Universita degli Studi “Roma Tre”
Dottorato di Ricerca in Matematica, XV Ciclo

Semistar Operations and
Multiplicative Ideal Theory

Giampaolo Picozza

THESIS

October 29, 2004

Advisor :

Prof. Marco Fontana

Thesis Committee:

Prof. Valentina Barucci Universita degli Studi di Roma “La Sapienza”
Prof. Paul-Jean Cahen Université Paul Cezanne (Aix-Marseille I11)
Prof. Stefania Gabelli Universita degli Studi “Roma Tre”

Prof. Evan Houston (Reviewer) University of North Carolina at Charlotte
Prof. K. Alan Loper (Reviewer) Ohio State University

submitted: June 2004



Contents

Introduction 3

1 Background Results 8

1.1 Semistar operations on integral domains . . . . . . .. .. .. 8

1.2 Examples of semistar operations . . . . .. .. ... ..... 11
1.2.1 The d—, e— semistar operations and the trivial exten-

sion of a star operation . . . ... .. ... ...... 11

1.2.2 The v and the ¢ semistar operations . . .. ... ... 12

1.2.3 Semistar operations defined by overrings . . . . . . . . 13

1.2.4 Spectral semistar operations . . . . . .. .. ... ... 15

1.2.5 The semistar operation v(I) . . . . . . ... ... ... 15

1.3 Localizing systems and stable semistar operations . . . . . . . 17

1.4 The semistar operation * . . . . . . ... ... ... ...... 20

1.5 The semistar operations x, and ** . . . . . . . ... ... ... 22

1.6 Kronecker function rings and Nagata rings . . . . . . . .. .. 23

2 Star operations on overrings and semistar operations 26

2.1 Composition of semistar operations . . . . . . ... ... ... 26

2.2 Star operations on overrings and semistar operations . . . . . 30

2.3 Some applications . . . . . . .. ..o 38

2.3.1 Semistar operations on valuation domains . . . . . . . 39

2.3.2 Semistar operations on Priifer domains . . . . . . . .. 43

2.3.3 Integral domains with all semistar operations spectral 46
2.3.4 Totally divisorial domains and the semistar operation

o(I) o 48

2.3.5 Integral domains with at most dim(D) + 2 semistar
operations . . . . . . .. ... o1
Semistar invertibility 55
3.1 Semistar invertibility . . . . . . .. ... 55
3.2 Quasi——invertibility . . . . . . ... ... oL 60
3.3 Semistar invertibility and the Nagata ring . . . . .. ... .. 67



4 Semistar Dedekind domains

4.1 Priifer semistar multiplication domains . . . . . . . . .. ...

4.2 Semistar Noetherian domains

4.3 The Nagata ring of a semistar Noetherian domain . . . . . . .
4.4  Semistar almost Dedekind domains . . . . . . ... ... ...

4.5 Semistar Dedekind domains
Bibliography
List of notation

Index

71
71
7
83
88
97

111

117

119



Introduction

The object of this work is the study of semistar operations on integral do-
mains. Semistar operations were introduced in 1994 by Okabe and Matsuda
in order to generalize the classical concept of star operation, as described
in 38, Section 32|, and hence the related classical theory of ideal systems
based on the works of W. Krull, E. Noether, H. Priifer and P. Lorenzen from
1930’s.

The star operations are defined by axioms selected by Krull among the
properties satisfied by some classical operations, such as the wv-operation,
the t-operation and the completion (or w-operation, using Gilmer’s nota-
tion) with respect to a family of valuation overrings (the definitions are in
Chapter 1).

Let us denote by F'(D) the set of nonzero fractional ideals of an integral
domain D. We recall that a star operation on D is a map x : F(D) — F (D),
I — I* such that, for allz € K, x # 0, and for all I, J € F(D), the following
properties hold:

(star.l) D* = D and (zI)* = xI™*.
(star.2) I C J implies I* C J*.

(star.3) I C I* and I** := (I*)" = I*.

Classical examples of star operation are the v—operation and the t—
operation.

Star operations have shown to be an essential tool in multiplicative ideal
theory, allowing a new approach for characterizing several classes of integral
domains. For example, an integrally closed domain D is a Priifer domain if
and only if I = I for each nonzero ideal I of D, |38, Proposition 34.12], a
domain D is a Krull domain if and only if (II71)! = D, for each nonzero
ideal I of D. Other relevant classes of domains, e.g. Mori domains and
PvMDs, have been also defined and investigated using star operations.

The following example gives an enlightening motivation for introducing
the notion of semistar operation. Consider the map b : F(D) — F(D),
I — ({IV |V valuation overring of D}, that associates to each nonzero



fractional ideal its completion (or integral closure cf. O. Zariski and P.
Samuel [83, Appendix 4| and R. Gilmer [38, Page 302]). This map gives
rise to a star operation (called the b—operation) if and only if D is integrally
closed (cf. [38, Page 398]), since D® coincides with the integral closure of D,
as a consequence of a celebrated theorem by Krull (and so condition (star.1)
of the definition of star operation is satisfied if and only if D is integrally
closed).

Since the other conditions required by the definition of star operation are
easily verified, it is natural to look for a class of operations that includes the
“integral closure of ideals” even if D is not supposed to be integrally closed.

So we do not require anymore that D* coincides with D and, as a conse-
quence, we need to define x on the larger set F/(D) of all D-submodules of the
quotient field of D, since the integral closure of a domain is not necessarily
a fractional ideal.

These considerations lead to the notion of semistar operation (cf. Defin-
ition 1.1). By construction, the integral closure of ideals (or, more precisely,
of modules) is a semistar operation without any assumption on the integral
closure of the domain D. Moreover, the set of star operations can be canon-
ically embedded in the set of semistar operations (cf. Section 1.2.1). Hence,
we have a more flexible notion and a larger class of operations, that gives a
more appropriate context for approaching several questions of multiplicative
ideal theory.

For example, in a series of papers, M. Fontana and K.A. Loper (|27], [28]
and [29]) have generalized the classical construction of Kronecker function
rings. These rings were studied in a general setting by W. Krull in a series
of papers published, starting from 1936, with the common title “Beitrige zur
arithmetik kommutativer Integritétsbereiche" (cf. also the books by H. Weyl,
“Algebraic theory of numbers”, Princeton 1940 and by H. Edwards “Divisor
theory”, Birkhauser, 1990 and, for an axiomatic approach, a recent paper
by F. Halter Koch [44]). In the context of star operations, the Kronecker
function ring can be constructed only for integrally closed domains and for
e.a.b. star operations (cf. [38, Section 32]). The notion of semistar operation
allows one to define a Kronecker function ring Kr(D,«) for an arbitrary
domain D and an arbitrary semistar operation x. Moreover, Kr(D, %) has
all the properties of the “classical” Kronecker function ring, since it coincides
with the Kronecker function ring of an integrally closed domain determined
by D and %, with respect to an e.a.b. star operation %, canonically associated
with x. We will recall this construction in Section 1.6, with other important
results concerning the generalization of the classical Nagata ring (see M.
Fontana and K.A. Loper [29]).

In this work, we focus our attention on the problem of the characteriza-
tion of several classes of integral domains, by using the semistar tool. Since
the set of semistar operations is larger than the set of star operations, it is
clear that the use of semistar operations leads to a finer classification.



In the first chapter we recall the main definitions and results used in this
work. In particular, we give several examples of semistar operations and we
introduce a class of new semistar operations that generalize the star opera-
tion defined by W. Heinzer, J. Huckaba and I. Papick in [48] for introducing
the notion of m-canonical ideal (see Section 1.2.5).

In the second chapter our first goal is to measure “the size” of the set of
all semistar operations of an integral domain D and to compare this set with
the set of all star operations on the overrings of D (this give, in some sense,
an idea of how much the use of semistar operations instead of star operations
leads, for instance, to a finer characterizations of integral domains).

We will show that the semistar operations on an integral domain D are at
least as many as the star operations on all overrings of D. More precisely, we
show that there is a bijection between the set of semistar operations and the
set of the (semi)star operations on all overrings of D (a (semi)star operation
is a semistar operations that restricted to the set of nonzero fractional ideals
of D is a “classical” star operation).

Moreover, this bijection suggests a new approach for studying semistar
operations: for instance, in some cases, the study of properties of semistar
operations on a domain D can be transferred to the study of (semi)star opera-
tions on the overrings. This approach may lead to an effective simplification,
since (semi)star operations share many properties with star operations and
so it is possible to apply to the case of (semi)star operations several results
already proven for star operations.

We give some examples of the use of these techniques in Section 2.3.
For example, we will apply this method for studying semistar operations on
valuation domains (Section 2.3.1), for obtaining characterizations of domains
with special properties on the set of semistar operations (domains with every
semistar operation of finite type, or stable, or spectral; all these notions are
defined in Chapter 1), for evaluating the size of the set of the semistar
operations (in particular, in Section 2.3.5 we show that a domain D with
dim(D) + 2 semistar operations is a valuation domain or a divisorial pseudo-
valuation domain, with some additional properties). Another result that
we obtain applying this method is a characterization of totally divisorial
domains (see works by S. Bazzoni, L. Salce and B. Olberding) in terms
of semistar operations (in particular, the semistar operations introduced in
Section 1.2.5).

Important classes of domains are defined using the notion of invertibility
of ideals: Dedekind domains are the domains in which each nonzero ideal
is invertible, Priifer domains are the domains in which each nonzero finitely
generated ideal is invertible. This notion have been generalized to the case of
star operations: in particular the invertibility with respect to the t—operation
(the t—invertibility, a nonzero ideal I of an integral domain D is t—invertible
if and only if (II~!)! = D) has been deeply investigated, since, as we have
mentioned above, it allows, for example, to characterize Krull domains. Also



PvMDs are defined using t—invertibility: a domain D is a PuMD if each
nonzero finitely generated ideal of D is t—invertible. Clearly, Krull domains
can be seen as a generalization of Dedekind domain and PvMDs can be
interpreted as a generalization of Priifer domains. In fact, they share several
“ideal theoretic” properties with the domain that they generalize, when we
restrict to consider only the set of ideals I such that I = I.

Thus, it is natural to investigate a further generalization of these classes
of domains, considering not only the t—operation, but an arbitrary semistar
operation. To do this, it is necessary to develop a theory of invertibility with
respect to a semistar operation.

Chapter 3 is devoted to the study of two different notions of invert-
ibility, that we call respectively semistar invertibility and quasi—semistar—
invertibility. The first notion has been introduced by M. Fontana, P. Jara
and E. Santos in [26], where they define and study the Priifer semistar mul-
tiplication domains (PxMD for short, a generalization of Priifer domains):
they say that a nonzero ideal I is semistar invertible with respect to a semi-
star operation « on D if (II-')* = D*. This is the direct translation to
the semistar case of the classical notion of star invertibility. In Section 3.1
we discuss some properties of semistar invertibility generalizing classical re-
sults about invertibility and ¢—invertibility and show that there are some
obstructions in developing this theory having as a model the classical the-
ory. Moreover, while this notion has proven to be useful to introduce PxMDs,
it cannot be used to generalize Dedekind domains in a satisfactory way (this
is one of the goals of Chapter 4). So, in Section 3.2, we introduce the notion
of quasi—semistar—invertibility: a nonzero ideal I of an integral domain D
is quasi—x—invertible (quasi-semistar—invertible with respect to a semistar
operation x on D) if (IH)* = D* for some H € F(D). We prove that, in
general, these two notions do not coincide and that the second notion of
invertibility seems, in some sense, more natural in the semistar context. In
Section 3.3, we study the behaviour of semistar and quasi—semistar invertible
ideals in the Nagata ring.

Several results exposed in Chapter 3 have been obtained in collaboration
with Marco Fontana [31].

As we have mentioned above, one of the goals of Chapter 4 is to obtain a
generalization in the semistar context of the theory of Dedekind domains. A
Dedekind domain is a Noetherian Priifer domain. So, in order to introduce
a generalization of Dedekind domain, we need to generalize the notions of
Noetherian and Priifer domains to the semistar context.

We have already mentioned that a generalization of Priifer domain to the
semistar setting has been investigated in [26] (cf. also [25]). We recall the
main properties of the Priifer semistar multiplication domains in Section 4.1,
and we obtain some new results, in particular concerning the “descent” to
subrings of the PxMD property, using the techniques developed in Chapter 2.
We characterize the PxMDs as a particular type of subrings of PuMDs having



the same field of fractions.

In Section 4.2, we introduce and give some basic result about semistar
Noetherian domains, that is, integral domains with the ascending chain con-
dition on a distinguished set of ideals (the quasi——ideals) determined by a
semistar operation x. This notion generalizes at the same time the notions of
Noetherian, Mori and strong Mori domains. Several results in this section,
and nearly everything from Section 4.4 are obtained as a joint work with
Said El Baghdadi and Marco Fontana [21].

In Section 4.3, we prove a semistar version of the Hilbert Basis Theorem,
that generalize both the classical result concerning Noetherian domains and
a more recent “Basis-type” theorem proven for strong Mori domains, [80,
Theorem 1.13]. As an easy consequence we obtain that an integral domain
D is Noetherian with respect to a semistar operation x if and only if the
Nagata ring of D with respect to x is Noetherian.

In Section 4.5 we introduce the notion of semistar Dedekind domain (for
short +-DD), as a semistar Noetherian domain which is a PxMD. We obtain
several characterizations of these domains, that generalize in a very satis-
factory way the classical ones. For example, we relate this notion with the
concept of quasi-semistar—invertibility (Proposition 4.59), we show in The-
orem 4.73 that a “semistar translation” of the classical Noether’s Axioms
characterizes semistar Dedekind domains and, in Theorem 4.85, we give a
semistar analogue (using the “semistar product”) of the characterization of
Dedekind domains as the integral domains in which each ideal is product
of prime ideals. We have also investigated the “descent” to subrings of the
semistar Dedekind property, and shown that semistar Dedekind domains are
particular subrings of Krull domains having some “flatness like” properties.
In particular, we have shown that each Mori domain not strongly Mori (fol-
lowing the terminology introduced by V. Barucci and S. Gabelli [11, page
105]) is a semistar Dedekind domain for a semistar operation induced by a
particular set of t-maximal ideals (see Example 4.82 for the details).



Chapter 1

Background Results

In this chapter we give an overview of some general notions and results
concerning semistar operations on integral domains.

1.1 Semistar operations on integral domains

Let D be an integral domain with quotient field K. Let F(D) denote the
set of all nonzero D—submodules of K and let F(D) be the set of all nonzero
fractional ideals of D, i.e. E € F(D)if E € F(D) and there exists a nonzero
d € D with dE C D. Let f(D) be the set of all nonzero finitely generated
D-submodules of K. Then, obviously f(D) C F(D) C F(D).

Definition 1.1. A semistar operation on D is amap x : F(D) — F(D), E
E*, such that, for all z € K, x # 0, and for all E, F € F(D), the following
properties hold:

(%1) (xE)* = zE™*.
(x2) E C F implies E* C F*,

(x3) E C E* and E* := (E*)" = E*.

We denote by F*(D) the set {E*|E € F(D)}.

The following lemma establishes some basic properties of semistar oper-
ations (see |65, Proposition 5| and, for a similar result for star operations,
[38, Proposition 32.2|):

Lemma 1.2. Let D be an integral domain, x a semistar operation on D.
Then, for all E, F € F(D) and for every subset {E,} C F(D) :

(1) (BF)" = (E*F)* = (EF*)* = (E*F*)" .



(2) (E+F)=(B*+F)" =(E+F) =(E*+F)" .
(3) Na Bz = (Na B3 if NaE5 #0. m

As a direct consequence of Lemma 1.2(1) we have the following results
(see [65, Proposition 6] and [23]):

Proposition 1.3. Let D be an integral domain, x a semistar operation on
D. Then:

(1) Let R be an overring of D. Then R* is an overring of D. In particular,
D* is an overring of D.

(2) If E € F(D) then E* € F(D*).
(3) If E € F(D) then E* € F(D*).

Proof. (1) R*R* C (R*R*)* = (RR)* = R*.

(2) D*E* C (D*E*)* = (DE)* = E*.

(3) Since E € F (D), there exists a nonzero element d € D such that dE C D.
Then, dE* = (dE)* C D*. Since d € D C D*, we have E* € F(D*). O

If % is a semistar operation on D, such that D* = D, we say that % is a
(semi)star operation.

Remark 1.4. (see [23, Remark 1.1]) If x is a (semi)star operation on D,
then the restriction *|p (D) is a star operation on D. The only thing to check
is that if £ € F(D) then E* € F(D) and this follows immediately from
Proposition 1.3(3).

If x; and %9 are two semistar operations on D, we say that x; < %o if
E*t C E*2 for each E € F(D). This relation induces a partial order on the
set of all semistar operations.

Proposition 1.5. [65, Lemma 16| Let x1,%2 be two semistar operations on
an integral domain D. The following are equivalent:

(i) *1 < 2.
(ii) (E*1)*2 = E*, for each E € F(D).
(iii) (E*2)*t = E*2 for each E € F(D).
(iv) F*(D) C F™ (D).

Proof. (i) = (ii) Since E*' C E*2, we have E*2 C (E*1)*2 C (E*2)*2 = E*2.
Thus, (E*1)*2 = E*2.

(i) = (iii) Since E*2 € F(D), from (ii) we have that ((E*2)*1)*2 = (E*2)*2 =
E*2. So, E* C (E*2)*t C ((E*2)*1)*2 = (E*2)*2 = E*2. Hence, (E*2)*1 =
E*2.



(iii) = (iv) Let F € F(D). Then, there exists E € F(D) such that
E*» = F. Then, by (iii), F*' = (E**)*' = E*2 = F and F € F ' (D).

(iv) = (iii) Let E* € F*(D) C F (D). Then, there exists F € F(D) such
that F*1 = E*2 for some F € F(D). Then, (E*)*t = (F*1)*1 = [*1 = [*2,
(iil) = (i) E* C (E*)* = E*, 0

If x is a semistar operation on D, then we can consider a map *, :
F(D) — F(D) defined for each E € F(D) as follows: E* = |J{F*|F €
F(D) and F C E}. It is easy to see that x, is a semistar operation on D,
called the semistar operation of finite type associated to x. Note that, for
each ' € f(D), F* = F%. A semistar operation x is called a semistar
operation of finite type if x = x,. It is easy to see that (x,), = x, (that is, ,
is of finite type).

Remark 1.6. We note here that a semistar operation of finite type x is
completely determined by the image of the elements of f(D), that is, if
*1,%9 are two semistar operations of finite type, such that *ﬂf(D) = %2 £(D)>
then x; = %2. In particular, since f(D) C F(D), if two semistar operations
of finite type coincide on F(D), then they coincide on F (D).

Proposition 1.7. [23, Proposition 1.6(2),(3)] Let D be an integral domain
and x, x1 and xo semistar operations on D. Then:

(1) %, < x.
(2) *1 < xo implies (%1)f < (%2)¢-

Proof. (1) It is straightforward from the definition of x,.
(2) Let E € F(D) and 2 € E®)s. Then, there exists F € f(D), F C E,
such that z € F*' C F*2 C F*2)r, O

We say that a nonzero integral ideal I of D is a quasi—*—ideal if I*ND = 1.
If I is a prime ideal, we say that I is a quasi——prime. If M is a maximal
element in the set of all quasi—x—ideals of D, we will say that M is a quasi-x-
mazximal ideal . We denote by M(x) the set of all quasi—~+—maximal ideals.

If I is a nonzero ideal such that I* C D*| then it is easy to see that I*ND
is a quasi-—x-ideal. In fact, [*ND)*ND C (I*)*ND*ND =I*"ND (we
have used the straightforward fact that, for each semistar operation x on D
and for each E,F € F(D), (ENF)* C E*NF*).

We note that if x1, x9 are two semistar operations on D such that x; < xo
and I is a quasi—*o—ideal of D, then I is a quasi—j;—ideal of D. In fact, we
have I C[** CI*? andthen ICI™*ND CI2ND=1.

We give two important results about quasi—x—maximal ideals:

Proposition 1.8. Let D be an integral domain and x a semistar operation
on D.
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(1) If M € M(%) then M is a prime ideal.

(2) If * is a semistar operation of finite type, then each quasi—*—ideal is
contained in a quasi—-mazximal.

Proof. (1) Let z,y € D, with zy € M and © ¢ M. Consider the ideal
M+xD. We have that (M +xD)* = D*, otherwise (M +2D)*ND would be a
quasi——ideal larger than M. Consider the ideal y(M +zD) = yM +yxD C
M. We have that y € yD*ND = y(M +zD)*ND = (yM +yxD)*ND C
M*ND =M. Then, y € M and M is prime.

(2) It is in [23, Lemma 4.20]. O

We have noted in Lemma 1.2 that, for each E, F € F(D), (E+ F)* =
(E* + F*)* and (EF)* = (E*F*)*. It is natural to ask if something similar
holds for the intersection of two D-modules, that is, if (ENF)* = (E*NF*)*.
It is easy to see that this is true if and only if (ENF)* = (E*NF*). Indeed,
by Lemma 1.2(3), it follows that (E* N F*)* = (E*NF*). So, if (ENF)* =
(E*NF*)*, we have (ENF)* = (E*NE™). Conversely, if (ENF)* = (E*NF™*),
then, by applying again *, we obtain (E N F)* = (E* N F*)*.

We say that a semistar operation is stable if (E N F)* = (E* N F*), for
each E, F € F(D).

We will exhibit in Section 1.2 examples of semistar operations that are
stable and examples of semistar operations that are not stable. More results
about stable semistar operations will be given in Section 1.3.

We say that a semistar operation x is cancellative (or that D has the -
cancellation law) if, for each E, F,G € F(D), (EF)* = (EG)* implies F* =
G*. We say that x is a.b. if the same holds for each E € f(D), F,G € F(D)
and that x is e.a.b. if the same holds for each E,F,G € f(D). Clearly,
a cancellative semistar operation is a.b. and an a.b. semistar operation is
e.a.b.

1.2 Examples of semistar operations

We give some examples of semistar operations. In the following D is always
an integral domain with quotient field K and we will denote by Star(D)
the set of the star operations on D, by SStar(D) the set of the semistar
operations on D and by (S)Star(D) the set of the (semi)star operations on
D.

1.2.1 The d—, e— semistar operations and the trivial exten-
sion of a star operation

The first example of semistar operation is the identity semistar operation,
denoted by dp (or simply d), defined by E +— E9:= E., for each E € F(D).
Another trivial semistar operation on D is the e—operation, given by E —

11



E¢ := K, for each E € F(D). It is clear that d < x < e, for each semistar
operation x on D.

A star operation * on D induces canonically a (semi)star operation
on D (the trivial extension of x) defined by E*e := E*, if E € F(D), and
E*e := K otherwise. So, the set Star(D) of the star operations on D is
canonically embedded in the set SStar(D) of the semistar operations on D.

We notice that a star operation can have different extensions to a semistar
operation (in fact, a (semi)star operation). For example, let x be the identity
star operation on D (i.e. F* = F, for each F' € F(D)), and suppose that D
is not conducive (we recall that D is a conducive domain if F(D)~ F(D) =
{K}, see [19]). Then, the identity semistar operation dp and the trivial
extension . are distinct and both extend x (since they coincide with * on
the set F(D)).

More precisely, we have the following straightforward lemma:

Lemma 1.9. Let D be an integral domain. The following are equivalent:
(1) D is conducive.

(2) The trivial extension of the identity star operation coincides with the
identity semistar operation dp on D.

(3) Each star operation has only one extension to a semistar operation. O

We notice that from Remark 1.6 it follows that a finite type semistar
operation has only one extension to a finite type semistar operation.

Remark 1.10. Let x be a semistar operation on an integral domain D with
quotient field K. More generally, we associate with x a map *., defined by
Ew E* :=FE* if E€ F(D)and E+— E* := K if E€ F(D)\ F(D). We
note that . is a semistar operation if and only if (D : D*) # (0). Indeed,
if (D : D*) = (0), we have (D*)* = (D*)* = K, since D* ¢ F(D).
So, the condition (%3) of Definition 1.1 does not hold. Conversely, suppose
(D : D*) # (0). It is easy to see that the conditions (x1) and (*2) of Definition
1.1 are satisfied. For (x3) it is enough to observe that, if E € F(D) then
E* € F(D*) (Proposition 1.3) and then E* € F(D), since (D : D*) # 0.

We note that Hpp) = (*8)|F(D) and that if x; and xo are two semistar
lF(p)y = *2lp) - If %
is a (semi)star operation, then % coincides with the trivial extension of the
star operation x|, D) For example, the semistar operation d. coincides with
the trivial extension of the identity star operation.

operations on D, then (x1)e = (*2). if and only if (1)

1.2.2 The v and the ¢t semistar operations

Consider the map vp (or, simply, v) defined by E? := (E~1)~!, for each
E € F(D), with E7! := (D : E) := {# € K | 2E C D}. This map

12



defines a (semi)star operation on D and it is easy to see that this is the
trivial extension of the “classical” v-star operation as studied in [38, Section
34]. In fact, it is clear that the v-semistar operation and the v-star operation
coincide on the set F(D). Moreover, if E € F(D)~ F(D), E~! = (0) and
so (E-H) "' =K.

It is well known that the v-star operation is the largest star operation
on an integral domain D [38, Theorem 34.1(4)]. The v-semistar operation
preserves this property, if we restrict to the set of (semi)star operations.

Lemma 1.11. Let D be an integral domain and let x be a (semi)star oper-
ation. Then, x < v.

Proof. Since x restricted to F(D) is a star operation (1.4), it is clear that
E* C EY, for each E € F(D). If E € F(D) \ F(D), it is clear that
E* C K = EV. Then, E* C E?, for each E € F(D) and x < v. O

As in the case of star operations, we denote by tp (or, simply, ¢) the
semistar operation of finite type v, associated to v (that is, E' := [J{F"
| F € f(D),F C E}). This is the only semistar operation of finite type that
coincides with the classical ¢-star operation on the set F(D) (see Remark
1.6).

The following lemma is an immediate consequence of Lemma 1.11 and
Proposition 1.7.

Lemma 1.12. Let D be an integral domain and let x be a (semi)star oper-
ation on D. Then *, < t. O

1.2.3 Semistar operations defined by overrings

Let T' be a proper overring of D. The map %7y, given by E +— EXTY .= ET,
for each E € F(D) is a semistar operation (called extension to the overring
T'). This is the first non trivial example of a semistar operation that is not
a (semi)star operation, that is, that is not extended from a star operation.
It is easy to see that x7y is a semistar operation of finite type.
The following proposition concerns the stability of the semistar operation
defined by the extension to an overring.

Proposition 1.13. Let D be an integral domain and T an overring of D.
The following are equivalent:

(i) T is flat over D.
(i) The semistar operation ¢y on D is stable.

Proof. (i)< (ii) It follows from [62, Theorem 7.4(i)] and [75, Proposition
1.7). O
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We have the following result about some cancellation properties for the
extension to an overring:

Proposition 1.14. Let D be an integral domain and T an overring of D.
The following are equivalent:

(i) T is a Prifer domain.
(ii) *{T} 15 a.b.

(iii) *{T} s e.a.b.

Proof. (i) = (ii) Let E € f(D), F,G € F(D), such that (EF)*7} =
(EG)*7y, that is, EFT = EGT. Since ET € f(T) and T is a Priifer
domain, ET is invertible. It follows that FT = GT, that is, G*{T} = ™1},
(ii) = (iii) It is straightforward.

(iii) = (i) Let E, F, G be finitely generated ideals of T" such that EF = EG.
Let Ey, Fo,Gog be the D-modules generated by the generators respectively
of E,F and G. Then, Ey, Fy,Gy € f(D) and E¢T = E, FyT = F and
GoT = G. So, (EgFo)" ™ = (EgGo)*{™}. Since %7y is e.a.b. it follows that
FO*{T} = GS{T}, that is, F' = G. Then, T is a Priifer domain by |38, Theorem
24.3 (3)=(1)]. O

More generally, if R := {Dq},c4 is a set of overrings of D, and, for
each a € A, x, is a semistar operation on Dy, the map x¢ : E — E*® :=
N{(EDy)* | a € A}, for each E € F(D), is a semistar operation.

It is easy to see that, if each D, is flat over D and each *, is stable, then
*3 is stable.

A particular case of this construction is when %, is the identity semistar
operation of Dy, for each a € A. In this case, E** = (), ED,, for each
E € F(D). We note that in this case, we have E** Dy = EDg, for each
E € F(D) and for each 3 € A. Indeed, E**Dg = (N, EDs)Ds C EDg C
E*® Dg.

Particularly interesting is the case in which R := {V,} is the set of all
valuation overrings of D and x, is the identity semistar operation of V,, for
each a. In this case, the semistar operation x¢ on D is called bp-semistar
operation (or simply b-operation). Clearly, b is a (semi)star operation if and
only if D is integrally closed. We notice that, in this case, the restriction
of the b-semistar operation to the set F(D) is the classical b-star operation
(see [38, Page 398]).

Another interesting particular case of a semistar operation defined by
overrings is obtained if we let all D, = D. In this case the semistar opera-
tion E — ({E* |a € A} is denoted by Ax, and it is the largest semistar
operation * on D such that x < %, for each . Moreover, if we have a family
{*8} s g We define a new semistar operation as Vxg := A {x[*g < *, 8 € B}.
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This is the smallest semistar operation » on D such that xg < x for each
B € B. In the case of star operations, these constructions are investigated
in [4].

1.2.4 Spectral semistar operations

Among the semistar operations in the class defined in Section 1.2.3, partic-
ularly interesting are the semistar operations induced by overrings that are
localizations of D at prime ideals. More precisely, if A C Spec(D), we denote
by *a the semistar operation defined by E — E*2 := ({EDp|P € A}.
We refer to these semistar operations as spectral semistar operations . If
A = {P}, where P € Spec(D), we denote *A(= *(p,}) simply by *py.

As a consequence of what we have proven in Section 1.2.3 in the general
case, we have that, for each E € F(D) and for each P € A, EDp = E*2Dp.
Moreover, since each localization of D is a flat overring of D, we have that
the semistar operation xa is stable.

If we let Al := {Q € Spec(D) | Q C P for some P € A}, it is easy to see
that xa7 = xA = %A1, for each A C A’ C Al. Moreover, for each P € Al, P
is a quasi-x-prime, that is, P*A N D = P.

1.2.5 The semistar operation v([)

As an other example of semistar operation, we want to introduce a semistar
operation that generalizes the v—operation.

Consider I € F(D) and the map v(I) defined by E — E*(0) .= (I : (I :
E)), for each E € F(D). Clearly, v(D) coincides with the v-operation. This
map, restricted to F'(D), when I is an ideal of D such that (I : I) = D
has been studied in [48] and [12]|. In this particular case, it has been proven
[48, Proposition 3.2] that it is a star operation. We want to prove that, in
general, this map is a semistar operation.

We need two lemmas:

Lemma 1.15. Let I,J € F(D), L an invertible fractional ideal of D and
0#wue K. Then,

(1) (ul = J) =u(l : J);
(2) (I:uf)=u"(I:J);
(3) (