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Introduction

A century has passed since Einstein (1916) published the Theory of Gen-

eral Relativity, and yet his theory provides the theoretical framework to

understand our Universe. Today, a concordance model consisting in an Uni-

verse that is accelerating its expansion, approximately flat, in which mat-

ter contributes to about 1/3 of the total energy density budget, agrees with

an impressively large number of very different, independent observations.

About the 15% of the total matter content of the Universe seems to be in the

form of non relativistic ordinary particles, called baryonic matter, while

the remaining 85% is in the form of a dark component made of particles

not predicted by the Standard Model of particle physics. This additional

component, commonly referred to as dark matter, has a very small cross

section with electromagnetic radiation, and dominates the local gravita-

tional potential that governs the evolution of density fluctuations and the

dynamics of virialized structures.

The existence of dark matter was first proposed by Zwicky (1933), after

having analyzed the motion of the galaxies in the Coma cluster. The ve-

locity dispersion within the cluster, he noted, implies a virial mass of the

cluster well above that of the visible galaxies. About fifty years later, Ru-

bin et al. (1980) discovered that the rotation velocity profiles of stars and

gas in spiral galaxies didn’t follow the model expected by gravity theory:

only the existence of an extra component, not interacting electromagneti-

cally but only gravitationally, could explain the observed discrepancy be-

tween model and data. In more recent years, the existence of yet another
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Introduction

dark component, called dark energy, was introduced in order to explain

a number of additional cosmological observations. Firstly, the discovery

of cosmic acceleration, confirmed by two independent studies about the

relation between distance of Supernovae Ia type and redshift (Riess et al.

(1998) and Perlmutter et al. (1999)). Then, independent evidences came

from the abundance of clusters of galaxies, the spatial correlation proper-

ties of the Large Scale Structure and the temperature fluctuations in the

Cosmic Microwave Background. If the dark matter dominates the total

amount of matter in the Universe, the dark energy dominates the total en-

ergy budget, and is responsible for the accelerated expansion of the Uni-

verse. Actually, dark energy is not the only possible explanation to cosmic

acceleration. It is also possible that the General Relativity ceases to be valid

on cosmological scales, so that a modified theory of gravity is needed. At

present, neither the nature of dark matter nor the one of dark energy is

clear, and since the existence of these components has deep implications

for fundamental physics, it is not surprising that an increasing fraction of

the scientific community is putting a large effort in addressing these prob-

lems.

In this picture, the study of Large Scale Structure of the Universe, i.e.

the spatial distribution of matter on cosmological scales, plays a crucial

role. For this reason, in the last decades a significant number of galaxy sur-

veys have been carried out to trace the spatial distribution of extragalactic

objects over an ever increasing fraction of the observable Universe. Over

times different redshift surveys have been performed. They were tailored

to address specific scientific questions. So, for example, the 2MASS red-

shift survey (Huchra et al., 2012) aimed at exploring the nearby Universe

is rather local but has a very large sky coverage. The more recent SDSS

redshift survey (Abazajian et al., 2009) and its BOSS (Dawson et al., 2013)

follow-up have been designed to encompass regions large enough to un-

ambiguously detect the barionic acoustic oscillations imprinted in the spa-
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Introduction

tial distribution of galaxies (Eisenstein et al., 2005). This was also the main

goal of the large but sparse WiggleZ survey (Blake et al., 2011) in contrast

with deeper and denser surveys (VIPERS, Guzzo et al. (2014)) designed

to both trace the large scale structures and investigate the properties of

the observed galaxies. Next generation surveys like the one that will be

carried out by the Euclid satellite mission (Laureijs et al., 2011), will push

the limits even further by tracing the large scale structure over a signifi-

cant fraction of the observable Universe, effectively probing the transition

epoch in which the Universe has begun its accelerated expansion.

The surveys mentioned here are examples of spectroscopic redshift sur-

veys, in which the redshift of a galaxy is used as a proxy to its distance

and measured through spectroscopy, i.e. by measuring the wavelenght in

the absorption or emission lines in the energy spectrum of extragalactic

objects. A second, less precise proxy to galaxy distance is the photometric

redshift. In this case the redshift is estimated by measuring the magni-

tude of the objects in a number of different energy bands. This allows one

to sample the energy spectrum and infer the redshift of the objects. Photo-

metric redshift are less precise than spectroscopic one but can be measured

for a comparatively much large number of objects. The radial distance can

therefore be estimated less precisely but for many more galaxies, allowing

one to investigate galaxy clustering using a tomographic approach that

consists in analyzing the angular correlation properties of galaxies in dif-

ferent radial shells.

In fact, assuming that galaxies trace the distribution of matter, most of

which is dark, redshift surveys have shown that the galaxies and the un-

derlying mass are not randomly distributed in the Universe, but instead

organized in a coherent pattern of large scale structures called the cosmic

web. This pattern is believed to be the result of the evolution of primor-

dial perturbations on the early quasi-homogeneous and isotropic density

field under the effect of gravity. As we will see in the following sections,
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Introduction

the dark matter density fluctuations above a characteristic scale, the Jeans

length, started to grow by gravitational instability until they formed the

cosmic structure we observe in our Universe today. On the other hand,

the baryonic component, after decoupling itself from radiation, started to

fall into the dark matter potential wells, until tracing the same large scale

structures as the dark matter. This scenario has been confirmed by the

detection of the temperature fluctuations in the Cosmic Microwave Back-

ground (COBE, Smoot et al. (1992)) and the Baryonic Acoustic Oscillation

(BAO, Eisenstein et al. (2005)).

The evolution of structures can be well described by the theory using

a perturbative approach in the so-called quasi-linear regime, that remains

valid as long as perturbations are small, which occurs at early epochs or

when averaging over large scales. On small scales, when density fluctu-

ations become large, the linear approximation is not valid anymore and

numerical approaches are needed to explore the full non-linear evolution.

This can be done by means of N-body simulations. Irrespective of the ap-

proach used, whether analytic or numerical, the capability to predict the

statistical proprieties of the mass distribution and their relation with the

fundamental parameters of the model (the so-called cosmological parame-

ters) is certainly one of the biggest successes of theoretical cosmology. For

this reason, observational estimates of such statistical proprieties are crucial

to constrain the properties of our universe and estimate the cosmological

parameter that characterize its best fitting model.

2-point statistics, either in Fourier or in configuration space, represent

the most important tool in the analysis of the large scale structure. In

particular, when dealing with photometric redshift surveys, the angular

power spectrum C` is the most widely used statistical tool. It represents

the Legendre transform of the angular correlation function, which, in turn,

expresses the probability of finding two galaxies separated by an angle θ.

Because of the large photometric redshift errors, clustering along the radial
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directions is preserved only at very large separations. For this reason, the

best way of characterizing the large scale structures is by measuring the

angular 2-point statistics within spherical shells. Slicing the sample along

the radial direction is possible if photometric redshifts are available, hence

the idea to use the aforementioned tomographic approach when dealing

with photo-z surveys.

The aim of this thesis is to measure, for the first time, the angular power

spectrum of the 2MPZ galaxy catalogue (Bilicki et al., 2014) in three differ-

ent redshift slices, and estimate the dark matter density and the baryon

fraction as well as the characteristic amplitude of the density fluctuations

in the sample.

For this purpose, we develop a C++ code that allows us to measure

the angular spectrum of the galaxy distribution over some fraction of the

celestial sphere. In the code we implement the estimator introduced by

Peebles (1973), who was among the first to tackle the problem of obtaining

an unbiased estimator for the angular multipoles C` in the realistic case of

a partial sky coverage. Not having a full-sky survey leads to a mixing be-

tween the multipoles of the spectrum, that needs to be taken into account

when comparing observations with model predictions. This is done by

convolving the latter by the so-called mixing matrix, also estimated by the

C++ code used to compute the angular spectrum. The correlation between

modes induced by a partial sky coverage (and by the non-linear evolution)

prevents the estimation of the error to be done analitically. For this reason,

several numerical methods like the Jack-knife method (Tukey, 1958) and the

Bootstrap (Efron, 1979) technique, have been developed. Both approaches,

however, are approximated as they estimate errors by rearranging the ob-

jects of the very same datasets one wants to analyze. For this reason, in

our work we estimated errors using a suite of 2MPZ mock catalogues.

The creation of many independent and realistic mock photometric-

redshift catalogs is one of the main goals of this thesis. This is indeed
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a computationally challenging task. Fortunately, for the type of analysis

we wish to perform, we can make several approximations. Indeed, the

main sources of errors here are the partial source coverage and the large

photo-z errors. The partial source coverage can be accurately mimicked

in simplified mock catalogs that can be obtained by applying a lognor-

mal transformation of a Gaussian fluctuation field sampled with Monte

Carlo techniques. We developed an automated procedure to build these

mocks that we used to quantify both systematic and random errors and

their covariance and to optimize the strategy to estimate the cosmological

parameters. The photo-z errors can be estimated modeling the true spec-

troscopic redshift distribution of galaxies. Equipped with this knowledge,

we estimate the angular power spectrum of the galaxies in the 2MPZ cata-

logue (Bilicki et al., 2014) and use a Markov Chain Monte Carlo likelihood

analysis to estimate the mean dark matter density, the spectral amplitude,

the baryon fraction and their errors.

The structure of the thesis is as follows.

In Chapter 1 and 2 we introduce the key elements of the Standard Cos-

mological Model, starting from the Einstein’s equations and the gravita-

tional instability theory. Then, we introduce the concept of power spec-

trum of matter, analyze its dependence on the cosmological parameters

and present its angular counterpart, the angular power spectrum. At the

end, we face the issue of measuring 2-point statistics in real datasets con-

sisting of spectroscopic and photometric galaxy redshift surveys.

In Chapter 3 we extend the formalism introduced in Chapter 2 to ac-

count for incomplete sky coverage. We introduce the angular power spec-

trum estimator we use in this thesis and the numerical code we developed

to estimate it. We conclude by presenting the results of sanity checks and

performance tests.

In Chapter 4 we present the galaxy catalogue that we analyze in this

thesis, namely the 2MASS Photometric Catalogue (2MPZ, Bilicki et al.

6



Introduction

(2014)). We describe the different photometric catalogues that have been

cross-matched in order to obtain the final 2MPZ one, and then we com-

pute the redshift distribution of the photo-z galaxies and of spectroscopic

subsamples.

The Chapter 5 is dedicated to the creation of lognormal fake catalogues

that mimic the properties of 2MPZ. We analyze their properties and esti-

mate their angular spectra and their uncertainties and use these results

to compute the covariance matrix that is used to estimate the covariant

errors in the real data analysis. We also estimate the true redshift distribu-

tion, dN/dzspec, from the observed dN/dzphot, in order to correct for the

photometric redshift errors.

The Chapter 6 is devoted to the methods used to extract cosmological

information by comparing the measured spectra in different redshift shells

with theoretical predictions. This is done in two ways: a standard χ2 ap-

proach and a MCMC method. In the second part of the chapter we apply

these statistical tools to the mock datasets to assess the goodness of the

methods, to reveal potential sources of systematic errors and to highlight

potential parameter degeneracies.

In Chapter 7 we focus on the final analysis, providing our estimation

of some of the cosmological parameters from the 2MPZ catalogue.

In Chapter 8 we discuss the results and summarize the conclusion of

this thesis.
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Chapter 1

Background Cosmology

In this chapter we present the key elements of the Standard Cosmological

Model, that represents the reference model of this work. After introducing

the Cosmological Principle and the Einstein’s equations, we will focus on

the gravitational instability theory. Then, we will introduce the concept

of power spectrum of the matter and analyze the information it encodes.

From this, we derive the angular power spectrum, which represents the

main subject of this thesis. At the end we will focus on the issues that arise

when measuring the 2-point statistics from the galaxy redshift surveys.

1.1 Basic concepts and equations

The fundamental principle of the Standard Cosmological Model is the so-

called Cosmological Principle, which states that the Universe is isotropic

(i.e. rotational invariant) and homogeneous (i.e. traslational invariant). How-

ever, as the modern galaxy redshift surveys - like 2dF and SDSS - have

proved, this hypothesis is only valid on sufficiently large scales, i.e. on

scales larger than the scale of coherence in the spatial distribution of galax-
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Basic concepts and equations

ies (more than hundreds of Mpc1 In other words, the distribution of galax-

ies appears to be homogeneous and isotropic when smoothed on these

scales. In this sense, each component of the Universe (matter, radiation

etc) can be thought of an ideal fluid of non-interacting particles character-

ized by an energy (or mass) density, an equation of state and a temperature

that don’t vary across space, i.e. that have no spatial fluctuations. The ith

component will have a pressure p = pi and energy density ρ = ρi, such

that the total pressure and energy density will be:

p = ∑
i

pi

ρ = ∑
i

ρi

(1.1)

For a Universe subject to the Cosmological Principle, there is only one

allowed metric, the Friedmann-Robertson-Walker one:

ds2 =
3

∑
µ,ν=0

gµνdxµdxν = −c2dt2 + a2(t)
[
dr2 + Sk(r)2(dθ2 + sin2(θ)dφ2)

]
(1.2)

where the Greek indices µ and ν vary from 0 to 3, with the 0 index related

to the time coordinate (dt = dx0), while the 1, 2, 3 indices are related to the

spatial coordinates. The term gµν is the metric tensor, while c represents the

speed of light and t the cosmological proper time. The coordinates r, θ and

φ are spatial comoving coordinates, i.e. they don’t vary over time, whereas

the physical distances do vary because of the scale factor a(t), which can

increase or decrease over time, meaning expansion or contraction (these

last two being however homogeneous and isotropic, so that the Cosmo-

logical Principle stay valid over cosmic epocs). On the right side of Eq.

1.2, the term Sk(r) is equal to Rsin(r/R) in case of positive curvature (close

Universe), r in case of null curvature (flat Universe), Rsinh(r/R) in case of

negative curvature (open Universe - see Fig. 1.1). Here R is the curvature

1The parsec is a unit of distance, which corresponds to 3.086× 1013 km. The Mega-

parsec (Mpc) corresponds to 106 parsecs.
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Basic concepts and equations

radius, while the subscript k refers to the curvature parameter, k = k′/R2,

where k′ can be equal to−1, 0, 1 reflecting the sign of the curvature respec-

tively for a close, flat and open geometry. While the comoving coordinates

are adimensional, the scale factor has the dimension of a lenght; its value

at present epoch, a(t0), is conventionally set to 1. One can also define the

curvature parameter k, so that Eq. 1.2 becomes:

ds2 = −c2dt2 + a2(t)
[

dx2

1− kx2 + x2(dθ2 + sin2(θ)dφ2)

]
(1.3)

with x = Sk(r).

Figure 1.1: Examples of curved spaces in two dimensions. Figure from Coles and

Lucchin (1995).

If the metric holds the information about a particular space-time geom-

etry, the link between this latter and the energy content of the Universe is

expressed, in general, by the Einstein’s field equations:

Gµν = Rµν −
1
2

gµνR =
8πG

c4 Tµν (1.4)

where the Einstein tensor Gµν describes the geometry; Rµν is the Ricci ten-

sor, which depends on the metric and its derivative; R is the Ricci scalar,

10



Basic concepts and equations

obtained contracting the Ricci tensor: R = gµνRµν; G is the gravitational

constant, while Tµν is the energy-momentum tensor, that describes the en-

ergy content of the Universe. Since we have assumed the Cosmological

Principle, on large scales the energy-momentum tensor becomes the one

of a perfect fluid:

Tµν = (p + ρ)
uµuν

c2 + pgµν (1.5)

Here uµ is the quadrivelocity of the fluid, ρ is its energy density and p its

pressure. Considering the 00 tensor component of the Einstein’s equations

and the FRW metric, one can derive the first Friedmann equation:(
ȧ
a

)2

=
8πG
3c2 ∑

i
ρi −

kc2

a2 (1.6)

here the index i refers to the ith component of the Universe, such that the

sum ∑i ρi, as we have seen, represents the mean total energy density in the

Universe, as the Eq. 1.1 shows. The left-hand side of the Eq. 1.6 is usually

referred to as the Hubble parameter:

H =
ȧ
a

(1.7)

which measures how rapidly the scale factor changes. The present epoch

value of the Hubble parameter is called Hubble constant H0 ≡ H(t0). Through

the Hubble parameter one can re-write the energy density ρi for the ith

component and define the density parameter:

Ωi ≡
ρi

ρc
=

8πGρi

3c2H2 (1.8)

where ρc is the critical density:

ρc =
3c2H2

8πG
, (1.9)

defined such that the total density parameter, defined as follow:

Ω(t) = ∑
i

Ωi(t), (1.10)
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is equal to 1 when the total mean density is equal to the critical one. One

can also define the curvature parameter:

Ωk = −
kc2

a2H2 (1.11)

With these definitions the Eq. 1.6 becomes:

1 = Ω + Ωk (1.12)

From the Eq. 1.12 it is clear that the values of Ω and Ωk are not indepen-

dent: if Ω < 1 then k < 0 and the Universe is open, if Ω = 1 then k = 0

and the Universe is flat and if Ω > 1 then k > 0 and the Universe is closed.

The first Friedmann equation relates the energy density with the Hubble

parameter and the curvature. But if one wants information about the time

evolution of the scale factor another equation is needed. Setting to 0 the

covariant derivative of the energy-momentum tensor, one can obtain the

conservation equation for the ith component:

ρ̇i + 3
ȧ
a
(ρi + pi) = 0 (1.13)

The Eq. 1.6 and the Eq. 1.13 can be combined to give another important

equation, the acceleration equation (often called second Friedmann equation):

ä
a
=

4πG
3c2 ∑

i
(ρi + 3pi) (1.14)

where again the sum is performed over all the components of the Uni-

verse. Note that the ordinary components, characterized by a positive

pressure, like radiation and non relativistic matter, determine a deceler-

ated expansion (ä < 0). The only way to have an accelerated expansion

is to have a dominant component with negative pressure (pi < −(1/3)ρi,

valid if the Eq. 1.1 holds).

Equations 1.6 and 1.13 can be both solved once is specified the equation

of state of the i-th component, which relates the pressure with the energy

density. In many cases of physical interest the equation of state is written

in the following form:

pi = ωiρi (1.15)

12



Basic concepts and equations

with ωi adimensional parameter. Here we have used natural units in

which c = 1. Substituting this relation in Eq. 1.13 one can obtain the

energy density as a function of the scale factor (for constant ωi):

ρωi = ρωi,0a−3(1+ωi) (1.16)

where ρω,0 is the present day energy density. From this equation one can

describe the evolution of each component of the Universe. For example

the non-relativistic matter, simply referred as matter, is characterized by a

parameter ω ∼ 0, therefore, according to Eq. 1.16, matter density evolves

as a−3, while the relativistic matter, the radiation, has ω ∼ 1/3, so it evolves

as a−4. This means that in the limit a → 0 the component with the higher

value of ω dominates the energy-density budget, while for a → ∞ is the

component with the lower value of ω that dominates. However, this be-

havior does not explicit the time dependence of matter or radiation den-

sity. To specify it, one has to know the time evolution of the scale factor

a(t), which constitutes the subject of the next section.

1.1.1 The expanding Universe

In 1929 Edwin Hubble (Hubble, 1929), measuring the redshift z of known

lines in the spectra of external galaxies, discovered that they receed from

us with a velocity proportional to their distance. Such experimental law

agrees with the hypothesis of a Universe that is expanding in a homo-

geneous and isotropic way, i.e. is fully consistent with the FRW metrics,

where, as we have seen, a positive evolution of scale factor would deter-

mine a homogeneous and isotropic expansion of the system. This evidence

also supports the Cosmological Principle, and suggests the existence of a

Big Bang, i.e. that in the past the Universe was in a very dense state. As

time went by, the temperature associated to each component (which was a

single temperature when these components were coupled) decreased, and

this means that, according to this model, there was an epoch in which the

physical state of the Universe was similar to that of a stellar interior, and
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a cosmological Nucleosynthesis could have happened. During this epoch,

non negligible quantities of light elements would have been produced (es-

pecially He and D), and we have indeed observed them at high redshifts in

the intergalactic medium, providing an additional observational support

to the standard cosmological model. Furthermore, observational evidence

is also provided by the Cosmic Microwave Background (CMB) radiation. At

high density and temperature, baryons and photons are highly coupled.

When the temperature dropped enough, hydrogen become neutral and

atoms decoupled from radiations. This happens at redshift z ∼ 1100 (that

corresponds to about 3 × 105 years after the Big Bang): the baryons de-

couple from photons, the Universe becomes transparent to radiation that,

because of the adiabatic cooling, we observe now as the much colder CMB

radiation.

Today, the most commonly accepted model for the present day Uni-

verse is an expanding, approximately flat, accelerating (ä > 0) one, as

suggested by a variety of cosmological observations. In the total energy

density budget at the present epoch, the matter contributes to ∼ 1/3 of the

total, of which about the 15% is ordinary matter (baryonic matter), while

about the 85% is cold dark matter, a kind of collisionless, non-relativistic

matter which interact only gravitationally but not electromagnetically. A

small contribution (less then 10−4%) is due to the relativistic matter (pho-

tons and neutrinos), generically referred to as radiation. Finally, the re-

maining ∼ 2/3 of the total energy density is believed to be due to dark

energy, a component with negative pressure responsible for acceleration of

the expansion (see Eq. 1.14 with ω < −1/3). The simplest model of dark

energy is the cosmological constant Λ, characterized by a constant energy

density (ρΛ) and an equation of state parameter ω = −1. The cosmolog-

ical model, with a cosmological constant and a cold dark matter, is called

ΛCDM. Table 1.1 shows the values of the cosmological parameters of this

model, in units of density parameter Ω (the subscript b refers to baryons,

the CDM to the dark matter, M to the total matter and Λ to the cosmolog-
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ical constant); h is the Hubble constant in units of 100 Km s−1 Mpc−1.

Table 1.1: The measured values of the cosmological parameters and their 1σ er-

rors obtained from the analysis of the CMB maps assuming a ΛCDM

model (Planck Collaboration et al., 2014).

best fit and 68% limits

H0 67.4 ± 1.4

Ωbh2 0.02207 ± 0.00033

ΩCDMh2 0.1196 ± 0.0031

ΩM 0.314 ± 0.020

ΩΛ 0.686 ± 0.020

As (2.142 ± 0.049) ×10−9

Now that we have specified a reference cosmological model, we can

have a better insight on Eq. 1.16. Since Λ has ω = −1, its energy density

remains constant with time. Moreover, since the Universe is expanding,

and according to what we have seen in the last part of the previous section,

a→ 0, i.e. at early times the energy budget is dominated by the radiation.

On the contrary, when a → ∞ (late times) is the dark energy to be domi-

nant. In between, the Universe has been dominated by the non-relativistic

matter, including both baryons and dark matter (see Fig. 1.2). The epoch

at which the energy density of radiation and that of baryonic matter are

equal is called equivalence, and occurs at aeq ∼= 2.8× 10−4 (approximately

47000 years after Big Bang), as can be derived from the present day values

of energy densities of matter and radiation. In fact, recalling that from Eq.

1.16 we deduced that ρr = ρr(t0)a−4 and ρm = ρm(t0)a−3, one can write:

aeq =
ρr(t0)

ρm(t0)
(1.17)

We can now finally understand the time evolution of the scale factor a(t)

using Eq. 1.6 and Eq. 1.16: during the radiation epoch a ∝ t1/2, during the
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Figure 1.2: Energy density as a function of the scale factor for the different com-

ponents of a flat Universe: matter, radiation, and a cosmological con-

stant. In each epoch the evolution of the scale factor with time is

driven by the dominant component. The energy density is expressed

in units of the critical density today. The epoch in which the content in

matter and radiation was equal is called equivalence aeq (see the text).

Figure from Dodelson (2003).

matter domination epoch a ∝ t2/3 while, when the a cosmological constant

dominates the expansion, the dependence is exponential: a ∝ exp (Ht).

1.1.2 Redshift and distances

If the Universe is expanding in a homogeneous and isotropic way, as we

have just seen, then the distance between an observer and a generic space-

time location, ideally measured instantaneously (the so-called proper dis-

tance), increases with time because of the expansion. This distance can be
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computed from Eq. 1.3; if the observer is at the origin of the comoving

coordinates (r, θ, φ), then:

d(t) = a(t)
∫ r

0

dx√
1− kx

≡ aFk(r) (1.18)

with r comoving radial coordinate of the object. Suppose now that at the

time te a light signal is emitted at the radial comoving coordinate r and

is observed at the center of coordinates at the time t0. Since in a time dt

light travels a comoving distance dx/(1− kx2) = cdt/a (see Eq. 1.2) then

the total comoving distance light could have traveled (in the absence of

interactions) is: ∫ t0

te

c dt
a(t)

(1.19)

At t0, proper and comoving distance coincide:

d(t0) = Fk(r) =
∫ t0

te

c dt
a(t)

(1.20)

Since the scale factor at the time of emission te can be expressed in terms

of the redshift of the light emitted:

1 + z =
1

a(te)
(1.21)

one can write the comoving distance as a function of redshift, Hubble pa-

rameter and density parameter using Eq. 1.6:

d(z) =
c

H0

∫ z

0
X(z′)−1/2dz′ (1.22)

where X is the generic solution of the Friedmann equations:

X(z′) = ΩR(1 + z′)4 + ΩM(1 + z′)3 + ΩK(1 + z′)2 +

+ΩΛ exp
{
−3

∫ z′

0

dz′′

z′′
[
1 + ωΛ(z′′)

]}
(1.23)

Here ωΛ is the state parameter of the dark energy component assumed

to be time-independent. Eq. 1.23 assumes the existence of a Dark Energy
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that generalizes the concept of cosmological constant to the case of time-

varying equation of state of a fluid with negative pressure. Eq. 1.22 shows

that the redshift-distance relation depends on the density parameters and

the equation of state of the various components of the Universe, while the

Hubble parameter H0 sets the time and length scales of the Universe. This

means that, ideally, all cosmological parameters can be derived from mea-

suring comoving distances of objects at various epochs. Unfortunately, the

comoving distance cannot be measured experimentally since it would re-

quires performing instantaneous measurements. However, we can define

other type of distances that can be measured and that are related to the

comoving proper distance by simple relations: the luminosity distance dL

and the angular diameter distance D.

Forgetting for a moment the expansion of the Universe, the flux F ob-

served at a distance d from a source of known intrinsic luminosity L is

L/4πd2 since the total luminosity through a spherical shell with area 4πd2

is constant. In an expanding Universe is worth working with the comov-

ing grid with the source placed in the origin, so that one can define the

luminosity distance dL:

dL ≡
√

L
4πF

= Sk(r)(1 + z) (1.24)

where d here is now the comoving distance expressed by Eq. 1.22.

Analogously, one can relate the distance of an object with the angle θ

subtended by it knowing its physical size D′. In this case one defines the

angular diameter distance D:

D(z) =
D′

θ
=

Sk(r)
1 + z

(1.25)

Note that in the limit z → 0, i.e. small distances from the observer, the

three distances coincide:

d(z) ≈ dL ≈ D(z) ≈ c
H0

z (1.26)
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1.2 Gravitational instability

As we have seen, the Cosmological Principle is valid only on large scales:

galaxies, clusters, superclusters, filaments and voids (the cosmic web) break

the homogeneity and isotropy on increasingly large scales as the Universe

evolves. The formation of these structures can be explained as the result

of the growth of initial perturbation of the smooth background.

The basic mechanism of this growth is the gravitational instability that

sets in when the physical scale of the fluctuations is beyond a characteristic

scale called Jeans length. The same mechanism can explain the formation

of stars in galaxies, but in a cosmological framework things are compli-

cated by the coupling of matter perturbations with perturbations of the

other components of the Universe and of the metric itself. Fortunately,

the theory of gravitational instability is greatly simplified if one considers

small fluctuations: in this case, the equations can be linearized. Indeed,

the fluctuations were small at early epochs and still are on large scales. On

small scales, however, the linear perturbation theory is not valid anymore

and higher order perturbation theory or numerical simulations are needed

in order to describe the evolution of the density contrast in the non-linear

regime. Here we focus on linear perturbation theory. For simplicity we set

h̄ = c = kB = 1.

Starting from the FRW metric (Eq. 1.2) we can linearly perturb the

metric tensor:

g00(~x, t) = −1− 2ψ(~x, t)

g0i(~x, t) = 0 (1.27)

gij(~x, t) = a2δij(1 + 2φ(~x), t)

The perturbation to the metric are ψ, the Newtonian potential, and φ, the

perturbation to the spatial curvature; since they are assumed to be small, all

quadratic terms have been neglected so that one has only the linear per-

turbations to the metric. Note that one can classify perturbations in three
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categories: scalar, vector and tensor perturbation. In Eq. 1.27 only the

scalar perturbations have been included. The reason is that while vec-

tor and tensor perturbations may also exist (tensor perturbations describe

gravitational waves), only the scalar ones couple to perturbation in the

matter component. Since we are interested in cosmic structures and their

evolution, we shall focus on the latter. Moreover, these equations are writ-

ten in conformal Newtonian gauge that corresponds to set to 0 two of the four

scalar degrees of freedom: the remaining two are ψ and φ. Finally, in the

absence of expansion (i.e. a = 1) this metric describes a weak gravitational

field.

We will not go into details, but the Eq. 1.27 allows us to derive, from

Einstein’s field equations, two independent equations analogous to the

Friedmann equation. These equations, together with the Boltzmann equa-

tions, form the differential equations system that describes the evolution

of the fundamental variables used to model the linear perturbation theory.

These variables are the following: the temperature fluctuation of the pho-

ton fluid Θ = δT/T, decomposed in its angular multipole components

Θl
2; the distribution function for massless neutrinos ν; the overdensity

field of dark matter δ(~x, t) = ρ(~x, t)/ρ̄(~x, t) − 1; the peculiar velocity of

dark matter v(~x, t) and the analogous for baryons δb(~x, t) = ρb(~x, t)/ρ̄b(~x, t)−
1 and vb(~x, t).

Let us now focus on dark matter perturbations. In principle, the evo-

lution equations for them are the full set of Boltzmann and Einstein equa-

tions (see Dodelson (2003) for details). In practice, the full set of equations

is not needed. First of all, since the baryon mass density is negligible with

respect to that of the dark matter, their contribution to fluctuations of the

2We will not go into details, but it is worth noting that the quantity δT/T can be only

measured in correspondence to the last scattering surface, i.e. the period in which the

light decoupled with matter and started to travel freely.
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metric can be neglected3. Moreover, for the purposes of the matter distri-

bution, the photon are relevant only before the decoupling, i.e. during the

radiation dominated epoch. During this epoch photons were coupled with

baryons, and scattering Compton was so efficient that the photon distribu-

tion can be characterized by only two moments, the monopole Θ0 and the

dipole Θ1: all other moments are suppressed. It can be shown (Dodelson,

2003) that if there are no quadrupole moments ψ → −φ. Under the above

approximations the four relevant Boltzmann equations and the time-time

component of the Einstein equations become4:

Θ̇r,0 + kΘr,1 = −φ̇ (1.28)

Θ̇r,1 +
k
3

Θr,0 = − k
3

φ (1.29)

δ̇ + ikv = −3φ̇ (1.30)

v̇ +
ȧ
a

v = ikφ (1.31)

k2φ + 3
ȧ
a

(
φ̇ + φ

ȧ
a

)
= 4πGa2 [ρCDMδ + 4ρRΘr,0] (1.32)

Here the subscript R refers to radiation, including both neutrinos and pho-

tons5, while the subscripts 0 and 1 indicate the monopole and dipole mo-

ments of the temperature fluctuations in the CMB map. These equations

are written in Fourier space: in fact, in linear theory the Fourier transform

produces a set of independent ordinary differential equations that can be

solved for each k-mode separately. In our case the Fourier transform con-

3This, as we have seen, is an approximation, since the baryons represent the 15% of

the total mass budget. We nevertheless assume that Ωb � ΩCDM here, but keep in mind

that the role of baryon cannot be neglected if one wishes to account for certain features

like Baryonic Acoustic Oscillation in galaxy cluster proprieties.
4Note that while Θ is defined as a 3D quantity, Θr is a 2D quantity, with a fixed r.
5It is not obvious that both species follow the same evolution equations, but this is

true at least in the limit of small baryon density, and only for the purposes of following

the matter evolution, as we are doing here.
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vention is the following:

Θ̃(~x) =
∫ d3k

(2π)3 ei~k·~x Θ(~k) (1.33)

Note that all the variables, Θ, δ, v and φ are function of the comoving

wavenumber~k and the conformal time η, defined as:

η ≡
∫ t

0

dt′

a(t′)
(1.34)

η is used as a time variable because it’s monotonically increasing with

times. It also coincides (for c = 1) with the comoving horizon, i.e. the co-

moving distance that a photon could have traveled from the Big Bang to

the time t (recall Eq. 1.19). In other words, no information could have

propagated further than η since the beginning of time: regions separated

by distance greater than η are not casually connected. The derivatives in

the Eqs. 1.28 - 1.32 have to be estimated respect to the conformal time.

There are no analitic solutions for the system of equations 1.28 - 1.32

valid on all scales at all times. However, it’s possible to make approxima-

tions and derive solutions valid only for certain scales at certain times.

1.2.1 Solutions to the linear perturbation theory

As the comoving horizon defined by the Eq. 1.34 grows with time, it in-

corporates larger and larger comoving scales, which become casually con-

nected.

Let’s first focus on large scale modes, i.e. the wavenumbers k which

enter the horizon at late times, well after the matter-radiation equivalence.

These scales enter the horizon during the matter dominated epoch, while

lying beyond the horizon during radiation dominated epoch. As long as

the modes are outside the horizon, they are not casually connected, the

gravitational potential6φ remains approximately constant and the density

6The perturbation in the curvature φ is equal to the gravitational potential until the

scale stays much smaller than the horizon and the Newtonian limit remains valid.
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perturbations of dark matter δ are constant too. These modes enter the

horizon during the matter dominated epoch, when the density fluctua-

tions are small and the Universe is approximately flat (i.e. Einstein-de Sit-

ter). In this epoch the time derivative of the gravitational potential is zero

and it can be shown that the density fluctuations within the horizon have

the following behavior as a function of~k and a:

δ(~k, a) =
k2φ(~k, a)a

(3/2)ΩMH2
0

(1.35)

Note that φ̇ = 0 implies that the density perturbations grow proportion-

ally to the scale factor only when matter dominates: when dark energy

dominates this is not true anymore, because the amplitude of the gravita-

tional potential decreases (φ̇ < 0).

The small scales are the one that cross the horizon during the radiation

era. In this case the solution of the Eq.1.28 - 1.32 for the dark matter density

fluctuations is:

δ(~k,~η) ∝ ln (~k, η) (1.36)

In fact, using the Eq. 1.34 together with the fact that, as we have al-

ready seen, a ∝ t1/2 during the radiation dominated epoch, it can be

shown that during this period η = a. In other words, if the mode en-

ters the horizon during the radiation era, the dark matter perturbations

grow logarithmically with the scale factor because of the radiation pres-

sure. Later on, when the radiation perturbations become negligible, the

equation that governs the evolution of the dark matter perturbation can

be derived again from Eq.1.28 - 1.32 and has two independent solutions:

a growing solution D1(η), called growth factor, and a decaying solution

D2(η). The general solution for dark matter perturbations will be a linear

combination of the two:

δ(~k, η) = C1D1(η) + C2D2(η) (1.37)

where C1 and C2 depend on~k and are set from the initial conditions. At late

times, when matter starts to dominate, the growing solution scales with a
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while the decaying mode vanishes. This means that, after a certain period

of time, fluctuations on both large and small scales grow linearly with a.

Consequently, the evolution of the matter perturbations on all the modes

of cosmological interest become scale indipendent at late times, and can be

described by a single time dependent factor: the growth factor D1. At even

later times (a > 0.1 and z < 10), when dark energy starts to dominate

and the Universe experiences an accelerating expansion, the growth of

fluctuations slows down. The precise scale time dependence in this case

depends on the DE equation of state.

1.2.2 The growth factor

As we have just seen, in the matter dominated epoch all modes have expe-

rienced the same growth factor. In practice, this is the result of the fact that

if the dark matter is cold, which we assume here, it has zero pressure: once

a mode enters the horizon, there is no way for pressure to smooth out the

inhomogeneities and all modes evolve identically. The expression of D1 as

a function of a is therefore particularly relevant. It can be obtained solving

the equations Eq.1.28 - 1.32. Here we show the solution that includes the

possibility of having energy other than matter and radiation:

D1(a) =
5ΩM

2
H(a)
H0

∫ a

0

da′

(a′H(a′)/H0)3 (1.38)

where H(a) is given by the Eq. 1.23. Fig. 1.3 shows the behavior of the

growth factor for different cosmologies. For a matter-dominated Universe

without cosmological constant (solid top line) the growth factor is equal

to the scale factor (see Eq.1.6 with ΩM = 1, k = 0 and matter domination).

If we include a cosmological constant ((long dashed curve) the growth is

suppressed at late times (z ' 2) because of the dark energy. Moreover, if

we consider an open Universe (short dashed curve) the suppression acts

over all cosmic times.

We can then draw the following qualitative conclusion: structure in

an open or dark energy dominated Universe developed much earlier than
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Figure 1.3: The growth factor in three cosmologies. The solid line on top repre-

sents a flat universe without cosmological constant; the dashed inter-

mediate line a flat universe with cosmological constant (the ΛCDM

model); the bottom dashed curve describes an open Universe. Figure

from Dodelson (2003).

in a flat, matter-dominated universe. Moreover, since different kinds of

dark energy are described by different curves, i.e. different growth his-

tories, an accurate estimate of the growth factor can constrain D1(a) and

consequently H(a), i.e. the amount of dark matter and dark energy and

its equation of state.

To give an even more concise summary of the effect of cosmology on

the growth of perturbations, it is helpful to introduce the quantity f , called

the growth rate, defined by:

f ≡ d ln D1

d ln a
=

a
D1

dD1

da
(1.39)

An accurate approximation to the growth rate is given by the expression:

f = ΩM(z)γ (1.40)

where the exponent γ depends on the type of dark energy (for the ΛCDM

model is γ ∼ 0.55). Measuring f , therefore, allows to distinguish between

different dark energy models.
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Chapter 2

Statistical properties of mass and

galaxy clustering

As we have seen in the previous chapter, it is possible to derive solutions

for the Eq. 1.28 - 1.32, meaning the equations that govern dark matter

perturbations when linear theory applies. In this regime the Fourier trans-

forms of all the fields (density, velocity, potential etc.) produce a set of

independent ordinary equations that can be solved for each k-mode sep-

arately. However, the solution to the equations requires specifying initial

conditions, which are not trivial to guess.An effective way of compressing

the information of a perturbed field is by estimating its statistical properties.

Let us focus on the matter density fluctuations.

Density fluctuations in a specified volume are a realization of the over-

density random field δ at the generic position ~x: δ(~x) = δi. All possible

realizations δi constitute an ensamble. We assume that the Universe we

observe is a fair sample of this ensamble. This implies that the mean over-

density in the sample averages to zero. A significant fraction of the infor-

mation is encoded in 2-point statistics, i.e. the two point correlation function,

defined as:

ξ(~r) = 〈δ(~x)δ∗(~x +~r)〉 (2.1)
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where 〈〉 indicates ensamble average over all pairs with separation~r (the

∗ symbol indicates the operation of complex conjugation) . The 2-point

correlation function expresses the excess probability (compared with that

expected for a random distribution) of finding a pair of galaxies at a sep-

aration~r (see Fig. 2.1). Together with this quantity, it is useful to define

Figure 2.1: The correlation function expresses the excess probability (compared

with that expected for a random distribution) of finding a pair of

galaxies at a separation~r.

(and we will soon understand why) its Fourier transform, the power spec-

trum P(~k):

〈δ(~k)δ∗(~k′)〉 = (2π)3P(~k)δ3
D(
~k− ~k′) (2.2)

where δ3
D is the 3D Dirac delta. If we consider a large enough volume so

that the assumption of isotropy is valid in the clustering properties, then

the power spectrum does not depend on the direction of the wavenum-

ber1, and we can express the spectrum as function of the module of ~k:

P(k). The great advantage of defining the power spectrum over the 2-

point correlation function is that the different Fourier coefficients δk are

uncorrelated until the evolution of the perturbations remains linear, while

the number of pairs at different separation become correlated because of

gravity. We will refer to the power spectrum of the density fluctuations in

1If we rotate or translate a given point δi the probability of having a correlation should

be the same.
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the matter component as matter power spectrum.

The 2-point statistics is sufficient to fully describe the statistical pro-

prieties of the field if the density fluctuations are Gaussian distributed.

The theoretical prejudice is that the primordial density field should in-

deed obey a Gaussian statistics. Such are in fact the properties of the den-

sity fluctuations generated during the inflation era. The cosmological in-

flationary theory states that the Universe has undergone, in the very early

epochs, a period of accelerated expansion, after which the Universe ap-

pears highly homogeneous and flat on sub-horizon scales. The present

day cosmic structures formed from the quantum fluctuations that have

survived the inflationary expansion and that have been promoted from

microscopic to cosmological scales in the process. As already noted, a va-

riety of inflationary models predict that primordial perturbations obey to

Gaussian statistics, and even if deviations from Gaussianity are possible,

they are constrained to be very small by Cosmic Microwave Background

observations (Komatsu et al., 2011). At later times, when density fluctua-

tions grow larger, the nonlinear evolution destroys the primordial Gaus-

sianity. It has been shown that, well into the nonlinear regime, the prob-

ability of density fluctuations is well described by a lognormal statistics

rather than a Gaussian one (Coles and Jones, 1991). We shall elaborate

further on the properties of the lognormal model in Chapter 5.

Coming back to Eq. 1.35, it expresses the dark matter density fluctua-

tion field δ in terms of the gravitational potential φ for modes that enters

the horizon during the matter dominated epoch, i.e. after the equivalence

epoch, aeq. If φ has an analytical expression, one could substitute Eq. 1.35

into Eq. 2.2 and thus obtain an analytical expression for the matter power

spectrum (in linear theory); however, in order to do this, we have to spec-

ify the gravitational potential during the matter dominated epoch. More-

over, as already said, at later times (a >> aeq) the linear evolution of the

perturbations does not depend on k, and all Fourier modes evolve in the
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same way: let’s define alate the value of the scale factor when this happens.

If φP(~k) is the potential at the end of inflationary epoch (the primordial po-

tential), we can write schematically:

φ(~k, a) = φP(~k)× {Transfer function(k)} × {Growth Factor(a)} (2.3)

here the Transfer Function describes the evolution of perturbations through

the epoch of horizon crossing and radiation/matter transition, while the

Growth Factor, as we have said, accounts for late time evolution (a > alate).

In particular, the transfer function is defined as:

T(k) ≡ φ(k, alate)

φlarge−scale(k, alate)
(2.4)

here φlarge−scale(k, alate) ∼ 9/10 φp. Following its definition, the Transfer

Function is equal to unity on large scales (the ones that never cross the

horizon). Regarding the Growth Factor, it is defined as:

φ(a)
φ(alate)

≡ D1

a
a > alate (2.5)

with D1 the growth factor already defined. The gravitational potential at

late times is then:

φ(~k, a) =
9

10
φPT(k)

D1(a)
a

(2.6)

Substituting in the Eq. 1.35 we obtain:

δ(~k, a) =
3
5

k2

ΩMH2
0

φP(~k)T(k)D1(a) (2.7)

Assuming that φp ∝ k4+ns , the power spectrum of matter density fluctua-

tion at late times can then be obtained:

P(k, a) ∝
kns

Hns+3
0

T2(k)
(

D1(a)
D1(a = 1)

)2

(2.8)

This is the linear power spectrum of matter, and has dimensions of [length]3.

The term ns is called scalar spectral index, because it expresses any devia-

tion from scale-invariance (that implies k3P(k) = constant); if ns = 1 the
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Figure 2.2: The power spectrum in two Cold Dark Matter models, with (ΛCDM)

and without (sCDM) a cosmological constant. They have been nor-

malized to agree on large scales (small k). The vertical line evidences

the validity of linear regime (to the left). See text for details. Figure

from Dodelson (2003).

fluctuations in the gravitational potential do not depend on scale. In Fig.

2.2 we show the typical shape of the linear power spectrum at present time

(a = 1 or z = 0) for two different flat cosmological models: with (ΛCDM)

and without (sCDM) a cosmological constant. On large scales (small k)

in both models P(k) ∝ kns since the Transfer Function here is 1. Below a

given scale, the power spectrum turns over. This is due to the fact that

the small-scale modes enters the horizon well before the matter-radiation

equality, during the radiation era, where their evolution is either delayed

or obliterated. Here the power decreases because of the free streaming, ra-

diation drag and all types of dissipation processes, so the transfer function

is much smaller than unity. Modes that enter the horizon even earlier un-

dergo more suppression. Thus, the power spectrum is a decreasing func-

tion of k on small scales. This means that there will be a turnover in the
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shape of the power spectrum at the scale that corresponds to modes that

enter the horizon at matter-radiation equality. The vertical line in figure

refers to the scale above which non-linearities at the present epoch cannot

be ignored, and can be obtained when (k3P(k)/2π) ∼ 1, corresponding to

k ' 0.2 h Mpc−1.

In Fig. 2.2 two models are shown. The main difference between them

is that sCDM has more matter (ΩM = 1) and hence the equality occurs at

an earlier epoch. This means that only the very small scales succeed in en-

tering the horizon before the matter-radiation equivalence, and therefore

the turnover in the spectrum occurs on smaller scales.

So far we have considered only dark matter perturbations, but we can’t

forget that the baryon also contribute to the mass budget. They have a

secondary role, but anyway affects the transfer function shape. Unlike

the dark matter, the baryonic matter decouple from photon much later,

at the last scattering epoch. After, the baryons couple to dark matter

through gravity and, being subdominant, trace the spatial distribution of

the dark component. Before the recombination the perturbations of the

photo-baryon plasma don’t grow significantly with time, but either prop-

agate as acoustic waves or remain frozen in the plasma when they’re not

dissipated by diffusion processes. Yet, density fluctuations in the baryon

component do survive the plasma epoch and, since the contribution to the

total mass budget is not negligible, leave their imprint in the spatial dis-

tribution of the matter in the form of baryon acoustic oscillations. The BAO

signature is quite characteristics and has been detected in the 2-point cor-

relation statistics of the galaxy distribution ((Cole et al., 2005) and (Eisen-

stein et al., 2005)).

The results of the complex interplay between baryon and plasma physics,

dark matter properties and cosmological background are encoded in 2-

point statistics that, therefore, can be used to infer cosmological param-
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eters and physical properties. To illustrate this issue we show different

model power spectra obtained by changing some of these parameters (Fig.

2.3). Among the relevant quantities that can be inferred from the power

spectrum, there are:

• The amplitude of the primordial power spectrum of the gravitational

potential φP. This quantity is indicated as As and is related to the

typical amplitude of the mass density fluctuation by Eq. 2.7.

• The shape of the primordial power spectrum, which should be pre-

served on large scales, is uniquely characterized by one single pa-

rameter: the primordial spectral index ns that can be inferred by the

spectral slope at small k’s.

• The matter density parameter, ΩM, defines, together with the radi-

ation density parameter, the value of the scale factor at equivalence

(aeq), which in turns defines the point of turn over in the power spec-

trum.

• The dark energy density parameter, ΩΛ, affects the evolution of the

perturbation at late times, mainly suppressing their growth. As we

have seen, its specific impact depends on the specific type of dark

energy. In addition, since in a flat Universe (Ω = 1) ΩΛ and ΩM

are not independent, changing the former modifies the scale of the

spectral turnaround scale.

• The baryonic density parameter, Ωb, also suppresses the power on

small scales. Moreover, The larger Ωb the more pronounced is the

BAO feature. Therefore a large Ωb values would increase the ampli-

tude of the characteristic wiggles of the power spectrum.

• Another important parameter is σ8 the root mean square rms fluc-

tuation in total matter in spheres of 8 Mpc/h at z = 0 computed in
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linear theory. The rms is:

σ2
R =

∫ dk
2π2 k2P(k)

[
3j1(kR)

kR

]2

(2.9)

where R = 8 Mpc/h and j1 is the spherical Bessel function of order

1. This means that σ8 measures the normalization of the power spec-

trum, and is a derived parameter: σ8 and As are related through Eq.

2.9 which, in turn, depends on the other cosmological parameters.

• The mass density in neutrinos Ων and the number of neutrinos fam-

ilies Nν modify the value of aeq and suppress the power on scales

smaller than that of the turnover.
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Figure 2.3: The matter power spectrum plotted for different values of the cosmo-

logical parameters (color lines): the matter density parameter ΩM, the

baryon fraction fb ≡ Ωb/ΩM, the spectral index ns and the neutrino

density fraction fν ≡ Ων/ΩM. The colour bar indicates the value of

the parameter. The dashed black curve is the power spectrum for the

fiducial cosmology considered in Parkinson et al. (2012), and is the

same in all four plots. Figure from Parkinson et al. (2012).

2.1 The angular power spectrum

The 2-point correlation function and its Fourier transform, the power spec-

trum P(~k), encode information on the statistical properties of the mass

distribution. More often than not, astronomical datasets only provide in-

formation of the angular position and magnitude of a source and not its

redshift. In this case we can still extract cosmological information by ana-

34



The angular power spectrum

lyzing the angular rather than the spatial 2-point correlation properties. In

fact, it is possible to define 2-point statistics analogous to those introduced

in the previous section for a bi-dimensional dataset. The first one is the

angular 2-point correlation function ω(θ), i.e. the probability of finding

two galaxies in small elements of solid angle dΩ1 and dΩ2 separated by

an angle θ on the celestial sphere (see Fig. 2.4):

dP = n̄(1 + ω(θ))dΩ1dΩ2 (2.10)

where n̄ is the number of objects per steradian (i.e., the object surface den-

sity).

Figure 2.4: The angular correlation function is the probability of finding two

galaxies in small elements of solid angle dΩ1 and dΩ2 separated by

an angle θ on the celestial sphere.

We can further define the angular power spectrum as the Legendre trans-

form of the angular correlation function:

C` = 2πn̄
∫ 1

−1
ω(θ)P`(cos(θ))d(cos)θ (2.11)

The rigorous definition of the angular power spectrum involves a con-

tinuous bidimensional density field σ(θ, φ), which, being defined on the

celestial 2D sphere can be expanded in spherical harmonics Y`m(θ, φ) ∝

eimφP`(cosθ):

σ(θ, φ) =
∞

∑
`=0

`

∑
m=−`

a`mY`m(θ, φ) (2.12)
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The expansion in spherical harmonics can be thought of a generalized

Fourier transform: whereas the complete set of eigenfunctions for the

Fourier transform are ei~k·~x, here the complete set of eigenfunctions for ex-

pansion on the surface of a sphere are Y`m(θ, φ). All of the information

contained in the surface density field is also contained in the spherical

harmonics coefficients a`m.

Note that the orthonormality properties of the Y`m(θ, φ) implies that

the last equation can be reversed:

a`m =
∫

σ(θ, φ)Y`m(θ, φ)dΩ (2.13)

If we focus on the `th multipole, the angular power spectrum expresses its

amplitude:

C` ≡ 〈|a`m|2〉 (2.14)

where the brackets imply an averaging over many realizations of the den-

sity field. In other words, the angular power spectrum is the variance of

the a`m’s2. Since the assumption of isotropy ensures that 〈|a`m|2〉 depends

only on ` and not on m, then for a given ` each a`m has the same variance

(see Fig. 2.5).

To show this point let us consider the case of ` = 100. The num-

ber of coefficients associated to this multipole is 2` + 1 = 201. Their

amplitudes are drawn from the same distribution. So the value of C`

for ` = 100 is obtained by sampling the distribution 201 times. In the

case of the quadrupole (` = 2) the distribution is sampled only 5 times

(m = −2,−1, 0, 1, 2), hence providing a noisy estimate of its variance. This

means that there is an intrinsic uncertainty in the C` which depend on the

correlation properties and which we call cosmic variance. For a Gaussian

random field, the cosmic variance is simply:(
∆C`

C`

)
cosmic variance

=

√
2

2`+ 1
(2.15)

2As for the density perturbations, we cannot make predictions about any particular

a`m but only about the distribution from which they are drawn.
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Figure 2.5: The distribution from which the a`m’s are drawn. The distribution

has expectation equal to zero and a width equal to
√

C`. Figure from

Dodelson (2003).

2.1.1 From P(k) to C`

In order to use the angular power spectrum as a cosmological probe, we

need to unveil its dependence on the cosmological parameter through its

relation with the spatial power spectrum.

Let us consider some mass tracers, let us say galaxies, and their over-

density δ. If q̂ is a unit vector that specifies a certain direction on the sky, it

is possible to define the density perturbation seen on the sky as (Peacock,

1999):

δ(q̂) =
∫ ∞

0
δ(~y)y2φ(y)dy (2.16)

where y is the comoving distance and φ(y) is the so-called selection func-

tion of the sample, which quantify the probability of an object at y. This

probability is normalized, i.e.
∫

y2φ(y)dy = 1. The integral in Eq. 2.16

is performed along the line of sight and φ represents a statistical weight

to the density fluctuation at y. In general, the selection function depends
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both on the radial and on the angular distance. However, the angular de-

pendence is typically taken care of by the geometry mask, as we shall see,

so that the selection function can be defined only radially. In the cases

that we explore, the selection effect is induced by a flux cut in the galaxy

sample, effectively inducing a deterministic relation between the selection

function and the luminosity function of the galaxy catalog:

φ(y) =

∫ ∞
Max(L(y),Lmin)

Φ(L)dL∫ ∞
Lmin

Φ(L)dL
(2.17)

The selection function can also be written in terms of the number of objects

one have in a particular redshift bin dz:

φ =
1
N

dN
dz

(2.18)

where N is the total number of galaxies in the survey:∫ ∞

0

dN
dz

dz ≡ N (2.19)

The following step to link P(k) to C` is to Fourier transform Eq. 2.16 using

spherical harmonics. This is possible thanks to the relation between plane

waves and spherical bessel functions jn(x) = (π/2x)1/2 Jn+1/2(x) (i.e. the

Rayleygh expansion of plane waves, e.g. Press et al. (1992)):

eikycosθ =
∞

∑
`=0

(2`+ 1)P`(cosθ)jl(ky)i` (2.20)

Using the latter formula, the addition theorem:

P`(cosθ) =
4π

2`+ 1

m=`

∑
m=−`

Y∗`m(q̂)Y`m(q̂′) (2.21)

and the completeness relation:

∑
`

∑
m

Y∗`m(q̂)Y`m(q̂′) = δ(q̂− q̂′) (2.22)
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one can obtain, starting from the definition of the angular correlation func-

tion ω(θ) = 〈δ(q̂)δ(q̂′)〉, the following important relation:

C` = 〈|a`m|2〉 = 4π
∫

∆2(k)
dk
k

[∫
y2φ(y)j`(ky)dy

]2

(2.23)

where:

∆2(k) ≡ 1
2π2 k3P(k) (2.24)

Eq. 2.23 clarifies the link between the angular power spectrum, which is

the quantity that we will compute in this thesis, and the 3D power spec-

trum, which is what Theory typically predict.

Analogously to Fig. 2.3, Fig. 2.6 shows the impact on the angular

power spectrum of the variation of four cosmological parameters. In this

case, we consider the angular spectrum of CMB temperature variations

∆T.
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Figure 2.6: Example of the sensitivity of the angular power spectrum to four cos-

mological parameters. In this case, the angular spectrum of CMB tem-

perature variations ∆T is considered. The parameters are: the curva-

ture, quantified by Ωtot, the dark energy density parameter ΩΛ, the

baryon density parameter Ωb and the matter density parameter ΩM.

Figure from Hu and Dodelson (2002).

2.2 Measuring the matter power spectrum from

real datasets

Now that we have defined the spatial and the angular power spectra and

their dependence on the cosmological parameters, let us face the problem

on how to measure it. First of all, let us point out that 2-point statistics

that we have defined for continuous fields, can also be defined for a set of
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discrete mass tracers. All one has to do is to describe the density field as

a sum of Dirac delta functions centered on the objects positions. It is then

possible to estimate the matter power spectrum from the spatial or angular

positions of extragalactic objects provided that they trace the underlying

density field. Large collections of such objects, that specify their angular

and radial positions over large volumes, can therefore be used to estimate

the power spectrum of the matter. In practice, however, two issues need to

be addressed to achieve this goal. First of all: are galaxies adequate tracers

for the distribution of the total matter, which we know to be mostly dark?

Secondly, how good is galaxy redshift as a proxy to galaxy distance?

In fact, the relation between galaxies and dark matter is far from triv-

ial. Galaxies are though to form within gravitational potential wells dom-

inated by dark matter and, more specifically, within virialized structures

called dark matter haloes. The physical processes that govern the evolution

of the haloes and the galaxies within are very complex. On one hand,

dark matter haloes are nonlinear structures, so that their evolution can not

be described by the linear equations we have considered in the previous

chapter. On the other hand, the galaxies themselves are highly elaborate

structures, whose formation and growth is determined by the complex

physics of the baryons and by stellar feedback processes.

In addition, there is another problem related to the use of galaxy red-

shift surveys. Even if one ignores the distortion effects induced by peculiar

velocities, errors in the redshift measurements do introduce an uncertainty

in the radial position of the object. The magnitude of the error depends

on the technique used to measure the redshift. Accurate redshift estimate

from galaxy spectra are time consuming. If the goal is to gather as many

objects as possible then another, less precise, method, called photometric

redshift, can be adopted. This comes at the price of increasing the uncer-

tainty on the radial distance and, consequently, the fuzziness of the ob-

served cosmic structures. This is where the angular correlation studies

that we shall perform in this thesis come into play.
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2.2.1 Galaxy bias

Let us elaborate on how well galaxies trace the underlying mass. The map-

ping is thought to be complex and not fully captured by current models

of galaxy formation. Yet, this mapping, that we call galaxy bias, can be

operationally defined and estimated, so that our ignorance on the galaxy

evolution processes can be conveniently parametrized.

Let us focus on scales much larger than those affected by star formation

and evolution processes. In this case, the fluctuations are still in the linear

regime and we can assume that the bias relation between the galaxy den-

sity field and the mass field is linear too. If the galaxy density is uniquely

determined by the underlying mass density, i.e. the bias relation is local,

we can then write:

δg = bδM (2.25)

here b is the linear galaxy bias. In this case the galaxy power spectrum and

the linear matter power spectrum are related by a direct proportionality

law:

Pg(k) = b2P(k) (2.26)

Even if commonly adopted in literature, this relation is valid only on large

scales. In this Thesis we shall assume that galaxy bias is indeed linear. The

reason for this is twofold. First we shall avoid nonlinear scales and focus

instead on angular scales where deviations from linear theory are not se-

vere. Second, the 2D density field is obtained by projecting the 3D one on

the celestial sphere. The projection effect effectively smooths out nonlin-

earity and, again, make the field close to linear.

Besides the linear bias model, in our analysis we shall also consider

nonlinear ones in which nonlinear dynamics and bias are modeled in the

framework of the Halo Model (HM hereafter), which provides a theoretical

scheme to describe the clustering of dark matter, haloes and galaxies in
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both linear and non-linear scales (Cooray and Sheth, 2002). As we have

anticipated in the previous section, the basic idea of the HM is that galaxies

can form only in the potential wells of virialized dark matter structures

called haloes, that in turn are formed in correspondence of the peaks of the

density field via gravitational collapse. As a result, the galaxy properties

are strictly related to the mass and angular momentum of the parent halo.

If the Universe is thought to be partitioned up into distinct units like

haloes, which are small compared with the typical distance between them,

then the details of the internal structure of a single halo cannot be impor-

tant on scales larger than a typical halo. In other words, on large scales

the important ingredient is only the spatial distribution of the haloes. This

lead to the realization that we can consider two different contribution to

two point statistics: the 1-halo and the 2-halo components. Regarding the

power spectrum, this separation can be quantified as:

Pg(k) = P1h
g (k) + P2h

g (k) (2.27)

where the first term on rhs is the power relative to the structure within a

single halo, while the second term is relative to the correlation between

haloes. The latter term dominates on large scales, where the galaxy power

spectrum is related to the linear matter power spectrum by an equation

similar to Eq. 2.26, with b equal to:

b(z, mg, Lg) =
∫

dm n(z, m) b1, halo(z, m)
〈Ngal|m〉

n̄gal
(2.28)

here m is the halo mass, n(z, m) is the halo mass function, which gives the

comoving number density of haloes with mass m at redshift z, b1, halo(z, m)

is the linear bias of the halo with mass m at redshift z, n̄gal is the mean

number density of galaxies and 〈Ngal|m〉 is the mean number of galaxies

Ngal in a halo of mass m. The integral is to be performed over all halo

masses.

In order to derive the halo mass function and the halo bias, one has

to assume a dynamical model for the halo formation in a given cosmo-

logical framework. For example, a simple and useful approximation is the
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spherical collapse of an initially tophat density perturbation (Gunn and Gott,

1972). Once the halo mass function and the halo bias are specified, one has

to assume an halo occupation number 〈Ngal|m〉, that generally depends

on halo mass, redshift, type of galaxy, luminosity and of course mass of

the galaxies. Qualitatively, one expects that galaxies with high mass and

luminosity tend to populate the higher peaks of the density field of matter

so that they are more clustered than less massive or faint galaxies, which

are distributed more homogeneously (Kaiser, 1984). Moreover, galaxies

with early morphological type, i.e. elliptical galaxies in the Hubble mor-

phological classification, preferentially populate the massive galaxy clus-

ters, whereas spiral galaxies are commonly found in lower density envi-

ronments. The bias also depends on the redshift, because when galaxies

started forming, in the past, they populated the highest density peaks that

are statistically more clustered.

The HM model, like the various models of galaxy evolution, does not

allow to predict the galaxy bias with sufficient accuracy in order to con-

strain cosmological models. Therefore, in practice, we estimate galaxy bias

by comparing the measured 2-point statistics to theoretical prescription of

the matter counterpart. In particular, as we will see in our analysis, the

linear bias b is set as free parameter; the degeneracy with other cosmolog-

ical parameters can only be broken through combinations with indepen-

dent measurements like gravitational lensing or higher order statistics in

galaxy clustering.

2.2.2 Non linearities

Different approaches can be used to address the issue of the non-linear

evolution of density fluctuations.

The simplest way is to follow the evolution of a spherical overdensity

starting from a small fluctuations that expands with the Hubble flow. The

evolution of such fluctuation can be traced analytically. If the initial con-
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trast is sufficiently large, it will eventually collapse and form a virialized

structure.

Alternatively, one can push the perturbative approach described in

Jeong and Komatsu (2006) to include second or higher order terms. This

improves theoretical predictions in the mildly nonlinear regime at the price

of an increasing mathematical complexity.

An elegant alternative approach is the so-called Zel’dovich approxima-

tion (Zel’dovich, 1970), that consists in following the trajectories of a par-

ticle distribution. Starting from the initial unperturbed Lagrangian coor-

dinate ~q, and assuming that the particles move along straight lines, the

Eulerian position of each particle can be specified at the generic time as:

~x = ~q + ψ(~q, η) (2.29)

where ψ(~q, η) is the displacement field. In other words, since the Zel’dovich

approximation follows the evolution of the single particle, it is a first order

Lagrangian perturbation theory, different from the Eulerian perturbation

theory we used in Section 1.2, that instead follows the evolution of density

and velocity fluctuations. This means that the Zel’dovich approximation

consists in a purely kinematical approach and doesn’t take into account

close-range forces or pressure or shocks, and breaks down only when par-

ticles trajectories cross each other, when discontinuity in the mass density

field, called caustics, are formed. However, for small displacements, the

Zel’dovich approximation is an effective way to follow the evolution well

beyond the linear regime.

No analytic approach can follow the evolution of a nonlinear self grav-

itating system. This is why numerical methods, the so called N-body sim-

ulations, have been developed and are now being used as standard tools

to trace the evolution of density fluctuations and their spatial correlation

properties.
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2.2.3 Redshifts and peculiar velocities

Measured redshifts are used to infer the proper distance of an object once

a cosmological model is assumed. This inference, however, is affected by

systematic errors induced by the so called peculiar velocities. Peculiar

velocities, i.e. fluctuations in the Hubble velocity flow, add to recession

velocities so that the total velocity is:

~vobs = ~v + r̂vcosm (2.30)

where ~vobs is the total galaxy’s velocity, vcosm is the velocity of the expan-

sion and r̂ the radial versor. If we focus on the low redshift limit we have:

sobs ≡ czobs = czcosm + r̂ ·~v = H0d + v (2.31)

where d is the comoving distance and v is the component of the peculiar

velocity in the radial direction. If one measures redshift as proxy to dis-

tances:

ds =
sobs
H0

=
c zobs

H0
(2.32)

then a systematic error is introduced that, because of the coherence of the

velocity field, correlates with similar errors in the positions of nearby ob-

jects. The net effect is to induce a spurious, radial anisotropy in the clus-

tering of objects that biases the estimate of 2-point statistics. The effect is

usually referred to as redshift space distortion.

Redshift distortion affect the angular power spectrum too. To quantify

their impact, let us consider Eq. 2.23 and focus on the function (Fisher

et al. (1994), Padmanabhan et al. (2007), Thomas et al. (2011)):

K`(k) ≡
∫

y2φ(y)j`(ky)dy ≡
∫

f (y)j`(ky)dy (2.33)

where f (y) is the weighting function related to the selection function of

the sample. Writing the weight as a function of redshift distance f (s) and

assuming that the magnitude of the peculiar velocities are small compared

with the depth of the sample, it is possible to perform a Taylor expansion:

f (s) ≈ f (r) +
d f
dr

[~v(r r̂) · r̂] (2.34)
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As a result the function K`(k) is the sum of two terms, K`(k) and KR
` (k).

The first one accounts for the distribution of the objects in real space,

whereas the second one includes redshift distortion effects. The Fourier

transform of ~v is in turn related to the density perturbation through the

linear continuity equation:

~v(~k) = −iβδg(~k)
~k
k2 (2.35)

where δg is the galaxy density contrast, while the constant of proportion-

ality β is the ratio between the growth rate of density fluctuations and

the linear bias parameter of the mass tracer and is called redshift distor-

tion parameter. Substituting this into the expression of K`(k) and Legendre

transforming (see Padmanabhan et al. (2007) for the detailed calculation)

leads to:

KR
` (k) =β

∫
f (y)

[
(2`2 + 2`− 1)
(2`+ 3)(2`− 1)

j`(ky) +
`(`− 1)

(2`− 1)(2`+ 1)
j`−2(ky)+

− (`+ 1)(`+ 2)
(2`+ 1)(2`+ 3)

j`+2(ky)
]

dy

(2.36)

For large value of `, the integral in the previous equation tends to zero,

so K`(k) is reduced to the previous form. This means that, even with the

inclusion of redshift distortions, the small angle approximation leads to

an accurate estimate of the angular power spectrum at small scales. On

the contrary, redshift distortions do have an impact of the power at small

multipoles.

We shall account for redshift space distortions in modeling the angular

power spectrum in the analysis of real data (Chapter 7).

Let us elaborate further on the methods of measuring galaxy redshift,

their errors and the impact on clustering studies.

The most accurate way of measuring redshift is through spectroscopy,

i.e. by measuring the wavelength of a well known line in the spectrum
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of an object. The higher the dispersion of the spectrograph the better is

precision of the measurement. This redshift, called spectroscopic redshift,

can only be obtained for relatively bright objects, because it requires suf-

ficient signal-to-noise ratio to detect individual emission and/or absorp-

tion lines. Large observational efforts are in progress (e.g. VIPERS, see

Guzzo et al. (2014) and BOSS, see Dawson et al. (2013)) or planned (EU-

CLID, Laureijs et al. (2011)) to map the 3D galaxy distribution using spec-

troscopic redshifts. As this is a time-consuming technique, the number of

objects in these surveys is significantly smaller than those in the photomet-

ric samples, in which one estimates redshift from the magnitude of objects

measured in different bands. This photo-z technique provide an estimate

of the redshift considerably less precise than the spectroscopic, but for a

comparatively larger number of objects. The idea is that one can obtain

a sampling of an object’s Spectral Energy Distribution (SED)3 by measur-

ing the flux of the object in a relatively small number of wavebands. We

will not go into details4, but the SED of galaxies has some broad spectral

features that change as a function of redshift. When compared with theo-

retical predictions obtained by repeating the same analysis over a sample

of template galaxy spectra, one obtains an estimate of the redshift, which

is what we call photometric redshift. Obviously, its precision is inferior to the

spectroscopic one: photometric errors are typically of the order of 3–10%

while the spectroscopic ones stay around 0.1%.

As we will see in the following chapters, in our analysis we will con-

sider the 2MASS photometric catalogue (2MPZ) (Bilicki et al., 2014). We

will then have to face the problem of inferring the radial position of the ob-

jects (or its spectroscopic redshift) from photometric redshifts, in order to

3The Spectral Energy Distribution, often called SED, is just the flux density as a func-

tion of the frequency or wavelength of light.
4For more details, see Mo et al. (2010), Chapter 2
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have a deeper understanding of impact of photo-z errors in the clustering

analysis. We shall investigate this issue in Chapter 5.

2.2.4 A code for the power spectrum model: CLASS

Once computed the 2-point statistics (in our case, the angular power spec-

trum) from a catalogue, the following step is to compare it to theoretical

predictions. As we have discussed, a numerical treatment would require

to perform N-body simulations of different cosmological models and mea-

sure their power spectra. This strategy would be too computationally ex-

pensive. Fortunately, when it comes to 2-point statistics for the matter den-

sity field, analytic or semi-analytic techniques have been developed to pre-

dict spatial and angular spectra with high accuracy. Consequently, several

numerical code aimed at predicting 2-point stats are publicly available.

Examples are CMBFAST (Seljak and Zaldarriaga, 1996) or CMBEASY (Do-

ran, 2005). Perhaps, the most famous and complete code is surely CAMB

(Lewis et al. (2000) and Howlett et al. (2012)), written in Fortran90. In

our study we have instead chosen to use the code CLASS (Cosmic Linear

Anisotropy Solving System) (Lesgourgues (2011) and Blas et al. (2011)), for

two reason: first of all, CLASS is written in C/C++, the same language

that we used to write our own code to estimate the angular spectrum; sec-

ondly, it offers a natural interface with the code MontePython (Audren

et al., 2013) that we will use for the estimation of the cosmological param-

eters (see Chapter 6).

The code CLASS computes spatial and angular spectra for any cosmo-

logical models characterized by a number of parameters. This task is done

in separate steps that are associated with different structures within the

code. CLASS can be executed with a maximum of two input files, for ex-

ample:

./class explanatory.ini chi2pl1.pre

The file with a .ini extension is the cosmological parameter input file, and
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the one with a .pre extension is the precision file. Both files are optional:

all parameters are set to default values corresponding to that of the stan-

dard cosmological model, and are eventually replaced by the parameters

passed in the two input files. For example, in our case the default accuracy

settings were sufficient, so we just run ./class explanatory.ini.

Within this file, each parameter that is not specified is automatically left

to the default value.

CLASS can accommodate substantially all the parameters one could

need for a cosmological study: those concerning photons, baryons, cold

dark matter, massless neutrinos and other ultra-relativistic species. The

user can decide to use the linear theory or Halofit to investigate the

nonlinear regime, to add a particular selection function φ or a window

function in order to define the redshift range under study. The code also

accounts for the effect of redshift space distortions in both the 3D and the

angular spectrum. Among the other outputs, the code provides the power

spectrum P(k) and, thanks to the extension CLASSgal (Di Dio et al., 2013),

it also computes the angular correlation function and the angular power

spectrum C` of the matter density. In our analysis we will use the angular

spectrum computed by CLASS as a reference theoretical spectrum, as we

will examine in depth in the following chapters.
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Chapter 3

The angular power spectrum

estimate

In the previous chapter we have introduced the concept of angular power

spectrum in the ideal case of an all-sky sample. Here, we extend the for-

malism to account for the most common observational effects such as the

incomplete sky coverage. We shall move from the theoretical definition

of the angular spectrum to introduce the estimator, describe its properties

and describe the associated numerical code. We conclude by testing the

performance of the code.

3.1 Theory

From now on, let us define δ(~r, zi) as the three-dimensional galaxy fluctu-

ation at the position~r in a given redshift bin zi. As we have seen in Eq.

2.16, we can project the 3D fluctuation along the line of sight in order to

obtain the angular fluctuation for the ith-redshift bin:

δi(r̂) =
∫ ∞

0
drr2φi(~r)δ(~r, zi) (3.1)

where φi(~r) (normalized such that
∫

drr2φ(r) = 1) is the selection function

defined in Sec. 2.1.1 and is equal to zero outside the z-bin. The angular
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fluctuation field over the sphere can be expanded in spherical harmonics.

The coefficients of such expansion are:

δi
`m =

∫
dr̂δi(r̂)Y∗`m(r̂) =

∫
d3r φi(~r)δ(~r, zi)Y∗`m(r̂) (3.2)

Analogously to Eq. 2.14 we can define the cross-angular power spectrum

between two redshift bins i and j as the ensemble average of the product

of the harmonic decomposition averaged over the m modes:

Cij
` ≡

1
2`+ 1 ∑

m
〈δi

`mδ
j∗
`m〉 (3.3)

The quantity Cij
` indicates the cross-spectrum that reduces to the usual

auto-power spectrum when i = j. As we have seen in Sec. 2.1.1, this

angular power spectrum is related with the 3D power spectrum P(k) by

the Eq. 2.23. To distinguish between the theoretical and the estimated

angular spectrum we indicate the latter as C̃`.

Let us now consider the effect of the various observational biases on

the measured spectrum. These effects are usually encoded in the so-called

selection function φ, which quantifies the probability that a galaxy at~r is

included in the sample. The selection function can be conveniently factor-

ized into a radial and an angular component. The angular component, or

angular mask M(r̂), quantifies the angular coverage of the sample:

φi(~r) = φi(r)M(r̂) (3.4)

The angular dependence of the mask can be quite complicated since the

completeness of the sample may depend on the angular position. Here

we shall consider the simple case of a sample 100% complete in some area

of the sky (in which M = 1) and 0% complete in the remaining areas

(corresponding to M = 0). The use of such binary mask is not unrealistic

since in most cases one can extract a sub-sample characterized by constant

completeness over some area and zero objects outside it. φ(r) represents

the radial selection function which, for large enough galaxy sample, can

be obtained from the redshift distribution of the objects N(z) assuming a
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cosmology dependent z(r) relation. Using the addition theorem (Eq. 2.21)

and the Fourier transform of the galaxy density field observed at redshift

z, we can write:

δi
`m = 4π

∫
d3r

∫ d3k
(2π)3 δ(~k, z(r)) ∑

`′m′
i−`

′
j`′(kr)φi(r)Y∗`m(r̂)M(r̂)Y`′m′(r̂)Y∗`′m′(k̂)

(3.5)

where δ(~k, z(r)) is the Fourier transform of the fluctuation δ(~r, z(r)) at the

redshift z. The cross 3D galaxy-galaxy power spectrum is defined as:

〈δ(~k, r(z))δ∗(~k′, r(z′))〉 = (2π)3δ3(~k− ~k′)
√

P(k, z)P(k, z′) '
' (2π)3δ3(~k− ~k′)b(z)b(z′)D(z)D(z′)Pmatter(k, z = 0)

(3.6)

where P(k, z) is the galaxy power spectrum at redshift z. The second line

of Eq. 3.6 is valid in the linear regime in which i) the galaxy bias b(z)

is assumed to be linear and ii) the growth of density fluctuation D(z) is

the one predicted by linear theory. In this case Pmatter(k, z = 0) would be

the matter linear power spectrum. A more sophisticated model would be

required to describe the cross-spectrum in the nonlinear regime. Here we

shall simply assume that in the nonlinear regime Eq. 3.6 is still valid but

the matter linear power spectrum can be substituted by the nonlinear one.

The goodness of this assumption is questionable. However we shall keep

in mind that in our analysis we consider a 2D-projected density fluctuation

field smoothed over some pixel size. The amplitude of its fluctuations are

not large so that effective deviations from linearities are small and Eq. 3.6

is a good approximation. In any case, the theoretical uncertainties in the

model described by Eq. 3.6 will be included in the error budget of our

analysis. Putting together equations 3.5 and 3.6, we obtain:

〈δi
`mδ
∗j
`m〉 = ∑

`′
Γm
``′C

ij
` (3.7)

where, for a given value of m, Γ is a matrix that specifies how the power

in the `′ mode contribute to that associated to the ` mode (their expres-

sion is the subject of the next section). Cij
` is the theoretical angular power
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spectrum:

Cij
` =

∫ ∞

0
k2Pmatter(k, z = 0)Fi

`(k)Fj
`dk (3.8)

Each kernel Fi
`(k) can be shown to be equal to:

Fi
`(k) ≡

√
2
π

∫ ∞

0
drr2φi(r)b(z(r))D(z(r))j`(kr) (3.9)

where again φi is zero outside the z-bin as in the Eq. 3.1. We can now

rewrite the selection function in the ith bin in terms of the one of the full

sample (φ(~r)) together with a function that characterizes the redshift bin,

a window function Wi: φi(~r) = φ(~r)Wi. Moreover, using the Eq. 2.18, we

can then write:

Fi
`(k) ∼

√
2
π

∫ ∞

0
dz

dN
dz

Wi(z)b(z)D(z)j`(kr(z)) (3.10)

In the limit of a very thin redshift slice, the selection function becomes:

dNi

dz
≈ δK(z− zi)

Ni
gal

(3.11)

where δK is the Kronecker delta, the kernel becomes:

Fi
`(k) =

√
2
π

1
Ni

gal
Wi(z)b(zi)D(zi)j`(kr(zi)) (3.12)

and the corresponding power spectrum:

Cij
` =

b(zi)D(zi)b(zj)D(zj)

Ni
galN

j
gal

∫ ∞

0
k2Pmatter(k)j`(kr(zi))j`(kr(zj))dk (3.13)

3.1.1 Limber approximation

For ` � 1, i.e. at small angular separations, the angular power spectrum

can be written in an approximated form called Limber approximation

(Limber, 1953). Under this condition, in fact, the spherical Bessel functions

can be expressed in terms of their asymptotic limit:

lim
l�1

jl(x) =
√

π

2`+ 1
δD(`+

1
2
− x) (3.14)
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where δD is the Dirac delta function. Using this equation the angular

power spectrum becomes:

Cij
` =

∫ ∞

0
dz

dNi

dz
dNj

dz
b(z)2D(z)2Pmatter

(
k =

l + 1/2
r(z)

)
(3.15)

For a very thin redshift interval (Eq. 3.11) this last relation can be written

as:

Cij
l ≈

(D(zi)b(zi))
2

Ni
galN

j
gal

Pmatter

(
k =

l + 1/2
r(zi)

)
δK(zi − zj) (3.16)

This means that under the Limber approximation there is no correlation

between redshift bins.

3.1.2 The mixing matrix

The terms Γm
``′ appearing in Eq. 3.7 are defined as:

Γm
``′ = ∑

m′

∫
dr̂Y∗`m(r̂)M(r̂)Y`′m′(r̂)

∫
dr̂′Y∗`m(r̂

′)M(r̂′)Y`′m′(r̂′) (3.17)

Taking the average over the m-modes, one obtains:

R``′ =
1

2`+ 1 ∑
m

Γm
``′ (3.18)

where R``′ is called angular mixing matrix and relates the measured an-

gular power spectrum (Eq. 3.3) with the theoretical one through a convo-

lution (see Peebles (1973) and Thomas et al. (2011)):

C̃ij
` = ∑

`′
R``′C

ij
`′ (3.19)

The mixing matrix can be rewritten by decomposing the mask in spherical

harmonics with coefficients M`m:

M(r̂) = ∑
`m

M`mY`m(r̂) (3.20)

where:

M`m =
∫

dr̂M(r̂)Y∗`m(r̂) (3.21)
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If one defines (not to be confused with the bin size Wi used previously):

W` ≡
1

2`+ 1 ∑
m
|M`m|2 (3.22)

then it can be shown (Hivon et al., 2002) that the mixing matrix can be

written in terms of the Wigner symbols:

R``′ =
2`′ + 1

4π ∑
`′′
(2`′′ + 1)W`′′

(
` `′ `′′

0 0 0

)2

(3.23)

For a full-sky sample, the mask is equal to unity everywhere (M(r̂) = 1),

so that M`m =
√

4π δ`0δm0, W` = 4πδ`0 and:

R``′ = (2`′ + 1)

(
` `′ 0

0 0 0

)2

= δK
``′ (3.24)

with δK
``′ the Kronecker delta. In this case:

C̃ij
` = Cij

` (3.25)

The mixing matrix quantifies the alteration in the shape of the angular

power spectrum due to a partial sky coverage. Eq. 3.19 tells us that the

presence of a mask introduces correlation between different ` modes be-

cause it mixes the otherwise orthonormal spherical harmonic coefficients.

The mixing matrix only depends on the angular mask and not on the ra-

dial selection function whose effects are encoded in the kernels F`.

It is important to note that Eq. 3.19 does not provide an unbiased esti-

mate of the angular power spectrum. To illustrate this point let us consider

the case of a constant underlying power spectrum C. In this case the Eq.

3.19 becomes:

C̃ij
` = C ∑

`′
R``′ (3.26)

If we define:

J`m ≡
∫

dr̂M(r̂)|Y`m(r̂)|2 =
∫

∆Ω
dr̂|Y`m(r̂)|2 (3.27)
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where ∆Ω is the total surveyed area, then we have:

C̃ij
` =

C
2`+ 1 ∑

m
J`m = C fsky (3.28)

with fsky sky fraction, i.e. the ratio between the observed (masked) area

and the total area. The estimate provided by Eq. 3.28 is biased by the con-

stant factor fsky. To eliminate this bias we need to renormalize the mixing

matrix R``′ . Peebles (1973) and Hauser and Peebles (1973) suggested the

following definition:

〈δi
`mδ
∗j
`m〉 = J`m ∑

`′
Γ̃m
``′C

ij
`′ (3.29)

with:

Γ̃m
``′ ≡

Γm
``′

J`m
(3.30)

we can define a pseudo-power spectrum D̃`m as:

D̃ij
`m ≡

〈δi
`mδ
∗j
`m〉

J`m
= ∑

`′
Γ̃m
``′C

ij
`′ (3.31)

such that its m-average is the convolution of the underlying power spec-

trum with a renormalized mixing matrix R̃``′ :

D̃ij
` ≡

1
2`+ 1 ∑

m
Dij

`m = ∑
`′

R̃``′C
ij
`′ (3.32)

The normalized mixing matrix is:

R̃``′ =
1

2`+ 1

m=+`

∑
m=−`

Γm
``′

Jlm
=

=
1

2`+ 1

m=+`

∑
m=−`

(
∑m′

∫
dr̂Y∗`m(r̂)M(r̂)Y`′m′(r̂)

∫
dr̂′Y`m(r̂′)M(r̂′)Y∗`′m′(r̂

′)
dr̂M(r̂)|Y`m(r̂)|2

)
(3.33)

with ∑`′ R̃``′ = 1. Coming back to the example of the white noise, we

obtain D̃ij
` = C, i.e. the power spectrum D̃ is effectively unbiased. How-

ever, the unbiased estimator for the power spectrum comes with a price,
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and it consists in losing the possibility of expressing the mixing matrix in

terms of the Wigner symbols. To circumvent this problem Peebles (1973)

proposed an approximated estimator for the mixing matrix:

R̃``′ =
1

2`+ 1

m=+`

∑
m=−`

Γm
``′

Jlm
≈

≈ 1
2`+ 1

∑m=+`
m=−` Γm

``′

∑m=+`
m=−` J`m

=
(2`′ + 1)
4π fsky

∑
`′′
(2`′′ + 1)W`′′

(
` `′ `′′

0 0 0

)2 (3.34)

We shall use this approximation in our analysis and quantify its accuracy

in the following section.

3.2 The angular cross power spectrum estimator

Now that we have a deeper understanding of the modification induced on

the angular power spectrum by a partial sky coverage, we can introduce

our cross angular spectrum estimator.

Let σi(r̂) be the (observed) galaxy surface density in a redshift bin i

and σ̄i(r̂) the ensamble average of the galaxy surface density, which we

assume to be equal to the mean surface galaxy density in the direction~r

and in the redshift bin i. Let us define the quantity Fi(r̂) as the fluctuation

in the surface density:

Fi(r̂) ≡
1

σ̄i(r̂)
(σi(r̂)− σ̄i(r̂)) (3.35)

To expand this field into spherical harmonics we insert the Eq. 3.35 into

Eq. 3.2:

ai
`m =

∫
dr̂Y∗`m(r̂)Fi(r̂) ≡ Ai

`m − Ii
`m (3.36)

where the term Ai
`m is the spherical harmonics decomposition of the sur-

face density:

Ai
`m =

∫
dr̂

1
σ̄i(r̂)

Y∗`m(r̂)σi(r̂) (3.37)
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while Ii
`m is its ensamble average:

Ii
`m = 〈Ai

`m〉 =
∫

dΩY∗`m(r̂) (3.38)

For a full sky sample, we have Ii
`m = 4π

√
4πδ`0δm0 =

√
4πδ`0δm0 and

a`m = A`m for ` > 0.

Let us now compute the ensamble average of the product of the har-

monic coefficients:

C̃ij
`m ≡ 〈ai

`ma∗j
`m〉 =

=
∫

dr̂
1

σ̄i(r̂)σ̄j(r̂)
r̂′Y∗`m(r̂)Y`m(r̂′)〈 (σi(r̂)− σ̄i(r̂))(σj(r̂′)− σ̄j(r̂′)) 〉

(3.39)

When it comes to measured quantities, the surface density is estimated

from discrete objects counts. To model the latter we assume that galaxies

are a Poisson random process so that we can write:

〈(σi(r̂)− σ̄i(r̂))(σj(r̂′)− σ̄j(r̂′))〉 = σ̄i(r̂)δ(r̂− r̂′)δK
ij+

+ σ̄i(r̂)σ̄j(r̂) ωij
(
r̂ · r̂′

) (3.40)

where δK
ij is the Kronecker delta that arises from the assumption that the

different redshift bins are disjoint; ωij (r̂ · r̂′) is the angular correlation func-

tion while δ(r̂− r̂′) is the two dimensional Dirac delta function on a sphere.

As we have seen in the previous Chapter, the (cross) angular correlation

function is related to the (cross) angular power spectrum by a Legendre

transform (the inverse of Eq. 2.11):

ωij
(
r̂ · r̂′

)
=

1
4π ∑

`

(2`+ 1)Cij
` P`(r̂) · r̂′ = ∑

`m
Cij
` Y`m(r̂)Y∗`m(r̂

′) (3.41)

where P` is the Legendre polynomial and we have used the addition the-

orem (Eq. 2.21). If we assume that the angular dependence of the mean

surface density is fully captured by the mask, i.e. if the mean galaxy den-

sity of the sample is constant within the surveyed area, then we have:

σ̄i(r̂) = σ̄i M(r̂) (3.42)
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where σ̄i = Ni/∆Ω, with Ni number of objects in the ith redshift bin and

∆Ω the area of the surveyed region in the sky. Since the value of the mask

is equal to 1 inside the surveyed area and 0 outside it, then σ̄i drops outside

the integral and we can express Eq. 3.39 as:

C̃ij
`m =

1
σ̄i

δK
ij J`m + ∑

`′
Γm
``′C

ij
`′ (3.43)

where Γm
``′ and J`m are defined in the Eq. 3.7 and 3.27 respectively. As we

have seen, Eq. 3.43 provides a biased estimate of the angular spectrum.

We can define an unbiased quantity:

Dij
`m ≡

C̃ij
`m

J`m
=

1
σ̄i

δK
ij + ∑

`′
Γ̃m
``′C

ij
`′ (3.44)

where Γ̃m
``′ expressed in Eq. 3.30. We can therefore form an unbiased es-

timator from the measured spherical harmonics coefficient, mean surface

density and angular mask:

D̃ij
`m ≡

|(ai
`ma∗j

`m)|
J`m

− 1
σ̄i

δK
ij (3.45)

The ensamble average of this estimator is:

〈D̃ij
`m〉 = ∑

`′
Γ̃m
``′C

ij
`′ (3.46)

Averaging over the m modes we obtain:

D̃ij
` =

1
2`+ 1 ∑

m

|(ai
`ma∗j

`m)|
J`m

− 1
σ̄i

δK
ij (3.47)

The second term of this equation is the shot-noise, which is zero if we con-

sider different redshift bins (i 6= j) and equal to ∆Ω/Ni otherwise. The

ensamble average of D̃ is:

〈D̃ij
` 〉 = ∑

`′
R̃``′C

ij
`′ (3.48)

where R̃``′ is the renormalized mixing matrix defined in Eq. 3.33.
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Several authors (Blake et al. (2004), Blake et al. (2007), Thomas et al.

(2011)) have implemented the estimator in Eq. 3.45 using the mixing ma-

trix in Eq. 3.34, which we have seen to be an approximated form of the

exact mixing matrix in Eq. 3.33. Peebles (1973) and Hauser and Peebles

(1973) have proposed an alternative estimator for the angular power spec-

trum. Let us call it K̃:

K̃ij
` =

1
fsky(2`+ 1)

m=+`

∑
m=−`

|ai
`ma∗j

`m| −
1
σ̄i

δK
ij (3.49)

The ensamble average in this case turns out to be:

〈K̃ij
` 〉 = ∑

`′

R``′

fsky
Cij
`′ (3.50)

Here the mixing matrix is the one defined by Eq. 3.23 with no approxima-

tions: in case of a simple binary mask all one needs to do is to divide R``′

by the observed sky fraction fsky, as the Eq. 3.34 suggests.

The difference between the two estimators D and K can be appreciated

in Fig. 3.1 .The top panel shows the ratio between the mean over 104 real-

izations of the angular spectrum computed with the estimator D (Eq. 3.47)

and the corresponding model obtained through the mean of the convolu-

tion of the theoretical spectrum (obtained from CLASS) with the mixing

matrix following the Eq. 3.45. The middle panel shows the same but for

the estimator K of Eq. 3.49 and the expected spectrum (Eq. 3.50). Finally,

the bottom panel shows the per cent difference between the two estima-

tors. The mixing matrix has been computed with our code from the mask

provided by Maciej Bilicki (Bilicki et al., 2014) (see Fig. 3.8). As expected,

the two estimators generate a different pseudo power spectra because they

are linked to the underlying power spectrum through a different mixing

matrix. Nevertheless, it can be noted from the figure that the difference be-

tween the two estimates is smaller than the expected (gaussian) variance

represented by the shadowed areas. In other words, the choice of using

the D estimator with the approximated mixing matrix of Eq. 3.34 is rea-

sonable even more so if one consider that the exact version of the mixing
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matrix is more complicated to compute. In this sense, the decision of Blake

et al. (2004), Blake et al. (2007) and Thomas et al. (2011) can be justified. We

thus decided to follow these authors and use the estimator D.

Figure 3.1: Comparison between the estimators of pseudo power spectrum D and

K described in the text. The shadowed areas in the two upper panels

represent the variance of the ensemble of 104 maps. The bottom panel

shows the per cent difference between the estimators.
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3.3 The numerical code to estimate the angular

spectrum

The estimator for the angular spectrum that will be used in this thesis is

the one specified by 3.47, D`. The estimator applies to a continuous 2D

field whereas in our case we have a distribution of discrete points on the

2-sphere. The commonly adopted solution is to pixelize the counts. The

angular resolution of the resulting map is set by the pixels size (assumed

to be equal across the sphere) and is determined by the trade-off between

shot-noise error and the need to measure the spectrum down to the small-

est possible scales to extract the maximum amount of information.

In our case, the pixelization is performed through the publicy avail-

able library HEALPix (Górski et al., 2005) that we briefly described in the

following section1.

3.3.1 HEALPix

The library HEALPix (acronym for Hierarchical Equal Area isoLatitude

Pixelization of a sphere, see Górski et al. (2005)) has been developed by

the JPL at NASA. Created to measure the cosmic microwave background

anisotropy, this numerical toolkit has then been adapted for many more

applications, and produces a subdivision of a spherical surface in which

each pixel covers the same surface area as every other pixel. The reso-

lution of the pixelized map is set by the parameter nside, which provides

the dimension of the single pixel. The number of pixels on the sphere is

then set to 12n2
side. As the resolution increases, lower angular scales (i.e.

higher multipole) can be analyzed, with the maximum multipole being

`max = 4nside (see Fig. 3.2).

1More details on this library are available at http://healpix.jpl.nasa.gov/.
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Figure 3.2: Different resolutions in the pixelization provided by HEALPix.

In Table 3.1 the different resolutions allowed by HEALPix are shown.

Table 3.1: Different resolutions for the pixelization provided by HEALPix (see the

text for details).

Resolution nside Total number of pixels `max

0 1 12 4

1 2 48 8

2 4 192 16

3 8 256 32

4 16 3072 64

5 32 12288 128

6 64 49152 256

7 128 196608 512

8 256 786432 1024

9 512 3145728 2048

10 1024 12582912 4096

In addition to the resolution, the HEALPix user should define the or-

dering scheme, i.e. the way in which the pixels are numbered. There are

two possibilities: ring and nested scheme. Both numbering schemes map

the two dimensional distribution of discrete area elements on a sphere into

a one dimensional, integer pixel number array (in our case, for example,

each pixel will contain the number of objects in that region). However,
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while in the ring scheme the pixel number winds down from north to

south pole through the consecutive isolatitude rings, in the nested scheme

the pixel number grows with consecutive hierarchical subdivisions on a

tree structure seeded by the twelve base-resolution pixels2. In our analy-

sis we always use the ring scheme.

3.3.2 The angular spectrum estimator of a pixelized map

Let us first adapt the definition of the quantities defined in Sec. 3.1 for a

continuous field to the case of a pixelized map. The mean surface density

is now:

σi(r̂) =
Npix

∑
k=1
Nik δ2

D(r̂− r̂k) (3.51)

where Nik is the number of galaxies that belongs to the i-th redshift bin

and the k-th pixel on the sphere, while δ2
D is the Dirac delta function on

the 2-sphere. Similarly, the angular mask is:

M(r̂) =
Npix

∑
k=1

mk δ2
D(r̂− r̂k)∆Ωp (3.52)

where mk is either 1 or 0 depending on whether the pixel belongs or not

to the surveyed area; ∆Ωp is the pixel area (equal for all the pixels, as we

have seen). The term Ai
`m in Eq. 3.37 becomes:

Ai
`m =

1
σ̂i

∫
dr̂Y∗`m(r̂)σi(r̂) =

1
σ̂i

Npix

∑
k=1
NikY∗`m(r̂k) = ∆Ωp

Npix

∑
k=1

(Nik

N̄i

)
Y∗`m(r̂k)

(3.53)

where N̂i is the mean number of objects per pixel in the i-th redshift bin.

Analogously we can rewrite the terms I`m of Eq. 3.38 and J`m of Eq. 3.27:

Ii
`m =

1
σ̂i

∫
dr̂Y∗`m(r̂)σ̂i(r̂) =

∫
dr̂Y∗`m(r̂)M(r̂) = ∆Ωp

Npix

∑
k=1

mk Y∗`m(r̂k)

(3.54)

2For more details, see http://healpix.jpl.nasa.gov/html/intronode4.htm

65



The angular power spectrum estimate

and:

Ji
`m =

∫
dr̂M(r̂)|Y`m(r̂)|2 = ∆Ωp

Npix

∑
k=1

mk|Y`m(r̂)|2 (3.55)

If the angular mask is the same in all redshift bins, which is the case that

is relevant for this thesis, then neither I`m nor J`m depends on the redshift.

Finally, the spherical harmonic coefficients of Eq. 3.36 are:

ai
`m = ∆Ωp

Npix

∑
k=1

(Nik − N̄i

N̄i

)
Y∗`m(r̂) (3.56)

As a result, the estimator of the angular power spectrum, D, can be built

from the measured harmonics coefficients Eq. 3.56, the I`m and J`m terms

estimated as in Eqs. 3.54 and 3.55 and the mean number density of objects

defined in Eq. 3.51.

The library HEALPix not only provides a pixelization of the sphere,

i.e. a one dimensional array whose elements corresponds to the value of

the field in each pixel (which we call the map), but also includes several

functions related to the decomposition of this field in spherical harmonics.

One of the function we used in our code is called map2alm, and provides

the spherical harmonic coefficients of the pixelized map. In our case, if the

map is the one dimensional integer array obtained from the surface den-

sity field, then the alm would be those expressed in Eq. 3.37. If, instead,

one consider the fluctuations in the surface density, then map2alm would

directly provide the coefficients expressed in Eq. 3.36. However, in both

cases we would add the contribution of the term J`m to take into account

for the mask, as expressed by Eq. 3.45 or equivalently by Eq. 3.49.

In this thesis we have used the estimator D to measure the angular

cross spectrum of a galaxy density fluctuation field on a sphere. For this

purpose we developed and implemented our own C++ code that exploits

some of the HEALPix routines to estimate the angular power spectrum of

galaxies distributed over some patch of the sky. The structure of the code

is as follows.
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Inputs:

1. The code reads in a galaxy catalog that specifies the angular posi-

tion of each object in one or more redshift bins. It can also import a

density or overdensity HEALPix map in fits format.

2. A binary angular mask in HEALPix format (with specified pixel size).

Execution steps:

1. The mean number density of objects in each redshift shell is com-

puted.

2. For each shell, an HEALPix map is created that specifies the density

fluctuation in the number of objects within each pixel. The pixel size

is set to match that of the angular mask.

3. The HEALPix routine map2alm is called to estimate the spherical

harmonics coefficients in each shell.

4. The terms I`m and J`m are computed through Equations 3.54 - 3.55.

For each shell, the angular power spectrum is then obtained from

Eq. 3.53.

5. The code also estimates the mixing matrix corresponding to the in-

put mask (Eq. 3.34).

6. It is also possible to compute the angular spectrum and the mixing

matrix in `-bins.

Outputs:

1. The angular power spectrum

2. The mixing matrix associated to the geometric mask, if provided.
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3.3.3 The pixel window function

Unavoidably, pixelization removes power below the angular resolution of

the map. As a result, the shape of the angular power spectrum is modified

on small scales. Although the exact impact is often difficult to treat, some

assumptions can be made in order to quantify the effect. Our approach

is to mimic the pixelization effect on the theoretical spectrum before com-

paring it with the measured one. In practice, we multiply the theoretical

spectrum by the so called pixel widow function defined below.

The pixelized signal f (p) is just the average signal within the pixel size

Ωpix:

f (p) =
∫

du ωp(u) f (u) (3.57)

where ωp(u) is equal to 1/Ωpix within the pixel and 0 otherwise, so that

the integral over all the pixels is normalized:
∫

du ωp(u) = 1. We expand

f (p) in spherical harmonics:

f (p) =
`max

∑
`=0

∑
m

a`mωlm(p) (3.58)

where ω`m(p) is the spherical harmonic transform of the pixel p:

ω`m(p) =
∫

du ωp(u)Y`m(u) (3.59)

The exact structure of the pixels makes the Eq. 3.59 computationally dif-

ficult to handle. However, since the pixel size is much smaller than the

angular correlation scale of the sample, we can average over the m-modes

and obtain:

ω`(p) =

(
4π

2`+ 1

`

∑
m=−`

|ω`m(p)|2
)1/2

(3.60)

so that we can define:

ω`m(p) = ω`(p)Y`m(p) (3.61)

Note that the quantity ω`(p) does not depend on the pixel location in the

sky. Since pixels in the HEALPix maps have the same area, then the rela-

tion between the spectrum of the pixelized map, Cpix
` , and the underlying
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angular spectrum, Cunpix
` , is simply:

Cpix
` = ω2

`Cunpix
` (3.62)

where the effective pixel window function is defined as:

ω` =

 1
Npix

Npix−1

∑
p=0

ω2
`(p)

1/2

(3.63)

Eq. 3.62 provides the relation between the pixelized and the unpixelized

angular spectrum: when comparing our measure with the model, we will

have to multiply this latter by ω2
`(p). The shape of the pixel window func-

tion for a HEALPix map with nside = 64, corresponding to the resolution

adopted in our analysis, is shown in Fig. 3.3. Fig. 3.4 shows instead the

impact of this pixel function on the angular power spectrum.

Figure 3.3: The pixel window function ωl(p) provided by HEALPix for nside = 64.

69



The angular power spectrum estimate

Figure 3.4: The impact of the pixel window function ωl(p) on the angular power

spectrum.

3.4 Assessing the code performance

Now that we have described the estimator and its numerical implementa-

tion, we assess its performance by running a series of tests to evaluate its

precision and accuracy. In doing so we will focus on the ability to account

for the effect of a mask on our measure.

3.4.1 Test 1: Recovering a known angular spectrum

In this first test we assess the ability of our estimator to recover the cor-

rect angular power spectrum for a 2D Gaussian realization of a fluctuation

field characterized by a well known set of C`. This set is generated by

the code CLASS, which solves the Boltzmann equation in a pre-defined

cosmological scenario, as we have seen in Section 2.2.4.

The test is as follows:

1. Generate the angular power spectrum Cinput
` of a cosmological model
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using CLASS. We consider a ΛCDM model with Ωb = 0.04, ΩCDM =

0.21, ΩΛ = 0.75, Tcmb = 2.7255, h = 0.73, As = 2.46 · 10−9 (that

corresponds to a σ8 ' 0.825);

2. Assuming a Gaussian random field, generate the 2D map of the as-

sociated overdensity field;

3. Apply our Ĉ` estimator to measure the angular power spectrum of

this map. The measured spectrum is not expected to match the the-

oretical one because of the cosmic variance.

4. For this reason, we repeat the steps 2 and 3 to generate many differ-

ent realizations of the same angular spectrum;

5. Estimate the mean and the scatter among the C` measurement. The

rms scatter quantifies the precision of the estimator. The discrep-

ancy between the mean and the theoretical spectrum quantifies its

accuracy.

In this first test we consider a full-sky realization; i.e. the effect of the mask

is ignored here.

Given the input angular power spectrum (Cinput
` hereafter), we have

generated a set of Gaussian distributed spherical harmonic coefficients

a`m with zero mean and variance equal to
√

Cinput
` by random sampling

the corresponding Gaussian distribution. This was done by using the ap-

propriate routine in the GSL libraries:

alm(l,m).re = gsl ran gaussian(r, sqrt(0.5*cl th[l]));

alm(l,m).im = gsl ran gaussian(r, sqrt(0.5*cl th[l]));

where the first and second line refer to the real and imaginary part of the

a`m, r is the seed for the random number generator and cl th[l] is the

input power spectrum. Note that if the a`m are Gaussian distributed with

a variance equal to
√

Cinput
` , then the real and imaginary part of the a`m
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have a variance equal to
√

C`/2 (while for m = 0 the imaginary part is set

equal to zero).

Once we obtain a set of a`m, we generate one realization of the 2D map

of the corresponding density field using the HEALPix function alm2map.

The resolution of the map is set equal to nside = 64. The overall procedure

is repeated 104 times to obtain a corresponding number of independent

realizations of the same Gaussian field and account for the effect of cosmic

variance. For each of the 104 maps we use the HEALPix function map2alm

(see Section 3.3.1) to estimate the a`m and then measure the angular spec-

trum using the Eq. 3.45 with J`m = 1 since we are considering the full-sky

case. We also ignore the shot-noise term, since we are dealing with an

overdensity map and not a catalogue. In this way we obtain the Cfullsky
`

that can be compared with the Cinput
` both for each realization and for the

mean over all the realizations, that is:

C̄`
fullsky

=
1

Nr
∑

r
Cfullsky,r
` (3.64)

where r runs over all the realizations Nr. Finally we compare the measured

Cfullsky,r
` and the mean C̄`

fullsky with the Cinput
` . The result is shown in the

top Panel (a) of Fig. 3.5, where we can see the input angular power spec-

trum (solid black line) and the mean measured full-sky power spectrum

C̄fullsky
` (dotted blue line). The shadowed area represents the rms scatter

over the 104 realizations. The two spectra overlap each other, showing

that the estimator is unbiased on all scales down to the largest multipole

corresponding to the angular resolution of the map. The same result is

illustrated in the middle Panel (b) of the same figure, where we plot the

residual ratio to Cinput
` : discrepancies are really small, much smaller than

the error on the single estimate quantified by the shaded region. In the top

Panel (a) of Fig. 3.5 we also show the results of a sanity check in which

the routine map2alm is used to compute the harmonics coefficients mea-

sured from a map generated with the inverse healpix routine alm2map.

As expected no discrepancy is found. This is also highlighted in the bot-
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Multipole (l)

Figure 3.5: Top Panel (a): The solid black line shows the Cinput
` ; the dotted blue

line shows C̄fullsky
` , while the dashed red line shows the full-sky spec-

trum measured with the HEALPix method map2alm as described in

the text. The shadowed area represents the variance of the ensamble

of the realizations for the full-sky C`. Middle Panel (b): The mean

of the relative ratio between the Cfullsky
` and the Cinput

` . Bottom Panel

(c): The relative ratio between the Cfullsky
` and the full-sky spectrum

measured with the HEALPix method map2alm (see the text).
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tom panel. The mismatch at large `s reflects the finite pixel size of the map.

To further investigate the effect of the pixalization we repeat the same

tests using maps with different resolutions. As we have seen, increasing

the resolution, i.e. increasing the size of the pixel (nside), affects multipoles

larger than `max, HEALPix = 4nside. In Fig. 3.6 the Cinput
` is shown, together

with the measured power spectra with and without the HEALPix method

map2alm for different resolutions of the map. The results clearly illus-

trate the effect of changing the resolution: maps with increasing resolu-

tions allows one to measure the spectrum over increasingly smaller an-

gular scales. Below `max the estimated spectrum is flat, determined by

white-noise like signal.

To better quantify the effect of the resolution and find a quantitative

expression for the max value of ` out to which one can push the angular

correlation analysis, we compare the difference between Cinput
` and the

C̄fullsky
` with the rms scatter over the 104 realizations. The upper panel of

Fig. 3.7 shows the `max value at which:

|Cinput
` − C̄fullsky

` | ≤ σC`
(3.65)

with σC`
being the rms scatter, versus the HEALPix resolution. The solid

red line shows a linear fit with equation:

nside = a`max + b; a ' −4.7; b ' 0.48 (3.66)

We can thus use nside or `max, HEALPix as a proxy to the minimum angular

scale for analyzing the spectrum. Eq. 3.66 clearly depends on the cluster-

ing properties of the field, i.e. on the cosmological model adopted. How-

ever, within the parameter region allowed by current observations, the

dependence is expected to be mild and Eq. 3.66 can be used heuristically

to determine the `max associated to a pixelized map.

74



The angular power spectrum estimate

Multipole (l)
1 10

Figure 3.6: The solid black curve shows the Cinput
` ; the other colored solid curves

show the measured full-sky spectrum with and without the HEALPix

method map2alm for different resolutions, as explained in the text.

The case with nside = 512 (dark green) is superimposed to the ex-

pected spectrum (black curve). On small scales (i.e. high ` values) the

effect of the pixalization is more evident.
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Figure 3.7: Panel (a): The HEALPix resolution nside as a function of the `max up

to which we can trust our measurement, i.e. the `max corresponding

to which the difference between the Cinput
` and the C̄fullsky

` measured

with map2alm is within 1− σ of the expected rms scatter Gaussian

distribution. The solid red line shows the linear fit with parameters

a = −4.7; b = 0.48 Panel (b): The ratio between the `max up to

which we can trust our measurement and the maximum ` provided

by HEALPix, i.e. `max, HEALPix = 4nside.
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3.4.2 Test 2: The effect of the geometry mask

As we have seen in the previous sections, a realistic survey does not cover

the whole sky, and this fact has a number of consequences. First of all,

the surveyed area is reduced, so the cosmic variance is amplified. Sec-

ondly, the effect of a mask is to mix the phases of the a`m coefficients, that,

therefore, are not independent. To account for these effects we have thus

introduced the mixing matrix (Eq. 3.18), and we have also showed that

in order to have an unbiased estimator of the angular power spectrum we

should use Eq. 3.47 with the mixing matrix showed in the Eq. 3.34, that

provides a good approximation to its exact version Eq. 3.23 for the K and

the D angular spectrum estimators.

The goal of this test is to compare the angular power spectrum esti-

mated in presence of an angular mask (to which we will refer to as Cmasked
` )

with theoretical expectations provided by the reference power spectrum

convolved with the estimated mixing matrix.

We performed the following test:

1. Generate a HEALPix map of the geometry mask; in particular, we

use the mask provided by Maciej Bilicky (Bilicki et al., 2014) in HEALPix

format with nside = 64, showed in Fig. 3.8. The effect of mask-

ing out the region around the Galactic plane is that of removing

power on large angular scales. The fraction of unmasked sky is

fsky = 0.692708.
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Figure 3.8: The geometry mask we use to perform the test described in this sec-

tion. The surveyed area is associated with the mask value 1 (in red),

while the pixels that are not observed are associated with the mask

value 0 (in blue). This mask was provided by Maciej Bilicki (Bilicki

et al., 2014) and has fsky = 0.692708.

2. Compute the angular spectrum of the mask, I`m (Eq. 3.38);

3. Compute the mixing matrix R``′ (Eq. 3.34);

4. Generate an all sky map with an input power spectrum, Cinput
` using

the alm2map routine;

5. Estimate Cfullsky
` from the map using our code;

6. Mask out the blue regions in Fig. 3.8;

7. Estimate the Cmasked
` (Eq. 3.47) using our code;

8. Compute the theoretical spectrum convolved with the mixing matrix

R``′ Cconv
` using (Eq. 3.45);

9. Go back to step 4 and repeat for 104 realizations;
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10. Compare the mean of Cconv
` and Cmasked

` and their scatter.

The results of the tests are summarized in Fig. 3.9, which is analo-

gous to Fig. 3.5. It compares the mean measured spectrum from the 104

realization of the masked sky (green dot-dashed curve) with the theoret-

ical expectation obtained by convolving the input power spectrum with

the mixing matrix (black curve). The shadowed area represents the rms

scatter of the C̄masked
` over all realizations. The effect of the mask is ac-

counted for by the convolution reasonably well. The convolved theoreti-

cal spectrum turns out to be systematically larger than the estimated one.

The systematic offset (Panel c of the Figure 3.9) increases with the angu-

lar scale, as expected. It is below 20% and significantly smaller than the

random error (shadowed area). The large discrepacies at small reflect the

map pixelization.

The scatter among the estimates, i.e. the random errors, is expected to

be larger for the masked sky than for the full sky cases. To quantify this

difference, for the type of mask we have considered here, we compare the

rms scatter measured in these two cases in Fig.3.10. The solid blue curve,

hidden by the continuous magenta curve, and the green dashed curve rep-

resent the amplitude of the rms scatter in the full-sky and masked-sky

cases, respectively. The rms scatter for the masked case is larger than in

the full-sky cases at high multipoles. At low multipoles the situation is re-

versed. The reason for this is that the application of the mask induces spu-

rious dipoles and quadrupoles that are common to all realizations, effec-

tively decreasing the cosmic variance on the corresponding angular scales.

In the plot we also show the rms errors of a Gaussian, all-sky field (solid

magenta curve) that, as expected, matches the measured rms of the full-

sky spectra. We also show the case of a Gaussian field extended over an

fsky = 0.692708 fraction of the sky rather than on the whole sphere (dashed

magenta line). In this case Gaussian errors are larger than in the actual re-

alizations. The reason is that in the Gaussian case all modes are assumed

to be independent whereas the mask induces a correlation among them.
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Multipole (l)

Figure 3.9: Panel (a): The solid black line shows the Cinput
` i.e. the unmasked

angular power spectrum used to generate the full-sky map; the dot-

ted blue line,fully superimposed to the black one, shows the mean

of the Cfullsky
` , that is the power spectrum measured from the full-

sky map also shown in Fig. 3.5. The dashed red line is the input C`

convolved with the mixing matrix and should be compared with the

dot-dashed green curve that represents the mean angular spectrum

estimated from the 104 realizations of the masked map. The shaded

region is the rms scatter among the realizations. Panel (b): Is the

same as the middle panel of Fig. 3.5 and shows the mean of the ra-

tio between the fullsky power spectrum and the input one compared

with the corresponding variance (shadowed area). Panel (c): The ra-

tio between the mean measured spectrum in the 104 realizations of the

masked sky and the convolved input spectrum with the correspond-

ing variance (shadowed region).
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Multipole (l)
1 10

Figure 3.10: The variances of the different angular power spectra. The solid blue

line shows the variance of the Cfullsky
` , i. e. the power spectrum mea-

sured from the full-sky map obtained from random Gaussian dis-

tributed a`m; the dashed green line shows the variance of the spec-

trum measured from the masked map, Cmasked
` . The corresponding

solid and dashed magenta lines shows the Gaussian variances com-

puted for two different cases: a full-sky map (continuous curve) and

a field over a fraction of the sky, fsky = 0.692708 (dashed curve).
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3.4.3 Test 3: Recovering an angular spectrum: code perfor-

mance in a realistic setup

The goal of this section is to assess the performance of the code under

more realistic circumstances. So far we have considered angular power

spectrum of a discretized Gaussian random field. To get closer to reality

let us now consider a distribution of mass tracers characterized by a red-

shift distribution matching that of realistic galaxy catalogs. In particular,

we shall compute the angular spectrum of a set of dark matter halos ex-

tracted from the BASICC N-body simulation (Angulo et al., 2008).

BASICC is the acronymous for Baryon Acoustic Simulation performed

at the ICC using the publicly available GADGET-2 code (Springel, 2005).

Initial conditions were set up from a Gaussian realization of the CAMB

(Lewis et al., 2000, Howlett et al., 2012) power spectrum of density fluc-

tuations. The particle distribution was then evolved using the Zel’dovich

approximation (see Sec. 2.2.2) up to z = 60. The cosmological model

adopted is the same as the Millennium Simulation (Springel et al., 2005)

ΛCDM cosmology with ΩM = 0.25, ΩΛ = 0.75, σ8 = 0.9 and h = 0.733.

The BASICC simulation is dark matter only and consists of a computa-

tional cube of side L = 1340 h−1Mpc loaded with 14483 particles of mass

m = 5.491010 h−1M�. We have considered all the halos detected by the

Friend to Friend algorithm with more than 10 dark matter particles i.e.

more massive than 5.491011 h−1M�. We place the observer at the center

of the cube and consider only haloes within a sphere of radius R = L/2.

Then we Monte Carlo extract a relatively shallow sample of halos with a

redshift distribution modeled using the same functional form adopted by

Crocce et al. (2011):

dN
dz

∝
( z

0.03

)2
exp

[
−
( z

0.03

)1.5
]

(3.67)

where 0.03 is the redshift corresponding to the maximum value of the
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dN/dz (we have chosen this value since the maximum redshift of the

BASICC simulation is z ∼ 0.235). The redshift distribution is linked to

the selection function through Eq. 2.18, with again N the total number of

galaxies: ∫ zmax

0

dN
dz

dz ≡ N (3.68)

where zmax is the redshift corresponding to L/2.

We then projected the halo distribution onto a sphere and obtain a pix-

elized map of the halos’ surface over-density. We use our code to estimate

the angular spectrum of this map and compare the result with the the-

oretical mass angular spectrum produced by CLASS. In this last step we

consider two model spectra: i) the one predicted by linear theory ad ii) the

nonlinear one predicted by the Halofit model (Smith et al., 2003). The

resulting spectrum is shown in Fig. 3.11.

Since halos are biased tracers of the mass density field, we don’t expect

that the measured spectrum matches the one predicted by CLASS. On lin-

ear scales the two will differ by a multiplicative factor represented by the

effective halo bias beff, that we computed using the definition:

beff(M) =

∫ ∞
M dm n(m) b(m)∫ ∞
M dm n(m)

' 0.835 (3.69)

where n(M) is the halo mass function provided by Jenkins et al. (2001),

M = 5.49× 1011h−1M� is the minimum mass of the haloes of the simu-

lation and b(m) is the halo linear bias model of Sheth and Tormen (2002).

The fact that we have extracted haloes ignoring their substructures cor-

responds to assuming that, in the halo model, only one galaxy is hosted

in each halo, i.e. 〈Ngal|m〉/n̄gal = 1 in Eq. 2.28. The measured angular

spectrum is shown in the upper panel of Fig. 3.11 (solid black line) and

compared with both linear (solid red) and nonlinear (dashed blue) CLASS

predictions.

Our results are in good agreement with theoretical expectations at small

(` < 10) multipoles where nonlinear effects are negligible. At higher mul-
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Figure 3.11: Panel (a): The comparison between the angular power spectrum

measured from a mock catalogue built from the BASICC simulation

and the one obtained from the code CLASS using the same cosmo-

logical parameter of the simulation. The dotted-red and dashed blue

curves show, respectively, the linear theory and the HALOFIT model

angular spectra from CLASS. The amplitude of the spectra are cor-

rected by the bias as explained in the text. Panel (b): The ratio be-

tween the different spectra: in solid red the ratio between the CLASS

linear spectrum and the measured one, in dotted blue the CLASS

non-linear spectrum and the measured one.
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tipoles linear theory provides a better match to our estimated spectrum.

This seemingly contradictory result reflects the fact that, by ignoring the

halo substructure, we are minimizing the impact of nonlinear effect or, to

use the halo model, we are ignoring the 1-halo term and only consider the

two-halo one that is well described in the framework of linear theory.
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Chapter 4

The 2MPZ catalogue

In this Chapter we describe the galaxy catalogue that we analyze in this

Thesis, namely the 2MASS Photometric Redshift (2MPZ) catalogue. In

particular, we will focus on those observational proprieties that are rele-

vant to our correlation study and that affect the selection criteria used to

extract the subsamples used in our analysis.

The 2MPZ (Bilicki et al., 2014) has been built by cross-matching the

Two Micron All Sky Survey Extended Source Catalog (2MASS XSC, Jarrett

et al. (2000)), the Wide-field Infrared Survey Explorer (WISE, Wright et al.

(2010)) and the SuperCOSMOS Sky Survey program (SSS, Hambly et al.

(2001a) Hambly et al. (2001b), Hambly et al. (2001c)), in order to obtain

an homogeneous estimate of the photometric redshifts over the best part

of the celestial sphere. Three different spectroscopic samples have been

used to calibrate the photometric redshifts in order to guarantee unbiased

estimate over the redshift range probed by the 2MASS catalogue.

4.1 Photometry

The basic photometric dataset is the 2MASS Extended Source Catalog (XSC),

which contains approximately 1 million objects from the 2MASS (Skrut-

skie et al., 2006), a ground-based survey performed between 1997 and
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2001, covering 99.998% of the celestial sphere and delivering uniform, pre-

cise photometry in the three near infrared bands J(1.25 µm), H(1.65 µm),

and Ks(2.16 µm). Observations were conducted from two dedicated 1.3 m

diameter telescopes located at Mount Hopkins, Arizona and Cerro Tololo,

Chile. Among the total objects of the complete 2MASS XSC, (Bilicki et al.,

2014) removed a small fraction corresponding to artifacts and erroneous

or null measurements, and then masked out the strip of galactic latitude

|b| < 8◦ since prone to large extinction and, consequently, correction un-

certainties.

The photometric data from 2MASS were supplemented by the mea-

surements made within the WISE and SuperCOSMOS surveys. The for-

mer is a space-borne telescope that in 2010 mapped the entire sky in four

bands centered at 3.4, 4.6, 12 and 22 µm. The two bands at shorter wave-

lengths, W1 and W2, have a much higher detection rate than the two other

bands, so the expectation was that the large majority of 2MASS XSC galax-

ies should be also detected in W1 and W4. For this reason, only the pho-

tometry in these bands has been used, with a resulting matching rate of

the ’2MASS-good’ sample with WISE W1- and W2-detected sources of over

99%. The coverage, however, is not uniform. Characteristic features in the

sky map are the Galactic Plane and bulge, the Magellanic clouds, incom-

pleteness along the Moon trail (Kovács et al., 2013), and a long strip at

`gal ' 140◦ and 15◦ < b < 35◦ due to the spacecrafts’ magnetic torque

rods, whose activation resulted in a small jump in the telescope pointing

with the effect of smearing the resulting image of the same point on each

orbit1. All these areas have been masked out in the catalogue that we have

used in our analysis.

The superCOSMOS catalogue is the outcome of a project aimed at dig-

itizing the photographic plates measurements in the optical B, R and I

1See http://wise2.ipac.caltech.edu/docs/release/allsky/expsup/

sec6_2.html#lowcoverage for more details.
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bands obtained from an automatic scanning machine. The source photo-

graphic material came from the United Kingdom Schmidt Telescope (UKST)

in the south hemisphere and the Palomar Observatory Sky Survey-II (POSS-

II) in the north one, observations having been taken during the last quarter

of the twentieth century. These catalogs were given an accurate photo-

metric calibration using the procedure described in Peacock et al. (2016).

Although almost 189 million sources with B and R extended-source pho-

tometry has been measured over the whole sky, only those away from the

Galactic Plane are applicable for extragalactic studies and have been con-

sidered in this analysis.

4.2 Spectroscopic and photometric redshifts

Photometric redshifts computed from the photometric material described

in the previous section have been calibrated using a subsample of 2MPZ

objects with spectroscopic redshifts. These were taken from 5 different

spectroscopic surveys. In order of increasing depth they are: the 2MASS

Redshift Survey (2MRS, Huchra et al. (2012)), the ZCAT compilation2 based

on the CfA Redshift Catalogue (Huchra et al., 1996), that constitute the

most local sample, the 2dF Galaxy Redshift Survey (2dFGRS, Colless et al.

(2001), Colless et al. (2003)), the 6dF Galaxy Survey Data Release 3 (6dFGS

DR3, (Jones et al., 2009)) and the Sloan Digital Sky Survey Data Release 9

(SDSS DR9, Ahn et al. (2012)). These surveys have some overlap. After

taking care of the redundancy we are left with about 46000 objects, i.e. the

32% of the total ’2MASS-good’ sample used to build 2MPZ.

This significant fraction of spectroscopic redshifts encouraged (Bilicki

et al., 2014) to estimate photometric redshift through the machine-learning

approach. Contrary to the SED fitting we have mentioned in Chapter 1,

which bases its efficacy on the fit of the overall shape of spectra and on

2http://www.cfa.harvard.edu/˜dfabricant/huchra/zcat/
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the detection of strong spectral features, the machine-learning method de-

rives an empirical relation between magnitudes (or possibly other galaxy

parameters, such as colors) and redshifts using a subsample of objects with

measured spectroscopic redshifts, known as the training set. The training

algorithm is then applied to the rest of the sample for which no spectro-

scopic redshifts are known. In particular, the authors applied a particu-

lar implementation of the Artificial Neural Networks (ANN, Firth et al.

(2003), Tagliaferri et al. (2003), Collister and Lahav (2004), Vanzella et al.

(2004), Way et al. (2009), Cavuoti et al. (2012)) called ANNz (Collister and

Lahav, 2004), a freely available, ready-to-use software3.

The derived photometric redshifts have errors nearly independent of

distance, with an all-sky precision of σphot = 0.015 and a very small per-

centage of outliers (∼ 3%). The error distribution δz ≡ zphot− zspec for the

all-sky sample is showed in Fig. 4.1. Since its shape is non-Gaussian in the

wings, the authors preferred to use a more flexible fitting form (blue line

in Fig. 4.1):

N(δz) ∝ (1 + δz2/2as2)−a (4.1)

with a ' 3.2. For the whole sample, best-fit s = 0.0125 which is consistent

with the average scatter of ∼ 0.015. The Gaussian gives instead a worse

approximation (dashed black line) since with the best fit σ = 0.0138 the

central part is reasonably well matched but the wings are underestimated.

In this Thesis we shall ignore the non-Gaussian wings and assume that

errors are Gaussian distributed with a variance of σspec = 0.015 that repre-

sents our rms error.

4.3 The 2MPZ catalogue used in our analysis

The final 2MPZ catalogue obtained after masking out the problematic re-

gions, including the zone of avoidance around the Galactic plane (b < 10),

3http://www.homepages.ucl.ac.uk/˜ucapola/annz.html
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Figure 4.1: Error distribution between the photometric and spectroscopic red-

shifts for the 2MASS Photometric Redshift sample (red bars). The

blue solid line is the empirical fit with a = 3.2 and s = 0.0125, the

black dashed line shows a best-fit Gaussian with σ = 0.0138. Figure

from Bilicki et al. (2014).

contains about 935000 galaxies distributed over 80% of the sky. The cata-

logue is 95% complete. The redshift distribution of its galaxies is shown

in Fig. 4.2 (green histogram). The distribution peaks at z ∼ 0.065 with

a prominent tail at redshifts as large as 0.3, which pushes the mean red-

shift at z̄ = 0.08. The figure also shows the distributions of 2MPZ galaxies

with known spectroscopic redshift (red) and of those with photo-z red-

shifts only (blue).

In Fig. 4.3 represents the Aitoff projection of the sky distribution of

2MPZ galaxies in Galactic coordinates. The Galactic plane is clearly evi-

dent. The color code refers to photometric redshifts. The blue color is used

for the nearest objects and the red for the most distant ones. The spidery-

like structure of the cosmic web is clearly visible despite the projection

effect.
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Figure 4.2: Comparison of redshift distributions in the all-sky 2MPZ catalogue:

sources with spectroscopic redshifts in red, those with only photo-z’s

in blue and the full redshift sample in green. Figure from Bilicki et al.

(2014).

Figure 4.3: Aitoff projection in Galactic coordinates of the 2MASS Photometric

Redshift catalog, color-coded by photometric redshift. The cosmic

web is evident. Figure from Bilicki et al. (2014).

91



Chapter 5

Lognormal 2MPZ mock

catalogues

In Chapter 3 we have seen how in the case of a linearly evolved Gaussian

field and all-sky coverage the errors can be estimated analytically. On the

contrary, when the evolution enters the non-linear regime and/or geom-

etry masks are present, the spherical harmonics coefficients are not inde-

pendent anymore and errors must be evaluated with numerical methods.

One approach is to rearrange the objects in the dataset itself, as in the

Jackknife (Tukey, 1958) or the Bootstrap (Efron, 1979) methods. However,

these are approximated methods. To fully account for errors and their co-

variance one needs to access several independent realization of the same

statistical sample. In our case this can be done by generating a set of in-

dependent mock catalogs mimicking the same characteristics as the real

one. In this context, the best mock catalogues are the realistic ones that

one can build from large N-body simulations complemented with ade-

quate treatment of baryon physics (hydrodynamical simulations) or semi-

analytic recipes to associate galaxies to the mass distribution. The second

route is currently the most popular one and consists of assigning galax-

ies to dark matter halos extracted from a collisionless N-body experiment

using some phenomenological recipe. However, the creation of a large
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number of such mock catalogues is computationally expensive, since one

would need to run many different N-body simulations. However, in many

cases, one can rely on approximate methods to generate a large number of

mocks. The goodness of this approach depends on the characteristics of

the real sample. However, most often than not, such approximate methods

are good enough to estimate uncertainties for specific model parameters

and within a well defined range of scales. In this thesis we shall assume

that the 2-dimensional density field traced by galaxies is lognormal. With

this assumption, we are able to set up a fast procedure to generate a large

number of 2MPZ mock catalogues, as detailed below.

In Chapter 1 we have seen how different inflationary models predict

that primordial density perturbations obey to Gaussian statistics. More-

over, if the distribution is Gaussian, the 2-point statistic is sufficient to

fully describe the statistical proprieties of the density field, which justifies

the interest of Gaussian fields in cosmology. Unfortunately, the Gaussian

hypothesis is only valid at early epochs or at very large scales and breaks

down on small, nonlinear scales. If one wishes to describe the statistical

properties of the galaxy distribution in the local universe down to a few

Mpc scales, then the Gaussian hypothesis cannot be valid.

An effective way to describe the statistical properties of non-linearly

evolved cosmological density fields without resorting to N-body techniques

is that of adopting the lognormal model (Coles and Jones, 1991), that pro-

vide a reasonably good description of the non-linearly evolved density

field obtained from N-body experiments. After introducing this model

and its proprieties, we will use it to generate a discrete distribution of ob-

ject and compute its angular power spectrum. This spectrum is then com-

pared with the one estimated in the previous Chapter and generated from

a Gaussian field to check for possible discrepancies. Then, we will focus

on building a mock 2MPZ catalogue of galaxies with a pre-defined angu-

lar spectrum, redshift distribution dN/dz and lognormal statistics. Each

mock galaxy in the final catalogue will be characterized by the angular
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position, spectroscopic redshift and photometric redshift.

5.1 The lognormal model

The 1-point probability distribution function (PDF) characterizes the sta-

tistical properties of the mass density field ρ. As long as the density fluc-

tuations are in the linear regime, their PDF remains Gaussian, but once

they reach the non-linear stage their PDF deviates from the initial Gaus-

sian shape. In the next section we will show that a simple, lognormal

transformation of the Gaussian field is a good approximation to that of a

non-linearly evolved Gaussian overdensity field. The lognormal model is

defined by its 1-point PDF (Lahav and Suto, 2004):

pln(δ) dδ =
1
ρ̃

1√
2πs2

exp
{
− (ln ρ̃−m)

2s2

}
dδ (5.1)

where:

ρ̃ = 1 + δ (5.2)

m = −0.5 ln(1 + σ2) (5.3)

s2 = ln(1 + σ2) (5.4)

σ2 = 〈δ2〉 (5.5)

The PDF of the quantity ln(1 + δ), that we can call Pln[ln (1 + δ)], is a

Gaussian function with mean equal to m:

Pln[ln(1 + δ)] =
1√

2πs2
exp

{
− [ln (1 + δ)−m]2

2s2

}
(5.6)

The cumulative lognormal distribution is obtained by integration:

Cln(δ) = erf
(

ln ρ̃−m
s

)
(5.7)

where erf(x) is the error function defined as:

erf(x) ≡ 1√
2π

∫ x

−∞
e−t2/2 dt (5.8)
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Several motivations persuade to think that the Eq. 5.1 could be a good

model for the distribution of a non-linearly evolved mass density field.

Hubble (1934) first noticed that the distribution of galaxy counts in two-

dimensional cells on the sky could be well approximated by the Eq. 5.1,

and the same possibility was also discussed by Peebles (1980). Various ar-

guments have been provided to justify the lognormal PDF for an evolved

Gaussian Field (Coles and Jones, 1991). However, the best proof is pro-

vided by N-body simulations: they show that the PDF of the mass density

field is indeed well described by a lognormal model (Kayo et al., 2001).

Chiang et al. (2013) used this model to represent the matter/galaxy densi-

ties, while Taruya et al. (2002) and Hilbert et al. (2011) investigated the ex-

tent to which the lognormal model describes the statistics of weak-lensing

fields. Because of the many possible applications in astrophysical and cos-

mological context, lognormal models have been widely used to produce

mock catalogues of evolved mass and galaxy density fields. Numerical

codes to generate lognormal random fields are already available. One

example is the C++ code of Xavier et al. (2016) that generates correlated

lognormal field defined on the sphere1. However, we prefer to develop

our own code to guarantee a better control over the procedure and to cus-

tomize the mock catalogue generation to match the characteristics of the

2MPZ catalogue. We stress that what the code generates is the mass den-

sity field. The galaxy density field will also be lognormal only in the limits

of linear galaxy bias, which is what we assume here.

The lognormal model is one of the simplest ways of defining a fully

self-consistent random field which always has ρ > 0 and, most impor-

tantly, is one of the few non-Gaussian random fields for which interesting

proprieties can be computed analytically. It has no more free parameters

than the Gaussian field from which it is derived and in many cases an-

alytic results are obtained more easily for this model than the Gaussian

1See http://www.astro.iag.usp.br/∼flask/
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(see Coles and Jones (1991) and references therein). These reasons and the

further consideration that the accuracy of the lognormal model increases

when a smoothing is applied (and the projection on the 2D sphere can be

regarded as a form of smoothing) led us to adopt the lognormal model

in generating mock catalogues that could well reproduce the 2MPZ cata-

logue (see Chapter 4). Finally, we notice that one can transform a density

field characterized by a given 1-point PDF to another one obeying a dif-

ferent PDF without changing its 2-point correlation properties. This sug-

gests that one can take a realization of a Gaussian density field with a well

defined power spectrum and obtain a lognormal field with the same spec-

trum. This is the main idea behind the making of the lognormal mock

catalogues that we describe in the next section.

5.2 Lognormal maps and their angular power spec-

trum

We now want to generate a lognormal field on a sphere starting from the

corresponding Gaussian field, and thus verify that its angular power spec-

trum is consistent with the expected one. We will proceed as follows.

1. Generate a Gaussian field with a known input angular power spec-

trum (following the same procedure described in Section 3.4.1);

2. Measure the full-sky angular power spectrum of that map as a con-

sistency check;

3. Apply the lognormal transformation:

δln = exp(δ + m)− 1 (5.9)

with m the rms of the Gaussian field δ. δln is the lognormal field.

4. Compute the angular power spectrum of the lognormal field and

compare it with the Gaussian one.
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To generate the input power spectrum (step 1) we use CLASSwith a ΛCDM

model with Ωb = 0.04, ΩCDM = 0.21, ΩΛ = 0.75, Tcmb = 2.7255, h = 0.73,

As = 2.21 · 10−10. Similarly to what we have done in Section 3.4.1, we

generate a Gaussian realization of an overdensity field with angular spec-

trum in the form of an HEALPix map with nside = 64. We then verify that

its mean is zero and compute its rms (Eq. 5.5). For each pixel of the map,

we use Eq. 5.9 in order to obtain a lognormal map. The entire procedure

is then repeated to generate 10 different realizations. The resulting PDFs

are shown in Fig. 5.1. In the same figure, for comparison, we also show

the expected lognormal PDF. This sanity check confirms that the generated

field is effectively lognormal.

In a second test we compare the angular spectra of the Gaussian and

the lognormal fields to verify that they are equal, as expected. In this test

we consider three spectra. The theoretical one, generated by CLASS, that

we used as input. The full-sky one, that we have measured as the mean

of the 1000 Gaussian realizations. And the lognormal one, measured from

the mean of the 1000 lognormal transformations. To check whether these

spectra are in agreement, we compute their differences and compared

them with the rms scatter among realizations. The results are shown in

Fig. 5.2. In the top panel the input angular spectrum (black curve) is plot-

ted with the mean (Gaussian) fullsky spectrum (blue dotted) and the mean

lognormal spectrum (green dot-dashed). The red dashed line is plotted for

reference and represents the result of the same sanity check shown in Fig.

3.5. The power spectrum of the lognormal field closely matches that of

the Gaussian field, as expected. Significant discrepancies are detected be-

low the pixel scale and reflects the map resolution. The three lower panels

provide a more quantitative estimate of this agreement. In each of them

the differences are very small (about 0.005% between the Gaussian and the

lognormal field) and well within the rms of the mean (the shaded area).
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deltas

Figure 5.1: Individual PDFs of the lognormal density field in 10 different realiza-

tions (histograms) vs. the expected probability distribution function

expressed by Eq. 5.1 (solid black curve). On the Y axis we show the

frequency of each δln value.
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Multipole (l)

Figure 5.2: Top panel. Input angular spectrum from CLASS (black curve), mean

spectrum among the 1000 Gaussian realizations (blue dotted), mean

among the corresponding lognormal transformations (green dot-

dashed). The mean is over 1000 realizations. Red dot-dashed curve

shows the same sanity check as in Fig. 3.5. Lower panels: % differ-

ence between the angular spectra. From top to bottom: i) lognormal

vs. input, ii) lognormal vs. Gaussian. iii) Gaussian vs. input. The

shaded area represents the rms scatter of the mean.
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5.3 From the lognormal maps to mock galaxy cat-

alogues

Our main goal is to generate a mock catalogue mimicking a photometric-

redshift galaxy catalogue (namely the 2MPZ) to measure their angular

power spectra in different redshift shells. So we aim at generating different

lognormal mock catalogues of objects in different spherical shells with the

same geometrical mask of the 2MPZ catalogue and the same photometric

distribution.

5.3.1 Angular part of the catalogue

Our goal is now to generate a discrete distribution of objects in a spherical

shell that traces an underlying 2D lognormal mass density field. The in-

puts here are a lognormal density field in the form of a HEALPixmap with

a given angular spectrum that we have generated in the previous section

and the total number of objects in the shell,N . The mean object density in

the map is set equal to the mean mass density:

ρ̄ =
N

Npixels
(5.10)

Since the lognormal maps specify, for each pixel, the overdensity of the

tracers δln[i], where i indicates the ith pixel, then the expected mean num-

ber of objects in the pixel is:

〈N[i]〉 = (1 + δln[i])
N

Npixels
(5.11)

Assuming that tracers are a Poisson random process, we set the number

of objects in the pixel N[i] equal to a Poisson deviate with mean 〈N[i]〉.
With this procedure we determine the number of objects in each pixel for

each individual lognormal realization. Each object is placed at a random

angular position within its pixel. Fig. 5.3 shows the angular map of the

normalized objects’ number density in one of the lognormal realizations
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Figure 5.3: 2D map of the normalized object’s number density in one of the 2MPZ

lognormal mock. The color code indicates the amplitude of the nor-

malized density.

of the 2MPZ catalogue. In Fig. 5.4 (top panel) we compare the angular

spectrum of the lognormal catalogue of discrete objects (blue solid) with

that of the parent lognormal density map (red solid) already shown in Fig.

5.3. The bottom panel shows the % difference. The input angular spectrum

from CLASS is also shown for reference (black, solid). We did not detect

any systematic discrepancy. Random differences increase with `, reflecting

the shot-noise in the discrete objects catalogue.

To mimic the effect of the Galactic absorption, Zodiacal light and all

other effects that induce a non-uniform completeness across the sky, we in-

troduce a binary angular mask that removes all objects within the masked

areas. In Fig. 5.5 we superimpose the mask of the 2MPZ catalogue (see

Chapter 4) to the lognormal catalogue shown in see Fig. 5.3. The effect of

the mask is to correlate angular multipoles and distribute power among

them. Fig. 5.6 (top panel) is the analog of Fig. 5.4 and shows the angular

power spectrum of the lognormal masked catalogue (blue solid) with that

of the parent lognormal density map (red solid). The bottom panel shows
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Figure 5.4: Comparison between the spectrum computed from the lognormal cat-

alogue and the one computed directly from the Poisson sampled map

(see text for details). The black solid line represents the input angular

power spectrum computed with CLASS; the red solid line is the spec-

trum computed from the overdensity lognormal map while the blue

solid line is the spectrum computed from the catalogue. The bottom

panel shows the percentage difference between the two spectra.

the % difference. The effect of the 2MPZ angular mask is below 15% and

mainly seen at small multipoles, where the effect of the mask is larger and

removes power on the corresponding angular scales. In the next section

we shall investigate how well this effect is modeled by convolving a theo-

retical power spectrum with the mixing matrix (Eq. 3.34).

5.3.2 Multiple redshift shells

The angular catalogue obtained from a reference angular power spectrum

using the lognormal model contains the angular positions of a given num-

ber of objects with a known angular spectrum but does not specify their ra-

dial position. Since we are interested in producing a mock catalogue of ob-

jects in a redshift shell, the procedure described so far would be sufficient

to mimic an ideal catalogue of objects with well measured distances within

a given distance range. However, as we have seen, redshift as distance in-

dicators are neither accurate, because of redshift distortions, nor precise,

because of error measurements. Let us ignore redshift distortions that can

102



Lognormal 2MPZ mock catalogues

Figure 5.5: 2D map of the normalized object’s number density in one of the 2MPZ

lognormal masked mocks. The color code indicates the amplitude of

the normalized density.

Figure 5.6: Comparison between the spectrum computed from the lognormal cat-

alogue (blue curve) and the one computed directly from the map in

the case of the presence of an angular mask (red curve). The black

solid line represents the input angular power spectrum computed

with CLASS. The bottom panel shows the percent difference between

the blue and the red curves.
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be accounted for in the modeling phase and let us focus on random er-

rors. They depend on the method used to estimate redshifts. Photometric

redshifts are much less precise than the spectroscopic ones.The strategy is

to assign both spectroscopic and photometric redshifts to mocks galaxies

ignoring uncertainties on the former and only account for random errors

in the latter. The end product will be a simulated photo-z catalogue of

objects for which we know their spectroscopic redshift (or radial position)

too.

Let us focus on how to generate a mock photo-z catalogue. If P(zspec)

is the probability of a spectroscopic redshift zspec, then the corresponding

probability for zphot is:

P(zphot) =
∫

P(zphot|zspec)P(zspec)dzspec (5.12)

where P(zphot|zspec) is the conditional of zphot given zspec.

Our goal is to generate a mock photo-z catalogue mimicking the ob-

served P(zphot) (which we assume to be proportional to a target galaxy

redshift distribution dN/dzphot) in which, for each object, we know the

true redshift zspec (and therefore the corresponding P(zspec)). From real

datasets we can obtain both P(zphot) and P(zspec). The latter can be either

inferred from the spectroscopic subsample used to calibrate the photomet-

ric redshift or from Eq. 5.12 using techniques like the Richardson-Lucy

method (e.g. Szapudi and Pan (2004)) once the conditional probability

function, which can also be obtained from the training sample, is speci-

fied. Here we use a different approach described below.

1. We generate a volume-limited sample of object in zspec space. A

volume-limited catalogue is a sample of objects with constant num-

ber density within a given (spectroscopic) redshift interval. The an-

gular positions of the objects are randomly selected on the 4π sphere.

2. We perturb the radial position of each object by random sampling the

observed P(zphot|zspec). In our mocks we shall neglect the presence
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of outlyiers in the observed zphot vs. zspec relation. They correspond

to catastrophic errors in the estimate of zphot and constitute a small

fraction of 2MPZ galaxies (Bilicki et al., 2014). Once outlyiers are

removed the P(zphot|zspec) is well approximated by a Gaussian with

width independent from zspec. We have adopted this approximation.

3. The resulting sample is characterized by a photo-z distribution,

P′(zphot), that in general does not correspond to the observed one.

We enforce the matching by Monte Carlo re-sampling the objects dis-

tribution to the target P(zphot). This can only be done if P′(zphot) >

P(zphot) everywhere in the zphot range of interest. To satisfy this

condition we require a high density of objects in the parent volume-

limited catalogue.

The final result is an all-sky catalogue of objects with random angular

position, zphot, zspec. Their photometric redshift distribution dN/dzphot is

built to match the observed one.

To illustrate the procedure to generate zphot and the impact of zphot

errors we show, in Fig. 5.7, the ideal case of a zspec catalogue with uni-

form P(zspec). The corresponding redshift distribution is represented by

the black histogram. Let us divide the catalogue in different subsamples

in four different zspec ranges. zphot errors displace (in zphot space) ob-

jects from their original z-bin into the neighboring ones. The colored lines

quantify the effect. They show the corresponding zphot histograms whose

tails ’leak’ into the nearby z-bins. As a consequence a sample selected in

a zphot bin, will include objects whose true zspec do not belong to the zphot

bin and, therefore, characterized by different clustering properties.

5.3.3 2MPZ mocks

We applied the procedure described in Sections 5.3.1 and 5.3.2 to obtain

the 2MPZ mocks. Our goal is to measure 2MPZ galaxy clustering (see Sec.

4.2 for more details) at different redshifts. It can be qualitatively appreci-
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Figure 5.7: An example of the effect of a Gaussian zphot error with σphot = 0.015

on a uniform spectroscopic catalogue. A spectroscopic catalogue with

P(zspec) = constant, divided in four zspec bins (black solid histogram).

Histograms with different shades of yellow indicates the correspond-

ing zphot distributions once zphot errors have been included.
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ated from Fig. 5.7 that, in order to minimize the impact of photo-z errors

we need to consider z-intervals significantly larger than the redshift error.

On the other hand, redshift bins should be small enough to minimize the

impact of evolutionary effects. As a compromise we decided to consider

these three redshift bins:

first redshift bin [0 : 0.08] (5.13)

second redshift bin [0.08 : 0.16] (5.14)

third redshift bin [0.16 : 0.24] (5.15)

This choice is justified by the fact that about the half of the total objects

belonging to the 2MPZ catalogue are below zphot = 0.08. The remaining

two redshift bins contain ∼ 1/3 and ∼ 1/6 of the total objects. We further

assume that P(zphot|zspec) is a Gaussian function with variance equal to:

σphot = 0.015 (5.16)

in agreement with Bilicki et al. (2014) (see Sec. 4.2). As a consequence the

width of each z-bin is larger than 2σphot, which limits the amplitude of the

leakage effect.

The end product of this procedure is a mock catalogue of objects with

a dN/dzphot distribution shown in Fig. 5.8 (blue, solid histogram) that

matches, by construction, the target dN/dz of the 2MPZ catalogue (red

solid), i.e. from having imposed that the number of mock objects matches

that of 2MPZ galaxies in each z-bin. When we generate the mocks this

constraint will hold on average, that is to say we include the Poisson noise

to determine the number of object per bin in each 2MPZ mock realization.

The green solid histogram shows the corresponding dN/dzspec. As ex-

pected, the two do not match, causing the angular correlation properties

of the objects in a zphot shell to differ from those of the objects in the corre-

sponding zspec interval.

Photometric redshift errors affect the estimate of the angular spectrum.

To correct for their influence, we need to model the true redshift distribu-
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Figure 5.8: The final result. The blue solid line represents the final photometric

catalogue, which is overlapped to the target dN/dz (red solid line).

The green solid line represents the spectroscopic final catalogue. All

objects have been drawn from a parent, volume-limited catalogue in

spectroscopic-z space (see text for details).
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tion dN/dzspec of galaxies selected according to their z-phot. Instead of

using the mocks, we rely on the procedure proposed by Sheth and Rossi

(2010). The idea is to estimate the true redshift distribution, dN/dzspec,

from the observed dN/dzphot, i.e. to evaluate:

P(zspec) =
∫

P(zspec|zphot)P(zphot)dzphot (5.17)

This requires assuming a conditional probability P(zspec|zphot) that can be

obtained from the data. Assuming that P(zspec|zphot) is Gaussian, which

is approximately true, we can easily estimate the quantity on the lhs con-

volving the two measurables on the rhs.

Fig. 5.9 shows the dN/dzspec distributions of 2MPZ galaxies selected

in the three photo-z bins considered in our analysis. The figure clearly

illustrate the spread introduced by z-phot errors.

To quantify their impact on our analysis, we show in Fig. 5.10 the an-

gular power spectrum of objects at their photo-z positions (red curve) vs.

that of objects at their true position (black curve). Photometric errors sys-

tematically decrease the amplitude of the measured spectrum on all an-

gular scales. This is not surprising, since these errors induce decoherence

in galaxy clustering along the radial direction. We shall model this effect

when comparing model with data in Chapter 7.

We use the mocks to quantify the impact of the geometry mask and

to check how well the convolution of the model by the mixing matrix

matches observations. To do this we proceed as in Sec. 3.4.2, namely con-

volving the fullsky spectrum computed from the fullsky lognormal map,

(showed in Fig. 5.4 with a red line) with the mixing matrix Eq. 3.34.

The result is shown in Fig. 5.11 for the mean over 1000 realizations of

the lognormal map - fullsky and masked. The z-bin considered here is

0.16 < zspec < 0.24. Here the solid blue line is the mean over 1000 real-

izations of the spectra computed from fullsky lognormal maps, the solid

green line is the mean of the spectra computed from the masked lognormal
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Figure 5.9: The full spectroscopic redshift distribution of the 2MPZ catalogue

(black solid) compared with the spectroscopic distributions obtained

for the three z-bins under study after having performed the convo-

lution. The magenta solid line corresponds to the first photometric

bin (0 < zphot < 0.08), the orange line to the second photometric bin

(0.08 < zphot < 0.16) and the green line to the third photometric bin

(0.16 < zphot < 0.24).
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Figure 5.10: Two model angular spectra obtained from CLASS for the second red-

shift bin (0.08 < zphot < 0.16) in the case of the photometric redshift

distribution (red solid) or the spectroscopic counterpart (black solid).

111



Lognormal 2MPZ mock catalogues

maps while the red solid line is the mean of the convoluted spectra. The

bottom panel shows the % difference between the masked and convolved

case. The convolution with the mixing matrix is effective, in the sense that

theoretical predictions convolved with this matrix provides good fit to the

measured angular spectrum.

5.3.4 Covariance matrix from the mocks

The second major goal of the mock catalogue, beyond the investigation

of systematic effects, is that of estimating the random error and their co-

variance or, more specifically, to estimate the covariance matrix of the es-

timated angular power spectrum.

The latter is defined as follows:

Cov(`, `′) =
1

Nmocks

Nmocks

∑
i,j=1

(
Ci
` − C̄i

`

) (
Cj
`′ − C̄j

`′

)
(5.18)

where Nmocks is the total number of mock catalogues, while C̄i
` is the mean

angular spectrum over the mock catalogues:

C̄i
` =

1
N

Nmocks

∑
i=1

Ci
` (5.19)

The covariance matrix allows one to quantify the correlation between the

different multipoles of the spectrum, which is often expressed in terms of

the correlation coefficients:

ρ`,`′ =
Cov(`, `′)√

Cov(`, `)Cov(`′, `′)
(5.20)

The covariance matrix is a necessary input to both the χ2 and MCMC like-

lihood analysis that we shall perform in the next chapter.

For the full-sky case, and as long as linear theory holds, the multipoles

are uncorrelated, hence the covariance matrix is diagonal. The presence

of a geometry mask, instead, induces correlation among the multipoles,

so that in general the off-diagonal elements of the covariance matrix differ
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Figure 5.11: Comparison between the mean of the spectra computed from the

masked lognormal map and the convolution with the mixing ma-

trix Eq. 3.34 for the third bin (0.16 < z < 0.24). The solid blue line

is the mean over 1000 realizations of the spectra computed from full-

sky lognormal maps, the solid green line is the mean of the spectra

computed from the masked lognormal maps while the red solid line

is the mean of the convolution spectra. The bottom panel shows the

percent difference between the masked and convolved case.
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from zero. In our case, however, we have some reason to suspect that the

off-diagonal elements should be small:

1. We generate mocks using a linear Gaussian field. This means that

off-diagonal terms are only induced by the geometry mask, and the

effect of nonlinear evolution is ignored. However, we expect that

this second contribution should be small since, as we have already

pointed out, the projection effects of an angular map, smooth out

nonlinear features.

2. The effect of the mask is larger on large angular scales. However,

these scales will be excluded from the analysis since they are most

prone to systematic errors induced by imperfect corrections for Galac-

tic extinction and Zodiacal light emission.

Before checking if the above prejudice is correct, let us elaborate on the

estimate of the covariance matrix a bit further. The precision in estimating

the elements of the matrix is determined by the number of independent

mocks. As a rule of thumb, a matrix with N × N elements would require

at least N × N mocks. Since we have generated 144 mocks this means

that we can afford only 12 entries. For this reason we bin our measured

spectrum in 12 linearly spaced intervals ranging from ` = 0 to ` = 144.

Fig. 5.12, 5.13 and 5.14 show the normalized covariance matrices of the

angular spectra in the three redshift bins considered. The amplitude of the

coefficient is color coded according to correlation amplitude. Green and

blue represents large vs small correlation. It is quite clear that the matrix

is close to diagonal. The off-diagonal elements have amplitudes 3 to 10

times smaller than the diagonal ones.

This confirms our prejudice and justifies our choice to ignore in the

forthcoming χ2 and MCMC analyses the off-diagonal term (although our

intention is to perform in the future a MCMC analysis with the full covari-

ance matrix).
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Figure 5.12: The correlation matrix computed from 144 mocks 2MPZ-like for the

redshift bin corresponding to 0 < z < 0.08.

115



Lognormal 2MPZ mock catalogues

Figure 5.13: The correlation matrix computed from 144 mocks 2MPZ-like for the

redshift bin corresponding to 0.08 < z < 0.16.

Figure 5.14: The correlation matrix computed from 144 mocks 2MPZ-like for the

redshift bin corresponding to 0.16 < z < 0.24.
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Chapter 6

Statistical analysis of the mock

catalogues

The goal of this Section is to introduce, calibrate and validate two methods

to estimate cosmological parameters from angular spectra that we shall

apply to the real dataset in Chapter 7. The first one is the standard χ2

statistics. The second one is the Monte Carlo Markov Chain sampling of

the likelihood function. In this Chapter we apply them to the set of mock

catalogs (both full sky and masked) presented in Chapter 5. The goal is

to estimate cosmological parameters by comparing the measured angular

spectrum to model predictions. We shall focus on the estimate of three

parameters: the dark matter density parameter, ΩCDM, the spectral am-

plitude As and the baryon density Ωb. We shall perform two different

analysis. Given the sizable errors expected from a purely angular cluster-

ing analysis, we won’t vary all three parameters simultaneously. Instead

we will vary only two or one of them, keeping the others fixed at their true

value. We shall perform our analysis in the same redshift bins used for the

real analysis and will restrict ourselves, in some tests, to a single redshift

bin.
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6.1 Statistical tools

6.1.1 The χ2 analysis

The standard χ2 statistics allows us to determine the model ymodel that best

fits a set of data y(xi). The model, that depends on a number (M) of free

parameters (a0...aM−1), is evaluated at the positions xi and compared to

the measurement to form the χ2 statistics that, in the case of independent

measurements, is (Press et al., 1992):

χ2 ≡
N−1

∑
i=0

(
yi − y(xi|a0...aM−1)

σi

)2

(6.1)

where σi is measurement error (assuming that the model carries no un-

certainties), N is the number of independent measurements and N −M is

the number of degrees of freedom (d.o.f.). In our analysis the measured

quantity is the angular power spectrum evaluated in a set of `-bins of size

∆`, C[`], and its random error σ` that we estimate from the scatter among

the mocks. In the following we shall omit the square parentheses and use

the ` symbol both for the binned and unbinned quantities. In our case the

χ2 statistics is then:

χ2 = ∑
`−bins

(
Cmodel
` (ΩCDM)− Cexperiment

`

σ2
`

)2

(6.2)

We use this χ2 statistics for different purposes. 1) Assuming negligible

systematic errors we use Eq. 6.2 to estimate parameters from the spectrum

measured in the dataset. In this case the quantity σ` is computed from the

scatter among the mocks. 2) To detect possible systematic errors. In this

case we use the mean spectrum obtained by averaging among the mocks

and the uncertainties are the errors on the mean.

Eq. 6.2 assumes no covariance among the errors. The covariance ma-

trix we built from the mock justifies this hypothesis.

The best fitting parameters are found at the minimum of the χ2 func-

tion of Eq. 6.2. To estimate the error on these parameter, we assume that
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the data follow a Gaussian statistics and use the difference from its mini-

mum value, ∆χ2, to estimate the confidence level. The relation depends on

the number of free parameters in the analysis (see e.g. (Press et al., 1992)).

For the case of 1 and 2 parameters the region containing the 68.27% prob-

ability (i.e. 1σ) is defined by:

∆χ2 = 1 and ∆χ2 = 2.3 (6.3)

respectively. The χ2 method has some drawbacks the most serious of

which is computational requirement. Eq. 6.2 needs to be evaluated in cor-

respondence of different sets of free parameters (a0...aM−1) which implies

calling CLASS to evaluate the angular spectrum and, in case of mask, to

perform a convolution. In so doing we need to regularly and densely sam-

ple the parameter space. With no a priori information on the expected pa-

rameter values, and in the case of multi-dimensional analysis, this search

becomes computationally challenging. In such cases a smarter searching

strategy, like the MCMC one described in the next section, is then required.

6.1.2 MontePython

An alternative powerful way to infer cosmological information from large

scale clustering is represented by the Monte Carlo Markov Chains or MCMC

(Metropolis et al. (1953), Kirkpatrick et al. (1983) among others). We will

not go into details, but the huge advantage of MCMC is that it efficiently

sample the multidimensional parameter space by preferentially visiting

the regions in which the likelihood is higher. The ability of effectively

sample the likelihood relies on two MCMC properties.

The first one is that the distribution function π(~x), proportional to the

probability of visiting a point~x of the parameter space, can be sampled not

via unrelated, independent points, but rather by a Markov chain. This lat-

ter is a sequence of points ~x0, ~x1, ~x2...where each point ~xi is chosen from

a distribution that depends only on the value of the immediately preced-

ing point ~xi−1. In other words, the memory of the chain extends only to
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one previous point, and it’s completely defined by a transition probability

function of two variables p(~xi|~xi−1).

In addition to this, if p(~xi|~xi−1) is chosen to satisfy the detailed balance

equation:

π(~x1)p(~x2|~x1) = π(~x2)p(~x1|~x2) (6.4)

then it can be showed that the Markov chain will sample π(~x) ergotically,

i.e. it will eventually visit every point ~x in proportion to π(~x). The ergod-

icity guarantees that the equilibrium distribution is rapidly approached

from any starting point ~x0
1. It is thus necessary to find a transition prob-

ability p(~xi|~xi−1) that satisfies the Eq. 6.4. To do this, we use the popular

Hastings algorithm (Metropolis et al. (1953) and Hastings (1970)) in which

one chooses as a proposal distribution q(~x2|~x1), for example, a multivari-

ate normal distribution centered on ~x1. In order to generate a step starting

at ~x1, one have to generate a candidate point ~x2c by drawing from the pro-

posal distribution. An acceptance probability α(~x1,~x2c) is then computed as:

α(~x1,~x2c) = min
(

1,
π(~x2c)q(~x1|~x2c)

π(~x1)q(~x2c|~x1)

)
(6.5)

According to this probability, the candidate point ~x2c is accepted or re-

jected (in which case the point is left unchanged, ~x2 = ~x1 ). The net result

of this process is a transition probability:

p(~x2|~x1) = q(~x2|~x1)α(~x1,~x2) ~x2 6= ~x1 (6.6)

that can be proved to satisfy the Eq. 6.4.

To perform MCMC we use the publicly available MontePython code

(Audren et al., 2013), interfaced with CLASS. The structure of the code is

1Of course, if we start from a very unlikely point, successor points will themselves

be quite unlikely until we rejoin a more probable part of the distribution. There is thus

a need of burn-in an MCMC chain by stepping to, and discarding, a certain number of

points ~xi.
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simple. A parameter file allows one to specify the parameters involved in

the study, their role (for example derived, nuisance etc.), the user guess for

their best fitting value and eventually the range in which the parameter

can vary. These parameters are passed directly to CLASS. Measurements

are stored in a data folder. Finally, an init .py file initializes the over-

all procedure, importing the data, the model, and computing the effective

likelihood. At this point the MCMC starts sampling the parameter space

through the Metropolis-Hastings algorithm. The number of steps in the

chain can be set by the user. The output consists of the full chain and the

χ2 value corresponding to the parameters that have been varied. After

some chains are produced, the info command allows one to decide upon

their convergence, to output the best fit parameters, their credible inter-

vals, joint and marginalized posterior probabilities as well as covariance

matrices of the relevant free parameters.

One of the major advantage of using MontePython is that several like-

lihoods has been already written, each of them associated to a particular

past experiment. Unfortunately, no such examples was available for the

angular power spectrum. Therefore we had to write our own piece of pro-

gram, which consists of a python code that reads in the data, call CLASS to

generate model spectra, perform convolution with the mixing matrix (see

Eq. 3.47) and multiplication by the pixel window function (Eq. 3.63) and,

finally, computes the likelihood L ∝ e−χ2
, where χ2 is the one provided in

Eq. 6.2 (or its version with more than one parameter).

6.2 Application to a single spectrum from a full-

sky mock catalogue map

As a first application of the cosmological analysis, we estimate the param-

eters and their errors from the angular spectra measured over the full sky.

As this is a sanity check intended to validate the statistical tools of our

analyses, we shall consider the mean measured spectrum averaged over
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10000 realization of the ΛCDM model used in Chapter 3, with Ωb = 0.04,

ΩCDM = 0.21, ΩΛ = 0.75, Tcmb = 2.7255, h = 0.73, As = 2.46 · 10−9 (i.e.

the blue dotted curve in Fig. 3.5).

6.2.1 χ2 analysis with one free parameter (ΩCDM)

The results of the analysis are shown in Fig. 6.1. The black curve shows

the χ2 (Eq. 6.2) evaluated in 21 linearly spaces `-bins of size ∆` = 6.4 from

`min = 1 to `max = 144. We have divided the range ` = [`min, `sup] into 40

bins, with `min = 0 and `sup = 4nside = 256 but performed the χ2 analysis

only in the first 21 out to `max = 144 corresponding to the angular scale

of the pixel. `max was kept fixed in all χ2 analyses whereas we varied `min

to check the robustness of our results and the size of random error when

very large angular scales are excluded from the analysis. Which, as we

have anticipated, is what we do in the real data analysis to minimize the

chance of potential biases.

The analysis recovers the correct ΩCDM value irrespective of the `min.

Increasing `min has the effect of increasing the depth of the curve and of

increasing its width, hence reducing the size of the random errors. This

seemingly strange behavior (the smaller is the `-range considered, the bet-

ter is the fit) is due to the fact that cutting the low `-values removes the

part of the spectrum dominated by cosmic variance, so that the only con-

tribution to the total error is shot noise.

Note that the sampling of ΩCDM (∆ΩCDM = 0.01) is larger than the

1σ random error estimated from the MCMC analysis presented in the next

section. This means that this χ2 analysis is not sensitive enough to estimate

random errors, but still useful to detect systematic errors larger than the

random ones if they were present.
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Figure 6.1: χ2 curve for the ΩCDM parameters computed using increasingly

smaller fractions of the measured angular spectrum. All other cosmo-

logical parameters were set equal to their true values. All the minima

coincide with the expected value (vertical dashed line).
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6.2.2 MontePython analysis with one free parameter

The same analysis has been repeated by maximizing the likelihood rather

than minimizing the χ2 using the MontePython code (MP) to efficiently

sample the likelihood function. In this case we consider only one spectrum

measured in 20 bins from ` = 12 to ` = 144 (roughly corresponding to

the blue curve in Fig. 6.1). The choice of `min = 12 is not arbitrary. It

corresponds to the minimum `-value below which the effects of a 2MPZ-

like geometry mask are significant (see Sec. 3.4.2) and other potential large

scale observational biases may be present. MP requires an input ΩCDM

value, that we set equal to 0.3. The prior range is set to [0, 0.7]. We then

run 30 chains of 10000 steps each. The result is shown in Fig. 6.2 in which

we plot the posterior probability for ΩCDM. The best fit value and its 1σ

error turns out to be:

ΩCDM, best fit = 0.209± 0.004 (6.7)

as indicated in the plot. As in the χ2 analysis, MP recovers the expected

ΩCDM value, excluding systematic errors larger than 2%.

0.193 0.207 0.221

Ωcdm=0.209+0.0042
−0.00406

Figure 6.2: The posterior probability for ΩCDM obtained with MontePython in

the full-sky case (see text for details).
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6.2.3 MontePython analysis with two free parameters

To further validate the MP procedure we have repeated the MCMC anal-

ysis letting two paramters: i) ΩCDM and ii) As free to vary instead of one.

We considered the same spectral range and binning as in the 1 parameter

analysis. The guess values are 0.3 for ΩCDM and 3× 10−9 for As. The prior

range is set to [0, 0.7] for the former and [0.1, 4] × 10−9 for the latter. We

then run 30 chains of 10000 steps each. Fig. 6.3 shows the marginalized

probability (bottom right and upper panels) for ΩCDM and As as well as

their joint probability (bottom left panel).

For the marginalized probability the best fit values and their 1σ uncer-

tainties for the two parameters are:

ΩCDM, best fit = 0.23± 0.05 (6.8)

As, best fit = (2.0± 0.8)× 10−9 (6.9)

In both cases we recover the true values. However, neither probability is

symmetric around the best fit value. They’re both significantly skewed to

larger values. This reflect the degeneracy between the spectral amplitude

and the dark matter density parameter that is clearly illustrated by the

contours of the joint probability. A degeneracy that, as we shall see, will

prominently feature also the real data analysis.

6.3 Application to a single spectrum from a masked

map

We repeat the analysis performed in the previous section including the

effect of the geometry mask. Model predictions now include the effect of

the mask, obtained as described in Sec. 3.4.2.
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0.194 0.361 0.529
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Figure 6.3: Bottom right panel and upper panel: the marginalized posterior prob-

ability obtained with MontePython in the full-sky case with ΩCDM

and As as free parameters. Bottom left panel: the two dimensional

posterior distribution. See text for details.
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6.3.1 χ2 analysis with one free parameter (ΩCDM)

Fig. 6.4 shows the results of our χ2 analysis on a grid of 10 values of ΩCDM,

from 0.17 to 0.26 with step 0.01. Again the χ2 values have been normalized

to the degrees of freedom, that depend on the `min value adopted. The

value of `max has been again set to 144, so we have considered up to 22

`-bins.

As in the previous case, the ΩCDM binning is slightly larger than the

random error. Therefore, the lack of a offset from the expected value in-

dicates that systematic errors are not larger than the random ones. This

is valid for all cases explored except when `min = 100. In this case the

measured value is significantly larger than the expected one. This system-

atic error arises from the fact that the geometry mask shifts power from

large to small scales. Since with `min = 100 we only sample the latter and

since the amplitude of the spectrum is equal to its true value, the best fit

is found for higher ΩCDM values. This result indicates that one cannot

restrict the analysis on small angular scales assuming that they’re less af-

fected by masking. However, we point out that even in the extreme case

of ` > 100, the effect is rather minor (∼ 5%).

6.3.2 MontePython analysis with one free parameter

Fig. 6.5 shows the posterior probability as the result of the analysis on

the masked spectrum with MontePython. As in the previous analysis,

the measured spectrum is a mean over 10000 realizations which, however,

now consist of masked maps. The expected ΩCDM value, prior ranges

and number of chains are the same as in Sec. 6.2.2. Also in this case we

consider the angular spectrum in 20 multipole bins that span the range

` = [12, 144]. The best fit value is equal to:

ΩCDM, best fit = 0.207± 0.004 (6.10)

Also in this case we succeed in recovering the expected value within the 1σ

random error. The size of the errorbar is similar to that we have obtained
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Figure 6.4: Same as Fig. 6.1 but for the case of partial sky coverage.
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in the full sky case. This is not surprising since in both analyses we ignored

multipoles ` < 12, where cosmic variance dominates the error budget.

0.192 0.207 0.222

Ωcdm=0.207+0.00438
−0.00434

Figure 6.5: Same as Fig.6.2 but for the case of partial sky coverage.

6.3.3 MontePython analysis with two free parameters

Similarly to Sec. 6.2, we now consider two free parameters, ΩCDM and

As. The results, shown in Fig. 6.6, are quite similar to those of the full-sky

case. The best fitting values and their random errors are:

ΩCDM, best fit = 0.26± 0.04 (6.11)

As, best fit = (1.9± 0.6)× 10−9 (6.12)

We note that in this case the mask has introduced a systematic error of the

same order of the random one. As a result, and because of the parameter

degeneracy, the overestimate in the ΩCDM value is compensated by an

underestimate of the spectral amplitude As.

The fact that random errors are similar to those obtained in the full-sky

case confirms that when we restrict the analysis to large (` > 12) mul-

tipoles we largely remove the effect of cosmic variance. Random errors
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are dominated by the shot-nose component which is the same as in the

full-sky case.

0.928 2.29 4
10+9As

0.192 0.327 0.462
Ωcdm

0.928

2.29

4

10
+

9
A
s

Figure 6.6: Same as Fig. 6.3 but for the case of partial sky coverage.

6.4 Realistic case, angular spectra in 3 redshift

bins

The previous tests allows us to validate the two methods used for the sta-

tistical analysis. We know want to apply one of them (namely, the χ2 anal-

ysis) to the 2MPZ mocks described in Chapter 4. These mocks include

the effect of the geometry mask. However, the effect of photo-z error is

ignored here and will only be included in the next Chapter. The analysis

will be performed using the angular power spectra estimated in the three

z-bins.

The main goal of the analysis is to evaluate the systematical errors in

the estimate of the cosmological parameters and highlight parameters’ de-

generacies. We focus on three cosmological parameters: the dark matter

and the baryon number densities ΩCDM and Ωb and the spectral ampli-

tude As. The statistical error on the mean of the measurements is evalu-
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ated as the rms scatter among the mocks divided by the square root of the

number of mocks. The systematic errors on the parameters will be quan-

tified by the offset between the best fit Ωb, ΩCDM and As values from the

theoretical ones.

We perform different χ2 analyses. First, we estimate ΩCDM keeping

fixed Ωb and As. Then, we vary only ΩCDM and Ωb, keeping fixed the

spectral amplitude. Finally, we fix Ωb to its input value and let vary ΩCDM

and As. These analyses are the same we perform on the real data in Sec.

7.2. Best fit values are searched for on a grid in which ΩCDM ranges from

0.15 to 0.27 with step 0.01, Ωb ranges from 0.01 to 0.08 with step 0.005 and

As ranges in [2.00, 3.99]× 10−9 with step 0.01× 10−9.

We look for a best fit in the multipole range ` = [12, 100]. The moti-

vations for this choice are the same as in the previous sections ` = 12 is

the minimum value below which the geometry mask effects are signifi-

cant, while ` = 100 corresponds to an angular scale safely larger than the

pixel size. As anticipated, since the covariance matrix computed from the

mocks is almost diagonal (see Sec. 5.3.4), we ignore covariance among the

`-modes.

We stress the fact that since mock catalogs were generated assuming a

linear power spectrum, the model predictions with which we compare the

estimated spectra were also obtained (from CLASS) using linear theory.

6.4.1 χ2 analysis with one free parameter (ΩCDM)

First redshift bin, 0 < z < 0.08

The χ2 statistics shown in Fig. 6.7 is the mean of the mock catalogues (solid

curve). The 1σ scatter, obtained in correspondence of χ2 − χ2
min ≡ ∆χ2 =

±1 is shown with a horizontal dotted red line. The minimum is found

at ΩCDM = 0.22 with an offset of ∆ΩCDM = 0.01 from the expected value

(ΩM = 0.21). The 1σ random error turns out to be smaller than the reso-

lution of the ΩCDM grid. Therefore, we can conclude that the systematic
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error is small in amplitude but slightly larger than the random one.

Figure 6.7: Solid line: the mean χ2 obtained from the mocks fixing all cosmologi-

cal parameters to their true values but ΩCDM. Red dotted line: the 1σ

scatter ∆χ2 = ±1.

Second redshift bin, 0.08 < z < 0.16

The results from the second z-bin are shown in Fig. 6.8, which is analo-

gous to Fig. 6.7. The plot shows the mean χ2 of the mocks as a function

of ΩCDM, the only free parameter in the fit. Again, we detect a system-

atic offset of ∆ΩCDM = 0.01 since the minimum is found at ΩCDM = 0.22

instead of ΩCDM = 0.21, and the random error is again smaller than the

resolution of the grid.
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Figure 6.8: Same as Fig. 6.7 but for the second redshift bin.
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Third redshift bin, 0.16 < z < 0.24

The results for the third bin are shown in Fig. 6.9. Here the best fit is found

for ΩCDM = 0.22 and the random error, that here matches the size of the

ΩCDM-bin, is comparable to the systematic offset.

Figure 6.9: Same as Fig. 6.7 but for the third redshift bin.

6.4.2 χ2 analysis with two free parameters (ΩCDM and Ωb)

First redshift bin, 0 < z < 0.08

Fig. 6.10 shows the result of the χ2 analysis when varying both ΩCDM and

Ωb. The blue, magenta and black solid lines represent the 1σ, the 2σ and

the 3σ error contours. They are not centered around the expected values

(black dot in figure, corresponding to ΩCDM = 0.21, Ωb = 0.04). In fact
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the best fitting values (ΩCDM = 0.24, Ωb = 0.06) are systematically larger

than the reference one and the offset is more than 3σ.
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Figure 6.10: Solid curves: 1σ, 2σ and 3σ contours (blue, magenta and black col-

ors) corresponding to values of ∆χ2 = 2.30, 6.18 and 11.8 above the

minimum value obtained by averaging over the χ2 of all the mocks.

The black dot shows the expected value (ΩCDM = 0.21, Ωb = 0.04).

The contours also highlights the almost linear relation between ΩCDM

and Ωb, which explains why most analyses compare the baryon fraction

Ωb/ΩCDM to ΩCDM. In this test we prefer to stick to the ΩCDM vs. Ωb

representation. The best fitting values are ΩCDM = 0.25 and Ωb = 0.065.

They overestimate the true value by ∆ΩCDM = 0.04 and ∆Ωb = 0.025, re-

spectively.

The offset between the true and the best fit values quantifies the sys-

tematic errors induced by the mask. As seen, this latter produces a loss

of power in the angular power spectrum that, in turns, induces a sys-

tematic offset in the ΩCDM and Ωb values. In the 1-parameter case this

causes ΩCDM to be overestimated. The effect is amplified when adding

one degree of freedom and considering two parameters that are positively
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correlated.

The loss of power induced at large angular separation by the mask

is evident in Fig. 6.11 in which we compare the input angular spectrum

(black solid curve) with the mean over the mocks (blue solid line). The

effect is as large as 50% at large angular separations (bottom panel of the

same figure).

Second redshift bin, 0.08 < z < 0.16

In Fig. 6.12 is shown the result of the χ2 analysis on the two parameters

ΩCDM and Ωb for the second bin. The best fit values are ΩCDM = 0.22 and

Ωb = 0.04. The blue solid curve represents the 1σ probability contour, the

magenta one the 2σ contour while the black one the 3σ contour. The black

dot shows the position of the expected values (ΩCDM = 0.21, Ωb = 0.04).

In the second redshift bin we do not detect any systematic error. Probably

this is because the effect of the geometry mask is now less severe, in the

sense that in a nearby redshift shells the physical scales that are affected

by the mask are smaller than in a far away shell. This means that in the

distant shell more cosmological information can be extracted from the `-

range unaffected by the mask. Fig. 6.13, in which we show the measured

vs. the input spectrum, confirms this interpretation.

Third redshift bin, 0.16 < z < 0.24

Fig. 6.14 is the analogous of Figs. 6.12 and 6.10. As seen in the one pa-

rameter estimate, the random errors are significantly larger than the other

z-bins, as testified by area within the contours in Fig. 6.14.

The lack of significant systematic errors is due to the minor impact of

the mask and, consequently, the reduced loss of power is, again, quantified

by Fig. 6.15, that, in analogy with Figs. 6.11 and 6.13, compare the input

power spectrum with the mean over the mocks.
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Figure 6.11: Upper panel: the mean of the angular power spectrum computed

from the 144 2MPZ-like mocks (blue solid line) compared with the

input convolved spectrum obtained from CLASS (black solid line).

Bottom panel: the relative difference between the input spectrum

and the mean over the angular spectra of the mocks.
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Figure 6.12: Same as Fig. 6.10 but for the second redshift bin.

6.4.3 χ2 analysis with two free parameters (ΩCDM and As)

First redshift bin, 0 < z < 0.08

Finally, we searched for the best fitting ΩCDM and As values when all other

parameters were fixed. The results are shown in Fig. 6.16, which, analo-

gously to Fig. 6.10, shows the 1σ, 2σ and 3σ probability contours together

with the expected values (ΩCDM = 0.21 and As = 2.46× 10−9, black dot).

Here the best fitting values, ΩCDM = 0.27 and As = 1.7× 10−9, are sys-

tematically offset from the true ones. The origin of that shift, that confirms

the overestimate in the ΩCDM value seen in the previous section, is the

effect of the geometry mask, as we have already discussed.

We notice that As and ΩCDM are not independent. In fact they are

significantly anti-correlated, a feature that we shall detect in the analysis

of the real data.
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Figure 6.13: Same as Fig. 6.11 but for the second redshift bin.
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Figure 6.14: Same as Fig. 6.10 but for the third redshift bin.

Second redshift bin, 0.08 < z < 0.16

Fig. 6.17 is the analogous of Fig. 6.16, showing the results of the χ2 ob-

tained fixing Ωb and varying ΩCDM and As. The degeneracy between As

and ΩCDM is now more evident thanks to the fact that in this case the

probability contours are centered around their true values (ΩCDM = 0.21

and As = 2.46× 10−9, black dot). As for the Ωb vs. ΩCDM case, we find

no systematic offset, the best fit values (ΩM = 0.23 and As = 2.23× 10−9)

are within the 1σ probability contour.

Third redshift bin, 0.16 < z < 0.24

Fig. 6.18 shows the χ2 analysis for the third bin when varying both ΩCDM

and As. This plot confirms the anti-correlation between the two param-

eters, and the fact that random errors are significantly larger in the third

bin. Again, no systematic error is detected in this case.
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Figure 6.15: Same as Fig. 6.11 but for the third redshift bin.
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Figure 6.16: Same as Fig. 6.10 but referring to the case of the spectral amplitude

(As) and dark matter density (ΩCDM) free parameters.
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Figure 6.17: Same as Fig. 6.16 but for the second redshift bin.
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Figure 6.18: Same as Fig. 6.16 but for the third redshift bin.
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Chapter 7

2MPZ clustering analysis

All the machinery developed so far can now be applied to the real 2MPZ

catalogue described in Chapter 4. In the following sections, we will first

provide an estimate of the angular power spectrum of 2MPZ galaxies in

the three redshift bins specified by Eq. 5.15. We then perform a MontePython

analysis to extract cosmological parameters from the measured spectra.

We shall focus here on four parameters, As, ΩCDM, the total matter den-

sity ΩM and the baryon fraction fb ≡ Ωb/ΩM. First, we will estimate As

and ΩCDM, keeping fixed the baryon mass density and all other param-

eters to their Planck values (Planck Collaboration et al., 2014). Then, we

will estimate the total mass density ΩM and fb fixing As to its best fit value.

We will then investigate the dependence of the angular power spectrum

on the luminosity of the objects by applying different magnitude cuts to

the sample. We conclude with a discussion of the results.

7.1 The angular power spectrum of 2MPZ galax-

ies estimate

In Fig. 7.1 we show the measured angular power spectrum in the three

redshift bins chosen for our analysis: 0 < z < 0.08, 0.08 < z < 0.16

and 0.16 < z < 0.24. As discussed in Sec. 5.3.3, the size of the bin is
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a compromise that allows us to have large statistical sample with little

evolutionary effects and limited impact of photo-z errors. All sample have

the same geometry mask shown in Fig. 3.8. The three panels of Fig. 7.1

show the angular spectra measured in the three redshift shells.

Figure 7.1: The angular power spectra measured from the 2MPZ catalogue (Bil-

icki et al., 2014) with our code in three redshift bins. Each panel shows

the unbinned angular spectrum (red curve) whereas the binned one is

represented by the asterisks together with the 1σ errorbars.

For each redshift shell, we measured the angular power spectrum in

145



2MPZ clustering analysis

the multipole range [0, 256]. The value of `max = 256 has been set by the

angular resolution of the HEALPix map, nside = 64, which corresponds

to an angular scale of 0.0039◦. In Fig. 7.1 these spectra are shown with

a continuous red line. The same figure also shows the binned angular

spectra (blue asterisks), for which we have considered 40 linearly spaced

bins from ` = 0 to ` = 256 (hence with `bin-size ∆` = 6.4). The errorbars

are also shown, which have been obtained from the rms scatter of the

mocks normalized to the amplitude of the 2MPZ spectrum.

For the comparison with the theoretical models we use the binned

spectrum. This choice is dictated by our intention to compare the results

presented in this thesis with the future MCMC analysis with the full co-

variance matrix. In fact, since the block covariance matrix turned out to

be close to diagonal, here we shall present only the results of a MCMC

analysis in which all diagonal terms have been ignored.

Not all the bins will be considered in the MontePython analysis. To

minimize the impact of the geometry mask and of possible residuals ob-

servational biases, we decided to exclude multipoles below ` = 12. In

addition, we exclude all modes with ` > 100 since it is beyond this mul-

tipole that the signature of the shot noise error becomes evident. Only

for the third bin, where the shot-noise level become important even be-

fore ` = 100, we decided to fix `max = 70. The choice of `min and `max is

somewhat arbitrary but definitely conservative. We have checked the ro-

bustness of our results to the choice of the `-range and found that changing

`min from 20 to 12 and ranging `max from 70 to 200 has little impact on the

results.

When compared to the mock spectra, the real ones have significantly

more power on small scales. This is not surprising since mocks spectra

were obtained from linear theory whereas in the real world nonlinear ef-

fects amplify the growth of density fluctuations on small scales. The effect

is well illustrated by Fig. 7.2 in which the binned 2MPZ angular spectrum
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measured in the second z-bin (black starred symbols with the errorbars) is

superimposed to a nonlinear ΛCDM model spectrum with cosmological

parameters ΩCDM = 0.19 and As = 4.71× 10−9, representing the best fit

to the data (blue curve). The red curve shows the linear theory predic-

tions. Both the linear and nonlinear models were obtained from CLASS.

Both spectra include the effect of the mask, angular resolution on small

scales (Eq. 3.63) and linear redshift space distortions on large scales. The

amplitude of the linear spectrum is well below the nonlinear model, as

expected, and the measurement for ` > 20.

Back to Fig. 7.1, we only show the errobars for the binned spectra

to avoid overcrowding the plot. These errors represent the diagonal ele-

ment of the covariance matrix obtained from the mocks and normalized to

match the amplitude of the measured spectra (i.e. multiplied by the ratio

between the real and the mock spectra). The offset in the amplitude of the

real and mock 2MPZ spectra is not independent on the angular scale, i.e.

the bias is not exactly linear. To account for this, we normalize the ampli-

tude of the errors to the ratio of the two spectra in each `-bin. We therefore

obtain an `-dependent error normalization that we will also use to rescale

the amplitude of the full covariance matrix.

Fig. 7.3 shows the measured binned spectra in the three bins and their

errors. Amplitudes and shapes are quite similar with, however, some re-

markable difference. The amplitude of the angular spectrum in the first

bin is larger than that in the second bin. This is not unexpected. In fact,

it mainly reflects the effect of photo-z errors, which depresses the spectral

amplitude, and is larger for the second bin. This effect is not counterbal-

anced by the evolution of galaxy bias, which is expected to be small in this

z-interval. The amplitude of the spectrum in the third bin matches that

in the first bin. This behavior seems anomalous. The effect of photo-z er-

rors should be similar to that in the second bin, so such a large amplitude

would require a dramatic increase in galaxy bias. We postpone a more

147



2MPZ clustering analysis

Figure 7.2: The binned angular power spectra measured from the 2MPZ cata-

logue in the second bin 0.08 < z < 0.16 (black starred symbols with

the errorbars) compared with two models obtained with CLASS: a lin-

ear model (red solid) and a non-linear one (blue solid) to which we

have also added the redshift space distortions correction.
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detailed and quantitative discussion on this issue to the next section.

Figure 7.3: The binned angular power spectra measured from the 2MPZ cata-

logue in the three redshift bins and their 1σ errors. To avoid over-

crowding the plot, for the second and the third redshift bin the ` val-

ues have been shifted by a value 0.5 and 1 respectively.

Another remarkable difference between the spectra is the size of the

error bars, that are larger in the third bin. This is due to the comparatively

smaller number of objects at high redshift in the galaxy catalogue.
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7.2 ΩCDM and As from the MCMC analysis

In this section we repeat the first cosmological analysis performed on the

mock spectra using, however, real data. Here we focus on 2 parameters,

the dark matter density and the spectral amplitude, keeping all the others

fixed to the Planck cosmology values (Planck Collaboration et al., 2014).

The main goal here is to check whether the measured values are in the

right ballpark. Systematic deviations would reveal possible issues with

the observational data and their treatment since the presence of obvious

systematics in both the estimator and the χ2 analysis have been excluded

by the tests with the mocks. We are also interested in assessing the ampli-

tude of the random errors to evaluate the precision that one can achieve

by the clustering analyses using other photo-z catalogues that will become

available in the future.

In the MCMC analysis we compare our measurements with the the-

oretical prediction of the angular power spectrum of the matter in a flat

ΛCDM model obtained from CLASS for the case of a nonlinear evolu-

tion of density perturbation simulated using Halofit (Smith et al., 2003).

Since the angular power spectrum is the projection of the 3D one over the

celestial sphere, we need to specify the range of redshift considered in the

analysis and the statistical weight attached to each redshift. In the frame-

work of CLASS modeling, this is done by specifying the redshift range and

the redshift distribution of the mass tracers considered. For our analysis

we then need to specify the 2MPZ galaxy dN/dz within each one of the

three redshift bins that we have considered. In particular, we will use the

spectroscopic redshift distributions corresponding to the three photomet-

ric redshift bins discussed in Sec. 5.3.2 and shown in Fig. 5.10.

Moreover, since our analysis is performed in redshift space, coherent

motions on large scale amplify the power at small multipoles. An effect

which, in the linear regime, is known as Kaiser effect (Kaiser, 1984). This

effect is fully accounted for in the CLASS model once the value of the mass

parameter is specified.
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Finally, as anticipated in Chapter 3, we multiply the theoretical spec-

trum by the pixel window function expressed by Eq. 3.63 to mimic the

effect of the pixelized map.

7.2.1 First redshift bin, 0 < z < 0.08

Fig. 7.4 shows the result of the MontePython analysis on the first z-bin,

from 0 to 0.08. The prior range is set to [0, 0.7] for ΩCDM and [0.1, 10] for As.

We run 50 chains of 10000 steps each. The figure shows the marginalized

probability (bottom right and upper panels) for ΩCDM and As as well as

their joint probability (bottom left panel).

For the marginalized probability the best fit values for the two param-

eters are:

ΩCDM, best fit = 0.34 (7.1)

As, best fit = 1.78× 10−9 (7.2)

Given the skewness of the distribution, we report the minimum credible

intervals for the two parameters in Table 7.1. The results are consistent,

Table 7.1: The minimum credible intervals for the dark matter density parameter

and the primordial amplitude in the first redshift bin.

68.26% probability 95.4% probability

ΩCDM [0.19, 0.40] [0.14, 0.50]

As × 109 [1.13, 2.62] [0.92, 4.42]

within the 68% probability interval, with the Planck values (see Table 1.1).

By comparing the spectral amplitude with the Planck one (2.14 × 10−9

with negligible errors compared to those of this analysis), we can infer

the linear bias of 2MPZ galaxies:

bfirst z−bin =
As, 2MPZ

As, Planck
= [0.52, 1.05] (7.3)
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Figure 7.4: Bottom right panel and upper panel: the marginalized posterior prob-

ability obtained with MontePython for the first redshift bin, 0 < z <

0.08 with ΩCDM and As as free parameters. Bottom left panel: the two

dimensional posterior distribution. See text for details.
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in the 68% probability interval, i.e. consistent with the hypothesis that

2MPZ galaxies are unbiased tracers and with the bias of 2MRS galaxies

((Westover, 2007) and (Corsi, 2015)). As for ΩCDM, the Planck value of

0.263 for h = 0.67 (fixed in our analysis) is well within the 68% probability

interval.

The corresponding best fit spectrum is shown in the upper panel of

Fig. 7.5 with a black solid line, together with the measured spectrum and

its errorbars only shown in the range of the analysis, namely ` = [12, 100].

The bottom panel shows the percent difference between data and model.

In most `-bins the discrepancy is within the 1σ errorbars, confirming that

the model is a good fit to the data.

7.2.2 Second redshift bin, 0.08 < z < 0.16

We then repeat the same analysis for the spectrum measured in the second

bin, i.e. for 0.08 < z < 0.16. The result is shown in Fig. 7.6, where the

marginalized probability (bottom right and upper panels) for ΩCDM and

As together with their joint probability (bottom left panel) are displayed.

In this case the best fit values for the two parameters are:

ΩCDM, best fit = 0.19 (7.4)

As, best fit = 4.71× 10−9 (7.5)

while the minimum credible intervals are shown in Table 7.2.

Table 7.2: The minimum credible intervals for the dark matter density parameter

and the primordial amplitude in the second redshift bin.

68.26% probability 95.4% probability

ΩCDM [0.14, 0.24] [0.11, 0.29]

As × 109 [3.04, 6.09] [2.55, 8.71]
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Figure 7.5: Upper panel: the angular power spectrum measured from the 2MPZ

catalogue in the first bin 0 < z < 0.08 (red asterisks and errorbars)

in the range ` = [12, 100] compared with the best fit model obtained

from CLASS with ΩM = 0.34 and As = 1.78 × 10−9 with all other

parameters fixed to the Planck values. Bottom panel: the relative dif-

ference between the two spectra.
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Figure 7.6: Same as Fig. 7.4 but for the second redshift bin.
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Also for this z-bin we can infer the linear bias of 2MPZ galaxies by

comparing the spectral amplitude with the Planck one (2.14× 10−9). We

obtain:

bsecond z−bin =
As, 2MPZ

As, Planck
= [1.42, 2.84] (7.6)

in the 68% probability interval, i.e. consistent with the fact that, because

of the flux cut, galaxies in the interval are more luminous and more biased

than in the first one. The larger bias shifts upward the likelihood contours

in the As - ΩCDM plane. We notice that, apart form the offset, the con-

tours shape and, therefore, the degeneracy between the two parameters,

are almost identical in the first two bins. The similarity of the contours is

reassuring since it excludes the possibility of redshift-dependent system-

atic errors.

Fig. 7.7, analogous to Fig. 7.5, shows in the upper panel the compar-

ison between the best fit spectrum and the spectrum measured from the

2MPZ catalogue in the second bin. Also in this case the model provides

a good fit to the data with relative differences always smaller than 20% in

the `-range considered.

7.2.3 Third redshift bin, 0.16 < z < 0.24

The probability contours obtained from the MontePython analysis of the

third bin, i.e. the one with 0.16 < z < 0.24 are shown in Fig. 7.8. They do

show the same (As, ΩCDM) degeneracy and span a similar range in ΩCDM

with respect to the previous z-bins. However, the spectral amplitude is

much larger than in the other bins and inconsistent with any reasonable

biasing scheme and redshift-dependence. Indeed the best fit values are

ΩCDM = 0.26 and As = 6.74 × 10−9 with minimum credible intervals

shown in Table 7.3.

This implies:

bthird z−bin =
As, 2MPZ

As, Planck
= [2.88, 3.38] (7.7)
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Figure 7.7: Same as Fig. 7.5 but for the second redshift bin.
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Table 7.3: The minimum credible intervals for the dark matter density parameter

and the primordial amplitude in the third redshift bin.

68.26% probability 95.4% probability

ΩCDM [0.23, 0.28] [0.21, 0.3]

As × 109 [6.18, 7.25] [5.74, 7.94]

These bias values are very large indeed and seems to point to the presence

of some systematics in the data rather than to a genuine highly biased

population.

The quality of the fit is also less satisfactory with theoretical predictions

that are systematically below data at small `s (Fig. 7.9). The reason for this

discrepant result is not clear. One possibility, that we shall explore in Sec.

7.4, is some observational bias related to bright objects that preferentially

populate this redshift bin.

7.3 ΩM and baryon fraction fb from the MCMC

analysis

In this section we perform a cosmological analysis analogous to the one

seen in the previous section but for the total matter density parameter,

ΩM, and the baryon fraction, fb ≡ Ωb/ΩM. The value of the spectral am-

plitudes in the three bins are set equal to their best fit values estimated in

the previous section. All other parameters are fixed to their Planck values

(Planck Collaboration et al., 2014). Previous studies have used angular

spectra to estimate the baryon fraction (Blake et al. (2007) and Thomas

et al. (2011)). The rationale for focusing on this parameter rather than

the baryon density itself is that baryon oscillations, whose absolute am-

plitude depend on Ωb, are very weak in the angular spectra. To detect

baryonic features one has to subtract off the continuous part of the spec-
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Figure 7.8: Same as Fig. 7.4 but for the third redshift bin
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Figure 7.9: Same as Fig. 7.5 but for the third redshift bin.
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trum, that depends on ΩM. Hence, the better sensitivity to the baryon

fraction Ωb/ΩM.

As for the previous analysis, we compare our measurements with the

theoretical power spectrum of matter in a flat ΛCDM obtained from CLASS

using Halofit (Smith et al., 2003). We consider the same redshift bins

as in Sec. 7.2 and the corresponding spectroscopic redshift distributions

shown in Fig. 5.9. Theoretical models include the effect of redshift distor-

tions, pixel and geometry window functions.

7.3.1 First redshift bin, 0 < z < 0.08

The result of the MontePython analysis for the first redshift bin, ranging

from 0 to 0.08, is shown in Fig. 7.10. The spectral amplitude has been fixed

to its best fit value for this bin, i.e. As = 1.78× 10−9. We ran 100 chains of

10000 steps each. The figure shows the joint probability for ΩM and fb.

Figure 7.10: The joint probability for the total matter density parameter ΩM and

the baryon fraction fb. The spectral amplitude has been fixed to its

best fit value, As = 1.78× 10−9.
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The best fit parameters in this case are:

ΩM, best fit = 0.50 (7.8)

fb, best fit = 0.14 (7.9)

The minimum credible intervals for the two parameters in Table 7.4.

Table 7.4: The minimum credible intervals for the total matter density parameter

and the baryon fraction in the first redshift bin.

68.26% probability 95.4% probability

ΩM [0.42, 0.59] [0.33, 0.59]

fb [0.10, 0.17] [0.05, 0.18]

The baryon fraction is fully consistent with the Planck value ( fb = 0.15

with negligible errors compared to those of this analysis) within the 68%

probability interval. It is also interesting to compare our results with those

of Blake et al. (2007) and Thomas et al. (2011). These analyses are based

on photometric redshifts of the SDSS luminous red galaxies. Blake et al.

(2007) considered a sample of about 600000 objects whereas Thomas et al.

(2011) used an updated data release. The redshift range considered (0.4 <

z < 0.7) does not overlap with that of our more local sample. However, the

fb value is not expected to change with the redshift. Indeed, their baryon

fraction estimates (0.16± 0.036 and 0.173± 0.046 for Blake et al. (2007) and

Thomas et al. (2011), respectively; 1-σ errors quoted) is entirely consistent

with our result. Note that the values quoted were obtained by combining

the results of different redshift slices.

7.3.2 Second redshift bin, 0.08 < z < 0.16

The result of the same analysis for the second redshift bin, from 0.08 to

0.16, is shown in Fig. 7.11, where the joint probability for ΩM and fb is

displayed. The best fit of the spectral amplitude for this bin is As = 4.71×
10−9. Again, we ran 100 chains of 10000 steps each.
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Figure 7.11: Same as Fig. 7.10 but for the second redshift bin, 0.08 < z < 0.16.

The spectral amplitude has been fixed to its best ft value for this bin,

i.e. As = 4.71× 10−9.

The best fit parameters in this case are:

ΩM, best fit = 0.41 (7.10)

fb, best fit = 0.20 (7.11)

with the minimum credible intervals shown in Table 7.5. We notice that

Table 7.5: The minimum credible intervals for the total matter density parameter

and the baryon fraction in the second redshift bin.

68.26% probability 95.4% probability

ΩM [0.36, 0.51] [0.25, 0.52]

fb [0.16, 0.26] [0.09, 0.27]

in this second bin the value of fb is larger but still consistent, within the

68% probability interval, with that of the first redshift bin. The uncertainty

interval is larger too, although the relative error is also similar to that of

the first bin. Overall, the estimates of the baryon fraction in the two bins

are consistent with each other.
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7.3.3 Third redshift bin, 0.16 < z < 0.24

Fig. 7.12 is the same as Fig. 7.10 and Fig. 7.11 but for the third redshift

bin, from 0.16 to 0.24. The best fit of the spectral amplitude for this bin is

As = 6.74× 10−9. Again, we ran 100 chains of 10000 steps each.

Figure 7.12: Same as Fig. 7.10 but for the second redshift bin, 0.16 < z < 0.24.

The spectral amplitude has been fixed to its best ft value for this bin,

i.e. As = 6.74× 10−9.

The best fit parameters in this case are:

ΩM, best fit = 0.38 (7.12)

fb, best fit = 0.14 (7.13)

with the minimum credible intervals shown in Table 7.5.

Also in the third redshift bin the estimated baryon fraction is consis-

tent with the results of the first two bins. This is quite remarkable, since

we took the large spectral amplitude measured in the third bin as a po-

tential clue of systematic error. This result shows that our baryon fraction

estimate is robust to this systematic effect, assuming that indeed there is

one.
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Table 7.6: The minimum credible intervals for the total matter density parameter

and the baryon fraction in the third redshift bin.

68.26% probability 95.4% probability

ΩM [0.35, 0.43] [0.30, 0.49]

fb [0.12, 0.17] [0.09, 0.19]

The consistency among our fb estimates in the three bins implies that

our results are also consistent with those of Thomas et al. (2011) and Blake

et al. (2007) and Planck Collaboration et al. (2014).

7.4 Luminosity dependence

The large spectra amplitude measured in the third bin that we have mea-

sured in Sec. 7.2 can have different origins, one of which is the presence

of some unidentified systematic errors in the data themselves. In Sec. 7.3,

however, no anomalous behavior has been detected in the third bin, i.e.

the values of ΩM and fb measured in the three redshift bins are consistent

with each other. Therefore, before looking for systematic errors in the data

treatment, we need to consider the hypothesis that the large As value in

the third bin is a genuine rather than an anomalous feature.

The 2MPZ galaxies have been selected by their flux. As a result, objects

in the third bins are typically brighter than in the first one. Since luminous

objects are more biased, we want to check whether the large As simply

reflects the effect of luminosity bias.

Corsi (2015) has determined the luminosity dependence of the linear

bias of 2MRS galaxies, a sample that significantly overlaps with that of

2MPZ galaxies in the first bin. The result of that analysis was that the bias

increases by about 40% over 1 decade in luminosity. In terms of As this

would imply a factor of 2 increases from faint to bright objects in the first

bin.
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In order to investigate the issue further and check whether the spectral

amplitude in the third redshift bin is indeed anomalous or it is in line with

expectations, we have applied different flux cuts and measured the an-

gular power spectra of the corresponding subsamples. Starting from the

mK = 13.9 magnitude cut of the whole 2MPZ sample, applied to guaran-

teed a nominal 95% completeness (Bilicki et al., 2014), we considered 7 cuts

up to mK = 11.75. Extracting subsamples with progressively brighter flux

cuts increases the completeness, at the price of selecting a progressively

smaller number of increasingly biased tracers. Fig. 7.13 shows the result

of this test in which the magnitude cut was increased from mk = 13.9

to mk = 11.75. The figure shows the angular spectra computed for dif-

ferent magnitude limits (panels in rows) in the full redshift range (first

column) and in the three redshift bins (second, third and forth column).

Note that in this case the logarithmic scale is only used for the y-axis. The

black dots in each panel indicates the reference spectrum computed for

the full redshift range and mK ≤ 13.9. Over-imposed to it, the colored

symbols with errorbars represent the angular spectrum of the individual

subsample. The size of the errorbars indicate the Gaussian errors. We use

the Gaussian approximation since our mock catalogues, which are not de-

signed to reproduce the clustering properties as a function of luminosity,

cannot be used to estimate the errors directly.

Looking at the plots in the first column, we clearly see that the ampli-

tude of the spectrum increases with the luminosity and that the effect is

almost independent from `, especially at large angular scales. This is to

be expected since more luminous objects preferentially form in the more

massive halos and, therefore, are more biased with respect to mass. The

systematic up-shift of the spectrum with the luminosity is therefore the

typical, expected, signature of a luminosity dependence linear bias.

Let us now focus on the individual z-bins (the remaining columns) and,

more specifically, on the mK = 13.9 cut for the third bin. To account for a

luminosity dependence bias, a comparison with the angular spectrum of
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Figure 7.13: The angular power spectra measured from different subsamples of

the 2MPZ catalogue with different magnitudes cuts. Each column

show the spectra computed in different redshift ranges, each raw the

spectra obtained with different magnitude cuts. See text for details.
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a different redshift bins should be performed at the same luminosity cut.

For this we need to derive the corresponding flux cuts for the other two

bins.

We first convert apparent to absolute magnitudes:

MKs = mKs − 25− 5log(dL)− k(z)− e(z) (7.14)

where dL is the luminosity distance. Since the sample is local, we use the

approximation dL = c z/100 and express distances in Mpc/h. Following

Corsi (2015), we use the k-correction of Kochanek et al. (2001) and Bran-

chini et al. (2012):

k(z) = −6 log(1 + z) (7.15)

and the evolutionary correction e(z) = 3.04z. We estimate Eq. 7.14 at the

mean galaxy redshift within each z-bin: 〈z〉 = 0.056, 0.109, 0.187 respec-

tively. The corresponding magnitude cuts turned out to be:

mK = 11.198, 12.67, 13.9 (7.16)

Since we did not perform these exact magnitude cuts, we considered the

cases mK = 11.75 for the first bin, mK = 12.5 for the second and, obviously,

mK = 13.9 for the third.

We are now in the position of comparing the spectral amplitudes. To

do that we simply consider the value of the angular spectrum at ` = 28.

This multipole is large enough to exclude mask effect and small enough

to minimize the effect of nonlinearities. The ratio of the corresponding

spectral amplitudes for the first, second and third bin (A1, A2 and A3,

respectively) are:

A2

A1
= 1.3± 0.3

A3

A1
= 0.35± 0.06

A3

A2
= 0.28± 0.07 (7.17)

Errors have been obtained by propagating 1-σ spectral uncertainties.

These ratios are of the order of unity and there is no evidence for an ex-

cess power in the spectrum of the third bin. On the contrary, its ampli-

tude is slightly smaller than at lower redshifts. In other words, we find
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no evidence for anomalous power in the third bin once the comparison is

performed at a similar luminosity cut.

Back to the first bin, let us consider the spectral amplitudes correspond-

ing to the fainter and brighter magnitude cuts. We find:

A1, 11.75

A1, 13.9
= 2.5± 0.4 (7.18)

Considering that the corresponding luminosity range (1 decade) is similar

to that analyzed by Corsi (2015), this ratio is fully consistent with a fac-

tor of 2 increases of bias with luminosity. Also in this case, we find no

anomalous behavior of the angular spectrum as a function of luminosity.

We therefore conclude that the large As value obtained in Sec. 7.2 is

consistent with the expected luminosity dependent bias and does not hint

at any luminosity-dependence systematic error in the data selection.
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Conclusions

In the recent years, the Large Scale Structure of the Universe, i.e. the spa-

tial distribution of matter on cosmological scales, has proved to be one of

the most powerful probes to investigate the proprieties of the Universe,

and in particular to unveil its dark components: dark matter and dark

energy. As a consequence, an increasing number of galaxy surveys has

mapped the three dimensional distribution of galaxies. More ambitious

surveys are planned, the most ambitious of which, the Euclid survey, will

probe about the 2% of the observable Universe. The goal is to estimate

cosmological parameters at the % accuracy, an important pre-requisite if

one wants to discriminate between different cosmological models.

Beside the spectroscopic redshift surveys, where the redshift is mea-

sured through spectroscopy, photometric redshift surveys offer the pos-

sibility to probe larger volumes of the Universe in which the spatial dis-

tribution of the matter is more densely sampled with less precision but

with better statistics, using objects with a much wider range of physical

properties, like their intrinsic luminosity.

Because of the rather poor resolution along the radial direction, an ef-

fective way of studying the clustering properties and their evolution over

cosmic time in photometric surveys is that of considering the angular cor-

relation properties of the objects in different redshift shells to sample the
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time axis in a discrete and yet not a too discontinuous way.

In this thesis we have applied this tomographic approach to estimate

the angular power spectrum of galaxies in the recently released 2MPZ cat-

alog. This dataset contains about 935000 galaxies distributed over 80% of

the sky.

The goal was twofold. First of all, to assess the possibility of using this

dataset for cosmological investigations and, second of all, use it to obtain

an independent estimate of cosmological parameters in the local Universe.

The hope is that this study will provide the expertise and the guidelines

to perform similar analyses to future wide photometric-redshift catalogs,

containing many more objects and probing much deeper regions, like the

one that will be obtained by the photometric survey of the Euclid satellite.

With these general goals as guidelines, we have addressed the specific

issues detailed below.

• We have developed our own code to estimate the angular spectrum

of a distribution of discrete objects over some fraction of the 2D-

sphere. The code, written in C++ language, implements the Peebles

(1973) unbiased estimator that automatically corrects for incomplete

sky coverage. The code interpolates a discrete distribution over a

2D pixelized map of surface density of objects and then computes

its angular spectrum. To do so, the code implements a number of

HEALPix routines, which makes the code itself highly portable.

The same code is also used to compute the mixing matrix that quan-

tifies the multipole mixing induced by the partial sky coverage. In

this step we have used the approximated expression for the mixing

matrix, proposed by Peebles (1973), which is fully consistent with

the angular spectrum estimator.

The code was thouroughly tested. Firstly, we have cross-compared

outputs with an analogous code developed by Sreekumar Balan (pri-

vate communication) for the Weak Lensing Science working Group

in the Euclid Consortium. Then, we applied the code to distribution
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of objects with a well known power spectrum to look for systematic

errors and found none on scales larger than the angular resolution

corresponding to the pixel size. This is a rather demanding tests in

case of partial sky coverage since, in that case, we also test the good-

ness of the estimated mixing matrix and that of the convolution of

the reference spectrum.

• Having excluded systematic errors in the estimator by means of some-

what ideal tests, we turned to the problem of assessing the presence

and the amplitude of both systematic and random errors of the angu-

lar spectrum estimated for a more realistic galaxy catalogue match-

ing the characteristics of 2MPZ.

We did this by means of simplified mock galaxy catalogs in which

the realistic touch consisted in mimicking a sample with the same

dN/dz and sky coverage as the real one.

To compromise between the competing needs of generating many

independent samples containing about one million of objects each

and that of limiting the computational time to generate them, we de-

cided to rely on the lognormal model to generate samples of objects

with a realistic 1-point PDF and a well known angular spectrum.

The code has been tested to check that the lognormal transforma-

tion does not modify the 2-point statistics of the starting Gaussian

field. This delicate step has been calibrated in collaboration with

Henrique Xavier, author of the FLASK toolkit (Xavier et al., 2016), a

set of codes that generates similar lognormal mocks targeted at weak

lensing studies.

In the end we generated 144 independent lognormal mocks each one

consisting of three subsamples of objects in three redshift slices rang-

ing from z = 0 to z = 0.24, with a dN/dz consistent, within Poisson

errors, with the 2MPZ one. Each object of the catalogue is charac-

terized by two angular coordinates, its cosmological redshift and its
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photometric redshift.

These mocks were used to compute a 12× 12 covariance matrix of

the binned angular spectrum. The covariance matrix turns out to be

close to diagonal, for which reason we have ignored the off-diagonal

terms.

The mock analysis also allowed us to characterize and quantify the

systematic errors induced by the geometry mask. The effect of the

mask is to removing power from large scale. The effect is not per-

fectly accounted for by convolving the model with the estimated

mixing matrix. The mismatch is more evident for small multipoles.

For this reason we decided to exclude the multipole range ` < 12

from the analysis.

• After having quantified systematic and random errors, we have per-

formed two different analyses to estimate some cosmological param-

eters from the measured angular spectrum.

The first one is a standard χ2 statistics. The second one is based

on the likelihood statistics that we efficiently sample with a MCMC

technique using the MontePython (MP) code. As anticipated, in

both analyses we only consider the diagonal terms of the covariance

matrix. We stress that MP did not come with a dedicated module for

the analysis of angular clustering. For this reason we had to write a

new module that we have used for the analysis.

To calibrate the two statistical analyses and assess the presence of

systematic errors we applied both of them to the mock catalogs and

compared results with theoretical expectations from the CLASS code.

In our analysis we considered the multipole range ` = [12, `max],

where the maximum value, `max, was set to match the shot noise

level.

In the analyses we focused first on the dark matter density ΩCDM pa-

rameter alone (i.e. keeping all other cosmological parameters fixed at

173



Conclusions

their true values), detecting no systematic effect. Then we considered

parameter pairs. We chose (ΩCDM, As) and (ΩM, Ωb). In both cases

the analysis highlighted a significant, expected, degeneracy among

the parameters in all redshift bins explored. Small systematic errors

were detected in the first bin only. They probably reflect the effect of

the geometry mask. No systematic effects were detected in the other

bins. Random errors are larger in the outer bins.

• In the real data analysis we focused on measuring ΩCDM and As, and

ΩM and fb. Since the analysis of the mocks showed no differences

between the MCMC and the χ2 analysis, we relied on the first to

analyze the real data.

In the modeling phase we add two additional effects respect to the

mock analyses. Firstly, we multiply the theoretical spectrum by the

pixel window function to mimic the effect of the pixelized map. Sec-

ondly, in order to quantify the impact of photo-z errors, we compute

the true redshift distribution, dN/dzspec, convolving the dN/dzphot

with a Gaussian P(zspec|zphot) following the idea of Sheth and Rossi

(2010). Using the correct redshift distribution is important since pho-

tometric errors artificially reduce the spectral amplitude on scale cor-

responding to the size of the error.

• Regarding the analysis of ΩCDM and As, it reveals the same type

of parameter degeneracy seen in the mocks, with a significant anti-

correlation between the two parameters. The results of the first two

z-bins are quite similar, and are consistent with the Planck values

within the 68% probability intervals. By comparing the spectral am-

plitude with the Planck one, we also inferred the linear bias of 2MPZ

galaxies in the different redshift bins. For the first bin this value

is [0.52, 1.05] in the 68% probability interval, that is consistent with

the bias estimated for 2MRS galaxies ((Westover, 2007) and (Corsi,

2015)). The value of the dark matter density parameter, ΩCDM, which
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lies in the 68% probability interval [0.19, 0.40], is also consistent with

the Planck value (0.263).

For the second bin the linear bias is [1.42, 2.84] in the 68% probability

interval. This larger bias, consistent with the fact that in this z-bin

galaxies are more luminous and more biased than in the first z-bin,

shifts upward the likelihood contours, decreasing the best fit value

for ΩCDM. However, since the degeneracy between ΩCDM and As

found in this bin is almost identical as the one found in the previ-

ous z-bin, we exclude the presence of redshift-dependent systematic

errors.

The results of the third bin reveals much larger, possibly anoma-

lously large, spectral amplitude. The ΩCDM value, however, is con-

sistent with that of the two other bins. A dedicated analysis has been

performed to clarify the origin of this large amplitude as we will see

in the following.

• The results of the analysis of the total matter density parameter, ΩM

and the baryon fraction fb for the three redshift bins are fully con-

sistent (in the 68% probability interval) with those of similar studies,

like the ones by Thomas et al. (2011) and Blake et al. (2007), that have

used angular spectra to estimate baryon fraction. Our results are

also consistent with the one from Planck Collaboration et al. (2014).

In this analysis the value of the spectral amplitudes in the three red-

shift bins have been set equal to their best fit values estimated in the

previous (ΩCDM, As) analysis.

The fact that also in the third redshift bin the estimated fb is consis-

tent with the results coming from the first two redshift bins indicates

that our estimate is robust to the possible systematic error that, as the

large spectral amplitude measured suggests, could affect the third

redshift bin.

• To look for possible clues on the origin of the large spectra ampli-
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tude measured in the third bin, we first consider the hypothesis that

this result is a genuine rather than an anomalous feature. The 2MPZ

galaxies, in fact, have been selected by their flux, meaning that ob-

jects in the third z-bin are typically brighter than those in the first

one. Since luminous objects are more biased, it is possible that the

large As simply reflects the effect of a luminosity dependence linear

bias. To investigate this issue, we first applied different flux cuts on

the 2MPZ catalogue and measured the angular power spectra of the

corresponding subsamples. Then we convert apparent to absolute

magnitudes following Corsi (2015), in order to compare the angular

power spectrum of the different redshift bins at the same luminosity

cut.

The comparison between the spectral amplitudes in the three red-

shift bins shows no evidence for an excess power in the spectrum of

the third bin. We therefore conclude that the large As value obtained

in the (ΩCDM, As) analysis is consistent with the expected luminos-

ity dependent bias and does not hint at any luminosity-dependence

systematic error in the data selection.

In conclusion, this thesis was a pilot study to test the possibility of

exploiting angular clustering in photometric-redshift surveys to comple-

ment that of spectroscopic surveys.

We point out that this is not the first study of this type. Thomas et al.

(2011) and Blake et al. (2007) performed a similar analysis using the photo-

metric SDSS surveys of luminous galaxies. However, their studies are dif-

ferent from ours over several aspects. First of all, their samples are deeper

and do not overlap with ours. Also, they have a smaller sky coverage and,

therefore, a higher density of tracers. Furthermore, their analysis is more

simplistic in the sense that they do not use mock catalogues to estimate

errors but adopts Gaussian errors instead.

The results of the 2MPZ analysis are encouraging for developing this

type of analysis further. Indeed, the work presented in this thesis can be
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expanded along several directions.

First of all, more realistic mock catalogs that take into account photo-

z errors and correlation among the redshift bins, including some biasing

scheme and mimicking the characteristic of other surveys, could be pro-

duced at a relatively low computational cost, allowing one to compute

precise covariance matrices for 2-point angular statistics.

A more systematic use of the MCMC analysis is also needed in order

to explore the parameter space more thoroughly and find which parame-

ter combination is better constrained with angular clustering analyses at

different redshifts. All this should be folded in the with the characteristics

of some specific next generation photometric surveys. With this respect, it

is worth stressing the the machinery developed here is already being used

to generate simplified mock catalogs mimicking the characteristics of the

Euclid photo-z survey.

Finally, regarding the 2MPZ analysis for the third z-bin, a parallel effort

is ongoing in collaboration with Maciej Bilicki (Leiden Observatory) and

Andres Balaguera-Antolinez (Roma Tre University) to pinpoint the origin

of the results for the third redshift bin that we have outlined above.
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