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Introduction

This thesis concerns the convergence of the empirical spectral distribution of random ma-

trices, that is the probability measure concentrated on the spectrum {λ1(M), ..., λn(M)}
of a complex n× n matrix M . Namely we define the empirical spectral distribution µM

as

µM :=
1

n

n∑

i=1

δλi(M).

We will consider matrices M whose entries will be random variables, as a consequence

µM will be a random probability measure.

The study of the spectrum of random matrices goes back to the ′50 when the Hungar-

ian physicist Eugene Wigner, proved that the empirical spectral distribution (ESD) of a

sequence of Hermitian random matrices, whose entries are independent random variables

with unitary variance, up to rescaling weakly converges to the probability measure

µsc(dx) =
1

2π

√
4− x2 1|x|<2dx.

The law µsc is the so called Wigner semi-circular law, see figure 1.
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Figure 1: Histogram of the spectrum of a 1000×1000 Wigner matrix with standard Gaussian entries,

plotted with the density of µsc.
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In the same years Wigner conjectured that the limit spectral distribution of a se-

quence of non Hermitian matrices with unitary variance independent random entries, un

to rescaling, is the uniform law on the unitary disc of the complex plane, see figure 2.
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Figure 2: Plot of the spectrum of a 2500×2500 matrix with i.i.d. standard Gaussian entries.

The proof of the conjecture has a long history, it indeed has been proved by Tao and

Vu in 2009, after more than 40 years of partial results. We just mention very few of

them, for a more detailed sequence of the results we refer to [13, Section 2].

The first piece of proof for the circular law theorem is by Metha in [19], who in 1967,

using the work of Ginibre [15], proved the result for the expected empirical distribution

for complex Gaussian entries. In 1997 Bai, in [4], is the first to obtain results in the

universal case, using the work of Vyacheslav Girko, but assuming stronger hypothesis

on the law of the entries, such as bounded density and finite sixth moment. Finally in

2009, Tao and Vu proved the original conjecture, in [27].

The proof is based on the Girko Hermitization method, a trick to pull back the

non-Hermitian problem to Hermitian matrices. We give more details in chapter 1, but

the core of the method is to work with the spectrum of the singular values of the non-

Hermitian matrix and to take advantage of their logarithmic bond with the spectrum of

the eigenvalues of M , see Theorem 1.2.1 and Lemma 1.2.3.

In 2008 Ben Arous and Guionnet, proved a heavy tailed counterpart of the Wigner

theorem, see also Zakharevich [30]. They indeed proved an existence result for the
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limiting spectral distribution of a sequence of Hermitian matrices whose entries are

independent with common law in the domain of attraction of the α-stable law, with

α ∈ (0, 2). As in the finite second moment scenario, the limiting spectral measure

does not depend on the law of the entries of the matrix, but only on the parameter α.

Remarkable work in this regime is also by Belinschi, Dembo and Guionnet [5]. These

works established rigorously a number of prediction made by physicists Bouchaudand

and Fizeau [14]

In 2010 Bordenave, Caputo, and Chafäı [9], with a new and independent approach

based on the objective method introduced by Aldous and Steele in [2], give an alternative

proof of the convergence in the heavy tailed setting. They prove that the heavy tailed

matrix, suitably rescaled, locally converges to an infinite poissonian weighted tree called

PWIT. The heavy tails regime is in many ways more difficult than the bounded variance

regime. Indeed we do not have an explicit expression for the limiting distribution.

Nevertheless the approach of [9], is powerful enough to give some properties of the

limiting spectral measure, by means of recursive analysis on the limiting tree.

In 2012 the same authors in [10], prove an analogous of the Circular law, for non-

Hermitian matrices with i.i.d. heavy tailed entries, using the same approach from [9]

combined with the Hermitization techniques by Tao and Vu.

Very little is known if the entries of the matrix are not independent.

An interesting problem with non-independent entries is obtained by considering

Markov matrices, i.e. matrices with non-negative entries and row sum equal to 1. In this

case is natural to associate the random matrix with the corresponding weighted random

graph, and to interpret the elements of the matrix as the transition probabilities of the

random walk on the graph.

Suppose Ui,j is a collection of i.i.d. random variables, and define the Markov matrix

Xn = (Xi,j)
n
i,j=1,

Xi,j =
Ui,j
ρi

ρi =
n∑

j=1

Ui,j .

By construction, the spectrum of Xn is a subset of {z ∈ C : |z| ≤ 1}. The convergence

of ESD of P has been investigated in recent works by Bordenave, Caputo, and Chafäı.

When the variables {Ui,j} have finite variance σ2 ∈ (0,+∞) and unitary mean, µ√n
σ
Xn

behaves as the ESD of Un√
nσ2

where Un = (Ui,j) is the non normalized matrix. Namely

it converges to the circular law when Un is non-Hermitian, see [11] and figure 3, and to

the Wigner semi-circular law when Un is Hermitian, see [8].

This analysis can be extended to other models with non-independent entries such

as random Markov generators and zero sum matrices, see the work of Bordenave, Ca-

v



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 3: Plot of the spectrum of a 2000×2000 rescaled random non-Hermitian Markov matrix, with

Ui,j are i.i.d exponential random variables with mean 1.

puto, and Chafäı [12] and Tao [25]. In [9], Bordenave, Caputo, and Chafäı, study the

markovian case when Un is a symmetric heavy tailed random matrix. Of remarkable

interest is the case α ∈ (0, 1). In this regime the ESD of the matrix Xn, without any

scaling factor, converges to a non trivial measure concentrated on the unitary disc of

the complex plane. In this work we study the non-Hermitian version of this heavy tailed

matrix, that is the case where Un has i.i.d. heavy tailed entries, with α ∈ (0, 1). Our

main result concerns the convergence of the ESD of the associated Markov matrix Xn,

to a non trivial measure supported in the unitary disc of the complex plane, depending

only on the parameter α. In contrast with the Hermitian case, this limiting distribution

should have a remarkable concentration on a disc with radius r < 1, see figures 4,5,6

and 7 for a plot of the eigenvalues, and figure 8 and 9 for a radial plot of the density

of the eigenvalues. They represent simulation of µXn , where Xn is a n × n random

Markov matrices, and the non normalized matrix Un has i.i.d. entries Ui,j ∼ V −1/α,

with V ∼ Unif(0, 1), for various values of α and n, as reported in captions.

This thesis consists of 4 chapters. In chapter 1 we introduce some of the more

remarkable technical tools we need in the following chapters. In order to relieve the
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reading we dilute those technical tools in a survey of some results cited above. The last

section of chapter 1, is a more detailed introduction to our work.

In chapter 2, we prove the local convergence of a non-Hermitian random Markov

matrix Xn with entries in the domain of attraction of an α-stable law with α ∈ (0, 1)

to a modified PWIT whose generations have alternated distribution, this generalizes the

analysis of [10].

In chapter 3, we use the resolvent convergence implied by the local convergence, to

prove the convergence of the ESD of the singular values of Xn, see theorem 1.6.2, to a

measure with finite exponential moments, see proposition 3.3.3.

In chapter 4, we use the Girko’s Hermitization method to obtain the convergence of

the spectrum of the eigenvalues of Xn, see theorem 1.6.1, to a non trivial measure, see

section 4.6.

The techniques used in this work follow very closely, with few exceptions, the works

[8, 9, 10, 11].
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Figure 4: 2000× 2000 α = 0, 1
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Figure 5: 2000× 2000 α = 0, 3
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Figure 6: 2000× 2000 α = 0, 5
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Figure 7: 2000× 2000 α = 0, 9
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Figure 8: Radial plot of the density for n = 2500 and α = 0, 3
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Chapter 1

Preliminaries

Consider a matrix M ∈Mn(C), the set of n×n complex matrices. Call λ1(M), ..., λn(M)

its eigenvalues counting multiplicity, we define the empirical spectral distribution (ESD)

of M as

µM =
1

n

n∑

i=1

δλi(M). (1.0.1)

This defines a unitary mass measure on C, µM is a probability measure defined on the

complex plane. Moreover, if we let the entries of the matrix M be random variables, µM

becomes a random probability measure defined on the complex plane. We are interested

in its asymptotic behavior as the order n of the matrix diverges to infinity, when the

entries of M are random variables.

The aim of this chapter is to introduce some fundamental technical tools we need

through the following chapters. Starting from the finite variance case, with the Wigner

theorem for Hermitian matrices and the circular law theorem for non Hermitian ma-

trices, and continuing with the results for heavy tailed matrices of Bordenave, Caputo

and Chafäı, referred to as BCC from now on, we present some results we cited in the

introduction, since the technicalities we need for the proofs of those theorems are the

same we need in the following chapters.

1.1 Semi-circular Law

Consider a matrix Xn = (Xi,j) such that Xi,j = Xj,i, for 1 ≤ i < j, and where

{Xi,j}1≤i<j≤n is a collection of i.i.d. random variables with common law P on C, and

{Xi,i}ni=1 is a collection of i.i.d random variables with common law Q on R.

Then Xn = (Xi,j)1≤i,j≤n is a random Hermitian matrix, also called Wigner matrix.

If the variables Xi,j have finite variance, namely Var(X1,2) = E
[
|X1,2|2

]
−E [ |X1,2| ]2 =

σ2 < +∞, then the ESD of (nσ2)−1/2Xn, converges to a probability measure defined on

1



1.1 Semi-circular Law

the interval [−2, 2] of the real line, called semi-circular law. We will call this law µsc.

The semi-circular law is the probability measure

µsc(dx) =
1

2σπ

√
4− x21|x|≤2dx. (1.1.1)

The result was proved by Wigner in 1955, and is contained in [29]. It can be considered

the starting point of the random matrix theory.

Theorem 1.1.1. Consider a random Wigner matrix Xn, such that Var(X1,2) = σ2 <

+∞, then almost surely,

µ(nσ2)−1/2Xn

(w)−−−−−→
n→+∞

µsc.

We write µn
(w)−−−−−→

n→+∞
µ0, when the sequence of measure µn weakly converges to

the measure µ0 in the classical sense, i.e. µn(h) −−−−−→
n→+∞

µ0(h) for any bounded and

continuous function h.

Many different proofs of this result have been given, see [3, Chapter 2]. We give

the idea of the proof using the Resolvent method, since it gives us the opportunity to

introduce the Cauchy-Stieltjes transform of a measure, the resolvent of a matrix and

how they are linked in random matrix theory.

1.1.1 Cauchy-Stieltjes transform, resolvent and pointed spectral mea-

sure

We first introduce the Cauchy-Stieltjes transform of a real measure and the resolvent of

a matrix, then, given some properties of these objects, we will see how they are linked

to each other, and how, through this link, one can prove the Wigner theorem.

Cauchy-Stieltjes transform

For a finite measure µ supported on R, define the Cauchy-Stieltjes transform as

gµ(z) :=

∫
1

x− zµ(dx) (1.1.2)

for z ∈ C+ := {w ∈ C : Im(z) > 0}. If µ has bounded support we have

gµ(z) =
∑

n≥0

z−n−1

∫
xnµ(dx). (1.1.3)

If µ is a probability measure, then gµ(z) is an analytic function from C+ → C+, its

modulus is bounded by Im(z)−1 and it characterizes the measure µ, in the sense that

we can deduce µ from gµ(z), see [3, Section 2.4 ]. Moreover the convergence of the

Cauchy-Stieltjes transform is equivalent to the weak convergence as stated in the next

result proved in e.g. [7].

2



1.1 Semi-circular Law

Theorem 1.1.2. Let µ and (µn)n≥1 be a sequence of real probability measures, then the

following are equivalent.

i) µn
(w)−−−−−→

n→+∞
µ.

ii) gµn(z) −−−−−→
n→+∞

gµ(z) for all z ∈ C+.

iii) There exists a set D ⊂ C+ with an accumulation point such that for all z ∈ D,

gµn(z) −−−−−→
n→+∞

gµ(z).

The Cauchy-Stieltjes transform of the semi-circular law satisfies the following fixed

point equation for all z ∈ C+,

gµsc(z) = −(z + gµsc(z))
−1, (1.1.4)

see e.g. [7].

Resolvent

Let M be a n × n complex Hermitian matrix, take z ∈ C+, then, if 1n is the n × n
identity matrix, M − z1n is invertible, one defines the resolvent of M as the function

R : C+ →Mn(C) such that

R(z) := (M − z1n)−1.

If (vk)
n
k=1 is an orthonormal basis of eigenvectors of M , which exists by spectral theorem,

we can decompose the resolvent matrix as

R(z) =

n∑

k=1

1

λk(M)− z vkv
∗
k.

Using this decomposition we can observe thatR(z) is a normal matrix, namelyR(z)R(z)∗ =

R(z)∗R(z). Moreover R(z) is bounded, ‖R(z)‖2→2 ≤ Im(z)−1 and z 7→ R(z) is an ana-

lytic function on C+.

1.1.2 Pointed spectral measure

In order to introduce the bond between Cauchy-Stieltjes transform and Resolvent we

need to introduce the pointed spectral measure. Let ξ be a vector of Cn with unitary `2

norm, and (vk)
n
k=1 an orthonormal basis of Cn given by the eigenvectors of M . We can

define the real probability measure

µξM =
n∑

k=1

|〈vk, ξ〉|2δλk(M). (1.1.5)

3



1.1 Semi-circular Law

We call this measure, spectral measure pointed at ξ. This measure could analogously be

defined by the unique probability measure µξM such that

∫
xkµξM (dx) =

〈
ξ,Mkξ

〉
,

for any integer k ≥ 1. Note that for the special case ξ = ( 1√
n
, ..., 1√

n
) we find again the

ESD of M , µM = µ
( 1√

n
,..., 1√

n
)

M . Also, if (e1, ..., en) is the canonical base of Cn,

µM =
1

n

n∑

i=1

µeiM .

Now consider an Hermitian matrix M ∈ Hn(C), the subset of Mn(C) of the Hermitian

matrices, the link between the Cauchy-Stieltjes transform and Resolvent is that,

〈ξ,R(z)ξ〉 =

∫
1

x− zµ
ξ
M (dx) = g

µξM
(z).

where µξM is the pointed spectral measure we defined in (1.1.5). Moreover, considering

µM , the ESD of M ,

gµM (z) =

∫
1

x− zµM (dx) =
1

n

n∑

i=1

1

λi(M)− z =
1

n
Tr(R(z)).

Let us remark that the measure µM , is actually a random probability measure. We can

deal with this extra randomness introducing concentration inequalities.

1.1.3 Concentration Inequalities

Concentration inequalities are a powerful tool in probability theory, and more generally

in measure theory. What essentially concentration inequalities state is that, under suit-

able hypothesis, a random object is, with very high probability, close to a constant. The

random object is generally a function, on which we require mild hypothesis, of a family

of random variables and the constant is the expected values of the function under the

probability measure.

The first result we present is the one we will use the most, see [10, Lemma C.2]. It

refers to random matrix with independent half-rows, as the Hermitian random matrix

Xn from the Wigner theorem. Recall the BV -norm of a function f : R → R, vanishing

at ∞, i.e. limx→+∞ f(x) = 0, is defined as

‖f‖BV = sup
(xk)k∈Z

∑

k

|f(xk+1)− f(xk)|,

with xk+1 ≥ xk for any k.

4



1.1 Semi-circular Law

Theorem 1.1.3 (Concentration of ESD with independent half-rows). Let M be an

Hermitian random matrix. For 1 ≤ k ≤ n define the variables Mk := (Mk,j)
k
j=1 ∈ Rk.

If the variables (Mk)
n
k=1 are independent, then for any f : R→ R such that ‖f‖BV ≤ 1

and every t ≥ 0,

P
(∣∣∣∣
∫
fdµM − E

[ ∫
fdµM

]∣∣∣∣ ≥ t
)
≤ 2 exp

(
−nt

2

8

)

The proof is based on the Azuma-Hoeffding’s inequality, see e.g. [18].

There is a huge family of very useful concentration inequalities based on Logarithmic-

Sobolev type inequality, which we will not present, but for which we refer to [7, Subsec-

tion 3.3.2]. What we want to present instead is the following concentration inequality

by Talagrand in [24], which we will use in Chapter 4.

Theorem 1.1.4 (Talagrand concentration inequality). Let K be a convex subset of R
with diameter D = supx,y∈K |x − y|. Consider a convex Lipschitz real valued function

defined on Kn, with Lipschitz constant ‖f‖Lip. Let P = P1 ⊗ · · · ⊗ Pn be a product

measure on Kn and let MP(f) be the median of f under P. Then for any t > 0

P (|f −MP(f)| ≥ t) ≤ 4e
− t2

4D2‖f‖Lip

Note that if EP(f) is the mean of f under the measure P of the theorem,

|MP(f)− EP(f)| ≤
∫ +∞

0
P (|f −MP(f)| ≥ t) dt

≤ 4

∫ +∞

0
exp

{
− t2

4D2‖f‖Lip

}
dt

= 4
√
πD‖f‖Lip.

We may then deduce an equality involving the mean of f under P.

1.1.4 Rough sketch of proof of Theorem 1.1.1

The idea of the proof of theorem 1.1.1, using the resolvent method, is to show the

convergence of gµ Xn
σ
√
n

to gµsc . Fix σ2 = 1. The first step is to consider E
[
gµXn√

n

]
, since

gµXn√
n

concentrates around its mean, by theorem 1.1.3. Then, a simple calculation gives

E
[
gµXn√

n

]
=

1

n
E [ TrR(z) ]

Where R(z) is the resolvent of Xn/
√
n. Now, since {(R(z))i,i}ni=1 are variables with the

same distribution, one can conclude that

1

n
E [ TrR(z) ] = E [ (R(z))1,1 ] .

5



1.2 Circular law

Now, using concentration arguments, properties of the resolvent, and the fact that

all the non diagonal entries of Xn have the same law, one can show that, if one call

limn→∞ E
[
gµXn√

n

]
:= gµ∞ , then gµ∞ satisfies the same fixed point equation as the

Cauchy-Stieltjes transform, namely

gµ∞ = − (z + gµ∞)−1 .

Since the Cauchy-Stieltjes transform of probability measure uniquely characterize a

distribution, µ∞ = µsc. Now the convergence of Cauchy-Stieltjes transform is equivalent

to weak convergence of measure, then

µXn√
n

(w)−−−−−→
n→+∞

µsc,

see [7] for a more detailed proof.

1.2 Circular law

In this section we analyze the limiting behavior of a non-Hermitian matrix. For a matrix

M ∈Mn(C), recall its spectrum is {λ1(M), ..., λn(M)}, where the eigenvalues are order

in such a way that |λ1(M)| ≥ · · · ≥ |λn(M)|. We can consider the singular values,

defined by

si(M) := λi(
√
MM∗) for i = 1, ..., n,

where M∗ = M
T

is the conjugate-transpose matrix of M , then {s1(M), ..., sn(M)} ⊂
[0,+∞). Again the singular values are such that s1(M) ≥ · · · ≥ sn(M). We can define

an analogous of the ESD for the singular values, as

νM :=
1

n

n∑

k=1

δsk(M).

Note that the spectrum of the singular values of M∗ and MT , equals the spectrum of

the singular values of M . Also, it will be useful to notice that the 2n × 2n Hermitian

matrix (
0 M

M∗ 0

)
(1.2.1)

has spectrum {±s1(M), ...,±sn(M)}. The spectrum of the singular values and the spec-

trum of the eigenvalues are linked by Weyl’s inequalities, see [28].

Theorem 1.2.1 (Weyl’s inequalities). For any M ∈ Mn(C), and every 1 ≤ k ≤ n, if

|λ1(M)| ≥ · · · ≥ |λn(M)|, and s1(M) ≥ · · · ≥ sn(M), are the spectrum of the eigenvalues

6



1.2 Circular law

and singular values respectively, then

k∏

i=1

si(M) ≥
k∏

i=1

|λi(M)|.

Moreover
n∏

i=n−k+1

si(M) ≤
n∏

i=n−k+1

|λi(M)|.

Then when k = n we obtain the equality,

n∏

i=1

si(M) =

n∏

i=1

|λi(M)|.

Also, using majorization techniques, one may deduce from Weyl’s inequalities, that

for every real-valued function f , such that t 7→ f(et) is increasing and convex on

[sn(M), s1(M)], for every 1 ≤ k ≤ n,

k∑

i=1

f(|λi(M)|) ≤
k∑

i=1

f(si(M)).

In particular for k = n and f(x) = x2,

n∑

i=1

|λi(M)|2 ≤
n∑

i=1

si(M)2 = Tr(MM∗) =
n∑

i,j=1

|Mi,j |2. (1.2.2)

For the proofs and more details we refer to [13]. Consider now a random matrix Xn,

whose entries are a collection of i.i.d. random variables (Xi,j)
n
i,j=1, with common law P

on C. One can prove an analogous of theorem 1.2.2 for the non-Hermitian matrix Xn.

Theorem 1.2.2. Consider a matrix Xn = (Xi,j)
n
i,j=1 where {Xi,j}1≤i,j≤n is a collection

of i.i.d. complex random variables with common law P, such that V ar(X1,1) = 1. Then

µXn√
n

(w)−−−−−→
n→+∞

C1

where C1 is the uniform law on the unit disc of the complex plane, with density z 7→
1
π1|z|≤1, for z ∈ C.

Some special case of this theorem can be directly proved, e.g. for the case X1,1 ∼
N(0, 1

212) see [13, Theorem 3.5]. Anyway for the general case, the key ingredient for

the proof is to take back the problem to Hermitian matrices, through a technique called

Hermitization.
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1.2 Circular law

1.2.1 Logarithmic potential and Hermitization

We define the logarithmic potential of a probability measure µ defined on C as

Uµ(z) = −
∫

log |z − w|µ(dw),

and we define P(C) the set of probability measure for which this integral is finite. Then

Uµ(z) is a function defined on C → [−∞,+∞]. One can compute the Logarithmic

potential of the Circular law C1, see e.g. [23],

UC1(z) =





− log |z| if |z| > 1

1
2(1− |z|2) if |z| ≤ 1

. (1.2.3)

Note that the logarithmic potential uniquely determines the measure, in the sense that

for every µ, ν ∈ P(C) if Uµ(z) = Uν(z) for almost every z ∈ C, then µ = ν, see [13,

Lemma 4.1].

Consider now a matrix M ∈ Mn(C), and let us compute the Logarithmic potential

of its ESD,

UµM (z) = −
∫

C
log |w − z|µM (dw) = − 1

n
log |det(M − z)|.

For z /∈ {λ1(M), ..., λn(M)},

− 1

n
log | det(M − z)| = − 1

n
log(

√
(M − z)(M − z)∗) = −

∫ +∞

0
log(t)νM−z(dt).

The two spectra are then bonded. This relation is the heart of the Hermitization method.

For a sequence of non Hermitian matrix (Mn)n≥1, this method let us deduce the con-

vergence of µMn , by the convergence of νMn , and the convergence of νMn is a problem

of convergence of spectrum Hermitian matrices. The price to pay is, in first place, the

introduction of the complex variable z. Also if one wants to take the limit in equation

UµMn (z) = −
∫ +∞

0
log(t)νMn−z(dt),

the weak convergence of (νMn−z)n≥1 is not sufficient, since log(·) is not bounded on

[0,+∞). Thus one has to require the uniform integrability of log(·) with respect to

the sequence of measures (νMn−z)n≥1. Recall that a function f : R → R is uniformly

integrable for a sequence of probability measure (πn)n≥1 if

lim
t→+∞

sup
n≥1

∫

|f |>t
|f(x)|πn(dx) = 0.

8



1.2 Circular law

We use the following property, if πn
(w)−−−−−→

n→+∞
π for some π and f is continuous and

uniformly integrable for (πn)n≥1, then f is integrable with respect to π and

lim
n→+∞

∫
f(x)πn(dx) =

∫
f(x)π(dx).

This method has been used in almost every work related to non Hermitian random

matrices. The original idea goes back to Girko, we will then refer to this method, as

Girko Hermitization method.

Lemma 1.2.3 (Hermitization). Let (Mn)n≥1 be a sequence of complex random matrices,

where Mn ∈ Mn(C) for every n ≥ 1. Suppose that there exists a family of non random

probability measure νz, z ∈ C, supported in [0,+∞) such that, for almost all z ∈ C,

almost surely

i) νMz−z1n
(w)−−−−−→

n→+∞
νz.

ii) log(·) is uniformly integrable for (νMn−z)n≥1

Then there exists a probability measure µ ∈ P(C) such that

j) almost surely µMn

(w)−−−−−→
n→+∞

µ.

jj) for almost all z ∈ C

Uµ(z) = −
∫ +∞

0
log(s)νz(ds).

For a proof based on the work of Tao and Vu, we refer to [13]. The hypothesis of

the lemma can be weakened, mostly we can require less than uniform integrability for

the log(·), we refer to [13, Remark 4.4]. Anyway if i) and ii), both hold in probability

for almost all z ∈ C, then j) and jj) hold with the convergence in probability in j), see

[13, Lemma 4.3].

1.2.2 Small singular values

The proof of theorem 1.2.2, is based on the Hermitization lemma. Part i) is, as already

noticed, a problem of convergence of Hermitian matrices, which we can deal with using

the approach for the proof of theorem 1.1.1.

To prove the uniform integrability of part ii), one proves a stronger condition, namely

the existence of a positive p such that

lim sup
n

∫
spνn−1/2Xn−z(ds) < +∞ (1.2.4)

9



1.2 Circular law

and

lim sup
n

∫
s−pνn−1/2Xn−z(ds) < +∞. (1.2.5)

The finiteness of integral (1.2.4), for p ≤ 2, follows by the law of large numbers, consider

the special case z = 0,

∫
s2νn−1/2Xn

(ds) =
1

n2

n∑

i=1

si(X)2 =
1

n2
Tr(XX∗) =

1

n2

n∑

i,j=1

|Xi,j |2 −−−−−→
n→+∞

E
[
|X1,1|2

]
.

The hard part is to prove the finiteness of the integral (1.2.5). The turning point is

the following lemma by Tao and Vu in [27], to lower bound the small singular values of

n−1/2Xn − z1.

Lemma 1.2.4 (Count of small singular values). There exists c0 > 0 and 0 < γ < 1 such

that, almost surely, for n big enough and n1−γ ≤ i ≤ n− 1 and all M ∈MnC,

sn−i(n
−1/2Xn +M) ≥ c0

i

n
.

The key ingredient for the proof is the following lemma from [27], which relates the

singular values, to distance of some opportune vector spaces.

Lemma 1.2.5 (Tao-Vu negative second moment). If M is a full rank n′ × n complex

matrix, with n′ ≤ n and rows R1, ..., Rn′. Set R−i = span{Rj : j 6= i} then

n′∑

i=1

s−2
i (M) =

n′∑

i=1

dist(Ri, R−i)
−2.

The smallest singular value sn(n−1/2Xn−z1), deserves a special mention. One indeed

needs a polynomial lower bound on the least singular value in order to bound the integral

of s−p with respect to νn−1/2Xn−z1. Such an estimate is not trivial to prove. Anyway,

assuming further hypothesis on the law of the entries of Xn, such as absolute continuity

with bounded density, the proof is rather simple, and is based on the properties of the

convolution of densities, see e.g. our proof of lemma 4.2.3. One can prove the same

result in complete generality, but with much more work, see [26].

Lemma 1.2.6 (Polynomial lower bound on least singular value). For every a, d > 0,

there exists b > 0 such that if M is a deterministic complex n×n matrix with s1(M) ≤ nd,
then

P
(
sn(Xn +M) ≤ n−b

)
≤ n−a.

In particular there exists b > 0, which may depends on d, such that almost surely, for n

big enough,

sn(Xn +M) ≥ n−b.

10



1.3 Heavy tailed Hermitian random matrices

With these results, we can now give the desired bound on (1.2.5), set Yn(z) =

n−1/2Xn − z,
∫
s−pνYn(z)(ds) =

1

n

n∑

i=1

(si(Yn(z)))−p

≤ 1

n

n−bn1−γc∑

i=1

(si(Yn(z)))−p +
1

n

n∑

i=n−bn1−γc+1

sn(Yn(z)))−p

≤ c−p0

1

n

n∑

i=1

(
i

n

)−p
+ 2n−γ+bp,

now the first term of the right hand side is a Riemann sum for
∫ 1

0 s
−pds, which converges

for 0 < p < 1. Then for 0 < p < min(γ/b, 1), we have the bound and we can apply

the Hermitization lemma to establish the convergence of µXn√
n

to a measure µ, whose

logarithmic potential is

Uµ(z) = −
∫ +∞

0
log(t)νz(dt)

for all z ∈ C. Since νz does not depend on the law of X1,1, it follows that also µ does

not depends on the law of the entries of Xn, then µ is the circular law, the same as

the Gaussian case, see e.g. [13, Chapter 3]. It is also possible to explicitly compute the

integral
∫ +∞

0 log(s)νz(ds), to prove that it matches (1.2.3), the logarithmic potential of

the uniform law on the unit disc of the complex plane, see [20].

1.3 Heavy tailed Hermitian random matrices

The above scenario can be drastically perturbed when we consider random matrices

whose entries have heavy tails at infinity. For any α > 0, we define Hα, as the class

of laws supported in [0,+∞), with regularly varying tail of index α, meaning that for

every t > 0,

G(t) := L(t,+∞) = t−αL(t),

where L(t) is a function slowly variating at infinity, i.e. for any x > 0,

lim
t→+∞

L(xt)

L(t)
= 1.

Define an = inf{t > 0 : nG(t) ≤ 1}. Then nG(an) = nL(an)a−αn −−−−−→
n→+∞

1, and for all

t > 0,

nG(ant) −−−−−→
n→+∞

t−α. (1.3.1)

It is known that an has regular variation at ∞ with index 1/α, so that an = n1/α`(n),

for some function `(n) slowly varying at ∞, see Resnick [21] for more details. We call
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1.3 Heavy tailed Hermitian random matrices

H∗α the subset of Hα of the laws such that L(t)→ c > 0 when t→ +∞, this let us take

an = c1/αn1/α in equation (1.3.1).

The case α > 2 corresponds to the Wigner theorem. We now consider random

matrices Xn = (Xi,j) with i.i.d. entries, up to requiring X∗n = Xn, such that Ui,j = |Xi,j |
is in Hα, for α ∈ (0, 2). A random variable Y is in the domain of attraction of an α-stable

law, if and only if the law L of |Y | is in Hα for α ∈ (0, 2), and if it exists the limit

θ = lim
P (Xi,j > t)

P (|Xi,j | > t)
∈ [0, 1]. (1.3.2)

For Xn, rescaled by an, the following result holds.

Theorem 1.3.1 (Symmetric i.i.d matrix, α ∈ (0, 2)). For every α ∈ (0, 2) there exists a

symmetric probability distribution µα on R depending only on α, such that almost surely,

µa−1
n Xn

(w)−−−−−→
n→+∞

µα.

The limiting spectral measure µα has bounded density and heavy tail of index α.

This result was first proved by Ben Arous and Guionnet in [6], then, with a different

method, by BCC in [9]. Their key idea is to exhibit the local convergence of the sequence

of random matrices a−1
n Xn to a self-adjoint operator defined as the adjacency matrix of

an infinite rooted tree with random edge weights, the so called Poisson infinite weighted

tree (PWIT) introduced by David Aldous in [1].

1.3.1 Local convergence and Poisson weighted infinite tree

The basic idea for the proof of theorem 1.3.1, is to apply the resolvent method in this

context. It needs a bit of extra work, but once one sees the matrix Xn as the adjacency

matrix of an undirected weighted graph, one can prove that a−1
n Xn converges locally

to a PWIT, and using known spectral theory one can transfer the convergence to the

resolvents.

We will present more details on the local convergence and its bond with the resolvent

convergence in chapter 2. If An is the adjacency matrix of the weighted graph G =

(Vn, E), rooted in v ∈ Vn = {1, 2, ..., n}, then An can be interpreted as on operator on a

suitable Hilbert space. Moreover if An converges to an operator A on the same space,

and both An and A are self adjoint, then also the respective resolvents converge. The

right notion of convergence will be the local convergence.

In this regime, the operator An will be a−1
n Xn, for which we will show the convergence

to an operator to be defined, in the Hilbert space `2(V ), where V is the the vertex set

12



1.3 Heavy tailed Hermitian random matrices

of the PWIT, and the scalar product is the usual

〈ϕ,ψ〉 =
∑

v∈V
ϕvψ̄v, ϕv = 〈δv, ϕ〉,

where ϕ,ψ ∈ C, and δv denote the unit vector with support v.

Let us now introduce the Poisson weighted infinite tree. The PWIT(ν) is a random

rooted tree, with vertex set identified with Nf := ∪k≥1Nk, where N0 = {∅}, is the root.

The root’s offsprings are indexed by the elements of N, and, in general, the offspring

os some vertex v ∈ Nk are indexed (v1), (v2), ... ∈ Nk+1. To the edges of the tree we

assign marks according to a collection {Ξv}v∈Nf , of independent realizations of a Poisson

process of intensity ν on R. Starting from the root ∅, we sort Ξ∅ = {y1, y2, ...} in such

a way that |y1| ≤ |y2| ≤ · · · , and assign the mark yi to the offspring of the offspring

labeled i. Recursively, for any v ∈ Nf , sort Ξv, and assign the mark yvi to the offspring

labeled vi. Since Ξv has ν(R) elements, in average, as convention, if ν(R) < +∞ we

assign the mark ∞ to the remaining edges.

∅

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·

Let us then introduce the limiting operator of a−1
n Xn. Let θ be as in equation (1.3.2),

then define the positive Borel measure on the real line `θ as,

`θ(dx) = θ1x>0dx+ (1− θ)1x<0dx,

and consider a realization of PWIT (`θ). Denote the mark from vertex v ∈ Nk to

vk ∈ Nk+1 by yvk. Note that almost surely

∑

k≥1

|yvk|−2/α < +∞,
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1.3 Heavy tailed Hermitian random matrices

since almost surely limk→∞ k
−1|yvk| = 1. Define D the dense set in `2(V ) of vectors

of finite support, we may then define a linear operator T : D → `2(V ) by letting, for

v, w ∈ Nf ,

T (v, w) = 〈δv, T δw〉 =





sign(yw)|yw|−1/α if w = vk for some integer k

sign(yv)|yv|−1/α if v = wk for some integer k

0 otherwise

(1.3.3)

The operator T is symmetric. It is also self-adjoint, see [9, Proposition A.2].

The next step is to prove the local convergence of (a−1
n Xn, 1) to (T,∅). We will

not go into details, since we present a similar argument in chapter 2. For the details of

the heavy-tailed hermitian case see the proof of [9, Theorem 2.3.i)]. It is based on the

fact that the order statistics of the row vectors of a−1
n Xn converges to a Poisson point

process of intensity αx−α−1dx, so that, if we consider for example vertex 1, and define

V1 ≥ · · · ≥ Vn the ordered statistics of (X11, ..., X1,n), then

a−1
n (V1, ..., Vn)

d−−−−−→
n→+∞

(γ1, γ2, ...) (1.3.4)

where (γi)i≥1 is an ordered Poisson point process of intensity αx−α−1dx, see [17] or [9,

Lemma 2.4].

The convergence in equation (1.3.4), is to be interpreted as follows: for any fixed

k ≥ 1 the joint law of a−1
n (V1, ..., Vk) converges weakly to (γ1, γ2, ..., γk).

We can now compute the Cauchy-Stieltjes transform of µa−1
n Xn

. In particular, for

z ∈ C+,

gµ
a−1
n Xn

(z) =

∫
1

x− zµa−1
n Xn

(dx) =
1

n

n∑

i=1

(Ra−1
n Xn

(z))ii,

if (Ra−1
n Xn

(z)) = (a−1
n Xn − z1)−1 is the resolvent of a−1

n Xn. Again, by concentration

inequalities we can focus on the expected value of the random measure µa−1
n Xn

, and by

exchangeability of the variables,

E
[
gµ

a−1
n Xn

(z)
]

= E
[

(Ra−1
n Xn

(z))11

]
.

We can then exploit the bond between local convergence and resolvent convergence, and

affirm

E
[

(Ra−1
n Xn

(z))11

]
= E

[ 〈
δ1, (a

−1
n Xn − z1)−1δ1

〉 ]
−−−−−→
n→+∞

E
[ 〈
δ∅, (T − z)−1δ∅

〉 ]
.

(1.3.5)

Define E
[ 〈
δ∅, (T − z)−1δ∅

〉 ]
=: E [h(z) ], and note that E [h(z) ] = E

[
gµ∅

]
= gE[µ∅ ],

is the expected value of the pointed spectral measure with respect to the vector δ∅,

associated to the self-adjoint operator T .
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1.4 Non Hermitian Heavy tailed random matrices

The limiting measure µα is not explicitly known, but h(z) satisfies a recursive dis-

tributional equation, from which one can deduce some properties of µα. Namely, by

recursive properties of Nf ,the vertex set of the PWIT, one can prove the distributional

equality

h(z)
d
= −


z +

∑

k≥1

ξkhk(z)



−1

(1.3.6)

where (hk(z)) are i.i.d. random variables with the same law as h(z), and {ξk}k≥1 is an

independent Poisson point process with intensity α
2x
−1−α/2dx. For the proof we refer to

[9, Theorem 4.1].

In particular from equation (1.3.6), one can prove the following properties of the

limiting spectral distribution µα:

i) µα is absolutely continuous on R with bounded density

ii) The density of µα at 0 is equal to

1

π
Γ

(
1 +

2

α

)(
Γ(1− α

2 )

Γ(1 + α
2 )

)−1/α

iii) µa is heavy tailed and, as t→ +∞,

µα(t,+∞) ∼ 1

2
t−α.

1.4 Non Hermitian Heavy tailed random matrices

In 2012 BCC, proved an analogous of theorem 1.2.2 for non Hermitian matrices Xn with

i.i.d entries (Xi,j)
n
i,j=1, whose law is absolutely continuous with bounded density, and in

Hα , α ∈ (0, 2), see [10].

Theorem 1.4.1. There exists a probability measure µα on C depending only on α such

that, almost surely

µa−1
n Xn

(w)−−−−−→
n→+∞

µα.

The measure µα has bounded density and finite moments of any order.

The approach for the proof relies on Girko’s Hermitization method, so that an in-

termediate step is to prove the convergence for the ESD of singular values of the matrix

a−1
n Xn − z1.

Theorem 1.4.2. For all z ∈ C there exists a probability measure να,z on [0,+∞) de-

pending only on α and z such that, almost surely

νa−1
n Xn−z1

(w)−−−−−→
n→+∞

να,z.
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1.4 Non Hermitian Heavy tailed random matrices

As in the light tailed case, this is a problem of convergence of the spectrum of

Hermitian matrices, see [10, Theorem 1.2]. The approach is via bipartization.

1.4.1 Bipartization of a matrix

Given a complex n × n matrix A ∈ Mn(C), we define its bipartized version B, in

Mn(M2(C)) 'M2n(C), as

B = (Bij)
n
i,j=1 where Bij =

(
0 Aij

(A∗)ij 0

)
=

(
0 Aij

Aji 0

)
.

Since (B∗)ij = Bji, as an element of M2n(C), B is Hermitian.

In graph term, we can identify the non Hermitian matrix A as the weight matrix of

an oriented network on the vertex set {1, ..., n}, with weight Aij on the oriented edge

(i, j). The bipartized version of A, the Hermitian matrix B, is the weight matrix of a

non oriented network on {−1, ...,−n, 1, ..., n}, with weight Aij on the non oriented edge

{i,−j}.

SPECTRUM OF NON HERMITIAN HEAVY TAILED MARKOV MATRICES 4

2. The limiting operator

In this section we analyze the local weak convergence of the matrix Xn to an operator defined
on the PWIT(⌫↵). We will focus on the study of the bipartized version of Xn. The peculiarity
of our setting is that the local weak limit depends on which vertex is mapped to the root of the
PWIT.

2.1. Bipartization. As enlightened in [2] an e�cient technique to analyze spectra of non Her-
mitian matrices is via bipartization. Let us introduce the basics, for any further details see [1, 2].
Given a complex n ⇥ n matrix A, we define the symmetrized version of ⌫A as

⌫̌A =
1

n

nX

i=1

(��i(A) + ���i(A)).

In Mn(M2(C)) ' M2n(C), we define B, the bipartized version of A, as

B = (Bij)
n
i,j=1 where Bij =

✓
0 Aij

(A⇤)ij 0

◆
=

✓
0 Aij

Aji 0

◆
.

Since (B⇤)ij = Bji, as an element of M2n(C), B is Hermitian. In graph term, we can identify the
non Hermitian matrix A as the weight matrix of an oriented network on the vertex set {1, ..., n},
with weight Aij on the oriented edge (i, j). The bipartized version of A, the Hermitian matrix
B, is the weight matrix of a non oriented network on {�1, ...,�n, 1, ..., n}, with weight Aij on
the non oriented edge {i,�j}, as in figure 1.

Xn Bn

u v

u // v

�u �v

Through a permutation, we can rearrange the entries of the matrix B as
✓

0 A
A⇤ 0

◆

Index the first n rows and columns of the matrix as {�1, ...,�n} and the last n as {1, ..., n}, then
there is no edge of type either {i, j} or {�i,�j}. This is the reason why we call this technique
bipartization. Since we will use Girko’s Hermitization method to prove the convergence of the
empirical spectral distribution of eigenvalues of the matrix Xn, we will deal with the matrix
Xn � z . We call its bipartized version Bn(z). Define

H+ =

⇢
U(z, ⌘) =

✓
⌘ z
z̄ ⌘

◆
: z 2 C, ⌘ 2 C+

�
⇢ M2(C),

and U ⌦ n 2 Mn(M2(C)) as (U ⌦ n)ij = �ijU , then Bn(z) = (Bn � U(z, 0) ⌦ n), where Bn

is the bipartized version of Xn. The following equivalent forms of the resolvent of Bn(z) will be
useful,

RBn(z)(⌘) = (Bn(z) � ⌘ 2n)�1 = (Bn � U(z, ⌘) ⌦ n)�1 = RBn
(U). (2.1)

2.2. Single row convergence. The first step is to analyze the convergence of the row vectors
of Bn. Fix v 2 {1, 2, ..., n} , e.g. v = 1. The weights of the incident edges correspond to the first
row of the matrix Xn, the vector

(X11, X12, ..., X1n) =
1

⇢1
(U11, U12, ..., U1n).

Figure 1.1: The edge (i, j) maps into {i,−j} with the bipartization.

Through the permutation σ, defined as

σ(i) =

{
2i− 1 if 1 ≤ i ≤ n
2(i− n) if n+ 1 ≤ i ≤ 2n,

applied to the row vectors, we can rearrange the entries of the matrix B as

(
0 A

A∗ 0

)

We will denote the first n rows and columns of the bipartized matrix as {−1, ...,−n}
and the last n as {1, ..., n}. With this notation there is no edge of type either {i, j} or

{−i,−j}. The non-oriented graph is indeed a bipartized graph. Since we will use Girko’s

Hermitization method to prove the convergence of the empirical spectral distribution of
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1.4 Non Hermitian Heavy tailed random matrices

eigenvalues of the matrix Xn, we will deal with the matrix Xn−z1. We call its bipartized

version Bn(z). Define

H+ =

{
U(z, η) =

(
η z

z̄ η

)
: z ∈ C, η ∈ C+

}
⊂M2(C),

and U ⊗ 1n ∈ Mn(M2(C)) as (U ⊗ 1n)ij = δijU , then Bn(z) = (Bn − U(z, 0) ⊗ 1n),

where Bn is the bipartized version of Xn. As an element of M2n the resolvent of the

the matrix Bn(z) has the form,

RBn(z)(η) = (Bn(z)− η12n)−1 = (Bn − U(z, η)⊗ 1n)−1 = RBn(U). (1.4.1)

Where RBn(U) the resolvent matrix defined in Mn(M2(C)).

For 1 ≤ i, j ≤ n (RBn(U))ij ∈M2(C). When i = j, the matrix

(RBn(U))ii =

(
ai(z, η) bi(z, η)

b′i(z, η) ci(z, η)

)
,

has bounded entries, see [10, Lemma 2.2].

For a complex n× n matrix A define the symmetrized version of νA as

ν̌A =
1

n

n∑

i=1

(δσi(A) + δ−σi(A)).

once one has rearranged the entries of the bipartized matrix, it is easy to notice that,

µB = ν̌A (1.4.2)

if B is the bipartized version of A, see [10, Theorem 2.1]. Thus the analysis of the

spectrum of singular values of the non Hermitian matrix A, is reduced to the study of

the spectrum of the Hermitian matrix B.

In [10], the authors develop all the results needed for the convergence to bipartized

matrices. In particular it continues to hold the fact that the local convergence implies

the convergence of the resolvents, but now the resolvents have to be considered of the

bipartized operators. Also for the non Hermitian matrices the local convergence is

to a Poisson weighted infinite tree, but the measure now has density 2`θ. This can be

explained roughly by a simple observation. Focus on a single vertex in the non bipartized

matrix, e.g. vertex 1. We have two vectors of weights, (X12, ..., X1,n) and (X21, ..., Xn1)

if we do not consider the loop X11. The component of the first vector are the weights of

the outgoing edges from 1, the second are the weights of the edges incoming to 1. Since

the order statistics of both those vectors converges to an ordered Poisson point process

of intensity αx−α−1dx if rescaled by a factor an, by thinning property of Poisson process,
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1.5 Markov Matrices

this is equivalent to have a Poisson process of double intensity, which we then split into

two process of halved intensity. We refer to [10, subsection 2.6], for further details.

Call then A the limiting operator defined on PWIT(2`θ). We again can transfer the

local convergence to resolvents of the bipartized operators, provided the self-adjointness,

which is proved in [10, Proposition 2.8]. So that, if Bn is the bipartized version of a−1
n Xn

and B is the bipartized operator of A, one has

(RBn(U))1,1 :=

(
a1(z, η) b1(z, η)

b′1(z, η) c1(z, η)

)
(w)−−−−−→

n→+∞
(RB(U))∅,∅ =:

(
a(z, η) b(z, η)

b′(z, η) c(z, η)

)
.

(1.4.3)

Since B is almost surely self-adjoint, it implies it exists a measure ν∅,z, the pointed

spectral measure on vector δ∅, such that

a(z, η) := (RB(U))∅,∅ =

∫
1

x− ην∅,z(dx) = gν∅,z(η).

By concentration inequalities we can focus on expected values, and compute g
E
[
ν̌
a−1
n Xn−z

](η)

which is equal to E [ a1(z, η) ] from equation (1.4.3), see [10, Theorem 2.1], so that again

by (1.4.3),

lim
n→∞

E
[
ν̌a−1

n Xn−z

]
= lim

n→∞
E [ a1(z, η) ] = E [ a(z, η) ] ,

since, again, the resolvent is a bounded and analytic function of the spectrum. Thus

ν̌a−1
n Xn−z converges to a measure να,z = E [ ν∅,z ]. For the uniform integrability of log(·)

for the sequence of measure (νa−1
n Xn−z)n≥1, one has essentially to readapt to the heavy

tailed setting, the proof of the light tailed case. We will not present any details now,

since we will go through similar arguments in chapter 4, for further details we refer to

[10, section 3]. This gives an idea of the proof of theorem 1.4.1.

As h(z) for the Hermitian case, also the random variable a(z, η) satisfies some recur-

sive distributional equation, through which it is possible to give some properties for the

limiting spectral distribution µα. Namely we have,

a(z, η)
d
=

η +
∑

k≥1 ξkak

|z|2 − (η +
∑

k≥1 ξkak)(η +
∑

k≥1 ξ
′
ka
′
k)
,

where (ak)k≥1 and (a′k)k≥1 are i.i.d. copies of a(z, η) and (ξk)k≥1, (ξ′k)k≥1 are independent

poisson Process on [0,+∞) of intensity α
2x
−1−α/2dx.

One can then deduce some properties of µα, see [10, Theorem 1.3].

1.5 Markov Matrices

As already noticed in the introduction, Markov matrices are an interesting instance of the

problem of the convergence of the spectrum of random matrices with non-independent
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1.5 Markov Matrices

entries. Starting from a collection of non-negative random variables {Ui,j}ni,j≥1, we can

define the random Markov matrix

Xn = (Xi,j)
n
i,j=1 =

(
Ui,j
ρi

)n

i,j=1

ρi =
n∑

j=1

Ui,j

When the entries of the random matrix have light tails, due to a law of large numbers

for ρi, the work of BCC shows that, up to rescaling, the behavior of the Markov matrix

Xn is the same as non normalized matrix, see [11, 8].

We then directly go through the analysis of the spectrum of random Markov matrices

with heavy tailed entries.

1.5.1 Hermitian Heavy tailed Markov matrices

In [9], BCC study the case of Markov matrices, with heavy tailed entries. When α ≥ 1,

it still holds a law of large numbers for the normalization ρi, and one can reduce the

problem to the non-normalized case.

We focus on the case α ∈ (0, 1). In this regime the entries of Un = (Ui,j)
n
i,j=1 have

infinite mean, and there is no law of large numbers. Anyway, if one considers the first row

of the matrix Un, U (1) = (U1,1, ..., U1,n), for the vector of its order statistics (V1, ..., Vn),

still holds (1.3.4), and

a−1
n (V1, ..., Vn)

(w)−−−−−→
n→+∞

(γ1, γ2, ...).

Where {γi}i≥1 is an ordered Poisson process of intensity αx−α−1dx. Since almost surely

limn→+∞ γn/n
−1/α = 1, and ∑

n≥1

n−1/α < +∞

for α ∈ (0, 1), one can prove that for the normalization holds the following convergence

result,

a−1
n ρi = a−1

n

n∑

i=1

U1,i = a−1
n

n∑

i=1

Vi −−−−−→
n→+∞

∑

i≥1

γi,

see [9, Lemma 2.4]. Combining this latter with (1.3.4), one can prove that

(
V1

ρ1
, · · · , Vn

ρ1

)
(w)−−−−−→

n→+∞

(
γ1∑
i≥1 γi

,
γ2∑
i≥1 γi

, ...

)
.

The law of the vector on the right hand side, is called Poisson -Dirichlet law of index

α. As in the non-normalized case, we can use this convergence result to establish the

local convergence of the Markov matrix Xn to an operator defined on the PWIT, which
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1.5 Markov Matrices

now weights edges with Poisson-Dirichlet weights. Namely, consider a realization of a

PWIT(`1), where `1 is the Lebesgue measure on [0,+∞), and define

ρ(v) = y−1/α
v +

∑

k≥1

y
−1/α
vk ,

where y∅ = 0. Then we can define the linear operator K, on the dense subset of Nf of

vectors with finite support D, as follow,

K(v, w) = 〈δv,Kδw〉 =





y
−1/α
w

ρ(v) if w = vk for some integer k

y
−1/α
v

ρ(v) if v = wk for some integer k

0 otherwise

(1.5.1)

Note that K is not symmetric, but it becomes symmetric in the weighted Hilbert space

`2(V, ρ), defined by the scalar product

〈ϕ,ψ〉ρ :=
∑

u∈V
ρ(u)ϕ̄uψu.

Moreover on the same Hilbert space K is a bounded self-adjoint operator, since by

Schwartz’s inequality

〈Kϕ,Kϕ〉2ρ =
∑

u∈V
ρ(u)|

∑

v∈V
K(u, v)ϕv|2

≤
∑

u∈V
ρ(u)

∑

v∈V
K(u, v)|ϕv|2

=
∑

v∈V
ρ(v)|ϕv|2 = 〈ϕ,ϕ〉2ρ.

To work on the unweighted Hilbert space we actually have to consider the operator

S(u, v) =

√
ρ(v)

ρ(w)
K(v, w) =

T (v, w)√
ρ(v)ρ(w)

(1.5.2)

for v, w ∈ Nf , and T is as in (1.3.3). The map δv 7→
√
ρ(v)δv, induces a linear isometry

between `2(V, ρ) and the unweighted Hilbert space `2(V ). In this way, one can prove

that S is the local limiting operator of the matrix Pn = (Pi,j)
n
i,j=1 and Pi,j = Ui,j/

√
ρiρj .

For the proof see, [9, Theorem 2.3 (iii)]. Note that by (1.5.2), the spectrum of S is

contained in [−1, 1]. Call

R(n)(z) = (Pn − z1n)−1 and R(z) = (S − z)−1

the resolvents of Pn and S respectively. For l ∈ N set

pl : =
〈
δ∅, S

lδ∅

〉
.
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1.6 Non Hermitian random Markov matrices with heavy tailed weights

Note that pl = ρ(∅)−1〈δ∅,Kδ∅〉 is the probability that the random walk on the PWIT

associated to K comes back to the root after l steps, starting from the root. In particular

p2n+1 = 0 for any n ≥ 0. Set p0 = 1, and let µ∅ done the spectral measure of S pointed

at the vector δ∅. Equivalently, µ∅ is the spectral measure of K pointed at the `2(V, ρ)

normalized vector δ̂∅ = δ∅/
√
ρ(∅). In particular,

pl =

∫
xlµ∅(dx).

Since all odd moments equal 0, µ∅ is symmetric. For any z ∈ C+ we have

〈δ∅, R(z)δ∅〉 =

∫ 1

−1

1

x− zµ∅(dx) = gµ∅ .

By construction
1

n
Tr(R(n)(z)) =

∫ 1

−1

1

x− zµK(dx) = gµK .

By exchangeability and linearity we have

E
[

1

n
Tr(R(n)(z))

]
= E

[
R(n)(z)1,1

]
= E [ gµK ] = gE[µK ].

Now by local convergence, we may infer that

lim
n→+∞

gE[µK ] = lim
n→+∞

E
[
R(n)(z)1,1

]
= E [ 〈δ∅, R(z)δ∅〉 ] = gE[µ∅ ].

Now one has to prove a concentration-type result, as

lim
n→+∞

|gµK − gE[µK ]| = 0

for any z ∈ C+, see [9], for details. This gives an idea of the proof of the following result,

provided to set µ̃α = E [µ∅ ].

Theorem 1.5.1. For every α ∈ (0, 1), there exists a symmetric probability distribution

µ̃α supported on [−1, 1], depending only on α, such that almost surely,

µK
(w)−−−−−→

n→+∞
µ̃α

1.6 Non Hermitian random Markov matrices with heavy

tailed weights

We investigate the convergence of the spectrum of a non Hermitian Markov matrix, with

heavy tailed entries. For entries in H∗α, α ∈ (0, 1), with bounded density, if Xn is the

normalized matrix

Xn = (Xij)
n
i,j=1 =

(
Uij∑
k Uik

)n

i,j=1

=

(
Uij
ρi

)n

i,j=1

, (1.6.1)

we prove the next result.
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1.6 Non Hermitian random Markov matrices with heavy tailed weights

Theorem 1.6.1. If the law L of {Uij}ni,j=1 ∈ H∗α has bounded density, then there exists

a probability measure µα on {z ∈ C : |z| ≤ 1}, depending only on α, such that for Xn as

in (1.6.1),

µXn
(w)−−−−−→

n→+∞
µα

almost surely.

We want to apply Girko’s hermitization method. Therefore we first prove the con-

vergence of the ESD of the singular values of Xn − z1n, to a measure νz,α, then we

prove the uniform integrability in probability of the function log(·), with respect to the

sequence (Xn − z1n)n≥1.

The first step in the proof of the convergence of νXn−z, is to investigate the local

convergence of Bn(z), the bipartized version of Xn−z1, since we want to take advantage

of the bond between local convergence and resolvent convergence. Focus on vertex 1 of

Xn, and consider, R1 := (X11, ..., X1,n) and C1 := (X11, ..., Xn1). Those vectors are

the first row and the first column of the matrix Xn respectively. For both vectors

consider the order statistics R̂1 and Ĉ1. Unlike the i.i.d heavy tails case, they now have

different limiting behavior. Indeed R̂1 behaves as in the Hermitian case and it converges

to a PD(α). The column vector Ĉ1 has a different limiting behavior, we will prove

it converges to a function of a Poisson process of intensity αx−α−1dx. Then the local

limit in this scenario is an infinite weight tree as the PWIT, but it has generations with

alternated distribution. As in the following figure.

1

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·
PD(α)

PD(α)

PPP

Moreover the alternation depends on which vertex we pick to be the root. So that

if the root is in one of the n vertices {−1, ...,−n} we introduced for the bipartization of

Xn, the alternation is switched.
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1.6 Non Hermitian random Markov matrices with heavy tailed weights

−1

· · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·
PPP

PPP

PD(α)

Namely we have two different local limits, depending on which vertex we decide to

be the root. This implies that the limiting spectral measure of the singular values will be

an average of this two different limiting spectral distribution, so that in the case z = 0,

if A+ and A− are the two limiting operators, we have

E [ ν̌Xn ] = E
[
µBn(0)

] (w)−−−−−→
n→+∞

1

2
E
[
µ(A+,∅)

]
+

1

2
E
[
µ(A−,∅)

]
.

We are still able to transport the convergence to resolvent since both limiting oper-

ators are essentially self-adjoint, see proposition 3.1.1. We prove the following result.

Theorem 1.6.2. For any z ∈ C and α ∈ (0, 1) there exists a measure νz,α, depending

only on z and α, such that, almost surely

νXn−1z
(w)−−−−−→

n→+∞
νz,α

While µXn is concentrated on {w ∈ C : |w| ≤ 1}, here νXn − z can have unbounded

support. Simulations however suggest a very light tail of the distribution, see e.g. figure

1.2.

We indeed prove a finiteness result for the exponential moment of the limiting spectral

distribution of the singular values, see proposition 3.3.3.

We then readapt results from [10] and [11] to prove the uniform integrability of the

log(·) for the sequence (νXn−z1n) and conclude the prove of theorem 1.6.1.

We will also observe that that the logarithmic potential of µα is not infinite, so that

µα is not a Dirac delta in 0, and that the second moment of µα, is strictly less than 1,

so that µα is not supported in {z ∈ C : |z| = 1}.
As suggested by figures 4, 5, 6 and 7, the measure µα should exhibit some interesting

concentration phenomenon within a disc of radius z < 1.
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1.6 Non Hermitian random Markov matrices with heavy tailed weights
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Figure 1.2: Histogram of ν̌Xn with n = 1000 and α = 0.5. The entries of the non-normalized matrix

are i.i.d variables distributed as U−1/α, where U has the uniform distribution in [0, 1].
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Chapter 2

Local Convergence

This chapter is dedicated to the study of the local structure of non Hermitian random

Markov matrices with heavy tailed weights. We will look at the matrix Xn as an adja-

cency matrix of a weighted graph.

2.1 Local weak convergence to PWIT

This section explores the local convergence. We first introduce the notion of local con-

vergence, then look at convergence, as a vector of random variables, of the rows of the

matrix Bn, and finally we explore the local convergence of Bn.

2.1.1 Local operator convergence

Let V be a countable set, consider the Hilbert space `2(V ), with the scalar product

〈ϕ,ψ〉 =
∑

v∈V
ϕvψ̄v, ϕv = 〈δv, ϕ〉

where ϕ,ψ ∈ CV and δv is the unit vector with support v. Let D(V ) be the dense subset

of `2(V ), of the vectors with finite support.

Definition 2.1.1 (Local convergence). Suppose (An)n≥1 is a sequence of bounded oper-

ators on `2(V ) and A is a linear operator on the same space with domain D(A) ⊃ D(V ).

For any u, v ∈ V we say that (An, u) converges locally to (A, v) and write

(An, u)
loc−−−−−→

n→+∞
(A, v),

if there exists a sequence of bijections σn : V → V , such that σn(v) = u and, for all

ϕ ∈ D(V ),

σ−1
n Anσnϕ −−−−−→

n→+∞
Aϕ

in `2(V ).
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2.1 Local weak convergence to PWIT

Assume in addition that A is closed and D(V ) is a core for A, the local convergence

is the standard strong convergence of operators in `2(V ), up to a re-indexing of V which

preserves a distinguished element. The nice property of local convergence is its bond

with strong convergence of the resolvents, as stated in the next theorem from [10].

Theorem 2.1.2 (From local convergence to resolvent). Assume that (An) and A satisfy

the condition of definition 2.1.1, and (An, u)
loc−−−−−→

n→+∞
(A, v), for some u, v ∈ V . Let

Bn be the self-adjoint bipartized operator of An. If the bipartized operator B of A is

self-adjoint, and D(V ) is a core for B, then, for all U ∈ H+,

〈δu, RBn(U)δu〉 −−−−−→
n→+∞

〈δv, RB(U)δv〉, (2.1.1)

where RB(U) = (B(z)− η)−1 is the resolvent of B(z).

This results shall be applied to random operators on `2(V ), which satisfy the condi-

tions of Definition 2.1.1 with probability one. In this case we say that (An, u)
loc−−−−−→

n→+∞
(A, v) in distribution, if there exists a random bijection σn as in Definition 2.1.1 such

that σ−1
n Anσnϕ

d−−−−−→
n→+∞

Aϕ, for all ϕ ∈ D(V ). A random vector ϕn ∈ `2(V ) converges

in distribution to ϕ ∈ `2(V ) if for all bounded continuous f : `2(V )→ R,

lim
n→∞

E [ f(ϕn) ] = E [ f(ϕ) ] .

Also recall that the convergence in distribution of Anϕ to Aϕfor any ϕ, implies the

convergence in distribution of the vectors (Anϕ1, ..., Anϕk).

2.1.2 Single row convergence

There are two types of row vectors of Bn. Fix v ∈ {1, 2, ..., n} , e.g. v = 1. The weights

of the outgoing edges correspond to the first row of the matrix Xn, the vector

(X11, X12, ..., X1n) =
1

ρ1
(U11, U12, ..., U1n).

Its convergence has already been explored by BCC in [9]. If V1 ≥ V2 ≥ · · · ≥ Vn

correspond to the order statistics of the vector (U11, U12, ..., U1n) then

1

ρ1
(V1, V2, ..., Vn)

d−−−−−→
n→+∞

(
γ1∑
k≥1 γk

,
γ2∑
k≥1 γk

, ...

)
d
= PD(0, α), (2.1.2)

where {γi}i≥1 is an ordered Poisson point process of intensity αx−α−1dx, and the vector

has distribution Poisson-Dirichlet of parameter α, denoted PD(0, α), see [9, Lemma2.4].

On the other hand, if v ∈ {−1,−2, ...,−n}, the weights on the edges correspond to

the first column of the matrix Xn. Fix v = −1, the vector is

(X11, X21, ..., Xn1) =

(
U11

ρ1
,
U21

ρ2
, ...,

Un1

ρn

)
.
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2.1 Local weak convergence to PWIT

The setting here is slightly different, indeed the first column is a vector of i.i.d. variables.

We will prove its convergence to a function of a Poisson point process.

Proposition 2.1.3. Let X̂(n) be the vector of the order statistic of (X11, ..., Xn1), then

X̂(n) d−−−−−→
n→+∞

(
ξ1

c(α) + ξ1
,

ξ2

c(α) + ξ2
, ...

)
, (2.1.3)

where {ξi}i≥1 is an ordered Poisson Process of intensity αx−α−1dx, and c(α) is an

absolute constant depending only on α,

c(α) =

∫ +∞

0
s−αµ(ds),

where µ is the law of the one sided stable distribution of index α.

To prove Proposition 2.1.3, we will use the next result from [21], for the proof we

refer to [21, Theorem 5.3].

Lemma 2.1.4 (Poisson point process with Radon intensity measure). Let ξn1 , ξ
n
2 , ... be

sequences of i.i.d. random variables on R̄ = R ∪ {±∞} such that

nP (ξn1 ∈ ·)
(w)−−−−−→

n→+∞
ν, (2.1.4)

where ν is a Radon measure in R. Then for any finite set I ⊂ N the random measure

∑

i∈{1,...,n}\I

δξni

converges weakly as n→ +∞ to PPP (ν), the Poisson point process on R with intensity

law ν, for the usual vague topology on Radon measure.

For the notion of vague convergence we refer to [21, Section 3.5].

Lemma 2.1.5. Let A be a nonnegative random variable in H∗α. Define B(n) = a−1
n

∑n
i=1Ai,

where Ai are i.i.d. copies of A, independent of A. Then there exists an absolute constant

c(α) > 0 depending only on α, such that for any t > 0

lim
n→∞

nP (A > tanB(n)) = c(α)t−α , t > 0 (2.1.5)

Proof. Let µn denote the law of B(n), so that, for any fixed t > 0 one has

nP (A > tanB(n)) =

∫ ∞

0
nP (A > stan)µn(ds) = c−1t−α

∫ ∞

0
s−αL(ants)µn(ds),

(2.1.6)

since, as the law of the entries is in H∗α, an of equation (1.3.1) is of the form an = c1/αn1/α.

Recall that µn converges weakly to µ, the law of B :=
∑∞

i=1 γi, where {γi} denotes the
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2.1 Local weak convergence to PWIT

Poisson point process of intensity αx−α−1dx on the interval [0,∞), so that µ is the law

of the one sided stable distribution of index α. Thus, we need to show that for any fixed

t > 0:

lim
n→∞

c−1

∫ ∞

0
s−αL(ants)µn(ds) = c1, (2.1.7)

for some positive constant c1.

We fix ε > 0 and start by showing that

lim
n→∞

c−1

∫ ∞

ε
s−αL(ants)µn(ds) =

∫ ∞

ε
s−αµ(ds), (2.1.8)

Indeed, |c−1L(ants) − 1| ≤ u(n), for some function u(n) → 0 as n → ∞ uniformly in

s ≥ ε, and
∫∞
ε s−αµn(ds)→

∫∞
ε s−αµ(ds) by weak convergence. This implies (2.1.8).

Next, fix some constant K so large that 1/2 ≤ c−1L(x) ≤ 2 for all x ≥ K(t∧ 1). Let

us show that

lim
n→∞

∫ Ka−1
n

0
s−αL(ants)µn(ds) = 0. (2.1.9)

This follows from the

L(ants) = sαtαaαnP (A > ants) ≤ sαtαaαn.

Indeed, with this bound one has

∫ Ka−1
n

0
s−αL(ants)µn(ds) ≤ tαaαn

∫ Ka−1
n

0
µn(ds). (2.1.10)

Since
∫Ka−1

n

0 µn(ds) is the probability that B(n) ≤ Ka−1
n one has

P
(
B(n) ≤ Ka−1

n

)
= P

(
a−1
n

n∑

i=1

Ai ≤ Ka−1
n

)
≤ P

(
max
i=1,...,n

Ai ≤ K
)

= P (A ≤ K)n .

(2.1.11)

From the definition of K it follows that P (A < K) ≤ 1−u, for u = u(K) = (c/2)αK−α >

0. Thus
∫Ka−1

n

0 µn(ds) ≤ (1 − u)n decays exponentially to zero. This, together with

(2.1.10), implies (2.1.9).

Finally, we need to consider the integral

I(ε, n) :=

∫ ε

Ka−1
n

s−αµn(ds). (2.1.12)

Since s ≥ K/an here one has c−1L(ants) ≤ 2 by definition of K. Therefore

I(ε, n) ≤ 2

∫ ε

Ka−1
n

s−αµn(ds)

We want to show that

lim sup
n→∞

∫ ε

Ka−1
n

s−αµn(ds) ≤ q(ε) , (2.1.13)
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2.1 Local weak convergence to PWIT

for some q(ε)→ 0 as ε→ 0.

Let Z denote the one-sided stable distribution with index α. As in Lemma 3.5 of [10]

one has that there exist η > 0 and p ∈ (0, 1) such that A dominates stochastically ηDZ

where D is a Bernoulli(p) variable independent of Z. Thus B(n) stochastically dominates

B̄(n) := a−1
n (D1Z1 + · · ·DnZn) where Di are iid copies of D and Zi are iid copies of

Z. If µ̄n denotes the law of B̄(n) then it is given by the mixture µ̄n =
∑n

k=0 p(k, n)νk

where p(k, n) =
(
n
k

)
pk(1 − p)n−k, and νk is the law of a−1

n (Z1 + · · · + Zk). Recall that

Z1 + · · · + Zk has the same law of k1/αZ, so that νk is the law of
(
k
n

)1/ a
Z. Let E be

the event that D1 + · · ·+Dn ≥ pn/2. We can therefore estimate

∫ ε

Ka−1
n

s−αµn(ds) ≤ (K/an)−αP (Ec) +
n∑

k=pn/2

p(k, n)

∫ ε

Ka−1
n

s−ανk(ds). (2.1.14)

P (Ec) decays to zero exponentially in n by Chernoff bound,

P (Ec) = P
(
D1 + · · ·+Dn ≤

pn

2

)
, (2.1.15)

see e.g. [18] .Thus the first term above vanishes in the limit n → ∞. We now consider

the second term. For any k ∈ [pn/2, n] one has that νk is the law of λZ, for a constant

λ = (k/n)1/α bounded above and below uniformly in n, since λ ∈ [(p/2)1/α, 1]. If νk is

the law of λZ as above and ν denotes the law of Z then using a change of variables one

has

lim sup
n→∞

sup
k∈[pn/2,n]

∫ ε

Ka−1
n

s−ανk(ds) ≤ sup
λ∈[(p/2)1/α,1]

λ−α
∫ ε/λ

0
x−αν(dx) ≤ q(ε),

for some q(ε) → 0. Here we are using the easily established fact that
∫ ε

0 x
−αν(dx) → 0

as ε → 0 (this follows because ν(0, x] behaves as e−x
−1/α

for small x). Inserting this in

the previous expressions, we have obtained

lim sup
n→∞

∫ ε

Ka−1
n

s−αµn(ds) ≤ P (E) q(ε) ≤ q(ε) . (2.1.16)

This ends the proof of (2.1.13).

Putting together (2.1.8),(2.1.9) and (2.1.13), we have shown that for any fixed t > 0

one has

lim
n→∞

ntαP (A > tanB(n)) = c(α) =

∫ ∞

0
s−αµ(ds) . (2.1.17)

We now have all the ingredients for the proof of Proposition 2.1.3.
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2.1 Local weak convergence to PWIT

Proof of Proposition 2.1.3. The j-th column vector has form
(
Uij
ρi

)n

i=1

=

(
Uij

Ui1 + Ui2 + · · ·+ Uin

)n

i=1

for i.i.d. variables Ui1, ..., Uin ∈ H∗α, for any i = 1, ..., n. Fix j = 1. We can rearrange

the vector as

(
Ui1

Ui1 + Ui2 + · · ·+ Uin

)n

i=1

=


 1(

1 + Ui2+···+Uin
Ui1

)



n

i=1

.

Let us now focus on the vector
(

Ui1
Ui2+···+Uin

)n
i=1

. Define B
(i)
n := a−1

n (Ui2 + · · ·+Uin). By

lemma 2.1.5, the ordered statistics of the vector

(
Ui1

Ui2 + · · ·+ Uin

)n

i=1

=

(
Ui

anB
(i)
n

)n

i=1

,

verify condition (2.1.4) of Lemma 2.1.4, for
(
ξ

(n)
i

)
i≥1

:=

(
Ui

anB
(n)
i

)

i≥1

, with ν(t,+∞) =

c(α)t−α, where c(α) is an absolute constant depending only on α, and as a consequence,

the ordered statistics converge to the vector
(
γ1

c(α)
,
γ2

c(α)
, ...

)
, (2.1.18)

where {γi}i≥1 is the ordered Poisson process of intensity αx−α−1. Thus if (V1, ..., Vn) is

the vector of the ordered statistics of
(

Ui1

anB
(i)
n

)n
i=1

, the vector of the ordered statistics of
(
Ui1
ρi

)n
i=1

is
(

1

1 + 1
Vi

)n

i=1

.

by monotonicity and continuity for x ∈ (0,+∞) of the function,

x 7−→ 1

1 + 1
x

follows the statement.

For the row vectors one has a result of almost sure uniform square integrability, as

proved in [9, Lemma 2.4]. We prove an analogous result for the column vector.

Lemma 2.1.6. Consider the family of i.i.d. random variables in H∗α, {Aij}i,j≥1, and

define for every n ≥ 1, B
(i)
n := a−1

n (Ai2 + · · ·+Ain). Then,

lim
k→+∞

sup
n

n∑

j=k+1

(
Aj1

anB
(j)
n

)2

= 0 (2.1.19)
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2.1 Local weak convergence to PWIT

Proof. By proposition 2.1.3, if G(t) := P
(

A11

anB
(1)
n

> t
)

, we have that

nG(ant) −−−−−→
n→+∞

c(α)t−α. (2.1.20)

Define G−1(y) = inf{w > 0 : G(w) ≤ y} for y ∈ (0, 1). If V̂ = (V̂1, ..., V̂n) is the

vector of the ordered statistics of the vector
(

A11

anB
(1)
n

, A21

anB
(2)
n

, ..., An1

anB
(n)
n

)
, then following

the approach of [17],

V̂
d
=

(
G−1

(
γ1

γn+1

)
, G−1

(
γ2

γn+1

)
, ..., G−1

(
γn
γn+1

))
, (2.1.21)

where γk =
∑k

i=1Ei, and {Ei}i≥1 is a collection of i.i.d. exponential random variable

with mean 1. Now, by equation (2.1.5) for any δ > 0 we can find an integer n0 such that

a−1
n Yk = a−1

n G−1(γk/γn+1) ≤ (nγk/(1 + δ)γn+1)−1/α

for n ≥ n0. Since n/γn+1 → 1, a.s. the expression above is a.s. bounded by 2(1 +

δ)1/αγ−αk , the claim follows by the a.s. summability of γ
−1/α
k .

2.1.3 Local convergence to a modified PWIT

We now investigate the limiting local structure of the bipartite graph identified by Bn.

Define the weighted rooted network (Gn, v), induced by the weights given by the matrix

weights Bn, obtained by distinguishing the vertex labeled v. For any L,P ∈ N such that

1+L+ · · ·+LP ≤ n, we want to define (Gn, v)L,P a subnetwork of (Gn, v), which vertex

set is identified with the vertex set of a L-ary tree of depth H, rooted in v.

Fix v = 1. For any fixed realization of the marks {Uij}ni,j=1, we partially order the

vertices of (Gn, 1) as elements of

JL,P =
P⋃

k=0

{1, 2, ..., L}k ⊂ Nf .

The indices will be given by a map

σn : JL,P → Vn (2.1.22)

Set I∅ = {1}, and the index of the root 1 is σ−1
n (1) = ∅. To a vertex v in Vn \I∅ is given

the index (k) if it is the k-th largest value in N1 = {Uj,1 : j 6= 1}nj=1, the neighborhood

of 1, for 1 ≤ k ≤ L. This defines the first generation. Define I1 as the union of I∅

and the L selected vertices. If P ≥ 2, we repeat the indexing procedure, starting from

(1), the first child of ∅, on the set Vn \ I1. We obtain a new set indexed {11, ..., 1L}.
Define I11 as the union of I1 and the L selected vertices. This procedure is repeated
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2.1 Local weak convergence to PWIT

until depth P , when (LP+1 − 1)/(L − 1) vertices are indexed. Call this set of vertices

V L,P
n = σnJL,P . Even though V L,P

n has the structure of the vertex set of a tree, Its

edges set still has circuits and loops. In the next proposition we prove that in the limit

it actually converges to a tree. In the sense that all the edges {u, v} ∈ JL,P × JL,P that

do not belong to the tree vanish. For the sake of clarity, define

EL,P = {{u, v} ∈ JL,P × JL,P : @k ∈ {1, ..., L} such that u = vk or v = uk} . (2.1.23)

Proposition 2.1.7. The edges in EL,P vanish in the limit, if

nP
(
U12

an
∈ ·
)

(w)−−−−−→
n→+∞

ν,

where ν is a Radon measure on R with no mass at 0.

We need the next lemma for the proof.

Lemma 2.1.8. Let EL,P be as in (2.1.23), then the vector

{
Ui,j
an

: {i, j} ∈ EL,P
}
,

is stochastically dominated by i.i.d. random variables distributed as U1,2/an.

Proof. The claim is implied by the following. Let Y1, ..., Ym be i.i.d positive random

variables. And let m = n1 + · · · + np, for positive p, n1, .., np, so that the variables are

divided into k blocks I1, ..., Ip, such that for any j = 1, .., p, |Ij | = nj . Fix now some

integers 0 ≤ κj ≤ nj for any j, and call qj1, ..., q
j
kj

, the random indices of the kj largest

values of the variables of the j-th block. Call this random set of indices J j , so that

J j = {qj1, ..., qjkj}. Call J = ∪pi=1J
i, where J i = ∅ if ki = 0. Define Ỹ = {Yi : i /∈ J}. We

now prove that Ỹ is stochastically dominated by m− |J | i.i.d. copies of Y1.

Construct the following coupling. Extract a realization y1, ..., ym of Y1, ..., Ym, and

isolate the m blocks. Consider the vector

Z = (z1
1 , ..., z

1
n1−k1 , z

2
1 , ..., z

2
n2−k2 , ..., z

p
np−kp),

obtained by extracting uniformly at random n1 − k1 values from y1, ..., yn1 , n2 − k2

form yn1+1, ..., yn2 and so on. Now we construct the vector V. For the first block take

v1
i = z1

i , for any i = 1, ..., n1 − k1, whenever i ∈ I1 \ J1 was picked for the vector

Z. Assign the remaining values through an independent uniform permutation of the

variables yi, i ∈ Ii \J i, not picked for the vector Z. Repeat this procedure for any block.

By construction, coordinate-wise Z ≥ V. The proof ends noticing that V is distributed

as Ỹ , while Z is distributed as a vector of m− |J | i.i.d. copies of Y1.
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2.1 Local weak convergence to PWIT

proof of Proposition 2.1.7. By lemma 2.1.8, if (U1, ..., U|EL,P |) is a vector of i.i.d. vari-

ables with the same law as Ui,j , then by union bound,

P
(

max
{i,j}∈EL,P

Ui,j
an

> t

)
≤ P

(
max

k=1,...,|EL,P |

Uk
an

> t

)

≤ |EL,P |P
(
U1

an
> t

)

≤ |E
L,P |
n

nP
(
U1

an
> t

)
−−−−−→
n→+∞

0

By settings nP (U1 > tan) = nG(ant) −−−−−→
n→+∞

t−α, then for any t > 0,

P
(

max
{i,j}∈EL,P

Ui,j
an

> t

)
≤ t−α |E

L,P |
n

−−−−−→
n→+∞

0.

We now observe that, ρi stochastically dominates ρ1, which normalized by an, con-

verges in distribution to a positive random variable (the one-sided stable law of index

α). Then proposition 2.1.7, implies

P
(

max
{i,j}∈EL,P

Ui,j
ρi

> t

)
−−−−−→
n→+∞

0.

The distribution of the limiting tree depends on the vertex picked to be the root. Con-

sider the special case P = 1, namely we only look at the first generation. For any

1 ≤ L ≤ n− 1 , the rooted network (Gn, 1)L,1 converges to a tree of depth 1, as proved

in proposition 2.1.7. The weights on the edges converge to the first L maxima of a

PD(α). If we map v = −1 into the root, the weights will converge to the first L maxima

of the vector (2.1.3), see proposition 2.1.3.

We generalize the convergence in the next proposition, but first let us define the

limiting objects. Consider a realization of PWIT(αx−α−1dx). For any v ∈ Nf , call

d(v) = dist(∅, v), the graph distance of v from ∅ on the infinite tree, and denote yvk

the mark from v to vk, for k ∈ N. Define,

ρ(v) :=


∑

k≥1

yvk



(

1 +
yv
c(α)

)
(2.1.24)

if v = ∅, set y∅ = 0. The definition of ρ(v) arise from (2.1.2). The order statistics of

the row-type vectors converge to an infinite vector with PD(α) distribution. Now we are

conditioning one of the elements of the vector to have a certain weight, i.e. for vertex

v to have an element of weight yv
c(α)+yv

. Namely we condition on the event that there
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2.1 Local weak convergence to PWIT

exists a i∗ such that yi∗∑
i≥1 yi

= yv
c(α)+yv

. Now for any k,

(
1− yi∗∑

j≥1 yj

)−1
yk∑
j≥1 yj

=

(∑
j≥1 yj − yi∗∑

j≥1 yj

)−1
yk∑
j≥1 yj

=
yk∑
j 6=i∗ yj

, (2.1.25)

so that V ′ :=
(

1− yi∗∑
i≥1 yi

)−1
V , has distribution PD(α, 0) independent of yi∗ , if V has

distribution PD(α, 0). This follows by properties of the poisson process. Then (2.1.24)

follows.

We define two random operators on D(Nf ), for any u ∈ Nf , and k ∈ N, as

〈δu,A+δuk〉 = 〈δuk,A+δu〉 =





yuk
ρ(u)

if d(u) ≡ 0(mod 2)

yuk
c(α) + yuk

if d(u) ≡ 1(mod 2)

0 otherwise

(2.1.26)

〈δu,A−δuk〉 = 〈δuk,A−δu〉 =





yuk
c(α) + yuk

if d(u) ≡ 0(mod 2)

yuk
ρ(u)

if d(u) ≡ 1(mod 2)

0 otherwise

(2.1.27)

where c(α), is an absolute constant depending only on α, whose explicit representation

is

c(α) =

∫ +∞

0
x−αµ(dx), (2.1.28)

where µ is the law of the one sided stable distribution of index α, see proof of Lemma

2.1.5.

Proposition 2.1.9 (Local weak convergence to a tree). Let Gn be the complete network

on {−1, ...,−n}∪{1, ..., n}, whose mark on edge (i, j) equals (Bn)i,j. Then for all integers

L,P as n→∞, in distribution,

(Gn, 1)L,P → (A+,∅)L,P (Gn,−1)L,P → (A−,∅)L,P ,

Where (A±,∅)L,P is the subtree with vertices in V L,P and marks inherited from the

infinite tree.
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2.1 Local weak convergence to PWIT

Proof. Let us focus on the convergence of (Gn, 1)L,P
loc−−−−−→

n→+∞
(A+,∅)L,P . By proposi-

tion 2.1.7, of (Gn, 1)L,P converges to a L-ary tree of depth P . We now focus on the

convergence of the marks. We order the element of JL,P in lexicographic order, i.e.

∅ ≺ 1 ≺ · · · ≺ L · · ·L. For v ∈ JL,P , let Ov denote the set of the offspring of v in

(Gn, 1)L,P . By construction I∅ = {1} and Iv = σn(∪w≺vOw). The indexing procedure

at every step sorts the marks of neighboring edges that have not been explored at an

earlier step, then by construction the offspring of the row-type generation of the tree are

independen, and the marks from a parent to his offspring in (Gn, 1)L,P behave as inde-

pendent vectors, for the convergence (2.1.24). For the column-type generations, following

equation (2.1.25), the marks converge to a vector with PD(α, 0) distribution, multiplied

by a factor
(

1− yv
yv+c(α)

)
. By equation (2.1.25), it is still distributed as PD(α, 0). Thus

the marks converge weakly to those in (A+,∅)L,P .

We now improve the convergence to the infinite tree. To prove the local weak

convergence we extend Bn to an operator on D(Nf ) setting 〈δi, Bnδj〉 = Bi,j , for

i, j ∈ {−1, ...,−n} ∪ {1, ..., n} otherwise 0. The proof is a compound of the results

of [9], and [10], due to the double nature of the limiting operators.

Theorem 2.1.10. Let Bn be the bipartized version of Xn, A+ as in (2.1.26), and A−
as in (2.1.27) then

(Bn, 1)
loc−−−−−→

n→+∞
(A+,∅) (Bn,−1)

loc−−−−−→
n→+∞

(A−,∅)

Proof. We again focus on the convergence to A+. By proposition 2.1.9, for any L,P ∈ N
such that 1 + L+ · · ·+ LP ≤ n, the rooted network (Gn, 1)L,P locally converges,

(Gn, 1)L,P
loc−−−−−→

n→+∞
(A+,∅)L,P , (2.1.29)

forA+ as in (2.1.26). If σL,Pn is the bijection defined in (2.1.22), we can extend σL,Pn to

a bijection on the whole set Nf . By Skorokhod representation theorem we may assume

that (2.1.29) is an a.s. convergence, and we can find diverging sequences Ln and Pn and

a sequence of bijections σ̃n := σLn,Pnn , such that 1 + Ln + · · ·+ LPnn ≤ 2n and such that

Uσ̃n(u),σ̃n(v) −−−−−→
n→+∞

〈δu,A+δv〉, if v = vk, 0 otherwise. Now, for any v ∈ Nf , we have to

prove ∑

u

(〈
δu, (σ̃

−1
n Bnσ̃n)δv

〉
− 〈δu,A+δv〉

)2 −−−−−→
n→+∞

0. (2.1.30)

We already proved that, for any u, Uσ̃n(u),σ̃n(v) −−−−−→
n→+∞

〈δu,A+δv〉, plus we have the

uniform square integrability results from [9, Lemma 2.4], for the row-type generation,

and Lemma 2.1.6, for the column-type generation, up to noticing that, for every i,

lim
k→∞

sup
n

n∑

j=k+1

Uji
Uj1 + Uj2 + · · ·Ujn

≤ lim
k→∞

sup
n

n∑

j=k+1

Uji

anB
(j)
n

,
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2.1 Local weak convergence to PWIT

where B
(i)
n = (Ui2 + · · ·+ Uin).
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Chapter 3

Singular values

The aim of this chapter is to prove the convergence of the empirical spectral distribution

of the singular values of the matrix Xn − z1, via theorem 2.1.2. We also prove a result

for the finiteness of the exponential moment of the limiting spectral distribution of the

singular values.

3.1 Resolvent convergence

In order to apply theorem 2.1.2, we shall check the self-adjointness of our bipartized

operators. Our operators are symmetric, densely-defined but unbounded, we are then

interested in their unique self-adjoint extension, which, with a slight abuse of notation,

we will denote as the operators, once we prove they are essentially self-adjoint.

3.1.1 Self-adjointness of limit operators

Equations (2.1.26) and (2.1.27) define two a.s. self adjoint operators, as proved in the

next proposition.

Proposition 3.1.1 (Self-adjointness of limit operators). For any z ∈ C the operators

A+ and A− defined in (2.1.26) and (2.1.27) are essentially self-adjoint with probability

one.

In order to prove proposition 3.1.1, we recall two lemmas from [10].

Lemma 3.1.2. Let V = Nf denote the vertex set of the PWIT, and let D be the space

of the finitely supported vectors. Write u ∼ v if u = vk or v = uk for some k ∈ N. Let

A : D → `2(V ) denote the symmetric linear operator defined by

〈δu, Aδv〉 = wu,v = w̄v,u,
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3.1 Resolvent convergence

and such that wu,v = 0 whenever u and v are not neighbors. Suppose there exists a

constant κ > 0 and a sequence of connected finite subsets (Sn)n≥1 in V , such that

Sn ⊂ Sn+1,
⋃
n Sn = V and for every v ∈ Sn,

∑

u/∈Sn:u∼v

|wuv|2 < κ. (3.1.1)

Then A is essentially self-adjoint.

Lemma 3.1.3. Let κ > 0, 0 < α < 2 and let 0 < x1 < x2 < · · · be a Poisson Process

of intensity 1 on (0,+∞). Define τ = inf{t ∈ N :
∑∞

k=t+1 x
−2/α
k ≤ κ}. Then E [ τ ] is

finite for any κ and it goes to 0 as κ goes to ∞.

Proof of Proposition 3.1.1. We prove the proposition for A+, through a stochastic dom-

ination argument. For any realization of A+ define A as

〈δu,Aδuk〉 = 〈δuk,Aδu〉 =





yuk∑
i≥1 yui

if d(u) ≡ 0(mod 2)

yuk
c(α)

if d(u) ≡ 1(mod 2)

0 otherwise

(3.1.2)

It follows, for any u, v ∈ Nf

P (A(u, v) ≥ A+(u, v)) = 1, (3.1.3)

where A(u, v) = 〈δu,A, δv〉, and c(α) is the absolute constant depending only on α

defined in equation (2.1.28). Since for any index i ∈ Nf , yi ≥ 0, we have, with probability

one, for any u, v ∈ Nf such that d(u) ≡ 0(mod 2) and d(v) ≡ 1(mod 2),

yuk
ρ(u)

≤ yuk∑
j≥1 yuj

and
yvk

c(α) + yvk
≤ yvk
c(α)

,

for ρ(u) defined in (2.1.24). Thus A stochastically dominates A+. The condition (3.1.1)

concerns the finiteness of the sum of the operator weights on a collection of subsets of

the vertices of the tree. By (3.1.3), if the sum is finite for A then it is finite for A+.

For any v ∈ V + define

τ+
v (κ) = inf



t ≥ 0 :

∞∑

p=t+1

y2
vp ≤ κ



 .

By construction (τ+
v (κ))v∈V + is a collection of i.i.d. variables. Fix now κ̄ such that

E [ τ+
v (κ) ] < 1. Such a κ exists by Lemma 3.1.3.
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3.2 Singular values

Similarly for any v ∈ V − define τ−v (κ). The collection (τ−v (κ))v∈V − is again i.i.d. by

construction. Since the Poisson-Dirichlet generations sum up to 1, it holds and analogous

of Lemma 3.1.3, and we can again fix a κ̄ such that E [ τ−v (κ) ] < 1. Call now

τ = min
v∈V +,u∈V −

{τ+
v (κ), τ−u (κ)}.

The proof ends as in [10, Proposition 2.8]. Consider an i.i.d. collection of variables

indexed by the vertices set V , distributed as τ , {tv}v∈V . Fix the κ such that E [ τv ] < 1.

Now put a green mark on the on all vertices such that τv ≥ 1, and red otherwise. Define

the subforest T g of T , where we put an edge between v and vk if v is green and 1 ≤ k ≤ τv.
Then if the root is red, we set S1 = {∅}, if the root is green we consider T g∅ = (V g

∅ , E
g
∅),

the subtree of T g∅ containing the root. Due to the choice of κ, T g∅ is almost sure finite.

Consider Lg∅, the set of the leaves of T g∅, namely the set of the vertices in V g
∅ such that

for all 1 ≤ k ≤ τv, vk is red. Set S1 = V g
∅
⋃
v∈Lg∅

{vk : 1 ≤ k ≤ τv}. Now we define the

outer boundary of {∅} as ∂τ{∅} = {1, ..., τ∅} and for v = (i1, ..., ik) ∈ Nf \ {∅} we set

∂τ{v} = {(i1, ..., ik−1, ik+1)}∪ {(i1, ..., ik, 1), ..., (i1, ..., ik, τv)}. For a connected set S the

outer boundary is

∂τS =

(⋃

v∈S
∂τ{v}

)
\ S.

Now for each vertex u1, ..., uk ∈ ∂τS1, we repeat the above procedure to the rooted

subtrees Tu1 , ..., Tuk . We set S2 = S1
⋃

1≤i≤k
⋃
v∈Lgui

{vk : 1 ≤ k ≤ τv}. Iteratively, we

may thus define an increasing connected sequence (Sn) of vertices with the properties

required for corollary 3.1.2.

3.2 Singular values

In this section we give the proof of the weak convergence of the empirical spectral dis-

tribution. Due to concentration properties, it will be sufficient to prove the convergence

of the expectation of the random measure νXn−z1.

3.2.1 Proof Theorem 1.6.2

Recall the structure of the matrix

Xn = (Xij)
n
i,j=1 =

(
Uij∑
j Uij

)n

i,j=1

=

(
Uij
ρi

)n

i,j=1

.

where {Ui,j}ni,j=1 is a i.i.d. collection of variables with law in H∗α.
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3.2 Singular values

Proof of theorem 1.6.2. Rearranging the entries of the matrix

B(z) =

(
Xn −

(
0 z

z̄ 0

)
⊗ 1n

)
,

we note that it is similar to,
(

0 (Xn − z1)

(Xn − z1)∗ 0

)
.

The spectrum of this matrix is {±σ1(Xn − z1), ...,±σn(Xn − z1)}, as already observed

in [10, Theorem 2.1], then µBn(z) = ν̌Xn−z1. Define

Rn(U)kk = ((Bn − U(z, η)⊗ 1n)−1)kk =

(
ak(z, η) bk(z, η)

b′k(z, η) ck(z, η)

)
.

We have

Tr(Rn(U)) =
n∑

k=1

(ak(z, η) + ck(z, η)) =
n∑

k=1

(σk(Xn − z1)− η)−1 + (−σk(Xn − z)− η)−1.

By Theorem 2.1.10, (Bn, 1) locally converges to (A+, ∅). By Proposition 3.1.1, A+

is an essentially self-adjoint operator, as a consequence, by Theorem 2.1.2, we have the

convergence of the resolvents. Namely, for any i ∈ {1, ..., n},

E [Rn(U)ii ] −−−−−→
n→+∞

E
[
RA+(U)∅∅

]
.

Analogously, for any index in {−1, ...,−n},

E [Rn(U)−i−i ] −−−−−→
n→+∞

E
[
RA−(U)∅∅

]
.

Moreover, by the essential self-adjointness of both A+ and A−, it follows that there exist

measures ν̌+
∅,z and ν̌−∅,z such that

RA±(U)∅∅ =

∫
ν̌±∅,z
x− η = mν̌±∅,z

(η).

Call ν̌z,α = 1
2E
[
ν+
∅,z
]

+ 1
2E
[
ν−∅,z

]
, then

mE[ ν̌Xn−z1 ](η) = mE[µBn(z) ](η)

=
1

2n
E [ Tr(RBn(U)) ]

=
1

2
E [Rn(U)11 ] +

1

2
E [Rn(U)−1−1 ]

−−−−−→
n→+∞

1

2
E
[
RA+(U)∅∅

]
+

1

2
E
[
RA−(U)∅∅

]

= m 1
2
E[ ν+∅,z ]+ 1

2
E[ ν−∅,z ](η) = mν̌α,z(η).

Thus we proved E [ ν̌Xn−z1 ] −−−−−→
n→+∞

E [ ν̌∅,z ] = ν̌z,α. Since the matrix Bn is Hermitian,

we are in the hypothesis of concentration theorem 1.1.3. We can then exploit the bound

of lemma and Borel-Cantelli first lemma to upgrade the convergence to almost sure.
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3.3 Moments

3.3 Moments

We now estimate the moments of the limiting spectral distribution of the singular values

νz,α. To this end we shall use Bennett’s inequality to bound the moments of the random

variable Γ
(n)
1 :=

∑n
i=1Xi,1, for reasons that will be clear later. Let us now give a prove

of the Bennett’s inequality.

Theorem 3.3.1 (Bennett’s inequality). Let Z be a random variable such that, E [Z ] =

0, E
[
Z2
]

= σ2, |Z| < M , where M is a positive constant. Then if Z1, .., Zn are

independent copies of Z, and t ≥ 0,

P

(
n∑

i=1

Zi ≥ t
)
≤ exp

{
−nσ

2

M2
ϕ

(
tM

nσ2

)}
, (3.3.1)

where ϕ(x) = (1 + x) log(1 + x)− x.

Proof. By Chernoff bound, for any s > 0,

P

(
n∑

i=1

Zi ≥ t
)
≤ e−st exp

n∏

i=1

E
[
esZi

]
.

Now,

E
[
esZ

]
= E

[ ∞∑

k=0

(sZ)k

k!

]

= 1 +
∞∑

k=2

E
[

(sZ)k
]

k!

(Hölder) ≤1 +

∞∑

k=2

skMk−2E
[
Z2
]

k!

= 1 +
σ2

M2

∞∑

k=2

(sM)k

k!

= 1 +
σ2

M2
(esM − 1− sM)

≤ exp

{
σ2

M2
(esM − 1− sM)

}

Then,

P

(
n∑

i=1

Zi ≥ t
)
≤ exp

{
nσ2

M2
(esM − 1− sM)− st

}

Minimizing over s > 0 the right hand side, we get (3.3.1).

The variable Γ
(n)
1 is the sum of the elements of the first column of the matrix Xn,

a vector of i.i.d. random variables. In order to apply Bennet inequality we need to
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3.3 Moments

compute E [X11 ] and Var(X11). By symmetry E [X11 ] = n−1. Since for every i, j =

1, ..., n, E [X11 ] = E [Xi,j ], moreover
∑n

j=1Xj,k = 1, then E [Xi,j ] = n−1, for every

i, j = 1, ..., n.

For the variance we give a lower bound, which is sufficient for our purpose. Define the

event E
(n)
1 = {X11 = maxi=1,...,nX1i}, it has probability 1/n. Since E

[
(X1,1 − E [X1,1 ])2

]
=

E
[
X2

1,1

]
− 1

n2 , we bound E
[
X2

1,1

]
,

E
[
X2

1,1

]
≥ E

[
X2

1,1;E
(n)
1

]

= P
(
E

(n)
1

)
E
[

max
i=1,...,n

X2
1,i

]

By Proposition 2.1.3,

max
i=1,...,n

{Xi,1}
(w)−−−−−→

n→+∞

γ1

c(α) + γ1
,

where {γi}i≥1, is an ordered Poisson process of intensity αx−α−1dx, then

E
[

max
i=1,...,n

X2
1,i

]
−−−−−→
n→+∞

E

[(
γ1

c(α) + γ1

)2
]

= κ(α) < 1.

As a consequence there exists a n � 1, such that E
[

maxi=1,...,nX
2
1,i

]
≥ κ(α)/2, and

E
[
X2

1,i

]
≥ κ(α)/2n. Thus for n big enough,

E
[

(X1,1 − E [X1,1 ])2
]

= E
[
X2

1,1

]
− 1

n2
≥ κ(α)

2n
− 1

n2
≥ κ(α)

n4
.

Call {Zi}ni=1 := {X1,i − n−1}ni=1. To estimate the moments of Γ
(n)
1 we apply Bennett’s

inequality to the collection {Zi}. Note that for every i = 1, ..., n, |Zi| ≤ 1. For any

k > 1, we have

E
[
|Γ(n)
i − 1|k

]
=

∫ +∞

0
P
(
|Γ(n)
i − 1|k ≥ t

)
dt

≤
∫ +∞

0
P
(

Γ
(n)
i ≥ 1− t1/k

)
dt+

∫ +∞

0
P
(

Γ
(n)
i ≥ 1 + t1/k

)
dt

=

∫ 1

0
P
(

Γ
(n)
i ≥ 1− t1/k

)
dt+

∫ +∞

0
P
(

Γ
(n)
i ≥ 1 + t1/k

)
dt

≤ 1 +

∫ +∞

0
P
(

Γ
(n)
i ≥ 1 + t1/k

)
dt

By Bennett’s inequality, applied to the variables Zi, with M = 1, E [Zi ] = 0, and

σ2 ≥ κ(α)/n4, we have

∫ +∞

0
P
(

Γ
(n)
i ≥ 1 + t1/k

)
dt ≤

∫ +∞

0
exp

{
−κ(α)

4
φ

(
4t1/k

κ(α)

)}
,
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3.3 Moments

where φ(t) is as in theorem 3.3.1. Note that φ′(t) = log(t+1), so that φ(t) is an increasing

monotone function for t > 0.

E
[
|Γ(n)
i − 1|k

]
≤ 1 +

∫ +∞

0
exp

{
−κ(α)

4
ϕ

(
4t1/k

κ(α)

)}
dt

= 1 +

∫ +∞

0
ktk−1e

−κ(α)
4
ϕ
(

4t
κ(α)

)
dt < +∞.

Since the right hand side does not depend on n, we have the uniform bound

lim sup
n

E
[
|Γ(n)
i − 1|k

]
≤ 1 +

∫ +∞

0
ktk−1e

−κ(α)
4
ϕ
(

4t
κ(α)

)
dt.

We can now bound the moments of both operators A+ and A−, defined in equation

(2.1.26) and (2.1.27) respectively.

Proposition 3.3.2. For any k ≥ 1

E
[ 〈
δ∅,A2k

± δ∅

〉 ]
≤ C2kE

[
Γk
]
,

where C2k = (k+1)−1
(

2k
k

)
is the number of Dyck paths of length 2k, and Γ is the random

variable

Γ =

+∞∑

i=1

γi
c(α) + γi

,

with {γi}i≥1 ordered Poisson process of intensity αx−α−1dx, and c(α) defined in (2.1.28).

Proof. Define the operators

〈δu, Ã+δuk〉 = 〈δuk, Ã+δu〉 =





yuk∑
i≥1 yui

if d(u) ≡ 0(mod 2)

yuk
c(α) + yuk

if d(u) ≡ 1(mod 2)

0 otherwise

(3.3.2)

〈δu, Ã−δuk〉 = 〈δuk, Ã−δu〉 =





yuk
c(α) + yuk

if d(u) ≡ 0(mod 2)

yuk∑
i≥1 yui

if d(u) ≡ 1(mod 2)

0 otherwise

(3.3.3)

We will from now on consider those operators, since

E
[ 〈
δ∅,A2k

± δ∅

〉 ]
≤ E

[ 〈
δ∅, Ã2k

± δ∅

〉 ]
, (3.3.4)
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3.3 Moments

see proof of proposition 3.1.1. Define Ok∅ as the set of all path starting from ∅ and

returning to ∅ in 2k steps. For a path η ∈ Ok∅, η = (∅, v1, v2, ...v2k−2, v2k−1,∅), with

vi ∈ Nf , define W (η), as the product of the weights of the edges along the path, say:

W (η) = ω∅,v1ωv1,v2 · · ·ωv2k−2,v2k−1
ωv2k−1,∅.

Since both operators A+ and A− are defined on a tree, in particular on an acyclic graph,

the weights of W (η) will be pairwise identical, and the path weight can be rewritten as

W (η) = ω2
∅,v1ω

2
v1,v2 · · ·ω2

vk−2,vk−1
ω2
vk−1,vk

.

for some v1, ..., vk ∈ Nf . Since 0 ≤ ωi,j ≤ 1 for any i, j ∈ Nf ,

W (η) ≤
√
W (η) = ω∅,v1ωv1,v2 · · ·ωvk−2,vk−1

ωvk−1,vk .

Then

E
[ 〈
δ∅, Ã2k

± δ∅

〉 ]
≤
∑

η∈Ok∅

√
W (η).

We should now enumerate, for any k ≥ 1, the paths in Ok∅.

Let us give an example. Fix k = 5, and consider the path

η = (∅, 1, 11, 1, 12, 121, 12, 1, 13, 1,∅),

and plot its distance from ∅ at each step.

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

The result is a Dyck path. However, the same Dyck path can be associated to

(infinitely) many other paths η ∈ Ok∅, namely when the path takes the step from 12 to

121, the vertex 121 could have been replaced by any other vertex of its generation, and

the Dyck path would have been the same. Then, in order to count the total weight of

all paths η associated to the Dyck path of the example, the first step is to sum over

D12 = {12k : k ∈ N}, the descendants of 12, obtaining

∑

i1,i2,i3,i5

∑

i4∈D12

ω∅,i1ωi1,i2ωi1,i3ωi3,i4ωi1,i5 =
∑

i1,i2,i3,i5

ω∅,i1ωi1,i2ωi1,i3ωi1,i4


 ∑

i4∈Di3

ωi3,i5


 ,
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3.3 Moments

if Dv := {vk : k ∈ N}. For v ∈ Nf , call Ωv =
∑

k≥1 ωvk. Since we are summing inside

the expectation, and generations are independent, we have

E [ω∅,i1ωi1,i2ωi1,i3ωi1,i4Ωi3 ] = E [ω∅,i1ωi1,i2ωi1,i3ωi1,i4 ]E [ Ωi3 ] .

Note now that the variable Ω can be distributed either as Γ or as the sum of the com-

ponent of a PD(α). Furthermore observe that we obtain the same graphic (Dyck path)

replacing any vertex with any other of its generation, what it matters is the sequence of

the steps. The total weight of the paths associated to the Dyck path of the example is

given by the sum,

∑

i1∈D∅

∑

i2,i3,i4∈Di1

∑

i5∈Di3

ω∅,i1ωi1,i2ωi1,i3ωi1,i4ωi3,i5 .

Once we take the expectations, it becomes

E


 ∑

i1∈D∅

∑

i2,i3,i4∈Di1

∑

i5∈Di3

ω∅,i1ωi1,i2ωi1,i3ωi1,i4ωi3,i5


 = E [ Ω ]E

[
Ω3
]
E [ Ω ] .

Now notice that if Ω is a Poisson-Dirichlet type generation, for any n ≥ 1, E [ Ωn ] = 1.

Moreover, since E [ Γ ] = 1 and for any integers 0 < n1 ≤ n2, E [ Γn1 ] ≤ E [ Γn2 ],

independently of the distribution of the generation we have E [ Ωn ] ≤ E [ Γn ]. Then by

Hölder inequality

E [ Ω ]E
[

Ω3
]
E [ Ω ] ≤ E [ Γ ]E

[
Γ3
]
E [ Γ ] ≤ E

[
Γ5
]1/5 E

[
Γ5
]3/5 E

[
Γ5
]1/5

= E
[

Γ5
]
.

For a generic Dyck path π, of length 2k, we will prove that the total weight of the

paths η associated to π (we will write η ∼ π) does not exceed E
[

Γk
]
. Since by Jensen

inequality,

E [ Γa1 ]a2 E
[

Γb1
]b2 ≤ E

[
Γa1a2+b1b2

]
,

steps taken over independent progenies, are less expensive than steps in the same progeny,

provided that the steps are taken at same root distance.

Therefore, given any Dyck path π, we can upper bound the expected total weight

of its associated paths η, which we will denote as η ∼ π, simply keeping track of how

many times it touches progenies at a given distance from ∅. Call di the number of

times the path touches progenies at distance i from ∅. Since the length of the π is 2k,

d1 + d2 + · · ·+ dk = k, and

E

[∑

η∼π

√
W (η)

]
≤ E

[
Γd1

]
E
[

Γd2
]
· · ·E

[
Γdk

]
,
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again by Hölder inequality,

k∏

i=1

E
[

Γdi
]
≤

k∏

i=1

E
[

Γk
] di
k

= E
[

Γk
]
.

In conclusion, call the Dyck paths of length 2k, π1, π2, ..., πC2k . We have

E
[ 〈
δ∅, Ã2k

± δ∅

〉 ]
≤ E


 ∑

η∈Ok∅

√
W (η)




≤
C2k∑

i=1

E

[ ∑

η∼πi

√
W (η)

]

≤ C2kE
[

Γk
]
.

The bound on the moments of both A+ and A− are powerful enough to let us

deduce a bound on the exponential moment of the limiting spectral distribution of the

eigenvalues.

Proposition 3.3.3. For any λ ∈ R,

∫
eλtνα,z(dt) < +∞.

Proof. By straightforward computation,

∫
eλtνα,z(dt) =

∫ +∞∑

k=0

(λt)k

k!
να,z(dt)

=
+∞∑

k=0

λk

k!

∫
tkνα,z(dt)

=

+∞∑

k=0

λk

k!

∫
tkE [ ν∅,z ] (dt)

=
+∞∑

k=0

λ2k

(2k)!

1

2

(
E
[ 〈
δ∅,A2k

+ δ∅

〉 ]
+ E

[ 〈
δ∅,A2k

− δ∅

〉 ])

≤
+∞∑

k=0

λ2k

(2k)!

1

2

(
C2kE

[
Γk
]

+ C2kE
[

Γk
])

=

+∞∑

k=0

λ2k

(2k)!

1

k + 1

(2k)!

k!k!
E
[

Γk
]

≤
+∞∑

k=0

λ2k

(k + 1)!k!
E
[

Γk
]
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Since by Bennett’s inequality we have bounds for the moments of |Γ − 1|, we observe

that

E
[

Γk
]
≤ E

[
|Γ|k

]

≤ E
[

(|Γ− 1|+ 1)k
]

= E

[
k∑

i=0

(
k

i

)
|Γ− 1|i

]

≤ E
[
|Γ− 1|k

] k∑

i=0

(
k

i

)
= 2kE

[
|Γ− 1|k

]
.

Now by Skorokhod representation theorem we may assume Γ(n) converges to Γ almost

surely, and by Fatou’s lemma

E
[

Γk
]
≤ lim inf

n
E
[

(Γ(n))k
]
.

Thus

∫
eλtνα,z(dt) ≤

+∞∑

k=0

λ2k

(k + 1)!k!
E
[

Γk
]

≤ lim sup
n

+∞∑

k=0

λ2k2k

(k + 1)!k!
E
[
|Γ(n) − 1|k

]

≤
+∞∑

k=0

λ2k2k

(k + 1)!k!

(
1 +

∫ +∞

0
ktk−1 exp

{
−κ(α)

4
ϕ

(
4t

κ(α)

)}
dt

)

≤ e2λ2 + 2λ2

∫ +∞

0

(
+∞∑

k=0

k
(2λ2t)k−1

(k + 1)!k!

)
exp

{
−κ(α)

4
ϕ

(
4t

κ(α)

)}
dt

≤ e2λ2 + 2λ2

∫ +∞

0
exp

{
2λ2t− κ(α)

4
ϕ

(
4t

κ(α)

)}
dt < +∞.
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Chapter 4

Eigenvalues

We will prove the convergence of the empirical spectral distribution of the eigenvalues

via Girko’s Hermitization method, which will require further hypothesis for the law of

the matrix entries, such as the bounded density.

4.1 Tightness

Since Xn is a Markov matrix, the empirical spectral distribution µXn has support in the

unitary disc of the complex plane {z ∈ C : |z| ≤ 1}, consequently it is tight. We say a

sequence of measure πn defined on C is tight, if for any ε > 0, there exists a compact

set Kε ⊂ C such that πn(Kε) > 1− ε.
In the next lemma we prove the tightness fir the empirical spectral distribution of

the singular values.

Lemma 4.1.1 (Tightness). For all z ∈ C and any δ > 0, for any n,

∫

R
t2νXn−z1(dt) ≤ (1 + δ) + (1 + δ−1)|z|2,

then (νXn−z1)n≥1 is tight.

Proof. By a property of the singular values, if N and M are complex n×n matrices with

spectrum of singular values σ1(N) ≥ · · ·σn(N) and σ1(M) ≥ · · ·σn(M) respectively,

then

max
1≤i≤n

|σi(M)− σi(N)| ≤ σ1(M −N),

see e.g. [16]. Applying this property to the matrices M = Xn − z1 and N = Xn, for
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4.2 Invertibility

every k = 1, .., n, holds

σk(Xn − z1)− σk(Xn) ≤ max
i=1,..,n

|σi(Xn − z1)− σi(Xn)|

≤ σ1(Xn − z1−Xn)

= σ1(−z1) = |z|.

So that,

σk(Xn − z1) ≤ σk(Xn) + |z|.

Then, for any n ∈ N and z ∈ C, and δ > 0,
∫

R
t2νXn−z1(dt) =

1

n

n∑

k=1

(σk(Xn − z1))2

≤ 1

n

n∑

k=1

(σk(Xn) + |z|)2

≤ 1

n

n∑

k=1

[
(1 + δ)σ2

k(Xn) + (1 + δ−1)|z|2
]

= (1 + δ−1)|z|2 +
1 + δ

n

n∑

k=1

σ2
k(Xn)

Now,

1

n

n∑

k=1

σ2
k(Xn) =

1

n
Tr(X∗X)

=
1

n

n∑

i,j=1

(X∗)ijXji

=
1

n

n∑

i,j=1

X2
ji

≤ 1

n

n∑

i,j=1

Xji = 1.

4.2 Invertibility

This section is dedicated to prove a bound for the smallest singular value of the matrix

Xn − z1. First let us recall the Rudelson-Vershynin row bound, see [22].

Lemma 4.2.1 (Rudelson-Vershynin row bound). Let M be a complex n×n matrix with

rows R1, ..., Rn, then

n−1/2 min
i=1,..,n

dist(Ri, R−i) ≤ sn(M) ≤ min
i=1,..,n

dist(Ri, R−i),
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4.2 Invertibility

where R−i is the vector space span(Rj ; j 6= i).

In our setting Xn − z1 is non-invertible for z = 1, since Xn is a Markov matrix.

Anyway if z is at positive distance from 1, we can bound the smallest eigenvalue sn(Xn−
z1). We now readapt a result for light tailed matrices from [11]. The first step is to

prove the following lemma.

Lemma 4.2.2. For any z ∈ C define the n× n complex matrix,

Az := 1n − z




1 0 · · · 0
...

...
. . .

...

1 0 · · · 0


 .

Fix δ > 0. If |1− z| > δ then

sn(Az) ≥
δ

(1 + δ +
√
n|z|)

Proof. Since |1−z| > δ > 0, Az is invertible. The rank if the symmetric matrix AzA
∗
z−1n

is at most 2, call indeed

M1 :=




1 0 · · · 0
...

...
. . .

...

1 0 · · · 0


 .

We have

AzA
∗
z − 1n = (1n − zM1)(1n − zM1)∗ − 1n

= (1n − zM1)(1n − z̄MT
1 )− 1n

= 1n − z̄MT
1 − zM1 + |z|2M1M

T
1 − 1n

= −z̄MT
1 − zM1 + |z|2M1M

T
1

Since

M1M
T
1 =




1 · · · 1
...

. . .
...

1 · · · 1




We have

−z̄MT
1 − zM1 + |z|2M1M

T
1 =




|z|2 − z − z̄ |z|2 − z̄ · · · |z|2 − z̄
|z|2 − z |z|2 · · · |z|2

...
...

. . .
...

|z|2 − z |z|2 · · · |z|2



.
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4.2 Invertibility

Then Az has at least n − 2 singular values equal to 1, and in particular sn(Az) ≤ 1 ≤
s1(Az). Then Az is lower triangular with eigenvalues 1− z, 1, ..., 1, by Weyl inequality

|1− z| =
n∏

i=1

|λi(Az)| =
n∏

i=1

si(Az) = s1(Az)sn(Az). (4.2.1)

We also have that

s2
1(Az) + s2

n(Az) + (n− 2) = Tr(AzA
∗
z) = |1− z|2 + (n− 1)(1 + |z|2),

which gives,

s2
1(Az) + s2

n(Az) = 1 + (n− 1)|z|2 + |1− z|2. (4.2.2)

Then s2
1(Az) and s2

n(Az) are the solution of the equation

X2 − (1 + (n− 1)|z|2 + |1− z|2)X + |1− z|2 = 0.

Take n� 1, so that we do not have complex conjugate solution, then we can

s2
1(Az) =

1 + (n− 1)|z|2 + |1− z|2 +
√

(1 + (n− 1)|z|2 + |1− z|2)2 − 4|1− z|2
2

and

s2
n(Az) =

1 + (n− 1)|z|2 + |1− z|2 −
√

(1 + (n− 1)|z|2 + |1− z|2)2 − 4|1− z|2
2

.

Now, by (4.2.1),

s2
n(Az) =

|1− z|2
s2

1(Az)

=
2|1− z|2

1 + (n− 1)|z|2 + |1− z|2 +
√

(1 + (n− 1)|z|2 + |1− z|2)2 − 4|1− z|2

≥ |1− z|2
1 + (n− 1)|z|2 + |1− z|2

=
1

1
|1−z|2 + 1 + |z|2(n−1)

|1−z|2

≥ 1
1
δ2

+ 1 + |z|2(n−1)
δ2

=
δ2

1 + δ2 + |z|2(n− 1)

Thus

sn(Az) ≥
√

δ2

1 + δ2 + |z|2(n− 1)
≥ δ

1 + δ +
√
n|z| (4.2.3)
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4.2 Invertibility

Lemma 4.2.3 (Invertibility). For any δ > 0, if z ∈ C is such that |1 − z| > δ and

|z| < δ−1, then there exists r(δ) > 0 such that, a.s.

lim inf
n→∞

nrsn(Xn − z1n) = +∞.

Proof. Fix a > 0 and z ∈ C with |1 − z| > δ, |z| < δ−1. We can rewrite Xn = DnUn,

where

Dn = diag(ρ−1
1 , ..., ρ−1

n ) and Un =




U11 · · · U1n

...
. . .

...

Un1 · · · Unn


 .

Thus we can decompose Xn − z1n as follow,

Xn − z1n = DnYn where Yn := Un − zD−1
n .

Define the event

An =

n⋂

i=1

{ρi ≤ nc}.

We have, if n� 1,

P
(
ACn
)

= P

(
n⋃

i=1

{ρi > nη}
)

≤ nP (ρ1 > nη)

≤ nP
(
n max
i=1,..,n

Ui > nη
)

= n(1− P
(

max
i=1,..,n

Ui ≤ nη−1

)
)

= n(1− (1− P
(
U1 > nη−1

)
)n)

= n(1− (1− L(nη−1)n−α(η−1))n)

≤ n(1− (1− 2cn−α(η−1))n)

≤ 2n(1− exp{−2cn−α(η−1)+1})
= 2n(1− 1 + 2cn−α(η−1)+1 + o(n−α(η−1)+1))

≤ 8cn−α(η−1)+2.

Then, for η > (2 + α)/α+ 1, P
(
ACn
)
≤ n−a, for n� 1. Since sn(D) = mini ρ

−1
i and for

any complex n×n matrix M and N , sn(MN) ≥ sn(M)sn(N), on the event An we have

{sn(Xn − z) ≤ t} ⊂ {sn(Dn)sn(Y ) ≤ t} ⊂ {sn(Y ) ≤ tn−η},

for every t > 0. Now, for every b′ > 0, one may select b > 0 and set t = t(n) = n−b such

that t(n)n−η ≤ n−b′ , for n� 1. Thus, on the event An, for n� 1,

Xn := {sn(Xn − z1n) ≤ n−b} ⊂ {sn(Y ) ≤ n−b′} := Yn.
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4.2 Invertibility

Consequently, for any b′ > 0, there exists a b > 0 such that for n� 1,

P (Xn) = P (Xn ∩ An) + P
(
Xn ∩ ACn

)
≤ P (Yn) + P

(
ACn
)
≤ P (Yn) + n−a.

Then we have to prove that, for some b′ > 0, depending on δ, for n� 1,

P (Yn) = P
(
sn(Y ) ≤ n−b′

)
≤ n−a. (4.2.4)

Define Az as in lemma 4.2.2. For every 1 ≤ k ≤ n, let Pk be the n × n permutation

matrix for the transposition (1, k). Note that P1 = 1. For every column vector ei of the

canonical base of Rn,

(PkAzPk)ei =

{
ei if i 6= k,

ek − z(e1 + · · ·+ en) if i = k.

Now, if R1, ..., Rn and R′1, ..., R
′
n are the rows of the matrices U and Y , then

Y =




R′1
...

R′n


 =




R1P1AzP1

...

RnPnAzPn


 .

Define the vector space R′−i := span{R′j : j 6= i} for every 1 ≤ i ≤ n. From Rudelson-

Vershynin row bound, Lemma 4.2.1,

min
i=1,..,n

dist(R′i, R
′
−i) ≤

√
nsn(Y ).

As a consequence, by the union bound, for any u ≥ 0,

P
(√
nsn(Y ) ≤ u

)
P
(

min
i=1,...,n

dist(R′i, R
′
−i) ≤ u

)

≤ P
(
∃i = 1, ..., n : dist(R′i, R

′
−i) ≤ u

)

≤
n∑

i=1

P
(
dist(R′i, R

′
−i) ≤ u

)

≤ n max
i=1,...,n

P
(
dist(R′i, R

′
−i) ≤ u

)

The law of the random variable dist(R′i, R
′
−i) does not depend on i. We fix i = 1. Let

V ′ be a unit normal vector to R′−1. Such a vector is not unique, we just pick one, and

this defines a random variable on the unit sphere Sn−1 := {x ∈ C : ‖x‖2 = 1}. Since

V ′ ∈ (R′−1)⊥ and ‖V ′‖2 = 1,

|R′1 · V ′| ≤ dist(R′1, R
′
−1) = min

v′∈R⊥−1

|R′1 · v′|.
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4.3 Distance of a row from a vector space.

Let ν be the distribution of V ′ on Sn−1. Since V ′ and R′1 are independent, for any u ≥ 0,

P
(
dist(R′1, R

′
−1) ≤ u

)
≤ P

(
|R′1 · V ′| ≤ u

)
=

∫

Sn−1

P
(
|R′1 · v′| ≤ u

)
ν(dv′).

Fix v′ ∈ Sn−1, then R′1 · v′ = R1v where v := P1AzP1v
′ = Azv

′. Lemma 4.2.2, provides

the bound, if |z| ≤ δ−1,

‖v‖2 = ‖Azv′‖ ≥ min
x∈Sn−1

‖Azx‖2 = sn(Az) ≥ (1 +
1

δ
+

1

δ2

√
n)−1 := c(δ,

√
n)−1.

But ‖v‖2 ≥ c(δ,
√
n)−1 implies, that there exists j0 ∈ {1, ..., n} such that |vj0 |−1 ≤

√
nc(δ,

√
n). Therefore

|Re(vj0)| ≤
√

2nc(δ,
√
n) or |Im(vj0)| ≤

√
2nc(δ,

√
n).

Suppose |Re(vj0)| ≤
√

2nc(δ,
√
n). Observe that

P
(
|R′1 · v′| ≤ u

)
= P (|R1 · v| ≤ u) ≤ P (|Re(vj0)| ≤ u) .

The real random variable Re(R1 · v) is a sum of independent real random variables and

one of them is U1j0Re(vj0), which is absolutely continuous with a density bounded above

by Bc(δ,
√
n)
√

2n, where B is the bound of the density of U11. Consequently by a basic

property of convolutions of probability measures, the real random variable Re(R1 · v) is

absolutely continuous with a density ϕ bounded above by Bc(δ,
√
n)
√

2n, and therefore,

P (|Re(vj0)| ≤ u) =

∫ u

−u
ϕ(s)ds ≤ Bc(δ,√n)

√
2n2u ≤ c(δ)Bnu.

Finally, to end the proof we have

P
(√
nsn(Y ) ≤ u

)
≤ c(δ)Bn2u.

Thus, (4.2.4), holds with b′ = d+ 1/2, taking u = n−d such that c(δ)Bn2n−d ≤ n−a for

n� 1.

4.3 Distance of a row from a vector space.

Tao and Vu’s negative second moment lemma, bond singular values to distance of the

row vectors to some vector spaces of not too big dimension. Here we readapt to our

setting some results from [10], with the further observation that, since any complex

n× n matrix M , has the same spectrum of the singular values as M∗ and MT , we will

prove next result for (Xn − z)∗, exploiting this fact to bound the singular values.
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4.3 Distance of a row from a vector space.

Proposition 4.3.1. Let 0 < γ < 1/4 and R be a row of an(Xn−z)∗. There exists δ > 0

depending on α and γ such that or all d-dimensional subspace W of Cn with n−d ≥ n1−γ

one has

P
(

dist(R,W ) ≤ n 1−2γ
α

)
≤ en−δ . (4.3.1)

Before going into the proof of Proposition 4.3.1, recall the concentration inequality

by Talagrand, in theorem 1.1.4.

Proof of proposition 4.3.1. Assume R is the first row of an(Xn−z1), then R = an(X
(1)
n −

ze1), if X
(1)
n is the first row of the matrix X∗n (or the first column of Xn). We have

dist(R,W ) ≥ dist(anX
(1)
n − ze1, span(e1,W )) = andist(X(1)

n ,W1),

if we set W1 = span(W, e1). Note that d ≤ dimW1 ≤ d + 1. Recall R is a column type

vector, then

a−1
n R =

(
Ui1

Ui1 + · · ·+ Uin

)n

i=1

=

(
Ui1

Ui1 + anB
(i)
n

)n

i=1

if one defines B
(i)
n := a−1

n (Ui2 · · ·+ Uin). Call

(Zi)
n
i=1 := an

(
Ui1

Ui1 + anB
(i)
n

)n

i=1

, (4.3.2)

note then that for any ε > 0, and any i = 1, ..., n,

P (Z > t) = P

(
an

U

U + anB
(i)
n

> t

)
= P

(
anB

(i)
n

U
< ant

−1 − 1

)

≤ P

(
anB

(i)
n

U
< ant

−1

)
≤ P

(
U

B
(i)
n

> t

)

≤ P

(
U

B
(i)
n

> t , B(i)
n ≥ n−ε

)
+ P

(
B(i)
n < n−ε

)

≤ P
(
U > tn−ε

)
+ 2e−n

εα
(4.3.3)

≤ L(tnε)t−αnεα + 2e−n
εα

(4.3.4)

for a positive ε. Equation (4.3.3) holds since B
(i)
n = a−1

n

∑n
k=2 Uik, and for any positive

55



4.3 Distance of a row from a vector space.

x,

P
(
B(i)
n < x

)
= P

(
a−1
n

n∑

k=2

Uik < x

)

≤ P
(

max
k=1,..,n

Uik < xan

)

= (1− P (Ui2 > anx))n

= (1− L(anx)(anx)−α)n

≤ 2e−x
−α
.

Then if n� 1, P
(
B

(i)
n < nε

)
≤ 2e−n

εα
. Define J = {i : Zi ≤ bn}.

P
(
|J | < n−√n

)
=P

(
n∑

i=1

1Zi>bn ≥
√
n

)

≤ e−
√
n
(
E
[
e1Z1>bn

])n

≤ e−
√
n (1 + eP (Z1 ≥ bn))n

≤ e−
√
n+c0b

−α
n n1+εα ≤ e−nδ

for a positive δ, where c0 is a positive constant, if one takes bn = ann
−2γ/α, for ε

small enough. It follows we can reduce to prove the statement under the condition

{|J | ≥ n−√n}, moreover we can consider any fixed I ⊂ {1, ..., n} such that |I| ≥ n−√n.

Assume I = {1, 2, ..., n′} with n′ ≥ n − √n. Let be I = span(ei ; i ∈ I) and πI the

orthogonal projection on I. Define W2 = πI(W1) = πI(span(W1, e1)). By Grassmann

inequality

dim(W2) ≥ dim(W1 ∩ I) ≥ dimW1 + dim I − dim(W1 ∪ I) ≥ d−√n.

Define

W ′ = span(W2,E [πI(Z) | J = I ]) Y = Z − E [πI(Z) | J = I ])

Define P the matrix of the orthogonal projection on (W ′)⊥ in Cn′ . Then

E
[

dist2(Y,W ′)|J = I
]

= E
[
‖PY ‖2|J = I

]
(4.3.5)

= E
[
Y 2

1 |J = I
]

trP (4.3.6)

By lemma E
[
Y 2

1 |J = I
]
≥ E

[
Z2

1 |J = I
]

= E
[
Z2

1 |J = I
]
≥ c(α)

2n b
2−α
n . Since trP ≥

n′ − dimW ′ ≥ 1
2(n− d),

E
[

dist2(Y,W ′)|J = I
]
≥ c(α)

4
b2−αn

n− d
n
≥ n(1−2γ) 2

α
+γ−ε,
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4.3 Distance of a row from a vector space.

for ε > 0, small enough. Under P (· |J = I), b−1
n (Y1, ..., Yn) is a vector of centered and

independent variables on {z ∈ C ; |z| < 1}n′ , thus by Talagrand concentration inequality,

applied to F (x) = dist(x,W ′),

P
(
|dist(Y,W ′)−Mdist(Y,W ′)| > r |J = I

)
≤ 4e

− r2

4b2n .

We will need and analogous of [10, Lemma C.1] for the truncated moments , but

first since the random variable Z defined in equation (4.3.2), actually depends on n, we

should first prove its tightness.

Lemma 4.3.2. The random variable Z defined in equation (4.3.2) is tight.

Proof. We shall prove that for any fixed ε > 0, there exists a T¿0 such that P (|Z| > T ) <

ε. Take then a positive t, following (4.3.4) one has, since Z > 0,

P (Z > t) =P

(
U

B
(i)
n

> t

)

≤ P

(
U

B
(i)
n

> t,B(i)
n < T−1

)
+ P

(
B(i)
n ≥ T−1

)

≤ t−αTα + 2e−T
α

if T is an opportune constant big enough.

Lemma 4.3.3. If Z is as in equation (4.3.2), for any p ≥ 1, there exist positive constants

c1, c2 such that,

c1t
p−α ≤ E [Zp |Z ≤ t ] ≤ c2t

p−α.

Proof. Since

lim
t→+∞

E [Zp |Z ≤ t ]

E [Zp1Z≤t ]
= 1,

we will show that there exist two constants c1, c2 > 0, both independent of t, such that

c1t
p−α ≤ E [Zp1Z≤t ] ≤ c2t

p−α.

(≤) For the upper bound we just use the fact that U > 0, and equation (4.3.4).

E [Zp 1Z≤t ] = E [Zp 1Zp≤tp ] =

∫ tp

0
P (Zp > x) dx

=

∫ tp

0
P
(
an

U

U + anBn
> x1/p

)
dx

≤
∫ tp

0
x−α/pdx

=
p

p− αt
p−α
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4.3 Distance of a row from a vector space.

(≥)

E [Zp 1Z≤t ] =

∫ tp

0
P (Zp > x) dx

=

∫ tp

0
P

(
U

U + anBn
>
x1/p

an

)
dx

=

∫ tp

0
P
(
anBn
U

<
an

x1/p
− 1

)
dx

≥
∫ tp

0
P
(
anBn
U

<
an

2x1/p

)
dx

=

∫ tp

0
P

(
U

anBn
>

2x1/p

an

)
dx

≥ c(α)

2n

∫ tp

0

(
2x1/p

an

)−α
dx

≥ c(α)

21+α

∫ tp

0
x−α/pdx

=
c(α)

21+α

p

p− αt
p−α

Proposition 4.3.4. Assume 0 < γ < α/4, there exists an event E such that,

E
[

dist−2(R,W );E
]
≤ c (n− d)−

2
α P

(
EC
)
≤ c n−(1−2γ)/α

Proof. As in the proof of proposition 4.3.1, define the vector subspacesW1 = span(W, e1),

so that,

dist(R,W ) ≥ dist(an

(
U11

ρ1
, ...,

Un1

ρn

)
,W1) = dist((Z1, ..., Zn),W ′).

If we define Zi = an
U1i

U1i+anB
(i)
n

for i = 1, ..., n, and Z := (Z1, ..., Zn). Define the set

I := {i ∈ {1, ..., n} such that Zi ≤
√
an}. We have

P
(
|I| < n− n1/2+ε

)
≤ e−nδ (4.3.7)

for a positive δ, see proof of proposition 4.3.1. Then is sufficient to prove that for any

set I ⊂ {1, ..., n} with |I| ≥ n− n1/2+ε,

E
[

dist−2(R,W );EI | I = I
]
≤ κ(n− d)−2/α,

for some event EI such that P ((EI)
c | I = I) ≤ n−(1−2γ)/α. The we will set E :=

EI ∩ {|I| > n− n1/2+ε}. Without loss of generality we can assume I = {1, 2, .., n′} with
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4.3 Distance of a row from a vector space.

n′ ≥ n − n1/2+ε. Let πI(·) be the orthogonal projection onto span(ei : i = 1, ..., n′). If

W2 := πI(W1), set

W ′ := span(W2,E [πI(Z) | I = I ]).

Note that d− n1/2+ε ≤ dimW ′ ≤ d+ 2. Call Y = Z − E [πI(Z) | I = I ], so that Y is a

vector of centered random variables under P (·|I = I). Then

dist(R,W ) ≥ dist(Z,W1) ≥ dist(Y,W ′).

Denote P the matrix of the orthogonal projection to (W ′)⊥ in Cn′ . By construction,

E
[

distY,W ′
]

= E




n∑

i,j=1

YiPijYj | I = I


 = E

[
Y 2 | I = I

]
trP.

Define S =
∑n

i=1 PiiY
2
i , where Pii = (ei, P e1) ∈ [0, 1],

∑
i Pii = trP and n − (d +

1) ≤trP ≤ n− d.

E
[

(dist2(Y,W ′)− S)2 | I = I
]

= E



( n∑

i 6=j
YiPijYj

)2
| I = I




≤ 2E
[
Y 2

1 | I = I
]2

trP 2 ≤ 2E
[
Z2

1 | I = I
]2

trP 2

≤ c a2
n

n− d
n

.

by Lemma 4.3.3. Now let ζ be a random variable with one-side α stable distribution

with α ∈ (0, 1). By [10, Lemma 3.6], if we define the event

Γ =

{
n∑

i=1

PiiZ
2
i ≥ ε(n− d)

2
α ζ

}
,

then P
(
ΓC
)
≤ e−n

δ
, for some positive δ and ε. Since for any a, b ∈ R holds (a − b)2 ≥

α2/2− b2, then S ≥ 1
2Sa − Sb with

Sa =

n∑

i=1

PiiZ
2
i Sb =

n∑

i=1

PiiE [Zi | I = I ]2 = (n− d)
a2
n

n2
.

Let G1 be the event Sa ≥ 3Sb. By hypothesis γ ≤ α/4, then there exists a positive ε,

P (Gc1 ∩ Γ | I = I) ≤ P
(
ζ ≤ c (n− d)−

2
α (n− d)

a2
n

n2
| I = I

)
≤ P

(
ζ ≤ c n−ε | I = I

)
.

Since E [ ζ−m ] is finite for any positivem, by Markov’s inequality P (Z ≤ t) ≤ t−mE [ ζ−m ]

.Thus for any p > 0, there exist a positive constant κp such that

P (Gc1 ∩ Γ) ≤ κpn−p.
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4.4 Uniform integrability

Set G = G1 ∩ Γ. On the event G S ≥ 1
6Sa ≥ ε

6(n − d)
1
β ζ = ε

6(n − d)
2
α ζ, then for some

constant c1 > 0,

E
[
S−2;G

]
≤ c1(n− d)−4/αE

[
ζ−2

]
≤ c2(n− d)−4/α.

Thus E
[
S−2;G | I = I

]
= O((n − d)−4/α). Since a ≥ b/2 implies |a − b| ≥ |b|/2, using

Markov’s and Cauchy-Schwarz’s inequalities

P
(
dist2(Y,W ′) ≤ S/2;G | I = I

)
≤ P

(∣∣∣dist2(Y,W ′)− S
S

∣∣∣ ≥ 1

2
;G | I = I

)

≤ 2E
[ |dist2(Y,W ′)− S|

S
;G | I = I

]

≤ 2
√

E
[
|dist2(Y,W ′)− S|2;G | I = I

]
E [S−2;G | I = I ].

If we set G2 = {dist2(Y,W ′) ≥ S/2}, then P (Gc2 ∩G | I = I) = O(ann
−1/2(n−d)1/2−α/2)

that is P (Gc2 ∩G) = O(n−(1−2γ)/α) under our hypothesis on γ. Furthermore, by Cauchy-

Schwarz inequality

E
[

dist−2;G2 ∩G | I = I
]
≤ E

[
S−1;G | I = I

]
= O((n− d)−2/α).

Define E = Gc2 ∩G.

P (Ec) ≤ P (Γc) + P (Γ ∩Gc1) + P (Γ ∩G1 ∩Gc2)

≤ c1e
−nδ + κ(1−2γ)/αn

−(1−2γ)/α + c2n
−(1−2γ)/α.

4.4 Uniform integrability

For δ ∈ (0, 1) define Kδ = [δ, δ−1]. We have to prove the for any ε > 0, for a.a. z ∈ C

lim
δ→0

sup
n

P

(∫

KC
δ

| log(x)|νXn−z1(dx) > ε

)
= 0.

Take z 6= 1. For any and any t ≥ 1, by Markov inequality
∫ +∞

t
log(x)νXn−z1(dx) ≤ 1

t

∫ +∞

1
x log(x)νXn−z1(dx) ≤ 1

t

∫ +∞

1
x2νXn−z1(dx) ≤ 2 + 2|z|2

t
,

see proof of Lemma 4.1.1. Then the integral over (δ−1,+∞) is not an issue. Call now

σi := si(Xn − z1), for i = 1, ..., n. For the other side, it is sufficient to prove that for

any sequence (δn)n≥1 tending to 0,

1

n

n−1∑

i=0

1{σn−i≤δn} log σ−2
n−i
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4.4 Uniform integrability

converges to 0 in probability. By the invertibility lemma we know that σn ≥ n−r for

some r > 0, if n� 1, and we can bound some terms in the sum. Let γ ∈ (0, α/4) to be

fixed later, for 0 ≤ i ≤ n1−γ we use this bound, so that

1

n

n1−γ∑

i=0

log σ−2
n−i ≤

1

n
n1−γ log(n2r)→ 0.

Call An the matrix of the first n − i/2 rows of an(Xn − z1) and ϑ1 ≥ · · · ≥ ϑn−i/2 its

singular values. By Cauchy interlacing lemma, see e.g. [16],

σn−i ≥
ϑn−i
an

and by Tao-Vu negative second moment (lemma 1.2.5),

ϑ−2
1 + · · ·+ ϑ−2

n−i/2 = dist−2
1 + · · · dist−2

n−i/2

where distj = dist(Rj , R−j), as defined in the lemma, is the distance of the j-th row

from the subspace spanned by the other rows of An.Then

i

2
σ−2
n−i ≤ a2

n

n−i/2∑

j=1

dist−2
j .

Since the dimension d of the span of the rows is at most n − i/2 we can define Fn the

event that for all 1 ≤ j ≤ n− i/2 distj ≥ n(1−2γ)/α and use Proposition 4.3.1, to bound

P
(
FCn
)
≤ e−nδ , for a positive δ. Then

E
[
iσ−2
n−i1Fn

]
≤ 2a2

nnE
[

dist−2
1 1Fn

]
.

Since we are on Fn, dist1 ≥ n(1−2γ)/α. By Proposition 4.3.4 there exists an event E

independent from all rows j 6= 1 such that P
(
EC
)
≤ n−(1−2γ)/α and for any W ⊂ C

with dimension d < n− n1−γ ,

E
[

dist(R1,W )−2
1E

]
≤ c0(n− d)−2/α.

Since d is at most n− i/2 ≤ n− 2n1−γ , then E [ dist11E ] ≤ ci−2/α. Therefore

E
[

dist−2
1 1Fn

]
≤ E [ dist11E ] + P

(
EC
)
n−2(1−2γ)/α

≤ c0(i−2/α + n−3(1−2γ)/α).

For a suitable γ it holds 3(1− 2γ)/α > 2/α, then n−3(1−2γ)/α ≤ i−2/α and

E
[
iσ−2
n−i1Fn

]
≤ 2a2

nnE
[

dist−2
1 1Fn

]
≤ 2c0a

−2
n ni−2/α = 2c0(c1/αn1/α)−2ni−2/α.
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4.4 Uniform integrability

Recall that, if we consider variables in H∗α, an has the form an = c1/αn1/α and

E
[
σ−2
n−i1Fn

]
≤ c̃

(n
i

)1+2/α

Finally by Markov inequality,

P (σn−i ≤ δn) ≤ P
(
FCn
)

+ c0δ
2
nE
[
σ−2
n−i1Fn

]
≤ e−nδ + c̃δ2

n

(n
i

)1+2/α
.

It follows that for any sequence δn we can define εn = δ
1/(1+2/α)
n so that

P (σn−εnn ≤ δn) ≤ e−nδ + c̃δ2
n

(
n

εnn

)1+2/α

= e−n
δ

+ c̃δn → 0.

Then is sufficient to prove

1

n

εnn∑

i=n1−γ

log σ−2
n−i

given Fn, converges to 0 in probability. Thus, for any fixed ε > 0,

P

(
1

n

εnn∑

i=n1−γ

log σ−2
n−i > ε

∣∣∣Fn
)
≤ ε−1E

[
1

n

εnn∑

i=n1−γ

log σ−2
n−i|Fn

]

≤ ε−1 1

n

εnn∑

i=n1−γ

logE
[
σ−2
n−i|Fn

]

≤ c0

n

εnn∑

i=1

log
(n
i

)
(4.4.1)

Since

n∑

i=1

log(i) =
n∑

i=2

log(i)

≥
n∑

i=2

∫ i

i−1
log(x)dx

=

∫ n

1
log(x)dx = n log n− n+ 1.

Equation (4.4.1) becomes,

1

n

εnn∑

i=1

log
(n
i

)
= εn log(n)−

εnn∑

i=1

log(i)

≤ εn log(n)− εn log εnn+ εn −
1

n

= εn − εn log εn −
1

n
.

Which tends to 0 as n→∞.
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4.5 Proof of Theorem 1.6.1

4.5 Proof of Theorem 1.6.1

Since we proved that | log(x)| is uniformly integrable with respect to the measure νXn−z1,

for any z ∈ C \ {1}, in probability and by theorem1.6.2, νXn−z1 converges almost surely

to a measure να,z, as a consequence of Girko’s Hermitization method, lemma 1.2.3, µXn

converges in probability to a measure µα, that satisfies for any z ∈ C \ {1},

Uµα(z) = −
∫

log(x)να,z(dx).

Since Uµα(z) is deterministic, we can improve the convergence to almost sure, showing

that there exists a deterministic sequence Ln such that, almost surely

lim
n→∞

(UµXn (z)− Ln) = 0.

By Lemma 4.1.1 and Lemma 4.2.3, there exists r > 0 such that, almost surely

supp(νXn−z1) ⊂ [sn(Xn − z1), s1(Xn − z1)] ⊂ [n−r, nr],

if n is large enough. Define fn(x) = 1x∈[n−r,nr] log(x), a.s. for n� 1,

UµXn (z) =

∫
fn(x)νXn−z1(dx).

Since ‖fn‖TV ≤ c log n, by theorem 1.1.3,

P
(∣∣∣∣
∫
fn(x)νXn−z1(dx)− E

[ ∫
fn(x)νXn−z1(dx)

]∣∣∣∣ > ε

)
≤ 2 exp

{
−2

εn

(c log n)2

}
.

Call Ln = E
[ ∫

fn(x)νXn−z1(dx)
]
, by first Borel-Cantelli lemma, a.s.

lim
n→∞

(UµXn (z)− Ln) = 0.

4.6 Non triviality of µα

Theorem 1.6.1 gives an existence result for the limiting spectral measure µα, in this

section we observe simple facts to avoid the possibility of a trivial limiting spectral

measure. We indeed will show that µα is neither a Dirac’s delta in 0, nor concentrated

on the boundary of the unitary disc of C.

The first observation is that, since the logarithmic potential of µα is not infinite, µα

is not a delta. By proposition 3.3.3 it is sufficient to check the finiteness of the integral

in 0. By almost sure convergence of UµXn , we have

∫ 1

0
| log(t)|νXn−z(dt) −−−−−→n→+∞

∫ 1

0
| log(t)|να,z(dt),
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4.6 Non triviality of µα

in particular, for z = 0, we have, almost surely,

Uµα(0) = lim
n→∞

∫ +∞

0
| log(t)|νXn(dt).

Moreover, by uniform integrability in probability

lim
y→∞

sup
n

P
(∫ +∞

0
| log(t)|νXn(dt) > y

)
= 0,

so that
∫ +∞

0 | log(t)|νXn(dt) can not diverge to infinity as n→∞ (it would have implied

P
(∫ +∞

0 | log(t)|νXn(dt) > y
)
−−−−−→
n→+∞

1, for any positive y).

The weak convergence of the order statistics of the vector (X1,1, ..., X1,n) to a PD(α)

will imply that the limiting spectral distribution does not concentrate on {z ∈ C : |z| =
1}. Indeed, by theorem 1.6.1 and Weyl’s equation (1.2.2), we have

∫
|z|2µα(dz) = lim

n→∞
E
[ ∫
|z|2µXn(dz)

]

≤ lim
n→∞

E
[ ∫

t2νXn(dz)

]

= lim
n→+∞

1

n
E

[
n∑

i=1

si(Xn)2

]

= lim
n→+∞

1

n
E

[
n∑

i=1

λi(XnX
∗
n)

]

= lim
n→+∞

1

n
E [ Tr(XnX

∗
n) ]

= lim
n→+∞

1

n
E




n∑

i,j=1

X2
i,j




= lim
n→+∞

E




n∑

j=1

X2
1,j




= E


∑

j≥1

ζ2
j


 < 1.

Where {ζj}j≥1 has Poisson-Dirichlet law of index α.

Moreover, applying the we can find some recursive distributional equations for the

RA+(U)∅∅ and RA−(U)∅∅. Namely

a+(z, η) =
η −∑k≥1 ω∅,ka

−
k

|z|2 − (η −∑k≥1 ω∅,ka
−
k )(η −∑k≥1 ωk,∅d

−
k )

a−(z, η) =
η −∑k≥1 ω∅,ka

+
k

|z|2 − (η −∑k≥1 ω∅,ka
+
k )(η −∑k≥1 ωk,∅d

+
k )
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4.7 Further Simulations

We are not able to solve those equations, but they implies the radial symmetry of µα,

since both a+, and a− depends only on |z|.

4.7 Further Simulations

Motivated by the wise advices of Charles Bordenave and Djalil Chafai, we did some more

numerical simulation to explore properties of the invariant measure. All the simulations

are for α = 0, 5.
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4.7 Further Simulations
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4.7 Further Simulations

4.7.1 Maximum values

max{πi : i = 1, ..., n}.
Plot of the maximum value, for increasing values of n.

n from 100 to 2500, steps of length 100.

n from 500 to 5000, steps of length 500.
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4.7 Further Simulations

4.7.2 Total Variation distance from the uniform distribution

‖π −Unif[n]‖TV = 1
2

∑n
i=1 |πi − 1

n |

n from 100 to 2500, steps of length 100.
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4.7 Further Simulations

25 realization of a 2500×2500 matrix.
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