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1 Introduction

The many—body problem is the the study of the motion of 1 + N point masses mg, - -+, my interacting
through gravity only, hence, whose coordinates vy, - - -, v € R? (where d = 2, 3) obey to the Newton’s
equations
. Ui vy .
Ui;mjvi—vﬂs for 0<i<N. (1.1)
JF

As usual, the “dot” denotes the derivative with respect to time and |- | is the Euclidean norm of R4. In
the planetary problem, one mass, mg (the “Sun”), is much greater than the others (the “planets”). So,
it is customary to introduce a small parameter y and take

mog=my and m; =pm; for 1<i<N. (1.2)
The Hamiltonian formulation of (1.1) is
{ i = —0y, e (113, )
i}i - au,i,}-[plt (,LL, u, U)
with
- Jui® mim;
Hore (111, 0) = Bal _ Ty 1.3
pit (434, ) Z 2m; Z lv; — vj] (13)
0<i<N 0<i<j<N

(masses as in (1.2)) which is regular (real-analytic ! ) over the domain (“phase space”)

Cd:{(u,v)::((u0,~--,uN),(vo,---,vN)>GRdNXRdNI v; #wv; for 0§i<j§N}

Besides the energy, Hp; has, as integrals of the motion (i.e. , conserved quantities along its trajectories),
the three components of the linear momentum

Q= Z u; (1.4)
0<i<N

and, for d = 3, also the three components of the angular momentum

0<i<N

(which are related to the translation and rotation invariance of ﬂplt, respectively), where “x” denotes
the standard vector product of IR3. Hence, the number of degrees of freedom of the system 2 of can be
lowered.

The linear momentum reduction is usually performed as follows.
Consider the invariant manifold with dimension 2d N

Miin ;=< u, v €Cq : Z u; = Z m;v; =0

0<i<N 0<i<N

'We recall that a function f : A — R, where A is an open, connected, bounded subset of R, is real-
analytic in zg € A if there exist {ax(%0)}zen» and an open neighborhood of g, U(xg), such that the
series Y, .y @k(20)(x — o) converges uniformly to f, for any x € U(zo); f is said to be real-analitic
in A if it is real-analytic in any point zg € A.

2The number of degrees of freedom of an Hamiltonian system is defined as one half of the dimension
of the phase space of the Hamiltonian. In the case of (1.3), the number of degrees of freedom is d(1+ N)



Let
Ca = {(y,:z:)GRdNXRdN: O#az; #zjfor 1<i<j<N}
be the “collisionless phase space” and define the embedding

Phetio : (¥,7) € Ca C RV x R — (u,v) € My,

which acts as

Up = — E Yj
1<j<N
-1
Vg = — E mj E m;x;
0<j<N 1<i<N
Ui = Yi
—1
Vi ‘=X — E m; E m;x;
0<j<N 1<G<N

Then, it is not difficult to see that the evolution in time for the “relative momenta—coordinates” pairs
(y, ) is governed by the Hamilton equations of

ﬁplt(y’; Y, ) = ﬂplt © Phetio (13 Y, T) -

A suitable rescaling of variables and Hamiltonian (which does not change the motion equations)
Hopie (115, @) = i~ Hope (s 1y, @)

brings finally to

How(psy,x) = p~ How (s py, @)
- Y (MR, Y (Lo g
1<i<N i i 1<i<j<N 0 R
where m;, m; are the “reduced masses”
N _ _ - mom;
m; :=mo+pum;, m;.=————
mo + um;

and u - v denotes the usual inner product of two vectors u, v of R9.

Notice that the angular momentum (in heliocentric variables)
C:= Z T X Y; (17)
1<i<N
is still conserved along the Hy;—trajectories, which is still rotation invariant.

When g = 0 (“integrable limit” ), the Hpj,—evolution is the resulting of N independent Keplerian
motions for the coordinates 1, ---, zx: each of them, accordingly to the Law of Equal Areas 3 draws

3Law of Equal Areas: the area spanned by z;(t) on the ellipse &; is given by

aib;

Si(t) = $i(0) + 5

nit

where n;, defined by nfaf = 1, is the mean motion and a;, b; = a;/1 — €? are the semi-axes of &;.



an ellipse in the space, whose position and shape depends only on the initial data (g;, Z;), all the ellipses
possessing a common focus (the Sun). The total motion is thus — for p = 0 — quasi—periodic with N
frequencies, provided each two — body energy

I

7 -

(1.8)

is negative.

The (analytic, C°°) continuation, for & > 0, of the quasi—periodic motions (with N—frequencies) of (1.8)
with quasi—periodic motions with more frequencies has been investigated by several authors. Of great
interest is the case of “maximal” continuation, which consists in looking for tori with the maximum
number f of frequecies possible, i.e. , (analytic, C*°) invariant manifolds for Hpy, diffeomorphic to the
standard torus Tf where the angular coordinate evolves with linear low in time.

The pioneering work on this subject is the one by Arnol’d [3], who, in the framework of the KAM theory,
stated the existence of a positive measure (“Cantor”) set of initial data giving rise to bounded motions.
He proved his statement only in the case of the plane three — body problem (d = N = 2) and, for the
general case (spatial (1 + N)-body problem), gave only some indications on how to extend the result.

It has been noticed in [17] that such indications contain a flaw. Nonetheless, Arnol’d’s proof of existence
of quasi—periodic motions in the planar three body problem, is based on a refined KAM theorem —
constructed in the framework of real-analytic functions and called by himself Fundamental Theorem
(quoted below), which could overcome the strong “degeneracy” of the problem. To explain this point,
and for future use, we need a bit of preparation.

Let us start by considering the planar case and let us introduce the planar Delaunay—Poincaré variables
as follows:

n; = \4/miai\/2fni(1—\/l—e?)cosgi l<i<N (1.9)

where, denoting by &; the “osculating” ellipse spanned by the solution of the two — body differential
problem

U= —miﬁ , veE R?
(mi5(0), v(0) = (s> @)
a;, €, gi, i, are the semimajor axis, the eccentricity, the argument of perihelion of £ and the mean

anomaly of z; on &; (assume that (y,x) varies in a region of C.; for which each (y;, ;) gives rise to an
ellipse, i.e. , with 0 < e; < 1). It is a classical result (see [11], [20], [7]) that the map

oob i (v2) = (A amg)

with A = (Ay,---,Ay), - -~ asin (1.9) is real-analytic 1:1 and symplectic on a suitable open neighborhood
of {A} x TN x {0}.

When expressed in planar Delaunay—Poincaré coordinates, the integrable limit of 1 becomes

hpi == Y hiogpp=— Y %

1<i<N 1<i<N i



a function of the actions A = (Aq, ---, Ay), only — a fact usually called “proper degeneracy”, which
prevents the use of standard KAM (Kolmogorov, Arnol’d, Moser) theory  in order to construct maximal
tori.

It is also well-known, since Laplace, that the “secular perturbation” of the planetary problem, i.e. , the

mean 1 _
7 YiYj m;m;
P Y o bpp dA
o (2m)N /]I‘N 2 ( mo |177193j|) éov

1<i<j<N

has an elliptic equilibrium point at z := (,£) = 0, for any A, i.e. , it has an equilibrium point there
and can be symplectically put into the form

Wi 4 €2

1.1
2 +O4 ) ( O)

fplt o ¢diag = fplt © ¢diag = fO (A) + Z Qi (*/N\)

1<i<N

where ; are usually called Birkhoff invariants of the first order.
We recall here the Theorem by Arnol’d.

FUNDAMENTAL THEOREM (Arnol’d, 1963, [3]) Assume that

(FT0) H(I,.p,q) = h(I)+¢ f(I,¢,p,q) is real-analytic on U(ro) := Z x T™ x B2*(0), with T an open,
bounded, connected subset of R";

(FT1) h is a diffeomorphism of an open neighborhood of T, with non degenerate Jacobian Ow = 0*h on
such neighborhood;

FTy) the mean perturbation f(I,p,q) := === [ f(I,©,p,q)dp has the form®
(2m)» JT

- 1 1
o= fM+ > uMli+g > Au(DJij+5 Y Biwl) iy
1<i<n 1<i,j<n 1<i,j,k<n
4 o (1.12)

2 2
with J 1= % and og/|(p, q)|° — 0;

(FT3) A is non singular onZ, i.e.

detA(I) #0 forany [€T.

Then, for any k > 0, there exists r,, such that, for any
0<r<mr, and 0<e<r® (1.13)

an H—invariant ‘ set F(r) C U(r) =T x T™ x B?" may be found, with

4The theory, on the persistence, under suitable assumptions, of quasi-periodic motions for nearly—
integrable Hamiltonian systems, developed in the late 60’s by Moser, (1962, [24]), Arnol’d (1963, [2])
on the basis of an early paper (1954) by Kolmogorov [22]. For a review —and a complete proof-of the
original Kolmogorov’s Theorem, see [12]. For related references, see also [10], [13], [35].

By Birkhoff theory, a sufficient condition for (1.12) is that f has an elliptic equilibrium point at the
origin, with non resonant Birkhoff invariants of the first order €2, that is,

Q) k| #0 forany T€Z, k=(ky, - km)€Z": Y |kl <6, (1.11)

1<i<n



meas (U(T) \ F(r)) < Kmeas (F(r)) (1.14)

consisting of n(:= n 4+ 7)—dimensional tori where the H—flow is ¢ — ¥ + v t.

Arnol’d’s estimate for the tori density in phase space is ¢

meas(F(r)) > (1 — crl/(g("+4)))meas(U(7“)) (1.15)

As told before, Arnol’d applied his theorem to the planar three-body problem, checking, in particular,
assumptions (FT3),(FT4) (in fact, (FT2) is a consequence of (FT3) and Birkhoff Theory, in view of (1.10)).

The spatial three body problem (d =3, N = 2) was solved, in 1995, by P. Robutel ([33]; see also [21]).
After performing the Jacobi, or nodes (angular momentum) reduction, he checked the assumptions of
the FT, proving, so, the existence of (maximal) tori with 4 frequencies.

The first complete proof of the existence of a positive measure set of quasi—periodic motions was given
only in 2004, by J. Féjoz ([17],THEOREME 60), who, completing the investigations of M.Herman [18], in
the framework of a refined C>° KAM theory, stated the existence of a positive measure set of initial data
giving rise to quasi—periodic motions with 3N — 1 frequencies, with their density going to 1 as y — 0.

Another recent proof of Arnol’d’s statement, but in the real-analytic framework of 2001 Riissmann
theory [34], may be found in [14] (see also [32]). The real-analytic framework appears more natural for
the many—body problem (1.1), which is formulated using real-analytic functions.

Both the proofs presented in [17], [14] are based on the check of “weak” conditions on the first invariants
Q of f (suitable non-planarity conditions, sometimes called Arnol’d- Pyartli, Riissmann conditions,
respectively), which, however, cannot be applied directly to Hpi;, due to the presence of two “secular
resonances”.

Letting, in fact, Hpy in spatial Delaunay-Poincaré variables (definition 4.9), the frequencies Q cor-
respond to 2N frequencies (related to the motions of perihelia and ascending nodes, respectively)
o= (o1,--,0n), ¢ = ((1,-++,Cn) which are found to verify the (unique, [17] ) linear relations (up
to linear combinations)

(N=0, Z o+ Z (x=0. (1.16)

1<k<N 1<k<N-1

The former relation in (1.16) is known since Laplace; the latter was firstly noticed by M. Herman, so
it is usually called Herman’s resonance (for an interesting investigation on the Herman’s resonance, see
[1]). Owing to such secular resonances (in particular, the Herman’s resonance), both the non—planarity
conditions required by the KAM theories used in [17], [14] are violated by Hpi. In order to overcome this
problem, in [17] a modified Hamiltonian is introduced, next considered on the symplectic manifold of
vertical angular momentum; in [14], the phase space is extended by adding an extra degree of freedom.

Notice that the former relation in (1.16) is actually a resonance of (low) order 1, and also prevents the
direct application of FT, making (1.11) false; the Herman’s resonance is of higher order, 2N — 1, so, it
violates (1.11) only for N =2, 3.

A direct attack to the problem, in the sense specified by FT, using a good set of coordinates which
performs the angular momentum reduction, has never been attempted. We outline that such a strategy

6This estimate is not explicitely quoted into the statement of FT, but can be deduced as follows.
Using the original Arnol’d’s notations (e, j1, ng,n1) := (r2, €, i, 2), in the course of the proof, we find the
condition § := /T < C'k with T = 16(n + 4) := 16(ng + n1 +4): see on page 144, eq. (4.2.5) with §()
defined below and p. 145, eq. (4.2.7).



would lead also to a more precise insight into the properties of the quasi—periodic motions (tori measure,
frequencies, - - -).

The problems which this thesis addresses are the following.

(P1) (Section 2) Construction of a FT-like KAM Theorem (THEOREM 1 below, for a simplified verson)
in the real- analytic class for properly degenerate systems, in order to obtain a fine measure
estimate for the “invariant set” (roughly speaking, the set of the KAM quasi—periodic trajectories)
of a properly degenerate H, nearly an equilibrium point so as to

(P2) (Section 3) establish the existence of maximal quasi—periodic motions and estimate the measure
of Kolmogorov’s invariant set for the plane planetary problem;

(P3) (Section 4) reduction of the angular momentum in the spatial planetary problem which leads to

(P4) (Section 5) a proof of existence of KAM tori with 3NV — 1 Diophantine frequencies (via a partial
reduction of the angular momentum) and measure of the invariant set;

(P5) (Section 6) a direct proof of existence of (3N — 2)—dimensional KAM tori via analytic theories of
[14] (full reduction).

We briefly explain our results.

As for Py, we prove THEOREM 1 below (for a more general statement, see Theorem 2.1), which may
be viewed as a refinement of FT: compare the bound on ¢ (1.17) and the estimate for the tori measure
(1.18) for the invariant set with (1.13), (1.15).

THEOREM 1. Assume (FTy), (FT1), (FT3) as in FT and

1<i<m 1<i,j<N

where |Q(I)-k|#0 forany T€Z, k= (ki - kn)€Z™: Y  |k|<4

1<i<m

where o4/|(p, q)|* — 0. Then, there exist r,, 0 < ¢ < 1 < C, b > 0 such that, for any

0<r<r., and 0<e<c(logr=')=2 (1.17)
an invariant set K(e,r) C Z x T™ x Bgleogr_l)_l (0) (“Kolmogorov set”) with measure
b
meas(lC(s,r)) > (1 - Cal/z(logrfl) - Cr1/2)meas(U(r)) . (1.18)

consisting of n = n+ fi—dimensional invariant tori, with (¢ r5/2 1 )—Diophantine frequencies v, where the
motion is analytically conjugated to ¥ — ¢ + vt.

The proof of Theorem 2.1 is made in two steps.

(s1) On one side, proof of a quantitative isofrequencial KAM theorem particularly well suited for
properly degenerate quasi integrable Hamiltonians in action—angle variables

H(J,9) =h(J) +h(J) +£(J, ) (1.19)

i.e. , with integrable part which splits into the sum of two terms: h (thought dominant), which
depends only on a part of the action variables .J and h (thought small with respect to h) which
depends on all the actions J. The peculiarity of this theorem is of choosing (the idea goes back
to Arnol’d) two different scales for the tori frequencies to be kept fixed.



(s2) On the other side, we reduce the properly degenerate Hamiltonian H (I, ¢, p, ¢) to the form (1.19),
with h of order 1, h of order er? and the perturbation small (¢7%/2). The reduction is based on a
non standard averaging theory, developed by Biasco et al. [7], and Birkhoff Theory.

As a second step, we apply TH1 to the plane (1 + N)-Body Problem. In order to do that, we compute
explicitely the Birkhoff invariants of order 1 and 2, expanding the perturbation of H in plane Delaunay
variables (A, A, 7, €), up to order 4, after suitable diagonalization and Birkhoff Theory. If f,; denotes the
mean perturbation of the plane problem in Delaunay variables, the Hessian matrix 92 fpl has the form

F(A) 0

0 F(AN)
with F(A) a symmetric N X N matrix. The first Birkhoff invariants are thus the eigenvalues of F(A).
We introduce a small parameter, the maximum semimajor axes ratio J, letting

Yl
Qi1
For small 0, the asymptotics of F(A) is
f1 0(57112) - O(5n1k)

f25n22 ... O(6n2k)

JromE

with f; with order 1 in §, npy positive integers verifying
Nk < Nk41,k+1  and  Np_1 g, Nhk+1 > Nhk -

The eigenvalues of F are thus Q; = fi0™" up to higher orders, and are thus non resonant. The
Hamiltonian can be put in Birkhoff normal form

1 2 2
Jo(A) +Q(A) - T + 57 - A(A)J + -+ where Ji:m

2

and the Birkhoff invariants of order 2 are the eigenvalues of the symmetric matrix A(A). We finally
prove that A(A) as the asymptotics

011 012 0(61313) e O(éplk)

o1 Qoo 0(51723) e O((szk)

043357133 e O(apsk)

A(A) ~ &7 . :
akk(spkk

with o;; with order 1 in 6, pr41 k41 > Prk, 011022 — 12021 7# 0, ag, # 0. This allows us checking that

det A = 5Np(04110£22 — Oé120421) H gk + O((SNp)
3<k<N

is nonvanishing, for small d, concluding the proof.

10



The extension of the previous proof to the spatial problem in Delaunay variables is forbidden, by the
presence of the above mentioned secular resonances, closely related to the rotation invariance of Hpy;. A
reduction of the number of degrees of freedom is however possible, with the use of the Deprit variables
(9], [15].

The remarkable property of this new set of variables is to have, among their conjugated momenta, two
coordinates of the angular momentum: the modulus G and the third component C,. Their conjugated
angles will be then cyclic variables. In particular, the conjugated angle ¢ of C, has the meaning of
the ascending node longitude of the total angular momentum C), i.e. , its third component, so it is an
integral of the motion, too.

When expressed in these new variables, only one external parameter will appear (the modulus G) for the
reduced problem. This new set of variables can be regularized in a similar way to Poincaré’s one for the
regularization of the Delaunay variables. The new regularized variables (A, A\, 1, &, p, ¢) for the reduced
problem are of dimension 2N 4+ 2N +2(N —2) = 2(3N — 2). The variables (A, A, 7, ), of dimension 4N,
play the same role as the Poincaré variables in the plane problem. The variables (p, q) are related to
the couples (inclinations, nodes): only N — 2 couples may be chosen as independent, having fixed the
modulus G of the angular momentum and its verical component C,. As consequence of the reduction,
the D’Alembert symmetries, existing in the plane problem, are broken; the origin of the new secular
coordinates z = (1,&,p, q) is no longer an equilibrium point and an elliptic singularity appears, that is
a singularity for the perturbation over the manifold

P& Pt
G=Z(A¢—n2 )_ 3 p2q

1<i<N 1<i<N-—2

owing to which, the configuration with all zero eccentricities and inclinations (which corresponds to
z =0and G = Y A;) is not allowed. As a consequence, motions arbitrarily close to cocircular and
coplanar trajectories cannot be considered, a fact already known in the case of the three body problem.

Nonetheless Deprit’s reduction has a partial reduction (partial reductions were also studied in [23])
naturally associated, which consists in using only C, as generalized momentum, and not G also, making
a further symplectic change of variables (G, g) < (pn—-1,qn—1), where g is the (cyclic) variable associated
to G. In this way, a further inclination is treated as independent, but the number of degrees of freedom is
enhanced from 3N — 2 to 3N — 1, having lost the cyclic variable g. Differently from what happens using
Delaunay variables, Deprit’s partial reduction leaves the mean perturbation regular and even around
the secular origin, which is thus an equilibrium point corresponding to zero eccentricities and mutual
inclinations. Thus, Deprit’s partial reduction allows us to consider a larger region of the phase space
than in the case of full reduction, even if at the price of one degree of freedom more.

In Section 5, we show that the set of partially reduced Deprit variables provides a natural proof of the
existence of (3N — 1)—dimensional KAM tori via TH1, at least for N > 3 planets, that is, from the four
body problem on. In these variables, the planetary Hamiltonian (1.6)

Hoptt,pr = hpie(A) + pfpiepr (A A 1,65, q)
where hpie is the usual Kepler’s integrable part, satisfies the following. The “secular perturbation”
Fotopr = (2m)™N / folt,prdA is even and regular around the secular origin, as said before, and has the
form ™
n? + &2 P+ ¢
2 2

with Q7 , O suitable quadratic forms acting only on the “horizontal”, “vertical” variables, respectively, 7

fplt,pl’ = fglt,pr + Q;kz ’ + Q: ’ + 8(7775’])7 q) +ee (120)

"Following [17]’s notation, in (1.20), the dot “.” denotes contraction of indices:Q - n* := > i Qigning
1f77: (7717"'7)'

11



0

T a suitable quartic form, all depending parametrically on A as well as fp and verifying the following.

1t,pr
The respective sets of eigenvalues s = (s1, -+, sn), 2 = (21, -+, znv—1) of Qf, QF (together also with
the “mean motions” n = (ny,---,ny) := dahp) are found to satisfy the Herman’s resonance
DTS SEEEYS
1<i<N 1<i<N—1

and only that (Proposition 5.1). Since this resonance is of order N+ (N —1) = 2N —1, it does not violate
the condition FT; of TH1 when N > 3, and the normal form of FTIQ can be constructed. This normal
form turns out to be non degenerate, i.e. , it also satisfies the second order non—degeneracy condition
FT4 (Propositin 5.2). Both the proofs of non degeneracy (of first and second order) are inductive and
are developed with similar techniques as in [17]. Then, invoking TH1, we can state the existence of
(3N —1)—dimensional KAM tori for the planetary problem and thus estimate the density of the invariant
set (Theorem 5.1)
1— M1/2(10g5_1)b _ 61/2

into a ball with volume £2N—1) where ¢ is an upper bound for eccentricities and inclinations. Notice
that the partial reduction generates an extra dimension for the KAM tori, relatated to the rotation
invariance of Hpi¢,pr-

Nicely, Deprit’s partial reduction, for N > 3, makes us appear the spatial problem as the natural
extension of the plane problem: the set of Birkhoff invariants of order 1 has the planar one as subset,
and the same happens at order 2: when comparing the two matrices (planar and spatial) of Birkhoff
invariants of order 2, the planar one is a submatrix of the spatial one. This fact cannot be observed in
the 3-body problem as treated in [33], because, there, the full reduction is made, and the coinclination
of the two planets is expressed as a function of the eccentricities.

In Section 6, we look at the full reduction, that is, we use also the modulus of the angular momentum
G as generalized momentum. As said before, this makes us gain a cyclic variable, the angle g conjugate
to G, lowering the number of degrees of feedom to 3N — 2, but also causes, for N > 3, an elliptic
singularity and lack of symmetries (facts already known in Poincaré-Delaunay variables, trying to do
a partial reduction, i.e. , to eliminate one inclination with the use of the integral C,). A consequence
of the lack of symmetries is that, for N > 3, the secular origin is no longer an equilibrium point for
the mean perturbation. Nonetheless, in the range of small eccentricities and inclinations, it is possible
to find a new equilibrium point, which is “small”, i.e. , consists of almost circular and coplanar orbits,
in the region of phase space which is considered, such that after suitable re—centering around it and
symplectic diagonalization of the quadratic part, the planetary Hamiltonian is finally put into the form

Hpie = hply + 1 fpite

where the mean fyr; := (2m) ™ [ fo1; becomes

2 2 2, .2
o= faeA G+ D siAG)T= 4 Y 2(AG) T+ 0()
1<i<N 1<i<N-2
and the first Birkhoff invariants s = (sq, -+, sn), 2 = (21, - - -, ZN_2), together with the mean motions
n = (ny,---,ny), do not satisfy any linear relation. Then, applying the real-analytic first order theory

developed in [14], we can state the existence of (3N —2)—dimensional KAM tori for the planetary problem
(Theorem 6.2).
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2 Properly Degenerate KAM Theory

We recall some basic notations and definitions.

Let 7, n € N, n := n+n, Z a bounded, connected subset of R, T" := R"/27Z" the
usual real “flat” n—torus and B”(zx) the real open n—ball in R™ with radius r, centered
at x.

In order that a compact set 7 C V' is called a (v, ¥; 7)-Lagrangian torus with frequency
v for a given

H(IL,¢,p,q) = h(I) + f(I,¢,p,q)

assumed to be real-analytic on the phase space V :=Z x T" x B?*(0), we require that

(T1) there exists a real-analytic embedding onto

O = (D1, By Bpy Bg) : 0 = (U,0) € T" x T" — ¢(9) € T

(and, hence, 27 —periodic in each variable) given by ®

¢1(9) = v(V)

P, (9) =V + u(V)

dp(0) = po(V) + /20(9) cos (I + (V) (2.1)
bq(0) = qo(V) + 1/20(¥) sin (19 +9(09)) ,

such that

(T2) the map

is a diffeomorphism of T™ x T";
(T3) 7T is invariant under the H-flow ¢*, which, on 7, acts as a translation by v, i.e.,

o logltod: Y—Idtuvt, VIET xT";

(T4) the torus frequency v € R™™ belongs to the generalized Diophantine set

D= |J DI
) VAT
7,¥>0
T>n+n

8For shortness, in (2.1), the symbol /27 cos 1) denotes the i—vector
(V2ricostpy, -,/ 2rp costhy)
ifr = (ry,---,rs) € R? o = (b1, ---,1b5) € T?, and similarly for v/2r sin ).

13



where

D= ) DML
0AkEZR XL
with
DI (k) = {ueRM; lv-k| > UZI if k= (kk) withkeZ"\{0},
- /<;|>|]Z| if /‘g:()ezﬁ} (2.2)

We shall say that the embedding ¢ as in (7})=(T3) realizes the Lagrangian torus 7 .

We are now ready to quote the following refined version of Arnol’d’s Fundamental The-
orem [3]. For a simpler formulation, see Remark 2.2.

We assume that

(Do)
H(e; 1, ¢,p,q) = h(I) + ¢ f(I,,p,9) (2.3)

is real-analytic on V() := ZxT" x B2"(0), where Z is an open, bounded, connected
subset of R™;

(Dy) Oh is a diffeomorphism of an open neighborhood of Z, with non singular Jacobian
on such neighborhood;

(Dg) the mean perturbation:

fIp,q) = (271T>ﬁ /Tn f(L, e, p,q)dp
has the form
f(I,p,q) D+ > o pz—l—q,_i_} S Ayl pl+q’pqu?+04 (2.4)
1<i<h 1<i<j<
where 04/|(p, q)|* — 0 as (p,q) — 0, where
(D3) Q= (Qq,---,Qy) verifies
min min [Q(1) - k| >0 (“4-non resonance”)

0<|kl<4 T
and
(D4) A= (Aij)lgi,jSN non singular on j:, 1.€. ,

min |det A| > 0 (“non degeneracy”)
7

14



Theorem 2.1 Letn,n € N, n:=n+n, T >n, 7 >n and assume Dy+~Dy4 above. Then,
there exists vy, Vi, 7, Ci > 0 such that, for any 0 <r < r, and 7, v, ¥ in the range

Y max{y/z(logr=")™, er(logr=t)™, r2(logr!)H} <y <y
Y2 <y < ¥ (2.5)
12 (log, (r5/72) ) < 4 <y

an invariant set &(e,r,7,7,7) C V() may be found, with measure

meas(ﬁ(&?, Y, , ’y)) > |1 - C, <"y ++ % + rﬁ/2>] meas(V(r)) (2.6)

consisting of Lagrangian tori {%,(e,7,%,7,%)}, with generalized (n, n, v, €y, 7)-Dio-
phantine frequencies v.

Remark 2.1 From the proof of Theorem 2.1, the following amplifications follow.

(D1) A Cantor set J.(e,7,7,7,%) € Z x B%(0) and a bi-Lipschitz homeomorphism

(onto)
w*<67 T, ’77 e ,3/7 ) - (@*(57 T, ’7a e ’3/7 ')775{3*(67 r, ’7a 7, ’3/7 ) :
3:(6, 17,7 7) = Oue, 17,7, 7) C D?’;Z%T)

such that

(Dg) for any v € O.(e,7,%,7,7), the embedding

3(577,'7:}/?776/7 v ) = (3](5,7’,:}/,")/,"3/, v ')7Sgo<5>7’a:)/777:)/7 v, ')7
Sp(577“7’7777/3/7 v ')7$q(€77’7,7777’?7y; ))

which realizes %, (g, 7,%,7,7) is given by

$1(e,7, 9,7, 9, v50) = 5u(e, 17,7, 3, v) + (e, 1,7, 7, 9, v 9)
Sole,r, 3,77, v30) =9 +0(e,r, 7,7, 7, v 0)
Sple, %, 7.7, vi0) = po(e, 1, 7,7, 9, v 0)

+2u(e,7, 7,7, 5, v) + 20,7, 7,7, 5, 13 0)
X COS [19 +o(e,r,9,7,9,v;0)]

Sole:m, 7,79, v 9) = ao(e, 1,7, 7,9, V5 9)
+y/2u(e, 7, 7,7, 4, v) + 20, 7,7, 7. 5 13 D)
X sin [1?} +o(e,r,79,7,9,v;0)]

(2.7)

where j.(e,7,7,7,7;v) is the w.(e,r,7,7,7; -)-preimage of v.

15



Furtheremore, the unperturbed frequencies 0h may be chosen (7, 7)-Diophantine on J,(¢,
r, 7, v, ¥) and the following bounds hold, for w.(e,7,7,v,7,), and §(e,r,7,7,7, -, *):

_ . Y Y
sup |@w. —0h| < C.min { — , — ,
3l AyA) (logy (r?/42)~ 1) 7 (logy (r®/7?)~1)™H
,7
1 a~N=. 41 C*
(logr—1)7+1 } thue
R . gl v
sup  |w. — Q] < Cimin { - ; - ;
3= 37,9) (logy (ro/42)~1)7+1 © (log, (r®/+2)~1)7+!
5 (log r—1)2T+1 ,
_ v gl ¥
sup lu] < C,—min { — ; - ;
0. (e, 7,77) X T g (logy (ro/4?)~1)7+1 " (log, (r®/42)~1)7+!

7 (log ™"
1 = 1 C* —
(lOg /r-fl)T+1 } + € ’_Y

~

sup [l < C'*min{ 572 Tyr+1 572 1yr+L
O« (g,r,7,7,y) X T™ (10g+ (T /7 >_ )T (10g+ (T /7 >_ )T

i r5/2
(logr—1)7+1 7

ap ol 5 GBI g ()
9*(5771’7»"1»’3)><’]1"" - 72 , /}\/2 7
r?(logr= )™ e(logr™)*™!  er(logr~!)>*2 }
— 7 _ ’ ’ .
i ok 3
sup o] < Cmax{r5<log+ (r5 /%) 712D i (log, (1% /%) )20
‘D*(Evrv’yﬂ/ﬁ/) xTn - ’}/2 , ;5/2 ’
r°(log r—1)2(+1) }
— ’7"
52
log r—1)7+1
sup  [po] < ¢, VEUOBT)T
Ou(e,r7,7,5) xTn 5
log r—1)7+1
swp ool < €YU (2.9)
O (e,m,7,7,5) x T 5

On the proof of Theorem 2.1 and Remark 2.1. The strategy for the proof of Theo-
rem 2.1 is the following. Firstly, we construct an isofrequencial KAM theorem (Theorem
2.2, Section 2.1) which is well suited to properly degenerate quasi integrable Hamiltoni-
ans in action—angle variables

H(J,4) =h(J) +(J, )
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i.e. , with non degenerate integrable part (9*h # 0) which splits as
h(J)=h(J)+h(J) J=(J,J)

where h (thought dominant) depends only on a part of the action variables .J and h
(thought small) depends on all the actions. The peculiarity of this theorem is the one of
choosing (the idea goes back to Arnol’d [3]) generalized (v, e%; 7)-Diophantine frequen-
cies (definition) and its smallness condition is

Fmax{M, M~ N}
C =
*(min{y/M,=5/M, R})?

(2.10)

where ¢, is a universal constant, F', M, N, M, R, are a measure of ? f, 9%h, (82h)~!, 82h
and the strenghth of .J, respectively. Next, we reduce the properly degenerate Hamilto-
nian (2.3) to the form

H = ho(J) + ehy (J) + er®(J, ¥) := h(J) + er®(J, ) . (2.11)

where hg is e—close to the unperturbed h of H. This reduction is based on averag-
ing theory, developed by Biasco et al., [7] (which carries itself a smallness condition
5 > ver/2(logr=!)™! for the diophantine constant of the unperturbed frequencies dh),
Birkhoff Theory (Appendix B) and use of symplectic polar coordinates. Taking then
F=Ce® M=C,N=Ce"', M=Ce, R=Cr? (this is due to the use of symplectic
polar coordinates), the smallness condition (2.10) essentially becomes

7’5

<
"min{~2, 42,71}

¢ 1 (2.12)

and it will be guaranteed as soon as r is small and ~, 4 are chosen not smaller that
~.r%2. The condition 4 < 7*r? is necessary to find a not empty dh—pre image of D7
Observe the cancellation of € from (2.10) to (2.12), which makes us take r as perturbative

parameter.

Remark 2.2 (Proof of THEOREM 1 and other details) The formulation we have chosen
for Theorem 2.1 is very general. Even if the parameters 7, ~v, 4, in principle, might assume
any value in the ranges (2.5), nonetheless, in order to get the tori density as large as
possible, the gamma—constants 7, v, 4 (which are related to the amount of irrationality
of the the unperturbed frequencies Oh and tori frequencies v) should be taken as small
a possible. The choice

7 = qomax {yE(log )", Yar(logr)™*, 13(logr 1))
Y =4 =0 (2.13)

9As usual, if h is real-analytic on Z,, the symbol 0 h denotes its gradient (9, h, - - - ,0r,h); the Hessian
92 is the p x p matrix with entries Bi ;b (where i is the row, j the coloumn).

17



(with a fixed 79 > 7. (logv.)""!) leads to an invariant set

K(e,r)

= &l(3,7.4)=(2.13)

with density just the one announced in the Introduction (as er < max{e? r?}):

Vv

1—1 <v+7+72+rﬁ/2>
r

v + +

Furthermore, denoting by

T, r) == 3*|(y,7,&):(2.13)

%’ — (517 3'507 3}77 Sq) | (77%’?):(2'13)

with

then, the bounds (2.8)=+(2.9) imply

sup |w, — Ohl
J*(E7T)
sup |w. — Q|
\7*(5»7')
sup [l
Qi (e,r)xTn
sup |
Q. (g,r)xTn
sup  [po[,  sup |qo|
Qs (e,r)xTm Qs (e,r)x T

wie(e,r, ) = (wil(e,r, ), ewn(e,r, ) =@

f(é‘,’l", '7’) = (.7:[(877‘, '7.)7f<p(677q7'7 ')7fp(€7r7'7 ')qu(é\’ra’v')) :

1— C’(\/E(log r )T 4 Yer(logr—!)™H
T‘2(10g ,r,—l)f?-i-l + 7"5/2

\/; + rﬁ/2>

1— Cf(\/g(logr—l)ﬂ-l-i-b + \/77)

Fir(e,r,v;0) = ju(e,m,v) +ule, r,v;0)
Fw(s,ny;ﬁ) = +0(e,r,v;0)
Fole,ryv;0) = po(e,r,v;0) + \/25*
X COS [1§+@(5,7‘, v
File,rv;9) = qole,ryv;0) + \/25*
X sin [19 +o(e,r,v; 0

e, r,v) + 2u(e,r,v;00)
]
e,r,v) + 2u(e,r,v;9)

]

~—

~—

C, max{\/g, er, 7‘5/2}
max{\/g, Jer, (logr’l)’l}
Cer®/?

C.r°?

C.(logr~H™!

18
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Remark 2.3 (A physical comment) The tori in K(g,7) may be thought of the ana-
lytic continuation of the tori

peT" ) (2.16)
(pi — poi)* + (¢ — qui)* = R? Cro? < R? < ¢r?

being crossed by the system with frequencies 1/ + (logr~')~!-close to (9h,0). Observe,
in particular, that pg, qo, 4 go to 0 with ¢, for any fixed 0 < r < r,.

Notice that if
e < constr?(logr—1)~2+D (2.17)

if 4 is not too small, for instance, ¥ = const y/z(logr™')~""! /r we than have
0. q0)| < const e(log r H)2FH572 = const r
|(Po, 40| g gl ,

i.e. , the (p,q) variables into a ball of radius r around the origin (comapare also (2.16)).
This agrees with the result obtained in Arnol’d’s FUNDAMENTAL THEOREM. When (2.17)
is no longer satisfied, we generally have a set of invariant tori for which the (p, ¢)—variables
can stay away from the origin as far as (logr~1)~!: compare (2.15) above.

2.1 A Two Times Scale KAM Theorem

In order to state Theorem 2.2 below, we introduce some useful notations and definitions.

(i) The r—neighorhood Z, of Z C R? compact and the s—neighborhood T? of T? are
defined as:

Io= DD, T={p=(on-p) €Th: [Imp| <s)}

Iez
where TY. := CP/277ZP and
D()y={I'eCP: |I'-1I|<r}

is the ususal complex open p-ball, where CP is equipped with the standard Eu-
clidean norm: |(I1,---, L) = [ > |LJ*

1<i<p

(ii) Real-analytic functions f : P C R* — R on compact sets P = 7 x T? C R*
(T C R” compact) are identified with their analytic extensions f : P,, C C* — C
over a suitable (r, s)-neighborhood P, ; = Z, x T? of their real domain.

(iii) The “sup-Fourier” norm |[/f]|, s of a real-analytic function f on P, is

[£llrs := > sup [fe(1)]e

keZp 1€,
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where |k| is the 1-norm

(ko k)= > kil

1<i<p

and

(D) = o [ A ) edg
Tp

is its k' Fourier coefficient.

(iv) If Ais a n x n matrix and 1 < p, ¢ < n the symbol AP4 denotes the p x ¢
sub-matrix of the first p rows and the last ¢ coloumns of A, i.e. , the matrix with
elements

AP = Ay gy 1<i<p, 1<j<gq.

Conversely, AP denotes the p X q sub—matrix of A of the last p rows and first ¢

coloumns.

(v) We recall that f:Z C RP — RP is Lipschitz if

Ly (f) == sup L (T) = FU)]

< 400
zrer [T = 1|

(with || - || a somewhat norm of R?) . For a Lipschitz function f, we denote by L(f)

the number / P
zrer | =T

(with respect to the Euclidean norm) and call it Lipschitz constant for f. We define
the p—Lipschitz norm of f on T

I£15% = p~" sup | f] + £(F) -

(vi) fis called bi-Lipschitz if f is Lipschitz, injective, with Lipschitz inverse, or, equiv-
alently, if there exist 0 < L_(f) < L,(f), called Lipschitz constants, such that
LoD =T <|fI)— f(I) < Lo~ T| forall ITeT.

where

Theorem 2.2 Lezfﬁ,ﬁEN,n::ﬁ+ﬁ,7>n,72‘y>0,O<2s§§<1,fCRﬁ,
I CR"ZT:=1 %1 such that

H(J,¢) =h(J) +£(J; )
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real-analytic on I, x T%, . Assume that w = Oh is a diffeomorphism of I, and the

Hessian matriz U := 0%h is non singular on Z,. Let

M > sup ||U]]
IP

M > sup U]
IP

N > sup [T
IP

N > sup || T
IP

N > sup || 7|
IP

E 2> |,

where T := U™, define

2
¢ 1= max {211n, 3(12)7“}

6 FM?L
K:=-1 _—
S og+< 2

~ Y y
p.—mm{ ,p}

-1
) where log, (a) := max{1,loga}

SMK™1 7 3pfKT+1
L:=max {N ,M~' M'}

and assume the “perturbation” f so “small” that the following “KAM condition” holds

FL
CE::C~72<1.
P

K
aW’T ’

(i) Then, for any frequency v € Q, := w(Z) N D?

(2.18)

there exists a unique Lagrangian

KAM torus T, C Re(Zsapp) x T" for H with frequency v, such that the follow-
ing holds. There exists a “Cantor” set I, C Re(Zsa5r) and a bi-Lipschitz (onto)

homeomorphism
Wi = (Wi, w4) 1 T —

satisfying

N N
-—1 _ ——1 <257~E O e ¢ <257~E
nglw* DTS HhE, S};F'”* W =25p
sup |0, — 0| <2°MpE , sup|w, — @] < 25MﬁE

7. T

*

it ow—id|R  <ME, T, =wT(DIE)NT.

P Ly 4,7 VAT
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such that T, is realized by the real-analytic embedding ¢, = (¢u1, duy,) given by

bur(V) = L(v) + v(v,9) .
{@Am:ﬁ+m%m 9eT (2.23)

where I.(v) == w; (v) and v = (v,0), u= (u4,0) are bounded as

Ep, v, )| <2Ep, |urvv9)<2Es (2.24)

(1) The measure of the invariant set K = ¢q, (T™) satisfies

meas(l' x T™\ K) < (1 + (1+ 27E)2”> (1 +(1+ 210E)”)meas(1' \Zy 5. % T”)
+ (14 (1 +27E)™)(1+ 2"E)"meas(Z,, \ T x T")
+ (14 27E)*meas(Z,,\ T x T") . (2.25)

where py = 2°Ep/(1 — 2'°E), po = 4Ep/(1 — 27E).

2.1.1 Construction of the Approximating Sequences

The proof of Theorem 2.2 is obtained by infinite iterations of real-analytic symplecto-
morphisms, converging over a Cantor set. Each iteration is based on Lemma 2.1 below.

Let n, 1, n =n+n € N, Z C R" x R™. Following Poschel [30], we define the P—norm on
1, x T} as
|<(]7 ]>7§0)>|7D = maX{|I|1v |]|17 |90|00} )

where, as usual,

o= > 1L, = 3 1Ll |¢lo = max |g;]

<3<
1<i<na 1<i<h lsisn

I= (fl, e ,fﬁ), © = (@1, -, pn). We also introduce the matrices
W2 5, Was (1 < p < 2n) whch are defined as the (2p) x (2p) diagonal matrices

WEs = (a7 tid,, 87 id oy p) , Wap = Was = (o tid,, B7tid,)

«
where id, is the identity matrix with order p.

Lemma 2.1 (Averaging Theorem) Let H(I,p) = h(I) + {(I, ) real-analytic on
Prsys =1L, xTh . Assume that w := Oh verifies

Qi

or k=(kk)eZ'xZ"\N k40, |kl<K

|W(I>'k|2{ for k=1(0,k)€{0} xZ"\ A O<VA€‘§K

joN
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where A CZ". If
1 ar
|y sas < = — 2.2
6 ee < 5 o (2.27)

where a := min{a, &} and Ks > 6, then, there exists a real-analytic, symplectic coordi-
nate transformation
v Pr/2,§+s/6 — Fr5+s
such that
HoW(I,¢) =h(I)+g(I,¢) + 1.1, )
with g(I,¢) = Xren ge(1)e* ¥ is A—completely resonant and

2K _
lg = follrfzress < =N rs s IEallrzirors < €5 Ellsre

where fo := P\Tk f. Moreover, the following bounds hold, uniformly on P2 54s/6

5 . 2 KHer S+s
W iWes(W —id)|p < —————— | 2.28
| a/a,1vVr, ( 1 )|7D = ar ( )
and
- I 2K
| a/a,l(Wr,sD\Ier,sl — idg)[lp < or Elr51s - (2.29)
where || - ||p denotes the operatorial norm induced by |- |p 1° .

Lemma 2.1 is a useful remake of the Normal Form Lemma of [30]. For sake of complete-
ness, its proof may be found in Appendix A.

Lemma 2.2 (Iterative Lemma) Let 0 < 4 < 7, Z Cc R", 7T C R" compact sets, put
T:=7x17 and let

H(J,4) = h(J) +1(J, ¥)
real-analytic on I, x T%, ., with 5 > 0, 0 < s < 1. Assume that w := Oh is a diffeo-

7i,

morphism of I, with Jacobian matriz U := 8*h non singular on Z, and w(Z) C D%

Let

M > sup |U]|
Zp

M > sup ||U["’ﬁ]||
Zp

N > sup||T|
I,

N > sup || T
Zp

N > sup |||
7

P

F 2> |54

Le., [|Allp = sup._(; ), |sp=1|42]P
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where T := U™, define

and assume P
2°nE :=2"n—r < 1. (2.30)

Then, a set T, C ZL;s3p, two numbers py > 0, 0 < s; < 1 and a symplectic analytic
transformation

Vo Ty, xTo, — I, x Ty,
(I+7()0+) - ([790> = \I](I+7 90+)
may be found, putting H into the form
Hi(Li,04) =Ho W (L1, 04) = hy (1) + 5. (L, 04) (2.31)

where wy = Ohy is a diffeomorphism of I.,, with Jacobian matriz Uy = 9*hy non
singular on T, such that wy(Zy) = w(Z). There also exist suitable constants

M, > sup [|U4]]

+p+

My > sup [UTY)
Tip+

Ny > sup || T4

Tip+

> sup ||
Tip+

Ny > sup | T/

Tip+

3 |
V

Fo 2 Il ps 5y
where Ty := UL, such that, defining

6 FM2L\7!
S+ Y

- . gl gl

= min =
= {3M+K1+1 3N KT p*}
L, :=max {N, ,MII,MJ:I}
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then,

B, =ttt o g2 (2.32)
P+
More precisely:
(i) The numbers py, sy and the constants My, --- may be taken as

p+ =%

s =2

M, =2M

M, =2M

N, =2N

N, =2N

N, =2N

F _ F2$2JM2

so as to satisfy

(i1) the set I, may be obtained as T, =1, (I), where
(i1i) 1y : T — T, is an injective “isofrequency map”, i.e. , uniquely defined on I by
wroly=w on I
which satisfies

N/Nsup|ly —id|, N/Nsup|l. —id| < 2'Ep, Lp(l.—id)<2%E; (2.33)
A A

(iv) the map ¥ satisfies
(W3, Wis(Py —id)|p < E (2.34)
and

|Wz, (W DO Wit = by)| < 2B (2.35)

Proof. We proceed by steps.
Claim 0.: H s put into the form

Hy (I, o) = HoWay (L, 1) = h(l3) + g(14) + £(Ls, 1) i=hy (L) + £.(15, )

where

sup [g — (f)| < (2.36)

Zss2

r
16
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and

141157254576 <
by means of a real-analytic symplectomorphism V., defined on 1 xXTgs/6 and verifying

(W3 aWoes(Way = I)[p < B
“ $/771(WT73D\113"WTT51 - ])HP < 25E . (238)

Proof. We are going to construct the transformation W,, by means of application of
the Averaging Theorem (Lemma 2.1) to H, on the domain Z; x Tg, 5, with the trivial
resonant lattice A = {0} € Z™. We first verify the “non resonance” assumption (2.26)

out of A = {0}. By assumption, for any I € Z, w(I) € Djjgw which means

itk
I) -kl >
(D) |_{g -

‘ T

(k k) with k#0
(0,k) with k+#£0

for any k € Z™ x Z™ \ {0}. In particular, for 0 < |k| < K and I € Z,

2 if k= (kk) with k#0
I) -kl >< KT A N
(D) |—{Ig7 it k=(0k) with k#0

Let, now, I € Z;. By definition, there exist I, € Z such that |I — Iy| < p and we find
(recall that we have prefixed the 1-norm in 7)
w(l) —w(lo)|es = max wi(1) — wi(Zo)]

sup ||Owl|[1 — Io]
I,

IN

IA

Mp
Hence, if k = (k, k), with k # 0 and 0 < |k| < K
w(I) - k| = |w(lo) - k| = [(w(I) — w(lo)) - k|

> L~ [w(l) = w(lo) K]
Y ~
> — - MK
2 2o p
2 v
S 20 _ -
= 3Kk ¢
. ~ Y . . 2 . 2
< — . = = <
having used pA_ SR Similarly, taking k& = (0,k), with 0 < |k| = |k| < K and
using p < AL, we find that
SMK™1

) s
\w(f)-kyzgl::@ forany I€Z,, 0<|kl<K.
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But, then, the “smallness condition” (2.27) with r = p is also verified in Z;, because,
using
.2y 27 . o~ p
= - - — 3 >92K M, MYp>2K~—
o mm{gKT’ SKT}_ Hlln{ ) }P_ I’
we find that (2.30) is stronger:

7l o5+ K FL
2T < — <1
ap p
Therefore, Lemma 2.1 applies (as also, trivially, Ks = 6log, (FM?L/+*) > 6), and H is
put into the form
H+ ::Ho‘ljav :h+g+f+ = h++f+

by means of a real-analytic symplectomorphism W, defined on Z;/,, x T%, /69 where g
is a {0}—completely resonant (which means that g is a function of I only) real-analytic
function, suitably close to fy = ProyTk f = (f),:

PK F2?], I
—fol = llg — foll /2,546 < —=If]|750s < 2* <
i_g‘/g ‘g 0| ”g 0”[’/27 +s/6 = Oéﬁ H Hp,s—l—s = ,62 =16
and f, is “small”:
F2M?L

14 ll5/2.51s76 < 67KS/6HfHﬁ’§+S < e Kslbp —

v

The bounds (2.38) are an easy consequence of (2.28), (2.29) (recall 4 < ~):
_ 2K lflsrs _ FL

|W$/771Wr7s(\11av - I)|73 = |W§/&,1Wr,s(\1}av - ])|73' ~ < ~ L
ap p
and
W3 s (Wes DU W, = Dllp = [1Wiay (Wes DY W = D)
2K
S T~ Hf||r,§+s S 25E )
ap

Claim 0 is thus proved.

Claim 1: the Jacobian matriz Uy = 0*h. is non singular in Ty, and satisfies

M, :=2M > sup ||U|| (2.39)
€T,

M, :=2M > sup ||UJ[:”L}|| (2.40)
IGIp/4

Ny :=2N > sup ||T4]| (2.41)
IGIp/4

N, :=2N > sup |7 (2.42)
IGIP/4

N, :=2N > sup |7 (2.43)
IGIp/4
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where Ty := U .
Proof. : The bound (2.36) gives

17
sup |g| < sup|fo| +suplg — fo| < — F', (2.44)

/2 /2 /2 16

whence, applying twice the Poschel’s General Cauchy Inequality (see Appendix D),

supz, 109l 17/16 F F 1 1 -1
sup ||0? g|| < 50/% < <27 <<min{M,M,} 2.45
A e TN O R A TAS Ny G

which suddenly implies

sup Uy || = sup |0*h || = sup [|0°h + 8%g|| < sup [|0*h]| + sup [|0%g|| < M + M = 2M
Zs/a Zs/a Zs/a Zs/a o

Similarly, one finds A
sup | U] < 20
p/4

But (2.45) also implies

sup |07 g(0°h) || < sup |0 sup [[(8h) 7

Zs/a Zs/a Zp/a
< sup 0% g||N
o
<1 (2.46)
- 2

so, the matrix
id +0%g(0%h) ™!

is non singular on Z;/4 with

0*hy = 0%h + 9%g = (id + 0°g(9”h)1)d*h

(id + 0% g(0? h)l)lH <2.

This implies that

is non singular on Z;/4, with

. 1\ —1
sup [ 74| = sup (02 h) 7| = sup|(82h) 7! (id + 02 g(0? 1)) H§2N (2.47)
Zs/a Zs/a Zs/a
Similarly,
sup [T < 2N, sup [T < 2N,
Zs/a 5/4
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Claim 2:The new frequency wy := 0hy is a diffeomorphism of Ts;/16-

Proof. We want to prove that, if I, I € T5;/16 verify wi(I;) = w4 (I'), then, I, =I'.
Let I}, I' € Z;/5 verify

w(ll) +0g(IL) = wi(ly) = wi(l}) = w(ly) +0g(ly) -

Then,

&

w(I}) = w(I1)] = 98(I,) — dg(L)] < 2sup|dg| < 2'= |

o

S

hence,

L= I = o7 (1) = @D < sup 06 le(12) —(L)] < 2 < &

The previous inequality implies that the segment s(I, I’ ) from I, to Z7_ lies interely in

Z;/4- So, let T the curve from w(14) to w(I),) defined as 7 := w(s(Iy, I,)); let F := dgow ™

and observe sup,,z, ,) [|0F|| = supz, , [[0°g(0h)~"|| < 1/2. Then,
0 = Jwi(ly) —we (LY
= |w(ly) —w(l}) + Flw(ly)) = Flw(I}))]

> () —wlI)| - | [ 0P () - dq|

(L) — (1)

v

which implies w(I}) = w(I’,), hence, I, =TI,
Claim 3: The new frequency wy maps L;/3o over w(L), i.e. , wi(Z;/32) 2 w(T).

Proof.: we prove that, for any Iy € 7, wi(Bj3,(lo)) 2 w(lo). If [ — Iy| = r < p/32,
then,

lw(I) —w(lp) +dg 0w (w(I)) — dgow™ (w(o))]

(1= 19°g(0h) ) lw(I) = w(Io)]

() — ()

jwi (1) — w4 (fo)]

(AVARRNAY]

v

1

I—
2N| Iy
r
2N

hence, w4 (B})3,(10)) 2 B any(w+(Lo)). We prove that

w(lo) € BYeany(w+(Lo)) -
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Using the KAM condition (2.18) and General Cauchy Estimate (for sup; |0g|)

17 F p
Iy) —w(ly)| = |0g(ly)| < og| < — —
- (To) = wdo)] = 06 lo) Slzlp| &l 16 p/2 = 26N

which concludes the proof of the Claim.

Claim 4 For any I € I, equation w.(I") = w(I) has a unique solution I' := 1 (I) =
witow(l) € I;50 satisfying (2.33) .

Proof. Existence and uniqueness of the solution I’ = [ (I) of w,(I") = w(I) are conse-
quences of claims 2, 3. We prove (2.33). Let 0 < r < 7 < 3p/16, with 7 so small that

w(Z,) € wy(3Zs6). For I € I,, we find, as wy is a diffeomorphism of Z, and General
Cauchy Inequality,

2N (17F/16)

i (@) = w3 @ (D)] < 2N (1) —w(D)] < 2N sup |9g] < =27

Hence, due to the arbitrariness of r, for I € Z = Ny per Ly,
34]\{ F <ot NF

3p p

L)~ 1| <

Similarly,

(1)~ 1| < 2"

Also, using

DIy = D[(w+dg)~" ow] = [id, + (0°h) "' 0% "

we find
sup [ D[(w +9g) ™" ow] —ida|| = sup||fid, + (8°h)7'0%] 7" —id, |
Ir Ir
_supg, [(0%h) 0%
— 1—supg, [|(9°h)~10%]]
< 2sup||(0°h) 7%
T
< 2°F.
which says

ﬁ'p(w;l ow—1id) < 2°E on I,

and implies, due to the arbitrariness of r,

Lp(l, —id) < 2°F .
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Conclusion.: Let I, := I,.(T), p+ := p/8, s4 := s/6. By claim 4, T, C I;/3, so, the
following inclusions hold:

Zip, CLspza C Lspne C Ly

Hence, U, := V|7, L xTr, 18 well defined and has the desired properties, upon recog-
S SJF
nizing that

F,M2L 11N\
BBV g s LYY,
2l 2 \12

In order to do that, we first prove

10K < Ky <12K . (2.48)
We find
20+
FLM? FLM? | F LM? < 1 <S>Q(T+1)FL < 2F < 1
O — — =
S R i G =9 \6 2 T 0.62.25 =062 28
which gives
FLM2\ ™
210 < 1= ( . ) : (2.49)
g
namely
1
108 log2 < 9K <2K
S 8
implying immediately (2.48), after using
6 6 108
K. =—log, (2*/8) = —log (v*/8) = 12 K — — log 2 .
St S S
Now, using
K 96 log 2
YZ3ME™p, 423ME™, SE<12, K> B2 g<s<1,
s
we find
FLM\’ FLM\’ FLMM\’
E, < max{128 ( . ) . 648 ( - ) K20 648 <> KA
P Y vy

IN

2 2 2(t+1) 2 2(t+1)
a4 128 FL o[ FLY K o (FL K
9K2(T+1) 152 ) 152 K4(7'+1) ) ﬁQ KQ(T+1)K2(T+1)

2(7+1) 2(7+1)
12
max { 2 (5 Y B
9 \96log2 8log 2

E? .

IN

IN
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Similarly,

o 5
P+ = m1n{,0+, 3N Krrl ) 3M+KT+1}

¥ Y v
’ 24MKT+1 " 24MKTH T 6MKTT 6MKT“}

I
=
=

/—’H/—’H

gl Y
T 6MKTY T 6MKTT

T+1min ) ol ,3/
" 3MKTH T 3MKTH
T+1

p

—
[~ &l

N|— N —
~— ~—0—— 0T T

7/ N
—_
A

(use (M, M) =2(M, M), 12K > K, > 10K). This concludes the proof.

2.1.2 Lemmas on Measure

We recall the following classical results on Lipschitz functions and measure theory, re-
ferring to [16] for their proofs.

Lemma 2.3 (Kirszbraun Theorem) Assume A C R", and let f : A — R™ be Lips-
chitz. There exists a Lipschitz function f: R™ — R™, such that

i) F=f on A;
ity L(f)=L(f) .

Lemma 2.4 Let A C R" Lebesque—measurable, f : A — R™ Lipschitz (bi-Lipschitz).
Then,

meas((f(A)) < L(f)" meas(A)
L(f)" meas(A) < meas((f(A)) < L(f)" meas(A)) .

2.1.3 Proof of Theorem 2.2

Here also, we proceed by steps. Claim 0. (“construction of the sequences”): For each
1 <5 €N, H s analitically conjugated to

real-analytic on P; = I;,, x Tg,, , where:
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(i) s; = s/6’ and, letting

M; =2M
M; =2IM
N; =22N
_ -1 -1 ‘
Lj_max{Mj , MY NJ}
I F? | Lj_M?
j= )
F;L; M?
. 6 JHiM
K; = o) log+( 2 )
5. — mi o] ol )
p] ‘= min 3MjK‘{'+17 SM]_K‘{'+17 p]}
J J

then; P = ﬁj—1/8;
(i) I; C Tj1s, 30 is obtained asTj = I; (Z;—1), where l; is a Lipschitz homeomorphism
satisfying

Wwj © lj =Wwj-1 0on 1};1

N N 7.
max { — sup |lj11 — idg|, —sup |l — ida]p < 2'5,E (2.50)
N 1z, N 1

Lp(lipy — id) < 2BEY = (2.51)

(111) w; = Oh; is a dfﬁeomorphism of L, with non singular Jacobian U; := 0°h; such
that Wi (Ij) = D,TYL:,?J N W(I) y
(iv) f; satisfies
||fj||ijj7§+5j < Fj

(v) The real-analytic symplectomorphism ®; is obtained as ®; = WUy 0--- o V;, where
Uy . P — Pr1 (k> 1) verifies

k—1
sup [ W2, Wia (W —id)lp < (5)  E* (2.52)
k

sup |W5s DU W5 — ido |, < 2°

Proof. Starting with
HOI:H:h+f, PO::IOpXTgL+5a

where Zy := {I € T : w(I) € D7 _} and, labeling by “0” the quantities relatively to Hy,

VYT
apply (inductively) the Iterative Lemma (Lemma 2.2) to

H]' :hj+fj y P]’ = ijj X T?Jrsj ) jZ 0
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and label by “7 + 17 the “47—quantities of the Iterative Lemma. Next, observe that
(2.53) is a consequence of

ok—1

Sup (W2, Wi (W —id)[p < E
k

sup Wit DWWy — ido | < 2E2
P »

where Wiy := W5, | 5 ,, using

_ Pk—1  Sk—1 1\t
5.5 1 = , —— :<>
R e

_ 7 s 17k
Wi W5 = max{ A } < 212y
Pk—1  Sk-1

Claim 1. (“construction of Z,”): The sequence of Lipschitz homeomorphisms on Zy
gj = l] @) ljfl ©---0 ll (254)
converges uniformly to a bi-Lipschitz homeomorphism { = (¢, é) satisfying
N _ N -
—supll —id|, =sup|l—id|<2°pF 2.55
Fouli—id|, Tsupli—id| <2 (2.55)

Lp(l—id) <2"F (2.56)

Furthermore, the following holds:
sup |[(; — (] < 25E? (2.57)

Zo

and

T, = U(To) € Zos2m; ﬂ ( N Ij/’j)

Proof. Using (2.50), the inequality

i—1 i=1 o\ 1
sup [6; — 4] < D supllga — 4] <255 ) () E? (2.58)
To 1=j To 1= \8

proves the uniform convergence of ¢;. Letting, in (2.58), i — +o00, we find !

‘e +oco 1 l—j ol
sup [¢; — €] < 2% > <8> E
Zo l:j

ol _ 97 > —jforanyl>j
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4~ 1727 WX\ 2l —27
< 2B L(5) F

I=j
_+oo E k
< 298 3 (5)
S 25ij2j
< pj

which also holds for 7 = 0, with the convention ¢, := id. Eq. (2.59) implies

1. C ﬂszj :
J
In particular, (2.59) with 7 = 0 gives
sup [0 —id| < 2°pF .
T

which also implies

I* C I032,5E .

(2.59)

(2.60)

(2.61)

With similar techniques, but using (2.60), one proves (2.55). We prove that ¢ is injective

onZy. If I, I' € Z are such that ¢(I) = ¢(I") = ., then, by (2.59)

w(I) — w(I')] |w; (65(1)) — w;(6;(1")]
M; [ 6;(1) — ¢;(1')]

IA N CIA

2M 27 p; B

M; (|6;(1) = (D) =+ 16;(1") = £(I)])

which gives w(I) = w(I’) (as the r.h.s goes to 0 as j — o0), hence, I = I'. We prove

(2.56). The estimates (2.51) for Lp(l;4; — id) give 2

J +o0o
Lp(lip—id) <J[A+m) -1 < JJA+m) -1
=1 =1
2Write
Tjy1 i= €j+1 —id = (lj+1 - ld) o (ld +ij) + 1,
to find

Llizen) £ LU —id)(1+L005)) + £0i5)
= L(i;) (g(sz —id) + 1) + L1 — id)
Iterating the above formula, we find
L(ij41) < Lljpr — id) + (L + L4 — id)) L — id) +
b Ll — id)) - (1 £(0 — 1d))L(0 — id)
j+1

= JJa+c-id)) -

k=1
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where the infinite productory [T;£°(1 + j1;) converges, being bounded by

;ﬁ:(l + ) = exp —ZZ:bg(l +/u)]
< exp -zl:m]
= exp _QSE Z(E)l]
< exp TQQE} |
< 1+2"YE

(2.63)

having used the elementary estimate e* < 1 + 2z for 0 < x < 1. In follows from (2.62),
(2.63)
Ep(g - ld) S lim sup Lp(€j+1 - ld) S 210E .

J

Claim 2. (“definition and bounds for w.”): The bi-Lipschitz homeomorphism defined on
T, by w, = (04,0,) := wo 7! is onto on D::;T Nw(Z) and is subject to the following
bounds

—_— — N
sup |w, — 0| < 2°MpE sup lw; T —w | < 2°—jpF
z, T, N
N 51 ~ — SN
sup |w, —w| < 2°MpE sup jwy! —w 1|§2NpE
I* *

i,

Proof. Trivially, v € D.’5 _,

then, I, := o w™!(v) is its (unique) preimage, with

€
*
—
—~
A
~
|
&
L
—~
R
-
I

_ S . N
low (v) —wi(v)| <sup|l —id| < N255E .

To

Similarly,

A

— — N
W @) — o (w)] < T 2E

*

Using (2.55) (recall N, N < N), we find

|©x (L) — @(L)] (1) = w(e(I)|
M I — (1)

BMpE

VANVAN
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The proof of R
(L) = (L)| < 2°MpE

is similar.

Claim 3. (“construction of ®”): The sequence of real-analytic symplectomorphisms, de-
fined on Pj = ijj x Ty,

O, =Vio0---0V;
converges uniformly on P, =1L, x T2, to an Z,—family of real-analytic embeddings
I.eZ, — oI, ): T" — Re(Z,) x T"
where ®(I,,0) = (;(L.,0), P,(L,,V)) is given by

O(1.,0) = L + a(L., V)
®,(1,,9) =0+ b(I,, V)

with a = (a,a), b verifying

sup |a| < 21Eﬁ , sup |a|<2Ep, sup [b|<2FEs (2.64)
T, xTn Y L. xTn Z.xTn
and 9 — ¥ + b(I,, V) a diffeomorphism of T™, for any I € Z,. Furthermore, the rescaled
map )
O :=W;,Po Wﬁfsl D P T x sTITE = T T, x sTITE
18 bi—Lipschitz, with i}
Lp(®—id) <2'E .

Proof. The bound (2.53) implies that rescaled maps

R ~ ) -1 . ~—17 —1mn -1 —1mn
Q= W5,Q0 W50 p Ly, xs Ty, —r I, xs Ty, ,

are bi-Lipschitz on p~'Z;, x s7'T% (hence, on p~'Z, x s~ 'T"), with

S+,
Lp(®; —id) < 2'E < ; : (2.65)
because
Lp(®;—id) < Sup IW5.s D®;W;; — idaallp
= W DUy --- DYWL — idoy|p
< ﬁ(l +q) — 1
yoo
< JJ@+w) -1
< 22}3 (2.66)
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having used

IN

IN

IA A

exp

exp Z log (1 + §k)‘|

Hence, the uniform convergence of ®; on P, easily follows: if ¢ +1 < j,

sup |W;s(®; —
Z«xT?

Q;)|p

having used (2.52), for which

sup ‘W§L/771Wﬁ,s(qji+1 -

Z.xT?

IN

(2.67)
sup [W5®@i(Vipr0---0W;) — W; ,Pilp
L. xT?
sup [ B;(WpeWig1 00 W)) — (W;0)|p
L. xTY
Lp(®;) sup [W(¥ipg0---0W; —id)|p
ZuxT?
i1 N
(1+27'E) 3 6) E? (2.68)
=1
Jj—1 1\ ! .
.o\pj—id)ypgz<6> E? i+1<y (2.69)
=i

Denote then by ® the uniform limit of ®; on P,. Taking, in (2.69), ¢ = 0 and letting

7] — o0, we find

max{:y~ sup |®; — id g,
VP T.xT?
= (W3, W5s(® —id)|p
+oo 1 l .
< 2(5) 7
i—o \0
< 7 <2k,
=35

38

1 1
— sup |®; — idy|, — sup |P, — idn|}
P I,xT2 S I, xT2

(2.70)



which clearly implies (2.64). But (2.70) also implies that, for any fixed I, the analytic
map

¥V — D (1, 0) =9+ b(1,, V)
is a diffeomorphism of T". In fact, by General Cauchy Inequality,

2
sup|819b|§TSE<1 as §>2s and E<1.
T xTn S

Finally, by (2.65), the rescaled map
$:=W;,®o0 I/Vﬁ_s1 D T T x sTITE = T, x sTITE
is bi—Lipschitz, with

Lp(®—id) < limsupﬁp((i)j —id) <2'E <

J

DO | —

Claim 4. ®(1,,T") is a Lagrangian torus with frequency w,(I.) for H.:

Proof. We have to prove that the H-flow ¢!l (@(I*,ﬁ)) of a point ®(1,,9) € ®(L,,T")
evolves as

O (DL, 0)) = (L9 +w.(L)t) >0,

We split |6} (®(1.,0)) — ®(L, 9 + w.(L)t)| as

6 (@(L,9)) = O(L, 0 +w. (L)1) < |61 (®(L,9)) — &1 (2;(L.,0))]

+ 161 (®5(L,0)) = @;(L., 0+ w. (L)1)

+ P, (L, 9+ wi(L)t) — P(L, ¥ + wi (L)1)
Due to the uniform convergence of ®; to ® on P, and continuous dependence on the initial
data, both |®;(L., 0 + w.(L)t) = (L., 0 + w.(L)1)| and |¢f1(®(L.,)) — of(®;(L.,0))]
go to 0 as j — oo. We prove that ]gth(CIDj(I*,ﬁ)) — O;(1,, Y + wi(1)t)] also goes to 0,
which will conclude the proof. As for the canonicity of ®; on P;,

O (@(1.,9)) = @;(&r” (L., 9))

with

So, using the Lipschitz property for the rescaled maps i)j = W3, oo Ws, on p I, x
57T, with Lp(®;) < 1+ 27F, we find

01 (25(1,0)) = @510+ wa(L)D] = [25(&(L,9)) = B5(L, 9 + (L)1)
= Wy (@50 Wig (00" (1,9))
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®; 0 W, ) (L, 0 + w.(L)1))]

HWp,aH(l +2'E)

(Wia (61" (1, 9)) = Wya (L, 0+ w.(L)E))|
Wsoll(1+27E) W5 |

617 (1, 9) = (1,9 + wa(1)D)]

IW5oll(1 +27E) W5 |

(L) = L, (1) = (0 + wi (L)1)

where we have let (Ij (1), goj(t)) = qb?j(l*,z?) the H;—evolution of (I,,7)). Representing
(1;t), ;1)) as

X I X IAN X IA

{ L(t) = L = Jy 0, H;(1;(7), 4(7))dr
pi(t) =0+ 5 OrH;(I;(7), 0 (7))dr

we find, by General Cauchy Inequality,
t
L6 =Ll = | [ 0H,(), ()
t
@fj j
< / 01517 0, dr

< Jt—>0 as j — +oo (2.71)
Sj

Now, letting I := ¢7(I.) € Z and using w;(¢;(Iy)) = ws (L), we find

ost) =0 — L) = | [ O (1(0), ()T — (L
= | [ (o), 91(7)) — (L)) dr
= | [ (L) + Ot (), 5() — (L) dr
< /M )+ Ot (1), 95(7)) — wa (L) dr
< [ lenllie) — (L) dr + [ fos(L) = wy(s()) dr
+ /|af )| dr

(2.72)

where

t M F;
° [0,2] Sj
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by (2.71);
t .
/0 |wj(L) = w;(4;(Lo)) | dT = |w;(£(1o)) — w;(€;(Lo))[t < M; sup (=Lt < 2°pME*'t — 0
0
by (2.57), and, finally, by General Cauchy Inequality,

t F.
J) 105, il dr < 2t = 0.
J

Claim 5. The “invariant” set K := ®(Z, x T™) satisfies the measure estimate
meas(I x T™\ K) < (1 (1+27E) 2”)( + 2" )meas(I\IO X T")
+ (14 +27E)™)(1+ 210E )'meas(Z,, \ T x T")
+ (1+ 27E)2”meas(1p2 \Z x T") :
where py = 2°Ep/(1 —2'°E), po = 4Ep/(1 — 27F).

Proof. Let p; = 2Ep/(1 — 21°F). Extend the Lipschitz function ¢ — id : Zy — Z, to
a Lipschitz function ¢, — id on Z,, with the same Lipschitz constant L£(£,)(¢ — id) <
219F (this is made possible thanks to Lemma 2.3). Then, /. is a bi-Lipschitz extension
(hence, injective) of £ on Zy,, with lower Lipschitz constant £_(f,) > 1 — 2'%E. This
implies that /. sends a ball with radius p; centered at I, € Z; over a ball with radius
(1—=2"E)p, =2°Ep > 25Ep > |((Iy) — Iy| centered at (1), so as to conclude

le(Zop,) D Ip -
Then,

IN

meas (Io \I*) meas(le(Zop, ) \ )

(€e(Zop) \ £:(T0))
(ﬁe Zop, \ To) )

L))" meas(Iop1 \Ig>

E(Z)"meas(l'p1 \Io>

ﬁ(ﬁ)”(meaus(Ip1 \I) + meas(I\Io))

meas

IN

meas

IN A

IN

and, finally,
meas (Z \ I*)

IN

meas (Z \ IO) + meas (IO \L)

(1 + E(ﬁ)")meas(I \ IO) + E(f)"meas(Ip1 \I)

< (1 + (1 + 210E)”>meas<1 \ Io) +(1+ 210E)”meas<Ip1 \I)
(2.73)

IN
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On turn, using }
Supﬁ—lz*Xs—lTn |¢) — 1d| S 2K
L(®—id)<2"E

we can repeat the above argument, with
(@, K=®(5 'T, x s 'T"), p "I, x s'T", 2n, L(D),7 = 2°E/(1 — 27E))
replacing (¢, Z.,Zy,n, L({),r) and we find
meas(p'Z x s T \K) < (14 (14 27E)*)meas(p T\ (5 'Z,) x s'T")

+ (14 27E)™meas((5~'T): \ (57'T) x s~ 'T") .

Hence, rescaling the variables,

meas(I x T™\ K) < (1 +(1+ 27E)2”)meas(I\I* X T")

+ (1+ 27E)2”meas<1p2 \ Z x ']I'") p2 =Tp

Finally, taking into accunt (2.73), we find the result.
Conclusion of the proof of Theorem 2.2. Take

sz/ = Q)(w*_l(y)’ )

and recognize that

— ,1 —
l=w, ow on Ty=1I4~

has Lipschitz norm bounded as in (2.22), by (2.55) and (2.56).

2.1.4 Nondegenerate KAM Theorem via Theorem 2.2
Taking, in Theorem 2.2,
y=4, M=M, N=N=N
gives a standard (nondegenerate, isofrequencial) KAM Theorem:
Theorem 2.3 Letn e N, 7 >n, v>0, Z CR" compact and let
H(J, ) = h(J) +£(J, ¢)

n

real-analytic on I, x T, where w := Oh is a diffeomorphism of I, with Jacobian matrix
U := 9*h non singular on I,. Let

M > sup ||U||
Iy

N > sup ||T|
I/J

F = fllps
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where T := U™, define

2
¢ 1= max {ZHn, 3(12)T+1}

I\
72) where  log, (a) := max{1,loga}

and assume the “perturbation” f so “small” that

(i)

(i)

FL

Then, for any frequency v € Q, == w(Z) N D7 ., there exists a unique Lagrangian

KAM torus T, C Re(Zgapr) x T" for H with frequency v, such that the follow-
ing holds. There exists a “Cantor” set I, C Re (Zsz;r) and a bi-Lipschitz (onto)
homeomorphism

wy L, — €,
satisfying
sup [w;' —w <25 FE, suplw, —w| <2°MpE
O, T.
o, ow —id|}2  <2YE,  I.:=w{(Dy)NT.
such that T, is realized by the real-analytic embedding ¢, = (¢u1, Puy) given by

ou1(9) = L(v) +v(v,9) o
{d)w(ﬂ):ﬁ—l—u(y,q?) veT”,

where I,(v) == w;(v) and v, u are bounded as
v, )| <2Ep, |u(v,d9)|<2Es
The measure of the invariant set K = ¢q, (T") satisfies

(
meas(Z x T"\K) < (1+(1+27E)*")(1+ (1 +2"E)" )meas(Z\ Z,, x T")
+ (14 (1427E)™) (1 + 2"°E)"meas(Z,, \ T x T")
+ (1+ 27E)2”meas(1p2 \Z x T") :

with p1 = 25E5/(1 — 21°E), p, = 4Ep/(1 — 27E).
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2.2 Properly Degenerate KAM Theory (Proof of Theorem 2.1)

The aim of this section is to prove Theorem 2.1 as an application of Theorem 2.2.

We quote a refined averaging theory by Biasco et al ([7], ¢ full version” on p. 110), in
which statement the “sup—Fourier” norm of

f PPy 4 ka-[p7 lktp

(with f; the Fourier coefficient of f), real-analytic on Uz x T% x E, x F, , with U C R",
E, FF C R™, is defined as

||f||F,§,rp,rq = Z sup |fk|€‘k‘§

k UrxErpxXFrg

In order to avoid confusion with other parameters here introduced, we denote by a, &, 7,
5, d the parameters o, ¢, 7, s, d of [7], but we do not change the name of the dimensions
(n,m) (which correspond to “our” (n,n)) thereby used, letting the reader be aware not
to confuse [7]’s n (which corresponds to “our” n) with “our” n =n + n.

Proposition 2.1 (Fast Averaging Theorem) Let H := h(I)+ f(I,,p,q) be a real-
analytic Hamiltonian on Uz x T% x E, x F, . Denoting w := 0 h and ¢, := e(1+em)/2,
suppose that

lw(l)-k|>a, foral 1€U-, keZ", k¢A, |k<K,
where A is a Z"-module, K5 > 6, and

ad

m s CZ: mln{ﬁ?, Tprq} . (275)

€= HfHﬁngpﬂ'q <
Then, there exists a real-analytic, symplectic transformation

U U X ’]1"’;/6 X B jpX F.p — UsxT{xE, xF,
I',¢'\p'¢d) — Lepq =9I ¢. 0 ¢) (2.76)

such that
H,.=HoV=h+g+ f.,

with g in normal form:

9= gl'p.q) e . (2.77)
keA
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Moreover, when the projection of W(I',¢',p',q") onto the I-variables is denoted by
I(I', ¢ 0. q), ete,

g = PaTk fll7/2,5/6,00 /2,702 < 3272252 < Z ,
| Fellr/2,5/6:0p j2.0q 12 < o K5/6 29;7252 < e Ks/6
max {s |I(I',¢ . p',¢) = I'| , 7 leI',¢.p.q)— ¢,
rg (I, 0d) =l la' 0 d) —d[} < 9; . (2.78)

We are ready to begin our proof.

Let
H(L,0,p,q) = hMI)+e f(L,¢,p,q)

a real-analytic on Z,, x T, x B(ro)y, X B(rq),, Hamiltonian, where B(r) = B#(0) and ry <
7/2. We assume that pg, 7o are so small that f preserves, on Z,) x T x B(79)r, X B(70)ry,
the form

2 2 2 2
PTG PTG
> AP,

Fe hin+ ¥ ontrs ! S

2 2

1<i<h 1<4,j<h

and the non-resonance, non-degeneracy assumptions, i.e. ,

min0<|k‘§4 ianpo |Q . ]{5| >0 ,
(2.79)
infz, [det A| >0 .

We proceed in 6 steps.
Step 1. (“fast averaging”) There exist 0 < Cay < 1 < Chay, Tay > 0 Yay Such that, for any
0<7 < Ty, 7> Yarve(logr™)™ H is put into the form
Hie,r, 31,00, ¢) = HoWule,r, 7 I',¢", 0, q)
W) +eg'(e,r, 7 10, d) +er® flle,r 3 I ¢ 0, )
(2.80)

by means of a real-analytic symplectomorphism

Gav + Toryyz X T4 s X B(ro)rja X B(ro)rz = Ly X T4y X B(ro)ry x B(ro)r,

where:
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(i) Z, p(r) are given by

(ii) o, ' satisfy
wp - e, e T
Z5(r) /2% B(10)r j2X B(10)r /2 B o

Hf/||j—5(74)/2XT?O/GXB(TO)TO/QXB(TO)Too/Q S ||f||9078077‘0 )

(f={f)e)

(i1i) The projections I(I',¢',p',q'), -+, of ¢ay over the I, --- variables satisfy

(I @0 q) = T'| < Oavl"g%l)f
(I, ¢, 1) = | < Cly BT .
p(I' 0 ) — p'| < Co 0B (281)
oI, ', q) — q/] < Co 2080

Proof. We apply Proposition 2.1 to our case, taking

A= {O} , U= j , E=F = B(TO) , €= 5||f||p0750,7”0

- = 3(r) . 1 <30)T+1 ¥ _
r=pr):=mn{ — | — = y Pog 5 S =950
2 30 (logr—l) (7+1)
Th=T¢=T70, NM=0, mMm=mn,
z 30 -1 _ - T NT
K=K(r):=—logr—, a=a(r):=5/2K(r)")
S0

Observe, in particular, that K has been chosen such in a way to get a new perturbation
y to g
f« of order .
-K 6 5
||f*||p0/2,80/677‘0/2 <ce (r)so/ “f”po,soﬂ’o =er ||f||po,80,7“0 s

so, we will put f, := er®f’. We check, then,

(i) K(r)so=30logr='>6 (for 0 < r < e 1/5);
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(i) If I € I,y and Iy € 7 is such that |1 — Iy| < p(r), then, for 0 < |k| < K(r),

woll) k| = |w(lo) - k| = |(w(D) = w(lo)) - K|
T s
v _
O
where
M = sup |0 h|
(iil) with

- . ] S0 (so\TH gl 2
d = d(r) = min {p(r)se, o} = min { —— () —————= Sopo, T}
{ j 2M \30 (log 1) i

using € < /e (as 0 < e < 1), we find a suitable constant 4 depending on 7, s, po,

M, for which
27¢,, K5 Ch ()
€ ad = €|’f‘|/307507'0 ( )
T+1 10g7“ )T+l
= Zewsalfleon ()
_ T
11 2 /30 T+1(logr Y
X maxq —5, ——, <> B ——
o SoPo So \So v
7+1 41\ 2
g(logrt g(logrt
o) VAU (VE(lorr )
Y Y
< 1
provided

7> 5vE(logr 1)

Hence, Proposition 2.1, applies. Let, then, g, f., ¥ as in claimed there, and put e¢’ := g,
erSf':= f,, ¢ay == V. By the definition of p, we find, then,

30\7 e(logr—1)7
060 ) = ) € 180l () 08
S0 P

. loo —1)27+1 log —1)7
< Cmax{é‘(ogrz) ’S(ogf ) }
y 5
_ C’g(log,'ﬂfl)Qerl

,72
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as soon as v/g(logr=1)~! < 1 Then, ¢, f’, ¥,, satisfy the claim.

Step 2. (“preparation to Birkhoff Theory”) There ezxist 0 < rp < 1 < Cp, yr > 0 such
that, for any 0 <r < rr/(8), and

5 > yrmax{v/E(logr~), r2(logr ), Yer(logr )Y

there exists a real-analytic symplectomorphism

¢T = ([/<€7 T, f_)/7 ')7 90/(67 T, :yv ')7p/<€? s ')7p/(57 s ))
on B )
Loryja X Ty 1o X B(r)e x B(r),
H' which puts H' into the form
H”(],/, (p//7p//7 q//) — H/ o ¢T(I”, Soll,p,/, q//)
h([”) +€g"(f”,p",q”) +81”5f"(f”,<,0”,p”,q”) ’ (2.82)

where:
(i) ¢" has an equilibrium point at (p”,q") = 0 with Hessian in (p”,q") = 0 satisfying

; e(log r—1)27+1
sup 9% — ding( - Q. - 20| < OB
Zo(ry/4 5

(i11) f satisfies

1"z, 5(r/aXT2 1y X Br)e x B(r); <Cr

() the following bounds hold for ¢, uniformly on Ly 4 X T3, 10 X B(r)r x B(r)s,

I,<577”7’_Y; ) =1
_ 2(], —1\7+1 1 —1\3742
|g0/(€,7“,’7; f”,w”,p”,q") o (’0//| S OT maX{’“ (Og; ) , er( Og;f’) ) }

(e, r, 3 I, ", 1", ") — p'| < S5 e(logr™)¥+1
(2.83)

Proof. Write ¢ as B
g, q)=fI'0.q¢)+ 9 p,q)
where

U p ) = foll) + oI, 0, d) + 1,0, d) = fo(I') + 3 Qu(l') o + fa

1<i<n 2
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where, by assumption, f; is a power series in (p/, ¢') starting with

2 2
pz +q’ v+

1<z J<n
and, by the previous step,
£(log r—1)27+1 o
520z < CZEL < g r ) (2.85)
Then, F(I',p',q") == Ow.¢ ¢ (I', P, ¢') splits as
F(I/vplv q/> = FO(I/7P/7 q/) + FI(I/7p/7 q/>
with
O (I")py
Qa (1Pl -
FO = Qlél/))gﬁ and [} = 8(p’,q’)(ﬁl + g)
Qa(l')gy,

where Fy is a diffeomorphism of C* sending 0 to 0 and detdFy = Q4 (1)*---Q(1)* # 0
on Zp(y)/4, thanks to the non resonance condition (first in (2.79)). Furthermore, by (2.84)
and Cauchy Estimates on(2.85), the following bound holds for F}, uniformly on Zj)4:

loo -~ 1)27+1
sup |Fi| < C’max{rg, 5(0%27")} )
B, ,(0) YPro/4

This implies, by Cauchy estimates, that

o |SupBgﬂ/4(o) 1(0Fo)~!| SUPB2n (0) |1 ]
max<{ sup ||0Fi]| sup |[[(OF0) |, 0

B0 B0 ro/8
1 27+1
SC’maX{TS, —6(?2gr )2 }
3% (ro/4)
1
< _
-2

as soon as 1o is small enough and

7 > gVe(logr )T,

Then, by the Quantitative Implicit Function Theorem (Appendix E), for any I € Z;,) 2,
we find an equilibrium point (pe(e,r,3; '), qo(g,r,7; I')), with
7o

_ ~ C o
sup |(pe(e, 7,73 1), ele, 7,7 I'))| < ¥€(10gr H2r1 o 10

(2.86)
Z5(ry/2 8
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for g, u.e. , satisfying
F(&Tﬂ; I/7<pe(5ar7/7; ]/)7%(577"77;1,)) =0 forall I 61}3(1")/2 .
Define, on
Tiryja X T?O/u X B(r), x B(r), where r < %0

the transformation ¢T<€7 T ) = ([,(87 T, ')7 90/(67 T, ')7p,(‘€7 T, ')7 q/<87 T, )) by
means of 3

I/ — I//

¢ =" =0 (0" +peler 3 1) - (¢ = qele,m7: 1) (2.87)

P =pele,r, v 1") +p"

¢ =qe(e,r, 7 I") + ¢

Put

D(g,’f', ,7) = {(Illvpﬂv q,) : {IH € :Z_'ﬁ(r)/ll ) p” € B(T)T ) q/ - %(577",’7? ]”) € B(T)T}

Then, by Cauchy estimate, * we find

Werns o d) = ¢" = (" +pler i) (¢ —alerm )| _

S Sup ‘al// <p// + pe(g7 T, ,77 ]I/)) . (q/ _ qe(€7 T, 7’ I//)>|

D(e,ryy)
< o2Pperm (0" +peler, 1) - (0 — aele,m, 3 1))
- p(r)/4
< COp <T . 7° ) "

0
(logr=1)7+1
< O max{ﬂ(log?_“l)f“ | sr(logfgl)*””“}
v gl

S0
ST 2.88
D) (2.88)

for a suitably small yr. By (2.86) and (2.88), ¢ is well put. By construction, ¢” := ¢’ o ¢t
has an equilibrium point at (p”, ¢”) = 0. Furthermore, by the splitting

g"=fodr+gogr=fo+ foodr+ fiodr+3jodér
as aQ(fo) = 0 and 32(f2 O¢T) = anQ = diag(Ql, .. 'Qﬁ,Ql," Qﬁ)7 we ﬁIld

sup [[0%¢"]o — diag(Qy, -+ Qa, Q- Q)| = sup [[0%(fao dr + G o dr)lol
Ts(r)/4 Zo(ry/a
< CTM
Y

o is generated by St = I" - ¢’ + (p" + pele, 7 I") - (¢ — qele, 7,7 1))
1Use ab < max{a?, b*}, for any a, b > 0.
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and the claim is proved.

Step 3. (“Birkhoff Theory”) There exists 0 < rg < 1 < Cg g > 0 such that, for any
0<r<rgand

3 > g max{ve(logr™)™", r?(logr™ )™, Jer(logr™)™}
H" is put into the form
HW(IW, 90”/7 p///7 q///)

H// o ¢B(I/,/7 (p///’p///’ q/l/)
— h([/l/) _'_ €g”/([”/,p/”, ql/l) + 81,_5]('///([///’ (p///)p//l7 ql/l) ’

where

- 5 p{//2_{_q{//2

g”/ = f0(€7r7f7;-[”/)+ Z Qi(€7T7’7;I/,/) : 2 :
1<i<n
1 B ///2+ {//2 p/(/2_|_q///2
t 52 Aijler, 312 2q’ — (2.89)

1<4,5<n

with

f0(67r7’77') ) Q(€7T777.) = (Ql(€7T7 ’77‘>7"‘a§2ﬁ(5;7’7’77') ) A(é,?”,’?,') = (Ai,j<€7raf77'>>
7% (logr=1)*™ 1 —close to fo Q, A, respectively and
Hf///||j-ﬁ(T)/8><T?O/24><B(T/Q)T/QXB(T/Q)T/Q S CB

The change of coordinates ¢pg = (I"(e,7r,7;-), ©"(e,r,7;-), p"(e,7,7;-), p"(e,7,7;+)) may
be chosen real-analytic on

j—ﬁ(r)/g X T?O/M X B(T/Q)T/Q X B(T/Q)T/Q
and the following bounds hold, uniformly on Zy/s X T3 a0 X B(r/2)rs2 X B(1/2)/2:
I//(67 A ) — I

2 —1\3742
|Q0”(6,T‘,’7;I”, W,p",q") _ 90/”| < CBar (log;3 )
~1y27+41
(e 17 ") = p| < Cp iR
er(logr—1)27+1

|q”(€7 T, :yv [,/7 90,/7 p//a q,/) - q///| < C’B 52
(2.90)

Proof. For small values of the number ¥ 2¢(logr~)* ! the eigenvalues of 92¢”|y are
purely imaginary, 3 2e(logr~1)?"t1—close to (21, -+, Qa, Q1, - -, Q4) 1° hence, 4-non res-
onant on Zs.)/4. Then after a suitable “symplectic diagonalization”
(bD = ([”(8, (S ')7 90”(65 (S ')a p”(&, T, ; ')7 q//<€7 T ))
15We can always assume that such eigenvalues are pairwise equal, otherwise we perform the change
of variables
on,t; " 1 "

7 =1 , <,0H _ (I);/ _ t_] J p". , p;/ _ tjp]{/ , q;/ — ?Qg
J J
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27+1

such that I"(e,r,7;-) = Ip, (p" — pp,q" — qp) is ery2(log r~1)*"1—close to the identity,

(¢" — ¢p er?*y2(logr—1)?™*1—close to the identity'® which sends ¢” to
2 2
~ _ Poi T dbi
gp :g(,]/+ Z Q(&j?T?’Y;ID) L 9 L + 02,

1<i<h

we may apply Birkhoff Theory (Appendix B), putting gp into Birkhoff Normal Form
g//o ¢B — g//l +64

where ¢"” is as in (2.89) and |o4] < |(p”,¢")|° < Cpr®, by means of a real-analytic
symplectomorphism

qu(é‘? r, /Va ) - (ID(Eu r, r?a ')7 SOD(€7 r, ’77 ')7pD(67 r, ’7a ')7 QD(Eu r, r?a )

such that Ip = I", |pp(e,r,7,-) — "1, |¢"(g,7,7,-) — ¢"| is 3 2er?*(logr~')**'—close to

the identity and |pp(e,r,7,) — @"”| is er®(logr=1)372 /33—close to the identity 7.

In the following step, we introduce the symplectic polar coordinates. In order to do

that, we must stay away from the singularities of these coordinates at (p!’,¢/") = 0.

So, following [29], we introduce a minimum radius r,, for (p",¢"”) and later on we will
estimate the measure of the descarted zone.

For 0 < r1 < rq, denote
AP(ry,ry) i={z € R : 1 < |z| <1y}

the real closed anulus with radii r, rs.

Step 4. ( “the symplectic polar coordinates”) There exist Cye, s > 0 such that, for any
fized 1, > 0, the symplectic (“polar coordinates”) transformation ¢p. defined on the
domain

2
Toryss x A" (T?n,?”z)ﬁ(r) x T x Tg ,  p(r) := min {T; 7“2}

with
Q..
t;= A =2 :1+O<
0,

e(logr—1)27+1
7}/2

if diag(929”]0) = (Qpys- -5 oy Qpry -+, Qs ). Such a transformation, generated by Seg = 1" - ¢ +
.t P/'q] does not change the final estimate (2.90).

f6We may take ¢p as generated by Sp = Ip-¢” + sp(Ip, pp, ¢"), where sp(Ip, pp,¢”) is a polynomial
of degree 2 in (pp,q”), the coefficients of which are of order e~ 2(logr~—1)?7*1.

1"We may obtain (see Appendix B for details) ¢p in 2 steps (which reduce the diagonalized gp in
Birkhoff Normal form of order 3, 4), the first of which generated by I - ¢p + Ela\+|ﬁ|:3 §a)g(f)p~“qg,
with 559 ey~ 2(logr—1)?7+1
£7~2(log = 1)2TH

~close to 0; the second one by I - @ + >, 11524 Sap(I")p"*G? and &9
—close to 0. Apply then Cauchy estimate.
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]”/ — j
90/// _ @E

prc : p/// _ /2 jCOSl[J (2'91)
¢" =\/2Jsinv

D=

{ hy(e,r,5; (1, 1) = fole.r, 4 ) + Qe,r, 3 J) - T +
Hf”fﬁ(r)/gXA(r%,ch)ﬁ(MXT?XT? < Cpc
Proof. Obvious.
Remark 2.4 Denote by
¢red(5a r, :Y; ) ) = (¢red,1<€7 r, :Y; “y ')7 ¢red,tp(5> T, :)/; K ')a ¢red,p(5a r, :)/; K ')7 ¢red,q(€a r, :Y; ) ))

the composition of the real-analytic symplectomorphisms described in steps 1-+4. Then,
by the estimates (2.81), (2.83), (2.90), we may let

¢red,l (57 r, ’77 (
ered,go <€a r, /7;

where the functions a(e, 7,9, -, ), b(e, 7,7, +, ), u(e, 1,9, ), v(e, 7,7, -, -) satisfy, uniformly
on Zy(ryss X A1, 1) sy x Ty x T7,

1)7’—

|CL(€,7’,’7, ) >| S C‘E(IO%

-~ log p—1)27+1 2 (Jog p—1)27+1 log p—1)37+2
]b(e,r,'y,-,-)] < Cmax{s(ogr#) : r (ogrﬁ ) 7 er(og%3 ) }
lu| < C'max {E(logr_l)% E(logr_;)ﬁﬂ

- ol ’ ¥
1 —1\7 1 —1\27+1
|U| < CmaX{E( Og; ) 7 E(OgTW ) }

Step 5. (“KAM") Let
T =IxA" (7’2 ,7’2)

m
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i P L e T 7
p = min {16’ p(r)} = min {7’ Do C*W . Po (2.92)
There exists TkaM, VKAM, CKAM Such that, for any 0 <7 < riam, Tm > Tran™* and

Y > VKAMTS/Z
Ye > yramer®2(log, (r° /%)) H
3 > ykam max{y/e(logr=1)™ Yer(logr=1)™1 r?(logr—1)71}

then the Hamiltonian H satisfies the assumptions of Theorem 2.2 on the domain J,x T™.
Proof.
Claim 1: w = 0h is a diffeomorphism of jp.

proof of claim 1: Due to the analyticity assumptions, we have only to prove the injectivity

for w. We prove that, for any v = (,e0) € w(e,r,7;Z,), equation w(e, r,7¥; (J, j)) =v
has at most one solution on (J,.J) € Z,. Let, then,

{ Oh+e(@fo+0Q-J+3J-0A))=v

where 0, d denote, respectively, differentiation with respect to .J, J. For any fixed J € 7,
the map

J—Q + AJ
is injective (as A(e,r,7;.J) is nonsingular): .J, we find a unique

J = jg(a,rﬂ, 0,J) = 121(5,7‘,7, J) o — Q(a,r,ﬁ, J)

solving the second equation. Replacing this value into the equation for the first compo-
nents, we find an equation of the kind

WO(j) +w1(€77q7’7a 7;’ j)) =V

where wy = 5_h is well defined and analytic up to Z,,, hence, with ||(Jwo)~!|| uniformly
bounded on Z, by a suitable constant Ny (which does not depend on (e,7,7%)) and

- 1. . _
o = 5<8f0+8Q(J)-J0(5,r,7, 0, ) + 5 dolesr, 70, 0) - OAdu(e, 1,7, 0, J))

well defined and analytic up to fp(T) /3, hence, by Cauchy estimates,

~ log -~ 1)2(+D) 1
sup [[0w || < C'= c 5 < 06( ogrﬁ) < 5N
Iﬁ(r)/w p(r) 7 0
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(recall that fo, Q, A are e(logr~1)?"*1 /32 close to fy, Q, A). This proves the claim.
Claim 2: w = Oh has non singular Jacobian on J, and T := (0*h)~! is bounded by

sup |7 < Ce™*

Tp

proof of claim 2: We have

ow = 82h2 B
B ( thT(J) eA(e, 7“,7,8; > (2.93)
where B = (B, ;) is the n x n matrix with elements
Bij = 0;Q; + (05 AJ);
bounded in norm by (by Cauchy estimates)

C’ logr—1)7+!

sup || B|| < sup ||B|| < == < C — (2.94)
I, Zp(r) p(”f’) v
and, for small ¥ 2¢(logr—1)?"*! and
IA=) < 21147

(say). We prove that the matrix

M = ( ?BQTh(J) [1(5,7“,’7,6}9) )

is non singular which will imply the claim, as, by (2.93),
det(9%h) = £"det M .

We split M as
M= My+ M,

_ ([ () 0 (0 eB
MO(BT Ale,r,7,J) ) Ml(o 0 )

where

The matrix M, is non singular (because 9%h, A are so), with inverse matrix

L _ (@RI . ) 0
Mo _<—(A(é‘,'f’,"%J))‘lBT(@Qh(J))‘1 (Ale,r,7, 7))~ )
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Furthermore, the matrix

0 (0%h(

o J)'B
M = M; Ml—’f(o —(A(e, 7,7, 7)) ' BT (0*h(J)) ' B )

has norm bounded by

sup [6M| < 2emax { sup [|(9*h) || sup || B
o

p T
Sl}pIIA_lllqullazh_lll(sqpllBll)z}
Tp Jp N

—1\2(7+1)
< Cs(logr_Q)
v
1
< _
- 2

provided 7~ 2¢(log 1)) is small. This makes the matrix
M = My(id 4 IM)
invertible. Finally, by (2.93), it is clear that

1T < e IMTHl < Cet

Claim 3: (“check of the KAM condition”) There exist Tk anr, Ykam, Cxam > 0 such that,
for any 0 < r < rgan and 7, > 7>t and

v > yamr??
Ye > yramer®?(log, (r° /%)) (2.95)
5 > yam max{y/e(logr=1)™ Yer(logr=1)™, r?(logr=1)7t1}

there exist

M > sup ||U|| ) M > sup ||U[n7ﬁ]|| ) N > sup ”T” ) F > ||€’I“5f(€,’l“,’7, ) ')H/%S
Tp Tp Tp
such that, letting

2 _ . gl gl
I 11 T+1 L €
ci= max{2 n, 5(12) } , = mln{SMKT+1  SNIE P} )

X 6 FM2L\ ™
L:=max {N M ' M1}, K:=- log, <2>
s v
where p is as in (2.92), then,
FL
E:=c

72

<1. (2.96)
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proof of claim 3: To apply Theorem 2.2 to our case, we let, for suitable ¢, > 1> c_,

5 Y -1
F=¢cr’cy,, M=cy, M=ccy, N=cye ,

so that
L=cet, K<c(log(r’/y*)™).

Taking 4. = €%, we find

p = min 7 A% P
SMK™1 7 spfKm+1 ]
Z C_ mln{ 572_1 T+1 572—1 T+1 7
(log, (r°/4?)~1) (log, (r°/9%)71)
_ 2
Y rm 2
(logr iy 2 po} =

and hence, the smallness or “KAM” condition

FL
cEF = ¢ -
P
1 5 /2\—1)\2(r+1) 5(] 5 /A 2\—1)2(7+1)
. c+max{r5<0g+<r PP s (27
Y Y
T5(10g r—1>2(‘?+1) P P }
) r, V) 7
¥? Th Po

< 1

is fulfilled whenever we choose r < rgam, then 7, 7, 4 as in (2.95) and finally r,, not
less than 7,7/, for a suitable small rgang.

Conclusion of the proof.

Define

3*(87 T? /-77 ,)/7 ’S/) C j :j- X Aﬁ <T3n7r2) .
w*(‘gvr?’??%’% ) : 3*(5773’_7,%;0 - D*(&ﬁi’af% :Y> - D::%Z,T
¢<€77’7’_Ya’77’77'7‘)37D*XT”HJX

K*(&‘?TJWJ’%&) C j X Tn

as the Cantor set, the Lipschitz homeomorphism onto, the tori embedding and the
invariant set which are obtained by Theorem 2.2. Define §(e,7,%,7,7%,,-) as the im-

a_ge of ¢(€7T7’7a77’% '7') under gbred(earv/?; )7 ﬂ(é,?”, /7) - R(gﬂﬂa’?u’yv’?)a the images of
J x T D K.(e,r,7,7,7), under ¢peq(e,r,7; ).

Proof of (2.8). Put

w*(gvraf}/afyaf% ) = (@*(577"7&777’?7 ')7 6@*<€77’7/7777§/7 )) .
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By (2.21),

|, —O0h| < |@.—0h|+C'e
< C”ﬁ-ﬁ- 0/8
. v g gl
< —
S len{(log+ (r5/,)/2)—1)7'+1 ) (10g+ (T5/,y2)—1)'r+1 ’ (logr_l)”d}
+ Ce

having used (2.97), for which

_ = v v gl 5/2
< (C R = )
r= m‘“{<log+<r5/v2>1>7+l’ (log, (r7/2) )71 * (logr )71 * " }

(recall 72, = const 7%/2). Similarly,

e, —eQ| < e, —eQ — eAJ| + |eQ — Q| + |e(A — A)J| + |cAJ]|

< C’smin{ 572_1 1 572_1 FE ,L +1}
(logy (r®/42)~1)" (log (r2/4*)~1)" (logr=1)7
—1\27+1 —1\27+1

+ L2 (log 7’_2) 1 Ce2y2 (log 7’_2) 1 Cer?
Y Y

Proof of (2.9). By Theorem 2.2, we find

= (bj(g? 7&773/ )¢J(€r7777 7)7(?’12)(67707’_}/777;5/7 7)7¢A(677n77777’?7 7)
b
O7(e, 177, s 0) = il 7,7 i) + Ule, 19,7, %3 (9, 0))
— (bj(g? r’ 77 ’77 ’3/7 ) = ]i(g r 3/77 6/7 ) + [/:<€A7 T? ’77 77 ﬂ/; (1197 19))
¢g(e, 77,79, ) =0+ V(e r7,7,%: (0,9))
G5 7,7: 9, ) =0+ Ve, 79,7, (9,9))
with
Ul<Chp< 0% mm{(log+ IR 0 g R 0 (o 7"5/2}
U= Ch< Cmm{(leg+ A 0 o AT 0 g TS/Z}
— ~ - T ) r - (7+1) oo r— T
’V|7 |V’ S max {7"5 (log.. (7‘5/122) 1)2( - ; 7‘5(10g+( 5/7;2) Shii ) r*(log 721)2( -~ ) 7“}

Hence, recalling Remark 2.4, the estimates (2.9) follow for §(e,%,~,%;, )
Step 6: proof of (2.6). Let

J =T x A" (rfn, 7"2) DI x A" (7"1%17 7“2) =T, rm>rat
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We first prove that

~

meas(j x T™\ K*(E,T,ﬁ,%ﬁ)) <C, (ﬁ + 9. + %)meas(] X T”) )

The set
R(e,7,7,7,9)

is measure—equivalent to
K*(E7 /r’ ,77 ,}/7 /3/)

as ¢rea(s, T, s -) is, in particular, a real symplectomorphism, hence, area—preserving. The
density of J x T\ K,(g,7r,7,7,7) in J x T™ is estimated by (2.25) of Theorem 2.2:

meas(j x T\ Ki(e,r, 7,7, ’})) < E(meas(j \ Ty4.0 x T") + meas(J,,.. \ J X ']I‘"))
(2.98)

where (recall (2.97))
Pmax = maX{pl, pZ} < 275ﬁ < len{f%:y} :
The second term is easily bounded by '8

meas(jpmax \J xT") meas(Jpa. \ J x T™)

meas( Ty, \ J x T") + meas(J \ J x T")

¢ max {;, 'y} meas(J x T") + meas(J \ J x T")

IAINA

IN

Inserting this bound into (2.98), we get

meas(j x T\ K*(e,r,ﬁ,%&)) < ¢ (meas(j \ Tr4.0 X T

18We are using that Z-being an open and bounded set of R"-satisfies the following: there exists
D =D(Z) >0, p = p(Z) such that, for any 0 < p < p,

p
D(T)

meas(Z, \ 7) < measZ . (2.99)

Then, J is a product J = 2 x B where both A = Z and B = A" (r2,,r?) have the property (2.99),
with D(1) = Dg, D(8B) = Dy r?. So, using

(2 x B), \ (2 x B) = (2, \2) x BLJ2A x (B, B)J@,\ 2) x (B, B)
we find

meas(jp \ j) < meas(2A, \ A) x B + measA x (B, \ B) + meas(A, \ A) x (B, \ B)

IN

2
p P
C<p+r2+r2> meas(J)

29



+ meas(J \ J x T")
+ IHELX{TQ, 7} meas(J X T”))

2>

(2.100)
Now, recalling that
J=TxA"(r2, 1*) with T=Z;;={I€T: ()DL}

we find that first two terms inside the parentheses of (2.100) are similar, and they are
simultaneouly estimated by the Lemma 2.5 below.

Lemma 2.5 Letn, n e N7 >n:=n+n,1 < a <2, 0<7 <1, 7T compact, ,
T:=A; = Aﬁ(fa,f)
w=(@w): T:=IxI—-R"xR"
a diffeomorphism of an open neighborhood of I, with @ of the form
O(I, 1) = &o(I) + A(DI
where I — A(I) is non singular on Z. Let

1

R>mIax|Cu|, A>mjax||A||, c(n,7):= > T

0£keZn

and denote

Rys.={I=(I1eT: wl)¢D }.

9,9,

Then, there exists a suitable integer number p such that

meas (RZ:T> < <Eg +c ?) meas (I)

where

_ n—1 [
¢ :=supy||w™ 1||nm]Zas(I) 7me;‘(Al)c(n, T)p
_ supg A A4

meas(A1) C(TAL’ T)

[N

For continuity reasons, the proof of Lemma 2.5 is postponed at the end of the actual
one.

We may then take

{ meas(J \ Frs.r X T") < ¢, (’7 + rl?> meas(j x Tn) (2.101)

meas(J \ J x T") < c*”ymeas(j X ’]I‘”)
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with ¢, independent of r. Hence, using (2.101) into (2.100), we finally find

meas(j x T™\ K*(s,r,"y,%&)) < meaS(J \ J x T")
+ meas(j x T™\ K*(g,r,’_y,fy,f?))

IA

_ gl n
C. (7—1—74— r?> meas(j x T ) (2.102)

which is quite what we meant to prove.

Having now the masure estimate (2.102) and using
27 )
meas(V(r) \ J X T") < C, (rm) meas(V(r)) < C'*r"/2meas<V(r))
r
(eventually with a different C,) we easily infer (2.6).
Proof of Lemma 2.5. The first part of the proof uses a compactness argument. Let
R>max|o|, A>max|A], R:= A > max | — Q|
T

so that
U = {Bp(0) x By(wo(I)) , €T}

is an open covering of w(Z), which is compact, as continuous image of a compact. Then,
there exists a finite number of Iy, ---, I, € Z such that

U= J U, U :=Bz0)x Bg(wo(jz‘))

1<i<p

covers w(Z). Now, the “resonant set” Ry, in T is

g = U {rennsgtd U {new s 2
k= (R, k) €Z7 X Z7 k40 04kezn k|
(2.103)

The measure of the first set in (2.103) is bounded by

meas( U {I: lw(l) - k| < gT})

keZn k#0 I

< sup [|Jw™ " meas ( U {:c cwl@): |z -kl < |]‘§g|7'}>
1

keZn k#0

p
< sup [Jw™ " meas ( U U {x celU;: |-kl < |kg|T })
T

keZn k#01=1
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< sup fw™ ™ > > meas ({x celU: |z k|l < |]f|T })

kezZn k#01<i<p

=sup " > N / dzdz
T

keZn k40 1<i<p Bk
(2.104)

where

B, = {x’ = (#,#') € U; = BR(0) x Bji(wo(L;)) : |2 -k+ & 'k < |k“?|7}

Now, as k # 0, we certainly find 1 < j < f with |l;:j| > 1. Perform, then, the change of
variables

Zm =Ty for 1<m<n, m#j, zjzf-l%+§c-l%, Zm = Tm—n Tor n+l1<m<n

Then, letting

B = {Y=(,---,2):
1 _ .
(21,5251, | 25— S Zkn— > zZkmea TR

k] m#j n+1<m<n

€ Br(0) ,

g n T
1S 1 Gl ) € BhGonl) | 2
2 {Z/:<Z£7""Z;1>: |Z;n|§R

for 1 <m#j<n, |2 < ’kng,
‘Z;n_w0<ji)’SRfOrm:T_l—i-l,"',n}
= C .

we find
g

k|7

dzdi — / dz < / dz < dz_R” Lfpi
B; 1k k| Jei

Hence, inserting this expression into (2.104), we find

—111n Dr—1 pPn 1
meas( U {I: lw(l) - k| < |k|T}> < Jw "R Ry Y k|7
keZmr k#0 keZn k#0

< sup|lw™ H"Eﬁ’lﬁiﬁc(n, 7)g
T

= sup Hw_l ||"Rﬁ_1./4ﬁfﬁc(n, T)g
T

= cgmeas(Z)

62



We now estimate the measure of the second set in (2.103). By Fubini’s Theorem, we find

m( URE |w<f>-i%\s|§r}):

0£kezZ?

/_ dl di  (2.105)

z Uz;;so By(I)

where

Bk(I)_O#gZﬁ{IEBT(O) [(wo(1) + A(I)T) k’§|k|7}

Perform, in the inner integral, the change of variable

&= o(I) + A(DI

and let

VAN
Tl
\]
——

Cr(I) = {x eR": A4z —wo(I)) € BMNO), |i-k|
3

, with a suitable change of

N

>

- {fERﬁ:i’EB%(wO(I)), ]:i’/%|§‘

= Cp(])

Then, proceeding as done for the first part of the proof (i.e
variable, for which 2} = & - k if k; # 0), we find

/ dl < sup | 4° o / f
Ufc;éoBk(I) Uk;ﬁo ke (
< swplAf
k;éo
< sup A7 Arwz i
k#)! |

Hence, inserting this value into (2.105), we find

meas( U {I: () - k| < |§|T}> < meas(Z )Sup||A ™M (AR ge(n, T)

0£keZn

_osupg [ATHPA)TT g
meas(Ay) c(n, T)fmeas(I)

because, for small 7,

since av > 1.
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3 Kolmogorov’s Set in the Plane Planetary Problem

Let us consider the motion of a system of 1+ N masses my, - - -, my moving in R? (but,
soon, we will take d = 2) under the only influence of gravity. As customary, we restrict
to the “planetary case”: one mass, mg (the “Sun”) is much greater than my, ---, my
(“the planets”), namely, we take

m():m(), mlzuml, et mN:mﬂN (,u<<1) (31)

The motion equations are

. v; — vj .
== m |U-L_ UTJ|3 ., 0<i<N. (3.2)
0<G<N, ji i Y

In the Hamiltonian formalism, equations (3.2) are equivalent to the study of the Hamil-
tonian
’ Jui]

Hopw (u,v) = Z

0<i<N

2mi  geiGen |vi — v

on the phase space

A

Caa = {(u,v) = ((uo, -, un), (v, -+, vw)) € (RN 5 (RN
v; #v; for 27&]}

The number of degrees of freedom of (3.3) may be reduced (from d(1 + N) to dN) as
follows. On the (invariant) symplectic manifold with dimension dN

M = qu = (ug,u1, -+, un),v = (vo, 1, - - Un) € écl,d : Z U; = Z m;v; =0
0<i<N 0<i<N

we introduce the relative coordinates

{?’:“i_vo for 1<i<N. (3.4)
Yi = Uy

The motion of my is then recovered by

Uy = — ElgigN i
Z1§i§N miTi (35)

Vg = —
ZogiSN mi

as it results by requiring

0= 0<i<n Ui = U+ X1<i<n Yi
0 = Yo<icny MiVi = Moy + X1<i<y Mi(T5 + Vo) -

64



The parametrization of My, (3.4)=+(3.5), which expresses a point (u,v) € My, in terms
of the coordinates (7, Z), is a homogeneous symplectic embedding, i.e. , it preserves the
Liouville 1-form:

Z U; d’UZ‘ = Up d?)0+ Z uidvi
0<i<N 1<i<N

= U dUo + Z ﬂld(iz + UU)
1<i<N

1<i<N 1<i<N

= > di
1<i<N
(because ug just coincides with — >« 7).
Then, Hamiltonian (3.3), in terms of the relative coordinates (y,Z), with the masses
(3.1), becomes
2

y o » Yi mym; yi - Yj M
let(/“t;ywx) = let o¢lin = Z ( ’y - ILL> _l_,u Z <y_ yj - ~ _]:u ) 3

1SN \2mip | %] 1<i<j<n \ ToH |25 — @]

where e
. _ _ ~ 07

m; =m m; m; = ——— 3.6

0ot Hp o+ [ (3.6)

are the reduced masses. A rescaling of the variables
Y=y
{ P (3.7)

joined with the rescaling of the Hamiltonian

Horo (115 y, ) := i Hpie (115 py, @)

(which does not change Hamiltonian form of the equations of the motion) brings to the
Hamiltonian

Hou(psy,0) = Y <|yi’2—mimi>+u > (yi.yj— T ) (3.8)

1<i<N 27’711 |l’7,| 1<i<j<N mo |Qfl — ZL‘j|

with (y, ) varying in the “collisionless” domain
Caa={(2) = (- uv), (21, 2n)) € RV x RV
rite#£0 V1<i<j<N}| (3.9)

When p = 0, the Hamiltonian H; (3.8) splits into the sum of N Two-Body (integrable)
Hamiltonians describing each the interction of a fictictious mass m; with a fixed star
with mass m;.

The aim of this section is the proof of Theorem 3.1 below.
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Theorem 3.1 Consider the evolution in time of the coordinates of 1 + N “planetary”
masses (3.1) moving on the plane undergoing Newtonian attraction. Let a;, e; denote the
semimajor axis and the eccentricity of the Keplerian ellipse arising from the two — body
interaction of a fictictous mass m; with a fived star m; in correspondence of the initial
datum (Y, T;) for the coordinates (y;,x;) described in (3.4)+(3.7), where m;, m; are as
in (3.6). Then, there exist b, ¢, C, 6, > 0 such that, for any 0 < § < 0, a parameter
£« = €.(0) may be found such that, for any

0<e<e, and 0<p< (loge )™
in the set Of (g7j> = ((gla tUe 71&1\7)7 (jla U 7'TN>) € (RQ)N X (RQ)N such that

5N7i

a; = Q; ,  where a<a; <a

there exists a positive Lebesgue measure set IKC (“Kolmogorov set”), satisfying
ce?™ > meas K > ¢ (1 —C(Ve+ \/ﬁ(logg_l)b))gw ,

formed by the union of invariant tori of dimension 2N on which the Hyy,—flow is linear in
time, with Diophantine frequency. Furthermore, the eccentricities on the invariant tori
are bounded by c(loge™1)~1.

3.1 The Plane Delaunay—Poincaré Map

A good set of action—angle variables for the plane problem (3.8)+(3.9) is the set of
Delaunay variables (L,G,(,g), L = (L, -+, Ly), G=(G1,---,GnN), - -+, with

O<Gi<Li, gi,giET

defined as

L; = m/ma; ;= 2\2/&-_
i ) 1t a2 1—e§ 1

Gi = |r; X ys| = g; = argument of P,

where, on the (7, my; y;, 1;)—“osculating” ellipse ¥ the quantities a;, €;, P;, A; denote,
respectively, the semimajor axis, eccentricity, perihelion, the area of the elliptic sector
from P; to x;. In terms of the Delaunay variables, the linear momenta y; and the positions
x; are recovered by

COSU; — €;

z; = 2P = a;R,(g) (

_ . D ._ ~
Yi =Y = minia&xi

2 o 2.3 . o L : 9
1 —e?sinwu; ) n;a; :=m; , (n;: “mean motion”) (3.11)

9] e., the ellipse arising from the initial datum (2(0),z(0)) = (y;/m,x;) for planet in Newtonian
interaction with a star with mass m;.
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where a;, e; are thought as functions of L;, G;,i.e. ,

! (L">2, e — 1—(@)2 (3.12)

a; = — p
m; \my; L;

u; solves the Kepler’s Equation

w; — €;sinu; = ¥;

and R,(g) denotes a rotation of ¢ in the plane:
[ cosg —sing
Ralg) = ( sing  cosg )
The plane Delaunay variables (3.10) are well defined whenever
e; 70 for 1<i<N.

A “regularization”, due to Poincaré, allows the system reaching also zero eccentricities.
It is achieved with the symplectic change of variables

¢—1 ) { AN=1L; ni = \/2(Li — G;) cos g; (3.13)
P Ai = li + gi & =—/2(L; — G;)sing; '
The regularized variables (3.13) are usually called Poincaré variables and, in terms of

them, (3.11) become 2°

x; = &; == xpp (g, Mg Ay X, mi, &) = (2PF, 28F)
(3.14)
Yi = Ui = yop (1, M5 Ny, Ay, 15, &) = "33 OaTpp
where
DP _ 1 (A)? F o ¢ 0 (C 4\ F oy n_ [ _ nPHe
o _E<T> cos (¢ + )—ﬁ@sm((—i- )+ Ecos (C+ ))—ﬁ - 5
27 . & o .
apt =+ (A) {sm(§+)\) — 5k (778111(C+)\) +£cos(§+/\)) + % 1- ’724?\52
(3.15)

and é solves the regularized Kepler Equation

2 1 2
C:\/lx 1—”4—15 (msin ((+ A) +&cos(C+ ) .

20As usual, A = (A, -+, Ay), - -
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The semimajor axes a; and the eccentricities e; (3.12) become

1 /A n+ &\
a; = 3% (,, ) , e, = 1—1(1-—
m; \m; 2\,

(zero eccentricities correspond to (n;,&;) = 0). In order to avoid collisions we let 2!

Ae A,
AeTN (3.16)

0.6 = (ko ) (G ) € &

where, for 0 < e < 1,

{AE ={AeRY: a(l+¢) <a(l—e) 1<i<N} (3.17)

E:={(6 eRYV xRY: B <1 yT—22 1<i<N)

Proposition 3.1 (Delaunay—Poincaré) For any 0 < £ < 1, in the domain (3.16) +
(8.17), equations (3.14) = (8.15) well define a real-analytic symplectomorphism

dop (A ADE) = (5,8) = (G, ), (81, i) (3.18)

namely, a 1 : 1 onto, real-analytic and symplectic map, with respect to the standard
2—form
> (dAi AdA; +dn A dE)

1<i<N

usually called plane Delaunay—Poincaré map, which carries Hamiltonian of the Plane
(1+ N)—-Body Problem, i.e. , the Hamiltonian (3.8) defined on the domain Ca o (3.9) to

3

m3m?2 Ui Ui MM
Hpre :=— Y 211\21 +u > (y Ji_ Ty ) (3.19)

1<i<N 1<i<j<n \ o |5 — 2]

For a self-contained proof of this Proposition—not easy to be found in literature, see,
[11], [20], and also [7].

Sketch of the proof of Theorem 3.1. The proof of Theorem 3.1 consists in apply-
ing Theorem 2.1 (in the simplified version of Remark 2.2) to the properly degenerate
Hamiltonian M, of the plane (1 + N)-Body problem, espressed in Delaunay-Poincaré
variables (3.19). We have thus to check all the assumptions thereby involved. We do this
in the following steps.

2R, — (0,4+00).
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(i) Let

f= ¥ (@z"ﬁj_ m;im; )
1<icj<N \ Mo | — &

denote the “perturbation” of H; and

1

fi= (2m)N Jrn

fdr

its mean (also called “secular” perturbation) with respect to the “fast” angles A.

Due to the D’Alembert relations (Lemma 3.2), f is even in (7, ), hence, it has an
equilibrium point at the origin of the “secular” coordinates, i.e. , for z := (n,£) =0
(Laplace); its quadratic and quartic parts have the form

and

>

1 P+ 6 F(A)E (320)

Qi jied () mimmeme 4 74 k0 (A) 0imi&e&t + G (A) &&i6k&

1<i,j,kISN

respectively. In particular, since F(A) is a symmetric, in view of (3.20), z = 0 in
an elliptic equilibrium point, and the eigenvalues 2 = (€, --,Qy) of F(A) have
the meaning of the Birkhoff invariants with order 1. Both the entries of F(A) and
the tensors Q = (giji), R = (rim) can be expressed in terms of the Laplace
coefficients (Lemmas 3.3, 3.4).

(ii) The diagonalization (by means of a unitary matrix U(A)) of F(A) is required,
in order to check the 4-non resonance of the Birkhoff invariants with order 1
Q= (Q,-,Qn) for f. We prove a technical Lemma (Lemma 3.6) which implies
that the lowest asymptotics for Q(A) is just the one of the diagonal elements for
F, and so it is given by

2;(A)

59-3N)/2

mme_ 4 082 for i=1

ivmial

=33
= 2o

o

RE

a

N W)

1 mimia 5G3i-5)/2 L O(5Gi-3)/2) for 2<i< N —1
AT it +0( ) for 2<i<N-

_3
4

_ 30 Ny SGBN-5)/2 4 O(SBN=2/2) for i=N

4 &‘;’V myvmyan

which immediately implies non resonance up to any finite order, for small § (Corol-
lary 3.2). We also compute the lowest d—asymptotics for the entries of U(A) (Lemma

3.5).
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(iii) We diagonalize the quadratic part of f with the symplectic transformation

Gaing: N=UN)7 £=UMNE A=A A=X+0p(A0¢)

(where ¢ a suitable shift of A which does not change the mean), hence, we put f
into the form

P2+ €2
2

fo= fo ¢d1ag .fO ]\ Z A

1<i<N
+ ST G (N) Bk + T (A) 7€k + Gia(A) EEE&
1<i jhd<N
+ 04

(iv) We compute the d—asymptotics for g u, 7ijm (which involves those of r(A), s(A),
U(A)) and hence the d—asymptotics for the entries of the Birkhoff invariants with
order 2, which are the entries of the symmetric matrix A(A) of the Birkhoff Normal
form of f

fo(A) +Q(A) - J + ;J CAN)T +o(|JP) J; = 77127;5_22

obtained by projections of the entries ijui, 7ijr (Lemma 3.10). We check (Lemma
3.9) that A(A) has the form

o1 09 O(5p13) ... O(éplk)

o] 99 0(51023) . O(épzk)

0433(51033 . O(5p3k)

A(A) = o° . .
akk(;pkk

where o109 — 2001 # 0 and pri1 k41 > Pk, ki 7 0 and that that this implies (Lemma
3.8)
det A = (a11a22 — @120&21)5q + 0(5(1) 7é 0 ,

concluding the proof.

3.2 Non Resonance and non Degeneracy for the Plane Plane-
tary Problem

3.2.1 Expansion of the Hamiltonian

The perturbation f of the Plane Planetary Problem is composed of two terms
M, 1
fp::_ Z %7 fsi=— Z i - 3/]

1<i<j<N |2 — &) Mo 1<icj<nN
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usually refered as principal and secondary part, respectively. We are interested to the
secular perturbation, i.e. , the mean, over A € T, of f, to which only fq contributes:

Lemma 3.1 The secondary part of the perturbation has zero mean.
Proof. In fact, as y; is defined as
m2m;}

Y ‘= A3 8AiIi

)

and does not depend on the variables \; with j # 1,

Ji - 5 AN = (2;)2/T2?)7:'yfjd/\id%
1zt i
(2m)2 A} A
X /1T28A.§:i-8x£,-d)\,;d)\»

1 mmmm

RS / O udA

Lon aady
T
- 0.

Notice that that z;—component of the Plane Delaunay Poincaré depends on A;, n;, & as
a function of
1 (Ai >2 (i, &) Ni &i
Ay = — | =— ; iy Qi) — ) 3
i 7y ! VA VA
only.

Lemma 3.2 (D’Alembert relations) Let

i Ao 001 22
Do i (@i, @) 0726 & (3.21)

(41,92,1,82)

the Taylor expansion of

(271')2 T2 |i‘z — IlAi‘Jl
(3.22)
Then,
Z) a]2]12221<a%> aj) = Qjyjairio (ajv ai) ;
”) a]l]zzmz (aw aj) =0 Zf jl + j2 is odd ;
iii) Qjrjinin(@iyaj) =0 if iy +1dy  is odd ;
iv) Qi1iggige (aw aj) = Qjyjairio (ai7 aj) . (3'23>
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Proof. Item (i) is trivial. Items (i7) + (iv) are related to the following symmeries of the
plane Delaunay—Poincaré map

fi(m,m;/\,ﬂ — )\, —77,5) = x:0£i<m7m;A7 )\anvé) )
jl(ma mv A7 _>\7 UE _5) =

iz(mam)Aaﬂ-/2 - )‘76777) -

A

yzowi(ma 7’77,; A7 /\7 m, 5) )
:v:yi‘z(m) mv A7 /\7 7, é)

J AR

where Ry—o, Rz=0, Rz=y, denote the reflections in the plane with respect to the axes z,
Y, T =Yy, axes.

Remark 3.1 Then, the secular perturbation f contains only polynomials fo;(A,7, &)
with even degree 2j:

where each fy; is an even function of n, £ separately. In particular,
Corollary 3.1 (Laplace) The point (n,€) = 0 is an equilibrium point for f, for all A.

Remark 3.2 The computation of the 0-term fo(A) in (3.24) is trivial. When (7,€) = 0,
Z; reduces to
Zi|(m,e)=0 = ai(cos A;,sin ;) .

Hence,
|1l )0 — 5l (ney=ol = /a2 + a2 — 2a;a; cos (A — \)
and, finally
1 dN;d\;
fo = — mij22/2A A]
1<i<j<N (2m)2 J12 |2 (.)=0 _Ij|(n7§):0|
dt

_ 1 /
1<i<j<N 72m Jr \/a? + a? — 2a;a;jcos (A — Aj)

M
= - > Tby/2,0(ai/a;)

1<i<j<N  “j

where b, () is the (s, k)-Laplace coefficient, defined as the k" Fourier coefficient of the
function t — [1 + a — 2acos (\; — )\j)} -~

, (a)—l/ cos kt
sk 27 JT [1+a—2aCOS (/\i—)\j>r '

Regularity properties and expansions (in «) of the Laplace Coefficients are briefly dis-
cussed in Appendix F.
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Next two lemmas are devoted to the computation of fo, f4 of (3.24).

Lemma 3.3 The polynomial with order 2 in the expansion of f is

FaAm ) = 50 F(An + 56 F(N)E

where )
—2% [Zk;éi my Gzooo(ai,ak)] for i=17
e (ai,aj) . .
fy(A) = § TR Jor i<
.7, 91100(45,01) S
m;m; Aij\j for i>j
with
a
azooo(a, b) = 32 {_7a/bb5/2,o(a/b)

+4(1 4 a?/b) bsj21(a/b) — a/bbs2(a/b)]

a

]p2 [—17&/1) b5/2,1(a/b)
+8(1 4 a?/b?) bsja2(a/b) + a/b by 3(a/b)]

&1100(07 b)

(3.25)

Proof. Using the symmetries (3.23) outlined in Corollary 3.2, the non vanishing terms
with order 2 appearing in the expansion (3.21) of g;;, are only six, and they are individ-
uated by only two independent coefficients, say asggg and aq19o:

az000 (@i, a;) 77 + ai100(a;, a;) NN + a000(ai, ;) 77]2
+azo00(ai, Clj) 512 + ar1o0(as, aj) g’téj + aso00(as, aj) 532
(3.26)

Thus, multiplying by —m;m; and summing over all 1 <¢ < j < N and then symmetriz-
ing the sum, we write f5 as

1 1
fa= 577'7:(/\)774‘55'7:(/\)5
where the matrix F(A) = (f;;(A) has elements

—2 % [Zl§k<i M 2000 (ks A7) + i< N Tk @2000 (s, ak)} for i=j
fzg(A) — —mimjiallooi?j{éj) for 1 <j
\ Aiddj

— _ a1100(a;,0:) f . .
iM;—7r==—Ior 1>
/vy J

The coeflicients asgoo(a, b), ai100(a, b) coincide with the expressions (ab/8)Z(a,b),
(ab/8)J (a,b) computed in [8], which, written in terms of the Laplace Coefficients are
just (3.25). The result then follows taking into account the symmetry of the coefficient

2000 (a2ooo(@, b) = azooo((% a)).
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Lemma 3.4 The polynomial with order 4 in the expansion of f is

fi= > @A) (nmmkm + fifjfkfz) + Y rg(N)mini&d
1<i,5,k,I<N 1<4,5,kI<N
where
—% > hehoti T Gaoo0 (@i, ap)  for i=j=k=1I
— iy B) - for ==k #1
Qi,j,k,l(A) =
—m; 2 GE ) for = < k=1
0 otherwise;
—% D hihoti MaG2020 (i, ap)  for i=j=k=I
— M B for = A k=1
—m; mjiaj\mo(—il ZJ) for i=k=1+#j
Ti,j,k,l(A) =
— iy AE) - for = =k #1
—m; mjiauxi(jl\:aj) fOT 1=k< j =1
0 otherwise.
where
_ 5 3
aso(a.b) = 2b2 [(—60(a/b)” + 4311(a/b)
— 300(a/b)

) bg/2 O(G/b) + 8( (a/b)ﬁ

— 252(a/b)* —222(a/b)* + 7) by21(a/b)

+ 4(75(a/b)° — 503(a/b)* + 135(a/b)) boja2(a/b)
+ 24(23(a/b)* + 13(a/b)?) by2.3(a/b)

+ 37(a/b)’ bojaa(a/b)]

a3100(a; b) =

_a
25602

[(=T44(a/b)” + 2014(a/b)?

— 864(a/b)) bysa.1(a/b) + 8(28(a/b)°

— 321(a/b)" — 321(a/b)* + 28) by22(a/b)

+  (552(a/b)’ + 423(a/b)® + 672(a/b)) by/2.3(a/b)
+ (1146(a/b)* + 1266(a/b)?) bgsa.0(a/b)
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+ 6(29(a/b)* + 9(a/b)?) by2,4(a/b)
— 5(a/b)* bya5(a/)]

agoo(a,b) = S0 [(—324(@/6)5 + 10584(a/b)* — 324(a/b)) by/2.0(a/b)

8(17(a/b)® — 300(a/b)* — 300(a/b)* + 17) by21(a/b)
(1272(a/b)° + 6337(a/b)® + 1272(a /b)) by/22(a/b)
(648(a/b)® + 396(a/b)* + 396(a/b)?

648) bg/2,3(a/b) + (348(a/b)’

800(a/b)° + 348(a/b)) by/a.4(a/b)

(—=60a/b)* — 60(a/b)*) bg/a5(a/b)

9(a/b)? by/a(a/b)]

SEo [8(7(a/b)° — 252(a/b)* — 222(a/b)
7)boja1(a/b) + (—60(a/b)® + 4311(a/b)?
300(a/b)) by 20(a/b) + 4(75(a/b)® — 503(a/b)®
135(a/b)) bojaa(a/b) + 24(23(a/b)*

13(a/b)?) by /2 3(a/b) + 37(a/b)* b9/274(a/b)]

+ o+ + o+

2020 (a7 b)

+ o+ 1+

anso(a,b) = _25?51)2 [(~744(a/b)° + 2014(a/b)?

864(a/b)) by/a1(a/b) + 8(28(a/b)® — 321(a/b)*
321(a/b)* + 28) by/22(a/b)

(552(a/b)® 4 423(a/b)* + 672(a /b)) b2 3(a/b)
(1146(a/b)* + 1266(a/b)?) by 2 0(a/b)
6(29(a/b)* 4+ 9(a/b)?) by2.4(a/b)

5(a/b)” bosa5(a/b)]

—532“%)2 [(84(a/b)° — 8832(a/b)*

84(a/b)) boyao(a/b) — 8(5(a/b)°

652(a/b)" — 652(a/b)* + 5) bgsa1(a/b)
5(328(a/b)® — 561(a/b)® + 328(a/b)) by2.2(a/b)
(216(a/b)® — 1020(a/b)*

1020(a/b)* 4 216) by 2 3(a/b)

(116(a/b)® 4 200(a/b)*

116(a/b)) bosa,4(a/b)

o+

0220 (a, b)

_|_

+ o+ 1+
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— (20(a/b)* + 20(a/b)?) byya5(a/b)
+ 3(a/b)’ bojasla/b)]

128b2
— 36(a/b)) by/20(a/b) +8((a/b)"
828(a/b)* + 828(a/b)* + 1) bg/a1(a/b)
(—3096(a/b)® 4+ 1039(a/b)?
— 3096(a/b)) by22(a/b) + (648(a/b)°
1332(a/b)* — 1332(a/b)* + 648) bg/23(a/b)
(348(a/b)® 4+ 700(a/b)*
348(a/0)) by/2,4(a/b) — 60((a/b)*
(a/b)?) bosa5(a/b) + 9(a/b)* bo2.6(a/b)] (3.28)

arn11(a,b) = [(—36(a/b)” — 7956(a/b)*
)

o+ +

+ o+ +

Proof. As in the proof of the previous Lemma, we use the symmetries (3.23) outlined
in Corollary 3.2. We find, in the fourth order of the function g;;, only 19 (among the
35 possible ones) non vanishing monomials with degree 4, wich are individuated by 7
independent Coefﬁcients, Say 4000, A3100, 2200, @2020, 1120, @0220 and aiiil-

aaoo0(ai, a;) 0} + asioo(as, aj) HP0; + assoo(as, aj) 7 77] + azio0(aj, a;) 7 77177]
77] + agoz0(as, a;) 7715 + ar120(as, a;) 77@7735 + agazo(ai, a;) 7 77

(@i, a;) 1)

a4000(aj7 Gz)

ar120(ai, a;) 1 fzfj + aini(as, a ) ﬁmjﬁiéj + aiz0(ay, a;) 1; fz‘fj + a0220(aj7 ai) ﬁ?é?
(aj, a;)
(ai, a;)

a1120( @y, @5 77177]5 + aso20(ay, a;) 77]§ +a4000(az,ag)f +a3100(az,ag)§ fg

+ o+ + o+

G2200(a;, O; 5 5 +a3100(ag,az)fz§ + 614000(%76%)531 )

Thus, multiplying by —m;m;, and summing over all 1 <i < j < N, we find (3.27).

We perform now the computation of the 7 coefficients (here, ay, as, --- are used as
“dummy” variables)

1

a4000(a1,a2) = 24 5’n4g(a1,a2,n1,n2,§1,§2)

0
asio0(a1, az) 6 (9 31729(@170277717772751752) .
a2200(a1,a2) = 7aAQ“Qg(alaa2>ﬁ17ﬁ27éla§2) o
a2020(a1,a2) = 3 2529(&17427771,772751>52) o
a0220(a1,a2) = 3 2529(611&2,771,772,51752) 0
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1

arzo(ar, az) = 58ﬁ1ﬁ25§§1(a1,a2,ﬁ1,ﬁ27€1752) 0
ap(ar, az) = aﬁlﬁzélé2g(alaa2afll7ﬁ27él7£2)’0
(3.29)
where o stands for |, - ¢ ¢) o and
A ~ A AR 1 d)\l d)\g
glar, ag,ni,m2,61,&) = / < ———— .
(27T)2 [0,27]2 d(al,am)\1,)\2a77177727517§2)
We write
d(alaam)\1,)\2,7717772751;52 \/d2 a17027>\17)\27771,7727517§2)
where
CZQ(a’ha27/\17/\277717772751752> = ‘A(ah)\l’ﬁl 51) (a27)\27n27€2)|
= @i(an, Mo, &)+ Balan, My i, &)
+ Z1(a 27/\277]2,52)2 Fo(ag, Mg, N, &2)°
- 2z (al,)\lﬂhafl) 1(612,)\27772752)
—  2@s(ar, A\, M, &) Taag, Ag, 12, 62)
(3.30)

where, for short,

A

(a,0,9,€) = #(a, \,, ) = (#1(a, A, 9,€), #2(a, A, 1, €))
denotes the Delaunay—Poincaré map for N = 1. Then, by usual calculus rules

1 _
0C1C243C4§ = (16622/2) !

X [105 ¢, dy Oy da Oty D, — 30 da Dyl gy da Oyl
— 30dy Opyeydy Oydo Deydy — 30 dy gy, do By Dy

— 30dy ey, da Oy dy Deydy — 30 dy dy Dy, da Doy da O,

+ —30dy Deyeydy Oy do Deydy + 12 d2 Dy, da D, da

+ 1220,y Beyycido 4 12 d2 Dy da D,y do

+ 12d2 0c,dy O oy da 4 12 d2 Dey iy da Dy, do

1242 0eyda0ycidy + 12d3 tycyda Oppeyda

— 830,650,
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We find, then,

1 _
Og = (1687 1
X [105 (67?16?2)4 — 180 dg(aﬁldgy 877%6?2
+ 483 0y, da Oy3ds + 36 d (0;2dn)?
Y
— 8d30;ds |
r | = (16d27) 7"
7l ?
X [105 05,d3 (93, da)* — 90 ds (95, d2)? Dy
— 90 dy Dy dy Dy, dr0ypd
+ 36 d305,d20y24,d> + 12 d305,da O
+ 36d3 05,5,d20;2d> — 8 d3 aﬁ,ﬁng}o
1 9/2 -1
Oy = (1647)
X [105 (95, d>)? (05, d2)* — 30 da Dy (9, d>)?
— 120 dy 0;, do Oy da Dy 5, dz — 30 do (Dgyda)? Dyl
+ 24 d% 8ﬁ2d2 aﬁ%fmdg + 24 dg 8771 dgaﬁlﬁgdg
+ 12d30ypdy 8;pdy + 24 d5 (95,5,d2)°
~ 8d30pda ||
] (16d5) "
UiST dlo
X [105 (9, d2)? (95,d2)* = 30 d Doz (95, o)
120 dy g, dy 8, d2 0, ¢, da — 30 do(9g, d2)? Ojady
+ 24d30; d> Do, do + 24 30, d> D, 2l
+ 123 0pds Ogpdy + 243 (D¢, d)” — 8.3 Dpady ]O
1 9/2 -1
D) (1657)

X [105 (9, da)? (93,d>)* — 30 d3 gz (D)
—  120d5 0, da 03,3 0, d> — 30 do(0g, d2)* Oyl
+ 24d3 0 dy Dy, do + 24.d5 0y, dy 0 2l
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5. 1

1
(9A - N
771772§1§2d

where

A £ 7R
MA28] dlo

‘ 0

+ + o+

125 gy O + 245 (9, ,a)” — 8.3 Oy |

(16d5%) -

(105 5, da 03,2 (D¢, da)* — 30 ds Oy, da Oy, o Dpadly

60 d 0z, da 0, ¢, do g dy — 60 da D¢, dy 05,2 0, ¢ dy

30 dy (0, d>)” awdQ +12d3 aﬁ ey O,y + 2430, dy O, 4
12 d303,d5 0, oy + 24.d3 0, do 0, ¢, d

12d3 Ogads Oy s — 830, 62 .

dy

(16d3"°) o

1105 83, da 03,2 Oy, d O, da — 30 ds Oy, O, dp D, d

30 CZQ 377151 CZQ 3772 CZQ 852 CZQ — 30 CZQ 8,7152 CZQ 8,72 CZQ 851 CZQ

30 dAQ 877251 dAQ 8,71 Cig 8526% — 30 Cig 8772 3 Ci2 aA CZZ 8A

30 CZQ 851526Z2 aﬁ1 CZ2 87726?2 +12 622 871 é1és d2 8771 d2 + 12 d aﬂ?dQ aﬁ15152d2

12d3 0g, da 0, ;. ¢, do + 12.d3 D, do Qmmd
12d3 aﬁlﬁzdz Oz,¢,02 + 1230, ¢ 20, ¢ d>

72 7 73
12.dy afi & aﬁzéldQ — 84, a771772£1£2d2 ]

(3.31)

do .= T4 a5 — 2a1as cos (A1 — o)

We start by computing the following derivatives in terms of the derivatives of the coor-

dinates

~

0; dsy

1
02y

Un

aﬁ1ﬁ2 do

né,

o

2[(#11 — #12) O3 &11 + (T21 — T22) 3771'@21]‘0
2 [<8ﬁ1f11)2 -+ (8ﬁ1j321)2 + (i’n — 52’12) 8,7%3?:11 + (i’Ql — '%22) 877%&21]‘0

—2 [aﬁ@ll Oy 12 + Oy Lo 3ﬁ2f22] |0

2 [8215311 05 11 + (9A T21 Ogy T + (E11 — Z12) 8171519611
(21 — Z22) amflxﬂ]
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~

0,

212

Oyl

0,

N2&7

22y

3]

Ospezda

Dzl

~

0

T 12€3 dy

aﬁ1ﬁ2€1£2 d2

dgo

- -

-2 [aglfn Dja 12 + Og T2 aﬁﬁm]‘o
2 [3 8771:?:11 0ﬁ§§c11 + 3 8ﬁ1.§321 8,?%:%21
(211 — 212) Oppl11 + (Tg1 — 92) aﬁ?«i2l]‘0

2 05,12 D211 + Opy T2o aﬁfffm] ‘0

2 [855:%11 67713?11 + 05%3321 87713321 + 2 851:%11 851

(T11

ﬁljll +2 651 Ta1 a5177 T21

— Z12) aﬁlg%fn + (#21 — T22) aﬁlg%i’m]‘o

—2[0pd11 Ogy 12 + O a1 Oy B ‘0
2 [0p, 12 0, ¢ 11+ Opian Oy 513721]‘0
2[3 (9p11)" + 3 (Dgpdmn)” + 405, 11 Ogpny + 40y, 1 Doy
(Z11 — Z12) 377;15511 + (Z21 — Z22) aﬁ‘f‘%ﬂ]‘o
—2 (0311 Ony 19 + Opa @i Oy o]
—2 (02811 Opg g + D21 Opas)] ’0

2 [2 (8771515511)2 + 2 (87]1519521) + 2 amxu 8 521’11 + 2 8,,1x21 8 521’21
0

éfill 877212'11 + 8A2£L‘21 8ﬁ2x21 + 26 1'11 &25 ZL‘11 + 28 1‘21 0. 2{ 1321

(i'll .1'12) 0. 2521’11 + (1'21 - l‘22) 0. 252.1'21‘0
-2 [85%3?11 (977%:%12 + affiﬂ aﬁgim] ‘0
2 [8,72&12 aﬁlé%i’ll + aﬁ2j722 87?15%@21] ‘0

—210,

7]1513311 9; 2o T1g + a77 & Ta1 a7725 11722]‘

0

(3.32)

where we have denoted, for shortness,

'%ij = ji(aﬁ)‘jaﬁjuéj) ) 7;7 .]: 17 2. (333)
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Recalling the relation
:%2(@7 )‘7 777 é) = _:i.l(av A+ 7T/27 é? _ﬁ) ) (334>

the computation is then reduced to the one of the involved derivatives of the coordinates
q1, which we recall, is defined as

7? + €2
4

DO [y,

:i"l(a,)\,ﬁ,é):alcos(CA%—)\)— (ﬁsin(§+)\)+fcos(f+)\))—ﬁ 1—

(3.35)
where é = f (A, 7, é) is implicitely defined as the solution of

¢ = \/1— ﬁ2152 [(ﬁcosk—ésin)\) sin ¢ + (ﬁsinA—i—écos)\)cosd : (3.36)

To this end, put

o 0?2+ & :
SO0 7€) = 11— (1 cos A — £sin \)
N H2 2 A
t(A1,€) :==1/1— 1 (nsin A 4+ & cos \)
(3.37)
Write, from (3.36), C(A, 9,€) = C(s(\, 7, &), (N, 7, €)), where ((s,t) is the solution of
(=ssin(+tcos( . (3.38)
The 4-order expansion of ¢ around (s,t) = 0 gives
E(s,t)=t+st+32t—1t3+s3t—§st3+05(s,t) (3.39)

2 3
so that, inserting the previous expression into the 4-order developing of

cos (A +C(s,t)) = cosA— (sin\){(s,t) — ;(cos A) (s, 1) + é(sin A) (s, t)?

1 p- 4 F
+ ﬂ(cos A) (s, t)* + O5(¢(s,1))

we find

1
cos (A +((s,t)) = cosA—(sin )t — (sin\) st — §(COS A 12— (sin\) 5% ¢
— (cos\) st + g (sin \) % — (sin \) s* t — 2 (cos \) s 12

1 1
+ 63 (sin\) st + 23 (cos A) t* + Os(s,t)

(3.40)
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On the other hand, taking into account the following expansions around (7, &) = 0

A2 1 £2 A3 {2 .
1= T8 = G TS 0.
2 PHE o PE+E :
G1-T0 = -+ 0509

(3.41)

we find, by muliplying the first by cos A (sin \) and the second by —sin A (cos ), and,
then, taking the sum

s\, 8) = 1—772152 (ficos A — Esin \)
— (cosA) i — (sin \) € — LSV = (sinA) ﬁzég (cos \) 7 €2 — (sin A) €
+ 05(3,€)
(t(A,ﬁ,A,é) = 1—772:52 (Asin A + € cos \)
(s )7+ (cosa) € — ST F (cos V) i 3 ;L (sin \) 7 €2 + (cos \) €2
+ 05(1,4) (3.42)

respectively). Consequentely, substituting the (3.42), into (3.40), we obtain

~

cos A+ CNE1) = cos(A+ N s\ E 1), N E,7)))

220 -1 in2\ ;
_ COS)\_'_COS ﬁ_sm é

2 2
cos A —cos3\ .,  sin A — 3 sin3\ cos A + 3 cos3A o,
B e B L
n 3 —19 cos2)\ + 16 cos4\ n 9sin 2\ — 16 sin4\ Azé
48 g 16 g
n 1 — cos2X — 16 cos4A Aé2 n 11 sin 2\ + 16 sin4\ 53
16 g 48
n 46 cos A — 171 cos 3\ + 125 cos 5)\
384
8 sin A — 99 sin 3\ + 125sin 5\ A3 A
a 96 ¢
10 cos A + 27 cos 3\ — 125 cos 5)\
+
64
8 sin A — 45 sin 3\ — 125sindHA |
- % né
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14 cos A + 117 cos 3\ + 125 cos b\ » o
334 &'+ 05(1, )

The expansion of sin (A + é(/\, n, f)) is obtained by the previous one, using

sin (A + é()x,f],é)) =—cos(A+7/2+ (,t()\+7r/2,f, —17))

and gives
A A 22+1 2 in 2\
sin(A+ 07, 8) = sind+ 5 ey 2

5 sin A + sin 3\ éz n cos A + 3 cos 3\ . f —sin A+ 3 sin3\ ,

- - u— n n
8 4 8
3+ 19 cos2A + 16 cos4\ 53 9sin 2\ 4 16 sin4\ ., .
48 16
~ 14cos2X — 16 cos4A T —11 sin2X\ 4 16 sin4\ 4
16 g 48 "
. 46 sin A + 171 sin 3\ + 125 sin 5\ é
384

8 cos A + 99 cos 3\ + 125 cos DA o4 .
- 6 £

—10 sin A + 27 sin 3\ + 125 sin 5\ 4, .
_ 527]2

64

8 cos A 445 cos 3\ — 125cosHA - 4
- %6 §1

—14 sin A + 117 sin 3\ — 125 sin 5\ e

Both the previous expansions (of cos (A + C(\,7,€))) and sin (A + (A, 7, £))), together
with the first line in (3.41), are, next, inserted into the expression of #; given in (3.35),
and one obtains the expansion of z; to the fourth order:

iy -3 2\ in2\ »
@(a i) = aleosh+ T B - B
COS A — CcOS3A\ . sin\+3sin3\ .~ HScosA+3cos3A -
i e e T - 3
9 —19 cos2\ + 16 cos4\ 4 n 5 sin 2\ — 16 sin4A\ AQf
48 g 16 K
n 3 —9 cos2\ — 16 cos 4 G624 23 sin 2\ + 16 sin 4\ &
16 K 48
n 46 cos A — 171 cos 3\ + 125 cosbA
384 g
—2 sin A + 81 sin 3\ — 125 sin 5\ 4 »
+ % UMS
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14 cos A — 9 cos 3\ — 125 cosdA 5 o
6l /S
—2sin A 4+ 99 sin 3\ + 125 sin b\ |
URS
96
38 cos A 4+ 189 cos 3\ + 125 cosHA - s
- £+ 05(2.4) (3.43)

As outlined before, the expansion for 5 is obtained by
5%2(@, )‘7 ﬁa é) = _il(aa A + 7T/27 é? _77) )
and the result is

. A 2 ) 3+cos2\ »  sin2)\ |
To(a, A\, 1,€) = a [sin A+ 5 £+ 5 7

sin A\ +sin3\ », cosA—3cos3\ . HsinA—3sin3\ ,
A
9419 cos2XA 4 16 cos4\ »; 5 sin2X 4 16 sin4\ o, .

n

48 16

3+9cos2\ —16cos4) » ., —23sin2\ 4+ 16sin4\
n

- 16 §0+ 48

46 sin A + 171 sin 3\ + 125 sin A 54

384
—2 cos A — 81 cos3\ — 125 cos b 53 R
n

96
14 sin A + 9 sin 3\ — 125 sinHA o, .
52 n2

64
—2 cos A — 99 cos 3\ + 125 cosHA » 4
+ %6 ]

38 sin A — 189 sin 3\ + 125 sin 5\
384 g

+

+05(i, &) (3.44)

Expansions (3.43) and (3.44) for #; and 2y give at sight their desired derivatives in
(n,€) = 0, which are substituted into (3.32), giving

d20 = aj+a5—2aja; cos (A — Ag)
8,71(22 , = T [2a; cos A1 + ag (cos (2A1 — Ag) — 3 cos Ag)]
dﬁczg . = —% [—6a; +2a; cos(2M\1) —4das cos (A — A2) + 3azcos (3N — A2)

+ ag cos (A1 + Ag)]

Dsyia 0 = _a12a2 [9 — 3 cos (2A1) + cos (2A1 — 2X3) — 3 cos (2)y)]
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A~ a . ) '
6, A2 , = —L [2a; sin (2A1) + a2 (3 sin (3A1 — A2) + sin (A + Ag)]
9 . d aj ap (92 (9 \ —
77251 20 = 9 [—3 Sln(2 1)—}-sm(2 1—2 2)_3SIH2 2]
5 a
Ogady 0 = _Zl [—12a; cos A\ + 6.ay cos 3\ + az (—21 cos (2A1 — A2)

+ 16 cos (4A1 — A2) + 9 cos Ay + 2 cos (2A1 + A2))]

(97?%,72(22 = a14a2 [—9 cos A1 +9cos (3A1) + 4 cos (A1 — 2Xg) — 3 cos (3N — 2)\2)
— cos (A + 2\)]
67715%622 . = a“ [4ajcos A+ 6a; cos(3A1) + Tag(cos (2A1 — Ag)
+ 16 cos (4A; — Aa) — 3 cos Ay + 2 cos (21 + A2))]
9 5 ai az
2l o = 1 [—15 cos A\; — 9 cos (3A\1) + 4 cos (A — 2A2)
+ 3 cos (3A1 — 2X9)] + cos (A1 + 2X0)]]
5 aj a _ . . :
o 1inéy 02 . = 14 2 [—3 sin A\ — 9 sin (3A1) + 3 sin (3A; — 2A2) + sin (A1 + 2X2)]
aﬁ%CZQ . = % [—72a; + 56 a; cos (2)\1) —32a; cos (4A1) —42ay cos (A — A2)
+ 180ay cos (3A; — Ag) — 125a5 cos (BA; — Ay) — 4 ag cos (A1 + A2)
— 9ay cos (3A1 + A\2)]
Dyonnda| = “18a2 27 — 57 cos (2M1) + 48 cos (4A1) + 21 cos (20, — 2X9)
— 16 cos (4A1 — 2X2) — 9 cos (2X3) — 2 cos (2A1 + 2),)]
A a1 A
Oyenzda o = 3 [12 cos (A1 — 3X2) — 9 cos (BA; — 3A2) — 17 cos (A1 — A2)
+ 12 cos (3A1 — A2) + 8 cos (A + A2) — 3 cos (A1 + A2)
— 3 cos (A1 +3X\2)]
aﬁ%é%dg = ﬂ [—24 a; + 32 ap COs 4)\1 — 14 Ao COS ()\1 — )\2)
+ 125 Q9 COS (5)\1 — )\2) +9 a9 COS (3/\1 + )\2)]
A ~ 3arag
8ﬁgé%d2 = T [4 COS ()\1 — 3)\2) + 3 cos (3/\1 — 3)\2) — 5 cos (/\1 — /\2)
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~

aﬁ1ﬁ2éfd2 0

~

aﬁlﬁ2él£2d2 0

+ 4+

4 cos (3A; — A2) + cos (3A1 + Ag) + cos (A1 + 3A2)]

ay 2

[9 — 27 cos (2A1) — 48 cos (4\)

7 cos (2\1 — 2X2) + 16 cos (4A; — 2X3) — 3 cos (2)2)
2 cos (2A1 + 2X9)]

ay ag

[—9 cos (3N — 3A2) — cos (A1 — \2)
3 cos (3A1 4+ A2) + 3 cos (A1 + 3A2)]

The remaining derivatives involved in (3.32) are found by symmetry (as in the proof of

Lemma 3.2):
aﬁQ dA?

0

>
=
s
V)
N
[en]

3
V]
Iy
[\v]
o

as [3ay cos A\ — ay cos (A1 — 2X\g) — 2ay cos Ao
ai [—3 ag sin Ay + as sin (2A; — A2) + 2 a; sin \]

as [—3a; sin Ay — ay sin (A} — 2X\2) + 2 ag sin A\

% [6as —3ay cos (A —3Xg) +4ay cos (A — \g)

2ay cos (2X2) — ay cos (A1 + Xo)]

a1 a2

[—3 sin (2A\g) — sin (2A; — 2Ay) — 3 sin 2]

e [2as sin (2X\3) — 3ay sin (A — 3X2) + a; sin (Ay + Aq)]

a1

5 [6a; 4+ 3ag cos (3N — Xg) +4ay cos (A — \2)
2ay cos (2M1) + az cos (A1 + A2)]

ay as [—9 — 3 cos (2A1) — cos (2A1 — 2X3) — 3 cos (2)9)]
a14a2 [—9 cos Ag + 9cos (3N\2) + 4 cos (2A; — Ay) — 3 cos (2A1 — 3Xg)

cos (2A1 + Ag)]
3]

i [—4ajsin A} + 6y sin (3A;) — Tag(sin (2A; — A2)
16 sin (4\; — A2) + 3 sin Ay + 2 sin (201 + Ag))]
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3
V]
S
o
oy
[ V]
o

3
=
oy
o
oy
[ V)
o

=
NN

s

o
o

~

9,

€ 2

A

afhfhfz dy 0

2 13 cos Ay — 9 cos (3Xz) — 3 cos (2A1 — 3Xy) 4 cos (2A1 + A2)]

a14a2 [3 cos A1 — 9 cos (3A1) — 3 cos (BA1 — 2Aa) + cos (A1 + 2A2)]
a az . . . .
1 [15 sin Ay — 9 sin (3A\g) — 4 sin (2A1 — A2) + 3 sin (2A; — 3Ay)]

sin (2A1 + A2)]]

a14a2 [_3 SiIl )\1 - 9 Sil’l (3)\1) + 3 SiIl (3)\1 — 2)\2) + Sil’l (/\1 + 2)\2)]
a14a2 [—3 sin Ay — 9 sin (3A) — 3 sin (2A; — 3\3) +sin (21 + A9)]

The last step is to insert the previous list of derivatives into (3.31). The result is

+ 4+ x

++ 4+

+ +

[128 (a3 + a3 — 2 ayay cos (A — )\2))9/2} o

{ar[~8ay (2244 — 2964 a} a3 + 1305 a} a3 — 820 a5) cos 2),

(4096 a] — 25080 a3 a3 — 20178 a? a5 — 4952 a; a2) cos (4\1)
as (—360 a5 ay + 25866 a* a3 — 1800 a; az) 36 al a; cos (6A; — 4)9)
343 a} a2 Ccos (8)\1 —4)9) + (11992 a} aj — 4488 a1 a2) cos (A1 — 3Aa)
(232 a1 a3 + 72 aj a}) cos 5\ — 3)\2) (1676 a; aj
1356 aj a2) cos (TA; — 3)\2) — 5300 aj cos (2A; — 4Xg) +
(—4848 a1 a2 — 1280 al a2 + 144 @ al) cos (4\; — 2)9)
(—3492 @’ a3 — 6660 a1 a2 1908 aq a2) cos (6A1 — 2Xg)
(336 a® ay — 12096 a} a2 10656 a2 a5 + 336 a2) cos (A — As)
(1800 al a2 — 12072 al ay + 3240 a; a) cos (20, — 2/\2)
(3312a7 a2 + 1872 a] a2) cos (3\; — 3>\2) +222a3 aj cos (4A; — 4),)
(—4896 a1 as + 14760 a1 a2 504 a1 a2 1440 a}) cos (3\; — Ag)
(6568 a ag + 14148 a} a2 + 9444 a3 a5 + 1000 a3) cos (5A1 — Ag)
(—14256 al a3 + 33696 a3 a5 — 1584 a; a$) cos (2)z)
6561 a? a2 cos (4\s)
(8096 a1 ag — 42984 a} a;
5448 a2 a2 +32al) cos ()\1 + A2)
(29436 a} a2 18484 a? a2 468 a; a2) cos (2A1 + 2)\9)
(—17784 aS ay + 34236 a] aj + 10620 a? a5 + 72 ab) cos (3A; + \2)
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+ (—222044 a + 2340 a7 a) cos (A + 3)o)|

Diy cli o= {128 (a3 + a3 — 2 ayay cos (A — )\2))9/2} o

x {a1ay [~3438a} a3 — 3798} a

+ 2442 (76 a1 — 197 al a2 + 113 a2) cos (2\1)

+ (—6144 al + 9462 ay a3 + 2904 a3 a3) cos (4)\;)

— 343 a1 a2 cos (A1 — HAg)

+ 207a} a2 cos (3)\1 —5Xa) + 2543 a3 cos (TA; — 5)g)

— (162 al a5 + 18 a} a2) cos (6A; — 4Xs)

+ (7243 ay — 18195 a1 a2 + 2736 a1 a5) cos (A — 3)9)

+ (924 a1 as + 243 a3 a3 — 204 a; a3) cos (5A — 3)9)

— 754} a2 cos (TA; — 3)\2)

+ (666 a] a2 + 5274 al 2 a5) cos (2/\1 4)s)

+ (2048 a1 — 2284} a2 + 1260 a7 a3 + 512a5) cos (4X; — 2X2)

+ (486 a] aQ + 270 ay ag) cos (6A; — 2Xg)

+ (2232 al as — 6042 a1 a2 + 2592 a4 az) cos (A1 — Ag)

+ (—672 al + 7704 a} a2 + 7704 6% a3 — 672a$) cos (2A1 — 2)z)

— (1656 al ay + 1269 a3 a3 + 2016 ay ab) cos (3)\1 —3X2)

— (5224} a2 + 162 a] a2) cos (4A; — 4)\y) + 15a} aj cos (5A1 — 5Ay)

— (4656 al as + 4518 al a2 + 1656 a; a3) cos (3A; — Ag)

— (27724 ay + 1864 a3 a2 +300a; a3) cos (5A; — Ay)

+ (16452 al a3 — 12588a; aj + 288a3) cos (2)2)

+ (450 a} aQ 7350 aj a2) cos (4A2)

+ (882045 ay + 21598 a2 a3 — 1068 a1 a3) cos (A + o)

+ (6405 — 41694 a} a3 + 4410 a3 a5 + 64 a3) cos (2A; + 2)9)

+ (26088 a° ay — 10854 a} a3 — 360 ay aj) cos (3A; + Ao)

+  (—276a° ay + 29520 a2 a3 — 876 a; a3) cos (A + 3)\2)} }
Oy cli = {128 (a3 + a3 — 2 ayay cos (A — /\2))9/2} -

0

x  {—aray (3244} ay — 1058445 a3 + 324, a
— 12ay a5 (220 al — 1067 a3 a3 + 52 a3) cos (2)\;)
— 12a;1 a5 (599a} — 277a23 — 9a3) cos (4)\1) — 30a} a3 cos (4\; — 6)y)
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77151 d

+ +

++ +

+ o+

+ + + X

(264 a1 a2 — 1176 a3 a3) cos (A; — 5Ay)

(36 al a2 + 564 a7 ay) cos (3A; — 5Ag)

30a} a2 oS (6)\1 4)s)

(96 a1 — 1920 af a3 — 14496 a2 a5 + 864 a3) cos (A} — 3)\;)

75 a3 a2 cos (21 — 6)\2) (564 af a3 + 36 a2 ay) cos (5A; — 3\y)
(528 a3 ay + 26 @’ a2 + 4272 ay a) cos (2A; — 4)9)

(4272 al ag + 26 a3 aj + 528 ay a}) cos (4X; — 2),)

7503 a3 cos (6A; — 2)\2)

(—136 a1 + 2400 af a2 + 2400 a? a3 — 136 aS) cos (A — \2)
(1272 al as + 6337 a1 a3 + 1272 a1 ab) cos (2M; — 2),)

(—648 a1 396 af a2 396 a? a5 — 648 al) cos (3\; — 3)9)
(— 348 al as — 800 a? a — 348 ay aj) cos (4)\1 —4Xs)

(60 af a2 + 60 a} ag) cos (b — 5)\2) 9a?aj cos (6A; — 6);)
(864 a8 — 14496 af a2 1920 a3 a3 + 96 a5) cos (3A; — \2)
(1176 a} a2 + 264 a3 a2) cos (BA; — A2)

(—624 al as + 12804 a1 a3 — 2640 a1 ab) cos (2);)

(108 al as + 3324 a% a3 — 7188 ay a) cos (4)9)

(64 a® + 456 af a3 + 456 al a5+ 64a3) cos (A + o)

(1224 a1 as — 45774 a1 a3 + 1224 a, a2) cos (2A\1 + 2Xz)
(=216 a8 4 29760 a} a2 — 2736 a2 a3 — 24.aS) cos (3A; + Ag)
(—244$ — 2736 af a3 + 29760 a7 a3 — 216 a5) cos (A1 + 3Xz)] }

{128 (a3 + a3 — 2 ayay cos (A — )\2))9/2} o

{~a [(4096 al — 25080 a a2 — 20178 al — 4952 a; ab) cos (4A;)
120 al a5 — 8622 a3 ay + 600 a; a$ — 343 a} a5 cos (8A\; — 4)\,)
4aiaj (419 al + 339 a2) cos (TA; — 3Xg)

(—3492 al a2 — 6660 al a2 — 1908 ay ag) cos (61 — 2X5)

(—112 al as + 4032 al a2 + 3552 a3 a5 — 112a3) cos (A1 — Az)
(=600 a3 a2 + 4024 al a5 — 1080 ay a$) cos (2A; — 2)\2)

(— 1104a1 a3 — 624 a3 a2) cos (3A\; — 3)\2) — T4a% a3 cos (4M; — 4),)
(6568 a1 ag + 14148 at aj + 9444 a3 a5 + 1000 a3)) cos (5A; — Ag)
6561 a} a2 cos (4)2)

(29436 a} a2 18484 a? a2 468 a; a2) cos (2A1 + 2)\9)

(—17784 a8 ay + 34236 af a3 + 10620 a3 a3 + 72 as) cos (3A; + Az)
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77251 d

1
T 12€3 3

‘ 0

+

++ + + + + X

I+ + |

+ + + 4

+ o+ ++ A

(—22204 af a3 + 2340 0] a3) cos (A1 + 3Xo)|}

{128 (a3 + a3 — 2 ayay cos (A — )\2))9/2} o

{—3 ay as {84 a‘;’ ay — 8832 a‘;’ a‘g + 84 aq ag
4 ay as (956 al 3139 al a2 + 28 ay) cos (2)\;)
4ay as (599 ai —277a2 a3 — 9aj3) cos (4\1) — 1042 a3 cos (4\; — 6)9)
(88 a1 a2 + 392 a1 2a3) cos (A1 — 5Ay)
(12 a1 a2 + 188 a7 a3) cos (3A; — 5)9)
10a} a2 cos (6)\1 4)2)
(32 OL1 968 aj a; — 6920 a3 a5 + 288a3) cos (A} — 3)\;)
25 a3 a2 cos (21 — 6)\2) (188 aj a3 + 12a? a3) cos (5A; — 3)\y)
(176 a5 ay — 158 a3 a2 + 1424 a1 a3) cos (2X; — 4),)
(—1424 a5 ay + 158 a3 a3 — 176 a1 a) cos (4A; — 2),)
25 a’ a2 cos (6 — 2)\2)
40 a$ 4 5216 a} a2 + 5216 a? a3 — 40 aS) cos (A; — Ag)
1640 a5 ay + 2805 a? aj — 1640 a; a5) cos (2A; — 2Ag)
216 al — 10204} a2 — 1020 a7 ay + 216 a$) cos (3M\; — 3Az)
116 al as +200a? a4+ 116 a; a3) cos (4)\1 4),)
20 af a2 +20 a3 a%) cos (5A; — 5)\2) + 3a} ajcos (6A; — 6Az)
288 al + 6920 al a3 + 968 a2 a3 — 32 a5) cos (3A\; — \2)
392 a} a2 + 88 a? a3) cos (5A; — Ag)
112 a1 as + 12556 al a3 — 2384 a; ab) cos (2);)
36a; a; — 1108 a} a2 + 2396 a1 ab) cos (4)9)
7056 al a3 + 7056 a1 a2) cos (A1 + A2)
408 a5 ap + 15258 a$ a3 — 408 ay a5) cos (2A1 + 2);)
7205 — 9920 a} a3 + 912a aj + 8al) cos (3A; + \y)
(8a8 +912a7 a2 — 9920 a? a5 + 72aS) cos (A + 3)\2)}}

(=
(=
(
(
(20
(=
(
(=
(=
(=
(=
(

{128 (a% + CL% -2 a1Q9 COS (/\1 — /\2))9/2} -

{ayay [~1146 af a3 — 1266 a} a;
14463 (6 a] — 166 a3 a2 31a3) cos (2)\;)
6a? (1024 a] — 1577 a% a — 2* — 349 a3) cos (4);)
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1

87717725152 2

’ 0

+

+ 4+ + + + +

e e S e

343 a1 a2 cos (A1 — 5Xa) + 69 a2 a3 cos (3X; — 5A9)

25 a1a2 cos (TA1 — bAg)

(162 al a3 +18a’ a2) cos (6A; — 4Xg)

(24 a7 ay — 7437 a3 a2 +912a; a3) cos (A — 3)\;)

(—924 a1 as — 303 a3 a3 + 204 a; a3) cos (5A; — 3)9)

75 a3 a2 cos (TA\; — 3)\2)

(222a} a2 + 1758 al a2) Ccos (2/\1 4)9)

(—2048 a1 + 2316 a1 a5 — 900 a3 ay — 512 a5) cos (4\; — 2),)
(486 al a3 +270a3 ag) cos (61 — 2Xs)

(744 a3 ap — 2014 al a2 + 864 a; a2) cos (A1 — Ag)

(—224 al + 2568 a} a2 + 2568 a? a3 — 224 a$ cos (2X; — 2),)
(—552 a1 ag — 423 a3 ay — 672 ay a}) cos (3N, — 3/\2)

(—174 al a5 — b4 a3 a%) cos (4N — 4Xy) + 5ad a3 cos (5A; — HAg)
(11280 al as + 294 a2 a2 + 2616 a; a3) cos (3A; — Ag)

(2772 a1 as + 1864 al a2 + 300 a; a3) cos (5A; — Ay)

(7284 af a2 6492 a3 a2 + 96 a5) cos (2);)

(—450 af a2 + 7350 aj az) cos (4)2)

(—4044 a3 ay + 23402 a3 aj — 468 a1 a3) cos (A1 + o)
(—64aS + 41694 a7 a3 — 4410 a3 a5 — 64 aS) cos (2\; + 2)2)
(—26088 a3 ag + 10854 @} aj + 360 a; a5) cos (3A; + Az)
(276 a3 ay — 29520 a® a3 + 876 a; a5) cos (A + 3)\2)} }

{128 (a3 + a3 — 2 ayay cos (A — )\2))9/2} o

{al s {—36 a3 ay — 7956 a5 a3 — 36 a, a;

12 a1 ay (599 al — 277 a3 a3 — 9aj3) cos (4)\1)

24 al a2(11 al +49a3) cos (A — 5Ag) + 75af a3 cos (2A; — 6)2)
75 a1 a3 cos (6/\1 —2)\9)

(8a$ + 6624 af a3 + 6624 af ay + 8al) cos (A} — Aa)

(—=3096 a3 as + 1039 a3 a3 — 3096 a1 a}) cos (2A; — 2);)

(648 a1 — 13324} a2 — 133242 a3 + 648 a$) cos (3M\; — 3\z)
(348 a1 az + 700 aj a3 + 348 a; a) cos (4)\1 4);)

(60 af a2 + 60 aj a2) cos (BA; — BAg) + 943 a3 cos (6A; — 6)9)
(1176 al a3 + 264 al a2) cos (BA; — A2)

(108 a3 ay + 3324 a3 a3 — 7188 a; ab) cos (4);)
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+ (1224 a5 ay — 45774 a3 a3 + 1224 a; a3) cos (201 + 2)2)
+ (21648 + 29760 a] a3 — 2736 a5 ay — 24 a3) cos (3\; + Ay)
+  (—24a% —2736a] a3 + 29760 a] a3 — 216 a3) cos (A + 3)\2)” :

The previous expressions have all the form of a finite sum

S P (an.a cos (k1 A1 + ka)a)
k1,k2 kel T2 [a% + @% - 2@1 Qg COS ()\1 o )\2)}9/2

with Py, , (a1, az) a homogeneous polynomial in (a1, az) with degree 8. When taking the
mean with respect to (Aq, A2), only the terms with k; + ko = 0 survive. Taking also into
account the normalizations factors in front of the r.h.s of (3.29), one finds the expressions
(3.28), in terms of the Laplace coefficients by /s 1 (a1/asz).

3.2.2 Proof of non Resonance
In this paragraph, we prove

Lemma 3.5 There exists 6. such that, for any 0 < & < d,, the matriz F(A) defining the
second order fy of the secular perturbation f is negative definite in

LA :
E%a(,u,é):{A:(Ah...,AN)G]Rf: a; = (f) € [a,a)s™N lgiSN}.

m; \1my;

Denoting, for such values of 6, by Q@ = (4, -+, Qn), U(A) = (u;;(A) the eigenvalues of
F(A) and the unitary matriz through which F(A) is put in diagonal form

UN'FNU(A) = diag[Qr, -+, v, UNTUA) = idy ,

then, Q(A) and U(A) satisfy the following asymptotics in §:

-3 _”?”Al + 0(6?) for i=1

Qi(A) = §O3N/2 5 ) 30, ST LGB 1 O8I for 2<i< N -1

mivVmia;

a2 NN _ _ .
_% &N?;l anN mJ\JIVL;N(S(BN 5)/2+O(5(3N 2)/2) fOT’ i=N
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B[4 VE (B

for 1§Z—]§2

6 _ _ _ 2
25 my %1 Mi—1 4/ Mi—10i—1
32 mMi—2 a;laf 2 ﬁ’Li mlle

2
+ (mz+1 (L? ~T~rL1‘ 4 mlaz ) ]69/2 +0(69/2>

mi_1al a2\ mi_1 \ m_1ai

for 2<i=j<N

25 < my a% MmN-1 4 mN1&N1>259/2 + 0((59/2)

32 \ mn_2 a%a%_,V N myay

for i=j3=N

5 mj a1a2 /i 4 m1a15 (175—-29)/4 + 0(5(17]’—29)/4)
ma

4 mo a m;a;

for 1—2<]§N

Th;a

for 1<2<]§N

ab . .
_ a4 [my afma; §(175-17i—8)/4 (17j—17i—8) /4
ey e | o' +0(4 )

ZIZ; a;ag /m1 4 1:;2;(5 (17i—29)/4 + 0(6(171'—29)/4)
for 1= < 1 S N
a6
J

_5_my my 4/ m;ia; ¢(17i—17j—8)/4 17i—175-8)/4
_J /ml mzaz(; i—8)/ +0(5( J )/)

4mJ 1a;a5_

for 1<]<Z§N

Corollary 3.2 There exists 6* > 0 such that, for any 0 < 6 < 0., Q(A) is 4—non

resonant in Lo z(1,9):

min  min [Q(A)-k[>0.
1<[k|<4 Lo 5 (1,0)

We will obtain Lemma 3.5 as a consequence of Lemmas 3.6 and 3.7 below: apply Lemma
3.6 to the matrix F(A)0~O3N/2 hence, with

0 for 1=5=1

17j-11i—18 C
= for i<y
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—3 1y Mo &25711/‘%1(1 +0(6%), for i=j=1;

5m2 My 1 (6i—1/8:)2 5Bi— 5)/2+O((5 /2)

Qi Mmi\/m; a;

for 2<i1=5j<N-1;

i(0) = o an_1/a _ _
ay( ) —%mN M dj\frélvj\;l/ml\;\;);v §BN=5)/2 | 0(5(3N 1)/2)
for 1=5=N,
15 - (ai/a;)* (17j—11i—18)/4 (25j—19i—18)/4
¢ M ) +0(6
a] \/mlmj \/mlmjala] ( )
for 1<

and next on comparing the remainder terms.

Lemma 3.6 Let A = (a;;)1<ij<n a real symmetric matriz with order n and elements
Qi = C_Li’j((;) e s with C_LZ‘J(O) 7é 0 (345)

and

{ =05 ng <ng; fori<j (3.46)

Nijg < MNi—1j, Nij <N fori<j+1.
Then, there exists & such that, for any 0 < & < 6, the eigenvalues Ay, - --, A, of A satisfy
|A\i —ai;] < C6™  where m; = 2min{n;_1;,nii_1} — Ny
Furthermore, the orthogonal matriz V = {v; j}; j=1,.. N which diagonalizes A

VIV =id,, VTAV =diag(\, -, \)

satisfies
Uiy = 0ij + 0i(0) 6%
where
M — Mg fOT’ 1< 7
2n19 for i=j5=1
Vij = 2 min{n;_1; — Ni—1i-1, Nit1; — Ny for 2<i=j<n-1

2(nn71,n - nnfl,nfl) fOT 2 S { :.] =n

n;; —n;; for i>j,
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—% for 1<j,

2,4(0) for i>7j.

aj,J(O)

—%TV}Z'+17¢(0)2 fOT’ 7 :] =1
Ui—l,i(o)z Zf i1 — Mi—15-1 < M1 — Ny

—% 171‘+1,z‘(0)2 + 0i-1,i(0 )2 if Ni—14 — Ni—1,i—-1 = Nit15 — Nij
Ui+1.4(0)? if M1 — Mim1im1 > Mgt — Nag

for 2<i=73<n-1

—3Un-1(0)2 for i=j=n
if 0;,; 15 the Kronecker symbol.
This Lemma is purely technical and thus is proved in Appendix C.

Lemma 3.7 The matriz F(A) satisfies the following asymptotics:

_%ml Mo (531/@2)2 §3(B—N)/2 +O(5(13 3N) /2) fori=j=1;

az m1 Vmy ay

_% s Ty 1 afci;f/z; — §BiH+4-=3N)/2 4 0(5 31+6—3N)/2)
for2<i=j3j<N-1;
fz] - 3 = = (a Jan)>? 2 4 . .
— MmN MN_y =m0+ 0(0Y) |, fori=j =N,
15 5 g 1 - (:/a;)° §UTI-1Li-6N)/4 4 ()(§(251-19i-6N)/4)

aj \/msz \/mzmj a; aj

Proof. We start with computing the asymptotics for the diagonal elements, which, we
write as

Ji = —2 T >y asooo(ar, a;) + Y my, a2000(az,ak)] I<i<N
g k<i k>1
with
agooo(a,b) = 8b2 |: 7&/[) b5/2 O(Cl/b)
+4(1+ a®/b?) b a1 (a/b) — a/bbsj22(a/b)]
3a® a’
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having used the following asymptotics for the involved Laplace coefficients (see Appendix
F, Lemma F.1):

bssola) = 1+0(a?)
b5/271(04) = 20("‘0(0(3)
bsjpp(@) = O(a?)
bsja3(a) = O(a3)

Then, letting

1 /A2 ,
a; = () = di(SNil ) d’L € [Qu a] )

1<k<t i<k<N

we find
fi = _2K > ik asooo(ar, ai) + Y mka2000(az7ak)]

m;

3 ape*h 5i—4k—N
S S L — S B o (5
i/ m;a; 0N~ 1§Zk<i <8mk a7 o33 i ( )>

3 ajeth Sk—di—N
2§ 0o )

i<k<N

i

3 my az .z :

_ i = (7i—4k—3N) /2 (115—8k—3N)/2

= ————— | Y (=0 +0(8 )>
4 min/m;a; [qu ( 3

~

X Z <mka3 5(6k 3i—3N)/2 + 0(5 10k—7i—3N)/2)>] (349)

1<k<N ag

So, when ¢ = 1, only the second summation appears and the dominant term is the one
with £ = 2, namely, the term

3 MM 4] sy
4 ﬁh\/ m1a1 a%

and the dominant neglected term is of order §(13-3N)/2,
When i = N, only the first summation appears in (3.49), the dominant term is reached
in the sum for k = N — 1:

3 my_imy a3 N-1 52

4mN\/mNaN a?\,
and the dominant neglected term is of order §%.
When 2 <i < N —1 (for N > 3 planets), the first summation gives the lowest order
term for k=14 —1

= -3
4dmi/ma; a3

— — /\2
3 M1y ai—15(3i+4—3N)/2

96



which is dominant with respect to the dominant term of the second summand

A

- 2
3 mimiy1  G; §Bi+6-3N)/2

which, on turn, is the dominant neglected term. The evaluation of the off-diagonal
elements of F(A) is easier. In fact, we find, for i < j,

m;m
fi' = ——F Jango(ai,a‘)
’ vy ’
m;m; 15 &?53N*3i §ON—5i
T PRRIPSIPN P _T6&454N—4j+0 S6N—65
\/mz’mj \/mimjaiaj(S?N—Z—J j
15 mim,; &§ (17j—11i—6N) /4 (25j—19i—6N)/4
- &?5 ! +O(6 J )

16 /. - -
M A /Ty A A
because

a
@1100(a,b> = ]2 {—17a/bb5/2’1(a/b)

+8(1 4 a?/b?) bsj22(a/b) + a/b by 5(a/b)]
15 a® a®
= Ty <b>

having used

5
65/271(05) = 5 o+ 0(043)

b5/272(04) = 70&24‘0(0(4)
bsjps(a) = O(a”)

3.2.3 Proof of non Degeneracy

The aim of this section is to prove the non degeneracy of the Plane Planetary Problem:

Lemma 3.8 There exists 6* > 0 such that, for any 0 < § < 6" and 0 < p < 1, the
matriz of the Birkhoff invariants with order 2 for f is non singular on L, z(1t,9):

inf )]detA\ > 0.

a,a H,

We will obtain this result as a consequence of Lemma 3.9 below, which will be obtained
by direct check.
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Lemma 3.9 The matriz A; ;(A) of the Birkhoff invariants with order 2 for f(A

satisfies the following asymptotics

+3 e W (1 - ayy) for i=j=1;

mi ai1a2

_3m1m1.1 (a; ;/al §2i— (1_{_0%) fOT i:jZQ,"',N ;
Ai,j = (55_2]\[ X

_% mim; 5(73 3i— 10)/2(14-04”) for 1<y

mg my \/mimjaiaj j

where a;; = O(9).
We show here how Lemma 3.8 follows from Lemma 3.9

Proof of Lemma 3.8. Put, for shortness,

_37’77/};71/371 (az 1/(12) (1 _I_ a’n) fOI‘ Z :] et 2’ e ’N ;

In the case N = 2 (Plane 3-Body Problem), the matrix A is

Ry /111 1‘11251/2
A=0A, .(5( A2151/2 [1225

S0,

detA = (53(12111/122 — AZ )

17 mim; a153

1+ D
16m1m2m1m2a2 (1+D,)

’.7.)

(3.50)

where Dy = O(J), hence, for a suitable 6* > 0, det Ay # 0 on L, z(p,9) for 0 < 6 < §*.

The following claim concludes the proof.

Claim : For N > 3, the matriz A := 62N A has determinant

1 117 n3m; Qi T M Ai— Ai2 ]
depd = — ML (gt (G ) (14 )
16 mim;my ma Gy 352y m;m; a;

where D = O(9).

98



Proof. We prove, by induction, that any matrix with order n the form of A, has deter-
minant
1 117 nim; ay M M Ai— Ai2
detd, = ——-— "Mz G yp (_gMiliL (Gi-1/6)7) (4 | )
51

AT 52 N2
m2 a2 3<z<n m mz az

where D,, = O(d). The claim will be then obtained taking n = N, D := Dy. For n = 3,
the claim is true by direct computation, since

B Ay Apst? o Ayt
Ag == A21(51/2 A226 A23(55/2
Az6t Ap®? Agd®
Assume now that the claim is true for n — 1 and let us prove it for n. We write
1211 n6(7n713)/2
A A’Zln—l :

A, =
An 1715(411 7/

An’15(7n—13)/2 . An7n715(4n—7)/2 Ann(SQn 3

where A,,_; is the submatrix of A composed of the first n — 1 rows and coloumns, which,
by the inductive hypothesis, has determinant

I <—3mlml‘1 (al‘l/“’) 5% )( + Dui)

~2
3<i<n—1

3
1

Q>

117
16 m

detAn,1 =

2,2
11
2

511

SI 3
&

Mo mem; a?

Then, expanding the determinant of A, along the n' coloumn, we find

detA, = A0 3det A, ;+ R,

_ 117 mimy a3 H <_3mzmz 1 (di—l/&i)252z’—3) (1+ Dy_y)

16 m2 13 iy 1y 45 3Zi<n m2 1 az
+ R, (3.51)
where - ' 3
R,= Y (=1)""A,6™m 3102 det A;, (3.52)
1<i<n—1

if A, is the (7,n)—minor of A, hence, given by
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where
Ti o= [Fit, Tim—1) 1<i<n-—1

is the it" row of A, ; and
72n - [rfnly e 772n,n—1]

is the n'™ row of A, deprivated of its n'" component. We prove that the remainder terms
appearing in the summation (3.52) are at leas J times the dominant term

117 mimy  af I <_3mimi‘1 (G:-1/ &">252i3> (3.53)

16 M3 3y g A} 4 2e, m2 iy a2
in (3.51), which will conclude the proof. We distinguish 2 cases.

1.1 << N —-2.
Write 7, = §(=3n+10830/2(5, — 7)) where the k™ component of 7; is 7(1 — pi), with

GO—i-1)/2  for 1 <k <i
nk 50(n—i)=14)/2 £ L — 4

Pik = = X
Ay §U0M—k=1)/2 g5 ok <p—1

N

Then,

detjlm = det 7:1‘_;,_1

Tn
1
‘ Ti-1
_ 5(—3n+10+3z)/2det fi+1
fn—l
fi - f’z
T1 T1
' Ti 1 ' Ti 1
— 6(73n+10+3l)/2det 7:;@_4_1 o 5(73n+10+31)/2det f’i—}—l (354)
fn—l fn—l
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where both the matrices appearing in (3.54) may be rearranged (changing their determi-
nants at most for a sign) such in a way to take the form of A,,_;. So, using the inductive
hypothesys we see that each term 6(73~19/2)det A,, is of order at least §° times the

dominant term (3.53).

2. i =n — 1. In this case, we write
N (= A 53/2
Tn _’(Tn—l rn—l)
where 7,_; has components 7,1 (1 — p,_1 ) with

Ank 52 for 1<k<n-—2

Dnot ks = Ap_1,k
n—L,k — A
Tk for ' k=n-1

An—l,n—l

So, using, as in the previous case, the inductive hypoyhesys for

r
detA,_1, = det | _
Tn—2
Tn
1
Tiz1
53/2det 7:1'4_1
fnfl

™ ™
fﬁfl f¢,1
53/2det f¢+1 —-53/2d€t f@+1
fn—l fn—l
Tn—1 Tn—1

and multiplying by 6“4"~7/2 we find that the term with i =n — 1 in (3.52) is at least §
times the dominant term (3.53). This completes the proof.

The following Lemmas are devoted to the proof of Lemma 3.9.
Lemma 3.10 Let U(A) = (u;;(A)) the unitary matriz which diagonalizes F(A):

UNTFANU(A) = diag(Q,---,Qn) , UNMNTUNA) = idy
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F(An,€)

and let ¢; j11(N), 7i;11(N) the coefficients of the order 4—expansion of f in Delaunay—
Poincaré variables:

= oA+ 5 (- F(A)n + € F(A))

>

T gded (M) 66& + 04
1<4,5,k,I<N

+ 2

Gij et (i + 6i656461)
1< J <N

Define

(fi,j,k,l(/\) = Zlgi’,j’,k’,l’gN Qi’,j’,k’,l’(A) Uz’/,z’(A) Uj’,j(A) Uk’,k(A) Ul',l(A)

(3.55)
fz‘,j,k,l(A) = Zlgi/,j’,k’,l’SN Tt 47 kU (A> ui’,i(A) Uy (A) Uk k Ul’,l(A)

Then, the Birkhoff invariants with order 2 for f, namely, the elements of the symmetric
matriz A; j(A) defining the Birkhoff normal form for f of order 2 *

2 2 2 2,2 1 2
Pi T4 1 AR S
P+ 3 aWP TR 4 ETERTL  (350)
1<i<N 1<i,j<N
are given by

6 Giiii+ Tiiii for i=17
Az,]<A) =

N . . N . - N - 3.57
2Giig + 25505t 2 i+ 25050 + 2G5+ 25045 + Tiigg + Tjjii ( )
for 1#£j

Proof. The transformation

A=A
s ) A=A UM UM
P n=UW)i

¢ = U

diagonalizes the quadratic part of f, sending it to

=2 | (2
z VRS
fa= Y (A 5
1<i<N
and puts the order 4 term f; to

Ji= Z Qi j kel (ﬁiﬁjﬁkﬁl + ééékéz) + Z
1<ij k<N

1<i,j k<N

Ti gkl (A)ﬁiﬁjékél

(3.58)
22The variables A, p, q are thought “dummy” in eq (3.56): the existence of the Birkhoff transformaton
realizing (3.56) has been proved in the previous section.
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with (Gijri) = Q, (Fiju) == R as in (3.55). Next, as outlined in Appendix B, Remark
B.1, the Birkhoff invariants with order 2 may easily be found through the identification

p7,+q1 p]+qj R 1 F (N = &
2 ”21 A7 2 T (@2n)¥ /[o,zﬂ]zv S0 )l i )= TR (cossimon) 2
(3.59)

But, replacing f; as in (3.58), the r.h.s in (3.59) becomes

1 -
(27T)N /[0,27r]1\’ f ( §>| (in-€n) =+/Pi+q; (COSLph,Sincph)d(p

=2 > G0+ W+ ) 0F + D)+ )
1<i,j, k<N

+ > Fgwadiny 0 + )0+ )0+ @) 0P+ a) (3.60)
1<i,5,k,I<N

where we have let

Lijw = ~ /TN COS (p; COS (P COS Py, COS Yydp

= @)y /’H‘N sin ; sin ; sin @y, sin g;dp

Jijki = @)Y /’H‘N COS p; COS ; SiN y, sin p;dp

The elementary integral I;j;; does not vanish only when ¢ =j=k=10,ori=j#k =1,
ori=k=#j=1ori=1%j=k. In the first case, it gives

1 y2r 3
]““ = — / COS4$dZL’ = — .
2w Jo 8

In the three remaining cases, it gives

1o 21 .
Liijj z‘jz‘jzfz'jjz:(%/o cos xda?) =, 177

=1

So, the first summation in (3.49)

S gm0 + )02+ )R + )+ aP)

1<z'j K I<N
Z ql Z Z l pl + ql )
1<z<N
1 R,
1 > (G (N) + G (N) + Gijg (M) (0 + @) (03 + @) (3.61)
1<iAT<N
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Besides, the integral J;;i; does not vanish only wheni=j=k=1lori=j# k=10 1In

the first case, it gives

1 27 9 . 1
Jiiii = 7/ cos” xsin” xdr = —
21w Jo 8

in the second case, it gives

Juji = 1 2Wcostdx L 27rsin2xdx ! i#£ g
W\ 2w Jo 21 Jo 4 J

Then, the second summation in (3.60) is

S Figraduay 0 + )02+ )0} + )7 + a7)

1<z‘,j,k I<N
1 B -
Z Fiaii(M)(0F +7)> + = 1 > TN+ 44 . (3.62)
1<i<N 1<iAj<N

Finally, replacing (3.61) and (3.62) into (3.59) and next simmetrizing the summation,
we find the result.

Our next step is the computation of the asymptotics for Q, R, which, together with the
one for the diagonalization matrix U(A) (Lemma 3.5), will give the one for the A;;’s.

Lemma 3.11 The - asymptotics for the functions Q@ = (qiju1), R = (riu) defining the
4—expansion of f:
- 1
fo= &)+ 5 (nF )0+ F(M)E)
+ > gD (e + EGG4) + D Tk Mnin& + oa

1<4,5,k SN 1<4,5,k,ISN
18

_|_3fn~177}2 al/a2 55 2N—|—O(57 2N) fO’f’ iZl;

32 m% mi a1a2

377L7i7 7 7 2 2—2N 2 3—2N ; .
Qijiii = — ?m?ml (6 ;Z/a §2t —1-0(5 i+ ) for 2<i<N-—1;

_3mymy_1 (Gn- 1/(1N) 52+O(54) for i=N;

SmN my

(3.63)

ql7z7z?.7 - rl?J?/L’Z - /’017Z7’L’]
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Qiijjg =

Tiij.j

i g,

Proof.

1. Expansion

75 mimm; z (17j—9:—8N) /4
+128 5

\/m URVALDS m]a a; j
+0 (5(25j—17i—8N)/4) for i<j:

4285 T J 5(19i—11j—8N)/4 .

T az ’
’I’)’L m m ’I’I’LJ(L (LJ

+0 ((5(27i—19j—8N)/4> for i>j;

9 M M 75(7J 3i—4N)/2 4 O (5 11j77i74N)/2) , for i< g

16 1 1y /i hjasay @5

=0 for i>7;
(3.64)
e, (100 552N 4 O(3T2N) for i=1;
_SZ:Zm?;f (Gi— ;jaz §2i+2-2N 4 (52z+3 2N) for 2<i<N-1:;
3mymy—1 (@ a .
U B 0 (0Y) for =N
(3.65)
9 M m; (7j—3i—4N)/2 11j—7i—4N)/2 C_
T 16 Mg My \/mlmjaza] a; 5 + 0 (5 ) fOT <7
9 mim (7i—3j—4N)/2 11i—7j—4N)/2 S
716 7y, \/m:m]az% aj 4 +0 (5 ) for i>7.
(3.66)
315m; m; i 11 S
647?11'77%\/7?%7%7'&2'@] 7}5 5(11J e + 0(5 o=t 4N)/2) fOT’ = 7(3 67)

=0 for i>j.

of Giiii = V] th%ooo(az’ ap) Ay = mg/m; a,.

1 h#i

The coefficient a4p00(a, b) may be written simultaneoulsy as

4000 (a, b)

a

i [(—60(a/b)” + 4311(a/b)*
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— 300(a/b)) byja0(a/b) + 8(7(a/b)°

—  252(a/b)* —222(a/b)* 4+ 7) by21(a/b)
4(75(a/b)® — 503(a/b)® + 135(a/b)) by/a.2(a/b)
24(23(a/b)* + 13(a/b)?) b2 3(a/b)

37(a/b)* bo2a(a/b)]

51;2 [(—60(b/a) + 4311(b/a)?

300(b/a)®) bg2,0(b/a)

8(7 — 252(b/a)? — 222(b/a)* + 7(b/a)®) bys21(b/a)
4(75(b/a) — 503(b/a)* + 135(b/a)®) by2.2(b/a)
24(23(b/a)” + 13(b/a)*) by /2 3(b/a)

37(b/a)* by2.4(b/a)]

I+ 4+

+ o+ + o+

having used
bg/z’k(l/a) = O./9 bg/gvk(a) .

The involved Laplace coefficients satisfy the following asymptotics (see Appendix F), for
small o

69/27()(04) =1 + O(Oéz)
bg/g,l(a) = g o+ O(Oé5
69/2,2(04) _ 9@9 o2 + O(Oz4) (3.68)
bg/g}k(O{) = O(Oék) y for k>3 5
and we find thus the asymptotics for asn(a, b)
—5a+0(%)  forsmall  afb
a4000(a, b) =
+3%5+0(%)  forsmall  b/a
So, replacing
a=a; =a; 6" ", b=ay=a,o" " (3.69)
we obtain
3 @7 3h-2i-N 5h—di—N :
246 +0(s ) for i<h
h

a4000(ai7 ah) =

W

a:

+3 9 g-2-N 4 (05-4h=N) for i>h

©
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Finally,

m; _
Qiiii = —*21 th%ooo(ai? an)
i hti

m
% § m dj §Ai—2h—2N | (56i74h72N)
8~ | "a}

A

_ 3 lmh % §3h—i-2N | ) (55h3i2N)] }
b

The lowest order term is reached for h = 2 when ¢ = 1, for h = ¢ — 1 when ¢ > 2. The
first neglected powers of § are the ones coming from the remainder term with A = 2, for
1 = 1, from the dominant term with h =i+ 1, for ¢ = 2,---, N — 1, from the remainder
term with h = N — 1 when i = N. The final result is then (3.63).

. m; _
2. Expansion of ry; = A2 tha2020(ai> an)-
i hti

JFrom the identity
612020(@, b) =2 a4000(a, b)
one ﬁHdS Tiﬂ'ﬂ'ﬂ' = 2 Qi,i,i,i7 hence, (365)
_mymy asioo(@i, a;) _ My ar20(ai, a;)
A A Aj A A Aj

3. EXpans1on Of Qi,i,i,j = ri,i,i,j = ri,j,i,i =

for i #j.
Proceding similarly to the expansion of g;;;, we write the coefficients asigg, a1120 as

— ez [(—744(a/b)® 4 2014(a/b)?

—864(a/b)) boja1(a/b) + 8(28(a/b)°

—321(a/b)* — 321(a/b)? + 28) by/a.2(a/b)
+(552(a/b)® + 423(a/b)® + 672(a /b)) by /s 3(a/b)
+(1146(a/b)* + 1266(a/b)?) by/2,0(a/b)
+6(29(a/b)* + 9(a/b)?) by2.4(a/b)

— 5(a/b)? bojas(a/b)]

azo0(a,b) = ano(a,b) =
—5eoy [(—744(b/a) + 2014(b/a)®
—864(b/a)’) by/2,1(b/a) + 8(28

—321(b/a)? — 321(b/a)* + 28(0/a)®) be/a2(b/a)
+(552(b/a) + 423(b/a)® + 672(b/a)®) by 2.5(b/a)
+(1146(b/a)? + 1266(b/a)*) by /20 (b/a)
—|—6(29(b/a)2 + 9(b/@)4> b9/274(b/a)

— 5(b/a)? bojaz(b/a)]
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The asymptotics for these coefficients is computed using the asymptotics (3.68) for the
involved Laplace cefficients
—7—5“—+O(“—> for small a/b
azioo(a, b) = aizo(a,b) =
R0, (Z—Z) for small b/a

Hence, replacing a; = ;0" ", a; = a;6" 7

3 . . . .
_ 5 8 s45-3i-N 4 () (56]—51—N) for i < j
a3100(ai7 aj) = a1120(ai7 aj) =

53
285 95 ¢4i-3j—N 6i—5j—N . .
e a0 +0 (6 ) fori > j

and finally, the result, for g;i;;, 75, multiplying in front by

_ mymy o m;m; §Biti—4N)/4

/N3N, [-s~ 3. o3
A7A, \/mg’mj mim;aza;

4. Expansion of

_ _ a a;,a; . .

P —mimjimj{’i(/\j D for < J
7, . .
7 0 for @>j

In order to compute the coefficient g;; ; ;, we start from the symmetric coefficient

a2200(@, b) = agepo(b,a) = ﬁ [(—324(@/1))5 + 10584 (a/b)* — 324(a/b)) bg/2,0(a/b)

+ 8(17(a/b)® — 300(a/b)* — 300(a/b)* + 17) bg/2.1(a/b)
— (1272(a/b)® + 6337(a/b)* + 1272(a/b)) by /22(a/b)

+  (648(a/b)° + 396(a/b)* + 396(a/b)*

4+ 648) bg/23(a/b) + (348(a/b)°

+ 800(a/b)® + 348(a/b)) by/z.4(a/b)

+ (—60a/b)* —60(a/b)*) bg/a5(a/b)

X

9(a/b)” bojas(a/b)]
and we find
9 a? at
agoo(a, b) = 65 +0 <b5> for small a/b
which gives, for a = a; = a6™ ", b =a; = aé" 7 and i < j,
ag00(ai, aj) = 9 @ §¥72 N 10 (55j*4i*N> for @<
T 16 ad
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hence, (3.64) follows, after multiplying by the factor

M M mim;

Ai Aj mimj\/ﬁzimjdi&ﬂﬂv_i—j

5. Expansion of
_ 'a0220(ajaai>

Piggj =~ —— 3= for i£ 7.
i4yj
We expand the symmetric coefficient
_ 3a 5 3
aa(a,b) = —=— |(84(a/b)” — 8832(a/b)

+ 84(a/b)) bjao(a/b) — 8(5(a/b)°
— 652(a/b)" —652(a/b)?> + 5) bgsa1(a/b)

— 5(328(a/b)’ — 561(a/b)® + 328(a/b)) by/a2(a/b)

+ (216(a/b)® — 1020(a/b)*
— 1020(a/b)* + 216) b2 3(a/b)
+ (116(a/b)® + 200(a/b)?
+ 116(a/b)) bg/2.4(a/b)
— (20(a/b)"* +20(a/b)?) by /a5(a/b)
+ 3(a/b)*bojae(a/b)] -
and we find
+ Z—i +0 (2—4) for small a/b
a0220(6l,b) =

+ Z% +0 (Z—i) for small b/a
which gives (3.66) for

m; M
- 7%220(002’;%)

Tiddd T AN,
7

J

6. Expansion of
e .allll(aivaj)
Tijij = T A,
0 for ©>7

for i<y

We expand the symmetric coefficient

a
12802

a1 (a, b) [(=36(a/b)” — 7956(a/b)*
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— 36(a/b)) boso,0(a/b) +8((a/b)°

+ 828(a/b)* +828(a/b)* + 1) by/a1(a/b)

+ (=3096(a/b)® + 1039(a/b)?

— 3096(a/b)) bosa2(a/b) + (648(a/b)°

— 1332(a/b)* — 1332(a/b)* + 648) by/2.3(a/b)
+ (348(a/b)® + 700(a/b)?

+ 348(a/b)) boy2.(a/b) — 60((a/b)!

+ (a/0)*) boas(a/b) +9(a/b)* bosz(a/b)]

The term of order (a?/b®) in the expansion of aj;;; vanishes, so, we shall go on in the
asymptotics for the involved Laplace Coefficients:

bg/g’o(a) =1 + % CY2 + O(O{4)
=Sa+ 8 a4+ 0(a”)

= 12903 4 0(a®)

We find, for small a/b,

81 9 891 99 429
ann(a,b) = (—7956—36-4+8-828-+8-—3096-+648-)

2 16 8 16
4 6
257 © (Z?)
315 at a®
= wp O <b> ’

consequentely, taking, for i < j, a = a; = 4;6V ", b = a; = a;6" 7, we find, for r;;;; the
expansion (3.67). This completes the proof.

X

We are ready for the proof of Lemma 3.9.

For any i < j, the functions G, - -+ involved into equation (3.57) of Lemma 3.10 may
be written as

Giiii = Quii(1 + K;)

Tiiii = Tiaii(1+ ps)

Giijj = Qg (1 + Kij)

Qjjii = Qiijjhji

Gigig = GiijiFij (3.70)
Qjiji = Yiijjhji

Gijji = QiijjRij

Gjiij = QiijjRii

Tiijj = Tiiji (1 + pij)

Tiji = Tjzi(1 + pji)
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where

Rio= (U = 1) 443k 10 G (W) + Y Qe () g
k£ kAl
+ > Gk (uri)? (wis)?
k<l
Pi = (Ufz —1)+ 7]_@1” Z Th,k k. k (Uk,z')4 + Z Th 1l (u;“)2 (ul,i)2
ki y
+ Z Tkl kk (Ukl)3 Up; + Z Tk kel (um)g u; + Z Tkl kol (u;“)2 (Uz,i)2 ,
py kAl k<l
Kig = (uz2,1 U?,j — 1) + qi_,ﬁj,j [ Z Ak, k.11 (uk,i)Q (ul’j)z
k<l, (k)#G, 5)

+ Z Ak, k. k,k (ukz)2 (Uk,j)2 + Z Ak, k,k,l (ukzz)2 Ug,j Ul,j:|
k

oy
Rii = Qi | 20 ekt (eg)® (u)® + D drnk () (ur)
k<l k
D Qe () uni w
oy
Rij = Qi_ijlj {Z Trtogode (Wei)? (Ui )2+ Qi (Wni)? ik w
k k£l

+ Z Qe k1,1 Whei Wk, Ui g Uz,j]

k<l
Rj; = Qﬁ}j {Z Qe (Upi)? (uk,j)2 + Z Qeered (k) Ups
k k£l
+ Z Qe k1,1 Whe,i Wk, Ui 5 Ug
k<l
Rij = qz';jlj {Z Qe (Upi)? (uk,j)2 + Z Qe ke kel Wk i (uk,j)2 Up;
k kAl
=+ Z Qe ko1l Wi W j Up 5 U
k<l
Rji = qz';jlj {Z Geperere (Uri)? (ug ) + Z Qoo Whej (ki) U
k k£l
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Pij =

Pji =

Z Qi ko1l Wi Uk, Ul 5 Ul
k<l

(uii)? (u;5)* — 1

Tiis [ Do T (ur)® (W) + D ik (Un)? (ur)?
k

k£l (kD (6.5)

> rhrkk Wi U (W) > Pk (Wki)? Wiy
py py

Z Tkl k1 Uk Ul Uk 5 Ul 5
k<l

(uii)? (u;5)* — 1

"3 [ > oot (i g)” (Wie)® ) P (W) (ug)?

k#L (kD7 (55%) k

> Tk Wy g (Ue)® + > T (Weg)? U
k£l kAl

Z Tkl k1 Uk Ul Uk 5 Ul 5
k<l

(3.71)

Let us prove, for istance, the first in (3.70), with x; as in (3.71) (since the other ones
equalities are similar). Taking into account only the non vanishing components of Q =
qi,j,k,h we Write gi,i,i,i as

D i Wi Wy Ut U
i/vj/»k/ 7l/

= Z Ak ke k. k (Uk,i)4 + Z Qk k. k.1 (Ukz)3 Uuy; + Z Ak k.11 (ukz)2 (ul,i)2
k

k£l k<l

= Qigii T |G (Ufz — D)+ Gk (o) D @ (wni)® ur
ki P
+ Z Qe k1,1 (uri)” (Uu)Q
k<l
= Giii(1+5i) - (3.72)

Claim: The functions k;, p;, Kij, - - defined in (3.71) are O(9).

This claim follows by direct computation (throughout the asymptotics for Q, R, U given
in Lemmas 3.6, 3.11) of the order of the functions appearing in the summations defining
the functions r;, pi, Kij, ---. The details of this computation, for sake of continuity, are
postponed at the end of the present proof: an inspection of such orders, however, shows
that they never go under O(9).
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To conclude the proof, we use Lemma 3.10. Using equation (3.70) into equation (3.57)
and using the asymptotics (3.63), (3.65) for g, 7, we find, for the diagonal elements
of A, the asyptotics

Aii = 6Giiii+ Tiga
6 iiii(1 4 Kg) + 75004(1 + pi)
= (6¢iii+Tiiii)(l+a;;)

3mymg (81/d2)® c5-2N S T
+74u% M e 0 for 1=1;

= (14 o) x

3mi;mi—1 (Gi—1/a:)% 2 — .
o ;MZ 1 (@ }4 i) 52i+2-2N  for 9 <i<N
H; i a;

k3

where

6k i
6 Giiii + Tijiig

1690y

(67 AN

)

is an O(¢). Similarly, taking into account the asymptotics (3.64), (3.66) for ¢;;;;, 74;, for
for the upper diagonal elements of A, we find
Aij(N) = 2Giij5 + 205500 + 2Gigig + 2G40+ 2Gi g + 2055 + Tiigg + Tigaa
= 2quij;(1 + kig) +71ig (14 pig) + 755001+ pji)
Giiji (2655 + 2kij + 2k + 2k + 2k;)
(2aiij5 + 2riij;) (1 + aij)

+

Il
|
\
|$
<,

(7j73if4N)/2(1+Oéij) (Z <])

(recall Tiij; = Tjjii) with

(2h55 + 2hiy + 2hji + 2kiy + 2k50) gy + (Pig + 3T
2645 + 2Quij5 + 21y

Oéij =

an O(J) again.

Proof of the Claim: Using the asymptotics for Q, R, U given in Lemmas 3.6, 3.11, by
direct check, that

l.for 1 <i <N,

2. for k #1

r
Qkkkk<uki)47 kkkk(uki)4 _

iiii Tiidi
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3. for k #£1,

qkkkl
iiia

4. for k < [,

() () 5 2R ()3 ()

qkkll
iiii

(519’“ ) if1=1i<k
O(619k=0)=8) ifl<i<k
(515’ 26 ifl="k<i
O(6121=k)=8) ifl<k<i

r
klkk (U]ﬂ):g (U/li

Tiiii Tiiii
O(5™#) ifl=Il<i=k
O(67k=D-4) fl<l<i=k
O(517=29/2) ifi=k=1<1
0(5(17(l—k) 8)/2) fl<i=k<l
O(5121-2) ifl=Fk<l=1
O(6151-15k-8) fl<k<l=i
O(83k=59/2) ifl=i=I1<k
O(535(k=0=16)/2) ifl<i=1I
( §(21k+171— 68)/2) fl=i<k<l
0(5(35k+3l 68)/2) fl=i<l<k
O(§(71—k)+38(k=i)=20)/2) fl<i<k<l
0(5(30(i—k)+17( —i)— 20)/2) fl<k<i<l
O(§156-D+15(1-k)-10y ifl<k<l<i
O(§15—R)+T(k=1)=10) ifl<i<k<i
O(§3o(k—D+38(1-1)=20)/2) fl<i<l<k
O(§'0k=)+7(i=1)-10) fl<l<i<k
9 2 Tkkll 2
(uri) ™ (ui)* - (i) ()

(5125 23) fl=i=k<l

O(5'20--6) if1<i=k<l

O(§106=k)=6) ifl<k<i=lI

(5101 18) fl=k<i=1

O<512l+7k 34 fl=i<k<l

O(é‘l?(l—k)+19(k 1)— 10)
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5. for k <

6. fori < j, k<1, (i,

Qiijj

0(512@ 1)+10i— )
0(512 +10(i—k)— 0)

(5 i—1)+101— 22)
0(615(2 1)4+10(l—k)— 10)

Tkzkz( ) (Uzz 2

1148

(5171 23

(514 —6
(5142 22
(614 —6

O<514(l k)+17(k—i)—10

ifl=k<i<l
ifl<k<i<l
ifl=k<l<i
ifl<k<l<i

ifl=1=k<l
ifl<k=i<l
ifl=k<i=I
fl<k<i=l
ifl=1<k<l
fl<i<k<l
fl=k<i<l

0(514 —i)+12¢—24

0(514 —4)+12(i—k)—10
0(515 1)+121—24

)
)
)
)
)
0] (55k+14l 34)
)
)
)
)

) # (k1)

q Tkkll
S () (), " (uri)*(uj)? =

ll]_]

0(5121 k)+19(k—37)+75— 17)

0(512(l k)+19(k—j)+7(5—1) 8)

0(512 J)+Ti— 17y
0(512 —§)+T7(—0) -8)
0(512 )47k~ 17))
0(512(1 N+7G—k 8)
(57k 13)
(57(k i)— 4
0(55 1)+ 7k— 17y
0(55(3 D+T7(k—i)— 8)
0 s120-5)- 4

05 §120-5)- 4

0@ 556D 4)
0(5"-0-4)
O<512(l 7)+10i— 20)
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fl<k<i<l
fl=k<l<i

ifl=i<j<k<l
fl<i<j<k<l
fl=i<k=j<lI
ifl<i<k=j<l
fl=i<k<j<l
fl<i<k<j<l
fl=i<k<l=y
fl<i<k<l=j
fl=i<k<l<y
fl<i<k<l<j
fl=k=i<j<l
fl<k=i<j<l
ifl=k=i<l<jy
fl<k=i<l<y
ifl=Fk<i<j<l



O<55] 1)+15(%

o6 5(5—

7. fori < g, k <l,

qkkll (Uk,j)z (Ul,i)2,

Qiijj

0(512 —Jj)+10(i—k)— 8)

(5101 16)

O(55 j—1)+10(i—k 8)
(510 —k)—4

0(550 1)+10i—20
0(55] 1)+10:—20

—1)+101—20

)
)
)
0(55 j—i)+10(i—k 8)
)
)

1)+15(j—1)+10(1—k)—8

7/.’L’L]]

0(5121 k)+19(k—j5)+7j—17

0(512(l k)+19(k—37)+7(j—1)—8

§)+75—13

0(612
0(512 —)+7(j—i)—4

0(512 —§)+17(j—k)+7k— 17)
—8

O<512(l D17 —k)+7(k

O((517(J )+7k—17

0(517(] k)+7(k—i)—8

0(55] D+17(1—k)+Tk—17

0(5 5(7—0)+17(1—k)+7(k—i)—8

0512
O<512(l

7)+175—29

C)(512
()(512
O( 17] 29)/2
(6173 1)—8
O(§5j+12l 29
0(65] 0)4+17(1—i)—8
12(1—7)+17(1—1)+10i—20

J)H17(1—i)+10(i—k)—8

0(517(] 4)+10:—20

0(55 j—1)4+17(1—i)+10(i—k)—8

0(517 j—i)+10(i—k)—8

O<55] 1)+17(1—i)+10i—20

)
)
)
)
)
)
)
)
)
)
)
J)+17(5—1) 8)
)
)
)
)
)
)
)
)
)
)
)

(55J+51 16
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fl<k<i<j<l
fl=k<i<l=y
fl<k<i<l<jy
fl<k<i<l=j
fl=k<i<l<y
fl=k<l=i<j
fl<k<l=i<jy
ifl=k<l<i<y
fl<k<l<i<jy

ifl=i<j<k<l
fl<i<j<k<l
fl=i<k=j<lI
fl<i<k=j<lI
fl=i<k<j<l
fl<i<k<j<l
fl=1<k<l=y
fl<i<k<l=jy
fl=i<k<l<y
fl<i<k<l<jy
fl=k=i<j<lI
fl<k=i<j<l
fl=k=i<j=1I
fl<k=i<j=I
ifl=k=i<l<j
fl<k=i<l<jy
fl=k<i<j<l
fl<k<i<j<l
fl=k<i<l=j
fl<k<i<l<y
fl<k<i<l=y
fl=k<i<l<y
ifl=k<l=i<y



O<55(j—i)+10(z’—k)—4)
O(55(j7i)+15(z’fl)+10l720)

O(55(]'—i)+15(j—l)+10(1—k)—8)

8. for i < 7,

Qkkkk 9

Tkkkk (

() (urg)?, i) (ks

(65] 8
(55(3 7)—2

Qiijj Tiijj

)
)
)
(570 i)— 2)

(57] 11)
0(5101+5] 25)
0(612k )+7(k—i)— 6)
0(512k )+ 7k— 14)

)

)

)

0(57 1)+5(j—k)—6
O(§7k+5(j —15
0(510 j—k)—6

9. fori < j, k#I,
Qkkkl

Tiijj

qkkkl qklkk ( 2

O(5")
(55] k) 2)
)

(Uk:i>2ukjulja

(uki)2ukjulja

iijj iijj

O<5102+5] 24
0(515 k)+5(j—i)—
(62k+5y 15

0670~ -

0(5(35(k J)+145—30)/2
0(6(35(k §)+14(5—1)—12)/2
(55]"1‘21 12

(55] 10

(55] i)—4
0(5(17(1 7)+105—20)/2

)

)

)

)

)

0(55(J i)+7(i-1) 4)
)

)

)

/2)

0(5(17(l J)+10(5—1)
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Uk Ui

fl<k<l=1<y
fl=k<l<i<y
fl<k<l<i<y

ifl=k=i<y
fl<k=i<y
itk=7>i>1
itk=j5>i=1
if1=k+#4i,j
itk>j, i>1
itk>j i=1
fl<i<k<yj, k>1
ifl=i<k<y, k>1
ifl<k<i

ifl=k=i<j=1
ifl<k=i<j=I
ifl=k<i<j=I
ifl<k<i<jy=l
ifl=i<k<j=I
ifl<i<k<j=lI
itl=i<yj, k>j5=1
ifl<i<yj, k>j5=1
ifl=Il<i=k<y
fl<l<i=k<y
ifl=i=k<l<j
fl<i=k<l<y
ifl=i=k<j<l
ifl<i=k<j<l



O<514(j—i)+7i—14)
O<514(j7i)+7(ifl)76>
O<514j—23
0(5(14(j—i)—6)
0(514J D+71— 13)

0(514] )+7(1—i)—6
0(5(171 §)+145-30)/2
0(5(17(1 F+14(j—i)—-12)/2
0(55(j—z)+15(i—k)+7k—16
O(65(j—i)+15(i—k)+7(k—l)—8)
O(5(17|lfj|+3(jfl)+2[)l+40i7104)/4)
0(55(j—i)+15(¢—k)+7k—16
()0¢5@—n+45@_ky+nk—m_s)
O(5(17|lfj\+3(jfl)+20(lfk)+40(i7k)732)/4
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4 Deprit Variables for the Spatial Planetary Prob-
lem

Consider the Spatial Planetary Problem

How(psy, ) = ) ('yi|2—mimi>+u > (yi'yj— T > (4.1)

1<i<N 2m; || 1<ic;<N \ T |z; — x|

where (y,x) = ((yl, s YN ), (T, ,xN)) varies in the 6/N—dimensional collisionless
phase space

Cc173::{y/, e RN al Al #0 V1§i<j§N}

and, as usual, o
~ _ _ ~ mom;
m; =mo+pm; Mg = ———————
mo + My
are the reduced masses.

The system (4.1) exhibits three integrals of the motion (besides the energy) related to
its rotation invariance: the three components of the total angular momentum

C= (Cx, Cy, CZ) = Z Ty X Y; . (42)

1<i<N

Hence, the number of degrees of freedom of (4.1) can be furtherly reduced. Without
performing such a reduction, any attempt of extending to the spatial case the strategy
described in the previous section for the plane problem inevitably fails: two well known
resonances, called secular resonances (one of which with high order 2N — 1 and firstly
noticed by M. Herman) appear, preventing the direct application of Theorem 2.1.

This section is devoted to the description of the reduction of the number of degrees of
freedom of (4.1), by means of a change of variables essentially discovered, in the case of
the Four Body Problem, by Francoise Boigey [9] and then extended to the general case
by A. Deprit (1926,2006), [15]. It may be viewed as a natural extension of the Jacobi
or nodes reduction, used in [33], to prove the existence of quasi—periodic motions in the
Three-Body Problem.

The three components Ck, Cy, C, of the total angular momentum do not commute, but
they verify the cyclic rules 2

{C. O} =C., {C, G} =C, {C, G} =0y

23 As usual, {f, g} denotes the usual Poisson brackets of f, g:

{£. 9} =3 (001009 0,.50:.9)

1<i<N
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However, as well known, starting with Cx, Cy, C,, it is possible to construct two com-
muting integrals, for istance

C, and  G:=|C]=/CZ+C2+C2.

We define then a system of (action—angle) symplectic coordinates, which are adapted to
the reduction, since they have C, and G among their generalized momenta. The angle ¢
conjugate to C, is an integral of the motion too, implying that the Hamiltonian (4.1),
when expressed in such variables, does not depend on the couple (C,, () and the angle
g conjugate to G. The constant value G = G will appear into the Hamiltonian as an
“external parameter”, meaning with this that the motion of the remaining 2(3N — 2)
variables will take place on a phase space parametrized by Gg. Owing to the rotation
invariance of (4.1), in particular, we find a set of symplectic variables on the manifold of
dimension 2(3N — 2)

Mvert,GO = {y’ T e <R3)N : CX = Cy = CNX = 07 CZ = GO} )

where Cyy denotes the first component of the N** angular momentum Cy = x5 X yn.
A further trivial integration will reconstruct the full motion on the full phase space.

Successively, we define a set of regularized variables (analogue to Poincaré’s ones) on a
larger domain, accordingly to the non—planarity condition.

4.1 Angular Momentum Reduction

Fix an orthonormal 3-ple (ky, ky, k,) in R3. Denote by
Ci =z Xy; 1<i<N
the angular momentum of the “ body " and let

S;=> C; 2<i<N

1<j<i

the sum of the first ¢ angular momenta, so that Sy = C coincides with the total angular
momentum (4.2) of the system (.5; is not defined because it coincides with C). Consider
also, on the plane orthogonal to C;, the (1;, m;)—Keplerian motion evolving from (y;, x;),
which is defined as the solution of the differential problem

U 3
v~—. MiTys veR (4.3)
(0

(0),v(0)) = (i, x4)

As well known, the curve t — v(my, My, y;, x;;t) solution of (4.3) draws in the space a
conic section &; := E(my, m;, y;, x;) and we denote by e; := e(m;, m;, y;, ;) its eccentricity.
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On the subset C, of inital data (y,z) € (R*)Y x (R*)N for which

01X027é0

S, X Cry 20 2<i<N—1
k, xC #0

O<e <1 1<i<N

(in particular, each &; is an ellipse), we define the set of variables
(L., ), (£,7,%))
= ((Ll,...7LN’1“1,...7FN7\1;1,...,\yN)7(g17...,gN,%7...,7N7¢1’...,¢N))
€ (RY x RY x (RY™! x R)) x (TV)?

as follows.

(D7) For 1 <i < N, if a; := a(m;, m;, y;, x;) is the semimajor axis of &, then,

L; = LLZRVRLLZT T

(Dg) if A; := A(mn;, My, yi, x;) denotes the area spanned from the perihelion P; of &; to
x;, then, the angle ¢; is the mean anomaly

l; = 27Ai :

azy/1 —e?

(D3) the action T'; is
Ti = |Gyl = LiJT— 2.
(Dy) For 1 <i < N — 1, the action W, is
U = S -
Notice that Wy_; = G = |C] is an integral of the motion.

(D5) The action Wy is
qjN - OZ

the third component of C'. Also this variable is an integral of the motion.

Now, in order to define the conjugated angles v, ¥, we introduce the following notations.
Given 0 # w € R3, we define the plane 7, orthogonal to w:

Tw ={u€R®: u-w=0}.

2R, = (0,+00) C R
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If u, v are two non vanishing vectors in m,,, we define

Ky = k= Lk =k Ak
Jul |w
so that the triple (ky,kyuw, k) is an orthonormal positively oriented basis 2°. We then
define the oriented angle seen from w from u to v, and denote it by a,(u, v), as the angle
t + 277, where t is the unique number in [0, 27) such that

v = costk, + sintk,,, .

We can now define the angles «, ¢. In view of assumptions (4.4), the following “nodes”
are non vanishing

o CQXCl, 1=
i = SZ'XCZ', 2<i<N
n = k,xC,

hence, the following definitions are well put.

(Dg) For 1 <i < N, the angle 7; locates the perihelion P; of &;:
Yi = ac;(ni, B) .
(D7) When N > 3, the angles v, - -+, ¥n_o are
;= o, (Miga, Nig1) 1<i<N-2.
(Dg) The angle ¥y _1 is
N1 =g = ac(n, —ny) .

(Dg) The angle ¢y is the longitude of the node ?® of C with respect to (ky,ky,k,),
namely,

Q/JN = C = Ckkz(kx,ﬁ> .

Notice that this angle, together with the actions G, C,, is the third component of
the total angular momentum C.

The variables ((L, [,0), (4,7, ¢)) defined via D; + Dg will be referred as action—angle
Deprit variables (or, simply, Deprit variables); the map

.1 € — (RY x RY x (RY™! x R)) x (TV)?

2°1. e., the determinant of the matrix with coloumns the components of the oriented triple (ky, Ky, ki)
is positive (and in fact 1).

26The Iongitude of the node of v with respect to the orthonormal 3-ple (e, ey,e,) is defined as the
angle ae, (ex, e, X v).
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which sends a point (y,z) € C, to the Deprit variables Deprit map; their phase space is
denoted as D,. It corresponds to be the subset of ((L,F, ), (E,’y,w)) € (Rf x RY x

(RY~1 x R)) x (TV)? defined by the inequalities

' < L; 1<i<N

|F1—F2| <W¥, <I'1+7Ts

(Wi =T < Wy < Wy + Ty 2<1<N-1
Un| < Un_y

In fact, by definition,

and we can prove

Theorem 4.1 The Deprit map P, is a real-analytic symplectomorphism (symplectic
diffeomorphism onto) of C. onto D,.

Real-analyticity follows immediately from the definition. To check injectivity and sur-
jectivity, we shall exhibit its inverse transformation. The basis of the inversion formulae
is to express the angular momenta C; (1 < i < N), in terms of the Deprit variables :
this is done in the following Lemma.

Lemma 4.1 The angular momenta C, - - -, Cy can be expressed in terms of the variables
(T, W, %) as follows. First, define N — 1 orthonormal triples (e, ey,ez) 2<i<N by
letting

:= — cos Cky — sin Cky

\/78111Ck —\/—7608Ck —l—%z x (4.6)

k
= el x elf = % sinCk, — % cos Cky — ”1_<G>2kz

X

N
Cx
N
€

then (inductively), given (e, e e for 3<i+ 1< N, let

x Yy
i Titl 3 i+1 n+1 i+1 hi i+l
€, = —g. -, singyel™ + costh; ey + G-
i 1 1
el 1= el cosh; + e“r sin ¢Z : (4.7)
i _ h i+1 i+l Titl i+l
ey = el x el = 7. singel + g cos el — ey

Then,
C — T sin zﬁi_lef( — T; COS wi_le; -+ hZG; 2 S S N
‘] —rysin wlei + 19 cos 2/1163 + hleg i1=1

where, with the convention Vo =1y,

U2, — (T — U, 1)2)(Ts + W;_q)2 — U2
o SO TP )y
i—1
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212412 .
Bty for i=1

20,
hi —
2., 02 w2
STt for 2<i<N
) V24w, T2
h, = L 2’:111 asd for 2<i<N-1

Proof. By definition of ¢, G, C,, the components of C' are

/G2 — C2sin(
C= —\/@cosg

C,

Consider the orthonormal 3-ple (4.6), which has e in the direction of C, e is in the
direction of —n = —k, x C. Then, the modulus, the third component and the longitude

of Cy with respect to (e, ei,v ,eN) are given, respectively, by
|Cn| = 'y
CN * SN
Cy e, = X2
_ |CnP+ SN — Sy — Cn ]
2UN_y
_ U TR -V
B 2UnN_y
= hya
ae, (ex, €, x Cn) = agy (—n, Sy x Cy)
= YN (4.8)

which is equivalent to
. N N N
Cy =rysintYy_1e, —7ny cOsSPn_1 e, + hye, .

with

(TN o — Tn = Un_))((Ty + Uyo1)? = TR y)
ry =% —h% = \/ ST .

Assume, now, that
Ci—l—l =Titr1 sin 1/)2 effl — Tjgp1 COS 1/}1 €;+1 + hi+1 e?rl for 3 < 1+ 1 < N
Then,
Siv1 — Cip1
= ‘I’z‘eiﬂ - (Tz‘+1 sin ; ef(“ — Tiy1 COSTY; G;H + hita ei“)

_ - i+1 i+l T il
= —Tip1 SinYser + i COSwiey +hie,

127



with 02 4 2 r2
7 g + i—1 L4l
+1 2\Ijz

Let, now, (e’,e’ e!) the orthonormal 3-ple with e/ in the direction of S;, €’ in the

XYy Yz

direction of S; x Cjyq:

i Si . Trigl il | Titd RES] hi  itl
e, = 7\??1 C— g oo sing; el 4+ - cos el + g€

i . 2iXCig1 i+l . i+1 o3 .

€\ = [SxCiy] — & CO8 Vi + ey sn~11pl

N I N IR SRS AS | h; il Tid1 il
€y i= ey X e = —grosinyiel” + g cosviey 7

Repeating the argument in (4.8), we find that the modulus, the third component and
the longitude of the node of C; with respect to (e, ¢!, el) are given by

X7 Yy Yz
Ci| = Ty
< Ci - S
Ci‘ezz =
v,y
G+ 1Si? - 15— Cif?
B 20
orew, o,
20,4
= b
Qef (eiv e, X Cz‘) = s, (i1, ng)
== 1/}1'—1

which is equivalent to
C; =r; sin;_q e, —1r; cosy;_4 e; + h; e,

hence,
n; = S; x C; = W;_1e, X C; = V;_yri(costh;_1 € +siny;_;e})

where

e — \/(‘1’?—2 — (i = Wim)?) (T + Wimn)? — T7y)
T, = F? — h? = 2\1/1-_1 .

with the convention W, := I'y. At the N** step, put

Ci = Sy —Cy = —rysinyy 8)2(—1—7“2 cos Yy ef,+h1 ef

with
M+vi-I7 If+9;-T13

hi =V, —hy ="y —
1 1= 2 1 50, 20,

This completes the proof of the Lemma.
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Remark 4.1 The Deprit map may be seen as an “unfolding” of the Jacobi reduction
of the nodes, available for N = 2. To well understand this point, we write it in spatial
Delaunay variables (L,G, O, (,g.9), with L = (Ly,---, Ly), G=(G1,---,Gx), - - -, which,
we recall, are defined as

e e
L; = m;\/m;a; &_al\/li_cf

G, =|Ci| = \/@Li 9i = ag, (i, P)) (4.9)
0, =C; -k, Ui = o ‘

and they are well defined whenever
ni=k,xC; #20, ¢ #0 for 1<i<N.

The variables L;, ¢;, G; are then left unchanged. To find the expressions of the remaining
Delaunay variables in terms of the Deprit variables, we use the expressions of the angular
momenta C; of Lemma 4.1, in the case N = 2:

rcosCsing+r%sinCcosg+h1 o sing

_ ) . /G2—Cz2
Ci = rsm(smg—r%cos{cosg—hl o cos(
G2z
%hl —r¥—g—-Cosg

—rcos(sing—r%sin(’cosg—i—hZ o sing

Cy = —rsin(sing +r$ cosCcosg — hy G;_CE cos
Cahy + 1Y Gé—cg cos g
(4.10)
with
V(- G+ G — 1)
2G

b — G2 +T1?% 1% b= G*+132-1%

2G 2G

This allows us to find the nodes 7, n;, n;, and hence, the Delaunay perihelia arguments
gi:

9i = ac, (1, ) = ac,(ni, B) + ac, (i, ni) = 7 + ac, (1, n;) (i=1,2).
and the Delaunay nodes
19i = O, (kX7 ﬁ’l) = O, (kX7 ﬁ) + Qk, (,ﬁ’a ﬁ’l) = C + Qy, (ﬁa ﬁz) .

Finally, identifying ©,, O with the third components of C}, Cy in (4.10), we complete
the inversion formulae of the Delaunay variables in therm of the D—variables with

O, = G + o (12 _ 13) — YU -G GP-T]

2 TG _2G2 - o5& (4.11)
r2_r G2—C2)(TT—(T3—G)2)((T2+G)2—T :
@2 — CQZ 2%22( % %) \/( )( ! ( 22(;2 ) )(( 2 ) 1) COSg
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However, due to the rotation invariance, the expression of the Hamiltonian is independent
on the choice of the reference frame (ky, ky,k,). If we choose k, parallel to C' and ky
parallel to C' x C'y = ny, we have n; = n;, hence,

Also, since n; = —no,

{ U = ay, (ke, 1) = g, (n1,m1) =0

9y = cug, (ky, ia) = oy, (N1, m2) = 70 (“opposition of the nodes”)
- z X - 2 y =

Finally, when the total angular momentum C' is seen vertical, G = C,, hence, (4.11)

becomes L
_ G r{—1j

G
o 7g_F%2—F§
27— 72 2G

The previous formulae (completed with the identity on L;, ¢;) are recognized as the
classical formulae for the Jacobi’s reduction of the nodes.

Proposition 4.1 The Deprit map ®, is invertible on D, and its inverse ®1 is defined
as follows. Let Ry, R, denote the elementary rotations

1 0 0 cosa —sina 0
Ri(a)=1| 0 cosaa —sina | , R,(a)=| sina cosa 0
0 sina cosa 0 0 1
I, the reflection
-1 0 0
I, = 0 -1 0| ;
0 0 1

let i, i;, i; € (0,7) be defined by

, h; -k
cosi:(é}, Cosijzr—; 1<j<N, cosij:\pjj_1 2<j<N-1, (412
with hj, ilj as i Lemma 4.1 put
po [ R)R() 2<i<N -1
a RAQOR(i) j=N ’
o _ [ ROR() =
r R(j-)LRx(i)  2<j<N
(4.13)
and define
. RN : RQSl 1=1
Re= { Ry RS 2<i<N (4.14)
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Denote by o o o
D;: (L,0,1,7) — (Yi(L, £,1,7), Xa(L, £, T, 7))
the plane (m;, m;)—-Delaunay map, defined as the four dimensional map
D;: (L), (6,9) eRExT>: I'<L—(Y;,X;) eR> xR
given by

with 4 = u(L, T, {) the unique solution of the Kepler’s Equation

r\’ _
U — 1_<E> sinu =¥

VLTREVONG R ey (13
Proof. By definition, the (12;, m;)-plane Delaunay map
Di: (Liy b, Uiyvi) — (Yi(Li, €, Tas i), Xa(Liy G, Uiy i)
= ((YiXaYin)a(XiX:Xiy’O))
gives the coordinates of y;, x; on the basis of the “orbital triples”, i.e. the (orthonormal)

triples (f’, !, f!), where f! is in the direction of n;, f! in the direction of C; (and, hence,

X?)Ty? Tz

£ = £ x 1)

Then,

= Y [ + Y I .
YT 1<i<N. (4.16)
xI; = Xixfx + Xiyfy
Having the expressions of 'y, - -+, C'y in terms of the Deprit variables allows to find the
orbital triples (ff, f},f}): 7
fe = = —costreg —sinye]
f; = % = — > sin Yi_1e; + = cos ¢1e§ + %eg
1ol o fl _ Ry oo 2 _h 2 2
£ =1, x Iy = fhsinyhre; — phcos ey + e
fi = i = cos Yi_1el + sin;_iel
fi .= % = %sinz/)i_lef( — §-cos @/Ji_le; + %eé 2<3 <N
X i L hi i by i .
fy =1, x £ = —f sineh;_1e + ¢ cosirey + Fre,
(4.17)
27IJSG \1’1_16; = Zl<j<i Cz = SZ‘, hence, for 2 < ) < N, n; = Sl X Cz = \Ili_lei X Cz =
W, _q7;(cos ;e + sin wi,1e§,). For i = 1, recall that n; = —no.
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Put, for shortness,

f}( ei ky
Fio=| f 1<i<N, E:=|¢ 2<i<N, K:=|[k
f; e; kz

Then, equations (4.6), (4.7), (4.17) may be written as

Ey=RYK, E =RIE,, 2<i<N-1, F,= 5B, i=1 (4.18)
NN BT T S == COUT SR 2<i<N
where
R‘ o Isz(wj)RX(%])Iz 2 < J <N-1
T R(OR (), j=N ’
g . JLR()R(0)  j=1
! B Rz(¢j—1)Rx Z]) 2 S] S N
Then, in view of (4.18), we can write
F, = RIK
(4.19)
with
RN et f{2él 1= 1
R, = A AR 4.20
{RN~-RZ~SZ~ 2<i<N (4.20)

Equations (4.16), (4.19), with R; as in (4.20), give the inversion formulae

{ Yi = Ri(R ‘Ijﬂﬂ)yi(Lz',@i,Fm%')

<1<

and this concludes the proof (the definitions (4.13), (4.14) of R; are a rewrite of (4.20)).

The frames E; (2 <i < N), F; (1 <i < N) introduced in the previous proof correspond

to the frames F_,;, Fn_;41 of the binary tree of kinetic frames arising from F' = K of
[15].

There remains to prove symplecticity of ®,. This is done by induction. We write then
explicitly the dependence on N for the Deprit map, i.e. , we write the Deprit map as
®N . CN — DN. The basis for the induction is N = 2.

Lemma 4.2 The 2-Deprit map ®2 : C? — D? is symplectic.
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The technique for the proof of Lemma 4.2 is similar to the one presented in [15], apart
from the introduction of the plane Delaunay map.

Proof. In the case N = 2, we have
Ri = RS = RAORAIRA(&)Relir) ,  Ra = RSs = Ry (O)Rei)Ro ()L Rliz)
where i1, s, ¢ € (0, 7) are defined by
hq ha C

. . . z
COSleﬁ, COSZQZE, COS/LZE.

Differentiating x; in (4.15), we find
dz; = Ri(L, W, 9)dX (Li, €5, Ui, i) + (dRi(L, W, 40)) X (Li, €5, T, 73) =1, 2.
So, since R; is unitary and the plane Delaunay map D; is symplectic,

Y - dx; = Yz‘(Li,@, Fm%’) : dXi(Liaéia Fi,%) + Yi - (dRi(Fv ‘I’,¢))Ri(ra v, ¢)Tl’z‘
= Lidl; + Tidy; +yi - (dR;(L, ¥, ) Ri(1, ¥, )"z

Thus, summing over ¢ = 1, 2,

y-de = L-dl+T-dy
+ g1 (dR(T, VU, ) R(T, ¥, 90) 2y + 4o - (dR2(T, W, 1)) R (T, ¥, 10) 2y

(4.21)
Differantiating Ry = R,({)Rx(1)R.(g)R«(i1) and using, as well known,
(AR (a))Ry(a) g =ke x gda,  (dR,(a))R,(a)"q =k, x qda
we find
(dRL(D, U, )Ry, ¥, ) wy = k, x 21d( + e, x x,dg
— ex X I di +f; X .Tldil
which gives, taking the scalar product with y,
Y1 - (de(Fv \Ilu 77Z)))R1(F7 \117 Qb)Txl = Cl : kzdg + Cl : ezdg
— Cl -exdi—l—C’l f;dll
= C-k,d(+ Cy-e,dg
— (] -exdi (4.22)

since Cy - f} = 0. Similarly, differentiating Ry = R,({)R«(1)R.(g)I, R« (i2), we find

Yo - (dRQ(Fa \117 w))R2<Fa \I{a ¢)TI’1 = 02 : kde + 02 : ezdg
CQ S di (423)
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The sum of (4.22) and (4.23) gives then

y1 - (dR1 (T, 0, 0)) R (T, W, ) "1 + yo - (dR2(L, U, 1)) R (L, U, p) s
= C-kd(+C-e,dg—C-e.di
— C,d¢ + Cdg

since

C = Cl + CQ = Gez
(which also implies C' - ex = 0). The proof is complete, in view of (4.21).
It remains to prove the inductive step.

Lemma 4.3 Assume that the N-Deprit map ®Y : CN — DN is symplectic for a given

N > 2. Then, the (N + 1)— Deprit map ®N+1 . CNT1 — DNTL 4s symplectic.

Proof. Without loss of generality, we shall restrict to the subset éiv 1 oof CNT! where
also

fii=k, xS #£0 1<i<N, n:=kxC#0 1<i<N+1 (4.24)

and then we will recover the result by continuity. Under the assumption (4.24), we can
view the Deprit map ®¥*! in Delaunay variables, namely, we shall write Y+ = N+1o
OV where (L, G, 0,0,g,9) = &N (y, r) is the map (4.9) which defines the Delaunay
variables. Let DNt! := ®NF1(CN+1). Then, &2 is symplectic on D2, by Lemma 4.2; N
is symplectic on DY by assumption. We equivalently prove that ®N+! is symplectic on
f?iv 1 which will conclude (since ®%, is symplectic on éf, for any n). Neglecting the
variables (L, /) (on which ®N+! acts as the identity), the map ®N+! is described by
equations

I =G, 1<i<N+1

U= |Sigjen Gl 1<i<N-1
G = [Sn+1]

Cr = Yi<j<n+19;

Vi = gi + ag,(ni, ;) l1<i<N+1
Y = s,y (Niv2, Nig) 1<i<N-1
g =05y, (ﬁ7 _nN-i—l)

C = Ok, (kxv ﬁ)

where the C;’s, hence, S; = C; + --- + (11 and the nodes n; =k, x C;, n; = 5; x C;
n =k, x Sy41, are thought as functions of the Delaunay variables 2 |

28The angular momenta C;’s, in terms of the Delaunay variables are

VG? — ©2sinv;
Ci=| —/G?—0%cos¥; .

O,
This follows from the definitions of (G;, ©;,%;).
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Let us introduce the following notations

Zp = (LHGw@lagwgzaﬁz) ) Zz = (Lzarlvqua&af}/zawz)

{ Z = (21,-'-,ZN+1) { Z = (Zly"wZNH)

éi::(zla"'sz) ZAi::(Zl"”?Z]\O

Now, if z € DN, then, the point # lies in the domain of definition DY of &V and we
can set 2 ) i A A
O (2) = VH(Z, 2n) = OV (2, 2n001) = 2 = (2 2v 1) (4.25)

i.e. , ®N*1 acts as Y on 2, while on the last block zy,; of the Delaunay variables acts
as the identity. i)*N *1 s thus symplectic since (iJ*N is, as already outlined. Now, leaving
the remaining variables unchanged, we apply éf to the two blocks consisting, the former,
to the block of variables

2y = Ly, G = Vy_ 1,0, =V, Iy, 8 = Py_q, " = dy)
and, the latter, to the block of variables zy 1 left unvaried by &Div 1 We define, then,
éz AR
as follows:

Z, =7 1<i<N-2
(LNfla FN*la FN7 ngla YN-1, P)/N> = (LGV—D FQV—I? FlN? 69\7—17 ’-)/3\7—17 75\/) .
(Ln,Un_1, YN, Ini1, on—1,UN), (D1 Dnet, Unsn, vt Yt Ungn)) = W2 (2, 2nsn)

Also @f is symplectic, because it is obtained lifting (i)f with the identity map, and,
therefore, so is the composition o
P2 o PN (4.26)

The claim, now, follows upon recognizing that (4.26) reconstructs dN+1:
B2 o PNHL = PNHL (4.27)
The key point while checking (4.27) is
¢N_1|<f)§oi>*N+l = g' + aSN(SN+1 X Sy, k, X SN)
= ()éSN<kZ XSN,—SN XCN)+OCSN<SN+1 XSN,kZ XSN)
= aSN(SN+1 X Sy, —Sn % CN)
= aSN<_SN+1 X Cny1, —SN X CN)
= @SN<SN+1 X Cny1, SN X CN)

Yn-1lgv+t

since, by definition, g’ = ag, (k, X Sy, =Sy x Cy) and Sy = Sy41 — Cny1.

My (4.25), let 2 = (Z),---, Z}), with Z! = (L}, T, W/, ¢,/ 4!, for 1 <i < N.

1)) (2
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4.2 Regularization

The action—angle Deprit variables discussed in the previous section become singular when
some of (4.4) do not hold. In this paragraph, we discuss a Poincaré regularization. For
N =2, we put

G =G
g:=g+¢ A= L
P :=,/2(G - C,)cos( A =Vl + ;i

Q:=—/2(G - C,)sin(
n; =1/2(L; — T;) cos;
and we recover the “unfolding” of the Jacobi regularized coordinates. So, we discuss in

detail only the case N > 3.
Let then N > 3 and let C D C, the set of (y,z) € R3 x R3Y where

e; <1
C C.
ﬁ‘ﬁiﬁé—l ) (4.28)
Go. 541 2<i<N-1
[
. YN
1 " 1en] 7 £

i.e. , the eccentricities are allowed to go to 0; C is allowed to go parallel to Cy; C; are
allowed to go parallel to S; for 2 < < N — 1; C is allowed to go parallel to k,.

Other regularizations than (4.28) (relatively to different choices for the signs of the dot
products in (4.28)) might be discussed.

In order to regularize zero eccentricities and the first N — 1 mutual inclinations, i.e. , in
order to define a new set of variables in a region of the phase space where

e, =0 forsome 1<i<N, or S;|C; forsome 2<i<N-—-1,

we assume that the variables A, G satisfy

<G< Y A (4.29)

1<i<N

> Ai—Ay

1<i<N—1

This guarantees that the configuations of the phase space corresponding to (simul-
tanously) zero eccentricities and first N — 1 mutual inclinations might be reached by
the system, being inner points of the phase space.
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Theorem 4.2 When A, G also satisfy (4.29), define the real-analytic symplectomor-
phism
O, ((L,T,0),(6,7,9)) €D, — ((A, p,9), (G, 9),(P,Q))
(Ala /\17' '7>\N)7(7717"'777N7€17"'a§N)
(p17 yDN-2,41," " 7QN72)7 (Gug)a (P7 Q))
€ (RY x TV) x (RN x RY) x (RV7? x RV7?) x
X(Ry xT) x (R xR)
as follows. Let

I . )=+ =1
H = L,—-T, 1<i<N KZ‘_{‘I%1—‘I’¢+F¢+1 9<i<N_9
K1 1=1
R; = Z wj 1§Z§N—2 ’%z: Ri—1 2§’L§N—1
1<jSN-2 0 =N
hi = v+ ki
and put
Az:Lz
N =4+ h; . i = /2K cos k; )
<1 < <1< —
n; = v/ 2H; cos h; SNE {qi::—\/ZKisin/ﬁi I<isN=2
& = —+v/2H;sin h;
G:=G
g:=8+¢
P:=/2(G - C,)cos(
Q= —/2(G—C,)sin(

Then, the map ®gp := P, 0 D, extends to a real-analytic symplectomorphism on C.

The variables ((A, A) (n,€), (p,q), (G,9), (P, Q)) will be referred as regularized Deprit
variables. Observe that, now, the role of cyclic variables for (4.1) is played by (P, Q, g).

Remark 4.2 The inverse ¢, := ®;! on D,, := ®,(D,) is given by

Li = A I — A, _ mte
(2 (2 7 7 9

+§2 2+ .
Zl<j<i+1<A_nJ ) El<]<zu 1<i<N-2
Vi=1G i=N-1
P2+Q*
G—T 1=N
Ri — Rj4+1 ]_SZSN—S

. KN—2 1=N—2
YT g-PQ i=N-1 )
((PQ) i=N
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where

hi = arg (7717 _fl) (1 < i < N)7 kl = arg(pi7 _Qi) (1 é i < N_Q) ) C(Pa Q) = arg(P, _Q)
(the previous expressions are well put on D,,).

Remark 4.3 The domain D,, is the set of (A, \,n,&,p,q,G, g, P,Q) where A € RY,
(A, g) € TN x T and the functions T, ¥ as in (4.30) verify (4.5).

Proof. Put

and observe that

We prove that the map

(AN, (1,6, (0,9), (G 9), (P,Q)) € Do — (y,7) = (<y1, ,yN> (21, 2n))
= d.o6:((A, p.), (G.9), (P, Q))
= onp((AN), < ><G,g>,<P,Q>)

where ¢, := ®_ !, can be bijectively and analytically (hence, symplectically) extended to
the domain

D, =D, Do .
By Proposition 4.1, ¢ is defined by
i = Rz r Xz r .
v = (Riog) Xiog 1<i<N (4.31)
Yi = (Rz o (br)Y; o (br

We explicitate the matrices R; defined in Lemma 4.1 as 3°

Ri = Ri(OR(D)R.(2)
I,R.(iny) i=N
x { Relin-1) En;i;"nzwmmx(%w)) Ro(is)LR(i)) 2<i<N -1
Ruclin-1) (T Ra(n— ) Ra(in—y)) Ra(t1) Re(in) i =1
(4.32)

and we think (without changing their names) the “inclinations” i, i;, Ej expressed in
regularized Deprit variables (i is a function of P, @, G, i;, 1; are functions of A, (n,&),

30(Clearly, in the second and third line of (4.32), the productories do not appear when N = 3.
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(p,q) and G), then, using the expressions for v;, with 1 < i < N — 2, given (4.30), we
can rewrite R; in terms of the regularized Deprit variables as

LRi(in) i=N
Riogp. = R X R(in-1) Hj'v:? gN—j) ISR, (ki) 2<i<N-1
Rlin-1) (152 Sy—j) SiRu(kr) i=1
= R R,(R:) (4.33)

where

and

A(Kj)Rx(1;)R,(—kj) 2<j<N-—-2
(

S, = 7?’Z Kl)R Zl)Rz( /{1) ]: 1
T Rals ) Ra(ig) Re(—1) 2<j <N -1

o
Il

(4.35)

Lemma 4.4 With the convention (po,q) = (p1,q1), VYo = I'1, on D, the matrices
S;’s, S;’s have the following expressions:

- qj2‘71cj —Pj-1q5-1¢ —4qj-15j
S = —Pj-1¢j-1¢; 1 —p?ch —Pj-15j (I<j<N-1)
qj—15; Dj—15j 1 - (pjg‘fl + qufl)cj
) L—qie; —pg;5 —4;%;
S = —pigc; 1 — P?Cj —Pjs; (2<j<N=-2)
q;5; Djs; 1- (P? + C]J?)‘j
(4.36)
where
. l—cosi; __ TIo—T14+V,
R e
o= B = a2 (g
1 1
¢ = 2176057;]' _ ‘I/jfjljf‘;Jr‘l/j—l
_Pga - (2<j<N-1)
S5 ¢ T \/CJ P31+ 1))
J J
T = 1;cos;j _ D+ —v,
JT pPrg T Av, v,
A e~ (2<j<N-2)
5 1= W = \/Cj(2 - (pj + Qj>cj)
J J
(4.37)
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where I';, W; are thought as functions of (A,n,&,p,q):

2 2

24 ¢2 24 g2 , (4.38)
qji:ZISigi+1<Aj_nj2])_ZlgjgipJQq] 1<i<N-2

Proof. Let us prove, for istance, the expression for S;, since the other ones are similar.
We have

81 = RZ(Hl)RX(i1>RZ(—]€1)
1 —sin®ky(1 —cosiy) sink;cosk (1 —cosiy) sink;sini
= sinky cosky(1 —cosiy) 1 —cos®ki(1 —cosiy) —coskysiniy
—sin k; sin 4, cos k1 sin ¢, COos 11

Now, letting k1 = arg (p1, —¢1), hence,

P1
pI+q?
q1

sink; = —
\/Pi+ad

COS K| =

and recognizing that

_FQ—F1+\IJ1 . 1—COSi1 Sinil

¢ = = , osi=ya-pl+¢d)a) = ——s
! 479, pi+aq; ' \/ ( 7 1)) \/]ﬁ*‘(ﬁ

the claim follows. Recall, in fact, the definition of ;:

U2+ 12 - 172

cos iy = 20T iy € (0,7)
which gives
% — (¥, —Ty)?
1—cosi; = -2
COS 1] 20T,
_ (O 4+ Ty =Wy ) (T =T+ 0y)
20, T
=T+ 9y, 9
- 4@11‘\1 (pl + ql)
= alpi +4d)
since ) )
i+ =¥, = nta ;

2
hence (as i; € (0,7)),

. . . 2
sini; = /1 — cos?i; = \/1 ~(1—a@+a) = Va@- @+ @)/ +d =i+
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This completes the proof.

By the previous Lemma, the matrices Sj, S, can be analytically extended to D;. It is not
difficult to prove that the same holds for the matrix Ry, hence, for ;. The transformation
®~! is thus regularized on D,, being given by

Yi = RoRili

€T; = 9‘{09‘{1'{2‘1'
where (A, i, i, &) — (9, %;) is the embedding 3! in R® x R? of the (my,m;)-Plane
Delaunay—Poincaré Map. In fact, using the expressions for L, I', ¢, v in (4.30), we find
that

(Vi 0 b, X0 ) = (Rl =) Bi(Miy M 10y &), Ra(—F)2:(As, Mi, 10, &)
hence, use (4.31), (4.33). The bijectivity of this extension is trivial.

In particular, we have proven

Proposition 4.2 Let D, is the set of ((A, A), (7,€), (p,q), (G, q), (P, Q)) e (RY xTV) x
(RY x RY) x (RV=2 x RV=2) x (R, x T) x (R x R) where the functions (4.38) verify
A >0
0<T, <A (1<i<N)
W g — Do <0, <0, 14+ T (1<i<N-—-2)
|\I/N_2 — PNl <G< \I/N_Q + FN
—G<C,=G-P¢ <@

The (real-analytic and symplectic) “full reduction” change of variable

¢BD = Ppp = d. 0 P :
(AN, (1,9, (9,0, (G 9), (P, Q) € Dy — (y,2) = (1, yw), (w1, on) €C

expressing the cartesian coordinates (y,x) in terms of the regqularized Deprit variables is
given by
Yi = RoRiY; .
A 1<i<N 4.
{ xr; = RoR;T; == ( 39)

where Rg = Ro((P, Q), (G, q)) is (4.34), % = Ri(A, (0,€), (p,q); G) is defined via (4.533),

e,

RX(ZN 1) HNing ])Sl 1=1

o, — ) Relivaa) (TH5 S Sn-j) LS 2<i<N -2
Rex(in 1)13N_1 i=N-1
IZ x( ) 'L:N

(4.40)

31This means taking the third coordinate of (§;, #;) equal to zero.
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where in_y, iy € (0,7) are the inclinations (well defined and regular on D,)

~ L (G? =03, T3 , L (G?—=T% — 3% _
IN_1 = COS 1( QG\JI\;N272 N) , N = COS 1( 2]GVFN N 2)

withS; (1<i<N—-1),8; (2<i<N=2)asin Lemma 4.4 and, finally, (A, \i, n;, &) —
(93, ;) is the embedding in R3 x R3 of the (;, m;)—Plane Delaunay—Poincaré Map.

We will refer to the map ¢gp defined via Proposition 4.2 as Regularized Deprit Map.

4.3 Partial Reduction
The regularized Deprit map discussed in Proposition 4.2 becomes singular when
2 | ¢2 2, 2
> (Ai—"’%)— y Bl g (4.41)
1<i<N 2 \<icn-2 2

which corresponds to the configuration with Sy_; = >;<;<nx_1 C; parallel to Cy (the
two rotations Ry (in_1), Rx(in) loss their regularity). Consider then the transformation,
denoted as ¢p, (“pr” stands for “partial reduction”) which acts as

~2 | 2
G — Z (Ak_nk;rék)_ Z pk‘Qf’Qk

1<k<N 1<k<N-1

g =arg (Pn—1, —qn-1)

A 1<i<N

(2)-mo(z) e
(5) o (5) rerev e

leaving the remaining variables unvaried. It not difficult to check that ¢, is symplectic,
since the Liouville 1-form remains unvaried:

Yo Ndhi+ > Ldei+ ) Jidi + Gdg + PdQ

1<i<N 1<i<N 1<i<N-2

S ANdN+ D Ldgi+ > Jidg; + Inoadin-g + PdQ

1<i<N 1<i<N 1<i<N—2

where (I, ), (Jj,%;), (Li, @i), (Jx,x) are the polar coordinates associated to (n;,&;),

(pj»4;)s (i, &)y (Pr» Qx), with the indices ¢, j, k runningon 1 <i < N, 1 < j < N —2,
1<kE<N-1.
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In terms of the variables ((A, A, (7,6), (P, q), (P, Q)), the functions I' = (I'y,---,T'y),
U= (U, -, Uy) are
D=A -8 1<i<N
72 +E€2 52+ 2 .
U =3 1<i<it1 (Aj - njg J> = Di<j<i % 1<i<N-1 (Un.,=0G) (4.43)

. . P24Q2 72 4-€2 242 P24Q2
Uy=0C,=G— =<y | N — 52 ) = Zicjan-1 5t —

2 2 2 2

Denote now Dy, the subset of
((AR), (7.9, (5.0, (P,Q)) € RY x TV x (RY x RY) x (R~ x R¥™) x R x K4.44)

where
0<I; <A (1<i<N)

U,y =T < ¥, <V, 1 4+T 1<i<N-1)
-G<V¥y=0C, <@

(4.45)

(i.e. , allow also Sy_; || Cn, which corresponds to (py_1,qn—1) = 0). Then, the tran-
sormations ¢, regularizes, as the following Proposition claims, the proof of which is
omitted.

Proposition 4.3 Let D, be defined via (4.44)+(4.45). The real-analytic and symplectic
change of variable

¢BD,pr = ¢BD © ¢pr :

((A7 5‘)7 (777 g)) (pa q_)a (P7 Q)) € Dpr - (y7 iL') = ((yla e 7yN)> (xla e 717N> S C

expressing the cartesian coordinates (y,x) in terms of the partially reduced, regularized
Deprit variables ((A, A, (7,6), (P, q), (P, Q)) is given by
= A .
<1 < .
{ 7, = PR 7, 1<i<N (4.46)

where (Mg, N, mi, &) — (93, ;) is the embedding in R3 <R3 of the (1h;, m;)—Plane Delaunay—
Poincaré Map and

mgr = RZ(C(P’ Q))RX(Z)RZ(_C(P7 Q)) )

with ) )
P
i =cos! (1 — 2@;2) , (=arg(P,—Q)
and
L8y ) s i=1
R = 5 SY ) LSP 2<i<N-1

LSY i=N
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where the matrices S} ’s, S7' ’s have the following expressions:

1=G 1 —Dj1Gi1c —(j-15;
S’ = | PG 1 —pi —Dj-15; (I1<j<N)
qj—15; Dj—185; L= (P + T )
- L— g —ﬁj%;j —dj5; ,
S o= | —pyy 1-py —Dj5 2<j<N-1)
G5 Pis o 1- 0+ 4Gy
(4.47)
where
. 1l—cosiy __ I'o—T'14+¥,
‘1= p+a | AN,
51 1= % = \/q(? — (P + @F)er)
- lfcosij _ W, o—I;4+W; 1
7 ﬁ? 1+qj 1 4F\IJ.7 1 (2<]<N)
L sin ¢ RS
55 1= 7 l_iqj ) \/C] p] 1 +Q_] l)c])
Ej o 1—2COS;:J' — Fj+i$\l’\fl'—\1’j—1
A i 29<j<N-1
VR / 7oA
(4.48)
where, T;, W, are thought as functions of (A, 7,&,p,q):
I, =A—T08% 1<i<N
i i 2 +§2 P +q . (4.49)
U = i<i<it (Aj ) Yi<j<i S5 I<i<N—-1 (Uy,=0G)

For1<i< N-1land1l<j <N —2, the functions ¢, s;, ¢;, 5; defined in (4.48) coincide
with the corresponding functions related to the full reduction (eq. (4.37)).

We will refer to the maps ¢pp, ¢pp pr as regularized full reduction (or, simply, reduction),
regularized partial reduction (or, simply, partial reduction), respectively.
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5 Kolmogorov’s Set in the Space Planetary Problem
I (Partial Reduction)

5.1 Non—Degeneracy Conditions (N > 3)

The construction of KAM tori for the spatial planetary problem with N > 3 planets via
Theorem 2.1 becomes quite natural and direct, with the use of the Deprit variables.

In this section, we show that, for N > 3, the set of Deprit’s partially reduced variables
discussed in section 4.3 (which, we recall, corresponds to the reduction of C,) is a good
set of coordinates in order to obtain KAM tori with 3N — 1 frequencies. The pregium
of Deprit’s partial reduction is that, differently from what happens trying a partial
reduction in Poincaré-Delaunay’s variables, 32 it leaves the secular perturbation regular
and symmetric around the secular origin, which, as in the planar case, turns out to be an
elliptic equilibrium point, corresponding to the configurations with all zero eccentricities
and mutual inclinations.

As said before, the construction of the KAM tori is obtained as an application of Theorem
2.1, so, it is based on the check of the two non degeneracy conditions thereby involved:

(i) check of 4-non resonance for the Birkhoff invariants of the first order;

(ii) check of second order non degeneracy, i.e. , proof of non singularity of the second
order Birkhoff invariants matrix.

32In Poincaré-Delaunay variables, the third component of the angular momentum is

_ n+& pl+q
C. = Z (A 2 2 ’

1<i<N

which is quite the same of the expression of the modulus of the anguar momentum G in partially reduced
Deprit variables (first equation in (4.42)), apart for the dimension (IV instead than N — 1) of the (p, q)
variables. Put then, similarly to (4.42),

=% (Ak nk+£k> 3 pk+qk

1<k<N 1<k<N j\i:)\i_c 1<i<N
(= arg(pn, —qn)
i i . ﬁj _ Dj . _
(&) RZ(C)(ﬁ) ter= (%‘)_RZ(O<%) t=s= Nt

The variables ((A,j\)7 (ﬁ,é), (p,9), (CZ,C)) realize a (Delaunay) partial reduction, however, singular,

relatively to the configurations with vanishing N** inclination, i.e. , when

2 2 F2 ~9 A2
PN+ an iy +&F Py +4
_ = A — _— 7z —
2 Z ( 2 Z 2 ¢,

1<i<N 1<i<N-1

This singularity is sometimes called “elliptic singularity”.
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Both (i) and (ii) are proved by induction, in the range of well separated semimajor axes.

The restriction to N > 3 is due to the following. When the secular perturbation is put
in Deprit partially reduced variables, as in the case of Poincaré-Delaunay variables, its
quadratic part splits into the sum of a “horizontal” part Qj and a “ vertical” part QF,
of order N, N — 1 respectively. Then, using partial reduction, a unique secular resonance
(compare Proposition 5.1 below) is exhibited by the respective eigenvalues s = (sq, - -,

sn)y, 2= (z1,-,2n-1) of Q;, QF once again the Herman’s resonance:
dosi+ Y, zm=0. (5.1)
1<i<N 1<i<N-1

This resonance is of order 2N — 1, hence, it prevents the construction of the Birkhoff
normal form up to order 4 only when N = 2. When N > 3, the Herman’s resonance (5.1)
is of high order (2N — 1 > 5), allowing us to use partial reduction for the construction
(and proof of non—degeneracy) of the normal form.

The first step consists into the expansion of the secular perturbation up to order 2. We
denote

let,pr = let o ¢BD,pr = hplt + ,Ufplt,pr

the planetary Hamiltonian function, put in regularized, partially reduced Deprit vari-

ables, where, as usual
3,52

m’L m'L
hoe == D

1<i<N

is the Kepler’s unperturbed integrable part.

Lemma 5.1 For N > 2, the mean fpltypr = (2 / foit, prd)\ is an even function of
TN

™)~
the “secular fully regularized variables” z := (],€,p,q) and its expansion around z = 0
is the following. Define:

the constants

Co(m> a) = Zl<]<k<N b1/2 0(ak/aj>
Cilay, an) = —55 b3/2,1(ak/ag) (5.2)
C(aj, ar) := Ghbsya(ar/ay)

where o — by () is the (s, k)-Laplace coefficient;

the quadratic forms

72
J

Q-7 = D 1<jck<n MMk (Cl<aa7 ax) <A + 3

7 N

&
=

2 + 2C5(a;, ay) \}713;]7_1;\) (5.3)

k
Q- p* = — Si<jcren mymiCi(ay, Gk)(ﬁj - ﬁk)
the linear operator

e: peRNT sgp= (- gpy-o ) €RY
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which acts as

Lpr =41 -pi=c1P1+ Xocjan—1Ci Dj
P =L pi=ciPi1+ Yicjen G 2<i<N-—-1 (if N=3) , (54
Lpn = LIN D= cNDN-1

where the summands denoted ¥* does not appear when N = 2, and

Ay
cli= —
! ALy
6= [ @2<i<N)
LjAAj (5.5)
j+1 )
Ci = — 2< i< N—-1
! Lj+1Lj )= )
L; = Ay
1<k<j
Then,
_o | 9 | =2
; . T+ E N
fplt,pr = C()(m, CL) + Qh ’ T + Qv ’ 92 + f;)ilt,pr ) (56)
where _
Qr-n? = Qh 02, with .= (=11, 72, 7N)
Q- p* = Qy - (£p)? (5.7)
Slt,pr = 0(4) :

The details of the computation of the expansion of fyy;,: (up to order 4, for future use)
are in Section 5.1.3.

5.1.1 First Order Conditions

Proposition 5.1 For any N > 2, there exists an open set with full measure U C A
where the eigenvalues of Q; and Q) are paiwise distinct and verify the following. For
any open, simply connected set YV C U, they define 2N — 1 holomorphic functions sy, - - -,
SN, 21, *++, ZN_1 which satisfy the only linear relation

Z s; + Z 2z =0 (5.8)

1<i<N 1<i<N-1
(up to an arbitrary multiplicative constant).

Proof. Let us introduce matricial notations. Let Fj, F, denote the matrices (having
both order N) associated to the quadratic forms Q,, Q, (6.3) of the quadratic part
of the secular peturbation in Delaunay-Poincaré variables and let F;, G denote the
matrices associated to Qj, QF (having order N, N — 1 respectively) of eq. (5.7):

Qi -n*=n-Fun Q-n*=mn-Fin
Q,-P*=P-F,P Qi -p*=p-Gip
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The matrices Fj, Fy, are related by *3
Fp =1FR1

where I changes the sign of the first coordinate, so, they have the same eigenvalues.
Then, in order to prove (5.8), in view, of (6.4), we only need to prove that F,, F; have

the same trace. We have

fj:fTﬁjg’ fv:€gﬁv€07

(5.9)

where ¢ denotes the N x (N — 1) matrix associated to the linear operator (5.4)+(5.5),

¢y the diagonal matrix

lo = diag (1/y/Ay, -+, 1//Aw)

and F, = (j;;) the N x N matrix of Q,:

~ 2 A
Q,-p* =~ > mymiCilajar)(p;—p) = Fub - (5.10)
1<j<k<N
Equations (5.9) give
tr f;‘) = tr(ﬂTﬁvﬂ) = tr(ﬁ Av) (5.11)
tr .7-70) = tr(EOTfUEO) = tr(ﬁo .7}1,) '
where Ly is the diagonal matrix
EO = dlag(l/Ala Ty 1/AN)
and L is the symmetric matrix with entries
‘Cij — gl . ej
if
gl = <617627"'76N71) ) €2 = (627627"'76N71) 7"'7& = (07"'70702‘762'7"'75N71)
is the i*® row of £, as in (5.4)=(5.5). We have
£11 = |€1|2 = C% + Z 63
2<j<N-1
Li="=c+ > & 1<j<N-1
i<j<N-1
/CNN — |£N’2 — C?V (512)

Eij:&'szcj'éj_l—f- Z 6% 1§Z<]§N—1
J<k<N-1
£iN:£i'€N:CN6N71 1§Z§N—1

33Using the symplectic variables (1., &) (compare (5.7)), rather than (n,£), namely, with (n7,&5) =
—(n1, &) related to the aphelion position of the first osculating ellipse, rather than the perihelion, would
transform F; to Fj,. We do not use this change of variables here, because unnecessary, but in the next
section, for the computation of the Birkhoff invariants of order 2, in order to have simpler expressions.
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Using (5.5), we can write

211
Y,

~2 1 . -

Cj ; Li“ QS-jSN ~1
CjCj—1 = —1; 2<j<N (& :=0)

hence, inserting thee previous expressions into (5.12), by telescopic arguments,

E
L_EO_Ea

where E has entries E;; = 1 for any 4, j. Hence, in view of (5.11)

A

tr(]ﬂf) = tr <(£0 - f) ﬁv> =tr (ﬁo]}u) - thl" (Eﬁv> =tr (ﬁofv) = tr (F)

N N

since, from (5.10), it is easy to check

r(EF,) =Y g =0.

j7k

We prove now uniqueness of (5.8), proceeding by induction on the number N of planets.
For N = 2, it is a consequence of existence and the fact that the planar eigenvalues
$1 = 01, S2 = 03 do not satisfy any linear condition, as proved in [17]. Assume now that
uniqueness of (5.8) holds for N — 1 and let

C:(Cla"'7cN)ERN7 g:(gh'”?gN—l>eRN_l
such that
c-s+g-2=0

where s = (s1,-+,8y), 2 = (21, -+, 2v_1) are the eigenvalues of Fj, := FN, F, .= FV.

v
We write explicitely the entries of the matrices F}, FV

% Sicken MipCi(as, ax) + % SichaimipCilag,a;) 1<i=j<N
(Fn )iy =

UCLLC Coy(ai,aj) 1<i<j<N

/A,
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~2 — — 2 — —
-G Zlgkgi 212i+2 mkmlcl<aka al)) — G Zk2i+2 mi+1mkcl(ai+1> ak)
—C Y 1<pei MeMip1 Cr(ag, aipr) 1<i=j<N—2

—Cn 1 Yi<hen—1 MumnCi(ag,ay) t=j=N—1
(FN), = —CiCj Yor<k<i, 15542 MCh(ag, ar) — €;C; X1 <pei M1 Ch (g, Gjg1)
" —CjCip1Miy1Mj 101 (Ait1, Gj11) — it Yoy> o Mig1MCr(ait, ar)

1<i<j<N-2

—CN-1Ci Y1<p<i MmN Ci(ag, an) — En—1Cip1MipimyCh (i1, ay)
1<i<j=N-1

(5.13)

where ¢;, ¢; are as in (5.5) and

1 1
+— 1<kE<SN-1.

Ck i= Ckp1 — Cp =
Ay,
+1 k

It is easy to check that, when ay — oo,

rN—1 +(N—1)
e (80) me ()

and that when a; — 0,

0 0 0 0
}—}JLV—><O ‘7:—}11\1—1) -7:5\[*(0 ﬁ;(Nl))

where V=1 F(N-1) denote the horizontal, vertical quadratic forms related to the “first”
N — 1 bodies and ]—"}]LV -1 Fj(N —1 . the horizontal, vertical quadratic forms related to the
“last” N —1 bodies. Then, as s, z are continuous function of the entries of their respective

matrices, when ay — 00,
s—(5,0), z—(%0)

and, when a; — 0,

s—(0,3), z—1(0,2)
where §, 2 are the eigenvalues of ‘7:",]1\7_1, ﬁj(N’l); 3, Z are the eigenvalues of .7:",]:[_1, f;(Nfl).
By the inductive hypoyhesis, the first limit implies ¢y = --- =cy_1 = g1 = -+ = gn_2;
the second limit implies co = -+ =cy = g2 = --- = gny_1, hence, the thesis.

5.1.2 Second Order Conditions (“Torsion”)

By Proposition 5.1 and Birkhoff theory, when N > 3, the secular perturbation fyy; ,: of
the planetary problem can be put in normal form up to order 4.
In this section, we prove the non—degeneracy of this normal form.
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(i) We call Birkhoff form of a given polynomial of 2m variables
(y,z) e R x R™ — P(y,z) € R
and even degree p > 4, the polynomial

1
(2m)m Jom

2 2
i + T
,PB(ywr) = 7y7"'>

Po¢pC<J7 SO)dSD Wlth J —= <... 2
where ¢, is the usual symplectic polar coordinates map.

(ii) When P has degree 4, we call Birkhoff matrix associated to P the symmetric
matrix A = (A;;) of order m for which

il
2

1
PB(Q,I) = = Z AZJJZJJ where Jz .

1<ij<m

* and let

v

Let pj, pi denote the matrices which diagonalize the quadratic forms Qj,
Paiag the symplectic transformation®!

n= pyn M = PhT]
T o N B
diag £=pié £ = pé
P=pP -y}
q=p,q

where p, = Ipj, is the matrix which diagonalizes the quadratic form Q) = IQjI of the
plane problem, as in [17]. Then, the secular perturbation fp r is put into the form

.fplt,pr o gbdiag

~9 c2 ~2 ~2

2 4 & 2+ -

= CO(??%CL) + Z Sinz §i + Z zipz i
1<i<N 2 1<i<N-—1 2

fdiag

+ 3<phﬁ7 phé? p:ﬁa p:q~>
+ O(6)
where § is the polynomial of degree 4 in z, = (1, &, p, ¢) for which

Nélt,pr(ﬁa 57]57 q_) = S(ﬁ*y f*,ﬁ, (j) + 0(6) .

We then have

Proposition 5.2 For any N > 2, the Birkhoff matriz Apy, of order 2N — 1, associated
to the polynomial F(ppn, pr€, pip, piq) is non singular, provided the semimagjor axes
0<a; <ag <---<ay are well separated.

34We neglect to write the action on the A-variables, which we do non need.
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Remark 5.1 When N > 3, A coincides with the matrix of the Birkhoff invariants of
order 2 of the planetary problem.

In order to prove Proposition 5.2, we need the exact expression of §, which is computed
in Section 5.1.3 and summarized in the following Lemma.

Lemma 5.2 In the expansion for the secular perturbation fplt pr around the secular ori-
gm z = (n,€,p,q) = 0 described in Lemma 5.1, the term of eq. (5.6) begins with

= 3§+ O(6), where

plt,pr

plt pr

3 =3n+ Sm + 3o (5.14)

and Fn, Sho, v are three polynomials of degree 4, defined as follows. The “horizontal”
part Fp 18

Sn=q- (1 + &) +r-ni& (5.15)
where, as in Lemma 5.1, 0, := (—m,m2, -+ +) and
a0t =D qumi+ Y, (C]m‘ﬂ?? 5+ Qisgg 17 +ijji77z‘77§))
1<i<N 1<i<j<N
rentet = Z a6 + Z (Tiiijmzfifj + Tiijjmzf? + mﬁmmif? + rijignin; ik
1<i<N 1<i<j<N

€S+ Tigan; &l + Tjjji”ffiéj)
(5.16)

if ¢ = (qijwt), v = (1ijm) are the 4—indices tensors defining the quartic form of the secular
perturbation of the plane problem, defined in (3.27)+(3.28). The “vertical” parts Fn,, o
are

1 _ _ _ _ _
S = 5 > mimj(Q}jl (eq; — £3:)* + Q7 (¢p; — £pi)?
1<z<]<N
+ (O Qf})( ~ opi) (f:cij —2@-)
+ (QF - Qi) Zl<h<k< 07 (P — Drdn))
Sv = Z mim; (Q7) + 22)01(%'7@]')
1<i<j<N
o B N2 B \2\2
+ Z m;m; ((sz - Epj) + (2% - qu) ) Cis(as, a;)
1<i<j<N
, 2
+ ) <21<h<k<g 15115 (Dnar —ﬁk@l)> Cra(ai, a;)
1<i<j<N

(5.17)

where the summands denoted Y.* do not appear when N =2 or j =2 and where:

— for h, k=1, 2, Qhk are the four quadratic forms acting on (n;,n;,&;,&;) as in
(5. 45) with Cg(@l,CLJ) Ch2(a;, a;) as in (5.46) below;
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— £ is the linear operator from RN~ to RN defined in eq. (5.4)+(5.5);
- fzj =L, — Uy, with (L) :== £ the matriz associated to £;
- Ci3(ai, aj), Ciala;, a;) are as in (5.65) below and, finally, :

- Qzﬂ, 1122]2 are the two first diagonal entries of the matrixz of homogeneous polynomials
of degree 4 resulting from the productories (5.52) below, when S;, --- have the
expansions defined in eq. (5.61)+(5.64) below.

We outline that the main difference (and complexity), with respect to the same com-
putation in Delaunay—Poincaré variables, is represented by the productory form of the
“verticalizing” matrices &;; (compare equation (5.52) below) which describe the mutual
orientation between the planes of the osculating orbits of the planets ¢ and j. We recall
that, in turn, this productory structure is a consequence of the “tree” structure Deprit’s
kinetic frames.

We are now ready for the Proof of Proposition 5.2. For simplicity of notations, during
the proof, we write

n=0n ), §=E, &), p=0L - pv-1) s = (a0 an-1)

for

77*:(771(;;777\7)7 5*:(£T77€7\7)7 p:(pla"'upl\ffl)> q:((jl?"‘,qul)

believing that no confusion arises with the full reduced variables, which are never used
in this section.

Proof of Proposition 5.2. We proceed by induction on the number N of planets,
starting with N = 2. We esplicitate the dependence on N marking 3V, pl¥, --- the
quantities §, pp, - - - relatively to N planets.

Proof for N = 2. When N = 2, the two matrices F7, F;? of the quadratic forms Q3

v
*2 have order 2, 1, respectively, so, their diagonalizing matrices p?, p*? can be exactly

computed: p** = id is trivial and, diagonalizing

Ci(ai,a2) Ca(a1,a2)
2 - _ — A1 \/AlAQ
th = mima Ca(ai,a2) Ci(ai,a2)
\/Al,/\z A2
2 4 3
_3 9 (L) it
o 1 T O e ()<é%hh)
= Mmims 3 2 4
O ay § ?1 +O( aq )
aVAiAz 4afhs a3h2

we find, for
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1 e —5/2 —5/4
ph = ( Vit Ve ) =id + ( O(a2_5/4) O(a2_5/2) ) (5.18)
T V1te? I+e2 O(ay™") Ofay™")

where, letting for shortness,

o Qilanm) o Gilaa) Gy ay)
. Al 9 . A2 ) . A17A2 5

then ¢ denotes
la — b| 4¢? —5/4
=— 14— —1] = )
€ 5 + (a—0)2 O(ay™")

Using these expressions, we compute now the asymptitics (in ay) of the Birkhoff matrix

associated to the three polynomials § (o7, o€, ps @), iy (P11, P15 Py @), Sa(Pa)s PE, Py @)-
The dominant contribute of §2(pnn, pré,p,q) to the Birkhoff matrix is (compare with

Arnol’d’s computation, [3])

— 2
_ 9 mimg 91

3 *
4 A%ag a% 4 AqAsas a%
o 2 I
_ 9 mme @ _ gmyma 4] 5.19
4 AqAsas a% 3 Agag ag * ( )
* * *

We recall for completeness the computation, essentially done in the study of the plane
problem, which leads to this result, since now we want to expand with respect to the
semimajor axes, rather that their ratios. It is a consequence of the expression of the
horizontal quartic form

§h = quuni + quenine + queening + Geean i + 27
+ qunél + @26 + 122618 + 21 &8 + 4222285
+ i€l 4 rinani&aée + riuen
+ ronmnéE + roemneéi&s + rasmneés
+ roonmBE] + rooon&i&e + T2

(5.20)

with the following expansions (based on the expansions of the Laplace coefficients) of
the involved entries of the tensors g, r

3 m1m2 1 CL% CL41l

- = Bl (d SIS W e

D A2 ay (a% * as
377_117712 1 (a% (a‘f )

Q2222 = — < — | =+0| =

8 A} 2 3

Ao \ a3

9 MMy 1 a% a‘ll
= —— — - O vy
Q122 16 A1A2 a9 ((I% + a%
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=

3 mymy 1 [a?
=23 | 2
16 A2 ay \ a3

+
@)
R
Q‘Q

NS
S~
~—

3 m11Mo 1 a% a‘ll
—— 2102
r2222 4 A% a (a% + as
9 mM11Moy 1 (a% <a‘11>)
T1122 = —— — | 5+0| =
122 16 ANy ay \ a2 as
9 M1 Mo 1 (CL% <CL111>>
Too11 = —— — | 5+0| =
2211 16 AyAy ap \ a3 as
3
r1211, T1112 = O S S
1112, ) G%Al\/m
3
T9122, Ta221 = O S S
G2221, 3 G%AQ\/M
o (5.21)
T = .
1212 CLSAM\Q

We compute now the Birkhoff matrix associated to g2, (pnn, pré, p, q). Replacing

3 1 1
Lpo— Ly = (lb—l)p=acp= (/\1 + A2>p

2 2
B ) (7717772,51,52) = Cs(al,%)zll + 04(6117612)\/71717—12 + Cs(ab @2)222
& &1 &

+ CG((ll,CZQ)A +C7(a1,a2)m +Cg(@1,a2>A
1 Y 2

22 77% mn2 "7%
(e, &,6) = Csla, 612)/T1 + Cr(a1, az) JAA, + Cs(ay, %)E
+ Cg(al ag)i% + 04(611 ag) 5152 + C5(&1 (lg)ig
’ Ay ’ A Ao ’ Ay

(5.22)

the polynomial §,(n,&,p,q) (compare eq. (5.17)) reduces to

1 N
Sho = 577117712(%% (22 — 2a1)” + Q3 (22 — 2m1)°) + &5,

= L (h s L)
= MR T A,

2
2.2 2,2 2 2 2.2 2,2
+ + +
Xl@@ﬂymAfp+@%MWW&ﬁ§”+%WMWwAFp
2.2 2,2 2 2 2.2 2,2
+ + +
n 06(%(12)1(]/\1”1])+C7(a1’a2)€1gzci/rzzn2p +08(a17a2)2qA2772p
+ Sho (5.23)
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(referring to (5.5), (5.46), (5.65) for the definition of Cy, C3 <+ Cy, C13) where

$o o= gmams(Q + O (em — o) (20, — 20

This term gives no contribute to the Birkhoff matrix, since, when computed in (p3n, p3¢, p, q),
it contains only monomials of the form 7,£;pg, hence, with vanishing Birkhoff form.

Then, from (5.23), 37,(pun, pr€,p,q) generates on the entries with place (1,3), (2,3),
(3,1), (3,2) of the Birkhoff matrix the dominant terms (in a;)

_ 2
9 mymg 41
* * 4 A%(ZQ a%
9 _mimg 41
* * ks a2 (5.24)
9imymy 4 9 imymy 97 *
4 A% 2 a% 4 AqAsas ag

The result is found taking into account the diagonalizing matrices as in (5.18) and using
the expansions for the C3 + Cy

We finally compute now the Birkhoff matrix associated to (compare eq. (5.17))

312)(777571)7 q) = 7”7117712(1723—#53%3)01(@1,@)
2 2\ 2
+ mymy ((Epz — 1) + (202 — 201) ) Cis(ar, az)) -

We recall that in the case N = 2, &9 :751, s0, 913, 9% coincide with the order 4 terms
of the antries at places (1,1), (2,2) of S;, which are (compare (5.61)+(5.64) below)

2 2 2 2
2O N e

11 27 2
— —_ C —
2 2 2. 2
o2 e 22/\%(”1;51) + QA% 772‘2*‘52 _ AIAQpQ;-qz
12 p L p 4A%A%
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Hence,

3’12)(77757])7 Q) = m1m2(ﬂﬁ+ﬂég)c&(a1,a2)
2 2\ 2

+ mymy ((Spa—f:pl) + (2 — £01) ) Cis(ar, az))

mim
= - 12 201(611,&2)
W (ZmrEr e 2mrGrte 1 (P hd ’

AT 2 2 A2 2 2 MMy \ 2

T . 7T 1 1 2 2 2\2
T g < + ) (p” + ¢°)"Ciz(ar, az) (5.25)
Al A2

Since (5.25), letting (1,&,p,q) — (pun, pré, p,q) with p, as in (5.18) and using the

expansions
3 a? aj 3 a? a}
C:_iil—i_O -1 ) C :_771—’_0 — )
! 4 a3 (ag 9 32 a3 aj

we find the contribute of the Birkhoff matrix associated to §2(pnn, pré, D, q)

§\
5\
S

* *

3

4 A§a2 Qa?
% x 0) (Aglm é) (5.26)
lemzﬁ O( 1 ﬁ) _§m1m2‘ﬁ
4 %GQ ag Agag ag 4 A?ag a%

A
Finally, on count of (5.19), (5.24), (5.26), we find that the Birkhoff matrix associated to
5 (pun, o1&, p.q) is

_3_ __9 3
o T4, A2
mimgay [ "' g 3 9 ' 1 1
ol IR, A, A7 A | (T+o(1))
az a3 | 3 9 3
A% 4A1 Ao 4/\%

hence, it is non singular, having determinant

mims a2\® 27
17762 ¢y
— — 140(1)) #
( as a%) 16/\‘11/@( o(1) #0,

and the basis of induction is proved.

For the proof of the inductive step, we need the following result, due to J. Fejéz, to whom
we refer for the proof.

Lemma 5.3 (J. Fejoz, [17], COROLLAIRE 72 ) A
Let 61, -+-, 6p—1 € R, 6, = 0 such that 0 := min |6; — | # 0, D € Matr,_;(R) a

1<j#k<n
symmetric with eigenvalues o1, - -+, 0,_1, D the symmetric matrix

D 0
D =
(0 )
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and A, € Matr,_1(R) a symmetric matriz with last coefficient
(A =c1+c6?, ¢, eR, 0<p<2.
Then, when € — 0, the matriz D 4+ ¢ A has an eigenvalue
on(e) = ey + o) + O(£?) .

Furthermore, if D is diagonal, D + €A is coniugated to a diagonal matriz through a
matriz p € SO, (R) verifying p =1+ O(e).

We can apply the previous lemma taking F 1, F*N=1 for D and FY, F*N for D+-¢ A,
with ¢ = ay®. Observe in fact that both Fj' 1 F*N=1 verify the assumptions of the
Lemma, since their respective eigenvalues do not satisfy any other linear relation than
the Herman’s resonance (Proposition 5.1 above) and, furthermore,

FN-1 B i} FxN=1) N
A= 0 ) o, == (T 0 ) o) oy )

Then, the diagonalizing matrices py, p:V at step N are related to the matrices p; *,
*(N—1)
Pn of step N — 1 by
N-1 *(N—1)
0 —7/2 . M 0 _
= (0 V) o wr = (4 D) rowwy . e
This result will be used in the inductive step, which we are now ready to prove.

Proof of the inductive step (N — 1) — N. Assume that, when

K <KLKayoaoKan_1 — X0

the Birkhoff matrix Aé\{{ ! associated to

SV on "t o T o, pr Y TDg)
is non degenerate, and let us prove that, when
<< <KLay1 K ay — 0
then, the matrix AJj, associated to
5 (o n, o & 0,03 q)
is so.
Let §:=§" asin (5.14) =(5.17) and let us split
=3 =5""+%¢ (5.28)
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where

~

V= g
is 4-order polynomial associated to N —1 bodies, in the variables the variables (7, £, p, q),
when the variables (1, &, p, q) related to N bodies are written as

n = (,nn) = ((771, T 777N—1)777N) . pi=(PpN—1) 1= ((pl, T 7Z?N—2)7PN—1) e

and
§F=3" -5 =5+, +35,,

with §, = §, — §fl\7 ~1 ... and similarly for the definitions of S 5, By inspection of its
coefficients, ), is O(ay’), so, making use of (5.27), it is not difficult to see that (5.28)
implies that the first approximation for the Birkhoff matrix Afj, (suitably rearranged)

is
AN+ 0(ay?) O(ay’)
N _ plt N R N

Api < O(ay’) A+ 0(ay’) (5-29)

where A = O(ay’) is the square matrix of order 2 associated to the quadratic form in

the couple of variables
(U?\r +&% PRt QZ2V1>

2 2
appearing the Birkhoff polynomial of

3 (o i), (on 6 &n) (3 h, o) (03N Vs an )

By (5.29) and the inductive hypothesis, we only need to prove that A is non singular.
As for the proof of the iductive basis, this is done by direct computation. We start with
the horizontal terms

3 o= 3 -5t
= QNNNNU?V + QNNNNS?V + TNNNNUJZVSJQV

Z (QiiiNn? NN + QNN TN F ANN N
1<i<N-1

GiiNEIEN + QunnEFER + annni&iln
r iiiN77i2 &ién + 7"z'z'NN77i2 512\/
TaNsiiEs 4+ TiNiNTNEGEN + TNINNTINNE N

rvNanEl + TNNNi7712V§z’§N)

+

+ o+ + 4

By the previous discussion, we have to pick the monomials in 7y, £y only, namely

QNNNNn;lV + CINNNNf?V +r NNNN?7]2\/512V
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and then we have to compute the related Birkhoff polynomial. Proceeding as done in the
previous step, we use the expansions

3 m;m a? a? 3 MmN 1N a2 . a2 -
qNNNN = Z N4+O 75 __° N21 NN21+O N31
8 ANCLN

TQA2 2
1<i<N-1 8 Ajan axy an an an

and, similarly,

3 mmy CL? ((12 >> 3 my_1mpy a?\/—l a?\,_l
TNNNN — - 2 4+0 =+ - +0
132;\7—1 < 16 A% ay a3 ays 16 Aday d¥ ay;
At this point the computation is just the same we have seen for N = 2 and, at the place

(1,1) of A we will find
_ _ a2 .
A= 3 Aay ag
* *

Also the analysis of the vertical part §},, will give, as dominant terms on the off diagonal
entries, a similar result as in the cae N = 2

_ _ a?
MmN—1MN N—-1

Aw-1hway oy (5.30)
*

*

9
1 4
A= o
9 my_1my 9N_1
4 AN_1ANan a?\,

This result follows computing the Birkhoff matrix relatively to the the monomials with

PN—1, N—1, NN, En of
Sho = Fno— Sho
1 _
= 3 > mimN<Q}]{, (Lqn — £4:)° + QX (epw — sz')2)

1<i<N-1
AN
+ ghv

(where §V is a suitable polynomial which gives no contribute to the Birkhoff matrix),
noticing that £qy — £¢; has the form

Lqn —L£¢; =CN_apN-1+ &P, p=(p1, - ,DPN-2)

with

B 1 1 1 1
R \/LN1 Ay ¢AN1 +0(55) +O(n-o

and QM as in (5.22), with 4, N replacing 1, 2 respectively.

The last step consists in evaluating the contribute to A of

5 = V3Nl

160



1<i<N-1
- 2 2\ 2
+ > mimy ((22% - EPN) + (S% - E(JN) > Ci3(ai, ay)
1<i<N—1
+ 5
(5.31)
where
5 o * iN i 2
5= m;my (Zl<h<k<N71£hN€kN(thk - kah)) Cua(ai, an)
1<i<N-1 =

gives only a negligible contribute on A. Notice that matrices S, Sj appearing in the the
productories (5.52) do not involve the variables py_1, gnv_1, v, &N, S0, the monomials of
degree 4 in 9, 91 involving only py_1, qv_1, v, Encoincide with the corresponding
monomials of degree 4 of Sy_1, on the entries (1,1), (2,2), which are

,  2L3%_17v — Ly_1Anpn_1 o 213 7n — Ly_1Anpn_1

_QN—I 4L%V_1A?V Y pN—l 4L%\]’_1A%\[

Thus, the term ' ,
S (2 + 95)Ch (s, an)
1<i<N-1

gives

2
Ajan ayy

1 ad_ 1 af_
0 (A?VLLN 5?\]1> 0 <ANAN1aN g%\,l
As in the case N = 2, the off-diagonal terms above can be neglected with respect to the

ones appearing in (5.30), while the diagonal term with place (2,2) can be neglected with
respect to the corresponding term

. * *
A= % _3mN_1my af_y
4 A% an d%
generated by the second line in (5.31). On count of the previous computations, the final
result extends the one found for N = 2, giving

2
1 an_—
* 0 (i

_ _ a2 _ _ a2
mN—1MN "N—1 mN—1mMnN N—-1

9
o - 2 2 a1 2
A— AL an az; 4 Any-1ANan a¥
= _ _ 2 _ _ 2
9 my_imny 9N—1 _ 3mny_imN IN_1
2 2 2
4AN,1ANaN aN 4 ANilaN aN

S0,

_ _ 2
detd — — 2 ( TN (ﬁ“) #0

16 AN—IANaN CL%V

which finishes the proof.
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5.1.3 Expansion of the Hamiltonian

Lemma 5.4 The “secular perturbation”, i.e. , the mean

5 1 Yi Yy mumy
fplt,pr = fplt,pr fplt,pr = Z —
(2m)N Jo~ 1<i<j<n Mo

(Yi, x; as in (4.46)+(4.49)) coincides with the mean of the Newtonian potential:

_ M ; did)\;
Joltpr = — Z J/T I (5.32)

1<i<j<N Am? 2 |2y — @yl

The proof of this lemma is trivial and so it is omitted.
Lemma 5.5 The secular perturbation fplt,pr 18 an even function of the “secular vari-
ables” 2 = (777 €’ﬁ7 Q)'

Proof. Actually, it is even in (7, ) and (p, q) separately. In fact, letting (7, &) — — (7, €)
and simultaneously A — X\ + m, the Plane DelaunayPoincaré Map changes for a sign
and the matrices ®!" do not change (they are even in (7, )), so, taking the mean over
X of the Newtonian potential, we find that fplt or 18 even in (7, & ) Observing that fplt,pr
depends on (p, g) only through on the entries of ®}" with place (1,1), (1,2), (2,1), (2,2),
which are even in (p, §) (since they are products of the matrices S;, S;’s, the entries of
which with place (1,1), (1,2), (2,1), (2,2), (3,3) are even in (p, ), Whlle the ones with
place (1,3), (2,3), (3,1), (3,2) are odd), we also find that fp;,, is even in (p, ).

We proceed with the expansion of the mean of the Newtonian potential (5.32).

Unsing (4.49), we write the Euclidean distance |z; — ;| as
|2 — aj| = |R7E — R]E| = Ly — Sidy] = [Lidi — 64551

where & denotes the submatrix of order 2 of a give matrix & of order 3,

L=
)i i1

changes the sign of #; and &;; :== 6!'6;, with

HN 2(spr) L)SrT =1

S = T)sg’r 2<i<N-1

Spf i = N
(5.33)

Changing, into the integral (5.34), the integration variable A\; with A\; + 7 and making
use of the relation

:i‘l(Ah;\l + ﬂ-aﬁlagl) = _j:l(Alu;\lu _7_]17 _§1> = _iT(Ab;\l?ﬁhgl) = _§;1<A175\1777T75T)
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where 7, := (=11, 72, - ), we can write the secular perturbation as

_ M ; did)\;
o =y T [ D,

1<i<j<N Am? 2 |y — gl

N 472 T2 ’Ilii'l — éz]:i'jl

1<i<j<N
-y / dAid; (5.34)
1<icgen AT T [T — 645

where
x 7 i=1
=< .
! T, 1>1.
Let us now think that éij is expanded in powers of (7, D, qd), up to order four, that is,
let us put
and let us consequentely expand the square distance
Dij = |} — &yl
k|2 k|2 Ak A A
= |37+ |x]| — 2% - 645,
&7 — 357 — 227 - 6,45 — 22) - 6585 + O(6)
= D§ + DY + DY +0(6)

where
Dy = |d} — ;]
D;j =2z @Zj@ (5.35)
Using now the elementary expansion
1 1 D, Dy 3 D3
—_— = — — + = + O(6)
VD Dy'? 2py*  2py*  8D)?
when D has the expansion
D = Dy+ Dy + Dy + O(6)
with Dy, := Dy as in (5.35), we write
1 1 Ty &ha;  ar-&hi;  3(@ - 651)°
Tav A~ = ~x N + ~x ZJ3+ ~x fjg‘i_*( ~x jAJ5) +O(6>
|2} — 6454 |27 — 25 |27 — 3y |27 — 2 2 |27 —

When we multiply by —m;m;, sum over all 1 <4 < j < N, take the mean on Ay Aj),
we can split foi pr as ) o B
fplt,pr = f;l + ftwo + ffour (536)
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where

Bo= - 3 mimj/ dNid)\;

’ \<icien Am? Jr2 |37 — 4

_ 1T o828 _ _

foo = = > B[ SUSUaNa,
<IN An? 2 |27 —

= T & e 3(ar 82202\ .

frow = =} 12”/ ( ! §+7( i i ’5) A,
1<icen Amt I \[EF =3P 2 |27 - &

and we have now to expand the 2—coordinate of the plane Delaunay-Poincaré map (A, ),

7, §) — (g, &) in powers of (n,&). In the following, we perform this expansion, collecting
only the terms of order 2, 4.

(i) Expansion of f}. The function

= m;m;
fpl == Z A2 /11‘2 |

1<i<j<N

D),

7 — 2y

coincides with the function fu(A, ., &), where fy is the secular perturbation of
the plane problem. So, recalling that the expansion of f;, is

_ m;im,; dN;d\; 1
Fi=— i a/ T = G+ = Q- (2 + E) + 51, €) + O(6)
’ 1§z§§N Am? 12 [ — "2
where M
Co == fo = fulme=o = — Z : ]b1/270(ai/aj) ’

1<i<j<N @
Q) is the quadratic form associated to the matrix F; defined in Lemma 3.3 and
35 %y, is the quartic form

Sn=q (" +&) +r-ne
where ¢, r are the 4-tensors of (3.27)-+(3.28), then,

f;1 = CO + ;Qh . (773 + 53) + Sh(m,&) + 0(6) :

(ii) Expansion of fi,, The function

_ Ty 4T P82 e
R /T TPt g, (5.37)

1<i<j<N dm? Jr2 |27 — 22

35The entries of the matrix Jj, defined in Lemma 3.3 can be written in terms of the only Laplace
coefficients bg /s (), bg/2,1 () as in (5.3).
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is of order 2 in z, so, it contributes to the 4-expansion of fp1t7pr with terms of order
2 and 4, which we denote fiwol2, fiwol4:

ftwo = ]Etwo|2 + ftw0|4 + 0(6) .

Let us represent éfj through its entries
ij g
e%::<q5q5?> (5.38)
d21 922
so as to write the integrand function of (5.37) as

~xl 41 1] + %252 1] + sxl 22 1] + %251 1]

j\::é?‘]j}] Ty Tiary T X9 T Ty Tyq1 T LT 5491
LR, g T , (5.39)
|27 — 3] |27 — 4]
where (2}, 2?) are the components of ;.
Then, the term fi,|2 is found replacing z; with its O—approximation
79 = a;(cos \;, sin \;) (5.40)
into (5.37) and next into (5.39); this gives
fiwol2 = fiwolim(pa0y = — > mum;(ath + q22j2)271263/2,1<ai/aj) (5.41)
1<i<j<N a;

For the computation of fiye|s, We denote as thf the quadratic forms acting on
(mi,mj, &, &) which realize the Z—expansion up to order 2, of the four integrals

1 prhagk
/AQQﬁLdej hok=1,2, (5.42)
T2 |

Ty — &)

hk .
g 472

i.e. , we let

Thk _ %?%/271(%/%) +Qf e h=k=1,2
i Q. h#£k=1, 2

Then, in view of (5.37)+(5.39), we have

fowola=— Y mam; Y Qg (5.43)

1<i<j<N 1<h,k<2
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The computation of the polynomials Q?Jk is quite lenghty. It is performed using,
into (5.42), the approximation of #; up to order 2 3¢ and next isolating the quadratic
terms in Z, whose coefficients, as in the expansion of the secular perturbation of
the plane problem, have the form of the mean over ()\;, ;) € T? of ratios of
trigonometric polynomials in A;, A;, with “Laplace” denominators dj; := |29 —27|°.
The result is

*2 *m* *2
n; UL ;
QL (nf,m; 6. €) = Chlai,a5)-— + Calas, ;) ——== + Cs(a;, a;) -
i i D ’ Az » Yy \/ﬁ (e} Aj
4}
+ Csla a~)i2+C’7(a a;) fz*f; + Cs(a a')g
1y Yy Az 1y Y] \/m ) Aj
42 * *2
n; 1; M; nm
Qi (ni,m;, 6. 6) = Cslai, a5)=— + Crlai, aj) ——= + Cs(ai, a;)
AU A Niwy A,
il
+ Cs(a a)€:2+04(a a;) I + Cs(ai, ;) ;-
VA, VI W CTA,
Qi (nf,m;. &.&) = Cg(auaj)ﬁ+Clo(%ag‘)%+cﬂ(awaﬂ) 77/};;*\
i i\ il
+ ClQ(Cllaaj)nj\'j
j
;& n;&; 13

Q?jl(njanjagz*vgj) = Cg(aﬁaj)i

JNA; A,
;&
+ Clz(ai, aj)%
J
36which is
1 X 3 — cos 25\i R sin 25\2‘ ~
xX: = a; COS A; — i — i
i 2 2
—3cos\; +3cos3)\; , sin\; +3sin3)\; . . 5cosA; + 3cos3N; o
+ U/ ni&i — &
8 4 8
+ 0(3)
- in 2\ 2\ »
2 = a (sin Nt sin 7+ 3 + cos it
2 2
—5sin \; + 3sin3)\; .o  —COS Xi +3cos3\; . - 3sin \; + 3sin 3\, o
+ 3 mi + 1 Mi&i — 3 i

+ 0@)  with (9;,&) = (\/ﬁjT’ \/€;T>
(5.44)
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(5.45)

where C5(a;, a;) + Ci2(a;, a;) are defined, in terms of the Laplace coeflicient, as

Cs(ai, aj;)

Cy(as, aj)

Cs(ai, aj;)

Ce(as, aj)

Cr(ai, a;)

(ai/a;)*

(57(&2‘/0,]‘)2 + 117)1)7/270(@/%)

32(1j
%(—12(%/@9')4 —291(ai/a;)* = 12)brjo1(as/az))
%(15(%/@)2 — 45)br/22(ai/a;)) + 27(62512;) b1y23(ai/a;))
B (ai/a;)’
277 324, br20(ai/a;))
(ai/a;)" (=376 — 376(ai/a;)*)br/o,1(a;/a;))
64a; R
<a3i2/cj?(16(ai/aj)4 +10(a;/a;)* 4 16)br/a 2(ai/a;)
56(aé{122) (ai/a;)® + Dbrjas(ai/a;) + (&géz) brj2.4(ai/a;)
%(117(&,/6%)2 -+ 57)()7/270(6%‘/@]‘)
(Cgéfg) (_12(Cli/aj)4 — 291(%/%‘)2 — 12)br 2,1 (ai/a;)
(agéz) (—45(ai/a;)* + 15)brjz2(as/a;) + 27(@(;12;) Prpaislaaf o)
(a;)éi:? (71((12-/&]-)2 + 11)b72,0(ai/a;)
(%izfc? (—20(as/a;)* + 119(a;/a;)* — 20)bz /21 (as/a;)
m;éii) (=79(ai/a;)?* — 19)brj20(a;/a;) — 47((%{12? brya,3(ai/ a;)

(ai/a;)®
32a;
(ai/a;)* )
64a; (8 + 8(ai/ay) )b7/2,1(ai/aj)
(ai/ay)
32a;
(ai/a;)
o0 64a;

—215

br20(ai/a;)

(16(ai/a;)" 4+ 118(ai/a;)* + 16)bry22(ai/a;)

(ai/a;)* + 1)brjas(ai/az) + (aééZj) brjo,a(aifa;)
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Cg(&i, aj) :

Co(a;, a;)

Clo<ai, CLJ') :

Cu(ai,a;) -

Cia(ai,a;) -

(ai/a;)*

326Lj

(a:/a;)

(11(@2-/(1]-)2 + 71)b7/2,0(ai/a;)

(—20(&2‘/&]‘)4 + 119(ai/aj)2 — 20)67/271(0,1'/&]')

64(1]'
(ai/a;) (ai/a;)®
32(12 (—19((11/07)2 + 79)1)7/272(0/1/@]) — 47 64(1:;

2

(ai/ay)

(14(ai/aj)2 — 106)b7/270(ai/aj)

32aj
(C;igcg) (—4(ai/a;)* 4 205(a;/a;)? — 4)br a1 (ai/ay;)
L )+ 13l
53?2’(71]-(%/%)367/273(%/%)

35 3
_%(ai/aj) br20(ai/a;)
?>21aj(@z‘/aj)2(4(ai/aj)2 +4)brja(ai/az)
(C%Sj) (8(ai/a;)* — 31(ai/a;)* + 8)brjaa(ai/a;)
280y + 28)bnales )
(ai/a;)®

394, b72.4(ai/aj)
_?jl;;(ai/aj)?’b?/zo(ai/aj)

L (a3/a;)2(188(as/a;)? + 188)brjos (a:/a;)

326Lj

(a:/a;)

16CL]'

(a:/a;)

32aj

(ai/a;)®

32(1j
(ai/a;)

32aj
(/ay)

326Lj

(—8(a;/a;)* + 85(a;/a;)* — 8)b7/2,2(ai/a;)

2

(—28(ai/a;)* — 28)brya3(ai/ay)

br24(aifa;)

2

(]_4 — 106(&1‘/0,]‘)2)()7/2,0(ai/aj)

(—4(ai/aj)4 + 205(012'/01]')2 - 4)()7/271(012‘/01]')
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(ai/a;)?
16a;
37

_ 0, (a,/a]) brja3(ai/a;)

(=47 + 13(ai/a;)*)brj22(ai/ a;)

(5.46)

(iii) Expansion of fi,. The function

- T ar -6t 3(ir- &2 o
ffour = - Z Tt /]1‘2 ( < f ! + ( J J> )d)\ﬂl)\] (547)

1<i<j<N dm? 27 =253 2 |37 —3/°

is of order 4 in z = (1,£,p,q), so, it sufficies replace #; with its 0-order approxi-
mation (5.40) to find

.ffour - ffour|4 + O(6>

As in the previous step, we represent 6U, fj through their entries: é?j as in eq.
(5.38) and &, as

4 _ ( Qi 9 >

v\ ah o

Using (5.40) , into (5.47), we find

(68

ﬁour|4 - .]?four|i::540)

= - ) mlm](ﬂ +QQ2)2 253/21(%/&])

1<i<j<N
3 o 72 52 i \2 i3 \2 az?
-3 mym((ar1)” + (ai2)” + (a51)” + (a52)°) 5 bs/2,0(ai/a;)
1<i<j<N a;
3 _ ij\2 ETION
— m;m; ((Q11+q22) + (a1 — as7) );bS/Z?(ai/%‘)
1<i<j<N J

(5.48)

(iv) Computation of &;;. The matrices &; are defined through equation (5.33) as

suitable products of the matrices S''’s, Sjp "’s, which (recall Proposition 4.3) are
easily expanded up to order 2 as

SP =%, (1, @)
SFTZ Y, (Pic1,Gi—1) (2<i<N) + 0O(3) (5.49)
S =56 (pi, @) (2<i<N-1)

where ¢;’s, ¢;’s are the constants (5.5) which define the entries the matrix associated
to the operator £ and 3;(p, ¢) denotes

R et 1 —
Ye(p,q) = | —5¢Dq — 5P —ép (5.50)
¢ B 1=+ @)
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Taking then the products of S}, - - - as prescribed in (5.33), we have

Gfr = Z51‘,1\7—1 (ﬁN—b QN—l) e Z@m (plﬁ le) + 0(3)

and hence,

6ij = GzTGj = E—fﬂ (151’ le) e E—&',N71 (pN—la QN—l)
25 (Pn-1,qn-1) - - Zzﬂ(ﬁh q1)

X

(5.51)

where
gi - (gih e 7€i,N—1>

is the i row of the matrix ¢ associated to the operator £ (eq. 5.4)+(5.5)) Using
(5.33), we can write
St oi=1, =2
SPSY i=1, j=3
&y =6le; =4 SIS SML,EM, i=1, j>4 (5.52)
SIS 2<i=j5-1
SPTSPT L STLST 2 <i <=2

having let B 3
S =878 = Ea(pi i) + O(3) (5.53)

with .
Ei:Ci—i—l_éi 1§ZSN—1 (8112817 612201)

which, together with (5.49), implies (5.54)+(5.55). Hence, we may also write the
matrices &;; = 6, 6, as

o; = I Zu(ra)+00) (5.54)

1<k<j—1
where

0 =l — Ly (5.55)
and then we use the following elementary Lemma.

Lemma 5.6 Let

C:<Cl7"'7cm)7 p:(pla"'7pm)7 q:(q17"'7Qm)€Rma
let Xa(p, 4) as in (5.50) and put

Hc(p7 Q) = 201 (pla Q1> te 2cm(pmv Qm> .

170



Then, the submatriz ﬂc(p, q) of order 2 of I1.(p, q) is

: _ g1 (cq? (c-p)(c-q) = Adp,q)
Hep.q) = 1d =5 ( (c-p)(c q) +Aclp.q) (c-p)? ) o)

where A.(p,q) denotes

Acp,q) = Z cici(piq; — p;qi) (when m > 2).

1<i<j<m

In view of the previous Lemma and making use of (5.51)+(5.54), we find the
following expressions for the entries (qy,)nx of &7

2

qfy = —1(2q; — G
aty = —5 (45 — 2@ ) (LD — £bi) + 5 Sicnen<i1 00 (Prde — Drn) (5.56)
a5 = —3(L£q; — £4;) (£p; — £pi) — %Zl§h<k§j—l C0 (Prai — Dran

2

2
a%h = —3(p; — i)
(v) Computation of &};. Equation (5.52) gives the expression of &;; in terms of the

matrices S, S (eq. (4.48)) and Sf' = SP'SP' . Hence, the expression of &;; is
uniquely determined by the expansion of these matrices up to order 4.

Let us first notice that we can write the matrices Sf* in the same form as S}, SJP "
In fact, recalling the definitions (eq. (4.35)) of S}, Spy, we find, for 1 <k < N—1,

S8 =SSP = Ra(sn) Rl R =) hix 1= arg (pe, —ar) , (5.57)

where i), 1= i), + ix+1 has the meaning of the outern angle 37 of W;_;, I'44; in the
triangle with sides with lenghth W,_;, 'y Wy, hence,

2 2 2
‘I]k B \Ilkfl - FkJrl

i = i 0 5.58
COS 1, S ir € (0,7) ( )
Equations (5.57)=(5.58) easily imply
B L — Giee  —DrGick —qkSk
Sy = —PrQrcr 1 — Dhck —Dk5k 1<kE<N-2

qrSk sk 1 — (D% + Qo)
(5.59)

371n fact, by the definition 4.12 of iy, iz41 given in Proposition 4.1 it is clear that 7, 7,41 have the
meaning, respectively, of the inner angles corresponding to the couples of sides with lenghth (Ug_1, ¥y)
and (\I’k—la Fk+1)~
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where

1—cosixy Wi+ Ty + 0 in i
- costy W+l + W o —szk:\/ck(Q—(p%-l—q;%)tk)-

— — - 5 S5 —
Py + ai ZAVU R /p? + @

We are now ready for the expansions of S, Splr S

(5.60)

Let us observe that the functions ¢;, s;, sx ¢, §;, &, 5% (eq. (4.37)+(5.60)) are even
in z, so, the entries of S;, - - -, with places (1,1), (1,2), (2,1), (2,2), (3,3) are even
(as functions of z) and the ones with places (1, 3), (2, 3), (3,1), (3,2) are odd. Then,
in order to obtain expansions of S, Sjp " SP" up to order 4, it sufficies to expand
the functions c;, s;, - -- up to order 2. Making this operation leads to the fllowing
expansions (which generalizes (5.49)-+(5.50)). If ¥ s 5(p, ) denotes the matrix

1-¢(5+C) -pi(5 +C) g(c+ 9
Soesd:d) = | —pq (5 +C) 1—152( +C) ]3 ¢+ 28) |(5.61)
S [ 2 4
q(c+9) pe+8)  1-@P+¢) (S+C
then
SfrT = Ecl,cl,sl (p17 ql)
SPr = E e S-(p'—l Q‘_l) ( < < N)
1 CiyLiyoi \L72— 1 1 - - O 5 562
‘Ser = Eéi,@,gi(ph%) (2 § § N — 1) +06) ( )
where, for 2<i< N, 2< )< N-1,1<kE<N—1,
Ay
cl = —
! AL,
C .: 2A2(2A1 + A2)7'1 — QA%TQ —|— Al(A2 — A1>p1
b AN212
5= e, -G
1= o 1 4,01
Li—q
C; ‘=
C 2L; 1 (Lio1 + 200) 7 + Ai(Licy — Ai)piy — 2A7(Ti 1 + Ri)
T 4L§A§
1 ct
Sz' = — Cz S— i—
e ( 4/7 1)
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(vi)

C; = — Ajir
’ Ll
G 2T+ LA — L)y + 285 (2L + Ay ) (T + Ry )
o LH
Sj = G <Cj - im)
L
Ek = Cga1 — ék = k+1
LkAk+1 )
k=
1 . ALZAZ,
Sk = (Ck — Ckpk>
Ck 4

(5.63)

having let, for shortness,

=2 2 =2 ~2
n; +&; Pi T4
TZ‘Z:72 s p1272 s Tz: ZT]‘, Rz: ij, Lz: ZA]
1<y<i 1<j<i 1<j<i
with
Ro := 0 (5.64)

Conclusion of the computation. In view of the expressions (5.56) for the diag-

onal terms q7,, q5, of &2, the function fyelz (eq. (5.41)) becomes

1 _ _ _ _ _ a;
fiwolz = B > mimj((»QQj 80" + (2 £pi)2)ﬁb3/2,1(ai/aj)
1<i<j<N @;
_ o T
. 5

Similarly, replacing diagonal and off-diagonal entries ¢}/, as in (5.56), the function
fiwola(eq. (5.43)) becomes

1 o _ _ _ _
fowola = ) Y mmy(Qy (£4; — £6)* + Q7 (£p; — £pi)?
1<i<j<N
(QFF + Q1) (ep; — p:) (24, — <a,)
( ?jl - Qzle) > G0N Pk — Dran)

1<h<k<j—1
= 3hv<77*: 5*7}77 q_)

_|_
+

and the function fiou|s (eq. (5.48) becomes

ffour|4 = Z mimj (Qlljl + Q;j2)01 (aiu aj)
1<i<j<N
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+ Z MM <<£]5¢ — Eﬁj)2 + (2@‘ — Eq_j)2)2 Ciz(ai, aj)

1<i<j<N
2
+ > mmy ( S G0 (phai —ﬁk%)) Cha(ai, aj)
1<i<j<N 1<h<k<j—1
= Sv(n*ag*a]i Q)
where
3 2
Cis(a;, a5) = —*%(255/2 o(ai/a;) + bsj22(ai/a;))
64 a;
3 a?
Cu(ai, aj) = —175*3(55/20(@1/%)+b5/22(az/aa))
]

(5.65)

Collecting then the expansions

. 24 &2 o
Foo= Gt TS 50,6) £ 06) = (<)
_ ., PP+ -

ftwo - Qv : d q + Shv(n*7£*7p7 Q) + O<6)

2
ffour = &(7]*75*7]77(7)"‘0(6)

we finally find
.}Fplt,pr = f;l + .ftwo + .}Ffour

*+2 . 2+—2
= Co+ Q- 7 2§+Q qu

+ Sh(ﬁ*aé*) + 3hu(7l*7f*,ﬁ> Q) + S’U((ﬁ*?f*?ﬁ? Q) + O<6)

5.2 (3N — 1)-Dimensional KAM Tori and Measure of the Kol-
mogorov’s Set

Having checked, for N > 3, the assumptions of non resonance up to order 4 for the
first Birkhoff invariants and non degeneracy for the second Birkhoff invariants, invoking
Theorem 2.1, we can state the following result concerning existence of KAM tori of
dimension 3N — 1 for the planetary (1+ N) body problem and measure estimates of the
invariant set.

Theorem 5.1 Consider, in R3, a star with mass my and N > 3 planets with masses
wmy, -+, pmpy, interacting only through gravity. Let a; denote the instantaneous major
semiaxis of the i'" planet. Then, there exists 6, >0, €, >0, u, >0,b>0,¢>0, C >0
such that, if 0 < a;/a;41 < 0, 0 < e < ey and 0 < p < 1y and

p < c(loge™H) 72

there exists a positive Lebesque measure set K such that
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(i) K (“Kolmogorov set”) is formed by the union of invariant tori of dimension 3N —1
on which the Hp—flow is linear in time, with Diophantine frequency;

(i1) the measure of K satisfies

ce?NU > meas K > ¢ (1 — C(ve + /u(log 5_1)b))52(2N_1) .

Furthermore, the eccentricities and the mutual inclinations on the invariant tori are
bounded by c(loge™1)~1.
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6 Kolmogorov’s Set in the Space Planetary Problem
IT (Total Reduction)

The proofs of existence of quasi—periodic motions for the planetary problem presented in
[17] and [14] are based on the application of a (C*°, analytic, respectively) KAM theory
based on “weak” non-degeneracy conditions, for a given properly degenerate system,
nearly an elliptic equilibrium point.

For istance, the proof in [14], in the real-analytic framework, is obtained as an application
of Theorem 6.1 below, based, on turn, on 2001 Riissmann Theory [34] (compare [14],
Theorem 4), where the following weak non—degeneracy condition is required

Definition 6.1 (Riissmann nondegeneracy condition) A real-analytic function
w: yeBCR" = w(y) = (wi(y), -, wnm(y)) € R™

is called R—non degenerate if B is a non—empty open connected set in R" and if for
any ¢ € R™\ {0}, the map

y—c-wly) £0 (6.1)
Theorem 6.1 Consider a Hamiltonian function
Hy = h(I) + nf(I,¢,p.q)
which assume to be real-analytic for
(I,,p,q) € T x T" x B2(0) := M

with the mean perturbation f = (27)™" /T_ fde of the form
_ — p2 + q2
F=hnam- oy a= (- BE) L e
Assume also that the “frequency map”
I €T — (0h(I),QI)) € R" x R”

1s R—non degenerate. Then, if p is sufficiently small, there exists a positive measure
set of phase space points belonging to real-analytic 'H,,~invariant tori which are close to
T x {Io} x; {p? + ¢ = p;}, with p; = O(u). Furtherore, the H,~flow on such tori is
quasi—periodic with Diophantine frequencies.

Following [17] (who deals with Herman’s C*° KAM Theory), the strategy of the proof in
[14] consists in applying the previous KAM Theory to a suitably modified Hamiltonian
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function, which is obtained from the planetary Hamiltonian expressed in Delaunay—
Poincaré variables by adding a commuting Hamiltonian. The necessity of modifying
the Hamiltonian function is that when the planetary Hamiltonian is put in Poincaré—
Delaunay variables, the frequencies 2 of (6.2) correspond the 2 N—dimensional vector of
the DP—secular frequencies

(0,0) = (o1, ow), (G- ()

defined, respectively, as the eigenvalues of the two “horizontal” and “vertical” quadratic
forms

2 2 )
Qn-n? = Do1<j<k<N MM (01(%‘, ar) (7\2 + X’Z) + 2Cs(ay, ay,) n/—j\?';\k)

(6.3)
_ 2
Q, p*i=— 21<j<k<N mmy.Ci(ay, ar) (/pTJJ - %IZ)

which are been proved [17] to satisfy, together with the mean motions n := Ohy the
only two independent linear combinations, usually called secular resonances

> (oi+6G)=0, (v=0 (6.4)

1<i<N

and the Riissmann condition (6.1) is clearly violated. Adding a commuting Hamiltonian
makes the above non degeneracy condition (6.1) verified. The final result is reached with
the use of an abstract argument: invariant ergodic tori for the modified Hamiltonian are
recognized to be invariant manifolds for the original Hamiltonian.

The use of the regularized (fully) reduced Deprit variables provides a direct application
of the KAM machinery of [14] because no secular resonance appears. We recover then a

result already found with a different technique in the 2007 revised version of the paper
by J. Féjoz [17].

Theorem 6.2 Consider, in R? a star of mass mg and N > 2 planets of mass pimy, - -,
wmy, interacting only through gravity. Let a; denote the instantaneous major semiaxis of
the i'" planet and let € be an upper bound of the instantaneous eccentricity and inclination
of the planets. Then, there exists §, > 0, €. > 0 and p. > 0 such that, if a;/a;1 1 < 0.,
0 <e<e,and 0 < p < ., there exists a positive measure set of phase space points
whose time evolution lies on real-analytic, 3N — 2 dimensional tnvariant tori; the time
evolution being quasi—periodic with 3N —2 Diophantine frequencies. Furthermore, during
the motion, eccentricities and inclinations are bounded by C'\/p.

Proof. It is a corollary of Theorem 6.1 above and Lemma 6.1 of the following section.

6.1 Riissmann Non—-Degeneracy and (3N —2)-Dimensional KAM
Tori

Remarks on notations. Referring especially to paragraphs 4.2, 4.3, throughout all this
section,
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(i) We disregard the (cyclic, for H,y,) Deprit variables (P, ()), on which we will always
think to lift the maps we will discuss, extending them through the identity map.
Quite abusively, we do not change the name of the domains D,, D), of the fully,
partially reduced regularized Deprit variables.

(ii) We denote the set of fully reduced regularized Deprit variables as

AN, 0,8, (e, (Gg)

(g cyclic for H,y), hence, in particular, p, ¢ have dimension N — 2. The planetary
Hamiltonian put in fully reduced regularized Deprit variables is denoted

let,fr = hplt + /’prlt,fr

where, as usual

[\

m;m;

N
N

(iii) The set of partially reduced regularized Deprit variables with

AN, 3.8, (B,9)

hence, with with p, ¢ of dimension (N — 1). The planetary Hamiltonian put in
partially reduced regularized Deprit variables is denoted

let,pr - hplt + lj’fplt,pr
We start with the planetary Hamiltonian written in fully reduced variables
Hopie,tr = hpie + 0 fpie s -

Lemma 6.1 For a sufficiently small é,, in the set D, of ((A,)\), (n,€),(p,q), (G, g)) of
(RY x TV) x (RY x RY) x (RV7? x RN7?) x (Ry x T) such that

CL(A)EA, 6 = Z AZ_G<537 ‘(777£7p7q)‘2<257

1<i<N
with A the set of semimajor azes
A= {a:(al,---,aN) eRY: 0<aq <a2<---<aN} ,
there exists a symplectic real-analytic change of variable

¢: D, — D,
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which leaves G, A unvaried and puts f_‘plt7fr into the form
.fplt = fplt,fr © ¢ = fplt7fr o Qb
2 2 4 g2
= fo(A,G)+ Z AGnZ;5 + Z zi(A,G)pz_ng—kO(?))

1<i<N 1<i<N-2
where, for any fited G € Ry, the “secular frequencies” s = (s1, ---, sy), z = (21, -+,
Zn—2) together with the mean motions n = (ny,---,ny) := Ohyy do not satisfy any linear

relation in any simply connected subset Vg of a suitable subset Ug with full measure of

Ag={a(M) e A, Y N-G<d}.

1<i<N

Proof. We discuss only the case N > 3, since the case N = 2 is well understood. 38

Step 1: partial reduction (or full regularization).

Let ¢, the map “partial reduction map” ¢, which acts as described in (eq. (4.42))
Section 4.3. This leads Hpie i = hpie + tfpit. e 0 Hple.pr = Fpie + [0 fpit,pr, Where fpmpr is as
in Lemma 5.1:

=2 -2
n°+¢& . D +q
;T + P -

fplt,pr = CO(m7 a) + QZ :

Step 2: diagonalization of Qj, Q. Let pj, p; the unitary matrices which leave Qj, QO

diagonal:
Q-t= Y s, Q=Y b

1<i<N 1<i<N-1
where

~ . okt ~ okt

nN=ppn, P =0, P -

Then, the transformation ¢g;ag Which leaves A unvaried and acts on p, g, )\ as

1= Pp1] p = pyD I3 -
iag — wE _ Yo, A=A+ AP, 6.5
Pai { &= { q:=pi o(h,5.0) (6.5)

(where (A, p,q) — (A, P, q) is a suitable shift which makes ¢giag symplectic) puts foi pr
into the form

~9 2 ~9 ~2
SZ'?/IZ +£z + Z Z‘pl +q7,

(3
2 1<i<N-1 2

.fdiag = fplt,pro¢diag - fplt,pr o gbdiag = CO(ma CL)—|— Z +.félliag :

1<i<N

38 As already remarked, for N = 2, the full Deprit reduction corresponds to the Jacobi reduction and
the two spatial secular frequencies s, so of the spatial three body problem are manifestly related (see
[33]) to the frequencies of the plane problem o7, o2 in Delaunay—Poincaré variables by

51:201+02+O(52) , 8210'1+20'2+O(52).

Hence, s1, so have the desired property since o1, o2 have it, as proved in [17].
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where fﬁiag = O(4) and, as proved in Proposition 5.1, s = (s1,---,sy) and z =
(21, -+, 2n) do not satisfy any other linear condtion than the Herman’s resonance. No-
tice that, since p;, p; are unitary, the angular momentum G, in their terms has just the
same expression as in full regularized variables:

7?2 + & P2+

1<i<N 1<i<N—1

We are then “justified” if we do not change the name of the variable G we introduce into
the following step.

pro ?

Step 3: full reduction. Apply now ¢p := e. , put

2 2 4 2
Py = (Z NG Y m;rf > pl;rqz>cosg

1<i<N 1<i<N 1<i<N-2

52
@

~ 724+&2 +@2\ o .
gn-1 = —\/2 (G — Yicien Ni — Ticien & 25 — Yicicn o B ng) sin g

N=XN+7
U 771 ﬁj _ ~ ﬁj
R.( - - =R,(— 5
<£@> (5) (%) (g><QJ>
This carries fdiag to

fi f Fr o = C P& 0P+ G
fir = [diag © v = faiag © O = Co(m,a,G) + > s 077 & + Y Z?u+f7

1<i<N 2 1<i<N-2 2
where }
C (m a, G) Co(m, a) + Sn_1 (Zlgng Al — G)
f - fdlag o ¢fr
=8 -2y 1<i<N
Z?—Zi—ZN,1 1§Z§N—2
Lemma 6.2 The functions sy, ---, s, 2%, - -+, 2%_, do not satisfy any linear relation in

any open, simply connected set YV C U for a suitable open set U C A with full measure.

Proof. Let 4 C A the open set with full measure where Proposition 5.1 holds and
assume that, in some pont of some simply connected set V C U, we had

Yooasit D g = Y alsi—av-)+ Y gilzi—ana) =0,

1<i<N 1<i<N-2 1<i<N 1<i<N-2

with (c1, =+, eny g1, -+ gn—2) € R2Y72\ {0}. Then, by Proposition 5.1

Ci=-""=CN=01=""=9gNn-2= — Z Ci — Z 9i s

1<i<N 1<i<N-2
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which is a contraddiction.

Step 4: recentering fy at its equilibrium point. For small values of §* := Y1 ;cy A; — G
we find a new equilibrium point Zeq = (eq, éeq; Peqs Geq) TOr fir, which is O(8). Rescale, in
fact, the variables as

n=2p, £=20q, p=20p, §=20q
and then discuss equation
6720:fp =0 where = (9,£,p,q) .

by an Implicit Function Theorem argument.
Perform then the change of variable

Goq: F=2tZ §=g+VNG), M=\ +@(AG)

leaving the remaining variables unvaried, where ¥(A,G), @;(A,G) are suitable shifts
which make ¢, symplectic.

The result then follows after a suitable symplectic diagonalization of the Hessian matrix
of feq = f_froqﬁeq = [ O ¢eq, Which gives linear invariants sy, - - -, sy, z1, - - -, Zy_2 6—close

tos?, --- 8%, 20, -+, 2%, hence, with the desired property.
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A Proof of the Averaging Theorem (Lemma 2.1)

Lemma A.1 Let D, Ay, Ay, ---, Ay square complex matrices of order n, with D non

singular, such that

Then, if || - || is a norm on Mat, = such that |A B|| < ||A| || B],

nxn

||D(AOA1A2 .. 'AN — ldn)“ €0 + (]_ + 50||D_1||)51 + .-

Proof. Let
TZ:Al"'AN— ldn .

Then, writing
D(AoA;--- Ay — id,) = D(Ag — id,,) (id, +T) + DT,
we find

[D(AgAy -+~ Ay — id,)| 1D(Ag — id ) [|(X + [IT[]) + [[DT]

<
< g+ (L+e|[DTHDIIDT

= o+ (L +eol D NID(A; - Ay — id,,)|

The Lemma is then proved after N iterations of (A.1).

<
+ (el D7) (L +enaallD7 Den

(A.1)

Lemma A.2 (Iterative Lemma) Letn+n=mn,0<2p <r and0 < 20 < s. Suppose

that the Hamiltonian
H=h+g+f

is real-analytic on Py s := 1, x T? with w := 0 h verifying

a for k= (kk)eZ'xZ'\A k#0, |y <K
0,k

|W(I)'k|2{ for k= (0,k) € {0}za x Z*\ A |k|; < K

joN

for I € Z,, and f so small that
[ £llrs < Ogﬂ . where o« :=min{a,a} .

Then, there exists a real-analyitic, symplectic transformation
O 7)7”72p,3720' - Pr,s

which carries H into
Hy:=Ho®(l,p)=h+gs+ [+
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with
g+ =g+ PATk f

and

Flirs Y7 (e +UF s o
“f+”f—2pvs-%§<1‘lpﬂ/z ol Wles 1 eore) .. (A4

where

1 p o
ol =5 > ( - )l
J

Tj—T+p Sj—8+0'

if g =22; g, with terms g; bounded on P, s. O P, . Moreover,

n. . 1 ﬁ — . .S
Wea Woo(® — i)l . S [WE s s(Wy DOIWSE — ida) < 1 (45

-1 4 “la
k) ’ po-
uniformly on Pr_op s—20-
Lemma A.2 is a useful remake of the Iterative Lemma of [30]. We outline the differences.

(i) In [30], instead than (A.2), the real nonresonance for w up to order K and a
“smallness” assumption for r:

«
(a): |w()-k|>afor I€eZ, keZ'\A, |[k1 <K, (b): rgpMK
(A.6)

are required, where p > 1 is a prefixed number. But, in the proof, (a) and (b) are
used only to prove

|w(1)-k|2‘;‘ for 1€, keZ'\A, |k<K

which is next needed. So, the Lemma remains true when the assumption
lw(l) k| >a for T€Z., keZ"'\AN, |k<K
replaces (A.6) and « replaces /¢ in all its occurences. But, (A.2) obviously implies
lw(l) - k| > a:=min{a, a} for I€Z., keZ'\AN, |k:<K.

It now is enough observing that (A.3), (A.4) are just the same of [30], with «
replacing «/q.

(ii) For what concernes (A.5), in [30], taking into account (i), we find

oo < Wlls (A7)

apo

W,y (P —id)
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where
|(y,l’)|73* = max{|y\1, |[E|OO} :
In particular, (A.7) holds when 3

((0,I1;®), I,®)
replaces
¢ = ((II®, I1;9), I1,D) .

In order to obtain an estimate for |p~(II;® — id;)|;, we recall that, in [30], @ is
constructed as the time 1 map of the flow X}; of a hamiltonian vectorfield X4 =
(—0,0,01¢), where ¢ is the trigonometric polynomial

o=y AUk

KEZA XA, |k|<K iw(l) - k

But, taking into account the non resonance assumptions (A.2), we may split ¢ as

A1, 0) = &I, 0) + (I, 5)
where

(1, 0) = > D e

k:(E,k)eZﬁXZﬁ\A7 k| <K, 70 ZW([) -k

and (;3 =¢— ¢ does not depend from the @-variables. Hence, the projection X4 =
O = 03¢ of the vectorfield X, over C" x {0}c2n—n, by the General Cauchy
Inequality, is bounded as

1f1lrs

a0

[ Xol1 <
uniformly on V,_3,/2 s_30/2, 50, joining this result with (A.7), we find

1155
po

|W§*1,a*1Wp,o(‘I) — Iy)lp <

The second equation in (A.5), then, follows by the General Cauchy Inequality,
uniformly on V,_o, —2-

Proof of Lemma 2.1. We distinguish two cases:

Y

(a) 48 Wllrsts - p—resso (b) 48 W llrsts o —rsr6
ars ar -

The case (a) is trivial, because we apply the Iterative Lemma with g = 0 and parameters

p=p == a:alzzf.

47’ 3

39Hf, -+ denotes the projection ove the f, - -+ variables.
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This is made possible, because (using Ks > 6)

1l ars 1 apo  apd
s < = ars = <
I llests < 7 5 < 5o 26 2
Letting, then,
7"’:7“—2p’:f §=5—20 =2
2 3
we see that the map ® 1 P 519 — P, 54, verifies

|Woi1,a*1Wp’,U’(q> - id>|7D )
1 - _ .
5 ”Wg—lpéfl (Wp/,gl Do Wp/j,/ —id Qn) Hp

IN

12
s ||f||7’,§+s
s

2K
”f”r,§+s )
T

IA

and
Ho®=h+fo+ fi

where fo = P\Tk f. Furthermore,

-1
||f||r§ S ||f||r,§ s —Ks
[ fillrses < (1— ; A e N e

ap'a’ /2 ap'o’
< (127 (”ﬂm n e-Ks/f”) Flhess
- (a”f”/(u)+f</) .
< (5 2) T U s

< e fllrses

The lemma is proved with ¥ = .

In case (b), we move in N + 1 steps. First, we apply the Iterative Lemma with g = 0
and parameters

r S
p:pO::§, 0 =200'= =,
thanks to the inequality
1l ars 1 @ po O
7,5 sgi ~ — = .
Ilrss < 5705 < 5727978 = 16

Letting,
2

3
rlzr—Zpozzr, 5123—200:53
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we find

(I)O . Pm,@—i—sl - 7,545
verifying

Wa

-1
,

—1W0((I)0 — ld)‘fp N

a1«

1 - _ .
5 HW” —1 (WO D(I)()WO L ldgn)Hp
1 48
< — | fllsrs = — M fllrsrs
£000 rs

where Wy := W, ,,, and
H =Hody=h+qg + fi

with
1
||f||r§+s ”f”r 5+s —K
71,548 S 1_ . . 70 r,5+s
e < (1= Pt} (Wb )y, ,
8 T,8+S — Ko
< 3 (Mosee g o) e
QpPo00
8 (W fllsts | ks
7 (ow’s/48+e 1F M54
16 ”f”r§+s
< = I/ InsTs _
< 2,
1 f 7,5+8
e AT,
7 apooo/(16)
< | f ;Hs' (A.8)

Now, let N an integer number. Our aim is to apply the Iterative Lemma N times, each
with parameters

r S
= =—, oO=0N:I=-—, A9
p=pNi= gy N =y (A.9)
so as to construct, at each step, a symplectic, analytic transformation
Qi Prstsi — Prigts s =1, N
where

ri=ri—=2(i—-1)pn, si=s1—2(i—1)oy, i=1- N+1,

verifying
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|W— _1WN( 1d)‘fp N

_104
AwwgwﬁmmDaww4—ﬁMmP
1
< — ||fi||'f'i7§+5i )
PNON

where Wy := W,

PN,ON> and

Hiy1:=Ho®yo---0®;=h+giy1+ fiq1, i=1-- N

1 i—1
oo < (3 Wilbera < (5) 1

Consequentely, after N steps, we will find Hy,1 = Ho ¥y = h+ gyy1 + fyo1 analytic
on Pr/2,§+s/6

with

AN Ks/6
S < (4> £ llrses < €700 Fllrsss

provided N is sufficiently large:

K

N1z ="
1210g 2

Choice, thus, N such in a way that

<N+1.

1210g2 -

If N = 0, the theorem is proved with ¥ = ®,. Otherwise, if N > 1, we verify, by
induction, inequalities

[ fimtllrioy5+si ars APNON
[ fillrists: < 41 T Millsts: < 2BN2 ~ 28 7
||gl - gi—l ri,§+si S ||f2—1 Ti—17§+3i—1 bl Z - ]'7 T 7N <A10>
For : = 1, we have
Hgl - 90Hr1,§+51 = H91HT1,§+81 = HPATKfHThS+81 = ”fHT1,8+51
and, by (A.8),
||f|| 5+ ars ars QPNON £l 506
T§s<27 Tss< < - < . A]_]_
Hfl” 1,8+s1 = aTs 27(KS)2 9213 \2 28 — 7 ( )
provided
ar
Hf”rs‘i’s — 27[(
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Assume, now, that (A.10) hold for a given i < N. Then, Lemma A.2 is applicable once
again and we find
(I)i : 7)7‘1+1,§+8¢+1 - Pri,§+5i

such that
Hip1:=H;o® =h+ git1+ fin

with g;11 and f;1 verifying
||gi+1 - gi||7’i+17§+8i+1 = ||PATKfi||Ti+1a§+5i+l S ||fi||7'i+17§+5i+1

and

||fi+1 ||7"i+17§+5i+1 S

-1
(1 . I fi T173+31> (Hfz ri+s; T il +6KS/(4N)> | f:
apnoN /2 QpPNON

1INt/ 1 1 1
(1- 2) (35 + 3% 5) Wilhsen =
49
||f2||7'i73+5i
4

7,5+58; S

7i,5+8; S

where we have used K's > 12log 2 which implies

e Ks/(4N) <

ool —

and the telescopic expansion
9 =9+ > (9 — gr1)
k=2

with g1 := PA\Tk f, gv — gk—1 = PaTk fr—1 bounded on P, sis, Prsts, O Prists, for
1 < k <i. This gives, according to the definition of ||g;||. relatively to this expansion,

lodl. = = (—LL— 4 o [y
2\r—ri+py S+s—(5+s)+on ’
1 ¢ PN ON
+ = + - —1||7g,5+s
2 ¢ <rk—n+pN (§+Sk)—(§+5i)+aN>Hgk Gl

N Vil
T_Tz‘i‘pN S—S8; +0onN Gillr.s+s

PN ON
+ 5 Z (rk _ + ) ”gk’ - gk—1||7“;rc7§—i-slC

k=2 it PN Sk — SitON

e

(\]
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|
1 =

PN 1
( + ) ||91Hrs+s + - 9 Z ka 1H7“k 5+sp
Po

k=2

< — r,5+s + = r,5+s
< clorllsrs + 3 1 flhss
< QPN ON ~ QPN ON

- 25 28

< QPN ON

~ 24

(use the following inequalities:

||fk'—1||7'k Stsk = ”f/c 1||7'k 1,5+8K—1 < 4 (k=D ||f||rs+s ’

g1llrses < I fllrses < ar/(2TK) < ars/(2'°N) = N apyon/(2°)
Tk —Ti 2 PN, Sk—Si 20N,
r=ritpn>r—r; 2T —r1=r/4=2p,
S—8+oy>s—s8>5—5 =5/3=20) .
and (A.10) are proved for any 1 <i < N. Let
H:=Hyp=h+g+fe, (g:=9gnve, [foi= 1)

Then, by construction,

fcllrr2svsrs = Ifnillrzsesio < €0 fllnses

and, using Ks > 8, || f;

73,5+5; < 4" ||f||r S+s and (A 11)

||g - PATKer/2,5+3/6 = H9N+1 - 91H7~/2,§+s/6
< > gkt = Gkllrj2,55576
k=1
S Z Hgk)+1 - ngrk,§+sk
N
< D0 M fkllrgstss
k=1
< 7||f1||7’1 5+s1
S 28 ||f||r ,5+s
ars
K
S 7”]0”7“5—}—5 :
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Furthermore, by the usual telescopic arguments,

N
I (Uy —id))y < ) [Hp(Pr —id)|y
k=0
N
= (P —id)[s + Y [I7(Py —id)|x
k=1
[ fllrses , 1 &
< J _
= ao, + 0N kz::l ||fk||7'k75+5k
— 2_
S Hf7||r,s+s+ 72 27||-]i||r,s+s
(6o} Qo N ars
_ ||f,||r7§+5 <1+28N||f||r,s+5>
Qo ars
S Hf7|‘717§+5 <1+25KHfHT,5+S>
oy ar
< 2l
Qo
24 7,5+8
< L (A.12)
s
Similarly, one proves
24 11 f 1l s 24 11 fllr 545
[ (vy —id)|; < ———=22=2 M (Uy —id) | < ——— A.13
T (W —id)ly < 02 I (B = id)]a < (A13)

which gives (2.28). We prove now (2.29). Writing

Pt (W DUW ) — id ) = W W WE o (Wo DWW, — id 9, [Wo W,

and using
_ _ i 2
||Wg*1,a*1<WOD\IJOWO t— ld%)H?j < — Hf”r,é-l—s
Po00
-1 1 -1
Wrs Wolle = &, IWoW,llp =8
we find
||W§—1,a—1(WT7SD\IIOWTTsl - 1d2n>H7’ < HWT,SW(]ilH'PHWOWTT;HP

X ||W§717a71(W0D\I/0W0_1 —id 2n)||’P

4 |
= 3 [Wa-1 o1 (WoWo Wy — id ) [|p

8 1
o r,5+s S 1. A14
s 1l (A14)

IN
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Similarly, writing

n (W DU W, L — idgy) = W, W WE (WyDUWx — id o) JWyW, )

a—1a-t a—la-t
and using
_ . 2
IWe o (W DO, WN ™ — id o) lp < —— || fillristsi
PNON
1
W, Willlp = = WaW Hp =8N
WesWi'lle = 17 o IWNWelle
we arrive at
_ 4
Wy o (W, . DOW, L —ido)|lp < —— || fillmsss; <, i=1,---,N . (A.15)
’ ’ PNON

Taking into account (A.14), (A.15) and Lemma A.1 (where W2, i plays the role of

the invertible matrix D, and 4||f;||/pyon the one of g;, for i # 0), we find, for

DYy =DPyDPy--- DDy

the bound
. I 81| fllr54s 8 X,
Wi o WrsD\I[ W ' — d n < 3 : + 2! ! 1||7i,54+5;
W3 he (W, NWrs T 102 e < 3 pooo PNON z:zl 1Fllze
with v ,
D27 fillvisrs: < 20 fallrysrs < 2802
P ars
so that

_ . WK 2TK K
W2 o (Wi DUAWL — id o) < ||f||r,s+s+< I/ ”)( I/ ”)
T ar T
26 |
2K Fllses
k

IN

This completes the proof.
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B Birkhoff Normal Form

In this section, we discuss quantitatively the reduction to Birkhoff Normal Form, for
Hamiltonians possessing elliptic equilibrium points. For further references, see also [19].

Proposition B.1 (Birkhoff Normal Form) Let 0 < 0 < 1; let D C C" such that
Q=(Q, Q) :D->C™

is (o, K) non resonant on D, with K > 2, and let

m 2 2

pi +q;
f PPy d Z QZ 9 +02(p7q; [) )
=1

where 0y is real-analytic in D x B*™(0), and verifies

im 2PCD o o 1eD
va-o |(p,q)*
Then, there exists 1 > 0 and a symplectic, analytic transformation
T D x C"/(2wZ"™) x BEIT(O) — D x C"/(2rZ") x B*™(0)
(J,0,P,Q) — (I,¢,p,q) = n(J,9,P,Q)

with I, ¢ — v, p, q independent from ¥, which puts f into Birkhoff normal form up to
order K. Furthermore, the following holds.

i) The transformation m may be obtained as a product
T=Byo---0Bg (By=1id),
where
Bi.: DxC"/2nZ"x B2 — DxC"/2rZ" x B,
(J.0.P.Q) — (1.$.5,9)

ME o ME
LIP.QI . p— Pl < 2|(P.QI

s 3 ko rk M{Ck~~k(k72)) L

=
|

O

IN

(B.1)

and, for any k = 2,---, K, the product 7ty :== Boo---0By puts f in Birkhoff normal form
up to order k:

Y o~ m . P24 ()2 .~ -~
fom(.0.P.Q) =3 o) T E L PT P.0) + PG )
i=1
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i)  The constants MJ’-C Mh are inductively defined as follows. Let, for K > 3 and
k=3,--- K,

or(p iD= 3 zﬁAD<ﬁj;§a(ﬁ;;§6+aanm~> (i = V1),

la|1+|B]1=Fk

with 61,(p, §; 1)/|(5, )| — 0, as (B, ) — 0; let

Then,
M= sup |0pg) skl , M}, == sup  |Opgypam skll . 4, h=0,1,2,
Dx B2™(0) Dx BI™(0)
where

PO):=J, PA):=P, P©2):=g.

iii)  The polynomials Py, are inductively defined as follows. Starting with Py =0, and
given Py_1(1,D,q), ok—1(p,q; 1), then, for K >3 and k =3,---, K,

Pk(j’ Pa Q) = ,Pkfl(japac?) + Qk(japa Q) y

where

T 0 forodd k
S P A (PRrgr\™ an B.2
%l @)= 2 jah=k/2 pg,a(J) (PNQLQl) e (P’%;Qg”) for even k. (B2)

iv)  The radii ry are inductively defined as follows. Starting with ro = r and given ry_1,
then, for K >3 and k=3, ---, K,

1_9 g\ V-2 g\ Y2 g\ Y2
T = , =minq | — v |\ == s |\ == s Th=1( -
SR (Mﬁ) <¢m> (m) e

Remark B.1 Observe that, rather than projecting the remainders oy, with order £+ 1
of fx := foByo---0By over the spaces (p +iq)/v/2, (p — iq)/\/2, a simple algorithm
for the computation of Py1 comes from the identity

1
W /]Tn Ok—i—l(p? q; I)‘Pi:1 /Pz’2+sz cos i, qi= /P1'2+Q7,2 Sin(pid@i

Our proof of the previous Proposition is based on the following

Pk+1 =
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Lemma B.1 Let 0 <0 < 1,r >0, D CC" and, for J € D, p € C"/27Z", (P,q) €

CQm’
S(J,P,¢,q) == Jp+ Pq+s(J, P,q)
where
S('L Pa Q) = Z Uoz,ﬂ(‘])Paqﬁ
|1 +|8l1=Fk

is a polynomial with degree k > 3 in (P,q), with analytic coefficients J — o4.(J). Then,
S is the generating function of a (symplectic,) analytic transformation

B: DxC"/2rZ" x BX"(0) — D x C"/27xZ" x B*"(0) ,

(J,0,P,Q) — (I,¢,p,q)
with

1-0 0 1/(k—2) 0 1/(k-2) 0 1/(k-2)
r o= 7\/5 P, p = min <]\412> R <\/§M1> , <\/§M2> , T .

such that I = J and

M _ M. _
1_19’(P7Q)’k 17 |p—P‘ S 2 |(P7Q)|k !

1—6
M k
ool < Pamacr, (22) Qe R o)

lg— Q] <

(B.3)

where

Mj:= sup |Opgys|, M= g 105 ypan sl
>< m

DxB¥™(0) DxB?

if P sends the set {0,1,2} to the set {J, P,q} as
PO):=J, Pl)=P, P2):=q

Proof. Observe preliminarly that, as s(J, P, q), is a homogeneous polynomial in (P, q)
with degree k, then, [Op(;)(J, P, q)|, is a homogeneous function of (P, ¢) with degree k or
k—1for j =0, 5 # 0, respectively, and

Mo|(P,g)I* if j=0
Opiiy s(J, P, q)| < 7 B.4
1976 5. ’qﬂ_{ M;|(Pg)|*! if j#0 (B4)

by the definitions of M;. Similarly, ||8729(j)79(h) s(1, P,Q)] is a homogeneous function with
degree k (for j =h=0),0or k—1 (for j =0 h), or k — 2 (for j, h #0), and

M00|(PaQ)|k if j=h=0

105 jypmy 51, P, Q)| < { Mon [(P,q)|*~ i j=0, h#0 (B.5)
My [(P,g)|*~* if j, h#0.

194



We construct B by its generating equations, which are are
I1=J
o =1—0;s(J,P,q) (B.6)
p: P+aq8<J7P7Q)

where ¢ is obtained by solving, with respect to ¢, the implicit equation

g+ 0ps(,Pg) = Q. (B.7)

A 9 1/(k=2) 9 1/(k=2)
= mi — , | ——— , | ——— , T
rmmnlon) ) ()

By (B.5) it follows, for J € D, (P,q) € B X B”}\[(O)(g B2™(0)),

Let

oval0)
HaIZJqS(‘L Pa Q>H < M, pk72 <f#<1 )

which is enough to assert that the function ¢ — ¢+ dps(J, P, q) is injective on Bg}ﬂ(O),
for any (J,P) € D x B /\[(0). Now, using

Op
V2
we also find that, for any (J, P) € D x B;r;\/i(O), the map ¢ — ¢+ 9dps(J, P, q) is onto on
B7(0), with 7' = (1 —0)p/v/2. Let § € Bg;ﬂ(O) the unique solution of (B.7), for J € D,
(P,Q) € BZ"(0)(C B™(0) x B7%(0)), and let p = P + 9,8(J, P, q). Using

0ps| < Myp"t < for (J,P,q) € D x B, 5(0) x BY 5(0)

Op
\/_

we find p € BZ}\@(O), namely, (p,q) € B7™(0) € Bf™(0). Taking also ¢ = 9—0;s(J, P, q),
we have constructed

|8q8| S Mgpk 1 <

B: DxC"/2rZ" x BZ"(0) — D x C"/2xZ" x BZ™(0) .

In order to prove (B.3), using (B.4) and the estimate

0ps(J. P.q) = Ops(J, P.Q)| = l /0 lzaéqjsu,P,QH(q—Q))(qj—Qndt

dt

IN

s(J,P,Q+t(qg—Q)) (g — Qj)

< sup ||9§>q8||\q—Q| -
Dxr((P.Q).(Pa))

(B.8)
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where (P, ) denotes the straight line from P to Q,we get

lg—Q = 10ps(J, P,q)]
< |0ps(J, P, Q)+ |0ps(J, P,q) — Ops(J, P, Q)]
< M|(P,Q)"" + sup 10%,5lllg — QI -
Dxr((P,Q),(Pa))
(B.9)
As (P,Q), (P,q) € B™(0), then, r((P,Q), (P, q)) € B;™(0), hence,
sup  [[0P,s(J, Pq)|| < Miap"? <0, (B.10)
Dxr((P,Q),(P.q))
giving so, by (B.9),
g — QI < Mi|(P,Q)[*" + 6l — Q|
namely,
M
- QI < —=|(P,Q). (B.11)

1-46
The proof of

M _
p— Pl < (PO

is quite similar and is omitted. Using now (B.11), we obtain

o =9 < Mo|(P,q)*
Mo|(P,Q) + (0,4 — Q)/*
Mo(I(P, Q) +1(0,q — Q)])*

2" My max {|(P,Q)", lq — Q|*}

2" My max {|(P, Q)% (1]\f19)k ’(P,Q)’k(kl)}

IAIA

IN

k
S M(PQ) m{l (M) |(P,Q)|k(k‘2))} (B.12)

and the proof of (B.3) is complete.

Proof of Proposition B.1. We proceed by induction on K. For K = 2, f is yet
in Birkhoff normal form up to order 2, and the Proposition is proved with ro = 7,
my = By = id, Py = 0. Assuming, now, that Proposition B.1 holds when K — 1 replaces
K, we want to prove it for K. Assume, then, that D is («, K) non resonant for .
Obviously, D is (a, K — 1) non resonant. By the inductive hypothesis, we find

Tk1=Byo--0oBg_1: DxC"/2rZ" x B" — DxC"/2nZ" x B2"

<[7¢7ﬁuq> - (I7S07p7q):7rK71(17¢7ﬁaq)
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with By = id and

Bi: DxC"/2rZ" x B2" — D x C"/2rnZ" x B2" k=3 K—1,

Tk—1 '
which puts f into Birkhoff normal form up to order K — 1:
- - m - P24 G2
fK—l(]ugbaﬁaEi) = foﬂ-K—l(Ia@yﬁaq):ZQi(I e
i=1
+ OK—I(ﬁ: Cja j
(B.13)

where items i), - - -, iv) hold, for £ < K — 1. We prove that, defining

g\ VE-2) g \ME-2) g\ -2
Pk = Inin <M{§> > <\/§M1K> ; (\/§M2K> y TK—1 >

1—0
rKk = ——= PK ,
(B.14)
we find a symplectic, analytic transformation
Bk : DxC"/2nZ" x B — DxC"/2aZ" x B
(J719aP7Q) - (]795a1376):BK(J7197P7Q)
with © — ¢, p, ¢ independent from ¢ and verifying I =J and
. M K-1 - Mgt K-1
— P - P < P
i-Ql < SLIPQIT . - Pl< 2 |(PQ)
MENE
o0l < AR w1, ({15) (P
(B.15)

which puts fx_; in Birkhoff normal form up to order K. We construct Bx by means of
a generating function Sk (J, P, ¢, ) of the form

Sk(J, P.¢.q) =J - ¢+ PG+ sk(J, Pq) (B.16)

where s (J, P, ) is a homogeneous polynomial in (P, ¢) with degree K, which we write
as:

swtrp = ¥ (SHT) (P;;q)ﬁ . (B.17)

lal1+|Bl1=K
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Splitting, in (B.13), ox_1 as

S\ (5 e\ ” )
ok (iD= S Py (pqu> (pﬁq> + oxc(p, @ 1)

lali+|B81=K

where 6 (p, G: 1/](5,3)|* — 0 as (p,§) — 0, and replacing the generating equations of
By

0PS<J P q)

J
9 — 8J$(JP(§)
=q+
P+ 035(J, P, q)

= @“61 ~n

into the definition (B.13) of fx_1, we find that fr_; changes to

m 2
fei0.PQ) = 3 T 00y 1 P PQ)
=1

Y S0 (- s + ()

lal1+]81=K 2
y <P+2Q> (P — zQ)
+
(B.18)
and this leads us to choice, in (B.17),
0 for a=p
Sap(J) = (B.19)

2ipE5()/(UT) - (= B)) for a#f.

The definition (B.19) is well put because | — §|; < K (observe |a; — ;| < max{ay, 5;})
and D is («, K) non resonant for 2. The choice (B.19) allows us to kill, in the summand
n (B.18), all the terms with o # 3, and f is in Birkhoff normal form up to order K.
In particular, when K is odd, no term survives, and Px = Pk _1. For even values of K,

by (B.18), we find

m 2
fx(J,9,P,Q) :ZPZ Qi(J) + Px(J, P,Q) + ok (P, Q3 J),
=1
where
Pr(J, P,Q) = Pr_1(J, P,Q) + Qk(J, P, Q)
with

2 2\ @1 2 2\ Om
Qk(LP.Q)= ¥ p.() (P;Q> <Pm+2¢2m> |

laj1=K/2

198



On the other hand, by Lemma B.1, the function
Sg(L,P¢,q)=J - o+ P-q+sk(J,Pq)

si(J,P,§) = 0%2@' Q(JZ;Q?B(E;])_ 5) (P\J/%ic])a (P\;;q)g

generates an analytic (symplectic) transformation

with

Bk : D xC"/2nZ" x B"(0) — D xC"/2aZ" x B (0)

(J,’&,P,Q) - ([>¢7ﬁ>Q) :BK(JaﬁapaQ) )

with 7 as in (B.14), with I = J and §, p, ¢ — ¢ independent from 9, such that (B.15)
holds. This completes the proof.
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C Proof of Lemma 3.6

In this appendix, we prove the Lemma 3.6. For shortness, we will refer to the property
(3.45)+(3.46) for a given matrix A with order n as (x)-property.

Proof. We proceed by induction on n. The assertion is trivially true for j = 2, by direct
computation

1

Ao = 3 (an +ag + \/(an — axn)? + 46@2)

2
a
12
= a1 + O —
ail — Q22

52n12
= o2~
air + <1 — a225"22>

= a1+ O (52n12)

and, similarly,

1
A2y = 5 (Gn + a2 — \/(an — axn)? + 461%2) =axn+0 (52n12> :

Assume, now, that the Lemma holds for n—1. Let A a matrix with order n with the (x)—
property and let P()) its characteristic polynomial. We are interested to solve equation

P, 6) =0

closely to any diagonal element a;; of A. We use an Implicit Function Theorem argument.
We expand the determinant of A — \id,, along the j* row, so to split P(\,d) as

P(A) = f(A,6) +g(N,0)
with

F(A0) = (a;5(0) = A) det[My; (A, )], g(A,9) := g;(—l)k_jaj,k@) det[M; k(A 0)] ,

where M is the minor with order n — 1 of A — Aid,, with place (j, k). In particular, if
A1, -+, Ap—1 are the eigenvalues of M;; (A, §), then, det[M;; (A, d)] is given by
n—1 _
det{M;(0,8)] = TL(w(8) = )

k=1

But Mj;(\,6) has the (x)-property, so, by the inductive hypothesis, its eigenvalues A,
) Ap_1, verify

’Xk—akk(é)’ SC(th? kzla"'7j_17 ‘S\k_a’k+1,k+1(5)| Sc’éﬁ%a k:jv"'un_la
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for suitable my, 1 < k <n — 1. Let ¢, > 0 so small that

ca(n —2)(1 +c¢,)" 2
(1 —cp)nt

<1,

¢ so small that .
mkin |Ak(0) —a;;(0)] > 0.

The function A — f(A,d) vanishes for A = a;;(6) and, for any A in the complex ball

A = aj;(9)] < R(9) := ¢, min [\e(6) = aj;()]

it results
n—1 B N
ENICYIIIEE | [CYEPYENCH DD H()\k—)\)}‘
k=1 1<m<n—1k£m
> —cn)" ! H |)‘k — a;;(9)]

cnmklnw( )—ajj(5)| > I (0) = a1 +0)

1<m<n—1k#m

dna?g;?WWTiﬂaw—%ﬂM

Y1+ )

R T ]HHM (8)llaz (@)

> (1—c,)" ! l1 -

having used the inequality
(1= ca)Ae(0) = ags(O)] < A = Al < (14 €)[Ak(8) — a5(3)] -

for 1 < k < mn —1. On the other hand, any minor Mj; appearing in the perturbation
g(\,9) contains the coloumn

alj

| G
T aj

an 7j

which is of order §min{ni-14: ns+1} The remining n — 2 columns of Mjy, cé-k have only
at one place place, a coordinate of the kind @y, — A, with m # k, j, and the other
coordinates are Gy, with p # k. j |apm| < |amm| < max{|\,|, |a;;|}

|t —A| < |tmm =5+ a5;—A| < |amm—aj;|+Am—aj;] < 2An—aj;| < 4max{|Anl, laj;|}
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so that i—1
. = ~
| det[Mjy]| < 4" (n = 1)!ag; "7 TT [Aml

m=1

we find that

7j—1
< 4rplg?minttimte taae a9 T (A"

m=1

lg(x )| = D (=1)" 7 a;u(0) det[Mjx(X, 0)]
k7

By Cauchy estimate we find

-1 )
0rg(\,8)] < 4 ntg?mininsero ey d LT R
=1

m

so that the Implicit Function Theorem may be applied provided ¢ is sufficiently small:

g W) s 2min{n;_1,j, njj+1}—2n;;
e Ly

—ags1<r(@) OV (A O] T amayji<r(e) T(O)|ONF(AG)] —

with

— <
5 =~

1
2
r(0) = lag| /2 < R(9)
We find then a unique solution A;(4) of
P(N) = F(X,6) + g(\,6) = 0

verifying

lg(A, )] D mindr 1 s 1t b
A(0) —ai (& < sup — < (00 min{n;_1,5, nj,;41}—nj;
| J( ) J]( )‘ \Afajj\gr(zS) |(9,\f(>\,5)]

Let us now study the 1-dimensional eigenspace V; associated to the aigenvalue ;. Let
’Ugj
Uj =
Unj

the unitary eigenvector associated to \;, so that V' = (v;;) is the unitary matrix which
diagonaluzes A:
VIAV =diag(A\, -, ), VIV =id, .

Then, the vector 9; with dimension n — 1 which is obtained by v; dropping its j™"
component is the unique solution of

(Mj; — Ajidn1)t; = —ajvj;
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where a; is the j coloumn of A deprivated of its j* component. But, as noticed before,
M;; is almost diagonal, so, we write M;; — \;id,,_; as

where D; is the principal diagonal of M;; and B; is the off-diagonal
Bj = (Ajidn-1 — D)7 (Mj; — D) .

The (non zero) elements bgzk of B; go to 0 with § because they satisfy the following
asymptotics
b = 4 (8) 67
with
Nhe —npp if h#Ek=1---,j—1

Nhk+1 — Nk if h:]_,"',j—]_, k:j77N_1

Nht1ke —N5,; if h=j--- N-1, k=1---,j-1

Nhitjt1 —Nj; if h#Fk=j--- N—1.
by assumption. The matrix id,_; — B; is thus non singular for small § and

(id, 1 — B;j)™' = id 1 + 6™ B;(0)

where .
. = 1 J
my = min {mj, ;. } .
It follows,
b = —(My;— Ajid, ) a0y
) ~1 . —1n
= — [ld n—l — B]} (D] - )\j id n—l) 1ajvjj
_aj
ai;—A;j
B _Gjj-1
= —(idpa +0™B0) | HETY | vy

Qi1 +1—A

aj,n
an,n—Aj

blj 5’/17

S
Vj1,j 07771

. ) ) Vii
Dy, 0707 |

Up,j 0%
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where

A Nk — Nk for 1§k‘§j—1
kg Nk — Nyjj for j+1§]€§n

a?’f(o) for j+1<k<n
a;;(0)

a1 <k <1
0y(0) = { %5 S

By normalization,

1
VL Sy 075 00

where 0;;, v; ; are determined expanding

Ujj

— 1 + Iv)jj 5Vj’j

s (14 2)7 12 =1 —§+0(22)

as in (3.47). The proof is complete.
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D The General Cauchy Inequality

We state a Cauchy inequality for the operatorial norm

|dvF'(u)| 5
dy Flp,4 = max ‘2218
| |B7A Iilgé( ’u’A

of the first derivative d, F', as a linear operator from A to B, of a given analytic map
F: A— B, where A, B are complex Banach spaces, with norms |- |4, |-|5. The present
form is due to Péschel [30], to whom we refer for the proof.

Lemma D.1 Let F' be an analytic map from the open ball of radius r around v in A
into B, such that |F|g < M into this ball. Then, the inequality

M
|dv F|B,A S 7

holds.

E Quantitative Implicit Function Theorem

Theorem E.1 Let F = f+g: CYDp(0), C"), where:

(i) f is a diffeomorphism of D}(0) such that f(0) = 0 and Jacobian matriz Of non
degenerate on D%(0);

(i) supp, ) 199/l supp,,0) (@)~ < %;

, where 0 < r < R;

...\ sup gl sup l@f)~*
(ZZZ) DR |9l TDR(O)( ) <

N [—=

Then, there ezists a unique zy € BJ*(0) such that F(zy) = 0.

F The Laplace Coefficients

The Laplace coefficients by (), is defined as the k' Fourier coefficients of the function
t — (14+a®—2acost)™®

1 2 cos kt
bo(a) = o | dt, aeC, 1,0<s€R, keZ
#) 2r Jo (14 a? —2acost)® “ lof # °
(F.1)
Lemma F.1 The Laplace coefficients are analytic of «, for |a| < 1, and verify

(i) bsp(—a) = (=1)* b i();
(i1) by _i(a) = bys();
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(111) bs,k(l/a) e bak(a);
(iv) borsa(0) = 23 (0 + 1) bora(@) — 55 bor(a);

(v) if k>0, bs (o) = ¥ Bs k() where Bsx(a) is an even function of o, verifying

s(s+1)---(s+k—1) s(s+1)---(s+k) , A
fuae) = 2D rs I o,

(F.2)

where
s(s+1)---(s+k—1)

k!

=1 if k=0.

Notice that, by (iv), all the b, ;(a)'s with |k| > 2 may be expressed as linear functions
of bso(a), bs1(a).

Proof. Items (i)+(iv) are imediate consequences of (F.1); in particular, (iv) is found by
integrating twice by parts. In order to prove (v), from (F.1), we introduce the hypergeo-
metric series

1 _
7223(3—1-1) (s+1 1)wl
I!
with

s(s+1)---(s+1—-1)
!

=1 for [ =0.

The hypergeometric series is uniformly convergent in every closed disk inside the set
{Jw| < 1}, therefore, we may expand, for {|a| <r < 1},

1 1
(1+0a2—2acost)s (1 —aet)s(l—aeit)s
R B RE R | ECRS N W
. I ;!
L

hence, multiplying by cos kt and then integrating over [0, 27], we find

; iyl s k=D s(s 1) (s =)y,
sl Z G+ 5 ! “

(F.3)

It follows, in particular, that the bsx(a)’s are analytic for |a| < 1, and (v) is obtained
by truncation of (F.3).
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Index of Notations

The references denote the number of the page of the first occurrence in the text.
£, K: Kolmogorov sets, 18, 66.
KAM

Sets
N, Z, Q, R, C: usual number sets.
BP(I) : p-dimensional real ball centered at I, with radius r, 19
Dr(I) : p-dimensional complex disk centered at I, with radius r, 19
Z, : complex r—neighborhood of 7 C R?, 19
D" : generalized Diophantine set, 13

:‘:T : (7,4; 7)—generalized Diophantine set, 14
TP : real standard n—dimensional torus, 19
T? : complex s—neighborhood of T?, 19
Tt : complex standard n—dimensional torus, 19
7 =71x f, h : T — C is analytic, and w := 0h, @ means Jrh, w means 0;h, when
I=(I, f) is the generic element of Z =7 x Z, with I € Z, I € Z, 20;
If Z is as before, w: Z — O is onto and v € O, @~ (v) means the projection over the
I-coordinate of w™!(v) and &~ () means the projection over the I-coordinate, 20;

Differential Operators
D differential operator with respect to (I, ), 25;
0, 0% differential operators with respect to I, 20

Matrices
Alpal - AP gubmatrices of a matrix A, 19

Norms

a) for numbers

|k|: 1-norm of k € ZP, 19

|(, ¢)|p: P-norm of Z, x T?%, 22

b) for analytic functions
| fll+.s : Sup—Fourier norm of a real-analytic function f on Z, x T2, Z C RP compact, 19

¢) for Lipschitz functions .
(), Lo(f), £-(F)s £y, IFI% Lipsehitz norms, 20

d) for vector and matrix functions

Ifw:Z — R", |w| means its operator norm when w is seen as linear operator from (Z, ||;)
to (C,|]) (corresponds to |w|e 1= max |w;|, with w; i** coordinate of w), 20;

If U :Z — Matr(m x n), ||U|| means its operator norm when U is seen as linear operator
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from (Z,||1) to (C™,||eo)(corresponds to |U|s
20;

Celestial Mechanics

Ry, R,: elementary rotations, 66, 130;
Elliptic elements, , 66, 123;

Tw, (U, v), 124, 125;

A, Ag, 178.

Domains and maps

¢pp: plane Delaunay—Poincaré map, 68;

C.: 124;

D,, ®,: Deprit action—angle map, 126;

D,, ®,, ¢,: regularization of (D, ., ¢.), 137;

:= max |U;j|, with U;; the entries of U),

®pp: full reduction map from cartesian variables to D,, 137;

®BD = ‘1315%), 141;

D,,: domain of regularized partially reduced Deprit variables, 143;
¢BD pr: full reduction map, from D, to cartesian variables, 143.
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