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INTRODUCTION

Quantum groups first arose in the physics literature, particularly in the
work of L.D. Faddeev and the Lenigrad school, from the “inverse scatter-
ing method”, which had been developed to construct and solve “integrable”
quantum systems. They have generated a great interest in the past few
years because of their unexpected connections with, what are at first glance
unrelated parts of mathematics, the construction of knot invariants and the
representation theory of algebraic groups in characteristic p.

In their original form, quantum groups are associative algebras whose
defining relations are expressed in terms of a matrix of constants (depending
on the integrable system under consideration) called quantum R matrix. It
was realized independently by V. G. Drinfel’d and M. Jimbo around 1985
that these algebras are Hopf algebras, which, in many cases, are deformations
of “universal enveloping algebras” of Lie algebras. Indeed Drinfel’d and Jimbo
give a general definition of quantum universal algebra of any semisimple
complex Lie algebra. On a somewhat different case, Yu. I. Manin and
S. L. Woronowicz independently studies non commutative deformations of
the algebra of functions on the groups SL2(C) and SU2, respectively, and
showed that many of the classical results about algebraic and topological
groups admit analogues in the non commutative case.

The aim of this thesis is to calculate the degree of some quantum universal
enveloping algebras. Let g be a semisimple Lie algebra, fixed a Cartan
subalgebra h ⊂ g and a Borel subalgebra h ⊂ b ⊂ g, we denote with ∆
the correspondent set of simple roots. Given ∆′ ⊂ ∆, we associate to ∆
parabolic subalgebra p ⊃ b.

Following Drifel’d, the considered situation can be quantized. We obtain
Hopf algebras over C

[
q, q−1

]
, Uq(b) ⊂ Uq(p) ⊂ Uq(g).

When we specialize the parameter q to a primitive lth root ǫ of 1 (with
some restrictions on l). The resulting algebras are finite modules over their
centers, they are a finitely generated C algebra. In particular, every irre-
ducible representations has finite dimension. Let us denote by V the set of
irreducible representations, Shur lemma gives us a surjective application

π : V → Spec(Z).

To determine the pull back of a point in Spec(Z) is very difficult work.
But generically the problem becomes easier. Since our algebras are domain,
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there exists a non empty open Zariski set V ⊂ Spec(Z), such that π|π−1(V )

is bijective and moreover every irreducible representation in π−1(V ) has the
same dimension d, the degree of our algebra. The problem is to identify d.

Note that, a natural candidate for d exists. We will see that in the
case of Uǫ(p), we can find a natural subalgebra Z0 ⊂ Z, such that as Uǫ(p)
subalgebra is a Hopf subalgebra. Therefore it is the coordinate ring of an
algebraic group H. The deformation structure of Uǫ(p) implies that H has a
Poisson structure. Let δ be the maximal dimension of the symplectic leaves,

then a natural conjecture is d = l
δ
2 . This is well know in several cases, for

example, p = g and p = b (cf [DCK90] and [KW76]).
Our job has been to prove this fact and to supply one explicit formula

for δ.
Before describing the strategy of the proof, we explain the formula for δ.

Set l the Levi factor of p. Let W be the Weyl group of the root system of
g, and W l ⊂ W that one of subsystem generated by ∆′. Denote by ω0 the
longest element of W and ωl

0 the longest element of W l. Recall that W acts
on h and set s as the rank of the linear transformation w0 − wl

0 of h. Then

δ = l(w0) + l(wl
0) + s,

where l is the length function with respect to the simple reflection.
We describes now the strategy of the thesis. In order to make this, the

main instrument has been the theory of quasi polynomial algebras, or skew
polynomial, S. In this case we know, following a result of De Concini, Kaç
and Procesi ([DCKP92] and [DCKP95]), that to calculate the degree of S
corresponds to calculate the rank of a matrix (with some restriction on l).

In order to take advantage of this result we have constructed a defor-
mation of Uǫ(p) to S and one family, U t,χ

ǫ , of finitely generated algebras
parameterized by (t, χ) ∈ C × Spec(Z0). Then the fact that on C[t, t−1]
our deformations have to be trivial, together with the rigidity of semisimple
algebras can be used to perform the degree computation at t = 0. In its the
algebra we obtain is a quasi derivation algebra, so that the theorem of De
Concini, Kaç and Procesi ([DCKP95]) can be applied and one is reduced to
the solution of a combinatorial problem, the computation of the rank of an
integer skew symmetric matrix.

The actual determination of the center of the algebra Uǫ(p) remains in
general an open and potentially tricky problem. However we will propose a
method, inspired by work of Premet and Skryabin ([PS99]), to “left” elements
of the center of the degenerate algebra at t = 0 to elements of the center at
least over an open set of SpecZ0.

We close this introduction with the description of the chapters that com-
pose the thesis.

In the first chapter, we recall the notion of Poisson group, this is the
instrument necessary in order to describe the geometric property of the Hopf
subalgebra Z0.
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In the second and third chapter, we describe the slight knowledge of
algebra with trace and quasi polynomial algebra. These are the instruments
necessary in order to describe the theory of the representations of Uǫ and
Uǫ(p). Moreover we describe how to calculate the degree of quasi polynomial
algebra.

This concludes the first part of the thesis. In the second part, we will be
studying the theory of quantum groups.

In chapter 4 we recall the main definitions and the main properties of
quantum universal enveloping algebras associated to a semisimple complex
Lie algebra g, and we consider how to calculate the degree of Uǫ(g) and Uǫ(b).

The last chapter is dedicated to the definition of quantum enveloping
algebra associated to a parabolic subalgebra p of g and the proof of the
formula for the degree.



Part I

USEFUL ALGEBRAIC AND GEOMETRIC NOTION



1. POISSON ALGEBRAIC GROUPS

In this chapter we recall some basic facts about Poisson groups that will
prove useful in the study of quantum groups. The interested reader can find
more details in a vast variety of articles and monographs, for example in
[CP95], [KS98] or [CG97].

1.1 Poisson manifolds

1.1.1 Poisson algebras and Poisson manifolds

Definition 1.1.1. A commutative associative algebra A over a field k is
called a Poisson algebra if it is equipped with a k-bilinear operation { , } :
A⊗A→ A such that the following conditions are satisfied:

1. A is a Lie algebra with the bracket { , };

2. the Leibniz rule are satisfied, i.e. for any a, b, c ∈ A, we have

{ab, c} = a {b, c}+ {a, c} b.

If these conditions are satisfied, the operation { , } is called Poisson bracket ,
and ξa = {a, ·} is called Hamiltonian derivation.

Definition 1.1.2. Let A and B be a Poisson algebra over k. An algebra
homomorphism f : A→ B is called Poisson homomorphism if

f ({a, b}) = {f(a), f(b)} .

Poisson algebras form a category, with morphism being Poisson homo-
morphism.

Definition 1.1.3. A smooth manifold M is called a smooth Poisson man-
ifold if the algebra A = C∞(M) of smooth complex value function on M is
equipped with a structure of Poisson algebra over C

Definition 1.1.4. An affine algebraic k-variety M is called an affine alge-
braic Poisson k-variety if the algebra A = k[M ] of regular function on M is
equipped with a structure of Poisson algebra over k
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Definition 1.1.5. 1. Let M and N be smooth Poisson manifolds. A
smooth map f : M → N is called a Poisson map if the induced map
f∗ : C∞(N)→ C∞(M) is a Poisson homomorphism.

2. Let M and N be algebraic Poisson k-variety. An algebraic map f :
M → N is called a Poisson map if the induced map f∗ : k[N ]→ k[M ]
is a Poisson homomorphism.

It is clear that smooth, and algebraic, Poisson manifolds form a category,
with morphisms being Poisson map.

Definition 1.1.6. Suppose that M is a smooth Poisson manifold, let A =
C∞(M).

1. Given φ ∈ A, the vector field ξφ associated to the Hamiltonian deriva-
tion {φ, } of A is called Hamiltonian vector field .

2. A submanifold (not necessarily closed) N ⊂ M is called Poisson sub-
manifold if the vector ψφ(n) is tangent to N for any n ∈ N and φ ∈ A.

Let M a smooth Poisson manifold, then there is an equivalent definition
of Poisson manifold in term of bivector fields. Recall that an n-vector field
is a section of the bundle

∧n TM where TM is the tangent vector bundle of
M . In particular, we call 2-vector fields bivector fields .

Recall also the definition of the Schouten bracket of n-vector fields which
generalize the usual Lie bracket on vector fields. The Schouten bracket of
an m-vector field with an n vector field is an (m+ n− 1)-vector field which
is locally defined by

[u1 ∧ . . . ∧ um, v1 ∧ . . . ∧ vm]

=
∑

i,j

(−1)i+j [ui, vj ] ∧ u1 ∧ . . . ∧ ûi ∧ um ∧ v1 ∧ . . . ∧ v̂j ∧ . . . ∧ vn

where u1, . . . , um, v1, . . . , vn ∈ TmM , m ∈M , and [ , ] denote the Lie bracket
of vector fields.

Denote by T ∗M the cotangent bundle to M . Given a bivector field π on
M , we define a bilinear operation { , } on C∞(M) by

{φ, ψ} = 〈π, dφ ∧ dψ〉 (1.1)

where 〈 , 〉 is the natural paring between the sections of the bundle T ∗M ∧
T ∗M and TM ∧ TM .

Proposition 1.1.7. The bracket 1.1 defines a Poisson manifold structure
on M if and only if

[π, π] = 0
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Proof. Easy verification of the definition.

Let (M,π) be a Poisson manifold. Consider the morphism of vector
bundle π̌ : T ∗M → TM induced by π, we have

Definition 1.1.8. A Poisson manifold is called symplectic manifold if the
map π̌ is an isomorphism.

1.1.2 Symplectic leaves

One of the most fundamental facts in the theory of Poisson manifolds is
that for any Poisson manifold M there is a stratification of M by symplectic
submanifolds which are called symplectic leaves in M . In a certain sense,
symplectic manifolds are simple objects in the category of Poisson manifolds.

In what follows we assume that M is a smooth Poisson manifold.

Definition 1.1.9. A Hamiltonian curve on a smooth Poisson manifold M
is a smooth curve γ : [0, 1]→M such that there exist f ∈ C∞(M) with the
property that

γ̇(t) = ξf (γ(t))

for any t ∈ (0, 1)

Definition 1.1.10. Let M be a smooth Poisson manifold.

1. We say that two points x, y ∈M are equivalent if they can be connected
by a piecewise Hamiltonian curve.

2. An equivalence class of points of M is called symplectic leaf of M

Property. Let S be a symplectic leaf of a smooth Poisson manifold M .
Then:

(i) S is a Poisson submanifold of M ;

(ii) S is a symplectic manifold;

(iii) M is the union of its symplectic leaves.

We need a tool to determine symplectic leaves.

Definition 1.1.11. Let P1 and P2 be Poisson manifolds, S a symplectic

manifold. A diagram P1
f1← S

f2→ P2 is called a dual pair, if f1 and f2

are Poisson maps and the Poisson subalgebras f∗1C∞(P1) and f∗2C∞(P2) of
C∞(S) centralize each other with respect to the Poisson bracket.

A dual pair is called full if f1 and f2 are submersions.

Theorem 1.1.12. Let P1
f1← S

f2→ P2 be a full dual pair. Then the blow-up
Mx1 = f2f

−1
1 (x1) is a symplectic leaf in P2 for any x1 ∈ P1.

Proof. See [KS98], page 8.
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1.2 Lie bialgebras and Manin triples

1.2.1 Lie bialgebras

Definition 1.2.1. A Lie bialgebra is a pair (g, φ) where g is a finite dimen-
sional Lie algebra over k, and φ : g → g ∧ g, called cobracket, satisfies the
following conditions:

1. the dual map φ∗ : g∗ ∧ g∗ → g∗ makes g∗ into a Lie algebra;

2. the cobracket φ : g→ g ∧ g is a 1-cocycle on g, i.e. for any a, b ∈ g,

φ([a, b]) = a.φ(b)− bφ(a)

where a.(b⊗ c) = [a⊗ 1 + 1⊗ a, b⊗ c] = [a, b]⊗ c+ b⊗ [a, c].

Lie bialgebras form a category, with morphisms being Lie algebra homo-
morphism which commute with the cobracket.

Property. Given a Lie bialgebra g, the vector space g∗ carries a canonical
structure of Lie bialgebra, the Lie bracket being the map dual to the cobracket
in g and the cobracket being the map dual to the bracket in g.

Definition 1.2.2. The Lie bialgebra g∗ is called the dual Lie bialgebra of g.

Example 1.2.3. Any Lie algebra g with trivial cobracket (i.e., zero) is a Lie
bialgebra.

Example 1.2.4. Let g be a Lie algebra. Consider the dual vector space g∗

as a commutative Lie algebra. Then the map φ : g∗ → g∗ ∧ g∗ dual to the
Lie bracket on g, define a Lie bialgebra structure on g∗, it is the dual Lie
bialgebra to the one in example 1.2.3.

Example 1.2.5. Let g be a complex simple Lie algebra with a fixed non
degenerate invariant symmetric bilinear form, which is necessarily a scalar
multiple of the Killig form. Choose a Cartan subalgebra h ⊂ g, with n =
dim h, the rank of g. Choose a set of simple roots α1, . . . , αn ∈ h∗. This
gives a decomposition

g = n+ ⊕ h⊕ n− (1.2)

where n+ (resp. n−) is the nilpotent subalgebra spanned by the positive
(resp. negative) root subspaces.

Let X±
i , Hi, i = 1, . . . , n, be the Chevalley generators corresponding

to the simple root αi, and A = (ai,j) the Cartan matrix whose entries are

ai,j = 2
(αi,αj)
(αi,αi)

, where ( , ) is the symmetric bilinear form on h∗ induced by
the bilinear form on g.

Recall that g is generated by X±
i , Hi and the Serre relations
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[Hi, Hj ] = 0,
[
Hi, X

±
j

]
= ±ai,jX

±
j ,[

X+
i , X

−
j

]
= δi,jHi, ad1−ai,j

(
X±

i

)
X±

j = 0,

where ad(a)(b) = [a, b] is the adjoint action of g on itself.
Then the following cobracket φ defines a Lie bialgebra structure on g:

φ(Hi) = 0,

φ(X±
i ) = diX

±
i ∧Hi,

where di, i = 1, . . . , n, are positive rational numbers that satisfy diai,j =
djaj,i. For more details see [KS98].

Definition 1.2.6. The Lie bialgebra structure described in example 1.2.5 is
called the standard Lie bialgebra structure on g

Example 1.2.7. Consider the simple complex Lie algebra g = sl2(C), then
the Chevalley generator are

X+ =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, X− =

(
0 0
1 0

)
,

then the cobracket is

φ(H) = 0,

φ(X±) = X± ∧H.

We verify only that φ is a cocycle.

φ([H,X±]) = φ(±2X±) = ±2X± ∧H
H · φ(X±)−X± · φ(H) = H · (X± ∧H)

= [H,X±] ∧H = ±2X± ∧H

φ([X+, X−]) = φ(H) = 0

X+ · φ(X−)−X−φ(X+) = X+ ·X− ∧H −X− ·X+ ∧H
= [X+, X−] ∧H +X− ∧ [X+, H]

−[X−, X+] ∧H −X+ ∧ [X−, H]

= H ∧H + 2X− ∧X+

+H ∧H + 2X+ ∧ 2X−

= 0

The fact that φ∗ defines a Lie bracket is an easy exercise.
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1.2.2 Manin triples

For our proposition it is convenient to think of Lie algebras in terms of Manin
triple.

Definition 1.2.8. Let g be a Lie algebra equipped with a nondegenerated
invariant symmetric bilinear form 〈 , 〉, and g+ and g− Lie subalgebra of g.
The triple (g, g+, g−) is called Manin triple if:

1. g = g+ ⊕ g−,

2. g+ and g− are maximal isotropic subspaces with respect to 〈 , 〉.

Suppose that (g, g+, g−) is a Manin triple. Since both g+ and g− are
maximal isotropic subspaces of g, we can identify g∓ with g∗± as a vector
space.

Theorem 1.2.9. (i) Suppose that (g, g+, g−) is a Manin triple. The n
(g±, φ) is a Lie bialgebra where the cobracket φ : g± → g± ∧ g± is the
dual map to the Lie bracket in g∓.

(ii) Suppose that (g, φ) is a Lie bialgebra. Consider the vector space g∗

equipped with the dual Lie bialgebra structure (cf. definition 1.2.2).
Then:

(g⊕ g∗, g, g∗)

is a Manin triple, with the Lie algebra structure on g⊕ g∗ given by

[a+ α, b+ β] = [a, b] + [α, β] + ad∗α(b)− ad∗β(a)− ad∗b(α) + ad∗a(β),

for any a, b ∈ g, α, β ∈ g∗, and the bilinear form on g⊕ g∗ given by

〈a+ α, b+ β〉 = β(a) + α(b).

Note that, in particular

[α, b] = ad∗α(b)− ad∗b(α),

[a, β] = ad∗a(β)− ad∗β(a).

Proposition 1.2.10. Let g be a Lie bialgebra, and D(g) = g ⊕ g∗ the lie
algebra describe in theorem 1.2.9. Then there exist a canonical Lie bialgebra
structure on D(g) given by the cobracket

φD(g) (a+ α) = φg(a) + φg∗(α),

for any a ∈ g and α ∈ g∗

Definition 1.2.11. Lie bialgebra D(g) is called the double Lie bialgebra
(sometimes it is called the classical double of g)
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Remark 1.2.12. Manin triple which corresponds to the double Lie bialgebra
is

(D(g)⊕D(g),D(g), g⊕ g∗)

where D(g) is embedded into D(g) ⊕ D(g) as the diagonal, and g ⊕ g∗ (the
dual Lie bialgebra of D(g)) is the direct sun of the Lie algebras g = (g, 0) ⊂
D(g)⊕D(g) and g∗ = (0, g∗) ⊂ D(g)⊕D(g). The bilinear form is given by

〈(a, b), (c, d)〉 = 〈a, c〉D(g) − 〈b, d〉D(g),

for any a, b, c, d ∈ D(g).

Double Lie bialgebra has an important property. Namely, the cobracket
on such Lie bialgebra is described by a very simple formula, as shown in the
following proposition

Proposition 1.2.13. Let g be a Lie bialgebra, and D(g) the double Lie
bialgebra. Suppose that {eα} is a basis of g and {eα} is the dual basis of g∗.
Let us identify eα with (eα, 0) ∈ D(g) and eα with (0, eα) ∈ D(g). Then the
cobracket in D(g) is given by

φ(a) = [a⊗ 1 + 1⊗ a, r]

for any a ∈ D(g), where

r =
∑

α

eα ⊗ eα ∈ D(g)⊗D(g),

is the canonical element related to 〈 , 〉.

We give now some important examples of Lie bialgebra and corresponding
Manin triple.

Example 1.2.14. Let g be a complex simple Lie algebra equipped with
the standard Lie bialgebra structure (cf. definition 1.2.5) related to a fixed
invariant bilinear form 〈 , 〉, let h be the corresponding Cartan subalgebra
and define b± = n± ⊕ h a Borel subalgebra of g. Then the corresponding
Manin triple is (g⊕ g, g, s), where g is embedded diagonally into g⊕ g, and

s = {(x, y) ∈ b+ ⊕ b− : xh + yh = 0} ,

where xh denote the “Cartan part” of x ∈ b±. In other words, x = x± + xh

where x± ∈ n± and xh ∈ h. The invariant bilinear form g⊕ g is given by

〈(a, b), (c, d)〉 = 〈a, c〉g− 〈b, d〉g.

Note that as Lie algebra D(g) is isomorphic to g ⊕ g. For more details one
can see for example [KS98].
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Example 1.2.15. Let g be as in the previous example. Consider the Borel
subalgebras b±, note that they are in fact Lie bialgebras with respect to the
restriction of the cobracket from g to b±. Then the corresponding Manin
triple is

(g⊕ h, b+, b−) ,

where the Borel subalgebras are embedded into g⊕ h so that if a ∈ b+ then
a → (a, ah) and if a ∈ b− then a → (a,−ah), where we use the notation in
the previous example, the bilinear form is given by

〈(a, b), (c, d)〉 = 〈a, c〉g− 〈b, d〉h.

with a, c ∈ g and b, d ∈ h, and 〈 , 〉h as the restriction of 〈 , 〉g to h. In
particular, we see that the Borel subalgebras b+ and b− are dual to each
other as Lie bialgebra.

We consider, in the next example, an intermediate case between Borel
subalgebra b and Lie algebra g.

Example 1.2.16. Using the notation of the previous example, we call par-
abolic subalgebra any subalgebra p of g such that b ⊆ p, note that b± and g

are examples of parabolic subalgebra. Set R as the set of rot associated to g

and Xα α ∈ R the root vectors, we define Rp := {α ∈ R : Xα ∈ p}. We call
l := h⊕⊕α∈Rp :−α∈Rp

CXα the Levi factor and u =
⊕

α∈Rp :−α/∈Rp
CXα the

unipotent part of p. Moreover, we have p = l ⊕ u, for more details one can
see [Bou98] or [Hum78].

Proposition 1.2.17. p is a Lie bialgebra with respect to the restriction of
the cobracket from g to p.

Proof. Simple verification of the definition.

Proposition 1.2.18. The Manin triple corresponding to p is

(g⊕ l, p, s) ,

where p is embedded into g⊕ l so that a→ (a, al) and

s =
{

(x, y) ∈ b− ⊕ bl
+ : xh + yh = 0

}
,

where bl
+ = b+ ∩ l, the bilinear form is given by

〈(a, b), (c, d)〉 = 〈a, c〉g− 〈b, d〉l.

with a, c ∈ g and b, d ∈ l, and 〈 , 〉l is the restriction of 〈 , 〉g to l.
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Proof. Observe that, the following decomposition hold in g

g = u− ⊕ l⊕ u

with u− :=
⊕

α∈R\Rp
, and

dim(g⊕ l) = dim(g) + dim(l) = dim(p) + u+ dim(l) = 2 dim(p)

where u = dim u− = dim u+ Let us now check that p ∩ s = {0}, take
(a, b) ∈ p ∩ s, then

• (a, b) ∈ p⇒ b = al

• (a, b) ∈ s⇒ a ∈ b−, b ∈ bl
+ and ah + bh = 0

Then b = t ∈ h = b+ ∩ b−, and a = u+ t with u ∈ u ⊂ b+, but a ∈ b−, so it
follows that u = 0 and a = b = t. Then the last condition gives us

0 = a+ b = 2t⇒ t = 0.

In conclusion we have a = b = 0. Hence p ∩ s = {0}. Observe that

dim s = dim b+ + dim bl
− − dim h = dim p,

then we have
g⊕ l = p⊕ s.

It remains to show that p and s are isotropic subspace with respect to 〈 , 〉.
Recall that 〈 , 〉g is an invariant symmetric bilinear form for g, note that

for any parabolic subalgebra b+ ⊆ q ⊆ g, its Levi factor m we have:

〈x, y〉g = 〈xh, yh〉m
for every x, y ∈ q.

Let (a, b) ∈ p then b = al, and we have

〈(a, b), (a, b)〉 = 〈a, a〉g− 〈b, b〉l
= 〈a, a〉g− 〈al, al〉l
= 0.

Let (a, b) ∈ s then ah + bh = 0. Recall that the Levi factor for b± is h. We
get

〈(a, b), (a, b)〉 = 〈a, a〉g− 〈b, b〉l
= 〈ah, ah〉h− 〈bh, bh〉h
= 〈ah, ah〉h− 〈−ah,−ah〉h
= 〈ah, ah〉h− 〈ah, ah〉h
= 0.

This finished the proof that (g ⊕ l, p, s) is the Manin triple associated to
p.
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1.3 Poisson groups

1.3.1 Poisson affine algebraic group

Let G an affine algebraic groups over an algebraic closed field k. Let k[G]
its coordinate ring. We know that k[G] is a Hopf algebra with

Comultiplication: ∆ : k[G]→ k[G]⊗ k[G]

Antipode: S : k[G]→ k[G]

Counit: ǫ : k[G]→ k

given respectively by ∆(f)(h1, h2) = f(h1h2), ∀ h1, h2 ∈ G, S(f)(h) =
f(h−1), ∀ h ∈ G, ǫ(f) = f(e) where e ∈ G is the identity element.

Definition 1.3.1. Suppose that a Hopf algebra A is equipped with a Poisson
algebra structure. We say that A is a Poisson Hopf algebra if both structure
are compatible in the sense that the comultiplication ∆ is a Poisson algebra
homomorphism, where the Poisson structure on A⊗A is given by

{a⊗ b, c⊗ d} = {a, c} ⊗ bd+ ac⊗ {b, d}

Property. Let A be a Poisson Hopf algebra, then the counit ǫ is a Poisson
algebra homomorphism, and the antipode S is a Poisson algebra antiauto-
morphism.

Proof. See [KS98], page 18.

We know that the algebra k[G] of regular functions on an algebraic group
G is a Hopf algebra. Recall that it is also a Poisson algebra if G is a Poisson
algebraic variety.

Definition 1.3.2. 1. Suppose G is an algebraic group over the field k

equipped with a Poisson manifold structure. We say thatG is a Poisson
algebraic group if the algebra k[G] of regular functions onG is a Poisson
Hopf algebra.

2. Equivalently, G is a Poisson algebraic group if the multiplication m :
G×G→ G is a Poisson map.

Property. Let G a Poisson algebraic group, then the map s : G→ G, such
that s(g) = g−1 for every g ∈ G, is an anti-Poisson map, i.e. the dual map
s∗ : k[G]→ k[G] is an antihomomorphism of Poisson map.

Note. Poisson algebraic groups form a category, with morphisms being ho-
momorphisms which are the same time Poisson maps.
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1.3.2 Poisson Lie group

The definition of Poisson algebraic group formulated in the language of points
can be easily carried over to the case of Poisson Lie groups. The principal
difficulty is that the comultiplication maps goes into C∞(G × G) but not
necessarily into C∞(G)⊗ C∞(G) 6= C∞(G×G)

Definition 1.3.3. Let G be a Lie group and at the same time, a Poisson
manifold. We say that G is a Poisson Lie Group if the multiplication m :
G×G→ G is a Poisson map.

Note. Poisson Lie groups form a category, with morphisms being homomor-
phisms which are the same time Poisson maps.

Proposition 1.3.4. Let G be both a Lie group and a Poisson manifold, and
let π be the bivector field corresponding to the Poisson manifold structure on
G. Then G is a Poisson Lie group if and only if π satisfies the following
condition:

π(g1g2) = (lg1)∗π(g2) + (rg2)∗π(g1)

for any g1, g2 ∈ G, where lg is the left multiplication and rg is the right
multiplication.

Proof. See [KS98], page 19.

Corollary 1.3.5. The unit element of a Poisson Lie group is always a zero-
dimensional symplectic leaf

In this thesis we always used Poisson algebraic groups so we shall describe
Poisson brackets on the algebras of regular functions.

Example 1.3.6. Every Lie group G with trivial Poisson bracket is a Poisson
Lie group.

Example 1.3.7. Consider the abelian Lie group G = Cn. Note that by
linearity it suffices to define the Poisson bracket on the coordinate function.
To get a Poisson Lie group structure we can take:

{xi, xj} =
n∑

k=1

cki,jxk

where xm, m = 0 . . . n, are the coordinate function, and the structure con-
stant cki,j satisfy the following condition:

cki,j = −ckj,i
n∑

l=1

(
cli,jc

m
l,k + clj,kc

m
l,i + clk,ic

m
l,j

)
= 0
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Example 1.3.8. An important special case of the previous example is The
Kirillov-Kostant bracket. Let g a lie algebra. Consider the dual vector space
g∗ equipped with the structure of abelian Lie group. The Kirillov-Kostant
bracket on g∗ is given by:

{a, b} = [a, b]g

where a, b ∈ g are regarded as linear function on g∗.

Example 1.3.9. Consider the Lie group G = SL2(C) of complex 2 × 2
matrices with determinant 1. Then the following relations define a Poisson
Lie group structure on G:

{t11, t12} = −t11t12,
{t11, t21} = −t11t21,
{t12, t22} = −t12t22,
{t21, t22} = −t21t22,
{t12, t21} = 0,

{t11, t22} = −2t12t21,

where tij , (i, j = 1, 2), are the matrix elements.

1.3.3 The correspondence between Poisson Lie groups and Lie bialgebras

One of the most important facts of the Lie theory is the correspondence
between Lie groups and Lie algebras. Recall that given a Lie group G,
the tangent space at the unit element has a canonical Lie algebra structure.
Conversely, given a Lie algebra g, there exists a unique connected and simple
connected Lie group whose tangent space at the unit element is isomorphic
to g as Lie algebra.

We establish now a Poisson counterpart of this result. Let G a Poisson
Lie group, and g its Lie algebra. As usual identify g with the tangent space
TeG to G at the unit element of the group. Define a linear map φ : g→ g∧g

as the linear map which is dual to the Lie bracket in g∗ = T ∗
eG given by

[α, β] = de {f, g} (1.3)

for any α, β ∈ g∗, where f , g ∈ C∞(G) are such that

def = α, deg = β.

Theorem 1.3.10. (i) Let G be a Poisson Lie group. Then there exists a
canonical Lie bialgebra structure on the Lie algebra g = TeG with the
cobracket φ : g→ g ∧ g given by 1.3.

(ii) Let G be a Lie group, and suppose that the Lie algebra g = TeG is
equipped with a Lie bialgebra structure. Then there exist a unique Pois-
son Lie group structure on G such that 1.3 holds.
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Proof. See [KS98], page 21.

Proposition 1.3.11. (i) The correspondence G 7→ g = TeG established a
covariant functor from the category of the Poisson Lie groups to the
category of Lie bialgebras.

(ii) The correspondence establishes an equivalence between the full subcat-
egory of connected and simply connected Poisson Lie groups and the
category of Lie bialgebras.

Example 1.3.12. Let G be a Lie group with trivial Poisson structure then
g is a Lie bialgebra with trivial cobracket

Example 1.3.13. Let G be the Lie group with Kostant-Kirillov structure,
define in example 1.3.8, then g is the Lie bialgebra given in the example 1.2.4

Definition 1.3.14. Let G be a Poisson Lie group, g the Lie bialgebra of G.

1. A connected Poisson Lie group G∗ which corresponds to the Lie bial-
gebra g∗ is called a dual Poisson Lie group.

2. A connected Poisson Lie group D(G) which corresponds to the double
Lie bialgebra D(g) is called a double Poisson Lie group of G

1.4 Symplectic leaves in Poisson groups

1.4.1 Symplectic leaves in Poisson Lie groups and dressing action

Now we use theorem 1.1.12 to describe symplectic leaves in a Poisson Lie
group. The double Poisson Lie group construction allows us to describe
the symplectic leaves locally as the orbits of the so-called dressing action.
Throughout the section the word “locally” means “in a neighborhood of the
unit element of the group”.

Let G be a Poisson Lie group, and g the Lie bialgebra of G. Recall that
we have a simple description of the dual Lie bialgebra structure on D(g) by

φ(a) = [a⊗ 1 + 1⊗ a, r]

for any a ∈ D(g), where r =
∑

α eα ⊗ eα, {eα} being a basis of g and {eα}
the dual basis of g∗.

Proposition 1.4.1. The Poisson bracket on D(G) is given by

{f1, f2} =
∑

α

(δαf1δ
αf2 − δαf1δαf2)−

∑

α

(
δ′αf1(δ

α)′f2 − (δα)′f1δ
′
αf2

)

where δα (resp. δ′α) is the right (resp. the left) invariant vector field on D(G)
which takes the value eα at the unit element of D(G), while δα (resp. (δα)’)
is the right (resp. the left) invariant vector field on D(G) which takes the
value eα at the unit element of D(G).
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Proof. See [KS98], page 23.

Proposition 1.4.2. The multiplication maps

m : G×G∗ → D(G), (1.4)

m : G∗ ×G→ D(G) (1.5)

are local Poisson diffeomorphisms in a neighborhood of the unit element.

Proof. This is an easy consequence of the fact that D(g) = g⊕g∗ as a vector
space.

It is clear that one can identify locallyG withG∗\D(G) or withD(G)/G∗.
Consider the natural projection p1 : D(G) → G∗ \ D(G) and p2 : D(G) →
D(G)/G∗. Then we have the following property

Proposition 1.4.3. The Poisson manifold structure on the double Lie group
D(G) induces Poisson manifold structure on G∗ \ D(G) and D(G)/G∗ such
that the natural projections p1 and p2 are Poisson maps. Both manifolds are
isomorphic to G as Poisson manifolds in a neighborhood of the coset G∗.

Now we introduce the notion of left and right dressing actions. First we
define them locally. Given g ∈ G and h ∈ G∗ which lie in some neighborhoods
of the unit element of D(G), using proposition 1.4.2 there exist unique gh ∈ G
and hg ∈ G∗ such that

hg = ghhg (1.6)

This formula defines a local left action of G∗ on G and a local right action
of G on G∗ given by

h : g 7→ gh, g : h 7→ hg (1.7)

respectively. Note that we can replace G by G∗ and vice versa, so that we
have also a local right action of G∗ on G and a local left action of G on G∗.

Definition 1.4.4. The local left (risp. right) action of G on G∗ define by
1.6 and 1.7 is called local left (risp. right) dressing action of G on G∗. If
it can be extended to a global action, the latter is called global left (resp.
right) dressing action of G on G∗.

Proposition 1.4.5. Let G a Poisson Lie group and G∗ the Poisson Lie
group dual to G. Then the symplectic leaves in G locally coincide with the
orbits of the right (or left) dressing action of G∗. In particular, if the right
(resp. left) dressing action is defined globally, the symplectic leaves are the
orbits of the right (risp. left) dressing action.

Proof. See [KS98], page 26.
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Theorem 1.4.6. Let g ∈ G belong to a sufficiently small neighborhood of
the unit element in G. The symplectic leaf in G passing trough g locally (in
some neighborhood of g) is the image of the double coset G∗gG∗ ⊂ D(G)
under the natural projection D(G)→ D(G)/G∗

⋍ G

Proof. See [KS98], page 27.

1.4.2 Symplectic leaves in simple complex Poisson Lie groups

Let G be a finite dimensional simple complex Lie group, and g the Lie algebra
of G. Suppose that g is equipped with the standard bialgebra structure
described in the example 1.2.5. It induces a Poisson Lie group structure on
G which is also called standard. Our goal is to describe the symplectic leaves
in G.

Let (g⊕g, g, s) the Manin triple associated to g, described in the example
1.2.14. It is easy to see that D(G) is isomorphic to G×G as Lie group and
we can choose G∗ = {(g1, g2) : g1 ∈ B+, g2 ∈ B− and (g1)H(g2)H = e} as
dual Poisson group. It is also clear that G · G∗ is dense and open in D(G).
Moreover, the multiplication map m : G×G∗ → G ·G∗ is a covering space.

We conclude that the image G̃ of the quotient map p : G→ D(G)/G∗ is
dense and open in D(G)/G∗. By theorem 1.1.12 and theorem 1.4.6 we get

Lemma 1.4.7. (i) Any symplectic leaf in G is a connected component of
the fiber p−1(S), where S is a symplectic leaf in G̃

(ii) Any symplectic leaf in G̃ is of the form G̃ ∩ G∗gG∗/G∗ for some g ∈
G ⊂ D(G).

Now we want to describe the symplectic leaves. It appears that they are
related to the Bruhat decomposition.

Let b± = n±⊕ h be the Borel subalgebra of g, and B± the corresponding
Borel subgroup of G. Recall that the Weyl group W is generated by the
simple reflection si : h∗ → h∗ given by:

si(λ) = λ− 2(λ, αi)

(αi, αi
αi

where α1, . . . , αr are the simple root, and r = dim h is the rank of g. The
following results are well know (cf. [Ste68])

Proposition 1.4.8. The following decomposition of G holds:

G =
⋃

ω∈W

B±ωB± (1.8)

It is called the Bruhat decomposition of G
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Let X = G/B± the flag manifold. By proposition 1.4.8, we have

X =
⋃

ω∈W

Xω where Xω ⋍ B±ωB±/B±

Definition 1.4.9. Xω is the so-called Schubert cell of X corresponding to
ω ∈ W.

It is well know that Xω is naturally isomorphic to Cl(ω), where l(ω) is
the length of ω.

Proposition 1.4.10. The following Bruhat decomposition holds:

D(G) =
⋃

(ω1,ω2)∈W×W

P · (ω1, ω2) · P, (1.9)

where P = HG∗ and H is the distinguished Cartan subgroup of G associated
to h.

Consider the following sets:

C(ω1,ω2) = (G∗ · (ω1, ω2) ·G∗)/G∗,

B(ω1,ω2) = C(ω1,ω2) ∩ G̃,

A(ω1,ω2) = p−1

(
⋃

h∈H

hB(ω1,ω2)

)

Proposition 1.4.11. (i) each symplectic leaf in G̃ is of the form hB(ω1,ω2)

for some h ∈ H and (ω1, ω2) ∈ W ×W.

(ii) each symplectic leaf in G is of the form hA(ω1,ω2) for some h ∈ H and
(ω1, ω2) ∈ W ×W.

Proposition 1.4.12. Denote s(ω1, ω2) = codimh ker(ω1ω
−1
2 − 1). Then

C(ω1,ω2) ⋍ Hs(ω1,ω2) × Cl(ω1)+l(ω2)

Example 1.4.13. The following is the full list of the symplectic leaves in
SL2(C):

Tt =

{(
t 0
0 t−1

)}
, t 6= 0,

TtA(e,ω0) =

{(
t b
0 t−1

)
: b 6= 0

}
, t 6= 0,

TtA(ω0,e) =

{(
t 0
c t−1

)
: c 6= 0

}
, t 6= 0,

TtA(ω0,ω0) =

{(
a b
c d

)
: b, c 6= 0,

b

c
= t2

}
, t 6= 0.
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Finally, consider the map µ : G∗ → G given by µ((b1, b2)) = b−1
1 b2,

so that µ is a covering of the big Bruhat cell B−B+. De Concini, Kaç and
Procesi shows in [DCKP92], that as soon as C ⊂ G is a conjugacy class, until
dimC > 0, µ−1(C) ⊂ G∗ is a single symplectic leaf of G∗. If dimC = 0, i.e.
C = {x} is an element of the center of G, then µ−1(x) has a finite number
of elements each of which is a symplectic leaf.



2. ALGEBRAS WITH TRACE

In this chapter we will require some slight knowledge of the theory of algebras
with trace that will be useful, in the next chapters, for the study of quantum
groups and quasi polynomial algebras. More details and a more general
approach in order to study these algebras can be found in [Pro87], [Pro73],
[Pro74] or [Pro79].

2.1 Definition and properties

Let A be an associative algebra with an unit element 1 over a field k of
characteristic 0 and let us denote the algebraic closure of k by k.

Definition 2.1.1. A trace map in an algebra A is a linear map

tr : A→ A

satisfying the following axioms: for all pairs of element a, b ∈ A

1. tr(ab) = tr(ba)

2. tr(a)b = btr(a)

3. tr(tr(a)b) = tr(a)tr(b)

An algebra with a trace map is called algebra with trace

Note. The value of the trace is a subalgebra of the center of A (by condition
2).

An ideal I of A algebra with trace is an ordinary ideal closed under trace,
so that A/I inherits a trace.

We are interested in a particular family of algebra with trace as in [Pro87].
Once we have a trace map we want to define for all a ∈ A the element σk(a)
"the symmetric function over the eigenvalue of a", by declaring that tr(ak)
should be the sum of the kth power of the eigenvalues of a. To do this recall
that in the ring Q[x1, . . . , xn] it defines the elementary symmetric function
by the identity

∏
(t− xi) =

n∑

i=0

(−1)iσit
d−i



2. Algebras with trace 20

and the power sums function ψk =
∑
xk

i . It is easy to prove that, for every
k ≤ n, is a polynomial pk(y1, . . . , yk) with rational coefficient, independent
of n and such that:

σk = pk(ψ1, . . . , ψk).

We then set
σk(a) = pk(tr(a), . . . , tr(a

k)).

Next we can formally define for every element a ∈ A and for every integer
d a dth-characteristic polynomial :

χd,a[t] =
d∑

i=0

(−1)iσi(a)t
d−i

Definition 2.1.2. 1. We say that an algebra A with trace satisfies the
dth-formal Cayley-Hamilton theorem if χd,a[a] = 0 for all a ∈ A.

2. We say thatA has degree d if it satisfies the dth-formal Cayley-Hamilton
theorem and tr(1) = d.

Note that algebra with trace of degree d form a category with morphisms
being algebra morphisms compatible with trace, which will be denoted by
Cd.

2.2 Representations

We are interested in a representation theory of algebra with trace of degree
d. Let give an example

Example 2.2.1. Let A be a commutative algebra, then Md(A) with the
ordinary trace is an algebra with trace of degree d.

Definition 2.2.2. A n dimensional representation of an algebra with trace R
with value in a commutative algebra A is an homomorphism ρ : R→Mn(A)
compatible with the trace map. If A = k we think of this representation as
a geometric point.

Remark 2.2.3. We have necessarily n = d, since

d = ρ(tr(1)) = tr(ρ(1)) = tr(I) = n,

where I is the identity matrix of Mn(A).

Before stating the main theorem of this section, we will give some exam-
ples of algebra with trace. In order to simplify the treatment and stick to a
geometric language we assume, from now until the end of the chapter, that
k is algebraically closed and of characteristic 0.
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Example 2.2.4. Consider A to be an order in a finite dimensional central
simple algebra D. This means that the center of A is a domain, A is torsion
free over Z and, we have D = A⊗ZQ(Z), where Q(Z) is the field of fractions
of Z. In other words, A embeds naturally in D which is its ring of fractions.
If Q(Z) is the algebraic closure of Q(Z), we have that A⊗Z Q(Z) is the full
ring Md(Q(Z). Hence we have on D, and on A, the usual reduced trace map
tr : D → Q(Z). It is well known that tr(A) = Z, if A is a finite Z module,
Z is integrally closed and the characteristic is 0. So under this hypotheses
A is an algebra of degree d. For more details cf. [Pro73] or [MR87].

Example 2.2.5. The second example is given by Azumaya algebras (cf
[Art69]). Recall that:

Definition 2.2.6. An algebra R over a commutative ring A is called an
Azumaya algebra of degree d over A, if there exists a faithfully flat extension
B of A such that R⊗A B is isomorphic to the algebra Md(B).

In this case it’s easy to show that the ordinary trace maps R into A.

Let R be a finitely generated algebra, we want to describe it’s d dimen-
sional representation.

Theorem 2.2.7. Assumes that R ∈ Cd is a finitely generated algebra. Set
T = tr(R).

(i) T is a finitely generated algebra, and R is s finite module over T .
In particular T is the coordinate ring of an affine algebraic variety
XT = Maxspec (T ).

(ii) The points of XT parameterize equivalence classes of d-dimensional,
trace compatible, and semisimple representations of R

(iii) Set Spec(R) equivalences classes of irreducible representations of R.
The canonical map Spec(R)

χ→ XT , induced by the central characters,
is surjective and each fiber consists of all those irreducible representa-
tions of R which are irreducible components of the corresponding semi-
simple representation. In particular each irreducible representation of
R has dimension at most d.

(iv) The set

ΩR = {a ∈ Spec(T ), such that the corresponding semisimple

representation is irreducible}

is a Zariski open set. This is exactly the part of Spec(T ) over which R
is an Azumaya algebra of degree d.

Proof. See [DCP93] theorem 4.5, page 48.
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Remark 2.2.8. (1) If R is an order in a central simple algebra of degree
d then T equals the center of R, furthermore since the central simple
algebra splits in a d dimensional matrix algebra which one may consider
as a generic irreducible representation, it is easily seen that the open
set ΩR is non empty.

(2) If T is a finitely generated module over a subalgebra Z0, we can consider
the finite surjective morphism

τ : Spec(T )→ Spec(Z0).

Then by the properness of τ we get that the set

Ω0
R :=

{
a ∈ Spec(Z0) : τ−1(a) ⊂ ΩR

}

is a Zariski open dense subset of Spec(Z0).

We will use this remark in the theory of quantum groups where there is
a natural subalgebra Z0 which appears in the picture.



3. TWISTED POLYNOMIAL ALGEBRAS

In this chapter we introduce the main notion of quasi polynomial algebras,
or skew polynomial. Note that as the quantum enveloping algebras are the
“quantum” version of the universal enveloping algebras of a Lie algebra, we
can think that twisted polynomial algebras are the “quantum” version of
the symmetric algebra of a Lie algebra. More details on twisted polynomial
algebras can be found, for examples, in [DCP93] or [Man91].

3.1 Useful notation and first properties

Before giving the definition of twisted polynomial algebra, we want to intro-
duce some notations, all will be useful in the sequel.

Let fix an invertible element q ∈ C different from 1 and −1 so that the
fraction 1

q−q−1 is well defined. For all n ∈ Z, set

[n] =
qn − q−n

q − q−1
= qn−1 + qn−3 + · · ·+ q−n+3 + q−n+1.

We have the following relation:

[−n] = − [n]

[n+m] = qn [m] + qm [n]

Observe that if q is not a root of unity then ∀ n ∈ Z, non zero, [n] 6= 0. If q
is a primitive lth root of unity, with l > 2, define

e =

{
l if l is odd

l
2 if l is even.

.

Now is easy to check that

Property. If q is a primitive l root of unity then

(i) [n] = 0⇔ n ≡ 0 mod e

(ii) [n]l = [n] .

We can now define the q analogue of the factorials and of the binomial
coefficients
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Definition 3.1.1. For integer 0 ≤ k ≤ n, set [0]! = 1,

[k]! = [1] · · · [k] ,

if k > 0, and [
n
k

]
=

[n]!

[k]! [n− k]! .

Proposition 3.1.2. If x and y are variables subject to the following relation
xy = q2yx then, for n > 0,

(x+ y)n =
n∑

k=0

q−k(n−k)

[
n
k

]
xkyn−k. (3.1)

Proof. We begin by stating the q analogue of the Pascal identity:

qk

[
n+ 1
k

]
= qn+1

[
n+ 1
k − 1

]
+

[
n
k

]

then by induction on n the statement follow

Corollary 3.1.3. If q is a primitive l root of unity,and xy = q2yx then

(x+ y)e = xe + ye.

Proof. Observe that

[
e
k

]
= 0 for all k such that 0 < k < e.

Apply this in the formula 3.1 and the statement fallow.

We give now some notations that will be useful in chapter 4 in order to
define the relations of the quantum groups. Fix d ∈ N, for all n ∈ Z, set

[n]d =
qn − q−n

qd − q−d
.

We can now extend the definitions of q-factorial and q-binomial, in the fol-
lowing way

Definition 3.1.4. For integer 0 ≤ k ≤ n, set [0]!d = 1,

[k]!d = [1]d · · · [k]d ,

if k > 0, and [
n
k

]

d

=
[n]!d

[k]!d [n− k]!d
.
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3.2 Definition

Let A be an algebra over an algebraic closed field k, and σ an automorphism
of A.

Definition 3.2.1. A twisted derivation of A relative to σ is a linear map
D : A→ A such that:

D(ab) = D(a)b+ σ(a)D(b)

∀ a, b ∈ A.

Definition 3.2.2. A twisted derivation D is called inner , if it exists in an
element a ∈ A such that:

D(b) = ab− σ(b)a

and we denote it adσa.

Property. Let a ∈ A and σ be an automorphism such that σ(a) = q2a where
q is a scalar. Then

(adσa)
m (b) =

m∑

j=0

(−1)jqj(m−1)

[
m
j

]
am−jσj(b)aj

Corollary 3.2.3. Under the hypothesis of Property 3.2 we have:

(adσa)
e (x) = aex− σe(x)ae

if q is a primitive l-th root of 1.

Fix an automorphism σ of A and a twisted derivation D of A relative to
σ

Definition 3.2.4. We define the twisted derivation algebra Aσ,D [x] in the
indeterminate x to be the k-module A⊗kk[x] thought as formal polynomials
with multiplications defined by the rule:

xa = σ(a)x+D(a).

When D = 0, we will call it twisted polynomial algebra and we denote it by
Aσ[x].

Let us notice that if a, b ∈ A and a is invertible we can perform the
change of variables

y := ax+ b

and we see that
Aσ,D[x] = Aσ′,D′ [x],
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for a suitable pair (σ′, D′). In order to see this, it is better to make the
formulas explicit separately when b = 0 and when a = 1. In the first case

yc = axc = a(σ(c)x+D(c)) = a(σ(c))a−1y + aD(c),

and we see that the new automorphism σ′ is the composition Ad(a)σ, and
D′ = aD, where Ad(a)(x) = axa−1.

In the case a = 1, we have

yc = (x+ b)c = σ(c)x+D(c) + bc = σ(c)y +D(c) + bc− σ(c)b,

so that σ′ = σ and D′ = D + adσ b. Summarizing we have

Proposition 3.2.5. Changing σ, D to Ad(a)σ, aD (resp. to σ, D+ adσ b)
does not change the twisted derivation algebra up to isomorphism.

Remark 3.2.6. It is clear that if A has no zero divisors, then the algebra
Aσ,D[x] and Aσ[x, x−1] also have no zero divisors.

Given a twisted polynomial algebra Aσ,D[x], we can construct a natural
filtration given by

deg(p(x)) = n

where p(x) = anx
n + . . . + a0, an 6= 0. The associated graded algebra is

clearly Aσ[x].

Definition 3.2.7. We shall say that the algebra Aσ[x] is a simple degener-
ation of Aσ,D[x].

Example 3.2.8. Let A be an algebra over a field k of characteristic 0, let
x1, . . . , xn be a set of generators of A and let Z0 be a central subalgebra of
A.

For each i = 1, . . . , n, denote by Ai the subalgebra of A generated by
x1, . . . , xi, and let Zi

0 = Z0 ∩ Ai. We assume the following three conditions
hold for each i = 1, . . . , n:

1. xixj = bijxjxi + Pij if i > j, where bij ∈ k, Pij ∈ Ai−1,

2. σi(xj) = bijxj for j < i define an automorphism of Ai−1.

3. Di(xj) = Pij for j < i.

We obtain
Ai = Ai−1

σi,Di
[xi]

as twisted polynomial algebra. For every i, we may consider the twisted

polynomial algebra A
i

defined by the relation xixj = bijxjxi for j < i. We
call this the associated quasi polynomial algebra.

Theorem 3.2.9. Under the above assumptions, the quasi polynomial algebra
A = A

n
is obtained from A by a sequence of simple degenerations.

Proof. See [DCP93] theorem 5.3, page 56.
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3.3 Representation theory of twisted derivation algebras

We want to analyze some interesting cases of the previous constructions for
which the resulting algebras are finite modules over their centers and thus we
can develop for them the notion of degree and a good representation theory.

Let us first make a reduction, consider a finite dimensional semisimple
algebra A over an algebraic closed field k, let

⊕
i kei be the fixed points of

the center of A under σ where the ei are the central idempotents. We have

D(ei) = D(e2i ) = 2D(ei)ei,

hence D(ei) = 0. It follows that, decomposing A = ⊕iAei, each component
Aei is stable under σ and D and thus we have

Aσ,D[x] =
⊕

i

(Aei)σ,D [x].

This allows us to restrict our analysis to the case in which 1 is the only
central idempotent.

The second reduction is described by the following:

Lemma 3.3.1. Consider the algebra A = k
⊕n with σ the cyclic permutation

of the summands and let D be a twisted derivation of this algebra relative to
σ. Then D is an inner twisted derivation.

Proposition 3.3.2. Let σ be the cyclic permutation of the summand of the
algebra k

⊕n. Then

(i) k
⊕n
σ

[
x, x−1

]
is an Azumaya algebra of degree k over its center

k [xn, x−n].

(ii) k
⊕n
σ

[
x, x−1

]
⊗k[xn,x−n] k

[
x, x−1

]
is the algebra of n× n matrices over

k
[
x, x−1

]
.

Proof. [DCP93] proposition 6.1, page 56.

Assume now that A is semisimple and that σ induces a cyclic permutation
of the central idempotents

Lemma 3.3.3. (i) A = Md(k)⊕n.

(ii) Let D be a twisted derivation of A relative to σ. Then the pair (σ,D)
is equivalent to the pair (σ′, 0) where

σ′(a1, a2, . . . , an) = (an, a1, . . . , an−1)

Proof. [DCP93] lemma 6.2, page 57.

Summarizing we have
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Proposition 3.3.4. Let A be a finite dimensional semisimple algebra over
an algebraic closed field k. Let σ be an automorphism of A which induces a
cyclic permutation pf order n of the central idempotents of A. Let D be a
twisted derivation of A relative to σ. Then:

Aσ,D[x] ∼= Md(k)⊗ k
⊕n
σ [x],

Aσ,D[x, x−1] ∼= Md(k)⊗ k
⊕n
σ [x, x−1].

This last algebra is Azumaya of degree dk.

We can now globalize the previous construction. Let A be a prime algebra
(i.e aAb = 0, a, b ∈ A, implies that a = 0 or b = 0) over the field k and
let Z be the center of A. Then Z is a domain and A is torsion free over
Z. Assume that A is a finite module over Z. Then A embeds in a finite
dimensional central simple algebra Q(A) = A ⊗Z Q(Z), where Q(Z) is the
ring of fraction of Z. If Q(Z) denotes the algebraic closure of Q(Z) we have
that A⊗Z Q(Z) is the full ring Md(Q(Z)). Then d is called the degree of A.

Let σ be an automorphism of the algebra A and let D be a twisted
derivation of A relative to σ. Assume that

(a) There is a subalgebra Z0 of Z such that Z is finite over Z0.

(b) D vanishes on Z0 and σ restricted to Z0 is the identity.

These assumptions imply that σ restricted to Z is an automorphism of finite
order. Let d be the degree of A and let k be the order of σ on the center Z.

Definition 3.3.5. If A is an order in a finite dimensional central simple
algebra and (σ,D) satisfy the previous conditions we shall say that the triple
(A, σ,D) is finite.

Assume that the field k has characteristic 0. Then

Theorem 3.3.6. Under the above assumptions the twisted polynomial alge-
bra Aσ,D[x] is an order in a central simple algebra of degree kd.

Proof. [DCP93] theorem 6.3, page 58.

Corollary 3.3.7. Under the above assumptions, Aσ,D[x] and Aσ[x] have the
same degree.

Let A a prime algebra over a field k of characteristic 0, let x1, . . . , xn

be a set of generators of A and let Z0 a central subalgebra of A. For each
i = 1, . . . , k, denote by Ai the subalgebra of A generated by x1, . . . , xk, and
let Zi

0 = Z0 ∩Ai.
We assume, as in example 3.2.8, that the following three conditions hold

for each i = 1, . . . , k:
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(a) xixj = bijxjxi + Pij if i > j, where bij ∈ k, Pij ∈ Ai−1.

(b) Ai is a finite module over Zi
0.

(c) Formulas σi(xj) = bijxj for j < i define an automorphism of Ai−1

which is the identity on Zi−1
0 .

Note that letting Di(xj) = Pij for j < i, we obtain Ai = Ai−1
σ,D[xi],

so that A is an iterated twisted polynomial algebra. We may consider the

twisted polynomial algebra A
i

with zero derivations, so that the relations
are xixj = bijxjxi for j < i. we call this the associated twisted polynomial
algebra.

We can state the main theorem of this section.

Theorem 3.3.8. Under the above assumptions, the degree of A is equal to
the degree of the associated quasi polynomial algebra A.

Proof. By theorem 3.2.9 A is obtained from A with a sequence of simple
degenerations, hence by corollary 3.3.7, it follows that they have the same
degree.

3.4 Representation theory of twisted polynomial algebras

Let k a field and 0 6= q ∈ k a given element. Given n × n skew symmet-
ric matrix H = (hij) over Z, we construct the twisted polynomial algebra
kH [x1, . . . , xn]. This is the algebra on generators x1, . . . , xn and the follow-
ing defining relations:

xixj = qhijxjxi (3.2)

for i, j = 1, . . . , n. It can be viewed as an iterated twisted polynomial algebra
with respect to any order of the xi’s. Similarly we can define the twisted Lau-
rent polynomial algebra kH [x1, x

−1
1 , . . . , xn, x

−1
n ]. Note that both algebras

have no zero divisors.
To study its spectrum we start with a simple general lemma.

Lemma 3.4.1. If M is an irreducible Aσ[x] module, then there are two
possibilities:

(i) x = 0, hence M is actually an A module.

(ii) x is invertible, hence M is actually an Aσ[x, x−1] module.

Proof. It is clear that imx and kerx are submodules of M .

Corollary 3.4.2. In any irreducible kH [x1, . . . , xn] module, each element xi

is either 0 or invertible.
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Given a = (a1, a2, . . . , an) ∈ Zn, we shall write xa = xa1
1 x

a2
2 . . . xan

n .
The torus (k×)

n
acts by automorphisms of the algebra kH [x1, . . . , xn] and

kH [x1, x
−1
1 , . . . , xn, x

−1
n ] in the usual way, the monomial xa being a weight

vector of weight a. Consider the group G of inner automorphisms of the
twisted Laurent polynomials generate by conjugation by the variables xi.
Clearly G induces a group of automorphisms of the twisted polynomial al-
gebra which are by 3.2 in this torus of automorphisms. In fact one can
formalize this as follows:

Let Γ :=
{
αxa : α ∈ k×

}
be the set of non zero monomials. Then Γ is a

group, k× is a central subgroup and Γ/k× is free abelian, the homomorphism
Γ→ (k×)

n
given by considering the associated inner automorphisms has as

kernel the monomials in the center.
Let ǫ be a primitive lth root of 1 in k and now take q = ǫ. We consider

the matrix H as a matrix of a homomorphism H : Zn → (Z/lZ)n, and we
denote by K the kernel of H and by h the cardinality of the image of H.

Proposition 3.4.3. (i) The elements xa with a = (a1, . . . , an) ∈ K ∩ Zn
+

(resp. a ∈ K) form a basis of the center of kH [x1, x2, . . . , xn] (resp.
kH [x1, x

−1
1 , . . . , xn, x

−1
n ]).

(ii) Let a(1), a(2), . . . , a(h) be a set of representative of Zn mod K.

Then the monomials xa(1)
, xa(2)

. . . , xa(h)
form a basis of the algebra

kH [x1, x
−1
1 , . . . , xn, x

−1
n ] over its center.

(iii) deg kH [x1, . . . , xn] = deg kH [x1, x
−1
1 , . . . , xn, x

−1
n ] =

√
h

Proof. Define a skew symmetric bilinear form on Zn by letting for a =
(a1, . . . , an), b = (b1, . . . , bn) ∈ Zn:

〈a|b〉 =
n∑

i,j=1

hijaibj .

Then we have
xaxb = ǫ〈a|b〉xbxa. (3.3)

Since the center is invariant with respect to the action of (k×)n, it must have
a basis of elements from the form xa. This together with 3.3 implies (i).

(ii) follows from (i) and the fact that

xaxb = ǫc(a|b)xa+b (3.4)

where c(a, b) =
∑

i>j hijaibj .
(iii) follows from (ii).

Remark 3.4.4. The center of twisted polynomial algebra is the ring of in-
variants of a torus acting on a polynomial ring hence is integrally closed,
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moreover the algebra is finite over its center hence these algebras are closed
under trace and in fact from 3.4 one can easily deduce a formula for the trace

trxa = 0 if xa is not in the center.

3.5 Maximal order

We have already stressed the importance of orders in a simple algebra, an
important special case is the notion of maximal order which in a non com-
mutative case replace the notion of an integrally closed domain. First we
summarize some results on maximal order, more details can be found in
[MR87], and at the end of the section we give a relation between maximal
orders and twisted polynomial algebras.

Note. Every twisted polynomial algebra of the form kH [x1, . . . , xn] is an
order.

Given an order R in a central simple algebra D an element a ∈ R is a
non zero divisor in R if and only if it is invertible in D, such an element
is called regular element. Given two orders R1 and R2 let us consider the
following condition:

There exist regular elements a, b ∈ R1 such that R1 ⊂ aR2b. This relation
generates an equivalence of orders and a maximal order is one which is
maximal with respect to this equivalence.

Definition 3.5.1. An orderR in a central simple algebraD is called maximal
order if given any central element c ∈ Rand an algebra S with R ⊂ S ⊂ 1

cR
we have necessarily that R = S.

We remark an important property of maximal orders:

Property. (i) The center Z of a maximal order R is integrally closed.

(ii) If R is finitely generated algebra over a field k then R is a finite module
over Z.

Corollary 3.5.2. A maximal order in a center simple algebra D of degree
d is closed under the reduced trace and hence it is an algebra in the category
Cd.

Proof. See [DCP93], §4.

We want to discuss now some criteria under which, by degeneration ar-
guments, we can deduce that an algebra is a maximal order.

The setting that we have chosen is suggested by the work on quantum
groups. We assume to have an algebra R, over some field k, with a commuta-
tive subalgebra A and elements x1, . . . , xk satisfying some special conditions
which we will presently explain.
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Let us first introduce some notations. For an integral vector n :=
(n1, . . . , nk), ni ∈ N we set deg n := n1 + . . . + nk, and xn = xn1

1 . . . xnk

k

we call such element a monomial. Furthermore we define on the set of in-
tegral vectors the degree lexicographic ordering, i.e. set n < m if either
deg n < degm or deg n = degm but n is less than m in the usual lexico-
graphic order, in this way Nk becomes an ordered monoid.

We now impose:

1. The monomials xn are a basis of R as a left A module. Let us denote
by

Rn :=
∑

m≤n

Axm.

2. The subspace Rn gives a structure of filtered algebra with respect to
the ordered monoid Nk. Furthermore we restrict the commutation
relations among the elements xi and A

3. xixj = aijxjxi + bij with 0 6= aij ∈ k and bij lower than xixj in the
filtration.

4. xia = σi(a)xi + lower term with σi an automorphism of A. Notice
that:

(a) xnxm = λxmxn + lower term, with 0 6= λ ∈ k.

(b) The associated graded algebra R is a twisted polynomial ring over
A. In fact the class xi of the xi satisfy

xixj = aijxjxi,

xia = σi(a)xi.

5. A is integrally closed.

6. For every vector n there exists a monomial a = xm such that n ≤ m and
its class a is in the center of R. Let us say for such an m is an almost
central monomial. Such monomial have simple special commutation
rules:

axm = xma+ lower term, ∀a ∈ A.
xmxs = xm+s + lower term,∀s.

We can finally state our result:

Theorem 3.5.3. Assume that R satisfies hypotheses 1− 6 then R is a max-
imal order.
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Proof. We follow De Concini and Kaç (cf. [DCP93] theorem 6.5, page 59 or
[DCK90]). Let

z = bxr + lower term

b ∈ A be an element in the center of R and B be an algebra with R ⊂ B ⊂
z−1R. We must show that B = R. Let us then take any element u ∈ B and
let y := zu ∈ R.

We develop y := axs + lower term, a ∈ A, we need to show that u ∈ R
by induction on s. In order to do this we first want to prove that b divides
a. Using hypotheses 6 and 4 we deduce that there is a monomial v ∈ R such
that yv = z(uv) has the form

axm + lower term

with xm an almost central monomial.
Next write (yv)t = zt−1z(uv)t and remark that z(uv)t ∈ R. Now

(yv)t = atxtm + lower term.

Furthermore, we claim that

zh = λhb
hxhr + lower term,

for all h, λh ∈ k∗. This is easily proved, since z is central, by induction,
remarking that

zh = zh−1(bxr + lower term) = bzh−1xr + lower term

We deduce that

atxtm + lower term = (yv)t (3.5a)

= zt−1z(uv)t (3.5b)

= (λt−1b
t−1x(t−1)r + lower term)z(uv)t (3.5c)

This relation implies that for all t, bt−1 divides at in A, in other words
(a/b)t ∈ b−1A. Since A is integrally closed (hypothesis 5), we deduce that b
divides a in A as requested.

Next we claim that r divides s. In fact from yt = zt−1kut as for the
identity 3.5, we deduce that in the monoid Nk the vector (t− 1)r divides ts
for all t, so r divides underlines and we can find an element w in R so that

xr = xsw + lower term.

We can finish our argument by induction. Assume by contradiction that
there is an element u ∈ B and not in R we may choose it in such a way that
the degree of y = zu ∈ R is minimal. By the previous argument we know
that a = bf , f ∈ A. Then fzw = zfw has the same leading term as y and
u− fw ∈ B. By induction u− fw ∈ R which gives us a contradiction.

Proposition 3.5.4. kH [x1, . . . , xn] is a maximal order.

Proof. All the hypotheses of theorem 3.5.3 are satisfied.
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4. GENERAL THEORY

We briefly recall the notations introduced in chapter 1. Let g be a simple
Lie algebra, h a fixed Cartan subalgebra, and let b be a Borel subalgebra
of g such that h ⊂ b. We denote by C = (ai,j) the Cartan matrix of g,
so there exist di such that (diaij) is a positive symmetric matrix. Let R
be the associated finite reduced root system, Λ its weight lattice and Q its
roots lattice, W the Weyl group. The choice of b gives us a set of positive
root R+, a set of simple roots Π ⊂ R+ and a set of fundamental weights
w1, . . . , wn ∈ Λ.

4.1 Quantum universal enveloping Algebras

The quantum groups which will be the object of our study arise as q-
analogues of the universal enveloping algebra of our semisimple Lie algebra
g.

Definition 4.1.1. A simply connected quantum group Uq(g) associated to
the Cartan matrix C is an algebra over C (q) on generators Ei, Fi (i =
1, · · · , n), Kα α ∈ Λ, subject to the following relations

{
KαKβ = Kα+β

K0 = 1
(4.1)

{
σα (Ei) = q(α|αi)Ei

σα (Fi) = q−(α|αi)Fi
(4.2)

[Ei, Fj ] = δij
Kαi
−K−αi

qdi − q−di
(4.3)





1−aij∑
s=0

(−1)s

[
1− aij

s

]

di

E
1−aij−s
i EjE

s
i = 0 if i 6= j

1−aij∑
s=0

(−1)s

[
1− aij

s

]

di

F
1−aij−s
i FjF

s
i = 0 if i 6= j.

(4.4)

Where

[
n
m

]

di

is the q binomial coefficient defined in section 3.1.

Note. When there is no possible confusion, we will simply denote Uq(g) by
U .
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Note. One should think of Ei and Fi as q-analogues of the Chevalley gener-
ators of g.

Theorem 4.1.2. U has a Hopf algebra structure with comultiplication ∆,
antipode S and counit η defined by:

•





∆(Ei) = Ei ⊗ 1 +Kαi
⊗ Ei

∆(Fi) = Fi ⊗K−αi
+ 1⊗ Fi

∆(Kα) = Kα ⊗Kα

•





S(Ei) = −Kαi
Ei

S(Fi) = −FiKαi

S(Kα) = K−α

•





η(Ei) = 0
η(Fi) = 0
η(Kα) = 1

Proof. See [Lus93].

Note. The quantum group in the sense of Drinfel’d-Jimbo is the subalgebra
UQ over C (q) generated by Ei, Fi, K

±1
i = K±αi

(i = 1, · · · , n), we call it
also adjoint quantum group. More generally, for any lattice M between Λ
and Q, we can define UM to be the quantum group generated by the Ei, Fi

(i = 1, · · · , n) and the Kβ with β ∈M .

We denote by U+, U− and U0 the C(q)-subalgebra of UM generated by
the Ei, the Fi and Kβ respectively. The algebras U+ and U− are not Hopf
subalgebras as one immediately sees from theorem 4.1.2. On the other hand,
the algebra U≥0 := U+U0 and U≤0 := U0U− are Hopf subalgebras and we
shall think to them as quantum deformation of the enveloping algebras U(b)
and U(b−), we denote them Uq(b) and Uq(b

−).
In fact we are interested in the study of a common generalization of Uq(g)

and Uq(b), namely Uq(p) for b ⊆ p ⊆ g a parabolic subalgebra.

4.1.1 P.B.W. basis

First, following Lusztig [Lus93], we define an action of the braid group BW
(associated to W). Denote by Ti the canonical generators of BW , we define
the action as an automorphism of U , by the formulas:

TiKλ = Ksi(λ) (4.5a)

TiEi = −FiKi (4.5b)

TiFi = −K−1
i Ei (4.5c)

TiEj =
(
−adE(−ai,j)

i

)
(Ej) (4.5d)

where if ∆(x) =
∑
xj ⊗ yj , then ad(x)(y) =

∑
xjyS(yj).
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Now we use the braid group to construct analogues of the root vectors
associated to non simple roots.

Let us take a reduced expression ω0 = si1 . . . siN for the longest element
in the Weyl group W. Setting βj = si1 · · · sij−1(αj), we get a total order on
the set of positive root. We define the elements Eβj

= Ti1 . . . Tij−1(Eij ) and
Fβj

= Ti1 . . . Tij−1(Fij ). Note that this elements depend on the choice of the
reduced expression.

Lemma 4.1.3. (i) Eβj
∈ U+, ∀ i = 1 . . . N

(ii) Fβj
∈ U−, ∀ i = 1 . . . N

Lemma 4.1.4. (i) The monomials Ek1
β1
· · ·EkN

βN
are a C(q) basis of U+

(ii) The monomials F k1
β1
· · ·F kN

βN
are a C(q) basis of U−

Poincaré Birkhoff Witt Theorem. The monomials

Ek1
β1
· · ·EkN

βN
KαF

kN

βN
· · ·F k1

β1

are a C(q) basis of U . In fact as vector spaces, we have the tensor product
decomposition,

U = U+ ⊗ U0 ⊗ U−

Proof. See [Lus93].

Levendorskii Soibelman relation. For i < j one has

(i)
Eβj

Eβi
− q(βi|βj)Eβi

Eβj
=
∑

k∈Z
N
+

ckE
k (4.6)

where ck ∈ C[q, q−1] and ck 6= 0 only when k = (k1, . . . , kN ) is such
that ks = 0 for s ≤ i and s ≥ j, and Ek = Ek1

β1
· · ·EkN

βN
.

(ii)
Fβj

Fβi
− q−(βi|βj)Fβi

Fβj
=
∑

k∈Z
N
+

ckF
k (4.7)

where ck ∈ C[q, q−1] and ck 6= 0 only when k = (k1, · · · , kN ) is such
that ks = 0 for s ≤ i and s ≥ j, and F k = F kN

βN
· · ·F k1

β1
.

Proof. See [LS91b].

An immediate corollary is the following: Let ω ∈ W. Choose a reduce
expression for it, ω = si1 . . . sik , which we complete to a reduced expression
ω0 = si1 . . . siN of the longest element of W. Consider the elements Eβj

,
j = 1, . . . , k. Then we have:
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Proposition 4.1.5. (i) The elements Eβj
, j = 1, . . . , k, generated a sub-

algebra Uω which is independent of the choice of the reduced expression
of ω.

(ii) If ω′ = ws with s a simple reflection and l(ω′) = l(ω)+1 = k+1. then
Uω′

is a twisted polynomial algebra of type Uω
σ,D

[
Eβk+1

]
, where σ and

D are given by the following formula, given in 4.6

σ
(
Eβj

)
= q(βj |βk+1)Eβj

(4.8a)

D
(
Eβj

)
=

∑

k∈Z
N
+

ckE
k. (4.8b)

Proof. See [DCP93].

The elements Kα clearly normalize the algebra Uω and when we add
them to these algebras we are performing an iterated construction of Laurent
twisted polynomials. The related algebras will be called Bω.

4.1.2 Degenerations of quantum groups

We want to construct some degenerations of our algebra Uq(g) as the graded
algebra associated to suitable filtration.

Definition 4.1.6. Consider the monomials Mk,r,α = F kKαE
r, where k =

(k1, . . . , kN ), r = (r1, . . . , rN ) ∈ ZN
+ and α ∈ Λ. The total height of Mk,r,α =

F kKαE
r is defined by

d0(Mk,r,α = F kKαE
r) =

∑

i

(ki + ri) htβi,

And its total degree by

d(Mk,r,α) = (kN , . . . , k1, r1, . . . , rN , d0) ∈ Z2N+1
+ ,

where, htβ is the usual height of a root with respect to our choice of simple
roots.

We shall view Z2N+1
+ as a total ordered semigroup with the lexicographic

order <. L.S. relations allow us to introduce a Z2N+1
+ -filtration of the algebra

U by letting Us, s ∈ Z2N+1
+ be the span of the monomials Mk,r,α such that

d(Mk,r,α) ≤ s.

Proposition 4.1.7. The associated graded algebra GrU of the Z2N+1
+ -filtered

algebra U is an algebra over C(q), on generators Eα, α ∈ R and Kβ, β ∈ Λ,
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subject to the following relations:

KαKβ = Kα+β, K0 = 1; (4.9a)

KαEβ = q(α|β)EβKα; (4.9b)

EαE−β = E−βEα if α, β ∈ R+ (4.9c)
{
EαEβ = q(α|β)EβEα
E−αE−β = q(α|β)E−βE−α

if α, β ∈ R+ and α > β. (4.9d)

Proof. See [DCP93], §10.

Remark 4.1.8. a) Considering the degree by total height d0, we obtain a
Z+-filtration of U , let U (0) = GrU the associated graded algebra. We
define by induction U (i) the graded algebra associated to U (i−1) with
respect to the Z+-filtration given by

di (Mk,r,α) =

{
rN−i+1 if 1 ≤ i ≤ N
ki−N if N + 1 ≤ i ≤ 2N

It is clear that at last step we get the algebra GrU defined by 4.9, i.e.

U (2N) ∼= GrU

b) The algebra GrU is a twisted polynomial algebra over C(q) on genera-
tors Eβ1 , . . . , EβN

, E−βN
, . . . E−β1 , and K1, . . . ,Kn, with the element Ki

inverted.

A first application of this methods is:

Theorem 4.1.9. The algebra U has no zero divisors.

Proof. Follows from remark 3.2.6.

4.2 Quantum groups at root of unity

To obtain from U a well defined Hopf algebra by specializing q to an arbitrary
non zero complex number ǫ, one can construct an integral form of U .

Definition 4.2.1. An integral form UA is a A subalgebra, where A =
C[q, q−1], such that the natural map

UA ⊗A C(q) 7→ U

is an isomorphism of C(q) algebra. We define

Uǫ = UA ⊗A C

using the homomorphism A 7→ C taking q to ǫ.
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There are two different candidates for UA the non restricted and the re-
stricted integral form, which lead to different specializations (with markedly
different representation theories) for certain values of ǫ. We are interested
in the non restricted form. For more details one can see [CP95].

Introduce the elements

[Ki;m]qi
=
Kiq

m
i −K−1

i q−m
i

qi − q−1
i

∈ U0

with m ≥ 0, where qi = qdi .

Definition 4.2.2. The algebra UA is the A subalgebra of U generated by
the elements Ei, Fi, K

±1
i and Li = [Ki; 0]qi

, for i = 1, . . . , n. With the map
∆, S and η defined on the first set of generators as in 4.1.2 and with

∆(Li) = Li ⊗Ki +K−1
i ⊗ Li (4.10a)

S(Li) = −Li (4.10b)

η(Li) = 0 (4.10c)

Note. The defining relation of UA are as in 4.1.1 replacing 4.3 by

EiFj − FjEi = δijLi

and adding the relation

(qi − q−1
i )Li = Ki −K−1

i

Proposition 4.2.3. UA with the previous definition is a Hopf algebra. More-
over, UA is an integral form of U .

Proof. See [CP95] or [DCP93] §12.

Proposition 4.2.4. If ǫ2di 6= 1 for all i, then

(i) Uǫ is generated over C by the elements Ei, Fi, and K±1
i with defining

relations obtained from those in 4.1.1 by replacing q by ǫ

(ii) The monomials
Ek1

β1
· · ·EkN

βN
KαF

kN

βN
· · ·F k1

β1

are a C basis of Uǫ.

(iii) The L.S. relations holds in Uǫ.

Proof. See [DCP93] §12.
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4.2.1 The center of Uǫ

The center of Uǫ consists of “two parts”, one coming from the center at a
“generic q”, the other from the fact that ǫ is a root of 1. We begin by
describing the center at “q generic”.

Let Z be the center of U . Any element z ∈ Z can be written as a linear
combinations of the elements of the basis of U given by the P.B.W. theorem.
Since z commutes with the Ki for all i, it follows that

z =
∑

η∈Q+

∑

r,t∈Par(η)

Erϕr,tF
t

where ϕr,t ∈ U0 and

Par(η) =

{
(m1, . . . ,mN ) ∈ NN :

∑

i

miαi = η

}
.

Definition 4.2.5. The map h : Z 7→ U0 defined by h(z) = ϕ0,0 is called the
Harish Chandra homomorphism

Property. h is a homomorphism of algebras.

Proof. See [DCP93], §18.

h allows us to describe Z as a ring. Any element φ ∈ U0 may be regarded
as a C(q)-valued function on the weight lattice Λ in an obvious way: if
φ =

∏n
i=1K

ti
i , where ti ∈ Z for all i, set ∀ λ ∈ Λ

φ(λ) = q
P

i ti(αi|λ)

and extended to U0 by linearity. Define an automorphism of C(q)-algebras
γ : U0 7→ U0 by setting γ(Ki) = qiKi. Then

Property. For all φ ∈ U0

γ(φ)(λ) = φ(λ+ ρ)

where ρ = 1
2(α1 + . . .+ αn).

Let Q∗
2 = {σ : Q 7→ Z2}, it is easy to see that Q∗

2 acts on U as a group of
automorphisms by

σ ·Kβ = σ(β)Kβ (4.11)

σ · Fα = σ(α)Fα (4.12)

σ · Eα = Eα (4.13)

for all α ∈ R+, β ∈ Q, and σ ∈ Q∗
2. Note that W acts on Q∗

2:

(ω · σ)(β) = σ(ω−1(β));
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moreover, the action of Q∗
2 can be obviously extended to an action of the

semidirect product W ⋉Q∗
2.

Let W̃ the subgroup generated by all conjugates σWσ−1 of W by ele-
ments σ ∈ Q∗

2.

Theorem 4.2.6. The homomorphism γ ◦ h : Z 7→ U0 is injective and its
image is precisely the set U0fW of fixed points of the action of W̃ on U0.

Proof. See [DCP93] or [CP95].

Example 4.2.7. Let g = sl2(C). Then W̃ = W and U0fW consist of the
Laurent polynomials in K1 which are invariant under K1 7→ K−1

1 . Thus

U0fW is generated as an algebra over C(q) by

φ =
K1 +K−1

−1

(q − q−1)2
.

It easy to check that the quantum Casimir element

Ω =
qK1 + q−1K−1

−1

(q − q−1)2
+ EF

lies in Z and γ−1(h(Ω)) = φ. It follows from theorem 4.2.6 that Ω generates
Z as C(q)-algebra.

We see now the quantum analogue of the Harish Chandra’s theorem on
the central characters of the classical universal enveloping algebra. Let λ ∈ Λ
and define a homomorphism λ : U0 7→ C(q) by Ki 7→ q(αi|λ). Let

χq,λ = λ ◦ γ−1 ◦ h : Z 7→ C(q)

Theorem 4.2.8. Let λ, µ ∈ Λ. Then χλ = χµ if and only if µ = ω(λ) for
some ω ∈ W.

Proof. See [CP95]

Suppose now that ǫ ∈ C is a lth root of the unity such that l is odd
and l > di for all i. Our aim is to describe the center Zǫ of Uǫ. We shall
assume a different approach from that used in the generic case. Let Z1 =
(Z ∩ A) /(q − ǫ), we call it the Harish Chandra part of the center. This is
not the full center, in fact we have

Proposition 4.2.9. The elements El
α, F l

α for α ∈ R+, and K l
i for i =

1, . . . , n lie in Zǫ.

Proof. See [DCP93], §21.
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For α ∈ R+, β ∈ Q, set eα = El
α, fα = F l

α and kβ = K l
β ; we shall

often write ei and fi for eαi
and fαi

. Let Z0 (resp. Z+
0 , Z−

0 , and Z0
0 be the

subalgebra of Zǫ generated by the eα, fα and k±i (resp.eα, fα and k±i ).

Proposition 4.2.10. (i) We have Z±
0 ⊂ U±

ǫ .

(ii) Multiplication defines an isomorphism of algebras

Z−
0 ⊗ Z0

0 ⊗ Z+
0 7→ Z0.

(iii) Z0
0 is the algebra of Laurent polynomial in the ki, and Z±

0 is the poly-
nomial algebra with generators the eα and fα respectively.

(iv) We have Z±
0 = U±

ǫ ∩ Zǫ

(v) The subalgebra Z0 of Zǫ is preserved by the braid group algebra auto-
morphism Ti.

(vi) Uǫ is a free Z0 module with basis the set of monomial

Ek1
β1
· · ·EkN

βN
Ks1

1 . . .Ksn
n F tN

βN
· · ·F t1

β1

for which 0 ≤ tj , si, kj < l, for i = 1, . . . , n and j = 1, . . . , N .

Proof. See [DCP93], §21.

Therefore, we can completely describe the center of Uǫ.

Theorem 4.2.11. Zǫ is generated by Z1 and Z0.

Proof. See [DCP93], §21.

The preceding proposition shows that Uǫ is a finite Z0 module. It follows
that Zǫ ⊂ Uǫ is finite over Z0, and hence integral over Z0. By the Hilbert
basis theorem, Zǫ is a finitely generated algebra. Thus, the affine schemes
Spec(Zǫ) and Spec(Z0), namely the sets of algebra homomorphism from Zǫ

and Z0 to C, are algebraic varieties. In fact, it is obvious that Spec(Z0)
is isomorphic to C2N × (C∗)n. Moreover the inclusion Z0 →֒ Zǫ induces a
projection τ : Spec(Zǫ) 7→ Spec(Z0), and we have

Proposition 4.2.12. Spec(Zǫ) is a normal affine variety and τ is a finite
(surjective) map of degree ln.

Proof. See [CP95] or [DCP93] §21.

We conclude this section by discussing the relation between the center
and the Hopf algebra structure of Uǫ.
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Property. We have

∆(ei) = ei ⊗ 1 + k−1
1 ⊗ ei

∆(fi) = fi ⊗ ki + 1⊗ fi

∆(ki) = ki ⊗ ki

Proposition 4.2.13. Z0 is a Hopf subalgebra of Uǫ, as are Z0
0 , Z

≥0
0 = Z0

0Z
+
0

and Z≤0
0 = Z−

0 Z
0
0 .

It follows that Spec(Z0) inherits a Lie group structure from the Hopf
structure of Uǫ. In fact

Property. The formula

{
z, z′

}
= lim

q→ǫ

zz′ − z′z
l (ql − q−l)

defines a Poisson bracket on Z0 which gives to SpecZ0 the structure of a
Poisson Lie group.

In order to study in more details the Poisson structure of Z0, we must
introduce some extra structure. For every q ∈ C, define derivations ei and
fi of Uq by

ei(u) =

[
El

i

[l]qi
!
, u

]
, (4.14)

f
i
(u) =

[
F l

i

[l]qi
!
, u

]
. (4.15)

Note that, if we specialize to q = ǫ, we obtain at first sight an indeter-
minate result, since the El

i and F l
i are central and [l]ǫi

= 0. However, we
have

Proposition 4.2.14. On specializing to q = ǫi = ǫdi the formulas 4.14
induces well defined derivation of Uǫ. In fact, we have the following explicit
formulas:

ei(Ej) =
1

2

−aij∑

r=1

[
−aij

r

]

ǫi

(
F r

i FjF
l−r
i − F l−r

i FjF
r
i

)
,

ei(Fj) =
1

l
δi,j(ǫi − ǫ−1

i )l−2(Kiǫi −K−1
i ǫ−1

i )El−1
i

ei(K
±1
j ) = ∓ 1

2l
aij(ǫi − ǫ−1

i )lF l
iK

±1
j

and f
i
is obtained from ei by using

Tω0eiT
−1
ω0

= f
i

where i 7→ i is the permutation of the nodes of the Dynkin diagram of g such
that ω0(αi) = −αi.
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Let G be the connected, simply connected Lie group with Lie algebra g,
let H ⊂ G be the maximal torus of G where LieH = h, and let N± be the
unipotent subgroups of G with Lie algebra n±. Note that H is canonically
identified with Spec(Z0

0 ) by the paring

(exp(η), ki) = exp
(
2π
√
−1αi(η)

)

for η ∈ h, the Lie algebra of H. The product G0 = N−HN+ is well known
to be a dense open subset of G (in the complex topology), called the big cell.

We define maps

E : Spec(Z+
0 )→ N+ (4.16)

F : Spec(Z−
0 )→ N− (4.17)

K : Spec(Z0
0 )→ H (4.18)

and by multiplication a map

π : EKF : Spec(Z0) = Spec(Z+
0 )× Spec(Z0

0 )× Spec(Z−
0 )→ G

as follows. Fix a reduced expression of the longest element of W, ω0 =
si1 . . . siN , and let Eβ1 , . . . , EβN

be the corresponding negative root of g.
Let

fβk
=
(
ǫik − ǫ−1

ik

)
Ti1 . . . Tik−1

(fik) ∈ Z0

which we regard as a complex valued function on Spec(Z0). Then we define
maps E, F and K to be the products

F = exp
(
fβN

F βN

)
. . . exp

(
fβ1F β1

)

E = exp
(
Tω0(fβN

)Tω0(F βN
)
)
. . . exp

(
Tω0(fβ1)Tω0(F β1)

)

K(h) = h2

where h ∈ H
Proposition 4.2.15. The product map π = FKE : Spec(Z0) → G is inde-
pendent of the choice of reduced decomposition of ω0, and is a covering of
degree 2n.

Proof. See [DCP93], §16.

Theorem 4.2.16. (i) Consider the Poisson structure on G defined in ex-
ample 1.2.14, then we have an identification of Spec(Z0) with a Poisson
dual to G. In particular LieSpec(Z0) = s, where

s = {(x, y) ∈ b+ ⊕ b− : xh + yh = 0} ,

(ii) The symplectic leaves of Spec(Z0) coincide with the preimages of the
conjugacy classes in G under π.

(iii) If C ⊂ G is a conjugacy class and dimC > 0 then π−1(C) is connected.

Proof. see [DCKP92] or [DCP93] §16.
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4.3 Parametrization of irreducible representation of Uǫ

As usual we assume that ǫ is a primitive lth root of the unity with l odd and
l > di for all i. All representation are on complex vector space.

We know that Zǫ acts by scalar operators on V (cf [CP95]), so there exist
an homomorphism χV : Zǫ 7→ C, the central character of V, such that

z · v = χV (z)v

for all z ∈ Zǫ and v ∈ V . Note that isomorphic representations have the
same central character, so assigning to a Uǫ module its central character give
a well define map

Ξ : Rap (Uǫ)→ Spec (Zǫ) ,

where Rap (Uǫ) is the set of isomorphism classes of irreducible Uǫ modules,
and Spec (Zǫ) is the set of algebraic homomorphisms Zǫ 7→ C.

To see that Ξ is surjective, let Iχ, for χ ∈ Spec (Zǫ), be the ideal in Uǫ

generated by
kerχ = {z − χ(z) · 1 : z ∈ Zǫ} .

To construct V ∈ Ξ−1(χ) is the same as to construct an irreducible repre-
sentation of the algebra Uχ

ǫ = Uǫ/I
χ. Note that Uχ

ǫ is finite dimensional and
non zero. Thus, we may take V , for example, has any irreducible subrepre-
sentation of the regular representation of Uχ

ǫ .
Composing with the surjective map Spec(Zǫ) → Spec(Z0), we obtain a

surjective map
Φ : Rap(Uǫ)→ Spec(Z0).

A priori in order to study representations one should study the representation
theory of the algebra Uχ

ǫ , for all χ ∈ Spec(Z0). However by [DCKP92] (or
[DCP93] §16), we have that

Theorem 4.3.1. Let χ1 and χ2 ∈ Spec(Z0) such that χ1 and χ2 live in the
same symplectic leaf then Uχ1

ǫ = Uχ2
ǫ .

4.4 Degree of Uǫ.

Summarizing, if ǫ is a primitive lth root of 1 with l odd and l > di for all i,
we have proved the following facts on Uǫ:

• Uǫ is a domain (cf theorem 4.1.9),

• Uǫ is a finite module over Z0(cf proposition 4.2.10).

Since the L.S. relations holds Uǫ (cf proposition 4.2.4), we can apply the
theory developed in section 4.1.2, and we obtain that GrUǫ is a twisted
polynomial algebra, with some elements inverted. Hence all conditions of
theorem 3.5.3 are verified, so
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Theorem 4.4.1. Uǫ is a maximal order.

Proof. See [DCK90].

Note. As we have seen in section 3.5, since Uǫ is a maximal order, Zǫ is
integrally closed and Uǫ ∈ Cm for some m ∈ N.

Following example 2.2.4, we can make the following construction: denote
by Qǫ := Q(Zǫ) the field of fraction of Zǫ, we have that Q(Uǫ) := Uǫ ⊗Zǫ Qǫ

is a division algebra, finite dimensional over its center Qǫ. Denote by F the
maximal commutative subfield of Q(Uǫ), we have that

(i) F is a finite extension of Qǫ of degree m,

(ii) Q(Uǫ) has dimension m2 over Qǫ,

(iii) Q(Uǫ)⊗Qǫ F ∼= Mm(F).

So,

Proposition 4.4.2. There is a non empty closed proper subvariety D of
Spec(Zǫ) such that

(i) If χ ∈ Spec(Zǫ) \ D, then Uχ
ǫ is isomorphic to Mm(C), and (hence)

there is, up to an isomorphism, exactly one irreducible Uǫ module Vχ

with character χ. One has dimVχ = m.

(ii) If χ ∈ D, then dimUχ
ǫ ≥ m2, but the dimension of every irreducible

Uχ
ǫ module is strictly less than m.

Proof. Apply theorem 2.2.7.

Note that, from the above discussion, we have:

dimQ(Z0)Qǫ = deg τ

dimQǫ Q(Uǫ) = m2

dimQ(Z0)Q(Uǫ) = l2N+n

where, the first equality is a definition, the second has been pointed out
above and the third follows from the P.B.W theorem. Finally, we have

l2N+n = m2 deg τ.

Recall that, from proposition 4.2.12, we have deg τ = ln, hence

degUǫ(g) = m = lN .
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4.5 Degree of Uǫ(b)

Recall that, we have Uq(b) = U≥0 = U+U0 ⊂ Uq(g). We begin to give a
more useful construction of Uq(b). We have seen at the end of section 4.1.1
that for all ω ∈ W, we can construct two twisted derivation algebras Uω and
Bω.

Lemma 4.5.1. Let ω0 ∈ W be the longest element, then Uq(b) = Bω0.

Proof. Follows from the definitions of Uq(b) and Bω0 .

So, Uq(b) is a twisted derivation algebra. Let ǫ be a primitive lth root of
1 such that l > di for all i, we may consider the specialized algebra

Uǫ(b) = Uq(b)/(q − ǫ) ⊂ Uǫ(g).

Proposition 4.5.2. (i) The monomials

Ek1
β1
. . . Ekn

βN
Ks1

1 . . .Ksn
n

for (k1, . . . , kN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Znform a C basis of Uǫ(b)

(ii) The L.S. relations holds in Uǫ(b).

Proof. See [DCKP95] or [DCP93] §10.

Using previous proposition and proposition 4.1.5, we have that Uǫ(b) is
a quasi derivation algebra with relations of type in example 3.2.8, so we can
consider the associated quasi polynomial algebra U ǫ(b). We can then apply
the theorem 3.2.9. We have

Theorem 4.5.3. The algebras Uǫ(b) and U ǫ(b) have the same degree.

Note. We have that U ǫ(b) ⊂ GrUǫ(g).

So the algebra U ǫ(b) is a twisted polynomial algebra where the commu-
tation relation are of type

xixj = ǫhijxjxi,

in order to compute is degree d is necessary to identify and study the corre-
sponding matrix H = (hij) since, according to proposition 3.4.3, d2 is equal
to the number from elements of the image of H modulo l. Let us explicit
the matrix H.

Let xm denote the class of Eβm
for m = 1, . . . , N , then from relations

4.9, we have

xixj = ǫ(βi|βj)xjxi, if 0 < i < j
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Thus we introduce the skew symmetric matrix A = (aij) with aij = (βi|βj)
if i < j.

Let ki the class of Ki, relations 4.9 we obtain a n×N matrix

B = ((ωi|βj))1≤i≤n,1≤j≤N

Let t = 2 unless the Cartan matrix is of type G2 in which case t = 6, and
let Z′ = Z

[
1
t

]
. We wish to think the matrix A as the matrix of a skew form

on a free Z′ module V with basis u1, . . . , uN . Identifying V with its dual
V ∗ using the given basis, we may also think A as linear operator from V to
itself.While we may think of the matrix B as a linear map from the module
V to the module Q∗ ⊗Z Z′, where Q∗ = HomZ(Λ,Z) be the dual lattice.

Construct the matrix T :

T =

(
A −tB
B 0

)
,

T is the matrix associated to the twisted polynomial algebra U ǫ(b). To study
this the matrix we need the following

Lemma 4.5.4. Let w ∈ W and fix a reduced expression w = si1 · · · sik .
Given ω =

∑n
i=1 δiωi, with δi = 0 or 1. Set

Iω(w) := {t ∈ {1, . . . , k} : sit(ω) 6= ω} .

Then
ω − w(ω) =

∑

t∈Iω

βt

Proof. We proceed by induction on the length of w. The hypothesis made
implies si(ω) = ω or si(ω) = ω − αi. Write w = w′sik . If k /∈ Iω, then
w(ω) = w′(ω) and we are done by induction. Otherwise

w(ω) = w′(ω − αik) = w′(ω)− βk

and again we are done by induction.

Consider the operator T1 =
(
A −tB

)
and N =

(
B 0

)
so that

T = T1 ⊕N .

Lemma 4.5.5. (i) The operator T1 is surjective

(ii) The vector vω :=
(∑

t∈Iω
ut

)
−ω−w0(ω), as ω run thought the funda-

mental weights, form a basis of the kernel of T1.

(iii) N(vω) = ω − w0(ω) =
∑

t∈Iω
βt.

Proof. See [DCKP95] or [DCP93] §10.
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Since T is the direct sum of T1 and N , its kernel is the intersection of
the two kernels of these operators. We have computed the kernel of T1 in
proposition 4.5.5, so the kernel of T is equal to the kernel of N restricted
to the submodule spanned by vectors vω. Thus, we can identify N with the
map 1− w0 : Λ→ Q. At this point we need the following fact

Lemma 4.5.6. Let θ =
∑n

i=1 aiαi the highest root of the root system R. Let
Z′′ = Z[a−1

1 , . . . , a−1
n ], and let Λ′′ = Λ ⊗Z Z′′ and Q′′ = Q ⊗Z Z′′. Then the

Z′′ submodule (1− w0)Λ
′′ of Q′′ is a direct summand.

Proof. See [DCKP95] or [DCP93] §10.

We call l > 1 a good integer if l is relative prime to t and to all the ai

Theorem 4.5.7. If l is a good integer, then

degUǫ(b) = l
1
2
(l(ω0)+rank(1−ω0))

Proof. From the above discussion we see that degU_(b) = ls, where s =
(N + n)− (n− rank(1−w0)) with N = l(w0), which together with theorem
4.5.3 prove the claim.

Note. This method for the calculation of the degree does not use the center
of Uǫ(b).



5. QUANTUM UNIVERSAL ENVELOPING ALGEBRAS FOR

PARABOLIC LIE ALGEBRAS

Let ǫ be a primitive lth root of the unity, we have seen in the previous chapter
how the degree of Uǫ(g) can be calculated. As we have seen in section 4.5,
De Concini, Kaç and Procesi prove that Uǫ(b) is a quasi polynomial algebra
and they calculate the degree reducing itself to calculation of the rank of
a matrix as we saw in chapter 4, theorem 4.5.7, they obtain the following
formula

degUǫ(b) = l
1
2
(l(ω0)+rank(1−ω0))

In this chapter, we want to generalize the previous formula at p parabolic
subalgebra of g. If we wanted to follow the chosen direction for Uǫ(g), we
would have to determine the center Uǫ(p). This seems to be a much greater
and at the moment more open problem. Unfortunately Uǫ(p) is not a quasi
polynomial algebra, therefore we cannot directly apply the theory developed
in chapter 3. So the main idea is to see Uǫ(p) as a flat deformation of a
suitable quasi polynomial algebra, and using it to calculate the degree.

We recall some notations. Let g be a simple lie algebra, fix a Borel sub-
group b ⊂ g and a Cartan subalgebra h ⊂ b ⊂ g. Let p be a parabolic
subalgebra in standard position i.e. b ⊂ p. Let p = l⊕ u the Levi decompo-
sition of p, with l the Levi factor and u the unipotent part.

Let R be the finite reduced root system associated to g, R+ the positive
roots and Π ⊂ R+ the simple roots. Define (Rl)+ = Rl∩R+ and Πl = Π∩R+

the positive respectively the simple roots of l with respect to our choice. Set
C = (diaij) and C ′ the Cartan matrix associated to g and l, W the Weyl
group associated to g and Wl ⊂ W the subgroup associated to l, Λ and Λl

the weight lattice and Q and Ql the root lattice of g and l respectively.

5.1 Parabolic quantum universal enveloping algebras

5.1.1 Definition of U(p)

Let wl
0 be the longest element of Wl and w0 the longest element of W . We

can choose a reduced expression w0 = sj1 . . . sjk
si1 . . . sih , such that wl

0 =
si1 . . . sih is a reduced expression for wl

0. We set w = w0(w
l
0)

−1 = sj1 . . . sjk
,
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with h = |(Rl)+| and h+ k = N = |R+|. We define, as in general case,

β1
t = wsi1 . . . sit−1 (αit) ∈ (Rl)+,

β2
t = sj1 . . . sjt−1

(
αit+k

)
∈ R+ \ (Rl)+.

Let U the quantum group associated to g define in 4.1.1, B the braid
group associated to W with the Lusztig action over U define by 4.5. Given
this choice, we obtain the q analogues of the root vectors:

Eβ1
t

= TwTi1 . . . Tit−1 (Eit) ,

Eβ2
t

= Tj1 . . . Tjt−1

(
Eit+k

)
.

and

Fβ1
t

= TwTi1 . . . Tit−1 (Fit) ,

Fβ2
t

= Tj1 . . . Tjt−1

(
Fit+k

)
.

The PBW theorem implies that, the monomials

Es1

β2
1
· · ·Esk

β2
k

E
sk+1

β1
1
· · ·Esk+h

β1
h

KλF
tk+h

β1
h

· · ·F tk+1

β1
1
F tk

β2
k

· · ·F t1
β2
1

(5.1)

for (s1, · · · , sN ), (t1, . . . , tN ) ∈ (Z+)N and λ ∈ Λ, form a C(q) basis of U .
The choice of the reduced expression of w0 and the LS relation for U

implies that

Property. For i < j one has

(i)

Eβ1
j
Eβ1

i
− q(β1

i |β
1
j )Eβ1

i
Eβ1

j
=
∑

k∈Z
N
+

ckE
k
1

where ck ∈ C(q) and ck 6= 0 only when k = (s1, . . . , sk) is such that
sr = 0 for r ≤ i and r ≥ j, and Ek

1 = Es1

β1
1
. . . Esk

β1
k

.

(ii)

Eβ2
j
Eβ2

i
− q−(β2

i |β
2
j )Eβ2

i
Eβ2

j
=
∑

k∈Z
N
+

ckE
k
2

where ck ∈ C(q) and ck 6= 0 only when k = (t1, . . . , th) is such that
tr = 0 for r ≤ i and r ≥ j, and Ek

2 = Et1
β2
1
. . . Eth

β2
h

.

The same statement holds for Fβ1
i

and Fβ2
i
.

The definition of the braid group action implies:
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Property. (i) If i ∈ Πl, then

Ei = Eβ1
s
,

Fi = Fβ1
s
.

for some s ∈ {1, . . . , h}.

(ii) If i ∈ Π \Πl, then

Ei = Eβ2
s
,

Fi = Fβ2
s
.

for some s ∈ {1, . . . , k}.

Definition 5.1.1. The simple connected quantum group associated to p, or
parabolic quantum group, is the C(q) subalgebra of U(g) generated by

U(p) = 〈Eβ1
i
,Kλ, Fβj

〉

for i = 1, . . . , h, j = 1 . . . N and λ ∈ Λ.

Definition 5.1.2. 1. The quantum Levi factor of U(p) is the subalgebra
generated by

U(l) = 〈Eβ1
i
,Kλ, Fβ1

i
〉

for i = 1, . . . , h, and λ ∈ Λ.

2. The quantum unipotent part of U(p) is the subalgebra generated by

Uw = 〈Fβ2
s
〉

with s = 1 . . . h

Set U+(p) = U+(l) = 〈Ei〉i∈Πl , U−(p) = 〈Fi〉i∈Π, U−(l) = 〈Fi〉i∈Πl and
U0(p) = U0(l) = 〈Kλ〉λ∈Λ. We have:

Property. The definition of U(p) and U(l) is independent of the choice of
the reduced expression of wl

0 and w0.

Proof. Follows immediately from proposition 4.1.5.

We can now state the P.B.W theorem for U(p) and U(l), which is an
immediately consequence of 5.1.

Proposition 5.1.3. (i) The monomials

Es1

β1
1
· · ·Esh

β1
h

KλF
tk+h

β1
h

· · ·F tk+1

β1
1
F tk

β2
k

· · ·F t1
β2
1

for (s1, · · · , sh) ∈ (Z+)h, (t1, . . . , tN ) ∈ (Z+)N and λ ∈ Λ, form a C(q)
basis of U(p).
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(ii) The monomials
Es1

β1
1
· · ·Esh

β1
h

KλF
th
β1

h

· · ·F t1
β1
1

for (s1, . . . , sh), (t1, . . . , th) ∈ (Z+)h and λ ∈ Λ, form a C(q) basis of
U(l).

Proof. Follows easy from the P.B.W theorem for Uq(g).

Proposition 5.1.4. Set m = rank l = #|Πl|. The algebra U(p) is generated
by Ei, Fj Kλ, with i = 1, . . . ,m, j = 1, . . . , n and λ ∈ Λ, subject to the
following relations:

{
KαKβ = Kα+β

K0 = 1
(5.2)

{
KαEiK−α = q(α|αi)Ei

KαFjK−α = q−(α|αj)Fj
(5.3)

[Ei, Fj ] = δij
Kαi
−K−αi

qdi − q−di
(5.4)





1−aij∑
s=0

(−1)s

[
1− aij

s

]

di

E
1−aij−s
i EjE

s
i = 0 if i 6= j

1−aij∑
s=0

(−1)s

[
1− aij

s

]

di

F
1−aij−s
i FjF

s
i = 0 if i 6= j.

(5.5)

Where

[
n
m

]

di

is the q binomial coefficient defined in section 3.1.

Proof. Follows from P.B.W. theorem and the L.S. relations.

We state now some easy properties of U(p):

Lemma 5.1.5. The multiplication map

U+(l)⊗ U0(l)⊗ U−(l)→ U(l)

is an isomorphism of vector spaces.

Proof. Follows from the P.B.W theorem for U(l).

Lemma 5.1.6. The multiplication map

U(l)⊗ Uw m−→ U(p)

defined by m(x, u) = xu for every x ∈ U(l) and u ∈ Uw, is an isomorphism
of vector spaces.

Proof. The statement follows immediately from the proposition 5.1.3.
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Lemma 5.1.7. The map µ : U(p)→ U(l) defined by

µ
(
Es1

β1
1
· · ·Esh

β1
h

KλF
tk+h

β1
h

· · ·F tk+1

β1
1
F tk

β2
k

· · ·F t1
β2
1

)

=

{
0 if ti 6= 0 for some i = 1, . . . , h,

Es1

β1
1
· · ·Esh

β1
h

KλF
tk+h

β1
h

· · ·F tk+1

β2
1

if ti = 0 for all i = 1, . . . , h,

is an homomorphism of algebras.

Proof. Simple verification of the definition.

Proposition 5.1.8. U(p) and U(l) are Hopf subalgebra of U .

Proof. Follows immediately from the definition.

5.1.2 Definition of Uǫ(p)

Let A = C[q, q−1], and UA the integral form of U defined by 4.2.2. Like in
the general case, we define UA(p), has the subalgebra generated by Eβ1

i
, Fβ1

i
,

Fβ2
s
, K±1

j and Lj , with i = 1, . . . , h, s = 1, . . . , k and j = 1, . . . , n.

Definition 5.1.9. Let ǫ ∈ C, we define

Uǫ(p) = UA(p)⊗A C

using the homomorphism A → C tacking q → ǫ

Let ǫ ∈ C such that ǫ2di 6= 1 for all i, then

Property. Uǫ(p) ⊂ Uǫ(g). Moreover Uǫ(p) is generated by Eβ1
i
, Fβs

and

K±1
j , for i = 1, . . . , h, s = 1, . . . , N and j = 1, . . . , n.

Proof. The claim is a consequence of the definition of UA(p).

Proposition 5.1.10. The P.B.W. theorem and the L.S. relations holds for
Uǫ(p)

Proof. The claim is a consequence of the P.B.W. theorem and L.S. relation
for Uǫ(g) and the choice of the decomposition of the reduced expression of
w0.

5.2 The center of Uǫ(p)

Let ǫ ∈ C a primitive lth root of unity, with l odd and l > di for all i. Has
in section 4.2.1, we note that at root of unity the algebra Uǫ(p) has a big
center. The aim of this section is to extend some properties of the center of
Uǫ at the center of Uǫ(p).
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Proposition 5.2.1. For i = 1, . . . , k, s = 1, . . . , h and j = 1, . . . , n, El
β1

i

,

F l
β1

i

, F l
β2

s
and K±l

j lie in the center of Uǫ(p)

Proof. Its well known that these elements lie in the center of Uǫ (cf [Lus93]
of [DCP93]), but they also lie in Uǫ(p), hence the claim.

For α ∈ (Rl)+, β ∈ R+ and λ ∈ Q, define eα = El
α, fβ = F l

β , k±1
λ = K±l

λ .

Let Z0(p) be the subalgebra generated by the eα, fβ and k±1
i .

Proposition 5.2.2. Let Z0
0 , Z

+
0 and Z−

0 be the subalgebra generated by k±1
i ,

eα and fβ respectively.

(i) Z±
0 ⊂ U±

ǫ (p)

(ii) Multiplication defines an isomorphism of algebras

Z−
0 ⊗ Z0

0 ⊗ Z+
0 → Z0(p)

(iii) Z0
0 is the algebra of Laurent polynomial in the ki, and Z+

0 and Z−
0 are

polynomial algebra with generators eα and fβ respectively.

(iv) Uǫ(p) is a free Z0
ǫ (p) module with basis the set of monomial

Es1

β1
1
· · ·Esh

β1
h

Kr1
1 · · ·Krn

n F
tk+h

β1
h

· · ·F tk+1

β1
1
F tk

β2
k

· · ·F t1
β2
1

for which 0 ≤ sj , ti, rv < l

Proof. By definition of U+(p), we have eα ∈ U+(p), since U+(p) is a subal-
gebra (i) follows. (ii) and (iii) are easy corollary of the definitions and of the
P.B.W. theorem. (iv) follows from the P.B.W. theorem for U(p).

The preceding proposition shows that Uǫ(p) is a finite Z0(p) module.
Since Z0 is clearly noetherian, from (iii), it follows that Zǫ(p) ⊂ Uǫ(p) is
a finite Z0(p) module, and hence integral over Z0(p). By the Hilbert ba-
sis theorem Zǫ(p) is a finitely generated algebra. Thus the affine schemes
Spec(Zǫ(p)) and Spec(Z0(p)) are algebraic varieties. Note that Spec(Z0) is
isomorphic to CN × Cl(h) × (C∗)n. Moreover the inclusion Z0(p) →֒ Zǫ(p)
induces a projection τ : Spec(Zǫ(p))→ Spec(Z0(p)), and we have

Proposition 5.2.3. Spec(Zǫ(p)) is an affine variety and τ is a finite sur-
jective map.

Proof. Follows from the Cohen-Seidenberg theorem ([Ser65] ch. III).

We conclude this section by discussing the relation between the center
and the Hopf algebra structure of Uǫ(p).

Proposition 5.2.4. (i) Z0(p) is a Hopf subalgebra of Uǫ(p).
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(ii) Z0(p) is a Hopf subalgebra of Z0.

(iii) Z0(p) = Z0 ∩ Uǫ(p).

Proof. It follows directly from the given definitions.

The fact that Z0(p) is an Hopf algebra tells us that Spec(Z0(p)) is an
algebraic group . Moreover, the inclusion Z0(p) →֒ Z0 being an inclusion of
Hopf algebras, induces a group homomorphism,

Spec(Z0)→ Spec(Z0(p)).

Let us recall that in theorem (i), we have that

Spec(Z0) =
{
(a, b) :∈ B− ×B+ : π−(a)π+(b) = 1

}

where π± : B± → H. From this and, the explicit description of the subalge-
bra Z0(p) ⊂ Z0, we get

Spec(Z0(p)) =
{
(a, b) :∈ B−

L ×B+ : π−(a)π+(b) = 1
}

where L ⊂ G is the connected subgroup of G such that LieL = l, and
B−

L = B− ∩ L.

5.3 Parametrization of irreducible representations

5.3.1 Character of a representation

We begin by observing that every irreducible Uǫ(p) module V is finite di-
mensional. Indeed, let Z(V ) be the subalgebra of the algebra of intertwining
operators of V generated by the action of the elements in Zǫ(p). Since Uǫ(p)
is finitely generated as a Zǫ(p) module, V is finitely generated as Z(V ) mod-
ule. If 0 6= f ∈ Z(V ), then f ·V = V , otherwise f ·V is a proper submodule
V . Hence, by Nakayama’s lemma, there exist an endomorphism g ∈ Z(V )
such that 1 − gf = 0, i.e. f is invertible. Thus Z(V ) is a field. It follows
easily that Z(V ) consists of scalar operators. Thus V is a finite dimensional
vector space.

Since Zǫ(p) acts by scalar operators on V , there exists an homomorphism
χV : Zǫ 7→ C, the central character of V, such that

z · v = χV (z)v

for all z ∈ Zǫ and v ∈ V . Note that isomorphic representations have the
same central character, so assigning to a Uǫ(p) module its central character
gives a well define map

Ξ : Rap (Uǫ(p))→ Spec (Zǫ(p)) ,
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where Rap (Uǫ(p)) is the set of isomorphism classes of irreducible Uǫ(p) mod-
ules, and Spec (Zǫ(p)) is the set of algebraic homomorphisms Zǫ(p) 7→ C.

To see that Ξ is surjective, let Iχ, for χ ∈ Spec (Zǫ(p)), be the ideal in
Uǫ(p) generated by

kerχ = {z − χ(z) · 1 : z ∈ Zǫ(p)} .

To construct V ∈ Ξ−1(χ) is the same as to construct an irreducible represen-
tation of the algebra Uχ

ǫ (p) = Uǫ(p)/Iχ. Note that Uχ
ǫ (p) is finite dimensional

and non zero. Thus, we may take V , for example, to be any irreducible sub-
representation of the regular representation of Uχ

ǫ (p).
Let χ ∈ Spec(Z0(p)), we define,

Uχ
ǫ (p) = Uǫ(p)/Jχ

where Jχ is the two sided ideal generated by

kerχ = {z − χ(z) · 1 : z ∈ Z0(p)}

5.4 A deformation to a quasi polynomial algebra

In this section we construct the main tool of this thesis. We want to modify
the relation that define the non restricted integral form of Uǫ(g), so as to
obtain a deformation of Uǫ(p) to a quasi-polynomial algebra. We begin by
constructing the deformation for Uǫ(g), which is exactly a reformulation of
the construction of GrU in section 4.1.2.

5.4.1 The case p = g.

Definition 5.4.1. Let t ∈ C, we define U t
ǫ the algebra over C on generators

Ei, Fi, Li and K±
i , for i = 1, . . . , n, subject to the following relation:

{
K±1

i K±1
j = K±1

j K±1
i

KiK
−1
i = 1

(5.6)

{
Ki (Ej)K

−1
i = ǫaijEj

Ki (Fj)K
−1
i = ǫ−aijFj

(5.7)





[Ei, Fi] = tδijLi(
adσ−αi

Ei

)1−aij

Ej = 0
(
adσ−αi

Fi

)1−aij

Fj = 0

(5.8)





(
ǫdi − ǫ−di

)
Li = t

(
Ki −K−1

i

)

[Li, Ej ] = t ǫaij−1
ǫdi−ǫ−di

(
EjKi +K−1

i Ej

)

[Li, Fj ] = t ǫ−aij−1
ǫdi−ǫ−di

(
FjKi +K−1

i Fj

) (5.9)
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Proposition 5.4.2. For t = 1, we have U1
ǫ = Uǫ

Proof. For t = 1, the relations of U1
ǫ are exactly the relation 4.2.2 that define

Uǫ.

Let 0 6= λ ∈ C, define

ϑλ(Ei) =
1

λ
Ei, ϑλ(Fi) =

1

λ
Fi, ϑλ(Li) =

1

λ
Li, ϑλ(K±1

i ) = K±1
i , (5.10)

for i = 1, . . . , n.

Proposition 5.4.3. For any 0 6= λ ∈ C, ϑλ is an isomorphism of algebra
between U t

ǫ and Uλt
ǫ

Proof. Simple verification of the property.

Set Sǫ := U t=0
ǫ , we want to construct an explicit realization of it. Let

D = Uǫ(b+)⊗ Uǫ(b−) and define the map

Σ : Sǫ → D

by Σ(Ei) = Ei := Ei ⊗ 1, Σ(Fi) = Fi = 1 ⊗ Fi, and Σ(K±1
i ) = K±1

i :=
K±1

i ⊗K±1
i for i = 1, . . . , n.

Lemma 5.4.4. Σ is a well defined map.

Proof. We must verify that the image of Ei, Fi and Ki satisfy the relation
5.6 for t = 0.

{ K±
i K±

j = K±
j K±

i

KiK−1
i = 1

(5.11)

{
KiEjK−1

i = ǫaijEj
KiFjK−1

i = ǫ−aijFj
(5.12)





[Ei,Fi] = 0
∑1−aij

r=0 (−1)r

[
1− aij

r

]

ǫi

E1−aij−r
i EjEr

i = 0

∑1−aij

r=0 (−1)r

[
1− aij

r

]

ǫi

F1−aij−r
i FjFr

i = 0

(5.13)

Note that the relations 5.11 are obvious. We begin by demonstrating the
relation 5.12

KiEjK−1
i = Ki ⊗Ki (Ei ⊗ 1)K−1

i ⊗K−1
i

= KiEiK
−1
i ⊗ 1

= ǫaijEi ⊗ 1

= ǫaijEi
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in the same way, we have KiFjK−1
i = ǫ−aijFi. Finally we have

[Ei,Fj ] = EiFj −FjEi
= (Ei ⊗ 1)(1⊗ Fj)− (1⊗ Fj)(Ei ⊗ 1)

= Ei ⊗ Fj − Ei ⊗ Fj

= 0

and

1−aij∑

r=0

(−1)r

[
1− aij

r

]

ǫi

E1−aij−r
i EjEr

i

=

1−aij∑

r=0

(−1)r

[
1− aij

r

]

ei

E
1−aij−r
i EjE

r
i ⊗ 1

= 0

in the same way, we can verify the third relation of 5.13.

Note that Σ is injective, then we can identify Sǫ with the subalgebra of
D generated by Ei, Fi and Ki, for i = 1, . . . , n. We define now the analogues
of the root vectors for Sǫ:

Definition 5.4.5. For all i = 1, . . . , N , let

(i) Eβi
:= Eβi

⊗ 1 ∈ Sǫ

(ii) Fβi
:= 1⊗ Fβi

∈ Sǫ

As a consequence of this we get a P.B.W theorem for Sǫ.

Proposition 5.4.6. The monomials

Ek1
β1
. . . EkN

βN
Ks1

1 . . .Ksn
n Fh1

βN
. . .Fk1

β1

for (k1, . . . , kN ), (h1, . . . , hN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn, form a C basis
of Sǫ. Moreover

Sǫ = S−ǫ ⊗ S0
ǫ ⊗ S+

ǫ

where S+
ǫ (resp. S−ǫ and S0

ǫ ) is the subalgebra generated by Eβi
(resp. Fβi

and Ki).

Proof. This follows from the injectivity of Σ and proposition 4.5.2

Note. Its is clear that Eβi
is also the image of the element Eβi

∈ U t
ǫ , where

the Eβi
are non commutative polynomials in the Ei’s by Lusztig procedure

([Lus93]). The same thing is true for Fβi
and Fβi

.

We see now, that the L.S. relation holds for Sǫ.



5. Quantum universal enveloping algebras for parabolic Lie algebras 61

Proposition 5.4.7. For i < j one has

1.
Eβj
Eβi
− ǫ(βi|βj)Eβi

Eβj
=
∑

k∈Z
N
+

ckEk (5.14)

where ck ∈ C and ck 6= 0 only when k = (k1, . . . , kN ) is such that
ks = 0 for s ≤ i and s ≥ j, and Ek = Ek1

β1
. . . EkN

βN
.

2.
Fβj
Fβi
− ǫ−(βi|βj)Fβi

Fβj
=
∑

k∈Z
N
+

ckFk (5.15)

where ck ∈ C and ck 6= 0 only when k = (k1, . . . , kN ) is such that
ks = 0 for s ≤ i and s ≥ j, and Fk = FkN

βN
. . .Fk1

β1
.

Proof. We have by definition Eβi
= Eβi

⊗ 1, then

Eβj
Eβi
− ǫ(βi|βj)Eβi

Eβj
=

(
Eβj

Eβi
− ǫ(βi|βj)Eβi

Eβj

)
⊗ 1

=



∑

k∈Z
N
+

ckE
k


⊗ 1

where we have been using the L.S. relation for the Eβi
. Note now that

Ek = Ek ⊗ 1,

then

Eβj
Eβi
− ǫ(βi|βj)Eβi

Eβj
=



∑

k∈Z
N
+

ckE
k


⊗ 1

=
∑

k∈Z
N
+

ckEk

In the same way, we can prove the L.S. relation for the Fβi

Theorem 5.4.8. (i) Sǫ = U t=0
ǫ is a twisted derivation algebra.

(ii) GrUǫ, where GrUǫ is defined by the relation 4.9, is a degeneration, in
the sense of twisted derivation algebra, of Sǫ

Proof. Define U0 = C[Eβ1 ,FβN
] ⊂ Sǫ, then we can define

U i = U i−1
σ,D

[
Eβi
,FβN−i

]
⊂ Sǫ

where σ and D are given by the L.S. relation. Note now that, the Ki, for i =
1, . . . , n normalize UN , and when we add them to this algebra we perform an
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iterated construction of twisted Laurent polynomial. The resulting algebra
will be called T . We now claim

Sǫ = T

Note that, by construction T ⊂ Sǫ, so we only have to prove that Sǫ ⊂ T .
Now note that

Ek1
β1
· · · EkN

βN
Ks1

1 · · · Ksn
n FhN

βN
· · · Fh1

β1
∈ T

for every (k1, . . . , kN ), (h1, . . . , hN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn. Then
by proposition 5.4.6 we have Sǫ ⊂ T .

The second part is obtained by using standard technique of quasi poly-
nomial algebra. Denote by Sǫ the quasi polynomial algebra associated to Sǫ.
It easy to see that Sǫ

∼= GrUǫ.

We finish this section with some remarks on the center of U t
ǫ . Recall that

U t
ǫ is isomorphic to Uǫ for every t ∈ C∗, hence Zt

ǫ is isomorphic to Z1
ǫ = Zǫ.

For t = 0, we define C0 the subalgebra of Sǫ generated by E l
β , F l

β for β ∈ R+

and K±l
j for j = 1, . . . , n and let Cǫ be the center of Sǫ. Let Z0[t] the trivial

deformation of Z0

Lemma 5.4.9. (i) ρ : Z0[t] → U t
ǫ defined in the obvious way is an injec-

tive homomorphism of algebra.

(ii) U t
ǫ is a free Z0[t] module with base the set of monomials

Ek1
β1
· · ·EkN

βN
Ks1

1 · · ·Ksn
n F hN

βN
· · ·F h1

β1

for which 0 ≤ ki, sj , hi < l, for i = 1, . . . , N and j = 1, . . . , n.

Proof. (i) follows by definitions of Z0[t]. (ii) follows from the P.B.W theorem.

Lemma 5.4.10. Z0[t]/(t) ∼= C0 and Z0[t]/(t− 1) ∼= Z0.

Proof. Follows from the definitions of Z0[t], C0 and Z0

Proposition 5.4.11. Uǫ and Sǫ are isomorphic has Z0 modules.

Proof. Follows from the previous lemma.

5.4.2 general case

We can now study the general case.

Definition 5.4.12. Let U t
ǫ(p) be the subalgebra of U t

ǫ generated by Eβ1
i
,

Fβj
and K±1

s for i = 1, . . . , h, j = 1, . . . , N and s = 1, . . . , n.
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Set Sǫ(p) = U t=0
ǫ (p) ⊂ Sǫ.

Proposition 5.4.13. (i) For every t ∈ C, U t
ǫ(p) is an Hopf subalgebra of

U t
ǫ .

(ii) For any λ 6= 0, ϑλ defines by 5.10 is an isomorphism of algebra between
U t

ǫ(p) and Uλt
ǫ (p).

Proof. This is an immediate consequence of the same property in the case
p = g.

We can now state the main theorem of this section

Theorem 5.4.14. Sǫ(p) is a twisted derivation algebra

Proof. We use the same technique as we used on the proof of theorem 5.4.8.
Using the notation of section 4.5, let D(p) = Uǫ(b

l
+)⊗ Uǫ(b−). Define

Σ : Sǫ(p)→ D(p)

by Σ(Ei) = Ei, Σ(Fj) = Fj , Σ(K±1
j ) = K±1

j for i ∈ Πel and j = 1, . . . , n.

Lemma 5.4.15. Sǫ(p) is a subalgebra of Sǫ

Proof. Note that D(p) is a subalgebra of D, and, as in lemma 5.4.4, the
map Σ is well define and injective. So, we have the following commutative
diagram

Sǫ(p) D(p)

Sǫ D

//
Σ

��
�

�

�

�

�

�

�

�

�

i

��
�

�

�

�

�

�

�

�

�

j

//
Σ

Since Σ and j are injective map, we have that i is also injective

So we can identify Sǫ(p) with the subalgebra of Sǫ generated by Eβ1
i
, Fβs

and K±1
j for i = 1, . . . , h, s = 1, . . . , N and j = 1, . . . , n. As corollary of

proposition 5.4.6 and proposition 5.4.7, we have:

Proposition 5.4.16. (i) The monomials

Ek1

β1
1
. . . Ekh

β1
h

Ks1
1 . . .Ksn

n F t1
βN
. . .F t1

β1

for (k1, . . . , kh) ∈ (Z+)h, (t1, . . . , tN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn,
form a C basis of Sǫ.

(ii) For i < j one has
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(a)

Eβ1
j
Eβ1

i
− ǫ(β1

i |β
1
j )Eβ1

i
Eβ1

j
=
∑

k∈Z
N
+

ckEk (5.16)

where ck ∈ C and ck 6= 0 only when k = (k1, . . . , kh) is such that
ks = 0 for s ≤ i and s ≥ j, and Ek = Ek1

β1
1
. . . Ekh

β1
h

.

(b)
Fβj
Fβi
− ǫ−(βi|βj)Fβi

Fβj
=
∑

k∈Z
N
+

ckFk (5.17)

where ck ∈ C and ck 6= 0 only when k = (k1, . . . , kN ) is such that
ks = 0 for s ≤ i and s ≥ j, and Fk = FkN

βN
. . .Fk1

β1
.

As corollary, we conclude that:

Theorem 5.4.17. The monomials

Ek1

β1
1
. . . Ekh

β1
h

Ks1
1 . . .Ksn

n F t1
βN
. . .F t1

β1

for (k1, . . . , kh) ∈ (Z+)h, (t1, . . . , tN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn, are a
C[t] basis of U t

ǫ . In particular t is not a zero divisor in U t
ǫ hence Ue

t is a flat
over C[t]

Define U0 = C[Eβ1
1
,Fβ1

h
] ⊂ Sǫ, then we can define

U i = U i−1
σ,D

[
Eβi

i
,Fβ1

h−i

]
⊂ Sǫ(p)

for i = 1, . . . , h. Let Uh+1 = Uh[Fβ2
k
], then

Uh+j = Uh+j−1
σ,D

[
Fβ2

k−j

]
⊂ Sǫ(p)

for j = 1, . . . , k, where σ and D are given by the LS relation. Note now
that, the Ki, for i = 1, . . . , n normalize UN , and when we add them to this
algebra we perform an iterated construction of twisted Laurent polynomial.
The resulting algebra will be called T .

Lemma 5.4.18.

Sǫ(p) = T

Proof. Note that, by construction T ⊂ Sǫ, then we must only demonstrate
that Sǫ ⊂ A. Now note that

Ek1

β1
1
· · · Ekh

β1
h

Ks1
1 · · · Ksn

n F tN
βN
· · · F t1

β1
∈ T

for every (k1, . . . , kh)(Z+)N ∈, (t1, . . . , tN ) ∈ (Z+)N and (s1, . . . , sn) ∈ Zn.
Then by proposition 5.4.16 we have Sǫ ⊂ T .
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Then the claim is proved.

Theorem 5.4.19. If l is a good integer (cf theorem 4.5.7)

degSǫ(p) = l
1
2(l(w0)+l(wl

0)+rank(w0−wl
0))

Proof. Denote by Sǫ(p) the quasi polynomial algebra associated to Sǫ(p).
We know by the general theory that

degSǫ(p) = degSǫ(p).

Let xi denote the class Eβ1
i

for i = 1, . . . , h and yj the class of Fβj
for

j = 1, . . . , N , then from theorem 5.4.14 we have

xixj = ǫ(β
1
i |β

1
j )xjxi, (5.18)

yiyj = ǫ−(βi|βj)yjyi. (5.19)

if i < j. Thus we introduce the skew symmetric matrices A = (aij) with

aij = (βi|βj) for i < j and Al =
(
a′ij

)
with a′ij = (β1

i |β1
j ) for i < j.

Let ki the class of Ki, using the relation in theorem 5.4.14 we obtain a
n×N matrix B = ((wi|βj)) and a h×N matrix Bl = ((wi|β1

j )).
Let t = 2 unless the Cartan matrix is of type G2, in which case t = 6.

Since we will eventually reduce modulo l an odd integer coprime with t,
we start inverting t. Thus consider the free Z

[
1
t

]
module V + with basis

u1, . . . , uh, V − with basis u′1, . . . , u
′
N and V 0 with basis w1, . . . , wn. On

V = V + ⊕ V 0 ⊕ V − consider the bilinear form given by

T =




Al −tBl 0
Bl 0 −B
0 tB −A


 ,

then the rank of T is the degree of Sǫ(p). Consider the operators M l =(
Al −tBl 0

)
, M =

(
0 tB −A

)
, and N =

(
Bl 0 −B

)
, so that

T = M l⊕N ⊕M .
Note that

B(u′i) = βi

and
Bl(ui) = β1

i

Set T1 = M l⊕M , then using the notation of lemma 4.5.4, we have

Lemma 5.4.20. The vector vω =
∑

t∈Iω(wl
0) ut − ω −w0(ω) +

∑
t∈Iω(w0) u

′
t,

as ω runs through the fundamental weights, form a basis of the kernel of T1.
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Proof. First, we observe that T1 is surjective, sinceM andM l are projections
over V − and V + respectively, by lemma 4.5.5. Since the n vectors vω are
part of a basis and, the kernel of T1 is a direct summand of rank n, by
surjectivity. It is enough to show that vω is in the kernel of T1. We have

T1(vω) = Al


 ∑

t∈Iω(wl
0)

ut


−t Bl (−ω − w0(ω))

+tB (−ω − w0(ω))−A


 ∑

t∈Iω(w0)

u′t




= M l (vω)−t Bl
(
wl

0(ω)− w0(ω)
)
−M(vω).

So from lemma 4.5.4 and lemma 4.5.5, we have:

T1(vw) = −tBl
(
wl

0(ω)− w0(ω)
)

Let w0 = wl
0w, since w runs through the fundamental weights, we have two

cases:

1. w(ω) = w, therefore wl
0(ω)− w0(ω) = 0 and T1(vω) = 0.

2. w(ω) 6= ω, therefore wl
0(ω) = ω and wl

0(ω) − w0(ω) = ω − w0(ω) ∈
ker tBl, by definition of tBl, so T1(vω) = 0.

Since T is the direct sum of T1 and N . Its kernel is the intersection of the
2 kernels of these operators. We have computed the kernel of T1 in 5.4.20.
Thus the kernel of T equals the kernel of N restricted to the submodule
spanned by the vω.

Lemma 5.4.21.

N(vω) =
∑

t∈Iω(wl
0)

β1
t −

∑

t∈Iω(w0)

βt = w0(ω)− wl
0(ω).

Proof. Note that B(ut) = βt, then

N(vw) =
∑

t∈Iω(wl
0)

β1
t −

∑

t∈Iω(w0)

βt. (5.20)

Finally, the claim follows using lemma 4.5.4.

Thus, we can identify N we the map w0 −wl
0 : Λ→ Q. At this point we

need the following fact
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Lemma 5.4.22. Let θ =
∑n

i=1 aiαi the highest root of the root system R.
Let Z′ = Z[a−1

1 , . . . , a−1
n ], and let Λ′ = Λ⊗Z Z′ and Q′ = Q⊗Z Z′. Then the

Z′ submodule (w0 − wl
0)Λ

′ of Q′ is a direct summand.

Proof. The claim follows as a consequence of lemma 4.5.6.

So if l is a good integer, i.e. l is coprime with t and ai for all i, we have

rankT = l(w0) + l(wl
0) + n−

(
n− rank

(
w0 − wl

0

))
,

and so the theorem follows.

5.5 The degree of Uǫ(p)

5.5.1 A family of Uǫ(p) algebras

As we have seen at the end of section 5.4.1, Z0(p)[t] ⊂ U t
ǫ(p), so for all t ∈ C

and χ ∈ Spec(Z0(p)), we can define U t,χ
ǫ (p) = U t

ǫ(p)/Jχ where Jχ is the two
side ideal generated by

kerχ = {z − χ(z) · 1 : z ∈ Z0(p)}

The P.B.W. theorem for U t
ǫ(p) implies that

Proposition 5.5.1. The monomials

Es1

β1
1
· · ·Esh

β1
h

Kr1
1 · · ·Krn

n F
tk+h

β1
h

· · ·F tk+1

β1
1
F tk

β2
k

· · ·F t1
β2
1

for which 0 ≤ sj , ti, rv < l, form a C basis for U t,χ
ǫ (p)

Lemma 5.5.2. For every 0 6= λ ∈ C, U t,χ
ǫ (p) is isomorphic to Uλt,χ

ǫ (p).

Proof. Consider the isomorphism ϑλ from U t
ǫ(p) and Uλt

ǫ (p), define by the
relation 5.10. Its follows from the above definition that ϑλ(Jχ) = Jχ. Then

ϑλ induce an isomorphism between U t,χ
ǫ and Uλt,χ

ǫ .

Proposition 5.5.3. The Uǫ(p) algebras U t,χ
ǫ (p) form a continuous family

parameterized by Z = C× Spec(Z0(p)).

Proof. Let V denote the set of triple (t, χ, u) with (t, χ) ∈ Z and u ∈ U t,χ
ǫ (p).

Then from the P.B.W. theorem we have that the set of monomial

Es1
β1
· · ·Esh

β1
h

Kr1
1 . . .Krn

n F tN
βN
· · ·F t1

β1

for which 0 ≤ si, ti, rv < l, for i ∈ Πl, j = 1, . . . , N and v = . . . , n, form a
basis for each algebra U t,χ

ǫ .
Order the previous monomials and assign to u ∈ U t,χ

ǫ the coordinate
vector of u with respect to the ordered basis. This construction identifies V
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with Z × Cd, where d = lh+n+N , thereby giving A a structure of an affine
variety.

Consider the vector bundle π : V → Z, (t, χ, u) → (t, χ). Note that the
structure constant of the algebra U t,χ

ǫ (p), as well as the matrix entries of the
linear transformations which define the action of Uǫ(p) relative to the basis,
are polynomial in χ and t. This means that the maps

µ : V ×Z V → V, ((t, χ, u), (t, χ, v)) 7→ (t, χ, uv)

ρ : Uǫ × V → V, (x, (t, χ, u)) 7→ (t, χ, x · u)

where (t, χ) ∈ Z, u, v ∈ U t,χ
ǫ (p) and x ∈ Uǫ(p), µ defined on V a structure of

vector bundle of algebra and ρ a structure of vector bundle of Uǫ(p) modules.
The fiber of π above (t, χ) is the Uǫ(p) algebra U t,χ

ǫ (p).

Note. If we fix χ ∈ Spec(Z0), we have from theorem 5.4.17 that the family
of algebra U t,χ

ǫ (p) is a flat deformation of algebra over Spec C[t].

5.5.2 Generically semisimplicity

Summarizing, if ǫ is a primitive lth root of 1 with l odd and l > di for all i,
we have proven the following facts on Uǫ:

• U t
ǫ and Uǫ(p) are domains because Uǫ(g) it is,

• U t
ǫ and Uǫ(p) are finite modules over Z0[t] and Z0 respectively (cf lemma

5.4.9 and proposition 5.2.2).

Since the L.S. relations holds for Uǫ(p) and U t
ǫ (cf proposition 5.1.10), we can

apply the theory developed in section 4.1.2, and we obtain that GrUǫ(p) and
GrU t

ǫ are twisted polynomial algebra, with some elements inverted. Hence
all conditions of theorem 3.5.3 are verified, so

Theorem 5.5.4. U t
ǫ and Uǫ(p) are maximal orders.

Therefore, Uǫ(p) ∈ Cm, i.e. is an algebra with trace of degree m.

Theorem 5.5.5. The set

Ω = {a ∈ Spec(Zǫ(p)), such that the corresponding semisimple

representation is irreducible}

is a Zariski open set. This exactly the part of Spec(Zǫ(p)) over which Uχ
ǫ (p)

is an Azumaya algebra of degree m.

Proof. Apply theorem 2.2.7, with R = Uǫ(p) and T = Zǫ(p).

Recall that Zǫ(p) is a finitely generated module over Z0(p). Let τ :
Spec(Zǫ(p)) → Spec(Z0(p)) the finite surjective morphism induced by the
inclusion of Z0(p) in Zǫ(p). The properness of τ implies the following
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Corollary 5.5.6. The set

Ω0 =
{
a ∈ Spec(Z0(p)) : τ−1(a) ⊂ Ω

}

is a Zariski dense open subset of Spec(Z0).

We know by the theory developed in chapter 3, that Sǫ(p) ∈ Cm0 , with

m0 = ll(w0)+l(wl
0)+rank(w0−wl

0). As we see in proposition 5.4.9, Sǫ(p) is a finite
module over C0, then Cǫ, the center of Sǫ(p) is finite over C0. The inclusion
C0 →֒ Cǫ induces a projection υ : Spec(Cǫ)→ Spec(C0). As before, we have:

Lemma 5.5.7. (i)

Ω′ = {a ∈ Spec(Cǫ), such that the corresponding semisimple

representation is irreducible}

is a Zariski open set. This exactly the part of Spec(Cǫ) over which
Sχ

ǫ (p) is an Azumaya algebra of degree m0.

(ii) The set
Ω′

0 =
{
a ∈ Spec(Z0(p)) : υ−1(a) ⊂ Ω′

}

is a Zariski dense open subset of Spec(Z0).

Proof. Apply theorem 2.2.7 at Sǫ(p).

Note. Since Spec(Z0) is irreducible, we have that Ω0 ∩ Ω′
0 is non empty.

We can state the main theorem of this section

Theorem 5.5.8.

degUǫ(p) = l
1
2(l(w0)+l(wl

0)+rank(w0−wl
0))

Proof. For χ ∈ Ω0 ∩ Ω′
0, we have, using theorem 5.5.5 and lemma 5.5.7,

degUǫ(p) = m = degUχ
ǫ (p),

and
degSχ

ǫ (p) = degSǫ(p).

But for all t 6= 0, we have that U t,χ
ǫ is isomorphic to Uχ

ǫ (p) as algebra. Hence
is well known that the isomorphism class of semisimple algebras are closed
(see [Pro98] or [Pie82]), we have that Sχ

ǫ (p) = U0,χ
ǫ is isomorphic to Uχ

ǫ (p).
Then

degUǫ(p) = m = degUχ
ǫ (p) = degSχ

ǫ (p) = degSǫ(p).

And by theorem 5.4.19 the claim follows.
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Note. As we see in section 3.5, since Uǫ(p) is a maximal order, Zǫ(p) is
integrally closed, so following example 2.2.4, we can make the following con-
struction: denote by Qǫ := Q(Zǫ(p)) the field of fractions of Zǫ(p), we have
that Q(Uǫ(p)) = Uǫ(p)⊗Zǫ(p)Qǫ is a division algebra, finite dimensional over
its center Qǫ. Denote by F the maximal commutative subfield of Q(Uǫ(p),
we have, using standard tool of associative algebra (cf [Pie82]), that

(i) F is a finite extension of Qǫ of degree m,

(ii) Q(Uǫ(p)) has dimension m2 over Qǫ,

(iii) Q(Uǫ(p))⊗Qǫ F ∼= Mm(F).

Hence, we have that

dimQ(Z0(p))Qǫ = deg τ

dimQǫ Q(Uǫ(p)) = m2

dimQ(Z0(p))Q(Uǫ(p)) = lh+N+n

where, the first equality is a definition, the second has been pointed out
above and the third follows from the P.B.W theorem. Then, we have

lh+N+n = m2 deg τ

with m = l
1
2(l(w0)+l(wl

0)+rank(w0−wl
0)), so

Corollary 5.5.9.
deg τ = ln−rank(w0−wl

0).

5.5.3 The center of Uχ
ǫ (p)

To conclude we want to explain a method, inspired by the work of Premet
and Skryabin ([PS99]), which in principle allows us to determine the center
of Uχ

ǫ (p) for all χ ∈ Spec(Z0).
Let χ0 ∈ Spec(Z0(p)) define by χ0(Ei) = 0, χ0(Fi) = 0 and χ0(K

±1
i ), we

set U0
ǫ (p) = Uχ0

ǫ (p).

Proposition 5.5.10. U0
ǫ (p) is a Hopf algebra with the comultiplication,

counit and antipode induced by Uǫ(p).

Proof. This is immediately since Jχ0 is an Hopf ideal.

Proposition 5.5.11. let χ ∈ Spec(Z0(p))

(i) Uχ
ǫ (p) is an Uǫ(p) module, with the action define by

a · u =
∑

a(1)uS(a(2)),

where ∆(a) =
∑
a(1) ⊗ a(2).
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(ii) Uχ
ǫ (p) is an U0

ǫ (p) module, with the action induced by Uǫ(p).

Proof. (i) We must verify the relation 4.2.2 on the generators. For any
u ∈ Uχ

ǫ , we have

Ei · u = Eiu+KiuS(Ei) = Eiu−KiuK
−1
i Ei, (5.21a)

Fi · u = FiuKi − uFiKi, (5.21b)

Ki · u = KiuK
−1
i . (5.21c)

(5.21d)

Then

[Ei, Fi] · u = EiFi · u− FiEi · u
= [Ei, Fi]uS

(
K−1

i

)
+KiuS ([Ei, Fi])

= LiuS
(
K−1

i

)
+KiuS (Li)

= Li · u.

Now we verify the ǫ-Serre relation in the case of aij = −1, we have:

E2
i Ej · u = E2

i Eju+K2
i KjuS(E2

i Ej)

+E2
i KjuS(Ej) + (1 + ǫ−2

i )KiEiEjuS(Ei)

+(1 + ǫ−2
i )KiEiKjuS(EiEj) +K2

i EjuS(E2
i ),

(5.22)

EiEjEi · u = EiEjEiu+KiEjEiuS(Ei) + EiKjEiu(S(Ej)

+KiKjEiuS(EiEj) + EiEjKiuS(Ei)

+KiEjKiuS(E2
i ) + EiKjKiuS(EjEi) +K2

i KjuS(EiEjEi),

(5.23)

EjE
2
i · u = EjE

2
i u+KjE

2
i uS(Ej)

+(1 + ǫ−2
i )EjKiEiuS(Ei) + (1 + ǫ−2

i )KjKiEiuS(EjEi)

+EjK
2
i uS(E2

i ) +KjK
2
i uS(EjE

2
i ).

(5.24)

Note that 1 + ǫ2i − [2]di
ǫ−1
i = 0, where [n]di

= qn−q−n

ǫdi−ǫ−di
, then

(
E2

i Ej − [2]di
EiEjEi + EjE

2
i

)
· u = 0

All other relation can be obtain with similar calculus. So Uχ
ǫ (p) is an

Uǫ(p) module.

(ii) Recall that El
i, F

l
j , and K±l

j are in the center of Uǫ(p) for i ∈ Πl and
j = 1, . . . , n, and that

∆(El
i) = El

i ⊗ 1 +K l
i ⊗ El

i

∆(F l
i ) = F l

i ⊗K−l
i + 1⊗ F l

i

∆(K±l
i ) = K±l

i ⊗K±l
i
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Then

El
i · u = El

iu−K l
iuK

−l
i El

i = 0,

F l
i · u = F l

iuK
−l
i − uF l

iK
−l
i = 0,

K l
i · u = K l

iuK
−l
i = u.

It follows that Uχ
ǫ (p) is an U0

ǫ (p) module.

Proposition 5.5.12. Let x ∈ Uχ
ǫ (p), then x is in the center of Uχ

ǫ (p) if and
only if x is invariant under the action of U0

ǫ (p), i.e.

Ei · x = 0, (5.25a)

Fi · x = 0, (5.25b)

Ki · x = x. (5.25c)

Proof. Let x ∈ Z (Uχ
ǫ (p)) then

Ei · x = Eix−KixK
−1
i Ei = 0,

in the same way we obtain the other relations.
Suppose now that x verify the relations 5.25. Then

Ki · x = KixK
−1
i = x,

imply that Kix = xKi. From Ei · x = 0 we obtain

0 = Ei · x = Eix−KixK
−1
i Ei

= Eix− xEi.

its follows that Eix = xEi. In the same way we have Fix = xFi. Then x lies
in the center.

So we can determine the center at t generic by lifting the center of the
algebra at t = 0. We obtain an analogue of the Harish Chandra theory for
semisimple Lie algebras.
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