0 < N(p−1)

N−p . Thus there exists a constant C̃, which does not

depend on ε, such that ‖Gε,λ‖N(p−1)
p−ε0

≤ C̃. Therefore, using (4.15), we obtain

the desired conclusion.

Remark 4.1.6. Proposition 4.1.5 holds even if we consider Hε,λ + c instead of

Hε,λ, c being a constant, in view of the form of problem (4.7).

With the aid of [4] as in Section 2.1 we have that, for all q < q̄, Gε,λ → Gλ

in W 1,q
0 (Ω), Gλ = Gλ(·, x) being the Green function with pole at x, and

Hε,λ → Hλ in W 1,q(Ω) as ε→ 0, (4.16)

where Hλ = Hλ(·, x) is the regular part of Gλ. Taking into account these

facts, we get the following convergence result for Hε,λ.

Proposition 4.1.7. Let Hε,λ and Hλ be solutions of problems (4.7) and (1.6)

respectively. Assume p > max{
√
N, N

2
}. Then

‖Hε,λ −Hλ‖∞ → 0 as ε→ 0. (4.17)

Proof. Assume by contradiction that (4.17) does not hold. Then there exist

δ > 0 and a sequence εn converging to 0 such that ‖Hεn,λ−Hλ‖∞ ≥ δ. Then

we can �nd a sequence xn ∈ Ω which satis�es1

|Hεn,λ(xn)−Hλ(xn)| ≥ δ. (4.18)

By compactness, there exists x0 ∈ Ω̄ such that xn → x0 as n→ +∞. Using

the regularity of Hε,λ away from the pole x, we get x0 = x. Thus (4.18) gives

|Hεn,λ(xn)−Hλ(x)| ≥ δ

2
, (4.19)

in view of the continuity of Hλ in Ω.

Application of Proposition 4.1.5 and Remark 4.1.6 with c = −Hλ(x) yields

‖Hεn,λ −Hλ(x)‖∞,R ≤ C
(
R
− N
p0 ‖Hεn,λ −Hλ(x)‖p0,2R +R

ε0
p−1
)
, R ≥ εp−1

n .

1For ease of notation we will write Hλ(·) instead of Hλ(·, x).
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As a consequence, for a small radius R ≥ εp−1
n we obtain

|Hεn,λ(xn)−Hλ(x)| ≤ C
(
R
− N
p0 ‖Hεn,λ −Hλ(x)‖p0,2R +R

ε0
p−1
)
∀n ≥ n0,

(4.20)

n0 being chosen in such a way that xn ∈ BR(x) for all n ≥ n0. We observe

that the right-hand side of (4.20) is uniformly bounded in n. Indeed Hεn is

uniformly bounded in W 1,q(Ω) for all q < q̄, and then in Lr(Ω) for all r < q̄∗

by virtue of the Sobolev embedding applied to Ĥεn,λ. Recalling (4.16), we

can pass to the limit n→ +∞ in (4.20) and we get

lim
n→+∞

|Hεn,λ(xn)−Hλ(x)| ≤ C
(
R
− N
p0 ‖Hλ −Hλ(x)‖p0,2R +R

ε0
p−1
)

(4.21)

since we are able to choose p0 < q̄∗. Notice that (4.21) holds for any R > 0,

since limn→+∞ εn = 0.

At this point we let R → 0 in (4.21). We study the �rst term in the right-

hand side of (4.21).

‖Hλ −Hλ(x)‖p0,2R =

(∫
B2R(x)

|Hλ(y)−Hλ(x)|p0dy

) 1
p0

≤ C

(∫
B2R(x)

|y − x|αp0dy

) 1
p0

≤ C̃R
α+ N

p0 ,

in view of the Hölder continuity of H at the pole x. Then (4.21) becomes

lim
n→+∞

|Hεn,λ(xn)−Hλ(x)| ≤ C(Rα +R
ε0
p−1 )→ 0 as R→ 0, (4.22)

since α and ε0 are positive constants. This concludes the proof, being (4.22)

in contradiction with (4.19).

Corollary 4.1.8. Assume p > max{
√
N, N

2
}. Then the expansion

PUε,λ = Uε +
C1

C0

ε
N−p
p Hλ + o

(
ε
N−p
p
)

(4.23)

does hold uniformly as ε→ 0.

Proof. We recall that PUε,λ decomposes as

PUε,λ = Uε +
C1

C0

ε
N−p
p Hε,λ.

Thus, application of Proposition 4.1.7 yields (4.23).
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4.2 Proof of Theorem 1.0.2

We are going to discuss the implications in Theorem 1.0.2.

Proof of (i)⇒ (ii) in Theorem 1.0.2. In order to show Sλ < S, we de�ne

Qλ(u) =
‖∇u‖pp − λ‖u‖pp

‖u‖pp∗
(4.24)

for u ∈ W 1,p
0 (Ω), u 6= 0. For ease of notation we assume x = 0. The idea is

to estimate Qλ(PUε,λ), using the expansion (4.23) and the properties of the

standard bubble Uε de�ned in (4.2).

Since PUε,λ is a solution of (4.1), we have that

‖∇PUε,λ‖pp − λ‖PUε,λ‖pp =

∫
Ω

(−∆pPUε,λ − λPUp−1
ε,λ )PUε,λ =

∫
Ω

Up∗−1
ε PUε,λ

=

∫
Ω

Up∗

ε +
C1

C0

ε
N−p
p

∫
Ω

Up∗−1
ε Hλ + o

(
ε
N−p
p

∫
Ω

Up∗−1
ε

)
,

(4.25)

in view of (4.23). We set Ωε = {z : z = y
εp−1 , y ∈ Ω}. We observe that∫

Ω

Up∗

ε =

∫
Ω

Cp∗

1 ε
N

(εp + |y|
p
p−1 )N

dy

=

∫
Ωε

Cp∗

1

(1 + |z|
p
p−1 )N

dz =

∫
RN
Up∗

1 +O(εN)

in view of ∫
{|z|>ε−(p−1)}

1

|z|
Np
p−1

= O(εN).
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Moreover

ε
N−p
p

∫
Ω

Up∗−1
ε Hλ = ε

N−p
p

+N(p−1)+Np−N+p
p

−(Np−N+p)

∫
Ωε

Up∗−1
1 (z)Hλ(ε

p−1z)dz

= εN−p
∫

Ωε

Up∗−1
1 (z)[Hλ(ε

p−1z)−Hλ(0) +Hλ(0)]

= εN−pHλ(0)

∫
RN
Up∗−1

1 +O

(
εN−p+α(p−1)

∫
Rn
Up∗−1

1 |z|α
)

+O

(
εN−p

∫
{|z|>ε−(p−1)}

Up∗−1
1

)
= εN−pHλ(0)

∫
RN
Up∗−1

1 +O(εN−p+α(p−1)) +O(εN)

= εN−pHλ(0)

∫
RN
Up∗−1

1 +O(εN−p+α(p−1)),

where we have used the Hölder continuity of Hλ with respect to 0 and the

fact that
∫
Rn U

p∗−1
1 |z|α < +∞. As for the last term in (4.25), we get

o

(
ε
N−p
p

∫
Ω

Up∗−1
ε

)
= o(εN−p). (4.26)

Indeed ∫
Ω

Up∗−1
ε =

∫
Ω

Cp∗−1
1 ε

Np−N+p
p

(εp + |y|
p
p−1 )

Np−N+p
p

dy = O
(
ε
Np−N+p

p
−p)

and then (4.26) follows, in view of∫
{|z|>ε−(p−1)}

1

|z|
p
p−1

(p∗−1)
= O

(
ε
Np−N+p

p
−p)

being p > N
2
. As a consequence, letting L =

∫
RN U

p∗−1
1 , (4.25) rewrites as

‖∇PUε,λ‖pp − λ‖PUε,λ‖pp =

∫
RN
Up∗

1 + L
C1

C0

Hλ(0)εN−p + o(εN−p). (4.27)

At this point we are going to study ‖PUε,λ‖pp∗ . With the aid of Taylor ex-

pansion, we get

|PUε,λ|p
∗

= Up∗

ε + p∗Up∗−1
ε

[
C1

C0

ε
N−p
p Hλ + o

(
ε
N−p
p
)]

+O

(
Up∗−2
ε

[
ε
N−p
p Hλ + o

(
ε
N−p
p
)]2

+
[
ε
N−p
p Hλ + o

(
ε
N−p
p
)]p∗)

,
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in view of (4.23). Then, using the boundedness of Hλ, we obtain∫
Ω

|PUε,λ|p
∗

=

∫
Ω

Up∗

ε + p∗
C1

C0

ε
N−p
p

∫
Ω

Up∗−1
ε Hλ + o

(
ε
N−p
p

∫
Ω

Up∗−1
ε

)
+O

(
ε

2(N−p)
p

∫
Ω

Up∗−2
ε

)
+O

(∫
Ω

[
ε
N−p
p Hλ + o

(
ε
N−p
p
)]p∗)

.

We observe that

ε
2(N−p)

p

∫
Ω

Up∗−2
ε = ε

2(N−p)
p

∫
Ω

Cp∗−2
1 ε

Np−2N+2p
p

(εp + |y|
p
p−1 )

Np−2N+2p
p

dy

= ε
2(N−p)

p
+2(N−p+1−N

p
)

∫
Ωε

Up∗−2
1 = O(ε2(N−p)).

Using the same calculations as before, we obtain∫
Ω

|PUε,λ|p
∗

=

∫
RN
Up∗

1 + p∗L
C1

C0

Hλ(0)εN−p + o(εN−p). (4.28)

At this point, expansions (4.27) and (4.28) yield

Qλ(PUε,λ) =
L1 + LC1

C0
Hλ(0)εN−p + o(εN−p)(

L1 + p∗LC1

C0
Hλ(0)εN−p + o(εN−p)

)N−p
N

, (4.29)

where L1 =
∫
RN U

p∗

1 . With the aid of Taylor expansion, (4.29) gives

Qλ(PUε,λ) = L
p
N
1 − (p− 1)L

p−N
N

1 L
C1

C0

εN−pHλ(0) + o(εN−p). (4.30)

Recalling the de�nition of S, we have that

S =

∫
RN |∇U1|p

(
∫
RN U

p∗

1 )
p
p∗

=
L1

L
p(N−p)
Np

1

= L
p
N
1 ,

in view of −∆pU1 = Up∗−1
1 in RN . Thus (4.30) rewrites as

Qλ(PUε,λ) = S − (p− 1)L
p−N
N

1 L
C1

C0

εN−pHλ(0) + o(εN−p). (4.31)

Since Hλ(0) > 0 and recalling (1.12), then for ε > 0 small the expansion

(4.31) yields Sλ ≤ Qλ(PUε,λ) < S and we get (ii).
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The implication (ii) implies (iii) in Theorem 1.0.2 is classical and it is given

by Lemma 1.2.11.

At this point we assume (1.14). Let λn = λ∗ + 1
n
. Since λn > λ∗, we have

that Sλn < S. Thus Sλn is achieved and, up to a normalization, we can �nd

some smooth positive function un ∈ W 1,p
0 (Ω) verifying−∆pun − λnup−1

n = up
∗−1
n in Ω∫

Ω
up
∗
n = S

N
p

λn
.

(4.32)

Our goal now is to study un as n → +∞. Since λ∗ < λ1, by (4.32) un is

uniformly bounded in W 1,p
0 (Ω) and then, after passing to a subsequence, un

converges weakly to some u∗ in W
1,p
0 (Ω). Observing that

Qλn(u) = Qλ∗(u) +
(λ∗ − λn)‖u‖pp
‖u‖pp∗

= Qλ∗(u) +O

(
1

n

)
,

we deduce that Sλn → Sλ∗ as n → +∞. By passing to the limit in (4.32),

we obtain that u∗ veri�es−∆pu∗ − λ∗up−1
∗ = up

∗−1
∗ in Ω∫

Ω
up
∗
∗ ≤ S

N
p

λ∗
.

(4.33)

Thus

Sλ∗ ≤ Qλ∗(u∗) =

(∫
Ω

up
∗

∗

) p
N

≤ Sλ∗

if u0 6= 0, which would imply that Sλ∗ is achieved by u∗. Since this is not

possible, we get that u∗ = 0 and

un ⇀ 0 in W 1,p
0 (Ω), un → 0 in Lq(Ω) for 1 ≤ q < p∗ and a.e. in Ω,

(4.34)

in view of the Sobolev embedding theorem.

We observe that 0 < un ∈ C1,α(Ω̄) for some α ∈ (0, 1) as follows by elliptic

regularity theory [11, 30, 33] to (4.32). Using (4.34) and since
∫

Ω
up
∗
n = S

N
p

λn
,

we have that ‖un‖∞ → +∞ as n → +∞. For this reason we will start a

blow-up analysis to describe the behavior of un. To this purpose, let xn be a

point of Ω where un achieves its maximum. We set

µn =
[
un(xn)

]− p
N−p and Un(z) = µ

N−p
p

n un(µnz + xn), (4.35)
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for z ∈ Ωn = {y−xn
µn

: y ∈ Ω}. In particular µn represents the blow-up speed,

while Un is the blow-up pro�le. Since∫
Ω

up
∗

n ≤
(
un(xn)

)p∗−p ∫
Ω

upn = µ−pn

∫
Ω

upn,

it is clear by (4.34) that µn → 0 as n→ +∞. Moreover, Un satis�es−∆pUn − λnµpnUn = Up∗−1
n in Ωn

Un = 0 on ∂Ωn,
(4.36)

with 0 < Un ≤ Un(0) = 1 and supn∈N
∫

Ωn
Up∗
n +

∫
Ωn
|∇Un|p < +∞. By

standard elliptic estimates [11, 30, 33], we get that Un is uniformly bounded

in C1,α(K ∩ Ωn), for all compact subset K of RN . Then, for all z ∈ ∂Ωn:

1 = Un(0)− Un(z) = 〈∇Un(ξn),−z〉 ≤ C|z|.

As a consequence, we obtain that

dist(xn, ∂Ω)

µn
= dist(0, ∂Ωn) ≥ 1

C
.

Hence, up to a subsequence, we can assume that

lim
n→+∞

dist(xn, ∂Ω)

µn
= L ∈

[
1

C
,+∞

]
and then, up to a subsequence,

Un → U in C1
loc

(Ω̄∞), (4.37)

where Ω∞ is an half-space so that dist(0, ∂Ω∞) = L and U solves−∆pU = Up∗−1 in Ω∞

U = 0 on ∂Ω∞,

with U ∈ D1,p(Ω∞) such that 0 ≤ U ≤ U(0) = 1 in Ω∞. If L < +∞, then

U ∈ D1,p
0 (Ω∞) and by [29] results U = 0, contradicting U(0) = 1. Hence

lim
n→+∞

dist(xn, ∂Ω)

µn
= +∞, (4.38)
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and we have that U coincides with U∞ = (1+Λ|y|
p
p−1 )−

N−p
p , Λ = C

− p2

(N−p)(p−1)

1 ,

in view of (4.2) with x = 0 and ε = C
p

(N−p)(p−1)

1 to have U∞(0) = 1. Since

Un(y) = µ
N−p
p

n un(µny + xn)→ (1 + Λ|y|
p
p−1 )−

N−p
p uniformly for y ∈ BR

(4.39)

as n→ +∞ for all R > 0, then

lim
R→+∞

lim
n→+∞

∫
BRµn (xn)

up
∗

n =

∫
RN
Up∗

∞ = S
N
p

λ∗
. (4.40)

As a consequence, recalling the energy information limn→+∞
∫

Ω
up
∗
n = S

N
p

λ∗
,

we obtain

lim
R→+∞

lim
n→+∞

∫
Ω\BRµn (xn)

up
∗

n = 0.

This property will reveal crucial in the blow-up description of un.

Up to a subsequence, assume that xn → x ∈ Ω̄. The following lemma will be

useful to establish the main technical point in the proof of the implication

(iii)⇒ (i) in Theorem 1.0.2, that is a comparison between un and the bubble

Un(y) =
µ

N−p
p(p−1)
n

(µ
p
p−1
n + Λ|y − xn|

p
p−1 )

N−p
p

, Λ = C
− p2

(N−p)(p−1)

1 . (4.41)

Thanks to such a fundamental estimate, we will be able to obtain (i) by using

Pohozaev-type identities.

Lemma 4.2.1. Under the hypothesis of Theorem 1.0.2, let un be as in (4.32).

Then

un → 0 in Cloc(Ω̄ \ {x}). (4.42)

Moreover, the following pointwise estimates do hold:

lim
n→+∞

sup
Ω
|y − xn|

N−p
p un < +∞, (4.43)

lim
R→+∞

lim
n→+∞

sup
Ω\BRµn (xn)

|y − xn|
N−p
p un = 0. (4.44)
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Proof. In order to prove (4.42), assume that B̄2 ⊂ RN \{x}. Let h and h′ be

real numbers such that 1 ≤ h < h′ ≤ 2 and let η be a nonnegative smooth

function satisfying (2.44) and (2.45). Using ηpuβn with β ≥ 1 as test function

in the weak formulation of (4.32), we get∫
Ω

βpp

(β − 1 + p)p
ηp
∣∣∣∣∇(uβ−1+p

p
n

)∣∣∣∣p + p

∫
Ω

uβnη
p−1〈∇η,∇un〉|∇un|p−2

=

∫
Ω

λnη
puβ−1+p

n +

∫
Ω

ηpup
∗−1+β
n . (4.45)

Set wn = u
β−1+p
p

n . Observing that

uβn∇un|∇un|p−2 ≤ uβn|∇un|p−1 = wnu
(p−1)(β−1)

p
n |∇un|p−1,

we obtain

p

∫
Ω

uβnη
p−1〈∇η,∇un〉|∇un|p−2 = O

(∫
Ω

1

(β − 1 + p)p−1
ηp−1|∇η|wn|∇wn|p−1

)
.

We study the right-hand side of (4.45). Application of Hölder inequality

yields, for ε0 > 0 su�ciently small,∫
Ω

λnη
puβ−1+p

n =

∫
Ω

λnη
pwpn ≤ C‖ηwn‖pp ≤ C‖ηwn‖p−ε0p∗ ‖ηwn‖ε0p ,

∫
Ω

ηpup
∗−1+β
n ≤ C

(∫
Ω\B̄2

up
∗−1
n

) p−ε0
N

‖ηwn‖p−ε0p∗ ‖ηwn‖ε0p .

With the aid of these estimates and since

C‖ηwn‖p−ε0p∗ ‖ηwn‖ε0p ≤ C ′‖ηwn‖ε0p (‖∇ηwn‖p + ‖η∇wn‖p)p−ε0

≤ βpp

2(β − 1 + p)p

∫
Ω

ηp|∇wn|p + C

(
(β − 1 + p)p

β

) p−ε0
ε0
∫

Ω

ηpwpn

+ C

∫
Ω

|∇η|pwpn + C

∫
Ω

ηpwpn,

(4.45) rewrites as

β

(β − 1 + p)p

∫
Ω

ηp|∇wn|p ≤ C

∫
Ω

|∇η|pwpn

+ C

[
1 +

(
(β − 1 + p)p

β

) p−ε0
ε0

] ∫
Ω

ηpwpn,
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in view of
∫

Ω\B̄2
up
∗−1
n = O(1). Since β ≥ 1, it follows that∫

Ω

ηp|∇wn|p ≤ C(β − 1 + p)p
[∫

Ω

|∇η|pwpn + (β − 1 + p)
p(p−ε0)
ε0

∫
Ω

ηpwpn

]
.

Application of Sobolev inequality yields

‖ηwn‖pp∗ ≤ C

[(
(β − 1 + p)p + 1

) ∫
Ω

|∇η|pwpn + (β − 1 + p)
p2(p−ε0)

ε0

∫
Ω

ηpwpn

]
.

(4.46)

At this point we observe that (4.34) implies that wpn = uβ−1+p
n → 0 in L1(B̄2∩

Ω) if 1 ≤ β < p∗−p+1. Then, using (4.46), wp
∗
n = u

β−1+p
p

p∗

n → 0 in L1(B1∩Ω),

yielding un → 0 in Ls(B1 ∩ Ω) for s < N
N−pp

∗. Now, for ε0 su�ciently small∫
Ω

(λn + up
∗−p
n )ηpwpn ≤ ‖λn + up

∗−p
n ‖ N

p−ε0
‖ηwn‖p−ε0p∗ ‖ηwn‖ε0p

≤ C(1 + ‖un‖p
∗−p

(p∗−p)N
p−ε0

)‖ηwn‖p−ε0p∗ ‖ηwn‖ε0p

≤ C‖ηwn‖p−ε0p∗ ‖ηwn‖ε0p ,

in view of (p∗−p)N
p

= p∗ < N
N−pp

∗. Application of the iterative scheme in [30]

as in the proof of Proposition 2.2.7 yields

‖un‖∞,B1∩Ω ≤ C‖un‖p,B2∩Ω → 0,

from which follows (4.42).

In order to prove(4.43), assume by contradiction that there exists yn ∈ Ω

such that

|yn − xn|
N−p
p un(yn) = max

Ω
|y − xn|

N−p
p un → +∞ as n→ +∞. (4.47)

Setting νn =
[
un(yn)

]− p
N−p , we have that νn → 0 and |yn−xn|

νn
→ +∞ as n→

+∞. Since |yn−xn|
N−p
p un(yn) =

( |yn−xn|
µn

)N−p
p Un

(
yn−xn
µn

)
is bounded if |yn−xn|

µn

is bounded, then |yn−xn|
µn

→ +∞ as n→ +∞. Set Vn(z) = ν
N−p
p

n un(νnz + yn)

for z ∈ Ω̃n = {y−yn
νn

: y ∈ Ω}. Then Vn(0) = 1 and

0 ≤ Vn(y) ≤ ν
N−p
p

n |νny + yn − xn|−
N−p
p |yn − xn|

N−p
p un(yn)

=

(
|yn − xn|

|νny + yn − xn|

)N−p
p

≤ 2
N−p
p
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holds uniformly for |y| ≤ 1
2
|yn−xn|
νn

. Moreover Vn satis�es−∆pVn − λnνpnV p−1
n = V p∗−1

n in Ω̃n

Vn = 0 on ∂Ω̃n,

with
∫

Ω̃n
V p∗
n ≤ 1 and

∫
Ω̃n
|∇Vn|p ≤ C. By standard elliptic estimates [11,

30, 33], we get that Vn is uniformly bounded in C1,α(K ∩ Ω̃n) for all compact

subset K of RN . Then 1 = Vn(0) − Vn(z) ≤ C|z| for all z ∈ ∂Ω̃n. As a

consequence
dist(yn, ∂Ω)

νn
= dist(0, ∂Ω̃n) ≥ 1

C
.

Hence, up to a subsequence, we have that

lim
n→+∞

dist(yn, ∂Ω)

νn
= L ∈

[
1

C
,+∞

]
and Vn → V in C1

loc
(Ω̃∞), where Ω̃∞ is an half-space so that dist(0, ∂Ω̃∞) = L.

Moreover, V ∈ D1,p
0 (Ω̃∞) solves−∆pV = V p∗−1 in Ω̃∞

V = 0 on ∂Ω̃∞,

with 0 ≤ V ≤ 2
N−p
p in Ω̃∞. If L < +∞, by [29] results V = 0, contradicting

V (0) = 1. Hence L = +∞, V = U∞ and limR→+∞ limn→+∞
∫
BRνn (yn)

up
∗
n =

S
N
p

λ∗
. This implies

lim
R→+∞

lim
n→+∞

∫
Ω

up
∗

n ≥ lim
R→+∞

lim
n→+∞

(∫
BRµn (xn)

up
∗

n +

∫
BRνn (yn)

up
∗

n

)
= 2S

N
p

λ∗
,

which contradicts
∫

Ω
up
∗
n = S

N
p

λ∗
. Thus (4.43) is proved.

A simple adaptation of the proof of (4.43) gives (4.44) In this case we assume

by contradiction that there exist yn ∈ Ω and δ > 0 such that

|yn − xn|
N−p
p un(yn) = sup

Ω\BRµn (xn)

|y − xn|
N−p
p un ≥ δ as n→ +∞. (4.48)

This implies that yn → x and then un(yn) → +∞ as n → +∞. Using the

same notation as before, we have that νn → 0 as n→ +∞ and

xn − yn
νn

→ p as n→ +∞,
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with p 6= 0,+∞ in view of (4.43) and (4.48). Let η be a radius such that

B ηνn
2

(yn) ⊂ Ω\BRµn(xn) for all R > 0 provided n is su�ciently large. Assume

z ∈ Ω̃n \Bη

(
xn−yn
νn

)
. Then it is easy to check that

η
N−p
p Vn(z) ≤

∣∣∣∣z − xn − yn
νn

∣∣∣∣N−pp Vn(z) = |νnz + yn − xn|
N−p
p un(νnz + yn) ≤ C

in view of (4.43). Thus

Vn ≤ Cη−
N−p
p in Ω̃n \Bη

(
xn − yn
νn

)
.

As a consequence, passing to the limit as n→ +∞ we get

Vn → V in Ω∞ \ {p}.

Since V ≥ 0 solves −∆pV = V p∗−1 in Ω̃∞, by the strong maximum principle

in [36] we obtain that V > 0 in Ω̃∞ in view of V (0) = 1 thanks to 0 ∈ Ω̃∞.

In particular ∫
B η

2

V p∗ > 0. (4.49)

Recalling the de�nition of Vn, we have that∫
B η

2

V p∗

n =

∫
B ηνn

2
(yn)

up
∗

n =

∫
B ηνn

2
(yn)∩BRµn (xn)

up
∗

n +

∫
B ηνn

2
(yn)\BRµn (xn)

up
∗

n = 0,

which contradicts (4.49). This concludes the proof of (4.44).

At this point we give the proof of the comparison between un and the bubble

Un de�ned by (4.41).

Lemma 4.2.2. Under the hypothesis of Theorem 1.0.2, let un be as in (4.32).

Then there exists C > 0 so that

un ≤
Cµ

N−p
p(p−1)
n

(µ
p
p−1
n + Λ|y − xn|

p
p−1 )

N−p
p

in Ω (4.50)

does hold for all n ∈ N.
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Proof. Since the inequality (4.50) clearly holds in BRµn(xn) for all R > 0

in view of (4.39), it remains to prove that it is true in Ω \ BRµn(xn). Then

(4.50) is equivalent to establish the estimate

un ≤
Cµ

N−p
p(p−1)
n

|y − xn|
N−p
p−1

in Ω \BRµn(xn) (4.51)

for some C,R > 0 and for all n ∈ N.
For % > 0 and 0 < δ < N−p

p−1
we de�ne

Mn = sup
∂B%(x)∩Ω

un, Φn = C
µ

N−p
p(p−1)

−δ
n +Mn

|y − xn|
N−p
p−1
−δ
.

The proof of (4.51) is divided into 3 steps.

Step 1. Our aim is to prove the following estimate:

un ≤ Φn in Ω \BRµn(xn). (4.52)

We observe that

∇Φn = C

(
−N − p
p− 1

+ δ

)(
µ

N−p
p(p−1)

−δ
n +Mn

)
|y − xn|

p−N
p−1

+δ−2(y − xn).

Then

|∇Φn| = C

(
N − p
p− 1

− δ
)(

µ
N−p
p(p−1)

−δ
n +Mn

)
|y − xn|

1−N
p−1

+δ.

Easy computations lead to

−∆pΦn =

[
C

(
N − p
p− 1

− δ
)(

µ
N−p
p(p−1)

−δ
n +Mn

)]p−1

div(|y − xn|−N+δ(p−1)(y − xn))

=

[
C

(
N − p
p− 1

− δ
)(

µ
N−p
p(p−1)

−δ
n +Mn

)]p−1

δ(p− 1)|y − xn|−N+δ(p−1)

=

(
N − p
p− 1

− δ
)p−1

δ(p− 1)
Φp−1
n

|y − xn|p
.

Thanks to (4.44), we may choose R such that, for all n large,

up
∗−p
n ≤ ε

|y − xn|p
in Ω \BRµn(xn) (4.53)
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for some 0 < ε < 1. We observe that

−∆pun −
(
λn +

ε

|y − xn|p

)
up−1
n =

(
up
∗−p
n − ε

|y − xn|p

)
vp−1
n . (4.54)

Let Ln be the operator

Lnu = −∆pu−
(
λn +

ε

|y − xn|p

)
up−1.

Then (4.53) and (4.54) yield

Lnun ≤ 0 in Ω \BRµn(xn). (4.55)

We have that

LnΦn = −∆pΦn −
(
λn +

ε

|y − xn|p

)
Φp−1
n

=

[(
N − p
p− 1

− δ
)p−1

δ(p− 1)− (λn|y − xn|p + ε)

]
Φp−1
n

|y − xn|p
.

Then, for a suitable choice of %, we obtain

LnΦn ≥ 0 in B%(x) ∩ Ω \BRµn(xn). (4.56)

Thus Lnun ≤ LnΦn in B%(x) ∩ Ω \ BRµn(xn), in view of (4.55) and (4.56).

Since it easily seen that

un ≤ Φn on ∂
(
Ω ∩B%(xn) \BRµn(xn)

)
,

in view of (4.39) applied on ∂BRµn(xn), we obtain

un ≤ Φn in Ω ∩B%(x) \BRµn(xn). (4.57)

Our aim now is to extend the validity of (4.57) from Ω ∩ B%(x) \ BRµn(xn)

to Ω \BRµn(xn). We set A = Ω \B%(x). Letting vn = un
Mn

, we have that
−∆pvn − λnvp−1

n = fn in Ω

vn = 0 on ∂Ω

sup
Ω∩∂B%(x)

vn = 1,

(4.58)
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where fn = up
∗−1
n

Mp−1
n

. We observe that the equation in (4.58) can be rewritten

as −∆pvn− anvp−1
n = 0, with an = λn +u

p2

N−p
n . In particular, using (4.42), we

have that an converges to λ∗ in L
∞(A) as n→∞, with λ∗ < λ1(Ω) < λ1(A).

Since 0 ≤ vn ≤ 1 on ∂A, we are able to apply Lemma A.2.3 in Appendix,

yielding supn∈N ‖vn‖p−1,A < +∞. Moreover, since vn ∈ W 1,p
g (A) for some

g ∈ L∞(a) ∩W 1,p(A) such that g ≤ 1 on ∂A, application of Theorem A.2.2

in Appendix provides a universal bound on vn−g inW 1,q
0 (A) for all 1 ≤ q < q̄,

and then on vn in Ls(A) for all 1 ≤ s < q̄∗ in view of Sobolev embedding

theorem. In particular supn∈N ‖vp−1
n ‖q0,A < +∞ for some q0 >

N
p
in view of

q̄∗

p−1
> N

p
thanks to p > N

2
. Let wn be the solution of−∆pwn = fn in A

wn = 0 on ∂A.
(4.59)

Observing that supn∈N ‖fn‖1,A < +∞ thanks to (4.42), with the aid of [5]

and the Sobolev embedding theorem we deduce that supn∈N ‖wn‖q,A < +∞
for all 1 ≤ q < q̄∗. At this point, using (4.58) and (4.59), we obtain

−∆pvn + ∆pwn = λnv
p−1
n in A

vn − wn ≤ 1 on ∂B%(x) ∩ A

vn − wn = 0 on ∂Ω ∩ A.

(4.60)

Using ϕ = (vn − wn − 1)β+, β > 0, as test function in the weak formulation

of (4.60), we get the following estimate2 in terms of w = (vn−wn− 1)
β−1+p
p

+ :

β

(β − 1 + p)p

∫
A

|∇w|p ≤ C|A|
(q0−1)(p−1)
q0(β−1+p) ‖vp−1

n ‖q0,A‖w‖
βp

β−1+p
pq0
q0−1

,

as a consequence of Hölder inequality with exponents q0(β−1+p)
(q0−1)(p−1)

, q0 and
q0(β−1+p)

(q0−1)β
. By Sobolev embedding theorem we deduce that

‖w‖p∗ ≤ C(β − 1 + p)‖w‖
p

β−1+p
pq0
q0−1

.

2Calculations are similar to those in section 2.2.2, based on Serrin's iterative scheme.

Then some details will be omitted.
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Recalling the de�nition of w and taking the β−1+p
p

-th roots, we get

‖(vn − wn − 1)+‖ (β−1+p)p∗
p

≤ [C(β − 1 + p)]
1

β−1+p‖(vn − wn − 1)+‖
p

β−1+p

q0(β−1+p)
q0−1

,

which is equivalent to

‖(vn − wn − 1)+‖κµ,A ≤
[
Cp

q0 − 1

pq0

µ

] p1
µ

‖(vn − wn − 1)+‖
p1
µ

µ,A,

where κ = (q0−1)p∗

pq0
, µ = q0(β−1+p)

q0−1
and p1 = pq0

q0−1
. Since q0 >

N
p
, then κ > 1

and we are able to �nd β0 > 0 so that µ < q̄∗. Application of iteration

process �nally yields ‖(vn − wn − 1)+‖∞,A ≤ C̃ for some universal C̃ > 0,

and then supn∈N ‖vn − wn‖∞,A < +∞. Therefore supn∈N ‖fn‖q,A < +∞ for

some q > N
p
in view of q̄∗

p−1
> N

p
. With the aid of [30], we obtain that

supn∈N ‖wn‖∞,A < +∞, from which follows that supn∈N ‖vn‖∞,A < +∞.

As a result

sup
A
un ≤ C sup

Ω∩B%(x)

un

for some positive constant C, and (4.52) is so established.

Step 2. Let us now prove that

Mn = o
(
µ

N−p
p(p−1)

−δ
n

)
for all 0 < δ <

N − p
p− 1

. (4.61)

Assume that, on the contrary, there exists C̃ > 0 such that

Mn ≥ C̃µ
N−p
p(p−1)

−δ
n , (4.62)

so that we may rewrite (4.52) as

un ≤
CMn

|y − xn|
N−p
p−1
−δ

in Ω \BRµn(xn). (4.63)

We observe that∫
BRµn (xn)

fn =

∫
BRµn (xn)

up
∗−1
n

Mp−1
n

=
µ
N−p
p

n

Mp−1
n

∫
BR

Up∗−1
n = O

(
µ
N−p
p

n

Mp−1
n

)
,

in view of (4.35) and (4.37). Application of (4.62) gives∫
BRµn (xn)

fn → 0 as n→ +∞.
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On the other hand, inequality (4.63) yields∫
Ω\BRµn (xn)

fn = O

(∫
Ω\BRµn (xn)

Mp∗−1−p+1
n

|y − xn|(
N−p
p−1
−δ)(p∗−1)

)

= O

(∫
Ω\BRµn (xn)

M
p2

N−p
n

|y − xn|N+ p
p−1
−δ(p∗−1)

)

= O

(
M

p2

N−p
n max

{
µ
− p
p−1

+δ(p∗−1)
n , 1

})
.

In particular, if δ > p
(p−1)(p∗−1)

= δ0, we have that∫
Ω\BRµn (xn)

fn = O

(
M

p2

N−p
n

)
→ 0 as n→ +∞.

Since δ0 <
N−p
p−1

, assuming δ ∈ (δ0,
N−p
p−1

), we have that ‖fn‖1 → 0 as n→ +∞.

By [5] it turns out that vn converges to a limit function v in W 1,q
0 (Ω) for all

1 ≤ q < q̄ and in Ls(Ω) for all 1≤ s < q̄∗ as n→ +∞, with

−∆pv − λ∗vp−1 = 0 in Ω. (4.64)

Using ϕ = Tl(vn) as test function in the weak formulation of (4.58), we obtain∫
{|vn|≤l}

|∇vn|p ≤ λn

∫
Ω

vpn + l‖fn‖1. (4.65)

Letting n→ +∞ and then l→ +∞ in (4.65), we deduce∫
Ω

|∇v|p ≤ λ∗

∫
Ω

vp < +∞.

Thus v = 0, since v ∈ W 1,p
0 (Ω) would solve (4.64) with λ∗ < λ1. But this is

impossible in view of the de�nition of vn. Hence

Mn � µ
N−p
p(p−1)

−δ
n , δ ∈

(
δ0,

N − p
p− 1

)
. (4.66)

This estimate is true even if δ = δ0. Indeed in this case we get∫
Ω\BRµn (xn)

fn = O

(
M

p2

N−p
n log µn

)
= O

(
µ

p2

p(p−1)
−δ̄ p2

N−p
n log µn

)
→ 0
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as n→ +∞, for some δ̄ ∈
(
δ0,

N−p
p−1

)
in view of (4.66). Thus

Mn � µ
N−p
p(p−1)

−δ
n , δ ∈

[
δ0,

N − p
p− 1

)
. (4.67)

At this point we set δ1 = p2

(N−p)(p∗−1)
δ0. Assume δ ∈ (δ1, δ0). Then∫

Ω\BRµn (xn)

fn = O

(
M

p2

N−p
n µ

− p
p−1

+δ(p∗−1)
n

)
= O

(
µ
−δ0 p2

N−p+δ(p∗−1)
n

)
→ 0

as n→ +∞, in view of (4.67). Arguing as before, we obtain

Mn � µ
N−p
p(p−1)

−δ
n , δ ∈

(
δ1,

N − p
p− 1

)
. (4.68)

We can improve this estimate by observing that, if δ = δ1,∫
Ω\BRµn (xn)

fn = O

(
M

p2

N−p
n µ

− p
p−1

+ p2

(N−p)(p∗−1)
δ0(p∗−1)

n

)
= O

(
µ

p
p−1
−δ̄ p2

N−p−
p
p−1

+ p2

N−p δ0
n

)
= O

(
µ

p2

N−p (δ0−δ̄)
n

)
→ 0 as n→ +∞,

for some δ̄ ∈ (δ1, δ0) in view of (4.68). Thus

Mn � µ
N−p
p(p−1)

−δ
n , δ ∈

[
δ1,

N − p
p− 1

)
. (4.69)

We set δk =
(

p2

(N−p)(p∗−1)

)k
δ0. We observe that δk → 0 as k → +∞, being

p2

(N−p)(p∗−1)
< 1. With the same arguments than above, we will clearly have

Mn � µ
N−p
p(p−1)

−δ
n , δ ∈

[
δk,

N − p
p− 1

)
Then (4.61) easily follows.

Step 3. Step 1 and Step 2 lead to a weaker form of (4.51), i.e. there exist

C,R > 0 so that

un ≤
Cµ

N−p
p(p−1)

−δ
n

|y − xn|
N−p
p−1
−δ

in Ω \BRµn(xn) (4.70)
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does hold for all n ∈ N, 0 < δ < N−p
p−1

. In order to establish (4.51), we repeat

the previus argument for vn = un

µ

N−p
p(p−1)
n

. We have that−∆pvn − λnvp−1
n = fn in Ω

vn = 0 on ∂Ω,
(4.71)

where fn = up
∗−1
n

µ
N−p
p

n

. Notice that fn satis�es

fn ≤
Cµ

p
p−1
−(p∗−1)δ

n

|y − xn|
(N−p)(p∗−1)

p−1
−(p∗−1)δ

in Ω (4.72)

where we have extendend (4.70) to BRµn(xn) in view of the de�nition of fn.

Thus fn is uniformly bounded in L1(Ω). Indeed∫
Ω

fn = O(1) +O
(∫

Ω\BRµn (xn)

µ
p
p−1
−(p∗−1)δ

n

|y − xn|
(N−p)(p∗−1)

p−1
−(p∗−1)δ

)
= O(1). (4.73)

Letting hn be the solution of−∆phn = fn in Ω

hn = 0 on ∂Ω,

we deduce that supn∈N ‖vn − hn‖∞ < +∞, or equivalently

‖un − µ
N−p
p(p−1)
n hn‖∞ = O(µ

N−p
p(p−1)
n ). (4.74)

For α > N the radial function

W (y) = (α−N)−
1
p−1

∫ ∞
|y|

(tα−N − 1)
1
p−1

t
α−1
p−1

dt

is a positive and strictly decreasing solution of −∆pW = |y|−α in RN \ {0}
so that

lim
|y|→∞

|y|
N−p
p−1 W (y) =

p− 1

N − p
(α−N)−

1
p−1 > 0. (4.75)

Taking δ > 0 small in such a way that α = (N−p)(p∗−1)
p−1

− (p∗− 1)δ > N , then

wn(y) = µ
−N−p
p−1

n W (y−xn
µn

) satis�es

−∆pwn =
µ

p
p−1
−(p∗−1)δ

n

|y − xn|
(N−p)(p∗−1)

p−1
−(p∗−1)δ

in RN \ {xn}.
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Since

hn(y) = µ
− N−p
p(p−1)

n un(y) +O(1) = µ
−N−p
p−1

n Un

(
y − xn
µn

)
+O(1) ≤ C1wn(x)

for some C1 > 0 and for all y ∈ ∂BRµn(xn) in view of (4.39), (4.74) and

W (R) > 0, we have that Ψn = Cwn satis�es−∆pΨn ≥ fn in Ω \BRµn(xn)

Ψn ≥ hn on ∂Ω ∪ ∂BRµn(xn)

for C = C
1
p−1

0 +C1 thanks to (4.72), and then by weak comparison principle

we deduce that

hn ≤ Ψn ≤
C

|y − xn|
N−p
p−1

in Ω \BRµn(xn) (4.76)

for some C > 0 in view of (4.75). Inserting (4.74) into (4.76) we �nally

deduce the validity of (4.51).

The proof of Lemma 4.2.2 is complete.

Now we are going to conclude the proof of Theorem 1.0.2. We will use

the blow-up analysis of un discussed above. In particular, the fundamental

estimate in Lemma 4.2.2 will allow us to apply a Pohozaev identity in the

whole Ωn in order to exclude boundary blow-up. Then, still by a Pohozaev

identity on a ball, we will obtain an information as n→ +∞ from which the

statement (i) of Theorem 1.0.2 will follow.

Proof of implication (iii)⇒ (i) in Theorem 1.0.2. It is enough to show that

there exists x ∈ Ω such that Hλ∗(x, x) = 0. (4.77)

Indeed, Proposition A.3.1 in the Appendix yields the monotonicity of Hλ

with respect to λ. As a consequence we have that (4.77) yields Hλ(x, x) > 0

being λ > λ∗, that is (i).

First we prove that the accumulation point x cannot be on the boundary of

Ω. Assume by contradiction that

dn = d(xn, ∂Ω)→ 0 as n→ +∞. (4.78)
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We set x̂ = x − νx, νx being the outward unit normal vector at x ∈ ∂Ω.

We apply now the Pohozaev identity to un on Ω, obtained by integration of

(4.32) against 〈y − x̂,∇un〉 on Ω. This leads to

N − p
p

∫
Ω

|∇un|p +

∫
∂Ω

|∇un|p−2∂νun〈y − x̂,∇un〉 =
λnN

p

∫
Ω

upn +
N

p∗

∫
Ω

up
∗

n ,

that is

N − p
p

∫
Ω

|∇un|p +

∫
∂Ω

|∂νun|p〈y − x̂, ν〉 =
λnN

p

∫
Ω

upn +
N

p∗

∫
Ω

up
∗

n (4.79)

in view of ∇un = ∂νunν on ∂Ω, being un = 0 on ∂Ω. On the other hand,

using un as test function in the weak formulation of (4.32), we obtain∫
Ω

|∇un|p − λn
∫

Ω

upn =

∫
Ω

up
∗

n . (4.80)

Using (4.80) in (4.79), we get∫
∂Ω

|∂νun|p〈y − x̂, ν〉 ≤ λn

∫
Ω

upn. (4.81)

We study the right-hand side of (4.81). We have that

λn

∫
Ω

upn = O

(
µ
N−p
p−1
n

)
,

in view of Lemma 4.2.2. As for the left-hand side of (4.81), we rewrite it as∫
∂Ω

|∂νun|p〈y− x̂, ν〉 =

∫
∂Ω\B%(x)

|∂νun|p〈y− x̂, ν〉+
∫
∂Ω∩B%(x)

|∂νun|p〈y− x̂, ν〉.

Being |∇un| ∼ µ

N−p
p(p−1)
n

|y−xn|
N−1
p−1

and using the de�nition of x̂, then

∫
∂Ω\B%(x)

|∂νun|p〈y − x̂, ν〉 ∼ µ
N−p
p−1
n

∫
∂Ω\B%(x)

1

|y − xn|
p(N−1)
p−1

∼ µ
N−p
p−1
n .

As a consequence, (4.81) gives∫
∂Ω∩B%(x)

|∂νun|p = O

(
µ
N−p
p−1
n

)
. (4.82)
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At this point we set Γ̃n(z) = d
N−p
p

n un(dnz + xn) for z ∈ Ωn = {y−xn
dn

: z ∈ Ω}.
By Lemma 4.2.2, it turns out that

Γ̃n ≤
d
N−p
p

n µ
N−p
p(p−1)
n

d
N−p
p−1
n |z|

N−p
p−1

=
µ̃

N−p
p(p−1)
n

|z|
N−p
p−1

, (4.83)

where µ̃n = µn
dn
. In particular µ̃n → 0 as n→ +∞ in view of (4.38). Letting

Γn = Γ̃n

µ̃

N−p
p(p−1)
n

, we rewrite (4.83) as

Γn ≤
1

|z|
N−p
p−1

in Ωn.

Moreover, Γn solves the following problem
−∆pΓn − λndpnΓp−1

n = µ̃
p
p−1
n Γp

∗−1
n in Ωn

Γn ≥ 0 in Ωn

Γn = 0 on ∂Ωn.

(4.84)

Since Ω is smooth and by (4.78), we have that, up to a rotation,

lim
n→+∞

Ωn = Ω∞ = RN−1 × (−∞, 1).

Letting n→ +∞ in (4.84), we get that Γn converges to the solution Γ of the

limiting problem 
−∆pΓ = δ0 in Ω∞

Γ ≥ 0 in Ω∞

Γ = 0 on ∂Ω∞.

(4.85)

Indeed it is clear that −∆pΓ = 0 in Ω∞ \ {0}. Moreover

µ̃
p
p−1
n

∫
Bδ

Γp
∗−1
n = µ

−N−p
p

n

∫
Bδdn (xn)

up
∗−1
n =

∫
B δdn
µn

Up∗−1
n ,

in view of the de�nition of Γn, µ̃n and Un. Then∫
∂Bδ

∂νΓ = lim
n→+∞

µ̃
p
p−1
n

∫
Bδ

Γp
∗−1
n =

∫
RN
Up∗−1
∞ .
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We observe that

∂νΓn(y) =
1

µ̃
N−p
p(p−1)
n

∂νΓ̃n(y) =
d
N−p
p

+1
n

µ̃
N−p
p(p−1)
n

∂νun(dny+xn) =
d
N
p
n

µ
N−p
p(p−1)
n

∂νun(dny+xn).

With the aid of (4.82) we obtain∫
∂Ωn∩B %

dn

|∂νΓn|p ≤ C
dNn

µ
N−p
p−1
n

∫
∂Ωn∩B %

dn

|∂νun|p ≤ CdNn .

As a consequence, using Fatou's lemma and (4.78), we have that∫
Ω∞

|∂νΓ|p ≤ 0

and then ∂νΓ = 0 a.e. on ∂Ω∞. Application of the Hopf lemma yields Γ ≡ 0,

which is not possible in view of (4.85). Thus x /∈ ∂Ω.

The �nal step is to prove that (4.77) holds. For ease of notation, we assume

x = 0. Then we are going to show that Hλ∗(0) = 0. Application of the

Pohozaev identity to un on Bδ leads to∫
∂Bδ

(
−|∇un|p−1〈y,∇un〉∂νun +

|∇un|p

p
〈y, ν〉 − λn

p
upn〈y, ν〉

)
+

∫
Bδ

(
−N − p

p
|∇un|p +

λnN

p
upn

)
=

∫
∂Bδ

Sλn
p∗

up
∗〈y, ν〉 −

∫
Bδ

Sλn(N − p)
p

up
∗
.

On the other hand, using un as test function in the weak formulation of

(4.32), we get∫
Bδ

(
|∇un|p − Sλnup

∗

n

)
= λn

∫
Bδ

upn +

∫
∂Bδ

un|∇un|p−2∂νun.

Thus we obtain

λn(N − p)
p

∫
Bδ

upn =
N − p
p

[∫
Bδ

(
|∇upn − Sλnup

∗)− ∫
∂Bδ

un|∇un|p−2∂νun

]
=

∫
∂Bδ

(
−|∇un|p−2〈y,∇un〉∂νun +

|∇un|p

p
〈y, ν〉

)
− λn

p

∫
∂Bδ

upn〈y, ν〉+
λnN

p

∫
Bδ

upn −
∫
∂Bδ

Sλn
p∗

up
∗〈y, ν〉

− N − p
p

∫
∂Bδ

un|∇un|p−2∂νun,
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that is

λn

∫
Bδ

upn =

∫
∂Bδ

(
|∇un|p−2〈y,∇un〉∂νun −

|∇un|p

p
〈y, ν〉+

λn
p
upn〈y, ν〉

)
+

∫
∂Bδ

(
Sλn
p∗

up
∗〈y, ν〉+

N − p
p

un|∇un|p−2∂νun

)
. (4.86)

Observing that un

µ

N−p
p(p−1)
n

converges to the solution Gλ∗ of (1.5) as n → +∞,

passing to the limit in (4.86) we get

λ∗

∫
Bδ

Gp
λ∗

= δ

∫
∂Bδ

(
|∇Gλ∗|p−2(∂νGλ∗)

2 − 1

p
|∇Gλ∗|p +

λ∗
p
Gp
λ∗

)
+
N − p
p

∫
∂Bδ

Gλ∗|∇Gλ∗|p−2∂νGλ∗ . (4.87)

At this point we consider Gε,λ∗ as in (4.5) with λ = λ∗ and we apply the

Pohozaev identity to Gε,λ∗ on Bδ. This leads to∫
Bδ

(
−∆pGε,λ∗ − λ∗G

p−1
ε,λ∗

)
〈y,∇Gε,λ∗〉 =

∫
Bδ

(
C0

C1

ε−
N−p
p

)p−1

Up∗−1
ε 〈y,∇Gε,λ∗〉.

(4.88)

We study the left-hand side of (4.88). We have that∫
Bδ

(
−∆pGε,λ∗−λ∗G

p−1
ε,λ∗

)
〈y,∇Gε,λ∗〉 =

∫
Bδ

(
−N − p

p
|∇Gε,λ∗|p+

λ∗N

p
Gp
ε,λ∗

)
+

∫
∂Bδ

(
−|∇Gε,λ∗|p−2〈y,∇Gε,λ∗〉∂νGε,λ∗+

|∇Gε,λ∗|p

p
〈y, ν〉− λ∗

p
Gp
ε,λ∗
〈y, ν〉

)
.
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As for the right-hand side, since Gε,λ∗ = Γε +Hε,λ∗ and Γε∇Uε = Uε∇Γε,∫
Bδ

Gε,λ∗U
p∗−2
ε 〈y,∇Uε〉 =

∫
Bδ

ΓεU
p∗−2
ε 〈y,∇Uε〉+

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

=

∫
Bδ

Up∗−1
ε 〈y,∇Γε〉+

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

=

∫
Bδ

Up∗−1
ε 〈y,∇Gε,λ∗〉 −

∫
Bδ

Up∗−1
ε 〈y,∇Hε,λ∗〉+

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

=

∫
Bδ

Up∗−1
ε 〈y,∇Gε,λ∗〉+

∫
Bδ

[
NUp∗−1

ε + (p∗ − 1)Up∗−2
ε 〈y,∇Uε〉

]
Hε,λ∗

− δ
∫
∂Bδ

Hε,λ∗U
p∗−1
ε +

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

=

∫
Bδ

(
Up∗−1
ε 〈y,∇Gε,λ∗〉+NUp∗−1

ε Hε,λ∗ + p∗Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

)
− δ

∫
∂Bδ

Hε,λ∗U
p∗−1
ε .

Then∫
Bδ

Up∗−1
ε 〈y,∇Gε,λ∗〉

= δ

∫
∂Bδ

Up∗−1
ε Gε,λ∗ − (p∗ − 1)

∫
Bδ

Gε,λ∗U
p∗−2
ε 〈y,∇Uε〉 −N

∫
Bδ

Up∗−1
ε Gε,λ∗

= δ

∫
∂Bδ

Up∗−1
ε Gε,λ∗ − (p∗ − 1)

∫
Bδ

Up∗−1
ε 〈y,∇Gε,λ∗〉 −N

∫
Bδ

Up∗−1
ε Gε,λ∗

−N(p∗ − 1)

∫
Bδ

Hε,λ∗U
p∗−1
ε − p∗(p∗ − 1)

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

+ (p∗ − 1)δ

∫
∂Bδ

Hε,λ∗U
p∗−1
ε ,

which rewrites as∫
Bδ

Up∗−1
ε 〈y,∇Gε,λ∗〉

=
δ

p∗

∫
∂Bδ

Up∗−1
ε Gε,λ∗ −

N

p∗

∫
Bδ

Up∗−1
ε Gε,λ∗ −

N(p∗ − 1)

p∗

∫
Bδ

Hε,λ∗U
p∗−1
ε

− (p∗ − 1)

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉+

δ(p∗ − 1)

p∗

∫
∂Bδ

Hε,λ∗U
p∗−1
ε .
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Thus (4.88) rewrites as follows:

δ

∫
∂Bδ

(
−|∇Gε,λ∗ |p−2(∂νGε,λ∗)

2 +
1

p
|∇Gε,λ∗|p −

λ∗
p
Gp
ε,λ∗

)
=

(
C0

C1

ε−
N−p
p

)p−1[
δ

p∗

∫
∂Bδ

Up∗−1
ε Gε,λ∗ −

N

p∗

∫
Bδ

Up∗−1
ε Gε,λ∗

− N(p∗ − 1)

p∗

∫
Bδ

Hε,λ∗U
p∗−1
ε − (p∗ − 1)

∫
Bδ

Hε,λ∗U
p∗−2
ε 〈y,∇Uε〉

+
δ(p∗ − 1)

p∗

∫
∂Bδ

Hε,λ∗U
p∗−1
ε

]
− λ∗N

p

∫
Bδ

Gp
ε,λ∗

+
N − p
p

∫
Bδ

|∇Gε,λ∗ |p.

(4.89)

Using Gε,λ∗ as test function in the weak formulation of (4.6), we obtain∫
Bδ

[
|∇Gε,λ∗ |p −

(
C0

C1

ε−
N−p
p

)p−1

Up∗−1
ε Gε,λ∗

]
= λ∗

∫
Bδ

Gp
ε,λ∗

+

∫
∂Bδ

Gε,λ∗|∇Gε,λ∗|p−2∂νGε,λ∗ . (4.90)

Using (4.90) in (4.89), we get

δ

∫
∂Bδ

(
−|∇Gε,λ∗ |p−2(∂νGε,λ∗)

2 +
1

p
|∇Gε,λ∗|p −

λ∗
p
Gp
ε,λ∗

)
= −λ∗

∫
Bδ

Gp
ε,λ∗

+
N − p
p

∫
∂Bδ

(Gε,λ∗|∇Gε,λ∗|p−2∂νGε,λ∗ + δGε,λ∗fε)

− (p∗ − 1)

(
C0

C1

ε−
N−p
p

)p−1[∫
Bδ

(
N

p∗
Hε,λ∗U

p∗−1
ε +Hε,λ∗U

p∗−2
ε 〈y,∇Uε〉

)]
.

(4.91)

Recalling the de�nition of Uε, we have that(
C0

C1

ε−
N−p
p

)p−1[∫
Bδ

(
N

p∗
Hε,λ∗U

p∗−1
ε +Hε,λ∗U

p∗−2
ε 〈y,∇Uε〉

)]
=

(
C0

C1

ε−
N−p
p

)p−1 ∫
Bδ

Hε,λ∗U
p∗−1
ε

(
N − p
p

+
〈y,∇Uε〉

Uε

)

= Cp−1
0 Cp∗−p

1

∫
Bδ

Hε,λ∗

ε
(N−p)(p∗−p)

p

(εp + |y|
p
p−1 )N−

N−p
p

N − p
p(p− 1)

(p− 1)εp − |y|
p
p−1

εp + |y|
p
p−1

= Cp−1
0 Cp∗−p

1

∫
B δ
εp−1

Hε,λ∗(ε
p−1z)

(N − p)[(p− 1)− |z|
p
p−1 ]

p(p− 1)(1 + |z|
p
p−1 )N−

N−p
p

+1
.
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As a consequence, passing to the limit as ε→ 0 in (4.91), it turns out that

λ∗

∫
Bδ

Gp
λ∗

+ (p∗ − 1)Cp−1
0 Cp∗−p

1 Hλ∗(0)

∫
RN

(N − p)[(p− 1)− |z|
p
p−1 ]

p(p− 1)(1 + |z|
p
p−1 )N−

N−p
p

+1

= δ

∫
∂Bδ

(
|∇Gλ∗|p−2(∂νGλ∗)

2 − 1

p
|∇Gλ∗|p

)
+

∫
∂Bδ

(
λ∗δ

p
Gp
λ∗

+
N − p
p

Gλ∗ |∇Gλ∗|p−2∂νGλ∗

)
(4.92)

in view of

fε =

(
C0

C1

ε−
N−p
p

)p−1

Up∗−1
ε =

Cp−1
0 C

p2

N−p
1 εp

(εp + |y|
p
p−1 )N−

N−p
p

→ 0

on ∂Bδ as ε→ 0. At this point we observe that∫
RN

|z|
p
p−1

(1 + |z|
p
p−1 )N−

N−p
p

+1
= − p− 1

p(N − N−p
p

)

∫
RN
〈z,∇

(
1

(1 + |z|
p
p−1 )N−

N−p
p

)
〉

=
N(p− 1)

Np−N + p

∫
RN

1 + |z|
p
p−1

(1 + |z|
p
p−1 )N−

N−p
p

+1
.

Then(
1− N(p− 1)

Np−N + p

)∫
RN

|z|
p
p−1

(1 + |z|
p
p−1 )N−

N−p
p

+1

=
N(p− 1)

Np−N + p

∫
RN

1

(1 + |z|
p
p−1 )N−

N−p
p

+1
,

which implies∫
RN

|z|
p
p−1

(1 + |z|
p
p−1 )N−

N−p
p

+1
=
N(p− 1)

p

∫
RN

1

(1 + |z|
p
p−1 )N−

N−p
p

+1
.

It follows that∫
RN

(p− 1)− |z|
p
p−1

(1 + |z|
p
p−1 )N−

N−p
p

+1
=

(
p−1−N(p− 1)

p

)∫
RN

1

(1 + |z|
p
p−1 )N−

N−p
p

+1
< 0,

(4.93)

being p − 1 − N(p−1)
p

= − (N−p)(p−1)
p

< 0. Comparing (4.87) with (4.92) and

using (4.93), we deduce that Hλ∗(0) = 0.
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Appendix A

Technical and generalized results

A.1 Some upper and lower bounds

We present details of some technical estimates which will be applied to the

operator of problem (1.6).

Lemma A.1.1. Let p be a real number such that p > 1. Then the following

estimates hold for any x, y ∈ RN .

- Case p ≤ 2:

〈|x+ y|p−2(x+ y)− |x|p−2x, y〉 ≥ (p− 1)(|x|+ |y|)p−2|y|2, (A.1)∣∣|x+ y|p−2(x+ y)− |x|p−2x
∣∣ ≤ 6(|x|+ |y|)p−2|y|. (A.2)

- Case p > 2:

〈|x+ y|p−2(x+ y)− |x|p−2x, y〉 ≥ (|x|+ |y|)p−2|y|2, (A.3)∣∣|x+ y|p−2(x+ y)− |x|p−2x
∣∣ ≤ 3p(|x|p−2 + |y|p−2)|y| (A.4)

Proof. Assume p ≤ 2. To prove inequality (A.1), we observe that

|x+ y|p−2(x+ y)− |x|p−2x =

∫ 1

0

d

dt

(
|x+ ty|p−2(x+ ty)

)
dt

= y

∫ 1

0

|x+ ty|p−2dt+ (p− 2)

∫ 1

0

|x+ ty|p−4〈x+ ty, y〉(x+ ty)dt. (A.5)
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Thus, using that 1 < p ≤ 2 together with Cauchy-Schwarz inequality and

triangle inequality, we obtain the statement:

〈|x+ y|p−2(x+ y)− |x|p−2x, y〉 = |y|2
∫ 1

0

|x+ ty|p−2dt

+ (p− 2)

∫ 1

0

|x+ ty|p−4〈x+ ty, y〉2dt

≥ |y|2
∫ 1

0

|x+ ty|p−2dt+ (p− 2)|y|2
∫ 1

0

|x+ ty|p−2dt

= (p− 1)|y|2
∫ 1

0

|x+ ty|p−2dt

≥ (p− 1)(|x|+ |y|)p−2|y|2.

To prove inequality (A.2), we notice that if |x| > 2|y| then∣∣|x+ y|p−2(x+ y)−|x|p−2x
∣∣ =

∣∣∣∣∫ 1

0

d

dt

(
|x+ ty|p−2(x+ ty)

)
dt

∣∣∣∣
≤ 22−p|x|p−2

∣∣∣∣∫ 1

0

d

dt
(x+ ty)dt

∣∣∣∣ = 22−p|x|p−2|y|

≤ 42−p(|x|+ |y|)p−2|y|.

On the other hand, when |x| ≤ 2|y|, we have that∣∣|x+ y|p−2(x+ y)− |x|p−2x
∣∣ ≤ 2(|x|+ |y|)p−1 ≤ 6(|x|+ |y|)p−2|y|.

These last two inequalities yield estimate (A.2).

Assume p > 2. Then (A.5) gives

〈|x+ y|p−2(x+ y)− |x|p−2x, y〉 ≥ |y|2
∫ 1

0

|x+ ty|p−2dt ≥ (|x|+ |y|)p−2|y|2,

that is (A.3). To prove inequality (A.4) we observe that, similarly to the case

p ≤ 2, if |x| > 2|y| then∣∣|x+ y|p−2(x+ y)− |x|p−2x
∣∣ ≤ 1

2p−2
|x|p−2|y| ≤ 1

2p−2
(|x|p−2 + |y|p−2)|y|.

Otherwise we have that∣∣|x+ y|p−2(x+ y)− |x|p−2x
∣∣ ≤ 2(|x|+ |y|)p−1 ≤ 2 · 3p−1(|x|p−2 + |y|p−2)|y|.

Therefore, we arrive at estimate (A.4).
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A.2 Generalization of some results in the thesis

Here we prove that Theorem 1 in [4], which is stated for homogeneous bound-

ary value, can be easily extended to non-homogeneous ones as done in [1]

when p=N. Then we show a result which generalizes Lemma (2.1.1), crucial

to show the existence of a SOLA in Section 2.1.

Given g ∈ L∞(Ω) ∩W 1,p(Ω), we set W 1,q
g (Ω) = g + W 1,q

0 (Ω) for all q ≥ 1.

When necessary, we can asssume g to minimize
∫

Ω
|∇u|p inW 1,p

g (Ω) and then

g to be p−harmonic in Ω.

Consider the following problem:−∆pu = f in Ω

u = g on ∂Ω,
(A.6)

where g is nonnegative and p-harmonic in Ω and f ∈ L1(Ω).

Proposition A.2.1. Let u ∈ W 1,p
g (Ω) be a solution of (A.6), with g and f

as previously described. There exists a constant C, depending on ‖f‖1, such

that for any k in N the following estimate holds:∫
{k<|u−g|<k+1}

|∇(u− g)|p ≤ C. (A.7)

Proof. Since g is p-harmonic in Ω, we have that−∆pu+ ∆pg = f in Ω

u− g = 0 on ∂Ω.
(A.8)

We set Bk = {y ∈ Ω: k < |u(y) − g(y)| < k + 1}. Using1 Tk,k+1(u − g) as

test function in the weak formulation of problem (A.8), we obtain∫
Bk

|∇(u− g)|2(|∇u|+ |∇g|)p−2 ≤ C (A.9)

in view of ∇[Tk,k+1(u − g)] = 0 outside Bk, for some constant C depending

on ‖f‖1. If p ≥ 2 then (A.9) easily leads to (A.7). If p < 2, using the Hölder

1The function Tk,k+1(·) is de�ned as in (2.39).

124



inequality with exponents 2
p
and 2

2−p , we get∫
Bk

|∇(u− g)|p =

∫
Bk

|∇(u− g)|p(|∇u|+ |∇g|)
p(p−2)

2 (|∇u|+ |∇g|)
p(2−p)

2

≤
(∫

Bk

|∇(u− g)|2(|∇u|+ |∇g|)p−2

) 2
p
(∫

Bk

(|∇u|+ |∇g|)p
) 2−p

p

.

As a consequence, since 2−p
p
< 1, we �nally have(∫

Bk

|∇(u− g)|p
)p−1

≤
∫
Bk

|∇(u− g)|2(|∇u|+ |∇g|)p−2 ≤ C,

in view of (A.9).

Proceeding as in the proof of Theorem 1 in [4] and using Proposition A.2.1,

we arrive at the desired conclusion, that is the following result.

Theorem A.2.2. Under the hypothesis of Proposition A.2.1, u ∈ W 1,q(Ω)

for all q < q̄ = N(p−1)
N−1

.

Lemma A.2.3. Let p > max{2− 1
N
,
√
N}. Let un ∈ W 1,p

gn (Ω) be a sequence

of solutions to

−∆pun − an|un|p−2un = fn in Ω. (A.10)

Assume that

lim
n→+∞

an = a in L∞(Ω), sup
n∈N

[
‖fn‖L1(Ω) + ‖gn‖L∞(Ω)∩W 1,p(Ω)

]
< +∞

(A.11)

with sup
Ω
a < λ1. Then sup

n∈N
‖un‖p−1 < +∞.

Proof. Assume by contradiction that

‖un‖p−1 → +∞ as n→ +∞. (A.12)

Setting ûn = un
‖un‖p−1

, f̂n = fn
‖un‖p−1

p−1

and ĝn = gn
‖un‖p−1

, we have that ûn solves−∆pûn − an|ûn|p−2ûn = f̂n in Ω

ûn = ĝn on ∂Ω
(A.13)
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with

‖ûn‖p−1 = 1, ‖f̂n‖L1(Ω) + ‖ĝn‖L∞(Ω)∩W 1,p(Ω) → 0 as n→ +∞ (A.14)

in view of (A.11)-(A.12). Since hn = f̂n + an|ûn|p−2ûn is uniformly bounded

in L1(Ω) and ĝn is p−harmonic in Ω, we can use the results in [4] extended

to non-homogeneous boundary values to show that, up to a subsequence,

ûn − ĝn → û in W 1,q
0 (Ω) for all 1 ≤ q < q̄ as n → +∞, where q̄ > 1 in view

of p > 2− 1
N
. Moreover û solves−∆pû− a|û|p−2û = 0 in Ω

û = 0 on ∂Ω.
(A.15)

In particular, by Sobolev embedding theorem we have that

ûn → û in Lq(Ω) (A.16)

as n → +∞ for all 1 ≤ q < q̄∗ = N(p−1)
N−p as n → +∞. Using Tl(ûn − ĝn) ∈

W 1,p
0 (Ω) as a test function in (A.13), we get∫
{|ûn−ĝn|≤l}

〈|∇ûn|p−2∇ûn − |∇ĝn|p−2∇ĝn,∇(ûn − ĝn)〉

≤ ‖an‖∞
∫

Ω

|ûn|p−1|ûn − ĝn|+ l‖f̂n‖1

in view of the p-harmonicity of ĝn. Since

‖an‖∞
∫

Ω

|ûn|p−1|ûn − ĝn|+ l‖f̂n‖1 → ‖a‖∞
∫

Ω

|û|p

as n → +∞ in view of (A.11), (A.16) and q̄∗ > p thanks to p >
√
N , by

(A.1) and the Fatou's convergence Theorem we deduce that

δ

∫
{|û|≤l}

|∇û|p ≤ ‖a‖∞
∫

Ω

|û|p

for some δ > 0. Letting l → +∞ we get that û ∈ W 1,p
0 (Ω) in view of

û ∈ Lp(Ω) and then û is an admissible test function in (A.15) leading to∫
Ω

|∇û|p −
∫

Ω

a|û|p = 0.

Since sup
Ω
a < λ1 one �nally deduce that û = 0 and then ûn → 0 in Lp−1(Ω)

thanks to (A.16), in contadiction with ‖ûn‖p−1 = 1.
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A.3 A weak comparison principle

Here we discuss the validity of a weak comparison principle, obtained as ap-

plication of Lemma 2.3.1, which guarantees thatHλ(y, y) is strictly increasing

in λ for all y ∈ Ω.

Proposition A.3.1. Let p ≥ 2, a, f1, f2 ∈ L∞(Ω) and g1, g2 ∈ C1(Ω̄). Let

ui ∈ C1(Ω̄), i = 1, 2, be solutions to

−∆pui − aup−1
i = fi in Ω, ui = gi on ∂Ω, (A.17)

so that

ui > 0 in Ω, ∂nui < 0 on ∂Ω ∩ {ui = 0}. (A.18)

If f1 ≤ f2, g1 ≤ g2 and f2 ≥ 0 in Ω, then u1 ≤ u2 in Ω.

Proof. Setting w1 = up1, w2 = up2 and ϕ = (w1 − w2)+, consider ws = sw1 +

(1− s)w2 for s ∈ [0, 1]. By the properties of u1 and u2, it is easily seen that

for each s ∈ [0, 1] there hold ws + tϕ ≥ 0 in Ω and ∇(ws + tϕ)
1
p ∈ Lp(Ω) for

t small. Then we can apply (2.74) at s = 0, 1 to get

I ′(w1)[ϕ]− I ′(w2)[ϕ] =

∫
Ω

|∇w
1
p

1 |p−2〈∇w
1
p

1 ,∇(w
1−p
p

1 ϕ)〉 −
∫

Ω

|∇w
1
p

2 |p−2〈∇w
1
p

2 ,∇(w
1−p
p

2 ϕ)〉

=

∫
Ω

|∇u1|p−2〈∇u1,∇
ϕ

up−1
1

〉 −
∫

Ω

|∇u2|p−2〈∇u2,∇
ϕ

up−1
2

〉.

Since ϕ ∈ W 1,p
0 (Ω) we deduce that

I ′(w1)[ϕ]− I ′(w2)[ϕ] =

∫
Ω

(
f1

up−1
1

− f2

up−1
2

)
(up1 − u

p
2)+ ≤ 0

in view of (A.17) and f1 ≤ f2 with f2 ≥ 0. Since

I ′(w1)[ϕ]− I ′(w2)[ϕ] =

∫ 1

0

I ′′(ws)[w1 − w2, ϕ]ds =

∫ 1

0

I ′′(ws)[ϕ, ϕ]ds

in view of I ′′(ws)[w1 − w2, ϕ] = I ′′(ws)[ϕ, ϕ], by Lemma 2.3.1 I ′′(ws)[ϕ, ϕ] =∫
Ω
%(ws, ϕ) with %(ws, ϕ) ≥ 0. Then, we deduce that %(ws, ϕ) = 0 for s ∈

[0, 1]. If p > 2, then ∇ϕ = 0 in Ω. If p = 2, 〈∇ws,∇ϕ〉 = ϕ |∇ws|
2

ws
, which

implies 〈∇(w1 − w2),∇ϕ〉 = sϕ |∇(w1−w2)|2
ws

for all 0 ≤ s ≤ 1. In both cases

∇ϕ = 0 in Ω and then w1 ≤ w2 in Ω, or equivalently u1 ≤ u2 in Ω.
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