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Introduction and Motivation

Today cosmology has emerged as a ‘precision science’, thanks to the modern observa-

tional surveys and advanced theoretical models that, together, allow us to estimate the

fundamental cosmological parameters with unprecedented precision. As a result the

so-called concordance cosmological model,ΛCDM, has been remarkably successful. It is

a simple theoretical model that, using Einstein’s general relativity with a non-vanishing

cosmological constant, is able to match with an impressively large and diverse amount

of observational data: the cosmic microwave background; 3D distribution of large scale

structure; supernovae distances; gravitational lensing; cosmic structure abundances and

so on. This success is unparalleled by the physical understanding of this model, that

requires the presence of dark components that would contribute to ∼95% of the mass-

energy budget of the Universe at the present epoch. The quest for the nature of these two

elusive components, that we indicate as Dark Matter and Dark Energy, represent one of

the most interesting open issues in cosmology and fundamental physics till date.

In the framework of theΛCDM concordance model, the Universe would originate from

an initial singularity, the so-called hot Big Bang, followed by an inflationary period, that

would account for the flatness of the observable Universe. During its thermal history, a

cosmological nucleosynthesis would occur, during which the light elements would form in

a hot-dense, optically thick plasma from which a transparent matter-dominated Universe

would emerge after the recombination epoch, i.e. when photons would decouple and

freely stream away, allowing us to observe the last scattering surface of this process in the

microwave range today: what we identify as the cosmic microwave background (CMB,

Penzias and Wilson, 1965). CMB is nearly isotropic and uniform black-body radiation de-

tected everywhere in the Universe with average background temperature of TCMB ∼ 2.73 K.

However this uniform glow in the sky has tiny temperature variations of∆T/T ∼ 10−5 order

of magnitude and have been observed by a number of successful satellite missions: Cosmic

Background Explorer (COBE, Smoot et al., 1992), Wilkinson Microwave Anisotropy Probe

(WMAP, Spergel et al., 2003) and finally, Planck (Planck Mission, Bersanelli et al., 2010).

These temperature fluctuations are associated to fluctuations in the mass density and are
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believed to be originated from quantum fluctuations that enlarged to macroscopic scales

during the inflationary era. CMB fluctuations are then further amplified, through the

mechanism of gravitational instability, and eventually form the familiar cosmic structures

that we observe in the nearby Universe.

The accelerated expansion of the Universe and the evolution of cosmic structures

within, are driven by the aforementioned dark matter and dark energy. As a consequence,

tracing the expansion history of the Universe and quantifying the growth of the large

scale structures is an effective way of unveiling the nature of these dark components.

This thesis work is motivated by the latter aspect, in particular, in measuring the rate,

f , at which the structures grow. This quantity, that can be estimated from the observed

large scale distribution of extragalactic objects at various epochs, is a powerful tool to

investigate the nature of gravity. It could shed light on the nature of dark energy, as well

as provide useful indications on how to build a new gravity model. It is to address these

important questions that new, advanced observational campaigns have been or will be

carried out. In the next years, large scale surveys like Euclid (Laureijs et al., 2011), The Large

Synoptic Survey Telescope (LSST, Abate et al., 2012) Dark Energy Spectroscopic Survey (DESI,

Aghamousa et al., 2016), Wide-Field Infrared Survey Telescope (WFIRST, Doré et al., 2018)

will generate datasets containing billions of objects spanning over a significant fraction

of the observable Universe. A major challenge to the scientific community is to build

these experiments, collect and analyse the huge amount of data and elaborate accurate

theoretical model to extract cosmological parameters, including f (z), with unprecedented

precision.

The main goal of this thesis is to study efficient ways to investigate the distribution of

various mass density tracers. I will first consider the case of 3D distributed density tracers.

As we know, deep spectroscopic redshift surveys, estimate the redshifts by scanning the

spectrum of individual object, and accurately map the 3D distribution of matter around us.

Tracers of the large scale matter density field, primarily galaxies, clusters of galaxies and

‘cosmic voids’, are a goldmine of scientific information that is typically extracted from this

distribution by means of two-point statistics: in configuration-space (Hawkins et al., 2003;

Zehavi et al., 2005; Eisenstein et al., 2005; Okumura, 2008; Cabré and Gaztañaga, 2009;

Guo et al., 2013; Beutler et al., 2012; Veropalumbo et al., 2014; Ross et al., 2015; Jeong et al.,

2015); in Fourier-space (Tegmark et al., 2004; Cole et al., 2005; Tegmark et al., 2006; Reid

et al., 2010; Blake et al., 2011); or using both (Anderson et al., 2013, 2014; Alam et al., 2017).

Over the past decade a number of spectroscopic redshift (hereafter spectro-z) surveys

have been carried out, resulting in more than 3 million spectroscopic redshifts, largely of

galaxies at low-to intermediate redshifts (z ≤ 0.3) (Sloan Digital Sky Survey I-IV, York et al.,
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2000; Abazajian et al., 2009; Eisenstein et al., 2011; Blanton et al., 2017); (2-degree Field

Galaxy Redshift Survey, Colless et al., 2001); (VIPERS, Guzzo et al., 2013). On the other

hand, much larger are the photometric catalogues, that only list angular positions and

magnitudes (in various bands) of objects (Dark Energy Survey (DES), Abbott et al., 2005);

(Kilo Degree Survey (KiDS), de Jong et al., 2012); (2MASS Photometric Redshift Survey

(2MPZ), Bilicki et al., 2013). Current photometric catalogues contain tens of millions

of objects but can only be used to analyse the 2D-projected distribution of objects. If

photometric redshifts (hereafter photo-z’s) can be measured, the information of line-

of-sight distribution of objects is insufficient to perform full 3D analysis, as the gain of

number counts comes with a compromise of high uncertainty on redshift. Nonetheless,

photo-z catalogues are ideal datasets to measure the gravitational lensing effect in the

weak regime. However, by using tomographic clustering technique (Asorey et al., 2012;

Alonso et al., 2015; Balaguera-Antolínez et al., 2018; Peacock and Bilicki, 2018) they can

also be used to infer the 3D clustering properties of both the luminous tracers and the

underlying matter. In this thesis I will focus on this second aspect.

The general framework of my thesis is the study of the large scale structure of the

Universe through multiple aspects of clustering analysis. In the following subsections, I

will sketch an outline of three different but complementary analyses that together build

this thesis work.

Probing the Growth of Structure from Galaxy Clusters

Galaxy clusters, formed by gravitational clumping of thousands of galaxies, are the largest

virialised structures in the Universe. In the ΛCDM bottom up scenario, they have formed

relatively recently, when the Universe started accelerating its expansion. For this reason

their abundance and clustering properties are sensitive probe to Dark Energy and Mod-

ified Gravity models (Rozo et al., 2007; Jain and Zhang, 2008; Ferraro et al., 2011; Ade

et al., 2016b; Batista and Marra, 2017). Moreover, thanks to their intense Bremsstrahlung

radiation, they’re best detected and studied in the X-ray band. The recently launched

eROSITA X-ray satellite, which has been designed to observe the largest cluster count to

date, is expected to deliver an almost all-sky catalogue of about 105 clusters out to z ∼ 1

(Merloni et al., 2012; Pillepich et al., 2012). We expect that 3D spectroscopic follow-up

surveys (e.g. 4MOST Salvato and Merloni, 2015) after eROSITA (Reiprich, 2016, 2017) will

provide reliable redshift estimates of eROSITA galaxy clusters at mean redshift z = 0.46.

Clusters are rare but bright. Therefore, they can be used to probe the underlying mass

distribution on very large volumes, although in a rather sparse way. As a consequence,

the study of their clustering properties and the so-called redshift-space distortions (RSD,
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Sargent and Turner, 1977; Davis and Peebles, 1983) provide a very effective way to measure

the growth rate over a large interval of redshifts. Since the work of (Guzzo et al., 2008),

studying RSD using 2-point statistics have become a standard, effective tool to constrain

the growth rate f (z). This has mainly been done using galaxies as mass tracers (Blake et al.,

2011; Reid et al., 2012; Beutler et al., 2012; Samushia et al., 2014; de la Torre et al., 2013;

Oka et al., 2014; de la Torre et al., 2016; Pezzotta et al., 2016; Qin et al., 2019; Hawken et al.,

2019) although galaxy groups and more exotic objects like Active Galactic Nuclei (AGN)

have been used as well (Okumura, 2008; Bianchi et al., 2012; Kwan et al., 2012; Marulli

et al., 2017). A key ingredient for the measurement of the growth rate is an accurate

model for redshift distortions. In the linear regime the model, originally proposed by

Kaiser (Kaiser, 1987), has an analytic form which is simple to implement and allows one

to estimate parameter combinations like f σ8 (σ8 being the RMS mass density fluctuation

on 8 h−1 Mpc scale) or the amplitude of redshift distortions β = f /b (where b is the

linear bias parameter of the mass tracer). In fact, several past works have considered β

as a benchmark to probe the growth of structure (Hatton and Cole, 1999; Berlind et al.,

2001; Chuang and Wang, 2012; Tocchini-Valentini et al., 2012; Mohammad et al., 2016). A

common issue when using galaxies as tracers of mass density field is that their RSD effects

are poorly described by linear theory, and more sophisticated models need to be adopted

instead.

The benefit of using clusters instead of galaxies is that, tracing cosmic structures and

velocities over much larger scales, are intrinsically more linear or, more precisely, the RSD

in their clustering properties are much more accurately described by the Kaiser-Hamilton

model (Kaiser, 1987; Hamilton, 1992). This has triggered a widespread interest in clusters

and prompted a number of theoretical works aimed at assessing their goodness as a RSD

probe (Marulli et al., 2017) or for analyses related to Baryonic Acoustic Oscillations (BAO)

(Veropalumbo et al., 2014).

In this thesis I will further explore this issue, keeping an eye on the upcoming eROSITA

survey. My goal will be that of assessing how well the distortion parameter β can be

estimated from the 2-point statistics of ∼ 105 clusters in survey like eROSITA. I will address

the problem in both configuration space, i.e. by measuring the anisotropic 2-point corre-

lation function and its moments, and in Fourier space, by considering the cluster power

spectrum. The rationale for considering both statistics is that, although they provide

the same information, they are prone to different types of systematic errors, so that the

comparison of the two results will clarify which statistics perform better in a particular

range of scales or redshift. To do so, I will analyse the distribution of dark matter haloes

extracted from 160 realisations of state-of-the art zHORIZON cosmological simulations
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(Smith, 2009) considering only those objects with masses that match with those expected

for the eROSITA clusters.

Extracting Clustering Signal from Radio Datasets

Radio-active extragalactic sources have long been regarded as interesting laboratories

to study fundamental physical mechanisms and to highlight one of the most complex

open problem in astrophysics: that of galaxy formation and evolution (Faint Images of

Radio Sky at Twenty centimeters (FIRST), Becker et al., 1995; White et al., 1997, 1.4 GHz);

(The Giant Metrewave Radio Telescope (GMRT), Ananthakrishnan, 1995); (Sub-millimeter

Array (SMA) Blain et al., 2002); (The Phoenix Deep Field Survey (PDF) Hopkins et al., 2003).

On top of this, radio sources are also precious mass tracers since they are little affected

by galactic extinction, zodiacal light, starlight emission from our Galaxy and, more in

general, by most of the processes that hamper our ability to observe extragalactic objects

over all sky in the optical and infrared bands. The ability of observing radio sources over

a large fraction of the sky has resulted in a number of large radio surveys, such as the

TIFR GMRT Sky Survey at 150 MHz (TGSS, Swarup, 1991), the NRAO VLA Sky Survey at

1.4 GHz (NVSS, Condon et al., 1998), or the Sydney University Molonglo Sky Survey at

843 MHz (SUMSS, Bock et al., 1999), the Murchison Widefield Array (MWA, Tingay et al.,

2013) that have been extensively used to study the large scale structure of the Universe

both in 2D, when only the flux in some radio bands is measured, or in 3D, if the 21 cm

line can be observed in the spectrum of the radio object. This unique characteristic has

triggered ongoing international effort to carry out increasingly large radio surveys such

as the Low-Frequency Array (LOFAR, van Haarlem et al., 2013) and, in the near future,

Square Kilometre Array (SKA, Braun et al., 2015; Prandoni and Seymour, 2015).

While awaiting these future datasets to be collected and published, dedicated analyses

can be carried out on the existing ones. In this thesis I have addressed the specific issue of

analysing the two largest radio catalogues available to date, NVSS and TGSS, to investigate

the clustering properties of these objects on very large angular scales that can only be

probed by these wide radio surveys.

The study of large scale structure with radio objects presents its own characteristic

problems that are different from those typically faced in the optical surveys. Detection and

characterisation of radio sources requires a good understanding and removal of the fore-

ground signal as well as the ability to detect the presence of multiple images of the same

sources that may mimic the presence of different, nearby sources. Another characteristic

of radio catalogues is their variety. Indeed a typical radio survey contains many different

types of radio sources (radio galaxies, quasars, starburst galaxies, AGNs) that are charac-
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terised by different luminosity functions and, therefore, different redshift distributions.

Furthermore, radio galaxies are typically located at high redshifts with very faint optical

counterparts. As a result, only a small fraction of radio sources, especially those located

in the local universe, have measurements of photometric and spectroscopic redshifts

(e.g., Peacock and Nicholson, 1991; Magliocchetti et al., 2004). In general, the composite

nature of the radio catalogue needs to be accurately modelled to extract cosmological

information from the angular clustering properties of the radio sources.

As of today, the angular correlation properties of radio sources have been investigated

using two-point statistics, both in real and harmonic space, in all available wide-angle

radio samples (e.g., Cress et al., 1996; Loan et al., 1997; Blake and Wall, 2002b; Overzier

et al., 2003; Blake et al., 2004b; Negrello et al., 2006; Chen and Schwarz, 2016; Blake et al.,

2004a; Nusser and Tiwari, 2015). At small angular scales the results are in agreement

with theoretical predictions of ΛCDM-based models. On the contrary, several authors

have detected a significant excess of power on very large angular scales. A particular

emphasis has been given to the dipole moment of the NVSS radio sources that was found

to be higher thanΛCDM predictions, However, there is no agreement on the significance

of this mismatch (Singal, 2011; Gibelyou and Huterer, 2012; Rubart and Schwarz, 2013;

Fernández-Cobos et al., 2014; Tiwari and Jain, 2015; Tiwari et al., 2015). To clarify this

issue, more recent studies have been focused on the newer TGSS sample (Rana and Singh

Bagla, 2018). This catalogue significantly overlaps with NVSS and, because of its brighter

flux threshold, is supposedly less affected by systematic errors that may mimic a spurious

dipole. It turned out that not only the TGSS dipole is large, but that the discrepancy

with theoretical predictions is even larger than in the NVSS case (Bengaly et al., 2018).

The goal of this work, is to have a closer look to the issue and re-analyse the angular

clustering properties of TGSS sources in harmonic rather than in real (configuration)

space, considering all multipoles, instead of the dipole only. To do so, we have measured

the angular power spectrum of different TGSS subsamples, compared these measurements

with those obtained from the reference NVSS survey and, finally to compare with model

theoretical predictions. My main contribution is on this latter aspect. To obtain the

TGSS angular power spectrum I have modelled the redshift distribution and the bias of a

multi-component population of radio sources and combined this information with the

matter power spectrum predicted in the standard ΛCDM framework. The exercise has

been repeated for a number of different TGSS sub-catalogues obtained using different flux

cuts and angular masks, to assess the robustness of the results. The results of this analysis

have been published in Dolfi et al. (2019).
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Constructing a Pipeline to Simulate Next-Generation Wide Photo-z Survey Catalogues

Tomographic clustering analyses on photo-z catalogues have recently emerged as an

alternative to that using 3D spectroscopic catalogues, to investigate clustering statistics

over very large redshift ranges with much larger number of objects than with standard

spectroscopic datasets (Asorey et al., 2012; Cai and Bernstein, 2012; Asorey et al., 2014;

Balaguera-Antolínez et al., 2018). Forthcoming surveys will gather plethora of datasets in

photo-z regime (factor of 100 more objects than spectroscopy) (Laureijs et al., 2011; Abate

et al., 2012), for which tomographic methods will act as assets and therefore need to be

fully tested with large simulated datasets which emulate the properties of the survey.

These next generation photometric datasets, will also require to be accurately modelled

for the selection effects and statistical as well as systematic photo-z errors that are typically

much larger than the spectroscopic ones. In addition, since photo-z samples are mainly

designed for weak-lensing analysis, we need to assess whether photo-z catalogues are also

suitable for clustering analysis of density tracers e.g. galaxies, if some additional selection

need to be applied, and investigate further properties to find the optimal way of combining

the two types of analyses. The best way to address these issues is by performing the

planned clustering and/or weak lensing analysis on synthetic datasets that simulate the

characteristics of a reference photo-z survey. The goal is that of assessing the magnitude

of both statistical and systematic errors, their covariance, and design strategies to mitigate

their impact.

However, this is a challenging task, since one needs to generate a very larger number

of catalogues (of the order (103 −104)) containing up to 109 objects with the possibility of

changing the underlying cosmology and/or the modelled selection effects in the process.

For this order of number of mock samples, the usual approach of performing N-body

experiments is computationally too expensive and would not work in this case. Therefore,

one needs to design approximated methods, that are both efficient enough to generate a

large number of independent mock datasets and sufficiently accurate to mimic observa-

tional errors and selection effects (Agrawal et al., 2017; Balaguera-Antolínez et al., 2018).

As a major part of the thesis work, I will develop full-pipeline to generate such mocks. The

pipeline will be flexible enough to mimic any type of photo-z survey, although the one that

is a part of this work will be specifically designed to imitate the upcoming photometric

redshift survey that will be carried out by the Euclid satellite.

Briefly, the pipeline will consist of two stages: In the first one, I will focus on generation

of ideal sets of mock catalogue containing discrete objects distributed along a light cone

and divided into redshift slices. Central to this stage is the assumption that the number

density field of discrete objects will obey a Lognormal statistics Coles and Jones (1991),
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a reliable assumption that is indeed approximately matched by real dataset Kayo et al.

(2001). To assign the correct underlying statistical properties to the density field, one

needs to generate the angular power spectrum of a population (or different populations)

of extragalactic objects with specified bias. The corresponding spectrum is sensitive

to the underlying cosmology. Together with the nonlinear model used to predict the

mass power spectrum on small scales, the characteristics of the mass tracers such as

their bias and redshift distribution also affects the behaviour of the spectrum. Especially

for tomographic analysis, the angular auto- and cross- spectra for each redshift interval

of the survey must be tuned accordingly. For this crucial stage, I will use specifically

designed publicly available codes, one of which is FLASK (Xavier et al., 2016) that generate

Lognormal maps and catalogues of discrete mass tracers. The code is mainly aimed and

optimised for cosmic shear and weak-lensing convergence fields. My task will be to assess

its usability as well as limit and optimise it for galaxy density fields. FLASK requires the

input angular power spectrum, for which I will use CLASS (Lesgourgues, 2011a; Di Dio

et al., 2013). The entire stage will be validated after the completion before moving to next

stage.

The second stage of the pipeline will contain the framework that takes the ideal mock

catalogue from first stage and turn it into a realistic mock catalogue. For this stage I will

formulate original work, in which I will implement the properties of the Euclid photo-

metric survey, starting by assigning the mean photometric redshift and the observational

error. Then I will impose redshift distribution of the target Euclid sources along with the

survey geometry. At last, using the ancillary codes which will be used for Euclid main

pipeline, I will validate the final output.

Outline of Thesis

In Chapter 1 and 2, I will revise the main theoretical tools and concepts that are used

through the thesis. I will begin with the basics of background cosmology and then move to

structure formation using gravitational instability theory, both in the linear and nonlinear

regime. In Chapter 3, I will present the main statistical tools to analyse both the 3D and

the 2D clustering properties of the mass distribution in the Universe. In Chapter 4, I will

present the first project concerning 3D clustering analysis of galaxy clusters using large

number of simulated data. The second project, i.e. the angular clustering analysis of TGSS

radio sources is presented in Chapter 5. Finally, the pipeline to produce simulated galaxy

catalogues for tomographic clustering analyses is presented in Chapter 6 together with

results from pipeline validation and optimisation.



Chapter 1

Background Cosmology

Cosmology has evolved as a data-driven field since past few decades, through back-to-

back dedicated observational probes which have remarkably improved our understanding

of the Cosmos. The key contribution has arrived from space-based missions such as

CMB probes like COBE (Bennett et al., 1996), WMAP (Hinshaw et al., 2013), Planck (Ade

et al., 2014, 2016a; Aghanim et al., 2018), Supernova Type Ia independent measurements

(Riess et al., 1998; Schmidt et al., 1998; Perlmutter et al., 1999) and 3D Galaxy Redshift

Surveys (SDSS and 2dFGRS, York et al., 2000; Colless et al., 2001). Observational data infer

that we live inside a universe with flat geometry in space, homogeneous and isotropic

on large cosmic scales and at present exponentially expanding with time. This inference

underlines the foundation of modern cosmology. The idea is to start with a homogeneous

and isotropic Universe to simplify the understanding of the physical structure of the

Cosmos and follow its evolution with time. All its components are treated as ideal fluids in

their theoretical description. I have referred to (Kolb and Turner, 1990; Padmanabhan,

2002; Mo et al., 2010; Jones, 2017; Carroll, 2019) for most of the topics described in this

chapter.

In § 1.1, I discuss the cosmological principle that uniquely define the metrics and

considerably simplify the solutions of Einstein’s equations. The relevant equations are

discussed in details in § 1.2. These equations, and its metric derived by Friedmann, also

expose non-static nature of the Universe since its beginning, which I will discuss as a case

of expanding Universe and distance measurements in § 1.2.1. In the end, a set of funda-

mental equations derived by Friedmann, are also used to obtain the dimensionless energy

density parameters for individual components of matter and energy which I describe in

last Section § 1.2.2.
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We utilise following conventions for this chapter:

• Planck system of units (unless stated specifically), ℏ= c = 1;

• Metric sign convention is (-, +, +, +);

• Time derivative is represented as ẋ = d x
d t ;

• Subscript ‘0’ corresponds to present time, e.g t0 is cosmic time today.

1.1 Homogeneous-Isotropic Universe

The simplest assumption to start with is treating every spatial coordinate as same and

indistinct from any other coordinate at random position in space. In other words, con-

sidering the Universe as homogeneous and isotropic. These two properties together are

called as cosmological principle. The principle implies that there exists no special place

anywhere in spacetime. Empirically, this assumption is valid only on very large spatial

scales. We find our Universe to be homogeneous and isotropic on scales much larger

than the average size of the largest virialised cosmic structures, i.e clusters of galaxies

(r ≫ 100Mpc). The cosmological principle lays the basis of modern cosmology.

1.1.1 Einstein’s Universe: General Relativity

The only fundamental force which governs the universe up to very large spatial scales

is gravity. According to classical Newtonian gravity, the amount and the distribution of

matter determines the gravitational field. The Poisson’s equation, ∇2Φ= 4πGρ, relates the

gravitational potential Φ to its source: the mass density ρ, where G is the gravitational

constant. In the framework of General Relativity theory (GR) (Einstein, 1916), the Poisson

equation takes form of Einstein’s Field Equations (EFEs), i.e a set of non-linear differential

equations that link the geometrical properties of the spacetime to its mass-energy content.

EFEs read as follows:

Gµν = Rµν− 1

2
gµνR = 8πG Tµν , (1.1)

where Rµν is Ricci Tensor and R is Ricci Scalar, both are contractions of the Riemann

Tensor Rσ
λµν

. Left hand side (LHS) of the equations in (1.1) contains all information on

spacetime structure and geometry. Whereas the Energy-Momentum Tensor, Tµν, which
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forms the right hand side (RHS), describes the energy density of the various components

of the system, characterised by their pressure p and density ρ. On a brief note, the field

equations (1.1) describe how the spacetime curvature acts on matter to manifest itself

as gravity as well as how energy and momentum tell the spacetime to curve. For a single

ideal fluid, the Energy-Momentum Tensor yields as:

Tµν = (p +ρ)uµuν+pgµν , (1.2)

where uµ is a four-vector that represents velocity of the fluid. The equation of state (EoS)

is usually expressed as:

w = p

ρ
, (1.3)

where w is called the Zel’dovich parameter and specifies the physical properties of var-

ious fluids: non-relativistic matter, photons etc. It also parametrises individual fluid

components of matter and energy.

1.1.2 Metric of Spacetime

The topology of spacetime is characterised by its metric:

d s2 = gµν d xµ d xν , (1.4)

where gµν is a metric tensor. If the spacetime is homogeneous and isotropic i.e for a

universe that obeys cosmological principle, it becomes Friedmann-Lemaître-Robertson-

Walker (FLRW) metric:

d s2 =−d t 2 +a(t )2 γi j d xi d x j , (1.5)

where γi j is Euclidean three-metric, a(t ) is cosmic scale factor normalised such that a(t0)

= 1 at present time t0. The first part on the RHS of Equation (1.5) is temporal part of the

metric and the latter part is spatial part in which the time-dependence is factorised by

a(t ). When spatial component γi j is expressed in spherical coordinates then FLRW metric

takes the form:

d s2 =−d t 2 + a(t )2
[

dr 2

1−K r 2
+ r 2 (

dθ2 + sin2θ dφ2)] , (1.6)
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where K embodies the curvature. The FLRW metric from Equation (1.6) describes the

homogeneous, isotropic and expanding universe with a(t ) and curvature, K , which can

take three different values that uniquely characterise the geometry of the Universe,

K =


−1, Negative Curvature, Open Universe.

0, Zero Curvature, Flat Universe.

+1, Positive Curvature, Closed Universe.

(1.7)

1.2 Cosmic Expansion

EFEs are in principle higher order non-linear differential equations. In 1922 Alexander

Friedmann solved EFEs under assumption of FLRW metric; and derived equations that de-

scribe the dynamics of an expanding Universe (Friedmann, 1922). From the 00 component

of the EFEs one obtains the first Friedmann equation:

H ≡
(

ȧ

a

)2

= 8πGρi

3
− K

a2
. (1.8)

where i indicates the i -th fluid component, and H = ȧ/a is Hubble parameter that char-

acterises the expansion rate of the Universe. From the spatial component i i of the EFEs

one obtains the second Friedmann equation:(
ä

a

)
=−8πG

6
(ρi +3pi ). (1.9)

To solve the system of equations (1.8) and (1.9), one needs to specify the EoS that relates the

pressure to density (pi -ρi ), where the boundary condition for ordinary fluid is ρi +3pi ≥ 0

commonly known as ‘strong energy condition’.

1.2.1 Distances in Expanding Universe

In the late 1920’s, Georges Lemaître and Edwin Hubble discovered independently, that

Universe is expanding (Lemaître, 1927; Hubble, 1929) and, in a way, confirmed the Fried-

mann’s theoretical work described above. It was observed that extragalactic objects recede

with a velocity proportional to their distance from the observer:

v = H0 r , (1.10)
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where H0 = 100 h km s−1 Mpc−1 is Hubble constant which is parametrised in terms of

dimensionless parameter h, and r is the physical separation vector that defines the actual

distance between cosmic objects.

As the universe expands isotropically the space is stretched in all directions, causing

the wavelengths of the emitted photons by a light source to be stretched as well. To

understand this phenomenon better, let’s elaborate more about expanding Universe and

relative distances. The comoving separation x between two points, which stays same for

space which is uniformly expanding with time, relates to physical separation r as:

r(t ) = a(t ) x . (1.11)

In a uniform FLRW universe x remains unchanged in time, whereas the corresponding

displacements in inhomogeneous universe will change x with time.

Light rays follow null geodesics i.e d s2 = 0. If we consider a photon travelling on a

radial null geodesic, from equation (1.6) and integrating along the photon’s trajectory, we

get:

DPR =
∫ t0

t

d t

a(t )
=

∫ r

o

dr

(1−K r 2)1/2
(1.12)

where LHS is the proper distance between two points o and r . Photons emitted at r at

different times experience the stretching because of the expansion, a(t). As a result, a

monochromatic wavelength emitted from the source as λem is observed at o with a longer

wavelength λobs, which gives:

λobs

λem
= νem

νobs
= (1+ z) = 1

a(t )
, (1.13)

which defines the cosmological redshift z. Because of the relation between the redshift z

and the comoving position of the source located at r , redshift z is commonly used as a

distance proxy.

Since proper distances cannot be measured directly in cosmology, we define other

types of distances in a phenomenological way. The more relevant is the Luminosity

Distance, which is defined from the observed flux F of a source with intrinsic luminosity

L:

DL =
(

L

4πF

)1/2

; (1.14)
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and the Angular Diameter Distance, defined as the distance to a standard ruler1 of size 2R

with an angular separation θ:

D A = 2R

θ
. (1.15)

These observable quantities are related to each other and give the cosmologically well

defined proper distance as,

D A = DPR

(1+ z)
= DL

(1+ z)2
. (1.16)

1.2.2 Cosmological Parameters

By combining first and second Friedmann equations, (1.8) and (1.9), we get continuity

equation which implies conservation of energy and momentum:

ρ̇i +3H(ρi +pi ) = 0 ; (1.17)

that when coupled with EoS of the fluid, specifies the evolution of the density,

ρi (t ) = ρ0i a(t )−3[1+wi ] (1.18)

where ρ0i = ρi (t0) is energy density of i -th fluid today. The dimensionless density parame-

ter, which is used to estimate the relative amount of i -th fluid, is classically expressed as a

ratio of energy density of the fluid to its critical density, ρc :

Ω0i = ρ0i

ρ0c
; Ω=∑

i
Ωi . (1.19)

The first Friedmann equation can be expressed using the dimensionless energy density

parameterΩ:

H 2 = H 2
0

{[ ∑
i
Ωi a−3(1+wi )

]
− K

a H 2
0

}
, (1.20)

where H0 is the expansion rate at present time. Current observations favour a flat Uni-

verse (K = 0), presently dominated by cosmological constant, and contributed by non-

relativistic matter (dark and luminous). For this model Universe, total energy density

parameter (as given above in (1.19)) is expressed as:

1A standard ruler is an object whose physical size 2R is known
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Ω0 =Ωm +ΩΛ ≃ 1 , (1.21)

whereΩm is total matter energy density andΩΛ is cosmological constant energy density.

In this model we can recast Equation (1.20) and obtain the normalised expansion history

of the Universe:

E(z) = H(z)

H0(z)
= [Ωm(1+ z)3 +ΩΛ]1/2 . (1.22)





Chapter 2

The Large Scale Structure

In Chapter 1, we have seen geometrical properties of homogeneous-isotropic Universe and

its evolution with time. This approximation holds well on large spatial scales. However

on small scales the cosmological principle is violated as we observe a cosmic foam of

structures either clumped together in clusters or distributed in filaments and sheets,

separated by underdense regions called cosmic voids. All these structures traced by galaxies

are the building blocks of the Large Scale Structure (LSS). The amount of cosmological

information encoded in the LSS is enormous. Studying the evolution of LSS is a way to

comprehend the mechanism that assembles such gigantic structures.

This chapter is dedicated to cosmology of structures and their formation. It is divided

into two main sections. The first section (§ 2.1) summarises the linear theory of density

perturbations, valid as long as the amplitude of the perturbations is smaller than unity

(δ≪ 1). I start by defining density contrast and the statistical properties of a linear density

field in § 2.1.2. The evolution of linear perturbations and the growing modes of matter

perturbations that contribute to formation of structures are discussed in § 2.1.3. Section

§ 2.2 describes non-linear evolution of matter density perturbations, and the formation of

Dark Matter haloes that host galaxies and galaxy clusters. Finally I discuss the halo mass

function and the bias of density tracers. I have referred to (Kolb and Turner, 1990; Coles

and Lucchin, 1995; Padmanabhan, 2002; Schneider, 2006; Mo et al., 2010; Jones, 2017) for

writing this chapter.
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Before we dive into specific details about how structure formation takes place,

let’s recall the main assumptions of theΛCDM model:

1. Large scale Universe is homogeneous and isotropic with a flat geometry;

2. General Relativity is the theory that describes gravity;

3. The main components of our Universe are:

(a) Dark Energy: dominating the energy density today and possibly driv-

ing the cosmic acceleration, which in its simplest form, the cosmologi-

cal constant, fully satisfies all observational constraints;

(b) Cold Dark Matter: collisionless, cold, massive particles that interact

gravitationally with ordinary matter and act as a key driver of structure

hierarchy;

(c) Baryons: atomic matter which interacts to CDM through gravity;

(d) Photons: relativistic massless particles that dominated the energy

budget at early epoch;

(e) Neutrinos: low mass particles that decouple during cosmological nu-

cleosynthesis;

4. Perturbations in energy density were generated during the inflationary

epoch in early Universe

2.1 Structure Formation: Linear Theory

2.1.1 Primordial Universe

At very early times, the Cosmos was extremely hot and denser than today. The ordinary

matter and radiation were coupled through Thompson scattering. Small perturbations in

the matter-radiation fluid existed then, and they are responsible for the tiny temperature

fluctuations observed in the cosmic microwave background (CMB) of the order,

∆T

T
≡ ∆ρ

ρ̄
∼ 10−5 . (2.1)
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Fig. 2.1 Full-sky 2D projection of CMB temperature measurements, produced using SMICA
which has been corrected for galactic plane, as observed by Planck satellite. The magnitude
of temperature fluctuations is ∆T/T ∼ 10−5 (Planck Collaboration et al., 2016).

When photons and matter decoupled, Universe became optically transparent, providing

us with the possibility of mapping temperature fluctuations across the sky. This has

been done for the first time by the COsmic microwave Background Explorer (COBE)

satellite, and more recently by Planck. The Planck CMB map is shown in Figure 2.1. The

gravitational instability model describes how these fluctuations grew to form the cosmic

structures that we observe today.

The growth of the density perturbations mainly depend on their type, size in compari-

son with horizon size of the Universe and the dominant fluid component i.e the epoch at

which they enter the horizon. This in principle takes into account the cosmology under

consideration. We will discuss the evolution of density perturbations further in details in

§ 2.1.3. As long as the amplitude of these perturbations is considerably small, δ≪ 1, the

physics of their evolution can be described accurately with linear theory. The physical

mechanism that drives the evolution of perturbations is gravitational instability. It pre-

dicts that only fluctuations with scale larger than the Jeans length can grow. While such

overdensities evolve in time, they attract more matter and become denser leading to a

gravitational collapse. The Jeans length is defined as:
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λJ =
(
π c2

s

Gρ

)1/2

, (2.2)

where cs is the speed of sound. For fluctuations with size larger than λJ , self-gravity

overcomes internal pressure and the overdensity collapses, growing indefinitely. This

mechanism, originally adopted for star formation, has been applied to cosmology with

considerable success. Before we learn about further implications of external parameters

on growth of density perturbations, we must understand how the density perturbation is

defined and its statistical properties.

2.1.2 Density Perturbations: Statistical Definition

The underlying statistical properties of density perturbations with extremely small ampli-

tude are characterised by Gaussian probability distribution. A density perturbation δ(x)

are defined as,

δ(x) = ρ(x)

〈ρ〉 −1 . (2.3)

where ρ(x) and 〈ρ〉 are matter density at point x and average matter density respectively.

By definition a Gaussian random field is described with mean 〈δ〉 = 0. For a such a field

field, the 1-point probability density of δ at a generic location x is,

P[δ] = 1p
2πσ

exp

(
− δ

2σ2

)
, (2.4)

whereσ2 is RMS amplitude of fluctuation δ. It is convenient to expand δ(x) field in Fourier

modes:

δ(k) = 1

(2π)3

∫
V
δ(x) e−i k·xd 3x , (2.5)

where δ(k) are Fourier coefficients and k is the wave vector, k ≡ |k| = 2π/λ. The inverse

Fourier transformation, given δ(x) is a Fourier transform of δ(k), becomes:

δ(x) =
∫
V
δ(k) e i k·xd 3k . (2.6)

As long as the perturbations are small, the Fourier modes δ(k) remain independent

throughout the evolution of the perturbation δ(x). Besides defining 1-point statistical

properties, Equation (2.4) is useful to characterise 2-point statistics of the overdensity
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field δ(x). We can define 2-point Correlation function (2PCF), ξ(r), as the expected value

of δ at distinct points x and x′ separated by r = |x−x′|, and it is expressed as:

〈δ(x)δ(x′)〉 = ξ(|x−x′|) . (2.7)

If δ(x) is statistically isotropic then ξ depends only on the separation |r|. Similarly, one can

define the Power Spectrum as,

〈δ(k)δ∗(k′)〉 = P (k) δD (k−k′) , (2.8)

where δD is Dirac delta function. It is clear from the definition of δ(k) (Equation (2.5))

as well as Equations (2.7) and (2.8), that 2PCF ξ(r) and power spectrum P (k) are Fourier

pairs,

P (k) = 1

(2π)3

∫
ξ(r ) e−i k·x d 3x , ξ(r ) =

∫
P (k) e i k·x d 3k . (2.9)

The power spectrum is a volume dependent quantity, P (k) ≡V −1〈|δ(k)|2〉 and therefore

has dimension of volume. It is conveniently defined as the dimensionless power spectrum:

∆2(k) = k3

2π2
P (k) . (2.10)

But in practice, it is often convenient to consider a smoothed overdensity field, on a

particular smoothing scale R as,

δ(x,R) =
∫
δ(x′) W (|x′−x|,R) d 3x′ , (2.11)

where W (x,R) is a window function which filters the density field on the scale R. One

example is the Tophat window function:

W (x,R) =
const, |x| ≤ R

0, elsewhere
. (2.12)

In Fourier space the variance of the smoothed overdensity is:

σ2
R = 1

2π2

∫ ∞

0
P (k) W̃ 2(kR) k2dk , (2.13)

where W̃ (kR) is a Fourier transform of W (x,R) and it has the form:

W̃ (kR) = 3[sin(kR)−kR cos(kR)]

(kR)3
. (2.14)
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From the smoothed variance, as expressed in Equation (2.13), on can set a characteristic

mass scale assuming that a power spectrum behaves like a power law i.e P (k) ∝ kns with

ns being scale invariant spectrum. The mass scale M = 4π
3 R3〈ρ〉 contained in a sphere of

radius R corresponds to a density field with variance that follows from (2.13):

σ2
R ∝

∫ 1/R

0
kns+2 ∝ R−ns−3 ∝ M− ns

3 −1 , (2.15)

which implies that if ns >−3, σ2
R is a decreasing function of M , which forms hierarchical

structure formation scenario. These concepts along with the definition ofσ2
R , will be useful

later in non-linear evolution of density perturbations, especially in § 2.2.3 and § 2.2.4. The

above mentioned statistical measures that characterise cosmic density field, which also

are essential tools to compare observed data with theoretical models through clustering

analysis, are discussed in Chapter 3.

2.1.3 Evolution of Density Perturbations

Cosmic structures form due to gravitational collapse of matter density perturbations.

The perturbation δ grows with the expanding Universe but is accelerated by mechanism

of gravitational instability. Following the criteria of Jeans length as discussed before in

§ 2.1.1, different types of fluids (here radiation, DM and baryons) evolve according to their

characteristic properties which dominate either gravity or pressure. If gravity dominates

and pressure is negligible then overdensity grows further, in contrast if the pressure is

on higher side the perturbation δ is suppressed. When two different types of fluids are

coupled with interaction between fluid elements, as in the case of baryon-photon plasma

in radiation energy dominated Universe before decoupling epoch tdec
1, the interplay be-

tween gravitation and radiation pressure result in oscillated behaviour of baryon-photon

(δb −δr ) perturbations. These oscillations, known as Baryonic Acoustic Oscillations (BAO),

are frozen in the clustering information of the density tracers [see Figure 2.1]. BAO is also

a powerful cosmological probe to constrain cosmological parameters and a useful tool to

provide an insight in the nature of DE. In contrast to radiation and baryonic matter, DM

perturbations δm remain unaffected by this because of their collisionless interaction with

rest of the matter fluids, and continue to grow with the expansion, a(t ).

In previous chapter we saw in Equations (1.15) and (1.14), how physical distances

relate to the expansion rate at that redshift z. In the same manner we asses the physical

scale of the Hubble radius (horizon size) of the Universe, and it is expressed as:

1In many texts instead of epoch of decoupling tdec, epoch of recombination trec, although both share the
exact instant
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Table 2.1 Summary of growth of perturbation as a function of the scale factor a(t) at
different epochs. The density perturbation δ in the radiation δr , baryons δb and dark
matter δm components. All of them grow as the square of the scale factor when they are
outside the horizon. After entering the horizon at radiation dominated epoch i.e t < teq

baryons and radiation perturbations couple together and oscillate as acoustic waves.
The growth of DM perturbations is frozen when they enter inside the horizon before
matter-radiation equality because of Meszaros effect. After decoupling baryons follow
the DM perturbations and grow with the scale factor a(t )

Epoch δr δm δb

t < tenter < teq; λ> DH ∝ a2 ∝ a2 ∝ a2

tenter < t < teq; λ< DH oscillate ∼ const oscillate
teq < t < tdec oscillate ∝ a oscillate

tdec < t vanish ∝ a ∝ a

DH =
∫ ∞

z ′

d z ′

H(z ′)
≡ a(t )

∫ t ′

0

d t ′

a(t ′)
. (2.16)

At early times, all the perturbations δ outside the Hubble radius (horizon) of the Universe

grow as the square of the scale factor δ∝ a2, as there are no physical components affecting

their growth. The perturbations outside the horizon are termed as superhorizon and those

inside the horizon are subhorizon perturbations. Here the epochs that are important in

growth of δ are following:

• tenter or aenter : The epoch t or scale factor a at which the superhorizon perturbations

become subhorizon perturbations;

• teq or aeq : The epoch at which Matter-Radiation energy density are equal;

• tdec or adec : The epoch at which photons decouple from radiation and free-stream.

In table below the growth of density perturbations according to their fluid type and the

epoch at which they enter are summarised and in Figure 2.2 the evolution of δ with

respect to the scale factor a is shown. It is clear from both that, in radiation era δm remain

constant but in matter dominated era they grow as scale factor δm ∝ a and baryons

after being decoupled from radiation follow the dynamics of already grown δm . As long

as the Universe is dominated with CDM content, the small density perturbations start

growing earlier than Universe having only ‘baryonic matter’, resulting in boosted structure

formation in CDM dominated Universe.
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Fig. 2.2 Left: Evolution of a dark matter density perturbation with a scale larger than
the Jean’s length. Before entering the horizon the amplitude grows as a2 (a < aenter).
Then its amplitude remains constant as long as the Universe is dominated by radiation
(aenter<a<aeq ). Finally after matter-radiation equality, it grows as a. The growth of δ is sup-
pressed by (aenter/aeq)2 for superhorizon perturbations at aeq (Bartelmann and Schneider,
2001). Right: Evolution of density perturbations in various components (baryons + pho-
tons + CDM), for perturbation of different scales, around the epoch of decoupling tdec. Top
panel shows the growth of superhorizon perturbations initiates as soon as the radiation
perturbations decouple and oscillate, whereas in bottom panel subhorizon perturbations
oscillate with photon-baryon coupling while CDM perturbations initiate their growth on
the onset of matter domination. The baryons immediately interact gravitationally and
attracted towards CDM potential wells after they become free from photons. [Plot taken
from Challinor notes]
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From their definitions expressed in (2.3) and (2.6), the density contrast which evolves

in cosmic time t with comoving coordinate x, can be expressed as:

δ(x, t ) = ρ(x, t )−〈ρ(t )〉
〈ρ(t )〉 , (2.17)

and its Fourier transform as,

δ(x, t ) =
∫
R3

d 3k

(2π)3
δ̃(k, t ) e i k·x . (2.18)

The Fluid equations govern the motion of fluid’s particles. In case of pressureless matter,

the comoving velocity of the particle is u = Hx+ vpec, where vpec = aẋ is its peculiar

velocity with respect to the Hubble flow of expansion. The evolution of the fluid and its

perturbation is described in an expanding Universe, by the following set of equations:
∂δ
∂t + 1

a∇x · [(1+δ)v] = 0; Continuity Equation

∂
∂t (av)+ (v ·∇x)v =−∂φ

∂x ; Euler Equation
∂2φ

dx2 = 4πG〈ρ〉a(t )2δ(x, t ); Poisson Equation

(2.19)

where δ is the mass density perturbation, v is the peculiar velocity of the fluid element, φ

is the perturbation in the gravitational potential and 〈ρ〉 is the mean mass density.

If we assume small fluctuations, we can linearise (2.19) and find the solution to δ(t ),

for a flat cosmology (K = 0):

δ̈(k, t )+2H(t )δ̇(k, t )+
( k2c2

s

a(t )2
−4πG〈ρ〉

)
δ(k, t ) = 0 , (2.20)

where the solutions of above Equation depends on the wave number k ≡ |k| = 2π/λ

associated to the size of the perturbation λ. If λ < λJ , then the solution oscillates and

the perturbation propagates in the fluid as an acoustic wave, where as for λ > λJ then

gravitational instability sets in and the overdensity grows.

In the limit λ≪ λJ the solution to (2.20) is the sum of two parts, one describing a

growing solution, and the other a decaying one:

D+ ∝ a(t ) ∝ t 2/3 , (2.21)

D− ∝ a−3/2(t ) ∝ t−1 , (2.22)

where the decaying mode D− is suppressed shortly after onset of gravitational instability.

The general solution of Equation (2.20) is given by,
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δ(x, t ) = D+(ti )∆+(x)+D−(ti )∆−(x) , (2.23)

where ti is initial time of perturbation’s growth and ∆+(x) is a space-dependent growing

mode. In structure formation, only growing mode contributes to the growth of perturba-

tion, therefore the linear evolution of δ(x, t ) = D+(t )∆+(x).

In practice, the fiducial cosmological model defines the evolution of perturbations

as given in Equation (2.23). The rate at which the perturbation grows is conveniently

expressed by the growth rate:

f = d l n(D+)

d l n(a)
, (2.24)

where f is a function of redshift z and it is sensitive to underlying background cosmology.

An approximated, parametric expression for (2.24) has been given by (Peebles, 1980):

f (z) ≃Ωm(z)γ , (2.25)

where γ= 0.55 for a ΛCDM model. The value of γ and its possible dependency on time

and scale is sensitive to DE equation of state and deviations from GR.

2.2 Non-linear Evolution of Dark Matter Perturbations

Until now we have seen the evolution of density perturbations that are much smaller

than unity. As soon as the density contrasts grow i.e δ∼ 1 and increase further, the linear

analytic description fails to describe their evolution accurately. Non-linear evolution

couple the Fourier modes δ(k), making it more difficult to extract information from the

analysis of the power spectrum. A full non-linear treatment for the evolution δ require

the adaptation of numerical methods known as N-body simulations. These precious

tools can also include hydrodynamical processes and dissipation physics, are however

computationally expensive.

Alternatively, study of non-linear evolution, can be performed using simpler ap-

proaches, that use extrapolation linear theory under special assumptions. One of such

ways is kinematic approach as Zel’dovich Approximation. Another is spherical collapse

model. Though this approach serves limited purpose in understanding non-linear evolu-

tion of density perturbations, it provides a very powerful way to understand the collapse

of matter overdensities and formation of Dark Matter haloes. The prediction about the

expected number density of these haloes can be accurately estimated using such approx-
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imated mechanisms like spherical collapse model. We will explore in depth, the above

mentioned approaches in following sections.

2.2.1 The Zel’dovich Approximation

Let us consider a massive particle at the physical position, r(t ), or in comoving space, at

x(t ). The Zel’dovich approximation postulates that the physical coordinate of the particle

at time t can be expressed as:

r(t ) = a(t )χ(t ) = a(t )[q+b(t )f(q)] , (2.26)

where q is the comoving Lagrangian coordinate of a particle at t = 0, b(t) is a time-

dependent quantity which coincides with linear growth factor D+(t) and f(q) is a non-

rotational velocity field that is proportional to the field of peculiar velocities ∇ψ(q). Ac-

cording to (2.26), particles move along straight lines on their velocity field which preserves

their null vorticity as long as their orbits do not cross each other. The Zel’dovich approx-

imation fails at orbit crossing. Before that, however, it is a powerful tool to follow the

evolution of perturbations and the build-up of cosmic structures like filaments and voids.

2.2.2 Spherical Collapse Model

Evolution of a spherical mass overdensity with radius r (t) enclosed in mass M can be

treated analytically. The spherical collapse model is valid as long as the perturbations are

spherical and the mass contained within each spherical shell is conserved. Under these

conventions the equation of motion of the shell can be expressed as:

r̈ =−GM

r 2
; (2.27)

where r is the radius of the shell and M is the mass contained within r . The equation

of motion of the shell can be solved parametrically with t(θ) = B(θ− sinθ) and r (θ) =
A(1 − cosθ), where A3/B 2 = GM . Following the expansion of the Universe, the shell

starts expansion at t = 0 i.e. at θ = 0. It reaches turnaround radius rmax = 2A at θ = π

after tmax = πB . Beyond this point the various shells cross each other, their mass is not

conserved and the model is not valid anymore. However we can extrapolate the behaviour

of the perturbation that will collapse at θ = π corresponding to tcoll = 2πB . Before this

happens, the system is virialised by holding following condition:

TE = 1

2
ṙ 2 − GM

R
, (2.28)
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Before shell crossing the evolution of matter density inside the shell can be expressed as:

ρ∝ M

r 3
= 3

4πGB 2(1−cosθ)3
, (2.29)

for early Universe dominated with matter perturbations. Time evolution of a spherical

overdensity can be obtained by coping (2.29) with the evolution of the background density.

For small t , when the perturbation is small, linear theory solution is recovered:

∆ρ

ρ
= δ≡ 3

20

(
6t

B

)2/3

, (2.30)

for D+ ∝ t 2/3. By the time of shell collapse tcoll = 2πB , the overdensity is virialised until

δ∼ 178, the corresponding linearly extrapolated overdensity is:

δlin = 3(12π)2/3

20
≃ 1.686 . (2.31)

Equation (2.31) is very useful as it links the non-linear evolution of matter density per-

turbations δm , to linear theory predictions. This property allows ‘peaks’ of overdensities

to be collapsed as mass haloes that will host luminous galaxies, to be related to the lin-

early extrapolated overdensity in the original density field. We stress that the spherical

collapse model is ideal and breaks down for non-spherical fluctuations, that are stretched

by external tidal fields generated by LSS. It is however a good approximation in describing

the peaks of the density field that remain close to spherical, forming close-to-spherical

virialised haloes.

2.2.3 The Press-Schechter Formalism

Spherical collapse model describes the non-linear evolution. Thanks to this model one

can address the question on which fraction of matter in the Universe has formed collapsed

structures at a given time and what is the mass distribution of these objects. Using spher-

ical collapse model Bill Press and Paul Schechter in 1974 developed a "Mass Function"

formalism (hereafter PS-formalism Press and Schechter, 1974) to estimate the number

density of collapsed structures namely DM haloes, which also known as Press-Schechter

theory.

In any realisation of a linear density field δ(x,R), smoothed on the scale R by the

window function defined in equation (2.12), there will be high density regions with δ>
δc , where δc marks a threshold of critical density for triggering a collapse. The idea of

the PS-formalism is to exploit the one-to-one relation between linear and non-linear

overdensities and exploit the properties of a linearly evolved Gaussian field. Let us then
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use the statistical properties of a Gaussian random field as described previously in § 2.1.2.

The goal is to predict the mass function of the collapsed haloes i.e. the abundance of DM

haloes as a function of their mass. Let’s recall the 1-point PDF of smoothed density field

δ(x,R):

P[δ,R]dδ= 1√
2πσ2

R

exp

(
− 1

2σ2
R

)
dδ , (2.32)

where P[δ,R] is probability that a smoothed density contrast exists between δ and δ+dδ.

To obtain the mass function one assumes that collapsed objects form where the density

contrast δ(x,R) exceeds a certain threshold overdensity, which according to spherical

collapse model is the critical density δlin
c = 1.686. The critical density δc is specified for

the linearly evolved Gaussian random field. In an Einstein-de Sitter (EdS)2 Universe its

value is δc = 1.686, which, as we have seen with respect to the virialisation threshold of a

non-linear overdensity.

Let f (M)d M be the number density of collapsed objects in the mass range (M , M+d M)

and let F (M) account for those objects with masses greater than M(R). The relationship

between mass M and smoothing scale R varies with the window function, as the volume

of the encompassing region depends on the type of window function. For Tophat window,

mass M = 4πρM R3/3 and M = (2π)3/2ρM R3 for Gaussian window type. Following these

relations, we use smoothing mass scale δ(x, M) instead of δ(x,R) that grows with time, and

for any epoch we look for a region that exceeds δc on a scale R(M) and are below δc on

a larger scale R ′ > R(M ′ < M). To retrieve the number of such isolated collapsed regions,

a quantitative expression can be obtained by subtracting from the probability that the

fraction δM exceeds δc :

F (> M) =
∫ ∞

δc

P[δM ] dδM = 1

2
erfc

(
νp
2

)
, (2.33)

where erfc(x) is a complementary error function and ν ≡ δc /σR = δc /σ(M) is the over-

density threshold in units of the RMS density fluctuation. This formalism implies the

presence of a typical scale for a collapse at any epoch, M⋆, such that the standard devi-

ation is σR⋆ ≡σM⋆ = δc . However there is a limitation with this approach, as half of the

collapsed objects are ignored following hierarchical structure formation for arbitrarily

smaller smoothing scale R → 0, and on contrary larger σR →∞ corresponds to structures

with smaller mass M → 0. The reason being erfc(0) = 1 so that F (0) in Equation (2.33)

accounts for only half of the mass density is contained in collapsed objects. To bypass

2It is a flat matter only (Ωm = 1) FLRW Universe, where cosmological constant Λ is zero and it evolves
with a ∝ t 2/3.
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the problem Press & Schechter multiplied (2.33) by factor of 2 to correct for the half num-

ber density, and defined the mass function of dark matter haloes, which accounts for

distribution of virialised haloes between mass element M and M +d M accordingly:

n(M) d M =
√

2

π

〈ρM 〉
M 2

δc

σ

∣∣∣∣ d l n σ

d l n M

∣∣∣∣ exp

(
− δ2

c

2σ2

)
d M ,

= ρM

M 2
fPS(ν)

∣∣∣∣ d ln ν

d l n M

∣∣∣∣ d M ,

(2.34)

where 〈ρM 〉 is the mean matter density and the quantity fPS(ν) is given by,

fPS(ν) =
√

2

π
ν exp

(
− ν2

2

)
. (2.35)

2.2.4 The Excursion Set Formalism

PS-formalism doesn’t account for the smoothed overdensities δ(x,R) at scale R which

are underdense and have δ< δc . To assess this issue we use more stochastic approach

with excursion set formalism, developed by Bond et al. (1991). The 1/2 factor issue is not

explained in the PS-formalism. To address the problem Bond et al. (1991) developed the

extended PS-formalism (EPS).

In this approach, we use shorthand notation for mass variance, S ≡σ2(M). Following

hierarchical model, S is monotonically declining function of M , so that the larger the value

of S, the smaller is the mass M . We can associate a trajectory δ(S) to each point in (S,δS)

space. To satisfy the criteria for overdensity δS to follow Markovian Random walk, EPS

adopts sharp k-space Tophat filter with kc = 1/R, such that the smoothed density field is

expressed as:

δS(x,kc ) =
∫

d 3k W (kR) δk e i k·x =
∫

k<kc

d 3k δk e i k·x . (2.36)

where δk are Fourier coefficients of δ(x). The Gaussian properties of the random field

are preserved, after a change ∆δ(x,kc ) is implemented due to an increase in the filter

argument k → kc +∆kc . The result is a Gaussian random variable with variance:
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〈(∆δ(x,kc )2)〉 = 〈(δ(x,kc +∆kc )−δ(x,kc )2)〉 ,

=
∫ kc+∆kc

kc

∆2(k)dl nk ,

=σ2(kc +∆kc )−σ2(kc ) ,

(2.37)

which is independent of the original value δ(x,kc ). By definition, S is associated with

σ2(M), where M = 6π2〈ρ〉k−3
c . If S → 0 then M →∞ and δS = 0 for each x. As S increases,

the overdensity δS executes a Markovian random walk (See Figure 2.3).

Let us consider a mass scale S1 corresponding to M1 on x-axis in Figure 2.3, According

to PS-formalism, the fraction of all trajectories having δS > δc at S1 is equal to the collapsed

overdensities with mass M > M1. There are two example trajectories A and B , in which an

overdensity following B does not correspond to a collapsed overdensity at S1 with mass

M > M1. However with mass scale S2 < S < S1 corresponding to M > M3 > M1, is clearly a

collapsed overdensity representing δS > δc . Thus it can be seen that PS-formalism fails

to account for overdensities which follow B . Implementing stochastic approach with

Markovian random walks, allows us to modify the PS-formalism ansatz, with a mirror-

trajectory B ′ which is equally likely by following the change in ∆δ(x,kc ) as explained in

equation (2.37). The modified ansatz states that the probability that δ> δc is the same as

twice the fraction of mass contained in haloes with mass M > M ′.
To obtain the halo mass function from new EPS ansatz, one needs to consider the

fraction of trajectories that have their first upcrossing of the barrier δS = δc at S > S1,

as given by trajectory A in Figure 2.3. Then according to new ansatz, these trajectories

correspond to mass elements in collapsed objects of mass M < M1. One can obtain this

fraction of trajectories by formulating a conditional probability density function:

F (< S1) =
∫ δc

−∞
(P (δ,S1)−P (2δc −δ,S1)) dδ ,

= 1p
2π

[∫ δc /
p

S1

−∞
d x e−x2/2 −

∫ ∞

−δc /
p

S1

d x e−x2/2
] (2.38)

where trajectories like B are subtracted and P (B) = P (B ′) due to stochastic properties of

trajectories. Equation (2.38) represents number density of masses included in haloes with

S > S1, i.e, M < M1. Because the trajectory is a random walk, every trajectory will cross

barrier as S →∞ and M → 0, the number density will reach zero. Thus to obtain the final
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Fig. 2.3 Markovian Random walk of trajectories in (S,δS) space. Each trajectory corre-
sponds to a mass element in initial (Gaussian) density field, and δS is the overdensity
corresponding to smoothing mass scale S ≡ σ2(M), where δc is collapsing overdensity
threshold (Mo et al., 2010).
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EPS mass function, the fraction of haloes with masses M > M1 gives F (> M) = 1−F (< S1)

and the mass function follows as:

n(M) d M = 〈ρM 〉
M

∂F (> M)

∂M
d M ,

=
√

2

π

〈ρM 〉
M 2

δc

σ

∣∣∣∣ d l n σ

d ln M

∣∣∣∣ exp

(
− δ2

c

2σ2

)
d M .

(2.39)

2.2.5 The Bias of Density Tracers

The Dark Matter haloes, of which we have formulated a theoretical framework to predict

their abundance using EPS-formalism, host luminous structures such as galaxies and

clusters of galaxies. In the general paradigm of galaxy formation, galaxies form through

cooling of baryonic matter in virialised DM haloes. One of the challenges in the observa-

tional cosmology is how well the luminous objects within virialised DM haloes trace the

underlying matter density field. This is the so-called galaxy bias. An effective way to tackle

this problem can be explained in two steps. First one relates the virialised DM haloes to the

mass density field i.e. addresses the ‘halo bias’. Then one specifies the relation between

luminous tracers and their host haloes. The excursion set formalism allows one to address

the first part of the problem and quantify the halo bias. In this framework one can specify

the fraction of collapsed haloes with the smoothing mass scale S0 at overdensity δ0. As

one compares this quantity with that of all collapsed haloes (see equation (2.33)), the

corresponding mass fraction contained in haloes with Mh > M is given as:

F (> M) = erfc

(
δc −δ0

2∆S

)
(2.40)

where ∆S = S−S0. As overdensity grows with time, F increases, and with δ0 → δc F → 1 i.e

the whole density field corresponding to smoothed scale S will be considered as collapsed

halo. The fraction of mass in haloes with mass range M and d M and overdensity δ0 is

given by:

n(M |δ0,S0)d M = 1p
2π

δc −δ0

∆S

∣∣∣∣ dS

d M

∣∣∣∣ exp

[
− (δc −δ0)2

2∆S

]
d M ,

= M0

M
f (M |δ0,S0)

∣∣∣∣ dS

d M

∣∣∣∣ d M ,

(2.41)

where M0 is a mass corresponding to uncollapsed spherical region with radius R0. We

further define the density contrast for haloes of mass M in Lagrangian space:
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δL
h = n(M |δ0,S0)

n(M)V0
−1 (2.42)

where V0 = (4π/3)R3
0 . If the mass contained in the larger region is much larger than the

mass of haloes, M ≪ M0 and δc ≫ δ0, then expression simplifies to:

δL
h = ν2 −1

δc
δ0 (2.43)

where ν is defined in (2.33). This relation was obtained by Mo and White (Mo and White,

1996) who also mapped the initial Lagrangian space to Eulerian one providing a way to

define ‘halo bias’ bh as,

bh ≡ 1+ ν2 −1

δc
=⇒ δh = bhδ0 . (2.44)

where halo overdensity is proportional to the matter overdensity. Since ν increases with

M , the larger haloes are more biased with respect to the matter overdensity distribution

than the small ones. In figure 2.4, the ‘halo bias’ bh(ν) is shown. In the plot we compare

different halo bias models specified below with empirical bias measured from an N-body

simulation. The simple EPS model is shown with a solid curve.

Bias of density tracers is sensitive to cosmological assumptions, spatial scales, redshift

as well as halo mass function under consideration. Various improvements to the original

EPS model have been proposed to predict halo bias with higher precision, using N-body

simulations as calibration. The most popular are:

• Sheth-Tormen 1999: (Sheth and Tormen, 1999) [ST99] The authors propose an

improved approximation of the original Mo & White model by including the effect

of stochasticity and is given as following:

bST
h (M1, z1) = 1+ aν2

1 −1

δ1
+ 2p/δ1

1+ (aν2
1)p

, (2.45)

where a = 0.707 and p = 0.3 were obtained by fitting the results of an N-body

simulation. In Fig. 2.4 this model is represented the dashed line;

• Sheth, Mo & Tormen 2001:(Sheth et al., 2001) [SMT01] further improved ST99 model

by considering Ellipsoidal instead of spherical collapse model. The ellipsoidal

approach matches better with simulations, and the resulting bias parameter is :
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Fig. 2.4 The large scale halo bias as a function of ν. EPS-formalism prediction is depicted
by solid line. Many approximated models, using fitting parameters obtained from N-body
simulations, have been developed, of which the dashed line represents Sheth and Tormen
(1999) and dotted line represents Seljak and Warren (2004) fits. The red datapoints are
provided by N-body data. (Zentner, 2007)
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bSMT
h (ν1) = 1+ 1p

aδ1
[
p

a(aν2
1)+

√
ab(aν2

1)1−c ]+ −1p
aδ1

[
(aν2

1)c

(aν2
1)c +b(1− c)(1− c/2)

]
,

(2.46)

where δ1 is δc at redshift z1, ν1 = δ1/σ1, and a = 0.707, b = 0.5 and c = 0.6;

• Seljak & Warren 2004: (Seljak and Warren, 2004) SW04 proposed an improved ana-

lytical fit to the bias parameter measured from N-body simulations:

bSW
h (x) = 0.53+0.39x0.45 + 0.13

40x +1
+5×10−4x1.5 , (2.47)

where x = M/Mnl and Mnl is the mass within a shell with RMS amplitude is 〈δ2〉 =
1.69. The x-range in which the approximation holds is 10−3 < x < 102.

All the above expressions provide us with a recipe to relate haloes with the mass density

field. All of them specify the bias of DM haloes with a mass M at redshift z. More often

than not, haloes of different masses are used to trace the mass field. In this case one can

define an effective bias by weighing the bias of a halo with a given mass by the fraction of

haloes with the same mass. A typical case is that of a halo sample selected above a given

minimum mass. In this case the effective bias parameter is:

beff
h =

∫ Mmax
Mmin

bh(M , z) n(M , z)∫ Mmax
Mmin

n(M , z)
, (2.48)

where n(M , z) is the differential halo mass function at redshift z and the integral is eval-

uated within a range that encompasses all the halo in the sample selected above Mmin.

Mmax is the largest halo of the sample.

2.2.6 Numerical Approach

So far we have seen extrapolation of linear theory through Zel’dovich Approximation

and Spherical collapse model. Both of these approximations break down at certain stage

of evolution of density perturbations. Therefore in order to assess the full non-linear

evolution of density perturbations, one must rely on computational techniques such as

N-body simulations.

A box, which is a fair sample of sufficiently large scale Universe i.e obeying cosmologi-

cal principle, with periodic conditions, contains point mass particles representing Dark

Matter (DM) particles. These particles then evolve by solving Newtonian equations of
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motion. The gravitational force acting on each particle is computed by summing over

that of all particles. A particle is displaced using acceleration from their position at every

time-interval ∆t starting from their initial position. The finer the ∆t , more accurate is the

numerical solution of equation of motion.

The resultant force Fi acting on the particle is the time consuming part, where the com-

putation time increases with number of particles and their mass. Some of the important

techniques that are utilised for force computation, are introduced briefly as follows:

• Direct Summation (DS): The Newtonian gravitational pull acting on particle i from

N −1 other particles is:

Fi =
N∑

j=1

m j (x j −xi )

(ϵ2 +|xi −x j |2)3/2
, (2.49)

where m is the mass of the particles situated at xi and x j , and ϵ is softening length

below which the acceleration force is coarse. This method was used heavily in

seventies and eighties but alternative approaches were utilised later owing to its

large CPU time which scales as N (N −1) in this method.

• Particle Mesh (PM): A mesh-grid is formed and mass points are assigned to each grid

point, which evolves with Poisson equation. Fast Fourier Transform (FFT) methods

are used to recover gravitational potential on each particle. It is faster than DS as

CPU time scales as N log N .

• Particle3-Mesh (P3M): A fixed scale rs is determined below which, the force compu-

tation is done by DS, and above which PM approach is used. This method as uses

both approaches, can be used for high-resolution simulations.

• Tree codes: The mesh-grid is divided into hierarchical cells, where each cell exceed-

ing one particle is divided into sub-cells and the division continues until a single

particle is represented by each cell. This method is considered as effective as distant

clumps of particles are treated as single massive particles and force computation

takes place relatively faster in comparison with previous methods.

The output from simulations consists of particle positions and their velocities at a

certain time snapshot. The initial conditions are set at some higher redshift zinit. As the

system of particles evolves, one can take snapshots at different times, depending on the

requirement. In Dark Matter only simulations, the numerical techniques described above
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are utilised. More complications occur with inclusion of gas dynamics of baryonic content,

such simulations are referred as magneto-hydrodynamical (MHD) simulations.

In Chapter 4, I use simulated datasets from DM-only simulations, covering large

cosmological volume. For such type of simulations, a large number of high-mass particles

are used which ultimately provide coarse-grained cosmic structures, in contrary to very

high resolution simulations that are aimed to study galaxy formation.



Chapter 3

Statistical Tools for Clustering Analysis

In the first two chapters we discussed the theoretical framework that leads to the for-

mation of cosmic structures. In this chapter I focus on two-point statistics and their

application to 2D and 3D cosmological density field. When observed, it can be seen that

the density fields are traced by discrete objects. Using the distribution of these objects,

clustering information can be estimated from Configuration space using reliable esti-

mators of two-point correlation function, as well as from Fourier space using the Power

spectrum estimates. However both the 3D statistical tools, for a 2D projected density

field on the sky, are reformulated with spherical harmonic expansion of the density field.

For observational datasets encoded with two-dimensional angular coordinates, angular

clustering tools like angular power spectrum and angular correlation function are used. I

discuss the estimators of two-point statistics, in relevance with our work involving 3D and

2D clustering analysis, along with their advantages and shortcomings in § 3.1 and § 3.2.

3.1 2-point Correlation Functions

3.1.1 Spatial 2-point Correlation Function (3D)

In the previous chapter, we have defined the two-point correlation function (2PCF) of a

continuous density field δ(x) as its expectation value at two distinct positions separated

by a distance vector r (Eq. (2.7)). However cosmological density fields are populated with

discrete set of objects that trace, possibly with a biasing effect, the underlying matter

density field. The interpretation of 2PCF in such case becomes as excess (or lack) of

probability, compared to a uniform random distribution, of two objects separated by

vector r.
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Fig. 3.1 The excess probability, with respect to a Poisson distribution, that a galaxy con-
tained in a volume element dV1 finds a neighbouring galaxy contained in a separate
volume element dV2 located at a distance r12 is determined by the two-point correlation
function ξ(r12).

This definition follows naturally when considering the joint differential probability dP

of two objects in any two volume elements dV1 and dV2 as depicted in Fig. 3.1.

dP = n̄2
V [1+ξ(r12)] dV1dV2 (3.1)

where n̄V is the mean number density of the objects in sample volume V . For a statistically

isotropic density field the two-point correlation function ξ(r12) depends on the magnitude

r12 of the separation vector r12. From Equation (3.6) it is clear that ξ represents a deviation

from Poisson probability. If ξ(r12) > 0 then it represents an excess probability of objects

separated by r12, i.e. objects are preferentially correlated (clustered) on the scale r12. If

ξ(r12) < 0 (but >−1) then objects are preferentially uncorrelated, meaning that on these

scales one is more likely to find underdense structures like voids. If the objects are chosen

from the same datasets then ξ(r12) interprets the auto-correlation, while if they are chosen

from different datasets or of different types then a cross-correlation ξi j can be computed

from pair of objects i and j from two distinct datasets.

In case of a specifically chosen direction, like observing objects along the line-of-sight

by estimating their redshifts, the condition of isotropy as described above is violated and

the measured 2PCF becomes anisotropic. In next chapter § 4.3 we use anisotropic 2PCF

to perform redshift-space clustering analysis of clusters of galaxies.

It is not surprising that the estimate of the 2PCF of a discrete set of objects relies on pair

counts, i.e. counting pair of objects separated by a distance r : DD(r ). Since real datasets
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are neither infinitely large nor ideally selected, one needs to correct for the combined

effect of the geometry of the sample and its selection criteria that modulate the mean

density of objects through the observed volume. This is typically done by comparing the

counts of real objects pairs, with the pair counts of objects distributed in the same volume,

with the same selection effects but without intrinsic clustering properties. Therefore all

the proposed estimators of the 2PCF compare DD(r ) with the same counter performed in

the so-called random sample, RR(r ).

One of the 2PCF estimators, that we shall use in this thesis, is proposed by Landy and

Szalay (1993), that is often used for large scale clustering analysis. This estimator has the

virtue of being both unbiased and minimum variance and expressed as:

ξ̂LS(r ) = DD(r )−2DR(r )+RR(r )

RR(r )
, (3.2)

where DR corresponds to data-random galaxy pairs chosen simultaneously from data

and random samples. To reduce shot noise error, which is driven by RR counts, the

number of objects in the random catalogue is typically much higher as compared to

the real data sample. In such case, the various pair counts in equation (3.2) need to be

appropriately normalised by the total number of pair counts i.e. by multiplying RR with

(ND /NR )2 and DR with (ND /NR ), where ND and NR are total number of galaxies in data

and random samples, respectively. The selection function quantifies the combination

of all observational effects and modulates the mean number density of objects. It is

accounted for by the random catalogue, in which the same modulation as in the real data

is induced, so that the selection effect is automatically corrected for, that cancels out in

the ratio (3.2).

To quantify the error on the 2PCF estimate, one must have ensemble of independent

density fields from which the clustering signal is measured. But we have only one Uni-

verse to observe, which is the so-called ‘cosmic variance’ problem, and this introduces a

fundamental limit in the estimation of uncertainty. If the density field is Gaussian random

field then the error can be modelled with Poisson distribution:

σξ =
1+ξ(r )p

NP (r )
, (3.3)

where NP (r ) are number of independent pairs in a given bin of r . Since evolved cosmolog-

ical fields are not Gaussian, the Poisson error estimate defined in Eq. (3.3) underestimates

the actual error estimate. In such case, the errors and their covariance are best computed

numerically by estimating the 2PCF from a large number of ‘mock’ catalogues that simu-
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late the characteristics of the real density field. The shortcoming is that these estimates

depend on the assumed fiducial cosmological model.

Mock catalogues can be either produced using numerical techniques (preferentially N-

body simulations but we shall also describe in Chapter 6 alternative approximate methods

based on assumed statistical properties of the underlying density field) or, if only the real

dataset is available then one can obtain more realistic estimates on the error in ξ(r ), by

dividing the data into a set of N similar subsamples and computing the covariance matrix:

Ci j = 1

N −1

N∑
k=1,

(ξ̄i −ξk
i )(ξ̄ j −ξk

j ) , (3.4)

where ξk
i denotes the measurement of ξ at separation ri from the k-th subsample. More

sophisticated resampling approaches to obtain accurate error estimates can be utilised

like bootstrap resampling and jackknife resampling.

3.1.2 Angular 2-Point Correlation Function (2D)

More often than not, cosmological fields are measured on the celestial sphere, rather than

in the 3D space. This is the case, for example, of the cosmic microwave background but

also of photometric surveys, for which the angular position and the flux of a set of discrete

objects are measured but not their distance.

In these cases we can define the angular two-point correlation function (ACF) of the

projected density field in analogy with (2.7):

w(r̂1, r̂2) ≡ 〈δ(r̂1)δ(r̂2)〉 = w(θ) . (3.5)

where δ(r̂) is a realisation of 2D projected density field. In practice the observed density

fields are populated with distinct set of objects, and the ACF can be reinterpreted using

expression Eq. (3.6) as:

δP = n̄2
Ω [1+w(θ12)] δΩ1δΩ2 (3.6)

where θ is the angular separation between the two solid angle elements as shown in Figure

3.2, n̄Ω is mean number density of objects per unit solid angle element dΩ.

Its unbiased, minimum variance estimator can also be defined in analogy with Eq.

(3.2) as:

ŵLS(θ) = DD(θ)−2DR(θ)+RR(θ)

RR(θ)
, (3.7)
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Fig. 3.2 Solid angle elements dΩ1 and dΩ2 are contained in 2D projected survey volume.
The angular correlation function defines the excess probability that a pair of galaxies is
enclosed in respective solid angle elements that is separated by angle θ12.

with obvious meaning of the various symbols. The above discussed estimator is auto-

angular correlation estimator, which we use while performing the clustering analysis of

radio sources in Chapter 5. On the other hand in some cases, the estimated distances

of objects have larger uncertainties, like in the case of galaxies in photometric redshift

survey. Therefore it requires an optimal strategy to analyse two-point statistics, one of

which is utilising a tomographic approach. In tomographic clustering analysis, the sample

is sliced in a number of conveniently defined spherical shells. Then one measures both

the auto-angular correlation function of the objects in each shell as well as the cross-

angular correlation among objects in two different shells. I shall elaborate in detail on this

approach in Chapter 6.

3.2 Power Spectra

3.2.1 Power Spectrum (3D)

As we have seen in the previous Chapter, the power spectrum is the Fourier transform of

the 2PCF and, likewise, represents the expectation value of the transformed overdensity

field in Eq. (2.5), at any two positions in Fourier space (See Eq. (2.9)). Unlike straightfor-

ward implementation as in the case of 2PCF, estimation of power spectrum requires more

careful approach since it involves multiple correction and deconvolution steps before
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obtaining a ‘true’ estimate. To begin with, we shall consider a discrete density field, where

N objects are sampled with a Poisson distribution, Eq. (2.3) takes the form:

δN (x) = n(x)

〈n〉 −1 , (3.8)

where the mean number density is specified by 〈n〉. The density contrast in discrete

Fourier-space similar to Eq. (2.5) can be rewritten as:

δ(k) = 1

N

∑
exp(i k ·x) . (3.9)

The expression for power spectrum can then obtained by computing the variance of the

δ(k) field. If the objects followed a random distribution, then Fourier coefficients δ(k)

would originate from a random walk in a complex plane, with no intrinsic two-point

correlation. The variance of δ(k) would be then:

〈|δ(k)|2〉 = 1

N
. (3.10)

However while dealing with the real data catalogues, one needs to account for the

effects of the selection function which are absent in case of a uniform distribution of

objects. The Fourier coefficients that are obtained from Eq. (3.9) are proportional to the

transform of selection function f (x)[1+δ(x)] which needs to be subtracted from each

coefficient:

δ(k) = 1

N

∑
exp(i k ·x)− 1

N

∫
〈nb〉 exp(i k ·x) d 3x , (3.11)

where 〈nb〉 is the number density of randomly distributed (background) objects. One

can now subtract the spurious shot-noise from each k-mode to obtain the so-called FKP

(Feldman et al., 1994) estimator of the Power spectrum:

P̃ (k) =∑
k
|δ(k)|2 − nk

N
, (3.12)

where nk is the number of k-modes associated with |k| involved in the sum. In the actual

estimate of the power spectrum, one typically measures the power within a specified

k-bin, i.e. a spherical shell in Fourier space with volume Vk . The angle averaged power

spectrum in the bin is given by

P̂ (k) ≡ 1

Vk

∫
Vk

d 3k ′P̃ (k′). (3.13)

where P̂ (k) is the FKP estimator.
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For the 3D Power spectrum the approach to the selection effect is the same as described

above for 2PCF, i.e. one modulates the mean number density n̄b(x) in (3.11) the same

way as the real data. Geometry effects can be regarded as extreme selection effects, in

which a fraction of the available volume does not contain objects because selection there

has meant exclusion. In the estimation of the 2-point correlation function the geometry

effects are accounted for by distributing random objects within the same volume as the

real data. For the power spectrum, however, the effect of geometry, which is formally a

product of the power spectrum by the volume window function in real space, becomes a

convolution. So that if F (x) is the window function that quantifies geometry effects, and it

is defined as F (x) = 1 within the observe volume and 0 outside, then the estimated power

spectrum is:

P̂ (k) = Ptrue(k)∗| f (k)|2 . (3.14)

where Ptrue(k) is the power spectrum that would have been estimated in an infinite volume.

f (k) is the Fourier transform of F (x) and * is the convolution product. In general f (k) does

not have an analytic form and needs to be estimated numerically. This is typically done by

measuring the anisotropic power spectrum of a random population of objects distributed

within the same volume as the real sample.

For mock catalogues extracted from N-body simulations, like those that will be used in

this thesis, the cubic geometry and the use of periodic boundary conditions implies that

no geometry effect will affect our power spectrum estimate and that the FKP estimator

with method described as (3.11) can be safely used. In this case one can take advantage of

the FFT technique to speed up the power spectrum measurement, subsequently making

the estimation procedure less complicated for objects distributed in cubic volume. For

such cases, using Fast Fourier Transform (FFT), one can estimate the power spectrum by

distributing the particles in the box on a regular grid. I shall describe this procedure in

details in § 4.3

3.2.2 Angular Power Spectrum (2D)

Theory

As discussed in § 3.1.2, many datasets, such as the photometric catalogues, specify the

angular positions of objects along with their distance. In some other cases the distance

can only be determined with very large errors, like in the photo-z catalogues. Since we

shall use the angular power spectrum extensively in chapters 5 and 6, we describe in this

section its properties in details. I will start with its definition and association with spatial
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power spectrum before defining the estimator. I also discuss the relevant observational

effects related to partial sky coverage, geometry mask and slicing the redshift sky volume

in spherical shells.

Let us define 3D spatial overdensity at any redshift, δ(r, z), when projected along the

line-of-sight one obtains the surface overdensity1 along that direction r̂ as:

δ(r̂) =
∫ ∞

0
φ(r) δ(r, z) r 2 dr , (3.15)

whereφ(r) is a selection function and it accounts for all observational effects that modulate

the number of observed objects. It is normalised such that
∫
φ(r)r 2 dr = 1. The projected

overdensity is defined over 2D spherical surface. It can therefore be expanded in spherical

harmonics:

δ(r̂) = δ(θ,φ) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓmYℓm(θ,φ) , (3.16)

where θ and φ are angular coordinates that define the direction r̂ on the surface of the

celestial sphere, aℓm are spherical harmonic coefficients and Yℓm(θ,φ) are a complete

orthonormal set of functions on the spherical surface similar to the plane-wave modes in

flat 3D space. As their Fourier counter parts δ(k), the spherical harmonic coefficients are

related to the surface overdensity field through:

aℓm =
∫

Y ∗
ℓm(r̂ )δ(r̂ )dΩ =

∫
Y ∗
ℓm(r̂ )φ(r) δ(r, z) d 3r (3.17)

where for each multipole moment ℓ there are 2ℓ+1 degrees of freedom. The aℓm ’s are

complex numbers and satisfy:

〈a∗
ℓm aℓ′m′〉 =Cℓδ

K
ℓℓ′δ

K
mm′ , (3.18)

where δK
i j is the Kronecker symbol and the average is taken over ensemble of realisations

of the density field. The quantity Cℓ is the angular power spectrum (APS) and is defined as

variance of harmonic coefficients analogous to the Fourier space definition expressed in

Eq. (2.8):

Cℓ ≡ 〈|aℓm |2〉 . (3.19)

1In many references, the surface density is defined as σ(θ,φ) in order to avoid confusion with the spatial
overdensity. However I shall keep this notification as δ(r̂) and δ(θ,φ) for spherical surface overdensity, δ(x)
as spatial overdensity in real-space and δ(k) in Fourier space.
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The quantity Cℓ only depends on the multipole moment ℓ. However, since each realisation

is identified by a different set of m-modes, one has to account for the intrinsic variance

of Cℓ, the so called ‘cosmic variance’. As in the 3D case, the cosmic variance can be

analytically expressed if the field is Gaussian:

(
∆Cℓ

Cℓ

)
≈

√
2

2ℓ+1
. (3.20)

Another way to express APS is also through Legendre transform of ACF, defined for a

statistically homogeneous and isotropic density field by (see Eq. (3.5)),

Cℓ = 2π
∫ 1

−1
d(cosθ) Pℓ(cosθ) w(θ) , (3.21)

where Pℓ are Legendre polynomials. The Reyleigh expansion of plane waves in terms of

spherical harmonics is given by:

e i k·r = 4π
∑
ℓm

iℓ jℓ(kr )Yℓm(r̂)Y ∗
ℓm(k̂) , (3.22)

where r̂ and k̂ are unit vectors in the direction r and k, and jℓ is the spherical Bessel

function. By redefining the Fourier transform of density contrast as described in Eq. (2.18)

as a function of redshift z(r ) instead of cosmic time t as δ(k, z(r )), and from Eq. (3.17), the

aℓm ’s in Fourier space can be written as:

aℓm = 4π
∫

d3r
∫

d3k

(2π)3
δ(k, z(r ))

∑
ℓ′m′

iℓ
′
jℓ′(kr )φ(r)Y ∗

ℓm(r̂)Yℓ′m′(r̂)Y ∗
ℓ′m′(k̂) , (3.23)

which yields a direct relation with the 3D power spectrum using the definition from Eq.

(3.21):

Cℓ =
2

π

∫
dk k2 P (k)

[∫ ∞

0
dr r 2φ(r) jℓ(kr )

]2

. (3.24)

Above relation allows the comparison of measured quantity of APS with the theoretical

prediction of 3D power spectrum.

Modelling APS for Observed Data

So far we have considered the case of a continuous field δ(r̂). However, in our case the

overdensity field is traced by discrete objects, and in the estimation of APS we will need to
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account for discreteness effects. One of which is Poisson noise, that adds another term to

∆Cℓ in the (3.20):

∆Cℓ =
√

2

2ℓ+1 fsky
(Cℓ+SN ) , (3.25)

where the term fsky is the fraction of observed sky and SN is the added shot-noise term

due to Poisson distribution of the objects and Cℓ is the sample variance.

Moreover, photometric redshift surveys provide limited information on the radial

position of the objects. In this case it is useful to divide the sample into radial shells and

perform clustering analysis among objects within and across nearby shells. In this case

we can rewrite the angular spectrum from Eq. (3.18) in more general form:

C̃ i j
ℓ

= 1

2ℓ+1

∑
m

ai
ℓm a j∗

ℓm , (3.26)

where i and j indicates two shells, The case i = j indicate the auto-angular spectrum of

the shell and i ̸= j the cross-spectrum. In such case, one must account the Poisson noise

for both shells:

∆C i j
ℓ

=
√

2

2ℓ+1 fsky

[(
C i j
ℓ

)2 +
(
C i
ℓ+Si

N

)(
C j
ℓ
+S j

N

)]1/2

. (3.27)

In most cases the selection function (3.15) can be approximated as the product of

two functions: an angular mask, that accounts of the limited sky coverage of the sample,

and a radial selection, that quantifies observational selection effects that depends on the

objects’ distances. In absence of angular dependent observational effects, the geometry

mask can be expressed as a binary matrix with ‘0’ values in those angular bins outside the

survey area and ‘1’ inside it. The selection function φi (r) then for i -th redshift shell can be

expressed as:

φi (r) =φi (r )M(r̂ ) . (3.28)

where the normalisation of φi (r ) to unity as described before is valid only for the redshift

bin i . M(r̂ ) is angular mask. Overall the selection function quantifies the probability

whether a particular galaxy at r is included in the sample.

The radial selection is usually related to the luminosity of the objects in the observed

band, L, and the fact that a survey is limited in flux, so that at any given radial distance r

only objects brighter than L∗(r ) are included in the sample:
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φ(r ) =
∫ ∞

L∗(r )
φ(L)dL

/∫ ∞

0
φ(L)dL . (3.29)

As a consequence, only a fraction of objects enter in the survey. The probability of an

objects at a distance r to be included in the survey can then be expressed as :

φ(r ) = 1

N

d N

dr
, (3.30)

where N is the total number density of objects in the survey sample.

We have seen the impact of the selection function in determining the Cℓ value which

is quantified by Eq. (3.24). The impact of the geometry mask, on the other hand, is that of

mixing of multipoles. If C i j
ℓ

is the angular auto- or cross- power spectrum measured over

the all sky, the APS measured on a fraction of the 2-sphere characterised by an angular

mask M(r ) is:

〈ai
ℓm a j∗

ℓm〉 =∑
ℓ′
Γm
ℓℓ′C

i j
ℓ

, (3.31)

where the mixing of different ℓ-modes is specified by Γ and is related to the angular mask

through:

Γm
ℓℓ′ =

∑
m′

∫
dr̂Y ∗

ℓm(r̂)M(r̂)Yℓ′m′(r̂)
∫

dr̂′Yℓm
(
r̂′

)
M

(
r̂′

)
Y ∗
ℓ′m′

(
r̂′

)
, (3.32)

which when averaged over m-modes, gives the angular mixing matrix, convolved with the

theoretical angular power spectrum:

C̃ i j
ℓ

= 1

2ℓ+1

∑
m
〈ai

ℓm a∗ j
ℓm〉 =∑

Rℓℓ′C
i j
ℓ′ , (3.33)

where Rℓℓ′ is angular mixing matrix, which quantifies the effect of geometry mask on the

true power spectrum C i j
ℓ

. The LHS of the above equation is the estimate of cross-APS,

which is a convolution of the underlying theoretical angular power spectrum with angular

mixing matrix Rℓℓ′ . The correlations among different ℓ-modes of Cℓ that are induced by

the partial sky coverage, are corrected by the mixing of orthonormal spherical harmonic

coefficients as given in Eq. (3.32). The mixing matrix can be expressed in the form of

3 j -Wigner symbols as:

Rℓℓ′ =
2ℓ′+1

4π

∑
ℓ′′

(2ℓ′′+1)Wℓ′′

(
ℓ ℓ′ ℓ′′

0 0 0

)2

, (3.34)

where Wℓ is the angular power spectrum of the mask:
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Wℓ =
1

2ℓ+1

∑
m

|Mℓm |2 . (3.35)

As mentioned before, for a full-sky survey sample, the angular mask is M(r̂) = 1, Mℓm =p
4πaℓ0am0, mask power spectrum Wℓ = 4πaℓ0 and the mixing matrix Rℓℓ′ = δK

ℓℓ′ , and in

that case:

C̃ i j
ℓ

=C i j
ℓ

. (3.36)

The measured auto or cross angular spectra need to be compared to theoretical models

to extract cosmological information. In such model, that generalises (3.24), one needs

to specify the power spectrum of the matter at different redshifts, its relation with that

of galaxies, i.e. the bias function, the effect of the selection and that of the geometry

mask. Let us ignore the geometry aspect that, as we have seen, can be included after

the modelling of the all-sky angular spectrum, and assume that the radial selection is

known. Also, let us use redshifts instead of radial distances. The relation between the two

quantities depends on the cosmology, that is part of the Cℓ model. All we need to specify

is the 3D galaxy power spectrum at the generic epoch z. We assume that it is given by

Pgal(k, z) = b2(z) D2(z) Pmat(k, z = 0) , (3.37)

where b(z) is the bias of the galaxy population at the redshift z and D(z) is the linear growth

factor of density perturbation introduced in (2.23). In the linear regime, one would then

use linear theory to specify the mass power spectrum at the present epoch Pmat(k, z = 0),

and the model would be correct. In the non linear regime we can approximate Pgal(k, z)

by modelling Pmat(k, z = 0) as full non-linear matter power spectrum. The goodness of

this approximation will need to be tested case by case, since non-linearities should be

included also in the b(z) model and in the growth factor D(z). Also this expression ignores

the correlation among the various k-modes.

That said, the cross angular power spectrum can be modelled as:

C i j
ℓ

=
∫ ∞

0
k2Pmat(k, z = 0)F i

ℓ(k)F j
ℓ

(k) dk , (3.38)

where Fℓ(k) is the radial power kernel in corresponding bin and quantified as:

F i
ℓ(k) =

√
2

π

∫ ∞

0
dz

dN

dz
Wi (z)b(z)D(z) jℓ(kz) , (3.39)
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which can be traced from Eq. (3.24). Here, I have substituted the radial selection function

φi (z) as the product of the selection function of the full sample (see Eq. (3.30)) which is also

a function of redshift z, and a window function Wi (z) that characterises the distribution

of the objects in the redshift bin.

When estimating Eq. (3.38), and depending on the characteristic properties of the

sample under analysis, one can approximate the radial kernels under different limits of

the selection function.

• Thin Redshift Slicing: In some cases, i.e. when dealing with spectroscopic rather

than photometric surveys, slicing can be done using thin rather than thick shells. In

this case one has,

d Ni

d z
≈ δK (z − z ′)

N i
gal

, (3.40)

where N i
gal stands for number of galaxies in corresponding redshift slice i and δK is

Kronecker delta. The kernel in this limit takes the form:

F i
ℓ(k) =

√
2

π

1

N i
gal

Wi (z)b(zi )D(zi ) jℓ(kzi )) , (3.41)

and the cross-angular power spectrum between two shells i and j can be defined

as,

C i j
ℓ

= b (zi )D (zi )b
(
z j

)
D

(
z j

)
N i

galN
j

gal

∫ ∞

0
k2Pmat(k) jℓ (kr (zi )) jℓ

(
kr

(
z j

))
dk . (3.42)

• Limber’s Approximation: In general when one is interested in angular scales whose

physical counterpart is smaller than the typical scale of the survey (the thickness of

the shell), one can use the Limber approximation. In the limit of large multipole, i.e

for ℓ≫ 1, the double integral (3.38), becomes a 1D integral. The spherical Bessel

function under asymptotic limit can be expressed as:

lim
ℓ≫1

jℓ(x) =
√

π

2ℓ+1
δD (ℓ+1/2−x) , (3.43)

where δD is Dirac delta. The Cℓ under this approximation becomes:
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C i j
ℓ

=
∫ ∞

0
dz

d Ni

d z

d N j

d z
b(z)2D(z)2

(
H(z)

r 2(z)

)
Pmat

(
k = ℓ+1/2

r (z)

)
, (3.44)

and for thin slicing it further reduces to:

C i j
ℓ

≈ (D (zi )b (zi ))2

N i
galN

j
gal

(
H (zi )

r 2 (zi )

)
Pmat

(
k = ℓ+1/2

r (zi )

)
δK (

zi − z j
)

. (3.45)

This means that for thin redshift shells, the approximation generates no correlation

between different shells. The Limber’s approximation is commonly used in weak-

lensing analysis, when one is interested in small angular scales. In our case we are

especially interested in large scales. For this reason in chapters 5 and 6 we shall

use the complete expression (3.38) to model auto- and cross-angular power spectra.

Also in chapter 6, we will explore the scenario when the cross-correlation in redshift

shells is accounted for.

Pseudo-Cℓ Estimator

To estimate the angular power spectra, i.e. the so-called Pseudo-Cℓ of a distribution of

objects in some patch of the sky, and within a given redshift range, we will make use of the

HEALPix package (which is introduced in § 6.2.4), that offers the possibility, through the

MAP2ALM routine to estimate the spherical harmonic coefficients, aℓm ’s, of a distribution

of discrete objects on a pixelised map as follows:

ˆai
ℓm =∆Ωp

Npix∑
k=1

(
Ni k −N̄i

N̄i

)
Y ∗
ℓm(Ω̂) , (3.46)

where ∆Ωp corresponds to pixel area in solid angle element, N̄i is the mean number

density of objects i -th redshift shell and Nk is number of objects in k-th pixel. The cross-

angular power spectrum can be estimated using a more generalised form of Eq. (3.26),

after subtracting the shot-noise term and taking into the account the limited sky coverage:

K̂ i j
ℓ

= 1

fsky(2ℓ+1)

∑
m

|âi
ℓm â∗ j

ℓm |−
(

1

σ̄i
δK

i j

)
, (3.47)

where fsky is a fraction of sky in the survey under consideration and the last is shot noise.

It is equal to the number density of galaxies per unit solid angle in i -th redshift bin,

σ̄i =
N i

gal

∆Ω
, (3.48)
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The estimator described above in Eq. (3.47) is also called as pseudo-Cℓ estimator. It

was introduced by Peebles (1973) and used in clustering analyses performed by (Blake

et al., 2011; Balaguera-Antolínez et al., 2018).

If the Distribution of discrete objects traces an underlying Gaussian overdensity field

then the random error associated to the estimated auto-APS is (Dodelson, 2003):

σi
ℓ =

√
2

(2ℓ+1) fsky
(C i

ℓ+Si
N ) , (3.49)

where the quantities have the same meaning as defined in the beginning of this section in

Eq. (3.25), also for the case of cross-APS estimator:

σ
i j
ℓ
=

√
2

(2ℓ+1) fsky

[
(C i j

ℓ
)2 + (C i

ℓ+Si
N )(C j

ℓ
+S j

N )
]1/2

. (3.50)

However, the Gaussian hypothesis is not valid on small scales and at late evolutionary

epochs. For this reason, when dealing with real catalogues, it is preferred to estimate

errors and their covariance using realistic mock catalogues that mimic both the intrinsic

clustering properties and the selection effects of the sample. In this case one simply

measures the various angular spectra in each mock, C (m,i j )
ℓ

, takes the average ¯̂C i j
ℓ

and

compute the covariance matrix as:

C
i j
ℓℓ′ =

1

Nm −1

Nm∑
m=1

(
Ĉ (m,i j )
ℓ

− ¯̂C i j
ℓ

)(
Ĉ (m,i j )
ℓ′ − ¯̂C i j

ℓ′

)
, (3.51)

where Nm is number of mock catalogues and the summation is performed over total

number of measured redshift bins.





Chapter 4

Probing Structure Growth from Clusters

Observing extragalactic objects through large redshift surveys is a very effective way to map

the 3D mass distribution in the Universe at different epochs, and to probe the evolution of

the large scale structure. Also we have seen in Chapter 2, the reliability of this mapping is

intrinsically limited by the so-called biasing phenomenon, i.e. by the fact that luminous

objects do not perfectly trace the mass. On top of galaxy bias, another effect, called

redshift-space distortions [RSD] hampers this mapping. This distortion is introduced

when measured redshifts are used as distance proxies without taking into account the

presence of peculiar velocities that add up to the Hubble expansion. Unlike the bias,

RSD pick up a preferential direction, the line-of-sight (LOS) to each object, and therefore

destroy the statistical isotropy of the clustering properties. On the other hand RSD, being

driven by peculiar velocities whose amplitude depends on the rate at which structures

grow, contain precious cosmological information that can be retrieved once RSD are

properly modelled and accounted for. For these reasons RSD are not anymore regarded

as a nuisance effect. Instead, they have become one of the most powerful cosmological

probe to investigate the origin of the accelerated expansion of the Universe (Guzzo et al.,

2008).

Accurate theoretical model for RSD are required to extract cosmological information

from observation. On those scales and at those epochs in which perturbations are small

and linear theory is applicable, a simple RSD model has been proposed by Kaiser (1987)

and Hamilton (1992). Unfortunately, the linear theory hardly applies to real samples for

which nonlinear effects (reflecting both the complex dynamics and the nontrivial biasing

phenomenon) as well as the ill-known impact of baryon physics cannot be neglected.

Given these difficulties, the strategies to tackle RSD are typically of two types. The first

one is to increase the complexity of the RSD model so that it can be safely applied to some

existing dataset. The advantage of this approach is that it allows, in principle, to extract
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the maximum amount of information contained on those scales that are more affected by

nonlinear effects. The price to pay is the introduction of a large number of parameters to

characterise the model itself. The second approach, that I will follow in this chapter, is

to select some special class of objects that are little affected by small scale dynamics and,

instead, trace those large scale motions that can be described by the linear theory.

This second approach has been adopted by several authors to estimate the normalised

growth rate of density fluctuations f σ8, where f is the growth rate of structure as defined

in Eq. (2.24) and σ8 is the density variance Eq. (2.13) at 8 h−1 Mpc. Or, alternatively,

to measure β = f /b, where b is the linear bias parameter of the tracers Eq. (2.44). The

examples are Hatton and Cole (1999); Berlind et al. (2001); Chuang and Wang (2012);

Tocchini-Valentini et al. (2012); Bianchi et al. (2012); Marulli et al. (2017).

In this chapter I will focus on galaxy clusters. The motivation for this choice is twofold.

The first one is related to the clusters’ scientific properties. Galaxy clusters, being the

largest, virialised structures in the Universe are rare but very prominent and easily de-

tectable out to very large distance. Because of these properties, they are almost ideal

tracers of large-scale, coherent motions, that are well described by linear theory. Also,

since they form in correspondence of the highest density peaks, they are also highly biased

tracers of the underlying mass distribution. Because of these properties, they have been

proposed as promising probes of RSD (Bianchi et al., 2012; Marulli et al., 2017) and of Bary-

onic Acoustic Oscillations (Veropalumbo et al., 2014). The second motivation is related to

the data availability. New, dedicated surveys are being or will be soon carried out that will

generate very large, homogeneous catalogues of clusters that will probe the large scale

structure of the universe over very large volumes. This is the case of the upcoming Euclid

survey (Laureijs et al., 2011), of the planned W-FIRST mission (Doré et al., 2018) and,

which is more relevant for this thesis, the ongoing eROSITA survey (Merloni et al., 2012).

The latter survey is designed to detect about 105 galaxy clusters with masses ranging from

5×1013h−1 M⊙ and onward in the X-ray band out to redshift z = 0.5, most of which will

have their spectroscopic redshift determined by a dedicated follow-up 4-MOST survey

(Salvato and Merloni, 2015).

In this chapter I will investigate the possibility of determining the growth rate of density

fluctuations using eROSITA clusters and assess the accuracy of this measurement. I will

do that by analysing the RSD in the 2-point statistics measured on a set of mock galaxy

catalogues extracted by the zHORIZON N-body experiment (Smith, 2009). The outline of

the chapter is as follows: In § 4.1 I shall revise some of the theoretical concepts that are

relevant to RSD. In § 4.2, the simulated datasets and the mass cuts for galaxy clusters are
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discussed. I provide the statistical tools required to analyse the RSD § 4.3 and finally I

discuss the results of the RSD cluster analysis in § 4.4.

4.1 Theoretical Background

4.1.1 Redshift Space Distortions

Thanks to the expansion of the Universe, also known as the Hubble flow of matter, we can

use the observed redshift as a distance proxy for any extragalactic objects emitting light. If

the cosmic density tracers would follow pure Hubble flow, the observed redshift would

provide a reliable measurement of their distances. However, as we have seen in chapter

2, the growth of density fluctuations generate peculiar velocities that add to the Hubble

recession velocities. As a consequence, when we use redshift as distance estimator to map

the three dimensional distribution of the mass in the Universe, we obtained a distorted

representation of it. This is the so-called redshift-space distortion phenomenon. Let us lay

out the theory that describe RSD and define the distance that we obtain from the redshift

measurement, s. In comoving coordinates its relation with the real comoving position x is

s = x+ (vpec · ẑ)ẑ , (4.1)

where vpec the is normalised peculiar velocity (divided by factor aH) and ẑ is the LOS

direction. Eq. (4.1) clarifies that the amplitude of the RSD is proportional to the typical

magnitude of the velocity vector which, in linear theory, is proportional to the growth

factor. If peculiar velocities were completely uncorrelated, then RSD would only introduce

random error in the estimated velocities. This is the case for the so-called Fingers of God

(FoG), caused by random motion of virialised satellites hosted in large haloes. However,

since these velocities are instead highly correlated, they systematically modify the relative

distances between objects and, as a consequence, their clustering statistics. To quantify

the impact of RSD on clustering statistics it is convenient to decompose position vectors

into parallel and perpendicular components along the line of sight. So that the parallel

component of (4.1) is

s∥ = r · ẑ = r∥+w∥ , (4.2)

where w is the LOS component of the peculiar velocity, i.e w∥ = |vpec −v′pec| · ẑ, and the

perpendicular component which is unaffected by line-of-sight distortions,
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s⊥ = r⊥ , (4.3)

coincides with the real-space one.

It is convenient to follow the same approach to study two point statistics. This means

expressing the separation vector s into parallel and perpendicular component to the LOS

to the pair. So that, the 2-point correlation function (Eq 2.7) in redshift-space can be

conveniently expressed as ξS(s⊥,s∥), which is anisotropic between LOS-parallel and LOS-

transverse directions unlike its real-space counterpart ξ(r). It should be noticed that the

LOS to the pair is not uniquely defined, as different choices are possible. This is why it is

sometimes convenient to adopt, whenever possible, the distance observer approximation

in which the LOS to each pair is the same and coincides with one of the Cartesian axis.

Figure 4.1 illustrates the collapsing overdensity shells as observed from a distance

(left pane) and for an observer being a part of collapsing shell (right pane). Large scale

inflows are coherent, where peculiar motions are extremely small as compared to the size

of the overdensity shell, make it appear compressed along the direction of the observer. As

the shell collapses further, the overdensity arrives at a turnaround phase where peculiar

motions and Hubble flow cancel out. On small scales the random motions of objects

becomes dominant and overdensity appears elongated along the direction of observer,

creating non-linear effect of Fingers-of-God (FoG).

Since we observe luminous tracers of the underlying mass particles, one needs to

account for the biasing relation to recover the cosmological information, i.e δ = b δm ,

where δm is mass overdensity. Since we are interested in galaxy bias, that traces the mass

on large scales, we can adopt deterministic, linear bias relation in Eq. (2.44). With this

assumption, the magnitude of the RSD depends on the so-called β parameter that is

simply the ratio between linear growth rate and the linear bias parameter:

β= f (Ωm)

b
. (4.4)

The exact relation between f and Ωm depends on the underlying cosmological model

and gravity theory (refer to Eq. (2.25)). In the ΛCDM model, it is assumed that scale-

independent exponent γ = 0.545 (Linder, 2005, 2017), which does not hold for other

cosmological models. The approximated ratio described above in Equation (4.4) is valid

only on large scales where non-linear effects are non relevant.



4.1 Theoretical Background 59

Fig. 4.1 The spherical overdensity shells observed in redshift space produce distorted patterns
changing with respect to scales. The connected dots are the objects collapsing towards the centre
positioned on the same overdensity shell. In the left pane, the observer is far away from the
structure, i.e. somewhere below the figure, looking towards the overdensity centre. From large
scales to small scales the geometry of shells changes from a squashed ellipsoid, collapses at the
turnaround, to the elongated finger of god. Moreover, in the right pane the observer is a part of a
collapsing shell (encircled dot). The elongated structures pointing towards him become sharp and
at large separations kidney shaped distortions appear. (Kaiser, 1987; Hamilton, 1997)

4.1.2 Kaiser-Hamilton Formalism

In linear perturbation theory Kaiser (1987) has proposed an analytic model to describe

the effect of RSD on 2-point statistics in Fourier space, i.e. on the power spectrum. In the

distant observer limit the anisotropic power spectrum of a tracer can be expressed as:

P S(k,µk ) = (1+β µ2
k )2P (k), (4.5)

where k is the modulus of the wavenumber vector k, µk is the cosine angle between k and

the LOS direction, which is the same for all pairs in the sample, andβ is the RSD amplitude

defined in Eq. (4.4). Eq. (4.5) shows that the effect of RSDs (i.e. when β ̸= 0) is that of

distorting the iso-power contours, i.e. the curves at P S(k,µk ) = constant, that would be

circular if peculiar velocities could be ignored. Distortions in the iso-power contours are

conveniently expressed by expanding P S(k,µk ) in Legendre polynomials:

Pℓ(k) = 2ℓ+1

2

∫ 1

−1
dµk Pℓ(µk ) P S(k,µk ). (4.6)
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where Pℓ(µ) are Legendre polynomials. Because for the axial symmetry, for linear RSD,

only the multipoles ℓ = 0,2 and 4 (i.e. monopole, quadrupole and hexadecapole) are

non-zero, therefore the anisotropic power spectrum can be expressed as:

P S(k,µk ) = P0(k)P0(µk )+P2(k)P2(µk )+P4(k)P4(µk ), (4.7)

where the spectral moments are related to the undistorted tracer real-space power spec-

trum P R (k) through:

P0(k) =
(
1+ 2β

3
+ β2

5

)
P R (k), (4.8)

P2(k) =
(

4β

3
+ 4β2

7

)
P R (k), (4.9)

P4(k) = 8β2

35
P R (k). (4.10)

This Legendre decomposition suggests a practical strategy to estimateβ: measure P S(k,µk )

from the galaxy distribution, compute its first three moments and compare the results to

theoretical predictions to obtain β from Eqs. (4.8), (4.9) and (4.10).

However, since real-space power spectrum is not directly measurable quantity, this

approach requires assuming a cosmological model for P R (k). An alternative, more practi-

cal strategy is to consider multipole ratio, to eliminate the P R (k) dependence. A popular

choice is to consider the so-called Q-ratio between quadrupole and monopole:

Q(k) ≡ P2(k)

P0(k)
=

4
3β+ 4

7β
2

1+ 2
3β+ 1

5β
2

. (4.11)

As long as the mass perturbations and bias are linear, this ratio is scale-independent and

nearly model independent. At the present epoch, or at moderate redshift, this is true only

on large scales. An effective way to define the scale above which linear theory can be

safely applied is therefore that of measuring Q at increasing wavenumbers and search

from deviations from its asymptotic value at small k.

Hamilton (1992) worked out an analogous formalism to characterise and quantify

RSD in configuration space, i.e. using the anisotropic 2-point correlation function (2PCF)

ξS(s,µs), where s is the modulus of the pair separation vector s and µs is the cosine angle

between this vector and the LOS. As for Eq. 4.7, one can expand the anisotropic 2PCF in

its first three moments:
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ξS(s,µs) = ξ0(s)P0(µs)+ξ2(s)P2(µs)+ξ4(s)P4(µs) , (4.12)

where the modulus s is
√

s2
∥ + s2

⊥ and s∥, s⊥ are the components of the s vector along and

across the LOS, and µs = s∥/s. The 2PCF moments are:

ξℓ(s) = 2ℓ+1

2

∫ +1

−1
ξS(s,µs) Pℓ(µs) dµs . (4.13)

The relations between the moments of the 2PCF in redshift space and the real space

2PCF are analogous to those for the power spectrum monopole but involves integrals over

scale r :

ξ0(s) =
(
1+ 2β

3
+ β2

5

)
ξR (r ) , (4.14)

ξ2(s) =
(

4β

3
+ 4β2

7

)
[ξR (r )− ξ̄(r )] , (4.15)

ξ4(s) = 8β2

35

[
ξR (r )+ 5

2
ξ̄(r )− 7

2
¯̄ξ(r )

]
, (4.16)

where ξ̄(r ) and ¯̄ξ(r ) are spherically averaged correlation functions and are defined as,

ξ̄(r ) = 3

r 3

∫ r

0
ξR (r ′)r ′2dr ′ , (4.17)

¯̄ξ(r ) = 5

r 5

∫ r

0
ξR (r ′)r ′4dr ′ . (4.18)

As in the Fourier case, one can work out the analogous of the Q-factor

Q(s) ≡ ξ2(s)

ξ0(s)− (3/s3)
∫ s

0 ξ0(s′)s′2d s′
=

4
3β+ 4

7β
2

1+ 2
3β+ 1

5β
2

. (4.19)

which again, as in the previous case, depends neither on the true 2PCF nor on the separa-

tion s.

The information that can be extracted from a RSD analysis in Fourier space is the

same as in configuration space, which basically consists of determining the growth rate in

this case. However, there is a benefit in performing both analyses as these are affected by

different types of random and systematic uncertainties. For example, if the geometry of the

survey is simple and the typical scales involved in the analysis are close to linear, then the

Fourier space covariance matrix is expected to be closer to diagonal and the uncertainties



62 Probing Structure Growth from Clusters

a combination of Gaussian errors and Poisson noise. This is not true in configuration

space, due to the covariance of the correlation signal among different separation bins. On

the contrary, when the geometry is not simple, the convolution by the geometry mask

mixes k-modes resulting in a highly non diagonal covariance matrix.

Therefore, since power spectrum and 2PCF analyses are potentially affected by differ-

ent types of systematic errors, we shall perform here both analysis, i.e. we will analyse the

redshift space distortions in both ξS(s,µs) and P S(k,µk ), focusing on those scales that are

large enough for linear theory to be applied safely. Indeed, as we have stated before, one

of the goals of our analysis will be that of determining what are the correct scales to apply

the linear RSD model in the upcoming cluster surveys like eROSITA.

4.1.3 Linear Bias Parameter

The reason to re-introduce the linear bias parameter for the analysis done in this chapter,

is importantly to underline that the halo bias bh introduced in Eq. (2.44) is different from

linear bias parameter b. In principle, the bias parameter is scale dependent but for this

work the parameter is treated equivalent to large scale galaxy bias (scale-independent).

This assumption is justified as the analysis is only focused on very large spatial case.

Also, throughout this work, DM haloes taken from the catalogues described in § 4.2 are

considered to be unbiased representatives of (eROSITA) galaxy clusters. Now, according to

the definition of two-point statistics in Fourier and configuration space (Equation (2.7)

and (2.8)), the linear bias parameter b yields as square root of the ratio of halo distribution

with that of dark matter:

bP
h =

√
P R

hh(k)

Pmm(k)
; bξh =

√
ξR

hh(r)

ξmm(r)
, (4.20)

where P R
hh(k) and Pmm(k) are real-space halo and matter auto power spectrum. On the

other hand, ξR
hh(r) and ξmm(r) are real-space halo and matter auto correlation functions

respectively.

4.2 Halo Catalogues

Galaxy clusters are less abundant tracers of matter density as compared to galaxies and

groups of galaxies, since they form by clustering of galaxies and groups in late stages

of structure evolution. Being rare objects (their total number in the currently available

catalogues is a few thousands) distributed over very large volumes, the main source of
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uncertainties when studying 2-point statistics is sparse sampling. Also, the systematic

errors in modelling their bias, that however, are expected to be rather small, being well

described within the framework of EPS formalism in § 2.2.4. I will ignore the impact

of observational systematics in selecting cluster samples since these are highly survey-

dependent while our goal is to assess the potential of cluster as RSD probes.

In order to assess the impact of all these error sources we will perform our analysis

using controlled N-body experiments from which mock galaxy cluster samples with well

known properties can be extracted from. In particular we will use the Zürich Horizon

simulations (zHORIZON, Smith, 2009). The initial conditions in these simulations are set

to WMAP vanilla flatΛCDM model; {ΩCDM = 0.25,Ωb = 0.04,ΩΛ = 0.75, h = 0.7, ns = 1.0

and σ8 = 0.8 }. DM haloes have been identified in all simulation outputs using a standard

FoF algorithm with linking length b = 0.2. We ignore the presence of substructures in

our analysis. Haloes with Mhalo ≳ 1014 h−1M⊙ are grouped into catalogues in which each

object is characterised by 3D position and velocity vector of its centre of mass. These are

the 160 catalogues that I use in our analyses.

For each simulation run, I consider three different outputs: at redshifts z = 0,0.5 and

1.0, with an average number of clusters equalling to 8.17, 3.46 and 1.05 (in ×104 counts)

respectively. As expected, the mean number density of mock clusters decreases with

the redshift, from 2.421 to 0.311 (in 10−5 h3 Mpc−3). The total number of clusters at all

three snapshots is counts to ∼127,000 (averaged over 160 realisations each with length

L = 1.5 h−1 Gpc).

To quantify the number density of our clusters with the characteristics of the upcom-

ing eROSITA cluster catalogue, I compare the statistics provided by eROSITA forecast

paper: Pillepich et al. (2012). According to Fig. 3 and Table 4 of the referred paper, the

survey is expected to observe 9.32×104 objects with masses above 5×1013 h−1M⊙ and a

median redshift z ∼ 0.35. For objects with masses Mhalo ≳ 1014 h−1M⊙, the corresponding

expected number is 5.57×104 at median redshift of z = 0.46. This number in optimistic

case (Deeper eROSITA in Table 4. of Pillepich et al. (2012)) will reach up to ∼ 9×104 which

is comparable with our z = 0 dataset, whereas for lower estimate (Focused eROSITA) it

decreases to ∼ 4×104, which of the order of z = 0.5 case. In both the cases number of

clusters in our data at z = 0 and z = 0.5 are 10-12% underestimated than the survey.

The outputs at higher redshift i.e. at z = 1.0, even with very few massive haloes at

hand, are analysed to compare results and look for a sweet spot where to best perform

RSD analyses using clusters, keeping in mind that current and future cluster catalogues

,i.e. from the Euclid or the LSST surveys, will allow us to span the broader redshift range

z ∼ [0.01,2].
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4.3 Methodology: Statistical Tools

4.3.1 Power Spectrum Estimator

Since this analysis is based on a mock galaxy catalogue extracted from a cubic box with

periodic boundary conditions, the finite distance to the sample is less of a concern and

wide angle effects can be ignored (that could be minimised using different power spectrum

estimators), and the monopole, the quadrupole and the hexadecapole moments of the

power spectrum can be measured. The hexadecapole moments are ignored since its

measurement turned out to be very noisy.

The FKP estimator has been briefly described in § 3.2.1. More details can be found in

the original work. What is relevant for this analysis is its application. First of all, as the

interest here is the number density field, and not in the mass density field, I assume that

all objects have the same mass. This field is interpolated from the objects distribution on a

5123 cubic grid using a CIC scheme, over the same box as the of the zHORIZON simulations.

This choice automatically sets the fundamental frequency kmin ≡ kF = 2π/L = 0.0149 h

Mpc−1 whereas the maximum wavenumber is set by the Nyquist frequency kmax ≡ kN =
π/H = 1.072h Mpc−1. The anisotropic power spectrum P S(k,µk ) is then estimated in

64×64 linearly spaced bin in the range [kmin, kmax] and µk = [0,1]. Since I am interested in

sampling linear scales, I will restrict this analysis to k < 0.1, well below the wavenumbers

potentially affected by aliasing effect that however, as we have checked, is already small at

kmax.

The detailed procedure to measure the anisotropic power spectrum of the ‘clusters’

from the zHORIZON halo catalogues is outlined below:

1. Clusters from the zHORIZON boxes are distributed onto a regular grid with added

weights of the ‘observable’ quantity that describes the density field (in this case

we assign unit mass weights). For distributing the particles one can use various

schemes, one of them is a standard CIC scheme in which the linear interpolation is

performed using a top hat window function (Eq. (2.12))

W (x) = 1

H

1− |x|
H

if |x| < H ;

0 otherwise,
(4.21)

where H is the grid spacing;
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2. I compute the halo number density contrast at each grid point as described in Eq.

(3.8). The number density field δN (x) is then Fourier transformed and the Fourier

coefficients δ(k) of the number density field are computed via FFT;

3. The power spectrum is computed using the scheme as described in Eq. (3.12) by

subtracting the shot noise term. The obtained term P (k) is however monopole of the

power spectrum. The dipole and quadrupole can also be computed from the power

spectrum by integration along the cosine angle, as indicated in Eq. 4.6. The numeric

integration is performed in above defined linear bins between k = [kmin,kmax] and

µk = [0,1];

4. Since we are also interested in RSD anisotropic signature, when we estimate the

power spectrum we split each k mode into its components parallel and perpendicu-

lar to the line-of-sight (that is the case coincides with the z-axis of the computational

box), k∥, k⊥, and compute P S(k∥,k⊥).

4.3.2 2-point Correlation Function Estimator

To measure the anisotropic 2PCF of DM halos and its moments we use the unbiased,

minimum variance LS estimator defined in Eq. (3.2). For this we need to create

a random catalogue of objects, i.e. a set of fake objects distributed in the same

cubic box that has periodic boundary conditions same as data box, with intrinsic

clustering properties and affected by the same observational biases. Since we are

not considering observational systematics in our analysis we simply generate a

population of random objects with about 106 number of objects, to reduce the

impact of shot noise error. However, since we are interested in measuring RSD, we

decompose the separation vector into its component parallel and perpendicular to

the LOS (i.e the z-axis) and count halo-halo (HH), random-random (RR) and mixed

pairs (HR) accordingly. The LS estimator is then given by:

ξS(s⊥, s∥) = HH(s⊥, s∥)−2HR(s⊥, s∥)+RR(s⊥, s∥)

RR(s⊥, s∥)
, (4.22)

where s⊥ and s∥ are separations in redshift-space along and across the LOS. Or, if we

instead consider the cosine angle (µs) and the modulus of the separation vector:

ξS(s,µs) = HH(s,µs)−2HR(s,µs)+RR(s,µs)

RR(s,µs)
. (4.23)
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Both ξS(s,µs) and ξS(s⊥, s∥) are estimated in 50×50 linear bins in the ranges s =
[0,200] h−1 Mpc and µ= [0,1]. Finally, we integrate numerically Eq. 4.13 to estimate

the 2PCF monopole and quadrupole moments that we use to evaluate the Q(s) value

from Eq.4.19 in 50, equally spaced linear bins.

4.3.3 Covariance Matrices

Instead of relying on jackknife or bootstrap resampling methods that manipulate the

available dataset, we take advantage of the 160 available mock catalogue and estimate

the covariance numerically, from the scatter among the measurements in the various

mocks. We point out that, in our analysis, the reference dataset will coincide with the

mean 2-point statistics, i.e. our main goal it to assess the magnitude of the systematic

errors induced when using linear theory to analyse 2-point cluster statistics.

The precision of our numerically-estimated covariance matrix is set by the number of

available independent mock catalogues. As a rule of thumb, a % precision in the diagonal

element of a N×N covariance matrix requires N 2 mocks. We sue this criterion to define

upper limits to the number of bins in our covariance matrix, that we set equal to 12 <p
160.

With the additional consideration that we want to focus on linear, or quasi-linear scales, we

compute the covariance matrices in the following ranges and binning: For the Quadrupole

ratio in configuration space Q(s) we consider 12 bins in the range [50,200]h−1 Mpc. In

Fourier space the covariance matrix for Q(k) is estimated in 12 linear bins in the range

k = [0.02,0.12]. In both cases the measured statistics, performed using a finer binning, are

resampled to match the coarser binning.

With this in mind the Q(s) and Q(k) covariance matrices are computed using Eq. (3.4),

in which now the estimated Q-ratio is used instead of ξ:

Ci j = 1

N −1

N∑
k=1,

(Q̄i −Qk
i )(Q̄ j −Qk

j ) , (4.24)

were the i and j indicate the indexes of the 12 bins, k identifies one of the N = 160 mock

catalogues, Qk
i represents the quadrupole value and (̄Q)i its mean over the mocks.

In Figs. 4.2 and 4.3 we show the estimated covariance matrices of Q(k) and Q(s),

respectively, normalised to their diagonal values:

C Norm
i j = Ci j√

Ci i C j j
, (4.25)

where Ci i and C j j are diagonal covariance matrix elements of indices i i and j j . The

colour code in the plot is set according to the amplitude of the covariance matrix elements,
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Fig. 4.2 Normalised covariance matrix for the quadrupole ratio Q(k) at three different
redshifts z=0 (top left), z=0.5 (top right) and z=1 (bottom) to right. The amplitude of the
various terms are colour-coded from 0 to unity (the value of the diagonal elements, in
white) as shown in the colour bar.
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Fig. 4.3 Normalised covariance matrix for the quadrupole ratio Q(s) at three different
redshifts z=0 (top left), z=0.5 (top right) and z=1 (bottom). The amplitude of the various
terms are colour-coded from 0 to unity (the value of the diagonal elements, in white) as
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as shown by the reference vertical bar. In Fourier space (Figs. 4.2) it is remarkably diagonal,

as expected, up to the largest waveneumbers and at all redshifts considered in this analysis.

This is quite reassuring since diagonal elements are estimated more precisely than the

off-diagonal one. In configuration space (Fig. 4.3) the contribution from off-diagonal

elements is comparatively larger as this is expected in configuration space (Grieb et al.,

2016). This is particularly evident at z = 0 (left panel).

4.4 Results

4.4.1 Anisotropic Cluster Power Spectrum

As described in § 4.3.1, the anisotropic power spectrum separated in LOS parallel and

transverse Fourier modes is obtained. As Fig. 4.4 shows the iso-power contours of the

anisotropic halo power spectrum P (k∥,k⊥) at three different redshifts (z = 0, z = 0.5 and

z = 1 from left to right). The plotted power spectrum is the mean among the 160 measured

spectra in the mocks. In each panel the colour code represents the amplitude of the power

spectrum, as indicated in the colour bar. The squashing of the contours is evident at all

redshifts and reflects the impact of the redshift space distortions.

It can be seen that the distortion pattern is qualitatively similar to that expected if only

linear RSD were present. Only in the z = 0.5 and z = 1 cases we see a negligible hint of

FoG-like distortions (diverging contours) at large k values. Moving from the left to the

middle panel, we notice that the colours grow darker, indicating that the power increases

with the redshift. In fact, this is also true when moving from z = 0.5 to z = 1 and the reason

why this is not evident from the contours is that the colour bar used in the right panel is

different.

The models used in this section are computed using Kaiser approximation stated in

Eqs. (4.8) and (4.9). The β in this case is obtained using Eq. (4.4) with linear growth rate

and linear bias parameter bP
h , which I have obtained using Eq. (4.20), i.e. the ratio of

real-space power spectrum P R (k) to the matter power spectrum. In Table 4.1, different

values of b and β used in the theoretical predictions are shown. The real-space power

spectrum is measured from halo catalogues without considering the LOS axis. I use matter

auto power spectrum at all 3 redshifts predicted with CAMB (Lewis et al., 2000) assuming

the same cosmology as that of simulations used in this analysis.

The left and right panel of figure Fig. 4.5 compare the mean monopole P0(k) and

quadrupole P2(k) of halo auto power spectrum measured from the catalogues at three

different redshifts (shown with 1σ scatter in light shaded colours), with predictions from
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Fig. 4.4 Iso-power contours of the anisotropic halo power spectrum in the (k∥,k⊥) plane at
three different redshifts z = 0 (top left), z = 0.5 (top-right) and z = 1 (bottom). Colour code
shown in the vertical bar. The power spectrum shown here is the average among the 160
mocks.
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Fig. 4.5 Monopole (top left) and quadrupole (top right) halo power spectra at three red-
shifts. The shaded regions in light-colours are for measurements and errorbars, measured
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green represent z = 0, z = 0.5 and z = 1, where the dark coloured line curves are linear
theory predictions at respective redshifts as indicated in the labels. In the bottom panels
we show the mean systematic difference between measured and theoretical moments in
units of 1σ random errors.
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Table 4.1 Different halo biases and corresponding linear bias parameters used in our
analysis as a function of the redshift. Linear bias in Eq. (4.20) used for obtaining
theoretical prediction of β values shown in column 3 from Fourier space bP

h and in

column 5 from configuration space bξh . Both bias parameters are taken as average values
only on very large spatial scales, i.e. for s = [50,200] h−1 Mpc and for k = [0.01,0.12] h
Mpc−1. In last two columns, linear theory prediction of bMW

h using Mo & White (Mo and
White, 1996) bias model (Eq. (2.44)) and corresponding βMW is shown.

Redshift bP
h βP

lin bξh β
ξ
lin bMW

h βMW

0.0 2.639 0.177 2.796 0.168 2.623 0.179
0.5 3.980 0.229 4.162 0.219 3.968 0.230
1.0 6.130 0.238 6.455 0.226 5.970 0.244

linear theory (dark line curves) as described above. In bottom left panel of Fig. 4.5, 1σ

accuracy between monopole model and measurement is shown. It can be noticed, the

monopole at redshifts z = 0,0.5 is well within 1σ accuracy of the linear prediction on scales

k = [0.01,0.08] h Mpc−1. The agreement is expected to increase with the redshift, but for

z = 1 the model appears to deviate on smaller k’s than other two cases, which is opposite

to what is expected. One reason for this can be the linear bias parameter is not modelled

appropriately at those scales, However in case of quadrupole (bottom right panel), this

feature is not seen. In fact all three redshifts are in agreement with predicted quantities

using linear theory. The larger spread seen on lower k-scales is cosmic variance.

These results indicate that, when considering cluster-sized objects, linear theory can

be applied up to ∼ k = 0.08 h Mpc−1 in the full redshift range z = [0,1]. We shall then limit

our χ2 analysis to the interval k = [0.01,0.08] h Mpc−1, where the lower k cut is introduced

to discard spurious error-dominated bins. For estimating Q-ratio and, subsequently the

parameter of interestβ, we will use these scales where the measurements are in agreement

with linear theory prediction.

4.4.2 Anisotropic Cluster 2-point Correlation Function

The anisotropic 2-point halo correlation function ξ(s||, s⊥) is shown in Fig. 4.6. In analogy

with Fig. 4.4 the three panels illustrate the iso-correlation contours at three different

redshifts z = 0, z = 0.5 and z = 1 (from left to right). Contours squashing is clearly visible

and qualitatively consistent with linear redshift distortions. A hint of non-linear effect is

seen at small s⊥ values at z = 0.5 and z = 1 in the form of contour elongation along the

line of sight (the finger of god feature). Correlation amplitude, colour coded according to
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the colour bars, increases from z = 0 to z = 0.5 and, less so, to to z = 1, in agreement with

the power spectrum results.

The measured monopole and quadrupole moments of the 2-point correlation function,

both multiplied by s2 are shown in the upper panels of Fig. 4.7. The light-coloured shaded

region corresponds to measurements and 1σ error from 160 realisations. Here, only the

selected range is shown s = [50,200] h−1 Mpc which is same as that considered for the

covariance matrix analysis. In the monopole (top left panel), we clearly see the BAO peak

feature at ∼ 110 h−1 Mpc at all three redshifts. Below the BAO scale the amplitude of the

correlation function increases with the redshifts, whereas on large scales we observe the

opposite behaviour as ξ crosses 0 around 140 h−1M pc. For the normalised quadrupole

(top right panel) the amplitude monotonically increases (decreases for the raw moment)

the redshift at all separations. It should be noted that, the normalised quadrupole shown

here is (−ξ2) which is already naturally negative. Once again, the significance of both the

monopole and quadrupole trends with the redshift is larger than it appears in the plots in

which we show the error on the single realisation (i.e. the 1σ scatter among the mocks)

instead of the errors on the mean.

The dark coloured curves superimposed to the shaded measurements represent the

Kaiser linear theory predictions for the monopole and quadrupole moments (Eqs. 4.14

and 4.15,respectively). For the theoretical prediction, same method as Fourier space

analysis is followed, only by calculating the right side term of Eq. 4.20. Similar to the

power spectrum case, to appreciate the adequacy of linear theory when estimating β from

the anisotropic correlation function of a cluster sample, we plot in the bottom panels the

systematic error, quantified by the difference between the measured and the expected

correlation, in units of the random error, estimated as the 1σ scatter σ among the 160

realisations. The results show that systematic errors are typically within 1σ except that

in correspondence of the BAO peak (for the monopole) and at separations smaller than

∼ 100 h−1 Mpc for the quadrupole. Finally, systematic errors decrease with the redshift,

showing that, as expected, linear approximation becomes progressively more precise

when moving to higher redshifts.

4.4.3 Measurements of β

From the measured quadrupole over monopole ratios in Fourier and configuration space

Q(k) and Q(s) respectively, the corresponding βP and βξ values are estimated by minimis-

ing the χ2(β) function:
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Fig. 4.6 Iso-correlation contours of the two-point correlation function ξ(s||, s⊥) measured
at z = 0 (top left), z = 0.5 (top right) and z = 1 (bottom). The correlation is the mean among
those measured in the 160 realisations. The colour-bars on the right set amplitude of the
correlation contours.
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Table 4.2 Estimated β values and their 1 σ errors in Fourier and configuration space
at three redshifts. The mean number density (per box) of halos with masses above
1014 h−1M⊙ in the 160 zHORIZON simulations is also provided

Redshift β̂P ±σβ β̂ξ±σβ n̄h per (1.5)3 Gpc3

0.0 0.188 ± 0.021 0.171 ± 0.037 81, 700
0.5 0.236 ± 0.023 0.217 ± 0.043 34, 800
1.0 0.211 ± 0.038 0.197 ± 0.072 10, 500

χ2 ≡
N∑

i , j=1
[Q̂ −Q(β)]i Ψi , j [Q̂ −Q(β)] j , (4.26)

where i and j run over the N = 12 bins, Q̂ indicates the estimated value of either Q(k) or

Q(s) and Q(β) the corresponding theoretical Kaiser linear models Eqs. 4.11 or 4.19. Ψi , j is

the precision matrix obtained by inverting the covariance matrix described previously.

The results, listed in Table 4.2, are obtained by considering the quantities measured in

the ranges k = [0.01,0.12]h Mpc−1 and s = [50,200]h−1 Mpc binned in 12 linear intervals.

The results of the two analyses are in agreement with linear prediction, as expected. This

indicates that systematic errors in either the measurement or in the theoretical model

do not dominate the random ones, neither in configuration nor in redshift space. A

second, interesting, result is that uncertainties are about 50% smaller when the analysis is

performed in Fourier space. This difference, which is mostly analysis dependent (Sanchez

et al., 2017), reflects in this case, the larger error covariance in configuration space, evident

in Fig. 4.3.

It is important not to over emphasise the importance of this result since the analysis is

performed using a periodic data cube, whereas real surveys have complex geometry that

substantially modify the structure of the error covariance as well as their amplitude.

It is nevertheless reassuring that β estimates in Fourier space agree with those in

configuration space within 1σ uncertainties.

To further investigate the presence of systematic errors it is instructive to compare

the values of β̂P and β̂ξ estimated using theoretical linear bias models as well with the

expected from the ratio Eq. (4.20) as listed in Table 4.1. In the last column of the table,

Mo & White (MW, Mo and White, 1996) model bias is shown, which I will use here for

comparison test. For this, ideally one would use the weighted average of bias, by summing

over mass functions of the haloes present in the data, i.e. Eq. (5.2). As the goal of this

analysis is to estimate β as a precursor of linear growth rate as well as validate the linear
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theory assumption for large scale clustering analyses using galaxy clusters, instead of the

effective β, I will use here the prediction from i.e. Eq. (2.44), using cluster mass cut-off

(1014h−1 M⊙) that is used in this analysis, which is predicts the βMW at fairly comparable

values to those measured in this analysis. I shall leave the case with βeff obtained using

effective bias beff for future analysis.

Top panels of Fig. 4.8 (Fourier space) and Fig.4.9 (configuration space) show the results

from the comparison tests. In the plots the datapoints and errorbars show the estimated

β̂P (k) and β̂ξ(s) values in 12 bins from 160 realisations. The horizontal line shows the

MW bias model βMW value from Table 4.2. The coloured regions indicate linear theory

prediction βP
lin and βξlin that are shown in Table 4.2, with the scatter among the realisations

and quantifies the theoretical uncertainties induced by the assumption of the linear halo

model and perturbation theory. In configuration space the sparse sampling at z = 1 with

low number density of clusters has resulted in enlarged errorbars, which can be seen in

the figure.

In the bottom panel of Figs. 4.8 and 4.9, the accuracy of compared models with mea-

sured estimates can be seen. The results in both configuration and Fourier space show

that, measured beta values agree well with theoretical expectations, with the possible

exception of the interval k ≥ 0.8 h Mpc−1 in Fourier space. The mismatch is more signifi-

cant at low redshifts, suggesting that this is a manifestation of nonlinear effects at small

scales. To assess the impact of this effect we have repeated the χ2 minimisation using Eq.

4.26, considering the smaller interval k = [0.01,0.08)h Mpc−1. The resulting β values are

fully consistent with those in Table 4.2, indicating that our results are robust to nonlinear

effects over the full k− range explored. Also in all 6 cases shown in Figs. 4.8 and 4.9, the

MW model gives a fair prediction for the measured estimates, as well as reassures our

comparison tests are correct.

4.5 Summary and Conclusions

In this chapter I analysed a set of 160 realisations of cluster-sized haloes, with masses

Mhalo ≳ 1014M⊙, extracted from zHORIZON simulations. The analysis was mainly per-

formed to interpret the accuracy at which we can estimate β, as a precursor of linear

growth rate, using Kaiser (linear) model from galaxy cluster samples, like that of currently

ongoing eROSITA survey. As discussed in 4.2, the cluster samples used at redshift z=0

and z=0.5 are comparable in number density and minimum mass cut-off for Deeper and

Focused eROSITA samples, after suitable follow up procedures by spectroscopic as well as

photometric datasets (Pillepich et al., 2012; Salvato and Merloni, 2015; Reiprich, 2017).
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Fig. 4.8 β̂P (k) in 12 bins at redshifts z=0 (top left), z=0.5 (top right) and z=1 (bottom).
Datapoints with errorbars indicate the mean and the 1σ scatter from 160 mock halo
catalogues. Colour shaded regions show the expected βP

lin(k) mean and standard error on
the mean from the mocks. The horizontal lines show the βMW values from Table 4.2. The
∗ before βP

lin(k) indicates adjusted errors (for the plot) from 1σ to standard error on the

mean (1σ/
p

N ) for better visualisation of the shaded portion.
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Fig. 4.9 Analogous to Fig. 4.8, βξ(s) in 12 bins at redshifts z=0 (top left), z=0.5 (top right)
and z=1 (bottom). Datapoints with errorbars indicate the mean and the 1σ scatter from
160 mock halo catalogues. Colour shaded regions show the expected β

ξ
lin(s) mean and

scatter from the mocks. The horizontal lines show the βMW values from Table 4.2.
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For the clustering analysis, that was performed in Fourier space and configuration space,

the measurements were compared with linear theory prediction at redshifts z=0, z=0.5

and z=1.

The analysis confirms that the Fourier space has advantage over configuration space

and produces more reliable estimates of β. When β is measured using power spectrum,

there is a 50% observed reduction of statistical uncertainties as compared to that of

correlation function on similar scales (Grieb et al., 2016; Sanchez et al., 2017). In addition

to this, Fourier space provides a wider window of scales in the linear regime but it is

also noticed that the non-linearity sets earlier (∼ 80 h−1 Mpc) when going from large to

small separations, i.e. towards larger values of k in comparison with configuration space

(∼ 45 h−1 Mpc). Two-dimensional clustering results in both formats ξ(s∥, s⊥) and P (k∥,k⊥)

shows salient features of Kaiser effect and no significant signs of FoG as expected from

massive haloes with almost no substructure with random motions.

To testify the accuracy of the model and investigate the contribution of systematic

effects in the data, the estimates β̂ and the errors from 160 realisations, are compared

with the linear theory prediction βlin values in both Fourier and configuration space (See

values in Tables 4.1 and 4.2). It is found that the estimates match with predicted values

within 1σ limits on selected range of scales. The analysis also confirms the predictions by

Bianchi et al. (2012) and Marulli et al. (2017) that the model is adequate for galaxy clusters,

when the bias of the objects is appropriately modelled at higher redshifts, and can be

used, without caring for complex non-linear effects, to extract β and possibly the linear

growth rate f σ8 with 10% accuracy. As thought by Okumura and Jing (2011), I consider

more conservative approach on selection of scales in s-space and state scales above 50

h−1 Mpc appropriate to use linear approximation.

Finally, on scales ≳ 50 h−1 Mpc and 0.01 < k < 0.08 h Mpc−1, the estimated β̂P
z=0 =

0.188±0.021 and β̂P
z=0.5 = 0.236±0.023 from Fourier space analysis. Using correlation

function the statistical errors add up significantly and yield β̂
ξ
z=0 = 0.171± 0.037 and

β̂
ξ
z=0.5 = 0.217± 0.043. Also we notice that in configuration space the measured β is

underestimated by 10%. The analysis confirms that future cluster samples from full-

eROSITA survey (provided with redshift estimates by follow-up surveys) can be analysed

with simple Kaiser-Hamilton model to estimate structure growth up to redshift z ∼ 0.5,

provided the systematic errors are minimised.



Chapter 5

2D Clustering with Radio Datasets

Unlike 3D distributed cosmic structures, the information extracted from a ‘sky-map’ data

containing the projected 2D angular distribution is limited. In such cases, the datasets

lack the radial information to the objects which makes more difficult to appreciate the

time evolution of the relevant physical quantities. Nonetheless, there is still plenty of

cosmological study that can be done using 2D information only, i.e. simply the angular

coordinates on the projected map. A very good example of such analysis is the Cosmic

Microwave Background (CMB) (Planck Collaboration et al., 2016; Aghanim et al., 2018;

Nørgaard-Nielsen, 2018). As of today, a large number of observational datasets, contains

angular coordinates and the flux of the observed sources, one such example is datasets

obtained from observations in the radio band. Radio frequencies allow us to probe

distant, high-redshift region of the Universe, and observe a large number of extra-galactic

objects, potentially probing the large scale structure of the Universe over a wide redshift

range. Outside the plane of our Galaxy, most of the sources detected at centimetre and

metre wavelengths are extragalactic and often at very high redshifts. This is related

to the emission mechanisms at such frequencies, which are nonthermal and occur in

specific environments where electrons are accelerated to relativistic velocities and produce

synchrotron radiation. The observed extragalactic radio sources are therefore hosts of

powerful engines such as active galactic nuclei or sites of intensive star formation, and

can be detected from very large cosmological distances. This, together with the fact that

they are unaffected by dust extinction, makes extragalactic radio sources very useful to

probe large cosmological volumes.

Amongst existing radio catalogues, a few wide-angle, sub-arc-minute-resolution cata-

logues cover areas up to thousands of square degrees that can be suitably used for LSS

studies. Some notable examples include the Green Bank survey at 4.85 GHz (87GB, Gre-

gory and Condon, 1991), the Parkes-MIT-NRAO survey also at 4.85 GHz (PMN, Wright
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et al., 1994), the Faint Images of the Radio Sky at Twenty centimeters (FIRST, Becker et al.,

1995), the Westerbork Northern Sky Survey at 325 MHz (WENSS, Rengelink et al., 1997),

the NRAO VLA Sky Survey at 1.4 GHz (NVSS, Condon et al., 1998), or the Sydney University

Molonglo Sky Survey at 843 MHz (SUMSS, Bock et al., 1999). More recently large swaths of

sky have been mapped by the Giant Metrewave Radio Telescope (GMRT, Ananthakrishnan,

1995), the Low-Frequency Array (LOFAR, van Haarlem et al., 2013), and the Murchison

Widefield Array (MWA, Tingay et al., 2013). In the near future, such efforts are expected

to accelerate the growth of wide-angle radio datasets by orders of magnitude thanks to

forthcoming surveys such as the VLA Sky Survey1 (VLASS, Myers and VLASS Survey Team,

2018) or those that will be undertaken by the Square Kilometre Array (SKA, Braun et al.,

2015; Prandoni and Seymour, 2015) and its precursors (see e.g., Norris et al., 2011).

Studying LSS with radio imaging raises some specific challenges. The nonthermal

character of radio emission means that the observed intensity of radio sources is only

very weakly related to their distances, unlike in the optical where the bulk of the flux

is black-body-like and hence readily provides information about luminosity distance.

Another issue is related to the often complicated morphology of the radio sources. While

usually point-like or at least concentrated to a small ellipse at short wavelengths, in the

radio domain galaxies often present double or multiple structure with very extended lobes

that generates clustering signal on small scales, with optical/IR counterparts that are

difficult to identify. Furthermore, radio galaxies are typically located at high redshift with

very faint optical counterparts. As a result, only a small fraction of radio sources, typically

located in the local universe, have measurements of photometric and spectroscopic

redshifts (e.g., Peacock and Nicholson, 1991; Magliocchetti et al., 2004). The only viable

approach towards studying the LSS with radio continuum data is therefore via angular

clustering. Despite its limitations, such two-dimensional (2D) clustering analyses can be

very useful to identify the nature of radio sources, probe their evolution, and reveal subtle

observational systematic errors.

The angular correlation properties of wide-angle radio catalogues have long been

detected and analysed both in configuration and in harmonic space, usually using two-

point statistics. The two-point angular correlation function (ACF) of the radio sources

has been studied in several of the above-mentioned wide-angle radio samples (e.g., Cress

et al., 1996; Loan et al., 1997; Blake and Wall, 2002b; Overzier et al., 2003; Blake et al.,

2004b; Negrello et al., 2006; Chen and Schwarz, 2016). As for the harmonics analysis, the

main catalogue used to measure the angular power spectrum (APS) so far is the NVSS (e.g.,

Blake et al., 2004a; Nusser and Tiwari, 2015).

1https://science.nrao.edu/science/surveys/vlass

https://science.nrao.edu/science/surveys/vlass
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The results of these analyses have shown that the clustering properties of radio sources

can be accounted for in the framework ofΛ cold dark matter (ΛCDM) and halo models, in

which radio sources are located in massive dark matter halos, typically associated to large

elliptical galaxies and active galactic nucleus (AGN) activity, sharing a common cosmo-

logical evolution. One exception to this success is represented by the dipole moment in

the distribution of the radio sources in the NVSS and other radio surveys. After its first

detection (Blake and Wall, 2002a), it was clear that the dipole direction agrees with that of

the cosmic microwave background (CMB) dipole. However, several subsequent analyses

indicated that its amplitude is larger than expected. The tension with the CMB dipole and

theoretical predictions has been quantified by Singal (2011); Gibelyou and Huterer (2012);

Rubart and Schwarz (2013); Fernández-Cobos et al. (2014); Tiwari and Jain (2015); Tiwari

et al. (2015) to name a few examples. All of these studies agree that the observed dipole

is difficult to reconcile with the predictions of the standard cosmological model (Ellis

and Baldwin, 1984), although the significance of the mismatch depends on the analysis

and can be partially reduced by taking into account the intrinsic dipole in the local LSS

(Fernández-Cobos et al., 2014; Tiwari and Nusser, 2016; Colin et al., 2017) or by pushing

the analysis to the quadrupole and octupole moments (Tiwari and Aluri, 2018) .

New, large, homogeneous datasets at different radio frequencies are clearly welcome

to investigate the clustering properties of the radio objects in more depth. This is one of

the reasons why the TIFR GMRT Sky Survey (TGSS) at 150 MHz, carried out at the GMRT2

has received so much attention. Rana and Singh Bagla (2018) studied the clustering

properties of this sample in configuration space by measuring its ACF. Their analysis,

which is focused on angular scales smaller than θ = 0.1◦, confirms that in this range the

ACF is well described by a single power law with a slope comparable with that of NVSS but

a larger amplitude. In another work, Bengaly et al. (2018) investigated the TGSS clustering

properties in the harmonic space, focusing on the much-debated dipole moment. Quite

surprisingly, they showed that the TGSS dipole is also well aligned with that of the CMB,

but that its amplitude is large, much larger in fact that the one observed in NVSS.

The main goal of this chapter is to expand the analysis of Bengaly et al. (2018) by

considering the full TGSS angular spectrum and compare it with theoretical expectations,

focusing on the large-scale behaviour. As previous APS models have adopted simplifying

hypotheses and neglected theoretical uncertainties, we shall emphasise the modelling

aspects by including all the effects that contribute to the clustering signal and by propa-

gating the uncertainties on the nature, redshift distribution, and bias of the radio sources

2http://www.gmrt.ncra.tifr.res.in/

http://www.gmrt.ncra.tifr.res.in/
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into the APS model. We aim at quantifying possible departures from ΛCDM on all scales,

using all multipoles ℓ> 1.

The results of the analysis presented in this chapter have been published in (Dolfi et al.,

2019)3 The outline of this chapter is as follows: In § 5.1, I briefly describe the datasets we

used in this work. These include the TGSS survey that constitutes the focus of our research,

the NVSS survey that we mainly use as a control sample, a catalogue of radio sources

obtained by cross-matching TGSS with NVSS object which we use to identify systematics

and, in addition, a sample of quasars extracted from the Sloan Digital Sky Survey (SDSS)

spectroscopic catalogue, to trace the distribution of TGSS objects at large redshifts. In § 5.2

I include the result of our analysis in configuration (i.e., the ACF) and harmonics (i.e., the

APS) space. The motivation for considering the ACF is to assess its behaviour on angular

scales smaller than those explored by Rana and Singh Bagla (2018) in order to isolate and

characterise the clustering signal generated by multiple-component radio sources. The

section also features the various tests performed to assess the robustness of the results.

The model APS is presented in § 5.3. In this section I include my main contribution to

this analysis i.e. test results related to redshift-dependent halo bias models that I have

computed using minimum halo mass Mmin that characterises different radio sources

following the work from (Ferramacho et al., 2014) and (Nusser and Tiwari, 2015). Finally,

the results of its comparison with the measured TGSS power spectrum are presented in

§ 5.4. The conclusions of our work are discussed in § 5.5.

In this chapter, we assume a flatΛCDM cosmological model with parameters taken

from Planck Collaboration et al. (2016): Hubble constant H0 = 67.8 km s−1 Mpc−1, a total

matter density parameter Ωm = 0.308, baryonic density parameter Ωb = 0.048, the rms

of mass fluctuations at a scale of 8 h−1Mpc σ8 = 0.815, and a primordial spectral index

ns = 0.9677.

5.1 Observational Datasets

The main dataset used in this chapter is the TIFR GMRT Sky Survey (TGSS) of radio objects

detected at 150 MHz. A large fraction of them are in common with those in the NRAO

VLA Sky Survey (NVSS). We analyse both the NVSS as well as the catalogue of common

objects (dubbed TGSS×NVSS). These radio datasets are employed for angular clustering

measurements. We also use the quasar catalogue from SDSS Data Release 14, but only to

probe the redshift distribution of the TGSS sample.

3In the rest of this chapter, I shall refer to this collective work of authors with ‘we’ pronoun.
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5.1.1 TGSS Catalogue

TGSS4 is a wide-angle continuum radio survey at the frequency of 150 MHz, performed

with the GMRT radio telescope (Swarup, 1991) between April 2010 and March 2012. The

survey covers 36,900deg2 above δ>−53◦ (i.e., ∼ 90% of sky). In this analysis we use the

TGSS Alternative Data Release 1 (ADR1, Intema et al., 2017)5, which is the result of an

independent re-processing of archival TGSS data using the SPAM package (Intema et al.,

2009).

TGSS ADR1 contains 623,604 objects for which different quantities are specified. For

this analysis we use angular positions, as well as the integrated flux density at 150 MHz

and its uncertainty. The overall astrometric accuracy is better than 2′′ in right ascension

and declination, and the flux density accuracy is estimated to be ∼ 10%. We shall consider

only objects with integrated flux density above S150 = 100mJy, where the ADR1 catalogue

is ∼ 100% complete and more than 99.9% reliability being defined as (fraction of detection

corresponding to real sources, Intema et al. 2017). The resolution of the survey depends

on the declination: it is 25′′×25′′ north of δ ∼ 19◦ and 25′′×25′′/cos(δ−19◦) south of

δ∼ 19◦.

The red histogram in Fig. 5.1 shows the TGSS source counts N (S) per logarithmic

flux bin (∆ log(S) = 0.114) per solid angle. The turnover at S150 ∼ 70mJy reveals the

completeness limit of the survey and justifies our conservative choice of considering

only objects that are brighter than 100mJy. Beyond this flux the N (S) is well fitted by a

power law that, as pointed out by Bengaly et al. (2018), has a slope S−0.955 in the range

100mJy < S150 < 500mJy. At brighter fluxes the N (S) becomes steeper.

For our analysis we extract a subsample of the TGSS objects. The main selection

criterion is the noise level, which is not constant across the survey (the median RMS value

is 3.5mJy/beam); it increases towards the Galactic plane and near bright radio sources.

The TGSS subsample used in this analysis was selected as follows:

• We exclude all objects with declination δ < −45◦, where the RMS noise is higher

than ∼ 5mJy/beam, which is the value below which 80% of all measurements lie

(see, Intema et al., 2017, Fig. 7).

• We discard objects with Galactic latitude |bGal| < 10◦, where the RMS noise is also

large due to bright diffuse synchrotron emission of the Galaxy and to the presence

of Galactic radio sources.

4http://tgss.ncra.tifr.res.in
5http://tgssadr.strw.leidenuniv.nl/doku.php

http://tgss.ncra.tifr.res.in
http://tgssadr.strw.leidenuniv.nl/doku.php
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Fig. 5.1 Source counts of the TGSS (red, continuous) and NVSS (blue, long-dashed) cata-
logues. The red shaded histogram on the right shows the number counts (in S150 flux unit)
of the objects in the TGSS×NVSS catalogue. The blue shaded area on the left shows the
number counts (in S1.4 flux unit) of the same TGSS×NVSS objects. Dashed vertical lines
indicate the lower flux thresholds assumed for the analysis presented in this chapter. The
histogram in the insert shows the distribution of the 150 MHz - 1.4 GHz spectral index of
the sources in the TGSS×NVSS catalogue. The vertical dotted line indicates the peak of
the distribution at α=−0.77.
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• We discard the sky patch of coordinates 97.5◦ <α< 142.5◦ and 25◦ < δ< 39◦, corre-

sponding to the problematic observing session on January 28, 2011 characterised by

bad ionospheric conditions (Intema et al., 2017).

• Following visual inspection using the Aladin Desktop tool, we mask out 34 of the

brightest extended radio sources that appear as a cluster of many points in the

catalogue which could produce anomalous large counts in small regions, mimicking

spurious small-scale clustering (Nusser and Tiwari, 2015).

The areas of the sky identified by these constraints are represented by a binary HEALPix
(Górski et al., 2005) mask with resolution Nside = 512, which corresponds to a pixel size of

0.114◦ (∼ 7′) or a pixel area of 0.013deg2. The maximum multipole corresponding to this

angular resolution is ℓmax ≃ 1024. Nevertheless, in our analysis we only consider modes

ℓ< 100, to minimise nonlinear effects, as detailed in Sect. 5.2. After applying this mask,

the fraction of the sky covered by the TGSS catalogue is fsky ≃ 0.7. Both very bright and

very faint sources have also been excluded. Since different subsamples are considered

for the clustering analyses, here we only specify the least restrictive flux cuts, that define

the largest sample considered, and those used to extract the TGSS sample that we use as

a reference; referred to as the Reference sample. The other flux cuts will be specified in

Section 5.2.2, where they are used.

• We exclude all objects brighter than 5000mJy since they increase the RMS noise

in localised regions and produce spurious clustering signal. This threshold corre-

sponds to the flux cut of about 1000mJy in the 1.4-GHz band that we have adopted

for the NVSS sample (see following section). For the Reference TGSS sample we set

a more conservative conservative flux cut S150 = 1000mJy to minimise the chance

of systematic effects that, as shown below, have a more significant impact than the

random sampling noise. However, we demonstrate in Sect. 5.2.2 that the results of

our analysis are very robust to the choice of the upper flux limit, in particular when

this is set equal to 5000mJy.

• Similarly, as already mentioned, we exclude all objects fainter than the completeness

limit of S150 = 100mJy, but in our Reference sample we use a stricter lower cut

S150 = 200mJy.

To summarise, we have defined a TGSS Reference catalogue of 109,941 radio sources

with fluxes in the range S150 = [200,1000]mJy located outside the masked area defined

above. The main properties of this sample, together with two others used in the analysis

(see below), are provided in Table 5.1.
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Sample N. objects fsky Shot noise ∆Cℓ×10−6

Ref. TGSS 109,941 0.7 8.01×10−5 8.51
Ref. NVSS 518,894 0.75 1.82×10−5 2.55

TGSS×NVSS 103,047 0.67 8.23×10−5 8.51

Table 5.1 Main datasets used in this analysis and their characteristics. Col. 1: Dataset
name. Col. 2: Number of objects. Col. 3: Fraction of the unmasked sky. Col. 3: Shot Noise.
Col. 4: APS correction for multiple sources in units 10−6.

The top panel of Fig. 5.2 shows a Mollweide projection of the observed TGSS counts in

equatorial coordinates. The colour code indicates the number counts per squared degree,

N /deg2, of TGSS objects with flux in the range 200mJy < S150 < 1000mJy. The masked

areas are plotted in a uniform white colour.

5.1.2 NVSS Catalogue

The 2D clustering properties of the NVSS sources, especially their dipole moment, have

been investigated in a number of works. The reason for repeating such an analysis here is

twofold. First of all, it constitutes a useful cross-check for the analogous analysis of the

TGSS catalogue. The second, more compelling reason is that, as we see below, the large

majority of TGSS sources are also listed in the NVSS catalogue. Comparing the clustering

properties of this population with those of their parent catalogues is a useful tool to spot

systematic effects and to check the robustness of the results to the selection criteria.

The NVSS survey (Condon et al., 1998) at 1.4GHz contains ∼ 1.8 million sources over

an area similar to that of TGSS and is 99% complete above S1.4 = 3.4mJy. Previous works

have used various selection criteria and, consequently, analysed slightly different NVSS

samples. Our data cleaning is similar to that of Blake et al. (2004a):

• We ignore the low signal-to-noise-ratio (S/N) region with declination δ<−40◦.

• We exclude objects near the Galactic plane |bGal| < 5◦, to minimise spurious contri-

bution of Galactic foreground and radio sources.

• We mask out 22 square regions around bright extended radio sources that can be

fitted by multiple elliptical Gaussians and would generate spurious clustering signal

(Blake et al., 2004a).
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TGSS

0 38.1273N/deg2

NVSS

0 104.85N/deg2

Fig. 5.2 Mollweide projection of TGSS (top) and NVSS (bottom) samples in equatorial
coordinates. The plots show reference catalogues with selection criteria described in the
text. The colour code in the bottom bar refers to N /deg2, denoting the number counts per
deg2 in the pixel. The resolution of the map is Nside = 128.
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We create a binary HEALPix map to quantify the masked region. After masking, the sky

fraction covered by NVSS is fsky ≃ 0.75. Similarly to the TGSS case, we define a Reference

NVSS catalogue using the additional flux cuts:

• A lower cut at S1.4 = 10mJy, since below this limit the surface density of NVSS

sources suffers from systematic fluctuations (Blake et al., 2004a).

• An upper cut at S1.4 = 1000mJy, since brighter sources may be associated to ex-

tended emission.

Our reference NVSS catalogue then consists of 518,894 radio sources with fluxes in

the range S1.4 = [10,1000]mJy outside the masked area. Its source counts are represented

by the blue histogram in Fig. 5.1. Above the 10-mJy threshold (vertical dashed line) the

shape of the distribution is similar to that of the TGSS and can be superimposed to it by

assuming a TGSS versus NVSS flux ratio S150/S1.4 ≃ 5 (Bengaly et al., 2018).

The bottom panel of Fig. 5.2 shows the surface density of NVSS sources outside the

masked areas. It is worth noting that the footprints of the two surveys are very much alike.

This means that the effects of the two masks are very similar and the APS measured in the

two samples can be compared directly.

5.1.3 TGSS × NVSS Catalogue

A detailed analysis of the properties of the objects in common between the TGSS and the

NVSS was performed by Tiwari (2016) and de Gasperin et al. (2018). Our goal here is simply

to build a matched catalogue to estimate the spectral index αν =−1.03log(S150/S1.4) of

the sources in common and to investigate their clustering properties in comparison to

those of the parent catalogues.

Our procedure of matching the two datasets is as follows:

• we consider a TGSS source;

• we search for NVSS sources within 45′′ radius, corresponding to the NVSS survey

resolution;

• if a single NVSS source is found, we accept the NVSS object as the cross-match with

TGSS;

• if more than one NVSS source is found, we take the closest one as the cross-match.
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Fig. 5.3 normalised redshift distribution of the cross-matched TGSS×QSO catalogue (blue,
dotted histogram) and of the parent SDSS-DR14 QSO catalogue (red, continuous).

The resulting cross-matched TGSS×NVSS catalogue contains 103,047 sources within

the reference TGSS and NVSS flux limits, corresponding to ∼ 94% of the TGSS parent

sample. The typical separation between the NVSS and TGSS sources is 1.2′′ and less than

10 % of them are separated by more than 8′′, comparable to the astrometric accuracy, as

expected for genuine matches.

The number counts of the TGSS × NVSS objects are shown in Fig. 5.1 in both S150

(shaded red histogram on the right) and S1.4 (shaded blue histogram on the left) flux units.

The counts distribution, characterised by sharp cuts in S150 flux, has a distribution close

to log-normal in units of S1.4 flux.

The distribution of the spectral index αν is shown in the upper insert of Fig. 5.1 and is

close to a Gaussian, with a peak at αν ≃−0.77, in agreement with previous results (Tiwari,

2016; de Gasperin et al., 2018; Rana and Singh Bagla, 2018).
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5.1.4 TGSS×SDSS-QSO Sample

The last catalogue considered here was obtained by cross-matching TGSS sources with

the quasar (QSO) sample of the Sloan Digital Sky Survey Data Release 14 (SDSS DR14,

Pâris et al., 2018). We point out that, unlike for the other catalogues described above,

we do not expect the TGSS × SDSS-QSO sample to be statistically representative and,

for this reason, we do not use it to perform any clustering analyses. Instead, it is only

employed to show that the redshift distribution, N (z), of TGSS sources extends out to

large redshifts. The motivation is that so far the N (z) of TGSS objects has been estimated

directly only at relatively low redshifts by cross-matching them with the galaxies of the

SDSS spectroscopic sample (Rana and Singh Bagla, 2018), which do not reach beyond

z = 1.

The observed and model luminosity function of the radio sources (Willott et al., 2001)

suggests however that the distribution of TGSS objects should extend to much higher

redshifts than SDSS galaxies, so it is worth checking directly that this is indeed the case. In-

direct verification of this prediction already exists: Nusser and Tiwari (2015) cross matched

the NVSS catalogue with two small spectroscopic surveys (CENSORS and Hercules, Best

et al. 2003; Waddington et al. 2001) and found that the distributions of NVSS sources

extends out to z ≃ 3.

To prove that this is also the case for the TGSS sources, we performed a similar match-

ing procedure as described above to build a TGSS×SDSS-QSO cross-matched catalogue.

In the process we ignored astrometric errors in the QSO positions, which are negligible,

and searched for TGSS - QSO matches within the angular resolution of TGSS (25′′) and in

the area common to the two surveys. We found 9,645 matches corresponding to ∼ 1.5% of

the TGSS sources, most of them within 8′′ of the target object. The fraction of matched

objects is small but still considerably larger than that of objects with an optical counterpart

in the SDSS galaxy catalogue (≃ 0.6%, Rana and Singh Bagla 2018). The distribution of the

TGSS×SDSS-QSO sample extends to z ∼ 4 (blue, dotted histogram in Fig. 5.3), which is far

beyond the redshift probed by Rana and Singh Bagla (2018), and is characterised by a dou-

ble peak like that of the parent DR14 QSO sample (red, continuous histogram in Fig. 5.3),

suggesting that this small cross-matched catalogue traces the redshift distribution of the

optically selected QSO population.

The fact that this redshift distribution is so different from the one found by Rana and

Singh Bagla (2018) strongly suggests that the TGSS catalogue contains various types of

radio sources. We shall take into account this fact to model their correlation properties.
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5.2 Angular Clustering Analysis

In this section we describe the statistical tools and the main results of the TGSS clustering

analysis. We mainly use the angular power spectrum. However, the auto correlation

function is also considered.

5.2.1 2-point Angular Correlation Function

We measure the angular two-point correlation function using the TreeCorr package

(Jarvis et al., 2004). The estimator for this measurement is defined in § 3.1.2. We use

ten times more sources in random catalogues in comparison with the real catalogue, by

accounting for the complex geometry of the sample. The TreeCorr package generates ACF

in bins of width ∆ log(θ◦) = 0.1, along with estimated errors obtained from propagating

the Poisson noise.

The cosmic variance contribution could be estimated under the assumption of Gaus-

sian errors from Eq. 20 of Eisenstein and Zaldarriaga (2001). Here we prefer to ignore

this term since at the angular separations considered in our analysis (θ ≤ 0.1◦) the Gaus-

sian approximation is expected to break down and the error budget to be dominated by

Poisson noise rather than cosmic variance. For the same reason we ignore the effect of

the “integral constraint”, that is, the fact that the mean surface density of the sources is

computed over a fraction of the sky (e.g., Roche and Eales, 1999). Given the large areas

covered by the radio samples and the small angular scales considered here, the integral

constraint is small and can be neglected.

Figure 5.4 shows the measured ACF of the Reference TGSS catalogue(red dots with

error bars) and of the Reference NVSS catalogue(small cyan asterisks). Both ACFs exhibit

a characteristic double power-law shape (Blake and Wall, 2002b) which reflects the fact

that while on scales larger than θ ≃ 0.1◦ the signal is dominated by the correlation among

sources in different dark matter halos (i.e., the two-halo term), at smaller scales it is

dominated by correlation of multiple sources within the same halo (the one-halo term).

This second term depends on the density profile of the source, the typical number of radio

components per source and the fraction of sources with multiple radio components. In

the harmonic space, this one-halo term generates an almost constant, shot-noise-like

signal that needs to be accounted for to compare the measured APS with theoretical

predictions. The magnitude of this term depends on the characteristics of the sample: in

brighter samples with a larger number of extended sources (and thus with a larger fraction

of objects with multiple radio sources) this term is large, which explains why in Fig. 5.4

the amplitude of the TGSS ACF increases with the flux threshold.
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Following Blake and Wall (2002b) we compute this term by fitting a power law to the

measured ACF below θ = 0.1◦, under the hypothesis that the number of radio components

per TGSS source is the same as in NVSS. In Fig. 5.4 we show the best-fitting power law to

the reference TGSS sample (dashed line vertically offset to avoid confusion) together with

the values of the best-fit amplitude A and slope γ. As these are different for the different

TGSS subsamples, the best-fitting procedure has been repeated for all TGSS subsamples

considered in our analysis.

For the Reference TGSS sample we estimate that the fraction of TGSS sources with

multiple components is e = 0.09± 0.009, where errors on e are propagated from the

uncertainties of the measured ACF parameters A and γ. The corresponding shot-noise-

like correction that we apply to the measured angular spectrum is ∆Cℓ ≃ 2eσN /(1+e) =
(8.51±0.66)×10−6, where σN is the mean surface density. For the Reference NVSS case the

corresponding values are e = 0.07±0.005 and ∆Cℓ = (2.55±0.18)×10−6 (see Table 5.1).

5.2.2 Angular Power Spectrum

To measure the auto- and cross- APS we use the Pseudo-Cℓ estimator defined in Chapter

3 in § 3.2.2. We focus our analysis on the multipole range 2 ≤ ℓ≤ 100 and consider the

angular power in bins ∆ℓ = 5. We neglect the mode ℓ = 1 because the dipole of TGSS

sources has already been studied by Bengaly et al. (2018). The reason for setting ℓ≤ 100

is to reduce the impact of nonlinear effects that correlate modes with large multipoles ℓ.

Mode coupling is also induced by the incomplete sky coverage, although the effect is not

expected to be large, given the wide areas of the NVSS and TGSS catalogues. The∆ℓ= 5 bin

is introduced to further reduce the effect of mode coupling because the effect of binning

is to decorrelate measurements, resulting in a more Gaussian likelihood (Thomas et al.,

2011). For all these reasons we assume Gaussian-independent random errors that, for the

individual ℓ mode are computed using Eq. (3.49) where the values of fsky corresponding

to the unmasked sky covered by the sample, are shown in Table 5.1.

Figure 5.5 compares the measured APS of TGSS (red dots) and NVSS (blue squares)

samples, as well as that of the TGSS×NVSS cross-matched sample (green triangles). All

spectra are corrected for the multiple source contributions ∆Cℓ listed in Table 5.1. Error-

bars represent the 1σ Gaussian uncertainties (Eq. 3.49).

The NVSS and TGSS samples considered in the plot are slightly different from the

Reference ones since we applied the same angular mask obtained by multiplying the TGSS

and NVSS masks pixel by pixel. The sky fraction covered by both samples is fsky ≃ 0.67,

the same as that covered by TGSS×NVSS. The rationale behind this choice is to eliminate
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Fig. 5.4 Angular two-point correlation function for the Reference TGSS (red dots) and
NVSS (light blue asterisks) samples. Green triangles and purple squares represent the
ACF of two additional TGSS subsamples selected at different flux cuts S150 > 70mJy and
S150 > 100mJy, respectively. Error bars represent Poisson uncertainties. The black dashed
line shows the best-fit power law to the ACF of the reference sample at θ < 0.1◦. A vertical
offset has been applied to avoid overcrowding. The best fitting parameters are indicated
in the plot.
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Fig. 5.5 Angular power spectrum of the NVSS (blue squares) and TGSS (red dots) samples
with Gaussian error bars. Small green triangles show the APS of the TGSS×NVSS matched
catalogue. All spectra are corrected for shot noise and multiple source contributions ∆Cℓ.

all the differences that may result from sampling different regions (cosmic variance) and

geometries (convolution effects).

There is a striking difference between the TGSS and NVSS angular spectra below ℓ≃ 30,

where the amplitude of the former is significantly larger than that of the latter. At larger

multipoles the two spectra agree with each other within the errors. The angular spectrum

of the matched TGSS×NVSS catalogue is similar to that of TGSS-only, which should be

expected considering that almost 95% of the TGSS reference sample have counterparts

in NVSS. Taking into account the lack of a one-to-one relation between multipoles ℓ and

angular separations θ, we identify the amplitude mismatch between the TGSS and NVSS

power spectra at ℓ≤ 30, with the amplitude difference of the angular correlation functions

seen at θ ≥ 0.3◦ (Fig. 5.4).
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A useful sanity check to assess the reliability of this result is to compare our NVSS APS

with the ones measured by Blake et al. (2004a) and Nusser and Tiwari (2015). The test

is successful in the sense that it shows a good qualitative agreement with the measured

spectra in both cases. Analogously, it is useful to compare our TGSS angular spectrum

with the one computed by Bengaly et al. (2018). Although their analysis focused on the

dipole moment, figure 4 in their paper shows a significant mismatch between the TGSS

and the NVSS APSs at ℓ< 30 which is analogous to the one detected in our analysis.

This discrepancy between the two spectra is quite unexpected, considering the simi-

larities between the two samples both in terms of surveyed areas and the likely nature of

the sampled sources. It may either reflect a genuine physical origin, related to the intrinsic

clustering properties and redshift distribution of the two samples, or it could be an artefact

produced by some observational systematic errors that have not been properly identified

and accounted for. In the remainder of this section we explore the latter possibility by

performing a number of tests aimed at testing the robustness of the APS measurements to

different observational quantities that are expected to correlate with the measured radio

flux and Galactic emission.

Robustness to Flux Cuts

Spurious clustering features on large angular scales can be generated by errors in the flux

calibration that are coherent across large areas. This type of systematic uncertainty is

indeed present and can be significant for low-frequency radio observations (Schwarz et al.,

2015) reaching up to 10−20 % in amplitude for the case of the TGSS survey (Hurley-Walker,

2017). The angular scale of coherence is related, in the TGSS case, to the size of the area

covered during the observing session which is typically of the order of ∼ 10◦ (Bengaly et al.,

2018). The impact of this effect was simulated by Bengaly et al. (2018) who focused on the

dipole moment, and it turned out to be quite small (∼ 1 % on the dipole amplitude). This

is much smaller than the TGSS versus NVSS power mismatch and can hardly explain it,

even taking into account that its amplitude may increase at ℓ> 1, on the angular scales

corresponding to those of the typical observational session. For this reason we exclude

this possibility and neglect the effect of flux calibration errors in this analysis.

Other possible systematic errors that are not related to flux calibration can be induced

by the flux threshold used to select the sample. For example, random uncertainties in the

flux measurements, that in the TGSS case are of the order of 10% (Intema et al., 2017), can

scatter objects fainter than the completeness limit of the survey into the catalogue. Their

impact in the APS can be appreciated by changing the value of the lower flux threshold

S̄150. Analogously, including bright, extended objects associated with multiple sources
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may artificially increase the clustering signal. In this case, an effective robustness test

would be to change the upper flux cut S̄150 of the TGSS survey.

To quantify the impact of the systematic errors related to the flux cuts we ran a set of

tests in which the TGSS APS was measured by varying the values of S̄150 and S̄150, keeping

the geometry mask fixed. The upper panel of Fig. 5.6 illustrates the sensitivity to S̄150.

The curves drawn with different line styles indicate the difference between the APS of the

TGSS sample selected at a given cut S̄150 with respect to the Reference sample, for which

S̄150 = 200mJy. The difference ∆Cℓ is expressed in units of the Gaussian error, σCℓ
, of the

reference APS. The results are remarkably independent of the choice of the lower flux cut.

Selecting objects with S̄150 = 100mJy, that is, brighter than the formal completeness limit

of the TGSS sample, does not significantly modify the results. Similarly, when we use more

conservative flux cuts of S̄150 = 300 and 400mJy (the second one not shown in the plot to

avoid overcrowding) we also find results that are consistent with the Reference ones within

the 1-σ Gaussian errors.

We also tried forcing the lower cut below the TGSS completeness limit, by setting

S̄150 = 50mJy. The rationale behind this choice is to identify possible systematic effects

that may be present also in the complete sample. We find that using this cut significantly

enhances the power at low multipoles, especially at ℓ ≃ 20. This is a sizeable effect

that interestingly occurs on the angular scale (5◦×5◦) of the mosaics that constitute the

building blocks of the TGSS survey. Since the overall TGSS source catalogue is obtained

by summing up mosaic-based data, this effect is likely to be attributed to sensitivity

variations in adjacent mosaics, or even to the fact that the sensitivity pattern in these

mosaics is replicated in adjacent mosaics. As a consequence, the surface density of

faint objects with fluxes below the completeness threshold coherently varies across each

mosaic, generating a spurious clustering signal on the angular scale of the mosaic itself.

A small excess of power is also seen at ℓ≃ 20 if larger S̄150 cuts are applied. However, its

statistical significance is much less than in the S̄150 = 50mJy case. This fact corroborates

the hypothesis that this excess power reflects an observational systematic effects that are

corrected for by selecting objects above the completeness limit of S150 = 100mJy. Our

results are also robust to the choice of the upper threshold S̄150, as shown in the middle

panel of Fig. 5.6, which compares two more permissive upper flux cuts at 3000 and 5000

mJy against the Reference of S̄150 = 1000mJy.

Finally, we performed analogous robustness tests on the TGSS × NVSS catalogue

by similarly modifying the upper (lower) flux cuts in both samples below (above) the

completeness limits. As for the TGSS sample, we find no significant departures from the

Reference angular power spectrum. Further tests aimed at detecting possible systematic
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effects in the TGSS sample that may generate spurious clustering signal can be found in

the appendix of (Dolfi et al., 2019).

Robustness of Mask Selection

To quantify possible systematic effects induced by Galactic foregrounds or by any other

effect related to the presence of the Galaxy, we tested the impact of using different geome-

try masks characterised by more conservative cuts in the Galactic latitude. We explored

two cases. In the first one we excluded all objects with |b| < 15◦ and in the second one

we discard the region |b| < 20◦. The unmasked sky fraction is consequently reduced to

fsky ∼ 0.61 and fsky ∼ 0.56, respectively. In both cases we considered the same flux cuts as

the reference TGSS sample.

We then computed the residuals of the corresponding angular power spectra with

respect to the TGSS reference case in units of Gaussian error. The results, displayed in the

lower panel of Fig. 5.6, appear to be robust to the inclusion of objects near the Galactic

plane. It is worth noticing that some difference in the various spectra is to be expected

because different geometry masks are used here. They are obviously small, since they

contribute to the plotted residuals.

Relatively nearby sources can generate high-amplitude clustering signal that is not

fully accounted for in the modelling. As we do not have information on the distance of

the sources, an effective strategy to minimise the impact of the nearest ones is to exclude

objects near the Supergalactic plane. Tiwari and Jain (2015) adopted this approach in

measuring the NVSS dipole and found that this cut has a negligible impact on the dipole

signal. They conclude that the dipole is largely generated by distant objects. In Section

5.3.1, we show that the model redshift distribution of TGSS sources (in Fig. 5.7) does not

feature the prominent local (z < 0.1) peak that, instead, characterise the NVSS one. Given

the lack of a prominent local population of TGSS objects, we conclude that removing

TGSS objects near the Supergalactic plane will likely only increase the shot noise error

and, therefore, we decided not to apply additional cuts to the geometry mask.

5.3 Modelling the Angular Power Spectrum

The analyses performed in the previous sections indicate that the APS of the TGSS sources

is significantly larger than that of the NVSS at ℓ≃ 30 and that the mismatch cannot be

attributed to known potential sources of observational systematic errors.

In this section we consider the alternative hypothesis that the large-scale TGSS power

is genuine and reflects the intrinsic clustering properties of the TGSS radio sources. To test
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Fig. 5.6 Angular power spectrum residuals of different TGSS samples with respect to
the Reference case, expressed in units of Gaussian errors. The upper panel shows the
normalised residuals of the TGSS samples selected at different values of the minimum
flux cut, S̄150, indicated in the plot, compared to the Reference case of S̄150 = 200mJy.
In the middle panel we consider samples selected at different values of the maximum
flux cut, S̄150; the Reference is S̄150 = 1000mJy. The bottom panel shows the residuals for
samples with different geometry masks, cut at different values of the Galactic latitude,
also indicated in the plot, referred to the baseline case of |b| > 10◦. The dotted horizontal
lines in all panels indicate the 1 σ Gaussian error of the Reference sample. The dashed
horizontal line indicates the zero residual level.
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this hypothesis we compare the measured APS with the theoretical predictions obtained

assuming a PlanckΛCDM cosmology (Planck Collaboration et al., 2016) and physically

motivated models for the redshift distribution, N (z), and bias, b(z), of TGSS sources.

Since we are interested in large scales, we limit our comparison to the range ℓ≤ 100. In

this comparison we do not try to infer cosmological parameters, as we assume that the

background cosmological model is well known. Instead, we consider various realistic N (z)

and b(z) models to investigate whether the large-scale power of TGSS can be accounted

for within the known observational and theoretical errors. To assess the validity of this

approach we perform the same comparison for the NVSS sample. Only the Reference TGSS

and NVSS samples are employed here.

To model the APS of TGSS sources we use the code CLASSgal (Lesgourgues, 2011b; Di

Dio et al., 2013) which accounts for nonlinear evolution of matter density fluctuations

and offers the possibility to include physical effects such as redshift space distortions,

gravitational lensing, and general relativistic effects. Required inputs are the parameters of

the underlying cosmological model (given by our fiducial set of parameters), the redshift

distributions of the sources and their linear bias.

All our APS models share the same treatment of the mass power spectrum and differ

in the choice of N (z) and b(z). The characteristics of the model mass power spectrum

are described below. We also quantify the impact of the various physical effects that

contribute to the clustering signal by considering the N (z) + b(z) model S3-HB described

in the following section.

• Nonlinear effects. The nonlinear evolution of mass density fluctuations is modelled

within the so-called HALOFIT framework (Smith et al., 2003; Takahashi et al., 2012).

On the scales of interest (ℓ≤ 100) nonlinear effects are expected to be small, and for

this reason have been ignored altogether in some of the previous APS analyses (e.g.,

Nusser and Tiwari, 2015). To quantify the impact of nonlinear effects we compared

the APS predicted with HALOFIT with the one obtained using linear perturbation

theory, using the redshift distribution and bias of the model S3-HB. We found that

at ℓ= 100 the nonlinear evolution enhances the angular power by just ∼ 0.5%.

• Redshift space distortions (RSDs). Peculiar velocities amplify the clustering signal

on large angular scales. We have compared the APSs obtained with and without

including RSD and found that RSDs amplify the clustering signal by ∼ 3.5 % at ℓ= 2.

The amplitude of the effect decreases at larger multipoles; it is ∼ 2 % at ℓ= 20 and

∼ 1 % at ℓ= 40.
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• Magnification lensing. Gravitational lensing modulates the observed flux of objects

and therefore reduces or increases the number counts above a given flux threshold.

This effect generates an additional correlation (or anti-correlation) signal that can

be described in terms of magnification-magnification and magnification-density

correlations (Joachimi and Bridle, 2010). The magnitude of the effect depends on

the slope of the cumulative luminosity function at the limiting flux of the sample

(Joachimi and Bridle, 2010; Di Dio et al., 2013). Because of the composite nature of

TGSS and NVSS, which contain different types of objects with different luminosity

functions (see e.g. below), one needs to account for their individual contributions

to the magnification signal. We do that by considering an effective luminosity

function slope that we computed by considering the luminosity function of each

object type at different redshifts (from Willott et al. 2001), estimating their slope

in correspondence of their limiting flux and computing the effective slope as α̃=∑
i
∑

j α(i , j )Ni (z j )/
∑

i
∑

j Ni (z j ) ≃ 0.3, where i runs over all object types, j runs over

the redshift values, Ni (z) is the redshift distribution of object type i and α(i , j ) the

slope at the redshift j . For this we have assumed the S3-HB model. We find that in

the TGSS case the magnification lensing provides a small but significant, negative

contribution to the clustering signal. On the scales of interest (ℓ< 40) the amplitude

of the effect is ∼ −6%, increasing to ∼ −9% at ℓ = 2 and decreasing to ∼ −3% at

ℓ= 100.

• General Relativistic effects. CLASSGal provides the opportunity to include general

relativistic contributions to the APS. Their impact, however, is small and limited to

very large angular scales. It is of the order of 1% at ℓ∼ 4, sharply decreasing to 0.1%

at ℓ= 30.

In addition to these physical effects that are included in all our models, there are some

approximations and corrections that we need to make explicit before considering different

model predictions and their comparison with data.

• Limber approximation. Several APS models in the literature have adopted the

Limber (1953) approximation (refer to Eq. (3.44) and the related text) to speed up

the APS numerical integration. As anticipated in Chapter 3, we do not adopt Limber

approximation in this analysis. However, it is useful to quantify its impact when

comparing our results with those of other analyses. CLASSGal allows one to switch

the Limber approximation option on and off and to select the ℓ value above which

the approximation is adopted. The Limber approximation boosts the modelled

angular power at small ℓ values. In the S3-HB model the effect is as large as ∼ 15 %
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at ℓ< 5 but then its amplitude rapidly decreases to ∼ 7 % at ℓ= 10 and to ∼−1 % at

ℓ= 20.

• Geometry mask. The effect of the geometry mask is to modulate the signal and to

mix power at different APS multipoles. This effect can be expressed as a convolution

of the form C̃ℓ =
∑
ℓ′ Rℓℓ′Cℓ′ , where Cℓ is the model APS predicted by CLASSGal and

Rℓℓ′ is the mixing matrix, evaluated APS of the survey mask (see e.g. equation 6 of

Balaguera-Antolínez et al. (2018)). The main effect of this mask is to modulate power

at small multipoles. As we are interested in the range 2 ≤ ℓ≤ 100, we do not account

for the survey beam, which instead would modulate power at large multipoles.

To finalise our APS models of the TGSS and NVSS catalogues we need to specify the

redshift distribution and the bias of the sources. A specific N (z) + b(z) model was adopted

to quantify the impact of the various effects that contribute to the APS. Now we describe

and justify the adoption of that model and explore its uncertainties by considering a

number of physically motivated models of both N (z) and b(z) that have been proposed in

the literature. We quantify the related theoretical uncertainties by taking into account the

scatter in the corresponding APS predictions.

5.3.1 Redshift Distribution Models

The analysis of the cross-matched TGSS×SDSS QSO catalogue has confirmed that the

distribution of TGSS sources extends to much larger redshifts than those probed by cross

correlating them with galaxy redshift catalogues (Rana and Singh Bagla, 2018). As a

consequence, although the majority of the TGSS APS signal at low multipoles is probably

built up at z ≤ 0.1 as in the NVSS case (Blake et al., 2004a; Nusser and Tiwari, 2015), a

non-negligible contribution could also be provided by highly biased objects at higher

redshifts. To test this hypothesis we need to identify the nature of the TGSS sources and to

probe their distribution along the line of sight.

As we discussed in the introduction, the difficulty in finding IR/optical counterparts to

the objects identified in low-frequency radio surveys makes it difficult to measure their

N (z) directly. Only Nusser and Tiwari (2015) have adopted such an approach by cross

correlating the NVSS catalogue with a deep but small sample of objects with measured

spectroscopic redshifts. With about 300 matches they were able to trace the redshift

distribution of NVSS objects out to z ∼ 3. Unfortunately we cannot repeat this procedure

with TGSS because of the small number of TGSS matched objects. Therefore we need to

change the approach and instead model the TGSS redshift distribution.
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Fig. 5.7 S3 model redshift distributions N (z) of the various types of sources in the TGSS
(top) and NVSS (bottom) samples. The redshift distribution of each source type is repre-
sented by a different colour, as specified in the upper panel. The thick, black histogram
shows the redshift distribution of all types of sources combined.
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For the redshift distribution modelling we use the SKA Simulated Skies (S3) database6.

This tool, described in detail in Wilman et al. (2008), is meant to model radio observations

in a given band within a sky patch. It is a phenomenological model in the sense that it

uses constraints on the available, observed luminosity functions at different redshifts.

This simulator also mimics the clustering properties of radio sources by assuming a

model for their bias. This latter aspect, however, is quite uncertain, as shown by recent

clustering analyses of radio sources (Magliocchetti et al., 2017; Hale et al., 2018). In

principle, we could have used the newer simulator, T-RECS (Bonaldi et al. 2019) that,

in addition to predicting more realistic clustering properties than S3, also implements

more recent evolutionary models for SFGs, and treats RQ AGNs as part of the SFG class,

under the assumption that their radio emission is dominated by star formation. However,

considering that: i) we use the simulator to model the redshift distribution of the radio

sources and not their clustering properties and ii) the number of SFGs and RQ AGNs

expected in our TGSS sample is negligible, using T-RECS instead of S3 would have little or

no impact on our results. Therefore we decided to stick to S3 instead of using T-RECS that

only became available when our analysis was in a very advanced stage of completion.

In our application we simulated two radio surveys over the same sky patch of 400deg2

at 150 MHz and at 1.4 GHz, and considered objects with fluxes above the flux limits of our

Reference samples, that is, S1.4 > 10 mJy and S150 > 200 mJy, respectively. No upper flux

cuts were considered since, as we have seen, results are very robust to the upper flux cut.

As a result, we obtained two samples of ∼ 2000 TGSS-like and ∼ 5000 NVSS-like sources,

respectively.

The simulator generates five types of radio sources: i) star forming galaxies (SFGs); ii)

radio quiet quasars (RQQs); iii) Fanaroff-Riley class I sources (FRI); iv) Fanaroff-Riley class

II sources (FRII) and v) GHz-peaked radio sources (GPSs). Their redshift distributions in

the simulated TGSS and NVSS catalogues are shown respectively in the upper and lower

panels of Fig. 5.7 together with the cumulative N (z) (thick line). In both catalogues the

counts are dominated by FRI and FRII-type radio sources. The distribution of FRI objects

peaks at z ∼ 0.6 and dominates the counts at z < 1. The distribution of FRII objects is

much broader and dominates the counts at higher redshifts. The number of SFGs and GPS

objects is much smaller. However, being concentrated in the local universe, they represent

a significant fraction of the counts at z ≤ 0.1. Radio quiet quasars are also comparatively

rare and have a very broad distribution, being a sub-dominant population at all redshifts.

6http://s-cubed.physics.ox.ac.uk/

http://s-cubed.physics.ox.ac.uk/
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This N (z) model, which we refer to as S3, is the one adopted to predict the APS of both

the NVSS and TGSS samples. It is implemented in the form of a step function with the

same bin size ∆z = 0.1 used in Fig. 5.7.

5.3.2 Linear Bias Models

The linear halo bias parameter b(z) (defined in Ch. 2, Eq. (2.44)) has a significant impact

on the APS model since it amplifies or decreases the clustering signal of the various

populations at different redshifts. Direct estimates of linear bias based on cross-matches

with CMB lensing convergence maps (Allison et al., 2015), spectroscopic/photometric

redshift catalogues (Lindsay et al., 2014) or by joining the lensing and the clustering

information (Mandelbaum et al., 2009) are few, limited to small samples and, therefore,

coarsely trace the bias evolution. In this analysis in order to appreciate the impact of bias

model uncertainties on the APS prediction we decided to explore four different, physically

motivated, bias models taken from the literature. They all assume a deterministic, linear

bias that evolves with time (redshift).

• Halo Bias model [HB]. This bias prescription relies on the halo model and assumes

that radio sources are hosted in dark matter halos of different masses (and biases).

Because of the rarity of radio sources, we assume that halos can host at most one

radio source, located at their centre. For consistency, we also assume that the radio

sample contains the same classes of sources as in the N (z) model. We make some

hypotheses on the halo host: we adopt the Sheth-Mo-Tormen(SMT) halo bias model,

bh(M , z), defined in Eq. (2.46). and assume that the masses of the halos that host a

given source type are Gaussian distributed around a typical mass M̂ with a standard

deviation 0.2 M̂ (Ferramacho et al., 2014). Indicating the Gaussian distribution as

G(M , M̂), we estimate the bias of each type i of radio source as

bi (z) =
∫ ∞

0
Gi (M , M̂i )bh(M , z)dM . (5.1)

The values of M̂i are also taken from Ferramacho et al. (2014): M̂SFG = 1×1011M⊙,

M̂RQQs = 3×1012M⊙, M̂GPS = M̂FRI = 1×1013M⊙ and M̂FRII = 1×1014M⊙.

The current implementation of CLASSGal does not allow one to specify different

analytic bias functions bi (z) for the different source types. To circumvent this

problem we approximate each bi (z) with a step function with the same binning as
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Fig. 5.8 Model linear bias evolution for different type of Radio sources. FR II (blue dashed
curve) sources are most biased amongst others. The horizontal lines are bi (z > 1.5) =
bi (z = 1.5) cut-off margin for truncated bias models THB and TPB.

Ni (z), and compute the effective bias function of the catalogue:

beff(z) =
∑

i Ni (z)bi (z)∑
i Ni (z)

. (5.2)

We then feed the CLASS code with an effective redshift distribution of the objects

Ñ (z) = beff(z)×N (z). Next we estimate the effective bias parameter of the sample

beff =
∑

i
∑

j bi (z j )Ni (z j )/
∑

i Ni (z j ) and feed this single parameter to the code as the

linear bias of the whole sample. In Figure 5.9 we show the effective bias function

beff(z) of the NVSS (top) and TGSS (bottom) catalogues for all the models explored

and, in particular, for the HB model (purple, continuous curve).
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This somewhat cumbersome procedure is analogous to using a normalised red-

shift distribution N̂ (z j ) =∑
i Ni (z j )/

∑
i
∑

j Ni (z j ) and a normalised biasing function

b̂(z j ) =∑
i bi (z j )Ni (z j )/

∑
i
∑

j Ni (z j ) as input parameters to CLASSGal.

• Truncated Halo Bias model [THB]. Some previous analyses (e.g., Tiwari and Nusser

2016) have assumed a truncated bias evolution in which the halo bias does not

increase indefinitely with the redshift but remains constant beyond z = 1.5, that

is, bi (z > 1.5) = bi (z = 1.5). Although this is clearly a rough approximation and

there is no compelling theoretical reason to justify an abrupt cut on the bias at

high redshift, we also consider this possibility for the sake of completeness and as a

robustness test. In Fig. 5.9 this model is represented by the blue short-dashed curve.

For different radio sources, the HB (dashed and dotted curves) and THB (horizontal

dotted lines) are represented in Fig. 5.10.

• Parametric Bias model [PB]. Tiwari and Nusser (2016) proposed a parametric bias

model for the NVSS sources also used by Bengaly et al. (2018) to model the TGSS

bias. The parameters of the parametric models, specified in these works, have been

determined by best-fitting the number counts and angular spectra of the radio

sources.

This parametric model relies on the physical model proposed by Nusser and Tiwari

(2015). Here we prefer to avoid using their parametric expression since the param-

eters were derived by constraining the correlation properties of the sources that

they were investigating. Instead, we follow the original Nusser and Tiwari (2015)

approach and: i) assume that the radio activity is a strong function of the stellar

mass; ii) adopt the expression provided by Nusser and Tiwari (2015) to quantify the

fraction of radio sources as a function of stellar mass and redshift: F (M∗, z), where

M∗ is stellar mass; and iii) assume that the stellar mass is related to the halo mass

as proposed by Moster et al. (2013). We use the analytical expression presented

in Eqs. 14 and 15 of Nusser and Tiwari (2015), and assume that radio sources can

be accounted for the function of stellar mass. The value of b(z) is quantified by

minimum stellar mass that is the lower limit of the integral in Eq. (5.2) To do this we

use the SMT bias model (Eq. (2.46) halo bias model and the halo mass function of

Jenkins et al. (2001). In this framework the difference between the TGSS and NVSS

bias is determined by the choice of the minimum halo mass that can host a radio

source, which sets the lower limit of the integration. For the NVSS case we adopt

1.4×1011M⊙, as in Nusser and Tiwari (2015), whereas for TGSS, which contains

brighter objects, we use 1012M⊙. However, as we have verified, this bias model is
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Fig. 5.9 Effective bias function (Eq. 5.2) for all the models listed in Table 5.2. The different
bias models have different line styles, as indicated in the label. Top panel: Bias function
of the Reference NVSS catalogue. Bottom panel: Bias function of the Reference TGSS
catalogue.

not very sensitive to the choice of this minimum mass. The effective halo bias of the

PB model is represented by the red, long-dashed curves in Fig. 5.9.

• Truncated Parametric Bias model [TPB]. It is the same as the PB model but, like

in the THB case, we assume no bias evolution beyond z = 1.5 The corresponding

bias function is shown as the light blue, dot-dashed curve in Fig. 5.9. We show the

impact on minimum stellar mass on the α0 and α1 parameters defined by (Nusser

and Tiwari, 2015) in Fig. 5.10. The red and black lines represent minimum masses

used for TGSS and NVSS and are coinciding for redshifts z > 0.5. Instead, for more

massive objects, the bias is significantly different (blue and green lines).
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Fig. 5.10 Model bias evolution as a function of minimum mass. The minimum masses
used for TGSS and NVSS are represented by red and black curves. The parametric values
are taken from (Nusser and Tiwari, 2015).

5.4 Models vs. Measurements: χ2 Analysis

In Figures 5.11 and 5.12 we compare the measured NVSS and TGSS angular power spectra

shown earlier in Fig. 5.5, with the APS models described in Sect. 5.3.

Already the visual inspection reveals that none of the APS models succeed in repro-

ducing the angular power of TGSS sources at ℓ≤ 30. The magnitude of the mismatch is

remarkable indeed. To quantify the discrepancy we have computed the reduced χ2 in

two intervals: ℓ= [2,30] (χ2
30) to focus on the range in which the mismatch is larger and

ℓ= [2,100] corresponding to the full multipole range considered in our analysis (χ2
TOT).

The χ2 was evaluated as follows (e.g. Dodelson 2003):

χ2 = ∑
ℓ1,ℓ2

(Cℓ1 −C M
ℓ1

)C −1
ℓ1,ℓ2

(Cℓ2 −C M
ℓ2

) (5.3)

where Cℓ corresponds to the measured APS and C M
ℓ

to the APS model. We assume that the

covariance matrix is diagonal, that is, Cℓ1,ℓ2 =σCℓ1
δℓ1,ℓ2 , where σCℓ

is the Gaussian error
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Sample b(z) χ2
30/d.o.f. (Q = P (>χ2)) χ2

TOT/d.o.f.

NVSS

HB 1.34 (0.25) 1.83
THB 1.64 (0.16) 1.21
PB 0.61 (0.65) 1.62

TPB 0.66 (0.62) 1.30

TGSS

HB 9.40 (4.5×10−7) 3.18
THB 9.62 (2.9×10−7) 3.18
PB 9.36 (4.7×10−7) 3.09

TPB 9.42 (4.3×10−7) 3.10

Table 5.2 Angular power spectrum model parameters used in the χ2 analysis and results.
Col. 1: Type of catalogue. Col. 2: Bias model (see text for the meaning of the acronyms).
Col. 3: reduced χ2 value obtained when considering the multipole range ℓ= [2,30] and
the probability Q = P (>χ2). Col. 4: reduced χ2 value obtained when considering the full
multipole range ℓ= [2,100]. In all the cases the redshift distribution N (z) is based on the
S3 simulations as detailed in the text.

in Eq. (3.49). The sum runs over all ∆ℓ bins from ℓ = 2 to either ℓ = 30 (χ2
30) or ℓ = 100

(χ2
TOT). The number of degrees of freedom Nd.o.f. is set equal to the number of∆ℓ bins. The

values of the reduced χ2 are listed in Table 5.2 together with, for χ2
30 only, the probability

Q = P (>χ2).

We stress that here we are using the χ2 statistics to quantify the goodness of the fit,

assuming no free parameters in the model APS. The mismatch between prediction and

measurement is so spectacular and the corresponding χ2 value is so large that it is not

worth performing a more rigorous maximum likelihood analysis that accounts for error

covariance which, as we have argued, is expected to be small. This result clearly shows

that none of the physically motivated APS models built within theΛCDM framework can

account for the excess TGSS power on large scales, also when one takes into account

theoretical uncertainties, quantified by the scatter in model predictions.

The only possibility to match the measured large-scale power would be to advocate

a population of relatively local and highly biased radio sources that, however, is neither

supported by direct observational evidence nor by the results of the NVSS clustering

analyses, which instead show that theoretical predictions match the measured APS, as

visible in Fig. 5.11. The value of the reduced χ2 for NVSS in Table 5.2 is close to unity for

all models explored and quantifies the agreement in all the cases.

It is interesting to look at the differences between the APS models. At low redshifts the

effective bias of the PB and TPB models is larger than that of the HB and THB ones. This,

and the fact that the angular power on large scales is largely generated locally (see e.g., Fig.
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Fig. 5.11 Measured NVSS APS (blue squares from Fig. 5.5) vs. model predictions. The
different models are listed in Table 5.2 and described in the text, and represented with
different line styles, as indicated in the plot.
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Fig. 5.12 As in Fig. 5.11 but for the TGSS sample. The measured APS (red dots) is compared
to model predictions (continuous curves with different line styles).
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7 in (Nusser and Tiwari, 2015)) , explains why the APS predicted by the PB models is larger

than that predicted by the HB models at low multipoles, and why the former provide a

better fit to the NVSS data. Also, truncating the bias evolution at z = 1.5 has very little

impact on our results since distant objects, even if highly biased, are quite sparse and

provide a shot-noise-like signal rather than producing coherent power on large angular

scales.

It is worth pointing out that in this analysis we are considering the power within

relatively large ℓ bins. Therefore, our result has no implication on the NVSS and TGSS

dipole whose anomaly has been analysed in a number of previous works. In this respect,

all we can infer is that if indeed the NVSS dipole is anomalously large, then our analysis

implies that the TGSS dipole is even larger, in qualitative agreement with the conclusions

of the Bengaly et al. (2018) analysis.

5.5 Discussion and Conclusions

In this chapter we have analysed the angular clustering properties of the radio sources

in the First Alternative Data Release of the TGSS survey. Our analysis was performed in

the harmonic space, to minimise error covariance and to facilitate the comparison with

theoretical predictions, and focused on relatively large angular scales. This choice was

motivated by the results of recent clustering analyses that revealed a large clustering signal

(compared to that of the NVSS sources) at angular separations larger than ∆θ ≃ 0.1◦ (Rana

and Singh Bagla, 2018) and an anomalously large dipole amplitude, in clear tension with

ΛCDM expectations (Bengaly et al., 2018). Our aim was to investigate the behaviour of

the TGSS angular power spectrum at multipoles ℓ > 1 and compare it with theoretical

predictions, taking into account known observational and theoretical uncertainties. The

clustering analysis of the TGSS sample was repeated on the NVSS catalogue and on a

sample of TGSS objects with a NVSS counterpart. The rationale behind this choice was to

compare our results with those of a well-studied sample that contains most of the TGSS

sources distributed over a similar sky area.

The main results of our analysis are as follows.

• The vast majority of TGSS sources have a counterpart in the NVSS catalogue (about

94% when we consider our Reference samples) and are characterised by a spectral

index Gaussian distributed around the value αν ≃−0.77, similar to that of the NVSS

sources and suggesting that the two catalogues contain similar classes of radio

sources.
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• The redshift distribution of TGSS sources extends well beyond z = 0.1, that is, the

typical scale probed by galactic counterparts with measured redshifts (Rana and

Singh Bagla, 2018). We proved this point by cross-matching TGSS sources with opti-

cally identified QSOs in the SDSS-DR14 catalogue. The fraction of cross-matched

objects is small (∼ 1.5 %) but sufficient to show that the distribution of TGSS sources

extends beyond z = 3, like the NVSS sources (Nusser and Tiwari, 2015).

• The angular two-point correlation function of TGSS sources exhibits a double power-

law behaviour, qualitatively similar to that of the NVSS sources. Although not

surprising, this result was not discussed by Rana and Singh Bagla (2018) since

they focused on angular scales larger than 0.1◦. In that range the amplitude of

the TGSS ACF is larger than that of the NVSS. At small angles the behaviour of the

ACF is determined by the presence of radio sources with multiple components. We

analysed the behaviour of the ACF on these small scales to quantify the clustering

signal produced by multiple components and subtracted it from the measured

angular power spectrum.

• The angular spectrum of TGSS sources has significantly more power than that of

the NVSS in the multipole range 2 ≤ ℓ ≤ 30. Beyond ℓ = 30 the two spectra agree

with each other within the errors. This mismatch is also seen when the TGSS×NVSS

cross matched catalogue is considered instead of the TGSS one.

To check the robustness of this result to the known observational systematic errors

we considered different TGSS samples obtained by varying the lower and upper flux

selection thresholds and by using different geometry masks that exclude progressively

larger regions of the sky near the Galactic plane. The measured APS is remarkably robust

to these changes and the TGSS versus NVSS power mismatch remains significant even

when going beyond the completeness limit of the TGSS catalogue. We did not explore the

impact of errors in the flux calibration since these were found by Bengaly et al. (2018) to

be small with respect to the magnitude of the mismatch.

Altogether these results excluded the hypothesis that the observed power mismatch

could be attributed to known systematic errors related to the treatment of the data or

to the observational strategy, and opened up the possibility that it may reflect genuine

differences in the clustering properties of radio sources in the two catalogues.

To investigate this possibility we performed an absolute rather than a relative com-

parison between the measured TGSS angular spectrum and the one predicted in the

framework of the ΛCDM model. In doing this we took special care in modelling all the
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physical effects that contribute to the clustering signal and in propagating model uncer-

tainties. Among the physical effects, the ones that contribute the most to the large-scale

clustering amplitude are the redshift space distortions, which can boost the correlation

signal by ∼ 3%, and magnification lensing, which reduces the amplitude by 3−9%, depend-

ing on the multipole considered. These effects were generally ignored in previous analyses.

Although not negligible, their amplitude is far too small to explain the anomalous TGSS

power. Finally, we find that the use of the Limber approximation, which has been adopted

in many of the previous APS analyses, would spuriously enhance the predicted APS am-

plitude by 7−15%, again depending on the multipole considered and being largest at

ℓ< 5.

The physical effects described above are well known and their contribution can be

modelled with small errors. The largest uncertainties in modelling the TGSS spectrum

are related to the composition of the catalogue, the redshift distribution of its sources

and, most of all, their bias. To model the composition of the catalogue and the redshift

distribution of each source type we used the SKA Simulated Skies tool and found that

our Reference TGSS catalogue is mainly composed of FRII and FRI sources. Fainter radio

objects like SFGs and GPS are comparatively fewer but very local, and therefore they repre-

sent a sizeable fraction of the TGSS population at z < 0.1. These objects are characterised

by different redshift distributions and trace the underlying mass distribution with different

biases.

The biases of these sources and their evolution is the single most uncertain ingredient

of our APS model. To account for these uncertainties we considered four bias models. All

of them assume a linear, deterministic biasing process and were conceived in the widely

accepted framework of the "halo bias" model. All of them are physically plausible, as

they were designed to match the observed radio luminosity functions and number-count

statistics. They differ from each other in the evolution of the bias beyond z = 1.5 and in

the relation between the radio sources and the mass of the host halo.

With all the ingredients and hypotheses previously described we generated four models

for the APS of TGSS sources, and none of them are able to match the observed power at

low multipoles. In fact the tension between models and data at ℓ≤ 30 is so large that it

makes a sophisticated error analysis unnecessary. Our simple χ2 estimate is sufficient to

reveal that the observed TGSS angular power spectrum cannot be generated within the

framework of aΛCDM model: none of the physical effects described are large enough to

generate such a signal and none of the hypotheses on the nature, distribution and bias

of TGSS radio sources can be stretched enough to simultaneously satisfy the luminosity

function and the clustering properties of these sources.
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It is remarkable that, instead, our models match the angular spectrum of NVSS galaxies

in the same range 2 ≤ ℓ≤ 30 once the observational errors and theoretical uncertainties

are taken into account. This result confirms that our APS models are indeed physically

viable.

We are left with the uncomfortable evidence of an excess large-scale clustering in the

angular distribution of the TGSS ADR1 sources. The excess is seen both in the comparison

with similar analyses carried out on the NVSS dataset which shares many similarities with

TGSS, and in the comparison with theoretical predictions. In Section 5.2.2 we searched for

possible observational effects that may generate a spurious clustering signal large enough

to explain the tension detected by our study but failed to identify an obvious candidate.

There is an obvious continuity between our results and those of Bengaly et al. (2018)

who detected an anomalous large amplitude in the ℓ = 1 dipole moment of the TGSS

angular spectrum. For this reason we agree with their conclusion that the observed

mismatch indicates the presence of unidentified systematics in the data not captured by

the ones that we have explicitly searched for in this study. It may be that this issue can

only be clarified with future TGSS data releases or thanks to other forthcoming wide-angle

radio surveys carried out at similar frequencies like the ongoing LOFAR Two-Metre Sky

Survey (LOTSS; Shimwell et al. (2017, 2018)) and/or future, deeper releases of the GLEAM

catalog (Hurley-Walker et al., 2017; White et al., 2018).





Chapter 6

Constructing Mock Catalogue Pipeline

In chapters 4 and 5, we have carried out, two, rather typical types of clustering analyses: a

3D one, involving the use of spectroscopic samples (of clusters) and a 2D one using cata-

logues of objects for which only the flux is measured but not their distance. As anticipated,

there is a third, somewhat intermediate case, in which the distance to the objects is known

with large uncertainty: i.e. the photometric redshift (hereafter photo-z) catalogues. In this

case, the limited amount of information along the radial direction advises against per-

forming a full, time consuming 3D clustering analysis. On the other hand a plain 2D study

would miss a significant amount of precious information about the rate at which cosmic

structures evolve. The ’tomographic’ approach, in which 2D auto- and cross- correlation

analyses of the objects’ distribution within and across spherical shells, provides a good

compromise, that allows one to retrieve interesting, linear information, along the radial

direction together with 2D angular clustering at different epochs. The interest in this type

of analyses has been triggered by the recent availability of large datasets from Dark Energy

Survey (DES, Abbott et al., 2005); Kilo Degree Survey (KiDS, de Jong et al., 2012) or the 2-

MASS Photometric Redshift Catalogue (2MPZ, Bilicki et al., 2013) that have been analysed

in the recent years (Asorey et al., 2012; Alonso et al., 2015; Balaguera-Antolínez et al., 2018)

also in combination with spectroscopic data (Cai and Bernstein, 2012; Salazar-Albornoz

et al., 2014). The importance of tomographic analysis is bound to increase with the advent

of the much larger datasets that will be released by from projects such as Euclid and LSST.

In principle, photo-z surveys, in combination with high resolution imaging, are mainly

designed for performing weak-lensing analyses, since they will allow us to measure the

properties of cosmic shear fields and their two-point statistics at various redshifts, and

hence to constrain the total mass distribution over very large volumes. However, since

shear comes with the estimate of angular position and photo-z’s of individual objects,

these catalogues can also be exploited for pure position-based clustering analyses as well
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as for combined weak-lensing and spatial clustering correlation studies. In this chapter I

will focus on the spatial clustering aspect, and will only mention the potential advantages

of combining the two analyses at the end of the chapter.

The main advantage of photo-z samples over the spectroscopic one is the statistics.

Next generation photo-z catalogues will contain billions of objects, i.e. a factor of ∼
100 more objects than in future spectroscopic samples. This advantage poses, however,

a significant number of technical problems to be faced in order to fully exploit these

samples. The most important of which is the need to quantify systematic and statistical

errors and their covariance for such large datasets. Procedures that use the datasets itself,

like Jackknife or Bootstrap, are not suitable for investigating the origin and the impact

of systematic errors and, more important, are not good enough to provide an accurate

assessment of errors (Friedrich et al., 2016; Shirasaki et al., 2017). This is why most of

the recent studies rely on mock, realistic catalogues that mimic the characteristics of the

datasets to estimate the errors and their budget. Ideally, one would like to use full N-

body numerical experiments to build such mocks, since in this case all relevant nonlinear

physics can, in principle, be accounted for in the error budget. However, the sheer number

of different mock catalogues required to fully account for the cosmic variance and build

a reliable covariance matrix is simply too large to make this approach feasible. The next

best approach is to use simplified methods which are computationally faster than N-body

simulations. An approximated mechanism is required to generate independent catalogues

of synthetic objects, later in which, different observational selection effects (and their

uncertainties) can be included. In this case, the mock catalogues are built to carry out

statistical analyses, construct the covariance matrix and assess the precision and accuracy

with which the relevant cosmological parameters can be estimated.

In this chapter I will describe a pipeline to build a large set of mock catalogues mimick-

ing the next generation photo-z samples suitable for tomographic analysis. I will consider

the case of the upcoming Euclid photometric survey as a case study. The pipeline I have

assembled combines, in an efficient way, different elements obtained from various numer-

ical cosmological codes that are publicly available. The main element of the pipeline is the

so-called FLASK1 (Full-sky Lognormal Astro-fields Simulation Kit, Xavier et al., 2016) code

to generate correlated Lognormal random fields on a set 2D-spheres sharing a common

origin. The use of such code obviously relies on the assumption that the probability distri-

bution function of galaxy counts is well approximated by a Lognormal distribution (Coles

and Jones, 1991). The goodness of this assumption will be discussed in the following

sections. Other elements of the pipeline are: the Boltzmann solver CLASS to generate the

1http://www.astro.iag.usp.br/~flask

http://www.astro.iag.usp.br/~flask
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theoretical angular power spectra of the fields in the spherical shells; the HEALPix package

to generate Gaussian realisations and maps in spherical shells; an original package that

I have programmed and optimised to include survey-specific, observational effects like

photo-z errors and angular masks etc. and, finally, the angular power spectrum estimator

[known as the Pseudo-Cℓ (PCL) estimator] that is currently being developed and has been

selected to become the official code for the measurement of the angular spectrum of the

Euclid galaxies.

This chapter is organised as follows: In § 6.1, I discuss the Lognormal hypothesis

and provide the theoretical background to generate correlated Lognormal field. I also

introduce the basic structure and the flowchart of the pipeline in this section. In § 6.2 I

describe the first stage of the pipeline, i.e. the framework to generate Lognormal mock

catalogues. I start by providing an overview of the Stage-I computational framework

and then describe in detail its main elements. To validate the elements of the first stage I

have performed a number of "unit" tests, that I briefly describe in the end of the section.

Later in § 6.3, the second stage of the pipeline, primarily consisting of the original package

‘survey mock generator’. In this code, I apply properties that are most dataset-dependent,

i.e. photo-z information and corresponding observational errors. At this stage, I also

append the survey properties like redshift distribution, mask etc. to the datasets, in order

to make them "realistic" ones, as those expected from the survey. At the end of this section

I include the results from Stage-II validation using PCL estimator. The computational

budget, pipeline ‘run’ performance and optimisation techniques are presented in § 6.4

together with a discussion on future features to be added to the pipeline.
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6.1 Introduction

6.1.1 Lognormal Fields

To outline the properties of a Lognormal density field and its relation with the Gaussian

one I follow the work from Kayo et al. (2001). The reader is advised to refer the paper for

detailed description and derivation.

It is well known that a Lognormal 1-point probability distribution function (PDF) given

by,

P
(1)
LN (δ) = 1p

2πσ2
exp

{
−

[
ln(1+δ)−µ]2

2σ2

}
1

1+δ , (6.1)

provides a very good description of the mass overdensity field, δ, measured in N-body

simulations well into the nonlinear regime (Kayo et al., 2001; Lahav and Suto, 2004;

Joachimi et al., 2011; Neyrinck, 2011; Seo et al., 2012). The field δ is assumed to be filtered

on scale R . This PDF only depends on the variance of the field ln(1+δ) since µ=−σ2/2 to

ensure that expected value 〈δ〉 = 0. The variance of the nonlinear field δ can be obtained

by filtering the full nonlinear power spectrum Pnl(k) (very similar to linear one in Eq.

2.13):

σ2
nl(R) ≡ 1

2π2

∫ ∞

0
Pnl(k) W̃ 2(kR) k2dk , (6.2)

where the subscript ‘nl’ indicates nonlinear quantities and W̃ 2(kR) represents the smooth-

ing filter. The variance σ in Eq. 6.1 is related to the variance of δ field through:

σ2(R) = ln
[
1+σ2

nl(R)
]

. (6.3)

Much of the theoretical interest in the lognormal field stems from the fact that there is

a one-to-one mapping between the linear Gaussian and the nonlinear Lognormal field.

As we have seen, a linear overdensity field δlin smoothed on the (same) scale R obeys a

1-point PDF Gaussian statistics (same as Eq. (2.4)):

P
(1)
G (δlin) = 1√

2πσ2
lin

exp

{
− δ2

lin

2σ2
lin

}
, (6.4)

where ‘lin’ indicates linear quantities and the variance of the linear density field is defined

in analogy with 6.2, i.e. as given in Eq. 2.13. The overdensity field defined from δlin
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1+δ= 1√
1+σ2

nl

exp

[
δlin

σlin

√
ln

(
1+σ2

nl

)]
, (6.5)

has a PDF that can be computed with (dδlin/dδ)P(1)
G (δlin) and corresponds to the Lognor-

mal differential PDF in Eq. 6.1. The Lognormal cumulative PDF is given by,

C
(1)
LN (δ) = erf

(
ln(1+δ)−µ

σ

)
, (6.6)

where erf(x) indicates the error function

erf(x) = 1

2π

∫ x

−∞
e−t 2/2 d t . (6.7)

The fact that, the Lognormal model provides a good fit to the PDF mass overdensity

field measured in numerical experiments, and that its variance can be related to that of the

Gaussian fields (Chiang et al., 2013; Alonso et al., 2015), makes the use of the Lognormal

approximation very useful for quickly generating large number independent realisations

of cosmological fields. Also consequently to create the mock datasets that imitate large,

already existing as well as next generation catalogues of objects’ positions and lensing

shear measurements.

So far we have considered a single Gaussian variableδlin and its Lognormal counterpart

but the same procedure can be used to define a multivariate Lognormal random variable

Xi from a multivariate Gaussian variable Zi with known mean vector and covariance

elements related through:

Xi = e Zi −λi , (6.8)

where the quantity λ ‘shifts’ the distribution to ensure zero mean of the underlying Gaus-

sian field. For the case of cosmological overdensity fields, which is of interest here, the

variable Xi = 1+δi represents the Lognormal field, λi = 0 and the constraint that 〈Xi 〉 = 0

implies that Zi = δlin,i −σ2
lin,i /2 is Gaussian distributed with zero mean and variance

σ2
lin,i = ξi i

g . The quantity ξi j
g , which represents the covariance matrix of the Gaussian

density field δlin,i fields, is related to the covariance matrix of the Lognormal field δi

through

ξ
i j
g = ln

(
ξ

i j
ln

αiα j
+1

)
(6.9)
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where αi = 〈Zi 〉+λi > 0 and 〈Zi 〉 being the ensemble average of Lognormal variables. For

more specific and detailed derivation, referring to Xavier et al. (2016) is recommended. Eq.

(6.9) constitutes one of the most important relations, that is used to generate correlated

density fields across different spherical shells.

6.1.2 Pipeline Overview

Parameter
Files

Lognormal Mock Pipeline Overview

Validation I

Validation

Inflow

Outflow

Validation

PCL

Final 
Mock 

Catalogue

FLASK

HEALPix
Mock

GeneratorCLASS

Geometry
Mask

Photo-z
Error

Lognormal
Maps

Galaxy
Catalogue

PCL

Validation II

OUPUT

INPUTCode

Stage I

Stage II

Fig. 6.1 Flowchart of the photo-z mock pipeline showing the flow of input information
(light blue parallelograms) through the computational infrastructure, which is represented
with dark boxes with names of the associated routines, producing the output files (light
green parallelograms). The auto- and cross- angular power spectra, that are validated at

the bottom of the flowchart are represented with: i) input Lognormal spectra as C i j
ln (ℓ)’s;

ii) Map recovered spectra from FLASK as Ĉ i j
ℓ

’s and iii) PCL estimated spectra from output

catalogues as C̃ i j
ℓ

’s. d N /d z is the radial survey selection function.

Since this thesis work is a part of Euclid collaboration, the pipeline and its individual

elements are selected in tandem with the collaboration. The general overview of the

pipeline’s flow and the important computational elements are highlighted in Fig. 6.1. As

introduced earlier, the pipeline’s first stage consists of three publicly available repositories,

FLASK, CLASS and the HEALPix, which I shall elaborate in context of their usage for this

pipeline in the following sections. The first stage creates archetype Lognormal mock

catalogues populated with galaxies, which are validated using PCL at the end of the stage,
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and passed further to second stage in order to impose characteristic properties of the

target photo-z survey.

The second stage of the pipeline involves assigning the photo-z and its uncertainty

to the galaxies, applying the radial survey selection function, and finally the footprint

of the survey that is composed in the form of a binary mask. As it can be noticed in the

figure, similar to Stage-I, the output from Stage-II is also passed through the validation

procedure, to assess the accuracy and quality of the final output catalogue. In rest of the

chapter, I shall expand these stages in details and present the relevant results.

6.2 Stage-I: Generating Ideal Mocks

6.2.1 FLASK: Code Overview

The core and the backbone of this pipeline is the publicly available FLASK code developed

by Xavier et al. (2016). This multi-purpose code is already well structured as a pipeline. So

the task here is to channelise FLASK for this pipeline and construct further by adding new

elements to it, check their functioning and validate the final results. The entire code is

structured in C++ for rapid creation of Lognormal mocks. FLASK is designed to generate

correlated 2D as well as 3D scalar fields of cosmological interest like the mass density

and the shear lensing field. Once the underlying cosmological model is specified, FLASK
generates a realisation of these fields that obey either a Gaussian or a Lognormal statistics.

These fields can be Monte Carlo sampled to generate catalogues of discrete objects like

galaxies. Here, I focus on the generation of correlated 2D cosmological density fields with

lognormal 1-point PDF.

Fig. 6.2 shows the complex structure of the FLASK code. The various boxes indicate the

processing elements of the code (blue boxes), input data (yellow boxes) to be provided by

the user and that, in this case, are generated by additional pipeline elements, and finally

output data (green boxes) that I use to run validation and unit tests to check the quality of

the results. The light-blue boxes are specific to the creation of the Lognormal mocks. The

data flow normally follows the black arrows. It must be noted that the flowchart shown in

Fig. 6.2, differs from the original flowchart of entire package2, and displays only the FLASK
processes that are used by our pipeline, since we focus on the creation of density fields

and position-only galaxy catalogues and all other processes specific to the shear fields are

omitted.
2http://www.astro.iag.usp.br/~flask/documentation

http://www.astro.iag.usp.br/~flask/documentation
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Fig. 6.2 FLASK flowchart describing the important I/O processes and functions for this
pipeline. The detailed description is explained in the text.

Before describing in detail the individual steps of the FLASK processing functions, we

briefly summarise the steps for the creation of a Lognormal mock catalogues.

1. Prior to running the main module of the code, following parameters are specified: (i)

the type of the density field; (ii) the number of redshift slices with edges of each slice

i.e zmin and zmax; and (iii) the mean value and shift parameter (Eq. (6.8)), which are

tabulated in an external file ‘XXX-fields-info.dat’;

2. The input model auto- and cross- angular power spectra C i j
ln (ℓ) are generated using

external code CLASS, that defines the characteristic properties of the Lognormal

density field;

3. The above information is provided to the configuration file ‘XXX.config’, and other

parameters that are essential for the output maps are specified in the configuration

file: (i) A random int type variable via RNDSEED which results in an independent

realisation; (ii) An integer with a base of 2 defines the resolution of output maps

through NSIDE; (iii) Regularisation options for processing the covariance matrix.

At the end the output options (green boxes in Fig.6.2) are specified by enabling

or disabling output files. After setting all the essential parameters, the code is
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initiated with input command ‘flask XXX.config’, here the code organises the

input information and proceeds to next process function;

4. HEALPix pixel window function is applied to the input angular power spectra, for

smoothing the power to account for the size and the shape of the pixel corresponding

to the resolution set by NSIDE parameter;

5. The initial goal is to obtain the Gaussian covariance matrix. The smoothed ‘Lognor-

mal’ spectra C i j
ln (ℓ)’s are then transformed to Lognormal correlation function ξi j

ln (θ)

using the inverse Legendre transform;

6. Using the relation (6.9)), the Gaussian correlation function ξ
i j
g (θ) is obtained. By

performing Legendre transformations on ξi j
g (θ), give the Gaussian angular power

spectra C i j
g (ℓ), which builds the Gaussian covariance matrix;

7. The covariance matrix is regularised, i.e. checked for being ‘positive-definite’, using

the regularisation method provided in configuration file. This step is meant to

restore the small scale power that is lost in the Lognormal transform. The effect is

significant for the shear analysis, that uses very high multipoles, but much less so

for clustering analysis, i.e. that focuses on larger angular scales;

8. Regularised covariance matrix undergoes Cholesky decomposition to generate cor-

related Gaussian harmonic coefficients Ai
ℓm ’s (with zero-mean and unit variance).

The Cholesky decomposition gives out correlated Gaussian fields, to account for the

correlation among shells, i.e. to correctly mimic the cross-angular power spectra

between the neighbouring shells;

9. The obtained correlated Gaussian spherical harmonics coefficients, Ai
ℓm ’s, are used

to generate maps, and are stored in separate output files. Pixelised density maps are

generated using ALM2MAP function of the external package HEALPix with the map

resolution set by NSIDE;

10. The pixelised density field is exponentiated using (6.8), to obtain a Lognormal

density field. The corresponding maps are saved to output file;

11. At this step, the Lognormal angular spectra are measured by recovering Ai
ℓm ’s from

the realisation maps. The angular auto- and cross- spectra are computed from these

coefficients by calling MAP2ALM function of HEALPix and stored;

12. The Lognormal maps are Poisson sampled to generate a discrete catalogue of ob-

jects.
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13. A mock catalogue is produced that specifies the angular positions and the redshift

of the objects in the shell. Because of the map’s finite resolution, and since no

information is provided on the radial distribution of objects within the shell, the

angular position of the objects is randomly assigned within each pixel and its redshift

is drawn from a uniform distribution within the redshift interval of each shell.

We elaborate the above described points in following subsections.

6.2.2 Input 1: Parameter Files

The very first step that is required by FLASK is to set the density field type and the number

of redshift slices of the target Lognormal field. The file ‘XXX-fields-info.dat’ is a text

file which sets these properties. Fig. 6.3 shows the example of the input parameters

list through this file. One is also required to provide the values for mean and shift of

the Lognormal field as described in Eq. (6.8). For the choice of Lognormal fields, these

parameters are set to their default values 0 and 1 respectively. Last but not the least, the

bin-edges of the redshift slice i.e. zmin and zmax, determine the width, ∆z = |zmax − zmin|,
of the slice. As it can be seen from the figure, the file will be used to generate galaxy density

field consisting of 5 redshift slices of width ∆z = 0.1 with mean redshift z ranging from

[0.5,0.9].

Fig. 6.3 A screenshot of an example fields-information file. As it can be noticed from the
first line of the file, which is commented with ’#’, the parameters that go in the columns are:
field number, serial number of the redshift shell, mean of Lognormal distribution, shift of
Lognormal distribution, type of the field (numbers specified in the second commented
line of the file), and last two columns correspond to redshift interval of the shell with zmin

and zmax values.

The FLASK configuration file ‘XXX.config’ is the main text file which contains all the

information about the processing algorithm and its parameters. It controls the entire I/O
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of the code, which can be tuned according to user’s choice. First important parameter is

the random seed, an integer type variable, provided via ‘RNDSEED’ option in config file,

to generate independent realisation. The next is the set of input files containing the above

described fields information file, all the auto- and cross- angular power spectra that we

shall discuss next in § 6.2.3. The resolution of pixelised maps that will be produced by the

code is fixed with NSIDE parameter, which goes in the config file.

6.2.3 Input 2: Angular Power Spectra

The second input to FLASK, i.e. the model angular power spectra must be produced by

an external "Boltzmann solver" a shorthand for those numerical codes that, for a given

cosmological model, predict angular 2D and 3D power spectra for a number of different

fields (CMB temperature, density, cosmic shear etc.) also accounting for a number of

cosmological effects (lensing, peculiar motions, presence of massive neutrinos etc.) that

modify or modulate the fluctuation spectrum. A few of such computational routines

which are publicly available: CMBFAST (Seljak and Zaldarriaga, 1996; Zaldarriaga and Seljak,

1998), CMBEASY (Doran, 2005) and very popular one CAMB (Lewis et al., 2000; Howlett et al.,

2012) that are written in FORTRAN90. Recently developed python based routine AngPow
(Campagne et al., 2017) is particularly aimed at computing auto- and cross- tomographic

angular power spectra using Limber’s approximation (refer to Eq. (3.44) in § 3.2.2 for

details). However, in this work we shall utilise CLASS (Cosmic Linear Anisotropy Solving

System) which is originally written in C++ by Lesgourgues (2011a); Blas et al. (2011), and

subsequently modified by various contributors [e.g. CLASSgal (Di Dio et al., 2013)], to

account for all General relativistic effects including gravitational lensing and peculiar

velocities. The fact that CLASS is also written in C++ has been the main motivation for its

adoption.

For this pipeline, CLASS is used to generate, for a given cosmological model, angular

auto- and cross- spectra in various redshift shells, for a set of objects with a given redshift

distribution. To compute the power spectra, relevant parameters are specified in an input

parameter file ‘XXX.ini’ that contains:

• All relevant cosmological parameters that uniquely define the mass power spectrum

of density fluctuation;

• Option to choose among the linear regime, i.e. generate a linear mass power spec-

trum, or a nonlinear one. In this second case, which is used for this task, CLASS
relies on the semi-analytical ’HALOFIT’ model (Smith et al., 2003; Takahashi et al.,

2012);
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Fig. 6.4 Sample input power spectra at two redshifts zi = 0.5 and z j = 0.6 with orange and
maroon curves showing auto-angular power spectra, generated using CLASS. Whereas
the light-green curve is the cross-spectrum between i and j . The width of the Top-Hat
redshift slice is set to ∆z = 0.1.

• An option that specifies if and what types of general relativistic effects need to be

accounted for. I only include peculiar velocities.

• The Limber approximation can be enabled if required. I will not activate this option

in our applications.

• For specifying the properties of the redshift shells, their total number by providing

mean redshifts, shell-width, and shapes are specified. Included options for defining

the shape are Dirac Delta, Top-Hat and Gaussian. The shapes of the redshift shells

correspond to the window function Wi as given in Eq. (3.39). In this pipeline

(for now), a Top-Hat selection is used to specify shells in real space. Gaussian

selection is used in photo-z space, to account for the impact of photo-z errors.

In this application I ignore comparably smaller spectroscopic redshift (hereafter

spectro-z) errors, i.e. I identify real space with spectro-z space.
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• A radial selection function, d N /d z to specify the redshift distribution of objects in

the target survey.

• The linear galaxy bias as a function of the redshift, b(z), to generate maps of objects

counts rather than mass density. The function b(z) is included in the integrand of

Eq. (3.39).

Fig 6.4 shows a typical output of CLASS. It displays the auto-angular spectra in two top-hat

slices at redshift z = 0.5 and z = 0.6, respectively, together with their cross spectrum, char-

acterised by a significantly lower amplitude. Since in this application, a single (density)

field is considered, I generate, together with the Nz auto-spectra (Nz being he number for

the shells) also Nz(Nz −1)/2 cross spectra. All generated auto- and cross- input angular

power spectra: C i i
ln(ℓ) and C i j

ln (ℓ) where i and j represent two different redshift slices.

6.2.4 Pixel Window Function

The pipeline also features another software package, already integrated with FLASK, which

is mainly used for map generation. These maps are in fact, number of pixels distributed

on the sphere, each with equal surface area. The NASA Jet Propulsion Lab developed

tool, HEALPix3 (acronym for Hierarchical Equal Area isoLatitude Pixelisation of a sphere)

(Górski et al., 2005), is designed for pixelising spherical surfaces by subdividing it with

pixels covering the same surface area as every other pixel.

In this pipeline, HEALPix is used for three different tasks. To create pixelised maps from

a given set of spherical harmonics coefficients (ALM2MAP routine); to estimate spherical

harmonic coefficients and their angular power spectrum from a given pixelised map

(MAP2ALM) and to provide the window function associated to the pixels.

Pixelisation sets the angular resolution of the map. As anticipated, in the HEALPix
notation the map resolution quantified by the NSIDE parameter (same as Nside) which

takes the numbers in binary form i.e 2n . The number of pixels on the sphere are multiples

of base level 12, and can be obtained from 12 ×N 2
side. For higher resolution i.e. Nside > 128,

the higher limit of maximum multipole is ℓmax = 4Nside. In this work, maps with resolution

Nside = 2048 are produced. Therefore, pixelising is analogous to smoothing and removes

power on angular scales similar to and smaller than the size of the pixel. The effect can

be seen in Fig. 6.5 that shows model Cℓ before and after the application of pixel window

function.

Since in configuration space the smoothing effect of the pixel is quantified by a con-

volution integral, it is more convenient to quantify its effect in harmonic space, where

3https://healpix.jpl.nasa.gov/
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Fig. 6.5 Upper panel: Smoothing of the input angular power spectrum by applying the
HEALPix pixel window function. The black curve is the smoothed spectrum while the
orange datapoints are input Cℓ’s from CLASS. Lower panel: Pixel window function sup-
pression with the corresponding multipole range (Note that the multipole-scale and
angular power-scale in upper panel is Log-scale).

convolution becomes a simple multiplication. For this reason FLASK calls HEALPix to

obtain, for a given map resolution, the window function ωℓ for a pixel p defined as:

ωℓ =
(

1

Npix

Npix−1∑
p=0

ω2
ℓ(p)

)
. (6.10)

This is applied to the angular input power spectrum from CLASS to obtain the convolved

(smoothed) power spectrum which can be used as a reference for validation, i.e. to assess

the quality of the mock catalogues and of the measured angular spectra as from the mock

pixelised maps.
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6.2.5 Obtaining the Gaussian Spectra

The multipoles of the unsmoothed angular spectra from CLASS, C i j
ln (ℓ), assumed to be

that of the Lognormal density field in shells, are manipulated to obtain the multipoles of

the associated Gaussian field defined by C i j
ln (ℓ).

This is done in three steps:

• At first the angular power spectra are inverse Legendre-transformed into the angular

correlation function:

ξ
i j
ln (θ) = 1

4π

∞∑
ℓ=0

(2ℓ+1)C i j
ln (ℓ)Pℓ(cosθ) , (6.11)

where to define the angular two-point correlation function, here ξ(θ) is used instead

of w(θ) to be consistent with Xavier et al. (2016) notations. At this step, the auto-

and cross- angular correlation functions are saved and stored;

• Using the transformation from Eq. (6.9) the angular correlation function of the

Gaussian (linear) field ξi j
g (θ) is obtained;

• At last, ξi j
g (θ) is Legendre-transformed back into the angular power spectra of the

Gaussian field C i j
g (ℓ) using:

C i j
g = 2π

∫ π

0
ξ

i j
g (θ)Pℓ(cosθ)sinθdθ . (6.12)

All of the obtained spectra are stored on the disk.

Using a direct derived relation between the angular spectra of the Lognormal and Gaussian

density fields,

C i j
g (ℓ) = 2π

∫ 1

−1
ln

[ ∞∑
ℓ′=0

2ℓ′+1

4π

C i j
ln (ℓ′)
αiα j

Pℓ′(µ)+1
]
P (µ)dµ , (6.13)

the code estimates the covariance that, for each multipole, is represented by the matrix

Cg(ℓ) with elements C i j
g (ℓ).

From Eq. 6.13, it is clear that the relation between the Gaussian and Lognormal multi-

poles is non-local. Each Gaussian Cℓ is obtained by summing over all Lognormal Cℓ’s. As

a consequence, the resolution effects, that suppress the contribution from higher multi-

poles, would systematically bias the result of the integration in (6.13) and underestimate

the Gaussian Cℓ at large multipoles. A practical way to reduce this bias, that is adopted
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in this work, is to specify the input angular spectrum up to a maximum multipole much

larger than that actually needed in the catalogue analysis. Following the Xavier et al. (2016)

recommendation, I’ve set ℓmax = 6000 in this pipeline (which is roughly of the order 3 ×
Nside). I also have verified that using this ℓmax value completely resolves this limitation.

6.2.6 Generating Correlated Gaussian Fields

Since the generated density fields are isotropic in 2D, the Gaussian multipoles of Cℓ’s in

each shell are independent and so are the spherical harmonics coefficients. However, one

expects that the same multipoles, (ℓ,m), in different shells should be correlated. Therefore,

one needs to generate correlated Gaussian random variables from uncorrelated ones. This

problem is solved by the so-called Cholesky decomposition in which each individual

covariance matrix Cg(ℓ) defined for each ℓ, is uniquely decomposed into lower triangular

covariance matrices T (ℓ) :

C i j
g (ℓ) =∑

k
T i

k (ℓ)T j
k (ℓ) , (6.14)

FLASK does that by calling the external routine from GSL library. Once the triangular

matrices are generated, then the correlated coefficients can be obtained from a set of

uncorrelated ones:

Ai
ℓm =∑

k
T i

k (ℓ)A0
k,ℓm , (6.15)

where A0
ℓm ’s are Gaussian random variables generated from a random Normal distribution

using the seed from RNDSEED provided in the config file. The generated coefficients Ai
ℓm

satisfy the property given in Eq. (3.18) for C i j
g .

Cholesky decomposition is only doable if the initial covariance matrix is positive

definite. This condition is not guaranteed in the current case. As it was discussed before,

the fact that the relation between Lognormal and Gaussian variables is non-local does

not guarantee that given a set of Lognormal variable with positive definite covariance,

the associated set of Gaussian variables has a positive definite covariance too. This is a

fundamental problem that has only a phenomenological fix if deviations from the definite

positiveness is not too large. FLASK estimates the amplitude of these deviations and

numerically regularises the covariance matrix accordingly. Deviations from the definite

positiveness of the matrix can be significant for the shear field in weak-lensing analyses.

However, it turns out to be very small for the density field, i.e. the correction factor of

the order 10−4 is sufficient to fix this. This correction is the so-called ‘fractional change’
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Fig. 6.6 The comparison with different methods of obtaining the regularised matrix. It
can be noticed that density fields have no significant impact of regularisation, where the
detailed methods of regularisation are described in the text.

(blue datapoints in Fig. 6.6) in non-positive matrix elements by manually tuning them

to be positive-definite. Moreover, FLASK enables another way to resolve this problem is

via direct ‘fixing’ the non-positive Eigenvalues through Eigenvalue decomposition (blue

datapoints in Fig. 6.6), which is rather a time consuming approach. This is one of the

peculiar features of FLASK, and therefore provides a reliable framework for generating

correlated Lognormal fields, which is the main criterion for choosing this framework for

the pipeline. Fig. 6.6 illustrates the results from a series of tests I have performed to assess

the impact of this regularisation step.

6.2.7 Generating Lognormal Maps

Using the ALM2MAP routine from HEALPix module, FLASK generates a set of correlated

density maps from the correlated Gaussian coefficients Ai
ℓm ’s obtained previously. These

maps, whose resolution has been specified by NSIDE, provide the value of the Gaussian
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density field in at each pixels of each shell. These correspond to a set Gaussian Zi variables,

that, using Eq. (6.8), are transformed into Lognormal variables that represent the target

object density at the pixel location. To avoid aliasing effect, the resolution of the Lognormal

map has been set higher than that of the Gaussian one, i.e Nside ∼ ℓmax/3.

Fig. 6.7 The input angular power spectrum (solid black) versus the recovered Cℓ (blue
datapoints) from the generated multipoles as described in Eq. (6.16), which is measured
from one realisation of LN density field. The top panel shows the spectra, whereas the
bottom panel shows the fractional difference between the two.

Another routine MAP2ALM is then used to estimate the spherical harmonic coefficients

of the Lognormal map and the angular auto- and cross- spectra are obtained by:

C i j
ℓ

= 1

ℓ+1

ℓ∑
m=0

Ai
ℓm A j∗

ℓm , (6.16)
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where the realised multipoles are not summed over negative m’s as the fields are real and

satisfy (−1)m ai
ℓ−m = ai∗

ℓm .

The quality of the generated map can be assessed by comparing the angular spectra

measured from the Lognormal map with the reference, smoothed input spectra generated

at the beginning of the procedure. The result of one such tests is shown in Fig. 6.7. The

continuous curve represents the reference angular spectrum of a density field in a shell at

z = 0.5 with thickness∆z = 0.1. The points show the measure Cℓ from one map realisation.

The scatter is consistent with the expected cosmic variance and the residuals (bottom

panel) show no sign of systematic errors. It can be noticed that, being the spectrum of

a continuous field, no shot noise contribution has been added to the spectrum. The

map from which this spectrum has been measured is also shown in Fig. 6.8 (left panel)

together with a zoomed in square portion of 200×200 pixels, to better appreciate the

density contrast range.
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Fig. 6.8 Left panel The Lognormal overdensity map produced using HEALPix, with the
full-sky Mollweide view output by FLASK at redshift zs = 0.7 with a Top-Hat bin width
∆zs = 0.1. Right panel Zoomed in portion of 200×200 pixels of the same resolution as the
map i.e. Nside = 2048

6.2.8 Generating Catalogue of Discrete Objects

As a final step of Stage-I, the pixelised, Lognormal density maps are MonteCarlo sam-

pled into catalogues of discrete objects (in this case galaxies)4. FLASK offers two sampling

options (in addition to the no-sampling one): Poisson and Gaussian sampling. For this

work, I have opted for Poisson sampling.

4So far, I have referred them as objects because only after assigning (astro-) physical properties such as
flux and mass, they can be called ‘galaxies’. It should be noted that, throughout this work, catalogues contain
point objects and their position although sometimes they are referred as galaxies only in colloquial sense.
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Poisson Map Ngal = 4.69× 108, NSIDE= 256

0 1

Fig. 6.9 Example of a Poisson sampled map with about 470 million galaxies at zs = 0.7.
Though for the analysis we use a high resolution of Nside = 2048, we have descaled this map
to a lower resolution (Nside = 256) in order to visualise the structure of galaxy distribution

The mean number of galaxies in a generic pixel, p, of shell i is set by the selection

function of the survey φi . And the number of galaxies in that pixel is drawn from a Poisson

distribution with mean:

〈Ngal(i , p)〉 = n̄gal(i , p)[1+δgal(i , p)]∆Ω , (6.17)

where ∆Ω is angular area traced by a pixel in arcmin2, δgal is the (Lognormal) galaxy

overdensity that is defined according to the input power spectrum. The quantity n̄gal(i , p)

is the expected number of galaxies per arcmin2 per pixel inside a homogeneous Universe.

This is a mean value of the Poisson distribution and contains following components:

n̄gal(i , p) = as ×M(p)×φi (z) , (6.18)

where as is scaling factor (adjustable through the parameter file); M(p) is binary geometry

mask that describes the footprint of the survey; φi = (d N /d zi ) is the input radial selection
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function, both of them can be provided as external input to the code. I will focus on these

two quantities later in § 6.3.

Fig. 6.9 shows the final outcome of the sampling procedure. It represents the Aitoff

projection of the mock galaxy distribution in an full-sky Lognormal catalogue of 4.69 ×108

in a shell at z = 0.7 with thickness ∆z = 0.1.

6.2.9 Stage-I Validation: Model vs. Measured Spectra

To test the quality of the synthetic catalogues and validate the first stage of the pipeline,

I measure the angular auto- and cross- spectra of the mock galaxies in real space (i.e.

spectro-z shells) and compare the results with the input power spectra, by taking the shot

noise contribution into account.

To estimate the angular spectra from the catalogue I use the PCL estimator. The general

procedure to estimate angular power spectra is described in Chapter 3. However, the PCL
code, which I have included in the pipeline to perform on-the-fly quality checks, is the one

developed for the Euclid collaboration. Therefore, as a standard procedure to measure the

power spectrum from a survey catalogue, the code generates overdensity maps from the

catalogue by distributing the galaxies on HEALPix pixelised map, and draws fluctuation

coefficients ai
ℓm ’s using MAP2ALM routine. The auto- (C̃ i i

ℓ
) and cross- (C̃ i j

ℓ
) power spectrum

is estimated from Eq. (3.47). The shot noise power spectrum is measured separately by

randomising the angular position of the mock galaxies as:

N i j
ℓ

= δK
i j
∆Ω

N i
gal

, (6.19)

where δK
i j is Kronecker delta function, N i

gal is the number density of galaxies in i -th redshift

shell and∆Ω is full-sky solid angle. The shot noise is subtracted from the measured spectra

before comparing it with the analytic one.

The result for two redshift shells from validation tests is shown in Fig. 6.10. It compares

the shot noise subtracted, angular auto-spectra measured from two mock catalogues

created in two different shells centred at z = 0.5 and z = 0.8 with thickness ∆z = 0.1, with

orange and green datapoints, respectively). I overplot the input angular power spectra

produced by CLASS (thick solid curves). Errorbars represent the 1σ scatter among 100

mock realisations. The residuals from the measured versus the input spectra can be seen

at both redshifts in the bottom plot.

For quantitative assessment, the quality of the output catalogue is verified by comput-

ing the χ2 statistics:
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Fig. 6.10 Upper panel: Measured auto-pseudo-Cℓ’s for zi = 0.5 and z j = 0.8, represented
by orange and green datapoints (mean) respectively, are fitted with model spectra which
are input spectra from CLASS in this case with Top-Hat bin width ∆z = 0.1. Errorbars are
the scatter over 100 realisations. Lower panel: Residuals of input vs. measured Cℓ’s for
both redshifts.

χ2 =
Nm∑

i

(
Ĉ i
ℓ
−C i

ℓ

)2

(σ2/Nm)
, (6.20)

where Nm is number of mock realisations, the error term in the denominator of the χ2

formula is error on the mean (since in this case we are comparing the model spectra with

mean from many realisations). The obtained values of χ2 analysis for Stage-I validation

are shown with Stage-II in Table 6.1. At this step, according to the schematic of pipeline

introduced in the beginning of the chapter (Fig. 6.1), the set of ideal mocks are validated

and ready to be passed on to ‘Survey Mock Generator’ of the pipeline.
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6.3 Stage-II: From Ideal to Realistic Mocks

The goal of the second stage of the pipeline is to transform the archetypal, full-sky Log-

normal catalogue of objects distributed in different redshift slices into a realistic mock

catalogue resembling the characteristics of a well defined photo-z survey. The addition

of observational properties is done through different, independent processing elements.

In the current implementation of the pipeline 3 of such properties are considered: i)

the assignment of photo-z and its error; ii) the enforcement of the expected redshift

distribution from the survey; iii) and finally the masking of full-sky region with the survey-

specific footprint to account for incomplete sky coverage. At later stages, more effects

can be added (i.e. Stellar foreground, Galactic absorption, Zodiacal light etc.) if they are

relevant to characterise the survey selection criteria or observational biases. In fact, I

have constructed this pipeline in a way, to simulate the characteristics of any photo-z

survey sample. For this thesis I focus on the above three specific properties for Euclid

photo-z survey. This stage includes the original computational framework, that I have

programmed independent to Stage-I codes, i.e. the ‘Survey Mock Generator’ (here-

after SMG) in Fig. 6.1, that takes in the input parameters which tune-in the catalogue to

emerge exactly similar to the survey observed one. In following subsections I expand the

processing elements of Stage-II in details.

6.3.1 Adding Photo-z Information

As mentioned in the last step of § 6.2.1, the output catalogue from Stage-I contains the

angular coordinates of the galaxies along with their redshifts. The redshifts are drawn

from uniform random distribution within the input redshift shell interval, which I assume

as ‘true’ (cosmological) redshifts, are the spectroscopic ones and possess very small errors

with respect to the photometric counterparts. For this reason, the spectro-z errors σz(zs)

(subscript s denotes spectroscopic) can be ignored. As a result the spectro-z distribution

d N /d zs resembles a ‘Top-Hat’ (flat) histogram within the shells (redshift bins) of size

∆zs . Ideally, the number of galaxies within each redshift shell can be modulated by a

survey selection function φi (z). It is equivalent to the probability distribution P (z) and is

expressed as (recall Eq. (3.39)):

φi (z) ≡ P (z) =Wi (z)
d Ngal

d zi
, (6.21)

where Ngal is number of galaxies in a given redshift shell and Wi is the window function.
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To assign the photo-z and its error for each galaxy in the catalogue, it is essential to

understand the relation between the spectroscopic and photometric distribution. For

more detailed description on this relation, I recommend referring to the work in Sheth

and Rossi (2010); Asorey et al. (2012) and Balaguera-Antolínez et al. (2018). Because of the

higher uncertainty on photo-z estimates, zp (the subscript p denotes photometric)5, the

‘observed’ distribution d N /d zp in photo-z space is different from the true one d N /d zs .

The probability distribution (PDF), P (zp ), for photo-z is given as:

P (zp ) ≡
(

d N

d zp

)
=

∫ ∞

0
P (zs) P (zp |zs) d zs , (6.22)

where P (zs) can be expanded in the form Eq. (6.21) and the quantity P (zp |zs) are photo-z

errors, i.e. the conditional probability of a photo-z (zp ) given the spectro-z (zs). Ideally,

photo-z errors [σz(zp )] can be drawn from any type of distribution. Once assigned, these

errors are used to displace objects along the line-of-sight. In case of tomographic analyses

for photo-z surveys, the sample slicing is done using photo-z rather than the cosmological

ones. Consequently the true distribution, i.e. spectro-z’s are scattered in and out of the

slice, modifying the correlation properties of the objects in the photo-z slice with respect

to those in the original (true) redshift slice. This effect needs to be properly quantified and

accounted for, to compare model prediction with observations.

In Stage-II module of the pipeline, two different procedures are implemented to

assign a photo-z information for each object, given the spectroscopic one. First is object

based assignment, i.e. radially perturbing individual galaxy with an assumed distribution

type. Alternatively, since the photo-z error displacement conserves the number of the

objects, the cumulative probability distribution in both spectroscopic and photo-z space

is also conserved and zp can be assigned by one-to-one mapping from the sorted spectro-

z distribution. In principle, both procedures are flexible enough to permit the adoption of

a generic photo-z errors, that can obey any specified statistics and whose magnitude can

depend on the redshift of the shell. In this thesis, I use the case of redshift-independent

Gaussian error, which provides reasonably good approximation to realistic photo-z errors,

once the catastrophic redshift errors are ignored. Keeping the Euclid survey in perspective,

I assume that these errors are Gaussian distributed with the RMS σz(zp ) = 0.02. In this

scenario, I summarise the two procedures used in the pipeline.

5Convention Note: In the thesis, I use photo-z and spectro-z as general convention to refer photometric
and spectroscopic redshifts, while zp and zs correspond to mean redshift estimates in the sample with their
errors represented by σz (zp ) and σz (zs ) respectively.
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Fig. 6.11 PDF of example ideal catalogue with three adjacent Top-Hat sliced spectro-
z shells with their galaxy distribution showed in light-red histograms. The light-blue
histograms are ‘observed’ distribution of photo-z of objects in spectro-z shells. The dark
curves are model PDF computed using Eqs. (6.21) and (6.22) for spectro-z and photo-z.

1. Single Object: The first method consists of using approximated P (zp |zs) by radially

displacing each individual object centred at zs . Here I generate a Gaussian deviate

with mean zs and variance σz :

P (zp |zs) = 1p
2πσz

exp

[
− (zp − zs)2

2σ2
z

]
, (6.23)

where σz is the photo-z error. For spectroscopic distribution P (zs), the redshift shell

has the Top-Hat form within the redshift interval zs,min and zs,max. The integral in

Eq. (6.22), in that case, can be evaluated analytically:
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Fig. 6.12 PDF of same example ideal catalogue as in Fig. 6.11. Spectro-z (observed in
light-red histogram vs. model in dark-red curve) and photo-z PDF (observed in light-blue
vs. model in dark-blue) for full sample.

P (zp ) =
(

1

2
erf

[
zs,max − zpp

2σz

]
− 1

2
erf

[
zs,min − zpp

2σz

])
, (6.24)

where erf(x) is error function. In Fig. 6.11 and 6.12, the example of this method is

presented for objects in individual shells and for the full sample respectively. In

both the figures, the original catalogue has 3 Top-Hat shaped shells in spectroscopic

space, centred at zs=[0.7, 0.9] with shell width∆z = 0.1 and distribution P (zs) shown

in light-red histograms. The light-blue histograms are the P (zp ) distributions mea-

sured in the catalogues after objects displacements. The thick dark-blue curves show

the expected P (zp ) distribution according to Eq. (6.22). The agreement between the
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curves and the blue histograms quantifies the quality of the zp -assignement. Fig.

6.12 shows full P (zp ) distribution of all objects in the sample.

SMG computes Eq. (6.22) for each object to assign zp and the error σz(zp ). In terms

of computational budget, since the method performs a loop over total objects in

the catalogue, the computational time scales linearly with Ngal. In this pipeline,

this option is set to default and is made efficient by distributing the computation

Eq. (6.22) on multiple threads of the process i.e. using parallelisation on multi-core

machine. In § 6.4, I shall present the relevant results when I describe the pipeline

architecture.

2. Sorting Objects: In case of a single core machine, the use of second procedure is

recommended, as it is significantly faster than the individual zp -assignment. This

is achieved by drawing zp values from the model photo-z cumulative distribution

(CDF),Φ(zp ):

Φ(zp ) = 1

2
erfc

(
− 1p

2

zp − zs

σz

)
, (6.25)

where erfc(x) is complementary error function. It must be noted that, the number

of object in Φ(zp ) and Φ(zs) are conserved, i.e. Φ(zp ) = P (> zp ) ≡ P (> zs) =Φ(zs)

In practice, since bothΦ(zp ) andΦ(zs) are monotonic functions and preserve the

ranking of sorted objects, the photo-z can be obtained from the spectroscopic one

through inversion:

Φ−1(zp ) =p
2σz erf−1(2zp −1)+ zs . (6.26)

Above relations are valid only for Gaussian error case (see Eq. (6.23)). SMG module

follows a simple flow of steps:

- The N i
gal objects in i -th shell are ordered according to their spectro-z’s;

- A list of zp values equal to N i
gal are generated according to the expected P (zp )

and ordered according to zp ;

- zp are assigned to each object according to their ranking, i.e. the largest zs

value will be associated to the largest zp value, the second largest to the second

largest and so on.

The results of this method are shown in Fig. 6.13. Again in this example for two

redshift shells, the quality of zp -assignment procedure using sorting method is
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verified by comparing the model P (zp ) distribution (thick dark-blue curves)

with the ‘observed’ histograms in light-blue. The corresponding spectro-z

distribution P (zs) is shown in red.
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Fig. 6.13 Photo-z PDF, shown in blue, that is obtained using sorting method i.e. Eq.
(6.26) for two redshift shells, shown in red, Top-Hat sliced in spectro-z-space. The mean
redshifts are zs = 0.6 and 0.7 with shell-width ∆zs = 0.1. The light colour represents
observed distribution and dark curves are model PDF of the respective distribution.

For tomographic clustering, the photo-z catalogue will be sliced into Top-Hat shells.

SMG takes the user input information of number of photo-z shells to be sliced for the

analysis, along with their width ∆zp . This information goes into the pipeline via a single

file which is represented under ‘Photo-z error’ title in pipeline schematic, Fig. 6.1.

An example of photo-z slicing is shown in Fig. 6.14. The light-blue histogram shows the

photo-z distribution of the full sample originally selected in the spectro-z space centred

at mean redshifts ranging from zs=[0.5,0.9] and divided in 5 equal-sized shells. Because
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Fig. 6.14 Trimming of photo-z slices in Top-Hat with shell-width ∆zp = 0.1 for redshifts
zp = 0.6,0.7 and 0.8 in dark blue, green and red respectively. The faint blue distribution
is full photo-z corresponding to 5-shells in spectro-z-space with mean redshifts zs =
0.5,0.6,0.7,0.8 and 0.9.

of the photo-z displacement, the number of shells in parent catalogue is higher than the

final photo-z one. The central 3 photo-z centred at zp =[0.6, 0.8] are ‘trimmed’ as photo-z

catalogue after discarding the fraction of objects residing in the tails of the distribution. At

this step, the associated ‘true’ P (zs) distribution of objects in each photo-z shell must be

assessed by evaluating the ‘model’ prediction. An accurate evaluation of this quantity is

fundamental in order to accurately predict the angular power spectrum to compare with

the measured one in photo-z space. This will be clear at the end of this section, where I

shall validate Stage-II.

The relevant model P (zs) can be obtained, analogously to Eq. (6.22), by integrating

the following expression:

P (zs) =
∫ ∞

0
P (zp ) P (zs |zp ) d zp , (6.27)



148 Constructing Mock Catalogue Pipeline

0.0 0.2 0.4 0.6 0.8 1.0
z

0

2

4

6

8

10

Pr
ob

ab
ili

ty
 D

en
si

ty
zp = [0.6, 0.7, 0.8], ∆zp = 0.1

Top-Hat Window P(zp)

Corresponding P(zs)

Fig. 6.15 PDF with Top-Hat sliced shells in photo-z-space (in blue) and associated spectro-
z (in red). Lighter shades correspond to measured distribution and dark curves represent
model PDFs for respective redshifts. The mean redshifts and the shell-width for three
photo-z shells are identical to Fig. 6.14.

where P (zp ) is now a Top-Hat distribution that defines the photo-z shell and P (zs |zp )

can be either obtained from the joint distribution P (zs |zp ) of the objects in the mock

catalogues. In the case of Gaussian photo-z errors that are considered here, it turns out

that P (zs |zp ) is well approximated by a Gaussian distribution as in analogous case, that

I have adopted in this application, as analogous terms in photo-z and spectro-z spaces

specified in Eq. (6.22) and Eq. (6.27) related through Bayes’ theorem:

P (zs |zp ) = P (zs)P (zp |zs)

P (zp )
. (6.28)

The result of this analysis is shown in Fig. 6.15, which is, as expected, analogous to

Fig. 6.11 except that now the Top-Hat light-blue histograms show the distribution of the
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Fig. 6.16 Observed spectro-z PDF corresponding to Top-Hat shell in photo-z space for
three redshift shells trimmed in case of Fig. 6.14. Black dashed lines are Gaussian fit with
best fit value of σG .

photo-z sample. On the other hand, the 3 light-red histograms show the corresponding

P (zs) of the objects in each shell. The same three P (zs) distributions are also shown in

Fig. 6.16 as light-red histograms. The corresponding dashed black curves are the best-

fit Gaussian approximations that better model the measured quantities. For the input

Gaussian photo-z error with RMS σz(zp ) = 0.02, the obtained best fit value of σG = 0.04

is stored in log-file, which will be used to obtain the theoretical angular power spectrum

from CLASS to compare it with the measured one from photo-z shell. The approximation,

as it can be seen in figure, is good except at the tails of the distribution. As we shall see in

§ 6.3.4 this mismatch does not hamper the ability to predict the auto- and cross- angular

spectra accurately for the photo-z samples.
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6.3.2 Photo-z Survey Radial Selection Function
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Fig. 6.17 Euclid photo-z radial selection function, the d N /d zp , showing the number
density in arcmin2 per redshift interval d z.

The catalogue at this step has the photo-z information and, more importantly, mod-

elled true distribution, P (zs), in photo-z shells, that provides the input information for

CLASS to model underlying statistical properties (through the theoretical auto- and cross-

spectra) of the catalogue. But the number of objects in each photo-z shell is yet to be

matched with the expected one, i.e. the radial selection function, more specifically the

redshift distribution d N /d zp of the survey. Fig. 6.17 shows the sample d N /d zp for Euclid

photo-z survey which is the target distribution for the final catalogue. To devise a method

that guarantees the number of object in each redshift shell to be a Poisson deviate of the

target one, it is important to assess the loss of objects due to displacement of photo-z

errors. As we have seen in § 6.3.1, the number of objects in spectro-z shell within ∆zs

in ideal Stage-I catalogue, is different from the photo-z catalogue sliced at the same

redshifts in photo-z space ∆zp . In fact Fig. 6.14 shows that number of objects ending up



6.3 Stage-II: From Ideal to Realistic Mocks 151

in the photo-z sample will be smaller because of the trimming of objects at the edges of

the redshift ranges.

Since the difference in population of objects in each shell varies with the amplitude

of the photo-z error and depends on the expected d N /d zp of the Euclid survey, I use a

brute-force approach for this case. I populate 20% more objects in each shell of the initial

(ideal) catalogue than those expected in the survey by adjusting the scaling factor as in

Eq. 6.18, after the photo-z assignment, the excess objects are rejected using Monte-Carlo
resampling to match with the expected number in each shell.
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Fig. 6.18 Euclid survey d N /d zp (black lines) is used to systematically overpopulate parent
distribution P ′(zp ) (histograms), which is 1.2 times higher than d N /d zp . The vertical
red lines mark the cut-off margin for selecting the photo-z redshift range, where darker
histograms represent the selected range from zp = 0.4 to 1.5 with shell-width of ∆zp . The
light-coloured histograms are refrained from the final distribution, as the number of
galaxies significantly low to overcome the average shot-noise from all shells. (Note: The
shell corresponding to zp = 0.3, even though has significant objects, is trimmed from the
spectro-z catalogue, and therefore will not be considered.)
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Fig. 6.19 Associated distribution of spectro-z shells (in coloured histograms) to Top-Hat
photo-z shells shown in Fig. 6.18. The dashed lines are Gaussian window function fits
to the spectro-z shells centred at zs = 0.3 to 2.0, where the cut-off for final catalogues is
shown with vertical red lines.

Fig. 6.18 illustrates the outcome of the procedure. The blue-shaded histogram shows

the photo-z distribution of the objects after the photo-z assignment step. It is systemat-

ically larger than the target d N /d zp of the survey (black histogram). The Monte Carlo
resampling step guarantees that the final sample matches the expected redshift distribu-

tion. It can be noticed that the parent sample extends beyond the redshift interval of the

final one, indicated by the two vertical red lines. This is done to account for those objects

outside the interval in spectro-z space are scattered in by the photo-z displacement. The

effect can be appreciated in Fig. 6.19. It shows the spectro-z distribution of the objects

that reside in the photo-z shells of 6.18 The red vertical lines now indicate a larger redshift

range that include 2 more redshift shells (an inner one centred zs=0.3 and an outer one

centred at zs=1.6) The objects in the two corresponding shells are scattered and therefore

trimmed in the photo-z sample. The bulk of mock catalogues that I have generated by us-
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ing the Euclid survey redshift distribution contains ∼ 1.3 billion galaxies in each catalogue.

For handling this number density of objects, it is very crucial for the pipeline to be fully

optimised and parallelised to efficiently produce large number of mock catalogues. I shall

discuss this in details in § 6.4.

6.3.3 Photo-z Survey Footprint (Geometry Mask)

Real surveys do not cover the entire sky. Even when performed under most favourable

circumstances and in the most ‘clear’ electromagnetic window, an extragalactic survey

can only cover a fraction of the whole sky. The actual footprint of a survey is specific to its

observing characteristics and possibly also time-dependent for long lasting surveys.

SMG offers the possibility to account for the survey footprint as long as it is quantified

by a pixelised binary map, with 0 value in the unobserved areas. The mask is generated

using HEALPix with a resolution appropriate to describe the survey geometry. As seen in

Eq. (6.18), the geometry mask has the form of M(p) vector, where p is the pixel. For more

details about the application of geometry (angular) mask, Eq. 3.28 and its description can

be referred in Chapter 3.

Euclid Footprint ANGULAR MASK NSIDE= 2048

0 1

Fig. 6.20 Euclid survey mask, with yellow area representing the observed portion of the
sky by the survey (pixels masked with value = 1) and the purple colour corresponds to
unobserved area, that contains the regions of the sky involving galactic plane and zodiacal
light from the ecliptic (pixels masked with 0). The mask is developed by Dr. Martin
Kilbinger and his team. The fraction of observed sky with this mask is fsky = 0.364.
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In the current implementation of the geometry mask, I use the one developed in the

collaboration for Euclid photo-z survey. The Euclid survey6 is expected to cover ∼ 15,000

deg2 in three near infra-red and one optical band. Unobserved areas will be a strip around

the Galactic plane, the area above and below the Zodiacal plane and some other smaller

regions, which are characterised by anomalously large absorption or the presence of very

bright objects. The expected survey footprint is represented in Equatorial coordinates

in Fig. 6.20. The coverage will not be uniform, in the sense that some fields may be

observed longer than others, reaching a deeper or shallower magnitude limit. I have not

considered this aspect that must be addressed using a non-binary mask in which each

pixels is assigned an appropriate weight to account for local depth. Instead I consider the

Wide-Euclid survey to have the same magnitude limits in all bands throughout the full

survey area. The mask used in this analysis is set to a resolution of Nside=2048.

Euclid Masked Map, NSIDE= 256

0 1

Fig. 6.21 Euclid masked catalogue, showing the survey observable sky. For this case, Nside

of the mask shown in Fig. 6.20 is reduced to 256 to highlight the structure.

Fig. 6.21 shows masked photo-z catalogue generated by SMG, which is post-processed

with survey selection function in § 6.3.2. It is clear that the grey region is masked, while

the purple region shows the ‘galaxy’ population that is expected to be observed by the

survey. Since the current version of the pipeline is designed for full-sky maps, the number

of objects in the full sample has to be 3× higher (∼ 4×109), as Euclid footprint cuts down

6More details about the survey can be accessed at https://www.euclid-ec.org/.

https://www.euclid-ec.org/
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population by factor of 1/3. This further stretches the computational requirements of

the pipeline. However in the final version, the mask will be integrated from Stage-I,

i.e. before Poisson sampling the Lognormal density field, subsequently reducing the

computational time.

6.3.4 Stage-II Validation: Model vs. Measured Spectra

The final and most important validation step of the pipeline, is done by measuring the

angular power spectrum of the ‘SMG post-processed’ mock photo-z catalogues from

Stage-II and compare the results with theoretical predictions. From the catalogue,

auto- and cross- angular power spectrum is estimated using PCL. As said before, the code

is developed in Euclid collaboration by Dr. Lee Whittaker and collaborators. Since the

code is still in development stage, I have contributed to the parallelisation of the code, so

that the different estimates can be computed efficiently allowing a fast validation of the

pipeline. The estimated output from PCL is verified by comparing the results with those

obtained by other estimators, like the one used to measure the angular power spectrum

of TGSS sources described in Chapter 5 and also by measuring the signal from pixelised

maps using ANAFAST routine from HEALPix package.

Until now it is understood that objects in a Top-Hat photo-z shells have a different

‘true’ redshift distribution in spectro-z space. The result of analysis performed in § 6.3.1

makes it clear that this distribution is well approximated by a Gaussian function. Also,

as I have described at the end of § 6.3.1, the Gaussian function fitting RMS value of P (zs)

distribution, which is stored in SMG log-file, is used to model the appropriate shape of the

window function of CLASS angular power spectrum (see Eqs. (3.38) and (3.39)).

Fig. 6.22 shows the comparison of measured auto- and cross- angular power spectra

with theoretical predictions obtained from CLASS. The results displayed here are the I/O
spectra from two adjacent photo-z shells of equal width and centred at zp =[0.6,0.7]. It

can be noticed that, as expected, cross- spectra (in green) has lower amplitude than

two auto- spectra (in red and blue), where light-coloured datapoints with errorbars are

measurements and thick dark curves are models. The results shown here in Fig. 6.22 are

only representative of two shells from the full sample. As anticipated before (Fig. 6.18),

validation test is performed on the Euclid catalogue sample, I have used the 12 shells with

range zp =[0.4,1.6]. All I/O spectra are validated using χ2 statistics defined in Eq. (6.20).

In Table 6.1, a sample result from complete validation test is shown with reduced-χ2

values, i.e. χ2 divided by number of degrees of freedom. I have also used the ‘recovered’

spectra in Stage-I measured from Lognormal overdensity maps by FLASK as a reference

for comparison tests.
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Fig. 6.22 Measured vs. Input (model) auto- and cross- Cℓ’s from sample of 100 photo-z
mock catalogues. Upper panel: Measured Pseudo-Cℓ from PCL are shown in light-orange,
light-blue and light-green data points with standard error on the mean. Dark curves are
model fits. The corresponding redshifts of two shells is shown in plot legend. Lower
panel: Fractional difference of measured Pseudo-Cℓ’s and model Cℓ’s. For auto- spectra
at zp = 0.6 and zp = 0.7 in light-orange and light-blue colour while for cross- spectra it is
shown in light-green colour.

On top of this result, the use of a Geometry mask would require an additional manipu-

lation to account for the mixing of the various multipoles (has been discussed in details in

§ 3.2.2) which is not accounted in this case. Instead, the results shown in Fig. 6.22 is the



6.4 Pipeline Architecture and Computational Budget 157

Auto/Cross Cℓ zs or zp Stage-I (zs) Stage-II (zp ) Recovered Cℓ

Auto 0.5 0.99 1.20 0.98
Cross 0.5-0.6 0.96 1.00 1.06
Cross 0.5-0.7 1.03 1.10 1.05
Cross 0.5-0.8 0.99 1.02 1.05
Auto 0.6 1.05 1.19 1.08
Cross 0.6-0.7 1.03 1.10 1.03
Cross 0.6-0.8 1.02 1.13 1.03
Auto 0.7 1.02 1.11 1.10
Cross 0.7-0.8 1.02 1.07 1.00
Auto 0.8 1.02 1.19 1.07

Table 6.1 Validation χ2-test results shown for 4 (subsampled) shells ranging in z=[0.5,0.8]
(column 2). In column 3, 4 and 5 the values are χ2/ν from comparison of model Cℓ with
the measured ones. For Stage-I spectro-z (column 3) and Stage-II photo-z (column 4)
catalogues, the spectra are estimated using PCL. Instead, in the last column the model is
compared to reference spectra measured from Lognormal overdensity maps.

validation of the photo-z catalogues by considering full-sky samples only. Evaluating the

effect of the mask is one of the next features to be added to this pipeline.

6.4 Pipeline Architecture and Computational Budget

As shown in the schematic of the pipeline in Fig. 6.1, it currently consists of two inde-

pendent computational units i.e. Stage-I (hereafter SI): with HEALPix+FLASK as core

codes which are written in C++; and Stage-II (hereafter SII) with SMG as the main module

which is written in Python. Both units use CPU-based computation and not Memory-based.

For this reason I will only limit this section to discussion of pipeline parallelisation on a

multi-core architecture, and dominant factors in the processing elements of the pipeline.

For the first unit (SI), I have performed some quick tests, shown in Fig. 6.23, that

summarise the pipeline’s performance and expose the dominant factors in computational

time budget. For these tests, I have used the full mock catalogue sample (same as used

in Fig. 6.19), that has been provided to Euclid collaboration. SI as an external package,

is already parallelised using OpenMP. The computational time (run-time) of the FLASK
routine of SI is dominated by two parameters. The first one is Nside, shown for two different

core architectures in the left panel of Fig. 6.23, that fixes the output map resolution.

It can be seen that, larger the Nside value, the higher the run-time for the code. As it

is proportional to maximum multipole, ℓmax, of the angular power spectrum, larger
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Fig. 6.23 Left panel: Stage-I code run-time for 14 zs-shells, as a function of the map
resolution Nside. The output files are not written for this test (Dry Run). Golden datapoints
represent code runs on 32 Core architecture and the teal-coloured are performed on 56
Core architecture using all threads. Ngal is kept constant for all cases, i.e. 2 ×108. Right
panel: Writing time for Stage-I catalogues with Nside fixed to 2048 and Ngal varied from
roughly 200K galaxies to 200M galaxies. Pink and purple datapoints correspond to 32 and
56 Cores respectively.

covariance matrix is used to generate correlated Lognormal fields. Due to this factor, a

significant deviation from almost linear trend until Nside = 1024 can be noticed, i.e. for

Nside = 2048 which corresponds to ℓmax = 6000.

The second dominant parameter in computational budget is the total number of

objects Ngal. The processes where Ngal plays the role in SI include Poisson sampling

Lognormal maps, generation of mock catalogue and writing the catalogue on the disk. In

this case the writing part is the bottleneck, where the code does not use multi-threading

option, i.e. owing to conventional FITS file format that is hard-coded in FLASK. The code

uses ASCII tables for catalogue FITS files where the code consumes maximum amount of

run-time. Therefore, I have subtracted the other processes where Ngal is parallelised and

considered only writing time, which is shown in the right panel of Fig. 6.23. It is visible

in the plot that for a catalogue containing ∼ 200 million objects, the run-time ‘explodes’

significantly. Also, it is obvious that for faster computation, I prefer the 56-core machine

on the INFN-Roma-3 cluster7.
7http://web-cluster.fis.uniroma3.it/

http://web-cluster.fis.uniroma3.it/
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Fig. 6.24 Full pipeline run-time for 1 catalogue containing 12 photo-z shells (i.e. 14 spectro-
z shells). The darker and lighter green datapoints represent without and with parallelised
implementation of Stage-II respectively.

For SII, I have implemented parallelisation to radially displace redshifts in ideal cata-

logues, using various Numba8 routines. Also, the SMG performance is improved significantly

with targeted improvements using task-specific and optimised python-numpy libraries.

This improvement further boosted the run-time by a significant margin, which is clearly

visible with the darker curve that is shown in total run-time tested on 56 Core machine

in Fig. 6.24. The total run-time that is required to produce one full-sky photometric

catalogue imposed with Euclid redshift distribution in 12 photo-z shells is shown in Fig.

6.24 for increasing number of galaxies. The extreme right datapoints represent the case

for the expected Euclid photo-z sample. Since in the current version of this pipeline, ideal

catalogue processed from SI is read by SMG module in SII. Keeping the large number of

objects in perspective, I parallelised reading and writing with fitsio routine in python
which, as I have mentioned in § 6.3.4, is also used to modify the PCL code for on-the-fly

8https://numba.pydata.org/

https://numba.pydata.org/
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reading of catalogue during validation of SI and SII. However in Fig. 6.24, the file I/O time

is neglected as the parallelisation to I/O option is not yet added to SI core code FLASK.

Also, as one can notice from all run-time charts shown in this section, I have used

‘Walltime’ instead of CPU time. The reason for this is, since I run these as ‘jobs’ on multiple

nodes9 of the INFN-Roma3 cluster, wall clock-time is easier to keep track of the timeline

to produce the set of required mock catalogues. In principle, walltime is a sum of three

terms: CPU time (normalised with the number of threads used on a multi-core machine),

I/O time, and the communication delay between different nodes. In contrast to CPU time,

which measures only the time when processor ‘actively’ computes the task, walltime

measures the total time for the job to complete.

The ultimate goal of this pipeline is to generate a large number of mocks to assess errors

and their covariance. Indeed, the accuracy by which a covariance matrix is estimated

depends on the number of mock catalogues available. For the cosmological analyses that

will be carried out with the Euclid data, a reference number for the number of required

mocks is of the order ∼ 104. The exact value depends on the type of analysis, the properties

of the sample and the possibility to adopt hybrid approach, in which the covariance matrix

can be determined by complementing the brute force approach of using mock catalogues

with additional theoretical input on the statistical properties of the sample. Using the

same resources that I used for run-time tests i.e. considering at least 10 nodes of the

cluster are available, the expected total Walltime required to generate a sample of 104

mocks is ∼ 200 hours (for 100 mocks it takes approximately 2 hours by distributing a stack

of 10 mocks on 10 nodes with 56 cores).

In terms of storage occupancy on the disk, each mock catalogue utilises ∼ 300MB,

summing to 30TB of data storage for all the mocks. Using a more compressed file format

‘fits.gz’, which is already available option is FLASK, this number shrinks further by 50%.

6.5 Summary, Conclusions and Future Work

My goal in this aspect of the thesis was to construct a fully validated, fast and user sim-

plified pipeline to mass produce Lognormal mock galaxy catalogues for next generation

photometric surveys that will utilise tomographic clustering approach for extracting cos-

mological information. The main feature of these mock catalogues, was ability to preserve

cross-correlation when a 3D photo-z volume is sliced radially, given the width of the shell

is larger than the redshift error.

9Each node has multiple cores that can be used to distribute threads by using OpenMP for C++-based code
or Numba for Python-based code.



6.5 Summary, Conclusions and Future Work 161

More importantly, the first dataset which was expected to be tested with this pipeline,

was that of the forthcoming Euclid photo-z survey, that is ‘being’ designed to produce

datasets containing more than 1 billion objects up to redshift z = 2. Number of objects of

this order would require very accurate modelling of statistical and systematic uncertainties,

meaning to construct covariance matrix using at least 104 simulated samples that imitate

the statistical and observable properties of the survey. In this regard, this order of mock

catalogues that are required to fine-tune the error covariance, must be produced in no-

time, keeping eye on the survey launch time.

Keeping these goals in mind, I designed the pipeline, which is described in this chap-

ter, by assembling a set of reliable and specific public codes, and adding an originally

developed module that specifically contains characteristic features of a photometric wide-

survey. The pipeline (Fig. 6.1) consists of two independent stages, both of which I have

carefully tested, modified and optimised for efficient production of photo-z mock cata-

logues. The Stage-I produces ideal set of Lognormal mock catalogues featuring FLASK
and HEALPix modules at its core, and for generating the input of angular power spectrum

that sets statistical and cosmological properties of the density field, the pipeline commu-

nicates with CLASS code. Stage-I is validated independently, before the development of

Stage-II. The results of this validation are presented in § 6.2.9.

Stage-II of the pipeline was designed to assign the survey properties to archetypal

mock catalogues designed in Stage-I. In this stage, the core module is SMG, which is my

original program in the pipeline. SMG has 3 different processing elements that post-process

the ideal catalogues to realistic ones: i) Adding the photo-z information; ii) Imposing

survey redshift distribution; iii) Masking the catalogue objects with survey footprint. All

of these elements have been tested thoroughly in § 6.3, along with the final validation of

Stage-II in § 6.3.4. The χ2 analysis results from both validations are featured in Table

6.1. The results in the table infer that, the pipeline is authentic to produce photometric

mock catalogues specifically optimised to be used for tomography.

In last Section § 6.4, I presented the computational budget of the pipeline, together

with discussion on performance improvement and calibration for efficient mock pro-

duction. Using this pipeline, considering that at least 10 nodes embedded with 56 or

more cores are available on the computing cluster/machine, it is possible to produce

up to 104 mocks well inside 10 days. The pipeline has been used to produce the first

batch of Lognormal photo-z catalogue, which is being used in the Euclid collaboration for

internal validation activities. The full-sky sample consists of 12 shells in photo-z in range

zp = [0.4,1.5], each containing the expected number of objects by the Euclid survey.
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As anticipated, the current pipeline is undergoing several improvements. I have

already mentioned the possibility of switching from ASCII to binary output and that

of using a more compressed data format. Another feature that will be added is that

of non-Gaussian redshift dependent photo-z error. Together with this, by using more

sophisticated and state-of-the-art codes for generating angular power spectra, the next

version of the pipeline should provide the option of specifying the shape of the redshift

shell window function to predict the angular power spectrum in the photo-z space.

In terms of scientific goals, next is to explore the cross-correlation between galaxy

density field δ and weak-lensing fields such as cosmic shear γ and WL convergence κ,

which is an important aspect of the Euclid photo-z survey;



Chapter 7

General Conclusions and Future Outlook

Over the past decade, and even more in the next future, increasingly large fraction of the

Universe will be observed using large dedicated facilities. The motivation behind this

huge effort is the need to understand the ‘Nature’ of the ‘Dark’ components that seem to

dominate the mass-energy budget today. Universe. As we know already, one of them, the

Dark Energy, is possibly driving the accelerated expansion of the Universe, however its own

existence, and consequently its physical nature is much debated. Precious information on

the nature of this elusive component can be obtained from the study of the distribution of

galaxies and their motions. As a result, many large galaxy surveys have been carried out

and more, much larger, are expected to be performed in the next decade. In parallel, a

significant effort has been made to improve the accuracy of theoretical models as well as

the statistical methods to analyse the distribution of the extragalactic sources.

In this Thesis I considered, as a case study, two such large surveys. The first one, in

the X-ray band, is being performed by the recently launched eROSITA satellite. Its goal

is to trace the galaxy clusters over the full sky in next 4 years. The second one, are the

surveys that will be carried out by the upcoming Euclid satellite. The main focus here

in this thesis is on the Euclid photometric redshift survey, rather than the spectroscopic

one. In addition to these two future datasets, for which quantitative studies can only be

performed through simulated data, I also considered an existing dataset, the recently

released TGSS survey in the radio band, that allows one to study the angular clustering

properties of radio objects over a large fraction of the sky.

The motivation for considering such different types of datasets, whose only similarity

is the wide sky coverage, was to show that the use of multiple probes can provide com-

plementary constraints that, although with different precision, can be used to measure

fundamental cosmological parameters and identify possible systematic errors by com-

paring their results with model predictions. Also, besides the cosmological aspect, these
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combined analyses, were also important to address astrophysical issues (i.e. the nature of

radio objects in the TGSS sample) and also to identify potential issues with the dataset

itself.

The first analysis presented in Chapter 4, I used galaxy clusters as a cosmological

probe and analyse their 3D spatial distribution to measure the linear growth rate of

density fluctuations at moderate redshifts (z ≤ 1) from the redshift space distortions in

their 2-point clustering statistics. The goal was to assess if and how well these massive

cosmic tracers can be used to probe the linear growth rate and provide an estimate of this

key quantity, that is independent and alternative, to that obtained from galaxy samples.

This analysis, which was based on simulated data of cluster-sized haloes selected with

mass threshold of Mhalo > 1× 1014h−1 M⊙, was designed to match the characteristics

of the eROSITA survey, i.e. when the spectroscopic follow-up surveys of purely X-ray

based eROSITA mission would bring us large 3D datasets of clusters to perform clustering

analyses as cosmological case studies in near future. And therefore one of the motives of

this analysis was to provide a forecast for these datasets with the estimates of the redshift

distortion parameter β from 2-point correlation analyses performed in configuration and

Fourier space.

The main result of the analysis are:

• In all analyses I performed, linear theory predictions matched the measured 2-point

statistics over a large range of scales (corresponding to k < 0.08h Mpc−1 in Fourier

space and > 50 h−1 Mpc in configuration space). The adequacy of the linear theory

in describing the clustering properties of galaxy clusters is one of the main benefits

in considering these as cosmological probes.

• From the measurement of the anisotropic cluster power spectrum at z = 0 and

z = 0.5 one would obtain an unbiased estimate of β using linear perturbation theory.

Uncertainties are within 10% of the estimated value. The z = 0 sample that I anal-

ysed, matched the number density of the expected Deeper-eROSITA catalogue of

∼ 90,000 clusters corresponding to mass scale Mhalo > 5×1013h−1 M⊙, calculated at

mean redshift of z = 0.35. The z = 0.5 one, however matched the number of objects

which is ∼ 40,000 for the brighter Focused-eROSITA sample with more massive, i.e.

Mhalo > 5×1014h−1 M⊙, clusters calculated at mean redshift of z = 0.46.

• The same analysis that was performed in configuration space confirmed that the

measured β parameter is free of systematic errors. Random errors, however, are

larger than in Fourier space by ∼ 50%.



165

• Overall these results showed that if a large sample of clusters selected above a given

mass threshold, which is possible in the X-ray band, thanks to the tight correlation

between X-ray luminosity and mass, and also thanks to their high correlation signal,

these massive objects can be used to estimate the linear growth rate of density

fluctuations from the measured β parameter and the halo bias model. This mea-

surement, although less precise, is independent than the one that is obtained from

galaxy samples and can be used to validate and corroborate the results of galaxy

clustering analyses.

In Chapter 5 I presented another type of analysis that is already a co-authored publica-

tion. Triggered by the excess of power on the dipole moments of the NVSS catalogue, a

collection of radio objects, were investigated by performing the angular clustering analysis

on a newer, wide radio survey: the TGSS, to search for similar excess clustering on very

comparative angular scales. Unlike the cluster catalogue that was analysed in Chapter 4,

the sample in this case was purely two-dimensional, since radio datasets lack the informa-

tion on the distance of the objects, and was composed by different type of objects, ranging

from relatively faint and nearby star forming galaxies to very bright distant quasars. This

study extended previous analyses of the same datasets that have focused in small angular

scales (Rana and Singh Bagla, 2018) and on the dipole of angular power spectrum (Bengaly

et al., 2018). The main results of the investigations, that have been published in (Dolfi

et al., 2019) are:

• From the positive cross-correlation with the SDSS-QSO catalogues it was inferred

that the distribution of TGSS objects extends to high redshifts.

• After computing the angular auto-spectrum of the TGSS objects, we detected an

auto-correlation signal at all angular scales, like in the NVSS case. However, the

power at multipoles below ℓ∼ 40 is significantly higher in the TGSS sample.

• The results remained robust to tests performed for different flux cuts as well as for

checking the geometry mask effects.

• After assuming realistic models for the population of TGSS objects, their bias and

redshift distribution we obtained theoretical predictions for the TGSS angular power

spectrum, and found that it fails to match the large power detected at low multipoles.

The mismatch is highly significant, also when one takes into account theoretical

uncertainties in modelling the TGSS angular spectrum.

• We concluded that the excess power at large angular separation is not genuine but

probably reflects some undetected systematic uncertainties in the TGSS catalogues
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and its selection criteria. Further studies are required to identify the origin of this

mismatch. These results were obtained through a team work in which my main

contribution was the modelling of the bias for the various type of radio objects

included in the TGSS catalogues. These bias models were used to predict the angular

power spectrum of TGSS galaxies and compare it to the estimated one.

The third and final analysis presented in this thesis, which is also different from the

previous ones, can be found in 6. The theme of this particular project relies on investigat-

ing the clustering properties of objects for which the angular position and photometric

redshifts, instead of spectroscopic ones, are used to infer the radial distance of the objects.

Comparatively larger errors in the estimate of the redshift using photometric informa-

tion only, induce large random errors that erase a significant fraction of the clustering

information along the radial direction. In this case a full three dimensional analysis of the

galaxy distribution would not be justified, on the basis of its high computation time as

well as noise level in the dataset. Instead, a strategy to divide sample into radial shells and

perform a tomographic analysis would be ideal approach in such case.

The next on-board space-based Euclid satellite mission is expected to generate a very

large, photo-z galaxy catalogue. On these futuristic samples, a tomographic approach,

in which auto- and cross- angular spectra are measured in various redshift shells, will be

performed to infer fundamental cosmological parameters.

For such large datasets, the problem arises while estimating random and systematic

errors, for the enormous size of the covariance matrix needed to assess the level of accuracy

required in this case. The typical approach is that of generating numerous realistic random

catalogues, perform the same type of tomographic analyses and assess the amplitude of

both systematic and random errors. Ideally one would use synthetic catalogues that are

obtained from time consuming N-body simulations. However, a simpler and also much

faster approach would be, to exploit the fact that the 1-point probability distribution

function of the galaxy density field can be approximated by a Lognormal function. This

model assumption, would then be used to generate simplified mock catalogues of objects,

that are tested to be accurate enough to characterise errors and their covariance from

large samples of data.

My work consisted in setting up an efficient pipeline for the generation of a large

number of Lognormal mock catalogues, with objects and their photometric redshift

estimates, that are optimised for performing tomographic analyses. Alternatively the

objective was to measure their angular spectra to spot the presence of systematic errors

and quantify the magnitude of the random errors. To build this pipeline I assembled

publicly available codes (to generate correlated Lognormal catalogues of objects and map
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their ‘true’ distribution) and added my own code to simulate the effects of known selection

criteria and observational biases of the photometric survey sample under consideration.

It also features built-in validation tests designed to check whether the angular correlation

properties of the output mock objects match expectations. As described above, I used

Euclid photo-z survey as a first test case for this pipeline. During this work, I optimised

the performance of this pipeline, which, using the computational resources on a high

performance machine, can now produce 104 mock catalogues in 10 days time. This work

has been performed in the framework of the Euclid collaboration and the first batch

of 1000 mock catalogues has already been delivered to the community and is currently

being used to carry out further tests. Also this is a very much work in progress. An

updated version of the pipeline, currently under construction, will feature geometry mask

effects, non-Gaussian redshift-dependent photo-z errors and the possibility to generate

self consistently objects’ position as well as weak lensing shear map for a more ambitious

auto- and cross- correlation analysis.
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