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Introduction

The Standard Model (SM) of Particle Physics describes in an extremely precise and ele-
gant way the fundamental costituents of matter and their interactions. Over the last fifty
years it has been extremely successful in providing very accurate theoretical predictions
for most of the experimentally accessible phenomena. Furthermore, with the observation
of the Higgs boson at the Large Hadron Collider (LHC) [11 2], the entire set of fundamental
particles predicted by the SM has been discovered. Nevertheless many questions remain
opened and lead us to believe that the SM is not the final theory of particle interactions,
but just a low-energy approximation of a more fundamental theory.

Probably the most evident limit of the SM is that it does not provide a quantum
description of the gravity, which becomes relevant at the Plank scale Ap; ~ 10! GeV.
Moreover we do not have a viable dark matter candidate, as well as an explanation of
the matter-antimatter asymmetry in the universe. Other problems are the lack of a
complete unification of the fundamental forces, expected around the grand unification
scale AquT = 10'® GeV, and the fact that the SM does not provide a natural explanation
for neutrino oscillations and their small masses.

A current fundamental issue is represented by the hierarchy problem between the
electroweak and the NP scales, which is related to the instability of the Higgs mass to
radiative corrections. In partcular the Higgs boson gets very large corrections proportional
to the mass of virtual particles. Thus if we assume some New Physics (NP) at either the
Plank or the GUT scale, we would expect the Higgs boson mass to be inevitably huge,
i.e. comparable to the energy at which NP appears. This is true unless we consider an
incredible fine-tuning cancellation between the radiative corrections and the bare Higgs
mass, which is considered unnatural by many theorists. This problem leads physicists to
believe that some NP around the TeV scale, able to provide a regularization of radiative
corrections to the Higgs mass, should be there.

In this scenario, the flavor sector of the SM, the branch of particle physics that studies
the transitions between different quarks and leptons, plays a fundamental role. The
structure of flavor, as well as the hierarchical structure of either the mass spectrum and
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [3], 4], is very peculiar, although its origin
has no explanation: Why are there exactly 3 families of quarks and leptons? Why the
mass spectrum of quarks and leptons covers 5 orders of magnitude? And what gives
rise to the pattern of quark mixing and the magnitude of CP violation? Flavor physics,
because of its highly non trivial structure, is particularly sensitive to high-energy scales.
This property allows us to search for NP in an indirect way by looking at the effects that
it produces at low energies. Such effects should manifest themself as small corrections to
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the SM predictions.

In particular the CKM matrix in the SM is unitary, so we have that Vogw X VgKM = 1.
This gives rise to unitarity conditions between the elements of its rows and columns, that
are represented by diagonal constraints and “unitarity triangles”, whose investigation
has been the focus of much of the experimental and theoretical efforts in Flavor Physics
during the recent years. On one hand inconsistencies in the CKM-picture would indicate
the presence of NP beyond the SM. On the other hand, if all the precision tests of the
SM performed so far are in agreement with the CKM paradigm, the absence of deviations
provides stringent constraints on non-standard phenomena and their energy scale. It is
therefore important to determine all CKM matrix elements as precisely as possible by
studying flavour-changing processes both experimentally and theoretically.

The golden modes for testing the unitarity of the second row of the CKM matrix,
namely |Vig|> + |Ves|? + |V |> = 1, are represented by the leptonic and semileptonic decays
of charmed D and D, mesons, which probe the ¢ — d and ¢ — s quark transitions,
respectively. Combining experimental measurements of the branching fractions of these
processes with theoretical calculations of the relevant hadronic matrix elements, i.e. the
leptonic decay constants fp and fp, and the semileptonic vector form factors fD_”T(qQ)
and fP7%(¢?), the CKM entries |V4| and |V, can be determined. The CKM matrix
element |V|, being of the order O(1072), is marginal for the second-row unitarity test at
the current level of precision. The theoretical calculations of hadronic matrix elements
based entirely on first principles can be properly carried out by simulating the fundamental
theory of the strong interaction, QCD, on a lattice. Thanks to the remarkable progress
in algorithms and computing machines, Lattice QCD (LQCD) has entered the precision
era and the accuracy of numerical computations is becoming comparable to that of the
experiments. For some relevant hadronic quantities in Flavour Physics the goal of the
percent level of precision has been already achieved (see, e.g., the FLAG review [5]) and
the precision will be improved in the future.

In this thesis we study the semileptonic decays D — wfv, and D — K/{v,, which are
relevant for the extraction of the CKM matrix elements |V.4| and |V.s|. Within the SM,
the semileptonic D — P/lv differential decay rate is given by

dU(D — Plv)  GE|Ve|® (¢° —m7)*|Pp] 5 2
= 1 My,
3m2
—i—g;(MD Mp)? |f ( %)

where z = d(s) is the daughter quark, |pp| is the momentum of the daughter pseudoscalar
meson P = 7(K) in the D-meson rest frame and ¢ = (pp — pp) is the 4-momentum of the
outgoing lepton pair. Since in Eq. the contribution of the scalar form factor fy(q?) is
proportional to m7, in the case of £ = e(u) the differential decay rate can be simplified to

dl'(D — Pe(u)v) G%|ch|2 S 13| ¢DP/ 2 9

Each experiment provides results for the product |V, |f2¥(¢%) in various ¢*-bins. On
the other hand the LQCD calculations performed so far provide the value of the vector
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form factors at zero 4-momentum transfer, ffﬂ(K) (¢> = 0). These can be used to extract

the relevant CKM entries adopting experimental averages of the products |V.q|f£77(0)
and |Ves| f27%(0), like the ones determined by the Heavy Flavor Averaging Group (HFAG)
in Ref. [I5]. However, the analyses of the experimental data from BELLE [6], BABAR
[7,18], CLEO [9] and BESIII [10] on the D — (K )e(u)v decays, which compose the HFAG
avera%e, are based on a variety of parameterizations for the shape of the vector form factors

f”(K (¢%). These include effective pole models, inspired by dispersion relations [11] or
heavy-quark expansion arguments [12], the z-expansion method [13], or relativistic quark
model predictions [14].

In this thesis we present the first Ny =2+ 1+ 1 LQCD calculation of the vector and
scalar form factors ffﬂ(K) (¢%) and féj 7r(K)(qQ) governing the semileptonic D — w(K)lv
decays, using the gauge configurations generated by the European Twisted Mass Collab-
oration (ETMC) with Ny = 2+ 1+ 1 dynamical quarks, which include in the sea, besides
two light mass-degenerate quarks, also the strange and the charm quarks with masses
close to their physical values [16], 17]. At variance with most of the existing LQCD calcu-
lations (see, e.g., Ref. [3]), which provide only the value of the vector form factor at zero
4-momentum transfer, we have evaluated both the vector and scalar form factors in the
whole experimentally accessible range in ¢, i.e. from ¢* = 0 up to ¢2,, = (Mp — Mx(x))*.
An overall agreement with the momentum dependence of the experimental data from
BELLE [6], BABAR [7, §], CLEO [9] and BESIII [10] has been found, although some
deviations have been observed at high values of ¢>. The knowledge of the form factors
in the full kinematical range allowed us to perform the first determination of the CKM
matrix elements |V,4| and |V, in a truly consistent way within the SM, employing directly
Eq. without making use of any other assumption. We show that a more precise and
consistent determination of |V.4| and |V.s|, compared to those based only on the vector
form factor at ¢> = 0, can be obtained. The determination of the vector and scalar form
factors and the extraction of |V 4| and |V,s| have been presented in Refs. [18, [19] (see also
Refs. [20, 21] for preliminary results).

In our calculations quark momenta are injected on the lattice using non-periodic
boundary conditions [22] 23] and the matrix elements of both vector and scalar cur-
rents are determined for a plenty of kinematical configurations, in which parent and child
mesons are either moving or at rest. Data coming from different kinematical conditions
exhibit a remarkable breaking of the Lorentz symmetry due to hypercubic effects for both
the D — 7 and the D — K semileptonic form factors. We show also that hypercubic
artifacts may be largely affected by the difference between the parent and the child meson
masses, which may represent an important warning in the case of the determination of the
form factors governing semileptonic B-meson decays. We present the subtraction of such
hypercubic effects and the determination of the Lorentz-invariant semileptonic vector and
scalar form factors after the combined extrapolations to the physical pion mass and to
the continuum limit. At zero 4-momentum transfer the results of our study are:

P77(0) = 0.612 (35) : PR(0) = 0.765 (31) (3)

which are consistent within the errors with the FLAG [5] averages f2~™(0) = 0.666 (29),
based on the result of Ref. [24], and fP7%(0) = 0.747 (19) from Ref. [25], both obtained
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at Ny =2+ 1. Using Eq. to combine the momentum dependence of the semileptonic
vector form factors fP77(¢?) and fP7%(¢?) with the differential rates measured for the
semileptonic D — wlv and D — K/{v decays by BELLE [6], BABAR [7, 8], CLEO [9]
and BESIII [10], we get our determination of the CKM matrix elements |V.4| and |V|:

Vol =0.2345 (83) . [Vi,| = 0.978 (35), (4)

where the errors take into account both lattice calculation and experimental uncertainties.
Including the determination of |V,| from B-meson decays [20], the unitarity test of the
second-row of the CKM matrix yields

[Veal* + [Ves|* + [Veo|* = 1.013 (68) , (5)

which confirms unitarity at the percent level of precision.

The thesis is organized as follows. In Chap. [If we introduce the main features of Flavor
Physics in the SM, together with an introduction on semileptonic decays of pseudoscalar
into pseudoscalar mesons. Chap. [2] is dedicated on Quantum Chromodynamics (QCD):
after a brief description of the theory in the continuum and infinite volum limit, the
framework of LQCD is described. A special focus is dedicated to the Wilson Twisted Mass
(Wtm) action, which is the one employed in our simulations. In Chap. We present the

K
(

determination of the vector and scalar form factors ffﬂ(K)(q2) and f "#)(42). Evidences
of Lorentz symmetry breaking lattice artifacts in the momentum dependence of these
quantities are shown together with the strategy adopted in order to extract the physical,
Lorentz invariant, form factors. In this Chapter we present also the extraction of the CKM
matrix elements |V.4| and |V, obtained for the first time by combining the momentum
dependence of the vector form factors ff_m(K) (¢*) with the experimental determinations
of the decay rates for the D — 7(K)lv processes. A summary of the present work,
together with the main achievements, are then reported in the conclusions. Finally, at
the end of the thesis, an appendix shows our parametrization of the vector and scalar
form factors ff_m(K)(qz) and f(?_m(K) (¢*) extrapolated to the physical pion point and to

the continuum and infinite volume limits.



Chapter 1

Flavor Physics in the Standard
Model

The Standard Model of Particle Physics is a quantum field theory based on the gauge

group
SU3)e ® SU(2) @ U(1)y . (1.1)

SU(3)¢ is the color symmetry of QCD, the theory which describes strong interactions,
while SU(2), ® U(1)y is the symmetry of electroweak interactions, spontaneously broken
by the Higgs potential in U(1)e.p..

In the SM the fundamental fermionic constitutents of matter are quarks and the
leptons, each of them characterized by a different type, referred to as flavor, so that the
physics that describes transitions between these particles is named Flavor Physics. The
SM Lagrangian Lgy; can be decomposed in different sectors, which differ in both the
content of fields and the symmetry properties:

ESM = £Gauge + £Fermions + £Higgs + £Yukawa- (12)

The sectors Laauge; Lrermions and Liriges are invariant not only under the gauge group
(1.1), but also under the global symmetry of flavor

UB)Y° =U3)g, @U(3)uy @UB)a, @U(3)1, @ U3y, , (1.3)

whose breaking is produced by the Yukawa sector, which is also responsible for the origin of
fermion masses. However U(3)? is not completely broken by Ly urawa, S0 various interesting
accidental symmetries survive. These are:

e Barion number B conservation,
e Lepton number L conservation,
e Lepton Flavor conservation,

e absence of FCNCs at tree level.
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Accidental symmetries provide strong constraints on the possible structure of NP la-
grangians. Furthermore, being a consequence of the content of fields and of the request
of renormalizability, they are generally violated by many extentions of the SM.

In this Chapter we briefly present the different contributions which compose Eq. (|1.2]),
focusing on the aspects of flavor physics relevant for the present work. We firstly introduce
the Glashow-Weinberg-Salam Theory, which describes the unification of the Electromag-
netic and Weak interactions. Then we present the Yukawa sector and the origin of fermion
masses. A specific Section is dedicated to the CKM matrix, being the determination of its
elements |V.4| and |V.s| the main goal of this work. We conclude the Chapter showing the
general features of semileptonic decays between pseudoscalar mesons and their expression
in terms of hadronic form factors.

1.1 Glashow-Weinberg-Salam Theory

The Glashow-Weinberg-Salam theory describes the unification of Electromagnetic and
Weak interactions, whose nature is characterized by the gauge symmetry SU(2), QU (1)y.
The fermionic content of the theory is made up of five fields of spin 1/2, each of them
appearing in three distinct families of flavor. We have:

Q) = (ZZ) — (3,2)41y3 Ly = (ZZ) = (1,2)
L L
(1.4)

up = (3, )13 dp = (3,1)gp3 Lz — (1,1)

where ¢ = (1,2, 3) is the flavor index. The notation C' — (A, B)y indicates that the field
C' belongs to the rappresentation A of SU(3)¢, B of SU(2), and has weak hypercharge
Y. For each field, the electric charge @, the third component of the weak isospin 7% and
the weak hypercharge Y are reported in Tab. [[.I, These quantities are related by the
Gell-Mann-Nishijima formula:

Q:TM%. (1.5)

The fields Q% , u’, and di, represent quarks, while L% and ¢% correspond to the leptons.

Vﬁ €Z éz} Uur, dL UR dR (25+ (bo
Q 0 -1 -1 2/3 —1/3 2/3 —1/3 1 0
™ 1/2 -1/2 0 1/2 —-1/2 0 0 1/2 —1/2
Y -1 -1 -2 1/3 1/3 4/3 —2/3 1 1

Table 1.1: Values of Q, T2 and Y of the SM’s particles.
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Expanding in the flavor index we have:

r .
'U&/ = UL, Cr, tL s

R R R R

dlL - dL, SL, bL 9

R R R

i (1.6)
EL - 6L7 /"LL7 TL 9

R R R R

T
\VL - VeLa V}LL7 VTL 9

where labels L (left) and R (right) indicate the chirality of the different fields.
The spontaneous breaking of the gauge group SU(2); ® U(1)y is given by the Higgs
field, which is a scalar doublet belonging to the fundamental representation of SU(2):

6= (ﬁ) = (1,2) 4, . (1.7)

The above relation implies that a generic gauge transformation acting on the Higgs field

is of the form 4 '
¢ N 6zaa7aelﬁ/2¢ ’ (18)

where 7% = ¢%/2 (a = 1,2, 3), being ¢* the Pauli matrices.

1.1.1 Gauge bosons

The lagrangian of the Glashow-Weinberg-Salam theory consists of the first three terms of
Eq. (1.2)), which are given by the following expressions:

3
1 a\ pv a 1 v
£Gauge - _4_1 Z(W )H (W ),uu - ZBH B,ul/ 3 (19)
a=1
EFermionic = Z Zigfﬁ%‘ ) (110)

fermions

Liiggs = (D"¢)"(Dydp) — V(¢) = (D"¢)" (Do) + 1*¢* ¢ — \(@"¢)* ,  (1.11)

where D,, is the covariant derivative. For a SU(2),, doublet ¢, and a SU(2),, singlet ¢r
it is defined as{l]

D, = {au —igT*"Wy —ig' YB } Yr, (1.12)

Dy = [a i B } vr, (1.13)

being 7% = 7% and Y the generators of the gauge groups SU(2), and U(1)y, while W and
B,, are the corresponding gauge bosons. Since T (a = 1,2, 3) and Y commute between

'We neglect the contributions of strong interactions, which are described in the next Chapter.
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them, the two gauge groups are characterized by two distint coupling constants ¢ and ¢'.
Furthermore, as regards Lpermions, N0 quark and lepton masses appear in : these
parameters enter in the SM through the Yukawa sector.

The potential V(¢) in ((1.11) gives rise to the vacuum expectation value (vev) of the

Higgs field
1 /0

which is invariant under transformations of the form ([1.8) where the parameters satisfy
the following relations:
al=a’=0, A= (1.15)
This property ensures the theory to have a massless gauge boson, corresponding to the
combination (|1.15)), while the three remaining gauge bosons acquire a mass through the
Higgs mechanism [27, 28]. These masses arise from evaluating the kinetic term of £p;g4s
at the value v of the ¢’s vev:
1 Y Y 0
(D*¢)*(D,¢) — 5(0 v) <gwgr“ + g’EBﬂ) <ng“Tb + g’EB“) ( ) _

! (1.16)

102
= 5o e cow g B
whence, by a redefinition of the fields, we obtain
1 _ ) v
Wj = E(Wj TiW7) with mass My =g 2 (1.17)

1 v
70 = ——(gW? —¢B,) withmass My=—1/g2+g?, (1.18)
Vet ' 2

and the massless gauge boson

1
Vg +g?
which is, as we expected, nothing but the photon. In terms of Wy, Z) and A,, the
covariant derivative (1.12) assume the formf]

A, = (dW) +gBy) , (1.19)

o —i L wrrt w0 (e Y
Dypr, = |0, z\/i(WHT W TT) —i g2+gl2Zu(gT g 2)+

g9 3, Y
BT (T i 5) }%’
where 7% = T 4472 and from which it is straightforward to identify the electric charge

e and the corresponding operator @) as:
/

99

s ——— (1.20)
V2 +g°
Y
Q:T3+§, (1.21)

2The analogous equation for SU(2), singlet can be obtained by setting T+ = T2 = 0.
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which explain the origin of the Gell-Mann-Nishijima formula presented above.

The transformation matrix which connects the basis (W?, B) with the fields (Z9, A)
can be expressed in terms of the weak mizing angle 0,,:

70 cosb, —sinf,\ (W3
(A) o (sin@w cos 0, ) ( B ) ’ (1.22)
This parametrization together with Eqs. (1.18]]1.19) implies

9

COS 9w = ﬁ, (123)

9-+g

gl

Sin@w = ﬁ s (124)

gty

so that we find the following relations for the coupling constants g and ¢':
e=gsinf, =g cosl, =— g¢g= ‘e . (1.25)
sin 6,

Eq. (1.25) shows that all the couplings of the W and Z bosons depend only on the

parameters e and 6,,. Furthermore, their masses are not independent of each other: using

Eq. (1.23) with the expression of My, in ([1.17]) we obtain
My = My cosb,, . (1.26)

Finally we can rewrite the covariant derivative (1.20)) in terms of the electric charge, the
operator () and the weak mixing angle, obtaining:

_ ig — = 9 o3 2 :
D,=0,—- E(VVJTJr + W, T) — p— Z,(T? —sin”0,,Q) —ieA,Q. (1.27)

1.1.2 Couplings to fermions

Considering the fermionic lagrangian Lpgermions and using Eq. (1.27)) in order to make
explicit the presence of the gauge bosons in ), we have:

LEermionic = 1Q1PQL +i LY ALY + it Qufy +idhddyy +ies, den+
(1.28)

em. ?

+ 9| Wl + W, gt + Z) 05| + eA,J



10 1.2 THE YUKAWA SECTOR

where the currents Jiit', J ', J and J#, are given by the following relations:

it = s [atvdy i) (1.29)
_ 1 |- P .

i = () = s |dirat + i (1.30)
u Lol i L2 LNZi ppi w2 7iupi

J, = e B vi+| sin® 0, — 3 Uiyl + sin® 0,0 0 + (1.31)

1 2 , . 1 1\ -, A
+(§ —3 sin? 9w)“£7““2+(§ sin® 6, — 5) diyHd; +
2 c 02 =0 T 1 s 2 7t g0
—gsin O UpY uR—l—gsm 0w dpy!dy|

2 . ) 1-. . _. .
Jb = §a“y“uZ — §d“y“d’ A A (1.32)
Let’s observe that while neutral currents involve both left-handed and right-handed parti-
cles, the charged ones involve only left-handed particles. Furthermore J¥ has couplings
that do not depend on the chirality: it is indeed the usual electromagnetic vector current.
From Egs. (1.2941.31]) we can derive the behavior of weak interactions at low energies,
namely when E < My, M. The following relation (in the Feynman gauge)
- —igh igh”
WH(p)W, = =~ = 1.33
(W, ()W, (p)) DT e ME, (1.33)
shows how the high value of the W mass causes the contraction of the propagator, mak-
ing the transition pointlike. So for example, the tree-level process e”u — v.d can be
described by the lagrangian
g
2M3,
that is a current-current interaction, characterized by the Fermi costant through the
relation

L=

urytdy, + DeL7“€L] |:jL’Y'uUL +eyver| (1.34)

G 2
E-I_ (1.35)
V2 8
A similar argument could be used for neutral current transitions which involve the Z
boson. Low energy theories like ((1.34) are called Effective Theories: among them, the

Fermi Theory is the simplest example.

1.2 The Yukawa Sector

In the Glashow-Weinberg-Salam theory fermions are massless. In order to solve this
problem it is necessary to extend the lagrangian (1.941.11)) introducing new couplings,
which compose the Yukawa Sector:

Lyurawva = —(Ya)iiQ1¢ dfy — (Yo)yQ1o ufy — (Y1) Ly lf + hec. (1.36)
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where ¢ = iTo¢!. This sector is crucial in the SM description: its structure allows us not
only to introduce fermion masses, but also characterizes the properties of quark mixing
and CP violation, being particularly sensitive to the presence of NP.

Expanding Eq. around the Higgs vev we have:

VYa)iy w0 v M)y i i vV 5,
Lyuraa = =5t didh = =g ajup = — oL O+ (1.37)

where we identify m; = \%Yi — with ¢ = u,d,{ — as the mass matrices of quarks and
leptons, whose diagonalization allows us to get the basis of mass eigenstates. Since m;
(1 = u,d, ¢) are generic 3 x 3 complex valued matrices, their diagonalization require the
use of bi-unitary transformations:

= diag(mg, ms, my) , (1.38)

UEE my UER = mZD = diag(m67 my, mT) )

where U;; and U;p are unitary matrices. Eq. suggests that the basis of mass
eigenstates can be obtained by performing an independent rotation of the left- and right-
handed components of the up and down quarks and leptons. More precisely, applying the
following transformation

ur/L — Uugr/r UR/L

dr/r = Uaryr dryL (1.39)
Crir = Ueryr lryL
we have
a (ma)ijuly = 0 Ul (ma)ijUug uly = (m8)i; a1l
dii(ma)ijdy, = df Ual(ma)i;Usp iy = (mB)ij d ;. (1.40)

Ci(me)igty = U (me)Usp Gy = (m)ig €70,

so that the rotated fields ((1.39) correspond to the basis of mass eigenstates.

1.3 Charged and Neutral currents
Applying rotation ((1.39)) to the fermionic fields, the weak charged currents ((1.29)/1.30)) are

modified by the presence of the Cabibbo-Kobayashi-Maskawa matrix Vogy [3, 4]. In the
new basis, J;/' takes the form

Jt & lafyrd,) + oyt + h.c} — [(VCKM)Z»j afytd] + oy hee |, (141)

3The dots indicate interactions with the Higgs boson and the Goldstone bosons.
4T can be obtained considering the relation Jy** = (Ji)T.
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where the CKM matrix, which is given by
Vern = Ual Uar (1.42)

describes the mixing between the mass eigenstates (d, s, b) and the interaction eigenstates
(d',s',b'):

d ! Vud Vus Vub d
s’ = ‘/cd ‘/c s ‘/cb S . ( 1. 43)
b’ Via Vis V) \b

Eq. (1.41)) shows how Voxy modifies the weak charged currents only in the quark sector,
leaving unchanged the leptonic one. This is due to the approximation m, = 0, which
allows us to extend the rotation Uy, of Eq. (1.39) also to neutrinos:

v — U vp . (1.44)

Such a rotation reabsorbs the effect of the transformation on /¢, so that, in moving
from the basis of interaction eigenstates to that of mass eigenstates, the leptonic charged
currents remain unchanged.

On the other hand J% and J¥,, are invariant under transformations (1.39)), so these
currents are said to be diagonal in flavor. This property can be easily pointed out rewriting

Egs. (1.31}j1.32)) in the following compact way:
Tt = Qp 'y (1.45)
f

Ty = e (vp — ay )y (1.46)
7

where vy =T ;’ —2Qysin* Oy and ay =T J‘:’ It is straightforward to understand how every
unitary matrix applied on a field ¢ is cancelled by the hermitian conjugate related to
the transformation of the field ). In other words we have that neutral currents do not
show any mixing in the different flavors, and this translates into one of the fundamental
properties of the SM: the absence of FCNCs at tree-level.

1.4 The Cabibbo Kobayashi Maskawa matrix

Let’s now discuss more deeply the properties of the mixing matrix Voky introduced in
the last Section. First of all we highlight the number of indipendent parameters that
characterize its structure and how such parameters are related to CP violation. The
CKM matrix is a 3 x 3 complex matrix, so it is given by 18 real parameters: 9 angles
and 9 phases. On the other hand Vky is unitary, thus we can use 9 unitarity constraint
relations in order to reduce its free parameters. Furthermore, exploiting the quark fields
phase redefinition freedom (6 — 1 = 5 arbitrary phases) one concludes that Vexym depends
only on 4 real parameters, three angles and one phase, which, together with fermion
masses, constitute the free parameters of the flavor quark sector of the Standard Model.
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1.4.1 CP violation

The phase of the CKM matrix determines the presence of CP violation in weak inter-
actions. In fact CP symmetry acts on Lyurewe turning its operators into the hermitian
conjugates, leaving unchanged their coefficients, which are given by the couplings Y; and
Y,. As an example, for the coupling to down type quarks we have:

(Ya)iy QL o dp + (Y )iy dit 67Q% “5 (Ya)iy dit ' Q) + (Y3 QL 6l - (1.47)

Now it’s clear that if the couplings were real matrices the CP invariance would be a good
symmetry of the theory. On the contrary the presence of a phase in Vokw, as it is shown
in (|1.47)), makes it complex at least one of the two abovementioned couplings, determining
the CP violation.

If we had only two generations of quarks, with the same argument developed so far,
based now on a flavor symmetry of the type U(2)g, ® U(2),, ® U(2)4,, we would have
only 5 free parameters, all reals (4 quark masses and the Cabibbo angle). This statement,
together with the experimental observation of CP violation, induced M. Kobayashi and
T. Maskawa [4] to postulate the existence of the third quark family.

Going back to Eq. we remark that there are various parametrizations to express
the form of the CKM matrix. Among them the Standard parametrization is given by:

—id

C12C13 S12€13 S513€
_ 19 19
Vexkn = | —812C23 — €12523513€" C12C23 — S12523513€" 523C13 ) (1-48)
5 6
$12523 — C12C23513€" —593C12 — S12C23513€" C23C13

where ¢;; = cosb;;, s;; = sinb;; (1,7 = 1,2,3) and § is the phase that causes the CP
violation. From the experiments we have that sj3 & O(1073), s93 & O(1072) and ¢13 =
Co3 &~ 1. As the four independent parameters we can consider:

s12 2 |Vis| s s13 = [Vl , s2s = V|, 0 . (1.49)

We remark that the phase ¢ is always multiplied by the factors sio, s13 and se3, thus,
for particular processes like the decays of K mesons, CP violation can be suppressed
regardless of the value of 9.

Another important parametrization is the Wolfenstein Parametrization [29], that uses
the hierarchical structure of the CKM matrix in order to expand each element in a power
series of A = |V,|. It is expressed in such a way to respect the unitarity of the resulting
matrix at the desired order of the expansion. At the order A\*, we have:

\ -
Vo = | —A+ 32N =2(p+in)] 1= 37— IN(1+44%) AN?
AN [L= (ptin) (1= X)) —AN 4 AL = 2(p+ )]\ 1 - 5APN
(150)

where the free parameters are A\, A, p and 7, which are related to those of the Standard
parametrization by the following equations:

A= S12, A)\2 = So23, A)\3(p — ZT]) = 813671’6 . (151)
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This parametrization is the one that has the simplest structure but, being an approximate
expression, it needs to be expanded in powers of A to the order of the process we are
intrested in.

Even if the CKM matrix is defined up to an arbitrary phase, all the physical observables
must be independent from the convention used. In particular a measure of CP violation
can be obtained computing the quantity

(Vi VuViVisl = Jop Y CikmEjin (1.52)

m,n

where Jop is independent on the phase convention and is called the Jarlskog invariant
[30]. It can be thought as a quantitative estimate of the size of CP violation in the SM.

1.4.2 Unitarity relations

The structure of the CKM matrix is also related to the Unitarity Triangle analysis. Uni-
tarity of Voxw implies the existence of nine conditions between its elements, which can
be divided in two classes: three normalization relations and six orthogonality relations.
These conditions are crucial in the SM description since their check is a powerful tool
to derive bounds on the fundamental constants of the theory or to probe possible NP
scenarios.

(0,0) (1,0)
Figure 1.1: Unitarity Triangle in the complex plane (p, 7).

Normalization relations require that for each row (or column) the sum of the squared
matrix elements must be equal to 1. One of the goal of this thesis is the determination
of |[V.q| and |V, so that we are able to test the unitarity constraint of the second-row of
the CKM matrix (see Sections and [3.6)):

Veal® + |Ves|* + [Via|* = 1. (1.53)
On the other hand orthogonality relations can be represented as triangles in the plane

(p,m), where p = p(1 — ’\72) and 7 = n(1 — ’\72) It is convenient to consider unitarity
conditions corresponding to triangles with sides that are of the same order of magnitude.
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Using the Wolfenstein Parametrization it can be found that this is true for triangles
coming from the orthogonality of the first and third rows or the first and third columns.
Moreover these two triangles are equivalent at order O(A\?), so that we can consider only
the former, known as the Unitary Triangle (UT) of CKM matrix (see Fig. [1.1)), which is
given by the equation:

VaudVip + VeaVey + ViaVyy = 0. (1.54)

Sides and angles of the UT depend on the absolute value of the Viky matrix elements,
thus they are physical observables since they are independent of the phase convention.
Furthermore all the triangles coming from orthogonality conditions have the same area:

J

A, = Jorl (1.55)
2

which shows the relation between unitarity triangles and the Jarlskog Invariant. Eq. ((1.55)

makes it clear how a measure of Ax corresponds to evaluate the size of CP violation.

i UTfit
ummeri6
B

Figure 1.2: Bounds on the UT in the SM from the UTfit Collaboration [31].
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Considering Eq. ([1.54) and rescaling all by V; V., we get

ViV, A2\ 1|V,

R = wbl 12 )= 1.56

b ’VchC’; < 2 AVl (1.56)
ViVl 1]Vig

R, = = —_|—= 1.57

t ‘chd‘/gl; )\ ‘/cb ) ( )

which are two sides of the rescaled UT, the third one being equal 1 (see Fig. , while
for the corners we find:

a:arg(— “//tjvti), ﬁ:arg(— ‘éz Cf), 'y:arg(— “/;thb) : (1.58)
ud Vb tb cavch

Fig. shows the bounds obtained by the UTfit Collaboration [31] using the more
recent theoretical and experimental results, combining direct and indirect measurements.
As can be seen, the intersection of the different bands forces the upper vertex of the
triangle within a limited area, whose contours are related with the 68% and 95% of
confidence level.

It is useful to emphasize that the CKM matrix elements, as well as the particle masses
introduced in Sec. are free parameters in the SM. This means that they are not fixed
by the theory and cannot be measured directly by experiments. Therefore, a combination
of experimental and theoretical inputs is required in order to determine them.

1.5 Semileptonic decays of pseudoscalar mesons

The golden modes for the extraction of the CKM matrix elements are represented by
leptonic and semileptonic decays. Semileptonic decays are characterized by final states
containing both hadrons and leptons. In what follows we will focus only on semileptonic
decays

P — Py, , (1.59)

where P and P’ are both pseudoscalar mesons, £ is a charged lepton and v its correspond-
ing neutrino. This case is more complicated with respect to the leptonic one because of
the composition of the final state.

In the quark model pseudoscalar mesons are simply composed by a quark-antiquark
pair so that, calling P = QQ¢' and P = qq’, the process can be described as () — ¢flvy,
with ¢’ as a spectator. However all the hadrons, and mesons in particular, are more
complex objects as they contain also wvirtual quark-antiquark pairs and gluons, which
do not contribute to the quantum numbers of the entire particle. Furthermore at the
energy scale characteristic of hadronic decays, strong interactions cannot be treated with
perturbative methods because a; < 1. For this reason all the hadronic quantities involved
in these kind of processes have to be evaluated using non-perturbative techniques. In this
contest lattice QCD plays a primary role being a non perturbative approach based only on
first principles. Fig. shows a Feynman diagram for a process of the type , where
the hadronic contributions of the see quark loops and gluon exchange are highlighted.
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P/

v

Figure 1.3: Example of the contribution of virtual quark-antiquark pairs and gluons in a
semileptonic decay P — P'(u,.

The amplitude for the process at lowest order in weak interactions is:
Gr
V2

where G is the Fermi constant, V, is the CKM matrix element related to the quarks
involved in the process, while H, and L* are the matrix elements of the hadronic and
leptonic currents respectively:

M(P — P'l"p) = Vool H, L, (1.60)

L* = (0ol ey" (1 = +”)wi|0) (1.61)
H, = (P'lgy"(1 = 7°)Q|P) - (1.62)
In the case of pseudoscalar mesons both in the initial and final states, the contribution of

the axial current to the hadronic matrix element vanishes, so that in Eq. (1.62]) only the
vector current survives:

H, = (P'lgy"(1 —~°)Q|P) = (P'|gy"Q|P) = (V,.) . (1.63)

The vector matrix element (V,,), as required by the Lorentz symmetry, can be decomposed
into two form factors f,(¢*) and f_(¢?):

(Vi) = (P'(k)|VLIP(p)) = (0 + k) f1(¢*) + (p — K)u f-(2%) (1.64)
where f, (¢?) is the vector form factor. It is also possible to define a scalar form factor
2

fold®) = 1)+ 3 S0 (1.65)
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where ¢, = (p — k), is the momentum of the outgoing lepton pair and by construction
we have the kinematic constraint f,(0) = fy(0). In term of the scalar and vector form
factors Eq. (1.64)) takes the form:

2 2 2 2

mP/

HWMWMP@»:(p+k—qTi;—— m

)m@wu Bl@) . (1.66)

2
e
Using in the Feynman amplitude the decomposition of Eq. for the vector
current and the expression for the leptonic matrix element, we can get the SM
prediction for the differential decay rate of a generic semileptonic transition between two
pseudoscalar mesons:

dT(P — P'lv)  G3|Voel? (¢ — mj)*\/E} — M,

dg? 2473 q* M3

m2
.w+ﬁﬁm%—WWMW+

(1.67)

2
3m;

o (M= M| o)

Finally since the contribution to the decay width due to the scalar form factor is propor-

tional to my, in the case of ¢ = e, u Eq. (1.67) can be simplified to

dU(P — P'lv,)  G%|Vg.|* . 2
7~ g PRl [F@] (1.68)

which is the equation we use in Sec. in order to evaluate the CKM matrix elements
Vo] and [Via].



Chapter 2

Lattice QCD

In this Chapter the main features of QCD regularized on a 4-dimensional lattice are
presented. We start introducing the theory of strong interactions in the continuum,
focusing on the content of fields - made up of quarks and gluons - and the symmetry
properties under SU(3)c. We then show how the formulation of QCD on the lattice
provides both an infrared (IR) and an ultraviolet (UV) cutoff which regularize the theory.
A brief presentation of the Wilson formulation of QCD on the lattice will be shown, and
a special care will be devoted in the description of the Wilson Twisted mass action, which
is the one used in our simulations, and the O(a) improvement it allows for. Last Sections
are dedicated to the RI/MOM method, to an introduction on numerical simulations in
LQCD, to the extrapolation of physical quantities from correlation functions, the twisted
boundary conditions and the smearing techniques.

2.1 QCD in the continuum

Quantum Chromodynamics is the non abelian field theory that describes strong interac-
tions. It is based on the symmetry group SU(3)¢ and its fundamental degrees of freedom
are quarks and gluons.

Some features about quarks have been already presented in the previous Chapter.
We remark here that they are spin-1/2 massive fermions which belong, as it is shown
in Eq. (L.4), to the fundamental representation of SU(3)c. They carry a color charge,
that can be of three different types and that is the analogue for strong interactions of the
electric charge of QED. In the following we will use for quarks the compact notation 1/,
where f indicates the flavor labe]E], while v = 1, 2, 3 represents the color index.

Quarks interact with each other via gluons exchange, which are massless spin-1 bosons.
In contrasts with QED, where photons are neutral particles, gluons can interact between
them as they also carry color charges. They are the gauge bosons of QCD and are
represented by real valued fields Af(z) (a = 1,...8), which are the color components of

"'We remark the difference between this label and the flavor index 4 used in the previous Chapter.
The former runs over all six quark’s flavors (f = u,d, s, ¢, b,t), while the latter represents the families, so
i=1,2,3.

19
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the gauge field A, (x):
)\a
Aulz) = Aj2) = (2.1)

where \* are the Gell-Mann matrices. A, (z) belongs to the adjoint representation of
SU(3)¢, so it is hermitian and traceless.

2.1.1 The QCD lagrangian

The lagrangian of Quantum Chromodynamics isﬂ
1 = )
EQCD - _ETT [F#V(x)Fw/(x)] + Z¢f<ﬂi> (llD - mf) ¢f(x) ) (22)
!

where the first contribution is given by the pure gluonic term, while the second one
contains the couplings between fermions and gluons. This second term is characterized
by the presence of the covariant derivative

D, =8, +igA,(z) , (2.3)

where ¢ is the coupling constant of strong interactions.ﬁ Using this equation in (2.2)) we
find:
D @) (i@ —mf) ol (@) =g Y D (x) M) () (2.4)
! !

where we recognize the kinetic term of quarks, with masses m/ depending on the specific
flavor, and the interaction term between quarks and gluons. We remark that this inter-
action is the same for all flavors and it is similar to that between photons and charged
particles in QED.

On the other hand the pure gluonic term is made up of the gauge field A,(z). It is
characterized by the presence of the gauge strength tensor F*¥(x), which is given by

B (x) = 0,A, () = 9,Au(x) +ig[Au(x), Ay(x)] - (2.5)

Using Eq. (2.1]) it’s possible to write also the stength tensor in color components:

4 a >\a
" (.Z') = Fuu(x)7 ) (26)
where we have
Fo () = 0,AL(x) — 9,AL(x) — g [ AL (x) Ag () | (2.7)

and fo are the structure constants of SU(3). Eq. (2.7) shows clearly the similarity
between the strength tensor F*” with the corrisponding tensor of QED. In fact they

2Dirac and color indices are omitted.
3From now on we use g to indicate the coupling constant of SU(3)¢, and no longer that of SU(2)r,
as we did in the previous Chapter.
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match up to the third term in (2.7)), which is peculiar for non-abelian field theories and
has deep physical consequences.
Using relation (2.6 we can get rid of the trace in (2.2)) and we obtain

1 v 1 auv b A? )\b 1 apv a
—§TI" [F“ ij] = —§F H FMVTI' |:7§:| = _Z_lF K FNV s (28)
—_——
6ab/2

where the index a is summed over. Thus the gluonic part of Locp has the same structure
of the pure gauge lagrangian of electromagnetism, but it is a generalization of it. The
main difference with respect to QED arise from the last term in , i.e. from the gluonic
self-interaction term. Expanding and in Locp we find that gluons engage with
each other through a cubic and a quartic self-interaction. This is a remarkable hallmark of
QCD as it gives rise to one of the most important feature of the theory: the confinement
of color into hadrons. On the contrary let’s notice that taking the limit ¢ — 0 in Lgep
all the interaction terms vanish and we get a free theory for quarks and gluons.
If we now rescale the gauge field A,(x) by the coupling constant:

1

Au(w) — 514#(96)’ (2.9)

the physical content of the theory remains unchanged but now we can make explicit g in
the lagrangian. We obtain:

Locn = —QLQQTr P () By ()] + 0 () (i — mf) o () | (2.10)
f

where the coupling constant disappears from the covariant derivative and the strength
tensor, that now become:

D, =0, +iA,(z) (2.11)
Fp(x) = 9, A5 () — 9, A () — [ AY () Af(x) . (2.12)

2.1.2 Gauge invariance of QCD

In the previous Section we wrote the QCD lagrangian without addressing the issue of the
gauge invariance. Differently from the flavor symmetry, which is accidental in the limit
of massless fermions, the color symmetry is required by the SM and it is exact. In order
to have the invariance of QCD under SU(3)¢ we need to require that all the terms in the
lagrangian (2.10) remain unchanged under group transformations.

Quark fields belong to the fundamental representation of SU(3)¢ so they transform,
neglecting the flavor label, simply as

Vi) = Pi(w) = Q)i i) ,
i) = Pi(x) = P(x) Q)

(2.13)
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where Q(z) € SU(3)c. This relations already guarantee the invariance of the fermionic

mass term in (2.10)):

V(@)mi(r) = ()
=1(2)

having used the property Q(z)" = Q(x)~! of unitary matrices.

As for gluons, in order to understand how the gauge field A,(x) has to transform
under SU(3)¢, let’s go back and recall the fermionic term with the covariant derivative
in Loep. It has the same structure of the fermionic mass term but with m replaced by
ID. Therefore, since the Dirac matrices commute with every Q(x) € SU(3)¢, in order to
find the transformation rule for A,(x) we have to require that

D, (x) = Q(z) Dyt () | (2.15)

() m Q) v (2) =

/ _ (2.14)
(2)" Qz) m ' (2) = d(z) m(x) ,

Q
Q

which makes automatically satisfied the condition
zﬁ/(x)D;w'(x) = 1p(x) Q2)"Q(z) D, y(z) = &(m)Dﬂw(x) ) (2.16)
Expanding Eq. (2.15)) we find

(O + 14, (7)) Q(x) Y(x) = Qz) Ot (z) +1Q(x) Au(z) ¥(z) =

o . (2.17)
— 0,0(2) b(2) + 14, () A2) b(x) = 1D(z) A, (x)(2)

where the term with the derivative on the quark field has vanished, and being ¢ (z) an
arbitrary field, we can drop it and simply consider the equation on the gauge field:

9,Q(x) + 1A, (z) Q(x) = iQ(x) Au(z) . (2.18)

Multiplying from the right side all the equation by Q7(z) we obtain the trasformation rule
for A, (z):

Al (z) = Q) Au(z) Q)" +10,0(z) Q(z)" (2.19)
that, using the condition
9,2(z) Q)T + Q(2) 0,9(x)" = 9, (Qz)2)T) = d.(1) =0, (2.20)
became
Al (z) = Q) Au(z) Q)T —iQ(x) 8,0()" . (2.21)

This equation represents the transformation rule of the gauge field A,(z) under SU(3)¢
which makes Eq. satisfied.
Now that we have proved the invariance of the fermionic part of Locp, what is left to
do is to check that also the pure gluonic term is symmetric under SU(3)¢ transformations.
For this purpose we note that the strength tensor can be written in terms of covariant
derivatives as

F#V<x> = —i [D#($)7Du<x)] ) (222)
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so that its tranformation properties derive directly from those of D, (). Looking at ([2.15)
it’s straightforward to find that under gauge transformations the covariant derivative
becomes

Dy(z) = Dl (z) = Q(z)D,(x) Q)" . (2.23)

Thus Eq. (2.22) implies the same transformation rules of D, (z) also for the strength
tensor £, (x):
Fu(z) = F, (x) = Q) Fu(z) Q) . (2.24)

Now it is easy to show the invariance of the pure gluonic term of Lgcp. Using the
property of the trace to be invariant under cyclic permutations in (2.10]), we have

Tr [F"(x)F,,(x)] = Tr [Q(z)! F* Q(z) Q) F Q(z)] =
= Tr [Q2) F*F,, Q(z)] = Tr [Qz) Q(z)! F*F,,] = (2.25)
T [P (1) Fyu ()]

which proves, since the coupling constant ¢ is not touched by gauge transformations, the
symmetry of the pure gluonc term, and so of the entire Lo p, under SU(3)¢ transforma-
tions.

This complete our first look on QCD in the continuum space-time. The next step is
to transpose the theory on the lattice. To conclude let’s notice that although there is not
a unique way to do this, all the features we have seen so far will be the main ingredients
to approach the problem.

2.2 Regularization of QCD

In Quantum Field Theory (QFT) physical informations are contained in the Green func-
tions, which are vacuum expectation values of the T-products of an arbitrary number of
fields and can be obtained in the framework of path integrals. For instance, let us consider
a theory with a scalar field ¢ and action S[¢], the n-point Green function is defined as

O1T {9(a) ... ()} o) = LA Hen) DG} - o

where Z = [D[¢] exp {iS [¢]} is the so-called partition function. Let’s notice that al-
though ¢(z1),...,¢(z,) appear in both sides of the equation, those on the Lh.s. are
operators, and in fact they act on the vacuum state, while those on the r.h.s. are numer-
ical quantities. The n-point Green function can be expressed in terms of the generating
functional:

ZlJ) = /D[¢] exp{iS (] +i/d4x J() gb(m)} : (2.27)

which reduces to the partition function (2.26) when we impose J(x), called the source of
the field ¢(x), to be zero. By taking functional derivatives of Z[.J] we have that

(—i)" 5 Z[J] 2.25)

O] T {p(x1) ... p(xn)}0) = Z[J=0]0J(x1)...0d(x1)

J=0
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However, Feynman integral (2.26)) is not well defined as it is infinite dimensional. In
fact the measure D[¢] is a product of integration measures of the classical field variables
at all points x of the space-time:

Digl = |] do(=) , (2.29)

z€R4

so it is given by an infinite number of terms. Furthermore in the expression of the Green
functions we have the phase e*, which is an oscillating term. It is clear that in order to
make sense to the path integral we have to solve this two problems: we refer to
this procedure as the regularization of the theory. The phase e can be transformed in
a negative exponential by implementing the so-called Wick rotation. On the other hand
the Feynman integral can be reduced to be finite-dimensional by discretizing the space-
time on a 4-dimensional lattice. This procedure automatically gets rid of the divergencies
which typically affect QFTs.

2.2.1 Wick rotation

In order to make the integral convergent we have to perform the Wick rotation,
that is a transformation from the Minkowskian space-time to the Euclidean one. In this
way we obtain a theory that preserves the physical content of interest, although is not the
real one. This rotation corresponds to the analytic prolongation of time in the complex
field. To better undestand how this rotation works, let’s start observing the simple case
of a 2-point Green function with values of time 2° and y° such that 2° > y°f] We have:

O T{o(x)p(y)} [0) = (0] ¢(x)o(y)]0) =

20>y

— iHz0 —iHzO° z'HyO —z'HyO —
501 6(0.5) 7 ) o 00.)e 0 =y
= > (016(0,) |n) (n] $(0,y)[0) e~
where we have used the completeness relation

L=>Y |n)(n|, (2.31)

in which we consider an orthonormal basis for the Hilbert space, with energies ordered as
Ey < E; < Ey < .... We can perform the analytic prolongation of time in the complex
field by setting

To — To€'®, Yo — Yo', (2.32)

so that the exponential in Eq. (2.30) becomes

. 0,0\ pice i 0_,0 0_40) si
o iBn(a0—y) e’ _ —iBn(a%—y°) cosa En(z®—y°) sina (2.33)

4 Although this is not the general case, it shows well the problem and can be easily generalized.
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The first term on the r.h.s.is still oscillating, but the second one has a real-valued exponent,
so it’s no longer a complex phase.

Focusing on this second exponential, we have to be careful in choosing «: the energy
E, is positive and has no upper bound when increasing n, but also (xo—yp) is greater than
zero by assumptionﬂ thus the choice of « is not completely arbitrary. If we take a > 0
the exponent is positive, so the sum in (2.30) explodes to infinity, but if we set o < 0
the exponential is negative, so this choice improves the convergence of the T-product
. In this procedure we only have the constraint o < 0, which allows us to set the
particularly advantageous value a = —7 /2, in order to get

(0] T{¢(x)d(y)} [0) = Y (06(0, %) [n) (n] $(0, y)[0) e "=V, (2.34)

n

where the oscillating term vanishes becouse cosa = 0. Transformation ([2.32)) with the
condition & = —7/2 is what is called Wick rotation.

Using labels M and E to indicate the Minkowskian and the Euclidean space-time
variables, for a generic space-time point x this transformation is given by

0 0 0

T =xy — —lrg = —iay, (2.35)
=2, - 2= '
Now it is straightforward to see that the relativistic distance becomes
? = (%) (vog) + (2')(wip) = 2] + 25 + 23 + 17, (2.36)

that explain why this new space-time is called Euclidean. Since we have an Euclidean
metric, we do not distinguish between covariant and contravariant indices, and we will
conventionally use only contravariant ones.

Let’s see how it works the analytic prolongation for the free scalar theory. In this case
the 2-points Green function is given by the Feynman propagator:

d4q eiqo(xo—yo) e_Zq(x_y)
1A —qy) =1 . 2.37
i Ap(z —y) 1/(%)4 T (2.37)
Looking at the temporal part of (2.37]), when we use the analytic prolongation of time
[£:32) we get
0 e 14’ (xo—yo)p ™
/dq o (2.38)

and the above integral will be divergent for any choice of a because ¢° can be either
positive or negative. This means that we cannot apply directly rotation to the
Feynman propagator. What we have to do is to perform the analytic prolongation in such
a way that the exponent in is purely imaginary. In order to do that we have to
change the integration path while we rotate time, so that ¢° has a constant phase e=*
that cancels the one of (zg — yo).

®Had we chosen zo < yo, we would get (yo — x¢) in (2.33), once again greater than zero. In fact this
argument is indepent of the choice zy > yq.
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Figure 2.1: Wick rotation in the complex ¢" plane.

An integration path characterized by a constant phase is a straight line in the com-
plex plane: we can only set o < 0, otherwise we would move through the singularities
¢® = ++/|q]? + m?. This is in agreement with the choice of setting & = —7/2, which
corresponds to rotate ¢ from the real to the imaginary axis. Thus when we perform the
Wick rotation we have also to change the integration path in Eq. and we obtain
the Euclidean components of the four-momentum:

0 -0 —
qy — W =144 ,

; : (2.39)
v — 4E -
Using ([2.35)) together with (2.39)) the Feynman propagator becomes:
Ap(r—y) o i/ (idqy) d®q e’ 9D @a—y) p=ia(x=y) _
" @r)t gl —laf —m?
d4q 6“14(334*3/4) e*iCI(X*Y) (2 40)
_/k%ﬁ gi +la>+m> '

d4q 6iq4(:1:47y4) e*iQ(X*y)
_/<27T>4 q2+m2 ?

where now we indicate ¢* = ¢% + |q|?, exactly as in an euclidean space-time. We remark
that the euclidean propagator does not diverge anymore and it is free of singularites:
the minus sign in the denominator has been replaced by the plus sign. All we showed
here can be easily extended for a generic quantum field theory and keeps its validity for
any n-points Green function.
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2.2.2 Wick rotation of the QCD action

In order to complete the discussion about Wick rotation, what is left to do now is to see
the implications of this transformation for the QCD action. First of all let’s notice that
when we perform the analytic prolongation of time in the complex field the gauge field
components transform as

Ay (z) = 1AL (x) |

2.41
AM(@) — AF(z). 240
while for the space-time derivatives we have
) 0
don = o o0 10og ,
oz, —i0zYy,
5 9 (2.42)
Dim =0ip -

= — = —

ox'y, oz’
Taking the fermionic part of the QCD action and considering it for a single flavor, the
action of the Wick rotation implies:

W. rot.
—

S5, A) = [ de dla) (90 + i Au(o) — m) ()
W, xgt. / —id*z" (z) (iyo(iﬁoE +i2AF (2) +iy'(0F +iAF (z)) — m) P(r) =
:i/d4xE V() (70(80E +iAF(2)) +iv(0F +1AF (2)) + m) () =

=i [ 4P (o) (1O +1A4E(@)) + m) (e)
(2.43)

where we have introduced the Euclidean gamma matrices, which are related with the
Minkowskian ones by the equations

W=, =i, =i W =, (2.44)
and satisfy anti-commutation relations:

In addition to the matrices 'yf (p=1,2,3,4), we have also the Euclidean version of s
as the product:

Y =R (2.46)
From Eq. (2.43]) we define the Euclidean fermionic action of QCD as

SE[, b, A] = / 42 () (1E(OF +iIAE(x)) +m) b(x) | (2.47)

Such a definition implies that the effect of the Wick rotation on the fermionic action can
be summarized in the following compact way:

S, Al 8 w4, A] (2.48)



28 2.2 REGULARIZATION OF QCD

For the case of the pure gluonic action we need to know the transformation properties

of the strength tensor. Using Eqs. (2.41] in (2.5)), we find:

Fojy(x) W.—r%t' iFozE(x) )

FM(z) "8 i FP(x)

i i

(2.49)

where i, j = 1,2,3. The above relations imply that the trace in (2.10) transforms as

Tr [F* (x) Fu ()] = Tr [=2Fy(2) Foi(z) + Fij(z) Fij (7)) W rgr
I [2FF (0) FE (o) + FE () FF(2)] = (2.50)

=Tr [FE(x)FE(x)] ,

pv pv

and thus for the pure gluonic action we finally get:

1 ro
S Al = —5 [ d'a T [F"(@)Fu(@)] =
N 19 (2.51)
. rot. .
-— 12—92/ dzf Tr [FMEV(x)Fﬁ(:r)] )
If we now define the Euclidean pure gluonic action as
1
SEIA] = 2_5]2/ d*x? Tr [FMEV<£L‘)FMEV(I‘)} , (2.52)

we can extend relation ([2.48)) also to this case, and more generally to all the QCD action:

T W. rot. . -
S&'D[wkuA] —0> 1550D[¢7¢7A] : (253)
This relation proves for QCD what we introduced for the general case at the beginning
of this Section, i.e. that the phase e’ in the Green functions can be transformed by the
Wick rotation in an negative exponential:

. W. rot.
exp (1S5ep) =18 exp (=Séep) - (2.54)
From here on we will only make use of the Euclidean formulation of the theory, so we’ll
neglect the label £ but considering the Euclidean action of QCD.

2.2.3 Lattice regularization

Now that we have the Euclidean formulation of QCD we need to solve the problem of the
infinite dimension of the Feynman integral , which actually is only a formal definition
because of the infrared and ultraviolet divergences. In 1974 Kenneth Wilson proposed a
formulation of QCD on a lattice that was the starting point for non perturbative numerical
calculation in particle physics [32]. The idea is to discretize the space-time in a finite 4-
dimensional lattice, so that the Feynman integral can be expressed in a well defined
mathematical form.
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The first step is to introduce a 4-dimensional lattice A:
A ={n=(ni,ng,n3,ng)|ny,ng,n3=0,1,2,.... N —1;ny =0,1,2,...., Np — 1} | (2.55)

where the vectors n € A indicate points of the space-time separated by the lattice spacing
a:

r — an  neA. (2.56)
In each direction we consider N points, so the lattice A has a finite volume V = L3 =
(aN)? and a finite extension in time T = aNr, which means that we have to use a

prescription in order to define the fields at the boundaries. As a starting point we choose
periodic boundary conditions (BCs), i.e. we identify n, = Ny withn, =0 (n =1,2,3,4):

®(n + aNgyji) = B(n) . (2.57)

In the framework of LQCD the fields of the theory live only on the lattice sites, so we
replace the space argument x by the label n:

O(z) — ®(n) neA. (2.58)

In order to define a theory on the lattice we also need to discretize the derivatives. There’s
no single way to do it, but for small lattice constants a two solutions are given by the
following replacements:

0,0(z) — 8,0(n) — 2T [2 —®m) (2.59)
0,0(z) —> 9,0(n) — 2 = 2)(" — ) (2.60)

where /i denotes the unit vector in the p-direction. Egs. are commonly called
the foreward and backward derivatives. Using the Taylor expansion it is straightforward
to see that these two quantities are equal to the usual derivative up to terms of order
O(a). However, if we combine forward and backward derivatives as

L (Gt 0,)a(m = 2O R0 R 2.61)

we obtain an object which matches the field derivative up to order O(a?).
When we consider a theory on a lattice A the functional integral (2.26|) is finite-
dimensional. In fact the integration measure (2.29) becomes:

D®] = [] do(x) — []d®(n) . (2.62)

zeR4 neA

which is the product of a finite number of terms, and so it represents the measure of a
well defined multidimensional integral. The lattice provides also both an infrared and an
ultraviolet cutoff, where the former is due to the fact that the lattice has a finite volume
V', while the latter is a consequence of the discretization. Considering the expression of
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the field @ in the momentum space, which is given by the Fourier transform of ®(n), we
have

O(pt) =Y _ B(n) exp{—iap- i} , (2.63)

which means that each component p; (i = 1,2, 3) of the momentum is cutoff at the first

Brioullin zone: -
O(p+ (2r/a)i t) = @5 1) = |pi| < —. (2.64)

Eq. (2.64)) shows how the lattice spacing a, and more precisely its inverse a~!, constitutes

an ultraviolet cutoff for a theory on the lattice. On the other hand we can consider ®(n),
expressed in the space-time, as the Fourier transform of ®(p,t). We have:

]- — P S
(n) = 1 Y _ (B t) exp {iaj - ii} (2.65)
i
through which, using Eq. (2.57), we find

% Z Y (p,t) exp {iapin; } exp {iap; N} = % ; »(p,t) exp {iapin;} =

pi

(2.66)
. 27Tki .
— exp{ipiLl} =1 = Pi = with k£, =0,1,2,...,N—1,
a

which shows how the lattice provides also an infrared cutoff for our theory.

2.3 Partition function of QCD

To write the generating functional in QCD we have to introduce three sources, one for
each field in the action. In the Euclidean space-time we have:

Zn.m,J] = /D[A] (HDW]DWO x
]

X exp {—SQCDW), ¥, Al + /d4fv [Z (ﬁf(x)¢f($) + W(x)nf(x)) +J(2)A(x)

f

(2.67)
where we use symbols in bold to represent the dependence of fields on different fla-

vors. Quark fields and their corresponding sources are anti-commuting complex variables
(Grassmann variables) which satisfy the following commutation relations:

{6 ={6e={6¢=0. (2.68)

This means that £2 = £2 = 0, so any generic function f(, ) can be expanded as a Taylor
series in the simple form:

f<£75)200+61£+c2g+c3557 (269>



2.3 LATTICE QCD 31

where all the higher other terms are zero, while the ¢; (i = 0,...,3) are just numerical
coefficients. Furthermore, also derivation and intragration rules are different for Grassman
variables with respect usual commuting ones. In particulare we have:

90 90 o- -0
A S S (2.70)

/ dEdg — / JEdEE = / JEdEE =0 (2.71)
[ace= [dee— [deacez—1. (2.72)

Eqgs. (2.71)2.72) can be used to find the expression of gaussian integrals of Grassman

variables, which reduce to the simple form:
N N
/ (H d&d@-) exp {— > &Mz-jsj} = det[M]. (2.73)
i=1 ij=1

If we now consider the fermionic part of the generating functional (2.67) and define
M{[A] = (7,(0, +iA,(z)) +m’) in the fermion action (2.47), we can write:

Zrn,n, A :/ (Hp[zpf]z)[@f]) X
f

X exp {— / d'zy (W(:U)Mf (Al () — 77 ()i () — W(SL’)W(%)) } :
7

(2.74)
To solve this integral it is convenient to perform the following transformation:

Wl (@) = & (@) + M nf = € (2) + 9/ (a)

- 2.75
@)= @+ M = @)+ (), 27

where ¢/ and Ef are new integration variables, while {/;f and 1)/ are constant fields. The
change of variables (2.75)) leaves invariant the integration measure and allow us to write
the fermionic generating functional in the form:

i - oo [ v | (TTmerme) -
f f
X exp {— /d4xZ§fo gf} = exp {/d%z ﬁfolnf} I det[p],
f f f

(2.76)
where, for a given flavor, the quantity det[M/] is called fermionic determinant. Dif-
ferentiating this result with respect to 7 and 77 we find an expression for the fermionic
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expectation value of Grassman variables that comes under the name of Wick’s theorem.
The simplest case is given by the 2-point function:

B 1 52 Zp
ZF[n = 07 /ﬁ = 07 A] 5ﬁf(y)577f<x) nf,nf=0

where (...) represents the analytic continuation of the T-product in the Euclidean space-
time, while the label F' indicates that the expectation value is calculated using the
fermionic action Sg. Eq. can be used to rewrite the QCD partition function ([2.67))
in terms of an effective action depending on gluon fields only. Setting to zero all sources
in Zr and and using the matrix property det[M] = exp { Tr[log(M)]} we find

Zgcp = /D[A] exp{—Sg%D[A]} =
_2Lg2/d4$TI‘ [FMV<5U)F;U/<5U)]} )

= /D[A] exp{—l—Tr log (Z Mf[A]>
! (2.78)

The fermion determinant produces the sea quarks corrections, which are given by the
exponential of fermionic loops with an arbitrary number of insertions of gauge fields. It
describes the fermionic vacuum where virtual pairs of quarks and antiquarks are created
and annihilated. Its numerical evaluation is time-consuming and computationally ex-
pensive and for this reason, up to the late nineties, lattice calculations were performed
neglecting the fermion determinant in numerical simulations. This corresponds to perform
the limit m, — oo, in which the sea quarks decouple from the theory, and is known as the
quenched approximation. Nowadays, most of the lattice calculations are unquenched, i.e.
are performed considering the contribution of dynamical sea quarks. The present work,
is developed using the gauge configurations produced by the ETM Collaboration includes
the effects of four flavors of dynamical quarks (up, down, strange and charm).

W () () p = M[A] (2.77)

2.4 Fermionic action

We start the analysis of the QCD formulation on the lattice from the fermionic action.
In particular let us consider the free term of Eq. (2.47]), which is:

St (0,5 ] = [ d's (a) (0, + mo) (a) (2.79)

where we use the symbol mg to indicate the bare quark mass. Using substitutions
(2.58l2.61)) it is straightforward to write the lattice version of S%. We get:

Sp ] =a") w(n){zyﬂ(””);a“"_ﬂ) +mop(n)], (2.80)

neA

where we have also transformed the space-time integral in a sum over the lattice sites:

/d% — a*) . (2.81)

neA
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Eq. (2.80) can also be written in the compact form:

Sp 0] =a* Y wb(n) D(n,m)(m) (2.82)

n,meA

where the Dirac operator D(n,m) is defined as:

4
1
Z % m N+ —|— §m7n_ﬂ] —|— mo 6mn . (283)
pn=1

2.4.1 Gauge invariance of the fermionic action

In Eq. we have introduced the lattice formulation for free fermions. In order to
regularize the fermionic action, however, we have to consider also the interaction between
quarks and gluons. We thus need to see how the property of gauge invariance of QCD
under SU(3)¢ transformations traslates on the lattice.

Let us define Q(n) as the lattice SU(3)¢ gauge transformation, being n a generic
lattice site. Fermionic fields transform according to the fundamental representation of
SU(3):

Yi(n) = i(n) = Q(n)i; ¥;(n) ,

di(n) = j(n) = &;(n) Qn)l; |
so the mass lagrangian term is automatically invariant as in the continuum case .
For the discretized derivative terms in this is not the case, so we have to define a
lattice version of the covariant derivative.

This can be done introducing the field U,(n), which is an element of the gauge group
SU(3), related to the gauge field A,(n) through the expression:

Uu(n) = exp (iaA,(n)) . (2.85)

(2.84)

Eq. (2.85)) implies for U,(n) the following transformation relation:
Uu(n) = Ul (n) = Qn) Uu(n) Qn + )", (2.86)

which shows that U,(n) is an oriented field (along the ji direction), attached to the link
connecting the lattice sites n and n + . For this reason U, (n) is called link variable. We
can also define the link variable that points in negative p direction:

Uou(n) = Uyln— ) (2.87)
which has gauge transformation properties:
Uou(n) = U, (n) = (n) Uy (n) 2 — ), (2.8)

and so it connects the lattice site n with n — 1. With the introduction of the link variables
we can generalize the free fermionic action ([2.80]) to the so-called naive fermion action:

610 0.0] =0 3 00| Loy (T + i) +awi) . 259

neA p=1
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where we have defined V,, and V’; such that

vu w(n) = U#(n) w<n 2: ﬂ) B w<n) _ U#(n) §n+;1,m - 5n,m w<m> ’ (2'90)
Vigpn) = L0 U“(E”W(” —) _ Onn = Ugm) O ) . (2.91)

From Eq. (2.89) we can read the Dirac operator for the naive fermion action, which takes
the form:

4
U, 571 Am_U— 6n—Am
D(n,m) =Y 7, u(1) Onp o (1) O + M0 Gy - (2.92)

p=1

2.4.2 The doubling problem

Naive regularization is the minimal approach to translate the continuum action on the
lattice. However it introduces in the theory new and unwanted degrees of freedom. This
can be shown explicitly by computing the quark propagator:

S(n,m) = (a(n)s(m)) = Dys(n,m) . (2.93)

Let us consider for simplicity the case of free fermions, which corresponds to take U,(n) =
1. Imposing periodic BCs on the lattice, D(n, m) can be obtained in the momentum-space
using the Fourier transform (FT):

1 —ip-na ig-ma
D(p,q) = 37 Y e D(n,m) e =

n,meA
4 . .
1 ) etiane _ o—tqua (2.94)
- —i(p—q)-na 1] =

=dp—q)S (p)

where S™!(p) is given by:

-
1 .
S~p) = - g Yusin (pua) + mol . (2.95)

p=1

In order to calculate S(n,m) we simply need to compute the inverse of Eq. (2.95) and
then invert the F'T. We obtain:

—i Zi:l Yu Sin(s*‘a) +mgl

4 sin(pua)? 2
Zu:l a? + mO

1 ,
S(n,m) = o > eir(n=ma_ (2.96)

peEA

The quark propagator (2.96) keeps in the continuum limit the physical pole at p? =
m2, which is associated with the particle mass. However on the lattice the situation is
more complicated and the propagator for free fermions has additional poles. In order to
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understand this problem let’s consider the case of massless fermions. When p,, is either
0 or 7/a the function sin(p,a) is equal 0, so if all the four-momentum components take
one of these two values we find a pole. Our lattice Dirac operator has therefore 16 poles,
one of which being

p=(0,0,0,0) , (2.97)

corresponding to m3 = 0, while the remaining fifteen, the so-called doublers, are pure
lattice artifacts.

2.4.3 Wilson fermions

In order to solve the doubling problem, Wilson proposed [32] to add to the Dirac propa-
gator of the naive fermion action a new term, the so-called Wilson term, proportional to
the lattice spacing a, so that it vanishes when we perform the continuum limit. In this
way the action reads:

4 4
SV, 0, Ul =a*y " 4(n) [Z%% (VN+VZ)—agZVMVZ+mO Ww(n), (2.98)
p=1 p=1

neA

where 7 is called the Wilson parameter. The new term modifies the Dirac operator (2.92)),
which becomes the Wilson-Dirac operator:

n,m -~
’ 2a
p==1

+4
Duvtinm) = (1o + 2 Y = 50 3 (L= ) Uyl b+ (299

where we have defined v_, = —v,.
If we return to the quark propagator ([2.93]), we find that it has been modified in the
following way

-4 sin(pua)
1 1), Yyt +m 1
S(n,m) = 2y lair: (P et (n=ma_ (2.100)
VT 4 sin(pua)? 2
peh Zuzl 2 T m(p“)

where the mass term is

m(p,) =m+ % sin (%) . (2.101)
Eq. manifests the solution of the doubling problem. In fact on one hand the
extra term in m(p) vanishes when we consider p = (0,0, 0,0), so the physical pole is not
modified by the Wilson term. On the other hand when we consider the doublers, we have
that each component p, = 7/a provides an extra contribution 2r/a to the unphysical
degrees of freedom. This means that for any finite value of r, the doublers become very
heavy in the limit a — 0, so that they decouple from the theory. In particular setting
r = 1 and considering a typical lattice simulation where the inverse of the lattice spacing
is around 2 GeV, the 15 doublers have a mass of at least 4 GeV, so their presence can be
safely ignored in the computations.
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Even if the Wilson term solves the doubling problem, it has however a bad side effect.
In particular it explicitly breaks chiral simmetry, which is recovered in the massless limit
only. This problem is not specific of the Wilson action , but comes from a general
property of QCD expressed by the Nielsen-Ninomiya No-Go theorem [33], which states
that it is impossible to discretize QCD in a way that is simultaneously free of the dou-
bling problem and which reproduces the correct chiral limit. The breaking of the chiral
symmetry on the lattice has important consequences. In fact although the naive fermion
action is affected by O(a?) discretization errors, it introduces in the theory also errors at
the order O(a). Another important effect (see Sec. is that the quark mass term is
no longer safe against additive renormalization contributions which do not depend on the
bare quark mass. It is therefore convenient to introduce a so-called critical mass, which
can be subtracted to the bare quark mass

Mg = Moy — Mer (2.102)

such that the chiral point is well defined. This can be done, in the case of two degenerate
quark flavors, setting m,, in order to have a vanishing mass for the lightest pseudoscalar
meson.

2.5 Pure gauge action

In the last Section we have studied the discretization of the fermionic part of the QCD
lagrangian on the lattice and we have introduced the link fields U, (n) in order to preserve
the gauge symmetry SU(3)c. Now we want to repeat the analogous procedure for the
pure gauge action ([2.52]).

In order to achieve this result we have to introduce a new object called Plaquette,
which is a product of four link variables defined as

Uno(n) = Un(m)Us (0 + )U-(n + i+ 9)U— (0 + ) =

= U,(n)U,(n + @)U, (n+ )0, (n)' .
The plaquette is the minimal non-trivial loop on the lattice and corresponds to the square
defined by the points x and = + i + 7. It is important because we can build an object

which is gauge invariant just taking its trace. In fact under SU(3)¢ transformation we
have:

(2.103)

Tr U (n)] — Tt [Qn)U,. (n)n)'] = Tr [Q(n)'Qn)U,. ()] = Tr [Uu(n)] .
(2.104)
Wilson found for the gauge action the following expression:

B
Salt] = 2303 Re{ Tul1l — U ()]}, (2.105)
neA p<v
which is the combination of a sum over all plaquettes, with each plaquette counted with
only one orientation, together with a sum over Lorentz indices. The factor [ is the inverse
coupling and is given by
6
g
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so that in the continuum limit S¢[U] correctly reduces to (2.52)).
To see that the Wilson gauge action (2.105)) has the correct behavior in the limit a — 0
let us consider the Baker-Campbell-Hausdorff formula:

1
exp(A) exp(B) = exp (A + B+ - [A B] + ) ; (2.107)
through which we can express the plaquette in powers of the lattice spacing as:

Uw(n) =exp| +iaA,(n) +iaA,(n + ) — —[A.(n), Au(n + )]+

(2.108)

FS
=
+
=
2
>
S
+
2

Now using in the last equation the Taylor expansion for the gauge field
A (n+ i) = A,(n) + ad,A,(n) + O(a”) , (2.109)

we have, up to O(a?) terms:

U, (n) = exp {icﬂ (0,AL(n) — 9, A,(n) +i[A,(n), Al,(n)])] = exp (iaQFW(n)) , (2.110)

and so we finally find that:
5221%{1&1— U (n)]} = QZZTI w(n)?] 4+ 0(a?).  (2.111)
neN p<v neN v

which reduces to (2.52)) if we perform the continuum limit.
In summary, the complete lattice QCD action can be written as:

Stacpl, U] =SelU]+ > Sy V., U7, (2.112)
/

where Sg[U| corresponds to Eq. (2.105)), while for fermions we take the sum over all
flavors of the Wilson fermion action ([2.98)).

2.6 Improvement

Wilson formulation of QCD on the lattice is built in a way that it reduces to the
continuum action in the Euclidean space-time. We have seen however that while S[U |
matches its continuum counterpart up to terms of order O(a?), the fermionic action ([2.98))
is characterized by discretization effects at the order O(a).
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This means that physical observables has a dependence on the lattice spacing a, such
that the expectation value of a given operator O can be written as:

<O>Latt = <O>C0nt + O(a) + O(CLZ) +., (2'113)

where (O)qqt¢ and (O)cop represent the expectation values calculated respectively on
the lattice and in the continuum. Depending on the operator we consider and the lattice
QCD formulation we use, lattice artifacts can affect physical quantities up to 30%.

In order to decrease discretization effects it is possible to use a procedure, first proposed
by Symanzik, known as Symanzik improvement program [34, 35]. It consists in adding
both to the action and to operators a set of counterterms aimed to cancel discretization
effects up to some power of the lattice spacing. These counterterms have to be operators
with dimension greater than 4 and have to vanish in the continuum limit. Furthermore
they must not to modify the symmetries of the regularized action. The coefficients of these
counterterms are not known a priori, but have to be calculated either in perturbation
theory or with some non-perturbative approach.

Another way to reduce discretization effects without the need of additional countert-
erms is to build the QCD action using specific assumptions which directly lead to an
automatic improvement. This is the case of the Wilson Twisted Mass lattice QCD action
[36], B7], which allows for an automatic O(a) improvement at mazimal twist [38, 39, i.e.
tuning myq to its critical value m,,.. The Wtm-LQCD at maximal twist has been used in
this analysis for regularize fermions on the lattice. More details are given in Sec. [2.7]

2.6.1 Symanzik improvement

For small values of the lattice spacing a, the QCD action can be described in the continuum
space-time as a local effective theory given by

Seﬁ-:5‘0+asl+a25’2+...:/d4x{£0(x)+a£1(1‘)+a2£2(m)+...} . (2.114)

where Ly(x) represents the QCD lagrangian in the continuum, while the generic Ly (x) is
a linear combination of local operators of dimension 4 + k. As we anticipated above these
operators must have the symmetries of the regularized theory.

Cutoff effects manifest themselves not only in the action as in Eq. (2.114)), but they
enter also local operators which compose the correlation functions. Let us consider a
gauge invariant operator ¢(z) made up of quaks and gluons. Assuming this field is not
mixed with other operators by renormalization, we expect the renormalized n-point Green
function

G(x1, @y, Tn) = (Z4)" (P(z1)p(22) . .. P(xy)) (2.115)

to have a well defined continuum limit if we take z; # x5 # - -+ # x,,. The factor Z; in
Eq. (2.115)) is the renormalization constant (RC) for the field ¢. The renormalized field
O(z) = Z4¢(x) can be represented in the local effective theory as the effective operator

Pog(z) = Pg+a® +a> Py + ..., (2.116)
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where, as well as for Eq. (2.114]), ®( is the renormalized field in the continuum limit,
while @, stands for a combination of local operators with appropriate dimensions and

symmetry properties.
Combining together Eqs. (2.114) and ([2.116|) for the action and fields, we can then
expand the n-point Green function (2.115)) in powers of the lattice spacing. In particular

at the order O(a) we find:

G(x1,. . 2n) =(Po(z1) ... Po(2n)) cont +

— @/d4y (Po(z1) ... (Dﬂ(xn)ﬁl(y))Cont + (2.117)
+ az <(I)o(CU1) - (I)l(xk) ce (I)O(In»Cont + O(GQ) )

where (...)cop indicates that the expectation values on the r.h.s. must be computed
using the action Sy. In Eq. the dependence on the lattice spacing is not only
given by the explicit factors a. Cutoff effects originate also from ®; and L£;, which are,
as we know, linear combinations of local operators. In particular although such local
operators does not depend on a, a residual dependence on the lattice spacing lies in the
coefficients of the linear combinations. Such coefficients can be calculated in perturbation
theory as polynomial functions of Ina and am,.

The prescription proposed by Symanzik is to add to the action and operators a set
of counterterms needed to cancel discretization effects at a given order, which is tipically
O(a?) for the pure gauge action and O(a) for the fermionic one. In this way we can get
rid of the extra terms in Eq. and reduce contaminations of lattice artifacts to the
physical quantities.

For the Wilson action (2.98) we have that, requiring the symmetries of SP¥ [¢), ), U],
the leading correction term £, (x) can be written as the linear combination

Li(z) = c101() + c305(x) + ¢505() (2.118)
where O, O3 and Oy are the dimension-5 operators
O1(2) = ()0 Fu (2)9(2) | (2.119)
Os(x) = mo Tr [F(2) F ()] (2.120)
Os(x) = mg P(2)y () , (2.121)
and o, = [Yu,7]/21. The two terms Os(x) and Os(x) up to some factor are already

present in the original action, so they can be accounted for simply by a redefinition of the
bare parameters mgy and . This means that the O(a) improvement can be obtained by
adding to the Wilson action only the contribution of Oy, which is called the clover term.
We find:

SEP[y, U] = SW 0, U] + ewa® 33 w(n)%aw,FW(n)w(n) , (2.122)
neA p<v

where the constant cgy is the Sheikholeslami-Wohlert coefficient [40], which depends on
the coupling constant g and guarantees the subtraction of the O(a) effects from the action.
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The use of S}Tmp [, 1, U], instead of the Wilson action ([2.98)), is already sufficient for
the improvement of on-shell quantities such as hadron masses. However for a full O(a)
improvement of the Green functions, and so to improve the determinations of the hadronic
matrix elements, also operators O need to be improved. In this case, since currents with
arbitrary quantum numbers may be constructed, there is not a general method to obtain
the O(a) improvement.

The Symanzik program has been extended also to the gauge sector [41, 42, 43]. At
first order it requires to add to the gauge action all possible closed paths made
up of 6 links, which means to consider rectangle and chair-shaped paths besides simple
plaquettes. The simplest case is the tree-level Symanzik improved action in which only
rectangle contributions are taken into account and the gauge action reads:

SalU] = §Z {bo > Re{Tr[l - U(n)]}+b > Re{Tr[l - U, (n) }} . (2.123)

neA nu<v

where U, (n) are the usual plaquettes, while U ;52(71) are 1 x 2 loops corresponding to:
Un*(n) = Up(m)Upu(n+ @)U, (n+20) U (n 42014 0)U—(n+a+0)U_ (n+0) . (2.124)

The coefficients by and b; can be computed perturbatively and are fixed to the values
by = —1/12 and by = 1 — 8b;. In our analysis we consider the Iwasaki gluon action [44],
which corresponds to the improved gauge action ([2.123]) where also the chair-shaped paths
are included.

2.7 Twisted Mass Action

The basic formulation of the twisted mass action describes QCD with two mass-degenerate
flavors of Wilson fermions. As we anticipated in Sec. this lattice action has been used
in our simulations to regularize fermions, mainly because it has the great advantage of
automatically provide the O(a) improvement of correlation functions.

Let us consider a field x that in addition to Dirac and color indices carry also a flavor
index with Ny = 2 values. It represents a degenerate quark doublet that we can write as:

X = (Z) . (2.125)

The twisted mass QCD action for the flavor doublet y reads:

4 4
S, x, U] = a* Z x(n) [Z%% (V. +V;) —a g Z V.V 4 mo +ipgysm | x(n)
neA p=1 n=1
(2.126)
which is given by adding to the Wilson action (2.98) the mass term iu,v57>. The real
parameter y, is the so-called twisted mass, while 73 represents the third Pauli matrix of
the flavor group SU(2);.
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The twisted mass term was originally introduced as it provides an useful infrared
regularization [45]. In particular the Wilson-Dirac operator is not protected against
zero modes even at finite values of the quark mass. This means that, because of the
dependence of Dy, on the gauge field U, when we perform numerical simulations the
Wilson-Dirac operator fluctuates as the the gauge field changes. Thus the occurrence of
exceptional configurations may lead to large fluctuations in observable quantities, which
correspond to unusually small eigenvalues of the Wilson-Dirac operator. On the contrary
with the addition of the twisted mass term, Dirac operator becomes

Diwist (n,m) = Dy (n,m) + iptgys7° Spm (2.127)
and satisfy the condition

det [Dyist] = det [D&,DW + u(ﬂ >0, (2.128)

so it is protected against zero modes for any finite value of p,.
Let us now consider the continumm limit of the twisted mass action (|2.126)):

SE XU — / Az x(x) [1uDy + mg + ipgys?] x(2) | (2.129)

where m, = mog — m,,. We can perform on the fields x and y, which are referred to as
the twisted basis, the axial transformations:

b = elonT 2y (2.130)

b =ye /2 (2.131)

which leaves invariant the form of Eq. (2.126) and produces just a mere transformation
of the mass parameters m, and y,:

M = mgcos(a) + pigsin(a)

’ 2.132
fg = —mgsin(a) + pig cos(a) . ( )
In particular if we consider the following value for the rotation angle
_ Hq
« = arctan [ — | | (2.133)
Mg

we have that pj, = 0 and the action (2.129) reduces to the standard QCD with mass
parameter M:

I, 3, U] — / A2 () [y Dy + M](x) (2.134)

The value (2.133)) for « is called the twist angle and the corresponding mass M is named
polar mass. In terms of these two parameters the mass term in Eq. (2.129) can be written
as

Mg + ipgys® = Melo™ (2.135)
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which implies also the equations

=M
mg = Meos(@) -y Sty (2.136)
pg = M sin(a)

Eq. shows that in the continnum limit the twisted mass action is just a redefinition
of the standard QCD formulation, which may be reached performing the axial rotations
. For this reason the fields 1/ and 1) are referred to as the physical basis.
However at finite lattice spacing the situation is different because the term Dy, in the
Wilson action breaks the chiral symmetry even if the mass parameter is set to zero. This
means that the twisted mass term cannot be eliminated with a rotation of the fermionic
fields and thus the Wilson action and the twisted mass action, which are equivalent when
we take the continuum limit, are not equal for finite lattice spacings. In particular applying

transformations ([2.130[2.131]) on the twisted mass action ([2.126)) we obtain its expression

in the physical basis:

SErw,, Ul =a* ) d(n)

nen

4
1 *
Zvﬂﬁ (vﬂ + Vu) +
nl \ (2.137)
—I— (mo —a g Z VMV;) e—iavm—s + mq ¢(n) :

pn=1

where in fact the Wilson term is not reabsorbed by the twist.

2.7.1 Of(a) Improvement

In this Section we will present the fundamental property of the Wtm action of auto-
matically provide the O(a) improvement of correlation functions of positive parity fields
(renormalizable in a multiplicative way) when we work at maximal twist. The maximal

twist corresponds to take in Egs. (2.130})2.131)) the rotation angle o = 7/2, which is
equivalent to tune the bare quark mass mg to its critical value m,,.. Let us consider the

Symanzik effective action (2.114]) and the effective operator (2.116)) at the first order in
the lattice spacing:

Seff = S0 +aS; = /d4x {Lo(z) +aLly(x)} (2.138)
q)eﬁ‘(l‘) = q)() —|— a<I>1 . (2139)
In Eq. (2.139) the continuum action is given by

So = /d4x X(@) [7u Dy + ipgyst?] x(2) | (2.140)

where the fact that m, = 0 makes Sy simmetric with respect to the chiral transformation

12
RLZ . X(@) — i X(fz (2.141)
X(x) — x(x) iy .
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As we know an operator O has a non-vanishing expectation value (O)4 only if it shares
the same symmetries of the action S. In Sec. we have seen that only the clover term
O1(x) = x(x)ouFuu(x)x(z) contributes to the first order lagrangian £;(z). However,
this operator is odd with respect to the rotation , so if we consider ®g(z) to be
invariant under the symmetries of the continuum action, we have

<<I>()(l‘1) . q)()(l‘n)ﬁl(y))cont =0 y (2142)

and the second term in the r.h.s. of Eq. vanishes.

In order to prove the automatic O(a) improvement of the twisted mass action we now
have to show that also the last term in Eq. is zero. We can use the property stating
that if two operators have the same simmetries but differ by a unit in dimensionality they
must have opposite chirality, which is the case of operators ®; and ®;. Let us consider
the transformation D =D X [, = —p,), with

Unlw) — Uf(~2 ~ )
D: < x(x) — e¥m/? X(—x) (2.143)
X(@) — X(=z) ™2

which counts the dimension of a given operator. The twisted mass action on the lattice
is invariant under the composite symmetry Ré’2 x D, and the same has to be true also for
O .g(x), otherwise we would have (®.g(x)) = 0. In the continuum limit ®¢(z) is equivalent
to ®ug(x), so they must have the same symmetry properties: in particular being ®q(x)
invariant under R}, it has to be invariant also with respect to D. On the other hand
operator ®;(z) acquires a factor e™ = —1 when we perform the D transformation, so
it should be odd also with respect to Ré’2 if we require for it to have a non-vanishing
expectation value. In other words ®o(x) and ®,(z) have opposit chirality under R}”
and so ®;(z) cannot enter the expansion (2.139). This means that also the last term in
Eq. is zero and thus it proofs that Wtm action, when is taken at the maximall
twist, provide the automatic O(a) improvement of correlation functions.

The original demonstration of this property of the Wtm action has been carried out in
Ref. [38]. In this work, the authors provide also a very useful method to extract energies
and matrix elements which are automatically improved. They have shown that if quarks
are arranged in SU(2) flavour doublets, O(a) discretization effects vanish in the average of
correlators (see Sec. computed with lattice actions having Wilson terms of opposite
sign and a common value of the mass m,. In this case, which is the one of the present
work, automatically improved energies and matrix elements can be obtained simply by
averaging the values of this quantities computed at opposites spatial momenta:

i (K) = %{E(k) 4 E(—k)} | (2.144)
(O)imp = % {<A(EA75A)|O|B(EBaﬁB)> + Po (A(E4, —pa)|O|B(Eg, —pB)) | , (2.145)

where A and B are two external states and Pp is the parity of the operator O.
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2.7.2 Non-degenerate quarks
The twisted mass action (2.126f), which describes QCD with two mass-degenerate flavors,

can be reasonably considered to describe the u and d quarks, as their masses are very
similar. When we consider the strange and charm quarks, however, the same formulation
cannot be used. For this case, the twisted mass action can be extended to

4 4

1

SEMx.x. U ="y xa(n) [ > g (Vit Vi) —ag Y V.Vt
neA pn=1 pn=1

(2.146)
+mo + ipeysT! + iﬂ673] xn(n) ,

which describes an SU(2) pair of non-degenerate quarks:

Xn = (X) . (2.147)

Xe

In Eq. (2.146)) h stands for heavy, my and p, are the untwisted and twisted bare masses,
while y5 is the mass splitting along the 73 direction. In this case, the chiral rotation
relating the heavy quark doublet in the twisted basis to the one in the physical basis is
given by:

P = el /2y, (2.148)
U = Xn e /2 (2.149)
At maximal twist, which corresponds again to take oy, = m/2, the physical renormalized

strange and charm quark masses are related to the bare parameters u, and ps through
the relations [39]:

| Zp
s = — - — — , 2.150
me= (u Zsm) (2.150)
1 Zp
c= e+ 20 2.151
e =5 (1ot Zs) (2151)

This quantities can be obtained by tuning u, and ps such that the simulated K and D
mensons have their physical masses. In Eqgs. and Zg and Zp are the RCs
of the scalar and pseudoscalar densities (see. Sec. [2.8.1).

Simulations used in this work are characterized by 4 dynamical quarks in the see:
up and down quarks have been simulated as a degenerate doublet through the Wilson
twisted mass action , while for the strange and charm quarks the non-degenerate
case has been considered. This setup is referred to as Ny =2 +1+ 1.

2.8 RI/MOM

In QFT divergent quantities like quark masses and coupling constants need to be renor-
malized in order to get finite determinations of physical observables. In Sec. we
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have shown how discretization of the space-time provides an UV cutoff for LQCD. This
allows us to introduce renormalization constants (RCs) which reabsorb the divergences
in the limit @ — 0. In this way we can relate determinations obtained on the lattice with
renormalized quantities in the continuum limit.

The renormalization of a theory can be performed using either perturbative or non-
perturbative approaches. Among the various perturbative methods the most popular
is the modified Minimal Subtraction scheme (MS), which is naturally defined within
dimensional regularization at a given renormalization scale p. MS can be implemented
perturbatively on the lattice, although lattice perturbation theory is technically more
difficult than in the continuum. For this reason non-perturbative renormalization schemes
are often preferred to perturbative ones.

In this Section we present some details of the RI/MOM scheme (Regularization Inde-
pendent at subtracted MOMentum) [46], which is a non-perturbative method where the
renormalization conditions are imposed directly on Green functions in a fixed gauge and
in the chiral limit. Renormalization conditions being imposed in the chiral limit imply
RCs to be independent on fermion masses, so RI/MOM is defined a mass-independent
scheme. The renormalization scale 1 has to be chosen properly within a window

1
Agep < 1 <K o (2.152)

where Agep < g1 allows us to perform the matching between RI/MOM and other com-
monly adopted schemes such as the MS, while the condition p < % guarantees O(a)
discretization effects to be small and under control.

2.8.1 Renormalization of bilinear operators

Let us consider a bare bilinear operator on the lattice{f]
Or(n) = D ()T (n) (2.153)

and its expectation value (p|Or(n)|p) between off-shell quark states |p), i.e. at zero
momentum transfer. To fix the gauge, let us rotate the fields in the Landau gauge. T’
stands for a combination of gamma matrices which depends on the Lorentz structure of
the field Or: it can vary between different types which are summarized in Tab. [2.8.1]

The renormalized operator Or is built in such a way that it keeps finite even in the
continuum limit @ — 0 and is related to the bare one through the equation:

(plOrlp)| = Zr(u) (p|Or|p) , (2.154)

p2=p2 p2=p2
where Zr is the RC of the field Or and pu satisfies Eq. (2.152). In RI-MOM scheme

renormalization conditions are applied on the amputated Green function in momentum
space:

Ar(p) = S (p) Gr(p) S; (p) (2.155)

SProvided that f # f’, in the chiral limit the following discussion do not depend on the flavor of the
quarks in the bilinear operator.
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Or Lorentz structure I

Scalar (5) 1
Pseudoscalar (P) V5
Vector (V) Vu
Axial (A) V5V
Tensor (T) O

Table 2.1: Lorentz symmetry properties of the field Or corresponding to different struc-
tures of the I matrix.

where S¢(p) is the Landau gauge quark propagator
1 4 _
Si(p) = ¢ zn: e~ (b)) ()b (0) (2.156)

while Gr(p) is the non-amputated Green function in momentum space built from the
operator Or(0) with the insertion of two external quark fields:

Grlp) = 3™ W) 0r O ) =
(2.157)
= % Z e =i (r=m) () () (0) T (0)0 V) (m))

In order to impose the renormalization conditions it is convenient to take the trace of the
amputated Green function in Dirac and color indices, obtaining

1
Qr(p) = ETI" [Pr Ar(p)] (2.158)
where 1/12 is the normalization factor of the trace (colorxspin = 12), while Pr is a
projector chosen in such a way that Qp(p) = 1 at tree-level: corresponding to I' =

{175, V> Y5} we have Pr= {1, v5, {7 — 1775 )
The RI-MOM scheme consists in imposing the renormalization condition on the pro-
jected amputated Green function in momentum space:

5 Zr(p)
Qr(p)] oo = Qr(p) =1, (2.159)
‘p =p Zd)(:u) PRy
where /Z, is the RC of the quark field, while the RI-MOM definition of Z, is:
i |05/ (p)
Zy(p) = —— Tr | —L 2 2.1
w(W) = —15 op (2.160)
p2=p2

So the determination of RCs for quark bilinear operators requires the calculation of the
quark propagator S(p) and the amputated Green function Ar(p). Moreover, being the
RI/MOM a mass-independent scheme, dedicated lattice simulations with degenerate sea
quarks Ny = 4 are required to perform the renormalization procedure. Progressively
smaller dynamical quark mass values have to be used for a controlled extrapolation of
massive RC to the chiral limit.
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2.8.2 Renormalization of quark masses

The mass term in the RI/MOM scheme renormalizes just like bilinears. At maximal twist
we have that the twisted mass p, gets only multiplicative renormalization contributions
and the renormalized quark mass m, is given by:

My = Z g - (2.161)

The Ward identity for the vector current implies that the product of the twisted mass y,
and the pseudoscalar density P is renormalization group invariant. This means that we
have an equality between the RC of the twisted mass and the inverse of the pseudoscalar
density which reads:

Zp = — . (2.162)

2.9 Numerical Simulations

In Sec. we have seen how Green functions can be expressed as path integrals over
classical fields. In a similar way, from Eq. (2.26) it follows that the expectation value of
a physical observable O(Q/J, W, A) in QCD can obtained as

_ /Dl D DA O(v, 0, A) e Facnlo
Zqcp

(0) : (2.163)

where the contribution of fermionic fields is solved exactly in terms of the fermion de-
terminant, and the expectation value depends on gauge fields only. On the lattice, the
path-integral (2.163]) becomes finite dimensional and its expression is given by

- fD[U]O(w,@,U) e SeftlU]

(0) TDU]e et , (2.164)
where
SeflU] = Se|U] — Tr |log Zfo[U] . (2.165)
f=1

The expectation value (2.164)) involves a huge number of integrations even for small lattice
grids, so it cannot be solved analytically except for very small lattices. The evaluation of
physical quantities have to be performed numerically by the use of Monte Carlo techniques.
The main idea is that the so-called Boltzmann factor eVl is very small for most of
the gauge configurations U and only a small fraction of them, which minimize the action,
give relevant contributions to the path-integral. Exploiting this property, LQCD gauge
configurations are generated using the importance sampling procedure, i.e. according
to a probability distribution given by the Boltzmann factor P[U] = e~ %Vl and using
a Markov chain where each configuration U; is obtained from the preceding one U;_;.
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Once a set of N.r, configuration has been produced, the expectation value (O) can be
approximated by the sample average

. 1 X
(0)~0=% Z_; o) , (2.166)

where O(U;) is an estimate of the observable O corresponding to configuration U; and the
deviation from the perfect equivalence is of the order O(1/v/N).

2.9.1 Statistical errors

The importance sampling procedure allows us to evaluate physical observables (O) through
the sample average O. Now suppose we want not the average (O) itself, but some func-
tion of it, i.e. £({O)). A good estimator for this quantity is given by f(O), which means
that the equivalence f((O)) = f(@) holds for N — oo, being N the number of random
configurations used to estimate (O). Clearly, besides the mean value, we want to provide
also the uncertainty associated to f({(O)). The usual error propagation is often unreliable
or impossible to determine. However, two methods useful to correctly evaluate statistical
errors are the Jackknife and the Bootstrap [47], which have been used in this analysis and

are described below.

Jackknife Method

Let us consider a sample of ¢, uncorrelated gauge configurations. We can divide this
set in N, = Ngsq/n. clusters, each one being composed by n. configurations. For each
subset we can compute the sample average

_ 1 &
O;=—> (O, i=12...N,, (2.167)

n
€ k=1

where (Og); corresponds to the k-th configuration of the i-th cluster. The N. jackknife

averages O7 are defined as
Ne—1

1 _
O;]:F > O, (2.168)

€ i=1,i#s

where all the O;-values except O, are considered in the average. For each O we can
define the jackknife determination of the function f({O)) as

=107 (2.169)

The jackknife estimate of f({O)) is then given by

F(0) = 7 = Nicch;’, (2.170)
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whose statistical uncertainty can be proved to be

2

o;=+Ne—10s, where U?J = (fJ)2 - (F) : (2.171)

The factor /N, — 1 takes into account the correlations between the different f7. The
presence of such correlations is clear because they have been extracted from the same set
of configurations, excluding just one cluster at a time.

Bootstrap Method

The bootstrap method, like the jackknife, consists in a resampling of the Nz, uncorre-
lated configurations. Let us consider two quantities A((O)) and B({O)) obtained from
independent simulations. We want to combine them in order to find a new observable
C({(O)) by a fitting procedure. We can build for A and B the jackknife averages A7 and
B/, withs=1,...N,, as in Eq. . These two sets of values are independent of each
other because the determinations of A({O)) and B({O)) come from different simulations.

The bootstrap method consists of generating a random set of Ny, couples {A7, B;’,}
and to perform a determination of C'({(O)) corresponding to each of them. In this way we
get Nyoor values CP . one for each couple of jackknife averages. The bootstrap estimate of
C((0O)) is then given by

cl, (2.172)

where the uncertainty is

(2.173)

In our analysis we picked Np,o; = 100.

2.9.2 Systematic errors

Besides statistical uncertainties, LQCD results are characterized by systematic errors.
Any quantity measured on the lattice depends on the lattice spacing a and the lattice size
L, on quark masses, on the number of dynamical quark flavors Ny and on the method
used to determine RCs. We list below the most significant systematic errors in current
simulations. Details of this analysis are summarized in Tab.

Input parameters: Any observable on the lattice depends on the value of free param-
eters - quark masses and lattice spacing - and on RCs. The determination of these
quantities must be performed in order to extract physical results by further analysis.
The way this determination is carried out, and the uncertainty on these parameters,
induces a systematic error in the final results.
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Discretization effects: Lattice determinations are characterized by discretization ef-
fects which depend on the lattice spacing a. This means that, in order to find
physical quantities, we have to perform the continuum limit ¢ — 0. This is done
by computing observables for different values of the lattice spacing, and then fitting
them with a polynimial expression in a. Once the a dependence has been studied
by the fitting procedure, the continuum limit is performed numerically by setting
a = 0. Lattice spacings are typically chosen as small as possible in order to minimize
the systematic effects of this procedure.

Lorentz symmetry breaking

A primary consequence of the discretization of the space-time is the breaking of
the Lorentz symmetry. In fact the lattice is invariant only under discrete rotations
by multiple of 90° in each direction of the Euclidean space-time. Therefore, LQCD
observables may depend on hypercubic invariants. Although for most of hadronic
quantities this effect is small and can be neglected, in this analysis we have observed
and studied for the first time a sizable contribution of the Lorentz symmetry break-
ing due to lattice hypercubic effects in the behavior of the D — 7 (K') form factors.
Details on the treatment and subtraction of such lattice artifacts are presented in

Sec. 341

Finite size effects (FSE): Besides discretization effects, also the use of finite lattice
volumes generates artifacts which contaminate physical quantities. In many cases,
as for observables computed in this analysis, FSE are exponentially suppressed by
the quantity M, L, where M, is the pion-mass and L is the side of the simulated
lattice. Clearly, values of M, L as big as possible (M, L > 1) have to be required to
reduce contributions due to the finite volume. We studied the amount of FSE by
performing two simulations which share the same pion-mass and lattice spacing a,
but corresponding to different volumes.

Chiral extrapolation: At the physical u- and d-quark masses the condition ML > 1 is
computationally very expensive. For this reason, one usually generates observables
for larger values of m, /s and then extrapolates to the physical point. For example,
in a typical numerical simulation the value of the pion-mass ranges from 200 up to
500 MeV. Only recently lattice collaborations have reached the goal of simulating
directly at the physical point.

Excited states: Hadronic quantities in LQCD are extracted from correlation functions,
which are vacuum expectation values of the T-product of operators in Euclidean
space-time. Such objects are characterized by a sum over al lot of states, each one
suppressed by an exponential factor proportional to its energy. Physical quantities
are then extracted by isolating the ground state, studying the large time distance
behavior of correlators. However, a residual contamination of some excited states
can induce a systematic error in the final result. More details are given in Sec. [2.10}
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2.10 Correlation functions

Lattice QCD allows for a numerical calculation of euclidean correlation functions. The
basic idea is to extract useful informations from the behavior of these correlators at
large values of time. In this Section we introduce the standard procedure used for the
calculation of meson masses, decay constants and matrix elements from 2- and 3- point
correlators, which have been analyzed in this work in order to determine the form factors
of the D — 7w(K) semileptonic decays.

2.10.1 Two-point correlators

The Euclidean two-point correlation function, for two generic operators O; and Os, is
given by
Ca(x) = (01(2)0L(0)) (2.174)

where we recall that the symbol (...), introduced in Eq. , represents the vacuum
expectation value of the T-product in the Euclidean space-time. This quantity is the
probability amplitude for the propagation of a state created by operator O, the source,
in the space-time point x = 0 and annihilated by Oy, the sink, in the space-time point
x = (t,7). Choosing t > 0 and performing the Fourier transform with respect to spatial
coordinates we obtain

1

02(17’ t) = ﬁ

> (0] O1(&,1)04(0) |0) €77 | (2.175)

T

where we have a sum instead of an integral because of space-time discretization. If we
insert between O; and O, the completeness relation

1 — —
L=>" CTA B, 50) (B, Pal (2.176)

where we consider covariantly normalized energy eigenstates with Fy < F; < Fy < ...,
we find:

L1 1 ) ) ) .
CoBt) = 75> D 5 (0101 (T.4) | Eu, ) (B ia] O3(0) [0) €77 =
1 _1 P —Ht—iP-& — — i
= = DY 5 01O )T By ) (B, Bl O3(0) [0) €77 =
1 1 B B i
= 5 2> 5 (0101(0) [Eu, ) B, ] O3(0) [0) e Bt =027

1 . 5 —
=3 5 (01010 B, ) (En 5l O3(0) [0) e

(2.177)
where we used the relation

O(x) = el+PTQ(0)e~ =P (2.178)
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in order to translate operator O; from the space-time point x to the origin, and the lattice
version of the 3-dimensional Dirac delta
1 L
il —i(Pn—p) T _ §3
TED LA (2.179)
@
Eq. (2.177) shows that Euclidean 2-point correlation functions can be written as a sum

over a lot intermediate states, each one weighted by the exponential factor e £»t. For
large values of time, this means that only the ground state contributeﬂ so we obtain

, (0] O1(0) | By, fo) (Eo, o O3(0)[0) oy _ 2025 gy
CQ(}?, t) gl) 2E0 € = Q—_Eb € y (2180)
where we have defined
Z; = (0] 04(0) | Eo, po) - (2.181)

On the lattice, Eq. (2.180]) must be modified in order to include contributions from forward
and backward propagation. Calling n the temporal parity of the 2-point correlator with
respect to the transformation t — T — ¢, we have

— ZlZ; —FEot —Eo(T—t
Cg(p, t) ;}) 2—E10 e 0 + ne o ) s (2182)
which becomes:
| Z3 T
02(]7, t) g}) FO cosh t— 5 Ey R (2183)

in the case Oy = 0y = O and n = 1.

Considering for O an interpolator of the form (2.153), with quantum numbers ap-
propriate to create a meson from the vacuum, Eq. (2.183)) can be used to determine the
energy of the ground state and the decay constant, which is embedded in the matrix
element Zp, of the corresponding particle. As for Ey, a different determination can be
performed using the so-called effective mass:

Co(pit)
aM.s(t) =log | ————| , 2.184
110 = tog | 20 (2.181)
which reduces to the ground state energy (in lattice units) for large values of time:
GMeff(t) ;3 &EO . (2185)

The name effective mass for M.ss is clearly related to the fact that for p’= 0 the energy
Ey is nothing but the particle mass. An example of the dependence of the effective mass
as a function of time is shown in Fig. for the case of a light-light PS meson.

It is clear that the energy Ej can determined through a constant fit of M.;s(¢) in the
time region [tmin, tmaez) Where data show the plateau. The condition ¢ > a in Eq.
means that ¢,,;, has to be chosen high enough for the contribution of excited state to be
sufficiently suppressed. On the other hand, ¢,,,, is limited by the fact that the signals
we want to isolate are exponentially suppressed by the factor e®*, which leads to noisy
data for large values of time. Anyhow, the lattice time extension 7' constitutes an upper
bound for ¢,,4z-

"States with energies E,, > Ey are commonly called ezcited states.
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Figure 2.2: Example of a typical behavior of the effective mass (in lattice units) as a
function of time. For high values of t/a a plateau, corresponding to the energy of the
ground state, is clearly visible. The dashed red line indicates the point from which the
contributions of excited states can be neglected.

2.10.2 Three-point correlators

Euclidean 3-point correlation functions can be used to extract matrix elements of currents
connecting two external states. A 3-point correlator in the momentum space is given by

CAB(t,t', fa, ) = ng (0] Op(Z',t") Op(Z, 1) O (0)]0) €77 ?"" (2.186)

ﬂ‘)/

where O4 and Op are interpolators which create the hadrons A and B from the vacuum,
while Or is an operator producing the transition between these two particles. As well as
for the case of the 2-point correlator we can insert the completeness relation in Eq. (2.186)).
This time we have three operators, so the completeness relation can be used twice:

CRE(t, Y, Pa. D) = L3 ZZ (2E,) 2E OO (Z", ') o ) x (2.187)

X mapm’ OF(xa t) | Ens Do) (B P 0(0 1(0)]0) e "
The last expression can be further simplified through the same manipulations used for the

2-point function. Operators can be shifted to the origin according to Eq. (2.178]), while
the lattice version of the Dirac delta (2.179)) can be used to eliminate the spatial volume
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integration in 7 and #’. We have

1
(0] OB(0) |Em, prm) X
AE,Ep (2.188)

CIAB(ZS: t,aﬁfbﬁB) = Z

n,m

% <Em’ﬁm’ OF(O) |E"7ﬁn> <En:ﬁn’ OL(O) ‘O> e~ Ent e=EBn(t'=t) )

where we find again a sum over many intermediate states suppressed by negative expo-
nential factors. In this case, in order to isolate the ground state we have to require not
only ¢t > a, but also the condition ¢ — ¢t > a to be fulfilled. For values of time satisfying
this relations, the 3-point correlation function becomes

B ZhZx Bat Bl
CE2 (00 P2 Po) it D 1 g (B0 Or(0) [A(pa)) =Pt P20 (2.189)

n,m

which depends on the matrix element of the current Or(0). This quantity can be obtained
in different ways. The simplest one is to compute the factors Z,4 and Zp from the 2-
point functions and then extract (B(pg)| Or(0) |A(pa)) through Eq. (2.189). A different
method is to construct proper double ratios of 3-point correlators, which approach the
wanted current matrix element for large values of time. This second method is the one
used in this analysis. More details are shown in the next Chapter.

2.11 Twisted boundary conditions

In Sec. we have seen how the finite volume of the lattice poses the problem of fixing
some condition to treat the fields at the boundaries. In the spatial directions, labeled by
t = 1,2, 3, the tipical choice is given by periodic BCs, i.e. fermionic fields satisfies

O (n + N) = f (ny) (2.190)

which is just a rewrite of Eq. (2.57)), where N = L/a. Such conditions imply the following
constraint on the lattice fields momenta:

2k

with £, =0,1,2,...,N -1, (2.191)
which means that for tipical values of the lattice spacing a™! ~ 2 GeV and a lattice size
L/a = 24, the minumum achievable momentum is ~ 0.5GeV. This is very restrictive,
expecially for physical observables that need to be studied as functions of p. In fact we
are often interested in simulating particles with momenta much smaller than that and the
possibility of arbitrary choice their values is very important.

The solution of this problem lies in the observation that there is no reason for having
single valued fields. The only quantities that must be single valued are physical observ-
ables, and thus the action of our theory. This means that we can define a quark field 1
which satisfy spatial boundary conditions of the form

W (n; + N) = US4 (ny) (2.192)
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where U; is a global simmetry of the action. The most generic U; is the diagonal trans-
formation in the flavor space

Ul = exp {2m’92f} : (2.193)
which corresponds to the choice of the so-called twisted boundary conditions:
U (n; + N) = exp {2m’92f} o (n;) . (2.194)

If we now consider Eq. (2.194) in the momentum space, by means of the Fourier
transform of the fields, we find:

1 ~ 1 ~
LS apN} =~ 3345 i
7 W () t) exp {iap;n;} exp {iap; N} 7 W' (P t) exp {iap;n;} exp {27?292} —

pi Pi

om6! 2
— exp lz (pi— WL)L] -1 = pi:%(/{;mLﬁlf) with k; € Z,

(2.195)
so that the spatial momenta are still quantized as for periodic boundary conditions, but
now they are shifted by an arbitrary amount 27T0Zf /L. This continuous dependence on the
parameter 9{ is very useful for phenomenological applications as it allows us to set the
wanted values of the quark momenta.

Twisted BCs can be implemented on the lattice by defining a new quark field [22] 23]:

0l .z ~
W) (n) = exp {WTZE} W (n)), (2.196)

where {/;f satisfies Eq. (2.194)). The resulting field ng fulfills periodic BCs but obeys a
modified Dirac equation given by

Sp [ ] =a*d> " Y &f(n) Dy(n,m)df(m) (2.197)

f n,meA

where the new Dirac operator is related to the usual one by simply rephasing the gauge
links by the four-vector #/ = (67,0):

U,(n) = U%(n) = exp {2”;‘9“} U (n). (2.198)

We remark that the plaquette P,, () is left invariant by the rephasing of the gauge links.

2.12 Smeared interpolating fields

The 2- and 3- point correlation functions, as we have seen in Sec. 2.10] are given by a
sum over many intermediate states |E,, p,), each one suppressed by a factor e=£nt. We
are interested in isolating only the ground-state contribution in order to extract physical
quantities, and to do that we have to fit correlators at large values of time. When we
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face with mesons containing heavy quarks we find that the time interval [¢,in, timaz), in
which only the ground-state contributes, is shorter compared to that of light-light and
light-strange mesons. This has a clear physical reason: on one hand the more the particles
are heavy, the smaller the gap between the lowest energy state and the first excited state
is; on the other hand if the energy of the ground-state is high, its contribution is strongly
suppressed for values of time which are lower with respect to the case of light mesons. For
these reasons, if the signal to noise ratio is too low or if there is too much excited states
contamination, the evaluation of the ground state matrix element might be impossible.

In building the correlators, we consider interpolators O}L which create from the vacuum
the particle P we are interested in, together with all excited states corresponding to the
same quantum numbers:

OL10) = |P(5p)) + |E1, p1) + | Eay o) - .. . (2.199)

Although any operator with the correct quantum numbers contributes to the physical
state, some may be more suitable then others. The general idea is to consider smeared
quark fields by constructing interpolators which couple better with the state | P(pp)) with
respect to excited states. The overlap is represented by the matrix element of Eq. ,
so what is required is that

Zp> 75, with 205 = (0]0p(0)|En,7,) (n=12...). (2.200)

We know there are infinite operators useful for creating the particle we are interested in.
Any average of these operators would be suitable for our purpose, thus the basic idea is
to construct an advantageous average between the possible interpolating operators which
has the best overlap with the state |P(pp)). In general we want to create our particle in
a point of the continuum space-time but, once we carry this problem on the lattice there
is no exact correspondence between a continuum point and a lattice point: the former
will always lie in the interval between two consecutive lattice sites. However, the wave-
function of a particle with mass M extends over a spatial region of dimension proportional
to 1/M. Thus by increasing the spatial extent of operators one can achieve a better overlap
with the lower lying state and so obtain correlation functions with minor excited states
contamination. This suggests the idea of constructing improved interpolating operators
out of averages between the same operator calculated at different lattice points.

Since this work regards semileptonic decays between pseudoscalar mesons, we present
the smearing procedure for the case of meson interpolators, which are tipically described
by bilinear operators of the form . On the lattice, the overlap with the state of
interest can be improved considerably by considering a more general meson operator,

introduced by rewriting Eq.(2.153)) aﬂ
OF (71 t) = Y (iiy, t) S (7, ; iy, a) ) (7ia, ) | (2.201)
1,7i2
where the distribution S combines fields at spatial lattice positions 77; and 7i5 in the
vicinity of 77, and it is often chosen to be a factorizable function

S(7, b7, fia) = SU(7, t:7,) T S¥ (7, t; 1) (2.202)

8We neglect the flavor index for notational convenience.
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where the indices 7 and k indicate that the S-functions for 1) and 1) may differ. Eq. (2.202)
allows us to write the generalized interpolator Of in the form

Of (n) = 0 (m)T*" (n) (2:203)

where we have introduced the so-called smeared fermions:
wSZ Z ¢ 7’L1, n, 7” ) ) (2204)
3 (7, Z Sk (it iy, t). (2.205)

Various choices for the S-function shape can be used. The trivial case is given by

SO, t; () = L(7, t5715)) = 0 (2.206)

n,n1(2> Y

which corresponds to a local interpolator OE, situated on the single site (7, t), so that the
meson operator turns out to be the usual bilinear . A more useful possibility is to
assume the shape of the wave function of meson states to be Gaussian-like, and build a
creation operator with such form. This choice has been used to treat the simulated m-,
K- and D-meson in the present work.

2.12.1 Gaussian smearing

The so-called Gaussian smearing [48], obtained using the Jacobi method [49], consist in
choosing for the distribution function S the following form:
S(it,t;7y) = ML(7, t;7y), M= Z km (2.207)

nn1

where k¢ represents the coupling with the nearest neighbors, Ng is the number of smearing
steps and H connects different sites of the time slice (with ¢ fixed to the time slice of the
source) to the central site with gauge transporters:

Him[U] = [Uu(ﬁﬁ, £) 655, + Un(l— 5, 8) 05| - (2.208)

J=1

Parameters Ng and kg are free parameter, which have to be chosen in order to optimize
the profile of the meson interpolator.

In building hadron correlators, smearing can be applied both to the source and the
sink. We thus have four different 2-point correlation functions made out by all possible
combinations of local and smeared operators:

Cii*(x) = (07 (2)0}(0)) (2.209)
Cii¥(z) = (OF(2)07(0)) . (2.210)
Cit(z) = (07 (2)07(0)) , (2.211)
O (x) = (07 (2)07(0)) - (2.212)



o8 2.12 SMEARED INTERPOLATING FIELDS

In the same way we have four possible combinations for the 3-point correlators, which
correspond to Egs. with the insertion of the current I' between meson in-
terpolators. The analysis of the vector and scalar form factors, which is presented in the
next Chapter, has been performed by studying only 2- and 3-point correlation functions
of the type S5, which allowed for a good suppression of excited states related to both the
D and the 7(K) mesons. More details are given in Sec. |3.1]



Chapter 3

Vector and Scalar form factors

In this Chapter we present the determination of the vector and scalar form factors f,
and fy of the D — wlry and D — K/{v semileptonic decays. After a brief description in
Sec. of the setup used in our Ny = 24141 simulations of QCD on the lattice, we show
in Sec. the analysis of 2- and 3- point correlators allowing for the extraction of the
vector and scalar matrix elements V,, = ¢y,q and S = ¢q, which are used to extrapolate
the momentum dependence of ffﬁﬂ(K) and f(? =mK) A Lorentz symmetry breaking due
to hypercubic effects is clearly observed (Sec. and included in the decomposition of
the current matrix elements in terms of additional form factors. A global fit of all the
data, performed by considering a simultaneous dependence on ¢2, m, and a? of the vector
and scalar form factors and a dependence on ¢? and my for the hypercubic contributions,
is described in Sec. . Results of 177" (¢2) and 77" (42) are shown in comparison
with experimental determinations in Sec. [3.5] We conclude the Chapter (Sec. with
the extraction of the CKM matrix elements |V.4| and |V.s|. This has been carried out
by combining the momentum dependence of the vector form factors ff_m(K)(qQ) with
experimental values of the D — 7(K)lv decay rates. We remark that such a method is
fully consistent with the SM and does not need of any further assumption.

3.1 Simulation details

The gauge ensembles used in this work have been generated by the ETMC with Ny =
24 1+ 1 dynamical quarks, which include in the sea, besides two light mass-degenerate
quarks, also the strange and the charm quarks [16, [I7]. The ensembles are the same
adopted in Ref. [50] to determine the up, down, strange and charm quark masses, using
the experimental value of the pion decay constant f, to set the lattice scald’] They have
been used also to determine the leptonic decay constants frx, fpe, ng*) and fpe [51,52],
as well as the vector and scalar form factors of the semileptonic K — 7w/fv decay [53].
The action used in the simulations is

S = Sg + Simt 4 glmh (3.1)

1With respect to Ref. [50] the number of independent gauge configurations adopted for the ensemble
D15.48 has been increased to 90 to improve the statistics.

29
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where S¢ is the the Iwasaki gluon action [44], while S*¢ and Si"" are the twisted mass
quark actions at maximal twist and in the physical basis [36], 37, B8] for the light and
heavy quarks respectively, whose expressions are given in Sec. . The action is
known to produce a mixing in the strange and charm sectors [37, [54]. In order to avoid
it, for valence quarks we adopted the non-unitary setup described in Ref. [39], in which
the valence strange and charm quarks are regularized as Osterwalder-Seiler (OS) fermions
[55], while the valence up and down quarks have the same action of the sea. Thus, while
we keep the light sector unitary, the action in the strange and charm sectors (f = s, ¢)
reads

YI(n),

(3.2)
where 7y = 1. The use of different lattice regularisations for the valence and sea heavy
quarks avoids completely the effects of the strange and charm mixing without modifying
the renormalization pattern of operators in massless schemes and produces only a modifi-
cation of discretization effects. When constructing meson correlation functions the Wilson
parameters of the two valence quarks have been always chosen to have opposite values,
re =Ts = Tq = —Ty, S0 that the squared pseudoscalar (PS) meson mass differs from its
continuum counterpart only by terms of O(a*mAgcp) [38]. Moreover, since we work at
maximal twist, the automatic O(a)-improvement described in Sec. is guaranteed
also for our non-unitary setup. The statistical accuracy of the correlators is significantly
improved by using the all-to-all quark propagators evaluated with the so-called “one-end”
stochastic method [56], which includes spatial stochastic sources at a single time slice
chosen randomly (see Ref. [57], where the degenerate case of the electromagnetic pion
form factor is discussed in details).

4 4
_ 1 ' .
Shs=a* 3" ' (n) 2%5 (Vu+ V) — ivsry (mo — g Zvuvu> +
p=1 p=1

nen

In the case of charm quarks it is a common procedure to adopt Gaussian-smeared
interpolating fields [48] for both the source and the sink in order to suppress faster the
contribution of the excited states, leading to an improved projection onto the ground
state at relatively small time distances. For the values of the smearing parameters we set
kg = 4 and Ng = 30. In addition, we apply APE-smearing to the gauge links [58] in the
interpolating fields with parameters a pg = 0.5 and N pg = 20. The Gaussian smearing
is applied as well also for the light and strange quarks. The values of M, and Mg reported
in Tab. are consistent within the statistical errors with the corresponding ones listed
in the Tab. 1 of Ref. [53], computed using local interpolating fields.

The QCD simulations have been carried out at three different values of the inverse
bare lattice coupling (3, to allow for a controlled extrapolation to the continuum limit, and
at different lattice volumes. For each gauge ensemble we have used a number of gauge
configurations corresponding to a separation of 20 trajectories to avoid autocorrelations.
We have simulated quark masses in the range from ~ 3m,q to >~ 12m,y in the light
sector, from ~ 0.7 mg to ~ 1.2 m, in the strange sector, and from ~ 0.7 m, to ~ 1.2m, in
the charm sector, where m,q4, ms and m, are the physical values of the average up/down,
strange and charm quark masses respectively, as determined in Ref. [50]. The lattice spac-
ings are found to be a = {0.0885 (36),0.0815 (30),0.0619 (18) } fm at 5 = {1.90,1.95,2.10}
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respectively, the lattice volume goes from ~ 2 to ~ 3 fm and the pion masses, extrapo-
lated to the continuum and infinite volume limits, range from ~ 210 to ~ 450 MeV (see
Ref. [50] for further details).

ensemble| B | V/a' |ajisea = ape| apis apte | My(MeV)| Mg (MeV)|Mp(MeV)|L(fm)| M, L
A30.32 |1.90(32% x 64| 0.0030 {0.0180,|{0.21256, 275 569 2015 2.84 13.96
A40.32 0.0040 0.0220, | 0.25000, 315 578 2018 4.53
A50.32 0.0050 |0.0260} | 0.29404} 351 578 2018 5.04
A40.24 243 x 48|  0.0040 324 584 2024 2.13 13.49
A60.24 0.0060 386 599 2022 4.17
A80.24 0.0080 444 619 2037 4.79
A100.24 0.0100 495 639 2042 5.34
B25.32 |1.95(323 x 64| 0.0025 {0.0155,|{0.18705, 258 545 1950 2.61 |3.42
B35.32 0.0035 0.0190, | 0.22000, 302 556 1944 3.99
B55.32 0.0055 0.0225} | 0.25875} 375 578 1959 4.96
B75.32 0.0075 436 600 1965 5.77
B85.24 243 x 48| 0.0085 467 611 1974 1.96 | 4.63
D15.48 |2.10(48% x 96| 0.0015 {0.0123, {0.14454, 220 526 1928 2.97 13.31
D20.48 0.0020 0.0150, | 0.17000, 254 533 1933 3.83
D30.48 0.0030 |0.0177}]0.19995} 308 547 1939 4.65

Table 3.1: Summary of the simulated sea and valence quark bare masses, of the m, K
and D meson masses, of the lattice size L and of the product M,.L for the various
gauge ensembles used in this work. The values of Mg and Mp do not correspond to
the simulated strange and charm bare quark masses shown in the 5™ and 6" columns,
but to the renormalized strange and charm masses interpolated at the physical values
mPhvs(MS,2 GeV) = 99.6(4.3) MeV and m?"*(MS,2 GeV) = 1.176(39) GeV determined
in Ref. [50].

Statistical errors on quantities directly extracted from the correlators have been evalu-
ated through the jackknife procedure (using N. = 15 clusters), while uncertainties on data
obtained from independent ensembles of gauge configurations, like the errors of the fitting
procedures, are evaluated using a bootstrap sampling (with Ny, = 100) as described in
Sec.[2.9.1] In our study of the semileptonic D — mfv and D — K/{v form factors we make
use of the input parameters summarized in Tab. [3.2] obtained from the eight branches
of the analysis carried out in Ref. [50]. The various branches have been calculated using
different strategies, in order to take under control systematic errors, and differ by:

e The choice of the scaling variable used for the treatment of discretization effects
and the extrapolation to the continuum limit. This quantity was taken to be either
the Sommer parameter ry/a [59] or the mass of a fictitious pseudoscalar (PS) meson
made of two strange-like quarks a M y;

e The chiral extrapolation, which was based either on Chiral Perturbation Theory
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(ChPT) or on a polynomial expansion in the light quark mass (for the motivations
see the discussion in Sec. 3.1 of Ref. [50]);

e The choice between two methods, denoted as M1 and M2 which differ by O(a?)
effects (see, e.g., Ref. [60]), used to determine non-perturbatively the values of the
mass RC Z,, = 1/Zp [50].

6 15t 2nd 3rd 4th
1.00 | 2.224(68) | 2.192(75) | 2.269(86) | 2.209(34)
a1 (GeV) | 1.95 | 2.416(63) | 2.381(73) | 2.464(85) | 2.400(83)
2.10 | 3.184(59) | 3.137(64) | 3.248(75) | 3.163(75)
M (GeV) 0.00372(13) | 0.00386(17) | 0.00365(10) | 0.00375(13)
mPs (GeV) 0.1014(44) | 0.1023(39) | 0.0992(29) | 0.1007(32)
mPs (GeV) 1.183(34) | 1.193(28) | 1.177(25) | 1.219(21)
1.90 0.5290(73)
Zp 1.95 0.5089(34)
2.10 0.5161(27)
ﬁ 5th 6th 7th 8th
1.00 | 2.222(67) | 2.195(75) | 2.279(89) | 2.219(87)
a ' (GeV) | 1.95| 2414(61) | 2.384(73) | 2.475(88) | 2.411(86)
2.10 | 3.181(57) | 3.142(64) | 3.262(79) | 3.177(78)
mﬁgys(GeV) 0.00362(12) | 0.00377(16) | 0.00354(9) | 0.00363(12)
mP"s(GeV) 0.0989(45) | 0.0995(39) | 0.0962(27) | 0.0975(30)
mPs (GeV) 1.150(35) | 1.158(27) | 1.144(29) | 1.182(19)
1.90 0.5730(42)
Zp 1.95 0.5440(17)
2.10 0.5420(10)

Table 3.2: The input parameters for the eight branches of the analysis of Ref. [50]. The
renormalized quark masses and the RC Zp are given in the MS scheme at a renormaliza-
tion scale of 2 GeV. With respect to Ref. [50] the table includes an update of the values
of the lattice spacing and, consequently, of all the other quantities.

Throughout this work the results corresponding to the various branches of the analysis
are combined to form our averages and errors according to the following equations:

X

S5 MY (33)
1 & 1 &

2 Z 2 Z_ 2

O'm—ﬁi:1 Ui—f-ﬁil(fﬁ—xz), (34)
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where z; and o; stand for the central value and the standard deviation corresponding
to the i-th branche of our data samples respectively. In view of what explained above,
N = 8 in this analysis. The basic simulation parameters and the masses of the w, K and
D mesons corresponding to each ensemble used in this work are collected in Tab. [3.1]

3.2 Vector and Scalar matrix elements

The matrix element of the weak vector current ‘A/u between an initial D-meson state and
a (K )-meson final state decomposes, as shown in Eq. (1.64)), into the two form factors

fi(¢®) and f(¢*)]]
(V) = (P(pp) [V D(pp)) = (pp + pp)u F1(@®) + (b — pP)u f-(¢?) (3.5)

where P = 7(K) can be either the pion or the kaon and the 4-momentum transfer ¢ is
given by ¢ = pp — pp. In Sec. we have also introduced the scalar form factor fy, which

is defined as )

2y 2 q 2

fola®) = f+(q) + YR f-(@) . (3.6)
so that the kinematic identity f,(0) = fo(0) is satisfied by definition. The scalar form
factor is proportional to the 4-divergence of (V,,) so that, thanks to the Ward-Takahashi
identity (WTI), fo can be determined from the matrix element of the scalar density S
between the D-meson and the 7(K)-meson states:

M2 — M3

Me — My

(S) = (P(pp)IS| D(pp)) = fola®) (3.7)

where = = {(s). From Egs. (3.5) and (3.7)) it turns out that the determination of the

~

scalar and vector form factors can be carried out by computing the matrix elements (V)

-~

and (S). These two quantities can be extracted from the large (Euclidean) time distance
behavior of a convenient combination of 2- and 3-point correlation functions in LQCD.

As described in Egs. (2.182) (with n = 1) and ([2.189)), at large time distances 2- and
3-point correlation functions behave as

A 2 / /
C I o) s lzggj) e e (0], (3:8)
DP I = o ZPZB S —Ept —Ep(t'—t)
=0 (t, ¢, pp, Dp) (P(pp)T|D(pp)) e e , (39)

t>a,(t'—t)>a AEpEp

where Zp and Zp are the matrix elements (0| PP (0) | D(pp)) and (0| PX(0) | P(pp)), which
depend on the meson momenta pp and pp because of the use of smeared interpolating
fields, while E'p and Ep are the energies of the D and P mesons. These energies and matrix
elements can be extracted directly by fitting the exponential behavior, given by the r.h.s of
Eq. , of the corresponding 2-point correlation functions. The time intervals [tuin, tmax]

2As in Sec. we use the hat symbol to indicate renormalized operators.
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adopted for the fit (3.8)) are listed in Tab. . We have checked that the extracted values of
Ep(p) are nicely reproduced (within the statistical errors) by the continuum-like dispersive

relation Egi(sg) = \/ M%( Pt |Dp(p)|?, where Mp(py is the meson mass extracted from the

2-point correlator corresponding to the meson at rest. We decided to use for the analysis
the energy values F gl(sﬁ) instead of those directly extracted from the fit. As for the 3-point
correlators the usual choice of the time distance ¢’ between the source and the sink
is to maximize it, i.e. to put ¢ = T'/2. Since we are using smeared interpolating fields,
it is convenient to choose smaller values of ¢, which allow to decrease significantly the
statistical noise satisfying at the same time the dominance of the ground-state signals. We
have optimized the choice of the values of ¢’ for the various lattice spacings and volumes,
which can be read off in the last column of Tab. 3.3

&} V/a* | [tmin, tmax) (e, 05)/@ | [tmin, tmax)ee)/a || t'/a
1.90 | 32% x 64 12, 31] 8, 16] 18
243 x 48 12, 23] 8, 17] 18

1.95 | 32° x 64 13, 31] 9, 18] 20
243 x 48 13, 23] 9, 18] 20

2.10 | 482 x 96 [18, 40] [12, 24] 26

Table 3.3: Time intervals adopted for the extraction of the PS meson energies Eppy and
the matriz elements Zppy from the 2-point correlators in the light (¢), strange (s) and
charm (c) sectors. The last column contains the values of the time distance t' between the
source and the sink adopted for the 3-point correlators (@)

In our lattice setup we employ maximally twisted fermions and therefore the vector and
scalar currents, V,, and S, renormalize multiplicatively [38]. Introducing the local bare
currents V,, = ¢y,q and S = ¢q, where ¢ = d(s), and keeping the same value for the
Wilson parameters of the initial and final quarks, one has

V,=Zy -V, = Zy g, (3.10)
S=Zp-S=Zpeq, (3.11)

where 2y, and Zp are the renormalization constants (RCs) of the vector and pseudoscalar
densities for standard Wilson fermions, respectively. As shown in Sec. the twisted
quark masses renormalize multiplicatively with a RC Z,, given by Z,, = 1/Zp [38], which
means that the product (m. — my) <§> is renormalization group invariant. Therefore,
according to Eq. , the scalar form factor fy(q?) is related to the (bare) matrix element
(S) by

M2 — M3

Lo — Jiq fO(q ) ) (312)

(5) = (P(pp)|S|D(pp)) =

where p, and p. are the bare light (strange) and charm quark masses, respectively.
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~

As in the case of the semileptonic K3 decay [53], the matrix elements (S) and (V)
(see Eq. (3.5)) can be extracted from the time dependence of the ratios R, (x =0,1,2,3)
and Rg of 2- and 3-point correlation functions, considering local bare currents V,, and S,
namely

C\QLP@? t,aﬁDvﬁp) C\I/DMD(ta tlaﬁPaﬁD>

R,(t, Pp, Pp) = 4Ppup ——— - 3.13
u(t: 50, ) DRI CEP(t ¢, pp. pp) CEP(t. ¥, b, Pp) (3.13)
— — ODP t? tl?ﬁ 7ﬁ CPD t? tl?ﬁ 75
Rs(t, o, r) = 4 Ep Ep 25 A Pe) = (6%, Fe ) (3.14)
C(2 (t/7pD) CQ (t/7pP>
where the correlation functions 5’2[) #) (t) are given by
1 2 T ?
~D(P = D(P - D(P — D(P -
" (t, Do) = B oy (t, Ppp)) + 1/ Ca &) (t, Do) — Cs @) (57 pD(P)) ;
(3.15)
which at large time distances behave as
CP) (1 o) 5 5 g e e (3.16)
t>a 2ED(P)

i.e. without the backward signal. Note that the denominator of Eq. is nothing but
the numerator evaluated in the mass-degenerate limit for the valence quarks in the current.
Such mass-degenerate quarks have the same lattice regularisation of the corresponding
ones in the numerator, so that the RC Zy, is the same for the two terms in the ratio and
therefore it cancels out.

At large time distances one has:

L (pp) [V D)) (D) Vi P(op)) o5 1 1o
R“ t, D, PP m4 Du PPp N = = VH ,317
P Pe) =it AP0 o T Poe) (Do) Tul Doy )
Rs(t, 70, 9r) s (P@R)ISIDmD))P = [(S)I, (3.18)

~

so that, up to lattice artefacts, the renormalized quantity | (V) |* and the bare one | (S) |?
can be extracted directly from the plateau of R, and Rg, independently of the ma-
trix elements Zp and Z;k) of the interpolating fields. In the r.h.s. of Eq. we
have used the fact that, due to the charge conservation, <P(pp)HA/u]P(pp)) = 2pp, and
(D(pD)|\A/M|D(pD)) = 2pp,. Taking the square root of R, and Rg we can get the absolute
value of the matrix elements (17“> and (S), while their sign can be easily inferred from
those of the correlators C’{Zp(t,t’,ﬁp,ﬁp) and CPP(t,t',pp,pp) in the relevant time re-
gions. When a spatial component of the momentum of either the parent or the child meson
is vanishing, the corresponding matrix element (P(pp)|V;|P(pp)) (or (D(pp)|Vi|D(pp)))
(i = 1,2,3) is also vanishing and the correlator C{,* (or CPP), cannot be used in the
denominator of the r.h.s of Eq. (3.13)). In these cases the quantity 2pp; /(P (pp)|V;|P(pp))
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(or 2pp; /{D(pp)|V;|D(pp))) is replaced by 2Ep /CLF (or 2Ep /CRP). Moreover, if both
the pion (kaon) and the D-meson are at rest, only two ratios, Rs and Ry, can be con-
structed, providing two independent determinations of the scalar form factor fy(¢?) at the
kinematical end-point ¢2, = (Mp — M P)Q, which may differ by lattice artefacts.

In order to inject momenta on the lattice we use the same procedure adopted in
Ref. [53] for the K3 decays. In particular for the valence quark fields we impose twisted
boundary conditions (BC’s) [22, 23, 61] in the spatial directions and anti-periodic BC’s
in time. The sea dynamical quarks, on the contrary, have been simulated with periodic
BC’s in space and anti-periodic ones in time. The choice of using twisted BC’s for the
valence quark fields, as presented in Sec. , is crucial in order to remove the strong
limitations to the accessible kinematical regions of momentum-dependent quantities like,
e.g., form factors. Furthermore we remark that, as shown in Refs. [62] 63], for physical
quantities which do not involve final state interactions (like, e.g., meson masses, decay
constants and semileptonic form factors), the use of different BC’s for valence and sea
quarks produces only FSE which are exponentially small. The quark 3-momentum in our
simulations is then given by

2
p:%(e—l—nx, 0+n, 0+n,), (3.19)

where n,, . are integers and the 6 values adopted for the different gauge ensembles,
chosen to be democratically distributed along the three spatial directions, are collected
in Tab. 3.4 In this way we obtain momenta with values ranging from ~ 150 MeV to
~ 650 MeV for all the various lattice spacings and Volumesﬂ The 3-point correlation

B | v/ 0
1.90 | 323 x 64 || 0.0, £0.200, +0.467, +0.867
243 x 48 || 0.0, £0.150, +0.350, & 0.650
1.95 | 323 x 64 || 0.0, £0.183, £0.427, £0.794
243 x 48 || 0.0, £0.138, +0.321, + 0.596
2.10 | 483 x 96 || 0.0, £0.212, £0.493, +£0.916

Table 3.4: Values of the parameter 6, appearing in Eq. , for the various ETMC
gauge ensembles of Tab. [3.1].

functions C’ap(t,t’,ﬁp,ﬁp) and CDP(t, ¥ pp, pp) have been simulated imposing periodic
BC’s to the spectator light quark and partially twisted BC’s to the initial ¢ and
final u(s) quarks. With this choice the 7, K and D meson (spatial) momenta are given
by pp = (2n/L) (0p,0p,0p) and prxy = (27/L) (HW(K),QF(K),GW(K)), where 0p and 0r(x)
can assume for each gauge ensemble the values of the parameter 6 given in Tab. [3.4]

3The correlators used in this work have been calculated within the PRACE project PRA067 “First
Lattice QCD study of B-physics with four flavors of dynamical quarks”. The values of the quark mo-
mentum were not chosen having in mind the investigation of hypercubic effects in the semileptonic form
factors. In particular the use of spatially symmetric values of the quark momentum (see Tab. is not
ideal for such a purpose.



3.2 VECTOR AND SCALAR FORM FACTORS 67

As described in Sec. the use of two kinematics with opposite spatial momenta of
the initial and final mesons, given by opposite signs of the corresponding 6, allows for an
O(a) improvement on the matrix elements (V,,) and (S) performing the following average:

Vo = 5 | (P(Be. 50|l D(Ep, 7o) + {P(Br, ~5#) |Gl D(Ep, ~50))] . (3.20)
(Vdinp = 5 [(P(Br. 50)VAD(Ep, B)) — (P(Ee, ~5¥)|ViID(Ep, ~5n))] . (321
(S)imp = 5 [(P(Bp, 5)[S|D(Ep, o) + (P(Ep, ~)|S|D(Ep, o) - (3.22)

Furthermore since we are using democratically distributed momenta in the three spatial

directions, the matrix elements of the spatial components of the vector current (V;>imp are

equal to each other. Therefore, in order to improve the statistics, we average them to get

<‘/Sp>1mp 3 |:<‘/1>1mp + <‘/2>imp + <‘/3>impi| ’ (323)
The quality of the plateau for the matrix elements <170>imp, (\A/Sp)imp and (S);,, is illustrated

in Fig. in the case of the D — 7 transition. The time intervals adopted for fitting
Egs. are symmetric around ¢’ /2 (see Tab. for the values of ¢’ for each specific
gauge ensemble) and equal to [t'/2 — 2, ¢'/2 + 2]. These values are compatible with the
dominance of the m, K and D mesons ground-state observed along the time intervals of
Tab. [3.3] for the two-point correlation functions.

Thus, from the 2- and 3-point lattice correlators we are able to extract the three
O(a)-improved matrix elements <V0>1mp, (Vsp) and (S);,,,- The standard procedure for
determining the scalar and vector form factors fo(qQ) and f, (¢?) is to assume the following
Lorentz-covariant decomposition

(Por) VD)) = P fo(a®) + 1, W [fold®) — fo(@)] + O(a?) . (3.24)
Mp, — M3 2
(P(pP)|S|D(PD)> = le — 1t fo( ) (a ) (3-25)

with P, = (pp + pp),. Explicitly one has

(Vodimp = (Ep + Ep) f+(¢%) + (Ep — Ep)% [fo(@®) = f+(a®)] + O(a?),  (3.26)

by = 7 {00 + 00) () + 0 = 00) TP [1e?) = £u( )]+ Oa?) (327
(SN = 2 )+ 00 (3.28)

which represent a redundant mathematical system consisting of three equations depending
on just two form factors. We then determine fy(¢?) and f(¢*) by minimizing the y>-
variable constructed using Egs. (3.2613.28). In the next Section we present and discuss
the result of this determination in which, as anticipated, we found evidence for Lorentz
symmetry breaking terms.
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Figure 3.1: Matriz elements (\A/Sp)imp, (%)imp and (S);,, for the D — 7 case extracted
from the ratios R, and Rg [see Egs. and (@ | for the ensemble D20.48 with
p = 210, L/a = 48, au, = 0.0020, ap. = 0.17, pp = —pr and |pp| ~ 150 MeV.
The meson masses are M, ~ 254 MeV and Mp ~ 1933MeV. The horizontal red lines
correspond to the plateau regions used to extract the matriz elements and to their central
values and statistical errors.

3.3 Form factors and hypercubic effects

After a small interpolation of our lattice data to the physical values of the strange and
charm quark masses, mP"*(2 GeV) = 99.6 (4.3) MeV and mP™$(2 GeV) = 1.176 (3.9) GeV
taken from Ref. [50], we determine the vector and scalar form factors ffﬂ(K) and f(? m(K)
for each gauge ensemble and for each choice of the parent and child meson momenta.
The momentum dependencies of the semileptonic form factors ffﬂ(K) and f7 ") are
illustrated in the upper (lower) panels of Fig. where different markers and colors
correspond to different values of the child meson momentum for the ETMC ensemble
A60.24, i.e. at fixed values of the parent and child meson masses as well as of the lattice
spacing and volume. Therefore, if the Lorentz-covariant decomposition were
adequate to describe our data, the extracted form factors would depend only on the
squared 4-momentum transfer ¢. This is not the case and an extra dependence on the
value of the child meson momentum is clearly visible in Fig. beyond the statistical
uncertainties.

As is well known, the lattice breaks Lorentz symmetry and is invariant only under



3.3 VECTOR AND SCALAR FORM FACTORS 69

R : — —_—
18~ Ensemble A60.24 I 21" Ensemble A60.24 N
16/~ |®Pg=656 MeV | 11~ |® Pr=656 MeV B
L |m Pp=353 MeV i{i . [ |= Pp=353 MeV I@g |
14 |¢ Pr=151 MeV Ef % B ™ | Pr=151 MeV i§i W
L = 1 - u )
Dr 2 o <« Pr=0MeV EEE { D 2. 0ol <« Pr=0MeV - [ ] B
%% 2 . S RECON , ,
i 1 08} E -
1= % N (]
L E 4
- L) 07 3 [ _
08 . B L ) |
, f ;
06k |
06 @ | i
[ TR [ N T 0s P R R B B
0 05 1 15 2 25 ~0 05 1 15 2 25
2 2 2 2
q (GeV") q (GeV’)
[ T T T T T ] 1.1 T T —
L5~ Ensemble A60.24 T b I Ensemble A60.24
[ 1 1,05 — —
14 | P = 656 MeV P § e Pk =656 MeV A
L | Pk =353 MeV g ' | Pk = 353 MeV ﬁil §
L[ Pr=151Mev Bﬁ i 05| Pk = 151 MeV Eﬁi i
DK 2 | [*PK=0MeV 'ﬁi 1 bk 2 - |4 Px =0 MeV i 1
09F R
£ b e 1) : ,
L - ] % E
1+ (] . 0,85 —
091 L] B 08~ E E B
L i B L .
08 . - 0751 ¢ -
07k - I
L ‘E ! . ! . ! . ! . L o7 E ! . ! . ! . ! . L
05 0 05 1 15 2 05 0 05 1 15 2
2 2 2 2
q (GeV) q (GeV)

Figure 3.2: Momentum dependence of the vector ff“ (upper left panel), ffK (lower left
panel) and scalar fP™ (upper right panel), fPX (lower right panel) form factors in the
case of the gauge ensemble A60.24 [50]. Different markers and colors distinguish different
values of the child meson momentum. The simulated meson masses are M, ~ 386 MeV,
Mg ~ 599 MeV and Mp ~ 2022 MeV, while the lattice spacing and spatial size are
a ~ 0.0885 fm and L ~ 2.13 fm, respectively (see Tab. .

discrete rotations by multiple of 90° in each direction of the Euclidean space-time. There-
fore, the matrix elements (3.2013.23)), and consequently the form factors extracted from
Egs. (3.2613.28), may depend also on hypercubic invariantﬁ Hypercubic effects are known
to affect lattice calculations and they have been discussed for instance in Refs. [64] [65]. It
is however the first time that these effects are observed in the D-meson semileptonic form
factors. In Refs. [66] and [24], 25] Ny = 2+ 1 results for the ff”(K) form factor have been
obtained by FNAL/MILC and HPQCD collaborations, respectively, using only a limited
number of kinematic conditions, restricted in particular to the parent D-meson at rest.
Also the ETMC reported Ny = 2 results for the D-meson semileptonic form factors in
Ref. [67], but the kinematics were limited to the Breit-frame (pp = —pp). Recently in
Ref. [68] both the D — 7 and D — K semileptonic transitions have been investigated

4Hypercubic symmetry is also broken on our lattices because of the different length of the temporal
and spatial dimensions. This effect however is expected to be subdominant and will be neglected in what
follows.
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using Ny = 2 + 1 domain-wall fermions assuming the D-meson at rest, while in Ref. [69]
the FNAL/MILC collaboration has addressed the determination of the semileptonic form
factors, using Ny = 24+ 1+ 1 MILC ensembles with HISQ fermions and tuning properly
the child meson momentum to reach directly ¢ = 0, but working only in the reference
frame where the D-meson is at rest. We argue that all these choices may obscure the

presence of hypercubic effects in the lattice data.
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Figure 3.3: Results for the vector (left panels) and scalar (right panels) form factors in
the case of the D — 7 (upper panels) and D — K (lower panels) semileptonic decays
versus ¢* for the gauge ensembles A40.24 and A40.32, which correspond to a ~ 0.0885
fm, M, ~ 320 MeV, My ~ 580 MeV, Mp ~ 2020 MeV and two different lattice volumes
L/a = 24 (empty markers) and L/a = 32 (filled markers), respectively. The different
shape and color of the markers distinguish between different values of the child meson
momentum.

The behavior observed in Fig. might be (at least partially) related to finite size
effects (see, e.g., Ref. [70] for the case of K3 decays). The possible impact of FSE has been
investigated by comparing the results corresponding to the two gauge ensembles, A40.24
and A40.32, which share the same pion mass and lattice spacing, but have different lattice
sizes, L = 24a and L = 32a, respectively, as illustrated in Fig. [3.3] It can clearly be seen
that for the D — m(K) semileptonic vector and scalar form factors FSE appear to be
negligible within the current statistical uncertainties, except for the slope of the D — 7w
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scalar form factor (upper right panel in Fig. |3.3)).
ensembles A40.24 and A40.32 are found to be comparable and they do not appear to
depend on the lattice size L. Thus, since in our setup all the current matrix elements
are O(a)-improved, the breaking of the Lorentz invariance is expected to be produced by
O(a?) hypercubic effects, whose subtraction will be discussed in the next Section in order
to get the Lorentz-invariant semileptonic vector and scalar form factors.

71

Hypercubic effects for the two gauge

Before closing the Section, it is worth noting that no evidence of hypercubic effects

within the current statistical uncertainties was found in the case of the K — 7wfv semilep-
tonic form factors analyzed in Ref. [53], where the same gauge configurations and the
same parent and child momenta were adoptedﬂ This suggests that the hypercubic arte-
facts may be governed by the difference between the parent and the child meson masses.
Such an indication is confirmed by the results given in Fig. |3.4) where the transition
between two charmed PS mesons with masses close to the D-meson one has been consid-
ered. The momentum dependencies of the corresponding form factors show no evidence
of hypercubic effects within the statistical uncertainties. The dependence of hypercubic
artefacts upon the mass difference between the parent and the child mesons is clearly a
very important issue, which warrants further investigations. It may represent an impor-
tant warning in the case of the determination of the form factors governing semileptonic
B-meson decays into lighter mesons.
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Figure 3.4: Momentum dependence of the vector (left panel) and scalar (right panel) form
factors regqulating the semileptonic decay in which the parent and child mesons are two
charmed PS mesons, Dy and Dy, with masses close to the D-meson one. In this plot we
have used the gauge ensemble A30.32, in which Dy and Dy have masses equal to 1718 MeV
and 1887 MeV, respectively. Different markers and colors distinguish different values of
the child meson momentum.

°In Ref. [53] the vector and scalar form factors for the K;3 decays have been constructed using local

interpolating fields for both the pion and the kaon. We have checked that no hypercubic effects are visible
also in the case of smeared interpolating fields.
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3.4 Subtraction of the hypercubic effects

As shown in the previous Section the form factors f, and fy for both the D — 7 and
D — K decays exhibit a sizeable Lorentz-symmetry breaking due to hypercubic effects
generated at finite lattice spacing. In order to find the mathematical expression of these
lattice artefacts we have to remember that we are working in an Euclidean space-time,
thus physical momenta enter observables directly simulated on the lattice through their
Euclidean couterparts. This means that hypercubic effects in the vector and scalar form
factors have to be investigated in terms of Euclidean momenta. As shown in Eq.
we haveff]
qy = (@, @) = (7, —iqo) , (3.29)
so that
> qiaql =" (3.30)
“w

Invariant quantities under hypercubic rotations can be constructed using qf and Pf =
(pp +pp)f as:
g =N " (g (P (3.31)
p
For n +m = 2 we find three invariants, that respect also the Lorentz symmetry, i.e. ¢2,

q-P and P?, which can be rewritten in terms of ¢* and the parent and child meson masses.
For n + m = 4 the hypercubic invariants are five:

g4 gEpll gRIpll psl pll (3.32)

where ¢l (P1) stands for ¢l Pl (gl)P1). In this Section we show that hypercubic
lattice artifacts in the vector and scalar form factors can all be expressed at the order
O(a?) in terms of these quantities. The simplest way to do it is to study hypercubic
effects not directly on f. and fy, but on the vector and scalar currents, related to the

form factors through Eq. (3.26H3.28)).

3.4.1 Hypercubic effects in the vector current

As already shown in Fig. 3.2 the form factors f o calculated using Eqs. (3.26]3.28) do
not depend on ¢? only. A possible way to describe the observed hypercubic effects is to

address them directly on the vector and scalar matrix elements. We start by considering
the following decomposition of the vector current:

<P(pP)’VME|D<pD)> = <‘/ME>LOr + <VME>hyp ) (333)
in which <YA/ME )., is the Lorentz-covariant term
~ M2 _ M2
<VME>L0r = P,uE f+(q27 a2) + qf % [fO(q27 a2) - f+(q27 CLZ)] ) (334)

6We neglect the label M related to Minkowskian (physical) momenta.
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while <IA/ME >hyp is given by

(VE), =d [(q[f)3 H+ (¢)" PP Hy + % (PF)" Hy + (PF)° H@ , (3.35)

hyp
where the quantities H; (i = 1,2, 3,4) are additional hypercubic form factors. Note that in
the Lorentz-covariant term (3.34)) we have explicitly considered that the form factors fy o
can be affected by discretization errors of order O(a?), which are unrelated to hypercubic
effects and may depend on ¢? as well as on the parent and child meson masses. Eq. is
the most general structure, up to order O(a?), that transforms properly under hypercubic
rotations and is built with third powers of the components of the two momenta qf and

Pf . The Lorentz-invariance breaking effects are encoded in the four structures (qf)g,

(¢F )2 PE, qF (PF )2 and (PF )3 as well as in the hypercubic form factors H;, for which we
assume a dependence only on ¢? and the parent and child meson masses. Note that the
decomposition (3.333.35)) implies that the form factors fi o calculated using Eqgs.
do depend not only on ¢, but also on the five hypercubic invariants ¢4, ¢@*'Pl
JZPL_upls pla,

For the H; form factors we adopt a simple polynomial form in terms of the z variable
[71, [77]

Hi(2) = djy + diz + dyz* | (3.36)

where z is defined as

Vie — ¢ — /1 — 1o (3.37)
vam —q2+\/t+ — 1o

z =

with ¢, and ¢, given by
ty = (Mp+Mp)",
to = (Mp+ Mp) (x/ VM ) (3.38)

In Eq. (3.36)) the coefficients dj), , are treated as free parameters.

3.4.2 Hypercubic effects in the scalar density

Let’s now turn to the scalar density. As well as for the case of the vector current, we
consider for the scalar matrix elements the following decomposition:

(P(pp)IS|D(pp)) = (S)or + (g (3.39)

where (S5);, is again the Lorentz-invariant term

M2 _ M2
(S)por = ﬁfo(QQ,GQ) ) (3.40)
c q

while (S),,, is given by

<S>hyp = [q[4] ﬁl + qu“] ﬁQ + Q[Q]PM f[3 + qum ?[4 + P[A‘]ﬁg,] (3.41)

He = Hq
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with quantities H; (i = 1,2,3,4,5) representing additional hypercubic form factors.
The Ward-Takahashi Identity (WTI) relates the 4-divergence of the vector current to
the scalar density. Let’s introduce the W'TT breaking term A}%I} ; defined as

AWy = (1e = 1q) (P(pp)ISID(pp)) + aff (P(pp)|V,"|D(pp))

. E /{;E
= (e = 1q) gy + 4 (Vi )y (3.42)
which implies
AP — @2 g (Hy + Hy) + PP (Hy + Hy) + P PP (Hy + Hy)
+ UPB (H, 4+ Hy) + PY ;75] ' (3.43)

The quantity AYP can be evaluated directly using the matrix elements <1A/ME ) and ().

Its dependence on the parent child momenta is illustrated in Fig. [3.5] in the case of the

gauge ensemble A30.32. It can be clearly seen that even if the WTI-violating term A;‘g‘} 7
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Figure 3.5: Results for AP, (see Eq. ) versus q* (left panels) and ¢'* (right panels)
for the D — m (upper panels) and D — K (lower panels) transitions in the case of the

gauge ensemble A30.32.
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is small, it is different form zero and cannot depend on the Lorentz-invariant ¢ only.
Instead lattice data suggest a simple, approximate linear, dependence on the hypercubic

invariant ¢!¥ (see right panels in Fig. . This implies a quite simplified structure for
ARP - in Eq. (3.43) and consequently for (S)™” in Eq. (3.41)), namely:

Hi+H =0 for i=2,3,4
Hs =0 (3.44)
Hy+H, =Hg#0.

In other words one has
AWP = a*qWHy (3.45)

which implies
@ o Hg— — LB pEy
Me — Mg He — Mg : # Thyp

(Shyp = (3.46)

For the hypercubic form factor Hs we adopt the simple Ansatz
Hg = d + dymy (3.47)

with dg , being free parameters.

The structure of the hypercubic artefacts is thus given by Eqgs. ) and - in
terms of the five form factors H; (i = 1,2,3,4,5). These quantities cannot be determined
in the present work by analyzing the matrix elements of vector and scalar currents sepa-
rately for each gauge ensemble. A simultaneous, global fit of all the data (more than one
thousand lattice points corresponding to the time and spatial components of the vector
and scalar matrix elements related to the 15 ETMC gauge ensembles of Tab. has to
be performed by considering the dependencies on ¢?, m, and a* of the form factors f; ¢ as
well as the ¢? and my dependencies of the five hypercubic form factors H; (i = 1,2, 3,4, S).

3.4.3 Global fit

For the form factors f; o(¢% a?) we have adopted the modified z-expansion of Ref. [73],
viz.

fDaw(K)(O a )+C£—>7T(K)( ) o — )( +ﬂ)

D—n(K) (
FT (P ) = PP ) 2/ (348)
D—n(K) D_”T(K) z+z0
Dosn(K f (0,a%) + cq (a®) (z — 20) (1 + =52)
o (g a?) = S L (3.49)
where we assume for the coefficients D(_J)W(K)(a ) a simple linear dependence on a? and

20 = z(¢* = 0), so that the condition f,(0,a?) = fy(0,a?) = f(0,a?) is explicitly fulfilled
at finite lattice spacing. In the r.h.s. of Egs. (3.4813.49)) the terms at second order in the
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z-variable are constrained by the analyticity requirements described in Ref. [73]. As for
the functions P, p, in the case of D — 7 transition we adopt the single-pole expressions

2

T q
PPoT(?) =1 — A (3.50)
2
7 q
7)(?_) (CIQ) =1- K%SE(L> eE (3.51)
S
while for the D — K channel we use
2
PPK(?) =1 AZQ (1+ Pua?) | (3.52)
D}
Py () =1 (3.53)

In the case of the D — 7 pole factors and the quantities My, and Mg represent
the vector and scalar pole masses, respectively. They are treated as free parameters in
the fitting procedure. In the case of the D — K decays the data are fitted equally
well even excluding the pole term in the scalar form factor and therefore we choose
PP (¢*) = 1. Conversely the physical vector meson D! has a mass below the cut
threshold /t; = (Mp, + Mg). Consequently the pole factor , including a simple
discretization effect proportional to a?, is introduced to guarantee the applicability of the
zZ-expansion.

In Eq. the quantity K%g(L) takes into account the FSE observed in Fig. (3.3
by adopting the following phenomenological form

—MxL

(&
Kpsp(L) =14 Chsp &

_— .54
M,L "’ (3:54)

where O is a free parameter and & = 2Bm, /(1672 f?), with B and f being the SU(2)
low-energy constants entering the LO chiral Lagrangian and determined in Ref. [50]. For
the vector form factor at zero 4-momentum transfer, f?=75)(0,a?), we use the following
Ansatz

FPm0(0,0%) = Fy [14+ AT ¢ log & + by & + by €2 + D a?] (3.55)

where the coefficients F, by, by and D are treated as free parameters in the fitting
procedure, while A™¥) is the chiral-log coefficient predicted by the hard pion SU(2)
Chiral Perturbation Theory (ChPT) [74], given by

™ 3 ~2 K 1
AT = 4(1+3g), AV =43 (3.56)
where for the coupling constant g we adopt the value g = 0.61 [26].

Using the ingredients described above we have performed the global, combined fit of
all the data for the matrix elements (V4), (V;,) and (S), which amount to a total of 1110
data points for both the D — 7 and D — K transitions. The total number of free
parameters is 24 (19) in the case of D — 7(K') channel, namely:
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e in Eq. (3.55)) 3 parameters for D — « (F,, by and D) and 4 parameters for D — K
<F+, bl, b2 and D),

e in Eq. (3.48) 2 parameters for cfﬁﬂ(K) (ie., cy = + cha?);

in Eq. (3.49) 2 parameters for ¢ ") (ie., o = & + cla?);

1 parameter (My ) in Eq. (3.50) for D — 7 and 1 parameter (P, ) in Eq. (3.52)) for
D — K,

2 parameters in Eqs. (3.51)) and (3.54) (Mg and C%¢p) only for D — 7,;
2 parameters in Eq. (3.47) for the hypercubic form factor Hg;

in Eq. (3.36) 3 parameters for each of the four hypercubic form factors Hy, Hoy, Hj
and Hy for D — 7 and 2 parameters (i.e., d5 =0 ) for D — K.

The quality of the fit is quite good obtaining x?/d.o.f. ~ 1.2 for both the D — 7 and D —
K transitions. We have tried to include extra terms in Eqs. (3.4843.49) either proportional
to 2% (including the analiticity requirement of Ref. [73] through an appropriate term
proportional to z®) or proportional to the light-quark mass m, in the coefficients cfzﬂ(K).
Since the differences in the results for both the hypercubic corrections and the form factors
f+,0 are negligible with respect to the other errors and the values of the new parameters
turn out to be consistent with 0, such extended fits are not used for estimating systematic
uncertainties.

From the global combined fit we obtain both the momentum dependence of the
Lorentz-invariant form factors fi, and the one of the five hypercubic form factors H;
(i =1,2,3,4,5). The dependence in ¢* of f, g, extrapolated to the physical pion mass
and to the continuum and infinite volume limits, will be discussed and compared to the
experimental data in Sec. |3.5, Here we compute the hypercubic form factors H; coming
from the global fit in order to check the quality of the subtraction of the hypercubic effects
for each gauge ensemble, i.e. at finite lattice spacing and volume and for the unphysical
pion masses given in Tab.[3.1} In Fig. we show the same form factors given in Fig. (3.2
after the hypercubic contributions determined by the global fit have been subtracted from
the matrix elements (V) and (S) using Eqgs. and . It can be seen that the
hypercubic effects are properly removed and both the scalar and the vector form factors
depend now only on the 4—momentum transfer ¢ within the statistical uncertainties.

In the limiting case where the parent and the child mesons are the same, Eq.
reduces to a simpler expression, namely

(DW)VED®)),,, = a® |(aF)’ BEH + (BF)" Hi| | (3.57)

because only even terms under the exchange of the initial and final PS mesons survive.
In Sec. 3.3 we have noted that within the statistical uncertainties there is no evidence of
hypercubic effects when the initial and final meson have the same masses (see Fig. [3.4).
This might be an indication that the hypercubic form factors Hy and Hy can be neglected.
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Figure 3.6: The same as in Fig. but after correcting for the hypercubic effects deter-
mined in the global fitting procedure using Fqs. and . Different markers and

colors distinguish different values of the child meson momentum.

Thus, we have repeated the global fitting procedure assuming Hy, = H, = 0, which reduces
the number of free parameters to 18 and 15 for the D — 7 and D — K transitions,
respectively. The differences in the results for both the hypercubic corrections and the
form factors fy o, obtained including (Hy # Hy # 0) or excluding (Hy = H, = 0) the
two hypercubic form factors H, and H, are found to be negligible within the current
statistical uncertainties. Therefore, in what follows we adopt the fitting procedure in
which we assume Hy = H4 = 0 as our reference fit for estimating uncertainties due to
various sources of systematic errors as well as for obtaining results for the form factors
D—n(K)( 2

f+,0 (q%)

We stress again that an important feature of our analysis with respect to previous
studies of the semileptonic D — 7(K) form factors is the use of a plenty of kinematical
conditions corresponding to parent and child mesons either moving or at rest. Using
only a limited number of kinematical conditions, for instance the Breit-frame in which
PD = —Dx(x) or the D—meson at rest, the presence of the hypercubic effects may not be
manifest. This point is illustrated in Fig. which shows the subset of our data for the
scalar D — 7 (left panel) and D — K (right panel) form factor fy corresponding only
to the D-meson at rest both before and after the subtraction of the hypercubic effects
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Figure 3.7: Left panel: the scalar form factor fP™(q?) corresponding to the kinematical
conditions with the D—meson at rest for the gauge ensemble D30.48. Hollow and filled
points represent, respectively, the data before and after the removal of the hypercubic effects
determined in the global fitting procedure. Right panel: the same as in the left panel, but
for fPE(q?) in the case of ensemble A40.32

determined in the global fitting procedure. Lorentz-symmetry breaking is not manifest in
the limited set of data points with pp = 0, but it is not negligible. This holds for the scalar
form factor fy, while in the case of the vector form factor f, we find that Lorentz-symmetry
breaking effects are less pronounced in the subset of data corresponding to the D-meson at
rest. We stress that the differences between the data with and without hypercubic effects
are a O(a?) effect proportional to hypercubic invariants. Thus, any analysis of the data
without the subtraction of hypercubic effects, based directly on parameterizations like
Eqgs. , where only discretization effects unrelated to hypercubic invariants are
considered, is in principle inadequate and may lead to different results in the continuum
limit.

3.5 Global fit results

The momentum dependencies of the physical Lorentz-invariant vector and scalar form
factors, extrapolated to the physical pion mass and to the continuum and infinite volume
limits, are shown in Fig. for both the D — 7 and D — K transitions. Our results
exhibit a remarkable precision in the full range of values of ¢? covered by the experiments
(ie., 0 < ¢* <@ = (Mp — Myk))? ~ 3.0(1.9) GeV?). Our results for the vector form
factors fP7(¢%) and fP%(¢?) can be compared with the corresponding values determined
by BELLE, BABAR, CLEO and BESIII collaborations in Refs. [6], [7, 8, O 10], where
the partial decay rates have been measured (see also Refs. [75], [70] for a summary of the
experimental results). The agreement is good except at high values of ¢*, where some
deviations are visible.

In Fig. our main results for the vector and scalar form factors are compared with
those obtained by choosing only the kinematical configurations corresponding to the D-
meson rest frame and by performing the extrapolations to the physical pion mass and to
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Figure 3.8: Momentum dependencies of the Lorentz-invariant form factors f,(q*) (orange
bands) and fo(q?) (cyan bands), extrapolated to the physical pion mass and to the con-
tinuum and infinite volume limits, for the D — 7 (left panel) and D — K (right panel)
transitions, including their total uncertainties. For comparison, the values of ffW(K)(QQ)
determined by BELLE, BABAR, CLEO and BESIII collaborations in Refs. [0, (7,8, 9, [10]
are shown. The bands correspond to the total (statistical + systematic) uncertainty at one
standard-deviation level.

the continuum and infinite volume limits without including the hypercubic terms
and . In other words, the continuum extrapolation is based only on the discretization
terms contained in Egs. . It can be seen that the neglect of hypercubic effects
in the analysis and the use of a limited subset of data lead to some distortions of the
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extrapolated form factors, which are more pronounced in the case of the scalar form
factor. Such distortions are found to be comparable with present global uncertainties
within one standard-deviation. They may become more relevant as the precision of the
data will be increased in the future.

In Tab. we provide a set of synthetic data points for the vector and scalar D — 7w
form factors, f f ™(¢*) and fP™(¢?), with the corresponding total uncertainties, calculated
at eight selected values of ¢* between 0 and ¢, = (Mp — M,)?. The errors in Tab.
take into account the uncertainties induced by:
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Figure 3.9: Comparison of the vector and scalar form factors, extrapolated to the physical
pion mass and to the continuum and infinite volume limits, obtained either by choosing
all the kinematical configurations and including the hypercubic terms and mn
the analysis (solid lines) or by limiting to the kinematical configurations corresponding to
the D-meson rest frame without considering the subtraction of hypercubic effects (dashed
lines). The bands correspond to the total uncertainty at one standard-deviation level.
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¢ (GGVZ) f+(q2) fo(QQ)

0.0 0.612 (35) (4) (7) (1) [35] 0.612 (35) (4) (7) (1) [35]
0.4286 0.715 (31) (4) (6) (1) [32] 0.659 (29) (4) (5) (1) [30]
0.8571 0.840 (29) (3) (6) (1) [30] 0.713 (24) (3) (3) (1) [24]
1.2857 0.991 (29) (4) (6) (1) [30] 0.773 (18) (4) (2) (1) [19]
1.7143 1.179 (34) (10) (3) (1) [35] 0.842 (15) (4) (5) (1) [17]
2.1429 1.415 (43) (15) (8) (1) [47] 0.922 (19) (5) (8) (1) [21]
2.5714 1.721 (60) (21) (16) (1) [66] 1.017 (29) (7) (13) (1) [32]
3.0000 2.130 (86) (31) (27) (3) [96] 1.134 (45) (10) (18) (1) [49]

Table 3.5: Synthetic data points for the transition D — m representing our results for the
vector and scalar form factors extrapolated to the physical pion point and to the continuum
and infinite volume limits for eight selected values of ¢* in the range between ¢*> = 0 and
=, = (Mp— M;)?~3.0 GeV2. The errors correspond to the uncertainties related
to (statistical + fitting procedure + input parameters), chiral extrapolation, FSEs and
discretization effects, respectively (see text). The errors in squared brackets correspond to
the combination in quadrature of the statistical and all systematic errors.

e the statistical noise and the fitting procedure;

e the errors in the determinations of the input parameters, namely the values of the
average u/d quark mass m,g the value of the charm quark mass m., the lattice
spacing a and the SU(2) ChPT LECs f and By, determined in Ref. [50];

e the chiral extrapolation, evaluated combining the results obtained using the SU(2)
ChPT fit on all our lattice data and a fit with b, = 0 in Eq. (3.55)) applied only to
the data with M, < 390 Me\/ﬂ;

e the FSE, evaluated by comparing the results obtained with and without the FSE

factor (3.54);

e the discretization effects, calculated by comparing our main results with those ob-
tained including in Egs. extra terms proportional to (aAqcp)?. Using a
value for Agep equal to >~ 0.35 GeV, we expect that the values of the coefficients
of the extra terms are in a natural range of order O(1). Therefore, we adopt for the
coefficients of the extra terms a (conservative) prior distribution equal to 0 % 3.

Similarly, in Tab. [3.6]we provide a set of synthetic data points for the vector and scalar
D — K form factors, fP%(¢*) and fP*(¢?), with the corresponding total uncertainties
for eight selected values of ¢? between 0 and ¢2, = (Mp — Mg )?. Note that, at variance
with the case of the D — 7 transition, the uncertainty related to FSE is not considered,
because the data for the D — K transition do not show any visible volume effect. In

In this case the total number of data values reduces to 814, since the results for the gauge ensembles
A80.24, A100.24, B85.24 and B75.32 (see Tab. |3.1)) are excluded from the analysis.
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¢ (GeV?) f+ () folq?)

0.0 0.765 (29) (11) (1) [31] | 0.765 (29) (11) (1) [31]
0.2602 | 0.815(28) (12) (1) [31] | 0.792 (26) (10) (1) [28]
0.5385 | 0.872(28) (13) (1) [31] | 0.820 (23) (10) (1) [25]
0.8077 | 0.937 (28) (15) (1) [32] | 0.849 (21) (9) (1) [23]
10769 | 1.013 (29) (17) (1) [34] | 0.879 (19) (9) (1) [21]
1.3461 1.102 (32) (21) (1) [38] | 0.911 (17) (9) (1) [19]
1.6154 | 1.208 (36) (26) (1) [44] | 0.944 (17) (8) (1) [19]
1.8846 | 1.336 (43) (32) (1) [54] | 0.979 (17) (8) (1) [19]

Table 3.6: Synthetic data points for the D — K transition representing our results for the
vector and scalar form factors extrapolated to the physical pion point and in the continuum
and infinite volume limits for eight selected values of ¢* in the range between ¢*> = 0 and
P = ¢, = (Mp — Mg)? ~ 1.88 GeV2. The errors correspond to the uncertainties
related to (statistical + fitting procedure + input parameters), chiral extrapolation and
discretization effects, respectively (see text). The errors in squared brackets correspond to
the combination in quadrature of the statistical and all systematic errors.

order to allow a direct employment of synthetic data points contained in Tabs. [3.5 and
3.6 without using our bootstrap samples, we have calculated the corresponding covariance
matrices, which are available upon request. Furthermore, we provide in the Appendix, for
the form factors fﬁ:ﬂ(K), the values of the parameters of the z-expansions of our global
fit after the extrapolations to the physical pion point and to the continuum and infinite
volume limits, including covariance matrices.

From Tab. 3.5 and B.6] our results at zero 4-momentum transfer are
P77(0) = 0.612 (35) , PR(0) = 0.765 (31) (3.58)

which are consistent within the errors with the FLAG [5] averages fP~™(0) = 0.666 (29),
based on the result of Ref. [24], and fP7%(0) = 0.747 (19) from Ref. [25]. Using experi-
mental values

Vo F27(0) = 01426 (19) Vel £ (0) = 0.7226 (34) | (3.50)

given by HFAV in Ref. [15], we can get for the CKM matrix elements |V 4| and |V,| the
results:

Vea| = 0.2330 (133)a¢ (31)exp = 0.2330 (137) (3.60)
Vi = 0.945 (38)1a (4)exp = 0.945 (38) , (3.61)

where the errors are from the lattice calculation and from the experiments respectively,
showing that the dominant error is the theoretical one. Our results (3.603.61)) can be
compared with the determinations of |V 4| and |V.4| based on the D and Dy leptonic decay
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constants, fp = 207.4(3.8) MeV and fp, = 247.2(4.1) MeV, obtained in Ref. [51] using the
same ETMC gauge configurations. Using the experimental values of fp|V.q| = 46.06(1.11)

MeV and fp,|Ves| = 250.66(4.48) MeV from Ref. [77] one gets
Vol = 0.2221 (41)101 (54)exp = 0.2221 (68) (3.62)
Ve = 1.014 (17)1¢ (18)exp = 1.014 (25) | (3.63)

where again the errors are from the lattice calculation and from the experiments, respec-
tively. At variance with the semileptonic case, the theoretical uncertainties of |V4| and
|V.s|, obtained from the leptonic decays, are comparable to (or even smaller than) the
experimental ones.

An alternative way to extract the CKM matrix elements |V.4| and |V.4| is to combine
directly the momentum dependence of the semileptonic form factors obtained from lattice
QCD simulations with the experimental ¢*-bins of the differential D — 7(K){v, decay
rates. The application of such a strategy (see Ref. [19]) is presented in the next Section.
Using |Vg| = 0.0360(9) from Ref. [26] we can perform the check of the unitarity of the
second row of the CKM matrix. We find

[Veal? + [Ves|? + |Va|> = 0.949 (78) from semileptonic decays , (3.64)
[Veal? + [Ves? + |Va|> = 1.079 (54) from leptonic decays , (3.65)

which test the second-row unitarity at the level of several percent for both semileptonic
and leptonic modes.

3.6 Extraction of V)| using momentum dependence
D—n(K)
of f

The starting point is the partial decay rate provided by each experiment for various bins
of values of ¢* (i.e., ¢> £ Aqg?/2 for i = 1, ..., Nyns). By integrating Eq. (1.68) in each

experimental bin one has

[Ar(qig)]EXP _ /A 2 dQQdF(D — Plv) _
a;

o (3.66)
GE Vi ° 3 2 '
2477'3 Aq2 q |pP| }f-«— (q )| )
where the r.h.s. contains the phase-space integral over the vector form factor, viz.
. 2
I(q}) = / dg [pel” [£77(¢%)] (3.67)
Ag?

7

Using the results of the global fit for the vector form factors ffW(K) (¢*), we can combine
the theoretical predictions for [I (qf)]LAT of Eq. (3.67) with experimental measurements
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of the partial decay rate (3.66]) and get a determination of |V.4| for each experimental

¢>-bin:

> _ 247° [AT ()]
Gh (@)™

The values of [AT(¢2)]™" measured by BABAR [7, 8], CLEO [9] and BESIII [10] col-
laborations are collected in Tabs. and for the D — m and D — K semileptonic
decays respectively. In the case of the BELLE experiment [6] the only available data are
the values of [Voq| fP7™(¢?) and |Ve,| P (¢7), which can be used to extract |Veq(s)| adopting

the lattice determinations of ffﬂ(K)(qz) at the center of each ¢*>-bin. This strategy is less
consistent with respect to the one used for all the other experiments, since BELLE data
for |Veacs)| ff”(K)(qf) come from a variety of shapes adopted for the vector form factors.
The values reported by BELLE are listed in Tabs. [3.9 and for D — 7 and D — K
semileptonic decays respectively.

Combining the BABAR, CLEO and BESIII data from Tabs. with the theoret-
ical results for [I(¢2)]**" and the BELLE data from Tabs. with the theoretical
values for fP(q?), we get a determination of the CKM matrix element |V,4| and |V for

each experimental bin. The results are shown in Fig. for both |V4| and |V.s|. The data

are strongly correlated since, among the various ¢*-bins, theoretical values of [/ (qf)]LAT as

well as the values of [AF(qE)]EXP coming from the same experiment are correlated. Thus,
on the one hand side, in order to take into account the correlations of the experimental
data we have calculated a global covariance matrix obtained by combining the separate co-
variance matrices given by BABAR, CLEO and BESIII collaborations in Refs. [7, 8, O, 10].
No covariance matrix is provided for the BELLE data on |Vig)| S (42) in Ref. [6].
We treated them as uncorrelated. On the other hand side, the correlations among the
lattice values of [I(¢2)]"*" have been taken into account using the bootstrap samplings.
It turns out that in our analysis the correlations are largely dominated by lattice data.

The determinations of |V.4| and |V, for the various ¢*-bins exhibit an approximate
constant behavior, except for |V,,| in the high-¢* region, where some deviations are visible.
The results of the constant fit, including all ¢*-bins, for the CKM matrix elements |V,4|
and |V 4| are:

Veu(q7)|

(3.68)

|Vea| = 0.2345 (83) , |Ves| = 0.978 (35) . (3.69)

In order to check the stability of these results we have also performed a series of constant
fits including only the data below each given value of ¢2. The orange bands in Fig. |3.10
show the results of these fits for |V,.4| and |V,4| as a function of ¢. It can be seen that the
variations of |V,4| and |V_| are well within the uncertainties.

Results (3.69)) can be compared with

Vig| = 0.2330 (137) ,  |Va| = 0.945 (38) , (3.70)

reported in Egs. , obtained using the values of the vector form factor at ¢* = 0
and the experimental results for V4| f277(0) and | V.| 275 (0) provided by HFAG [15]. It
turns out that the uncertainty of |V 4| in Eq. is smaller by & 40% with respect to the
corresponding uncertainty in Eq. , while for |V_| such a reduction is marginal. This
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Experiment % (GeV?)  [AT(¢%)]™" - 10 (GeV) ‘

BABAR  (0.00, 0.30) 8.09 + 0.46
(0.30, 0.60) 751 + 0.59

(0.60, 0.90) 7.31 + 0.53

(0.90, 1.20) 6.15 + 0.46

(1.20, 1.50) 488 + 0.46

(1.50, 1.80) 428 + 0.46

(1.80, 2.10) 3.39 + 0.46

(2.10, 2.40) 1.98 + 0.40

(2.40, 2.70) 0.77 + 0.33

(2.70, 2.98) 0.14 + 0.13

CLEO D" (0.00, 0.30) 9.16 + 0.66
(0.30, 0.60) 8.04 + 0.59

(0.60, 0.90) 6.72 + 0.53

(0.90, 1.20) 6.46 + 0.53

(1.20, 1.50) 521 + 0.46

(1.50, 2.00) 554 + 0.46

(2.00, 2.98) 527 + 0.46

CLEO D¥  (0.00, 0.30) 468 £ 0.46
(0.30, 0.60) 435 £ 0.46

(0.60, 0.90) 3.69 + 0.46

(0.90, 1.20) 3.76 + 0.46

(1.20, 1.50) 3.16 + 0.46

(1.50, 2.00) 3.56 + 0.46

(2.00, 3.01) 244 + 0.46

BESIIT (0.0, 0.20) 6.14 + 0.25
(0.20, 0.40) 538 + 0.24

(0.40, 0.60) 481 + 0.24

(0.60, 0.80) 489 + 0.23

(0.80, 1.00) 483 + 0.23

(1.00, 1.20) 428 + 0.22

(1.20, 1.40) 374 + 0.20

(1.40, 1.60) 3.17 + 0.19

(1.60, 1.80) 3.08 + 0.18

(1.80, 2.00) 242 £ 0.16

(2.00, 2.20) 1.86 + 0.14

(2.20, 2.40) 1.32 + 0.13

(2.40, 2.60) 0.75 + 0.10

(2.60, 2.98) 0.62 + 0.09

Table 3.7: Values of the partial decay rates [AT (¢%)]™
for the D — = transition in the g*-bins measured by
BABAR [7], CLEO [9] and BESIII [10] collaborations.
CLEO data are separately given for the D° — 7~ {v and
Dt — 7%y channels.

‘ Experiment  ¢* (GeV?)  [AT(¢?)]™" - 10% (GeV) ‘

BABAR (o 00, 0.20) 11.69 + 0.34
(0.20, 0.40) 10.72 + 0.32
(0.40, 0.60) 9.50 + 0.27
(0.60, 0.80) 8.16 + 0.24
(0.80, 100) 6.53 + 0.20
(1.00, 1.20) 509 + 0.16
(1.20, 1.40) 351 + 0.13
(1.40, 1.60) 2.14 + 0.08
(1.60, 1.80) 0.85 + 0.06
(1.80, 1.88) 0.041 + 0.004

CLEO D (0.0, 0.20) 11.74 + 0.28
(0.20, 0.40) 10.43 + 0.26
(0.40, 0.60) 9.17 + 0.23
(0.60, 0.80) 7.70 + 021
(0.80, 1.00) 6.17 + 0.19
(1.00, 1.20) 467 £ 0.16
(1.20, 1.40) 352 + 0.13
(1.40, 1.60) 2.04 + 0.10
(1.60, 1.88) 0.84 + 0.08

CLEO D¥  (0.00, 0.20) 11.72 + 0.43
(0.20, 0.40) 10.29 + 0.39
(0.40, 0.60) 9.24 + 0.36
(0.60, 0.80) 8.09 + 0.32
(0.80, 1.00) 5.88 + 0.27
(1.00, 1.20) 538 + 0.24
(1.20, 1.40) 3.27 + 0.18
(1.40, 1.60) 1.76 + 0.12
(1.60, 1.88) 0.78 + 0.09

BESIIT  (0.00, 0.10) 5.807 + 0.076
(0.10, 0.20) 5.762 + 0.081
(0.20, 0.30) 5466 + 0.082
(0.30, 0.40) 4.987 + 0.080
(0.40, 0.50) 4.933 + 0.079
(0.50, 0.60) 4248 + 0.074
(0.60, 0.70) 4,086 + 0.072
(0.70, 0.80) 3.637 + 0.069
(0.80, 0.90) 3.313 + 0.065
(0.90, 1.00) 2.982 + 0.062
(1.00, 1.10) 2.618 + 0.057
(1.10, 1.20) 2.192 + 0.053
(1.20, 1.30) 1.864 + 0.049
(1.30, 1.40) 1.508 + 0.044
(1.40, 1.50) 1.145 + 0.039
(1.50, 1.60) 0.866 + 0.034
(1.60, 1.70) 0.565 + 0.029
(1.70, 1.88) 0.250 + 0.023

Table 3.8: Values of the partial decay rates [AT'(¢)]

EXP

for the D — K transition in the ¢*-bins measured by

BABAR [§], CLEO [9] and BESIII [10].

CLEO data

are separately given for the D° — K—{v and DT —

K%y channels.
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Experiment ¢? (GeV?) \Veal F25 (q2)
BELLE 0.10 0.688 £ 0.029
0.17 0.762 £ 0.029
0.23 0.743 £ 0.029
0.30 0.811 + 0.032
0.37 0.762 £ 0.032
0.43 0.817 £ 0.036
0.50 0.856 £ 0.039
Experiment ¢2 (GeV?) Vel 2 (@) 0.57 0.915 £ 0.039
L £ 0.63 0.882 £ 0.039
BELLE 0.15 0.145 + 0.012
0.70 0.798 £ 0.039
0.45 0.181 £ 0.015
0.77 0.996 £+ 0.042
0.75 0.194 £+ 0.017
0.83 0.970 £ 0.045
1.05 0.188 £ 0.020
0.90 0.921 £ 0.045
1.35 0.219 £ 0.024
0.97 1.015 £+ 0.052
1.65 0.213 £ 0.033
1.03 1.070 £+ 0.052
1.95 0.325 £ 0.043
1.10 0.911 + 0.055
2.25 0.400 £ 0.062
1.17 1.083 £+ 0.065
2.55 0.413 £ 0.101
9 85 0490 + 0.282 1.23 1.067 £ 0.068
: : - 1.30 1.219 £ 0.078
Table 3.9: Values of |Vea|fP™(q?) from the 1131; 12?2 i 8(1)(8;11
BELLE collaboration [6], collected in Ref. [75]. ' ' '
’ 1.50 1.158 + 0.107
1.57 1.378 £ 0.120
1.63 1.433 £ 0.169
1.70 1.375 £ 0.214
1.77 1.116 £+ 0.331
1.83 1.411 £+ 0.892

Table 3.10: Values of |Vus|fPX(q?) from the
BELLE collaboration [6], collected in Ref. [70].

is largely due to the higher degree of the correlations among the theoretical values of the
vector form factor fi(¢?) in the various ¢*-bins in the case of the D — K transition with
respect to the D — 7 one. Moreover, the central value of |V, in Eq. is larger than
the corresponding one in Eq. by approximately one standard deviation. We stress
that the same theoretical input from LQCD is used for describing the shape of the vector
form factor ffW(K)(QQ) in all the experimental data, obtaining in this way a consistent
SM analysis. The impact of the above consistency might become more significant as the
precision of LQCD calculations of the semileptonic form factors will be improved in the
future. Thus, the theoretical information on ffW(K)(QQ) in the full ¢>-range allows not
only to guarantee a consistent extraction of |V,4| and |V | within the SM, but also to get
a more precise determination of |V4|.

Within present uncertainties our semileptonic results are consistent with the
determinations of Eqgs. obtained from experimental D and D, leptonic decay
rates [77], adopting the ETMC results [51] for the decay constants fp and fp,. In Fig.
the above results from leptonic and semileptonic D—meson decays are reported as ellipses
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Figure 3.10: Values of the CKM matriz elements |V.q| (upper panel) and |V,s| (lower panel)
obtained by combining the theoretical predictions for the phase-space integrals [I(qf)]LAT,

based on the vector form factor fP¥(¢?) evaluated on the lattice in Ref. [18], with the exper-
imental data of the D — m and D — K semileptonic differential decay rates [AI’(qf)]EXP,
measured by BELLE [6], BABAR |7, (8], CLEO [9] and BESIII [10)] collaborations. The
solid lines and the bands are described in the text.
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in the (|V.4|, |Ves|) plane corresponding to a 68% probability contour. The ellipses cor-
responding also to the leptonic and semileptonic FLAG averages [0] for |V.4| and |V
are shown as well as the constraint imposed by the second-row unitarity, indicated by a
dotted line.

. ETMC - Semileptonic decays (Nf=2+1+1)
1.10 . ETMC - Leptonic decays (N;=2+1+1)
FLAG - Semileptonic decays (Ny=2+1)

V/A FLAG - Leptonic decays (Ny=2+1+1)

1.05+

VCS

1.00+

0.95-

0.19 0.20 0.21 0.22 0.23 0.24 0.25
Vcd

Figure 3.11: Results for |V.4| and |V.s| obtained from leptonic and semileptonic D- and
Dg-meson decays, represented respectively by green and red ellipses corresponding to a
68% probability contour. The solid ellipses are the results of Ref. [51] and of this work,
obtained with Ny = 2+ 1+ 1 dynamical quarks. The striped ellipses correspond to the
latest FLAG results [3], which for the semileptonic decays are based on the LQCD results
obtained in Refs. [24), 125] with Ny = 2+ 1 dynamical quarks. The dashed line indicates
the correlation between |Voq| and |V.s| that follows from the CKM unitarity.

Using |Vi| = 0.0360(9) from Ref. [26] and our semileptonic results (3.69) we can test
the unitarity of the second row of the CKM matrix, obtaining

Veal® + [Vis|? + |Vip|* = 1.013 (68) (3.71)

which can be compared with the corresponding result [V.q|? + [Vis|? + [V |? = 0.949 (78)

of Eq. (3.64).
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Conclusions

In this thesis we have presented the first lattice Ny = 24141 determination of the vector
and scalar form factors of the D — 7nfv and D — K/{v semileptonic decays, which are
relevant for the extraction of the CKM matrix elements |V 4| and |V | from experimental
data. Our analysis, reported in Ref. [I§], is based on the gauge configurations produced
by ETMC with Ny = 2+1+1 flavors of dynamical quarks at three different values of the
lattice spacing with pion masses as small as 210 MeV. Quark momenta are injected on
the lattice using non-periodic boundary conditions. The matrix elements of both vector
and scalar currents are determined for a plenty of kinematical conditions in which parent
and child mesons are either moving or at rest.

Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data
and included in the decomposition of the current matrix elements in terms of additional
form factors. We found evidence that hypercubic artefacts may be governed by the differ-
ence between the parent and the child meson masses. This represents a very important
issue, which warrants further investigations, since it might become particularly relevant in
the case of the determination of the form factors governing semileptonic B-meson decays
into lighter mesons. We remark that the values of the quark momentum were not chosen
having in mind the investigation of hypercubic effects in semileptonic form factors. In
particular, the use of spatially symmetric quark momenta is not ideal for such a purpose.
We have planned to perform new simulations removing the above constraint and opti-
mizing the choice of the twisted BCs. Nevertheless, we stress that the main structure of
the hypercubic effects on the matrix elements of the vector and scalar currents has been
understood.

After the extrapolations to the physical pion mass and to the continuum limit we
determine the vector and scalar form factors in the whole kinematical region from ¢ = 0
up to ¢2. = (Mp — Mx))?, obtaining a good overall agreement with experiments.
Some deviations are visible at high values of ¢* for both D — 7y and D — K/{v decays.
Combining the momentum dependence of the semileptonic vector form factors f f (%)
and ff_”( (¢*) with the differential rates measured for the semileptonic D — /v and
D — K/lv decays, we get a determination of the CKM matrix elements |V 4| and |V
fully consistent with the SM. Furthermore, we have found that this new method for the
extraction of |V,4| and |V,| induce a reduction of the uncertanty, which is ~ 40% in our
determination of |V.4|. At zero 4-momentum transfer we get

PT0) = 0.612 (35) (3.72)
DoR0) = 0.765 (31) (3.73)
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and using experimental values provided by the BABAR, CLEO, BESIII and BELLE
collaborations in Refs. [6l [7, 8, @, 10] for the decay rates of the D — 7(K){v decays,
together with our determination of the momentum dependence of the vector form factors
ff%W(K) (¢*), we determine

V.| = 0.2345 (83) | (3.74)
V| = 0.978 (35) . (3.75)

Including also the determination of |V,| from B-meson decays [26], the test of the second-
row of the CKM matrix is verified at the percent level of precision:

Veal? + |Vis|> 4 |Vio|* = 1.013 (68) . (3.76)



Appendix: The z-expansion of the physical
vector and scalar form factors

After the extrapolations to the physical pion point and to the continuum and infinite
volume limits, the z-expansions of the vector and scalar form factors, adopted in this
work, are written in the case of the D — 7 transition as

fO7(0) + 27 (z — 2) (14 =5)

D—m/ 2 _

Y Me) = B : (3.77)
Dom(g?) = fP7m(0) + =7 (2 — z) (1 + 22 (378)
0 q 1— PS q2 . .

The values of the five parameters fP=7(0), cf_”, Py, =™ and Pg are collected in
Tab. [3.11} with the corresponding covariance matrix given in Tab. [3.12]

fP=m(0) b= Py (GeV™?) = Pg (GeV™?)
0.6117 (354) | —1.985 (347) | 0.1314 (127) | —1.188 (256) | 0.0342 (122)

Table 3.11: Values of the parameters appearing in the z-expansions of the vector and scalar

form factors i the case of the D — m transition.

JP7(0) o Py o P
fP=m(0) || 1.25642-1073 | 7.18296 - 1073 | 6.77051 - 1073 | 3.66997 - 107> | 2.87257 - 107>
cP=m |l 7.18296 - 1073 | 6.56690 - 102 | 6.30124 - 102 | 1.73569 - 10~ | 8.43689 - 10~*
Py 6.77051 - 1073 | 6.30124 - 1072 | 1.20371- 107! | 2.24220- 1073 | 3.25631 - 1073
cP=m |1 3.66997 - 1075 | 1.73569 - 1073 | 2.24220 - 10~ | 1.48010 - 10~* | 9.60595 - 10~°
Ps 2.87257 - 107° | 8.43689 - 10~* | 3.25631 - 1073 | 9.60595 - 10~° | 1.60179 - 10~

Table 3.12: Covariance matrixz corresponding to the z-expansions of the vector and scalar

form factors in the case of the D — m transition.

Analogously in the case of the D — K transition the z-expansions of the vector and
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scalar form factors read as

fD—>K(0) + C£—>K(z _ Zo) (1 4 w%)

Jlr)aK(q2) — 1 — QQ/MQ* , (3.79)
DoK () = fP2E Q) 4 cP7E (2 — 2) (1 42 J; ZO) , (3.80)

where the values of the three parameters P=%(0), cf"K and ¢?7% are collected in Ta-

ble [3.13] with the corresponding covariance matrix given in Tab. [3.14]

fD—>K (0) C£—>K C([))—>K

0.7647 (308) | —0.066 (333) | —2.084 (283)

Table 3.13: Values of the parameters appearing in the z-expansions of the vector and scalar

form factors in the case of the D — K transition.

fDﬁK(O) CE%K CODHK
fD%K(O) 9.50493 - 10~* | 6.92027 - 1073 | 5.66397 - 1073
cf_’K 6.92027 - 1073 | 7.99358 - 1072 | 7.55735 - 1072

K 5.66397 - 1073 | 7.55735 - 1072 | 1.10925 - 1071

Table 3.14: Covariance matrix corresponding to the z-expansions of the vector and scalar

form factors in the case of the D — K transition.
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