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Introduction

The polynomial interpolation problem is a subject that has been widely

studied for centuries. The classical interpolation theory in one variable says

that a polynomial f of a given degree d over a field K is uniquely determined

by the values it assumes at d + 1 distinct points of the affine line. The

generality of the points is not necessary, the only requirement is that they

are distinct. This is nothing else than Ruffini Theorem and it is based on

the fact that the Vandermonde determinant is not zero.

A first generalization is asking not only for values of the polynomial, but

also for values of its derivatives. These are linear problems in the vector

space of polynomial of degree d. Moreover this can be generalized to the

case of more than one variable. A polynomial f of degree at most d in r

variables depends on
(
r+d

r

)
parameters. Let p1, . . . , pn be points in the affine

r-dimensional space and m1, . . . , mn positive integers. We can impose the

vanishing at pi of the partial derivatives of f up to order mi − 1 or, in other

words, that the point pi has multiplicity at least mi for the hypersurface

f = 0. If one chooses integers r, d, m1, . . . , mn such that

n∑

i=1

(
mi + r − 1

r

)
=

(
r + d

r

)
,

i.e. such that the number of conditions imposed equals the number of pa-

rameters on which the polynomials depend, one may ask: is f ≡ 0? There

is so far no general answer to the question.

The interpolation problem can be reformulated in a different setting. Fix

p1, . . . , pn distinct points in Pr and fix m1, . . . , mn positive integers. Define

Lr,d to be the linear system of hypersurfaces of Pr of degree d and consider

L := Lr,d(−
n∑

i=1

mipi)

the sub-linear system of those divisors of Lr,d having multiplicity at least

mi at pi, i = 1, . . . , n. A divisor in Lr,d has equation f = 0; the assumption

of having multiplicity mi at pi is translated into the vanishing of all the

v



vi Introduction

derivatives of order mi − 1 of f , whose number is
(
r+mi−1

r

)
. Hence the

virtual dimension of L is defined to be

virt-dim(L ) :=

(
r + d

r

)
− 1 −

n∑

i=1

(
r + mi − 1

r

)
,

i.e. the number of parameters minus the number of conditions. The expected

dimension is defined to be

exp-dim(L ) := max{virt-dim(L ),−1}.

If the conditions imposed by the assigned points are not linearly indepen-

dent, the actual dimension of L is greater than the expected one: in that

case we say that L is special. Otherwise, if the actual and the expected

dimension coincide, we say that L is non-special.

Let Z be a scheme of length
∑

i

(
r+mi−1

r

)
given by n fat points. We have

the following restriction sequence

0 → L = Lr,d(m1, . . . , mn) → Lr,d → Lr,d|Z .

In cohomology we get

0 → H0(Pr, L ) → H0(Pr, Lr,d) → H0(Z,Lr,d|Z) → H1(Pr, L ) → 0,

being h1(Pr, Lr,d) = 0. Thus L is non-special if and only if

h0(Pr, L ) · h1(Pr, L ) = 0.

The dimensionality problem consists in investigating, given a linear sys-

tem L , if it is non-special. It coincides with the original polynomial inter-

polation problem and it is open in general.

It is very important to observe that the dimensionality problem depends on

the position of the points in Pr. For example consider the linear system of

cubics of P2 with five base points lying on a line L. The expected dimension

is four. However, if a cubic curve vanishes at four points, then by Bezout’s

Theorem it must vanish along the whole line L, so the condition imposed

by the fifth point is not linearly independent from the conditions imposed

by the first four points. For this reason it is convenient to assume that the

points p1, . . . , pn are sufficiently general. On the other hand, the dimension

of L is upper-semicontinuous in the position of the points p1, . . . , pn ∈ Pr;

it achieves its minimum value when they are in general position. In this case

we use the following notation for the corresponding linear system:

L = Lr,d(m1, . . . , mn).
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For r = 1, the system L1,d(m1, . . . , mn) is always non-special. Further-

more, if all the points have multiplicity one, i.e. m1 = · · · = mn = 1, the

system Lr,d(1
n) is also non-special, see Theorem 1. However, the problem

becomes more and more complicated in more variables and higher multi-

plicities, namely if r ≥ 2 and m1, . . . , mn ≥ 2. What is known is essentially

concentrated in Theorem 2, a result due to J. Alexander and A. Hirschowitz.

They classify the special cases for r ≥ 2 and m1 = · · · = mn = 2. This the-

orem has an equivalent formulation in terms of higher secant varieties of

Veronese embedding of projective spaces (see Theorem 3).

A natural approach to the dimensionality problem of linear systems is via de-

generations. Degenerations allow us to move the multiple base points of the

linear system in special position, arguing with a semicontinuity argument.

More precisely, if one finds a specialization of the points, which is good in

the sense that the corresponding limit linear system L0 is non-special, then

also the original one is non-special. Computing the limit linear system is

in general delicate. A. Hirschowitz in [25] elaborated a degeneration tech-

nique, which he called la méthode d’Horace, consisting in making iterated

specializations of as many points as convenient on a fixed hyperplane and

then applying induction on the dimension and on the degree. To be more

explicit, let L := Lr,d(2
n) be the linear system of hypersurfaces of Pr of

degree d singular at a collection of n general points (m1 = · · · = mn = 2);

the main idea of Hirschowitz was to suppose that h of the n points have sup-

port on a fixed hyperplane π ⊆ Pr; hence one gets the so called Castelnuovo

exact sequence:

0 → Lr,d−1(2
n−h, 1h) → L → Lr−1,d(2

h),

where the h base points of the kernel system are the residual of the h dou-

ble points specialized on π. Thus, arguing by induction, if the two ex-

ternal systems are non-special with virtual dimension at least −1, which

means that one does not lose any condition in this restriction procedure,

i.e. h1(Pr, Lr,d−1(2
n−h, 1h)) = h1(π, Lr−1,d(2

n)) = 0, then the system L is

non-special too. Unfortunately, this methode does not cover all the possible

situations. A refined version, the so called méthode d’Horace différentielle,

gives a general solution. The original proof, of about a hundred pages pro-

posed by J. Alexander and A. Hirschowitz, is contained in [1]-[3]-[4]-[5] and

simplified in [6].

In 2002, K. Chandler presented an easier proof of the Alexander-

Hirschowitz Interpolation Theorem (Theorem 2) for d ≥ 4 in [11]. She

still uses the Horace’s method, but exploiting subsequent specializations of

part of the double base points of the linear system to a hyperplane π. In this

way the system degree decreases by one and induction can be applied. In the
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case with degree three, this method does not work because specializing to

hyperplanes one must deal with quadrics that are special. Another problem

with cubics is that each of the lines joining pairs of points lies in the base

locus of the linear system, hence the standard approach can fail because

these lines meet π. K. Chandler transformed the obstruction caused by the

presence of lines in the base locus of cubic linear systems on an advantage

and completed the proof of Theorem 2, see [12], solving also the case of

cubics. The innovation was to specialize some of the points onto a subspace

L of codimension 2 and pairs of points on hyperplanes containing L.

A recent improvement of this argument is due to M. C. Brambilla and G.

Ottaviani. In a beautiful paper ([8]) they offer a shorter proof of Theorem 2

in the case of d ≥ 4 and propose a new and simpler degeneration argument

in the cubic case. Their argument is similar to that of K. Chandler, but it

is more effective. Their main idea is to choose a subspace L of codimension

three, instead of two, on which they specialize the points. This choice really

simplifies the arithmetic side of the problem.

C. Ciliberto and R. Miranda in [19] and [20] used a different degeneration

construction, originally proposed by Z. Ran, see [31], to prove Theorem

2 in the planar case. This approach consists essentially in degenerating

the plane to a reducible surface, with two components intersecting in a

line, and simultaneously degenerating the linear system L = L2,d(2
n) to

a linear system L0 obtained as fibered product of linear systems on the

two components over the restricted system on their intersection. The limit

linear system L0 is somewhat easier than the original, in particular this

degeneration argument allows to use induction either on the degree or on the

number of imposed multiple points. This construction provides a recursive

formula for the dimension of L0 involving the dimensions of the systems on

the two components.

In the first part of this thesis we generalize this approach to the case with

r ≥ 3 and we complete the proof of Theorem 2 with this method, exploiting

induction on both d and r. In Section 2.1 we explain our approach which

generalizes the one of C. Ciliberto and R. Miranda. It consists in blowing

up a point p ∈ Pr and twisting by an appropriate negative multiple of the

exceptional divisor, obtaining a reducible central fiber which is the union of

the exceptional divisor P and the strict transform F of the blowing up of Pr

at p in the central fiber of a trivial family Pr×∆ over a disc ∆, with a linear

system L such that L restricts to OPr(d) on any fiber. The two components

intersect along a (r − 1)-dimensional variety R that is isomorphic to Pr−1.

Then we specialize some nodes on F and the remaining on P and we study

the corresponding limit linear systems. This argument does not suffice to

cover all the cases, because of an arithmetic obstruction similar to the one
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that M. C. Brambilla and G.Ottaviani met. Our idea is to perform further

degenerations in order to handle these cases; the interested reader can find

the details of the contructions in Section 2.2 and in Section 2.3.

A tricky point of this approach is the study of the transversality of the

restrictions of the systems on the intersection of the two components. In

the planar case, C. Ciliberto and R. Miranda proved it using the finitness

of the set of inflection points of linear systems on P1 ([19], Proposition 3.1).

In higher dimension transversality is more complicated. In Section 2.1.4,

2.3 and in 3.3 we present our approach to this problem: if at least one of

the two restricted systems is a complete linear system, then we are able to

compute by hand the dimension of their intersection. Anyhow, this is not

sufficient to finish the proof of Theorem 2. For istance, it does not work in

the cubic cases. The solution to this obstacle is to blow up a codimension

three subspace L of Pr, instead of a point. This approach to the cubic case

is not so different from the one of M. C. Brambilla and G. Ottaviani; we

propose it in Section 3.1.1.

Also the quartic case must be analysed separately. Indeed, twisting by a

negative multiple of the exceptional component P of the central fiber, we

get degree two either in the linear system LP on P or in the kernel system

of the restriction map of LP to the intersection R. We show Theorem 2 for

quartics in Section 3.1.2 by induction on r, with a very geometric argument

that exploits the property of cubics of containing all the lines trought two

distinct double points.

In Chapter 3 we apply all the techniques described in Chapter 2 and we

complete our proof of Theorem 2, for r ≥ 3. Before considering the higher

dimensional case, we analyse in detail the linear systems L3,d(2
n) of surfaces

of P3 with a general collection of double points, in order to make our work

as clear as possible to the reader.

Our construction besides its intrinsic intent (on the way we prove non-

speciality of some interesting systems, see Theorem 16) gives hope for further

extensions to greater multiplicities.

Let X ⊆ Pr be a projective, irreducible variety of dimension n. Its k-

secant variety Seck(X) is defined to be the closure of the union of all the

Pk’s in Pr meeting X in k + 1 independent points. The general question is

the following: if Seck(X) has the expected dimension (k + 1)n + k, what is

the number νk(X) of (k+1)-secant Pk’s to X intersecting a general subspace

of codimension (k + 1)n + k in Pr? Note that

νk(X) = deg(Seck(X)) · µk(X),

where µk(X) is defined to be the number of (k + 1)-secant Pk’s passing
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through the general point of Seck(X).

There is a long tradition within algebraic geometry that studies the dimen-

sion and the degree of k-secant varieties. This is a problem which is unsolved

in general. In the second part of our thesis we describe some partial results

obtained with a degeneration approach for projective toric surfaces, in the

cases k = 1 and k = 2. These results can be regarded as the beginning of

a similar study for the k-secant varieties of toric surfaces for k ≥ 3 and, in

higher dimension, for k ≥ 1.

The outline for the second part of this thesis is the following. In Chapter

4 we introduce the objects of our study: toric varieties, toric ideals and toric

degenerations. A convex lattice polytope P in Rn defines a toric variety XP

of dimension n endowed with an ample line bundle and therefore a mor-

phism in Pr, where r + 1 equals the number of lattice points of P . Some

familiar examples are Segre-Veronese embeddings, rational normal scrolls

and Del Pezzo surfaces of degree 6, 7, 8; all of them, and some further ex-

amples, have ideals which are generated by quadrics (see Section 5.2); more

precisely, the ideal IX of X is given by the 2×2 minors of a suitable matrix

A. The ideals of the secant variety and of the higher secant varieties of X

are strictly related to IX , in fact the k-secant ideal I
{k}
X (see section 5.2 for

a formal definition) of the variety Seck(X) of the (k + 1)-secant Pk’s to X,

for k ≥ 1, is generated by the (k + 2)× (k + 2) minors of A or, in the scroll

case, of another matrix.

Nevertheless, in general, there is only a little understanding of these ques-

tions. We exploit the knowledge of the defining ideals of these varieties and

of their k-secant varieties to approach the computation of the number νk for

any projective toric surface with dim Seck(X) = 3k + 2, for k = 1, 2, with a

combinatorial approach via degenerations.

A toric degeneration of XP is defined by a regular subdivision D of P in

sub-polytopes P1 . . . Pl of dimension n such that Pi ∩ Pj is a common face

of Pi and Pj (perhaps the empty face), such that

l⋃

i=1

Pi = P

and, furthermore, such that there exists an integral function F defined over

P , which is piecewise linear over the sub-polytopes of D and strictly convex

over P . The central fiber X0 has l irreducible components that are the

projective toric varieties defined by the Pi’s.

Our approach to the problem of computing the number νk is the one of

C. Ciliberto, O. Dumitrescu and R. Miranda in [16] that is very close to

that of B. Sturmfels and S. Sullivant in [32]. In particular, if n = 2, we use

planar toric degeneration, i.e. we subdivide P in triangles having normalized
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area equal to one. The ideal I0 of the central fiber is the monomial initial

ideal with respect to a suitable term order ≺ which corresponds to the

triangulation (see [33]):

I0 = in≺(IX)

In Chapter 5 we define the k-secant varieties with particular attention

to the problem of the computation of the k-secant degree in the toric case;

we also introduce the notion of a k-delightful toric degeneration of a toric

variety. The basic setup was suggested by B. Sturmfels and B. Sillivant in

[32]. In particular they proved that if there exists at least one skew (k + 1)-

sets, i.e. a subset of (k + 1) triangles of D that are pairwise disjoint, then

the k-secant variety of X has the expected dimension. Moreover the number

of such skew (k + 1)-sets is a lower bound to the number νk(X):

νk(X) ≥ νk+1(D),

see Theorem 34. A planar toric degeneration D for which equality holds is

said to be k-delightful (according to [32] and [16]).

In Chapter 6 we apply these techniques and we expose our results. We

study non-k-delightful cases and we give a partial explanation to the lack of

k-delightfulness, improving the lower bound for νk given by the number of

skew (k+1)-sets, for k = 1 and k = 2. The main tool is keeping into account

the singularities of the configuration D. Our original result is Theorem 35:

suppose that p is a lattice point in D such that the union of the triangles

having a vertex in p form a convex sub-polytope Qp of P ; for k ∈ {1, 2} we

exploit the knowledge of the toric surface Zp defined by Qp (cfr. Table 6.1

and Table 6.2) to prove that the number νk(Zp) contributes to νk(X), under

the hypothesis that dim(Seck(Zp)) = dim(Sec(X)) = 3k +2. Moreover, if in

D there are more than one lattice point, {pi}i∈I , such that Qpi
is convex and

such that the Qpi
’s are pairwise not overlapping, i.e. dim(Qpi

∩ Qpj
) < 2,

then the contributions of such singularities do not interfere to each other

and all of them contribute to νk(X).

The non-overlapping hypothesis is restrictive, in fact it prevents us from

considering all the singularities of D. Indeed the lattice distance between

two lattice points pi and pj must be at least two, otherwise the corresponding

subpolytopes will have intersection of dimension 2. We conjecture that the

non-overlapping hypothesis may be removed and that all contributions may

sum up to νk+1(D) in the computation of νk(X), k = 1, 2 (Section 6.2).
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On the

Alexander-Hirschowitz

Theorem
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Chapter 1

Preliminaries on the

interpolation problem

We will work over an algebraically closed field K of characteristic zero. We

will denote by Pr the r-dimensional projective space over K.

1.1 Linear systems of hypersurfaces of Pr

Consider the linear system L := Lr,d(m
h1

1 , . . . , mhl

l ) consisting of hypersur-

faces of Pr of degree d with hi general points of multiplicity at least mi, for

i = 1 . . . , l. This system is said to be homogeneous if all the mi’s are equal.

The homogeneous polynomial of degree d in r+1 variables form a projective

space of dimension (
r + d

r

)
− 1;

moreover, for a polynomial to have multiplicity at least mi at a point pi ∈ Pr

corresponds to (
mi − 1 + r

r

)

linear conditions imposed on the coefficients.

Definition 1. The virtual dimension of L is defined as

v(L ) = vr,d(m
h1

1 , . . . , mhl

l ) :=

(
r + d

r

)
− 1 −

l∑

i=1

hi

(
mi − 1 + r

r

)
.

The actual (projective) dimension of the linear system is at least −1,

and this is verified when the system is empty.

Definition 2. The expected dimension of L is defined to be

e(L ) = er,d(m
h1

1 , . . . , mhl

l ) := max{−1, vr,d(m
h1

1 , . . . , mhl

l )}.

3



4 Preliminaries on the interpolation problem

As the points vary in Pr, the dimension of the system is upper semicontin-

uous: there exists a Zariski open set in the parameter space of (
∑

hi)-tuples

of points where the dimension of the linear system achieves its minimum

value; we call it the (general) dimension of Lr,d(m
h1

1 , . . . , mhl

l ) and we de-

note it by lr,d(m
h1

1 , . . . , mhl

l ). We have

lr,d(m
h1

1 , . . . , mhl

l ) ≥ er,d(m
h1

1 , . . . , mhl

l ); (1.1)

and equality implies that all the conditions imposed by the general points

are linearly independent.

Definition 3. The linear system L is said to be non-special if equality

holds in (1.1). Otherwise it is said to be special.

A linear system L on Pr is non-special if and only if

h0(Pr, L ) = h1(Pr, L ) = 0.

1.2 The Alexander-Hirschowitz Theorem

The general question is to compute the dimension of linear systems (see the

Introduction for a historical remark). In the multiplicity one case, i.e. for

the simple interpolation problem, there are no surprises; all such systems

have the expected dimension.

Theorem 1 (Multiplicity One Theorem). If n simple points are in general

position in Pr, then the system Lr,d(1
n) is non-special.

Proof. We prove the claim by induction on the number n of simple points.

If n = 1, there exists a hypersurface of Pr of degree d not passing through

a general point. For the inductive step we have to prove that an additional

general point imposes, on a not empty linear system, a linear condition

independent from the previous ones, or, equivalently, that an additional

general point does not lie on every hypersurface of the system. This is

surely true being the point in general position.

In the cases of higher multiplicities, the problem of computing the di-

mension is still unsolved in general.

For the multiplicity two case, what is known is the following theorem, due

to J. Alexander and A. Hirschowitz, that classifies all special systems.

Theorem 2 (Alexander-Hirschowitz). The linear system Lr,d(2
n) is non-

special except in the following cases:

r ∀ 2 3 4 4

d 2 4 4 4 3

n ≤ r 5 9 14 7
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This theorem has an equivalent reformulation in terms of higher secant

varieties of Veronese embeddings. Let X ⊆ PN be a projective variety. The

k-secant variety Seck(X) of X is defined to be the Zariski closure of the

union of all the linear spans of p1, . . . , pk+1 independent points of X (cf.

Section 5.1). We have, counting parameters, that

dim(Seck(X)) ≤ min{(k + 1)n + k, N} =: exp-dim(Seck(X)).

The variety X is said to be k-defective if strict inequality holds; it is said to

be k-non-defective if equality holds.

The Veronese variety Vr,d is defined to be the image of the Veronese embed-

ding νr,d of degree d of Pr in the projective space of dimension
(
r+d

r

)
− 1.

Theorem 3. The (n−1)-secant variety of the Veronese Vr,d is non-defective,

with the same list of exceptions of Theorem 2.

A hypersurface of Pr of degree d corresponds via the Veronese embedding

νr,d to a hyperplane section of Vr,d. Moreover, a hyperplane of Pr has a

double point at p ∈ Pr if and only if the corresponding hyperplane of P(r+d
r )−1

is tangent to Vr,d at νr,d(p). Now, fix p1, . . . , pn general points in Pr and

consider the linear system Lr,d(2
n). It corresponds to the linear system of

hyperplanes P(r+d
r )−1 tangent to Vr,d at νr,d(p1), . . . , νr,d(pn). This linear

system has as base locus the general tangent space to Secn−1(Vr,d).

Lemma 4 (Terracini’s Lemma). Let X ⊆ PN be an irreducible, non-

degenerate, projective variety of dimension r. Let p1, . . . , pn general points

of X, with n ≤ N + 1. Then

TSecn−1(X),p =< TX,p1
, . . . , TX,pn >,

where p ∈< p1 . . . , pn > is a general point in Secn−1(X).

This proves the equivalence between Theorem 2 and Theorem 3.

Our aim is to propose a proof of Theorem 2, for r ≥ 3, generalizing the

degeneration techniques introduced in [19] by C. Ciliberto and R. Miranda

for the planar case.

1.2.1 The special cases

In this section we briefly describe the special cases of Theorem 2.
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Quadrics of Pr

All linear systems of quadric hypersurfaces of Pr with at most r nodes are

in the list of special cases of Theorem 2.

The system L = Lr,d(2
2) consists of quadric cones with vertex containing

the double line through the two double points, so

dim(L ) =

(
r

2

)
− 1 > e(L ) = max{−1,

(
r + 2

r

)
− 1 − 2(r + 1)},

and h0(Pr, L ) =
(
r
2

)
, h1(Pr, L ) = 1.

The system L = Lr,2(2
r) contains only the double hyperplane of Pr deter-

mined by the r points:

dim(L ) = 0 > e(L ) = −1,

and h0(Pr, L ) = 1, h1(Pr, L ) =
(
r
2

)
.

An analogous description is available for n general points, with 2 < n < r:

the linear system

L = Lr,2(2
n)

consists of quadric cones with vertex containing the double (n − 1)-

dimensional linear subspace of Pr determined by the n points: hence

dim(L ) =

(
r − n + 2

2

)
− 1 > e(L ),

h0(Pr, L ) =
(
r−n+2

2

)
, h1(Pr, L ) =

(
n
2

)
.

The system Lr,2(2
n), with n ≥ r + 1, are empty, and in particular non-

special.

Quartics in Pr, with r = 2, 3, 4

For r = 2, 3, 4, let n =
(
r+2
2

)
− 1. The linear system Lr,4(2

n) is expected

to be empty. Nevertheless it is special because there is a quartic singular at

the given points, i.e. the double quadric through them. Indeed the linear

system Lr,2(1
n) is non special by Theorem 1 and it has dimension 0.

Cubics of P4

Through a general collection of seven points in P4 there exists a quartic

rational normal curve described by the 2 × 2 minors of

(
x0 x1 x2 x3

x1 x2 x3 x4

)
,
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in some system of coordinates. Its secant variety is the cubic surface with

equation

det




x0 x1 x2

x1 x2 x3

x2 x3 x4


 = 0;

it is singular along the whole curve and in particular at the seven points.

Thus L4,3(2
7) is special, having virtual dimension equal to −1.

The important remark that we must do is that for each special system

Lr,d(2
n), the general section of it is singular along a positive dimensional

variety containing the double base points, as we have described above. This

goes back to Terracini (see [35]), but has been more recently proved by C.

Ciliberto and A. Hirschowitz in [17].

Lemma 5. Let X be a projective variety and p1, . . . , pn ∈ X general points.

Let L be any a linear system on X. If L (−2
∑n

i=1 pi) is special, then every

section of L (−2
∑n

i=1 pi) is singular along a positive dimensional variety

on which p1, . . . , pn are supported.
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Chapter 2

The degeneration inductive

approach

Definition 4. A 1-dimensional degeneration is a morphism π2 : X → ∆,

where ∆ is a complex disc centered at the origin, X is a smooth (r + 1)-fold

and π2 is a proper and flat map.

For every t ∈ ∆ we will denote the fiber of π2 over t by Xt = π2
−1(t).

In a 1-dimensional degeneration of varieties of dimension r all the fibers

have dimension r, while the family X has dimension r + 1.

The reason to use degeneration is to exploit semicontinuity. If one can

prove that a property is satisfied in the central fiber, i.e. the degenerate

object, then one can obtain an inequality about the general fiber, i.e. the

degenerating object. In our cases, we will study non-speciality of a given lin-

ear system Lt on the general fiber. Semicontinuity will give us the following

inequality

dim(L0) ≥ dim(Lt),

where L0 is the limiting system. In this chapter we will see how this suc-

cessfully gives us informations about the dimension of Lt.

2.1 The first degeneration of linear systems

We will generalize to higher dimension the degeneration technique intro-

duced by C. Ciliberto and R. Miranda in [19] for homogeneous planar linear

systems, that essentially consists in using a degeneration worked out by Z.

Ran in [31]. More precisely, we will degenerate Pr to a reducible variety

and we will study how a linear system on the general fiber degenerates. The

limiting system will be easier than the general one, and this will enable us

to use induction.

9
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Let ∆ be a complex disc with center at the origin and consider the product

V = Pr × ∆ with the natural projections p1 : V → Pr and p2 : V → ∆; let

Vt = Pr ×{t} be the fiber of p2 over t ∈ ∆. Take a point (p, 0) in the central

fiber V0 and blow it up to obtain a new (r + 1)-fold X with the maps

• f : X → V,

• π1 = p1 ◦ f : X → Pr and

• π2 = p2 ◦ f : X → ∆.

We have the following commutative diagram:

X
f

//

π2

&&NNNNNNNNNNNNN

π1

--V p1

//

p2

��

Pr

∆

The so obtained flat morphism π2 : X → ∆, with fiber Xt = π−1
2 (t), t ∈ ∆,

produces a 1-dimensional degeneration of Pr. If t 6= 0 then Xt = Vt is a Pr,

while for t = 0 the fiber X0 is the union of the strict transform F of V0 and

the exceptional divisor P ∼= Pr of the blow-up. The two varieties P and F

meet transversally along a (r−1)-dimensional variety R which is isomorphic

to Pr−1: it represents a hyperplane on P and the exceptional divisor on F.

The Picard group of X0 is the fibered product of Pic(P) and Pic(F) over

Pic(R). The Picard group of P is generated by O(1), while the Picard

group of F is generated by the hyperplane class H and the class E of the

exceptional divisor. A line bundle N on X0 corresponds to two line bundles

NF and NP, respectively on F and on P, which agree on the intersection R.

i.e. two line bundles of the form

NP = OP(σ), and NF = OF(τH − σE),

for some σ and τ .

We degenerate the linear system O(d) on the general fiber of π2 as follows.

Take the line bundle

OX (d) = π∗
1(OPr(d)) :

its restriction on the general fiber Xt
∼= Pr is isomorphic to OPr(d), while on

the central fiber the restrictions to P and F are OP and OF(dH) respectively.

Now let us twist by the bundle OX (−(d− k)P): the restriction to Xt is still

the same, while the restrictions to P and F become

OP(d − k) and OF(dH − (d − k)E);
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the resulting line bundle on X0 is a flat limit of the bundle OPr(d) on the

general fiber. Such a limit is not unique.

We now consider the homogeneous linear system Lt := L = Lr,d(2
n) of the

hypersurfaces of Pr of degree d with n assigned general points p1,t, . . . , pn,t

of equal multiplicity m = 2. Recall that it has virtual dimension

v(Lt) =

(
r + d

r

)
− 1 − n(r + 1).

Fix a non-negative integer b ≤ n and specialize b points generically on F

and the other n − b points generically on P: i.e. consider a flat family

{p1,t . . . , pn,t}t∈∆ such that p1,0, . . . , pb,0 ∈ F and pb+1,0, . . . , pn,0 ∈ P; we

consider these points as limit of n general points in Xt
∼= Pr, for t → 0.

The limiting linear system L0 on X0 is formed by the divisors in the flat

limit of the bundle OPr(d) on the general fiber Xt, having multiplicity 2 at

p1,0, . . . , pn,0. This system restricts to F and to P to the following systems:

LP = Lr,d−k(2
n−b) and LF = Lr,d(d − k, 2b),

where the point of multiplicity d − k is the point p ∈ V0
∼= Pr which we

blew up to obtain F; we view F as a Pr blown up at a point and the corre-

sponding line bundle as a linear system of the same form as the others we

are considering.

Definition 5. We say that the limit linear system L0 is obtained from L

by a (k, b)-degeneration.

At the level of vector spaces, the system L0 is the fibered product of LP

and LF over the restricted system on R which is OR(d − k): we have

W //

��

WP

��
WF

// H0(R,OR(d − k))

where WP and WF are the vector spaces from which one obtains the systems

LP and LF as projectivizations, and

W = WP ×H0(R,OR(d−k)) WF

is the fibered product of vector spaces which gives L0 as its projectivization.

An element of L consists either of a divisor SP on P and a divisor SF on F,

both satisfying the conditions imposed by the multiple points, which restrict

to the same divisor on R, or it is a divisor corresponding to a section of the

bundle which is identically zero on P (or on F) and which gives a general
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divisor in LF (or in LP respectively) containing R as a component.

If we denote by l0 the dimension of L0 on X0, we have, by upper semicon-

tinuity, that l0 is at least the dimension of the linear system on the general

fiber:

l0 ≥ dim(Lt) = lr,d(2
n).

Lemma 6. In the above notation, if l0 = er,d(2
n), then the linear system

L has the expected dimension, i.e. it is non-special.

Let us consider the restriction exact sequences to R ∼= Pr−1 ⊂ Pr:

0 → L̂P → LP → RP ⊆ |OPr−1(d − k)|

0 → L̂F → LF → RF ⊆ |OPr−1(d − k)|,

where RP, RF denote the restrictions of the systems LP, LF to R and L̂P,

L̂F denote the kernel systems:

L̂P = Lr,d−k−1(2
n−b) and L̂F = Lr,d(d − k + 1, 2b).

The kernel L̂P consists of those sections of LP which vanish identically on

R, i.e. the divisors in LP containing R ∼= Pr−1 as component; the same

holds for L̂F.

We denote by vP, vF, v̂P, v̂F and by lP, lF, l̂P, l̂F the virtual and the actual

dimensions of the various linear systems. We have the following identities:

rP := dim(RP) = lP − l̂P − 1,

rF := dim(RF) = lF − l̂F − 1.

We want to compute the dimension l0 by recursion. The simplest cases

occurs when all the divisors in L0 come from a section which is identically

zero on one of the two components: in those cases the matching sections of

the other system must lie in the kernel of the restriction map.

Lemma 7. In the above notation, fixed n, d and b, we have that:

• if the system LP = ∅, then l0 = l̂F;

• if the system LF = ∅, then l0 = l̂P.

If, on the contrary, the divisors on L0 consist of a divisor on P and a di-

visor on F, both not identically zero, which match on R, then the dimension

of L0 depends on the dimension of the intersection

R := RP ∩ RF
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of the restricted systems, being L0 obtained as fibered product. An element

of W is a pair (sP, sF) ∈ WP × WF such that the restrictions of sP and sF

coincide on R:

W = {(sP, sF) : sP|R = sF|R}.

In other words, if WR is the vector space which corresponds to R, namely

P(WR) = R, then an element of W is obtained by taking an element sR of

WR and choosing pre-images sP and sF of such an element in WP and WF:

the choice of sR depends on dim(R) + 1 parameters, and then the choice

of sP and sF depends on l̂P + 1 and l̂F + 1 parameters respectively. Thus

dim(W ) = dim(R) + l̂P + l̂F + 3 and, projectively,

l0 = dim(R) + l̂P + l̂F + 2. (2.1)

The crucial point is to compute the dimension of R, from which one obtains

l0. If the systems RP, RF ⊂ |OPr−1(d − k)| are transversal, i.e. if they

intersect properly inside |OPr−1(d−k)|, one can simply apply the Grassmann

formula for the dimension of the intersection R:

dim(R) =

{
−1 if rP + rF ≤

(
d+r−1−k

r−1

)
− 2

rP + rF −
(
d+r−1−k

r−1

)
+ 1 if rP + rF ≥

(
d+r−1−k

r−1

)
− 2

Notice that transversality holds if at least one between LP and LF cuts the

complete series on R.

2.1.1 Linear systems with virtual dimension v ≥ −1

In this section we will see how, under some hypothesis, a (1, b)-degeneration

can be used to prove non-speciality of a given linear system L = Lr,d(2
n),

d ≥ 4, with n such that the virtual dimension of L is at least −1, us-

ing the recursive formula (2.1). If the system on the central fiber turns out

to be non-special, then, by semicontinuity, also our system L is non-special.

Proposition 8. Suppose that there exists an integer b, with 0 < b < n such

that:

1. the restricted systems RF and RP are transversal in |OPr−1(d − 1)|;

2. rP + rF ≥
(
r+d−2

r−1

)
− 2 (or, equivalently, l̂P + l̂F ≤ v − 1);

3. the systems LP and LF are non special with vP, vF ≥ −1.

Then L = Lr,d(2
n) is non-special with virtual dimension at least −1.
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Proof. If RP and RF are transversal and if the second condition holds, then

the R = RP ∩ RF has dimension

r = rP + rF −

(
r + d − 2

r − 1

)
+ 1

Moreover if the third condition holds, we get

l0 =

(
rP + rF −

(
r + d − 2

r − 1

)
+ 1

)
+ l̂P + l̂F + 2

= lP + lF −

(
r + d − 2

r − 1

)
+ 1

= vP + vF −

(
r + d − 2

r − 1

)
+ 1

= v.

2.1.2 Linear systems expected to be empty: v ≤ −1

In this section we will explain how, performing (1, b)-degenerations of Pr as

above, we can prove that L = Lr,d(2
n), with d ≥ 4 and virtual dimension

v ≤ −1, is empty.

Proposition 9. Suppose that there exists an integer b, with 0 < b < n such

that:

1. the kernel systems L̂P and L̂F are empty;

2. the restricted systems RP and RF do not intersect.

Then the system L is empty and therefore non-special.

Proof. We have

l0 = dim(RP ∩ RF) + l̂P + l̂F + 2 = −1.

So L is empty as expected.

2.1.3 Some useful lemmas

Concerning the analysis of the linear system on P and the relative kernel

system, we can exploit induction on d because they are linear systems of

hypersurfaces of lower degree with nodes. Actually this is the reason for

performing (1, b)-degenerations. However, in general the systems LF and

L̂F are unknown because of the presence of a point of greater multiplicity in
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their base locus. This section is devoted to the study of such linear systems.

Let us begin with some preliminary results. Consider the linear system of

hypersurfaces of Pr of degree d; each element of this system is described by

the vanishing of a homogeneous polynomial f(x0, . . . , xr) of degree d in the

x0, . . . , xr’s. We can write:

f(x0, . . . , xr) =
d∑

i=0

xi
rfd−i(x0, . . . , xr−1),

where the fi’s are homogeneous polynomials of degree d − i. Let p be the

point p = [0, . . . , 1] ∈ Pr; notice that the hypersurfaces of Pr of degree d

having multiplicity m at p can be written as follows

f(x0, . . . , xr) =
d−m∑

i=0

xi
rfd−i(x0, . . . , xr−1), (2.2)

in fact all partial derivatives of f up to order m − 1 must vanish at p.

Lemma 10. The linear system Lr,d(d, 2b) is either special of dimension

lr−1,d(2
b), or it is empty.

Proof. A hypersurface of Pr of degree d having multiplicity d in p =

[0, . . . , 0, 1] is defined by the vanishing of a homogeneous polynomial of de-

gree d in the x0, . . . , xr−1’s:

f(x0, . . . , xr) = fd(x0, . . . , xr−1).

In other words, the linear system Lr,d(d) consists of the cones of degree d

with vertex at the point p; as vector space it has dimension

h0(Pr, Lr,d(d)) =

(
r + d − 1

r − 1

)
= h0(Pr−1, Lr−1,d).

This means that, fixed the vertex p, we have to choose hypersurfaces of de-

gree d in a general hyperplane {xr = 0} ∼= Pr−1 ⊆ Pr. Now, let p1, . . . , pb 6= p

general points of Pr and let and p′1, . . . , p
′
b the projections from p to the hy-

perplane. The conditions imposed on f by b general double points p1, . . . , pb

of Pr are

∂xi
f(pj), i = 0, . . . , r, j = 1, . . . , b,

i.e.

∂xi
fd(p

′
j), i = 0, . . . , r − 1, j = 1, . . . , b.

Thus the number of independent conditions imposed by the nodes p1, . . . , pb

on Lr,d(d) is equal to the number of independent conditions imposed on
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Lr−1,d by p′1, . . . , p
′
b, which are general in Pr−1. So we get

h1(Pr, Lr,d(d, 2b)) = b + h1(Pr−1, Lr−1,d(2
b))

h0(Pr, Lr,d(d, 2b)) = h0(Pr−1, Lr−1,d(2
b)),

and this concludes the proof.

Now, let p1, . . . , pb 6= p be general points of Pr with homogeneous coor-

dinates pj = [pj,0, . . . , pj,r−1, pj,r]. A general divisor of LF is given by

f(x0, . . . , xr) = fd(x0, . . . , xr−1) + xrfd−1(x0, . . . , xr−1)

=
∑

ai0...ir−1
xi0

0 · · ·x
ir−1

r−1 + xr

∑
cj0...jr−10x

j0
0 · · ·x

jr−1

r−1

(2.3)

with i0 + · · · + ir−1 = d and j0 + · · · + jr−1 = d − 1, using (2.2), such that

{
∂xi

fd(pj,0, . . . , pj,r−1) + pj,r∂xi
fd−1(pj,0, . . . , pj,r−1) = 0

fd−1(pj,0, . . . , pj,r−1) = 0,
(2.4)

for i = 0, . . . , r−1, j = 1, . . . , b. This is a system of (r+1)b linear equations

in the coefficients aijk, clmn.

Moreover the general divisor of the kernel system L̂F on {xr = 0} ∼= Pr−1

is given by

fd(x0, . . . , xr−1) = 0

such that

∂xi
fd(pj,0, . . . , pj,r−1) = 0, i = 0, . . . , r − 1, j = 1, . . . , b.

Lemma 11. If the system Lr−1,d(2
b) is non special with virtual dimension

greater than or equal to −1, then the system Lr,d(d − 1, 2b) is non special

and nonempty.

Proof. Each element of the system Lr,d(d − 1) of hypersurfaces of Pr of

degree d passing through p = [0, . . . , 0, 1] with multiplicity d−1 is described

by a homogeneous polynomial f of degree d, as in (2.3). The conditions for

f to be singular at pj are the (2.4), for i = 0, . . . , r − 1, j = 1, . . . , b; we

want to prove that they are linearly independent. Let

A =




A0

A1

...

Ar−1




be the (rb) ×
(
r+d−1

r−1

)
matrix defined as follows: the j-th row of Ai is the

vector of coefficients of ∂xi
fd(pj,0, . . . , pj,r−1), j = 1, . . . , b. Similarly define



The degeneration inductive approach 17

C to be the (rb) ×
(
r+d−2

r−1

)
matrix

C =




C0

C1

...

Cr−1




such that the j-th row of Ci is the vector of coefficients, for j = 1, . . . , b, of

pj,r∂xi
fd−1(pj,0, . . . , pj,r−1). Finally define C ′ to be the b ×

(
r+d−2

r−1

)
matrix

having as j-th rows the vector of coefficients of fd−1(pj,0, . . . , pj,r−1), j =

1 . . . b. Notice that the equations in (2.4) are independent if and only if the

matrix

M =

(
A C

0 C ′

)

has maximal rank. A has maximal rank rb, in fact, by the hypothesis,

b double points in general position impose independent conditions on the

hypersurfaces of Pr−1 and

rb ≤

(
d + r − 1

r − 1

)
.

Moreover, C ′ has maximal rank b, in fact b general points impose exactly b

linearly independent conditions on the hypersurfaces of Pr−1 of degree d− 1

passing through them, and

b ≤

(
d + r − 2

r − 1

)
.

Therefore M has maximal rank (r + 1)b and this concludes the proof.

2.1.4 Transversality

In this section we will show that, under some hypothesis on the integer b,

transversality of the restricted systems of a (1, b)-degeneration holds. The

reason of the choice k = 1 for the twisting parameter sits here: in this way

we will be able to describe the restricted system RF and in particular its base

locus and therefore to compute the dimension of the intersection RP ∩ RF

of the restricted systems, that is the crucial point of our proof of Theorem

2.

First of all we describe the linear system LF on the strict transform F.

Let us study the blow up of Pr at p = [0, . . . , 0, 1] ∈ Pr: let x0, . . . , xr be

homogeneous coordinates for Pr and let U be the affine open set described
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by {xr = 1}: the affine coordinate are x0 . . . , xr−1. Consider now the blow

up of U ∼= Ar at the origin: it is described by

{
rank

(
x0, . . . , xr−1

y0, . . . , yr−1

)
= 1

}
⊂ Ar × Pr−1

where y0, . . . , yr−1 are homogeneous coordinates of Pr−1. Let V = {yr−1 =

1} be an affine open set of Pr−1: the affine equation of the blow up in

Ar × Ar−1 ∼= A2r−1 are

xi = yixr−1, i = 0, . . . , r − 2. (2.5)

The strict transform F has affine coordinates y0, . . . , yr−2, xr−1 and the ex-

ceptional divisor R has equation xr−1 = 0.

The generic hypersurface of Pr of degree d with multiplicity d − 1 at p is

described by

fd(x0, . . . , xr−1) + xrfd−1(x0, . . . , xr−1) = 0,

using the (2.2), so in affine coordinates

fd(y0xr−1, . . . , yr−2xr−1, xr−1) + fd−1(y0xr−1, . . . , yr−2xr−1, xr−1) = 0,

i.e.

F (y0, . . . , yr−1, 1) := xr−1fd(y0, . . . , yr−2, 1) + fd−1(y0, . . . , yr−2, 1) = 0.

(2.6)

Hence its restriction to R has equations

{
fd−1(y0, . . . , yr−2, 1) = 0

xr−1 = 0
(2.7)

Lemma 12 (Transversality Lemma). Keeping the same notation as above,

the restricted systems RP and RF are transversal in |OPr−1(d− 1)| if one of

the following conditions holds:

(i.) either the system L̂P is non-special and v̂P ≥ −1, or

(ii.) the system L̂F
∼= Lr−1,d(2

b) has dimension l̂F = vr−1,d(2
b) ≥ −1.

Proof. (i.) Under the hypothesis, LP is non-special and RP fills up the

whole space |OPr−1(d − 1)|; consequently R = RF and transversality

is trivial.
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(ii.) Notice that the kernel of the restriction map LF → RF has dimension

equal to lr−1,d(2
b), by Lemma 10. Moreover the system LF is non-

special, by Lemma 11. This allows us the knowledge of the restricted

system on R: it is the complete linear system of hypersurfaces of Pr−1

of degree d − 1 containing b simple points p′′1, . . . , p
′′
b , which are the

traces on the exceptional divisor R of the b lines through the (d − 1)-

point p, that we blew up, and the b double points specialized on F,

i.e.

RF = Lr−1,d−1(1
b),

in fact b points are base points for the hypersurfaces of Pr−1 of degree

d−1. The restriction to R of a general section of LF has affine equation

given by (2.7). We know that b general points p1, . . . , pb ∈ F impose

independent condition to the polynomial with affine equation of the

form (2.6): in other words, the conditions imposed by the vanishing of

the partial derivatives at p1, . . . , pb are independent, and in particular

∂xr−1
F (pj,0, . . . , pj,r−1) = fd−1(pj,0, . . . , pj,r−1) = 0, j = 1, . . . , b.

This means that the p′′j ’s are base points for the restricted system RF.

Notice also that RF has the right dimension:

rF = lF − l̂F − 1 =

(
r + d − 2

r − 1

)
− 1 − b.

Now, if LP is empty, transversality is trivial, being R = ∅. Suppose,

from now on, that LP 6= ∅:

R = {S : S ∈ RP and p1, . . . , pb ∈ S} ⊆ RP ⊆ |OPr−1(d − 1)|.

Choosing the b double points generically on F, also p1, . . . , pb are gen-

eral on R, then they impose b independent condition on R. Therefore

we get

dim(R) = max{−1, rP − b}

hence

dim(R) =

{
−1 if rP + rF ≤

(
d+1
2

)
− 2

rP + rF −
(
d+1
2

)
+ 1 if rP + rF ≥

(
d+1
2

)
− 2

i.e. the restricted systems intersect properly.
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2.2 The approach via collision of fat points

In this section we will construct a degeneration of schemes defined by col-

lections of n nodes to a fat point, which is a point with multiplicity, and a

collection of n − c general nodes. In other words, we will suppose that c

nodes of Pr collide to a fat point p. To this end, let us perform a (k, n− c)-

degeneration of Pr (and of L ); we get:

LF = Lr,d(d − k, 2n−c) L̂F = Lr,d(d − k + 1, 2n−c)

LP = Lr,d−k(2
c) L̂P = Lr,d−k−1(2

c).

Notice that if
1

r + 1

(
r + d − k − 1

r

)

is an integer and choosing c equal to that number, then v̂P = −1. Moreover,

if under this choice LP 6= ∅ is non-special, then the restricted system RP ⊆

|OPr−1(d − k)| fills up the whole space. Indeed

rP = lP − l̂P − 1

=

(
r + d − k

r

)
− 1 − (r + 1)c =

(
r + d − k − 1

r − 1

)
− 1.

This means that LP does not impose matching conditions to RF or, equiv-

alently, that the c nodes specialized on the component P of the central fiber

collide to a point of multiplicity d− k on F. The limiting system on P is the

system of surfaces having c general double points, with the minimal degree

with respect to the property that such a system is not empty, i.e.

Lr,d−k(2
c) 6= ∅, while Lr,d−k−1(2

c) = ∅.

The problem of studying non-speciality of L is now translated into the anal-

ysis of non-speciality of LF, that in some cases will be more easily solved.

We will see how this approach is useful to prove the statement of the

Alexander-Hirschowitz Theorem is some cases. In particular we will ap-

ply this construction to the linear systems L3,d(2
n), with d ≡ 0 (mod 6)

(Section 3.2).

2.3 The second degeneration

The method consisting of simply specializing the double points some on P

and the others on F will be not enough to cover all the cases. Trying to

prove the non-speciality of a given linear system L , in some cases we are

not able to find an integer b such that the limiting system L0 has dimension

equal to e(L ). In those cases it is a arithmetic obstruction that prevents us
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from finding such a b. Then we use another approach in order to overcome

the problem. It consists in degenerating the system L0 on the central fiber

X0 to a system L ′
0 such that some of the points of P and of F approach R.

Let ∆′ be a complex disc around the origin. Consider the trivial family

Z = Z × ∆′ → ∆′ with reducible fibers Zs = Fs ∪ Ps
∼= X0, where Fs =

F is isomorphic to Pr blown up at a point, Ps = P is isomorphic to Pr

and Fs ∩ Ps = Rs
∼= Pr−1, for every s ∈ ∆′. The Picard group of Zs is

the fibered product of Pic(Ps) and Pic(Fs) over Pic(Rs). Consider on Zs,

s 6= 0, the linear system L ′
s := L0, where L0 is the flat limit of L =

Lr,d(2
n), with respect to the first degeneration. Such a system is given by

two linear systems L ′
Ps

and L ′
Fs

on the two components that agree on the

intersection Rs. The system on Ps (or on Fs) restricts to a system R′
Ps

(R′
Fs

respectively) and the relative kernel, at the level of linear systems, is L̂ ′
Ps

(L̂ ′
Fs

respectively). We have the following identities:

L̂
′
Fs

= L̂F, L̂
′
Ps

= L̂P, R
′
Fs

= R
′
F, R

′
Ps

= R
′
P, for s 6= 0

Now, let α, β ∈ N such that β ≤ b, α ≤ n − b. Consider on the central

fiber the scheme given by

• n − b − α double points in P0 \ R0,

• b − β in F0 \ R0

• and α + β in R0:

we can consider these nodes as limit of the n general nodes in Zs (n − b in

Fs and b in Ps). So, on the central fiber Z0 the systems L ′
P0

and L ′
F0

are

still the same, while the kernels are

L̂ ′
P0

= Lr,d−2(2
n−b−α, 1α)

L̂ ′
F0

= Lr,d(d, 2b−β, 1β) ∼= Lr−1,d(2
b−β, 1β)

with the following restriction sequences:

0 → L̂ ′
P0

→ L ′
P0

→ R′
P0

⊆ Lr−1,d−1(2
α)

0 → L̂ ′
F0

→ L ′
F0

→ R′
F0

⊆ Lr−1,d−1(2
β , 1b−β).

We respectively denote by v̂′
P0

, v′
P0

, v̂′
F0

, v′
F0

and l̂′
P0

, l′
P0

, l̂′
F0

, l′
F0

the virtual

and the actual dimensions. As in Section 2.1, we obtain a recursive formula

for the dimension of L ′
0:

l′0 = l̂′P0
+ l̂′F0

+ dim(R′
0) + 2, (2.8)

where R′
0 := R′

P0
∩ R′

F0
.
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Proposition 13. Keeping the same notations as above, if there are integers

b, α, β such that α ≤ n − b, β ≤ b and l′0 = e(L ), then L is non-special

Proof. Exploiting upper semicontinuity of the second degeneration, we have

l′0 ≥ l′s, s 6= 0, s ∈ ∆′. Moreover, by the first degeneration, we have l0 ≥ lt,

t 6= 0, t ∈ ∆. But l′s = l0 and lt = l and this concludes the proof.

Non-speciality of LF

In this Section we assume that the case of cubics is already solved, i.e.

that Lr,3(2
n) is non-special except if r = 4 and n = 7. The proof of this

is completely untied from what follows and it will be discussed in Section

3.1.1.

Notice that if we only perform a (1, b)-degeneration, we simultaneously get

emptiness of L̂F and non-speciality of LF (under the hypothesys of Lemma

11) if and only if
1

r

(
r + d − 1

r − 1

)

is an integer. In all the remaining cases, if we choose

b ≥

⌊
1

r

(
r + d − 1

r − 1

)⌋
,

we preserve emptiness of L̂F, but we are no longer in the hypothesys of

Lemma 11. In that situation, we need to perform a degeneration of the

central fiber and of the limit system L0 as described above. However we

need a criterion for the non-speciality of L ′
Fs

. In this section we will prove

that there exists an upper bound on the number k of nodes such that the

linear systems of the form

Lr,d(d − 1, 2k)

are non-special. The proof will be by induction on both r and d. The first

two lemmas provide the starting points of the induction: they will describe

the cases with d = 4 in the first one and r = 3 in the second one.

Lemma 14. Let r ≥ 2. The linear system Lr,4(3, 2k), with

k ≤ k(r) :=

⌈
1

r + 1

(
r + 4

4

)⌉
− r − 1,

is non special.

Proof. The proof is by induction on r. It suffices to prove the statement for

k(r) nodes. For k < k(r), non-speciality of the corresponding linear system
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is a consequence, being v(Lr,4(3, 2k(r))) ≥ −1, for r ≥ 2. The base step

is the case r = 2: the system L2,4(3, 22) is non-special. Consider now the

scheme Z given by the union of the triple point and k(r − 1) < k(r) double

points. If π ⊂ Pr is a fixed hyperplane containing the support of Z, then the

trace of Z with respect to π is the scheme Z ∩ π, while the residual scheme

is given by a point of multiplicity 2 and k(r− 1) simple points. Thus we get

the following restriction map,

Lr,4(3, 2k(r)) → Lπ := Lr−1,4(3, 2k(r−1)),

and the kernel is the system

L̂ := Lr,3(2
1+k(r)−k(r−1), 1k(r−1)).

This gives us the induction on r. The system on the right is non special

with virtual dimension at least −1, by the inductive hypothesis; the system

on the left is non-special and it has virtual dimension

v̂ =

(
r + 3

3

)
− 1 − (r + 1)(k(r) + 1) + rk(r − 1)

≥

(
r + 3

3

)
− 1 −

(
r + 4

4

)
+ r2 +

(
r + 3

4

)
− r2 = −1,

being

k(r) ≤
1

r + 1

(
r + 4

4

)
− r − 1 +

r

r + 1
and k(r − 1) ≥

1

r

(
r + 3

4

)
− r.

for all r. Therefore

lr,4(3, 2k(r)) = dim(Lπ) + dim(L̂ ) + 1 = v(L ),

and this concludes the proof.

Lemma 15. Let d ≥ 4, and

k0(d) :=

⌊
d2 + 2d − 3

4

⌋
.

If k ≤ k0(d), then the linear system L = L3,d(d − 1, 2k) is non-special.

Proof. We prove the statement by induction on d for a collection of k0(d)

points. The base step is the case L3,4(3, 25) that is non-special by Lemma

14.

For the inductive step, consider the system of surfaces of P3 of degree d
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with a point p of multiplicity d − 1 and k0(d) double points. Notice that

v(L3,d(d − 1, 2k0(d))) ≥ −1. Specializing p and

h =

⌊
2d + 1

3

⌋
≤ k0(d)

nodes on a general plane π, we obtain the following restriction map:

L3,d(d − 1, 2k0(d)) → Lπ := L2,d(d − 1, 2h),

with kernel

L̂ := L3,d−1(d − 2, 2k0(d)−h, 1h).

Notice that the integer h is the minimal one with respect to the property

that vπ ≥ −1. Being

h ≥
2d + 1

3
−

2

3
=

2d − 1

3
,

then

k0(d) − h ≤
d2 + 2d − 3

4
−

2d − 1

3
=

3d2 − 2d − 5

12
.

Moreover

k0(d − 1) =

⌊
d2 − 4

4

⌋
=

⌊
d2

4

⌋
− 1 =

{
d2/4 − 1 if d is even

d2/4 − 1 − 1/4 if d is odd
.

Thus k0(d) − h ≤ k0(d − 1) and non-speciality of L3,d−1(d − 2, 2k0(d)−h)

follows from the inductive hypothesis. In particular L̂ is non-special. Not

only, it is not empty, in fact it has positive virtual dimension.

v(L̂ ) =

(
d + 2

3

)
− 1 −

(
d

3

)
− 4(k0(d) − h) − h

≥

(
d + 2

3

)
− 1 −

(
d

3

)
−

3d2 − 2d − 5

3
−

2d + 1

3
=

1

3
.

Finally l3,d(d−1, 2k0(d)) = dim(L̂ )+dim(Lπ)+1 = e(L ) and this concludes

the proof.

Now, we prove a result for linear systems of hypersurfaces of degree d of

Pr with a point of multiplicity d−1 and k general nodes in its full generality,

i.e. for every r ≥ 4 and d ≥ 4. To this end, let us define the number

k(r, d) :=

⌊
1

r + 1

(
r + d

r

)
−

1

r + 1

(
r + d − 2

r

)⌋
− (r − 2),

for every r and d. We want to prove that the linear system Lr,d(d − 1, 2k)

is non special, if k ≤ k(r, d).
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Remark 1. Notice that k(3, d) is equal to the number k0(d) defined in

Lemma 15, so that result can be employed as base step of the induction

on r.

As in the case with r = 3, the trick, given Lr,d(d − 1, 2k(r,d)), will be

to specialize k(r − 1, d) nodes on an hyperplane π ∼= Pr−1 containing the

support of p as follows:

0 → L̂ → Lr,d(d − 1, 2k(r,d)) → Lπ = Lr−1,d(d − 1, 2k(r−1,d)). (2.9)

The kernel system is

L̂ = Lr,d−1(d − 2, 2k(r,d)−k(r−1,d), 1k(r−1,d)).

The (d − 2)-point is the residual of the (d − 1)-point and the simple base

points are the residual of the nodes specialized on π.

Let us consider first of all the quartic case because it is the starting step of

the induction on the degree: the linear system Lr,4(3, 2k), with k ≤ k(r, 4),

is non-special by Lemma 14; in fact k(r, 4) ≤ k(r) as it can be easily checked,

being

k(r, 4) ≤
( 1

r + 1

(
r + 4

r

)
−

1

r + 1

(
r + 2

r

)
− 1
)
− r + 2

=
1

r + 1

(
r + 4

r

)
− r −

( 1

r + 1

(
r + 2

r

)
− 1
)

and

k(r) ≥
( 1

r + 1

(
r + 4

r

)
+ 1
)
− r − 1 =

1

r + 1

(
r + 4

r

)
− r.

Theorem 16. The linear system Lr,d(d−1, 2k), with k ≤ k(r, d) and d ≥ 4,

is non-special and it has virtual dimension at least −1.

Proof. The induction on r is based on the case of linear system in P3 anal-

ysed in Lemma 15; while the base step of the induction on the degree is the

case of quartics, already examined in Lemma 14.

Consider the restriction exact sequence in (2.9): Lπ is non-special by induc-

tion on r, and vπ ≥ −1. Moreover the system L̂ is non special, applying

induction on d, if

k(r, d) − k(r − 1, d) ≤ k(r, d − 1). (2.10)
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Now, being

k(r, d − 1) ≥
1

r + 1

(
r + d − 1

r

)
−

1

r + 1

(
r + d − 3

r

)
− (r − 2) −

r

r + 1
,

k(r, d) ≤
1

r + 1

(
r + d

r

)
−

1

r + 1

(
r + d − 2

r

)
− (r − 2)

k(r − 1, d) ≥
1

r

(
r + d − 1

r − 1

)
−

1

r

(
r + d − 3

r − 1

)
− (r − 3) −

r − 1

r
;

one can easily check that inequality (2.10) is verified if
(

r + d − 1

r − 1

)
−

(
r + d − 3

r − 1

)
≥ r3 − 3r − 1,

i.e. for every pair (r, d) 6= (4, 4), (4, 5), (4, 6), (5, 4), (5, 5), (6, 4), (6, 5). How-

ever, in the excluded cases, it is very easy to check directly by hand that

(2.10) holds. Moreover L̂ has positive virtual dimension, for every (r, d) in

fact

v̂ =

(
r + d − 1

r

)
−

(
r + d − 3

r

)
− (r + 1)k(r, d) + rk(r − 1, d) ≥ r − 1.

Finally,

lr,d(d − 1, 2k(r,d)) = dim(L̂ ) + dim(Lπ) + 1 = e(L )

and this completes the proof.

Remark 2. Lemma 14 provides an upper bound to the number of double

points which is bigger than the one we need for the base step of the induction

on the degree used in the proof of Theorem 16. Nevertheless k(r) is exactly

the number of nodes that we will specialize on the component F in the proof

of Alexander-Hirschowitz Theorem for quartics (see Section 3.1.2).

Remark 3. If a linear system of type Lr,d(d− 1, 2k) verifies the hypothesis

of Lemma 11, it consequently verifies also the hypothesis of Theorem 16,

being ⌊
1

r

(
r + d − 1

r − 1

)⌋
≤ k(r, d),

for every r and d. The hypothesys of Lemma 11 is too strong. The reason

to study those cases separately sits in the fact that also transversality holds

in the assumption of Lemma 11 (see Lemma 12). Recall that transversality

is the crucial fact in all our computations. So we put stronger assumption,

but in that way we get a stronger result concerning the intersection of the

restricted systems.



Chapter 3

Proof of the

Alexander-Hirschowitz

Theorem

The goal of this chapter is to expose a proof of the Alexander-Hirschowitz

Theorem (Theorem 2), applying the degeneration techniques described in

Chapter 2 for d ≥ 4 and discussing the case of cubics separately. The proof

will be done by induction on both r and d. The induction on the degree

will be based on the cases of cubics and quartics, while the induction on the

dimension of the ambient space will start from the case of linear systems of

surfaces of P3.

Define

n− = n−(r, d) :=

⌊
1

r + 1

(
r + d

d

)⌋
=

1

r + 1

(
r + d

d

)
−

l−

r + 1
,

and

n+ = n+(r, d) :=

⌈
1

r + 1

(
r + d

d

)⌉
=

1

r + 1

(
r + d

d

)
+

l+

r + 1
,

with l−, l+ ∈ {0, . . . , r}. They are respectively the maximal number of nodes

with respect to the property that the linear system of surfaces of degree d

with a collection of nodes has virtual dimension at least −1 and the minimal

number of nodes such that the corresponding linear system is expected to

be empty. Obviously, if 1
r+1

(
r+d

r

)
is an integer, then n− = n+.

Notice that if non-speciality holds for a collection of n− double points,

then it holds, as an easy consequence, for a smaller number of double points.

On the other hand, if there are no hypersurfaces of degree d with a given

collection of nodes, the same is true adding other nodes; so it suffices to

prove emptiness of Lr,d(2
n) for n+.

27
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3.1 The base steps of the induction on the degree

3.1.1 Cubics

The techniques introduced in the previous sections do not work in the case

of cubics, because the limiting system on the exceptional component P of

the central fiber of a (1, b)-degeneration is a linear system of quadrics with

nodes which is special. We will prove non-speciality of Lr,3(2
n), for r ≥ 3,

r 6= 4 by induction on r, with a different degeneration argument.

The starting point is the linear system L3,3(2
5) of cubic surfaces of P3,

which is empty as expected. Indeed, if we restrict it to a plane π and if we

specialize three nodes on it, we get the following sequence:

0 → L3,2(2
2, 13) → L3,3(2

5) → L3,3(2
5)|π ⊂ L2,3(2

3).

An useful remark is that if a cubic has two double points, then by Bézout’s

Theorem, it must vanish identically on the line joining them. This line meets

π at a point, so

L3,3(2
5)|π ⊆ L2,3(2

3, 1) = ∅.

Moreover the kernel L3,2(2
2, 13) is empty, and this concludes the proof in

the case of P3.

We will study the linear system Lr,3(2
n), for r ≥ 5. Observe that

n−(r, 3) =

{
1

r+1

(
r+3
3

)
if r ≡ 0, 1 (mod 3)

1
r+1

(
r+3
3

)
− 1

3 if r ≡ 2 (mod 3)

Let l ∈ Z be such that r = 3l + k, with k ∈ {0, 1, 2}; define

γ(r) :=

{
0 if r ≡ 0, 1 (mod 3)

l + 1 if r ≡ 2 (mod 3).

We will prove the following result, due to J. Alexander and A.

Hirschowitz (see [5]).

Theorem 17. Let r 6= 2 (mod 3), r 6= 4. Then there are no cubics in Pr

singular at n−(r, 3) general points.

Let r = 3k + 2. Then there are no cubics in Pr singular at n−(r, 3)

general points and passing through γ(r) additional general points.

The degeneration construction for cubics

Let us consider the trivial family Y = Pr × ∆ → ∆, where ∆ is a complex

disc with center at the origin. Let Y0 be the central fiber. Choose a general

linear subspace L ⊂ Y0 = Pr of codimension h:

NL|Y = OL(1)⊕h ⊕OL
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is the normal sheaf of L in Y. Blowing up L in the family, we obtain a

new family X , with maps π1 : X → Pr and π2 : X → ∆ and a reducible

central fiber X0 which is the union of the strict transform V of Pr, i.e. Pr

blown up along L, and the exceptional divisor T , which is isomorphic to

P(N ∗
L|Y) ∼= P(OPr−h(1)⊕h ⊕OPr−h(2)). This variety of dimension r is a Ph-

bundle over L ∼= Pr−h with the natural map p : T → L. The intersection of

the two components of X0 is a (r−1)-dimensional subvariety Q of degree h:

Q = P(OPr−h(1)⊕h) ∼= Pr−h × Ph−1.

It is the exceptional divisor of the blow up of L in the central fiber. The

Picard group of V is generated by the hyperplane class HV , which corre-

sponds to the line bundle OV (1) pull back of OPr(1), and by the divisor Q.

The Picard group of T is generated by π := p∗(OL(1)) and by Q; so the

O(1)-bundle of T ∼= P(OPr−h(1)⊕h ⊕OPr−h(2)) is of the form HT = Q + 2π.

Now, consider the line bundle OX (3) = π∗
1OPr(3). It restricts to OPr(3)

on the general fiber; while on the central one we have:

• |OX (3)|T | = |3π|

• |OX (3)|V | = |3HV |.

If r 6= 7, choose h = 3 and twist by −T : on the general fiber we do not make

any change, while on the special one we get:

• |3π + Q| on T ,

• |3HV − Q| on V .

Consider the linear system of cubics on the general fiber

Lt := L = Lr,3(2
n−(r,3), 1γ(r)),

which has virtual dimension −1, for every r. Specializing n−(r− 3, 3) nodes

and γ(r − 3) simple points on the component T , we get

LT = |3π + Q − 2n−(r−3,3) − 1γ(r−3)|

LV = |3H − Q − 2r+1 − 1γ(r)−γ(r−3)|,

where γ(r) − γ(r − 3) ∈ {0, 1}.

Notice that, to be precise, instead of −2a − 1b we would have to write

−2E1 − · · · − 2Ea − Ea+1 − · · · − Eb, where the Ei’s are the exceptional

divisor of the blow up of X at these points.

The system LV is isomorphic to the linear system of cubic hypersurfaces of

Pr containing a 3-codimensional subspace L, being singular at r + 1 general
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points, and passing through γ(r) − γ(r − 3) general points; we will use the

following notation:

LV
∼= Lr,3(L, 2r+1, 1γ(r − 3)).

If we restrict the two linear systems to the intersection Q, we obtain as

kernels the following systems:

L̂T = |3π − 2n−(r−3,3) − 1γ(r−3)| ∼= Lr−3,3(2
n−(r−3,3), 1γ(r−3))

L̂V = |3H − 2Q − 2r+1 − 1γ(r)−γ(r−3)|

The motivation of this choice is that in this way the kernel L̂T is known to

be empty, applying induction from r − 3 to r, if r 6= 7.

The kernel L̂V is empty

The kernel system of the component V is isomorphic to the linear system of

cubic hypersurfaces of Pr that are singular along a 3-codimensional subspace

L and at r+1 general points, and with γ(r)−γ(r−3) additional base points:

L̂V
∼= Lr,3(2L, 2r+1, 1γ(r)−γ(r−3)).

Notice, as a preliminary step, that the linear system Lr,2(2L, 2) has dimen-

sion 2. Indeed, if a quadric hypersurface is singular along L ∼= Pr−3 and at

p /∈ L, then it is singular along L̃ =< L, p >∼= Pr−2. So, if x0, . . . , xr are

homogeneous coordinates for Pr and L̃ = {x0 = x1 = 0} ⊂ Pr, a quadratic

polynomial in x0, . . . , xr vanishing along L̃ is of the form

x0(a0x0 + · · · arxr) + x1(b1x1 + · · · brxr)

Furthermore, imposing the vanishing of the first partial derivatives along L̃,

we get

Lr,2(2L, 2) = Lr,2(2L̃) = {a0x
2
0 + a1x0x1 + b1x

2
1 = 0}

depending on two projective parameters.

Proposition 18. The system Lr,3(2L, 2r+1) is empty, for r ≥ 3.

Proof. In the first case (r = 3), a linear subspace of codimension 3 is a point,

so the corresponding system is L3,3(2
5) that is empty.

A general hyperplane of P4 will intersect a general line L at a point; so,

restricting the linear system L4,3(2L, 25) to the hyperplane containing the

supports of four of the five nodes, we get

0 → L4,2(2L, 2, 14) → L4,3(2L, 25) → L3,3(2, 24)
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The kernel system is empty, so our system is empty too.

Similarly, for r ≥ 5, the statement follows by induction on r and by the

sequence

0 → Lr,2(2L, 2, 1r) → Lr,3(2L, 2r+1) → Lr−1,3(2L′, 2r)

where L′ ∼= Pr−4 is the intersection of L with the restricting hyperplane.

The restricted system is empty by the inductive assumption; the kernel is

empty too.

From this proposition in particular follows the emptiness of L̂V , for

r ≥ 5, r 6= 7.

Matching systems

Let p1, . . . , pt, with t = n−(r − 3, 3), be the nodes specialized on T . Each

of them lies on a distinct fiber of the ruling of T : say pi ∈ fi
∼= P3. This

implies that each of the sections of LT must contain f1, . . . , ft. Therefore

the sections of LT |Q must contain t distinct planes σi = fi|Q
∼= P2, each of

them imposing 3 linear conditions on it.

The sections of LV |Q must agree with those of LT |Q. Define L m
V ⊆ LV and

L̂ m
V ⊆ L̂V to be the linear systems on V defined by the matching conditions.

Similarly, let L m
T ⊆ LT and L̂ m

T ⊆ L̂T be the corresponding systems on

the exceptional component. We will refer to them as the matching systems,

according to the notation of [21].

The system L m
V is isomorphic to the linear system of cubic hypersurfaces

of Pr which contain a linear subspace L of codimension 3 and which are

singular at n−(r, 3) nodes, such that n−(r − 3, 3) of them are supported on

L and r + 1 are general in Pr \ L and which pass through γ(r) − γ(r − 3)

additional general points:

L
m
V

∼= Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)), r 6= 7.

We use the notation {L, 2t} for the scheme given by a subspace L and t

general nodes supported on it. It suffices to prove the emptiness of L m
V , for

every r ≥ 5, r 6= 7, to conclude. Indeed, if on the contrary the system Lt

on the general fiber is nonempty, then there exists an integer k such that

the limiting system L0 is given by two systems L m
V,k and L m

T,k obtained by

twisting by −kT ,

L m
T,k ⊆ LT,k = |3π + kQ − 2n−(r−3,3) − 1γ(r−3)|

L m
V,k ⊆ LV,k

∼= Lr,3(kL, 2r+1, 1γ(r)−γ(r−3))
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both nonempty. But, if k = 0, we would have that L m
T,0 ⊆ LT,0

∼=

Lr−3,3(2
n−(r−3,3), 1γ(r−3)) = ∅. If k = 1, then L m

V,1 = L m
V = ∅ by assump-

tion. Finally, if k ≥ 2, then L m
V,k ⊆ Lr,3(2L, 2r+1, 1γ(r)−γ(r−3)) = L̂V = ∅

(see Proposition 18).

We will prove that the matching system L m
V is empty, for r ≥ 5, by

induction from r − 3 to r, starting from the cases r = 5, 6, 7. This proof is

very similar to the one of M. C. Brambilla and G. Ottaviani in [8], Section

5.

We need two preliminary results.

Proposition 19. The system K2(r) := Lr,3({L1, 2
3}, {L2, 2

3}, {L3, 2
3}),

with L1, L2, L3
∼= Pr−3 three general subspaces of Pr, is empty for r ≥ 6.

Proof. For r = 6 it suffices to make the computation explicitly. Indeed if we

choose generically three general subspaces of dimension 3, that intersect two

by two at a point, and three general points on each of them and if we impose

them as nodes for the cubics of P6, the resulting system is empty. We can

check this for example choosing L1 = {x0 = x1 = x2 = 0}, L2 = {x4 = x5 =

x6 = 0}, L3 = {x3 = x0−x4 = x2−x6} and pi
j ∈ Li, i, j = 1, 2, 3, as follows:

p1
1 = [0, 0, 0, 1, 1, 0, 0] p1

2 = [0, 0, 0, 1, 0, 1, 1] p1
3 = [0, 0, 0, 0, 1, 0,−1]

p2
1 = [1, 1, 0, 1, 0, 0, 0] p2

2 = [0, 0, 1, 1, 0, 0, 0] p2
3 = [−1, 0, 1, 1, 0, 0, 0]

p3
1 = [1, 1, 1, 0, 1, 0, 1] p3

2 = [1, 0, 1, 0, 1, 1, 1] p3
3 = [1,−1, 0, 0, 1, 1, 0].

For r ≥ 7, we prove the statement by induction from r − 1 to r. Choose

a general hyperplane of Pr: it intersects Li in a subspace L′
i of dimension

r − 4, for i = 1, 2, 3. Moreover specialize the nine nodes on it, three on each

L′
i, and consider the following exact sequence

0 → Lr,2(L1, L2, L3) → K2(r) → K2(r − 1). (3.1)

The kernel system is empty for r ≥ 7. Indeed in P7 there are no quadric

hypersurfaces vanishing along three general subspaces of dimension four.

Similarly, for r ≥ 8, the kernel of (3.1) is empty. Indeed a subspace of

dimension r− 3 of Pr imposes
(
r−1
2

)
linear conditions to the system Lr,2. If

L1, L2, L3 ⊆ Pr then, Li ∩Lj is a Pr−6, i 6= j and L1 ∩L2 ∩L3 is a Pr−9 for

r ≥ 9 and it is empty if r = 8. Thus the total number of linear conditions

imposed to Lr,d is 3
(
r−1
2

)
− 3
(
r−4
2

)
+
(
r−7
2

)
. Therefore

lr,2(L1, L2, L3) =

(
r + 2

2

)
− 1 − 3

(
r − 1

2

)
+ 3

(
r − 4

2

)
−

(
r − 7

2

)
= −1.
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Proposition 20. Let L1, L2
∼= Pr−3 be general subspaces of Pr. The linear

system K1(r) = Lr,3({L1, 2
r−2}, {L2, 2

r−2}, 23) is empty for r ≥ 3, r 6= 4.

Proof. We will prove the statement by induction on r, from r − 3 to r,

starting from the cases r = 3, 5, 7. For r = 3, one has K1(3) = L3,3(2
5):

this system is empty. For r = 5 and r = 7 it is an explicit computation.

For r = 5 one can check that there are no cubics in K1(5) choosing for

example L1 = {x0 = x1 = x2 = 0}, L2 = {x3 = x4 = x5 = 0}, pi
j ∈ Li, for

i = 1, 2, j = 1, 2, 3 and q1, q2, q3 ∈ P5 \ (L1 ∪ L2) as follows:

p1
1 = [0, 0, 0, 1, 0, 0] p2

1 = [1, 0, 0, 0, 0, 0] q1 = [1, 1, 0, 1, 0, 1]

p1
2 = [0, 0, 0, 0, 1, 0] p2

2 = [0, 1, 0, 0, 0, 0] q2 = [1, 0, 1, 0, 1, 1]

p1
3 = [0, 0, 0, 0, 0, 1] p2

3 = [0, 0, 1, 0, 0, 0] q3 = [1, 1, 1,−1,−1,−1].

(3.2)

Similarly for r = 7, with an explicit computation we conclude, for example

choosing L1 = {x0 = x1 = x2 = 0}, L2 = {x5 = x6 = x7 = 0}, pi
j ∈ Li, for

i = 1, 2, j = 1, . . . 5, and q1, q2, q3 ∈ P7 \ (L1 ∪ L2) as follows:

p1
1 = [0, 0, 0, 0, 1, 0, 0, 1] p2

1 = [1, 0, 0, 1, 0, 0, 0, 0]

p1
2 = [0, 0, 0, 1, 0, 0, 1, 0] p2

2 = [0, 1, 0, 0, 1, 0, 0, 0]

p1
3 = [0, 0, 0, 0, 0, 1, 0, 0] p2

3 = [0, 0, 1, 1, 0, 0, 0, 0]

p1
4 = [0, 0, 0, 0, 0, 1, 1, 1] p2

4 = [0, 1, 1, 0, 0, 0, 0, 0]

p1
5 = [0, 0, 0, 0,−1, 1, 1,−1] p2

5 = [1, 1, 1, 1, 0, 0, 0, 0]

q1 = [−1,−1, 1, 0, 0,−1, 1, 1] q2 = [0, 1,−1, 1, 0, 1,−1, 0]

q3 = [0, 1, 0, 0,−1, 1, 0, 1].

For r = 6, r ≥ 8, we prove the statement exploiting the following restriction

exact sequence:

0 → K2(r) → K1(r) → K1(r − 3).

The kernel is empty by Proposition 19 and K1(r−3) is empty by induction.

Proposition 21. In the same notation as above, the matching linear system

L m
V = Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)), with L ∼= Pr−3, is empty, for

r ≥ 5.

Proof. For r = 5, the matching system is L m
V = L5,3({L, 23}, 26, 1). With

an explicit computation, one can easily see that there is a unique cubic in

P5 that vanishes along L = {x0 = x1 = x2 = 0} and that is singular at the

nine points in (3.2) (three of them supported on L). Therefore, there are no

cubics passing through one further general point.

For r = 6 the matching system is L m
V = L6,3({L, 25}, 27). Restricting it to
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a general L1
∼= P3 intersecting L in the support p of one of the nodes and

specializing on it four general nodes, we get

0 → L6,2({L, 24}, {L1, 2
4}, 23) → L6,3({L, 25}, 27) → L3,3({p, 2}, 24).

The kernel is empty by Proposition 20, and the restricted system is L3,3(2
5)

which is empty.

For r = 7 the matching system is L m
V = L7,3({L, 27}, 28), with L ∼= P4.

Let p1, . . . , p7 ∈ L and q1, . . . , q8 ∈ Pr \ L be the supports of the fifteen

nodes. Let π be a hyperplane such that L ∩ π = L′ ∼= P3 and such that

p4, . . . , p7 ∈ L′; moreover specialize on π the points q2, . . . , q8:

L
m
V

φ
→ L

m
V |π ⊆ L6,3({L

′, 24}, 27).

Notice that the line joining q1 and pi is contained in all the sections of L m
V

and it intersects π at a point, for i = 1, 2, 3. Therefore

L
m
V |π ⊆ L6,3({L

′, 24}, 27, 13).

It is non-special as consequence of the previous point (case r = 6), moreover

it is empty, having virtual dimension equal to −1. Furthermore the kernel

of the restriction map φ is

L7,2({L, 23}, 2, 17).

It is easy to check that l7,2({L, 23}, 2) = 6, choosing for example L = {x0 =

x1 = x2 = 0} and

p1 = [0, 0, 0, 0, 0, 0, 0, 1] p2 = [0, 0, 0, 0, 0, 0, 1, 0]

p3 = [0, 0, 0, 0, 0, 1, 0, 0] q1 = [1, 0, 0, 0, 0, 0, 0, 0].

Therefore, imposing seven further general base points, the resulting system

is empty.

For r ≥ 8, the statement follows by induction restricting to a general Pr−3

and making specializations of the points as follows:

Lr,3({L, 2n−(r−3,3)}, 2r+1, 1γ(r)−γ(r−3)) → Lr−3,3({L
′, 2n−(r−6,3)}, 2r−2, 1γ(r)−γ(r−3)),

where L′ = L∩Pr−3 ∼= Pr−6: the kernel is K1(r) = ∅ and this concludes the

proof.

Finally, being L m
V = L̂ m

T = ∅, for r ≥ 5, r 6= 7, then L = Lt is empty.

Remark 4. For r = 7, the emptiness of the matching system does not suffice

to conclude that the system of cubics of P7 with fifteen nodes is empty (and

in particular non-special), because the kernel system L̂T
∼= L4,3(2

7) on the

other component is nonempty (see Section 1.2.1). Nevertheless this is crucial

because it represents the starting point of the induction from r − 3 to r, for

r ≥ 10, r ≡ 1 (mod 3); so we will analyse this case separately.
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Cubics in P7

In the case r = 7 this method fails. We would have to blow up a L ∼= P4,

but this is not the right thing to do, because cubics with seven nodes are

defective there. To avoid the problem, we will reproduce the same argument,

but blowing up a subspace L1 of codimension four, instead of three, in the

central fiber of the trivial family P7×∆. Let us denote by T the exceptional

component of the new special fiber, and with V the strict transform, as

above. Let p : T → L1 the natural map and π := p∗OL1
(1). Twist by −T

and consider the limit of the linear system of cubics of P7:

• |3π + Q| on T and

• |3HV − Q| on V , where HV is the pull-back of an hyperplane, and Q

is the exceptional divisor of the blow up along L1
∼= P3.

Consider the system L7,3(2
15) on the general fiber. To prove its emptiness,

we use the same trick as in the general case: we specialize the points on the

two components as follows:

LT = |3π + Q − 25|,

LV = |3HV − Q − 210| ∼= L7,3(L1, 2
10)

The kernels of the restriction to Q are

L̂T
∼= L3,3(2

5) = ∅,

L̂V = |3HV − 2Q − 210| ∼= L7,3(2L1, 2
10).

Each node specialized on T selects a fiber of the ruling of T . Each fiber cuts

a P3 at the intersection Q, which corresponds to a fiber of the ruling of Q.

So, as in the general case, the matching system on V is

L
m
V,7

∼= L7,3({L1, 2
5}, 210)

and it has virtual dimension −1. To prove its emptiness, we make two

subsequent specialization of the general nodes, five on L2 and five on L3,

where L2, L3
∼= P3 are general subspaces of P7, as we did for the general

case:

0 → K1 → L7,3({L1, 2
5}, 210) → L3,3(2

5) → 0

where K1 := L7,3({L1, 2
5}, {L2, 2

5}, 25) and

0 → K2 → K1 → L3,3(2
5) → 0

where K2 := L7,3({L1, 2
5}, {L2, 2

5}, {L3, 2
5}). With an explicit computa-

tion we prove that K2 is empty, choosing for example

L1 = {x0 = x1 = x2 = x3 = 0},

L2 = {x4 = x5 = x6 = x7 = 0},

L3 = {x0 − x4 = x1 − x5 = x2 − x6 = x3 − x7 = 0}
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and choosing pi
j ∈ Li, for i = 1, 2, 3 and j = 1 . . . , 5, as follows:

p1
1 = [0, 0, 0, 0, 0, 0,−1, 1] p1

2 = [0, 0, 0, 0, 0, 0, 1, 0]

p1
3 = [0, 0, 0, 0, 0, 1, 0, 0] p1

4 = [0, 0, 0, 0, 1, 0, 1, 0]

p1
5 = [0, 0, 0, 0, 1, 1, 1, 1] p2

1 = [1,−1, 0, 0, 0, 0, 0, 0]

p2
2 = [0, 1, 0, 0, 0, 0, 0, 0] p2

3 = [0, 0, 1, 0, 0, 0, 0, 0]

p2
4 = [0, 1, 0, 1, 0, 0, 0, 0] p2

5 = [1, 1, 1, 1, 0, 0, 0, 0]

p3
1 = [1, 1, 1, 0, 1, 1, 1, 0] p3

2 = [0, 1, 1, 1, 0, 1, 1, 1]

p3
3 = [1, 1, 0, 1, 1, 1, 0, 1] p3

4 = [1, 0, 1, 1, 1, 0, 1, 1]

p3
5 = [1,−1, 1,−1, 1,−1, 1,−1].

Therefore also K1 is empty and, as consequence, L m
V,7 = ∅. This com-

pletes the proof of Theorem 17.

3.1.2 Quartics

Quartics in P3

If n > 9 the system is empty because there exists a unique quartic surface

singular at nine points (see Section 1.2.1). For n = 8, we prove non-speciality

of the corresponding linear system performing a (1, 4)-degeneration:

LF = L3,4(3, 24) L̂F = L3,4(4, 24) ∼= L2,4(2
4)

LP = L3,3(2
4) L̂P = L3,2(2

4)

The system LP is non-special as we have seen in the previous section, while

the system LF is non-special by Lemma 11; RF is the complete series

L2,3(1
4) and the restricted systems intersect transversally (see the proof

of Lemma 12). Hence, by Proposition 8, we get

l0 = dim(R) + l̂P + l̂F + 2

= (lP − 4) + l̂P + l̂F + 2 = v3,4(2
8).

It follows that also the system of quartic surfaces of P3 having n nodes, with

n < 8, is non-special.

Quartics in P4

The systems of quartics with n nodes in P4, for n > 14, is obviously empty,

being l4,4(2
14) = 0 (see Section 1.2.1).

Performing a (1, 8)-degeneration of P4, we prove that the system L4,4(2
13)

is non-special, exactly as for the case of P3. Indeed

LF = L4,4(3, 28) L̂F
∼= L3,4(2

8)

LP = L4,3(2
5) L̂P = L4,2(2

5) = ∅
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Both systems LP and LF are non special with positive dimension, moreover

RF = L3,3(1
8) and transversality holds, so

l0 = dim(R) + l̂P + l̂F + 2

= (lP − 8) + l̂P + l̂F + 2 = v4,4(2
13).

As consequence, for a smaller number of double points, the system of

quadrics of P4 results to be non-special.

Quartics in Pr, r ≥ 5

Let n− := n−(r, 4) and n+ := n+(r, 4). We will prove non-speciality of the

system of quartic hypersurfaces of Pr, with r ≥ 5, with a collection of n

nodes, with n− ≤ n ≤ n+; in all the remaining cases, non-speciality follows.

The expected dimension of L is

e(L ) =

{
−1 + l− if n = n−

−1 if n = n+ .

Let us perform a (1, n− r − 1)-degeneration. We will show that, under this

choice, the two kernel system are both empty and the intersection R of the

restricted systems has dimension equal to e(L ). On the two components of

the central fiber we get the following linear systems:

LF = Lr,4(3, 2n−r−1) and LP = Lr,3(2
r+1).

The system LP is non-special by Theorem 17. Furthermore the system LF

is non-special by Lemma 14. Being L̂P = Lr,2(2
r+1) = ∅, the restriction

map to R

LP →֒ RP ⊆ |OPr−1(3)|

is injective. We want to describe the image RP. We know that a cubic

singular at two points must contain the whole line joining them. Similarly,

if a cubic has k nodes, then it must contains all the
(
k
2

)
lines joining the

points. consequently, when we restrict to the hyperplane R, the image of

the cubics in LP must contain the traces of these lines as base points; so we

get

RP ⊆ Lr−1,3(1
(r+1

2 )).

Actually, these
(
r+1
2

)
points give linearly independent conditions, and there-

fore RP is the complete series.

Proposition 22. In the setting above, the system RP is the complete linear

system of cubics of R with
(
r+1
2

)
base points and dim(RP) =

(
r+2
r−1

)
−1−

(
r
2

)
.
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Proof. We have to prove that the
(
r+1
2

)
points on R, traces of the lines

joining the r + 1 nodes p1, . . . , pr+1 specialized on the component P, impose

independent conditions. If we prove that this is true for quadrics, it will be

true in higher degree and in particular for cubics.

The proof will be by induction on r. The base step (r = 3) is easy: let

p1, . . . , p4 points in P ∼= P3: three of them, say p1, p2, p3, span a plane π,

which cuts a line π′ on R ∼= P2 ; on this line we will have the three distinct

points given as traces of the three lines < pi, pj >, i 6= j, i, j = 1, 2, 3. The

line π′ splits off the system of conics through these three points, thus

L2,2(1
6) = π′ + L2,1(1

3),

where the three base points of the system on the right are the projection of

p1, p2, p3 from p4 to R and they will not lie on a line, by generality. So our

system is empty.

For the inductive step, suppose that Lr−2,2(1
(r
2)) = ∅ and consider

Lr−1,2(1
(r+1

2 )): we have to show that there are no quartics in R ∼= Pr−1

through these points. On the hyperplane π ⊂ Pr spanned by p1, . . . , pr, we

have the
(
r
2

)
lines joining the r points two by two. Now, π cuts π′ ∼= Pr−2 on

R and π′ contains the
(
r
2

)
traces of the lines on π. These points are in gen-

eral position by induction. Therefore the system of quadrics of π′ containing

these points is empty; this means that π′ splits off Lr−1,2(1
(r+1

2 )):

Lr−1,2(1
(r+1

2 )) = π′ + Lr−1,1(1
r).

Notice finally that the

r =

(
r + 1

2

)
−

(
r

2

)

points on R correspond to the lines < pr+1, pi >, i = 1, . . . , r; precisely they

are the projections p′1, . . . , p
′
r of p1, . . . , pr from pr+1 to R. Therefore, being

p1, . . . , pr in general position in Pr, then also their projections are in general

position in R, so

Lr−1,1(1
r) = Lr−1,1(p

′
1, . . . , p

′
r) = ∅.

Notice finally that

dim(RP) =

(
r + 2

r − 1

)
− 1 −

(
r + 1

2

)
=

(
r + 2

2

)
− 1 = dim(LP).
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The system L̂F = Lr,4(4, 2n−r−1) has dimension lr−1,4(2
n−r−1) and,

being Lr−1,4(2
n−r−1) non-special and

vr−1,4(2
n−r−1) =

(
r + 3

4

)
− 1 − r(n − r − 1)

≤

(
r + 3

4

)
− 1 −

r

r + 1

(
r + 4

4

)
+ r(r + 1)

= −
r3 − 3r2 − 2r

8
− 1 ≤ −1,

it is empty. Finally, observe that

lF −

(
r + 1

2

)
=

(
r + 4

r

)
− 1 −

(
r + 2

r

)
− (r + 1)(n − r − 1) −

(
r + 1

2

)

= v(L )

therefore, the intersection R of the restricted systems has dimension

dimR = max

{
lF −

(
r + 1

2

)
,−1

}
= e(L ).

Thus, we conclude applying Formula (2.1).

Remark 5. This discussion does not apply if r = 3, 4. Indeed the kernel on

the component F would be isomorphic to L2,4(2
5) and L3,4(2

9) respectively,

that are special and in particular nonempty.

3.2 The proof in P3

In this section we will apply the techniques introduced in Chapter 2 to the

case r = 3 and d ≥ 5. This plays the role of the starting point of the

induction on r. We will investigate the non-speciality of the linear system

L3,d(2
n), for n−(3, d) ≤ n ≤ n+(3, d).

The cases with d 6≡ 0 (mod 3)

Observe that if d = 3k + 1, for some k, then

1

3

(
d + 2

2

)
=

(k + 1)(3k + 2)

2
∈ Z;

if d = 3k + 2, for some k, then

1

3

(
d + 2

2

)
=

(k + 1)(3k + 4)

2
∈ Z;
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while if d is a multiple of three this number is not an integer. So, when

d ≡ 1, 2 (mod 3), define the integer b as follows:

b :=
1

3

(
d + 2

2

)

and perform a (1, b)-degeneration of P3 and of the linear system L3,d(2
n).

Proposition 23. Let d ≥ 5, d 6≡ 0 (mod 3). Let n− ≤ n ≤ n+. Assume

that LP and L̂P are non-special. Then the linear system L is non-special.

Proof. We prove that L is non-special if n = n+
0 and n = n−

0 .

• Case n = n+
0 . Notice that the kernel system L̂F = L3,d(d, 2b) has

dimension

l̂F = v2,d(2
b) =

(
d + 2

2

)
− 1 − 3b = −1.

consequently, LF is non-special, by Lemma 11; moreover it cuts out

the complete series RF = L2,d−1(1
b) on R by Lemma 12. The kernel

system L̂P = L3,d−2(2
n−b) is non special by assumption, and it has

virtual dimension at most −1, in fact

v̂P =

(
d + 1

3

)
− 1 − 4n + 4b

≤

(
d + 1

3

)
− 1 −

(
d + 3

3

)
+

4

3

(
d + 2

2

)
=

1 − d2

3
− 1 ≤ −1,

being

n ≥
1

4

(
d + 3

3

)
.

The system LP = L3,d−1(2
n−b) is non-special by assumption, and

rP = lP. Therefore R is the system of curves of RP with b more simple

points (the points imposed by RF):

dim(R) = max{−1, lP − b}.

We have

lP − b =

(
d + 2

3

)
− 1 − 4n + 3b

≤

(
d + 2

3

)
− 1 −

(
d + 3

3

)
+

(
d + 2

2

)
− 1.

Therefore L3,d(2
n+

) is empty, as expected.
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• Case n = n−
0 . The system L̂F

∼= L2,d(2
b) is empty and l2,d(2

b) =

−1. Moreover, by Lemma 12, transversality holds and, by Lemma 11,

LF is non-special. The system LP = L3,d−1(2
n−b) is non special by

assumption and its virtual dimension is at least −1 being

vP =

(
d + 2

3

)
− 1 − 4(n − b) ≥

(
d + 2

2

)
− 1.

Finally, the system L̂P = L3,d−2(2
n−b) is non-special, and in particular

empty, in fact

v̂P =

(
d + 1

3

)
− 1 − 4(n − b)

≤

(
d + 1

3

)
−

(
d + 3

3

)
+

4

3

(
d + 2

2

)
+ 3 =

1 − d2

3
+ 3 ≤ −1.

Applying Proposition 8, we conclude the proof.

Corollary 24. Keeping the same assumptions as in Proposition 23, L3,d(2
n)

is non-special for every n.

The cases with d ≡ 0 (mod 3)

The case of sextics. We study first of all the linear system

L = L3,6(2
21).

We perform a (1, 10)-degeneration, specializing the first ten points, say

p1, . . . , p10, on F and the remaining ones, say p11 . . . , p21, on P:

LF = L3,6(5, 210) and LP = L3,5(2
11).

We know by induction that the system LP is non-special. Indeed, consider

for a moment the system L3,5(2
14): the hypothesis of Proposition 23 are

satisfied, in fact n − b would be equal to seven, and both the quartics and

the cubics of P3 with seven nodes are non-special, as we have already proved

in Section 3.1; in particular L3,5(2
11) is non-special.

The system LF is non-special and it has dimension 8, by Lemma 15. Now,

we want to degenerate the collection of nodes in such a way that one of

the points on F and three of the points on P approach R. To do that, we

perform a degeneration of the central fiber (see Section 2.3). Let q1, . . . , q10

be the limits of the points specialized on F and q12, . . . , q21 the limits of the

points specialized on P and
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• q1, q11, q12, q13 ∈ R0,

• q2, . . . , q10 ∈ F0 \ R0 and

• q14, . . . , q21 ∈ P0 \ R0.

We get the following restriction exact sequence

0 → L̂
′
F0

= L3,6(6, 29, 1) → L
′
F0

→ R
′
F0

.

The nine points, traces on R of the nine lines through q2, . . . , q10 and the

node supported at q1, are base points of R′
F0

(see Lemma 12), thus

R
′
F0

⊆ L2,5(1
9, 2).

Furthermore the kernel system L̂ ′
F0

has dimension v2,6(2
9, 1) = −1, then

R′
F0

is the complete series L2,5(1
9, 2).

On the other component, we get

0 → L̂ ′
P0

= L3,4(2
8, 13) → L

′
P0

→ R
′
P0

⊆ L2,5(2
3).

The kernel is empty and it has virtual dimension exactly −1. Thus also in

this case the restricted system is complete.

One has

R
′
0 = L2,5(2

4, 19) = ∅.

Finally, using formula (2.8) for the dimension of the system on the central

fiber, we get

l′0 = l̂′P0
+ l̂′F0

+ dim(R′
0) + 2 = −1

so the limiting system of the second degeneration is empty. By upper semi-

continuity, the system on the general fiber is empty and therefore, a fortiori,

L is empty, as expected.

The case d ≡ 3 (mod 6). Let d = 6k + 3, k ≥ 1. Observe that

1

4

(
d + 3

3

)
=

(k + 1)(3k + 2)(6k + 5)

2
∈ Z.

Consider the linear system L = L3,d(2
n) of surfaces of degree d with

n =
1

4

(
d + 3

3

)

nodes: v(L ) = −1. Performing a (1, b)-degeneration, the limit system

restricts to the following systems on the two components of the special fiber:

LF = L3,d(d − 1, 2b) LP = L3,d−1(2
n−b),



Proof of the Alexander-Hirschowitz Theorem 43

specializing p1, . . . , pb on F and pb+1, . . . , pn on P. As in the sextic case,

let us suppose that β points of F and α points of P approach the plane

R, performing a degeneration of the special fiber. We obtain the following

exact sequences on the central fiber of the second degeneration (see Section

2.3):

0 → L̂
′
F0

= L3,d(d, 2b−β, 1β) → L
′
F0

→ R
′
F0

⊆ L2,d−1(1
b−β , 2β).

and

0 → L̂
′
P0

= L3,d−2(2
n−b−α, 1α) → L

′
P0

→ R
′
P0

⊆ L2,d−1(2
α),

with L ′
F0

= LF and L ′
P0

= LP. Notice that

1

3

(
d + 2

2

)
= 6k2 + 9k + 3 +

1

3
.

So, choose

b =
1

3

(
d + 2

2

)
+

2

3
∈ Z

and β = 1.

Proposition 25. Keeping the same setting as above, assume that L̂ ′
P0

and

L ′
P0

are non-special. Then the linear system Lr,3(2
n) is empty.

Proof. The kernel L̂ ′
F0

consists of the cones of degree d with vertex at the

d-ple point and having b − 1 nodes and a simple point; the dimension is

l̂′F0
= v2,d(2

b−1, 1) = −1.

The system L ′
F0

is non-special, as consequence. Accordingly, R′
F0

is the

complete series L2,d−1(1
b−1, 2), in fact, being h0(F0, L̂

′
F0

) = h1(F0, L̂
′
F0

) =

0, then dim(R′
F0

) = l′
F0

= l2,d−1(1
b−1, 2). On the exceptional component

P of the first degeneration we specialized n − b nodes. Observe that there

exists an integer α such that v̂′
P0

= −1, namely

α =
1

3

[
4n − 4b −

(
d + 1

3

)]
= 4k2 + 4k.

The systems L̂ ′
P0

and L ′
P0

are non-special by assumption. Furthermore L ′
P0

cuts the complete series on R0, i.e. R′
P0

= L2,d−1(2
α), being

dim(R′
P0

) = l′
P0

= l2,d−1(2
α).

Finally, the intersection of the restricted systems is

R
′
0 = L2,d−1(2

α+1, 1b−1) :

it is non-special being the points in general position by construction; it has

virtual dimension exactly −1 and this concludes the proof.
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The case d ≡ 0 (mod 6), d 6= 6. We will use the technique described in

Section 2.2. Let k ∈ N \ {0, 1} be such that d = 6k; notice that

c =
1

4

(
d

3

)
=

k(3k − 1)(6k − 1)

2
∈ Z

a =
1

3

(
d

2

)
= k(6k − 1) ∈ Z

Let us first of all perform a (2, n − c)-degeneration:

LF = L3,d(d − 2, 2n−c) L̂F = L3,d(d − 1, 2n−c)

LP = L3,d−2(2
c) L̂P = L3,d−3(2

c).

Assume that LP and L̂P are non-special. We have v̂P = −1 and vP =
(
d
2

)
−1.

Therefore the restricted systems intersect transversally, in particular we have

that R = RF, because RP fills up the whole space, namely RP = |OP2(d−2)|.

Observe that v3,d(2
n) = v3,d(d − 2, 2n−c) and non-speciality of the system

L3,2(d − 2, 2n−c) implies non-speciality of L .

Proposition 26. If d ≡ 0 (mod 6) and d 6= 6, then the linear system

L = L3,d(d − 2, 2n−c) is non-special.

Proof. Let b = n − c − a (a and c as above). Performing a degeneration of

Pr to X0 = F ∪ P (in the usual notation) and specializing on F b nodes and

on P the remaining a nodes and the (d − 2)-point, we get:

LF = L3,d(d − 1, 2b) L̂F = L3,d(d, 2b) ∼= L2,d(2
b)

LP = L3,d−1(d − 2, 2a) L̂P = L3,d−2(d − 2, 2a) ∼= L2,d−2(2
a).

We have l̂P = l2,d−2(2
a) = v2,d−2(2

a) = −1. Moreover a ≤ k0(d − 1) and

b ≤ k0(d), being

k0(d − 1) − a ≥
d2 + 2d − 6

12
≥ 0 and k0(d) − b ≥

3d2 − 3d − 12

8
≥ 0

for d ≥ 12; thus LP and LF are both non-special by Lemma 15. Moreover

the kernel system L̂F is empty, being

v2,d(2
b) =

(
d + 2

2

)
− 3(n − c − a) ≤ −

d2 + d + 22

8
≤ −1.

Now, if one can show that RP = L2,d−1(1
a), one would have transversality,

concluding the proof. Indeed the system R would contain the section of

RF that vanish at the a base points imposed by RP; being those points in

general position on R, one would get

v(R) = rF − a =

(
d + 3

3

)
− 1 −

(
d + 1

3

)
− 4b − a = −1.
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The series cut out by LP is complete, in fact a surface S ∈ LP is described

by the vanishing of a homogeneous polynomial of the form

f(x0, . . . , x3) = fd−1(x0, . . . , x2) + x3fd−2(x0, . . . , x2),

with partial derivatives vanishing at p1 . . . , pa, supposing, without waste of

generality, p = [0, 0, 0, 1] ∈ P3. The restriction C of S to R has equation

fd−1(x0, . . . , x2) = 0.

We have to prove that fd−1(p
′
j) = 0, for j = 1, . . . , a (where p′j are the

projection of pj from p to R). The linear conditions imposed by the node

pj to S are the following
{

∂xi
fd−1(p

′
j) + pj,r∂xi

fd−2(p
′
j) = 0, i = 0, 1, 2

fd−2(p
′
j) = 0.

for j = 1, . . . a. Now, using the Euler formula for homogeneous polynomials,

we get

0 = fd−2(p
′
j) =

1

d − 2

3∑

i=0

p′i∂xi
fd−2(p

′j)

= −
1

d − 2

1

pj,3

3∑

i=0

p′i∂xi
fd−1(p

′j)

= −
d − 1

d − 2

1

pj,3
fd−1(p

′
j)

and this prove that p′1, . . . , p
′
a are base points for RP. Furthermore

rP = lP − l̂P − 1 = l2,d−1(1
a),

thus LP cuts the complete series on R.

Corollary 27. In the same notation as above, if L3,d−2(2
c) and L3,d−3(2

c)

are non-special, then the system L3,d(2
n) is non-special too.

Putting all together, we obtain the following

Theorem 28. Let d ≥ 3. For a general collection of n double points, the

linear system L3,d(2
n) is non-special, except if (d, n) = (4, 9).

Proof. The cubic and quartic cases have been analysed separately in Section

3.1. We will apply induction for d ≥ 5. The first case we meet is L3,5(2
n): for

n = 14 the system has virtual dimension equal to −1. Proposition 23 shows

that it is non-special. The sextic case has been already analysed above. For

d ≥ 7, we have to study non-speciality of Lr,d(2
n), supposing that the thesis

is true for every smaller degree. Consider the following possibilities:
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1. Let either d = 3k+2 or d = 3k+1, k ≥ 2. We know by induction that

Lr,d−1(2
n−b) and Lr,d−2(2

n−b) are non-special, so we conclude using

Proposition 23.

2. If d = 6k, k ≥ 2, then we exploit Corollary 27; while if d = 6k + 3,

k ≥ 2, we apply Proposition 25.

3.3 The proof in higher dimension

This last Section is devoted to the proof of the following

Theorem 29. Let r ≥ 4 and d ≥ 5. Then the system Lr,d(2
n) is non-

special.

We will study linear system of hypersurfaces of Pr, with r ≥ 4, of degree

d ≥ 5 with a collection of n nodes in general position; in this range we will

never deal with special cases. Take n general points, such that n−(r, d) ≤

n ≤ n+(r, d), then the linear system L = Lr,d(2
n) has expected dimension

e(L ) =

{
−1 + l− if n = n−

−1 if n = n+

We will show that L has the expected dimension by induction on r and on d,

exploiting as base steps the case of cubics and quartics, for the induction on

the degree, and the case of surfaces of P3 for the induction on the dimension.

The technique will be the usual one: we will perform (1, b)-degenerations,

trying to find a good specialization of the n points on the components F and

P of the special fiber.

Let us define the number

b0 :=
1

r

(
r + d − 1

r − 1

)
.

If it is an integer, we will specialize b = b0 point on F; if, on the contrary, b0

is not an integer, then we will construct a further degeneration of the central

fiber letting some of the points go to the intersection of the components, as

we already did in P3 for d = 6 and d ≡ 3 (mod 6).

Case b0 ∈ Z. Specializing b = b0 points on the component F of the central

fiber, and the remaining n − b on P, we get :

LF = Lr,d(d − 1, 2b) L̂F = Lr,d(d, 2b) ∼= Lr−1,d(2
b)

LP = Lr,d−1(2
n−b) L̂P = Lr,d−2(2

n−b)
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Proposition 30. Keep the same notation as above. Assume that the linear

systems Lr−1,d(2
b)(∼= L̂F), LP and L̂P are non-special. Then the linear

system L is non-special too.

Proof. The system L̂F is special of dimension lr−1,d(2
b); the system

Lr−1,d(2
b) is non-special, by assumption, and moreover vr−1,d(2

b) = −1;

therefore the kernel system L̂F is empty. As a consequence, the system LF

is non-special, by Lemma 11 and it cuts the complete series

RF = Lr−1,d−1(1
b)

on R, by Lemma 12. Furthermore the restricted systems intersect transver-

sally.

The system LP = Lr,d−1(2
n−b) on the component P in non special, by

assumption and it is nonempty, in fact

vP =

(
r + d − 1

r

)
− 1 − (r + 1)(n − b)

≥

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− l+ +

r + 1

r

(
r + d − 1

r − 1

)

= b − l+ − 1 > −1

The kernel system L̂P = Lr,d−2(2
n−b) is non-special and

v̂P =

(
r + d − 2

r

)
− 1 − (r + 1)(n − b)

≤ −

(
r + d − 2

r − 1

)
− 1 + b + l− ≤ −1.

Moreover the dimension of the intersection R of the restricted systems on

R is

dim(R) = max{−1, lP − b} =

{
−1 + l− if n = n−

−1 if n = n+ .

Now, we can compute the dimension of the limiting system L0 on the central

fiber with our recursive formula (formula (2.8)):

l0 = dim(R) + l̂P + l̂F + 2 = dim(R) = e(L ).

Therefore, by upper semicontinuity, the system L is non-special.

Case b0 /∈ Z. We want to analyse the cases in which performing a (1, b)-

degeneration is not enough. Let us first of all explain why the (1, b)-

degeneration approach does not suffice. For example when L is expected to

be empty, namely if n = n+, we would like to find a specialization of the n
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nodes on the components of the special fiber, such that both kernel systems

and also the intersection of the restricted systems are empty. Looking for

an integer b such that L̂F is empty, we notice that the minimal one is

b =

⌈
1

r

(
r + d − 1

r − 1

)⌉
=

1

r

(
r + d − 1

r − 1

)
+

l′

r
;

but we would have a problem with the dimension of the intersection of the

restricted systems R on R (which we wish to be empty); indeed

lP − b =

(
r + d − 1

r

)
− 1 − (r + 1)n + rb

=

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− l+ +

(
r + d − 1

r − 1

)
+ l′ = −1 − l+ + l′

and we are not able to check if l′ ≤ l+. On the other hand, if we choose

b =

⌊
1

r

(
r + d − 1

r − 1

)⌋
,

then L̂F, which has dimension lr−1,d(2
b), is nonempty.

Thus, we degenerate the central fiber X0 is such a way that some of the

points specialized on F approach the intersection R with the exceptional

component, in order to avoid this arithmetical problem. Let us construct

the trivial family Z = Z ×∆, where ∆ is a disc centered at the origin, with

reducible fibers Zs = Fs ∪ Ps, see Section 2.3. Consider the scheme given

by a collection of n nodes such that b of them lie on Fs and the other n− b

lie on Ps, for s 6= 0. We suppose that such a scheme degenerates in the

following way: the limit on the central fiber Z0 of the b points on Fs is a

scheme given by β ≤ b general points on the intersection R0 of F0 and P0

and b − β general points on F0 \ R0.

Let L ′
s be the system on the general fiber, which corresponds to the limit

system of the first degeneration, i.e. L ′
s = L ′

Ps
×R′

Ps
∩R′

Fs
L ′

Fs
. If we prove

that the system L ′
0, which is the limiting system of the second degeneration,

has dimension equal to e(L ), we conclude, by upper semicontinuity, that

L is non-special. We have to choose integers b and β such that the system

L ′
0 has dimension equal to e(L ). Let β be defined as follows:

1

r

(
r + d − 1

r − 1

)
=

⌊
1

r

(
r + d − 1

r − 1

)⌋
+

β

r
, β ∈ {0, . . . , r − 1}.

Choose

b =
1

r

(
r + d − 1

r − 1

)
−

β

r
+ β ∈ Z.
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From now on, we assume that the systems Lr−1,d(2
b−β), Lr,d−1(2

n−b+β)

and Lr,d−2(2
n−b) are non-special.

Consider the following exact restriction sequence on the component F0:

0 → L̂
′
F0

= Lr,d(d, 2b−β, 1β) → L
′
F0

→ R
′
F0

= Lr−1,d−1(1
b−β , 2β) (3.3)

The kernel system has dimension

l̂′
F0

= lr−1,d(2
b−β , 1β)

= vr−1,d(2
b−β , 1β)

=

(
r + d − 1

r − 1

)
− 1 − r(b − β) − β = −1

so it is empty. The system L ′
F0

is non-special by Lemma 16, in fact

b ≤
1

r

(
r + d − 1

r − 1

)
+ r − 1

≤
1

r + 1

(
r + d

r

)
−

1

r + 1

(
r + d − 2

r

)
− (r − 2) −

r

r + 1
≤ k(r, d)

for d ≥ 6, if r = 4, 5 and for d ≥ 5 if r ≥ 6 and moreover the points are in

general position being β < b. (Notice that if r = 4, d = 5 then b0 ∈ Z, so

this case is already covered in the previous section; while if r = 5, d = 4 we

have b = 26 ≤ k(5, 5) = 29, so L ′
F0

is anyhow non-special.)

As a consequence, L ′
F0

cuts the complete series on R0, namely

R
′
F0

= Lr−1,d−1(1
b−β, 2β),

in fact the b − β simple points (trace on R0 of the lines through the b −

β double points and the (d − 1)-point) are base points (see Lemma 12).

Moreover the system L̂ ′
P0

= Lr,d−2(2
n−b) is empty; indeed it is non-special

by assumption and

v̂′
P0

=

(
r + d − 2

r

)
− 1 − (r + 1)(n − b)

≤ −

(
r + d − 2

r − 1

)
− 1 − (r + 1) +

1

r

(
r + d − 1

r − 1

)
+ r2 < −1

for r ≥ 4, d ≥ 5. It remains only to prove that R′
P0

and R′
F0

intersect

transversally on R0. The intersection R′
0 is given by those divisors of R′

P0

that are singular at β further general points of R0 and passing through b−β

points, the ones imposed by R′
F0

. Let us denote by

L̂ ′
m

P0
⊆ L̂

′
P0

, L
′m
P0

⊆ L
′
P0

and R
′m
P0

= R
′
P0

(2β , 1b−β) ⊆ R
′
P0

,
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the systems defined by these matching conditions. It is clear that

dim(L̂ ′
m

P0
) = dim(L̂ ′

P0
) = −1,

therefore

dim(R′m
P0

) = dim(L ′m
P0

).

It suffices to prove that if we impose our β nodes to R′
P0

, the resulting

system

R̄
′
P0

:= R
′
P0

(2β)

is non-special, i.e. that

dim(R̄′
P0

) = dim(R′
P0

) − rβ;

the b − β simple points give b − β independent conditions being them in

general position. Notice that R′m
P0

⊆ R̄′
P0

⊆ R′
P0

, and in particular that

R′m
P0

= R̄′
P0

(1b−β).

Let L̄ ′
P0

:= Lr,d−1(2
n−b+β) ⊂ L ′

P0
be the linear system of hypersurfaces of

P0 with n − b general nodes on P0 and β general nodes on R0 ⊆ P0. Recall

that R0 is a general hyperplane for P0 and that β < r: so the n − b + β

nodes are in general position in P0.

Proposition 31 (Transversality on R′
0). Keep the same construction as

above and assume that L̄ ′
P0

and L̂ ′
P0

are non-special. Then the linear system

R̄′
P0

in non-special.

Proof. We have

dim(L̄ ′
P0

) =

(
r + d − 1

r

)
− 1 − (r + 1)(n − b + β)

≥

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− l+ + (r + 1)

⌊
1

r

(
r + d − 1

r − 1

)⌋

≥

(
r + d − 1

r

)
− 1 −

(
r + d

r

)
− r + (r + 1)

[1
r

(
r + d − 1

r − 1

)
− 1
]

= −1 +
1

r

(
r + d − 1

r − 1

)
− (2r + 1) > −1

for r ≥ 4 and d ≥ 5, therefore L̄ ′
P0

is nonempty. Consider the restriction

map of L̄ ′
P0

to R0:

L̄
′
P0

→ R̄
′
P0

;

the kernel is ˆ̄
L ′

P0
:= Lr,d−2(2

n−b, 1β) ⊆ L̂ ′
P0

= ∅. The following facts hold:

• h0(P0,
ˆ̄

L ′
P0

) = h0(P0, L̂
′
P0

) = 0;

• h1(P0, L̂
′
P0

) = l̂′
P0

− v̂′
P0

> 0,
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• h1(P0,
ˆ̄

L ′
P0

) = h1(P0, L̂
′
P0

) + β;

• h0(P0, L̄
′
P0

) = h0(P0, L
′
P0

) − (r + 1)β ≥ 0.

We get the following commutative diagram:

0 0

K(r+1)β

OO

V

OO

0

0 // H0(P0, L
′
P0

) //

OO

H0(R0, R
′
P0

) //

OO

H1(P0, L̂
′
P0

) //

OO

0

0 // H0(P0, L̄
′
P0

) //
?�

OO

H0(R0, R̄
′
P0

) //
?�

OO

H1(P0,
ˆ̄

L ′
P0

) //

OO

0

0

OO

0

OO

Kβ
?�

OO

BC

ED

@A

GF
//

0

OO

It follows that

dim(V ) = h0(R0, R
′
F0

) − h0(R0, R̄
′
P0

)

= h0(P0, L
′
P0

) + h1(P0, L̂
′
P0

) − h0(P0, L̄
′
P0

) − h1(P0,
ˆ̄

L
′
P0

)

= dim(K(r+1)β) − dim(Kβ) = rβ.

Hence H0(R0, R̄
′
P0

) has codimension equal to dim(V ) = rβ in H0(R0, R
′
P0

)

and, at the level of linear systems, we have the following equivalence:

dim(R̄′
P0

) = dim(R′
P0

) − rβ.

This concludes the proof.

As a consequence, the matching system R′m
P0

, that corresponds to the

intersection R′ of the two restricted systems, is non-special, being the b− β

base points in general position. In particular

dim(R′) = max{−1, dim(R̄′
P0

) − (b − β)} =

{
−1 + l− if n = n−

−1 if n = n+
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Proposition 32. In the above notation, assume that the linear systems

Lr−1,d(2
b−β)(∼= L̂ ′

F0
), L̄ ′

P0
and L̂ ′

P0
are non-special. Then the linear system

L = Lr,d(2
n) is non-special.

Proof. Following the argument of this section we get l′0 = e(L ). Thus we

conclude by upper semicontinuity applied to the two performed degenera-

tions.

Putting together Proposition 30 and Proposition 32, the proof of Theo-

rem 29 is now completed, and consequently also the proof of the Alexander-

Hirschowitz theorem (Theorem 2).



Part II

On the degree of the k-secant

varieties of toric surfaces
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Chapter 4

Toric varieties

4.1 Toric varieties

A separated normal variety X of dimension n is a toric variety if it contains

a torus (C∗)n as a dense open subvariety, with an action

(C∗)n × X → X

of (C∗)n on X that extends the natural action of the torus on itself. In the

practice, toric varieties arise from lattices, fans and polytopes.

Let N ∼= Zn be a lattice of rank n, that is, a finitely generated free

Abelian group of rank n. We denote by NR the associated real vector space

NR = N ⊗Z R and we set M = Hom(N, Z), which is isomorphic to Zn.

Let MR = M ⊗Z R ∼= Hom(NR, R) and denote by 〈·, ·〉 the natural pairing

MR×NR → R. Let now V be a vector space; an integral structure on V is the

datum of a lattice N such that NR = V ; we have MR = V ∨ = Hom(V, R).

Definition 6. A polyhedral cone in a vector space V is the positive hull of

a finite set of vectors of V , that is

σ := {a1v1 + · · · asvs : ai ∈ R+}.

A rational polyhedral cone in V = NR is a polyhedral cone in V which can be

generated by elements of N . A rational polyhedral cone is said to be strongly

convex if it does not contain any linear subspace; we will call such a strongly

convex rational polyhedral cone simply a cone.

The dimension of σ is the dimension of the linear space R · σ it spans.

Definition 7. The dual cone σ∨ of a rational cone σ in NR is the set:

σ∨ = {u ∈ MR : 〈u, v〉 ≥ 0,∀v ∈ σ}.
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In what follows, we will see how to construct an affine toric variety

starting from a cone. A cone σ determines a finitely generated semigroup

Sσ = σ∨ ∩ M described by

Sσ = {u ∈ M : 〈u, v〉 ≥ 0,∀v ∈ σ} ⊆ M.

The property of finite generation of Sσ is known as Gordon’s Lemma. The

algebra Aσ = C[Sσ], corresponding to the semigroup Sσ, is a finitely gener-

ated commutative C-algebra: a set of generators {ui} for Sσ determines a set

of generators {χui} for C[Sσ] as a complex vector space, with the following

operation

χu · χu′

= χu+u′

.

The C-algebra Aσ is commutative and finitely generated, so it determines

an affine variety

Uσ = Spec(Aσ)

that we call affine toric variety.

There is an order-preserving correspondence between cones and affine

toric varieties: if τ is a face of σ, then Sσ ⊂ Sτ , Aσ is a subalgebra of Aτ :

this inclusion of algebras induces a morphism of affine varieties Uτ → Uσ

which embeds Uτ as a principal open subset of Uσ.

We construct general toric varieties by combining affine ones taking fans

which are families of cones instead of single cones.

Definition 8. A fan ∆ in NR is a collection of cones such that:

1. if τ is a face of a cone σ, then τ is a cone of ∆;

2. if σ1, σ2 are cones of ∆, then σ1 ∩ σ2 is a common face of them.

We define the toric variety X(∆) as the disjoint union of the affine toric

varieties Uσ associated to the cones σ ∈ ∆, where two cones σ and σ′ with

a common face τ = σ ∩ σ′ are glued together along the affine subvarieties

Uτ . These identifications are compatible because of the order-preserving

correspondence between cones and affine toric varieties; X(∆) is separated

because the diagonal map Uτ → Uσ × Uσ′ is a closed embedding.

In the second part of this section, we describe a combinatorial way to

define projective toric varieties endowed with a base point free and ample

line bundle.

Definition 9. A convex polytope P in a vector space V of finite dimension

n, is the convex hull of a finite set A of points of V , that is a set of the form

P =

{∑

i

λiui : λi ∈ R≥0,
∑

i

λi = 1

}
.
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A face F of a polytope P is the intersection of P with a supporting affine

hyperplane. A facet of P is a face of codimension one. We call vertices the

faces of dimension zero and edges the faces of dimension one.

The normalized Ehrhart polynomial of a polytope P is the numerical func-

tion
EP : N → N

t 7→ ♯(ZA ∩ tP ).

It is known that EP is a polynomial of degree dim(P ):

EP =

dim(P )∑

i=0

ci

i!
ti.

The leading coefficient cdim(P ) is denoted by Vol(P ) and it is called the

(normalized) volume of P . If dim(P ) = n, we have

Vol(P ) =
V (P )

n!
,

where V (P ) is the usual Euclidean volume of P (see [33]). If dim(P ) = n =

2, then we write Area(P ) for the normalized volume of P .

Suppose now that V = MR. We construct from P a fan ∆P , and then a

toric variety XP = X(∆P ), as follows: for each face Q of P , define

σQ =
{
v ∈ NR : 〈u, v〉 ≤

〈
u′, v

〉
for all u ∈ Q and u′ ∈ P

}
.

Observe that σQ is the dual cone of the cone σ∨
Q consisting of all vectors

pointing from points of Q to points of P : σ∨
Q is generated by the vectors

u′ − u, where u′ and u vary among the vertices of P and Q respectively.

The σQ’s form a fan, as Q varies among the faces of P (for a complete

proof see [24]). The degree of the projective toric variety XP is equal to the

normalized volume Vol(P ) (see [33]).

The toric variety XP is irreducible, reduced, separated and normal.

4.1.1 Toric degenerations

Let P be any polytope in MR.

Definition 10. A subdivision D of P is a partition of P given by a finite

family {Qi}i∈I of convex sub-polytopes of maximal dimension such that

•
⋃

i∈I Qi = P ,

• Qi ∩ Qj, with i 6= j, is either a common face or it is empty.
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Given a piecewise linear positive function F defined over a polytope P

with values in R, define the graph polytope G(F ) to be the following object:

G(F ) := {(x, z) ∈ P × R : 0 ≤ z ≤ F (x)} .

Definition 11. A subdivision D is said to be regular if there exists a piece-

wise linear positive function F with values in R defined over P , verifying

the following requests:

(a.) each Qi is the orthogonal projection of the n-dimensional faces of G(F )

on z = 0;

(b.) F is strictly convex.

We will call such an F a lifting function (according to [26]).

Consider for example the triangle P with edges of reticular length three (and

normalized area nine) and a subdivision D of P in triangles of normalized

area one, as in Figure 4.1. This subdivision is regular, in fact there exists a

lifting function F , see Figure 4.2 for an example.

@
@

@
@

@
@@

@
@

@
@@

@
@@

Figure 4.1: A regular subdivision D of P .

Figure 4.2: A lifting function over P .

Now, let PM := P ∩M = {m0, . . . , mr} be the set of lattice points of P ,

where mi = (mi1, . . . , min), i = 1 . . . n. Given a regular subdivision D of P ,

we can define the associated morphism as follows:

ΦD : (C∗)n+1 → Pr × C

(x, t) 7→ ([tF (m0)xm0 : · · · : tF (mr)xmr ], t).
(4.1)
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The closure of ΦD((C∗)n+1), for all t 6= 0, is a variety Xt projectively equiv-

alent to XP . Let X0 be the flat limit of Xt, when t tends to zero: such a

variety is the union of the varieties XQi
, i ∈ I. Indeed, the restriction F|Qi

of F to Qi has equation a1x1 + · · · anxn + b, for some a1, . . . , an, b ∈ R; we

can always compose ΦD with the following reparametrization

x1, . . . , xn, t 7→ t−a1x1, . . . , t
−anxn, t

getting

(C∗)n+1 → Pr × C

(x, t) 7→ ([· · · : tF (mi)−FQi
(mi)xmi : · · · ], t).

For t tending to zero, we see that XQi
sits in X0. The map (4.1) can be

extended to a map

XP × C∗ → Pr

(x, t) 7→ ([tF (m0)xm0 : · · · : tF (mr)xmr ], t)

and the flat morphism

πD : ([· · · : tF (mi)−FQi
(mi)xmi : · · · ], t) 7→ t

provides a 1-dimensional embedded1 degeneration of XP to X0.

Definition 12. The flat morphism πD is said to be a toric degeneration of

the toric variety XP .

The reducible central fiber X0 is given by the subdivision D of P : the

irreducible components of X0 are the XQi
’s. Notice that if i 6= j and Qi

and Qj have a common face Qi ∩ Qj , then XQi
and XQj

intersect along

XQi∩Qj
. In the example drawn in Figure 4.1, the central fiber of the toric

degeneration is a reducible surface given by the union of nine planes, each

one corresponding to a triangle of the configuration of D; the intersection

between the components are easily depicted looking at the figure.

Definition 13. If n = 2 and the reducible central fiber X0 is a union of

planes, i.e. if the subdivision D of the polytope P is a triangulation of it,

we say that πD is a planar toric degeneration of XP .

1A degeneration π : X → ∆, with ∆ a complex disc centered at the origin, is said to

be embedded if X ⊆ ∆ × Pr and the following diagram commutes.

X

��

� � // ∆ × Pr

π

{{ww
ww

ww
ww

w

∆
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In this case the family D of sub-polytopes of P is a simplicial complex2,

whose maximal simplices are the Qi’s.

In the next chapters we will deal with toric degenerations of toric surfaces,

and we will use the notation

X0 = lim
D

X =

to say that X0 is the flat limit, for t tending to zero, of X; namely X0 is the

central fiber of the toric degeneration and Xt
∼= X is the general one.

4.2 Toric ideals

In this section we will define a special class of ideals and their interesting

properties.

Let K be any field and let K[x0, . . . , xr] be the polynomial ring in r + 1

indeterminates. Fix a subset A = {α0, . . . , αr} ⊂ Zn+1 and suppose that all

the vectors of A lie on a hyperplane of Rn+1, i.e. suppose that there exists

a vector ω ∈ Qn+1 such that ωT · αi = 1, for all i. Identify each vector ai ∈

Zn+1 with a monomial tai in the Laurent polynomial ring K[t±1
1 , . . . , t±1

n+1].

Consider the semigroups homomorphism

πA : Nr+1 → Zn+1

(u0, . . . , ur) 7→ u0α0 + · · · + urαr

and the corresponding semigroup algebras homomorphism

π̂A : K[x0, . . . , xr] → K[t±1
1 , . . . , t±1

n+1]

xi 7→
∏n+1

j=1 t
αij

j .

We denote with IA the kernel of the map π̂A and we call it the homogeneous

toric ideal of A.

Notice that a binomial of the form xu0

0 · · ·xur
r −xv0

0 · · ·xvr
r , where πA(u0, . . . , ur) =

πA(v0, . . . , vr), lies in IA. Moreover each polynomial in IA is a K-linear com-

bination of binomials of that form (for a complete proof see [33], chapter 4).

Therefore

{xu0

0 · · ·xur
r − xv0

0 · · ·xvr
r : πA(u0, . . . , ur) = πA(v0, . . . , vr)}

is a generating set for IA. The hypothesis that the αi’s lie on a hyperplane

ensures that IA is a homogeneous ideal, in fact, given u, v such that u0α0 +

2A simplex in M is the convex hull of n + 1 independent points. A simplicial complex

D is a set of simplices in M that satisfies the following conditions:

• any face of a simplex from D is also in D;

• the intersection of any two simplices Q1, Q2 ∈ D is a face of both Q1 and Q2.
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· · ·+urαr = v0α0 + · · ·+vrαr, then, multiplying by ωT on both sides, we get

u0+ · · ·+ur = v0+ · · ·+vr, therefore xu0

0 · · ·xur
r −xv0

0 · · ·xvr
r is homogeneous.

One can define in general the projective toric variety associated to any

set A; in contrast to the construction of toric varieties via polytopes, such

varieties need not be normal.

Example 1. Consider

A = AV3
=




0 1 0 2 1 0 3 2 1 0

0 0 1 0 1 2 0 1 2 3

3 2 2 1 1 1 0 0 0 0


 , ω =




1/3

1/3

1/3


 .

Let the embedding

P2 ν3→ P9

[y0, y1, y2] 7→ [x003, x102, x012, x201, x111, x021, x300, x210, x120, x030]

be the morphism associated to the map

K[x003, . . . , x030] → K[y0, y1, y2]

xijk 7→ yi
0y

j
1y

k
2

The polytope corresponding to A is a triangle with normalized area equal to

nine; the projective surface it defines is the 3-ple Veronese embedding V3 ⊆

P9 of P2 (cfr. Figure 4.1 and Figure 4.3). The lattice points of the polytope

@
@

@
@

@
@

.

. .

. . .

. . . .

x003

x102 x012

x201 x111 x021

x300 x210 x120 x030

Figure 4.3: The polytope of the Veronese surface V3 ⊆ P9.

correspond to the homogeneous coordinates xijk of P9. The toric ideal IV3
of

V3 is generated by the quadratic binomials xi1,j1,k1
xi2,j2,k2

− xi3,j3,k3
xi4,j4,k4

such that (i1 + i2, j1 + j2, k1 + k2) = (i3 + i4, j3 + j4, k3 + k4). Its ideal has a

nice determinantal presentation, namely it is generated by the 2× 2 minors

of the following catalecticant matrix:

A =




x300 x210 x201 x120 x111 x102

x210 x120 x111 x030 x021 x012

x201 x111 x102 x021 x012 x003






62 Toric varieties

Example 2. Let δ1, δ1 ∈ {0, 1, 2, . . . }, δ1 ≤ δ2, and let δ = δ1 + δ2. The

rational normal scroll S(δ1, δ2) is the toric surface of degree δ in Pδ+1 cor-

responding to:

A = Aδ1,δ2 =




1 1 · · · 1 0 0 · · · 0

0 0 · · · 0 1 1 · · · 1

0 1 · · · δ1 0 1 · · · δ2


 , ω =




1

1

0




To each vector of A corresponds a coordinate of Pδ+1. Let

K[x100, . . . , x1,0,δ1 , x010, . . . , x0,1,δ2 ]

be the coordinate ring of Pδ+1. The corresponding polytope is the trapezium

drawn in Figure 4.4. The ideal Iδ1,δ2 of S(δ1, δ2) is generated by the bino-

HHHH

. . . . .

. . . . . . .
x100 x101 x10δ1

x010 x011 x01δ2

. . .

. . .

Figure 4.4: The polytope of the rational normal scroll S(δ1, δ2) ⊆ Pδ+1.

mials xi1,j1,k1
xi2,j2,k2

− xi3,j3,k3
xi4,j4,k4

such that (i1 + i2, j1 + j2, k1 + k2) =

(i3 + i4, j3 + j4, k3 + k4), i.e. Iδ1,δ2 is generated by the 2 × 2 minors of

M = Mδ1,δ2 =

(
x100 . . . x1,0,δ1−1 x010 . . . x0,1,δ2−1

x101 . . . x1,0,δ1 x011 . . . x0,1,δ2

)

For a complete reference see [18, 32].

4.2.1 Initial ideals and regular triangulations

In this section we will briefly recall what the initial ideal of a toric ideal with

respect to a term order is (for a complete reference see [33]).

A term order ≺ on Nr+1 is a total order such that the zero vector is the

unique minimal element with respect to ≺ and such that if α ≺ β then

α + γ ≺ β + γ, for all α, β, γ ∈ Nr+1. Given a homogeneous polynomial f

and a term order ≺, the (unique) initial monomial of f with respect to ≺ is

denoted by in≺(f). If I ⊆ K[x0, . . . , xr] is any ideal, then the corresponding

initial ideal is the monomial ideal

in≺(I) := 〈in≺(f) : f ∈ I〉 ⊆ K[x0, . . . , xr].

The passage from I to its initial ideal is a flat deformation: the zero set of I

is deformed into the zero set of in≺(I) which is a union of linear coordinate

subspaces. This operation, when I defines a projective toric variety X of
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any dimension n, corresponds to performing a toric degeneration of X to

a union of Pn’s. The initial complex ∆≺(I) of an ideal I with respect to

≺ is the simplicial complex whose Stanley-Reisner ideal, or non-face ideal,

is the radical of in≺(I), i.e. it is the simplicial complex on the vertex set

{0, . . . , r} defined by the following rule: a subset F ⊆ {0, . . . , r} is a face of

the complex if do not exist polynomials f ∈ I such that in≺(I) has support

on F (see [23], Section 15.8 and [33], chapter 8).

Let A ⊆ Zn+1 be the vector configuration of any toric ideal IA. Let γ

be a subset of A and consider the cone spanned by γ, denoting it by pos(γ).

Definition 14. A triangulation of A is a collection D of subsets of A such

that the set

{pos(γ) : γ ∈ D}

is the set of cones in a simplicial fan whose support is pos(A), i.e. the convex

hull of the vectors of A.

Notice that pos(A) is a polytope in Rn and a triangulation of A is a

toric degeneration of the toric variety X = V(IA). Regular triangulations

correspond to regular toric degenerations.

The radical of in≺(IA) is a squarefree monomial ideal whose corresponding

initial complex ∆≺(IA) is a regular triangulation of A. Conversely, every

regular triangulation of A can be interpreted as ∆≺(IA), for some ≺ ([33],

Theorem 8.3).

A triangulation is said to be full if every vector of A is the vertex of some

simplex in the triangulation. It is said to be unimodular if all the maximal

simplices have normalized volume equal to one, i.e. it is a tetrahedron with

edges of lattice length one (a triangle if n = 2). Full unimodular regular

triangulations correspond to toric degenerations to unions of Pn’s.
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Chapter 5

Secant varieties of toric

surfaces

In this chapter we will introduce the concept of k-secant variety of a variety

and in particular, in the toric case, we will define what a k-delightful toric

degeneration is.

5.1 k-secant varieties

Let X ⊂ Pr be an irreducible, non-degenerate, projective variety of di-

mension n. Fix an integer k ≥ 1 and consider the k-th symmetric prod-

uct Symk(X). We define the abstract k-th secant variety of X, Sk
X ⊆

Symk(X) × Pr, as the Zariski closure of the set

{((x0, . . . , xk), z) ∈ Symk(X) × Pr : dim(π) = k and z ∈ π}

where π = 〈x0, . . . , xk〉. It is irreducible of dimension (k +1)n+k. Consider

the projection pk
X on the second factor and define the k-th secant variety of

X

Seck(X) := pk
X(Sk

X)

as the image of Sk
X in Pr, i.e.

Seck(X) =
⋃

xi∈X, dim(〈x0,...,xk〉)=k

〈x0, . . . , xk〉 ⊆ Pr.

It is an irreducible algebraic variety of dimension

dim(Seck(X)) ≤ min{(k + 1)n + k, r} (5.1)

Definition 15. The right hand side of (5.1) is called the expected dimension

of Seck(X). If strict inequality holds, the k-secant variety of X does not have

the expected dimension and X is said to be k-defective.
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The general fiber of pk
X is pure of dimension (k+1)n+k−dim(Seck(X));

denote by µk(X) the number of irreducible components of this fiber. If

dim(Seck(X)) = (k + 1)n + k ≤ r,

then pk
X is generically finite and µk(X) = deg(pk

X), i.e. µk(X) is the number

of (k + 1)-secant Pk’s to X passing through the general point of Seck(X).

This number is equal to one unless X is k-weakly defective; the weakly

defective surfaces are classified in [13].

Suppose now that Seck(X) is not k-defective and that dim Seck(X) =

(k + 1)n + k. Let L be a general linear subspace of Pr of codimension

dim(Seck(X)): X has

νk(X) = µk(X) · deg(Seck(X))

(k + 1)-secant Pk’s meeting L. Let πL be the projection of X from L to

P(k+1)n+k−1: the image X ′ of X has νk(X) new (k + 1)-secant Pk−1’s that

X did not use to have.

Definition 16. Let X ⊂ Pr as above, with r ≥ (k + 1)n + k. The number

νk(X) is called the number of apparent (k + 1)-secant Pk−1’ s to X.

In particular ν1(X) corresponds to the number of double points that X

acquires in a general projection to P2n, ν2(X) is the number of trisecant

lines in a general projection of X to P3n+1 and so on.

Notice that if νk(X) = 1, then Seck(X) = Pr and µk(X) = 1 which

means that for a general points of Seck(X) there is a unique (k + 1)-secant

Pk.

If one is able to compute the number of apparent (k + 1)-secant Pk−1 of

X, one can say something about the degree of its k-secant variety.

We will deal with the surface case. Let X be a smooth surface, the Sev-

eri’s double point formula gives the number of nodes of a general projection

of X to P4:

ν1(X) =
d(d − 5)

2
− 5g + 6pa − K2 + 11, (5.2)

where d is the degree, g is the sectional genus, pa is the arithmetic genus

and K is the canonical divisor of X. In particular, if X = XP is a projective

toric surface, then

ν1(X) =
d2 − 10d + 5B + 2V − 12

2
, (5.3)

where d is the normalized area of the polytope P , B is the number of lattice

points on the boundary and V is the number of vertices of P , see [22].
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If X does not contain lines, a formula for ν2(X), known as the LeBarz’

trisecant formula for surfaces in P7 (see [29, 30]), is

ν2(X) =
d3 − 30d2 + 224d − 3d(5h + K2 − c2) + 192h + 56K2 − 40c2

6
(5.4)

where H is the hyperplane divisor, c2 is the second Chern class of X and

h = HK; if the surface X contains a finite number of lines, the contribution

of each line to ν2(X) is

−

(
4 + a

3

)
,

where a ∈ Z is its self-intersection.

For the rational normal surface scrolls there is a formula for the number of

trisecant lines of a general projection of X to P7, due to C. James (see [27]):

ν2(X) =

(
d

3

)
− 2d2 + 12d − 3dg + 20g − 20. (5.5)

There are similar, but more complicated, formulas for the number νk(X) in

the curve case (see [2], chapter VIII), and in the surface case, if X does not

contain any line, for k ≤ 5 (see [29, 30]).

5.2 k-secant ideals

Let I be an ideal in the polynomial ring K[x0, . . . , xr]. The secant of I

I{1} = I ∗ I

is an ideal in K[x0, . . . , xr] defined in the following way: take the polynomial

ring K[x, y] = K[x0, . . . , xr, y0, . . . , yr] and consider the map

K[x, y] → K[x, y]

xi 7→ yi,

for i = 0, . . . , r. Denote with I ′ the image of I under that map. Then I{1}

is the elimination ideal
(
I ′ + I ′ + 〈2yi − xi : 0 ≤ i ≤ r〉

)
∩ K[x0, . . . , xr].

Similarly, we define the 2-secant of I as

I{2} = I ∗ I ∗ I

and the k-secant of I as

I{k} =

k+1︷ ︸︸ ︷
I ∗ · · · ∗ I .

See [32] for a complete reference.

For homogeneous prime ideals, the k-secant ideals represent the prime ideals

of the k-secant varieties of irreducible projective varieties.
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Secants of edge ideals

Let I = IA ⊆ K[x0, . . . , xr] be the homogeneous toric ideal defining a

projective toric variety and let ≺ be any term order on K[x0, . . . , xr]. Set

I0 := in≺(I). Let ∆ be the simplicial complex of I0 (see Section 4.2.1).

Moreover define ∆{k} to be the simplicial complex of I
{k}
0 whose faces are

the subset F of A such that there are no monomials in I
{k}
0 having support

on F . The simplices in ∆{k} are unions of k + 1 simplices in ∆ (see [32],

Remark 2.9).

In the case of edge ideals, we can simplify the study of secant ideals by

considering the coloring properties of the graph they reflect. An edge ideal

I(G) is an ideal generated by the squarefree quadratic monomials xixj cor-

responding to the edges {i, j} of a graph G with vertex set {0, . . . , r}. The

chromatic number χ(G) of a graph is the minimal number of colors which

can be used to color the vertices of G in such a way that no adjacent vertices

have the same color; it corresponds to the smallest k such that the secant

ideal I(G){k−1} is zero. The ideal I(G){k−1} has a nice combinatorial de-

scription. Given a subset V ⊆ {0, . . . , r} of the vertex set of G, we write

GV for the sub-graph of G which is induced on the set of vertices V ; let

mV =
∏

i∈V xi be the monomial corresponding to G.

Theorem 33. The k-secant ideal I(G){k} of an edge ideal I(G) is generated

by the squarefree monomials mV whose corresponding sub-graph GV has

chromatic number strictly greater than k + 1:

I(G){k} = 〈mV : χ(GV ) > k + 1〉 .

For a proof see [32]. This result is very helpful to compute the degree of

the k-secant varieties, via toric degenerations.

Example 3. For example, consider the triangle in Figure 5.1 (cfr. Table

6.1, sixth row): it describes a toric singular sextic surface X ⊆ P6. The
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Figure 5.1: A triangle.

ideal IX of X is generated by the following quadratic binomials:

x0x3 − x2
1, x0x5 − x2

2, x3x5 − x2
4, x4x6 − x2

5, x0x4 − x1x2,

x2x3 − x1x4, x1x5 − x2x4, x1x6 − x2x5, x3x6 − x4x5
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Now, consider the subdivision D of X in Figure 5.1 on the right. The

initial ideal I0 with respect to this planar toric degeneration is an edge ideal:

I0 = I(G), where G is the graph with vertex set {0, . . . , 6} and edge set the

set of the non-edges of D:

{{0, 3}, {0, 5}, {3, 5}, {4, 6}, {0, 4}, {2, 3}, {1, 5}, {1, 6}, {3, 6}},

where the vertex i of G corresponds to the coordinate xi of P6. Therefore

I0 = 〈x0x3, x0x5, x3x5, x4x6, x0x4, x2x3, x1x5, x1x6, x3x6〉 ,

and, by Theorem 33

I
{1}
0 = 〈x0x3x5〉 ,

in fact the only squarefree monomial of degree three such that the xi’s are

pairwise disjoint is x0x3x5.

Example 4. Consider the surface X defined by the polytope in Figure 5.2

(cfr. Table 6.1, eleventh row). It is a singular surface of degree eight in P8

HHHHHHHH
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. . . . .

x0

x1 x2 x3

x4 x5 x6 x7 x8
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@�

�HHHH

PPPPPPx x

x

Figure 5.2: A triangle.

whose ideal is generated by the 2 × 2 minors of the following matrix:

C =




x4 x5 x1 x6

x5 x6 x2 x4

x1 x2 x0 x3

x6 x4 x3 x8




The initial ideal I0 with respect to the triangulation in the right hand side

of Figure 5.2 is

I0 = 〈x0x4, x0x5, x0x6, x0x7, x0x8, x1x3, x1x5, x1x6, x1x7, x1x8,

x3x4, x3x5, x3x6, x3x7, x4x6, x4x7, x4x8, x5x7, x5x8, x6x8〉 .

It is an edge ideal: the corresponding graph G has as edge set the non-edges

of D, i.e. the pairs {i, j} such that there is not an edge joining the vertices

i and j. Moreover

I
{1}
0 = 〈x0x4x6, x0x4x7, x0x4x8, x0x5x7, x0x5x8, x0x6x8, x1x3x5,

x1x3x6, x1x3x7, x1x5x7, x1x5x8, x1x6x8, x4x6x8〉
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and

I
{2}
0 = 〈x0x4x6x8〉 .

Therefore, using for example the software CoCoA ([15]), one can compute

the Hilbert polynomial, and in particular the degree and the dimension, of

the algebraic varieties that I
{1}
0 and I

{2}
0 respectively define: V(I

{1}
0 ) has

dimension five and degree three, while V(I
{2}
0 ) has dimension seven and

degree four.

The ideals of some toric surfaces and of their k-secant varieties

In this section we briefly investigate the ideals of the toric surfaces we will

deal with in the last chapter.

Consider first of all the surface X defined by the polytope in Figure 5.2,

cfr Example 4. The secant variety Sec(X) of X is generated by the minors

of C of order three, so it has dimension five as expected and degree eight;

the variety Sec2(X) is defined by det(C), so it is a hypersurface of degree

four, and in particular X is 2-defective.

Let now S8 ⊆ P8 be the embedding of the smooth quadric P1 × P1 via

O(2, 2). The defining configuration is

A =




1 1 1 1 1 1 1 1 1

0 1 2 0 1 2 0 1 2

0 0 0 1 1 1 2 2 2


 , ω =




1

1

0




A reference is for example [32]. The embedding is the one associated to the

map
K[x0000, . . . , x1111] → K[y0, y1; z0, z1]

xijkl 7→ yiyjzkzl.

The corresponding polytope is the four sided polygon of edge length two

with a unique internal lattice point, for example a square as in Figure 5.3

(cfr. Table 6.1, tenth row). The toric ideal IS8
of S8 in generated by the

. . .

. . .

. . .

x0011 x0111 x1111

x0001 x0101 x1101

x0000 x0100 x1100

Figure 5.3: A polytope of S8.

2 × 2 minors of the matrix

B =




x0000 x0001 x0100 x0101

x0001 x0011 x0101 x0111

x0100 x0101 x1100 x1101

x0101 x0111 x1101 x1111


 ;
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I
{1}
S8

is generated by the 3 × 3 minors of B, so deg(Sec(S8)) = 10. The

variety Sec2(S8) is a quartic hypersurface defined by det(B) = 0, then S8 is

2-defective.

Now we consider the 3-ple Veronese embedding V3 of P2 in P9 (described

in Example 1, cfr. Table 6.1, last row) and some further toric surfaces which

can be obtained as projection of V3 from a finite number of general points

on it. The (toric) ideal of V3 is generated by the 2×2 minors of A. The ideal

I
{1}
V3

of Sec(V3) is generated by the 3 × 3 minors of A by a result of Kanev

(see [28]). Therefore V3 is not 1-defective and deg Sec(V3) = 15. Moreover

Sec2(V3) is a hypersurface, as expected, and it has the quartic Aronhold

invariant of ternary cubic as equation (see for example [32]).

Consider the Del Pezzo surface X8 of degree eight in P8. Its toric con-

figuration corresponds to AV3
without the vector T (0, 0, 3) (or T (0, 3, 0) or

T (3, 0, 0) by symmetry). The associated polytope is the one represented in

Figure 5.4 (or in Figure 5.5 respectively).
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Figure 5.4: A polytope of X8.
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Figure 5.5: Other polytopes of X8.

Notice that this toric surface is obtained, starting from V3, by projecting

from the point [0, . . . , 0, 1] ∈ V3 ⊆ P9, as Figure 5.4 suggests. The (toric)

ideal IX8
of X8 is generated by the 2 × 2 minors of the matrix A8 obtained

from A by erasing the last column (the one containing the coordinate x003).

Indeed X8 is embedded in P8 via the linear system of plane cubics passing

through [0, 0, 1] ∈ P2, i.e. the cubic curves not containing the monomial y3
2,

where y0, y1, y2 are homogeneous coordinates for P2, which corresponds to

the coordinate x003 of P9. Therefore

IX8
= IV3

∩ K[x̂003, · · · , x030].

The secant variety of the projection of a variety equals the projection of

the secant variety of that variety. Therefore the ideal I
{1}
X8

of Sec(X8) is
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generated by the 3 × 3 minors of A8, it has the expected dimension and

deg(Sec(X8)) = 10. Moreover Sec2(X8) fills up P8 as expected. Indeed,

let ν8 be the embedding of P2 in P8, via the linear system of cubic curves

through a fixed point q ∈ P2 such that ν8(P
2) = X8. Let p1, p2, p3 be gen-

eral points of P2; the linear system L = L2,3(2
3, 1) of plane cubics singular

at p1, p2, p3 and passing through q corresponds to the linear system of hy-

perplanes of P8 tangent to X8 at ν8(p1), ν8(p2), ν8(p3); its base locus is the

general tangent space to Sec2(X8). Now, the non-speciality of L is equiva-

lent to the 2-non-defectivity of X8, by Terracini’s Lemma (see Section 1.2).

The same holds for the surfaces described by the polytopes in Figure 5.5.

Let now Xi ⊆ Pi be the Del Pezzo surface of degree i, for i = 6, 7: X7 is

obtained from X8 by projecting from a general point; X6 is obtained from

X7 by projecting from a further general point. The corresponding polytopes

are drown in the seventh row and in the third row of Table 6.1 respectively.

The ideal IXi
of Xi, for i = 6, 7, is generated by the 2 × 2 minors of the

matrix Ai obtained by erasing from A the right columns, in the same way

as above. The ideal I
{1}
Xi

is generated by the 3 × 3 minors of Ai. With an

easy computation we get that deg(Sec(X6)) = 3, Sec2(X6) = P6 and that

deg(Sec(X7)) = 6, Sec2(X7) = P7. (For a reference see for example [10]).

Now, exploiting the same rule, we complete the description of the toric

surfaces in Table 6.1. Let X be the toric surface in P7 obtained as im-

age of V3 under the projection of P9 to P7 from the line {xijk = 0 :

(i, j, k) 6= (0, 0, 3), (1, 0, 2)} ⊆ P9 or from the line {xijk = 0 : (i, j, k) 6=

(0, 0, 3), (0, 1, 2)} ⊆ P9: the corresponding polytopes are drawn in the eighth

row of Table 6.1. As above, the ideal of X and of its secant variety are gen-

erated by the minors of order two and three respectively of the matrix ob-

tained by erasing from A the two corresponding columns: deg(Sec(X)) = 6

and Sec2(X) = P7.

By projecting from a further point to P6, we get the toric surfaces of degree

six whose polytopes are drown in the fourth and the fifth rows: the secant

varieties have degree three and the varieties of trisecant planes fill up P6.

By projecting from a further point to P5, we get the toric quintic surfaces

defined by the polytopes in the first two rows whose secant varieties fill up

P5.

Finally, consider the rational normal surface scrolls S(δ1, δ2) ⊆ Pδ+1,

where δ = δ1 + δ2 and δ1 ≤ δ2 (cfr. Example 2), whose polytopes are the

trapezia drown in Table 6.2. All the secant ideals of S(δ1, δ2) are known to

have determinantal presentations, see for example [32] for a recent reference.
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Define

M
{1}
δ1

=




x100 . . . x1,0,δ1−2

x101 . . . x1,0,δ1−1

x102 . . . x1,0,δ1


 , M

{1}
δ2

=




x010 . . . x0,1,δ2−2

x011 . . . x0,1,δ2−1

x012 . . . x0,1,δ2


 .

If δi ∈ {0, 1}, then M
{1}
δi

denotes the empty matrix. Let δ ≥ 5. If δ1 ≥ 2,

the ideal I
{1}
δ1,δ2

is generated by the 3 × 3 minors of the matrix

M{1} = M
{1}
δ1,δ2

=
(

M
{1}
δ1

M
{1}
δ2

)
,

while if δ1 ∈ {0, 1}, then I
{1}
δ1,δ2

is generated by the 3 × 3 minors of M
{1}
δ2

.

Define

M
{2}
δ1

=




x100 . . . x1,0,δ1−3

x101 . . . x1,0,δ1−2

x102 . . . x1,0,δ1−1

x103 . . . x1,0,δ1


 , M

{2}
δ2

=




x010 . . . x0,1,δ2−3

x011 . . . x0,1,δ2−2

x012 . . . x0,1,δ2−1

x013 . . . x0,1,δ2


 .

If δi ∈ {0, 1, 2}, M
{2}
δi

is the empty matrix. Let δ ≥ 8. The ideal I
{2}
δ1,δ2

, if

δ1 ≥ 3, is generated by the 4 × 4 minors of

M{2} = M
{2}
δ1,δ2

=
(

M
{2}
δ1

M
{2}
δ2

)

while if δ1 ∈ {0, 1, 2}, I
{2}
δ1,δ2

is generated by the 4 × 4 minors of M
{2}
δ2

. The

trick is the same for k ≥ 3.

We are interested in Seck(S(δ1, δ2)), for k = 1, 2 and δ1 ≤ 2, as we will

appreciate in the next chapter. We can easily compute the dimensions and

the degrees.

δ1 = 0: S(0, δ) is a rational cone over a rational normal curve Cδ ⊆ Pδ ⊆

Pδ+1 of degree δ.

– Sec(S(0, δ)) = Pδ+1 if δ ≤ 3, while S(0, δ) is 1-defective if δ ≥ 4;

– Sec2(S(0, δ)) = Pδ+1 if δ ≤ 5, while S(0, δ) is 2-defective if δ ≥ 6.

δ1 = 1:

– Sec(S(1, δ − 1)) = Pδ+1 if δ ≤ 4, while Sec(S(1, δ − 1)) has di-

mension five and degree
(
δ−2
2

)
for δ ≥ 5, using formula (5.2);

– Sec2(S(1, δ − 1)) = Pδ+1 if δ ≤ 6, while S(1, δ − 1) is 2-defective

if δ ≥ 7.

δ1 = 2:
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– For the 1-secant variety of S(2, δ − 2) the same things as for the

scroll S(1, δ − 1) hold;

– Sec2(S(2, δ − 2)) = Pδ+1 if δ ≤ 7, while Sec2(S(2, δ − 2)) has

dimension eight and degree
(
δ
3

)
−2((δ−3)2+1) for δ ≥ 8, applying

formula (5.5).

5.3 k-delightfulness and k-secant degree

Let ≺ be any term order. The initial ideal of the k-secant ideal I{k} of I is

contained in the k-secant of the initial ideal of I, for k ≥ 1:

in≺(I{k}) ⊆ (in≺(I)){k}. (5.6)

For a reference see for example [32], Corollary 4.2.

Definition 17. If equality holds in (5.6), then ≺ is said to be k-delightful

for the ideal I. It is said to be delightful for I if it is k-delightful for I, for

every k ≥ 1.

Let us go back to Example 3, Section 5.2. The initial ideal in≺(I
{1}
X ),

i.e. the ideal of the flat limit of Sec(X) with respect to D, must contain

I
{1}
0 , by (5.6). Moreover, the dimension (and also the degree) is preserved

under flat deformations, so

dim(Sec(X)) = dim(V(in≺(I{1}))) ≥ dim(V(I
{1}
0 )) = 5,

then Sec(X) is a hypersurface of P6. Its defining equation is given by a

homogeneous cubic polynomial whose initial term, with respect to the term

order associated to the triangulation D, is x0x3x5. Therefore deg(Sec(X)) =

3.

Let us look now at Example 4 (see Section 5.2). We have that

deg(Sec(X)) = 6 > deg I
{1}
0 = 3,

then the term order associated to the degeneration D is not 1-delightful for

the ideal of X. Furthermore, one can check that the monomial x0x4x6x8

defining I
{2}
0 is the initial term of the quadratic polynomial det(C) defining

Sec2(X), thus X is 2-delightful.

k-delightful toric degenerations

Let D be a toric degeneration of a toric variety X of dimension n. Any

subset of D of m pairwise disjoint planes, i.e. m(n + 1) vertices of D such

that they form the vertices of m disjoint tetrahedra of D, will span a linear
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subspace of Pr of dimension m(n + 1) − 1. A subset of this type is said

to be a skew m-set ; we denote by Nm(D) the set of such skew m-sets and

by νm(D) its cardinality, see [16, 32]. Consider the following result, due to

Sturmfels and Sullivant ([32], Theorem 5.4), which gives a lower bound to

the number νk(X) for toric varieties.

Theorem 34. If there exists a toric degeneration D of X to a union of Pn’s

with at least one skew (k + 1)-set, then Seck(X) has the expected dimension

and νk(X) is bounded below by the number of skew (k + 1)-sets:

νk(X) ≥ νk+1(D). (5.7)

Proof. Notice first of all that it must be (k +1)n+k ≤ r. Let I be the ideal

of X and let I0 = in≺(I) be the ideal of the central fiber X0. The simplicial

complex of X0 is D; let D{k} be the simplicial complex of I
{k}
0 : the simplices

in D{k} are the unions of k+1 simplices in D, (see [32], Remark 2.9). Notice

that the simplices of D{k} of maximal dimension are the skew (k + 1)-sets

and the subspaces they span sit in the flat limit of Seck(X). Therefore, if

there exists at least one skew (k+1)-set in D, then Seck(X) has the expected

dimension (k + 1)n + k, having at least an irreducible linear component of

dimension (k + 1)n + k.

Moreover, the toric variety described by D{k} is the reduced union of the

coordinate subspaces in Pr given by the skew (k + 1)-sets. Notice that

different skew (k + 1)-sets could span the same subspace π of Pr and that

for the general point of π there is a unique subspace of dimension k meeting

the k + 1 planes each at a point, for each skew (k + 1)-set spanning π.

Furthermore, the limit of the k-secant variety of X contains the variety

defined by the k-secant of I0, by the (5.6), thus inequality (5.7) is proven.

Sturmfels and Sullivant in [32] conjectured that if the lower bound in

(5.7) holds with equality, then D is k-delightful. We will call such degener-

ations k-delightful, according to Ciliberto, Dumitrescu e Miranda in [16].

Now, consider the two following examples. Let V3 be the Veronese surface

in P9. We have deg(Sec(V3)) = 15 and µ1(V3) = 1, therefore ν1(V3) = 15

is the number of nodes that X acquires in a general projection to P4. Let

D be the triangulation shown in Figure 5.6: ν3(D) = 12: twelve nodes of

the image of X in P4 correspond to the pairs of planes that are disjoint in

X0, but whose projections meet in P4; so D is not 1-delightful because strict

inequality holds in (5.7).

As a second example consider the Del Pezzo surface X6 of degree 6 in P6:

ν1(X6) = deg(Sec(X6)) = 3. Consider the triangulation D′ of the hexagon

in Figure 5.7. We get ν2(D
′) = 0.
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Figure 5.6: A planar degeneration of V3.
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Figure 5.7: A planar degeneration of X6

In both cases the sextuple central point, marked in the figures, causes an

obstruction to the presence of skew 2-sets in D and in D′: in both examples

it counts for three more nodes in a general projection to P4.

How do the singularities of the configuration influence the lack of de-

lightfulness? This question was asked in [16] by Ciliberto, Dumitrescu and

Miranda. Our aim is to give an explanation to this phenomenon. In the

next chapter we will expose some partial results in this direction, for n = 2

and k = 1, 2.



Chapter 6

Some speculations on the

lack of k-delightfulness

Let P ⊆ MR be the defining polytope of a projective toric surface X and let

D be a planar toric degeneration of X to a union of planes X0. Let p ∈ PM

be a lattice point of P and let Q1, . . . , Qδ ∈ D be the triangles in D having

a vertex in p: Q1 ∩ · · · ∩ Qδ = {p}. Suppose that the union of the Qi’s is a

convex planar figure, namely a sub-polytope Qp of P , of (normalized) area

Area(Qp) = δ.

The configurations in Figure 6.1 are admitted, while the ones in Figure 6.2

are not admitted. Let Z = Zp be the projective toric sub-variety of degree

��@@

��@@
•p

��@@
HHH@@
•p

Figure 6.1: Admitted configurations.
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Figure 6.2: Not admitted configurations.

δ of X defined by Qp and let Z0 be the union of δ planes defined by the

Qi’s.

If p is an internal lattice point, i.e. p ∈ P ◦ ∩M , we will call it an elliptic

singularity for D because Z0 is a reduced cycle of planes intersecting at a

77
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point (corresponding to p): it has sectional genus one, being the general hy-

perplane section a cycle of lines. If p is a boundary point, i.e. p ∈ ∂P ∩ M ,

we will say that p is a rational singularity for D because the general hyper-

plane section of Z0 is a chain of lines.

Let now p1, p2 be two singularities for D with the properties described above.

If dim(Qp1
∩ Qp2

) < 2, i.e. if Qp1
and Qp2

intersect in a common proper

face (perhaps the empty face), then we will say that Qp1
and Qp2

are non-

overlapping.

6.1 An improved lower bound for νk, k = 1, 2

This section is devoted to the proof of the following result that improves the

lower bound for νk of Theorem 34 for the cases k = 1 and k = 2.

Theorem 35. Let k ∈ {1, 2}. Let X = XP be a projective toric surface

such that dimSeck(X) = 3k + 2. Let D be any triangulation of P ; let

{pi}i∈I ⊆ PM , {Qpi
}i∈I and {Zpi

}i∈I be as above. Assume that

1. dimSeck(Zpi
) = 3k + 2, for i ∈ I,

2. there exists a regular subdivision D1
i of P containing Qpi

and such that

the polytopes of D1
i are unions of polytopes of D, for every i ∈ I and

3. the polytopes {Qpi
}i∈I are pairwise non-overlapping.

Then D is not k-delightful. Moreover

νk(X) ≥ νk+1(D) +
∑

i∈I

νk(Zpi
). (6.1)

6.1.1 The case k = 1

Let X = XP be a projective toric surface such that dim Sec(X) = 5. Let D

be a planar toric degeneration of X and let p be an elliptic or rational singu-

larity for D. Let Q = Qp = ∪δ
i=1Q

i be the sub-polytope of P corresponding

to p and let Z = Zp be the projective toric surface of degree δ defined by Q:

Z ⊆ Pδ′ ⊆ Pr, where

δ′ =

{
δ if p is elliptic

δ + 1 if p is rational

We will prove that the flat limit of the secant variety of Z sits in the flat

limit of the secant variety of X and in particular that it is a component of

degree ν1(Z) of it. For this reason, we will assume that δ′ ≥ 5. If, on the



Some speculations on the lack of k-delightfulness 79

contrary, δ′ < 5, then the secant variety of Z has dimension less than five,

so it does not contribute to the degree computation.

Our approach consists in considering a toric degeneration D1 of X, if it

exists, such that the variety Z is an irreducible component of the central

fiber. To this end, assume that an intermediate regular partition D1 of P

given by Q and the by the families {Tk}k∈I1 and {Sj}j∈I2 , where the Tk’s

are triangles of D and Sj ’s are convex unions of triangles of D, exists; the

reader can see some examples in Figure 6.3, Figure 6.4 and Figure 6.5.
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Figure 6.3: An example of decomposed degeneration, Zp = X6.
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Figure 6.4: An example of decomposed degeneration, Zp = X7.
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Figure 6.5: An example of decomposed degeneration, Zp = S(2, 3).

By decomposing the degeneration D of X to X0 into two subsequent

degenerations and by exploiting the fact that the degree is preserved under

flat deformations, we are able to improve the lower bound for the number

ν1(X) of Theorem 34.

We need the following definition that generalizes to arbitrary irreducible

varieties the concept of join of linear spaces.

Definition 18. Let X, Y ⊆ Pr be irreducible varieties. Let JX,Y ⊆ X ×Y ×

Pr be the abstract join of X and Y defined as the Zariski closure of the set

{((x, y), z) : x 6= y, z ∈ 〈x, y〉} ⊆ X × Y × Pr.
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It is irreducible of dimension dim(X)+dim(Y )+1. Consider the projection

pX,Y on the second factor and define the join of X and Y

J(X, Y ) := pX,Y (JX,Y ),

to be the scheme-theoretic image of JX,Y in Pr. It is an irreducible variety

of dimension

dim J(X, Y ) ≤ min{dimX + dimY + 1, r}.

Proposition 36. Keeping the same setting as above, if there exists in D

a singularity p as in Table 6.1 or in Table 6.2 and if there exists a regular

subdivision D1 of P as above, then

ν1(X) ≥ ν2(D) + ν1(Z). (6.2)

Proof. 1. Let us consider first of all the degeneration D1 of X. Let X1
t be

the fiber of D1: X1
t
∼= X, for t 6= 0, while X1

0 is the reduced union of

the toric surfaces given by D1 that are: Z, {XTk
}k∈I1 and {XSj

}j∈I2 .

We have that

• the secant variety of Z,

• the secant variety of Sj , for j ∈ I2 and

• all the joins J(Z, XSj
), J(Z, XTk

), J(XSj1
, XSj2

), J(XTk1
, XTk2

),

J(XSj
, XTk

), for j, j1, j2 ∈ I2, j1 6= j2 and k, k1, k2 ∈ I1, k1 6= k2,

sit in the flat limit limD1 Sec(X) of the secant variety of X, with respect

to D1. Notice that

{J(XTk1
, XTk2

) : k1 6= k2 and dimJ(XTk1
, XTk2

) = 5} = N2(D
1).

2. We consider now the second degeneration D2 which has as general

fiber X2
s
∼= X1

0 , s 6= 0, and as central fiber the reduced union of planes

X2
0
∼= X0. The flat limit, with respect to D2, of limD1 Sec(X), that

is nothing but limD Sec(X), contains as component the flat limits,

with respect to D1 of all the components of limD1 Sec(X), namely the

following:

• limD2 Sec(Z),

• limD2 Sec(XSj
) and

• the flat limit, with respect to D2, of all the joins between com-

ponents of X2
s , s 6= 0.
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In particular the components of maximal dimension, i.e. of dimension

equal to dim(Sec(X)) = 5, contribute to the computation of the degree

of limD Sec(X), namely of ν1(X). Unfortunately, we are not able to

determine how because we do not know the degree of all of them.

Nevertheless we can give at least a partial explanation.

First of all, the ν1(D
1) skew 2-sets of D1 are skew 2-sets also for D2:

N2(D
1) ⊆ N2(D

2). Moreover, in D2 there are further pairs of disjoint

triangles, and the P5’s they define are 5-dimensional components of

the flat limits, with respect to D2, of the joins of components of X1
0 .

Thus, the whole set N2(D
2) = N2(D) sits certainly in the flat limit

and it corresponds to ν2(D) linear irreducible distinct components of

limD Sec(X).

Moreover limD2 Sec(Z) is a component of the flat limit of Sec(X) of

degree

deg

(
lim
D2

(Sec(Z))

)
= deg(Sec(Z)) = ν1(Z).

All these contributions do not interfere with each other, because they

come from different components of the limit of Sec(X) with respect

to D1. Hence the number ν2(D) + ν1(Z) provides a lower bound for

ν1(X).

What does it happen if in D there are more than one singularity? If

there are singularities {pi}i∈I in D satisfying the hypotheses of Proposition

36 and the non-overlapping property, then the contributions given by the

degrees of the Sec(Zp1
)’s do not interfere with each other. To see this, let us

decompose the degeneration D taking subdivisions D1
i and D2

i , for each i.

The flat limit of the secant variety of Zpi
with respect to D2

i sits in the flat

limit of the secant variety of X with respect to D, for every i, by Proposition

36. Moreover, the non-overlapping assumption assures that limD2
i
Sec(Zpi

)

and limD2
j
Sec(Zpj

) are two different components of limD Sec(X), for all

i, j ∈ I, i 6= j; hence the respective degrees sum up to ν2(D). This proves

Theorem 35 for the case k = 1.

6.1.2 The case k = 2

In this section we will make the same analysis for the varieties of trisecant

planes of toric surfaces.

Let X = XP be a toric surface such that dim Sec2(X) = 8. Let D be any

triangulation of P .

There are only two types of elliptic singularities we are interested in, namely

the ones such that Zp is either the Veronese surface V3 in P9 or the del Pezzo
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surface X8 of degree eight in P8. Indeed in all the remaining cases (see Table

6.1, third column) the 2-secant variety has dimension less than eight.

On the other hand, the only toric surface with sectional genus zero such that

its 2-secant variety has dimension eight and such that there exists a toric

degeneration of it to a union of planes all of them intersecting at a single

point is the rational normal scroll S(2, δ− 2) ⊆ Pδ+1, with δ ≥ 7, (see Table

6.2, third column).

Using the same construction and making the same remarks as we did in the

previous section for the case k = 1, we obtain the following result.

Proposition 37. Let X = XP be a toric surface such that dimSec2(X) = 8

and let D be a triangulation of P . Let p ∈ PM be a multiple point such that

Zp is either V3, or X8, or S(2, δ − 2), with δ ≥ 7. Assume furthermore that

there exists an intermediate regular subdivision D1 of P given by Qp and

either triangles of D or unions of triangles of D. Then

ν2(X) ≥ ν3(D) + ν2(Zp). (6.3)

Proof. 1. Let D1 be a toric degeneration of X as above. The following

varieties are distinct components of the flat limit limD1 Sec2(X):

• Sec2(Z);

• J(XSj1
, J(XSj2

, XSj3
)), for every j1, j2, j3 ∈ I2; notice that if

j1 = j2 = j3 = j, then it is the 2-secant variety of XSj
;

• J(XTk1
, J(XTk2

, XTk3
)), for every k1, k2, k3 ∈ I1, that is a skew

3-sets of D1 if Tk1
∩ Tk2

∩ Tk3
= ∅;

• J(XSj
, J(XTk1

, XTk2
)), J(J(XSj1

, XSj2
), XTk

), for j, j1, j2 ∈ I2

and k, k1, k2 ∈ I1, and

• J(Z, J(XSj1
, XSj2

)), J(Z, J(XSj
, XTk

)), J(Z, J(XTk1
, XTk2

)) for

every j, j1, j2 ∈ I2 and every k, k1, k2 ∈ I1;

• J(SecZ, XSj
), J(SecZ, XTk

), j ∈ I2, k ∈ I1;

2. Then, looking at the second degeneration D2, we see that the skew 3-

sets of D2 (that are the skew 3-sets of D) and the limit limD2 Sec2(Z)

sit in the flat limit of Sec2(X) with respect to D, with the same argu-

ment as in Proposition 36.

If there are more than one singularity in D, {pi}i∈I , satisfying the hy-

potheses of Proposition 37, and such that the polytopes {Qp1
}i∈I are pair-

wise non-overlapping, then

ν2(X) ≥ ν3(D) +
∑

i∈I

ν2(Zpi
).
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From this follows Theorem 35 for the case k = 2.

To conclude this section we explore, given a regular subdivision D, the

existence of an intermediate regular subdivision D1.

Assume first of all that either the edges of Q have reticular length equal to

one or they lie on the boundary of P (under this assumption p must be an

elliptic singularity, cfr. Table 6.1). The family of sub-polytopes of P given

by Q and by the Area(P ) − δ triangles of D not having a vertex in p form

a partition of P (see Figure 6.3). Such a subdivision is regular. Indeed,

given a lifting function FD over D, one can always find a lifting function

FD1 over D1, exploiting the fact that strict convexity is a local property: it

is enough to flatten FD over Q. More precisely, one can always assume that

FD(m) ≫ 2, for m /∈ Q and that

FD(m) =

{
1 − ǫ if m = p

1 if m ∈ QM \ {p}
,

with 0 < ǫ ≪ 1. Hence, a lifting function FD1 for D1 is the following:

FD1(m) :=

{
1 if m = p

FD(m) if m ∈ PM \ {p}

Suppose now that Q has edges L1 . . . , Lm of length respectively l1, . . . , lm >

1. Let us construct a partition of P containing Q, triangles and unions of

triangles of D, using the following algorithm.

Input: a triangulation D of P .

Output: a subdivision D1 of P containing Q.

- Let Si be the minimal convex union of triangles of D such that Si∩Q =

Li, for i = 1, . . . , m. If all the Si has edges either of length one or lying

on ∂P we stop.

- Otherwise, for each i = 1, . . . , m, let Li,1, . . . , Li,mi
be the edges of Si

of length respectively li,1, . . . , li,mi
> 1, for i ∈ {1, . . . , m}. Let Si,j be

the minimal convex union of triangles of D such that Si,j ∩ Si = Li,j ,

i = 1, . . . , m, j = 1, . . . , mi. If all the Si,j ’s have edges either of length

one or contained in ∂P , then we stop.

- Otherwise we go on as above, until all the polytopes have edges either

of length one, or contained in ∂P .

Notice that this process is finite. The output is a complex D1 whose

maximal polyhedra are Q, the Si’s, the Si,j ’s, etc. and the remaining trian-

gles Tk’s of D. See for example Figure 6.5. If one is able to flatten the lifting
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function FD over Q, the Si’s, the Si,j ’s, etc. and to rescale it over the Tk’s,

in such a way that the resulting piecewise linear function is strictly convex

over P , one has found a lifting function FD1 for D1 to be regular.

At this point it is not difficult to define D2: it is sufficient to take triangu-

lations DQ of Q, DSi
of Si, DSi,j

of Si,j , etc., such that, combining them,

one gives rise to the full regular triangulation D of P .

6.2 A conjecture

In the previous sections we showed that the presence in D of a reticular

point, which is the common vertex of a sufficiently large number of triangles,

induces an obstruction to the k-delightfulness of D, for k = 1, 2. Moreover

the contributions of the singularities do not interfere, provided that the

corresponding sub-polytopes do not overlap. We conjecture that the non-

overlapping hypothesis may be removed.

Conjecture 38. Let k ∈ {1, 2}. Let D be a planar toric degeneration of

a toric surface X = XP with dim(Sec(X)) = 3k + 2. Let {pi}i∈I ⊆ PM be

the set of all lattice points such that conditions 1. and 2. of Theorem 35 are

satisfied. Then

νk(X) ≥ νk+1(D) +
∑

i∈I

νk(Zpi
), k = 1, 2. (6.4)

Let us show some examples in the case k = 1.

Example 5. Consider the 4-ple Veronese embedding V4 of P2 in P14 and

the regular subdivisions D and D′ of the triangle of edge length four (and

normalized area sixteen) shown in Figure 6.6. We know that ν1(V4) =
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Figure 6.6: Planar toric degenerations of V4 ⊆ P14

deg(Sec(V4)) = 75, using Formula (5.2). One can easily check that ν2(D) =

66. Moreover ν1(Zp1
) = ν1(Zp2

) = ν1(Zp3
) = 3. Therefore the four contri-

butions sum up to restore the secant degree:

ν2(D) + ν1(Zp1
) + ν1(Zp2

) + ν1(Zp3
) = 75,
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and (6.4) holds with equality. Similarly, looking at the figure on the right,

one can check that

ν2(D
′) + ν1(Zp′

1
) + ν1(Zp′

2
) + ν1(Zp′

3
) + ν1(Zp′

4
) = 60 + 3 + 10 + 1 + 1 = 75.

Example 6. Let X be the quadric P1×P1 embedded in P11 via O(2, 3): one

has ν1(X) = deg(Sec(X)) = 35. Consider the three planar degenerations of

X shown in Figure 6.7. In the first two cases, the sum of the number of
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Figure 6.7: Planar toric degenerations of X ⊆ P11

skew 2-sets and of the contributions of the singularities restores the secant

degree:

v2(D) + ν1(Zp1
) + ν1(Zp2

) = 29 + 3 + 3 = 35

and

v2(D
′) + ν1(Zp′

1
) + ν1(Zp′

2
) + ν1(Zp′

3
) = 28 + 3 + 1 + 3 = 35.

In the third configuration, something different happens. One can see that:

v2(D
′′) + ν1(Zp′′

1
) + ν1(Zp′′

2
) + ν1(Zp′′

3
) + ν1(Zp′′

4
) = 29 + 1 + 1 + 1 + 1

= 33 < 35

In D′′ there is a lattice point q which is the common vertex of five triangles:

certainly it causes an obstruction to the presence of skew 2-sets, but we are

not able, so far, to check how, because the polygon given by the triangles

around it is not convex, so the above description does not make sense.

An intention for the future is to fully understand the lack of k-

delightfulness in order to give an answer to Conjecture 38 and to have a

complete explanation of this phenomenon. Moreover it would be interesting

to prove something similar for the cases k ≥ 3 and in higher dimension.

Notice that in the surface case, the expected dimension of Sec3(X) is

min{11, r}. No one of the singularities in Table 6.1 is interesting in this

case, because dim Sec3(Zp) < 11. Also in the rational case (Table 6.2) there

are no examples of rational normal scrolls in Pδ, with δ ≥ 11 that could

contribute to ν3, indeed
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• if δ1 ≤ 2, then S(δ1, δ2) is 3-defective, while

• if δ1 ≥ 3 there are no triangulations of the defining polytope such that

all the triangles have a common vertex p; indeed p would lie on one of

the two horizontal edges of the trapezium, but they are both too long.

Therefore for k = 3, thus also for k ≥ 4, the description done for k = 1, 2

does not work; the causes to the lack of k-delightfulness must be hidden

elsewhere.

6.3 Tables

In the following tables, we summarize the singularities that influence the

lack of k-delightfulness of a planar toric degeneration, for k = 1, 2. We

already described their ideals and k-secant ideals, for k = 1, 2, in Section

5.2.

In the first column we draw the subdivision of the polytope Q = Qp, in the

remaining columns we write the degree, the 1-secant degree and the 2-secant

degree of the surface Z = Zp defined by Q.

In all cases, deg(Seck(Z)) = νk(Z), i.e. µk(X) = 1, for k = 1, 2 (see [13],

where the surfaces with µk > 1 are classified).
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triangulation of Q deg(Z) ν1(Z) ν2(Z)

1. @@

@@

��

@@•
@@

@
@

@

HHH•
5 1 /

2.

��

@@��

A
A
A

•
5 1 /

3. @@

@
@

@

@@•
6 3 /

4.

��

@@��

@@•
6 3 /

5.

@
@

@

HHH

��
•

@@
HHH@@

@
@

@

��•
6 3 /

6.

Q
Q

Q
QQ��

@@
@@
HHH
•

6 3 /

7.

@
@

@

@@

��
•

@
@

@ @@

@@
@@

HHH
•

@
@

@
@@

@
@

@

A
A
A•

7 6 /

8. @@

��

@@

@@

��
HHH
•

@
@

@

HHH

@@��
HHH
•

7 6 /

9.

@
@

@ @@

@@

��
HHH
•

@
@

@
@@@@

@
@

@
HHH

A
A

A

•
8 10 1

10.

@
@

@�
�

�
•

8 10 /

11.

@
@

@

HHHHHH��
HHH
PPPPP
•

8 10 /

12.

@
@

@
@@��

@
@

@
HHH

A
A

A

•
9 15 4

Table 6.1: The elliptic case
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triangulation of Q deg(Z) ν1(Z) ν2(Z)
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11. S(1, δ − 1) δ ≥ 9
(
δ−2
2

)
/

12. S(2, δ − 2) δ ≥ 9
(
δ−2
2

) (
δ
3

)
− 2((δ − 3)2 + 1)

Table 6.2: The rational case
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