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Introduction and statement of results

Let C be a fixed smooth and projective curve over C. A (L-twisted)

Higgs pair on C is a pair (E,Φ) of a vector bundle E on C and a

endomorphism Φ : E → E ⊗ L with values in a line bundle L on

C. Higgs pairs were introduced first in the case L = KC under the

name of Higgs bundles by N. Hitchin, in his study about dimensionally

reduced self-duality equations of Yang-Mills gauge theory([Hit87b],

[Hit87a]), and then by C. Simpson, in his study of nonabelian Hodge

theory ([Sim92], [Sim94a], [Sim94b]). L-twisted Higgs pairs were

introduced by N. Nitsure [Nit92].

If E has a G-structure, where G is some complex reductive group,

and Φ satisfies some extra condition depending on G, we speak of G-

Higgs pairs and G-Higgs bundles. Hitchin [Hit87a], followed by R.

Donagi [Don93], showed that the moduli space MG of semistable G-

Higgs bundles is endowed with a proper map HG to a vector space,

whose generic fiber is a complex Lagrangian torus and an abelian va-

riety. Such map is called G-Hitchin fibration and makes MG an alge-

braically completely integrable system; moreover, the smooth locus of

MG has the structure of a hyperkähler manifold. More generally, the

Hitchin fibration HG on the moduli space ML
G of semistable G-Higgs

pairs was introduced by N. Nitsure (loc. cit.); when G = GL and

L ⊗ K−1
C is effective, E. Markman [Mar94] and F. Bottacin [Bot95]

proved that ML
G is endowed with a Poisson structure (depending upon

the choice of a section of L⊗K−1
C ) with respect to which HG becomes

an algebraically completely integrable system.

T. Hausel and M. Thaddeus [HT03] related the G-Hitchin fibra-

tion to mirror symmetry, while A. Kapustin and E. Witten [KW07]

pointed out on physical grounds that Hitchin’s system for a complex re-

ductive Lie group G is dual to Hitchin’s system for the Langlands dual
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group LG. This was proved in an algebro-geometric setting by R. Don-

agi and T. Pantev [DP12]; they also conjectured the classical limit of

the geometric Langlands correspondence as a canonical equivalence be-

tween the derived categories of coherent sheaves over the moduli stacks

of G-Higgs bundles and LG-Higgs bundles, which intertwines the ac-

tion of the classical limit tensorization functors with the action of the

classical limit Hecke functors. Recently, M. Groechenig, D. Wyss and

P. Ziegler [GWZ17] proved, using an arithmetic perspective, a con-

jecture by Hausel-Thaddues stating that the moduli spaces of SL and

PGL-Higgs bundles are mirror partners and that appropriately defined

Hodge numbers of such spaces agree.

The connection between Hitchin system and geometric Langlands

program led to the study of Lagrangian submanifolds of the moduli

space of Higgs bundles supporting holomorphic sheaves (A-branes),

and their dual objects (B-branes). This study was introduced by A.

Kaupstin and E. Witten in loc. cit. (see also E. Witten [Wit15]),

followed by L. Schaposhnik and D. Baraglia ([BS14], [BS16]) and L.

Branco [Bra18].

More recently, M. de Cataldo, T. Hausel and L. Migliorini [dCHM12]

followed by J. Shen and Z. Zhang [SZ18] and M. de Cataldo, D. Maulik

and J. Shen [dCMS19] studied the “P=W” conjecture, stating that

the canonical isomorphism

H∗(MB,Q) ' H∗(M(r),Q)

induced by canonical diffeomorphism between the moduli space M(r)

of rank r Higgs bundle and the corresponding character variety MB

of rank r stable local systems, identifies the weight filtration and the

perverse filtration associated with the Hitchin fibration.

The generic fiber of the GL-Hitchin morphism is the Jacobian of

a curve associated to the fiber, called the spectral curve; when G =

SL, Sp, SO, the generic fiber of the G-Hitchin morphisms are Prym va-

rieties associated to certain morphisms from the spectral curve. This

fact, also known as spectral correspondence or abelianization process,

has been pointed out first in [Hit87a], followed by [Hit07] and [Sch13].
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The duality of Hitchin systems manifests itself in the statement that

the dual of the abelian variety for the generic fiber of HG is the abelian

variety for the generic fiber of HLG. More recently, N. Hitchin and L.

Schaposnik introduced in [HS14] a non-abelianization process in order

to study Higgs bundles that correspond (by solving the gauge-theoretic

Higgs bundle equations) to flat connections on C with holonomy in

some real Lie groups.

The study of the Hitchin morphism restricted to the fibers whose

associated spectral curve is integral played a crucial role in B. C. Ngô’s

proof of the fundamental lemma ([Ngô06] and [Ngô10]); more gener-

ally, the study of the Hitchin morphism restricted to the fibers whose

associated spectral curve is reduced was a key ingredient in Chaudard-

Laumon’s proof of the weighted fundamental lemma ([CL10] and [CL12]).

For G = GL the spectral correspondence has been generalized to

non-generic fibers with integral spectral curve by A. Beauville, M.

Narasimhan and S. Ramanan in [BNR89], and to any fiber by D.

Schaub [Sch98], followed by P.-H. Chaudouard and G. Laumon [CL16]

and M. A. De Cataldo [dC17]. The spectral correspondence for non-

generic fibers involves a wider moduli space than the Jacobian scheme,

namely the compactified Jacobian parametrizing torsion-free rank-1

sheaves.

For G different from GL, the spectral correspondence for non-

generic fibers has been studied by [HP12] for the case of SL, and

by [Bra18] for the Hitchin map associated to some semisimple real Lie

groups.

This thesis is divided in two parts, introduced by a preliminary

Chapter about torsion-free rank-1 sheaves and Higgs pairs (Chapter

1). In the first part (Chapter 2 and 3), motivated by the spectral

correspondence for G = SL, we study the Norm map Nmπ on the

compactified Jacobian associated to a finite, flat morphism X
π−→ Y

between projective curves; the Norm map happens to be well-defined

only if Y is smooth. In such case, we define the Prym stack of X

over Y as the (stacky) fiber Nm−1(OY ). In the case that X is reduced

with locally planar singularities, we show that the usual Prym scheme is
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contained in the Prym stack as an open and dense subset. In the second

part (Chapter 4) we study the spectral correspondence for G-Higgs

pairs, in the case of G = SL(r,C), PGL(r,C), Sp(2r,C), GSp(2r,C),

PSp(2r,C), over any fiber.

In the future work, we aim to study the spectral data also for other

classical groups such as SO(2r,C) and SO(2r + 1,C). Moreover, we

aim to study the geometric properties of the moduli loci arising in the

description of the spectral data. Finally, we are interested in charac-

terizing, for various G, the spectral data corresponding to semistable

pairs, and to consider also such data up to S-equivalence of the cor-

responding pairs; this would allow to describe spectral data for the

scheme-theoretic version of the Hitchin morphism.

Acknowledgements. First, I would like to thank my advisor, Fil-

ippo Viviani, for suggesting the problem and for his continuous guid-

ance and proofreading. I would also like to thank Edoardo Sernesi

for helpful comments and discussions, together with Eduardo Esteves

and Margarida Melo. Finally, I thank my collegues Fabrizio Anella

and Daniele Di Tullio for their help and patient listening during these

years.

1. Preliminaries

In Chapter 1 we first introduce generalized line bundles and torsion-

free rank-1 sheaves, giving the following general definitions.

Definition 1.1. Let X be a Noetherian scheme of pure dimension

1. A coherent sheaf F on X is said:

(1) torsion-free if the support of F has dimension 1 and the max-

imal subsheaf T (F) ⊂ F of dimension 0 is equal to 0;

(2) rank-1 if for any generic point ξ ∈ X, the length of Fξ as an

OX,ξ-module is equal to the length of OX,ξ as a module over

itself.

Definition 1.2. Let X be a Noetherian scheme of pure dimension

1. A generalized line bundle is a torsion-free sheaf F on X such that

for any generic point ξ ∈ X,the stalk Fξ is isomorphic to OX,ξ as an

OX,ξ-module.
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In the case of X projective over a field, generalized line bundles

and torsion-free rank-1 sheaves are both particular cases of torsion-free

sheaves with polarized rank 1 with respect to any fixed polarization.

Definition 1.3. Let X be a projective scheme of pure dimension 1

over a base field k and let H be a polarization of degree degH = δ. Let

F be a torsion-free sheaf on X. The polarized rank of F is the rational

number rH(F) determined by the Hilbert polinomial of F with respect

to H:

P (F , n,H) := χ(F ⊗OX(nH)) = δrH(F)n+ χ(X,F).

The polarized rank of a torsion-free sheaf is related with its length

at the generic points.

Theorem 1.4. Let X be a projective scheme of pure dimension 1

over a field, with irreducible components X1, . . . , Xs. For each i, let ξi

be the generic point of Xi and let Ci = Xi,red be the reduced subscheme

underlying Xi. Let H be a polarization on X and let F be a torsion-free

sheaf on X. Then, the following formula for rH(F) holds:

rH(F) =

∑s
i=1 `OX,ξi (Fξi) degH|Ci∑s
i=1 `OX,ξi (OX,ξi) degH|Ci

.

In particular, if F is a torsion-free rank-1 sheaf, then rH(F) = 1 for

any polarization H on X.

We consider the following moduli spaces for torsion-free sheaves.

Definition 1.5. Let X be a projective scheme of pure dimension

1 over a field k and let d ∈ Z be an integer number.

(1) The Jacobian scheme of degree d on X is the algebraic scheme

Jd(X) representing the sheafification of the functor that asso-

ciates to any k-scheme T the set of isomorphism classes of line

bundles of degree d on X ×k T . The union of the Jacobians of

all degrees is denoted as J(X).

(2) The generalized Jacobian stack of degree d on X is the alge-

braic stack GJ(X, d) such that, for any k-scheme T , GJ(X, d)(T )

is the groupoid of T -flat coherent sheaves on X ×k T whose

fibers over T are generalized line bundles of degree d on X '
X ×k {t}.
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(3) The compactified Jacobian stack of degree d on X is the alge-

braic stack J(X, d) such that for any k-scheme T , J(X, d)(T )

is the groupoid of T -flat coherent sheaves on X ×k T whose

fibers over T are torsion-free sheaves of rank 1 and degree d

on X ' X ×k {t}.
(4) Let H be a polarization on X The Simpson Jacobian stack

of degree d on X is the algebraic stack Jtf (X,H, d) such that

for any k-scheme T , Jtf (X,H, d)(T ) is the groupoid of T -flat

coherent sheaves on X ×k T whose fibers over T are torsion-

free sheaves of polarized rank 1 and polarized degree d on

X ' X ×k {t} with respect to H.

The locus of semi-stable object can be defined in any of such moduli

spaces, depending on the choiche of the polarization H. Then, we have

the following good moduli spaces.

(5) The generalized Jacobian scheme GJ(X,H, d) representing S-

equivalence classes of H-semistable generalized line bundles of

degree d on X.

(6) The compactified Jacobian scheme J(X,H, d) representing S-

equivalence classes of H-semistable torsion-free sheaves of rank

1 and degree d on X.

(7) The Simpson Jacobian J tf (X,H, d) representing S-equivalence

classes of H-semistable torsion-free sheaves of polarized rank

1 and polarized degree d on X.

These moduli spaces satisfy the following chains of inclusion:

Jd(X)
(1)

⊆ GJ(X, d)
(2)

⊆ J(X, d)
(3)

⊆ Jtf (X,H, d),

and:

Jd(X)
(1′)

⊆ GJ(X,H, d)
(2′)

⊆ J(X,H, d)
(3′)

⊆ J tf (X,H, d).

All the inclusions above are open embeddings, non strict in general;

inclusions (3) and (3′) are also closed. When X satisfies additional

conditions, some of them are actually equalities.

• If X is irreducible, inclusion (3) (resp. (3)′) is an equality.

• If X is reduced, inclusion (2) (resp. (2′)) is an equality.
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• If X is integral and smooth, inclusions (1), (2) and (3) (resp.

(1′), (2′) and (3′)) are equalities.

The moduli space J tf (X,H, d) of semistable torsion-free sheaves of po-

larized rank 1 and degree d is projective by the work of C. Simpson

([Sim94a] and [Sim94b]); hence, the compactified Jacobian J(X,H, d)

is a projective subscheme and union of connected components.

The compactified Jacobian plays an important role in the spectral

correspondence for Higgs pairs. Let C be a fixed smooth curve over the

field of complex numbers and let L be a fixed line bundle on C with

degree ` = degL. The algebraic stack M(r, d) of all L-twisted Higgs

pairs (E,Φ) on C of rank r and degree d is endowed with a morphism,

called the Hitchin morphism, defined as:

Hr,d :M(r, d)→ A(r) =
r⊕
i=1

H0(C,Li)

(E,Φ) 7→ (a1(E,Φ), . . . , ar(E,Φ))

where Li = L⊗i, ai(E,Φ) := (−1)i tr(∧iΦ) and A(r) is called the

Hitchin base. Similarly, the good moduli space M(r, d) parametriz-

ing S-equivalence classes of semistable L-twisted Higgs pairs of rank r

and degree d is endowed with a flat projective morphism, called the

Hitchin fibration:

Hr,d : M(r, d)→ A(r) =
r⊕
i=1

H0(C,Li)

(E,Φ) 7→ (a1(E,Φ), . . . , ar(E,Φ)).

Let a ∈ A(r) be any characteristic. The spectral curve Xa
πa−→ C

is the projective scheme defined in the total space of L, P = P(OC ⊕
L−1)

p−→ C, by the homogeneous equation

xr + p∗(a1)xr−1y + · · ·+ p∗(ar)y
r = 0

where x is the section of OP (1)⊗ p∗(L) whose pushforward via p cor-

responds to the constant section (1, 0) of L ⊗OC and y is the section

of OP (1) whose pushforward via p corresponds to the constant sec-

tion (1, 0) of OC ⊗ L−1. The spectral curve Xa has pure dimension

1 and canonical sheaf ωXa = π∗a(ωc ⊗ Lr−1). The following spectral

correspondence is a classical result.
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Proposition 1.6. (Spectral correspondence) Let a ∈ A(r) be any

characteristic and let Xa
πa−→ C be the associated spectral curve. Let

OC(1) be an ample line bundle on C; let OXa(1) := π∗a
(
OC(1)

)
be the

ample line bundle on Xa obtained by pullback and denote with H the

associated polarization on Xa.

(1) For any integer d, there is an isomorphism of stacks:

H−1
r,d(a) ∼−−−−→

Π
J(Xa, d

′),

where d′ = d+ r(1− g)− χ(OXa) = d+ r(r−1)
2

` and g = g(C)

is the genus of C. If M is a torsion-free sheaf of rank 1 on

Xa, then Π(M) := (E,Φ) where

E = πa,∗(M)

Φ = πa,∗(·x) : πa,∗(M)→ L⊗ πa,∗(M) ' πa,∗(π
∗
aL⊗M).

(2) A torsion-free sheaf of rank 1 M on Xa is H-semistable if

and only if the associated Higgs pair Π(M) is semistable on

C. Hence, the above correspondence yields an isomorphism of

schemes:

H−1
r,d (a) ' J(Xa, H, d

′).

The inverse direction in the spectral correspondence is resumed by

the following proposition.

Proposition 1.7. Let a ∈ A(r) be any characteristic and let Xa
πa−→

C be the associated spectral curve. Let M∈ J(Xa, d
′) be a torsion-free

rank-1 sheaf on Xa corresponding to the Higgs pair (E,Φ) ∈ H−1
r,d(a)

on C. Then, the following exact sequence holds:

0→M⊗ π∗a(L1−r)→ π∗aE
π∗a(Φ)−x
−−−−−→ π∗aE ⊗ π∗aL

ev−→M⊗ π∗aL→ 0

where ev is induced by the evaluation map π∗aπa,∗(M)→M.

2. Direct image of generalized divisors and Norm map

Let X
π−→ Y be a finite, flat morphism between projective schemes

of pure dimension 1 over a field, such that Y is smooth. In Chapter 2

we introduce two pairs of important morphisms associated to π.
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Definition 2.1. (1) The direct and inverse image map be-

tween the Hilbert schemes HilbdX and HilbdY parametrizing 0-

dimensional subschemes of X (resp. of Y ) with Hilbert poly-

nomial equal to d ≥ 0 are defined on the T -valued points as:

π∗(T ) : HilbdX(T ) −→ HilbdY (T )

D ⊆ X ×k T 7−→ Z (Fitt0(πT,∗(OD)))

π∗(T ) : HilbdY (T ) −→ HilbdX(T )

D ⊆ Y ×k T 7−→ Z
(
π−1
T (ID) · OX×kT

)
where πT : X×k T → Y ×k T is the morphism induced by base

change of π, Fitt0 denotes the 0-th Fitting ideal of a sheaf

of modules and Z denotes the closed subscheme defined by a

sheaf of ideals.

(2) The Norm and the inverse image map between the compacti-

fied Jacobians of any degree d on X and Y are defined on the

T -valued points as:

Nmπ(T ) : J(X, d)(T ) −→ Jd(Y )(T )

L 7−→ det (πT,∗(L))⊗ det (πT,∗OX×kT )−1

π∗(T ) : Jd(Y )(T ) −→ Jd(X) ⊆ J(X, d)(T )

N 7−→ π∗T (N ).

Recall that, for any line bundle M of degree e on X, the M -twisted

Abel map relates HilbdX with the generalized Jacobian of degree −d+e:

AM : HilbdX −→ GJ(X,−d+ e) ⊆ J(X,−d+ e)

D 7−→ ID ⊗M.

Proposition 2.2. Let X
π−→ Y be a finite, flat morphism between

projective schemes of pure dimension 1 over a field, such that Y is

smooth. The direct image between Hilbert schemes and the Norm map
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between compactified Jacobians are related for any d ≥ 0 by the com-

mutative diagram:

HilbdX
`Hilb

d
Y

GJ(X,−d+ e) ⊆ J(X,−d+ e) J−d+e(Y ).

π∗

AM ANmπ(M)

Nmπ

Similarly, the inverse image between Hilbert schemes and the inverse

image between compactified Jacobians are related for any d ≥ 0 by the

commutative diagram:

`Hilb
d
Y

`Hilb
d
X

J(Y,−d+ e) J(X,−d+ e).

π∗

AN Aπ∗(N)

π∗

The Norm and the inverse image map between compactified Jaco-

bians satisfy some expected properties.

Proposition 2.3. Let X
π−→ Y be a finite, flat morphism between

projective schemes of pure dimension 1 over a field, such that Y is

smooth. Let Nmπ and π∗ be the Norm and inverse image map between

the compactified Jacobans of X and Y and let T be any k-scheme.

(1) Let L,M ∈ J(X)(T ) such that M is a T -flat family of line

bundles. Then, Nmπ(L ⊗M) ' Nmπ(L)⊗ Nmπ(M).

(2) Let N ,N ′ ∈ J(Y )(T ). Then, π∗(N ⊗N ′) ' π∗(N )⊗ π∗(N ′).

(3) Let N ∈ J(Y )(T ). Then, π∗(N ) is a T -flat family of line

bundles over X and Nmπ(π∗(N )) ' N⊗n.

The fibers of the direct image and of the Norm map are studied in

Chapter 3, in the case that X is reduced with locally planar singulari-

ties.

Proposition 2.4. Let X
π−→ Y be a finite, flat morphism between

projective schemes of pure dimension 1 over a field, such that Y is

smooth and X is reduced with locally planar singularities.

(1) Let E ∈ HilbY be an effective divisor of degree d on Y and let

π−1
∗ (E) be the corresponding fiber in HilbX . Then, the locus

of Cartier divisors in π−1
∗ (E) is an open and non-empty dense

subset of π−1
∗ (E).
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(2) Let N ∈ J(Y ) be any line bundle on Y . Then, the fiber

Nm−1
π (N ) is non-empty and contains Nm−1

π (N ) ∩ J(Y ) as an

open and dense subset.

In particular, the fiber of Nmπ over OY is called the Prym stack of

X associated to π. When Y is smooth and X is reduced with locally

planar singularities, the Prym variety contained in the Prym stack of

X associated to π as an open and dense subset.

3. Spectral data for G-Higgs pairs

In Chapter 4 we study the spectral correspondence for G-Higgs

pairs, whereG = SL(r,C), PGL(r,C), Sp(2r,C), GSp(2r,C), PSp(2r,C).

Throughout this chapter, C denotes a fixed smooth curve over the

field of complex numbers and L a fixed line bundle on C with degree

` = degL.

Definition 3.1. Let G be a complex reductive Lie group. A (L-

twisted) G-Higgs pair is a pair (P, φ) where P is a principal G-bundle

over C and the G-Higgs field φ is a section of H0(ad(P )⊗ L).

Let δ ∈ π1(G) and let p1, . . . , pk be a homogeneous basis for the

algebra of invariant polynomials of the Lie algebra g of G, such that pi

has degree di. Then, the algebraic moduli stackMG(δ) of all L-twisted

G-Higgs pairs (P, φ) such that P has topological type δ is endowed with

a morphism, called the G-Hitchin morphism, defined as:

Hp1,...,pk
G,δ = HG,δ :MG(δ)→ AG =

k⊕
i=1

H0(C,Ldi)

(P, φ) 7→ (p1(φ), . . . , pk(φ)).

If G
ρ
↪−→ GL(r,C), any G-Higgs pair (P, φ) gives rise via the as-

sociated bundle construction to a classical Higgs pair (E,Φ), where

E = P ×ρ Cr and Φ is the image φ with respect to the morphism

ad(P )→ End(E) induced by the embedding ρ; such E has rank r and

degree d corresponding to δ under the map π1(G)
π1(ρ)−−−→ π1(GL(r,C))

induced by ρ. In this case, we denote as

MG(r, d) :=
∐

π1(ρ)(δ)=d

MG(δ)
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the moduli space of G-Higgs pairs whose associated vector bundle is of

rank r and degree d; the G-Hitchin morphism on MG(r, d) is denoted

as HG,r,d.

3.1. G = SL(r,C). In this case, the datum (P, φ) of a SL(r,C)-

Higgs pair on C corresponds univocally, via the associated bundle con-

struction, to the datum of (E,Φ, λ), where (E,Φ) is a Higgs pair of

rank r on C with trace zero, and λ is a trivialization of detE. The

isomorphism detE ' OC implies in particular that E has degree equal

to 0.

A basis for the invariant polynomials of sl(r,C) is given by {p2, . . . , pr}
where pi(P, φ) := (−)i tr(∧iφ). The SL-Hitchin morphism of rank r can

be defined as:

HSL,r :MSL(r) :=MSL(r, 0) −→ ASL(r) =
r⊕
i=2

H0(C,Li)

(P, φ) 7−→ (p2(P, φ), . . . , pr(P, φ)).

Proposition 3.2. Let a ∈ ASL(r) be any characteristic, let X =

Xa
π−→ C be the associated spectral curve, and denote B := det(π∗OX)−1.

The fiber H−1
SL,r(a) of the SL-Hitchin morphism is isomorphic, via the

spectral correspondence, to the fiber Nm−1
π (B) of the Norm map from

J(X, d′) to J(Y, d′) induced by π for d′ = r(r−1)
2

`. If the spectral curve

Xa is reduced, then

H−1
SL,r(a) ' Pr(X,C).

3.2. G = PGL(r,C). Any PGL(r,C)-Higgs pair admits a lifting

(P̃ , φ̃) to a GL(r,C)-Higgs pair, corresponding to a Higgs pair (E,Φ)

via the associated bundle construction. Then, the datum of (P, φ)

corresponds uniquely to the datum of the equivalence class [(E,Φ)] of

Higgs pairs on C with trace zero, under the equivalence relation ∼J(C)

defined by:

(E,Φ) ∼J(C) (E ⊗N,Φ⊗ 1N) for any N ∈ J(C).

Denote with Mtr=0(r) the closed substack of M(r) =
∐

d∈ZM(r, d)

given by Higgs pairs of rank r with trace zero. Then, [(E,Φ)] is the
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orbit of (E,Φ) under the action of J(C) on Mtr=0(r) defined by:

Mtr=0(r)× J(C) −→Mtr=0(r)

((E,Φ), N) 7−→ (E ⊗N,Φ⊗ 1N)

Definition 3.3. Let (P, φ) be a PGL-Higgs pair and let (E,Φ)

be a Higgs pair with trace zero and degree d ∈ Z corresponding to a

lifting (P̃ , φ̃) of (P, φ) to a GL-Higgs pair. The degree of (P, φ) is the

congruence class d ∈ Z/rZ.

The first homotopy group π1(PGL(r,C)) of PGL(r,C) is isomor-

phic to Z/rZ and the degree of (P, φ) characterizes uniquely the topo-

logical type of P . Moreover, up to the action of multiples of OC(1)

on (E,Φ),the J(C)-orbit [(E,Φ)] corresponding to a PGL-Higgs pair

with degree d ∈ Z/rZ is the orbit of a Higgs pair of degree d with

d ∈ {0, . . . , r − 1}. If we restrict the correspondence to Higgs pairs

with fixed degree d ∈ {0, . . . , r − 1}, a PGL-Higgs pair of degree d

is identified uniquely with the orbit of a Higgs pair of trace zero and

degree d with respect to the action of line bundles of degree 0 on C.

A basis for the invariant polynomials of pgl(r,C) = sl(r,C) is given

by {p2, . . . , pr} where pi(P, φ) := (−)i tr(∧iφ). Hence, we have the

following PGL-Hitchin morphism of rank r and degree d:

HPGL,r,d :MPGL(r, d) −→ APGL(r) =
r⊕
i=2

H0(C,Li)

(P, φ) 7−→ (p2(P, φ), . . . , pr(P, φ)).

Proposition 3.4. Let a ∈ APGL(r) be any characteristic and let

X = Xa
π−→ C be the associated spectral curve. Let d ∈ Z/rZ with

d ∈ {0, . . . , r − 1} be any degree. The fiber H−1

PGL,r,d
(a) of the PGL-

Hitchin morphism is isomorphic, via the spectral correspondence, to

the quotient moduli space

J(X, d′)/π∗J0(C)

of torsion-free sheaves of rank 1 and degree d′ up to the action of line

bundles of degree 0 on C by tensor product, with d′ = d+ r(r−1)
2

`.

The case of PGL(r,C)-Higgs pairs of degree 0 deserves special at-

tention.
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Proposition 3.5. Let a ∈ APGL(r) be any characteristic, let X =

Xa
π−→ C be the associated spectral curve and denote B := det(π∗OX)−1.

Let d′ = r(r−1)
2

` and let Nmπ be the Norm map induced by π on J(X, d′).

Let J0(C)[r] be the group stack of line bundles with r-th torsion on C,

acting on Nm−1
π (B) as follows:

Nm−1
π (B)× π∗J0(C)[r] −→ Nm−1

π (B)(
(M, ε), (π∗N, π∗(η : N r ∼−→ OC))

)
7−→ (M⊗ π∗N, εN,η)

where εN,η is equal to the following composition:

εN,η : Nm(M⊗ π∗N) ∼−→ Nm(M)⊗ Nm(π∗N) ∼−→ Nm(M)⊗N r ε⊗η−−→ B.

Then, the fiber H−1
PGL,r,0

(a) of the PGL-Hitchin morphism is isomor-

phic, via the spectral correspondence, to the quotient moduli space

Nm−1
π (B)/π∗(J0C)[r].

3.3. G = Sp(2r,C). In this case, the datum of a Sp(2r,C)-Higgs

pair (P, φ) on C corresponds univocally to the datum of (E,Φ, ω) where

(E,Φ) is a Higgs pair of rank 2r and degree 0 and ω : E ⊗E → OC is

a non-degenerate symplectic form on E satisfying the condition:

ω(Φv, w) = −ω(v,Φw).

A basis for the invariant polynomials of sp(2r,C) is given by {p2i}i=1,...,r

where p2i(P, φ) := tr(∧2iφ). The corresponding Sp-Hitchin morphism

takes the form:

HSp,2r :MSp(2r) :=MSp(2r, 0) −→ ASp(2r) =
r⊕
l=1

H0(C,L2l)

(P, φ) 7−→ (p2(P, φ), p4(P, φ), . . . , p2r(P, φ)).

For any characteristic a ∈ ASp(2r), the spectral curve π : Xa → C

is defined in the total space p : P(OC ⊕ L−1)→ C by the equation

x2ry + a2x
2r−2y2 + · · ·+ a2r−2x

2y2r−2 + a2ry
2r = 0.

Hence, the curve Xa has an involution σ defined by σ(x) = −x.

Proposition 3.6. Let a ∈ ASp(r) be any characteristic and let

X = Xa
π−→ C be the associated spectral curve with involution σ : X →

X. The fiber H−1
Sp,2r(a) of the Sp-Hitchin morphism is isomorphic, via
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the spectral correspondence, to the equalizer Ea of the two maps

_∗ := Hom(_,OX) : J(X, d′)→ J(X,−d′)

σ∗_⊗ π∗L1−2r : J(X, d′)→ J(X,−d′),

where d′ = r(2r − 1)`.

3.4. G = GSp(2r,C). In this case, the datum of a GSp(2r,C)-

Higgs pair (P, φ) corresponds uniquely, via the associated bundle con-

struction and the translation of the Higgs field, to the datum (E,Φ′, ω,M, µ)

of a Higgs pair (E,Φ′) of rank 2r and degree rd, a non-degenerate

symplectic form ω : E ⊗ E → M on E with values in a line bundle

M of degree d, and a global global section µ ∈ H0(C,L), such that

Φ′ ∈ H0(C,End(E)⊗ L) satisfies

ω(Φ′v, w) + ω(v,Φ′w) = 0.

The affine space ASp(2r) ⊕ H0(C,L) can be taken as basis of a

(translated) GSp-Hitchin morphism H̃, defined as:

H̃GSp,2r,rd :MGSp(2r, rd) −→ ASp(2r)⊕H0(C,L)

(P, φ) 7−→ (a′, µ) = (a2(E,Φ′), a4(E,Φ′), . . . , a2r(E,Φ
′), µ).

where (E,Φ) is the Higgs pair associated to (P, φ) via the associated

bundle construction, µ is the global section tr Φ
2r
∈ H0(C,L) and Φ′ =

Φ− µ idE is the translated Higgs field.

Proposition 3.7. Let a′ ∈ ASp(2r) be any characteristic and let

µ ∈ H0(C,L) be any section. Let X = Xa′
π−→ C be the spectral curve

associated to a′, with involution σ : X → X. Let d′ = rd + r(2r − 1)`

and denote with P(d′, n) = J(X, d′)× J(C, d) the Cartesian product of

the Simpson Jacobian of degree d′ on X and the Jacobian of degree d

on C, endowed with the projection maps pX and pC on J(X, d′) and

J(C, d) respectively. Let Ea′ be the equalizer of the two maps

(HomOX (_,OX) ◦ pX)⊗ (π∗ ◦ pC) : P(d′, d)→ J(X, rd− r(2r − 1)`)

(σ∗ ◦ pX)⊗ π∗L1−2r : P(d′, d)→ J(X, rd− r(2r − 1)`).

Then, the fiber H̃−1
GSp,2r,rd(a

′, µ) is isomorphic, via the spectral corre-

spondence, to Ea′.
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3.5. G = PSp(2r,C). In this case, any PSp(2r,C)-Higgs pair (P, φ)

has a lifting (P̃ , φ̃) to a GSp(r,C)-Higgs pair, corresponding via the as-

sociated bundle construction to the datum (E,Φ,M, ω) of a Higgs pair

(E,Φ) of rank 2r, a non-degenerate symplectic form ω : E ⊗ E → M

with values in a line bundle M of degree d on C, and a Higgs field Φ

satisfying the condition

ω(Φv, w) + ω(v,Φw) = 0.

Then, the datum of (P, φ) corresponds uniquely to the datum of the

equivalence class [(E,Φ,M, ω)] of Higgs pairs of rank 2r (and degree rd)

with a non-degenerate symplectic form, under the equivalence relation

∼J(C) defined by:

(E,Φ,Mω) ∼J(C) (E ⊗N,Φ⊗ 1N ,M ⊗N2, ωN) for any N ∈ J(C)

where

ωN : (E ⊗N)⊗ (E ⊗N)→M ⊗N2

is obtained by extension of scalars.

Let MGSp(2r) =
∐

d∈ZMGSp(2r, rd) be the moduli stack of GSp-

Higgs pairs of rank 2r in any degree and denote with Mtr=0
GSp (2r) the

closed substack ofMGSp(2r) given by GSp-Higgs pairs of rank 2r with

trace zero. Then, [(E,Φ,M, ω)] is the orbit of (E,Φ,M, ω) under the

action of J(C) on Mtr=0
GSp (2r) defined by:

Mtr=0
GSp (2r)× J(C) −→Mtr=0

GSp (2r)

((E,Φ,M, ω), N) 7−→ (E ⊗N,Φ⊗ 1N ,M ⊗N2, ωN).

Definition 3.8. Let (P, φ) be a PSp-Higgs pair and let (E,Φ,M, ω)

be the datum of a Higgs pair with trace zero and degree rd endowed

with a M -valued symplectic form ω, corresponding to a lifting (P̃ , φ̃)

of (P, φ) to a GSp-Higgs pair. The degree of (P, φ) is the congruence

class rd ∈ Z/2rZ.

Up to the action on (E,Φ,M, ω) of a line bundle of degree 1 on

C, it is straightforward to see that the J(C)-orbit [(E,Φ,M, ω)] corre-

sponding to a PGL-Higgs pair with degree rd ∈ Z/2rZ is always the

orbit of a datum whose Higgs pair has degree 0 or rd. If we restrict the

correspondence to Higgs pairs with fixed degree 0 or rd, we see that
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a PGL-Higgs pair of degree rd is identified uniquely by the orbit of a

Higgs pair with trace zero and degree 0 or rd with respect to the action

of line bundles of degree 0 on C.

A basis for the invariant polynomials of psp(2r,C) = sp(2r,C) is

given by {p2i}i=1,...,r where p2i(P, φ) := tr(∧2iφ). The corresponding

PSp-Hitchin morphism takes the form:

HPSp,2r,rd :MPSp(2r, rd) −→ APSp(2r) =
r⊕
l=1

H0(C,L2l)

(P, φ) 7−→ (p2(P, φ), p4(P, φ), . . . , p2r(P, φ)).

As in the case of Sp(2r,C)-Higgs pairs, the curve Xa has an involution

defined by σ(x) = −x.

Proposition 3.9. Let a ∈ APSp(2r) be any characteristic, let X =

Xa
π−→ C be the associated spectral curve with involution σ : X → X.

Let d ∈ {0, 1}, d′ = rd+r(2r−1)` and denote with P(d′, n) = J(X, d′)×
Jd(C) the Cartesian product of the compactified Jacobian of degree d′

on X and the Jacobian of degree d on C, endowed with the projection

maps pX and pC on J(X, d′) and Jd(C) respectively. Let Ea′ be the

equalizer of the two maps

(HomOX (_,OX) ◦ pX)⊗ (π∗ ◦ pC) : P(d′, d)→ J(X, rd− r(2r − 1)`)

(σ∗ ◦ pX)⊗ π∗L1−2r : P(d′, d)→ J(X, rd− r(2r − 1)`).

The group J0(C) of line bundles of degree 0 on C acts on Ea as follows:

Ea × J0(C) −→ Ea
((M,M, λ), N) 7−→ (M⊗ π∗N,M ⊗N2, λN)

where λN is given by the composition of λ ⊗ idπ∗N with the canonical

isomorphisms:

(M⊗ π∗N)∗ ⊗ π∗(M ⊗N2) ∼−→M∗ ⊗ (π∗N)−1 ⊗ π∗M ⊗ (π∗N)2 ∼−→
∼−→M∗ ⊗ π∗M ⊗ π∗N λ⊗idπ∗N−−−−−→
∼−→ σ∗M⊗ π∗L1−2r ⊗ π∗N ∼−→
∼−→ σ∗(M⊗ π∗N)⊗ π∗L1−2r.
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Then, the fiber H−1

PSp,2r,rd
(a) of the PSp-Hitchin morphism is isomor-

phic, via the spectral correspondence, to the quotient Ea/J0(C).

The case of PSp(2r,C)-Higgs pairs of degree 0 deserves special at-

tention.

Proposition 3.10. Let a ∈ APSp(2r) be any characteristic, let

X = Xa
π−→ C be the associated spectral curve with involution σ : X →

X. Let d′ = r(2r−1)` and let Ea be the equalizer stack of the two maps:

_∗ := HomOX (_,OX) : J(X, d′)→ J(X,−d′)

σ∗_⊗ π∗L1−2r : J(X, d′)→ J(X,−d′)

The group stack J0(C)[2] of 2-torsion line bundles on C acts on Ea as

follows:

Ea × π∗J0(C)[2] −→ Ea
((M, λ), (π∗N, π∗ε)) 7−→ (M⊗ π∗N, λ⊗ π∗ε).

Then, the fiber H−1
PSp,2r,0

(a) of the PSp-Hitchin morphism is isomorphic,

via the spectral correspondence, to the quotient Ea/π∗J0(C)[2].

20



CHAPTER 1

Preliminaries

1. Rank and degree of coherent sheaves

Let X be any Noetherian scheme of pure dimension 1. In this

section, we study classes of coherent sheaves on X for which the notions

of rank on X are well defined. Moreover, we discuss the notions of

degree for sheaves with well-defined rank.

The simplest class is clearly given by vector bundles or, equivalently,

locally free sheaves of constant rank. If F is a locally free sheaf on X,

we say that F has (free) rank r if Fx ' O⊕rX,x for any point x of X.

For any coherent sheaf F on X, we give now the following defini-

tions.

Definition 1.1. The support of F is the closed set

Supp(F) = {x ∈ X|Fx 6= 0} ⊆ X.

The dimension of F is the dimension of its support and is denoted

dim(F).

Definition 1.2. The torsion subsheaf of F is the maximal sub-

sheaf T (F) ⊆ F of dimension 0. If F = T (F), we say that F is a

torsion sheaf. If T (F) = 0 we say that F is torsion-free.

Equivalently, F is torsion-free if dim(E) = 1 for any non-trivial

coherent subsheaf E ⊆ F , i.e. F is pure of dimension 1. For any sheaf

F , the quotient sheaf F/T (F) is either zero or torsion-free.

The first class of torsion-free sheaves with well-defined rank is given

by generalized vector bundles.

Definition 1.3. F is a generalized vector bundle if it is torsion-

free and there exists a positive integer r such that Fξ ' O⊕rξ for any

generic point ξ of X, where Fξ denotes the stalk of F at ξ. The integer
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r is called the rank of the generalized vector bundle F . A generalized

vector bundle of rank 1 is also called a generalized line bundle.

Clearly, a vector bundle of rank r is also a generalized vector bundle

of the same rank.

Remark 1.4. Generalized line bundles were introduced in [BE00]

in order to study limit linear series on a ribbon. As pointed out in

[EG95], generalized line bundles are strictly related to generalized di-

visors introduced indipendently by Hartshone in [Har86] (followed by

[Har94] and [Har07]). See also Chapter 2, 2 for details. The general-

ization to any rank r is due to [Sav19].

We introduce now the notion of rank for any coherent sheaf. De-

note with X1, . . . , Xs the irreducible components of X and with ξi

the generic point of each irreducible component Xi. Denote with

Ci = Xi,red the reduced subscheme underlying Xi for each i.

Definition 1.5. The multiplicity of Ci in X is defined as the pos-

itive integer:

multX(Ci) := `OX,ξi (OX,ξi).

where `OX,ξi denotes the length as OX,ξi-module.

Definition 1.6. (Rank and multirank of a coherent sheaf) The

rank of F on Xi is defined as the rational number

rkXi(F) =
`OX,ξi (Fξi)
`OX,ξi (OX,ξi)

.

The multirank of F on X is the n-uple r = (r1, . . . , rn) where ri is

the rank of F at Xi. The sheaf F has rank r on X if it has rank r at

each Xi.

Note that, since length of modules is additive in short exact se-

quences, the rank and multirank of coherent sheaves are additive in

short exact sequences too.

Proposition 1.7. A generalized vector bundle of rank r on X has

rank r as a coherent sheaf. If X is reduced, any torsion-free sheaf of

rank r is a generalized vector bundle of the same rank.
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Proof. The first statement follows from 1.6 and the fact that iso-

morphic modules have the same length. For the second assertion, note

that on an integral curve X there exists for any torsion-free sheaf F an

open dense subset U ⊂ X such that F|U is locally free, hence the stalk

of F at the generic point of X is a free OX,ξ-module of rank rkX(F).

If X is reducible, the assertion follows by considering any irreducible

component. �

Remark 1.8. There are in literature other notions for the rank of

a coherent sheaf on a irreducible component. A classical notion is the

reduced rank of F on Xi:

rankXi(F) = dimκ(ξi)(Fξi ⊗OX,ξ κ(ξi)).

This definition computes the rank of the sheaf restricted to its reduced

support; it agrees with the other definitions for generalized vector bun-

dles. However, there are cases when the reduced rank of a torsion-free

sheaf differs from its rank, as it happens for quasi-locally free sheaves

on a ribbon (see [Sav19, §1.4]). They also provide examples of torsion-

free sheaves which are not generalized vector bundles, even if their rank

is well defined.

The definition of rkH(F) comes at least from [Sch98, Définition

1.2], where it is given in the context of projective k-schemes with-

out embedded points. The notion of generalized rank introduced in

[Dre04] and [Sav19] is essentially equivalent. Finally, a common def-

inition in projective algebraic geometry is the polarized rank, that we

will discuss later on in the present section.

In order to introduce the degree of coherent sheaves, from now on

we assume that X is projective curve over a base field k. Recall

that the Euler characteristic of a coherent sheaf F is

χ(F) :=
∑

(−)i dimkH
i(X,F).

Definition 1.9. (Degree of a coherent sheaf) Suppose that F has

rank r on X. Then, the degree of F on X is defined as the fractional

number:

degF = χ(X,F)− rχ(X,OX).
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Remark 1.10. If the rank of F is integer, the degree is integer as

well. If X is integral, the degree of a sheaf is an integer and coincides

with the classical notion of degree for sheaves on integral curves.

The following technical lemma is very useful.

Lemma 1.11. Assume that X is irreducible. Let F be a coherent

sheaf of rank r on X and let E be a locally free sheaf of rank n on X.

Then

χ(X,F ⊗ E) = r deg(E) + nχ(X,F).

Proof. The proof is inspired by [Sta19, Tag 0AYV] and uses de-

vissage for coherent sheaves as stated in [Sta19, Tag 01YI]. Let P be

the property of coherent sheaves F on X expressing that the formula

of the Lemma holds. By additivity of rank and Euler characteristic

in short exact sequences, P satisfy the two-out-of-three property. The

integral subschemes Z of X are the reduced subscheme C with support

equal to X and closed points. For Z = C, the formula of the Lemma

for OC is:

χ(X, E ⊗ OC) =
deg(E)

multX C
+ nχ(X,OC).

This is true by definition of degree of E ⊗OC = E|C on C and the fact

that deg(E) = multX(C) deg(E|C). Then P(OC) holds. If i : Z ↪→ X

is a closed point, the formula of the Lemma is true for i∗OZ since it

is a torsion sheaf of rank 0 and χ(X, E ⊗ i∗OZ) = nχ(X, i∗OZ). Then

P(i∗OZ) holds. �

Let H be any polarization of X; then, the notion of polarized rank

and degree of sheaves can be defined. Denote with H|Ci the restriction

of H to the closed subscheme Ci ⊆ X. Since H is locally free of rank

1, the degree of H on X is related to the degrees of each H|Ci on Ci by

the formula:

degH =
s∑
i=1

multX(Ci) degH|Ci .

Definition 1.12. (Polarized rank and degree of a torsion-free sheaf)

Let H be any polarization of X with degree degH = δ and let F be a

torsion-free sheaf on X. The polarized rank and degree of F are the ra-

tional numbers rH(F) and dH(F) determined by the Hilbert polinomial
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of F with respect to H:

P (F , n,H) := χ(F ⊗OX(nH)) = δrH(F)n+ dH(F) + rH(F)χ(OX).

The polarized rank and degree of a sheaf depend strictly on the

degrees of the restrictions H|Ci , as the following theorem shows.

Theorem 1.13. Let H be a polarization of X and let F be a torsion-

free sheaf on X. The polarized rank of F is related to the multirank of

F by the formula

rH(F) =

∑s
i=1 rkXi(F) multX(Ci) degH|Ci∑s

i=1 multX(Ci) degH|Ci
.

Proof. Since the Hilbert polynomial of F with respect to H has

degree 1, its leading term can be computed in terms of Euler charac-

teristic as

χ(X,F ⊗OX(nH))− χ(X,F).

Since δ =
∑n

i=1 multX(Ci) degCi H is the degree of H on X, by Defini-

tion 1.12 we have to prove:

χ(X,F ⊗OX(nH))− χ(X,F) = n
s∑
i=1

rkXi(F) multX(Ci) degCi H.

First, we reduce to the case of X irreducible. Consider the exact se-

quence:

0→ F →
⊕
i

F|Xi → T → 0

where T is a torsion sheaf supported only at the intersections of the

irreducible components. Tensoring by nH, we obtain another exact

sequence:

0→ F ⊗OX(nH)→
⊕
i

(F ⊗OX(nH))|Xi → T ⊗OX(nH)→ 0.

By additivity of the Euler characteristic with respect to exact sequences

we have:∑
i

(
χ(Xi, (F ⊗OX(nH))|Xi)− χ(Xi,F|Xi)

)
=

= χ(X,F ⊗OX(nH))− χ(X,F) + χ(X,T ⊗OX(nH))− χ(X,T ).
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Since T has dimension 0, the characteristics χ(X,T ⊗ OX(nH)) and

χ(X,T ) are the same, hence:

χ(X,F⊗OX(nH))−χ(X,F) =
∑
i

(
χ(Xi, (F ⊗OX(nH))|Xi)− χ(Xi,F|Xi)

)
.

We are then reduced to prove the statement on each irreducible com-

ponent Xi. In other words we have to prove that, if X is a irreducible

(possibly non-reduced) curve with reduced structure C, then:

χ(X,F ⊗OX(nH))− χ(X,F) = n degX(H) rkX(F).

This is exactly the content of Lemma 1.11, with E = OX(nH). �

Corollary 1.14. Let F be any torsion-free sheaf with well-defined

rank. Then, its polarized rank rH(F) and degree dH(F) are equal re-

spectively to rkX(F) and degX(F) for any polarization H on X. f X

is irreducible, the rank and degree of a sheaf coincide with the polarized

counterparts, for any polarization.

Proof. The statement about the rank follows from Theorem 1.13,

where ri = r for each irreducible componentXi. To prove the statement

about the degree, note that for any polarization H:

dH(F) = χ(X,F)− rH(F)χ(X,OX).

If rH(F) = rk(F), then dH(F) = deg(F) by Definition 1.9. The last

statement follows from the fact that the rkX(F) is well-defined for any

torsion-free sheaf when X has only one irreducible component. �

Remark 1.15. For reducible curves, the definitions of polarized

rank and degree are the most general. As pointed out in [Lop04, §2],

being of polarized rank 1 for a torsion-free sheaf does not ensure that

the sheaf is supported on the whole curve. Moreover, there are cases

of torsion-free sheaves of polarized rank 1 whose polarized rank on the

restrictions to the irreducible components is different from 1 and not

an integer, even for reduced curves.

2. Moduli spaces of torsion-free sheaves “of rank 1”

In this section, X is a (possibly reducible, non-reduced) projective

curve over a base field k, with irreducible components X1, . . . , Xs. We

introduce the definition of several moduli spaces parametrizing classes
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of torsion-free sheaves “of rank 1” (with different meanings) that will

play an important role in the present work. We start by recalling the

definition of the moduli space parametrizing line bundles on X.

Definition 2.1. Let d ∈ Z be an integer number. The Jacobian

scheme of degree d on X is the algebraic scheme Jd(X) representing

the sheafification of the functor that associates to any k-scheme T the

set of isomorphism classes of line bundles of degree d on X ×k T . The

union of the Jacobians of all degrees is denoted as J(X).

Remark 2.2. The existence of the representing scheme Jd(X) is a

classical result in algebraic geometry, see for example [Kle05, Corollary

4.18.3]. Following a number of authors (see for example [MRV17a] or

[Kas15]) we prefer to use the term “Jacobian” instead of “Picard”

even if we consider line bundles in any degree; this is motivated only

by the simpler notation.

Since we are dealing with moduli spaces, we recall also the definition

of slope and stability for torsion-free sheaves.

Definition 2.3. Let H be a polarization on F and F be a torsion-

free sheaf on X with polarized rank rH(F) and polarized degree dH(F).

The slope of F with respect to H is defined as the rational number

µH(F) = dH(F)/rH(F).

A coherent sheaf F on X is H-stable (respectively H-semi-stable)

if it is torsion-free and for any proper subsheaf E ⊂ F the equality

µH(E) < µH(F) holds (respectively ≤).

We start from the more general moduli space, parametrizing for

torsion-free sheaves of polarized rank 1.

Definition/Lemma 2.4. Let H be a polarization on X and let

d ∈ Z be an integer number. The Simpson Jacobian stack of degree

d on X is the algebraic stack Jtf (X,H, d) such that for any k-scheme

T , Jtf (X, d)(T ) is the groupoid of T -flat coherent sheaves on X ×k T
whose fibers over T are torsion-free sheaves of polarized rank 1 and

polarized degree d on X ' X ×k {t} with respect to H.

The Simpson Jacobian of degree d is the projective scheme J tf (X,H, d)

which is the good moduli space representing S-equivalence classes of H-

semistable torsion-free sheaves of polarized rank 1 and polarized degree

d on X.
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The union of the Simpson Jacobians of all degrees is denoted Jtf (X,H)

(resp. J tf (X,H)).

Proof. The algebraicity of Jtf (X,H, d) follows from the algebraic-

ity of the stack of coherent sheaves on X (see [Lie06, 2.1] and [CW17,

Theorem 7.20]). The moduli space of semistable sheaves with fixed po-

larized rank and degree was constructed by Simpson in [Sim94a]. �

In the following proposition, we show that the multirank of sheaves

splits Jtf (X,H, d) in unions of connected components.

Lemma 2.5. Let H be a fixed polarization on X. For any r =

(r1, . . . , rs) ∈ Qs
≥0, let Wr ⊆ Jtf (X,H, d) be the substack parametrizing

torsion-free sheaves with multirank equal to r. Then {Wr|Wr 6= ∅}r∈Qs≥0

is a finite collection of pairwise disjoint substacks of Jtf (X,H, d) that

covers the whole space. Moreover, each Wr is open and closed, hence

union of connected components of Jtf (X,H, d).

Proof. The multi-rank of a sheaf is well-defined, hence the sub-

stacks Wr are pairwise disjoint.

Let F be a sheaf with polarized rank rH equal to 1. By Theorem

1.13 its multirank r must satisfy:

1 = rH(F) =

∑s
i=1 ri(t) multX(Ci) degCi H∑n

i=1 multX(Ci) degCi H
.

Since each ri is a non-negative fraction with integer numerator and

denominator equal to multX(Ci), the possible values for r form a finite

subset of Qs
≥0, once that H and rH are fixed. Then, only a finite number

of Wr is non-empty, hence {Wr|Wr 6= ∅} is a finite collection.

We claim that each Wr is closed; since the collection is finite and

the Wr’s are pairwise disjoint, this implies that each Wr is open and

closed, and hence union of connected components.

To prove that Wr is closed, let T be any k-scheme and let F be

any family of torsion-free sheaves of polarized rank 1 on X ×k T
π−→

T . Suppose that F has generically multirank r on X, meaning that

rkXi(F|π−1(η)) = ri for each irreducible component Xi of X and any

generic point η of T . Let t be any point in the closure of {η}. Since

the length is upper-semicontinuous, the rank of F|π−1(t) at each Xi is

a rational number ri(t) greater or equal than ri. On the other hand,
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F|π−1(t) have polarized rank 1; hence, thanks to Theorem 1.13, we can

write:

1 = rH(F) =

∑s
i=1 ri(t) multX(Ci) degCi H∑n

i=1 multX(Ci) degCi H
≥

≥
∑s

i=1 ri multX(Ci) degCi H∑n
i=1 multX(Ci) degCi H

= 1.

By difference we obtain:∑s
i=1(ri(t)− ri) multX(Ci) degCi H∑n

i=1 multX(Ci) degCi H
= 0.

Since all the terms of the expression are non-negative, the only possi-

bility is that ri(t) = ri for each i. We conclude that the whole family

F belongs to Wr. �

We come now to torsion-free sheaves with well-defined rank 1 on

X.

Definition/Lemma 2.6. Let d ∈ Z be an integer number. The

compactified Jacobian stack of degree d on X is the algebraic stack

J(X, d) such that for any k-scheme T , J(X, d)(T ) is the groupoid of

T -flat coherent sheaves on X ×k T whose fibers over T are torsion-free

sheaves of rank 1 and degree d on X ' X ×k {t}.
Let H be a polarization on X. The compactified Jacobian scheme of

degree d is the good moduli space J(X,H, d) representing S-equivalence

classes of H-semistable torsion-free sheaves of rank 1 and degree d on

X.

The union of the compactified Jacobians of all degrees is denoted

J(X) (resp. J(X,H)).

Proof. The property of having rank 1 on X implies that the po-

larized rank is equal to 1 for any polarization; moreover, the degree

is well defined and equal to the polarized degree for any polarization.

Fix any polarization H on X. Then, J(X, d) can be seen as the open

and closed substack W(1,...,1) of Jtf (X,H, d) (Lemma 2.5), and hence

is algebraic. The same argument holds for J(X,H, d), with the differ-

ence that the notion of semi-stability strictly depends on the choice of

H. �
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The following proposition shows that J(X,H, d) is actually a com-

pactification of Jd(X).

Proposition 2.7. For any polarization H on X, J(X,H, d) is a

projective scheme, union of connected components of J tf (X,H, d), and

contains Jd(X) as an open subscheme.

Proof. Since J(X, d) is an open and closed substack of Jtf (X,H, d),

then J(X,H, d) is an open and closed subscheme of J tf (X,H, d) and

union of connected components. It is non-empty, as it contains the

structure sheafOX . Moreover J tf (X,H, d) is projective, hence J(X,H, d)

is projective too. Finally, the condition of being locally free is open and

implies both stability and rank 1; hence, Jd(X) is an open subscheme

of J(X,H, d). �

We come now to the last moduli space, which parametrizes gener-

alized line bundles.

Definition/Lemma 2.8. Let d ∈ Z be an integer number. The

generalized Jacobian stack of degree d on X is the algebraic stack

GJ(X, d) such that, for any k-scheme T , GJ(X, d)(T ) is the groupoid of

T -flat coherent sheaves on X ×k T whose fibers over T are generalized

line bundles of degree d on X ' X ×k {t}.
Let H be a polarization on X. The generalized Jacobian scheme of

degree d is the good moduli space GJ(X,H, d) representing S-equivalence

classes of H-semistable generalized line bundles of degree d on X.

The union of the generalized Jacobians of all degrees is denoted

GJ(X) (resp. GJ(X,H)).

Proof. Generalized line bundles are torsion-free sheaves of rank

1; moreover, the condition of being generically locally free is open,

hence GJ(X, d) can be seen as an open substack of J(X, d). In partic-

ular, GJ(X, d) is an algebraic stack. Similarly, GJ(X,H, d) is an open

subscheme of J(X,H, d). �

To sum up, we defined a number of moduli spaces satisfying the

following chain of inclusions:

Jd(X)
(1)

⊆ GJ(X, d)
(2)

⊆ J(X, d)
(3)

⊆ Jtf (X,H, d),

30



and:

Jd(X)
(1′)

⊆ GJ(X,H, d)
(2′)

⊆ J(X,H, d)
(3′)

⊆ J tf (X,H, d).

Remark 2.9. Inclusions (1) and (2) (resp. (1′) and (2′)) above

are open embeddings; inclusion (3) (resp. (3′)) is an open and closed

embedding. In general they are strict and not dense, in the sense

that for any of them there exists a (possibly non-reduced or reducible)

curve X such that the closure of the smaller space in the bigger one

is contained strictly. Anyway, when X satisfies additional conditions,

some of the inclusions above are actually equalities.

• If X is irreducible, inclusion (3) (resp. (3)′) is an equality.

• If X is reduced, inclusion (2) (resp. (2′)) is an equality.

• If X is integral and smooth, inclusions (1), (2) and (3) (resp.

(1′), (2′) and (3′)) are equalities.

3. Moduli spaces of Higgs pairs

In this section, following [Sch14, Chapter 2] and [MRV17b, §10],

we review the definitions of Higgs pairs and G-Higgs pairs and of the

fibrations involving their moduli spaces. Throughout this section, C

denotes a fixed smooth curve over the field of complex numbers and L

a fixed line bundle on C with degree ` = degL.

3.1. Classical Higgs pairs. We begin with the case of classical

Higgs pairs.

Definition 3.1. A (L-twisted) Higgs pair (or simply a Higgs pair)

is a pair (E,Φ) consisting of a vector bundle E on C and a section

Φ ∈ H0(Σ,End(E) ⊗ L). The map Φ is called the Higgs field. The

degree and the rank of the Higgs pair are the degree and the rank of

the underlying bundle E.

Definition 3.2. The algebraic stackM(r, d) of all L-twisted Higgs

pairs (E,Φ) on C of rank r and degree d is endowed with a morphism,

called the Hitchin morphism, defined as:

Hr,d = H :M(r, d)→ A(r) =
r⊕
i=1

H0(C,Li)

(E,Φ) 7→ (a1(E,Φ), . . . , ar(E,Φ))
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where Li = L⊗i, ai(E,Φ) := (−1)i tr(∧iΦ) and A = A(r) is called the

Hitchin base.

Definition 3.3. A vector subbundle F ⊆ E such that Φ(F ) ⊆
F ⊗ L is said to be a Φ-invariant subbundle of E.

A Higgs pair (E,Φ) is said stable (respectively semi-stable) if for

each proper Φ-invariant subbundle F ⊂ E one has µ(F ) < µ(E) (re-

spectively µ(F ) ≤ µ(E)).

Definition 3.4. The good moduli space M(r, d) of S-equivalence

classes of semistable L-twisted Higgs pairs of rank r and degree d is

endowed with a flat projective morphism, called the Hitchin fibration:

Hr,d = H : M(r, d) = M → A = A(r) =
r⊕
i=1

H0(C,Li)

(E,Φ) 7→ (a1(E,Φ), . . . , ar(E,Φ)).

3.2. G-Higgs pairs. Let G be a complex reductive Lie group.

Definition 3.5. A (L-twisted) G-Higgs pair is a pair (P, φ) where

P is a principal G-bundle over C and the G-Higgs field φ is a section

of H0(ad(P )⊗ L).

Recall 3.6. When G
ρ
↪−→ GL(r,C), to any G-principal bundle P is

associated a vector bundle of rank r, in the following way. Then the

associated vector bundle is

E := P ×ρ Cr = (P × Cr)/ ∼

where (s · g, v) ∼ (s, ρ(g) · v) for any section s of P and any vector

v ∈ Cr. In terms of cocycles, if {Uα}A is a trivializing cover for P on

C and {gαβ} is a collection of transition elements, then E is the vector

bundle defined by the ρ(gαβ) as cocycles.

When, G = GL(r,C) the construction can be reversed as follows.

Given any vector bundle E of rank r on C, the frame bundle of all

ordered basis P = Fr(E) is a GL(r,C)-principal bundle such that E '
P ×ρ Cr.

Recall 3.7. Let P be any G-principal bundle and E = P ×ρ Cr

as above. The adjoint bundle ad(P ) is defined as P ×adG g where

g = Lie(G) is the Lie algebra associated to the Lie group G and adG :
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G → Aut(g) is the adjoint representation. If G
ρ
↪−→ GL(r,C), then the

embedding ρ induces at the level of Lie algebras a G-equivariant map

ψ : g ↪→ gl(r,C) = End(Cr); hence, we obtain a morphism

adP = P ×adG g→ P ×ψ(adG) End(Cr) = End(E).

When G = GL(r,C), the adjoint bundle adP is canonically isomor-

phic to End(E).

The two remarks above allows us to formulate the following:

Proposition 3.8. Let G
ρ
↪−→ GL(r,C) be a complex reductive Lie

group emebedding in GL(r,C). Then, any G-Higgs pair (P, φ) gives rise

via the associated bundle construction to a classical Higgs pair (E,Φ)

of rank r, where E = P ×ρ Cr and Φ is the image φ with respect to the

morphism ad(P )→ End(E) induced by ρ.

When G = GL(r,C), G-Higgs pairs are in one-to-one correspon-

dence, via the associated bundle construction, with classical Higgs pairs

of rank r.

Similarly to Higgs pairs, the moduli space of G-Higgs pairs admits

a morphism to an affine space, which plays an important role in its

study.

Definition 3.9. Let G be a complex reductive Lie group, let

δ ∈ π1(G) and let p1, . . . , pk be a homogeneous basis for the algebra

of invariant polynomials of the Lie algebra g of G, such that pi has

degree di. Then, the algebraic moduli stack MG(δ) of all L-twisted

G-Higgs pairs (P, φ) such that P has topological type δ is endowed

with a morphism, called the G-Hitchin morphism, defined as:

Hp1,...,pk
G,δ = HG,δ :MG(δ)→ AG =

k⊕
i=1

H0(C,Ldi)

(P, φ) 7→ (p1(φ), . . . , pk(φ)).

When G
ρ
↪−→ GL(r,C), the associated bundle construction induces a

morphism of algebraic stack:

MG(δ)
α−→M(r, d).

where d corresponds to δ by the canonical map π1(G)
π1(ρ)−−−→ π1(GL(r,C)).
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Definition 3.10. Let G
ρ
↪−→ GL(r,C). We denote as

MG(r, d) :=
∐

π1(ρ)(δ)=d

MG(δ)

the moduli space of G-Higgs pairs whose associated vector bundle is of

rank r and degree d. The G-Hitchin morphism onMG(r, d) is denoted

as HG,r,d. When G = GL(r,C), the moduli space of GL-Higgs pairs

MGL(r, d) is isomorphic via the associated bundle construction to the

moduli space M(r, d) of classical Higgs pairs of rank r and degree d.

Remark 3.11. For classical groups like SL, Sp, SO, the basis p1, . . . , pk

can be chosen such that there is a commutative diagram:

MG(r, d) M(r, d)

AG(r) ⊆ A(r).

α

HG,r,d Hr,d

Finally, the notion of stability can be defined for G-Higgs pairs,

such that it is compatible with the notion of stability for the associated

Higgs pairs when G ⊆ GL(r,C) (see [Sch13, Definition 2.4] for details).

Then, we have the following:

Definition 3.12. Let G be a complex reductive Lie group, let

δ ∈ π1(G) and denote with pi for i = 1, . . . , k a homogeneous basis for

the algebra of invariant polynomials of the Lie algebra g of G, with

degrees di. The good moduli space MG(δ) of S-equivalence classes

of semistable G-Higgs pairs (P, φ) such that P has topological type

δ is endowed with a flat projective morphism, called the G-Hitchin

fibration:

Hp1,...,pk
G,δ = HG,δ : MG(δ)→ AG =

k⊕
i=1

H0(C,Ldi)

(P, φ) 7→ (p1(φ), . . . , pk(φ)).

4. The spectral correspondence for Higgs pairs

In this section, following [MRV17b], [CL16] and [dC17], we re-

sume known facts about the spectral correspondence, which describes

any fiber of the Hitchin morphism H in terms of torsion-free rank-1

sheaves on an associated spectral curve.
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Let a ∈ A(r) be any characteristic. The spectral curve Xa
πa−→ C

is the projective scheme defined in the total space of L, P = P(OC ⊕
L−1)

p−→ C, by the homogeneous equation

xr + p∗(a1)xr−1y + · · ·+ p∗(ar)y
r = 0

where x is the section of OP (1)⊗ p∗(L) whose pushforward via p cor-

responds to the constant section (0, 1) of L ⊕OC and y is the section

of OP (1) whose pushforward via p corresponds to the constant section

(1, 0) of OC ⊕ L−1. Note that the restriction of y to Xa is everywhere

non-zero and hence the restriction of OP (1) to Xa is trivial. Moreover,

the restriction of x to Xa can be considered as a section of π∗a(L).

We can now compute the canonical sheaf of Xa.

Lemma 4.1. (Canonical sheaf of the spectral curve) The canonical

sheaf of Xa is equal to

ωXa = π∗a(ωc ⊗ Lr−1).

Proof. By [Har77, Chap. V, Lemma 2.10] the canonical sheaf of

P is equal to

ωP = OP (−2)⊗ p∗(ωC ⊗ L−1)

The canonical sheaf ofXa can be computed with the adjunction formula

ωXa = (ωP (Xa))|Xa =
(
OP (r − 2) + p∗(ωc ⊗ Lr−1)

)
|Xa

.

Since OP (1)|Xa is trivial, we conclude that

ωXa = π∗a(ωc ⊗ Lr−1).

�

Corollary 4.2. Denote with g the genus of C and with ` the

degree of L on C. Then

χ(Xa) = r(1− g)− r(r − 1)

2
`.

Proof. The pullback of a line bundle by a finite map has degree

equal to the degree of the bundle times the degree of the morphism.

Then

deg(ωXa) = r deg(ωC) + r(r − 1) deg(L) = 2r(g − 1) + r(r − 1)`.

The statement follows then by the fact that χ(Xa) = − deg(ωXa)/2. �
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Remark 4.3. The spectral curve Xa has pure dimension 1 and is

embedded in the smooth surface P , hence it has only locally planar

singularities. The Hitchin base A admits three notable open subsets

Asm ⊆ Aell ⊆ Areg ⊆ A, called respectively the smooth locus, the

elliptic locus and the regular locus, defined as:

Asm := {a ∈ A : Xa is smooth and connected},

Aell := {a ∈ A : Xa is integral},

Areg := {a ∈ A : Xa is reduced and connected}.

We come now to the spectral correspondence for Higgs pairs. The

following spectral correspondence is due to [Sch98], [CL16] and [dC17],

as a generalization of the spectral correspondence stated in [BNR89]

for smooth characteristics.

Proposition 4.4. (Spectral correspondence) Let a ∈ A(r) be any

characteristic and let Xa
πa−→ C be the associated spectral curve. Let

OC(1) be an ample line bundle on C; let OXa(1) := π∗a
(
OC(1)

)
be the

ample line bundle on Xa obtained by pullback and denote with H the

associated polarization on Xa.

(1) For any integer d, there is an isomorphism of stacks:

H−1
r,d(a) ∼−−−−→

Π
J(Xa, d

′),

where d′ = d+ r(1− g)− χ(OXa) = d+ r(r−1)
2

` and g = g(C)

is the genus of C. If M is a torsion-free sheaf of rank 1 on

Xa, then Π(M) := (E,Φ) where

E = πa,∗(M)

Φ = πa,∗(·x) : πa,∗(M)→ L⊗ πa,∗(M) ' πa,∗(π
∗
aL⊗M).

(2) A torsion-free sheaf of rank 1 M on Xa is H-semistable if

and only if the associated Higgs pair Π(M) is semistable on

C. Hence, the above correspondence yields an isomorphism of

schemes:

H−1
r,d (a) ' J(Xa, H, d

′).

Finally, in the following proposition, inspired by [BNR89, Remark

3.7], we show that the torsion-free sheafM corresponding to an Higgs
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pair (E,Φ) can be always resumed, up to twisting, as the eigenspace

of π∗Φ with eigenvalue x.

Proposition 4.5. Let a ∈ A(r) be any characteristic and let Xa
πa−→

C be the associated spectral curve. Let M∈ J(Xa, d
′) be a torsion-free

rank-1 sheaf on Xa corresponding to the Higgs pair (E,Φ) ∈ H−1
r,d(a)

on C. Then, the following exact sequence holds:

0→M⊗ π∗a(L1−r)→ π∗aE
π∗a(Φ)−x
−−−−−→ π∗aE ⊗ π∗aL

ev−→M⊗ π∗aL→ 0

where ev is induced by the evaluation map π∗aπa,∗(M)→M.

Proof. We first prove the exact sequence locally. Let U = SpecR ⊆
C be any open affine subset where L is trivial. The preimage V =

π−1(U) is then equal to Spec(R[x]/P (x)) where P (x) = xr + a1x
r−1 +

· · · + ar−1x + ar and the ai’s denote (with a slight abuse of notation)

the elements in R corresponding to the entries of a after choosing the

trivialization of L. Denote R[x]/P (x) = S and note that the inclusion

R ⊂ S makes S into an R-module with basis 1, x, . . . , xr−1.

Recall that E = πa,∗(M) and Φ = πa,∗(·x). Denote with M the S-

module corresponding toM on V = SpecS. The pushforward πa,∗(M)

corresponds on V to the restriction of scalars of M from S to R. Then,

π∗aE correspond on V to the S-module S ⊗RM , with the structure of

S-module given by multiplication on the left-hand side of the tensor

product. On the other hand, any element p(x) ∈ S acts on S ⊗R M
also on the right-hand side. We denote such action as

p(x) : S ⊗RM −→ S ⊗RM

q(x)⊗m 7−→ q(x)⊗ p(x) ·m.

Regarding the evaluation map, it can be defined at the level of S-

modules as

ev : S ⊗RM −→M

p(x)⊗m 7−→ p(x) ·m.

With this notation, we are left to prove that the following exact

sequence of S-modules holds:

0→M → S ⊗RM
Ψ=x−x−−−−→ S ⊗RM

ev−→M → 0.
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The proof of the exactness on the right follows exactly the proof of

[Bou89, III 10, Proposition 18], with the difference that S ⊗R M has

a finite S-basis.

To prove the exactness on the left, first consider the following mor-

phism of R-modules:

Q =
r−1∑
i=0

xi
r−1−i∑
j=0

xr−1−i−jaj : M −→ S ⊗RM

m 7−→
r−1∑
i=0

xi ⊗

(
r−1−i∑
j=0

(xr−1−i−jaj) ·m

)
where we put a0 = 1. We prove first that Ψ◦Q = 0. Let m ∈M be any

element. If we compute x · Q(m), recalling that xr = −
∑r−1

i=0 ar−ix
i,

we obtain

x ·Q(m) = x ·

(
r−1∑
i=0

xi ⊗

(
r−1−i∑
j=0

(xr−1−i−jaj) ·m

))
=

=
r−2∑
i=0

xi+1 ⊗

(
r−1−i∑
j=0

(xr−1−i−jaj) ·m

)
−

r−1∑
i=0

(
ar−ix

i
)
⊗m.

Changing i+ 1 with i in the first sum and moving the ar−i by linearity,

we obtain

x ·Q(m) =
r−1∑
i=1

xi ⊗

(
r−i∑
j=0

(xr−i−jaj) ·m

)
−

r−1∑
i=0

xi ⊗ (ar−i ·m) =

=
r−1∑
i=1

xi ⊗

(
r−i−1∑
j=0

xr−i−jaj + ar−i

)
·m− 1⊗ (ar ·m) =

=
r−1∑
i=1

xi ⊗

(
r−i−1∑
j=0

(xr−i−jaj) ·m

)
− 1⊗ (ar ·m).

Finally, recalling that −ar =
∑r−1

j=0 x
r−jaj, we can write

x ·Q(m) =
r−1∑
i=0

xi ⊗

(
r−i−1∑
j=0

(xr−i−jaj) ·m

)
.
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On the other hand, the computation of x(Q(m)) gives

x(Q(m)) = x

(
r−1∑
i=0

xi ⊗

(
r−1−i∑
j=0

(xr−1−i−jaj) ·m

))
=

=
r−1∑
i=0

xi ⊗

(
r−1−i∑
j=0

(xr−i−jaj) ·m

)
.

We conclude that Ψ(Q(m)) = x(Q(m)) − x · Q(m) = 0 for arbitrary

m ∈M ; then Ψ ◦Q = 0.

We can now prove that Q is a morphism of S-modules. Since Q is

R-linear by definition, it remains only to show that Q(x·m) = x·Q(m);

but it is clear by the definition of x that Q(x ·m) = x(Q(m)), which is

equal to x ·Q(m) by the previous computation.

Note also that Q is injective. Indeed, after choosing the monomials

1, x, . . . , xr−1 as a R-basis for S, we have a canonical isomorphism S '⊕r−1
i=0 Rx

i that induces an isomorphism S ⊗RM '
⊕r−1

i=0 (xi ⊗M). To

see that Q is injective, let m ∈ M be any element such that m 6= 0.

Then, the component of degree r − 1 of Q(m) is xr−1 ⊗ m, which is

different from 0; we conclude that Q(m) 6= 0.

We are left to prove that ker(Ψ) ⊆ Im(Q). Let z =
∑r−1

i=0 x
i ⊗mi

be any element in S ⊗RM such that Ψ(z) = 0 or, equivalently,

r−1∑
i=0

xi+1 ⊗mi =
r−1∑
i=0

xi ⊗ x ·mi.

Recalling that xr = −
∑r−1

i=0 ar−ix
i, by R-linearity we obtain

r−1∑
i=1

xi ⊗ (mi−1 − ar−i ·mr−1)− ar ⊗mr−1 =
r−1∑
i=0

xi ⊗ x ·mi.(1)

Let m := mr−1. Looking at the components in degree r − 1 of

Equation 1, we obtain

−a1 ·m+mr−2 = x ·m,

or, explicitely,

mr−2 = (x+ a1) ·m =
1∑
j=0

(x1−jaj) ·m
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Proceeding by induction on i decreasing from r − 2 to 1, suppose that

the equality

mi =
r−1−i∑
j=0

(xr−1−i−jaj) ·m

is proven. Then, looking at the components in degree i of Equation 1,

we obtain:

mi−1 − ar−i ·m = x ·mi,

hence:

mi−1 = x
r−1−i∑
j=0

(xr−1−i−jaj) ·m+ ar−i ·m =

=
r−i∑
j=0

(xr−i−jaj) ·m.

Hence, we conclude that mi =
∑r−1−i

j=0 (xr−1−i−jaj) ·m for any i from 0

to r − 1; in other terms:

z =
r−1∑
i=0

xi ⊗

(
r−1−i∑
j=0

(xr−1−i−jaj) ·m

)
= Q(m) ∈ Im(Q).

Finally, note that the map Q =
∑r−1

i=0 x
i
∑r−1−i

j=0 xr−1−i−jaj has been

defined at the level of S-modules, so it defines only a local map of

sheaves on V . In order to define a global map of sheaves, note that

any power of x and x, considered as global maps, introduces a twist

by π∗aL up to the same tensor power, and any aj introduces a twist by

π∗a(L
⊗j). The sum of these twistings in the definition of Q, for any i

and j in the sum, is equal to i+ (r − 1− i− j) + j = r − 1. Hence, in

order to extend the map Q globally, one has to consider a map

Q :M⊗ π∗a(L1−r)→ π∗aE

whose local expression equals the one of Q on any affine open V =

π−1
a (U) such that L is trivial on U . Then, such map fits the global

exact sequence:

0→M⊗ π∗a(L1−r)
Q−→ π∗aE

π∗a(Φ)−x
−−−−−→ π∗aE ⊗ π∗aL

ev−→M⊗ π∗aL→ 0.

�
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Remark 4.6. Proposition 4.5 suggests that the spectral correspon-

dence stated in [HP12, Proposition 6.1] is somehow misstated. Indeed,

by definition of the spectral curve, the morphism π∗aΦ−x has non-trivial

kernel at each point of Xa. In particular, any spectral data M fitting

in the exact sequence above needs to be supported on the whole Xa.

This is in general not true for torsion-free sheaves of polarized rank

equal to 1, even for connected planar curves, as showed in [Lop04, §2].
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CHAPTER 2

The Norm map on the compactified Jacobian

In this chapter we study how to generalize the Norm map for line

bundles to the compactified Jacobian stack. We look first at the geo-

metric counterpart of a smaller problem, regarding the direct image of

Cartier divisors and generalized divisors, in order to understand how

to proceed in the general situation of torsion-free sheaves with rank 1.

Let X
π−→ Y be any finite, flat morphism between embeddable noe-

therian schemes of pure dimension 1. In the first part of this chapter

(Sections 1, 2), we review the classical Norm map and the theory of

generalized divisors on curves, in relation with the objects introduced

in Chapter 1. In the second part (Section 3) we propose the definitions

of the direct and inverse image for generalized divisors and generalized

line bundles, and we study their properties. In the third part of the

chapter (Sections 4 and 5), restricting to the case when X and Y are

projective curves over a field, we consider the same notions for fami-

lies. On one hand, families of effective generalized divisors on a curve

X are essentially families of subschemes of finite length, hence they

are parametrized by the Hilbert scheme. On the other hand, families

of generalized line bundles on X are parametrized by the generalized

Jacobian GJ(X), and in this case the direct image map is called Norm

map in analogy with the Norm map defined between the Jacobians of

the curves. In both cases, we show that giving the definitions of the

direct image and the Norm map on such moduli spaces is possible only

when the curve Y is smooth. Finally, we show that the Norm map can

be extended under the same hypothesis to the compactified Jacobian

J(X).

Notation. In the rest of the chapter, in the absence of further spec-

ifications, by curve we refer to a noetherian scheme of pure dimension

1 which is embeddable (i.e. it can be embedded as a closed subscheme
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of a regular scheme). This implies that the canonical (or dualizing)

sheaf ω of the curve is well defined.

1. Review of the Norm map

We resume now the definition and properties of the direct and

inverse image for Cartier divisors and the Norm map for line bun-

dles, associated to a finite, flat morphism between curves. For a com-

plete treatment, the standard reference is [Gro67, §21] together with

[Gro61, §6.5]. We start with the definition of the norm at the level of

sheaves of algebras.

Let π : X → Y be a finite, flat morphism between curves of degree

n. Since Y is noetherian, this is equivalent to require that f is finite

and locally free, i.e. that π∗OX is a locally free OY -algebra [Sta19,

Tag 02K9].

Definition 1.1. The sheaf π∗OX is endowed with a homomor-

phism of OY -modules, called the norm and defined on local sections

by:

NY/X : π∗OX −→ OY
s 7−→ det(·s)

where ·s : π∗OX → π∗OX is the multiplication map induced by s and

det(·s) is given locally by the determinant of the matrix with entries

in OY associated to ·s.

By the standard properties of determinants, for local sections s, s′

of π∗OX and any section µ of OY , we have:

NY/X(s · s′) = NY/X(s) · NY/X(s′), NY/X(µs) = µnNY/X(s).

(2)

Before giving the definitions of the present section, we need a tech-

nical lemma.

Lemma 1.2. Let π : X → Y be a finite, flat morphism of degree n

between curves and let L be an invertible OX-module. Then, π∗L is an

invertible π∗OX-module and there exists an open affine cover {Vi}i∈I
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of Y s.t. π∗OX is trivial on each Vi and π∗L is trivial both as a π∗OX-

module and as an OY -module on each Vi.

Proof. By [Sta19, Tag 02K9], π∗OX is a locally free OY -module;

denote with {Wα}α∈A an open affine cover such that π∗OX |Wα
' OnY |Wα

for each α ∈ A. By [Gro61, Proposition 6.1.12], π∗L is an invertible

π∗OX-module; denote with {W ′
β}β∈B an open affine cover such that

π∗L|W ′β ' π∗OX |W ′β for each β ∈ B. Let {Vα,β = Wα ∩W ′
β}(α,β)∈A×B be

a common refinement. Then, for I = A × B, {Vi}i∈I is an open affine

cover of Y such that π∗OX is trivial on each open of the cover and π∗L
is trivial both as π∗OX-module and as OY -module on each open. �

1.1. Direct and inverse image of Cartier divisors. We recall

now the definitions of direct and inverse image for Cartier divisors. For

any curve X, denote with KX the sheaf of total quotient rings of the

curve. Recall that the set of Cartier divisors on X is the set of global

sections of the quotient sheaf of multiplicative groups K∗X/O∗X :

CDiv(X) = Γ(X,K∗X/O∗X).

Although the group operation on K∗X/O∗X is multiplication, the group

operation on CDiv(X) is denoted additively. The group of Cartier di-

visors of X contains the subgroup Prin(X) of principal divisors defined

as the image of the canonical homomorphism

Γ(X,K∗X) −→ Γ(X,K∗X/O∗X).

It is well known [Gro67, §21.2] that the set of Cartier divisors is in

one-to-one correspondence with the set of invertible fractional ideals,

i.e. the set of subsheaves I ⊆ KX that are also invertible OX-modules

[Gro67, Proposition 21.2.6]. If D ∈ Γ(X,K∗X/O∗X) is represented by

an open cover {Ui}i∈I and a collection of sections fi ∈ Γ(Ui,K∗X) such

that fi/fj ∈ Γ(Ui ∩ Uj,O∗X), the corresponding fractional ideal ID
is the sub OX-module of KX equal to OX|Ui · fi on any Ui.

1 Under

this correspondence, the sum of Cartier divisors corresponds to the

multiplication of fractional ideals.

1Differently from Grothendieck’s EGA, we pick fi instead of f−1
i . This does not

affect the other results.
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Definition/Lemma 1.3. Let π : X → Y be a finite, flat morphism

between curves and let π] : OY → π∗OX be the associated canonical

map of sheaves of modules.

Let D ∈ CDiv(X) be a Cartier divisor on X corresponding to

the invertible fractional ideal I and let {Vi}i∈I be an affine cover as

in Lemma 1.2. Then, on each Vi, π∗I|Vi is equal to the subsheaf

hi · (π∗OX)|Vi of (π∗KX)|Vi generated by a meromorphic regular sec-

tion hi = fi/gi, with fi, gi ∈ Γ(Vi, π∗O∗X). The direct image of D,

denoted π∗(D), is the Cartier divisor on Y corresponding to the frac-

tional ideal generated on any Vi by the meromorphic regular section

NY/X(fi)/NY/X(gi) ∈ Γ(Vi,KY ).

Let M ∈ CDiv(Y ) be a Cartier divisor on Y corresponding to the

invertible fractional ideal J ⊆ KY , and let {Vi}i∈I be an affine cover of

Y such that, on each Vi, J|Vi is equal to the fractional ideal of OY |Vi-
modules generated by a meromorphic regular section ui = si/ti with

si, ti ∈ Γ(Vi,O∗Y ). The inverse image of M , denoted π∗(M), is the

Cartier divisor on X corresponding to the fractional ideal generated on

any Ui = π−1(Vi) by the meromorphic regular section π](si)/π
](ti) ∈

Γ(Ui,KX).

Proof. The definition of direct image is a reformulation of the

one given in [Gro67, §21.5.5]. The fact that NY/X(fi)/NY/X(gi) is a

regular meromorphic section follows from the discussion in [Gro67,

§21.5.3]; the definition is independent of the choice of the hi’s since the

norm of sheaves is multiplicative.

The definition of inverse image is a reformulation of [Gro67, Def-

inition 21.4.2], obtained as a consequence of [Gro67, §21.4.3], to-

gether with the result of [Gro67, Proposition 21.4.5] that ensures that

π](si)/π
](ti) is regular. �

Proposition 1.4. Let π : X → Y be a finite, flat morphism of

curves of degree n. The direct and inverse image for Cartier divisors

induce homorphisms of groups:

π∗ : CDiv(X) −→ CDiv(Y )

π∗ : CDiv(Y ) −→ CDiv(X),

such that π∗ ◦ π∗ is the multiplication map by n.
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Proof. The direct image is a homomorphism thanks to [Gro67,

§21.5.5.1], while the inverse image is a homomorphism as a consequence

of [Gro67, Definition 21.5.5.1]. The result on π∗ ◦ π∗ is stated in

[Gro67, Proposition 21.5.6] �

1.2. Norm of line bundles. We come now to the definition of

the Norm map for invertible OX-modules.

Definition/Lemma 1.5. Let π : X → Y be a finite, flat morphism

between curves and let L be an invertible OX-module. Let {Vi}i∈I be

an affine cover of Y as in Lemma 1.2. In particular, there is for any

i ∈ I an isomorphism λi : (π∗L)|Vi → (π∗OX)|Vi . For any i, j ∈ I, the

isomorphism ωij := λi ◦ λ−1
j can be interpreted as a section of π∗OX

over Vi ∩ Vj. The collection of norms {NY/X(ωij)}i,j∈I is a 1-cocycle

with values in O∗Y .

The cocyle {NY/X(ωij)}i,j∈I defines up to isomorphism an invertible

OY -module, which is called the Norm of L relative to π and is denoted

as Nmπ(L) or NmY/X(L).

Proof. If L′ is an invertible OX-module isomorphic to L through

an isomorphism h : L′ → L, then a local trivialization for π∗L′ over Vi

is given by λi ◦ (π∗h). Running over all i ∈ I, the resulting 1-cocycle

{NY/X(λi ◦ π∗h ◦ π∗h−1 ◦ λ−1
j )}i,j∈I is the same as for L. �

Recall that, for any curve X, the Picard group of X is the set

Pic(X) of isomorphism classes of invertible OX-modules, endowed with

the operation of tensor product.

Proposition 1.6. Let π : X → Y be a finite, flat morphism of

curves of degree n. The Norm and the inverse image map for line

bundles induce homomorphism of groups:

Nmπ : Pic(X) −→ Pic(Y )

π∗ : Pic(Y ) −→ Pic(X),

such that Nmπ ◦π∗ is the n-th tensor power.

Proof. The inverse image for line bundles is a homomorphism

since it commutes obviously with tensor products. The other results

follow from (2), using the fact that tensor product of line bundles cor-

responds to multiplication at the level of defining cocycles. �
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Proposition 1.7. Let π : X → Y be a finite, flat morphism be-

tween curves. For any invertible OX-modules L, we have

Nmπ(L) ' det(π∗L)⊗ det(π∗OX)−1.(3)

Proof. See [HP12, Corollary 3.12]. �

As we show in the next proposition, the direct image for Cartier

divisors and the Norm map for line bundles are related, as well as the

inverse image maps. Recall that, on any curve X, the Picard group

is canonically isomorphic to the group of Cartier divisors modulo the

subgroup Prin(X) of principal divisors. This gives rise to a canonical

quotient of groups:

qX : CDiv(X) −→ CDiv(X)/Prin(X) = Pic(X)

D 7−→ ID.

Proposition 1.8. Let π : X → Y be a finite, flat morphism be-

tween curves. The direct and inverse image for Cartier divisors are

compatible via the quotient maps qX and qY respectively with the Norm

and the inverse image map for line bundles; i.e. the following diagrams

of groups are commutative:

CDiv(X) CDiv(Y )

Pic(X) Pic(Y )

π∗

qX qY

Nmπ

CDiv(Y ) CDiv(X)

Pic(Y ) Pic(X).

π∗

qY qX

π∗

Proof. The commutativity of the first diagram follows from cor-

respondence between D and ID and the definitions of π∗ and Nmπ.

The second diagram is commutative as consequence of [Gro67, Pic-

ture 21.4.2.1] together with [Gro67, Proposition 21.4.5]. �

We are finally interested in reviewing the Norm map for families

of line bundles.2 To study families of line bundles, we assume that

X and Y are projective curves over a base field k and that

π : X → Y is a finite, flat morphism of degree n defined over k.

Families of line bundles are parametrized by the Jacobian schemes of

X and Y (denoted J(X) and J(Y ), see Chapter 1, Section 2).

2For the sake of completeness, we note that a complete discussion regarding families
of Cartier divisors and their direct and inverse images is done in [Gro67, §21.15].
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Definition/Lemma 1.9. Let π : X → Y be a finite, flat morphism

of projective curves over a base field k. For any k-scheme T , the Norm

map for line bundles associated to π is defined on the T -valued points

of the Jacobian of X as:

Nmπ(T ) : J(X)(T ) −→ J(Y )(T )

L 7−→ det (πT,∗(L))⊗ det (πT,∗OX×kT )−1 .

where πT : X ×k T → Y ×k T is induced by pullback from π.

Proof. We need to check that the map is well defined. Since L is

a line bundle on X ×k T , its pushforward πT,∗(L) is a locally free sheaf

of rank n on Y ×k T , as for πT,∗OX×kT . Taking determinants produces

line bundles, so det (πT,∗(L))⊗ det (πT,∗OX×kT )−1 is a well-defined line

bundle on Y ×k T . The whole construction is functorial, so the above

definition gives a well-defined morphism of schemes

Nmπ : J(X) −→ J(Y ).

�

2. Review of generalized divisors

In this section, we review known facts about generalized divisors

and generalized line bundles on curves. Moreover, we compare their

moduli spaces with the compactified Jacobian.

Remark 2.1. The theory of generalized divisors is developed by

Hartshorne in his papers [Har86], [Har94] and [Har07], in order to

generalize the notion of Cartier divisor on schemes satisfying condi-

tion S2 of Serre. Since we are dealing with schemes of dimension 1,

the condition S2 of Serre coincides with the condition S1, which in

turn coincides with the fact of not having embedded components (i.e.

embedded points). In particular, any scheme of pure dimension 1 is

also S1, and hence S2. Similarly, a coherent sheaf on a curve satisfies

condition S2 if and only if it is torsion-free.

2.1. Generalized divisors.

Definition 2.2. Let X be a curve and let KX be the sheaf of total

quotient rings on X. A generalized divisor on X is a nondegenerate

fractional ideal of OX-modules, i.e. a subsheaf I ⊆ KX that is a
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coherent sheaf of OX-modules and such that Iη = KX,η for any generic

point η ∈ X. It is effective if I ⊆ OX . It is Cartier if I is an

invertible OX-module, or equivalently locally principal. It is principal

if I = OX · f (also denoted (f)) for some global section f ∈ Γ(X,K∗X).

The set of generalized divisors on X is denoted with GDiv(X),

the subset of Cartier divisors with CDiv(X) and the set of principal

divisors with Prin(X).

Using the usual notion of subscheme associated to a sheaf of ideals,

the set GDiv+(X) of effective generalized divisors on X is in one-to-one

correspondence with the set of closed subschemes D ⊂ X of pure codi-

mension one (i.e. of dimension zero). With a slight abuse of notation,

also for non-effective divisors, we denote with D the generalized divi-

sor and we refer to I (or ID) as the fractional ideal of D (also called

defining ideal of D, or ideal sheaf of D if D is effective).

Let D1, D2 be generalized divisors on X, with fractional ideals

I1, I2. The sum D1 + D2 is the generalized divisor associated to the

fractional ideal I1 · I2 ⊆ KX . The sum is commutative, associative,

with neutral element 0 defined by the trivial ideal OX . The inverse of

a generalized divisor D associated to I is the generalized divisor −D
associated to the fractional ideal I−1, i.e. the sheaf which on any open

subset U of X is defined as {f ∈ Γ(U,KX) | I(U) · f ⊆ OX(U)}.
The inverse operation behaves well with the sum only for Cartier

divisors. For any pair of generalized divisors D,E on X with E Cartier,

−(D + E) = (−D) + (−E), but D + (−D) = 0 if and only if D is a

Cartier divisor. As a consequence, the set GDiv(X) of all generalized

divisors over X endowed with the sum operation is not a group, but

the subset CDiv(X) of Cartier divisors is. The set Prin(X) of principal

divisors is a subgroup of CDiv(X) and both the groups act by addition

on the set GDiv(X).

Tthe following Lemma, inspired by [Har94, Proposition 2.11], shows

that any generalized divisor is equal to the sum of an effective gener-

alized divisor and the inverse of an effective Cartier divisor, as

Lemma 2.3. Let X be a curve and let D ∈ GDiv(X) be any gener-

alized divisor on X. Then, there exist an effective generalized divisor

D′ and an effective Cartier divisor E on X such that D = D′ + (−E).
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Proof. Cover X by open affines Ui = Spec(Ai), i = 1, . . . , r. For

each i, denote with Ii the fractional ideal of D restricted to Ui. This is

a finitely generated Ai-module, so there exists a nonzero-divisor fi ∈ Ai
such that f ·Ii ⊆ A. Let Yi ⊂ Ui be the closed subscheme defined by fi,

which is an effective Cartier divisor of Ui; after the composition with

Ui ↪→ X, Yi becomes an effective Cartier divisor of X. Now, the sum of

divisors D+
∑r

i=1 Yi is effective as it is sum of effective divisors on each

Ui. By putting E =
∑r

i=1 Yi and D′ = D + E we get the result. �

Two generalized divisorsD1, D2 overX are linearly equivalent (writ-

ten D1 ∼ D2) if there is a divisor (f) ∈ Prin(X) such that D1 + (f) =

D2. We define the generalized Picard of X as the set of divisors on X

modulo linear equivalence:

GPic(X) = GDiv(X)/Prin(X).

We have the following commutative diagram of sets, where the vertical

maps are quotients by Prin(X):

CDiv(X) ⊆ GDiv(X)

Pic(X) ⊆ GPic(X)

Taking inverse and sums preserve linear equivalence, so the two op-

erations are well defined also on GPic(X) and the subset Pic(X) ⊆
GPic(X) is a group that acts on GPic(X) by addition. For a curve X,

the condition GDiv(X) = CDiv(X) is also equivalent to GPic(X) =

Pic(X), which is also equivalent to the curve X being smooth.

The set GPic(X) has an alternative description in terms of gen-

eralized line bundles. Let D be a generalized divisor on X; then, its

fractional ideal I is a generalized line bundle. If D′ is another gen-

eralized line bundle, it is linearly equivalent to D if and only if its

fractional ideal I ′ is a generalized line bundle isomorphic to X as an

OX-module. Viceversa, any generalized line bundle F on X is iso-

morphic to the fractional ideal of some generalized divisor D [Har07,

Proposition 2.4]. Then, GPic(X) can be also defined as the set of gen-

eralized line bundles of X, up to isomorphism. Under this description,

classes of Cartier divisors correspond to isomorphism classes of line
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bundles, and the operations of sum by a Cartier divisor and inverse

of a divisor are replaced with tensor product and taking dual of the

corresponding sheaves.

2.2. Degree of generalized divisors. We now assume that X

is a projective curve over a base field k. In this case, the notion

of degree of a divisor can be introduced.

Definition/Lemma 2.4. Let D ∈ GDiv+(X) be an effective gen-

eralized divisor on X with ideal sheaf ID ⊆ OX , and let x ∈ X be any

point of X in codimension 1. We define the degree of D at x as the

non-negative integer:

degx(D) = `OX,x
(
OX,x/ID,x

)
[κ(x) : k].

The degree of any generalized divisor D ∈ GDiv(X) at x is defined

as degx(D) = degx(E)−degx(F ), where D = E−F with E,F effective

generalized divisors and F Cartier by Lemma 2.3.

The degree of D on X (also denoted as deg(D) when there is no

ambiguity) is equal to the sum of the degrees of D at all points of X

in codimension 1:

degX(D) =
∑
x cod 1

degx(D).

Proof. First, note that the local ring OX,x/ID,x in nonzero if and

only if x is in the support of D. In such case the local ring has Krull

dimension 0, so it is Artinian and hence has finite length.

The definition of degree at a point of any generalized divisor is well-

given thanks to [Har94, Lemma 2.17], and degx(−D) = − degx(D).

Finally, the supporty of D contains only finitely many points, hence

the degree of D on X is a well-defined integer. �

The degree of a generalized divisor is strictly related to the degree

of its fractional ideal, as the following proposition shows.

Proposition 2.5. Let D be a generalized divisor on X with frac-

tional ideal ID ⊆ KX . Then, the degree of ID as a torsion-free sheaf

is well defined and equal to − degX(D). Moreover, linearly equivalent

divisors have the same degree on X.
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Proof. The fractional ideal ID is a generalized line bundle, hence

it has rank 1 on X and well-defined degree as a torsion-free sheaf. In

order to compute deg(ID) consider the short exact sequence

0→ ID → OX → OX/ID → 0.

By definition of degree, deg(ID) = χ(ID) − χ(OX). Then, by addi-

tivity of Euler characteristic with respect to exact sequences, we de-

duce that deg(ID) = −χ(OX/ID). Since OX/ID has dimension 0,

its Euler characteristic is equal to h0(OX/ID) := dimkH
0(X,OX/ID).

The support of OD = OX/ID is by definition the support of D and

H0(X,OX/ID) = ⊕x∈SuppDOD,x. Then we compute:

deg(ID) = −χ(OX/ID) = −
∑

x∈SuppD

dimkOD,x =

= −
∑

x∈SuppD

dimκ(x)

(
OD,x

)
[κ(x) : k] =

= −
∑

x∈SuppD

`OX ,x
(
OD,x

)
[κ(x) : k] =

= − degX(D).

Consider now a generalized divisor D with fractional ideal ID and let

D = E − F with E,F effective and F Cartier by Lemma 2.3. Since F

is effective, consider first the short exact sequence:

0→ IF → OX → T → 0(4)

where T is a sheaf of dimension 0. Since F is Cartier, we can tensor

by I−1
F to obtain:

0→ OX → I−1
F → I

−1
F ⊗ T → 0.(5)

Using addivity of Euler characteristics in the exact sequences 4 and 5

and the fact that χ(I−1
F ⊗ T ) = χ(T ), we see that:

χ(I−1
F )− χ(OX) = χ(OX)− χ(IF ).

Also E is effective, hence there is a short exact sequence:

0→ IE → OX → Q→ 0(6)
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where Q is a sheaf of dimension 0. Tensoring again by I−1
F we obtain:

0→ ID → I−1
F → I

−1
F ⊗Q→ 0(7)

where ID ' IE⊗I−1
F since D = E−F and F is Cartier. Using addivity

of Euler characteristics in the exact sequences 6 and 7 and the fact that

χ(I−1
F ⊗Q) = χ(Q), we can compute the degree of ID:

deg(ID) = χ(ID)− χ(OX) =

= χ(I−1
F )− χ(I−1

F ⊗Q)− χ(OX) =

= χ(I−1
F )− χ(Q)− χ(OX) =

= χ(I−1
F )− 2χ(OX) + χ(IE) =

= χ(OX)− χ(IF ) + χ(IE)− χ(OX).

Since E and F are effective, we conclude that:

deg(ID) = −(degX(E)− degX(F )) = − degX(D).

To prove the last statement, let D and D′ be linearly equivalent divi-

sors; then, their fractional ideal ID and ID′ are isomorphic. Hence,

degX(D) = − deg(ID) = − deg(I ′D) = degX(D′).

�

2.3. Moduli of generalized divisors and the Abel Map. We

start with considering the moduli space for generalized divisors. Since

we are dealing with families of sheaves and related moduli problems,

we assume that X is a projective curve over a base field k.

Remark 2.6. In general GDiv(X) cannot be represented by a geo-

metric object of finite type, even for fixed degrees. Also, it is not easy

to give a correct definition for flat families of non-effective generalized

divisors. Hence, only families of effective divisors are considered, using

the Hilbert scheme.

Definition 2.7. The Hilbert scheme of effective generalized di-

visors of degree d on X is the Hilbert scheme HilbdX parametrizing

0-dimensional subschemes of X, with Hilbert polynomial equal to a

costant integer d. Recall that, given a k-scheme T , a T -valued point of

HilbdX is a T -flat subscheme D ⊂ X ×k T such that D restricted to the

fiber over any t ∈ T is a 0-dimensional subscheme of X ×k {t} ' X, of
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degree d. In other words, the corresponding ideal sheaf ID ⊂ OX×kT
restricted to any fiber over T defines a generalized divisor Dt on X.

The Hilbert scheme of effective Cartier divisors of degree d is the

open subscheme `Hilb
d
X ⊆ HilbdX parametrizing subschemes of X of

degree d whose ideal sheaf is locally principal.

Note that `Hilb
d
X = HilbdX when X is smooth.

Families of effective generalized divisors can be added with families

of Cartier divisors, giving rise to a morphism:

HilbdX × `Hilb
e

X −→ Hilbd+e
X

(D,E) 7−→ Z(ID · IE).

Effective generalized divisors on X up to linear equivalence are gen-

eralized line bundles, hence they are parametrized by the generalized

Jacobian GJ(X).

By Remark 2.9, the Jacobian scheme J(X) of X is contained in

GJ(X) as an open subscheme. The operations of tensor products and

taking inverse are well defined on J(X) and make J(X) into an alge-

braic group, acting on GJ(X) via tensor product:

GJ(X)× J(X) −→ GJ(X)

(L, E) 7−→ L ⊗ E .

Finally, we recall the definition of the geometric Abel map. Let

HilbX =
⊔
d≥0 HilbdX be the Hilbert scheme of effective generalized

divisor of any degree on X.

Definition 2.8. Let M be a line bundle of degree e on X. The

(M-twisted) Abel map of degree d is defined as:

AdM : HilbdX −→ GJ(X,−d+ e)

D 7−→ ID ⊗M.

The M -twisted Abel map in any degree is defined similary as a map:

AM : HilbX −→ GJ(X)

The restriction ofAdM to `Hilb
d
X takes values in J(X,−d+e). Taking

care of the twisting, the Abel map is equivariant with respect to the

sum of effective Cartier divisors: for any pair of line bundles M and N
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on X and for any D ∈ HilbX , E ∈ `HilbX ,

AM⊗N(D + E) ' AM(D)⊗AN(E).

3. The direct and inverse image for generalized divisors and

generalized line bundles

Let π : X → Y be a finite, flat morphism of degree n between

curves. In the present section, we extend the notion of direct and

inverse image from Cartier divisors to generalized divisors and gener-

alized line bundles.

3.1. The Fitting ideal. A fundamental tool for the definition of

the direct image for generalized divisors is the Fitting ideal of a module

(and of a sheaf of modules), of which we recall here the definition. See

[Eis95, Chapter 20], [Vas04, Chapter 2.4] and [EH06, Chapter V.1.3]

for a detailed treatment.

Definition/Lemma 3.1. Let X be a scheme and let F be a co-

herent sheaf on X. Let

E1
ψ−−−−→ E0 −→ F → 0

be any finite presentation of F , with E0 locally free of rank r. The

0-th Fitting ideal of F , denoted Fitt0(F), is defined as the image of the

map: ∧rE1 ⊗ (
∧rE0)

−1 Ψ−−−−→ OX
induced by

∧r ψ :
∧r E1 →

∧r E0 and is independent of the choiche

of the presentation for F . If E1 is locally free, then ψ can be locally

represented by a matrix and the 0-th Fitting ideal is generated locally

by the minors of size r of such matrix, with the convention that the

determinant of the 0× 0 matrix is 1.

Proof. The definition is the sheaf-theoretic reformulation of [Eis95,

Corollary-Definition 20.4]. �

As a consequence of the definition, the formation of Fitting ideals

commutes with restrictions and with base change [Eis95, Corollary

20.5].
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Definition/Lemma 3.2. Let X be a scheme and F be a coherent

sheaf on X. The 0-th Fitting scheme of F is the subscheme of X

defined as the zero locus of Fitt0(F) ⊆ OX in X. The 0-th Fitting

scheme contains the support of F , as a closed subscheme with the

same underlying topological space.

Proof. The result is stated in [EH06, Definition V-10]. �

3.2. The direct image. Here, we define the notion of direct im-

age for generalized divisors. First, we start with the case of an effective

generalized divisor. LetD ∈ GDiv+(X) be an effective generalized divi-

sor on X, with ideal sheaf I. Since π is finite and flat, the pushforward

π∗(OX/I) is a coherent OY -module.

Definition/Lemma 3.3. (Direct image of an effective generalized

divisor) Let D ∈ GDiv+(X) be an effective generalized divisor on X,

with ideal sheaf I ⊆ OX . The direct image of D with respect to π,

denoted with π∗(D), is the effective generalized divisor on Y defined

by the 0-th Fitting ideal of π∗(OX/I).

Proof. Let us prove that the 0-th Fitting ideal of π∗(OX/I) de-

fines an effective generalized divisor on Y . First note that Fitt0 π∗(OX/I)

is a subsheaf of OY , and is a coherent OY -module; hence, it is an effec-

tive fractional ideal. To prove that Fitt0 π∗(OX/I) is nondegenerate,

consider a generic point η ∈ Y . Since the map π is dominant, the

preimage π−1(η) = {ηi} is a finite set of generic points of X. Then,

Fitt0(π∗(OX/I))η = Fitt0(π∗(OX/I)η) =

= Fitt0((0)η) = OX,η = KX,η.

�

Lemma 3.4. (Linearity w.r.t effective Cartier divisors) Let D ∈
GDiv+(X) be an effective generalized divisor and E ∈ CDiv+(X) be

an effective Cartier divisor on X. Then, π∗(E) is a Cartier divisor on

Y and π∗(D + E) = π∗(D) + π∗(E).

Proof. Let J be the ideal sheaf of E and let {Vi} be an open

affine cover of Y such that π∗OX and π∗J are trivial on each Vi as

in Lemma 1.2. The sheaf π∗OX/J is locally presented by the exact
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sequence:

(π∗OX)|Vi
·hi−→ (π∗OX)|Vi → (π∗OX/J )|Vi → 0

where hi ∈ Γ(π−1(Vi),OX) is a local generator for J ⊂ OX on π−1(Vi).

Since (π∗OX)|Vi is a free (OY )|Vi-module of rank n, there is a n × n

matrix Hi with entries in (OY )|Vi representing the multiplication by

hi. Then, by Definition 3.1, the 0-th Fitting ideal of π∗OX/J is the

principal ideal generated locally by det(·hi) on Vi. In particular, π∗(E)

is a Cartier divisor.

Let I be the ideal sheaf of D, so that I · J is the ideal sheaf of

D + E. To prove the remaining part of the thesis, we show that the

equality

Fitt0(π∗OX/IJ ) = Fitt0(π∗OX/I) · Fitt0(π∗OX/J )

holds locally around any point y ∈ Y . Let V be an open neighborhood

of y such that (π∗OX)|V is a free OY -module, π∗I|V is generated by sec-

tions s1, . . . , sr of Γ(V, π∗OX) and π∗J|V is a principal ideal generated

by a section h of Γ(V, π∗OX). In terms of exact sequences:

(π∗OX)⊕r|V
(·s1,...,·sr)−−−−−−→ (π∗OX)|V → (π∗OX/I)|V → 0

(π∗OX)|V
·h−→ (π∗OX)|V → (π∗OX/J )|V → 0

The ideal sheaf I · J is equal to J · I, which is generated on V by the

sections hs1, . . . , hsn. In terms of exact sequences:

(π∗OX)⊕r|V
(·hs1,...,·hsr)−−−−−−−→ (π∗OX)|V → (π∗OX/IJ )|V → 0

Denote with Si and H the (OY )|V -matrices representing the multiplica-

tion by si and h respectively. The map (·hs1, . . . , ·hsr) in the previous

exact sequence is represented by the n× nr matrix

M =
[
HS1 . . . HSr

]
= H

[
S1 . . . Sr

]
The 0-th Fitting ideal of π∗OX/IJ , restricted to V , is the ideal of

(π∗OX)|V generated by the n × n minors of the matrix M . Any such

minor is equal to a n×n minor of the matrix
[
S1 . . . Sr

]
multiplied

by detH. Then, by Definition 3.1,

Fitt0(π∗OX/IJ )|V = Fitt0(π∗OX/I)|V · Fitt0(π∗OX/J )|V
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�

Definition/Lemma 3.5. (Direct image of a generalized divisor)

Let D ∈ GDiv(X) be a generalized divisor on X, such that D = D′−E
with D′ ∈ GDiv+(X) and E ∈ CDiv+(X) by Lemma 2.3. The direct

image of D with respect to π, denoted with π∗(D), is the generalized

divisor π∗(D
′)− π∗(E).

Proof. To prove that it is well defined, let D = D′−E = D̃′− Ẽ,

with D′, D̃′ effective and E, Ẽ effective Cartier. Since E, Ẽ are Cartier,

D′ + Ẽ = D̃′ + E; then, by Lemma 3.4 we have:

π∗(D
′) + π∗(Ẽ) = π∗(D̃

′) + π∗(E).

Since π∗(E) and π∗(Ẽ) are also Cartier by Lemma 3.4, they can be

subtracted from each side in order to obtain:

π∗(D
′)− π∗(E) = π∗(D̃

′)− π∗(Ẽ).

This shows that π∗(D) does not depend on the choice of D′ and E. �

We study now some properties of the direct image for generalized

divisors.

Proposition 3.6. (Properties of direct image)

(1) Let D ∈ CDiv(X) be a Cartier divisor. Then, π∗(D) is a

Cartier divisor and π∗(−D) = −π∗(D). Moreover, π∗(D) co-

incides with π∗(D) of Definition 1.3.

(2) Let D,E ∈ GDiv(X) be generalized divisors, such that E is

Cartier. Then, π∗(D + E) = π∗(D) + π∗(E).

(3) Let V ⊂ Y be an open subset, and denote with πU the re-

striction of π to U = π−1(V ) ⊂ X. Let D ∈ GDiv(X) be a

generalized divisor on X. Then,

(πU)∗(D|U) = π∗(D)|V

(4) Let D,D′ ∈ GDiv(X) be generalized divisors such that D ∼
D′. Then, π∗(D) ∼ π∗(D

′).

Proof. To prove (1), consider D = E −F with E,F effective and

F Cartier by Lemma 2.3. Since D is Cartier and E = D+F , then also

E is Cartier. By Definition 3.5,

π∗(D) = π∗(E)− π∗(F ).
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By Lemma 3.4, it is a difference of Cartier divisors and hence it is

Cartier. To compute π∗(−D), note that since F is Cartier then −D =

F − E, and it is a difference of effective Cartier divisors; then, apply

Definition 3.5 to obtain

π∗(−D) = π∗(F )− π∗(E) =

= −π∗(D).

To compare π∗(D) with Definition 1.3, let I and J be the ideal sheaves

of E and F and let {Vi}i∈I be an open cover of Y such that π∗I|Vi
and π∗J|Vi are non-degenerate principal ideals of (π∗OX)|Vi-modules

generated by the regular sections fi and gi of Γ(V, π∗OX), respectively

on each i ∈ I. The fractional ideal of D is then generated on each

Vi by the meromorphic regular section hi = fi/gi of Γ(Vi, π∗K∗X). By

the proof of Lemma 3.4, the ideal sheaves of π∗(E) and π∗(F ) are

generated on each Vi by det(·fi) and det(·gi) , so the fractional ideal

of π∗(D) is generated on each Vi by the meromorphic regular section

det(·fi)/ det(·gi) of Γ(V,K∗Y ). Using the same cover in Definition 1.3

and applying Definition 1.1, the sheaf π∗(D) defined above and the

sheaf π∗(D) defined in Section 1 have the same local generators, hence

they are equal.

To prove (2), consider D = D1 − D2 and E = E1 − E2, with

D1, D2, E1, E2 effective and D2, E2 Cartier. Note that D +E = (D1 +

E1)− (D2 +E2), and it is a difference of effective divisors with D2 +E2

Cartier. Then, applying Definition 3.5 and Lemma 3.4, we obtain:

π∗(D + E) = π∗((D1 + E1)− (D2 + E2)) =

= π∗(D1 + E1)− π∗(D2 + E2) =

= π∗(D1) + π∗(E1)− π∗(D2)− π∗(E2) =

= (π∗(D1)− π∗(D2))− (π∗(E1)− π∗(E2)) =

= π∗(D) + π∗(E).

To prove (3), if D is effective, the result follows from Definition 3.1.

Then, observe that the operations of product and inverse of fractional

ideals commute with restrictions.

To prove (4), let f ∈ Γ(X,KX) be a global section that generates

a principal divisor E = (f) ∈ Prin(X). By linearity, it is sufficient to
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prove that π∗(E) is again principal. Let {Vi} be an affine open cover

of Y , such that locally

f|π−1(Vi) = gi/hi, gi, hi ∈ Γ(π−1(Vi),OX)

In terms of divisors, this means that (f)|π−1(Vi) = (gi)− (hi), and it is a

difference of effective Cartier divisors on π−1(Vi). Then, applying Part

(3) and reasoning simiarly to Part (1), we obtain:

π∗((f))|V = (πi)∗((gi))− (πi)∗((hi)) =

= (det[·gi])− (det[·hi]) =

= (det[·gi]/ det[·hi]).

Since taking determinants is multiplicative, the local sections det[·gi]/ det[·hi]
glue together to give a global section f̃ of KY , such that π∗(E) =

(f̃). �

We are now ready to define the direct image for generalized line

bundles.

Definition/Lemma 3.7. (Direct image for generalized line bun-

dles) The direct image for generalized divisors induce a direct image

map between the sets of generalized line bundles, defined as:

[π∗] : GPic(X) −→ GPic(Y )

[D] 7→ [π∗(D)].

Proof. Recall that for any curve X, the set GPic(X) can be seen

equivalently as the set of generalized line bundles or as the set of gener-

alized divisors modulo linear equivalence. Here, [π∗] is defined in terms

of generalized divisors modulo linear equivalence. By Proposition 3.6,

the direct images of linearly equivalent divisors are linearly equivalent,

hence [π∗] is well defined. �

In the remaining part of this subsection, we study an alternative

formula for [π∗] in terms of generalized line bundles. First, we need a

technical lemma.

Lemma 3.8. Let F be a coherent sheaf on a curve X which is locally

free of rank 1 at any generic point and let ω = ωX be the canonical,

or dualizing sheaf of X. Let T (F) be the torsion subsheaf of F and
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Fωω = Hom(Hom(F , ω), ω) be the double ω-dual. There, there is a

canonical isomorphism

F tf = F/T (F)
∼−−−−→ Fωω.

Proof. The sheaf F tf is endowed with a quotient map q : F �
F tf , which is universal among all arrows from F to torsion-free sheaves

(i.e. pure of dimension 1). Note that, since F is locally free of rank

1 at any generic point of X, then q is generically an isomorphism.

Let α(F) : F → Fωω be the canonical map from F to its double ω-

dual. Since taking double ω-duals is functorial, there is a commutative

diagram of homomorphism of sheaves:

F F tf

Fωω (F tf )ωω.

q

α(F) α(Ftf )

qωω

Using [Har07, Proposition 1.5] and recalling that S1 = S2 for sheaves

on curves, we note that a sheaf on X is ω-reflexive if and only if it is

S1. In particular, Fωω is ω-reflexive by [Har07, Proposition 1.6] and

hence it is S1. Then, by the universal property of q, there is a unique

map ψ : F tf → Fωω such that ψ ◦ q = α(F). Note that

qωω ◦ ψ ◦ q = qωω ◦ α(F) = α(F tf ) ◦ q,

so by surjectivity of q we conclude that qωω ◦ ψ = α(F tf ).
We show moreover that ψ is an isomorphism. By construction F tf

is pure, hence it is ω-reflexive and α(F tf ) is an isomorphism. Moreover,

qωω is surjective and generically an isomorphism since q is surjective and

generically an isomorphism. Then, the kernel K of qωω is a subsheaf of

Fωω which is generically zero. Since Fωω is pure, we conclude that K

is everywhere zero and then qωω is an isomorphism. This shows that

ψ = (qωω)−1 ◦ α(F tf ) is an isomorphism. �

In order to study the formula for [π∗], we study a preliminary for-

mula for π∗ in the case of effective generalized divisors.

Lemma 3.9. Let D ∈ GDiv+(X) be an effective generalized divisor

with ideal sheaf I ⊂ OX . Then, there is an injection:(∧n(π∗I))ωω ⊗ det(π∗OX)−1 ↪→ det(π∗OX)⊗ det(π∗OX)−1 ∼−→ OY
62



whose image in OY is the 0-th Fitting ideal of π∗OX/I.

Proof. Consider the short exact sequence:

0→ I → OX → OD → 0.

Since π is finite and flat, the pushforward induces a a short exact

sequence:

0→ π∗I
ϕ−→ π∗OX → π∗(OX/I)→ 0.

In particular, the last exact sequence is a finite presentation of π∗(OX/I)

whose middle term is locally free. Hence, by Definition 3.1, the 0-th

Fitting ideal of π∗(OX/I) is equal to the image of the morphism:∧n(π∗I)⊗ det
(
π∗OX

)−1 detϕ⊗1−−−−−−→ det(π∗OX)⊗ det(π∗OX)−1 ∼−→ OY .

Consider now the determinant map detϕ. Since det(π∗OX) is also

a pure sheaf, applying the universal property of the torsion-free quo-

tient together with Lemma 3.8 we obtain the following commutative

diagram: ∧n (π∗I) det(π∗OX)

(∧n (π∗I))ωω
detϕ

α
β

The canonical map α is surjective by Lemma 3.8. Since I is locally free

of rank 1 at the generic points of X, both detφ and α are generically

isomorphisms; hence, the map β is generically an isomorphism. Since

its domain
(∧n (π∗I))ωω is pure, we conclude that its kernel is zero,

hence β is injective. We have then factorized detϕ as the composition

of a surjective map α followed by an injective map β.

Tensoring by det(π∗OX)−1, we obtain then the following commuta-

tive diagram:∧n (π∗I)⊗ det(π∗OX)−1 det(π∗OX)⊗ det(π∗OX)−1 OY

(∧n (π∗I))ωω ⊗ det(π∗OX)−1

detϕ⊗1

α⊗1

∼
η

β⊗1

The map α ⊗ 1 is surjective, so the composition η ◦ (β ⊗ 1) is an

injective map whose image in OY is equal to the image of the map

η ◦ (detϕ⊗ 1). By the previous remark, such image coincides with the

0-th Fitting ideal of π∗(OX/I), proving the lemma. �
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We are now ready to give a sheaf-theoretic formula for [π∗]. Recall

that, for any curve X, the set GPic(X) can be seen as the set of

isomorphism classes of generalized line bundles on on X.

Proposition 3.10. (Formula for the direct image of generalized

line bundles) Let L be a generalized line bundle on X. Then,

[π∗](L) '
(∧n(π∗L))ωω ⊗ det(π∗OX)−1.

Proof. By the surjectivity of GDiv(X) � GPic(X), we can pick

a generalized divisor D ∈ GDiv(X) with fractional ideal I isomorphic

to L; then,

[π∗](L) = [π∗]([D]) = [π∗(D)]

by Definition 3.7. By Lemma 2.3, there are effective generalized divisors

E,F on X such that D = E − F and F Cartier. Denote with I ′ the

ideal sheaf of E and with J the ideal sheaf of F . Since F is Cartier,

the condition D = E − F can be rewritten as E = D + F , or in terms

of sheaves:

I ′ = I · J .

Consider the direct images of E and F . By Lemma 3.9, the ideal sheaf

of π∗(E) is isomorphic to(∧n(π∗I ′))ωω ⊗ det(π∗OX)−1,

while the ideal sheaf of π∗(F ) is isomorphic to(∧n(π∗J ))ωω ⊗ det(π∗OX)−1 '
∧n(π∗J )⊗ det(π∗OX)−1.

By Definition 3.5, π∗(D) = π∗(E) − π∗(F ). Then, the fractional ideal

of π∗(D) is isomorphic to:(∧n(π∗I ′))ωω ⊗ det(π∗OX)−1 ⊗
(∧n(π∗J ))−1 ⊗ det(π∗OX),

which in turn is isomorphic to:(∧n(π∗I ′))ωω ⊗ (∧n(π∗J ))−1
.

Then, we are left to prove that:(∧n(π∗I ′))ωω ⊗ (∧n(π∗J ))−1 '
(∧n(π∗I))ωω ⊗ det(π∗OX)−1,

or, equivalently, that:(∧n(π∗I ′))ωω ⊗ det(π∗OX) '
(∧n(π∗I))ωω ⊗ (∧n(π∗J )) ,
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under the assumptions I ′ = I ·J and J locally principal. Consider an

open cover {Vi}i∈I of Y such that J is trivial on each Ui = π−1(Vi), i.e.

there is an isomorphism λi : J|Ui = (fi)
∼−→ OX|Ui for each i ∈ I. On

the intersections Ui ∩ Uj, the collection {λi ◦ λ−1
j } of automorphisms

O∗X |Ui∩Uj is a cochain that measures the obstruction for the λi’s to glue

to a global isomorphism. We define now an isomorphism

α :
(∧n(π∗I ′))ωω ⊗ det(π∗OX) −→

(∧n(π∗I))ωω ⊗ (∧n(π∗J ))
by glueing a collection of isomorphisms αi defined on each Vi. To do

so, we define each αi as the following composition of arrows:((∧n (π∗I ′))ωω ⊗ det(π∗OX)
)
|Vi

((∧n (π∗I))ωω ⊗∧n (π∗J ))|Vi
(∧n (π∗I ′|Ui))ωω ⊗ det(π∗OX|Ui)

(∧n (π∗I|Ui))ωω ⊗ (∧n (π∗J|Ui))ωω
(∧n (π∗I|Ui))ωω ⊗ det(π∗OX|Ui)

(∧n (π∗I|Ui))ωω ⊗ (∧n (π∗OX|Ui))ωω

αi

=
(
∧n(π∗λi))

ωω⊗id

'

'

id⊗(
∧n(π∗λ

−1
i ))

ωω

i.e. αi :=
(∧n (π∗λi))ωω ⊗ (∧n (π∗λ−1

i

))ωω
. Since

∧n (π∗ ) and ( )ωω

are functorial, the obstruction αi ◦α−1
j is trivial on any Vi∩Vj, whence

the αi’s glue together to a global isomorphism α. �

Corollary 3.11. Let L be a line bundle on X. Then,

Nmπ(L) = [π∗](L).

Proof. By Lemma 1.7,

Nmπ(L) ' det(π∗L)⊗ det(π∗OX)−1.

On the other side, by Proposition 3.10,

[π∗](L) ' (det(π∗L))ωω ⊗ det(π∗OX)−1.

Since L is locally free, det(π∗L) is a line bundle and in particular is

a pure coherent sheaf. Then, det(π∗L) ' (det(π∗L))ωω, proving the

thesis. �
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Corollary 3.12. Let L be a generalized line bundle on X. Suppose

that Y is smooth. Then:

[π∗](L) '
∧n(π∗L)⊗ det(π∗OX)−1.

Proof. First note that, by Proposition 3.10,

[π∗](L) '
(∧n(π∗L))ωω ⊗ det(π∗OX)−1.

Second, observe that the pure sheaf π∗L is locally free of rank n since Y

is smooth (see [HL10, Example 1.1.16]), and
∧n(π∗L) is a line bundle.

Then, (∧n(π∗L))ωω ' ∧n(π∗L).
Combining these two facts, we have proved the thesis. �

3.3. The inverse image. In this subsection, we define the inverse

image for generalized divisors and generalized line bundles and we study

the relation of the inverse image with the direct image. We start from

the case of effective divisors.

Definition/Lemma 3.13. (Inverse image of an effective gener-

alized divisor) Let D ∈ GDiv+(Y ) be an effective generalized divisor

with ideal sheaf I ⊆ OY . The inverse image of D relative to π, denoted

π∗(D), is the effective generalized divisor with ideal sheaf π−1(I) · OX .

Proof. The inverse image ideal π−1(I) is an ideal sheaf of π−1(OY )-

modules and can be extended to OX-modules via the canonical map of

sheaves of rings π] : π−1(OY )→ OX . It is coherent since I is coherent.

If η is a generic point of X, then π(η) is a generic point of Y , hence

(π−1(I) · OX)η = Iπ(η) · OX,η = OX,η

since Iπ(η) = OY,π(η). �

Remark 3.14. In the setting of Definition 3.13, consider the short

exact sequence:

0→ I → OY → OD → 0.

Since π is flat and surjective, the pullback functor ⊗π−1OY OX is exact

as well as the inverse image functor π−1. Then, the previous exact

sequence induces the following exact sequence:

0→ π∗I → π∗OY → π∗OD → 0.
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Since π∗OY = OX , the pullback sheaf π∗(I) has a canonical injection

in OX , whose image is exactly the inverse image ideal π−1(I) · OX

Lemma 3.15. Let D ∈ GDiv+(Y ) be a generalized effective divisor

and E ∈ CDiv+(Y ) be an effective Cartier divisor on Y . Then, the

inverse image divisor π∗(E) is Cartier and π∗(D+E) = π∗(D)+π∗(E).

Proof. Let I and J be the ideal sheaves of D and E respectively.

The ideal sheaf J is locally principal, hence its inverse image π−1(J ) ·
OX is again locally principal; then, π∗(E) is Cartier. The generalized

divisor D + E is defined by the ideal sheaf I · J , whose inverse image

is:

π−1(I · J ) · OX = (π−1(I) · π−1(J )) · OX =

= (π−1(I) · OX) · (π−1(J ) · OX),

which is the defining ideal of π∗(D) + π∗(E). �

Now, we can extend the definition of inverse image to any general-

ized divisor and study its properties.

Definition/Lemma 3.16. (Inverse image of a generalized divisor)

Let D ∈ GDiv(Y ) be any generalized divisor and let D = E − F with

E,F effective generalized divisors and F Cartier by Lemma 2.3. The

inverse image of D relative to π, denoted π∗(D), is the generalized

divisor π∗(E)− π∗(F ).

Proof. To prove that it is well defined, let D = D′−E = D̃′− Ẽ,

with D′, D̃′ effective and E, Ẽ effective Cartier. Since E, Ẽ are Cartier,

D′ + Ẽ = D̃′ + E; then, by Lemma 3.15 we have:

π∗(D′) + π∗(Ẽ) = π∗(D̃′) + π∗(E).

Again by Lemma 3.15 π∗(E) and π∗(Ẽ) are Cartier, so they can be

subtracted from each side in order to obtain:

π∗(D′)− π∗(E) = π∗(D̃′)− π∗(Ẽ),

so π∗(D) does not depend on the choice of D′ and E. �

Proposition 3.17. (Properties of inverse image)
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(1) Let D ∈ CDiv(Y ) be a Cartier divisor on Y . Then, π∗(D) is

a Cartier divisor and π∗(−D) = −π∗(D). Moreover, π∗(D)

coincides with π∗(D) of Definition 1.3.

(2) Let D,E ∈ GDiv(Y ) be generalized divisors, such that E is

Cartier. Then, π∗(D + E) = π∗(D) + π∗(E).

(3) Let V ⊂ Y be an open subset, and denote with πU the re-

striction of π to U = π−1(V ) ⊂ X. Let D ∈ GDiv(Y ) be a

generalized divisor on Y . Then,

(πU)∗(D|V ) = π∗(D)|U

(4) Let D,D′ ∈ GDiv(Y ) be generalized divisors such that D ∼ D′.

Then, π∗(D) ∼ π∗(D′).

Proof. To prove (1), consider D = E −F with E,F effective and

F Cartier by Lemma 2.3 on Y . Since D is Cartier and E = D + F ,

then also E is Cartier. By Definition 3.16,

π∗(D) = π∗(E)− π∗(F ).

By Lemma 3.15, it is a difference of Cartier divisors and hence it is

Cartier. To compute π(−D), note that since F is Cartier then −D =

F − E, and it is a difference of effective Cartier divisors; then, apply

Definition 3.16 to obtain

π∗(−D) = π∗(F )− π∗(E) =

= −π∗(D).

To compare π∗(D) with Definition 1.3, let I and J be the ideal sheaves

of E and F and let {Vi}i∈I be an open cover of Y such that I|Viand
J|Vi are principal ideals of OY |Vi-modules generated by regular sec-

tions si and ti of Γ(Vi,OY ), respectively on each i ∈ I. The fractional

ideal of D is generated on each Vi by the meromorphic regular sec-

tion ui = si/ti of Γ(Vi,KY ). By Definition 3.13, the ideal sheaves

of π∗(E) and π∗(F ) are generated on each Ui = π−1(Vi) by π]Ui(si)

and π]Ui(ti) respectively. Then, by Definition 3.16, the fractional ideal

of π∗(D) is generated on each Ui by the meromorphic regular section

π]Ui(si)/π
]
Ui

(ti) of Γ(Ui,KX). These are exactly the local generators for

π∗(D) as defined in Definition 1.3.
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To prove (2), consider D = D1 − D2 and E = E1 − E2, with

D1, D2, E1, E2 effective and D2, E2 Cartier. Note that D +E = (D1 +

E1)− (D2 +E2), and it is a difference of effective divisors with D2 +E2

Cartier. Then, applying Definition 3.16 and Lemma 3.15, we obtain:

π∗(D + E) = π∗((D1 + E1)− (D2 + E2)) =

= π∗(D1 + E1)− π∗(D2 + E2) =

= π∗(D1) + π∗(E1)− π∗(D2)− π∗(E2) =

= (π∗(D1)− π∗(D2))− (π∗(E1)− π∗(E2)) =

= π∗(D) + π∗(E).

To prove (3), if D is effective, the result follows the fact that the

inverse image functor π−1 commutes with restrictions. Then, observe

that the operations of product and inverse of fractional ideals also

commute with restrictions.

To prove (4), let f ∈ Γ(Y,KY ) be a global section that generates

a principal divisor E = (f) ∈ Prin(Y ) such that D = D′ + E. The

inverse image π∗(E) is the principal divisor (π](f)) ∈ Prin(X). Then,

by Lemma 3.15, π∗(D) = π∗(D′) + (π](f)); so π∗(D) and π∗(D′) are

linearly equivalent. �

We are now ready to define the inverse image for generalized line

bundles.

Definition/Lemma 3.18. (Inverse image for generalized line bun-

dles) The inverse image for generalized divisors induce a inverse image

map between the sets of generalized line bundles, defined as:

[π∗] : GPic(Y ) −→ GPic(X)

[D] 7→ [π∗(D)].

Proof. Recall that for any curve X, the set GPic(X) can be seen

equivalently as the set of generalized line bundles or as the set of gener-

alized divisors modulo linear equivalence. Here, [π∗] is defined in terms

of generalized divisors modulo linear equivalence. By Proposition 3.17,

the direct images of linearly equivalent divisors are linearly equivalent,

hence [π∗] is well defined. �

Remark 3.19. If L is a generalized line bundle on Y and D is a

generalized divisor with fractional ideal I isomorphic to L, then the
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inverse image divisor π∗(D) has fractional ideal isomorphic to the pull-

back sheaf π∗(I) by Remark 3.14. Since π∗(I) is isomorphic to π∗(L)

as abstract OX-modules, we conclude that the inverse image [π∗](L) of

the generalized line bundle L is equal to the pullback sheaf π∗(L).

We prove now a result on the composition of the direct image with

the inverse image of generalized divisors.

Proposition 3.20. (Composition of the direct image with the in-

verse image) Let D ∈ GDiv(Y ) be a generalized divisor on Y . Then,

π∗(π
∗(D)) = n ·D.

Proof. Since both of the terms are linear with respect to the sum

of Cartier divisor, we can suppose that D is effective with ideal sheaf

I ⊆ OY . First note that, from the exact sequence:

0→ π∗I → π∗OY → π∗OD → 0

together with Remark 3.14, we obtain OX/(π−1I · OX) = OX/π∗I =

π∗(OY /I). To prove the thesis, we show that the equality

Fitt0

(
π∗(OX/π∗I)

)
= In

holds locally around any point y ∈ Y . Let V ⊆ Y be an open neigh-

borhood of y such that (π∗OX)|V ' (OY |V )⊕n and I|V is generated by

sections s1, . . . , sr of Γ(V, I). Then, consider the following presenta-

tion:

O⊕rY |V
(·s1,...,·sr)−−−−−−→ OY |V → (OY /I)|V → 0.

Pulling back with π∗, we obtain the following exact sequence on U =

π−1(V ):

O⊕rX|U
(·s1,...,·sr)−−−−−−→ OX|U → (OX/π∗I)|U → 0.

In order to compute Fitt0

(
π∗(OX/π∗I)

)
|V , we consider then the push-

forward sequence:(
π∗O⊕rX

)
|V

(·s1,...,·sr)−−−−−−→
(
π∗OX

)
|V → π∗(OX/π∗I)|V → 0.
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Since π∗(OX/π∗I)|V '
(
O⊕nY

)
|V , the map on the left is represented by

the following n× nr matrix with entries in Γ(V,OY ):

M =

 s1

. . .

s1

. . .

sn
. . .

sn

 .
Now, Fitt0

(
π∗(OX/π∗I)

)
|V is generated by the n×n minors of M , i.e.

all the possible products of n generators of I on V , with ripetitions.

This shows that Fitt0

(
π∗(OX/π∗I)

)
|V = In|V . �

3.4. Relation with the degree. In this subsection we show that

π∗ preserves the degree of divisors under the condition that Y is smooth

over k. In general, however, the direct image of a generalized divisor D

may not have the same degree of D, as the following example shows.

Since we are dealing with degrees, we assume that X and Y are

projective curves over a base field k.

Example 3.21. Fix k an algebraically closed field. LetA = k[x, y]/(y2−
x4) be the affine coordinate ring of a curve X = SpecA with a tacnode

at the point P corresponding to the maximal ideal p = (x, y).

The involution σ on A defined by x 7→ −x, y 7→ y induces a invo-

lution σX on the curve X. The geometric quotient Y = X/σX is

an affine curve with coordinate ring equal to the ring of invariants

Aσ = k[x2, y]/(y2 − x4), that is isomorphic to B = k[s, t]/(t2 − s2)

putting s 7→ x2 and t 7→ y. The quotient curve Y has a simple node at

the point Q corresponding to the maximal ideal q = (s, t).

The inclusion map Aσ ⊂ A gives to A the structure of free B-module,

with basis {1, x}; so, the corresponding morphism of curve π : X →
Y = X/σX is a finite, locally free map of degree 2 sending P to Q.

Let D be the generalized divisor on X defined by the ideal I = (x2, y) ⊂
A; note that D is supported only on the tacnode P . Since we want to

compare deg(D) = degP (D) with deg(π∗(D)) = degQ(π∗(D)), we can

restrict to work locally around P and Q. Let Bq be the local ring of Y

at Q. The induced map Bq → Ap makes Ap a free Bq-module of rank

2.

Let E = Ap/Ip ' k[x]/(x2) be the local ring of D at the P . We have:

degP (D) = `(E) = 2.
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Observe that E has the following free presentation as Ap-module:

A⊕2
p

(·x2,·y)−−−−→ Ap → E → 0.

Since Ap is a free Bq-module of rank 2, E has also a presentation as

Bq-module:

B⊕4
q

ϕ−→ B⊕2
q → E → 0

where

ϕ =

[
s 0 t 0

0 s 0 t

]
.

Then, the 0-th Fitting ideal of E as Bq-module is F0(E) = (s2, t2, st) ⊂
Bq. We have:

degQ(π∗(D)) = `(Bq/F0(E)) = 3.

Note that there are divisors of degree 2 on X, supported at P , whose

direct image has degree 2 on Y . For example, take D′ = (x).

Remark 3.22. The previous example shows, in particular, that

Proposition 2.33 in [Vas04] is false.

We now prove that the degree is preserved if the direct image is

Cartier. We show first a proposition that computes the degree at any

point where the direct image is locally principal.

Proposition 3.23. (Degree of the direct image of a generalized

divisor) Let D ∈ GDiv(X) be a generalized divisor on X and let y ∈ Y
be a point in codimension 1 of the support of π∗(D). Suppose that

π∗(D) is locally principal at y. Then,

degy(π∗(D)) =
∑
π(x)=y

degx(D).

Proof. First, suppose that D is effective. Let V = Spec(B) be

an affine open neighborhood of y with affine pre-image U = π−1(V ) =

Spec(A), and let I ⊂ A denote the ideal of D restricted to U . The

coordinate ring of D on U is the Artin ring A/I whose spectrum is

equal to Spec(A) ∩ Supp(D) = {p1, . . . , ps}; hence we have:

A/I =
s∏
i=1

(A/I)pi .
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Let q ⊂ B denote the maximal ideal corresponding to y in Spec(B) and

letBq be the associated local ring of dimension 1. Then, the localization

of A/I at q, denoted E, is the coordinate ring of D restricted to the

fiber of y:

E = (A/I)q =
∏

π−1(pi)=q

(A/I)pi .

Since π∗(D) is effective, the degree of π∗(D) at y is:

degy(π∗(D)) = `
(
OY,y/F0(π∗OD)y

)
[κ(y) : k] =

= `
(
Bq/F0(E)

)
[κ(y) : k].

By hypothesis F0(E) is an invertible module, so by [Vas04, Proposition

2.32], we have `
(
Bq/F0(E)

)
= `(E). On the other hand, thanks to

[Sta19, Tag 02M0], note that:

`(E) = `

 ∏
π−1(pi)=q

(A/I)pi

 =

=
∑

π−1(pi)=q

`(Api/Ipi)][k(pi) : k(q)] =

=
∑
π(x)=y

`
(
OX,x/Ix

)
[κ(x) : κ(y)] =

=
∑
π(x)=y

degx(D)[κ(x) : κ(y)].

Putting everything together we have:

degy(π∗(D)) = `(E)[κ(y) : k] =

=

 ∑
π(x)=y

degx(D)[κ(x) : κ(y)]

 [κ(y) : k] =

=
∑
π(x)=y

degx(D)[κ(x) : k] =

=
∑
π(x)=y

degx(D)

for D effective generalized divisor on X.
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Let now D = E −F be a generalized divisor, written as a difference of

effective generalized divisors with F Cartier by Lemma 2.3. Since π∗(F )

is Cartier, using the result for effective divisors estabilished before, we

have:

degy(π∗(D)) = degy(π∗(E)− π∗(F )) =

= degy(π∗(E))− degy(π∗(F )) =

=
∑
π(x)=y

[degx(E)− degx(F )] =

=
∑
π(x)=y

degx(D).

�

Corollary 3.24. Let D ∈ GDiv(X) be a generalized divisor on X

such that π∗(D) is Cartier. Then,

degY (π∗(D)) = degX(D).

Proof. Applying Definition 2.4 and Proposition 3.23, we get:

degY (π∗(D)) =
∑
y cod 1

degy(π∗(D)) =

=
∑
y cod 1

∑
π(x)=y

degx(D).

By the properties of the Fitting image, π∗(D) is supported on the set-

theoretic image of the support of D; hence, the x appearing in the last

sum are all the x for which degx(D) is not zero. Then, the previous

sum gives:

degY (π∗(D)) =
∑
x cod 1

degx(D) = degX(D).

�

Corollary 3.25. Suppose that Y is smooth. Then, for any gen-

eralized divisor D on X,

degY (π∗(D)) = degX(D).

Proof. Let D be a generalized divisor on X. The direct image

π∗(D) is a generalized divisor on Y smooth, hence Cartier. Then,

apply Corollary 3.24. �
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Proposition 3.23 yields another useful corollary about the surjec-

tivity of the direct image morphism.

Corollary 3.26. (Surjectivity of the direct image for effective

divisors) Suppose that Y is smooth. Then, the direct image for effective

divisors:

π+
∗ : GDiv+(X)→ CDiv+(Y )

is surjective.

Proof. Let E ∈ CDiv+(Y ) be an effective Cartier divisor on Y

and let V = Spec(R) ⊆ Y be an affine open subset of Y such that E is

supported on V . Let Supp(E) = {y1, . . . , yr} be the support of E and

for each i = 1, . . . , r let

di = degyi(E)/[κ(yi) : k] = `OY,yi (OE,yi).

Let U = Spec(S) = π−1(V ) be the preimage of V . For each i, pick

one element xi ∈ π−1(yi) in the finite fiber of yi and let Mi be the

maximal ideal of S corresponding to the point xi. Then, the ideal

I = Md1
1 · · · · ·Mdr

r in S defines a divisor D on U (and hence of X) such

that degyi(E) = degxi(D). Looking at its direct image π∗(D), it is an

effective divisor on Y with the same support of E and the same degree

at any point by Propostion 3.23. Since Y is smooth, we conclude that

π∗(D) = E. �

4. The direct and inverse image

for families of generalized divisors

Let π : X → Y be a finite, flat map of degree n between

projective curves over a field k. In the present section, we discuss

the definition of direct and inverse image for families of effective gener-

alized divisors. Under suitable conditions, recalling Definition 2.7, we

aim to define a pair of geometric morphisms:

π∗ : HilbX → HilbY

π∗ : HilbY → HilbX

that, on k-valued points, coincide with the direct and inverse image

between GDiv+(X) and GDiv+(Y ).
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Remark 4.1. Giving a definition of the direct image for families of

effective generalized divisors is not possible in general when the curve

Y is not smooth over k. Consider, for example, the setting of Example

3.21; since X and Y are reduced curves with planar singularities, their

Hilbert schemes of generalized divisors of given degree are connected

(see [AIK77], [BGS81]). The effective divisors D1 and D2 on X

defined by (x2, y) and (x) on X have both degree 2, but their direct

images on the quotient node Y have degree respectively equal to 3 and

2. Then, their k-points D1, D2 in the connected component Hilb2
X of

HilbX are sent to different connected components of HilbY . This shows

that the direct image of divisors in general is not defined as a geometric

map.

In the rest of the section, consider π : X → Y a finite, flat map

of degree n between projective curves over k, and suppose that Y is

smooth over k. Recall that, in such case, HilbY = `HilbY .

Definition/Lemma 4.2. (Direct image for families of effective

generalized divisors) Let T be any k-scheme. The direct image map

for the Hilbert scheme of effective generalized divisors is defined on the

T -valued points as:

π∗(T ) : HilbX(T ) −→ `HilbY (T )

D ⊆ X ×k T 7−→ Z (Fitt0(πT,∗(OD)))

where πT : X ×k T → Y ×k T is the morphism induced by base change

of π.

Proof. Let D ⊆ X ×k T be a T -flat family of effective divisors of

X, defined by an ideal sheaf I ⊆ OX×kT such that OD = OX×kT/I is

flat over S. From the exact sequence

0→ I → OX×kT → OD → 0

we deduce that also I is flat over T . Since π is finite and flat, πT,∗(I)

is also flat over T , fiberwise locally free since Y is smooth and hence

locally free on Y ×k T by [HL10, Lemma 2.1.7]. Moreover, it fits the

exact sequence

0→ πT,∗(I)
ϕ−→ πT,∗(OX×kT )→ πT,∗(OD)→ 0.
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Then, by Definition 3.1, the 0-th Fitting ideal of πT,∗(OD) is the image

of the canonical injection

det (πT,∗(I))⊗ det (πT,∗OX×kT )−1 det(ϕ)
↪−−−→ OY×kT

and this is locally free over Y ×k T , hence flat over T . Then, it defines

a T -flat family of effective divisors of Y . �

Remark 4.3. For any T -family of effective generalized divisorsD ⊆
X ×k T and for any point t ∈ T , the fiber π∗(T )(D)t is equal to the

direct image π∗(Dt) defined for the effective divisor Dt on X. Moreover,

since Y is smooth, by Corollary 3.25 we have:

degY (π∗(Dt)) = degX(Dt).

Then, for any d ≥ 0, π∗ restricts to a map:

πd∗ : HilbdX −→ `Hilb
d

Y .

Definition/Lemma 4.4. (Inverse image for families of effective

generalized divisors) Let T be any k-scheme. The inverse image map

for the Hilbert scheme of effective Cartier divisors is defined on the

T -valued points as:

π∗(T ) : `HilbY (T ) −→ `HilbX(T )

D ⊆ Y ×k T 7−→ Z
(
π−1
T (ID) · OX×kT

)
where πT : X ×k T → Y ×k T is the morphism induced by base change

of π and ID ⊆ OY×kT is the ideal sheaf of D.

Proof. Since I is locally principal, π−1
T (I) · OX×kT ⊆ OX×kT is

locally principal. The restriction of π∗(T )(D) to the fiber over any

t ∈ T has ideal sheaf π−1(It)·OX×kt, which is equal to the defining ideal

of π∗(Dt) by Definition 3.16. Hence, π∗(T )(D) is a locally principal

subscheme of X ×k T , such that all fibers over T are effective Cartier

divisors by Lemma 3.15. Then, π∗(T )(D) is T -flat by [Sta19, Tag

062Y], hence it is a T -family of Cartier divisors. �

Remark 4.5. For any integer d ≥ 0, π∗ restricts to a map:

π∗d : `Hilb
d

Y −→ `Hilb
nd

X .
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We study now some properties of the direct and inverse image for

families of effective generalized divisors. With a slight abuse of nota-

tion, we will write π∗ and π∗ instead of π∗(T ) and π∗(T ), when it is

clear that we are working on T -points.

Proposition 4.6. (Properties of the direct and inverse image for

families of effective generalized divisors) Let T be any k-scheme. Then,

the following fact holds.

(1) Let D,E be T -families of effective divisors over X such that

E is a family of Cartier divisors. Then, π∗(D+E) = π∗(D) +

π∗(E).

(2) Let F,G be T -families of effective divisors over Y . Then,

π∗(F +G) = π∗(F ) + π∗(G).

(3) If F is a T -family of effective divisors over Y , then π∗(π
∗(F )) =

nF .

Proof. The proof of parts (1) and (2) follows the proofs of the

second part of Lemma 3.4 and 3.15 respectively. The proof of part (3)

follows the proof of Proposition 3.20. �

5. The Norm and the inverse image

for families of torsion-free rank-1 sheaves

In the present section, we provide the definition of the Norm map

for families torsion-free sheaves of rank 1 and the related inverse image

map. Since we are dealing with families of sheaves, we assume that

X and Y are projective curves over a field k.

In order to be compatible with the direct image for generalized line

bundles, our definition of the Norm map on J(X) will be inspired by

the sheaf-theoretic formula of Proposition 1.7. By Proposition 3.10

and its corollaries, the generalization of such formula to generalized

divisors and torsion-free sheaves involves taking the double ω-dual of

the exterior power of the pushforward of generalized line bundles. In

general, this operation does not behave well in families if Y is not

smooth.

Then, in accordance with the previous section, we suppose that

Y is smooth over k; in such case, the moduli space J(Y ) is actually

78



equal to the Jacobian J(Y ). Then, the aim of this chapter is to provide

a pair of geometric morphism:

Nmπ : J(X)→ J(Y )

π−1 : J(Y )→ J(X) ⊆ J(X)

that, on k-valued points, coincide with the direct and inverse image

maps between GPic(X) and GPic(Y ) = Pic(Y ).

Recall also (Definition 2.8) that, for any line bundle M on X, the

compactified Jacobian of X is related to the Hilbert scheme of effective

generalized divisors via the twisted Abel map AM . We will show that

the direct image map and the Norm map are compatible as well as the

inverse image maps, meaning that for any M ∈ J(X) and N ∈ J(Y )

there are commutative diagrams of k-schemes:

HilbX
`HilbY

GJ(X) ⊆ J(X) J(Y )

π∗

AM ANmπ(M)

Nmπ

`HilbY
`HilbX

J(Y ) J(X).

π∗

AN Aπ∗(N)

π∗

We give first the definition for the Norm map on J(X).

Definition/Lemma 5.1. (Norm map for torsion-free rank-1 sheaves)

Let T be any k-scheme. The Norm map between compactified Jacobians

associated to π is defined on the T -valued points as:

Nmπ(T ) : J(X)(T ) −→ J(Y )(T )

L 7−→ det (πT,∗(L))⊗ det (πT,∗OX×kT )−1 .

Proof. Let L be a T -family of torsion-free sheaves of rank 1 on

X, i.e. a T -flat coherent sheaf on X ×k T , whose fibers over T are

torsion-free sheaves of rank 1. The push-forward πT,∗(L) is a T -flat

coherent sheaf on Y ×k T such that, for any t ∈ T , the fiber (πT,∗L)t

equals π∗(Lt) on Y ' Y ×k t, . Since Y is smooth, π∗(Lt) is a locally

free sheaf of rank n for any t ∈ T . Then, by [HL10, Lemma 2.1.7],

πT,∗(L) is a locally sheaf of rank n on Y ×k T . Its determinant bundle

is a line bundle on Y ×k T , hence flat over T . �

The definition of the inverse image is standard but we give it for

the sake of completeness.
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Definition/Lemma 5.2. (Inverse image map for line bundles) Let

T be any k-scheme. The inverse image map between Jacobians associ-

ated to π is defined on the T -valued points as:

π∗(T ) : J(Y )(T ) −→ J(X) ⊆ J(X)(T )

N 7−→ π∗T (N ).

Proof. By hypothesis, N is a T -flat coherent sheaf on Y ×kT that

is a line bundle on any fiber over T ; then, by [HL10, Lemma 2.1.7], it

is a line bundle on Y ×k T . We conclude that π∗N is a line bundle on

X ×k T and hence a T -flat family of line bundles over T . �

Remark 5.3. When there is no ambiguity, we will write Nmπ and

π∗ instead of Nmπ(T ) and π∗(T ). The Norm and the inverse image for

generalized line bundles define morphisms of algebraic stacks

Nmπ : J(X) −→ J(Y )

π∗ : J(Y ) −→ J(X).

For any integer d, they restricts to:

Nmd
π : J(X, d) −→ Jd(Y )

π∗d : Jd(Y ) −→ Jnd(X).

Moreover, the Norm for torsion-free rank-1 sheaves, restricted to the

locus of line bundles J(X) ⊆ J(X), coincides with the classical Norm

map from J(X) to J(Y ) of Definition 1.9.

We study now some properties of the Norm map on J(X) and the

inverse image map. First, we need a technical lemma.

Lemma 5.4. Let T be a fixed k-scheme. For any T -flat family L
of torsion-free rank-1 sheaves on X ×k T and any line bundle M on

X ×k T , there is an isomorphism:

det (πT,∗(L ⊗M))⊗ det (πT,∗OX×kT ) '

' det (πT,∗(L))⊗ det (πT,∗(M)) .

Proof. The proof is similar to the second part of the proof of

Proposition 3.10.

Since πT : X ×k T → Y ×k T is finite and flat, πT,∗(L) is a T -

flat coherent sheaf on Y ×k T , that is locally free on any fiber over T
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since Y is smooth; then, πT,∗(L) is locally free of rank n by [HL10,

Lemma 2.1.7]. The same holds for πT,∗(L⊗M). On the other hand, by

[Gro61, Proposition 6.1.12], πT,∗M is a locally free πT,∗OX-module of

rank 1. In particular, there is open cover {Vi}I of Y such that M is a

trivial OX|Ui-module on each Ui = π−1
T (Vi), i.e. there are isomorphisms

λi : M|Ui
∼−→ OX|Ui for each i ∈ I. On the intersections Ui ∩ Uj, the

collection {λi ◦λ−1
j } of automorphisms of O∗X×kT |Ui∩Uj is a cochain that

measures the obstruction for the λi’s to glue to a global isomorphism.

We define now an isomorphism

α : det (πT,∗(L ⊗M))⊗det (πT,∗OX×kT ) −→ det (πT,∗(L))⊗det (πT,∗(M))

by glueing a collection of isomorphisms αi defined on each Vi. To do

so, we define each αi as the following composition of arrows:(
det
(
πT,∗(L ⊗M)

)
⊗ det(πT,∗OX)

)
|Vi

(
det
(
πT,∗L

)
⊗ det

(
πT,∗M

))
|Vi

det
(
πT,∗(L ⊗M)|Ui

)
⊗ det(πT,∗OX|Ui) det

(
πT,∗L|Ui

)
⊗ det

(
πT,∗M|Ui

)
det
(
πT,∗L|Ui

)
⊗ det(πT,∗OX|Ui) det

(
πT,∗L|Ui

)
⊗ det

(
πT,∗OX|Ui

)

αi

=

det
(
πT,∗λi

)
⊗id

=

=

id⊗ det
(
πT,∗λ

−1
i

)

i.e. αi := det
(
πT,∗λi

)
⊗ det

(
πT,∗λ

−1
i

)
. Since det

(
πT,∗

)
is functorial,

the obstruction αi ◦ α−1
j is trivial on any Vi ∩ Vj, whence the αi’s glue

together to a global isomorphism α. �

Proposition 5.5. (Properties of the Norm and the inverse image

map) Let T be any k-scheme. Then, the following facts hold.

(1) Let L,M ∈ J(X)(T ) such that M is a T -flat family of line

bundles. Then, Nmπ(L ⊗M) ' Nmπ(L)⊗ Nmπ(M).

(2) Let N ,N ′ ∈ J(Y )(T ). Then, π∗(N ⊗N ′) ' π∗(N )⊗ π∗(N ′).

(3) Let N ∈ J(Y )(T ). Then, π∗(N ) is a T -flat family of line

bundles over X and Nmπ(π∗(N )) ' N⊗n.

Proof. To prove (1), note that M is a T -flat coherent sheaf on

X ×k T that is a line bundle on any fiber over T ; hence it is a line

bundle on X×k T by [HL10, Lemma 2.1.7]. Then, applying Definition
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5.1 and Lemma 5.4, we have:

Nmπ(L ⊗M) = det (πT,∗(L ⊗M))⊗ det (πT,∗OX×kT )−1 '

' det (πT,∗(L))⊗ det (πT,∗(M))⊗ det (πT,∗OX×kT )−2 '

' Nmπ(L)⊗ Nmπ(M).

Part (2) follows from the associative properties of the tensor product.

To prove (3), compute by Definitions 5.1 and 5.2:

Nmπ(π∗(N )) = det (πT,∗(π
∗
T (N )))⊗ det (πT,∗OX×kT )−1 .

By the projection formula [Sta19, Tag 01E8] and the standard prop-

erties of determinants, we have:

Nmπ(π∗(N )) = det (N ⊗ πT,∗OX×kT )⊗ det (πT,∗OX×kT )−1 '

' N n ⊗ det (πT,∗OX×kT )⊗ det (πT,∗OX×kT )−1 '

' N n.

�

We compare now the Norm and the inverse image maps between

the compactified Jacobians with the direct and inverse image maps

between the Hilbert schemes of divisors, respectively.

Proposition 5.6. (Comparison of the direct image and the Norm

map via the Abel map) For any line bundle M of degree e on X and

for any d ≥ 0, there is a commutative diagram of algebraic stacks over

k:

HilbdX
`Hilb

d
Y

GJ(X,−d+ e) ⊆ J(X,−d+ e) J−d+e(Y )

πd∗

AdM Ad
Nmπ(M)

Nm−d+eπ

Proof. Let T be any k-scheme, let D be a T -flat family of effective

divisors of degree d on X with ideal sheaf I, and denote with M the

pullback of M to X×k T . Following the bottom-left side of the square,

combining Definitions 2.8 and 5.1 we get:

Nm−d+e
π (AdM(D)) = det (πT,∗(I ⊗M))⊗ det (πT,∗OX×kT )−1 .
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Following the top-right side of the square, combining definitions 4.2,

5.1 and 2.8 we get:

AdNmπ(M)(π
d
∗(D)) = det (πT,∗(I))⊗ det (πT,∗(M))⊗ det (πT,∗OX×kT )−2 .

We are left to prove that:

det (πT,∗(I ⊗M))⊗ det (πT,∗OX×kT ) '

' det (πT,∗(I))⊗ det (πT,∗(M)) .

Now, I is a T -flat family of generalized line bundles by hypothesis and

M is a line bundle on X ×k T since it is the pull-back of a line bundle

on X. Then, the assertion is true by Lemma 5.4. �

Proposition 5.7. (Comparison of the inverse image maps via the

Abel map) For any line bundle N of degree e on Y and any d ≥ 0,

there is a commutative diagram of algebraic stacks over k:

`Hilb
d
Y

`Hilb
d
X

J(Y,−d+ e) J(X,−d+ e)

π∗d

AdN Ad
π∗(N)

π∗−d+e

Proof. Let T be any k-scheme, let D be a T -flat family of divisors

of degree d on Y with ideal sheaf I ⊆ Y ×k T , and denote with N the

pullback of N to Y ×k T . By Definition 2.8, Proposition 5.5(2) and

Remark 3.19, we have:

π∗d(AdN(D)) = π∗T (I ⊗N ) ' π∗T (I)⊗ π∗T (N ) '

' Adπ∗(N)(π
∗
−d+e(N )).

�
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CHAPTER 3

The fibers of the Norm map and the Prym stack

In the present chapter we study the fibers of the Norm map defined

in Chapter 2. The purpose is to generalize the Prym scheme associated

to a finite, flat morphism between projective curves to the context of

torsion-free sheaves of rank 1. Let X, Y be projective curves over k,

such that Y is smooth, and let π : X → Y be a finite, flat morphism

of degree n. We start by recalling the following definition.

Definition 0.1. The Prym scheme of X associated to π is the

locus Pr(X, Y ) ⊆ J(X) of line bundles whose Norm with respect to π

is trivial. In other words:

Pr(X, Y ) = {L ∈ J(X) : Nmπ(L) ' OY }.

We can now extend the definition of the Prym stack to the context of

torsion-free rank 1 sheaves using the Norm map defined in the previous

chapter.

Definition 0.2. The Prym stack of X associated to π is the lo-

cus Pr(X, Y ) ⊆ J(X) of torsion-free rank-1 sheaves whose Norm with

respect to π is trivial. In other words:

Pr(X, Y ) := {(L, λ) : L ∈ J(X) and λ : Nmπ(L) ∼−→ OY }.

Remark 0.3. It follows from the definition that:

Pr(X, Y ) = Pr(X, Y ) ∩ J(X).

Since being locally-free is an open condition, Pr(X, Y ) is open in

Pr(X, Y ).

The Prym stack is a fiber of the Norm map associated to π. In the

present chapter, we study the fibers of the Norm map assuming that

the curve X is reduced with locally planar singularities. The study of

such fibers involves the study of the fibers of the direct image map for
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effective divisors defined in Chapter 2, and the study of the fibers of

the Hilbert-Chow morphism. We start from the last.

1. The fibers of the Hilbert-Chow morphism

In this section, we refer to [Ber12] for notations and known results.

Definition 1.1. Let X be a projective curve over k and let d be

a positive integer. The d-symmetric power X(d) of X is the quotient

Xd/Σd of the Cartesian product Xn by the action of the symmetric

group Σd in d-letters permuting the factors. Note that, for d = 1,

X(1) = X. For d = 0, we put X(0) = {0}. The scheme of effective

0-cycles (or of effective Weil divisors) of X is the algebraic scheme:

WDiv+(X) =
⊔
d≥0

X(d) =
⊔
d≥0

WDivd(X).

The Hilbert-Chow morphism of degree d associated to X is the map of

schemes

ρdX : HilbdX → X(d)

D 7→
∑
x cod 1

degx(D) · [x]

Denote with `ρ
d
X the restriction of ρdX to the subscheme `Hilb

d
X ⊆ HilbdX

parametrizing Cartier divisors. The collection of Hilbert-Chow mor-

phisms in non-negative degrees gives rise to the Hilbert-Chow mor-

phism in any degree:

ρX : HilbX →WDiv+(X).

Finally, denote with `ρX the restriction of ρX to `HilbX ⊆ HilbX .

Remark 1.2. If X is a smooth projective curve, then ρX is an

isomorphism and coincides with `ρX .

We study now the fibers of the Hilbert-Chow morphism in the case

when X is reduced with locally planar singularities.

Proposition 1.3. Suppose that X is reduced with locally planar

singularities and that Y is smooth. Let W ∈WDivd(X) be an effective

Weil divisor of degree d on X and let ρ−1
X (W ) be the corresponding fiber

in HilbX . The locus `ρ
−1
X (W ) of Cartier divisors in ρ−1

X (W ) is an open

and dense subset of ρ−1
X (W ).

86



Proof. First, note that `ρ
−1
X (W ) = ρ−1

X (W )∩`HilbX . Since `HilbX ⊆
HilbX is open (see for example [MRV17a, Fact 2.4]), `ρ

−1
X (W ) is open

in ρ−1
X (W ).

To prove that it is dense, let W =
∑s

i=1 ni · [xi] with the xi’s are s

distinct points. For each i, the fiber of ρX over the cycle ni · [xi] is equal

by definition to the punctual Hilbert scheme HilbniX,xi parametrizing 0-

dimensional subschemes of X supported at xi having length ni over k.

Since the xi are distinct, we have:

ρ−1
X (W ) = ρ−1

X

(
s∑
i=1

ni · [xi]

)
=

=
s∏
i=1

ρ−1
X (ni · [xi]) =

s∏
i=1

HilbniX,xi .

For each i, let `Hilb
ni
X,xi

= HilbniX,xi ∩
`HilbX . An effective divisor is

Cartier if and only if it is Cartier at each point of its support, hence:

`ρ
−1

X (W ) =
s∏
i=1

(
HilbniX,xi ∩

`HilbX
)

=
s∏
i=1

`Hilb
ni
X,xi

.

For each i, `Hilb
ni
X,xi

is the smooth locus of HilbniX,xi by [BGS81, Propo-

sition 2.3], so it is dense; hence `ρ
−1
X (W ) is dense in ρ−1

X (W ). �

2. The fibers of the direct image between Hilbert schemes

In the present section, we study the fibers of the direct image map

π∗ defined between the Hilbert schemes of generalized divisors of X

and Y .

First, we introduce a similar notion for Weil divisors and we see

how it relates to the direct image for generalized divisors.

Definition 2.1. The direct image for Weil divisors associated to

π is the morphism of schemes:

π∗ : WDiv+(X)→WDiv+(Y )

given on the level of points by

d∑
i=1

ni · [xi] 7−→
d∑
i=1

ni · [π(xi)].

87



Proposition 2.2. Assume that Y is smooth. There is a commu-

tative square of schemes over k:

HilbX
`HilbY

WDiv(X) WDiv(Y ).

π∗

ρX ρY

π∗

Proof. Let D be an effective generalized divisor on X. Following

the bottom-left side of the square, we obtain:

π∗(ρX(D)) =
∑
x cod 1

degx(D) · [π(x)],

while on the top-right side of the square we have

ρY (π∗(D)) =
∑
y cod 1

degy(π∗(D)) · [y].

Since Y is smooth, π∗(D) is Cartier locally at each point of Y . By

Proposition 3.23, for any point y in codimension 1 of Y

degy(π∗(D)) =
∑
π(x)=y

degx(D).

Then we compute:

ρY (π∗(D)) =
∑
y cod 1

degy(π∗(D)) · [y] =

=
∑
y cod 1

 ∑
π(x)=y

degx(D)

 · [y] =

=
∑
y cod 1

∑
π(x)=y

degx(D) · [π∗(x)] =

=
∑
x cod 1

degx(D) · [y] = π∗(ρX(D)).

�

We are now ready to study the fibers of the direct image for gener-

alized divisors.

Proposition 2.3. Assume that Y is smooth and X is reduced with

locally planar singularities. Let E ∈ HilbY be an effective divisor of

degree d on Y and let π−1
∗ (E) be the corresponding fiber in HilbX . Then,

π−1
∗ (E) ∩ `HilbX is an open and non-empty dense subset of π−1

∗ (E).
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Proof. By Proposition 2.2, there is a commutative diagram of

schemes over k:

HilbX
`HilbY

WDiv(X) WDiv(Y ).

π∗

ρX ρY

π∗

First note that, since Y is smooth, the map π∗ is surjective by Corol-

lary 3.26, hence π−1
∗ (E) is non-empty. Moreover, the Hilbert-Chow

morphism ρY is an isomorphism. Then,

π−1
∗ (E) = ρ−1

X π−1
∗ (ρY (E)).

Let S = {y1, . . . , yr} be the support of E and let di = degyi E for each

i; then

ρY (E) =
r∑
i=1

di · [yi].

For each i, denote with {x1
i , . . . , x

ni
i } the discrete fiber of π over yi.

Since points can occur with multeplicity in the geometric fibers, ni ≤ n

holds for each i. The fiber of
∑r

i=1 di · [yi] is then the discrete subset

of WDiv(X) given by:

π−1
∗

(
r∑
i=1

di · [yi]

)
=

{
r∑
i=1

ni∑
j=1

cij · [xji ]

∣∣∣∣∣ cij ∈ Z≥0,

ni∑
j=1

cij = di for any i

}
.

Denote with Z the set of all tuples (cij) of positive integers with

the conditions that
∑ni

j=1 cij = di for any i. Then, we can write the

previous set as

π−1
∗

(
r∑
i=1

di · [yi]

)
=

⊔
(cij)∈Z

{
r∑
i=1

ni∑
j=1

cij · [xji ]

}
.

Then, applying ρ−1
∗ , we otbain:

ρ−1
X π−1

∗ (ρY (E)) = ρ−1
X π−1

∗

(
r∑
i=1

di · [yi]

)
=

= ρ−1
X

 ⊔
(cij)∈Z

{
r∑
i=1

ni∑
j=1

cij · [xji ]

} =

=
⊔

(cij)∈Z

ρ−1
X

(
r∑
i=1

ni∑
j=1

cij · [xji ]

)
,
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where the last disjoint union is a disjoint union of topological subspaces

of HilbX in the same connected component. Then, π−1
∗ (E) is a non-

emtpy disjoint uniont of a finite number of fibers of the Hilbert-Chow

morphism. By Proposition 1.3, the intersection of any such fiber with

the Cartier locus `HilbX is open and dense in the same fiber. Taking

the disjoint union, π−1
∗ (E) ∩ `HilbX is a non-empty open and dense

subset of π−1
∗ (E). �

3. The fibers of the Norm map and Pr(X, Y )

In this section, assuming that Y is smooth and X is reduced with

locally planar singularities , we prove that the generalized Prym of X

with respect to Y is non-empty, open and dense in the Prym stack of

X with respect to Y . The theorem is based upon the following two

auxiliaries proposition.

Proposition 3.1. Assume that Y is smooth and X is reduced with

locally planar singularities and let N ∈ J(Y ) be any line bundle on Y .

Then, there is a line bundle L on X such that Nmπ(L) ' N .

Proof. Let D be a Cartier divisor on Y such that N ∈ [D] and

let D = E−F where E,F are effective Cartier divisors by Lemma 2.3.

By Proposition 2.3 there are effective Cartier divisors H,K on X such

that π∗(H) = E and π∗(K) = F . Then, by Lemma 3.4 π∗(H−K) = D.

Set H − K = C and let L be the defining ideal of C, seen as a line

bundle. By Lemma 3.11 we conclude that Nmπ(L) ' N . �

Proposition 3.2. Assume that Y is smooth and X is reduced with

locally planar singularities and let N ∈ J(Y ) be any line bundle on Y .

Then, the fiber Nm−1
π (N ) is non-empty and contains Nm−1

π (N )∩J(Y )

as an open and dense substack.

Proof. First, note that J(X) = GJ(X) since X is reduced. The

fiber Nm−1
π (N ) is non-empty by Proposition 3.1 and the substack Nm−1

π (N )∩
J(Y ) is open in Nm−1

π (N ) since being locally free is an open condition.

To prove that it is dense, recall that for any fixed line bundle M ∈ J(X)
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there is a commutative diagram of stacks over k:

HilbX
`HilbY

J(X) J(Y )

π∗

AM ANmπ(M)

Nmπ

Moreover, by [MRV17a, Proposition 2.5] there is a cover of J(X) by k-

finite type open subsets {Uβ} such that, for each β, there is a line bundle

Mβ ∈ J(X) with the property that AMβ |Vβ : A−1
Mβ

(Uβ) = Vβ → Uβ is

smooth and surjective.

Since density can be checked locally, fix M = Mβ, U = Uβ and

V = Vβ. Then, we have:

Nm−1
π (N ) ∩ U = AM

(
V ∩ π−1

∗

(
A−1

Nmπ(M)(OY )
))

and

Nm−1
π (N ) ∩ J(X) ∩ U = AM

(
V ∩ π−1

∗

(
A−1

Nmπ(M)(OY )
)
∩ `HilbX

)
.

Put K = A−1
Nmπ(M)(OY ). Then, the topological space underlying π−1

∗ (K)

contains the topological union of fibers of the points in K, so that:

π−1
∗ (K) ⊇

⋃
E∈K

π−1
∗ (E).

By Proposition 2.3, π−1
∗ (E) ∩ `HilbX is a non-empty open and dense

subscheme of π−1
∗ (E) for any closed point E ∈ K. Hence, π−1

∗ (K) ∩
`HilbX is non-empty, open and dense in π−1

∗ (K). Intersecting with V

and composing with AM , we get the thesis. �

We finally come to the Prym stack of X with respect to Y . Recall

that by definition:

Pr(X, Y ) = Nm−1
π (OY ) ∩ J(X),

Pr(X, Y ) = Nm−1
π (OY ).

Corollary 3.3. Pr(X, Y ) is non-empty, open and dense in Pr(X, Y ).

Proof. Set N = OY and apply Proposition 3.2. �
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CHAPTER 4

Spectral data for G-Higgs pairs

In this chapter we study how the spectral correspondence (see

Chapter 1, Section 4) specializes forG-Higgs pairs, whereG = SL(r,C),

PGL(r,C), Sp(2r,C), GSp(2r,C), PSp(2r,C). Throughout this chap-

ter, C denotes a fixed smooth curve over the field of complex numbers

and L a fixed line bundle on C with degree ` = degL.

1. SL(r,C)-Higgs pairs

The Special Linear Group SL(r,C) is defined as:

SL(r,C) = {M ∈ GL(r,C) : detM = 1}.

The Lie algebra associated to SL(r,C) is

sl(r,C) = {X ∈ gl(r,C) : trX = 0} .

If (P, φ) is a SL(r,C)-Higgs pair on C, the associated vector bundle

E is endowed with a volume form λ : detE ∼−→ OC and the associated

Higgs field Φ is a L-valued endomorphism with tr Φ = 0; we say that

(E,Φ) is a Higgs pair with trace zero. Viceversa, let (E,Φ) be a Higgs

pair of rank r such that tr Φ = 0 and let λ : detE ∼−→ OC be a volume

form on E; then, the frame bundle P = FrSL(E, λ) of all ordered basis

whose λ-volume equals 1 is a principal SL(r,C)-bundle, and the Higgs

field Φ is the image of a unique global section φ of adP⊗L with respect

to the morphism adP ⊗ L → EndE ⊗ L induced by the canonical

embedding ρ : SL(r,C) ↪→ GL(r,C).

To sum up, the datum (P, φ) of a SL(r,C)-Higgs pair on C corre-

sponds univocally, via the associated bundle construction, to the datum

of (E,Φ, λ), where (E,Φ) is a Higgs pair of rank r with trace zero, and

λ is a trivialization of detE. Note that the isomorphism detE ' OC
implies in particular that the Higgs pairs associated to SL-Higgs pairs

have always degree equal to 0.
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A basis for the invariant polynomials of sl(r,C) is given by {p2, . . . , pr}
where pi(P, φ) := (−)i tr(∧iφ); in particular, if (E,Φ) is the associated

Higgs pair, then pi(P, φ) = ai(E, φ). Then, the SL-Hitchin morphism

of rank r can be defined as:

HSL,r :MSL(r) :=MSL(r, 0) −→ ASL(r) =
r⊕
i=2

H0(C,Li)

(P, φ) 7−→ (p2(P, φ), . . . , pr(P, φ)) =

= (a2(E,Φ), . . . , ar(E,Φ))

for (E,Φ) associated to (P, φ).

Proposition 1.1. (Spectral correspondence for SL(r,C)) Let a ∈
ASL(r) be any characteristic, let X = Xa

π−→ C be the associated spectral

curve, and denote B := det(π∗OX)−1. The fiber H−1
SL,r(a) of the SL-

Hitchin morphism is isomorphic, via the spectral correspondence, to the

fiber Nm−1
π (B) of the Norm map from J(X, d′) to J(Y, d′) induced by π

for d′ = r(r−1)
2

`.

Proof. The datum of a SL(r,C)-Higgs pair (P, φ) with character-

istic a corresponds uniquely, via the associated bundle construction,

to the datum of (E,Φ, λ), where (E,Φ) is a Higgs pair of rank r and

degree 0 with Hr,0(E,Φ) = a and λ is a trivialization of detE.

The datum of the Higgs pair (E,Φ) ∈ H−1
r,0(a) corresponds uniquely,

via the spectral correspondence (Proposition 4.4), to the datum of a

torsion-free rank-1 sheaf M on X of degree d′. By Definition 5.1,

Nmπ(M) := det(π∗M)⊗B, so giving a isomorphism λ between det π∗M
and OC is the same as giving a isomorphism ε between Nmπ(M) and

B.

To sum up, the datum of (P, φ) corresponds to the datum (M, ε) of

an element M ∈ J(X, d′) and an isomorphism ε : Nm(M) ∼−→ B. This

is an element of the fiber product stack:

Nm−1(B) J(X, d′)

B J(C, d′)

y
Nmπ

We conclude that H−1
SL,r(a) ' Nm−1(B). �
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Proposition 1.2. Let a ∈ Areg
SL(r) be a characteristic such that the

spectral curve X is reduced. Then,

H−1
SL,r(a) ' Pr(X,C).

Proof. Let B = det(π∗OX)−1 ∈ J(C). Since X is reduced with lo-

cally planar singularities, J(X) = GJ(X) by Remark 2.9 and Nm−1
π (B)

contains at least a line bundle by Proposition 3.2; denote it with N .

Tensoring by N in J(X) induces then by Proposition 5.5 a well-defined

isomorphism:

Pr(X,C) −→ Nm−1
π (B)

L 7−→ L⊗N.

�

2. PGL(r,C)-Higgs pairs

We come now to the case of PGL(r,C)-Higgs pairs. Recall first

that the Projective Linear Group PGL(r,C) is defined by the exact

sequence:

0→ C∗ λ 7→λIr−−−−→ GL(r,C)→ PGL(r,C)→ 0.(8)

From the exponential sequence 0 → Z → OC → O∗C → 0 we deduce

that H2(C,O∗C) = 0; hence, the sequence 8 applied to the structure

sheaves:

0→ O∗C → GL(r,OC)→ PGL(r,OC)→ 0

yields the cohomology exact sequence

H1(C,O∗C)→ H1(C,GL(r,OC))
q
−� H1(C,PGL(r,OC))→ 0.(9)

The sequence 9, read in terms of cocycles, means that PGL(r,C)-

principal bundles are in one-to-one correspondence with equivalence

classes of GL(r,C)-principal bundles, with respect to the action on

associated bundles given by tensor product of line bundles on C. If P

is a PGL(r,C)-principal bundle and P̃ is a GL(r,C)-principal bundle

such that q(P̃ ) = P , we say that P̃ is a lifting of P to a GL(r,C)-

principal bundle.

Moreover, the Lie algebra pgl(r,C) associated to PGL(r,C) is equal

to the Lie algebra sl(r,C) of SL(r,C). If P is any PGL(r,C)-principal
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bundle and P̃ is a lifting of P to a GL(r,C)-principal bundle, then

a section φ of H0(C, adP ⊗ L) determines uniquely a section φ̃ of

H0(C, ad P̃ ⊗ L) with trace equal to 0, and viceversa. We say that

(P̃ , φ̃) is a lifting of (P, φ) to a GL-Higgs pair and with a slight abuse

of notation we write q(P̃ , φ̃) = (P, φ).

Tu sum up, any PGL(r,C)-Higgs pair (P, φ) has a lifting (P̃ , φ̃) to

a to a GL(r,C)-Higgs pair, corresponding to a Higgs pair (E,Φ) with

trace zero via the associated bundle construction. Then, the datum

of (P, φ) corresponds uniquely to the datum of the equivalence class

[(E,Φ)] of Higgs pairs on C with trace zero, under the equivalence

relation ∼J(C) defined by:

(E,Φ) ∼J(C) (E ⊗N,Φ⊗ 1N) for any N ∈ J(C).

Let M(r) =
∐

d∈ZM(r, d) be the moduli stack of Higgs pairs of rank

r in any degree and denote withMtr=0(r) the closed substack ofM(r)

given by Higgs pairs of rank r with trace zero. Then, [(E,Φ)] is the

orbit of (E,Φ) under the action of J(C) on Mtr=0(r) defined by:

Mtr=0(r)× J(C) −→Mtr=0(r)

((E,Φ), N) 7−→ (E ⊗N,Φ⊗ 1N).

The degree of Higgs pairs associated to a PGL-Higgs pair is defined

only modulo r. Indeed, if N is any line bundle on C, then

deg(E ⊗N) = deg(det(E ⊗N)) =

= deg(det(E)⊗N r) = deg(E) + r deg(N)

so the degree of J(C)-equivalent Higgs pairs may differ by multiples of

r. Hence, we can give the following definition.

Definition 2.1. Let (P, φ) be a PGL-Higgs pair and let (E,Φ)

be a Higgs pair with trace zero and degree d ∈ Z corresponding to a

lifting (P̃ , φ̃) of (P, φ) to a GL-Higgs pair. The degree of (P, φ) is the

congruence class d ∈ Z/rZ.

Remark 2.2. Obviously, the same definition can be given just for

PGL-principal bundles. Let P be a PGL-principal bundle ald let E

be the vector bundle associated to any lifting of P to a GL-principal
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bundle. The degree of a PGL-principal bundles P is the congruence

class d ∈ Z/rZ of the degree d = degE.

As a matter of fact, the first homotopy group π1(PGL(r,C)) of

PGL(r,C) is isomorphic to Z/rZ and the degree of (P, φ) characterizes

uniquely the topological type of P .

Up to the action on (E,Φ) of a line bundle of degree 1 on C, it is

straightforward to see that the J(C)-orbit [(E,Φ)] corresponding to a

PGL-Higgs pair with degree d ∈ Z/rZ is always the orbit of a Higgs pair

of degree d with d ∈ {0, . . . , r − 1}. If we restrict the correspondence

to Higgs pairs with fixed degree d ∈ {0, . . . , r − 1}, then a PGL-Higgs

pair of degree d is identified uniquely with the orbit of a Higgs pair of

trace zero and degree d with respect to the action of line bundles of

degree 0 on C. We have then the following proposition.

Proposition 2.3. Let d ∈ Z/rZ with d ∈ {0, . . . , r − 1}. Denote

with Mtr=0(r, d) the closed substack of M(r, d) given by Higgs pairs

with trace zero. The moduli stack MPGL(r, d) of PGL-Higgs pairs of

rank r and degree d is isomorphic to the quotient stack

q :Mtr=0(r, d) −→Mtr=0(r, d)/J0(C) ∼−→MPGL(r, d)

(E,Φ) 7−→ [(E,Φ)] 7−→ (P, φ) := q(P̃ , φ̃)

where (E,Φ) is associated to the GL-principal bundle (P̃ , φ̃).

A basis for the invariant polynomials of pgl(r,C) = sl(r,C) is given

by p2, . . . , pr where pi(P, φ) := (−)i tr(∧iφ); moreover, if [(E,Φ)] is

the associated J0(C)-equivalence class of Higgs pairs with zero trace,

then pi(P, φ) = ai(E,Φ) for any (E,Φ) associated to a lifting of (P, φ).

Hence, we have the following PGL-Hitchin morphism of rank r and

degree d:

HPGL,r,d :MPGL(r, d) −→ APGL(r) =
r⊕
i=2

H0(C,Li)

(P, φ) 7−→ (p2(P, φ), . . . , pr(P, φ)).
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The PGL-Hitchin morphism fits the following commutative diagram:

M(r, d) Mtr=0(r, d) MPGL(r, d)

A(r)
⊕r

i=2H
0(C,Li) = APGL(r)

Hr,d Htr=0
r,d

HPGL,r,d

with d ∈ {0, . . . , r − 1} and d ∈ Z/rZ.

We are now ready to state the spectral correspondence for PGL(r,C)-

Higgs pairs.

Proposition 2.4. (Spectral correspondence for PGL(r,C)) Let a ∈
APGL(r) be any characteristic and let X = Xa

π−→ C be the associated

spectral curve. Let d ∈ Z/rZ with d ∈ {0, . . . , r − 1} be any degree.

The fiber H−1

PGL,r,d
(a) of the PGL-Hitchin morphism is isomorphic, via

the spectral correspondence, to the quotient moduli space

J(X, d′)/π∗J0(C)

of torsion-free sheaves of rank 1 and degree d′ up to the action of line

bundles of degree 0 on C by tensor product, with d′ = d+ r(r−1)
2

`.

Proof. The datum of a PGL(r,C)-Higgs pair (P, φ) with degree

d and characteristic a corresponds uniquely to the datum of a J0(C)-

equivalence class [(E,Φ)] of Higgs pairs of rank r and degree d with

characteristic a, where (E,Φ) is the Higgs pair associated, via the vec-

tor bundle construction, to a lifting of (P, φ) to a GL-Higgs pair. By

the spectral correspondence, the datum of (E,Φ) corresponds uniquely

to the datum of a pure sheaf M ∈ J(X, d′) such that π∗M = E and

d′ = d + r(r−1)
2

`. Let N ∈ J0(C) be any line bundle of degree 0 on C.

By the projection formula,

π∗(M⊗ π∗N) ' π∗M⊗N,

and the following square commutes:

π∗(M⊗ π∗N) π∗M⊗N

π∗(M⊗ π∗N)⊗ L (π∗M⊗N)⊗ L.

∼

π∗(·x) ΦN

∼

Hence, the spectral correspondence is equivariant with respect to the

action of π∗J0(C) by tensor product on J(X, d′) and the action of J0(C)
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onMtr=0(r, d). Then, passing to the quotient on both sides, the datum

of the J0(C)-orbit [(E,Φ)] corresponds uniquely to the datum of a

π∗J0(C)-orbit [M] ∈ J(X, d′)/π∗J0(C). �

We study now the special case of PGL(r,C)-Higgs pairs of degree

0. Since C is algebraically closed, the Projective Linear group is equal

to the Projective Special Linear group PSL(r,C) defined by the exact

sequence:

0→ µr
λ 7→λIr−−−−→ SL(r,C)→ PSL(r,C)→ 0;(10)

here we denote with µr the group of r-th roots of unity, as defined by

the exact sequence:

0→ µr → C∗ λ7→λr−−−→ C∗ → 0.

In particular, H2(C, µr) = Z/rZ, hence the exact sequence 10, applied

to structure sheaves, induces the cohomology exact sequence:

H1(C, µr)→ H1(C, SL(r,OC))
q
−� H1(C,PSL(r,OC))

deg−−→ Z/rZ→ 0.

(11)

The sequence 11, read in terms of cocycles, means that a PGL(r,C)-

principal bundle P can be lifted to a principal SL(r,C)-principal bundle

P0 if and only if P has degree 0 ∈ Z/rZ; any other lifting P ′0 of P differs

from P0 by the action on associated bundles of a r-th torsion line bundle

by tensor product. Moreover, a Higgs field φ on P determines uniquely

a Higgs field φ0 on P0, and viceversa.

To sum up, any PGL(r,C)-principal bundle (P, φ) of degree zero

has a lifting (P0, φ0) to a SL(r,C)-principal bundle, corresponding to

the datum (E,Φ, λ) of a Higgs pair (E,Φ) with trace zero and a volume

form λ : detE ∼−→ OC via the associated bundle construction. Then, the

datum of (P, φ) corresponds uniquely to the datum of the equivalence

class [(E, φ, λ)] of Higgs pairs with trace zero, under the equivalence

relation ∼J0(C)[r] defined by:

(E,Φ, λ) ∼J0(C)[r] (E ⊗N,Φ⊗ 1N , λN,ε) for any (N, ε) ∈ J0(C)[r].
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Here, J0(C)[r] is the group stack of r-torsion line bundles (N, η) on C,

where η is the isomorphism N r ∼−→ OC , and λN,η denote the isomor-

phism:

λN,η : det(E ⊗N) ∼−→ det(E)⊗N r ∼−−→
λ⊗η
OC .

We can prove now the following proposition.

Proposition 2.5. (Spectral correspondence for PGL(r,C) of de-

gree 0) Let a ∈ APGL(r) be any characteristic, let X = Xa
π−→ C

be the associated spectral curve and denote B := det(π∗OX)−1. Let

d′ = r(r−1)
2

` and let Nmπ be the Norm map induced by π on J(X, d′).

Let J0(C)[r] be the group stack of line bundles with r-th torsion on C,

acting on Nm−1
π (B) as follows:

Nm−1
π (B)× π∗J0(C)[r] −→ Nm−1

π (B)

((M, ε), (π∗N, π∗η)) 7−→ (M⊗ π∗N, εN,η)

where εN,η is equal to the following composition:

εN,η : Nm(M⊗ π∗N) ∼−→ Nm(M)⊗ Nm(π∗N) ∼−→ Nm(M)⊗N r ε⊗η−−→ B.

Then, the fiber H−1
PGL,r,0

(a) of the PGL-Hitchin morphism is isomor-

phic, via the spectral correspondence, to the quotient moduli space

Nm−1
π (B)/π∗(J0C)[r].

Proof. The datum of a PGL(r,C)-Higgs pair (P, φ) with degree 0

and characteristic a corresponds uniquely to the datum of a J0(C)[r]-

equivalence class [(E,Φ, λ)] of Higgs pairs of rank r and degree 0 with

characteristic a, where (E,Φ, λ) is the datum of a Higgs pair with a

volume form λ associated, via the vector bundle construction, to a

lifting of (P, φ) to a SL-Higgs pair.

By Proposition 1.1, the datum of (E,Φ, λ) corresponds to the da-

tum (M, ε) of a torsion-free rank-1 sheaf M of degree d′ on X and an

isomorphism ε : Nm(M) ∼−→ B, i.e. an element of Nm−1(B). If (N, η) is

a line bundle on C with r-th torsion, the datum of (E⊗N,ΦN , λN,η) cor-

responds by projection formula to the datum of (M⊗π∗N, εN,η). Then,

the datum of the J0(C)[r]-equivalence class [(E,Φ, λ)] corresponds

uniquely to the datum of the π∗J0(C)[r]-equivalence class [(M, ε)].

�
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3. Sp(2r,C)-Higgs pairs

The symplectic group Sp(2r,C) is defined as:

Sp(2r,C) = {M ∈ GL(2r,C) : MΩM t = Ω}

where Ω =

(
0 Ir

−Ir 0

)
.

The Lie algebra associated to Sp(2r,C) is

sp(2r,C) =
{
X ∈ gl(2r,C) : XΩ + ΩX t = 0

}
.

If (P, φ) is a Sp(2r,C)-Higgs pair on C, the associated vector bundle

E is endowed with a non-degenerate symplectic form ω : E ⊗E → OC
and the associated Higgs field Φ is satisfies the condition ω(Φv, w) =

−ω(v,Φw) for all sections v, w of E. The existence of a non-degenerate

symplectic form implies that E has trivial determinant and, in particu-

lar, that E has degree 0. Viceversa, let (E,Φ) be a Higgs pair of rank 2r

and let ω be a non-degenerate symplectic form on E satisfying the con-

dition ω(Φv, w) = −ω(v,Φw); then, the frame bundle P = FrSp(E,ω)

of all ordered symplectic basis of (E,ω) is a principal Sp(2r,C)-bundle,

and the Higgs field Φ is the image of a unique global section φ of

adP ⊗L with respect to the morphism adP ⊗L→ EndE⊗L induced

by the canonical embedding ρ : Sp(2r,C) ↪→ GL(2r,C).

To sum up, the datum of a Sp(2r,C)-Higgs pair (P, φ) on C cor-

responds univocally to the datum of (E,Φ, ω) where (E,Φ) is a Higgs

pair of rank 2r and degree 0 and ω : E ⊗E → OC is a non-degenerate

symplectic form on E satisfying the condition:

ω(Φv, w) = −ω(v,Φw).

A basis for the invariant polynomials of sp(2r,C) is given by {p2i}i=1,...,r

where p2i(P, φ) := tr(∧2iφ); if (E,Φ) is the associated Higgs pair, then

p2i(P, φ) = a2i(E, φ). The corresponding Sp-Hitchin morphism takes

the form:

HSp,2r :MSp(2r) :=MSp(2r, 0) −→ ASp(2r) =
r⊕
l=1

H0(C,L2l)

(P, φ) 7−→ (p2(P, φ), p4(P, φ), . . . , p2r(P, φ)).

101



For any characteristic a ∈ ASp(2r), the spectral curve π : Xa → C

is defined in the total space p : P(OC ⊕ L−1)→ C by the equation

x2ry + a2x
2r−2y2 + · · ·+ a2r−2x

2y2r−2 + a2ry
2r = 0.

Hence, the curve X = Xa has an involution σ defined by σ(x) = −x
and a quotient curve:

X X/σ = Y

C

π

q

π

The involution σ induces by pullback an involution on the compactified

Jacobian of torsion-free rank-1 sheaves with any degree d′:

σ∗ : J(X, d′) −→ J(X, d′)

L 7−→ σ∗L.

Proposition 3.1. (Spectral correspondence for Sp(2r,C)) Let a ∈
ASp(2r) be any characteristic and let X = Xa

π−→ C be the associated

spectral curve with involution σ : X → X. The fiber H−1
Sp,2r(a) of the

Sp-Hitchin morphism is isomorphic, via the spectral correspondence, to

the equalizer Ea of the two maps

_∗ := HomOX (_,OX) : J(X, d′)→ J(X,−d′)

σ∗_⊗ π∗L1−2r : J(X, d′)→ J(X,−d′),

where d′ = r(2r − 1)`.

Proof. The dual of a torsion-free sheaf on a Gorenstein curve is

torsion-free sheaf with the same rank, hence the map HomOX (_,OX) is

well-defined. Let (P, φ) be any Sp-Higgs pair with characteristic a and

let (E,Φ, ω) be the associated datum of a Higgs pair of rank 2r and

degree 0 with characteristic a and symplectic form ω. The torsion-free

sheafM on X associated to (E,Φ) by the spectral correspondence fits

into the exact sequence:

0→M⊗ π∗L1−2r → π∗E
π∗Φ−x−−−−→ π∗(E ⊗ L)→M⊗ π∗L→ 0.

Taking the dualized sequence and tensoring by π∗L gives a left exact

sequence:

0→M∗ → π∗E∗
π∗Φt−x−−−−→ π∗E∗ ⊗ π∗L.
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On the other hand, applying σ∗ to the first exact sequence gives:

0→ σ∗M⊗ π∗L1−2r → π∗E
π∗Φ+x−−−−→ π∗(E ⊗ L)→ σ∗M⊗ π∗L→ 0.

Now, the symplectic form ω induce an isomorphism ωE : E ' E∗ and

hence a commutative diagram with vertical isomorphisms:

0 M∗ π∗E∗ π∗E∗ ⊗ π∗L

0 σ∗M⊗ π∗L1−2r π∗E π∗(E ⊗ L)

π∗Φt−x

ωE ∼

π∗Φ+x

ωE ∼

Hence, we conclude that the sheafM comes with a sheaf isomorphism

λ :M∗ ∼−→ σ∗M⊗ π∗L1−2r.

Viceversa, suppose that M is a torsion-free sheaf of rank 1 and

degree d′ on X with an isomorphism λ : M∗ ∼−→ σ∗M ⊗ π∗L1−2r.

Let (E,Φ) be the GL-Higgs pair with characteristic a corresponding

to M. By [HS93], the Relative duality formula holds for X/C with

dualizing sheaf equal to the sheaf of relative differentials ωX/C . By

Lemma 4.1 and Riemann-Hurwitz we obtain that ωX/C ' π∗L2r−1.

Applying Relative duality in dimension 0 and the projection formula,

we obtain an isomorphism:

E∗ = π∗(M)∗ ' π∗(M∗ ⊗ π∗L2r−1) '

' π∗(σ
∗(M)) = π∗(σ∗σ

∗M) '

' π∗(σ∗OX ⊗M) = π∗(OX ⊗M) '

' π∗(M) = E;

that induces the symplectic structure ω : E ⊗ E → OC .

To sum up, the datum of (P, φ) in the fiber H−1
Sp,2r(a) corresponds

uniquely to the datum (M, λ) of a torsion-free rank-1 sheaf M ∈
J(X, d′) and an isomorphism λ :M∗ ∼−→ σ∗M⊗π∗L1−2r, i.e. an element

of the equalizer stack Ea. �

4. GSp(2r,C)-Higgs pairs

The General Symplectic group GSp(2r,C) is defined as:

GSp(2r,C) = {M ∈ GL(2r,C) : MΩM t = λΩ for some λ ∈ C∗}
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where Ω =

(
0 Ir

−Ir 0

)
.

The Lie algebra associated to GSp(2r,C) is

gsp(2r,C) =

{
A ∈ gl(2r,C) : AΩ + ΩAt =

trA

r
Ω

}
'

' sp(2r,C)⊕ C

where the isomorphism is given by the decomposition A = X + trA
2r
I2r,

with X ∈ sp(2r,C) and tr(A) ∈ C.

If (P, φ) is a GSp(2r,C)-Higgs pair on C, the associated vector

bundle E is endowed with a non-degenerate symplectic form ω : E ⊗
E →M with values in a line bundle M on C and the associated Higgs

field Φ satisfies the condition

ω(Φv, w) + ω(v,Φw) =
tr Φ

r
ω(v, w)

for all sections v, w of E. The existence of a non-degenerate symplectic

M -valued form implies that E has determinant isomorphic to M r and,

in particular, that E has degree equal to r degM . Viceversa, let (E,Φ)

be a Higgs pair of rank 2r and let ω be a non-degenerate symplectic

M -valued form on E satisfying the condition

ω(Φv, w) + ω(v,Φw) =
tr Φ

r
ω(v, w);

then, the frame bundle P = FrGSp(E,ω) of all ordered symplectic basis

of (E,ω) is a principal GSp(2r,C)-bundle, and the Higgs field Φ is the

image of a unique global section φ of adP ⊗ L with respect to the

morphism adP ⊗L→ EndE⊗L induced by the canonical embedding

ρ : Sp(2r,C) ↪→ GL(2r,C).

Tu sum up, the datum of a GSp(2r,C)-Higgs pair (P, φ) corre-

sponds uniquely, via the associated bundle construction, to the datum

(E,Φ,M, ω) of a Higgs pair (E,Φ) of rank 2r and degree rd and a

non-degenerate symplectic form ω : E ⊗ E → M with values in a line

bundle M of degree d, and Φ ∈ H0(C,End(E)⊗ L) satisfies

ω(Φv, w) + ω(v,Φw) =
tr Φ

r
ω(v, w).(12)
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Since gsp(2r,C) ⊂ gl(2r,C), the GSp-Hitchin morphism can be

defined with the help of the GL-Hitchin morphism, as follows:

HGSp,2r,rd :MGSp(2r, rd) −→ AGSp(2r) ⊆
2r⊕
i=1

H0(C,Li)

(P, φ) 7−→ (p1(P, φ), . . . , p2r(P, φ)).

where pi(P, φ) = (−)i tr(∧iφ) and AGSp(2r) is defined as the locus of

characteristics in AGL(2r) resulting as characteristics of GSp(2r,C)-

Higgs pairs.

In order to study the space of characteristics AGSp(2r), let (E,Φ)

be the Higgs pair associated to any GSp-Higgs pair (P, φ) and consider

then the Higgs field

Φ′ = Φ− tr Φ

2r
idE ∈ H0(C,End(E)⊗ L).

Reformulating Equation 12, the following condition on Φ′ holds:

ω(Φ′v, w) + ω(v,Φ′w) = 0.(13)

As in the case of Sp-Higgs pairs, this condition implies that ai(E,Φ
′) =

0 when i = 2l+1. In particular, the vector a′ = (a2(E,Φ′), a4(E,Φ′), . . . , a2r(E,Φ
′))

may assume any value in the affine space

r⊕
l=1

H0(C,L2l) = ASp(2r) ⊂ AGL(2r) = A(2r).

Let a = (a1(E,Φ), a2(E,Φ), . . . , a2r(E,Φ)) ∈ A(2r) be the character-

istic of (E,Φ). Since ai(E,Φ) = pi(P, φ) for any i = 0, . . . , 2r, we have

that a is equal to the characteristic of (P, φ) in AGSp(2r). What is the

relation between a and a′? Denote with χΦ and χΦ′ respectively the

characteristic polynomials of Φ and Φ′, and set tr Φ
2r

= µ ∈ H0(C,L). By

definition of Φ′, the characteristic polynomials χΦ and χΦ′ are related

by the following equality:

χΦ(t+ µ) = det(Φ− (t+ µ) idE) = det(Φ′ − t idE) = χΦ′(t).(14)

Comparing the coefficients in Equation 14 and recalling that tr Φ =

a1(E,Φ), it follows that the vector (a′, µ) can be determined by a poly-

nomial combination P (a) of the entries of a. Viceversa, by the equality

χΦ(t) = χΦ′(t − µ), it follows that the vector a can be determined

back by a polynomial combination of the entries of the vector a′ and
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the scalar µ, denoted by Q(a′, µ). In other words, P defines an isomor-

phism between AGSp(2r) and the affine space ASp(2r)⊕H0(C,L), with

inverse Q.

By means of the previous discussion, the datum of a GSp(2r,C)-

Higgs pair (P, φ) corresponds uniquely, via the associated bundle con-

struction and the translation of the Higgs field, to the datum (E,Φ′, ω,M, µ)

of a Higgs pair (E,Φ′) of rank 2r and degree rd, a non-degenerate

symplectic form ω : E ⊗ E → M with values in a line bundle M

of degree d, and a global global section µ ∈ H0(C,L), such that

Φ′ ∈ H0(C,End(E)⊗ L) satisfies

ω(Φ′v, w) + ω(v,Φ′w) = 0.(15)

Moreover, the affine space ASp(2r)⊕H0(C,L) can be taken as basis

of another GSp-Hitchin morphism H̃ = P ◦ H:

H̃GSp,r,rd :MGSp(r, rd) −→ ASp(2r)⊕H0(C,L)

(P, φ) 7−→ (a′, µ) = P (p1(P, φ), . . . , p2r(P, φ)) =

= (a2(E,Φ′), a4(E,Φ′), . . . , a2r(E,Φ
′),

tr Φ

2r
).

Proposition 4.1. (Spectral correspondence for GSp(r,C)) Let a′ ∈
ASp(2r) be any characteristic and let µ ∈ H0(C,L) be any section. Let

X = Xa′
π−→ C be the spectral curve associated to a′ and let σ be the

involution defined on X as in Section 3. Let d′ = rd + r(2r − 1)` and

denote with P(d′, n) = J(X, d′) × Jd(C) the Cartesian product of the

compactified Jacobian of degree d′ on X and the Jacobian of degree d

on C, endowed with the projection maps pX and pC on J(X, d′) and

Jd(C) respectively. Let Ea′ be the equalizer of the two maps

(HomOX (_,OX) ◦ pX)⊗ (π∗ ◦ pC) : P(d′, d)→ J(X, rd− r(2r − 1)`)

(σ∗ ◦ pX)⊗ π∗L1−2r : P(d′, d)→ J(X, rd− r(2r − 1)`).

Then, the fiber H̃−1
GSp,2r,rd(a

′, µ) is isomorphic, via the spectral corre-

spondence, to Ea′.

Proof. The datum of a GSp-Higgs pair (P, φ) in the fiber H̃−1
GSp,2r,rd(a

′, µ)

corresponds uniquely to the datum (E,Φ′, ω,M, µ) of a Higgs pair

(E,Φ′) with rank 2r and characteristic a′, a non-degenerate symplectic

form ω on E with values in a line bundle M of degree d on C, and
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µ ∈ H0(C,L) fixed. The torsion-free sheaf M on X corresponding to

(E,Φ′) by the spectral correspondence fits into the exact sequence:

0→M⊗ π∗L1−2r → π∗E
π∗Φ−x−−−−→ π∗(E ⊗ L)→M⊗ π∗L→ 0.

Taking the dualized sequence and tensoring by π∗(L⊗M) gives a left

exact sequence:

0→M∗ ⊗M → π∗(E∗ ⊗M)
π∗Φt−x−−−−→ π∗(E∗ ⊗M)⊗ π∗L.

On the other hand, applying σ∗ to the first exact sequence gives:

0→ σ∗M⊗ π∗L1−2r → π∗E
π∗Φ+x−−−−→ π∗(E ⊗ L)→ σ∗M⊗ π∗L→ 0.

Now, the non-degenerate symplectic form ω induces an isomorphism

ωE : E → E∗ ⊗M and hence a commutative diagram with vertical

isomorphisms:

0 M∗ ⊗M π∗(E∗ ⊗M) π∗(E∗ ⊗M)⊗ π∗L

0 σ∗M⊗ π∗L1−2r π∗E π∗(E ⊗ L)

π∗Φt−x

ωE ∼

π∗Φ+x

ωE ∼

Hence, we conclude that the sheaf M comes with sheaf isomorphism

λ :M∗ ⊗ π∗M ∼−→ σ∗M⊗ π∗L1−2r.

Viceversa, suppose thatM is a torsion-free sheaf of rank 1 and de-

gree d′ on X with a line bundle M of degree d on C and an isomorphism

λ : M∗ ⊗ π∗M ∼−→ σ∗M⊗ π∗L1−2r. Let (E,Φ′) be the Higgs pairs of

rank 2r and degree rd corresponding to M by the spectral correspon-

dence. Applying Relative duality in dimension 0 and the projection

formula as in Section 3, we have an isomorphism:

E∗ = π∗(M)∗ ' π∗(M∗ ⊗ π∗L2r−1) '

' π∗(σ
∗(M)⊗ π∗M−1) '

' π∗(σ
∗(M))⊗M−1 = π∗(σ∗σ

∗M)⊗M−1 '

' π∗(σ∗OX ⊗M)⊗M−1 = π∗(OX ⊗M)⊗M−1 '

' π∗(M)⊗M−1 = E ⊗M−1;

that induces the non-degenerate M -valued symplectic structure ω :

E ⊗ E →M .
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To sum up, the datum of (P, φ) in the fiberH−1
GSp,2r,rd(a) corresponds

uniquely to the datum (M,M, λ) of a torsion-free rank-1 sheaf M ∈
J(X, d′), a line bundle M ∈ J(C, d) and an isomorphism λ : M∗ ⊗
π∗M ∼−→ σ∗M⊗ π∗L1−2r, i.e. an element of the equalizer stack Ea. �

5. PSp(2r,C)-Higgs pairs

The Projective Symplectic group PSp(2r,C) is defined by the exact

sequence:

0→ C∗ λ 7→λI2r−−−−→ GSp(2r,C)→ PSp(2r,C)→ 0(16)

or by the exact sequence:

0→ {±1} 1 7→I2r−−−→ Sp(2r,C)→ PSp(2r,C)→ 0.(17)

In particular, the sheaf-theoretic version of sequence 16 yields the co-

homology exact sequence:

H1(C,O∗C)→ H1(C,GSp(2r,OC))
q
−� H1(C,PSp(2r,OC))→ 0.(18)

This surjection, read in terms of cocycles, means that PSp(2r,C)-

principal bundles are in one-to-one correspondence with equivalence

classes of GSp(2r,C)-principal bundles, with respect to the action on

associated bundles given by tensor product of line bundles. If P is

a PSp(2r,C)-principal bundle and P̃ is a GSp(2r,C)-principal bundle

such that q(P̃ ) = P , we say that P̃ is a lifting of P to a GSp(2r,C)-

principal bundle.

Moreover, by sequence 17, PSp(2r,C) is the quotient of Sp(2r,C) by

the action of a finite group, hence the associated Lie algebras psp(2r,C)

and sp(2r,C) are equal. If P is any PSp(r2,C)-principal bundle and

P̃ is a lifting of P to a GSp(2r,C)-principal bundle, then a section φ

of H0(C, adP ⊗L) determines uniquely a section φ̃ of H0(C, ad P̃ ⊗L)

with trace equal to 0, and viceversa. We say that (P̃ , φ̃) is a lifting of

(P, φ) to a GSp(2r,C)-Higgs pair and with a slight abuse of notation

we write q(P̃ , φ̃) = (P, φ).

To sum up, any PSp(2r,C)-Higgs pair (P, φ) has a lifting (P̃ , φ̃) to

a GSp(r,C)-Higgs pair, corresponding via the associated bundle con-

struction to the datum (E,Φ,M, ω) of a Higgs pair (E,Φ) of rank 2r,

a non-degenerate symplectic form ω : E⊗E →M with values in a line
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bundle M of degree d on C, and a Higgs field Φ satisfying the condition

ω(Φv, w) + ω(v,Φw) = 0.

Then, the datum of (P, φ) corresponds uniquely to the datum of the

equivalence class [(E,Φ,M, ω)] of Higgs pairs of rank 2r (and degree rd)

with a non-degenerate symplectic form, under the equivalence relation

∼J(C) defined by:

(E,Φ,Mω) ∼J(C) (E ⊗N,Φ⊗ 1N ,M ⊗N2, ωN) for any N ∈ J(C)

where

ωN : (E ⊗N)⊗ (E ⊗N)→M ⊗N2

is obtained by extension of scalars.

Let MGSp(2r) =
∐

d∈ZMGSp(2r, rd) be the moduli stack of GSp-

Higgs pairs of rank 2r in any degree and denote with Mtr=0
GSp (2r) the

closed substack ofMGSp(2r) given by GSp-Higgs pairs of rank 2r with

trace zero. Then, [(E,Φ,M, ω)] is the orbit of (E,Φ,M, ω) under the

action of J(C) on Mtr=0
GSp (2r) defined by:

Mtr=0
GSp (2r)× J(C) −→Mtr=0

GSp (2r)

((E,Φ,M, ω), N) 7−→ (E ⊗N,Φ⊗ 1N ,M ⊗N2, ωN).

Recall that the isomorphism detE ' M r implies that deg(E) =

r deg(M); in other words, the degree of the Higgs pair in the datum

(E,Φ,M, ω) is determined by the degree of the line bundle M in the

same datum. The action of J(C) on such datum modifies the degree

of M by multiples of 2, since deg(M ⊗ N2) = deg(M) + 2 deg(N).

This his fact implies that the degree of GSp-Higgs pairs associated to

a PSp-Higgs pair is defined only modulo 2r. Then, we can give the

following definition.

Definition 5.1. Let (P, φ) be a PSp(2r,C)-Higgs pair and let

(E,Φ,M, ω) be the datum of a Higgs pair with trace zero and de-

gree rd endowed with a M -valued symplectic form ω, corresponding to

a lifting (P̃ , φ̃) of (P, φ) to a GSp-Higgs pair. The degree of (P, φ) is

the congruence class rd ∈ Z/2rZ.
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Remark 5.2. The same definition works for PSp(2r,C)-principal

bundles, without Higgs pair. The degree of a PSp-principal bundle P

is the congruence class (modulo 2r) of the degree of the vector bundles

associated to any lifting P̃ of P to a GSp-principal bundle.

Clearly, only two cases are possible: the degree of a PSp(2r,C)-

Higgs pair (P, φ) is congruent either to 0 or to r modulo 2r. This

reflects the fact that the topological type of P is parametrized by

π1(PSp(2r,C)) ' Z/2Z.

Up to the action on (E,Φ,M, ω) of a line bundle of degree 1 on

C, it is straightforward to see that the J(C)-orbit [(E,Φ,M, ω)] corre-

sponding to a PGL-Higgs pair with degree rd ∈ Z/2rZ is always the

orbit of a datum whose Higgs pair has degree 0 or rd. If we restrict the

correspondence to Higgs pairs with fixed degree 0 or rd, we see that

a PGL-Higgs pair of degree rd is identified uniquely by the orbit of a

Higgs pair with trace zero and degree 0 or rd with respect to the action

of line bundles of degree 0 on C.

A basis for the invariant polynomials of psp(2r,C) = sp(2r,C) is

given by {p2i}i=1,...,r where p2i(P, φ) := tr(∧2iφ). The corresponding

PSp-Hitchin morphism takes the form:

HPSp,2r,rd :MPSp(2r, rd) −→ APSp(2r) =
r⊕
l=1

H0(C,L2l)

(P, φ) 7−→ (p2(P, φ), p4(P, φ), . . . , p2r(P, φ)).

If (P̃ , φ̃) is any lifting of (P, φ) to a GSp(2r,C)-Higgs pair, then

HGSp,2r,rd(P̃ , φ̃) = HPSp,2r,rd(P, φ). Moreover, for any characteristic

a ∈ APSp(r), the spectral curve π : Xa → C is defined in the total

space p : P(OC ⊕ L−1)→ C by the equation

x2ry + a2x
2r−2y2 + · · ·+ a2r−2x

2y2r−2 + a2ry
2r = 0.

Hence, as in the case of Sp(2r,C)-Higgs pairs, the curve Xa has an

involution defined by σ(x) = −x.

We can now state the following proposition.

Proposition 5.3. (Spectral correspondence for PSp(2r,C)) Let

a ∈ APSp(2r) be any characteristic, let X = Xa
π−→ C be the associated

spectral curve with involution σ : X → X. Let d ∈ {0, 1}, d′ = rd +
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r(2r − 1)` and denote with P(d′, n) = J(X, d′) × Jd(C) the Cartesian

product of the compactified Jacobian of degree d′ on X and the Jacobian

of degree d on C, endowed with the projection maps pX and pC on

J(X, d′) and Jd(C) respectively. Let Ea′ be the equalizer of the two

maps

(HomOX (_,OX) ◦ pX)⊗ (π∗ ◦ pC) : P(d′, d)→ J(X, rd− r(2r − 1)`)

(σ∗ ◦ pX)⊗ π∗L1−2r : P(d′, d)→ J(X, rd− r(2r − 1)`).

The group J0(C) of line bundles of degree 0 on C acts on Ea as follows:

Ea × J0(C) −→ Ea
((M,M, λ), N) 7−→ (M⊗ π∗N,M ⊗N2, λN)

where λN is given by the composition of λ ⊗ idπ∗N with the canonical

isomorphisms:

(M⊗ π∗N)∗ ⊗ π∗(M ⊗N2) ∼−→M∗ ⊗ (π∗N)−1 ⊗ π∗M ⊗ (π∗N)2 ∼−→
∼−→M∗ ⊗ π∗M ⊗ π∗N λ⊗idπ∗N−−−−−→
∼−→ σ∗M⊗ π∗L1−2r ⊗ π∗N ∼−→
∼−→ σ∗(M⊗ π∗N)⊗ π∗L1−2r.

Then, the fiber H−1

PSp,2r,rd
(a) of the PSp-Hitchin morphism is isomor-

phic, via the spectral correspondence, to the quotient Ea/J0(C).

Proof. Let (P, φ) be any PSp(2r,C)-Higgs pair with character-

istic a and let (E,Φ,M, ω) be the datum of a Higgs pair with a non-

degenerateM -valued symplectic form such that (Pφ) corresponds uniquely

to the datum of the J0(C)-equivalence class [(E,Φ,M, ω)].

By Proposition 4.1, the datum of (E,Φ,M, ω) corresponds, via the

spectral correspondence, to the datum (M,M, λ) of a torsion-free rank-

1 sheafM∈ J(X, d′), the line bundle M ∈ Jd(C) and an isomorphism

λ : M∗ ⊗ π∗M ∼−→ σ∗M ⊗ π∗L1−2r, i.e. an element of Ea. If N is

any line bundle of degree 0 on C, then by the projection formula the

datum of (E ⊗ N,Φ ⊗ 1N ,M ⊗ N2, ωN) corresponds to the datum of

(M⊗ π∗N,M ⊗N2, λN).

We conclude that the datum of the J0(C)-orbit [(E,Φ,M, ω)] cor-

responds, via the spectral correspondence, to the datum of the J0(C)-

orbit of (M,M, λ). �
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A particular case occurs for d = 0, i.e. for PGL(2r,C)-Higgs pairs

of degree 0. Indeed, recall the sequence 16:

0→ {±1} 1 7→I2r−−−→ Sp(2r,C)→ PSp(2r,C)→ 0.

Recalla also that {±1} = µ2 and H2(C, µ2) = Z/2Z. Hence this se-

quence, applied to structure sheaves, induces the cohomology exact

sequence:

H1(C, µ2)→ H1(C, Sp(2r,OC))
q
−� H1(C,PSp(2r,OC))

deg /r−−−→ Z/2Z→ 0

where the last map sends a PSp(2r,C)-principal bundle of degree rd

to the congruence class d. This sequence, read in terms of cocycles,

means that a PSp(2r,C)-principal bundle P can be lifted to Sp(2r,C)-

principal bundle P0 if and only P has degree equal to 0 ∈ Z/2rZ; any

other lifting P ′0 of P differs from P0 by the action on the associated

bundles of a 2-torsion line bundle by tensor product. Moreover, a

Higgs field φ on P determines uniquely a a Higgs field φ0 on P and

viceversa.

To sum up, any PSp(2r,C)-Higgs pair (P, φ) of degree 0 has a lifting

(P̃ , φ̃) to a Sp(r,C)-Higgs pair, corresponding to the datum (E,Φ, ω)

of a Higgs pair of rank 2r and degree 0 and a non-degenerate sym-

plectic form ω via the associated bundle construction. Then, the da-

tum of (P, φ) corresponds uniquely to the datum of the equivalence

class [(E,Φ, ω)] of Higgs pairs of rank 2r (and degree 0) with a non-

degenerate symplectic form, under the equivalence relation ∼J0(C)[2]

defined by:

(E,Φ, ω) ∼J0(C)[2] (E ⊗N,Φ⊗ 1N , ωN,ε) for any (N, ε) ∈ J0(C)[2].

Here, J0(C)[2] denotes the group stack parametrizing line bundles with

2-torsion (N, ε) on C, where ε is the isomorphism N−1 ∼−→ N , and ωN,ε

is obtained by extension of scalars, as follows:

ωN,ε : (E ⊗N)⊗ (E ⊗N)→ N2 ∼−−−→
ε−1⊗1

N−1 ⊗N ∼−→
ev
OC .

We can finally state the following proposition.

Proposition 5.4. (Spectral correspondence for PSp(2r,C) of de-

gree 0) Let a ∈ APSp(2r) be any characteristic and let X = Xa
π−→ C

be the associated spectral curve with involution σ : X → X. Let
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d′ = r(2r − 1)` and let Ea be the equalizer stack of the two maps:

_∗ := HomOX (_,OX) : J(X, d′)→ J(X,−d′)

σ∗_⊗ π∗L1−2r : J(X, d′)→ J(X,−d′)

The group stack J0(C)[2] of 2-torsion line bundles on C acts on Ea as

follows:

Ea × π∗J0(C)[2] −→ Ea
((M, λ), (π∗N, π∗ε)) 7−→ (M⊗ π∗N, λ⊗ π∗ε).

Then, the fiber H−1
PSp,2r,0

(a) of the PSp-Hitchin morphism is isomorphic,

via the spectral correspondence, to the quotient Ea/π∗J0(C)[2].

Proof. Let (P, φ) be any PSp(2r,C)-Higgs pair with degree 0 and

characteristic a and let (P̃ , φ̃) be any lifting to a Sp(2r,C)-Higgs pair.

By construction, (P̃ , φ̃) is a Sp(2r,C)-Higgs pair with characteristic a

and corresponds uniquely, via the associated bundle construction, to

the datum (E,Φ, ω) of a Higgs pair of rank 2r and degree 0 with char-

acteristic a and a non-degenerate symplectic form. Then, the datum of

(P, φ) corresponds uniquely to the datum of the J0(C)[2]-equivalence

class [(E,Φ, ω)].

By Proposition 3.1, the datum of (E,Φ, ω) corresponds to the da-

tum (M, λ) of a torsion-free rank-1 sheafM∈ J(X, d′) and an isomor-

phism λ : M∗ ∼−→ σ∗M⊗ π∗L1−2r, i.e. an element of Ea. If N is any

2-torsion line bundle on C with isomorphism ε : N−1 ∼−→ N , then by

the projection formula the datum of (E ⊗N,Φ⊗ 1N , ωN) corresponds

to the datum of (M⊗ π∗N, λ⊗ π∗ε).
We conclude that the datum of the J0(C)[2]-orbit [(E,Φ, ω)] cor-

responds to the datum of the π∗J0(C)[2]-orbit of (M, λ). �
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