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Introduction and statement of the Main Results

We are concerned with the study of solutions for the semilinear elliptic Dirichlet problem:

—Au+ AV (z)u=uP in
(0.1) u>0 in Q
u=20 on 0f)

where A > 0 is a large parameter, p > 1, © is bounded domain of RV, N > 2, V : Q — R is
a positive potential. Solutions of (0.1) necessarily blow-up as A — 400 in the sense that they
are not uniformly bounded (see Proposition 0.1). The aim is to obtain an accurate description
of their asymptotic behavior as A — 400 through an energy or a Morse index information.
We are interested in describing situations where blow-up occurs at finitely as well as infinitely
many points. The objective is to give an asymptotic counter-part to several existence results
available in literature and based on a constructive approach.

The asymptotic analysis in problems with critical and sub-critical polynomial nonlinearities,

with Dirichlet or Neumann boundary condition, has been largely considered in case of pointwise

blow-up. Under the transformation v(z) = u(z) , with % =¢? and V =1 for simplicity, note
p—1

AP~

that problem (0.1) reads equivalently as a singularly perturbed Dirichlet problem:

—2Av+v=v" in Q
(0.2) v >0 in Q
v=>0 on Of).

Problem (0.2) and related ones have been widely considered in literature, as they arise as
steady state equation in several biological and physical models, such as dynamic population,
pattern formation theories and chemical reactor theory. In order to investigate the long-time
behavior of the dynamical solutions, it is very important to understand the properties of the
steady-state ones.

The most interesting features of problem (0.1) concern the existence and multiplicity of so-
lutions, and their asymptotic behavior as A — +o0o. When V = 1, multiplicity results of
solutions and their asymptotic behavior, were first obtained by Ljusternik-Schnirelman cate-
gory in [12, 14]: they prove that equation (0.1) has a family of solutions exhibiting a spike-layer
pattern as A — +oo. Subsequently, in [89] Ni and Wei studied the behavior as A — 400 of a
least energy solution to problem (0.1), characterized variationally as a mountain pass of the
associated energy functional, by an asymptotic expansion of the critical value associated to
the least energy solution. They proved that, for A sufficiently large, a least-energy solution
possesses a single spike-layer with its unique peak in the interior of 2. Moreover, the peak
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iv INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

must be situated near the most centered part of €2, i. e. where the distance function d(P, 0%2),
P € Q, assumes its global maximum. Intuitively, the location of the blow-up points should
depend on the geometric properties of the domain, a natural problem being that of determin-
ing the role of the distance function in the location of blow-up points (when V = 1).

More recently in [75, 99] it was proved that, for any local maximum Py of the distance func-
tion, there exists a family of solutions with a maximum point that approaches Pp.

In particular in [75] it is also shown that, if the Brower degree deg(Vd(-,09), M,0) # 0 on a
suitable subset M of €2, then there exists a family of solutions with a unique local maximum
point which converges to a critical point of the distance function in M.

In [45] the authors proved the existence of single k-peaks solutions at any topologically nontriv-
ial critical point of the distance function, which satisfies a suitable non-degeneracy condition.
In [40] Dancer and Wei proved the existence of 2—peaks solutions. Concerning the effect of
the domain topology on the existence of multi-peaks solution Dancer and Yan in [36, 37|
proved that if the homology of the domain is nontrivial, then, for any positive integer k, prob-
lem (0.2) has at least one k—peaks solution. They assume that the distance function has k
isolated compact connected critical sets 11,...,T; with suitable properties. They construct
a solution which has exactly one local maximum point in a small neighborhood of T; for
i =1,...,k. Moreover they proved that if € is strictly convex, problem (0.2) does not have
k—peaks solutions.

Other papers that deal with this problem (V' = 1) are [64, 65]. In [64] it is proved that any
”topologically non trivial” critical point of the distance function generates a family of single
peak interior spike solutions. Moreover they proved that the peak of any single solution must
converge to a critical point of the distance function, and treated also k—peaks solutions in the
Neumann case. This method is based on an approach of Bahri (see [11]), and the new idea
is to evaluate, in terms of the generalized gradient of Clarke, the energy of the solutions. In
[23, 24] Cao, Dancer, Noussair and Yan constructed k—peaks solutions with the peaks near
local maximum points or saddle points of d( -, 00).

Let us fix some notations and terminology. Now for any solution u of (0.1), one can introduce
the linearized operator at u defined as

(0.3) Lux=—A+ AV —puf™t

and its corresponding eigenvalues { yi x; £ = 1,2,...}. Note that the first eigenvalue is given

by

(0.4) inf{ < Ly, ¢ > HL(Q) ¢ € C5° (), /Qq§2(:1:)d:r = 1}

with the infimum being attained at a first eigenfunction ¢, while the second eigenvalue is
given by the formula

(0.5) ,u27,\:inf{ < Lupg, ¢ >p(ay; ¢ € G5 (), /qu2(:1:)dx: 1, /ng(m)gbl(x)dx:()}.

This construction can be iterated to obtain the k—th eigenvalue py x(u) with the convention
that eigenvalues are repeated according to their multiplicities.
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Let u,, be a solution of
—Auy + NV (2)u, =uh,  in Q
(0.6) Up >0 in Q
Up =0 on 0Of2

for a sequence A, — +00 as n — 4o0.
We will assume u,, to have uniformly bounded Morse indices, i.e.

(0.7) FkeN st ppqy, (un) >0 VneN.

We first show that |up|lcc — 00 as n — +00 so as to justify the blow-up analysis we will
perform later.

PROPOSITION 0.1. Let p > 1 and uy, be a solution of (0.6). Then ||uy||cc — 00 asn — +o0.

PROOF. We suppose by contradiction that ||uy |l < C. Multiply the equation (0.6) by u,

and integrate to get
/ [V, |* 4+ A / / ubtt < cPQ).

We have that u, is bounded in H{ () and then, up to a subsequence, u, — u in H}(2) and
fgun Hfﬂu as n — +oo.
Since

p+1
/uigcm and A, — +00,
Q A

n

we must have [, u* =0, and then u, — 0 in H}(Q) as n — +o00. Since u, — 0 in L*(2), we

have that
/ |Vu,|? < / ubtl < C'p_l/ u — 0.
Q

By Sobolev embedding we have that for p > N +2 :

oN N L
/Q|vun|2§/§;ug+1 SCP+1_MSNN2(/ Vit >N

where Sy is the Sobolev constant. A contradiction with u, — 0 in H ().
By the Holder’s inequality and the Sobolev embedding, we have that for 1 < p <

2N N=2(p41) N +1 P+1
/|Vun|2<0(/ )T <es NS /|Vun|

and a contradiction still arise. O

N+2

In the first part of this thesis, we consider pointwise blow-up and obtain results, already known
for solutions sequences with uniformly bounded energy, under an hypothesis of boundedness
for their Morse indices. For the asymptotic analysis we need to give a sort of classification of
solutions of (0.1) which are stable, or stable outside a compact set. For this classification we
use techniques first used by Farina [54] and by Esposito et al. [49, 48].
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In particular, given u, a solutions sequence of (0.1) with A, — 400 as n — +00, we have to
consider the description of the blow-up behavior of u,,. Observe that it is always true that

mgxun(x) — 400 as n — 400,

as we have shown in Proposition 0.1.

As in the usual asymptotic techniques, we want to describe, asymptotically, the shape of wu,,
around any blow-up point. To this aim we rescale u, around a blow-up sequence and try
to identify a limiting problem. We denote by m(u) the Morse index of u, as a solution of

(1.1.1). To calrry out our analysis, the crucial assumption is that sup, m(u,) < +00. Given
bt
en = |lunlloo 2, one naturally scales u,, in the form U, (y) = Un(enytP) _ b= P (eny + P)

llunloo
where P, is an absolute maximum point of u,, defined in the rescaled domain ,, = $=».

We study the asymptotic behavior of U,, and prove that U, — U locally uniformly Wlth U
a solution of a suitable problem in Q = limy, 400 Q2 (an hyperspace or RY). The limiting
domain 2 depends on how fast P, possibly approaches 0f2.

We recall the main results.
First in the sub-critical case we have:

THEOREM 0.2 (Local profile). Let (An,uy) be a positive solution of

{ —Aup + M Vu, =ub, in Q

(0.8) Up =0 on 0f)

with 1 < p < {2
Assume ezther
sup m(uy) < 400,
n
or .
SUPPHN/ ub ™ < oo
12 JQ

n )\ﬁ—l 2

Let P, € Q s.t. u,(P,) = maxonpy . (P,) Un for some Ry, — +00 where £, = Un(Py) 0
as n — +00.

2
Setting U, (y) = Un(eny+Pn) _ en un(eny + Py) fory € Q, =

llunlloo
we have that, as n — +o0o:

, then for a subsequence

e M2V (P,) = X € (0,1] for some universal constant \;

ate o 0
e U, = U in CL_(RN) where U is a solution of

—AU + XU =UP, in RN
0<U<U0)=1 in RV,

Moreover, 3¢, € C§°(Y) with supp ¢n C Bre, (Py), for some R > 0, so that

/ IVonl? + (M V —pufl_l)gbidx <0, Vnlarge,
Q
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and

=| =

lim
n—-+0o0o

'S

- uPtt = 32 —pi( lim V(P ))”* / UrtL,
\ H-7 /jBRsn(Pn) " n—+oo " Br(0)

—1

S

After the limiting problem has been identified and the local behavior around a blow up sequence
P, has been described, we can prove global estimates. We will show in such way that the
sequence u, decays exponentially away from the blow-up points.

THEOREM 0.3 (Global behavior). Let 1 < p < % Let A\, — +00, uy, be solution of

(0.8), so that either

k = limsup m(u,) < +00

n—-+0o00
or . )
— ~ptl_ N N  p+l —
k:Az’il2(mmV)251(/ Up“) lim M/ug“
Q RN n——+0oo =i 2 JQ
An
with u, satisfying (0.7). Up to a subsequence, there exist P!,... P* k < k with & =
. —1
un (P~ =0 asn — 400 s. t.
el <l < Coel, foralli=1,...)k

e+ el

ﬂ—)() as n— oo, forall i,j=1,....k, i#]

[Py — Pyl

i
—"_—— 30 asn—+oo, foralli=1,....k 1#3
(P}, 0%) oo S 7
un(PY) = max U,
n(Fn) OBy, i (P)
for some R, — +00 as n — 4o0.
Moreover, there holds
__2 k —'ylm_PﬁL‘
Un(x) < Cleh) P T Ze s VeeQ, neN
i=1

with C' > 0.

A first goal concerns the investigation of the link between the Morse index and the energy
in case of pointwise blow-up. In the context of the Schrodinger operator, they are related
in terms of the so-called Rozenbljum-Lieb-Cwikel inequality [29, 71, 93]- an estimate of the
number of negative eigenvalues of the Schrodinger operator —A + V' in terms of a suitable
Lebesgue norm of the negative part V_ of V' - a one side bound, where the universal constants
are however not explicit.

A-posteriori, we show that Morse index information and an energy one are equivalent. Indeed,
taking advantage of the special structure of our equation, by an asymptotic analysis approach,
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we establish a double-side bound between these two quantities with explicit and essentially
sharp constants.

THEOREM 0.4 (Rozenbljum-Lieb-Cwikel type estimate). Let u,, be a solution of (0.8). The
following are equivalent

(1) sup, m(un) < +o0;

N_ptl 1
(2) sup, Ap " fpubtt < +oo.
Moreover, when (1) or (2) holds we have

N p+1 N p+1
~N_ ptl ) +1 5 T o1 p+1
A2 1 ptl_ N o S Y . A P U
——(inf V)12 UPtl < liminf Joun < limsup — Joun
N+1 Vo RN n—-+o0 m(uy) 00 m(up)

~N_ptl p+l N
< A2 pI(max V)r-1 2 urtt,
Q RN

Furthermore, the complete knowledge of the limiting problem allows us to establish strong
pointwise estimates to get an expansion of the Pohozaev identities and to localize the position
of the blow-up points in terms of the potential V' or of the distance to the boundary if V = 1.
Note that the profile around each blow-up point should resemble, in many situations, to the
unique radial solution given by M.K. Kwong [70], which has given energy and exactly N + 1
nonnegative eigenvalues for the linearized operator counted with multiplicities.

The case of the critical nonlinearity is quite different. Solutions of (0.8) with uniformly bounded
energy never have pointwise blow-up [25]. We will extend this analysis to solutions with uni-
formly bounded Morse indices. In such way we show that problem (0.8) doesn’t have such
solutions. In the supercritical case a similar result is in order.

For blow-up on manifolds of positive dimension, few results are known from the asymptotical
point of view, while many existence results are available through perturbative methods.

The basic result is due to A. Ambrosetti, A. Malchiodi and W.-M. Ni [5] for radial solu-
tions in an annulus  := {z € RY : a < |z| < b}. They identify a modified potential
M(r) = rN=WO(r), with ¥ = % — % and show that there exist families of solutions which
blow-up on spheres whose radii are critical points of M.

It has been conjectured that if N > 3 there could exist also solutions blowing-up onto some
manifold of dimension h with 1 < h < N — 2.

Actually, we have two papers where some asymptotic analysis is carried over. The asymptotic
analysis has been firstly performed by E.N. Dancer [30] by means of ODE techniques. Dancer
shows that, for A large, V = 1 and p sub-critical, the only positive radial solution is the radial
ground state and it takes its unique maximum on a sphere whose radius goes to 1. In general
an energy information seems useless. Let us notice that, for example, the radial ground state
solution in the annulus has both energy and Morse index very large, and the usual asymptotic
techniques, based on the energy, do not work.

Just these difficulties Esposito, Mancini, Santra and Srikanth [50] have then developed an
alternative asymptotic approach for radial solutions with uniformly bounded radial Morse in-
dices and general V’'s in an annulus. They rigorously establish the correspondence between
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c.p.’s of M and the blow-up radii. For example, the radial ground state solution has radial
Morse index one, but "unbounded” energy and blows-up at the inner radius when V = 1.

In a recent paper [94] the authors consider the problem on an annulus in R*, and look for
solutions which are invariant under a 1—parameter group action without fixed points.

In the second part of the thesis, our aim is to consider the asymptotic analysis when blow-up
occurs on manifolds of positive dimension, with the purpose of proving a variational construc-
tion for such type of solutions, alternative to the perturbative approach [5].

We will restrict our attention to the case of 3—dimensional annulus and to solutions with
partial symmetries and uniformly bounded invariant Morse indices, as it has been done in [50]
for radial solutions. The symmetry group G will be simply the one of rotations around the
zZ—axis.

The first objective is to investigate the role of a (full or reduced) Morse index information in
the study of the asymptotic behavior. When consider solutions which are invariant under a
proper subgroup G C O(N) of symmetries, we need to develop an asymptotic approach based
on a G—invariant Morse index information. In this way we try to carefully localize the blow-up
G—orbits still in terms of a c¢.p.’s of suitable modified potential.

Our aim is to exhibit potentials for which the orbits of maximum points for the corresponding
solutions do not degenerate on the fixed points set. If G has no fixed points, one can provide,
in this way, solutions (for example the G—invariant ground state) which blow-up on an orbit
with dimension as G. Unfortunately, in general fixed points always arise and just higher order
conditions on the blow-up set might prevent, for suitable potential, the blow-up set to degen-
erate onto the fixed points set.

First we have:

THEOREM 0.5. Let (A, up) be a positive, G—invariant, solutions of (0.8) with sup,, ma(un) <
+oo, 1 <p#5.
Let Qn = (0,Yn, 2n) € Q, yp > 0 be so that un(Qn) = MaxXonpy . (Qn) Un — 0 as n — 400,
for some R, — +00.
Setting

5n(X7Y7Z)+Pn) _p-1
= P
un(Pn) 9 87’1 un( ’VL) 2 9

Un(X,Y,2) = un(

where
p_ ] ©0.02) if el < 0
Qn if 22l — foo;

up to a subsequence we have that
p—1

(1) when up(Qn) 2 yn < C, then there hold 1 < p <5 and
e 250
o M2V (P,) = A3 € (0,1] for some universal constant A3
* apam 0

e U, = U in CL_(R3), where U is a positive G — invariant solution of
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—AU + 23U =UP in R3
U<U0) =1 in R3,

with mg(U) < +o00;

(2) when un(Qy) = Yn — 400, then there hold
. /\na V(P,) — Ao € (0,1] for some universal constant o

* d(Pn,c’?Q) —0
e U,—U in o

loc

(R3), where U(X,Y, Z) = U(Y, Z) is a positive solution of
—AU + MU =UP in R?
U<UW0)=1 in R2,

with m(U) < 400 (two dimensional Morse index).

Moreover, there exists a G—invariant ¢, € C}(2), with
supp ¢n C AR(Qn) = {(,5,2) €R® : (Va2 + 4% —ya)? + (2 — 2.) < R%e}. },
R >0, so that

(0.9) /Q (62 + (A V = pul )62 < 0,

for all n large.
From this local analysis we then deduce the global picture.

THEOREM 0.6. Let (A, up) be a positive, G—invariant solution of (0.8) so that sup,, mg(un) <
+o00 and 1 < p # 5. Up to a subsequence, there exist Pt = (0,yk, z1), ... PP = (0,47, 2,

h < sup,, ma(un), with yt, > 0 and &', = u,(PL)~ "7 50 asn — +00 s. L
el <&l < Coel, foralli=1,... h

el + & . .
X =0 asn—+oo, foralli,j=1,...,h, i
PP f J #J
m—m as n — +oo, foralli=1,...,h,
unPfL =(14+o(1 max  Un,
()= (1 4of1) , mex

for some Ry, — 400 asn — +00 .
Moreover, there holds

, M 0P|
un(0,5,2) C(e) 71y e ' V(0,y,2)€Q neN
=1

with C' > 0.
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The main results for invariant solutions are the following;:

THEOREM 0.7 (Classification of blow-up points). Let (A, uy) be a positive, G—invariant
solution of (0.8) with sup,, mg(u,) < +00 and 1 <p #5 and \, — +00 as n — +oo.
Let Pt i=1,... h be the points given by Theorem 0.6 and P* = lim,, , 1o P? = (0,y",2%). Let
us assume Ji ={j=1,...,h : P} — Pt Z—ZL — 400 } = g whenever P' € Gy = { z — awis }.
Setting "’
N ={2? + 2 +22=0% +2>0}U{2®+ 2 +2°2=a? +2<0},
0N ={2?+ 2 +22=d%), O ={2>+19°+ 22 =0b},

we have that

(1) if P € 00*, then 0,V (P?) <0, and if P* = (0,y%,0) € 09, then 9V (P?) = 0;

(2) if Pt € 90\ Gy, we also have .V (P*) < 0 if P* € 8y and 9,V (P?) > 0 if P* € 0Q,;

(3) if Pt € QN Gy, then O,V (PY) = 0,V (P?) = 0;

(4) if P' € Q\ Gy, then 8,V (P") = 8,V (P*) = 0.

Here, r = /22 + 42 and V(r,s) = - V(r,s).

COROLLARY 0.8. Let (upAp) be a positive, G—invariant solution of (0.8) with u,, satisfying
ma(up) =1 and 1 <p#5, \, = +00 as n — +00.
Suppose that
oV =0 in Gy = 0.,V #0,
and ' N
85V{ >0 in Goﬁaﬁi,
<0 mn GoNo.
Then uy, blows-up on a suitable G—invariant, one dimensional curve, i.e. a circle with a
suitable radius v, such that ry, ||un|% — co.

The thesis is organized as follows.

In Chapter 1 we recall some results and also classification Theorems, about solutions which
are stable or stable outside a compact set. Preliminary results and this classification, that we
will give under more general hypothesis, are used to have some information of the limiting
problem.

In Chapter 2 we introduce a blow-up approach to identify the limiting problem, and we give
a complete description of the blow-up behavior for wu,,.

We then deduce an asymptotic estimate on u,, in terms of its local maximum points.

In this chapter the most important and new result is the equivalence between an energy
information and Morse index information (the Rozenblyum-Lieb-Cwikel type estimate).

In Chapter 3 we proceed further in the asymptotic analysis in order to localize the blow-up
points in the case V % 1 and V = 1. We show that a Morse Index information, in the
sub-critical case, provides a complete description of the blow-up behavior, in the sense that
we obtain some crucial global estimates to localize the blow-up set. In this section we show
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exactly how the geometry of the domain affects the existence of such solutions. When in the
equation (0.1) the potential V' = 1, we re-derive some results which are already known. For a
generic potential V' the geometry of the domain does not influence the location of the peak,
which must be just a critical point of V.

In Chapter 4, we work with solutions of (0.1), which are invariant under rotations around the
z—axis in an annulus of R3. We discuss the asymptotic analysis of these solutions, and in some
cases we are able to show that blow-up occurs on circles. The main difficulty is to discuss what
happens on this axis, which is fixed under the action of this symmetry group.
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CHAPTER 1

Notations, definitions and preliminary results

In this Chapter we collect some preliminary theorems that will be used frequently in the se-
quel.

It explains the interest for qualitative results on semilinear elliptic problems on R or hyper-
planes with polynomial nonlinearity. In particular we will focus on solutions with finite Morse
indices.

1.1. Some classification results

We focus on the study of the asymptotic behavior as A — +oo of solutions of
—Au+ AV (z)u=uP in

(1.1.1) u>0 in €
u=20 on Of)
where p > 1,  is bounded domain of RV, N > 2, V : Q — R is a potential so that:
o Ve CYQR);

e V is a bounded away from zero: infq V' > 0.

Consider the related problem

(1.12) { ~AU+ XU =UP, in

0<U<U0)=1

with p > 1 and Q an hyperspace or RY. We study the existence of solutions of (1.1.2) and
related properties in the following section.

We observe that all the results are expressed, in a more general form, for invariant solutions,
to achieve a unified approach.

In order to state the results, let us introduce the following definition of stability, stability
outside a compact set and of Morse index k.

DEFINITION 1.1. Let G be a subgroup of O(N) and Q2 be a G—invariant domain (i.e.
gr e, VereQ, Vg eQq).
We say that a positive G—invariant solution U € H}(Q) (i.e. U(gz) =U(z) Vx € Q, Vg € G)
of

(1.1.3) —AU + AU =UP inQ
e is G—stable if

Vo € C3(Q) G —invariant  Qu(yp) := / IVl + Ap? —p UP™L 2 > 0;
Q

1
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e is G—stable outside a G—invariant compact set K if Qu(p) > 0 for any G—invariant
p € CH(A\ K) ;

e has G—invariant Morse index mg(U) equal to k > 1 if k is the maximal dimension of a
subspace W}, of G—invariant functions in C} () s. t. Qu(p) < 0 for any ¢ € Wi \{0}.

For G = { Id} we have the classical Morse index m 74y (u) = m(u).
Observe that if U is a solution of (1.1.2), the corresponding linearized operator is

L=-A+X—pUrt

and the Morse index of U is the number of negativity directions of the quadratic form associated
to the linearized operator.

REMARK 1.2. Any finite Morse index solution U is stable outside a compact set K C ).
Indeed, there exist a maximal dimension k& > 1 and Wy := span{¢1,...,pr } C C3(Q) s.
t. Qu(p) < 0 for any ¢ € Wi \ {0}. So Qu(p) > 0 for every ¢ € C}H(Q\ K), where

K = Ulesupp(goi).

Following the techniques used first by Farina [54], and by Esposito et al. [49, 48], we obtain
some classification results. The theorems in the sequel are based on the following crucial result:

PROPOSITION 1.3. Let be a subgroup of O(N), 2 be a G—invariant domain (bounded or
not) of RN. Let U € C?(Q) be a G—stable solution of

(1.1.4) —AU + XU = |[UPP7IU inQ
with A\ >0, p > 1. Then, for any v € [1,2p+2y/p(p—1)—1) and any integer m > % there
exists a constant Cpm~ > 0, such that

115) [(VQPTOR + U™ < oy [ (V02 + ppllaw)s

for all G—invariant test functions 1 € CZ(Y) satisfying || < 1 in Q.
Moreover if X > 0 and v > 1, there holds

(1.1.6) /Q\UW“W SCp,V/Q|U\7+1(|V¢|2+|¢!A¢)

for all G—invariants test functions 1 € C3(Q) satisfying || <1 in Q.

PROOF. We prove this proposition with G = { Id }, but the same proof works also in the
general case.
We divide the proof in four steps:

1%t step For any ¢ € C3(Q) we have:

(y+1)°

3= 3 y+1
avn) [ v@rEoee = T [qope - Supte+ L [ oraes),
Q v Q 7 oJa
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Multiply the equation (1.1.4) by U” ¢? and integrate by parts, to have

/ VURIU % + / VU V(AU + A / U2 = / U
0 QO Q Q

Therefore we have that

e [ (g
% /|V|U| Ok + [ V() v
|U|v+1 -
= G VTR - [ S = [(up o

and then (1.1.7) follows.

2" step  For any ¢ € Co (Q) we have:

) [ore - X(l— 5 [

1=7 / \UW“A / U T2,

(1.1.8) (p

IN

We observe that the function ¢ = |U|%U¢ belongs to C}(Q), for all p € C3()
and so it can be used as a test function in the quadratic form ()y;. Then the stability
assumption on U gives:

p / U2 / U2 < / V(U U + / (U 0V l?
Q Q Q
4 /zvaPzU)wwaso:/ |v<\U|”2‘1U>Psa2+/ U P
(9] (9]
1 ~ 1
- 2 [wraaey = O [ o swre s B [ g
Q Q

4 / U+ Vel? - / 4UWHA<¢2>
Q Q2

1 2 ~ 1-—
_ <’Y+>/<\U|p+v_x|U|v+1)<p2+”/ |U|7+1A(902)+/ U Vel
47  Ja 4y Ja 0

37 step For any v € [1,2p+2+/p(p — 1) —1) and any integer m > Z%'IY there exists a constant
C(p,m,7) such that

(1.19) [ows e < cpam [ 9o+ ]

o) [ QU < omm( [ Ver +ulae)



(1.1.11)
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for all test functions 1 € C2(Q) satisfying || < 1 in Q (the constant can be explicitly
computed).

Let oy = p — (7+7) and g = 1 — (72‘?2 (74—71)2.
Observe that a3 = %>O =y =2p—1—\/4p?—dp<y <~y =

2p—1++/4p? —4p. Observe that y_ < 1 < v,. So we have that a; > 0 and as <0
and the following inequality does hold:

o / U2 — R / UPHGE < 8 / UPHA) + / U VP
Q Q Q Q

with 8 = <=2 < 0. For any ¢ € C2(2), with || < 1in Q, we set ¢ = ™. Observe

that the functlon ¢ € C2(2), since m > 1 is an integer, so we can apply (1.1.11) to
get

al/ ‘U’p—i-'wam - 5\042/ ’U"H—lem
Q Q

(1.1.12)

/|U|”+1w2m—2[m2|w\2+2Bm<2m—1>|w|2+25mwm].
Q

Since ap < 0, we have that

o / U < o / U™ — Ry / Ty
Q 0 Q

(1.1.13)

(1.1.14)

(1.1.15)

(1.1.16)

(1.1.17)

< / U222 T + 2 Bm(2m — 1)V + 2 8m b Ay,
Q
and we deduce that

/ U 2™ < 01/ U P2V + [ Ay,

with C = m?+2fm2m—1) Apply Holder’s inequality to get:

aq

p—1

J A Al R N2 TN e

Notice that m > Zﬂ implies (2m — 2)p+'7 > 2m, and thus W‘(zmﬁ)% < []2™ in
Q, in view of || < 1.
We obtain

1+ p—1

Jorersen <o [ ) ([ iveR e avE)

and then

bty Pty
/Q U < op /Q IV + [ A5
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pty
Inequality (1.1.9) does hold with C' = C¥~". Observe that
- ca
Jwprg =5 [prier < [ g =322 [ upg
Q Q Q ar Jo

1
£ / UPHAR) + - / U VP
a1 Jo a1 Jq

in view of §2 < 0. By a combination of (1.1.7) and (1.1.18) we have that

[ o=

(1.1.18)

IN

’y+1 r7+1

< b / Urtieaps - [ U7 \] = [ orae
7+1 B y+1

= R [iorwer + £ [orsieag) + 2] [ opiver

+ / !U\”“soAcp — A / U+ Vel? + B / yUngA@
Q

where A = % + 7H >0and B = ;;ril B+ 'YH € R. Now we insert the

test function ¢ = ¢¥™ in the latter inequality to find

/|v o w2m</ UPH2m 2 Am? Vo + Bm (m — 1) [V + Bm Ay,
and then
(1.1.20) / VU U P < O / U222 + | A,

with Cy = max{|Am? + Bm (m — 1)|,|Bm|} > 0. Applying Hélder inequality in
(1.1.20) we get

p—1

frvaorEopen < e [wpeea )T f e pauE)
CQ(/ ]U‘p+v¢2m>m(/ﬂuvw2+ WAIM]m)m.

Inserting (1.1.17) into the latter we obtain

(1.1.21) / V(U )P < Cy ot /Q 6P + [pag)s

ans so the proof of 3" step is complete.

IN

4t step End of proof

Formula (1.1.5) follows adding inequalities (1.1.9) and (1.1.10), (1.1.6) is an easy
consequence of (1.1.18), in view of a3 > 0 and g < 0.
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If we supply the equation with the boundary condition U = 0 on 052, we obtain the following
generalization of Proposition 1.3 above:

PROPOSITION 1.4. Let p > 1,0 < o < 1 and let Q be a G—invariant proper C* domain
(bounded or not) of RN. Let U € C?(2) be a G—invariant solution of
{ —AU+ XU =U? in Q,

(1.1.22) U=0 in 09,

with X\ > 0, which is G—stable outside a G—stable compact set K. Then, for any v € 1,2p+

2y/p(p—1) — 1) and any integer m > %, there exists a constant Cp , » > 0, such that

(1) [VUITOR + O < Gy |90 + 01705

for all G—invariant test functions 1 € C3(RN \ K) satisfying || <1 in RN \ K.
Moreover if A > 0 and v > 1

(1.1.24) /Q UP? <Gy /Q UPTIVR + [l Av))

for all G—invariant test functions 1 € C3(RN \ K) satisfying || <1 in Q\ K.

PROOF. We prove this proposition with G = { Id }, but the same proof is true also in the
generic case.
Since Q is smooth, U € C?(Q2) and U = 0 on 992 allows to proceed as in the proof op Proposition
1.3. Observe that 1°! step goes without any change if we remark that for any ¢ € C2(RN \ K),
the function |U|7~1U ¢? € H}(Q \ K) and integration by parts does hold.
In the same way, 2" step can be carried over since for the function \U]WT_I U ¢ the quadratic
form Qg is non negative. The rest of the proof is unchanged.

O

REMARK 1.5. The crucial fact is that we can use test functions supported in RY \ K and
not only in 2\ K, in view of the zero Dirichlet boundary condition of U.

We prove now that the stability outside a compact set implies strong integrability properties.
PROPOSITION 1.6. Let G a subgroup of O(N). Let U be a G—invariant solution of

AU+ XU = |UP~'U  in Q
1.1.2 -
( 5) { U=0 on 0N

withp > 1, A > 0 and Q is either RN or a G—invariant half-space. Assume that U is G—stable
outside a ball Bg,(0), Ry > 0.

Then, for any q € (0,2p 4+ 2y/p(p — 1)) we have that :

/ U1 () (1 + [y2) < oo
RN

and o € R.
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PROOF. Let R > Ry + 2 and 1 € C§°(RY) radial so that

(1.1.26)  0<n<1, n=0 in Bgr,41(0)UBSR(0), n=1, in Br(0)\ Bg,12(0),
R|Vn| + R?|An| <2, in Byg(0)\ Bg(0).

By (1.1.23) we get that

1
(1.1.27) / ot < e mv/ POy
o (14 [y?)"

for every v € [1,2p+2+/p(p—1)—1), m > % integer, 8 > 1, in view of
n

2
E A 77 7 ) V( 77 e )
(1+y2) = ((1 +ly) (1+y2) =

for some constant Cy independent on R > 0.
< +oo for B> ¥ 2-1 Resuming, for

+
Hence, letting R — +o0o we get that [pn U-ﬁ-llﬂ% o

every v € [p,3p+2+/p(p — 1) — 2) there exists 5, > 1 so that

< 1
~(1+1y?)P

(1.1.28) +

(1.1.29) / o VB =>g
1. < 400 VB> B,
ry (1+[y[?)? !
Now, use (1.1.24) with ¢ = ——L—4— and by (1.1.28) we obtain
(1+y2) 2
2 U|V+1
1.1.30 opt— o < / |7,
(11:30) J o e <G [ s
fory € (1,2p+2y/p(p—1) —1). Letting R — 400, we then get
jup+t / juptt
1.1.31 =l <oy +C SELE L
(11.31) L T <00+ G [
U y+1

for v € (1,2p+2+/p(p—1) — 1), where Cy = fBR0+2(0) (I—HleW' Starting from 8 = , in
(1.1.28), we can iterate (1.1.31) to obtain

(1.1.32) / UL+ Jy2)* < +oo
RN

for every « € Rand v € [p,2p+2+/p(p—1) —1). By (1.1.32) for every a € R and the Holder
inequality we easily show that

/ U9 (1 + [y2)* < +o0
RN

for every a« € R and ¢ € (0,2p+2+/p)(p — 1)), as claimed.
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1.1.1. The whole-space. In this subsection we consider existence and non existence
results of the problem (1.1.2) in R, X\ > 0.

For A = 0 we use some results contained in [52] concerning the Lane-Emden equation —AU =
|UP~'U on unbounded domain of RY. Several classification theorems and Liouville-type
results are obtained for different classes of solutions. We are interested in G—invariant solutions
in RV, which are stable outside a compact set.
Let

) 400 if N <10

Pc = (N—2)2—4N+8V/N-1 .
(N—2)(N—10) it N >11

be the Joseph-Lundgren exponent [68]. Note that p.(NV) is larger then pg(IN), where pg(IN)+1

is the critical exponent in Sobolev embedding H3(2) C L9(€2), and pe(N) < pe(N — 1).
THEOREM 1.7. Let U € C%(RY) be a G—stable solution of

(1.1.33) —AU =|UPP~'U

with

1150 { 1<p<4oo I z:f N <10
1< p<pAN):= (N=2)(N=10) if N>11.

Then U = 0.

||

PROOF. For every R > 0, we consider the function ¢r(z) = ¢('), where ¢ € CZ(R),

satisfies 0 < ¢ <1 and

(1 <1
(1.1.35) w(1) —{ 0 if |t > 2.

Let us fix p > 1. Observe that for any v € [1,2p+2+/p(p — 1) — 1) and m > fj%, Proposition
1.3 yields to

/ (VU 0)2 + U
Br(0)

Pty
p—1

IN

Coumer [ (19 + Al

+
(1.1.36) < C(p,y,m, N, ) RN 21,

for every R > 0.
We claim that we can always choose v € [1,2p + 2 +/p(p — 1) — 1) such that

(1.1.37) N—Q(m> <0.

p—1
We set yar(p) =2p+2+/p(p— 1) — 1 and consider separately the case N < 10 and N > 11.
When N < 10, we have that

P4+ =3p+2Vplp—1)—1>3p+2(p—1)—1>5(p—1)
and therefore
N_2<p+’YM(p)

- )<N—10§0.
p_
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The latter inequality and the continuity of the function t - N — 2% imply the existence of
ve[L,2p+2+/p(p—1)—1) satisfying (1.1.37).

Consider N > 11 and 1 < p < p.(N). In this case we consider the real-valued func-
tion in (1,400) — f(t) = 2(“?_%@)) Since f is a strictly decreasing function satisfy-
ing lim, .1+ f(t) = +oo and limy_, ;o f(t) = 10, there exists a unique py > 1 such that
N = 2(2etso)y We claim that py = pe(IN). Indeed there holds

po—1
_|_
N = o (BB s (v )~ 1) ~ 430 = 4Vl D)

which implies that pg satisfies:

(1.1.38) |((N = 2)(N —10)[p2 + [-2(N — 2)2 4+ 8N]py + (N —2)2 =0,

whose roots are

N—-22—-4N+8/N—-1 (N—-2)2—4N-8/N—1
pe(N) = =2 -2 < pe(N).

(N —2)(N —10) ’ (N —2)(N —10)
Since (N — 2)(pc(N) — 1) — 4p.(N) > 0, we have that pg = p.(V)
Since f is a strictly decreasing function, it follows that

+
(1.1.39) v 1<p<pl) £0) = 2P0 > pip0) =
Now the continuity of t = N — 2% implies the existence of this ~.
Therefore, by letting R — 400 in (1.1.36), we have

/ (VU 0)2 + ) =0,
RN

and so U = 0. O

Next we can improve the argument to obtain the following result:

THEOREM 1.8. Let U € C2(RN) be a G—invariant solution of (1.1.33) which is G—stable
outside a compact G—invariant set K of RN. Suppose

1 <p< oo if N=2,
(1.1.40) l<p<+oo,p#£ {2 if 3<N <10,
1 <p<pe(N) if N>11,

then U = 0.

PROOF. Let ¢ € CZ(R) be as in the previous proof, and 95 € C3(R), so that 0 < 95 < 1,
and

[0 it <s+1,
(1.1.41) 0(t) _{ 1l >sto

where s > 0. We divide the proof in several steps.

1%t step. Let p > 1. There exists Ry = Ro(U) > 0 such that
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(1) for every v € [1,2p+2y/p(p — 1) — 1) and every r > Ry + 3, we have

+y

/ (VU= U)P + U de < A+ B0,
{ Ro+2<]|z|<r}

where A and B are positive constants depending on p,~y, N, Ry but not on r.

(2) for every~y € [1,2p+2+/p(p — 1) —1) and every open ball Br(y) such that Bs r(y) C
{zeRY : |z| > Ry}, we have

Pty
p—

/ (V(UI"Z U)P + [UP+)de < CRV 735,
Br(y)

Ry so that K C Bgr,(0), where C is a positive constant depending on p,~y, N, Ry but
neither on R nor on y.

For every r > Ry + 3, we consider the function

Ur(l2l) if [z < Ro +3,

(1.1.42) &r(t) = { w(@) if |z] > Ro + 3.

We choose an integer m > I;_“—?. Notice that the function & belongs to CZ(RY \ B(0, Ro))
and satisfies 0 < &, < 1 everywhere on RY. Therefore an application of Proposition 1.3 with

Q:=RN\ B(0, Ry) yields to
-1 Pty
/ (VU= O)P + [UP*)de < Cpmw/ (V& + |6 ]| A ) 7= dz
{ Ro+2<|z|<r} RN

Pty Pty
< Cpmyy [/ (IVQ9R0|2 + WRO‘|A19R0‘)”71 do + / (‘v&’Z + &AL |) P
{|z|<Ro+3} {

r<lz|<2r}
_2pty

< A+BrVTT

forallr > Ry+3 and all v € [1,2p+2/p(p — 1) — 1), and the first estimate follows. To prove
the other estimate, let vg, € C5°(RY) be a cut-off function so that 0 < vg, <1, vg, =1 in
l[z| = |y|]| € R, vry =0 in ||z| — |y|]| > 2R and |[Vvg,y|? + |Avg,| < % in R? uniformly in z
and y. Using the Proposition 1.3 we have

/ (|V(‘U|%U)\2+|U|pﬂ)dm < / (\V(!U|%1U)!2+\U|p+7)da:
Br(y) lle|~lyll<R

IN

9 Pty
Cpmy RN(|VVR,y| + [VRyl|AvRy|) P~ Tdz

Pty
p—1

< C(p,m,y)RV™?

2" step. The sub-critical case.

We assume, either N=2and 1 <p<+ooor N >3 and 1 <p< % By choosing v =1 in
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1% step we get VU € L2(RV) and U € LPT(RV), and therefore we can obtain the classical
Pohozaev identity, see [92, 95],

N 2 _ N p+1
(1.1.43) (2 —1) /RN VUP =T [ 0P

Multiply the equation (1.1.33) by U ¥ and integrate by parts to get:
1
[ VUPRo— [ 0P ro =5 [ VAR
RN RN RN

Observing that

as R — +oo, we have that

(1.1.44) / |VU|* = / TPt
RN RN
We combine (1.1.43) and (1.1.44) to get

N N
2 p+1 RN

N _1 -2 <0. Hence U must be identically zero, as claimed.

where 5 — 1= m

37 step. Let n > 0. Assume either

2 2
N >11 < N <N<I1 < .
> and N_2_p<pc( ) or 3< N <10 and N_z_p<+oo
Then
N
(1.1.45) In=mnpN)e@2p+2vpp—-1)-1): p-1)5 =p+m,
(1.1.46) SR, = Ri(p, N, U) > R : / U5 g < i,
lz|> Ry
N
(1.1.47) Fe=cp,N) el 1< p-1)g——-p<2p+ 2y/p(p—1) — 1.

We observe that p > 242 = p+1 < (p—1)F, and by (1.1.39) we have

N

p+2p+2vpp—1) =1) =p+ymp) > (p-1)3
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These facts and the continuity of the function (vy,¢) — (p — 1)% — p —~ imply the existence
of 41 and . By the existence of such 71 and 1% step we have

/ UeD¥ 4 = / TP da
{Ro+2<|z|<r} {Ro+2<|z|<r}

+
< A+BN 2 Z A4+ B Vr> Ry +3.
Then
/ |U](p71)%dx < +o0,
|z[>Ro+2

and the thesis follows for a suitable Ry depending on 7.

At step.  Assume that

2
< p < pe(N).

2
<p<4oo, or N>11 and 5 <

3<N<10 and
SN < and. o =

Then
. 2 . 142
lim |z|»-1U(x) =0, lim |z| "#+1|VU(x)| = 0.

|| =00 || =00
We omit the proof of this step, see [70] or [52].

5t step. Assume

2
< p < pe(N).

2
p +(X) o1 N > I l a d
< < P n N

+
3<N<10 and
=0t Ty

Then U = 0.

As in [21] we use the change of variable
U(r,o) = 7 Tu(t,0), t=ln(r).
Then v satisfies the equation:
v + Avg + Agvav + Bo + [P lo =0, in Rx SNV

with A = (N — 2 — ﬁ), B = —(p%l(N —2-— p%l)) Here SV~ is the unit sphere of RY and
Agn-1 denotes the Laplace-Beltrami operator on S™V~1.
Setting
1 B 1
E('lU) = /;N_l (§’VSN71'LU‘2 — 511}2 — E|w‘p+1>dg,

we have for v(t) := w(t,-)

(1.1.48) A/SNI v2do = % [E(v)(t) - % /SN1 vfda].
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Observe that A # 0, since p # %, therefore, after integrating, we find
(1.1.49)

Vs> 0 /_ /SN 1 Qdodt:E(v)(s)—E(v)(—s)—;/SN1vf(s,a)dcr+;/SN1 W2 (—s, 0)do.

We use the crucial decay estimates in 4"

(1.1.50) tl}gloov(t, o) =0, t_l)lﬁxj lue(t,0)| = tl}gloo |Von-1v(t,o)] =0,

step to have

the limits being uniform respect to o € SV~1. Observe that U is regular at the origin and then
(1.1.50) holds true when ¢ — —oo. Letting s — oo in (1.1.48) we have A [ [gn—1 vidodt = 0.
Hence v = v(o) and limy_, 4 v(t,0) = 0. This implies v =0, and so U = 0.

O

REMARK 1.9. (1) Theorem 1.8 is sharp. Indeed, on one hand, for N > 3 the set of
functions

AM/N(N —2)\ 52
wm (T
A2 + |z|?

is a one-parameter family of positive solutions of equation (1.1.33), with Q = RY and

N2

P = N3, and all these solutions are shown to be stable outside a large ball centered at
the origin by using Hardy’s inequality. On the other hand, for N > 11 and p > p.(N)
equation (1.1.33) admits a positive, bounded, stable and radial solution in RY (see
52, 53]).

(2) Theorem 1.8 improves upon a Liouville-type result proved by A.Bahri and P.L.Lions
[17], where solutions are assumed to be both bounded and with finite Morse index,
and p is sub-critical.

(3) In case A = 0 and p = N +2 there is a complete classification of the solutions, see
22, 58, 90].

NN

. . . N+
We give a Liouville-type result for p > 575

THEOREM 1.10. Let X € (0,1] and U € C*(RY) be a G—invariant solution of —AU +AU =
|UP~YU which is G—stable outside a compact set of RN . Suppose p > % Then U = 0.

PRrROOF. We have that the 15 step in the proof of Theorem 1.8 is valid also in this case
because Proposition 1.3 holds for A > 0. We have that U € LPT}(RY) and VU € L?(RY).

Therefore we can obtain the classical Pohozaev identity, see [92, 95],
N N N

(1.1.51) (5 -1) / o= [ op - / 2.
2 RN P + 1 RN

Arguing as for (1.1.44), we get that

(1.1.52) / |VU]2:/ \U|p+1—5\/ 2.
RN RN RN
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We combine (1.1.51) and (1.1.52) we have
N N -
(_1_)/ ]U|p+1+>\/ U2 =0
2 p+1

N_1- 5 > 0 whenever p > *2 . Hence U must be identically zero, as claimed. [

where 5 =

1.1.2. A new deal with A > 0 and p subcritical. We have that
THEOREM 1.11. Let U be a G—invariant solution of
(1.1.53) ~AU + MU = [UP'U, in RY
forl<p< N+2 and X > 0. Assume that either

o Uis G—stable outside a ball Br,(0);
or
° fRN Urtl < 4o0.

Then U — 0 as |z| — +o0.

PROOF. If U is G—stable outside B, (0), by Proposition 1.6 we get that [y |U[PT! < 400
for ¢ = p+1 and o = 0. The two different assumptions can be re-formulated as U € LPTH(RY).
Let n a smooth cut-off function so that 0 <7 < 1, n =1 in B1(0) , n = 0 in By(0). Given
zo € RN multiply (1.1.53) by n?(z — 20)U to obtain

[ owvur 2 [ e VUR = [ e -0t [ e - a)U?
Bi (o) RN RN RN

1
5 [ U = 1) S WU
In view of p > 1, we then have that
(1.1.54) 1011 (s < CNTIEE s ey + CIT a1 By

for some C' > 0 independent on zg.
By Sobolev embedding, (1.1.54) leads to

p+1
(1.1.55) 100 2 < CUTN sy ooy + N 41 (o)

2 (Bi(zo))

Set go = 2. By (1.1.55) we get that

—1 3

+ HUHL?H(BZ(JCO)) + HU”LP“(Bl(a:O)) .
Decompose U as Uy + Uz, where

—~AU, =UP =AU in Bj(x)
(1.1.57) { U=0 on 0Bj(zo).
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By regularity theory, we get that
<C||lupPtv - AUH

U
10312 (5, oy P (B (o))’

Assume %0 < % Then, by Sobolev embedding

U <C|lUPtu - \U .
HlH oo S (Byten)) 11U] ’u%wum»

Since Us is harmonic in Bi(xg) with Uy = U on 9B1(xg), by the mean-value theorem we get
that

p+1
”U2HL°° B (z0)) < C HU”]Zpil(BQ(IO)) + HUHLp+1(32 (z0)) + HUHLp+1 (Ba(z0)) + HU”LP+1 (B1(z0))
CllU20 11 (Ba(zo)) < CUIUN L1 (Ba (o)) + 1ULI L1 (Ba(20)))
> 1 (valid for ¢p > Niﬂp) and (1.1.56).

IN

N qo
Np—2qo

+1 +1
In conclusion, setting ¢; = Ng 500 and fo(s) = sP"5" + sP + 5”2 + s we have that

in view of

(1.1.58) 1008, o < Co (Il Batoa))

for some C > 0 independent on x, provided q?(’ < %
Now, we replace condition (1.1.55) with (1.1.58) and the same argument leads to

(1.1.59) ||U”Lq2(BZ1I($0)) <Chf (|U||LP+1(BQ(900)))7

where g2 = Ng TR and f1(s) is a suitable function for some C' independent on zg, (in view
of g1 > qo > N+2p for p < N+2) provided ‘” < 2

Defining g = % in an inductive Way (whenever q’“T‘l < %), we have that g is strictly

increasing in k (so as to have always ¢ > Niwp), and, for some finite k& > 1, %’“ > % Indeed,

assume by induction ¢ > --- > qo = % (for £ = 1 it’s already true). If ¢ > %p, nothing

to prove. If ¢ < &p, we need to show that gy = qu > qi. This is equivalent to

p<1l+4 qu, which is true in view of 1+ qu > 1+ ]%”\Q,NQ %f%

Hence, whenever it is defined, g is strictly increasing. If ¢ < %p Vk, the sequence ¢ is

defined Yk and gx — ¢ € (0, gp] Since ¢oo = Ng_%, we get that p = 1+ %qoo, a

contradiction with g > qo = ]\2,—N and p < N +2

Let k be so that g1 < 2p and qp > 2p. Iteratlng the argument to obtain (1.1.59), we get
that

||U||L‘1k*1(B 1 (z0)) < ka—z(”UHLpH(BQ(xO)))

ok—1

for a suitable fr_o and some C > 0 independent on x.
If g > %p, iterate once more to get

10llz5_y o < Ot (10043 o)

ok—1
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for some C' > 0 independent on x.
If ¢ = %p, we have only that

HUHL‘I(B%(xO)) < kafl,q(”UHLPJrl(BQ(xo))) V q < 400
2
and then
WUl (51 (z0)) < C'fk(HUHLpH(BQ(m)))-
BYES]
In conclusion, there exist r € (0,1) and C' < 400 (possibly depending on U) so that
(1.1.60) 1U| oo (B, (w0)) < Cf(HUHLPH(Bz(xo)))

for all zg € RY, where f : [0, +00) — [0, +00) is continuous so that f(0) = 0.
Since [|U || Lo+1(By(ag)) = 0 @8 |xo] = 400 in view of [ [U[PT! < 400, by (1.1.60) we get that

lim |U(z)| =0

|z| =00

z0)

as claimed. O

Now, let us recall some results of Gidas, Ni, Nirenberg [58], about symmetry and related
properties of positive solutions of second order elliptic equations.

THEOREM 1.12. Let U be a positive solution of
—AU 4+ XU =g(U) in RV,

with N > 2, A >0, U(z) = 0 as |z| = +o0, and g continuous so that g(U) = O(U*), a > 1,
near U = 0. On the interval 0 < s < Uy = maxyn U(z), assume g(s) nondecreasing.

Then U (x) is spherically symmetric about some point in RN and U, < 0 for r > 0, where r is
the distance from that point.

Furthermore

(1.1.61) lim r~"2 " U(r) = p > 0.

r—00

In this paper Gidas, Ni and Nirenberg [58] first prove that the solutions in Theorem 1.12 decay
exponentially at infinity.

PROPOSITION 1.13. Let U(x) > 0 be a solution of
(1.1.62) —AU + MU = g(U) in RY,

with N > 2, A >0, U — 0 at infinity. Assume g(U) = O(U?), for some o > 1, near U = 0.
Then
el

U(z)+ |VU(z)| = O<‘N1> as |x| = +oo.

2/

REMARK 1.14. Thanks to the exponential decay and the monotonicity of g, Theorem 1.12
then follows by the moving plane method.
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A particular equation covered by Theorem 1.12 is
~AU + XU =U? in RV
with A > 0, and p sub-critical. Combining Theorems 1.11 and 1.12 we get that
THEOREM 1.15. Let U be a G—invariant solution of
~AU+ XU =U? in RY
with X > 0, and p sub-critical. Assume that either

o U is G—stable outside Br,(0);
or

° fRN ’U|p+1 < 400.

Then U(x) is is spherically symmetric about some point in RY and U, < 0 for r > 0, where r
1s the distance from that point.
Furthermore

(1.1.63) lim 1~z ¢"U(r) = i > 0.

r—00

Kwong [70] establishes, for p sub-critical, the uniqueness of the positive, radially symmetric
solution to the differential equation AU — U + UP = 0 in a bounded or unbounded annular
region in RY for all N > 2 with suitable boundary condition.

We recall the following result (see, for example, [17], [57], [70]).

THEOREM 1.16. For p < %, with N > 2, the equation

~AU+U=0" inRY, Ux)—0 for |z| = +o0
possesses a unique positive radial solution Uy.
REMARK 1.17. Let U be a radial solution of
{ ~AU+U =0UP in RV

(1.1.64) T S
0<U<U0)=A71.

If we consider U(y) = AT U(S\% y) then U is solution of

{ —AU + XU =UP in RV

(1.1.65) 0<U<U©0)=1.

Then we are led to study: U solution of

{ AU +U=UP in RN

1.1.66
(1.1.66) U0) = A 71 = U

with p > 1.

We collect now Theorems 1.15 and 1.16 and Remark 1.17 to get
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THEOREM 1.18. Let U be a G—invariant solution of

~AU+\U=UP in RN
0<U<U0)=1 inRN

with A >0 and 1 < p < % If U is G—stable outside Bg,(0) or [pn UPT! < +00, then U(y)

~ 1 ~
coincides with A\p—1 Uk()\% y) and is unstable .
Furthermore, U has the first negative eigenvalue 1 < 0 (that is simple) with eigenfunction i
in H'(RN); the second eigenvalue is 0 (with multiplicity N ) and the eigenspace in H*(RY) is
given by

(1.1.67)

span{ 05, U, ..., 05U }.

REMARK 1.19. Note that U, can be obtained as a mountain-pass solution for the corre-
sponding energy functional in H'(R"). We have that U}, is unstable in view of the exponential

decay and
/ |VU|2+5\/ U2p/ urt U2:(p1)/ urtt <o
RN RN RN RN

by the equation.
As far as the zero eigenvalue, it is know (see [64]) that
kernel (—A + 1 —i—pU,f_l) = span{ 9y, Uk, ..., 0.y Uk }
in H'(RV).
Observe that we can find the first eigenfunction as the minimum of the quadratic form asso-
ciated to —A + 1 —pU{;_1 on{¢pe H'RY) : pno*=1}
By [62] we know that Uy has Morse index at most 1. Then, U, has exactly Morse index 1.

1.1.3. The half-space. Assume 2 = {z = (z1,...,zy) € RN : zy > 0}. By the
moving plane method (see [54]), it is possible to show that for a solution of Uy of

—~AU + XU =U? in
U=0 in {1‘]\]:0},

there holds 0., U > 0 in Q, and then U is semi-stable on €.

(1.1.68)

We study non-negative solutions, the first Theorem extends the celebrated results of Gidas
and Spruck (see [59, 60]) to the case where the unbounded domain € is the half-space.

THEOREM 1.20. Let Q be a G—invariant half-space and let U € C%(Q) be a positive
G—invariant solution of

_ —Jjp im0
(1.1.69) { AU =U in )

U=0 on 09,
which is stable outside Br,(0). Assume that

{1<p<+oo if N <10,

(1.1.70) 1<p<peN) if N>1L
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Then U = 0.
PrOOF. Let us consider the odd extension of U,
— / . U(J’vaN)7 TN Z 0
(1.1.71) v(z) =v(r',zN) = { U, —aw), oy < 0.

Clearly v belongs to C2(R?) and solves the equation in RY. We can find Ry > 0 large so that
Br,(0) C Bg,(0) C Bp, (0), where By, (0) = { (2, 2n) : (2', —zn) € Br,(0) }.
We claim that

For every v € [1,2p+2+/p(p — 1) — 1) and every open ball Bog(y) C {x € RN : |z| > Ry},
we have:

/ V(o7 v) > + ot de < € RV 2,
Br(y)

where C' is a positive constant depending on p,vy, N, Ry and neither on R nor on y.

We fix m > 1;%1’ and consider the test functions 9 , () := ¢ < |x§y| ), where ¢ € C2(R) satisfies
0<p<1and

1 if |t <1,
An application of Proposition 1.4 to v, = U in Q gives

) Py
+ |¢R,y||A¢R,y|)p_l dz

/ V([0 0) 2 + [P )dz < Cpomn / (Ver,
QNBr(y) RN

2 pty N—2
= Cpmy (IV¥Rol” + [Yrol|AYRo|) =T dz < C(p,m, v, N, @) R -1,
B3 r(0)
Since v is the odd extension of U, we observe that also the following holds true:

/ V(o7 0)[? + [0+ de < CpmynoR
Q'NBr(y)

pty
p—1 ,

where Q' := {z = (2/,xn5) € RY : 2y < 0 }. The conclusion follows by adding the last two
estimates. Then we conclude the proof as in 37 4*" and 5" step of the proof of Theorem 1.8,

and conclude that v = 0. Then U = 0.
O

Now we consider a bounded no negative solution of our problem

THEOREM 1.21. Assume N > 2 and Q be the half space {x € RN : zx > 0}. Let

U € C?(2) be a bounded non negative solution of

—AU=U? in Q
(1.1.73) { U=0 on 0.
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1 <p<+oo if N <11,
(1.1.74) { l<p<p(N—1) if N>12.

Then U = 0.

ProOOF. We claim that U is a stable solution. Indeed, by the strong minimum principle
either U = 0, and then U is stable, or U > 0 in €). Let us prove that the second possibility
does not happen. Suppose, to the contrary, that U > 0 in ©, then, by moving plane method,

a result of N. Dancer [32], implies that ~ > 0 everywhere in Q. Therefore aaU is a positive
solution of the linearized equation:

—~As+As—pUPls=0 in Q,

and thus U is a stable solution of (1.1.73), indeed this is a well-known fact in the theory of
the linear PDEs, see [53, 84, 9]. The boundedness of U, standard elliptic estimates [61] and
the monotonicity of U with respect to the variable xy, imply that the function

v(x1,...,ey—1) = lim U(z)

TN—+00

is a positive solution of the equation in RV~!. Furthermore v is stable in RN~1 see [16, 9].
At this point an application of Theorem 1.7, to the solution v in RN~ gives v = 0 in RV ~!
This result contradicts v > 0 in RV~!. Hence U = 0. ([

REMARK 1.22. This Theorem improves upon a results proved in [32] where the exponent
p was assumed to satisfy 1 <p < +ooif N >3 and 1 <p < N+2 if N > 3.

In this passage of the section we adapt the existence and non existence results of Esteban-Lions
[51] to our equation. They prove that there exist no solution distinct from 0 of —AU = f(U)
in unbounded domain, with Dirichlet condition and U — 0 as |z| — +o00, for any smooth f

satisfying f(0) =

THEOREM 1.23 (Esteban-Lions). Let f be locally Lipschitz continuous on R such that
f(0) =0 and let 2 be a smooth unbounded connected domain with the following condition

there exists X € RY, |X| =1 s.t. v(z)- X >0, v(z)- X #0 on 0Q

where v(x) denotes the unit outward normal to 02 at the point x. Under these assumptions,
a solution U in C?(2) of

(1.1.75) { ;A:UO: 1) ZOT; %Q

satisfying VU € L?(Q), F(U) € L' () with F(t fo s)ds, is necessarily trivial.

REMARK 1.24. The half-space is a typical domain which satisfies the assumptions of The-
orem 1.23.

THEOREM 1.25. Assume N >3, p > 1 and Q be the half space {x € RN : zn >0}, Let
U € C%(Q) be a bounded non negative solution of

“AU+NU=U in Q
(1.1.76) { —_— on 9%,
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with A € (0,1]. Then U = 0.

ProOF. We claim that U is stable solution. Indeed, by the strong minimum principle
either U = 0, and then U is stable, or U > 0 in Q. In the latter case, since {2 is an half space,

a result of Dancer [32], that use the moving plane method, implies that % > 0in Q. It is

known that 887[] is a positive solution of the linearized equation:
N

—As+ AU —pUP~ls=0 in Q,

and thus U is stable solution of (1.1.76), see [53, 83, 9].
We have that U is stable solution, then we can apply Proposition 1.3 with v =1 to have

(1.1.77) v éU2 e LY(Q), VUeL*Q)
1. p + 1 2 ) N
Therefore we can apply Theorem 1.23 to have the desired conclusion U = 0. O

1.2. Pohozaev-type identity

In this thesis we will use some Pohozaev-Type Identities, in order to localize the blow-up set.
We want to point out that, these are fundamental in our analysis.

To explain the integral identities we are going to derive, we argue as follows: notice that the
equation

(12.1) { ~AU = f(U) in Q

U=0 on 0f)

where f € C(R) and 2 is any smooth domain, has a ”certain” invariance by multiplicative
group of dilatations (T;U)(x) = U(t ) for t € (0,400). By the use of this multiplier, Pohozaev
[92] obtained a well known identity when € is bounded. For = R the same identity is
proved under optimal conditions in [18]. We recall this so-called Pohozaev identity and we
prove it by a simple adaptation of the method in [18].

PROPOSITION 1.26. Let U be a solution of

(1.2.2) AU =U? - \U inQ

where 1 < p < 400, and §2 is a smooth domain. Assume VU € L*(Q), [gj: - :\VUT2 € LY(Q).
Then

N N - N 1
1.2.3 (o - A+ (1- ) UQ}dx:/ V)| VU 2ds.
23 [t -Gt (1= ) VOP = 5 [ @ nivUPas

REMARK 1.27. The exact meaning of the boundary integral in (1.2.3), if Q is unbounded,
is that there exists a sequence R, — +0o0 as n — +oo such that we have

N N- N 1
1.2.4 ——UPH - U+ (1- — 2pde = i / : 2ds.
(1.24) /Q{p+1U G AU+ (1= 5 ) IVUP fde = i 5 e, (@ VIVUPs
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PROOF OF PROPOSITION 1.26. We proceed as in [18]. Define F(U) = lﬁ: - S\VU;

Multiplying the equation —AU = UP — AU by >, ﬂUngZ. and integrating by parts over QN B,
one gets (here and in all that follows, we use the implicit summation convention)

_/ wx.aUJr/ o, ou U o*U | _
anBy) OV 0z Jonp, | Ox; 0z ' O Oxi0x;

oF .
QNBg Oz; QNBg Oz;
du

where v denotes the unit outward normal to (2 N Bg). This implies, since Vu = g - v on
01,

1 0
N (F(U)) - / (:v-u)|VU|2ds+/ |VU|2+/ zi——(|VU?)
QNBR 90NBR QNBR onBp 20w

oUu oU
= —zi— + |z|F(U) ;,
/WBR{@V o+ lalF( >}

/ {NF(U) + (1 - ﬁ) yVUP}dx - 1/ (z - )| VU |2ds
QNBg 2 2 JoonBg

_ oU U 1 ,
= /aBRmQ{aymzaxin!F(U) 512Vl }ds_

Now the right hand member is bounded by

M(R):R/

QNBR

or

{%|VU\2+ |F(U)|}ds.

If we assume that VU € L?(2), F(U) € L'(f2), we have

+o0o 1
/ dr/ {WUF + |F(U)\}ds < +o0;
0 QnoBg 2

therefore there exists a sequence R, such that M(R,) — 0 as n — +oo. This proves the
proposition. O

PROPOSITION 1.28. Let U be a solution of

—AU+NU=UP inf
(1.2.5) U>0 in Q
U=0 in 02

where 1 < p < 400, and Q is a smooth domain. Let § > 0 small. Assume VU € L3 (Q),
UP — XU € LY(Q).
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Then

(1.2.6) /B {pJLUP“ - gS\UQ + (1 - g)|VU|2}dx
)

~ 2
p+l
- 5/ (U —)\U2>ds—5/ IVU|2ds + 6 U 4.
0B p+1 2 2 0B; OBs ov

PrROOF. Let ¢ small and define F(U) = %Tll — )\U . Multiply the equation —AU =

UP —AVUby), CUZ and integrate by parts on By := By(P):

ou 0°U OF(U
/8B szaxl Z/ 895 ”8371 + Ox; 89618:6] /35 zi:xz ‘

Hence
10 oU oU
Ul? = —(|VU? —/ = Rl
LD o AR Ry M) it
Up+1 ~172 Up+1 U2
——/BéN(pH‘Ag)*/aB‘ (g Ay )
N 5
= 1—— VUdeJr/ VU|?ds —/ a;,
/35( 2)| | 2 JoB | | OB Zz: 8%
N 5 o\’
:/ (1—>]VU\2dx+/ IVU|2ds — T2 ds.
By 2 2 JoB, oB; \ OV
Then

+1 772 +1 2
- LG ), G )

2
N
= / (1—)|VU\2dx+6/ |VU|*ds — § ou ds,
Bs 2 2 Jop, oB; \ OV

so the thesis follows.

By the decay and the Pohozaev identity we have that if A > 0 and p > %“ there are no

solutions of our problem in R, which is stable outside a compact set.

1.3. Conclusions

We resume the results obtained about the limiting problem:
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THEOREM 1.29. Let U be a G—stable outside a compact set solution of

{—AU+XU_UP in Q

(1.3.1) 0<U<U®O)=1.

Consider Q the whole-space, we have that
(1) fA>0,1<p< % orA=0,p= % then there exists non trivial solution;
(2) if5\>0,p2% or A =0, 1<p<pc(N),p7é%—1Lg then U = 0.
Consider Q the half-space, we have that
(1) ifé\ =0, 1p > p.(N —~1) then there exists mon trivial solution;
(2) if A€ (0,1, p>1orA=0,1<p<p(N—1) then U =0.

Therefore, the possible limiting problems are:

_ \J = [UP in RN
(1.3.2) { AU+ XU =U in

0<U<U0)=1, Ae(0,1], 1<p< {3

N2
o 0<U<U(0) =1.



CHAPTER 2

Asymptotic analysis and blow-up profile

It is known that solutions u of problem (1.1.1), must blow up as A — 400, and we address here
in this chapter the asymptotic description of such a blow up behavior. When the ”energy”
is uniformly bounded, the behavior is well understood and the solutions can develop just a
finite number of sharp peaks. When V is not constant, the blow up points must be c.p.’s of
the potential V. The situation is more involved when V = 1, and the crucial role is played
by the mutual distances between the blow-up points as well as the boundary distances. The
construction of these blowing-up solutions has also been addressed.

In this chapter we give a complete asymptotic analysis, also under the new hypothesis of
bounded Morse index solutions. In the next we localize the blow-up set, in the different case
(V' generic potential, or V = 1).

The most new and interesting feature is that, a-posteriori Morse index information and en-
ergy information are equivalent. Then we are able to find with an asymptotic approach, a
Rozemljum-Lieb-Cwikel type estimate.

N+2

2.1. Blow up profile: 1 <p < 55

In the sequel we will work with 1 < p < 2&2 and give a complete description of the blow-up
q P< N N=

profile. Let w, be a solution of (1.1.1), which satisfies (0.7), P, € © be a point of maximum

_p_1
of up, un(Pp) = ||tn||cc- Let us introduce €,, = ||up||oo > and the change of variable:

P 2
Un(y) = tnlEny o P) _ en un(eny + Pn).
l[wn oo

It is easily seen that U, is a solution of

{ ~AU, + Me2V(epy + P)U, = UL in Q,

(2.1.1) 0<Un(y) <UL(0)=1 in Q,

with Q,, = Q;f)”. In this section we prove that, up to a subsequence, there exists \e (0,1] s.
t.

MelV(P,) — A, as n — 4oo.
So, up to a subsequence, U, is uniformly bounded in C’llocl(Qn) Then we assume that U,, — U

in C’l10C as n — +oo, where U satisfies

—~AU + AU =UP, in Q
(2.1.2) { 0< Uly) < U0) =1

25
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with Q = RN, X € (0,1]. The new main features of the previous results are the role of the
potential V' and the fact that we consider solutions with bounded Morse Indices.

We observe that if u, has bounded Morse index, than U, and U too. If ¢; is a test function
for u, s. t. the linearized operator L = —A + 1 — puﬁ_l satisfies

< Ly, p1 ><0 <:>/|V<p\2 + A V(:z:)<p2 —puﬁ_1@2 <0,

then the test function be ¢, 1(y) = ¢1 (y_P"> satisfies

En

/ Ve + M2 Vieny + Pa)g?, — pUR' @2, <0,

So the Morse index of U, is less or equal to k (see (0.7)).

2.1.1. Local profile. We can prove this first result:
THEOREM 2.1. Let (A, uy) be a positive solution of

{ —Aup + M Vu, =ub, in Q

(2.1.3) U, =0 on 0f2

with 1 < p < ¥£2.
Assume either
sup m(uy) < 400,

or

Let P, € Q s.t. up(Py,) = MaxXonBy, . (P,) Un for some Ry, — +00 where &, = un(Pn)_pT_1 —0

as n — 4+o0.

2
Setting U, (y) = Unleny+Fn) en up(eny + Py) fory € Q, = Q;P", then for a subsequence

lunlloo n

we have that, as n — +o0o:

(2.1.4) M2V (P,) — X e (0,1]

for some universal constant \;
En .
* ap. ooy 0
e U, U inC}l

L (RN) where U is a solution of

—AU +\U =UP?, in RN
0<U<UW0)=1 in RN,

Moreover, 3¢, € C5°(R2)  with supp ¢n C Bre, (Pp), for some R > 0, so that

(2.1.5)

(2.1.6) / IVénl? + AV — pul g2 de < 0, Vnlarge,
Q



2.1. BLOW UP PROFILE: 1< p < {2 27

and
p+l N

1 ~N_ptl o sy
lim +1N/ Ug+1 = )\1;] Z—} ( lim V(Pn)> peto2 / Up+1.
BRep(Pn) BRr(0)

PROOF. Let d,, be d(P,, 0f2). Suppose that Z—Z — L € [0,400], up to a subsequence. Then
0, — H, H halfspace s. t. 0 € H and d(0,0H) = % The function U, satisfies

— AU, + )\nE%V(eny + P)U, =UE, in Q,
(2.1.7) 0 < U, <U,0) =1, in Q,N Bg,(0)
U,=0 on 0f,.

Since P, is a point of local maximum of u,,, we have
0< —AUL0)=1—Xe2V(P,) <1 = 0< \e2V(P,) < 1.
Setting w(V) := [maxg V][ming V] 7, it follows that
AnenV(z) <w(V),

and up to a subsequence,
2NV (P,) — X as n — +o0,

for some \ € [0,1]. By regularity theory we have that U, — U in Cl.(H), as n — +00, where
U satisfies

AU+ \U =UP in H
(2.1.8) 0<U)<UWO)=1 in H
U=0 on OH

where \ € [0,1]. In particular U is stable outside a compact set and by Theorems 1.8 and 1.21,
we have A > 0. Since A > 0 by Theorem 1.1.76 we have that H = R,
By Theorem 1.18 U is unstable. There exists ¢ € C$°(R™Y) such that supp ¢ C Bg(0) and

[ VoE+ G=prr e <o,

Then, the function ¢, (x) := N+2 (% 5") ¢n, satisfies

En
[ IV6u + OV = pu s - [ V6P + (3= pUP)ePde <0
Q Q
and supp¢,, C Bre, (P,). Assume now

sup < /uffl < +o0.
n )\j_7 Q

By Theorem 1.21 and [59] we have A > 0 whenever 1 < p < ¥£2. By Theorem 1.1.76 we also
get that H = RY. Since

+1_ gyl N 1 +1 1 1 +1
AR Y e R s s [l < oo,
Br(0) BRep(Pn) (minV)rp-172 7 2 JQ

5]
[

S

p—1
n
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we get that [px UPT! < +00 and by Theorem 1.18 U is the unique radial solution of (2.1.5).
Moreover

. . 1 N _ptl s S
Rhm EI_E p+1_N/ uIT)L+1 =)\2 p-1 ( lim V(Pn)> P Up+1.
—+oon [ee] )\5_1 5} BRen(Pn) RN
U

REMARK 2.2. The argument above works also for %Jr% < p < pe(N) whenever sup,, m(u,) <

+00. Indeed, Theorem 1.21 holds for 1 < p < p.(N), p # % N+2 So, we still get in this case
that U, — U in C}_(RY), where U is a solution of (2.1.5) Wlth m(U) < 4o0.

For A > 0 and p > %fg, such solution U cannot exists as it follows by

THEOREM 2.3. Let U be a nonnegative solution of
(2.1.9) AU+ XU =U?, in RV, A>0,

which is stable outside a compact set.
Ifp > %‘*‘3, then U = 0.
This means that, whenever u, blows-up in L>®(Q) : ||un||cc = +00 as n — +00, we have

m(up) = +00  asn — +0o

for all p > N+2

2.1.2. Global behavior. After the limiting problem has been identified and the local
behavior around a blow up sequence P, has been described, we can prove global estimates.
We will show in such way that the sequence u,, decays exponentially away from the blow-up
points.

THEOREM 2.4. Let1 <p < % Let A\, — +00, uy, be solution of (2.1.3), so that either

k = limsup m(u,) < +o0

n—-+o0o

— ~ptl N N _ p+l -1 1
k — )\pfl 2 (mln V) 2 p—1 (/ Up+1> Sup m / ug“rl
Q RN 2 JO

or

with u, satisfying (0.7). Up to a subsequence, there exist Pl,... P* k < k with & =
. —1
un (P~ =0 asn — 400 s. .

(2.1.10) el <&l < Coel, foralli=1,...,k
i J
(2.1.11) L&Lj—ﬂ) as n— +oo, forall i,j=1,....)k, i#j
[P, — Pl
i
(2.1.12) _Sn_ .0 asm— 400, foralli=1,....k i%#j

d(P;,00)
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(2.1.13) u, (P = max  up,

for some R, — 400 as n — +o00.
Moreover, there holds

k=P

(2.1.14) Un(z) < Clel) p1 Ze 7T vVzeQ neN

with C' > 0.

PROOF. The proof is divided in two steps (see also [50]).
15t step There exist k < k sequences P}, ..., P¥ satisfying (2.1.10) - (2.1.13) such that:

2
2.1.15 lim ((Tmsup [(eh)7T |)=o0
(2:1.15) Gt -
where dp(x) = min{|x — P!| : i = 1,...,k} is the distance function in Q from
{P ... Pk}

Let P! be a point of global maximum of w,: u,(P.) = max un(x). Since (2.1.13)

holds, if (2.1.15) holds for P}, then we take k = 1 and the claim is proved. Otherwise,
we suppose by contradiction that

2
limsuplimsup(el)?T  max  w, =45 > 0.
R—400 n—+00 lz—P}|>Rej,

Applying Theorem 2.1, up to a subsequence we have
1\527 1 1 1 . 1 (N
(2.1.16) (En) P Tun(eny + P,) = Up(y) = Uly)  in Cpp (RT),

where U is the unique radial solution of (2.1.5) in RY. Since U — 0 as |z| — +oo0,
we can find R large such that :

(2.1.17) Uly) <6, Yyl =R

Up to take R larger, we can assume

2
2.1.18 limsup(el)r~1  max w, > 36 > 0.
(2.1.18) ST 2

Up to a subsequence, we can also assume that

2.1.19 eV T ma Uy > 26.
(31.19) ) B U 2

Since u, = 0 on J€2, we have that

IP2cQ\ Bra (P st. u,(P?)= max u,.
\ Brey (F) (Fy) 5
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(2.1.20)
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i 1PEE

By (2.1.17) and (2.1.16) we have 2522l — 400 Tndeed, SR >R

n

pP2_pl
un(B >U«”g">%wm§a

1

contradicting (2.1.19).
§22 1 ¢ —
We take R = il (R] = (0%, By (21.19) we get &} 1= ua(P}) "7 <

el(20)” e , and since e} < &2, we see that (2.1.10) and (2.1.11) are fulfilled. So this
1mphes (2. 1 13):

un(Ps) = max Up= max Uy,
|c—PL|>Rel, Bpa 2 (PNQ

Indeed R%e2 = 1|P2 — P}|, and Rel << §|PZ — P}| imply Vz € BR%E%(P,%),
1
o= Pol 2 Py = Pal = 2 = Pi| > 51 P = Pl > Re,

Le. QN Br2 2 (P?) C QN Bga (P, 1), Since R2 — 400 as n — +00. By Theorem 2.1
we get that (2.1.10)-(2.1.13) hold true for { P}, P2 }. If (2.1.15) holds for { P}, P2},
we are done.

Otherwise, we iterate the above argument: let P., ... P$ s sequences so that (2.1.10)-
(2.1.13) hold true, but (2.1.15) is not satisfied. We have

lim sup lim sup(s}l)% max u, =40 >0
R—+00 n—+oo dn(fE)ZRE%
with d,(z) = min{ |z — P!| :i=1,...,s}. There exists R > 0 large s. t.
L)oot > 24
Eol B8Ry ) 2
holds for a subsequence. By (2.1.10) and Theorem 2.1:
1 el
J; € [6, 1] : i — Y,
1\ 727 1 1 En\ 71 i ((En =
7T un(ehy+ P = (2) 7 UL(Zy) = 07 U@iy)
in Clloc( ) )

Since U — 0 as |z| — +oo we can find R large so that 97 'U(d;y) < § for
ly| > Rs. We repeat the argument above, replacing |v — P}| with d,(x). Let

2
P5tl be s, t. up(P5t!) = maxy spe1 un > 25(5,11)71’?1. As above we have that

%{iﬂ) — +00, and (2.1.10) holds for { P} ... Pst1}. For RS = 5d’§gr1) we
get the Vahdlty of (2.1.10) for P3*! so by Theorem 2.1 we get that (2.1.10)- (2 1.13)
holds for { P, .. PS‘H} with R,, = miny R¥. We can use Theorem 2.1 for any
sequence Pl i=1,...,5s+1, for n large, we can find functions ¢!, € C§°(Q) with

supp ¢!, C BRez (P, ) for some R > 0, which satisfy (2.1.6 ). By (2.1.11) ¢L, ..., ¢5H!
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have disjoint compact supports for n large and then s + 1 < sup,, m(u,). The argu-
ment must stop for some k < k. By Theorem 2.1 and (2.1.11), we get that VR > 0
(up to a subsequence):

1 s+1 1
lim /up+1 > lim / uptt
n—r—+0o00 )\27—}_% QO n n_>+00iz;)\2_}_1; BRE%(Pﬁ) n
~N_ptl ptl_N
> (s+1)A2 rI(minV)r-1 2/ urtt
Q Br(0)
and then
~ptl_ N ptl_ N -1 1
s+1 < Ap—1 2 (mln V) p—1l 2 (/ Up+1) SupplN/ U£+l.
Q RN nozp1 2 JQ

We want to show now the validity of (2.1.14) and (2.1.15) does hold.

Let P} ... ,PT’f be as in the 1%'step. Then there are v, C > 0 such that:

k o |z—PT7;L\
up () SC(el)_% Ze 7T, VrzeQ, YneN.
i=1

By (2.1.15), for R > 0 large and n > n(R), there holds

(51),,% max un(ac)<( A )pj
{dn(z)>Rel } - QW(V)

Hence, in {d,(z) > Rel } we have
A
2w(V)’

where w(V) := [maxg V][ming V]~'. Moreover, by Theorem 2.1 we have the validity
of (2.1.4), and there we get

(en)? uh ™ (2) <

A

Aa(En)? V() 2 [w(V) ™ Anlen)® V(P) —n o)’

n

Therefore, for n > n(R) we have that

(VA V(2) — ub™ ()] > >0, ifd,(x)> Rel.

A
~2w(V)
Now consider the following linear operator:

Ly = —-A+ M\ V(z) —ul 1 (2)).

Since u,, is a positive solution in Q of L, L, satisfies the minimum principle in any
QCQ L,p>0inQ, ¢ >0 on I implies ¢ > 0 in €.
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Let ¢t (2) = e~ 1e=Pil We have that in dy,(z) > Rel:
1

i -2 4i En -
Ln(8y,) = (g2) %9, { —7° 4+ (N - 1)@7 +(e2)?Mn V(z) — by 1(95))} >0
for n large, provided 72 < %(V). Observe that
2

(equsfl (z) — (5;)%un(m)) 08,1 () = 1=/ UAiR) >0
for R large, where ¥; as in (2.1.20).
Then, if we define ¢,, := €7 R(si)fﬁ Zle #t,, we have
Lo(én —uy) >0 in {d,(z) > Rel}
and ¢, — up > 0 on {d,(z) = Rel} UdN. Note that by (2.1.10)-(2.1.13))
{dn(2) = Rep} = UL,10BR (P) C Q,
for n > n(R). Then, by the minimum principle
2 &y le=Phl

U < g = R(eg) 1Y e R

i=1
in {d,(r) > R e}, if R is large and n > n(R). Since

_ 2 _ 2 k _vw
un() < maxu, = (e) 71 <)Y e A
i=1

if dy,(r) < Rel. We have that (2.1.14) holds true in 2, for C = ¢7¥ and n > n(R).
Up to take a larger constant C, we have the validity of (2.1.14) in Q for every n € N.

O

2.2. Morse Index information and Energy information

It is know that any solution u of (1.1.1) is a critical point of an energy functional and vice
versa. It can be proved that for any family of solutions u, of (0.1), with finite energy we can
obtain Morse index information.

In this section, we obtain an equivalence in the form of a double-side bound between Morse
index and ”energy” with essentially optimal constants. This result can be seen as a sort of
Rozenblyum-Lieb-Cwikel inequality, where the number of negative eigenvalues of a Schrédinger
operator —A+V can be estimated in terms of a suitable Lebesgue norm of the negative part V_
of V. Thanks to the specificity of our problem, we improve it by getting the correct Lebesgue
exponent (in view of the double-side bound) as well as the sharp constants.

Let u,, be a positive solutions sequence of

—Auy, + M Vu, =ub in Q
(22.1) { U, =0 on 0N
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where A\, = +00asn — +00, 1 <p < N+2 and info V' > 0.
Assume

1

(2.2.2) suplN/ uP < 4oo.
p—1 2 JQ

Consider the problem

_ N[T — 7P N
(2.2.3) { AU + XU =U in R

0<U<UW0)=1 in RY

for suitable A > 0,. We remember that Kwong [70] proved that this problem has a unique
solution.

THEOREM 2.5. Let u,, be a solution of (2.2.1) so that sup,, m(u,) < +oo.
Then

N _ptl
Y e el ptl_N
(2.2.4) lim sup —— Joun < X271 (max V)p z/ yrtl
n—+o0 m(un) RN

Proor. Take a subsequence so that

N _pt+1 11
2 p-1 p
O

— [ as n — +oo.

By Theorem 2.4, up to a further sub-sequence, we can assume that m(u,) — k and there exist
{PL,...,P*} Kk <k, so that (2.1.10)-(2.1.14) hold.
We can then write VR > 0:

N _pt1l

)\73 p—1 ’LLZ—H
Q

k p+1 7 k
E_: )2 U 4+ 0O ()2 Z/

and in view of (2.1.4) we get that

N _ pt+l
lim A2 ”° pH1
n—-+0oo Q
= ;\15—5_}/ UP'HZ lim V PZ N+O</ 6_7(p+1)|y|dy>.
Br(0 notee RN\B; 5(0)
Since this is true for every R > 0 we get as R — +o0:
N _pt+l ~ N p+1 1 N
lim A2 20 [ wPtt = Az e UP+1Z lim V(Pi)
n—+0o0o Q RN n—-+00
~ N _p+l +1 N
< kAT7o0 [ UPT (maxV)r1 2
RN Q
N _ptl ptl_ N
< A2 P—l/ UPT (max V)r=1~ 2 lim m(u,)
RN n—-+00



34 2. ASYMPTOTIC ANALYSIS AND BLOW-UP PROFILE

We then deduce (2.2.4) on the value S. O

Now we want to show the lower bound:

THEOREM 2.6. Let u,, be a solution of (2.2.1) so that

N p+1

supAi P [ wPTl < oo
n Q
Then
LR +1
A P [ ub 1 <N_ptl ptl N
(2.2.5) lim inf = Jo tn > Az o / UPTL (inf v)iﬂ 2
n——+00 m(un) N +1 RN

REMARK 2.7. In this context the so-called Rozenblyum-Lieb-Cwikel inequality [93, 71,
29|, can be considered for a solution U as a relation between the Morse index and a bound on
U in same Lebesgue space.

Let consider the operator —A + V in RY, the number of negative eigenvalue of this operator
is estimated by this Rozemblyum-Lieb-Cwikel inequality, in the following way:

N
#{ A <0 eigenvalue of — A4V} < C2||V—”L2ﬂ‘
2

In our specific case, we obtain better estimates, in the sense that we obtain a double bound
inequality and with optimal constants. Indeed let u, be a solution of

—Auy, + Mu, =ub in Q
(2.2.6) { U, =0 on 0f)

with 1 < p < % (for simplicity V' = 1), and after a rescaling we can consider this problem
like Un solution of

AU, + Uy = U, in 9,
(2.2.7) U, =0 on 9,
~ ~ 1
Un < Up(0) < (Ape2) 1.

In the sequel of this section we obtain a double bound of the energy:
(2.2.8) Co XJL/ ub™h < m(uy,) < Cy )‘%/ ub
Q Q

with a suitable . If we consider the Morse index m(U,) of U, in H}(Q,), where the domain
Q,, is expanding to R, it coincides with m(u,). Now, rescaling the norms in (2.2.8), we have

(2.2.9) Co / U < m(Un) < & / U,
Qn Qp

Observe that
m(Uy,) = #{\ < 0 eigenvalue of — A+ (1 — pU~np_1) }.



2.2. MORSE INDEX INFORMATION AND ENERGY INFORMATION 35
A Rozenblyum-Lieb-Cwikel type formula would read on €2,, as
~ ~ p—1 %
(2.2.10) m(Un) < Gafl X =pUn™ ")l ”y-

While in (2.2.9) we have a better estimate.

Resuming, we are able to exhibit a double bound estimate, based on techniques of asymptotic
analysis and a characterization of the unique radial stable outside a compact set or with
bounded energy solution.

As a consequence of Theorems 2.5 and 2.6 we get

THEOREM 2.8 (Rozenblyum-Lieb-Cwikel type estimate). Let u, be a solution of (2.2.1).
The following are equivalent

(1) sup, m(un) < +o0;
N p+1

(2) sup, Ap P fpubt < oo

Moreover, when (1) or (2) holds we have

5\%7% il N )‘%_%f up-l—l )‘%_%f up+1
——(inf V)r1"2 / UPtl < liminf = 8" < limsup — Q"
N +1 RN n—+400 m(uy) n—>400 m(uy)

~N_ptl p+l_ N
< A2 pI(max V)r-1 2 Urtl,
Q RN

PROOF OF THEOREM 2.6. Take a subsequence so that

N _ptl 11
M PN [k
" fQ " 5B as n— +oo.
m(un)

Assume, up to a further subsequence, that
lim m(u,) = N € [0,400].
n—-+00
N _ptl
By Theorem 2.4 we know that there exists { PL,...,P5}, k < sup, \p 7' [,ub™", so that
(2.1.10)-(2.1.14) hold.
Let ¢™ be the m—!" eigenfunction of —A + AV — puﬁf1 in H}(Q) corresponding to the
eigenvalue p)" and assume @] be normalized to have maxg |¢]'| = maxq ¢’ = 1 (considered
with multiplicities):

(2.2.11) —AQT A+ AVl — pub ol = o in Q
o' | < maxqep' =1, ¢t =0 on 95
Fix now m such that p)* <0 for n large. We have

1% claim

p
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—3dM>0s. t

k
Qn € U BM@‘ZL(P%)
j=1
where QI is so that M (Qn') = 1.

PROOF OF 1% cLAIM: Let Q™ be a maximum point of ¢!”. We have that

pn on (Q) = A V(@)@ (@) — pub ™ (@)l (Q1).
Since o' (QM) = 1, we get that

p
(en)

Hn = A V(QR) = pul Q) = An inf V —

Further, observe that by (2.1.14) we have

le— P3|

k
up @) < Oy e AT < Ofeh) ke MY
j=1

in @\ Uj_, B, (P). By (2.1.4) we get

— ke~ (=7 M
2 maxq V pCke >0

for n large, whenever Q" € Q \ U;-C:l B, (Pﬂ;), for some M > 0 large. A contradiction to
urt < 0. Hence,

k
Qe U By (PJ) for some M >0 large.
j=1

Set ¢n (y) = @™ (el y + PL). The function ¢y’ solves

(2.2.12) |
AT b AV (Shy + PG — (U160 = (e g in OE
. . m_ pi ) _" ;
o] < ¢?,J<Qn€%1’n) —1 ‘o QEZLP%
¢’ =0 on 8(9;-13’%).

n

By the 1% claim and (2.1.4), (2.1.10) we get
ei;)2 _ A nfoV

en

~pUg.

> 72 mo J)2; — =
02> (&) pn > Mnlel) lgfv p( ~ 2maxqV

Up to a subsequence, we can assume that

(e2)2u™ — ™I <0 as n — +oo.
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Multiply (2.2.12) by ¢n/ and integrate on Q%J-PTJ; to get

/ VORI 4 M2V + P < [, 0

C;(i“nZ Z/ —(r— 1)7‘fy+ ny 5‘
15 Q— PJ

TL

IN

= C(eh)? ()" / e~ (=l
Q-P}

1)2 j
(En) (5%)]\[ i=1 E%

< N+ e~ Pl 4 o
RN
in view of (2.1.10) and (2.1.14).
In particular, ¢, H'(By(0) < Cm VM and, up to a subsequence and a diagonal process,
o) — ¢™I in HE (RN) as n — +o00. Moreover ¢™J solves

(2.213) ~ A 4 X = pUPT g = i gm i BN
o ™I <1

in view of (2.1.4). We have that ¢"/ # 0 for at least one j € {1,...,k}.
This follows by:

274 claim Let j € {1,...,k} so that (up to a subsequence) Q™ € B, (P1) for some M >0
large. Then ¢™J # 0.

PROOF OF 2™ cLAIM: Decompose ¢n'’ as hy, + t,,, where h,, satisfies

Ahn =0 ' in BM+1(O)
hn == QZ)ZL’] on aBM+1(0)

If gb’ﬁ?j = 0, then ¢ — 0 in H'(Bpr41(0)), and by the trace Sobolev embedding Theorem
én? — 0 in LY(0Bpr4+1(0)). By the mean value Theorem, then h,, — 0 uniformly in Bj;(0).
Since

—At, = —A¢p? = O(1) in Bpr41(0)
(2:2.15) { th =0 on dByr41(0),

(2.2.14)

by regularity theory ¢,, is uniformly bounded in CO’O‘(B Mm+1(0)). In particular, by Ascoli-Arzela
Theorem t,, — t uniformly in Bas41(0). Hence, ¢n"’ = hy,+t, — t uniformly in Bys(0), where
t = ¢"™7 = 0. In particular,

| (Q;” - P}

(bmm? .

A contradiction and then ¢™J # 0. (]

)zgpﬁ(@ﬁ)zl%Oasn—)—i—oo.
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By Theorem 1.18, recall that —A-+XA—p UP~! has a first negative eigenvalue w1 < 0 (with corre-
sponding eigenfunction 11 € L2(RN)), s = 3 = -+ = pn41 = 0 vanish (with corresponding
eigenfunctions ¢p = 0, U, ..., ¢¥Ny1 = Oz U € LQ(RN)), and all the other eigenvalues are
positive.

We have that necessarily p™7/ = pq V j or g™ = 0 Vj. Assume that for m = 1,..., M
W™ =y V5 and we will try to estimate M.

37 claim _
k _ylo=Pi]
\gomgCZe s mQ,Vn
for some C, v > 0.
Proor oF 3" cLamM: Let L, = —A + a,(z), where a,, = A\, V — puffl — . As in

the proof of 1%¢ claim, we have that a,(z) > A\, V(z) — puﬁ_l(a:) >0(eh)™2 > 0,6 >0, for
x € Q\U] 1By ](PJ) and M large.
In view of (2.1. 10) we have that

k o k o_PJ
L (E:e_w| Eﬁ) :26_7‘ E?{l[— 7.2 + N_l. l.—i—a
N - )2 Pl

in Q\ U?:l BM%(P,JL'), for 0 < v < /4. Since for C' > 7™

k |;)j pJ\ k
(2.2.16) ] < 1< Z on B, (P])
j=1 j=1
k Hi;\
len] = 0< Z n on 0F,

by the maximum principle

\LP\

k
Lo(£¢™) =0 < L, ( Z ) ) in Q\ | B, (P])

implies that

lz—PJ |

k k
el
grl<eY e A i\ By (P
j=1 j=1

Hence, by (2.2.16) we get that

le— P3|

k
o <CD e T4 im0




2.2. MORSE INDEX INFORMATION AND ENERGY INFORMATION 39

for n large. Up to take C' larger, the estimate is true V n. O

For m,l € {1,...,M}, m #1, we want to take the limit of the orthogonality condition:

0 = /90 ¢! / +/ on ¢,
n n Z J (PJ Q\Uf:l B 6_ (Prjt) n

M J
= Y@ [ emida | REy
j=1 B (0) oN\Uj_. B, o (Pr)
We have that
_27\1*‘1371.1\
)/ el < C’Z/ e T A
o\Ub_, BME%(PJI) O\Uj_1 B, i ( (P)
k
< (eln)N/ e 27lqy.
; RN\ B, (0)

Since ¢7 — ¢™J and gbi{j — ¢bd in HY(By(0)), we have that ¢ — ¢™J and qzbl’j — M in
L2(Bps(0)) VM. By (e))2u™ — p™i = py Y j, we get = Pl Vi # j asn — 4o00. Finally,

by
1 A=A oy 29y]
o— e [ =3 (2)" [ ¢mvﬂ¢ﬂ+o(/ 2y
(5711)N o " ]2 5711 B (0) " " RN\ B (0)
we get that as n — 4o0:

k
0= Z/ o™ I +O(/ 6_27|y|dy) YV M.
j=1 B (0) RN\ B (0)

As M — 400 we get
k
0 — m7j lvj'
]2::1 o9

Since ¢"7 and ¢+ are eigenfunctions of —A+ X —p UP~! with eigenvalue p™J = phi = py < 0,
we can write

» Am AL

o = ’J 1 bi, oM = 7j¢i~
(Jpn ¥7 (Jpn ¥7)

We prove that ¢™J and ¢! € L?, i.e. that the eigenfunctlons of eigenvalues less or equal to
zero of the operator —A + 1 — pUP~! are in L2. If ¢ are eigenfunctions of eigenvalue zero,
we say that U is a unique solution which is non-degenerate, i.e.

kernel (—A + 2 + pUP™ 1) = span{ ,U,...,0nU },

By the well-known result of Gidas, Ni and Nirenberg [57], U is radially symmetric: U(y) =
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U(Jy|) and strictly decreasing: U'(r) < 0 for r > 0, r = |y|.
Moreover, we have the following asymptotic behavior of U:

U(r) = Ay T e (140(0)),

U'(r) = — Ay "5 e (14 0(%)),

for r large , where Ay > 0 is a generic constant.

We have that U, |VU| have an exponential decay, so also 9;U for all i = 1,..., N. Observe
that, in this case, ¢™7, ¢ are 9;U, so have an exponential decay and then they are in L2,
Consider the case of u < 0, the case of negative eigenvalue. First we have to prove that there
exists a unique eigenfunction associated to pu. Observe that U, the unique solution obtained
by Kwong, must be obtained also like Mountain Pass solution.

By [62] we state that the Morse Index of a ground state solution is always less than 1. We
have that there exists a negativity direction of the linearized operator, then we have that the
first eigenvalue is negative.

Moreover we have that m(U) is at least one, with one negative eigenvalue and so there is one
and only one eigenvalue strictly negative p and the others are less or equal to zero. There is
one and only one eigenfunction associated to p < 0 (1-dimensional space) by the property of
the first eigenvalue.

Then we can prove that this eigenfunction is in L2. Observe that we can find the first eigen-
function like the minimum of a functional. Observe that the minimum of this functional is
attained in L?, then the eigenfunction is in L?. In this way we get

0= AmjA
=1
Set A = (Amts-- oy Amk) Vm = 1,..., M. By the 27?4 claim we have that A, # 0 Vm =
1,....,Mand < A\, \; >=0Vm #1, m,l=1,...,M. Hence M < k. Assume that pn"’ — 0
; 2
(forevery j =1,...,k) form=M+1,..., M+s. By (2.1.10) let us assume that E—J{L — DY >0

Vi=1,..., k. We want to show that s < N k.
Indeed, we have always that

k
S0 Mg =0, Ym AL mi=M+1,... . M+S.
j=1 RV

Since ¢™7 and @7 are eigenfunctions of —A + A — pUP~! with eigenvalues p™J = phi = 0,
we can write

¢m,j _ ]VZH /8}7173 /(/}Z .
= Di(fpn ¥7)2
sy Bli,j wz

o=

=2 Dj(fRN %2)% '
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In this way, the orthogonality condition rewrites as
k N+1

DD BBl =0

j=1 i=2
. . . . . Na+1 N4+1
in view of [, 1 1; = 0 fori # j. We consider 8, = ( 2171753”727~~-7/872717k7"'7/8m:~1_ ey m?; )-

We have that 5, # 0Vm = M+ 1,... M+ S5 and < Bp,0 >=0Vm # 1, m,l =
M+1,...,M+S. Hence S < Nk.

Observe that N < +oo. Indeed, for N = +oo we would have that p < 0 for m =
1,...,(N +1)k +1 and n large. The corresponding limits x™/ have to satisfy:

p" = (Vj=1,...,k) foreverym=1,..., M,

p™ =0 Vj=1,...,k) foreveey m=M+1,...,(N+1)k+1,,
for some M € [1,(N + 1) k 4+ 1]. Hence, we should have M <k, (N+1)k+1—M < N k and
then M +s=(N+1)k+1<(N+1)k. A contradiction.
Also we have that R
lim (up) =N < (N+1)k,
where by Theorem 2.4
ptl

cptl N N_ptl
E<Ar=1 2 (minV)2 »-1 (/
R

The Theorem is estabilished. O

2.3. Blow up profile: p = LJ_F%

In this section we adapt some results of Druet, Hebey and Robert (see [47]) for the case of

p= %—f% to have a blow-up profile. For simplicity we can take V =1 (everything holds with

V # 1 t00).
Let u,, be a sequence of positive solutions of

N42
(2.3.1) —Aup + My = up 2 in Q,
up, =0 on 0N

with lim sup,, m(u,) = k.

2.3.1. Exhaustion of blow-up points. Given k € N*, let (P!), i = 1,...,k, be k

converging sequences of points in , and (¢%),i = 1,..., k, be k sequences of positive numbers
converging to 0. We set
- : i
(2.3.2) S.—{ngrfooPn,z—l,...,k}
and when k£ > 2 we set
1 . )

o N T B N

(2.3.3) S; - { Jdim S (PI-Pl)j# }
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for i = 1,...k, where the limits, up to a subsequence, are assumed to exist.

(2.3.4) Ul(z) = (1) 2 Lun (e + Pl).
Let U(:)l be the function defined in RY as

2 1-N
2.3, ) = (14— )7e
(2.3.5) Ui () = ( +N(N_2))

N+2

It is known [22, 57, 90] that U(} is the only positive solution of the equation —Au = u¥-2 in
RY satisfying Ug(0) = maxgy Ug = 1.
When k > 2 we consider the following statement:

|Pi — Pl

(2.3.6) s oo
min (gt €7,)
for all ¢ # j as n — 4+oco0. We also define
(2.3.7) d (z) = ':Inink |z — Pl
By Proposition 0.1 that
(2.3.8) lim maxu, = +oo.
n—+oo €

Then the following theorem holds:

THEOREM 2.9. Let Q be a bounded domain of R, N >3 and u, be a sequence of positive
solutions to (2.8.1). Assume that sup, m(u,) < +o0o. Then there exist k € N*, converging
sequences (PL) in Q0 and sequences (g%) of positive real numbers converging to 0,3 =1,...,k,
such that (2.3.6) holds and such that, up to a subsequence, the following properties hold:

1) For any x € Q and any n
(1) y y
(2.3.9) d*(2) 2 Lup(z) < C
for some C > 0 where dt(z) is given by (2.8.7). Moreover

(2.3.10) lim lim sup df’l(:z)%_lun(:n) = 0.
R—+00 n—+00 mGQ\UleBRei (Pi)

(2) un — 0 strongly in CP_(2\ S) as n — 400 , where S is given by (2.3.2).
PROOF. The proof of (1) proceeds in several two steps. The claims below are all up to a

subsequence.

15t step There exists a converging sequence (Pl) of points in Q and a sequence €. — 0 such

that
(2.3.11) Ul - Ut in G2 (RY)

holds as n — +oo, where UL(z) = (8111)%71%1(6%1‘ + Ph.
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Let P! be a point in Q where u,, achieves its maximum and set

(2.3.12) unuﬁjzzgiﬂ—%::ngxuw
We have
(2.3.13) UL0) = (1) 2 ~tu, (PL) = 1.

From (2.3.8) we have that ¢, — 0 as n — +00. Moreover U} satisfies

AU 4 M(ED)20) = (UH) 2 i Q, =2h
(2.3.14) 0<UL<ULN0)=1 in €,
Ul=0 on 0€,.

Since P} is a point of local maximum of u,, we have that
0 < An(en)” <1,
and, up to a subsequence, we can assume
A(el)? = X €[0,1] as n — +o0.
Since U_! is bounded, by regularity theory we have
(2.3.15) Ul U in C}.(T)
where U satisfies

AU N =UNS in T
(2.3.16) 0<U<U@0)=1 inT
U=0 onoT

with m(U) < +oo and T = lim, 4+ 2,. Note that T is an hyperplane (without loss of
generality Rf ) or RV, Observe that, if A >0 by Theorems 1.10 and 1.1.76 we have no
solutions of the problem neither in RV and in ]Rf . If A = 0 then by Theorem 1.21 there are
no solutions in RY. By [22, 57, 90] U = Uj solves the limiting problem

A e in RNV
(2.3.17) —AU=U%>2 in
0<U<1.

— 400 as n — +00.

. 1
In particular A, 2 — 0 and w
7

Let m € N\ {0} and for i =1,...,m, let (P}) be m converging sequences of points in { and
(¢1) be m sequences of positive real numbers converging to 0. Note that Uo is unstable, so
there exists ¢ € C§°(RY) so that suppg C Br(0), R > 0 and

/!vm?—N”(Uo) 3 62 < 0.
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Then, we define ¢L(z) := ( 1)1N_2 cf)(xslp ) so that supp ¢, C Bpey (P,) and
€n) 2
N+2 N +2
196+ - AR = [I90P+ O (e - R UE e
2 N —2
N +2
2 U} 22 < 0.
=+ [ 1vop - o WH TR <

We say that (H}) holds if there exist m converging sequences (P?) of points in  and m

sequences (£%) of positive real numbers converging to 0 such that, up to a subsequence, the
following assertion holds:

(1) when m > 2, (P!) and (&) satisfy
PJ P
(2.3.18) ‘71’ — 400 as n — 4oo, forany j#1,
En
(2) forany i€ {1,...,m}, Ul — U in C?,
By 15t step we know that (Hi) holds.
We claim:

(RY) as n — +oo0.

27d step Assume that (H},) holds, then (H} ;) holds or dg”(x)%flun(:c) < C forall z € Q
and all n, where d* is given by (2.3.7) and C > 0 is independent of x and n.

We prove this 279 step. Suppose that (HL) holds. We assume that

(2.3.19) max d:’f(az)%*lun(x) — +00
Te
as n — 400, so we aim to prove that (H,lnﬂ) holds. We consider P! € Q such that
(2.3.20)
maxd (@) 2 " un (@) = d (P72 Mg (B = (_min PP = Pi)E Mg (B

Ly

M\Z

and we set u,(P+1) = (em+1)1=% We have that e™*! — 0 as n — +o0. It follows from
(2.3.19) that for any i € {1,...,m}

Pt — P
— T > too as n— oo
En
m—+1 i
We have also that w — 400 as n — +oo Vi = 1,...,m. Otherwise, we find 7 €
{1,...,M} and M s.t. P;**! € By (P}). Then
., pmtl Pz
a (P F Ty (P < ME T O (P ) <2 B swp UG (y)
n lyl<M

contradicting (2.3.19). Letting 0 < < 1, fory € B L (0) define

En

N
Ui (y) = (e ™) 2 tun(en ™y + B,
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We have that U™ 1(0) = 1 and U™ satisfies

AU A, (M2 = (UmtH) Y2 in B s (0).

e tT

For y € B 5 (0),and i € {1,...,m}, by the estimate

[P = Pl = eyl < (e ™y + PP = Pl < [P = P+ ety
and by (2.3.19) we deduce
(et y + Bt — By

nglfoo ‘P,T"H _ Pwiu| =1
This implies that on B i (0), then holds:
m+1 Pm+1 dm Pm+1 N_4q
U ti(y) = tn(cn yn—:rl ) < ( mil( )m+1 (Pm+1)> 51 asn— 4oo.

Arguing as before, up to a subsequence we have'

lim U™ =um™t in O (RY),

n—+o00
where U™ (y) < U™(0) = 1 and —AU™! = (Um“)N 2 in RV, So we have that U™+! =
Ug proving (H}, ;). Set now mo = sup{m € N : (H},) holds for a subsequence } and we have
. N=2 i
mg < +oo. Indeed, whenever (H}) holds we can find a function ¢! (z) = E% 2 qb(%) S0
that supp ¢, C Bpei (P?) and

n

N +2 A5
J162 + 0 = 5l )02 <
for every i = 1,...,m. By (2.3.6) the functions ¢! have disjoint supports, and are therefore

orthogonal in L2(Q) This implies mg < sup,, m(u,) < +0o0.

By the 27d step, we get that there exist m > 1, converging sequences (P?) of points in © and
m sequences (£ of positive real numbers converging to 0 such that (H},) holds and such that

(2.3.21) d™(2)2 tup(z) <C Yz eQ, YneN,

for some C' > 0. The proof of (1) is complete.

As far as (2), let s = {lim;, 100 P : i =1,...,m}. We have that u,, — 0 uniformly in Q\ S.
If not, up to a subsequence, we can ﬁndP €Nst. P, — PeQ\S and u,(P,) > & > 0.
Let r > 0 small so that Bs,.(P) C S°.

We consider a cut-off function x so that x = 1 in By, (P), x = 0 in B3T(P)C and 0 < y < 1.
We multiply (2.3.1) by x?u, and integrate in Q to get:

/Q 9 (xun)[? + s /ﬂ (xun)? = /Q (Vttn O ttn) + A i (6 1)) + /Q u2 V2

7N
- /Q<x2 W2 1 [V edd).
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By (2.3.9) we get that u,, < C in Bs,(P)NQ, and then y u, is uniformly bounded in H} ().
Then wu, is uniformly bounded in H'(Bs,.(P) N Q) with A, fBgr(P)mQ u? < C. Up to a sub-
sequence, by the Sobolev embedding Theorem u, — u in H'(Bsy,(P) N Q) and strongly in
L?*(By.(P) N Q). Since \, fBQT(P)mQ u? < C and )\, — +oo, we get that u = 0. Up to a
subsequence, we have that u, — 0 a. e. in By,(P)NQ. By the Lebesgue Theorem and u,, < C
in By (P)NKY, we get that u, — 0in LP(By,(P)NN), Vp > 1, as n — 400 and

(2.3.22) up — 0 in LP(0B2,(P)NQ), Vp>1, as n — +oo.
Let v,, be the solution of
N42
(2.3.23) —Av, =uy ° in By (P)NQ
Up, = Up on 0(Ba,(P)NQ).

Letting G(z,y) be the Green function of —A in H}(Bz,(P)NQ), by the representation formula:
Vx € By (P)NQ there holds

Ni2 N2
on() = / w2 () Gz, y)dy — / W2 (y) By Gla, y)dy.
By (P)N2 OBa2 (P)NQ

N+2

in view of u, = 0 on 9Q N By, (P).
By (1) and (2) we get that v, — 0 uniformly in B,(P) N Q. Since —Au, = uy > — Ay <
N

+2

N

un > = —Avy, in By (P)NQ, by the maximum principle we get that 0 < u,, < vy, in Ba,(P)NL.
Hence, u, — 0 uniformly in B,(P) N and in particular u,(P,) — 0 as n — +o0.
This contradicts u,(FP,) > dg > 0.

We say that (H2) holds if, up to a subsequence there exist m converging sequences (P) of
points in © and m sequences (g!,) of positive real numbers converging to 0 such that

(1) when m > 2, (P!) and (&) satisfy
Py — P

(2.3.24) i
min{ &}, &, }

— 400 as n — 400, forany j#i;

vl

(2) for any x € Q and any n, d7(z)2

(3) there exists ¢g > 0 and P? € RV,
Ul = Ut(- — P in C2 (RN \ S;).

loc

up(z) < C for some C > 0;
i 1,...,m such that for any ¢ = 1,...,m

We have seen that (H7) holds for a suitable mg € N'\ {0}. Note that (2) of (H,, ) implies
(3) of (ano) by simply taking P* = 0 V4. We now prove 3™ step:

3rd step Assume that (H2,) holds, then (HZ ) holds or
(2.3.25) lim limsup sup dnm(x)%

_lun(x) =0.
R=400 n—+too ze\U™ B, ; (Pi,)
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Assume that (2.3.25) is false. Then, up to a subsequence, there exists a sequence P71 of
points in 2 such that for any ¢ =1,...,m

Pi o Pm+1
and such that
(2.3.27) d™ (P2 Ly, (PTL)) > 6

for some &y > 0. So we need to prove that (H2, ) holds. We let u,, (Pm+1) = (em+1)1- % and
claim that (HZ ;) holds when adding (P;"*!) and (1) to the (P})’s and (g},)’si =1,...,m.
We observe that (1) of (HZ_ ;) is a consequence of (2.3.26). We observe that dnm(P,TH) — 0 as
n — +oo. Otherwise, for a subsequence, we can assume that P™! — P with d(P) > 6y > 0.
By (2) of (H2) we get that u, < C in B.(P), for some ¢ > 0 small, and then B.(P) C Q\ S.
By (1) of Theorem (2.9) u,, — 0 uniformly in B.(P), and in particular u,(P"") — 0,
contradicting (2.3.27). Since d,(P™"1) — 0, by (2.3.27) we have that e+ — 0 as n — +o0.

Given0 <4 <1, fory € B_s_ (0) we set U1 (y) = (em+1) 2 ~ly, (™1 2+ P™+1). We have
that U7+1(0) =1 and
(2.3.28) AU A, (T2 = ()Y i B s (0).

We let

n—-+00 5171”""1

Pi_Pm+1
Sm+1:{ lim —*>—~—2 1§i§m}

where, up to a subsequence, the limits are ok. Note that by (2.3.27) 0 ¢ Sp,41.
Let R > 0 and (P,) a sequence in B(0) such that d(Py, Sp41) > %, then

€m+1
= 2R
for n sufficiently large. Letting y,, = e™*! P, + P! it follows from (2) of (H?2,) that

dm( m+1P + Pm+l)

UgH_l(Pn) _ (&,m-&-l)%—l un(gzl-&-l Pn+ P;ZH_l)

n
< @R ()2 unlyn) < @B)T T C
Then, for any K CC RN\ Sy,41 there exists Cx > 0, independent of n such that U] o gy <

Ck. -
As in 15t step and 279 step we have, up to a subsequence,

lim UM =U™ in CEL(RY \ Spmy1)

n—-+o00

N+2
where U1 is such that U,,1(0) = 1 and —AU™ = (U™~ in RV \ S,,11. Due to
22]

A

N-2

U™ y) = 9,21 Us (Y1 (y — P™ )

m+1)2
where Y41 > 0 and P™FL € RN are such that v,y = 1+ ot [P

NON=D) Since S; with
respect to (H2,) coincides with S; with respect to (H2,,4) in view of (2.3.26) Up to changing

m
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emtinto (ym+1) tem ™ and Ppq1 into (Yimg1) ' Pmy1, property (3) of (HZ,. ;) is proved.
Since minj—; 41 |z — Pl < ming—1 . m | — P!| property (2) of (HZ) is still true. Since
d™(P™ 1) — 0 note that lim, 4 P™T! € S, where S is the set composed by lim,, s 4o P!
fori=1,...,m.

To complete the proof of Theorem 2.9, we need only to show that 3k € N, k& > myg, so that
(2.3.10) holds. This will follow by sup,, m(u,) < +oo and the following construction. Let
¢ € C3°(RY) so that

N +2
(2.3.29) /\wm? + (UO) 202 < 0.

We now want to show that we can remove a point P: 3¢ € C°(RY \ { P}) so that (2.3.29)
holds. Given 0 < § < 1, let xs a cut-off function defined as:

0 if|y — P| < 62
(2.3.30) Xoly) = 2— "Bl g2 < |y — Pl <5
1 ifly — P| > 0.

The function ¢5 := x5 ¢ satisfies:
[1vose— [1v6r = [193aP6 + 06 - 06+ O( [ xal¥sl o] (99))

1 dy N 1 dy
= O(—== T—p5g T0 + —
(10g25 Bs(P\Byo(P) [y — PI? [log 6| /B, (P)\B(P) 1Y — PI?

>—>0,

and
/(Ué)ff%b% - /(U&)N‘? $2 = 0(5N) )

as 0 — 07. Then for § > 0 small the function ¢; still satisfies (2.3.29). This the function o

we were searching for. The construction can be clearly repeated for many points Pl,... P
there exists ¢ € C5°(RN \ { P1,..., P7}) so that (2.3.29) is valid for ¢.
Now we proceed by induction. Assume that (H2) holds and we have found ¢.,...,¢" €

C2(€) with disjoint supports so that suppg}, C Bg.:i (Py) and

4 N+ _4_
L1962 4 0 = 5 a6 <

for every ¢ = 1,...,m and for some R > 0.

If (2.3.18) holds, we set kK = m and we are done. If (2.3.18) doesn’t hold, up to a subsequence
we can find a point P! as in 37 step.

Letting Spi1{ P',..., P?}, we can find ¢ € C§°(RN \ S,,11) so that (2.3.18) is valid with Ul
replaced by U}(-, P™*1). So, there exists § > 0 small so that

m Pz o Pm+1 ¢
supp ¢ C UB‘;(%) HB%(O)
i=1 n
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i m—+1 i _ pm+l
(We have to treat separately the case % — Sm+1 and % — +00). De-

fine now ¢t (z) = e =z x_,];’Tj € C°(9Q). Then supp ¢t C Bi_msr (P!
n ( m+1 e + 0 n sEn n
Uiz, Béezn+1(Pz) If Wlﬂ — Spmi1, by (2.3.18) we have that e7+! > ¢! and

n

en _ [Py P min{e, en )

gmtt gmtl |Pi — Pt

— 0,

which implies supp ¢! N supp ¢!, = ¢ in view of supp ¢!, C B e (P?).
i pmtl .
When % — 400, by (2.3.26) we get B%Exﬂ (P,TL”“)HBRS% (P?) which implies supp ¢/ 1N
supp ¢, = ¢ also in this case.
It is easy to see that

N+4+2 A5
L1 R+ = gt et = [ 190R + (-

- /[IWI2 N+2(U0)N7( — P™h¢% <0

as n — +o00, in view of UM —, Uo( — PmHl)in C2 JRYN\ S, 1) and ¢ € CFP(RY \
Sm+1)- By 3" step, we know that (H2_,,) holds for { P!,...,Pm™*!} and we have found
bh, ..., oM € C5°(Q) with disjoint supports so that supp qﬁ}l C BRa%(PfL) and

. N9 4
LIV + O = ST )2 <

N +2
N —

(U’”“)Ni)(dﬂ2

forevery i =1,...,m+1 and some R > 0, unless (2.3.18) holds for m. Since this last property
holds for every m > myg, and then we get a contradiction:

m < sup m(u,) Vm >my.
n

This show that 3k € N, & > my, so that (2.3.10) holds and Theorem 2.9 is established. O

2.3.2. Sharp pointwise estimates. We define P! € Q and £ > 0 by the relations
n n

. L 1N
un(P}) = maxu, = (1), 2

i=1....,k, clearly P — P¢, (P} is a geometrical point of blow-up) and &’, — 0 as n — +o0.
We know, by Theorem 2.9, that there exists C > 0, independent of n, s. t. for any n and any
x €

(2.3.31) |z — P! 2wy (z) < C
and that
(2.3.32) lim lim sup |z — Pfll¥un(x) =0.

R—+00 n—+00 Q\BR i (PY)
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N—-2 1

The Standard Bubble (%)~ "2 U (*=f2) is given by the expression:

7
En

N-2

87; :
(2.3.33) Upy e, () = <12|Z—Pn|2> '
S v ggs)

We claim that the following sharp estimate holds.

THEOREM 2.10. Under the above assumption, up to a subsequences, there exists C' > 1
independent of n, such that for any n and any x € Q)

k
(2.3.34) up(z) < C Z Upi yci pici ()
=1

where P, and €, are as above, i.e. the uy,’s are CO controlled, by the standard Bubble.
2N

Moreover, fQ Up > < +o00.

REMARK 2.11. Using the analysis done by Druet, Hebey, Robert [47], we could be able to
obtain the estimate (2.3.34), in our case, for solutions with uniformly bounded Morse indices
and k—peaks.

PRrROOF. For simplicity, we explain only the proof for 1—peak case.
Rather, we proof a weakest estimate i.e. that:

(en) 2 ¢

|z — P,[N-2-¢

in Q\ Byre, (Pp), with M > 0, £ > 0 small.

(2.3.35) u, <C

Let u,, be positive solution of (2.3.1) with sup,m(u,) < +00. By Theorem 2.9 we have that
(2.3.36) u, =0 in CP.(Q\{S})

as n — +00.
We define ¢,, by the relation

o[z

up(Pn) = (En)li

where P, are local maximum for u,,. We have that

i = (un(Pn)) 7

n

and £, — 0 as n — +00. We say that (2.3.31) and (2.3.32) hold, then we have that there exists
C > 0 independent of n, such that for any n and = € Q

| P, — x|¥un(x) <C
and

N—-2
(2.3.37) lim lim sup |z — Py 2 up(x) =0.
R +oon=H00 0\ Bre,, (Pn)
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Therefore the theorem reduces to the existence of C' > 1, independent of n, such that for any
n and any x:

N—-2

En oz
(2.3.38) up () < C((en)Q AP > ;

N(N-2)

and for any ¢ > 0, to the existence of §; > 0 independent of n such that for any n and any
T € ng (Po)

N—-2

e T2
(2.3.39) un(z) < Ce( AR ) :

(en)? + N(N-2)

where C; =14 . We prove (2.3.38) and (2.3.39) in several steps.
We claim first that there exists C' > 0 such that, up to a subsequence,

N—-2

2
e
un(x) S C( nx,P 2 )
(En)2 + ]‘V(Nf|2)

for all n and x € §2, the proof of this claim reduces to the prove that there exists C' > 0 such
that for all n and x € Q

(2.3.40) |P,y — )N 2, (P un (x) < C.

As a first step we prove that for any € > 0 there exists C. > 0 such that for any n and x € €,
(2.3.41) 1Py — 2N 275 (e,) T o, (2) < C-.

We prove (2.3.41), it is suffices to prove this for £ > 0 small. Indeed, let 0 < e! < 2, (2.3.41)
with respect ¢ = el,e? is true if |P, — 2| < e,. If (2.3.41) is true with respect to ' and
|x — P,| > ep, then

& — PN 27 (6,) 2 () < (|2 — Pol ren)T [P — 2N (e0) 2 ()

then (2.3.41) with respect 2 is true. There exists ¢ > 0 such that, fix &g > 0 small, we can
consider the Green’s function of the operator —A + 11;52. By the maximum principle, G; is
positive. We let L,, be the operator

a4
Lou = —Au+ M\u— ui 2u.

Since Lyu, = 0 with u, > 0 on £, we get from [20] that the maximum principle holds for L,.
We have

Ln 1—¢ Pz 4 2 Pn
Ga ( nvx) :€0+)\n+1—ug_2($)+6(1—6)|VG6’ ( ,JE)

G5 (Pi,x) G2(Pn, @)
so that
L,G.7¢(P,, x) A IVG-|?(P,, )
2.3.42 o> g —uh 2 1—g) 2 v mo)
(2342 TS I e Ty ey
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We use a standard property of the Green’s function, i. e. there exists C' > 0 and p > 0 such
that, for any n and any « € B,(P,) \ { P },

VG.\(PLa)  C
Ge(Py,x) ~ |z — Pyl

Let R > 0, to be fixed later on. By (2.3.36) and (2.3.42), we get that for n sufficiently large
L,Gl=#(P,,2) >0
in Q\ B,(P,). On the other hand, if x € B,(P,) \ Bre,(Pn), then by (2.3.37)

(2.3.43)

4
| — Pof?un () < e,
where ep — 0 as R — +o00. This, (2.3.42 ) and (2.3.43) gives that

L,G!=¢(P,,2) _ Ce(1 —¢) — Buer
G (Py, ) |z = Paf>

We choose R > 0, sufficiently large such that Ce(1 —€) — eg > 0. Then L, GL=¢(P,,z) >0
in B,(P,) \ Bre, (P»), and we have proved that for n sufficiently large, L,,G17(P,,z) > 0 in
Q\ Bge, (P!). We recall another standar property of the Green’s function, i. e. there exist
C > 0 such that for any n, and any = € 0BRr., (Py),

G (Plyw) 2 0 ()00
If we let C, = C~(g,) "9 N=2) then we have

C'nG;_8 (Pp,x) > up(z)

>

for all n and all x € 0Bge,, (P,). We can use the maximum principle, then
CnGéfs(Pn,a:) > up ()

for all n and all z € Q\ Bg., (P,). Noting that there exists C' > 0 such that for any n, and
any x € Q\ { P, },

|P, — 2|N2G.(Py,x) < C
it follows that for any € > 0, any n, and any x € Q\ { Py },

[Py — 2N en) 7 Pun(a) < C

where € = (N — 2)e, and C; > 0 is independent of n. (2.3.41) is true in Q \ Bg.: (Py), and it
is obviously satisfied in Br., (P,). This proves (2.3.41).
Now we have that

(en) 2 7

in Q\ Bae,, (Pn), with M > 0. Observe that

(2.3.45) / ubt < 0.
BM en(Pp)
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Integrate (2.3.44) and by a change of variable (x — P, = €, y)

(2.3.46) / 5 o S
N\Bar e (Pn) DN\Bure, (Pa) & — P, |* N on=2
2N-& 2

(2.3.47) < ¢ %dy

RNM\B1(0) |y, y| N-2

A 1

(2.3.48) < ¢ _ i<t

RN\ B1(0) |y‘2N_€m

2N

This proves that [, un > < +00. -

2.3.3. A non existence result for % < p < pe(N). When % < p < pe(N), we
have that m(u,) — +00 whenever ||uy,||cc — +00 as n — 4o00. For a solutions sequence u,, of
(2.1.3) with A\, — +oo we always have that ||uy||coc — +00 as shown in Proposition 0.1.

In conclusion, we have that

THEOREM 2.12. Let ££2 < p < p.(N). Problem (1.1.1) doesn’t have, for X large, solutions
Uy, with uniformly bounded Morse indices or with uniformly bounded energy.

2N
Indeed, with p = {42 if holds (2.3.34) then w,, have bounded energy (i.e. [, un > < +00).
Castorina and Mancini [25] were able to prove that, in the critical case for all \,, — 400, any
possible blowing-up solutions sequence have the property that fQ uPt! — 400, so there aren’t

solutions of this problem with uniformly bounded Morse Indices.






CHAPTER 3

Location of the blow-up set

This chapter deals with the location of the blow-up set of our problem. We show that Morse
Index information on solutions of (1.1.1), with 1 < p < %, provide a complete description
of the blow-up behavior, in the sense that we obtain some crucial global estimates to localize
the blow-up set. If u, is a a family of solutions of the problem (1.1.1), u, has exactly a finite
number of maximum points P}, ... ,Pf. The question is to find where are P! i = 1,...,k.
Intuitively, the location of should depend on the geometric properties of the domain. We show
exactly how the geometry of the domain affects the solutions. When in the equation (0.1) the
potential V = 1, we derive some results are already known, having information on the Morse
index, i.e. we obtain that a solution which posses a single peak has its peak in the interior of
) and this peak must be situated near the most centered part of 2, that is where the distance
function assumed its maximum. Otherwise with a generic potential V', the geometry of the
domain does not influence the location of the peaks, that must be critical points of V.

3.1. Case V #1

Our aim is to localize the blow-up set as critical points of the potential V. In the radial case a
modified potential M(r) := rN=1V(r), (0 = % — 3), introduced by Ambrosetti, Malchiodi
and Ni [5], has an important role in concentration phenomena. In our case the presence of V'

is fundamental for the location of blow-up points.

3.1.1. Preliminary estimates. In this section we prove some estimates that we will
need in the sequel. First of all, a lemma is in order. We anticipate that the pointwise estimate
(3.1.1) below is the key ingredient that will allows us to localize the blow-up set.

Let us start with some asymptotic estimates for u,, solution of (1.1.1).

We say that u, has, up to a subsequence, at least k points of local maximum Pl ...,PFcqQ,
with P! - P'eQ,i=1,... k.
Let

Ji={j=1,...,k : PP}, Ij:=BsP)NnQ,
§ > 0 fixed small that Ii N {P,..., Pk} = {P"}. We have the following estimates:

LEMMA 3.1. Let g be some smooth functions on ). Let 1 < p < %, q>1 Fixi €
{1,...,k}. Then
i i\ 2L +N
(3.1.1) gut, = g(P)( D) ) ([ U+ ou(1)
I RN

5 JeJ?

55
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where o,(1) = 0 as n — 4o00.
In particular

L)
(3.1.2) /ﬂug“ - (Z(Eg)*ﬁﬂv)( . Urtl 4+ on(l))

i=1
PROOF. Let d,(z) := min{|z — P}| :i=1,...,k}. Given R > 0, for n > n(R),
{dn(z) < Rel} c Q and I{ N {d,(z) < Rep, } = Ujes,{|z — PI| < Re}, }.
We know by Theorem 2.4 that

k \z Pl
2
(3.1.3) ul <OE) 7Y e

Jj=1
We have

/ gul = / g(@)ul + / g(x)ul
i Iin{dn(z)<Re} } Iin{dn(z)>Rel }

o ) / g(a)ul

jed; {|z—P}|<Rel}
q,y\w—P%I
+ / “n )
Z {|z— P]\>R51}
S _ 24 ) ) ) ) . 2q
= SETY [ ey PDul(Ey + PDED)
jed; {IyISET"}
e,
+ oY e | )
j=1 {lyl=R=}
2
_ Z(é—])—pqﬁN/ g+ PHU)
jed; {lyl<=52)
2 N ffmly\i
b oY@ [ E%)-
j=1 ‘HZAZRﬁ}
Up to a subsequence, e} < el < Cel . so we can assume that — 0; € [ 1]. Since Ul —n U
in C’llo C(RN ) for any j =1,...,k, we find, along some subsequences.
. 1 %_N q
Jim (=) [ o

=g(Pi)Z(Gj)ﬁ_N/{lngg_}U‘“rO(Z/ _m[gm»

j=1 y‘>R9
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sending R to infinity, we get, along the same sequence
2q—N(p=1) . 29=N(p=1)
li INTo q _ PZ( g. P! > q
DT [ ot =oP) (0, v

Jj€J;

Rescaling the definition of 65, the proof is complete. Moreover, by (3.1.3) we have that u, — 0
as n — +oo uniformly away from { P!,..., P¥}. So, if we take ¢ = p+1 and g = 1 in (3.1.1),
we have (3.1.2) by summing over 1. O

3.1.2. Blow-up set. Therefore, we combine the asymptotic expansions in Lemma 3.1
with a Pohozaev identity to obtain the location of blow-up points P!, ..., P*.

THEOREM 3.2. For anyi=1,...,k, P' is a critical point of the potential V :
VV(P") = 0.

- PROOF. Let’s get the right Pohozaev-Type Identity to work. Let 6 > 0 small, and P -
P' € Q. We multiply the equation —Au, = ub, — X\, V u, by Opun, so we have the Pohozaev
identity on Bs(P*) N = I,

Up+1 'LL2 U2
/Ig(“ tn)Ontn = | <p—|—1 2) 2

i
5
2

ubtt u A
/813 <p+1 2>”h g2
= / = Oiiun 3hun:/ = Oitn v 3hun+/ > 0i unOpun
5o or; 08y

1
= Guunﬁhun+/ 8h(f|Vun|2)
ori o \2

1
= — 8Vun8hun+/ 5|Vun|21/h

oI oI

AV (2)u, — 0 uniformly in Q away from P!,..., P*¥. Observe that by the exponential decay
in Theorem 2.4 we have that u,, |Vu,| — 0 as n — 400 on 0Bs(P"), and we say that u, =0

on J€2, so the integrals on Glg are zero.
We have

Ao [ OV Ul —nhoo 0 Vh, Vi
I3

By (3.1.1) we get that
M | OV R = AnahV(Pi)( Z(gi)—ﬁw) (/ U2 +0n(1)) Vh, Vi
n n RN b b

7 .
I(S JjeJI
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by Theorem 2.4 we say that \, (5)2V — X € (0,1] so

A [ RV uE = V(/;Z.)é?hV(pi)( Z (5,@)‘%+N_2> (/

7 . N
15 jegs R

U2+on(1)) Vh, Vi,

and divided by (e ()77 and fyn U < oo

V(P : ; .
_— PZ = .
= VP 0 Vh,Vi = OpV(P')=0 Vh,Vi
Therefore ‘
VV(P') =0, Vi.

3.2. Case V =1

When the potential V' = 1, the approach used in the previous section is useless, because we
must have a more precise expansion of the Pohozaev-Type Identity. In this case the idea is to
use some techniques of [89] and [104, 105], that consider the projection of U in £2,, and also
a vanishing viscosity method to derive some properties of this projection.

We consider the case when the blow-up occurs in one peak and would be possible to generalize
the idea for the case of multi-peaks, using the appoach in [65, 64, 91].

We obtain that the blow-up occurs in critical points of the distance function.

3.2.1. Some properties of the distance function. Let ) be a smooth bounded domain
of RV, Let f: Q — R be a Lipschitz continuous function. We recall the following definition
due to Clarke [28].

DEFINITION 3.3 (The generalized gradient). The generalized gradient of f at z € 2 is the
set:
of () ={a eRY | fOz,v) >a-v Yo e RV}
where the generalized directional derivative f°(x,v) is defined by

h+ Xv) — h
fo(az, v) = limsup flatht ) - flat )
h—0,\—0t A

If f is continuously differentiable at = then 0f(z) = {Vf(x)}.

If f is only differentiable at x, df(z) can contain points other than V f(z).

For example, for f(z) = z%sini it is easy to show that f°(0,v) = |v|. So 9f(0) = [-1,1]
which contains the derivative f/(0) = 0.

DEFINITION 3.4. The function f is said to be regular at =z €  provided that for any
v eRN 9,f(x) = fO(x,v), where 9, f(z) is the usual directional derivative.
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In [28] we deduce (in Proposition 2.2.4 and (b) of Proposition 2.3.6):

PROPOSITION 3.5. If Of(z) reduces to a singleton {a}, then f is differentiable at x and
Vf(x) = a. Conversely, if f is differentiable and regular at x then 0f(x) = {V f(z)}.

We recall the following property in [28] (in Proposition 2.1.5).

PROPOSITION 3.6. Let z,, and oy, be sequences in RY such that x, € Q and a,, € Of (x,).
Suppose that , — x and o, — « as n — +o0o. Then a € f(x).

Let © = (x1,22). Denote by 0;f(x1,x2) and 02 f(z1,22) the partial generalized gradient of
f(,x2) at 1 of f(x1,-) at a9 respectively. The following result holds (see [28], Proposition
2.1.5).

REMARK 3.7. If f is regular at (z1,z2) then
Of (z1,2) = 01 f(1,22) X O2f (21, 22).

Assume that {f;}icr is a finite collection of Lipschitz continuous function defined on D. The
function f(x) = min{f;(x) |7 € I} is easily seen to be a Lipschitz continuous function. For any
x € D we let I(x) denote the set of indices i for which f(x) = f;(x). Then the following holds
(see [28], Proposition 2.3.12).

PROPOSITION 3.8. If f; is reqular at x for any i € I(x) then f is reqular at  and

Of(x) = co{ 0fi(x) i € I(x) },

where co is the convex hull of the set.

DEFINITION 3.9. A point zg is said to be a critical point of f if 0 € df(x¢). A real number
c is said to be a critical value of f if there exists a critical point z¢ of f such that f(zg) = c.

By Definition 3.3 we easily deduce that if xg is a minimum point or a maximum point for a
Lipschitz continuous function f then 0 € 9f(x¢).

DEFINITION 3.10. Let dgq : €2 — R be the distance function defined by
doq(x) = dist(z, 0Q) = min |z — y.
yeN

The function dpq is a Lipschitz continuous function. In [28] (by Corollary 2 p.87), we can
compute the generalized gradient of the distance function.

REMARK 3.11. For any x € 2 we have

Odoqo(z) = {/ v (y)d,, (y) : d,,(y) is a bounded Borel measure on 952,
[2}9]

(3.2.1) /69 dy, = 1,supp(d,,) C HaQ(:U)},
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where
(3.2.2) Hoa(z) = {y € 00|y — 2| = doa(x) }
and v (y) denotes the unit inward normal at the point y of 9.

In [28] (by Corollary 2, p. 87), we deduce that the distance function is regular at any x € .
Therefore by Proposition 3.5 we get:

REMARK 3.12. dyq is differentiable at = if and only if IIyo(x) reduces to a singleton
{m(x)}. In this case, Vdaq(z) = v® (n(x)).

Finally, we have:

PROPOSITION 3.13. There exists a neighborhood J of the boundary of Q such that moa(x) =
{m(x)} for any x € JNQ. In particular, |Vdpq(z)| =1, Ve € JNQ.

3.2.2. Blow-up in one peak: notations and preliminaries. There are many papers
concerning the effect of the domain topology on the solutions of problems related to our (see
[12, 13] and [14]) and concerning the importance of the shape of the domain on the solutions
(see [33, 34]). In [35], the uniqueness of solutions was proved under a very strong symmetry
hypothesis of the domain. The first precise result on the effect of the domain geometry on the
generic solutions of —eAu — u + uP = 0 with Dirichlet boundary condition is [104]. It seems
extremely difficult and interesting to see how the geometry of the domain affects the locations
of multi-spikes solutions. Due to the special structure of the problem, it is necessary to estimate
the exponentially small error terms. Thus traditional techniques in singular perturbations do
not seem to apply; it is necessary a detailed study of a vanishing viscosity solution.

Let us introduce some auxiliary problems that will be used in the sequel. Let wu,, be solutions
of

—Auy, + Mu, = ub in Q
(3.2.3) Uy > 0 in
U, =0 in 092.

N+2

with sup,, m(u,) < +oo, for 1 < p < 3=5.

Let P, be a local maximum of w,, and consider
2

the usual change of variable U, (y) = eb ! un(eny + P,) that satisfies

AU, + MU, =UF  inQ, =%
. 4 En
(3.2.4) { U,=0 on 0%,

with A, = A,e2. By previuos Theorem 2.1 we say that A\, — A € (0,1], and U, —, U in
C’lloc(]RN ), with U solution in the whole space of

(3.2.5)

—AU + \U = UP in RV
0<U(z) <U0) = 1.
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Consider some related problems that permit to obtain an expansion of U,,.

We define the projection Pq, U to be the unique solution of

{ —APq, U+ APy, U=UP inQ,

(3.2.6) Po, U(z) =0 in 9.

Let

r— P o
on=U = Po,U, v = —enlog (u(“—)). Va ‘:ea"wn(Pn)%:Hinll’
n

which satisfy respectively
~Apn+Ap, =0  inQ,
(3.2.7) 0<pp(z)<1 in 0,
o(x) = U(LP”) on AQ,

En

(3.2.8) EnAipy — V|2 + X =0 in O
- Un(x) = —enlogU (%) in 09,
AV, +AV, =0  inQ,
(3.2.9) { Vo(0) = 1.

Then, following the ideas in [89], we can prove that, up to a subsequence, for every sequence
en — 0

Unly) = Po,Uly) + e "y (y)
SO )
Po,U = Uy —e w1,
and )
on =U—Up — eiawn(Pn)ana
with ¢,, solution of

A by Lon(Pn) UP — Pl = 0 in 0
(3.2.10) —A¢n + Andn + e U — UP] = in {0y,
¢n(x) >0 in 082,

such that ||¢,, — @0l (q,) — 0, where ¢q is a solution of
(3.2.11) —A¢g + Ao = pUPH(¢o — Vo), in RV

and V1 is a solution of

< _ N
(3.2.12) {Au—)\u—(] in R

u>0. u(0)=1.

REMARK 3.14. We observe that, by the Maximum Principle, Po, U < U on §, in fact

{ —APq, U+ AP, U =—-AU+ XU inQ,,

(3.2.13) P, U=0<U on 02),,.
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We have the following results for the profile of U,.
2

PROPOSITION 3.15. Let Uy, (y) = e un(eny + Py), then the following statements hold.

(1) For anyn > 0, there exist positive constants €g and kg, such that, for all 0 < &, < &y,
we have By e, (Pn) C Q and [|[Un = Ullc1(py, (0)) < 1, where U is the unique solution

of (3.2.5).
(2) For any 0 < 0 < 1 there is a constant C such that
(3.2.14) Un(y) < C e -0l fory e Q.
(3) 1Un = Ullzs(@,u) — 0 for all1 < s < o0 as ep — 0.

PROOF. (1) We omit the detail of this proof. Indeed repeating the proof of Theorem
2.1 in [86] we see that U,, — U in C}. _(RY) as €, — 0, where U is the unique solution
of (3.2.5). This proves the thesis.

(2) By a result in [57]

(3.2.15) U(r) < Cye " forr >0.
For any 1 > 0, set
R :=log (@)
n

so that n = C'e . Then we say that there is a g9 > 0 such that
1Un = Ullcr @, oy <1
if 0 < e, < &g. Thus
Un(y) SU(y) +n < Coe T tn=2y
for |[y| = R. We have u,(z) < 27 for x € 0Bg.,(P,)) and &, < 9. By the fact
that there exists only one peak, the set { z € Q| uy(z) > 27} has only one connected
component. Consequently
up(z) <2n in Q\ Bge, (Pn).

We choose 7 such that A\, 6,% —aP >\, 5% — ¢ for @ < 2n. Then U, satisfies

AU, — M2 —UEDYU, =0 in Q,\ Bg(0),

(3.2.16) Unlop o) =2
U,=0 on 0€),.

Observe that A —a?~! > X\ —§ for o < 27. .
Let G(y, z) be the Green’s function for —A + X on RY i. e.

(N

_w-2)
(3.2.17) G(y,2) = Caly =277 K2 (ly - 2])

where C), is a positive constant depending only on N and K,,(z) is the modified
Bessel function of order m; see Appendix C in [57].

Let Go(ly]) = G(ly|) = G(y,0) and TU(y) = % m . Then U satisfies

<>

U-(A-0U=0
(3.2.18) { =2 on 9BR(0).
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By the Maximum Principle on €, \ Br(0), we have

Un(y) <U(y) on Q,\ Bg(0).
But on Bge, (Pn), Un(y) < C. Hence

Un(y) < Ce_(j‘_‘s)‘yl, for all y € Q.

(3) For any n > 0, by the exponential decay of U,, and U, there is an R large such that

U, — UHLS(Q\BR(O.)) < Z. On the other hand, we say that U, — U in C (R") as

n — 00, so there is eg > 0 such that e, < co, |Un — Ull1s(,nBr(0) < 3. Then
1Un = UllLs(0,) < n-

O

We recall the following results about U ( see [17], [57], [70]).
THEOREM 3.16. The equation
—~AU+U=U", inRY, Ux)for|z| = +o
possesses a unique non trivial reqular solution U with the following properties:
(1) U(x) >0Vx cRY,
(2) U is spherically symmetric, i. e., U(x) = U(r) where r = |z|, and U decreases with
respect to r,
(3) Ue C*(RY),
(4) U together with its derivatives up to order 2 have exponential decay at infinity; that
is, there exists C > 0 and § > 0 such that |DU(z)| < Ce I Vo e RN and |a| < 2.

(5) there exists A\g > 0 such that lim,_, 4 P e"U(r) = \o; moreover
!
lim U'(r)

=—1
r—oo U(r)

By this properties of U, we immediately have:

& — Po| "7 e PlU (j2 = Po]) = Ao + 0(1),
that implies
z— P,

n

N-1 e
):u—&u- e log (2=l

(3.2.19) ¢M($)::_€n10g¢n( 2 €

—en log(Ao +0(1)),

uniformly for x € 99Q.
Note that on 09, |x — P,| > d(P,,0), i. e. % > pn —rp 0.

We have the following statement:

LEMMA 3.17. It holds that
lim 71/}"(%)

n—oo | — Pn’

=1 wuniformly for x= € 0N.
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PRrROOF. By (3.2.19) we have
|z—Pp|

U () 1 N —1log —/——+ B log(M\o + o(1)) 1
|z — P, 2 |z=Pn| |z=Pn|
En en

uniformly for x € 902 as n — oo.
O

In order to study the properties of 1, we first consider a closely related problem which is
simpler.

LEMMA 3.18. Let ", for e, sufficiently small, be the unique solution of the equation
{ EnA) — VY2 +A=0 inQ
P(x) = |z — Py on Of).
Furthermore, there exist two positive constants Cy, Co s. t.
[V L) < C1, VY| o) < Co.

PROOF. We observe that 0 is a subsolution of (3.2.20) in €2, on the other hand, for ¢,
sufficiently small 1, is a supersolution to (3.2.20) and #,, > 0 in 2, by the Maximum Principle.
By Theorem 1 in [1], there is a solution ™ to (3.2.20) s. t. 0 < Y™ < 1y,.

We want to obtain an upper bound of 9. We choose a vector X such that |Xy| > 1 and a
number b large such that g(z) =< z, Xg > +b > |z — P,| on 99Q. Then by comparison, we
have that g(z) > 9" (x) on 99, which proves that [|9)" ||z () < Ch.

By computation

(3.2.20)

(3.2.21) { —enlg — Vg + A =1—|Xo? <0

g(x) > |z — Byl

The uniqueness of ¥™ follows from the usual Maximum Principle.

Now prove that ||V || o) < Ca. We first show that [[Vi)"|| e @9q) < C2. The idea of the
proof is to use a barrier method.

We choose § > 0 small and p > 0 large such that the distance function d(x) := d(z,09) is C?
in Q5 :={x€Q|d(z) <o} and pd > Cy. Considering the functions

P =z — Pl Y} =z — Pof + pd(),

and observe that
e (N-1)
3.2.22 DAY — VY P =
for x # P, and that ¥ > C(e,) > 0. Hence if we take &,, < &g and §(e,,) small it is easy to see
that ¢ is a subsolution on  \ Bs, (). Therefore it is a subsolution on Qs and ¢ < ¥"
on Q.
We have that

enAYT — |VYLE+ X = e,(AY" + pAd) — [VY™ + pVd|? + A

W (N =1
= VAP —2pVy" - Vd+ © ( )

—_— Ad.
‘:L’ — Pn| +eEnp
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We observe that
[Vd|=1 on 99Q, |Adl <1 in Qs.

Then, if we choose p large, we have

enAYT — |VYI2+ X <0 in Qg

P> P on 0€s.
By comparison, we conclude 9} > 9™ on Qs, so ™ < "™ < 9% on Q. Thus |[¢" -9 | < pd(x)
on {)s5. Since ¢ = ¢ on 99, it follows that [V | p(9n) < C2. By a simply computation
we have

(3.2.23)

AV ) — fnvw CY(VE?) >0 in Q.

Hence by the Maximum Principle, |[V¢"|> < C in Q. O

We need to analyze the limit of ¢ as n — +o0o. We obtain that this limit is a viscosity
solution.

LEMMA 3.19. Let ™ be the solution of 3.2.20, then Y™ converges, as n — 400, uniformly
to a function 1Yo € WH*(Q) which can be explicitly written as

(3.2.24) Yo(z) = inf (1P = Pal + L(P,)

where L(x,y) denotes the infimum of T such that there exists £(s) € C%([0,T),Q), with
€0)=uz,&T) =y, and ]%\ < VX almost everywhere in [0, T].

PRrOOF. Divided the proof in two-step.

15¢ step:  Let
S:={veW">®(Q) : v(x) < |z — P,| ondQ, |Vu| < VX ae. in 0},

we have that g is the mazimum element of S.

First we show that 19 € S. Indeed, since L(x,y) is the length of the shortest path in Q
connecting x and y, we see that |L(z,y) — L(Z,y)| < L(x,T) for all T € Q. Therefore |¢(z) —
Yo(Z)| < L(z, ). So we have that, when z € Q and T € (2 are closed, it is easy to see that
L(z,T) = |x—7| and |1ho(x) —10(Z)| < |z —Z|. Hence 1o € WH*(Q) and |Viso| < A < 1 almost
everywhere in Q. It is also easy to see that ¢y(x) = |[x — P,| on 99 since |z — P,| — |y — P,| <
L(z,y) for x, y € 90.
We next prove that g is the maximum element of S. Indeed, let v € S, since €2 is smooth we
can extend v in the following way:
for hg small enough there exists & € W°°(Q) such that & = v in Q and |Vo| < k a. e. in
Q"o where

Qv =QuU{zeRY\Q|d(z,09) < ho},

kecC (ﬁ) and k = \fj\ on Q. In fact, if hg is small enough, each point z in ﬁ\ﬁ is uniquely
determined by the equation:
xr=z+hv(z)
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where z € 09, h > 0 and v(z) is the unit outer normal to 092 at the point z. Moreover, the
map x — (z, h) is C* diffeomorphism on Q" \ Q. Then we set 9(z) = v(z) and k(z) = A\+Ch
for a large constant C' > 0 (independent on h). We regularize v in a classical way, for «
small enough, we may define v, = ¥ * po Where po = a Vp(2), p € C°(RY), suppp C By,

Jev p(y)dy = 1.
Then we have

IVual? < (IVD?) % pa < k2% po <A+ Ca

on Q and v, — v in C(Q) as a — 0.

Let z,y €  and for every n > 0, let £, Ty be such that £(0) = x, £(Tp) = v, ‘% <Xa. e in
[0, To], &£(t) € Q for all t € [0,Ty] and Tp < L(z,y) + 0.

Since 2 is smooth, there exist x4, Yo, £a, Tw such that £,(0) = 24, £(Ta) = Yas
\5—1—004 in [0,T,], & € CH([0,T,],0"0) and &, — &, Ty, — Tp as a — 0, for example we can

take &, to be the regularization of &.
We have

déa

dt <

To déa

Voa(§a(t)) - —-()dt

‘Uoz(ya) _Ua(xa)’ = dt

’ 0

T
Y 2
< /0 (VA+Ca)?dt.

Letting o — 0 and then n > 0, we obtain |v(y)—v(x)| < L(z,y). Hence v(z) < v(y)+ L(x,y) <
ly — Pp| + L(x,y) for all y € 9Q. Then we have v < 1.

2nd step: F(ﬁ" any sequence €, — 0, there is a subsequence €, — 0 sgch that ¥ — 1
uniformly in Q as ey, — 0. Then it follows that ¢ — O uniformly in Q as n — co.

By Lemma 3.18 and the Ascoli-Arzela theorem, for any sequence €, — 0, there is a subsequence
€n, — 0 such that ¢ — 0 uniformly in Q as &, — 0. We have to prove that 1)° = 1.
We observe that 0 € S, in fact by taking limits in the sense of distributions in the equation
satisfied by ¢, we obtain |V¢/°|2 < XA < 1 in D'(Q). Thus ¢° € Wh=(Q), |Vy°| < Vi<la
e. in Q and Y°(x) = |2 — P,| on 9Q. Hence " < 9)y. On the other hand, let v € S, like in 15
step we extend v to ¥ in Q" and regularize ¥ to v,, in such a way that ||v — Vallpoeo@m < Ca

and |Vo| < k. We have that

Vual?> < (IVO?) % po < E? % po <A+ Ca
and v, — v in C(Q) as a — 0.
Moreover we have

(3.2.25) { enVia = [Va|? + A+ Ca+ Age, >0 in Q

va(z) < |z —P,|+ Ca on 99,
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where A, > 0.

Let 9o := —Y2—— then by comparison we deduce that
(3.2.26) b < hVitCardaen + Ca.

“n we see that —2e— < ¢ + Ca as

Choosing &, = 5;% such that &, = m, T
6;% — 0. Then, letting o — 0, we obtain v < ¢°. In particular, we have ¢g < ¥° and then
Yo(x) = ¢°(2).

REMARK 3.20. Note that v is a viscosity solution of the Hamilton-Jacobi equation: |Vu| =
VA in Q, see ([72]). Observe that ¥o(FP,) — 2d(Py, ) as n — 400, for the proof see ([89]).

We give an estimate for ¢, (z).

PROPOSITION 3.21. (1) There exists a positive constant C s. t. |[1n| o) < C.
(2) For any og > 0, there is an gg s. t. for any e, < &g,

Vn(Pp) < (14 X+ 09)d(P,, 09).

(3) Up to a subsequence, for every sequence e, — 0, V,, — Vi uniformly on every compact
set of RN, where Vi is a positive solution of (3.2.12).
Moreover, for any o1 > 0,

sup ¢~ O+, (1) — Vo(y)l = 0, as n— oo,
yEQ,
ProOOF. (1) The proof of this is almost identical to that of its counterpart in Lemma

3.2.20 and is thus omitted. o o
(2) Assume that d(P,,09) = |P,, — P,| where P,, € 09Q. Let y, be the point on the ray

P,P, s. t. |Py—yn| = (A\+n)|P, — P,| where n < min{1,00/10} so small that
By, (yn) C Q¢ and By, (y,) UQ = {P,} for ro = n|P, — P,|. Consider wy,(z) =
(A+20)(|Py — Pu| + |yn — ), we have , on 6

Yal@) < (A+3)la— Pl
< (A4 3) 0P =l Iy — )

- (i+ g)((ﬂnnpn — Pl + [yn — )

< wp(x)

for e, sufficiently small, since (A + DA +1) < A + 27. Moreover, wy,(z) € C2(Q)
(observe that P, ¢ 0f2) and

~ €T — n
C C

Yn — 2 (n|Pn — Pul)
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(3.2.27)
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Then, for ¢, sufficiently small,

C ey ~ 9 %
(P = Pal)

En _ 1

BT e — 0 as €, — 0. Then, by the Maximum Principle, we have

enAwy, — |wy|* + X <

since

Un(x) <wp(z), for x €.

Therefore

Un(Pp) W (Pn) = (A +20)(|P — Pl + [yn — Pal)
= A+2n)1+X+n)|P, - By

< (14 X+00)|P, — Pyl

IN

We just need to proof that
Vi(y) < C A3l

for €, < €g. Observe that W — 0 as n — +oo. Now, for any given o1 > 0, we let
01 = 7§ and x1 be a cut-off function such that x1(r) =1 for r < A —6; and x1(r) =0
forr > X\ — %1. Setting 7,1 (x) = Vo, (z) and 7,(z) = Vo (x)x1 (dﬁ;%%), we prove
that
ax 7y (x) < ¢

max 7, (r) < ————

= - d(Pn,aQ)
where C' = C(d1), but is independent of .
Suppose that (3.2.27) is proved, it implies that

C
A'lpn(x) S m for S B(S\fél)d(Pn,aﬂ)(Pn)

Hence
5 < C 0
Vula)? = At enhtin(n) < Ak Crp s <Ak
for z € B(S\—él)d(Pn,aﬁ)(Pn) and €, < g9. Then
Vo(z) = ozn Wn(P)=tn () _ =2 Vin(@)(@—Pn)

o= Vin(@) 2 < (Ot Fle]

for z € B(S\—(sl) d(P?fm) (O)

If M < 2], ie. |z — Py| > (1 — 61) d(P,, d9), we observe that by (3.2.19)
Yn(z) > | — P,| on 90 and thus function |x — P,| is a subsolution of (3.2.8) on
Q\ B(Z\—al)d(Pn,GQ)(Pn) for some d1(g,,) > 0 sufficiently small, by (3.2.22) and the
arguments following it in the proof of Lemma 3.2.20. Hence, we have ¢, (z) > |z — P,|
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for v € Q\ B(S\—él)d(Pn,BQ)(P")' Then ¢,(z) < e *l for z € Q, \ B(S\fél) 4(Pn.00) (0).
By the first part of this Lemma, it follows that

Vi (2) ean Un(Pn) p(z) < e Yn(Pn)=l|

< (1A +og) HL200 2| < (IHo0+01) 2 d(Pn,09)
(A+og+d7) - &
< ¢ 6 Ple g O,

So we have for all z € Q,,
Va(z) < CePT3IA,
Taking a diagonal process and passing to a subsequence £,, — 0, we have that

Voo (2) = Vo(2) uniformly on any compact set of RY and V4(0) is a solution of
(3.2.12). Moreover

sup e~ o0V (2) = Vo(2)| = 0 as e, — 0.
Zeﬁnk

We have to prove (3.2.27). Indeed 7! satisfies
—en AT 2V, - VL 4+ 2|VZ,)2 =0 in Q.

Since |V2¢,|? = Zgj:l(aﬁ g’;j )2 > Cy |7}|? for some constant C1, we see that

Ci|mal* —en ATy +2V ¢y, - V7, <0,

Multiplying (3.2.28) by X%(Jﬁa;%é))’ we obtain

Cﬂm]Q — enX1 AT +2x1VYy - T+ 26, VT - VX1
[Vx1l?
X1

— 2(Vy - Vxn) Tn +en(0x1 — 2 ) T < 0.

Observe that in (3.2.28) and the rest of the proof for simplicity, we always write x; for

(Pr,00)
are taken with respect to x.
Let 7,(z0) = maxgeq mn(x). If 7,(z0) <0, (3.2.27) holds.
If 7,(z¢) > 0, then we have

X1 (dm_ip”‘), while the argument in the other functions is « and the differentiations

[Vx1?
X1

Cl ’TnP <2 (V¢n : VXI)Tn —En (vXI -2 ) Tp as .
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Observe that
Vi, - Vxi1

IVl [VX1] = V[Va]? [x1]?
= \/( +5nAwn)|vX1|2 = \/|VX ‘2‘}' n| ;11| Tn

\/m <C (1+5n7—n)
AP, 00) = dp,,00)
< C . Centn

S WP,00) Tdp,00)

IN

C

IN

Note that |Ay; — 2 |V§11‘2| <= Therefore, by (3.2.29), we have at xg

&
(Pn,00)

Ce Ce Ce
2 n n n 2
Gim < (d?(Pn, asz)) (5 d(Py, 8(2)) +(3 d(Py, am) Tn
Ce, Ce,
< - n
< (amnem) ™+ (G om) ™
Hence if we choose ¢, < gg such that (g 559) < % C4, then we have

C
<~
ml®0) = 5B 50y

0 (3.2.27) is established.

We want to derive an asymptotic formula. To this end, we define ¢, by
tn(Po+ ny) = Un(y) = Po,Uy) + ¢ 2 P, (y),
for all y € Q,,, where ¢,, satisfies (3.2.10).
REMARK 3.22. Observe that:
ez P [up — g — e Py i, | 4 p Uty

een qj’”(P")(Un —U)—pUP g, —Vp)

in fact if we consider f(s) = s?, f'(s) = psP~?

< ClUn = U7 |Vi = énl,

11'(t) = F'(s)] = f(s)(t = ) +o((t = 8)°) = p(t"" =D <pClt =57, 0> 1;
then, by the mean value theorem , if u, <t <U

|f(un) = F(U) + €20 2P {0 (V= )|

= [I7@I[ = e WV = g)] + e P U) (V)
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1
<|f/U) = FONVa = dulle™ " | < CU =" [Viy = ¢l < [un = UI7 Vi = 6.

Next result is crucial in deriving the asymptotic expansion.

PROPOSITION 3.23. We define ¢, by

_ — = n(Pn)
(3.2.30) Un(y) = Po,U(y) + € = bn(y)
where y € Q. Then ¢, satisfies (3.2.10). Moreover, let o > 1, we have the following
properties

(1) For s > N, | ¢n [lw2.s(0,) < C(s)-
(2) For every sequence e, — 0, there is a subsequence ey, and a solution Vy of (3.2.12)
s. t. ||¢e, — ¢(]”LOO(B<1762)/J y = 0 as n — oo where 62 = {5 and ¢g is a solution of
€k

(3.2.11). Furthermore, ¢pg € W5 (RY) for s > 1.

We need some preliminary results before the proof. The following two Lemmas play a basic
role in our estimates.

LEMMA 3.24. (1) Let s > 1 and u be a solution of
Au—u—i—f:O mn Q,
(3.2.31) { u=~0 on 0),.
Then
(3.2.32) lullwz.s@.) < CUflLs@q) + 1Fllz2(0,));

where C' is a constant independent of e, < &g.
(2) Let u be a solution of

Au—u+f=0 in RV

with ”f”Ls(RN) < oo and Hf”LQ(RN) < 00. Then

(3.2.33) [ullwzs @y < C (1F sy + 1 Fll2sy)-
(3) For every function K € C*(Q,), there exists an extension K € C3(RN) with
(3.2.34) 1Kz < ClIR oy

where s > 1 and C' is independent off( and e, <1

PRrROOF. We carry off the proof in [89].
The second item follows from the first one by truncation. For the proof of third item see
Lemma 4.2 (2) of [102]. We just prove the first item. We use the same idea of Lemma 1.1 in
[55].
We claim that there exists constants dp and C* (independent of €, < g¢), such that for each

y € 09y, the set 0Q, U{x : |x —y| < dp } can be represented in the form

i — vy = P(x1, 22, ..., Tio1, Tig1, .. -, TN)
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for some 7, 1 <7 < N and

0P 0%®
*+ 3 |5+ 2l gemm | < €
| |+ Z 8.%‘j + Z 8{[}@6$j -
for the proof of this claim see paragraph 3 in [89].

Then we introduce a mesh in RY made up of cubes with sides parallel to the coordinate axes

and having length n = 3%. Denote I't,...,I'y, those cubes whose closure intersects 0€2,,.
Denote the center of I'; by y;. Let I';, "/ be cubes with center y; and with sides parallel to
the coordinate axes, having length 27 and 37 respectively. Then I'},...,T% ~form an open
covering of 0€2,. We note that for any y € 09, there is a cube I‘; such that y € I'; and
d(y,or’) > %.

Let W be a C* function such that

U(z)=1 if ;) <y foralli=1,2,... N,
(3.2.35) V(z)=0 if |z;| > 3n for some i,
0<¥(x)<1 elsewhere,

and set W;(z) = ¥(y; + x). Then ¥; = 1 in I'; and ¥; = 0 in a small neighborhood of 9T}
and outside I'.
Denote by Q,, : {2 € Q, : d(z,09,) > 5 }. We introduce a mesh made up of cubes with

sides parallel to the coordinate axes and having length ny = sfo/ﬁ'

Denote by Ay, ..., Ay, those cubes whose closure intersects €2,,. Let A;-, A;’ be the cubes with
the same center z; as A; and with sides parallel to the coordinate axes, having length 27y and
3 ng respectively.

The cubes A/, ..., A’hl form an opening covering of £, , and the cubes AY, ..., Azl lie entirely
in Q,.

Let x be the C*° function

Mo
and let x;(z) = x(z; + ). Let

le. . .
i = SO if 1< j < ho,

) _ X . .
(3.2.36) gﬁ-hor_// ZGq/;k+%3<k li 1 S] < hq,
i=15 Gy =15 if 1 <j < hy,
Gipng = Af, Gy =A) 1< <hy,

and let h = hg + hy. Then G4, ..., G}, form an open covering of Q,, and o1, ...,y form a
partition of unity subordinate to this converging, such that
(1) Gy,...,Gp, intersect 0, and Gpy+1, ..., Gy lie entirely in Q,;
(2) ox € C(Gh);
(3) each z € 9, belongs to at most Ny sets G, where N7 is a positive integer independent
of £, < eo; B
(4) pr > N% on the set G', ..., G}, form an opening covering of €2,;
(5) there is a constant Ny independent of k, e, such that

\Do‘apklgNg 1f|0[’§2, € G 1<k<h.
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Let Gre, = G N, and Au = —Au + u. Note that ¢ has compact support in Gj. By
standard regularity theorem, we have

(3.2.37) lugrllwzsrn < CUA@P LGy + luerlo)

where C' is a constant independent of &, &, < g9. Now we note that
A(upr) = f ok —2Vu Ve, — ulgpy.

Hence

(3.2.38) |A(uer)® < C|f]° + C|Dul® + Clul®.

By (3.2.37), we have

/ (IDulgryde < C [ (Dul|Dol)yde+C [ (lul [D%ou))de
ka Gk,n Gk,n

+ C (A(upg))’dx + C (lupk|)’da.
Gk,n Gk,n

By using (3.2.37) and (3.2.38) we have

[ aptlpyar < ¢ [ ifia
Gk,n Gk,n

+ / \Du|sdx+/ |u|*dx.
Gion G

k,n

Summing for kK = 1,...,h we obtain

(3.2.39) /Q(\DQUy)de < C/Q |f|°dx

+ / \Du|5dw+/ |ul*dz.
Qn Gy,

n

We have thus proved that

(3.2.40) / Au(z) u(z)dz > Ollulwra,).
Qn
Therefore
(3.2.41) lullwr2@,) < Cllf ez,
for s = 2 the thesis follows from (3.2.39) and (3.2.41). By using (3.2.41) and a Sobolev’s
inequality, the rest of the proof is exactly the same as that of Lemma 1.1 in [55] O

Now we give a characterization of the kernel of the operator associated to the equation —AU +
AU - UP =0.

LEMMA 3.25. If the domain of the operator L = —A+X—UP"" is W5(RN) where s > g,
then ker(L) = X = Span{ 0,,U, ..., 0z, U }.
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PROOF. Let ¢ € Ker(L) N W?25(RY), then ||¢||y2s < C. Hence ¢(y) < C. Moreover, by
regularity Theorem, ¢ € C*°(RY). By third part of Lemma 3.24, we have

(3.2.42) o) =p [ G- 2)UPH(2) p(2)dz

where G(y — z) is the Green’s function for —A + X and 0 < G(y — z) < wfj%(l +ly —
Z‘)¥€_|y_z‘. We have
N-3
2

(1+[y—=) =zl —olz
w(y)S/RN PR v==le=olzlq, < C.

Let 0 =min{1,p — 1}. Substituting this into (3.2.42) we obtain

N-3
/ 1 — 2 /
() < /RN( J’;\gz‘fv’g o=l =02l " lul g »
N-3
< ¢ (1‘“1/—;”22 {1 P i T P
N RN Y — 27T
< C

fory € RN and 0 < ¢’ < 0, i.e., ¢ decays exponentially. Once ¢ decays exponentially, standard
elliptic regularity estimates guarantee that ¢(z) € W23 (RY), for all s > 1. By Lemma 4.2 in
[87], we finish the proof. O

PROOF OF PROPOSITION 3.23. This proof will follow the idea in [87, 102]. We first prove
that [|¢nllLs(q,) is bounded for s > N. Then by Proposition 3.21, for every sequence e, — 0,
there is a subsequence €,, — 0 and a solution Vj of (3.2.12) such that Ve, — Vo. Letting
Op, = X(ﬁ,'i')qﬁo(y) where x(r) = 1 when r < X\ — 05 and x(r) = 0 when 7 > X — %, we

Eny, 7
show that |¢n, — qﬁnkHWz,s(an) = o(1), which by the Sobolev Imbedding Theorem, proves
Proposition.

We begin with the following estimates.

LEMMA 3.26. For every sequence e, — 0, there is a subsequence €,, — 0 and a solution
Vo of (3.2.12) such that for 2 < s < o0

1 1
(3.2.43) [le™ { UL ~UP—e = pUP~ o J4pUP™ Vol 1oa., ) < Clo()l|én, llLe(0,,)+o(1)),

_1 __1
(3.2.44) [le=* { U}, ~UP—e =% pUP™ ¢n }+p UP " Vol 2., ) < Clo(1)l|pny L5, ) F0(1))-

Enk)
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Proor. By Proposition 3.21, for every sequence €, — 0, there is a subsequence €,, — 0

and a solution V of (3.2.12) such that V,,, — Vp. By remark 3.22, we have

o 1
ek {UL —UP —e upUP g, }+pUP ' Vo| < ClpUP Y |Vo— Vi,
(3.2.45) + C|Up, — U7 |bny, — Vi |-

Since |V, — Vol = o(1) eGAtonlyl by Proposition 3.21, it follows that

1 1
e {UL, —UP —e “pUP~lg, } +pUP~ 1V

< o(1) eCotOFO L U, — UIT |n, — Vi, |-

Then, from Proposition 3.15 we conclude, for 2 < s < o0,

‘ L3 ()
< o(1) + Clléng |25 () 1Uni, = Ullzo(,,) + CllVag (Uny, = U) N5,
= o(1) + o) ||Pn, [l L@, )

1 _ 1
UL~ U — ¢ pUPT g, )+ p U |

since ||Vi, (Un,, —U)?||Ls(a,,) = o(1), by Lebesgue’s Dominated Convergence Theorem. In the
same way we have

< o) + Cligng s ) Uny, = U)7][ 25,
k L3572 (Qn,)
+ OV (Ui = U)?2(2,) = 0(1) + 0Dl Pn [l Lo (@2 )-

1 __1
A UE, U — ¢ TipUP g, } +p UM V|

L2(Qny)

For the case s = oo we can proceed in a similar manner. O

LEMMA 3.27. Let N < s < o0o. Then |¢nll1s(q,) < C(s).

ProoF. We prove this Lemma by contradiction. Suppose that there exists a sequence of
eny, = 0 such that [|¢n, [[15(,, ) = oo

Let My, = Héf’nk”Ls(an), gL = ?\/[ﬂ, that satisfies

k

- =2—¥n;, (Pn) __1 )
(3.2.46) { Agk — Anygr +pUP gy + (U, —UP —e e pUP~lyfy,) in Qp,
gk =0 on 00y,
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We show that ||gk||W2,s(an) is bounded. By Lemma 3.24

lgellwzs(,,) < C(”pUplngLS(an)‘f‘HpUp1gk||L2(an)

eﬁw"’“(P") e
+ | U - U pU )
! L¥(Q2n,,)
(ol -
(3.2.47) + T(ng —UP —¢ = pUP~ 1) ) .
J L2(Qn,)

Since

U gkllzs@,) < Cligrllz@n,),
1
P07 gelliz@n,) < CNU7N 25 o l9nlie@n,) < Cllael e, -
and by Lemma 3.26
L (P — g Yn
ez e p e TE I e, )
M,

L5(Qny,)

CHPUP_IVOHLS(Q%)
My,
1
%wnk (Pn)(

+o(DllgrllLs(@n,) +o(1) = o(1),

__1
UL, —UP —¢ o "hpurlg, )
M,

(&

L2(Qn,,)

o HPUPAVOHLQ(Q%)

M, +o(WllgkllLs@,,) +o(1) = o(1)

we obtain ||gk||W2,s(an) <C.

Now from Lemma 3.24, we can extend g; to a C? function with compact support in RY still
denoted by g, in such a way that ||gk|[y2.smr) < C, where the constant C' is independent of
k. We can conclude that

(3.2.48) gkl Loomry < C

by Sobolev Imbedding Theorem, and that there exists a function gg € W2*(R™) such that, by
passing to a subsequence if necessary, gr — go weakly in W2*(R¥) and gy — go in C} (RY).
We have to show that g = 0. We estimate

1
esnk w”lk (P")(

1
Ub, —UP —e %kp Up_lq[)nk)
My,

L%°(Qn,,)
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Note that in Lemma 3.26, we now take s = co. Then, as before, we have

e U, — U — e U, S0
M, L ()
as k — +oo by (3.2.48). Therefore
1 _ 1
ek ¢nk(P7L)(UTZZk —UP—e "™ ¢nkpUp,1¢nk) —0
Mj, L ()

on every compact set of RN,
Hence gg is a weak, thus classical, solution of the following equation

(3.2.49) { Lgo=2Ago—Ago+pUP~ gop=0 inRY,

go € W25(RN) N < s.

By Lemma 3.25, go € X. That is g9 = Zf\;l a; e;, with e; = 0,,U, for some constants a;,
i=1,...,N.

1
By definition Uy, (y) = U(y) +e ™ Y (Pn’“)(qﬁnk — Vo, ). Hence

ﬁwnk (Pnk)(

0= VU, (0)=VU(0) +e = Vén, (0) — VV,, (0))

which implies that V¢, (0) = V'V, (0). Thus

VV,,.(0)

M, —0 as k — +0

Vgr(0) =

since Vp,, is bounded in C'ZQOC(]RN ) and standard elliptic regularity estimates. Therefore

N
Vgo(0) = a;i Vei(0) = 0.
i=1

Observing that Ve;(0),...,Ven(0) are linearly independent, we conclude that a; = 0, i =
1,...,N. Hence gg = 0 and g — 0 weakly in W?2#*(R"), which completes the proof.

Now we prove that [|g;{|yy2.s vy = o(1), which gives a contradiction, in fact |[gk|zs(q, ) = 1-
As in the previous calculation, we have (3.2.47) and

1 —o
€8nk 'l/)nk, (Pn)(Uﬁk _ Up —e Eny w"kp Upil(énk) = 0(1)
M;. |
L (Qny)
e (P __1 n _
ecnk Y )(Urek —UP—e ™ v kpUP 1¢nk) = 0(1)
My B
L2(Qn,,)
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Let 0 =min{1,p — 1}. We have the following estimates:

lp U™ gillis,,) < C U’ gp+C U*? gi
Q) NBY Qn,, NBR

< 0 Mgl +C [ UG
Qpn

kﬂBR

(3.2.50)

IN

Ce* | gl o, ) + C /Q 9,

LNBr

IN

C U*? g +C U*? g

-1 12
IPUP™" g2, )
Qn, NBS Qn,NBr

C U20’ R 2 C/ 2
1027, 6l +C

IN

N(s—2)

(3.2.51) < CR > 6_2URHngLS(Qn)+C/ 9z,
QnNBR

where R > 1 is an arbitrary number and C' is independent of R.
Since g — 0in C} (RY), we have

loc
limsup [|pUP~" gillpoa,,) < Ce7f
k——+o0

. 1 N(s—2)
lim sup ||p U? ngLQ(an) < CR 25 e

k—+o00

—o R

Letting R — +o0 from (3.2.47) we conclude that

gk lw2s(,, ) = o(1).

COROLLARY 3.28. [|¢n, [lw2.5(,) < C(s) for s > N.

PrOOF. Indeed, we note that Hﬁf’nkHW?’S(an) < (C(s), and so our conclusion follows from

the same argument in the first part of the proof of Lemma 3.27.
O

By Lemma 3.24, we can extend ¢, to a function, still denoted by ¢n, , such that ||¢y, |2, @y <
C(s) for N < s < oo. We fix s > N. For any subsequence ¢, , we can take a further sequence,
still denoted by ey, , such that ¢,, — ¢o weakly in W2$(RY) and ¢,, — ¢¢ in C’lloc(]RN).

Now we continue with the proof of Proposition 3.23.
The first part of the proof is just Corollary 3.28. Next we show that ¢ is a solution of (3.2.11).
We need to prove that

% Yy, (Pn) ( !

e UL, — U —e i pUP g, ) = —p UM
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in L1 _(RY), but this can be easily deduced from (3.2.45). Hence ¢y is a solution of the equation

(3.2.11).
We have to derive the property of ¢g. We prove that [[¢ol|yy2.s@ny < oo for all s > 1. Indeed
by (3.2.11), ¢q satisfies

—Ado + Ao = pUP " (¢o — Vo),
and we have

Ce oW 4 Ceolletar)lyl
C e(1-o+on)lyl.

P UP~ () (d0(y) — Vo(v))]

IA A

Then ||p UP~(¢g — Vo)l s~y < oo for all s > 1. Therefore, by Lemma 3.24, our assertion is
established. ~
It remains to prove that ¢, — ¢ in some sense. Let x(r) =1 for r < X\ — 4§y, x(r) = 0 for

r> - %1 where 01 = 7§. Setting xx(y) = X('p%) and Enk = Xk (y)¢o, we see that ¢y, — ank

satisfies the following equation
A(¢nk - ank) - An<¢nk - ank) +p Up_1<¢nk - ank)

1 __1
= _[eé‘nk w"k(P")(UTIZk - Up — € eng w"kp Up_1¢nk) + pUp_l%)]

+ (1= xp)pUP Vo —2Vxy, Vo — (A xx) ¢o-
From Lemma 3.26 we have that

lesn

1
——n _ _

%w"k(P") P 14 _%w"k p—1 p—1
(3.2.52) + e« (U, —UP —e = "pUP  on,) + pUP" Vo)l 12, ) = 0(1).

Then
11 = xe)p U Vol s,y + (1= xi)p UP™ Vol 12, )
< |pUr! VoHLs(anmBg_él)%) +Cllpur! VOHI}(QWmBg_él)Pk)
ﬁ -~
(3.2.53) < CppelOatom — (1),

12VXk Volla@,,) + [12VxeVéollrzq,,) + (A Xk) ¢olls@n.,) + 1A Xk) doll 2., )
¢
Pk

(3.2.54) < —([l¢ollwzs@yy + l|dollwzz2@m))-

The same argument leading to (3.2.50) and (3.2.51) yields

(3.2.55) [[pUP™ (¢, — b )ll7s(@, ) < Ce 740 |Gnie — O, |
anﬂBR

—20R = 2
€ 7 + C ‘¢nk - ¢nk‘
anﬁBR

N(s—2)

(3.2.56) [[pUP™" (dny, = bp,)lIF2(0, ) < CR
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where R > 1 is an arbitrary number and C' is independent of R.
By Lemma 3.24 we have

+

+ o+ o+

_|_

60, = Gnyllw2s (@) < ClDUP ™ (b, = b )o@,y + ClDUP ™ (b0, — b )l 22020, )
€= (UY, e " Tp bny,) +p 0l Ls(@n,)

Lwn Pn _Lwn — —

Hesnk k( )(ng —Up—e Eng, kpUp 1¢nk)+pUp 1‘/()>HL2(an)>

C(H(l —x)PUP" Vol s,y + 111 = xp)p Up_lVOHLQ(an))

C(H = 2Vxik VoollLs(a,,) + | =2 Vxk V¢0HL2(Q%))

C (1l = (A xk) oll 2@y + Il = (A1) doll 2, )-

By the previous estimates we have

. - —oR N(=2) R
limsup ||¢n, — by, HWQ,S(an) <Ce +CR 25 e ,
k——+o0

that gives ¢, — ¢o in CL_(RY). Our thesis follows by letting R — +oo0.

O

The following lemma holds (see [105], Lemma 2.5 or [101], Lemma 2.4) and plays a funda-
mental role.

LEMMA 3.29. Assume that P, in € is such that lim.,_,0 P, = Py € Q. Then there exists
a bounded Borel measure dpup,(z) on OQ with [4q, dup, (&) = 1 and supp(dup,(€)) C aa(Fy)
such that, up to a subsequence,

n—oo

z— P,
lim V,(y) = /a ) SERIIZEN g ().

If Py € 092 then dup = dp and limy,_, o0 Vi (y) = e<¥> for some |b| =1, b € RV,

PROOF. Let G, (z,y) be the Green’s function of —A + ), on W01’2(Q). Then we have by
standard representation formula:

(3.2.57) () = /8 QU(Z_P”) 9Cn (., w)dz,

ov

En

see Lemma 2.1 in [104].
By the Theorems 1.15 and 1.18, and the estimate in Section 3 of [103], we calculate

Cn + O(en)
(pn(ﬂj) = 7]\/'”
gn
_ (z—PRgl+lz—=]) (N-1) - — P,
(3.2.58) X / {6 e |z — Po|™ = ‘zfx|_¥W}dz’
o9 |z — x|

as n — +o0o. We have
C 0] _2[z—Py| — P,
(3.2.59) on(Po) = J\H'(E”)/ {6 = |szo\_N+lw}dz'
o0

|2 — x|
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Let e,y + P, = x and |y| < K then

z— P,
2=z = [¢—Py—enyl=cnly— 0‘
€n
Z — PO
= ’Z—P0|—< Y, m >+O((€n)2)
By (3.2.58) and (3.2.59), we have
_2\Z7Pn\ < _ 7Pn7
B faﬂ{e o =Ry |z = Pl NH%}(M
Va(y) = (14 O(en)) \z Pn I
[ e e
If P, — Py, then it is easy to see that
z— P
Valy) > [ SR dp (2)
for some dpp,(2). This proves Lemma. O
REMARK 3.30. For any b € R with |b| = 1, we have
= UP(y)est¥vdy

RN
(see Lemma 4.7 of [89]).

Using Proposition 3.23, we obtain an asymptotic expansion that will be used in the sequel.

PROPOSITION 3.31. For e, sufficiently small, we have
[oum= [ ureemem [yt — gy +o(e ).
Qn RN RN

PROOF. By the mean value theorem, we have

Unf(Un) = UUE ™" = U = US(U) + ¢ 5 P (F(0) + 4 7(0) (0 = Vi),
where f(s) =sP71 U, <t <U, i e.
U = U+ et g (p = 1) 07 (0 = Vi) = U7+ o pir (6, = V),

Therefore

(3.2.60) / U,T;:/ UP +e sn‘”"(P”)pt”‘l(qﬁn—Vn).
Q’IL Q’IL
We have
[t ton-val < ¢ [ o, -va
n Q?’L
< C e~ (1=0)A+o)lyl ((I+on)lul 4 cululy < ¢

Q"
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for e, < 9. By Proposition 3.21, there is a subsequence &,, — 0 and a solution V} of (3.2.12)
s. t. V,, =n Vo. So, by Lebesgue’s Dominated Convergence Theorem, we have

/ ptp_1(¢n - Vn) —7n—o0 /N pUp_1(¢0 - ‘/0)
n R
Moreover, by Proposition 3.21 (2) with o9 < o

/ U|UP~L| < ez ZHo0)d(Pn00) / e~ (e=00lul = p(e=z ¥n(Pn)),
RN\Q RM\Q,,

Hence, up to a subsequence,

/ Uy = / U7 + e o) p (g, — )

= / Ul +e e (P")/ pUP™ l(Vo—gbo)—i—O(e o ¥n (P"))
RN RN

3.2.3. Blow-up set. We obtain the location of blow-up set:
THEOREM 3.32. Py is a critical point of distance function daq.

PRrOOF. Let denote 0;U,, = 0;,Uy. Let Uy, P(0;U,), PU and P(0;U) be, respectively,
solutions of

(3.2.61) { U =0 o
(3.2.62) —AP(OUy) + MP(3iUn) = —AJ;Uy, + MUy, = ;UL in Q,
—~APU+APU=U? inQ,
(3:2:6) { PU=0 on 0y,
(3.2.64) ~AP(QU) + AP(0iU) = —AdU + AU = U in Q,
- POU) =0 on 0%),.

Multiply (3.2.61) by P(9;U) and integrate by parts, omitting for simplicity the integrals on
the boundary that are zero, we have:

(3.2.65) /UpPaU /U —~AP(O;U) + AP(8;U)) /Ua (UP) = /Uan

in view of (3.2.64).
Multiply (3.2.63) by P(9;U) and integrate by parts, and as previously, we omit the zero integral
on the boundary:
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(3.2.66)
/ UPP(O,U) = / PU(—AP(Q,U) + AP@OU)) = / PUSUP) = — / UPo,PU
Qn Qn Qn Q

n

in view of (3.2.64).
Summing up (3.2.65) and (3.2.66), we get

/ UPO,U, + / (U — UPYP(OU) — / UPO,PU = 0.

n n n

Since .
/ UPoU, :/ 8i(U£“):O:/ (PU)PO,PU,
Qn p+1Ja, Q

finally we get that

0= /Qn(Up —UPYOUn — POU)) + /Q (PUY — U, PU.

n

We can prove that
| wr—up@u, - pew)
is quadratically (exponentially) sn:all, indeed we say that the following expansions hold
Un(y) = PU(y) +e =Py ()

OUA(y) = BiPU(y) + e o, ()
where ¢, is a solution of (3.2.10);

UP = UP 4 e By yp=l(g. V).

Then we have, by the expansion in the Proposition 3.31,

/ U —UP = / _e—iwnwn)p UP Y — Vi) ~ e an(Pn)

Qn Qp
because U is such that there exist C' > 0 and § > 0 such that
|D°U(z)| < Ce 1l vz e RN and |a| <2

and ¢, and V,, bounded (see Proposition 3.21). Therefore P(9;U) ~ 9;U and so

OiUn — P(OU) ~ iUy — U = ;PU — U + ¢ "9,
Observe that the function W(y) = U(%) — PU(%) solves the problem

AW AW =0, in Q, W:U( m) on 9,0

€n
and by Theorem 2.3.3.6 of [63] it follows that exist ¢g > 0 and a constant C' > 0 such that for
any €, € (0,0)

[Wlz2@) < CHU<

=]
en /llws/22(50)
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Then we have to estimate the term

o | A |

|DU % — D“ Zg‘nx |2
* //89><an ( |y>—ZN< > do(y)do(z)

=) P50

/ (PUY — UPYO,PU = 0.
Qn

to obtain that

dist(z,00)
<Ce 20
H2(Q)

o

So we have that

Finally we have to estimate the term (by the mean value theorem)

/((PU)P_UP)@-PU - /Q (p/l[tUJr(l—tPU} >8PUU PU)
n n 0

= son(Pn)/Q (p/ol[tU—i- 1-t)P rl HoU Vi
+ on n)/ (/Ol[wJr 1-t)P }pl V@ - i)

(
Spn( n / 8:(UP)Vpy + 0 (‘Pn(Pn)>
(

9 9

= 2B g [ R @)+ o £248))
9 RN o0 9

integrating by parts and by Lemma 3.29

‘pn(Pn) / gz PO < £=Fo Y>oN ‘Pn(Pn)
- gr [ ST 0 <espveN g #nifn)
e JrN o0 1€ — Po’ i uro() F O< € )

by Fubini’s Theorem

_ el ([ SR [ SR Y ) o £22)

3 o0 |§ — Rl €

by Remark 3.30

_ SOn(Pn fz_ i (£)>+0(90n(Pn))

9

oy o

where a(Py) = fBQ = |d,up0(§) € ddpa(Py).
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REMARK 3.33. Observe that, in the previous section, we have obtained easily the location
of the blow-up points, in the case of V' # 1. This approach can’t be used with V' = 1. For
this reason we have introduced a different approach [89]. Vice versa the techniques used in
the case of V =1 can by applied with a generic potential V' # 1 in the equation. So we can
obtain a more precisely expansion for U,.

For the location of the blow-up set, we proceed as in Theorem 3.32. Consider U,, P(9;U,),
PU and P(0;U) respectively, solutions of

p— 3 _ p .
(3.2.67) { AUp + MV (eny + Po)Un = U in Qp

U,=0 on 99,

(3.2.68) —A0Up + M[0V (eny + Po)Un + V(eny + Pa)0iU,) = ;UL in Q,
o P(0;U,) =0 on 09y,

~APU+APU=U? inQ,
(3.2.69) { Sary nln
(3.2.70) ~AP(QU) + AP(0;U) = —AdU + AU = U in Q,
- PU) =0 on 0%),.

Multiply (3.2.67) by P(9;U) and integrate by parts, omitting for simplicity the integrals on
the boundary that are zero, we have:

/ UrP@U) = / Un(—APOU) + 3V (eny + Po)P(OT))
Qn Qn

(3.2.71) = / Unai(Up)—l—/ AV (eny + Pn) — AU, P(8;U)
Qn Qp
(3.2.72) = —/ Upa,;Un+/ AV (eny + Po) — AU, P(O;U)

in view of (3.2.70).
Multiply (3.2.69) by P(9;U) and integrate by parts, and as previously, we omit the zero integral
on the boundary:

(3.2.73)

/ UPP(O,U) = / PU(-APOU) + AP@) = [ PUSUP) = — / UPO,PU

Qy n

in view of (3.2.70).
Summing up (3.2.71) and (3.2.73), we get

/ Up8iUn+/ (Uﬁ—Up)P(&U)—/ UP&PU:/ AV (eny + P,) — NU, P(8;U).

n n n n
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Therefore, we obtain

/ (=AU 4+ \U)O; U,, — UPO;PU + / (UP —UPYP(8;U)
Qn Qn

- /Q AV (eny + Po) — NU, P(O;U) = i — AU, U + AU 8;U, — UPO;PU
- /Q (UP —UP)P(8;U) — / AV (eny + P,) — AU, P(d;U)

= /Q [ (V OiU, + 8V U,)U + \U 8;U,, — UP 8; P U]

+ /Q (U — UP)P(&iT) — / BV (eny + Po) — AU, P(iU) = 0.

n n

SO

/ (Ur —UP)P@OU) — / BV (eny + Pa) — \Un P(OIT) + / B~ 3V (eny + P)U AU,
Qn Qn Qp

— / S\né?iVUnU—/ UP 9;PU = 0.
Qn Qn

We can prove that some terms in the expansion are exponentially small and finally we have
the expected result.

3.2.4. Approaching blow up in multi-peaks. Following the idea used in the previous
section, we try to give an approach of the possible global analysis of the blow-up in multi-
peaks. The first that considers the case of 2—peaks is Wei in [104].

Let us define the function Dj which will play a crucial role in the sequel, introduced in
[64, 65, 91].

DEFINITION 3.34. Let k > 1 be an integer. Set QF = Q x --- x Q. Let Dy : QF — R be
defined by

|27 — a'|

=)

Seth(Q):{X:(:vl,...,:vk)er |2t # 27, i # j, i,jzl,...,k}.

Dy(X) = min {d(z",00),
{i,j,l:l,...,k J#L

By the regularity of the distance function and Proposition 3.8 we can compute the generalized
gradient of Dy.

LEMMA 3.35. For any X € Mk(Q) we have that 3(X) € ODy(X) if and only if
z! —a:J xk — 2
00 = (w1} 3 m = math 4] 3 w5
J Lj#1 J Lj#k

with a(x") € Odaq(a'), aj, bj1 > 0, bj1 = by, Zle @i+ 5 251115 bt = L.
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In particular, by this Lemma, we deduce that if z!, ..., z* are k different critical points of the

distance function, then X = (z',...,2%) is a critical point of Dy.
Observe that there is not any critical point of Dy close to the boundary of M(£2), indeed
there holds:

PROPOSITION 3.36. There exists a neighborhood U of the boundary of My () such that
0 ¢ ODk(X) for any X € U N M (Q).

PROOF. We prove that if X, is a sequence in My(Q2) such that lim.,0 X. = X and
Xo € OMy(R), then there exists g > 0 and C' > 0 such that for any € € (0, &)

‘B&(Xe)‘ > >0 vﬁs(Xe) € aDk(Xs)-

We proceed by induction on the number k.

Let £ = 1 and let z. be a sequence in € such that xy = lim. z. € 9. If follows that for ¢
small enough 0D (z.) = { v (n(2.)) } and the claim follows.

Suppose the claim to be true for any integer 1 < h < k — 1. Let us prove that the claim is
true for k.

Let X. be a sequence in My () such that lim. 0 X; = X and Xy € OM(Q).

Then we have either

e Ji,5€{1,...,k} such that xé;&x{),

o 2= = ok €00,
exl=-..=akcq.
Using Lemma 3.35 and the inductive assumptions the claim easily follows. O

PROPOSITION 3.37. Let (z!,...,2%) € My(Q) be a critical point of Dy. Assume that for
any integer 1 < h < k —1 and for any set of indices {i1,...,ip } CT{1,... .k}, (z",... ")
|z*—

is not a critical point of Dy. Then daq(z') = Tgﬁhl for any i,j,h and 0 € co{ a(z’) | a(z?) €
8daQ(SL‘i, i=1,...,k)}.
ProOOF. We prove the thesis by contradiction. We have either
(1) 34,5 € {1,...,k} such that Dk(X)z< }W%J',
(2) YI,h € {1,....k} € D(X) = 251 and 3i € {1,...,k} such that Dy(X) <

daa(x?).
A contradiction arise in both cases, using Lemma 3.35. U

We recall the following characterization of the critical points of Ds.

COROLLARY 3.38. Let (x',2%) € M2(Q) be a critical point of Dy such that the distance
2 .
function is differentiable at x' and 2%. Then daqo(x') = doa(2?) = W%‘ and v (n(z)) =

. 2 .1
0 (n(a)) = E2n
Let X = (2,...,2%) € Mp(Q) and P}, ..., P¥ local maximum of u, and &/, i = 1,...,k, as in

Theorem 2.4 with k < k . Consider the usual change of variable U’ (y) = (5%)%1% (ely+ P,
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i=1,...,k that satisfies

(3.2.74) { AU + A, (£1)% = (U in Q,

U,=0 on 9O,

with Qf = £=a
ETL

Let introduce the projection Po: U of U (solution of (3.2.5) in the whole space), in O Q=
1,...,k, as the unique solution of

~APq U+ AP U =U? in (X,
Py, U =0 on O,

Let ¢! :=U — Poi U and, as a generalization of ¢, for 1—peak, we define for X € M(9)

(3.2.75)

W, (X) = e, log [i eh(a)].
i=1

Dp(X)
- . . . —(140) =~
Moreover, it is possible to show that W, is C1 in X and || ¥y, [|y2.(0) < Ce I+~ , where

o =min{l, p—1}. In this way, as previously seen for 1—peak, we would obtain that the
blow-up occurs in critical points of Dy (X).




CHAPTER 4

Solutions with symmetries

This chapter deals with invariant solutions. Much work has been devoted to our problem,
with Dirichlet or Neumann boundary conditions, in order to understand where concentration
occurs and how the profile of solutions looks like.

The structure of solutions blown-up at points, called spike-layers, has been shown to be very
rich, and solutions that blow-up at k—points, the so called k—peaks solutions, too.

In addition to solutions blowing at points, it is natural to ask whether there exist other ones
which scale only in some of variables, and which therefore blow-up at higher dimensional sets
(dimension k), like curves, surfaces, etc.

Just recently, existence of solutions blowing-up at different sets has been proved. Indeed
under generic assumptions, for example in the case of Neumann boundary condition, see [85],
if Q c RY and k=1, ..., N — 1, it was conjectured the existence of solutions that concentrate
at suitable k— dimensional sets. The phenomenon was known for particular domains with
some symmetries. For these and related issues see [5, 6, 10, 15, 39, 42, 83, 81]. This
conjecture has been recently proved in [76] for the general case, while the result has been
shown in [79, 80] for k= N — 1 and in [78] for N =3 and k = 1.

We study blow-up on manifolds in the case of an annulus and consider solutions with partial
symmetry assumptions and bounded invariant Morse index, as it has been done in [50] for
radial solution. We are interested in solutions which are invariant under a proper subgroup
G C O(N) of symmetries. By an asymptotic approach based on G—invariant Morse index
information, we try to carefully localize the blow-up G—orbits in terms of a modified potential.
Let us notice that the ground state solution in the space of invariant solutions under a proper
subgroup G C O(N) has Morse index 1 in this space, while its full Morse index or its energy
is very large. Thanks to this information, we perform an asymptotic analysis and localize the
concentration set. Our aim is to exhibit potential in which the orbit of the maximum doesn’t
degenerate on the fixed points set of this symmetry group. If G has not fixed points, one can
provide, in this way, solutions (for example the G—invariant ground state) which concentrate
on a whole orbit with dimension as G.

Let G simply the rotations around the z— axis group.

Let u,, be a positive, G—invariant solution of

—Aup + NV (2)uy =, in Q
U, =0 on 0f)

where Q := {(z,y,2) € R3 : a < |(z,9,2)] < b} is an annulus and V : @ — R is a smooth
potential bounded away from zero, a, b > 0. Let Gg be the set of fixed points under the action
group, i. e. in this case the z-axis.
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We want to study the asymptotic behavior of such solutions when \,, = 4+o0o under an uniform
bound of the G—invariant Morse indices: sup,, mg(u,) < +00.

4.1. Blow-up profile

In this section we discuss the blow-up profile for solutions of the invariant problem.

A question arises concerning whether the limiting profile keeps the invariances of u,,.

We have that in general the limiting function U is no longer G—invariant.

Let assume that P, — Py as n — +oo, where P, is a local maximum point of u,. We
have different situations depending on the location of Py and the rate d(P:iT’LGO), where Gg =

{z — azis} is kept fixed by the action of G. Accordingly, we discuss now each one of these
situations.

4.1.1. Some preliminary results and local analysis. Let mg(uy,) be the Morse Index
of u,, with respect to G—invariant test functions. We say that a positive solution u,, € Hg ()
has Morse index mqg(uy,) = k > 1, if k is the maximal dimension of a subspace W}, of

H&G(Q)G ={ ¢ € H}(Q), ¢ is G—invariant a. e. in Q}
s.t.
Qu,(@) = [ V6P + Xun 6~ put 162 <0
Q
for all € Wi, \ {0}.

We have that:

THEOREM 4.1. Let (An,uy) be a positive, G—invariant, solutions of

—Aup + XMV u, =ub,  inQ
(4.1.1) { uy, =0 on 0f)
with sup, mg(up) < 400, 1 < p # 5.
Let Qn = (0,Yn, 2n) € Q, yn > 0 be so that u,(Qn) = Maxonp, . (Q,) Un — 0 as n — +oo,
for some R, — +oc.

Setting
un(en (X,Y, Z) + Py) _p=1
U, Xa}/aZ = y n = Un(FPp )
(x.Y.2) T e = un(Pa)
where
e |ynl <
Qn Zf% — +00;

up to a subsequence we have that

(1) when un(Qn)pT_l yn < C, then there hold 1 < p < 5 and

Yn
° 6n—>0

o M2V (P,) — A3 € (0,1] for some universal constant A3

En
* apay 0
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e U, = U in CL_(R3), where U is a positive G — invariant solution of

_ X _ : 3
(4.13) { AU + XU =UP in R

U<U((0) =1 in R?,
with m(;(U) < +o0;
(2) when u,(Qr) = Yn — +00, then there hold
o )\ns V(P,) = Ao € (0,1] for some universal constant

ap, o) 0
o U, = U in CL.(R?), where U(X,Y,Z) =U(Y, Z) is a positive solution of

—AU + MU =UP in R?
(4.1.4) { U<U(0)=1 in R2,

with m(U) < 400 (two dimensional Morse index).
Moreover, there ezists a G—invariant ¢, € C}(S2), with

supp pn C Ar(Qn) = {(2,y,2) €R® : (Va2 +1y? —ya)* + (2 — 2)* < R%e} },
R >0, so that

(4.1.5) /Q 162+ (A V = pul )62 < 0,

for all n large.

PROOF. Let d,, simply denote d(Q,,0S2) and suppose S—: — L € [0,+00], where p, =
un(Qn)_p%1 — 0 as n — 4o0o. Then Q,, = % — H, when H is an halfspace with 0 € H
and d(0,0H) = % The function W, (X,Y, Z) = un un(,un(X Y, Z) + Q) solves

AWy + M2V (pn (X, Y, Z) + Q)W = WE, in Q,

(4.1.6) 0 < W, < Wy, (0) =1, in Q,N B, (0)
W, =0 on 0f,.

Since @, is a point of local maximum of u,, we have

0< —AWA(0) =1 =Xy V(Qn) = 0= Anpay, V(Qn) <1
Denoting w(V') := [maxg V][ming V]! it follows that
An N%V(Nn(Xa Y, Z) + Qn) <w(V),
and, up to a subsequence,
M2 V(Qn) = e [O 1]

as n — +oo (up to a subsequence). Since W& — A\, pi2 V (1un(X,Y, Z) + Q) W,, is uniformly
bounded in 2, N Bg, (0), by regularity theory we have that W,, — W in C} (H), as n — o0,
where W solves

—~AW + AW =WP, in H
(4.1.7) 0<W<U@O)=1 in H

W =0 on OH.
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Since W(0) =1 and W = 0 on 0H, we deduce that 0 € H and L < +oc.
Consider the two cases above

(1) when z—” < C, we can assume that —% — Yo.

Since
b— |zl >b— 42+ 22 > d(P,,00) = min{b — /y2 + 22, /y2 + 22 —a}
and

2
d(P,,090) — In.

|2n| —a=\/ya + 23 —a— >
n n n ‘Zn"i‘ /yn+z2 a

we get that

2
A(Py, ) = min{ b — [z, 20| — a} > d(Py, 00) — 22

Since P d(Po, Q) _ d(Qn, 09
d( n_Qn’aQ): ( ns )Z (Qm )_1_0(1),
Hn Hn Un,
we finally get that
1
(0, 0,0), 0H) = 7 > 0.

Computing now

P = (L) = (0.2 0) 5 Wi0.0.0

as n — 400, we get that

Un(Pn) > (5%

for n large in view of (0,y0,0) € H and W(O Y0,0) > 0. In particular, we have that

4.1.8 so <M <.
(4.1.8) 0 < -

>0

We consider now U, as the scaling of u,, w.r.t €, and P,. Since by (4.1.8)
_ 2 _2
Un < Un<M) — (571) < 50 —1

En 1

in Q, N Br, (0), 2, := 92753"7 we get that U,, converges in CL _(H’) to a solution U of

2

—AU + NU =U?, in H'
(4.1.9) 0<U<U0,§,0)=1 in H
U=0 on OH'.
where
/ (X,Y,2) : Z <lim @D if 2 5 b~ or 2, — —a”
(4.1.10) H = (Pn,am

(X,Y,Z) : Z > lim if 2z, —at or z, — —b"

and o = lim * N =1lim A, €2 V(P,). Note that the existence of o and X follows by
(4.1.8), up to a subsequence.
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Observe also that U is still G—invariant and mg(U) < 400. Since p # 5, by Theorems
1.8 and 1.21, we deduce that A > 0. By Theorem 1.1.76 we can show that H' = R
By Theorems 1.16 and 1.18, we know that U is radial and radially decreasing.

In particular, o = 0 and then g—: — 0. Since U(0) = 1 by definition, we get that

U, (Q”;P") - (;’;)‘“El — U(0,50,0) = U(0) = 1.

=

By Theorems 1.18, we know that U = (5\’)?%1 Ur((X)
rem 1.16, and then

y) where Uy, is given in Theo-

N = U,(0)~ =D .= Xg

is an universal constant.
when Z—Z — 400, we have that @, = P, and W,, = U,,. The analysis follows the same
lines of the previous case: show that W = lim U,, solves

—AW + AW = WP, in R3

0<W<W(0)=1 in R3
for some X\ = lim A, €2 V(P,) € [0,1]. The case H # R? can be excluded thanks to
W > 0.
The crucial point is that W (xz,y, z) = W (y, z) does really solve (4.1.11) in R? with

m(W) < 400 so as to use the same classification result in one dimensional less.
Indeed, notice that u,, is constant on

{(x,y,2) : 2+ > =y2 +2¢epynm, 2 =Ens+ 25}

for (r,s) € R? and n large.
Observe that on this set

2’ +y? + 22 =y + 2 + Olen),
and then (z,y,2) € Q:

a? <a*+ (Y2 + 22 —a®)+O0(en) <2? +y? + 22 < b — (B* —y2 — 22) + O(en) < b?

in view of &, = o(d(Qn, 0N)).
Moreover, y2 +2¢&, yn 7 = y2(1 + Qy% r) >0 in view of 22 — 0. Then Uy is constant

on
€n

2y,
Namely, W(X,Y,Z) = W(Y,Z) and m(W) < +o0 easily follows by sup, mg(un) <
—+o00. ~

The constant \ satisfies

{(X,Y,Z); (X2+Y2)+Y—r:o,zzs}.

X=Xy =Ug(0)~7Y,

where Uy now is given in Theorem 1.16 with N = 2.

The last part of Theorem 4.1 follows by the next two Propositions.
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PROPOSITION 4.2. In case (1) of Theorem 4.1, we have that
Jo, € C&(Q) G — invariant so that supp ¢n, C Bre, (Pn) C Ar+1(Py)

and
(4.1.12) / [Vén|?> + AV —pul™ g2 dx < 0,
Q

for all n large and for some fized R > 0.

PROOF. By Theorem 4.1 we know that U,, — U in C} _(R?) with P, = (0,0,2,) and U is
a G—invariant solution of (4.1.3).
By Theorem 2.1 let ¢ € C}(R3) be a radial function so that [|V|*> + (A3 — pUP~1)¢? < 0.
Set ¢n(x,y,2) = éqﬁ(%) Then ¢,, is a G—invariant function in € so that supp ¢, C

£

Bre., (P,) for some R > 0 and

[ V6uP+ 0nv —pu et = [ V0P (e Ve (y.2) + ) pUZ )P
Q —Pn

= [ 196P + (G —pUr ) <0,
for n large. Note that

Q- P, Vien (z,y,2) + Pp)
]R?) y I
e V(P

Notice that, if (z,y,2) € Bre, (Py), then

(4.1.13) — 1 inCje(R?).

2
(Va2 +y? —yn)? + (2 — 2)? sei(R%rQR‘y"' +§—;) < (R+1)%e,

En n

in view of 22/ 5 0. It means that suppdn C Bre, (Pn) C A(ry1)e, (Pn)-

En

Observe that, if ¢ € C}(R?) is a G—invariant function so that
190+ G —por it <o
and [ ¢ = 0, one can correspondingly define v, and property

| nsn=22 [wo=0

is still true. In this way, we deduce that

(4.1.14) ma(U) < ligl}rnf ma(up) < +00.
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PROPOSITION 4.3. In case (2) of Theorem 4.1, we have that
Jpn € CHQ) G — invariant so that supp ¢, C Age, (P,)

and
(4.1.15) / Vol + MV —publ 12 de < 0,
Q

for all n large and for some fixred R > 0.

1 (R3), where U(X,Y, Z) = U(Y, Z)
depends only on the Y Z— variables. By Theorem 2.1 let ¢(Y, Z) € C}(R?) so that

/ Vo2 + (o — pUP )62 < 0.

PRrROOF. By Theorem 4.1 we know that U, — U in C}

[02 102 — _1
Set ¢n(x,y,2) = qﬁ( LY n Z_Z“> yn 2. Then, ¢, is a G—invariant function so that

En ’ En

/Q Vonl? + (O V — pu=1)2

= 1 /Q“VW?( x2+€y2—yn7z—zn>+(>\nv_puﬁ1)€Z¢2( x2+92—yn’2—zn)}

yng% n En €n En
2 — gy t— — Y t—

= Z/[!WP(S ST Vel - pupted) o (S 2 [sds a
ynes Ji En n En  En

En S

n

_ 27r/[\V(b!z+(/\n52LV(O,£nS+yn,anT+zn)—pUﬁ_l(O,S,T))¢2}< 1)dsar
B

where B ={a? < s>+ <V, s > 0}and B ={a® < (0 S+ yn)? + (en T + 20)? <%, § > Zn ),
Since ¢ has compact support, there holds
supp ¢ C {a® < (en S +yn)* + (en T + 2,)* < V7, S > %y" }-
n
Indeed, for S bounded from below it is true that S > —g—: for n large, in view of g—: — +o00.
Similarly, for S, T bounded we have that

(511 S+ yn)2 + <5nT + Zn)2 = y% + Zg + O((‘:n) S (a2, b2)

d((0:yn,2n),09)

- — 400 as n — +00.

for n large in view of
Then for n large

/Q Venl? + AV — pu )2

Yn

—/ [\V¢|2—|—)\ngflV(O,enS—i—yn,enT—l—zn)ch—pUﬁ’l(O,S,T)ng](E—nS—F1>deT
supp ¢

N /|v¢\2 + o — pUP )42 < 400

in view of Z—” — 0, as n — 4o00.
n

If supp ¢ C Bg(0), then supp ¢, C { (v/22 + 9% — yn)? + (2 — 2,)? < R%2e2 } = Ag., (P,).
O
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REMARK 4.4. Observe that in Proposition 4.3 we fix one direction of "negativity” ¢ in
R? and bring it back to the original problem in Q C R®. Notice that U has just finite two-
dimensional Morse index, while U has infinite Morse index as a solution in R3.

4.1.2. Global analysis. After the limiting problem has been identified and the local
behavior has been described, we can control the global behavior.

THEOREM 4.5. Let (An,up) be a positive, G—invariant solution of (4.1.1) so that
sup,, ma(un) < +oo and 1 < p # 5. Up to a subsequence, there exist P} = (0,4}, 2}), ... P! =

(0,97, 21, h < sup, ma(un), with y&, > 0 and &i, = un(Pfl)_pz;1 —0asn — +o0 s. ¢

(4.1.16) el <&l < Cyel, foralli=1,...,h

(4.1.17) %%0 as n— +oo, forall i,j=1,....h, i %]
(4.1.18) d(PZ’?@Q)%O as n — +oo, foralli=1,...,h,
(4.1.19) un(PY) = (14 o(1)) Bszzi{Pﬁ)um

for some R, — +00 as n — +o0 .
Moreover, there holds

h o lOy)-P]
(4.1.20) un(0,y,2) < C(el) vt Ze L— V(0,y,2) €Q, neN
i=1

with C' > 0.
Proor. We follow the proof of Theorem 2.4.

15t step There exist k < sup,, mg(u,) sequences PL, ..., P¥ satisfying (4.1.16)-(4.1.19) such
that:

. . 1\ _
(4.1.21) REIEOO (1711§Jsr1£) [(sn)z’ {dn(ogg)éRs;} un(0,y, Z)D 0

where dp,(0,7y,2) = min{|(0,y,2) — P| : i = 1,...,k} is the distance function in S
from {P}, ... PF}.

Let QL be a point of global maximum of w,: u,(QL) = MAX Up. By Theorem 4.1 we

have that there hold (4.1.18), (4.1.19) and A, (¢%)*V(P) — X € (0,1] as n — +o0.
By Propositions 4.2 and 4.3 we can deduce the existence of a G—invariant ¢} € C}()

so that (4.1.5) holds and supp ¢, C { (v/&2 +y2 —yL)? + (z — 2})? < R? (e})? }.
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(4.1.23)

(4.1.24)

(4.1.25)
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If (4.1.21) holds for P!, then we take k = 1 and the claim is proved. Otherwise, we
have that

2
limsup limsup(el)r-1 max up(0,y,2) =49 > 0.
R—+00 n%Jroo( ) [(0,y,2)—P}|>Re}, n(0,9,2)

Applying Theorem 4.1, up to a subsequence, we have
()7 Tun(eh(0,Y, 2) + Pi) = Up(0,Y, 2) = U(0,Y, Z) in Ciho(R?),

where U is solution of (4.1.3) or (4.1.4). By Theorem 1.12 we have that U — 0 as
|(X,Y,Z)| — oo and then 3 R so that:

(1)
U,Y,Zz) <o if|(0,Y,2)| > R;
(2) up to take R large, we have the following property
2
li Lyp1 > 36 > 0.
S En) ™ 2 e,

Up to a subsequence, we can also assume that

2
(el)p—T max Uy > 20.
|(0,y,Z)*P%|ZR€},‘

Since u, = 0 on J€2, then we have that

3Qn = (0,57, 20) € Q\{(0,9,2) = P,| > Rep, } st wn(Q7) = max  un.

‘(Ovyaz)_Pﬂi ‘ZR“:’%

By (4.1.22) and (4.1.23) we get that M — +o00. Indeed, if IQZE%P,{I — R >R

un(@2) = U (192 P2l

o 2l —U(R)<6

2Pl

contradicting (4.1.25). We take R2 = 1@"5 (Rl = 1M) Cr = (26 "7

By this and (4.1.25) we get anj = unj(Q%j)pr (2 9)~ = , and since 61 < s%j
we see that (4.1.16) and (4.1.17) are fulfilled because |P3j - P1j| > Rel n;- So this
implies (4.1.19)

2
un(Qr) = max Up = max — Up.
|(0,y,z)*P,,}‘|2RE%L BR% 5% (Q%)mﬂ

Indeed R2e2 = §|Q2 — P1|, and Re;, << 3|Q% — P}| imply V (0,y,2) € Bpz .2 (Q3),
1
10,9,2) = Pol 2 1Q7 = Pal = [(0,9,2) = Qi] > 51Q7 = Pul = Rey,

i e. N BR%S%(Q%) can BRS;L(P,}). Since R2 — 400 as n — +00. By Theorem
4.1 we get that, up to a subsequence, (4.1.16)- (4.1.19) hold true for { P}, Q2% }. If
(4.1.21) holds for { P}, @2 } we are done.

Otherwise, we iterate the above argument: let P} Q2 ..., Q% s sequences, so that
(4.1.16)-(4.1.19) hold true, but (4.1.21) is not satisfied. We have

2
limsup limsup((e})7T  max  u,)=46>0
R—+00 n—+oo dn(0,y,2)>Rel
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(4.1.26)
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with d,,(0,y,2) = min{|(0,y,2) — P!| :i = 1,2}. There exists R > 0 large s.t.

(e;)? {dn(og}za)éRE%}un((O,y,z)) >24

holds for a subsequence. By (4.1.16) and Theorem 2.1:

1 e}
2 el\=2 . selk 2
(e3)7 Tun(h (0.Y.2) + PY) = ()70 (20,Y, 2)) » 97 UW: (0, Y, 2))
in C}_(R?).

ond step

(4.1.27)

2

Since U — 0 as |z| — +oo we can find R large so that 97 'U(9;(0,Y,Z)) < &
for |(0,Y,Z)| > Rs. We repeat the argument above, replacing |(0,y,2) — P}| with
dn(0,y, 2).

Let Q5! bes. t. u,(Q:!) = mMaxg, (0,y,2)

9(@i7) 400 and (4.1.16) holds for { P, Q2,...,Q3t! }. For Ryt = 1@ wo
get the validity of (4.1.16) for Q™! so by Theorem 4.1 we get that (4.1.16)7(4.1.19)
hold for { P1,Q3,..., Q3™ } with R, = miny, RE.

We can use Theorem 4.1 for any sequence @, i = 1,...,s + 1, for n large. If
P! — P' € 2z — axis and % < C < +00, we can find functions ¢, € C5°() with
supp ¢, C BRE%(Pé), for some R > 0, which satisfy (4.1.12 ). If P! — P ¢ Gy, we
can find functions ¢}, € C3°(Q NR?), with supp ¢}, C BRE%(PZ') N R?, which satisfy
(4.1.15). By (4.1.17) ¢¢, b i,j €1,...84+1, i # j, have disjoint compact supports
for n large and then s + 1 < sup,, m(uy). The argument must stop for some k£ < k.

>Rel Un > 20. As above we have that

We want to show now the validity of (4.1.20) and this prove the Theorem. this is the
contribute of the following 24 step.

Let P}, ..., P* be as in the first step, 1 < p < co. Then there are vy, C > 0 such that:

k 1(0,y,2)— Pl |

un(0,y,2) < C (eh) p 1 Ze =, V(0,y,2) €9, VneN.

By (4.1.21), for R > 0 large and n > n(R), it results

1

2 A =
1 1 < p 1'
)7, max | un(0.9,2) < (MV))

Hence in {d,(0,y,2) > Rel } we have

1\2, p—1 <
(e 0.9,2) < g
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where w(V) := [maxg V][ming V]~. Moreover, by Theorem 4.1 we get
A

A(€h)2V (0,9, 2) > [w(V)] " Aa(eL)2 V(B = oL

n

Therefore for n > n(R), we have that

()P V(0,y,2) — ul (0,9, 2)] > >0, if dy(0,y,2) > Rep.

A
~2w(V)
Now consider the following linear operator:

Ly = —A+ M\ V(0,y,2) —ul= (0,9, 2)).

Since uy, is a positive solution in © of Ly, L, satisfies the minimum principle in
any Q C Ln¢>01nQ ¢ > 0 on 9 implies ¢ > 0 in Q. Let ¢%((0,y,2)) =
e~ 7(ER)TH0v.2)=Pal We have that in dn(0,y,2) > Rek:

1

Ln(én) = ()00 =% + (N = Dby + ()P 0n V(0,.9,2) = (0,9, 2)| > 0

for n large, provided 72 < )‘V((‘]j)).

Observe that

2

(evR(z)iL(O,y,z) — (Ei)p%lun(o,y,z))|aBR€}l(P}-L) —1- QFU(HiR) >0
for R large, where 6; are given by (4.1.26).
Then if we define ¢,, := e¥ * Zle #, we have
Ly(¢n —up) >0 in {d,(0,y,2) > ReL}
and ¢, — up > 0 on {d,(0,y,2) = Rel} UdN. Note that by (4.1.16)-(4.1.19),

k
{dn(0,y.2) = Rey} = | 0Bray (P)) € 9,
j=1
for n > n(R). Then by the minimum principle
ko loy=)-Pi
wn <= RN e
i=1

in {d,(0,y,2) > R el}, if R is large and n > n(R). Since

L2 R Y02 Ph|
u”(oay7 Z) < m{é)ixun = <€n) =1 < eV n T 1 Ze <k
if d,,(0,y,2) < Rel.
We have that (4.1.20) holds true in €, for C = ¢’ and n > n(R). Up to take a
larger constant C', we have the validity of (4.1.20) for every n € N.

O
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4. SOLUTIONS WITH SYMMETRIES
4.2. Location of the blow-up set

Our aim is to obtain solutions which blow-up on suitable circles. There is a great literature of
this kind based on a constructive approach of perturbative type.

With the notations of the Theorem 4.5, let us set P? = limy, 400 P,i and
Ji={j=1,...,h : Pl = P},
for every i =1,...,h.

For a point Py = (0, yo, 20) let us define

2
As(Po) ={ (z,y,2) € R® : (Va2 +y? —yo) + (2 —20)> <0}
for 6 > 0. Define

Z/j Y
Jl:{j:]-a"'ah : %EC}, J2={j=1,...,h: "
€n
and

Ji=JnJt Ji=JnJ%
Fix § > 0 small so that I} := As(P?) N Q, satisfies

Iin{pP', ... P"}y = {P}.
We have the following expansions:

LEMMA 4.6. Let g be a continuous G—invariant function in Q. Let 1 <p #5 and ¢ > 1
andi € {1,...,h}. Then, there hold:
o If J2i =y

(4.2.1)

/ ot = 9P ) (J;ﬂ@z;)‘f"l*s)(l +oa(1))
o IfJi+#yp
@22 [ g @)([ V(X @)+ 0,0)

JEJTS

,max

where 0,(1) = 0 as n — 400, U and V are the solutions of (4.1.3) and (4.1.4) and

%,max:{jzl,-..,hi lim n

PROOF. Let us define Aﬁak(Pg), for every R >0 and j =1,...,h. In view of ( 4.1.16) - (
4.1.18), we have that

AL, CQ and AL, AL =9, j#E,
for n > n(R) large and j € J2. By Theorem 4.5, we know that
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2q MICTDE. 1 PJ|
(4.2.3) ul(0,y,2) < Ty e V(0,y,2) € Q
7j=1
and, by the G—invariance of u,,,
h —q'y 2+y z) p]\
(4.2.4) ul(v,y,2) < e V(z,y,2) € Q,

for some C > 0.
For j € J', we have that

/ gul = () / 9(e(X,Y, Z) + Pi) (UZ)?
1(P}) B _1(0)

(4.2.5) = (5%)_1)2ql+3(g(Pj)/B .(O)Uq—i-on(l)),

Where n—0; € [ ,1] in view of (4.1.16) and U is the solution of (4.1.3). Since P = (0,0, z})

in thls case we have that

(0, Va2 +y2,2) — PJ| = |(z,y,2) — Pl

so as to get
2 \(oWz) P 5
(4.26) () / e A e / arl(XY.2)]
R3\By, 1 (P7) R3\Br(0)

For j € J%, we have that

/ 9(0,s,t) U%(O,S,t)sdsdt:27-‘-(57]'1)*%+2y£
{(s,t) : 820, (s—yh)2+(t—23)2<R2 (1)2 }

. o | j
L g(0,6l S+ 4 el T+ ) U0, S,T) (i’;s+ 1)deT
}

/{(s T):S24+T2<R2 ( Yn

:u‘:mw

in view of y" — +00.
Hence, we get that

(4.2.7) /A j

24 49 )
gut, =2 (&) Ty (o) [ WIS, T)ASAT o)
Bro, (0

<h
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where W is solution of (4.1.4).
Similarly, we have that

g L0222 2) P
Nl
RAAT
1
< 2n(g;)—ﬁ+2yg/ e TI(5 gy 1)dsaT
R?\Bg(0) Yn
2 .
(128) < 2wl F [ e E0I(js) 1 1)asaT
R?\Br(0)
In conclusion, by (4.2.5)- (4.2.8) we get that
/QU—Z/ guq—i—Z/ gud
jeJi jedi” rel
1(0.1/225y2,2) - P|
oY / e
jeai TR
10.1/225y2,2)— )|
SRR B )
jEJ] RS\ARl
- [2(5;)—,H+3/ Ut ST [ W o) (14 0(1)
jeJi Bro,(0) jedi Bra,(0)

+ O((@ll)—p%ﬁ) / e~V (XY, 2)|
R3\BR(0)

+ )y yig/ eS| 9] 4 1)deT),
R2\BR(0)

JEJL

in view of Bp.1 (P]) C Q and Br.1 (P)) N Br.i (PF) =0, j # k, and B (P)) N AR, Vj, k
and m € J?, due to ( 4.1.16) - ( 4.1.18).
If Ji=o¢

lim (el)75+? / gu= (X0 [ ungeyso [ ewinal)
norheo jent Bra; (0) R3\ B(0)
for all R > 0, and then as R — 400
H 1 % 7 q I+
[ o) [0 54
8 jer
Therefore

(4.2.9) / gul = g(P@')(/Rg Un) (3T 1+ o(1)).

s jeJi
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If J& # ¢ we define the subset

J
i . Yn

Js :{]:1,...,h: . ,
2maz max{yn, :j€Ji}

—>,uj>0}

(up to a subsequence). Then

. 1 ﬂ+2 7 -1 q %4_2
Jdim @) (maxl g }) [ g = (D 2mel g
JjeJ3 I

W) g(P')
i jess Bro;(0)

max

+ 0(/ e*qﬂ(ﬁTﬂ(\SyH)deT)
R2\BR(0)

in view of ' o '
J J odn A1 Jn
e, En En' € En
e {d1 el n Tn = Co e 0
n n n
maxjeJé-{ Yn}  En oyl en Un

for a suitable j, € Jimax. We have used (4.1.16) and Z—?L —0Vj €.
Letting R — 400, finally we get

. -1 . 249 19
i (o) (max{od 1) [ gug=2mge) ([ W) (X 07 ),
n—+00 jeJ} I§ R2 jeTs J
2

,max

and therefore

J = 2maPy ([ W) (X )+ o)

g jegs

,max

O

In this part of section we want to localize the blow-up set of G—invariant solutions. For their
symmetry properties, we may guess that the blow-up set is of positive dimension.
We are searching for a modified potential that localizes the blow-up set.

First we have that:

THEOREM 4.7. Let u, be a positive solution of (4.1.1). Then we have that for all k €
(0, +00)
A2 + |Vu,| = O((e))), on 8 B;s(FRy),

n

where § > 0 is small so that Py is the only geometrical blow-up point in Bss(Fy).

PROOF. Consider the general case Py € Q and obtain the estimate on 0A5(Py) N Q, for
0 > 0 small. By 4.1.20 we obtain that

h 10,V/z%+y2,2)~ P |
2 ARV TS 0% T nl
(4.2.10) Un(z,y,2) < C(el) 71 Ze ! “h

i=1

with C' > 0. In particular we have that u, = O((g})¥) uniformly in Bys(Pp) \ Bs(Po)

V(z,y,2) €Q, neN
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We decompose u,, as u, = ul + u2 where ul and u2 satisfy

—Aul = ub — A\yuy,  in Bos(P) \ Bg(Po)
2 {uzzo ond(Bs(Po) \ Bs ()

Au? =0 in Bys(Fo) \ Bs (Po)
(4242 {uizunch@m% on 0(Bas(Po) \ Bs (Fy)).

By the mean value theorem we have that u2 + |Vu2| = O((¢})*) on B%(;(Po) \ B%(;(Po). We
have that in BQ§(PO) \Bé (PQ)
2

—Aul = O((eh)F?)

in view of (4.1.16) and \, (¢1)2V(P}) < C. Then we have u}+|Vul| = O((e})*=2) in Bys(Py)\
B;(Py) . The result then follows. O
2

We consider the main result of this chapter, in which we obtain a complete asymptotic analysis:

THEOREM 4.8 (Classification of blow-up points). Let (A, u,) be a positive, G—invariant
solution of (4.1.1) with sup,, ma(up) < +00 and 1 < p # 5 and \, — +00 as n — +00.
Let Pi i =1,...,h be the points given by Theorem 4.5 and P' = limy, 4 oo P = (0,4 2%).
According to the notatwns of Lemma 4.6, let us assume Ji = o whenever P' € Go
Setting

OV ={2? + 2+ 22 =0 +2>0 Uu{z?+ 2+ 22 =a? +2<0},
OV ={2®>+y*+22=d%), O = {2 +y*+27° —b2}
we have that
(1) if P" € 9QF, then £0,V(P?) <0, if P' = (0,y",0) € 0, then 85V (P") = 0;
(2) if P'aQY\ Gy, we also have 8,V (P') < 0 if P' € 0y and 8,V (P') > 0 if P' € 8Q,;
(3) if P* € QN Gy, then 35V (P?) = 8TZV(PZ) = 0;
(4) if P' € Q\ Gy, then 9V (P?) = 8,V (P?) = 0.
Here, r = /22 + 42 and V(r,s) = - V(r,s).
ProOOF. Fix k € R. By Theorem 4.7 we have that
(4.2.13) A2 + U2 4 |Vu,|? = O((el)F)
uniformly on It N Q, where I = As(PY) N AL
Multiply the equation (4.1.1) by Odsu, and integrate by parts in I§ so as to get:
An 2 An 1 Pt
5 IgBSVun = /g [—Aunasun—i— 5 8S(Vu ) — +18 s (ub )}
A o 1

4.2.14 = / —Vu; — upJrl - O, UunOsty, + (9 Vuy,
( ) aIiNQ [ 2 p+1 } oI 1 2 ( "

1
= 0EM -5 [ @),
A5 (PH)NOQ
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in view of (4.2.13). Observe that would not have sense to multiply by 0,u, or dyuy,, having
no G—invariance. Indeed the contributions of these Pohozaev would cancel each other.

If PP =(0,y;,z2) € Q with y; > 0, by Lemma 4.6 we get that

Mo oV = aa, asV(Pi)</2 WQ) ( Z(eg)—ﬁ“)%(l + on(1))
JjEJ2

2 Jn R
in view of J; = ¢ and Jé}max = Ji.
Since i—;ll — ;€ [Cio, 1] and A\, (e)2V(P)) — Ay € (0,1] V j € Ja, we get that

A < O,V(PY) - _a
4.2.1 VUl =g o w? 9P ) s (€)1 (1 4 0,(1)).
@219 [ = S [ w5 0w P00
For k > —Iﬁ, by (4.2.14) we get that
V(P =0

in view of B5(P") C €, for some § > 0 small.
Similarly, if P* = (0,0, z;) €  with J{ = ¢, by Lemma 4.6 we get that

(4.2.16) A;’as‘/‘zgj;)(/w v?) (J; ﬁJH’%l)(si)lfﬁ(l +0a(1)) = O((e})"),

and then 9,V (P") =0 for k > 1 — %.

In case P € 9Q with z; # 0, we have that v, > 0 in As(P") N 0 according to whether
Pt € 00*, and (4.2.14) leads to
A
£20 [ o <o(E),
15
respectively. By the same computation as above, we get that
+9,V(P) <0

according to whether P? € 9Q*.

If P' ¢ Gy, we choose Q = (0, 0, 20), we multiply the equation (4.1.1) by [(z,y,2) — Q] - Vu,
and integrate by parts in Bs(P*) N Q = I

/Ii [(z,y,2) — Q] - Vup(ul — AV uy)

— 3u£+1 A” vV v 2 O 1\k
S s N AT S RE R AR C)

ub ™ up up 1\k
-»1éxpﬂ—av2—Mvvw@%A—mﬁyuwm>
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in view of u, = 0 on 92 and by Theorem 4.7. On the other hand, we have that

1
[ o (@)@ Vi = /Ig Vol 4 [(@.9.2) Q) - V(5w

_ / (Ovun)? [(x,y,2) — Qv + O((£1)F)
O0QNBs(P?)

1 1
= =5 ] 1Vl = 50w)* [(2,3,2) = Q) - v+ O(()"),
5
and then
1 ) u;g—‘rl u2 u2
2/}gwn - /P,:%(p+1 AV [(,7) - Q) TV )
1
(4.217) _ ! / (Dyun)? [(2,9,2) — Q] - v+ O((e)P).
2 JaonBs(Pi)

Then we multiply the equation (4.1.1) by u, and integrate on I}

(4.2.18) ]Vun]2 = /
Ik I

i
&

(uffl e vu,%) +O((L)b).

Substituting (4.2.18) in (4.2.17) we have
1 / 1
21

_ (“ﬁ—i_l - )\nVui) - / ) (8uun)2 (z,9,2) = Q] - v+ O((@lz)k)
i QN Bs (P?)

2

uﬁ“ u? A
- — [ 3 )\nV”+"/ 0, 2) — Q- VV u2
/lg (i 3)+ 5 ), (@na - v

that is
(4.2.19) (1—3)/ ult 4+ / Vil
2 p+1U/Jp " "
An 1
+ 7 ‘[(asjy,z) - Q] : VV’LL% + 2/ ) (81/&”)2 [(‘T’yvz) - Q] V= O((Eil,)k)
Ii QN B (P1)

Observe that the choice of the form @ = (0,0, z9) is to ensure that the term [(z,y,2)—Q] - VV
is G—invariant. As previously observed for the (4.2.14), the contributions in 9,V and 0,V
are not invariant and therefore can not apply the Lemma 4.6, or we may observe that the two
terms do not give contribution because they cancel each other.

We consider the different case.

If PP eQ, %famBé(Pi)(ayunP [(z,y,2) — Q] - v =0 and using Lemma 4.6, we have

i (G5 (Lwr e85 o [ v

a220) + 2P Z‘fgpf)wp X /R W) ()| = 0((eh)"),
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where W satisfies (4.1.4). Multiply the equation (4.1.4) by (r,s) - VW and integrate by part

wetl o\
(4.2.21) —~AW(r,s) - VW =0 = _2/ ( _ 2 WQ)
R2 r2 \p+1 2
and then we derive
~ 1
(4.2.22) 1caa i Wy duky b7
R2 2 R2

We substitute (4.2.22) in ( 4.2.20)

(4.2.23) 3 2wy, (e;)‘pfl(/

2
ieJ? R

WQ)XQ [p n S i1y % P _EQPY)V(PZ)] = O((e))h),

we can divide by >, 2 27y’ (5%)7;%1 Ao Jg2 V2, therefore
o1, 1P QI V(P
2 V(P?)
By previous Pohozaev we have 95V (P?) = 0 so in condition (4.2.24) we have
p—1

p—1 _ ,0,V(P) N
i ' _ Pt ) P —

(4.2.24) =0.

(4.2.25)

and this implies that P’ is a critical point of a modified potential V (r,s) = P V(r, s).
At this point, if 2% # 0, we choose Q = (0,0, z*). Under this choice we have that

' ' ) ) i\2 if Pt
(4.2.26) [P*= Q) - v(P") = (0,4, 0) - v(P") = { (_y@),z')?g 0 ii JP;Z' : gg';

where 0Q, = {22+ y? +22 =a?} and O, = {22 +y? + 22 = b? }, so in (4.2.19) we have that

1 2 <0 if P' e o5y
2 /89035(Pi)(ayun) (@9,2) = Q] ”{ >0 if Pi €09,

Therefore we obtain the following estimate

1 3 A <0 if Pl €00
g p+1 2, 2n —Ql- 2 4 b
(4.2.27) (2 p+1)/fgu" +An/I§Vun+ 5 Ig[(x,y,z) Q] VVun{ S0 i Peq,
Using Lemma 4.6 and (4.2.22) we have
(4.2.28) ‘ A
P S\x [P—5 1(0,4",0) - VV(PY) <0 if P e o,
Z;ﬂ”y’(fn) pl(/RQW)A?[ T V(P ) >0 if PP e Q,,
therefore
p—1  (0,4°,0) - VV(P") /p—1 <0 if P e o,
(4.2.29) —+ P - (%5 V+T‘3rV>|Pi S0 i Peaq.
that is

<0 if P'e oy

(4.2.30) 5‘7(Pi){ >0 if P e 00,
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If 22 = 0,i e. P'is a point of the equator, we choose Q = (0,0,2p) and by the previous

Pohozaev we have
-1 i . i —

p—1 0y'20) VVP) p-1,
2 V(P?) 2

and then 9,V (P?) = 0.

(4.2.31) (PY) + 20,V(P) Z 0 Yz

IV IA

We consider the case in which P! = (0,0,2°) = (0,s') with s' € (=b,—a) U (a,b), get the
condition 8,V (P") = 0. Multiplying the equation (4.1.1) by 0 u, where r = /z? + y* and
integrating on Bs(P?) (in R3) we have

/ ub Oy, — AVt Opiy, = / —Au,Ortty,
Bs(P?) Bs(P?)

and integrating by parts

b 1% A
/ W2 Otty, — AVt Oty :/ a,(“" ) Andr ( s ) 2Vl
Bs(P?) Bs(piy p+1 2 2

/ —Aun, Oty = / Vu,V(0ru,) — / Oy, Optiy,
Bs(P) Bs(P?) dBs(P?)

We make a change of variable r = /22 4 y2, z = s and indicating with Bs(P?) = {(r,s) :
Vr? + 52 < 5} we have

/ Vu,V(0ruy) —/ Oy, Or iy,
B;(P?) dBs(P?)
1
_ / 0, (5IVunl?) —/ Ot Ortin
Bs(Pi) 12 8Bs(P?)

1 1
- / r8r<f|Vun|2>dr ds + o(ek) = / = |V [2dr ds + O((e1)F)
Bs(Pt) N2 Bs(Pi) 2

and
p+1 A
/ T )+"/ OV 2
Bs(P) p+1 2 Jspi)
p+1 2
_ /gé p+1) A, VO, ?ﬂrdrds
up+1 uQ
- _/ n drds—i—)\n/ 20 (rV) +0((ep)"),
Bs(piy P+ 1 Bs(P?)
that give

p+1 2

1 b
(4.2.32) / = |V, |2dr ds = / “ndrds+ An[ Ung (r V) + O((eL)F)
By(P?) 2 By(piy P+ 1 Bs(P?)
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Observe that A = 8y + Oy + 0zo = 02(9r §5) + 3y (0, 55) + Do = O + 10 + Oss. Since %2
has the same behavior of 1 and 1 € L'(2), we can multiply the equation (4.1.1) by “= and
integrating by parts, we have

u up+1 u2
/ —Au, = :/ o\, V 2 :/ uﬁ‘H f)\nVu?Ldrds
Bs(P?) r Bs(pt) T r Bs(P?)

1
= = (&“run + —Oruy + 8ssun)und'r ds = / (arun)2 + (asun)2
Bs(P?) r B

Bs(P?)
1
- / — 0, |u2| drds

BzS(Pi) 27“
= / (8run)2 + (8sun)2 - / U%(r, S) _QU%(O’ S) drds.
Bs(P) Bs(P) 2r

So we have that

2 2
/ uP™ — N, Vuldrds = / |V, |* — / Un (7, 5) 2u”(0’ 5) drds 4+ O((eL)*)
Bs(P?) Bs(P?) Bs(P?) 2r

and then we obtain

/ |V, |2drds = / VAR W 1 Vs +/ un (1, 5) = (0, 5) drds+ = ((ep)").
Bs(PY) Bs(P) " sy 272 "

Using this results in (4.2.32), we reduce to

1 1 A 1 u2(r,s) —u2(0, s) ;
- - p+1 \n 2 - n\’'» n\ — J\k
(5 p+ 1)/ o / tar OV / 2 o))

Bs(P?) 4 JBy(pi r

B;(P?) 2

By Lemma 4.6
2 2 , 2 72
/ un(xvyv Z) un(0707 Z) — Z (E‘Zz)ip;il / U (T) S) U (Oa S) dr ds.
Bs(P?) R2

4r3 ~ 472
ISEA

Let U be a positive solution of —AU + AU = UP in R3. Multiplying this equation by 0,U,
integrating by parts and changing variables we have

~AU U = / (UP = \U)d,U
R3 R3

i \ ’ 1 772
= /RQ <6T<gj_1>—)\ar((;>)Tdrds:_/R2gil _)\%

1 1
~AU8,U = VUV(a,U)z/ 8r<|VU]2>rdrd5:—/ |VU |*drds
R2 RS 2 2 RQ

R3

1 urtt U2
= — [ |VUdrds :/ .
2 R2 R2 P + 1 2
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Moreover, multiplying the equation of U by % and integrating by parts we obtain

- U 1
/ Urtl _\U2 = AU = = / — (0 U + =0,U + 05sU)U
R2 R3 r R2 r
1. (U? 1 U?(r,s) — U?(0, s)
— 2 _—— — pr— 2 - 5 ! !
= | VU] T&( 5 ) /R2 VU -2 2 '

By these two Pohozaev we obtain that

(1_ 1 )/ Up+1:—1/ Uz(r,s)—UQ(O,s).
2 p+1 R2 4 R2 7"2

We have that U, — U as n — +oo exponentially, by the previous chapter, so

e (UA)*(r,5) = (UR)*(0,8) 4
2 ) </Ba<o,zz~zz> e e

e

(% - ler1> /BJ(O,ziZ,’;)(Ur{)p+1) = O((en)")-

h

jeJi

So we make an expansion of:

An

- /. ulr oV
2 JBs(py)
AV: o J i
— Z(gz‘z)—fjﬁ /\N/ | (Un)*(r,5) 1 OV (ehriens+2) o oo (L))
jeJi 2 B (0,2;—27,) V(E% r 4+ yfl, 5% s+ zj)

3%

OV (ehrels+2)=0,V(0,els+2))+¢e) 0,V (0,6l s+ 2))r+O((e])*r?)

therefore for k > 2 g_fi’

1 5\2 . 17—5/ N2 9 i . . Ik
_ = gl )p=1 U2) reel, 0,V (0,e) s + 20 )drds = O((e,,
72 ST @ ( ()

h

— aWV(Pi)/ U%rldrds = 0 = 9, V(P") =0.
RQ

COROLLARY 4.9. Let (upAn) be a positive, G—invariant solution of (4.1.1) with wu, satis-
fying mag(un) =1 and 1 < p #5, N\, = +00 as n — +00.
Suppose that
oV =0in Gy = 0.,V #0,
and
: +
0.V >0 n GonN 89_
<0 m GonoQ.
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Then u, blows-up on a suitable G—invariant, one dimensional curve, i.e. a circle with a

suttable radius r,, such that —24— — oo.
(eh)p=T
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