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Introduction

The object of this work is the study of semistar operations on integral do-
mains. Semistar operations were introduced in 1994 by Okabe and Matsuda
in order to generalize the classical concept of star operation, as described
in [38, Section 32], and hence the related classical theory of ideal systems
based on the works of W. Krull, E. Noether, H. Prüfer and P. Lorenzen from
1930’s.

The star operations are defined by axioms selected by Krull among the
properties satisfied by some classical operations, such as the v-operation,
the t-operation and the completion (or w–operation, using Gilmer’s nota-
tion) with respect to a family of valuation overrings (the definitions are in
Chapter 1).

Let us denote by F (D) the set of nonzero fractional ideals of an integral
domain D. We recall that a star operation on D is a map ? : F (D) → F (D),
I 7→ I? such that, for all x ∈ K, x 6= 0, and for all I, J ∈ F (D), the following
properties hold:

(star.1) D? = D and (xI)? = xI?.

(star.2) I ⊆ J implies I? ⊆ J?.

(star.3) I ⊆ I? and I?? := (I?)? = I?.

Classical examples of star operation are the v–operation and the t–
operation.

Star operations have shown to be an essential tool in multiplicative ideal
theory, allowing a new approach for characterizing several classes of integral
domains. For example, an integrally closed domain D is a Prüfer domain if
and only if It = I for each nonzero ideal I of D, [38, Proposition 34.12], a
domain D is a Krull domain if and only if (II−1)t = D, for each nonzero
ideal I of D. Other relevant classes of domains, e.g. Mori domains and
PvMDs, have been also defined and investigated using star operations.

The following example gives an enlightening motivation for introducing
the notion of semistar operation. Consider the map b : F (D) → F (D),
I 7→

⋂
{IV |V valuation overring of D}, that associates to each nonzero
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fractional ideal its completion (or integral closure cf. O. Zariski and P.
Samuel [83, Appendix 4] and R. Gilmer [38, Page 302]). This map gives
rise to a star operation (called the b–operation) if and only if D is integrally
closed (cf. [38, Page 398]), since Db coincides with the integral closure of D,
as a consequence of a celebrated theorem by Krull (and so condition (star.1)
of the definition of star operation is satisfied if and only if D is integrally
closed).

Since the other conditions required by the definition of star operation are
easily verified, it is natural to look for a class of operations that includes the
“integral closure of ideals” even if D is not supposed to be integrally closed.

So we do not require anymore that D? coincides with D and, as a conse-
quence, we need to define ? on the larger set F (D) of all D–submodules of the
quotient field of D, since the integral closure of a domain is not necessarily
a fractional ideal.

These considerations lead to the notion of semistar operation (cf. Defin-
ition 1.1). By construction, the integral closure of ideals (or, more precisely,
of modules) is a semistar operation without any assumption on the integral
closure of the domain D. Moreover, the set of star operations can be canon-
ically embedded in the set of semistar operations (cf. Section 1.2.1). Hence,
we have a more flexible notion and a larger class of operations, that gives a
more appropriate context for approaching several questions of multiplicative
ideal theory.

For example, in a series of papers, M. Fontana and K.A. Loper ([27], [28]
and [29]) have generalized the classical construction of Kronecker function
rings. These rings were studied in a general setting by W. Krull in a series
of papers published, starting from 1936, with the common title “Beiträge zur
arithmetik kommutativer Integritätsbereiche" (cf. also the books by H. Weyl,
“Algebraic theory of numbers”, Princeton 1940 and by H. Edwards “Divisor
theory”, Birkhäuser, 1990 and, for an axiomatic approach, a recent paper
by F. Halter Koch [44]). In the context of star operations, the Kronecker
function ring can be constructed only for integrally closed domains and for
e.a.b. star operations (cf. [38, Section 32]). The notion of semistar operation
allows one to define a Kronecker function ring Kr(D, ?) for an arbitrary
domain D and an arbitrary semistar operation ?. Moreover, Kr(D, ?) has
all the properties of the “classical” Kronecker function ring, since it coincides
with the Kronecker function ring of an integrally closed domain determined
by D and ?, with respect to an e.a.b. star operation ?a canonically associated
with ?. We will recall this construction in Section 1.6, with other important
results concerning the generalization of the classical Nagata ring (see M.
Fontana and K.A. Loper [29]).

In this work, we focus our attention on the problem of the characteriza-
tion of several classes of integral domains, by using the semistar tool. Since
the set of semistar operations is larger than the set of star operations, it is
clear that the use of semistar operations leads to a finer classification.
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In the first chapter we recall the main definitions and results used in this
work. In particular, we give several examples of semistar operations and we
introduce a class of new semistar operations that generalize the star opera-
tion defined by W. Heinzer, J. Huckaba and I. Papick in [48] for introducing
the notion of m-canonical ideal (see Section 1.2.5).

In the second chapter our first goal is to measure “the size” of the set of
all semistar operations of an integral domain D and to compare this set with
the set of all star operations on the overrings of D (this give, in some sense,
an idea of how much the use of semistar operations instead of star operations
leads, for instance, to a finer characterizations of integral domains).

We will show that the semistar operations on an integral domain D are at
least as many as the star operations on all overrings of D. More precisely, we
show that there is a bijection between the set of semistar operations and the
set of the (semi)star operations on all overrings of D (a (semi)star operation
is a semistar operations that restricted to the set of nonzero fractional ideals
of D is a “classical” star operation).

Moreover, this bijection suggests a new approach for studying semistar
operations: for instance, in some cases, the study of properties of semistar
operations on a domain D can be transferred to the study of (semi)star opera-
tions on the overrings. This approach may lead to an effective simplification,
since (semi)star operations share many properties with star operations and
so it is possible to apply to the case of (semi)star operations several results
already proven for star operations.

We give some examples of the use of these techniques in Section 2.3.
For example, we will apply this method for studying semistar operations on
valuation domains (Section 2.3.1), for obtaining characterizations of domains
with special properties on the set of semistar operations (domains with every
semistar operation of finite type, or stable, or spectral; all these notions are
defined in Chapter 1), for evaluating the size of the set of the semistar
operations (in particular, in Section 2.3.5 we show that a domain D with
dim(D)+2 semistar operations is a valuation domain or a divisorial pseudo-
valuation domain, with some additional properties). Another result that
we obtain applying this method is a characterization of totally divisorial
domains (see works by S. Bazzoni, L. Salce and B. Olberding) in terms
of semistar operations (in particular, the semistar operations introduced in
Section 1.2.5).

Important classes of domains are defined using the notion of invertibility
of ideals: Dedekind domains are the domains in which each nonzero ideal
is invertible, Prüfer domains are the domains in which each nonzero finitely
generated ideal is invertible. This notion have been generalized to the case of
star operations: in particular the invertibility with respect to the t–operation
(the t–invertibility, a nonzero ideal I of an integral domain D is t–invertible
if and only if (II−1)t = D) has been deeply investigated, since, as we have
mentioned above, it allows, for example, to characterize Krull domains. Also
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PvMDs are defined using t–invertibility: a domain D is a PvMD if each
nonzero finitely generated ideal of D is t–invertible. Clearly, Krull domains
can be seen as a generalization of Dedekind domain and PvMDs can be
interpreted as a generalization of Prüfer domains. In fact, they share several
“ideal theoretic” properties with the domain that they generalize, when we
restrict to consider only the set of ideals I such that It = I.

Thus, it is natural to investigate a further generalization of these classes
of domains, considering not only the t–operation, but an arbitrary semistar
operation. To do this, it is necessary to develop a theory of invertibility with
respect to a semistar operation.

Chapter 3 is devoted to the study of two different notions of invert-
ibility, that we call respectively semistar invertibility and quasi–semistar–
invertibility. The first notion has been introduced by M. Fontana, P. Jara
and E. Santos in [26], where they define and study the Prüfer semistar mul-
tiplication domains (P?MD for short, a generalization of Prüfer domains):
they say that a nonzero ideal I is semistar invertible with respect to a semi-
star operation ? on D if (II−1)? = D?. This is the direct translation to
the semistar case of the classical notion of star invertibility. In Section 3.1
we discuss some properties of semistar invertibility generalizing classical re-
sults about invertibility and t–invertibility and show that there are some
obstructions in developing this theory having as a model the classical the-
ory. Moreover, while this notion has proven to be useful to introduce P?MDs,
it cannot be used to generalize Dedekind domains in a satisfactory way (this
is one of the goals of Chapter 4). So, in Section 3.2, we introduce the notion
of quasi–semistar–invertibility: a nonzero ideal I of an integral domain D
is quasi–?–invertible (quasi–semistar–invertible with respect to a semistar
operation ? on D) if (IH)? = D? for some H ∈ F (D). We prove that, in
general, these two notions do not coincide and that the second notion of
invertibility seems, in some sense, more natural in the semistar context. In
Section 3.3, we study the behaviour of semistar and quasi–semistar invertible
ideals in the Nagata ring.

Several results exposed in Chapter 3 have been obtained in collaboration
with Marco Fontana [31].

As we have mentioned above, one of the goals of Chapter 4 is to obtain a
generalization in the semistar context of the theory of Dedekind domains. A
Dedekind domain is a Noetherian Prüfer domain. So, in order to introduce
a generalization of Dedekind domain, we need to generalize the notions of
Noetherian and Prüfer domains to the semistar context.

We have already mentioned that a generalization of Prüfer domain to the
semistar setting has been investigated in [26] (cf. also [25]). We recall the
main properties of the Prüfer semistar multiplication domains in Section 4.1,
and we obtain some new results, in particular concerning the “descent” to
subrings of the P?MD property, using the techniques developed in Chapter 2.
We characterize the P?MDs as a particular type of subrings of PvMDs having
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the same field of fractions.
In Section 4.2, we introduce and give some basic result about semistar

Noetherian domains, that is, integral domains with the ascending chain con-
dition on a distinguished set of ideals (the quasi–?–ideals) determined by a
semistar operation ?. This notion generalizes at the same time the notions of
Noetherian, Mori and strong Mori domains. Several results in this section,
and nearly everything from Section 4.4 are obtained as a joint work with
Said El Baghdadi and Marco Fontana [21].

In Section 4.3, we prove a semistar version of the Hilbert Basis Theorem,
that generalize both the classical result concerning Noetherian domains and
a more recent “Basis-type” theorem proven for strong Mori domains, [80,
Theorem 1.13]. As an easy consequence we obtain that an integral domain
D is Noetherian with respect to a semistar operation ? if and only if the
Nagata ring of D with respect to ? is Noetherian.

In Section 4.5 we introduce the notion of semistar Dedekind domain (for
short ?–DD), as a semistar Noetherian domain which is a P?MD. We obtain
several characterizations of these domains, that generalize in a very satis-
factory way the classical ones. For example, we relate this notion with the
concept of quasi–semistar–invertibility (Proposition 4.59), we show in The-
orem 4.73 that a “semistar translation” of the classical Noether’s Axioms
characterizes semistar Dedekind domains and, in Theorem 4.85, we give a
semistar analogue (using the “semistar product”) of the characterization of
Dedekind domains as the integral domains in which each ideal is product
of prime ideals. We have also investigated the “descent” to subrings of the
semistar Dedekind property, and shown that semistar Dedekind domains are
particular subrings of Krull domains having some “flatness like” properties.
In particular, we have shown that each Mori domain not strongly Mori (fol-
lowing the terminology introduced by V. Barucci and S. Gabelli [11, page
105]) is a semistar Dedekind domain for a semistar operation induced by a
particular set of t–maximal ideals (see Example 4.82 for the details).
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Chapter 1

Background Results

In this chapter we give an overview of some general notions and results
concerning semistar operations on integral domains.

1.1 Semistar operations on integral domains

Let D be an integral domain with quotient field K. Let F (D) denote the
set of all nonzero D–submodules of K and let F (D) be the set of all nonzero
fractional ideals of D, i.e. E ∈ F (D) if E ∈ F (D) and there exists a nonzero
d ∈ D with dE ⊆ D. Let f(D) be the set of all nonzero finitely generated
D–submodules of K. Then, obviously f(D) ⊆ F (D) ⊆ F (D).

Definition 1.1. A semistar operation on D is a map ? : F (D) → F (D), E 7→
E?, such that, for all x ∈ K, x 6= 0, and for all E,F ∈ F (D), the following
properties hold:

(?1) (xE)? = xE?.

(?2) E ⊆ F implies E? ⊆ F ?.

(?3) E ⊆ E? and E?? := (E?)? = E?.

We denote by F
?(D) the set

{
E? |E ∈ F (D)

}
.

The following lemma establishes some basic properties of semistar oper-
ations (see [65, Proposition 5] and, for a similar result for star operations,
[38, Proposition 32.2]):

Lemma 1.2. Let D be an integral domain, ? a semistar operation on D.
Then, for all E,F ∈ F (D) and for every subset {Eα} ⊆ F (D) :

(1) (EF )? = (E?F )? = (EF ?)? = (E?F ?)? .
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(2) (E + F )? = (E? + F )? = (E + F ?)? = (E? + F ?)? .

(3)
⋂

α E?
α = (

⋂
α E?

α)?, if
⋂

α E?
α 6= 0. 2

As a direct consequence of Lemma 1.2(1) we have the following results
(see [65, Proposition 6] and [23]):

Proposition 1.3. Let D be an integral domain, ? a semistar operation on
D. Then:

(1) Let R be an overring of D. Then R? is an overring of D. In particular,
D? is an overring of D.

(2) If E ∈ F (D) then E? ∈ F (D?).

(3) If E ∈ F (D) then E? ∈ F (D?).

Proof. (1) R?R? ⊆ (R?R?)? = (RR)? = R?.
(2) D?E? ⊆ (D?E?)? = (DE)? = E?.
(3) Since E ∈ F (D), there exists a nonzero element d ∈ D such that dE ⊆ D.
Then, dE? = (dE)? ⊆ D?. Since d ∈ D ⊆ D?, we have E? ∈ F (D?).

If ? is a semistar operation on D, such that D? = D, we say that ? is a
(semi)star operation.

Remark 1.4. (see [23, Remark 1.1]) If ? is a (semi)star operation on D,
then the restriction ?|F (D)

is a star operation on D. The only thing to check
is that if E ∈ F (D) then E? ∈ F (D) and this follows immediately from
Proposition 1.3(3).

If ?1 and ?2 are two semistar operations on D, we say that ?1 ≤ ?2 if
E?1 ⊆ E?2 , for each E ∈ F (D). This relation induces a partial order on the
set of all semistar operations.

Proposition 1.5. [65, Lemma 16] Let ?1, ?2 be two semistar operations on
an integral domain D. The following are equivalent:

(i) ?1 ≤ ?2.

(ii) (E?1)?2 = E?2 , for each E ∈ F (D).

(iii) (E?2)?1 = E?2 , for each E ∈ F (D).

(iv) F
?2(D) ⊆ F

?1(D).

Proof. (i) ⇒ (ii) Since E?1 ⊆ E?2 , we have E?2 ⊆ (E?1)?2 ⊆ (E?2)?2 = E?2 .
Thus, (E?1)?2 = E?2 .
(ii)⇒ (iii) Since E?2 ∈ F (D), from (ii) we have that ((E?2)?1)?2 = (E?2)?2 =
E?2 . So, E?2 ⊆ (E?2)?1 ⊆ ((E?2)?1)?2 = (E?2)?2 = E?2 . Hence, (E?2)?1 =
E?2 .
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(iii) ⇒ (iv) Let F ∈ F
?2(D). Then, there exists E ∈ F (D) such that

E?2 = F . Then, by (iii), F ?1 = (E?2)?1 = E?2 = F and F ∈ F
?1(D).

(iv) ⇒ (iii) Let E?2 ∈ F
?2(D) ⊆ F

?1(D). Then, there exists F ∈ F (D) such
that F ?1 = E?2 for some F ∈ F (D). Then, (E?2)?1 = (F ?1)?1 = F ?1 = E?2 .
(iii) ⇒ (i) E?1 ⊆ (E?1)?2 = E?2 .

If ? is a semistar operation on D, then we can consider a map ?
f

:
F (D) → F (D) defined for each E ∈ F (D) as follows: E?

f :=
⋃
{F ? |F ∈

f(D) and F ⊆ E}. It is easy to see that ?
f

is a semistar operation on D,
called the semistar operation of finite type associated to ?. Note that, for
each F ∈ f(D), F ? = F ?

f . A semistar operation ? is called a semistar
operation of finite type if ? = ?

f
. It is easy to see that (?

f
)
f

= ?
f

(that is, ?
f

is of finite type).

Remark 1.6. We note here that a semistar operation of finite type ? is
completely determined by the image of the elements of f(D), that is, if
?1, ?2 are two semistar operations of finite type, such that ?1|f(D) = ?2|f(D),
then ?1 = ?2. In particular, since f(D) ⊆ F (D), if two semistar operations
of finite type coincide on F (D), then they coincide on F (D).

Proposition 1.7. [23, Proposition 1.6(2),(3)] Let D be an integral domain
and ?, ?1 and ?2 semistar operations on D. Then:

(1) ?
f
≤ ?.

(2) ?1 ≤ ?2 implies (?1)f ≤ (?2)f .

Proof. (1) It is straightforward from the definition of ?
f
.

(2) Let E ∈ F (D) and x ∈ E(?1)f . Then, there exists F ∈ f(D), F ⊆ E,
such that x ∈ F ?1 ⊆ F ?2 ⊆ E(?2)f .

We say that a nonzero integral ideal I of D is a quasi–?–ideal if I?∩D = I.
If I is a prime ideal, we say that I is a quasi–?–prime. If M is a maximal
element in the set of all quasi–?–ideals of D, we will say that M is a quasi-?-
maximal ideal . We denote by M(?) the set of all quasi–?–maximal ideals.

If I is a nonzero ideal such that I? ( D?, then it is easy to see that I?∩D
is a quasi–?–ideal. In fact, (I? ∩ D)? ∩ D ⊆ (I?)? ∩ D? ∩ D = I? ∩ D (we
have used the straightforward fact that, for each semistar operation ? on D
and for each E,F ∈ F (D), (E ∩ F )? ⊆ E? ∩ F ?).

We note that if ?1, ?2 are two semistar operations on D such that ?1 ≤ ?2

and I is a quasi–?2–ideal of D, then I is a quasi–?1–ideal of D. In fact, we
have I ⊆ I?1 ⊆ I?2 and then I ⊆ I?1 ∩D ⊆ I?2 ∩D = I.

We give two important results about quasi–?–maximal ideals:

Proposition 1.8. Let D be an integral domain and ? a semistar operation
on D.
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(1) If M ∈ M(?) then M is a prime ideal.

(2) If ? is a semistar operation of finite type, then each quasi–?–ideal is
contained in a quasi–?–maximal.

Proof. (1) Let x, y ∈ D, with xy ∈ M and x 6∈ M . Consider the ideal
M+xD. We have that (M+xD)? = D?, otherwise (M+xD)?∩D would be a
quasi–?–ideal larger than M . Consider the ideal y(M +xD) = yM +yxD ⊆
M . We have that y ∈ yD? ∩D = y(M + xD)? ∩D = (yM + yxD)? ∩D ⊆
M? ∩D = M . Then, y ∈ M and M is prime.
(2) It is in [23, Lemma 4.20].

We have noted in Lemma 1.2 that, for each E,F ∈ F (D), (E + F )? =
(E? + F ?)? and (EF )? = (E?F ?)?. It is natural to ask if something similar
holds for the intersection of two D-modules, that is, if (E∩F )? = (E?∩F ?)?.
It is easy to see that this is true if and only if (E ∩F )? = (E?∩F ?). Indeed,
by Lemma 1.2(3), it follows that (E? ∩F ?)? = (E? ∩F ?). So, if (E ∩F )? =
(E?∩F ?)?, we have (E∩F )? = (E?∩F ?). Conversely, if (E∩F )? = (E?∩F ?),
then, by applying again ?, we obtain (E ∩ F )? = (E? ∩ F ?)?.

We say that a semistar operation is stable if (E ∩ F )? = (E? ∩ F ?), for
each E,F ∈ F (D).

We will exhibit in Section 1.2 examples of semistar operations that are
stable and examples of semistar operations that are not stable. More results
about stable semistar operations will be given in Section 1.3.

We say that a semistar operation ? is cancellative (or that D has the ?-
cancellation law) if, for each E,F, G ∈ F (D), (EF )? = (EG)? implies F ? =
G?. We say that ? is a.b. if the same holds for each E ∈ f(D), F,G ∈ F (D)
and that ? is e.a.b. if the same holds for each E,F, G ∈ f(D). Clearly,
a cancellative semistar operation is a.b. and an a.b. semistar operation is
e.a.b.

1.2 Examples of semistar operations

We give some examples of semistar operations. In the following D is always
an integral domain with quotient field K and we will denote by Star(D)
the set of the star operations on D, by SStar(D) the set of the semistar
operations on D and by (S)Star(D) the set of the (semi)star operations on
D.

1.2.1 The d−, e− semistar operations and the trivial exten-
sion of a star operation

The first example of semistar operation is the identity semistar operation,
denoted by dD (or simply d), defined by E 7→ Ed := E, for each E ∈ F (D).
Another trivial semistar operation on D is the e–operation, given by E 7→

11



Ee := K, for each E ∈ F (D). It is clear that d ≤ ? ≤ e, for each semistar
operation ? on D.

A star operation ? on D induces canonically a (semi)star operation ?e

on D (the trivial extension of ?) defined by E?e := E?, if E ∈ F (D), and
E?e := K otherwise. So, the set Star(D) of the star operations on D is
canonically embedded in the set SStar(D) of the semistar operations on D.

We notice that a star operation can have different extensions to a semistar
operation (in fact, a (semi)star operation). For example, let ? be the identity
star operation on D (i.e. F ? = F , for each F ∈ F (D)), and suppose that D
is not conducive (we recall that D is a conducive domain if F (D)rF (D) =
{K}, see [19]). Then, the identity semistar operation dD and the trivial
extension ?e are distinct and both extend ? (since they coincide with ? on
the set F (D)).

More precisely, we have the following straightforward lemma:

Lemma 1.9. Let D be an integral domain. The following are equivalent:

(1) D is conducive.

(2) The trivial extension of the identity star operation coincides with the
identity semistar operation dD on D.

(3) Each star operation has only one extension to a semistar operation. 2

We notice that from Remark 1.6 it follows that a finite type semistar
operation has only one extension to a finite type semistar operation.

Remark 1.10. Let ? be a semistar operation on an integral domain D with
quotient field K. More generally, we associate with ? a map ?e, defined by
E 7→ E?e := E?, if E ∈ F (D) and E 7→ E?e := K, if E ∈ F (D)rF (D). We
note that ?e is a semistar operation if and only if (D : D?) 6= (0). Indeed,
if (D : D?) = (0), we have (D?e)?e = (D?)?e = K, since D? 6∈ F (D).
So, the condition (?3) of Definition 1.1 does not hold. Conversely, suppose
(D : D?) 6= (0). It is easy to see that the conditions (?1) and (?2) of Definition
1.1 are satisfied. For (?3) it is enough to observe that, if E ∈ F (D) then
E? ∈ F (D?) (Proposition 1.3) and then E? ∈ F (D), since (D : D?) 6= 0.

We note that ?|F (D)
= (?e)|F (D)

and that if ?1 and ?2 are two semistar
operations on D, then (?1)e = (?2)e if and only if (?1)|F (D)

= ?2|F (D)
. If ?

is a (semi)star operation, then ?e coincides with the trivial extension of the
star operation ?|F (D)

. For example, the semistar operation de coincides with
the trivial extension of the identity star operation.

1.2.2 The v and the t semistar operations

Consider the map vD (or, simply, v ) defined by Ev := (E−1)−1, for each
E ∈ F (D) , with E−1 := (D : E) := {z ∈ K | zE ⊆ D} . This map
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defines a (semi)star operation on D and it is easy to see that this is the
trivial extension of the “classical” v-star operation as studied in [38, Section
34]. In fact, it is clear that the v-semistar operation and the v-star operation
coincide on the set F (D). Moreover, if E ∈ F (D) r F (D), E−1 = (0) and
so (E−1)−1 = K.

It is well known that the v-star operation is the largest star operation
on an integral domain D [38, Theorem 34.1(4)]. The v-semistar operation
preserves this property, if we restrict to the set of (semi)star operations.

Lemma 1.11. Let D be an integral domain and let ? be a (semi)star oper-
ation. Then, ? ≤ v.

Proof. Since ? restricted to F (D) is a star operation (1.4), it is clear that
E? ⊆ Ev, for each E ∈ F (D). If E ∈ F (D) r F (D), it is clear that
E? ⊆ K = Ev. Then, E? ⊆ Ev, for each E ∈ F (D) and ? ≤ v.

As in the case of star operations, we denote by tD (or, simply, t) the
semistar operation of finite type v

f
associated to v (that is, Et :=

⋃
{F v

|F ∈ f(D), F ⊆ E}). This is the only semistar operation of finite type that
coincides with the classical t-star operation on the set F (D) (see Remark
1.6).

The following lemma is an immediate consequence of Lemma 1.11 and
Proposition 1.7.

Lemma 1.12. Let D be an integral domain and let ? be a (semi)star oper-
ation on D. Then ?

f
≤ t. 2

1.2.3 Semistar operations defined by overrings

Let T be a proper overring of D. The map ?{T}, given by E 7→ E?{T} := ET ,
for each E ∈ F (D) is a semistar operation (called extension to the overring
T ). This is the first non trivial example of a semistar operation that is not
a (semi)star operation, that is, that is not extended from a star operation.

It is easy to see that ?{T} is a semistar operation of finite type.
The following proposition concerns the stability of the semistar operation

defined by the extension to an overring.

Proposition 1.13. Let D be an integral domain and T an overring of D.
The following are equivalent:

(i) T is flat over D.

(ii) The semistar operation ?{T} on D is stable.

Proof. (i)⇔ (ii) It follows from [62, Theorem 7.4(i)] and [75, Proposition
1.7].
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We have the following result about some cancellation properties for the
extension to an overring:

Proposition 1.14. Let D be an integral domain and T an overring of D.
The following are equivalent:

(i) T is a Prüfer domain.

(ii) ?{T} is a.b.

(iii) ?{T} is e.a.b.

Proof. (i) ⇒ (ii) Let E ∈ f(D), F,G ∈ F (D), such that (EF )?{T} =
(EG)?{T} , that is, EFT = EGT . Since ET ∈ f(T ) and T is a Prüfer
domain, ET is invertible. It follows that FT = GT , that is, G?{T} = F ?{T} .
(ii) ⇒ (iii) It is straightforward.
(iii) ⇒ (i) Let E,F, G be finitely generated ideals of T such that EF = EG.
Let E0, F0, G0 be the D-modules generated by the generators respectively
of E,F and G. Then, E0, F0, G0 ∈ f(D) and E0T = E, F0T = F and
G0T = G. So, (E0F0)?{T} = (E0G0)?{T} . Since ?{T} is e.a.b. it follows that
F

?{T}
0 = G

?{T}
0 , that is, F = G. Then, T is a Prüfer domain by [38, Theorem

24.3 (3)⇒(1)].

More generally, if R := {Dα}α∈A is a set of overrings of D, and, for
each α ∈ A, ?α is a semistar operation on Dα, the map ?R : E 7→ E?R :=⋂
{(EDα)?α |α ∈ A}, for each E ∈ F (D), is a semistar operation.
It is easy to see that, if each Dα is flat over D and each ?α is stable, then

?R is stable.
A particular case of this construction is when ?α is the identity semistar

operation of Dα, for each α ∈ A. In this case, E?R =
⋂

α EDα, for each
E ∈ F (D). We note that in this case, we have E?RDβ = EDβ , for each
E ∈ F (D) and for each β ∈ A. Indeed, E?RDβ = (

⋂
α EDα)Dβ ⊆ EDβ ⊆

E?RDβ .
Particularly interesting is the case in which R := {Vα} is the set of all

valuation overrings of D and ?α is the identity semistar operation of Vα for
each α. In this case, the semistar operation ?R on D is called bD-semistar
operation (or simply b-operation). Clearly, b is a (semi)star operation if and
only if D is integrally closed. We notice that, in this case, the restriction
of the b-semistar operation to the set F (D) is the classical b-star operation
(see [38, Page 398]).

Another interesting particular case of a semistar operation defined by
overrings is obtained if we let all Dα = D. In this case the semistar opera-
tion E 7→

⋂
{E?α |α ∈ A} is denoted by ∧?α and it is the largest semistar

operation ? on D such that ? ≤ ?α for each α. Moreover, if we have a family
{?β}β∈B, we define a new semistar operation as ∨?β := ∧{? | ?β ≤ ?, β ∈ B}.
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This is the smallest semistar operation ? on D such that ?β ≤ ? for each
β ∈ B. In the case of star operations, these constructions are investigated
in [4].

1.2.4 Spectral semistar operations

Among the semistar operations in the class defined in Section 1.2.3, partic-
ularly interesting are the semistar operations induced by overrings that are
localizations of D at prime ideals. More precisely, if ∆ ⊆ Spec(D), we denote
by ?∆ the semistar operation defined by E 7→ E?∆ :=

⋂
{EDP |P ∈ ∆}.

We refer to these semistar operations as spectral semistar operations . If
∆ = {P}, where P ∈ Spec(D), we denote ?∆(= ?{DP }) simply by ?{P}.

As a consequence of what we have proven in Section 1.2.3 in the general
case, we have that, for each E ∈ F (D) and for each P ∈ ∆, EDP = E?∆DP .
Moreover, since each localization of D is a flat overring of D, we have that
the semistar operation ?∆ is stable.

If we let ∆↓ := {Q ∈ Spec(D) |Q ⊆ P for some P ∈ ∆}, it is easy to see
that ?∆′ = ?∆ = ?∆↓ , for each ∆ ⊆ ∆′ ⊆ ∆↓. Moreover, for each P ∈ ∆↓, P
is a quasi-?-prime, that is, P ?∆ ∩D = P .

1.2.5 The semistar operation v(I)

As an other example of semistar operation, we want to introduce a semistar
operation that generalizes the v–operation.

Consider I ∈ F (D) and the map v(I) defined by E → Ev(I) := (I : (I :
E)), for each E ∈ F (D). Clearly, v(D) coincides with the v-operation. This
map, restricted to F (D), when I is an ideal of D such that (I : I) = D
has been studied in [48] and [12]. In this particular case, it has been proven
[48, Proposition 3.2] that it is a star operation. We want to prove that, in
general, this map is a semistar operation.

We need two lemmas:

Lemma 1.15. Let I, J ∈ F (D), L an invertible fractional ideal of D and
0 6= u ∈ K. Then,

(1) (uI : J) = u(I : J);

(2) (I : uJ) = u−1(I : J);

(3) (LI : J) = L(I : J);

(4) (I : LJ) = L−1(I : J).

Proof. It is exactly as in [48, Lemma 2.1].

Lemma 1.16. Let D be an integral domain and I, J ∈ F (D). Then (I : (I :
J)) =

⋂
{Iu |u ∈ K, J ⊆ Iu}.
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Proof. It is exactly as in [48, Lemma 3.1].

Proposition 1.17. Let D be an integral domain and I ∈ F (D):

(1) (I : (I : I)) = I.

(2) The map v(I) : F (D) → F (D) defined by Ev(I) = (I : (I : E)), for
each E ∈ F (D), is a semistar operation.

Proof. (1) It follows immediately from the fact that I is an ideal in (I : I).
(2) We have to prove (?1), (?2) and (?3) of Definition 1.1. Let E,F ∈ F (D),
a ∈ K, a 6= 0.
(?1) From Lemma 1.15, we have (aE)v(I) = (I : (I : aE)) = a(I : (I : E)) =
aEv(I).
(?2) Since E(I : E) ⊆ I, then E ⊆ (I : (I : E)) = Ev(I). And, if E ⊆ F , we
have (I : F ) ⊆ (I : E) and Ev(I) = (I : (I : E)) ⊆ (I : (I : F )) = F v(I).
(?3) We have to prove that (Ev(I))v(I) = Ev(I). By Lemma 1.16, (Ev(I))v(I) =⋂
{Iu |u ∈ K, Ev(I) ⊆ Iu}. It is clear from (?2) that Ev(I) ⊆ (Ev(I))v(I).

On the other hand, if E ⊆ Iu, then Ev(I) ⊆ (Iu)v(I) = Iv(I)u = Iu,
since, from (a), Iv(I) = I. Then (Ev(I))v(I) =

⋂ {
Iu |u ∈ K , Ev(I) ⊆ Iu

}
⊆⋂

{Iu |u ∈ K, E ⊆ Iu} = Ev(I).

We note that, if I ∈ F (D), then the semistar operation v(I) is trivial on
F (D)rF (D), that is, if E ∈ F (D)rF (D), then (I : (I : E)) = K. Indeed,
take y ∈ (D : I), y 6= 0. If x ∈ (I : E) and x 6= 0, then xy ∈ (D : E) and
E ∈ F (D). Then (I : E) = 0 and this implies immediately (I : (I : E)) = K.

Next lemma gives some basic properties of the semistar operation v(I).

Lemma 1.18. Let D be an integral domain. Let I, J, L, E, F ∈ F (D). Then:

(1) Dv(I) = (I : I).

(2) v(I) is a (semi)star operation if and only if (I : I) = D.

(3) If I is invertible, then v(I) = v.

(4) If J is invertible, then Jv(I) = J(I : I).

(5) If J is invertible, then v(IJ) = v(I).

(6) If Jv(I) = (I : (I : J) = L, then (I : J) = (I : L).

(7) Ev(I) = F v(I) if and only if (I : E) = (I : F ).

Proof. (1) It is straightforward, since (I : D) = I
(2) It is an immediate consequence of (1).
(3),(4) and (5) follow immediately from Lemma 1.15.
(6) Since J ⊆ (I : (I : J)) = L, we have (I : J) ⊆ (I : J)v(I) = (I : (I : (I :
J)) = (I : L) ⊆ (I : J), and then (I : J) = (I : L).
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(7) The ‘if’ part is clear. To prove the ‘only if’ we observe that, if Ev(I) =
F v(I) = L, then, from (5), (I : E) = (I : F ) = (I : L).

In [48] the operation v(I) is studied in the case (I : I) = D, that is, when,
restricted to F (D), it is a star operation. In that paper an ideal I is defined
to be m-canonical if the star operation v(I) is the identity, that is, when any
ideal of D is a v(I)-ideal (in particular, (I : I) = D). Here, we do not require
(I : I) = D, and so we work in the context of semistar operations. The role
played by ? - ideals in the context of star operation, in our context is played
by quasi-?-ideals. Then, it appears natural to ask for which nonzero ideals I,
the semistar operation v(I) is such that every nonzero ideal of D is a quasi-
v(I)-ideal. Next proposition answers this question: such ideals are exactly
the m-canonical ideals, that is, if all nonzero ideals are quasi-v(I)-ideals then
all ideals are, in fact, v(I)-ideals.

Proposition 1.19. Let D be an integral domain and let ? be a semistar
operation on D such that every nonzero ideal of D is a quasi-?-ideal. Suppose
that there exists a nonzero ideal I of D such that I? = I. Then D? = D.
In particular, if I is a nonzero ideal ideal such that every ideal of D is a
quasi-v(I)-ideal, then (I : I) = D (and I is m-canonical).

Proof. Let I such that I? = I and let x ∈ I, x 6= 0. We have (xD)? ⊆ I? =
I ⊆ D. But, by the hypothesis, (xD)? ∩D = xD and then xD = (xD)? =
xD?, that implies D = D?. The statement about v(I) follows immediately
from the first part and the fact that Iv(I) = I (Proposition 1.17 (1)).

We conclude this section proving a result that characterizes the semistar
operation v(I) as the largest semistar operation such that I? = I.

Proposition 1.20. Let D be an integral domain and ? a semistar operation
on D. Let I ∈ F (D). Then ? ≤ v(I) if and only if I? = I.

Proof. If ? ≤ v(I), then I? ⊆ Iv(I) = I and then I? = I. On the other hand,
if I? = I, then (J?)v(I) = (I : (I : J?)) = (I : (I : J)) = Jv(I), by using
that (E? : F ?) = (E? : F ), for every semistar operation. Then, ? ≤ v(I), by
Proposition 1.5(ii)⇒(i).

Corollary 1.21. Let D be an integral domain and let I, J be ideals of D.
Then v(I) = v(J) if and only if Iv(J) = I and Jv(I) = J . 2

1.3 Localizing systems and stable semistar opera-
tions

The relation between semistar operations (in particular, stable semistar op-
erations) and localizing systems has been deeply investigated by M. Fontana
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and J. Huckaba in [23] and by F. Halter-Koch in the context of module
systems [43]. In this section we recall some of the results concerning this
relation.

First, we recall the definition of localizing system .

Definition 1.22. Let D be an integral domain. A localizing system of D is
a family F of ideals of D such that:

(LS1) If I ∈ F and J is an ideal of D such that I ⊆ J , then J ∈ F.

(LS2) If I ∈ F and J is an ideal of D such that (J :D iD) ∈ F, for each i ∈ I,
then J ∈ F.

We recall [24, Proposition 5.1.1] that a localizing system is a multiplica-
tive system of ideals (i.e., if F is a localizing system and I, J ∈ F, then
IJ ∈ F).

A localizing system F is finitely generated if, for each I ∈ F, there exists
a finitely generated ideal J ∈ F such that J ⊆ I.

Example 1.23. (1) Let T be an overring of D. The set F(T ) := {I | I
ideal of D, IT = T} is a finitely generated localizing system.
(2) Let P be a prime ideal of D. The set F(P ) := {I|I ideal of D, I 6⊆ P}
is a localizing system of finite type (it is, in fact, a particular case of (1) ).
(3) It is easy to see that the intersection of localizing systems of D is a
localizing system of D. So, let ∆ ⊆ Spec(D). Then, F(∆) :=

⋂
P∈∆ F(P ) is

a localizing system of D. A localizing system F of D such that there exists
∆ ⊆ Spec(D) with F = F(∆) is called a spectral localizing system. We note
that, if ∆ ⊆ ∆′ ⊆ Spec(D) then F(∆′) ⊆ F(∆).

We recall an important result about localizing systems [24, Proposition
5.1.8]:

Proposition 1.24. Let D be an integral domain and F a localizing system
of D. The following are equivalent:

(i) F is a finitely generated localizing system.

(ii) F = F(∆) for some quasi-compact (in the Zariski topology) subspace
∆ of Spec(D). 2

To each localizing system F of D, it is associated a map ?F : F (D) →
F (D), defined by E 7→ E?F := EF =

⋃
{(E : J) |J ∈ F}. This map is a

stable semistar operation [23, Proposition 2.4]. If F ⊆ F′ are two localizing
systems of D, it is easy to see that ?F ≤ ?F′ . Moreover, if F is a finitely
generated localizing system, then ?F is a semistar operation of finite type,
[23, Proposition 3.2(1)].
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Example 1.25. Let P ∈ Spec(D) and let F(P ) as in Example 1.23. Then,
?F(P ) = ?{P}. Indeed, let E ∈ F (D) and let x ∈ E?F(P ) =

⋃
I∈F(P )(E : I).

Then, there exists I 6⊆ P such that xI ⊆ E. It follows that xy ∈ E for some
y ∈ I rP . Hence, x ∈ EDP = E?{P} . On the other hand, if x ∈ EDP , there
exists y ∈ D r P such that xy ∈ E. Clearly I := yD ∈ F(P ). Then, xI ⊆ E
and x ∈ E?F(P ) .

Conversely, to each semistar operation ? on D, it is possible to as-
sociate a localizing system F? defined by F? := {I ideal of D | I? = D?}
= {I ideal of D | I? ∩D = D}. If ?1 ≤ ?2 are two semistar operations on
D, it is easy to see that F?1 ⊆ F?2 . Moreover, if ? is a finite type semistar
operation, then the localizing system F? is finitely generated.

Example 1.26. The localizing system F?{P} coincides with the localizing
system F(P ). This is straightforward since I ∈ F?{P} if and only if I?{P} =
IDP = DP and this is equivalent to I ∈ F(P ).

Theorem 1.27. [23, Theorem 2.10] Let D be an integral domain with quo-
tient field K.

(1) Let F be a localizing system of D. Then F = F?F .

(2) Let ? be a semistar operation on D and let F? be the localizing system
associated to ?. Then ?F? ≤ ?. Moreover, the following are equivalent:

(i) ?F? = ?.

(ii) ? is a stable semistar operation.

(iii) (E :D F )? = (E? :D? F ?), for each E ∈ F (D) and for each F ∈ f(D).

(iv) (E :D xD)? = (E? :D? xD?), for each E ∈ F (D) and for each 0 6= x ∈
K. 2

Next proposition generalizes Example 1.25 and Example 1.26.

Proposition 1.28. [23, Lemma 4.2] Let D be an integral domain and let
∆ ⊆ Spec(D). Then ?∆ = ?F(∆) and F?∆ = F(∆).

Proof. It is clear that F?∆ = F(∆), since if I is and ideal of D, then I ∈ F?∆

if and only if
⋂

P∈∆ IDP =
⋂

P∈∆ DP , that is, if and only if I 6⊆ P for each
P ∈ ∆. Now, that ?∆ = ?F(∆) is a straightforward consequence of the fact
that a spectral semistar operation is stable and of Theorem 1.27(2).

Next proposition, that is a consequence of Proposition 1.24 and Propo-
sition 1.28, characterizes the spectral semistar operations that are of finite
type:

Proposition 1.29. [23, Corollary 4.6(2)] Let D be an integral domain and
∆ ⊆ Spec(D). The following are equivalent :
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(1) ?∆ is a semistar operation of finite type.

(2) There exists a quasi-compact subspace F of Spec(D) such that ?∆ = ?F .
2

We finish summarizing the main results of this section in the following
theorem.

Theorem 1.30. Let D be an integral domain. Then, the map given by
? 7→ F? establishes an order preserving bijection between the set of all stable
semistar operations on D and the set of all localizing systems of D, with
inverse map given by F 7→ ?F. Moreover, the restriction of this map to the
set of the semistar operations of finite type (resp., spectral) establishes an
order preserving bijection with the set of the finitely generated (resp, spectral)
localizing systems.

1.4 The semistar operation ?̃

Let ? be a semistar operation on D. We can consider the localizing system F?

associated with ? and the stable semistar operation ?F? associated with F?.
We say that ?F? is the stable semistar operation associated to ?. We have
already observed (Theorem 1.27) that in general ?F? ≤ ? and that ?F? = ? if
and only if ? is a stable semistar operation. It is easy to see [23, Proposition
3.7] that ?F? is the largest stable semistar operation smaller than ?.

More interesting it is the construction of the stable semistar operation of
finite type associated to ?. We proceed in this way: we consider the localizing
system F? associated to ?. Then, we consider the set (F?)f of the ideals J
of D such that J ⊇ I for some finitely generated ideal I ∈ F?. It is easy to
see that (F?)f is a finitely generated localizing system and that (F?)f = F

?
f .

We define ?̃ := ?(F?)f
= ?

F
?
f . This is a semistar operation stable and of

finite type (since it is associated to a finitely generated localizing system)
and it is the largest semistar operation stable and of finite type smaller than
?. Clearly, ?̃ = ?̃

f
and then ?̃ ≤ ?

f
. Moreover ? = ?̃ if and only if ? is stable

and of finite type.

Remark 1.31. In [46], J. Hedstrom and E. Houston introduce a star opera-
tion under the name F∞. The same operation, under the name w-operation,
has been considered in [79] by Fanggui Wang and R.L. Mc Casland. This
star operation is defined in this way: first, consider the set GV (D) of
the Glaz-Vasconcelos ideals, that is, the finitely generated ideals J of D
such that J−1 = D. Then, let Iw :=

⋃
J∈GV (D)(I : J). We notice that

w = ṽ. In fact, Fv = {I ideal of D | Iv = D} =
{
I ideal of D | I−1 = D

}
and (Fv)f = {I ideal of D | I ⊇ J for some J ∈ GV (D)}. It is clear now
that Iw =

⋃
J∈GV (D)(I : J) =

⋃
J∈(Fv)f

(I : J) = I
?(Fv)f = I ṽ.
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Lemma 1.32. Let D be an integral domain and ? a semistar operation on D.

(1) If ? is of finite type then ? is stable if and only if it is spectral.

(2) The following are equivalent:

(i) ? = ?̃.

(ii) ? is stable and of finite type.

(iii) ? is spectral and of finite type.

Proof. (1) We have already observed that spectral semistar operations are
stable. Conversely, if ? is a semistar operation stable of finite type, the
localizing system F? associated to ? is finitely generated, then it is spectral,
say F? = F(∆), ∆ ⊆ Spec(D), by Proposition 1.24. Since ? is stable,
? = ?F? = ?F(∆) = ?∆, by Theorem 1.27 and Proposition 1.28. Hence, ? is
a spectral semistar operation.
(2) We have already noticed that (i)⇒(ii). The equivalence between (ii) and
(iii) is given by (1). So, we have only to prove that (ii) ⇒ (i). Since ? is
stable, ? = ?F? . Moreover, since ? is of finite type, F? is a finitely generated
localizing system. It follows that F? = (F?f . Hence, ? = ?F? = ?(F?)f

=
?̃.

So, ?̃ is spectral. More precisely, if ? is a semistar operation on D, we have
that ?̃ = ?M(?

f
), that is, ?̃ is the spectral semistar operation induced by the

set of all quasi-?
f
-maximal ideals. To prove this, we show that F(M(?

f
)) =

F
?
f . Indeed, I ∈ F(M(?

f
)) if and only if I 6⊆ M , for each M ∈ M(?

f
). But

this is equivalent to I?
f = D?

f (= D?), that is, I ∈ F
?
f . In fact, if I ⊆ M ,

for some M ∈ M(?
f
), clearly I?

f ⊆ M?
f ( D?. Conversely, if I 6⊆ M for

each M ∈ F
?
f , then I?

f = D?, otherwise I?
f ∩D would be a quasi–?

f
–ideal

not contained in M , for each M ∈ M(?
f
), and this contradicts Proposition

1.8. So, F(M(?
f
)) = F

?
f and ?̃ = ?F(M(?

f
)) = ?M(?

f
).

Example 1.33. Let D be an integral domain and T an overring of D. Let
? := ?{T} the semistar operation of finite type given by the extension to T .
We have that ?̃ = ? if and only if ? is stable, that is, if and only if T is flat
over D (by Proposition 1.13). In general, ?̃ 6= ?. For example, let (D,M)
be a pseudo-valuation domain and V = M−1. Let ? := ?{V }. Note that
? = ?

f
. Since MV = M , we have that M is a quasi-?-prime ideal and clearly

M(?
f
) = {M}. It follows that ?̃ = ?M(?

f
) = ?{M} = d. Then, in this case,

?̃ = d � ?. Moreover, D?̃ ( D?.

Finally we recall the following proposition about the set of quasi–?̃–
maximal ideals:

Proposition 1.34. [29, Corollary 3.5(2)] Let D be an integral domain and
? a semistar operation on D. Then, M(?̃) = M(?

f
). 2
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1.5 The semistar operations ?ι and ?ι

In this section, we show how a semistar operation on a domain D induces
canonically a semistar operation on an overring T of D and how a semistar
operation on T induces canonically a semistar operation on D.

Proposition 1.35. ([65, Lemma 45] and [30]) Let D be an integral domain,
T an overring of T , ι : D → T the canonical embedding of D in T , ? a
semistar operation on D and ∗ a semistar operation on T . Then:

(1) The map ?ι : F (T ) → F (T ), E 7→ E?ι := E? is a semistar operation
on T .

(2) The map ∗ι : F (D) → F (D), E 7→ E∗ι
:= (ET )∗ is a semistar opera-

tion on D. 2

We will denote by (−)ι the map SStar(D) → SStar(T ), ? 7→ ?ι , and
by (−)ι the map SStar(T ) → SStar(D), ∗ 7→ ∗ι. We will refer to this
map respectively as the “ascent” and the “descent” maps, as in [65]. In next
Lemma we observe that these two maps are order preserving.

Lemma 1.36. Let D be an integral domain, T an overring of D, ι : D → T
the canonical embedding of D in T , ?1, ?2 semistar operations on D and
∗1, ∗2 semistar operations on T . Then:

(1) ?1 ≤ ?2 implies (?1)ι ≤ (?2)ι.

(2) ∗1 ≤ ∗2 implies (∗1)ι ≤ (∗2)ι.

Proof. (1) Let E ∈ F (T ). Then, E(?1)ι = E?1 ⊆ E?2 = E(?2)ι . Hence,
(?1)ι ≤ (?2)ι

(2) Let F ∈ F (D), then F (∗1)ι
= (FT )∗1 ⊆ (FT )∗2 = F (∗2)ι . Hence,

(∗1)ι ≤ (∗2)ι.

Example 1.37. (1) Let the notation be as in Proposition 1.35. If ?{T} is
the semistar operation given by the extension to the overring T and dT is
the identity (semi)star operation on T , it is easy to see that (?{T})ι = dT

and (dT )ι = ?{T}.
(2) Let D be an integral domain. Consider the b–semistar operation, as

defined in Section 1.2.3. It is easy to see that, if D is not integrally closed, the
b–semistar operation, is exactly the “descent” of the bD′–(semi)star operation
of the integral closure D′ of D, i.e. bD = (bD′)ι, where ι is the canonical
embedding of D in D′.

Here we recall only two properties of the semistar operation ?ι when the
overring T coincides with D?, that we will need in next section (we will show
the proofs and study in details these constructions in Section 2.2).
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Proposition 1.38. Let D be an integral domain and ι the canonical embed-
ding of D in D?. Then:

(1) ?ι is a (semi)star operation on D.

(2) If ? is e.a.b. then ?ι is e.a.b. 2

1.6 Kronecker function rings and Nagata rings

In the context of star operations, the classical Kronecker function ring (de-
fined as in [38, Section 32]) allows to embed “nicely” an integrally closed
domain in a Bezout domain. More precisely, to an integrally closed integral
domain D and to an e.a.b. star operation ?, it is possible to associate the
integral domain Kr(D, ?) := {f/g | f, g ∈ D[X] r {0}, c(f)? ⊆ c(g)?} ∪ {0},
where c(f) is the content of a polynomial f ∈ D[X].

In [27], M. Fontana and K.A. Loper generalize this construction to the
context of semistar operations. The approach in [27] allows to define a
Kronecker function ring associated to any semistar operation ? defined on
an integral domain D without assuming that D is integrally closed or that
? satisfies some cancellation property. Moreover, it is possible to associate
to ? an e.a.b. semistar operation ?a, such that the Kronecker function ring
Kr(D, ?) coincides with the classical Kronecker function rings of D?a with
respect to an e.a.b. star operation on D?a canonically induced by ?. So, it is
clear that Kr(D, ?) has all the properties of the classical Kronecker functions
ring (for example, it is a Bezout domain).

So, let D be an integral domain with quotient field K and ? a semistar
operation on D. Consider the set:

Kr(D, ?) := {f/g | f, g ∈ D[X] r {0} and there exists h ∈ D[X] r {0}
such that(c(f)c(h))? ⊆ (c(g)c(h))?} ∪ {0}.

We have [27, Theorem 5.1] that Kr(D, ?) is an integral domain with
quotient field K(X), called the Kronecker function ring of D with respect
to ?.

It is easy to see that Kr(D, ?) = Kr(D, ?
f
) and that, if ?1 ≤ ?2, then

Kr(D, ?1) ≤ Kr(D, ?2).
Now, let ? be a semistar operation on D and consider the map ?a :

F (D) → F (D), defined by F 7→ F ?a :=
⋃
{((FH)? : H) |H ∈ f(D)}, for

each F ∈ f(D), and E?a :=
⋃
{F ?a |F ∈ f(D), F ⊆ E}. The map ?a is an

e.a.b. semistar operation of finite type, and it is called the e.a.b. semistar
operation on D associated to ?.

We note that ? = ?a if and only if ? is e.a.b. and of finite type [27,
Proposition 4.5(5)] and that D?a is an integrally closed domain ([27, Propo-
sition 4.5(9) and Proposition 4.3(2)]). We note that, by Proposition 1.38,
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∗ := (?a)ι|F (D)
is an e.a.b. star operation on the integrally closed domain

D?a (then, it is possible to construct the classical Kronecker function ring of
D?a with respect to ∗).

Let ? be a semistar operation on D and let V be a valuation overring of
D. We say that V is a ?–valuation overring of D if, for each F ∈ f(D) ,
F ? ⊆ FV (or equivalently, ?

f
≤ ?{V }).

Note that a valuation overring V of D is a ?–valuation overring of D if and
only if V ?

f = V . (The “only if” part is obvious; for the “if” part recall
that, for each F ∈ f(D), there exists a nonzero element x ∈ K such that
FV = xV , thus F ? ⊆ (FV )?

f = (xV )?
f = xV ?

f = xV = FV ).
We now recall some main results about Kronecker function rings.

Proposition 1.39. Let D be an integral domain, ? a semistar operation on
D and ι the canonical embedding of D in D?.

Then we have:

(1) Kr(D, ?) is a Bézout domain.

(2) Kr(D, ?) = Kr(D, ?a) = Kr(D?a , (?a)ι) .

(3) E?a = EKr(D, ?) ∩K , for each E ∈ F (D) .

(4) Kr(D, ?) =
⋂
{V (X) | V is a ?–valuation overring of D} .

(5) If F := (a0, a1, . . . , an) ∈ f(D) and f(X) := a0+a1X+. . .+anXn ∈
K[X] , then:

FKr(D, ?) = f(X)Kr(D, ?) = c(f)Kr(D, ?) .

2

In particular, we have that the Kronecker function ring Kr(D, ?) of an
integral domain D coincides with the classical Kronecker function rings of
the integrally closed domain D?a with respect to the e.a.b. star operation
∗ given by the restriction of the (semi)star operation (?a)ι to the set of
fractional ideals of D?a , i.e. Kr(D, ?) = Kr(D?a , ∗).

If R is a ring and X an indeterminate over R, then the ring R(X) :=
{f/g | f, g ∈ R[X] and c(g) = R} (where c(g) is the content of the polyno-
mial g) is called the Nagata ring of R [38, Proposition 33.1]. A more general
construction of a Nagata ring associated to a semistar operation defined on
an integral domain D was considered in [29] (cf. also [53], for the star case).
We present briefly this construction.

Let D be an integral domain and ? a semistar operation on D. Consider
the set N(?) := ND(?) := {h ∈ D[X] | h 6= 0 and (c(h))? = D?}. It can be
proven that N(?) is a saturated multiplicative subset of D[X] (more precisely,
N(?) = N(?

f
) = D[X] r

⋃
{Q[X] | Q ∈ M(?

f
)}). So, let Na(D, ?) :=
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D[X]N(?) = {f/g | f, g ∈ D[X], g 6= 0, c(g)? = D?} be the Nagata ring of D
with respect to the semistar operation ?.

We notice that, if ?1 ≤ ?2, then N(?1) ⊆ N(?2) and so Na(D, ?1) ⊆
Na(D, ?2). We observe also that Na(D, ?) ⊆ Kr(D, ?).

We summarize in next proposition, the main results about the Nagata
ring.

Proposition 1.40. Let D be an integral domain and ? be a semistar oper-
ation on D. Then:

(1) Max(Na(D, ?)) = {Q[X]N(?) | Q ∈ M(?
f
)} and M(?

f
) coincides with

the canonical image in Spec(D) of Max (Na(D, ?)) .

(2) Na(D, ?) =
⋂
{DQ(X) | Q ∈ M(?

f
)} =

⋂
{D[X]QD[X] | Q ∈ M(?

f
)} .

(3) E?̃ = ENa(D, ?) ∩K , for each E ∈ F (D) .

(4) Na(D, ?) = Na(D, ?̃) = Na(D?̃, (?̃)ι) ⊇ D?̃(X) , where ι is the canoni-
cal embedding of D in D?̃ 2

Example 1.41. (1) Let (D,M) be a pseudo-valuation domain and V =
M−1. Suppose that V is the integral closure of D. Consider the semistar op-
eration ?{V } (it coincides with the b–operation defined in Section 1.2.3). It is
clear that V is a ?–valuation overring (since V ?{V } = V ). So, Kr(D, ?{V }) =
V (X), by Proposition 1.39(4). We notice that in this case Kr(D, ?{V }) 6=
Na(D, ?{V }). Indeed, by Proposition 1.40(4), Na(D, ?{V }) = Na(D, ?̃{V })
and ?̃{V } = d (Example 1.33). Then, Na(D, ?{V }) = D(X) ( V (X), since
V (X) ∩ K = V and D(X) ∩ K = D (this is a consequence of Proposition
1.40(3)).

(2) [27, Example 3.3(1)] Let D be an integral domain and P ∈ Spec(D).
Consider the semistar operation of finite type ? := ?{P}. It is clear that
M?

f
= {P}. Then, by Proposition 1.40(2), Na(D, ?) = DP (X)={f/g|f, g ∈

D[x], g 6= 0, c(g) 6⊆ P}.
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Chapter 2

Star operations on overrings
and semistar operations

2.1 Composition of semistar operations

Semistar operations are, in fact, maps. Then, it is possible to define, in some
cases and in a “natural” way, a composition of semistar operations. Let ?1

be a semistar operation on an integral domain D and let ?2 be a semistar
operation on an integral domain T , with D ⊆ T ⊆ D?1 . It follows that
F (D?1) ⊆ F (T ) ⊆ F (D). We can define the map ?1?2 : F (D) → F (D),
by E 7→ (E?1)?2 , for each E ∈ F (D). This map is well defined, since
E?1 ∈ F (D?1) ⊆ F (T ).

The map ?1?2 can be, but in general is not, a semistar operation on D.
The properties (?1) and (?2) of the Definition 1.1 are easily checked, while
(?3) is not always satisfied.

Example 2.1. (1) Let D be an integral domain with quotient field K and
R(6= K) an overring of D, such that (D : R) = 0. Let ?1 = v, the v-operation
of D, and let ?2 = ?{R}, the semistar operation on D given by the extension
to R (that is, E?2 = ER, for each E ∈ F (D)). Let ? := ?1?2. This is a map,
defined on the set F (D). We prove that it is not a semistar operation, by
showing that, in general, if I ∈ F (D), I? 6= (I?)?. Then, let I ∈ F (D). We
have I? = IvR and (I?)? = (IvR)vR. We notice that (IvR)v = (D : (D :
IvR)) = (D : ((D : R) : Iv)) = (D : (0 : Iv)) = (D : 0) = K. Then, if, for
instance, I is a principal ideal (or, more generally, a divisorial ideal) of D,
we have I? = IR ( (I?)? = K.

(2) Let D be an integral domain, T an overring of D, let ι be the canonical
embedding of D in T and ∗ a semistar operation on T . Then the semistar
operation ∗ι on D defined in Proposition 1.35(2) is exactly the composition
of ?{T} and ∗, i.e. ?{T}∗ = ∗ι.

(3) As a consequence of Proposition 1.5, we have that, if ?1, ?2 are semi-
star operations on an integral domain D, such that ?1 ≤ ?2, then ?1?2 = ?2
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(in particular, ?1?2 is a semistar operation).
(4) Let D be an integral domain and A and B two overrings of D.

Then, the map ? := ?{A}?{B} is a semistar operation. It is sufficient to
prove property (?3) of Definition 1.1, thus, if E ∈ F (D), we have E?? =
EABAB = EAABB = EAB = E?. More precisely, ? = ?{R}, where
R = AB is the overring of D given by the product of A and B. We notice
that, if A and B are not comparable, then ? is different from both ?{A} and
?{B}.

It is natural to ask when the composition of two semistar operations is
a semistar operation, that is, under which assumptions, condition (?3) of
Definition 1.1 holds.

Lemma 2.2. Let D be an integral domain, ?1 a semistar operation on D,
T an overring of D, T ⊆ D?1 , ι : D ↪→ T the canonical embedding of D in
T . Let ?2 be a semistar operation on T and ? := ?1?2. Then:

(1) E?1 ⊆ E?, for each E ∈ F (D). (Then, when ? is a semistar operation,
?1 ≤ ?.)

(2) ? = ?1 if and only if ?2 ≤ (?1)ι. In this case, ? is a semistar operation.

(3) E(?2)ι ⊆ E?, for each E ∈ F (D). (Then, when ? is a semistar opera-
tion, (?2)ι ≤ ?.)

(4) ? = (?2)ι if and only if (?1)ι ≤ ?2. In this case, ? is a semistar
operation.

Proof. (1) and (3) are straightforward.
(2) Suppose ? = ?1. Let E ∈ F (T ) ⊆ F (D). We have (E(?1)ι)?2 = (E?1)?2 =
E?1 = E(?1)ι and then ?2 ≤ (?1)ι. Conversely, let ?2 ≤ (?1)ι. Then,
(E?1)?2 ⊆ ((ET )?1)?2 = ((ET )(?1)ι)?2 = (ET )(?1)ι ⊆ (ED?1)?1 = E?1 .
(4) Suppose ? = (?2)ι. Let E ∈ F (T ). Then, E(?1)ι ⊆ (E(?1)ι))

?2 =
(E?1)?2 = E?2

ι
= (ET )?2 = E?2 . Hence, (?1)ι ≤ ?2. Conversely, let (?1)ι ≤

?2. Then, E(?2)ι
= (ET )?2 ⊆ (E?1)?2 ⊆ ((ET )?1ι)?2 = (ET )?2 = E?2

ι .

Example 2.3. Let D be an integral domain, ?1 a semistar operation on
D and ι the canonical embedding of D in D?1 . Let ?2 := vD?1 be the v-
operation on D?1 . Consider the composition ? := ?1?2. This map, defined
by E? = (D?1 : (D?1 : E?1)), for each E ∈ F (D), is a semistar operation
and it coincides with the semistar operation (vD?1 )ι, by Lemma 2.2(4), since
(?1)ι is a (semi)star operation on D?1 and so (?1)ι ≤ ?2 by Lemma 1.11. As
in Section 1.2.5, we will denote this semistar operation on D by v(D?1); we
note that in general, if T is an overring of D and ι : D ↪→ T is the canonical
embedding, the semistar operation v(T ) defined in Section 1.2.5 coincides
with the descent to D of the v-operation of T , i.e.

v(T ) = (vT )ι.
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We will denote by t(T ) the descent of the t-operation of T , i.e.

t(T ) := (tT )ι.

Note that t(T ) coincides with the semistar operation of finite type (v(T ))f

associated to v(T ) (cf. Proposition 2.13(1)).

Remark 2.4. Let D be an integral domain and let T be an overring of D.
Let ?1 be a semistar operation on D and ?2 be a semistar operation on T .
We have shown in Lemma 2.2 that, if (?1)ι and ?2 are comparable in T ,
then ?1?2 is a semistar operation. We notice that this is not a necessary
condition. For instance, take A and B two not comparable overrings of D
and let T := A∩B. Let ?1 := ?{A} be the semistar operation on D given by
the extension to A and let ?2 be the semistar operation defined on T given
by the extension to B. It is easy to see that ?1?2 is a semistar operation
(with an argument similar to the one used in Example 2.1(4)), but it is clear
that ?1 and ?2 are not comparable on T , since A and B are not comparable.
This is not a necessary condition even if T = D?1 . For example, let D be an
integral domain, that is not conducive and that is not a Prüfer domain (for
example, the domain K[X, Y ], where K is a field and X, Y two indetermi-
nates on K, is clearly not a Prüfer domain and it is not conducive, since a
Noetherian conducive domain is local and one dimensional, by [19, Corollary
2.7]). Let ?1 = de be the trivial extension of the identity star operation on D
and let ?2 = b, the b semistar operation of D as defined in Section 1.2.3. In
this case, T = D = D?1 . We have b 6≤ de since there exists a nonzero ideal I
of D such that Ib 6= I (otherwise D would be a Prüfer domain, [38, Theorem
24.7]). On the other hand, de 6≤ b. Indeed, since D is not conducive, there
exists a valuation overring V of D that is not a fractional ideal, [19, Lemma
2.0(ii)]. Then, V de = K, by the definition of de, but clearly V b = V . Thus,
de 6≤ b. So, these two semistar operations are not comparable on D = D?1 ,
but it is easy to see that the composition ?1?2 is a semistar operation. More
precisely, ?1?2 = be, the trivial extension of the b star operation of D.

Proposition 2.5. Let ?1 be a semistar operation on an integral domain D
and let ?2 be a semistar operation on an integral domain T , with D ⊆ T ⊆
D?1 and ι the canonical embedding of D in T . Let ? := ?1?2. The following
are equivalent:

(i) ? is a semistar operation.

(ii) ((E?1)?2)?1 = (E?1)?2 , for each E in F (D).

(iii) (F ?2)?1 = F ?2 , for each F ∈ F
?1(D).

(iv) (E?2)?1 ⊆ (E?1)?2 , for each E ∈ F (T ).

(v) ?1?2 = ?1 ∨ (?2)ι (Section 1.2.3).
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Proof. (ii) ⇔ (iii) It is straightforward.
(i)⇒ (ii) It is clear, since if (E?1)?2 ( ((E?1)?2)?1 , then E? ( (E?)?, and ?
is not a semistar operation.
(ii)⇒ (i) We have only to prove (?3) of Definition 1.1, that is (((E?1)?2)?1)?2 =
(E?1)?2 . But this follows immediately from the hypothesis, since we have
(((E?1)?2)?1)?2 = ((E?1)?2)?2 = (E?1)?2 .
(ii) ⇒ (iv) Let E ∈ F (T ). Then (E?2)?1 ⊆ ((E?1)?2)?1 = (E?1)?2 .
(iv) ⇒ (ii) Let E ∈ F (D). Since E?1 ∈ F (D?1) ⊆ F (T ), by the hypote-
sis we have ((E?1)?2)?1 ⊆ ((E?1)?1)?2 = (E?1)?2 ⊆ ((E?1)?2)?1 . Hence,
(E?1)?2 = ((E?1)?2)?1 .
(i)⇒ (v) It is enough to show that, if ∗ is a semistar operation on D such that
?1 ≤ ∗ and ?2

ι ≤ ∗ then E?1?2 ⊆ E∗ for each E ∈ F (D). So, let E ∈ F (D).
Note that E∗ ∈ F (D∗) ⊆ F (T ), since T ⊆ D?1 ⊆ D∗. Then (E∗)?2 is
defined and (E∗)?2 = E∗(?2)ι

= E∗, by Proposition 1.5, since (?2)ι ≤ ∗. So,
?1 ≤ ∗ implies E?1 ⊆ E∗ and then E?1?2 ⊆ E∗?2 = E∗.
(v)⇒ (i) It is obvious, since ?1 ∨ (?2)ι is a semistar operation.

Example 2.6. Let the notation be like in Example 2.1(1). In this case, ?1

and ?2 are both defined on D. We show again that ?1?2 is not a semistar
operation by exhibiting an ideal E of D that does not satisfy condition (iv)
of Proposition 2.5. Indeed, let E := xD, for some nonzero x ∈ D. Then
(xD)?2?1 = x(D?{R}v) = x(D : (D : R)) = x(D : 0) = K that clearly is not
contained in (xD)?1?2 = xD

v?{R} = xR.

Proposition 2.7. Let D be an integral domain and ?1 a semistar operation
on D. Let T be an overring of D, with T ⊆ D?1 , and ?2 a semistar operation
on T . Suppose that ?1?2 is a semistar operation on D.

(1) If ?1, ?2 are of finite type, then ?1?2 is of finite type.

(2) If ?1, ?2 are stable, then ?1?2 is stable.

(3) If ?1 = ?̃1 and ?2 = ?̃2 then ?1?2 = ?̃1?2.

(4) If ?1 and ?2 are spectral and of finite type, then ?1?2 is spectral of finite
type.

Proof. (1) Let E ∈ F (D), x ∈ (E?1)?2 . Since ?2 is of finite type, there exists
F ∈ f(D?1), F ⊆ E?1 , such that x ∈ F ?2 . Let F = x1D

?1 + . . . + xnD?1 .
Since F ⊆ E?1 and ?1 is of finite type, there exists G1, . . . , Gn ⊆ E, Gi ∈
f(D), i = 1, . . . , n, such that x1 ∈ G1

?1 , . . . , xn ∈ Gn
?1 . It follows that

F ⊆ G1
?1 + . . . + Gn

?1 ⊆ (G1
?1 + . . . + Gn

?1)?1 = (G1 + . . . + Gn)?1 . Let
G = G1 + . . . + Gn. Then, F ⊆ G?1 implies F ?2 ⊆ (G?1)?2 . It follows that
x ∈ (G?1)?2 with G ∈ f(D), G ⊆ E. Hence, ?1?2 is of finite type.
(2) It is straightforward.
(3) It follows from (1) and (2), since a semistar operation ? coincides with ?̃
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if and only if ? is stable and of finite type (Lemma 1.32(2)(i)⇔(ii)).
(4) It follows immediately from (3), since a semistar operation ? is spectral
and of finite type if and only if ? = ?̃ (Lemma 1.32(2)(i) ⇔(iii)).

Remark 2.8. (1) The converse of each statement in Proposition 2.7 is not
true in general. That is, for ?1?2 to be of finite type (resp. stable, stable of
finite type) it is not necessary that ?1, ?2 are of finite type (stable, stable of
finite type). For example, if ?1 and ?2 are both defined on D and ?1 ≤ ?2,
if ?2 is of finite type (stable, stable of finite type) then ?1?2 and ?2?1 are
of finite type (stable, stable of finite type) without further conditions on ?1

(since ?1?2 = ?2?1 = ?2).
(2) In the proof of Proposition 2.7, we do not use the fact that ?1?2 is a
semistar operation. So, even if ?1?2 is not a semistar operation, we have
that E?1?2 =

⋃
{F ?1?2 |F ∈ f(D)}, for each E ∈ F (D), when ?1 and ?2 are

of finite type, and (E ∩F )?1?2 = E?1?2 ∩F ?1?2 , for each E,F ∈ F (D), when
?1 and ?2 are stable.

Example 2.9. Let D be an integral domain, P and Q incomparable prime
ideals of D. Let ?1 := ?{P} and ?2 := ?{Q}. Consider ? := ?{P}?{Q}.
From Example 2.1, it follows that ? is a semistar operation. Since both
?1 and ?2 are spectral and of finite type, ? must be spectral and of finite
type (Proposition 2.7(4)). Indeed, it is easy to check that DP DQ = DS , the
localization of D at the multiplicative set S := {ab | a ∈ D r P, b ∈ D r Q}.
Then, ? = ?{DS}, that is a semistar operation of finite type. Moreover, since
? is of finite type and DS is flat over D, it follows by Proposition 1.13 and
Lemma 1.32 that ? is spectral (defined by the set of the primes H of D such
that H ∩ S = ∅).

2.2 Star operations on overrings and semistar op-
erations

In the following, we recall some properties and prove new ones of the semistar
operations defined in Section 1.5.

First we state a result for stable semistar operations that is a consequence
of a well-known fact about localizing systems:

Proposition 2.10. Let D be an integral domain and ? a stable semistar
operation on D. Then, P ? is a prime ideal of D?, for each prime ideal P of
D such that P ? 6= D?. Moreover, D?

P ? = DP .

Proof. It follows from Theorem 1.27(2) and [9, Theorem 1.1].

Proposition 2.11. Let D be an integral domain, T an overring of D, ι :
D ↪→ T the canonical embedding of D in T , ? a semistar operation on D
and ?ι the semistar operation on T defined as in Section 1.5.
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(1) If ? is of finite type, then ?ι is of finite type.

(2) If ? is stable then ?ι is stable.

(3) If ? is cancellative on D, then ?ι is cancellative on T .

(4) If ? is a.b. then ?ι is a.b.

(5) Assume T = D? or T ∈ f(D). If ? is e.a.b. then ?ι is e.a.b.

(6) Assume T = D?. If ? is spectral, then ?ι is spectral.

(7) If T = D? then ?ι is a (semi)star operation on T .

Proof. (1) and (7) are in [27, Proposition 2.8]
(2) is straightforward.
(3) is straightforward, since, on T -modules, ? and ?ι coincide.
(4) Let E ∈ f(T ) and F,G ∈ F (T ) with (EF )?ι = (EG)?ι . There exists
E0 ∈ f(D) such that E0T = E. Then, (E0TF )? = (E0TG)? and, since ? is
a.b. and E0 ∈ f(D), F ?ι = F ? = (FT )? = (GT )? = G? = G?ι . Hence, ?ι is
an a.b. semistar operation.
(5) Let E,F, G ∈ f(T ) such that (EF )?ι = (EG)?ι . Then, there exists
E0, F0, G0 ∈ f(D) with E = E0T ,F = F0T and G = G0T . It follows
(E0F0T )?ι = (E0G0T )?ι , that is, (E0F0T )? = (E0G0T )?. If T ∈ f(D),
then F0T , G0T ∈ f(D), thus, since ? is e.a.b., we obtain (F0T )? = (G0T )?.
Hence, F ?ι = G?ι . On the other hand, if T = D?, then (E0F0D

?)? =
(E0G0D

?)? implies (E0F0)? = (E0G0)? and thus F0
? = G0

?. So, F ?ι =
(F0D

?)? = F0
? = G0

? = (G0D
?)? = G?ι . Hence, in any case, ?ι is an e.a.b.

semistar operation.
(6) Let ? = ?∆, for some ∆ ⊆ Spec(D). We want to prove that ?ι = ?∆? ,
where ∆? := {P ? : P ∈ ∆}. It is clear that, for P ∈ ∆, P ? 6= D?, so, from
Proposition 2.10, it follows that P ? is prime and that (D?)P ? = DP . Then, if
E ∈ F (D?), we have E?ι =

⋂
{EDP |P ∈ ∆} =

⋂
{ED?

P ? |P ∈ ∆} = E?∆? .
Hence, ?ι is spectral.

Proposition 2.12. Let D be an integral domain, ? a semistar operation on
D and T an overring of D. Let ι be the canonical embedding of D in T .
Then:

(1) (?
f
)ι ≤ (?ι)f .

(2) If T = D? then (?
f
)ι = (?ι)f

Proof. (1) Since ?
f
≤ ?, we have (?

f
)ι ≤ ?ι (Lemma 1.36). Moreover, (?

f
)ι is

of finite type (Proposition 2.11(1)), then (?
f
)ι ≤ (?ι)f (Proposition 1.7(2)).

(2) Let E ∈ F (T ) and let x ∈ E(?ι)f . Then, there exists F ∈ f(T ), say
F = a0T + a1T + . . . + anT , with a0, a1, . . . , an ∈ K, such that F ⊆ E and
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x ∈ F ?ι = F ?. Consider F0 := a0D +a1D + . . .+anD. We have F0 ∈ f(D),
F0 ⊆ E and F ?

0 = (F0D)? = (F0D
?)? = (F0T )? = F ?. So, x ∈ F ?

0 . It follows
that x ∈ E?

f = E(?
f
)ι . Hence, (?ι)f ≤ (?

f
)ι. Now, (1) gives the thesis.

We study now the semistar operation ?ι defined in Proposition 1.35(2),
when ? is a semistar operation on an overring T of an integral domain D.
We recall here (Example 2.1(2)) that this semistar operation (defined on D)
is exactly the composition of two semistar operations, the extension ?{T} to
T and the semistar operation ?.

Proposition 2.13. Let D be an integral domain, T an overring of T , ι :
D ↪→ T the canonical embedding of D in T , ∗ a semistar operation on T and
∗ι the semistar operation on D defined as in Proposition 1.35(2). Then:

(1) (∗ι)f = (∗f )ι (in particular, if ∗ is of finite type, then ∗ι is of finite
type).

(2) If ∗ is cancellative, then ∗ι is cancellative.

(3) If ∗ is e.a.b. (resp., a.b.) then ∗ι is e.a.b. (resp., a.b.).

Proof. (1) See [26, Lemma 3.1].
(2) Let E,F, G ∈ F (D) such that (EF )∗

ι
= (EG)∗

ι . Then, (ETFT )∗ =
(ETGT )∗, and, since ∗ is cancellative, we obtain (FT )∗ = (GT )∗, that is,
F ∗ι

= G∗ι .
(3) See [27, Proposition 2.9(2)]

Remark 2.14. (1) Note that the fact that, with the notation of Proposition
2.13, if ? is a semistar operation of finite type, then ?ι is a semistar operation
of finite type can be proven also considering that, by Example 2.1(2), ?ι is
the composition of the semistar operation of finite type ?{T} and of ? and
thus it is of finite type by Proposition 2.7(1).
(2) In Proposition 2.11 we have shown that the map (−)ι : SStar(D) →
SStar(T ) preserves all the main properties of a semistar operation, that is,

the finite character, the stability, the property of being spectral, a.b. and,
under some conditions, e.a.b. The map (−)ι : SStar(T ) → SStar(D) does
not behave so well: in fact, while, as we have seen in Proposition 2.13, the
finite character and the properties of being a.b. and e.a.b. are preserved, the
stability and the properties of being spectral are not preserved. For instance,
with the notation of Proposition 2.13, take T not flat over D, and ∗ = dT ,
the identity semistar operation of T . Clearly ∗ is spectral (defined by the set
of all maximal ideals of T ) and then it is stable, but ∗ι = ?{T} is not stable
(and then not spectral), by Proposition 1.13.

For the next Proposition, see for example [65, Lemma 45] or [26, Example
2.1 (e)].
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Proposition 2.15. Let D be an integral domain, T an overring of D, ι :
D ↪→ T the canonical embedding of D in T . Then:

(1) For each semistar operation ∗ on T , (∗ι)ι = ∗ (that is, (−)ι ◦ (−)ι =
idSStar(T )).

(2) For each semistar operation ? on D, ? ≤ (?ι)ι. 2

Proof. (1) Let E ∈ F (T ). Then, E(∗ι)ι = E∗ι
= (ET )∗ = E∗.

(2) Let E ∈ F (D). Then E(?ι)ι
= (ET )?ι = (ET )? ⊇ E?.

It follows that the map (−)ι : SStar(D) → SStar(T ) is surjective (that
is, each semistar operation on T is an “ascent” of a semistar operation on D)
and the map (−)ι : SStar(T ) → SStar(D) is injective.

Denote by SStar(D,T ) the set of all semistar operations ? on D such
that D? = T . From Proposition 2.11(7) it follows that {?ι|? ∈ SStar(D,T )}
is a subset of (S)Star(T ). We will denote by (−)T

ι the map (−)ι restricted
to SStar(D,T ), i.e. (−)T

ι : SStar(D,T ) → (S)Star(T ). Analogously,
we denote by (−)ι

T the map (−)ι restricted to (S)Star(T ), i.e. (−)ι
T :

(S)Star(T ) → SStar(D,T ). We prove that these maps are one the inverse
of the other.

Proposition 2.16. Let D be an integral domain, T an overring of D, ι :
D ↪→ T the canonical embedding of D in T . Let (−)T

ι and (−)ι
T be defined

as above. Then:

(1) For each ? ∈ SStar(D,T ), (?ι)
ι = ? (i.e. (−)ι

T ◦(−)T
ι =idSStar(D,T )).

(2) For each ∗ ∈ (S)Star(T ), (∗ι)ι = ∗ (i.e. (−)T
ι ◦(−)ι

T = id(S)Star(T )).

(3) The maps (−)T
ι and (−)ι

T are bijective.

Proof. (1) Suppose ? ∈ SStar(D,T ) and let E ∈ F (D). We have E(?ι)ι
=

(ED?)?ι = (ED?)? = (ED)? = E?, that is, (?ι)ι = ?.
(2) It is immediate by Proposition 2.15.
(3) Straightforward from (1) and (2).

It follows that each semistar operation on a domain D can be decom-
posed, in a canonical way, as the composition of two semistar operations,
more precisely, the first semistar operation is ?{T} for some overring T of D
and the second one is a (semi)star operation on T .

Corollary 2.17. Let D be an integral domain.

(1) Let ? be a semistar operation on D, let T = D? and ι the canoni-
cal embedding of D in T . Then ? is the composition of the semistar
operation ?{T} and of a (semi)star operation ∗ on T , i.e. ? = ?{T}∗
(equivalently, ? = ∗ι, for some (semi)star operation ∗ on T ).
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(2) Let T be an overring of D and ι the canonical embedding of D in T .
Then SStar(D,T ) = {?ι | ? ∈ (S)Star(T )}.

Proof. (1) Take ∗ := ?ι and apply Proposition 2.16(1).
(2) follows immediately from Proposition 2.16(3).

Remark 2.18. Consider an overring R of D and let ι be the canonical em-
bedding of D in R. Let T be an overring of R. Let ∗ ∈ SStar(R, T ). Then,
the descent ∗ι of ∗ to D is in SStar(D,T ). Then {∗ι | ∗ ∈ SStar(R, T )} ⊆
SStar(D,T ). We want to show the other inclusion, that is, that each semi-

star operation in SStar(D,T ) is the descent of a semistar operation in
SStar(R, T ). To do this, denote by λ the canonical embedding of D in
T and by µ the canonical embedding of R in T . Let ? ∈ SStar(D,T ).
Consider the semistar operation (?λ)µ ∈ SStar(R, T ) (it is the descent to
R of the ascent of ? to T ). We show that the descent of (?λ)µ to D coin-
cides with ?. Let E ∈ F (D). Then E((?λ)µ)ι

= (ER)(?λ)µ
= (ERT )?λ =

(ET )?λ = E(?λ)λ
= E? (the last equality follows from Proposition 2.16(1),

since ? ∈ SStar(D,T )). It follows that ? is the descent of a semistar oper-
ation in SStar(R, T ). Hence, SStar(D,T ) = {?ι | ? ∈ SStar(R, T )}.

We deduce that
⋃

R⊆T SStar(D,T ) = {?ι | ? ∈ SStar(R)}. In particu-
lar, if D has a unique minimal overring R, then SStar(D) = (S)Star(D)∪
{?ι | ? ∈ SStar(R)}.

Moreover, consider ∗∈ SStar(R, T ). We have seen that ∗ι∈SStar(D,T ).
By Proposition 2.15(1), we have that ∗ = (∗ι)ι, that is, ∗ is the ascent to R
of the semistar operation ∗ι ∈ SStar(D,T ). It follows that SStar(R, T ) =
{?ι | ? ∈ SStar(D,T )}.

Then, there is a bijection between SStar(D,T ) and SStar(R, T ). Thus,
Card(SStar(R, T )) = Card(SStar(D,T )). Moreover, Card(SStar(R)) ≤
Card(SStar(D)) and, since, for example, dD ∈ (S)Star(D) is not a de-
scent from a semistar on R, we have that, if Card(SStar(R)) < ∞, then
Card(SStar(R)) < Card(SStar(D))

Since by Proposition 2.11(1) and Proposition 2.13(1), the finite type
property is preserved by the maps (−)ι and (−)ι, we obtain a result similar
to Corollary 2.17 for finite type semistar operations.

Corollary 2.19. Let D be an integral domain, T an overring of D.

(1) Let ? be a semistar operation of finite type on D, let T = D? and ι
the canonical embedding of D in T . Then ? is the composition of the
semistar operation ?{T} and of a (semi)star operation of finite type ∗ on
T , i.e. ? = ?{T}∗ (equivalently, ? = ∗ι, for some (semi)star operation
of finite type ∗ on T ).

(2) Let T be an overring of D and ι the canonical embedding of D in T .
Then SStarf (D,T ) =

{
?ι | ? ∈ (S)Starf (T )

}
. 2
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Corollary 2.20. Let D be an integral domain, T an overring of D. Let ? be
a semistar operation on D, such that D? = T (that is, ? ∈ SStar(D,T )).
Then:

(1) ?{T} ≤ ? ≤ v(T ).

(2) ?{T} ≤ ?f ≤ t(T ).

Proof. (1) By Corollary 2.17(1), there exists a (semi)star operation ∗ on T
such that ? = ∗ι. Since ∗ is a (semi)star operation on T , dT ≤ ∗ ≤ vT

(Lemma 1.11). It follows (Lemma 1.36) that ?{T} = (dT )ι ≤ ∗ι = ? ≤
(vT )ι = v(T ).
(2) Use the same argument of (1), applying Corollary 2.19(1) and Example
1.12.

In the following, we will denote by O(D) the set of all overrings of an inte-
gral domain D. Since it is clear that SStar(D) =

⋃
{SStar(D,T )|T ∈ O(D)}

and SStarf (D) =
⋃
{ SStarf (D,T ) |T ∈ O(D)}, and these are unions of

disjoint sets, we have the following theorem.

Theorem 2.21. Let D be an integral domain. For each T ∈ O(D), let ιT be
the canonical embedding of D in T .

(1) The map ? 7→ ?ι
D?

establishes a bijection between the set SStar(D)
and the set

⋃
{(S)Star(T ) |T ∈ O(D)}.

(2) SStar(D) =
⋃
{{?ι

T | ? ∈(S)Star(T )} |T ∈ O(D)}.

(3) The restriction of the map in (1) establishes a bijection between the set
SStarf (D) and the set

⋃
{(S)Starf (T ) |T ∈ O(D)}.

(4) SStarf (D) =
⋃ {

{?ι
T | ? ∈(S)Starf (T )} |T ∈ O(D)

}
. 2

Note that the bijection defined in Theorem 2.21 holds between the set
of semistar operations on D and the set of (semi)star operations on the
overrings of D (which, in general, contains properly the set of star operations
on the overrings under the canonical embedding Star(T ) ↪→ (S)Star(T ),
? 7→ ?e (see Section 1.2.1). We have already noted in Section 1.2.1 that, in
general, a star operation can be extended to a semistar operation (clearly
a (semi)star operation) in different ways. We have also remarked that the
extension is unique for conducive domains, or for the case of star operations
of finite type (which extend uniquely to semistar operations of finite type).
More precisely, we have the following proposition.

Proposition 2.22. Let D be an integral domain.
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(1) The map ? 7→ ?|F (D)
(where ?|F (D)

is the star operation given by the
restriction of ? to F (D), Remark 1.4) establishes a bijection between
the set (S)Starf (D) of all (semi)star operations of finite type on D
and the set Starf (D) of all star operations of finite type on D.

(2) If D is conducive, the map ? 7→ ?|F (D)
establishes a bijection between

the set (S)Star(D) of all (semi)star operations on D and the set
Star(D) of all star operations on D. 2

Corollary 2.23. Let D be an integral domain. For each T ∈ O(D), let ιT

be the canonical embedding of D in T .

(1) The map ? 7→(?ιD?)|F (D)
establishes a bijection between the set SStarf (D)

and the set
⋃
{ Starf (T ) |T ∈ O(D)}.

(2) If D is conducive, the map ? 7→ (?ιD? )|F (D)
establishes a bijection be-

tween the set SStar(D) and the set
⋃
{ Star(T ) |T ∈ O(D)}.

Proof. (1) Apply Theorem 2.21(3) and Proposition 2.22(1).
(2) Apply Theorem 2.21(1) and Proposition 2.22(2).

As a direct consequence of Theorem 2.21 and Proposition 2.11, we have
the following corollary concerning the properties preserved by the map (−)ι.

Corollary 2.24. Let D be an integral domain. Let ? be a stable (resp. can-
cellative, a.b., e.a.b., spectral) semistar operation on D, let T = D? and ι
the canonical embedding of D in T . Then ? is the composition of the semi-
star operation ?{T} and of a stable (resp., cancellative; a.b.; e.a.b.; spectral)
(semi)star operation ∗ on T , i.e. ? = ?{T}∗ [equivalently, ? = ∗ι, for some
stable (resp., cancellative; a.b.; e.a.b.; spectral) (semi)star operation ∗ on T ].
2

From the previous corollary, we deduce only that, for each semistar op-
eration ? on an integral domain D with a certain property, there exists a
particular (semi)star operation ∗ induced by ? on an overring T of D(more
precisely ∗ = ?ι, where ι is the canonical embedding of D in T ), with the
same property, such that ? is the composition of the extension to T and this
(semi)star operation. We cannot deduce that, taking a (semi)star operation
∗ on an overring T of D with a certain property, the composition of the
extension to T and ∗ has the same property. This is true for the properties
preserved by the map (−)ι (see Proposition 2.13). In these cases, we have
a bijection between the semistar operations on D with a certain property
and the (semi)star operations on the overrings of D with the same property.
This is the content of the following theorem.

Theorem 2.25. There is a canonical bijection between the set of all can-
cellative (resp. a.b., e.a.b.) semistar operations on D and the set of all
cancellative (resp. a.b., e.a.b.) (semi)star operations on the overrings of D.
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Proof. It follows from Proposition 2.11 (3),(4),(5), Proposition 2.13(2),(3)
and Proposition 2.16.

By the previous considerations the study of semistar operations (of finite
type, cancellative, a.b., e.a.b.) on an integral domain D is equivalent to the
study of all (semi)star operations (of finite type, cancellative, a.b., e.a.b.) on
D and on each of its overrings.

We have shown that the properties for which there is a bijection between
the semistar operations with that property and the (semi)star operations
with that properties on overrings are exactly the properties preserved by the
map (−)ι. For example, we have already shown (Remark 2.14(2)) that if ?
is a semistar operation on an integral domain D, if T is an overring of D,
and ι the canonical embedding of D in T , then, it is not true, in general,
that ?ι is stable (resp. spectral), when ? is a stable (resp. spectral) semistar
operation on D.

Next goal is to study when a canonical bijection also holds for stable and
for spectral semistar operations.

Proposition 2.26. Let D be an integral domain, T an overring of D and ι
the canonical embedding of D in T . Let ∗ be a semistar operation on T .

(1) If ∗ is stable and T is a flat overring of D, then ∗ι is stable.

(2) If T is a flat overring of D, then the map (−)T
ι induces a bijection

between the set of all stable semistar operations ? on D such that T =
D? and the set of all stable (semi)star operations on T .

Proof. (1) Since ∗ is stable by the hypothesis and ?{T} is stable because T
is flat (Proposition 1.13), the composition ∗ι (Example 2.1(2)) is stable by
Proposition 2.7(2).
(2) It follows from (1) and Proposition 2.11(2).

Remark 2.27. We have shown in Proposition 2.26(1) that if T is an overring
of D, and ? is a stable semistar operation on T , the flatness of T over D is
a sufficient condition for ?ι to be stable. This condition is not necessary: in
fact, let F be a localizing system on D, such that DF is not flat over D. Let ι
be the canonical embedding of D in DF. Take the semistar operation ?

F
on

D (as defined in Section 1.3) and consider the (semi)star operation ∗ := (?
F
)ι

on DF(= D?
F ). By Proposition 2.11, ∗ is stable, and, by Proposition 2.16(1),

∗ι = ?F. Then, ∗ι is stable, but DF, by the choice of F, is not flat over D.

We recall [20, Section 4] that if D is an integral domain, T an overring
of T , ? ∈ SStar(D) and ?′ ∈ SStar(T ). We say that T is (?, ?′)–flat over
D if (Q ∩D)?

f 6= D? and DQ∩D = TQ, for each quasi–?′
f

–prime ideal Q of
T .
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Proposition 2.28. Let D be an integral domain, T an overring of D and
ι the canonical embedding of D in T . Let ? = ?∆ be a spectral semistar
operation on T , defined by ∆ ⊆ Spec(T ).

(1) If TP = DP∩D (in particular if T is flat over D, [73, Theorem 2]), for
each P ∈ ∆, then ?ι is spectral.

(2) If T is (?ι, ?)-flat over D, then ?ι is spectral.

(3) If one of the hypotheses in (1) or in (2) holds, then the map (−)T
ι

induces a bijection between the set of all spectral semistar operations
on D such that T = D? and the set of all spectral (semi)star operations
on T .

Proof. (1) Let E ∈ F (D). Then, E?ι
=(ET )? =

⋂
{(ET )TP (= ETP )|P ∈ ∆}

=
⋂
{EDP∩D |P ∈ ∆}, that is, ?ι = ?∆′ , where ∆′ = {P ∩D |P ∈ ∆}.

(2) For each P ∈ ∆, P is a quasi–?–prime ideal (Section 1.2.4). So, by defi-
nition of (?ι, ?)-flatness, TP = DP∩D. Then, apply (1).
(3) It is clear, because in these cases, the map (−)ι preserves the spectral
property.

Corollary 2.29. Let D be an integral domain. For each T ∈ O(D), let ιT

be the canonical embedding of D in T . Then the following are equivalent:

(i) D is a Prüfer domain.

(ii) The map ? 7→ ?ιD? establishes a bijection between the set of all stable
semistar operations on D and the set of all stable (semi)star operations
on the overrings of D.

(iii) The map ? 7→ ?ιD? establishes a bijection between the set of all spectral
semistar operations on D and the set of all spectral (semi)star opera-
tions on the overrings of D.

Proof. (i)⇒(ii),(iii) It follows from the fact that each overring of a Prüfer
domain is flat, Proposition 2.26(2) and Proposition 2.28(3).
(ii),(iii) ⇒(i) In both cases, the fact that the bijection holds implies that the
semistar operation given by the extension to an overring of D is stable for
each overring of D and therefore each overring of D is flat, by Proposition
1.13. Then, D is a Prüfer domain by [24, Theorem 1.1.1].

2.3 Some applications

In this section, we give some applications of the results proven in Section
2.2.
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2.3.1 Semistar operations on valuation domains

We start discussing some properties of semistar operations on valuation do-
mains. Some of the results we obtain have already been proven, but only for
finite dimensional domains, in [61], [57], [64] and [63]. We generalize several
statements without restrictions on the dimension, as corollaries of the results
proven in the previous section.

First we recall a result about star operations [4, Proposition 12] (see also
[41, Theorem 15.3] for an analogous result in the context of ideal systems):

Proposition 2.30. Let V be a valuation domain, with maximal ideal M .

(1) If M2 6= M , then each ideal of V is divisorial, that is, Star(V ) = {d}.

(2) If M2 = M , then Star(V ) = {d, v}. 2

Since a valuation domain is conducive [19, Proposition 2.1], by applying
this result and Corollary 2.23, we have the following Proposition:

Proposition 2.31. Let P be a prime ideal of a valuation domain V .

(1) If P 6= P 2, then SStar(V, VP ) =
{
?{P}

}
.

(2) If P = P 2, then SStar(V, VP ) =
{
?{P}, v(VP )

}
(where v(VP ) is de-

fined as in Example 2.3). More precisely, if ? ∈ SStar(V, VP ) is
a semistar operation such that P ? = P , then ? = ?{P}, otherwise
? = v(VP ) (and in this case P ? = V ? = VP ).

(3) SStar(V ) coincides with(⋃ {
?{P}|P ∈Spec(V )

})
∪

(⋃ {
v(VQ)|Q∈Spec(V ), Q 6=(0), Q2 =Q

})
.

Proof. (1) Since (PVP ) 6= (PVP )2, we have Star(VP ) = {dVP
} by Proposi-

tion 2.30(1). Then, by Corollary 2.17, SStar(V, VP ) =
{
?{P}

}
.

(2) Apply the same argument, using Proposition 2.30(2). The final state-
ment follows from the fact that P v(VP ) = (VP : (VP : P )) = VP (since a
maximal ideal of a Prüfer domain is divisorial if and only if it is invertible,
[24, Lemma 4.1.8]).
(3) It is immediate, since SStar(D) =

⋃
{ SStar(D,T ) |T ∈ O(D)}, as we

have already observed.

In particular, for finite dimensional valuation domains, we reobtain the
following results (cf. [57, Theorem 4] and [61, Theorem 4]).

Corollary 2.32. Let (V,M) be an n-dimensional valuation domain. Then

(1) Card (SStar(V )) = n + 1 + Card
({

P ∈ Spec(V ) | P 2 6= P
})

.

(2) V is discrete if and only if Card (SStar(V )) = n + 1. 2
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Remark 2.33. Note that, if V is a valuation domain and P ∈ Spec(V ),
the semistar operations v(P ) and v(VP ) in general do not coincide. More
precisely, Proposition 2.31 shows that v(P ) = v(VP )(= ?{VP }) if and only if
P 2 6= P . We will show in Lemma 2.53 that, in general, if D is an integral
domain and I a nonzero ideal of D then v(I) = v((I : I)) if and only if I is
divisorial in (I : I).

In the following we study the semistar operations of type v(I) (as in-
troduced in Section 1.2.5) for some ideal I of a valuation domain V . In
particular, we prove that all semistar operations on valuation domains are of
this type and we characterize the ideals I of V such that v(I) is the extension
to an overring of V .

First we prove an easy lemma after recalling by [48] that an ideal I of an
integral domain D is m-canonical if (I : (I : J)) = J for each nonzero ideal
J of D. Note that I is m-canonical if and only if v(I) = de.

Lemma 2.34. Let D be a conducive domain and I a nonzero ideal of D.
The following are equivalent:

(i) I is m-canonical in (I : I).

(ii) v(I) = ?{(I:I)}.

Proof. (i) ⇒ (ii) Let ι be the canonical embedding of D in (I : I). From the
hypothesis in (i), v(I)ι coincides with the identity on integral ideals of (I : I).
Since D is conducive, it follows that v(I)ι = d(I:I). So, ?{(I:I)} = (d(I:I))ι =
((v(I))ι)ι = v(I), using the fact that Dv(I) = (I : I) and Proposition 2.16(1).
(ii)⇒ (i) If ι is the canonical embedding of D in (I : I), we have (v(I))ι =
(?{(I:I)})ι = d(I:I) and so, for each ideal J of (I : I), we have (I : (I : J)) = J ,
that is, I is m-canonical in (I : I).

Proposition 2.35. Let V be a valuation domain with quotient field K.

(1) ?{P} = v(P ) for each P ∈ Spec(V ).

(2) If ? ∈ SStar(V ), there exists a nonzero ideal I of D such that ? =
v(I).

(3) Let I be a nonzero ideal of V . Then v(I) = ?{P} if and only if I = xP
for some x ∈ K.

Proof. (1) It is easy to see that (P : P ) = VP . So, let P 6= P 2. Then, by
Proposition 2.31(1), it follows immediately that v(P ) = ?{P}. If P = P 2,
since P v(P ) = P , it follows by Proposition 2.31(2) that v(P ) = ?{P}.
(2) If ? = ?{P} for some prime ideal P of V , then ? = v(P ), by (1). So, let
? = v(VP ). Then V ? = VP is a fractional ideal of V (since V is conducive),
that is, there exist an ideal I of V and x ∈ V such that VP = x−1I. It
follows by Lemma 1.18(5) that ? = v(I).
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(3) The ‘if’ part follows from (1) and Lemma 1.18(5). So, suppose v(I) =
?{P}(= ?{VP }). Then, (I : I) = VP . Thus, by Lemma 2.34, I is m-canonical
in VP . Moreover, also P is m-canonical in VP (the maximal ideal of a val-
uation domain is m-canonical, [12, Proposition 3.1]), then I = xP for some
nonzero x ∈ K, by [48, Proposition 4.2].

As a straightforward consequence, we reobtain this well-known fact [24,
Proposition 5.3.8] about strongly discrete valuation domains, that is, valua-
tions domain with no idempotent prime ideals.

Corollary 2.36. Let V be a valuation domain. The following are equivalent:

(i) V is strongly discrete.

(ii) For each ideal I of V there exists P ∈ Spec(V ) and x ∈ K such that
I = xP .

Proof. By Proposition 2.31, P 6= P 2 for each P ∈ Spec(D) if and only if
the only semistar operations on V are the extensions to the overrings of
V . Since each semistar operation on V is of the type v(I) for a nonzero
ideal I of V (Proposition 2.35(2)), this is equivalent to the fact that for each
nonzero ideal I of V , the semistar operation v(I) coincides with the semistar
operation ?{P} for some prime ideal P of V . By Proposition 2.35(3), this is
equivalent to the fact that for each ideal I of V there exists P ∈ Spec(V )
and x ∈ K such that I = xP .

Remark 2.37. We have seen in Proposition 2.35 that, if P = P 2 is an
idempotent prime ideal of a valuation domain V , there exists an integral
ideal I ⊆ V such that v(VP ) = v(I). We want to determine “explicitly”
this ideal I, when P is a branched prime ideal. By Proposition 2.31(2), it is
enough to find an ideal I such that (I : I) = VP and P v(I) = VP .

First we recall the following result, [24, Lemma 3.1.9]:
Let I be a nonzero ideal of a valuation domain V . Then (I : I) = VP

where P is the prime ideal of all the zero divisors on V/I.
As a consequence we have the following:
If I is a P -primary ideal of a valuation domain V then (I : I) = VP .
Indeed, let I be a P–primary ideal. Let Q be the prime ideal of all the

zero-divisors on V/I. We want to show that P = Q. Clearly P ⊆ Q, since
I ⊆ Q and P is minimal over I. Conversely, let x ∈ Q. Then, by definition
of Q, there exists y ∈ V r I such that xy ∈ I. Since I is P–primary, it
follows that x ∈ P . Thus, Q ⊆ P . Hence, P is the set of all the zero-divisors
on V/I and, by the previous result, (I : I) = VP .

This result suggest to look for a P -primary ideal I. We begin observing
that since P is branched, there exists a principal ideal J = (x) such that
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P is minimal on J , [38, Theorem 17.3]. Let I = JVP ∩ V . Then I is P -
primary, since JVP is PVP -primary, having maximal radical. Then, as the
result above shows, (I : I) = VP . Let v := vVP

be the v–operation of VP .
Since P 2 = P we have (PVP )v = VP . Then, (I : P ) ⊆ (I : P )VP ⊆ (IVP :
PVP )v ⊆ ((IVP )v : (PVP )v) = ((IVP )v : VP ) = (IVP )v. Since IVP = xVP ,
we have (IVP )v = IVP and IVP = I, since I is primary. Then (I : P ) ⊆ I,
that is (I : P ) = I, since the other inclusion is straightforward. Then
P v(I) = (I : (I : P )) = (I : I) = VP . From the considerations above, it
follows that v(I) = v(VP ).

Now, we want to determine which of the semistar operations on a valu-
ation domain are spectral. Clearly, we have only to discuss the case of the
semistar v(VP ) when P is a nonzero idempotent prime ideal of the valuation
domain V . In fact, the other semistar operations are spectral since they are
the extensions to a localization of V . We recall that a prime ideal P of a val-
uation domain V is branched if there exists a P -primary ideal of V distinct
from P , and it is unbranched otherwise. From [38, Theorem 17.3(e)], P is
branched if and only if the set of the prime ideals of V properly contained
in P has a maximal element.

We have the following proposition.

Proposition 2.38. Let V be a valuation domain and P ∈ Spec(V ), P 6= 0,
such that P 2 = P . Then, the following are equivalent:

(i) The semistar operation v(VP ) is spectral.

(ii) P is unbranched and v(VP ) = ?∆, where ∆ = {Q ∈ Spec(V ) |Q ( P}.

Proof. (i)⇒(ii) It is easy to see that the only spectral semistar operation ?
such that V ? = VP for a branched prime ideal P is the extension to VP . This
follows from the fact that, to obtain V ? = VP , the prime P must be in the
set of primes defining ?. (Otherwise, V ? ⊇ VQ ) VP , if Q is the maximal
element in the set of prime ideals properly contained in P .)
(ii) ⇒ (i) We have only to prove that V ?∆ = VP and that ?∆ 6= ?{P}. That
V ?∆ = VP follows from the fact that P is unbranched. Indeed, suppose
V ?∆ = VQ ) VP . Since P is unbranched, there exists H ∈ Spec(V ), Q (
H ( P . Then H ∈ ∆ and V ?∆ ⊆ VH ( VQ, a contradiction. Hence
V ?∆ = VP . That ?∆ 6= ?{P} is straightforward since P is not contained in
any Q ∈ ∆ and then P ?∆ =

⋂
Q∈∆ PVQ =

⋂
Q∈∆ VQ = VP 6= P = P ?{P} .

Remark 2.39. (1) A different approach to the study of semistar operations
on valuation domains is suggested by the following fact, which is a straight-
forward consequence of the fact that the set of ideals of a valuation domain
is totally ordered:

Each semistar operation on a valuation domain is stable.
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It follows that each semistar operation on a valuation domain is induced
by a localizing system (Theorem 1.27(2)). It follows that the study of semi-
star operations on valuation domains is equivalent to the study of localizing
systems on valuation domains. For localizing systems on valuation domains
the following result holds (see [15, Theorem 3.3]):

Let V be a valuation domain. A set F of ideals of V is a localizing system
if and only if

(1) F = F(P ) for some P ∈ Spec(V ), or

(2) F = F̂(P ) := {I | I ⊇ P} (= F(P )∪{P}) for some P ∈ Spec(V ), with
P 2 = P .

So, the localizing systems F(P ) induce for each P ∈ Spec(V ) the semistar
operation ?{P} (Example 1.25). Moreover, if P = P 2, there is also the
semistar operation induced by the localizing system F̂(P ). It is easy to see
that V

?
F̂(P ) = (P : P ) = VP . Comparing this result with Proposition 2.31,

we have that v(VP ) = ?F̂(P ).
(2) We remark that semistar operations on a valuation domain are stable

but not necessarily spectral (we recall that a spectral semistar operation is
stable, but the converse is not true in general). Proposition 2.38 shows that,
if P is a branched idempotent prime ideal of a valuation domain V then the
semistar operation v(VP ) is not spectral (but it is stable). For example, if V
is a one dimensional valuation domain, with idempotent maximal ideal M ,
the v–operation of V is not the identity (Proposition 2.30) and it is clearly
not spectral, since M is the only nonzero prime ideal of V and ?{M} = d.

2.3.2 Semistar operations on Prüfer domains

In this section, we study more generally semistar operations on Prüfer do-
mains. We start with semistar operations of finite type:

Lemma 2.40. Let D be a Prüfer domain, ? a semistar operation of finite
type on D. Then, ? = ?{D?}.

Proof. Let ? be a semistar operation of finite type on D and let ι be the
canonical embedding of D in D?. Then, ?ι is a finite type (semi)star op-
eration on the Prüfer domain D?, that is, ?ι = dD? , the identity semistar
operation (by Lemma 1.12 and [38, Proposition 34.12]). By Proposition
2.16(1) and Example 1.37(1), we have that ? = ?{D?}.

Remark 2.41. (1) Applying this result to a valuation domain V , we obtain
that SStarf (V ) = {?{P} |P ∈ Spec(V )}.
(2) The result of Lemma 2.40 can be also proven directly using the semistar
analogue of [38, Lemma 32.17], that is:
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Let ? be a semistar operation on an integral domain D, let I be an in-
vertible ideal of D and E ∈ F (D). Then (IE)? = IE? .

The proof of this result is exactly the same as the proof in the case of
star operations.

From this, we reobtain Lemma 2.40. As a matter of fact, by the previous
statement, it follows that, if ? is a finite type semistar operation on a Prüfer
domain D and I is a finitely generated (then, invertible) ideal of D, we have
I? = (ID)? = ID?. So, since ? coincides with the extension to D? on the
set of finitely generated ideals of D, it is clear that, if ? is of finite type, it is
the extension to D? (Remark 1.6).

We can use this result to characterize Prüfer domains such that each
semistar operation is of finite type (cf. [63]). To do this, we need another
lemma:

Lemma 2.42. Let D be a conducive Prüfer domain such that each nonzero
prime ideal is contained in only one maximal ideal. Then, D is a valuation
domain.

Proof. Since D is a Prüfer, conducive domain, Spec(D) is pinched, by [19,
Corollary 3.4]. That is, there exists a nonzero prime ideal P comparable
under inclusion to each prime of D. Suppose that D has two distinct maximal
ideal M and N . Then, both must contain P , a contradiction. Hence, D is a
local Prüfer domain, that is, a valuation domain.

We recall that an integral domain D is divisorial if each nonzero fractional
ideal of D is divisorial, that is, if Iv = I, for each I ∈ F (D). With the
notation of Remark 1.10, this is equivalent to the fact that v = de. The
domain D is totally divisorial if each overring of D is divisorial. (For results
on divisorial domains see for example [47], [14]; for totally divisorial domains
see [13], [66].)

Theorem 2.43. Let D be a Prüfer domain. Then, the following are equiv-
alent:

(i) Each semistar operation on D is of finite type.

(ii) Each semistar operation on each overring of D is of finite type.

(iii) Each semistar operation on D is an extension to an overring of D.

(iv) D is conducive and totally divisorial.

(v) D is a strongly discrete valuation domain.

Proof. (i) ⇔ (ii) It is a consequence of Proposition 2.15(1) and Proposition
2.11(1).
(i) ⇔ (iii) It follows immediately by Lemma 2.40 and the fact that the
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extensions to overrings are semistar operations of finite type (Section 1.2.3).
(iii) ⇒ (iv) Let de be the trivial extension of the identity star operation.
From the hypothesis, it is the extension to D, that is, the identity semistar
operation. Then, D is conducive (Lemma 1.9). To see that D is totally
divisorial, take an overring T of D and let ι be the canonical embedding
of D in T . Consider vT the v-(semi)star operation on T . Note that by
the hypothesis, SStar(D,T ) =

{
?{T}

}
. Thus, (vT )ι = ?{T}, since (vT )ι ∈

SStar(D,T ). So, by Proposition 2.15(1), vT = ((vT )ι)ι = (?{T})ι = dT ,
and T is a divisorial domain. Hence, D is totally divisorial.
(iv) ⇒ (v) Since D is divisorial, each nonzero prime of D is contained only in
one maximal ideal [47, Theorem 2.4]. Then, by Lemma 2.42, D is a valuation
domain. Let P ∈ Spec(D). By the hypothesis, Star(DP ) = {d}. Then,
by Corollary 2.17(2), SStar(D,DP ) =

{
?{P}

}
and P 6= P 2, by Proposition

2.31. Hence, D is strongly discrete.
(v)⇒(i) It is a straightforward consequence of Proposition 2.31.

Remark 2.44. We note that in the proof of (iii)⇒(iv) we have not used the
hypothesis that D is a Prüfer domain. We will see in Proposition 2.51 that
also (iv) ⇒ (iii) is always true.

We recall that a Prüfer domain D is called a generalized Dedekind domain
(GDD for short) if each localizing system of D is of finite type, [24, Theorem
5.2.1.]. Then, by Theorem 1.30, D is a GDD if and only if each stable
semistar operation is of finite type. A domain D is an H-domain if, for each
ideal I such that I−1 = D, there exists a finitely generated ideal J ⊆ I such
that J−1 = D [39]. To finish this section, we show another example on how
the techniques developed in Section 2.2 can be used, giving a characterization
of generalized Dedekind domains in terms of H-domains. First, we need a
characterization of H-domains in terms of semistar operations.

Proposition 2.45. Let D be an integral domain. The following are equiva-
lent:

(i) D is an H-domain.

(ii) The localizing system Fv (associated to the v-operation of D, i.e. Fv :=
{I | I ideal of D, Iv = D}) is finitely generated.

(iii) ?Fv = ṽ(= w).

Moreover, if D is a Prüfer domain, these conditions are equivalent to:

(iv) ?Fv = d.

Proof. (i) ⇔ (ii) It is straightforward, since, for each ideal I of D, we have
Iv = D (that is, I ∈ Fv) if and only if I−1 = D.
(ii) ⇔ (iii) It follows easily from the results in Section 1.3 and Section 1.4.
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Indeed, Fv is finitely generated if and only if Fv = (Fv)f if and only if
?Fv = ?(Fv)f

= ṽ.
(iii)⇔(iv) It follows from the fact that, in a Prüfer domain, ṽ = d (since ṽ
is a finite type (semi)star operation and so ṽ ≤ t, by Lemma 1.12, and in a
Prüfer domain t = d [38, Proposition 34.23]).

Now, we conclude with the following:

Theorem 2.46. Let D be a Prüfer domain. The following are equivalent:

(i) D is a GDD.

(ii) D is an H-domain and each overring of D is an H-domain.

(iii) Every stable semistar operation on D is an extension to an overring of
D.

Proof. (i) ⇒ (ii) The localizing system Fv, where v is the v-(semi)star oper-
ation of D is finitely generated by the hypothesis and so D is an H-domain.
So, we have proved that a GDD is an H-domain. Since each overring of a
GDD is a GDD [24, Theorem 5.4.1], then each overring of D is an H-domain.
(ii) ⇒ (iii) Let ? be a stable semistar operation on D. Let ι be the canonical
embedding of D in D?. Then ?ι is a stable (semi)star operation on D?, by
Proposition 2.11(2) and (7). Then, by the fact that the bijection between
stable semistar operations and localizing systems is order preserving (The-
orem 1.30), we have ?ι ≤ ?FvD? . Moreover, since D? is a Prüfer H-domain,
Proposition 2.45 implies ?FvD? = dD? . Thus ?ι = dD? . Hence ? = ?{D?}, by
Proposition 2.16(1) and Example 1.37(1).
(iii) ⇒ (i) Since the semistar operation given by the extension to an overring
is of finite type (Section 1.2.3), we have that every stable semistar operation
is of finite type. Hence, D is a GDD.

2.3.3 Integral domains with all semistar operations spectral

Next question is: when are all semistar operations on an integral domain
spectral? We give a complete characterization of such domains in the local
case.

To begin, we give an easy consequence of Proposition 1.13.

Corollary 2.47. Let D be an integral domain such that each semistar op-
eration on D is stable. Then:

(1) D is a Prüfer domain.

(2) Each semistar operation on each overring of D is stable.
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Proof. (1) If each semistar operation is stable, in particular each extension
to an overring is stable. Then, by Proposition 1.13, each overring of D is
flat. It follows that D is a Prüfer domain [24, Theorem 1.1.1].
(2) By (1), it follows that each overring of D is flat over D. Now, the result
is a consequence of Proposition 2.26(1), Proposition 2.11(2)and Proposition
2.15(1).

A similar result holds for spectral semistar operations.

Proposition 2.48. Let D be an integral domain such that each semistar
operation on D is spectral. Then:

(1) D is a Prüfer domain.

(2) Each semistar operation on each overring of D is spectral.

Proof. (1) Note that spectral semistar operations are stable and apply Corol-
lary 2.47(1).
(2) By (1), it follows that each overring of D is flat over D. Now, the result
is a consequence of Proposition 2.28(1), Proposition 2.11(6)and Proposition
2.15(1).

We have the following characterization of local domains such that each
semistar operation is spectral.

Corollary 2.49. Let D be a local domain. The following are equivalent:

(i) Every semistar operation on D is spectral.

(ii) D is a discrete valuation domain (that is, a valuation domain with all
idempotent prime ideals unbranched).

Proof. (i) ⇒ (ii) By Proposition 2.48(1), D is a valuation domain. Let P ∈
Spec(D). If P 2 6= P , the only semistar operation in SStar(D,DP ) is ?{P},
which is spectral. If P 2 = P , P 6= 0, with the notations of Proposition 2.31,
SStar(D,DP ) =

{
?{P}, v(VP )

}
. We have already shown in Proposition

2.38, that, if P is branched, only ?{P} is spectral. Thus, v(VP ) is not spectral,
a contradiction, since each semistar operation on D is spectral. Thus, D has
not branched idempotent nonzero prime ideals and D is a discrete valuation
domain.
(ii)⇒ (i) It is an immediate consequence of Proposition 2.38.

As a consequence, we have the following:

Proposition 2.50. Let D be an integral domain, such that each semistar
operation on D is spectral. Then D is a Prüfer domain, such that DP is a
discrete valuation domain for each P ∈ Spec(D).

Proof. It follows by Proposition 2.48(1) and (2), and Corollary 2.49.
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2.3.4 Totally divisorial domains and the semistar operation
v(I)

In this section, we want to improve the following result (for a different proof
see [63]):

Proposition 2.51. Let D be an integral domain. The following are equiva-
lent:

(i) D is totally divisorial and conducive.

(ii) Each semistar operation on D is an extension to an overring.

Proof. (i) ⇒(ii) Let ? be a semistar operation on D and ι the canonical
embedding of D in D?. Then, ?ι is a (semi)star operation on the divisorial
(conducive) domain D?. It follows that ?ι = dD? . Hence, ? = ?{D?}, by
Proposition 2.16(1) and Example 1.37(1).
(ii) ⇒(i) See Remark 2.44.

To do this, we will use the notion of “stable” domain. We recall that
an ideal I of an integral domain D is stable (or SV-stable) if I is invertible
in the domain (I : I). A domain D is stable if each nonzero ideal of D is
stable. This concept was introduced by J. Sally and W. Vasconcelos [74],
and developed in particular by B. Olberding in a series of papers (see for
example [69], [67], [68], [70]).

We will use the following characterization of totally divisorial domains,
due to Olberding [68, Theorem 3.12]:

Theorem 2.52. An integral domain D is totally divisorial if and only if D
is a stable divisorial domain. 2

We start with an easy lemma.

Lemma 2.53. Let D be an integral domain, I a nonzero ideal of D. Then
v(I) = v((I : I)) if and only if I is divisorial in (I : I).

Proof. Since Dv(I) = (I : I), we have v(I) ≤ v((I : I)) by Corollary 2.20.
On the other hand, Proposition 1.20 implies that v((I : I)) ≤ v(I) if and
only if Iv((I:I)) = I, that is, if and only if I is divisorial in (I : I).

We have the following characterization of stable domains (the equivalence
(i) ⇔ (iv) is due to B. Olberding, [70, Theorem 3.5]).

Theorem 2.54. Let D be an integral domain. Then, the following are equiv-
alent:

(i) D is stable.

(ii) v(I) = v((I : I)), for each nonzero ideal I of D.
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(iii) If I and J are nonzero ideals of D such that (I : I) = (J : J), then
v(I) = v(J).

(iv) I is divisorial in (I : I), for each nonzero ideal I of D.

Proof. (i) ⇔ (iv) [70, Theorem 3.5].
(ii) ⇒ (iii) It is straightforward.
(iii)⇒(ii) Since (I : I) is a fractional ideal of D, there exists a nonzero ideal
J of D and a nonzero element x ∈ D such that (I : I) = x−1J . Clearly,
(I : I) = ((I : I) : (I : I)) = (x−1J : x−1J) = (J : J) (this is a consequence
of Lemma 1.15(1) and (2)). By the hypothesis, v(I) = v(J). Moreover,
v(J) = v((I : I)), by Lemma 1.18(5). Hence, v((I : I)) = v(I).
(ii) ⇔ (iv) is the equivalence proven in Lemma 2.53.

We define an ideal I to be quasi-m-canonical if I is m-canonical as an
ideal of (I : I).

Example 2.55. Let D be a pseudo-valuation domain (that is not a valuation
domain) with maximal ideal M and let V := M−1 = (M : M) the valuation
domain associated to D. Since in a local ring R the maximal ideal is m-
canonical if and only if R is a valuation domain [12, Proposition 3.1], M is
not m-canonical as an ideal of D, but it is m-canonical as an ideal of V . So,
M is a quasi-m-canonical ideal of D that is not m-canonical.

We have shown in Lemma 2.34 that, in a conducive domain, an ideal I
is quasi-m-canonical if and only if v(I) = ?{(I:I)}. In general we have the
following:

Lemma 2.56. Let D be an integral domain and I an ideal of D. The
following are equivalent:

(i) I is quasi-m-canonical.

(ii) (v(I))|F (D)
= (?{(I:I)})|F (D)

.

(iii) v(I) = (?{(I:I)})e (where (?{(I:I)})e is defined as in Remark 1.10).

Proof. (i) ⇒(ii) Let J be a nonzero ideal of D. Then J(I : I) is an ideal of
(I : I). It is easy to see that (I : J) = (I : J(I : I)) (this follows from the
fact that I(I : I) = I). Moreover, since I is m-canonical in (I : I) it follows
that Jv(I) = (I : (I : J)) = (I : (I : J(I : I))) = J(I : I) = J?{(I:I)} .
(ii) ⇒ (i) Let J be a nonzero ideal of (I : I). It is clear that J ∈ F (D),
because J ∈ F (D) and for each element x ∈ I ⊆ D, xJ ⊆ x(I : I) ⊆ I ⊆ D.
Then, by the hypothesis, (I : (I : J)) = Jv(I) = J?{(I:I)} = J(I : I) = J , and
I is m-canonical as an ideal of (I : I).
(ii) ⇒ (iii) First, we notice that (?{(I:I)})e is a semistar operation on D,
since (D : (I : I)) ⊇ I 6= (0) (Remark 1.10). Moreover, since (?{(I:I)})e
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and ?{(I:I)} coincide on F (D) (Remark 1.10), by the hypothesis, v(I) and
(?{(I:I)})e coincide on F (D). Since both v(I) and (?{(I:I)})e are trivial on
F (D) (Section 1.2.5 and Remark 1.10), they coincide on all F (D). Hence
v(I) = (?{(I:I)})e.
(iii) ⇒ (ii) v(I)|F (D)

= ((?{(I:I)})e)|F (D)
= (?{(I:I)})|F (D)

.

We can now prove a characterization of totally divisorial domains without
the conducive assumption.

Theorem 2.57. Let D be an integral domain. The following are equivalent:

(i) D is totally divisorial.

(ii) Each nonzero ideal of D is quasi-m-canonical.

(iii) (I : I) is a divisorial domain for each nonzero ideal I of D.

Proof. (i) ⇒ (ii) Let I be an ideal of D and let ι be the embedding of D in
(I : I). Since the overring (I : I) is divisorial, it follows that v(I:I) = (d(I:I))e.
Since Dv(I) = (I : I), we have that v(I) ≤ v((I : I)) = (v(I:I))ι, by Corollary
2.20(1) and Example 2.3. Let J ∈ F (D). It follows that Jv(I) ⊆ J (v(I:I))

ι
=

(J(I : I))(v(I:I)) = (J(I : I))(d(I:I))e = J(I : I) = J?{(I:I)} . The opposite
inclusion is obvious, since ?{(I:I)} ≤ v(I) by Corollary 2.20(1). Therefore, by
Lemma 2.56, I is quasi-m-canonical.
(ii)⇒ (i) We use the characterization given in Theorem 2.52. Note that
D is divisorial since, by the hypothesis, D is quasi-m-canonical and then
m-canonical, since (D : D) = D. This is equivalent to the fact that
D is a divisorial domain. We want to prove that D is a stable domain
using Theorem 2.54(i)⇔(iii). Let I, J be nonzero ideals of D such that
(I : I) = (J : J) =: T . Since both I and J are quasi-m-canonical, by Lemma
2.56(i)⇔(iii), v(I) = v(J)( = (?{T})e), thus D is stable. Since D is divisorial
and stable, then it is totally divisorial by Theorem 2.52.
(i) ⇒ (iii) is obvious.
(iii) ⇒ (ii) Let I be a nonzero ideal of D and let ι be the embedding of D
in (I : I). The semistar operation v(I)ι is a (semi)star operation on (I : I).
It follows by Lemma 1.11 that v(I)ι ≤ v(I:I). Since (I : I) is divisorial,
v((I : I)) = (d(I:I))e. Then, v(I) = (v((I : I)))ι = ((d(I:I))e)ι = (?{(I:I)})e.
Hence, I is quasi-m-canonical by Lemma 2.56(iii)⇒(i).

So, it is enough that the overrings of the form (I : I) are divisorial for
all nonzero ideals I of D , to have that D is totally divisorial. We notice
that the set {(I : I) | I nonzero ideal of D} in general is properly contained
in the set O(D) of the overrings of D. It is easy to see that O(D) = {(I :
I) | I nonzero ideal of D} if and only if D is a conducive domain.
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Remark 2.58. We have seen that domains with each nonzero ideal quasi-m-
canonical are exactly the totally divisorial domain. It is natural to ask when
all nonzero ideals of an integral domain D are m-canonical. So, let D be
an integral domain such that each nonzero ideal is m-canonical. We notice
that, if I is an m-canonical ideal of D, then (I : I) = D. Thus, (I : I) = D
for each nonzero ideal I of D and then D is completely integrally closed by
[38, Theorem 34.3]. In addition, D is m-canonical and then every nonzero
ideal of D is divisorial. Then, by [24, Proposition 4.3.5], D is a Dedekind
domain. On the other hand it is clear that every ideal of a Dedekind domain
is m-canonical, since a nonzero ideal I of a Dedekind domain is invertible
and so v(I) = vD = dD (note that in this case F (D) = F (D) = f(D)).

2.3.5 Integral domains with at most dim(D) + 2 semistar op-
erations

The study of the number of semistar operations on integral domain of finite
Krull dimension has been object recently of a series of papers by R. Matsuda
([61] with T. Sugatani, [56], [58], [59], [60]). In this section we study when a
domain D has at most or exactly dim(D) + 2 semistar operations.

Let D be an integral domain of Krull dimension n. We give a new proof
of the following result about integral domains with n+1 semistar operations
(cf. [57, Theorem 4]).

Theorem 2.59. Let D be an integral domain of Krull dimension n, with
quotient field K. The following are equivalent:

(1) D is a strongly discrete valuation domain.

(2) Card(SStar(D)) = n + 1. 2

Proof. (1) ⇒ (2) It is Corollary 2.32
(2) ⇒ (1) Let M be a maximal ideal of height n. Since each overring of D
induces a semistar operation and since D has at least n + 1 overrings given
by the localizations to the prime ideals contained in M (including (0)), the
semistar operations of D are exactly the extensions to the localizations of D
at these prime ideals. In particular, D is local (another maximal ideal would
give another overring and then another semistar operation). Moreover, each
semistar operation is obviously spectral (and of finite type). Then D is a
discrete (strongly discrete since D is of finite dimension) valuation domain
by Corollary 2.49.

In the following we want to characterize the domains D of Krull dimen-
sion n such that Card(SStar(D)) = n + 2. So, let D be an integral domain
of Krull dimension n with quotient field K and n + 2 semistar operations.

First, we notice that D has a chain of primes M = Pn ) Pn−1 ) Pn−2 )
. . . ) P1 ) P0 = (0), where M is a maximal ideal of D. Each of this
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primes induces a semistar operation ?{Pi}, i = 0, 1, . . . , n. So, n + 1 semistar
operations are given by the extension to a localization of D (we notice that
?{P0} is the e-operation as defined in Section 1.2.1). Then, there is only one
semistar operation not given by an extension to one of these primes.

The first consequence is that Spec(D) is totally ordered.

Lemma 2.60. Let D be an integral domain of dimension n such that
Card(SStar(D)) = n + 2. Then, Spec(D) is totally ordered.

Proof. Suppose that M is a maximal ideal of D wit ht(M) = n and assume
that D has another maximal ideal N . Then, we have the n + 1 semistar op-
erations given by the extension to the primes contained in M , the extension
to DN and the identity semistar operation, that is, we have (at least) n + 3
semistar operations, a contradiction. So, D is local.

Suppose now that Spec(D) is not totally ordered. It means that there
are the prime ideals M = Pn ) Pn−1 ) Pn−2 ) . . . ) P1 ) P0 = (0) and
also another prime ideal Q 6= Pi, i = 0, 1, . . . , n. Now, D has (at least)
n + 2 primes. It follows that the n + 2 semistar operations are exactly the
spectral semistar operations induced by these prime ideals. So, D is a local
domain such that each semistar operation is spectral, and so, by Corollary
2.49, D is a (strongly discrete) valuation domain, a contradiction since we
have supposed that Spec(D) is not totally ordered.

We study now the case in which D is integrally closed.

Theorem 2.61. Let D be an integrally closed integral domain of dimension
n. The following are equivalent:

(i) Card(SStar(D)) = n + 2.

(ii) D is a valuation domain with exactly one idempotent prime ideal.

Proof. (i)⇒(ii) By Lemma 2.60, we have that the prime ideals of D are
exactly M = Pn ) Pn−1 ) Pn−2 ) . . . ) P1 ) P0 = (0) that give n + 1
semistar operations. Consider the v-operation of D. Note that v 6= ?{Pk},
for each k = 0, 1, . . . , n − 1, since v is a (semi)star operation. If v = d, in
particular t = d. Then, since D is a local integrally closed domain, by [38,
Proposition 34.12], it follows that D is a valuation domain. Suppose that
v 6= d. In this case, the n + 2 semistar operations are the n + 1 spectral
ones and the v-operation. It follows that the only overrings of D are its
localizations at the primes (another overring would give another semistar
operation) and D is a Prüfer domain (and then a valuation domain) by [24,
Theorem 1.1.1]. So, in any case, D is a valuation domain and it has exactly
one idempotent prime ideal by Corollary 2.32(1).
(ii)⇒(i) It is a consequence of Corollary 2.32(1).

We examine now the case in which D is not integrally closed.

52



Theorem 2.62. Let D be a not integrally closed integral domain of dimen-
sion n. The following are equivalent:

(i) Card(SStar(D)) = n + 2.

(ii) D is a divisorial pseudo-valuation domain with maximal ideal M , such
that the valuation domain V = M−1 is strongly discrete and there are
no proper overrings of D properly contained in V .

(iii) D is a totally divisorial pseudo-valuation domain with maximal ideal
M , such that the valuation domain V = M−1 is strongly discrete and
there are no proper overrings of D properly contained in V .

Proof. (i)⇒(iii) By Lemma 2.60, Spec(D) is totally ordered. Let M = Pn )
Pn−1 ) Pn−2 ) . . . ) P1 ) P0 = (0) be the prime ideals of D. Let D′ be the
integral closure of D. Since D′ has dimension n it has exactly n+1 semistar
operations. Indeed, it has at least n + 1 semistar operations, the extension
to the localizations at prime ideals. Suppose that Card(SStar(D′)) ≥ n + 2.
By Remark 2.18, since D has a finite number of semistar operations, it
follows that n + 2 ≤ Card(SStar(D′)) < Card(SStar(D)), a contradiction.
Then, D′ has exactly n + 1 semistar operations, that is, D′ is a strongly
discrete valuation domain (Theorem 2.59). Moreover, D′ ⊆ DPn−1 . In fact,
if D′ 6⊆ DPn−1 , we would have on D the n+1 semistar operations descending
from D′, the extension to DPn−1 and the identity semistar operation. Then,
at least n+3 semistar operations, a contradiction. It follows that D ( D′ (
DPn−1 ( DPn−2 ( . . . ( DP1 ( K are the overrings of D and the n + 2
semistar operations are exactly the extensions to these overrings. Hence,
D is totally divisorial (and conducive) by Proposition 2.51. In particular,
the v-operation of D coincides with the d-operation. Then, each (semi)star
operation is the identity, by Lemma 1.11. From this, we can deduce that
D′ = (M : M). Indeed, consider the semistar operation v(M). If (M :
M) = D, then v(M) is a (semi)star operation, thus v(M) = d and so M
is m-canonical. By [12, Proposition 3.1], a local domain with the maximal
ideal m-canonical is a valuation domain. So, D is a valuation domain, a
contradiction. Then, D ( (M : M) and (M : M) = D′ (clearly (M : M)
cannot be one of the DPi , i 6= n, since M is an ideal of (M : M)). It
follows that (M : M) is a valuation domain with maximal ideal M (since the
extension D ⊂ (M : M) is integral). Hence D is a pseudo-valuation domain
by [45, Theorem 2.7].

(ii)⇒(iii) Note that there are no proper overrings of D not containing V .
Indeed, let T be a proper overring of D not containing V and let x ∈ V rT .
By the hypothesis, T 6⊆ V . Then, there exists t ∈ T such that t 6∈ V . It
follows that t−1 ∈ M ⊆ D ⊆ T . Now, x = xtt−1, with xt−1 ∈ M ⊆ T
and t ∈ T . It follows that x ∈ T , a contradiction. Hence, the proper
overrings of D are exactly the overrings of V . Now, D is divisorial, and each
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overring of V is divisorial, since V is strongly discrete and so totally divisorial
(this is a straightforward consequence of Proposition 2.30(1), cf. also [13,
Proposition 7.6]). Hence, D and all its proper overrings are divisorial, i.e.,
D is totally divisorial.

(iii) ⇒ (ii) is straightforward.
(iii)⇒(i) D is totally divisorial (by the hypothesis) and conducive (by

[19, Proposition 2.1]). Hence, Proposition 2.51 implies that the semistar
operations on D are as many as the overrings of D. As we have shown in the
proof of (ii) ⇒ (iii), the proper overrings of D are also overrings of V . Note
that V is the integral closure of D, so dim(V ) = n and V has exactly n + 1
overrings. Hence, D has n + 2 overrings and so n + 2 semistar operations
(the identity and the n + 1 operations given by the extensions to the proper
overrings of D).
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Chapter 3

Semistar invertibility

3.1 Semistar invertibility

Let ? be a semistar operation on an integral domain D. Let I ∈ F (D),
we say that I is ?–invertible if

(
II−1

)? = D? [26, page 30]. In particular
when ? = d [respectively, v , t (:= v

f
) , w (:= ṽ) ] is the identity (semi)star

operation [respectively, the v–operation, the t–operation, the w–operation]
we reobtain the classical notion of invertibility [respectively, v–invertibility,
t–invertibility, w–invertibility ] of a fractional ideal.

Lemma 3.1. Let ?, ?1, ?2 be semistar operations on an integral domain D.
Let Inv(D, ?) be the set of all ?–invertible fractional ideals of D and Inv(D)
(instead of Inv(D, d)) the set of all invertible fractional ideals of D. Then:

(0) D ∈ Inv(D, ?).

(1) If ?1 ≤ ?2, then Inv(D, ?1) ⊆ Inv(D, ?2). In particular, Inv(D) ⊆
Inv(D, ?̃) ⊆ Inv(D, ?

f
) ⊆ Inv(D, ?).

(2) I, J ∈ Inv(D, ?) if and only if IJ ∈ Inv(D, ?).

(3) If I ∈ Inv(D, ?) then I−1 ∈ Inv(D, ?).

(4) If I ∈ Inv(D, ?) then Iv ∈ Inv(D, ?).

Proof. (0) and (1) are obvious.
(2) If I, J ∈ Inv(D, ?), then D? =

(
II−1

)? (
JJ−1

)? ⊆
(
II−1JJ−1

)? ⊆(
IJ(IJ)−1

)? ⊆ D?. Thus, IJ ∈ Inv(D, ?). Conversely, if IJ ∈ Inv(D, ?),
then D? = ((IJ)(D : IJ))? = (I(J(D : IJ)))?. Since (J(D : IJ)) ⊆ (D : I),
it follows (I(D : I))? = D?. Similarly, (J(D : J))? = D?.

(3) D? =
(
II−1

)? ⊆
(
(I−1)−1I−1

)? ⊆ D?.
(4) follows from (3).
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Remark 3.2. (a) Note that D is the unit element of Inv(D, ?) with re-
spect to the standard multiplication of fractional ideals of D. Nevertheless,
Inv(D, ?) is not a group in general (under the standard multiplication), be-
cause for I ∈ Inv(D, ?), then I−1 ∈ Inv(D, ?), but II−1 6= D, if I 6∈ Inv(D).
For instance, let k be a field, X and Y two indeterminates over k, and let
D := k[X, Y ](X,Y ). Then D is a local Krull domain, with maximal ideal
M := (X, Y )D. Let ? = v, then clearly Mv = D, since ht(M) = 2, thus M
is v–invertible but M is not invertible in D, since it is not principal. There-
fore (MM−1)v = D, but M = MM−1 ( D. We will discuss later what
happens if we consider the semistar (fractional) ideals semistar invertible
with the “semistar product”.

(b) Let I ∈ F (D). Assume that I ∈ Inv(D, ?) and (D? : I) ∈ F (D),
then we will see later that (D? : I) = (D : I)? (Lemma 3.11, Remark 3.14(d1)
and Proposition 3.17), more precisely that:(

I−1
)? = (D : Iv)? = (D? : I)? = (D? : I) = (I?)−1 .

However, in this situation, we may not conclude that (D? : I) (or, (D :
I)?) belongs to Inv(D, ?) (even if (D : I) ∈ Inv(D, ?), by Lemma 3.1(3)). As
a matter of fact, more generally, if J ∈ Inv(D, ?) and J? ∈ F (D), then J?

does not belong necessarily to Inv(D, ?).
For instance, let K be a field and X, Y two indeterminates over K, set

T := K[X, Y ] and D := K + Y K[X, Y ]. Let ?{T} be the semistar operation
on D defined by E?{T} := ET , for each E ∈ F (D). Then J := Y D is
obviously invertible (hence ?{T}–invertible) in D and J?{T} = JT = Y T =
Y K[X, Y ] = (D : T ) is a nonzero (maximal) ideal of D (and, at the same
time, a (prime) ideal of T ), but J?{T} is not ?{T}–invertible in D, because
(J?{T}(D : J?{T}))?{T} = (JT (D : JT ))T = (Y T (D : Y T ))T = (Y TY −1(D :
T ))T = (T (Y T ))T = Y T ( T = D?{T} .

(c) Note that the converses of (3) and (4) of Lemma 3.1 are not true in
general. For instance, take an integral domain D that is not an H–domain
(recall that an H–domain is an integral domain D such that, if I is an ideal
of D with I−1 = D, then there exists a finitely generated J ⊆ I, such that
J−1 = D [39, Section 3]). Then, there exists an ideal I of D such that
Iv = I−1 = D and It ( D. It follows that

(
I−1Iv

)t = D ( and so, I−1 and
Iv are t–invertibles), but

(
II−1

)t = It ( D, that is, I is not t–invertible.
On the other hand, note that, trivially, I is v–invertible.

An explicit example is given by a 1–dimensional non discrete valuation
domain V with maximal ideal M . Clearly, V is not an H–domain [39,
(3.2d)], M−1 = Mv = V [38, Exercise 12 p.431] and M t =

⋃
{Jv|J ⊆

M,J finitely generated} =
⋃
{J |J ⊆ M,J finitely generated} = M ( V . In

this case, M−1 and Mv are obviously t–invertibles, but M is not t–invertible.

Corollary 3.3. Let ? be a semistar operation on an integral domain D and
let I ∈ F (D).

(1) If I is ?–invertible, then I is v(D?)–invertible and I? = Iv(D?).
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(2) If I is ?f–invertible, then I is t(D?)–invertible and I? = It(D?).

Proof. (1) Since ? ≤ v(D?) (Corollary 2.20(1)), it follows from Lemma 3.1(1)
that if I is ?-invertible then I is v(D?)-invertible. Now, observe that Iv(D?) =
(D? : (D? : I)) ⊆ (D? : (D : I)), so I−1Iv(D?) ⊆ D?. Thus we have that
I? ⊆ Iv(D?) ⊆ ((II−1)?Iv(D?))? = (I(I−1Iv(D?)))? ⊆ (ID?)? = I?. It follows
that I? = Iv(D?).
(2) It follows, using a similar argument, by the fact that ? ≤ t(D?) (Corollary
2.20(2)).

If I ∈ F (D), we say that I is ?–finite if there exists J ∈ f(D) such that
J? = I?. It is immediate to see that if ?1 ≤ ?2 are semistar operation and
I is ?1–finite, then I is ?2–finite. In particular, if I is ?

f
–finite, then it is

?–finite.
We notice that, in the previous definition of ?–finite, we do not require

that J ⊆ I. Next result shows that, with this “extra” assumption, ?–finite is
equivalent to ?

f
–finite.

Lemma 3.4. Let ? be a semistar operation on an integral domain D with
quotient field K. Let I ∈ F (D). Then, the following are equivalent:

(i) I is ?
f
–finite.

(ii) There exists J ⊆ I, J ∈ f(D) such that J? = I?.

Proof. It is clear that (ii) implies (i), since J? = J?
f , if J is finitely gen-

erated. On the other hand, suppose I ?
f
–finite. Then, I?

f = J
?
f

0 , with
J0 := (a1, a2, . . . , an)D, for some family {a1, a2, . . . , an} ⊆ K. Since J0 ⊆
I?

f , there exists a finite family of finitely generated fractional ideals of D,
J1, J2, . . . , Jn ⊆ I, such that ai ∈ J?

i , for i = 1, 2, . . . , n. It follows that
I?

f = J
?
f

0 ⊆
(
J

?
f

1 + J
?
f

2 + . . . + J
?
f

n

)?
f = (J1 + J2 + . . . + Jn)?

f ⊆ I?
f . Set

J := J1 + J2 + . . . + Jn. Then, J is finitely generated, J ⊆ I and J?
f = I?

f ,
thus J? = I?.

Remark 3.5. Extending the terminology introduced by Zafrullah in the star
setting [81] (cf. also [82, p. 433]), given a semistar operation on an integral
domain D, we can say that I ∈ F (D) is strictly ?–finite if I? = J?, for
some J ∈ f(D), with J ⊆ I. With this terminology, Lemma 3.4 shows that
?

f
–finite coincides with strictly ?

f
–finite. This result was already proven, in

the star setting, by Zafrullah [81, Theorem 1.1]. Note that Querré studied
the strictly v–finite ideals [71], using often the terminology of quasi–finite
ideals.

For examples of ?–finite ideals that are not ?
f
–finite (when ? is the v–

operation), see [34, Section (4c)], where domains with all the ideals v–finite
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(called DVF–domains), that are not Mori domains (that is, such that not all
the ideals are t–finite) are described.

Lemma 3.6. Let ? be a semistar operation on an integral domain D and let
I ∈ F (D). Then I is ?

f
–invertible if, and only if, (I ′I ′′)? = D?, for some

I ′ ⊆ I, I ′′ ⊆ I−1, and I ′, I ′′ ∈ f(D). Moreover, I ′? = I? and I ′′? =
(
I−1

)?.

Proof. The “ if” part is trivial. For the “only if”: if
(
II−1

)?
f = D?

f , then
H? = D? for some H ⊆ II−1, H ∈ f(D). Therefore, H = (h1, h2 . . . , hn)D,
with hi = x1,iy1,i + x2,iy2,i + . . . + xki,iyki,i, with the x’s in I and the y’s in
I−1. Let I ′ be the (fractional) ideal of D generated by the x’s and let I ′′

be the (fractional) ideal of D generated by the y’s. Then, H ⊆ I ′I ′′ ⊆ II−1

and so D? = (I ′I ′′)?, and, thus, also D? =
(
I ′I−1

)? = (II ′′)?. Moreover,
I? = (ID?)? =

(
I

(
I ′I−1

)?)?
=

(
(II−1)?I ′

)? = (D?I ′)? = I ′?. In a similar
way, we obtain also that I ′′? =

(
I−1

)?.

A classical result due to Krull [51, Théorème 8, Ch. I, §4] shows that, for
a star operation of finite type, star–invertibility implies star–finiteness. The
following result gives a more complete picture of the situation in the general
semistar setting.

Proposition 3.7. Let ? be a semistar operation on an integral domain D.
Let I ∈ F (D). Then I is ?

f
–invertible if and only if I and I−1 are ?

f
–finite

(hence, in particular, ?–finite) and I is ?–invertible.

Proof. The “only if” part follows from Lemma 3.6 and from the fact that
?

f
≤ ?.
For the “if” part, note that by assumption I?

f = J ′?f = J ′? and (I−1)?
f =

J ′′?f = J ′′?, with J ′, J ′′ ∈ f(D). Therefore:(
II−1

)?
f =

(
J ′J ′′

)?
f =

(
J ′J ′′

)? =
(
J ′

?
J ′′

?)? = (I?
(
I−1)?

)? =
(
II−1

)? = D?.

Next goal is to investigate when the ?–invertibility coincides with the
?

f
–invertibility.

Let ? be a semistar operation on an integral domain D, we say that D is
an H(?)–domain if, for each nonzero integral ideal I of D such that I? = D?,
there exists J ∈ f(D) with J ⊆ I and J? = D?. It is easy to see that, for
? = v, the H(v)–domains coincide with the H–domains introduced by Glaz
and Vasconcelos.

Lemma 3.8. Let ? be a semistar operation on an integral domain D. Then
D is an H(?)–domain if and only if each quasi–?

f
–maximal ideal of D is a

quasi–?–ideal of D.
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Proof. Assume that D is an H(?)–domain. Let Q = Q?
f ∩D be a quasi–?

f
–

maximal ideal of D. Assume that Q? = D?. Then, for some J ∈ f(D), with
J ⊆ Q, we have J? = D?, thus Q?

f = D?, which leads to a contradiction.
Therefore Q?

f ∩D ⊆ Q?∩D ( D and, hence, there exists a quasi–?
f
–maximal

ideal of D containing Q? ∩D. This is possible only if Q?
f ∩D = Q? ∩D.

Conversely, let I be a nonzero ideal of D with the property I? = D?.
Then, necessarily I 6⊆ Q for each quasi–?

f
–maximal ideal of D (because,

otherwise, by assumption I ⊆ Q = Q?
f ∩D = Q?∩D, and so I? ⊆ Q? ( D?).

Therefore I?
f = D?.

Next result provides several characterizations of the H(?)–domains; note
that, in the particular case that ? = v, the equivalence (i) ⇔ (iii) was already
known [50, Proposition 2.4], the equivalence (i) ⇔ (iv) was considered in
[79, Proposition 5.7] and we have stated the equivalence (i) ⇔(v)⇔(vi) in
Proposition 2.45.

Proposition 3.9. Let ? be a semistar operation on an integral domain D.
The following are equivalent:

(i) D is an H(?)–domain.

(ii) For each I ∈ F (D), I is ?–invertible if and only if I is ?
f
–invertible.

(iii) M(?
f
) = M(?).

(iv) M(?̃) = M(?).

(v) The localizing system F? is finitely generated.

(vi) ?F? = ?̃.

Proof. Obviously, (iii) ⇔ (iv) by Proposition 1.34 and (iii) ⇔ (i) by Lemma
3.8, recalling that a quasi–?–ideal is also a quasi–?

f
–ideal.

(iii) ⇒ (ii). Let I be a ?–invertible ideal of D. Assume that I is not ?
f
-

invertible. Then, there exists a quasi–?
f
–maximal ideal M such that II−1 ⊆

M . But M is also quasi-?-maximal, since M(?
f
) = M(?). Thus M? ( D?. It

follows that (II−1)? ⊆ M? ( D?, a contradiction. Hence I is ?
f
-invertible.

(ii) ⇒ (i) Let I be a nonzero integral ideal I of D such that I? = D?.
Then, I ⊆ II−1 ⊆ D implies that

(
II−1

)? = D?, that is I is ?–invertible. By
assumption, it follows that I is ?

f
–invertible, and so I is ?

f
–finite (Proposition

3.7). By Lemma 3.4, we conclude that there exists J ∈ f(D) with J ⊆ I
and J? = I? = D?.

(i) ⇔ (v) The localizing system F? is the set of the ideals I of D such
that I? = D? (Section 1.3). So, the thesis is exactly the definition of H(?)
domain in the languages of localizing systems, in fact, D is an H(?)–domain
if and only if for each I ∈ F? there exists J ∈ f(D), J ⊆ I such that J ∈ F?,
that is, if and only if F? is finitely generated (Section 1.3).
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(v) ⇒ (vi) It is immediate by the definition of ?̃. Indeed, ?̃ := ?(F?)f
.

It is clear that, if F? is finitely generated, then F? = (F?)f . Then, by the
hypothesis, ?̃ = ?F? .

(vi) ⇒ (v) F? = F?F? = F?̃, by Theorem 1.27(1). Since ?̃ is of finite
type, then F?̃ is finitely generated (Theorem 1.30). Hence F? is finitely
generated.

3.2 Quasi–?–invertibility

In this section, we introduce a new notion of invertibility with respect to a
semistar operation, the quasi–?–invertibility. The reason for introducing this
notion is the following observation: if ? is a star operation on an integral
domain D, it is easy to see that, for an ideal I of D, the fact that (II−1)? = D
is equivalent to the fact that there exists a fractional ideal H such that
(IH)? = D, that is, I is ?–invertible if and only if I is invertible with respect
to the “star composition” × given by I×J := (IJ)?, for I, J ∈ F (D). This is
not true in general for semistar invertibility, as the following example shows.

Example 3.10. Let D be an almost Dedekind domain, that is not Dedekind
(cf. for instance [37, Section 2 and the references]). Then, in D there exists
a prime (= maximal) ideal P , such that P is not invertible (otherwise, D
would be a Dedekind domain). Then, P−1 = D [24, Corollary 3.1.3], since
D is a Prüfer domain. Consider the semistar operation ? := ?{P}. Then,
(P (DP : P ))? = (PDP (DP : PDP ))DP = DP = D?, since DP is a DVR
and so PDP is invertible with inverse (DP : PDP ). Then, P is invertible
with respect to the “semistar composition” (with inverse (DP : P )), but(
PP−1

)? = (PD)? = P ? = PDP ( DP = D?, thus P is not ?–invertible.

We show in next lemma that the fact that an ideal I of an integral domain
D is invertible with respect to the “semistar” product is equivalent to the
fact that I? is ?ι–invertible in D? (where ι is the canonical embedding of D
in D?).

Lemma 3.11. Let ? be a semistar operation on an integral domain D and ι
the canonical embedding of D in D?. Let I ∈ F (D). Then, I? is ?ι–invertible
if and only if there exists H ∈ F (D) such that (IH)? = D?.

Proof. If I? is ?ι–invertible, then (I?(D? : I?))?ι = (D?)?ι = D?. It follows
that (I(D? : I))? = D?. So, take H = (D? : I). Conversely, if (IH)? = D?,
then H ⊆ (D? : I). It follows that D? = (IH)? ⊆ (I?(D? : I?))? ⊆ D?.
Hence, (I?(D? : I?))?ι = D? and I? is ?ι–invertible.

Let D be an integral domain and ? a semistar operation on D. We say
that an ideal I of D is quasi–?–invertible if it satisfies one of the equivalent
conditions of Lemma 3.11.
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Note that I? ∈ Inv(D?, ?ι) implies that I? ∈ F (D?). We denote by
QInv(D, ?) the set of all quasi–?–invertible D–submodules of K and, when
? = d, we set QInv(D), instead of QInv(D, d). We note that Inv(D, ?) ⊆
QInv(D, ?). As a matter of fact, we have: D? =

(
II−1

)? = (I?(D : I)?)? ⊆
(I?(D? : I?))? = (I?(D? : I?))?ι ⊆ (D?)? = D?. We have already shown in
Example 3.10 that the inclusion can be proper. Moreover, it is obvious that
QInv(D) = Inv(D).

Next we prove an analogue of Lemma 3.1 for quasi– ?–invertible ideals.

Lemma 3.12. Let ?, ?1, ?2 be semistar operations on an integral domain D.
Then:

(0) D? ∈ QInv(D, ?).

(1) If ?1 ≤ ?2, then QInv(D, ?1) ⊆ QInv(D, ?2). In particular, we have
QInv(D) ⊆ QInv(D, ?̃) ⊆ QInv(D, ?

f
) ⊆ QInv(D, ?).

(2) I, J ∈ QInv(D, ?) if and only if IJ ∈ QInv(D, ?).

(3) If I ∈ QInv(D, ?), then (D? : I) ∈ QInv(D, ?).

(4) If I ∈ QInv(D, ?), then Iv(D?) ∈ QInv(D, ?).

Proof. (0) and (1) are straightforward.
(2) we notice that I, J ∈QInv(D, ?) if and only if I?, J?∈ Inv(D?, ?ι), where
?ι is defined as above. It follows (from Lemma 3.1(2)) that I, J ∈ QInv(D, ?)
if and only if I?J? ∈ Inv(D?, ?ι). It is easy to see that this happens if and
only if (IJ)? ∈ Inv(D?, ?ι), that is, if and only if IJ ∈ QInv(D, ?).
(3) It is clear.
(4) It is an immediate consequence of Lemma 3.1(4) and of the fact that
(v(D?))ι = vD? (Example 2.3 and Proposition 2.15(1)), where ι is the canon-
ical embedding of D in D? and, as usual, vD? is the v–operation of D?.

Corollary 3.13. Let ? be a semistar operation on an integral domain D and
let I ∈ F (D).

(1) If I is quasi–?–invertible, then I is quasi–v(D?)–invertible and I? =
Iv(D?).

(2) If I is quasi–?f–invertible, then I is quasi–t(D?)–invertible and I? =
It(D?).

Proof. (1) First, we notice that, since ? ≤ v(D?) (Corollary 2.20(1)), I is
quasi–v(D?)–invertible (Lemma 3.12(1)) and (I?)v(D?) = Iv(D?)(Proposition
1.5). Now, by definition of quasi-?-invertibility, I? is ?ι–invertible as an ideal
of D?. So, by Corollary 3.3, I? = (I?)?ι = (I?)v(D?)?ι = (I?)v(D?) = Iv(D?).

(2) It follows, using a similar argument, by the fact that ? ≤ t(D?)
(Corollary 2.20(2)), applying Corollary 3.3(2).
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Remark 3.14. (a) Note that if I is a quasi–?–invertible ideal of D, then
every ideal J of D, with I ⊆ J ⊆ I? ∩D, is also quasi–?–invertible.

More precisely, let I, J ∈ F (D) [respectively, I, J ∈ F (D)], assume that
J ⊆ I, J? = I? and that I is ?–invertible [respectively, quasi–?–invertible]
then J is ?–invertible [respectively, quasi–?–invertible].

Conversely, let I, J ∈ F (D), assume that J ⊆ I, J? = I? and that
J is quasi–?–invertible then I is quasi–?–invertible (but not necessarily ?–
invertible, even if J is ?–invertible).

As a matter of fact, if I is ?–invertible, then D? = (I(D : I))? = (J(D :
I))? ⊆ (J(D : J))? ⊆ D?. The quasi–?–invertible case is similar. Conversely,
if J is quasi–?–invertible then D? = (J(D? : J))? = (I(D? : J))?, thus I is
quasi–?–invertible and (D? : J) = (D? : J)? = (D? : I)? = (D? : I) (cf. also
(d1)).

Example 3.10 shows the parenthetical part of the statement. Let D,
P and ? be as in Example 3.10. Note that P ? is principal in (the DVR)
D? = DP , thus P ? = PDP = tDP , for some nonzero t ∈ PDP . Therefore,
if J := tD, then J? = P ?, i.e. P is ?–finite. We already observed that P is
quasi–?–invertible but not ?–invertible, even if obviously J is (?–)invertible.

(b) Let I, H ′, H ′′, J, L ∈ F (D). The following properties are straight-
forward:

(b1) (IH ′)? = D? = (IH ′′)? ⇒ H ′? = H ′′? = (D? : I)? = (D? : I) .

(b2) I ∈ QInv(D, ?), IJ ⊆ IL ⇒ J? ⊆ L? .

(b3) I ∈ QInv(D, ?), J ⊆ I? ⇒ ∃ L ∈ F (D), (IL)? = J? .
[Take L := (D? : I)J . ]

(b4) I, J ∈ QInv(D, ?), (IL)? = J? ⇒ L ∈ QInv(D, ?) .
[Set H := I(D? : J), and note that (LH)? = D?. ]

(b5) I, J ∈ QInv(D, ?) ⇒ (D? : IJ) = (D? : IJ)? = ((D? : I) (D? : J))? .

(b6) I, J ∈ QInv(D, ?) ⇒ ∃ L ∈ QInv(D, ?), L ⊆ I?, L ⊆ J? .
[Take z ∈ K, z 6= 0, such that zI ⊆ D?, zJ ⊆ D?, and set L := zIJ . ]

(b7) I, J ∈ QInv(D, ?) , I+J ∈ QInv(D, ?) ⇒ Iv(D?)∩Jv(D?) ∈ QInv(D, ?) .
[Recall that ? ≤ v(D?) and note that:
((D? : I)(D? : J)(I + J))?=(((D? : I) I)?(D? : J)+(D? : I)((D? : J) J)?)?

= ((D? : J) + (D? : I))? =
((

D? : Jv(D?)
)

+
(
D? : Iv(D?)

))? ⇒
((D? : I) (D? : J) (I + J))v(D?) =

((
D? : Iv(D?)

)
+

(
D? : Jv(D?)

))v(D?)

⇒
(D? : ((D? : I) (D? : J) (I + J))) =

(
D? :

((
D? : Iv(D?)

)
+

(
D? : Jv(D?)

)))
=

(
D? :

(
D? : Iv(D?)

))
∩

(
D? :

(
D? : Jv(D?)

))
= Iv(D?) ∩ Jv(D?). ]
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(b8) I, J∈QInv(D, ?), Iv(D?)∩Jv(D?)∈QInv(D, ?) ⇒I+J ∈QInv(D, v(D?)).
[Since Iv(D?) ∩ Jv(D?) = (D? : ((D? : I) (D? : J) (I + J))) and hence(
D? :

(
Iv(D?) ∩ Jv(D?)

))
= ((D? : I) (D? : J) (I + J))v(D?), then apply

(b4) to conclude that I + J ∈ QInv(D, v(D?)). ]

(c) Mutatis mutandis, the statements in (b) hold for ?–invertibles. More
precisely: Let ? be a semistar operation on an integral domain D and let
I, H ′, H ′′, J, L ∈ F (D), then:

(c1) I ∈ Inv(D, ?), (IH ′)? = D? = (IH ′′)? ⇒ H ′? = H ′′? =
(
I−1

)?
.

(c2) I ∈ Inv(D, ?), IJ ⊆ IL ⇒ J? ⊆ L? .

(c3) I ∈ Inv(D, ?), J ⊆ I? ⇒ ∃ L ∈ F (D), (IL)? = J? .

(c4) I, J ∈ Inv(D, ?), (IL)? = J? ⇒ L ∈ QInv(D, ?), (D? : L) =
(I(D : J))? .
Note that, under the present hypotheses, L ∈ Inv(D, ?) if and only if
(D : L)? = (I(D : J))? .

(c5) I, J ∈ Inv(D, ?) ⇒ (D : IJ)? = ((D : I) (D : J))? .

(c6) I, J ∈ Inv(D, ?) ⇒ ∃ L ∈ Inv(D, ?), L ⊆ I, L ⊆ J .

(c7) I, J ∈ Inv(D, ?) , I +J ∈ Inv(D, ?) ⇒ Iv(D?)∩Jv(D?) ∈ Inv(D, ?) .

(c8) I, J ∈ Inv(D, ?) , Iv(D?) ∩ Jv(D?) ∈ Inv(D, ?) ⇒ I + J ∈
Inv(D, v(D?)) .

Our next goal is to extend Proposition 3.7 to the case of quasi–?
f
–

invertibles. We need the following:

Lemma 3.15. Let ? be a semistar operation on an integral domain D with
quotient field K and let ι be the canonical embedding of D in D?. Let I ∈
F (D). Then, I is ?–finite if and only if I? is ?ι–finite.

Proof. If I is ?–finite, then there exists J ∈ f(D) such that I? = J?. It is
clear that (JD?)?ι = I?, with JD? ∈ f(D?). Thus, I? is ?ι–finite. Con-
versely, let I? be ?ι–finite. Then, there exists a finitely generated fractional
ideal J0 of D?, J0 = (a1, a2, . . . , an)D?, with {a1, a2, . . . , an} ⊆ K, such
that J?

0 = J?ι
0 = I?ι = I?. Set J = (a1, a2, . . . , an)D ∈ f(D). Then,

J? = (a1D + a2D + . . . + anD)? = (a1D
? + a2D

? + . . . + anD?)? = J?
0 = I?,

and so I is ?–finite.

Proposition 3.16. Let ? be a semistar operation on an integral domain D
and let I ∈ F (D). Then I is quasi–?

f
–invertible if and only if I and (D? : I)

are ?
f
–finite (hence, ?–finite) and I is quasi–?–invertible.
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Proof. Let ι be the canonical embedding of D in D?.
For the “if” part, use the same argument of the proof of the “if” part of

Proposition 3.7.
The “only if” part. Since I is quasi–?

f
–invertible, then (D? : I) is also

quasi–?
f
–invertible, thus we have that I?

f and (D? : I)?
f = (D? : I) are

(?
f
)ι–invertibles. Then, I?

f and (D? : I) are (?
f
)ι–finite (Corollary 3.7) and

then I and (D? : I) are ?
f
–finite, by Lemma 3.15. Clearly I is quasi–?–

invertible, since ?
f
≤ ? (Lemma 3.12 (1)).

It is natural to ask under which conditions a quasi–?–invertible frac-
tional ideal is ?–invertible. Let I ∈ F (D) be quasi–?–invertible. Then
(I(D? : I))? = D?. Suppose that I is also ?–invertible, that is, (I(D : I))? =
D?. Then, (D : I)? = ((D : I) (I(D? : I))?)? = (((D : I)I)? (D? : I))? =
(D? : I)? = (D? : I) = (D? : I?) ⊇ (D : I)?. Therefore we have the following
(cf. also Remark 3.2(b)):

Proposition 3.17. Let ? be a semistar operation on an integral domain D.
Let I be a quasi–?–invertible fractional ideal of D. Then, I is ?–invertible if
and only if (D : I)? = (D? : I) (i.e.

(
I−1

)? = (I?)−1). 2

The following corollary is straightforward (in particular, part (2) follows
immediately from the fact that if ? is a stable semistar operation on an
integral domain D, then (E : F )? = (E? : F ?), for each E ∈ F (D), F ∈
f(D)).

Corollary 3.18. Let ? be a semistar operation on an integral domain D,
and let I ∈ F (D).

(1) If ? is a (semi)star operation then I is quasi–?–invertible if and only
if I is ?–invertible.

(2) If ? is stable and I ∈ f(D) then I is quasi–?–invertible if and only if
I is ?–invertible. 2

We notice that if ? is a semistar operation of finite type, ?–invertibility
depends only on the set of quasi–?–maximal ideals of D. Indeed, it is clear
that I ∈ F (D) is ?–invertible if and only if

(
II−1

)? ∩ D is not contained
in any quasi–?–maximal ideal. Then, from Proposition 1.8(2), we deduce
immediately the following general result (cf. [23, Proposition 4.25]):

Proposition 3.19. Let ? be a semistar operation on an integral domain D.
Let I ∈ F (D). Then I is ?

f
–invertible if and only if I is ?̃–invertible. 2

A classical example due to Heinzer can be used for describing the content
of the previous proposition.
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Example 3.20. Let K be a field and X an indeterminate over K. Set
D := K[[X3, X4, X5]] and M := (X3, X4, X5)D. It is easy to see that D
is a one-dimensional Noetherian local integral domain, with maximal ideal
M . Let ? := v, note that in this case v = ? = ?

f
= t and M(v) = {M},

since M = (D : K[[X]]). Therefore, w = ṽ = d. In this situation Inv(D, v) =
Inv(D, t) = Inv(D,w) = Inv(D) = {zD | z ∈ K , z 6= 0}. But v = t 6= w =
d, because in general (I ∩ J)t is different from It ∩ J t in D, since D is not a
Gorenstein domain [2, Theorem 5, Corollary 5.1] and [54, Theorem 222].

A result “analogous” to Proposition 3.19 does not hold, in general, for
quasi-semistar-invertibility, as we show in the following:

Example 3.21. Let D be a pseudo–valuation domain, with maximal ideal
M , such that V := M−1 is a DVR (for instance, take two fields k ( K and
let V := K[[X]], M := XK[[X]] and D := k + M). Consider the semistar
operation of finite type ? := ?{V }, defined by E?{V } := EV , for each E ∈
F (D). It is clear that M is the only quasi–?–maximal ideal of D. Thus, ?̃ =
?{M} = d, the identity (semi)star operation of D. We have (M(V : M))? =
(M(V : M))V = V , since V is a DVR. Hence, M is quasi–?–invertible.
On the other side, M is not invertible (i.e., not quasi–?̃–invertible), since
MM−1 = MV = M .

Under the assumption D? = D?̃ we have the following extension of Propo-
sition 3.19 to the case of quasi–semistar–invertibility:

Proposition 3.22. Let ? be a semistar operation on an integral domain D.
Suppose that D? = D?̃. Let I ∈ F (D). Then I is quasi–?

f
–invertible if and

only if I is quasi–?̃–invertible

Proof. If I is quasi–?̃–invertible, then there exists J ∈ F (D) with (IJ)?̃ =
D?̃. This implies (IJ)?

f = D?
f , since ?̃ ≤ ?

f
. Conversely, suppose that there

exists J ∈ F (D) such that (IJ)?
f = D?

f . Then IJ ⊆ D?
f = D? = D?̃.

Thus, (IJ)?̃ ⊆ D?̃. If (IJ)?̃ ( D?̃, then (IJ)?̃ ∩D ( D is a quasi–?̃–ideal of
D. It follows that (IJ)?̃∩D is contained in a quasi–?̃–maximal P of D. From
Proposition 1.8, P is also a quasi–?

f
–maximal. Then, (IJ)?

f ∩D ⊆ ((IJ)?̃ ∩
D)?

f ⊆ P ?
f ( D?

f , a contradiction. Then, I is quasi–?̃–invertible.

Remark 3.23. (a) If ? is a semistar operation on an integral domain D,
we already observed (Remark 3.2(a)) that Inv(D, ?) is not a group with
respect to the standard multiplication of fractional ideals. In the set of the
?–invertible ?–fractional ideals, i.e. in the set Inv?(D) := {I ∈ Inv(D, ?) |
I = I?}, we can introduce a semistar composition “×” in the following way
I × J := (IJ)?. Note that (Inv?(D),×) is still not a group, in general,
because for instance it does not possede an identity element (e.g. when
D? ∈ F (D) r F (D)).
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On the other hand, QInv?(D) := {I ∈ QInv(D, ?) | I = I?}, with
the semistar composition “×” introduced above, is always a group, having
as identity D? and unique inverse of I ∈ QInv?(D) the D–module (D? :
I) ∈ F (D), which belongs to QInv?(D). This fact provides also one of
the motivations for considering QInv(D, ?) and QInv?(D) (and not only
Inv(D, ?) and Inv?(D), as in the “classical” star case).

It is not difficult to prove that: let ? be a semistar operation on an integral
domain D, then:

(Inv?(D),×) is a group ⇔ (D : D?) 6= (0) .

As a matter of fact, (⇒) holds because D? ∈ Inv?(D) ⊆ F (D) and so (D :
D?) 6= (0). (⇐) holds because (D : D?) 6= (0) implies that D? ∈ Inv?(D)
and, for each I ∈ Inv?(D), we have (D? : I) ∈ F (D), thus (D : I)? = (D? : I)
(Remark 3.14(d1)) and so the inverse of each element I ∈ Inv?(D) exists and
is uniquely determined in Inv?(D).

Note that, even if (Inv?(D),×) is a group, Inv?(D) could be a proper
subset of QInv?(D). For this purpose, take D, V, M as in Example 3.21,
in this case D? = V and (D : V ) = M 6= (0), hence (Inv?(D),×) is a group,
but M ∈ QInv?(D) r Inv?(D).

(b) Note that, if ? is a semistar operation on an integral domain D,
the group (QInv?(D),×) can be identified with a more classic group of star-
invertible star-ideals. As a matter of fact, it is easy to see that:

(QInv?(D),×) = (Inv?ι(D?),×′)
where ι : D → D? is the canonical embedding and the (semi)star composition
“×′” in Inv?ι(D?) is defined by E ×′ F := (EF )?ι .

(c) Let ?1, ?2 be two semistar operations on an integral domain D. If
?1 ≤ ?2 then Inv(D, ?1) ⊆ Inv(D, ?2) and QInv(D, ?1) ⊆ QInv(D, ?2). Note
that it is not true in general that Inv?1(D) ⊆ Inv?2(D) or that QInv?1(D) ⊆
QInv?2(D), because there is no reason for a ?1–ideal (or –module) to be a
?2–ideal (or –module). For instance, let T be a proper overring of an integral
domain D, let ?1 := d be the identity (semi)star operation on D and let
?1 := ?{T} be the semistar operation on D defined by E?{T} := ET , for
each E ∈ F (D). If I is a nonzero principal ideal of D, then obviously
I ∈ Inv?1(D) (= Inv(D) = QInv?1(D)) but I does not belong to QInv?2(D)
(and, in particular, it does not belong to Inv?2(D)), because I?2 = IT 6= I.

Note that, even if Inv(D, ?1) = Inv(D, ?2), for some pair of semistar
operations ?1 ≤ ?2, it is not true in general that Inv?1(D) ⊆ Inv?2(D).
Take D, V, M as in Example 3.21. Let ?1 := d be the identity (semi)star
operations on D and let ?2 := ?{V }. In this case, Inv(D, ?1) = Inv(D, ?2),
because ?1 = ?̃2 and ?2 = (?2)f (Proposition 3.19). But, Inv?2(D) (
Inv?1(D) = Inv(D), because Inv?2(D) ⊆ Inv?1(D) = Inv(D) since each
?2–ideal is obviously a ?1–ideal, and moreover the proper inclusion holds
because, as above, a nonzero principal ideal of D belongs to Inv(D) but not
to Inv?2(D).
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On the other hand, if ?1 ≤ ?2 are two star operations on D, then it
is known that Inv?1(D) ⊆ Inv?2(D), essentially because, in this case, I ∈
Inv?1(D) implies that I = I?1 = Iv and so I = I?2 [6, Proposition 3.3].

(d) Let ? be a semistar operation on an integral domain D and let
I, J ∈ F (D) [respectively, I, J ∈ F (D)]. Assume that I is a ?–invertible
[respectively, quasi–?–invertible] ?–ideal of D, then:

(IJv)? = (I : (D : J)) [respectively,
(
IJv(D?)

)?
= (I : (D? : J))].

Recall that, since I = I?, then (I : (D : J)) = (I : (D : J))?. It is obvious
that IJv ⊆ (I : (D : Jv)) = (I : (D : J)) and thus (IJv)? ⊆ (I : (D : J)).
Conversely, if z ∈ (I : (D : J)) then z(D : J) ⊆ I and so z(D : I) ⊆ Jv.
Therefore z ∈ zD? = z((D : I)I)? ⊆ (IJv)?.

For the quasi–?–invertible case, if I = I?, then (I : (D? : J)) = (I :
(D? : J))? and I = ID?. It is obvious that IJv(D?) ⊆ (I : (D? : Jv(D?))) =
(I : (D? : J)) and thus

(
IJv(D?)

)? ⊆ (I : (D? : J)). Conversely, if z ∈
(I : (D? : J)) then z(D? : J) ⊆ I and so z(D? : I) ⊆ Jv(D?). Therefore
z ∈ zD? = z((D? : I)I)? ⊆

(
IJv(D?)

)?.

3.3 Semistar invertibility and the Nagata ring

In this section, we investigate the behavior of a ?–invertible ideal (when ? is
a semistar operation) with respect to the localizations at quasi–?–maximal
ideals and in the passage to semistar Nagata ring.

In the next theorem, in the spirit of Kaplansky’s theorem on (d–)invertibi-
lity [54, Theorem 62], we extend a characterization of t–invertibility proven
in [55, Corollary 3.2] and two Kang’s results proven in the star setting [53,
Theorem 2.4 and Proposition 2.6].

Theorem 3.24. Let ? be a semistar operation on an integral domain D.
Assume that ? = ?

f
. Let I ∈ f(D), then the following are equivalent:

(i) I is ?–invertible.

(ii) IDQ ∈ Inv(DQ), for each Q ∈ M(?) (and then IDQ is principal in
DQ).

(iii) I Na(D, ?) ∈ Inv(Na(D, ?)).

Proof. (i) ⇒ (ii). If (II−1)? = D?, then II−1 6⊆ Q, for each Q ∈ M(?).
Since I ∈ f(D), by flatness we have:

I−1DQ = (D : I)DQ = (DQ : IDQ) = (IDQ)−1 .

Therefore, for each Q ∈ M(?), since II−1 6⊆ Q, we have:

DQ = (II−1)DQ = IDQI−1DQ = IDQ(IDQ)−1 .
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(ii) ⇒ (iii). From the assumption and from the proof of (i) ⇒ (ii), we
have that II−1 6⊆ Q, for each Q ∈ M(?). Since I ∈ f(D), by the flatness of
the canonical homomorphism D → D[X]N(?) = Na(D, ?), we have:

(I[X]N(?))
−1 = (D[X]N(?) : I[X]N(?)) = (D : I)[X]N(?) = I−1[X]N(?) .

Since II−1 6⊆ Q, then (II−1)[X]N(?) 6⊆ Q[X]N(?), for each Q ∈ M(?). From
[29, Proposition 3.1(3)], we deduce that:

D[X]N(?) = (II−1)[X]N(?) = I[X]N(?)(I[X]N(?))
−1 ,

where I Na(D, ?) = I[X]N(?).
(iii) ⇒ (i). From the assumption and from the previous considerations,

we have:

D[X]N(?) = I[X]N(?)(I[X]N(?))
−1 = (II−1)[X]N(?) ,

and thus (II−1)[X]N(?) 6⊆ Q[X]N(?), for each Q ∈ M(?). This fact implies
that II−1 6⊆ Q, for each Q ∈ M(?). From [29, Lemma 2.4 (1)], we deduce
immediately that (II−1)? = D?.

Corollary 3.25. Let ? be a stable semistar operation of finite type on D, and
let I ∈ f(D). Then, the conditions (i)–(iii) of Theorem 3.24 are equivalent
to:

(iv) I is quasi–?–invertible.

Proof. Apply Corollary 3.18.

Remark 3.26. It is known [53, Proposition 2.6] (cf. also [5, Section 1] and
[17, Section 1]) that, if ? is a star operation of finite type on an integral
domain D, an ideal I of D is ?–invertible if and only if it is ?–finite and
locally principal (when localized at the ?–maximal ideals). As a matter of
fact, by Corollary 3.7, we have that, if I is ?–invertible, then I is ?–finite.
Moreover, (II−1)? = D implies II−1 6⊆ Q, for each ?–maximal ideal Q of D.
It follows that IDQI−1DQ = DQ. Thus, IDQ is invertible (hence, principal)
in DQ. Conversely, assume that I? = J?, with J ∈ f(D), J ⊆ I. It is
clear that I−1 = J−1, since Iv = (I?)v = (J?)v = Jv, being ? ≤ v [38,
Theorem 34.1(4)]. Suppose that I is not ?–invertible, that is, (II−1)? ( D.
Then, there exists a ?–maximal ideal Q of D, such that II−1 ⊆ Q. It follows
QDQ ⊇ IDQI−1DQ = IDQJ−1DQ = IDQ(JDQ)−1 ⊇ IDQ(IDQ)−1, a
contradiction, since IDQ is principal.

We will see in a moment that the “if” part of a similar result for semistar
operations does not hold, even if I = I?. More precisely, we can extend
partially [32, Proposition 1.1] in the following way:

Let I ∈ F (D) and let ? be a semistar operation on D, the following
properties are equivalent:

68



(i) I is ?
f
–invertible;

(ii) (Q : I) ( (D : I), for each Q ∈ M(?
f
);

(iii) (Q : I) ( (D : I), for each Q ∈ M(?
f
) such that Q ⊇ I(D : I).

Moreover, each of the previous properties implies the following:

(iv) I is ?
f
–finite and IDQ ∈ Inv(DQ), for each Q ∈ M(?

f
) (and so IDQ

is principal in DQ).

As a matter of fact, (i) ⇒ (ii) because D? = (I(D : I))? and if (Q :
I) = (D : I), for some Q ∈ M(?

f
), then I(D : I) = I(Q : I) ⊆ Q, thus

(I(D : I))?
f ⊆ Q?

f ( D?, hence we reach a contradiction. (ii) ⇒ (iii) is
trivial. (iii) ⇒ (i): if not, I(D : I) ⊆ Q, for some Q ∈ M(?

f
), thus (D : I) ⊆

(Q : I) and hence (D : I) = (Q : I), which contradicts (iii).
Finally (ii) ⇒ (iv), because of Proposition 3.7 and because for zQ ∈

(D : I) r (Q : I), we have zQI ⊂ D r Q, and so zQIDQ = DQ, i.e.
IDQ = (zQ)−1DQ, for each Q ∈ M(?

f
).

But note that, in the semistar setting, (iv) 6⇒ (i), even in case I is a
?

f
–ideal, ?

f
–finite, as the following example will show. However, we can

re-establish a characterization in the quasi–?–invertibility setting in the fol-
lowing way: if ? is a semistar operation of finite type on an integral domain
D and if I ∈ F (D), then I ∈ QInv(D, ?) if and only if I? is ?–finite and
I?D?

M is principal, for each ?ι–maximal ideal M of D?.

Example 3.27. Let D be a valuation domain, P a nonzero nonmaximal
noninvertible prime ideal of D such that DP is a discrete valuation domain.
(For instance, if K is a field and X, Y are two indeterminates over K,
let D := K + XK[X](X) + Y K(X)[Y ](Y ) and P := Y K(X)[Y ](Y ); in this
case D is a two-dimensional valuation domain, DP = K(X)[Y ](Y ) and P =
PDP = Y DP ) Y D.) Set ? := ?{P}. In this situation, ? = ?

f
and M(?) =

{P}, thus ? = ?̃, i.e. ? is a stable semistar operation of finite type on D.
Note that P is in fact a ?–ideal of D, since P ? = PDP = P . Moreover,
P ? = PDP = tDP = (tD)? for some nonzero t ∈ DP , i.e. P is a non zero
principal ideal in D? = DP , since DP is a DVR, by assumption. Thus, P
is a ?–ideal, ?–finite and locally principal, when localized at the quasi–?–
maximal ideal(s) of D. But P is not ?–invertible , since in this situation
(D : P ) = (P : P ) = DP [24, Proposition 3.1.5] and hence (P (D : P ))? =
(P (P : P ))? = (PDP )? = P ? = P . Note also that, in this situation, P is
quasi–?–invertible (because (P (D? : P ))? = (tDP t−1DP )? = DP = D?) and
D? = DP = (PDP : PDP ) = (P : P )DP = (P : P )?.

Next two results generalize to the semistar setting [53, Theorem 2.12 and
Theorem 2.14].
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Corollary 3.28. Let ? be a semistar operation on an integral domain D.
Assume that ? = ?

f
. Let h ∈ D[X], h 6= 0, then:

c(h) ∈ Inv(D, ?) ⇔ h Na(D, ?) = c(h) Na(D, ?).

In particular, c(h) ∈ Inv(D, ?) if and only if c(h) ∈ QInv(D, ?).

Proof. The proof of the first part of the statement is based on the following
result by D.D. Anderson [1, Theorem 1]: If R is a ring and h ∈ R[X], h 6= 0,
then hR(X) ⊆ c(h)R(X) and, moreover, the following are equivalent:

(1) hR(X) = c(h)R(X).

(2) c(h) is locally principal (in R).

(3) c(h)R(X) is principal (in R(X)).

(⇒) By Theorem 3.24 ((i) ⇒ (ii)), we have that c(h)DQ is principal, for
each Q ∈ M(?). Hence,

c(h)DQ[X]N(?) = c(h)(D[X]N(?))QD[X]N(?)
= c(h)DQ(X)

is principal, for each Q ∈ M(?). By applying Anderson’s result to the local
ring R = DQ, we deduce that hDQ(X) = c(h)DQ(X), for each Q ∈ M(?).
The conclusion follows from Proposition 1.40, (2) and (3)
(⇐) If h Na(D, ?) = c(h) Na(D, ?), then by localization we obtain that
hDQ(X) = c(h)DQ(X), for each Q ∈ M(?) (Proposition 1.40 and [38,
Corollary 5.3]). By Anderson’s result, we deduce that c(h)DQ is princi-
pal, i.e. c(h)DQ ∈ Inv(DQ), for each Q ∈ M(?). The conclusion follows
from Theorem 3.24 ((ii) ⇒ (i)).

The last part of the statement follows from the fact that Na(D, ?) =
Na(D, ?̃) (Proposition 1.40(4)) and from Corollary 3.18 and Proposition 3.19
or, directly, from Corollary 3.25.

Proposition 3.29. Let ? be a semistar operation on an integral domain D.
If H is an invertible ideal of Na(D, ?), then H is principal in Na(D, ?).

Proof. We can assume that H ∈ Inv(Na(D, ?)) and H ⊆ Na(D, ?), then,
in particular, H = (h1, h2, . . . , hn) Na(D, ?), with hi ∈ D[X], 1 ≤ i ≤ n.
For each Q ∈ M(?

f
), by localization, HDQ(X) = (h1, h2, . . . , hn)DQ(X)

is a nonzero principal ideal (Theorem 3.24 ((iii) ⇒ (ii)). By a standard
argument, if di := deg(hi), for 1 ≤ i ≤ n, and if

h := h1 + h2X
d1+1 + h3X

d1+d2+2 + . . . + hnXd1+d2+...+dn−1+n−1 ∈ D[X],

then it is not difficult to see that HDQ(X) = hDQ(X), for each Q ∈ M(?
f
).

From Proposition 1.40(3), we deduce that H Na(D, ?) = h Na(D, ?).
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Chapter 4

Semistar Dedekind domains

4.1 Prüfer semistar multiplication domains

In this section we recall some results and prove new ones about Prüfer semi-
star multiplication domains. This class of domains was introduced by M.
Fontana, P. Jara and E. Santos [26], to generalize the concept of Prüfer
domains and PvMD to the context of semistar operations.

Let D be an integral domain and ? a semistar operation on D. We say
that D is a Prüfer ?–multiplication domain (P?MD for short) if each finitely
generated ideal of D is ?f–invertible.

Since by Proposition 3.19, ?
f
–invertibility and ?̃–invertibility coincide,

we have that D is a P?MD if and only each finitely generated ideal of D is
?̃–invertible.

Clearly D is a P?MD if and only if D is a P?fMD if and only if D is a
P?̃MD.

Let ?1 ≤ ?2 be two semistar operations on D. If D is a P?1MD then D
is a P?2MD. Indeed, by Proposition 1.7(2), (?1)f ≤ (?2)f , and by Lemma
3.1(1), if an ideal I of D is (?1)f–invertible then it is also (?2)f–invertible.

The following characterization of P?MDs is due to M. Fontana, P. Jara
and E. Santos [26, Theorem 3.1, Remark 3.1] and generalize several known
results about PvMDs (cf. M. Griffin [40, Theorem 5], R. Gilmer [36, Theorem
2.5], J. Arnold and J. Brewer [8, Theorem 3], J. Querré [72, Théorème 3,
page 279] and B. G. Kang [53, Theorem 3.5, Theorem 3.7]).

Proposition 4.1. Let D be an integral domain and ? a semistar operation
on D. The following are equivalent:

(i) D is a P?MD.

(ii) DQ is a valuation domain, for each Q ∈ M(?
f
).

(iii) Na(D, ?) is a Prüfer domain.

(iv) Na(D, ?) = Kr(D, ?).
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(v) ?̃ is an e.a.b. semistar operation.

(vi) ?
f

is stable and e.a.b.

In particular, in a P?MD, ?̃ = ?
f
. 2

We can add three other equivalent conditions. The first two follow im-
mediately from Corollary 3.18(2) and Proposition 3.22.

Proposition 4.2. Let D be an integral domain and ? a semistar operation
on D. The following are equivalent:

(i) D is a P?MD

(ii) Each finitely generated ideal of D is quasi–?̃–invertible.

(iii) D? = D?̃ and each finitely generated ideal of D is quasi–?
f
–invertible.

(iv) ?
f

is stable and a.b.

Proof. (i)⇔(ii) We have noticed that D is a P?MD if and only if each finitely
generated ideal of D is ?̃–invertible. By Corollary 3.18(2) we deduce immedi-
ately that, since ?̃ is a stable semistar operation, for finitely generated ideals
?̃–invertibility and quasi–?̃–invertibility coincide. Hence we have the thesis.
(i)⇒(iii) By definition of P?MD, each finitely generated ideal of D is ?

f
–

invertible and then quasi–?
f
–invertible. Moreover, ?

f
= ?̃ (Proposition 4.1).

Then, D?̃ = D?
f = D?.

(iii)⇒(ii) Since D? = D?̃, a quasi–?
f
–invertible ideal is also quasi–?̃–invertible

(Proposition 3.22).
(i)⇒(iv) We know already (Proposition 4.1(i)⇒(vi)) that ?

f
is stable. Let

E ∈ f(D), F,G ∈ F (D), such that (EF )?
f = (EG)?

f . From the definition
of P?MD, (EE−1)?

f = D?. We have that (E−1(EF )?
f )?

f = (E−1(EG)?
f )?

f .
Thus, F ?

f = ((E−1E)?
f F )?

f = ((E−1E)?
f G)?

f = G?
f .

(iv)⇒(i) It is a straightforward consequence of Proposition 4.1(vi)⇒(i) since
an a.b. semistar operation is e.a.b.

Next proposition is a consequence of Corollary 3.3(2) and gives a stronger
condition than ?

f
= ?̃ in a P?MD (Proposition 4.1).

Proposition 4.3. Let D be an integral domain and ? a semistar operation
on D. If D is a P?MD then ?̃ = ?

f
= t(D?).

Proof. Let F ∈ f(D). So, F is ?f–invertible, since D is a P?MD. Then, by
Corollary 3.3(2), F ? = F t(D?). It follows that ? coincides with t(D?) on the
finitely generated ideals and so ?

f
= t(D?). That ?̃ = ?

f
is in Proposition

4.1.

We give a new short proof of a result about the ascent of the P?MD
property, [26, Proposition 3.1].
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Proposition 4.4. Let D be an integral domain, T an overring of D and ?
a semistar operation on D. Let ι be the canonical embedding of D in T . If
D is a P?MD then T is a P?ιMD. 2

Proof. By Proposition 4.2(i)⇒(iv), ?
f

is stable and a.b. By Proposition
2.11(2) and (4), the semistar operation (?

f
)ι on T is stable and a.b. Then,

T is a P(?
f
)ιMD by Proposition 4.2(iv)⇒(i). Now, (?

f
)ι ≤ (?ι)f , and so T

is a P(?ι)fMD, that is, a P?ιMD.

We prove a corollary of Proposition 4.3 and Proposition 4.4.

Corollary 4.5. Let D be an integral domain and ? a semistar operation on
D. If D is a P?MD then D? is a PvMD.

Proof. Let ι be the canonical embedding of D in D?. Since ?
f

= t(D?)
(Proposition 4.3), we have that (?

f
)ι = (t(D?))ι. By Example 2.3 and

Proposition 2.15(1), we have that (?
f
)ι = tD? , the t–(semi)star operation

of D?. Then, Proposition 4.4 implies that D? is a PtD?MD or, equivalently,
a PvD?MD.

Next example shows that, if D? is a P?ιMD (where ι is the canonical
embedding of D in D?), not necessarily D is a P?MD.

Example 4.6. Let (D,M) be a pseudo-valuation domain, and V = M−1.
Consider the semistar operation ? := ?{V } on D. Let ι be the canonical
embedding of D in D? = V . Clearly, ?ι = dV (Example 1.37(1)) and V is a
PdV MD (that is, a Prüfer domain). On the contrary, D is not a P?MD (by
Proposition 4.1(i)⇒(ii)), since M is the unique quasi–?– maximal ideal and
DM is not a valuation domain.

More in general, the example shows that, if D is an integral domain, T
is an overring of D, ι the embedding of D in T and ∗ a semistar operation
such that T is a P∗MD, then D is not always a P∗ιMD. In [26, Proposition
3.2], the authors prove that the flatness of T over D is a sufficient condition
for D to be a P∗ιMD.

We want to improve this result, giving necessary and sufficient conditions.
To do this we need to recall some results on quasi–?–ideals and on semi-

star flatness.

Lemma 4.7. [29, Lemma 2.3(3)(4)] Let D be an integral domain, ? a semi-
star operation on D and ι the embedding of D in D?.

(1) If Q is a quasi–?f–maximal ideal of D, then there exists a quasi–(?f )ι–
maximal ideal M of D? such that Q = M ∩D.

(2) If N is a quasi–(?f )ι–prime ideal of D? then N∩D is a quasi–?f–prime
ideal of D 2
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Let D be an integral domain and T an overring of D. Let ? be a semistar
operation on D and let ?′ be a semistar operation on T . We say [20, Section
3] that T is (?, ?′)–linked to D if, for each finitely generated integral ideal F of
D, we have that F ? = D? implies (FT )?′ = T ?′ (equivalently, if F ∈ F? then
FT ∈ F?′). We say [20, Section 4] that T is (?, ?′)–flat over D if T is (?, ?′)–
linked to D and for each Q ∈ M(?′f ), DQ∩D = TQ (we have given earlier
an equivalent definition of semistar flatness in Section 2.2 before Proposition
2.28: the equivalence of the two definitions follows from Proposition 4.8(2)).

We recall some results on semistar linkedness and semistar flatness that
we will need in this and in the following sections.

Proposition 4.8. [20, Lemma 3.1(e), Proposition 3.2, Corollary 5.4, Theo-
rem 4.5 and 5.7] Let D be an integral domain and ? a semistar operation on
D. Let T be an overring of D and ?′ a semistar operation on T .

(1) T is (?, ?ι)–linked to D (where ι is the canonical embedding of D in
T ).

(2) T is (?, ?′)–linked over D if and only if (N ∩ D)?
f 6= D?, for each

quasi–?′f– maximal ideal N .

(3) T is (?, ?′)–flat over D if and only if Na(T, ?′) is a flat overring of
Na(D, ?).

(4) If D is a P?MD and T is (?, ?′)–linked to D then T is a P?MD.

(5) D is a P?MD if and only if for each overring R of D and for each
semistar operation ?′ on R such that R is (?, ?′)–linked to D then R is
(?, ?′)–flat over D. 2

We can now prove a result about the relation between semistar flatness
and the Nagata ring.

Proposition 4.9. Let D be an integral domain, ? a semistar operation on D
and ι the canonical embedding of D in D?. Then, the following are equivalent:

(i) Na(D, ?) = Na(D?, ?ι).

(ii) D? is (?, ?ι)–flat over D.

(iii) (D?)P = DP∩D for each P ∈ M ((?ι)f ).

(iv) D? = D?̃ and (̃?ι) = (?̃)ι.

Proof. (i)⇒(ii) It follows immediately from Proposition 4.8(3).
(ii) ⇒(iii) It is trivial.
(iii) ⇒(iv) First we note that, in this case, (?f )ι = (?ι)f (Proposition
2.12). Now, let E ∈ F (D?). Then, E?̃ =

⋂
Q∈M(?

f
) EDQ and E e?ι =
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⋂
M∈M((?f )ι)

E(D?)M . For each Q ∈ M(?
f
) there exists M ∈ M((?f )ι) such

that Q = M ∩D (Lemma 4.7(1). Since, by the hypothesis, DQ = (D?)M , we
have that E e?ι ⊆ E?̃. Conversely, if M is a quasi–(?f )ι–maximal ideal, then
M ∩D is a quasi–?f–prime ideal of D (Lemma 4.7(2)). So, M ∩D ⊆ Q, for
some Q ∈ M(?

f
). It follows that DQ ⊆ DM∩D = (D?)M . Thus E?̃ ⊆ E e?ι

and so E?̃ = E e?ι . Moreover D? = D?̃. Indeed D? ⊆
⋂

M∈M((?f )ι)
(D?)M =⋂

Q∈M(?
f
) DQ = D?̃ ⊆ D?.

(iv)⇒(i) By Proposition 1.40(4), observing that, by the hypothesis, D? = D?̃

(and so, ι is also the canonical embedding of D in D?̃) we have Na(D, ?) =
Na(D, ?̃) = Na(D?̃, (?̃)ι) = Na(D?, (̃?ι)) = Na(D?, ?ι).

Corollary 4.10. Let D be an integral domain and T an overring of D. Let
ι be the canonical embedding of D in T and let ∗ be a semistar operation on
T . Then, the following are equivalent:

(i) Na(D, ∗ι) = Na(T, ∗)

(ii) T is (∗ι, ∗)–flat over D.

(iii) TP = DP∩D for each P ∈ M (∗f ).

(iv) T = Df∗ι and ∗̃ =
(
∗̃ι

)
ι
.

Proof. Apply Proposition 4.9 to ? := ∗ι, recalling that by Proposition 2.15(1),
∗ = (∗ι)ι.

We have the following result for P?MDs:

Proposition 4.11. Let D be an integral domain and ? a semistar operation
on D. Assume that D? is a P?ιMD. Then, D is a P?MD if and only if one
of the equivalent conditions of Proposition 4.9 holds.

Proof. If D is a P?MD then ?
f

is e.a.b. (Proposition 4.1(i)⇔(iv)), so ?
f

=
(?

f
)a. So, by Proposition 4.1(i)⇔(iv), Proposition 1.39(ii) and Proposition

2.12, Na(D, ?)=Kr(D, ?)=Kr(D, ?
f
)=Kr(D(?

f
)a , ((?

f
)a)ι)=Kr(D?

f , (?
f
)ι)=

Na(D?
f , (?

f
)ι) = Na(D?

f , (?ι)f ) = Na(D?, ?ι). The converse is straightfor-
ward by Proposition 4.1(i)⇔(iii).

With a similar argument we have the following corollary.

Corollary 4.12. Let D be an integral domain, T an overring of D. Let ι be
the canonical embedding of D in T and ∗ a semistar operation on T . Assume
that T is a P∗MD. Then, D is a P∗ιMD if and only if one of the equivalent
conditions of Corollary 4.10 holds. 2

As a corollary we have the results proven in [26, Proposition 3.2 and
Proposition 3.3]. First we prove an easy lemma.
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Lemma 4.13. Let D be an integral domain, ? a semistar operation on D
and ι the canonical embedding of D in D?. Then D?̃ is (?̃, ?̃ι)–flat over D.

Proof. It is immediate by Proposition 4.8, since Na(D, ?) = Na(D?̃, ?̃ι)
(Proposition 1.40(4)).

Corollary 4.14. cf. [26, Proposition 3.2 and Proposition 3.3] Let D be an
integral domain.

(1) Let T be a flat overring of D and let ∗ be a semistar operation on T .
Let ι := ιT be the canonical embedding of D in T . Assume that T is a
P∗MD. Then D is a P∗ιMD.

(2) Let ? be a semistar operation on D. Let ι := ιD? be the embedding of
D in D?. Then D is a P?MD if and only if D?̃ is a P?̃ιMD.

Proof. (1) It is immediate by Corollary 4.12.
(2) It is immediate by Lemma 4.13 and Proposition 4.11.

By using Corollary 4.5 and Corollary 4.12, we can characterize P?MD as
a particular class of subrings of PvMDs.

Theorem 4.15. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(i) D is a P?MD;

(ii) There exists an overring T of D such that T is a PvMD, ?
f

= t(T )
and for each tT -maximal ideal Q of T , TQ = DQ∩D.

(iii) There exists an overring T of D such that T is a PvMD, ?
f

= t(T )
and T is (t(T ), tT )–flat over D.

Proof. (i)⇒(ii) Let T := D?. By Proposition 4.3 ?
f

= t(T ) and by Corollary
4.5 T is a PvMD. Moreover, by Proposition 4.1 ?

f
= ?̃. Thus, by Lemma

4.13 D? is (?
f
, (?

f
)ι)–flat over D (where ι is the canonical embedding of D

in T ). Since tT = (t(T ))ι = (?
f
)ι (Example 2.3 and Proposition 2.15(2)) we

have the thesis.
(ii)⇒(i) Recall that D is a P?MD if and only if it is a P?

f
MD. Let ι be

the canonical embedding of D in T . Since T is a PvT MD, it is a PtT MD.
By the hypothesis on the tT –maximal ideals, applying Corollary 4.12, we
have that D is a P(tT )ιMD, that is, a P?

f
MD (recalling that, by definition,

(tT )ι = t(T ))).
(ii) ⇔ (iii) follows immediately by Corollary 4.10(ii) ⇔(iii), since by defini-
tion t(T ) = (tT )ι.
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4.2 Semistar Noetherian domains

Domains having the ascending chain condition (a.c.c. for short) on classes of
ideals play an important role in multiplicative ideal theory. Examples of this
kind of domains are Noetherian domains, Mori domains (domains having
the a.c.c. on divisorial ideals, see [10]) and strong Mori domains (domains
having the a.c.c. on w–ideals, where w is the star operation described in
Remark 1.31, [79]) have been intensively studied. We want to introduce a
class of domains containing all these classes.

Let D be an integral domain and ? a semistar operation on D. We say
that D is a ?–Noetherian domain if D has the ascending chain condition on
quasi–?–ideals.

Note that, if d (= dD) is the identity (semi)star operation on D, the d–
Noetherian domains are just the usual Noetherian domains and the notions
of v–Noetherian [respectively, w–Noetherian] domain and Mori [respectively,
strong Mori] domain coincide.

Recall that the concept of star Noetherian domain has already been
introduced, see for instance [3], [81] and [35]. Using ideal systems on com-
mutative monoids, a similar general notion of noetherianity was considered
in [41, Chapter 3].

Lemma 4.16. Let D be an integral domain.

(1) Let ? ≤ ?′ be two semistar operations on D, then D is ?–Noetherian
implies D is ?′–Noetherian.
In particular:

(1a) A Noetherian domain is a ?–Noetherian domain, for any semistar
operation ? on D.

(1b) If ? is a (semi)star operation and if D is a ?–Noetherian domain,
then D is a Mori domain.

(2) Let T be an overring of D and ∗ a semistar operation on T . Let ι be
the canonical embedding of D in T . If T is ∗ –Noetherian, then D is
∗ι–Noetherian. In particular, if ? is a semistar operation on D, such
that D? is a ?ι–Noetherian domain, then D is a ?–Noetherian domain.

Proof. (1) The first statement holds because each quasi–?′–ideal is a quasi–
?–ideal. (1a) and (1b) follow from (1) since, for each semistar operation ?,
d ≤ ? and, if ? is a (semi)star operation, then ? ≤ v.
(2) If we have a chain of quasi–∗ι–ideals {In}n≥1 of D that does not stop then,
by considering {(InT )∗}n≥1, we get a chain of quasi–∗–ideals of T that does
not stop, since two distinct quasi–∗ι–ideals I 6= I ′ of D are such that (IT )∗ 6=
(I ′T )∗. The second part of the statement follows immediately applying the
first part to the semistar operation ∗ := ?ι, since ∗ι = ? (Proposition 2.16(1)).
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Remark 4.17. The converse of (2) in Lemma 4.16 does not hold in general.
For instance, take D ⊂ T , where D is a Noetherian domain and T is a non-
Noetherian overring of D and let ι be the canonical embedding of D in T .
Let ∗ := dT and ? := ?{T}. Note that ∗ι = ?. Then, D is ?–Noetherian, by
(1a) of Lemma 4.16, but D? = T ∗ = T is not ∗–Noetherian (or, equivalently,
?ι–Noetherian), because ∗ = dT = ?ι and T is not Noetherian.
However, if ? = ?̃, the last statement of (2) in Lemma 4.16 can be reversed,
as we will see in Proposition 4.23.

Lemma 4.18. Let D be an integral domain and let ? be a semistar operation
on D. Then, D is a ?–Noetherian domain if and only if each nonzero ideal
I of D is ?

f
–finite. In particular, if ? is a star operation on D and D is

?–Noetherian then ? is a star operation of finite type on D.

Proof. For the “only if” part, let x1 ∈ I, x1 6= 0, and set I1 := x1D. If
I? = I?

1 we are done. Otherwise, it is easy to see that I 6⊆ I1
? ∩D. Let x2 ∈

I r (I?
1 ∩D) and set I2 := (x1, x2)D. By iterating this process, we construct

a chain {I?
n ∩D}n≥1 of quasi–?–ideals of D. By assumption this chain must

stop, i.e., for some k ≥ 1, I?
k ∩D = I?

k+1 ∩D, and so I?
k = (I?

k ∩D)? = I?.
So, we conclude by taking J := Ik. Conversely, let {In}n≥1 be a chain of
quasi–?–ideals in D and set I :=

⋃
n≥1 In. Let J ⊆ I be a finitely generated

ideal of D such that J? = I?, so there exists k ≥ 1 such that J ⊆ Ik and
J? = I?

k = I?. This implies that the chain of quasi–?–ideals {In}n≥1 stops
(in fact, In = Ik = I? ∩D, for each n ≥ k).

Corollary 4.19. Let D be an integral domain and ? a semistar operation
on D. Then, D is ?–Noetherian if and only if D is ?

f
–Noetherian.

Proof. The “if” part follows from Lemma 4.16(1), since ?
f
≤ ?. The converse

follows immediately from Lemma 4.18.

Remark 4.20. Note that:
?̃–Noetherian ⇒ ?–Noetherian,

because ?̃ ≤ ? (Lemma 4.16(1)). The converse is not true in general. Indeed,
if ? := v, then ?

f
= t and ?̃ = w and we know that v–Noetherian (= t–

Noetherian) is Mori and that w–Noetherian is strong Mori [79, Section 4].
Since it is possible to give examples of Mori domains that are not strong Mori
[79, page 1295], we deduce that ?–Noetherian does not imply ?̃–Noetherian.

We want to prove an analogue in the semistar case of the Cohen’s theorem
for Noetherian domains, that says that a domain is Noetherian if and only
if each prime ideal is finitely generated [54, Theorem 8]. A similar result has
been already proven for strong Mori domains [79, Theorem 4.3].

We notice that a Cohen-type theorem cannot be proven for an arbitrary
semistar operation: for example [33, Examples 2.8] consider the domain
A = Z + XR[[X]]. Each nonzero prime ideal of A is t–finite but A is not a
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Mori domain. In fact, the maximal ideals of A are principal (and so t–finite)
and the only non maximal prime ideal of A is Q := XK[[X]] and Q = Jv,
where J :=

√
2XA+

√
3XA, but A is not Mori, since for example, the chain

of principal ideals {(1/2n)xA}n≥0 is not stationary.
So, we restrict to the case of semistar operation stable and of finite type.
We need a lemma (cf. [54, Theorem 7] and [79, Theorem 4.2] for similar

results for Noetherian and strong Mori domains).

Lemma 4.21. Let D be an integral domain and ? a semistar operation on
D. Let P be an ideal that is not ?̃–finite, such that each ideal of D properly
containing P is ?̃–finite. Then, P is prime.

Proof. Let ab ∈ P , with a, b ∈ D r P . Then, P + aD contains properly P ,
so, it is ?̃–finite, that is, there exists a finitely generated ideal A ⊆ P + aD
such that A?̃ = (P + aD)?̃ (the condition that A ⊆ P + aD follows from the
fact that ?̃ is a semistar operation of finite type). Take p1, p2, . . . , pn ∈ P
and x1, x2, . . . , xn ∈ D such that A = (p1 +x1a, p2 +x2a, . . . , pn +xna). Let
P0 := (p1, p2, . . . , pn) ⊆ P and J := (P :D aD). Since b ∈ J r P we have
J ) P and so there exists (c1, c2, . . . , ck) ⊆ J such that (c1, c2, . . . , ck)?̃ = J ?̃.
Let z ∈ P ?̃ ⊆ (P + aD)?̃ = A?̃. Since z ∈ P ?̃, there exists a finitely
generated ideal H ∈ F?f such that zH ⊆ P . But z is also an element of
A?̃, so there exists a finitely generated ideal L ∈ F?f such that zL ⊆ A.
Now, let B := HL. We note that B ∈ F?f (since a localizing system is a
multiplicative system of ideals, see Section 1.3) and it is finitely generated.
Moreover zB ⊆ P ∩ A. Let B = (b1, b2, . . . , bl). So, for each t = 1, 2, ..., l,
there exist s1t, s2t, . . . , snt ∈ D such that zbt = s1t(p1 + x1a) + s2t(p2 +
x2a) + . . . + snt(pn + xna) = (s1tp1 + s2tp2 + . . . + sntpn) + (s1tx1 + s2tx2 +
. . . + sntxn)a = (s1tp1 + s2tp2 + . . . + sntpn) + yta, where yt = s1tx1 +
s2tx2 + . . . + sntxn. We have yta = zbt − (s1tp1 + s2tp2 + . . . + sntpn), with
zbt, (s1tp1 + s2tp2 + . . . + sntpn) ∈ P . Then, ayt ∈ P and yt ∈ J ⊆ J ?̃ =
(c1, c2, . . . , ck)?̃. Then, for t = 1, 2, . . . , l, there exists an ideal Bt ∈ F

?
f

such that ytBt ∈ (c1, c2, . . . , ck). For each t = 1, 2, . . . , l, B1B2 · · ·Blayt ∈
(ac1, ac2, . . . , ack) ⊆ P , since c1, c2, ..., ck ∈ J . Since B1B2 · · ·Bl ∈ F

?
f

(using again the fact that a localizing system is a multiplicative system of
ideals, cf. Section 1.3), then, (ay1, ay2, . . . , ayl) ⊆ (ac1, ac2, . . . , ack)?̃. Then,
zB ⊆ P0 + (ay1, ay2, . . . ayt) ⊆ P0 + (ac1, ac2, . . . , ack)?̃. It follows z ∈ (P0 +
(ac1, ac2, . . . , ack)?̃)?̃ = (p1, p2, . . . , pn, ac1, ac2, . . . , ack)?̃ ⊆ P ?̃. Since z is an
arbitrary element of P ?̃, it follows P ?̃ = (p1, p2, . . . , pn, ac1, ac2, . . . , ack)?̃,
with p1, p2, . . . , pn, ac1, ac2, . . . , ack ∈ P , a contradiction, since P is not ?̃–
finite.

Theorem 4.22. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(i) D is ?̃-Noetherian.
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(ii) Each prime ideal of D is ?̃–finite.

Proof. (i)⇒(ii) It is obvious by Lemma 4.18.
(ii)⇒(i) Let S be the set of all ideal of D which are not ?̃–finite. If D is
not ?̃–Noetherian, then S is not empty by Lemma 4.18. Consider a chain
{Iα |α ∈ A} of elements of S. Let I :=

⋃
α∈A Iα. We want to show that I is

not ?̃–finite (and so, I ∈ S). Suppose that I is ?̃–finite. Then, by Lemma
3.4, there exists J ∈ f(D), J ⊆ I such that J ?̃ = I ?̃ (using the fact that ?̃ is
a semistar operation of finite type). Since J is finitely generated, there exists
α0 ∈ A such that J ⊆ Iα0

. Then, J ?̃ ⊆ I ?̃
α0
⊆ I ?̃ = J ?̃ and so J ?̃ = I ?̃

α0
, that

is, Iα0
is ?̃–finite, a contradiction. It follows that I is not ?̃–finite, so we can

apply the Zorn’s Lemma to the set S. Then, there exists a maximal element
in S, which is a prime ideal by Lemma 4.21. But no prime ideals are in S by
the hypothesis, so S is empty and D is ?̃–Noetherian by Lemma 4.18.

In the following two propositions, we study the problem of the transfer
of the semistar Noetherianity to overrings.

Proposition 4.23. Let D be an integral domain and let ? be a semistar
operation on D.

(1) Assume that ? is stable. Then D is ?–Noetherian if and only if D? is
?ι–Noetherian (where ι is the canonical embedding of D in D?).

(2) D is ?̃–Noetherian if and only if D?̃ is (?̃)ι–Noetherian (where ι is the
canonical embedding of D in D?̃).

Proof. (1) The “if" part follows from Lemma 4.16(2) and Proposition 2.16(1)
(without using the hypothesis of stability). Conversely, let I be a nonzero
ideal of D? and set J := I ∩D. Then, J? = (I ∩D)? = I?∩D? = I?. There-
fore, by Lemma 4.18 (applied to D), we can find F ∈ f(D) such that F ⊆ J
and F ? = J?. Hence, (FD?)?ι = F ? = J? = I? = I?ι . The conclusion fol-
lows from Lemma 4.18 (applied to D?, since FD? ⊆ I and FD? ∈ f(D?)).
(2) is a straightforward consequence of (1), since ?̃ is a stable semistar oper-
ation.

Proposition 4.24. Let D be an integral domain and let T be an overring
of D. Let ? be a semistar operation on D and ?′ a semistar operation on
T . Assume that T is (?, ?′)–flat over D. If D is ?̃–Noetherian, then T is
?̃′–Noetherian.

Proof. Let A be a nonzero ideal of T . Let N ∈ M(?̃′) = M(?′f ) (Proposition
1.40(5)). From the (?, ?′)–flatness, it follows that TN = DN∩D. Then,
A
e?′ = ∩{ATN | N ∈ M(?′f )} = ∩{ADN∩D | N ∈ M(?′f )}. Now, N ∩ D

is a prime of D such that (N ∩ D)?̃ 6= D?̃ (by [20, Proposition 3.2], since
T is (?, ?′)–linked to D, by definition of (?, ?′)–flatness). Hence, N ∩ D is
a quasi–?̃–ideal. Consider the ideal A ∩ D of D. Since D is ?̃–Noetherian,
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it follows by Lemma 4.18 that there exists a finitely generated ideal C of
D, such that C ⊆ A ∩ D and C ?̃ = (A ∩ D)?̃. Then, ATN = ADN∩D =
(A ∩D)DN∩D = (A ∩D)?̃DN∩D = C ?̃DN∩D = CDN∩D = (CT )TN . Thus,
A?̃′ = (CT )?̃′ , with CT finitely generated ideal of T , such that CT ⊆ A.
Hence, T is ?̃′–Noetherian.

In particular, when ? = d is the identity semistar operation, Proposition
4.24 gives the following result about flat overrings of Noetherian domains,
cf. [73, Corollary of Theorem 3]:
If D is a Noetherian domain and T is a flat overring of D, then T is
Noetherian.

Let D be an integral domain and ? a semistar operation on D. We
say that D has the ?–finite character property (for short, ?–FC property) if
each nonzero element x of D belongs to only finitely many quasi–?–maximal
ideals of D. Note that the ?

f
–FC property coincides with the ?̃–FC property,

because M(?
f
) = M(?̃) (Proposition1.8(1)).

Proposition 4.25. Let D be an integral domain and ? a semistar operation
on D. If D is ?̃–Noetherian, then DM is Noetherian, for each M ∈ M(?

f
).

Moreover, if D has the ?
f
–FC property, then the converse holds.

Proof. Let M ∈ M(?
f
), A an ideal of DM and I := A ∩ D. Since D is ?̃–

Noetherian, there exists a finitely generated ideal J ⊆ I of D with J ?̃ = I ?̃

(Lemma 4.18). Then, A = IDM = I ?̃DM = J ?̃DM = JDM (we used twice
the fact that ?̃ is spectral, defined by M(?

f
)). Then A is a finitely generated

ideal of DM and so DM is Noetherian. For the converse, assume that the ?
f
–

FC property holds on D. Let I be a nonzero ideal of D and let 0 6= x ∈ I. Let
M1,M2, . . . ,Mn ∈ M(?

f
) be the quasi–?

f
–maximal ideals containing x. Since

DMi is Noetherian for each i = 1, 2, . . . , n, then IDMi = JiDMi , for some
finitely generated ideal Ji ⊆ I of D. The ideal B := xD + J1 + J2 + . . . + Jn

of D is finitely generated and contained in I. It is clear that, for each
i = 1, 2, . . . , n, IDMi = BDMi . Moreover, if M ∈ M(?

f
) and M 6= Mi, for

each i = 1, 2, . . . , n, then x 6∈ M and this fact implies IDM = BDM = DM .
Then, I ?̃ =

⋂
{IDM | M ∈ M(?

f
)} =

⋂
{BDM | M ∈ M(?

f
)} = B?̃. Thus,

by Lemma 4.18, D is ?̃–Noetherian.

Remark 4.26. (1) Note that Proposition 4.25, in case of star operations,
can be deduced from [42, Proposition 4.6], proven in the context of weak
ideal systems on commutative monoids.

(2) Note that strong Mori domains (that is, w–Noetherian domains,
where w := ṽ) or, more generally, Mori domains satisfy always the t–FC prop-
erty (= w–FC property, since M(w) = M(t), for every integral domain) by
[11, Proposition 2.2(b)]. But it is not true in general that the ?̃–Noetherian
domains satisfy the ?

f
–FC property (take, for instance, D := Z[X], ? := d,
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and observe that X is contained in infinitely many maximal ideals of Z[X]).
Note that, from Proposition 4.25 and from the previous considerations, we
obtain in particular that an integral domain D is strong Mori if and only if
DM is Noetherian, for each M ∈ M(t), and D has the w–FC property (cf.
also [80, Theorem 1.9]).

The result in Proposition 4.25 allows us to prove, in the context of semi-
star Noetherian domains, the generalization of two of the main theorems
that hold for Noetherian domains.

We start with the Krull intersection Theorem ([54, Theorem 77] and [80,
Theorem 1.8]).

Theorem 4.27. Let D be an integral domain and ? a semistar operation
on D. Assume that D is ?̃–Noetherian. Let I ⊆ D be an ideal such that
I ?̃ ( D?̃. Then

⋂
n∈N In = (0).

Proof. Since I ?̃ 6= D?̃, I is contained in a quasi–?̃–maximal ideal M (Proposi-
tion 1.8(2), considering that I ?̃∩D is a proper quasi–?̃–ideal). By Proposition
4.25, DM is a Noetherian domain. So, by the Krull intersection Theorem for
Noetherian domains [54, Theorem 77],

⋂
n∈N(IDM )n = (0). Since I ⊆ IDM

we have the thesis.

Next result is the generalization of the Principal Ideal Theorem for Noetherian
domain (PIT, cf. [54, Theorem 142], see also [80, Corollary 1.11] for an anal-
ogous result for strong Mori domains).

First we need a lemma.

Lemma 4.28. [20, Lemma 2.3(d)] Let D be an integral domain and ? a
semistar operation on D. Then each prime ideal of D minimal over a quasi–
?

f
–ideal of D is a quasi–?

f
–prime.

Theorem 4.29. Let D be an integral domain and ? a semistar operation
on D. Assume that D is ?̃–Noetherian. Let x ∈ D, x 6= 0, such that
xD?̃ 6= D?̃. Let P be a prime minimal over xD?̃ ∩D. Then P has height 1.

Proof. Since P is minimal over the quasi–?̃–ideal xD?̃ ∩ D, Lemma 4.28
implies that P is a quasi–?–prime. Then, there exists a quasi–?̃–maximal
ideal M of D such that P ⊆ M . So, PDM is a minimal prime over (xD?̃ ∩
D)DM = xDM ∩ DM = xDM . Thus, PDM is minimal over the principal
ideal xDM of the Noetherian domain DM (Proposition 4.25). It follows by
the PIT for Noetherian domains [54, Theorem 142] that PDM (and so P )
has height 1.
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4.3 The Nagata ring of a semistar Noetherian do-
main

In this section, we want to prove that the Nagata ring of a domain D with
respect to a semistar operation stable and of finite type ? is Noetherian if
and only if the D is ?–Noetherian.

This result generalizes (and gives a converse of) the fact that the “clas-
sical” Nagata ring of a Noetherian domain is Noetherian [38, Section 33,
Exercise 1], and that the Nagata ring with respect to the w–operation of a
strong Mori domain is Noetherian [78, Theorem 2.8]. The result in the case
of Noetherian domain is a straightforward consequence of the Hilbert basis
Theorem, since the Nagata ring is a localization of the polynomial ring. The
result for strong Mori domain is a consequence of a generalization of the
Hilbert Basis Theorem for strong Mori domain (the polynomial ring over
a strong Mori domain is a strong Mori domain, [80, Theorem 1.13]). So,
to prove our result in the general case, we look for a generalization of the
Hilbert Basis Theorem to our context.

There is an obstruction to doing this: in the classical case, the theo-
rem states that the polynomial ring D[X] over a (dD)–Noetherian domain
D is dD[X]–Noetherian. The theorem in the “strong Mori” case states that
the polynomial ring D[X] over a wD–Noetherian domain (that is, a strong
Mori domain) D is wD[X]–Noetherian (that is, a strong Mori domain). Con-
sider the general case, that is, an integral domain D is ?–Noetherian, for an
arbitrary semistar operation D. It is not clear what is an appropriate gener-
alization of this theorem, or, more precisely, with respect to which semistar
operation the polynomial ring D[X] should be semistar Noetherian?

So, we have to determine this semistar operation on the polynomial ring
in a way that allows us to reach our goal: a proof that the Nagata ring of
a semistar Noetherian domain with respect to a finite type, stable semistar
operation is Noetherian.

We can do this for stable semistar operations, by using the fact that
a localizing system on an integral domain D induces in a canonical way a
localizing system on the polynomial ring. This is the content of the following
proposition.

Proposition 4.30. Let D be an integral domain and F be a localizing sys-
tem of D. Let X be an indeterminate on D. Then F[X] := {A ideal of
D[X] |A ⊇ JD[X], for some J ∈ F} is a localizing system of D[X].

Proof. First, we prove that A ∈ F[X] if and only if A ∩D ∈ F. Indeed, let
A ∈ F[X]. Then A ⊇ JD[X], J ∈ F. It follows that A∩D ⊇ JD[X]∩D =
J ∈ F. Then, A ∩ D ∈ F. For the converse: let (A ∩ D) ∈ F. Since
A ⊇ (A ∩D)D[X], then A ∈ F[X] by the definition of F[X].

Now we prove that for this set of ideals of D[X] the properties (LS1)
and (LS2) of Definition 1.22 are satisfied.
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(LS1): Let A ∈ F[X] and B ⊇ A. Then A∩D ∈ F and B ∩D ⊇ A∩D.
It follows that B ∩D ∈ F and then B ∈ F[X].

(LS2): We have to prove that if I ∈ F[X] and A is an ideal of D[X]
such that (A :D[X] iD[X]) ∈ F[X], for each i ∈ I, then A ∈ F[X].
We want to prove that A ∩ D ∈ F. We know that I ∩ D ∈ F. Since F is
a localizing system, it is enough to prove that (A ∩D :D iD) ∈ F, for each
i ∈ I ∩D. If we prove this, from the condition (LS2) for F, it follows that
A∩D ∈ F. So, let i ∈ I∩D. The hypothesis is that (A :D[X] iD[X]) ∈ F[X].
So, (A :D[X] iD[X])∩D = (A :D iD[X]) ∈ F. Then, to conclude, it is enough
to prove that (A :D iD[X]) ⊆ (A ∩D :D iD) and apply the property (LS1)
of F. Let r ∈ (A :D iD[X]). In particular, r ∈ D. Since riD[X] ⊆ A, we
have riD ⊆ A. But, since both r and i are in D, it follows that riD ⊆ A∩D.
Thus, r ∈ (A ∩D :D iD). Hence, (A :D iD[X]) ⊆ (A ∩D :D iD), for each
i ∈ I ∩D ∈ F. It follows that A ∩D ∈ F and A ∈ F[X].

Proposition 4.31. Let D be an integral domain. If F is a finitely generated
localizing system of D then F[X] is a finitely generated localizing system of
D[X].

Proof. Let A ∈ F[X]. Then, A ∩ D ∈ F. Since F is finitely generated,
there exists a finitely generated J ∈ F such that J ⊆ A ∩ D. It follows
that JD[X] ⊆ (A ∩D)D[X] ⊆ A and JD[X] ∈ F[X] by definition and it is
finitely generated.

So, let ? be a stable semistar operation on an integral domain D, and
let F := F? be the localizing system of D associated to ?. Consider the
localizing system F[X] of D[X] defined as in Proposition 4.30. We denote
by ?′ the stable semistar operation ?F[X] on D[X] induced by F[X]. If ? is
of finite type, then ?′ is of finite type, by Proposition 4.31.

Theorem 4.32. Let D be an integral domain, ? a stable semistar operation
on D and ?′ the semistar operation on D[X] defined above (i.e., if ? = ?F

for some localizing system F of D, then ?′ = ?F[X]). If D is ?–Noetherian,
then D[X] is ?′-Noetherian.

Proof. Let A be an ideal of D[X]. We want to show that there exists a
finitely generated ideal B ⊆ A of D[X] such that B?′ = A?′ . For each h ∈ N,
let Ih be the set of the leading coefficients of the polynomials in A of degree
less or equal than h. Since D is ?–Noetherian, each Ih is ?f -finite (Lemma
4.18), that is, for each h ∈ N, there exists a finitely generated ideal Jh ⊆ Ih of
D such that J?

h = I?
h. Now, since I0 = A ∩D ⊆ I1 ⊆ I2 ⊆ . . ., I :=

⋃
h∈N Ih

is an ideal of D. It follows that there exists a finitely generated ideal J ⊆ I
of D such that J? = I?. Since J is finitely generated, there exists m ∈ N
such that J ⊆ Im. Let J = (b1, b2, . . . , bk) and let f1, f2, . . . , fk polynomials
in A having respectively b1, b2, . . . , bk as leading coefficients. Clearly, we can
choose f1, f2, . . . , fn of degree m. For each h < m, let b1,h, b2,h, . . . , bkh,h

84



the generators of Jh, and let g1,h, g2,h, . . . , gkh,h polynomials in A having
b1,h, b2,h, . . . , bkh,h as leading coefficients (again, we can choose them of degree
h). Let B =

(
{f1, f2, . . . fk} ∪ {g1,h, g2,h, . . . , gkh,h}{h=0,1,...,m−1}

)
, the ideal

generated by the f ’s and the g’s. We want to prove that B?′ = A?′ . Since
B ⊆ A, it is clear that B?′ ⊆ A?′ . For the converse, it is enough to prove that
A ⊆ B?′ (it implies immediately that A?′ ⊆ (B?′)?′ = B?′). So let f ∈ A.
We prove by induction on the degree of f that f ∈ B?′ . First, consider
the case in which f has degree 0, that is, f ∈ A ∩ D = I0. It follows that
f ∈ I?

0 = J?
0 . We show that J?

0 ⊆ B?′ . Let x ∈ J?
0 . Then, there exists E ∈ F

such that xE ⊆ J0. Since the generators of J0 are in B (by the construction
of B), we have xED[X] ⊆ J0D[X] ⊆ BD[X] = B. Since ED[X] ∈ F[X] by
definition of F[X], we obtain that x ∈ B?′ . Then J?

0 ⊆ B?′ and in particular
f ∈ B?′ . Let now deg f = n. By the inductive hypothesis we have that if
g ∈ A and deg g < n, then g ∈ B?′ . First, we suppose n ≥ m. Let a be the
leading coefficient of f . Then, a ∈ I. Since I? = J?, we have that a ∈ J?,
that is, there exists H ∈ F such that aH ⊆ J(:= (b1, b2, . . . , bk)). Let λ ∈ H.
Then, λa = r1b1 +r2b2 + . . .+rkbk ∈ J , for some r1, r2, . . . , rk ∈ D. Let g :=
λf−(r1f1+r2f2+. . .+rkfk)xn−m (we recall that the f ’s are polynomials in B
having the b’s as leading coefficients). Now,(r1f1+r2f2+. . .+rkfk)xn−m is a
polynomial of B ( and so, of A) of degree n having λa as leading coefficient.
Since also λf ∈ A and has leading coefficient λa and degree n, we have
that g is a polynomial in A of degree strictly smaller than n. By induction,
g ∈ B?′ . Then, λf = g + (r1f1 + r2f2 + . . . + rkfk)xn−m ∈ B?′ , since we
have already observed that (r1f1 + r2f2 + . . . + rkfk)xn−m ∈ B ⊆ B?′ . It
follows that, for each λ ∈ H, λf ∈ B?′ . That is, fH ⊆ B?′ . It follows that
fHD[X] ⊆ B?′D[X] = B?′ , and by definition HD[X] ∈ F[X]. It follows
that f ∈ (B?′)?′ = B?′ . Suppose now that n < m. Again, let a be the
leading coefficient of f . Then, a ∈ In ⊆ J?

n. Let ci := bi,n, i = 1, 2, . . . kn the
generators of Jn and let gi := gi,n. Since a ∈ J?

n, there exists H ∈ F such
that aH ⊆ Jn. Let λ ∈ H, then again λa = r1c1 + r2c2 + . . . + rknckn . Let
g := λf − (r1g1 + r2g2 + . . .+ rkngkn). Again, deg g < n, since (r1g1 + r2g2 +
. . . + rkngkn) is a polynomial of degree n having λa as leading coefficient.
Moreover, g ∈ A, since λf and the gi’s are in A. Then, by induction,
g ∈ B?′ . Now, λf = g + (r1g1 + r2g2 + . . . + rkngkn), with both g and
(r1g1 + r2g2 + . . . + rkngkn) elements of B?′ . It follows that λf ∈ B?′ . Then,
fH ⊆ B?′ and again fHD[X] ⊆ B?′D[X] = B?′ . Since HD[X] ∈ F[X], we
have that f ∈ (B?′)?′ = B?′ . So, independently from the degree, if f is a
polynomial of A, then f ∈ B?′ . Thus, A ⊆ B?′ and so, A?′ ⊆ B?′ . Hence,
A?′ = B?′ , and D[X] is ?′–Noetherian.

Remark 4.33. We observe that both the “classical” Hilbert Basis Theorem
and its generalization for strong Mori domains are consequences of Theorem
4.32. For the classical case, note that the localizing system FdD associated
with the identity semistar operation of D is the set {D}. So, let A ∈ FdD [X].
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By definition of FdD [X], A ∩D contains as a subset an element of FdD , so,
D ⊆ A ∩D. It follows that A = D[X]. Hence, FdD [X] = {D[X]} = FdD[X] ,
and (dD)′ = dD[X]. Then, Theorem 4.32 gives exactly the classical Hilbert
Basis Theorem.

For the strong Mori case, recall [46, Proposition 4.3] that, for a fractional
ideal I of D, (ID[X])tD[X] = ItDD[X]. It follows that, if F := FtD , then
F[X] ⊆ FtD[X] . Indeed, if A ∈ F[X] then A ∩D ⊇ I for some ideal I such
that ItD = D. It follows that AtD[X] ⊇ ((A∩D)D[X])tD[X] ⊇ (ID[X])tD[X] =
ItDD[X] = D[X]. Hence, A ∈ FtD[X](D[X]). It follows that (wD)′ ≤ (wD[X])
(we recall that, for an integral domain R, wR := ?Ft(R)), since the bijection
between stable semistar operations and localizing systems is order preserving.
So, by Theorem 4.32 and Lemma 4.16(1), if D is wD–Noetherian (that is,
strong Mori) then D[X] is wD[X]–Noetherian (that is, strong Mori).

Let ? be stable and of finite type (that is, ? = ?̃, Lemma 1.32). Then
? is the spectral semistar operation on D associated to the set M(?f ) (see
Section 1.4, after Lemma 1.32). In this case F? = F(M(?f ))(:= {I ⊆ D | I 6⊆
P, for each P ∈ M(?f )}), by Proposition 1.28.

Proposition 4.34. Let D be an integral domain and ? = ?̃ a semistar
operation stable of finite type on D. Let ∗ := ?∆ be the spectral semistar
operation on D[X] defined by the set ∆ := {PD[X] |P ∈ M(?f )} and let ?′

defined as before Theorem 4.32. Then:

(1) ?′ ≤ ∗.

(2) If D[X] is ?′–Noetherian then D[X] is ∗–Noetherian.

(3) If D is ?–Noetherian then D[X] is ∗–Noetherian.

Proof. (1) We have noticed that F := F? = F(M(?f )). It is enough to
prove that the localizing system F[X] is contained in the localizing system
F(∆) := {A ⊆ D[X] |A 6⊆ PD[X], for each P ∈ ∆}, since the bijection
between stable semistar operation and localizing systems is order preserving
(Theorem 1.30). Let A ∈ F[X]. Then, A ⊇ JD[X], with J 6⊆ P , for
each P ∈ M(?f ). Then, JD[X] 6⊆ PD[X], for each P ∈ M(?f ), that is,
JD[X] ∈ F(∆). Since A ⊇ JD[X], it follows that A ∈ F(∆).
(2) It is straightforward from (1) and Lemma 4.16(1).
(3) If D is ?–Noetherian, then D[X] is ?′–Noetherian, by Theorem 4.32.
Hence, D[X] is ∗–Noetherian by (2).

Lemma 4.35. Let D be an integral domain, ? a semistar operation on D
and let ι be the canonical embedding of D[X] in Na(D, ?). Let ∗ := ?∆ be the
spectral semistar operation on D[X] defined by the set ∆ := {PD[X] |P ∈
M(?f )}. Then, ∗ι = dNa(D,?).
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Proof. Let E ∈ F (Na(D, ?)). Then, E∗ι =
⋂

P∈M(?
f
) ED[X]PD[X] =⋂

P∈M(?
f
) E Na(D, ?)P Na(D,?) = E, by Proposition 1.40(1).

Theorem 4.36. Let D be an integral domain and let ? be a semistar oper-
ation on D. The following are equivalent:

(i) D is ?̃–Noetherian.

(ii) Na(D, ?) is Noetherian.

Proof. (i) ⇒(ii) Let ∗ := ?∆ be the spectral semistar operation on D[X]
defined by the set ∆ := {PD[X] |P ∈ M(?f )}. Since D is ?̃–Noetherian,
then D[X] is ∗–Noetherian, by Proposition 4.34(3). We note that, since ∗ is
spectral, then it is stable (Section 1.2.4). Moreover, (D[X])∗ = Na(D, ?), by
Proposition 1.40(2). Thus, by Proposition 4.23(1), Na(D, ?) is ∗ι–Noetherian
(where ι is the canonical embedding of D[X] in Na(D, ?)). Hence, Na(D, ?)
is Noetherian, since, by Lemma 4.35, ∗ι = dNa(D,?).
(ii) ⇒(i) Let I0 ⊆ I1 ⊆ . . . be a chain of quasi–?̃–ideals of D. Then,
I0 Na(D, ?) ⊆ I1 Na(D, ?) ⊆ . . . is a chain of ideals in Na(D, ?). Since
Na(D, ?) is a Noetherian domain, it follows that there exists n ∈ N such
that Ik Na(D, ?) = In Na(D, ?), for each k ≥ n. Since the Iis are quasi–?̃–
ideals, Ik = (Ik)?̃∩D = Ik Na(D, ?)∩D = In Na(D, ?)∩D = (In)?̃∩D = In,
for each k ≥ n, by Proposition 1.40(3). So, the chain of quasi–?̃–ideals ends,
and D is ?̃–Noetherian.

Remark 4.37. (1) If we let ? = d in Theorem 4.36, we have the following
result about the “classical” Nagata ring D(X)(= Na(D, d)) of a domain D:

Let D be an integral domain. The following are equivalent:

(i) D is Noetherian.

(ii) D(X) is Noetherian.

(2) We note that Theorem 4.36 implies that:

if Na(D, ?) is Noetherian, then D is ?–Noetherian,

since a ?̃–Noetherian domain is ?–Noetherian (Remark 4.20). The converse
of this result is not true in general. Indeed, consider a Mori domain D that
is not strong Mori (Remark 4.20) and suppose that Na(D, t) is a Noetherian
domain. Then, by Theorem 4.36(ii)⇒(i), D is a w–Noetherian domain, i.e.
a strong Mori domain, a contradiction.

(3) We remark that a result similar to Theorem 4.36, using the language
of hereditary torsion theories, has been presented by P. Jara during the
Conference “Commutative Rings and their Modules” held in Cortona, Italy,
from May 31 to June 4, 2004.
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4.4 Semistar almost Dedekind domains

Let D be an integral domain and ? a semistar operation on D. We say that D
is a semistar almost Dedekind domain (for short, a ?–ADD) if DM is a rank-
one discrete valuation domain (for short, DVR), for each quasi–?

f
–maximal

ideal M of D.
Note that, by definition, ?–ADD = ?

f
–ADD and that, if ? = d), we ob-

tain the classical notion of “almost Dedekind domain” (for short, ADD) as in
[38, Section 36]. Note that, If ? = v, the v–ADDs coincide with the t–almost
Dedekind domains studied by Kang [53, Section 4]; more generally, if ? is a
star operation, then D is a ?–ADD if and only if D is a ?–almost Dedekind
domain in the sense of [41, Chapter 23]. Note also that, a field has only
the identity (semi)star operation and thus a field is, by convention, a trivial
example of a (d–)ADD (since, in this case, M(d) = ∅).

Remark 4.38. Let ?1, ?2 be two semistar operations on D such that (?1)f ≤
(?2)f . If D is a ?1–ADD, then D is a ?2–ADD. In particular:

– D is a ADD ⇒ D is a ?–ADD, for each semistar operation ? on D;
– if ? is a (semi)star operation on D (so, ? ≤ v), then:

D is a ?–ADD ⇒ D is a v–ADD (and, hence, D is integrally
closed).
Note that, in general, for a semistar operation ?, a ?–ADD may be not
integrally closed. For instance, let K be a field and T := K[[X]] = K + M ,
where M := XT is the maximal ideal of the discrete valuation domain T .
Set D := R + M , where R is a non integrally closed integral domain with
quotient field K (hence, D is not integrally closed [22, Proposition 2.2(10)]).
Let ι be the canonical embedding of D in T and let ? := ?{T} on D. Then,
we have ? = ?

f
, ?ι = dT is the identity (semi)star operation on T (Example

1.37(1)) and M(?f ) = {M} (by Lemma 4.7) and DM = T [22, Proposition
1.9]. So D is a ?–ADD which is not integrally closed (hence, in particular,
D is not an ADD).

Proposition 4.39. Let D be an integral domain, which is not a field, and
? a semistar operation on D. Then:

(1) D is a ?–ADD if and only if DP is a DVR, for each quasi–?
f
–prime

ideal P of D.

(2) If D is a ?–ADD, then D is a P?MD and each quasi–?
f
–prime of D is

a quasi–?
f
–maximal of D.

(3) Let T be an overring of D and ?′ a semistar operation on T . Assume
that D ⊆ T is a (?, ?′)–linked extension. If D is a ?–ADD, then T is
a ?′–ADD.
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(4) If D is a ?–ADD, then D? is a ?ι–ADD (where ι is the canonical
embedding of D in D?).

Proof. (1) It follows easily from the fact that each quasi–?
f
–prime is con-

tained in a quasi–?
f
–maximal Proposition 1.8.

(2) It is a straightforward consequence of (1) and of Proposition 4.1 ((i)⇔(ii)).
(3) Let N ∈ M(?′

f
), then (N ∩ D)?

f 6= D? by Proposition 4.8(2). Let
M ⊇ N∩D be a quasi–?

f
–maximal ideal of D. We have DM ⊆ DN∩D ⊆ TN .

So TN = DN∩D = DM , because DM is a DVR (by assumption D is a ?–
ADD). From this proof we deduce also that N ∩ D (= M) is a quasi–?

f
–

maximal ideal of D, for each quasi–?′
f
–maximal ideal N of T .

(4) It follows from Proposition 4.8(1) and (3).

Remark 4.40. (1) We will show that, for a converse of Proposition 4.39(2),
we will need additional conditions (cf. Theorem 4.55((1)⇔(3), (4))).
(2) The converse of Proposition 4.39(4) is not true in general. Indeed, let
K be a field and k ⊂ K a proper subfield of K. Let T := K[[X]] and
D := k + M , where M := XT is the maximal ideal of T . Take ? := ?{T} on
D. Note that ? = ?

f
and that ?ι = dT is the identity (semi)star operation

on T (if ι is the canonical embedding of D in T . We have that T = D? is a
?ι–ADD (= ADD since T is a DVR), but D is not a ?–ADD, since M is a
quasi–?

f
–maximal ideal of D and (by [22, Proposition 1.9]) DM = D is not

a valuation domain.

Proposition 4.41. Let D be an integral domain and ? a semistar operation
on D. Then the following are equivalent:

(i) D is a ?–ADD.

(ii) D is a t(D?)-ADD and ?
f

= t(D?).

In particular, if ? is a (semi)star operation, D is a ?–ADD if and only if D
is a t-ADD and ?

f
= t.

Proof. (i) ⇒ (ii) By Corollary 2.20(2) and Remark 4.38, if D is a ?–ADD,
then D is a t(D?)–ADD. Moreover, by Proposition 4.39(2) D is a P?MD ,
so ?

f
= t(D?), by Proposition 4.3.

(ii) ⇒(i) It is clear.

Theorem 4.42. Let D be an integral domain, which is not a field, and ? a
semistar operation on D. The following are equivalent:

(1) D is a ?–ADD.

(2) Na(D, ?) is an ADD (i.e. Na(D, ?) is a 1-dimensional Prüfer domain
and contains no idempotent maximal ideals).

(3) Na(D, ?) = Kr(D, ?) is an ADD and a Bézout domain.
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Proof. (1) ⇔ (2) By Proposition 1.40(1), the maximal ideals of Na(D, ?)
are of the form MNa(D, ?), where M ∈ M(?

f
). Also, for each M ∈ M(?

f
),

we have Na(D, ?)MNa(D,?) = DM (X). Moreover, it is well-known that, for
M ∈ M(?

f
), DM is a DVR if and only if DM (X) is a DVR [38, Theorem

19.16 (c), Proposition 33.1 and Theorem 33.4 ((1)⇔(3))]. From these facts
we conclude easily.
(1)⇒(3) If D is a ?–ADD, in particular D is a P?MD (Proposition 4.39(2)),
then Na(D, ?) = Kr(D, ?), by Proposition 4.1 ((i)⇔(iv)). Therefore, we
deduce that Na(D, ?) is a Bézout domain (Proposition 1.39(1)) and an ADD
by (1)⇒(2).
(3) ⇒ (2) It is trivial.

Corollary 4.43. Let D be an integral domain and ? a semistar operation
on D. Let ι be the canonical embedding of D in D?̃. The following are
equivalent:

(1) D is a ?–ADD.

(2) D is a ?̃–ADD.

(3) D?̃ is a ?̃ι–ADD.

(4) D?̃ is a t–ADD and ?̃ι = tD?̃ .

Proof. Note that Na(D, ?) = Na(D, ?̃) = Na(D?̃, ?̃ι) (Proposition 1.40(4)),
then apply Theorem 4.42((1)⇔(2)) to obtain the equivalences (1) ⇔ (2) ⇔
(3). The equivalence (3)⇔(4) follows from Proposition 4.41, since ?̃ι is a
(semi)star operation on D?̃.

More in general, since the property of being a ?–ADD depends only on the
Nagata ring, recalling Proposition 4.9, we can give necessary and sufficient
conditions for the converse of Proposition 4.39(4).

Proposition 4.44. Let D be an integral domain, ? a semistar operation on
D and ι the canonical embedding of D in D?. Assume that D? is a ?ι–DD.
The following are equivalent:

(i) D is a ?–ADD.

(ii) Na(D, ?) = Na(D?, ?ι)

(iii) D? is (?, ?ι)–flat over D.

(iv) (D?)P = DP∩D for each P ∈ M ((?ι)f ).

(v) D? = D?̃ and (̃?ι) = (?̃)ι.
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Proof. (ii)⇔(iii)⇔(iv)⇔(v) are in Proposition 4.9.
(i) ⇒(ii) It follows from the fact that a ?–ADD is a P?MD (Proposition
4.39(2)) and from Proposition 4.11.
(ii) ⇒(i) It is immediate from Theorem 4.42.

Corollary 4.45. Let D be an integral domain, T an overring of D. Let ι be
the canonical embedding of D in T and ∗ a semistar operation on T . Assume
that T is a ∗–ADD. Then, the following are equivalent:

(i) D is a ∗ι–ADD.

(ii) Na(D, ∗ι) = Na(T, ∗)

(iii) T is (∗ι, ∗)–flat over D.

(iv) TP = DP∩D for each P ∈ M (∗f ).

(v) T = Df∗ι and ∗̃ =
(
∗̃ι

)
ι
. 2

Next theorem characterizes ?–ADDs as a particular type of subrings of
t–ADDs.

Theorem 4.46. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(i) D is a ?–ADD.

(ii) There exists an overring T of D such that T is a t–ADD, ?
f

= t(T )
and for each tT –maximal ideal Q of T , TQ = DQ∩D.

(iii) There exists an overring T of D such that T is a t–ADD, ?
f

= t(T )
and T is (t(T ), tT )–flat over D.

Proof. (i)⇒(ii) follows immediately from Theorem 4.15 and Proposition 4.39.
(ii)⇒(i) is a consequence of Corollary 4.45(iv)⇒(i).
(ii)⇔(iii) is a straightforward consequence of Corollary 4.10(ii)⇒(iii).

Next goal is a characterization of ?–ADD’s in terms of valuation over-
rings, in the style of [38, Theorem 36.2]. We recall that a valuation overring
V of D is a ?–valuation overring if ?

f
≤ ?{V } (we have introduced this notion

in Section 1.6). For this purpose, we prove preliminarily the following:

Lemma 4.47. Let D be an integral domain and ? a semistar operation on
D. Let V be a valuation overring of D and ι the canonical embedding of D
in V . Then the following are equivalent:

(1) V is a ?̃–valuation overring of D.

(2) V is (?̃, dV )–linked to D.
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Proof. (1) ⇒ (2) Since V is a ?̃–valuation overring, then ?̃ ≤ ?{V }. Thus,
the present implication follows from the fact that (?{V })ι = dV (Example
1.37) (so ?̃ι = dV ) and from Proposition 4.8(1).
(2) ⇒ (1): Let N be the maximal ideal of V (which is (?̃, dV )–linked to D).
Then (N∩D)?̃ 6= D?̃ by Proposition 4.8(2). Thus, there exists M ∈ M(?

f
) =

M(?̃) (Proposition 1.34) such that N ∩D ⊆ M . Hence DM ⊆ DN∩D ⊆ V .
So, if F ∈ f(D), then F ?̃ ⊆ FDM ⊆ FV . Therefore, V is a ?̃–valuation
overring of D.

We recall a result about ?–valuation overrings:

Theorem 4.48. [29, Theorem 3.9] Let D be an integral domain and let ?
be a semistar operation on D. A valuation overring V of D is a ?̃–valuation
overring if and only if V is an overring of DP for some P ∈ M(?

f
). 2

Theorem 4.49. Let D be an integral domain, which is not a field, and ? a
semistar operation on D. The following are equivalent:

(1) D is ?–ADD.

(2) D?̃ is integrally closed and each ?̃–valuation overring of D is a DVR.

(3) D?̃ is integrally closed and each valuation overring V of D, which is
(?̃, dV )–linked to D, is a DVR.

(4) D?̃ is integrally closed and each valuation overring V of D, which is
(?, dV )–linked to D, is a DVR.

Proof. (1) ⇒ (2). Since D?̃ =
⋂
{DM | M ∈ M(?

f
)} and DM is a DVR, for

each M ∈ M(?
f
), then D?̃ is integrally closed. Now, let V be a ?̃–valuation

overring of D, then V ⊇ DM for some M ∈ M(?
f
) by Theorem 4.48. Since

DM is a DVR, then V = DM (is a DVR).
(2) ⇔ (3). Follows immediately from Lemma 4.47.
(3) ⇒ (4) Let V be a valuation overring, (?, dV )–linked to D. Suppose
that it is not (?̃, dV )–linked to D. Then, there exists a (quasi–dV –)maximal
ideal N of D, such that (N ∩ D)?̃ = D?̃ (by Proposition 4.8(2)). Then,
(N ∩ D)?

f = D?
f , since ?̃ ≤ ?

f
. It follows that V is not (?, dV )–linked to

D, a contradiction. So, the thesis follows immediately from the fact that
overrings V which are (?, dV )–linked to D are also (?̃, dV )–linked to D.
(4) ⇒ (1). Let M ∈ M(?

f
) and V be valuation overring of DM . Then

V = VDrM is (?, dV )–linked to D (cf. [20, Example 3.4(1)]). Hence, by
assumption, V is a DVR. Furthermore, DM is integrally closed, since D?̃ ⊆
DM and thus DM = D?̃

MDM∩D?̃ . So DM is an ADD, by [38, Theorem 36.2],
that is, DM is a DVR. Therefore D is a ?–ADD.

Corollary 4.50. Let D be an integral domain, which is not a field. Then
the following are equivalent:
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(1) D is t–almost Dedekind domain.

(2) D is integrally closed and each w–valuation overring of D is a DVR.

(3) D is integrally closed and each t–linked valuation overring of D is a
DVR.

Proof. This is an immediate consequence of Theorem 4.49 and of the well-
known fact that for a valuation domain V , dV = wV = tV .

Remark 4.51. If D is a ?–ADD, which is not a field, then, by Theorem 4.49
and by the fact that a ?–valuation overring is a ?̃–valuation overring, each
?–valuation overring of D is a DVR. Note that the converse is not true, even
if D?̃ is integrally closed. Let D and T be as in Remark 4.40(2). Assume that
k is algebraically closed in K. Since ? = ?{T}, then ? = ?

f
, M(?

f
) = {M}

and D = DM = D?̃ is integrally closed, where ?̃ = dD. Moreover, each
?–valuation overring of D is necessarily a valuation overring of T (since
T = D?

f = D? ⊆ V = V ?
f = V ?). This implies that each ?–valuation

overring of D is a DVR (since the only non trivial valuation overring of T is T ,
which is a DVR). Therefore, by Proposition 1.40(4) and 1.39(4), Na(D, ?) =
Na(D?̃, ?̃ι) = Na(D, dD) = D(Z) ( Kr(D, ?) = Kr(T, dT ) = T (Z) (where
ι is the canonical embedding of D in D?̃ and Z is an indeterminate over T
and D). On the other hand, since t.degk(K) ≥ 1, it is possible to find (?̃–)
valuation overrings of D (of rank ≥ 2) contained in T [38, Theorem 20.7].

Let D be an integral domain and ? a semistar operation on D. For
each quasi-?-prime P of D, we define the ?-height of P (for short, ?-ht(P ))
the supremum of the lengths of the chains of quasi–?–prime ideals of D,
between (0) and P (included). Obviously, if ? = d is the identity (semi)star
operation on D, then d-ht(P ) = ht(P ), for each prime ideal P of D. If the
set of quasi–?–primes of D is not empty, the ?-dimension of D is defined as
follows:

?-dim(D) := Sup{?-ht(P ) | P is a quasi– ? –prime of D} .
If the set of quasi–?–primes of D is empty, then we pose ?-dim(D) := 0.
Note that, if ?1 ≤ ?2, then ?2-dim(D) ≤ ?1-dim(D). In particular, ?-
dim(D) ≤ d-dim(D) = dim(D) (= Krull dimension of D), for each semistar
operation ? on D. Note that, recently, the notions of t-dimension and of
w-dimension have been received a considerable interest by several authors
(cf. for instance, [49], [76] and [77]).

Lemma 4.52. Let D be an integral domain and ? a semistar operation on
D, then

?̃-dim(D) = Sup{ht(M) | M ∈ M(?
f
) = M(?̃)} =

= Sup{ht(P ) | P is a quasi–?̃–prime of D} .
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Proof. Let M ∈ M(?
f
) and P ⊆ M be a nonzero prime ideal of D. Since

M(?
f
) = M(?̃) (Proposition 1.34) we have P ⊆ P ?̃ ∩ D ⊆ PDM ∩ D = P .

So P is a quasi–?̃–prime ideal of D. Hence ht(M) = ?̃- ht(M), so we get the
Lemma.

Remark 4.53. Note that, in general,
?

f
-dim(D) ≤ Sup{ht(P ) | P is a quasi– ?

f
–prime of D} .

Moreover, it can happen that ?
f
-dim(D) � Sup{ht(P ) | P is a quasi– ?

f

–prime of D}, as the following example shows.
Let T be a DVR , with maximal ideal N , dominating a two-dimensional
local Noetherian domain D, with maximal ideal M [18] (or [16, Theorem]),
and let ? := ?{T}. Then, clearly, ? = ?

f
and the only quasi–?

f
–prime ideal

of D is M , since if P is a nonzero prime ideal of D, then P ? = PT = Nk,
for some integer k ≥ 1. Therefore, if we assume that P is quasi–?

f
–ideal of

D, then we would have P = PT ∩D = Nk ∩D ⊇ Mk, which implies that
P = M . Therefore, in this case, 1 = ?

f
-dim(D) = ?

f
-ht(M) � Sup{ht(P ) |

P is a quasi– ?
f

–prime of D} = ht(M) = dim(D) = 2. Note that, in the
present example, ?̃ coincides with the identity (semi)star operation on D.
It is already known that, when ? = v, it may happen that t–dim(D) < w–
dim(D), [77, Remark 2].

The following lemma generalizes [38, Theorem 23.3, the first statement
in (a)].

Lemma 4.54. Let D be a P?MD. Let Q be a nonzero P–primary ideal of D,
for some prime ideal P of D, and let x ∈ DrP . Then Q?̃ = (Q(Q + xD))?̃.

Proof. Let M ∈ M(?
f
). If Q 6⊆ M , then QDM = Q2DM = Q(Q+xD)DM (=

DM ). If Q ⊆ M , then QDM is PDM -primary and x ∈ DM r PDM ; so
QDM = QxDM , by [38, Theorem 17.3(a)], since DM is a valuation domain.
Thus QDM = (Q2 + Qx)DM , hence Q?̃ = (Q(Q + xD))?̃.

The following theorem provides several characterizations of the semistar
almost Dedekind domains and, in particular, it generalizes [38, Theorem
36.5] and [53, Theorem 4.5].

Theorem 4.55. Let D be an integral domain which is not a field and let ?
be a semistar operation on D. The following are equivalent:

(1) D is ?-ADD.

(2) D has the ?̃–cancellation law.

(3) D is a P?MD, ?
f
-dim(D) = 1 and (M2)?

f 6= M?
f , for each M ∈

M(?
f
) (= M(?̃)).

(4) D is a P?MD and ∩n≥1(In)?
f = 0 for each proper quasi–?

f
–ideal I of

D.
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(5) D is a P?MD and it has the ?
f
–cancellation law.

Proof. (1) ⇒ (2). Let A,B, C be three nonzero (fractional) ideals of D
such that (AB)?̃ = (AC)?̃. Let M ∈ M(?

f
). Then, we have ABDM =

(AB)?̃DM = (AC)?̃DM = ACDM (we used twice the fact that ?̃ is spectral,
defined by M(?

f
)). Moreover, since DM is a DVR then, in particular, ADM

is principal, thus BDM = CDM . Hence B?̃ = C ?̃.
(2)⇒ (3). If D has ?̃–CL, then in particular, ?̃ is an e.a.b. semistar operation
on D, thus D is a P?MD (Proposition 4.1 ((v)⇒(i)) ). Let M ∈ M(?

f
).

Clearly, by ?̃–CL, (M2)?̃ 6= M ?̃, and hence (M2)?
f 6= M?

f (since ?̃ = ?
f

by Proposition 4.1). Next we show that ht(M) = 1, for each M ∈ M(?
f
).

Deny, let P ⊂ M be a nonzero prime ideal of D and let x ∈ M r P . By
Lemma 4.54, P ?̃ = (P (P + xD))?̃. Hence D?̃ = (P + xD)?̃, by ?̃–CL. So
P + xD 6⊆ M , which is impossible. Hence ht(M) = 1, for each M ∈ M(?

f
).

Therefore, we conclude that ?
f
-dim(D) = ?̃-dim(D) = 1 (Lemma 4.52).

(3) ⇒ (4). Recall that each proper quasi–?
f
–ideal is contained in a quasi–?

f
–

maximal ideal, then it suffices to show that ∩n≥1(Mn)?
f = 0, for each M ∈

M(?
f
). Since, by assumption (M2)?

f 6= M?
f , then in particular (M2)?̃ 6= M ?̃,

and so M2DM 6= MDM . Henceforth {MnDM}n≥1 is the set of MDM -
primary ideals of DM [38, Theorem 17.3(b)]. From the assumption we deduce
that dim(DM ) = 1 (because ?

f
= ?̃ by Proposition 4.1), then ∩n≥1M

nDM =
0 [38, Theorem 17.3 (c) and (d)]. In particular, we have ∩n≥1(Mn)?̃ ⊆
∩n≥1

(
(Mn)?̃DM

)
= ∩n≥1 (MnDM ) = 0, therefore ∩n≥1(Mn)?

f = 0.
(4) ⇒ (1). Let M ∈ M(?

f
). It is easy to see that (Mn)?̃ = MnDM ∩

D?̃, for each n ≥ 1. So, (∩n≥1M
nDM ) ∩ D?̃ ⊆ ∩n≥1(MnDM ∩ D?̃) =

∩n≥1(Mn)?̃ ⊆ ∩n≥1(Mn)?
f = 0 (the last equality holds by assumption).

Hence ∩n≥1M
nDM = 0, since DM is an essential valuation overring of D?̃.

It follows that DM is a DVR [38, p. 192 and Theorem 17.3(b)].
(2) ⇔ (5) is a consequence of the fact that in a P?MD, ?̃ = ?

f
and that the

?̃–CL implies P?MD.

Remark 4.56. As a comment to Theorem 4.55 ((1)⇔(5)), note that D
may have the ?

f
–CL without being a ?–ADD. It is sufficient to consider

the example in Remark 4.40(2). In that case, ? = ?
f

and ?̃ = dD, since
M(?

f
) = {M}. Clearly, D has the ?–cancellation law (because T is a DVR),

but, as we have already remarked, D is not a ?–ADD, hence, equivalently,
D has not the (?̃–)cancellation law.

Next result provides a generalization to the semistar case of [38, Theorem
36.4 and Proposition 36.6].

Proposition 4.57. Let D be an integral domain, which is not a field, and
? a semistar operation on D. The following are equivalent:

(1) D is a ?–ADD.
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(2) For each nonzero ideal I of D, such that I?
f 6= D? and

√
I =: P is a

prime ideal of D, then I ?̃ = (Pn)?̃, for some n ≥ 1.

(3) ?̃-dim(D) = 1 and, for each primary quasi–?̃–ideal Q of D, then Q?̃ =
(Mn)?̃, for some M ∈ M(?

f
) and for some n ≥ 1.

Proof. (1) ⇒ (2) and (3). Let I be a nonzero ideal of D with I?
f 6= D?

and
√

I = P is prime. Let M be a quasi–?
f
–maximal ideal of D such that

I ⊆ M . So
√

I = P ⊆ M , and hence P = M , since DM is a DVR. Thus
IDM = MnDM for some n ≥ 1. On the other hand, if N ∈ M(?

f
) and

N 6= M , then IDN = DN = MnDN . Hence I ?̃ = (Mn)?̃, i.e. I ?̃ = (Pn)?̃.
The fact that ?̃-dim(D) = 1 follows from Theorem 4.55((1)⇒(3)) (since, in
the present situation, ?

f
= ?̃).

(2) ⇒ (1). Let M ∈ M(?
f
). Let A be an ideal of DM and assume that√

A = PDM , for some prime ideal P of D, P ⊆ M . Set B := A∩D. We have√
B = P and hence B?

f ⊆ M?
f ⊂ D?. By assumption, B?̃ = (Pn)?̃, for some

n ≥ 1, hence A = (A ∩ D)DM = BDM = B?̃DM = (Pn)?̃DM = PnDM .
It follows from [38, Proposition 36.6] that DM is an ADD. Hence DM is a
DVR.
(3) ⇒ (1). We can assume ? = ?

f
, since ?–ADD and ?

f
–ADD coincide.

Let M ∈ M(?
f
) (= M(?̃) (Proposition 1.34)). Since ?̃-dim(D) = 1, then

ht(M) = dim(DM ) = 1 (Lemma 4.52). We can now proceed and conclude
as in the proof of (2) ⇒ (1). (In this case, we have

√
A = MDM and so B is

a M–primary quasi–?̃–ideal of D. Therefore, by assumption, B?̃ = (Mn)?̃,
for some n ≥ 1.)

Remark 4.58. Note that, if D is a ?–ADD, which is not a field, then neces-
sarily D satisfies the following conditions (obtained from the statements (2)
and (3) of Proposition 4.57; recall that, in this case, ?

f
= ?̃, by Proposition

4.39(2) and Proposition 4.1):

(2
f
) For each nonzero ideal I of D, such that I?

f 6= D? and
√

I =: P is a
prime ideal of D, then I?

f = (Pn)?
f , for some n ≥ 1.

(3
f
) ?

f
- dim(D) = 1 and, for each primary quasi–?

f
–ideal Q of D, then

Q?
f = (Mn)?

f , for some M ∈ M(?
f
) and for some n ≥ 1.

On the other hand, D may satisfy either (2
f
) or (3

f
) without being a ?–

ADD. It is sufficient to consider the example in Remark 4.40(2). In that
case, ? = ?

f
and M(?

f
) = {M}. Clearly, since D is a local one-dimensional

domain (in fact, ?̃- dim(D) = ?
f
- dim(D) = dim(D) = 1), for each nonzero

ideal I of D, with I?
f 6= D?, then

√
I = M and I?

f = (Mn)?
f , for some

n ≥ 1, since T is a DVR. But, as we have already remarked, D is not a
?–ADD.
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4.5 Semistar Dedekind domains

In this section we want to generalize the concept of a Dedekind domain,
that is, a Noetherian Prüfer domain. So, given a semistar operation ? on an
integral domain D, it is natural to define a ?–Dedekind domain (?–DD for
short) to be a ?–Noetherian P?MD.

Next proposition generalizes the well-known fact that an integral domain
D is a Dedekind domain if and only each fractional ideal of D is invertible.
We notice that, to have an analogue of this result in the semistar case, we
need the notion of quasi–?–invertibility. This is one of the main reasons that
led to introducing this concept.

Proposition 4.59. Let D be an integral domain and ? a semistar operation
on D. The following are equivalent:

(1) D is a ?–Noetherian domain and a P?MD (i.e., a ?–DD);

(1
f
) D is a ?

f
–Noetherian domain and a P?

f
MD;

(2) F ?̃(D) := {F ?̃ | F ∈ F (D)} is a group under the multiplication “×”,
defined by F ?̃ ×G?̃ := (F ?̃G?̃)?̃ = (FG)?̃, for all F,G ∈ F (D);

(3) Each nonzero fractional ideal of D is quasi–?̃–invertible;

(4) Each nonzero (integral) ideal of D is quasi–?̃–invertible.

Proof. (1)⇔ (1
f
) is obvious (Proposition 4.19 and Proposition 4.1 ((i)⇔(vi))).

(1) ⇒ (2). One can easily check that F ?̃(D) is a monoid, with D?̃ as
the identity element (with respect to “×”). We next show that each el-
ement of F ?̃(D) is invertible for the monoid structure. Let F ∈ F (D),
then there exists 0 6= d ∈ D such that I := dF ⊆ D. Write I?

f = J?
f ,

where J ⊆ I is a finitely generated ideal of D (Lemma 4.18 and Proposition
4.19). Since D is a P?MD, then ?

f
= ?̃ (Proposition 4.1). So, I ?̃ = J ?̃.

We have (JJ−1)?̃ = D?̃, since D is a P?̃MD (Proposition 4.1). Then,
D?̃ = (J ?̃J−1)?̃ = (IJ−1)?̃ = (dFJ−1)?̃ =

(
F ?̃(dJ−1)?̃

)?̃. Thus F ?̃ is in-
vertible in (F ?̃(D),×).
(2) ⇒ (3). Let F ∈ F (D). By assumption, there exists G ∈ F (D)
such that (FG)?̃ = D?̃. We have FG ⊆ D?̃, so G ⊆ (D?̃ : F ). Thus
D?̃ = (FG)?̃ ⊆ (F (D?̃ : F )) ⊆ D?̃. Hence (F (D?̃ : F ))?̃ = D?̃, that is, F is
quasi–?̃–invertible.
(3) ⇒ (4) is straightforward.
(4) ⇒ (1) From the previous comments on quasi semistar invertibility for
nonzero finitely generated ideals in the stable case, it is clear that the as-
sumption implies that D is a P?̃MD and hence D is a P?MD (Proposition
4.1). To prove that D is a ?–Noetherian domain, since ?̃ = ?

f
(Proposition

4.1), it is enough to show, by using Proposition 4.19, that D is ?̃–Noetherian.
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Let I be a nonzero ideal of D. By assumption, I is quasi–?̃–invertible, then
I is ?̃–finite, by Proposition 3.16 applied to ?̃. Thus, from Lemma 4.18, we
deduce that D is ?̃–Noetherian.

Note that, by definition, the notions of ?–DD and ?
f
–DD coincide.

Remark 4.60. (1) By Proposition 4.59(1), if ? = d we obtain that a d–DD
coincides with a classical Dedekind domain [38, Theorem 37.1]; if ? = v,
we have that a v–DD coincides with a Krull domain (since a Mori PvMD
is a Krull domain [52, Theorem 3.2 ((1) ⇔(3))]; note that a Mori domain
satisfies the t–FC property by [11, Proposition 2.2(b)]). More generally, if ?
is a star operation, then D is a ?–DD if and only if D is ?–Dedekind in the
sense of [41, Chapter 23].

(2) If D is ?–DD then D is ?–ADD (for a converse, see the following
Theorem 4.69). Indeed, a ?–DD is a P?MD and so ?̃ = ?

f
(Proposition 4.1).

This equality implies also that D is ?̃–Noetherian (Proposition 4.19 and
Proposition 4.59(1)). Therefore DM is Noetherian (by Proposition 4.25)
and, hence, we conclude that DM is a DVR, for each M ∈ M(?

f
).

Corollary 4.61. Let D be an integral domain and ? a semistar operation
on D. Then D is a ?–DD if and only if D is a ?̃–DD.

Proof. It follows from Proposition 4.59(4) and from the fact that ˜̃? = ?̃, since
M(?̃) = M(?

f
) (Proposition 1.34).

Theorem 4.62. Let D be an integral domain.

(1) Let ? ≤ ?′ be two semistar operations on D. Then:
D is a ?–DD ⇒ D is a ?′–DD .

In particular:

(1a) If D is a Dedekind domain, then D is a ?–DD, for any semistar
operation ? on D.

(1b) Assume that ? is a (semi)star operation on D. Then a ?–DD is
a Krull domain.

(2) Let T be an overring of D. Let ? be a semistar operation on D and ?′ a
semistar operation on T . Assume that T is a (?, ?′)–linked overring of
D. If D is a ?–DD, then T is a ?′–DD. In particular, If D is a ?–DD,
then D? is a ?ι–DD (where ι is the canonical embedding of D in D?).

Proof. (1) It follows from the comments before Proposition 4.1 and Lemma
4.16(1). (1a) and (1b) are consequence of (1), Remark 4.60(1) and of the fact
that d ≤ ?, for each semistar operation ?, and if ? is a (semi)star operation,
then ? ≤ v.
(2) Note that if T is a (?, ?′)–linked overring of D and if D is a P?MD, then
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T is a (?, ?′)–flat over D (Proposition 4.8(5)). By Proposition 4.59(1) and
Corollary 4.61, we know that D is ?̃–Noetherian and a P?MD (or, equiva-
lently, a P?̃MD). Hence, T is ?̃′–Noetherian (Proposition 4.24) and T is a
P?′MD (or, equivalently, a P?̃′MD) by Proposition 4.8(4). The first state-
ment follows from Proposition 4.59(1) and Corollary 4.61. The last statement
is a consequence of Proposition 4.8(1).

Proposition 4.63. Let D be an integral domain and ? a semistar operation
on D. Then the following are equivalent:

(i) D is a ?–DD

(ii) D is a t(D?)–DD and ?
f

= t(D?).

In particular, if ? is a (semi)star operation, D is a ?–DD if and only if D is
a Krull domain and ?

f
= tD.

Proof. (i) ⇒ (ii). Since D is a P?MD, ?
f

= t(D?), by Proposition 4.3.
(ii) ⇒ (i). It is clear.

Note that Proposition 4.63 has already been proven in [41, Theorem
23.3((a)⇔(d))], by using the language of monoids and ideal systems.

Remark 4.64. Note that if D is ?–DD, then by Theorem 4.62(2) D? is ?ι–
DD (where ι is the canonical embedding of D in D?), that is D? is a Krull
domain and (?ι)f = tD? (and so, ?

f
= t(D?)) (Proposition 4.63). However,

the converse does not hold in general as the example in Remark 4.40(2)
shows. We will study the converse of this result in Proposition 4.78 and
following.

Next result is a “Cohen-type” Theorem for quasi–?–invertible ideals.

Lemma 4.65. Let D be an integral domain and ? a semistar operation of
finite type on D. The following are equivalent:

(1) Each nonzero quasi–?–prime of D is a quasi–?–invertible ideal of D.

(2) Each nonzero quasi–?–ideal of D is a quasi–?–invertible ideal of D.

(3) Each nonzero ideal of D is a quasi–?–invertible ideal of D.

Proof. (1) ⇒ (2). Let S be the set of the quasi–?–ideals of D that are not
quasi–?–invertible. Assume that S 6= ∅. Since ? = ?

f
by assumption, then

Zorn’s Lemma can be applied, thus we deduce that S has maximal elements.
We next show that a maximal element of S is prime. Let P be a maximal
element of S and let r, s ∈ D, with rs ∈ P . Suppose s 6∈ P . Let J := (P :D
rD). We claim that J? ∩D = J . Indeed, since (P :D rD)? ⊆ (P ? :D? rD),
then J?∩D ⊆ (P ? :D? rD)∩D = (P ? :D rD). Moreover, if x ∈ (P ? :D rD),
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then xr ∈ P ? ∩ D = P , and hence (P ? :D rD) ⊆ (P :D rD) = J . Thus
J = J? ∩ D, i.e. J is a quasi–?–ideal of D. Clearly, J contains properly
P (since s ∈ J r P ). By the maximality of P in S, it follows that J is
quasi–?–invertible, that is (J(D? : J))? = D?. We notice that, by Lemma
3.12(2), P (D? : J) ∈ F (D) is not quasi–?–invertible, since P is not quasi–?–
invertible. We deduce that (P (D? : J))?∩D is a proper quasi–?–ideal, that is
not quasi–?–invertible (Remark 3.14(a)) and, obviously, it contains P . From
the maximality of P in S, we have (P (D? : J))? ∩ D = P . Now, rJ ⊆ P
implies (rJ)? ⊆ P ?. Then r ∈ (rD)? = (rJ(D? : J))? ⊆ (P (D? : J))?.
Therefore, r ∈ (P (D? : J))? ∩ D = P and so we have proven that P is a
prime ideal of D.
(2) ⇒ (3) is a consequence of Remark 3.14(a), after remarking that, for each
nonzero ideal J of D, then J ⊆ I := J? ∩D, where I is a quasi–?–ideal of
D and J? = I?.
(3) ⇒ (2) ⇒ (1) are trivial.

Remark 4.66. Note that, in the situation of Lemma 4.65, the statement:

(0) each nonzero quasi–?–maximal ideal of D is a quasi–?–invertible ideal
of D,

is, in general, strictly weaker than (1). Take, for instance, D equal to a
discrete valuation domain of rank ≥ 2, and ? = dD.

The next two theorems generalize [38, Theorem 37.8 ((1)⇔(4)), Theorem
37.2]. Similar results are proven in [41, Theorem 23.3((a)⇔(c), (h))].

Theorem 4.67. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(1) D is a ?–DD.

(2) Each nonzero quasi–?̃–prime ideal of D is quasi–?̃–invertible.

Proof. Easy consequence of Lemma 4.65 ((1)⇔(3)) and Proposition 4.59
(4).

From the previous theorem, we deduce the following characterization of
Krull domains (cf. [50, Theorem 2.3 ((1)⇔(3))], [52, Theorem 3.6 ((1)⇔(4))]
and [79, Theorem 5.4 ((i)⇔(vi))]).

Corollary 4.68. Let D be an integral domain. The following are equivalent:

(1) D is a Krull domain.

(2) Each nonzero w–prime ideal of D is w–invertible.

(3) Each nonzero t–prime ideal of D is t–invertible.
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Proof. (1) ⇔ (2) is a direct consequence of Theorem 4.67.
(1) ⇒ (3) is a straightforward consequence of (1) ⇒ (2) and of the fact that,
in a Krull domain (which is a particular PvMD), t = t̃ = w (Proposition
4.1).
(3) ⇒ (2). Note that, by assumption, and by Lemma 4.65 ((1)⇔(3)),
every nonzero ideal of D is t–invertible. Let Q be a nonzero w–prime. If
(QQ−1)w 6= D, then Q ⊆ (QQ−1)w ⊆ M , for some M ∈ M(w) = M(t)
(Proposition 1.34(5)), thus (QQ−1)t = ((QQ−1)w)t ⊆ M t = M , which is a
contradiction.

Theorem 4.69. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(1) D is a ?–DD.

(2) D is a ?–ADD and each nonzero element of D is contained in only
finitely many quasi–?

f
–maximal ideals (i.e. D has the ?

f
–FC property).

(3) D is a ?–Noetherian ?–ADD.

Proof. (1) ⇒ (2). Clearly D is a ?–ADD, by Remark 4.60(2). Since by
Lemma 4.7(1), each quasi–?

f
–maximal ideal of D is a contraction of a (?ι)f–

maximal ideal of D? (where ι is the canonical embedding of D in D?), in
order to show that D has ?

f
–FC property, it is enough to check that D?

satisfies the (?ι)f –FC property. On the other hand, since (1) implies that
D? is a ?ι-DD (Theorem 4.62(2)), without loss of generality, we can assume
that ? is a (semi)star operation on D and D is a ?–DD. By Proposition 4.63,
D is a Krull domain and ?

f
= t. Thus, each nonzero element is contained in

only finitely many t–maximal ideals (= ?
f
–maximal ideals) of D.

(2) ⇒ (1). We need to show that D is ?
f
–DD. First, note that D is a P?

f
MD

and DM is Noetherian, for each M ∈ M(?
f
) (Proposition 4.39 (1) and (2)).

The conclusion now follows from Proposition 4.25 and Proposition 4.59(1),
after recalling that, in a P?

f
MD, ?

f
= ?̃ (Proposition 4.1).

(1) ⇔ (3) is a consequence of Proposition 4.39(2), Proposition 4.59 and
Remark 4.60(2).

From the previous theorem, we deduce a restatement of a well-known
characterization of Krull domains:

Corollary 4.70. Let D be an integral domain, then the following are equiv-
alent:

(1) D is a Krull domain.

(2) D is a t–almost Dedekind domain and each nonzero element of D is
contained in only finitely many t–maximal ideals (= t–FC property).
2
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Let D be an integral domain and ? a semistar operation on D. We recall
that the ?–integral closure D[?] of D (or, the semistar integral closure with
respect to the semistar operation ? of D) is the integrally closed overring of
D? defined by D[?] :=

⋃
{(F ? : F ?) | F ∈ f(D)} [27, Definition 4.1]. We

say that D is quasi–?–integrally closed (respectively, ?–integrally closed ) if
D? = D[?] (respectively, D = D[?]). It is clear that:

– D is quasi–?–integrally closed if and only if D is quasi–?
f
–integrally

closed (respectively, D is ?–integrally closed if and only if D is ?
f
–integrally

closed);
– D is ?–integrally closed if and only if D is quasi–?–integrally closed

and ? is a (semi)star operation on D.
We recall also [26, Example 2.1(c2)] that D[?̃] = (D′)?̃ (where D′ is the

integral closure of D).
Note that when ? = v, then the overring D[v] = D[t] was studied in [7]

under the name of pseudo-integral closure of D.

Lemma 4.71. Let D be an integral domain and ? a semistar operation on
D.

(1) If ? is e.a.b., then D? = D[?] (i.e. D is quasi–?–integrally closed).

(2) D is quasi–?̃–integrally closed if and only if D?̃ is integrally closed.

Proof. (1) Note that, in general, D? ⊆ D[?]. For the converse, let F ∈ f(D)
and let x ∈ (F ? : F ?). Then, xF ? ⊆ F ? and F ? = F ? + F ?(xD). Therefore
we have (F (D+xD))? = (F ?(D+xD))? = (F ? +F ?(xD))? = F ?. From the
fact that F is finitely generated and that ? is e.a.b., we obtain (D + xD)? =
D?. It follows that x ∈ D? and so (F ? : F ?) ⊆ D?. Hence, D? = D[?].
(2) The “only if” part is clear, since we have mentioned earlier that D[?] is
integrally closed for each semistar operation ?. For the “if" part, let D′ be the
integral closure of D, since D?̃ is integrally closed, then (D′)?̃ ⊆ D?̃ ⊆ D[?̃].
Since (D′)?̃ = D[?̃], hence, (D′)?̃ = D?̃ = D[?̃] (by the comments above about
D[?̃]). Therefore, D is quasi–?̃–integrally closed.

Corollary 4.72. Let ? be a semistar operation on an integral domain D. If
D is a P?MD (in particular, a ?–DD) then D is quasi–?–integrally closed.

Proof. It follows from Lemma 4.71(1) and from the fact that, in a P?MD,
?̃ = ?

f
is an e.a.b. semistar operation (Proposition 4.1 ((i)⇒(v), (vi))).

The following result shows that a semistar version of the “Noether’s Ax-
ioms” provides a characterization of the semistar Dedekind domains.

Theorem 4.73. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(1) D is a ?–DD.
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(2) D is ?̃–Noetherian, ?̃-dim(D) = 1 and D is quasi–?̃–integrally closed.

(3) D is ?̃–Noetherian, ?̃-dim(D) = 1 and D?̃ is integrally closed.

Proof. The equivalence (2) ⇔ (3) follows from Lemma 4.71 (2).
(1) ⇒ (2). Since D is a ?–DD, then D is ?–ADD (Remark 4.60(2)). Hence
?̃-dim(D) = 1 (Proposition 4.57). Moreover, recall that a ?–DD is a ?̃–DD
(Corollary 4.61). Then D is ?̃–Noetherian and a P?̃MD (Proposition 4.59),
and so D is quasi–?̃–integrally closed by Corollary 4.72.
(3) ⇒ (1) For each M ∈ M(?

f
), it is well-known that D?̃ ⊆ DM and

D?̃
MDM∩D?̃ = DM . Since D?̃ is integrally closed, this implies that DM

is also integrally closed. Therefore DM is a local, Noetherian (by Proposi-
tion 4.25), integrally closed, one dimensional (by Lemma 4.52) domain, that
is, a DVR [38, Theorem 37.8]. Hence D is a P?MD. In particular, we have
?̃ = ?

f
(Proposition 4.1), thus D is ?

f
–Noetherian, by the assumption, and

so D is ?–Noetherian (Proposition 4.19). We conclude that D is a ?–DD.

By taking ? = v in Theorem 4.73, we obtain the following characteriza-
tion of Krull domains:

Corollary 4.74. Let D be an integral domain. The following are equivalent:

(1) D is a Krull domain.

(2) D is a strong Mori domain, w-dim(D) = 1 and D = D[w].

(3) D is a strong Mori domain, w-dim(D) = 1 and D is integrally closed.

(4) D is a strong Mori domain, t-dim(D) = 1 and D is integrally closed.

Proof. The only part which needs a justification is the statement on t-
dimension and w-dimension (in the equivalence (3) ⇔ (4)). This follows
from the fact that, in every integral domain, w ≤ t and M(t) = M(w).

Remark 4.75. Note that, if D is a ?–DD, then we know that ?̃ = ?
f
, and

so D satisfies the properties:

(2
f
) D is ?

f
–Noetherian, ?

f
- dim(D) = 1 and D is quasi–?

f
–integrally closed;

(3
f
) D is ?

f
-Noetherian, ?

f
- dim(D) = 1 and D?

f (= D?) is integrally closed

obtained from (2) and (3) of Theorem 4.73, replacing ?̃ with ?
f
. But, con-

versely, if D satisfies either (2
f
) or (3

f
) then D is not necessarily a ?–DD.

Indeed, let D,T and ? be as in the example of Remark 4.40(2). Then we have
already observed that ? = ?

f
and ?̃ = dD. Moreover, D is not a ?–DD (be-

cause it is not a ?–ADD), but D?
f = T = D[?

f
] is integrally closed (since T is

a DVR), ?
f
-dim(D) = 1 (since M(?

f
) = {M} and ?

f
-dim(D) ≤ dim(D) = 1)

and D is ?
f
–Noetherian (Lemma 4.18, since T is Noetherian).
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Note that (3
f
) does not imply that D is a ?–DD, even if ? is a (semi)star

operation on D. Take T and D as in the example described in Remark
4.40(2) and, moreover, assume that k is algebraically closed in K. It is
wellknown that, in this situation, D is integrally closed. Let ? := v on D.
It is easy to see that M(v) = M(t) = {M}, thus w = d is the identity
(semi)star operation on D (hence, D[w] = D[d] = D) and t- dim(D) = 1 (=
v- dim(D) = w- dim(D) = dim(D)). Moreover, it is known that D is a Mori
domain [34, Theorem 4.18] and thus D is a t–Noetherian domain. However,
D is not a Krull domain, since D is not completely integrally closed (being
T the complete integral closure of D). Note that, in this situation, D is even
not a strong Mori domain (by Corollary 4.74).
Note also that, in the previous example, D ( D[t] (i.e. D is not t–integrally
closed, hence does not satisfies condition (2

f
) for ? = v), since D[t] = T by

[7, Theorem 1.8(ii)].
On the other hand, if ? is a (semi)star operation on D, then we know

that D is a ?–DD if and only if D is a v–DD (i.e. a Krull domain) and ?
f

= t
(Proposition 4.63). It is interesting to observe that, for ? = v, condition (1)
of Theorem 4.73 is equivalent to (2

f
). More precisely we have the following

variation of the equivalence (1) ⇔ (4) of Corollary 4.74:
D is a Krull domain if and only if D is t–Noetherian, t- dim(D) = 1 and D
is t–integrally closed (i.e. D = D[t]).
As a matter of fact, let F ∈ f(D), then D = D[t] = D[v] implies that
D = (F v : F v) = (F−1 : F−1) = (FF−1)−1 and so (FF−1)v = D. Moreover,
since t–Noetherian is equivalent to v–Noetherian (Proposition 4.19) and v–
Noetherian implies that v = t (Lemma 4.18), then (FF−1)t = D. Thus D
is a PvMD and so D is a v–DD (Proposition 4.59).

Finally, from the previous considerations we deduce that D is a ?–DD if
and only if

(2
f
) D is ?

f
–Noetherian, ?

f
- dim(D) = 1, D is quasi–?

f
–integrally closed

and ?
f

= t.

Next result generalizes [38, Proposition 38.7].

Theorem 4.76. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(i) D is a ?–DD.

(ii) Na(D, ?) (= Kr(D, ?)) is a PID.

(iii) Na(D, ?) (= Kr(D, ?)) is a Dedekind domain.

Proof. (i)⇒(ii) Note that D is a ?̃-DD (Corollary 4.61), and Na(D, ?) =
Na(D, ?̃) (Proposition 1.40(4)). Since D is ?̃–Noetherian, we have that
Na(D, ?̃) = Na(D, ?) is a Noetherian domain (Theorem 4.36). Moreover, D
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is a P?̃MD, so Na(D, ?̃) = Na(D, ?) = Kr(D, ?) is a Bezout domain (Propo-
sition 4.1(i)⇒(iv) and Proposition 1.39(1)). Hence, Na(D, ?) is a Noetherian
Bezout domain, that is, a PID.
(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Assume that Na(D, ?) is a Dedekind domain. Then, in partic-
ular, Na(D, ?) is a Prüfer domain, and so D is a P?MD, by Proposition
4.1(iii)⇒(i). Moreover, Na(D, ?) is Noetherian, and so D is a ?̃–Noetherian
domain by Theorem 4.36(ii)⇒(i), and so D is ?–Noetherian by Lemma
4.16(1), since ?̃ ≤ ?. Hence, D is a ?–DD.

From the previous result, we deduce immediately:

Corollary 4.77. Let D be an integral domain. The following are equivalent:

(1) D is a Krull domain.

(2) Na(D, v) (= Kr(D, v)) is a PID.

(3) Na(D, v) (= Kr(D, v)) is a Dedekind domain. 2

We go back to the problem mentioned in Remark 4.64: the problem of
the descent of the property of being a ?–DD. Theorem 4.76 shows that this
property depends only on the Nagata ring: this allows us to use Proposition
4.9 and Corollary 4.10.

Proposition 4.78. Let D be an integral domain, ? a semistar operation on
D. Assume that D? is a ?ι–DD (where ι is the canonical embedding of D in
D?). Then the following are equivalent:

(i) D is a ?-DD.

(ii) Na(D, ?) = Na(D?, ?ι)

(iii) D? is (?, ?ι)–flat over D.

(iv) (D?)P = DP∩D for each P ∈ M ((?ι)f ).

(v) D? = D?̃ and (̃?ι) = (?̃)ι.

Proof. (i)⇒(ii) It is a consequence of Proposition 4.11, since a ?–DD is a
P?MD.
(ii)⇒(i) It is straightforward by Theorem 4.76.
The other equivalences are in Proposition 4.9.

It follows, by using Corollary 4.12, the general result for the descent from
an arbitrary overring.
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Proposition 4.79. Let D be an integral domain, T an overring of D. Let
ι be the canonical embedding of D in T and ∗ a semistar operation on T .
Assume that T is a ∗–DD. Then, the following are equivalent:

(i) D is a ∗ι–DD.

(ii) Na(D, ∗ι) = Na(T, ∗)

(iii) T is (∗ι, ∗)–flat over D.

(iv) TP = DP∩D for each P ∈ M (∗f ).

(v) T = Df∗ι and ∗̃ =
(
∗̃ι

)
ι
. 2

Corollary 4.80. Let D be an integral domain and ? a semistar operation
on D. Let ι be the canonical embedding of D in D?. The following are
equivalent:

(i) D is a ?–DD.

(ii) D is a ?̃–DD.

(iii) D?̃ is a ?̃ι-DD .

(iv) D?̃ is a Krull domain and ?̃ι = tD?̃ .

Proof. (i) ⇔ (ii) It is Corollary 4.61.
(ii) ⇒ (iii) It follows from Lemma 4.62
(iii) ⇒ (iv) It follows from Proposition 4.63, since ?̃ι is a (semi)star operation
on D?̃.
(iv) ⇒ (ii) It follows by Proposition 4.78 and Lemma 4.13, since (?̃ι)ι = ?̃
(Proposition 2.16(1)).

Next result characterize ?–DD domains as a particular class of subrings
of Krull domains (the proof is straightforward, cf. Theorem 4.15).

Theorem 4.81. If D is an integral domain and ? is a semistar operation
on D, then the following are equivalent:

(1) D is a ?–DD.

(2) There exists an overring T of D such that T is a Krull domain, ?
f

=
(tT )ι (where ι is the canonical embedding of D in T ) and, for each
tT –maximal ideal Q of T , DQ∩D = TQ. 2

Example 4.82. Let D be a Mori domain, let Θ be the set of all the maximal
t–ideals of D which are t–invertible and let ?Θ be the spectral semistar
operation on D associated to Θ (Section 1.2.4). Assume that Θ 6= ∅ (i.e.
that D is a Mori non strongly Mori domain, accordingly to the terminology
introduced by Barucci and Gabelli [11, page 105]), then D is a ?Θ–DD.
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Note that by [11, Proposition 3.1 and Theorem 3.3 (a)], D?Θ is a Krull
domain such that the map P 7→ P ?Θ defines a bijection between Θ and
the set M(tD?Θ ) of all the t–maximal ideals of D?Θ and DP = (D?Θ)P ?Θ .
Therefore the (semi)star operation (?Θ)ι (ι is the canonical embedding of D
in D?Θ) on D?Θ coincides with the t–operation, tD?Θ , on D?Θ . Then, D is a
?Θ–DD, by Theorem 4.81.

Let D be an integral domain and ? a semistar operation on D. We say
that two nonzero ideals A and B are ?–comaximal if (A + B)? = D?. Note
that, if ? is a semistar operation of finite type, then A and B are ?–comaximal
if and only if A and B are not contained in a common quasi–?–maximal ideal.

Lemma 4.83. Let D be an integral domain and ? a semistar operation on
D. Let A and B be two nonzero ?–comaximal ideals of D. Then (A∩B)? =
(AB)?.

Proof. In general (A+B)(A∩B) ⊆ AB. Then, ((A+B)(A∩B))? ⊆ (AB)? ⊆
(A ∩B)?. But ((A + B)(A ∩B))? = ((A + B)?(A ∩B))? = (D?(A ∩B))? =
(A ∩B)?. Hence, (A ∩B)? = (AB)?.

Corollary 4.84. Let D be an integral domain and ? a semistar operation of
finite type. Let n ≥ 2 and let A1, A2, . . . , An be nonzero ideals of D, such that
(Ai +Aj)? = D?, for i 6= j. Then, (A1 ∩A2 ∩ . . .∩An)? = (A1A2 · . . . ·An)?.

Proof. We prove it by induction on n ≥ 2, using Lemma 4.83 for the case
n = 2. Set A := A1 ∩ A2 ∩ . . . ∩ An−1 and B := An. Then, A and B are
not contained in a common quasi–?–maximal ideal, otherwise, An and Aj

(for some 1 ≤ j ≤ n− 1) would be contained in a common quasi–?–maximal
ideal. Hence (A1 ∩A2 ∩ . . .∩An−1 ∩An)? = (A∩B)? = (AB)? = (A?B)? =
(A1A2 · . . . ·An)?.

Theorem 4.85. Let D be an integral domain and ? a semistar operation on
D. The following are equivalent:

(1) D is a ?-DD.

(2) For each nonzero ideal I of D, there exists a finite family of quasi–?
f
–

prime ideals P1, P2, . . . , Pn of D, pairwise ?
f
-comaximals, and a finite

family of non negative integers e1, e2, . . . , en such that I ?̃ = (P e1
1 P e2

2 ·
. . . · P en

n )?̃.

Moreover, if (2) holds and if I ?̃ 6= D?̃, then we can assume that Pi
?̃ 6= D?̃,

for each i = 1, 2, . . . , n. In this case, the integers e1, e2, . . . , en are positive
and the factorization is unique.
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Proof. (1) ⇒ (2). Let I be a nonzero ideal of D. To avoid the trivial case,
we can assume that I ?̃ 6= D?̃. Let P1, P2, . . . , Pn be the finite (non empty)
set of quasi–?

f
–maximal ideals such that I ⊆ Pi, for 1 ≤ i ≤ n (Theorem

4.69). We have I ?̃ = ∩{IDP | P ∈ M(?
f
)} = ∩i=n

i=1 (IDPi ∩D?̃). Since DPi is
a DVR, then IDPi = P ei

i DPi , for some integers ei ≥ 1, i = 1, 2, . . . , n.
Therefore, we have IDPi ∩ D?̃ = P ei

i DPi ∩ D?̃ = (P ei
i )?̃. Hence I ?̃ =

(P e1
1 )?̃∩(P e2

2 )?̃∩ . . .∩(P en
n )?̃ = (P e1

1 ∩P e2
2 ∩ . . .∩P en

n )?̃ = (P e1
1 P e2

2 · . . . ·P en
n )?̃,

by Corollary 4.84.
For the last statement, let I ?̃ = (P e1

1 P e2
2 · . . . · P en

n )?̃, if Pi
?̃ = D?̃, for some

i, then obviously we can cancel Pi from the factorization of I ?̃.
We prove next the uniqueness of the representation of I ?̃. From (Propo-
sition 1.40(4)), we deduce that INa(D, ?) = P e1

1 P e2
2 · . . . · P en

n Na(D, ?) =
(P1Na(D, ?))e1 (P2Na(D, ?))e2 · . . . · (PnNa(D, ?))en is the unique factoriza-
tion into primes of the ideal INa(D, ?) in the PID Na(D, ?) (Theorem 4.76).
Since Pi = PiNa(D, ?) ∩D (because each Pi is a quasi–?̃–maximal ideal of
D), the factorization of I ?̃ is unique.
(2) ⇒ (1) Without loss of generality, we can assume that D is not a field.
First, we prove that each localization to a quasi–?

f
–maximal ideal of D is

a DVR. Let M ∈ M(?
f
) and let J be a nonzero proper ideal of DM . Set

I := J ∩D (⊆ M). Then, it is easy to see that I ?̃ 6= D?̃ thus, by assumption,
I ?̃ = (P e1

1 P e2
2 · . . . · P en

n )?̃, for some family of quasi–?
f
–prime ideals Pi, with

Pi
?̃ 6= D?̃ and for some family of integers ei ≥ 1, i = 1, 2, . . . , n. It follows

that J = IDM = I ?̃DM = (P1
e1P e2

2 · . . . ·Pn
en)?̃DM = (P e1

1 P e2
2 · . . . ·P en

n )DM

(since ?̃ is a spectral semistar operation defined by the set M(?
f
)). Hence

J is a finite product of primes of DM . Therefore DM is a local Dedekind
domain [38, Theorem 37.8 ((1)⇔(3))], that is, DM is a DVR.
Now we show that each quasi–?̃–prime ideal of D is quasi–?̃–invertible. Let Q
be a quasi–?̃–prime of D and let 0 6= x ∈ Q. Then, by assumption, (xD)?̃ =
(P e1

1 P e2
2 ·. . .·P en

n )?̃, with P1, P2, . . . , Pn nonzero prime ideals of D and ei ≥ 1,
i = 1, 2, . . . , n. Since xD is obviously invertible (and thus, clearly, quasi–?̃–
invertible), then each Pi is quasi–?̃–invertible (Lemma 3.12(2)). Moreover,
since Q is a quasi–?̃–ideal of D, then P e1

1 P e2
2 · . . . · P en

n ⊆ (P e1
1 P e2

2 · . . . ·
P en

n )?̃ ∩ D ⊆ Q. Therefore, Pj ⊆ Q for some j, with 1 ≤ j ≤ n, and since
DQ is a DVR, we have Q = Pj . Hence Q is a quasi–?̃–invertible ideal of D.
Therefore, by Theorem 4.67, we conclude that D is ?̃–Dedekind.

Remark 4.86. It is clear that, if D is a ?–DD then, for each nonzero ideal
I of D, such that I?

f 6= D?
f , we have a unique factorization I?

f = (P e1
1 P e2

2 ·
. . . · P en

n )?
f , for some family of quasi–?

f
–prime ideals Pi, with P

?
f

i 6= D?
f ,

and for some family of positive integers ei, i = 1, 2, . . . , n, since ?̃ = ?
f

(Proposition 4.1). The converse is not true. For instance, take D, T and
? as in Remark 4.40(2). For each nonzero proper ideal I of D, we have
I?

f = IT = M e = (M e)?
f , for some positive integer e, since T is a DVR.
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Note that this representation is unique, since D is local with maximal ideal
M and dim(D) = 1. But we have already observed that D is not a ?–DD.

Next result generalizes [38, Theorem 38.5 ((1)⇔(3))] to the semistar
setting .

Theorem 4.87. Let D be an integral domain which is not a field and ? a
semistar operation on D. The following are equivalent:

(1) D is a ?–DD.

(2) For each nonzero ideal I and for each a ∈ I, a 6= 0, there exists b ∈ Ie?

such that I ?̃ = ((a, b)D)?̃.

Proof. (1) ⇒ (2). We start by proving the following:
Claim. If D is a ?–DD, then the map M 7→ Me? establishes a bijection

between the set M(?
f
) (= M(?̃) by Proposition 1.40 (5)) of the quasi–?

f
–

maximal ideals of D and the set M(tDe?) of the tDe?–maximal ideals of (the
Krull domain) De?.

Let ι be the canonical embedding of D in D?̃. For each M ∈ M(?
f
),

M ?̃ is a prime ideal of D?̃ (Proposition 2.10) and so it is a ?̃ι–prime ideal.
Furthermore, by Corollary 4.80, we know that De? is a Krull domain and
?̃ι = tDe? . On the other hand, for each ?̃ι–prime ideal N of De?, we know
that N ∩ D is a quasi–?̃–prime of D (Lemma 4.7). Since D is a ?–DD
(or, equivalently, a ?̃–DD), we have that each quasi–?̃–prime is a quasi–?̃–
maximal (Proposition 4.39 (2)), thus we easily conclude.

Let a ∈ I, a 6= 0, and {M1,M2, . . . ,Mn} the (finite) set of quasi–?
f
–

maximal ideals such that a ∈ Mi. Since DMi is a DVR, then IDMi = xiDMi ,
for some xi ∈ I, for each i = 1, 2, . . . , n. We use the fact that De? is a
Krull domain and, by the Claim, that {De?

Me? = DM | M ∈ M(?
f
)} is the

defining family of the rank-one discrete valuation overrings of De?, in order to
apply the approximation theorem to De?. Let v1, v2, . . . , vn be the valuations
associated respectively to DM1 , DM2 , . . . , DMn and let vM ′ be the valuation
associated to DM ′ = De?

M ′e? , for M ′ ∈ M′ := M(?
f
) \ {M1,M2, . . . ,Mn}. Set

k1 := v1(x1), k2 := v2(x2), . . . , kn := vn(xn). Then there exists b ∈ K such
that vi(b) = ki, for each i = 1, 2, . . . , n, and vM ′(b) ≥ 0, for each M ′ ∈ M′

[38, Theorem 44.1]. We have I ?̃ = ((a, b)D)?̃. Indeed, let M ∈ M(?
f
). If

M = Mi, for some i, then IDM = IDMi = xiDMi = bDMi = (a, b)DMi . If
M 6= Mi for each i, then IDM = DM = (a, b)DM .
(2) ⇒ (1). Let M ∈ M(?

f
) and J a nonzero ideal of DM . Let a ∈ J ,

a 6= 0, there exists s ∈ D, s /∈ M , such that sa ∈ I := J ∩ D. Then, by
assumption, there exists b ∈ Ie? such that I ?̃ = ((sa, b)D)?̃. Therefore, we
have J = IDM = I ?̃DM = ((sa, b)D)?̃DM = (sa, b)DM = (a, b)DM . By [38,
Theorem 38.5], DM is a Dedekind domain, and hence a DVR. Thus, D is
a ?–ADD, hence, in particular, is a P?̃MD (Corollary 4.43 and Proposition
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4.39(2)). In addition, from the assumption each ideal of D is ?̃–finite, then
D is ?̃–Noetherian (Lemma 4.18), hence D is a ?–DD (Corollary 4.61 and
Proposition 4.59(1)).

Remark 4.88. Note that, if D is a ?–DD (and hence ?̃ = ?
f
), then D

satisfies also a statement concerning ?
f
, analogous to the statement (2) in

Theorem 4.87:

(2
f
) for each nonzero ideal I of D and for each 0 6= a ∈ I, there exists

b ∈ I?
f such that ((a, b)D)?

f = I?
f .

But (2
f
) does not imply that D is a ?–DD. For instance, let D,T and ? be as

in Remark 4.40. Obviously, for each nonzero proper ideal I of D and for each
nonzero a ∈ I ⊆ D we have I?

f = IT = XnT = (a,Xn)T = ((a,Xn)D)?
f ,

for some n ≥ 1, (where Xn ∈ I?
f ∩D), but D is not a ?–DD.
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