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Abstract

In this thesis, I will explore the potential of cross correlating two distinct astronomical
datasets: catalogues of galaxies acquired from spectroscopic redshift surveys and
samples of gravitational wave (GW) events lacking electromagnetic counterparts.
The aim is to assess the validity of the standard cosmological model and derive its
fundamental parameters.

While the analysis of galaxies’ spatial distribution and clustering properties
has proven to be a powerful cosmological tool, evidenced by ongoing observational
endeavours such as Boss, Euclid, DESI, Roman, and Rubin [1, 2, 3], the utilisation
of GWs for cosmological inquiries is relatively new but increasingly intriguing since
the inaugural direct detection of a gravitational signal by the LIGO collaboration
[4].

There are two primary reasons for this increasing interest. Firstly, GWs offer a
novel type of astrophysical messenger, wholly independent of photons, which have
historically served as the sole informational conduit for astronomical investigations.
Secondly, GWs can serve as standard "sirens" – extra galactic sources whose distance
can be directly inferred from the observed signal.

Should the redshift of the GW host galaxy become observable, a classical Hubble
test [5] could be conducted to deduce cosmological parameters, akin to the method-
ology employed with standard candles like Type Ia supernovae. Regrettably, the
majority of detected GWs to date are "dark" – lacking unequivocal identification of a
host galaxy and thus precluding redshift measurement. Nonetheless, the redshift of
these dark sirens (DSs) can be statistically deduced by cross-correlating their spatial
positions with those of galaxies in spectroscopic surveys, potentially serving as DS
hosts, enabling a statistical rendition of the classical Hubble test.

Recent efforts have delved into this prospect, utilising hierarchical Bayesian
statistical analyses to infer the Hubble constant’s value[6, 7, 8]. These endeavours
predominantly relied on existing data, comprised largely of local DS samples, due to
the limited sensitivity of current GW detectors, and correlated with galaxy samples
from disparate datasets.

The thesis aims to forecast future experiments’ outcomes. A similar methodology
has been recently employed in [9], who devised specialised software CHIMERA, to
quantify the feasibility of measuring cosmological parameters using forthcoming O5
and O6 datasets from the LIGO-VIRGO-Kagra experiment.

This study will further expand upon this framework by contemplating the
combination of the spectroscopic galaxy survey conducted by the Euclid satellite
(scheduled for completion in 2029) with the catalogue of DSs anticipated from
the planned Einstein Telescope experiment. Unlike prior investigations, this joint
analysis will enable the execution of the Hubble test across a substantially broader
volume, spanning the unprecedented redshift range 0.9 ≤ z ≤ 2.

To this end, I have developed a proprietary data analysis pipeline, the Cross
correlation with Dark sirEns (CODE). Since the absence of data for both channels,
the first part of CODE is devoted to produce an observed Einstein Telescope-like
catalogue of possible DSs, that will be cross correlated with the Euclid Flagship
mock galaxy survey. The current version of CODE focus on deriving the Hubble
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constant independently of cosmic microwave background (CMB) observations and
local distance indicators. The reason for focusing on this measurement is the existing
discrepancies in current H0 measurements – the so-called Hubble tension – which
constitutes a potential challenge to the foundation of the Λ-CDM model.

This projects methodically explores the effect that various factors, such as the
accuracy of the distance measurements of Dark Sirens and the number of events,
have on the final posterior, progressively increasing the level of complexity and
realism of the problem. In the case of Euclid correlated with the Einstein Telescope,
it is demonstrated how it is possible to achieve accuracy on the order of one percent,
culminating in the determination of H0 with an error of 0.5% after five years of data
collection.

It’s noteworthy that while this Thesis employs the pipeline to address a specific
issue, its adaptable structure permits the handling of diverse datasets and the
inference of various cosmological parameters, thereby facilitating exploration of
alternative cosmological scenarios beyond the standard model.
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Introduction

The Universe, its contents, and its laws have always fascinated humanity, representing
the ultimate conundrum. Throughout human history, the firmament has served as
both a map and a clock, with every civilisation looking to the stars for answers to
its deepest questions. It is no wonder that, until relatively recent times, the study
of the cosmos was linked to both philosophical and theological inquiries.

Modern cosmology aims to study the Universe as a whole, with a particular
focus on its origin and evolution. The foundations of modern cosmology, as we know
it, can be traced back to the first half of the last century thanks to the profound
contributions of Albert Einstein and his theory of general relativity (GR) [10], as
well as the observations of Lemaître and later Hubble [5].

First, in fact, a seemingly obvious observation with profound cosmological
implications was performed earlier on by H. Olbers [11]. It goes under the name of
Olbers’ paradox and can be stated as follows: "Why is the night sky dark?" If we
assume that the Universe is indeed infinite, then the surface brightness of the sky
contributed by an infinite number of stars should be infinitely large. Its solution
requires that the Universe is expanding, as observed by Hubble, so that the light of
the distant sources could be redshifted away.

The observed expansion of the Universe with the implication that there is no
preferential observer inspired the Cosmological Principle, i.e. that the Universe is
an isotropic homogeneous physical system. Its assumption in the GR framework has
led to the adoption of a Friedmann Lemaître Robertson Walker metrics [12] in the
Einstein equations, whose solution constitutes the so-called Hot Big Bang model
that we are still using.

This model has evolved into the current "standard" ΛCDM model to account
for the intriguing, and largely unexplained, presence of two dark components: dark
matter and dark energy, whose very nature constitute a challenge to fundamental
physics.

The adoption of the ΛCDM model, despite the fundamental question it rises, is
justified by its spectacular success in matching observations over a huge range of
spatial and temporal scales.

Our recently achieved ability to reduce observational uncertainties to a per-cent
level, allowed us to spot a few inconsistencies, usually referred to as "tensions" whose
existence challenges the ΛCDM model. The most important one being the Hubble
tension and involving the estimate of the current expansion rate of the Universe,
quantified by the Hubble constant, obtained from different cosmological probes
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[13, 14].
The quest for the value of the Hubble constant, H0, has a long history [15]. Its

direct measurement in the local Universe can be obtained by comparing the redshift
of an extra-galactic object to its distance. While redshift is readily obtained from the
measured wavelengths of known lines in the observed energy spectrum of the object,
estimating its distance is comparatively more challenging and can be only done
for specific classes of objects called distance indicators. A distance indicator is an
object for which a relation exists between two or more quantities (i.e. luminosity and
rotation velocity for disk galaxies) one of which is related to a distance-dependent
observable quantity i.e. luminosity and flux). The simplest example of distance
indicators are the "standard candles". These are objects of known luminosity for
which the measurement of the flux allows us to infer a particular type of distance,
the luminosity distance, simply related to the proper distance of the object. The
precision of these local measurements of H0 has increased, reaching the per-cent
level. The recent estimate [16] being:

H local
0 = (73.29 ± 0.90) km s−1Mpc−1 .

The second, completely different and somewhat model-dependent estimate of H0,
can be obtained by exploiting the simple physics of the Universe at the last scattering
epoch, when photons were last coupled to baryons. The statistical analysis of the
temperature fluctuations in the Cosmic Microwave Background (CMB) allows one
to extract a wealth of cosmology-relevant information from which one can infer the
H0 value. The estimate obtained from the analysis of the CMB maps produced by
the Planck satellite mission is also very precise, but significantly different from the
local measurement [17]

Hplanck
0 = (67.66 ± 0.62) km s−1Mpc−1 ,

The discrepancy, the Hubble tension, is currently considered a significant issue
in cosmology and poses a potential threat to the ΛCDM model. Despite efforts
to identify possible sources of systematic errors in the data and analyses, several
alternative models have been proposed to alleviate this tension [13]. None of these
models have been able to fully explain the observed discrepancy.

A game-changer in this state of affairs would be represented by an independent
method of estimation derived from a completely different cosmological probe. This
possibility, first contemplated by B. Schutz [18], eventually materialised in 2015
with the detection of the first gravitational wave by the LIGO observatory [19]. The
existence of gravitational waves (GWs) was theorised by Einstein in the early 20th
century [20] These ripples in the space-time fabric are produced, for example, when
two massive objects whirl toward each others.

The simultaneous observation of such an event, triggered by the coalescence of
two neutron stars, and its electromagnetic counterpart confirmed that GWs travel
at the speed of light. Once detected, the GW signal carries crucial information
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on the intrinsic magnitude of the event. When compared with the intensity of the
signal, it allows us to infer the distance of the gravitational waves. For these reasons,
gravitational waves constitute a new class of distant indicators, dubbed "standard
sirens."

Like all other distance indicators, to measure H0 one needs to estimate the
distance and measure the redshift of the GW source. However, this has been possible
in only one case [4, 21], out of the ∼ 90 GW events detected so far by the LIGO
Virgo Team [22].

The paucity of observed GWs with electromagnetic counterpart, also known as
"bright sirens", does not allow estimating H0 with the required precision, nor the
current rate of bright sirens detection allows us to predict when this will be possible.

A viable alternative to bright sirens (BS) are the dark sirens (DS), i.e. GWs
without electromagnetic counterpart. These represent the vast majority of detected
events, but with no observed redshift available, do not allow us to estimate H0
directly. An indirect estimate is, however, possible by statistically correlating the
observed position of the DSs with that of the surrounding potential hosts, i.e. with
the position of luminous galaxies in large spectroscopic surveys.

Redshift surveys have revolutionised our understanding of the Universe, offering
a detailed mapping of galaxy distribution and large-scale structure. Pioneering
studies such as the Sloan Digital Sky Survey [23] (SDSS), the Baryon Oscillation
Spectroscopic Survey [24] (BOSS), and its successor, the extended Baryon Oscillation
Spectroscopic Survey [25] (eBOSS), have provided unprecedented insights into
the Universe’s structure. BOSS, in particular, has enabled measurements of the
baryon acoustic oscillations [26] (BAO) scale with unparalleled precision, becoming a
cornerstone in studying dark energy and dark matter in the Universe. Its successor,
eBOSS, has extended this mapping to higher redshifts, thus offering new opportunities
to explore the Universe’s evolution.

Ongoing surveys like the Dark Energy Spectroscopic Instrument [2] (DESI) and
Euclid are pushing the boundaries of knowledge even further. DESI, with its ability
to measure about 30 million galaxy and quasar redshifts, aims to construct a three-
dimensional map of the Universe with unprecedented precision. However, it is the
European Space Agency’s Euclid project that promises to be revolutionary [1, 27].
Designed to survey the sky with unmatched precision and depth, Euclid aims to unveil
the secrets of dark energy and the Universe’s structure. Through its observations,
Euclid will contribute to answering fundamental questions about the nature of cosmic
expansion and the formation of cosmic structures. Euclid’s importance in cosmology
is indisputable, and its launch is eagerly anticipated by the scientific community for
its potential discoveries and contributions to our understanding of the Universe.

The significance of GWs extends well beyond the sole determination of H0. GWs
can also be used to determine other cosmological parameters that appear in the
z −Dl relationship, in addition to providing a new perspective from which to study
alternative theories of gravity [6]. Cosmologically, they can serve as a means to
identify and study primordial black holes [28], while from an astrophysical standpoint,
GWs are an invaluable source of information about the internal structure of the
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source, allowing for the detection of possible exotic compact object. [29, 30, 31, 32].
The goal of this thesis is to assess the accuracy with which cosmological param-

eters, with an emphasis on H0, can be measured by cross-correlating catalogues
of dark sirens generated by current and future gravitational wave detectors with
those of galaxies obtained from ongoing observational spectroscopic surveys. For
this we have set up a data analysis pipeline consisting of a few key elements. First,
we generate mock catalogues of dark sirens and galaxies mimicking the datasets
that will be produced by the next generation GW interferometers like the Einstein
Telescope [33] (ET) and by the Euclid galaxy survey [27]. We implement and perform
a Bayesian inference analysis similar to the one adopted by [6] to estimate the
posterior probability of the cosmological parameters of interest given by the two
datasets. While in this thesis, I will focus on the ET and Euclid samples on one
hand and on the Hubble constant on the other hand, the pipeline is flexible enough
to provide forecasts for additional cosmological parameters using other datasets,
including existing ones.

The layout of the thesis is as follows: The first chapter will introduce the necessary
notions of cosmology and will delve into the Hubble tension, current measurements,
and methods found in the literature.

The second chapter is dedicated to GWs (Gravitational Waves): from the
mathematical derivation to their propagation in an FRW metric. The quadrupolar
nature of GWs will be explained, and a binary system will be briefly studied, with
an emphasis on the frequency and energy of GWs.

The third chapter, on the other hand, presents the "tools" on which the analysis
has focused. The first part discusses the ET and Euclid experiments, with particular
attention to the former, as it relates to the properties of the sources that are actually
visible.

In the fourth chapter, the theoretical framework necessary to conduct the study
is discussed. The concept of hierarchical Bayesian inference is briefly introduced, and
relevant physical quantities are discussed, with a final digression on the analytical
properties of some functions.

The fifth chapter encompasses the operational scheme of the pipeline, robustness
tests and calibration, along with results for five years of observation assuming ET-like
and Euclid-like instruments.

In the conclusion, a brief summary of the work can be found.
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Chapter 1

Background Cosmology

In this chapter, I will introduce the scientific concepts and tools that constitute
the building blocks of this work. Cosmology aims to study the Universe as a
whole, i.e. out to the largest observable scales1 The Universe operates as a self-
gravitating system, where, on sufficiently large scales, all other forces can be neglected.
Consequently, comprehending its evolution necessitates a theory of gravity. In this
context, Einstein’s General Relativity is adopted, and the goal is to solve Einstein’s
equation.

Solving these coupled, nonlinear partial differential equations is a challenging
endeavour that necessitates adopting some approximation for space-time geometry.
Observations provide evidence that the Universe is spatially homogeneous and
isotropic on sufficiently large scales. We elevate this evidence to a Cosmological
Principle and construct a model for the background, upon which cosmic structures
form and evolve.

1.1 Background Metric

As anticipated, the model for background cosmology rests upon the Theory of
General Relativity, formulated by Einstein in 1915. This theory is built upon three
pillars:

• The Equivalence Principle: This principle asserts that the effect of gravity
is indistinguishable from that of an acceleration or, alternatively, that no
experiments can distinguish between a uniformly accelerated system and a
system in a gravity field.

• Covariance: The theory of General Relativity adheres to the idea of covariance,
ensuring that all observers will obtain identical results for a given physical
phenomenon. This consistency extends across reference frames, necessitating
appropriate adjustments to equations based on the chosen frame of reference.

1Here, and in the rest of the work, the term "large scale" indicates a scale of ∼ 100 Mpc that
safely encompasses the size of the largest cosmic structures.



6 1. Background Cosmology

• Four-Dimensional space-time: General Relativity applies to a four-dimensional
space-time, encompassing three spatial dimensions and time. The geometry
of the system, particularly its curvature, is connected to its energy content
through Einstein’s equations.

A crucial quantity for capturing the properties of space-time is the metric tensor,
since it allows us to define distances in a curved space-time. In a Euclidean, flat
space the metrics, defined as the separation between two nearby points is

ds2 = dx2 + dy2 + dz2 =
2∑

i,j=0
gijdx

jdxj , (1.1)

where ds is the spatial separation and gij is defined as

gij =

1 if i = j ,
0 if i ̸= j ,

(1.2)

that is a Kronecker delta δij . The explicit expression of the metric tensor depends
on the coordinate system. In the spherical coordinate system the metric element is

ds2 = dr2 + r2(dθ2 + sin2 θdφ2) . (1.3)

The corresponding metric tensor gij = diag(1, r2, r2 sin θ) is still diagonal, but its
coefficients depend on the coordinate, even in absence of curvature, since ds2 is
invariant.

Special Relativity describes physical systems in a 4-dimensional spacetime with
Minkowski metrics

ds2 = −dt2 + dx2 + dy2 + dz2 =
3∑

i,j=0
ηijdx

jdxj = ηijdx
jdxj , (1.4)

where the symbol η identifies the Minkowski metric tensor of the flat 4-dimensional
spacetime. Self gravitating systems, like the Universe, can be described by the
Minkowski metrics only locally. A global description requires using a different
metrics, even in absence of curvature.

1.1.1 FLRW metric

The adoption of the Cosmological Principle implies assuming several space-time
symmetries that greatly simplify its metrics. Homogeneity and isotropy imply that
the metric tensor is diagonal, and the 00 coefficient of the time element dt does not
depend on the spatial coordinate; thus, it can be factorised out:

ds2 = −dt2 + a2(t)dl2 , (1.5)

where dl2 is the line element for the spatial part of the metric and a(t) is called scale
factor. To preserve homogeneity and isotropy, the scale factor must be a function of
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time only. Its physical meaning is clear: the relative spatial distances between any
two points increase (or decrease) as a(t), implying a global expansion (contraction)
of the entire system. Thus, the Hubble expansion is an intrinsic feature of any
homogeneous, isotropic, self-gravitating system.

We still have to specify the spatial line element dl. Curvature in a generic
space-time is a complex quantity fully captured by the rank-4 Riemann tensor.
In the highly symmetric system we are considering here, curvature is described
by a time-independent scalar, constant throughout the spacetime. Its sign fully
determines the geometrical property of the system:

• Positive Curvature and Spherical Geometry: In this case, constant time
hypersurfaces are represented by a three-sphere in a Euclidean E4 space. The
curvature is the radius R of the sphere in this four dimensional space

dl2 = du2 + dx2, u2 + x2 = R2 .

• Zero Curvature and Flat Geometry: In this case, the line element is a
three-dimensional Kronecker delta dl2 = δijdx

idxj describing the properties of
the familiar Euclidean geometry.

• Negative Curvature and Hyperbolic Geometry: In this case constant
time hypersurfaces are three-dimensional hyperboloid embedded in what is
called a Lorentzian four dimensional space, meaning that one coordinate has
to have an opposite sign

dl2 = −du2 + dx2, −u2 + x2 = −R2, R2 > 0.

In polar coordinate one can express the metric element as

ds2 = −dt2 + a2(t)
(

dr2

1 − kr2 + r2dΩ2
)
, (1.6)

where dΩ2 = dθ2+sin2(θ)dϕ2 and k is the curvature that, after conveniently rescaling
the coordinate, can have the following values:

k = +1 Spherical

k = 0 Flat

k = −1 Hyperbolic

. (1.7)

(r, θ, ϕ), or equivalently (x, y, z) in a Cartesian system, are called co-moving coor-
dinates and are dimensionless. The expansion factor a(t) has the dimension of a
length. Its value can be conveniently normalised to the present epoch, i.e. we can
set a(t = 0) = 1.

Equation 1.6 provides the expression of the Friedmann Lemaître Robertson
Walker (FLRW) metrics. It is derived from the Cosmological Principle and assumed
in the standard cosmological model considered in this Thesis.
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1.1.2 The Hubble constant

As anticipated, the FLRW metrics implies that the Universe is expanding, as observed
by Hubble. To see this more explicitly and provide a quantitative definition of the
Hubble constant, let us consider two nearby points in spacetime on a constant time
hypersurface dt = 0. Because of isotropy one can consider their separation along the
radial direction dθ = dϕ = 0 and find

dl(t) = a(t)
(

dr2

1 − kr2

)1/2

≡ a(t)F (k, r)dr . (1.8)

Since the separation changes over time a relative velocity of the two points can be
defined by deriving dl with respect to the time coordinate

v ≡ ḋl = ȧF (k, r) = ȧ(t)
a(t)aF (k, r) ≡ H(t)dl

which is valid for any two points at any finite separation. It describes the recession
velocity of galaxies that, as observed by Hubble, increases linearly with their distance.
The time-function H(t) is the so-called Hubble parameter, and its value at the present
epoch H0 is the quantity I will focus on in this thesis. This value, which quantifies
the rate at which the Universe is expanding, or contracting, is expressed in units of
Km, s−1,Mpc−1.

While the recession velocity can exceed the speed of light, it does not violate
causality. For any observer, the distance at which the recession velocity equals the
speed of light represents its Hubble horizon, λH = H−1 in natural units.

Cosmological Redshift

One consequence of the FLRW metrics is cosmological redshift. The energy of a
photon travelling between a source and an observer decreases (or increases) depending
on their relative distance or, since photons travel at the speed of light in empty space,
on the time delay between the emission of the photon and its detection. Due to this
characteristic effect, redshift is used as both a time proxy (indicating that a source
at high redshift emitted the photon long ago) and a distance proxy (indicating that
a source at high redshift is far away).

It is possible to show that the energy E of a photon travelling in an FLRW
spacetime changes with time as

1
E

dE

dt
= − ȧ

a
. (1.9)

Since for a photon E ∝ λ−1 the above relation can be rewritten as

dλ

λ
= −da

a
. (1.10)
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which is valid for any finite separation and time interval, leading to

z ≡ λ0 − λe

λe
= 1
a(te) − 1 , (1.11)

where the subscripts 0 and e indicate the observation and emission time, respectively,
and the normalisation a(t = 0) = 1 has been used. The quantity z is the cosmological
redshift. It can be estimated by observing the wavelength of photons whose energies
at the emission epoch are known. This can be done by identifying characteristic
emission or absorption lines in the energy spectrum of extra galactic objects. The
inferred quantity is dubbed ’spectroscopic redshift.’ Alternatively, a ’photometric
redshift’ can be observed by measuring the energy flux in various bands, effectively
coarsely sampling the energy spectrum of the source. Spectroscopic redshifts provide
a more precise estimate of the cosmological redshift than photometric ones.

It is the cosmological redshift, sometimes incorrectly interpreted as Doppler shift,
that has been observed by Hubble to measure the galaxies’ recession velocity and
discover its eponymous relation.

Distances in Cosmology

Having defined a metric for spacetime, we can define distances between any two points.
The proper distance between them is defined over a constant time hypersurface, i.e.,
having imposed dt = 0. It can be estimated, thanks to isotropy and homogeneity,
along a radial path connecting the two points by placing one of them at the centre
of coordinates. In comoving units, its expression is:

dc =
∫ 0

r
a(t)F (k, r)dr. (1.12)

Its value depends on the curvature of the system. While well-defined, the proper
distance is not a measurable quantity since it would require performing measurements
instantaneously (dt = 0). However, dc is also equal to the comoving distance travelled
by a photon emitted at time te from r and received by the observer at 0 at t0:

dc =
∫ t0

te

1
a(t)dt =

∫ ze

0

1
H(z)dz , (1.13)

where we have exploited the fact that photons travel along null paths (ds = 0) and
have used eq. (1.11) in the last expression eq. (1.1.2) to change the variable from t

to z.
This second expression brings us closer to a measurable quantity, the luminosity

distance. Let us consider the energy flux F collected by an observer at t0 and emitted
by an extra-galactic source with an intrinsic luminosity L. The flux decreases with
the square of the luminosity distance of the source:

F = L

4πD2
l

, (1.14)
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which is simply related to the comoving distance of the source Dl = (1 + z)dc. Thus,
the possibility of measuring Dl and the redshift z allows us to infer the comoving
distance of the source dc and, through eq. (1.13), the Hubble function H(t).

To measure the luminosity distance, we therefore need to measure the flux of a
source whose intrinsic luminosity is known. This cannot be done for generic sources
but only for distance indicators. One historically relevant example, particularly for
the local measurement of H0, is the class of Cepheid stars. Cepheids are bright,
variable stars that pulsate radially, varying both their diameter and temperature,
and consequently, their brightness. The observed light curve has a well-defined stable
period that is a function of the intrinsic luminosity [34, 35]. Cepheids can be detected
and observed within relatively nearby galaxies, reaching out to approximately 50
Mpc.

A second type of much brighter distance indicators, historically relevant for the
measurement of H0 and, as we shall see, for probing the accelerated expansion of
the Universe, is Type Ia Supernovae.

Type Ia supernovae are a particular type of supernovae that occur in a binary
system composed of a normal star and a white dwarf. The white dwarf accretes
mass from its companion, and once the critical mass, that is the Chandrasekhar
limit, is reached, nuclear fusion sets in an uncontrolled explosive way, resulting in a
disruption of the system.

Since the Chandrasekhar limit is a fixed mass of ∼ 1.4,M⊙
2, the intrinsic

peak luminosity must be similar for all Type 1a Supernovae, irrespective of the
characteristics of the original binary system. In fact, Type Ia supernovae do not
all reach the same peak luminosity. However, the width of the observed light curve
can be used to correct Type Ia supernovae to standard candle values. The original
correction, known as the Phillips relationship, makes Type Ia supernovae very precise
standard candles with which it is possible to measure relative distances to ∼ 10 %
accuracy [36, 36].

1.1.3 Background Evolution

Now that the geometry of the isotropic homogeneous Universe is defined, it is time
to link its geometric properties to the mass-energy content and derive the equations
that describe its dynamics.

The starting point are the fundamental Einstein’s Field equations

Gµν = 8πTµν , (1.15)

where Tµν is the stress-energy tensor, representing the contribution of all forms of
energy and matter in the Universe, and Gµν is the Einstein tensor, obtained by
combining the metric tensor, the Ricci tensor and its contraction, the Ricci scalar

Gµν = Rµν − 1
2gµνR . (1.16)

2there can be variation depending on the model, but the point is that the limit is the same for
every white dwarf
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The Ricci tensor contains information on the metric tensor and its first and second
derivatives. It is defined as

Rµν =
∂Γα

µν

∂xα
−
∂Γα

µα

∂xν
− Γα

σαΓσ
µν + Γα

σνΓσ
µα , (1.17)

where Γα
µν are the Christoffel symbols:

Γα
µν = 1

2g
αγ
(
∂gγν

∂xµ
+ ∂gµγ

∂xν
− ∂gµν

∂xγ

)
. (1.18)

Assuming isotropy and homogeneity and under the hypothesis that all forms of
matter and energy relevant to cosmology can be described as a perfect fluid, the
stress-energy Tµν is obtained, and can be cast in the following form:

Tµν = (ρ+ P )UµUν + Pgµν , (1.19)

where ρ indicates the energy density in the fluid rest frame, P its isotropic pressure,
and Uα is the four-velocity of the fluid element with respect to the observer. The
stress-energy tensor must also obey the conservation equation:

0 = ∇µT
µ
ν = ∂Tµ

ν

∂xµ
+ Γµ

αµT
α
µ − Γµ

νµT
µ
α . (1.20)

These are four differential equations, and the first one, ν = 0, reads

0 = −dρ

dt
− Γµ

µ0ρ− Γα
µ0T

µ
α . (1.21)

Its explicit expression for the LFRW metrics is

ρ̇+ 3 ȧ
a

(ρ+ P ) = 0 , (1.22)

which describes the usual continuity equation for a perfect fluid in an expanding, or
contracting, system.

The two quantities ρ and P are related through the equation of state of a perfect
fluid. The equation of state for cosmologically relevant fluids is usually parameterised
as P = ωρ. The parameter ω is dubbed the ’Zel’dovich parameter,’ and its value
fully characterises the physical properties of the fluid. Inserting the equation of state
into equation 1.22, the following is obtained:

ρ̇

ρ
= 3(1 + ω) ȧ

a
. (1.23)

Its solution
ρ ∝ a3(1+ω) (1.24)

indicates that the energy density of the fluid decreases as the Universe expands,
unless ω ≤ −1. The rate at which it decreases depends on the characteristics of
the fluid. For non-relativistic matter, describable as a pressureless fluid with ω = 0,
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the mass density decreases as a−3, meaning it is diluted by the increase in the
physical volume of the fluid element. The energy density of radiation, characterised
by ω = 1/3, decreases as a−4. The additional a−1 dilution factor quantifies the effect
of cosmological redshift.

Finally, observational evidence of an accelerated expansion of the Universe
requires that the energy budget of the Universe is currently dominated by a new
component that behaves as a perfect fluid with ω ≤ −1/3. The value ω ≤ −1, which
provides a good fit to observational data, corresponds to the case of a cosmological
constant and implies that the corresponding energy density does not evolve with
time.

Different fluids, which are assumed to interact only through gravity, may con-
tribute to the stress-energy tensor, each characterised by an equation of state 1.24. In
this case, the pressure and energy density terms that appear in the tensor represent
the sum of all these components.

The Friedmann Equations

While ρ and P are related through the equation of state, an additional equation
is needed to complement 1.22 in order to solve for a(t). This equation, known as
the first Friedmann equation, is obtained by considering the 00 component of the
Einstein equations:

ȧ2 = H2(t) = 8πG
3 ρ− k

a2 , (1.25)

where, once again, the normalisation a(t0) = 1 is used, and ρ accounts for the energy
density of all fluids in the Universe. To identify them, the subscript r is used for
radiation, m for non-relativistic matter, and Λ for the cosmological constant."

If the total energy density matched the critical one

ρcrit ≡ 3H
8πG . (1.26)

then, according to equation 1.25, the curvature of the system must be null. It is
convenient to express the energy density of each fluid in units of the critical density
and define the density parameter:

Ωx = ρx

ρcrit
; wherex = r,m,Λ . (1.27)

The addition of the subscript 0 indicates the quantity measured at the present epoch
t = t0. A density parameter for the curvature term can also be formally defined:

Ωk ≡ − k

H2 , (1.28)

so that the following relation holds true:

Ωr + Ωm + Ωk + ΩΛ = 1 . (1.29)
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This relation quantifies the fractional contribution of each fluid to the overall energy
density of the Universe at any epoch.

The "second Friedmann equation" is obtained by any of the three (identical) ii

spatial components of the Einstein’s Equations

ä

a
= 4πG

3 (ρ+ 3P ) . (1.30)

The two Friedmann equations and the energy conservation equation are not in-
dependent. Any two of them, along with the equation of states of all the fluids
that contribute to the energy density of the system, can be solved for a(t) and,
consequently, model the expansion history of the Universe H(t).

1.1.4 Matter-Energy Content

The expansion history of the Universe depends on the relative density and equation
of states of the various fluids in the Universe. Such dependence shapes the relation
between the measured luminosity distance and the redshift of the source zs. This
relationship becomes clear after plugging the first Friedmann equation into eq. (1.13),
taking into account the relation between comoving and luminosity distances:

Dl = (1 + z)s

H0

∫ z0s

0

dz√
Ωr,0(1 + z)4 + Ωm,0(1 + z)3 + Ωk,0(1 + z)2 + ΩΛ,0

. (1.31)

This relation stands as a pivotal aspect of my thesis, highlighting the capability
to derive the value of the Hubble constant at the present epoch, H0, through the
measurement of luminosity distance and redshift of a distance indicator. This
inference is achievable when considering a cosmological model, completely defined
by the density parameters Ωr,0,Ωm,0,ΩΛ,0, whose values are measurable through
additional observations.

In the following, I shall review the individual contributions of the various fluids
to the total energy density within the framework of the flat ΛCDM model, which
allows us to set Ωk,0 = 0.

Relativistic Particles

Stable, relativistic particles contribute to the energy density of the Universe. Thanks
to the rapid decrease of their energy density, ρr ∝ a−4, relativistic particles dominate
the energy budget of the Universe at early times. Cosmologically relevant relativistic
particles include the photons of the cosmic microwave background and neutrinos
before they become non-relativistic. The former exhibit an almost perfect black
body spectrum with a temperature T0,γ = 2.72548 ± 0.00057 K [37], corresponding
to a present day mean energy density Ωr,0 = (5.401 ± 0.012) × 10−5 [17].

Neutrinos are massive but light. They decouple before the electron-positron
annihilation when they are still relativistic. Their temperature is smaller than that
of the photons by a factor

(
4
11

)1/3
. Their energy density is reduced accordingly and,
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for this reason, they are always sub-dominant with respect to photons.

Non-relativistic matter

Non-relativistic particles behave as a pressureless fluid on cosmological scales, i.e.,
their equation of state is characterised by a Zel’dovich parameter ω = 0, and
therefore, their mass density decreases as a−3 with the expansion of the Universe.

Non-relativistic particles include standard baryonic matter, made of known
particles. But these are not the only components. Another type of matter, dark
matter, which manifests itself only through gravitational interaction so far, is assumed
to be present and dominating the total mass budget.

The baryonic mass content has been precisely inferred from the abundance of
light elements produced during cosmological nucleosynthesis (Ωbh

2 = 0.020 ± 0.002,
where h indicates the H0 value in units of 100 kms−1Mpc; [38] and from the analysis
of the brightness fluctuations of the CMB (Ωbh

2 = 0.0224 ± 0.0001 [17]).
Local measurements of the baryon density have returned systematically lower

values [39, 40], triggering the quest for the missing baryons that has indicated that
a significant fraction of the local baryons are to be found in the form of a warm-hot
intergalactic medium [41]. The first evidence that more matter, in addition to
baryons, is present in the Universe traces back to 1933, in Zwicky’s observations of
the excess random velocity of galaxies within the Coma cluster [42]. However, the
adoption of the Dark Matter hypothesis, i.e., that this excess was due to a new type
of matter, was proposed in the ’70s after the observations of the flat rotation curves
of disk galaxies by V. Rubin [43]. An overwhelming body of evidence shows that
dark matter exists and is made of massive, non-relativistic particles with negligible
cross-section for interaction with standard particles, including photons.

Cold (i.e. non-relativistic at decoupling) Dark Matter is now firmly part of the
standard cosmological model [44, 45] and the quest for its direct detection represents
a very active research field.

With no direct detection so far, the nature of dark matter particles remains
unknown. A plethora of dark matter candidates have been proposed, ranging
from weakly interacting massive particles proposed in the framework of the super-
symmetrical extensions of the standard model of particle physics [46] to the more
recent proposal of primordial black holes [47].

The energy density of matter, both baryonic and dark, from [17] is Ωm =
0.3111 ± 0.0056.

Cosmological Constant and Dark Energy

The discovery of the expanding Universe is one of the most significant achievements
in modern cosmology, and it has been largely attributed to the observations of Type
Ia Supernovae. These stellar phenomena have played a crucial role in revealing that
the Universe is not static but is, in fact, expanding at an accelerating rate.

The breakthrough came in the late 1990s when two independent research teams,
the Supernova Cosmology Project [48] and the High-Z Supernova Search Team [49],
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used distant Type Ia Supernovae to measure the rate of expansion of the Universe.
They observed that distant supernovae appeared fainter than expected under the
presumption of a decelerating Universe, which would be the case if gravity was the
sole force acting on large scales.

These observations imply that the Universe is accelerating its expansion, a
behaviour utterly unexpected for a self-gravitating system. In Einstein’s General
Relativity framework, an accelerated expansion can only be accounted for if, at
the present epoch, the energy budget of the Universe is dominated by a fluid with
negative pressure and an equation of state with ω < −1/3 [50], as shown by the
second Friedmann’s equation. This mysterious fluid is dubbed Dark Energy.

Among the many Dark Energy models that have been proposed so far, the
simplest one that is consistent with all observations is the Cosmological Constant Λ.

The cosmological constant was first introduced by Einstein to make the Universe
static and match the observational constraints at that time. After being abandoned
following Hubble’s discovery that the Universe is expanding, it has now been recon-
sidered to account for the accelerated expansion. The introduction of this constant
modifies the field equations as follows:

Gµν + Λgµν = 8πGTµν , (1.32)

or, equivalently, as
Gµν = 8πG(Tµν + TΛ

µν) , (1.33)

where we have defined TΛ
µν as

TΛ
µν ≡ − Λ

8πGgµν . (1.34)

Having written Einstein’s equations in this form, it is clear that the cosmological
constant can be regarded as a fluid with its pressure and energy density that
contributes to the total stress-energy tensor of the system. The equation of state
of this fluid is characterised by a Zel’dovich parameter ω = −1, which implies the
remarkable property that its energy density does not evolve with time. Other forms of
Dark Energy, characterised by different, and potentially time-dependent, values of ω,
do not share this characteristic. Its energy density from [17] is ΩΛ = 0.6889 ± 0.0056.

Total Mass Energy Budget

Putting all together, the total energy-mass content of the Universe at the present
epoch can be determined. The results are summarised by the pie diagram in Fig. 1.1,
where we show the per-cent contribution of the various components to the total
energy budget, keeping in mind that in the ΛCMD framework adopted here the
Universe is flat and, therefore, the total energy density must match the critical value.

Dark Energy dominates the budget. However, the relative contribution of the
various components to the total energy budget evolves with time. Going back in
time, the contribution of the relativistic species, negligible at the present epoch,
increases and becomes the dominant one during the radiation epoch. In between
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Figure 1.1. The image is a rough, but immediate representation of how much each
component contributes to the overall energy budget. Source [51].

the radiative era and the dark energy-dominated one, the budget is dominated by
the non-relativistic component, during the so-called matter era.

1.2 The Hubble Tension

Despite lacking an understanding of the nature of its dark components, the ΛCDM
model successfully fits almost all the observational data. With a few exceptions, the
most significant of which is the so-called Hubble tension.

Cosmological observations have revealed a discrepancy between the value of
H0 inferred from different types of observations. A discrepancy whose statistical
significance has increased with the increasing accuracy of the observations themselves.

Being a factor that sets the length and timescale of the whole system, H0 can
be inferred from various types of observations. Two of them, the estimate of H0
from X-ray observations and the Sunayev-Zel’dovich effect of galaxy clusters [52],
and from strong lensing time delay [53], have not yet reached the required precision
to play a relevant role in the current tension. The tensions stem from two entirely
different types of observations: the analysis of the cosmic microwave background [17]
and the measured distances of various distance indicators in the local Universe [54].
A detailed review on this topic can be found in [13, 55]. Here I simply present an
overview of the problem.
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1.2.1 Hubble Constant from CMB

Originating at the last scattering surface, approximately 380,000 years after the Big
Bang, the CMB encodes pivotal information about the physics of the young universe.
Recombination, a transformative event during this epoch, saw the formation of
neutral hydrogen atoms as protons and electrons, previously in the form of a highly
ionised plasma. After recombination, the Universe became transparent to radiation,
allowing photons to traverse the cosmos unimpeded. As a result, CMB is the furthest
observable phenomenon visible in the electromagnetic channel.

While incredibly uniform at large scale, the Universe presents some non-homogeneity
that, thanks to gravitational instability, gave birth to the structures that can be
seen today.

Those small deviations were most probably caused by quantum fluctuation of the
primordial energy density distribution [56] and those primordial spikes are believed
to be the seeds necessary to structure formation. Those seeds are over dense regions
that grew thanks to gravity positive feedback. The field of structure formation is a
complex and wide area of Cosmology, and I will not delve into the evolution of those
scalar perturbations. The main interest of this work are tonsorial perturbations i.e.
the propagation of GWs, which will be discussed in the next chapter.

Scalar perturbation plays an important role in the quest for the H0 parameter,
since they encode precious information about the "background" Universe. For the
scope of this work, the relevant aspect of those perturbations are the temperature
fluctuation in the CMB spectrum. CMB photons carry all the physical information
of the Universe at the last scattering epoch. Their observations by the COBE
satellite [57] have revealed that this background is not completely isotropic. Instead,
it possesses small temperature fluctuations δT/T ∼ O(10−5), which constitute the
seeds from which cosmic structures will arise later [58]. The sky map of these
fluctuations, as observed by the Planck satellite mission [17], is shown in Fig. 1.2.

Those temperature fluctuations obey an almost Gaussian distribution, therefore
they can be fully described by their angular power spectrum. The angular power
spectrum C(l), projected on the celestial vault, can be decomposed using a multipolar
expansion in spherical harmonics:

C(l) = 1
2l + 1

l∑
m=−l

|Y m
l |2 , (1.35)

where C(l) is the angular power spectrum and Y m
l is the spherical harmonic mode

of order l.
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Figure 1.2. The colour-map of the temperature anisotropies obtained by the Planck
collaboration in 2018. The picture shows the fluctuation around the mean black body
temperature of the CMB.

The agreement between the power spectrum and the theoretical model is out-
standing, as seen in Fig. 1.3. Each of the peaks and their overall amplitude and
slope contain crucial information about the Universe.

In Fig. 1.3 the first peak act as a standard ruler since it is linked to the angular
scale of the sound horizon at recombination. The first peak is influenced by the
curvature of the Universe, and observation strongly suggest a spatially flat Universe.
The relative amplitude of the peaks, depend on the ratio between Ωm and Ωr, the
latter fixed by the temperature, so essentially the relative height of the peaks tracks
the matter energy density. The last piece of information that relevant for this work is
that the overall slope of the angular power spectrum depends on Ωmh

2 thus resulting
in an estimation of H0.

This way of measuring H0 depends on the chosen cosmological model, so is a
model dependent measure, in this case the ΛCDM one.

Alongside the CMB, the Baryonic Acoustic Oscillation (BAO) phenomenon is
pivotal. BAO arise from acoustic waves that propagated through the primordial
plasma of baryons (protons and neutrons) and photons in the early universe [59].
During this epoch, baryons and photons were tightly coupled, and the pressure from
photons and the gravitational pull from matter created oscillations, analogous to
sound waves in a fluid. These oscillations were imprinted on the distribution of
matter in the universe when it was still relatively young.

As the universe expanded, these acoustic waves left characteristic imprints on
the density distribution of matter. These imprints are manifested as a periodic
modulation in the spatial distribution of galaxies and other large-scale structures [60].
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Figure 1.3. Planck’s data points of CMB angular power spectrum of temperature
anisotropies against the ΛCDM model, represented by the continuous curve. The
bottom panel shows the residuals of the top panel.

The scale of these imprints, represents the maximum distance a sound wave could
travel before recombination, the epoch when the universe became transparent to
photons.

The characteristic scale of these acoustic oscillations, O(150) Mpc, serves as a
standard ruler for measuring cosmic distances. By studying the statistical distribution
of galaxies and measuring the correlation function or power spectrum, astronomers
can detect the preferred separation scale associated with BAO.

BAO measurements provide a unique cosmological probe [61], offering constraints
on fundamental parameters such as the geometry and expansion rate of the universe.

These spherical oscillations usually overlap each other, since the projection of
those bubbles is observed on the celestial vault. Nonetheless, in a recent paper [62],
a single BAO is visible in the overdensity of galaxy distribution.

1.2.2 Hubble Constant from Local Distance Indicators

The gold standard method of measuring H0 in the late Universe, i.e., locally, is
using either Cepheids or Type Ia Supernovae. Cepheids and Type Ia Supernovae,
both mentioned before, are crucial to build the so-called "distance ladder". The
distance ladder is a series of distance measurements from very close objects up to
extra-galactic scale, in which each of the steps calibrate the next.

The first step is to measure the distance of a close object using, for example, the
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parallax method. Then one can "climb" the ladder, using other strategies, one of
which, is using Cepheids absolute magnitude from which the luminosity distance
can be inferred via eq. (1.36)

M = m− 5 log10
Dl

10 . (1.36)

Thanks to the satellite Gaia, the distance of Cepheids can be now obtained via
parallax, improving the overall calibration of the ladder [63]. The general idea of the
cosmic ladder is represented in Fig. 1.4. It is worth highlighting that this technique
does not require a cosmological model. Once Cepheids are no longer visible, the focus

Figure 1.4. A representation of the various steps of the distance ladder. Image credit to
David Darling.

shifts to Supernovae (SNe). As mentioned earlier, interest lies only in those SNe that
can be "standardised", so attention turns to Type Ia SNe. After the critical mass is
reached, a chain of nuclear reactions inside the white dwarf produces radioactive
nuclei. The decay of these elements has a particular profile from which the intrinsic
luminosity can be inferred.

The hierarchy of these measurements is evident in Fig. 1.5
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Figure 1.5. The complete distance ladder obtained by [64]. The image shows the hierarchical
technique involved in the distance ladder method.

and once cosmological distances are reached, such that the redshift is cosmological,
the Hubble constant is measured using the Hubble law, since for z ≪ 1 eq. (1.31)
reduces to Dl = cz/H0.

The ever present challenge in this type of measurement is to reduce the systematic
error introduced by this "step-by-step" technique. In this context, the work in [65]
asses the robustness of those type of data together with [66, 67]. In those works,
the agreement with the early Universe estimation of H0 do not increase much, even
with new systematic or new Dark Energy models.

1.2.3 Two Headed Constant

The two main methods of measuring H0 have been explained in the previous sections.
A cosmological model that aims to explain the evolution of the Universe cannot
admit the presence of two different H0 values. In the era of Precision Cosmology, as
visible in Fig. 1.6, advancements in analysis techniques for sources related to the local
Universe lead to a sharp contrast between early and local Universe measurements.
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Up to date, there are two well non-consistent values from [17, 16].

Hearly
0 = (67.66 ± 0.62) km s−1Mpc−1 ,

H local
0 = (73.29 ± 0.90) km s−1Mpc−1 .

It is important to emphasise that both measurements can be affected by sys-
tematic errors. From the distance ladder perspective, the most probable causes of
error are either some unaccounted selection biases or systematics in the calibration
of each step. On the other hand, in the Planck experiment, there is the Alens

parameter that represents the not well constrained amount of lensing in the tested
model. Although these effects can mitigate the statistical tension, the different
datasets tested and the sheer number of collaborations working on this problem
make it unlikely that the two measurements will be compatible.

Figure 1.6. The evolution of the measurements of the Hubble constant using CMB and the
distance ladder method, in light of new data analysis techniques. The Planck estimation
is without BAO contribution. Ref [16]
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Chapter 2

Gravitational Waves

GWs are a prediction of General Relativity, carrying information about the dynam-
ical evolution of the gravitational field. The existence of GWs can be intuitively
introduced by drawing an analogy with the electromagnetic case. Just as the pertur-
bation of an electromagnetic field is carried by electromagnetic waves that spread
information about the variation of the field, when there is a mass-energy distribution,
it can be expected that information about its variation is transported by some kind
of wave. Due to the nature of the metric tensor field gµν , GWs must be understood
as "metric waves" which, during their propagation, are responsible for the variation of
the proper distance between space-time points. It is important to stress that, unlike
electromagnetic waves, GWs are nonlinear, a result of the non-linearity, specifically
the sesquilinearity, of the Einstein equations.

The process of how GWs arise from Einstein’s field equations will be shown,
followed by an exploration of some features of the waves, including deriving explicit
formulae for some simple cases. The quadrupolar nature of GWs and the relevant
parameters for describing GWs emission in a binary system will then be examined.

The field equations are written again, this time including the c4 terms to provide
an intuitive grasp of the magnitude of a gravitational wave. Einstein’s field equations
are

Gµν = 8πG
c4 Tµν , (2.1)

2.1 Deriving the Wave equation

To derive exact solutions, one must solve the field equations, describing both the
source and the wave. Exact solutions require assuming some symmetry. Here, the
perturbative approach is considered, and the metric tensor gµν is separated into a
known background part, ξµν , and a perturbation, denoted by hµν . It is required
that, in some reference frame, the perturbation is small compared to ξµν , i.e.,

| hµν |≪| ξµν | . (2.2)

The inverse metric is needed for calculations, and since the focus is on terms of the
first order in the perturbation, the indices of h will be raised with the unperturbed
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metric. With this in mind, the inverse metric is

gµν = ξµν + hµν +O(h2). (2.3)

To recast eq. (2.1) in a useful form, first substitute eq. (1.16) into eq. (2.1)

Rµν − 1
2gµνR = 8πG

c4 Tµν , (2.4)

then contract it with gµν , obtaining

gµνRµν − 1
2g

µνgµνR = 8πG
c4 gµνTµν (2.5)

R− 1
2R = 8πG

c4 Tα
α (2.6)

1
2R = 8πG

c4 Tα
α. (2.7)

This is used to rewrite eq. (2.1) as

Rµν = 8πG
c4

(
Tµν − 1

2gµνT
α
α

)
. (2.8)

Then express the Ricci tensor in terms of the affine connection, compute the affine
connection for the metric gµν = ξµν + hµν , and keep only the terms of order O(h).
Remembering eq. (1.18), the affine connection in terms of the perturbed metric
reads:

Γα
µν = 1

2 (ξαγ − hαγ)
[(
∂ξγν

∂xµ
+ ∂ξµγ

∂xν
− ∂ξµν

∂xγ

)
+
(
∂hγν

∂xµ
+ ∂hµγ

∂xν
− ∂hµν

∂xγ

)]
= 1

2ξ
αγ
(
∂ξγν

∂xµ
+ ∂ξµγ

∂xν
− ∂ξµν

∂xγ

)
+ 1

2ξ
αγ
(
∂hγν

∂xµ
+ ∂hµγ

∂xν
− ∂hµν

∂xγ

)
− 1

2h
αγ
(
∂ξγν

∂xµ
+ ∂ξµγ

∂xν
− ∂ξµν

∂xγ

)
= Γα

µν(ξ) + Γα
µν(h) +O(h2),

(2.9)

where Γα
µν(h) collects all terms linear in h in eq. (2.9).

equation (2.9) can be used to calculate the Ricci tensor, with the understanding
that only terms up to first order in h are needed. The right-hand side of equation (2.8)
is expressed as,

Rµν = Rµν(ξ) +
∂Γ̃α

µν

∂xα
−
∂Γ̃α

µα

∂xν
+ Γα

σαΓ̃σ
µν + Γα

σνΓ̃σ
µα

+ Γ̃α
σαΓσ

µν + Γ̃α
σνΓσ

µα,

(2.10)

where the tilde denotes terms in h.
For simplicity, the background metric ξµν is substituted with the flat metric ηµν .

Consequently, the affine connections without a tilde in equation (2.10) vanish, as all
the Christoffel symbols for a flat metric are zero. With ξµν now flat, equation (1.18)
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becomes
Γα

µν = 1
2η

αγ
(
∂hγν

∂xµ
+ ∂hµγ

∂xν
− ∂hµν

∂xγ

)
. (2.11)

In equation (2.10), only the derivatives are dealt with. Additionally, since equa-
tion (2.10) expresses the left-hand side of the Einstein field equations, the term
Rµν(ξ) simplifies with the unperturbed part of the right side. This allows the writing
of

□Fhµν −
[
∂2hσ

ν

∂xσ∂xµ
+

∂2hσ
µ

∂xσ∂xν
− ∂2hσ

σ

∂xµ∂xν

]
= −16πG

c4

(
T̃µν − 1

2ηµν T̃
σ
σ

)
, (2.12)

where T̃ represents the perturbation of the stress-energy tensor, and □F is the
D’Alembertian in flat spacetime □F = ηµν ∂

∂xµ
∂

∂xµ .
It is emphasized that these equations are not uniquely determined, and a coordi-

nate transformation can always be performed in such a way that eq. (2.12) still holds.
A particular transformation that simplifies the above equation is the harmonic gauge
condition, namely

gµνΓσ
µν = 0. (2.13)

Rewriting the condition in equation (2.13) in terms of the metric perturbation yields:

0 = gµνΓσ
µν =ηµνΓσ

µν = 1
2η

µνησα (∂µhαν + ∂νhµα − ∂αhµν)

=1
2η

σα (∂µh
µ

α + ∂νh
ν

α − ∂αh
ν

ν)

=1
2η

σα (2∂µh
µ

α − ∂αh
ν

ν) .

(2.14)

Analysing the terms inside the brackets, the harmonic gauge condition translates
into

∂hµ
ν

∂xµ
− 1

2
∂hµ

µ

∂xν
= 0, (2.15)

enabling the system to be written as:□Fhµν = −16πG
c4

(
T̃µν − 1

2ηµν T̃
)
,

∂hµ
ν

∂xµ − 1
2

∂hµ
µ

∂xν = 0.
(2.16)

The system can then be recast using the reverse procedure that transformed eq. (2.1)
into eq. (2.8). For simplicity, the tilde on the stress-energy tensor is omitted, as the
background part of the Einstein field equation is satisfied when writing eq. (2.16).
Thus, in this context, the stress-energy tensor only sources the perturbed part of
the metric.

To simplify eq. (2.16), it is noted that the perturbed part of the Ricci tensor
reads □Fhµν , which is the only term in eq. (2.12) surviving the gauge condition.
Using eq. (2.7), it is found that

8πG
c4 ηµνT = 1

2ηµνR = 1
2ηµν□Fh

σ
σ . (2.17)



26 2. Gravitational Waves

Introducing a new tensor hµν = hµν − 1
2ηµνh, eq. (2.16) is rewritten as□Fhµν = −16πG

c4 Tµν ,
∂

∂xµh
µ

ν = 0.
(2.18)

In vacuum, eq. (2.16) becomes □Fhµν = 0,
∂

∂xµh
µ

ν = 0.
(2.19)

It is evident from these expressions that metric perturbations satisfy the wave
equations, thus propagating as waves at the speed of light.

Concluding this section, two important properties of GWs are demonstrated
using plane wave solutions. A plane wave, being the simplest solution of the wave
equation, is given by

hµν = ℜ[Aµνe
ikσxσ ], (2.20)

where A is the polarisation tensor and k is the wave vector such that kα = (ω/c,k).
Using a plane wave in eq. (2.19), it is seen that the second equation leads to

the conclusion that GWs are transverse waves, with the polarisation tensor being
orthogonal to the wave vector:

∂h
µ

ν

∂xµ
=∂ηµσhσν

∂xµ
= ∂ηµσAσνe

ikαxα

∂xµ
= ηµσAσνkµ = kµA

µ
ν = 0. (2.21)

A gravitational plane wave thus has a null wave vector, implying that both the group
and phase velocities of GWs are equal to the speed of light.

2.2 Gauge Invariance and the Traceless Transverse Gauge

General relativity is invariant under arbitrary coordinate transformations of the
form

x′µ = xµ + χµ(x), (2.22)

where ′ refers to the "new" coordinate system. The theory is thus invariant under
diffeomorphism, and this invariance can be utilized to further reduce the degrees
of freedom of the hµν , commonly referred to as the gauge invariance of General
Relativity.

In principle, gµν has 16 degrees of freedom. However, as it is a metric tensor, it
must be symmetric, leaving only 10 independent components. The harmonic gauge
utilises four degrees of freedom, leaving six to work with. The invariance under
diffeomorphism is then used, ultimately leaving only two independent components
for the perturbation hµν .

A general metric tensor transforms under diffeomorphism as follows:

g′
µν = ∂xα

∂x′µ
∂xβ

∂x′ν gαβ. (2.23)
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Using eq. (2.22) in eq. (2.23) for a perturbation over a flat space, the new metric
tensor reads

g′
µν = (δα

µ + ∂µχ
α)(δβ

ν + ∂νχ
β)(ηαβ + hαβ), (2.24)

using ∂µ to indicate a partial derivative with respect to xµ. Keeping in mind that
only terms up to first order in h are of interest, and χ is of the same order as hµν ,
eq. (2.24) reduces to

g′
µν ≈ ηµν + hµν − ∂µχν − ∂νχµ = ηµν + h′

µν , (2.25)

with the implicit definition h′
µν = hµν − ∂µχν − ∂νχµ. This forms the basis for

further simplification of the perturbation.

Since only the coordinates are being acted upon, simply changing how they are
described, if h is a solution of a physical problem, so is h′ and vice versa. Recalling
the definition of h,

hµν = hµν − 1
2ηµνh, (2.26)

some condition can be imposed on h′,

h′
µν = h′

µν − 1
2ηµνh

′

= hµν − (∂µχν + ∂νχµ) − 1
2ηµν(h− 2∂ρχ

ρ)

= hµν − (∂µχν + ∂νχµ − ηµν∂ρχ
ρ)

= hµν − Ψµν .

(2.27)

It can be shown that if χµ is chosen such that □Fχµ = 0, then h′
µν can be made

traceless and h′0i = 0. This is called the Transverse Traceless representation hTT,
the explicit form, for a GW propagating along the x3 direction, is (xα = (ct, 0, 0, z))

hTT =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos [ω(t− z/c)], (2.28)

where h+ and hx are the components of the polarisation vector Aµν of the GW.

For a wave travelling in the general direction n̂, the projector Pij can be intro-
duced, defined as

Pij(n̂) = δij − ninj . (2.29)

With this projector, a Λ matrix can be constructed that can transform a hµν

computed in the harmonic gauge to one that is transverse and traceless. The matrix
is defined as

Λij,kl = PikPjl − 1
2PikPjl, (2.30)
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and the TT gauge can be obtained by

hTT
ij = Λij,klhkl, (2.31)

where hkl was in the harmonic gauge.

2.3 Solutions In The Low Velocity Regime

In the presence of a non-zero stress-energy tensor, solutions of eq. (2.12) are sought
under the slow motion approximation. This approximation assumes that the physical
dimension of the source is much smaller than the wavelength of the GW, meaning
the source extends only in a small region of typical dimension ϵ.

|xi| < ϵ → Tµν ̸= 0, (2.32)

so that the wavelength of the GW, λ = 2πc/ω, satisfies

2πc
ω

≫ ϵ → ϵω ≪ c → c ≫ vtypical. (2.33)

This chain of implications states that the typical velocities of the physical processes
of the system are small compared to the speed of light. It is worth noting that
during a Black Hole merger, the two objects can move up to one third of the speed
of light, thus breaking this assumption.

Moving to the first equation in eq. (2.12), it can be solved using Green’s method,
in other words, by finding a function that satisfies

□xG(x− x′) = δ4(x− x′), (2.34)

with δ4 being the four-dimensional Dirac delta and □ = □F . Using the Green’s
function, explicit solutions for hµν are

hµν = −16πG
c4

∫
V
G(x− x′)Tµν(x′)d4x′, (2.35)

where V is a four-dimensional region V × I, where V is the boundary of the source
outside which the stress-energy tensor is zero and I is a time interval.

Similar equations arise in radiative problems in electromagnetism. Although
gravity is non-linear, since linear equations for h are being solved, solutions from
electromagnetism can be borrowed. The Green function can be shown to be

G(x− x′) = − 1
4π|x − x′|

δ(x0
ret − x′0), (2.36)

introducing the concept of retarded time x0
ret = ctret and tret is

tret = t− |x − x′|
c

. (2.37)
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The idea of the retarded time is that physical information cannot travel faster than
light, so any solution can depend only on events in causally connected regions.
Substituting the explicit expression of the Green function into the solution yields

hµν = 4G
c4

∫
V

1
4π|x − x′|

Tµν(tret,x′)d3x′. (2.38)

To solve eq. (2.38), moving to Fourier space is convenient. Before doing that, using
|x| = r → |x − x′| = r − x′ · n̂ + O(ϵ2/r) simplifies |x − x′| ∼ r and can be taken
out of the integral. The explicit definition in terms of the ω variable is

Tij

(
t− r

c
+ x′ · n̂

c
,x′
)

=
∫ 1

(2π)4 T̃ij(ω,k)e−iω(t− r
c

+ x′·n̂
c

)+ik·x′
. (2.39)

Using the slow-motion approximation, in the exponent the term ωx′/c satisfies
ωx′/c ≤ ωϵ/c ∼ v/c ≪ 1. This leads to

e−iω(t− r
c

+ x′·n̂
c

)′ = e−iω(t− r
c

)
[
1 − i

ω

c
x′lnl + 1

2(−iω
c

)2x′lx′mnlnm + ...

]
, (2.40)

therefore

Tij

(
t− r

c
+ x′ · n̂

c
,x′
)

≈ Tij

(
t− r

c
,x′
)

+ x′lnl

c
∂0Tij + 1

2c2x
′lx′mnlnm∂2

0Tij + ....,

(2.41)

2.4 Momenta And Quadrupole

The concept of momenta of the stress-energy tensor, Sij(t), can now finally be
introduced, which is

Sij,lmno... =
∫
T ij(t,x)xlxmxnxod3x, (2.42)

and at first order,
Sij =

∫
T ij(t,x)d3x. (2.43)

By definition, the momenta are symmetrical in i and j since T ij is symmetrical and
invariant under permutation of the other indices, but Sij,k ̸= Sik,j . Using eq. (2.42)
to express each term in eq. (2.41), the main equation for GW emission, the multipolar
expansion, can be written down:

hT T
ij (t,x) = 4G

rc4 Λij,kl

[
Skl + 1

c
nmṠ

kl,m + 1
2c2nmnpS̈

kl,mp
]
, (2.44)

evaluated at the retarded time.
This equation is insightful, clearly showing the decay of the signal proportional

to r−1, where r is the distance from the source. The amplitude of the GW is then
defined by matching the internal solution, the one just found, to the exterior solution,
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i.e., when the stress-energy tensor vanishes. The nature of gravity implies that,
unlike electromagnetism which has dipole radiation, the first term contributing to
the signal in gravity is the quadrupole term in eq. (2.44).

The leading term in eq. (2.44) can be evaluated once it is recalled that Tµν

satisfies the conservation equation ∂µT
µν = 0. Similarly to Sij , the momenta for the

00 component of Tµν , M , and for the 0i components, P i, can be defined. This allows
for the expression of Sij , and its higher orders, in terms of P i, then the component
ν = 0 of the conservation equation can link M and P .1

The goal is to express Sij,kl...v as a combination of M ij...v and P i,j...v, and then
show that the first contribution is the quadrupole one. The new momenta M and P
are now defined as

M ij...v =
∫
T 00(t,x)xixj ...xvd3x,

P i,jl...v =
∫
T 0i(t,x)xixj ...xvd3x.

(2.45)

It is straightforward to prove that Ṁ = c∂0M = 0 since

c∂0M = c

∫
V
∂0T

00d3x = −c
∫

V
∂iT

0id3x︸ ︷︷ ︸
conservation equation

=

T µν=0 on the boundary︷ ︸︸ ︷
−c
∫

∂V
T 0idσi = 0 , (2.46)

and the same is true for Ṗ i. The conservation equation provides a link between M

and P since

Ṁ i = c

∫
V
xi∂0T

0id3x = −
∫

V
xi∂kT

0kd3x =
∫

V
∂kx

iT 0kd3x = P i, (2.47)

and similarly,
Ṁ ij = P i,j + P j,i. (2.48)

The last equation to prove in order to obtain an expression for the leading order of
eq. (2.44) is

Ṗ i,j = c

∫
∂0T

0ixjd3x = −
∫
∂kT

kixjd3x =
∫
T ki∂kx

jd3x =
∫
T kiδj

kd
3x = Sij .

(2.49)
Using eq. (2.49) and eq. (2.48) in eq. (2.42), the result is

hT T
ij (t,x) = 2G

rc4 Λij,kl

[
M̈kl(t− r

c
)
]
. (2.50)

Taking a moment to remark on some aspects of GWs, it is observed that the
amplitude of the signal is proportional to G/c4 ∼ 8 × 10−50s2/g/cm, implying that
GWs are "weak", being a small perturbation of the background. Secondly, having

1This is possible since T µν vanishes at the boundary of the source.



2.5 Binary Systems 31

Ṗ i = 0, means that for a closed system of particles, the gravitational dipole moment

Dg =
∑

c

mcrc (2.51)

is conserved, so there is no dipole emission, as clearly stated in eq. (2.50). Moreover,
a spherical axisymmetric object has a constant quadrupole moment, so a rotating
axisymmetric body does not emit GWs. In order to radiate, a single body has to be
asymmetric and spinning.2

The symmetric tensor M ij can always be represented as the sum of a symmetric
traceless tensor and its trace:

M ij =
(
M ij − 1

3δ
ijMkk

)
+ 1

3δ
ijMkk. (2.52)

The second term, the trace, can be disregarded when working in the TT gauge.
Defining the traceless part Qij as the quadrupole, the expression for hT T

ij (t,x)
becomes

hT T
ij (t,x) = 2G

rc4 Λij,kl

[
Q̈kl(t− r

c
)
]
. (2.53)

Considering a GW propagating in the ẑ direction, the wave amplitude in the TT
gauge can be computed with

Λij,klAkl =
(
PikPjl − 1

2PikPjl

)
Akl. (2.54)

The projector P must be of the form diag(1, 1, 0), as GWs are transverse, leading to

Λij,klAkl =

A11 A12 0
A21 A22 0
0 0 0

−


A11+A22

2 A12 0
A21

A11+A22
2 0

0 0 0

 . (2.55)

Identifying with the previously introduced two polarisation h+ and hx, the final
derivations are

h+ = G

rc4 (Q̈11 − Q̈22),

h× = 2G
rc4 Q̈12.

(2.56)

2.5 Binary Systems

The study of a system of two objects orbiting their common centre of mass is now
undertaken, ignoring any energy loss due to the emission of GWs for the moment.
The energy carried away from the system, which shrinks the orbit in a positive
feedback loop, will eventually lead to the merge of the two objects. This phenomenon,
first observed by Hulse and Taylor [68] in 1975, was an initial indirect proof of the

2This is how we know that Neutron Stars are quite smooth, since there are no detection of GWs
from a single fast-spinning Neutron Star.
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existence of GWs. Simplifying the problem, the two masses are considered point-like,
with masses m1 and m2, respectively. The orbital separation is denoted as l0, and
the vectors r1 and r2 point at the masses in the reference frame, as shown in Fig. 2.1.
The total mass M and the reduced mass are defined as,

µ = m1m2
M

. (2.57)

Assuming planar motion, the system can be set in the (x, y)-plane without loss of
generality. In this frame of reference, the relationships are

Figure 2.1. A schematic representation of the system.

l0 = r1 + r2, r1 = m2l0
M

, r2 = m1l0
M

, (2.58)

and the orbital frequency ωo, according to Kepler’s law of motion, is

ωo =
√
GM

l30
. (2.59)
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The quadrupole moment is then computed. On the orbital plane, the coordinates
for the masses are:

x1 = m2
M

l0 cosωot, y1 = m2
M

l0 sinωot,

x2 = m1
M

l0 cosωot, y2 = m1
M

l0 sinωot,
(2.60)

and the stress-energy tensor for an ensemble of point-like masses is

Tµν =
∑

i

γimi
dxµ

i

dt

dxν
i

dt
δ3(x − xi). (2.61)

For a non-relativistic system, the 00-component of Tµν is

T 00 = c2
2∑

i=1
miδ(x− xi)δ(y − yi). (2.62)

With these components, the quadrupole can be computed:

Mxx = m1

∫
V
x2δ(x− x1)δ(y − y1)δ(z)dxdydz

+m2

∫
V
x2δ(x− x2)δ(y − y2)δ(z)dxdydz

= µ

2 l
2
0 cos 2ωot+ C0,

(2.63)

where C0 is a constant. Similarly, for qyy and qxy, the results are

Mxx = µ

2 l
2
0 cos 2ωot+ C0,

Myy = −µ

2 l
2
0 cos 2ωot+ C1,

Mxy = µ

2 l
2
0 sin 2ωot.

(2.64)

Finally, the signal in the TT gauge is described as follows:

Aij =

cos 2ωot sin 2ωot 0
sin 2ωot − cos 2ωot 0

0 0 0

A0, (2.65)

where A0 is defined as

A0 = 4µMG2

l0c4 . (2.66)



34 2. Gravitational Waves

Thus, the components of the gravitational wave in the TT gauge are given by

hT T
xx = −A0

z
cos 2ωo(t− z

c
),

hT T
yy = −hT T

xx ,

hT T
xy = −A0

z
sin 2ωo(t− z

c
).

(2.67)

The term ω2
o in the final equation, arising from the time derivatives, can be related to

the orbital frequency via eq. (2.59). It is noted that the main spectral contribution
comes at twice the orbital frequency, and the frequency increases as the orbit shrinks
due to radiation.

2.6 Energy of GWs

GWs carry energy away from the system, sourced from the orbital energy Eo,
comprising potential and kinetic energy:

Eo = Ek + Epot = −Gm1m2
2l0

. (2.68)

The power radiated away is described by

P = 32c5

5G

(
GMcωgw

2c3

)10/3
, (2.69)

with the chirp mass Mc = µ3/5M2/5 defined. In the ’quasi-circular’ motion, where
ω̇o ≪ ω2

o , the decrease in radial separation l̇0 is small:

l̇0 = −2l0
3
ω̇o

ωo
= −2l0ωo

3
ω̇o

ω2
o

. (2.70)

The time derivative of the orbital frequency, ω̇gw, is derived by equating the emitted
power to the variation in orbital energy, linking ωo to the orbital energy using
eq. (2.59):

ωgw = 12 3√2
5

(
GMc

c3

)5/3
ω11/3

gw , (2.71)

or in terms of frequencies:

fgw = 96 3√
π8

5

(
GMc

c3

)5/3
f11/3

gw . (2.72)

Defining the time of coalescence tcoal as the time of the bodies’ merge, and using
the variable τ , the time-dependent frequency of the GW signal is integrated from
eq. (2.72) to obtain

f(τ) = 1
π

(
GMc

c3

)−5/8 ( 5
256τ

)3/8
. (2.73)
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In conclusion, it is emphasised that the above equations are valid under specific
limits and constraints discussed above.

The eq. (2.73) diverges in a finite time when τ = 0. This indicates that the model
breaks down before the coalescence time. Firstly, the slow motion approximation
will eventually fail, as ωo increases with time. During coalescence, the orbit shrinks,
and the point-like approximation for the bodies becomes invalid. All calculations
above assume a flat background, which does not hold for BH systems due to unstable
orbits.3 Tidal forces, especially in Neutron Star (NS) and BH or NS-NS mergers,
can accelerate the decay of the orbit.

2.7 Propagation

With expressions for the amplitudes of the two polarisation of GWs in flat space
derived, attention turns to sources at cosmological distances. Advanced gravitational-
wave detectors such as ET and LISA may detect signals from binaries at these
distances [33]. Gravitational Waves travel along null geodesics of spacetime. Gravity,
being sourced by both mass and energy, implies that GWs, carrying energy, have
a form of auto-interaction, though it is negligible. The weak field approximation
ensures the GW does not alter the background metric. Hence, the FRLW metric
remains unchanged, and interaction between polarisation is negligible.

This section aims to understand how signals from cosmologically distant binary
merges are influenced by the Universe’s expansion. The concept of the local wave
zone is introduced, defined as a region where the distance to the source is large
enough to exhibit 1/r wave-like behaviour while manumitting the impact of the
Universe’s expansion. Physical distances within the wave zone are expressed as

rphys = a(te)dc, (2.74)

with te being the time of emission and dc the comoving distance.
The main consideration is to include cosmological redshift as with photons. The

affected quantities are:

λobs = (1 + z)λemiss,

dtobs = (1 + z)dtemiss,

fobs = 1
1 + z

femiss.

(2.75)

The GW amplitude equations are expressed in terms of frequency using eq. (2.59)
and ω = 2πf . Retarded time tret

s in the source frame and other quantities are
appropriately marked with subscript s. The GW frequency relation is:

h(tret
s ) = 4

a(te)dc

(
GMc

c2

)5/3
(
πfs(tret

s )
c

)2/3

, (2.76)

3Once the Innermost Stable Circular Orbit (ISCO) is passed, the idea of a slowly shrinking
circular orbit is not feasible.
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with the frequency satisfying

fs = 1
π

(
GMc

c3

)−5/8 ( 5
256τs

)3/8
. (2.77)

Using eq. (2.75), the equation is recast in the observer’s frame, with Dl = (1 + z)dc,
leading to

h(tret
obs) = 4

Dl

(
G(1 + z)Mc

c2

)5/3(πfs(tret
obs)
c

)2/3

, (2.78)

and introducing the redshifted chirp mass Mc = (1 + z)Mc, the final formula is

h(tret
obs) = 4

Dl

(
GMc

c2

)5/3
(
πfs(tret

obs)
c

)2/3

. (2.79)

The functional form remains the same as before, using the luminosity distance and
the redshifted chirp mass.
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Chapter 3

Poking Around The Dark

In this chapter, the working principle of a ground-based interferometer is introduced,
focusing on the Einstein Telescope (ET) case, and then a brief introduction to the
Euclid mission is given, with focus on the spectroscopic sample.

In the previous section, it was established that h(t) generally comprises two
polarisation with amplitudes given by eq. (2.79). By analysing the signal from each
polarisation, the orbital inclination relative to the line of sight can be determined.
With measurements of the frequency and its time derivative, the redshifted chirp
mass can be evaluated and the luminosity distance can be calculated. This provides
a general overview of how Dl can be measured; the practical implementation will be
discussed in the dedicated section.

3.1 Gravitational Waves Detectors

This section describes the general properties of a ground-based interferometer for
detecting GW signals, then focuses on the specific case of ET.

The earliest efforts to detect GWs utilised Resonant Mass detectors. These
detectors, typically incorporating massive resonant bars, are based on the principle
that a passing GW induces small length oscillations in a massive object, generating
an observable signal.

Advancements in detector technologies led to the development of interferometric
detectors, with the first direct detection made in 2015 [69]. These detectors, such as
LIGO and Virgo, use laser interferometry to measure tiny changes in length caused
by passing GWs.

The upcoming ET interferometer aims to significantly enhance our ability to
observe and understand the universe through the study of GWs.

In addition to the so-called ground-based interferometers, a space-based interfer-
ometer, LISA (Laser Interferometer Space Antenna), is also planned [70]. The latter,
being in space, is not subject to seismic noise, and will therefore be very sensitive to
low frequencies in a way that no terrestrial interferometer can currently hope for.
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3.1.1 Ground Based Interferometers and The Einstein Telescope

As GWs pass through, they alter the underlying space-time metric, but they do not
change the motion of a test particle. To detect and study GWs, the relative motion
of two test particles is studied, specifically their geodesic deviation. Although the
coordinate distance does not change, the proper distance between two test particles
changes proportionally to h(x, t).

Ground-based GW detectors are essentially very large and highly sensitive
Michelson interferometers plus a Fabry-Pérot cavity. Currently, five operational GW
detectors exist worldwide: two LIGO detectors in the United States [71], Virgo in
Italy [72], GEO600 in Germany [73] and KAGRA in Japan [74].

These interferometers use the interference generated by the GW-induced variation
of the optical path length with respect to the equilibrium condition. A scheme of
a ground-based interferometer is shown in Fig. 3.1. The input laser beam meets
a beam-splitter, creating two orthogonal beams. These two beams enter their
respective resonant chambers, consisting of a semi-reflective mirror and a reflective
one at the end, which is nothing more than the free-falling test mass1. The signal
then returns to the beam-splitter and the twin beams recombine.

Figure 3.1. A simplified scheme for a ground-based interferometer. Picture from [75].

It is possible to define kl and ωl to be the wave number and the pulsation of the
laser, respectively. The GW propagates in the z direction and the detector lies in

1The masses are in quasi-free fall in the direction of propagation of the laser beam, acting as
test masses.
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the xy plane with the two arms directed as the x and y axes, with the beam splitter
at the origin. A photon that travel along the x arm will reach the photodetector
after a round trip that that takes tx0 + 2Lx/c and the same is true for the other arm,
i.e. ty0 + 2Ly/c with tx0 ≠ ty0, where Lx and Lx are the length of the arms, and t0
is the time of arrival of the GW. After a round trip, the total electric field is the
sum of the two electric fields from each arm, resulting in a power measured by the
photodetector, with each field described by eq. (3.1).

E1 = −E0
2 e−iωlt+2iklLx

E2 = E0
2 e−iωlt+2iklLy

(3.1)

The cavity amplifies the effect of the incoming GW by making the optical path
longer while keeping the detector compact.

Since the initial time t0 will always be unknown, all the equations are usually
expressed in the more physical variable t, that is the time of arrival of the photon. We
now focus on a single GW polarisation, h(t) = h+(t) = h0 cos(ωgwt), the space-time
now becomes

ds2 = −c2dt2 + (1 + h+(t)) dx2 + [1 − h+(t)] dy2 + dz2 . (3.2)

At first order in h0, we have that for photons travelling along the x axis:

ds2 = 0 → dx = ±cdt
[
1 − 1

2h(t)
]
, (3.3)

where the plus sign is for the first half of the round trip. We need to integrate this
equation to obtain the time interval t− t0 for the x-arm, implement a similar integral
for the y-arm, and combine these equations to eliminate t0.

In the TT gauge, it is possible to show that, at first order in h0, the final signal
in the photodetector is:

Ef (t) = −iE0e
iωl(t−2L/c) sin [ϕ0 + ∆ϕx(t)] , (3.4)

where L = (Lx + Ly)/2, and ϕ0 = kl(Lx − Ly) is a constant that can be tweaked,
usually to 0. All the signal is therefore in the phase shift ∆ϕx(t) that is proportional
to

∆ϕx(t) ∼ h(t− L/c)klL . (3.5)

By comparing the above formula with the definition of ϕ0, the effective signal is
proportional to

∆(Lx − Ly)
L

∼ h(t− L/c) . (3.6)

In the above description, the contribution of the Fabry-Pérot cavity is neglected.
The cavity is used to amplify the effect of the incoming GW by "folding" the arm
length and thus making the optical path longer, while keeping the detector compact.

So far, only second-generation interferometers with a so-called L-shaped configu-
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ration have been discussed. The third generation of detectors is now being designed.
The two ground based new detectors, Cosmic Explorer (CE) and ET, will lead
the way in not just astrophysical, but cosmological research based on gravitational
signals. As can be seen from Fig. 3.2, the third generation is characterised by
significantly higher sensitivity.

Figure 3.2. Comparison of the sen-
sibility curves for various GW detec-
tors. The one for Voyager, ET and
CE are expected sensibility curves and
not measured. Picture from cosmicex-
plorer.org/sensitivity.html.

Figure 3.3. The horizons in the equal mass
scenario for CE and ET. On the vertical
axis is the maximum redshift at which a
pair of equal masses BHs can be detected.
Picture from [76]

Einstein Telescope Design

The first peculiar feature of ET is its triple detector design, as shown in Fig. 3.4.
This innovative setup involves three nested interferometers arranged in an equilateral
triangle, each with arms extending several kilometres in length. The three inter-
ferometers work as a network, providing a trilateral perspective that enhances the
detector ability to triangulate and precisely locate the sources of gravitational waves
in the sky. Furthermore, ET will be built in the so-called "xylophone" configuration,
meaning each arm will be composed of two cavities, one for low and the other for
high frequencies. This configuration enables ET to achieve unprecedented directional
sensitivity, allowing astronomers to pinpoint the origin of gravitational wave signals
with unparalleled accuracy.

For this type of detector, most of the noise at low frequencies originates from
seismic noise, and at high frequencies from thermal noise from the mirrors as well
as quantum noise due to the electric field in the photodetector. To mitigate noise
as much as possible, ET is planned to be located underground, a strategic choice
aimed at reducing the impact of environmental noise and seismic disturbances
that can compromise the sensitivity of surface-based detectors. The subterranean
placement ensures an exceptionally stable environment, shielding the detector from
the myriad of terrestrial vibrations that could interfere with the detection of faint
signals. This subterranean infrastructure is aimed at achieving optimal conditions
at low frequencies for ET.

To further enhance sensitivity, ET incorporates cryogenic systems designed
to cool its detector components to extremely low temperatures. The application

https://cosmicexplorer.org/sensitivity.html
https://cosmicexplorer.org/sensitivity.html
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Figure 3.4. A schematic representation of the ET detector in the xylophone configuration.
Each arm will be 10 Km long. Picture from [77].

of cryogenics is pivotal in minimising thermal noise, a fundamental limitation in
gravitational wave detectors. By reducing the thermal vibrations of the detector
components, this technological advancement pushes the boundaries of observational
precision, enabling the detection of events that were previously beyond the reach of
gravitational wave astronomy [33, 76] as Fig. 3.3 shows.

ET’s capability to detect gravitational waves across a broad frequency range
opens avenues for cosmological exploration. The telescope can probe the early
moments of the universe, offering a unique window into the cosmic dawn, the period
from about 50 million years to one billion years after the Big Bang when the first
stars, black holes, and galaxies in the Universe formed. Additionally, ET is well-
suited to investigate cosmic strings [78], hypothetical one-dimensional structures
that could have formed in the early universe. Furthermore, the telescope has the
potential to probe the Universe in its early stages, as shown in Fig. 3.5, which will
lead to a valuable contribution to cosmological studies.

3.1.2 Antenna Pattern

So far, only the simple case of a GW with a single polarisation and a wave vector
perpendicular to the detector plane has been discussed. This simplified scenario was
useful to understand the principles behind direct GWs detection.
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Figure 3.5. A comparison of the distances horizons for actual and future GWs detectors.
Picture from einstein-telescope.it/en/einstein-telescope-en/.

In general, a GW will have a wave vector with a random orientation with respect
to the detector. Also, considering the symmetries of the system, it is clear that given
the detector plane, a wave hitting at an angle φ or at an angle φ+ π will lead to
the same ∆(Lx − Ly)/L. It is also worth noting that all planar detectors will have
both a preferred and a disfavoured direction of detection: the former corresponds to
a wave vector kgw perpendicular to the detector plane, the latter correspond to the
case of kgw lying along the detector plane, since GWs are transversal waves.

This behaviour needs to be taken into account, since one important aspect of
the signal is its overall amplitude. To take care of the detector response, a function
called antenna pattern needs to be introduced. The antenna pattern will be first
computed for one L-shaped interferometer and then extended to the ET case.

Given a passing GW, one can claim a detection if the signal-to-noise-ratio (SNR)
is greater than a threshold SNRthr that depends on the specific detector and a false
alarm rate. The SNR is computed in the frequency domain and can be obtained
using the following equation:

SNR2 = 4
∫ ∞

0

|h̃(f)|2

Sn(f) df, (3.7)

with Sn(f) representing the detector noise spectra and h̃(f) denoting the Fourier
transformed h(t) tensor multiplied by the antenna function. This function, for a
ground-based interferometer, represents the response to each polarisation of the
wave. The antenna function depends on the direction of the incoming signal relative
to the detector and on the angle ψ, which indicates how much the source reference
frame needs to be rotated in order to align the +,× components with the detector

https://www.einstein-telescope.it/en/einstein-telescope-en/
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frame, as illustrated in Fig. 3.6. Since the two polarisation states do not mix, h̃ can

Figure 3.6. The relative orientation between the detector and the approaching GW. Here,
ϑ and φ pinpoint the sky position of the GW.

be expressed as,

h̃(f) = F+(ϑ, φ, ψ)h̃+(f) + F×(ϑ, φ, ψ)h̃×(f), (3.8)

where

F+(ϑ, φ, ψ) = 1
2
(
1 + cos2 ϑ

)
cos 2φ cos 2ψ − cosϑ sin 2φ sin 2ψ,

F×(ϑ, φ, ψ) = 1
2
(
1 + cos2 ϑ

)
cos 2φ sin 2ψ + cosϑ sin 2φ cos 2ψ, .

(3.9)

The equations for F+ and F× represent the antenna functions. By averaging over ψ,
they form a 3D surface of the antenna pattern.
It is evident that both F+ and F× are never larger than one, thus generally reducing
the amplitude of h. Once again, the previously discussed quadrupole formula is used,
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expressed in the frequency domain as:

h̃+(f) =
( 5

24

)1/2 π−2/3

dl
M5/6

c f−7/6
(

1 + cos2 ι

2

)2

eiϕ(f)

h̃×(f) =
( 5

24

)1/2 π−2/3

dl
M5/6

c f−7/6 cos2 ιeiϕ(f)+iπ/2 .

(3.10)

The GW’s phase ϕ(f) can be neglected, since the relevant quantity is the modulus
of h. Here, ι represents the vector normal to the orbital plane of the two inspiraling
compact bodies. As in nature it is supposed there not to exist a preferred ι, an
average over ι is usually performed in all applications of the above equations. Given
that the two GW polarisation states form an orthogonal basis: F+,×h×,+ = 0.
Therefore, the SNR integral can be written in a simplified way and, after performing
an average over ψ, one obtains:

< SNR2 >= 2 < F 2
+ + F 2

× >

∫ ∞

0

|h̃+|2 + |h̃×|2

Sn
df ;

< F 2
+ + F 2

× >= P (ϑ, φ) = 1
4
(
1 + cos2 ϑ2

)
cos2 2φ+ cos2 ϑ sin2 2φ.

(3.11)

Since it is clear we are working in the frequency domain, in order to derive eq. (3.11)
explicitly from eq. (3.7), the˜will be removed from h̃ and kept only when necessary.
Given the above considerations, the SNR can be rewritten as:

SNR2 = 4
∫ ∞

0

|h(f)|2

Sn(f) df = 4
∫ ∞

0

|F+h+ + F×h×|2

Sn
df =

= 4
∫ ∞

0

F 2
+|h+|2 +

������F+h+F×h
∗
× +

������F+h
∗
+F×h× + F 2

×|h×|2

Sn
df =

= 4
∫ ∞

0

F 2
+|h+|2 + F 2

×|h×|2 +
0︷ ︸︸ ︷

F 2
×|h+|2 +

0︷ ︸︸ ︷
F 2

+|h×|2

Sn
df =

= 4
(
F 2

+ + F 2
×

) ∫ ∞

0

|h+|2 + |h×|2

Sn
df .

(3.12)

These mathematical steps will always be true for every detector. The mean over the
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angular variable ψ is then:

< SNR2 > =< 4
2π
(
F 2

+ + F 2
×

) ∫ ∞

0

|h+|2 + |h×|2

Sn
df >=

= 4
2π

∫ 2π

0

∫ ∞

0

(
F 2

+ + F 2
×

) |h+|2 + |h×|2

Sn
dfdψ =

=

ξ︷ ︸︸ ︷
4
∫ ∞

0

|h+|2 + |h×|2

Sn
df

1
2π

∫ 2π

0

(
F 2

+ + F 2
×

)
dψ =

= ξ

2π

(∫ 2π

0
F 2

+dψ +
∫ 2π

0
F 2

×dψ

)
=

= ξ

2π

(∫ 2π

0
(A2 cos2 2ψ +B2 sin2 2ψ +AB sin 2ψ cos 2ψ)dψ+

+
∫ 2π

0
(A2 sin2 2ψ +B2 cos2 2ψ +AB sin 2ψ cos 2ψ)dψ

)
=

= ξ

2(A2 +B2) .

(3.13)

This result indeed matches eq. (3.11), after substituting A, B, and ξ. This result
holds whenever one is not interested in the relative orientations between the detector
and the GW source. A similar logic can be applied for the average over the other
two angular variables θ, ϕ.

A Network of Detectors

We now apply the technique shown before to a network of GWs detectors. The
concept is that ET is essentially a network of three detectors, so a method is needed
to combine multiple interferometers. Since there is no formal difference in writing
the equations for a network of detectors placed in different locations (i.e., LIGO(H),
LIGO(L), Virgo, and KAGRA) or concentrated in a small area, like ET will probably
be, a general mathematical formulation will be adopted, finally applying the result
to the ET specifics.

As stated in [79], a common system of reference (RS) is required. This SR’s
origin is usually set at the centre of the Earth, and latitude and longitude are used to
pinpoint each interferometer. The main goal here is to describe the antenna pattern
of each detector using this new RS.
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Table 3.1.
The values of χ and position of each detector in the network in degrees.

χ(◦) β(◦) λ(◦)

Ligo H 171.8 46.45 -119.41
Ligo L 243 30.56 -90.77
Virgo 116.5 43.63 10.5
Kagra 70 36.25 137.18

Under the above assumptions, the resulting expression for the antenna pattern of
an arbitrarily located and oriented L-shaped interferometer is as follows. The source
position is given by the spherical coordinates ϑ, φ on the sky, and the frame for the
wave polarisation angle ψ is defined to be aligned with this spherical-coordinate grid.
The detector is at latitude β and longitude λ. The interferometer is oriented so
that the bisector of its arms points in the direction χ, measured counter-clockwise
from East. Its arms have an opening angle of η. The celestial coordinates ϑ, φ are
aligned with latitude and longitude, so that the equators of both systems coincide
and the celestial point ϑ = π/2, φ = 0 is in the zenith direction above the geographic
location β = 0, λ = 0. We will set η = π/2 since L-shaped interferometers satisfy
this condition. The antenna pattern functions now become:

F+ = sin(η) [a cos(2ψ) + b sin(2ψ)] (3.14)

F× = sin(η) [b cos(2ψ) − a sin(2ψ)] , (3.15)

with a and b defined by

a = 1
16 sin(2χ) [3 − cos(2β)] [3 − cos(2ϑ)] cos[2(φ+ λ)]

+ 1
4 cos(2χ) sin(β) [3 − cos(2ϑ)] sin[2(φ+ λ)]

+ 1
4 sin(2χ) sin(2β) sin(2ϑ) cos(φ+ λ)

+ 1
2 cos(2χ) cos(β) sin(2ϑ) sin(φ+ λ) + 3

4 sin(2χ) cos2(β) sin2(ϑ)

(3.16)

b = cos(2χ) sin(β) cos[2(φ+ λ)]

− 1
4 sin(2χ) [3 − cos(2β)] cos(ϑ) sin[2(φ+ λ)]

+ cos(2χ) cos(β) sin(φ+ λ) − 1
2 sin(2χ) sin(2β) sin(ϑ) sin(φ+ λ) .

(3.17)

The coordinates of each detector in the network are needed, which can be found
in [80].

Entering the data in Tab. 3.1 into these new set of equations, the SNR in each
detector can be obtained. For ET, one has to consider each detector as a separated
unit, then set η = π/3 and use the right values of β and λ. Since the three detectors
will probably be at the same location, one can simplify all the above equations and,
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using eq. (3.7), obtain the ET antenna function as

F
(1)
+ (ϑ, φ, ψ) =

√
3

2

[1
2
(
1 + cos2 ϑ

)
cos 2φ cos 2ψ − cosϑ sin 2φ sin 2ψ

]
,

F
(1)
× (ϑ, φ, ψ) =

√
3

2

[1
2
(
1 + cos2 ϑ

)
cos 2φ sin 2ψ + cosϑ sin 2φ cos 2ψ

]
,

F
(2)
+,×(ϑ, φ, ψ) = F

(1)
+,×(ϑ, φ+ 2π/3, ψ) ,

F
(3)
+,×(ϑ, φ, ψ) = F

(1)
+,×(ϑ, φ+ 4π/3, ψ) .

(3.18)

This is essentially the antenna pattern for an L-shaped interferometer with an overall
prefactor sin(η) = sin(π/3). The superscripts refer to the individual antenna.

Lastly, there is no correlation between the noise in the network, the SNR for a
collection of N interferometers is defined by

ρtot =

√√√√ N∑
1
ρ2

i , (3.19)

where ρ2
i is the square of the SNR in the i-th detector.

Events Properties

In this section, I present some typical parameters for DS events, primarily based
on [81]. The focus is on three major quantities: the sky localisation accuracy, the
luminosity distance uncertainty, and the number of detected sources per year. It is
assumed that the detector has a triangular shape in the xylophone configuration.

The most interesting events are the so-called "golden events". A binary black
hole (BBH) event is a golden-event if it has one of the following characteristics: SNR
equal to or larger than 100, a sky localisation area Ω90 ≤ 10 deg2 (meaning the 90%
contour probability area is less or equal to 10 deg2), or a relative uncertainty for the
luminosity distance ∆dl/dl ≤ 0.05. Typically, these characteristics are correlated,
and if an event meets one requirement, it usually satisfies the others. For the
purpose of this thesis, the standard event has ∆dl/dl = 0.1 and Ω90 = 10 deg2, so
the focus is not on the best case scenario. Only after showing that the posterior
is dominated by golden events, the uncertainty on the luminosity distance will be
set to ∆dl/dl ≤ 0.05. The next chapter will compare this standard case with more
optimistic and pessimistic cases.

Given the small area covered by Ω90, it is assumed that the sky map follows a
two-dimensional Gaussian distribution over the angular variables, centred at the DS
position. The distribution is constructed such that Ω90 = 10 deg2.

Figure 10 of [81], included here, shows the redshift distribution of golden-events
per year. It is concluded that about O(200)-O(400) golden-events are expected per
year, given the redshift range of the Euclid flagship.
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Figure 3.7. Redshift distribution of golden-events. The left column shows the distribution
of BBHs merges with SNR≤100. The central column shows the distribution for ∆dl/dl ≤
0.05 and the right column for Ω90 ≤ 10 deg2. Picture from [81].

3.2 Euclid

Euclid is a medium-class (M-class) mission and is part of the Cosmic Vision campaign
of European Space Agency (ESA) Science Programme. It represents a new generation
of space telescopes, designed to study both dark energy and dark matter. Launched
on July 1st 2023, the Euclid mission aims at enhancing our understanding of the
fundamental constituents shaping the Cosmos.

The central focus of Euclid is the investigation of the recent accelerated expansion
of the universe, nowadays attributed to the presence of dark energy or to a modifica-
tion of gravity. Employing a combination of imaging and near-infrared photometry
and spectroscopy, the mission seeks to map the distribution of galaxies across the
cosmic time. By scrutinising the three-dimensional structure of the universe on a
large scale, Euclid aspires to trace the evolution of cosmic structures and shed light
on the underlying physics of dark energy.
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To achieve its scientific objectives, the Euclid mission employs a suite of advanced
instruments and observational methodologies:

• Imaging and Photometric surveys: Euclid’s space telescope is equipped
with a state-of-the-art visible camera, allowing for precise imaging of galaxies.
This capability enables the measurement of the shapes and sizes of galaxies
across different redshifts, providing crucial information for understanding their
evolution. The imaging Euclid catalogue will contain the shapes of about
1.5 billion galaxies, observed in the visible range with the Visual Imaging
(VIS) instrument, while the redshifts of such galaxies will be measured in
the photometric mode, using the Near Infrared Spectroscopic Photometric
(NISP-P) instrument, complemented by ground-based observations in different
bands

• Spectroscopic Redshift Survey: The mission incorporates spectroscopic
observations via the NISP-S instrument, to determine the redshifts of galaxies
accurately. This information is essential for constructing a three-dimensional
map of the cosmic structure, allowing scientists to trace the expansion history
of the universe. The principal spectral characteristic employed for redshift
determination is the Hα line. This originates from the transition between n = 3
and n = 2 energy levels in hydrogen, exhibiting a wavelength of approximately
λ ≃ 656.3 nm. Specifically, the scientific requirement concerning the galaxy
number density within the spectroscopic sample necessitates that the average
effective Hα flux limit for a source with a 1 arcsec diameter should not exceed
3e − 16 erg cm−2 s−1 at 1600 nm. The flux threshold2 encapsulates the line
flux above which galaxies are reliably detected. Owing to the abundance and
the dimensions of the spectra discernible within the field of view, numerous
spectra are likely to be contaminated—or confused—by those from adjacent
galaxies. Such contamination precipitates inaccuracies in redshift assessments,
implying that not all observed spectra will facilitate a trustworthy extraction
of redshift data.

• Survey Strategy: Euclid employs a systematic survey strategy, covering a
large portion of the sky to ensure statistical robustness. The mission’s wide-
field survey, combined with its depth and accuracy, enables comprehensive
studies of dark energy and cosmic structure evolution over cosmic time.

3.2.1 FlagShip

The possibility to cross correlate with a spectroscopic set of galaxies, and the accuracy
of the 3D map of the hosts, is a crucial feature for this work. More important, Euclid
will cover about 15000 deg2 of the sky area, making this survey an outstanding host
catalogue. More can be found in the ESA web page about Euclid or the Euclid red
book

2The flux threshold denotes the minimal line flux required for galaxies to be detectable, ensuring
an SNR greater than 3.5.

https://www.esa.int/About_Us/ESAC/Euclid_flagship_mock_galaxy_catalogue
https://sci.esa.int/documents/33220/36137/1567255801368-EUCLID_RB_Issue_1-1_2011-09-29HighQ.pdf
https://sci.esa.int/documents/33220/36137/1567255801368-EUCLID_RB_Issue_1-1_2011-09-29HighQ.pdf
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The telescope is now launched, and real data will arrive in 2024. For this work, a
mock catalogue of galaxy hosts, the Euclid flagship, has been used. The spectroscopic
flagship is a collection of galaxies with spectroscopic measurements of z. This dataset
is a simulation of what the satellite will see and is the best spectroscopic "observed"
collection of galaxies one can use to predict cross correlation on the Euclid footprint.

Developed by Euclid’s teams, the groundbreaking Euclid Flagship mock galaxy
catalogue [82] is based on a supercomputer N-body simulation ran in a box of
3600 h−1 Mpc on a side with 160003 particles each one with a mass of 109 h−1M⊙
allowing one to resolve dark matter halos with a minimum mass of 1011h−1M⊙,
matching the typical size of the halos capable of hosting the faintest galaxies expected
to be detected in the Euclid survey.

The simulation assumes a reference cosmological with parameters similar to those
estimated by the Planck collaboration [17] namely:

• Ωm = 0.319

• Ωb = 0.049

• Ωr = 0.00005509

• Ων = 0.00140343

• ΩΛ = 1 − Ωm − Ωr − Ων

• Tcmb = 2.7255 K

• H0 = 67 Km/s/Mpc

• ns = 0.96

• σ8 = 0.813

• ωde = −1.0

The initial conditions were set at z = 99 by applying first-order Lagrangian pertur-
bation theory displacements from a uniform particle grid.

The outputs of the simulations were arranged to a full-sky particle light-cone
(to z = 3). The full-sky coverage was achieved by replicating the simulation box.
The resulting light cone contains 31 trillion particle with specified positions and
peculiar velocities. The ROCKSTAR [83] halo finder was then used to extract the
∼150 billion haloes that contain the mock galaxies. In this Thesis, I will use a
smaller catalogue covering one octant of the sky, since this is the reference catalogue
currently validate by the Euclid collaboration and routinely used to validate the
data analysis pipeline.

Once the halo catalogue is generated and its validity checked by comparing the
halo mass function to theoretical expectations [84], using a prescription that combines
the halo occupation distribution model [85] and abundance matching techniques,
see [86] and references therein. This hybrid method computes the number of satellites
in each halo and assigns the luminosities to central and satellite galaxies. Galaxy
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clustering measurements are used to determine the free parameters and relations
implemented. Galaxy colours are then assigned using the colour-magnitude relation,
similarly to what was done in [87], taking into account whether the galaxy is central
or satellite [88]. While the central galaxies are always placed at the centre of the
halo, satellite galaxies are located following a triaxial Navarro, Frenk, and White
profile [89]. Galaxy velocities also depend on their type. Central galaxies are assumed
to have the velocity of the halo centre of mass. The velocities of the satellite galaxies
are estimated by solving the spherical, stationary, Jeans equation of local dynamical
equilibrium. Galaxy velocities are used to compute the observed redshifts listed in
the mock catalogue.

The spectral energy distribution (SED) of the mock galaxies were obtained from
two template libraries: COSMOS SED [90] and the Bruzual & Charlot one [91]. The
result is 136 templates obtained using the 31 SEDs and the two Galactic extinction
laws. The SED is assigned to each galaxy depends on the redshift, and the colour
of the object. Since the Euclid spectroscopic survey preferentially target H−α line
emitting galaxies, additional physical parameters need to be assigned to the mock
galaxies. The first step is to specify the ultraviolet flux that is then used to estimate
the star formation rate and the stellar mass.

The flux of the H−α line is estimated from the star formation rate using the
Kennicut law [92]. The flux of the other emission lines is also estimated after
computing the galaxy metallicity from the galaxy stellar mass, following the relation
obtained in [93].

The result is a catalogue of mock galaxies with an H−α flux above 2 × 10 −
16 ergs−1cm−2 in the redshift range, z = [0.9, 1.8] matching the expected properties
of the Euclid spectroscopic surveys. This is the mock sample used in my Thesis. To
conclude this section, I leave a picture of the mock catalogue, with the spectroscopic
sample highlighted in red.

Figure 3.8. A representation of the flagship simulation. The spectroscopic sample is
highlighted in red.





53

Chapter 4

The Hierarchical Bayesian
Formalism

The primary aim of this chapter is to demonstrate how to estimate the H0 via the
cross-correlation technique. The discussion here focuses exclusively on astronomical
sources of GWs, particularly those arising during the inspiral and coalescence of
two compact objects. The three main event categories include BHBH, BHNS, and
NSNS.

The goal is to determine both the redshift z and the luminosity distance of
the merging. GWs events fall into two categories: those with an electromagnetic
counterpart, namely BS, and those without, known as DS. BS are critical for
accurately establishing the z −Dl relationship and determining the parameters of
the underlying cosmological model.

The method involves analysing the electromagnetic spectrum to identify known
emission or absorption lines in the received light. Redshift is then calculated by
comparing the measured line wavelength with the known one. The method relies
on gathering sufficient BS events in order to constrain cosmological parameters.
The precision of this method is limited only by the number of observed BS and
the accuracy in determining both Dl and z. This approach was applied to the
significant event GW170817 [4] in August 2017. This event marked the first of its
kind, offering an opportunity to study the tidal deformability of neutron stars, a
parameter intimately connected to the behaviour of matter under extreme conditions.
This single event allows an H0 estimation and its comparison with measurements
from other cosmological observable. However, as illustrated in Fig. 4.1, the posterior
from this single even is not enough to resolve the Hubble tension. The 68.3% credible
interval for the posterior yields a Hubble constant of

H0 = 70+12.0
−8.0 , km, s−1,Mpc−1,

aligning broadly with both previously mentioned estimations of H0.
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Figure 4.1. The posterior distribution (blue curve) for H0 obtained from GW170817 by
the LIGO-Virgo collaboration, compared with two other measurements of the same
parameter from Planck and SHoEs collaboration. Figure from [94]

4.1 A New Tool

While NSNS events are promising, they are rare as compared to BHBH events [95].
Considering potential light emissions from BHNS events, relying on a sufficient
number of mergers is not feasible for this type of research. In contrast, dark events
are approximately 100 times more frequent and offer a practical alternative to H0
measurements. DS primarily involve coalescence events of two astrophysical black
holes or NSBH/NSNS events too distant for their electromagnetic counterpart to be
visible on Earth. This work will focus solely on BHBH events.

As mentioned in the previous chapter, the spiral motion of two bodies towards
each other generates a distinct gravitational wave signal. The luminosity distance
can be estimated as previously mentioned, but in the absence of electromagnetic
radiation, redshift information is missing. The problem is that both a loud source
with a large chirp-mass and a faint one can produce signals of similar amplitude
when redshift effects are included. To address this, one can either use information
about the redshift distribution of BH masses i.e. Spectral Sirens [96, 97] or a non-
homogeneous distribution of sources. In the following I will explain how, based on
the knowledge of the source distribution, the degeneracy can be broken to obtain
redshift information.

Black holes represent the endpoint of stellar evolution, and given the non-uniform
star formation rate (SFR) as a function of z, a peak in the astrophysical black hole
distribution is expected. Assuming the SFR follows the model in [98],

ψ(z) = 0.015 (1 + z)2.7

1 + (1+z
2.9 )5.6 ,M⊙Mpc−3yr−1, (4.1)
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it becomes necessary to account for a time delay between star formation and merging.
This means waiting for stars to collapse into black holes. The distribution of this
time delay, P(t), remains uncertain, but an effective time can be employed to model
this effect. By defining

φ(z) = tH
(1 + z)E(z) , (4.2)

t(z) =
∫ ∞

z
φ(x)dx, (4.3)

where tH = 1/H0 is the Hubble time and the second equation represents the cosmic
time as a function of redshift, one can write the GW rate, RGW , as a function of
time:

RGW (t) = N
∫

t
ψ(x)P(t− x)dx. (4.4)

The physical meaning of RGW is that, at each time, one must first compute the
total amount of stellar mass available, introduce a delay until the star collapses, and
then calculate the amount of radiation receivable at a certain time due to the finite
propagation velocity of GWs.

Various prescriptions exist for the distribution P(t); a reasonable assumption
is that the process of decaying into a BH and merging is rare, thus following a
decay-like equation as in [99, 100]. Therefore, one can assume

P(t(x) − t(x̃)) = 1
τ
e− t(x̃)−t(x)

τ , (4.5)

where τ is a parameter representing the delay time, ranging from 0.1 Gyr to the
present epoch.

One must then define a comoving merger rate R and the observed rate RGW via

RGW (z) = dN

dtddz
= 1

1 + z

dV

dz
R(z), (4.6)

such that, with a slight redefinition of the time t(z) as
∫ z

0 ϕ(z̃)dz̃, the rate per
comoving volume is given by:

R(z) = 1
τ

∫ ∞

z

dt

dz̃
ψ(z̃)e− t(z̃)−t(z)

τ dz̃. (4.7)

Given the merger rate, it becomes possible to estimate H0 using Bayesian inference
as detailed in [99]. The specifics of this measurement are beyond the scope of this
work (for further discussion, see [99, 100, 101, 102]). In the next chapter I show
how the particular distribution of sources has not a significant impact, rather what
matters is the number of gold events within a given redshift range. The specific
value of the delay time becomes less crucial unless it significantly alters the number
of detected events.

Before discussing the approach actually used in this thesis, it is worth briefly
describing what Spectral Sirens are. Like previously mentioned, they belong to
the category of dark sources. As with the case just described, this type of source
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also attempts to exploit a particular characteristic, in this instance in the mass
distribution of the sources, to try to break the z − Mc degeneracy [96, 97]. The
features present in the mass spectrum, usually gaps due to the physics behind
the formation of stellar-origin black holes, allow for the anchoring of the mass
determination in the source’s frame of reference, and subsequently in that of the
detector, thereby determining the redshift of the binary system.

As mentioned above, another approach to obtain redshift information involves
statistically assigning a host galaxy to the GW event. If the galaxy redshift is known
and astrophysical BH are assumed to reside inside or near galaxies, both z and Dl

can be recovered, enabling the inference of H0. This technique requires a galaxy
catalogue to be correlated with the DS position, and is commonly referred to as
the cross-correlation method. The concept is well-established [6, 103, 7, 104, 8, 105]
using hierarchical Bayesian models as outlined in [106].

4.1.1 Hierarchical inference

The hierarchical Bayesian model framework applies whenever the goal is to infer
"hyperparameters" from data. A hyperparameter, such as the mass distribution of
the black hole population, extends beyond the original parameter set regulating
individual events but can be deduced from multiple events.

Formally, the framework can be formalised as

P (Λ|data) = L(data|Λ)Π(Λ)∫
dΛL(data|Λ)Π(Λ) , (4.8)

where Π(Λ) represents the hyper-prior in the hyperparameter Λ, and P (Λ|data)
denotes the hyper-posterior. Given a prior Π(θ|Λ), the likelihood L can be defined
as,

L(data|Λ) =
∫
dθL(data|θ)Π(θ|Λ) . (4.9)

Here, θ is the set of all parameters relevant to the event.
This approach is detailed in the following paragraph, explaining all the terms

involved and providing a general overview. The ultimate goal is to obtain,

P (H0|{DGW }) = L ({DGW }|H0)Π(H0)
P ({DGW }) . (4.10)

Here, Π(H0) is a flat prior for H0, ranging from some minimum to maximum value.
The likelihood L ({DGW }|H0) is a combination of a finite ensemble of uncorre-

lated GW events

L ({DGW }|H0) =
Nobs∏
i=1

L
(
{Di

GW }
∣∣∣H0). (4.11)

In principle, the effect of the rate RGW should be included. However, given its
negligible contribution to the overall result, as stated in [107, 103], eq. (4.10) is
used in this work. It is also worth mentioning that equation (4.11) holds under the
assumption that each DS is uncorrelated from all the others, i.e., there are not two
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DS sharing a close host. In nature, this naturally occurs due to the large size of the
Universe. However, when using mock data with a huge number of DS, this problem
arises. As stated in [103], this effect is negligible compared to other sources of error,
so eq. (4.11) is assumed to be valid.

L
(
{Di

GW }
∣∣H0) can be obtained by marginalization, i.e., after adopting a lighter

notation, L
(
{Di

GW }
∣∣ θ,H0) is defined as Li(θ,H0):

L
(
{Di

GW }|H0
)

= 1
β(H0)

∫
dθLi(θ,H0)︸ ︷︷ ︸

likelihood

prior︷ ︸︸ ︷
Π(θ|H0) . (4.12)

The normalisation β is set aside for the moment. All quantities needed to evaluate
Li(θ,H0) are provided in the GW data. The likelihood Li is well described by a
Gaussian likelihood over the luminosity distance

Li(θ,H0) = Li(z,Ω, H0) = ρi(Ω) Ni(Ω)√
2πσi(Ω)

e
− (Dl(z,H0)−µi(Ω))2

2σ2
i

(Ω) . (4.13)

The terms of (4.13) are:

• Dl is the luminosity distance.

• µi is the measured luminosity distance for the i-th event.

• σi is the error for the i-th event.

• ρi is the probability of an event occurring in the Ω direction.

• Ni normalises so that Li is a PDF when marginalised over the whole solid
angle.

While in general ρ can be an arbitrary distribution in the angular variables, in this
thesis ρ(Ω) is a multivariate symmetric Gaussian on the celestial vault.1 the function
will assign a weight to each host in accordance with the Gaussian distribution. As is
usual in this field, when the location region of an event is given, it is intended to
indicate the region of the sky that contains 90 % of the total probability. From this
information and assuming equal errors on ϕ and θ, it is possible to infer the σ of the
Gaussian distribution on the sphere. This is the method used in Chapter 5, taking
care to use values consistent with the accuracy involved. Instead, in this chapter
ρ is a Gaussian as described before, but its width is exaggerated in order to check
its effect on the final result, as illustrated in Fig. 4.6 in which the possible host are
placed on different line of sight, hence the different eight and at different redshift
therefore they contribute to different values of H0.

With the prior in eq. (4.12), one can evaluate eq. (4.13) for each galaxy in the
sky volume determined by the GW signal. The luminosity distance of the GW, that

1To be precise, one should use a Von-Mises Fisher distribution. It is proven that for large enough
concentration parameter, the two distributions are the same and the relation k ∼ 1/σ holds true.
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is a constant in H0, and the host redshifts are treated as input data in the following
analysis.

As it is evident from eq. (4.13), by varying H0, for given µ and z, the likelihood
follows a Gaussian-like profile, peaking at some value of H0. The likelihood for a
single event is then a combination of Gaussian functions, with a peak at the "true"
value of H0 plus other peaks acting as white noise. When more likelihoods are
multiplied together as in eq. (4.11), the white noise contribution is reduced, since
the peaks will correspond to different values of H0. The only common contribution
is that due to the true value of H0. The higher the number of DS, the more distinct
the peak for the true value of H0 becomes. A more in-depth discussion about the
properties of this method will be given later in Sec.4.1.4.

4.1.2 Galaxy Catalogue

From the previous section, it is understood that the prior Π(θ|H0) is essential for
the cross-correlation technique. The parameter vector θ can be factorised, focusing
on the Π(θ|H0) dependency on z and Ω, the latter being the angular part of the
galaxy prior. Hence, the prior can be written as

Π(θ|H0) = Pcat(z,Ω)Pθ′(θ′) . (4.14)

It is noted that, in the context of a redshift galaxy survey, the galaxy prior, Pcat(z,Ω),
does not depend on the Hubble constant H0. This factorisation is valid under the
assumption that all other parameters in θ′ are not correlated with either the redshift
or the sky localisation. While this is a robust assumption for the sky localisation,
some models might introduce a correlation between, e.g., the masses of the BHs and
the redshift, thus potentially making incorrect the factorisation above. This work
assumes that the BHs mass distribution does not evolve in redshift.

The prior Pcat denotes the probability of locating a galaxy at a specific spot
in the sky and at a particular redshift. In an ideal catalogue with N galaxies at
infinitely precise positions, the prior is defined as

Pcat(z,Ω) =
∑N

α=1wαδ(z − zα)δ(Ω − Ωα)∑N
α=1wα

, (4.15)

where wα enables different weighting for each galaxy, and δ represents the Dirac
delta. The weights ω can either be a statistical weight, accounting for missing
galaxies, or an intrinsic weight, reflecting the likelihoods of different galaxies hosting
a DS. It is reasonable to suppose that more massive galaxies, with a larger number
of stars, are more likely to harbour BHs and thus binary systems of BHs (BBHs).
In this study, it is considered that all galaxies have the same intrinsic weight, which
serves as a solid starting point. Introducing a variable intrinsic weight would not
alter the formalism.

To take into account that no real catalogue has an infinite precision on z and Ω,
it is always possible to smear the Dirac deltas in eq. (4.15) with, e.g., a Gaussian
distribution centred around the true value. Although this is possible, in this work
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we used the Flagship spectroscopic galaxy catalogue, with errors over z that are
negligible with respect to the errors of the luminosity distance measured from a DS,
so we can keep the Dirac delta over the redshift variable, and the same approximation
is even better for the angular variables. To include the smearing, one can just write

Pcat(z,Ω) =
∑N

α=1wαG(z − zα)G(Ω − Ωα)∑N
α=1wα

, (4.16)

where G is, for example, a Gaussian distribution around the true value.
No catalogue can contain every galaxy in the Universe. This implies that some

galaxies, potentially hosting a DS, will always be missed. In [103, 6] a catalogue is
defined complete if all the DSs have the "true" host in the galaxy catalogue. This
concept differs from the notion of completeness in a galaxy survey, which typically
measures the light flux up to a minimum threshold Fmin. A survey is considered
flux-complete up to Ft, meaning it includes every object with Ft ≥ Fmin.

While this could be a concern, the spatial correlation of galaxies, as noted in [108],
suggests that even if Pcat does not include the actual host galaxy of a DS, there will
likely be a galaxy correlated to it. This degrades the final posterior for an individual
event, but with a large number of sources, this mainly results in the need for a larger
amount of DS.

Two methods exist for accounting for missing galaxies. The first involves esti-
mating the probability of missing a galaxy, as explored in [6]. Knowing the expected
density of galaxies allows for calculating the number of galaxies in a region and,
by subtracting the observed number, the probability of missing a galaxy can be
inferred. In the following, I adopt a similar approach, based on the assumption that
the Universe is uniform.

A galaxy survey essentially consist of angular positions and redshifts. By making
a histogram of the distribution of objects in the catalogue as a function of z, one
obtains the selection function N(z). Under the hypothesis of a uniform Universe
that "covers" the survey, as depicted in Fig. 4.2, this set of galaxies is referred to
as the true Universe or uniform Universe, being uniform in comoving volume and
denoted by U . Given that N(z) is an observation of U(z), then U(z) ≥ N(z) , ∀z.
The statistical weight for each galaxy is then defined as the ratio of the number of
observed galaxies to the expected number.

ω(z) = U(z)
N(z) . (4.17)

While it might seem that there is a degree of arbitrariness in creating a uniform
universe without explicitly fixing its density, the only constraint applied here is that
for each redshift, it contains more galaxies than the considered survey. However,
this does not pose a problem because the term Pcat consistently appears both in
the numerator and in the normalisation factor β in eq. (4.12). This cancels out the
dependence on the absolute number of objects in the catalogue. To facilitate faster
computation of the final posterior, the uniform Universe is constructed with the
same density as the densest z-bin of the observed Universe.
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The physical significance of the statistical weight is that it allows each galaxy in
the survey to represent all the missing galaxies at that redshift, thereby correcting
the analysis and compensating for a potential bias on H0 measurements due to
the selection function. As far as I know, this is the first time that this kind of
implementation is found in this way. Another methods can be seen in [6, 9] in which
the approach is to "complete" the sample. Given a galaxy sample, they separate
Pcat into two parts, the galaxy contribution and the Pmiss contribution, tied by the
relation Pcat = Pgal +Pmiss. Various techniques are employed to estimate Pmiss and
compensate for the incompleteness. Both methods rely on the knowledge of a "true"
distribution of the galaxies. Since this true distribution is based on the homogeneity
and isotropy of the Universe, the base assumption is solid. The big trade-off between
those two methods is more in the complexity of the code. having to calculate only
some ratio between bins is simple and has proven to be quite successful in the final
result. For test, a complete Uniform Universe is assumed, unless otherwise stated.
For the final results, a non Uniform and non-complete distribution of galaxies is
taken into consideration, and the incompleteness is compensated as described above.

In the above discussion on the galaxy catalogue, a detail was omitted. Theoreti-
cally, Π(θ|H0) should represent both the probability of a galaxy presence and the
likelihood of a merger occurring. This implies that Pcat should be combined with
the probability of a merger at redshift z. The correct approach to computing this
new prior would be to multiply Pcat with the previously discussed merger rate, RGW .
However, to avoid bias in the measurement of H0, this work omits the merger rate
contribution and maintains consistency in this choice. Fig. 4.3 illustrates the bias
using just 30 GW events and a hypothetical galaxy catalogue with the same selection
function as for the Flagship. In this case, the host catalogue is extracted from a
uniform distribution of host. For this test, we can forget the physical characteristics
of the DSs as we are interested in checking for the presence of a bias. Figure Fig. 4.3
shows precisely the consequences of inappropriately using a catalogue with a selection
function N(z) without weighting the contributions as described above.

4.1.3 The Beta normalisation

We focus now our attention towards the function β(H0), for which a first computation
was conducted in [105], assuming a Uniform universe.

β is also known as the "normalisation" because it is mathematically defined
through the integral over all variables in θ, ensuring that eq. (4.12) behaves as a
probability density function (PDF) for H0. In this context, observed luminosity
distances are already taken into account. Consequently, for mock data, the observed
Dl, determined from Gaussian scattering centred on the true distance (see in the
next chapter) should be utilised.

The function β(H0) can then be defined as

β(H0) =
∫

D
Pdet[Dl(z,H0),Ω, θ′]Pcat(z,Ω)Pθ′(θ′)dθ′dzdΩ , (4.18)

where D is a region in the parameter space, {z,Ω, θ′} , encompassing all possible
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Figure 4.2. A representation of the uniform Universe, in blue, and the observed Universe,
in green. The observed Universe is derived using Euclid mock data.

detectable DS.
One can observe that β(H0) is explicitly a function of the Hubble constant, but

it also depends on the specific problem considered, as indicated by the integration
domain D and the galaxy catalogue prior. In real-world scenarios, β accounts
for the specific interferometer in use, since each detector observes DS in different
regions of the parameter space. This concept becomes clearer when considering a
monochromatic source. For a given chirp mass Mc, each interferometer can detect a
signal up to a minimum flux, leading to the definition of a horizon, Dlhor, within
which every source is detected. In this context, Pdet is represented by the Heaviside
distribution Θ(Dlhor − Dl). While it is feasible to define an instrument horizon
for NS due to their relatively narrow mass range, it is not possible for BH, whose
mass distribution spans several orders of magnitude. A more detailed discussion on
this topic is presented in [6]. It is worth noting that this remains an active area of
research, with new techniques emerging regularly. A proposed strategy is to conduct
a full Monte Carlo (MC) estimation of β, including source properties, particularly
the masses [9]. While this method is robust, it is impractical for this study, given
the vast number of potential hosts in the Euclid mock catalogue.

Instead of performing such an MC evaluation of the normalisation function, this
study adopts a more physical approach, building on the work of [105, 6].

The role of β(H0) is to account for the implicit dependence of the likelihood
on the Hubble constant. To illustrate this, consider an infinite spherical region
R, uniformly filled with a finite and constant density of galaxies. Assuming each
galaxy has an equal probability of hosting a DS event, a box containing a certain
probability of finding the DS inside it can be constructed based on the Dl of the DS
and the 2D-sky localisation. Allowing H0 to vary, causes the region R to contract,
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Figure 4.3. This plot demonstrates the effects of not applying the weight in a catalogue
with a specific N(z). The sample of DS was chosen uniformly up to a maximum distance.
The exhibited bias towards lower H0 originates from the fact that the majority of
potential hosts are at "low" z, thus requiring smaller values of H0 to satisfy cz/H0 = Dl

or, from another perspective, allowing H0 to vary causes the box to stretch and
slide over the radial direction according to the inverse relation z(Dl,H0), becoming
larger the farther it is from the origin. As the density in the region R is fixed, there
will be more potential hosts at larger distances, and since each galaxy has the same
probability of hosting a DS, the likelihood will increase for higher H0 values due to
this volume effect. Essentially, this scenario deals with a homogeneous Malmquist
bias, and β(H0) must compensate for it.

Given the above argument, it is no surprise that β is connected to the explored
volume. In the following, first, the homogeneous case will be introduced, assuming
an infinite galaxy catalogue, and then a method to compute β for a finite catalogue
will be presented. The infinite catalogue scenario reflects the situation where the
host catalogue covers a much wider region than the "box", for each value of H0
considered.

The Homogeneous Case

I now focus on the study of the homogeneous case for β, particularly its indirect
dependency on H0.

By definition,

β(H0) =
∫

Ω

∫
zR
Pdet(Dl)Pcat(z, Ω̃)dzdΩ̃ , (4.19)

where the integration over all other parameters in θ′ is performed, and zR represents
the extension of the R-region, which should be significantly larger than the research
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volume.
Pdet is the probability of detecting a source at a certain distance. For simplicity,

I assume Pdet(Dl) = 1 between a Dlmin and Dlmax and zero otherwise, implying a
perfect detector within a specific Dl range. The next assumption is the homogeneity
of Pcat in comoving volume, implemented as

Pcat(z,Ω) = 1
Vc(zR)

dVc

dzdΩ . (4.20)

With these assumptions, eq. (4.19) can be rewritten as

β(H0) = 1
Vc(zR)

∫
Ω

∫ zmax

0
Pdet

dVc

dzdΩ̃
dzdΩ̃ . (4.21)

The volume element in the innermost integral can be divided into two parts, one
that depends on Ω̃ alone and the other on z alone. Since one is interested in the
relationship between β and redshift, the integration over the angular variables is
performed.

To express the volume element, one can first define the following quantities:

E(z) :=
√

Ωm(1 + z)3 + Ωr(1 + z)4 + Ωk(1 + z)2 + ΩΛ , (4.22)

u(z) :=
∫ z

0

dx

E(x) , (4.23)

dc(z) = 1
H0

u(z) . (4.24)

Using these definitions, the volume element is expressed as

d(Vc)
dzdΩ = d2

cd(dc)dΩ
dzdΩ = d2

c

d(dc)
dz

= 1
H 3

0

u(z)2

E(z) . (4.25)

Therefore, the volume Vc(zR) is

Vc(zR) = 1
H 3

0

∫ zR

0

u(z)2

E(z) dz . (4.26)

The assumption of a perfect detector is now implemented. This implies that the
integral over the R-region is truncated in redshift by Pdet. Importantly, the detection
probability is a function of the luminosity distance, not of the redshift, therefore β
depends on H0 through the inverse function z(Dl,H0). Moreover, given eq. (4.25),
the explicit dependence on H0 cancels out in Pcat.

To highlight that Dl is a variable, β(H0;Dl) is written as

β(H0;Dlmax;Dlmin) = 1∫ zR
0

u(z)2

E(z)

∫ zmax

zmin

u(z)2

E(z) dz , (4.27)

where zmax(min) is defined by zmax(min) = z(dlmax(min), H0).
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Looking at eq. (4.26) and eq. (4.27), is possible to define the dimensionless
comoving volume Vc, leading to,

β(H0, zmax, zmin) = Vc(H0, zmax, zmin)
Vc(H0, zR) (4.28)

with the denominator representing the volume of the catalogue.

Eq. (4.28) is derived under the assumption of a homogeneous catalogue. It
will be shown later that, when one turns on the statistical weights w(z), this
formula is equally applicable to an observed galaxy catalogue with an arbitrary
selection function. The equation for β is also well suited for fast computation. In
a homogeneous Universe, the number of galaxies is proportional to the volume,
simplifying eq. (4.28) to a sum or weighted sum, when the w(z) are present, over
the catalogue:

β(H0, zmax, zmin) = 1∑
zα∈R

w(zα)
∑

zmin≤zα≤zmax
w(zα) . (4.29)

This equation effectively compares the volume of the box containing a certain
probability of finding the DS inside it with the volume of the catalogue when
w(z) = 1.
It is already stated that eq. (4.28) and eq. (4.29) are dependent on H0 only via
the inverse relationship z = z(Dl,H0). The focus is now to understand the general
behaviour of this normalisation as a function of H0 and the integration limits.

The denominator of eq. (4.27) is constant, representing the volume of the
catalogue, denoted as K. This K is the sum of three terms: the integration
from 0 to zmin, from zmin to zmax, and from zmax to zR, defined as A, B, and C

respectively. Hence, β = B/(A+B + C), illustrating that β is always less than or
equal to one.
The function

j(z) = u(z)2/E(z) (4.30)

is now defined. Since u(x) > 0 for all x ∈ R+ and the same holds for E, E(x) > 0
for all x ∈ R+, implies that the integrand, j(z), is a positive function in z, making
β a non-decreasing function of z via the integration extremes. This implies specific
limits for the range in which β can vary.

For zmin approaching 0, A → 0, so, since β is a continuous function, it must
be true that β = B/(B + C) := m. As zmax approaches zR, C → 0, leading to
β = B/(A + B) := M , where 0 < m < M ≤ 1. This is evident when setting
zmin = 0 from the start, finding M = 1 while m is a constant approaching 0 as zmin

approaches 0.

The study of β as a function of z is insightful for understanding the role of H0.
It will be shown that a function, increasing continuously between 0 and 1 with an
initially positive second derivative, must have a single inflection point.
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Given Vc =
∫
j(z)dz, and with K = K/H 3

0 , the normalisation is can be cast as

β = Vc(zmin, zmax)
K

. (4.31)

Focusing on the simple case zmin = 0, eq. (4.31) is investigated as a function of the
Hubble constant. The relationship z(Dl,H0) is now denoted as ζ(dl, h) to have a
lighter notation, where dl ≡ Dl and h ≡ H0.

To understand how β behaves as a function of h, its first and second derivatives
in h are studied using the Leibniz integral rule, which, assuming that all the involved
functions are smooth enough to perform such operations, is

d

dx

∫ b(x)

a(x)
f(x, t)dt =

∫ b(x)

a(x)
∂xf(x, t)dt+ f(x, b(x))b′(x) − f(x, a(x))a′(x) . (4.32)

Even if the denominator of β is constant in z, it will not be constant once we
allow H0 to vary. The focus now shifts to the numerator, as the calculations are
similar. It is important to note that when performing the derivative with respect to
h, the derivation rule for the ratio of two functions must be applied. It is also worth
mentioning that this computation is highly complex, and a detailed description of
each step would result in an excessively long text that might not offer more insight
than the final plot in Fig. 4.4. Therefore, only key parts of the demonstration will
be provided here.

For simplicity, by setting zmin = 0, eq. (4.31) can be reformulated as

Vc

K
=
∫ ζ(dl∗,h)

0 j(x)dx∫ ζ(dl,h)
0 j(x)dx

, (4.33)

As previously stated, Vc does not explicitly depend on h, hence, the significant parts
in the calculation, according to the Leibniz rule, are those proportional to

dn ζ(dl∗, h)
d hn

. (4.34)

It is emphasised that once dl = dl∗ is fixed, ζ(dl∗, h) essentially becomes a function
of h alone.
ζ is now explicitly defined using the deceleration parameter q. Considering only
terms up to second order, the inverse relation z − dl is given by

z = ζ(dl, h) = dl h+ 1 − q

2 dl2h2 +O(dl3h3) . (4.35)

The deceleration parameter q, linked to the Hubble parameter, evolves with the
Universe and is described by

q(z) = − ä(z)a(z)
ȧ2(z) = 1 + z

E(z)
dE(z)
d z

− 1 , (4.36)

thus, for consistency with the second-order approximation, q is taken to be fixed
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equal to q0, i.e. its value at present time.
The complete equation for the second derivative of β with respect to h reads

d2

d h2β(h) = 1
K

d2

d h2 Vc − Vc

K2
d2

d h2 K − 2
K3

d

d h
K
(

K d

d h
Vc − Vc

d

d h
K
)
. (4.37)

Recognising that the volume at the denominator of eq. (4.37) is substantially
larger than in the numerator, the most significant term is therefore the one being
proportional to 1

K :
1
K

d2

d h2 Vc . (4.38)

The second derivative of Vc is found to be proportional to dl∗2 − dl∗2q. Given that
the deceleration parameter at z = 0 is known to be negative, it follows that the
second derivative is positive, indicating that β is a convex function and grows as a
cubic function, as established in [105, 107] for the low redshift case.

Upon increasing dl∗, and consequently Vc, the assumption Vc ≪ K weakens.
Higher-order terms, proportional to 1/K2, must therefore be considered. These new
contributions are negative and grow faster than the first term, since the volume
increases more rapidly than its derivative. This leads to the conclusion that there
must exist a value of h where the second derivative changes sign and turns negative,
making β concave. The term proportional to 1/K3, while positive, does not increase
as quickly, so the equation (4.37) remains negative once reached the inflection point.
The critical insight is that d2β/d h2 has only one root, meaning the function remains
concave but still always increasing as z = ζ(dl, h) increases, reaching an asymptotic
value of 1 only when zmax → ∞, and consequently dl∗ → ∞. If zmin is not zero,
the same procedure can be applied, by simply inverting the extremes of integration
and keeping zmax fixed. This procedure leads to the conclusion that the second
derivative is always positive in this case, and β remains convex.

This result, which holds whenever a maximum distance dl∗ can be defined, is not
only counterintuitive but also very general. Its certainty applies to NSNS type events,
since their mass range is narrow and therefore a dl∗ can be well-defined. For BHBH
events, an effective dl∗ can be introduced in two main ways: either by selecting
an efficiency threshold for the interferometer, i.e. by setting a certain percentage
threshold of detection of the total possible events (noting this requires knowledge of
the intrinsic distribution of sources), or by dividing BHBH events into chirp-mass
bins. Thus, for each bin i, a dl∗i can be defined following the aforementioned results.
The total posterior can then be computed by combining every i-th posterior.

The Homogeneous Case: Finite Size

Up to now, I have assumed that, for every tested value of H0, the galaxy catalogue
is substantially larger than the box containing a certain probability of finding the
DS inside it. This holds true when using data from early GWs observations, but
may not be the case with next-generation interferometers.

To account for the boundaries of the catalogue, an effective box volume is first
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Figure 4.4. The full evolution of the function β(H0). The selected dl∗ is 10.4 Gpc. The
red line helps visualise the change of regime from convex to concave.

defined. The maximum and minimum z of the catalogue are denoted as z and
z, respectively. The concept is that if the box extends outside the catalogue, for
instance, zmax > z, then zmax is replaced by z, with a similar adjustment for zmin.
Therefore, we have

β(H0, zmin, zmax) = Vc(zmin, zmax)
Vc(z, z)

, (4.39)

along with the definitions for zmin and zmax

zmin =

z(H0, Dlmin); if z(H0, Dlmin) ≥ z

z; if z(H0, Dlmin) < z
(4.40)

zmax =

z(H0, Dlmax); if z(H0, Dlmax) ≤ z

z; if z(H0, Dlmax) > z
(4.41)

This approach effectively addresses the finite size issue, particularly when a DS, for
each tested value of H0, does not go out from the catalogue boundary, but the box
does. However, a comprehensive solution to this problem is still needed. Another
potential solution is proposed in [103]. It is important to note that cross-correlating
DS that do not share a footprint with a host catalogue is far from ideal. The
limitation of this technique is that the DS must lie within the redshift range of
the catalogue. While it is acceptable for a neighbourhood of the DS to exceed the
boundaries, the correction fails if the DS is entirely outside the host catalogue.



68 4. The Hierarchical Bayesian Formalism

4.1.4 Analytical Insights

In this subsection, the aim is to present some analytical results that provide insight
into what can be expected from the posterior over H0 in certain simple cases.

The analysis relies on the following assumptions:

• The catalogue is complete.

• The uncertainty on the luminosity distance is isotropic.

• The normalisation term Ni(Ω) is isotropic.

• The precision of the host localisation is infinitely larger than for a DS.

• Without loss of generality, z = 0 is set.

• The hosts catalogue is significantly larger than every possible research box.

Under these assumptions, the function β(H0) can be expressed as

β(H0, Dlmax) =
∑

α; zα<zmax wα∑Ncat(R)
α wα

, (4.42)

where wα = w(zα) and Ncat(R) is the number of galaxies in the region. From
eq. (4.11) and eq. (4.12):

L ({DGW }|H0) =

=
Nobs∏
i=1

∑Ncat(R)wα∑
zα<zmax wα

∫
R
dzdΩρi(Ω)Ni√

2πσi

e
− (Dl(z,H0)−µi)2

2σ2
i

∑Ncat(R)wαδ(z − zα)δ(Ω − Ωα)∑Ncat(R)wα

.

(4.43)

Since the statistical weights wα are fixed in z, they can be moved out of the integral,
simplifying the equation to

L ({DGW }|H0) =
Nobs∏
i=1

1∑
α;z<zmax wα

Ncat(R)∑
α

ρi(Ωα)Ni√
2πσi

e
− (Dl(zα,H0)−µi)2

2σ2
i wα. (4.44)

For simplicity, all constants are grouped together under the symbol Γ, and only a
single GW event is analysed, hence Nobs = 1.

L ({DGW }|H0) = Γ∑
zα<zmax wα

Ncat(R)∑
α

ρ(Ωα)wαe
− (Dl(zα,H0)−µ)2

2σ2 , (4.45)

or more explicitly:

L ({DGW }|H0) =

= Γ∑
zα<zmax wα

Ncat(R)∑
α

ρ(Ωα)wα exp
{

−
(1 + zα

H0

∫ zα

0

dx

E(x) − µ

)2
/2σ2

}
.

(4.46)
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Eq. (4.46) shows that the posterior for a single event comprises the sum of a number
Ncat of quasi-Gaussian shaped functions. While each function is not strictly a
Gaussian, since eq. (4.46) is not a Gaussian function with respect to the variable H0,
in the infinite precision case they essentially behave like Gaussian functions. Fig. 4.5
illustrates the result for a simplistic scenario: one host and one DS with a 1% error
over the luminosity distance.

Figure 4.5. The posterior for a single DS and a single host. The curve is centred at
the correct value of H0. This figure shows that for small errors over µ, the observed
luminosity distance, the posterior can be well approximated by a Gaussian function.
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Figure 4.6. The posterior for a set of host and a single DS. The hosts are placed in such a
way that their contribution to the overall posterior do not overlap. Each host is placed
on a different line of sight and at a different redshift. The plot shows that in this case,
the highest peak belongs to the “true” host. We can observe the effect of ρ on the other
peaks.

Figure 4.7. The posterior for a single DS and a set of hosts. The hosts are placed along
the same line of sight, except for the one contributing to the small bump at H0 ∼ 55.
This plot shows both the widening of each individual peak due to the 1/H0 factor and
the fact that all peaks along the same line of sight would roughly have the same height
if not for the normalisation.
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Figure 4.8. The posterior for a single DS and a set of hosts both at different redshifts and
along different lines of sights. Some parts of the catalogues are more populated, placing
more hosts in a narrow region.

Considering the angular probability ρ, when there are few possible hosts, the
one in the correct location, that is, the host with the same RA and DEC of the DS,
leads to a higher peak in the final posterior. When fixing the angular probability ρ,
it can be noted that, if H0 spans a wide range of values and if the collection of zα are
roughly of the same order, the value of the integral in eq. (4.46) remains relatively
constant. This is because, independently of the redshift, a specific H0 can always
be found such that it satisfies the condition Dl/H0 − µ = 0, where Dl represents
(1 + zα)

∫ zα
0 dx/E(x). Essentially, this is the case where Dl/Hmax

0 − µ ≪ 0 and
Dl/Hmin

0 − µ ≫ 0 for all zα.
Without normalisation, all the peaks would have the same height. Additionally,

given the form of eq. (4.46), it is expected that peaks at large values of H0 will
be broader due to the 1/H0 behaviour of the exponential. It is only thanks to
the normalisation, acting upon those wider peak, that the amplitude is correctly
reduced. Both effects can be observed in Fig. 4.6 and Fig. 4.7, where in the former
the hosts are placed at various redshifts and along multiple lines of sight, resulting in
a bell-shaped total posterior that follows the profile of the distribution ρ(Ω), while
the latter plot demonstrates how two “close” peaks can have the same height and
also exhibits the increasing spread of a single peak over H0 due to the 1/H0 in the
exponent.

The role of the redshift is more subtle, if the catalogue is denser for some redshift
values, the peaks from those hosts will sum up together, building up the likelihood
for that value of H0 and this can lead to peaks that are higher than the “true” one.
This is shown in Fig. 4.8 in which the starting point is a configuration similar to
the one in Fig. 4.6 but with the addition of more possible hosts for a specific value
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of redshift. While each individual host contributes with a weaker peak, since they
overlap, they result in a much higher contribution for H0 ∼ 52 and H0 ∼ 40.

All the plots above help us to finally explain the aforementioned white noise
behaviour for the peaks other than the one for the “true” value of H0. As shown,
every time Dl/H0 − µ = 0 is satisfied, each event returns a combination of peaks.
A single event, in a realistic case, will produce a peak for each galaxy in the box,
with the height modulated by the angular distribution and the normalisation. Since
there is only one true value of H0, When the individual posteriors are multiplied,
the only contribution that consistently adds up is the one corresponding to the true
value of H0. This is because it is the only value that can generate a peak in each
posterior simultaneously. The convergence speed of this process depends on various
factors, such as the density of the host catalogue, the uncertainty over the angular
probability and the uncertainty over the luminosity distance of the GW. The essence
of this method lies in the fact that, given a certain number of DSs, the uncertainty
over H0 will become competitive with other cosmological probes.

All of the above results are based on certain assumptions, which are best disclosed
in this final paragraph. As can be seen in eq. (4.13) we are assuming that the posterior
on Dl is Gaussian; this is a simplification, but it is a good starting point. The function
ρ, as mentioned, is a multivariate Gaussian centred in the angular coordinates of DS.
CODE does not take into account the correlation between the error on distance and
the error on angular position, a correlation that is present in reality. CODE, apart
from the statistical weights discussed earlier, does not assign probabilities based on
the brightness or mass of the host galaxy, so every galaxy in the search region have
the same probability to be the host of the source.
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Chapter 5

The CODE Pipeline

The Cross correlation with Dark sirEns (CODE) pipeline is designed to generate,
combine and analyse any two different types of catalogues: a spectroscopic collection
of galaxies and an ensemble of DSs.

As described so far, CODE has been designed to perform a Bayesian, cross-
correlation analysis between an Euclid-like spectroscopic catalogue of galaxies that
may host, or correlated with, a catalogue of DS detected by future observational
campaigns performed with the ET.

In the current implementation, and in absence of real datasets, the input DS and
galaxy catalogues consists of mock objects. These catalogues can be either imported
or, which is the case considered in this Thesis, internally generated. Catalogues
of real objects can, in principle, be also used once they will be available. When
generating the simulated samples, I have made some simplifying assumption on the
shape of the DS detection area. The result footprints do not quite match those
observed so far in the O3 and O4 runs. But are simple and realistic enough to
simulate expectations for future datasets like those obtained from ET.

The core of the CODE pipeline performs the cross-correlation of the objects in the
two catalogues in order to estimate cosmological parameters through a hierarchical
Bayesian analysis. If the host catalogue is not complete, which is always the case
with realistic samples, then the statistical weights derived from the observed redshift
distribution N(z) need to me included to restore statistical uniformity.

The outcome of the analysis is the posterior distribution of the cosmological
parameters, in the current implementation I only consider H0. I also provide the
normalising function β(H0) and the sub-catalogue of DS used to perform each
specific analysis, so that the same DSS could be reprocessed in a different analysis
for comparison purposes, if required. Finally, CODE produces also the likelihood for
each DSs analysed, still not divided by β

CODE has the same scientific goals and shares several similarities with other
existing codes, such as those developed by [6, 9]. However, I have put more emphasis
on the modularity of the code and made an effort to make it as user-friendly as
possible.

The CODE package also includes a uniform host generator, designed for cali-
bration and testing, and to provide users with an ideal starting catalogue to play



74 5. The CODE Pipeline

with. CODE then takes the host catalogue, either the realistic or the ideal one,
to generate the parted DS catalogue which specifies the physical properties of the
DS from which the “observed” GW sample is obtained. Fig. 5.1 depicts the main
steps of the analysis. Sample selection and creation of the ’observed’ catalogues are
represented by the two rotated squares. Once the catalogues are produced, Bayesian
hierarchical inference is operated to evaluate the posterior probability function of
the sought-out parameters, in this case, H0.

This chapter will describe in detail the CODE pipeline with emphasis on the
generation of the "intrinsic" i.e., instrument-independent catalogues.

DSs Catalogue

Observed Hosts

Cosmological
Parameter

True Universe
Euclid
Flagship

Bayesian Inference

GW
Detector

Telescope

Figure 5.1. The image shows the coarse-grained structure of the CODE pipeline. The
starting point is the parent catalogue, then an instrument is chosen to observe both for
the DSs and the hosts. Having both catalogues, it is possible to use Bayesian inference
to estimate cosmological parameters.

5.1 The Parent Catalogues

The starting point of the pipeline is the parent catalogue. This first step, manip-
ulation of the parent catalogue, is really relevant when the pipeline is used in the
forecast mode, i.e. when simulated data are used to make predictions and/or to
optimise the analysis. The analysis of real data, when this will be available, really
starts from the second step, since in that case both the DS and the galaxy catalogues
will be available.

Since there is no real data available yet, a parent sample, dubbed "true Universe"
in the flow chart, is first needed. From the parent sample, both the host galaxies and
the DSs samples will be "observed". In this chapter, I will use two parent samples:
the Flagship simulation of the Euclid spectroscopic sample and a sample of objects
uniformly distributed within a pre-defined volume. The latter catalogue, is of course
ideal, and is used to perform validation tests and sanity checks.

A fundamental requirement for the true Universe sample is that it must contain
significantly more objects than those in the catalogues that will be extracted from,
to properly include the various selection effects one needs to account for. A second,
related issue, is the relative number of DSs and galaxy hosts. The Bayesian analysis
implemented here assumes that all DSs events are uncorrelated. This is strictly true
when each DSs is drawn from an independent realisation of the galaxy catalogue. It
is customary to assume that this hypothesis is satisfied also when a single galaxy
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catalogue is available, like in the case of real data, and the number of DS is much
lower than that of galaxies so that correlation between the DSs events can be
ignored. I shall also make this assumption since, in all cases considered, host galaxies
outnumber the DSs.

5.2 The Dark Sirens Catalogue

Once the parent catalogue is created, it is possible to generate a DS sample of
potentially observable sources, where all the relevant intrinsic properties of the DS
are specified. I will refer to this sample as the ’intrinsic DS catalogue’. The type of
intrinsic DS catalogue that is generated depends on the type of parent sample used,
of which we have two.

The first parent catalogue simply consists of a sample of objects homogeneously
distributed within a specified volume. The geometry and the number density of the
objects fully characterize this catalogue that I will refer to as the ’True Universe’.
Its corresponding ’intrinsic DS catalogue’ will also consist of a set of uniformly
distributed sources whose number density can be modulated using a Monte Carlo
rejection procedure to match any target NDS(z), if necessary. I do not specify the
intensity of these GW sources since these are assumed to be ’golden events’ that
will be detected, so that no signal-to-noise ratio needs to be computed.

The second parent catalogue used is the Flagship simulation. In this case the
intrinsic DS catalogue is generated by randomly selecting a sample of objects (the
DS hosts) with the redshift distribution given by eq. (4.6) although, as we will see,
the shape of the DSs redshift distributions does not have a strong effect on the
posterior probability. Then, one DS progenitor is associated to each of these hosts.
The progenitor is assumed to be a Black Hole binary system characterized by the
masses of the two BHs, inclination of the orbital plane with respect to the line of
sight, two angular coordinates ϕ and θ (RA and DEC), the polarisation angle ψ and
the mass ratio q. The Black hole masses M1 and M2 are drawn from the probability
distribution proposed by [99]. The inclination angle ι and the polarisation are all
drawn from a uniform distribution, since no preferential orientation is expected in
any of these cases.

Along with these two types of intrinsic DS catalogue, a companion catalogue of
potential host galaxy is also generated. In the True Universe case, the host galaxy
sample is also generated by randomly resampling the parent sample, modulated to
match a target Nh(z), if required. In the Flagship case, since the parent catalogue
is designed to mimic the Euclid spectroscopic catalogue, the parent catalogue of
galaxy host coincides with the parent sample.

Making the DS catalogue. Step 1: Spatial Distribution.

The first step to create the DS catalogue is to determine the spatial coordinates of
the DS. The same procedure is used for both the True Universe and the Flagship
parent catalogue. First, the redshift of the DS is assigned according to eq. (4.6)
using the same rate as [99]. The absolute normalization is left free. This choice
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guarantees the correct relative number density of DS as a function of redshift and
allows me to create a "master" catalogue with a very large number of DS from which
I can draw different independent DS samples. The master catalogue is split into
different redshift shells with arbitrary width.

Once the number Ni of DS in the i-th z-bin is determined, then there are two
options to assign angular coordinates. The first option simply sets the angular
coordinates of the DS equal to those of one host galaxy randomly selected from the
companion galaxy sample in the same z-bin. With this option, the DS is guaranteed
to have its host in the companion galaxy catalogue. The second option adds an
additional step. Once the galaxy host is randomly selected, the DS is placed in
its neighbourhood isotropically and at a radial distance drawn from a probability
function designed to match the small-scale galaxy-galaxy 2-point correlation function,
modelled as:

D(r) =
(
r

r0

)−1.8
; 0.1 ≤ r ≤ 10 ; r0 = 5 Mpc. (5.1)

In Fig. 5.2, the histogram shows the resulting cumulative radial distribution of DS
around host galaxies in one of our DS catalogues. The red diagonal line, drawn for
reference, shows the expected r−0.2 scaling. This second step relaxes the assumption
of the DS host being in the galaxy catalogues but preserves the spatial correlation
between DS and galaxies, which is expected since they both trace the underlying
mass distribution."

Figure 5.2. The distance distribution DS Host vs Galaxy in the catalogue. The red line is
the integral of D(r) over a spherical shell, and the histogram is the real extraction from
the catalogue. Both curves are normalised and integrate to 1.
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Making the DS catalogue. Step 2: DS masses

Having established the coordinates of the DSs, the next step is to assign to the
DS the intrinsic physical properties, such as masses, distances, and orientations, on
which the GW signal depends.

As anticipated, the inclination of the orbital plane of the DS and the polarization
angle of the GW signal are both selected from random distributions. As for the
masses of the binary members, we adopt the same probability distribution functions
as [99]. The primary mass M1 is then drawn from the following composite function,

W(M1) ∝


M−1.5

1 5 ≤ M1 ≤ 40
M−5

1 40 ≤ M1 ≤ 80
0 80 ≤ M1 ≤ 120
1/M1 120 ≤ M! ≤ 104 ,

(5.2)

where the mass M1 is expressed in units of M⊙. This phenomenological probability
function is a multi-broken power law with no discontinuity except at the mass gap
80 ≤ M1 ≤ 120. Fig. 5.3 compares the mass function in one of the DS catalogues
used in this Thesis (blue histogram) with the expected shape from eq. (5.2). The
function, represented in logarithmic unit, spans several order of magnitudes. Despite
the discreteness effects due to the paucity of objects which is evident in the high-mass
tail the distribution matches theoretical expectations, as shown in the high mass
tail zoom in of Fig. 5.4

The probability distribution of the q parameter is

P (q) ∝

 1
q M1 ≤ 80
√
q 120 ≤ M1 ≤ 104 (5.3)

with q between 0.1 and 1 and the masses expressed in M⊙ As described in [99]
a cut-off is imposed on the secondary masses. Since the DSs are BHs pairs, the
minimum secondary mass is set to 5M⊙

1. This cut-oof modify the shape of the
probability distribution, making the probability flat for low values of the mass ratio.
Since low mass BHs are more numerous, the mass ratio distribution is dominated
by the 1/q behaviour. In Fig. 5.5 the distribution for q is shown both in linear and
double-log scale.

Making the DS catalogue. Step 3: From the Intrinsic to the Observed
DS Catalogue.

The final step in the procedure involves ’observing’ the intrinsic DSs sample using a
specified GWs detector. In the current CODE pipeline implementation, an ET-like
network comprising uncorrelated interferometers is considered. I have also included
the aLIGO instrument for testing purpose only.

1If qM1 < 5, then a new q is extracted until the secondary masses are equal o greater than the
cut-off
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Figure 5.3. The primary mass probability distribution for the DS. The red line is W(m1)
and the histogram is the real extraction from the catalogue. Both curves have the area
normalised to 1.

The antenna pattern is described by equation (3.18), and the total signal-to-noise
ratio is given by the squared sum of the individual antenna SNRs (see equation
3.19). I have also considered, for testing purpose only, the case of the LIGO
To validate this step, we have run a specific test aimed at matching the results
of [100], i.e. at reproducing the same efficiency curves for the aLIGO and ET-D
interferometers. These curves have been obtained assuming a N BBH systems with
a specified total mass, sky location, redshift, inclination angle and polarisation angle
(both randomly oriented) and using only the + part of the GW signal. The efficiency
is estimated in various redshift bins as the ratio between the number of detected
DSs over the total one. The results obtained with my code matches well those in
the literature, showing that the routine for evaluating the SNR is unbiased. This is
especially true for aLIGO.
2 The end product of the pipeline is a mock catalogue of DS, that mimics the results
of an observational campaign conducted with the ET. I conclude this section by
reaffirming the utilisation of both the extrinsic and intrinsic catalogues. Given
the intrinsic catalogue, that is, the compendium of sources that Nature offers to
us. A particular instrument, specifically ET, is now selected. Subsequently, the
SNR is computed, resulting in the distribution of the observed DS. This juncture is
the sole instance within the pipeline where orbital parameters are utilised. With

2This is significant as it is a well known instrument, while there are no real data for the ET case.
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Figure 5.4. The primary mass probability distribution for the DS. The red line is W(m)
and the histogram is the real extraction from the catalogue. This figure focuses on the
high mass region of the distribution.

the SNR computed for all possible DS, it becomes possible to select subsamples
possessing some desired characteristics; in this case, golden-events. In essence, the
final outcomes of this thesis are derived from a distribution of ’observed’ DS, and
observing them necessitates the assignment of all necessary parameters to compute
the signal-to-noise ratio.

5.3 Making the Host Galaxy Catalogues

Three main types of parent datasets were used to select the catalogue of galaxy hosts.
The first one, which I have introduced previously, is the so-called True-Universe.
It consists of a set of objects randomly distributed with a constant mean density
within a given comoving volume.
The second type of host galaxy catalogue is obtained by selecting a subset of
objects from the True-Universe catalogue with no angular modulation but a redshift
distribution N(z) matching that of the Flagship sample. Finally, the third type of
host galaxy catalogue is the Flagship sample itself. Unlike the first two samples,
whose objects have no intrinsic clustering, host galaxies in the Flagship have their
characteristic spatial correlation properties. The first two catalogues were utilised
for testing purposes. Characterised by a uniform distribution of hosts, they represent
the worst-case scenario for inferring H0, as the absence of cross-correlation between
DSs and hosts broadens the posterior distribution.
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(a) (b)

Figure 5.5. Probability distribution for the q parameter as described in [99]. The minimum
secondary mass is set to 5M⊙. In panel (a), the distribution is double-log scale, while
linear in panel (b).

To comprehend how cross-correlation influences the posterior, let’s examine the
scenario of an infinitely dense and wide, homogeneous distribution of hosts. In this
case, the posterior distribution would be flat, since for each values of H0, there will
always be a host with a zα such that the exponent in eq. (4.46) is zero. The picture
gets more complicated if the sample is not infinite, i.e. for some value of H0 there
are no zα that are root of the exponent. In this case, the posterior will not be totally
flat, but will have a maximum, although less informative than the non infinitely
dense scenario.
Spatial correlation between DSs and hosts, along with auto-correlations of hosts,
sharpens the peak of the posterior. This is because it enhances the probability of
finding a likely host in a region of increased galaxy density for the correct value of
H0. While this may not hold true for a single DS, combining multiple DS events
results in a sharpening of the posterior’s peak centred on the exact H0 value.
This effect persists even when the galaxy host is not explicitly included in the host
catalogue. There will likely be a galaxy in that sample spatially correlated with the
missing host, contributing to the overall sharpening of the posterior distribution.

5.4 Estimating the Likelihood

The global likelihood of the DS distance given H0 should be estimated by integrating
the likelihood of each DS over a volume encompassing the full catalogue of hosts.
Assuming Gaussian likelihood and negligible errors on the measured redshift of the
host, the result is a sum of error functions centred on all objects in the host catalogue,
as given by eq. 4.46. However, summing over millions of objects is computationally
challenging and unnecessary. This is because the contribution of objects, which
in fact constitute the majority, that are far from the DS location is exponentially
suppressed.

Therefore, a more computationally efficient approach can be employed by focusing
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Figure 5.6. The efficiency for aLIGO and ET-D in blue and green respectively. The aLIGO
network includes only the two LIGO interferometers with the advanced noise figure. A
DS is detected if ρtot ≥ 8. The mass refers to the total mass in the SFR.

on the relevant subset of host objects that are close to the DS location, where the
contribution to the likelihood is significant, thus avoiding unnecessary computational
burden. This is achieved by defining, for each DS, a "searching cone"3. Given
the measured position of the DS, which does not depend on H0, the summation
is restricted to those hosts located within a truncated cone centred on the DS.
The cone’s size is determined by requiring the angular coordinates and estimated
luminosity distance (a H0-dependent quantity) to be within 3.5σ from the DS, where
σ represents the uncertainty on the DS-measured angular coordinates and distance.

In other words, given the spatial coordinates of the i-th DS, (Dli, θi, ϕi), measured
with Gaussian uncertainties (σDl, σθ, σϕ), the summation is performed only over
those host galaxies located within the cone (Dli ± 3.5σDli , θi ± 3.5σθ,i, ϕi ± 3.5σϕ,i).
The dependence of the host’s estimated distance Dl(z,H0) on the Hubble constant
has the potential to extend the size of the searching cone beyond the boundaries of
the host catalogue along the radial direction. In most applications and tests, the
DSs sample is selected in such a way that the searching cone remains within the
boundaries of the host catalogue for all H0 values allowed by the prior.

It is worth noticing that, in the current implementation of the pipeline, all
uncertainties are assumed to be Gaussian, whereas the angular error box of the GW
events actually observed is more irregular. It will not be a difficult task to include
a specific module in the pipeline that defines a 99 % probability area of specified
shape around the DS event, which I plan to do for more realistic ET forecast once a
stable design of the interferometer will be adopted.

3Also "search box" or "research box" or simply box.
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In the likelihood expression, eq. (4.13), σi represents the uncertainty on the
assumed DS distance Dl(z,H0), while in the following tests the DSs sample will
be characterised by the relative errors in the measured distance. It is important
to clarify that DSs are not placed on top of a host galaxy. Instead, a Gaussian
scatter both in the radial and angular direction has been applied to determine the
location of the DS around the host. This procedure mimics and accounts for the
observational error in estimating the spatial location of the DS.

5.5 Testing the Pipeline: Robustness tests.

The purpose of this section is to validate the pipeline, and for this, several sanity
checks and robustness tests have been designed and executed. The catalogues of
galaxy hosts and DS were both extracted from the same uniform parent catalogue
of unclustered objects.

The host catalogue is characterised by being both wide and deep, with ϕ ∈ [0, π/2],
θ ∈ [0, π/2] and z ∈ [0.05, 2.5], but intentionally sparse with O(3 × 106) objects.
The sparsity is chosen to alleviate computational burden, resulting in a posterior
distribution that is noisy rather than smooth. It’s important to note that the
presence of Poisson noise in the posterior distribution does not impact the results of
these tests.

Throughout these tests, the "searching cone" associated with each DS is carefully
maintained within the boundaries of the host sample, ensuring a controlled experi-
mental environment. The outcomes of these tests serve to verify the robustness and
reliability of the analysis pipeline.

In all of this work, the prior on H0 is always chosen flat between 55 Km/s/Mpc
and 85 Km/s/Mpc for the robustness test. The prior is still assumed flat afterwards
in Sec.5.6, with lower and upper boundaries of 60 Km/s/Mpc and 76 Km/s/Mpc
respectively.

5.5.1 Robustness to sample selection effects

Galaxy host catalogues, including the Euclid spectroscopic one, are inherently
incomplete due to selection effects introduced during the observation process. Most
galaxy samples are flux-limited, meaning they only include objects whose apparent
luminosity is above the detection threshold. This selection criterion alters the number
density of objects, causing it to decrease with the distance (and redshift) of the
sources, resulting in a redshift distribution N(z) different from the intrinsic one.

This modulation has the potential to affect Bayesian inference by introducing
a spurious z-dependence in the likelihood analysis. As illustrated in the previous
chapter, to correct for this effect, a set of z-dependent statistical weights ω(z) is
introduced to restore a constant number density in the host sample.

While these weights effectively eliminate the potential bias induced by observa-
tional selection, it’s important to note that they do not reduce the Poisson noise,
which is amplified by having selected a subset of potential hosts.
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To assess the effect and confirm that the introduction of these weights effectively
eliminates bias, I conducted a simple robustness test. This involved comparing the
results of two analyses using the same set of DSs, both extracted from a uniformly
distributed parent sample.

In the first case, the host catalogue is also uniformly distributed with a constant
comoving density, mimicking the scenario of an ideal, volume-limited sample. In the
second case, a subsample of hosts is considered. It is also uniformly distributed but
has a z-modulated number density, reflecting a non-monotonic N(z) characteristic
of a flux-limited galaxy sample.

In this second case, the statistical weights are computed in z-bins as the ratio
between the number of galaxies in the flux-limited and volume-limited catalogues.
This comparison helps evaluate the impact of observational selection effects and the
effectiveness of the introduced weights in mitigating bias.

The results, obtained for the same catalogue of 150 mock Ds, are shown in Fig. 5.7.
The figure shows how the two results are not only compatible with each other but
also with the true value of H0. This finding confirms that the correction introduced
does not induce a bias in the posterior, and that the weight strategy is correct
and properly implemented. Before proceeding with the rest of the presentation, it

Figure 5.7. The posterior for the cross-correlation with CODE of an ensemble of 150
DSs correlated with a uniform Universe, teal curve, and in green the same set of DSs
cross-correlated with a catalogue extracted from the uniform one with a given N(z).

is useful to discuss Fig. 5.7, especially in light of the subsequent "Uniform-Wide"
implementations. As shown, for example, in Fig. 5.8, the uniform implementation is
less informative compared to the weighted one, which a priori represents a subsample.
Although the results are compatible within one sigma, it is appropriate to comment
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on this outcome.
As evident from the comparison with other subsequent uniform implementations,
represented by the blue curves, uniform runs generally do not exhibit bias. However,
a more detailed analysis has revealed that, due to mere statistical fluctuation, the
DS have been scattered in such a way that the mode of the sample is higher than the
mode of the non-scattered sample. By inverting the Hubble’s law, we understand
that this favours lower values of the Hubble constant compared to those under
examination.

5.5.2 Robustness to the choice of the galaxy host sample

Ideally, the results of the analysis should not depend on the relative size and possible
overlap between the sample of hosts and that of DS. To assess this, a series of tests
have been conducted. In the first test, which is outlined in this section, the DS
catalogue is kept fixed, and the volume of the host sample is varied.

The reference DS catalogue includes 150 objects uniformly distributed over a
sky octant. It lists the luminosity distance and the angular position of each event.
Distances are assumed to be measured with 10% relative error. Angular positions
have the same uncertainty quantified by a 2D Gaussian probability with a radius
such that Ω90 = 10 deg2 A reference ’true’ value of H0 = 67 Km/s/Mpc is assumed to
perform the analysis. The DSs span a Dl range between 2257.3 Mpc to 9875.11 Mpc.

To conduct the test, I have utilised various samples of host galaxies. These hosts
are uniformly distributed over the same octant as the DS but span different redshift
intervals, with each interval becoming progressively smaller in size. This variation in
the size of the redshift intervals allows for a systematic examination of the impact
of the DS sample’s volume on the analysis results. The largest sample, used as a
reference and referred to as Uniform-Wide, spans the redshift range 0.05 ≤ z ≤ 2.5.
This reference sample serves as a baseline for comparison. The resulting posterior
probability distribution for H0 obtained in this case is shown in Figure 5.8 with a
continuous teal curve.

Following that, I systematically reduced the redshift range of the host sample,
resulting in the creation of the Uniform-CUT00 catalogue (0.1 ≤ z ≤ 2, green
continuous curve), the Uniform-CUT01 catalogue (0.2 ≤ z ≤ 1.8, orange dashed
line), and the Uniform-CUT02 catalogue (0.3 ≤ z ≤ 1.6, dotted dark-red). The
posterior distributions obtained from the analysis of the first three samples (Uniform-
CUT00, Uniform-CUT01, and Uniform-CUT02 ) are almost superimposed on each
other and peak in correspondence to the expected H0 value. However, when the
smallest host catalogue is used in the analysis, the peak of the posterior is slightly
offset, resulting in a small underestimate of H0. While in principle, if the host
catalogue fully covers the research cone, there is no reason to think that there will
be a bias, things have to be proven, and we make this test more to check the health
of the code.

The observed mismatch, while statistically limited in significance, may be at-
tributed to the fact that, in this case, for certain choices of H0, the searching cone of
some DS hosts is not fully contained within the volume of the host sample. Further
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investigations seam to support this. Since the code was then updated and the
deviation is not so significant, the test still proves the point4.

Figure 5.8. All the posteriors for the fixed DSs in the distance range between 2257.3 Mpc
and 9875.11 Mpc. In teal the posterior for the Uniform-Wide hosts catalogue, in green,
the distribution for the Uniform-CUT00 catalogue, the orange dashed line refers to the
posterior in the Uniform-CUT01 case and the Uniform-CUT02 results are shown via
the dotted dark-red curve. Only the Uniform-CUT02 case differ from the others.

5.5.3 Robustness to the choice of the DS sample

In this new test, the DS sample is changed while maintaining the Uniform-Wide
sample as the host galaxy catalogue for each run. The reference DS sample used in
this test, spanning a range in luminosity distance equal to (6827.4; 15978.6) Mpc,
is the same as in the previous section, resulting in the same posterior curve (teal
continuous curve in Fig 5.9 as the one seen in Fig. 5.8).

We considered three more DS samples. They all share the same sky area and have
the same distance and angular position errors. What changes is the range of radial
distance spanned by the objects bin the catalogues, namely: (2257.3, 9875.1) Mpc
for the sample dubbed DS-CUT00, (3660.3, 11239.4) Mpc for the sample dubbed
DS-CUT01 and (6827.4, 15978.6) for the sample dubbed DS-CUT01. The number
of DS in not the same in all catalogues. The number density is.

The results depicted in Fig 5.9 indicate that the four posterior distributions
agree with each other. The most discrepant curve is that of the DS-CUT00 sample.
However, its displacement with respect to the reference case is hardly significant.

4The code changed after this run, with a more strict control over the selection of DSs.
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The difference in the position of the peaks of the curves falls well within the standard
deviation of these curves, σ ∼ 3.40 Km/s/Mpc, as estimated from their variance.
Since this test was performed after some improvement of CODE, the search cone is
now always contained in the host catalogue.

As expected, no significant dependence of H0 on the spatial location of the DS
sample

Figure 5.9. All posteriors for the fixed host case, named after the DSs catalogues. In
teal, the reference curve, the same as in Fig. 5.8. The dot-dashed green line for the
DS-CUT00 case. In orange, the posterior for the catalogue DS-CUT01, and finally in
dark red the DS-CUT02 curve. All the curves are compatible with the reference value
H0 = 67 Km/s/Mpc. The curves are compatible within each other.

5.5.4 Robustness to the redshift distribution of the host galaxies

The focus now shifts to changing the host selection function N(z). These tests not
only provide insights into the robustness when varying the distribution of the hosts
but also serve as further evidence that the strategy of statistical weights is effective.

A new run with the Uniform-Wide catalogue is used as a reference, with a change
in the sample of DSs. It is important to note that with the introduction of the
selection function, the presence of the galaxy associated with the i-th DS in the
host catalogue is no longer certain since the extracted catalogue posses ∼ 33% of
Uniform-Wide hosts.

To obtain the new catalogue, a Monte Carlo rejection is performed. Given the
chosen N(z), the total number of hosts is set and an ensemble of redshift are drawn
following the selection function. The next step is then to bin those ensembles and
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then, for each bin, extract from Uniform-Wide Ni hosts, where Ni is the absolute
number of hosts in the i-th bin. It was ensured that each bin of Uniform-Wide
contains more objects than the same bin for the selected N(z), thus avoiding double
extractions due to missing possible entries.
The two selected selection functions resemble the functional form of the flagship,
expressed as

N(z) = zαe
zβ

γ . (5.4)

Two N(z) are tested: Nz00 and Nz01, defined by α = 2, β = 1, γ = 0.5 and α = 2,
β = 1.82, γ = 1. Both sets of parameters are chosen so that the respective N(z)
peaks between z = 0.9 and z = 1.1, as visible in Fig. 5.10 to mimic the expected
Euclid spectroscopic survey behaviour. The test indicates that CODE is not overly

Figure 5.10. Comparison between the two selection functions, in teal Nz00 and in green
Nz01. Both curves are normalised so that the total area is 1.

sensitive to the selection function of the hosts, see Fig. 5.11. Due to selection effects,
the actual host galaxy of the DS may not be included in the galaxy catalogue.
However, as highlighted in several studies [109, 6, 103], the presence of the host
galaxy in the catalogue is not essential for effective Bayesian analysis, provided that
the selection function of the catalogue is known and there is a physical correlation
between the galaxies and the missing host. In fact, if the galaxies in the catalogue
were not physically correlated with the DS, the uncertainty in the estimation of the
Hubble constant would be influenced by two competing factors: the mean separation
between galaxies and the uncertainty in the distance of the DS. If the former were
smaller than the latter, the DS could be associated with any galaxy within the DS
uncertainty volume, leading to an error in the measured DS distance propagating into
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Figure 5.11. This figure shows all the posteriors for the N(z) robustness test. In teal,
the reference for the Uniform-Wide case. The dotted orange line refers to the Nz01
catalogue, while the green dot-dashed curve refers to the nz00 case. Both curves are
compatible with the reference and have standard deviations of σ00 = 3.74 and σ01 = 3.65
for Nz00 and Nz01 respectively.

that of H0. Conversely, if the error in the DS distance were smaller than the mean
galaxy separation, the DS might be associated with galaxies outside the uncertainty
volume, resulting in a systematic error in H0. The existence of a physical correlation
between the missing host and the observed galaxies helps mitigate both types of
errors by increasing the number of observed DSs.

While the run with the Nz00 selection function may seam slightly off, the
standard deviations of the posteriors are similar with numerical values σ00 = 3.74
and σ01 = 3.65 for Nz00 and Nz01 respectively. The explanation for the lower
standard deviation reads as follows. The DSs are common to both runs and have
been extracted from the Uniform-Wide catalogue. Since the Uniform-Wide catalogue
has an increasing number of possible DSs with distance, the selection function with
the largest peak in z will have a higher chance of containing the true host.This is
because, in that region, it will be more populated and therefore, a higher probability
of containing the right host. This explains the slight improvement in the standard
deviation of run nz01.
It must be addressed why in this realisation the teal curve, the uniform case, is more
informative than in the previous runs. Again is a matter of statistic, that will be
completely removed once we move to the forecast section since the number of DSs
increase. If we consider the difference between the scattered distance of the DS and
the true luminosity distance, we can then look at the dispersion of the scattered
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sources. For this realisation, the sources were scattered particularly close to the real
position. to give some numbers, no source was scattered more than 2σ apart from
the real position, resulting in a particular informative run.

5.5.5 Robustness to the radial distribution of the DS

This test aims to determine whether a non-uniform distribution of sources, hence
modulated by a certain distribution function N(Dl), can influence the determination
of H0. The reason why, at least in our case, a dependence on the source distribution
is not expected is that the selection process remains Poissonian. Given a host
distribution, a DS is randomly associated with a host. If it is assumed that the DSs
are now distributed according to an N(Dl) and then sampled, still using a Monte
Carlo, the only effect will be to have more sources for a certain range of distances.
This does not introduce a bias because the likelihood for H0, L(H0|Dl) remains the
same. Correction for any deviations from a uniform distribution must therefore be
compensated at the host level, as described in the previous section, through the
introduction of the statistical weights ω(z).
This sampling method avoids the problem of "double counting" addressed in [103].
The issue arises when sources are extracted from a host sample with a certain
selection function, themselves with their distribution function, and not through
sampling. For example, if a sample of galaxies has a N(z) ∼ 1/z2 and a DS host
assignment probability P ∼ 1/z2 is imposed, the resulting source population will
have a distribution of the type z4. If, instead, the initial host population is directly
sampled, the DSs will follow the same distribution.
The selected N(Dl) is defined over the region Dl ∈ [Dlmin, Dlmax] with Dlmin =
6800 Mpc and Dlmin = 11000 Mpc as follows,

N(Dl) =
(
Dl

p

)α

e
(

Dl
p

)β

, (5.5)

with α = β = 2 and the pivot p = (Dlmax +Dlmin)/2.

The test is then conducted with the following setup: a control run on the
Uniform-Wide catalogue, again with 150 DSs extracted from the uniform catalogue.
A sub-catalogue of DSs is then extracted from the uniform one, having the distribution
function N(Dl) defined in eq. (5.5). The results of the analysis are visible in Fig. 5.12.
In teal, the uniform run can be seen, while the dot-dashed green curve refers to the
run in which the DSs are extracted according to N(Dl). As can be seen in Fig. 5.12,
the two posteriors are very similar, even in terms of standard deviation, which is
σ ∼ 4 Km/s/Mpc. This test has thus demonstrated two important properties. The
first is that the DSs selection method implemented does not introduce bias and
avoids the problem of double counting. The second property demonstrated is that it
will be possible to sample DSs from the flagship without having to introduce any
compensation.
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Figure 5.12. Comparison between posteriors for the run with the DSs following the N(Dl)
in eq. (5.5) in green and a reference case in teal. The number of DSs is in both case 150
and the hosts catalogue is always Uniform-Wide.

5.6 Forecasting

In this section, I apply the validated pipeline, as demonstrated in the tests presented
in the previous sections and Chapter 4, to a more realistic scenario involving a DS
catalogue from a GW observational campaign conducted with the next-generation
interferometer ET. This is correlated with a catalogue of potential galaxy hosts
designed to mimic that of the Euclid spectroscopic redshift survey.

While the primary goal of this section is to operate the CODE pipeline on a
more realistic dataset to showcase its potential for future applications, I will also
address the question: "How well will we be able to estimate H0 from a large sample
of dark structures at moderate redshift, taking advantage of the availability of wide
and deep galaxy surveys covering an unprecedented volume of our Universe?"

I will approach this problem by steps of increasing complexity using increasingly
realistic datasets.

The simplest one is an ideal sample, referred to as Uniform-ideal. This catalogue
consists of unclustered objects with a constant number density equal to that of the
galaxies in the redshift bin z = [0.9; 1.1].in the simulated Flagship spectroscopic
galaxy catalogue. It covers an octant of the sky and a redshift range z = [0.79, 2]
containing 7 · 106 objects.

The second, more realistic sample, also consists of a set of unclustered objects
distributed over the same octant and over the same redshift range but with a
radial distribution matching the N(z) measured in the Flagship spectroscopic galaxy
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catalogue. This catalogue is dubbed Uniform-Flagship. Finally, I will also consider
the Flagship true catalogue itself, containing a set of clustered, H − α line emitting
objects above the expected Euclid detection threshold. I will refer to this catalogue
as True-flagship.

Several sets of DSs will be considered along with the host catalogues. The
reference simulated dark sirens catalogue consists of a collection of ET "golden
events" characterised by objects whose distance has been estimated with a 10%
uncertainty and angular coordinates determined within a 90% uncertainty area of
Ω90 = 10 deg2. Both uncertainties are assumed to be Gaussian.

The location of these DS has been determined by randomly choosing a host
galaxy in the host parent sample, which can either be the Uniform-ideal sample
or the spectroscopic flagship catalogue itself, and then applying Gaussian random
scatter, both in the radial direction and on the sky, to the host.

For this reason, when considering the Uniform-Flagship host catalogue, the DS
used in the likelihood analyses may not have their true host in the sample. This
highlights the inherent uncertainty in associating DS with specific host galaxies,
especially when using a galaxy catalogue that may not include all potential hosts.

5.6.1 Sensitivity to the DS angular position uncertainties

Reducing the uncertainty in the angular position of the dark sirens, Ω90, is expected
to narrow the posterior on H0 [81]. The sensitivity of the H0 estimate to the
uncertainty Ω90 is indeed large for nearby DS, where the number of potential hosts
within the uncertainty box is relatively small. However, for DS located at moderate
redshifts, such as those considered here, the volume of the uncertainty box is large
and contains a correspondingly larger number of potential hosts. As a result, the
sensitivity to Ω90 is expected to be weaker.

To test this hypothesis, I have generated a sample of 300 DS extracted from
the Uniform-ideal catalogue, "observed" with four different angular resolutions:
Ω90 = 5 deg2, 10 deg2, and 20 deg2. their parent hosts are located well within the
sky octant to ensure that the 10 σ angular uncertainty box associated with each
dark siren does not extend beyond the octant’s boundaries. The results are shown
in Fig. 5.13.

The result of this test, shown if Fig. 5.13, demonstrate that the width of the
posterior increases when the uncertainty in the DS angular position increases, as
expected. The magnitude of the effect, however, is smaller than the one measured
in the Bayesian analysis of simulated data mimicking LIGO-Virgo-KAGRA O4 and
O5 observations of [9]. The reason of the mismatch is probably due to the fact that,
in my analysis, I have ignored any correlation between the relative uncertainty of
the luminosity distance and the sky location area of the DS. Such correlation is
expected to be present, since both uncertainties correlate with the SNR of the event,
as proven in figure 3 of [9]. Although in [9] the correlation is clear, one can see that
in figure 3 of [9], for the range of uncertainties explored in this work, σDl ∼ 5 − 10%
the correlation can be omitted, since the spread of the points. It is true that this
approximation must be overcome to obtain more realistic and robust results, as done
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in codes already mentioned. For a golden DSs sample obtained from an ET-like
observational campaign, the correlation tightens and should not be ignored and will
be explicitly included in the next release of my pipeline. Having ignored correlations,
the number of potential hosts in the tests of Figure Fig. 5.13 increases linearly with
the size of the sky location area, being ∼ 11000 for Ω90 = 5 deg2.

This high average number of hosts is due to the fact that we are moving to
medium-high redshifts, and that if we assume that galaxies are uniformly distributed
in volume, then the number of hosts grows as the volume. A more in-depth study
taking into account the correlation between the variables at play at these redshifts
is underway.

Figure 5.13. This picture shows all the posterior for the tested Ω90. In teal, the reference run
with Ω90 = 10 deg2, the dash-dotted green line shows the posterior for the Ω90 = 5 deg2

case while the orange curves represent the results for Ω90 = 20 deg2. The DSs are drawn
from the Uniform-ideal catalogue.

5.6.2 Sensitivity to the uncertainty in the DS Luminosity Distance

Having confirmed that the results are weakly insensitive to the error in the angular
position of the DS, as long as these are kept within the range Ω90 = [5, 20] deg2, the
focus is shifted toward the errors in the luminosity distance, σDL.

We anticipate that the impact of σDL on the precision in the estimate of H0 is
more significant than that of Ω90 This is because doubling the error in the angular
position increases the size of the error box by a factor of two, whereas doubling the
error on the luminosity distance increases the volume of the error box by a larger
factor, depending on the size of the error.
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One issue arise when performing this test. The first one concerns the radial
boundaries of the host sample. The size of the searching box associated with a DS de-
pends on the assumed value of H0 and on the amplitude of σDL. For a given H0 value,
only DS within the observed luminosity distance range DL(zmin, H0), DL(zmax, H0),
where zmin and zmax are the minimum and maximum redshifts of the galaxies in
the host catalogue, are located within the volume of the galaxy sample.

Since the likelihood analysis spans a range of H0 values set by a flat prior on this
parameter, only a limited number of DS are guaranteed to be in the host volume
for all the H0 values considered. The larger the error on the observed distance, the
smaller the volume of the DS sample fully embedded in the host catalogue. There
will be a value of σDL above which no DS sample is fully contained in the host
galaxy catalogue for all the H0 values.

It turns out that for relative errors of σDl = 20% of the observed luminosity
distance, no DS sample is fully contained within the mock galaxy catalogue. As a
result, we need to correct for the boundary effects in the likelihood analysis. This
involves accounting for the fact that, above or below certain H0 values, DS may fall
outside the boundaries of the galaxy sample.

To address this issue, we need to implement a correction procedure in the
likelihood analysis that, as described in the previous chapter, consist in properly
modelling the β(H0) normalisation term. The new β function is the one proposed in
eq. (4.39) and the definitions in eq. (4.40) and eq. (4.41). When the research area is
fully embedded, beta is described in eq. (4.28). The first step is to determine the
extent to which the borders can be exceeded. A preliminary test is conducted with
σDl = 20% to check for any bias. It is noted that to perform these tests, the samples
of DSs must differ, as different values of σDl require different scattering. A set of
300 DSs, extracted from the Uniform-ideal catalogue and cross-correlated with the
Uniform-Flagship one, is now tested.

As demonstrated by Fig. 5.14, there is no bias on H0, indicating that the
correction to beta does not introduce such an effect. However, the belief that the
correction is not normalising the posterior correctly persists. Although it is true that
the two runs involve different sets of DSs, and the 20% run might simply have been
a ’lucky’ one, this conclusion is not entirely convincing. Additional realisations at
20% have been conducted: none show a systematic bias, but all are similar in height,
thus compatible with the 10% run. Given the unlikelihood of each realisation of the
DSs having particularly small scattering despite the greater standard deviation, it is
concluded that the method implemented is not sufficient to correct for edge effects
once such uncertainties are reached.

For cross-correlation purposes, this limitation is not overly significant, considering
the number of gold events expected to be detected by ET. However, it is deemed
appropriate to further investigate this aspect, in a manner similar to that addressed
in [103], despite the differences in the physical interpretation of the quantities.
Correcting for edge effects opens the possibility of cross-correlating using the entire
host catalogue, thereby increasing the number of DSs admitted in the analysis,
especially in high-redshift catalogues, where a slight increase in distance implies a
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Figure 5.14. The reference posterior in teal and the σDl = 20% case in green. Both runs
have 300 DSs cross correlated over the Uniform-Flagship catalogue.

large increase in volume.

Subsequently, it is verified that for a 15% uncertainty, the modification to the
β function yields the expected results. As observed in Fig. 5.15, the correction
appears to be functioning effectively. The curve with the greater uncertainty is
wider compared to the reference one, and as definitive proof, a second run with
σDl = 15% without the correction was launched for comparison. Fig. 5.16 confirms
the improvement of the posterior with the correction outlined in chapter four, at
least for this category of events.

The analysis then continues to examine how the posterior changes with varying
σDl values at 1%, 5%, 10% (the reference), and 15%. As demonstrated by Fig. 5.17,
σDL is the parameter that predominantly governs the quality of the posterior. The
precision leap in the 1% run is such that it renders the other posteriors off-scale.
To better appreciate the variation between 10% and 5%, the run at 1% is omitted
in the subsequent plot. It is observed that the increase in precision is not linear.
While there is a gain in precision between the 15% and 10% cases, reducing the
uncertainty by another 5% leads to sufficiently narrow posteriors after 300 events.
It should be noted, as shown in Fig(3.7), that within the Euclid survey footprint,
ET expects between 1000 and 2000 events in 5 years of observations, making the 5%
case not just a Utopian idea, but a concrete reality.
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Figure 5.15. The reference posterior in teal and the σDl = 15% case in green. Both runs
involve 300 DSs cross-correlated over the Uniform-Flagship catalogue.

5.6.3 Dependence on the number of dark sirens.

When dealing with transient events like dark sirens, one of the critical questions to
address is how many events have to be observed to achieve a target accuracy on the
relevant physical quantity one wants to measure. This requirement ultimately sets
the lifetime of the experiment, considering factors such as the event rate, detector
sensitivity, and duty cycle of the apparatus.

Our target quantity in this case is H0, the Hubble constant. Therefore, in this
section, I will address a closely related question: is there a well-defined scaling of
the H0 uncertainty, σH0 , with the number of detected DS, N? To investigate this, I
consider "golden events," of which I am considering 4000, and perform the likelihood
analysis using progressively larger sets of DS. I start from the first 100 sources,
adding 100 more in each subsequent analysis. All the DS are contained in a volume
fully embedded within that of the galaxy host, and both are extracted from the
Uniform Flagship catalogue.

The results are shown in Fig. 5.19, where the coloured curves represent the
evolution of the posterior distribution as the number of DS increases. Starting from
the flatter, blue curve obtained with the poorest DS samples, the curves become
more and more peaked (green to yellow to red), ending up with a quasi-Gaussian
shape (darkest shade of red).

The width of the curves, and thus the uncertainty on H0, decreases with N , as
expected. Since the DS are selected in the same volume, there is no sample variance,
and the only contribution to the error budget is shot noise. This shot noise, because
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Figure 5.16. The corrected posterior in teal and the σDl = 15% uncorrected case in green.
Both runs involve 300 DSs cross-correlated over the Uniform-Flagship catalogue. The
teal posterior is similar to the green one in Fig. 5.15 but appears flat due to scale.

of the uniformity of the sample, should be purely Poissonian.
To verify this hypothesis, I plot in Fig. 5.20 the variance of each posterior curve

in Fig. 5.19 as a function of the number of events (teal dots) and compare it with
the expected Poisson noise σP = H0/

√
(N).

The expected Poisson scaling is indeed found in the large N limit (the curve
that best fits the data for N > 3000 is ∝ N−0.44 ) whereas for small DS samples the
dependence is steeper, reflecting the fact that the corresponding posterior curves are
highly non-Gaussian for small N values.

To check if the accuracy in the estimate of H0 depends on N Fig. 5.21. These
results indicate that a 2% precision, comparable with that obtained with the best
available H0 probes, can be achieved by observing approximately 1500 dark sirens
once we correlate them with the spatial positions of galaxies in a Euclid-like survey.
One may suspect that using an ideal sample has led to overly optimistic predictions.
However, I argue that this may not be the case, as in this test I am ignoring the
fact that both dark sirens and hosts correlate with the underlying mass density
distribution, and for this reason, are auto- and cross-correlated with each other.

I will show in the next section that the presence of this correlation further
reduces the H0 uncertainties, providing additional evidence for the effectiveness of
the proposed methodology.

Another aspect to investigate is the relationship between the number of sources
and the width of the posterior. For this purpose, a run with a deliberately inflated
number of sources is conducted. Given the large pool of potential DSs, each event is
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Figure 5.17. The collection of all posteriors for the σDl runs. The number of DSs is 300
and the host catalogue is Uniform-Flagship

considered isolated and uncorrelated with others, aligning with the initial assumption
of the formalism in use.

A run is performed with a number N of DSs equal to 4000. Due to the indepen-
dence of individual events, it is possible to divide this run into a series of subsets
of events Sn, such that if the set S2 has N2 events with N2 > N1, then all events
present in the set S1 will be present in S2 and so forth.

For this test, events with σDL = 10%, and Ω90 = 10 deg2 are used as sample
events. The events are arranged such that the research box is entirely contained
in the catalogue, for every value of H0 tested, and are cross-correlated with the
Uniform-Flagship catalogue. The result of this test is depicted in Fig. 5.19.

Considering that independent events are being studied, it is reasonable to hypoth-
esise that the uncertainty evolves proportionally to 1/

√
N . Although the standard

deviation in Fig. 5.20 decreases as 1/Nα, with 0 < α < 1, this observation does
not align with the initial hypothesis. This discrepancy suggests that either the
events are not entirely independent, or that, since in H0 the curves are not purely
Gaussian, the 1/

√
N behaviour only applies when the posteriors are narrow and

their non-Gaussianity becomes negligible.
Concerning the independence of the events, an initial study in [103] concluded

that the effect of non-independence plays a minor role in the magnitude of the
uncertainty on H0. Therefore, the deviation from the expected behaviour is more
likely attributable to non-Gaussianity. In principle, the posterior is not a Gaussian
curve in H0, but for small σ, the posterior can be approximated as Gaussian. By
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Figure 5.18. The collection of all posteriors for the σDl runs. The number of DSs is
300 and the host catalogue is Uniform-Flagship. The run at 1% is omitted to better
appreciate the variation between 10% and 5%.

selecting only the runs with N > 3000 and performing a fit of the type y = 67/xm,
a value of m ∼ 0.47 is obtained, approaching the expected value of 0.5. This is also
visible since from the tail of the σ Vs N curve in Fig. 5.20, since they almost lay on
the curve.

The analysis now continues, showing in Fig. 5.21, how the mean, µ, of the
posterior evolves with N . The figure clearly illustrates how the information builds
up and the uncertainty reduce with an increasing number of DSs.
Given the shape of the posterior of each subset in Fig. 5.19, it is clear that, at least

once the posterior is more bell shaped, the peak of the distribution and the mean
are close, so the evolution of the peak is not showed.

In all these tests, and in what follows, it is always ensured that the research area
is well contained within the catalogue to avoid this type of bias. This constraint
is not an obstacle when calibrating a pipeline with synthetic data; however, in a
real-world application, it may be detrimental as it might result in the loss of potential
DS. Such an effect can be corrected, as explored in Sec. 4.1.3; however, at least
for our implementation, the correction still has limitations. This type of correction
is reminiscent of the so-called homogeneous Malmquist bias [110]. The so-called
non-homogeneous Malmquist bias [111], which appears when the density of objects
is not constant, is usually overlooked. This approximation, certainly valid for the
current data and given the estimates on the uncertainty of H0, should be tested
for future analyses. Is worth noticing, as evident from the True Flagship results,
that this effect is mitigated until it almost disappears by the presence of galaxy
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Figure 5.19. The full run with N = 4000 DSs. All events have σDL = 10%, and
Ω90 = 10 deg2. The events are such that the research box is entirely contained in the
catalogue, for every value of H0 tested and are cross-correlated with the Uniform-Flagship
catalogue. The image shows the evolution of the posterior when increasing the number
of events. The plot shows different stages of the posterior, from the less informative blue
curves toward the more informative ones in red, with the black curve been the total
posterior.

clustering, since the spatial correlation of galaxies strongly helps the convergence of
this method. The inclusion of this type of effect is under development and requires
weighting the hosts, not with an average weight given by N(z) but by the local
density of the galaxy sample.

5.7 Forecast: 5 years of ET observation cross-matched
with the Euclid spectroscopic galaxy catalogue

The scope of this final section is to obtain more realistic forecasts for the measurement
of H0 by combining a future dataset of dark sirens generated by the next-generation
ET interferometer with a wide spectroscopic galaxy survey, mimicking the one being
carried out by the Euclid satellite mission.

To achieve this, I defined a reference mock DS sample to be used as a baseline.
The outcome of a GW observational campaign is a set of DSs detected above a
given signal-to-noise ratio, expected to contain objects with different uncertainties
in distance and angular positions. For the likelihood analyses it is often convenient
to consider only a subset of DSs since low signal-to-noise events may add noise or
bias to the results.
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Figure 5.20. This figure shows the standard deviation σH0 as a function of the number of
DS events. The dotted purple line is a curve proportional to 67/

√
N .

In this analysis, the optimisation involves finding the best compromise between
the number of events (N) and the precision of the measured DS quantities (σDL and
Ω90 ). Since the results are robust to variations in Ω90 I fix its value to 10 deg2 and
play with the remaining parameters.

The results are summarised in Figure 5.22 where I show that two combinations,
N = 300, σDL = 5% and N = 1000, σDL = 10% give similar results, indicating
that restricting the analysis to 30 % of the DS with a luminosity distance measured
with higher precision gives comparable results to using a sample thrice as large with
an error on the distance twice big. Therefore, I choose the former as the baseline,
saving computational time over the latter.

Let’s focus on the forecast for H0. According to [81], the Einstein Telescope is
expected to observe between 100 and 400 GW events each year with a luminosity
distance uncertainty of 5 % in the flagship redshift range. This is compatible with
the choice for the baseline properties of the DSs catalogue exposed above. For the
analysis, I will consider the optimistic scenario and use a reference sample of 2000
DS collected over 5 years of observations. I will assume that these DSs are located
in an octant of the sky and have observed luminosity distances in the range of
7000 to 12000 Mpc, which overlaps with the redshift range spanned by the Euclid
spectroscopic survey (z = [0.9, 1.9]). Additionally, more pessimistic scenarios with a
lower number of detected GW events will also be considered.

I will first take a conservative approach and consider the case of an unclustered
sample of hosts and DSs, hence ignoring the spatial correlation properties of the two
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Figure 5.21. The evolution of the mean µ Vs N . The DSs are drawn by the Uniform-ideal
catalogue and cross correlated with Uniform-flag.

populations. For the hosts I will consider the Uniform-Flagship catalogue which
matches the expected N(z) of the Euclid galaxies and is diluted to match their
number density. First, a catalogue Uniform in comoving volume is generated, i.e.
the Uniform-ideal catalogue. A subsample is then extracted from this catalogue,
matching the N(z) of the Flagship, making sure that the most populated bin in
the Flagship and the extracted catalogue have the same number of hosts. Then the
extracted catalogue is diluted to match the real Euclid density. Although the hosts
will follow an overall distribution that is N(z), there is no spatial correlation between
the hosts, therefore we refer to this case as homogeneous. The DS catalogue will be
taken from the parent Uniform-ideal catalogue, where not all DS are expected to
have a matching host in the analysis.

The resulting posterior distribution for H0 is depicted in Fig. 5.23. Remarkably,
the expected uncertainty is very small, on the order of 1 %, even without spatial
correlation between hosts. The sheer amount of DSs and their properties results
in a good estimation of H0 but, as will be evident later, the clustering drastically
reduce the amount of DSs required to achieve this precision. Moreover, the estimate
is unbiased, differing from the expected value (represented by the vertical dashed
line) by less than the standard deviation of the quasi-Gaussian curve. Since the
error is dominated by Poisson noise, we anticipate that even smaller DS samples,
which may become available during the observational campaign, will be capable of
providing stringent constraints on H0 before the survey’s completion.

This is further illustrated in Fig. 5.24, where I present the mean of the posterior
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Figure 5.22. Comparison between the full run with N = 4000 DSs with σDL = 10%, and
Ω90 = 10 deg2 in purple, a subset of this same run in teal and a run with 300 DSs with
σDL = 5%, and Ω90 = 10 deg2. The events are such that the research box is entirely
contained in the catalogue, for every value of H0 tested and are cross-correlated with
the Uniform-Flagship catalogue.

distribution of H0 (dots) along with its standard deviation (error bars) as a function
of N . It’s observed that a high precision on the measurement of H0, comparable
to that of the full sample, appears achievable with 1000 events, i.e., with only half
of the full sample. The fact that the mean of the curve is consistently below the
expected value, indicated by the dashed horizontal line, is not statistically significant,
as the mismatch is below 1 σ, and the points are highly correlated. The amplitude
of the mismatch decreases with N suggesting that is not a predominant effect. The
fact that each run approaches the true value of the Hubble constant from below,
suggest that, even if below 1σ there is an offset. This offset can be caused by two
main reason: either the extraction of the DSs is not totally under control or the
normalisation function β do not compensate exactly for volume-like effects. The
evolution of the standard deviation is shown in Fig. 5.25.

In the final step, I accounted for the clustering of both DSs and galaxies and
their cross-correlation. To achieve this, I utilised the Flagship catalogue of mock
galaxies randomly diluted to match the expected Euclid’s galaxy density. This
diluted catalogue served as the host galaxy catalogue used in the analysis. Similarly,
the catalogue of DS was randomly selected from the Flagship catalogue. This choice
corresponds to an optimistic scenario in which a significant fraction of DS have
their host galaxy in the matching galaxy sample. To avoid introducing this bias, I
used the procedure described in Section 5.2 and displaced the position of each DS
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Figure 5.23. H0 posterior distribution for a set of 2000 DSs from he Uniform-ideal catalogue
and cross correlated with the Uniform-Flagship. This will be the new baseline for the
rest of the section. All DSs have σDL = 5%, and Ω90 = 10 deg2.

around the host flagship galaxy according to the galaxy-galaxy correlation function
in eq. (5.1), to account for the probability of a galaxy being at a separation r from
another one in the sample.

The resulting posterior distribution is displayed in Fig. 5.26 (continuous curves)
and compared to the one of the uniform case (dotted curve) previously shown in
Fig. 5.23. In particular, the posterior in purple in Fig. 5.26 appears to be perfectly
centred, not approaching the true value from below as has been the case until now.
There is currently no precise explanation for the absence of any bias, as the criterion
to determine if a run is biased has always been to check that the true value is
within one standard deviation. For now, the most likely hypothesis is that it was a
particularly fortunate run, as also indicated by the curves in Fig. 5.29. However,
this suggests that the non-homogeneous Malmquist bias is negligible even at these
sensitivities.

Regarding the width of the posterior, the result is very encouraging as it demon-
strates that, as mentioned earlier, it is not necessary to have the host in the sample
because DSs and their hosts are spatially correlated with galaxies. Moreover, the
greater the correlation between not only the spatial but also the physical properties
of the sources and the galaxies, the better the estimate of H0 will be. For example,
if it were discovered that brighter DSs correlate better with massive galaxies, then
the determination of the Hubble constant could be further improved by studying
only a subsample of intrinsically brighter DSs.

It is evident that accounting for the cross-correlation between DSs and galaxies
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Figure 5.24. In teal, the evolution of the mean µ of the posterior for the increasing number
of events analysed with the true flagship catalogue.

reduces the uncertainty on H0 by a factor of 2. This improvement is genuine and
induced by clustering, as it does not depend on the number of DS, as shown in
Fig. 5.26. The factor of 2 reduction in the measured variance remains roughly
constant across the entire N -range, as clear from Fig. 5.27.

Accounting for clustering does not introduce any bias since the mean of the
posterior distribution is consistent with the expected H0 value as illustrated in
Fig. 5.28 which shows the mean values (dots) and variances (error bars) of the
posteriors obtained for DS samples of increasing sizes and compare the results with
those obtained with the unclustered sample (offset asterisks)

Taking Fig. 5.27 and Fig 5.28 as references, it can be verified that, upon reaching
about 1000 events, this strategy becomes competitive with the statistical uncertainties
in measuring H0 obtained from local distance indicators and the CMB, that have
uncertainty of ∼ 1% [16, 17]. Given the estimated rate of gold events, ranging from
100 to 400, where 100 is a very pessimistic estimate, it is plausible that between 2
and 5 years of ET+Euclid data are necessary to be competitive, or in the optimistic
case, better than the available estimates. This technique, in both the optimistic
and non-optimistic scenario, will enhance the statistical significance of the Hubble
tension. If for example the obtained value for H0 (HGW

0 ) with this technique equals
the one from the local Universe, the statistical significance of the tension will be no
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Figure 5.25. In teal, the evolution of the standard deviation σH0 of the posterior for the
increasing number of events.

less than 7σ given that in the pessimistic case

HGW
0 −HCMB

0√
σ2

GW + σ2
CMB

= 5.63√
0.502 + 0.622

= 7.07 (5.6)

If HGW
0 coincides with the CMB one, than in the pessimistic case the statistical

significance of the tension is ∼ 5.5σ.
It is worth stressing that this result is robust to the choice of the selected

sample. To check this, I have repeated the same analysis using two different samples,
independently selected from the Flagship catalogue.

All the posterior distributions, shown in Fig. 5.29, look similar and consistent
with a sub-percent precision in the measurement of H0. This preliminary test
reinforce the belief that the strategy is well posed and the simulations are correctly
reproducing the physics of the problem. The presence of a smaller offset in this kind
of runs with a non-homogeneous host catalogue suggest that the cause of the bias is
in the selection of the DSs and further investigations on this aspect will be done.

In conclusion, given a number of gold events between one thousand and two
thousand, spread over five years of data taking, by correlating a set of ET-like DSs
and the Euclid flagship it is possible to determine H0 with an accuracy of between 1%
and 0.5%. This result was obtained under certain assumptions: detector stationary
during Earth orbit, no correlation between the quantities involved etc. However,
the analysis showed that a fundamental actor is the clustering of galaxies and the
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Figure 5.26. In teal, the posterior from a collection of 2000 DSs sampled from the real
flagship and cross correlated with the Euclid mock data. In purple, the posterior 2000 DSs
extracted from a uniform distribution and cross correlated with the true flagship. The
DSs are extracted between an observed Dlmin = 7000 Mpc and a Dlmin = 12000 Mpc.

possibility of determining the redshift of the hosts spectroscopically. This makes it
possible to achieve H0 estimates competitive with the major experiments already
mentioned in the text.
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Figure 5.27. In teal, the evolution of the standard deviation σH0 of the posterior for
the increasing number of events analysed with the true flagship catalogue for the
aforementioned Dl range. In purple, the same quantity but analysed with a uniform
catalogue with the same N(z) as the true flagship. The final posteriors are shown in
Fig. 5.26
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Figure 5.28. In teal, the evolution of the mean µ of the posterior in Fig. 5.26 for the
increasing number of events cross-correlated with the true flagship catalogue. In purple,
the same quantity but the DSs are drawn from a uniform distribution and cross correlated
with the Uniform-Flagship catalogue.
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Figure 5.29. In teal the posterior from a collection of 2000 DSs sampled from the real
flagship and cross correlated with the Euclid mock data, the true flagship. In green, the
posterior given by another set of DSs named Run02 and in maroon, the third posterior
for the third set of DSs. The DSs are extracted between an observed Dlmin = 7000 Mpc
and a Dlmin = 12000 Mpc. All DSs have σDL = 5%, and Ω90 = 10 deg2.
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Conclusions

The detection of gravitational waves has indeed marked a significant milestone in
physics and astronomy. Not only do they provide further validation of Einstein’s
theory of gravity, but they also introduce a new means of exploring the cosmos
beyond traditional electromagnetic radiation.

Whether GWs will revolutionise cosmology depends on their potential to serve
as high-precision cosmological probes, addressing key questions such as the Hubble
tension – the discrepancy between measurements of H0 at the last scattering epoch
and those from local measurements using distance indicators.

GWs offer a promising avenue for independently probing H0 and its evolution by
targeting sources at low to moderate redshifts using current and future detectors.
This is best achieved through the observation of "bright sirens," where both the
distance of the source from the GW signal and the redshift of the galaxy host can be
measured accurately from the GW signal and the observed photon flux. Indeed, the
scarcity of bright sirens observed so far presents a significant challenge to using them
as the primary means of measuring H0. As a result, an alternative hybrid strategy is
being explored, which involves combining dark GW events with the known positions
of bright galaxies. Success with this approach hinges on statistical considerations:
a substantial number of dark sirens must be detected within the same volume
where the spatial positions of a large number of potential galaxy hosts have been
accurately mapped. While this approach is not currently feasible with the available
datasets, the future looks promising. The number of dark GW events detected by
existing interferometers is gradually increasing and is expected to skyrocket with
the advent of next-generation detectors like ET an CE. Additionally, ongoing large
observational campaigns such as DESI and Euclid are continuously mapping the
distribution of galaxies across ever-expanding portions of the observable Universe.
These developments provide hope that the hybrid strategy will become increasingly
viable in the future.

This thesis focuses on exploring the potential of using dark sirens as alternative
probes for H0 with comparable precision to existing methods. To achieve this
goal, I developed a prototype end-to-end pipeline called CODE (Cross cOrrelation
with Dark sirEns). The CODE pipeline is designed to generate mock dark sirens
and galaxy catalogues that emulate the characteristics of future datasets, such as
those expected from next-generation GW detectors like ET, and large observational
campaigns to map galaxies like Euclid. Using these simulated datasets, the pipeline
employs hierarchical Bayesian inference approach to estimate H0.

The flexibility of the CODE architecture allows it to handle various types of
datasets, including existing ones. While the current implementation focuses on
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exploring the combination of simulated ET-like and Euclid-like catalogues of dark
sirens and galaxies, the pipeline can be adapted to accommodate other datasets as
well.

The validation process involved running several tests using ideal datasets to
ensure the robustness of the pipeline. These tests aimed to assess the impact of
various factors on the analysis outcome, including uncertainties in the luminosity
distance and angular position of the dark sirens. A notable aspect of this validation
was its focus on dark sirens at moderate redshifts, within the range covered by the
Euclid spectroscopic survey, 0.8 < z < 2, which is a departure from previous studies
that primarily examined local samples due to the limited sensitivity of current
gravitational wave detectors.

An intriguing and somewhat surprising finding from the analysis is the limited
impact of uncertainties in the angular position of the dark sirens on the estimation
of H0. This observation could be linked to the dense distribution of potential hosts
in the galaxy catalogue. It’s important to emphasise that this result was derived
using catalogues of unclustered and entirely independent objects, both galaxies and
dark sirens. Given its potential significance in informing future survey strategies, it
warrants further investigation using more realistic datasets.

The precision of the dark sirens’ distance estimates plays a crucial role in the
analysis, highlighting the potential for obtaining competitive estimates of H0 by
focusing on a "golden sample" of dark sirens with the most accurately measured
distances. This underscores the importance of accurately measuring the redshifts of
the host galaxies, preferably with matching or superior precision. Consequently, this
type of analysis necessitates the use of galaxy catalogues with redshifts determined
from spectroscopic measurements, as photometric redshifts derived from flux mea-
surements across different bands typically have errors comparable to those of the
dark sirens’ distances.

The testing campaign also provided reassuring confirmation that errors on H0 are
adequately described by a simple Poisson model when the number of dark sirens in
the sample is large. This insight is very useful for determining the survey strategy and
duration, providing guidance for optimising observational efforts. The application of
the pipeline to more realistic datasets involved ensuring that the radial distribution
and galaxy density for the host galaxies matched real observations, and accurately
representing the number, radial distribution, and angular and distance errors of the
dark DS. The results of the analysis suggest that a 5-year observational campaign
with the next-generation ET interferometer, combined with cross-matching with the
Euclid spectroscopic galaxy survey expected to be completed by 2029, can achieve a
percent precision and accuracy in the measurement of H0.

Accounting for the clustering properties of both the DS and the galaxies in
the analysis further improves the precision of the H0 estimate, without introducing
significant systematic errors. Indeed, this prediction represents an optimistic outlook,
as it overlooks many potential sources of error that could affect the analysis at the
sub-percent level. Nonetheless, it unequivocally highlights the potential of dark
sirens as high-precision cosmological probes. These promising results encourage
further analysis and exploration along three main directions.

First of all, I plan to enhance the realism of the analysis, I aim to thoroughly
incorporate all potential sources of random and systematic errors at various stages
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of the pipeline. For instance, the angular position error, which I previously modelled
as a simple 2D Gaussian function on the celestial sphere, needs refinement. Existing
DS events often exhibit elongated and irregular shapes in their 2D probability
areas, which are better represented using healpix probability maps [112]. While the
CODE pipeline is already equipped to generate DS events complemented by healpix
probability maps, further development is required to propagate this information to
the likelihood analysis.

Another area for improvement lies in enhancing the "observation" steps, which
connect the intrinsic properties of the gravitational wave source to the observed
DS event as captured by the interferometer. By refining this process, I can achieve
a more self-consistent distribution for the observed DS properties, including their
distance errors. Furthermore, it’s essential to accurately simulate the geometry of
the galaxy survey, accounting for features like holes and masked areas, to properly
address edge effects.

The second improvement I aim to focus on for CODE is its adaptability to handle
diverse datasets. As mentioned earlier, the architecture of the pipeline is sufficiently
flexible to simulate and conduct Bayesian inference analyses on various sets of dark
sirens and galaxies. Specifically, I am keen on leveraging CODE to scrutinize the
existing LISA-VIRGO DS events and those from forthcoming campaigns conducted
by the upgraded LIGO-Virgo-Kagra interferometer system. On the galaxy front, I
intend to incorporate the emission line galaxies’ catalogue being generated by the
DESI survey.

Last, but not least, I intend to expand beyond the measurement of H0. Finke et
al. in [6] have already extended the hierarchical Bayesian framework to accommodate
models of modified gravity. I plan to replicate their approach and further extend it
to enable the constraint of additional cosmological parameters using the dark sirens
datasets.
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famiglia che uno si sceglie e sono sempre più felice di rinnovare questa decisione ogni
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