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Introduction and statement of the Main Results

We are concerned with the study of solutions for the semilinear elliptic Dirichlet problem:

(0.1)

 −∆u+ λV (x)u = up in Ω
u > 0 in Ω
u = 0 on ∂Ω

where λ > 0 is a large parameter, p > 1, Ω is bounded domain of RN , N ≥ 2, V : Ω → R is
a positive potential. Solutions of (0.1) necessarily blow-up as λ→ +∞ in the sense that they
are not uniformly bounded (see Proposition 0.1). The aim is to obtain an accurate description
of their asymptotic behavior as λ → +∞ through an energy or a Morse index information.
We are interested in describing situations where blow-up occurs at finitely as well as infinitely
many points. The objective is to give an asymptotic counter-part to several existence results
available in literature and based on a constructive approach.

The asymptotic analysis in problems with critical and sub-critical polynomial nonlinearities,
with Dirichlet or Neumann boundary condition, has been largely considered in case of pointwise

blow-up. Under the transformation v(x) = u(x)

λ
1
p−1

, with 1
λ = ε2 and V ≡ 1 for simplicity, note

that problem (0.1) reads equivalently as a singularly perturbed Dirichlet problem:

(0.2)

 −ε
2∆v + v = vp in Ω

v > 0 in Ω
v = 0 on ∂Ω.

Problem (0.2) and related ones have been widely considered in literature, as they arise as
steady state equation in several biological and physical models, such as dynamic population,
pattern formation theories and chemical reactor theory. In order to investigate the long-time
behavior of the dynamical solutions, it is very important to understand the properties of the
steady-state ones.

The most interesting features of problem (0.1) concern the existence and multiplicity of so-
lutions, and their asymptotic behavior as λ → +∞. When V ≡ 1, multiplicity results of
solutions and their asymptotic behavior, were first obtained by Ljusternik-Schnirelman cate-
gory in [12, 14]: they prove that equation (0.1) has a family of solutions exhibiting a spike-layer
pattern as λ→ +∞. Subsequently, in [89] Ni and Wei studied the behavior as λ→ +∞ of a
least energy solution to problem (0.1), characterized variationally as a mountain pass of the
associated energy functional, by an asymptotic expansion of the critical value associated to
the least energy solution. They proved that, for λ sufficiently large, a least-energy solution
possesses a single spike-layer with its unique peak in the interior of Ω. Moreover, the peak
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iv INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

must be situated near the most centered part of Ω, i. e. where the distance function d(P, ∂Ω),
P ∈ Ω, assumes its global maximum. Intuitively, the location of the blow-up points should
depend on the geometric properties of the domain, a natural problem being that of determin-
ing the role of the distance function in the location of blow-up points (when V ≡ 1).
More recently in [75, 99] it was proved that, for any local maximum P0 of the distance func-
tion, there exists a family of solutions with a maximum point that approaches P0.
In particular in [75] it is also shown that, if the Brower degree deg(∇d(·, ∂Ω),M, 0) 6= 0 on a
suitable subset M of Ω, then there exists a family of solutions with a unique local maximum
point which converges to a critical point of the distance function in M .
In [45] the authors proved the existence of single k-peaks solutions at any topologically nontriv-
ial critical point of the distance function, which satisfies a suitable non-degeneracy condition.
In [40] Dancer and Wei proved the existence of 2−peaks solutions. Concerning the effect of
the domain topology on the existence of multi-peaks solution Dancer and Yan in [36, 37]
proved that if the homology of the domain is nontrivial, then, for any positive integer k, prob-
lem (0.2) has at least one k−peaks solution. They assume that the distance function has k
isolated compact connected critical sets T1, . . . , Tk with suitable properties. They construct
a solution which has exactly one local maximum point in a small neighborhood of Ti for
i = 1, . . . , k. Moreover they proved that if Ω is strictly convex, problem (0.2) does not have
k−peaks solutions.
Other papers that deal with this problem (V ≡ 1) are [64, 65]. In [64] it is proved that any
”topologically non trivial” critical point of the distance function generates a family of single
peak interior spike solutions. Moreover they proved that the peak of any single solution must
converge to a critical point of the distance function, and treated also k−peaks solutions in the
Neumann case. This method is based on an approach of Bahri (see [11]), and the new idea
is to evaluate, in terms of the generalized gradient of Clarke, the energy of the solutions. In
[23, 24] Cao, Dancer, Noussair and Yan constructed k−peaks solutions with the peaks near
local maximum points or saddle points of d( · , ∂Ω).

Let us fix some notations and terminology. Now for any solution u of (0.1), one can introduce
the linearized operator at u defined as

(0.3) Lu,λ = −∆ + λV − pup−1,

and its corresponding eigenvalues {µk,λ; k = 1, 2, . . . }. Note that the first eigenvalue is given
by

(0.4) inf
{
< Lu,λφ, φ >H1

0 (Ω); φ ∈ C∞0 (Ω),

∫
Ω
φ2(x)dx = 1

}
with the infimum being attained at a first eigenfunction φ1, while the second eigenvalue is
given by the formula

(0.5) µ2,λ = inf
{
< Lu,λφ, φ >H1

0 (Ω); φ ∈ C∞0 (Ω),

∫
Ω
φ2(x)dx = 1 ,

∫
Ω
φ(x)φ1(x)dx = 0

}
.

This construction can be iterated to obtain the k−th eigenvalue µk,λ(u) with the convention
that eigenvalues are repeated according to their multiplicities.
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Let un be a solution of

(0.6)

 −∆un + λnV (x)un = upn in Ω
un > 0 in Ω
un = 0 on ∂Ω

for a sequence λn → +∞ as n→ +∞.
We will assume un to have uniformly bounded Morse indices, i.e.

(0.7) ∃ k̄ ∈ N s. t. µk̄+1,λn(un) > 0 ∀ n ∈ N.

We first show that ‖un‖∞ → ∞ as n → +∞ so as to justify the blow-up analysis we will
perform later.

Proposition 0.1. Let p > 1 and un be a solution of (0.6). Then ‖un‖∞ →∞ as n→ +∞.

Proof. We suppose by contradiction that ‖un‖∞ ≤ C. Multiply the equation (0.6) by un
and integrate to get ∫

Ω
|∇un|2 + λn

∫
Ω
u2
n =

∫
Ω
up+1
n ≤ Cp+1|Ω|.

We have that un is bounded in H1
0 (Ω) and then, up to a subsequence, un ⇀ u in H1

0 (Ω) and∫
Ω u

2
n →

∫
Ω u

2 as n→ +∞.
Since ∫

Ω
u2
n ≤

Cp+1|Ω|
λn

and λn → +∞,

we must have
∫

Ω u
2 = 0, and then un ⇀ 0 in H1

0 (Ω) as n→ +∞. Since un → 0 in L2(Ω), we
have that ∫

Ω
|∇un|2 ≤

∫
Ω
up+1
n ≤ Cp−1

∫
Ω
u2
n → 0.

By Sobolev embedding we have that for p ≥ N+2
N−2 :∫

Ω
|∇un|2 ≤

∫
Ω
up+1
n ≤ Cp+1− 2N

N−2S
− N
N−2

N

(∫
Ω
|∇un|2

) N
N−2

where SN is the Sobolev constant. A contradiction with un → 0 in H1
0 (Ω).

By the Hölder’s inequality and the Sobolev embedding, we have that for 1 < p < N+2
N−2∫

Ω
|∇un|2 ≤ C̃

(∫
Ω
u

2N
N−2
n

)N−2
2N

(p+1)
≤ C̃ S−

p+1
2

N

(∫
Ω
|∇un|2

) p+1
2
,

and a contradiction still arise. �

In the first part of this thesis, we consider pointwise blow-up and obtain results, already known
for solutions sequences with uniformly bounded energy, under an hypothesis of boundedness
for their Morse indices. For the asymptotic analysis we need to give a sort of classification of
solutions of (0.1) which are stable, or stable outside a compact set. For this classification we
use techniques first used by Farina [54] and by Esposito et al. [49, 48].
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In particular, given un a solutions sequence of (0.1) with λn → +∞ as n → +∞, we have to
consider the description of the blow-up behavior of un. Observe that it is always true that

max
Ω

un(x)→ +∞ as n→ +∞,

as we have shown in Proposition 0.1.
As in the usual asymptotic techniques, we want to describe, asymptotically, the shape of un
around any blow-up point. To this aim we rescale un around a blow-up sequence and try
to identify a limiting problem. We denote by m(u) the Morse index of u, as a solution of
(1.1.1). To carry out our analysis, the crucial assumption is that supnm(un) < +∞. Given

εn = ‖un‖
− p−1

2∞ , one naturally scales un in the form Un(y) = un(εn y+Pn)
‖un‖∞ = ε

2
p−1
n un(εn y + Pn)

where Pn is an absolute maximum point of un, defined in the rescaled domain Ωn = Ω−Pn
εn

.
We study the asymptotic behavior of Un and prove that Un → U locally uniformly with U
a solution of a suitable problem in Ω̃ = limn→+∞Ωn (an hyperspace or RN ). The limiting

domain Ω̃ depends on how fast Pn possibly approaches ∂Ω.

We recall the main results.
First in the sub-critical case we have:

Theorem 0.2 (Local profile). Let (λn, un) be a positive solution of

(0.8)

{
−∆un + λnV un = upn, in Ω
un = 0 on ∂Ω

with 1 < p < N+2
N−2 .

Assume either

sup
n
m(un) < +∞,

or

sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n < +∞.

Let Pn ∈ Ω s.t. un(Pn) = maxΩ∩BRnεn (Pn) un for some Rn → +∞ where εn = un(Pn)−
p−1

2 → 0
as n→ +∞.

Setting Un(y) = un(εny+Pn)
‖un‖∞ = ε

2
p−1
n un(εny + Pn) for y ∈ Ωn = Ω−Pn

εn
, then for a subsequence

we have that, as n→ +∞:

• λnε2
nV (Pn)→ λ̃ ∈ (0, 1] for some universal constant λ̃;

• εn
d(Pn,∂Ω) → 0;

• Un → U in C1
loc(RN ) where U is a solution of{

−∆U + λ̃U = Up, in RN
0 < U ≤ U(0) = 1 in RN .

Moreover, ∃φn ∈ C∞0 (Ω) with supp φn ⊂ BRεn(Pn), for some R > 0, so that∫
Ω
|∇φn|2 + (λnV − p up−1

n )φ2
ndx < 0, ∀n large,
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and

lim
n→+∞

1

λ
p+1
p−1
−N

2
n

∫
BRεn(Pn)

up+1
n = λ̃

N
2
− p+1
p−1

(
lim

n→+∞
V (Pn)

) p+1
p−1
−N

2

∫
BR(0)

Up+1.

After the limiting problem has been identified and the local behavior around a blow up sequence
Pn has been described, we can prove global estimates. We will show in such way that the
sequence un decays exponentially away from the blow-up points.

Theorem 0.3 (Global behavior). Let 1 < p < N+2
N−2 . Let λn → +∞, un be solution of

(0.8), so that either

k = lim sup
n→+∞

m(un) < +∞

or

k = λ̃
p+1
p−1
−N

2 (min
Ω
V )

N
2
− p+1
p−1

(∫
RN

Up+1
)−1

lim
n→+∞

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n

with un satisfying (0.7). Up to a subsequence, there exist P 1
n , . . . , P

k
n , k ≤ k with εin =

un(P in)−
p−1

2 → 0 as n→ +∞ s. t.

ε1
n ≤ εin ≤ C0ε

1
n, for all i = 1, . . . , k

εin + εjn

|P in − P
j
n|
→ 0 as n→ +∞, for all i, j = 1, . . . , k, i 6= j

εin
d(P in, ∂Ω)

→ 0 as n→ +∞, for all i = 1, . . . , k, i 6= j

un(P in) = max
Ω∩B

Rnε
i
n

(P in)
un,

for some Rn → +∞ as n→ +∞.
Moreover, there holds

un(x) ≤ C(ε1
n)
− 2
p−1

k∑
i=1

e
−γ |x−P

i
n|

ε1n ∀x ∈ Ω, n ∈ N

with C > 0.

A first goal concerns the investigation of the link between the Morse index and the energy
in case of pointwise blow-up. In the context of the Schrödinger operator, they are related
in terms of the so-called Rozenbljum-Lieb-Cwikel inequality [29, 71, 93]- an estimate of the
number of negative eigenvalues of the Schrödinger operator −∆ + V in terms of a suitable
Lebesgue norm of the negative part V− of V - a one side bound, where the universal constants
are however not explicit.
A-posteriori, we show that Morse index information and an energy one are equivalent. Indeed,
taking advantage of the special structure of our equation, by an asymptotic analysis approach,
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we establish a double-side bound between these two quantities with explicit and essentially
sharp constants.

Theorem 0.4 (Rozenbljum-Lieb-Cwikel type estimate). Let un be a solution of (0.8). The
following are equivalent

(1) supnm(un) < +∞;

(2) supn λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n < +∞.

Moreover, when (1) or (2) holds we have

λ̃
N
2
− p+1
p−1

N + 1
(inf

Ω
V )

p+1
p−1
−N

2

∫
RN

Up+1 ≤ lim inf
n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)
≤ lim sup

n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)

≤ λ̃
N
2
− p+1
p−1 (max

Ω
V )

p+1
p−1
−N

2

∫
RN

Up+1.

Furthermore, the complete knowledge of the limiting problem allows us to establish strong
pointwise estimates to get an expansion of the Pohozaev identities and to localize the position
of the blow-up points in terms of the potential V or of the distance to the boundary if V ≡ 1.
Note that the profile around each blow-up point should resemble, in many situations, to the
unique radial solution given by M.K. Kwong [70], which has given energy and exactly N + 1
nonnegative eigenvalues for the linearized operator counted with multiplicities.
The case of the critical nonlinearity is quite different. Solutions of (0.8) with uniformly bounded
energy never have pointwise blow-up [25]. We will extend this analysis to solutions with uni-
formly bounded Morse indices. In such way we show that problem (0.8) doesn’t have such
solutions. In the supercritical case a similar result is in order.

For blow-up on manifolds of positive dimension, few results are known from the asymptotical
point of view, while many existence results are available through perturbative methods.
The basic result is due to A. Ambrosetti, A. Malchiodi and W.-M. Ni [5] for radial solu-
tions in an annulus Ω := {x ∈ RN : a < |x| < b }. They identify a modified potential

M(r) = rN−1V θ(r), with ϑ = p+1
p−1 −

1
2 and show that there exist families of solutions which

blow-up on spheres whose radii are critical points of M .
It has been conjectured that if N ≥ 3 there could exist also solutions blowing-up onto some
manifold of dimension h̄ with 1 ≤ h̄ ≤ N − 2.
Actually, we have two papers where some asymptotic analysis is carried over. The asymptotic
analysis has been firstly performed by E.N. Dancer [30] by means of ODE techniques. Dancer
shows that, for λ large, V ≡ 1 and p sub-critical, the only positive radial solution is the radial
ground state and it takes its unique maximum on a sphere whose radius goes to 1. In general
an energy information seems useless. Let us notice that, for example, the radial ground state
solution in the annulus has both energy and Morse index very large, and the usual asymptotic
techniques, based on the energy, do not work.
Just these difficulties Esposito, Mancini, Santra and Srikanth [50] have then developed an
alternative asymptotic approach for radial solutions with uniformly bounded radial Morse in-
dices and general V ′s in an annulus. They rigorously establish the correspondence between
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c.p.’s of M and the blow-up radii. For example, the radial ground state solution has radial
Morse index one, but ”unbounded” energy and blows-up at the inner radius when V ≡ 1.
In a recent paper [94] the authors consider the problem on an annulus in R4, and look for
solutions which are invariant under a 1−parameter group action without fixed points.

In the second part of the thesis, our aim is to consider the asymptotic analysis when blow-up
occurs on manifolds of positive dimension, with the purpose of proving a variational construc-
tion for such type of solutions, alternative to the perturbative approach [5].
We will restrict our attention to the case of 3−dimensional annulus and to solutions with
partial symmetries and uniformly bounded invariant Morse indices, as it has been done in [50]
for radial solutions. The symmetry group G will be simply the one of rotations around the
z−axis.
The first objective is to investigate the role of a (full or reduced) Morse index information in
the study of the asymptotic behavior. When consider solutions which are invariant under a
proper subgroup G ⊂ O(N) of symmetries, we need to develop an asymptotic approach based
on a G−invariant Morse index information. In this way we try to carefully localize the blow-up
G−orbits still in terms of a c.p.’s of suitable modified potential.
Our aim is to exhibit potentials for which the orbits of maximum points for the corresponding
solutions do not degenerate on the fixed points set. If G has no fixed points, one can provide,
in this way, solutions (for example the G−invariant ground state) which blow-up on an orbit
with dimension as G. Unfortunately, in general fixed points always arise and just higher order
conditions on the blow-up set might prevent, for suitable potential, the blow-up set to degen-
erate onto the fixed points set.

First we have:

Theorem 0.5. Let (λn, un) be a positive, G−invariant, solutions of (0.8) with supnmG(un) <
+∞, 1 < p 6= 5.
Let Qn = (0, yn, zn) ∈ Ω, yn ≥ 0 be so that un(Qn) = maxΩ∩BRn εn (Qn) un → 0 as n → +∞,
for some Rn → +∞.
Setting

Un(X,Y, Z) =
un(εn (X,Y, Z) + Pn)

un(Pn)
, εn = un(Pn)−

p−1
2 ,

where

Pn :=

{
(0, 0, zn) if |yn|εn

≤ C
Qn if |yn|εn

→ +∞;

up to a subsequence we have that

(1) when un(Qn)
p−1

2 yn ≤ C, then there hold 1 < p < 5 and
• yn

εn
→ 0

• λnε2
nV (Pn)→ λ̃3 ∈ (0, 1] for some universal constant λ̃3

• εn
d(Pn,∂Ω) → 0

• Un → U in C1
loc(R3), where U is a positive G− invariant solution of
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{
−∆U + λ̃3U = Up in R3

U ≤ U(0) = 1 in R3,

with mG(U) < +∞;

(2) when un(Qn)
p−1

2 yn → +∞, then there hold

• λnε2
nV (Pn)→ λ̃2 ∈ (0, 1] for some universal constant λ̃2

• εn
d(Pn,∂Ω) → 0

• Un → U in C1
loc(R3), where U(X,Y, Z) = U(Y,Z) is a positive solution of{

−∆U + λ̃2U = Up in R2

U ≤ U(0) = 1 in R2,

with m(U) < +∞ (two dimensional Morse index).

Moreover, there exists a G−invariant φn ∈ C1
0 (Ω), with

supp φn ⊂ AR(Qn) := { (x, y, z) ∈ R3 : (
√
x2 + y2 − yn)2 + (z − zn)2 ≤ R2ε2

n },

R > 0, so that

(0.9)

∫
Ω
|φn|2 + (λn V − pup−1

n )φ2
n < 0,

for all n large.

From this local analysis we then deduce the global picture.

Theorem 0.6. Let (λn, un) be a positive, G−invariant solution of (0.8) so that supnmG(un) <
+∞ and 1 < p 6= 5. Up to a subsequence, there exist P 1

n = (0, y1
n, z

1
n), . . . , P hn = (0, yhn, z

h
n),

h ≤ supnmG(un), with yin ≥ 0 and εin = un(P in)−
p−1

2 → 0 as n→ +∞ s. t.

ε1
n ≤ εin ≤ C0ε

1
n, for all i = 1, . . . , h

εin + εjn

|P in − P
j
n|
→ 0 as n→ +∞, for all i, j = 1, . . . , h, i 6= j

εin
d(P in, ∂Ω)

→ 0 as n→ +∞, for all i = 1, . . . , h,

un(P in) = (1 + o(1)) max
B
Rnε

i
n

(P in)
un,

for some Rn → +∞ as n→ +∞ .
Moreover, there holds

un(0, y, z) ≤ C(ε1
n)
− 2
p−1

h∑
i=1

e
−γ |(0,y,z)−P

i
n|

ε1n ∀ (0, y, z) ∈ Ω, n ∈ N

with C > 0.
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The main results for invariant solutions are the following:

Theorem 0.7 (Classification of blow-up points). Let (λn, un) be a positive, G−invariant
solution of (0.8) with supnmG(un) < +∞ and 1 < p 6= 5 and λn → +∞ as n→ +∞.
Let P in, i = 1, . . . , h be the points given by Theorem 0.6 and P i = limn→+∞ P

i
n = (0, yi, zi). Let

us assume J i2 = { j = 1, . . . , h : P jn → P i , yjn
εjn
→ +∞} = ø whenever P i ∈ G0 = { z− axis }.

Setting
∂Ω± = {x2 + y2 + z2 = b2, ±z > 0 } ∪ {x2 + y2 + z2 = a2, ±z < 0 },

∂Ωa = {x2 + y2 + z2 = a2}, ∂Ωb = {x2 + y2 + z2 = b2 },
we have that

(1) if P i ∈ ∂Ω±, then ±∂sV (P i) ≤ 0, and if P i = (0, yi, 0) ∈ ∂Ω, then ∂sV (P i) = 0;

(2) if P i ∈ ∂Ω\G0, we also have ∂rṼ (P i) ≤ 0 if P i ∈ ∂Ωb and ∂rṼ (P i) ≥ 0 if P i ∈ ∂Ωa;
(3) if P i ∈ Ω ∩G0, then ∂sV (P i) = ∂r rV (P i) = 0;

(4) if P i ∈ Ω \G0, then ∂sV (P i) = ∂rṼ (P i) = 0.

Here, r =
√
x2 + y2 and Ṽ (r, s) = r

p−1
2 V (r, s).

Corollary 0.8. Let (unλn) be a positive, G−invariant solution of (0.8) with un satisfying
mG(un) = 1 and 1 < p 6= 5, λn → +∞ as n→ +∞.
Suppose that

∂sV = 0 in G0 =⇒ ∂r rV 6= 0,

and

∂sV

{
> 0 in G0 ∩ ∂Ω+,
< 0 in G0 ∩ ∂Ω−.

Then un blows-up on a suitable G−invariant, one dimensional curve, i.e. a circle with a
suitable radius rn such that rn ‖un‖2∞ →∞.

The thesis is organized as follows.
In Chapter 1 we recall some results and also classification Theorems, about solutions which
are stable or stable outside a compact set. Preliminary results and this classification, that we
will give under more general hypothesis, are used to have some information of the limiting
problem.
In Chapter 2 we introduce a blow-up approach to identify the limiting problem, and we give
a complete description of the blow-up behavior for un.
We then deduce an asymptotic estimate on un in terms of its local maximum points.
In this chapter the most important and new result is the equivalence between an energy
information and Morse index information (the Rozenblyum-Lieb-Cwikel type estimate).
In Chapter 3 we proceed further in the asymptotic analysis in order to localize the blow-up
points in the case V 6= 1 and V ≡ 1. We show that a Morse Index information, in the
sub-critical case, provides a complete description of the blow-up behavior, in the sense that
we obtain some crucial global estimates to localize the blow-up set. In this section we show
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exactly how the geometry of the domain affects the existence of such solutions. When in the
equation (0.1) the potential V ≡ 1, we re-derive some results which are already known. For a
generic potential V the geometry of the domain does not influence the location of the peak,
which must be just a critical point of V .
In Chapter 4, we work with solutions of (0.1), which are invariant under rotations around the
z−axis in an annulus of R3. We discuss the asymptotic analysis of these solutions, and in some
cases we are able to show that blow-up occurs on circles. The main difficulty is to discuss what
happens on this axis, which is fixed under the action of this symmetry group.
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CHAPTER 1

Notations, definitions and preliminary results

In this Chapter we collect some preliminary theorems that will be used frequently in the se-
quel.
It explains the interest for qualitative results on semilinear elliptic problems on RN or hyper-
planes with polynomial nonlinearity. In particular we will focus on solutions with finite Morse
indices.

1.1. Some classification results

We focus on the study of the asymptotic behavior as λ→ +∞ of solutions of

(1.1.1)

 −∆u+ λV (x)u = up in Ω
u > 0 in Ω
u = 0 on ∂Ω

where p > 1, Ω is bounded domain of RN , N ≥ 2, V : Ω→ R is a potential so that:

• V ∈ C1(Ω,R);
• V is a bounded away from zero: infΩ V > 0.

Consider the related problem

(1.1.2)

{
−∆U + λ̃U = Up, in Ω̃
0 < U ≤ U(0) = 1

with p > 1 and Ω̃ an hyperspace or RN . We study the existence of solutions of (1.1.2) and
related properties in the following section.
We observe that all the results are expressed, in a more general form, for invariant solutions,
to achieve a unified approach.
In order to state the results, let us introduce the following definition of stability, stability
outside a compact set and of Morse index k.

Definition 1.1. Let G be a subgroup of O(N) and Ω be a G−invariant domain (i.e.
g x ∈ Ω, ∀x ∈ Ω, ∀ g ∈ G).
We say that a positive G−invariant solution U ∈ H1

0 (Ω) (i.e. U(g x) = U(x) ∀x ∈ Ω, ∀ g ∈ G)
of

(1.1.3) −∆U + λ̃U = Up in Ω

• is G−stable if

∀ϕ ∈ C1
0 (Ω) G− invariant QU (ϕ) :=

∫
Ω
|∇ϕ|2 + λ̃ϕ2 − p Up−1 ϕ2 ≥ 0;

1



2 1. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS

• is G−stable outside a G−invariant compact set K if QU (ϕ) ≥ 0 for any G−invariant
ϕ ∈ C1

0 (Ω \K) ;
• has G−invariant Morse index mG(U) equal to k ≥ 1 if k is the maximal dimension of a

subspace Wk of G−invariant functions in C1
0 (Ω) s. t. Qu(ϕ) < 0 for any ϕ ∈Wk\{ 0 }.

For G = { Id } we have the classical Morse index m{Id}(u) = m(u).
Observe that if U is a solution of (1.1.2), the corresponding linearized operator is

L = −∆ + λ̃− pUp−1

and the Morse index of U is the number of negativity directions of the quadratic form associated
to the linearized operator.

Remark 1.2. Any finite Morse index solution U is stable outside a compact set K ⊂ Ω.
Indeed, there exist a maximal dimension k ≥ 1 and Wk := span{ϕ1, . . . , ϕk } ⊂ C1

0 (Ω) s.
t. QU (ϕ) < 0 for any ϕ ∈ Wk \ { 0 }. So QU (ϕ) ≥ 0 for every ϕ ∈ C1

0 (Ω \ K), where
K := ∪ki=1supp(ϕi).

Following the techniques used first by Farina [54], and by Esposito et al. [49, 48], we obtain
some classification results. The theorems in the sequel are based on the following crucial result:

Proposition 1.3. Let be a subgroup of O(N), Ω be a G−invariant domain (bounded or
not) of RN . Let U ∈ C2(Ω) be a G−stable solution of

(1.1.4) −∆U + λ̃U = |U |p−1U in Ω

with λ̃ ≥ 0, p > 1. Then, for any γ ∈ [1, 2 p+ 2
√
p(p− 1)− 1) and any integer m ≥ p+γ

p−1 there

exists a constant Cp,m,γ > 0, such that

(1.1.5)

∫
Ω

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ)ψ2m ≤ Cp,m,γ
∫

Ω
(|∇ψ|2 + |ψ||∆ψ|)

p+γ
p−1

for all G−invariant test functions ψ ∈ C2
0 (Ω) satisfying |ψ| ≤ 1 in Ω.

Moreover if λ̃ > 0 and γ > 1, there holds

(1.1.6)

∫
Ω
|U |γ+1ψ2m ≤ Cp,γ

∫
Ω
|U |γ+1(|∇ψ|2 + |ψ|∆ψ)

for all G−invariants test functions ψ ∈ C2
0 (Ω) satisfying |ψ| ≤ 1 in Ω.

Proof. We prove this proposition with G = { Id }, but the same proof works also in the
general case.
We divide the proof in four steps:

1st step For any ϕ ∈ C2
0 (Ω) we have:

(1.1.7)

∫
Ω
|∇(|U |

γ−1
2 U)|2ϕ2 =

(γ + 1)2

4 γ

∫
Ω

(|U |p+γ − λ̃|U |γ+1)ϕ2 +
γ + 1

4 γ

∫
Ω
|U |γ+1∆(ϕ2).
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Multiply the equation (1.1.4) by Uγ ϕ2 and integrate by parts, to have∫
Ω
γ|∇U |2|U |γ−1ϕ2 +

∫
Ω
∇U ∇(ϕ2)|U |γ−1U + λ̃

∫
Ω
|U |γ+1ϕ2 =

∫
Ω
|U |p+γϕ2.

Therefore we have that

γ

(γ+1
2 )2

∫
Ω
|∇(|U |

γ−1
2 U)|2ϕ2 +

∫
Ω
∇
( |U |γ+1

γ + 1

)
∇(ϕ2)

=
γ

(γ+1
2 )2

∫
Ω
|∇(|U |

γ−1
2 U)|2ϕ2 −

∫
Ω

|U |γ+1

γ + 1
∆(ϕ2) =

∫
Ω

(|U |p+γ − λ̃|U |γ+1)ϕ2,

and then (1.1.7) follows.

2nd step For any ϕ ∈ C2
0 (Ω) we have:(

p− (γ + 1)2

4 γ

)∫
Ω
|U |p+γϕ2 − λ̃

(
1− (γ + 1)2

4 γ

)∫
Ω
|U |γ+1ϕ2(1.1.8)

≤ 1− γ
4 γ

∫
Ω
|U |γ+1∆(ϕ2) +

∫
Ω
|U |γ+1|∇ϕ|2.

We observe that the function ψ = |U |
γ−1

2 U ϕ belongs to C1
0 (Ω), for all ϕ ∈ C2

0 (Ω)
and so it can be used as a test function in the quadratic form QU . Then the stability
assumption on U gives:

p

∫
Ω
|U |p+γϕ2 − λ̃

∫
Ω
|U |γ+1ϕ2 ≤

∫
Ω
|∇(|U |

γ−1
2 U)|2ϕ2 +

∫
Ω

(|U |
γ−1

2 U)2|∇ϕ|2

+

∫
Ω

2∇(|U |
γ−1

2 U)∇ϕ |U |
γ−1

2 U ϕ =

∫
Ω
|∇(|U |

γ−1
2 U)|2ϕ2 +

∫
Ω
|U |γ+1|∇ϕ|2

− 1

2

∫
Ω
|U |γ+1∆(ϕ2) =

(γ + 1)2

4 γ

∫
Ω

(|U |p+γ − λ̃|U |γ+1)ϕ2 +
γ + 1

4 γ

∫
Ω
|U |γ+1∆(ϕ2)

+

∫
Ω
|U |γ+1|∇ϕ|2 −

∫
Ω

1

2
|U |γ+1∆(ϕ2)

=
(γ + 1)2

4 γ

∫
Ω

(|U |p+γ − λ̃|U |γ+1)ϕ2 +
1− γ
4 γ

∫
Ω
|U |γ+1∆(ϕ2) +

∫
Ω
|U |γ+1|∇ϕ|2.

3rd step For any γ ∈ [1, 2 p+2
√
p(p− 1)−1) and any integer m ≥ p+γ

p−1 there exists a constant

C(p,m, γ) such that

(1.1.9)

∫
Ω
|U |p+γ ψ2m ≤ C(p,m, γ)

∫
Ω

[
|∇ψ|2 + |ψ| |∆ψ|

] p+γ
p−1

;

(1.1.10)

∫
Ω
|∇(|U |

γ−1
2 U)|2 ψ2m ≤ C(p,m, γ)

(∫
Ω
|∇ψ|2 + |ψ| |∆ψ|

) p+γ
p−1

;
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for all test functions ψ ∈ C2
0 (Ω) satisfying |ψ| ≤ 1 in Ω (the constant can be explicitly

computed).

Let α1 = p− (γ+1)2

4 γ and α2 = 1− (γ+1)2

4 γ = − (γ−1)2

4 γ .

Observe that α1 = −γ2+2(2 p−1)γ−1
4γ > 0 ⇐⇒ γ− = 2 p− 1−

√
4 p2 − 4 p < γ < γ+ =

2 p− 1 +
√

4 p2 − 4 p. Observe that γ− < 1 < γ+. So we have that α1 > 0 and α2 ≤ 0
and the following inequality does hold:

(1.1.11) α1

∫
Ω
|U |p+γϕ2 − λ̃α2

∫
Ω
|U |γ+1ϕ2 ≤ β

∫
Ω
|U |γ+1∆(ϕ2) +

∫
Ω
|U |γ+1|∇ϕ|2

with β = 1−γ
4 γ ≤ 0. For any ψ ∈ C2

0 (Ω), with |ψ| ≤ 1 in Ω, we set ϕ = ψm. Observe

that the function ϕ ∈ C2
0 (Ω), since m ≥ 1 is an integer, so we can apply (1.1.11) to

get

α1

∫
Ω
|U |p+γψ2m − λ̃α2

∫
Ω
|U |γ+1ψ2m

≤
∫

Ω
|U |γ+1ψ2m−2[m2|∇ψ|2 + 2β m(2m− 1)|∇ψ|2 + 2β mψ∆ψ].(1.1.12)

Since α2 ≤ 0, we have that

α1

∫
Ω
|U |p+γψ2m ≤ α1

∫
Ω
|U |p+γψ2m − λ̃α2

∫
Ω
|U |γ+1ψ2m

≤
∫

Ω
|U |γ+1ψ2m−2[m2|∇ψ|2 + 2β m(2m− 1)|∇ψ|2 + 2β mψ∆ψ],(1.1.13)

and we deduce that

(1.1.14)

∫
Ω
|U |p+γ |ψ|2m ≤ C1

∫
Ω
|U |γ+1|ψ|2m−2[|∇ψ|2 + |ψ∆ψ|],

with C1 = m2+2βm(2m−1)
α1

. Apply Hölder’s inequality to get:

(1.1.15)

∫
Ω
|U |p+γ |ψ|2m ≤ C1

(∫
Ω

[|U |γ+1|ψ|2m−2]
p+γ
1+γ

) 1+γ
p+γ
(∫

Ω
[|∇ψ|2 + |ψ∆ψ|]

p+γ
p−1

) p−1
p+γ

.

Notice that m ≥ p+γ
p−1 , implies (2m− 2)p+γ1+γ ≥ 2m, and thus |ψ|(2m−2) p+γ

1+γ ≤ |ψ|2m in

Ω, in view of |ψ| ≤ 1.
We obtain

(1.1.16)

∫
Ω
|U |p+γ |ψ|2m ≤ C1

(∫
Ω
|U |p+γ |ψ|2m

) 1+γ
p+γ
(∫

Ω
[|∇ψ|2 + |ψ∆ψ|]

p+γ
p−1

) p−1
p+γ

,

and then

(1.1.17)

∫
Ω
|U |p+γ |ψ|2m ≤ C

p+γ
p−1

1

∫
Ω

[|∇ψ|2 + |ψ∆ψ|]
p+γ
p−1 ,
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Inequality (1.1.9) does hold with C = C
p+γ
p−1

1 . Observe that∫
Ω
|U |p+γϕ2 − λ̃

∫
Ω
|U |γ+1ϕ2 ≤

∫
Ω
|U |p+γϕ2 − λ̃α2

α1

∫
Ω
|U |γ+1ϕ2

≤ β

α1

∫
Ω
|U |γ+1∆(ϕ2) +

1

α1

∫
Ω
|U |γ+1|∇ϕ|2(1.1.18)

in view of α2
α1
< 0. By a combination of (1.1.7) and (1.1.18) we have that∫

Ω
|∇(|U |

γ−1
2 U)|2ϕ2

≤ (γ + 1)2

4 γ

[ β
α1

∫
Ω
|U |γ+1ϕ∆ϕ+

1

α1

∫
Ω
|U |γ+1|∇ϕ|2

]
+
γ + 1

4 γ

∫
Ω
|U |γ+1∆(ϕ2)

=
(γ + 1)2

4 γ

[ 1

α1

∫
Ω
|U |γ+1|∇ϕ|2 +

β

α1

∫
Ω
|U |γ+1ϕ∆ϕ

]
+
γ + 1

2 γ

[ ∫
Ω
|U |γ+1|∇ϕ|2

+

∫
Ω
|U |γ+1ϕ∆ϕ

]
= A

∫
Ω
|U |γ+1|∇ϕ|2 +B

∫
Ω
|U |γ+1ϕ∆ϕ

where A = (γ+1)2 (2β+1)
4 γ α1

+ γ+1
2 γ > 0 and B = (γ+1)2

2 γ α1
β + γ+1

2 γ ∈ R. Now we insert the

test function ϕ = ψm in the latter inequality to find
(1.1.19)∫

Ω
|∇(|U |

γ−1
2 U)|2ψ2m ≤

∫
Ω
|U |γ+1ψ2m−2[Am2|∇ψ|2 +Bm (m− 1) |∇ψ|2 +Bmψ∆ψ],

and then

(1.1.20)

∫
Ω
|∇(|U |

γ−1
2 U)|2ψ2m ≤ C2

∫
Ω
|U |γ+1ψ2m−2[|∇ψ|2 + |ψ∆ψ|],

with C2 = max{ |Am2 + Bm (m − 1)|, |Bm| } > 0. Applying Hölder inequality in
(1.1.20) we get∫

Ω
|∇(|U |

γ−1
2 U)|2ψ2m ≤ C2

(∫
Ω

[|U |γ+1ψ2m−2]
p+γ
1+γ

) 1+γ
p+γ
(∫

Ω
[|∇ψ|2 + |ψ∆ψ|]

p+γ
p−1

) p−1
p+γ

,

≤ C2

(∫
Ω
|U |p+γψ2m

) 1+γ
p+γ
(∫

Ω
[|∇ψ|2 + |ψ∆ψ|]

p+γ
p−1

) p−1
p+γ

.

Inserting (1.1.17) into the latter we obtain

(1.1.21)

∫
Ω
|∇(|U |

γ−1
2 U)|2ψ2m ≤ C2C

1+γ
p−1

1

∫
Ω

[|ψ|2 + |ψ∆ψ|]
p+γ
p−1 ,

ans so the proof of 3rd step is complete.

4th step End of proof

Formula (1.1.5) follows adding inequalities (1.1.9) and (1.1.10), (1.1.6) is an easy
consequence of (1.1.18), in view of α1 ≥ 0 and α2 < 0.

�
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If we supply the equation with the boundary condition U = 0 on ∂Ω, we obtain the following
generalization of Proposition 1.3 above:

Proposition 1.4. Let p > 1, 0 < α < 1 and let Ω be a G−invariant proper C2,α domain
(bounded or not) of RN . Let U ∈ C2(Ω) be a G−invariant solution of

(1.1.22)

{
−∆U + λ̃U = Up in Ω,
U = 0 in ∂Ω,

with λ̃ ≥ 0, which is G−stable outside a G−stable compact set K. Then, for any γ ∈ [1, 2 p+

2
√
p(p− 1)− 1) and any integer m ≥ p+γ

p−1 , there exists a constant Cp,m,γ > 0, such that

(1.1.23)

∫
Ω

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ)ψ2m ≤ Cp,m,γ
∫

Ω
(|∇ψ|2 + |ψ||∇ψ|)

p+γ
p−1

for all G−invariant test functions ψ ∈ C2
0 (RN \K) satisfying |ψ| ≤ 1 in RN \K.

Moreover if λ̃ > 0 and γ > 1

(1.1.24)

∫
Ω
|U |γ+1ψ2 ≤ Cp,γ

∫
Ω
|U |γ+1(|∇ψ|2 + |ψ||∆ψ|)

for all G−invariant test functions ψ ∈ C2
0 (RN \K) satisfying |ψ| ≤ 1 in Ω \K.

Proof. We prove this proposition with G = { Id }, but the same proof is true also in the
generic case.
Since Ω is smooth, U ∈ C2(Ω) and U = 0 on ∂Ω allows to proceed as in the proof op Proposition
1.3. Observe that 1st step goes without any change if we remark that for any ϕ ∈ C2

0 (RN \K),
the function |U |γ−1U ϕ2 ∈ H1

0 (Ω \K) and integration by parts does hold.

In the same way, 2nd step can be carried over since for the function |U |
γ−1

2 U ϕ the quadratic
form QU is non negative. The rest of the proof is unchanged.

�

Remark 1.5. The crucial fact is that we can use test functions supported in RN \K and
not only in Ω \K, in view of the zero Dirichlet boundary condition of U .

We prove now that the stability outside a compact set implies strong integrability properties.

Proposition 1.6. Let G a subgroup of O(N). Let U be a G−invariant solution of

(1.1.25)

{
−∆U + λ̃U = |U |p−1U in Ω̃

U = 0 on ∂Ω̃

with p > 1, λ̃ > 0 and Ω̃ is either RN or a G−invariant half-space. Assume that U is G−stable
outside a ball BR0(0), R0 > 0.

Then, for any q ∈ (0, 2 p+ 2
√
p(p− 1)) we have that :∫

RN
|U |q(y)(1 + |y|2)α <∞

and α ∈ R.
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Proof. Let R > R0 + 2 and η ∈ C∞0 (RN ) radial so that

0 ≤ η ≤ 1, η ≡ 0 in BR0+1(0) ∪BC
2R(0), η ≡ 1, in BR(0) \BR0+2(0),(1.1.26)

R|∇η|+R2|∆η| ≤ 2, in B2R(0) \BR(0).

By (1.1.23) we get that

(1.1.27)

∫
Ω̃
|U |p+γ ≤ Cp,m,γ

∫
Ω̃

1

(1 + |y|2)
β p+γ
p−1

for every γ ∈ [1, 2 p+ 2
√
p(p− 1)− 1), m ≥ p+γ

p−1 integer, β ≥ 1, in view of

(1.1.28)
η

(1 + |y|2)
β−1

2

∣∣∣∣∣∆
(

η

(1 + |y|2)
β−1

2

)∣∣∣∣∣+

∣∣∣∣∣∇
(

η

(1 + |y|2)
β−1

2

)∣∣∣∣∣
2

≤ C1

(1 + |y|2)β

for some constant C1 independent on R > 0.

Hence, letting R → +∞ we get that
∫
RN

|U |p+γ
(1+|y|2)(β−1)m < +∞ for β > N

2
p−1
p+γ . Resuming, for

every γ ∈ [p, 3 p+ 2
√
p(p− 1)− 2) there exists βγ > 1 so that

(1.1.29)

∫
RN

|U |γ+1

(1 + |y|2)β
< +∞ ∀β ≥ βγ .

Now, use (1.1.24) with ψ = η

(1+|y|2)
β−1

2

and by (1.1.28) we obtain

(1.1.30)

∫
Ω̃
|U |γ+1 η2

(1 + |y|2)β−1
≤ C ′p,γ

∫
RN

|U |γ+1

(1 + |y|2)β
,

for γ ∈ (1, 2 p+ 2
√
p (p− 1)− 1). Letting R→ +∞, we then get

(1.1.31)

∫
RN

|U |γ+1

(1 + |y|2)β−1
≤ CU + Cp,γ

∫
RN

|U |γ+1

(1 + |y|2)β

for γ ∈ (1, 2 p + 2
√
p(p− 1) − 1), where CU =

∫
BR0+2(0)

|U |γ+1

(1+|y|2)β−1 . Starting from β = βγ in

(1.1.28), we can iterate (1.1.31) to obtain

(1.1.32)

∫
RN
|U |γ+1(1 + |y|2)α < +∞

for every α ∈ R and γ ∈ [p, 2 p+ 2
√
p(p− 1)− 1). By (1.1.32) for every α ∈ R and the Hölder

inequality we easily show that ∫
RN
|U |q (1 + |y|2)α < +∞

for every α ∈ R and q ∈ (0, 2 p+ 2
√
p)(p− 1)), as claimed.

�
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1.1.1. The whole-space. In this subsection we consider existence and non existence
results of the problem (1.1.2) in RN , λ̃ ≥ 0.

For λ̃ = 0 we use some results contained in [52] concerning the Lane-Emden equation −∆U =
|U |p−1U on unbounded domain of RN . Several classification theorems and Liouville-type
results are obtained for different classes of solutions. We are interested inG−invariant solutions
in RN , which are stable outside a compact set.
Let

pc(N) :=

{
+∞ if N ≤ 10
(N−2)2−4N+8

√
N−1

(N−2)(N−10) if N ≥ 11

be the Joseph-Lundgren exponent [68]. Note that pc(N) is larger then pS(N), where pS(N)+1

is the critical exponent in Sobolev embedding H1
0 (Ω̃) ⊂ Lq(Ω̃), and pc(N) < pc(N − 1).

Theorem 1.7. Let U ∈ C2(RN ) be a G−stable solution of

(1.1.33) −∆U = |U |p−1U

with

(1.1.34)

{
1 < p < +∞ if N ≤ 10

1 < p < pc(N) := (N−2)2−4N+8
√
N−1

(N−2)(N−10) if N ≥ 11.

Then U ≡ 0.

Proof. For every R > 0, we consider the function ψR(x) = ϕ( |x|R ), where ϕ ∈ C2
0 (R),

satisfies 0 ≤ ϕ ≤ 1 and

(1.1.35) ϕ(t) =

{
1 if |t| ≤ 1
0 if |t| ≥ 2.

Let us fix p > 1. Observe that for any γ ∈ [1, 2 p+2
√
p(p− 1)− 1) and m ≥ p+γ

p−1 , Proposition

1.3 yields to∫
BR(0)

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ) ≤ Cp,m,γ

∫
RN

(|∇ψR|2 + |ψR||∆ψR|)
p+γ
p−1

≤ C(p, γ,m,N, ϕ)R
N−2 p+γ

p−1 ,(1.1.36)

for every R > 0.
We claim that we can always choose γ ∈ [1, 2 p+ 2

√
p(p− 1)− 1) such that

(1.1.37) N − 2
(p+ γ

p− 1

)
< 0.

We set γM (p) = 2 p+ 2
√
p(p− 1)− 1 and consider separately the case N ≤ 10 and N ≥ 11.

When N ≤ 10, we have that

p+ γM (p) = 3 p+ 2
√
p(p− 1)− 1 ≥ 3 p+ 2(p− 1)− 1 > 5(p− 1)

and therefore

N − 2
(p+ γM (p)

p− 1

)
< N − 10 ≤ 0.
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The latter inequality and the continuity of the function t→ N − 2 p+tp−1 imply the existence of

γ ∈ [1, 2 p+ 2
√
p(p− 1)− 1) satisfying (1.1.37).

Consider N ≥ 11 and 1 < p < pc(N). In this case we consider the real-valued func-

tion in (1,+∞) → f(t) := 2( t+γM (t)
t−1 ). Since f is a strictly decreasing function satisfy-

ing limt→1+ f(t) = +∞ and limt→+∞ f(t) = 10, there exists a unique p0 > 1 such that

N = 2(p0+γM (p0)
p0−1 ). We claim that p0 = pc(N). Indeed there holds

N = 2
(p0 + γM (p0)

p0 − 1

)
⇐⇒ (N − 2)(p0 − 1)− 4 p0 = 4

√
p0(p0 − 1),

which implies that p0 satisfies:

(1.1.38) |(N − 2)(N − 10)|p2
0 + [−2(N − 2)2 + 8N ]p0 + (N − 2)2 = 0,

whose roots are

pc(N) =
(N − 2)2 − 4N + 8

√
N − 1

(N − 2)(N − 10)
,

(N − 2)2 − 4N − 8
√
N − 1

(N − 2)(N − 10)
< pc(N).

Since (N − 2)(pc(N)− 1)− 4 pc(N) > 0, we have that p0 = pc(N)
Since f is a strictly decreasing function, it follows that

(1.1.39) ∀ 1 < p < pc(N) f(p) = 2
(p+ γM (p)

p− 1

)
> f(pc(N)) = N.

Now the continuity of t→ N − 2 p+tp−1 implies the existence of this γ.

Therefore, by letting R→ +∞ in (1.1.36), we have∫
RN

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ) = 0,

and so U ≡ 0. �

Next we can improve the argument to obtain the following result:

Theorem 1.8. Let U ∈ C2(RN ) be a G−invariant solution of (1.1.33) which is G−stable
outside a compact G−invariant set K of RN . Suppose

(1.1.40)


1 < p < +∞ if N = 2,
1 < p < +∞, p 6= N+2

N−2 if 3 ≤ N ≤ 10,

1 < p < pc(N) if N ≥ 11,

then U ≡ 0.

Proof. Let ϕ ∈ C2
0 (R) be as in the previous proof, and ϑs ∈ C2

0 (R), so that 0 ≤ ϑs ≤ 1,
and

(1.1.41) ϑ(t) =

{
0 if |t| ≤ s+ 1,
1 if |t| ≥ s+ 2,

where s > 0. We divide the proof in several steps.

1st step. Let p > 1. There exists R0 = R0(U) > 0 such that
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(1) for every γ ∈ [1, 2 p+ 2
√
p(p− 1)− 1) and every r > R0 + 3, we have∫

{R0+2<|x|<r }
(|∇(|U |

γ−1
2 U)|2 + |U |p+γ)dx ≤ A+B r

N−2 p+γ
p−1 ,

where A and B are positive constants depending on p, γ,N,R0 but not on r.
(2) for every γ ∈ [1, 2 p+ 2

√
p(p− 1)−1) and every open ball BR(y) such that B2R(y) ⊂

{x ∈ RN : |x| > R0 }, we have∫
BR(y)

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ)dx ≤ CRN−2 p+γ
p−1 ,

R0 so that K ⊂ BR0(0), where C is a positive constant depending on p, γ,N,R0 but
neither on R nor on y.

For every r > R0 + 3, we consider the function

(1.1.42) ξr(t) =

{
ϑR0(|x|) if |x| ≤ R0 + 3,

ϕ( |x|r ) if |x| ≥ R0 + 3.

We choose an integer m ≥ p+γ
p−1 . Notice that the function ξr belongs to C2

0 (RN \ B(0, R0))

and satisfies 0 ≤ ξr ≤ 1 everywhere on RN . Therefore an application of Proposition 1.3 with
Ω := RN \B(0, R0) yields to∫

{R0+2<|x|<r }
(|∇(|U |

γ−1
2 U)|2 + |U |p+γ)dx ≤ Cp,m,γ

∫
RN

(|∇ξr|2 + |ξr||∆ξr|)
p+γ
p−1 dx

≤ Cp,m,γ

[ ∫
{ |x|≤R0+3 }

(|∇ϑR0 |2 + |ϑR0 ||∆ϑR0 |)
p+γ
p−1 dx+

∫
{ r≤|x|≤2 r }

(|∇ξr|2 + |ξr||∆ξr|)
p+γ
p−1

]
≤ A+B r

N− 2 p+γ
p−1 ,

for all r > R0 + 3 and all γ ∈ [1, 2 p+ 2
√
p(p− 1)−1), and the first estimate follows. To prove

the other estimate, let νR,y ∈ C∞0 (RN ) be a cut-off function so that 0 ≤ νR,y ≤ 1, νR,y ≡ 1 in

||x| − |y|| ≤ R, νR,y ≡ 0 in ||x| − |y|| ≥ 2R and |∇νR,y|2 + |∆νR,y| ≤ C
R2 in R2 uniformly in x

and y. Using the Proposition 1.3 we have∫
BR(y)

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ)dx ≤
∫
||x|−|y||≤R

(|∇(|U |
γ−1

2 U)|2 + |U |p+γ)dx

≤ Cp,m,γ

∫
RN

(|∇νR,y|2 + |νR,y||∆νR,y|)
p+γ
p−1 dx

≤ C(p,m, γ)R
N−2 p+γ

p−1 .

2nd step. The sub-critical case.

We assume, either N = 2 and 1 < p < +∞ or N ≥ 3 and 1 < p < N+2
N−2 . By choosing γ = 1 in
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1st step we get ∇U ∈ L2(RN ) and U ∈ Lp+1(RN ), and therefore we can obtain the classical
Pohozaev identity, see [92, 95],

(1.1.43)
(N

2
− 1
)∫

RN
|∇U |2 =

N

p+ 1

∫
RN
|U |p+1.

Multiply the equation (1.1.33) by U ψR,0 and integrate by parts to get:∫
RN
|∇U |2ψR,0 −

∫
RN
|U |p+1ψR,0 =

1

2

∫
RN

U2∆(ψR,0).

Observing that∣∣∣ ∫
RN

U2∆(ψR,0)
∣∣∣ ≤ (∫

R<|x|<2R
|U |p+1

) 2
p+1
(∫

R<|x|<2R
[∆(ψR,0)]

p+1
p−1

) p−1
p+1 ≤ o(1) (R

N−2 p+1
p−1 )

p−1
p+1 → 0

as R→ +∞, we have that

(1.1.44)

∫
RN
|∇U |2 =

∫
RN
|U |p+1.

We combine (1.1.43) and (1.1.44) to get(N
2
− 1− N

p+ 1

)∫
RN
|U |p+1 = 0

where N
2 − 1− N

p+1 ≤ 0. Hence U must be identically zero, as claimed.

3rd step. Let η > 0. Assume either

N ≥ 11 and
N + 2

N − 2
≤ p < pc(N) or 3 ≤ N ≤ 10 and

N + 2

N − 2
≤ p < +∞.

Then

(1.1.45) ∃ γ1 = γ1(p,N) ∈ (1, 2 p+ 2
√
p(p− 1)− 1) : (p− 1)

N

2
= p+ γ1,

(1.1.46) ∃R1 = R1(p,N, η, U) > R0 :

∫
|x|≥R1

|U |(p−1)N
2 dx < η,

(1.1.47) ∃ε = ε(p,N) ∈ (0, 1] : 1 ≤ (p− 1)
N

2− ε
− p < 2 p+ 2

√
p(p− 1)− 1.

We observe that p ≥ N+2
N−2 ⇒ p+ 1 ≤ (p− 1)N2 , and by (1.1.39) we have

p+ (2 p+ 2
√
p(p− 1)− 1) = p+ γM (p) > (p− 1)

N

2
.
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These facts and the continuity of the function (γ, ε)→ (p− 1) N
2−ε − p− γ imply the existence

of γ1 and ε. By the existence of such γ1 and 1st step we have∫
{R0+2<|x|<r}

|U |(p−1)N
2 dx =

∫
{R0+2<|x|<r}

|U |p+γ1dx

≤ A+Br
N−2

p+γ1
p−1 = A+B ∀ r > R0 + 3.

Then ∫
|x|≥R0+2

|U |(p−1)N
2 dx < +∞,

and the thesis follows for a suitable R0 depending on η.

4th step. Assume that

3 ≤ N ≤ 10 and
N + 2

N − 2
≤ p < +∞, or N ≥ 11 and

N + 2

N − 2
≤ p < pc(N).

Then

lim
|x|→+∞

|x|
2
p−1U(x) = 0, lim

|x|→+∞
|x|1+ 2

p+1 |∇U(x)| = 0.

We omit the proof of this step, see [70] or [52].

5th step. Assume

3 ≤ N ≤ 10 and
N + 2

N − 2
< p < +∞, or N ≥ 11 and

N + 2

N − 2
< p < pc(N).

Then U ≡ 0.

As in [21] we use the change of variable

U(r, σ) = r
− 2
p−1 v(t, σ), t = ln(r).

Then v satisfies the equation:

vtt +Avt + ∆SN−1v +B v + |v|p−1v = 0, in R× SN−1,

with A = (N − 2− 4
p−1), B = −( 2

p−1(N − 2− 2
p−1)). Here SN−1 is the unit sphere of RN and

∆SN−1 denotes the Laplace-Beltrami operator on SN−1.
Setting

E(w) :=

∫
SN−1

(1

2
|∇SN−1w|2 −

B

2
w2 − 1

p− 1
|w|p+1

)
dσ,

we have for v(t) := w(t, ·)

(1.1.48) A

∫
SN−1

v2
t dσ =

d

d t

[
E(v)(t)− 1

2

∫
SN−1

v2
t dσ

]
.
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Observe that A 6= 0, since p 6= N+2
N−2 , therefore, after integrating, we find

(1.1.49)

∀s > 0

∫ s

−s
A

∫
SN−1

v2
t dσdt = E(v)(s)−E(v)(−s)− 1

2

∫
SN−1

v2
t (s, σ)dσ+

1

2

∫
SN−1

v2
t (−s, σ)dσ.

We use the crucial decay estimates in 4th step to have

(1.1.50) lim
t→+∞

v(t, σ) = 0, lim
t→+∞

|vt(t, σ)| = lim
t→+∞

|∇SN−1v(t, σ)| = 0,

the limits being uniform respect to σ ∈ SN−1. Observe that U is regular at the origin and then
(1.1.50) holds true when t→ −∞. Letting s→∞ in (1.1.48) we have A

∫
R
∫
SN−1 v

2
t dσdt = 0.

Hence v = v(σ) and limt→+∞ v(t, σ) = 0. This implies v ≡ 0, and so U ≡ 0.
�

Remark 1.9. (1) Theorem 1.8 is sharp. Indeed, on one hand, for N ≥ 3 the set of
functions

uλ(x) :=
(λ√N(N − 2)

λ2 + |x|2
)N−2

2
, λ > 0,

is a one-parameter family of positive solutions of equation (1.1.33), with Ω = RN and
p = N+2

N−2 , and all these solutions are shown to be stable outside a large ball centered at

the origin by using Hardy’s inequality. On the other hand, for N ≥ 11 and p ≥ pc(N)
equation (1.1.33) admits a positive, bounded, stable and radial solution in RN (see
[52, 53]).

(2) Theorem 1.8 improves upon a Liouville-type result proved by A.Bahri and P.L.Lions
[17], where solutions are assumed to be both bounded and with finite Morse index,
and p is sub-critical.

(3) In case λ̃ = 0 and p = N+2
N−2 there is a complete classification of the solutions, see

[22, 58, 90].

We give a Liouville-type result for p ≥ N+2
N−2 :

Theorem 1.10. Let λ̃ ∈ (0, 1] and U ∈ C2(RN ) be a G−invariant solution of −∆U+λ̃U =
|U |p−1U which is G−stable outside a compact set of RN . Suppose p ≥ N+2

N−2 . Then U ≡ 0.

Proof. We have that the 1st step in the proof of Theorem 1.8 is valid also in this case
because Proposition 1.3 holds for λ̃ > 0. We have that U ∈ Lp+1(RN ) and ∇U ∈ L2(RN ).

Therefore we can obtain the classical Pohozaev identity, see [92, 95],

(1.1.51)
(N

2
− 1
)∫

RN
|∇U |2 =

N

p+ 1

∫
RN
|U |p+1 − λ̃N

2

∫
RN
|U |2.

Arguing as for (1.1.44), we get that

(1.1.52)

∫
RN
|∇U |2 =

∫
RN
|U |p+1 − λ̃

∫
RN
|U |2.
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We combine (1.1.51) and (1.1.52) we have(N
2
− 1− N

p+ 1

)∫
RN
|U |p+1 + λ̃

∫
RN
|U |2 = 0

where N
2 − 1− N

p+1 ≥ 0 whenever p > N+2
N−2 . Hence U must be identically zero, as claimed. �

1.1.2. A new deal with λ̃ > 0 and p subcritical. We have that

Theorem 1.11. Let U be a G−invariant solution of

(1.1.53) −∆U + λ̃U = |U |p−1U, in RN

for 1 < p < N+2
N−2 and λ̃ > 0. Assume that either

• U is G−stable outside a ball BR0(0);
or
•
∫
RN U

p+1 < +∞.

Then U → 0 as |x| → +∞.

Proof. If U is G−stable outside BR0(0), by Proposition 1.6 we get that
∫
RN |U |

p+1 < +∞
for q = p+1 and α = 0. The two different assumptions can be re-formulated as U ∈ Lp+1(RN ).
Let η a smooth cut-off function so that 0 ≤ η ≤ 1, η = 1 in B1(0) , η = 0 in B2(0). Given
x0 ∈ RN multiply (1.1.53) by η2(x− x0)U to obtain∫

B1(x0)
|∇U |2 ≤

∫
RN

η2(x− x0)|∇U |2 =

∫
RN

η2(x− x0)|U |p+1 − λ̃
∫
RN

η2(x− x0)U2

+
1

2

∫
RN

U2∆η2(x− x0) ≤ ‖U‖p+1
Lp+1(B2(x0))

.

In view of p > 1, we then have that

(1.1.54) ‖U‖2H1(B1(x0)) ≤ C‖U‖
p+1
Lp+1(B2(x0))

+ C‖U‖Lp+1(B2(x0)),

for some C > 0 independent on x0.
By Sobolev embedding, (1.1.54) leads to

(1.1.55) ‖U‖
L

2N
N−2 (B1(x0))

≤ C(‖U‖
p+1

2

Lp+1(B2(x0))
+ C‖U‖Lp+1(B2(x0))).

Set q0 = 2N
N−2 . By (1.1.55) we get that

‖|U |p−1U − λ̃U‖
L
q0
p (B1(x0))

≤ C
[
‖U‖p

p+1
2

Lp+1(B2(x0))
+ ‖U‖p

Lp+1(B2(x0))
(1.1.56)

+ ‖U‖
p+1

2

Lp+1(B2(x0))
+ ‖U‖Lp+1(B1(x0))

]
.

Decompose U as U1 + U2, where

(1.1.57)

{
−∆U1 = Up − λ̃U in B1(x0)
U = 0 on ∂B1(x0).
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By regularity theory, we get that

‖U1‖
W

2,
q0
p (B1(x0))

≤ C‖|U |p−1U − λ̃ U‖
L
q0
p (B1(x0))

.

Assume q0
p < N

2 . Then, by Sobolev embedding

‖U1‖
L

N q0
Np−2 q0 (B1(x0))

≤ C‖|U |p−1U − λ̃U‖
L
q0
p (B1(x0))

.

Since U2 is harmonic in B1(x0) with U2 = U on ∂B1(x0), by the mean-value theorem we get
that

‖U2‖L∞(B 1
2

(x0)) ≤ C
[
‖U‖p

p+1
2

Lp+1(B2(x0))
+ ‖U‖p

Lp+1(B2(x0))
+ ‖U‖

p+1
2

Lp+1(B2(x0))
+ ‖U‖Lp+1(B1(x0))

]
≤ C‖U2‖L1(B2(x0)) ≤ C(‖U‖L1(B2(x0)) + ‖U1‖L1(B2(x0)))

in view of N q0
N p−2 q0

> 1 (valid for q0 >
N
N+2p) and (1.1.56).

In conclusion, setting q1 = N q0
N p−2 q0

, and f0(s) = sp
p+1

2 + sp + s
p+1

2 + s we have that

(1.1.58) ‖U‖Lq1 (B 1
2

(x0)) ≤ Cf0

(
‖U‖Lp+1(B2(x0))

)
for some C > 0 independent on x0, provided q0

p < N
2 .

Now, we replace condition (1.1.55) with (1.1.58) and the same argument leads to

(1.1.59) ‖U‖Lq2 (B 1
4

(x0)) ≤ Cf1

(
|U‖Lp+1(B2(x0))

)
,

where q2 = N q1
N p−2 q1

, and f1(s) is a suitable function, for some C independent on x0, (in view

of q1 > q0 >
N
N+2p for p < N+2

N−2), provided q1
p < N

2 .

Defining qk =
N qk−1

N p−2qk−1
in an inductive way (whenever

qk−1

p < N
2 ), we have that qk is strictly

increasing in k (so as to have always qk >
N
N+2p), and, for some finite k ≥ 1, qk

p ≥
N
2 . Indeed,

assume by induction qk > · · · > q0 = 2N
N−2 (for k = 1 it’s already true). If qk ≥ N

2 p, nothing

to prove. If qk <
N
2 p, we need to show that qk+1 = N qk

N p−2 qk
> qk. This is equivalent to

p < 1 + 2
N qk, which is true in view of 1 + 2

N qk > 1 + 2
N

2N
N−2 = N+2

N−2 .

Hence, whenever it is defined, qk is strictly increasing. If qk <
N
2 p ∀ k, the sequence qk is

defined ∀ k and qk → q∞ ∈ (0, N2 p]. Since q∞ = N q∞
N p−2 q∞

, we get that p = 1 + 2
N q∞, a

contradiction with q∞ > q0 = 2N
N−2 and p < N+2

N−2 .

Let k be so that qk−1 <
N
2 p and qk ≥ N

2 p. Iterating the argument to obtain (1.1.59), we get
that

‖U‖Lqk−1 (B 1
2k−1

(x0)) ≤ Cfk−2

(
‖U‖Lp+1(B2(x0))

)
for a suitable fk−2 and some C > 0 independent on x0.
If qk >

N
2 p, iterate once more to get

‖U‖L∞(B 1
2k−1

(x0)) ≤ Cfk−1

(
‖U‖Lp+1(B2(x0))

)
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for some C > 0 independent on x0.
If qk = N

2 p, we have only that

‖U‖Lq(B 1
2k

(x0)) ≤ Cfk−1,q

(
‖U‖Lp+1(B2(x0))

)
∀ q < +∞

and then

‖U‖L∞(B 1
2k+1

(x0)) ≤ Cfk
(
‖U‖Lp+1(B2(x0))

)
.

In conclusion, there exist r ∈ (0, 1) and C < +∞ (possibly depending on U) so that

(1.1.60) ‖U‖L∞(Br(x0)) ≤ Cf
(
‖U‖Lp+1(B2(x0))

)
for all x0 ∈ RN , where f : [0,+∞)→ [0,+∞) is continuous so that f(0) = 0.
Since ‖U‖Lp+1(B2(x0)) → 0 as |x0| → +∞ in view of

∫
RN |U |

p+1 < +∞, by (1.1.60) we get that

lim
|x|→∞

|U(x)| = 0

as claimed. �

Now, let us recall some results of Gidas, Ni, Nirenberg [58], about symmetry and related
properties of positive solutions of second order elliptic equations.

Theorem 1.12. Let U be a positive solution of

−∆U + λ̃U = g(U) in RN ,

with N ≥ 2, λ̃ > 0, U(x)→ 0 as |x| → +∞, and g continuous so that g(U) = O(Uα), α > 1,
near U = 0. On the interval 0 ≤ s ≤ U0 = maxRN U(x), assume g(s) nondecreasing.
Then U(x) is spherically symmetric about some point in RN and Ur < 0 for r > 0, where r is
the distance from that point.
Furthermore

(1.1.61) lim
r→∞

r−
N−1

2 erU(r) = µ > 0.

In this paper Gidas, Ni and Nirenberg [58] first prove that the solutions in Theorem 1.12 decay
exponentially at infinity.

Proposition 1.13. Let U(x) > 0 be a solution of

(1.1.62) −∆U + λ̃U = g(U) in RN ,

with N ≥ 2, λ̃ > 0, U → 0 at infinity. Assume g(U) = O(Uα), for some α > 1, near U = 0.
Then

U(x) + |∇U(x)| = O

(
e−|x|

|x|
N−1

2

)
as |x| → +∞.

Remark 1.14. Thanks to the exponential decay and the monotonicity of g, Theorem 1.12
then follows by the moving plane method.
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A particular equation covered by Theorem 1.12 is

−∆U + λ̃U = Up in RN

with λ̃ > 0, and p sub-critical. Combining Theorems 1.11 and 1.12 we get that

Theorem 1.15. Let U be a G−invariant solution of

−∆U + λ̃U = Up in RN

with λ̃ > 0, and p sub-critical. Assume that either

• U is G−stable outside BR0(0);
or
•
∫
RN |U |

p+1 < +∞.

Then U(x) is is spherically symmetric about some point in RN and Ur < 0 for r > 0, where r
is the distance from that point.
Furthermore

(1.1.63) lim
r→∞

r−
N−1

2 erU(r) = µ > 0.

Kwong [70] establishes, for p sub-critical, the uniqueness of the positive, radially symmetric

solution to the differential equation ∆Ũ − Ũ + Ũp = 0 in a bounded or unbounded annular
region in RN for all N ≥ 2 with suitable boundary condition.
We recall the following result (see, for example, [17], [57], [70]).

Theorem 1.16. For p < N+2
N−2 , with N ≥ 2, the equation

−∆Ũ + Ũ = Ũp in RN , Ũ(x)→ 0 for |x| → +∞

possesses a unique positive radial solution Uk.

Remark 1.17. Let Ũ be a radial solution of

(1.1.64)

{
−∆Ũ + Ũ = Ũp in RN

0 < Ũ ≤ Ũ(0) = λ̃
− 1
p−1 .

If we consider U(y) = λ̃
1
p−1 Ũ(λ̃

1
2 y) then U is solution of

(1.1.65)

{
−∆U + λ̃U = Up in RN
0 < U ≤ U(0) = 1.

Then we are led to study: U solution of

(1.1.66)

{
−∆U + U = Up in RN

U(0) = λ
− 1
p−1 = U0

with p > 1.

We collect now Theorems 1.15 and 1.16 and Remark 1.17 to get
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Theorem 1.18. Let U be a G−invariant solution of

(1.1.67)

{
−∆U + λ̃U = Up in RN
0 < U ≤ U(0) = 1 in RN

with λ̃ > 0 and 1 < p < N+2
N−2 . If U is G−stable outside BR0(0) or

∫
RN U

p+1 < +∞, then U(y)

coincides with λ̃
1
p−1Uk(λ̃

1
2 y) and is unstable .

Furthermore, U has the first negative eigenvalue µ1 < 0 (that is simple) with eigenfunction ϕ1

in H1(RN ); the second eigenvalue is 0 (with multiplicity N) and the eigenspace in H1(RN ) is
given by

span{ ∂x1U, . . . , ∂xNU }.

Remark 1.19. Note that Uk can be obtained as a mountain-pass solution for the corre-
sponding energy functional in H1(RN ). We have that Uk is unstable in view of the exponential
decay and ∫

RN
|∇U |2 + λ̃

∫
RN

U2 − p
∫
RN

Up−1 U2 = −(p− 1)

∫
RN

Up+1 < 0

by the equation.
As far as the zero eigenvalue, it is know (see [64]) that

kernel (−∆ + 1 + pUp−1
k ) = span{ ∂x1Uk, . . . , ∂xNUk }

in H1(RN ).
Observe that we can find the first eigenfunction as the minimum of the quadratic form asso-
ciated to −∆ + 1− pUp−1

k on {φ ∈ H1(RN ) :
∫
RN φ

2 = 1 }.
By [62] we know that Uk has Morse index at most 1. Then, Uk has exactly Morse index 1.

1.1.3. The half-space. Assume Ω̃ = {x = (x1, . . . , xN ) ∈ RN : xN > 0 }. By the
moving plane method (see [54]), it is possible to show that for a solution of U0 of

(1.1.68)

{
−∆U + λ̃U = Up in Ω̃
U = 0 in { xN = 0 },

there holds ∂xNU > 0 in Ω̃, and then U is semi-stable on Ω̃.

We study non-negative solutions, the first Theorem extends the celebrated results of Gidas
and Spruck (see [59, 60]) to the case where the unbounded domain Ω̃ is the half-space.

Theorem 1.20. Let Ω̃ be a G−invariant half-space and let U ∈ C2(Ω̃) be a positive
G−invariant solution of

(1.1.69)

{
−∆U = Up in Ω̃

U = 0 on ∂Ω̃,

which is stable outside BR0(0). Assume that

(1.1.70)

{
1 < p < +∞ if N ≤ 10,
1 < p < pc(N) if N ≥ 11.
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Then U ≡ 0.

Proof. Let us consider the odd extension of U,

(1.1.71) v(x) = v(x′, xN ) :=

{
U(x′, xN ), xN ≥ 0
−U(x′,−xN ), xN < 0.

Clearly v belongs to C2(R2) and solves the equation in RN . We can find R̃0 > 0 large so that
BR0(0) ⊂ B′R0

(0) ⊂ BR̃0
(0), where B′R0

(0) = { (x′, xN ) : (x′,−xN ) ∈ BR0(0) }.
We claim that

For every γ ∈ [1, 2 p+ 2
√
p(p− 1)− 1) and every open ball B2R(y) ⊂ {x ∈ RN : |x| > R0 },

we have: ∫
BR(y)

(|∇(|v|
γ−1

2 v)|2 + |v|p+γ)dx ≤ C RN−2 p+γ
p−1 ,

where C is a positive constant depending on p, γ,N,R0 and neither on R nor on y.

We fix m ≥ p+γ
p−1 and consider the test functions ψR,y(x) := ϕ

(
|x−y|
R

)
, where ϕ ∈ C2

0 (R) satisfies

0 ≤ ϕ ≤ 1 and

(1.1.72) ϕ(t) =

{
1 if |t| ≤ 1,
0 if |t| ≥ 2.

An application of Proposition 1.4 to v|Ω = U in Ω̃ gives∫
Ω̃∩BR(y)

(|∇(|v|
γ−1

2 v)|2 + |v|p+γ)dx ≤ Cp,m,γ
∫
RN

(|∇ψR,y|2 + |ψR,y||∆ψR,y|)
p+γ
p−1 dx

= Cp,m,γ

∫
B2R(0)

(|∇ψR,0|2 + |ψR,0||∆ψR,0|)
p+γ
p−1 dx ≤ C(p,m, γ,N, ϕ)R

N−2 p+γ
p−1 .

Since v is the odd extension of U , we observe that also the following holds true:∫
Ω̃′∩BR(y)

(|∇(|v|
γ−1

2 v)|2 + |v|p+γ)dx ≤ Cp,m,γ,N,ϕRN−2 p+γ
p−1 ,

where Ω̃′ := {x = (x′, xN ) ∈ RN : xN < 0 }. The conclusion follows by adding the last two
estimates. Then we conclude the proof as in 3rd, 4th, and 5th step of the proof of Theorem 1.8,
and conclude that v ≡ 0. Then U ≡ 0.

�

Now we consider a bounded no negative solution of our problem

Theorem 1.21. Assume N ≥ 2 and Ω̃ be the half space {x ∈ RN : xN > 0 }. Let

U ∈ C2(Ω̃) be a bounded non negative solution of

(1.1.73)

{
−∆U = Up in Ω̃

U = 0 on ∂Ω̃.
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(1.1.74)

{
1 < p < +∞ if N ≤ 11,
1 < p < pc(N − 1) if N ≥ 12.

Then U ≡ 0.

Proof. We claim that U is a stable solution. Indeed, by the strong minimum principle
either U ≡ 0, and then U is stable, or U > 0 in Ω̃. Let us prove that the second possibility
does not happen. Suppose, to the contrary, that U > 0 in Ω̃, then, by moving plane method,
a result of N. Dancer [32], implies that ∂U

∂xN
> 0 everywhere in Ω̃. Therefore ∂U

∂xN
is a positive

solution of the linearized equation:

−∆s+ λ̃s− pUp−1 s = 0 in Ω̃,

and thus U is a stable solution of (1.1.73), indeed this is a well-known fact in the theory of
the linear PDEs, see [53, 84, 9]. The boundedness of U , standard elliptic estimates [61] and
the monotonicity of U with respect to the variable xN , imply that the function

v(x1, . . . , xN−1) := lim
xN→+∞

U(x)

is a positive solution of the equation in RN−1. Furthermore v is stable in RN−1, see [16, 9].
At this point an application of Theorem 1.7, to the solution v in RN−1, gives v ≡ 0 in RN−1.
This result contradicts v > 0 in RN−1. Hence U ≡ 0. �

Remark 1.22. This Theorem improves upon a results proved in [32] where the exponent
p was assumed to satisfy 1 < p < +∞ if N ≥ 3 and 1 < p < N+2

N−2 if N > 3.

In this passage of the section we adapt the existence and non existence results of Esteban-Lions
[51] to our equation. They prove that there exist no solution distinct from 0 of −∆U = f(U)
in unbounded domain, with Dirichlet condition and U → 0 as |x| → +∞, for any smooth f
satisfying f(0) = 0.

Theorem 1.23 (Esteban-Lions). Let f be locally Lipschitz continuous on R such that
f(0) = 0 and let Ω be a smooth unbounded connected domain with the following condition

there exists X ∈ RN , |X| = 1 s.t. ν(x) ·X ≥ 0, ν(x) ·X 6= 0 on ∂Ω

where ν(x) denotes the unit outward normal to ∂Ω at the point x. Under these assumptions,
a solution U in C2(Ω) of

(1.1.75)

{
−∆U = f(U) in Ω
U = 0 on ∂Ω,

satisfying ∇U ∈ L2(Ω), F (U) ∈ L1(Ω) with F (t) =
∫ t

0 f(s)ds, is necessarily trivial.

Remark 1.24. The half-space is a typical domain which satisfies the assumptions of The-
orem 1.23.

Theorem 1.25. Assume N ≥ 3, p > 1 and Ω̃ be the half space {x ∈ RN : xN > 0 }. Let

U ∈ C2(Ω̃) be a bounded non negative solution of

(1.1.76)

{
−∆U + λ̃U = Up in Ω̃

U = 0 on ∂Ω̃,
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with λ̃ ∈ (0, 1]. Then U ≡ 0.

Proof. We claim that U is stable solution. Indeed, by the strong minimum principle
either U ≡ 0, and then U is stable, or U > 0 in Ω̃. In the latter case, since Ω̃ is an half space,
a result of Dancer [32], that use the moving plane method, implies that ∂U

∂xN
> 0 in Ω̃. It is

known that ∂U
∂xN

is a positive solution of the linearized equation:

−∆s+ λ̃U − pUp−1 s = 0 in Ω̃,

and thus U is stable solution of (1.1.76), see [53, 83, 9].
We have that U is stable solution, then we can apply Proposition 1.3 with γ = 1 to have

(1.1.77)
Up+1

p+ 1
− λ̃

2
U2 ∈ L1(Ω̃), ∇U ∈ L2(Ω̃).

Therefore we can apply Theorem 1.23 to have the desired conclusion U ≡ 0. �

1.2. Pohozaev-type identity

In this thesis we will use some Pohozaev-Type Identities, in order to localize the blow-up set.
We want to point out that, these are fundamental in our analysis.
To explain the integral identities we are going to derive, we argue as follows: notice that the
equation

(1.2.1)

{
−∆U = f(U) in Ω
U = 0 on ∂Ω

where f ∈ C(R) and Ω is any smooth domain, has a ”certain” invariance by multiplicative
group of dilatations (TtU)(x) = U(t x) for t ∈ (0,+∞). By the use of this multiplier, Pohozaev
[92] obtained a well known identity when Ω is bounded. For Ω = RN the same identity is
proved under optimal conditions in [18]. We recall this so-called Pohozaev identity and we
prove it by a simple adaptation of the method in [18].

Proposition 1.26. Let U be a solution of

(1.2.2) −∆U = Up − λ̃U in Ω

where 1 < p < +∞, and Ω is a smooth domain. Assume ∇U ∈ L2(Ω), U
p+1

p+1 − λ̃V
U2

2 ∈ L
1(Ω).

Then

(1.2.3)

∫
Ω

{ N

p+ 1
Up+1 − N

2
λ̃U2 +

(
1− N

2

)
|∇U |2

}
dx =

1

2

∫
∂Ω

(x · ν)|∇U |2ds.

Remark 1.27. The exact meaning of the boundary integral in (1.2.3), if Ω is unbounded,
is that there exists a sequence Rn → +∞ as n→ +∞ such that we have

(1.2.4)

∫
Ω

{ N

p+ 1
Up+1 − N

2
λ̃U2 +

(
1− N

2

)
|∇U |2

}
dx = lim

n→+∞

1

2

∫
∂Ω∩BRn

(x · ν)|∇U |2ds.
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Proof of Proposition 1.26. We proceed as in [18]. Define F (U) = Up+1

p+1 − λ̃V U2

2 .

Multiplying the equation −∆U = Up−λU by
∑

i xi
∂U
∂xi

and integrating by parts over Ω∩BR,

one gets (here and in all that follows, we use the implicit summation convention)

−
∫
∂(Ω∩BR)

∂U

∂ν
xi
∂U

∂xi
+

∫
Ω∩BR

{
∂U

∂xj
δi j

∂U

∂xi
+ xi

∂U

∂xj

∂2U

∂xi∂xj

}
=

∫
Ω∩BR

xi
∂F (U)

∂xi
+ λ̃

∫
Ω∩BR

U xi
∂V

∂xi

where ν denotes the unit outward normal to ∂(Ω ∩ BR). This implies, since ∇u = ∂u
∂ν · ν on

∂Ω,

N

∫
Ω∩BR

(F (U)) −
∫
∂Ω∩BR

(x · ν)|∇U |2ds+

∫
Ω∩BR

|∇U |2 +

∫
Ω∩BR

xi
1

2

∂

∂xi
(|∇U |2)

=

∫
Ω∩∂BR

{
∂U

∂ν
xi
∂U

∂xi
+ |x|F (U)

}
,

or ∫
Ω∩BR

{
NF (U) +

(
1− N

2

)
|∇U |2

}
dx− 1

2

∫
∂Ω∩BR

(x · ν)|∇U |2ds

=

∫
∂BR∩Ω

{
∂U

∂ν
xi
∂U

∂xi
+ |x|F (U)− 1

2
|x||∇U |2

}
ds.

Now the right hand member is bounded by

M(R) = R

∫
Ω∩BR

{1

2
|∇U |2 + |F (U)|

}
ds.

If we assume that ∇U ∈ L2(Ω), F (U) ∈ L1(Ω), we have∫ +∞

0
dr

∫
Ω∩∂BR

{1

2
|∇U |2 + |F (U)|

}
ds < +∞;

therefore there exists a sequence Rn such that M(Rn) → 0 as n → +∞. This proves the
proposition. �

Proposition 1.28. Let U be a solution of

(1.2.5)

 −∆U + λ̃U = Up in Ω
U > 0 in Ω
U = 0 in ∂Ω

where 1 < p < +∞, and Ω is a smooth domain. Let δ > 0 small. Assume ∇U ∈ L2(Ω),

Up − λ̃U ∈ L1(Ω).
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Then ∫
Bδ

{ N

p+ 1
Up+1 − N

2
λ̃U2 +

(
1− N

2

)
|∇U |2

}
dx(1.2.6)

= δ

∫
∂Bδ

(Up+1

p+ 1
− λ̃

2
U2
)

ds− δ

2

∫
∂Bδ

|∇U |2ds+ δ

∫
∂Bδ

(
∂U

∂ν

)2

ds.

Proof. Let δ small, and define F (U) = Up+1

p+1 − λ̃U
2

2 . Multiply the equation −∆U =

Up − λV U by
∑

i xi
∂U
∂xi

and integrate by parts on Bδ := Bδ(P ):

−
∫
∂Bδ

∂U

∂ν

∑
i

xi
∂U

∂xi
+
∑
i

∫
Bδ

{∂U
∂xi

δi j
∂U

∂xi
+
∂U

∂xi

∂2U

∂xi∂xj

}
=

∫
Bδ

∑
i

xi
∂F (U)

∂xi
.

Hence ∫
Bδ

|∇U |2 +
∑
i

∫
Bδ

xi
1

2

∂

∂xi
(|∇U |2)−

∫
∂Bδ

∂U

∂ν

∑
i

xi
∂U

∂xi

= −
∫
Bδ

N
(Up+1

p+ 1
− λ̃U

2

2

)
+

∫
∂Bδ

|x|
(Up+1

p+ 1
− λU

2

2

)
ds

=

∫
Bδ

(
1− N

2

)
|∇U |2dx+

δ

2

∫
∂Bδ

|∇U |2ds−
∫
∂Bδ

∂U

∂ν

∑
i

xi
∂U

∂xi
ds

=

∫
Bδ

(
1− N

2

)
|∇U |2dx+

δ

2

∫
∂Bδ

|∇U |2ds− δ
∫
∂Bδ

(
∂U

∂ν

)2

ds.

Then

−
∫
Bδ

N
(Up+1

p+ 1
− λ̃U

2

2

)
+ δ

∫
∂Bδ

(Up+1

p+ 1
− λU

2

2

)
ds

=

∫
Bδ

(
1− N

2

)
|∇U |2dx+

δ

2

∫
∂Bδ

|∇U |2ds− δ
∫
∂Bδ

(
∂U

∂ν

)2

ds,

so the thesis follows.
�

By the decay and the Pohozaev identity we have that if λ̃ > 0 and p ≥ N+2
N−2 there are no

solutions of our problem in RN , which is stable outside a compact set.

1.3. Conclusions

We resume the results obtained about the limiting problem:
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Theorem 1.29. Let U be a G−stable outside a compact set solution of

(1.3.1)

{
−∆U + λ̃U = Up in Ω̃
0 ≤ U ≤ U(0) = 1.

Consider Ω̃ the whole-space, we have that

(1) if λ̃ > 0, 1 < p < N+2
N−2 or λ̃ = 0, p = N+2

N−2 then there exists non trivial solution;

(2) if λ̃ > 0, p ≥ N+2
N−2 or λ̃ = 0, 1 < p < pc(N), p 6= N+2

N−2 then U ≡ 0.

Consider Ω̃ the half-space, we have that

(1) if λ̃ = 0, 1p > pc(N − 1) then there exists non trivial solution;

(2) if λ̃ ∈ (0, 1], p > 1 or λ̃ = 0 , 1 < p < pc(N − 1) then U ≡ 0.

Therefore, the possible limiting problems are:

(1.3.2)

{
−∆U + λ̃U = Up in RN
0 ≤ U ≤ U(0) = 1, λ̃ ∈ (0, 1], 1 < p < N+2

N−2

(1.3.3)

{
−∆U = U

N+2
N−2 in RN

0 ≤ U ≤ U(0) = 1.



CHAPTER 2

Asymptotic analysis and blow-up profile

It is known that solutions u of problem (1.1.1), must blow up as λ→ +∞, and we address here
in this chapter the asymptotic description of such a blow up behavior. When the ”energy”
is uniformly bounded, the behavior is well understood and the solutions can develop just a
finite number of sharp peaks. When V is not constant, the blow up points must be c.p.’s of
the potential V . The situation is more involved when V ≡ 1, and the crucial role is played
by the mutual distances between the blow-up points as well as the boundary distances. The
construction of these blowing-up solutions has also been addressed.
In this chapter we give a complete asymptotic analysis, also under the new hypothesis of
bounded Morse index solutions. In the next we localize the blow-up set, in the different case
(V generic potential, or V ≡ 1).
The most new and interesting feature is that, a-posteriori Morse index information and en-
ergy information are equivalent. Then we are able to find with an asymptotic approach, a
Rozemljum-Lieb-Cwikel type estimate.

2.1. Blow up profile: 1 < p < N+2
N−2

In the sequel we will work with 1 < p < N+2
N−2 and give a complete description of the blow-up

profile. Let un be a solution of (1.1.1), which satisfies (0.7), Pn ∈ Ω be a point of maximum

of un, un(Pn) = ‖un‖∞. Let us introduce εn = ‖un‖
− p−1

2∞ and the change of variable:

Un(y) =
un(εny + Pn)

‖un‖∞
= ε

2
p−1
n un(εny + Pn).

It is easily seen that Un is a solution of

(2.1.1)

{
−∆Un + λnε

2
nV (εny + Pn)Un = Upn in Ωn

0 < Un(y) ≤ Un(0) = 1 in Ωn

with Ωn = Ω−Pn
εn

. In this section we prove that, up to a subsequence, there exists λ̃ ∈ (0, 1] s.
t.

λnε
2
nV (Pn)→ λ̃, as n→ +∞.

So, up to a subsequence, Un is uniformly bounded in C1,1
loc (Ωn). Then we assume that Un → U

in C1
loc as n→ +∞, where U satisfies

(2.1.2)

{
−∆U + λ̃U = Up, in Ω̃
0 < U(y) ≤ U(0) = 1

25
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with Ω̃ = RN , λ̃ ∈ (0, 1]. The new main features of the previous results are the role of the
potential V and the fact that we consider solutions with bounded Morse Indices.
We observe that if un has bounded Morse index, than Un and U too. If ϕ1 is a test function
for un s. t. the linearized operator L = −∆ + 1− pup−1

n satisfies

< Lϕ1, ϕ1 >< 0⇔
∫
|∇ϕ|2 + λn V (x)ϕ2 − p up−1

n ϕ2 < 0,

then the test function be ϕεn,1(y) = ϕ1

(
y−Pn
εn

)
satisfies∫

|∇ϕε,1|2 + λn ε
2
n V (εn y + Pn)ϕ2

ε,1 − pUp−1
n ϕ2

ε,1 < 0.

So the Morse index of Un is less or equal to k̄ (see (0.7)).

2.1.1. Local profile. We can prove this first result:

Theorem 2.1. Let (λn, un) be a positive solution of

(2.1.3)

{
−∆un + λnV un = upn, in Ω
un = 0 on ∂Ω

with 1 < p < N+2
N−2 .

Assume either

sup
n
m(un) < +∞,

or

sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n < +∞.

Let Pn ∈ Ω s.t. un(Pn) = maxΩ∩BRnεn (Pn) un for some Rn → +∞ where εn = un(Pn)−
p−1

2 → 0
as n→ +∞.

Setting Un(y) = un(εny+Pn)
‖un‖∞ = ε

2
p−1
n un(εny + Pn) for y ∈ Ωn = Ω−Pn

εn
, then for a subsequence

we have that, as n→ +∞:

•

(2.1.4) λnε
2
nV (Pn)→ λ̃ ∈ (0, 1]

for some universal constant λ̃;
• εn

d(Pn,∂Ω) → 0;

• Un → U in C1
loc(RN ) where U is a solution of

(2.1.5)

{
−∆U + λ̃U = Up, in RN
0 < U ≤ U(0) = 1 in RN .

Moreover, ∃φn ∈ C∞0 (Ω) with supp φn ⊂ BRεn(Pn), for some R > 0, so that

(2.1.6)

∫
Ω
|∇φn|2 + (λnV − p up−1

n )φ2
ndx < 0, ∀n large,
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and

lim
n→+∞

1

λ
p+1
p−1
−N

2
n

∫
BRεn(Pn)

up+1
n = λ̃

N
2
− p+1
p−1

(
lim

n→+∞
V (Pn)

) p+1
p−1
−N

2

∫
BR(0)

Up+1.

Proof. Let dn be d(Pn, ∂Ω). Suppose that εn
dn
→ L ∈ [0,+∞], up to a subsequence. Then

Ωn → H, H halfspace s. t. 0 ∈ H and d(0, ∂H) = 1
L . The function Un satisfies

(2.1.7)

 −∆Un + λnε
2
nV (εny + Pn)Un = Upn, in Ωn

0 < Un ≤ Un(0) = 1, in Ωn ∩BRn(0)
Un = 0 on ∂Ωn.

Since Pn is a point of local maximum of un, we have

0 ≤ −∆Un(0) = 1− λnε2
nV (Pn) ≤ 1 ⇒ 0 ≤ λnε2

nV (Pn) ≤ 1.

Setting ω(V ) := [maxΩ V ][minΩ V ]−1, it follows that

λn ε
2
nV (x) ≤ ω(V ),

and up to a subsequence,

ε2
nλnV (Pn)→ λ̃ as n→ +∞,

for some λ̃ ∈ [0, 1]. By regularity theory we have that Un → U in C1
loc(H), as n→ +∞, where

U satisfies

(2.1.8)

 −∆U + λ̃U = Up in H
0 < U(y) ≤ U(0) = 1 in H
U = 0 on ∂H

where λ̃ ∈ [0, 1]. In particular U is stable outside a compact set and by Theorems 1.8 and 1.21,

we have λ̃ > 0. Since λ̃ > 0 by Theorem 1.1.76 we have that H = RN .
By Theorem 1.18 U is unstable. There exists φ ∈ C∞0 (RN ) such that suppφ ⊂ BR(0) and∫

RN
|∇φ|2 + (λ̃− pUp−1)φ2 < 0.

Then, the function φn(x) := 1

ε
N+2

2
n

φ(x−Pnεn
), φn satisfies∫

Ω
|∇φn|2 + (λnV − p up−1

n )φ2
ndx→

∫
Ω
|∇φ|2 + (λ̃− pUp−1)φ2dx < 0

and suppφn ⊂ BRεn(Pn). Assume now

sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n < +∞.

By Theorem 1.21 and [59] we have λ̃ > 0 whenever 1 < p < N+2
N−2 . By Theorem 1.1.76 we also

get that H = RN . Since∫
BR(0)

Up+1
n = (λn ε

2
n)

p+1
p−1
−N

2
1

λ
p+1
p−1
−N

2
n

∫
BRεn(Pn)

up+1
n ≤ 1

(minV )
p+1
p−1
−N

2

sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n < +∞,
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we get that
∫
RN U

p+1 < +∞ and by Theorem 1.18 U is the unique radial solution of (2.1.5).
Moreover

lim
R→+∞

lim
n→+∞

1

λ
p+1
p−1
−N

2
n

∫
BRεn(Pn)

up+1
n = λ̃

N
2
− p+1
p−1

(
lim

n→+∞
V (Pn)

) p+1
p−1
−N

2

∫
RN

Up+1.

�

Remark 2.2. The argument above works also for N+2
N−2 < p < pc(N) whenever supnm(un) <

+∞. Indeed, Theorem 1.21 holds for 1 < p < pc(N), p 6= N+2
N−2 . So, we still get in this case

that Un → U in C1
loc(RN ), where U is a solution of (2.1.5) with m(U) < +∞.

For λ̃ > 0 and p > N+2
N−2 , such solution U cannot exists as it follows by

Theorem 2.3. Let U be a nonnegative solution of

(2.1.9) −∆U + λ̃U = Up, in RN , λ̃ > 0,

which is stable outside a compact set.
If p > N+2

N−2 , then U ≡ 0.

This means that, whenever un blows-up in L∞(Ω) : ‖un‖∞ → +∞ as n→ +∞, we have

m(un)→ +∞ asn→ +∞
for all p > N+2

N−2 .

2.1.2. Global behavior. After the limiting problem has been identified and the local
behavior around a blow up sequence Pn has been described, we can prove global estimates.
We will show in such way that the sequence un decays exponentially away from the blow-up
points.

Theorem 2.4. Let 1 < p < N+2
N−2 . Let λn → +∞, un be solution of (2.1.3), so that either

k = lim sup
n→+∞

m(un) < +∞

or

k = λ̃
p+1
p−1
−N

2 (min
Ω
V )

N
2
− p+1
p−1

(∫
RN

Up+1
)−1

sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n

with un satisfying (0.7). Up to a subsequence, there exist P 1
n , . . . , P

k
n , k ≤ k with εin =

un(P in)−
p−1

2 → 0 as n→ +∞ s. t.

(2.1.10) ε1
n ≤ εin ≤ C0ε

1
n, for all i = 1, . . . , k

(2.1.11)
εin + εjn

|P in − P
j
n|
→ 0 as n→ +∞, for all i, j = 1, . . . , k, i 6= j

(2.1.12)
εin

d(P in, ∂Ω)
→ 0 as n→ +∞, for all i = 1, . . . , k, i 6= j
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(2.1.13) un(P in) = max
Ω∩B

Rnε
i
n

(P in)
un,

for some Rn → +∞ as n→ +∞.
Moreover, there holds

(2.1.14) un(x) ≤ C(ε1
n)
− 2
p−1

k∑
i=1

e
−γ |x−P

i
n|

ε1n ∀x ∈ Ω, n ∈ N

with C > 0.

Proof. The proof is divided in two steps (see also [50]).

1st step There exist k ≤ k sequences P 1
n , . . . , P

k
n satisfying (2.1.10) - (2.1.13) such that:

(2.1.15) lim
R→+∞

(
lim sup
n→+∞

[
(ε1
n)

2
p−1 max

{dn(x)≥Rε1n}
un(x)

])
= 0

where dn(x) = min{|x − P in| : i = 1, . . . , k} is the distance function in Ω from
{P 1

n , . . . , P
k
n}.

Let P 1
n be a point of global maximum of un: un(P 1

n) = max
Ω

un(x). Since (2.1.13)

holds, if (2.1.15) holds for P 1
n , then we take k = 1 and the claim is proved. Otherwise,

we suppose by contradiction that

lim sup
R→+∞

lim sup
n→+∞

(ε1
n)

2
p−1 max
|x−P 1

n |≥Rε1n
un = 4δ > 0.

Applying Theorem 2.1, up to a subsequence we have

(2.1.16) (ε1
n)

2
p−1un(ε1

ny + P 1
n) = U1

n(y)→ U(y) in C1
loc(RN ),

where U is the unique radial solution of (2.1.5) in RN . Since U → 0 as |x| → +∞,
we can find R large such that :

(2.1.17) U(y) ≤ δ, ∀ |y| ≥ R.

Up to take R larger, we can assume

(2.1.18) lim sup
n→+∞

(ε1
n)

2
p−1 max
|x−P 1

n |≥Rε1n
un ≥ 3δ > 0.

Up to a subsequence, we can also assume that

(2.1.19) (ε1
n)

2
p−1 max
|x−P 1

n |≥Rε1n,
un ≥ 2 δ.

Since un = 0 on ∂Ω, we have that

∃P 2
n ∈ Ω \BRε1n(P 1

n) s.t. un(P 2
n) = max

B
Rε1n

(P 1
n)
un.
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By (2.1.17) and (2.1.16) we have |P
2
n−P 1

n |
ε1n

→ +∞. Indeed, if
|P 2

1−P 1
n |

ε1n
→ R′ ≥ R

un(P 2
n) = U1

n

(
P 2
n − P 1

n

ε1
n

)
→ U(R′) ≤ δ

contradicting (2.1.19).

We take R2
n = 1

2
|P 2
n−P 1

n |
ε2n

(R1
n = 1

2
d(P 1

n ,∂Ω)
ε1n

). By (2.1.19) we get ε2
n := un(P 2

n)−
p−1

2 ≤

ε1
n(2 δ)−

p−1
2 , and since ε1

n ≤ ε2
n, we see that (2.1.10) and (2.1.11) are fulfilled. So this

implies (2.1.13):

un(P 2
n) = max

|x−P 1
n |≥Rε1n

un = max
B
R2
n ε

2
n

(P 2
n)∩Ω

un.

Indeed R2
n ε

2
n = 1

2 |P
2
n − P 1

n |, and Rε1
n <<

1
2 |P

2
n − P 1

n | imply ∀x ∈ BR2
n ε

2
n
(P 2

n),

|x− P 1
n | ≥ |P 2

n − P 1
n | − |x− P 2

n | ≥
1

2
|P 2
n − P 1

n | ≥ Rε1
n,

i. e. Ω∩BR2
n ε

2
n
(P 2

n) ⊂ Ω∩BRε1n(P 1
n). Since R2

n → +∞ as n→ +∞. By Theorem 2.1

we get that (2.1.10)-(2.1.13) hold true for {P 1
n , P

2
n }. If (2.1.15) holds for {P 1

n , P
2
n },

we are done.
Otherwise, we iterate the above argument: let P 1

n , . . . , P
s
n s sequences so that (2.1.10)-

(2.1.13) hold true, but (2.1.15) is not satisfied. We have

lim sup
R→+∞

lim sup
n→+∞

(ε1
n)

2
p−1 max

dn(x)≥Rε1n
un = 4 δ > 0

with dn(x) = min{ |x− P in| : i = 1, . . . , s }. There exists R > 0 large s. t.

(ε1
n)

2
p−1 max
{ dn(x)≥Rε1n }

un(x) ≥ 2 δ

holds for a subsequence. By (2.1.10) and Theorem 2.1:

∃ϑi ∈
[ 1

C
, 1
]

:
ε1
n

εin
→ ϑi,

(2.1.20) (ε1
n)

2
p−1un( ε1

n y + P 1
n) =

(ε1
n

εin

) 2
p−1

U in

(ε1
n

εin
y
)
→ ϑ

2
p−1

i U(ϑi y)

in C1
loc(RN ).

Since U → 0 as |x| → +∞ we can find R large so that ϑ
2
p−1

i U(ϑi y) < δ for
|y| ≥ Rδ. We repeat the argument above, replacing |x − P 1

n | with dn(x). Let

P s+1
n be s. t. un(P s+1

n ) = maxdn≥Rε1n un ≥ 2 δ (ε1
n)
− 2
p−1 . As above we have that

dn(P s+1
n )
ε1n

→ +∞, and (2.1.10) holds for {P 1
n , . . . , P

s+1
n }. For Rs+1

n = 1
2
dn(x)

εs+1
n

we

get the validity of (2.1.10) for P s+1
n so by Theorem 2.1 we get that (2.1.10)-(2.1.13)

holds for {P 1
n , . . . , P

s+1
n } with Rn = mink R

k
n. We can use Theorem 2.1 for any

sequence P in, i = 1, . . . , s + 1, for n large, we can find functions φin ∈ C∞0 (Ω) with
suppφin ⊂ BRεin(P in), for some R > 0, which satisfy (2.1.6 ). By (2.1.11) φ1

n, . . . , φ
s+1
n
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have disjoint compact supports for n large and then s + 1 ≤ supnm(un). The argu-
ment must stop for some k ≤ k. By Theorem 2.1 and (2.1.11), we get that ∀R > 0
(up to a subsequence):

lim
n→+∞

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n ≥ lim

n→+∞

s+1∑
i=1

1

λ
p+1
p−1
−N

2
n

∫
B
Rεin

(P in)
up+1
n

≥ (s+ 1)λ̃
N
2
− p+1
p−1 (min

Ω
V )

p+1
p−1
−N

2

∫
BR(0)

Up+1,

and then

s+ 1 ≤ λ̃
p+1
p−1
−N

2 (min
Ω
V )

p+1
p−1
−N

2

(∫
RN

Up+1
)−1

sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n .

We want to show now the validity of (2.1.14) and (2.1.15) does hold.

2nd step Let P 1
n , . . . , P

k
n be as in the 1ststep. Then there are γ, C > 0 such that:

(2.1.21) un(x) ≤ C (ε1
n)
− 2
p−1

k∑
i=1

e
−γ |x−P

i
n|

ε1n , ∀x ∈ Ω, ∀n ∈ N.

By (2.1.15), for R > 0 large and n ≥ n(R), there holds

(ε1
n)

2
p−1 max
{ dn(x)≥Rε1n }

un(x) ≤
( λ̃

2ω(V )

) 1
p−1

.

Hence, in {dn(x) ≥ Rε1
n } we have

(ε1
n)2 up−1

n (x) ≤ λ̃

2ω(V )
,

where ω(V ) := [maxΩ V ][minΩ V ]−1. Moreover, by Theorem 2.1 we have the validity
of (2.1.4), and there we get

λn(ε1
n)2 V (x) ≥ [ω(V )]−1λn(ε1

n)2 V (P 1
n)→n

λ̃

ω(V )
.

Therefore, for n ≥ n(R) we have that

(ε1
n)2[λn V (x)− up−1

n (x)] ≥ λ̃

2ω(V )
> 0, if dn(x) ≥ Rε1

n.

Now consider the following linear operator:

Ln := −∆ + (λn V (x)− up−1
n (x)).

Since un is a positive solution in Ω of Ln, Ln satisfies the minimum principle in any

Ω̂ ⊂ Ω: Ln φ > 0 in Ω̂, φ > 0 on ∂Ω̂ implies φ ≥ 0 in Ω̂.
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Let φin(x) = e−γ(ε1n)−1|x−P in|. We have that in dn(x) ≥ Rε1
n:

Ln(φin) = (ε1
n)−2φin

[
− γ2 + (N − 1)

ε1
n

|x− P in|
γ + (ε1

n)2(λn V (x)− up−1
n (x))

]
> 0

for n large, provided γ2 ≤ λ̃
4ω(V ) . Observe that(

eγRφin(x)− (ε1
n)

2
p−1un(x)

)
|∂B

Rε1n
(P in) → 1− ϑ

2
p−1

i U(ϑiR) > 0

for R large, where ϑi as in (2.1.20).

Then, if we define φn := eγ R(ε1
n)
− 2
p−1
∑k

i=1 φ
i
n, we have

Ln(φn − un) > 0 in {dn(x) > Rε1
n}

and φn − un > 0 on {dn(x) = Rε1
n} ∪ ∂Ω. Note that by (2.1.10)-(2.1.13))

{dn(x) = Rε1
n} = ∪ki=1∂BRε1n(P in) ⊂ Ω,

for n ≥ n(R). Then, by the minimum principle

un ≤ φn = eγ R(ε1
n)
− 2
p−1

k∑
i=1

e
−γ |x−P

i
n|

ε1n

in {dn(x) > R ε1
n}, if R is large and n ≥ n(R). Since

un(x) ≤ max
Ω

un = (ε1
n)
− 2
p−1 ≤ eγ R(ε1

n)
− 2
p−1

k∑
i=1

e
−γ |x−P

i
n|

ε1n

if dn(x) ≤ Rε1
n. We have that (2.1.14) holds true in Ω, for C = eγ R and n ≥ n(R).

Up to take a larger constant C, we have the validity of (2.1.14) in Ω for every n ∈ N.

�

2.2. Morse Index information and Energy information

It is know that any solution u of (1.1.1) is a critical point of an energy functional and vice
versa. It can be proved that for any family of solutions un of (0.1), with finite energy we can
obtain Morse index information.
In this section, we obtain an equivalence in the form of a double-side bound between Morse
index and ”energy” with essentially optimal constants. This result can be seen as a sort of
Rozenblyum-Lieb-Cwikel inequality, where the number of negative eigenvalues of a Schrödinger
operator −∆+V can be estimated in terms of a suitable Lebesgue norm of the negative part V−
of V . Thanks to the specificity of our problem, we improve it by getting the correct Lebesgue
exponent (in view of the double-side bound) as well as the sharp constants.

Let un be a positive solutions sequence of

(2.2.1)

{
−∆un + λnV un = upn in Ω
un = 0 on ∂Ω



2.2. MORSE INDEX INFORMATION AND ENERGY INFORMATION 33

where λn → +∞ as n→ +∞, 1 < p < N+2
N−2 and infΩ V > 0.

Assume

(2.2.2) sup
n

1

λ
p+1
p−1
−N

2
n

∫
Ω
up+1
n < +∞.

Consider the problem

(2.2.3)

{
−∆U + λ̃U = Up in RN
0 < U ≤ U(0) = 1 in RN

for suitable λ̃ > 0,. We remember that Kwong [70] proved that this problem has a unique
solution.

Theorem 2.5. Let un be a solution of (2.2.1) so that supnm(un) < +∞.
Then

(2.2.4) lim sup
n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)
≤ λ̃

N
2
− p+1
p−1 (max

Ω
V )

p+1
p−1
−N

2

∫
RN

Up+1

Proof. Take a subsequence so that

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)
→ β as n→ +∞.

By Theorem 2.4, up to a further sub-sequence, we can assume that m(un)→ k and there exist
{P 1

n , . . . , P
k
n }, k ≤ k, so that (2.1.10)-(2.1.14) hold.

We can then write ∀R > 0:

λ
N
2
− p+1
p−1

n

∫
Ω
up+1
n

=
k∑
i=1

(λn (εin)2)
N
2
− p+1
p−1

∫
BR(0)

(U in)p+1 +O
(

(λn (εin)2)
N
2
− p+1
p−1

k∑
j=1

∫
RN\B

R
ε
j
n
ε1n

(0)
e−γ(p+1)|y|dy

)
,

and in view of (2.1.4) we get that

lim
n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω
up+1
n

= λ̃
N
2
− p+1
p−1

∫
BR(0)

Up+1
k∑
i=1

lim
n→+∞

V (P in)
p+1
p−1
−N

2 +O
(∫

RN\BεR(0)
e−γ(p+1)|y|dy

)
.

Since this is true for every R > 0 we get as R→ +∞:

lim
n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω
up+1
n = λ̃

N
2
− p+1
p−1

∫
RN

Up+1
k∑
i=1

lim
n→+∞

V (P in)
p+1
p−1
−N

2

≤ k λ̃
N
2
− p+1
p−1

∫
RN

Up+1 (max
Ω

V )
p+1
p−1
−N

2

≤ λ̃
N
2
− p+1
p−1

∫
RN

Up+1 (max
Ω

V )
p+1
p−1
−N

2 lim
n→+∞

m(un).
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We then deduce (2.2.4) on the value β. �

Now we want to show the lower bound:

Theorem 2.6. Let un be a solution of (2.2.1) so that

sup
n
λ
N
2
− p+1
p−1

n

∫
Ω
up+1
n < +∞.

Then

(2.2.5) lim inf
n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)
≥ 1

N + 1
λ̃
N
2
− p+1
p−1

∫
RN

Up+1 (inf
Ω
V )

p+1
p−1
−N

2 .

Remark 2.7. In this context the so-called Rozenblyum-Lieb-Cwikel inequality [93, 71,
29], can be considered for a solution U as a relation between the Morse index and a bound on
U in same Lebesgue space.
Let consider the operator −∆ + V in RN , the number of negative eigenvalue of this operator
is estimated by this Rozemblyum-Lieb-Cwikel inequality, in the following way:

# {λ < 0 eigenvalue of −∆ + V } ≤ C2‖V−‖
N
2

L
N
2
.

In our specific case, we obtain better estimates, in the sense that we obtain a double bound
inequality and with optimal constants. Indeed let un be a solution of

(2.2.6)

{
−∆un + λnun = upn in Ω
un = 0 on ∂Ω

with 1 < p < N+2
N−2 (for simplicity V ≡ 1), and after a rescaling we can consider this problem

like Ũn solution of

(2.2.7)


−∆Ũn + Ũn = Ũn

p
in Ωn

Ũn = 0 on ∂Ωn

Ũn ≤ Ũn(0) ≤ (λn ε
2
n)
− 1
p−1 .

In the sequel of this section we obtain a double bound of the energy:

(2.2.8) C0 λ
γ
n

∫
Ω
up+1
n ≤ m(un) ≤ C1 λ

γ
n

∫
Ω
up+1
n ,

with a suitable γ. If we consider the Morse index m(Ũn) of Ũn in H1
0 (Ωn), where the domain

Ωn is expanding to RN , it coincides with m(un). Now, rescaling the norms in (2.2.8), we have

(2.2.9) C0

∫
Ωn

Ũn
p+1 ≤ m(Un) ≤ C1

∫
Ωn

Ũn
p+1

.

Observe that

m(Ũn) = #{λ < 0 eigenvalue of −∆ + (1− p Ũn
p−1

) }.
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A Rozenblyum-Lieb-Cwikel type formula would read on Ωn as

(2.2.10) m(Ũn) ≤ C2‖(1− p Ũn
p−1

)−‖
N
2

L
N
2
.

While in (2.2.9) we have a better estimate.
Resuming, we are able to exhibit a double bound estimate, based on techniques of asymptotic
analysis and a characterization of the unique radial stable outside a compact set or with
bounded energy solution.

As a consequence of Theorems 2.5 and 2.6 we get

Theorem 2.8 (Rozenblyum-Lieb-Cwikel type estimate). Let un be a solution of (2.2.1).
The following are equivalent

(1) supnm(un) < +∞;

(2) supn λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n < +∞.

Moreover, when (1) or (2) holds we have

λ̃
p+1
p−1
−N

2

N + 1
(inf

Ω
V )

p+1
p−1
−N

2

∫
RN

Up+1 ≤ lim inf
n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)
≤ lim sup

n→+∞

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)

≤ λ̃
N
2
− p+1
p−1 (max

Ω
V )

p+1
p−1
−N

2

∫
RN

Up+1.

Proof of Theorem 2.6. Take a subsequence so that

λ
N
2
− p+1
p−1

n

∫
Ω u

p+1
n

m(un)
→ β as n→ +∞.

Assume, up to a further subsequence, that

lim
n→+∞

m(un) = N̂ ∈ [0,+∞].

By Theorem 2.4 we know that there exists {P 1
n , . . . , P

k
n }, k ≤ supn λ

N
2
− p+1
p−1

n

∫
Ω u

p+1
n , so that

(2.1.10)-(2.1.14) hold.

Let ϕmn be the m−th eigenfunction of −∆ + λV − p up−1
n in H1

0 (Ω) corresponding to the
eigenvalue µmn and assume ϕmn be normalized to have maxΩ |ϕmn | = maxΩ ϕ

m
n = 1 (considered

with multiplicities):

(2.2.11)

{
−∆ϕmn + λn V ϕ

m
n − p u

p−1
n ϕmn = µmn ϕ

m
n in Ω

|ϕmn | ≤ maxΩ ϕ
m
n = 1, ϕmn = 0 on ∂Ω

Fix now m such that µmn ≤ 0 for n large. We have

1st claim
–

µmn ≥ λn inf
Ω
V − p

(ε1
n)2

;



36 2. ASYMPTOTIC ANALYSIS AND BLOW-UP PROFILE

– ∃M > 0 s. t.

Qmn ∈
k⋃
j=1

B
M εjn

(P jn)

where Qmn is so that ϕmn (Qmn ) = 1.

Proof of 1st claim: Let Qmn be a maximum point of ϕmn . We have that

µmn ϕ
m
n (Qmn ) ≥ λn V (Qmn )ϕmn (Qmn )− p up−1

n (Qmn )ϕmn (Qmn ).

Since ϕmn (Qmn ) = 1, we get that

µmn ≥ λn V (Qmn )− p up−1
n (Qmn ) ≥ λn inf

Ω
V − p

(ε1
n)
.

Further, observe that by (2.1.14) we have

up−1
n (x) ≤ C(ε1

n)−2
k∑
j=1

e
−(p−1)γ

|x−Pjn|
ε
j
n ≤ C(ε1

n)−2ke−γ M(p−1)

in Ω \
⋃k
j=1BM εjn

(P jn). By (2.1.4) we get

λn V (Qmn )− p up−1
n (Qmn ) ≥ (ε1

n)−2
[ λ̃

2

infΩ V

maxΩ V
− pC k e−(p−1)γ M

]
> 0

for n large, whenever Qmn ∈ Ω \
⋃k
j=1BM εjn

(P jn), for some M > 0 large. A contradiction to

µmn ≤ 0. Hence,

Qmn ∈
k⋃
j=1

B
M εjn

(P jn) for some M > 0 large.

�

Set φm,jn (y) = ϕmn (εjn y + P jn). The function φm,jn solves

(2.2.12)
−∆φm,jn + λn(εjn)2V (εjn y + P jn)φm,jn − p(U jn)p−1φm,jn = (εjn)2µmn φ

m,j
n in Ω−P jn

εjn

|φm,jn | ≤ φm,jn

(
Qmn −P

j
n

εjn

)
= 1 in Ω−P jn

εjn

φm,jn = 0 on ∂(Ω−P jn
εjn

).

By the 1st claim and (2.1.4), (2.1.10) we get

0 ≥ (εjn)2µmn ≥ λn(εjn)2 inf
Ω
V − p

(εjn
ε1
n

)2
≥ λ̃

2

infΩ V

maxΩ V
− pU2

0 .

Up to a subsequence, we can assume that

(εjn)2µmn → µm,j ≤ 0 as n→ +∞.
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Multiply (2.2.12) by φm,jn and integrate on Ω−P jn
εjn

to get∫
Ω−Pjn
ε
j
n

|∇φm,jn |2 + λn(εjn)2 V (εjn y + P jn)(φm,jn )2 ≤
∫

Ω−Pjn
ε
j
n

(U jn)p−1

≤ C(εjn)2

(ε1
n)2

k∑
i=1

∫
Ω−Pjn
ε
j
n

e
−(p−1)γ

∣∣ εjn
ε1n
y+

P
j
n−P

i
n

ε1n

∣∣

=
C(εjn)2

(ε1
n)2

(εin)N

(εjn)N

k∑
i=1

∫
Ω−Pin
εin

e−(p−1)γ|y|

≤ CN+2 k

∫
RN

e−(p−1)γ |y| < +∞

in view of (2.1.10) and (2.1.14).

In particular, φm,jn H1(BM (0)) ≤ CM ∀ M and, up to a subsequence and a diagonal process,

φm,jn ⇀ φm,j in H1
loc(RN ) as n→ +∞. Moreover φm,j solves

(2.2.13)

{
−∆φm,j + λ̃ φm,j − pUp−1 φm,j = µm,j φm,j in RN
|φm,j | ≤ 1

in view of (2.1.4). We have that φm,j 6= 0 for at least one j ∈ { 1, . . . , k }.
This follows by:

2nd claim Let j ∈ { 1, . . . , k } so that (up to a subsequence) Qmn ∈ BM εjn
(P jn) for some M > 0

large. Then φm,j 6= 0.

Proof of 2nd claim: Decompose φm,jn as hn + tn, where hn satisfies

(2.2.14)

{
∆hn = 0 in BM+1(0)

hn = φm,jn on ∂BM+1(0).

If φm,j ≡ 0, then φm,jn ⇀ 0 in H1(BM+1(0)), and by the trace Sobolev embedding Theorem

φm,jn → 0 in L1(∂BM+1(0)). By the mean value Theorem, then hn → 0 uniformly in BM (0).
Since

(2.2.15)

{
−∆tn = −∆φm,jn = O(1) in BM+1(0)
tn = 0 on ∂BM+1(0),

by regularity theory tn is uniformly bounded in C0,α(BM+1(0)). In particular, by Ascoli-Arzelá

Theorem tn → t uniformly in BM+1(0). Hence, φm,jn = hn+ tn → t uniformly in BM (0), where
t = φm,j ≡ 0. In particular,

φm,jn

(Qmn − P jn
εjn

)
= ϕmn (Qmn ) = 1→ 0 as n→ +∞.

A contradiction and then φm,j 6= 0. �
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By Theorem 1.18, recall that −∆+λ̃−pUp−1 has a first negative eigenvalue µ1 < 0 (with corre-
sponding eigenfunction ψ1 ∈ L2(RN )), µ2 = µ3 = · · · = µN+1 = 0 vanish (with corresponding
eigenfunctions ψ2 = ∂x1U, . . . , ψN+1 = ∂xNU ∈ L2(RN )), and all the other eigenvalues are
positive.
We have that necessarily µm,j = µ1 ∀ j or µm,j = 0 ∀ j. Assume that for m = 1, . . . ,M
µm,j = µ1 ∀ j and we will try to estimate M .

3rd claim

|ϕmn | ≤ C
k∑
j=1

e
−γ |x−P

j
n|

ε
j
n in Ω, ∀ n

for some C, γ > 0.

Proof of 3rd claim: Let Ln = −∆ + an(x), where an = λn V − p up−1
n − µmn . As in

the proof of 1st claim, we have that an(x) ≥ λn V (x) − p up−1
n (x) ≥ δ (ε1

n)−2 > 0, δ > 0, for

x ∈ Ω \
⋃k
j=1BM εjn

(P jn) and M large.

In view of (2.1.10) we have that

Ln

( k∑
j=1

e
−γ |x−P

j
n|

ε
j
n

)
=

k∑
j=1

e
−γ |x−P

j
n|

ε
j
n

[
− γ2

(εjn)2
+

N − 1

|x− P jn|
γ

εjn
+ an

]

≥
k∑
j=1

e
−γ |x−P

j
n|

ε
j
n (εjn)−2

[
− γ2 + δ

]
> 0

in Ω \
⋃k
j=1BM εjn

(P jn), for 0 < γ <
√
δ. Since for C ≥ eγ M

|ϕmn | ≤ 1 ≤ C
k∑
j=1

e
−γ |x−P

j
n|

ε
j
n on

k⋃
j=1

B
M εjn

(P jn)(2.2.16)

|ϕmn | = 0 ≤ C
k∑
j=1

e
−γ |x−P

j
n|

ε
j
n on ∂Ω,

by the maximum principle

Ln(±ϕmn ) = 0 ≤ Ln
(
C

k∑
j=1

e
−γ |x−P

j
n|

ε
j
n

)
in Ω \

k⋃
j=1

B
M εjn

(P jn)

implies that

|ϕmn | ≤ C
k∑
j=1

e
−γ |x−P

j
n|

ε
j
n in Ω \

k⋃
j=1

B
M εjn

(P jn).

Hence, by (2.2.16) we get that

|ϕmn | ≤ C
k∑
j=1

e
−γ |x−P

j
n|

ε
j
n in Ω
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for n large. Up to take C larger, the estimate is true ∀ n. �

For m, l ∈ { 1, . . . ,M }, m 6= l , we want to take the limit of the orthogonality condition:

0 =

∫
Ω
ϕmn ϕ

l
n =

k∑
j=1

∫
B
M ε

j
n

(P jn)
ϕmn ϕ

l
n +

∫
Ω\

⋃k
j=1 BM ε

j
n

(P jn)
ϕmn ϕ

l
n

=

k∑
j=1

(εjn)N
∫
BM (0)

φm,jn φl,jn +

∫
Ω\

⋃k
j=1BM ε

j
n

(P jn)
ϕmn ϕ

l
n.

We have that ∣∣∣ ∫
Ω\

⋃k
j=1 BM ε

j
n

(P jn)
ϕmn ϕ

l
n

∣∣∣ ≤ C ′
k∑
i=1

∫
Ω\

⋃k
j=1BM ε

j
n

(P jn)
e
−2 γ

|x−Pin|
εin

≤ C ′
k∑
i=1

(εin)N
∫
RN\BM (0)

e−2 γ|y|dy.

Since φm,jn ⇀ φm,j and φl,jn ⇀ φl,j in H1(BM (0)), we have that φm,jn → φm,j and φl,jn → φl,j in

L2(BM (0)) ∀M . By (εjn)2µmn → µm,j = µ1 ∀ j, we get εjn
εin
→ 1 ∀ i 6= j as n→ +∞. Finally,

by

0 =
1

(ε1
n)N

∫
Ω
ϕmn ϕ

l
n =

k∑
j=1

(εjn
ε1
n

)N ∫
BM (0)

φm,jn φl,jn +O
(∫

RN\BM (0)
e−2 γ|y|dy

)
we get that as n→ +∞:

0 =
k∑
j=1

∫
BM (0)

φm,j φl,j +O
(∫

RN\BM (0)
e−2 γ|y|dy

)
∀ M.

As M → +∞ we get

0 =
k∑
j=1

∫
RN

φm,j φl,j .

Since φm,j and φl,j are eigenfunctions of −∆+λ̃−pUp−1 with eigenvalue µm,j = µl,j = µ1 < 0,
we can write

φm,j =
λm,j

(
∫
RN ψ

2
i )

1
2

ψi, φl,j =
λl,j

(
∫
RN ψ

2
i )

1
2

ψi.

We prove that φm,j and φl,j ∈ L2, i.e. that the eigenfunctions of eigenvalues less or equal to
zero of the operator −∆ + 1− pUp−1 are in L2. If φm,j are eigenfunctions of eigenvalue zero,
we say that U is a unique solution which is non-degenerate, i.e.

kernel (−∆ + 2 + pUp−1) = span{ ∂1U, . . . , ∂NU },

with ∂iU = ∂xiU .
By the well-known result of Gidas, Ni and Nirenberg [57], U is radially symmetric: U(y) =
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U(|y|) and strictly decreasing: U ′(r) < 0 for r > 0, r = |y|.
Moreover, we have the following asymptotic behavior of U :

U(r) = AN r
−N−1

2 e−r(1 +O(
1

r
)),

U ′(r) = −AN r−
N−1

2 e−r(1 +O(
1

r
)),

for r large , where AN > 0 is a generic constant.
We have that U, |∇U | have an exponential decay, so also ∂iU for all i = 1, . . . , N . Observe
that, in this case, φm,j , φl,j are ∂iU , so have an exponential decay and then they are in L2.
Consider the case of µ < 0, the case of negative eigenvalue. First we have to prove that there
exists a unique eigenfunction associated to µ. Observe that U , the unique solution obtained
by Kwong, must be obtained also like Mountain Pass solution.
By [62] we state that the Morse Index of a ground state solution is always less than 1. We
have that there exists a negativity direction of the linearized operator, then we have that the
first eigenvalue is negative.
Moreover we have that m(U) is at least one, with one negative eigenvalue and so there is one
and only one eigenvalue strictly negative µ and the others are less or equal to zero. There is
one and only one eigenfunction associated to µ < 0 (1-dimensional space) by the property of
the first eigenvalue.
Then we can prove that this eigenfunction is in L2. Observe that we can find the first eigen-
function like the minimum of a functional. Observe that the minimum of this functional is
attained in L2, then the eigenfunction is in L2. In this way we get

0 =

k∑
j=1

λm,j λl,j .

Set λm = (λm,1, . . . , λm,k) ∀ m = 1, . . . ,M. By the 2nd claim we have that λm 6= 0 ∀m =

1, . . . ,M and < λm, λl >= 0 ∀m 6= l, m, l = 1, . . . ,M . Hence M ≤ k. Assume that µm,jn → 0

(for every j = 1, . . . , k) for m = M+1, . . . ,M+s. By (2.1.10) let us assume that εjn
ε1n
→ D

2
N
j > 0

∀ j = 1, . . . , k. We want to show that s ≤ N k.
Indeed, we have always that

k∑
j=1

D2
j

∫
RN

φm,j φl,j = 0, ∀m 6= l, m, l = M + 1, . . . ,M + S.

Since φm,j and φl,j are eigenfunctions of −∆ + λ̃ − pUp−1 with eigenvalues µm,j = µl,j = 0,
we can write

φm,j =
N+1∑
i=2

βim,j ψi

Dj(
∫
RN ψ

2
i )

1
2

φl,j =
N+1∑
i=2

βil,j ψi

Dj(
∫
RN ψ

2
i )

1
2

.
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In this way, the orthogonality condition rewrites as

k∑
j=1

N+1∑
i=2

βim,j β
i
l,j = 0

in view of
∫
RN ψi ψj = 0 for i 6= j. We consider βm = (β2

m,1, β
2
m,2, . . . , β

2
m,k, . . . , β

N+1
m,1 , . . . , βN+1

m,k ).

We have that βm 6= 0 ∀m = M + 1, . . . ,M + S and < βm, βl >= 0 ∀m 6= l, m, l =
M + 1, . . . ,M + S. Hence S ≤ Nk.
Observe that N̂ < +∞. Indeed, for N̂ = +∞ we would have that µmn ≤ 0 for m =
1, . . . , (N + 1) k + 1 and n large. The corresponding limits µm,j have to satisfy:

µm,j = µj (∀ j = 1, . . . , k) for every m = 1, . . . ,M,

µm,j = 0 (∀ j = 1, . . . , k) for every m = M + 1, . . . , (N + 1) k + 1, ,

for some M ∈ [1, (N + 1) k + 1]. Hence, we should have M ≤ k, (N + 1) k+ 1−M ≤ N k and
then M + s = (N + 1) k + 1 ≤ (N + 1) k. A contradiction.
Also we have that

lim
n→+∞

(un) = N̂ ≤ (N + 1) k,

where by Theorem 2.4

k ≤ λ̃
p+1
p−1
−N

2 (minV )
N
2
− p+1
p−1

(∫
RN

Up+1
)−1

lim
n→+∞

λ̃
N
2
− p+1
p−1

∫
Ω
up+1
n .

The Theorem is estabilished. �

2.3. Blow up profile: p = N+2
N−2

In this section we adapt some results of Druet, Hebey and Robert (see [47]) for the case of
p = N+2

N−2 to have a blow-up profile. For simplicity we can take V ≡ 1 (everything holds with

V 6= 1 too).
Let un be a sequence of positive solutions of

(2.3.1)

{
−∆un + λnun = u

N+2
N−2
n in Ω,

un = 0 on ∂Ω

with lim supnm(un) = k.

2.3.1. Exhaustion of blow-up points. Given k ∈ N∗, let (P in), i = 1, . . . , k, be k
converging sequences of points in Ω, and (εin), i = 1, . . . , k, be k sequences of positive numbers
converging to 0. We set

(2.3.2) S :=
{

lim
n→+∞

P in, i = 1, . . . , k
}

and when k ≥ 2 we set

(2.3.3) Si :=
{

lim
n→+∞

1

εin
(P jn − P in) j 6= i

}
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for i = 1, . . . k, where the limits, up to a subsequence, are assumed to exist.

(2.3.4) U in(x) = (εin)
N
2
−1un(εinx+ P in).

Let U1
0 be the function defined in RN as

(2.3.5) U1
0 (x) =

(
1 +

|x|2

N(N − 2)

)1−N
2
.

It is known [22, 57, 90] that U1
0 is the only positive solution of the equation −∆u = u

N+2
N−2 in

RN satisfying U1
0 (0) = maxRN U

1
0 = 1.

When k ≥ 2 we consider the following statement:

(2.3.6)
|P jn − P in|

min(εin, ε
j
n)
→ +∞

for all i 6= j as n→ +∞. We also define

(2.3.7) dkn(x) = min
i=1,...,k

|x− P in|.

By Proposition 0.1 that

(2.3.8) lim
n→+∞

max
Ω

un = +∞.

Then the following theorem holds:

Theorem 2.9. Let Ω be a bounded domain of RN , N ≥ 3 and un be a sequence of positive
solutions to (2.3.1). Assume that supnm(un) < +∞. Then there exist k ∈ N∗, converging
sequences (P in) in Ω and sequences (εin) of positive real numbers converging to 0, i = 1, . . . , k,
such that (2.3.6) holds and such that, up to a subsequence, the following properties hold:

(1) For any x ∈ Ω and any n

(2.3.9) dkn(x)
N
2
−1un(x) ≤ C

for some C > 0 where dkn(x) is given by (2.3.7). Moreover

(2.3.10) lim
R→+∞

lim
n→+∞

sup
x∈Ω\∪ki=1BRεin

(P in)

dkn(x)
N
2
−1un(x) = 0.

(2) un → 0 strongly in C0
loc(Ω \ S) as n→ +∞ , where S is given by (2.3.2).

Proof. The proof of (1) proceeds in several two steps. The claims below are all up to a
subsequence.

1st step There exists a converging sequence (P 1
n) of points in Ω and a sequence ε1

n → 0 such
that

(2.3.11) U1
n → U1

0 in C2
loc(RN )

holds as n→ +∞, where U1
n(x) = (ε1

n)
N
2
−1un(ε1

nx+ P 1
n).
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Let P 1
n be a point in Ω where un achieves its maximum and set

(2.3.12) un(P 1
n) = (ε1

n)1−N
2 = max

Ω
un.

We have

(2.3.13) U1
n(0) = (ε1

n)
N
2
−1un(P 1

n) = 1.

From (2.3.8) we have that ε1
n → 0 as n→ +∞. Moreover U1

n satisfies

(2.3.14)


−∆U1

n + λn(ε1
n)2U1

n = (U1
n)

N+2
N−2 in Ωn := Ω−P 1

n
ε1n

0 < U1
n ≤ U1

n(0) = 1 in Ωn

U1
n = 0 on ∂Ωn.

Since P 1
n is a point of local maximum of un we have that

0 ≤ λn(ε1
n)2 ≤ 1,

and, up to a subsequence, we can assume

λn(ε1
n)2 → λ̃ ∈ [0, 1] as n→ +∞.

Since U1
n is bounded, by regularity theory we have

(2.3.15) U1
n → U in C2

loc(T )

where U satisfies

(2.3.16)

 −∆U + λ̃U = U
N+2
N−2 in T

0 < U ≤ U(0) = 1 inT
U = 0 on ∂T

with m(U) < +∞ and T = limn→+∞Ωn. Note that T is an hyperplane (without loss of

generality RN+ ) or RN . Observe that, if λ̃ > 0 by Theorems 1.10 and 1.1.76 we have no

solutions of the problem neither in RN and in RN+ . If λ̃ = 0 then by Theorem 1.21 there are

no solutions in RN+ . By [22, 57, 90] U = U1
0 solves the limiting problem

(2.3.17)

{
−∆U = U

N+2
N−2 inRN

0 < U ≤ 1.

In particular λn ε
2
n → 0 and dist(P 1

n ,∂Ω)
ε1n

→ +∞ as n→ +∞.

Let m ∈ N \ { 0 } and for i = 1, . . . ,m, let (P in) be m converging sequences of points in Ω and
(εin) be m sequences of positive real numbers converging to 0. Note that U1

0 is unstable, so
there exists φ ∈ C∞0 (RN ) so that suppφ ⊂ BR(0), R > 0 and∫

|∇φ|2 − N + 2

N − 2
(U1

0 )
4

N−2 φ2 < 0.
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Then, we define φ1
n(x) := 1

(ε1n)
N−2

2

φ
(
x−P 1

n
ε1n

)
, so that suppφ1

n ⊂ BRε1n(P 1
n) and∫

Ω
|∇φn|2 + (λn −

N + 2

N − 2
u

4
N−2
n )φ2

n =

∫
|∇φ|2 + (λn (ε1

n)2 − N + 2

N − 2
U

4
N−2
n )φ2

→
∫
|∇φ|2 − N + 2

N − 2
(U1

0 )
4

N−2φ2 < 0.

We say that (H1
m) holds if there exist m converging sequences (P in) of points in Ω and m

sequences (εin) of positive real numbers converging to 0 such that, up to a subsequence, the
following assertion holds:

(1) when m ≥ 2, (P in) and (εin) satisfy

(2.3.18)
|P jn − P in|

εin
→ +∞ as n→ +∞, for any j 6= i,

(2) for any i ∈ { 1, . . . ,m }, U in → U1
0 in C2

loc(RN ) as n→ +∞.

By 1st step we know that (H1
1 ) holds.

We claim:

2nd step Assume that (H1
m) holds, then (H1

m+1) holds or dmn (x)
N
2
−1un(x) ≤ C for all x ∈ Ω

and all n, where dmn is given by (2.3.7) and C > 0 is independent of x and n.

We prove this 2nd step. Suppose that (H1
m) holds. We assume that

(2.3.19) max
x∈Ω

dmn (x)
N
2
−1un(x)→ +∞

as n→ +∞, so we aim to prove that (H1
m+1) holds. We consider Pm+1

n ∈ Ω such that
(2.3.20)

max
x∈Ω

dmn (x)
N
2
−1un(x) = dmn (Pm+1

n )
N
2
−1un(Pm+1

n ) = ( min
i=1,...,m

|Pm+1
n − P in|)

N
2
−1un(Pm+1

n )

and we set un(Pm+1
n ) = (εm+1

n )1−N
2 . We have that εm+1

n → 0 as n → +∞. It follows from
(2.3.19) that for any i ∈ { 1, . . . ,m }

|Pm+1
n − P in|
εm+1
n

→ +∞ as n→ +∞.

We have also that |P
m+1
n −P in|
εin

→ +∞ as n → +∞ ∀ i = 1, . . . ,m. Otherwise, we find i ∈
{ 1, . . . ,M } and M s.t. Pm+1

n ∈ BM εin
(P in). Then

dmn (Pm+1
n )

N
2
−1un(Pm+1

n ) ≤M
N
2
−1 U in

(Pm+1
n − P in

εin

)
≤ 2M

N
2
−1 sup
|y|≤M

U1
0 (y)

contradicting (2.3.19). Letting 0 < δ < 1, for y ∈ B δ

εm+1
n

(0) define

Um+1
n (y) = (εm+1

n )
N
2
−1un(εm+1

n y + Pm+1
n ).
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We have that Um+1
n (0) = 1 and Um+1

n satisfies

−∆Um+1
n + λn (εm+1

n )2Um+1
n = (Um+1

n )
N+2
N−2 in B δ

εm+1
n

(0).

For y ∈ B δ

εm+1
n

(0), and i ∈ { 1, . . . ,m }, by the estimate

|Pm+1
n − P in| − εm+1

n |y| ≤ |(εm+1
n y + Pm+1

n )− P in| ≤ |Pm+1
n − P in|+ εm+1

n |y|

and by (2.3.19) we deduce

lim
n→+∞

|( εm+1
n y + Pm+1

n )− P in|
|Pm+1
n − P in, |

= 1.

This implies that on B δ

εm+1
n

(0), then holds:

Um+1
n (y) =

un(εm+1
n y + Pm+1

n )

un(Pm+1
n )

≤
( dmn (Pm+1

n )

dmn (εm+1
n y + Pm+1

n )
un(Pm+1

n )
)N

2
−1
→ 1 as n→ +∞.

Arguing as before, up to a subsequence we have:

lim
n→+∞

Um+1
n = Um+1 in C2

loc(RN ),

where Um+1(y) ≤ Um+1(0) = 1 and −∆Um+1 = (Um+1)
N+2
N−2 in RN . So we have that Um+1 =

U1
0 proving (H1

m+1). Set now m0 = sup {m ∈ N : (H1
m) holds for a subsequence } and we have

m0 < +∞. Indeed, whenever (H1
m) holds we can find a function φin(x) = 1

εin

N−2
2 φ

(
x−P in
εin

)
so

that suppφin ⊂ BRεin(P in) and∫
|φin|2 + (λn −

N + 2

N − 2
u

4
N−2
n )(φin)2 < 0,

for every i = 1, . . . ,m. By (2.3.6) the functions φin have disjoint supports, and are therefore
orthogonal in L2(Ω). This implies m0 ≤ supn m(un) < +∞.

By the 2nd step, we get that there exist m ≥ 1, converging sequences (P in) of points in Ω and
m sequences (εin) of positive real numbers converging to 0 such that (H1

m) holds and such that

(2.3.21) dmn (x)
N
2
−1un(x) ≤ C ∀x ∈ Ω, ∀n ∈ N,

for some C > 0. The proof of (1) is complete.
As far as (2), let s = { limn→+∞ P

i
n : i = 1, . . . ,m }. We have that un → 0 uniformly in Ω \S.

If not, up to a subsequence, we can find Pn ∈ Ω s.t. Pn → P ∈ Ω \ S and un(Pn) ≥ δ0 > 0.

Let r > 0 small so that B3 r(P ) ⊂ SC .
We consider a cut-off function χ so that χ = 1 in B2 r(P ), χ = 0 in B3 r(P )C and 0 ≤ χ ≤ 1.
We multiply (2.3.1) by χ2 un and integrate in Ω to get:∫

Ω
|∇(χun)|2 + λn

∫
Ω

(χun)2 =

∫
Ω

[∇un ∇(χ2 un) + λn un(χ2 un)] +

∫
Ω
u2
n |∇χ|2

=

∫
Ω

(χ2 u
2N
N−2
n + |∇χ|2 u2

n).
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By (2.3.9) we get that un ≤ C in B3 r(P ) ∩ Ω, and then χun is uniformly bounded in H1
0 (Ω).

Then un is uniformly bounded in H1(B2 r(P ) ∩ Ω) with λn
∫
B2 r(P )∩Ω u

2
n ≤ C. Up to a sub-

sequence, by the Sobolev embedding Theorem un ⇀ u in H1(B2 r(P ) ∩ Ω) and strongly in
L2(B2 r(P ) ∩ Ω). Since λn

∫
B2 r(P )∩Ω u

2
n ≤ C and λn → +∞, we get that u ≡ 0. Up to a

subsequence, we have that un → 0 a. e. in B2 r(P )∩Ω. By the Lebesgue Theorem and un ≤ C
in B2 r(P ) ∩ Ω, we get that un → 0 in Lp(B2 r(P ) ∩ Ω), ∀ p ≥ 1, as n→ +∞ and

(2.3.22) un → 0 in Lp(∂B2 r(P ) ∩ Ω), ∀ p ≥ 1, as n→ +∞.

Let vn be the solution of

(2.3.23)

{
−∆vn = u

N+2
N−2
n in B2 r(P ) ∩ Ω

vn = un on ∂(B2 r(P ) ∩ Ω).

Letting G(x, y) be the Green function of −∆ in H1
0 (B2 r(P )∩Ω), by the representation formula:

∀x ∈ B2 r(P ) ∩ Ω there holds

vn(x) =

∫
B2 r(P )∩Ω

u
N+2
N−2
n (y)G(x, y)dy −

∫
∂B2 r(P )∩Ω

u
N+2
N−2
n (y) ∂ν G(x, y)dy,

in view of un = 0 on ∂Ω ∩B2 r(P ).

By (1) and (2) we get that vn → 0 uniformly in Br(P ) ∩ Ω. Since −∆un = u
N+2
N−2
n − λn un ≤

u
N+2
N−2
n = −∆vn in B2 r(P )∩Ω, by the maximum principle we get that 0 ≤ un ≤ vn in B2 r(P )∩Ω.

Hence, un → 0 uniformly in Br(P ) ∩ Ω and in particular un(Pn)→ 0 as n→ +∞.
This contradicts un(Pn) ≥ δ0 > 0.

We say that (H2
m) holds if, up to a subsequence there exist m converging sequences (P in) of

points in Ω and m sequences (εin) of positive real numbers converging to 0 such that

(1) when m ≥ 2, (P in) and (εin) satisfy

(2.3.24)
|P in − P

j
n|

min{ εin, ε
j
n }
→ +∞ as n→ +∞, for any j 6= i;

(2) for any x ∈ Ω and any n, dmn (x)
N
2
−1un(x) ≤ C for some C > 0;

(3) there exists ε0 > 0 and P i ∈ RN , i = 1, . . . ,m such that for any i = 1, . . . ,m
U in → U1

0 (· − P i) in C2
loc(RN \ Si).

We have seen that (H2
m) holds for a suitable m0 ∈ N \ { 0 }. Note that (2) of (H1

m0
) implies

(3) of (H2
m0

) by simply taking P i = 0 ∀ i. We now prove 3rd step:

3rd step Assume that (H2
m) holds, then (H2

m+1) holds or

(2.3.25) lim
R→+∞

lim sup
n→+∞

sup
x∈Ω\∪mi=1BRεin

(P im)

dmn (x)
N
2
−1un(x) = 0.
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Assume that (2.3.25) is false. Then, up to a subsequence, there exists a sequence Pm+1
n of

points in Ω such that for any i = 1, . . . ,m

(2.3.26)
|P in − Pm+1

n |
εin

→n→+∞ +∞

and such that

(2.3.27) dmn (Pm+1
n )

N
2
−1un(Pm+1

n )) ≥ δ0

for some δ0 > 0. So we need to prove that (H2
m+1) holds. We let un(Pm+1

n ) = (εm+1
n )1−N

2 and

claim that (H2
m+1) holds when adding (Pm+1

n ) and (εm+1
n ) to the (P in)’s and (εin)’s i = 1, . . . ,m.

We observe that (1) of (H2
m+1) is a consequence of (2.3.26). We observe that dmn (Pm+1

n )→ 0 as

n→ +∞. Otherwise, for a subsequence, we can assume that Pm+1
n → P with dmn (P ) ≥ δ0 > 0.

By (2) of (H2
m) we get that un ≤ C in Bε(P ), for some ε > 0 small, and then Bε(P ) ⊂ Ω \ S.

By (1) of Theorem (2.9) un → 0 uniformly in Bε(P ), and in particular un(Pm+1
n ) → 0,

contradicting (2.3.27). Since dn(Pm+1
n )→ 0, by (2.3.27) we have that εm+1

n → 0 as n→ +∞.

Given 0 < δ < 1, for y ∈ B δ

εm+1
n

(0) we set Um+1
n (y) = (εm+1

n )
N
2
−1un(εm+1

n x+Pm+1
n ). We have

that Um+1
n (0) = 1 and

(2.3.28) −∆Um+1
n + λn (εm+1

n )2Um+1
n = (Um+1

n )
N+2
N−2 in B δ

εm+1
n

(0).

We let

Sm+1 =

{
lim

n→+∞

P in − Pm+1
n

εm+1
n

, 1 ≤ i ≤ m

}
where, up to a subsequence, the limits are ok. Note that by (2.3.27) 0 /∈ Sm+1.
Let R > 0 and (Pn) a sequence in BR(0) such that d(Pn, Sm+1) ≥ 1

R , then

dmn (εm+1
n Pn + Pm+1

n ) ≥ εm+1
n

2R

for n sufficiently large. Letting yn = εm+1
n Pn + Pm+1

n it follows from (2) of (H2
m) that

Um+1
n (Pn) = (εm+1

n )
N
2
−1 un(εm+1

n Pn + Pm+1
n )

≤ (2R)
N
2
−1dmn (yn)

N
2
−1un(yn) ≤ (2R)

N
2
−1C.

Then, for anyK ⊂⊂ RN\Sm+1 there exists CK > 0, independent of n such that ‖Um+1
n ‖L∞(K) ≤

CK .
As in 1st step and 2nd step we have, up to a subsequence,

lim
n→+∞

Um+1
n = Um+1 in C2

loc(RN \ Sm+1)

where Um+1 is such that Um+1(0) = 1 and −∆Um+1 = (Um+1)
N+2
N−2 , in RN \ Sm+1. Due to

[22]

Um+1(y) = γ
N−2

2
m+1 U

1
0 (γm+1(y − Pm+1))

where γm+1 > 0 and Pm+1 ∈ RN are such that γm+1 = 1 +
γ2
m+1 |Pm+1|2
N(N−2) . Since Si with

respect to (H2
m) coincides with Si with respect to (H2

m+1) in view of (2.3.26) Up to changing
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εm+1
n into (γm+1)−1εm+1

n and Pm+1 into (γm+1)−1Pm+1, property (3) of (H2
m+1) is proved.

Since mini=1,...,m+1 |x − P in| ≤ mini=1,...,m |x − P in| property (2) of (H2
m) is still true. Since

dmn (Pm+1
n ) → 0 note that limn→+∞ P

m+1
n ∈ S, where S is the set composed by limn→+∞ P

i
n

for i = 1, . . . ,m.

To complete the proof of Theorem 2.9, we need only to show that ∃ k ∈ N, k ≥ m0, so that
(2.3.10) holds. This will follow by supnm(un) < +∞ and the following construction. Let
φ ∈ C∞0 (RN ) so that

(2.3.29)

∫
|∇φ|2 − N + 2

N − 2
(U1

0 )
4

N−2φ2 < 0.

We now want to show that we can remove a point P : ∃φ̃ ∈ C∞0 (RN \ {P }) so that (2.3.29)
holds. Given 0 < δ < 1, let χδ a cut-off function defined as:

(2.3.30) χδ(y) =


0 if |y − P | ≤ δ2

2− log |y−P |
log δ if δ2 < |y − P | < δ

1 if |y − P | ≥ δ.

The function φδ := χδ φ satisfies:∫
|∇φδ|2 −

∫
|∇φ|2 =

∫
|∇χδ|2φ2 + (χ2

δ − 1)φ2 +O
(∫

χδ|∇χδ| |φ| |∇φ|
)

= O
( 1

log2 δ

∫
Bδ(P )\Bδ2 (P )

dy

|y − P |2
+ δN +

1

| log δ|

∫
Bδ(P )\Bδ2 (P )

dy

|y − P |2
)
→ 0,

and ∫
(U1

0 )
4

N−2φ2
δ −

∫
(U1

0 )
4

N−2 φ2 = O
(
δN
)
→ 0

as δ → 0+. Then for δ > 0 small the function φδ still satisfies (2.3.29). This the function φ̃
we were searching for. The construction can be clearly repeated for many points P 1, . . . , P j :
there exists φ ∈ C∞0 (RN \ {P 1, . . . , P j }) so that (2.3.29) is valid for φ.
Now we proceed by induction. Assume that (H2

m) holds and we have found φ1
n, . . . , φ

m
n ∈

C∞n (Ω) with disjoint supports so that suppφin ⊂ BRεin(P in) and∫
Ω
|∇φin|2 + (λn −

N + 2

N − 2
u

4
N−2
n )(φin)2 < 0,

for every i = 1, . . . ,m and for some R > 0.
If (2.3.18) holds, we set k = m and we are done. If (2.3.18) doesn’t hold, up to a subsequence
we can find a point Pm+1

n as in 3rd step.
Letting Sm+1{P 1, . . . , P j }, we can find φ ∈ C∞0 (RN \ Sm+1) so that (2.3.18) is valid with U1

0

replaced by U1
0 ( · , Pm+1). So, there exists δ > 0 small so that

suppφ ⊂

(
m⋃
i=1

Bδ

(P in − Pm+1
n

εm+1
n

))C
∩B 1

δ
(0)
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(We have to treat separately the case |P in−P
m+1
n |

εm+1
n

→ Sm+1 and |P in−P
m+1
n |

εm+1
n

→ +∞). De-

fine now φm+1
n (x) = 1

(εm+1
n )

N−2
2

ψ
(
x−Pm+1

n

εm+1
n

)
∈ C∞0 (Ω). Then suppφm+1

n ⊂ B 1
δ
εm+1
n

(Pm+1
n ) \⋃m

i=1Bδεm+1
n

(P in). If |P
i
n−P

m+1
n |

εm+1
n

→ Sm+1, by (2.3.18) we have that εm+1
n ≥ εin and

εin
εm+1
n

=
|P in − Pm+1

n |
εm+1
n

min{ εin, εm+1
n }

|P in − Pm+1
n |

→ 0,

which implies suppφm+1
n ∩ suppφin = φ in view of suppφin ⊂ BRεin(P in).

When |P
i
n−P

m+1
n |

εm+1
n

→ +∞, by (2.3.26) we getB 1
δ
εm+1
n

(Pm+1
n )∩BRεin(P in) which implies suppφm+1

n ∩
suppφin = φ also in this case.
It is easy to see that∫

Ω
|φm+1
n |2 + (λn −

N + 2

N − 2
u

4
N−2
n )(φm+1

n )2 =

∫
|∇φ|2 + (λn −

N + 2

N − 2
(Um+1

n )
4

N−2 )(φ)2

→
∫

[|∇φ|2 − N + 2

N − 2
(U1

0 )
4

N−2 (y − Pm+1)φ2] < 0

as n → +∞, in view of Um+1
n →n→+∞ U1

0 ( · − Pm+1) in C2
loc(RN \ Sm+1) and φ ∈ C∞0 (RN \

Sm+1). By 3rd step, we know that (H2
m+1) holds for {P 1

n , . . . , P
m+1
n } and we have found

φ1
n, . . . , φ

m+1
n ∈ C∞0 (Ω) with disjoint supports so that suppφin ⊂ BRεin(P in) and∫

Ω
|∇φin|2 + (λn −

N + 2

N − 2
u

4
N−2
n )(φin)2 < 0

for every i = 1, . . . ,m+1 and some R > 0, unless (2.3.18) holds for m. Since this last property
holds for every m ≥ m0, and then we get a contradiction:

m ≤ sup
n

m(un) ∀m ≥ m0.

This show that ∃ k ∈ N, k ≥ m0, so that (2.3.10) holds and Theorem 2.9 is established. �

2.3.2. Sharp pointwise estimates. We define P in ∈ Ω and εin > 0 by the relations

un(P in) = max
Ω

un = (εi)
1−N

2
n

i = 1. . . . , k, clearly P in → P i0, (P i0 is a geometrical point of blow-up) and εin → 0 as n→ +∞.
We know, by Theorem 2.9, that there exists C > 0, independent of n, s. t. for any n and any
x ∈ Ω

(2.3.31) |x− P in|
N−2

2 un(x) ≤ C

and that

(2.3.32) lim
R→+∞

lim
n→+∞

sup
Ω\B

Rεin
(P in)

|x− P in|
N−2

2 un(x) = 0.
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The Standard Bubble (εin)−
N−2

2 U(x−P
i
n

εin
) is given by the expression:

(2.3.33) UP in,εin(x) =

(
εin

εi2n + |x−P in|2
N(N−2)

)N−2
2

.

We claim that the following sharp estimate holds.

Theorem 2.10. Under the above assumption, up to a subsequences, there exists C > 1
independent of n, such that for any n and any x ∈ Ω

(2.3.34) un(x) ≤ C
k∑
i=1

UP in+εin P
i,εin

(x)

where Pn and εn are as above, i.e. the un’s are C0 controlled, by the standard Bubble.

Moreover,
∫

Ω u
2N
N−2
n < +∞.

Remark 2.11. Using the analysis done by Druet, Hebey, Robert [47], we could be able to
obtain the estimate (2.3.34), in our case, for solutions with uniformly bounded Morse indices
and k−peaks.

Proof. For simplicity, we explain only the proof for 1−peak case.
Rather, we proof a weakest estimate i.e. that:

(2.3.35) un ≤ C
(εn)

N−2
2
−ε̃

|x− Pn|N−2−ε̃ ,

in Ω \BM εn(Pn), with M > 0, ε̃ > 0 small.

Let un be positive solution of (2.3.1) with supnm(un) < +∞. By Theorem 2.9 we have that

(2.3.36) un → 0 in C0
loc(Ω \ {S})

as n→ +∞.
We define εn by the relation

un(Pn) = (εn)1−N
2

where Pn are local maximum for un. We have that

εin = (un(Pn))
2

2−N

and εn → 0 as n→ +∞. We say that (2.3.31) and (2.3.32) hold, then we have that there exists
C > 0 independent of n, such that for any n and x ∈ Ω

|Pn − x|
N−2

2 un(x) ≤ C

and

(2.3.37) lim
R→+∞

lim
n→+∞

sup
Ω\BRεn (Pn)

|x− Pn|
N−2

2 un(x) = 0.
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Therefore the theorem reduces to the existence of C > 1, independent of n, such that for any
n and any x:

(2.3.38) un(x) ≤ C

(
εn

(εn)2 + |x−Pn|2
N(N−2)

)N−2
2

,

and for any ε > 0, to the existence of δε > 0 independent of n such that for any n and any
x ∈ Bδε(P0)

(2.3.39) un(x) ≤ Cε

(
εn

(εn)2 + |x−Pn|2
N(N−2)

)N−2
2

,

where Cε = 1 + ε. We prove (2.3.38) and (2.3.39) in several steps.
We claim first that there exists C > 0 such that, up to a subsequence,

un(x) ≤ C

(
εn

(εn)2 + |x−Pn|2
N(N−2)

)N−2
2

for all n and x ∈ Ω, the proof of this claim reduces to the prove that there exists C > 0 such
that for all n and x ∈ Ω

(2.3.40) |Pn − x|N−2un(Pn)un(x) ≤ C.

As a first step we prove that for any ε > 0 there exists Cε > 0 such that for any n and x ∈ Ω,

(2.3.41) |Pn − x|N−2−ε(εn)−
N−2

2
+εun(x) ≤ Cε.

We prove (2.3.41), it is suffices to prove this for ε > 0 small. Indeed, let 0 < ε1 < ε2, (2.3.41)
with respect ε = ε1, ε2 is true if |Pn − x| ≤ εn. If (2.3.41) is true with respect to ε1 and
|x− Pn| ≥ εn, then

|x− Pn|N−2−ε2(εn)−
N−2

2
+ε2un(x) ≤ (|x− Pn|−1εn)ε

2−ε1 |Pn − x|N−2−ε1(εn)−
N−2

2
+ε1un(x)

then (2.3.41) with respect ε2 is true. There exists ε > 0 such that, fix ε0 > 0 small, we can
consider the Green’s function of the operator −∆ + 1−ε0

1+ε . By the maximum principle, Gε is
positive. We let Ln be the operator

Lnu = −∆u+ λnu− u
4

N−2
n u.

Since Lnun = 0 with un > 0 on Ω, we get from [20] that the maximum principle holds for Ln.
We have

LnGε
1−ε(P in, x)

G1−ε
ε (P in, x)

= ε0 + λn + 1− u
4

N−2
n (x) + ε(1− ε) |∇Gε|

2(Pn, x)

G2
ε(Pn, x)

so that

(2.3.42)
LnGε

1−ε(Pn, x)

G1−ε
ε (Pn, x)

≥ ε0 − u
4

N−2
n (x) + ε(1− ε) |∇Gε|

2(Pn, x)

G2
ε(Pn, x)

.
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We use a standard property of the Green’s function, i. e. there exists C > 0 and ρ > 0 such
that, for any n and any x ∈ Bρ(Pn) \ {Pn },

(2.3.43)
|∇Gε|(P in, x)

Gε(Pn, x)
≥ C

|x− Pn|
.

Let R > 0, to be fixed later on. By (2.3.36) and (2.3.42), we get that for n sufficiently large

LnG
1−ε
ε (Pn, x) ≥ 0

in Ω \Bρ(Pn). On the other hand, if x ∈ Bρ(Pn) \BRεn(Pn), then by (2.3.37)

|x− Pn|2u
4

N−2
n (x) ≤ εR,

where εR → 0 as R→ +∞. This, (2.3.42 ) and (2.3.43) gives that

LnG
1−ε
ε (Pn, x)

G1−ε
ε (Pn, x)

≥ Cε(1− ε)−BnεR
|x− Pn|2

.

We choose R > 0, sufficiently large such that Cε(1 − ε) − εR ≥ 0. Then LnG
1−ε
ε (Pn, x) ≥ 0

in Bρ(Pn) \BRεn(Pn), and we have proved that for n sufficiently large, LnG
1−ε
ε (Pn, x) ≥ 0 in

Ω \ BRεn(P in). We recall another standar property of the Green’s function, i. e. there exist
C > 0 such that for any n, and any x ∈ ∂BRεn(Pn),

G1−ε
ε (P in, x) ≥ C (εin)−(1−ε)(N−2).

If we let Cn = C−1(εn)(1−ε)(N−2), then we have

CnG
1−ε
ε (Pn, x) ≥ un(x)

for all n and all x ∈ ∂BRεn(Pn). We can use the maximum principle, then

CnG
1−ε
ε (Pn, x) ≥ un(x)

for all n and all x ∈ Ω \ BRεn(Pn). Noting that there exists C > 0 such that for any n, and
any x ∈ Ω \ {Pn },

|Pn − x|N−2Gε(Pn, x) ≤ C
it follows that for any ε > 0, any n, and any x ∈ Ω \ {P0 },

|Pn − x|N−2−ε̃(εn)−
N−2

2
+ε̃un(x) ≤ Cε

where ε̃ = (N − 2)ε, and Cε > 0 is independent of n. (2.3.41) is true in Ω \BRεin(Pn), and it

is obviously satisfied in BRεn(Pn). This proves (2.3.41).
Now we have that

(2.3.44) un ≤ C
(εn)

N−2
2
−ε̃

|x− Pn|N−2−ε̃ ,

in Ω \BM εn(Pn), with M > 0. Observe that

(2.3.45)

∫
BM εn(Pn)

up+1
n ≤ C1.
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Integrate (2.3.44) and by a change of variable (x− Pn = εn y)∫
Ω\BM εn (Pn)

u
2N
N−2
n ≤ C

∫
Ω\BM εn (Pn)

(εn)N−ε̃
2N
N−2

|x− Pn|2N−ε̃
2N
N−2

dx(2.3.46)

≤ C

∫
RN\B1(0)

(εn)2N−ε̃ 2N
N−2

|εn y|2N−ε̃
2N
N−2

dy(2.3.47)

≤ C̃

∫
RN\B1(0)

1

|y|2N−ε̃
2N
N−2

dy < +∞.(2.3.48)

This proves that
∫

Ω u
2N
N−2
n < +∞. �

2.3.3. A non existence result for N+2
N−2 ≤ p < pc(N). When N+2

N−2 ≤ p < pc(N), we

have that m(un)→ +∞ whenever ‖un‖∞ → +∞ as n→ +∞. For a solutions sequence un of
(2.1.3) with λn → +∞ we always have that ‖un‖∞ → +∞ as shown in Proposition 0.1.
In conclusion, we have that

Theorem 2.12. Let N+2
N−2 ≤ p < pc(N). Problem (1.1.1) doesn’t have, for λ large, solutions

un with uniformly bounded Morse indices or with uniformly bounded energy.

Indeed, with p = N+2
N−2 , if holds (2.3.34) then un have bounded energy (i.e.

∫
Ω u

2N
N−2
n < +∞).

Castorina and Mancini [25] were able to prove that, in the critical case for all λn → +∞, any
possible blowing-up solutions sequence have the property that

∫
Ω u

p+1 → +∞, so there aren’t
solutions of this problem with uniformly bounded Morse Indices.





CHAPTER 3

Location of the blow-up set

This chapter deals with the location of the blow-up set of our problem. We show that Morse
Index information on solutions of (1.1.1), with 1 < p < N+2

N−2 , provide a complete description
of the blow-up behavior, in the sense that we obtain some crucial global estimates to localize
the blow-up set. If un is a a family of solutions of the problem (1.1.1), un has exactly a finite
number of maximum points P 1

n , . . . , P
k
n . The question is to find where are P in i = 1, . . . , k.

Intuitively, the location of should depend on the geometric properties of the domain. We show
exactly how the geometry of the domain affects the solutions. When in the equation (0.1) the
potential V ≡ 1, we derive some results are already known, having information on the Morse
index, i.e. we obtain that a solution which posses a single peak has its peak in the interior of
Ω and this peak must be situated near the most centered part of Ω, that is where the distance
function assumed its maximum. Otherwise with a generic potential V , the geometry of the
domain does not influence the location of the peaks, that must be critical points of V .

3.1. Case V 6= 1

Our aim is to localize the blow-up set as critical points of the potential V . In the radial case a
modified potential M(r) := rN−1V θ(r), (θ = p+1

p−1 −
1
2), introduced by Ambrosetti, Malchiodi

and Ni [5], has an important role in concentration phenomena. In our case the presence of V
is fundamental for the location of blow-up points.

3.1.1. Preliminary estimates. In this section we prove some estimates that we will
need in the sequel. First of all, a lemma is in order. We anticipate that the pointwise estimate
(3.1.1) below is the key ingredient that will allows us to localize the blow-up set.
Let us start with some asymptotic estimates for un solution of (1.1.1).
We say that un has, up to a subsequence, at least k points of local maximum P 1

n , . . . , P
k
n ∈ Ω,

with P in → P i ∈ Ω, i = 1, . . . , k.
Let

Ji = {j = 1, . . . , k : P jn → P i}, Iiδ := Bδ(P
i) ∩ Ω,

δ > 0 fixed small that Iiδ ∩ {P 1, . . . , P k} = {P i}. We have the following estimates:

Lemma 3.1. Let g be some smooth functions on Ω. Let 1 < p < N+2
N−2 , q > 1. Fix i ∈

{1, . . . , k}. Then

(3.1.1)

∫
Iiδ

g uqn = g(P i)
(∑
j∈Ji

(εjn)
− 2 q
p−1

+N
)(∫

RN
U q + on(1)

)
55
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where on(1)→ 0 as n→ +∞.
In particular

(3.1.2)

∫
Ω
up+1
n =

( k∑
i=1

(εin)
− 2 (p+1)

p−1
+N
)(∫

RN
Up+1 + on(1)

)
Proof. Let dn(x) := min{|x− P in| : i = 1, . . . , k }. Given R > 0 , for n > n(R),

{dn(x) ≤ Rε1
n } ⊂ Ω and Iiδ ∩ {dn(x) ≤ Rε1

n } = ∪j∈Ji{|x− P jn| ≤ Rε1
n }.

We know by Theorem 2.4 that

(3.1.3) uqn ≤ C(ε1
n)
− 2 q
p−1

k∑
j=1

e
−q γ |x−P

i
n|

ε1n .

We have ∫
Iiδ

g uqn =

∫
Iiδ∩{ dn(x)≤Rε1n }

g(x)uqn +

∫
Iiδ∩{ dn(x)≥Rε1n }

g(x)uqn

=
∑
j∈Ji

∫
{ |x−P jn|≤Rε1n }

g(x)uqn

+ O
(

(ε1
n)
− 2 q
p−1

k∑
j=1

∫
{ |x−P jn|≥Rε1n }

e
−q γ |x−P

j
n|

ε1n

)
=

∑
j∈Ji

(εjn)
− 2 q
p−1

+N
∫
{|y|≤Rε

1
n

ε
j
n
}
g(εjn y + P jn)uqn(εjn y + P jn)(εjn)

2 q
p−1

+ O
(

(ε1
n)
− 2 q
p−1

k∑
j=1

(εjn)N
∫
{ |y|≥R ε1n

ε
j
n
}
e
−q γ|y| ε

j
n
ε1n

)
=

∑
j∈Ji

(εjn)
− 2 q
p−1

+N
∫
{|y|≤Rε

1
n

ε
j
n
}
g(εjn x+ P jn)(U jn)q

+ O
(

(ε1
n)
− 2 q
p−1

k∑
j=1

(εjn)N
∫
{ |y|≥R ε1n

ε
j
n
}
e
−q γ|y| ε

j
n
ε1n

)
.

Up to a subsequence, ε1
n ≤ ε

j
n ≤ Cε1

n, so we can assume that ε1n
εjn
→ θj ∈ [ 1

C , 1]. Since U jn →n U

in C1
loc(RN ) for any j = 1, . . . , k, we find, along some subsequences:

lim
n→+∞

(ε1
n)

2 q
p−1
−N
∫
Iiδ

g uqn

= g(P i)
∑
j∈Ji

(θj)
2 q
p−1
−N
∫
{ |y|≤Rθj }

U q +O
( k∑
j=1

∫
|y|≥Rθj

e
−q γ |y|

θj

)
;
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sending R to infinity, we get, along the same sequence

lim
n→+∞

(ε1
n)

2 q−N(p−1)
p−1

∫
Iiδ

g(x)uqn = g(P i)
(∑
j∈Ji

θ
2 q−N(p−1)

p−1

j

)∫
RN

U q.

Rescaling the definition of θj , the proof is complete. Moreover, by (3.1.3) we have that un → 0

as n→ +∞ uniformly away from {P 1, . . . , P k }. So, if we take q = p+ 1 and g ≡ 1 in (3.1.1),
we have (3.1.2) by summing over i. �

3.1.2. Blow-up set. Therefore, we combine the asymptotic expansions in Lemma 3.1
with a Pohozaev identity to obtain the location of blow-up points P 1, . . . , P k.

Theorem 3.2. For any i = 1, . . . , k, P i is a critical point of the potential V :

∇V (P i) = 0.

Proof. Let’s get the right Pohozaev-Type Identity to work. Let δ > 0 small, and P in →
P i ∈ Ω. We multiply the equation −∆un = upn − λnV un by ∂hun, so we have the Pohozaev
identity on Bδ(P

i) ∩ Ω = Iiδ,∫
Iiδ

(upn − λnV un)∂hun =

∫
Iiδ

∂i

( up+1
n

p+ 1
− λnV

u2
n

2

)
+

∫
Iiδ

λn
u2
n

2
∂hV

=

∫
∂Iiδ

( up+1
n

p+ 1
− λnV

u2
n

2

)
νh +

∫
Iiδ

λn
2
u2
n ∂hV

=

∫
Iiδ

−
∑
i

∂i iun ∂hun =

∫
∂Iiδ

−
∑
i

∂iun νi ∂hun +

∫
Ω

∑
i

∂i un∂h iun

= −
∫
∂Iiδ

∂νun ∂hun +

∫
Iiδ

∂h

(1

2
|∇un|2

)
= −

∫
∂Iiδ

∂νun ∂hun +

∫
∂Iiδ

1

2
|∇un|2 νh

λnV (x)un → 0 uniformly in Ω away from P 1, . . . , P k. Observe that by the exponential decay
in Theorem 2.4 we have that un, |∇un| → 0 as n→ +∞ on ∂Bδ(P

i), and we say that un = 0
on ∂Ω, so the integrals on ∂Iiδ are zero.
We have

λn

∫
Iiδ

∂hV u
2
n →n→+∞ 0 ∀h, ∀i.

By (3.1.1) we get that

λn

∫
Iiδ

∂hV u
2
n = λn∂hV (P i)

( ∑
j∈Jj

(εjn)
− 4
p−1

+N
)(∫

RN
U2 + on(1)

)
∀h, ∀ i,
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by Theorem 2.4 we say that λn (εjn)2V → λ̃ ∈ (0, 1] so

λn

∫
Iiδ

∂hV u
2
n =

λ̃

V (P i)
∂hV (P i)

( ∑
j∈Jj

(εjn)
− 4
p−1

+N−2
)(∫

RN
U2 + on(1)

)
∀h, ∀ i,

and divided by
(∑

j∈Jj (ε
j
n)
− 4
p−1

+N−2
)

and
∫
RN U

2 < +∞

⇒ ∂hV (P i)

V (P i)
= 0 ∀h, ∀ i ⇒ ∂hV (P i) = 0 ∀h, ∀ i.

Therefore
∇V (P i) = 0, ∀ i.

�

3.2. Case V ≡ 1

When the potential V ≡ 1, the approach used in the previous section is useless, because we
must have a more precise expansion of the Pohozaev-Type Identity. In this case the idea is to
use some techniques of [89] and [104, 105], that consider the projection of U in Ωn and also
a vanishing viscosity method to derive some properties of this projection.
We consider the case when the blow-up occurs in one peak and would be possible to generalize
the idea for the case of multi-peaks, using the appoach in [65, 64, 91].
We obtain that the blow-up occurs in critical points of the distance function.

3.2.1. Some properties of the distance function. Let Ω be a smooth bounded domain
of RN . Let f : Ω → R be a Lipschitz continuous function. We recall the following definition
due to Clarke [28].

Definition 3.3 (The generalized gradient). The generalized gradient of f at x ∈ Ω is the
set:

∂f(x) = {α ∈ RN | f0(x, v) ≥ α · v ∀ v ∈ RN }
where the generalized directional derivative f0(x, v) is defined by

f0(x, v) = lim sup
h→0, λ→0+

f(x+ h+ λv)− f(x+ h)

λ
.

If f is continuously differentiable at x then ∂f(x) = {∇f(x)}.
If f is only differentiable at x, ∂f(x) can contain points other than ∇f(x).
For example, for f(x) = x2 sin 1

x it is easy to show that f0(0, v) = |v|. So ∂f(0) = [−1, 1]
which contains the derivative f ′(0) = 0.

Definition 3.4. The function f is said to be regular at x ∈ Ω provided that for any
v ∈ RN ∂vf(x) = f0(x, v), where ∂vf(x) is the usual directional derivative.
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In [28] we deduce (in Proposition 2.2.4 and (b) of Proposition 2.3.6):

Proposition 3.5. If ∂f(x) reduces to a singleton {α}, then f is differentiable at x and
∇f(x) = α. Conversely, if f is differentiable and regular at x then ∂f(x) = {∇f(x)}.

We recall the following property in [28] (in Proposition 2.1.5).

Proposition 3.6. Let xn and αn be sequences in RN such that xn ∈ Ω and αn ∈ ∂f(xn).
Suppose that xn → x and αn → α as n→ +∞. Then α ∈ ∂f(x).

Let x = (x1, x2). Denote by ∂1f(x1, x2) and ∂2f(x1, x2) the partial generalized gradient of
f(·, x2) at x1 of f(x1, ·) at x2 respectively. The following result holds (see [28], Proposition
2.1.5).

Remark 3.7. If f is regular at (x1, x2) then

∂f(x1, x2) = ∂1f(x1, x2)× ∂2f(x1, x2).

Assume that {fi}i∈I is a finite collection of Lipschitz continuous function defined on D. The
function f(x) = min{fi(x) | i ∈ I} is easily seen to be a Lipschitz continuous function. For any
x ∈ D we let I(x) denote the set of indices i for which f(x) = fi(x). Then the following holds
(see [28], Proposition 2.3.12).

Proposition 3.8. If fi is regular at x for any i ∈ I(x) then f is regular at x and

∂f(x) = co{ ∂fi(x) | i ∈ I(x) },
where co is the convex hull of the set.

Definition 3.9. A point x0 is said to be a critical point of f if 0 ∈ ∂f(x0). A real number
c is said to be a critical value of f if there exists a critical point x0 of f such that f(x0) = c.

By Definition 3.3 we easily deduce that if x0 is a minimum point or a maximum point for a
Lipschitz continuous function f then 0 ∈ ∂f(x0).

Definition 3.10. Let d∂Ω : Ω→ R be the distance function defined by

d∂Ω(x) = dist(x, ∂Ω) = min
y∈∂Ω

|x− y|.

The function d∂Ω is a Lipschitz continuous function. In [28] (by Corollary 2 p.87), we can
compute the generalized gradient of the distance function.

Remark 3.11. For any x ∈ Ω we have

∂d∂Ω(x) =
{∫

∂Ω
ν(i)(y)dµx(y) : dµx(y) is a bounded Borel measure on ∂Ω,∫

∂Ω
dµx = 1, supp(dµx) ⊂ Π∂Ω(x)

}
,(3.2.1)
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where

(3.2.2) Π∂Ω(x) = { y ∈ ∂Ω | |y − x| = d∂Ω(x) }

and ν(i)(y) denotes the unit inward normal at the point y of ∂Ω.

In [28] (by Corollary 2, p. 87), we deduce that the distance function is regular at any x ∈ Ω.
Therefore by Proposition 3.5 we get:

Remark 3.12. d∂Ω is differentiable at x if and only if Π∂Ω(x) reduces to a singleton

{π(x) }. In this case, ∇d∂Ω(x) = ν(i)(π(x)).

Finally, we have:

Proposition 3.13. There exists a neighborhood J of the boundary of Ω such that π∂Ω(x) =
{π(x) } for any x ∈ J ∩ Ω. In particular, |∇d∂Ω(x)| = 1, ∀x ∈ J ∩ Ω.

3.2.2. Blow-up in one peak: notations and preliminaries. There are many papers
concerning the effect of the domain topology on the solutions of problems related to our (see
[12, 13] and [14]) and concerning the importance of the shape of the domain on the solutions
(see [33, 34]). In [35], the uniqueness of solutions was proved under a very strong symmetry
hypothesis of the domain. The first precise result on the effect of the domain geometry on the
generic solutions of −ε∆u − u + up = 0 with Dirichlet boundary condition is [104]. It seems
extremely difficult and interesting to see how the geometry of the domain affects the locations
of multi-spikes solutions. Due to the special structure of the problem, it is necessary to estimate
the exponentially small error terms. Thus traditional techniques in singular perturbations do
not seem to apply; it is necessary a detailed study of a vanishing viscosity solution.

Let us introduce some auxiliary problems that will be used in the sequel. Let un be solutions
of

(3.2.3)

 −∆un + λnun = upn in Ω
un > 0 in Ω
un = 0 in ∂Ω.

with supnm(un) < +∞, for 1 < p < N+2
N−2 . Let Pn be a local maximum of un, and consider

the usual change of variable Un(y) = ε
2
p−1
n un(εny + Pn) that satisfies

(3.2.4)

{
−∆Un + λ̃nUn = Upn in Ωn = Ω−Pn

εn
Un = 0 on ∂Ωn

with λ̃n = λnε
2
n. By previuos Theorem 2.1 we say that λ̃n → λ̃ ∈ (0, 1], and Un →n U in

C1
loc(RN ), with U solution in the whole space of

(3.2.5)

{
−∆U + λ̃U = Up in RN
0 < U(x) ≤ U(0) = 1.
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Consider some related problems that permit to obtain an expansion of Un.

We define the projection PΩnU to be the unique solution of

(3.2.6)

{
−∆PΩnU + λ̃PΩnU = Up in Ωn

PΩnU(x) = 0 in ∂Ωn.

Let

ϕn := U − PΩnU, ψn := −εn log
(
ϕn

(x− Pn
εn

))
, Vn := e

1
εn
ψn(Pn)ϕn =

ϕn
‖ϕn ‖

,

which satisfy respectively

(3.2.7)


−∆ϕn + λ̃ϕn = 0 in Ωn

0 < ϕn(x) ≤ 1 in ∂Ωn

ϕ(x) = U
(
x−Pn
εn

)
on ∂Ωn,

(3.2.8)

{
εn∆ψn − |∇ψn|2 + λ̃ = 0 in Ω

ψn(x) = −εn logU
(
x−Pn
εn

)
in ∂Ω,

(3.2.9)

{
−∆Vn + λ̃ Vn = 0 in Ωn

Vn(0) = 1.

Then, following the ideas in [89], we can prove that, up to a subsequence, for every sequence
εn → 0

Un(y) = PΩnU(y) + e−
1
εn
ψn(Pn)φn(y)

so

PΩnU = Un − e−
1
εn
ψn(Pn)φn,

and

ϕn = U − Un − e−
1
εn
ψn(Pn)φn,

with φn solution of

(3.2.10)

{
−∆φn + λ̃nφn + e

1
εn
ϕn(Pn)[Upn − Up] = 0 in Ωn

φn(x) > 0 in ∂Ωn,

such that ‖φn − φ0‖L∞(Ωn) → 0, where φ0 is a solution of

(3.2.11) −∆φ0 + λ̃φ0 = pUp−1(φ0 − V0), in RN

and V0 is a solution of

(3.2.12)

{
∆u− λ̃u = 0 in RN
u > 0. u(0) = 1.

Remark 3.14. We observe that, by the Maximum Principle, PΩnU < U on Ω, in fact

(3.2.13)

{
−∆PΩnU + λ̃PΩnU = −∆U + λ̃U in Ωn,
PΩnU = 0 ≤ U on ∂Ωn.
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We have the following results for the profile of Un.

Proposition 3.15. Let Un(y) = ε
2
p−1
n un(εn y + Pn), then the following statements hold.

(1) For any η > 0, there exist positive constants ε0 and k0, such that, for all 0 < εn < ε0,
we have B2 k0 εn(Pn) ⊂ Ω and ‖Un−U‖C1(Bk0

(0)) < η, where U is the unique solution

of (3.2.5).
(2) For any 0 < δ < 1 there is a constant C such that

(3.2.14) Un(y) ≤ C e−(λ̃−δ) |y| for y ∈ Ωn.

(3) ‖Un − U‖Ls(Ωn) → 0 for all 1 ≤ s ≤ ∞ as εn → 0.

Proof. (1) We omit the detail of this proof. Indeed repeating the proof of Theorem
2.1 in [86] we see that Un → U in C1

loc(RN ) as εn → 0, where U is the unique solution
of (3.2.5). This proves the thesis.

(2) By a result in [57]

(3.2.15) U(r) ≤ C0 e
−r for r ≥ 0.

For any η > 0, set

R := log
(C0

η

)
so that η = C e−R. Then we say that there is a ε0 > 0 such that

‖Un − U‖C1(B2R(0)) ≤ η
if 0 < εn < ε0. Thus

Un(y) ≤ U(y) + η ≤ C0 e
−R + η = 2 η

for |y| = R. We have un(x) ≤ 2 η for x ∈ ∂BRεn(Pn)) and εn ≤ ε0. By the fact
that there exists only one peak, the set {x ∈ Ω |un(x) > 2 η } has only one connected
component. Consequently

un(x) ≤ 2 η in Ω \BRεn(Pn).

We choose η such that λn ε
2
n − αp−1 > λn ε

2
n − δ for α < 2 η. Then Un satisfies

(3.2.16)


∆Un − (λn ε

2
n − U

p−1
n )Un = 0 in Ωn \BR(0),

Un|∂BR(0)
≤ 2 η,

Un = 0 on ∂Ωn.

Observe that λ̃− αp−1 > λ̃− δ for α < 2 η.
Let G(y, z) be the Green’s function for −∆ + λ̃ on RN , i. e.

(3.2.17) G(y, z) = Cn|y − z|−
(N−2)

2 KN−2
2

(|y − z|)

where Cn is a positive constant depending only on N and Km(z) is the modified
Bessel function of order m; see Appendix C in [57].

Let G0(|y|) = G(|y|) = G(y, 0) and U(y) = 2 η G0(
√
λ̃−δ |y|)

G0(
√
λ̃−δ R)

. Then U satisfies

(3.2.18)

{
∆U − (λ̃− δ)U = 0
U = 2 η on ∂BR(0).
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By the Maximum Principle on Ωn \BR(0), we have

Un(y) ≤ U(y) on Ωn \BR(0).

But on BRεn(Pn), Un(y) ≤ C. Hence

Un(y) ≤ C e−(λ̃−δ)|y|, for all y ∈ Ωn.

(3) For any η > 0, by the exponential decay of Un and U, there is an R large such that
‖Un − U‖Ls(Ω\BR(0)) ≤ η

2 . On the other hand, we say that Un → U in C1
loc(RN ) as

n → ∞, so there is εR > 0 such that εn < ε0, ‖Un − U‖Ls(Ωn∩BR(0)) ≤ η
2 . Then

‖Un − U‖Ls(Ωn) ≤ η.
�

We recall the following results about U ( see [17], [57], [70]).

Theorem 3.16. The equation

−∆U + U = Up, in RN , U(x)for |x| → +∞

possesses a unique non trivial regular solution U with the following properties:

(1) U(x) > 0 ∀x ∈ RN ,
(2) U is spherically symmetric, i. e., U(x) = U(r) where r = |x|, and U decreases with

respect to r,
(3) U ∈ C2(RN ),
(4) U together with its derivatives up to order 2 have exponential decay at infinity; that

is, there exists C > 0 and δ > 0 such that |DαU(x)| ≤ C e−δ|x| ∀x ∈ RN and |α| ≤ 2.

(5) there exists λ0 > 0 such that limr→+∞ r
N−1

2 erU(r) = λ0; moreover

lim
r→∞

U ′(r)

U(r)
= −1.

By this properties of U , we immediately have:

|x− Pn|
N−1

2 e|x−Pn|U(|x− Pn|) = λ0 + o(1),

that implies

(3.2.19) ψn(x) = −εn logϕn

(x− Pn
εn

)
= |x−Pn|+

N − 1

2
εn log

|x− Pn|
εn

− εn log(λ0 +o(1)),

uniformly for x ∈ ∂Ω.

Note that on ∂Ω, |x− Pn| ≥ d(Pn, ∂Ω), i. e. |x−Pn|εn
≥ ρn →n ∞.

We have the following statement:

Lemma 3.17. It holds that

lim
n→∞

ψn(x)

|x− Pn|
= 1 uniformly for x ∈ ∂Ω.
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Proof. By (3.2.19) we have

ψn(x)

|x− Pn|
= 1 +

N − 1

2

log |x−Pn|εn
|x−Pn|
εn

− log(λ0 + o(1))
|x−Pn|
εn

→ 1

uniformly for x ∈ ∂Ω as n→∞.
�

In order to study the properties of ψn, we first consider a closely related problem which is
simpler.

Lemma 3.18. Let ψn, for εn sufficiently small, be the unique solution of the equation

(3.2.20)

{
εn∆ψ − |∇ψ|2 + λ̃ = 0 in Ω
ψ(x) = |x− Pn| on ∂Ω.

Furthermore, there exist two positive constants C1, C2 s. t.

‖ψn‖L∞(Ω) ≤ C1, ‖∇ψn‖L∞(Ω) ≤ C2.

Proof. We observe that 0 is a subsolution of (3.2.20) in Ω, on the other hand, for εn
sufficiently small ψn is a supersolution to (3.2.20) and ψn > 0 in Ω, by the Maximum Principle.
By Theorem 1 in [1], there is a solution ψn to (3.2.20) s. t. 0 < ψn < ψn.
We want to obtain an upper bound of ψn. We choose a vector X0 such that |X0| > 1 and a
number b large such that g(x) =< x , X0 > +b > |x − Pn| on ∂Ω. Then by comparison, we
have that g(x) > ψn(x) on ∂Ω, which proves that ‖ψn‖L∞(Ω) ≤ C1.
By computation

(3.2.21)

{
−εn∆g − |∇g|2 + λ̃ = 1− |X0|2 < 0
g(x) > |x− Pn|.

The uniqueness of ψn follows from the usual Maximum Principle.
Now prove that ‖∇ψn‖L∞(Ω) ≤ C2. We first show that ‖∇ψn‖L∞(∂Ω) ≤ C2. The idea of the
proof is to use a barrier method.
We choose δ > 0 small and ρ > 0 large such that the distance function d(x) := d(x, ∂Ω) is C2

in Ωδ := {x ∈ Ω | d(x) < δ } and ρ δ > C1. Considering the functions

ψn− = |x− Pn|, ψn+ = |x− Pn|+ ρ d(x),

and observe that

(3.2.22) εn∆ψn− − |∇ψn−|2 + λ̃ =
εn (N − 1)

|x− Pn|
for x 6= Pn and that ψn ≥ C(εn) > 0. Hence if we take εn ≤ ε0 and δ(εn) small it is easy to see
that ψn− is a subsolution on Ω \ Bδ(εn)(Pn). Therefore it is a subsolution on Ωδ and ψn− ≤ ψn

on Ωδ.
We have that

εn∆ψn+ − |∇ψn+|2 + λ̃ = εn(∆ψn− + ρ∆d)− |∇ψn− + ρ∇d|2 + λ̃

= −ρ2|∇ d|2 − 2 ρ∇ψn− · ∇d+
εn (N − 1)

|x− Pn|
+ εn ρ∆d.
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We observe that
|∇d| = 1 on ∂Ω, |∆d| ≤ 1 in Ωδ.

Then, if we choose ρ large, we have

(3.2.23)

{
εn∆ψn+ − |∇ψn+|2 + λ̃ < 0 in Ωδ

ψn+ > ψn on ∂Ωδ.

By comparison, we conclude ψn+ > ψn on Ωδ, so ψn− < ψn < ψn+ on Ωδ. Thus |ψn−ψn−| < ρd(x)
on Ωδ. Since ψn = ψn− on ∂Ω, it follows that ‖∇ψn‖L∞(∂Ω) ≤ C2. By a simply computation
we have

∆(|∇ψn|2)− 2

εn
∇ψn · ∇(|∇ψn|2) ≥ 0 in Ω.

Hence by the Maximum Principle, |∇ψn|2 ≤ C in Ω. �

We need to analyze the limit of ψn as n → +∞. We obtain that this limit is a viscosity
solution.

Lemma 3.19. Let ψn be the solution of 3.2.20, then ψn converges, as n→ +∞, uniformly
to a function ψ0 ∈W 1,∞(Ω) which can be explicitly written as

(3.2.24) ψ0(x) = inf
P∈∂Ω

(|P − Pn|+ L(P, x))

where L(x, y) denotes the infimum of T such that there exists ξ(s) ∈ C0,1([0, T ],Ω), with

ξ(0) = x, ξ(T ) = y, and |d ξd s | ≤
√
λ̃ almost everywhere in [0, T ].

Proof. Divided the proof in two-step.

1st step: Let

S := { v ∈W 1,∞(Ω) : v(x) ≤ |x− Pn| on ∂Ω, |∇v| ≤
√
λ̃ a.e. in Ω },

we have that ψ0 is the maximum element of S.

First we show that ψ0 ∈ S. Indeed, since L(x, y) is the length of the shortest path in Ω
connecting x and y, we see that |L(x, y)−L(x, y)| ≤ L(x, x) for all x ∈ Ω. Therefore |ψ0(x)−
ψ0(x)| ≤ L(x, x). So we have that, when x ∈ Ω and x ∈ Ω are closed, it is easy to see that

L(x, x) = |x−x| and |ψ0(x)−ψ0(x)| ≤ |x−x|. Hence ψ0 ∈W 1,∞(Ω) and |∇ψ0| ≤ λ̃ ≤ 1 almost
everywhere in Ω. It is also easy to see that ψ0(x) = |x−Pn| on ∂Ω since |x−Pn| − |y−Pn| ≤
L(x, y) for x, y ∈ ∂Ω.
We next prove that ψ0 is the maximum element of S. Indeed, let v ∈ S, since Ω is smooth we
can extend v in the following way:
for h0 small enough there exists ṽ ∈ W 1,∞(Ωh0) such that ṽ = v in Ω and |∇ṽ| ≤ k̃ a. e. in
Ωh0 , where

Ωh0 := Ω ∪ {x ∈ RN \ Ω | d(x, ∂Ω) < h0 },

k̃ ∈ C(Ωh0) and k̃ ≡
√
λ̃ on Ω. In fact, if h0 is small enough, each point x in Ωh0 \Ω is uniquely

determined by the equation:
x = z + h ν(z)
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where z ∈ ∂Ω, h > 0 and ν(z) is the unit outer normal to ∂Ω at the point z. Moreover, the

map x→ (z, h) is C1 diffeomorphism on Ω
h0 \Ω. Then we set ṽ(x) = ν(z) and k̃(x) = λ̃+C h

for a large constant C > 0 (independent on h). We regularize v in a classical way, for α
small enough, we may define vα = ṽ ∗ ρα where ρα = α−Nρ( ·α), ρ ∈ C∞0 (RN ), supp ρ ⊂ B1,∫
RN ρ(y) dy = 1.

Then we have

|∇vα|2 ≤ (|∇ṽ|2) ∗ ρα ≤ k̃2 ∗ ρα ≤ λ̃+ C α

on Ω and vα → v in C(Ω) as α→ 0.

Let x, y ∈ Ω and for every η > 0, let ξ, T0 be such that ξ(0) = x, ξ(T0) = y,
∣∣∣dξdt ∣∣∣ ≤ λ̃ a. e. in

[0, T0], ξ(t) ∈ Ω for all t ∈ [0, T0] and T0 ≤ L(x, y) + η.

Since Ω is smooth, there exist xα, yα, ξα, Tα such that ξα(0) = xα, ξ(Tα) = yα,
∣∣∣dξαdt

∣∣∣ ≤√
λ̃+C α in [0, Tα], ξα ∈ C1([0, Tα],Ωh0) and ξα → ξ, Tα → T0 as α→ 0, for example we can

take ξα to be the regularization of ξ.
We have

|vα(yα)− vα(xα)| =
∣∣∣ ∫ Tα

0
∇vα(ξα(t)) · dξα

dt
(t) dt

∣∣∣
≤

∫ Tα

0
(
√
λ̃+ C α)2 dt.

Letting α→ 0 and then η > 0, we obtain |v(y)−v(x)| ≤ L(x, y). Hence v(x) ≤ v(y)+L(x, y) ≤
|y − Pn|+ L(x, y) for all y ∈ ∂Ω. Then we have v ≤ ψ0.

2nd step: For any sequence εn → 0, there is a subsequence εnk → 0 such that ψεnk → ψ0

uniformly in Ω as εnk → 0. Then it follows that ψεn → ψ0 uniformly in Ω as n→∞.

By Lemma 3.18 and the Ascoli-Arzela theorem, for any sequence εn → 0, there is a subsequence
εnk → 0 such that ψεnk → ψ0 uniformly in Ω as εnk → 0. We have to prove that ψ0 = ψ0.
We observe that ψ0 ∈ S, in fact by taking limits in the sense of distributions in the equation

satisfied by ψnk , we obtain |∇ψ0|2 ≤ λ̃ ≤ 1 in D′(Ω). Thus ψ0 ∈W 1,∞(Ω), |∇ψ0| ≤
√
λ̃ ≤ 1 a.

e. in Ω and ψ0(x) = |x− Pn| on ∂Ω. Hence ψ0 ≤ ψ0. On the other hand, let v ∈ S, like in 1st

step we extend v to ṽ in Ωh0 and regularize ṽ to vα, in such a way that ‖v − vα‖L∞(Ω) ≤ C α
and |∇ṽ| ≤ k̃. We have that

|∇vα|2 ≤ (|∇ṽ|2) ∗ ρα ≤ k̃2 ∗ ρα ≤ λ̃+ C α

and vα → v in C(Ω) as α→ 0.
Moreover we have

(3.2.25)

{
εn∇vα − |∇vα|2 + λ̃+ C α+Aα εn ≥ 0 in Ω
vα(x) ≤ |x− Pn|+ C α on ∂Ω,
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where Aα ≥ 0.
Let ṽα := vα√

λ̃+C α+Aα εn
, then by comparison we deduce that

(3.2.26) ṽ ≤ ψ
εn√

λ̃+C α+Aα εn + C α.

Choosing εn = ε′nk such that εnk =
ε′nk√

λ̃+C α+Aα ε′nk

, we see that vα√
λ̃+C α

≤ ψ0 + C α as

ε′nk → 0. Then, letting α → 0, we obtain v ≤ ψ0. In particular, we have ψ0 ≤ ψ0 and then

ψ0(x) = ψ0(x). �

Remark 3.20. Note that ψ0 is a viscosity solution of the Hamilton-Jacobi equation: |∇u| =√
λ̃ in Ω, see ([72]). Observe that ψ0(Pn)→ 2d(P0, ∂Ω) as n→ +∞, for the proof see ([89]).

We give an estimate for ψn(x).

Proposition 3.21. (1) There exists a positive constant C s. t. ‖ψn‖L∞(Ω) ≤ C.
(2) For any σ0 > 0, there is an ε0 s. t. for any εn < ε0,

ψn(Pn) ≤ (1 + λ̃+ σ0)d(Pn, ∂Ω).

(3) Up to a subsequence, for every sequence εn → 0, Vn → V0 uniformly on every compact
set of RN , where V0 is a positive solution of (3.2.12).
Moreover, for any σ1 > 0,

sup
y∈Ωn

e−((λ̃+σ1)|y|)|Vn(y)− V0(y)| → 0, as n→∞.

Proof. (1) The proof of this is almost identical to that of its counterpart in Lemma
3.2.20 and is thus omitted.

(2) Assume that d(Pn, ∂Ω) = |Pn − Pn| where Pn ∈ ∂Ω. Let yn be the point on the ray

PnPn s. t. |Pn − yn| = (λ̃ + η)|Pn − Pn| where η < min{ 1, σ0/10 } so small that

Br0(yn) ⊂ ΩC and Br0(yn) ∪ Ω = {Pn } for r0 = η|Pn − Pn|. Consider wn(x) =

(λ̃+ 2 η)(|Pn − Pn|+ |yn − x|), we have , on ∂Ω

ψn(x) ≤
(
λ̃+

η

2

)
|x− Pn|

<
(
λ̃+

η

2

)
(|Pn − yn|+ |yn − x|)

=
(
λ̃+

η

2

)
((λ̃+ η)|Pn − Pn|+ |yn − x|)

< wn(x)

for εn sufficiently small, since (λ̃ + η
2 )(λ̃ + η) < λ̃ + 2 η. Moreover, wn(x) ∈ C2(Ω)

(observe that Pn /∈ ∂Ω) and

∇wn(x) = (λ̃+ 2 η)
x− yn
|x− yn|

,

|∆wn| ≤
C

|yn − x|
≤ C

(η|Pn − Pn|)
.
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Then, for εn sufficiently small,

εn∆wn − |wn|2 + λ̃ ≤ C εn

(η|Pn − Pn|)
− (λ̃+ η)2 + λ̃ < 0,

since εn
|Pn−Pn|

= 1
ρn
→ 0 as εn → 0. Then, by the Maximum Principle, we have

ψn(x) ≤ wn(x), for x ∈ Ω.

Therefore

ψn(Pn) ≤ wn(Pn) = (λ̃+ 2 η)(|Pn − Pn|+ |yn − Pn|)
= (λ̃+ 2 η)(1 + λ̃+ η)|Pn − Pn|
< (1 + λ̃+ σ0)|Pn − Pn|.

(3) We just need to proof that

Vn(y) ≤ C e(λ̃+
σ1
2

)|y|

for εn < ε0. Observe that εn
d(Pn,∂Ω) → 0 as n→ +∞. Now, for any given σ1 > 0, we let

δ1 = σ1
10 and χ1 be a cut-off function such that χ1(r) ≡ 1 for r ≤ λ̃− δ1 and χ1(r) ≡ 0

for r > λ̃− δ1
2 . Setting τ1

n(x) = ∇ψn(x) and τn(x) = ∇ψn(x)χ1

(
|x−Pn|
d(Pn,∂Ω)

)
, we prove

that

(3.2.27) max
x∈Ω

τn(x) ≤ C

d(Pn, ∂Ω)

where C = C(δ1), but is independent of εn.
Suppose that (3.2.27) is proved, it implies that

∆ψn(x) ≤ C

d(Pn, ∂Ω)
for x ∈ B(λ̃−δ1) d(Pn,∂Ω)(Pn).

Hence

|∇ψn(x)|2 = λ̃+ εn∆ψn(x) ≤ λ̃+ C
C

d(Pn, ∂Ω)
≤ λ̃+

σ1

2

for x ∈ B(λ̃−δ1) d(Pn,∂Ω)(Pn) and εn < ε0. Then

Vn(z) = e
1
εn

(ψn(Pn)−ψn(x)) = e−
1
εn
∇ψn(x)(x−Pn)

= e−∇ψn(x) z ≤ e(λ̃+
σ1
2

)|z|

for z ∈ B
(λ̃−δ1)

d(Pn,∂Ω)
εn

(0).

If (λ̃−δ1) d(Pn,∂Ω)
εn

≤ |z|, i.e. |x− Pn| ≥ (1− δ1) d(Pn, ∂Ω), we observe that by (3.2.19)

ψn(x) ≥ |x − Pn| on ∂Ω and thus function |x − Pn| is a subsolution of (3.2.8) on
Ω \ B(λ̃−δ1) d(Pn,∂Ω)(Pn) for some δ1(εn) > 0 sufficiently small, by (3.2.22) and the

arguments following it in the proof of Lemma 3.2.20. Hence, we have ψn(x) ≥ |x−Pn|
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for x ∈ Ω \ B(λ̃−δ1) d(Pn,∂Ω)(Pn). Then ϕn(z) ≤ e−|z| for z ∈ Ωn \ B(λ̃−δ1)
d(Pn,∂Ω)

εn

(0).

By the first part of this Lemma, it follows that

Vn(z) = e
1
εn

ψn(Pn) ϕ(z) ≤ e
1
εn

ψn(Pn)−|z|

≤ e(1+λ̃+σ0)
d(Pn,∂Ω)

εn
−|z| ≤ e(1+σ0+δ1) 1

εn
d(Pn,∂Ω)

≤ e
(1+σ0+δ1)

(λ̃−δ1)
|z| ≤ C e(λ̃+

σ1
2

) |z|.

So we have for all z ∈ Ωn,

Vn(z) ≤ C e(λ̃+
σ1
2

) |z|.

Taking a diagonal process and passing to a subsequence εnk → 0, we have that
Vnk(z) → V0(z) uniformly on any compact set of RN and V0(0) is a solution of
(3.2.12). Moreover

sup
z∈Ωnk

e−(λ̃+σ1) |z||Vnk(z)− V0(z)| → 0 as εn → 0.

We have to prove (3.2.27). Indeed τ1
n satisfies

−εn ∆τ1
n + 2∇ψn · ∇τ1

n + 2 |∇2ψn|2 = 0 in Ω.

Since |∇2ψn|2 =
∑N

i,j=1( ∂2 ψn
∂xi ∂ xj

)2 ≥ C1 |τ1
n|2 for some constant C1, we see that

(3.2.28) C1 |τ1
n|2 − εn ∆τ1

n + 2∇ψn · ∇τ1
n ≤ 0.

Multiplying (3.2.28) by χ2
1

(
|x−Pn|
d(Pn,∂Ω)

)
, we obtain

C1|τn|2 − εn χ1 ∆τn + 2χ1∇ψn · τn + 2 εn∇τn · ∇χ1

− 2(∇ψn · ∇χn) τn + εn(δχ1 − 2
|∇χ1|2

χ1
) τn ≤ 0.(3.2.29)

Observe that in (3.2.28) and the rest of the proof for simplicity, we always write χ1 for

χ1

(
|x−Pn|
d(Pn,∂Ω)

)
, while the argument in the other functions is x and the differentiations

are taken with respect to x.
Let τn(x0) = maxx∈Ω τn(x). If τn(x0) ≤ 0, (3.2.27) holds.
If τn(x0) > 0, then we have

C1 |τn|2 ≤ 2 (∇ψn · ∇χ1) τn − εn
(
∇χ1 − 2

|∇χ1|2

χ1

)
τn as x0.
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Observe that

∇ψn · ∇χ1 ≤ |∇ψn| |∇χ1| =
√
|∇ψn|2 |χ1|2

=
√

(1 + εn ∆ψn) |∇χ1|2 =

√
|∇χ1|2 + εn

|∇χ1|2
χ1

τn

≤ C

√
1 + εn τn
d(Pn, ∂Ω)

≤ C (1 + εn τn)

d(Pn, ∂Ω)

≤ C

d(Pn, ∂Ω)
+

C εn τn
d(Pn, ∂Ω)

.

Note that |∆χ1 − 2 |∇χ1|2
χ1
| ≤ C

d2(Pn,∂Ω)
. Therefore, by (3.2.29), we have at x0

C1 τ
2
n ≤

( C εn
d2(Pn, ∂Ω)

)
τn +

( C εn
d(Pn, ∂Ω)

)
τn +

( C εn
d(Pn, ∂Ω)

)
τ2
n

≤
( C εn
d(Pn, ∂Ω)

)
τn +

( C εn
d(Pn, ∂Ω)

)
τ2
n.

Hence if we choose εn < ε0 such that C εn
d(Pn,∂Ω) ≤

1
2 C1, then we have

τn(x0) ≤ C

d(Pn, ∂Ω)

so (3.2.27) is established.
�

We want to derive an asymptotic formula. To this end, we define φn by

un(Pn + εn y) = Un(y) = PΩnU(y) + e−
1
εn

ψn(Pn)φn(y),

for all y ∈ Ωn, where φn satisfies (3.2.10).

Remark 3.22. Observe that:∣∣∣e 1
εn

ψn(Pn)
[
Upn − Up − e

− 1
εn

ψn(Pn)pUp−1φn

]
+ pUp−1Vn

∣∣∣
=
∣∣∣e 1

εn
ψn(Pn)(Un − U)− pUp−1(φn − Vn)

∣∣∣ ≤ C|Un − U |σ|Vn − φn|,
in fact if we consider f(s) = sp, f ′(s) = p sp−1

|f ′(t)− f ′(s)| = f(s)(t− s) + o((t− s)2) = p(tp−1 − sp−1) ≤ pC|t− s|σ, σ > 1;

then, by the mean value theorem , if un ≤ t ≤ U

|f(un)− f(U) + e−
1
εn

ψn(Pn)f ′(U)(Vn − φn)|

=
∣∣∣|f ′(t)|[− e− 1

εn
ψn(Pn)(Vn − φn)

]
+ e−

1
εn
ψn(Pn)f ′(U)(Vn − φn)

∣∣∣
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≤ |f ′(U)− f ′(t)||Vn − φn||e−
1
εn
ψn | ≤ C |U − t|σ|Vn − φn| ≤ |un − U |σ|Vn − φn|.

Next result is crucial in deriving the asymptotic expansion.

Proposition 3.23. We define φn by

(3.2.30) Un(y) = PΩnU(y) + e−
1
εn
ψn(Pn)φn(y)

where y ∈ Ωn. Then φn satisfies (3.2.10). Moreover, let σ > 1, we have the following
properties

(1) For s > N, ‖φn ‖W 2,s(Ωn) ≤ C(s).
(2) For every sequence εn → 0, there is a subsequence εnk and a solution V0 of (3.2.12)

s. t. ‖φεk − φ0‖L∞(B(1−δ2)ρεk
) → 0 as n → ∞ where δ2 = σ1

10 and φ0 is a solution of

(3.2.11). Furthermore, φ0 ∈W 2,s(RN ) for s > 1.

We need some preliminary results before the proof. The following two Lemmas play a basic
role in our estimates.

Lemma 3.24. (1) Let s > 1 and u be a solution of

(3.2.31)

{
∆u− u+ f̄ = 0 in Ωn

u = 0 on ∂Ωn.

Then

(3.2.32) ‖u‖W 2,s(Ωn) ≤ C (‖f̄‖Ls(Ωn) + ‖f̄‖L2(Ωn)),

where C is a constant independent of εn ≤ ε0.
(2) Let u be a solution of

∆u− u+ f̃ = 0 in RN

with ‖f̃‖Ls(RN ) <∞ and ‖f̃‖L2(RN ) <∞. Then

(3.2.33) ‖u‖W 2,s(RN ) ≤ C (‖f̃‖Ls(RN ) + ‖f̃‖L2(RN )).

(3) For every function K̃ ∈ C2(Ωn), there exists an extension K ∈ C2
0 (RN ) with

(3.2.34) ‖K‖W 2,s(RN ) ≤ C‖K̃‖W 2,s(Ωn),

where s > 1 and C is independent of K̃ and εn ≤ 1

Proof. We carry off the proof in [89].
The second item follows from the first one by truncation. For the proof of third item see
Lemma 4.2 (2) of [102]. We just prove the first item. We use the same idea of Lemma 1.1 in
[55].
We claim that there exists constants δ0 and C∗ (independent of εn ≤ ε0), such that for each
y ∈ ∂Ωn the set ∂Ωn ∪ {x : |x− y| < δ0 } can be represented in the form

xi − yi = Φ(x1, x2, . . . , xi−1, xi+1, . . . , xN )
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for some i, 1 ≤ i ≤ N and

|Φ|+
∑∣∣∣ ∂Φ

∂xj

∣∣∣+
∑∣∣∣ ∂2Φ

∂xi∂xj

∣∣∣ ≤ C∗,
for the proof of this claim see paragraph 3 in [89].
Then we introduce a mesh in RN made up of cubes with sides parallel to the coordinate axes
and having length η = δ0

3
√
N

. Denote Γ1, . . . ,Γh0 those cubes whose closure intersects ∂Ωn.

Denote the center of Γj by yj . Let Γ′j ,Γ
′′
j be cubes with center yj and with sides parallel to

the coordinate axes, having length 2 η and 3 η respectively. Then Γ′1, . . . ,Γ
′
h0

form an open

covering of ∂Ωn. We note that for any y ∈ ∂Ωn there is a cube Γ′j such that y ∈ Γj and

d(y, ∂Γ′j) ≥
δ0
2 .

Let Ψ be a C∞ function such that

(3.2.35)
Ψ(x) = 1 if |xi| < η for all i = 1, 2, . . . , N,
Ψ(x) = 0 if |xi| > 5

4η for some i,
0 ≤ Ψ(x) ≤ 1 elsewhere,

and set Ψj(x) = Ψ(yj + x). Then Ψj = 1 in Γ′j and Ψj = 0 in a small neighborhood of ∂Γ′′j
and outside Γ′′j .

Denote by Ωn,η : {x ∈ Ωn : d(x, ∂Ωn) > η
2 }. We introduce a mesh made up of cubes with

sides parallel to the coordinate axes and having length η0 = δ0
8
√
N
.

Denote by ∆1, . . . ,∆h1 those cubes whose closure intersects Ωn. Let ∆′j ,∆
′′
j be the cubes with

the same center zj as ∆j and with sides parallel to the coordinate axes, having length 2 η0 and
3 η0 respectively.
The cubes ∆′1, . . . ,∆

′
h1

form an opening covering of Ωn,η and the cubes ∆′′1, . . . ,∆
′′
h1

lie entirely
in Ωn.
Let χ be the C∞ function

χ(x) = Ψ
( η
η0
x
)

and let χj(x) = χ(zj + x). Let

(3.2.36)

ϕj =
Ψj∑

Ψk+
∑
χk

if 1 ≤ j ≤ h0,

ϕj+h0 =
χj∑

Ψk+
∑
χk

if 1 ≤ j ≤ h1,

Gj = Γ′′j , G
′
j = Γ′j if 1 ≤ j ≤ h0,

Gj+h0 = ∆′′j , G
′
j+h0

= ∆′j if 1 ≤ j ≤ h1,

and let h = h0 + h1. Then G1, . . . , Gh form an open covering of Ωn and ϕ1, . . . , ϕh form a
partition of unity subordinate to this converging, such that

(1) G1, . . . , Gh0 intersect ∂Ωn and Gh0+1, . . . , Gh lie entirely in Ωn;
(2) ϕk ∈ C∞0 (Gk);
(3) each x ∈ Ωn belongs to at most N1 sets Gk, where N1 is a positive integer independent

of εn ≤ ε0;
(4) ϕk ≥ 1

N1
on the set G′1, . . . , G

′
h form an opening covering of Ωn;

(5) there is a constant N2 independent of k, εn, such that

|Dαϕk| ≤ N2 if |α| ≤ 2, x ∈ Gk, 1 ≤ k ≤ h.
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Let Gk,εn = Gk ∩ Ωn and Au = −∆u + u. Note that ϕk has compact support in Gk. By
standard regularity theorem, we have

(3.2.37) ‖uϕk‖W 2,s(Gk,n) ≤ C(‖A(uϕk)‖Ls(Gk,n) + ‖uϕk‖Ls(Gk,n))

where C is a constant independent of k, εn ≤ ε0. Now we note that

A(uϕk) = f̄ ϕk − 2∇u∇ϕk − u∆ϕk.

Hence

(3.2.38) |A(uϕk)|s ≤ C|f̄ |s + C|Du|s + C|u|s.

By (3.2.37), we have∫
Gk,n

(|D2u|ϕk)sdx ≤ C

∫
Gk,n

(|Du| |Dϕk|)sdx+ C

∫
Gk,n

(|u| |D2ϕk|)sdx

+ C

∫
Gk,n

(A(uϕk))
sdx+ C

∫
Gk,n

(|uϕk|)sdx.

By using (3.2.37) and (3.2.38) we have∫
Gk,n

(|D2u|ϕk)sdx ≤ C

∫
Gk,n

|f̄ |sdx

+

∫
Gk,n

|Du|sdx+

∫
Gk,n

|u|sdx.

Summing for k = 1, . . . , h we obtain∫
Ωn

(|D2u|)sdx ≤ C

∫
Ωn

|f̄ |sdx(3.2.39)

+

∫
Ωn

|Du|sdx+

∫
Gk,n

|u|sdx.

We have thus proved that

(3.2.40)

∫
Ωn

Au(x) u(x)dx ≥ C‖u‖W 1,2(Ωn).

Therefore

(3.2.41) ‖u‖W 1,2(Ωn) ≤ C‖f̄‖L2(Ωn),

for s = 2 the thesis follows from (3.2.39) and (3.2.41). By using (3.2.41) and a Sobolev’s
inequality, the rest of the proof is exactly the same as that of Lemma 1.1 in [55] �

Now we give a characterization of the kernel of the operator associated to the equation −∆U+
λ̃U − Up = 0.

Lemma 3.25. If the domain of the operator L = −∆+ λ̃−Up−1 is W 2,s(RN ) where s > N
2 ,

then ker(L) = X = Span{ ∂x1U, . . . , ∂xNU }.
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Proof. Let ϕ ∈ Ker(L) ∩W 2,s(RN ), then ‖ϕ‖W 2,s ≤ C. Hence ϕ(y) ≤ C. Moreover, by
regularity Theorem, ϕ ∈ C∞(RN ). By third part of Lemma 3.24, we have

(3.2.42) ϕ(y) = p

∫
RN

G(y − z)Up−1(z)ϕ(z)dz

where G(y − z) is the Green’s function for −∆ + λ̃ and 0 < G(y − z) < CN
|y−z|N−2 (1 + |y −

z|)
N−3

2 e−|y−z|. We have

ϕ(y) ≤
∫
RN

(1 + |y − z|)
N−3

2

|y − z|N−2
e−|y−z|e−σ|z|dz ≤ C.

Let σ = min { 1, p− 1 }. Substituting this into (3.2.42) we obtain

eσ
′|y|ϕ(y) ≤

∫
RN

(1 + |y − z|)
N−3

2

|y − z|N−2
e−|y−z|e−σ|z|eσ

′|y|dz

≤ C

∫
RN

(1 + |y − z|)
N−3

2

|y − z|N−2
e−(1−σ′)|y−z|eσ

′(|y|−|z|−|y−z|)e(σ′−σ)|z|dz

≤ C

for y ∈ RN and 0 < σ′ < σ, i.e., ϕ decays exponentially. Once ϕ decays exponentially, standard
elliptic regularity estimates guarantee that ϕ(x) ∈ W 2,s(RN ), for all s > 1. By Lemma 4.2 in
[87], we finish the proof. �

Proof of Proposition 3.23. This proof will follow the idea in [87, 102]. We first prove
that ‖φn‖Ls(Ωn) is bounded for s > N . Then by Proposition 3.21, for every sequence εn → 0,
there is a subsequence εnk → 0 and a solution V0 of (3.2.12) such that Vεnk → V0. Letting

φnk = χ( |y|ρεnk
)φ0(y) where χ(r) = 1 when r ≤ λ̃ − σ2 and χ(r) = 0 when r > λ̃ − σ2

2 , we

show that ‖φnk − φnk‖W 2,s(Ωnk ) = o(1), which by the Sobolev Imbedding Theorem, proves

Proposition.

We begin with the following estimates.

Lemma 3.26. For every sequence εn → 0, there is a subsequence εnk → 0 and a solution
V0 of (3.2.12) such that for 2 < s ≤ ∞

(3.2.43) ‖e
1
εnk {Upnk−U

p−e−
1
εnk pUp−1φn }+pUp−1 V0‖Ls(Ωεnk ) ≤ C(o(1)‖φnk‖Ls(Ωnk )+o(1)),

(3.2.44) ‖e
1
εnk {Upnk−U

p−e−
1
εnk pUp−1φn }+pUp−1 V0‖L2(Ωεnk

) ≤ C(o(1)‖φnk‖Ls(Ωnk )+o(1)).
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Proof. By Proposition 3.21, for every sequence εn → 0, there is a subsequence εnk → 0
and a solution V0 of (3.2.12) such that Vnk → V0. By remark 3.22, we have

∣∣∣e 1
εnk {Upnk − U

p − e−
1
εnk pUp−1φn }+ pUp−1 V0

∣∣∣ ≤ C|pUp−1| |V0 − Vnk |

+ C|Unk − U |
σ |φnk − Vnk |.(3.2.45)

Since |Vnk − V0| = o(1) e(λ̃+σ1)|y| by Proposition 3.21, it follows that

∣∣∣e 1
εnk {Upnk − U

p − e−
1
εnk pUp−1φn }+ pUp−1 V0

∣∣∣
≤ o(1) e(−σ+(λ̃+σ1))|y| + C |Unk − U |

σ |φnk − Vnk |.

Then, from Proposition 3.15 we conclude, for 2 < s <∞,∥∥∥e 1
εnk {Upnk − U

p − e−
1
εnk pUp−1φn }+ pUp−1 V0

∥∥∥
Ls(Ωnk )

≤ o(1) + C‖φnk‖Ls(Ωnk )‖Unk − U‖L∞(Ωnk ) + C‖Vnk(Unk − U)σ‖Ls(Ωnk )

= o(1) + o(1)‖φnk‖Ls(Ωnk ),

since ‖Vnk(Unk −U)σ‖Ls(Ωnk ) = o(1), by Lebesgue’s Dominated Convergence Theorem. In the

same way we have ∥∥∥e 1
εnk {Upnk − U

p − e−
1
εnk pUp−1φn }+ pUp−1 V0

∥∥∥
L2(Ωnk )

≤ o(1) + C‖φnk‖Ls(Ωnk )‖(Unk − U)σ‖
L

2 s
s−2 (Ωnk )

+ C‖Vnk(Unk − U)σ‖L2(Ωnk ) = o(1) + o(1)‖φnk‖Ls(Ωnk ).

For the case s =∞ we can proceed in a similar manner. �

Lemma 3.27. Let N < s <∞. Then ‖φn‖Ls(Ωn) ≤ C(s).

Proof. We prove this Lemma by contradiction. Suppose that there exists a sequence of
εnk → 0 such that ‖φnk‖Ls(Ωnk ) →∞.
Let Mk = ‖φnk‖Ls(Ωnk ), gk =

φnk
Mk

, that satisfies

(3.2.46)

{
∆gk − λ̃nkgk + pUp−1gk + e

1
εnk

ψnk
(Pn)

Mk
(Upnk − Up − e

− 1
εnk pUp−1ψnk) in Ωnk

gk = 0 on ∂Ωnk
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We show that ‖gk‖W 2,s(Ωnk ) is bounded. By Lemma 3.24

‖gk‖W 2,s(Ωnk ) ≤ C

(
‖pUp−1 gj‖Ls(Ωnk ) + ‖pUp−1 gk‖L2(Ωnk )

+

∥∥∥∥∥e
1
εnk

ψnk (Pn)

Mj
(Upnk − U

p − e−
1
εnk pUp−1ψnk)

∥∥∥∥∥
Ls(Ωnk )

+

∥∥∥∥∥e
1
εnk

ψnk (Pn)

Mj
(Upnk − U

p − e−
1
εnk pUp−1ψnk)

∥∥∥∥∥
L2(Ωnk )

)
.(3.2.47)

Since

‖pUp−1 gk‖Ls(Ωnk ) ≤ C‖gk‖Ls(Ωnk ),

‖pUp−1 gk‖L2(Ωnk ) ≤ C‖Uσ‖
L

2 s
s−2 (Ωnk )

‖gk‖Ls(Ωnk ) ≤ C‖gk‖Ls(Ωnk ),

and by Lemma 3.26 ∥∥∥∥∥e
1
εnk

ψnk (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
Ls(Ωnk )

≤ C
‖pUp−1V0‖Ls(Ωnk )

Mk
+ o(1)‖gk‖Ls(Ωnk ) + o(1) = o(1),∥∥∥∥∥e

1
εnk

ψnk (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
L2(Ωnk )

≤ C
‖pUp−1V0‖L2(Ωnk )

Mk
+ o(1)‖gk‖Ls(Ωnk ) + o(1) = o(1)

we obtain ‖gk‖W 2,s(Ωnk ) ≤ C.

Now from Lemma 3.24, we can extend gk to a C2 function with compact support in RN , still
denoted by gk, in such a way that ‖gk‖W 2,s(RN ) ≤ C, where the constant C is independent of
k. We can conclude that

(3.2.48) ‖gk‖L∞(RN ) ≤ C

by Sobolev Imbedding Theorem, and that there exists a function g0 ∈W 2,s(RN ) such that, by
passing to a subsequence if necessary, gk → g0 weakly in W 2,s(RN ) and gk → g0 in C1

loc(RN ).
We have to show that gk = 0. We estimate∥∥∥∥∥e

1
εnk

ψnk (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
L∞(Ωnk )

.



3.2. CASE V ≡ 1 77

Note that in Lemma 3.26, we now take s =∞. Then, as before, we have∥∥∥∥∥e
1
εnk

ψnk (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
L∞(Ωnk )

→ 0

as k → +∞ by (3.2.48). Therefore∥∥∥∥∥e
1
εnk

ψnk (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
L∞(Ωnk )

→ 0

on every compact set of RN .
Hence g0 is a weak, thus classical, solution of the following equation

(3.2.49)

{
Lg0 = ∆g0 − λ̃ g0 + pUp−1 g0 = 0 in RN ,
g0 ∈W 2,s(RN ) N < s.

By Lemma 3.25, g0 ∈ X. That is g0 =
∑N

i=1 ai ei, with ei = ∂xiU , for some constants ai,
i = 1, . . . , N.

By definition Unk(y) = U(y) + e
− 1
εnk

ψnk (Pnk )
(φnk − Vnk). Hence

0 = ∇Unk(0) = ∇U(0) + e
− 1
εnk

ψnk (Pnk )
(∇φnk(0)−∇Vnk(0))

which implies that ∇φnk(0) = ∇Vnk(0). Thus

∇gk(0) =
∇Vnk(0)

Mk
→ 0 as k → +∞

since Vnk is bounded in C2
loc(RN ) and standard elliptic regularity estimates. Therefore

∇g0(0) =
N∑
i=1

ai∇ei(0) = 0.

Observing that ∇e1(0), . . . ,∇eN (0) are linearly independent, we conclude that ai = 0, i =
1, . . . , N. Hence g0 = 0 and gk → 0 weakly in W 2,s(RN ), which completes the proof.
Now we prove that ‖gj‖W 2,s(RN ) = o(1), which gives a contradiction, in fact ‖gk‖Ls(Ωnk ) = 1.

As in the previous calculation, we have (3.2.47) and∥∥∥∥∥e
1
εnk

ψnk (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
Ls(Ωnk )

= o(1),

∥∥∥∥∥e
1
εnk

ψnn (Pn)
(Upnk − Up − e

− 1
εnk

ψnkpUp−1φnk)

Mk

∥∥∥∥∥
L2(Ωnk )

= o(1).
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Let σ = min { 1, p− 1 }. We have the following estimates:

‖pUp−1 gk‖sLs(Ωnk ) ≤ C

∫
Ωnk∩B

C
R

U s σ gsk + C

∫
Ωnk∩BR

U s σ gsk

≤ Ce−s σ R‖gk‖Ls(Ωnk ) + C

∫
Ωnk∩BR

U s σ gsk

≤ Ce−s σ R‖gk‖Ls(Ωnk ) + C

∫
Ωnk∩BR

gsk,(3.2.50)

‖pUp−1 gj‖2L2(Ωnk ) ≤ C

∫
Ωnk∩B

C
R

U2σ g2
k + C

∫
Ωnk∩BR

U2σ g2
k

≤ C‖U2σ‖
L

s
s−2 (BCR )

‖gk‖2L2(Ωnk ) + C

∫
Ωnk∩BR

g2
k

≤ CR
N(s−2)

s e−2σ R‖gk‖Ls(Ωn) + C

∫
Ωn∩BR

g2
k,(3.2.51)

where R ≥ 1 is an arbitrary number and C is independent of R.
Since gk → 0 in C1

loc(RN ), we have

lim sup
k→+∞

‖pUp−1 gk‖Ls(Ωnk ) ≤ C e−σ R

lim sup
k→+∞

‖pUp−1 gk‖L2(Ωnk ) ≤ C R
N(s−2)

2 s e−σ R.

Letting R→ +∞ from (3.2.47) we conclude that

‖gk‖W 2,s(Ωnk ) = o(1).

�

Corollary 3.28. ‖φnk‖W 2,s(Ωn) ≤ C(s) for s > N.

Proof. Indeed, we note that ‖φnk‖W 2,s(Ωnk ) ≤ C(s), and so our conclusion follows from

the same argument in the first part of the proof of Lemma 3.27.
�

By Lemma 3.24, we can extend φnk to a function, still denoted by φnk , such that ‖φnk‖W 2,s(RN ) ≤
C(s) for N < s <∞. We fix s > N . For any subsequence εnk , we can take a further sequence,
still denoted by εnk , such that φnk → φ0 weakly in W 2,s(RN ) and φnk → φ0 in C1

loc(RN ).

Now we continue with the proof of Proposition 3.23.
The first part of the proof is just Corollary 3.28. Next we show that φ0 is a solution of (3.2.11).
We need to prove that

e
1
εnk

ψnk (Pn)
(Upnk − U

p − e−
1
εnk

ψnkpUp−1φnk)→ −pUp−1V0
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in L1
loc(RN ), but this can be easily deduced from (3.2.45). Hence φ0 is a solution of the equation

(3.2.11).
We have to derive the property of φ0. We prove that ‖φ0‖W 2,s(RN ) <∞ for all s > 1. Indeed

by (3.2.11), φ0 satisfies

−∆φ0 + λ̃φ0 = pUp−1(φ0 − V0),

and we have

|pUp−1(y)(φ0(y)− V0(y))| ≤ C e−σ |y| + C e−σ |y|e(1+σ1) |y|

≤ C e(1−σ+σ1) |y|.

Then ‖pUp−1(φ0 − V0)‖Ls(RN ) <∞ for all s > 1. Therefore, by Lemma 3.24, our assertion is
established.
It remains to prove that φnk → φ0 in some sense. Let χ(r) = 1 for r ≤ λ̃ − δ1, χ(r) = 0 for

r ≥ λ̃− δ1
2 where δ1 = σ1

10 . Setting χk(y) = χ
(
|y|
ρk

)
and φnk = χk(y)φ0, we see that φnk − φnk

satisfies the following equation

∆(φnk − φnk)− λn(φnk − φnk) + pUp−1(φnk − φnk)

= −[e
1
εnk

ψnk (Pn)
(Upnk − U

p − e−
1
εnk

ψnkpUp−1φnk) + pUp−1V0)]

+ (1− χk)pUp−1V0 − 2∇χk∇φ0 − (∆χk)φ0.

From Lemma 3.26 we have that

‖e
1
εnk

ψnk (Pn)
(Upnk − U

p − e−
1
εnk

ψnkpUp−1φnk) + pUp−1V0)‖Ls(Ωnk )

+ ‖e
1
εnk

ψnk (Pn)
(Upnk − U

p − e−
1
εnk

ψnkpUp−1φnk) + pUp−1V0)‖L2(Ωnk ) = o(1).(3.2.52)

Then

‖(1− χk)pUp−1V0‖Ls(Ωnk ) + ‖(1− χk)pUp−1V0‖L2(Ωnk )

≤ ‖pUp−1 V0‖Ls(Ωnk∩BC(1−δ1)ρk
) + C‖pUp−1 V0‖L2(Ωnk∩B

C
(λ̃−δ1)ρk

)

≤ C ρ
N
2
k e

((λ̃−σ)+σ1)ρk = o(1),(3.2.53)

‖2∇χk∇φ0‖Ls(Ωnk ) + ‖2∇χk∇φ0‖L2(Ωnk ) + ‖(∆χk)φ0‖Ls(Ωnk ) + ‖(∆χk)φ0‖L2(Ωnk )

≤ C

ρk
(‖φ0‖W 2,s(RN ) + ‖φ0‖W 2,2(RN )).(3.2.54)

The same argument leading to (3.2.50) and (3.2.51) yields

‖pUp−1 (φnk − φnk)‖sLs(Ωnk ) ≤ C e−s σ R + C

∫
Ωnk∩BR

|φnk − φnk |
s,(3.2.55)

‖pUp−1 (φnk − φnk)‖2L2(Ωnk ) ≤ C R
N(s−2)

s e−2σ R + C

∫
Ωnk∩BR

|φnk − φnk |
2(3.2.56)
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where R ≥ 1 is an arbitrary number and C is independent of R.
By Lemma 3.24 we have

‖φnk − φnk‖W 2,s(Ωnk ) ≤ C‖pUp−1 (φnk − φnk)‖Ls(Ωnk ) + C‖pUp−1 (φnk − φnk)‖L2(Ωnk )

+ C
(
‖e

1
εnk

ψnk (Pn)
(Upnk − U

p − e−
1
εnk

ψnkpUp−1φnk) + pUp−1V0)‖Ls(Ωnk )

+ ‖e
1
εnk

ψnk (Pn)
(Upnk − U

p − e−
1
εnk

ψnkpUp−1φnk) + pUp−1V0)‖L2(Ωnk )

)
+ C

(
‖(1− χk)pUp−1V0‖Ls(Ωnk ) + ‖‖(1− χk)pUp−1V0‖L2(Ωnk ))

+ C
(
‖ − 2∇χk∇φ0‖Ls(Ωnk ) + ‖ − 2∇χk∇φ0‖L2(Ωnk )

)
+ C

(
‖ − (∆χk)φ0‖Ls(Ωnk ) + ‖ − (∆χk)φ0‖L2(Ωnk )

)
.

By the previous estimates we have

lim sup
k→+∞

‖φnk − φnk‖W 2,s(Ωnk ) ≤ C e−σ R + C R
N(s−2)

2 s e−σ R,

that gives φnk → φ0 in C1
loc(RN ). Our thesis follows by letting R→ +∞.

�

The following lemma holds (see [105], Lemma 2.5 or [101], Lemma 2.4) and plays a funda-
mental role.

Lemma 3.29. Assume that Pn in Ω is such that limεn→0 Pn = P0 ∈ Ω. Then there exists
a bounded Borel measure dµP0(z) on ∂Ω with

∫
∂Ω dµP0(ξ) = 1 and supp(dµP0(ξ)) ⊂ Π∂Ω(P0)

such that, up to a subsequence,

lim
n→∞

Vn(y) =

∫
∂Ω
e
<

z−P0
|z−P0|

,y>RN dµP0(z).

If P0 ∈ ∂Ω then dµP = δP and limn→+∞ Vn(y) = e<b , y> for some |b| = 1, b ∈ RN .

Proof. Let Gn(x, y) be the Green’s function of −∆ + λ̃n on W 1,2
0 (Ω). Then we have by

standard representation formula:

(3.2.57) ϕn(x) =

∫
∂Ω
U
(z − Pn

εn

)∂Gn
∂ν

(z, x)d z,

see Lemma 2.1 in [104].
By the Theorems 1.15 and 1.18, and the estimate in Section 3 of [103], we calculate

ϕn(x) =
CN +O(εn)

εNn

×
∫
∂Ω

{
e−

(|z−P0|+|z−x|)
εn |z − P0|−

(N−1)
2 |z − x|−

N−1
2
< z − P0, ν >

|z − x|

}
d z,(3.2.58)

as n→ +∞. We have

(3.2.59) ϕn(P0) =
CN +O(εn)

εNn

∫
∂Ω

{
e−

2|z−P0|
εn |z − P0|−N+1< z − P0, ν >

|z − x|

}
d z.
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Let εn y + Pn = x and |y| ≤ K; then

|z − x| = |z − P0 − εn y| = εn

∣∣∣y − z − P0

εn

∣∣∣
= |z − P0|− < y,

z − P0

|z − P0|
> +O((εn)2).

By (3.2.58) and (3.2.59), we have

Vn(y) = (1 +O(εn))

∫
∂Ω

{
e−

2|z−Pn|
εn e

< z−Pn
|z−Pn|

, y >|z − Pn|−N+1<z−Pn, ν >
|z−Pn|

}
d z∫

∂Ω

{
e−

2|z−Pn|
εn |z − Pn|−N+1<z−Pn, ν >

|z−Pn|

}
d z

.

If Pn → P0, then it is easy to see that

Vn(y)→
∫
∂Ω
e
<

z−P0
|z−P0|

,y>RN dµP0(z)

for some dµP0(z). This proves Lemma. �

Remark 3.30. For any b ∈ RN with |b| = 1, we have

γ =

∫
RN

Up(y)e<b,y>RN dy

(see Lemma 4.7 of [89]).

Using Proposition 3.23, we obtain an asymptotic expansion that will be used in the sequel.

Proposition 3.31. For εn sufficiently small, we have∫
Ωn

Upn =

∫
RN

Up + e−
1
εn
ψn(Pn)

∫
RN

pUp−1(V0 − φ0) + o
(
e−

1
εn
ψn(Pn)

)
.

Proof. By the mean value theorem, we have

Unf(Un) = UnU
p−1
n = Upn = Uf(U) + e−

1
εn
ψn(Pε)(f(t) + t f ′(t))(φn − Vn),

where f(s) = sp−1, Un < t < U , i. e.

Upn = Up + e−
1
εn
ψn(Pn)(tp−1 + (p− 1) tp−1)(φn − Vn) = Up + e−

1
εn
ψn(Pn)p tp−1(φn − Vn).

Therefore

(3.2.60)

∫
Ωn

Upn =

∫
Ωn

Up + e−
1
εn
ψn(Pn) p tp−1(φn − Vn).

We have ∫
Ωn

| p tp−1(φn − Vn)| ≤ C

∫
Ωn

tp−1|φn − Vn|

≤ C

∫
Ωn

e−(1−δ)(1+σ)|y|(e(1+σ1)|y| + eµ|y|) ≤ C
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for εn ≤ ε0. By Proposition 3.21, there is a subsequence εnk → 0 and a solution V0 of (3.2.12)
s. t. Vn →n V0. So, by Lebesgue’s Dominated Convergence Theorem, we have∫

Ωn

p tp−1(φn − Vn)→n→∞

∫
RN

pUp−1(φ0 − V0).

Moreover, by Proposition 3.21 (2) with σ0 < σ∫
RN\Ωn

U |Up−1| ≤ Ce−
1
εn

(2+σ0)d(Pn,∂Ω)
∫
RN\Ωn

e−(σ−σ0)|y| = o(e−
1
εn
ψn(Pn)).

Hence, up to a subsequence,∫
Ωn

Upn =

∫
Ωn

Up + e−
1
εn
ψn(Pn) p tp−1(φn − Vn)

=

∫
RN

Up + e−
1
εn
ψn(Pn)

∫
RN

pUp−1(V0 − φ0) + o
(
e−

1
εn
ψn(Pn)

)
�

3.2.3. Blow-up set. We obtain the location of blow-up set:

Theorem 3.32. P0 is a critical point of distance function d∂Ω.

Proof. Let denote ∂iUn = ∂xiUn. Let Un, P (∂iUn), P U and P (∂iU) be, respectively,
solutions of

(3.2.61)

{
−∆Un + λ̃nUn = Upn in Ωn

Un = 0 on ∂Ωn,

(3.2.62)

{
−∆P (∂iUn) + λ̃nP (∂iUn) = −∆∂iUn + λ̃n∂iUn = ∂iU

p
n in Ωn

P (∂iUn) = 0 on ∂Ωn,

(3.2.63)

{
−∆P U + λ̃P U = Up in Ωn

P U = 0 on ∂Ωn,

(3.2.64)

{
−∆P (∂iU) + λ̃P (∂iU) = −∆∂iU + λ̃∂iU = ∂iU

p in Ωn

P (∂iU) = 0 on ∂Ωn.

Multiply (3.2.61) by P (∂iU) and integrate by parts, omitting for simplicity the integrals on
the boundary that are zero, we have:

(3.2.65)

∫
Ωn

UpnP (∂iU) =

∫
Ωn

Un(−∆P (∂iU) + λ̃P (∂iU)) =

∫
Ωn

Un∂i(U
p) = −

∫
Ωn

Up∂iUn

in view of (3.2.64).
Multiply (3.2.63) by P (∂iU) and integrate by parts, and as previously, we omit the zero integral
on the boundary:
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(3.2.66)∫
Ωn

UpP (∂iU) =

∫
Ωn

P U(−∆P (∂iU) + λ̃P (∂iU)) =

∫
Ωn

P U∂i(U
p) = −

∫
Ωn

Up∂iP U

in view of (3.2.64).
Summing up (3.2.65) and (3.2.66), we get∫

Ωn

Up∂iUn +

∫
Ωn

(Upn − Up)P (∂iU)−
∫

Ωn

Up∂iP U = 0.

Since ∫
Ωn

Upn∂iUn =
1

p+ 1

∫
Ωn

∂i(U
p+1
n ) = 0 =

∫
Ωn

(P U)p∂iP U,

finally we get that

0 =

∫
Ωn

(Up − Upn)(∂iUn − P (∂iU)) +

∫
Ωn

((P U)p − Up)∂iP U.

We can prove that ∫
Ωn

(Up − Upn)(∂iUn − P (∂iU))

is quadratically (exponentially) small, indeed we say that the following expansions hold

Un(y) = PU(y) + e−
1
εn
φn(Pn)ψn(y)

∂iUn(y) = ∂iPU(y) + e−
1
εn
∂iψn(Pn)φn(y)

where φn is a solution of (3.2.10);

Upn = Up + e−
1
εn
ψn(Pn)pUp−1(φn − Vn).

Then we have, by the expansion in the Proposition 3.31,∫
Ωn

Up − Upn =

∫
Ωn

−e−
1
εn
ψn(Pn)pUp−1(φn − Vn) ∼ −e−

1
εn
ψn(Pn)

because U is such that there exist C > 0 and δ > 0 such that

|DαU(x)| ≤ C e−δ |x|, ∀x ∈ RN and |α| ≤ 2

and φn and Vn bounded (see Proposition 3.21). Therefore P (∂iU) ∼ ∂iU and so

∂iUn − P (∂iU) ∼ ∂iUn − ∂iU = ∂iP U − ∂iU + e−
1
εn
ψn(Pn)∂iφn.

Observe that the function W (y) = U
(
y−x
εn

)
− P U

(
y−x
εn

)
solves the problem

−∆W + λ̃W = 0, in Ω, W = U
( · − x
εn

)
on ∂iΩ

and by Theorem 2.3.3.6 of [63] it follows that exist ε0 > 0 and a constant C > 0 such that for
any εn ∈ (0, ε0)

‖W‖H2(Ω) ≤ C
∥∥∥U( · − x

εn

)∥∥∥
W 3/2,2(∂Ω)

.
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Then we have to estimate the term∥∥∥U( · − x
εn

)∥∥∥2

W 3/2,2(∂Ω)
=

∥∥∥U( · − x
εn

)∥∥∥
L2(∂Ω)

+

∫ ∫
∂Ω×∂Ω

∑
|α|=1

|DαU
(
y−x
εn

)
−Dα

(
z−x
εn

)
|2

|y − z|N
dσ(y)dσ(z)

to obtain that ∥∥∥U( · − x
εn

)
− P

( · − x
εn

)∥∥∥
H2(Ω)

≤ C ε−2e−δ
dist(x,∂Ω)

εn .

So we have that ∫
Ωn

((P U)p − Up)∂iP U = 0.

Finally we have to estimate the term (by the mean value theorem)∫
Ωn

((P U)p − Up)∂iP U =

∫
Ωn

(
p

∫ 1

0

[
t U + (1− t)P U

]p−1
d t
)
∂iP U(U − P U)

= ϕn(Pn)

∫
Ωn

(
p

∫ 1

0

[
t U + (1− t)P U

]p−1
d t
)
∂iU Vn

+ ϕn(Pn)

∫
Ωn

(
p

∫ 1

0

[
t U + (1− t)P U

]p−1
d t
)
Vn(∂iU − ∂iU)

=
ϕn(Pn)

ε

∫
Ωn

∂i(U
p)Vn + o

(ϕn(Pn)

ε

)
=

ϕn(Pn)

ε

∫
RN

∂i(U
p)

∫
∂Ω
e
<

ξ−P0
|ξ−P0|

,y>RN dµP0(ξ) + o
(ϕn(Pn)

ε

)
integrating by parts and by Lemma 3.29

= −ϕn(Pn)

ε

∫
RN

Up∂i

(∫
∂Ω
e
<

ξ−P0
|ξ−P0|

,y>RN dµP0(ξ)
)

+ o
(ϕn(Pn)

ε

)
= −ϕn(Pn)

ε

∫
RN

Up
∫
∂Ω

ξi − P0i

|ξ − P0|
e
<

ξ−P0
|ξ−P0|

,y>RN dµP0(ξ) + o
(ϕn(Pn)

ε

)
by Fubini’s Theorem

= −ϕn(Pn)

ε

(∫
∂Ω

ξi − P0i

|ξ − P0|

(∫
∂Ω
Up e

<
ξ−P0
|ξ−P0|

,y>RN
)

dµP0(ξ)
)

+ o
(ϕn(Pn)

ε

)
by Remark 3.30

= −ϕn(Pn)

ε
γ
(∫

∂Ω

ξi − P0i

|ξ − P0|
dµP0(ξ)

)
+ o
(ϕn(Pn)

ε

)
= −ϕn(Pn)

ε
γ
(
α(P0)

)
i
+ o
(ϕn(Pn)

ε

)
where α(P0) =

∫
∂Ω

ξ−P0

|ξ−P0|dµP0(ξ) ∈ ∂d∂Ω(P0).

�
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Remark 3.33. Observe that, in the previous section, we have obtained easily the location
of the blow-up points, in the case of V 6= 1. This approach can’t be used with V ≡ 1. For
this reason we have introduced a different approach [89]. Vice versa the techniques used in
the case of V ≡ 1 can by applied with a generic potential V 6= 1 in the equation. So we can
obtain a more precisely expansion for Un.
For the location of the blow-up set, we proceed as in Theorem 3.32. Consider Un, P (∂iUn),
P U and P (∂iU) respectively, solutions of

(3.2.67)

{
−∆Un + λ̃nV (εny + Pn)Un = Upn in Ωn

Un = 0 on ∂Ωn,

(3.2.68)

{
−∆∂iUn + λ̃n[∂iV (εny + Pn)Un + V (εny + Pn)∂iUn] = ∂iU

p
n in Ωn

P (∂iUn) = 0 on ∂Ωn,

(3.2.69)

{
−∆P U + λ̃P U = Up in Ωn

P U = 0 on ∂Ωn,

(3.2.70)

{
−∆P (∂iU) + λ̃P (∂iU) = −∆∂iU + λ̃∂iU = ∂iU

p in Ωn

P (∂iU) = 0 on ∂Ωn.

Multiply (3.2.67) by P (∂iU) and integrate by parts, omitting for simplicity the integrals on
the boundary that are zero, we have:∫

Ωn

UpnP (∂iU) =

∫
Ωn

Un(−∆P (∂iU) + λ̃nV (εny + Pn)P (∂iU))

=

∫
Ωn

Un∂i(U
p) +

∫
Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU)(3.2.71)

= −
∫

Ωn

Up∂iUn +

∫
Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU)(3.2.72)

in view of (3.2.70).
Multiply (3.2.69) by P (∂iU) and integrate by parts, and as previously, we omit the zero integral
on the boundary:

(3.2.73)∫
Ωn

UpP (∂iU) =

∫
Ωn

P U(−∆P (∂iU) + λ̃P (∂iU)) =

∫
Ωn

P U∂i(U
p) = −

∫
Ωn

Up∂iP U

in view of (3.2.70).
Summing up (3.2.71) and (3.2.73), we get∫

Ωn

Up∂iUn +

∫
Ωn

(Upn − Up)P (∂iU)−
∫

Ωn

Up∂iP U =

∫
Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU).
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Therefore, we obtain∫
Ωn

(−∆U + λ̃U)∂i Un − Up∂iP U +

∫
Ωn

(Upn − Up)P (∂iU)

−
∫

Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU) =

∫
Ωn

−∆∂iUn U + λ̃U ∂iUn − Up∂iP U

+

∫
Ωn

(Upn − Up)P (∂iU)−
∫

Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU)

=

∫
Ωn

[−λ̃n(V ∂iUn + ∂iV Un)U + λ̃U ∂iUn − Up ∂iP U ]

+

∫
Ωn

(Upn − Up)P (∂iU)−
∫

Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU) = 0.

so∫
Ωn

(Upn − Up)P (∂iU) −
∫

Ωn

[λ̃nV (εny + Pn)− λ̃]Un P (∂iU) +

∫
Ωn

[λ̃− λ̃nV (εny + Pn)]U ∂iUn

−
∫

Ωn

λ̃n ∂iV Un U −
∫

Ωn

Up ∂iP U = 0.

We can prove that some terms in the expansion are exponentially small and finally we have
the expected result.

3.2.4. Approaching blow up in multi-peaks. Following the idea used in the previous
section, we try to give an approach of the possible global analysis of the blow-up in multi-
peaks. The first that considers the case of 2−peaks is Wei in [104].
Let us define the function Dk which will play a crucial role in the sequel, introduced in
[64, 65, 91].

Definition 3.34. Let k ≥ 1 be an integer. Set Ωk = Ω × · · · × Ω. Let Dk : Ωk → R be
defined by

Dk(X) = min{
i,j,l=1,...,k j 6=l}

{ d(xi, ∂Ω),
|xj − xl|

2

}
.

Set Mk(Ω) =
{
X = (x1, . . . , xk) ∈ Ωk |xi 6= xj , i 6= j, i, j = 1, . . . , k

}
.

By the regularity of the distance function and Proposition 3.8 we can compute the generalized
gradient of Dk.

Lemma 3.35. For any X ∈Mk(Ω) we have that β(X) ∈ ∂Dk(X) if and only if

β(X) =

(
a1 α(x1) +

1

2

k∑
j=1,j 6=1

b1 j
x1 − xj

|x1 − xj |
, . . . , ak α(xk) +

1

2

k∑
j=1,j 6=k

b1 j
xk − xj

|xk − xj |

)
,

with α(xi) ∈ ∂d∂Ω(xi), aj , bj l ≥ 0, bj l = bl j ,
∑k

i=1 ai + 1
2

∑k
j,l=1, l 6=j bj l = 1.
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In particular, by this Lemma, we deduce that if x1, . . . , xk are k different critical points of the
distance function, then X = (x1, . . . , xk) is a critical point of Dk.
Observe that there is not any critical point of Dk close to the boundary of Mk(Ω), indeed
there holds:

Proposition 3.36. There exists a neighborhood U of the boundary of Mk(Ω) such that
0 /∈ ∂Dk(X) for any X ∈ U ∩Mk(Ω).

Proof. We prove that if Xε is a sequence in Mk(Ω) such that limε→0Xε = X0 and
X0 ∈ ∂Mk(Ω), then there exists ε0 > 0 and C > 0 such that for any ε ∈ (0, ε0)

|βε(Xε)| ≥ C > 0 ∀βε(Xε) ∈ ∂Dk(Xε).

We proceed by induction on the number k.
Let k = 1 and let xε be a sequence in Ω such that x0 = limε xε ∈ ∂Ω. If follows that for ε
small enough ∂D1(xε) = { ν(i)(π(xε)) } and the claim follows.
Suppose the claim to be true for any integer 1 ≤ h ≤ k − 1. Let us prove that the claim is
true for k.
Let Xε be a sequence in Mk(Ω) such that limε→0Xε = X0 and X0 ∈ ∂Mk(Ω).
Then we have either

• ∃ i, j ∈ { 1, . . . , k } such that xi0 6= xj0,
• x1

0 = · · · = xk0 ∈ ∂Ω,
• x1

0 = · · · = xk0 ∈ Ω.

Using Lemma 3.35 and the inductive assumptions the claim easily follows. �

Proposition 3.37. Let (x1, . . . , xk) ∈ Mk(Ω) be a critical point of Dk. Assume that for
any integer 1 ≤ h ≤ k − 1 and for any set of indices { i1, . . . , ih } ⊂ { 1, . . . , k }, (xi1 , . . . , xih)

is not a critical point of Dk. Then d∂Ω(xi) = |xl−xh|
2 for any i, j, h and 0 ∈ co{α(xi) |α(xi) ∈

∂d∂Ω(xi, i = 1, . . . , k) }.
Proof. We prove the thesis by contradiction. We have either

(1) ∃ i, j ∈ { 1, . . . , k } such that Dk(X) < |xi−xj |
2 ,

(2) ∀ l, h ∈ { 1, . . . , k } ∈ Dk(X) = |xl−xh|
2 and ∃ i ∈ { 1, . . . , k } such that Dk(X) <

d∂Ω(xi).

A contradiction arise in both cases, using Lemma 3.35. �

We recall the following characterization of the critical points of D2.

Corollary 3.38. Let (x1, x2) ∈ M2(Ω) be a critical point of D2 such that the distance

function is differentiable at x1 and x2. Then d∂Ω(x1) = d∂Ω(x2) = |x1−x2|
2 and ν(i)(π(x1)) =

−ν(i)(π(x2)) = x2−x1

|x2−x1| .

Let X = (x1, . . . , xk) ∈Mk(Ω) and P 1
n , . . . , P

k
n , local maximum of un and εin, i = 1, . . . , k, as in

Theorem 2.4 with k ≤ k̄ . Consider the usual change of variable U in(y) = (εin)
2
p−1un(εiny+P in),
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i = 1, . . . , k that satisfies

(3.2.74)

{
−∆U in + λn (εin)2 = (U in)p in Ωi

n

Un = 0 on ∂Ωi
n

with Ωi
n = Ω−P in

εin
.

Let introduce the projection PΩin
U of U (solution of (3.2.5) in the whole space), in Ωi

n, i =
1, . . . , k, as the unique solution of

(3.2.75)

{
−∆PΩin

U + λ̃PΩin
U = Up in Ωi

n

PΩin
U = 0 on ∂Ωi

n.

Let ϕin := U − PΩin
U and, as a generalization of φn for 1−peak, we define for X ∈Mk(Ω)

Ψn(X) = −ε1
n log

[ k∑
i=1

ϕin(xi)
]
.

Moreover, it is possible to show that Ψn is C1 in X and ‖Ψn‖W 2,s(Ω) ≤ C e
−(1+σ)

Dk(X)

ε1n , where
σ = min { 1, p − 1 }. In this way, as previously seen for 1−peak, we would obtain that the
blow-up occurs in critical points of Dk(X).



CHAPTER 4

Solutions with symmetries

This chapter deals with invariant solutions. Much work has been devoted to our problem,
with Dirichlet or Neumann boundary conditions, in order to understand where concentration
occurs and how the profile of solutions looks like.
The structure of solutions blown-up at points, called spike-layers, has been shown to be very
rich, and solutions that blow-up at k−points, the so called k−peaks solutions, too.
In addition to solutions blowing at points, it is natural to ask whether there exist other ones
which scale only in some of variables, and which therefore blow-up at higher dimensional sets
(dimension k), like curves, surfaces, etc.
Just recently, existence of solutions blowing-up at different sets has been proved. Indeed
under generic assumptions, for example in the case of Neumann boundary condition, see [85],
if Ω ⊂ RN and k = 1, ..., N − 1, it was conjectured the existence of solutions that concentrate
at suitable k− dimensional sets. The phenomenon was known for particular domains with
some symmetries. For these and related issues see [5, 6, 10, 15, 39, 42, 83, 81]. This
conjecture has been recently proved in [76] for the general case, while the result has been
shown in [79, 80] for k = N − 1 and in [78] for N = 3 and k = 1.
We study blow-up on manifolds in the case of an annulus and consider solutions with partial
symmetry assumptions and bounded invariant Morse index, as it has been done in [50] for
radial solution. We are interested in solutions which are invariant under a proper subgroup
G ⊂ O(N) of symmetries. By an asymptotic approach based on G−invariant Morse index
information, we try to carefully localize the blow-up G−orbits in terms of a modified potential.
Let us notice that the ground state solution in the space of invariant solutions under a proper
subgroup G ⊂ O(N) has Morse index 1 in this space, while its full Morse index or its energy
is very large. Thanks to this information, we perform an asymptotic analysis and localize the
concentration set. Our aim is to exhibit potential in which the orbit of the maximum doesn’t
degenerate on the fixed points set of this symmetry group. If G has not fixed points, one can
provide, in this way, solutions (for example the G−invariant ground state) which concentrate
on a whole orbit with dimension as G.
Let G simply the rotations around the z− axis group.

Let un be a positive, G−invariant solution of{
−∆un + λnV (x)un = upn in Ω
un = 0 on ∂Ω

where Ω := { (x, y, z) ∈ R3 : a ≤ |(x, y, z)| ≤ b } is an annulus and V : Ω → R is a smooth
potential bounded away from zero, a, b > 0. Let G0 be the set of fixed points under the action
group, i. e. in this case the z-axis.

89
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We want to study the asymptotic behavior of such solutions when λn → +∞ under an uniform
bound of the G−invariant Morse indices: supnmG(un) < +∞.

4.1. Blow-up profile

In this section we discuss the blow-up profile for solutions of the invariant problem.
A question arises concerning whether the limiting profile keeps the invariances of un.
We have that in general the limiting function U is no longer G−invariant.
Let assume that Pn → P0 as n → +∞, where Pn is a local maximum point of un. We

have different situations depending on the location of P0 and the rate d(Pn,G0)
εn

, where G0 =

{ z − axis } is kept fixed by the action of G. Accordingly, we discuss now each one of these
situations.

4.1.1. Some preliminary results and local analysis. Let mG(un) be the Morse Index
of un with respect to G−invariant test functions. We say that a positive solution un ∈ H1

0 (Ω)
has Morse index mG(un) = k ≥ 1, if k is the maximal dimension of a subspace Wk of

H1
0,G(Ω)G := { φ ∈ H1

0 (Ω), φ is G−invariant a. e. in Ω }
s.t.

Qun(φ) =

∫
Ω
|∇φ|2 + λ̃ un φ

2 − p up−1
n φ2 < 0

for all φ ∈Wk \ { 0 }.

We have that:

Theorem 4.1. Let (λn, un) be a positive, G−invariant, solutions of

(4.1.1)

{
−∆un + λnV un = upn in Ω
un = 0 on ∂Ω

with supnmG(un) < +∞, 1 < p 6= 5.
Let Qn = (0, yn, zn) ∈ Ω, yn ≥ 0 be so that un(Qn) = maxΩ∩BRn εn (Qn) un → 0 as n → +∞,
for some Rn → +∞.
Setting

Un(X,Y, Z) =
un(εn (X,Y, Z) + Pn)

un(Pn)
, εn = un(Pn)−

p−1
2 ,

where

(4.1.2) Pn :=

{
(0, 0, zn) if |yn|εn

≤ C
Qn if |yn|εn

→ +∞;

up to a subsequence we have that

(1) when un(Qn)
p−1

2 yn ≤ C, then there hold 1 < p < 5 and
• yn

εn
→ 0

• λnε2
nV (Pn)→ λ̃3 ∈ (0, 1] for some universal constant λ̃3

• εn
d(Pn,∂Ω) → 0
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• Un → U in C1
loc(R3), where U is a positive G− invariant solution of

(4.1.3)

{
−∆U + λ̃3U = Up in R3

U ≤ U(0) = 1 in R3,

with mG(U) < +∞;

(2) when un(Qn)
p−1

2 yn → +∞, then there hold

• λnε2
nV (Pn)→ λ̃2 ∈ (0, 1] for some universal constant λ̃2

• εn
d(Pn,∂Ω) → 0

• Un → U in C1
loc(R3), where U(X,Y, Z) = U(Y, Z) is a positive solution of

(4.1.4)

{
−∆U + λ̃2U = Up in R2

U ≤ U(0) = 1 in R2,

with m(U) < +∞ (two dimensional Morse index).

Moreover, there exists a G−invariant φn ∈ C1
0 (Ω), with

suppφn ⊂ AR(Qn) := { (x, y, z) ∈ R3 : (
√
x2 + y2 − yn)2 + (z − zn)2 ≤ R2ε2

n },
R > 0, so that

(4.1.5)

∫
Ω
|φn|2 + (λn V − pup−1

n )φ2
n < 0,

for all n large.

Proof. Let dn simply denote d(Qn, ∂Ω) and suppose µn
dn
→ L ∈ [0,+∞], where µn =

un(Qn)−
p−1

2 → 0 as n → +∞. Then Ωn = Ω−Qn
µn

→ H, when H is an halfspace with 0 ∈ H

and d(0, ∂H) = 1
L . The function Wn(X,Y, Z) = µ

p−1
2

n un(µn(X,Y, Z) +Qn) solves

(4.1.6)

 −∆Wn + λnµ
2
nV (µn(X,Y, Z) +Qn)Wn = W p

n , in Ωn

0 < Wn ≤Wn(0) = 1, in Ωn ∩BRn(0)
Wn = 0 on ∂Ωn.

Since Qn is a point of local maximum of un, we have

0 ≤ −∆Wn(0) = 1− λn µ2
n V (Qn) ⇒ 0 ≤ λn µ2

n V (Qn) ≤ 1.

Denoting ω(V ) := [maxΩ V ][minΩ V ]−1 it follows that

λn µ
2
nV (µn(X,Y, Z) +Qn) ≤ ω(V ),

and, up to a subsequence,
λnµ

2
n V (Qn)→ λ̃ ∈ [0, 1]

as n → +∞ (up to a subsequence). Since W p
n − λn µ2

n V (µn(X,Y, Z) + Qn)Wn is uniformly
bounded in Ωn∩BRn(0), by regularity theory we have that Wn →W in C1

loc(H), as n→ +∞,
where W solves

(4.1.7)

 −∆W + λ̃W = W p, in H
0 < W ≤ U(0) = 1 in H
W = 0 on ∂H.
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Since W (0) = 1 and W = 0 on ∂H, we deduce that 0 ∈ H and L < +∞.
Consider the two cases above

(1) when yn
µn
≤ C, we can assume that − yn

µn
→ y0.

Since

b− |zn| ≥ b−
√
y2
n + z2

n ≥ d(Pn, ∂Ω) = min{ b−
√
y2
n + z2

n,
√
y2
n + z2

n − a }
and

|zn| − a =
√
y2
n + z2

n − a−
y2
n

|zn|+
√
y2
n + z2

n

≥ d(Pn, ∂Ω)− y2
n

a
,

we get that

d(Pn, ∂Ω) = min{ b− |zn|, |zn| − a } ≥ d(Pn, ∂Ω)− y2
n

a
.

Since

d
(Pn −Qn

µn
, ∂Ω

)
=
d(Pn, ∂Ω)

µn
≥ d(Qn, ∂Ω)

µn
+ o(1),

we finally get that

d((0, y0, 0), ∂H) ≥ 1

L
> 0.

Computing now

un(Pn)

un(Qn)
= Wn

(Qn − Pn
µn

)
= Wn

(
0,− yn

µn
, 0
)
→W (0, y0, 0)

as n→ +∞, we get that

un(Pn)

un(Qn)
≥ δ

2
p−1

0 > 0

for n large in view of (0, y0, 0) ∈ H and W (0, y0, 0) > 0. In particular, we have that

(4.1.8) δ0 ≤
µn
εn
≤ 1.

We consider now Un as the scaling of un w.r.t εn and Pn. Since by (4.1.8)

Un ≤ Un
(Qn − Pn

εn

)
=
(εn
µ

) 2
p−1 ≤ δ

− 2
p−1

0

in Ωn ∩BRn
2

(0), Ωn := Ω−Pn
εn

, we get that Un converges in C1
loc(H

′) to a solution U of

(4.1.9)

 −∆U + λ̃′U = Up, in H ′

0 < U ≤ U(0, ỹ0, 0) = 1 in H
U = 0 on ∂H ′.

where

(4.1.10) H ′ =


{

(X,Y, Z) : Z < lim d(Pn,∂Ω)
εn

}
if zn → b− or zn → −a−{

(X,Y, Z) : Z > lim d(Pn,∂Ω)
εn

}
if zn → a+ or zn → −b+

and ỹ0 = lim yn
εn
, λ̃′ = limλn ε

2
n V (Pn). Note that the existence of ỹ0 and λ̃′ follows by

(4.1.8), up to a subsequence.
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Observe also that U is still G−invariant and mG(U) < +∞. Since p 6= 5, by Theorems

1.8 and 1.21, we deduce that λ̃ > 0. By Theorem 1.1.76 we can show that H ′ = R3.
By Theorems 1.16 and 1.18, we know that U is radial and radially decreasing.
In particular, ỹ0 = 0 and then yn

εn
→ 0. Since U(0) = 1 by definition, we get that

Un

(Qn − Pn
εn

)
=
( εn
µn

) 2
p−1 → U(0, ỹ0, 0) = U(0) = 1.

By Theorems 1.18, we know that U = (λ̃′)
1
p−1 Uk((λ̃

′)
1
2 y) where Uk is given in Theo-

rem 1.16, and then

λ̃′ = Uk(0)−(p−1) := λ̃3

is an universal constant.
(2) when yn

µn
→ +∞, we have that Qn = Pn and Wn = Un. The analysis follows the same

lines of the previous case: show that W = limUn solves

(4.1.11)

{
−∆W + λ̃W = W p, in R3

0 < W ≤W (0) = 1 in R3.

for some λ̃ = limλn ε
2
n V (Pn) ∈ [0, 1]. The case H 6= R3 can be excluded thanks to

W > 0.
The crucial point is that W (x, y, z) = W (y, z) does really solve (4.1.11) in R2 with
m(W ) < +∞ so as to use the same classification result in one dimensional less.
Indeed, notice that un is constant on

{ (x, y, z) : x2 + y2 = y2
n + 2 εn yn r, z = εn s+ zn }

for (r, s) ∈ R2 and n large.
Observe that on this set

x2 + y2 + z2 = y2
n + z2

n +O(εn),

and then (x, y, z) ∈ Ω :

a2 < a2 + (y2
n + z2

n − a2) +O(εn) < x2 + y2 + z2 < b2 − (b2 − y2
n − z2

n) +O(εn) < b2

in view of εn = o(d(Qn, ∂Ω)).
Moreover, y2

n + 2 εn yn r = y2
n(1 + 2 εn

yn
r) > 0 in view of εn

yn
→ 0. Then Un is constant

on {
(X,Y, Z) :

εn
2 yn

(X2 + Y 2) + Y − r = 0, Z = s
}
.

Namely, W (X,Y, Z) = W (Y,Z) and m(W ) < +∞ easily follows by supnmG(un) <
+∞.
The constant λ̃ satisfies

λ̃ = λ̃2 = Uk(0)−(p−1),

where Uk now is given in Theorem 1.16 with N = 2.

�

The last part of Theorem 4.1 follows by the next two Propositions.
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Proposition 4.2. In case (1) of Theorem 4.1, we have that

∃φn ∈ C1
0 (Ω) G− invariant so that suppφn ⊂ BRεn(Pn) ⊂ AR+1(Pn)

and

(4.1.12)

∫
Ω
|∇φn|2 + (λn V − p up−1

n )φ2
ndx < 0,

for all n large and for some fixed R > 0.

Proof. By Theorem 4.1 we know that Un → U in C1
loc(R3) with Pn = (0, 0, zn) and U is

a G−invariant solution of (4.1.3).

By Theorem 2.1 let φ ∈ C1
0 (R3) be a radial function so that

∫
|∇φ|2 + (λ̃3 − pUp−1)φ2 < 0.

Set φn(x, y, z) = 1

ε
1
2
n

φ
(

(x,y,z)−Pn
εn

)
. Then φn is a G−invariant function in Ω so that suppφn ⊂

BRεn(Pn) for some R > 0 and∫
Ω
|∇φn|2 + (λn V − p up−1

n )φ2
n =

∫
Ω−Pn
εn

|∇φ|2 + (λn ε
2
n V (εn (x, y, z) + Pn)− pUp−1

n )φ2

→
∫
|∇φ|2 + (λ̃3 − pUp−1)φ2 < 0,

for n large. Note that

(4.1.13)
Ω− Pn
εn

→ R3,
V (εn (x, y, z) + Pn)

V (Pn)
→ 1 inCloc(R3).

Notice that, if (x, y, z) ∈ BRεn(Pn), then

(
√
x2 + y2 − yn)2 + (z − zn)2 ≤ ε2

n

(
R2 + 2R

|yn|
εn

+
y2
n

ε2
n

)
≤ (R+ 1)2 ε2

n

in view of |yn|εn
→ 0. It means that suppφn ⊂ BRεn(Pn) ⊂ A(R+1)εn(Pn).

Observe that, if ψ ∈ C1
0 (R3) is a G−invariant function so that∫

|∇ψ|2 + (λ̃3 − pUp−1)ψ2 < 0

and
∫
φψ = 0, one can correspondingly define ψn and property∫

Ω
ψn φn = ε2

n

∫
ψ φ = 0

is still true. In this way, we deduce that

(4.1.14) mG(U) ≤ lim inf
n→+∞

mG(un) < +∞.

�
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Proposition 4.3. In case (2) of Theorem 4.1, we have that

∃φn ∈ C1
0 (Ω) G− invariant so that suppφn ⊂ ARεn(Pn)

and

(4.1.15)

∫
Ω
|∇φn|2 + (λn V − p up−1

n )φ2
ndx < 0,

for all n large and for some fixed R > 0.

Proof. By Theorem 4.1 we know that Un → U in C1
loc(R3), where U(X,Y, Z) = U(Y,Z)

depends only on the Y Z− variables. By Theorem 2.1 let φ(Y,Z) ∈ C1
0 (R2) so that∫

|∇φ|2 + (λ̃2 − pUp−1)φ2 < 0.

Set φn(x, y, z) = φ
(√

x2+y2−yn
εn

, z−znεn

)
y
− 1

2
n . Then, φn is a G−invariant function so that∫

Ω
|∇φn|2 + (λn V − p up−1

n )φ2
n

=
1

yn ε2
n

∫
Ω

[
|∇φ|2

(√x2 + y2 − yn
εn

,
z − zn
εn

)
+ (λn V − p up−1

n ) ε2
n φ

2
(√x2 + y2 − yn

εn
,
z − zn
εn

)]
=

2π

yn ε2
n

∫
B̃

[
|∇φ|2

(s− yn
εn

,
t− zn
εn

)
+ (λn V ε

2
n − p up−1

n ε2
n)φ2

(s− yn
εn

,
t− zn
εn

)]
sdsdt

= 2π

∫
B

[|∇φ|2 + (λn ε
2
n V (0, εn S + yn, εn T + zn)− pUp−1

n (0, S, T ))φ2]
(εn S
yn

+ 1
)

dS dT

where B̃ = { a2 ≤ s2+t2 ≤ b2, s ≥ 0 } andB = { a2 ≤ (εn S + yn)2 + (εn T + zn)2 ≤ b2, S ≥ −ynεn }.
Since φ has compact support, there holds

suppφ ⊂ { a2 ≤ (εn S + yn)2 + (εn T + zn)2 ≤ b2, S ≥ −yn
εn
}.

Indeed, for S bounded from below it is true that S ≥ −yn
εn

for n large, in view of yn
εn
→ +∞.

Similarly, for S, T bounded we have that

(εn S + yn)2 + (εn T + zn)2 = y2
n + z2

n +O(εn) ∈ (a2, b2)

for n large in view of d ((0,yn,zn),∂Ω)
εn

→ +∞ as n→ +∞.
Then for n large∫

Ω
|∇φn|2 + (λn V − p up−1

n )φ2
n

=

∫
suppφ

[|∇φ|2 + λn ε
2
n V (0, εn S + yn, εn T + zn)φ2 − pUp−1

n (0, S, T )φ2]
(εn
yn
S + 1

)
dS dT

→
∫
|∇φ|2 + (λ̃2 − pUp−1)φ2 < +∞

in view of εn
yn
→ 0, as n→ +∞.

If suppφ ⊂ BR(0), then suppφn ⊂ { (
√
x2 + y2 − yn)2 + (z − zn)2 ≤ R2 ε2

n } = ARεn(Pn).
�
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Remark 4.4. Observe that in Proposition 4.3 we fix one direction of ”negativity” φ in
R2 and bring it back to the original problem in Ω ⊂ R3. Notice that U has just finite two-
dimensional Morse index, while U has infinite Morse index as a solution in R3.

4.1.2. Global analysis. After the limiting problem has been identified and the local
behavior has been described, we can control the global behavior.

Theorem 4.5. Let (λn, un) be a positive, G−invariant solution of (4.1.1) so that
supnmG(un) < +∞ and 1 < p 6= 5. Up to a subsequence, there exist P 1

n = (0, y1
n, z

1
n), . . . , P hn =

(0, yhn, z
h
n), h ≤ supnmG(un), with yin ≥ 0 and εin = un(P in)−

p−1
2 → 0 as n→ +∞ s. t.

(4.1.16) ε1
n ≤ εin ≤ C0ε

1
n, for all i = 1, . . . , h

(4.1.17)
εin + εjn

|P in − P
j
n|
→ 0 as n→ +∞, for all i, j = 1, . . . , h, i 6= j

(4.1.18)
εin

d(P in, ∂Ω)
→ 0 as n→ +∞, for all i = 1, . . . , h,

(4.1.19) un(P in) = (1 + o(1)) max
B
Rnε

i
n

(P in)
un,

for some Rn → +∞ as n→ +∞ .
Moreover, there holds

(4.1.20) un(0, y, z) ≤ C(ε1
n)
− 2
p−1

h∑
i=1

e
−γ |(0,y,z)−P

i
n|

ε1n ∀ (0, y, z) ∈ Ω, n ∈ N

with C > 0.

Proof. We follow the proof of Theorem 2.4.

1st step There exist k ≤ supnmG(un) sequences P 1
n , . . . , P

k
n satisfying (4.1.16)-(4.1.19) such

that:

(4.1.21) lim
R→+∞

(
lim sup
n→+∞

[
(ε1
n)

2
p−1 max

{dn(0,y,z)≥Rε1n}
un(0, y, z)

])
= 0

where dn(0, y, z) = min{|(0, y, z) − P in| : i = 1, . . . , k} is the distance function in Ω
from {P 1

n , . . . , P
k
n}.

Let Q1
n be a point of global maximum of un: un(Q1

n) = max
Ω

un. By Theorem 4.1 we

have that there hold (4.1.18), (4.1.19) and λn(εin)2V (P in) → λ̃ ∈ (0, 1] as n → +∞.
By Propositions 4.2 and 4.3 we can deduce the existence of a G−invariant φ1

n ∈ C1
0 (Ω)

so that (4.1.5) holds and suppφ1
n ⊂ { (

√
x2 + y2 − y1

n)2 + (z − z1
n)2 < R2 (ε1

n)2 }.



4.1. BLOW-UP PROFILE 97

If (4.1.21) holds for P 1
n , then we take k = 1 and the claim is proved. Otherwise, we

have that

lim sup
R→+∞

lim sup
n→+∞

(ε1
n)

2
p−1 max
|(0,y,z)−P 1

n |≥Rε1n
un(0, y, z) = 4δ > 0.

Applying Theorem 4.1, up to a subsequence, we have

(4.1.22) (ε1
n)

2
p−1un(ε1

n(0, Y, Z) + P 1
n) = U1

n(0, Y, Z)→ U(0, Y, Z) in C1
loc(R3),

where U is solution of (4.1.3) or (4.1.4). By Theorem 1.12 we have that U → 0 as
|(X,Y, Z)| → ∞ and then ∃R so that:
(1)

(4.1.23) U(0, Y, Z) ≤ δ if |(0, Y, Z)| ≥ R;

(2) up to take R large, we have the following property

(4.1.24) lim sup
n→+∞

(ε1
n)

2
p−1 max
|(0,y,z)−P 1

n |≥Rε1n
un ≥ 3δ > 0.

Up to a subsequence, we can also assume that

(4.1.25) (ε1
n)

2
p−1 max
|(0,y,z)−P 1

n |≥Rε1n
un ≥ 2δ.

Since un = 0 on ∂Ω, then we have that

∃Q2
n = (0, y2

n, z
2
n) ∈ Ω \ { |(0, y, z)− P 1

n | > Rε1
n } s.t. un(Q2

n) = max
|(0,y,z)−P 1

n |≥Rε1n
un.

By (4.1.22) and (4.1.23) we get that |Q
2
n−P 1

n |
ε1n

→ +∞. Indeed, if |Q
2
n−P 1

n |
ε1n

→ R′ ≥ R

un(Q2
n) = U1

n

( |Q2
n − P 1

n |
ε1
n

)
→ U(R′) ≤ δ

contradicting (4.1.25). We take R2
n = 1

2
|Q2
n−P 1

n |
ε1n

, (R1
n = 1

2
d(P 1

n ,∂Ω)
ε1n

), C1 = (2 δ)−
p−1

2 .

By this and (4.1.25) we get ε2
nj := unj (Q

2
nj )
− p−1

2 ≤ ε1
nj (2 δ)

− p−1
2 , and since ε1

nj ≤ ε
2
nj

we see that (4.1.16) and (4.1.17) are fulfilled because |P 2
nj − P

1
nj | ≥ Rε1

nj . So this

implies (4.1.19)

un(Q2
n) = max

|(0,y,z)−P 1
n |≥Rε1n

un = max
B
R2
n ε

2
n

(Q2
n)∩Ω

un.

Indeed R2
n ε

2
n = 1

2 |Q
2
n − P 1

n |, and Rε1
n <<

1
2 |Q

2
n − P 1

n | imply ∀ (0, y, z) ∈ BR2
n ε

2
n
(Q2

n),

|(0, y, z)− P 1
n | ≥ |Q2

n − P 1
n | − |(0, y, z)−Q2

n| ≥
1

2
|Q2

n − P 1
n | ≥ Rε1

n,

i. e. Ω ∩ BR2
n ε

2
n
(Q2

n) ⊂ Ω ∩ BRε1n(P 1
n). Since R2

n → +∞ as n → +∞. By Theorem

4.1 we get that, up to a subsequence, (4.1.16)- (4.1.19) hold true for {P 1
n , Q

2
n }. If

(4.1.21) holds for {P 1
n , Q

2
n } we are done.

Otherwise, we iterate the above argument: let P 1
n , Q

2
n . . . , Q

s
n s sequences, so that

(4.1.16)-(4.1.19) hold true, but (4.1.21) is not satisfied. We have

lim sup
R→+∞

lim sup
n→+∞

((ε1
n)

2
p−1 max

dn(0,y,z)≥Rε1n
un) = 4 δ > 0
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with dn(0, y, z) = min{ |(0, y, z)− P in| : i = 1, 2 }. There exists R > 0 large s.t.

(ε1
n)

2
p−1 max
{ dn(0,y,z)≥Rε1n }

un((0, y, z)) ≥ 2 δ

holds for a subsequence. By (4.1.16) and Theorem 2.1:

(4.1.26) ∃ϑi ∈
[ 1

C
, 1
]

:
ε1
n

εin
→ ϑi,

(ε1
n)

2
p−1un( ε1

n (0, Y, Z) + P 1
n) =

(ε1
n

εin

) 2
p−1

U in

(ε1
n

εin
(0, Y, Z)

)
→ ϑ

2
p−1

i U(ϑi (0, Y, Z))

in C1
loc(R3).

Since U → 0 as |x| → +∞ we can find R large so that ϑ
2
p−1

i U(ϑi (0, Y, Z)) < δ
for |(0, Y, Z)| ≥ Rδ. We repeat the argument above, replacing |(0, y, z) − P 1

n | with
dn(0, y, z).
Let Qs+1

n be s. t. un(Qs+1
n ) = maxdn(0,y,z)≥Rε1n un ≥ 2 δ. As above we have that

dn(Qs+1
n )

ε1n
→ +∞ and (4.1.16) holds for {P 1

n , Q
2
n, . . . , Q

s+1
n }. For Rs+1

n = 1
2
dn(Qs+1

n )

εs+1
n

we

get the validity of (4.1.16) for Qs+1
n so by Theorem 4.1 we get that (4.1.16)-(4.1.19)

hold for {P 1
n , Q

2
n, . . . , Q

s+1
n } with Rn = mink R

k
n.

We can use Theorem 4.1 for any sequence Qin, i = 1, . . . , s + 1, for n large. If

P in → P i ∈ z− axis and d(P i,G0)
εin

≤ C < +∞, we can find functions φin ∈ C∞0 (Ω) with

suppφin ⊂ BRεin(P in), for some R > 0, which satisfy (4.1.12 ). If P in → P i /∈ G0, we

can find functions φ̃in ∈ C∞0 (Ω ∩ R2), with supp φ̃in ⊂ BRεin(P i) ∩ R2, which satisfy

(4.1.15). By (4.1.17) φin, φ̃
j
n i, j ∈ 1, . . . s+ 1, i 6= j, have disjoint compact supports

for n large and then s+ 1 ≤ supnm(un). The argument must stop for some k ≤ k.

We want to show now the validity of (4.1.20) and this prove the Theorem. this is the
contribute of the following 2nd step.

2nd step Let P 1
n , . . . , P

k
n be as in the first step, 1 < p <∞. Then there are γ, C > 0 such that:

(4.1.27) un(0, y, z) ≤ C (ε1
n)
− 2
p−1

k∑
i=1

e
−γ |(0,y,z)−P

i
n|

ε1n , ∀(0, y, z) ∈ Ω, ∀n ∈ N.

By (4.1.21), for R > 0 large and n ≥ n(R), it results

(ε1
n)

2
p−1 max
{ dn(x)≥Rε1n }

un(0, y, z) ≤
( λ̃

2ω(V )

) 1
p−1

.

Hence in {dn(0, y, z) ≥ Rε1
n } we have

(ε1
n)2 up−1

n (0, y, z) ≤ λ̃

2ω(V )
,
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where ω(V ) := [maxΩ V ][minΩ V ]−1. Moreover, by Theorem 4.1 we get

λn(ε1
n)2 V (0, y, z) ≥ [ω(V )]−1λn(ε1

n)2 V (P 1
n)→n

λ̃

ω(V )
.

Therefore for n ≥ n(R), we have that

(ε1
n)2[λn V (0, y, z)− up−1

n (0, y, z)] ≥ λ̃

2ω(V )
> 0, if dn(0, y, z) ≥ Rε1

n.

Now consider the following linear operator:

Ln := −∆ + (λn V (0, y, z)− up−1
n (0, y, z)).

Since un is a positive solution in Ω of Ln, Ln satisfies the minimum principle in
any Ω̃ ⊂ Ω: Lnφ > 0 in Ω̃, φ > 0 on ∂Ω̃ implies φ > 0 in Ω̃. Let φin((0, y, z)) =

e−γ(ε1n)−1|(0,y,z)−P in|. We have that in dn(0, y, z) ≥ Rε1
n:

Ln(φin) = (ε1
n)−2φin

[
− γ2 + (N − 1)

ε1
n

|(0, y, z)− P in|
γ + (ε1

n)2(λn V (0, y, z)− up−1
n (0, y, z))

]
> 0

for n large, provided γ2 ≤ λ̃ V (P i)
4ω(V ) .

Observe that(
eγRφin(0, y, z)− (ε1

n)
2
p−1un(0, y, z)

)
|∂B

Rε1n
(P in) → 1− θ

2
p−1

i U(θiR) > 0

for R large, where θi are given by (4.1.26).

Then if we define φn := eγ R
∑k

i=1 φ
i
n, we have

Ln(φn − un) > 0 in {dn(0, y, z) > Rε1
n}

and φn − un ≥ 0 on {dn(0, y, z) = Rε1
n} ∪ ∂Ω. Note that by (4.1.16)-(4.1.19),

{dn(0, y, z) = Rε1
n} =

k⋃
j=1

∂BRε1n(P jn) ⊂ Ω,

for n ≥ n(R). Then by the minimum principle

un ≤ φn = eγ R(ε1
n)
− 2
p−1

k∑
i=1

e
−γ |(0,y,z)−P

i
n|

ε1n

in {dn(0, y, z) > R ε1
n}, if R is large and n ≥ n(R). Since

un(0, y, z) ≤ max
Ω

un = (ε1
n)
− 2
p−1 ≤ eγ R(ε1

n)
− 2
p−1

k∑
i=1

e
−γ |(0,y,z)−P

i
n|

ε1n

if dn(0, y, z) ≤ Rε1
n.

We have that (4.1.20) holds true in Ω, for C = eγ R and n ≥ n(R). Up to take a
larger constant C, we have the validity of (4.1.20) for every n ∈ N.

�
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4.2. Location of the blow-up set

Our aim is to obtain solutions which blow-up on suitable circles. There is a great literature of
this kind based on a constructive approach of perturbative type.
With the notations of the Theorem 4.5, let us set P i = limn→+∞ P

i
n and

Ji = {j = 1, . . . , h : P jn → P i},

for every i = 1, . . . , h.
For a point P0 = (0, y0, z0) let us define

Aδ(P0) = { (x, y, z) ∈ R3 : (
√
x2 + y2 − y0)

2
+ (z − z0)2 ≤ δ2 }

for δ > 0. Define

J1 = { j = 1, . . . , h :
yjn

εjn
≤ C }, J2 = { j = 1, . . . , h :

yjn

εjn
→ +∞}

and

J i1 = Ji ∩ J1, J i2 = Ji ∩ J2.

Fix δ > 0 small so that Iiδ := Aδ(P
i) ∩ Ω, satisfies

Iiδ ∩ {P 1, . . . , P h} = {P i}.

We have the following expansions:

Lemma 4.6. Let g be a continuous G−invariant function in Ω̄. Let 1 < p 6= 5 and q > 1
and i ∈ {1, . . . , h}. Then, there hold:

• If J i2 = ø

(4.2.1)

∫
Iiδ

g uqn = g(P i)
(∫

R3

U q
)(∑

j∈Ji
(εjn)

− 2 q
p−1

+3
)

(1 + on(1)).

• If J i2 6= ø

(4.2.2)

∫
Iiδ

g uqn = 2π g(P i)
(∫

R2

V q
)( ∑

j∈Ji2,max

(εjn)
− 2 q
p−1

+2
yjn

)
(1 + on(1))

where on(1)→ 0 as n→ +∞, U and V are the solutions of (4.1.3) and (4.1.4) and

J i2,max =
{
j = 1, . . . , h : lim

n→+∞

yjn

maxj∈Ji2
{ yjn }

}
.

Proof. Let us define Aj
R ε1n

(P jn), for every R > 0 and j = 1, . . . , h. In view of ( 4.1.16) - (

4.1.18), we have that

Aj
R ε1n
⊂ Ω and Aj

R ε1n
∩AkR ε1n = ø, j 6= k,

for n ≥ n(R) large and j ∈ J2. By Theorem 4.5, we know that
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(4.2.3) uqn(0, y, z) ≤ C(ε1
n)
− 2 q
p−1

h∑
j=1

e
−q γ |(0,y,z)−P

j
n|

ε1n ∀(0, y, z) ∈ Ω

and, by the G−invariance of un,

(4.2.4) uqn(x, y, z) ≤ C(ε1
n)
− 2 q
p−1

h∑
j=1

e
−q γ |(0,

√
x2+y2,z)−Pjn|

ε1n ∀(x, y, z) ∈ Ω,

for some C > 0.
For j ∈ J1, we have that∫

B
Rε1n

(P jn)
g uqn = (εjn)

− 2 q
p−1

+3
∫
B
R
ε1n

ε
j
n

(0)
g(εjn(X,Y, Z) + P jn) (U jn)q

= (εjn)
− 2 q
p−1

+3
(
g(P j)

∫
BRθj (0)

U q + on(1)
)
,(4.2.5)

where ε1n
εjn
→ θj ∈ [ 1

C0
, 1] in view of (4.1.16) and U is the solution of (4.1.3). Since P jn = (0, 0, zjn)

in this case, we have that

|(0,
√
x2 + y2, z)− P jn| = |(x, y, z)− P jn|

so as to get

(4.2.6) (ε1
n)
− 2 q
p−1

∫
R3\B

Rε1n
(P jn)

e
−q γ |(0,

√
x2+y2,z)−Pjn

ε1n = (ε1
n)
− 2 q
p−1

+3
∫
R3\BR(0)

e−q γ|(X,Y,Z)|.

For j ∈ J2, we have that∫
Aj
R ε1n

g uqn

= 2π

∫
{ (s,t) : s≥0 ,(s−yjn)2+(t−zjn)2≤R2 (ε1n)2 }

g(0, s, t) uqn(0, s, t) sd s d t = 2π (εjn)
− 2 q
p−1

+2
yjn∫

{ (S,T ) :S2+T 2≤R2
(
ε1n

ε
j
n

)2
}
g(0, εjn S + yjn, ε

j
n T + zjn)U qn(0, S, T )

(εjn
yjn
S + 1

)
dS dT

in view of yjn
εjn
→ +∞.

Hence, we get that

(4.2.7)

∫
Aj
R ε1n

g uqn = 2π (εjn)
− 2 q
p−1

+2
yjn

(
g(P j)

∫
BRθj (0)

W q(S, T )dS dT + on(1)
)
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where W is solution of (4.1.4).
Similarly, we have that

(ε1
n)
− 2 q
p−1

∫
R3\Aj

R ε1n

e
−q γ |(0,

√
x2+y2,z)−Pjn|

ε1n

≤ 2π (ε1
n)
− 2 q
p−1

+2
yjn

∫
R2\BR(0)

e−q γ |(S,T )|
(ε1

n

yjn
S + 1

)
dS dT

≤ 2π (ε1
n)
− 2 q
p−1

+2
yjn

∫
R2\BR(0)

e−q γ |(S,T )|
(
|S|+ 1

)
dS dT.(4.2.8)

In conclusion, by (4.2.5)- (4.2.8) we get that∫
Iiδ

g u1
n =

∑
j∈Ji1

∫
B
Rε1n

(P jn)
g uqn +

∑
j∈Ji2

∫
Aj
R ε1n

g uqn

+ O
(

(ε1
n)
− 2 q
p−1

∑
j∈Ji1

∫
R3\B

Rε1n
(P jn)

e
−q γ |(0,

√
x2+y2,z)−Pjn|

ε1n

+ (ε1
n)
− 2 q
p−1

∑
j∈Ji2

∫
R3\Aj

R ε1n

e
−q γ |(0,

√
x2+y2,z)−Pjn|

ε1n

)
=

[∑
j∈Ji1

(ε1
n)
− 2 q
p−1

+3
∫
BRθj (0)

U q +
∑
j∈Ji2

(ε1
n)
− 2 q
p−1

+2
yjn 2π

∫
BRθj (0)

W q
]
g(P i) (1 + on(1))

+ O
(

(ε1
n)
− 2 q
p−1

+3
)∫

R3\BR(0)
e−q γ |(X,Y,Z)|

+ (ε1
n)
− 2 q
p−1

+2
∑
j∈Ji2

yjn

∫
R2\BR(0)

e−q γ |(S,T )|(|S|+ 1)dS dT
)
,

in view of BRε1n(P jn) ⊂ Ω and BRε1n(P 1
n)∩BRε1n(P kn ) = ø, j 6= k, and BRε1n(P jn)∩AmRε1n ∀ j, k

and m ∈ J2, due to ( 4.1.16) - ( 4.1.18).
If J i2 = ø

lim
n→+∞

(ε1
n)

2 q
p−1

+3
∫
Iiδ

g uqn =
(∑
j∈Ji1

θ
2 q
p−1

+3

j

∫
BRθj (0)

U q
)
g(P i) +O

(∫
R3\BR(0)

e−q γ|(X,Y,Z)|
)

for all R > 0, and then as R→ +∞

lim
n→+∞

(ε1
n)

2 q
p−1

∫
Iiδ

g uqn = g(P i)

∫
R3

U q
∑
j∈Ji1

θ
2 q
p−1

+3

j .

Therefore

(4.2.9)

∫
Iiδ

g uqn = g(P i)
(∫

R3

U q
)(∑

j∈Ji1

(ε1
n)
− 2 q
p−1

+3
)

(1 + o(1)).
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If J i2 6= ø we define the subset

J i2,max =
{
j = 1, . . . , h :

yjn

max{ yjn : j ∈ J i2 }
→ µj > 0

}
(up to a subsequence). Then

lim
n→+∞

(ε1
n)

2 q
p−1

+2
(

max
j∈Ji2
{ yjn }

)−1
∫
Iiδ

g uqn =
( ∑
j∈Ji2,max

2π θ
2 q
p−1

+2

j µj

∫
BRθj (0)

W q
)
g(P i)

+ O
(∫

R2\BR(0)
e−q γ |(S,T )|(|S|+ 1)dS dT

)
in view of

εjn

maxj∈Ji2
{ yjn }

=
εjn
ε1
n

εjnn

yjnn

ε1
n

εjnn
≤ C0

εjnn

yjnn
→ 0

for a suitable jn ∈ J i2,max. We have used (4.1.16) and εjn
yjn
→ 0 ∀ j ∈ J i2.

Letting R→ +∞, finally we get

lim
n→+∞

(ε1
n)

2 q
p−1

+2
(

max
j∈Ji2
{ yjn }

)−1
∫
Iiδ

g uqn = 2π g(P i)
(∫

R2

W q
)( ∑

j∈Ji2,max

θ
2 q
p−1

+2

j µj

)
,

and therefore ∫
Iiδ

g uqn = 2π g(P i)
(∫

R2

W q
)( ∑

j∈Ji2,max

(εjn)
− 2 q
p−1

+2
yjn

)
(1 + o(1)).

�

In this part of section we want to localize the blow-up set of G−invariant solutions. For their
symmetry properties, we may guess that the blow-up set is of positive dimension.
We are searching for a modified potential that localizes the blow-up set.

First we have that:

Theorem 4.7. Let un be a positive solution of (4.1.1). Then we have that for all k ∈
(0,+∞)

λn u
2
n + |∇un| = O((ε1

n)k), on ∂ Bδ(P0),

where δ > 0 is small so that P0 is the only geometrical blow-up point in B2 δ(P0).

Proof. Consider the general case P0 ∈ Ω and obtain the estimate on ∂Aδ(P0) ∩ Ω, for
δ > 0 small. By 4.1.20 we obtain that

(4.2.10) un(x, y, z) ≤ C(ε1
n)
− 2
p−1

h∑
i=1

e
−γ |(0,

√
x2+y2,z)−Pin|

ε1n ∀ (x, y, z) ∈ Ω, n ∈ N

with C > 0. In particular we have that un = O((ε1
n)k) uniformly in B2 δ(P0) \Bδ(P0)
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We decompose un as un = u1
n + u2

n where u1
n and u2

n satisfy

(4.2.11)

{
−∆u1

n = upn − λnun in B2 δ(P0) \B δ
2
(P0)

u1
n = 0 on ∂(B2 δ(P0) \B δ

2
(P0));

(4.2.12)

{
∆u2

n = 0 in B2 δ(P0) \B δ
2
(P0)

u2
n = un = O((ε1

n)k) on ∂(B2 δ(P0) \B δ
2
(P0)).

By the mean value theorem we have that u2
n + |∇u2

n| = O((ε1
n)k) on B 3

2
δ(P0) \ B 5

4
δ(P0). We

have that in B2 δ(P0) \B δ
2
(P0)

−∆u1
n = O((ε1

n)k−2)

in view of (4.1.16) and λn (ε1
n)2V (P 1

n) ≤ C. Then we have u1
n+|∇u1

n| = O((ε1
n)k−2) in B2 δ(P0)\

B δ
2
(P0) . The result then follows. �

We consider the main result of this chapter, in which we obtain a complete asymptotic analysis:

Theorem 4.8 (Classification of blow-up points). Let (λn, un) be a positive, G−invariant
solution of (4.1.1) with supnmG(un) < +∞ and 1 < p 6= 5 and λn → +∞ as n→ +∞.
Let P in, i = 1, . . . , h be the points given by Theorem 4.5 and P i = limn→+∞ P

i
n = (0, yi, zi).

According to the notations of Lemma 4.6, let us assume J i2 = ø whenever P i ∈ G0.
Setting

∂Ω± = {x2 + y2 + z2 = b2, ±z > 0 } ∪ {x2 + y2 + z2 = a2, ±z < 0 },
∂Ωa = {x2 + y2 + z2 = a2}, ∂Ωb = {x2 + y2 + z2 = b2 }

we have that

(1) if P i ∈ ∂Ω±, then ±∂sV (P i) ≤ 0, if P i = (0, yi, 0) ∈ ∂Ω, then ∂sV (P i) = 0;

(2) if P i∂Ω \G0, we also have ∂rṼ (P i) ≤ 0 if P i ∈ ∂Ωb and ∂rṼ (P i) ≥ 0 if P i ∈ ∂Ωa;
(3) if P i ∈ Ω ∩G0, then ∂sV (P i) = ∂r rV (P i) = 0;

(4) if P i ∈ Ω \G0, then ∂sV (P i) = ∂rṼ (P i) = 0.

Here, r =
√
x2 + y2 and Ṽ (r, s) = r

p−1
2 V (r, s).

Proof. Fix k ∈ R. By Theorem 4.7 we have that

(4.2.13) λn u
2
n + u2

n + |∇un|2 = O((ε1
n)k)

uniformly on ∂Iiδ ∩ Ω, where Iiδ = Aδ(P
i) ∩ Ω.

Multiply the equation (4.1.1) by ∂sun and integrate by parts in Iiδ so as to get:

λn
2

∫
Iiδ

∂sV u
2
n =

∫
Iiδ

[
−∆un ∂sun +

λn
2
∂s(V u

2
n)− 1

p+ 1
∂s(u

p+1
n )

]
=

∫
∂Iiδ∩Ω

[λn
2
V u2

n −
1

p+ 1
up+1
n

]
−
∫
∂Iiδ

∂νun∂sun +

∫
Iiδ

1

2
∂s(|∇un|2)(4.2.14)

= O((ε1
n)k)− 1

2

∫
Aδ(P i)∩∂Ω

(∂νun)2 νs
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in view of (4.2.13). Observe that would not have sense to multiply by ∂xun or ∂yun, having
no G−invariance. Indeed the contributions of these Pohozaev would cancel each other.

If P i = (0, yi, zi) ∈ Ω with yi > 0, by Lemma 4.6 we get that

λn
2

∫
Iiδ

∂sV u
2
n = π λn ∂sV (P i)

(∫
R2

W 2
)(∑

j∈J2

(εjn)
− 4
p−1

+2
)
yi(1 + on(1))

in view of J i1 = ø and J i2,max = J i2.

Since ε1n
εjn
→ ϑj ∈ [ 1

C0
, 1] and λn(εjn)2 V (P jn)→ λ̃2 ∈ (0, 1] ∀ j ∈ J2, we get that

(4.2.15)
λn
2

∫
Iiδ

∂sV u
2
n = π λ̃2

∂sV (P i)

V (P i)

(∫
R2

W 2
)(∑

j∈J2

ϑ
4
p−1

j

)
yi (ε1

n)
− 4
p−1 (1 + on(1)).

For k > − 4
p−1 , by (4.2.14) we get that

∂sV (P i) = 0

in view of Bδ(P
i) ⊂ Ω, for some δ > 0 small.

Similarly, if P i = (0, 0, zi) ∈ Ω with J i2 = ø, by Lemma 4.6 we get that

(4.2.16)
λ̃3

2

∂sV (P i)

V (P i)

(∫
R2

U2
)(∑

j∈Ji
ϑ
−1+ 4

p−1

j

)
(ε1
n)

1− 4
p−1 (1 + on(1)) = O((ε1

n)k),

and then ∂sV (P i) = 0 for k > 1− 4
p−1 .

In case P i ∈ ∂Ω with zi 6= 0, we have that ±νs ≥ 0 in Aδ(P
i) ∩ ∂Ω according to whether

P i ∈ ∂Ω±, and (4.2.14) leads to

±λn
2

∫
Iiδ

∂sV u
2
n ≤ O((ε1

n)k),

respectively. By the same computation as above, we get that

±∂sV (P i) ≤ 0

according to whether P i ∈ ∂Ω±.

If P i /∈ G0, we choose Q = (0, 0, z0), we multiply the equation (4.1.1) by [(x, y, z) −Q] · ∇un
and integrate by parts in Bδ(P

i) ∩ Ω = Iiδ∫
Iiδ

[(x, y, z)−Q] · ∇un(upn − λnV un)

= −
∫
Iiδ

3
up+1
n

p+ 1
− λn

2

∫
Iiδ

V · [(x, y, z)−Q] · ∇(u2
n) +O((ε1

n)k)

= −
∫
Iiδ

3
( up+1

n

p+ 1
− λn V

u2
n

2
− λn∇V · [(x, y, z)−Q]

u2
n

6

)
+O((ε1

n)k)
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in view of un = 0 on ∂Ω and by Theorem 4.7. On the other hand, we have that∫
Iiδ

−∆un [(x, y, z)−Q] · ∇un =

∫
Iiδ

|∇un|2 + [(x, y, z)−Q] · ∇
(1

2
|∇un|2

)
−

∫
∂Ω∩Bδ(P i)

(∂νun)2 [(x, y, z)−Q] ν +O((εin)k)

= −1

2

∫
Iiδ

|∇un|2 −
1

2
(∂νun)2 [(x, y, z)−Q] · ν +O((ε1

n)k),

and then

1

2

∫
Iiδ

|∇un|2 =

∫
Iiδ

3
( up+1

n

p+ 1
− λn V

u2
n

2
− λn [(x, y, z)−Q] · ∇V u2

n

6

)
− 1

2

∫
∂Ω∩Bδ(P i)

(∂νun)2 [(x, y, z)−Q] · ν +O((ε1
n)k).(4.2.17)

Then we multiply the equation (4.1.1) by un and integrate on Iiδ

(4.2.18)

∫
Iiδ

|∇un|2 =

∫
Iiδ

(
up+1
n − λn V u2

n

)
+O((ε1

n)k).

Substituting (4.2.18) in (4.2.17) we have

−1

2

∫
Iiδ

(
up+1
n − λn V u2

n

)
− 1

2

∫
∂Ω∩Bδ(P i)

(∂νun)2 [(x, y, z)−Q] · ν +O((ε1
n)k)

= −
∫
Iiδ

3
( up+1

n

p+ 1
− λn V

u2
n

2

)
+
λn
2

∫
Iiδ

[(x, y, z)−Q] · ∇V u2
n

that is (1

2
− 3

p+ 1

)∫
Iiδ

up+1
n + λn

∫
Iiδ

V u2
n(4.2.19)

+
λn
2

∫
Iiδ

[(x, y, z)−Q] · ∇V u2
n +

1

2

∫
∂Ω∩Bδ(P i)

(∂νun)2 [(x, y, z)−Q] · ν = O((ε1
n)k).

Observe that the choice of the form Q = (0, 0, z0) is to ensure that the term [(x, y, z)−Q] · ∇V
is G−invariant. As previously observed for the (4.2.14), the contributions in ∂xV and ∂yV
are not invariant and therefore can not apply the Lemma 4.6, or we may observe that the two
terms do not give contribution because they cancel each other.
We consider the different case.

If P i ∈ Ω, 1
2

∫
∂Ω∩Bδ(P i)(∂νun)2 [(x, y, z)−Q] · ν = 0 and using Lemma 4.6, we have∑
i∈J2

2π yi

[(1

2
− 3

p+ 1

)(∫
R2

W p+1
)

(εin)
−2 p+1

p−1
+2

+ λ̃2

(∫
R2

V 2
)

(εin)
− 4
p−1

+
λ̃2

2

[P i −Q] ∇V (P i)

V (P i)

(∫
R2

W 2
)

(εin)
− 4
p−1

]
= O((ε1

n)k),(4.2.20)
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where W satisfies (4.1.4). Multiply the equation (4.1.4) by (r, s) · ∇W and integrate by part

(4.2.21)

∫
R2

−∆W (r, s) · ∇W = 0 = −2

∫
R2

(W p+1

p+ 1
− λ̃2

2
W 2
)

and then we derive

(4.2.22)

∫
R2

W p+1 = λ̃2
p+ 1

2

∫
R2

W 2.

We substitute (4.2.22) in ( 4.2.20)

(4.2.23)
∑
i∈J2

2π yi (εin)
− 4
p−1

(∫
R2

W 2
)
λ̃2

[p− 5

4
+ 1 +

1

2

[P i −Q] ∇V (P i)

V (P i)

]
= O((ε1

n)k),

we can divide by
∑

i∈J2 2π yi (εin)
− 4
p−1 λ̃2

∫
R2 V

2, therefore

(4.2.24)
p− 1

2
+

[P i −Q] ∇V (P i)

V (P i)
= 0.

By previous Pohozaev we have ∂sV (P i) = 0 so in condition (4.2.24) we have

(4.2.25)
p− 1

2
+ yi

∂r V (P i)

V (P i)
= 0 =⇒ p− 1

2
V (P i) + yi ∂r V (P i) = 0

and this implies that P i is a critical point of a modified potential Ṽ (r, s) = r
p−1

2 V (r, s).

At this point, if zi 6= 0, we choose Q = (0, 0, zi). Under this choice we have that

(4.2.26) [P i −Q] · ν(P i) = (0, yi, 0) · ν(P i) =

{
(yi)2 > 0 if P i ∈ ∂Ωb

−(yi)2 < 0 if P i ∈ ∂Ωa

where ∂Ωa = {x2 + y2 + z2 = a2 } and ∂Ωb = {x2 + y2 + z2 = b2 }, so in (4.2.19) we have that

−1

2

∫
∂Ω∩Bδ(P i)

(∂νun)2 [(x, y, z)−Q] · ν
{
< 0 if P i ∈ ∂Ωb

> 0 if P i ∈ ∂Ωa.

Therefore we obtain the following estimate

(4.2.27)
(1

2
− 3

p+ 1

)∫
Iiδ

up+1
n +λn

∫
Iiδ

V u2
n+

λn
2

∫
Iiδ

[(x, y, z)−Q] · ∇V u2
n

{
< 0 if P i ∈ ∂Ωb

> 0 if P i ∈ Ωa.

Using Lemma 4.6 and (4.2.22) we have
(4.2.28)∑

i∈J2

2π yi (εin)
− 4
p−1

(∫
R2

W 2
)
λ̃2

[p− 5

4
+ 1 +

1

2

(0, yi, 0) · ∇V (P i)

V (P i)

){ ≤ 0 if P i ∈ ∂Ωb

≥ 0 if P i ∈ Ωa,

therefore

(4.2.29)
p− 1

2
+

(0, yi, 0) · ∇V (P i)

V (P i)
=
(p− 1

2
V + r∂rV

)
|Pi

{
≤ 0 if P i ∈ ∂Ωb

≥ 0 if P i ∈ ∂Ωa,

that is

(4.2.30) ∂Ṽ (P i)

{
≤ 0 if P i ∈ ∂Ωb

≥ 0 if P i ∈ ∂Ωa.
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If zi = 0, i. e. P i is a point of the equator, we choose Q = (0, 0, z0) and by the previous

Pohozaev we have

(4.2.31)
p− 1

2
+

(0, yi, z0) · ∇V (P i)

V (P i)
=
p− 1

2
V (P i) + z0∂sV (P i)

≤
≥ 0 ∀ z0

and then ∂sV (P i) = 0.

We consider the case in which P i = (0, 0, zi) = (0, si) with si ∈ (−b,−a) ∪ (a, b), get the

condition ∂r rV (P i) = 0. Multiplying the equation (4.1.1) by ∂r un where r =
√
x2 + y2 and

integrating on Bδ(P
i) (in R3) we have∫

Bδ(P i)
upn∂run − λnV un ∂run =

∫
Bδ(P i)

−∆un∂run

and integrating by parts∫
Bδ(P i)

upn∂run − λnV un ∂run =

∫
Bδ(P i)

∂r

( up+1
n

p+ 1

)
− λn∂r

(V u2
n

2

)
+
λn
2
∂rV u

2
n

∫
Bδ(P i)

−∆un∂run =

∫
Bδ(P i)

∇un∇(∂run)−
∫
∂Bδ(P i)

.∂νun ∂run

We make a change of variable r =
√
x2 + y2, z = s and indicating with B̃δ(P

i) = { (r, s) :√
r2 + s2 ≤ δ } we have∫

Bδ(P i)
∇un∇(∂run)−

∫
∂Bδ(P i)

∂νun ∂run

=

∫
Bδ(P i)

∂r

(1

2
|∇un|2

)
−
∫
∂Bδ(P i)

∂νun ∂run

=

∫
B̃δ(P i)

r∂r

(1

2
|∇un|2

)
dr ds+ o(εkn) = −

∫
B̃δ(P i)

1

2
|∇un|2dr ds+O((ε1

n)k)

and ∫
Bδ(P i)

∂r

( up+1
n

p+ 1

)
− λn∂r

(V u2
n

2

)
+
λn
2

∫
Bδ(P i)

∂rV u
2
n

=

∫
B̃δ(P i)

[
∂r

( up+1
n

p+ 1

)
− λn V ∂r

(u2
n

2

)]
rdr ds

= −
∫
B̃δ(P i)

up+1
n

p+ 1
dr ds+ λn

∫
B̃δ(P i)

u2
n

2
∂r(r V ) +O((ε1

n)k),

that give

(4.2.32) −
∫
B̃δ(P i)

1

2
|∇un|2dr ds = −

∫
B̃δ(P i)

up+1
n

p+ 1
dr ds+ λn

∫
B̃δ(P i)

u2
n

2
∂r(r V ) +O((ε1

n)k)



4.2. LOCATION OF THE BLOW-UP SET 109

Observe that ∆ = ∂xx + ∂yy + ∂zz = ∂x(∂r
∂r
∂x) + ∂y(∂r

∂r
∂y ) + ∂ss = ∂rr + 1

r∂r + ∂ss. Since un
r

has the same behavior of 1
r and 1

r ∈ L
1(Ω), we can multiply the equation (4.1.1) by un

r and
integrating by parts, we have∫

Bδ(P i)
−∆un

un
r

=

∫
Bδ(P i)

up+1
n

r
− λn V

u2
n

r
=

∫
B̃δ(P i)

up+1
n − λn V u2

ndr ds

= −
∫
B̃δ(P i)

(∂rrun +
1

r
∂run + ∂ssun)undr ds =

∫
B̃δ(P i)

(∂run)2 + (∂sun)2

−
∫
B̃δ(P i)

1

2 r
∂r|u2

n|dr ds

=

∫
B̃δ(P i)

(∂run)2 + (∂sun)2 −
∫
B̃δ(P i)

u2
n(r, s)− u2

n(0, s)

2 r2
dr ds.

So we have that∫
B̃δ(P i)

up+1
n − λn V u2

ndr ds =

∫
B̃δ(P i)

|∇un|2 −
∫
B̃δ(P i)

u2
n(r, s)− u2

n(0, s)

2 r2
dr ds+O((ε1

n)k)

and then we obtain∫
B̃δ(P i)

|∇un|2dr ds =

∫
B̃δ(P i)

up+1
n − λn V u2

n +

∫
B̃δ(P i)

u2
n(r, s)− u2

n(0, s)

2 r2
dr ds+ = ((ε1

n)k).

Using this results in (4.2.32), we reduce to

(1

2
− 1

p+ 1

)∫
B̃δ(P i)

up+1
n +

λn
2

∫
B̃δ(P i)

u2
n r ∂rV +

1

4

∫
B̃δ(P i)

u2
n(r, s)− u2

n(0, s)

r2
= O((εjn)k).

By Lemma 4.6∫
Bδ(P i)

u2
n(x, y, z)− u2

n(0, 0, z)

4 r3
=
∑
j∈Ji

(εjn)
− 4
p−1

∫
R2

U2(r, s)− U2(0, s)

4 r2
dr ds.

Let U be a positive solution of −∆U + λ̃U = Up in R3. Multiplying this equation by ∂rU ,
integrating by parts and changing variables we have∫

R3

−∆U ∂rU =

∫
R3

(Up − λ̃U)∂rU

=

∫
R2

(
∂r

(Up+1

p+ 1

)
− λ̃∂r

(U2

2

))
r dr ds = −

∫
R2

Up+1

p+ 1
− λ̃U

2

2∫
R3

−∆U ∂rU =

∫
R2

∇U ∇(∂rU) =

∫
R3

∂r

(1

2
|∇U |2

)
r dr ds = −1

2

∫
R2

|∇U |2drds

=⇒ 1

2

∫
R2

|∇U |2drds =

∫
R2

Up+1

p+ 1
− λ̃U

2

2
.
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Moreover, multiplying the equation of U by U
r and integrating by parts we obtain∫

R2

Up+1 − λ̃U2 =

∫
R3

−∆U
U

r
=

∫
R2

−(∂rrU +
1

r
∂rU + ∂ssU)U

=

∫
R2

|∇U |2 − 1

r
∂r

(U2

2

)
=

∫
R2

|∇U |2 − 1

r2

U2(r, s)− U2(0, s)

2
.

By these two Pohozaev we obtain that(1

2
− 1

p+ 1

)∫
R2

Up+1 = −1

4

∫
R2

U2(r, s)− U2(0, s)

r2
.

We have that U jn → U as n→ +∞ exponentially, by the previous chapter, so∑
j∈Ji

(εjn)
− 4
p−1

(∫
B δ

ε
j
n

(0,zi−zin)

(U jn)2(r, s)− (U jn)2(0, s)

r2
d r d s

+
(1

2
− 1

p+ 1

)∫
B δ

ε
j
n

(0,zi−zin)
(U jn)p+1

)
= O((ε1

n)k).

So we make an expansion of:

λn
2

∫
B̃δ(P i)

u2
n r ∂rV

=
∑
j∈Ji

(εjn)
− 4
p−1

+3 λn
2

∫
B δ

ε
j
n

(0,zi−zjn)

(U jn)2(r, s) r ∂rV (εjn r, ε
j
n s+ zin)

V (εjn r + yjn, ε
j
n s+ zjn)

dr ds = O((ε1
n)k)

∂rV (εjn r, ε
j
n s+ zjn) = ∂rV (0, εjn s+ zjn) + εjn ∂rrV (0, εjn s+ zjn) r +O((εjn)2 r2)

therefore for k > 2 p−3
p−1

1

V (P i)

λ̃2

2

∑
j∈Ji

(εjn)
p−5
p−1

∫
B̃ δ

ε
j
n

(0,zi−zin)
(U jn)2 r2εjn ∂rrV (0, εjn s + zjn)dr ds = O((ε1

n)k)

=⇒ ∂rrV (P i)

∫
R2

U2r2dr ds = 0 =⇒ ∂rrV (P i) = 0.

�

Corollary 4.9. Let (unλn) be a positive, G−invariant solution of (4.1.1) with un satis-
fying mG(un) = 1 and 1 < p 6= 5, λn → +∞ as n→ +∞.
Suppose that

∂sV = 0 in G0 =⇒ ∂r rV 6= 0,

and

∂sV

{
> 0 in G0 ∩ ∂Ω+

< 0 in G0 ∩ ∂Ω−.
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Then un blows-up on a suitable G−invariant, one dimensional curve, i.e. a circle with a
suitable radius rn such that rn

(ε1n)
4
p−1
→∞.
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