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Introduction

Isospin Symmetry is an approximate symmetry of strong interactions and, although the
effect of this breaking is less than percent, it has very important consequences.

In an isospin symmetric world, the up (u) and down (d) quarks are identical particles.
It is known than in Nature isospin symmetry is explicitly broken by the non–zero mass
and electric charge differences of the u and d quarks. The mass difference ∆mud =
md−mu represents one percent or less of any typical QCD energy scale. Similarly, the
typical relative size of the electromagnetic (EM) breaking of isospin symmetry is given
by the fine structure constant αem ' 0.007. For those reasons we can reasonably state
that, for observables with a non-vanishing isospin symmetric part, isospin symmetry is
a good approximation of reality with an O(1%) relative error. However, these small
isospin breaking corrections are crucial to describe the structure of atomic matter in
the Universe [1]. One of the most important consequences of the difference between u
and d quarks is that the proton and neutron have different masses and charges. The
mass splitting is accurately measured and it is given by [2]

∆Mpn = Mp −Mn = −1.2933322(4) MeV. (1)

The sign of the mass splitting ∆Mpn makes the proton, and thus the hydrogen atom,
a stable particle. The physical quantity ∆Mpn plays an important role also in the β–
decay n → p + e + νe, because it determines the size of the phase space volume. The
existence of this decay at early times of the Universe, i.e. for t ∼ 0 and temperature
T ∼ 1 MeV, allows to infer that the ratio of the number of neutrons nn and protons np
is approximatively equal to:

nn
np
' exp

(
∆Mpn

T

)
, (2)

that is an important initial condition of Big Bang Nucleosynthesis.
Even if the nucleon isospin mass splitting is a well known quantity, predicting it

from first principles is still an open problem because of the complex non–perturbative
interactions of quarks inside the nucleon. The proton carries an additional electromag-
netic charge comparing to the neutron, so just from QED one would expect ∆Mpn > 0.
However, the fact that the experimental value of ∆Mpn has the opposite sign indic-
ates that the strong isospin breaking effects are competing against the EM effects (i.e.
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md > mu) with a larger magnitude. This implies that an important part of the structure
of nuclear matter as we know it relies on a subtle cancellation between the small EM
and strong breaking effects of isospin symmetry in the nucleon system. Therefore, it is
fundamental to have a theoretical understanding of the nucleon isospin mass splitting.

Is also interesting to understand how to deduce the individual mu and md quark
masses and their difference. One way to do this is to consider that the kaon is a
pseudo-Goldstone boson of chiral symmetry breaking and so the mass splitting ∆M2

K =
M2

K+−M2
K0 is particularly sensitive to the strong isospin breaking. In order to calculate

this effect, we have to find a way to evaluate the QED isospin breaking contributions.
One well known result in this direction is the Dashen theorem [3] that states that in
the SU(3) chiral limit the electromagnetic kaon mass splitting is equal to the pion one.
Since ∆Mπ is known a pure QED effect with good accuracy (the strong IB corrections
being quadratic in mu −md), we conclude that (∆MK)EM ' (∆Mπ)EM ' (∆Mπ)EM .

Apart from the hadronic spectrum, the u and d quark difference reflects also on
other physical observables such as decay constants and form factors. For instance, the
corrections to the kaon decay constant fK entering the K`2 decay [4] are crucial for the
calculation of the CKM [5] matrix element Vus. In this work we are going to derive
results of mu−md, the mass splitting Mπ+−Mπ0 and QCD isospin breaking corrections
to the K`2 decay rate.

The up and down mass difference is a small parameter with respect to the confine-
ment scale ΛQCD and electromagnetic isospin breaking effects are also small on hadronic
observables because at low energy αem � αs. In particular we have

m̂d − m̂u

ΛQCD

∼ α̂em = e2

4π ∼ 1%. (3)

For these reasons, most of the theoretical predictions on phenomenologically relevant
hadronic observables have been derived by assuming the exact validity of isospin sym-
metry. Nowadays, at the level of precision presently achieved (see FLAG review [6])
for some flavour physics observables, isospin breaking effects cannot be neglected any
longer.

At hadronic scale, i.e. µ � ΛQCD, we have a highly non–perturbative behavior of
the strong interactions [7]. Therefore in this regime we can’t use perturbation theory
and we need to introduce non perturbative methods. In this work we use Lattice QCD
(LQCD) [8, 9], a non–perturbative approach based only on first principles that consists
in simulating QCD on a discrete and finite Euclidean space–time evaluating the path
integrals via Montecarlo methods. One advantage of LQCD is that by the introduction
of a finite 4–dimensional volume V = L3×T and a lattice spacing a, the theory is both
IR and UV regularized. Furthermore, the LQCD degrees of freedom are finite. So we
can use path integral formalism, which provides by itself a non perturbative approach.
By discretizing the gauge and fermion fields, we can elaborate a lattice gauge field
theory with some freedom, as long as in the continuum limit we recover the target
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QCD theory. By choosing properly the lattice action we can minimize discretization
effects, leaving O(a2) as the dominant contribution.

In euclidean space–time the path integral has the form of a partition function and it
can be calculated using numerical simulations. Given the large number of lattice points,
Monte Carlo methods are employed with the importance sampling, by weighting the
contributions to the integral using the Boltzmann factor. In this way only the relevant
field configurations are taken into account, that are close to minimize the action. The
finite volume, the lattice spacing and in many cases simulated light quark masses larger
than the physical ones introduce systematic errors which have to be well controlled and
accounted for.

Thanks to the increased computational power as well as to the algorithm and action
improvements of the last decade, LQCD simulations have made significant progresses
reaching a remarkable level of precision. In particular, this is due to the so-called
un- quenched calculations, where the contribution of loops of dynamical sea quarks is
properly taken into account.

Starting from the relevant two–points correlation functions calculated on the lattice,
we computed the isospin breaking corrections to the pion mass, namely the splitting
Mπ+ −Mπ0 , and to the kaon decay constant. Furthermore, we calculated the quark
mass difference md −mu.

A method to calculate leading isospin breaking effects on the lattice by including
those associated with QED interactions has been recently developed [10, 11]. These
effects are tiny because very small couplings, namely md −mu and αem, multiply siz-
able matrix elements of hadronic operators. The approach is based on a perturbative
expansion of the lattice path–integral in powers of md −mu and αem, considering the
two expansion parameters of the same size and neglecting higher orders. In this sense
we talk of leading isospin breaking (LIB) effects.

A great advantage of our method is that, by working at fixed order in a perturbative
expansion, we are able to factorize the small coefficients and to get relatively large
numerical signals. For the same reason, we do not need to perform simulations at
unphysical values of the electric charge, thus avoiding extrapolations of the lattice data
with respect to αem.

The expansion of the lattice path–integral in powers of αem leads to correlators
containing the integral over the whole space–time of two insertions of the quark elec-
tromagnetic currents, multiplied by the lattice photon propagator. These correlators
have both infrared (zero modes), and ultraviolet divergences, that must be removed by
providing an infrared safe finite volume definition of the lattice photon propagator and
by imposing suitable renormalization conditions.

At first order of the expansion, the pion mass difference is generated only by QED
corrections. For this reason it is a particularly clean theoretical prediction. Our result
has been obtained by neglecting a quark disconnected contribution to Mπ0 which is,
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however, of order O(mudαem), with mud the average u and d quark mass. This contri-
bution is expected to be numerically of the same order of the neglected second–order
contributions to the expansion.

The kaon mass splitting is determined by both strong and electromagnetic isospin
breaking effects. We implemented a renormalization prescription in order to separate
these effects. Using this prescription, we calculated the kaon mass splitting MK+ −
MK0 , together with the Dashen’s theorem breaking parameter εγ and the u and d
quark mass difference. These results are obtained using the so–called electro–quenched
approximation, i.e. by considering dynamical sea quarks as neutral with respect to
electromagnetism.

For the present study we used lattice gauge field configurations generated by European
Twisted Mass (ETM) Collaboration at Nf = 2 + 1 + 1 sea quark flavors.

This work is organized as follows:

• In chapter 1 we will discuss the basic ingredients of lattice QCD, in particular
how to discretize the fermion and the gauge fields and how to perform the renor-
malization on the lattice. There are different ways to discretize the continuum
QCD action. For the fermions we employed the so–called Wilson twisted mass
action [12] that, as we will see, has the property of reducing the discretization
effects on physical quantities calculated on the lattice to O(a2). Finally, we will
briefly describe how to perform LQCD numerical simulations.

• In chapter 2 we will explain the method used in the calculation of the isospin
breaking effects, that is basically a combined expansion in md −mu and αem of
the two–points correlation functions [10, 11]. We will discuss these expansions in
the case of pions and kaons and use them as the starting point of our calculation.
In particular we will explain how QED is introduced in our simulation using the
non–compact formulation, i.e. by using as dynamical variable on the lattice the
electromagnetic field Aµ.
When including QED on the lattice, we have to deal with the fact that it is a
long–ranged interaction, so we will have to take into account finite volume effects
(FVE) [13] that are not exponentially suppressed, as in the case of QCD, but
decrease as inverse powers of the lattice size.

• Chapter 3 contains the main original work performed in this thesis. Using the
strategy described in chapter 2 we will obtain results for the pions mass splitting,
the u and d mass difference and the kaon decay constant.
The pion mass difference Mπ+ −Mπ0 at the first order in the expansion in αem
and ∆mud receives only the QED contribution. Furthermore, αem doesn’t need
to be renormalized at this order. For these reasons, the pion mass splitting is a
theoretically very clean observable. Our result is obtained by neglecting a quark
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disconnected contribution to Mπ0 that, as already mentioned, is numerically of
the same magnitude of higher order terms in the expansion not included in the
analysis. We obtained

Mπ+ −Mπ0 = 4.28(39) MeV , (4)

a result which is compatible with the previous determination with Nf = 2 [10],
and with the experimental one [2]

(Mπ+ −Mπ0)EXP = 4.5936(5) MeV , (5)

We calculated the quark mass difference ∆mud from the kaon mass splitting. We
separated QED and QCD isospin breaking effects defining the quark masses in
the MS scheme at µ = 2 GeV, obtaining

[MK+ −MK0 ]QED (2 GeV) = 2.04(21) MeV

[MK+ −MK0 ]QCD (2 GeV) = −5.98(20) MeV,

from which we found

[md −mu](MS, 2 GeV) = 2.56(13) MeV . (6)

Also in this case our result is compatible with the previous Nf = 2 [10] calculation.
Finally we evaluated the corrections to the kaon decay constant, due to the up–
down mass difference, that is related to the ratio of the K`2 and Π`2 decay rate
correction, because pion doesn’t get corrections at this order. We then found,
using SU(2) chiral perturbation theory for the chiral extrapolation,

[
fK+/fπ+

fK/fπ
− 1

]QCD
(MS, 2 GeV) = −0.00397(36) . (7)

Our result is higher than the estimate obtained by using chiral perturbation the-
ory [14], [

fK+/fπ+

fK/fπ
− 1

]QCD
χPT

(MS, 2 GeV) = −0.0022(6). (8)

by about 2× σ.

Finally, I will end this thesis with some conclusions where I summarize the main results
and indicate some future perspectives.





Chapter 1

Introduction to lattice QCD

QuantumChromoDynamics (QCD) [15] is a non–abelian gauge theory based on SU(3)
color group where the gauge bosons, the gluons, have color charges and therefore they
self–interact. The gauge coupling constant αs depends upon the energy scale of the
phenomenon we are looking at. In particular, at high energy scales µ � ΛQCD '
0.3 GeV we are in low coupling regime: the coupling decreases with the energy scale
and we have the so–called asymptotic freedom. At high energy scale we can study the
physical processes in perturbation theory. On the contrary, for energy scales µ� ΛQCD

we have confinement, whose consequence is that we can’t observe free quarks and gluons,
but only confined in color–free hadrons. In this regime we can’t use perturbation theory
and so we need to introduce non perturbative methods if we want to study the physics
at these energies. This is the case of many processes in flavour physics, the branch
of physics that studies transitions between quarks of different type, or flavour. It is
well–described by the Standard Model but its origin remains unexplained and it needs
to be deeply investigated [16].

The most accurate and extensive non perturbative method, that is the one used in
this work, is Lattice QCD (LQCD) [8, 9]. LQCD is based only on first principles and
it is basically a discretization of the space–time and consequently of all the fields and
of all the interactions. It is defined introducing a 4–dimensional lattice spacing a in a
finite volume V = L3 × T , that guarantees both the UV and IR regularizations of the
theory. By introducing a lattice spacing we are introducing an UV cut–off proportional
to 1/a, while by introducing a finite volume we have an IR cut–off proportional to 1/L.

One of the great advantage of LQCD is that we can calculate physical observables,
i.e. expectation values, using numerical simulations. From these observables calculated
on the lattice we can evaluate physical quantities of interest by performing a continuum
limit. In this work we will use two–point correlation functions calculated on the lattice
to evaluate isospin breaking effects on meson masses and decay constants, as explained
in details in chapter 2.

In this chapter we will summarize the basic concepts which Lattice QCD (LQCD)
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relies on starting from the space–time discretization and describing how to discretize
fermions and gauge fields in order to formulate a gauge theory on the lattice.

We will then briefly describe how physical quantities are renormalized on the lattice
and how to perform numerical simulations.

1.1 4–dimensional discretization
The first step for the implementation of LQCD is to discretize the space–time by intro-
ducing a 4–dimensional finite volume V = L3 × T and a lattice spacing a, defining the
lattice points as

xµ = anµ (µ = 1, .., 4), (1.1)

with integer vector nµ = (n1, n2, n3, n4). LQCD is formulated in the euclidean space
where a generic path integral, weighted by an highly oscillating function eıS in the
Minkowski space where S is the action, is weighted by a real Boltzmann exponential
factor e−SE . The euclidean action is obtained from the Minkowskian one by performing a
Wick rotation to imaginary time. Under this rotation the partition function transforms
as

ZM =
∫
Dφ eıS[φ] → ZE =

∫
Dφ e−S[φ], (1.2)

with φ a generic field defined on the lattice points

φ(xµ = anµ) = 1
V

∑
n

eıpn·x φ̃(pn), (1.3)

and φ̃(pn) is its Fourier transform in momentum space. As we will see in sec. (1.4) this
partition function can be evaluated numerically.

Working in a finite volume, we need to impose boundary conditions on the field
φ. Let us consider for simplicity the case V = L4. By imposing periodic boundary
conditions φ(0) = φ(L), we find the allowed values for the momentum on the lattice,
obtaining

eıpn·L = 1⇒ pµn = 2πnµ
L

, (1.4)

and nµ ∈ [−L/2 + 1, L/2]. Therefore, the values for the momentum on the lattice are
limited to the first Brillouin zone

− π

a
< pµ <

π

a
. (1.5)

We see from eq. (1.5) that by introducing a lattice we automatically introduced also a
cut–off on the momentum. This means that our theory is UV regularized and this is
one of the most important features of the lattice.
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The simplest way to discretize a field theory is to define the lattice derivatives, the
integration measure and to substitute everything in the continuum action, according
to:

xµ → nµa,

φ(x)→ φ(na)
∫
d4x→ a4∑

n,

∂µφ(na) = 1
2a [φ(na+ µ̂a)− φ(na− µ̂a)].

(1.6)

In the next sections we will see however that this naive discretization is not always the
correct procedure to define a gauge theory on the lattice.

1.2 Field theory on the lattice
In this section we are going to discuss the discretized action for QCD. There are different
ways to discretize both the fermion and the gauge fields on the lattice as long as in the
continuum limit we obtain the expected continuum theory.

We will start by discretizing the fermion field in a naive way and we will show
that this procedure doesn’t give the expected continuum limit, because it introduces
unphysical fermion species. To solve this problem we will introduce the Wilson action
that, at the prize of explicit chiral symmetry breaking, restores the correct fermionic
spectrum in the continuum limit. Furthermore we will see that using the so–called
Wilson twisted–mass action we will able to reduce the leading discretization effects to
O(a2).

After the fermions, we will discretize the gluon field and we will derive a lattice
gauge theory.

1.2.1 Fermions on the lattice
Consider the free fermionic action in the continuum euclidean space

SD =
∫
d4x ψ̄(x)(/∂ +m0)ψ. (1.7)

When discretizing this action by applying eq. (1.6), however, one doesn’t obtain the
expected result in the continuum limit. The action suffers of the so called doubling
problem, i.e. the existence of additional fermionic species, the so–called doublers fermi-
ons, that are unphysical particles. This problem can be seen by looking at the naively
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discretized fermionic propagator [9], obtained from eq. (1.7), which has the form

S(p) = 1
m0 + ı

a
γµ sin (pµa)

, (1.8)

where the range of p is the first Brillouin zone, as in eq. (1.5). When pµ = 0 and
pµ = ±π/a, we have sin (pµa) = 0 and the propagator close to these points can be
re–written as

S(p) = 1
m0 + ıγµpµ +O(a2) . (1.9)

Therefore, one finds that in the momentum space there are 2d (two for every space–time
dimension) regions where eq. (1.9) is valid and has finite continuum limit. Then we
have 24 = 16 particles entering the fermion spectrum of which 15 come from the regions
on the border of the Brillouin zone and so are unphysical doubler fermions.

The Nielsen–Ninomiya theorem [17] states that the doubling problem necessarily
appears in the continuum limit for local, hermitian, translational symmetric theories
with exact (continuum) chiral symmetry. The Dirac operator in eq. (1.7) is chiral
symmetric since in the chiral limit it anticommutes with the γ5 matrix.

One way to avoid the doubler problem is to explicitly break chiral symmetry on
the lattice. The doublers are generated because the naive theory is free from the chiral
anomaly present in the continuum theory. One formulation of the fermion lattice action
that follows this strategy is the Wilson action [12] that breaks the chiral symmetry even
in the massless limit due to the addition of a new term proportional to so–called the
Wilson parameter r. The Wilson action has the form

SWf = a4 ∑
n,m

[ψ̄α(na)Kαβ(na,ma)ψβ(ma)]− ar

2 a4∑
n

ψ̄(na)�ψ(na), (1.10)

where

Kαβ(na,ma) = 1
2
∑
µ̂

[1
a

(γµ)αβ (δm,n+µ̂ − δm,n−µ̂) +m0 δm,nδαβ

]
, (1.11)

and
�ψ(na) = 1

a2

∑
µ

[ψ(na+ µ̂a) + ψ(na− µ̂a)− 2ψ(na)]. (1.12)

The fermionic propagator obtained from eq. (1.10) is

S(W )(p) = 1
m0 + ı

a
γµ sin (pµa) + r

a

∑
µ

(1− cos(pµa))
. (1.13)

It is easy to realize that in the continuum limit the term proportional to r doesn’t
contribute to the propagator for p ∼ 0, while for p near the borders of the Brillouin
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zone, i.e. in the regions where the contribution of the doublers come from, it increase
the mass of the doubler fermions by 2r/a, i.e. by a term proportional to the UV cut–
off. In this way, by breaking explicitly the chiral symmetry, we have decoupled the
unphysical fermions in the continuum limit, giving them a mass proportional to the
cut–off.

In sec. (1.2.3), starting from the Wilson action, we will introduce the Wilson twisted–
mass action that besides solving the doubling problem also guarantees automatic O(a)
improvement of physical quantities.

1.2.2 Gauge theory on the lattice
In this section we introduce the gauge fields on the lattice in order to formulate a gauge
invariant theory.

Consider a SU(Nc) gauge group, with Nc colors, and a fermionic field ψ(na) defined
on the lattice (as explained in sec. (1.2.1)) that transforms under the fundamental
representation of SU(Nc) with a local transformation G(na) ∈ SU(Nc):

ψ(na)→ G(na) ψ(na)

ψ̄(na)→ ψ̄(na) G−1(na),
(1.14)

with
G(na) = eıΛ(na) (1.15)

and Λ(na) ∈ SU(Nc) an hermitian matrix. The derivative term of the fermion action

∂µψ(na) = 1
2a [ψ(na+ µ̂a)− ψ(na− µ̂a)] (1.16)

involves the field ψ at different points in the space–time. In order to compensate the
phase difference between the two points after a local gauge transformation, we have to
introduce a parallel transport factor, functions of the gauge field,

Un,n+µ ≡ Uµ(na) ∈ SU(Nc) (1.17)

which is called link variable, or simply link, and connects the points na and na + µ̂a,
as illustrated in fig. (1.1). The link variables transform under the gauge group as

Uµ(na)→ G(na) Uµ(na) G−1(na+ µ̂a)

U †µ(na) ≡ U †n,n+µ = Un+µ,n → G(na+ µ̂a) U †µ(na) G−1(na)
. (1.18)

It is easily shown that using eq. (1.18), ψ(na) and (Uµ(na) · ψ(na+ µ̂a)) transform in
the same way under SU(Nc).
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Figure 1.1: Link variables on the lattice. On the left, the link Uµ(na) = Un,n+µ connects
the lattice points n and (n + µ̂). On the right, the hermitian conjugate link is shown
with opposite direction.

The Wilson action in eq. (1.10) can be promoted to a gauge invariant fermionic
action by introducing the link variables

SWf [U, ψ, ψ̄] = a4
{(

m0 + 4r
a

)∑
n

Nc∑
b=1

ψ̄b(na)ψb(na)+

− 1
2a
∑
n,µ

Nc∑
a,b=1

[
ψ̄a(na) (r − γµ)Uab

µ (na)ψb(na+ µ̂a)+

+ψ̄a(na+ µ̂a) (r + γµ)U †abµ (na)ψb(na)
]}
,

(1.19)

where a and b are color indexes. We can define the lattice equivalent of the continuum
covariant derivate as

Dµψ(na) = 1
2a [Un,n+µ̂ ψ(na+ µa)− Un,n−µ̂ ψ(na− µa)] =

= 1
2(∇µ +∇∗µ)ψ(na),

(1.20)

with ∇µ and ∇∗µ forward and backward covariant derivates defined as

∇µψ(na) = 1
a

[Un,n+µ̂ ψ(na+ µa)− ψ(na)]

∇∗µψ(na) = 1
a

[ψ(na)− Un,n−µ̂ ψ(na− µa)].
(1.21)

Introducing
DW = 1

2
[
γµ(∇µ +∇∗µ)− ar∇∗µ∇µ

]
, (1.22)

we can write the action in eq. (1.19) in a more compact way as

S
(W )
f [U, ψ, ψ̄] = a4∑

n

ψ̄(na)[DW +m0]ψ(na). (1.23)
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Eq. (1.23) is the Wilson lattice fermionic gauge–invariant action.
In order to formulate a lattice gauge–invariant field theory we have to write also the

gauge field kinetic term that has to be invariant under the group transformation and
reduces in the continuum limit to the known gauge action SG

SG[U ] = 1
2

∫
d4x Tr[G̃µν(x)G̃µν(x)], (1.24)

where G̃µν is the gauge field defined as

G̃µν(na) = ∂µG̃ν(na)− ∂νG̃µ(na) + ıg0
[
G̃µ(na), G̃ν(na).

]
, (1.25)

with
G̃µ =

8∑
a=1

Ga
µ t

a, (1.26)

and ta the group generators. To this purpose we have to find the relation between
the link Uµ(na) and the gauge field and use the links to write the kinetic term. Being
the parallel transporter, the link should corresponds to the discretized version of the
Schwinger line integral, defined in the continuum as

U(x, y) = P exp
[
ıg0

(∫ y

x
dxµGµ(x)

)]
. (1.27)

When y − x = ε� 1, we can write the integral as

U(x, x+ ε) ' exp
[
ıg0

∑
µ

εµGµ(x)
]
. (1.28)

The previous equation provides us the explicit expression of Uµ(na) on the lattice, being
a� 1, that is

Uµ(na) = eıg0aGµ(na), (1.29)

where Gµ(na) is the lattice gauge field. It is easy to verify that by substituting eq. (1.29)
into eq. (1.18) we find for the field Gµ(na) a transformation rule that in the continuum
limit tends to the known continuum gauge transformation. Furthermore we find the
correct continuum limit also for the covariant derivative in eq. (1.19).

Using eq. (1.29) we can derive the expression of the kinetic term of the gauge field
action. The simplest gauge invariant object that we can use is the so–called plaquette,
shown in fig. (1.2), that is the trace of the path–ordered product of the link variables

Uµν(na) = Uµ(na)Uν(na+ µ̂a)U †µ(na+ ν̂a)U †ν(na). (1.30)

Using (1.29) in eq. (1.30), expanding the gauge field
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Figure 1.2: Elementary plaquette on the plane µ− ν.

Gµ(na+ ν̂a) ' Gµ(na) + a ∂νGµ(na), (1.31)
and using the Baker-Campbell-Ausdorff rule

eAeB = eA+B+ 1
2 [A,B]+.., (1.32)

one obtains
Uµν(na) = eıg0a2Gµν(na), (1.33)

where Gµν(na) in eq. (1.25). One can therefore use the plaquette to write the kinetic
term as

SG[U ] = β
∑
n

∑
1≤µ≤ν

[
1− 1

2Nc

Tr(Uµν(na) + U †µν(na))
]
, (1.34)

where
β = 2Nc

g2
0
. (1.35)

In the continuum limit, using eq. (1.33), one has
Uµν(na) + U †µν(na) = 2I− g2

0a
4Gµν(na)Gµν(na) +O(a6), (1.36)

that leads to

1− 1
2Nc

Tr
[
Uµν(na) + U †µν(na)

]
' 1− 1

2Nc

Tr
[
2I− g2

0a
4Gµν(na)Gµν(na)

]
=

= g2
0

2Nc

a4 Tr [Gµν(na)Gµν(na)] =

= 1
β
a4 Tr [Gµν(na)Gµν(na)] .

(1.37)

For V →∞ e a→ 0, using ∑1≤µ≤ν = 1
2
∑
µ,ν , we recover the continuum kinetic action

SG[U ] ' 1
2a

4∑
n

∑
µ,ν

Tr [Gµν(na)Gµν(na)]

−−−→
a→0
V→∞

1
2

∫
d4x Tr

[
G̃µν(x)G̃µν(x)

]
.

(1.38)
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(a) simple plaquette loop (b) rectangle loop

(c) chair-type loop (d) three-dimensional loop

Figure 1.3: Four types of Wilson loops in the action.

We have thus obtain the full lattice action for a SU(NC) gauge invariant field theory,
that is

S[U, ψ, ψ̄] = SG[U ] + S
(W )
f [U, ψ, ψ̄], (1.39)

with SG defined in eq. (1.34) and S
(W )
f in eq. (1.23).

As we have already mentioned, there are many different ways to discretize the action
on the lattice, as long as it gives the proper continuum limit. Another choice of gauge
action, that is the one that we are going to consider in our calculation is the so called
improved Iwasaki action [18][19]. In this case the action SG is expressed in terms of
different closed paths of the links, i.e. different types of plaquettes, shown in fig. (1.3).
The Iwasaki action is
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SG = 1
g2{c0

∑
Tr (simple plaquette loop) + c1

∑
Tr (rectangle loop) +

+c2
∑

Tr (chair-type loop) + c3
∑

Tr (three-dimensional loop) +

+constant}. (1.40)

Requiring that the action reduces in the continuum limit to the known gauge action we
obtain the renormalization condition

c0 + 8c1 + 16c2 + 8c3 = 1. (1.41)

By an appropriate choice of the coefficients in eq. (1.40), namely c1 = −0.331, c2 =
c3 = 0, one can obtain an improved gauge lattice action with reduced cut off effects.
The explicit expression of the Iwasaki action is thus

SIWG = β

3

 ∑
x;µ<ν

(1− 8c1)P 1×1
µν + c1

∑
x;µ6=ν

P 1×2
µν

 , (1.42)

where P 1×1
µν is the usual plaquette term and P 1×2

µν contains all loops enclosing two
rectangle loops.

1.2.3 Wilson twisted mass fermions
In this work the action used for the fermionic field is the Wilson twisted–mass (Wtm)
action [20, 21]. The main advantage of this action is that it provides automatic O(a)
improvement of physical observables in the continuum limit, if only one parameter, the
so called Wilson mass, is properly tuned. This means that discretization effects coming
from the lattice start from terms proportional to a2.

Let us see the form of this action. Starting from the Wilson action in eq. (1.10), the
Wtm action is defined as

SWtm
f [χ, χ̄] = a4∑

n

χ̄(na)(DW +m0 + ıµqγ5τ3)χ(na), (1.43)

with χ a fermionic doublet in the so–called twisted basis, m0 so–called the bare Wilson
mass of the quark, µq the so–called twisted mass of the quark and DW the standard
Wilson operator is given in eq. (1.22). In the previous equation we have introduced a
chirally twisted mass term ıµqγ5τ3 in the twisted basis χ and we want to understand
the relation between the field χ and the field ψ in the physical basis. Once can derive
their relation by analyzing the continuum limit of the Wtm action, that is

SWtm
f

∣∣∣
cont

=
∫
d4x χ̄(x)(γµDµ +mq + ıµqγ5τ3)χ(x) =

=
∫
d4x χ̄(x)(γµDµ +Meıαγ5τ3)χ(x),

(1.44)
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where
M =

√
m2
q + µ2

q (1.45)

is the polar mass, the twisted angle α is defined from{
mq = m0 −mcr = M cosα
µq = M sinα. (1.46)

In the previous equation, mcr is the so–called critical mass that, as we will see in
sec. (1.3), has a role in the renormalization of the quark mass. We have called twisted
basis the one with the field χ because when the operator Dµ in eq. (1.44) is chirally
invariant, as for continuum QCD, the fields ψ and χ are connected by a chiral rotation

ψ = exp ( ı2wγ5τ3)χ

ψ̄ = χ̄ exp ( ı2wγ5τ3),
(1.47)

and the action (1.44) in the physical (ψ) basis reduces to the standard QCD continuum
action. The angle w in eq. (1.47) is the twisted angle and τ3 is the Pauli matrix in the
flavour space. If the angle w is properly chosen, the continuum Wtm action and the
Wilson action are the same action written in two different bases related by eq. (1.47).
If we apply eq. (1.47) to the action in eq. (1.44), being Dµ invariant under chiral
transformation, the only variation is in the mass term, and we have

Meıαγ5τ3 →Meı(α−w)γ5τ3 . (1.48)

By choosing w = α, that is
tanw = µq

mq

, (1.49)

then the action in the twisted basis with mass mq + ıµqγ5τ3 is equivalent to the one in
the physical basis with mass equal to the polar mass M .

As we have seen in sec. (1.2.1), however, we have introduced the Wilson action
in order to get rid of the doubler fermions and this has been achieved this at the
price of breaking the chiral symmetry of finite lattice spacing. Therefore, also the Wtm
action is not invariant under chiral transformation, and one cannot reabsorb the twisted
mass term with a field rotation. This has the consequence that the Wilson actions are
equivalent only in the continuum limit but not at finite lattice spacing.

It is useful to understand how the expectation values of general observables O are
related in the two bases. The integral measure is invariant under the chiral transform-
ation in eq. (1.47) and we thus have that〈

O[ψ, ψ̄]
〉

(M,0)
= 〈O[χ, χ̄]〉(mq ,µq) . (1.50)
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Eq. (1.50) means that the correlation function in the physical basis with mass M is
equal, in the continuum limit, to the one calculated in the twisted basis with mass mq

and twisted mass µq.
An important feature of the Wtm action is that one can minimize discretization

errors by choosing the rotation angle properly. The case of interest is the so called
maximal twist when

w = π

2 . (1.51)

In term of quark masses this is equivalent to mq = 0, as can be seen from eq. (1.49). In
this case the only mass term that contributes to the polar mass M is the twisted mass
µq, since m0 = mcr, see eq. (1.46).

One method to improve on–shell physical observables was suggested by Syman-
zik [22] and it is based on the cancellation of the discretization effects through the
introduction of counter–terms in the action and in the operators. Near the continuum
limit, we can expand the action in power series of the lattice spacing, that at O(a2)
reads like

Seff = S0 + aS1 + a2S2 + .., (1.52)

where S0 is the continuum action and Sk with k 6= 0 are operators defined as

Sk =
∫
d4x Lk(x). (1.53)

with Lk(x) linear combinations of the local operators Oi(x) with dimension 4 + k and
with the same symmetries of the lattice theory.

Consider the twisted mass action at maximal twist with twisted mass µq and with
S0 the gauge action in the continuum limit

S0 =
∫
d4x χ̄(x) [γµDµ + ıµRγ5τ3]χ(x). (1.54)

In this case, the operators that contribute to S1 are

O1 = ıχ̄σµνGµνχ O5 = m2χ̄χ, (1.55)

with Gµν the gluon tensor. In then follows that a generic correlation function of a
multilocal operator Φ in the effective theory,

Φeff = Φ0 + aΦ1 + .., (1.56)

has the form

〈Φ〉 = 〈Φ0〉cont − a
∫
d4y 〈Φ0L1(y)〉cont + a 〈Φ1〉cont +O(a2), (1.57)
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where 〈.〉cont is calculated using the continuum action S0. It can be shown [23] with
symmetry considerations that in the case of maximal twist the O(a) term vanishes, and
so we have

〈Φ〉 = 〈Φ0〉cont +O(a2). (1.58)
The use of twisted mass regularization at maximal twist has the further advantage of

simplifying the renormalization of some hadronic matrix element. Of particular interest
for the present study is the decay constant fPS of a pseudo–scalar meson composed of
two quarks of mass m1 and m2 defined as

fPS p
µ = 〈0|ARµ |PS〉 (1.59)

where ARµ s the renormalized axial current. With twisted mass fermions at maximal
twist, making use of the Partially Conserved Vector Current (PCVC) relation, the decay
constant can be computed as

fPS = (µ1 + µ2)〈0|P5 |PS〉
M2

PS

, (1.60)

where P5 is the operator q̄1γ5q2 and where there is no need of any renormalization
constant.

1.3 Non Perturbative Renormalization: RI/MOM
LQCD is a regularization of QCD both in the UV and in the IR. QCD has divergent
bare quantities, like quark masses, the strong coupling and generic operators and these
quantities must be renormalized. On the lattice, the connection between bare lattice
observables and the renormalized one in the continuum limit is provided by renormal-
ization constants that absorb the divergencies when a→ 0.

LQCD quantities can be renormalized using both perturbative and non–perturbative
methods. In this work we will use a non–perturbative method, the so–called RI/MOM [24],
that is a mass–independent momentum-subtraction renormalization scheme. The RI-
MOM renormalization scheme consists in imposing that the forward amputated Green
function, computed in the chiral limit in the Landau gauge and at a given (large Eu-
clidean) scale p2 = µ2, is equal to its tree-level value. The renormalization conditions
are thus imposed at fixed momentum and in the chiral limit where quarks are massless.

Let us consider the case of a bare bilinear operator defined on the lattice

OΓ(na) = ψ̄(na) Γ ψ(na), (1.61)

with Γ a combination of γs matrices. Consider an amputated forward Green function
ΛO(pa) in momentum space calculated between off–shell quark states

ΛO(pa) = S−1(pa) GO(pa) S−1(pa), (1.62)
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where S(pa) is the quark propagator and

GO(pa) = 〈S(pa) Γ S(pa)〉 (1.63)

is the forward non-amputated Green function. GO(pa) has colour and spin indices and
it is convenient to introduce

ΓO(pa) = 1
12 Tr [PΓ · ΛO(pa)], (1.64)

where the trace is over spin and colour indices. In eq. (1.64) PΓ is a projector chosen in
such a way that ΓO(pa) is equal to 1 at tree–level. For example PΓ = {I, γ5,

1
4γµ,−

1
4γµγ5}

for Γ = {I, γ5, γµ, γµγ5}.
The renormalization scale µ has to be chosen in the range

ΛQCD � µ� π

a
, (1.65)

where the upper limit is fixed in order to keep discretization effects under control and
the lower bound in order to have the possibility of matching with perturbative scheme,
as for example MS.

Being µ the renormalization scale, the renormalization functions are computed by
imposing in the chiral limit

ΓRO(p)
∣∣∣
p2=µ2

= lim
a→0

[
Z−1
ψ (aµ)ZO(aµ)ΓO(pa)

]∣∣∣
p2=µ2

= 1, (1.66)

that means that the renormalized Green function for p2 = µ2 is equal to its tree–level
value (i.e. 1 because of the projector PΓ). Zψ is the fermion field renormalization
constant while ZO is the one of the operator. They are both mass independent because
they are defined in the chiral limit.

Zψ is calculated from the quark propagator by imposing in the chiral limit the
renormalization condition

ı

12 Tr
[
/p S−1

R

p2

]
p2=µ2

= Z−1
ψ

ı

12 Tr
[
/p S−1

p2

]
p2=µ2

= 1. (1.67)

In our analysis, as explained in sec. (3.1), we used two sets of renormalization
constants, that differ in the residual discretization effects evaluation, as explained in
ref. [25]. The two methods give different results at fixed lattice cut-off, but the difference
disappears in the continuum limit.

We now focus on the renormalization of quark masses. The corresponding renor-
malization constant is independent of the flavor f and the sign of the Wilson parameter
rf . As we have seen in sec. (1.2.1), the Wtm action is not invariant under chiral
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transformation. Therefore the Wilson quark mq term is not protected against additive
renormalization. We have

mq = Zmmq = Zm(m0 −mcr) (1.68)

with m0 the quark bare mass in eq. (1.43) and mcr the critical mass. The renormalized
mass mR

q is defined as

mR
q = lim

a→0
[Zm(aµ) ·mq] = lim

a→0
[Zm(aµ)(m0 −mcrit)] . (1.69)

On the other hand, the twisted mass µq renormalizes only multiplicatively so that

µRq = lim
a→0

[Zµ(aµ) · µq] , (1.70)

Using the vector and axial currents Ward identities [26, 27] on the lattice, by impos-
ing the proper renormalization of the currents it can be shown that the renormalization
constants of the scalar and pseudoscalar densities are related to those of the Wilson
and twisted mass respectively. One has

Zm = 1
ZS

, Zµ = 1
ZP

(1.71)

where ZS and ZP are the scalar and pseudoscalar operator renormalization constants.
At maximal twist the twisted mass µq is the only mass parameter related directly

to the physical mass. Thus another advantage of working at maximal twist is that the
quark mass renormalizes multiplicatively.

1.4 Numerical simulations
Lattice QCD is particularly suited for the study of QCD at low energy scales. One of
the great advantage of formulating a field theory on the lattice, besides providing an
ultraviolet cut off, is that it also provides a proper definition of vacuum expectation
values. In the case of QCD it reads

〈O〉 =
∫
DUDψ̄Dψ O e−S[U,ψ̄,ψ]∫
DUDψ̄Dψ e−S[U,ψ̄,ψ]

. (1.72)

The action S is the discretized QCD action. Fermions are defined as Grassmann vari-
ables. Since the action is bilinear in the quark fields,

Sf = a4∑
f

[ψ̄f (na)Knm[U ]ψf (ma)], (1.73)
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the integration over the Grassmann variables can be performed analytically using∫
Dψ̄Dψ e−ψ̄fK[U ]ψf = detK[U ]. (1.74)

Then, eq. (1.72) can be written in terms of a functional integral over only the gauge
field

〈O〉 =
∫
DU O e−Seff [U ]∫
DU e−Seff [U ] . (1.75)

where Seff is the effective action

Seff = SG[U ]− ln
 Nf∏
f=1

detKf [U ]
, (1.76)

SG is the gluon action and Nf the number of quark flavours.
Eq. (1.75) is the starting point of lattice numerical simulations, in which the integral

over the gauge fields is computed numerically. It would be computationally too expens-
ive (impossible in practice) to calculate directly the integral in eq. (1.75), because the
number of integrations is too high. For this reason, the integral is evaluated using stat-
istical methods. The relevant observation is that the contributions of each gauge field
configuration to the integral in eq. (1.75) is weighted by the factor e−Seff [U ]. Therefore,
only a small fraction of them gives a significant contribution, being the distribution
highly peaked on those configurations that are close to minimize the action. For this
reason, in any lattice simulation only a representative sample of gauge configurations is
selected, using a method called the importance sampling. The set of gauge configura-
tion is generated according to a probability distribution given by the Boltzmann factor
e−Seff generated using a Markov chain, i.e. a sequence of stochastic variables where
each configuration Ui is calculated from the preceding one Ui−1. Choosing an appropri-
ate transition probability, for N → ∞ extractions, one generates configurations with
the Boltzmann distribution [28].

In all lattice regularizations, lower values of the quark mass correspond to higher
densities of low eigenvalues of the fermionic matrix. This makes the computation more
and more demanding as the value of mq is lowered. At the present days, still a large
fraction of the simulations, including ours, is performed with light quark masses higher
than the physical values. This has to be taken into account by eventually performing
a chiral extrapolation to the physical mass during the computations, as explained in
chapter. (3).

The lattice regularized theory reproduces the target theory only in the continuum
limit. Observables computed at finite lattice spacing differ from its continuum coun-
terpart for finite terms which vanish in this limit, i.e. discretization effects. In order to
extract continuum physics it is therefore necessary to compute observables at different
values of the lattice spacings and extrapolate them to a→ 0.
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Up to the late nineties, the computational power was not sufficient to evaluate
the fermionic determinant in eq. (1.76), because K is a huge sparse multidimensional
matrix with Dirac, colour and space–time indices. Therefore, all lattice computations
at that time were performed using the so–called quenched approximation which consists
in taking

detK[U ] ≡ cost. (1.77)

In the last decade the development in algorithms and machines made it possible the
calculations taking into account the contribution of the fermionic determinant. In the
present work we include the effects of four flavors of dynamical quarks (Nf = 2+1+1),
corresponding to the degenerate up and down quarks, the strange and the charm.

The procedure adopted to evaluate the statistical errors for quantities numerically
calculated on the lattice is explained in sec. (A).



Chapter 2

Description of the method

In this chapter we will discuss the method that we used to evaluate leading isospin
breaking effects (LIB) on the lattice.

We will first describe the basic ingredients of our strategy, that is a perturbative
expansion of euclidean correlation functions in powers of the electric charge e and the
mass difference md −mu of the light quark masses, i.e. the parameters that originate
the isospin breaking effects. In order to better understand our strategy we will start by
describing how to calculate isospin breaking effects due to the u and d mass difference.
We will then include the electromagnetic effects and explain how we included electro-
magnetism in our numerical simulations using a non–compact formulation of QED, i.e.
by using as dynamical variable on the lattice the electromagnetic field Aµ.

We will also give some details about the lattice fermion action, in particular of the
mixed–action setup used in this work and about interpolating fields considered for the
meson operators.

We then illustrate our method explaining how we perform the expansions of the
physical observables in md−mu and αem and how to calculate corrections to the lattice
path–integral. We will focus on two–point correlation functions, from which we eval-
uated isospin breaking corrections to meson masses and decay constants, and we will
give examples in the case of pions and kaons.

Working on the lattice in finite volume, and being electromagnetism a long range
interaction, we need to correct for QED finite volume effects which are by far not
negligible. In this chapter we will show how they have been evaluated in our calculation.

2.1 Basic ingredients of LIB on the lattice
In order to better explain the strategy, we are first going to describe how to calculate LIB
due to the small mass difference between the up and down quarks [11]. The introduction
of QED isospin breaking effects is somewhat less straightforward and could be better
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understood if the basic ideas behind our strategy are clear.
The method is based on a perturbative expansion of physical observables in a small

parameter, that in the present case is the up and down quark mass difference

md −mu. (2.1)

By doing this we will express isospin breaking corrections as a sum of amplitudes
calculated in the isospin symmetric theory, multiplying by the small parameter. The
advantages of this strategy is that the amplitudes by themselves are not small quantities
and can be calculated precisely on the lattice.

Consider a generic euclidean correlation function of an observable O

〈O〉 =
∫
Dφ O e−S∫
Dφ e−S

, (2.2)

where Dφ is the measure of the theory and S is the euclidean action. We can rewrite
the lagrangian L and so the action S = ∑

x L(x), as the sum of a term which is SU(2)V
symmetric plus a term proportional to the u and d mass difference that violates the
isospin symmetry:

L = Lkin + Lm =

= Lkin + (muūu+mdd̄d) =

= Lkin + mu +md

2 (ūu+ d̄d)− md −mu

2 (ūu− d̄d) =

= (Lkin +mud q̄q)−∆mud q̄τ
3q =

= L0 −∆mud L̂, (2.3)

where 

∆mud = md −mu

2

mud = mu +md

2

qT = (u, d).

(2.4)

Using eq. (2.3), we have

S =
∑
x

L(x) =
∑
x

L0(x)−∆mud

∑
x

L̂(x) = S0 −∆mud Ŝ, (2.5)
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where
Ŝ =

∑
x

[q̄τ 3q](x) =
∑
x

[ūu− d̄d](x). (2.6)

By substituting eq. (2.6) in eq. (2.2) and expanding at first order the exponential of the
action with respect to ∆mud we obtain

〈O〉 '
∫
Dφ O (1 + ∆mud Ŝ) e−S0∫
Dφ (1 + ∆mud Ŝ) e−S0

= 〈O〉0 + ∆mud 〈OŜ〉0
1 + ∆mud 〈Ŝ〉0

=

= 〈O〉0 + ∆mud 〈OŜ〉0 , (2.7)

where 〈.〉0 represent the vacuum expectation value evaluated in the isospin symmetric
theory and where 〈Ŝ〉0 = 0 because of isospin symmetry.

We can apply eq. (2.7) to the calculation of the u and d propagators

Gu(x1, x2) = G`(x1, x2) + ∆mud

∑
y

G`(x1, y) G`(y, x2) + · · · ,

Gd(x1, x2) = G`(x1, x2)−∆mud

∑
y

G`(x1, y) G`(y, x2) + · · · ; (2.8)

that can be graphically represented as
u

= + ∆mud + · · · ,
d

= −∆mud + · · · , (2.9)

where

y x = G`(x− y) = 〈`(x)¯̀(y)〉 ,

=
∑
z

¯̀(z)`(z) , (2.10)

with ` either u or d in the isospin symmetric limit. Using the expansion (2.7) we have
written the u and d propagators as a sum of isospin symmetric propagators that thus
can be calculated on the lattice, i.e. the simple quark propagator and the propagator
with a scalar insertion .

The same procedure can be applied to all correlation functions in order to extract
the leading isospin breaking corrections to physical observables such as meson masses
and decay constants.
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We shall consider the following two point correlation functions of pion and kaon
mesons:

Cπ+π−(t, ~p) =
∑
~x

e−i~p·~x〈 ūγ5d(x) d̄γ5u(0) 〉 ,

Cπ0π0(t, ~p) = 1
2
∑
~x

e−i~p·~x〈 (ūγ5u− d̄γ5d)(x) (ūγ5u− d̄γ5d)(0) 〉 ,

CK+K−(t, ~p) =
∑
~x

e−i~p·~x〈 ūγ5s(x) s̄γ5u(0) 〉 ,

CK0K0(t, ~p) =
∑
~x

e−i~p·~x〈 d̄γ5s(x) s̄γ5d(0) 〉 , (2.11)

and use eq. (2.9) to expand the u and d propagator in order to calculate isospin breaking
corrections.

First order corrections to pion masses and decay constants do vanish, as can be
shown by considering the diagrammatic expansion of the correlation functions of the
charged pion

Cπ+π−(t) = −
u

d

= − −∆mud + ∆mud + · · ·

= − +O(∆mud)2 , (2.12)

and the connected diagrams entering the neutral pion
u

u

= + ∆mud + ∆mud + · · · =

= + 2∆mud +O(∆mud)2 ,

d

d

= −∆mud −∆mud + · · · =

= − 2∆mud +O(∆mud)2 , (2.13)

with (connected) two point correlation function

Cπ0π0(t) = −1
2

 u

u

+
d

d

 = − +O(∆mud)2 . (2.14)
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Also the first order corrections for the disconnected diagrams contributing to Cπ0π0(t)
cancel out, a result that can be understood in terms of the isospin quantum numbers.
Pion fields are symmetric under u ↔ d interchange, so isospin corrections have to be
quadratic in ∆mud.

In the case of strange particles, and in general for flavoured mesons, first order
corrections to masses and decay constants are different from zero. The isospin breaking
corrections to the two point correlation functions of kaons are

CK+K−(t) = −
s

u

= − −∆mud +O(∆mud)2 ,

CK0K0(t) = −
s

d

= − + ∆mud +O(∆mud)2 , (2.15)

i.e. they are proportional to ∆mud and equal but opposite for the neutral and charged
kaon.

In the following chapters we are going to discuss the inclusion of QED isospin break-
ing effects, by performing an expansion in both md −mu and αem for pions and kaons.
As we have seen from eq. (2.12) and (2.13) the pion doesn’t have first order isospin
breaking corrections coming from the u and d mass difference and the leading correc-
tion comes from QED. On the contrary, kaons have both types of corrections. In this
case we will define a convention to separate QED and QCD effects.

2.2 QED on the lattice
In this section we describe how QED can be regularized on the lattice and we will
give some details about the fermionic action used in this work. In particular we will
provide a prescription for the definition of the IR regularized finite volume lattice photon
propagator, i.e. a way to eliminate the infrared divergence associated with the zero
momentum mode. We will also describe the numerical simulations in the full theory
and the calculation of the electromagnetic correction to the kaon two–point correlator.

We used the non–compact formulation of lattice QED [29], that consists in treating
the electromagnetic gauge potential Aµ(x) in a fixed (Feynman) gauge as a dynamical
variable. The field Aµ(x) is distributed as a free field with the Maxwell action

Sgauge[A] = 1
2
∑
x,µ,ν

Aµ(x)
[
−∇−ν∇+

ν

]
Aµ(x) =

= 1
2
∑
k,µ,ν

Ã?µ(k) [2 sin(kν/2)]2 Ãµ(k) , (2.16)

which is gaussian distributed in momentum space.
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The electromagnetic interaction of quarks is written in terms of the quarks discrete
covariant derivatives by introducing the QED links through exponentiation,

Aµ(x) −→ Eµ(x) = e−ieAµ(x) , (2.17)

and multiplying the QCD links for the appropriate U(1)em factors,

D+
µ [U,A] ψf (x) = [Eµ(x)]ef Uµ(x)ψf (x+ µ)− ψf (x)

D−µ [U,A] ψf (x) = ψf (x)− [Eµ(x)]ef Uµ(x)ψf (x− µ) (2.18)

where
ef =

{
+2/3 for up type quarks
−1/3 for down type quarks.

Gauge invariance is obtained if the fields transform as

ψf (x) −→ eief eλ(x)ψf (x) , ψ̄f (x) −→ ψ̄f (x)e−ief eλ(x)

Aµ(x) −→ Aµ(x) +∇+
µλ(x) ,

(2.19)

where we define

∇+
µ f(x) = f(x+ µ̂)− f(x) , ∇−µ f(x) = f(x)− f(x− µ̂)

∇µ =
∇+
µ +∇−µ

2 .

(2.20)

In order to calculate isospin breaking corrections we will perform a combined perturb-
ative expansion in α̂em and md −mu and so we need to treat electromagnetism up to
order e2. Being Df [U,A] the lattice Dirac operator, we have

∑
x

ψ̄f (x)
{
Df [U,A]−Df [U, 0]

}
ψf (x) =

=
∑
x,µ

{
(efe)Aµ(x)V µ

f (x) + (efe)2

2 Aµ(x)Aµ(x)T µf (x) + . . .

}
, (2.21)

where V µ
f (x) is the conserved vector current of the quark f while T µf (x) is the so called

“tadpole” vertex. The specific expressions of V µ
f (x) and T µf (x) depend on the particular

discretization of the fermion action. We want to notice that the tadpole interaction is
characteristic of the lattice regularization and its role is essential in preserving gauge
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invariance at order e2. The electromagnetic current and the tadpole vertex to be inser-
ted in the correlators are the sums over all flavours of quarks with the corresponding
charge factors,

Jµ(x) =
∑
f

efe V
µ
f (x) =

∑
f

efe ψ̄f ΓµV [U ]ψf (x) ,

T µ(x) =
∑
f

(efe)2 T µf (x) =
∑
f

(efe)2 ψ̄f ΓµT [U ]ψf (x) . (2.22)

Given a QCD lattice correlator, the leading corrections of order αem are calculated
by considering the time ordered product of the original operators with two integrated
insertions of ∑µAµ(x)Jµ(x) or with a single insertion of ∑µAµ(x)Aµ(x)T µ(x). Later
in this section and in sec. (2.5) we will show this expansion for the correlators of pions
and kaons.

By having introduced non–compact QED on the lattice, we have to give a prescrip-
tion for treating the zero mode of the photon propagator. The lattice action of the
QED gauge field in Feynman gauge is in eq. (2.16) where Aµ(x) is a real field while
Ãµ(k) denotes its Fourier transform that is a complex field satisfying the condition
Ã?µ(k) = Ãµ(−k). In order to calculate the photon propagator we have to invert the
Laplace operator∇−ν∇+

ν and to do this we have to deal with its kernel. We have regular-
ized the photon propagator by making the zero momentum mode to vanish identically,
i.e. Ã(k = 0) = 0. This has been achieved by sampling the gauge potential directly
in coordinate space and calculating the propagator stochastically. We introduced the
projecting operator P⊥

P⊥φ(x) = φ(x)− 1
V

∑
y

φ(y) , (2.23)

that projects a given field on the subspace orthogonal to the zero momentum mode.
The regularized photon propagator is then defined as

D⊥µν(x− y) =
[

δµν
−∇−ρ∇+

ρ

P⊥
]

(x− y) , (2.24)

and calculated stochastically. The procedure consists in defining a stochastical field
that satisfies

〈B(x) B(y)〉B = δ(x− y), (2.25)

where 〈.〉B denotes the average over the stochastic distribution.
One then defines

C(y) =
∑
z

O(y − z) ·B(z), (2.26)
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where O does not depend on B. Then

〈B(x)C(y)〉B = 〈
∑
z

O(y − z) ·B(x) B(z)〉
B

=
∑
z

O(y − z)δ(x− z) =

= O(y − x). (2.27)

Using this simple strategy, we calculated the photon propagator as outlined below:

• we extract four independent real fields Bµ(x) (µ = 0, .., 3) distributed according
to a real Z2 noise, which thus satisfy

〈Bµ(x)Bν(y)〉B = δµν δ(x− y) ; (2.28)

• for each field Bµ(x) we solve numerically the equation of motion in Feynman
gauge,

[−∇−ρ∇+
ρ ]Cµ[B;x] = P⊥ Bµ(x) , (2.29)

with solution

Cµ[B;x] =
[

δµν
−∇−ρ∇+

ρ

P⊥
]
Bν(x) =

∑
z

D⊥µν(x− z)Bν(z) , (2.30)

where the field Cµ[B;x] is a functional of Bµ.

• the photon propagator is thus obtained as

〈Bµ(y)Cν [B;x]〉B =
∑
z

D⊥νρ(x− z) 〈Bµ(y)Bρ(z)〉B = D⊥µν(x− y) . (2.31)

In order to illustrate the full procedure, we consider one contribution to the expan-
sion at order αem of the kaon propagator, namely the diagram with the exchange of a
photon between the u and s quark line. We apply eq. (2.21) and consider the insertions
of two electromagnetic currents V µ

f . Then we have

−eseu e2 =

= eseue
2
〈∑

x,y

Aµ(x)Aν(y) T 〈0| [ūγ5s](t)V µ
s (x)V ν

u (y) [s̄γ5u](0) |0〉
〉A

= eseue
2∑
x,y

D⊥µν(x− y) T 〈0| [ūγ5s](t)V µ
s (x)V ν

u (y) [s̄γ5u](0) |0〉 , (2.32)
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where the red line represents the s quark, while the black one the u quark. The 〈.〉A
means the average over the gauge potential Aµ and D⊥µν is the IR regularized photon
propagator. Using eq. (2.31), we write eq. (2.32) as

− =
∑
x,y

D⊥µν(x− y) T 〈0| [ūγ5s](t)V µ
s (x)V ν

u (y) [s̄γ5u](0) |0〉

=
〈∑
x,y

Bµ(x)Cν [B; y] T 〈0| [ūγ5s](t)V µ
s (x)V ν

u (y) [s̄γ5u](0) |0〉
〉B

= −
〈∑
x,y

Bµ(x)Cν [B; y] Tr
{
γ5Ss[U ; t− x]ΓµV Ss[U ;x]γ5Sud[U ;−y]ΓνV Sud[U ; y − t]

}〉B
,

(2.33)

where Sf [U ] is the fermion propagator. We can reduce the calculation of the diagram
to the calculation of two single “generalized” quark propagators from t′ = 0 to t′ = t.
If we define

{Df [U ] Ψf
B}(x) = ∑

µBµ(x)ΓµV Sf [U ;x],

{Df [U ] Ψf
C}(x) = ∑

µCµ[B;x]ΓµV Sf [U ;x],
(2.34)

with Df [U ] the Dirac operator, then using also Sf [U ;x]† = γ5Sf [U ;x]γ5, we can write
eq. (2.33) as

−eseue2 = −eseue2
〈

Tr
{

[Ψud
C ]†(t) Ψs

B(t)
} 〉B

. (2.35)

In this way, solving eq. (2.34) for different values of Bµ and Cµ we can calculate the cor-
relation function in eq. (2.35). In the numerical simulations we used 3 electromagnetic
stochastic sources for each QCD gauge configuration.

Following the same strategy we can calculate all other types of diagrams containing
insertions of photons required for the evaluation of the isospin breaking effects.

2.3 Fermion lattice action
In this section we are going to describe the fermion lattice action used in our calculation.
We will also give the explicit expression of the conserved vector current V µ

f (x) and of
the tadpole vertex T µf (x) in eq. (2.21).

We chose a mixed–action setup [30, 31], i.e. the sea and the valence quarks have
different actions. Our fermion action is of the form

S = Ssea + Sval. (2.36)
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The sea quark action Ssea is the Wilson twisted mass action at maximal twist with
Nf = 2 + 1 + 1 sea quarks with the introduction of the electromagnetic field Aµ, as
explained in sec. (2.2). The expression of the action is

Ssea = S`tm + Shtm, (2.37)

where S`tm and Shtm are the up/down and strange/charm actions respectively.
Up and down sea quarks are arranged in mass–degenerate doublet and the action

at maximal twist is of the form [32]:

S`tm = a4∑
x
ψ(x)

{1
2γµ(D+

µ +D−µ )− iγ5τ
3
[
m0 −

a

2D
+
µD−µ

]
+ µ`

}
ψ(x), (2.38)

with the covariant derivate D±µ defined in eq. (2.18). µl is the light quark mass, i.e. the
up and down average mass, and m0 is the untwisted mass tuned to its critical value
mcr as discussed in ref. [33], in order to guarantee the automatic O(a) improvement.

For the strange and charm doublet we have [34]

Shtm = a4∑
x
ψ(x)

{1
2γµ(D+

µ +D−µ )− iγ5τ
1
[
m0 −

a

2D
+
µD−µ

]
+

+µσ + µδτ
3} ψ(x), (2.39)

where the twisted masses µσ and µδ are related to the strange and charm masses by
the relation

msea
c,s = 1

ZP

(
µσ ±

ZP
ZS

µδ

)
, (2.40)

with ZP and ZS the pseudo–scalar and scalar quark density operator respectively. In
eq. (2.39) the term proportional to τ3 is used to split the masses of the members of the
doublet, and consequently the Wilson term was twisted with the flavour matrix τ1.

The twisted-mass action (2.37) leads to a mixing in the strange and charm sectors
[34, 35], but the non–unitary mixed set up guarantees that K and D mesons do not
mix.

In the valence sector we consider a doublet of fermionic fields for each flavour,
ψTf = (ψ+

f , ψ
−
f ). For each fermionic doublet a corresponding doublet of bosonic fields

(i.e. ghost fields) φTf = (φ+
f , φ

−
f ) is introduced. The ghost doublets are never considered

in the calculation of physical observables, but they have the only purpose of canceling
the valence quark determinant. The fields within the same doublet have the same mass
mf , the same electric charge ef , but opposite Wilson parameter r. The valence action
reads as

Sval =
∑
f,x

{
ψ̄fDf [U,A]ψf + φ̄fDf [U,A]φf

}
, (2.41)
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where the Dirac operator is

Df [U,A] = 1 + τ 3

2 D+
f [U,A] + 1− τ 3

2 D−f [U,A] , (2.42)

with

D±f [U,A] ψ(x) = mfψ(x) ± iγ5(mcr
f + 4)ψ(x)

−
∑
µ

±iγ5 − γµ
2 Uµ(x)[Eµ(x)]efψ(x+ µ)

−
∑
µ

±iγ5 + γµ
2 U †µ(x− µ)[E†µ(x− µ)]efψ(x− µ) . (2.43)

The symbol ± distinguish between the sign of the Wilson parameter r, that multiplies
the γ5 matrix, and τ i are the Pauli matrices.

The mixed action setup used allows to compute observables with O(a2) cutoff effects
at the price of introducing unitarity violations that disappear when the continuum
limit is performed, because at matched sea and valence renormalized quark masses the
resulting continuum theory is unitary. For each correlator, by replicating some of the
valence matter fields when needed, the choice made for the action allows to consider
only the fermionic Wick contractions that would arise in the continuum theory, avoiding
the introduction of (finite) isospin breaking lattice artifacts. The resulting diagrams are
then discretized by using for each quark propagator a convenient choice of the sign of
the twisted Wilson term, that is the case in which the fields of the two valence quarks
have opposite Wilson term. The resulting correlators have reduced cutoff effects and
smaller statistical errors [36].

Using the Dirac operator in eq. (2.42) we can calculate the conserved vector current
V µ
f (x) and of the tadpole vertex T µf (x) in eq. (2.21), obtaining

V µ
f (x) = i

[
ψ̄f (x) iτ

3γ5 − γµ
2 Uµ(x)ψf (x+ µ)− ψ̄f (x+ µ) iτ

3γ5 + γµ
2 U †µ(x)ψf (x)

]
,

Tµf (x) = ψ̄f (x) iτ
3γ5 − γµ

2 Uµ(x)ψf (x+ µ) +

+ψ̄f (x+ µ) iτ
3γ5 + γµ

2 U †µ(x)ψf (x) . (2.44)

2.4 Electromagnetic corrections on the lattice
Generalizing the strategy described in sec. (2.1), we are going to introduce QED in
our calculation of isospin breaking effects on the lattice [10], performing a combined
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perturbative expansion in the small parameters :
m̂d − m̂u

ΛQCD

∼ α̂em = e2

4π ∼ O(ε), (2.45)

neglecting contributions of order O(ε2).
In order to calculate O(α̂em) corrections, we use the non–compact formulation of

QED on the lattice, as described in sec. (2.2). At this order we have to consider
corrections to correlation functions containing two insertions of the electromagnetic
current or one insertion of the tadpole vertex, multiplied by the IR regularized photon
propagator and integrated over the space–time volume. In the first case the correction
to a given correlator is proportional to

T 〈O(xi)〉 −→ T
∫
d4yd4z Dµν(y − z) 〈O(xi)Jµ(y)Jν(z)〉 , (2.46)

where T 〈O(xi)〉 is the T–product of a certain number of local operators, Dµν(y−z) is the
photon propagator in a fixed QED gauge and Jµ(x) is the sum of the electromagnetic
currents of all the flavours, as in eq. (2.22). In sec. (2.2) we have already given a proper
definition of the finite volume infrared regularized photon propagator so that eq. (2.46)
is infrared regularized. On the other hand, because of the contact interactions of the
electromagnetic currents, eq. (2.22) is ultraviolet divergent and need to be regularized.
The introduction of the electromagnetism induce a (divergent) shift of the quark masses,
of the strong coupling of QCD and, because we are working with Wilson twisted mass
fermions, also of the critical masses.

By neglecting for now the critical mass term and the tadpole vertex contribution,
consider the short distance expansion of the product of electromagnetic currents, which
reads

Jµ(x)Jµ(0) ∼ c1(x)1 +
∑
f

cfm(x)mf ψ̄fψf + cgs(x)GµνG
µν + · · · . (2.47)

The coefficients c1, cfm and cgs are divergent quantities and need to be properly renor-
malized. In particular the terms proportional to cfm can be reabsorbed by a redefinition
of the quark mass mf while the term proportional to cgs can be reabsorbed by a redefin-
ition of the strong coupling constant (i.e. the lattice spacing). The term proportional
to c1 corresponds to the vacuum polarization and the associated divergence cancels by
taking the fully connected part of the right hand side of eq. (2.46).

Let us consider a generic “physical” observable O in the full theory,

O(~g) = O(e2, g2
s ,mu,md,ms) = 〈O〉~g , (2.48)

where we have used the following compact vector notation for the bare parameters of
the theory

~g =
(
e2, g2

s ,mu,md,ms

)
(2.49)



2.4 Electromagnetic corrections on the lattice 30

and where the notation 〈·〉~g means that the path–integral average is performed in the
full theory. Our method consists in expanding any observable O(~g) with respect to the
isosymmetric QCD result O(~g0) according to

O(~g) = O(~g0) +
{
e2 ∂

∂e2 +
[
g2
s − (g0

s)2
] ∂

∂g2
s

+
[
mf −m0

f

] ∂

∂mf

}
O(~g)

∣∣∣∣∣
~g=~g0

= 〈O〉~g0 + ∆O , (2.50)

where

~g0 =
(

0, (g0
s)2,m0

ud,m
0
ud,m

0
s

)
, (2.51)

is the compact vector notation in the case of isospin symmetry, i.e. e2 = 0 and mu = md.
The notation 〈·〉~g0 means that the path–integral average is performed in the isosym-
metric theory.

The bare parameters ~g0 can be fixed by matching the renormalized couplings of the
two theories at a given scale µ? [37]. More precisely, first the parameters ĝi(µ) = Zi(µ)gi
are fixed by using an hadronic prescription. Then the renormalized couplings of the
isosymmetric theory ĝ0

i (µ) = Z0
i (µ)g0

i at the scale µ? are fixed by imposing the following
matching conditions

ĝ0
s(µ?) = ĝs(µ?) ,

m̂0
ud(µ?) = m̂ud(µ?) = m̂d(µ?) + m̂u(µ?)

2 ,

m̂0
s(µ?) = m̂s(µ?) . (2.52)

In this work we rely on this prescription by matching the couplings renormalized in the
MS scheme at µ? = 2 GeV.

By using the property that a physical observable is a Renormalization Group In-
variant (RGI) quantity, i.e.

O(gi) = O(ĝi) , O(g0
i ) = O(ĝ0

i ) , (2.53)

the perturbative expansion of eq. (2.50) can be expressed in terms of the renormalized
couplings according to

O(ĝi) = O
(
ĝ0
i

)
+

+

ê2 ∂

∂ê2 +

ĝ2
s −

(
Zgs
Z0
gs

ĝ0
s

)2
 ∂

∂ĝ2
s

+
[
m̂f −

Zmf
Z0
mf

m̂0
f

]
∂

∂m̂f

O(ĝi)

∣∣∣∣∣∣
ĝi=

Zi
Z0
i

ĝ0
i

.(2.54)
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From the comparison of the previous equation with eq. (2.47) we find in the differen-
tial operator language the divergent terms proportional to Zmf/Z0

mf
and Zgs/Z

0
gs that

correspond to the short distance expansion counter–terms cfm and cgs respectively. In
practice, these counter–terms do appear because the renormalization constants (the
bare parameters) of the full theory are different from the corresponding quantities of
isosymmetric QCD, the theory in which we perform the numerical simulations. Once
the counter–terms have been properly tuned, our procedure can be interpreted as the
expansion of the full theory in the renormalized parameters α̂em and m̂d − m̂u.

In eq. (2.47) we didn’t take into account the shift of the critical mass induced by
electromagnetism in the presence of a Wilson term in the fermionic action. To do this
we re–write eq. (2.47) modifying both the left and the right side to include the tadpole
contribution to the electromagnetic current

Jµ(x)Jµ(0) +
∑
µ

T µ(x)

∼ c1(x)1 +
∑
f

cfk(x)ψ̄f iγ5τ
3ψf +

+
∑
f

cfm(x)mf ψ̄fψf + cgs(x)GµνG
µν + · · · . (2.55)

In the previous equation, T µ(x) is the tadpole contribution and cfk is the critical mass
counter–term coefficient. In order to determine the counter–term associated with the
electromagnetic shift of the critical mass, we adopted a method commonly used to
implement the maximal twist condition in simulations of isosymmetric QCD. Starting
from the Dirac operators in eq. (2.42) and eq. (2.43) for a given flavour doublet, we
can separately tune the critical mass of each valence quark by imposing the following
vector Wilson Twisted Identity (WTI)

Wf (~g) = ∇µ〈
[
ψ̄fγ

µτ 1ψf
]

(x)
[
ψ̄fγ

5τ 2ψf
]

(0) 〉~g = 0 , f = {u, d, s} . (2.56)

The explicit formulae corresponding to its expansion in powers of e can be obtained
applying the ∆ operator of eq. (2.50). To do this let us consider the general expression
of eq. (2.50) taking into account also the critical mass shift. Given a general observable
in the full theory, we have

O(~g) = O(e2, g2
s ,mu,md,ms,m

cr
u ,m

cr
d ,m

cr
s ) , (2.57)

where we have enlarged the parameter space of the theory

~g =
(
e2, g2

s ,mu,md,ms,m
cr
u ,m

cr
d ,m

cr
s

)
. (2.58)
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By calling mcr
0 the single critical mass parameter of the symmetric theory, we see that

isosymmetric QCD simulations correspond to

~g0 =
(

0, (g0
s)2,m0

ud,m
0
ud,m

0
s,m

cr
0 ,m

cr
0 ,m

cr
0

)
. (2.59)

The value of mcr
0 has been precisely determined in ref. [33] in the isosymmetric theory

by requiring the validity of the vector Ward–Takahashi identity of eq. (2.56) with m0
f =

m0
ud,

Wud(~g0) = 0 −→ mcr
0 . (2.60)

Our gauge ensembles have been generated at this well defined value of critical mass
for each β0 = 6/(g0

s)2. The LIB corrections to any observable can be obtained by
making an expansion, at fixed lattice spacing, with respect to the differences mcr

f −
mcr

0 which represents a regularization specific isospin breaking effect induced by the
electromagnetic interactions. We can then write the generalization of eq. (2.50), that
we will use in the rest of this work for calculating LIB on the lattice

∆O =
{
e2 ∂

∂e2 +
[
g2
s − (g0

s)2
] ∂

∂g2
s

+ [mf −m0
f ] ∂

∂mf
+ [mcr

f −mcr
0 ] ∂

∂mcr
f

}
O(~g)

∣∣∣∣∣
~g=~g0

.(2.61)

In sec. (2.5) we will use eq. (2.61) to expand the lattice path–integral.

2.5 Expansion of the lattice–path integral
In this section we are going to apply the method described in sec. (2.4) in order to
calculate the LIB (Leading Isospin Breaking) corrections to pions and kaons.

We first want to describe the general method used for the calculation of LIB cor-
rections to general observables, applying the strategy described in sec. (2.4).

The starting point is the path–integral representation of an observable O in the full
theory,

O(~g) = 〈O〉~g =
∫
dAe−Sgauge[A] dU e−βSgauge[U ] ∏nf

f=1 det
(
D±f [U,A;~g]

)
O[U,A;~g]∫

dAe−Sgauge[A] dU e−βSgauge[U ] ∏nf
f=1 det

(
D±f [U,A;~g]

) , (2.62)

where Sgauge[A] has been given in eq. (2.16) and is a functional of the gauge potential
Aµ, Sgauge[U ] is the QCD gauge action with β = 6/g2

s and is a functional of the link
variables Uµ(x), and D±f [U,A;~g] are the Dirac operators defined in eq. (2.43). We want
to express eq. (2.62) in terms of the isospin symmetric path integral

O(~g0) = 〈O〉~g0 =
∫
dU e−β

0Sgauge[U ] ∏nf
f=1 det

(
D±f [U ;~g0]

)
O[U ]∫

dU e−β0Sgauge[U ] ∏nf
f=1 det

(
D±f [U ;~g0]

) , (2.63)
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that is our starting point in the calculation, i.e. what we calculate on the lattice. We
can do this noting that we need to introduce appropriate factors that takes into account
the variations induced by the introduction of electromagnetism. This can be easily done
defining

R[U,A;~g] = e−(β−β0)Sgauge[U ] r[U,A;~g] ,

r[U,A;~g] =
nf∏
f=1

rf [U,A;~g] =
nf∏
f=1

det
(
D±f [U,A;~g]

)
det

(
D±f [U ;~g0]

) , (2.64)

and the functional average 〈.〉A on the photon field

〈O〉A =
∫
dA e−Sgauge[A] O[A]∫
dA e−Sgauge[A] . (2.65)

Using eq. (2.64) and eq. (2.65), the path–integral in eq. (2.62) can be written as

〈O〉~g =

〈
RO

〉A,~g0

〈
R
〉A,~g0 =

〈 〈
R[U,A;~g] O[U,A;~g]

〉A 〉~g0

〈 〈
R[U,A;~g]

〉A 〉~g0 , (2.66)

that is a path–integral with respect to isospin symmetric quantities.
We can know use eq. (2.61) to evaluate the LIB corrections by applying the operator

∆ in eq. (2.50) to eq. (2.66), obtaining

∆O =
〈
∆(RO)

〉A,~g0

−
〈
∆R

〉A,~g0〈
O
〉~g0

=

=
〈
∆O[U,A;~g]

∣∣∣
~g=~g0

〉A,~g0

+

+
{〈

∆ (RO −O) [U,A;~g]
∣∣∣
~g=~g0

〉A,~g0

−
〈
∆R[U,A;~g]

∣∣∣
~g=~g0

〉A,~g0〈
O[U ;~g0]

〉~g0}
.

(2.67)

In the previous expression we put in curly brackets the contributions coming from the
reweighting factor in eq. (2.64) and, consequently, from the sea quark determinants.
In the following we will refer to these contributions as vacuum polarization terms or
disconnected terms. In order to apply the delta operator ∆, it is useful to observe that

∂
〈
O
〉A

(e2)
∂(e2)

∣∣∣∣∣∣∣
e2=0

=
〈

1
2
∂2O[A; e]

∂e2

∣∣∣∣∣
e=0

〉A
, (2.68)
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and to write down the expressions and the related graphical representations of the
derivates in eq. (2.61) applied to the quark propagator and to the Dirac operator.
Assuming that the derivatives have been evaluated at ~g = ~g0 and that the integral 〈.〉A
has been already performed, we have that

1
2
∂2Sf
∂e2 = Sf

∂Df

∂e
Sf
∂Df

∂e
Sf −

1
2Sf

∂2Df

∂e2 Sf = e2
f + e2

f , (2.69)

∂Sf
∂mf

= −Sf
∂Df

∂mf

Sf = − , (2.70)

∂S±f
∂mcr

f

= −S±f
∂D±f
∂mcr

f

S±f = ∓ . (2.71)

In the previous expression we have explicitly shown the two electromagnetic corrections
to the quark propagator, with the second one that is the tadpole insertion, and the mass
and critical mass corrections. The Dirac operator is the one in eq. (2.42). The insertion

corresponds to the insertion of the scalar operator, while the critical mass
to the pseudoscalar operator γ5 and in this case the sign depends on the sign

of the Wilson parameter. When deriving the Dirac operator with respect of e we have
to calculate

∂(Eµ(x))ef
∂e

= ∂

∂e
e−ıeefAµ(x) = (−ıef )Aµ(x)(Eµ(x))ef

∂2(Eµ(x))ef
∂e2 = (−ıef )2Aµ(x)Aµ(x)(Eµ(x))ef .

(2.72)

Using the previous equation, we can see that from ∂Df
∂e

we obtain the field Aµ, and
consequently the photon propagator by multiplying two derivatives calculated in two
space–time points. That is the first term in eq. (2.69). From ∂2Df

∂e2 we obtain the
product of the field Aµ in the same space–time point, from which it originates the
photon propagator in the second term of eq. (2.69). Eqs. (2.70) and (2.71) come from
the derivative of Df with respect to the fermion mass mf and the critical mass mcr

f

respectively. As one can see from the expression of Df , the mf–term is proportional
to the identity, while the mcr

f –term is proportional to ıγ5rf , with rf = ±1 Wilson
parameter.

The disconnected contributions coming from the reweighting factor can be derived
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from eq. (2.71) and are

∂R

∂g2
s

= 6
(g0
s)4Sgauge[U ] = GµνG

µν ,

1
2
∂2rf
∂e2 = 1

2Tr
(
Sf
∂2Df

∂e2

)
− 1

2Tr
(
Sf
∂Df

∂e
Sf
∂Df

∂e

)
+ 1

2Tr
(
Sf
∂Df

∂e

)
Tr
(
Sf
∂Df

∂e

)

= −e2
f − e2

f + e2
f . (2.73)

Let see a concrete application of these equations in the calculation of the correction
to the S±f quark propagator, that we will use in the next sections to directly calculate
isospin breaking corrections. Applying eq. (2.71) and eq. (2.73) we have

∆ ± =

(efe)2 + (efe)2 − [mf −m0
f ] ∓ [mcr

f −mcr
0 ]

−e2ef
∑
f1

ef1 − e2∑
f1

e2
f1 − e2∑

f1

e2
f1

+e2 ∑
f1f2

ef1ef2 +
∑
f1

±[mcr
f1 −m

cr
0 ] +

∑
f1

[mf1 −m0
f1 ]

+
[
g2
s − (g0

s)2
] GµνG

µν

. (2.74)

Here quark propagators of different flavours have been drawn with different colors and
different lines. We can see that we have the two electromagnetic contributions and
the mass insertions of eq. (2.71), and the disconnected contributions containing sea
quark loops proportional to ef1 and ef2 of eq. (2.73). Quark disconnected diagrams
are noisy and difficult to calculate and for this reason we used the so called electro–
quenched approximation, i.e. the limit in which the electric charges of the sea quarks
are neglected. We use this approximation in the calculation of the kaon corrections
but not in the pion ones because, as we will see, in this case the contributions of the
sea quarks cancel out in the difference between the charged and neutral pions. The
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electro–quenched expansion corresponds to Se=0
sea and it is obtained by setting

gs = g0
s

rf [U,A,~g0] = 1.
(2.75)

In this case eq. (2.74) simply becomes

∆ ± = (efe)2

 +

+

− [mf −m0
f ] ∓ [mcr

f −mcr
0 ] .

(2.76)

2.5.1 LIB to hadron two–point functions
The meson mass and the decay constants are extracted from the two–point correlation
function.

Before calculating the correction to the two–point functions, we need to specify the
source operators and the notation adopted for the diagrams that enter the evaluation
of the isospin breaking corrections.

In sec. (2.3) we have described the fermonic lattice action and anticipated that,
in order to minimize cutoff effects and optimize the numerical signal, we work in a
mixed action setup and extract both charged and neutral meson masses from two–point
correlators of twisted Wilson quarks having opposite chirally rotated Wilson terms. In
other words, we have two types of fermions with opposite values of the Wilson term,
i.e.

ψ±f (x). (2.77)

We then define the scalar and pseudoscalar local operators

S±±fg (x) = ψ̄±f (x)ψ±g (x) ,

P±±fg (x) = ψ̄±f (x)γ5ψ±g (x) , (2.78)

where f and g indicates the flavour of the quarks and ± the sign of the Wilson term.
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Using these operators we can for example decode the following diagrammatic expression

−
+

−
= T 〈 P+−

12 (x) P−+
21 (0) 〉 ,

− =
∑
y

T 〈 P+−
12 (x) S−−23 (y) P−+

31 (0) 〉 ,

− = i
∑
y

T 〈 P+−
12 (x) P−−23 (y) P−+

31 (0) 〉 . (2.79)

where we have always chosen opposite values for the Wilson parameters of quarks in
the mesons. Lines of the same color are quarks with the same mass. In terms of quark
propagators we have

−→
+

−
= Tr

{
γ5 S+

f1 [U ;~g0] γ5 S−f2 [U ;~g0]
}
. (2.80)

It useful to define also the electromagnetic vector current and the tadpole insertion
in eq. (2.22) by specifying the sign of the Wilson parameters. We have the different
combinations[
V ++
fg

]µ
(x) = i

[
ψ̄+
f (x)+iγ5 − γµ

2 Uµ(x)ψ+
g (x+ µ)− ψ̄+

f (x+ µ)+iγ5 + γµ
2 U †µ(x)ψ+

g (x)
]
,

[
V −−fg

]µ
(x) = i

[
ψ̄−f (x)−iγ5 − γµ

2 Uµ(x)ψ−g (x+ µ)− ψ̄−f (x+ µ)−iγ5 + γµ
2 U †µ(x)ψ−g (x)

]
,

[
T++
fg

]µ
(x) = ψ̄+

f (x)+iγ5 − γµ
2 Uµ(x)ψ+

g (x+ µ) + ψ̄+
f (x+ µ)+iγ5 + γµ

2 U †µ(x)ψ+
g (x) ,

[
T−−fg

]µ
(x) = ψ̄−f (x)−iγ5 − γµ

2 Uµ(x)ψ−g (x+ µ) + ψ̄−f (x+ µ)−iγ5 + γµ
2 U †µ(x)ψ−g (x) .

(2.81)

Using eq. (2.78) and eq. (2.81) we can write down some of the electromagnetic corrections
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that we are going to use in our calculation. We have some examples of these corrections

− =
∑
yz

T 〈 P+−
12 (x)

[
V −−23

]µ
(y)

[
V −−34

]ν
(z) P−+

41 (0) 〉 Dµν(y, z) ,

− =
∑
yz

T 〈 P+−
12 (x)

[
V −−23

]µ
(y) P−+

34 (0)
[
V ++

41

]ν
(z) 〉 Dµν(y, z) ,

− = 1
2
∑
y

T 〈 P+−
12 (x) P−+

23 (0)
[
T++

31

]µ
(y) 〉 Dµµ(y, y) , (2.82)

and the other combinations can be easily derived using the same convention. We also show
an example of a disconnected diagram

=
∑
yz

T 〈 P+−
12 (x) P−+

23 (0)
[
V ++

31

]µ
(y)

[
V ±±44

]ν
(z) 〉 Dµν(y, z) . (2.83)

Having in mind our notation for the Feynman diagrams, we can now look at the corrections
to the two–point function and how to obtain the LIB corrections to mass and to decay constant.

Two–point correlation functions of a generic hadron H can be written as a sum of single
particle states |n〉 with the same quantum numbers. Each term is suppressed at large euclidean
times as e−Mnt and proportional to the matrix element

GnH = 〈0|OH |n〉 . (2.84)

Consider a generic meson H, and the interpolating operatorOH with the appropriate quantum
numbers, of the form

OH = ψ̄+
f1

Γψ−f2
. (2.85)

As already said, the resulting correlators have reduced cutoff effects (proportional to a2µ) and
smaller statistical errors with respect to the other possible choices of OH (see refs. [30, 31]).
In the case of the connected fermionic Wick contraction arising in the neutral pion two–point
functions we use

Oconnπ0 = (ū+γ5u− − d̄+γ5d−)/
√

2. (2.86)

The two–point correlation function calculated with the operator OH is

CHH(t) = 〈 OH(t) O†H(0) 〉 =
∑
n

|GnH |2

2Mn
e−Mnt =

= |G0
H |2

2M0
e−M0t

(
1 +

∑
n>0

Cn e
−(Mn−M0)t

)
, (2.87)
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with
Cn := M0

Mn

|GnH |2

|G0
H |2

. (2.88)

As can be seen in eq. (2.87), the contribution of the excited states is suppressed by e−(Mn−M0)t.
Therefore for t� 1

Mn −M0
the correlation function behaves as

CHH(t) −−−→
t→∞

|G0
H |2

2M0
e−M0t. (2.89)

From eq. (2.89) it can be seen that we can use two–point correlation functions to obtain the
meson mass M0 and the matrix element G0

H needed to evaluate the meson decay constant. In
particular we have

M0 = ln
[
CHH(t− 1)
CHH(t)

]
. (2.90)

The matrix element G0
H we can be obtained from a simultaneous fit of the correlation function

using eq. (2.89), which provides both M0 and G0
H .

On the lattice with a finite temporal extension, the correlation function in the large time
limit has the form

CH(t) −−−→
t→∞

|G0
H |2

2M0
(e−M0t + η e−M0(T−t)), (2.91)

where η is the eigenvalue of the time reversal transformation of the product of the two oper-
ators. For η = +1 eq. (2.89) becomes

CHH(t) = |G
0
H |2

M0
e−M0

T
2 cosh

[(
t− T

2

)
M0

]
. (2.92)

In order to evaluate the isospin breaking corrections for the meson mass and decay constant
we need the expression of ∆C defined as

CHH(t;~g) = CHH(t;~g0) + ∆CHH(t) =

= CHH(t;~g0) ·
[
1 + ∆CHH(t)

CHH(t;~g0)

]
, (2.93)

where we have used for the action parameters the compact notation of eq. (2.58) and eq. (2.59).
Denoting CHH(t;~g0) ≡ C0

HH , we can evaluate the LIB correction to the correlator, obtaining

∆CHH
C0
HH

(t) = 2 · δG0
H −∆M0

{(
T

2 + 1
M0

)
−
(
T

2 − t
)
· tanh

[
M0

(
T

2 − t
)]}

, (2.94)

where
δG0

H ≡
∆G0

H

G0
H

. (2.95)
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In the following we will indicate with the compact notation

∂t
∆CHH
C0
HH

= M0 (2.96)

the evaluation of the mass M0 through the fit of the two–point correlation function
using eq. (2.94).

2.5.2 LIB corrections to the pion mass
In this section we calculate the LIB corrections to the pion mass using the same strategy
employed to obtain the corrections to the quark propagator.

Consider the case of charged pions. We can start from the correlator

Cπ+π−(t;~g) = 〈 [ū+γ5d−](t, ~p = 0) [d̄−γ5u+](0) 〉~g , (2.97)

and apply the ∆ operator defined in eq. (2.61). We have

∆Mπ+ = − euede
2∂t − (e2

u + e2
d)e2∂t

+
+

+ 2[mud −m0
ud]∂t + (eu + ed)e2 ∑

f=sea
ef∂t +

− (mcr
u +mcr

d − 2mcr
0 )∂t + [isosym. vac. pol.] ,

(2.98)

where mud = (md + mu)/2 is the bare isosymmetric light quark mass and when ∂t is
defined in eq. (2.96).
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In the case of the neutral pion we have

∆Mπ0 = − e2
u + e2

d

2 e2∂t − (e2
u + e2

d)e2∂t

+
+

+ 2[mud −m0
ud]∂t + (eu + ed)e2 ∑

f=sea
ef∂t +

− (mcr
u +mcr

d − 2mcr
0 )∂t + (eu − ed)2

2 e2∂t

+ [isosym. vac. pol.] . (2.99)

The contributions coming from the sea quarks have been drawn in blue and with differ-
ent line and we have not explicitly written down the vacuum polarization contributions
of eq. (2.73), but they are the same for the charged and neutral pions. By taking the
difference between eq. (2.98) and eq. (2.99) we obtain

Mπ+ −Mπ0 = (eu − ed)2

2 e2∂t

−
. (2.100)

All the isosymmetric vacuum polarization diagrams cancel in the difference, together
with the disconnected sea quark loop contributions. Note in particular the cancella-
tion of the corrections proportional to mud − m0

ud and to the variation of the strong
coupling. This is a general feature: at first order of the perturbative expansion in αem
and mud −m0

ud, the isosymmetric corrections coming from the variation of the strong
gauge coupling (the lattice spacing), of mud and of the heavier quark masses do not
contribute to observables that vanish in the isosymmetric theory, like the mass splitting
Mπ+−Mπ0 . Furthermore, αem at this order doesn’t need to be renormalized. For these
reasons, the pion mass splitting is a theoretical clean observable.

The calculation of the disconnected diagram in eq. (2.99) is computationally expens-
ive and it has been postponed to a future calculation. On the other hand this diagram
is of order O(αemmud) so it is numerically comparable with higher order corrections
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that we have not included in the expansion. From the phenomenological point of view
we are introducing a systematical error comparable with higher order corrections.

In sec. (3.2) we will show our result for the mass difference in eq. (2.100) neglecting
the disconnected diagram contribution.

2.5.3 Critical mass
In this section we discuss the evaluation IB corrections to the critical mass, that are
needed in order to evaluate the kaon mass difference. As mentioned before, we calculate
these corrections by imposing the WTI in eq. (2.56). By applying ∆ in eq. (2.61) to
eq. (2.56), which can be written as

Wf (~g) = −∇0

+

−

=

= −∇0 Tr
{
γ0 S+

f [U,A;~g; t, ~p = 0] γ5 S−f [U,A;~g;−t, ~p = 0]
}

= 0 , (2.101)

one obtains the following expression for ∆mcr
f

∆Wf = 0 −→ ∆mcr
f = −

e2
f

2 e
2

∇0

 + 2 + 2


∇0

. (2.102)

A great advantage of eq. (2.102) is that it holds at finite quark masses and does not
require therefore any chiral extrapolation.

In sec. (3.3) we will show numerical results for the corrections to critical mass using
this strategy.
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2.5.4 LIB correction to the kaon mass
By repeating the analysis performed for the pions to the kaon two–point functions, one
obtains for the charged kaon K+

∆MK+ = + [mu −m0
ud]∂t − euese2∂t − e2

ue
2∂t

+

+ eue
2∑

f

ef∂t − [mcr
u −mcr

0 ]∂t + [mcr
s −mcr

0 ]∂t

+ ese
2∑

f

ef∂t − e2
se

2∂t
+

+ [ms −m0
s]∂t

+ [isosymmetric vac. pol.] , (2.103)

and for the neutral K0

∆MK0 = + [md −m0
ud]∂t − edese2∂t − e2

de
2∂t

+

+ ede
2∑

f

ef∂t − [mcr
d −mcr

0 ]∂t + [mcr
s −mcr

0 ]∂t

+ ese
2∑

f

ef∂t − e2
se

2∂t
+

+ [ms −m0
s]∂t

+ [isosymmetric vac. pol.] . (2.104)
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In the previous expressions the strange quark propagator has been drawn in red. By
taking the difference of eq. (2.103) and eq. (2.104) one finds

MK+ −MK0 = (e2
u − e2

d)e2∂t − (e2
u − e2

d)e2∂t

+

− 2∆mud∂t − (∆mcr
u −∆mcr

d )∂t

+ (eu − ed)e2∑
f

ef∂t ,

(2.105)

where ∆mud is defined in eq. (2.4), ∆mcr
f = mcr

f −mcr
0 and we used the relation es =

−(eu + ed).
In this case the sea quark disconnected contribution does not cancel out. Being

the calculation of the quark loop diagram computationally expensive, we used for our
numerical result the electro–quenced approximation.

From the experimental point of view the kaon mass splitting, in sec. (3.3) we have
determined the up and down mass difference.

2.5.5 Kaon decay constant
In this section we will show how to evaluate isospin breaking correction due to the
up–down mass difference to the kaon decay constant.

Consider a leptonic decay of a pseudoscalar meson M → `ν, than the decay constant
is defined by the following relation

〈0| q̄1γ
µγ5q2 |M(p)〉 = ıpµfM , (2.106)

where the axial current is calculated between the constituent quark q1 and q2 of the
meson M . Consider the twisted mass Ward identity of a renormalized operator Ô [36]
at maximal twist

〈∂µÂµfg(x)Ô(y)〉 = (m̂f + m̂g)〈P̂fg(x)Ô(y)〉+ O(a), (2.107)
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with Pfg and Afg the renormalized pseudo–scalar and axial density respectively for
quarks of flavours f and g and renormalized masses m̂f and m̂g. The second member in
eq. (2.107) is renormalization group invariant because the pseudo–scalar density renor-
malized with the RC ZP , while the quark mass with 1/ZP . We can then use eq. (2.107)
without further renormalization, obtaining for the decay constant the relation

fK = (ms +mud)
GK

M2
K

, (2.108)

where GK = 〈0| s̄γ5l(0) |K〉.
The variation of fK is

δfK ≡
f 0
K − fK+

2fK
= δGK − 2δMK + ∆mud

ms +mud

, (2.109)

with
δMK = ∆MK

MK

, δGK = ∆GK

GK

. (2.110)

δGK and δMK can be calculated from two–point correlation function by performing a
fit using eq. (2.94).

The quantity δfK is of particular interest, because it provides the isospin breaking
correction due to the up–down mass difference to the ratio K`2/Π`2 decay rate, for
which we will present results in sec. (3.4).

In our calculation we included only IB effects due to the up–down mass difference.
In the presence of electromagnetism it is not possible to give a physical definition of
the decay constant, because of the contributions from diagrams in which the photon is
emitted by the meson and absorbed by the charged lepton. Thus the physical width
is not just given in terms of the matrix element of the axial current and can only
be obtained by a full calculation of the electromagnetic corrections at a given order.
In order to cancel the infrared divergences and obtain results for physical quantities,
radiative corrections from virtual and real photons must be combined. In ref. [38]
the authors propose a strategy to include electromagnetic effects in processes for which
infrared divergences are present but which cancel in the standard way between diagrams
containing different numbers of real and virtual photons.

2.6 QED finite volume effects (FVE)
The long-range nature of the electromagnetic interaction, i.e. the vanishing mass of
the photon, induces finite-volume effects (FVE) which only fall off like inverse powers
of the linear extent of the lattice. These are far more severe than the QCD finite-
volume effects for stable particles, which are exponentially suppressed, and require to
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be accurately corrected. Furthermore the FVE depend on the specific prescription used
to subtract the zero mode of the photon.

For the evaluation of the FVE we will follow the strategy described in ref. [13].
Let us consider the spacetime of the four–torus T4 and the case where only the four-
momentum zero-mode of the photon field is eliminated, i.e. Aµ(0) ≡ 0 that is how we
defined the photon propagator in sec. (2.2), which we denote as QEDTL.

Power–like FVE arise from the exchange of a photon around the torus, and they
are obtained by comparing results obtained in finite volume (FV) with those of infinite
volume (IV) QED.

The FV correction to the mass m of a point particle of spin 0 and of charge q in
units of e on a torus is given by the difference of the FV self energy, Σ0(p, T, L), and
its IV counterpart, Σ0(p), on shell:

∆m2
0(T, L) ≡ m2

0(T, L)−m2 = (qe)2∆Σ0(p = im, T, L)
≡ (qe)2 [Σ0(p = im, T, L)− Σ0(p = im)] ,(2.111)

where p = im is a shorthand for p = (im,~0). Notice that this difference is infrared and
UV finite. On shell the IV integral is IR finite and in finite volume the sums are IR finite
because the FV formulations of QED that we consider are regulated by the spacetime
volume. Moreover, for large k2, the difference of the FV sums and IV integrals is UV
finite.

Being interested in the expansion at O(αem), we can calculate eq. (2.111) at one
loop. At this order, the self–energy difference can be written as

∆Σ(p, T, L) =
 ′∑∫

k

−
∫ d4k

(2π)4

σ0(k, p) , (2.112)

where k is the momentum of the photon in the loop and ∑∫ ′
k is defined as

′∑∫
k

≡ 1
TL3

∑
kµ∈BZTL4∗

. (2.113)

The integrand σ0(k, p) of the self energy is

σ0(k, p) = 4σT (k)− σS0(k, p)− 4p2σS1(k, p)− 4pµ, σS2,µ(k, p) (2.114)

with

σT (k) = 1
k2 , σS0(k, p) = 1

[(p+k)2+m2] ,

σS1(k, p) = 1
k2[(p+k)2+m2] , σS2,µ(k, p) = kµ

k2[(p+k)2+m2] .
(2.115)
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Using eq. (2.111), eq. (2.112) and eq. (2.113) it is found that the FV corrections to a
boson of spin 0 in terms of the infinite-volume mass m are given by [13]

m2
0(T, L) ∼T,L→+∞ m2

{
1− q2α

[
k

mL

(
1 + 2

mL

[
1− π

2k
T

L

])]}
. (2.116)

At this order the result is valid for both point–like and composite particles.
An other important observation is that the coefficient of the leading 1/L and 1/L2

corrections to the mass m of a particle of charge qe is the same for spin-1/2 fermions
and spin-0 bosons at O(αem), i.e. these coefficients are always the same, independent
of the spin and the point–like or composite nature of the particle: they are fixed by
QED Ward-Takahashi identities.



Chapter 3

Analysis and results

In this chapter we are going to illustrate the analyses performed as described in Chapter (2)
for different physical quantities.

We are first going to describe the lattice set up used in the calculation and some
details about the estimates of the systematic errors.

We will then show results for the pions mass difference Mπ+ − Mπ0 that in the
expansion at first order in ∆mud and αem is a pure QED effect.

We will apply the method in the kaon sector and, using as experimental input the
mass difference MK+−MK0 , we will calculate md−mu, an important physical quantity
that can be used to predict isospin breaking effects for other observables, such as the
neutron–proton mass splitting.

Finally we will show results for the QCD isospin breaking effects on the ratio of the
K`2 and Π`2 decay rates, computed from the isospin breaking effects on the kaon decay
constant.

3.1 Simulation details and analysis overlook
We used data obtained from numerical simulations with Nf = 2 + 1 + 1 sea quarks
performed by European Twisted Mass Collaboration (ETMC). In table (3.1) we present
the details of the lattice setup. Further details can be found in [39].

We performed the numerical simulations at three different lattice spacing in order
to eventually perform the continuum limit. We fixed the lattice spacing through the
coupling β, fixed at the values

β = {1.90, 1.95, 2.10}, (3.1)

that correspond to lattice spacings

a = {0.0885(36), 0.0815(30), 0.0619(18)} fm. (3.2)
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β a (fm) V 3 × T ZP,M1(2 GeV ) ZP,M2(2 GeV ) aµsea Mπ (MeV ) MπL Ng

1.90 0.0885(36) 323 × 64 0.529(7) 0.574(4) 0.0030 245 3.53 150
0.0040 282 4.06 90
0.0050 314 4.53 150

1.90 0.0885(36) 243 × 48 0.529(7) 0.574(4) 0.0040 282 3.05 150
0.0060 344 3.71 150
0.0080 396 4.27 150
0.0100 443 4.78 150

1.95 0.0815(30) 323 × 64 0.509(4) 0.546(2) 0.0025 239 3.16 150
0.0035 281 3.72 150
0.0055 350 4.64 150
0.0075 408 5.41 75

1.95 0.0815(30) 243 × 48 0.509(4) 0.546(2) 0.0085 435 4.32 150
2.10 0.0619(18) 483 × 96 0.516(2) 0.545(2) 0.0015 211 3.19 90

0.0020 243 3.66 90
0.0030 296 4.46 90

Table 3.1: Details of lattice setup used in the Nf = 2 + 1 + 1 numerical simulations.
We present the values of β and the lattice spacing a, the lattice extension V 3 × T in
lattice unit, the RC ZP in the MS scheme at µ = 2 GeV for the two sets of results M1
and M2, the values of the sea quark mass aµsea, the corresponding values of Mπ and
MπL and the number of gauge configurations Ng used.

Simulations are also performed at different volumes to study finite size effects. In
particular for β = 1.90 we have data at the same sea quark mass aµl = 0.0040 but at
different volumes, which allow us to better investigate volume effects.

In our numerical simulations pions are heavier than the physical one, because sim-
ulations at the physical point, i.e. to the physical value of the pion mass, are compu-
tationally expensive. This means that in order to evaluate physical results we need to
perform an extrapolation to the physical point. In tab. (3.1) are shown the pion masses
Mπ used in the simulation, with range from 211 MeV up to 443 MeV.

Furthermore, working on the lattice, we also need to perform an extrapolation to
the continuum limit, where the lattice spacing a → 0. In our numerical simulations
we used Wilson twisted mass action at maximal twist that provides an automatic O(a)
improvement of physical quantities calculated on the lattice. For this reason, when
performing the continuum limit, we include in our fit function a term proportional to
a2 of the form

A · a2. (3.3)

For the fermionic lattice action we worked in a mixed action approach, i.e. we used
different actions for sea and valence quarks

S = Ssea + Sval, (3.4)
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where Ssea is the action for the sea quarks and Sval is the action for the valence quarks.
In particular for the sea quark action we used Wilson twisted mass action at maximal
twist, while for the valence quarks we used the Osterwalder–Seiler action, that is a
Wilson twisted mass action with a Wilson parameter rf for every quark of flavour f .
For the gauge field we used the Iwasaki action [18]. Further details about the actions
can be found in sec. (2.3) and sec. (1.2.2).

In tab. (3.1) the number of gauge configurations Ng generated in the numerical
simulations are also given. Following the method described in app. (A) we divided
the configurations in 15 jacknives with which we generated bootstrap samples of 100
elements. The associated uncertainties were calculated using eq. (g).

The analysis has been performed using two sets of renormalization constants ZP ,
namely M1 and M2. The first method (M1) aims at removing O(a2p2) effects, while in
the second method (M2) the renormalization constants are taken at a fixed reference
value of p2 = µ2. The use of the two sets of renormalization constants is expected
to lead to the same final results once the continuum limit for the physical quantity of
interest is performed.

For the input parameters, such as the isospin-symmetric mud mass, the lattice spa-
cings, the chiral constants f0 and b0, we used 8 different sets of values determined in
ref. [39] using the same sets of gauge configurations used for this work. Those samples
are calculated using different strategies of analysis in order to have under control sys-
tematic errors from various sources.

In our study we estimated the systematic uncertainty associated with the chiral
extrapolation by studying the dependence on the light quark mass ml using two types of
fit ansatze based on Chiral Perturbation Theory (ChPT) or on polynomial expressions.
ChPT at NLO is expected to be more accurate in the region of small ml, but to suffer
from possible higher order corrections at larger values where the polynomial expansion
is expected to be more accurate. For the discretization effects we tried two different
procedures in the extrapolation to the continuum limit adopting two different choices
for the scaling variables: the Sommer parameter r0 in lattice units and the mass aMs′s′

of a fictitious pseudoscalar meson made of two stange-like valence quarks, trying to
exploit cancellation of discretization effects in ratios like MK/Ms′s′ [39].

The different analyses are labeled by a letter from A to D (as in ref. [39]) which
indicates the different methods used for the determination of the input parameters, see
table (3.2), and a number (1 or 2) indicating the ZP set used (M1 or M2).

The final result for an observable x is calculated assigning the same weight to results
from the different sets, each one characterized by a central value xi and a standard devi-
ation σi. Therefore, central value and error of the observable x are obtained respectively
from the mean value of the N = 8 sets,

x̄ = 1
N

N∑
i=1

xi, (3.5)
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A B C D
Chiral extrap. ChPT Polynomial ChPT Polynomial

Scaling variable r0/a r0/a aMs′s′ aMs′s′

Table 3.2: Details of the samples used for the input parameters in the analysis, as
labeled in ref. [39]. Each set of input parameters, from A to D, has been calculated in
[39] using different chiral extrapolations and scaling variables as indicated.

and the expression

σ2 = 1
N

N∑
i=1

σ2
i + 1

N

N∑
i=1

(xi − x̄)2, (3.6)

where σi is calculated as in eq. (g). The second term in eq. (3.6), which represents the
spread among the mean value of the observable x and the central values of the different
samples, is thus the systematic error which accounts for the uncertainties due to the
chiral extrapolation, the cutoff effects and the renormalization constants ZP .

The input parameters taken from ref. [39] and used in the analysis are

f0 = 121.1(4) MeV, b0 = 2571(97) MeV, mud = 3.70(17) MeV. (3.7)

3.2 Mπ+ −Mπ0

Using the strategy described in sec. (2.4) and using results in sec. (2.5.2), we are going
to calculate the mass difference between π0 and π+. This difference at first order
in the expansion in ∆mud and αem is a pure QED isospin breaking effect. Indeed,
being the pions symmetric with respect to the u ↔ d exchange, the leading QCD
correction is quadratic in ∆mud. By taking the difference of the diagrammatic expansion
in ∆mud and αem between the charged and the neutral pions, the only terms that survive
are those in eq. (2.100). As already pointed out, the calculation of the disconnected
diagram in eq. (2.100) is computationally expensive and it has been postponed to a
future calculation. On the other hand, from the phenomenological point of view we are
introducing a systematical error comparable with higher order corrections.

Neglecting the disconnected diagram and considering the difference M2
π+ −M2

π0 we
have

M2
π+ −M2

π0 = (eu − ed)2e2Mπ ∂tR
exch
π (t), (3.8)

where Mπ is the isosymmetric pion mass and

Rexch
π (t) = . (3.9)



3.2 Mπ+ −Mπ0 52

0 5 10 15 20 25 30
t/a

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

R /
ex

ch

`= 1.90, aµsea= 0.0030
`= 1.95, aµsea= 0.0035
`= 2.10, aµsea= 0.0015

Figure 3.1: Rexchπ defined in eq. (3.9) for different values of β and sea quark masses as a
function of t/a. We performed a fit according to eq. (2.94) in order to extract the pion mass
splitting ∆M .

Using eq. (2.94) we calculated ∂tRexch
π (t), i.e. we extracted the value of ∆M . The fit

result is shown in fig. (3.1). Then, using eq. (3.8) we calculated M2
π+ −M2

π0 , obtaining
the result shown in fig. (3.2(a)).

Our pions are heavier than the physical ones and our lattice data need to be extra-
polated to the chiral limit. Furthermore, QED is a long range interaction and we have
to cope with the associated power-law finite volume effects.
We first subtracted QED volume effects using eq. (2.116). As can be seen in fig. (3.2(b))
these corrections are large, of the order of ∼ 30% for the smallest volumes 243 × 48.
We performed the chiral and continuum limit directly to the finite volume corrected
data. In the chiral extrapolation we used partially quenched chiral perturbation theory
including electromagnetism [40][41] at O(αem) that takes into account the effects of
including electromagnetic loop corrections in the theory and how the chiral logs are
effected by including the electromagnetic charges of the sea quarks. In the calculation
QED is defined on a finite volume by considering the same infrared regularization used
in our analysis, i.e. the removal of the zero modes of the electromagnetic field. We
considered the correction to the meson’s mass square because this is a finite quantity
in the chiral limit. Consider a meson composed by i and j valence quarks with charges
qi and qj respectively, then [41]

M2
ij = χij + 4Ce2

f 2
0
q2
ij + ∆M2ij(∞) + ∆M2

ij(L), (3.10)

where χij = b0(mi + mj), qij = qi − qj, b0 and f0 are the QCD LECs at LO, C is the
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Figure 3.2: Lattice results for the mass splitting M2
π+ − M2

π0 calculated using eq. (3.8).
We show in different colours data corresponding to different values of β as a function of
the isosymmetric light quark mass mud. In the panel (b) we also show the data after the
subtraction of QED finite volume effects (FVE) using eq. (2.116).

EM LEC at LO and
∆M2

ij(∞) = [∆M2
ij]logs + e2K(µ)q2

ijχij, with
[
∆M2

ij

]
logs

= − 3e2

16π2 q
2
ij χij log

(
χij
µ2

)
+

− 8e2C
16π2f4

0
qij ·

∑Nf
n=1

[
(qi − qsean )χin log

(
χin
µ2

)
+ (qsean − qj)χnj log

(
χnj
µ2

)]
.

(3.11)

In the previous expression Nf is the number of quark flavours considered in the calcula-
tion, ∆M2

ij(L) represents the finite size scaling correction of eq. (2.116), while ∆M2
ij(∞)

contains the chiral logs. We can notice that the EM effects at leading order in αem gen-
erate chiral logs and volume corrections proportional to qi−qj and therefore they vanish
in the case of neutral mesons.

Applying eq. (3.10) and eq. (3.11) to the pion FVE corrected mass difference we
find

M2
π+ −M2

π0 = 16παemf 2
0 · C

[
1−

(
4 + 3

4C

)
· ξ log ξ + K

4C · ξ
]

+

+ Â · a2.

(3.12)

where we added the a2 term and where we used ξ = χij/µ
2. We performed the fit

for all the sets using the fit function in eq. (3.12). Fit result is shown in fig. (3.3(a)).
The discretization effects are of order ∼ 40% comparing the continuum limit with the
smallest lattice spacing.
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In order to keep discretization effects better under control we determined M2
π+−M2

π0

dividing by
(

M2
π

2·b0·ml

)γ
. We chose this quantity, rather than simply M2

π , because it is finite
in the chiral limit.

We considered different values of γ, namely

γ = {1, 1.5, 2}. (3.13)

The QED finite volume effects are not modified, while the SU(2) chiral expansions for
this quantity reads

M2
π+ −M2

π0(
M2
π

2b0ml

)γ = 16παemf 2
0 · C

{
1−

[
(4 + γ) + 3

4C

]
· ξ log ξ + K

4C · ξ
}

+

+ Âγ · a2.

(3.14)

In fig. (3.3) we present the fit results for the various values of γ. We observe a large
cancellation of discretization effects and the amount of these effects, that we evaluated
comparing the continuum result with the one for the smallest lattice spacing, are

γ = 0 ∼ 40%
γ = 1 ∼ 13%
γ = 1.5 ∼ 4%
γ = 2 ∼ 3%.

This also can be seen by comparing the values of coefficients Âγ of eq. (3.14) of the
term proportional to a2. For the analysis A1, the coefficients are:

γ = 0 : Âγ = 0.00377(130) GeV4

γ = 1 : Âγ = 0.00142(80) GeV4

γ = 1.5 : Âγ = 0.00045(72) GeV4

γ = 2 : Âγ = −0.00039(74) GeV4.

For example, the parameter Âγ in the case γ = 1 is three times smaller than the one
with γ = 0 while for γ = 1.5 it is eight times smaller. The uncertainty is calculated using
eq.(3.6) and corresponds to the statistical+fitting error and the systematic uncertainties
on the determinations of the renormalization constants, the lattice spacing and the
parameters in eq. (3.7).

To calculate the final result for M2
π+ −M2

π0 we used the experimental value Mπ0 =
135 MeV, approximating Mπ+ + Mπ0 at the tree level value, and the values for b0 and
mud given in eq. (3.7). In tab. (3.3) we present the results for M2

π+ −M2
π0 for different
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Figure 3.3: Fit result for the values of γ in eq. (3.13). The dashed violet line is the continuum
limit. General fit function is reported in eq. (3.14), but for the case γ = 0 it is equivalent of
eq. (3.12). It can be seen that discretization effects are strongly reduced using a proper value
for γ.

values of γ and for all the analyses. From these values we also obtain the following
results for Mπ+ −Mπ0 :

(Mπ+ −Mπ0)|γ=0 = 3.82(51) MeV
(Mπ+ −Mπ0)|γ=1 = 4.18(40) MeV
(Mπ+ −Mπ0)|γ=1.5 = 4.28(39) MeV
(Mπ+ −Mπ0)|γ=2 = 4.33(41) MeV.

As our best estimate we chose the one obtained with γ = 1.5 because the discretiz-
ation effects are of the oder ∼ 4%, strongly suppressed in comparison with the original
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γ = 0 γ = 1 γ = 1.5 γ = 2
A1 1022(142) MeV 2 1125(107) MeV 2 1153(102) MeV 2 1167(103) MeV 2

B1 1022(130) MeV 2 1083(102) MeV 2 1094(100) MeV 2 1093(103) MeV 2

C1 1065(139) MeV 2 1158(106) MeV 2 1186(100) MeV 2 1199(100) MeV 2

D1 1028(130) MeV 2 1115(100) MeV 2 1140(96) MeV 2 1153(98) MeV 2

A2 1009(143) MeV 2 1139(105) MeV 2 1175(99) MeV 2 1194(99) MeV 2

B2 1017(131) MeV 2 1097(101) MeV 2 1112(99) MeV 2 1112(102) MeV 2

C2 1063(139) MeV 2 1182(104) MeV 2 1221(97) MeV 2 1241(95) MeV 2

D2 1025(1230) MeV 2 1139(99) MeV 2 1175(94) MeV 2 1194(96) MeV 2

Average 1031(137) MeV 2 1130(107) MeV 2 1157(106) MeV 2 1169(109) MeV 2

Table 3.3: Results for M2
π+−M2

π0 as obtained from different analyses and different values
of γ. The uncertainty is the statistical+fitting error and the systematic uncertainties
on the renormalization constants, the lattice spacing and the parameters in eq. (3.7).
It is calculated using eq.(3.6).

ones that were ∼ 40%. In tab. (3.4) we present the fit coefficients obtained in the case
γ = 1.5.

We finally obtain our final result:

Mπ+ −Mπ0 = 4.28(36)(14) MeV
= 4.28(39) MeV (3.15a)

where we have shown the two contributions to the uncertainty obtained from eq. (3.6).
The total error is the sum in quadrature.

We can compare eq. (3.15) with our previous Nf = 2 result [10] and with the
experimental value [2]

Mπ+ −Mπ0 = 5.33(76) MeV Nf = 2
Mπ+ −Mπ0 = 4.28(39) MeV Nf = 2 + 1 + 1
Mπ+ −Mπ0 = 4.5936(5) MeV Experimental.

The results at Nf = 2 and Nf = 2 + 1 + 1 are compatible within the uncertainties.
Furthermore the latter is reduced from 14% to 9%. Our result is fully compatible with
the experimental one. This also suggests that the disconnected diagram of eq. (2.100),
which has been neglected in the calculation, gives a contribution of O(αemmud) smaller
than the current uncertainties.
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C K Â (GeV 4)
A1 0.157(17) 4.35(49) 0.00046(72)
B1 0.169(17) 4.31(49) 0.00044(69)
C1 0.162(17) 4.40(48) 0.00046(77)
D1 0.161(17) 4.35(49) 0.00043(72)
A2 0.162(17) 4.19(47) -0.00009(63)
B2 0.162(17) 4.17(47) -0.00009(61)
C2 0.168(17) 4.26(46) -0.00013(68)
D2 0.167(16) 4.20(47) -0.00013(64)

Table 3.4: Fit parameters obtained using eq. (3.14) with γ = 1.5 for the set as ex-
plained in tab. 3.2. The uncertainty is the statistical+fitting error and the systematic
uncertainties on the renormalization constants, the lattice spacing and the parameters
in eq. (3.7), calculated using eq.(3.6). As we will see in sec. (3.3), the parameter C will
be used in the kaon sector analysis.

3.3 md −mu

In this section we are going to analize the kaon sector and to calculate the quark
mass difference md − mu from the study of the charged–neutral kaon mass splitting
MK+ −MK0 .

As in the case of the pion, we will follow the strategy described in sec. (2.4). In the
difference (∆MK+ −∆MK0), the isosymmetric vacuum polarization diagrams cancel as
well as the counter–terms corresponding to the variation of the average up–down quark
mass mud−m0

ud and of the strange quark mass ms−m0
s. In the kaon case, however, the

contribution proportional to the sea quark charge difference eu− ed doesn’t cancel out,
as can be seen in eq. (2.105). This contribution vanishes in the SU(3) limit and/or in
the so called electro–quenched approximation (i.e. the limit in which the electric charges
of the sea quarks are neglected) that we are going to use in the present analysis.

The remaining contributions are:

Rm
K = , Rk

K = ,

Rexch
K = , Rself

K =

+

, (3.16)



3.3 md −mu 58

10 15 20 25 30 35 40 45
t/a

0

25

50

75

100

125

150

175

200

Rm
K

`= 1.90, aµsea= 0.0030
`= 1.95, aµsea= 0.0035
`= 2.10, aµsea= 0.0015

(a) Rm
K

10 15 20 25 30 35 40 45
t/a

-40

-30

-20

-10

0

10

20

Rk K

`= 1.90, aµsea= 0.0030
`= 1.95, aµsea= 0.0035
`= 2.10, aµsea= 0.0015

(b) Rk
K

10 15 20 25 30 35 40 45
t/a

0

0.5

1

1.5

2

Rex
ch

K

`= 1.90, aµsea= 0.0030
`= 1.95, aµsea= 0.0035
`= 2.10, aµsea= 0.0015

(c) Rexch
K

10 15 20 25 30 35 40 45
t/a

-10

-8

-6

-4

-2

0

2

4
R K

se
lf

`= 1.90, aµsea= 0.0030
`= 1.95, aµsea= 0.0035
`= 2.10, aµsea= 0.0015

(d) Rself
K

Figure 3.4: Contribution to MK+−MK0 defined in eq. (3.16) for different values of the lattice
spacing and as a function of time. Fit function in eq. (2.94).

and the kaon mass difference can be written as
MK+ −MK0 = −2∆mud ∂tR

m
K − (∆mcr

u −∆mcr
d ) ∂tRk

K+

+(e2
u − e2

d)e2 ∂t
[
Rexch
K −Rself

K

]
.

(3.17)

In fig. (3.4) we present the fit results for the various correlations Ri
K(t) perform using

eq. (2.94) from which we obtained the corresponding contributions to ∆Mi. From this
fit we also calculated δG, i.e. the variation ∆ 〈0| s̄γ5l(0) |K〉, that we will use in sec. (3.4)
to calculate δfK .

From this analysis we determine the parameter ∆mud using the experimental value
of MK+ −MK0 . Then, the mass difference ∆mud can be used to predict the isospin
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breaking mass splitting of other hadrons, as for example the neutron–proton mass
difference or the isospin breaking effect on the kaon decay constant, see sec. (3.4).

It is useful to introduce a renormalization prescription to separate QED and QCD
isospin breaking corrections. To this purpose, we need to express eq. (3.17) in terms
of the renormalized light quark masses. In QED the parameters mud and ∆mud mix
under renormalization. The u and d quarks have different renormalization constants,
Zmu(µ) and Zmd(µ), because they have different electric charges. We can write

∆mud = 1
2

(
m̂d

Zmd
− m̂u

Zmu

)
= ∆m̂ud

Zud
+ m̂ud

Zud
, (3.18)

where we have defined
1
Zud

= 1
2

(
1
Zmd

+ 1
Zmu

)
,

1
Zud

= 1
2

(
1
Zmd

− 1
Zmu

)
. (3.19)

The mixing does not occur in the isosymmetric theory where the quarks are neutral
with respect to electromagnetic interactions and we have

1
Z0
ud

= Z0
ψ̄ψ ,

1
Z0
ud

= 0 . (3.20)

In the maximally twisted mass regularization for fermions, adopted in the present study,
Z0
ψ̄ψ

= Z0
P and we have used the values of this renormalization constants collected in

tab. (3.1). By neglecting contributions of O(e2∆mud), eq. (3.18) can be rewritten as

∆mud = Z0
ψ̄ψ ∆m̂ud + m̂ud

Zud
. (3.21)

For the renormalization constant Zud, we considered the one loop perturbative result
in the MS scheme that can be obtained from ref. [42], namely

1
Zud(MS,µ)

= (e2
d − e2

u)e2

32π2

[
6 log(aµ)− 22.596 . . .

]
Z0
ψ̄ψ . (3.22)

Using eq. (3.21), the kaon mass difference of eq. (3.17) can be written as

MK+ −MK0 = [MK+ −MK0 ]QED (µ) + [MK+ −MK0 ]QCD (µ) , (3.23)

where

[MK+ −MK0 ]QED (µ) = −2m̂ud
∂tRmK
Zud
− (∆mcr

u −∆mcr
d )∂tRk

K+

+(e2
u − e2

d)e2∂t
[
Rexch
K −Rself

K

]
,

[MK+ −MK0 ]QCD (µ) = −2∆m̂ud

(
Z0
ψ̄ψ ∂tR

m
K

)
. (3.24)
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In the QED part we have included the contribution from the electromagnetic shift of
the critical masses, proportional to (∆mcr

u −∆mcr
d ), and two contributions proportional

to the u and d square charges difference (e2
u − e2

d)e2. The QCD part is proportional
to the renormalized u and d mass difference ∆m̂ud, which is the quantity that we are
going to calculate.

By having introduced a renormalization prescription to separate QED and QCD
contributions we can express our results in terms of εγ(µ), which quantify the violation
of the Dashen theorem [3]

εγ(µ) = [M2
K+ −M2

K0 ]QED (µ)− [M2
π+ −M2

π0 ]QED (µ)
M2

π+ −M2
π0

= [M2
K+ −M2

K0 ]QED (µ)
M2

π+ −M2
π0

− 1 + O(α̂em∆m̂ud) . (3.25)

In order to compute εγ(µ) we first need to calculate the correction ∆mcr
f to the critical

mass that enters [MK+ −MK0 ]QED in eq. (3.24). We used eq. (2.102) and we performed
a constant fit in time, as shown in fig. (3.6(a)). We also present in fig. (3.6(b)) the
dependance of ∆mcrf

(e·ef )2 on the isospin average quark mass mud for different values of β.
As expected the critical mass counter–terms depend very mildly on the light quark
mass. The small dependence is due to statistical fluctuations and (small) cutoff effects.
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Figure 3.5: QED correction to the critical mass ∆mcrf
(e·ef )2 calculated using eq. (2.102). On the

left panel we show the constant fit in time for β = 2.10, aµsea = 0.0015. On the right panel the
results of the fits for different values of β presented as a function of the light quark mass. As
expected, the critical mass counter–terms depend very mildly on mud, the small dependence
being due to statistical fluctuations and (small) cutoff effects.

We finally calculated εγ(µ) using eq. (3.24), with M2
π+−M2

π0 computed as described
in sec. (3.2). We present the results in fig. (3.6). We subtracted QED volume effects
using eq. (2.116). In this case the finite volume effects are smaller because they partially
cancel in the ratio of the two mass differences.

For the continuum and chiral extrapolations we applied the ChPT expressions in
eq. (3.10) and eq. (3.11), obtaining for ε

ε(µ) =
(4

3 + 3
4C

)
·

·
{
− M2

K

(4πf0)2 ·
[
log

(
M2
K

µ2

)
+K0

]
+ M2

π

(4πf0)2 ·
[
log

(
M2
π

µ2

)
+K1

]}
,

(3.26)

where the LEC C is the same of the pion sector. By considering that M2
K = b0 · (ms +

mud) and that the mud dependence of log
(
M2
K

µ2

)
is negligable, the terms proportional

to M2
K

(4πf0)2 can be absorbed in a re–definition of the constant K1 and into a new constant
K2. In this way eq. (3.26) can be re–written as

ε(µ) =
(4

3 + 3
4C

)
·
{

M2
π

(4πf0)2 ·
[
log

(
M2

π

µ2

)
+K1

]
+K2

}
. (3.27)
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(a) Data without VE corrections
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(b) Full points are QED VE corrected.

Figure 3.6: The parameter εγ(2 GeV) of eq. (3.25). In the left panel we present in different
colours data corresponding to different values of β as a function of the average light quark mass
mud. In the right panel we show the effect of subtracting QED FVE according to eq. (2.116).

In the analysis we used the electro–quenched approximation, the limit in which the
electric charges of the sea quarks are neglected. In order to estimate the systematical
uncertainty we will consider the complete expression for ε, that is

ε(µ) =
(4

3 + 2eseau + 2esead + 3
4C

)
·
{

M2
π

(4πf0)2 ·
[
log

(
M2

π

µ2

)
+K1

]
+K2

}
. (3.28)

We used the fitting function of eq. (3.27) and the result is shown in fig. (3.7). We
included a term proportional to a2 but we found a coefficient compatible with zero. We
used the value of the LEC C determined in the pion analysis in the case γ = 1.5 and
presented in tab. (3.4).

We obtained
εγ(2 GeV) = 0.75(5), (3.29)

where the uncertainty is the statistical+fitting error. The systematic uncertainties
from the renormalization constants and the lattice spacing are negligible. Another
source of systematic uncertainty comes from the electro–quenched approximation, that
we estimated by using the chiral formula for εγ in eq. (3.28). We computed the ratio
εγ(esead + eseau = 1/3)/εγ(esead + eseau = 0) by taking C from the fit and by neglecting the
variation of K1 and K2. Then we added in quadrature the resulting ∼ 11% uncertainty,
obtaining

εγ(2 GeV) = 0.75(5)(8) = 0.75(9) . (3.30)
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Figure 3.7: Chiral extrapolation of εγ(2 GeV). The dashed line is the chiral limit.

The total error is the sum in quadrature of the two contributions. Our result is com-
patible with the estimate for this quantity provided in ref. [10] for Nf = 2, that is
εγ ∼ 0.79(25).

Using result for Mπ+−Mπ0 in eq. (3.15), εγ(2 GeV) of eq. (3.30) and the experimental
value MK+ −MK0 = −3.937 MeV[2], we can evaluate separately the QED and QCD
contributions of eq. (3.24) to the kaons mass difference, finding:

[MK+ −MK0 ]QED (2 GeV) = 2.04(17)(07)(10) MeV = 2.04(21) MeV (3.31)

[MK+ −MK0 ]QCD (2 GeV) = −5.98(17)(07)(09) MeV = −5.98(20) MeV (3.32)

where the first error is the statistical and fitting error, the uncertainty on the lattice
spacing and on the renormalization constants while the second one is the systematic
error calculated from the different sets of input values used in the analysis computed
according to eq. (3.6). The third error in eq. (3.31) is the systematic error due to the
electro–quenched approximation. The total error is the sum in quadrature of the three
contributions.

Using the result for [MK+ −MK0 ]QCD we can compute the quark mass difference
md−mu, from eq. (3.24). We extrapolated Z0

ψ̄ψ
∂tR

m
K = ZP∂tR

m
K to the continuum limit

and to the physical light quark mass using a simple polynomial function of the form

A+B ·mud + C · a2, (3.33)
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Figure 3.8: Chiral and continuum extrapolation for ZP∂tRmK = [MK+−MK0 ]QCD
∆mud calculated

using eq. (3.33). The dashed line is the continuum limit.

as shown in fig. (3.8). We finally obtained for the up and down quark mass difference
with Nf = 2 + 1 + 1 the value

[md −mu](MS, 2 GeV) = 2.56(12)(03)(03) MeV = 2.56(13) MeV (3.34)

where the first error is the statistical and fitting error, the uncertainty on the lattice
spacing and on the renormalization constants, the second is the systematic error, cal-
culated as in eq. (3.6), and the third one is due to the electro–quenched approximation.
The final uncertainty is the quadrature of the contributions. We can compare this result
with the previous one obtained at Nf = 2 [10]:

[md −mu](MS, 2 GeV)|Nf=2 = 2.39(19) MeV (3.35)

noting that they are compatible within the error.

3.4 K`2/Π`2 decay rate
In this section we will calculate the QCD isospin breaking effect in the kaon decay
constant fK0− fK+ , and using this result we compute the QCD isospin breaking effects
on the ratio of the K`2 and Π`2 decay rates.
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As mentioned in sec. (2.5.5), in this case we calculated only the QCD contribution
to the isospin breaking effects, because in the presence of electromagnetism it is not
possible to give even a physical definition of the decay constant. In ref. [38] the authors
propose a strategy that can be implemented in future calculation for the evaluation of
the QED contributions.

Using the same strategy described in sec. (2.4) we calculated the expansion at first
order in ∆mud and αem of fK defined in eq. (2.108), finding (see eq. (2.109))

δfK
∆mud

= δGK

∆mud

− 2 δMK

∆mud

+ 1
ms +mud

, (3.36)

with
δMK = ∆MK

MK

, δGK = ∆GK

GK

, (3.37)

whereMK is the isosymmetric kaon mass. The corrections ∆MK and ∆GK = ∆ 〈0| s̄γ5l(0) |K〉,
are computed from eq. (2.94) using only the QCD contribution to the isospin breaking
effects, that is:

Rm
K = . (3.38)

The result of this fit has been presented in fig. (3.4) where we reported the fit with
which we calculated δGK and ∆MK using eq. (2.94). In fig. (3.9) we illustrate the
lattice results for the slope δfK

∆mud
as a function of the light quark mass and at the

different values of the lattice spacings. We also show the result of the extrapolation to
the physical point and to the continuum limit, preformed employing the SU(2) Chiral
Perturbation Theory prediction plus a quadratic dependence from the lattice spacing,
obtaining

δfK
∆mud

= A+B · a2 + C · (mud − µ) +D ·mud log
(
mud

µ

)
. (3.39)

By using the value of md − mu derived in eq. (3.34), we then obtained for δfK the
result

δfK = fK0 − fK+

2fK
= 0.00397(35)(08) = 0.00397(36) MeV , (3.40)

where the first error is the statistic error and the second is the systematic one, coming
from the lattice spacing and the renormalization constant calculated with eq. (3.6).

From the fact that at first order in ∆mud the pion doesn’t get corrections and that

fK+ − fK
fK

= fK+ − fK0

2fK
(3.41)
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Figure 3.9: Chiral and continuum extrapolation of δfK
∆mud calculated using eq. (3.39). The

dashed line is the curve corresponding to the continuum limit.

we can calculate the QCD isospin breaking effects on the ratio K`2/Π`2 using the pre-
vious result [

fK+/fπ+

fK/fπ
− 1

]QCD
(MS, 2 GeV) = −0.00397(36). (3.42)

Our result is higher than the estimate obtained in ref. [14] by using chiral perturbation
theory, namely [

fK+/fπ+

fK/fπ
− 1

]QCD
χPT

(MS, 2 GeV) = −0.0022(6). (3.43)

Comparing our result with the one computed at Nf = 2 [10]
[
fK+/fπ+

fK/fπ
− 1

]QCD
Nf=2

(MS, 2 GeV) = −0.0040(3)(2), (3.44)

we can see that they are perfectly compatible.
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In this work we calculated isospin breaking corrections to pion and kaon masses, to
the K`2 decay rate, as well as the u and d quark mass splitting. We performed LQCD
numerical simulations with Nf = 2 + 1 + 1 sea quark, using gauge configurations
produced by the ETM collaboration and computed two–point correlation functions to
determine physical quantities in the continuum and chiral limits.

Our method is based on a perturbative expansion in ∆mud = md − mu and αem
in order to evaluate isospin breaking corrections by starting from simulations in the
isosymmetric QCD theory.

The main source of systematic errors in our calculation is the one associated with
the chiral extrapolation, required because our pions are heavier than the physical ones.
Another important source of systematics errors comes from finite volume effects, which
are only power suppresed because QED is a long–ranged interaction.

One of our main result is the pion mass splitting, that receives at the leading order
only the QED contribution. Considering that αem doesn’t renormalize at this order, this
splitting is a very clean observable. However, it receives a disconnected contribution
coming from the π0 that is numerically very expensive to evaluate and presumably very
small (being of O(αmud)) and that we neglected in the calculation. We found

Mπ+ −Mπ0 = 4.28(39) MeV .

Kaons masses receive both QED and QCD contributions. We implemented a renor-
malization prescription to separate QED from QCD isospin breaking corrections allow-
ing to determine the electromagnetic contribution to the kaon mass splitting and the
associated value of the Dashen’s theorem breaking parameter εγ. In this case we used
the electro–quenched approximation which consists in neglecting the charges of the sea
quarks. Our result for MK+ −MK0 is

[MK+ −MK0 ]QED (2 GeV) = 2.04(21) MeV

[MK+ −MK0 ]QCD (2 GeV) = −5.98(20) MeV,

from which we also obtained

[md −mu](MS, 2 GeV) = 2.56(13) MeV .
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The uncertainties in the above result contain also an estimation of the error due to the
electro–quenched approximation, that is ∼ 11%.

Finally we studied the kaon decay constant correction, from which we evaluated the
correction to the ratio of K`2 and Π`2 the decay rates, namely[

fK+/fπ+

fK/fπ
− 1

]QCD
(MS, 2 GeV) = −0.00397(36) .

The work presented in this thesis has allowed to determine some isospin breaking
effects in meson physics with unprecedented precision. Still further important improve-
ments and developments are possible:

• In our calculation we neglected contributions coming from disconnected diagrams.
The only way to really understand the associated systematic error is to actually
calculate them on the lattice. We can only notice that, within the quoted un-
certainties, our results are compatible with the experimental ones (when present)
and with previous lattice determinations;

• Another source of systematic error is the chiral extrapolation. Only recently,
thanks to the increased computational power, the first lattice computations at
physical light quark mass have been presented. However, still a large majority
of the simulations, including ours, is performed with light quark masses higher
than their physical values. An important improvement of the present work would
consist in performing the same calculation with simulations at the physical point;

• In the study of the kaon decay constant we considered isospin breaking effects
due only to the up–down mass splitting. In the presence of electromagnetism it
is not possible to give even a physical definition of the decay constant, because
of the contributions from diagrams in which the photon is emitted by the meson
and absorbed by the charged lepton. Thus the physical width is not expressed
just in terms of the matrix element of the axial current but it is obtained by a
full calculation of the electromagnetic corrections at a given order. In ref. [38]
the authors propose a strategy to include electromagnetic effects in processes for
which infrared divergences are present in the intermediate steps of the calculation
and cancel, as well known, between diagrams containing different numbers of real
and virtual photons. By implementing this strategy one can evaluate on the
lattice the whole QED effects to the decay amplitude;

• The same method presented in this thesis could be also applied to the case of
baryons, in order to calculate for example the proton and neutron mass splitting
and other hadron quantities, with the strategy described in ref. [11]. Numerical
simulations are already in progress.



Appendix A

Statistical uncertainties

The physical quantities we are interesting in are calculated from two point correlation
functions, obtained from numerical simulations as briefly described in chapter 1.4. In
these simulations one calculates the path–integral using statistical methods, i.e. as an
average on appropriate weighted configurations. For the central limit theorem, if the
number of configurations N →∞, than the average on all configurations has a gaussian
distribution and we have

σ2
〈O〉N

= C

N
· σ2
〈O〉, (a)

where C = 1 if the configurations were independent. Since however the gauge configur-
ations are generated as part of a Markov chain, they are correlated, each element being
related to the previous one. A method that can be used in this case to evaluate the
statistical errores is the jacknife method, in which the uncertainty is calculated using
subgroups of data that are uncorrelated.

Let us consider an observable O calculated using N gauge configurations and NJ

subgroups of configurations each composed by nJ = N/NJ elements. Let us then
calculate the average within each subgroup,

Os = 1
nJ

nJ∑
i=1
O(U s

i ), s = 1, .., NJ , (b)

where O(U s
i ) denotes the observable calculated on the configuration i of the subgroup

s. The NJ averages are treated as NJ measures of the observable. If nJ is large enough
to guarantee that the configurations are not correlated, then the NJ measures are also
independent. In many cases nJ is not large enough to ensure the independence of the
measurements. In this case we can use the jacknife method. Using the NJ averages
of eq. (b), we calculate NJ jacknife averages OJs by excluding, for the average s the
subgroup i = s,

OJs = 1
NJ − 1

NJ∑
i 6=s,i=1

Oi, s = 1, .., NJ . (c)
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The central values of the observable is provided by the arithmetic average over the NJ

jacknives averages, which is equivalent to the average over all the N gauge configura-
tions,

〈OJ〉jack = 1
NJ

N∑
i=1
OJs = 1

N

N∑
i=1
O(Ui). (d)

The jacknife averages of eq. (c) then also provides an estimate of the statistical errors
given by

σJ(O) =
√

(NJ − 1) |〈O2
J〉jack − 〈OJ〉

2
jack|, (e)

with 〈
O2
J

〉
jack

= 1
NJ

NJ∑
s=1

(OJs )2. (f)

When calculating a physical observable on the lattice, we have to combine data from
different numerical simulations, for example at different lattice spacing and different
quark masses. We can do this by starting from the jacknives calculated as in eq. (c)
and using the boostrap procedure. Bootstrapping is the practice of evaluating properties
of an estimator (such as its variance) by measuring those properties when sampling from
an approximating distribution. One standard choice for an approximating distribution
is the empirical distribution of the observed data. In the case where a set of observations
can be assumed to be from an independent and identically distributed population, this
can be implemented by constructing a number of resamples of the observed dataset (and
of equal size to the observed dataset), each of which is obtained by random sampling
with replacement from the original dataset. Let us consider two observables A and B
that we have to compare and calculated from two independent numerical simulations.
We want to combine these two observables, for example in a fit, in order to obtain a
third physical quantity C, which derives from the other two. We have at our disposal
for the input quantities the jacknife averages AJs and BJs with s = 1, ..NJ as in eq. (c).
As the two sets are independent, because they are obtained from different numerical
simulations, we can choose to combine whatever of the N2

J couples (AJs ,BJs′). Following
the boostrap procedure, one generates following a random distrubition a Nboot of jacknife
indices (i, j)b couples, with b = 1, ..Nboot. Then one proceeds evaluating for each couple
b the observable Cb. The mean value of C will be equal to the ensemble average. The
uncertainty is calculated as

σb(O) =
√

(NJ − 1)|〈C2
b 〉boot − 〈Cb〉

2
boot|, (g)

with

〈Cb〉boot = 1
Nboot

Nboot∑
b=1
Cb. (h)
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