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1. INTRODUCTION

1 Introduction

In the last century, General Relativity (GR) and Quantum Mechanics (QM) revolutionized the physics and
demolished two deep-rooted prejudices about Nature: the determinism of physical laws and the absolute,
inert character of space and time. At the same time they explained most of the phenomena that we
observe. In particular the microscopic observations of nuclear and subnuclear physics have been explained
within the Quantum Field Theory (QFT) called Standard Model of particle physics, and, on the other
side, the large scale phenomena of the Universe have been explained within General Relativity (GR). QM
and GR are the two conceptual pillars on which modern physics is built. GR has modified the notion
of space and time; QM the notion of causality, matter and measurements, but these modified notions do
not fit together easily. The basic assumptions of each one of the two theories are contradicted by the
other. On the one hand QM is formulated in a Newtonian absolute, fixed, non-dynamical space-time,
while GR describes spacetime as a dynamical entity: it is no more an external set of clocks and rods, but
a physical interacting field, namely the gravitational field. Moreover the electromagnetic, weak and strong
interactions, unified in the language of Quantum Field Theory, obeys the laws of quantum mechanics, and
on the other side the gravitational interaction is described by the classical deterministic theory of General
Relativity. Both theories work extremely well at opposite scales but this picture is clearly incomplete [1]
unless we want to accept that Nature has opposite foundations in the quantum and in the cosmological
realm. QM describes microscopic phenomena involving fundamental particles, ignoring completely gravity,
while GR describes macroscopic systems, whose quantum properties are in general (safely) neglected. This
is not only a philosophical problem, but assumes the distinguishing features of a real scientific problem as
soon as one considers measurements in which both quantum and gravitational effects cannot be neglected.
The search for a theory which merges GR and QM in a whole coherent picture is the search for a theory
of Quantum Gravity (QG). If one asks the question:

why do we need Quantum Gravity?

the answers are many. It is worth recalling that the theory describing the gravitational interaction fails in
giving a fully satisfactory description of the observed Universe. General relativity, indeed, leads inevitably
to space-time singularities as a number of theorems mainly due to Hawking and Penrose demonstrate.
The singularities occur both at the beginning of the expansion of our Universe and in the collapse of
gravitating objects to form black holes. Classical GR breaks completely down at these singularities, or
rather it results to be an incomplete theory. On the quantum mechanical side, we can ask what would
happen if we managed to collide an electron-positron pair of energy (in the center of mass) greater than
the Planck energy. We are unable to give an answer to this question. The reason of this failure is related
to the fact that, in such an experiment, we cannot neglect the gravitational properties of the involved
particles at the moment of the collision. But, we do not have any scientific information on how taking
into account such an effect in the framework of QFT. In other words, when the gravitational field is so
intense that space-time geometry evolves on a very short time scale, QFT cannot be consistently applied
any longer. Or, from another perspective, we can say that when the gravitational effects are so strong to
produce the emergence of spacetime singularities, field theory falls into troubles.

A possible attempt for quantizing gravity is the one that leads to perturbative Quantum Gravity, the
conventional quantum field theory of gravitons (spin 2 massless particles) propagating over Minkowski
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1. INTRODUCTION

spacetime. Here the metric tensor is splitted in

gµν = ηµν + hµν

and η is treated as a background metric (in general any solution to Einstein equations) and h is a dynamical
field representing self-interacting gravitons. This theory gives some insights but cannot be considered a
good starting point because it brakes the general covariance of General Relativity, and (more practically)
it is non-renormalizable. It is remarkable that it is possible to construct a quantum theory of a system
with an infinite number of degrees of freedom, without assuming a fixed background causal structure; this
is the framework of modern background independent theories of quantum General Relativity, called Loop
Quantum Gravity.

The energy regime where we expect quantum gravity effects to become important (Planck scale) is
outside our experimental or observational capabilities. But we emphasize that it could be not necessary
to reach the Planck energy to see some QG effects. In this respect, we recall that a class of extremely
energetic phenomena called Gamma Ray Bursts could represent a really important laboratory to test QG
predictions [2, 3, 4, 5, 6], in fact they seem to be the natural candidates to verify whether the fundamental
hypothesis about a discrete structure of space-time will be confirmed by experiments. The peculiar features
which make Gamma Ray Bursts relevant for QG is the extremely wide range of the emitted energies and
the cosmological distance of the explosive events.

Loop quantum gravity has the main objective to merge General Relativity and quantum mechanics.
Its major features [7] are resumed in the following.

• LQG is the result of “canonical” quantization of Hamiltonian General Relativity.

• It implements the teachings of General Relativity. First, the physical laws are relational: only events
independent from coordinates are meaningful; physics must be described by generally covariant
theories. Second, the gravitational field is the geometry of spacetime. The spacetime geometry is
dynamical: the gravitational field defines the geometry on top of which its own degrees of freedom
and those of matter fields propagate. GR is not a theory of fields moving on a curved background
geometry, GR is a theory of fields moving on top of each other, namely it is background independent.

• It assumes QM, suitably formulated to be compatible with general covariance, to be correct; also
the Einstein equations, though they can be modified at high energy, are assumed to be correct, and
are the starting point of the quantization process.

• It is non perturbative: the metric is not split in a Minkowskian background plus a dynamical
perturbation. The full metric tensor is dynamical.

• There are not extra-dimensions: it is formulated in four spacetime dimensions. We can say more:
the whole framework works only for a 4-dimensional spacetime!

• The major physical prediction is the discrete and combinatorial structure for quantum spacetime:
the spectra of geometrical observables, such as the length, the area and the volume operator, are
discrete [8] and the quantum states of geometry have a relational character. Discreteness and the
appearence of a fundamental Plankian lenght scale, renders the theory UV finite.
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1. INTRODUCTION

• Its application in cosmology gave rise to Loop Quantum Cosmology [9]. Some of the main results
achieved by this theory are the explanation of the Bekenstein-Hawking formula for black-hole entropy
[10, 11, 12, 13] and the absence of the initial Big Bang singularity [14]. Instead of a singularity, the
theory predicts a “bouncing”.

In the following we present the research line carried out during the PhD, which come together in this
thesis.

The kinematics of LQG is well understood, mathematically rigorous and almost without quantization
ambiguities. Conversely, even if still well-defined, the dynamics of the theory is plagued by quantization
ambiguities. The Hamiltonian quantum constraint defined by Thiemann is the most popular realization
of the LQG dynamics, but many others are possible; a natural requirement is that the quantum dynamics
should not give rise to anomalies, namely it should respect the classical algebra of constraints. This non-
trivial requirement is satisfied by Thiemann’s Hamiltonian. Nevertheless, because of the complicated form
of the Hamiltonian, we do not have control on which kind of quantum evolution it generates, in particular
if the correct semiclassical dynamics is reproduced. In other words, it is technically difficult to understand
the link (if any) between classical and quantum dynamics. Like in ordinary QFT, a covariant formulation
could help to find an answer.

Spin foams provide a non-perturbative and background independent definition of the path integral for
General Relativity, and at the same time they are an attempt to define the covariant version of LQG. In
this context it is easier to implement the dynamics. The hope is to find a clear-cut connection between
spin foam models and Loop Quantum Gravity. The “new spin foam models" (both the Euclidean and
the Lorentzian ones) realize the kinematical equivalence between canonical and covariant approaches [15],
while the full equivalence has been proven only in three dimensions [16]. In this thesis we will analyze the
LQG dynamics through spin foams, hoping that one day the equivalence of the two formalisms will be
proven also in four dimensions.

The recovering of the right semiclassical limit is perhaps the most important test for a quantum theory.
A possible way of studying the semiclassical limit of LQG is the comparison of n-point functions computed
in LQG with the ones of standard perturbative quantum gravity. The main issue with this approach is
even to formally define n-point functions which are background independent: the dependence on the n
points seems indeed to disappear if we implement diffeomorphism invariance in the path integral. We
can go over this difficulty using the general boundary formalism for background independent field theories
[17]. Using this general boundary framework and the “new” spin foam models we computed the connected
2-point function, or graviton propagator, in LQG finding an exact matching with the standard propagator.
More specifically, we recovered the right scaling behavior of all tensorial components; moreover the full
tensorial structure matches with the standard one in a particular limit, and in a particular gauge. This
non trivial result shows that the new models are an improvement of the previous Barret-Crane spin foam
model, since there, as shown in [18], some components of the propagator had the wrong scaling.

The second original result presented in this thesis is a simple asymptotic formula for the fusion coeffi-
cients [19], which are a building block of the vertex amplitude of the new models. A consequence of our
asymptotic analysis is the following remarkable semiclassical property of the fusion coefficient: they map
semiclassical SO(3) tetrahedra into semiclassical SO(4) tetrahedra; this peculiar property sheds light on
the semiclassical limit of the “new” models.

Another criterion to select the good semiclassical behavior is the stability under evolution of coherent
wave-packets. The introduction of this approach [20] and its improvement [21] are another original con-
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1. INTRODUCTION

tribution to the subject of semiclassical analysis in LQG. The main idea is as old as quantum physics: a
theory has the correct semiclassical limit only if semiclassical wave-packets follow the trajectory predicted
by classical equations of motion. The equations of motion of any dynamical system can be expressed as
constraints on the set formed by the initial, final and (if it is the case) boundary variables. For instance, in
the case of the evolution of a free particle in the time interval t, the equations of motion can be expressed
as constraints on the set (xi, pi;xf , pf ). These constraints are of course m(xf − xi)/t = pi = pf (for the
general logic of this approach to dynamics, see [7]). In General Relativity, Einstein equations can be seen
as constraints on boundary variables; we can construct in LQG semiclassical wave packets centered on the
classical value of conjugate geometric quantities (intrinsic and extrinsic curvature, analogous to x and p).
It follows immediately from these considerations that a boundary wave packet centered on these values
must be correctly propagated by the propagation kernel, if the vertex amplitude is to give the Einstein
equations in the classical limit. We studied numerically the propagation of some degrees of freedom of
LQG, finding preliminary indications on the good semiclassical behavior. The propagation of semiclassical
equilateral tetrahedra in the boundary of a 4-simplex is “rigid”, that is four Gaussian wavepackets evolve
into one Gaussian wavepacket with the same shape, except for a flip in the phase. This is in agreement
with the geometry of one flat 4-simplex, the most simple instance of Einstein equations in the discretized
setting. This result was the first, though preliminary, indication of the good semiclassical properties of
the new spin foam models.

The semiclassical states used in the calculation of the propagator are put by hand but nevertheless are
motivated by geometrical intuition and by the requirement that they fit well with the spin foam dynamics
in order to reproduce the classical limit of the amplitudes computed, e.g. expectation values of geometric
operators and correlation functions. In this thesis we give a beautiful top-down derivation of those states,
as states centered on a point in the phase space of General Relativity, as captured by a graph. More
precisely we recover the states used in spin foam calculations in the large spin limit, so that the latter can
be viewed as approximate coherent states; the exact coherent states are here called coherent spin-networks,
and are candidate semiclassical states for full Loop Quantum Gravity. Their geometrical interpretation
is the following. A space-time metric (e.g. Minkowski or deSitter space-time) induces an intrinsic and
extrinsic geometry of a spatial slice Σ. A graph Γ embedded in Σ is dual to a cellular decomposition of
Σ. The graph captures a finite amount of geometrical data: in fact we can smear the Ashtekar-Barbero
connection on links of the graph and the gravitational electric field on surfaces dual to links. These
smeared quantities are the labels for the coherent spin-networks. An interesting fact about these labels is
that for each edge of the graph they are in correspondence with elements in SL(2,C), that can be viewed
as the cotangent bundle of SU(2) and carries a natural phase space (simplectic) structure. For this reason
the labels of coherent spin-networks live on the phase space of GR as captured by a single graph.
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2. HAMILTONIAN GENERAL RELATIVITY

2 Hamiltonian General Relativity

In this chapter we briefly summarize the Hamiltonian formulation of General Relativity. It turns out that
the Hamiltonian is a linear combination of first class constraints, in the terminology of Dirac [22]; these
constraints generate gauge transformations and define the dynamics of General Relativity with respect to
the arbitrarily chosen time parameter. In order to quantize the theory, we perform a suitable change of
variables: we introduce the Ashtekar-Barbero connection. Then we express the constraints in these new
variables and write their commutation algebra. We conclude introducing the concept of holonomy which
will play a major role in the quantum theory.

2.1 Canonical formulation of General Relativity in ADM variables

The Hamiltonian formulation of a field theory requires the splitting of the spacetime in space and time
[23, 24, 25, 26, 27]. The first step is the choice of a time function t and a vector field tµ over the spacetime
manifold such that the hypersurfaces Σt at constant t are Cauchy spacelike surfaces and tµ∇µt = 1. The
second step is the definition of a configuration space of fields q over Σt and conjugate momenta Π. The
last step is the introduction of a Hamiltonian: a functional H[q,Π] of the form

H[q,Π] =

∫

Σt

H(q,Π) , (1)

where H is the Hamiltonian density; the Hamilton equations q̇ = δH
δΠ and Π̇ = − δH

δq are equivalent to the
field equations of Lagrangian theory. Given the Lagrangian formulation there is a standard prescription
to obtain the Hamiltonian one by the Legendre transformation

H(q,Π) = Π q̇ − L , (2)

where q̇ = q̇(q,Π) and Π = ∂L

∂q̇ .
Now consider General Relativity [28] on a globally hyperbolic spacetime (M,gµν). This spacetime can

be foliated in Cauchy surfaces Σt, parametrized by a global time function t(x0, x1, x2, x3). Take nµ the
unitary vector field normal to Σt. The spacetime metric induces a spatial metric hµν on every Σt given
by the formula

hµν = gµν + nµnν . (3)

The metric hµν is spatial in the sense that hµνn
µ = 0. Take tµ a vector field on M satisfying tµ∇µt = 1;

we decompose it in its tangent and normal components to Σt

tµ = Nµ +Nnµ , (4)

where

N = −tµnµ = (nµ∇µt)
−1 , (5)

Nµ = hµνt
ν . (6)

We can interpret the vector field tµ as the “flux of time” across spacetime, in fact we “move forward in
time” with the parameter t starting from the surface Σ0 and reaching the surface Σt. If we identify the
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2. HAMILTONIAN GENERAL RELATIVITY

Figure 1: ADM foliation

hypersurfaces Σ0 and Σt through the diffeomorphism obtained by following the integral curves of tµ, we
can reinterpret the effect of moving through time as a changing spatial metric on a fixed 3-dimensional
manifold Σ from hab(0) to hab(t). Hence we can view a globally hyperbolic spacetime as the representation
of a time evolution of a Riemannian metric on a fixed 3-dimensional manifold. The quantity N is called
lapse function and measures the flow of proper time with respect to the time coordinate t when we move
in a direction normal to Σt. N

µ is called shift vector and it measures the shift of tµ in direction tangent
to Σt. The fields N and Nµ are not dynamical as they only describe the way of moving through time.
Suitable initial data of the Cauchy problem for General Relativity are the spatial metric hµν on Σ0 and
its “time derivative”. The notion of time derivative of a spatial metric on Σt is provided by the extrinsic
curvature

Kµν ≡ ∇µξν , (7)

where ξν is the unitary timelike vector field tangent to the timelike geodesics normal to Σt (ξµ is equal to
nµ on Σt). Kµν is purely spatial; it can be expressed as a Lie derivative

Kµν =
1

2
Lξgµν =

1

2
Lξhµν . (8)

If we choose Nµ = 0, then the extrinsic curvature is simply

Kµν =
1

2

∂hµν
∂t

. (9)

In terms of general N , Nµ and tµ, the metric is given by

gµν = hµν − nµnν = hµν −N−2(tµ −Nµ)(tν −Nν) , (10)

where we have used the identity nµ = N−1(tµ −Nµ).

2.2 Lagrangian and ADM Hamiltonian

The Lagrangian density for General Relativity in empty space is LGR = (2κ)−1√−gR, with R the Ricci
scalar and κ = 8πG/c3. G is Newton’s gravitational constant, and c the speed of light. The action of
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2. HAMILTONIAN GENERAL RELATIVITY

General Relativity is then

SGR =
1

2κ

∫
d4x

√−gR . (11)

The Hamiltonian analysis is made passing to the variables N , Nµ, hµν . In terms of these variables the
Lagrangian density reads

LGR =
1

2κ

√
hN [(3)R+KµνK

µν −K2] , (12)

where Kµν can be written as

Kµν =
1

2N
[ḣµν −DµNν −DνNµ] , (13)

Dµ is the covariant derivative with respect to hµν ,
(3)R is the Ricci scalar calculated with respect to hµν ,

and ḣµν = h ρ
µ h σ

ν Lthρσ .
The momentum conjugate to hµν is

Πµν =
δL

δḣµν
=

1

2κ

√
h(Kµν −Khµν) . (14)

The Lagrangian does not contain any temporal derivative of N and Na, so their conjugate momenta are
zero. As anticipated, the fields N and Na are not dynamical, so they can be considered as Lagrange
multipliers in the Lagrangian. Variation of the action (11) w.r.t. shift and lapse produces the following
constraints:

V ν [h,Π] ≡ −2Dµ(h
−1/2Πµν) = 0 , (15)

S[h,Π] ≡ −(h1/2[(3)R− h−1ΠρσΠ
ρσ +

1

2
h−1Π2]) = 0 . (16)

The first is called vector constraint, and the second scalar constraint. These constraints, together with
the Hamilton equations

ḣµν =
δH

δΠµν
, (17)

Π̇µν = − δH

δhµν
, (18)

define the dynamics of General Relativity, i.e. they are equivalent to vacuum Einstein equations. Finally,
the Hamiltonian density is

HGR =
1

2κ
h1/2{N [−(3)R+ h−1ΠµνΠ

µν − 1

2
h−1Π2] − 2Nν [Dµ(h

−1/2Πµν)]} . (19)

We deduce that the Hamiltonian is a linear combination of (first class) constraints, i.e. it vanishes identi-
cally on the solutions of equations of motion. This is a general property of generally covariant systems.

The variables chosen in this formulation are called ADM (Arnowitt, Deser and Misner) [29] variables.
Notice that ADM variables are tangent to the surface Σt, so we can use equivalently the genuinely 3-
dimensional quantities hab,Π

ab, Na, N (a, b = 1, 2, 3); these are the pull back on Σt of the 4-dimensional
ones.
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2. HAMILTONIAN GENERAL RELATIVITY

2.3 Triad formalism

The spatial metric hab can be written as

hab = eiae
j
bδij i, j = 1, 2, 3 , (20)

where eia(x) is a linear transformation which permits to write the metric in the point x in flat diagonal
form. The index i of eia is called internal and eia is called a triad, or better co-triad, because it defines a
set of three 1-forms. The triad can be seen as a map from the co-tangent bundle to the Euclidean space,
preserving the scalar product. We can introduce the densitized inverse triad

Eia ≡
1

2
ǫabcǫ

ijkejbe
k
c ; (21)

using this definition, the inverse 3-metric hab is related to the densitized triad as follows:

hhab = Eai E
b
j δ

ij . (22)

We also define

Ki
a ≡

1√
det(E)

KabE
b
jδ
ij . (23)

It is not difficult to see that Eai and Ki
a are conjugate Hamiltonian variables, so the symplectic structure

is

{Eaj (x),Ki
b(y)} = κ δab δ

i
jδ(x, y) , (24)

{Eaj (x), Ebi (y)} = {Kj
a(x),K

i
b(y)} = 0 . (25)

We can write the vector and the scalar constraint (15-16) in terms of the new conjugate variables Eai and
Ki
a. However these variables are redundant; in fact we are using the nine Eai to describe the six independent

components of hab. This is clear also from a geometrical point of view: we can choose different triads eia
acting by local SO(3) rotations on the internal index i without changing the metric:

Rim(x)Rjn(x)e
m
a (x)enb (x)δij = eiae

j
bδij . (26)

Hence if we want to formulate General Relativity in terms of these redundant variables we have to impose
an additional constraint that makes the redundancy manifest. The missing constraint is:

Gi(E
a
j ,K

j
a) ≡ ǫijkE

ajKk
a = 0. (27)

For a review on the triad formalism, see e.g. [30].

2.4 Ashtekar-Barbero variables

We can now introduce the Ashtekar-Barbero connection [31, 32, 33, 34, 35], defined in terms of the previous
canonically conjugate variables (Eai ,K

i
a) as follows:

Aia = Γia(E) + γKi
a , (28)

13



2. HAMILTONIAN GENERAL RELATIVITY

where Γai (E) is the spin connection, that is the unique solution to the Cartan structure equation

∂[ae
i
b] + ǫi jkΓ

j
[ae

k
b] = 0 (29)

and γ is any non zero real number, called Barbero-Immirzi parameter. Explicitely, the solution of (29) is

Γia(E) = −1

2
ǫijke

b
j(∂[ae

k
b] + δklδmse

c
l e
m
a ∂be

s
c) . (30)

By an explicit computation, the Poisson brackets between the new variables are

{Eaj (x),Ki
b(y)} = κγ δab δ

i
jδ(x, y) , (31)

{Eaj (x), Ebi (y)} = {Aja(x), Aib(y)} = 0 . (32)

This non trivial fact is remarkable, because it means that

(Eai ,Γ
i
a) −→ ( 1

γ
Eai , A

i
a) (33)

is a canonical transformation. The new variables put classical General Relativity in a form which closely
resembles an SU(2) Yang-Mills theory. Indeed Aia and Eai are the components of a connection and of
an electric field respectively. This follows from their transformation properties under local SU(2) gauge
transformations. Writing

Aa = Aiaτi ∈ su(2) (34)

Ea = Eai τ
i ∈ su(2) (35)

where τ i are su(2) generators, the transformation rules are

A′
a = gAag

−1 + g∂ag
−1 , E′a = gEag−1 , (36)

that is the standard transformation rules for connections and electric fields of Yang-Mills theories. We
can push the analogy even further looking at the constraints. This is done in the next section.

2.5 Constraint algebra

As we have seen, General Relativity can be formulated in terms of a real su(2) connection1 Aia(x) and a
real momentum field Eai (x), called electric field, both defined on a 3-dimensional differential manifold Σt.
The theory is defined by the Hamiltonian system constituted by the three constraints (27), (15), (16), and
the Hamilton equations. In terms of the new variables the full set of constraints is

Gi ≡ DaE
a
i = 0 , (37)

Vb ≡ Eai F
i
ab − (1 + γ2)Ki

bGi = 0 , (38)

S ≡
Eai E

b
j√

det(E)
(ǫijkF

k
ab − 2(1 + γ2)Ki

[aK
j
b]) = 0 , (39)

1The groups SO(3) and SU(2) have the same Lie algebra, so we can speak equivalently about connections with values in
su(2) or su(3).
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2. HAMILTONIAN GENERAL RELATIVITY

where Da and F iab are respectively the covariant derivative and the curvature of the connection Aia defined
by

Davi = ∂avi − ǫijkA
j
av
k , (40)

F iab = ∂aA
i
b − ∂bA

i
a + ǫijkA

j
aA

k
b . (41)

As anticipated, the electric field satisfies the Gauss law, whose differential version is exactly the first
constraint (37). This Gauss constraint is also present in the Hamiltonian formulation of Yang-Mills
theories.

The system (37-39) generates gauge transformations. To see this, define the smeared constraints

G(α) ≡
∫

Σ
d3xαiGi =

∫

Σ
d3xαiDaE

a
i = 0 , (42)

V (f) ≡
∫

Σ
d3x faVa = 0 , (43)

S(N) ≡
∫

Σ
d3xNS . (44)

The “test” functions αi, fa, N are an internal vector field, a tangent vector field and a scalar field
respectively. A direct calculation implies

δαA
i
a =

{
Aia, G(α)

}
= −Daα

i and δαE
a
i = {Eai , G(α)} = [Ea, α]i (45)

which are the infinitesimal version of the SU(2) gauge transformations (36) (the square brackets in (45) are
the vector field commutator). The constraint (37) is in the form of the Gauss law of Yang-Mills theories.
For the smeared vector constraint we have

δfA
i
a =

{
Aia, V (f)

}
= LfAia = f bF iab and δfE

a
i = {Eai , V (f)} = LfEai , (46)

so V (f) acts as the infinitesimal diffeomorphism associated to the vector field f , namely as a Lie derivative
L. Finally, one can show that the scalar constraint S generates time evolution w.r.t. the time parameter
t. In fact the Hamiltonian of General Relativity is the sum of the smeared constraints (42-44):

H[α,Na, N ] = G(α) + V (Na) + S(N) , (47)

and the Hamilton equations of motion are therefore

Ȧia = {Aia,H[α,Na, N ]} = {Aia, G(α)} + {Aia, V (Na)} + {Aia, S(N)} , (48)

Ėai = {Eai ,H[α,Na, N ]} = {Eai , G(α)} + {Eai , V (Na)} + {Eai , S(N)} . (49)

These equations define the action of H[α,Na, N ] on observables (phase space functions), that is their time
evolution up to diffeomorphisms and SU(2) gauge transformations. In General Relativity coordinate time
evolution has no physical meaning; it is analogous to a U(1) gauge transformation of QED.
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2. HAMILTONIAN GENERAL RELATIVITY

Next, we can compute all possible Poisson brackets between the smeared constraints, obtaining the
following constraint algebra:

{G(α), G(β)} = G([α, β]) , (50)

{G(α), V (f)} = G(Lfα) , (51)

{G(α), S(N)} = 0 , (52)

{V (f), V (g)} = V ([f, g]) , (53)

{S(N), V (f)} = −S(LfN) , (54)

{S(N), S(M)} = V (f̃) + terms proportional to Gauss law , (55)

where f̃a = hab(N∂bM − ∂bN) . We can also give the Hamilton-Jacobi system by writing

Eai (x) =
δS[A]

δAia(x)
(56)

in (37-39). The constraints (37) and (38) require the invariance of S[A] under local SU(2) transformations
and 3-dimensional diffeomorphisms. The last one, (39), is the Hamilton-Jacobi equation for General
Relativity. A preferred solution to the Hamilton-Jacobi equation is the Hamilton functional. This is
defined as the value of the action of a bounded region, computed on a solution of the field equations
determined by the boundary configuration Aia.

2.6 The holonomy

The concept of holonomy has a major role in the quantization of General Relativity. It is a group element
giving the parallel transport of vectors along curves. Consider a Lie(G)-valued connection A defined on a
vector bundle with base manifold M and structure group G (the gauge group), and a curve γ on the base
manifold parametrized as

γ : [0, 1] →M (57)

s 7→ xµ(s) . (58)

The holonomy H[A, γ] of the connection A along the curve γ is the element of G defined as follows.
Consider the differential equation

d

ds
h(s) + ẋµ(s)Aµ(γ(s))h(s) = 0 , (59)

with initial data
h(0) = 1 , (60)

where h(s) is a G-valued function of the parameter s. The solution to this Cauchy problem is

h(s) = P exp

∫ s

0
ds̃ Ai(s̃)τi , (61)
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2. HAMILTONIAN GENERAL RELATIVITY

where τi is a basis of the Lie algebra of the group G and Ai(s) ≡ γ̇µ(s)Aiµ(γ(s)). The path ordered
exponential P exp is defined through the series

P exp

∫ s

0
ds̃ A(γ(s̃)) ≡

∞∑

n=0

∫ s

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsnA(γ(sn)) . . . A(γ(s1)) . (62)

Finally, the holonomy of the connection A along γ is defined as

H[A, γ] ≡ P exp

∫ 1

0
dsAi(s)τi = P exp

∫

γ
A . (63)

Intuitively, the connection A is the rule that defines the meaning of infinitesimal parallel transport of an
internal vector from a point of M to another near point: the vector v in x is defined parallel to the vector
v + Aµdx

µv in x+ dx. The holonomy gives the parallel transport for points at finite distance. A vector
is parallel transported along γ into the vector H[A, γ]v. Notice that even if there is a finite set of points
where γ is not smooth and A is not defined, the holonomy of a curve γ is well-defined; we can break γ in
smooth pieces and define the holonomy as the product of holonomies associated to the smooth pieces. For
the applications to quantum gravity, we will be concerned with a base manifold given by the spatial slice
Σt and and with SU(2) as gauge group. In Spin Foams, we will consider SO(4) or SO(1, 3) holonomies
over the 4-dimensional spacetime manifold.
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

3 The structure of Loop Quantum Gravity

In this section review the “canonical” quantization of Hamiltonian General Relativity; in other words we
introduce Loop Quantum Gravity (LQG). We exhibit the states satisfying some of the quantum constraints,
and construct the basic geometric operators. We show that length, area and volume operators have
a discrete (quantized) spectrum. The quantum dynamics is defined by the quantization of the scalar
constraint. The main physical prediction of Loop Quantum Gravity is that spacetime is fundamentally
discrete, the minimal quanta being of size of the order of the Planck length.

3.1 Kinematical state space

At the intuitive level, the quantum states of Hamiltonian General Relativity in Ashtekar-Barbero variables
are Schrödinger wave functionals Ψ[A] of the classical configuration variable, like in the Schrödinger repre-
sentation of ordinary quantum mechanics. The classical Hamilton function S[A] is interpreted as ~ times
the phase of Ψ[A], i.e. we interpret the classical Hamilton-Jacobi equation as the iconal approximation of
the quantum wave equation. This can be obtained substituting the derivative of the Hamilton functional
(the electric field) with derivative operators. The quantization of the first two constraints require the
invariance of Ψ[A] under SU(2) gauge transformations and 3-dimensional diffeomorphisms. Imposing the
scalar constraint leads to the Wheeler-DeWitt equation that governs the quantum dynamics of spacetime.

Cylindrical functions: Cyl(A) Consider the set A of smooth 3-dimensional real connections Aia de-
fined everywhere (except, possibly isolated points) on a 3-dimensional surface Σ with the topology of the
3-sphere. Consider also an ordered collection Γ (graph) of L smooth oriented paths γl (l = 1, ...L), called
links of the graph, and a smooth complex valued function f(g1, . . . , gL) of L group elements; smoothness
of f is with respect to the standard differential structure on SU(2). A couple (Γ, f) defines the complex
functional of A

ΨΓ,f [A] ≡ f(H[A, γ1], . . . ,H[A, γL]) (64)

whereH[A, γ] is the holonomy of the connection along the path. We call functionals of this form “cylindrical
functions”; their linear span (vector space of their finite linear combinations) is denoted with Cyl(A) .

Scalar product on the space of cylindrical functions If two functionals ΨΓ,f [A] and ΨΓ,h[A] are
supported on the same oriented graph Γ, we define the inner product

〈ΨΓ,f ,ΨΓ,h〉 ≡
∫

dg1, . . . ,dgL f(g1, . . . , gL)h(g1 . . . , gL) , (65)

where dg is the Haar measure over SU(2) (the unique normalized bi-invariant regular Borel measure over
a compact group). The previous definition extends to functionals supported on different graphs. If Γ and
Γ′ are two disjoint graphs with n and n′ curves respectively, define the union graph Γ̃ = Γ

⋃
Γ′ with n+n′

curves. If we define

f̃(g1, . . . , gn, gn+1, . . . gn+n′) ≡ f(g1 . . . , gn) , (66)

h̃(g1, . . . , gn, gn+1, . . . gn+n′) ≡ h(gn+1 . . . , gn+n′) ; (67)
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

then we put
〈ΨΓ,f ,ΨΓ′,h〉 ≡ 〈ΨΓ̃,f̃ ,ΨΓ̃,h̃〉 . (68)

If Γ and Γ′ are not disjoint, we can break Γ
⋃

Γ′ into the two disjoint pieces Γ and Γ′ − (Γ
⋂

Γ′), so we
are in the previous case. Notice that cylindrical functions do not live on a single graph but rather on all
possible graphs embedded in Σt, so we can already envisage the profound difference with lattice Yang-Mills
theories, which are defined over a fixed lattice. In quantum GR we are not cutting any short (or large)
scale degree of freedom.

Kinematical Hilbert space The kinematical Hilbert space Hkin of quantum gravity is the completion
of Cyl(A) w.r.t. the previous inner product:

Hkin = Cyl(A) . (69)

In order to have at our disposal also distributional states, we consider the topological dual of Cyl(A) to
build the Gelfand triple

S ⊂ Hkin ⊂ S ′ (70)

which constitutes the kinematical rigged Hilbert space. The kinematical Hilbert space can be viewed as
an L2 space

Hkin = L2(A,dµAL) (71)

where A is a suitable distributional extension of A and dµAL the Ashtekar-Lewandowski measure [36].
The key to construct a basis in Hkin is the Peter-Weyl theorem, which states that an orthonormal basis
for the Hilbert space L2(G,dg), where G is a compact group, is given by the matrix elements of unitary
irreducible representations. The unitary irreducible representations of SU(2)

SU(2) −→ Hom(Hj) (72)

g −→
j

Π(g) (73)

are labeled by non-negative half-integers j ∈ N/2 called spins, in analogy with the theory of angular
momentum in quantum mechanics. The carrying Hilbert space is Hj ≡ C2j+1. Thus an orthonormal
basis for Hkin is

ΨΓ,jl,αl,βl
[A] ≡

√
dim(j1) . . . dim(jL)

j

Πα1
β1

(H[A, γ1]) . . .
jL
ΠαL

βL
(H[A, γL]) , (74)

where dim(j) = (2j + 1) is the dimension of the representation space of spin j. These functions, called
open spin-networks, are labeled by an oriented graph embedded in Σ, a spin for each link (or edge) of
the graph, and the matrix indices (two for each link). Since graphs embedded in the 3-manifold Σ are
uncountable, it follows from the definition of the scalar product that the kinematical Hilbert space is
clearly non separable.

An interesting class of states are the traces of holonomies over a single closed loop α:

Ψα,j[A] = Tr
j

Π[A,α] (75)
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

These are the most simple gauge invariant states, as we will see in the next section. For historical reasons,
Loop Quantum Gravity takes its name from the loop states.

Intuitively, the Hilbert space Hkin is formed by Schrödinger wave functions of the connection. Then,
at least formally, the connection itself must be quantized as a multiplication operator, and the electric
field as a functional derivative operator:

Âia(x)Ψ[A] = Aia(x)Ψ[A] , (76)

Êai (x)Ψ[A] = −i~κγ δ

δAia(x)
Ψ[A] . (77)

3.2 Solution to the Gauss and diffeomorphism constraints

The quantum Gauss and vector constraints impose the invariance of kinematical states under local SU(2)
transformations and 3-dimensional diffeomorphisms of the spatial slice Σ. Let us see how.

Under local SU(2) gauge transformations g : Σ → SU(2), connection and holonomy transform as

Ag = gAg−1 + g dg−1 , (78)

U [Ag, γ] = g(xf )U [A, γ]g(xi)
−1 , (79)

where xi, xf ∈ Σ are the initial and final points of the oriented path γ. We can define the action of the
Gauss constraint on a cylindrical function ΨΓ,f ∈ Cyl(A) :

U(g)ΨΓ,f [A] ≡ ΨΓ,f [A
−1
g ] = f(g(xγ1f )g1g(x

γ1
i )−1, . . . , g(xγL

f )gLg(x
γL
i )−1) . (80)

From the definition (65) of scalar product, it follows that it is invariant under gauge transformations. It is
easy to prove that the transformation law (80) extends to a unitary representation of gauge transformations
over the whole Hkin. Now consider an invertible function φ : Σ → Σ such that the function and its inverse
are smooth everywhere, except possibly in a finite number of isolated points where they are only continuous.
Call the set of these functions extended diffeomorphisms Diff∗. Under an extended diffeomorphism the
connection transforms as a 1-form:

A 7→ φ∗A , (81)

where φ∗ is the push-forward map, and the holonomy transforms as

U [A, γ] 7→ U [φ∗A, γ] = U [A,φ−1γ] , (82)

that is applying a diffeomorphism φ to A is equivalent to applying the diffeomorphism to the curve γ.
The action of φ ∈ Diff∗ on cylindrical functions ΨΓ,f is then defined as:

U(φ)ΨΓ,f [A] = ΨΓ,f [(φ
∗)−1A] = Ψφ−1Γ,f [A] . (83)

It is immediate to verify that the scalar product is Diff∗-invariant, and that (83) also extends to a unitary
representation on Hkin.

In this way we have easily implemented at the quantum level the classical kinematical gauge symmetries
which are the (semi-direct) product of local gauge transformations and diffeomorphisms; most importantly,
no anomalies arise.
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Intertwiners The space solution to the Gauss constraint is easily expressed by first introducing the
objects called intertwiners. Consider N irreducible representations of SU(2), labeled by spins j1, . . . , jN ,
and their tensor product which act on the space

Hj1...jN ≡ Hj1 ⊗ . . .⊗HjN (84)

where Hj ≃ C2j+1. The tensor product (84) decomposes into a direct sum of irreducible subspaces. In
particular

H0
j1...jN

≡ InvHj1...jN ⊂ Hj1...jN (85)

is the subspace formed by invariant tensors, called N -valent intertwiners. The k-dimensional space of
intertwiners decomposes in the k 1-dimensional irreducible subspaces. Choosing a basis for each Hj , we
can use an index notation: intertwiners are N -index objects vα1...αN with an index for each representation,
invariant under the joint action of SU(2):

j1
Πα1

β1
(g) . . .

jN
ΠαN

βN
(g) vβ1...βN = vα1...αN ∀ g ∈ SU(2) . (86)

We will use the notation vα1...αN
i with i = 1, . . . , k to denote a set of k such invariant tensors, orthonormal

w.r.t. the standard scalar product in Hj1...jN :

vα1...αN
i vα1...αN

i′ = δii′ . (87)

Solution to the Gauss constraint: spin-network states Spin-network [37, 38] states are labeled
by an embedded oriented graph Γ, a set of spin labels jl (one for each link l), and a set of intertwiners
in (one for each node n). They are obtained by contraction of the open spin-network states (74) with the
intertwiners:

ΨΓ, jl, in [A] =
∑

αlβl

v
β1...βn1
i1 α1...αn1

v
βn1+1...βn2
i2 αn1+1...αn2

...v
βnN−1+1...βL

iN αnN−1+1...αL
ΨΓ, jl, αl, βl

[A] . (88)

The pattern of contraction of the indices is dictated by the topology of the graph itself: the index αl (βl)
of the link l is contracted with the corresponding index of the intertwiner vin of the node n where the link
l begins (ends). To an N -valent node it is associated an N -valent intertwiner between the spins meeting
at the node. SU(2) indices are raised and lowered with the ǫ tensor, which is the intertwiner between a
representation and its dual. In the fundamental 1/2 representation, its matrix form is

1/2
ǫ =

(
0 1
−1 0

)
. (89)

The importance of spin-network states is that they form an othonormal basis of the subspace of Hkin solu-
tion of the Gauss constraint, namely the gauge-invariant subspace. Gauge invariance follows immediately
from the invariance of the intertwiners and from the transformation properties (80).
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Figure 2: A spin-network with two trivalent nodes

Examples The most simple example of (gauge invariant) spin-network state is the loop state (75).
Another more complicated example is given in figure 2. We have to associate to each node an intertwiner
between two fundamental (i.e. j = 1/2) and one adjoint (i.e. j = 1) irreducible representations. Since
their tensor product contains a single 1-dimensional (i.e. j = 0) representation,

1

2
⊗ 1

2
⊗ 1 = (0 ⊕ 1) ⊗ 1 = 1 ⊕ 0 ⊕ 1 ⊕ 2 , (90)

there is a unique normalized intertwiner, represented by the triple of Pauli matrices: viAB = 1√
3
σiAB ; hence

the spin-network state associated to the graph in figure 2 is:

Ψ[A] =
1/2

Π (H[A, γ2])
A
B σ

B
i A

1
Π(H[A, γ1])

i
j σ

j,D
C

1/2

Π (H[A, γ3])
C
D . (91)

Four-valent intertwiners: virtual links In the case of 3-valent nodes (like in the previous example)
there is only one possible (normalized) intertwiner, namely the 3-valent intertwiner space is 1-dimensional.
If the node is instead 4-valent, the normalized intertwiner is no more unique. A possible basis is obtained by
decomposition in virtual links, that is writing the intertwiner as the contraction of two 3-valent intertwiners.
Explicitely, the virtual basis {vabcdi } is

vabcdi = vdaev bce =
√

2i+ 1 (92)

where a dashed line has been used to denote, in the language of Feynman diagrams, the virtual link
associated to the coupling channel; the index e is in the representation i and each node represents Wigner
3j-symbols (related in a simple way to the Clebsh-Gordan coefficients). The link labeled by i is called
virtual link, and the open links labeled by j1, j4 are said to be paired, or coupled. Two other choices of
pairing (coupling channels) are possible, giving two other bases:

ṽabcdi =
√

2i+ 1 , ˜̃vabcdi =
√

2i+ 1 . (93)
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Figure 3: 6j-symbol

The formula for the change of pairing, called recoupling theorem, is

=
∑

m

dim(m)(−1)b+c+f+m

{
a c m
d b f

}
, (94)

where {
j1 j2 j3
j4 j5 j6

}
(95)

is the Wigner 6j-symbol. The 6j-symbol is defined as the contraction of four 3j-symbols, according to the
tetrahedral pattern in figure 3.

Solution to the diffeomorphism constraint Spin-network states are not invariant under diffeomor-
phisms, because a generic diffeomorphism changes the underlying graph; it can also modify the link order-
ing and orientation. Diffeomorphism-invariant states must be searched in S ′, the distributional extension
of Hkin. Recall that S ′ is formed by all the continuous linear functionals over the space of cylindrical
functions. The action of the extended diffeomorphism group is defined in S ′ by duality

UφΦ(Ψ) ≡ Φ(Uφ−1Ψ) , ∀Ψ ∈ S (96)

where Uφ is the action (83), so a diffeomorphism invariant state Φ is such that

Φ(UφΨ) = Φ(Ψ) . (97)

We can define formally [39, 40] a “projection” map onto the solutions of the diffeomorphism constraint

PDiff∗ : S → S ′ (98)

(PDiff∗Ψ)(Ψ′) =
∑

Ψ′′=UφΨ

〈Ψ′′,Ψ′〉

The sum is over all the states Ψ′′ ∈ S for which there exist a diffeomorphism φ ∈ Diff∗ such that
Ψ′′ = UφΨ; the main point is that this sum is effectively over a finite set, because a diffeomorphism
acting on a cylindrical function can either transform it in an orthogonal state, or leave it unchanged, or
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∼

change the link ordering and orientation, but these latter operations are discrete and contribute only with
a multiplicity factor. We shall write S ′

Diff∗ for the space of solutions of the diffeomorphism and Gauss
constraint. Clearly the image of PDiff∗ is S ′

Diff∗ . The scalar product on SDiff∗ is naturally defined as

〈Φ,Φ′〉Diff∗ = 〈PDiff∗Ψ, PDiff∗Ψ′〉Diff∗ ≡ PDiff∗Ψ(Ψ′) . (99)

Denote φkΨΓ the state obtained from a spin-network ΨΓ by a diffeomorphism φk, where the maps {φk}
form the discrete subgroup of diffeomorphisms which change only ordering and orientation of the graph
Γ. For any two spin-networks supported on Γ and Γ′ respectively, it is clear that

〈PDiff∗ΨΓ, PDiff∗ΨΓ′〉 =

{
0 Γ 6= φΓ′ for all φ ∈ Diff∗
∑

k〈ΨΓ, φkΨΓ〉 Γ = φΓ′ for some φ ∈ Diff∗ (100)

An equivalence class under extended diffeomorphisms of non oriented graphs is called a knot; two spin-
networks ΨΓ and ΨΓ′ define orthogonal states in S ′

Diff∗ unless they are in the same equivalence class.
So states in S ′

Diff∗ are labeled by a knot and they are distinguished only by the coloring of links and
nodes. The orthonormal states obtained coloring links and nodes are called spin-knot states, or abstract
spin-networks, and, very often, simply spin-networks.

3.3 Electric flux operator

The operators (76) and (77) are not well defined in Hkin. The situation is quite similar to the quantum
mechanics of a particle on the real line, where the position and momentum operators are not well-defined
on L2(R,dx), but a suitable regularization, or smearing, of them is well defined. The smearing of the
connection A along a path γ gives nothing else then the holonomy; the corresponding operator Ĥ[A, γ] is
a well-defined self-adjoint multiplication operator on Hkin. It is defined as

Ĥ[A, γ]ABΨ[A] = H[A, γ]ABΨ[A] (101)

where H[A, γ] is intended in the fundamental, spin 1/2, representation of SU(2). Also the electric field
must be smeared. In fact it is a densitized vector, which is naturally smeared over surfaces. Before doing
this passage, it is instructive to write the action of the electric field operator Ê on spin-networks, at formal
level, using distributions. In particular, its action on a single holonomy functional in the fundamental
representation (the generalization to arbitrary representations is trivial) is:

δ

δAia(y)
H[A, γ] =

∫
ds ẋa(s)δ3(x(s), y)H[A, γ1]τiH[A, γ2] , (102)
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Figure 4: A partition of S

where s is an arbitrary parametrization of the curve γ, xa(s) are the coordinates along the curve, γ1 and
γ2 are the two parts in which γ is splitted by the point x(s), and δ3 is a Dirac delta distribution. The
effect of Ê is to insert SU(2) generators τi between the splitted holonomies, an operation called grasping
of holonomies. Notice that the r.h.s. of (102) is a two-dimensional distribution (δ3 is integrated over a
curve), hence also from this “quantum” point of view it is natural to look for a well-defined operator by
smearing Ê over a 2-dimensional surface.

Consider a two-dimensional surface S embedded in the 3-dimensional manifold Σ; be σ = (σ1, σ2)
coordinates on S. The embedding is defined by S : (σ1, σ2) 7→ xa(σ1, σ2). Classically, the quantity we
are going to quatize is the electric flux:

Ei(S) ≡ −i~κγ
∫

S
dσ1dσ2 na(σ)Eai (σ) , (103)

where

na(σ) = ǫabc
∂xb(σ)

∂σ1

∂xc(σ)

∂σ2
(104)

is the 1-form normal to S. The observable Ei(S) is quantized with the replacement Eai → Êai inside (103).

If we now compute the action of Êi(S) on the holonomy, using (102) we obtain

Êi(S)H[A, γ] = −i~κγ
∫

S

∫

γ
dσ1dσ2ds ǫabc

∂xa

∂σ1

∂xb

∂σ2

∂xc

∂s
δ3(x(σ), x(s))H(A, γ1)τiH(A, γ2) . (105)

This integral vanishes unless the curve γ and the surface S intersect. In the case they have a single
intersection, the result is

Êi(S)H(A, γ) = ±i~κγH(A, γ1) τiH(A, γ2) , (106)

where the sign is dictated by the relative orientation of γ w.r.t. the surface. The electric flux operator
simply acts by grasping the holonomies. When many intersections p are present (like in figure 4) the result
is

Êi(S)H(A, γ) =
∑

p

±i~κγ H(A, γp1)τiH(A, γp2) , (107)

and the sum is over instersections. The action on an arbitrary representation of the holonomy is

Êi(S)
j

Π(H[A, γ]) =
∑

p

±~κγ
j

Π(H[A, γp1 ])
j
τ i

j

Π(H[A, γp2 ]) , (108)
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where
j
τ i are now generators of a generic representation j. It is easy to extend the electric flux to a

self-adjoint operator on the whole Hilbert space Hkin, in particular on its SU(2) gauge-invariant subspace.

3.4 Holonomy-flux algebra and uniqueness theorem

We have found a well-defined quantization of holonomies and electric fluxes over a suitable Hilbert space
of Schrödinger wave functionals. Now we just have to solve the scalar constraint (we have already solved
the Gauss and diffeomorphism constraints), then start posing physical questions about quantum geometry,
the semiclassical limit of the theory and so on. Before attempting to do this, it is of great interest to ask
how much this construction is unique: which are the hypothesis bringing to the Loop Quantum Gravity
representation?

We answer (partially) sketching the recipes of algebraic quantization, and then enunciating the LOST
uniqueness theorem. The first step is to choose a basic set of classical observables P (a Poisson algebra)
and then considering the corresponding abstract *-algebra (algebra of quantum observables) obtained
by identifying (i~ times) Poisson brackets with commutators and complex conjugation with involution
operation *. It is the free tensor algebra T (P) over P modulo the 2-sided ideal generated by elements of
the form

fg − gf − i~{f, g} . (109)

The representation theory on Hilbert spaces of the abstract *-algebra defines the quantum theory. If
the classical theory have first class constraints which generate gauge transformations, these should be well
(unitarily) implemented as operators in the quantum theory. Recall that if we give a state ω (positive linear
functional) on a *-algebra A which is invariant under a group of automorphisms G, we can construct the
corresponding GNS representation (ξ, π,H), where π(a) (a ∈ A) is the representation of a as a bounded
linear operator on the Hilbert space H, and ξ is a cyclic vector, i.e. its image under π is dense. The
cyclic vector is such that 〈ξ, π(a)ξ〉 = ω(a); moreover, the group of automorphisms acts as a group of
unitary operators on the Hilbert space. Now we can see what happens when we apply this quantization
programme to GR.

In General Relativity, electric fluxes and holonomies are natural basic observables to start with the
quantization process. From the fundamental Poisson bracket between the Ashtekar-Barbero connection
and the electric field we derive easily

{Ei(S),H[γ,A]} = γκτ iH[γ,A] (110)

in the case the path γ have a single intersection with S and starts on an interior point of the surface.
The most general rule can be given, but we skip the details. The abstract *-algebra, called holonomy-flux
algebra, is formed by the “words” made from letters Ei(S) and H(γ,A), subject to the commutation rules
like (110). The basic abstract *-operations can be read off from

H[γ,A]∗ = H[γ,A] = H[γ−1, A]T (111)

and the trivial

Ei(S)∗ = Ei(S) = Ei(S) . (112)

SU(2) gauge transformations and diffeomorphisms act as automorphisms of the *-algebra. Now we can
state the uniqueness result, due to Lewandowski, Okolow, Sahlmann and Thiemann:
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1. There exist a unique gauge and diffeomorphism invariant state on the holonomy-flux *-algebra. This
is the analogous of the vacuum state in algebraic quantum field theory, being the state annihilated
by all the momenta.

2. The GNS representation associated to the vacuum state is given by the Hilbert space L2(A,dµAL)
with the holonomy and flux operators acting on it, namely it gives the kinematics of Loop Quantum
Gravity!

The uniqueness theorem is another striking result in Loop Quantum Gravity that puts the whole construc-
tion on solid mathematical grounds. There exist another version of the uniqueness, due to Fleischhack
[41]. Those uniqueness result generalize the well-known Stone-von Neumann theorem to the context of
Quantum Gravity.

3.5 Area and volume operators

The electric field flux Ei(S) is not gauge invariant (it has an SU(2) index), but its norm is gauge invariant.
Now consider the operator Ê2(S) =

∑3
i=1 Ê

i(S)Êi(S) and compute its action on a spin-network ΨΓ whose
graph has a single intersection with S. Let j be the spin of the link intersecting the surface. Since

−
3∑

i=1

j
τi
j
τi = j(j + 1)1 (113)

is the Casimir operator of SU(2) in the j representation, using the grasping rule (106) we have simply:

Ê2(S)ΨΓ = (~κγ)2j(j + 1)ΨΓ . (114)

Now we are ready to quantize the area [8, 42, 43, 44]: in classical General Relativity the physical area of
a surface S is

A(S) =

∫

S
d2σ

√
naEai nbE

b
i = lim

N→∞

∑

n

√
E2(Sn) , (115)

where Sn are N small surfaces in which S is partitioned. For N large enough, the operator associated to
A(S), acting on a spin-network, is such that every surface Sn is punctured at most once by the links of
the spin-network. So we have immediately

Â(S)ΨΓ = ~κγ
∑

p

√
jp(jp + 1) ΨΓ . (116)

This beautiful result tells us that the area operator Â is well defined on Hkin and that spin-networks are
eigenvectors of this operator. So far we have tacitly assumed that the spin-network has no nodes on S.
The result of the complete calculation in the general case is:

Â(S)ΨΓ = ~κγ
∑

u,d,t

√
1

2
ju(ju + 1) +

1

2
jd(jd + 1) +

1

2
jt(jt + 1) ΨΓ , (117)

where u labels the out-coming parts of the links, d the incoming and t the tangent links with respect to
the surface. We must stress again that the classical observable A(S) is the physical area of the surface
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S, hence we have also a precise physical prediction: every measure of area can give only a result in the
spectrum of the operator Â(S), so the area is quantized. The quantum of area carried by a link in the
fundamental representation j = 1/2 is the smallest eigenvalue (area gap); it is of order of the Plank area:

A0 ≈ 10−66cm2 (γ = 1) . (118)

Analogously, we can define an operator V (R) corresponding to the volume of a region R. The physical
volume of a 3-dimensional region is given by the expression [8, 45, 46, 47, 48, 49]

V (R) =

∫

R
d3x

√
1

3!
| ǫabcEai EbjEckǫijk | = lim

N→∞

∑

n

√
ǫabcEi(Sa)Ej(Sb)Ek(Sc)ǫijk , (119)

where the sum is over the N cubes in which the region R has been partitioned, and Sa are three sections
of the n-th coordinate cube. Now consider the quantization of the right hand side of (119) and consider
its action on a spin-network. Definitely, for large N , each coordinate cube contains at most one node. It
turns out that, as for the area, spin-networks are eigenstates of the volume operator and the corresponding
eigenvalues receive one contribution from each node. The explicit calculation shows that nodes with valence
V ≤ 3 do not contribute to the volume and that the spectrum is discrete.

3.6 Physical interpretation of quantum geometry

Since each node of a spin-network ΨΓ contribute to the volume eigenvalue, the volume of the region R is
a sum of terms, one for each node contained in R. We can then identify nodes with quanta of volume;
these quanta are separated by surfaces whose area is measured by the operator Â(S). All the links of the
graph which intersect the surface S contribute to the area spectrum. Two space elements, or chunks, or
volume quanta, or nodes, are contiguous if they are connected by a link l; in this case they are separated
by a surface of area Al = ~κγG

√
jl(jl + 1), where jl is the spin labeling the link l. The intertwiners,

labels of nodes, are the quantum numbers of volume and the spins associated to the links are quantum
numbers of area. The graph Γ determines the contiguity relations between the chunks of space, and can
be interpreted as the dual graph of a cellular decomposition of the physical space. A spin-network state
represents a quantized metric, and a discretized space.

Abstract spin-networks, the diffeomorphism equivalence classes of embedded spin-networks have to be
regarded as more fundamental, because they solve the kinematical constraints of the theory; they have a
precise physical interpretation. Passing from an embedded spin-network state to its equivalence class, we
preserve all the information except for its localization in the 3-dimensional manifold; this is precisely the
implementation of the diffeomorphism invariance of the classical theory, where the physical geometry is
an equivalence class of metrics under diffeomorphisms. A spin-network is a discrete quantized geometry,
formed by abstract quanta of space not living somewhere on a 3-dimensional manifold, but only localized
one respect to another. This is a remarkable result in LQG, which predicts a Plank scale discreteness of
space, on the basis of a standard quantization procedure, in the same manner in which the quantization
of the energy levels of an atom is predicted by nonrelativistic Quantum Mechanics.

3.7 Dynamics

The quantization of the scalar constraint S is a more difficult task mainly for two reason: first of all
it is highly non linear, not even polynomial in the fundamental fields A and E. This gives origin to
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quantization ambiguities and possible ultraviolet divergences; most importantly, it is difficult to have a
clear geometrical interpretation of the transformation generated by S (it contains Einstein equations!).
Remarkably, a quite simple quantization recipe has been found by Thiemann [50, 51], and we sketch his
construction with some details.

The scalar constraint is the sum of two terms:

S(N) = SE(N) − 2(1 + γ2)T (N) , (120)

where E stands for Euclidean, for historical reasons. The procedure found by Thiemann consists in
rewriting S in such a way that the complicated non-polynomial structure gets hidden in the volume
observable. For example, the first Euclidean term can be rewritten as

SE(N) =
κγ

4

∫

Σ
d3xNǫabcδij F

j
ab{Aic, V } . (121)

The main point is that a suitably regulated version of the last expression is easy to quantize. Indeed given
an infinitesimal loop αab in the coordinate ab-plane, with coordinate area ǫ2, the curvature tensor Fab can
be regularized observing that

Hαab
[A] −H−1

αab
[A] = ǫ2F iabτi + O(ǫ4) . (122)

Similarly, the Poisson bracket {Aia, V } is regularized as

H−1
ea

[A]{Hea [A], V } = ǫ{Aa, V } + O(ǫ2) , (123)

where ea is a path along the a−coordinate of coordinate length ǫ. Using this we can write the scalar
constraint SE(N) as a limit of Riemann sums

SE(N) = lim
ǫ→0

∑

I

NIǫ
3ǫabc Tr[Fab[A]{Ac, V }] = (124)

= lim
ǫ→0

∑

I

NIǫ
abc Tr[(HαI

ab
[A] −HαI

ab
[A]−1)H−1

eI
c

[A]{HeI
c
, V }] ,

where in the first equality we have replaced the integral in (121) by a limit of a sum over cells, labeled
with the index I, of coordinate volume ǫ3. The loop αIab is a small closed loop of coordinate area ǫ2 in the
ab−plane associated to the I-th cell, while the edge eIa is the corresponding edge of coordinate length ǫ,
dual to the ab−plane. If we quantize the last expression in (124) we obtain the quantum scalar constraint

ŜE(N) = lim
ǫ→0

∑

I

NIǫ
abc Tr[(ĤαI

ab
[A] − ĤαI

ab
[A]−1)Ĥ−1

eI
c

[A][ĤeI
c
, V̂ ]] . (125)

The regulated quantum scalar constraint, that is before taking the limit in (125), acts only at spin-network
nodes; this is a consequence of the very same property of the volume operator. By this we mean that
the terms in (125) corresponding to cells which do not contain nodes annihilates the spin-network state.
Like the volume operator, the quantum scalar constraint acts only at nodes of valence V > 3. Due to the
action of infinitesimal loop operators representing the regularized curvature, the scalar constraint modify

29



3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

spin-networks by creating new links around nodes, so creating triangles in which one vertex is the node,
a fact exemplified in the following picture:

Ŝnǫ j

k

l

m

=
∑

op Sjklm,opq
o

p
l

qj

m

k

+

+
∑

op Sjlmk,opq

l

j

m

k

p

o

q +
∑

op Sjmkl,opq

l

j

m

k

p
q

o .

(126)

A similar quantization can be given for the other term of the scalar constraint (120). To remove the
regulator ǫ we note that the only dependence on ǫ is in the position of the extra link in the resulting
spin-network. This suggests to define the quantum scalar constraint at the diffeomorphism invariant level,
that is to take the limit ǫ → 0 weakly in the space S ′

Diff∗ . If we do that, the position of the new link is
irrelevant. Hence the limit

〈Φ, Ŝ(N)Ψ〉 = lim
ǫ→0

〈Φ, Ŝǫ(N)Ψ〉 (127)

exists trivially for any Ψ,Φ ∈ S ′
Diff∗ . In the language of particle physics, we have avoided any UV singularity

in taking away the regulator; this is a benefit of the diffeomorphism invariance of Loop Quantum Gravity.
We now point out some properties of the quantum scalar constraint.

There is a non trivial consistency condition on the quantum scalar constraint: it must satisfy the
quantum analog of the classical identity (55). The correct commutator algebra is recovered, in the sense
that

〈Φ | [Ŝ(N), Ŝ(M)] | Ψ〉 = 0 (128)

for any Φ and Ψ in S ′
Diff∗ , and we can say that the loop quantization of GR does not give rise to anomalies.

Similar techniques can be applied to the case of (possibly supersymmetric) matter coupled to GR. We
should also point out that there is a rich space of rigorous solutions to the scalar constraint and a precise
algorithm for their construction has been developed [52, 53, 54]. The Hamiltonian constraint acts by
annihilating and creating spin degrees of freedom and therefore the dynamical theory obtained could be
called “Quantum Spin Dynamics” in analogy to Quantum Chromodynamics in which the Hamiltonian acts
by creating and annihilating color degrees of freedom. In fact we could draw a crude analogy to Fock space
terminology as follows: the (perturbative) excitations of QCD carry a continuous label, the mode number
k ∈ R3 and a discrete label, the occupation number n ∈ N (and others). In Loop Quantum Gravity the
continuous labels are the links of the abstract graphs and the discrete ones are spins j (and others).

Next, when solving the Hamiltonian constraint, that is, when integrating the quantum Einstein equa-
tions, one realizes that one is not dealing with a (functional) partial differential equation but rather with a
(functional) partial difference equation. Therefore, when understanding coordinate time as measuring how
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for instance volumes change, we conclude that also time evolution is necessarily discrete. Such discrete
time evolution steps driven by the Hamiltonian constraint assemble themselves into what is known as a
spin foam. A spin foam is a four dimensional complex of two dimensional surfaces where each surface is
to be thought of as the world sheet of a link of a spin-network and it carries the spin that the link was
carrying before it was evolved.

In summary, there is no mathematical inconsistency in the dynamics of LQG, nevertheless there are
doubts about the physical viability of the scalar constraint operator we discussed here, although no proof
exists that it is necessarily wrong. In the next section we introduce Spin Foam Models as an alternative,
probably equivalent way to define the dynamics of Loop Quantum Gravity.
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4 Covariant formulation: Spin Foam

Spin Foam Models (SFM) are proposals for the covariant Lagrangian (path integral) formulation of non-
perturbative quantum gravity. There are some indications that actually Spin Foam Models could be the
covariant implementation of the dynamics of Loop Quantum Gravity. A quite strong contact between
the two formalisms has been established for 3-dimensional Riemannian pure gravity by Reisenberger,
Perez and Noui in [55, 16]. In the 4-dimensional more physical case the New Spin Foam Models (NSFM)
[56, 15, 57, 58] realized a beautiful bridge with the kinematics of LQG, and remarkably the spectra of
geometric operators are the same of LQG, even in the Lorentzian signature version of the models. The
spin foam formulation is based on a path integral “à la Feynmann” that implements the Misner-Hawking
idea of sum over geometries [59, 60]; more precisely, the sum is over colored 2-complexes (like in Fig. 5),
i.e. collections of faces, edges and vertices combined together and labeled (or colored) using the repre-
sentation theory of the gauge group. As we mentioned in the end of the last section, we can think to
this formalism as a way to represent the time evolution of spin-networks: we can interpret a spin foam as
an history of spin-networks. The two formulations of nonperturbative quantum gravity, LQG and SFM,
have different properties: Lagrangian formalism is more transparent and keeps symmetries and covariance
manifest. The Hamiltonian formalism is more rigorous but calculations involving dynamics are cumber-
some. Even if simpler and often euristically constructed, Spin Foam Models allow to compute explicitly
transition amplitudes in quantum gravity between two quantum states geometry, in particular between
semiclassical states [61, 62, 63, 64]. A general question related to Spin Foams is how to deal with the
divergencies associated to closed surfaces (analogous to the loops in Feynman diagrams) called bubbles;
those divergencies are “infrared” since the Plank scale discreteness forbids any ultraviolet divergence. The
form and the physical meaning of the divergencies (residual gauge symmetry? renormalization flow?) is
being analyzed (see [65, 66, 67, 68, 69]).

In this section we give a general definition of a SFM and we motivate at an intuitive level the reasons
and the sense in which they are the path integral representation of the LQG scalar constraint. It is easier to
start in three dimensions, following an historical path, and introduce the topological Ponzano-Regge model
of 3d pure gravity; this is based on the triangulation “à la Regge” of a 3-dimensional manifold. Then we
extend this model to four dimensions obtaining the topological quantum BF theory. BF theory is currently
the main starting point for the construction of physical, non topological models for quantum gravity. The
reason is that BF theory becomes General Relativity under the imposition of some constraints in the path
integral. It is just the way those constraints are imposed that brought to the well known Barrett-Crane
SFM, and more recently to the New Spin Foam Models.

4.1 Path integral representation

A spin foam σ is a 2-complex Γ with a representation jf of the gauge group G associated to each face and
an intertwiner ie associated to each edge [70]. The gauge group can be either SO(4) or SO(1, 3) for the
4-dimensional models; it is SO(1, 2) or SO(3) in 3 spacetime dimensions; usually they are replaced with
the corresponding universal covering groups. A Spin Foam Model [71] is defined, at least formally, by the
partition function

Z =
∑

Γ

w(Γ)Z[Γ] (129)
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where the amplitude associated to the spin foam Γ is

Z[Γ] =
∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie) . (130)

The weight w(Γ) is a possible multiplicity factor, Af , Ae and Av are the amplitudes associated to faces,
edges and vertices of Γ respectively. In many cases the face amplitude Af (jf ) is just the dimension of the
representation dim(jf ). So a spinfoam model is defined by:
1) a set of 2-complexes, and associated weights;
2) a set of representations and intertwiners;
3) a vertex and an edge amplitude.
There is a close relation between LQG dynamics and spin foams [72, 73, 74]. In the context of LQG we
can define a “projection” operator P from the kinematical Hilbert space Hkin to the kernel S ′

phys ⊂ S ′
Diff∗

of the scalar constraint. Formally we can write P as

P =

∫
D[N ] ei

R
Σ
N bS , (131)

where the functional integration is taken over the lapse function N . Indeed (131) represents a sort of
infinite dimensional δ distribution:

P ∼
∏

x

δ(Ŝ(x)) . (132)

Expressions like (132) and (131) are the starting point for a rigorous construction of the projector in 3d
pure gravity and 4d topological BF theory [16, 75]. For any state Ψ ∈ Hkin, PΨ is a formal solution to
the scalar constraint. Moreover the projector P naturally defines the physical scalar product

〈Ψ,Ψ′〉phys ≡ 〈PΨ,Ψ′〉 . (133)

The main importance of the physical scalar product is that it represents the probability amplitude for a
process involving quantum states of geometry. Following a quite standard derivation of the path integral
from the Hamiltonian theory, in analogy with nonrelativistic quantum mechanics and QFTs, one can see
that the physical scalar product of spin-networks states can be represented as a sum over spin-network
histories [76, 77], or spin foams (see fig. 5) which are bounded by the given spin-networks

〈Ψ,Ψ′〉phys =
∑

∂Γ=Ψ∪Ψ′

w(Γ)Z[Γ] . (134)

Imagine that the “initial” spin-network moves upward along a time coordinate of spacetime, sweeping a
worldsheet, changing at each discrete time step under the action of the scalar constraint Ŝ. The worldsheet
defines a possible history. An history from Ψ to Ψ′ is a 2-complex with boundary given by the graphs of
the spin-networks, whose faces f are the worldsurfaces of the links of the initial graph, and whose edges
e are the worldlines of the nodes. Since the scalar constraint acts on nodes, the individual steps in the
history can be represented as the branching off of the edges. We call vertices v the points where edges
branch. We obtain in this manner a collection of faces, meeting at edges, in turn meeting at vertices;
the set of those elements and their adjacency relations defines a 2-complex Γ. Moreover the 2-complex is
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Figure 5: A spin foam seen as evolution of spin-networks

colored with the irreducible representations and intertwiners inherited from spin-networks, namely it is a
spin foam.

The underlying discreteness discovered in LQG is crucial to have a well-defined physical scalar product.
Indeed the functional integral for gravity is replaced by a discrete sum over quantum amplitudes associated
to combinatorial objects with a foam-like structure. A spin foam represents a possible quantum history
of the gravitational field. Boundary data in the path integral are given by quantum states of 3-geometry,
namely spin-networks.

Deriving Spin Foam Models from the canonical theory can be a difficult task; for this reason they are
derived directly from the Lagrangian of General Relativity. The most common setting is a discretization
of the topological BF field theory: given a simplicial decomposition of spacetime one defines a discretize
version of BF theory and then quantize it. The result of the quantization is a recipe for spin foam
amplitudes on a fixed triangulation of spacetime. This is a bad feature, because we expect from the
canonical theory that the Feynmann path integral contains, besides a sum over quantum numbers, also a
sum over 2-complexes. The most common tool used to recover the sum over 2-complexes (usually a sum
over triangulations) is an auxiliary field theory called Group Field Theory (GFT) [78, 79, 80, 81]. The
SFM/GFT duality permits the identification

Z[Γ] = ZGFT[Γ] , (135)

where the GFT amplitude ZGFT[Γ] is defined inside a Feynman expansion

ZGFT =
∑

Γ

λv[Γ]

sym[Γ]
ZGFT[Γ] . (136)

The GFT sum (136) is over a certain class of triangulations, and possibly also over spacetime topologies,
and v[Γ] is the number of vertices in the triangulation Γ. The physical origin of the sum over graphs
can be understood as follows: in a realistic model for quantum gravity, the sum over 2-complexes, or at
least over simplicial triangulations, must be present in order to capture the infinite number of degrees of
freedom of General Relativity: General Relativity is a field theory with local degrees of freedom. This is
also what we expect from the canonical theory, from expression like (134).
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4.2 Regge discretization

Historically, the fist SFM was the one introduced by Ponzano and Regge. This is the quantization
of a discretization of classical GR introduced by Regge himself in the early 1960’s and called Regge
calculus [82]. Regge calculus is a natural way to approximate General Relativity by means of a discrete
lattice theory. We illustrate the construction for Euclidean (i.e. Riemannian) General Relativity in any
dimension. A Riemannian manifold (M,g), where M is a smooth manifold and g its metric tensor, can be
“approximated” with a piecewise flat manifold (∆, g∆), formed by flat simplices (triangles in 2d, tetrahedra
in 3d, 4-simplices in 4d...) glued together in such a way that the geometry of their shared boundaries
matches. Here ∆ is the abstract triangulation, and the discretized metric g∆ assumes a constant value on
the edges of simplices and is determined by the size of simplices. For instance, a curved 2d surface can be
approximated by a surface obtained by gluing together flat triangles along their sides: curvature is then
concentrated on the points where triangles meet, possibly forming “the top of a hill”. With a sufficient
number N of simplices, we can (fixing the abstract triangulation and varying the size of the individual n-
simplices) approximate sufficiently well any given Riemannian manifold with a Regge triangulation. Thus,
over a fixed ∆ we can define an approximation of GR, in a manner analogous to the way a given Wilson
lattice defines an approximation to Yang-Mills field theory, or the approximation of a partial differential
equation with finite differences defines a discretization of the equation. Therefore the Regge theory over
a fixed triangulation ∆ defines a cut-off version of GR.

The meaning of Regge cut-off There is an important and fundamental difference between this kind
of discretization and lattice Yang-Mills theories: the Regge cut-off is neither ultraviolet nor infrared. In
lattice QCD, the number N of elementary cells of the lattice defines an infrared cut-off: long wavelength
degrees of freedom are recovered by increasing N . On the other hand, the physical size a of the individual
cells enters the action of the theory, and short wavelength degrees of freedom are recovered in lattice
QCD by decreasing a. Hence a is an ultraviolet cut-off. In Regge GR, on the contrary, there is no fixed
background size of the cells that enters the action. A fixed ∆ can carry both a very large or a very small
geometry, depending on the (discrete) metric we put on it. The cut-off implemented by ∆ is therefore
of a different nature than the one of lattice QFT. It is not difficult to see that it is a cut-off in the ratio
between the smallest allowed wavelength and the overall size of the spacetime region considered. Thus,
fixing ∆ is equivalent to cutting-off the degrees of freedom of GR that have much smaller wavelength than
the arbitrary size L of the region one considers. Since the quantum theory has no degrees of freedom
below the Planck scale, it follows that a Regge approximation is good for L small, and it is a low-energy
approximation for L large.

Geometrical construction Consider a 4d triangulation. This is formed by oriented 4-simplices (v),
tetrahedra (e), triangles (f), segments and points. The notation refers to the dual triangulation (v for
vertices, e for edges and f for faces) that will be useful when dealing with spin foams. The metric is
flat within each 4-simplex v. All the tetrahedra and triangles are flat. The geometry induced on a given
tetrahedron from the geometry of the two adjacent 4-simplices is the same. In d dimensions, a (d − 2)-
simplex is surrounded by a cyclic sequence of d-simplices, separated by the (d − 1)-simplices that meet
at the (d − 2)-simplex. This cyclic sequence is called the link of the (d − 2)-simplex. For instance, in
dimension 2, a point is surrounded by a link of triangles, separated by the segments that meet at the point;
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in dimension 3, it is a segment which is surrounded by a link of tetrahedra, separated by the triangles
that meet at the segment; in dimension 4, a triangle f is surrounded by a link of 4-simplices v1, . . . , vn,
separated by the tetrahedra that meet at the triangle f . In Regge calculus, curvature is concentrated on
the (d−2)-simplices. In dimension 4, curvature is therefore concentrated on the triangles f . It is generated
by the fact that the sum of the dihedral angles of the 4-simplices in the link around the triangle may be
different from 2π. We can always choose Cartesian coordinates covering one 4-simplex, or two adjacent
4-simplices; but in general there are no continuous Cartesian coordinates covering the region formed by
all the 4-simplices in the link around a triangle. The variables used by Regge to describe the geometry
g∆ of the triangulation ∆ are given by the set of the lengths of all the segments of the triangulation. The
discretized action for Riemannian 3d gravity is the Regge action

SRegge =
∑

v

Sv , (137)

where

Sv =
∑

f

lfθf (lf ) , (138)

is the contribution of a single tetrahedron v of the simplicial triangulation, and θf is the dihedral angle
associated to the segment f , that is the angle between the outward normals of the triangles incident to
the segment. One can show that the Regge action is an approximation to the integral of the Ricci scalar
curvature, namely to the Einstein-Hilbert action.

4.3 Quantum Regge calculus and spinfoam models

Quantum Regge calculus is a quantization of discretized General Relativity [83]. Contrary to LQG, here
the discretization is not derived, but imposed already in the classical theory. Consider the 3d Euclidean
case, which is easier and is the one originally studied by Ponzano and Regge. The idea is to define a
partition function as a sum over Regge geometries, using the Regge action as the weight in the Feynman
path integral:

Z =

∫
dl1 . . . dlN e

iSRegge ; (139)

this is a sum over the N edge lengths of a fixed triangulation. Regge discovered a surprising property
of the Wigner 6j-symbol, a well-known combinatorial object in the theory of angular momentum: in the
large spins j limit the following asymptotic formula holds, linking the symbol which depends on six spins
jn to the Regge action (138) of a tetrahedron with edge lengths jn:

{6j} ∼ 1√
12πV

cos
(
Sv(jn) +

π

4

)
. (140)

Expanding the cosine in two complex exponentials, the two resulting terms correspond to forward and
backward propagation in coordinate time, and π/4 does not affect classical dynamics. V is the volume
of the tetrahedron. So the 6j-symbol knows about quantum gravity: it is the right weight for the path
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integral! Under the assumption that the lengths are quantized multiples of a fundamental length, Ponzano
and Regge proposed the following formula for 3d quantum gravity:

ZPR =
∑

j1...jN

∏

f

dim(jf )
∏

v

{6j}v . (141)

Formula (141) contains a sum over all possible spins and a product of 6j-symbols, one per each dual
vertex (tetrahedron) of the triangulation. This formula has the general form (130) where the set of two
complexes summed over is formed by a single 2-complex (we are not summing over triangulations); the
representations summed over are the unitary irreducibles of SU(2), the intertwiners are the unique 3-valent
ones and the vertex amplitude is Av = {6j}. So (141) defines a spin foam model called the Ponzano-Regge
model. This model can be obtained also by direct evaluation of a discrete path integral when we introduce
appropriate variables. To this aim, consider the dual triangulation ∆∗ defined as follows: place a vertex
v inside each tetrahedron of ∆; if two tetrahedra share a triangle e, we connect the two corresponding
vertices by an edge e, dual to the triangle e; for each segment (or edge, not to be confused with the dual
edge) f of the triangulation we have a face f of ∆∗. Finally for each point of ∆ we have a 3d region
of ∆∗, bounded by the faces dual to the segments sharing the point (Table 1). Let he = P exp (

∫
e ω

iτi)

∆3 ∆∗
3

tetrahedron vertex (4 edge, 6 faces)

triangle edge (3 faces)

segment face

point 3d region

∆4 ∆∗
4

4-simplex vertex (5 edge,10 faces)

tetrahedron edge (4 faces)

triangle face

segment 3d region

point 4d region

Table 1: Relation between a triangulation and its dual, in three and four dimensions. In parenthesis:
adjacent elements.

be the holonomy of the SU(2) spin connection along each edge of ∆∗; let lif be the line integral of the

triad (gravitational field) ei along the segment f of ∆. The basic variables are he and lif . The discretized
Einstein-Hilbert action in these variables reads

S[lf , he] =
∑

f

lifTr[hf τi] =
∑

f

Tr[hf lf ] , (142)

where

hf = h
ef
1
. . . h

ef
n

(143)

is the product of group elements associated to the edges ef1 , . . . , e
f
n bounding the face f . The lf ’s are

elements in the Lie algebra su(2) (lf ≡ lif τi). If we vary this action w.r.t. the lengths lif we obtain the
simple equations of motion

hf = 1 , (144)
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namely the lattice connection is flat. Varying w.r.t. he, and using (144), we obtain the equations of motion
lif1 + lif2 + lif3 = 0 for the three sides f1, f2, f3 of each triangle. This is the discretized version of the Cartan
structure equation De = 0. Now we can define the path integral as

Z =

∫
dlifdhe exp iS[lf , he] , (145)

where dhe is the Haar measure over SU(2). Up to an overall normalization factor, we find

Z =

∫
dhe

∏

f

δ(h
ef
1
. . . h

ef
n
) =

∑

j1...jN

∏

f

dim(jf )

∫
dhe

∏

f

Tr
jf
Π (h

ef
1
. . . h

ef
n
) , (146)

where we have expanded the Dirac δ distribution over the group manifold using the Plancherel expansion

δ(h) =
∑

j

dim(j)Tr
j

Π(h) (147)

in which the sum is over all unitary irreducible representations of SU(2). Since every dual edge is shared
by three dual faces, the integrals over a single holonomy he are of the form

∫

SU(2)
dg

j1
Π (g)aa′

j2
Π (g)b b′

j3
Π (g)c c′ = vabcva′b′c′ , (148)

where vabc is the normalized intertwiner (vabcvabc = 1) between the representations of spin j1, j2, j3. Each
of the two invariant tensors in the r.h.s. is associated to one of the two vertices that bounds the edge.
In all we have four intertwiners for each vertex; these intertwiners get fully contracted among each other
following a tetrahedral pattern. This contraction is precisely the Wigner 6j-symbol. Bringing all together
we obtain the Ponzano-Regge partition function (141).

4.4 BF theory

Here we extend the above construction to four dimensions. As a first step we do not consider GR, but a
much simpler 4d theory, called BF theory, which is topological and is a simple extension to 4 dimensions
of the topological 3d GR. BF theory for the group SU(2) is defined by two fields: an su(2)-valued 2-form
BIJ
µν (indices I, J are in the Lie algebra), and an su(2)-valued spin connection ωIJµ . The action is a direct

generalization of (142):

S[B,Γ] =

∫
BIJ ∧ F IJ [Γ] . (149)

where the curvature of the connection is

F IJ = dωIJ + ωIK ∧ ωKJ . (150)

The wedge ∧ is the exterior product of differential forms, so we are integrating a 4-form over a 4-dimensional
space. We discretize BF theory on a fixed triangulation; the discrete configuration variables are BIJ

f ,
which are the integrals of the smooth 2-forms over triangles f (f stands for faces dual to triangles). The

38



4. COVARIANT FORMULATION: SPIN FOAM

construction of the dual 4-dimensional triangulation is resumed in Table 1. Following the same procedure
of the 3d model, we obtain an equation analog to (146), but now we are in four dimensions, and every
edge bounds four faces; so we have to compute integrals of this form

∫

SU(2)
dg

j1
R (g)aa′

j2
R (g)b b′

j3
R (g)c c′

j4
R (g)dd′ =

∑

i

vabcdi via′b′c′d′ . (151)

Here i labels an orthonormal basis vabcdi (vabcdi vj abcd = δij) in the space of the intertwiners between the
representations of spin j1, j2, j3, j4; we choose the virtual spin basis, where i is the virtual spin. Now,
each vertex bounds ten faces and so for each vertex we have ten representations. Analogously to the three
dimensional case, where the vertex amplitude was given by a 6j-symbol, we find that here the vertex
amplitude is the Wigner 15j-symbol

A(j1, . . . j10, i1, . . . , i5) ≡
∑

a1...a10

va1a6a9a5i1
va2a7a10a1i2

va3a7a8a2i3
va4a9a7a3i4

va5a10a8a4i5
= {15j} .

We have 15 spins because 10 of them are associated to faces, while 5 of them are the virtual spins labeling
intertwiners in the standard basis. The pattern of the contraction of the indices reproduces the structure
of a four simplex (Fig. 6). We can then write the full partition function

Z =
∑

jf ,ie

∏

f

dim(jf )
∏

v

{15j}v . (152)

In conclusion, the spinfoam model of BF theory is defined by the following choices:

Figure 6: The Wigner 15j-symbol

1) the set of two complexes summed over is formed by a single 2-complex, given by the 2-skeleton of the
dual triangulation;
2) the representations summed over are the unitary irreducibles of SU(2);
4) the vertex amplitude is Av = {15j}.
For the applications to gravity, BF theory must be formulated with the SO(4) or SO(3, 1) gauge group.
The fields B and F will have values in the respective Lie algebras. General Relativity can be obtained
from SO(3, 1) BF theory substituting the field BIJ with ǫIJKLe

K ∧ eL, where e is a Lorentz tetrad. We
will describe the Euclidean version, where the gauge group is SO(4).

The quantization of the discretized SO(4) BF theory is straightworfard, because of the decomposition
SO(4) ≃ SU(2) × SU(2)/Z2. The unitary irreducible representations of SO(4) are then the tensor
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product of couples of SU(2) representations. They are labeled by couples (j+, j−). A basis for the 4-
valent intertwiner space is given by the tensor product of the basis intertwiners of SU(2); from this, also
intertwiners can be labeled by couples (i+, i−) of virtual spins. The resulting vertex amplitude is

A(j±1 , . . . j
±
10, i

±
1 , . . . , i

±
5 ) ≡ {15j+}{15j−} (153)

that is the product of two 15j-symbols. The full partition function is

Z =
∑

j±f ,i
±
e

∏

f

dim(j+f )dim(j+f )
∏

v

{15j+}v{15j+}v . (154)

4.5 Barret-Crane model

Now we are ready to look for a spinfoam model for quantum General Relativity. We restrict our attention
on the Euclidean signature model, with gauge group SO(4). As we have anticipated, to obtain GR from
the topological BF theory we must replace BIJ with

BIJ = ǫIJKLe
K ∧ eL , (155)

where eIµ is a tetrad. Equation (155) is equivalent to the following constraint:

BIJ ∧BKL = V ǫIJKL , (156)

where V is proportional to the volume element. Consider now the simplicial discretization of BF theory.
For each 4-simplex v, the discretized version of equation (156) is the following:

B∗
f · Bf = 0 , (157)

B∗
f · Bf ′ = 0 , f and f ′ share an edge, (158)

B∗
f · Bf ′ = ±2V (v) f and f ′ are opposite faces of v, (159)

where V (v) is the volume of the 4-simplex v, and the ∗ is the Hodge dual w.r.t. the internal indices. In
the quantum theory, as in the quantization of lattice Yang-Mills theories, the standard procedure is to
quantize BIJ

f as left-invariant or right-invariant vector fields of the SO(4) Lie algebra, depending on the
orientation of the face. It is immediate to see that the four bivectors associated to the four triangles of a
single tetrahedron satisfy the closure relation

BIJ
f1 (t) +BIJ

f2 (t) +BIJ
f3 (t) +BIJ

f4 (t) = 0 , (160)

which is the discrete analog of Gauss constraint. Equation (157) is called diagonal simplicity constraint,
and it becomes, in the quantum theory, a restriction on the representations summed over in the partition
function. Recall indeed that irreducible representations of SO(4) are labeled by couples of spins (j+, j−).
The quantum diagonal simplicity constraint expresses the vanishing of the pseudo-scalar Casimir operator:

ǫIJKLB̂
IJ
f B̂KL

f = B̂IJ
+ B̂+IJ − B̂IJ

− B̂−IJ = [j+(j+ + 1) − j−(j− + 1)]1 = 0 . (161)
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The quantities BIJ
+ and BIJ

− are respectively the self-dual and antiself-dual parts of BIJ :

BIJ
± = BIJ ±B∗IJ . (162)

It follows that the representations have to be simple, that is j+ = j−. This suggests that quantum GR
can be obtained by restricting the sum over representations in (154) to the sole simple representations.
The other two constraints (158) and (159) are called off-diagonal and dynamical simplicity constraints
respectively; the off-diagonal one selects the simple representations also in the intertwiner space. This
singles out the Barrett-Crane intertwiner, defined as

i
(aa′)(bb′)(cc′)(dd′)
BC =

∑

i

(2i+ 1) vabgvgcdva
′b′g′vg

′c′d′ , (163)

where the SO(4) indices are couple of SU(2) indices, and the indices g and g′ are in the representation i.
The BC intertwiner has the property of being formed by a simple virtual link in any decomposition

iBC =
∑

ix

(2ix + 1) = =
∑

iy

(2iy + 1) . (164)

Note that the scalar Casimir B̂f · B̂f is the quantization of the area of the triangle f and its eigenvalues
jf (jf + 1) are the quantum numbers of area. The Barret-Crane vertex amplitude is:

=
∑

i1...i5

(165)

This combinatorial symbol is called 10j-symbol. The Barret-Crane spinfoam model [84, 85] is defined by
the partition function constructed with the vertex amplitude (165):

ZBC =
∑

jf

∏

f

dim(jf )
2
∏

v

{10j}v . (166)

A remarkable property of the 10j-symbol is its asymptotic expansion [86, 87]. Its large spin behavior is

{10j} ∼
∑

σ

P (σ) cos SRegge(σ) + k
π

4
+D , (167)

where

SRegge(σ) =
∑

a

jaθa (168)
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is the so-called area Regge calculus action for a 4-simplex; ja is the area of the a-th triangle in the 4-simplex,
and θ the exterior 4-dimensional dihedral angle between the two tetrahedra sharing the a-th triangle. The
sum is over possible discrete degeneracies. The term P (σ) is a non oscillating, slowly varying factor,
like the volume factor in the Ponzano-Regge asymptotic formula; D is the contribution of the so-called
degenerate configurations and k is an integer depending on σ . In [88] Baez, Christensen and Egan showed
that the term D is in fact dominant in the asymptotics of the 10j-symbol, i.e. the leading order terms are
contained in the set of degenered configurations. This has later been confirmed by the results of Freidel
and Louapre [89] and Barrett and Steele [90]. However, such degenerate terms do not contribute in the
calculation of observables (e.g. the 2-point function) in the semiclassical limit.

There some difficulties in interpreting the Barrett-Crane model as a model for quantum gravity. The
first is that the low energy 2-point function is pathological: some components of the graviton propagator
(the ones depending on the intertwiners d.o.f.) are suppressed. Another more structural problem is in the
interpretation of the model as an amplitude for the LQG spin-networks. LQG spin-networks are based on
the group SU(2), while the covariant state space of spin foams is based on SO(4). In principle, one could
build a natural correspondence between the two state spaces, but in the case of the BC model, there is a
mismatch between the linear structures of SO(4) and SO(3) in building up this correspondence. We refer
to [91] for a short discussion on this subtle point.
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5 A new model: EPRL vertex

Some time ago, J. Engle, R. Pereira and C. Rovelli [56] introduced a new spin foam model. The main
motivation was to find an improvement of the Barrett-Crane model. The difficulties with the BC model
are related to the fact that the intertwiner quantum numbers are fully constrained; this has been traced
back to the mistake of imposing the simplicity constraints as strong operator equations, even though they
are second class constraints. In fact it is well known that imposing second class constraints strongly may
lead to the incorrect elimination of physical degrees of freedom. The generalization of the EPR model to
the Lorentzian signature and to arbitrary values of the Barbero-Immirzi parameter γ is performed in a
paper by Engle, Livine, Pereira and Rovelli [15]. Here we describe this more general model, called shortly
EPRL model. Its main characteristics are the following:

• The boundary quantum state space matches exactly the one of SO(3) LQG: no degrees of freedom
are lost.

• The asymptotic expansion of the vertex on a coherent state basis gives the exponential of the Regge
action.

• As the degrees of freedom missing in BC are recovered, the vertex yields the correct low-energy
n-point functions.

• The vertex is SO(4)-covariant.

• The spectrum of area and volume operators coincides with the one of Loop Quantum Gravity, even
in the Lorentzian version of the model.

5.1 The goal of the model: imposing weakly the simplicity constraints

The Barrett-Crane theory constraints entirely the intertwiner degrees of freedom. This reduction of the
intertwiner space to the sole intertwiner iBC comes from the strong imposition of the off-diagonal simplicity
constraints, as we have seen in section 4.5. But these constraints do not commute with one another, and
are therefore second class. Imposing second class constraints strongly is a well-known way of erroneously
killing physical degrees of freedom in a quantum theory.

In order to illustrate the problems that follow from imposing second class constraints strongly, and
a possible solutions to this problem, consider a simple system that describes a single particle, but using
twice as many variables as needed. The phase space is the doubled phase space for one particle, formed
by the two couples (q1, p1) and (q2, p2), and the symplectic structure is the one given by the commutator
{qa, pb} = δab . We set the constraints to be

q1 − q2 = 0 , (169)

p1 − p2 = 0 .

To simplify the constraints we perform a change of variables q± = (q1 ± q2)/2 and p± = (p1 ± p2)/2, so
now the system (169) reads: q− = p− = 0. They are clearly second class constraints.
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Suppose we quantize this system on the Schrödinger Hilbert space L2(R2) formed by wave functions of
the form ψ(q+, q−). If we impose strongly the constraints we obtain the set of two equations

q− ψ(q+, q−) = 0,

i~
∂

∂q−
ψ(q+, q−) = 0 , (170)

which has no non trivial solutions. We have lost entirely the system.
There are several ways of dealing with second class systems. One possibility, which is employed for

instance in the Gupta-Bleuler formalism for electromagnetism and in string theory, can be illustrated
as follows in the context of the simple model above. Define the creation and annihilation operators
a†− = (p− + iq−)/

√
2 and a− = (p− − iq−)/

√
2 . The constraints now read a− = a†− = 0. Impose only one

of these strongly: a−|ψ〉 = 0 and call the space of states solving this Hph (ph. for physical). Notice that
the other one holds weakly, in the sense that

〈φ|a†−|ψ〉 = 0 ∀ φ,ψ ∈ Hph . (171)

That is, a†− maps the physical Hilbert space Hph into a subspace orthogonal to Hph. Similarly, in the
Gupta-Bleuler formalism the Lorenz gauge condition (which forms a second class system with the Gauss
constraint) holds in the form

〈φ|∂µAµ|ψ〉 = 0 ∀ φ,ψ ∈ Hph . (172)

A general strategy to deal with second class constraints is therefore to search for a decomposition
of the Hilbert space of the theory Hkin = Hph ⊕ Hsp (sp. for spurious) such that the constraints map
Hph → Hsp . We then say that the constraints vanish weakly on Hph . This is the strategy we employ
below for the off-diagonal simplicity constraints of BF theory. Since the decomposition may not be unique,
we will have to select the one which is best physically motivated.

5.2 Description of the model

As in the BC model we discretize spacetime using as configuration variables the bivectors Bf (t)
IJ associ-

ated to faces f , and the holonomy Uf (t, t
′) along the tetrahedra sharing f , starting from the tetrahedron

t and ending at t′; Uf (t) ≡ Uf (t, t) is the holonomy around the full link of tetrahedra. Discretized GR
results from imposing constraints on the B variables as seen for the BC model. They are:
1) simplicity constraints (diagonal (157), off-diagonal (158), dynamical (159));
2) closure constraint.
The dynamical simplicity constraint is automatically satisfied when the other constraints are satisfied.
The closure constraint will be automatically implemented in the quantum theory; its effect, as known, is
to restrict the states of the quantum theory to the gauge invariant ones.

Classical theory In the EPRL model the the classical action one starts with is a slight modification of
BF theory which includes the immirzi parameter. This is the Holst action, obtained adding to the original
action a term that does not change the equations of motion. Holst action is also the one used in LQG,
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because it the one resulting from the Einstein-Hilbert action after the introduction of the Ashtekar-Barbero
variables. A possible discretization of the the Holst action with boundary is

S = −1

κ

∑

f∈int∆
Tr

[
Bf (t)Uf (t) +

1

γ
∗Bf (t)Uf (t)

]

−1

κ

∑

f∈∂∆

Tr

[
Bf (t)Uf (t, t

′) +
1

γ
B∗
f (t)Uf (t, t

′)

]
. (173)

where the original variables have been integrated over paths and surfaces of a simplicial triangulation of
spacetime. The boundary conjugate variables can be read off from the action. For each triangle f on the
boundary, we have two tetrahedra tL, tR sharing it; to these tetrahedra are associated the holonomies
Uf (tR) and Uf (tL), and the shifted fields

Jf (t) ≡ B∗
f (t) +

1

γ
Bf (t) . (174)

Holonomies and shifted fields are canonically conjugate variables, with Poisson brackets

{JIJf (t), Uf (t)} = τ IJUf (t) (175)

where τ IJ are SO(4) (SO(1, 3) in the Lorentzian) generators. Now constraints have to be imposed on
these boundary variables. The constraints (157) and (158) have two sectors of solutions, one in which
B = ∗(e∧ e), and one in which B = e∧ e. For finite Immirzi parameter both sectors in fact yield GR, but
the value of the Newton constant and Immirzi parameter are different in each sector. In the B = ∗e ∧ e
sector, the discrete Holst action becomes the Holst formulation of GR [92] with Newton constant G and
Immirzi parameter γ. In the B = e∧ e sector, one also obtains the Holst formulation of GR, but this time
with Newton constant Gγ, and Immirzi parameter s/γ, where the signature s is +1 in the Euclidean theory
and -1 in the Lorentzian theory. In order to select a single sector, the EPRL construction reformulate the
simplicity constraints in such a way that these two sectors are distinguished. This was a crucial step for
the construction of the new SFM’s. To this purpose, we replace the off-diagonal constraint (158) with the
following stronger constraint: for each tetrahedron t there must exist a (timelike in the Lorentzian case)
vector nI such that

nIB
IJ
f (t) = 0 (176)

for every triangle f of the tetrahedron. This condition is stronger than (158) since it selects only the
desired B = ∗(e ∧ e) sector.

For each tetrahedron t, define the gauge-fixed spatial and temporal components of J(t) choosing a
coordinate system such that the vector normal to t takes the standard form (1, 0, 0, 0); then we can
determine the “magnetic” and “electric” components of J :

Li ≡ 1

2
ǫijkJ

ik (177)

Ki ≡ J0i i, j, k = 1, 2, 3 . (178)
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In terms of the shifted fields, the diagonal and off-diagonal simplicity constraints (157)-(176) read

Cff ≡
(
1 +

s

γ2

)∗Jf · Jf −
2s

γ
Jf · Jf ≈ 0 (179)

CJf ≡ nI
(∗JIJf − s

γ
JIJf

)
≈ 0 ⇔ Cjf ≡ Ljf −

s

γ
Kj
f ≈ 0 . (180)

The first constraint (179) commutes with the others, while the system of off-diagonal constraints (180)
does not close a Poisson algebra. Thus we will impose strongly (179) and more weakly (180).

Quantization We quantize the discretized classical theory as in lattice QFT. We choose the uncon-
strained kinematical quantum state space to be

L2(SO(4)L,dLg)/SO(4)N (181)

where G is SO(4) or SO(1, 3), dg is the Haar measure, L is the number of links in the dual graph of the
boundary of the triangulation (or the number of triangles in the boundary) and N the number of nodes
(tetrahedra) in the boundary. Division by SO(4) means that we took the gauge invariant subspace. We
quantize the variable JIJf (tR) as a right-invariant vector field over SO(4), and JIJf (tL) as a left-invariant
vector field, acting on the portion of the Hilbert space associated to the link f . What is right or left is
determined by the orientation of the graph.

The quantum diagonal and off-diagonal constraints now read

Ĉff ≡ (1 +
s

γ2
)∗Ĵf · Ĵf −

2s

γ
Ĵf · Ĵf ≈ 0 , (182)

Ĉjf ≡ L̂jf −
s

γ
K̂j
f ≈ 0 . (183)

where the “electric” and “magnetic” fields become the generators of SU(2) rotations (that leave nI invari-
ant) and boosts at the quantum level. The Gauss constraint, which in the discretized context means that
the bivectors associated to a tetrahedron satisfy the closure relation

∑

f

Bf (t) = 0 , (184)

implements, as usual, the gauge invariance of quantum states.

Euclidean In the Euclidean version of EPRL model, consider a single link, and its associated Hilbert
space L2(SO(4),dg). The SO(4) scalar Casimir Ĵ · Ĵ acts diagonally on the (j+, j−) irreducible component
of this Hilbert space; the associated eigenvalue is j+(j+ + 1) + j−(j− + 1). The pseudo-scalar Casimir
∗Ĵ · Ĵ gives instead the eigenvalue j+(j+ + 1) − j−(j− + 1). Then by a simple calculation we see that the
diagonal constraint (182) restricts the self dual and anti-self dual quantum numbers to be related by

j+ =
γ + 1

| γ − 1 |j− . (185)
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Also in the BC model the diagonal constraint gives the relation between the two sectors, but here the
two sectors are not balanced because of the finite value of γ. The system of off-diagonal constraints (183)
must be imposed weakly. Alternatively, it can be replaced by the single “master” constraint

∑

i

(Ci)2 =
∑

i

(Li − s

γ
Ki)2 ≈ 0 , (186)

which is of course equivalent at the classical level. Using (182) the “master” constraint becomes simply

∗Ĵ · Ĵ − 4γL̂2 ≈ 0 , (187)

i.e. a simple relation between the pseudo-scalar Casimir and the generator of rotations. To see its effect,
notice that the SO(4) representation space labeled by (j+, j−) decomposes into the Clebsch-Gordan series
of SU(2) irreducible subspaces

| j+ − j− | ⊕ . . .⊕ (j+ + j−) (188)

labeled by a pure rotation quantum number k. The “master” constraint simply means that:

k =

{
j+ + j− 0 < γ < 1 ,

j+ − j− γ > 1 .
(189)

For γ < 1 the constraint picks out the highest SU(2) irreducible representation, for γ > 1 the lowest. The
set of closure, diagonal, and “master” constraints selects a physical state space Hph, which is spanned by
SO(4) spin-networks (viewed as functions of holonomies, not of the connection) labeled by quantum num-
bers (j+, j−) satisfying an unbalanced relation. One can show that the effect of the full set of constraints
on the intertwiner labels is to project onto the following highest (or lowest) weight intertwiner space:

Inv H|j1+±j1−| ⊗ . . .⊗H|j4+±j4−| (190)

where the sign depends on γ as we have seen. Remarkably, Hph is isomorphic to

L2(SU(2)L,dLg)/SU(2)N (191)

which is the LQG Hilbert space associated to the graph! The isomorphism is realized identifying the label
of rotations k with the SU(2) label of LQG, while the intertwiner mapping can be defined in terms of
fusion coefficients f :

|i〉 7−→
∑

i+i−

f ii+i− |i+〉 ⊗ |i−〉 , (192)

where

f ii+i−(j1, j2, j3, j4) = 〈i+ i−|f |i〉 = iabcd Ca+a−a C
b+b−
b Cc+c−c C

d+d−
d i+a+b+c+d+i

−
a−b−c−d−

. (193)

The intertwiners |i〉, |i+〉 ⊗ |i−〉 form respectively an SU(2) and SO(4) orthonormal basis of intertwiners
and

Ca+a−a ≡ 〈j+1 j−2 , a+a−|j1 a〉 (194)
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are Clebsh-Gordan coefficients. The fusion coefficients (193) define a map

f : InvHj1 ⊗ . . . ⊗Hj4 −→ InvH
(
|1−γ|j1

2
,
(1+γ)j1

2
)
⊗ . . .⊗H

(
|1−γ|j4

2
,
(1+γ)j4

2
)

(195)

from the SU(2) to the SO(4) intertwiner space. The elementary objects which codes the dynamics is
the vertex amplitude. The natural vertex amplitude associated to the physical Hilbert space we have
constructed is the full contraction of five intertwiners of the kind (190), with contraction pattern given by
the 4-simplex graph, namely:

A({jab}, {ia}) =
∑

ia+i
a
−

15j

(
jab(1 + γ)

2
; ia+

)
15j

(
jab | 1 − γ |

2
; ia−

) ∏

a

f i
a

ia+i
a
−
(jab) . (196)

It depends on 10 spins and 5 SU(2) intertwiners.

Lorentzian With some modifications, we can repeat the previous construction for the Lorentzian sig-
nature. In this case we have to consider the SL(2,C) Casimir operators for the representations of the
Lorentz group in the so called principal series (n, ρ). They are given by

Ĵ · Ĵ = 2(L̂2 − K̂2) =
1

2
(n2 − ρ2 − 4)1 , (197)

∗Ĵ · Ĵ = −4L̂ · K̂ = nρ1 . (198)

The solutions of (182) are given by either ρ = γn or ρ = −n/γ. The existence of these two solutions
reflects the two sectors mentioned previously with Immirzi parameter γ and −1/γ. BF theory cannot a
priori distinguish between these two sectors. However, in our framework, the “master” constraint (186)
breaks this symmetry and selects the first branch ρ = γn. It further imposes that k = n/2, where k
again labels the subspace diagonalizing L̂2. Therefore the constraints select the lowest SU(2) irreducible
representation in the decomposition

H(n,ρ) =
⊕

k≥n/2
Hk . (199)

Notice also that the continuous label ρ becomes quantized, because n is discrete. It is because of this fact
that any continuous spectrum depending on ρ comes out effectively discrete on the subspace satisfying
the simplicity constraints.

As before, we have an embedding map of SU(2) intertwiners into the space of SL(2,C) intertwiners,
which gives also the solution of the simplicity constraints for the intertwiner labels:

f : InvHj1⊗...⊗Hj4 −→ InvH(n1,ρ1) ⊗ ...⊗H(n4,ρ4),

|i〉 7−→
∑

n

∫
dρ (n2 + ρ2)f inρ|n, ρ〉 (200)

where
f inρ ≡ iabcdv

(n,ρ)
abcd . (201)
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Here v(n,ρ) is an SL(2,C) 4-valent intertwiner labeled by the virtual link (n, ρ). The boundary space is
once again just given by the SU(2) spin-networks and the vertex amplitude has the form:

A(jab, ia) =
∑

na

∫
dρa(n

2
a + ρ2

a)

(
∏

a

f ianaρa
(jab)

)
15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) . (202)

Notice the precence of the SL(2,C) 15j-symbol.
The final partition function for an arbitrary triangulation, both for the Euclidean and Lorentzian

model, is given by gluing the vertex amplitudes with suitable face amplitudes:

Z =
∑

jf ,ie

∏

f

Af (jf )
∏

v

A(jf , ie) . (203)

An important unexpected result provided by the EPRL model comes from the calculation of the spectrum
of the operator related to the area of a triangle dual to the face f , given by the formula:

Ârea
2
≡ 1

2
(∗B̂)ij(∗B̂)ij =

1

4
κ2γ2L̂2 . (204)

It gives exactly the area spectrum of LQG, for both Euclidean and Lorentzian signatures:

Area = κγ
√
k(k + 1) . (205)

Remarkably, imposing the simplicity constraints (179) and (187) reduces the potentially continuous spec-
trum to the exact discrete LQG spectrum (205). This answers, at least in the contex of SFM’s, a common
objection to the genuineness of the discreteness found in LQG, which is sometimes imputed to the use of
SU(2) (instead of the full SO(1, 3)) group as the gauge group. Indeed SO(3) is compact, while SO(1, 3)
is non compact, and the latter is likely to yield continuous spectra. The EPRL model is an example which
shows that this is not always the case, and strengthen the physical discrete picture of spacetime provided
by Loop Quantum Gravity.

Livine and Speziale have found an independent derivation [93] of the EPR vertex, based on the use
of the coherent intertwiners they have introduced in [57]. With similar techniques, L. Freidel and K.
Krasnov introduced another spin foam model (FK model [58]) which is very similar to the EPRL one, and
concides with it for γ < 1. There is also a relation between the states of EPRL model and the projected
spin-network states studied by Livine and Alexandrov [94, 95].

The problem of computing semiclassical quantities such as n-point functions is related to the asymptotic
behavior of the vertex for large quantum numbers. In the next section we study some properties of
the EPRL model investigating the semiclassical limit of its fusion coefficients [19]. We will continue
the semiclassical analysis with preliminary numerical investigations and then with the calculation of the
graviton propagator. The main result will be that the EPRL model gives the correct 2-point function.
For different approaches to the semiclassical limit, see [96] and [97].
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6 Asymptotics of LQG fusion coefficients

In the last chapter we have described the new spinfoam model Engle-Pereira-Rovelli-Livine (EPRL). Here
we present a careful analysis of the asymptotics of fusion coefficients of Euclidean EPRL model. This is
a preliminary step for the study of the semiclassical properties. In particular it allows to check if the new
vertex has the right dependence in the intertwiners variables. The region of parameter space of interest
is large spins jab (a, b label two connected nodes of a spin-network) and virtual spins ia of the same order
of magnitude of the spins.

This chapter is organized as follows: in the first section (6.1) we show a simple analytic expression for
the EPRL fusion coefficients; in the second (6.2) we use this expression for the analysis of the asymptotics
of the coefficients in the region of parameter space of interest, and in third part (6.3) we show that the
fusion coefficients map SO(3) semiclassical intertwiners into SU(2)L ×SU(2)R semiclassical intertwiners.
We conclude discussing the relevance of this result for the analysis of the semiclassical behavior of the
model. In the end we collect some useful formula involving Wigner coefficients.

6.1 Analytical expression for the fusion coefficients

The fusion coefficients provide a map from four-valent SO(3) intertwiners to four-valent SO(4) intertwin-
ers. They can be defined in terms of contractions of SU(2) 3j-symbols. In the following we use a planar
diagrammatic notation for SU(2) recoupling theory [98]. We represent the SU(2) Wigner metric and the
SU(2) three-valent intertwiner respectively by an oriented line and by a node with three links oriented
counter-clockwise2. As we have seen before, a four-valent SO(3) intertwiner |i〉 can be represented in
terms of the recoupling basis as

|i 〉 =
√

2i+ 1
j2

j1

j3

j4

++
i

(206)

where a dashed line has been used to denote the virtual link associated to the coupling channel. Similarly
a four-valent SO(4) intertwiner can be represented in terms of an SU(2)L × SU(2)R basis as |iL〉|iR〉.

Using this diagrammatic notation, the EPRL fusion coefficients for given Immirzi parameter γ are
given by

f iiLiR(j1, j2, j3, j4) =(−1)j1−j2+j3−j4
√

(2i+ 1)(2iL + 1)(2iR + 1)Π4
n=1(2jn + 1) × (207)

×

+ +

+

++

+

− −

iL i iR

j1 j2

j3j4

|1−γ|j1
2

|1−γ|j2
2

|1−γ|j3
2

|1−γ|j4
2

(1+γ)j1
2

(1+γ)j2
2

(1+γ)j3
2

(1+γ)j4
2

.

2A minus sign in place of the + will be used to indicate clockwise orientation of the links.
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Using the identity

= (208)

where the shaded rectangles represent arbitrary closed graphs, we have that the diagram in (207) can be
written as the product of two terms

f iiLiR(j1, j2, j3, j4) = (209)

= (−1)j1−j2+j3−j4
√

(2i+ 1)(2iL + 1)(2iR + 1)Πn(2jn + 1) qiiLiR(j1, j2) q
i
iLiR

(j3, j4) (210)

where qiiLiR is given by the following 9j-symbol

qiiLiR(j1, j2) =

+

++

−−

+

iL iR

i

j1j2

|1−γ|j1
2

|1−γ|j2
2

(1+γ)j2
2

(1+γ)j1
2

=






|1−γ|
2 j1 iL

|1−γ|
2 j2

1+γ
2 j1 iR

1+γ
2 j2

j1 i j2





. (211)

From the form of qiiLiR we can read a number of properties of the fusion coefficients. First of all, the
diagram in expression (211) displays a node with three links labelled i, iL, iR. This corresponds to a
triangular inequality between the intertwiners i, iL, iR which is not evident from formula (207). We have
that the fusion coefficients vanish outside the domain

|iL − iR| ≤ i ≤ iL + iR . (212)

Moreover in the monochromatic case, j1 = j2 = j3 = j4, we have that the fusion coefficients are non-
negative (as follows from (210)) and, for iL + iR + i odd, they vanish (because the first and the third
column in the 9j-symbol are identical).

As discussed in [58, 57], the fact that the spins labeling the links in (207) have to be half-integers
imposes a quantization condition on the Immirzi parameter γ. In particular γ has to be rational and a
restriction on spins may be present. Such restrictions are absent in the Lorentzian case. Now notice that
for 0 ≤ γ < 1 we have that 1+γ

2 + |1−γ|
2 = 1, while for γ > 1 we have that 1+γ

2 − |1−γ|
2 = 1 (with the

limiting case γ = 1 corresponding to a selfdual connection). As a result, in the first and the third column
of the 9j-symbol in (211), the third entry is either the sum or the difference of the first two. In both
cases the 9j-symbol admits a simple expression in terms of a product of factorials and of a 3j-symbol (see
appendix). Using this result we have that, for 0 ≤ γ < 1, the coefficient qiiLiR(j1, j2) can be written as

qiiLiR(j1, j2) = (−1)iL−iR+(j1−j2)
(

iL iR i

|1−γ|(j1−j2)
2

(1+γ)(j1−j2)
2 −(j1 − j2)

)
AiiLiR(j1, j2) (213)
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with AiiLiR(j1, j2) given by

AiiLiR(j1, j2) =

√
(j1 + j2 − i)! (j1 + j2 + i+ 1)!

(2j1 + 1)! (2j2 + 1)!
× (214)

×
√

(|1 − γ|j1)! (|1 − γ|j2)!( |1−γ|j1
2 + |1−γ|j2

2 − iL
)
!
( |1−γ|j1

2 + |1−γ|j2
2 + iL + 1

)
!

×

×
√

((1 + γ)j1)! ((1 + γ)j2)!( (1+γ)j1
2 + (1+γ)j2

2 − iR
)
!
( (1+γ)j1

2 + (1+γ)j2
2 + iR + 1

)
!
.

A similar result is available for γ > 1. The Wigner 3j-symbol in expression (213) displays explicitly
the triangle inequality (212) among the intertwiners. Notice that the expression simplifies further in the
monochromatic case as we have a 3j-symbol with vanishing magnetic indices.

The fact that the fusion coefficients (207) admit an analytic expression which is so simple is certainly
remarkable. The algebraic expression (210),(213),(214) involves no sum over magnetic indices. On the
other hand, expression (207) involves ten 3j-symbols (one for each node in the graph) and naively fifteen
sums over magnetic indices (one for each link). In the following we will use this expression as starting
point for our asymptotic analysis.

6.2 Asymptotic analysis

The new analytic formula (210),(213),(214) is well suited for studying the behavior of the EPRL fusion
coefficients in different asymptotic regions of parameter space. Here we focus on the region of interest in
the analysis of semiclassical correlations. This region is identified as follows: let us introduce a large spin
j0 and a large intertwiner (i.e. virtual spin in a coupling channel) i0; let us also fix the ratio between i0
and j0 to be of order one – in particular we will take i0 = 2√

3
j0; then we assume that

• the spins j1, j2, j3, j4, are restricted to be of the form je = j0 + δje with the fluctuation δje small
with respect to the background value j0. More precisely we require that the relative fluctuation δje

j0

is of order o(1/
√
j0);

• the SO(3) intertwiner i is restricted to be of the form i = i0 + δi with the relative fluctuation δi
i0

of

order o(1/
√
j0);

• the intertwiners for SU(2)L and SU(2)R are studied in the region close to the background values

i0L = |1−γ|
2 i0 and i0R = 1+γ

2 i0. We study the dependence of the fusion coefficients on the fluctuations
of these background values assuming that the relative fluctuations δiL/i0 and δiR/i0 are of order
o(1/

√
j0).

A detailed motivation for these assumptions is provided in section 6.3. Here we notice that, both for
0 ≤ γ < 1 and for γ > 1, the background value of the intertwiners iL, iR, i, saturate one of the
two triangular inequalities (212). As a result, we have that the fusion coefficients vanish unless the
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perturbations on the background satisfy the following inequality

δi ≤ δiL + δiR 0 ≤ γ < 1 (215)

δiR ≤ δi + δiL γ > 1 . (216)

In order to derive the asymptotics of the EPRL fusion coefficients in this region of parameter space we
need to analyze both the asymptotics of the 3j-symbol in (213) and of the coefficients AiiLiR(j1, j2). This
is done in the following two paragraphs

Asymptotics of 3j-symbols The behavior of the 3j-symbol appearing in equation (213) in the asymp-
totic region described above is given by Ponzano-Regge asymptotic expression (equation 2.6 in [83]; see
also the last section):

(
iL iR i

|1−γ|(j1−j2)
2

(1+γ)(j1−j2)
2 −(j1 − j2)

)
∼ (−1)iL+iR−i+1

√
2πA

× (217)

× cos
(
(iL +

1

2
)θL + (iR +

1

2
)θR + (i+

1

2
)θ + |1−γ|(j1−j2)

2 φ− − (1+γ)(j1−j2)
2 φ+ +

π

4

)
.

The quantities A, θL, θR, θ, φ−, φ+ admit a simple geometrical representation: let us consider a triangle
with sides of length iL + 1

2 , iR + 1
2 , i+ 1

2 embedded in 3d Euclidean space as shown below

iL + 1

2

iR + 1

2

i+ 1

2

h+ |1−γ|(j1−j2)
2

h+ (1+γ)(j1−j2)
2

h− (j1 − j2) (218)

In the figure the height of the three vertices of the triangle with respect to a plane are given; this fixes
the orientation of the triangle and forms an orthogonal prism with triangular base. The quantity A is the
area of the base of the prism (shaded in picture). The quantities θL, θR, θ are dihedral angles between the
faces of the prism which intersect at the sides iL, iR, i of the triangle. The quantities φ−, φ+ are dihedral
angles between the faces of the prism which share the side of length h+ |1− γ|(j1 − j2)/2 and the side of
length h+ (1 + γ)(j1 − j2)/2, respectively. For explicit expressions we refer to the appendix.

In the monochromatic case, j1 = j2, we have that the triangle is parallel to the plane and the formula
simplifies a lot; in particular we have that the area A of the base of the prism is simply given by Heron
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formula in terms of iL, iR, i only, and the dihedral angles θL, θR, θ are all equal to π/2. As a result the
asymptotics is given by

(
iL iR i

0 0 0

)
∼ 1√

2πA

1 + (−1)iL+iR+i

2
(−1)

iL+iR+i

2 . (219)

Notice that the sum iL + iR + i is required to be integer and that the asymptotic expression vanishes
if the sum is odd and is real if the sum is even. Now, the background configuration of iL, iR and i we
are interested in corresponds to a triangle which is close to be degenerate to a segment. This is due to
the fact that (1−γ)

2 i0 + (1+γ)
2 i0 = i0 for 0 ≤ γ < 1, and (γ+1)

2 i0 − (γ−1)
2 i0 = i0 for γ > 1. In fact the

triangle is not degenerate as an offset 1
2 is present in the length of its edges. As a result the area of this

almost-degenerate triangle is non-zero and scales as i
3/2
0 for large i0. When we take into account allowed

perturbations of the edge-lengths of the triangle we find

A =






1
4

√
1 − γ2 i

3/2
0

(√
1 + 2(δiL + δiR − δi) + o(i

−3/4
0 )

)
0 ≤ γ < 1

1
4

√
γ2 − 1 i

3/2
0

(√
1 + 2(δi + δiL − δiR) + o(i

−3/4
0 )

)
γ > 1 .

(220)

This formula holds both when the respective sums δiL+ δiR− δi and δi+ δiL− δiR vanish and when they
are positive and at most of order O(

√
i0). As a result we have that, when δiL + δiR− δi, or δi+ δiL− δiR

respectively, is even the perturbative asymptotics of the square of the 3j-symbol is

( |1−γ|
2 i0 + δiL

(1+γ)
2 i0 + δiR i0 + δi

0 0 0

)2

∼ (221)

∼






2
π

1√
1−γ2

i
−3/2
0√

1+2(δiL+δiR−δi)
θ(δiL + δiR − δi) 0 ≤ γ < 1

2
π

1√
γ2−1

i
−3/2
0√

1+2(δi+δiL−δiR)
θ(δi+ δiL − δiR) γ > 1 .

The theta functions implement the triangular inequality on the fluctuations. In the more general case
when j1 − j2 is non-zero but small with respect to the size of the triangle, we have that the fluctuation in
δje can be treated perturbatively and, to leading order, the asymptotic expression remains unchanged.

Gaussians from factorials In this paragraph we study the asymptotics of the function AiiLiR(j1, j2)
which, for 0 ≤ γ < 1, is given by expression (214). The proof in the case γ > 1 goes the same way. In the
asymptotic region of interest all the factorials in (214) have large argument, therefore Stirling’s asymptotic
expansion can be used:

j0! =
√

2πj0 e+j0(log j0 − 1) (1 +

N∑

n=1

anj
−n
0 + O(j

−(N+1)
0 )

)
for all N > 0, (222)

where an are coefficients which can be computed; for instance a1 = 1
12 . The formula we need is a

perturbative expansion of the factorial of (1 + ξ)j0 when the parameter ξ is of order o(1/
√
j0). We have
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that

(
(1 + ξ)j0

)
! =

√
2πj0 exp

(
+ j0(log j0 − 1) + ξj0 log j0 + j0

∞∑

k=1

ckξ
k
)
× (223)

×
(
1 +

N∑

n=1

M∑

m=1

anbmj
−n
0 ξm + O(j

−(N+ M
2

+1)

0 )
)

(224)

where the coefficients bm and ck can be computed explicitly. We find that the function AiiLiR(j1, j2) has
the following asymptotic behavior

Ai0+δi
|1−γ|i0

2
+δiL ,

(1+γ)i0
2

+δiR
(j0 + δj1, j0 + δj2) ∼ A0(j0) e

−H(δiL,δiR,δi,δj1,δj2) (225)

where A0(j0) is the function evaluated at the background values and H(δiL, δiR, δi, δj1 , δj2) is given by

H(δiL, δiR, δi, δj1, δj2) =
1

2
(arcsinh

√
3)
(
δiL + δiR − δi

)
+ (226)

+

√
3

2

(δiL)2

|1 − γ|i0
+

√
3

2

(δiR)2

(1 + γ)i0
−

√
3

4

(δi)2

i0
+

− 1

2

δiL + δiR − δi

i0
(δj1 + δj2) + O(

1√
j0

)

for 0 ≤ γ < 1, while for γ > 1 it is given by

H(δiL, δiR, δi, δj1, δj2) =
1

2
(arcsinh

√
3)
(
δi+ δiL − δiR

)
+ (227)

+

√
3

2

(δiL)2

|1 − γ|i0
+

√
3

2

(δiR)2

(1 + γ)i0
−

√
3

4

(δi)2

i0
+

− 1

2

δi + δiL − δiR
i0

(δj1 + δj2) + O(
1√
j0

) .

Perturbative asymptotics of the fusion coefficients Collecting the previous results we find for the
fusion coefficients the asymptotic formula

f i0+δi|1−γ|i0
2

+δiL ,
(1+γ)i0

2
+δiR

(j0 + δje) ∼ f0(j0)
1√

1 + 2(δiL + δiR − δi)
θ(δiL + δiR − δi) × (228)

× exp
(
− arcsinh(

√
3) (δiL + δiR − δi)

)
×

× exp
(
−

√
3

(δiL)2

|1 − γ| i0
−

√
3

(δiR)2

(1 + γ) i0
+

√
3

2

(δi)2

i0

)
×

× exp
(1
2

δiL + δiR − δi

i0
(δj1 + δj2 + δj3 + δj4)

)
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for 0 ≤ γ < 1, and

f i0+δi|1−γ|i0
2

+δiL ,
(1+γ)i0

2
+δiR

(j0 + δje) ∼ f0(j0)
1√

1 + 2(δi + δiL − δiR)
θ(δi+ δiL − δiR) × (229)

× exp
(
− arcsinh(

√
3) (δi + δiL − δiR)

)
×

× exp
(
−

√
3

(δiL)2

|1 − γ| i0
−

√
3

(δiR)2

(1 + γ) i0
+

√
3

2

(δi)2

i0

)
×

× exp
(1
2

δi+ δiL − δiR
i0

(δj1 + δj2 + δj3 + δj4)
)

for γ > 1, where f0(j0) is the value of the fusion coefficients at the background configuration. As we will
show in next section, this asymptotic expression has an appealing geometrical interpretation and plays
a key role in the connection between the semiclassical behavior of the spinfoam vertex and simplicial
geometries.

6.3 Semiclassical behavior

To illustrate some important features of the semiclassical behavior of the fusion coefficients, we must first
anticipate the principal idea of the next chapter: the propagation of boundary wave packets as a way
to test the semiclassical behavior of a spinfoam model. Consider an “initial” state made by the product
of four intertwiner wavepackets; this state has the geometrical interpretation of four semiclassical regular
tetrahedra in the boundary of a 4-simplex of linear size of order

√
j0. Then we can evolve this state

(numerically) by contraction with the EPR vertex amplitude to give the “final” state, which in turn is
an intertwiner wavepacket. While in [20] we considered only very small j0’s, in [21] we make the same
calculation for higher spins both numerically and semi-analitically, and the results are clear: the “final”
state is a semiclassical regular tetrahedron with the same size as the incoming ones. This is exactly what
we expect from the classical equations of motion.

The evolution is defined by

∑

i1...i5

W (j0, i1, . . . , i5)ψ(i1, j0) . . . ψ(i5, j0) ≡ φ(i5, j0), (230)

where

ψ(i, j0) = C(j0) exp
(
−

√
3

2

(i− i0)
2

i0
+ i

π

2
(i− i0)

)
(231)

is a semiclassical SO(3) intertwiner (actually its components in the virtual basis |i〉), or a semiclassical
tetrahedron (see section chapter 8.2) in the equilateral configuration, with C(j0) a normalization constant,
and W (j0, i1, . . . , i5) is the vertex (196) with γ = 0 evaluated in the homogeneous spin configuration (the
ten spins equal to j0). We are also using the notation i for the imaginary unit. If we want to evaluate the
sum (230) over intertwiners, for fixed j0, then we have to evaluate the function g defined as follows:

g(iL, iR, j0) =
∑

i

f iiL iR(j0)ψ(i, j0) . (232)

56



6. ASYMPTOTICS OF LQG FUSION COEFFICIENTS

(a) (b)

Figure 7: (a) Interpolated plot of the modulus of g(iL, iR, j0) for j0 = 20 and γ = 0 computed using the
exact formula of the fusion coefficients. (b) Top view of the imaginary part.

The values of g are the components of an SO(4) intertwiner in the basis |iL〉|iR〉, where |iL〉 is an intertwiner

between four SU(2) irreducible representations of spin jL0 ≡ |1−γ|
2 j0, and |iR〉 is an intertwiner between

representations of spin jR0 ≡ 1+γ
2 j0.

We show that EPRL fusion coefficients map SO(3) semiclassical intertwiners into SU(2)L × SU(2)R
semiclassical intertwiners. The sum over the intertwiner i of the fusion coefficients times the semiclassical
state can be computed explicitly at leading order in a stationary phase approximation, using the asymptotic
formula (228)(229). The result is

∑

i

f iiL iR(j0)ψ(i, j0) ≈ α0 f0(j0)C(j0) × exp
(
−

√
3
(iL − |1−γ|

2 i0)
2

|1 − γ| i0
± i

π

2
(iL − |1−γ|

2 i0)
)
× (233)

× exp
(
−

√
3
(iR − (1+γ)

2 i0)
2

(1 + γ) i0
+ i

π

2
(iR − (1+γ)

2 i0)
)

where

α0 =
∑

k∈2N

e−arcsinh(
√

3)k

√
1 + 2k

e∓i
π
2
k ≃ 0.97 ; (234)

the plus-minus signs both in (233) and (234) refer to the two cases γ < 1 (upper sign) and γ > 1 (lower
sign). The r.h.s. of (233), besides being a very simple formula for the asymptotical action of the map f on
a semiclassical intertwiner, is asymptotically invariant under change of pairing of the virtual spins iL and
iR (up to a normalization N). Recalling that the change of pairing (94) is made by means of 6j-symbols,
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we have

∑

iL

∑

iR

√
dim(iL)dim(iR)(−1)iL+kL+iR+kR

{ |1−γ|
2 j0

|1−γ|
2 j0 iL

|1−γ|
2 j0

|1−γ|
2 j0 kL

}
× (235)

×
{

1+γ
2 j0

1+γ
2 j0 iR

1+γ
2 j0

1+γ
2 j0 kR

}
g(iL, iR) ≈ N(j0) g(kL, kR, j0) .

This result holds because each of the two exponentials in (233) is of the form

exp
(
−

√
3

2

(k − k0)
2

k0
± i

π

2
(k − k0)

)
, (236)

which is a semiclassical equilateral tetrahedron (section 8.2) with area quantum numbers k0; it follows
that g is (asymptotically) an SO(4) semiclassical intertwiner. The formula (233) can be checked against
plots of the exact formula for large j0’s; a particular case is provided in fig.7.

In addition, we can ask whether the inverse map f−1 has the same semiclassical property. Remarkably,
the answer is positive: f−1 maps semiclassical SO(4) intertwiners into semiclassical SO(3) intertwiners.
The calculation, not reported here, involves error functions (because of the presence of the theta function)
which have to be expanded to leading order in 1/j0.

A final remark on our choice for the asymptotic region is needed. The goal we have in mind is to apply
the asymptotic formula for the fusion coefficients to the calculation of observables like the semiclassical
correlations for two local geometric operators Ô1, Ô2

〈Ô1 Ô2〉q =

∑
jabia

W (jab, ia) Ô1 Ô2 Ψq(jab, ia)∑
jabia

W (jab, ia)Ψq(jab, ia)
(237)

in the semiclassical regime (at the single-vertex level). If the classical (intrinsic and the extrinsic) geometry
q over which the boundary state is peaked is the geometry of the boundary of a regular 4-simplex, then the
sums in (237) are dominated by spins of the form jab = j0 +δjab and intertwiners of the form ia = i0 +δia,
with i0 = 2j0/

√
3, where the fluctuations must be such that the relative fluctuations δj/j0, δi/j0 go to

zero in the limit j0 → ∞. More precisely, the fluctuations are usually chosen to be at most of order
O(

√
j0). This is exactly the region we study here. As to the region in the (iL, iR) parameter space, the

choice of the background values |1−γ|
2 i0,

1+γ
2 i0 and the order of their fluctuations is made a posteriori both

by numerical investigation and by the form of the asymptotic expansion. It is evident that the previous
considerations hold in particular for the function g analyzed in this section.

6.4 The case γ = 1

When γ = 1 we have that jL ≡ |1−γ|
2 j = 0 and we can read from the graph (207) that the fusion coefficients

vanish unless iL = 0. Furthermore it is easy to see that for γ = 1 the fusion coefficients vanish also when
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iR is different from i. This can be seen, for instance, applying the identity

=
1

dim i
δi,iR (238)

to the graph (207) with iL = 0. As a result, we have simply

f iiL iR(j1, j2, j3, j4) = δiL,0δiR,i (239)

and the asymptotic analysis is trivial. The previous equation can be also considered as a normalization
check; in fact, with the definition (207) for the fusion coefficients, the EPRL vertex amplitude (425)
reduces for γ = 1 to the usual SO(3) BF vertex amplitude. Now one can argue that the case γ = 1 should
correspond to self-dual (quantum) gravity and not to the topological SO(3) BF theory. However notice
that γ = 1 is a singular value for the Barbero-Immirzi parameter in the derivation of EPRL Euclidean
vertex amplitude from the classical theory [15].

6.5 Summary of semiclassical properties of fusion coefficients

We provided and a simple analytic asymptotic formula for the fusion coefficients; thanks to this formula,
we found the asymptotical action of the fusion coefficients on a semiclassical intertwiner (see chapter 8).
We resume briefly some properties, focusing on the case γ = 0.

The action of f iiL,iR (viewed as a map between intertwiner spaces) on a semiclassical intertwiner is
given by

g(iL, iR) ≡
∑

i

f iiL,iRψ(i). (240)

We showed that, for large j0’s

g(iL, iR) ≃ C exp
(
− 3

2j0
(iL − i0

2 )2 − 3
2j0

(iR − i0
2 )2 + i

π
2 (iL + iR)

)
, (241)

where C is an irrelevant normalization factor not depending on iL and iR at leading order in 1/j0 powers.
Hence, asymptotically, the function g factorizes into left and right parts; we indicate them, with abuse
of notation, g(iL) and g(iR). The values of g(iL, iR) are the components of an SO(4) ≃ SU(2) × SU(2)
intertwiner in the basis |iL, iR〉, which we call SO(4) semiclassical intertwiner. Also the converse holds:
the asymptotical action of the fusion coefficients on an SO(4) semiclassical intertwiner is an SO(3) semi-
classical intertwiner, i.e.

∑

iL,iR

f iiL,iR g(iL, iR) ≃ ψ(i). (242)
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6.6 Properties of 9j-symbols and asymptotics of 3j-symbol

The 9j-symbol with two columns with third entry given by the sum of the first two can be written as





a f c

b g d

a+ b h c+ d





= (−1)f−g+a+b−(c+d)

(
f g h

a− c b− d −(a+ b− (c+ d))

)
× (243)

×
√

(2a)!(2b)!(2c)!(2d)!(a + b+ c+ d− h)!(a+ b+ c+ d+ h+ 1)!

(2a+ 2b+ 1)!(2c + 2d+ 1)!(a + c− f)!(a+ c+ f + 1)!(b + d− g)!(b + d+ g + 1)!
.

An analogous formula for the 9j-symbol with two columns with third entry given by the difference of the
first two can be obtained from the formula above noting that






a f c

b g d

b− a h d− c





=






b− a h d− c

a f c

b g d





, (244)

so we are in the previous case.
The 3j-symbol with vanishing magnetic numbers has the simple expression

(
a b c

0 0 0

)
= (−1)a−bπ1/4 2

a+b−c−1
2

( c−a−b−1
2 )!

√
(a+ b− c)!

√
( c+a−b−1

2 )!( c−a+b−1
2 )!(a+b+c2 )!

( c+a−b2 )!( c−a+b2 )!(a+b+c+1
2 )!

. (245)

These formula can be derived from [98, 99].
The asymptotic formula of 3j-symbols for large spins a, b, c and admitted magnetic numbers, i.e.

ma +mb +mc = 0, given by G. Ponzano and T. Regge in [83] is
(

a b c

ma mb mc

)
∼ (−1)a+b−c+1

√
2πA

cos
(
(a+

1

2
)θa + (b+

1

2
)θb + (c+

1

2
)θc +maφa −mbφb +

π

4

)
(246)

with

θa =
arccos

(
2(a+ 1

2)2mc +ma

(
(c+ 1

2)2 + (a+ 1
2)2 − (b+ 1

2 )2
))

√(
(a+ 1

2)2 −m2
a

)(
4(c+ 1

2)2(a+ 1
2 )2 −

(
(c+ 1

2)2 + (a+ 1
2)2 − (b+ 1

2)2
)2)

(247)

φa = arccos



1

2

(a+ 1
2)2 − (b+ 1

2)2 − (c+ 1
2)2 − 2mbmc√(

(b+ 1
2)2 −m2

b

)(
(c+ 1

2)2 −m2
c

)



 (248)

A =

√√√√√√√√
− 1

16
det




0 (a+ 1
2)2 −m2

a (b+ 1
2)2 −m2

b 1

(a+ 1
2 )2 −m2

a 0 (c+ 1
2)2 −m2

c 1

(b+ 1
2)2 −m2

b (c+ 1
2 )2 −m2

c 0 1

1 1 1 0


 (249)

and θb, θc, φb are obtained by cyclic permutations of (a, b, c).
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7 Numerical investigations on the semiclassical limit

In this chapter we introduce a new technique to test the spinfoam dynamics, which is complementary to
the calculation of n-point functions. This technique, presented for the first time in [20], and improved in
[21], is the propagation of semiclassical wavepackets: as in ordinary Quantum Mechanics, the theory has
the correct semiclassical limit only if semiclassical wavepackets follow the trajectory predicted by classical
equations of motion.

In [20], the wave-packet propagation in the intertwiner sector of EPR model was studied numerically.
In brief, we considered the most simple solution of discretized Einstein equations given by a single flat
4-simplex with boundary constituted by five regular tetrahedra. In the dual LQG picture this boundary is
represented by a pentagonal 4-valent spin-network, labeled by ten spins and five intertwiners; in order to
have a semiclassical state one has to construct some (infinite) linear combination of spin-networks of this
kind. It is well known (see [100] and chapter 8) that we can take a superposition of intertwiners in the
virtual spin basis with a Gaussian weight, in order to catch the classical geometry of a tetrahedron: since
in a quantum tetrahedron the angles do not commute, one has to consider semiclassical superpositions of
angle eigenstates in order to peak all angles on the right classical value. We chose an initial state formed
by four coherent intertwiners at four nodes, and made the drastic approximation of taking the ten spins
fixed to be equal to some j0. Then we calculated numerically its evolution, here called 4-to-1 evolution,
that is its contraction with the EPR spin foam vertex amplitude. Classical Einstein equations impose the
final state to be a coherent intertwiner with the same geometrical properties (mean and phase). We found
good indications but, due to the very low j0’s used in the numerical simulation, we were not in a good
semiclassical regime.

In the second paper [21] we found the general behavior of the evolution at high j0’s. In fact we will se
that the propagation is perfectly “rigid”: four gaussian wave-packets evolve into one gaussian wave-packet
with the same parameters, except for a flip in the phase. The phase of the evolved phase, and in particular
its flipping, are the right ones which yield the correct physical expectation values. This is why the evolution
of intertwiner wave-packets can check if a vertex amplitude has the correct dependence on the intertwiner
variables. We have made our analysis in two independent ways: the first is semi-analytical and based on
a numerical result about the 15j-symbol, viewed as a propagation kernel, and the asymptotic properties
of the fusion coefficients (chapter 6); the second is purely numerical. The first has the advantage of giving
a nice picture of the dynamics in terms of wave-packets evolving separately in the left and right sectors of
SO(4). We also explore the possibility of propagating three coherent intertwiners into two (we will refer to
it as the 3-to-2 evolution), finding similar results. Then we present the results from another point of view,
namely as physical expectation values, finding that these are asymptotically the classical ones. Though
we use the drastic approximation of fixing all spins, these results were the first clear indication that the
EPRL model possesses good semiclassical properties.

7.1 Wave-packets propagation

Suppose you are explicitly given the propagation kernel Wt(x, y) of a one-dimensional nonrelativistic
quantum system defined by a Hamiltonian operator H

Wt(x, y) = 〈x|e− i

~
Ht|y〉 (250)
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and you want to study whether the classical (~ → 0) limit of this quantum theory yields a certain given
classical evolution. One of the (many) ways of doing so is to propagate a wave-packet ψx,p(x) withWt(x, y).
Suppose that in the time interval t the classical theory evolves the initial position and momentum xi, pi to
the final values xf , pf . Then you can consider a semiclassical wave-packet ψxi,pi(y) centered on the initial
values xi, pi, compute its evolution under the kernel

φ(x) ≡
∫

dy Wt(x, y) ψxi,pi(y) (251)

and ask whether or not this state is a semiclassical wave-packet centered on the correct final values xf , pf .
Here, we consider the possibility of using this method for exploring the semiclassical limit of the dynamics
of nonperturbative quantum gravity.

We are interested in investigating the intertwiner dependence of the EPR vertex. The derivation of
the vertex amplitude presented in [101] indicates that the process described by one vertex can be seen as
the dynamics of a single cell in a Regge triangulation of General Relativity. This is a fortunate situation,
because it allows us to give a simple and direct geometrical interpretation to the dynamical variables
entering the vertex amplitude, and a simple formulation of the dynamical equations.

We consider the boundary of a Regge cell that is formed by five tetrahedra joined along all their faces,
thus forming a closed space with the topology of a 3-sphere. Recall that the ten spins jnm (n,m = 1, . . . , 5)
are the quantum numbers of the areas Anm that separates the tetrahedra n and m, and the five intertwiners
in are the quantum numbers associated to the angles between the triangles in the tetrahedron n (see section
8.2). These quantities determine entirely the intrinsic and extrinsic classical geometry of the boundary
surface. Each tetrahedron has six such angles, of which only two are independent (at given values of the
areas); but the corresponding quantum operators do not commute [100] and a basis of the Hilbert space on
which they act can be obtained by diagonalizing just a single arbitrary one among these angles. Therefore
the intrinsic geometry of the boundary of a classical Regge cell is determined by twenty numbers, but the
the corresponding quantum numbers are only fifteen: the fifteen quantities jnm, in. These are the fifteen
arguments of the vertex. When using the intertwiners labeled by virtual spins in, we have of course to
specify to which pairing we are referring.

The equations of motion of any dynamical system can be expressed as constraints on the set formed
by the initial, final and (if it is the case) boundary variables. For instance, in the case of the evolution
of a free particle in the time interval t, the equations of motion can be expressed as constraints on the
set (xi, pi, xf , pf ). These constraints are of course m(xf − xi)/t = pi = pf (for the general logic of this
approach to dynamics, see [7]). In General Relativity, the Einstein equations can be seen as constraints
on a boundary 3-surface. These, in fact, can be viewed as the ensemble of the initial, boundary and final
data for a process happening inside the boundary 3-sphere. Such constraints are a bit difficult to write
explicitly, but one solution is easy: the one that corresponds to flat space and to the boundary of a regular
4-simplex. This is given by all equal areas Anm = j0, all equal angles in = i0, and equal extrinsic curvature
angles θnm = θ. Elementary geometry gives

i0 =
2√
3
j0 , cos θ = −1

4
. (252)

It follows immediately from these considerations that a boundary wave-packet centered on these values
must be correctly propagated by the vertex amplitude, if the vertex amplitude is to give the Einstein
equations in the classical limit.
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The simplest wave packet we may consider is a factored Gaussian wave-packet

Ψ(jnm, in) =
∏

nm

ψ̃(jnm)
∏

n

ψ(in) (253)

where
ψ̃(jnm) = e−

1
τ
(jnm−j0)2+iθjnm (254)

and
ψ(i) = N

√
dim(i) e

− 3
4j0

(i−i0)2+i
π
2
i
. (255)

In other words, the state considered has a Gaussian weight over the spins, with phase θ given by the
extrinsic curvature angle and by a “coherent tetrahedron” state (see [100] and section 8.2) for each tetra-
hedron. Let us write the wave packet (253) as an “initial state” times a “final state” by viewing the process
represented by the spacetime region described by the Regge cell as a process evolving four tetrahedra into
one. That is, let us write this state in the form

Ψ(jnm, in) = ψinit(jnm, i
′
n)ψ(i5) (256)

where i′n = (i1, ..., i4). Then we can test the classical limit of the vertex amplitude by computing the
evolution of the four “incoming” tetrahedra generated by the vertex amplitude

φ(i) =
∑

jnm,i′n

W (jnm, i
′
n, i)ψinit(jnm, i

′
n) (257)

where i is i5, and comparing φ(i) with ψ(i). For large j0, the evolution should evolve the “initial” bound-
ary state ψi(jnm, i

′
n) into a final state φ(i) which is still a wave-packet centered on the same classical

tetrahedron as the state ψ(i) given in (255). That is, φ(i) must be a state “similar” to ψ(i), plus perhaps
quantum corrections representing the quantum spread of the wave packet.

We have tested this hypothesis numerically, under a drastic approximation: replacing the Gaussian
dependence on the spins with a state concentrated on jnm = j0. That is, we have tested the hypothesis
in the τ → ∞ limit. Explicitly, we considered the boundary state

Ψ(jnm, in) ∝
10∏

n=1

δjn,j0

5∏

m=1

ψ(im) . (258)

We want to compare the evolved state

φ(i) =
∑

i1...i4

W (i1, ..., i4, i)

4∏

n=1

ψ(in) (259)

with the coherent tetrahedron state (255), where

W (in) ≡W (jnm, in)|jnm=j0 . (260)

If the function φ(i) turns out to be sufficiently close to the coherent tetrahedron state ψ(i), we can say
that the EPR vertex amplitude appears to evolve four coherent tetrahedra into one coherent tetrahedron,
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Figure 8: j0 =2. Modulus square of the amplitude. Left: coherent tetrahedron (imean±σ/2 = 2.54±0.39).
Right: Evolved state (imean±σ/2 = 2.54±0.46). CPU time with a 1.8 Ghz processor: few seconds (old
code), ∼ 10−1 s (new code)

Figure 9: j0 = 2. Modulus square of the (discrete) Fourier transform of the amplitude. Left: coherent
tetrahedron (nmean±σ/2 = 1.25±0.27). Right: Evolved state (nmean±σ/2 = 1.15±0.31).

consistently with the geometry of a classical 4-simplex. In the first paper [20] we have compared the
two functions ψ(i) (coherent tetrahedron) and φ(i) (evolved state) for the cases j0 = 2 and j0 = 4. The
numerical results are shown in the figures below. The overall relative amplitude of ψ(i) and φ(i) is freely
adjusted by fixing the normalization constant N and therefore is not significant. The quantity imean is the
mean value of i. It gives the position of the wave-packet. The quantity σ/2 is the corresponding variance.
It gives the (half) width of the wave packet. In Fig.8 and Fig.10 we compare the modulus square of the
wave function (for the two values of j0). In Fig.9 and Fig.11 we compare the modulus square of the discrete
Fourier transform of the wave function: n stands for the nth multiple of the fundamental frequency 2π/j0.

The agreement between the evolved state and the coherent tetrahedron state is quite good. Besides the
overall shape of the state, notice the concordance of the mean values and the widths of the wave packet.
Considering the small value of j0, which is far from the large scale limit, and the τ → ∞ limit we have
taken, we find this quite surprising.
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Figure 10: j0 =4. Modulus square of the amplitude. Left: coherent tetrahedron (imean±σ/2 = 4.88±0.56).
Right: Evolved state (imean±σ/2 = 4.85±0.96).CPU time with a 1.8 Ghz processor: 6 h (old code), few
seconds (new code)

Figure 11: j0 = 4. Modulus square of the (discrete) Fourier transform of the amplitude. Left: coherent
tetrahedron (nmean±σ/2 = 2.25±0.32). Right: Evolved state (nmean±σ/2 = 2.08±0.59).
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Figure 12: On the left: modulus of the evolved state for the 4-to-1 propagation performed by one 15j
(j0 = 30). On the right: its real and imaginary (dashed) part. CPU time with a 1.8 Ghz processor: few
seconds

7.2 The semi-analytic approach

The property (241) gives a new picture of the dynamics in the semiclassical regime. The EPR vertex is
given by (we omit normalization factors, which are not essential in this semiclassical analysis):

W (i1 . . . i5) ≡
∑

{inL}{inR}
15j
(
i1L, . . . , i5L

)
15j
(
i1R, . . . , i5R

) 5∏

n=1

f ininL,nR
. (261)

Four of the fusion coefficients are contracted in (259) with the four initial packets (making the sum over
i1 . . . i4). By (241), for large j0’s this contraction gives four SO(4) semiclassical intertwiners, so the evolved
state (259) becomes

φ(i5) ≃
∑

i5L,i5R




∑

i1L...i4L

15j
(
i1L, . . . , i5L

)
g(i1L) . . . g(i4L)



×

×




∑

i1R...i4R

15j
(
i1R, . . . , i5R

)
g(i1R) . . . g(i4R)



 f ii5L,i5R
. (262)

We can see in the last expression the action of two 15j’s separately on the left and right part (the
expressions in square brackets). Those actions are interpreted as independent 4-to-1-evolutions in the left
and right sectors, namely the evolution of the left an right part of four SO(4) semiclassical intertwiners,
where the propagation kernel is the 15j-symbol. By numerical investigations (Fig. 12), it turns out
that the final state of the right (left) partial evolution is the right (left) part of an SO(4) semiclassical
intertwiner, with the phase flipped as compared to the incoming packets. For example, for the left part:

φL(i5L) ≡
∑

i1L...i4L

15jN
(
i1L . . . i5L

)
g(i1L) . . . gL(i4L) ≃ g(iL5) . (263)

Then (262) becomes
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φ(i5) ≃
∑

i5L,i5R

g(i5L) g(i5R) f i5i5L,i5R
. (264)

The last expression is the contraction between the a single fusion coefficient and an SO(4) semiclassical
intertwiner. By (242), this gives an SO(3) semiclassical intertwiner:

φ(i5) ≃ ψ(i5). (265)

While in [20] we expected only a conservation of mean values, and possibly a spread of wave-packets, the
present argument shows that the gaussian shape is conserved, together with its mean value and width,
while the phase is flipped, because of the complex conjugation in (265). Similarly, the 3-to-2 evolution
is the contraction between the EPR vertex and three initial semiclassical intertwiners. Numerical results
about this type of evolution are discussed in section 7.4.

7.3 Physical expectation values

Another perspective is to interpret the results about wave-packet propagation as expectation values of
geometric observables associated to the intertwiners degrees of freedom. By construction, the boundary
state (258) is peaked kinematically on a semiclassical geometry. This should be also true in a dynamical
sense, that is as a physical expectation value. Consider the physical expectation value of an intertwiner
on this boundary state, defined as:

〈i1〉 ≡
∑

jnmin
W (jnm, in) i1 Ψ(jnm, in)∑

jnmin
W (jnm, in)Ψ(jnm, in)

. (266)

We expect this quantity to be equal to i0 for large j0’s, if the dynamics has the correct semiclassical limit.
Analogously, we can consider the expectation value of two intertwiners:

〈i1 i2〉 ≡
∑

jnmin
W (jnm, in) i1 i2 Ψ(jnm, in)∑

jnmin
W (jnm, in)Ψ(jnm, in)

; (267)

the last expression should be asymptotically equal to i20. The results about wave-packet propagation
permit to extract the previous physical expectation values. In fact, (266) can be viewed as the contraction
between the evolved state and a semiclassical boundary intertwiner with one insertion, so

〈i1〉 =

∑
i1
φ(i1) i1 ψ(i1)∑
i1
φ(i1)ψ(i1)

≃
∑

i1
ψ(i1) i1 ψ(i1)

∑
i1
ψ(i1)ψ(i1)

= i0, (268)

where we used (265), and evaluated the sum with a simple Gaussian integration; what we have found
is that dynamical and kinematical means coincide in the asymptotic regime. We stress that the result
holds because of the peakedness properties of the evolved state and because of the flip in the phase: the
phase of the evolved state has to be opposite and cancel with the phase of the initial state, otherwise the
sum would be suppresed through the mechanism of rapid oscillations. The same qualitative properties
(peakedness and phase flip) hold for the 3-to-2 propagation (see numerical results in the next section),
and the expectation value of i1i2 turns out to be the correct one: i20.
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Figure 13: On the left: modulus of the evolved state for the 4-to-1 propagation performed by the EPR
vertex (j0 = 30). On the right: its real and imaginary (dashed) part. CPU time with a 1.8 Ghz processor:
∼ 10 minutes

Figure 14: On the left: physical expectation value of i1. On the right: physical expectation value of i1i2.
The solid line is the expected behavior.

7.4 Improved numerical analysis

We wrote an improved, efficient numerical algorithm (in C++) which performs the 4-to-1 and 3-to-2
evolutions, and compute the physical expectation values (266)(267). It evaluates very big, nested sums
serially (similar algorithms were used in [102, 103]). The results are shown in the figures. In Fig.13 the
result of the 4-to-1 evolution for j0 = 30 is reported. From the plot on the left (the modulus) we can
see that the evolved state is a Gaussian peaked on i0 with the same width of the “incoming” Gaussians.
On the right the real and imaginary parts are plotted, showing a −π/2 oscillation frequency, exactly the
opposite frequency of initial packets. In Fig.15 are shown the results of the 3-to-2 propagation (moduli),
from j0 = 10 to j0 = 32 for even j0’s. Compared with the 4-to-1 case, here the Gaussian shape seems not
to be conserved, but the state is nevertheless peaked on i0 and presents a −π/2 phase in both variables;
going to higher spins (we explored up to j0 = 56), the result seems to converge slowly to Gaussian as well.
Non-Gaussianity has to be imputed to quantum effects. Small deviations from Gaussianity are present also
in the 4-to-1-evolution, though less pronounced. Both in the 4-to-1 and 3-to-2 evolution, non-Gaussianity
gives rise to deviations of physical expectation values from the classical behavior, in the quantum regime.
Deviations are well visible in the plots in Fig.14. In conclusion, the EPR physical expectation values
(Fig.14) are correct. Small deviations from the semiclassical values gradually disappear as j0 increases.
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Figure 15: Modulus of the evolved state for the 3-to-2 intertwiner propagation, from j0 = 10 to j0 = 32
with step 2.

69



8. SEMICLASSICAL STATES FOR QUANTUM GRAVITY

8 Semiclassical states for quantum gravity

The concept of semiclassical state of geometry is a key ingredient in the semiclassical analysis of LQG.
Semiclassical states are kinematical states peaked on a prescribed intrinsic and extrinsic geometry of
space. The simplest semiclassical geometry one can consider is the one associated to a single node of a
spin-network with given spin labels. The node is labeled by an intertwiner, i.e. an invariant tensor in the
tensor product of the representations meeting at the node. However a generic intertwiner does not admit
a semiclassical interpretation because expectation values of non-commuting geometric operators acting
on the node do not give the correct classical result in the large spin limit. For example, the 4-valent
intertwiners defined with the virtual spin do not have the right semiclassical behavior; one has to take a
superposition of them with a specific weight in order to construct semiclassical intertwiners. The Rovelli-
Speziale quantum tetrahedron described in section 8.2 is an example of semiclassical geometry; there the
weight in the linear superposition of virtual links is taken as a Gaussian with phase. The Rovelli-Speziale
quantum tetrahedron is actually equivalent to the Livine-Speziale coherent intertwiner with valence 4
(introduced section 8.1); more precisely, the former constitutes the asymptotic expansion of the latter
for large spins. Coherent intertwiners, introduced for general valence in the next section, are defined on
a robust mathematical setting as the geometric quantization of the classical phase space associated to
the degrees of freedom of a tetrahedron. But from the point of view of LQG they are only a first step.
The missing step is to define in the most physically motivated way semiclassical states associated to a
spin-network graph; we expect them to be a superposition over spins of spin-network states, as we shall
argue in a moment.

In the recent graviton propagator calculations [61, 104, 105, 91, 106, 107, 62], semiclassical states
associated to a spin-network graph Γ have been already considered. The states used in the definition of
semiclassical n-point functions (see chapter 10) are labeled by a spin j0e and an angle ξe per link e of the
graph, and for each node a set of unit vectors ~n, one for each link surrounding that node. Such variables
are suggested by the simplicial interpretation of these states: the graph Γ is in fact assumed to be dual to
a simplicial decomposition of the spatial manifold, the vectors ~n are associated to unit-normals to faces of
tetrahedra, and the spin j0e is the average of the area of a face. Moreover, the simplicial extrinsic curvature
is an angle associated to faces shared by tetrahedra and is identified with the label ξe. Therefore, these
states are labeled by an intrinsic and extrinsic simplicial 3-geometry. They are obtained via a superposition
over spins of spin-networks having nodes labeled by Livine-Speziale coherent intertwiners [57, 108, 109].
The coefficients cj of the superposition over spins are given by a Gaussian times a phase as originally
proposed by Rovelli in [61]

cj(j0, ξ) = exp
(
− (j − j0)

2

2σ0

)
exp(−iξj) . (269)

Such proposal is motivated by the need of having a state peaked both on the area and on the extrinsic
angle. The dispersion is chosen to be given by σ0 ≈ (j0)

k (with 0 < k < 2) so that, in the large j0
limit, both variables have vanishing relative dispersions (as explained in [104]). Moreover, a recent result
of Freidel and Speziale strengthens the status of these classical labels [110, 111]: they show that the
phase space associated to a graph in LQG can actually be described in terms of the labels (j0e , ξe, ~ne, ~n

′
e)

associated to links of the graph. The states have good semiclassical properties and a clear geometrical
interpretation, finding a better top-down derivation of the coefficients (269) is strongly desirable. This is
one of the objectives of this thesis.

70



8. SEMICLASSICAL STATES FOR QUANTUM GRAVITY

On the other hand, within the canonical framework, Thiemann and collaborators have strongly advo-
cated the use of complexifier coherent states [112, 113, 114, 115, 116, 117, 118, 119, 120, 121]. Such states
are labeled by a graph Γ and by an assignment of a SL(2,C) group element to each of its links. The state
is obtained from the gauge-invariant projection of a product over links of modified3 heat-kernels for the
complexification of SU(2). Their peakedness properties have been studied in detail [113, 119]. However
the geometric interpretation of the SL(2,C) labels and the relation with semiclassical states used in Spin
Foams has largely remained unexplored. Exploring these aspects is the other objective of this paper.

Surprisingly, the two goals discussed above turn out to be strictly related. In this chapter we present
a proposal of coherent spin-network states: the proposal is to consider the gauge invariant projection of
a product over links of Hall’s heat-kernels for the cotangent bundle of SU(2) [122, 123]. The labels of
the state are the ones used in Spin Foams: two normals, a spin and an angle for each link of the graph.
This set of labels can be written as an element of SL(2,C) per link of the graph. Therefore, these states
coincide with Thiemann’s coherent states with the area operator chosen as complexifier, the SL(2,C)
labels written in terms of the phase space variables (j0e , ξe, ~ne, ~n

′
e) and the heat-kernel time given as a

function of j0e .
We show that, for large j0e , coherent spin-networks reduce to the semiclassical states used in the spin-

foam framework. In particular we find that they reproduce a superposition over spins of spin-networks
with nodes labeled by Livine-Speziale coherent intertwiners and coefficients cj given by a Gaussian times
a phase as originally proposed by Rovelli. This provides a clear interpretation of the geometry these states
are peaked on. The relation between coherent spin-networks and the semiclassical states used in SFM’s is
also briefly discussed at the beginning of section 10.1.

8.1 Livine-Speziale coherent intertwiners

In ordinary Quantum Mechanics, SU(2) coherent states are defined as the states that minimize the
dispersion

∆J2 ≡ 〈 ~J 2〉 − 〈 ~J 〉2 (270)

of the angular momentum operator ~J , acting as a generator of rotations on the representation space
Hj ≃ C2j+1 of the spin j representation of SU(2). On the usual basis |j,m〉 formed by simultaneous
eigenstates of J2 and J3 we have

〈j,m| ~J 2|j,m〉 − 〈j,m| ~J |j,m〉2 = j(j + 1) −m2 , (271)

so the maximal and minimal weight vectors |j,±j〉 are coherent states. Starting from |j, j〉, the whole set
of coherent states is constructed through the group action

|j, g〉 ≡ g|j, j〉 g ∈ SU(2) . (272)

One can take a subset of them labeled by unit vectors on the sphere S2:

|j, n̂〉 = g(n̂)|j, j〉 , (273)

3In particular, the modified heat-kernels reduce to ordinary Hall’s heat-kernels for the complexification of SU(2) when
the complexifier is chosen to be the area operator.
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where n̂ is a unit vector defining a direction on the sphere S2 and g(n̂) a SU(2) group element rotating
the direction ẑ ≡ (0, 0, 1) into the direction n̂. In other words, a coherent states is a state satisfying

~J · n̂|j, n̂〉 = j|j, n̂〉 . (274)

For each n̂ there is a U(1) family of coherent states that satisfy (274), and they are related one another
by a phase factor. The choice of this arbitrary phase is equivalent to a section of the Hopf fiber bundle
s : S2 ≃ SU(2)/U(1) → SU(2). Explicitly, denoting n̂ = (sin θ cos φ, sin θ sinφ, cos θ), a possible section is

g(n̂) ≡ exp{i m̂ · ~σ} , (275)

where m̂ ≡ (sinφ,− cos φ, 0) is a unit vector orthogonal both to ẑ and n̂. A coherent state can be expanded
in the usual basis as

|j, n̂〉 =

j∑

m=−j
am(n̂)|j,m〉, (276)

where

am(n̂) =

√
(2j)!

(j −m)!(j +m)!

ζj−m

(1 + |ζ|2)j , ζ = tan
θ

2
e−iφ . (277)

Coherent states are normalized but not orthogonal, and their scalar product is

〈j, n̂1|j, n̂2〉 =

(
1 + n̂1 · n̂2

2

)j
eijA(z,n̂1,n̂2) , (278)

where A is the area of the geodesic triangle on the sphere S2 with vertices ẑ, n̂1 and n̂2. Furthermore they
provide an overcomplete basis for the Hilbert space Hj of the spin j irreducible representation of SU(2),
and the resolution of the identity can be written as 1j = dj

∫
d2n̂ |j, n̂〉〈j, n̂|, with d2n̂ the normalized

Lebesgue measure on the sphere S2.
The Livine-Speziale coherent intertwiners are naturally defined taking the tensor product of V coherent

states (V stands for valence of the node) and projecting onto the gauge-invariant subspace:

|j, n̂ 〉0 ≡
∫
dh ⊗V

i=1 h|ji, n̂i〉 =
∑

i1...iV −3

ci1...iV −3
(ji, n̂i) |j1 . . . jV , i1 . . . iV−3〉 . (279)

Here the projection is implemented by group averaging. They are labeled by V spins j and V unit
vectors n̂. The explicit coefficients entering (279) can be found using (276) to decompose |j, n̂ 〉0 into the

conventional basis of H0 = Inv
⊗V

i=1 Hji . To each node of valence V of a spin-network we can associate V
areas and 2(V − 3) angles between them. Alternatively, one can use the normal vectors n̂i normalized to
the areas, constrained to close, namely to satisfy

∑
i jin̂i = 0. The conventional recoupling basis used in

LQG gives quantum numbers for V areas but only V − 3 angles, because one associates SU(2) generators
~Ji with each face, and only V − 3 of the possible scalar products ~Ji · ~Jk commute among each other.
Thus half the classical angles are missing. The states |j, n̂ 〉0 instead carry enough information to describe
a classical geometry associated to the node. In fact we interpret the vectors jin̂i as normal vectors to
triangles, normalized to the areas ji of the triangles.
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8.2 Coherent tetrahedron

The case of 4-valent coherent intertwiners is of particular importance for LQG and especially for Spin
Foam Models. In fact it is the lowest valence carrying a non-zero volume and most SFM’s are build over
a simplicial triangulation, so that the boundary state space has only 4-valent nodes, dual to tetrahedra.
A 4-valent coherent intertwiner with normals satisfying the closure condition can be interpreted as a
semiclassical tetrahedron. In fact expectation values of geometric operators associated to a node give the
correct classical quantities in the semiclassical regime. This regime is identified with the large spin (large
areas) asymptotics. In the following we give some details.

Define ~n = jn̂ as the normals normalized to the area. In terms of them, the volume (squared) of the
tetrahedron is given by the simple relation:

V 2 = − 1

36
~n1 · ~n2 × ~n3 . (280)

The geometric quantization of these degrees of freedom is based on the identification of generators ~Ji of
SU(2) as quantum operators corresponding to the ~ni [124]. As mentioned, this construction gives directly
the same quantum geometry that one finds via a much longer path by quantising the phase space of
General Relativity, that is via Loop Quantum Gravity. The squared lengths |~ni|2 are the SU(2) Casimir
operators C2(j), as in LQG. A quantum tetrahedron with fixed areas lives in the tensor product

⊗4
i=1 Hji.

The closure constraint reads:
4∑

i=1

~Ji = 0 , (281)

and imposes that the state of the quantum tetrahedron is invariant under global rotations. The state
space of the quantum tetrahedron with given areas is thus the Hilbert space of intertwiners

Ij1...j4 = Inv
4⊗

i=1

Hji . (282)

The operators ~Ji · ~Jj are well defined on this space, and so is the operator

U = −ǫabcJa1 Jb2Jc3 . (283)

Its absolute value |U | can immediately be identified with the quantization of the classical squared volume
36V 2, by analogy with (280), again in agreement with standard LQG results (equation 119).

To find the angle operators, let us introduce the quantities ~Jij := ~Ji+ ~Jj. Their geometrical interpreta-
tion can be found applying the same arguments as above to ~ni+~nj. It turns out that

√
Jij2 is proportional

to the area Aij of the internal parallelogram, whose vertices are given by the midpoints of the segments
belonging to either the triangle i or the triangle j but not to both (see [124]), Aij ≡ 1

4
√

2

√
Jij2. Given

these quantities, the angle operators θij can be recovered from

Ji Jj cos θij = ~Ji · ~Jj =
1

2
(J2
ij − J2

i − J2
j ) . (284)
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We conclude that the quantum geometry of a tetrahedron is encoded in the operators J2
i , J

2
ij and U , acting

on Ij1...j4 . It is a fact that out of the six independent classical variables parametrizing a tetrahedron, only
five commute in the quantum theory. Indeed while we have [Jk

2, Ji · Jj ] = 0, it is easy to see that:

[J1 · J2 , J1 · J3] =
1

4

[
J2

12, J
2
13

]
= i ǫabc J

a
1 J

b
2J

c
3 = −iU 6= 0 . (285)

A complete set of commuting operators, in the sense of Dirac, is given by the operators J2
i , J

2
12. In other

words, a basis for Ij1...j4 is provided by the eigenvectors of any one of the operators J2
ij . We write the

corresponding eigenbasis as |j〉ij . These are the virtual links introduced in section 3.2 with a graphical
notation; here we are introducing them via a geometric quantization of the classical tetrahedron. For
instance, the basis |j〉12 diagonalises the four triangle areas and the dihedral angle θ12 (or, equivalently,
the area A12 of one internal parallelogram). As we already said, the relation between different basis is
easily obtained from SU(2) recoupling theory: the matrix describing the change of basis in the space of
intertwiners is given by the usual Wigner 6j-symbol,

Wjk := 12〈j|k〉13 = (−1)
P

i ji
√

dim(j)dim(k)

{
j1 j2 j
j3 j4 k

}
, (286)

so that
|k〉13 =

∑

j

Wjk|j〉12 . (287)

Notice that from the orthogonality relation of the 6j-symbol,

∑

i

dim(i)

{
j1 j2 i
j3 j4 j

}{
j1 j2 i
j3 j4 k

}
=

δjk
dim(j)

, (288)

we have ∑

i

WijWik = δjk . (289)

The states |j〉12 are eigenvectors of the five commuting geometrical operators J2
i , J

2
12, thus the average

value of the operator corresponding to the sixth classical observable, say J2
13, is on these states maximally

spread. This means that a basis state has undetermined classical geometry or, in other words, is not an
eigenstate of the geometry. We are then led to consider superpositions of states to be able to study the
semiclassical limit of the geometry. Suitable superpositions could be constructed for instance requiring
that they minimise the uncertainty relations between non–commuting observables, such as

∆2J2
12 ∆2J2

13 ≥ 1

4
|〈[J2

12, J
2
13]〉|2 ≡ 4 |〈U〉|2 . (290)

States minimising the uncertainty above are usually called coherent states. Coherent intertwiners seem
not to verify exactly (290), but they are such that all relative uncertainties 〈∆2Jij〉/〈J2

ij〉, or equivalently
〈∆θij〉/〈θij〉, vanish in the large scale limit. The limit is defined by taking the limit when all spins involved
go uniformly to infinity, namely ji = λki with λ → ∞. Notice that this is a different requirement than
minimising (290), but the two are likely to be intimately related. Because of these good semiclassical
properties we can associate to a coherent intertwiner the geometrical interpretation of a semiclassical
tetrahedron; an analogous interpretation should be also valid nodes of higher valence. In the next section
we introduce coherent states which are associated not to a single node, but to the entire graph; we are
forced to use them if we consider the full phase space of General Relativity.
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8.3 Coherent spin-networks

In this section we discuss a proposal of coherent states for Loop Quantum Gravity, an original contribution
appeared in reference [125]. These states are labeled by a point in the phase space of General Relativity
as captured by a spin-network graph. They are defined as the gauge invariant projection of a product over
links of Hall’s heat-kernels [126] for the cotangent bundle of SU(2). The labels of the state are written in
terms of two unit-vectors, a spin and an angle for each link of the graph. The heat-kernel time is chosen
to be a function of the spin. These labels are the ones used in the Spin Foam setting and admit a clear
geometric interpretation. Moreover, the set of labels per link can be written as an element of SL(2,C).
Therefore, these states coincide with Thiemann’s coherent states with the area operator as complexifier.
We study the properties of semiclassicality of these states and show that, for large spins, they reproduce
a superposition over spins of spin-networks with nodes labeled by Livine-Speziale coherent intertwiners.
Moreover, the weight associated to spins on links turns out to be given by a Gaussian times a phase as
originally proposed by Rovelli.

The Hilbert space of LQG decomposes into sectors isomorphic to KΓ = L2(SU(2)L/SU(2)N , dµL)
associated to an embedded graph Γ having L links and N nodes. States Ψ(h1, . . , hL) in KΓ capture a
finite number of degrees of General Relativity: the ones associated to the classical phase space T ∗SU(2)L

of holonomies of the Ashtekar-Barbero connection along links of the graph and fluxes through surfaces
dual to links of the graph. Here we consider states belonging to KΓ and labeled by a point in phase space.
Notice that the cotangent bundle T ∗SU(2) is diffeomorphic4 to the group SL(2,C), the universal covering
of the Lorentz group SO(1, 3). This fact is largely exploited in the following: the states we consider are
in fact labeled by an element of SL(2,C) per link of the graph.

Let us consider the heat kernel Kt(h, h0) on SU(2). Being an L2 function over SU(2), it has the
following Peter-Weyl expansion

Kt(h, h0) =
∑

j

(2j + 1)e−j(j+1)t χ(j)(hh−1
0 ) . (291)

It is easy to show that, as a function of h, it is peaked on the conjugacy class of h0. Moreover, when seen
as an LQG state associated to a loop γ, Ψγ(h) = Kt(h, h0), it is peaked on small areas (that is small j).
There is a rather simple variant of Kt(h, h0) that allows to peak on a prescribed spin j0: it is given by the
complexified heat kernel, i.e. by Kt(h,H0) with the group element H0 belonging to the complexification
of SU(2):

SU(2)C ≃ SL(2,C) . (292)

This complexified Heat kernel is the unique analytic continuation of the SU(2) heat kernel. These objects
are the building blocks of Thiemann’s complexifier coherent states. To simplify the notation, in the
following we assume that Γ is a complete graph so that, if a, b, . . = 1, . . , N label nodes of the graph, then
links are labeled by couples ab. For instance, the holonomy associated to an oriented link is hab and its
inverse is h−1

ab = hba. The generalization to arbitrary graphs is immediate.

4In fact, since SU(2) is a Lie group, its tangent bundle is trivial: T ∗SU(2) ≃ SU(2) × su(2)∗ ≃ SU(2) × su(2); then
observe that every element in SL(2, C) is of the form x exp(iy) with x ∈ SU(2) and y ∈ su(2). Moreover, the complex
structure of SL(2, C) and the symplectic structure of T ∗SU(2) fit together so as to form a Kähler manifold.
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Coherent spin-networks are defined as follows: we consider the gauge-invariant projection of a product
over links of heat kernels,

ΨΓ,Hab
(hab) =

∫ (∏

a

dga
) ∏

ab

Ktab
(hab, gaHab g

−1
b ). (293)

These states were first considered in [112]. Here the positive numbers tab are fixed in terms of the labels
Hab as explained later on. Now, notice that every element Hab of SL(2,C) can be written in terms of two
unit-vectors in R3, a positive real number and an angle, that is: exactly the labels used in the semiclassical
states adopted in spin foams (see chapter 9), the ones that in a simplicial setting correspond to ‘twisted
geometries’ [111]. Let us see how.

An element Hab of SL(2,C) can be written in terms of a positive real number ηab and two unrelated
SU(2) group elements gab and gba as5 [127]

Hab = gab e
η τ3 g−1

ba . (294)

In turn, a SU(2) group element can be uniquely written in terms of an angle φ̃ and a unit-vector ~n. Let
us define ~n via its inclination and azimuth

~n =
(
sin θ cos φ, sin θ sinφ, cos θ

)
, (295)

and introduce the associated group element n ∈ SU(2) defined as

n = e−iφτ3 e−iθτ2 . (296)

Then the SU(2) group element g is given by g = n e+iφ̃τ3 . Using such parametrization in (294) we finally
find

Hab = nab e
−izabτ3 n−1

ba . (297)

with zab = ξab+iηab and ξab = φ̃ba−φ̃ab. Therefore, for each link we have as labels the set (~nab, ~nba, ξab, ηab).
These variables admit the following classical interpretation: a link connects two nodes living inside two
adjacent chunks of space; the interface between them is a surface dual to the link; let us choose a frame
in each of the two chunks; the variable ~nab can be interpreted as the (unit-)flux of the electric field Ei

in the chunk a through the surface; similarly ~nba can be viewed as the flux in b through this surface.
In general, the two vectors are different as we have not chosen the same frame. There is a rotation R
such that R~nab = −~nba. The product Re−iξ~nab·~τ ∈ SU(2) can be understood as the holonomy of the
Ashtekar-Barbero connection, Ai = Γi + γKi. Finally, the positive parameter ηab can be related to the
area of the surface, i.e. to the spin jab.

In order to test and strengthen our geometric interpretation of the SL(2,C) labels, in the following we
study the asymptotics of coherent spin-networks for large parameter ηab. This allows to test the proposal
against candidate semiclassical states that have been studied previously. The state (293) can be expanded
on the spin-network6 basis ΨΓ,jab,ia(hab). Its components fjab,ia,

ΨΓ,Hab
(hab) =

∑

jab

∑

ia

fjab,ia ΨΓ,jab,ia(hab) (298)

5In the following τi = σi

2
with σi hermitian Pauli matrices.

6Here spin-network states can be viewed as functions of holonomies, as opposed to functions of distributional connections
because we have fixed a graph.
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are given by7

fjab,ia =
(∏

ab

(2jab + 1)e−jab(jab+1)tabD(jab)(Hab)
)
·
(∏

a

via

)
, (299)

where from now on Hab is given by (297). Notice that here the sum over spins runs over half-integers
including zero. Thus, strictly speaking, a coherent spin-network does not live on a single graph Γ but on
a superposition of all the subgraphs of Γ.

Here we are interested in its asymptotics for ηab ≫ 1. First of all, notice that, in the limit ηab → +∞,
we have the following asymptotic behavior

D(jab)(e−izabτ3)mm′ = δmm′e−imzab = δmm′ e+ηabjab

(
δm,jab

e−iξabjab +O(e−ηab)
)
. (300)

Therefore, introducing the projector

P+ = |jab,+jab〉〈jab,+jab| ∈ H∗
jab

⊗Hjab
(301)

onto the highest magnetic number, we can write (300) as

D(jab)(e−izabτ3) ∼ e−iξabjabe+ηabjabP+ . (302)

Recall that the coherent intertwiners Φa(~nab) introduced by Livine and Speziale [57] have components on
a orthonormal basis via in intertwiner space, Φa(~nab)

m1···mr =
∑

ia
Φia(~nab) v

m1···mr
ia

, given by

Φia(~nab) = via ·
(⊗

b
|jab, ~nab〉

)
(303)

where |jab, ~nab〉 = nab|jab,+jab〉. Moreover, notice that

− j(j + 1)t+ j η = −
(
j − η − t

2t

)2
t+

(η − t)2

4t
. (304)

Therefore, up to an overall normalization of the state, we find the following asymptotics for our states:

fjab,ia ≈
(∏

ab

exp
(
− (jab − j0ab)

2

2σ0
ab

)
e−iξabjab

) (∏

a

Φia(nab)
)

(305)

with

(2j0ab + 1) ≡ ηab
tab

and σ0
ab ≡

1

2tab
. (306)

Finally, introducing spin-networks with nodes labeled by coherent intertwiners as in [62],

ΨΓ,jab,Φa(~nab)(hab) =
∑

ia

(∏

a

Φia(~nab)
)

ΨΓ,jab,ia(hab) , (307)

7The notation · in (299) stands for a contraction of dual spaces. To be more explicit we recall that, if V (j) is the vector
space where the representation j of SU(2) acts, then the tensor product of representations D(je)(he) lives in ⊗e(V

(je)∗⊗V (je))
while the tensor product of intertwiners lives precisely in the dual of this space.
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we find that the coherent spin-networks, for large ηab, are given by the following superposition

ΨΓ,Hab
(hab) ≈

∑

jab

(∏

ab

exp
(
− (jab − j0ab)

2

2σ0
ab

)
e−iξabjab

)
ΨΓ,jab,Φa(~nab)(hab) . (308)

Unexpectedly, these are exactly the states considered in the definition of semiclassical correlation functions
(chapter 9). There, the graph Γ is assumed to be the one dual to the boundary triangulation of a 4-simplex,
the quantities j0ab and ~nab are areas and normals of faces of tetrahedra chosen so to reproduce the intrinsic
geometry of the boundary of a regular Euclidean 4-simplex. Moreover, the parameters ξab are chosen so to
reproduce its extrinsic curvature. The analysis of the correlation function of metric operators confirms that
the appropriate value is ξab = γKab = γ arccos(−1/4). This result confirms the geometric interpretation
of our variables and extends the validity of the semiclassical states used in [62] well beyond the simplicial
setting: coherent spin-networks are defined in full LQG.

In order to better test the interpretation of our variables, we consider a rather simple example: the
coherent loop. This example allows us to discuss the importance of the appropriate choice of heat-kernel
time tab in (293). When the graph is given by a loop γ, the dependence of the state on the normals ~n in
(293) drops out and the state is simply labeled by ξ and η. For large η, we find

Ψγ,ξ+iη(h) =
∑

j

exp
(
− (j − j0)

2

2σ0

)
e−iξjχ(j)(h) (309)

with j0 and σ0 given in terms of η and t by (306). Now we compute the expectation value of the area
operator A for a surface that is punctured once by the loop. As well known (equation 114), we have

Â Ψγ,ξ+iη(h) = γL2
P

∑

j

exp
(
− (j − j0)

2

2σ0

)
e−iξj

√
j(j + 1) χ(j)(h) . (310)

In the limit of large η and large j0, the expectation value of the area operator is easily computed

〈A 〉 =
(Ψγ,ξ+iη, Â Ψγ,ξ+iη)

(Ψγ,ξ+iη,Ψγ,ξ+iη)
= γL2

P

√
j0(j0 + 1) (311)

and confirms the interpretation of η as the quantity that prescribes the expectation value of the area. Now
we consider the other observable acting on the Hilbert space Kγ : the Wilson loop operator Wγ . Recall
that it acts on basis vectors as

Ŵγ χ
(j)(h) ≡ χ( 1

2
)(h)χ(j)(h) = χ(j+ 1

2
)(h) + χ(j− 1

2
)(h) . (312)

As a result, we find

〈Wγ〉 = 2 cos(ξ/2) e−
t
8 . (313)

Therefore, in the limit t→ 0 compatible with η and j0 large, the parameter ξ identifies the conjugacy class
of the group element h0 where the Ashtekar-Barbero connection is peaked on. According to the Aharonov-
Bohm picture of LQG [128], the angle ξ is thus the expectation value of the flux of the magnetic field
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through a line defect encircled by the loop γ. Similarly, we can compute the dispersions of the area
operator and of the Wilson loop. We find

∆A ≡
√

〈A 2〉 − 〈A 〉2 =
1

2
γL2

P

√
2σ0 , (314)

and

∆Wγ ≡
√

〈W 2
γ 〉 − 〈Wγ〉2 =

√(
sin(ξ/2)

)2 1√
2σ0

. (315)

Now notice that, due to the relation (306), the limit “large η and large j0” can be attained only if we
assume that t scales with j0 as

t ∼ (j0)
k with k > −1 . (316)

Moreover, as the area and the Wilson loop are non-commuting operators, we cannot make both their
dispersions vanish at the same time. Small heat-kernel time means that the state is sharply peaked on
the holonomy, while large heat-kernel time means that the state is sharply peaked on the spin. A good
requirement of semiclassicality is that the relative dispersions of both operators vanish in the large j0
limit. Using the results derived above, we find the following behavior for relative dispersions:

∆A

〈A 〉 ∼ (j0)
− k+2

2 and
∆Wγ

〈Wγ〉
∼ (j0)

k
2 . (317)

The first requires k > −2 and the second k < 0. Taking into account the three bounds (316)-(317) we find
that the coherent loop behaves semiclassically when the heat-kernel time scales as (j0)

k with −1 < k < 0.
For instance, the choice t = 1/

√
j0 guarantees the semiclassicality of the state.

8.4 Resolution of the identity and holomorphic representation

In the previous section we focused on the properties of semiclassicality of coherent spin-networks: peaked-
ness on a classical configuration with small dispersions. In this section we discuss their coherence proper-
ties: for a given choice of parameters tab, coherent spin-networks provide a holomorphic representation for
Loop Quantum Gravity. This result was obtained long ago by Ashtekar, Lewandowski, Marolf, Mourão
and Thiemann [123] and is based on the Segal-Bargmann transform for compact Lie groups introduced
by Hall [122]. Here we report their result in the formalism of this paper and comment on its relevance for
the analysis of the semiclassical behavior of Loop Quantum Gravity.

Let us consider the SL(2,C) heat-kernel8 Ft(H) and introduce a function Ωt(H) on SL(2,C) given by

Ωt(H) =

∫

SU(2)
Ft(Hg) dg . (318)

This function is just the heat-kernel on SL(2,C)/SU(2), regarded as a SU(2)-invariant function on
SL(2,C). A key result of Hall [122] is that the delta function on SU(2) can be written in terms of
the following SL(2,C) integral

δ(h, h′) =

∫

SL(2,C)
Kt(hH

−1) Kt(h′H−1) Ω2t(H) dH , (319)

8The SL(2, C) heat-kernel Ft(H,H0) is not to be confused with the analytic continuation to SL(2, C) of the SU(2)
heat-kernel Kt(h, h0).
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where dH is the Haar measure on SL(2,C). This expression admits a straightforward generalization in
terms of coherent spin-networks.

We recall that, in the holonomy representation, the identity operator 1Γ on the Hilbert space KΓ is
given by the distribution δΓ(hab, h

′
ab) on SU(2)L/SU(2)N . It can be written in terms of the spin-network

basis as

δΓ(hab, h
′
ab) =

∫
(
∏

a

dga)(
∏

a

dg′a)
∏

ab

δ(g−1
a habgb, g

′−1
a h′abg

′
b) (320)

=
∑

jabia

ΨΓ,jab,ia(hab) ΨΓ,jab,ia(h
′
ab) .

The resolution of the identity for coherent spin-networks is given by

δΓ(hab, h
′
ab) =

∫

SL(2,C)L

ΨΓ,Hab
(hab) ΨΓ,Hab

(h′ab)
(∏

ab

Ω2tab
(Hab) dHab

)
(321)

with the measure on SL(2,C)L that factors in a product of measures per link given by the SU(2)-averaged
heat-kernel for SL(2,C) at time 2t, times the Haar measure dHab. Expression (321) for the resolution of
the identity can be easily proved using formula (319), the definition of coherent spin-networks (293) and
expression (320) for δΓ(hab, h

′
ab).

As shown in [123], coherent spin-networks provide a Segal-Bargmann transform for Loop Quantum
Gravity. In fact, given a state ΨΓ,f (hab), its scalar product with a coherent spin-network ΨΓ,Hab

(hab)
defines a function ΦΓ,f(Hab) that is holomorphic in Hab,

ΦΓ,f (Hab) =

∫

SU(2)L

ΨΓ,Hab
(hab) ΨΓ,f(hab)

∏

ab

dhab , (322)

and belongs to the Hilbert space HL2(SL(2,C)L, (Ω2tdH)L) of holomorphic functions normalizable with
respect to the measure (Ω2tdH)L. Moreover, from expression (321) follows that the trasform preserves
the scalar product,

∫

SU(2)L

ΨΓ,f1(hab) ΨΓ,f2(hab)
∏

ab

dhab =

∫

SL(2,C)L

ΦΓ,f1(Hab) ΦΓ,f2(Hab)
(∏

ab

Ω2tab
(Hab) dHab

)
.

What is now available is a representation for Loop Quantum Gravity where states are functions of classical
variables Hab that admit a clear geometric interpretation in terms of areas, extrinsic angles and normals,
(ηab, ξab, ~nab), the variables generally used in the Spin Foam setting.

In the following we present the proof of formula (319). The representation of the delta function of
SU(2) in terms of an integral on SL(2,C), formula (319), is a key ingredient in the proof of the resolution
of the identity provided by coherent spin-networks. To make the paper self-contained, in this appendix
we report an elementary proof of formula (319). The proof is by direct computation and is similar to
the derivation of [113] (section 4.4). A more general proof for compact Lie groups can be found in [122]
(section 7).

Let us use the polar decomposition

H = g e ~p ·
~σ
2 (323)
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to parametrize an element H of SL(2,C) in terms of an element g of SU(2) and a vector ~p in R3. In these
variables, the Haar measure dH on SL(2,C) factors into a SU(2) term and a R3 term

dH =
(sinh |~p |)2

|~p |2 d3~p dg , (324)

where dg is the Haar measure on SU(2) and d3~p is the Lebesgue measure on R3.
The SU(2)-averaged heat kernel on SL(2,C) coincides with the heat kernel on the hyperboloid H3 =

SL(2,C)/SU(2). Its explicit form in terms of the variables (323) can be found in [129] and is given by

Ωt(g e
~p ·~σ

2 ) =
1

(πt)3/2
e−t/4

|~p |
sinh |~p |e

−|~p |2/t . (325)

Therefore, the measure in the resolution of the identity (319) is given by

Ω2t(Hab) dHab = ρt(|~p |) d3~p dg (326)

where

ρt(|~p |) =
1

(2πt)3/2
e−t/2

sinh |~p |
|~p | e−

|~p |2

2t . (327)

Now we want to compute the integral that appears on the rhs of (319). Using the Peter-Weyl expansion
of the heat-kernel we find

∫

SL(2,C)
Kt(hH

−1) Kt(h′H−1) Ω2t(H) dH =
∑

j,j′

(2j + 1)(2j′ + 1)e−j(j+1)te−j
′(j′+1)t fj,j′(h, h

′) , (328)

where the coefficients in the sum are given by

fj,j′(h, h
′) =

∫

SL(2,C)
χ(j)(hH−1) χ(j′)(h′H−1) Ω2t(H) dH . (329)

This quantity can be computed in two steps: (i) first we integrate over the subgroup SU(2) and obtain

fj,j′(h, h
′) =

δj,j
′

2j + 1
Tr(Dj(hh′−1

)A) (330)

where A is a (2j + 1)× (2j + 1) matrix. Then, (ii) we compute the matrix A. It is given by the following
integral over R3

A =

∫

R3

D(j)(e−~p·
~σ
2 ) ρt(|~p |) d3~p . (331)

Notice that the matrix A commutes with the irreducible representation j of SU(2). Therefore it has to
be a multiple of the identity

A =
c

2j + 1
1 (332)

with the constant c given by the trace of the matrix. Such constant can be computed explicitly performing
the integral and is given by

c = TrA = 4π

∫ ∞

0

sinh((2j + 1)p)

sinh(p)
ρt(p) dp = (2j + 1) e+j(j+1)2t . (333)
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Therefore the integral (329) is simply given by

fj,j′(h, h
′) = δj,j

′
e+j(j+1)2t χ(j)(hh′−1

) . (334)

Inserting this result into the rhs of expression (328) we find the Peter-Weyl expansion of the delta-function,

δ(h, h′) =
∑

j

(2j + 1)χ(j)(hh′−1
) . (335)

This proves expression (319).
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9 Graviton propagator in Loop Quantum Gravity

In this short chapter we discuss a possible definition of the n-point functions for nonperturbative quantum
gravity, and shall reserve the next chapter to the effective implementation of the formal definition in Spin
Foam Models. The goal is to compare them with the standard n-point functions of perturbative quantum
gravity. Agreement at large distance can be taken as evidence that the nonperturbative quantum theory
has the correct low energy limit, while the differences at short distance reflect the improved ultraviolet
behavior of the nonperturbative theory. The difficulty is that general covariance makes conventional n-
point functions ill-defined in the absence of a background. A strategy for addressing this problem has
been suggested in [130]; the idea is to study the boundary amplitude, namely the functional integral
over a finite spacetime region, seen as a function of the boundary value of the gravitational field [17].
In conventional quantum field theory, this boundary amplitude is well-defined [131, 132] and codes the
physical information of the theory; so does in quantum gravity, but in a fully background-independent
manner [133].

A generally covariant definition of n-point functions can be based on the idea that the distance between
physical points (arguments of the n-point function) is determined by the state of the gravitational field
on the boundary of the spacetime region considered. This strategy was first implemented by C. Rovelli
in the letter [61], where some components of the graviton propagator were computed to the first order
in the Group Field Theory expansion parameter λ. The calculation of the so-called diagonal components
to second order in λ is performed in [61] (for an implementation of these ideas in 3 dimensions, see
[134, 135]). Only a few components of the boundary state contribute to the leading order in λ, namely
the ones supported on the dual graph, boundary of a single 4-simplex. This reduces the calculation to
a generalization of the “nutshell” 3d model studied in [136]. The boundary amplitude which defines n-
point functions can be read as the creation, interaction and annihilation of “atoms of space”, in the sense in
which Feynman diagrams in conventional Quantum Field theory can be viewed as creation, interaction and
annihilation of particles. Using a natural Gaussian weight for the boundary state, peaked on the intrinsic
as well as the extrinsic geometry of a Euclidean 3-sphere, we can compute the graviton propagator. In the
Euclidean EPRL Spin Foam Model, this agrees with the conventional Euclidean graviton propagator, in
the limit of vanishing Barbero-Immirzi parameter. In the first part of this section we show how to define
n-point functions for generally covariant field theories, in the context of the general boundary formulation.

In order to explain the concept of boundary amplitude, we first illustrate a very simple example: the
harmonic oscillator. Then we sketch the phylosophy behind the general boundary formulation for field
theories, in particular for quantum gravity. We conclude showing a formal expression for quantum gravity
n-point functions, well suited for an implementation in SFM’s.

In the next section we present the main ingredients for the definition of the graviton propagator in
nonperturbative quantum gravity. In the subsequent section we stress the problem of the gauge choice for
the comparison with the standard linearized theory and how, in principle, the problem is solved by the
compatibility between radial and harmonic gauge. The Feynman rules of perturbative quantum gravity
are mostly known in harmonic gauge, but the calculation we present in Loop Quantum Gravity is made in
a sort of radial gauge (the field insertions have vanishing radial components). We show [137] that radial
and harmonic gauges are compatible, and it is possible to compare the full tensorial structure of the LQG
propagator with the standard propagator.
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9.1 n-point functions in generally covariant field theories

In standard perturbative quantum gravity the metric is split in a flat background metric η plus a per-
turbation: gµν(x) = ηµν + hµν(x); the background is classical, and only the perturbation is considered a
dynamical quantum field. The 2-point function is defined as the vacuum expectation value

Gµνρσ(x, y) = 〈0|hµν(x)hρσ(y)|0〉 . (336)

In a candidate fully nonperturbative theory, diffeomorphism invariance implies that the propagator does
not depend on the points x, y, namely it must be constant. This problem can only be solved if we change
our perspective. It is more operationally meaningful to define n-point functions associated to a finite region
of spacetime, since any real measurement process is done in a finite amount of time, and in a finite region
of space. The theory which deals with finite region measurements is a generalization of Quantum Field
Theory called Genal Boundary QFT [17]. Of course, for flat time slices separated far away, the theory
reduces to the ordinary one found in text-books. We now cast the quantum mechanics of an harmonic
oscillator in the form of a general boundary theory, and define the associated 2-point function. This will
give an intuitive feeling of what is the general boundary formalism.

The 2-point function, or propagator, for the quantum harmonic oscillator is the “vacuum” expectation
value of two position operators:

G0(t1, t2) = 〈0|x̂(t1)x̂(t2)|0〉 = 〈0|x̂e−iH(t1−t2)x̂|0〉 , (337)

where the “vacuum” state is the eigenstate of the Hamiltonian with minimal energy, the ground state. In
the Schrödinger representation L2(R,dx), the 2-point function is a Lebesgue integral over positions:

G0(t1, t2) =

∫
dx1dx2 ψ0(x1) x1W (x1, x2; t1, t2)x2ψ0(x2) , (338)

where ψ0 = 〈x|0〉 is the wave function of ground state. The integral kernel W is called propagation kernel
and it codes the full dynamics of the system. In the more formal functional representation (Feynman path
integral), the 2-point function reads

G0(t1, t2) =

∫
Dxx(t1)x(t2)e

i
R
Ldt . (339)

The Schrödinger representation is recovered by breaking the functional integral into five spacetime regions:
the two regions external to the initial and final time, the two regions (planes) at initial and final time
and the region in between. The external integration gives back the ground state, the internal integration
gives back the propagation kernel W and the integration on the time slices t1 and t2 is just the integration
appearing in the Schrödinger representation. Now we introduce the relativistic form of the 2-point function.
By relativistic here we mean “general relativistic” in the sense that we want to eliminate as much as possible
the preferred role of time, which is present in any non relativistic theory. This idea is well illustrated in
[7].

Let us glue the initial and final background configuration ψ0 and ψ0 in single composite state, the
tensor product of the two. Call it “boundary state” Ψ0, an element in H∗ ⊗ H. H is the Hilbert space
of configurations at fixed time. Then H∗ and H have to be interpreted as the spaces of initial and final
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data, respectively. We use the notation H∗
t1 ⊗ Ht2 . Then we define the relativistic position operators

x̂1 = x̂ ⊗ 1 and x̂2 = 1 ⊗ x̂, which act separately on the two Hilbert spaces. The propagation kernel W
can be interpreted as a linear functional (a “bra”) on H∗

t1 ⊗Ht2 . With the previous definitions, the 2-point
function assumes the compact form

G0(t1, t2) = 〈Wt1t2 |x̂1x̂2|Ψ0〉 . (340)

The physical interpretation is the following: Ψ0 represents the joint configuration at initial and final time
with no excitations present; W codes the dynamics and x̂1, x̂2 create two excitations at initial and final
time. The state x̂1x̂2|Ψ0〉 is the excited boundary configuration detected in the experiment. In this new
language, we can consider the following normalization condition:

〈0|eiH(t1−t2)|0〉 = 〈Wt1t2 |Ψ0〉 = 1 . (341)

Its physical meaning is the following. When (341) holds, then the final state is exactly the time evolution
of the initial state; in other words, the joint “boundary state” satisfies the quantum dynamics. In the
jargon of quantum gravity, this normalization condition is called Wheeler-deWitt equation.

More in general, we can consider a joint coherent state peaked on the doubled phase space point
(q1, p1, q2, p2):

Ψq1,p1,q2,p2(x1, x2) ≡ ψq1,p1(x1)ψq2,p2(x2) . (342)

The main object we consider is then the semiclassical 2-point function constructed this way:

Gq1,p1,q2,p2(t1, t2) = 〈Wt1,t2 |Ψq1,p1,q2,p2〉 . (343)

The associated Wheeler-deWitt equation is:

〈Wt1t2 |Ψq1,p1,q2,p2〉 = 1 . (344)

We choose the couple position/momentum q1, p1 to be the classical evolution of q2, p2. For the harmonic
oscillator, since the coherent states are Gaussian wave-packets and the dynamics does not destroy the
coherence properties (in fact the evolution is rigid) the Wheeler-deWitt equation is satisfied exactly. We
call the quadruplet (q1, q2, p1, p2) a physical boundary configuration, denoted q. The 2-point function for
a physical boundary configuration is the quantum amplitude for a quantum excitation to propagate over
a classical trajectory starting with initial condition (q2, p2).

In quantum field theory we can do the very same step. As before, we define the 2-point function, e.g.
for a scalar field theory:

Gq(x, y) =

∫
Dφ1Dφ2 ψq1,p1(φ1)φ1(x)W (φ1, φ2; t1, t2)ψq2,p2(φ2)φ2(y) . (345)

Here x, y are points on two space-like hyperplanes in Minkowski space, and q is the joint boundary
configuration (it comprehends both the scalar field φ and its conjugate momentum Π). It is well-known
that in the Scrödinger representation of the free theory the vacuum state is a functional with Gaussian
dependence on the scalar field, just like the “vacuum” state of harmonic oscillator is a Gaussian. The
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propagation kernel W comes from the functional integration restricted to the spacetime region between
two time slices

W (φ1, φ2; t1, t2) =

∫ ϕ|t2=φ2

ϕ|t1=φ1

Dϕ ei
R t2
t1

dt
R

d3~xL [ϕ] . (346)

Now it is the time for the crucial step: instead of time slices, which is a rather particular and unphysical
choice, we define the 2-point function for a general 3-dimensional boundary Σ of a finite spacetime region
R in the following way:

Gq(x, y) =

∫
Dφ φ(x)φ(y)W (φ,Σ)Ψ(φ) . (347)

In this expression x and y are points on the boundary Σ; W is, as before, the result of the functional
integration restricted to the interior of the region considered:

W (φ; Σ) =

∫

∂ϕ=φ
Dϕ ei

R
R

d4xL [ϕ] . (348)

This definition is suitable for generally covariant field theories, like nonperturbative quantum gravity. In
ordinary quantum field theories it is the condition we put on the fields at infinity in the path integral that
determine the boundary state, but this is an operation that becomes ill defined in a generally covariant
context; in the absence of a background structure it does not even make sense generally to speak about fields
at infinity. Expression (347) gives instead a good definition of 2-point function: the ill-defined functional
integration in the external region is encoded in the well-defined boundary state. The dependence on the
boundary state determines the non-trivial behavior of the 2-point function under diffeomorphisms:

Gq(x, y) = Gq′(x′, y′) . (349)

We stress again the physical meaning of this general boundary formalism. The 2-point function (347)
defines an amplitude associated to a joint set of measurements performed on the 3-dimensional boundary:
we detect the mean geometry q with two excitations in x and y (possibly at different times). Suppose
now we are describing the physical world and so include the gravitational field among the other fields
in our general boundary field theory. In nonrelativistic physics we have to know the spacetime location
of detectors and then we perform measures on the fields (except the gravitational field). On the other
hand, in relativistic physics we perform measures on the fields, including the gravitational field, and this
is sufficient to determine also the geometry of the apparatus. Conversely, measuring the geometry of the
apparatus is a measurement of the gravitational field on the boundary.

Notice that, because of the Feynman path integral, the geometry in the interior is free to fluctuate
quantum-mechanically. The point is that the propagation kernel W can be interpreted as a Misner-
Hawking sum over geometries [59, 60]. It is this radical point of view which is usually adopted, and
concretely implemented in the context of Spin Foam Models. The calculation of graviton propagator in
the new SFM’s in chapter 9 is an application of the general boundary formalism in quantum gravity.

9.2 Compatibility between of radial, Lorenz and harmonic gauges

A technical point in the calculation of n-point functions in quantum gravity is the choice of the gauge.
Which gauge shall we use in order to make a comparison between the LQG and the standard graviton
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propagator? The LQG propagator is defined in a generalized temporal gauge: hµν has vanishing compo-
nents along the normals to the boundary 3-sphere. This gauge is called radial, or Fock-Schwinger gauge
[138, 139, 140]. Perturbative quantum gravity is mostly known in harmonic gauge. We show that in
linearized General Relativity there exists a gauge in which the linearized gravitational field is radial and
harmonic [137]. We present this original result, and an analogous original result for Maxwell electromag-
netic theory.

The radial gauge, or Fock-Schwinger gauge is defined by

xµAµ(x) = 0 (350)

in Maxwell theory, and by
xµhµν(x) = 0 (351)

in linearized General Relativity. Here xµ are Lorentzian (or Euclidean) spacetime coordinates in d + 1
spacetime dimensions, where µ = 0, 1, . . . , d ; Aµ(x) is the electromagnetic potential. The radial gauge
has been considered with various motivations. For instance, radial-gauge perturbation theory was studied
in [141, 140, 142, 143], where an expression for the propagator and Feynman rules in this gauge were
derived. A number of papers implicitly use this gauge in the context of nonperturbative Euclidean Loop
Quantum Gravity [7, 61, 104, 135, 105]. Here, indeed, consider a spherical region in spacetime, and
identify the degrees of freedom on the 3d boundary Σ of this region with the degrees of freedom described by
Hamiltonian Loop Quantum Gravity. The last is defined in a “temporal” gauge where the field components
in the direction normal to the boundary surface Σ are gauge fixed. Since the direction normal to a sphere
is radial, this procedure is equivalent to imposing the radial gauge (351) in the linearization around flat
spacetime.

The radial gauge is usually viewed as an alternative to the commonly used Lorenz and harmonic
gauges, defined respectively by

∂µA
µ = 0 (352)

in Maxwell theory and by

∂µh
µ
ν −

1

2
∂νh

µ
µ = 0 (353)

in linearized General Relativity. Here we observe, instead, that the radial gauge is compatible with the
Lorenz and the harmonic gauges. That is, if Aµ and hµν solve the Maxwell and the linearized Einstein
equations, then they can be gauge-transformed to fields A′

µ and h′µν satisfying (350,351) and (352,353).
This is analogous to the well known fact (see for instance [28]) that the Lorenz and the harmonic gauges
can be imposed simultaneously with the temporal gauge

A0 = 0 , (354a)

h0µ = 0 . (354b)

We find convenient, below, to utilize the language of tensor calculus. To avoid confusion, let us point
out that this does not mean that we work on a curved spacetime. We are only concerned here with
Maxwell theory on flat space and with linearized General Relativity also on flat space. Tensor calculus is
used below only as a tool for dealing in compact form with expressions in the hyperspherical coordinates
that simplify the analysis of the radial gauge.
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Maxwell theory is discussed in the first paragraph, gravity in the second. We work in an arbitrary
number of dimensions, and we cover the Euclidean and the Lorentzian signatures at the same time. That
is, we can take either (ηµν)=diag[1, 1, 1, 1, ...] or (ηµν)=diag[1,−1,−1,−1, ...] . The analysis is local in
spacetime and disregards singular points such as the origin.

9.2.1 Maxwell theory

In this paragraph we show the compatibility between Lorenz and radial gauge in electromagnetism.
Maxwell vacuum equations are

∂νF
νµ = 0 , (355)

where Fµν = ∂µAν − ∂νAµ . That is
�Aµ − ∂µ∂νA

ν = 0 , (356)

where � = ηµν∂µ∂ν . This equation is of course invariant under the gauge transformation

Aµ → A′
µ = Aµ + ∂µλ . (357)

Temporal and Lorenz gauge We begin by recalling how one can derive the well-know result that the
Lorenz and temporal gauges are compatible. This is a demonstration that can be found in most elementary
books on electromagnetism; we recall it here in a form that we shall reproduce below for the radial gauge.

Let us write (xµ)= (x0, xi)= (t, ~x ) , where i=1, . . . , d . Let Aµ satisfy the Maxwell equations (356).
We now show that there is a gauge equivalent field A′

µ satisfying the temporal as well as the Lorenz gauge
conditions. That is, there exist a scalar function λ such that A′

µ defined in (357) satisfies (354a) and (352).
The equation (354a) for A′

µ defined in (357) gives A0 + ∂0λ = 0 , with the general solution

λ(t, ~x ) = −
∫ t

t0

A0(τ, ~x )dτ + λ̃(~x ) , (358)

where λ̃(~x ) is an integration “constant”, which is an arbitrary function on the surface Σ defined by t= t0 .
Can λ̃(~x ) (which is a function of d variables) be chosen in such a way that the Lorenz gauge condition
(which is a function of d+ 1 variables) is satisfied? To show that this is the case, let us first fix λ̃(~x ) in
such a way that the Lorenz gauge condition is satisfied on Σ . Inserting A′

µ in (352) and using (354a) we
have

∂µA
′µ = ∂iA

′i = ∂iA
i + ∆λ = 0 , (359)

where ∆ = ∂i∂
i is the Laplace operator9 on Σ . The restriction of this equation to Σ gives the Poisson

equation
∆λ̃(~x ) = −∂iAi(t0, ~x ) , (360)

which determines λ̃(~x ) . With λ̃(~x ) satisfying this equation, A′
µ satisfies the temporal gauge condition

everywhere and the Lorenz gauge condition on Σ . However, this implies immediately that A′
µ satisfies the

9Minus the Laplace operator in the Lorentzian case.
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Lorenz gauge condition everywhere as well, thanks to the Maxwell equations. In fact, the time component
of (356) reads

�A′
0 − ∂0∂νA

′ν = −∂0(∂νA
′ν) = 0 . (361)

That is: for a field in the temporal gauge, the Maxwell equations imply that if the Lorenz gauge is satisfied
on Σ then it is satisfied everywhere.

Radial and Lorenz gauge We now show that the radial and Lorenz gauge are compatible, following
steps similar to the ones above. We want to show that there exists a function λ such that A′

µ defined in
(357) satisfies (350) and (352), assuming that Aµ satisfies the Maxwell equations.

Due to the symmetry of the problem, it is convenient to use polar coordinates. We write these as
(xa) = (xr, xi) = (r, ~x ) , where r=

√
|ηµνxµxν | is the (d + 1)-dimensional radius and ~x = (xi) are three

angular coordinates. In these coordinates the metric tensor ηµν takes the simple form

ds2 = γab(r, ~x )dxa dxb = dr2 + r2ξij(~x )dxi dxj , (362)

where ξij(~x ) is independent from r and is the metric of a 3-sphere of unit radius in the Euclidean case,
and the metric of an hyperboloid of unit radius in the Lorentzian case. It is easy to see that in these
coordinates, the radial gauge condition (350) takes the simple form

A′
r = 0 . (363)

Inserting the definition of A′
µ gives

∂rλ = −Ar , (364)

with the general solution

λ(r, ~x ) = −
∫ r

r0

Ar(ρ, ~x )dρ+ λ̃(~x ) , (365)

where the integration constant λ̃ is now a function on the surface Σ defined by r = r0 . The surface Σ
is a d-sphere in the Euclidean case and a d-dimensional hyperboloid in the Lorentzian case. As in the
previous section, we fix λ̃(~x ) by requiring the Lorenz condition to be satisfied on Σ . It is convenient to
use general covariant tensor calculus in order to simplify the expressions in polar coordinates. In arbitrary
coordinates, the Lorenz condition reads

∇aA
′a =

1√
γ
∂a
(√
γA′a) = 0 , (366)

where ∇a is the covariant derivative, Ab=Aagab , and γ is the determinant of γab . This determinant has
the form γ=r2dξ , where ξ is the determinant of ξij . When the radial gauge is satisfied, (366) reduces to

∂i
(√

ξA′i) = 0 . (367)

Let us now require that A′
µ satisfies this equation on Σ . Using (357), this requirement fixes λ̃ to be the

solution of a Poisson equation on Σ , that is

∆λ̃ = − 1√
ξ
∂i
(√

ξAi
)
, (368)
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where the Laplace operator is ∆ = ∇i ξ
ij∇j . In arbitrary coordinates, Maxwell equations read

∇aF
ab =

1√
γ
∂a
(√
γ F ab

)
= 0 , (369)

where

F ab = ∇aAb −∇bAa . (370)

Consider the radial (b = r) component of (369); since A′
r=0 , using the form (362) of the metric, we have

1√
γ
∂a(

√
γF ar) =

1√
γ
∂a(

√
γγabFbr) =

1√
γ
∂a(

√
γγab(∂bA

′
r − ∂rA

′
b)) =

= − 1√
ξ
∂i

(√
ξ
ξij

r2
∂rA

′
j

)
= − 1

r2
√
ξ
∂r∂i(

√
ξξijA′

j) = 0 , (371)

which shows that the Lorenz gauge condition (367) is satisfied everywhere if it satisfied on Σ . This shows
that we can find a function λ such that both the radial and the Lorenz gauge are satisfied everywhere.

9.2.2 Linearized General Relativity

We now consider the compatibility between the radial gauge and the harmonic traceless gauge (also known
as transverse traceless gauge [28]) in linearized General Relativity. Einstein equations in vacuum are given
by the vanishing of the Ricci tensor. If |hµν(x)| ≪ 1 , and we linearize these equations in hµν , we obtain
the linearized Einstein equations

∂µ∂νh
α
α + ∂α∂

αhµν − ∂µ∂
αhαν − ∂ν∂

αhαµ = 0 . (372)

Under infinitesimal coordinate transformations,

hµν → h′µν = hµν +
1

2
(∂µλν + ∂νλµ) , (373)

where the factor 1/2 is inserted for convenience. These are gauge transformations of the linearized theory.
The harmonic gauge is defined by the condition

∇ν∇νx
µ = 0 , (374)

where ∇ν is the covariant partial derivative10; in the linearized theory (374) reduces to

∂νh
νµ − 1

2
∂µhνν = 0 , (375)

and in this gauge the Einstein equations (372) read simply

�hµν = 0 . (376)

10Notice that (374) means the covariant Laplacian of d+1 scalars (d+1 coordinates), not the covariant Laplacian of a
(d+1)-vector.
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Temporal and harmonic gauge As we did for Maxwell theory, we begin by recalling how the com-
patibility between temporal and harmonic gauge can be proved. Start by searching a gauge parameter λµ
that takes hµν to the temporal gauge h′0ν = 0 . Equation (354b) gives

h0µ +
1

2
(∂0λµ + ∂µλ0) = 0 (377)

with the general solution

λ0(t, ~x ) = −
∫ t

t0

h00(τ, ~x )dτ + λ̃0(~x ) , (378)

λi(t, ~x ) = −
∫ t

t0

(
2h0i(τ, ~x ) + ∂iλ0(τ, ~x )

)
dτ + λ̃i(~x ) , (379)

where the integration constants λ̃µ(~x ) are functions on the 3d surface Σ defined by t = t0 . Next, we fix
λ̃i by imposing the harmonic gauge condition (375) on Σ . Since we are in temporal gauge, this gives

∆λ̃j = −2∂ih
i
j + ∂jh

i
i , (380)

which can be clearly solved on Σ . The time-time component of Einstein equations becomes

∂2
t h

′i
i = 0 , (381)

whose only well behaved solution is h′ii = 0 ; so in the temporal gauge the invariant trace of h′µν vanishes:

h′µµ = ηµνh′µν = 0 , (382)

and the harmonic condition (375) takes the simpler form

∂νh
′νµ = 0 , (383)

similar to the Lorenz gauge. Now the (t, i) components of Einstein equations read

∂t∂jh
′j
i = 0 , (384)

which gives ∂jh
′j
i = 0 everywhere, once imposed on Σ .

Radial and harmonic gauge Let us finally come to the compatibility between the radial and harmonic
gauges. We return to the polar coordinates used in the Maxwell case. In these coordinates, the radial
gauge condition (351) reads

h′rr = h′ri = 0 . (385)

Inserting the gauge transformation (373) gives

∂rλr = −hrr , (386)

∂rλi + ∂iλr −
2

r
λi = −2hri , (387)
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with the general solution

λr(r, ~x ) = −
∫ r

r0

hrr(ρ, ~x )dρ+ λ̃r(~x ) , (388)

λi(r, ~x ) = −r2
∫ r

r0

2hri(ρ, ~x ) + ∂iλr(ρ, ~x )

ρ2
dρ+ r2 λ̃i(~x ) , (389)

where λ̃r, λ̃i are functions on the surface Σ given by r = r0. We can then fix λ̃i by imposing the harmonic
condition on Σ precisely as before. In the polar coordinates (362), we have easily the following rules for
the Christoffel symbols:

Γarr = 0 , Γi jr =
1

r
δi j , Γrra = 0 . (390)

We note also that Γijk is independent of r . Consider the (r, r) component of Einstein equations:

∇r∇rh
′a
a + ∇a∇ah′rr −∇r∇ahar −∇r∇ah′ar = 0 . (391)

Taking into account (362) and (390), it is verified after a little algebra that the previous equation becomes

∂2
rh

′a
a +

2

r
∂rh

′a
a = 0 , (392)

which is a differential equation for the trace h′aa . Its only solution well-behaved at the origin and at
infinity is h′aa= 0 . Using this, the (r, i) components of Einstein equations read:

∇a∇ah′ri −∇r∇ah′ai −∇i∇ah′ar = −∂r∇ah
′a
i = 0 , (393)

and the harmonic condition is simply

∇ah
′ab = 0 . (394)

Equation (393) shows immediately that the b= i components of the gauge condition (394) hold everywhere
if they hold on Σ . The vanishing of the b=r component of (394) follows immediately since, using (390),
we have

∇ah
′a
r = −1

r
h′aa = 0 . (395)

Therefore the harmonic gauge condition, the radial gauge condition and the vanishing of the trace are all
consistent with one another.
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10 LQG propagator from the new spin foams

This chapter is the reproduction of the original work of reference [62]. We compute metric correlations
in Loop Quantum Gravity and compare them with the scaling and the tensorial structure of the graviton
propagator in perturbative Quantum Gravity [144, 145, 146]. The strategy is the one introduced in [61]
and developed in [104, 105, 147, 148, 91, 106, 107, 149]. In particular, we use the boundary amplitude
formalism [7, 17, 150, 133]. The dynamics is implemented in terms of (the group field theory expansion
of) the new spin foam models introduced by Engle, Pereira, Rovelli and Livine (EPRL model) [15] and by
Freidel and Krasnov (FK model) [58]. We restrict attention to Euclidean signature and Immirzi parameter
smaller than one: 0 < γ < 1. In this case the two models coincide.

Previous attempts to derive the graviton propagator from LQG adopted the Barrett-Crane spin foam
vertex [151] as model for the dynamics [61, 104, 105, 147, 148, 91, 106, 107, 149] (see also [134, 135, 152]
for investigations in the three-dimensional case). The analysis of [91, 106] shows that the Barrett-Crane
model fails to give the correct scaling behavior for off-diagonal components of the graviton propagator.
The problem can be traced back to a missing coherent cancellation of phases between the intertwiner wave
function of the semiclassical boundary state and the intertwiner dependence of the model. The attempt
to correct this problem was part of the motivation for the lively search of new spin foam models with
non-trivial intertwiner dependence [153, 101, 15, 58, 57]. The intertwiner dynamics of the new models was
investigated numerically in [154, 155, 156, 157], and presented here in chapter 7. The analysis of the large
spin asymptotics of the vertex amplitude of the new models was performed in [158, 97, 108, 159] in the
Euclidean setting and in [160] in the Lorentzian. In [107], the obstacle that prevented the Barrett-Crane
model from yielding the correct behaviour of the propagator was shown to be absent for the new models:
the new spin foams feature the correct dependence on intertwiners to allow a coherent cancellation of
phases with the boundary semiclassical state. Here we restart from scratching the calculation and derive
the graviton propagator from the new Spin Foam Models.

In this introduction we briefly describe the quantity we want to compute. We consider a manifold R
with the topology of a 4-ball. Its boundary is a 3-manifold Σ with the topology of a 3-sphere S3. We
associate to Σ a boundary Hilbert space of states: the LQG Hilbert space HΣ spanned by (abstract)
spin-networks. We call |Ψ〉 a generic state in HΣ. A spin foam model for the region R provides a map
from the boundary Hilbert space to C. We call this map 〈W | (see section 9.1). It provides a sum over the
bulk geometries with a weight that defines our model for quantum gravity. The dynamical expectation
value of an operator O on the state |Ψ〉 is defined via the following expression11

〈O〉 =
〈W |O|Ψ〉
〈W |Ψ〉 . (397)

The operator O can be a geometric operator as the area, the volume or the length [161, 162, 163, 164,

11This expression corresponds to the standard definition in (perturbative) quantum field theory where the vacuum expec-
tation value of a product of local observables is defined as

〈O(x1) · · ·O(xn)〉0 =

Z

D[ϕ]O(x1) · · ·O(xn)eiS[ϕ]

Z

D[ϕ]eiS[ϕ]
≡

Z

D[φ]W [φ]O(x1) · · ·O(xn)Ψ0[φ]
Z

D[φ]W [φ]Ψ0[φ]

. (396)

The vacuum state Ψ0[φ] codes the boundary conditions at infinity.
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165, 166, 167]. The geometric operator we are interested in here is the (density-two inverse-) metric
operator qab(x) = δijEai (x)E

b
j (x). We focus on the connected two-point correlation function Gabcd(x, y)

on a semiclassical boundary state |Ψ0〉. It is defined as

Gabcd(x, y) = 〈qab(x) qcd(y)〉 − 〈qab(x)〉 〈qcd(y)〉 . (398)

The boundary state |Ψ0〉 is semiclassical in the following sense: it is peaked on a given configuration of the
intrinsic and the extrinsic geometry of the boundary manifold Σ. In terms of Ashtekar-Barbero variables
these boundary data correspond to a couple (E0, A0). The boundary data are chosen so that there is a
solution of Einstein equations in the bulk which induces them on the boundary. A spin foam model has
good semiclassical properties if the dominant contribution to the amplitude 〈W |Ψ0〉 comes from the bulk
configurations close to the classical 4-geometries compatible with the boundary data (E0, A0). By classical
we mean that they satisfy Einstein equations.

The classical bulk configuration we focus on is flat space. The boundary configuration that we consider
is the following: we decompose the boundary manifold S3 in five tetrahedral regions with the same
connectivity as the boundary of a 4-simplex; then we choose the intrinsic and the extrinsic geometry to
be the ones proper of the boundary of a Euclidean 4-simplex. By construction, these boundary data are
compatible with flat space being a classical solution in the bulk.

For our choice of boundary configuration, the dominant contribution to the amplitude 〈W |Ψ0〉 is
required to come from bulk configurations close to flat space. The connected two-point correlation function
Gabcd(x, y) probes the fluctuations of the geometry around the classical configuration given by flat space.
As a result it can be compared to the graviton propagator computed in perturbative quantum gravity.

The plan of this chapter is the following: in section 10.1 we introduce the metric operator and construct
a semiclassical boundary state; in section 10.2 we recall the form of the new spin foam models; in section
10.3 we define the LQG propagator and provide an integral formula for it at the lowest order in a vertex
expansion; in section 10.6 we compute its large spin asymptotics; in section 10.11 we discuss expectation
values of metric operators; in section 10.12 we present our main result: the scaling and the tensorial
structure of the LQG propagator at the leading order of our expansion; in section 10.13 we attempt a
comparison with the graviton propagator of perturbative quantum gravity.

10.1 Semiclassical boundary state and the metric operator

Semiclassical boundary states are a key ingredient in the definition of boundary amplitudes. Here we
describe in detail the construction of a boundary state peaked on the intrinsic and the extrinsic geometry
of the boundary of a Euclidean 4-simplex. The construction is new: it uses the coherent intertwiners of
Livine and Speziale [57] (see also [108]) together with a superposition over spins as done in [61, 104]. It
can be considered as an improvement of the boundary state used in [91, 106, 107] where Rovelli-Speziale
gaussian states [100] for intertwiners were used. Remarkably, the semiclassical states we use can be derived
from the mathematical construction of coherent states for the natural phase space associated to the SU(2)
gauge group (this derivation is discussed in chapter 8). More precisely, and in order to not confuse the
notation, here we call “coherent spin-networks” the states with fixed spins, with nodes labeled by Livine-
Speziale coherent intertwiners, and take a superposition over spins in order to construct the desired
semiclassical geometry. In chapter 8 instead we call coherent spin-networks the coherent states derived in
a more sistematic way from the analysis of the phase space of General Relativity. The superposition over

94



10. LQG PROPAGATOR FROM THE NEW SPIN FOAMS

spins used here and the coherent spin-networks introduced in chapter 8 do not coincide exactly, but only
in the large spin limit.

We consider a simplicial decomposition ∆5 of S3. The decomposition ∆5 is homeomorphic to the
boundary of a 4-simplex: it consists of five cells ta which meet at ten faces fab (a, b = 1, . . , 5 and a < b).
Then we consider the sector of the Hilbert space HΣ spanned by spin-network states with graph Γ5 dual
to the decomposition ∆5,

Γ5 =
b b

b

b b

v1

v2

v3

v4v5

l12 l23

l34

l13l25

l14 l35

l24

l15

l45

. (399)

Γ5 is a complete graph with five nodes. We call va its nodes and lab (a < b) its ten links. Spin-network
states supported on this graph are labelled by ten spins jab (a < b) and five intertwiners ia. We denote
them by |Γ5, jab, ia〉 and call HΓ5 the Hilbert space they span. On HΓ5 we can introduce a metric operator
smearing the electric field on surfaces dual to links, i.e. considering scalar products of fluxes. We focus on
the node n and consider a surface fna which cuts the link from the node n to the node a. The flux operator
through the surface fna, parallel transported in the node n, is denoted12 (Ean)i. It has the following three
non-trivial properties:
(i) the flux operators (Ean)i and (Ena )i are related by a SU(2) parallel transport gan from the node a to
the node n together with a change of sign which takes into account the different orientation of the face
fan,

(Ean)i = −(Ran)i
j (Ena )j , (400)

where Ran is the rotation which corresponds to the group element gan associated to the link lan, i.e.
Ran = D(1)(gab);
(ii) the commutator of two flux operators for the same face fna is13

[ (Ean)i , (Ean)j ] = iγεij
k (Ean)k ; (401)

(iii) a spin-network state is annihilated by the sum of the flux operators over the faces bounding a node
∑

c 6=n
(Ecn)i|Γ5, jab, ia〉 = 0 . (402)

This last property follows from the SU(2) gauge invariance of the spin-network node.
Using the flux operator we can introduce the density-two inverse-metric operator at the node n,

projected in the directions normal to the faces fna and fnb. It is defined as Ean · Ebn = δij(Ean)i(E
b
n)j . Its

diagonal components Ean ·Ean measure the area square of the face fna,

Ean ·Ean |Γ5, jab, ia〉 =
(
γ
√
jna(jna + 1)

)2
|Γ5, jab, ia〉 . (403)

12Throughout the chapter i, j, k . . . = 1, 2, 3 are indices for vectors in R3.
13Throughout the chapter we put c = ~ = GNewton = 1.
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Spin-network states are eigenstates of the diagonal components of the metric operator. On the other
hand, the off-diagonal components Ean ·Ebn with a 6= b measure the dihedral angle between the faces fna
and fnb (weighted with their areas). It reproduces the angle operator [165]. Using the recoupling basis
for intertwiner space, we have that in general the off-diagonal components of the metric operator have
non-trivial matrix elements

Ean ·Ebn |Γ5, jab, ia〉 =
∑

i′c

(
Ean ·Ebn

)
ic

i′c |Γ5, jab, i
′
a〉 . (404)

We refer to [91, 106] and to section 8.2 for a detailed discussion. In particular, from property (ii), we have
that some off-diagonal components of the metric operator at a node do not commute [164]

[Ean ·Ebn , Ean ·Ecn ] 6= 0 . (405)

From this non-commutativity an Heisenberg inequality for dispersions of metric operators follows. Here we
are interested in states which are peaked on a given value of all the off-diagonal components of the metric
operator and which have dispersion of the order of Heisenberg’s bound. Such states can be introduced
using the technique of coherent intertwiners ([57, 108] and section 8.1). We recall the definition in order to
introduce the notation used in this chapter. A coherent intertwiner between the representations j1, . . , j4
is defined as14

Φm1···m4(~n1, . . , ~n4) =
1√

Ω(~n1, . . , ~n4)

∫

SU(2)
dh

4∏

a=1

〈ja,ma|D(ja)(h)|ja, ~na〉 (406)

and is labelled by four unit vectors ~n1, . . , ~n4 satisfying the closure condition

j1~n1 + · · · + j4~n4 = 0 . (407)

The function Ω(~n1, . . , ~n4) provides normalization to one of the intertwiner. The function Φm1···m4 is
invariant under rotations of the four vectors ~n1, . . , ~n4. In the following we always assume that this
invariance has been fixed with a given choice of orientation15 .

Nodes of the spin-network can be labelled with coherent intertwiners. In fact such states provide an
overcomplete basis of HΓ5 . Calling vm1···m4

i the standard recoupling basis for intertwiners, we can define
the coefficients

Φi(~n1, . . , ~n4) = vm1···m4
i Φm1···m4(~n1, . . , ~n4) . (408)

We define a coherent spin-network |Γ5, jab,Φa〉 as the state labelled by ten spins jab and 4 × 5 normals
~nab and given by the superposition

|Γ5, jab,Φa(~n)〉 =
∑

i1···i5

( 5∏

a=1

Φia(~nab)
)
|Γ5, jab, ia〉 . (409)

14There is a phase ambiguity in the definition of the coherent intertwiner. Such ambiguity becomes observable when a
superposition over spins is considered.

15For instance we can fix this redundancy assuming that the sum j1~n1 + j2~n2 is in the positive z direction while the vector
~n1 ×~n2 in the positive y direction. Once chosen this orientation, the four unit-vectors ~n1, . . , ~n4 (which satisfying the closure
condition) depend only on two parameters. These two parameters can be chosen to be the dihedral angle cos θ12 = ~n1 · ~n2

and the twisting angle tan φ(12)(34) = (~n1×~n2)·(~n3×~n4)
|~n1×~n2| |~n3×~n4|

.
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The expectation value of the metric operator on a coherent spin-network is simply

〈Γ5, jab,Φa|Eac ·Ebc |Γ5, jab,Φa〉 ≃ γ2jcajcb ~nca · ~ncb (410)

in the large spin limit. As a result we can choose the normals ~nab so that the coherent spin-network state
is peaked on a given intrinsic geometry of Σ.

Normals in different tetrahedra cannot be chosen independently if we want to peak on a Regge geometry
[168]. The relation between normals is provided by the requirement that they are computed from the
lengths of the edges of the triangulation ∆5. In fact, a state with generic normals (satisfying the closure
condition (407)) is peaked on a discontinuous geometry. This fact can be seen in the following way: let
us consider an edge of the triangulation ∆5; this edge is shared by three tetrahedra; for each tetrahedron
we can compute the expectation value of the length operator for an edge in its boundary [167]; however
in general the expectation value of the length of an edge seen from different tetrahedra will not be the
same; this fact shows that the geometry is discontinuous. The requirement that the semiclassical state is
peaked on a Regge geometry amounts to a number of relations between the labels ~nab. In the case of the
boundary of a Euclidean 4-simplex (excluding the ‘rectangular’ cases discussed in [169]), the normals turn
out to be completely fixed once we give the areas of the ten triangles or equivalently the ten spins jab,

~nab = ~nab(jcd) . (411)

This assignment of normals guarantees that the geometry we are peaking on is Regge-like. In particular,
in this chapter we are interested in the case of a 4-simplex which is approximately regular. In this case
the spins labelling the links are of the form jab = j0 + δjab with δjab

j0
≪ 1 and a perturbative expression

for the normals solving the continuity condition is available:

~nab(j0 + δj) = ~nab(j0) +
∑

cd

v(ab)(cd)δjcd . (412)

The coefficients v(ab)(cd) can be computed in terms of the derivative of the normals ~nab (for a given choice of
orientation, see footnote 15) with respect to the ten edge lengths, using the Jacobian of the transformation
from the ten areas to the ten edge lengths of the 4-simplex.

In the following we are interested in superpositions over spins of coherent spin-networks. As coherent
intertwiners are defined only up to a spin-dependent arbitrary phase, a choice is in order. We make
the canonical choice of phases described in [159]. We briefly recall it here. Consider a non-degenerate
Euclidean 4-simplex; two tetrahedra ta and tb are glued at the triangle fab ≡ fba. Now, two congruent
triangles fab and fba in R3 can be made to coincide via a unique rotation Rab ∈ SO(3) which, together
with a translation, takes one outward-pointing normal to minus the other one,

Rab~nab = −~nba . (413)

The canonical choice of phase for the spin coherent states |jab, ~nab〉 and |jab, ~nba〉 entering the coherent
intertwiners Φa and Φb is given by lifting the rotation Rab to a SU(2) transformation gab and requiring
that

|jab, ~nba〉 = D(jab)(gab)J |jab, ~nab〉 (414)

where J : Hj → Hj is the standard antilinear map for SU(2) representations defined by

〈ǫ|
(
|α〉 ⊗ J |β〉

)
= 〈β|α〉 with |α〉, |β〉 ∈ Hj (415)
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and 〈ǫ| is the unique intertwiner in Hj ⊗ Hj. In the following we will always work with coherent spin-
networks |Γ5, jab,Φa(~n(j))〉 satisfying the continuity condition, and with the canonical choice for the
arbitrary phases of coherent states. From now on we use the shorter notation |j,Φ(~n)〉.

Coherent spin-networks are eigenstates of the diagonal components of the metric operator, namely the
area operator for the triangles of ∆5. The extrinsic curvature to the manifold Σ measures the amount
of change of the 4-normal to Σ, parallel transporting it along Σ. In a piecewise-flat context, the extrinsic
curvature has support on triangles, that is it is zero everywhere except that on triangles. For a triangle
fab, the extrinsic curvature Kab is given by the angle between the 4-normals Nµ

a and Nµ
b to two tetrahedra

ta and tb sharing the face fab. As the extrinsic curvature is the momentum conjugate to the intrinsic
geometry, we have that a semiclassical state cannot be an eigenstate of the area as it would not be peaked
on a given extrinsic curvature. In order to define a state peaked both on intrinsic and extrinsic geometry,
we consider a superposition of coherent spin-networks,

|Ψ0〉 =
∑

jab

ψj0,φ0(j)|j,Φ(~n)〉 , (416)

with coefficients ψj0,φ0(j) given by a gaussian times a phase,

ψj0,φ0(j) =
1

N
exp

(
−
∑

ab,cd

α(ab)(cd) jab − j0ab√
j0ab

jcd − j0cd√
j0cd

)
exp

(
−i
∑

ab

φab0 (jab − j0ab)
)
. (417)

As we are interested in a boundary configuration peaked on the geometry of a regular 4-simplex, we choose
all the background spins to be equal, j0ab ≡ j0. Later we will consider an asymptotic expansion for large
j0. The phases φab0 are also chosen to be equal. The extrinsic curvature at the face fab in a regular
4-simplex is Kab = arccosNa ·Nb = arccos(−1

4). In Ashtekar-Barbero variables (E0, A0) we have

φ0 ≡ φab0 = γKab = γ arccos(−1/4) . (418)

The 10×10 matrix α(ab)(cd) is assumed to be complex with positive definite real part. Moreover we require

that it has the symmetries of a regular 4-simplex. We introduce the matrices P
(ab)(cd)
k with k = 0, 1, 2

defined as

P
(ab)(cd)
0 = 1 if (ab) = (cd) and zero otherwise, (419)

P
(ab)(cd)
1 = 1 if {a = c, b 6= d} or a permutation of it and zero otherwise, (420)

P
(ab)(cd)
2 = 1 if (ab) 6= (cd) and zero otherwise. (421)

Their meaning is simple: a couple (ab) identifies a link of the graph Γ5; two links can be either coincident,

or touching at a node, or disjoint. The matrices P
(ab)(cd)
k correspond to these three different cases. Using

the basis P
(ab)(cd)
k we can write the matrix α(ab)(cd) as

α(ab)(cd) =
2∑

k=0

αk P
(ab)(cd)
k . (422)

As a result our ansatz for a semiclassical boundary state |Ψ0〉 is labelled by a (large) half-integer j0 and
has only three complex free parameters, the numbers αk.
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10.2 The new spin foam dynamics

The dynamics is implemented in terms of a spin foam functional 〈W |. Here we are interested in its
components on the Hilbert space spanned by spin-networks with graph Γ5. The sum over 2-complexes can
be implemented in terms of a formal perturbative expansion in the parameter λ of a Group Field Theory
[170]:

〈W |Γ5, jab, ia〉 =
∑

σ

λNσW (σ) (423)

The sum is over spinfoams (colored 2-complexes) whose boundary is the spin-network (Γ5, jab, ia), W (σ)
is the spinfoam amplitude

W (σ) =
∏

f⊂σ
Wf

∏

v⊂σ
Wv (424)

where Wv and Wf are the vertex and face amplitude respectively. The quantity Nσ in (423) is the number
of vertices in the spin foam σ, therefore the formal expansion in λ is in fact a vertex expansion.

The spin foam models we consider here are the EPRL [15] and FK [58] models. We restrict attention
to 0 < γ < 1; in this case the two models coincide. The vertex amplitude is given by

Wv(jab, ia) =
∑

i+a i−a

{15j}
(
j+ab, i

+
a

)
{15j}

(
j−ab, i

−
a

) ∏

a

f ia
i+a i

−
a
(jab) (425)

where the unbalanced spins j+, j− are

j±ab = γ±jab, γ± =
1 ± γ

2
. (426)

This relation puts restrictions16 on the value of γ and of jab. The fusion coefficients f ia
i+a i

+
a
(jab) are defined

in [15] (see also [19]) and built out of the intertwiner vm1···m4
i in Hj1 ⊗ · · ⊗Hj4 and the intertwiners

v
m±

1 ···m±
4

i±
in Hj±1

⊗ · · · ⊗ Hj±4
. Defining a map Y : Hj → Hj+ ⊗ Hj− with matrix elements Y m

m+m− =

〈j+,m+; j−,m−|Y |j,m〉 given by Clebsh-Gordan coefficients, we have that the fusion coefficients f ia
i+a i

+
a

are given by

f ia
i+a i

+
a

= Ym1m
+
1 m

−
1
· · ·Ym4m

+
4 m

−
4
vm1···m4
i v

m+
1 ···m+

4
i+

v
m−

1 ···m−
4

i−
. (427)

Indices are raised and lowered with the Wigner metric.
Throughout this chapter we will restrict attention to the lowest order in the vertex expansion. To this

order, the boundary amplitude of a spin-network state with graph Γ5 is given by

〈W |Γ5, jab, ia〉 = µ(jab)Wv(jab, ia) , (428)

i.e. it involves a single spin foam vertex.
The function µ is defined as µ(j) =

∏
abWfab

(j). A natural choice for the face amplitude isWf (j
+, j−) =

(2j+ + 1)(2j− + 1) = (1− γ2)j2 + 2j+ 1. Other choices can be considered. We assume that µ(λjab) scales
as λp for some p for large λ. We will show in the following that, at the leading order in large j0, the LQG
propagator (398) is in fact independent from the choice of face amplitude, namely from the function µ(j).

16Formula (425) is well-defined only for j± half-integer. As a result, for a fixed value of γ, there are restrictions on the
boundary spin j. For instance, if we choose γ = 1/n with n integer, then we have that j has to be integer and j ≥ n, i.e.
j ∈ {n, n + 1, n + 2, · · · }.
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10.3 LQG propagator: integral formula

In this section we define the LQG propagator and then provide an integral formula for it. The dynamical
expectation value of an operator O on the state |Ψ0〉 is defined via the following expression

〈O〉 =
〈W |O|Ψ0〉
〈W |Ψ0〉

. (429)

The geometric operator we are interested in is the metric operator Ean · Ebn discussed in section 10.1. We
focus on the connected two-point correlation function Gabcdnm on a semiclassical boundary state |Ψ0〉. It is
defined as

Gabcdnm = 〈Ean ·Ebn Ecm ·Edm〉 − 〈Ean ·Ebn〉 〈Ecm ·Edm〉 . (430)

We are interested in computing this quantity using the boundary state |Ψ0〉 introduced in section 10.1
and the spin foam dynamics (425). This is what we call the LQG propagator. As the boundary state is a
superposition of coherent spin-networks, the LQG propagator involves terms of the form 〈W |O|j,Φ(~n)〉.
Its explicit formula is

Gabcdnm =
P

j ψ(j)〈W |Ea
n·Eb

nE
c
m·Ed

m|j,Φ(~n)〉P
j ψ(j)〈W |j,Φ(~n)〉 −

P
j ψ(j)〈W |Ea

n·Eb
n|j,Φ(~n)〉P

j ψ(j)〈W |j,Φ(~n)〉

P
j ψ(j)〈W |Ec

m·Ed
m|j,Φ(~n)〉P

j ψ(j)〈W |j,Φ(~n)〉 (431)

In the following two subsections we recall the integral formula for the amplitude of a coherent spin-network
〈W |j,Φ(~n)〉 and derive analogous integral expressions for the amplitude with metric operator insertions
〈W |Ean ·Ebn|j,Φ(~n)〉 and 〈W |Ean ·EbnEcm ·Edm|j,Φ(~n)〉.

10.4 Integral formula for the amplitude of a coherent spin-network

The boundary amplitude of a coherent spin-network |j,Φ(~n)〉 admits an integral representation [108, 158,
159]. Here we go through its derivation as we will use a similar technique in next section.

The boundary amplitude 〈W |j,Φ(~n)〉 can be written as an integral over five copies of SU(2) × SU(2)
(with respect to the Haar measure):

〈W |jab,Φa(~n)〉 =
∑

ia

(∏

a

Φia(~n)
)
〈W |jab, ia〉 = µ(j)

∫ 5∏

a=1

dg+
a dg−a

∏

ab

P ab(g+, g−) . (432)

The function P ab(g+, g−) is given by

P ab(g+, g−) = 〈jab,−~nba|Y †D(j+ab)
(
(g+
a )−1g+

b

)
⊗D(j−ab)

(
(g−a )−1g−b

)
Y |jab, ~nab〉 . (433)

where the map Y is defined in section 10.2. Using the factorization property of spin coherent states,

Y |j, ~n〉 = |j+, ~n〉 ⊗ |j−, ~n〉 , (434)

we have that the function P ab(g+, g−) factorizes as

P ab(g+, g−) = P ab+(g+)P ab−(g−) (435)
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with

P ab± = 〈jab,−~nba|D(j±ab)
(
(g±a )−1g±b

)
|jab, ~nab〉 =

(
〈1
2
,−~nba|(g±a )−1g±b |

1

2
, ~nab〉

)2j±ab
. (436)

In the last equality we have used (again) the factorization property of spin coherent states to exponentiate
the spin j±ab. In the following we will drop the 1/2 in |12 , ~nab〉 and write always |~nab〉 for the coherent state
in the fundamental representation.

The final expression we get is

〈W |j,Φ(~n)〉 = µ(j)

∫ 5∏

a=1

dg+
a dg−a e

S (437)

where the “action” S is given by the sum S = S+ + S−, with

S± =
∑

ab

2j±ab log〈−~nab|(g±a )−1g±b |~nba〉 . (438)

10.5 LQG operators as group integral insertions

In this section we use a similar technique to derive integral expressions for the expectation value of metric
operators. In particular we show that

〈W |Ean ·Ebn|jab,Φa(~n)〉 = µ(j)

∫ 5∏

a=1

dg+
a dg−a qabn (g+, g−) eS (439)

and that

〈W |Ean ·Ebn Ecm ·Edm|jab,Φa(~n)〉 = µ(j)

∫ 5∏

a=1

dg+
a dg−a qabn (g+, g−) qcdm (g+, g−) eS (440)

where we assume17 n 6= m and a, b, c, d 6= n,m. The expression for the insertions qabn (g+, g−) in the
integral is derived below.

We start focusing on 〈Ean ·Ebn〉 in the case a 6= b. The metric field (Eba)i acts on a state |jab,mab〉 as γ
times the generator Ji of SU(2). As a result we can introduce a quantity Qabi defined as

Qabi (g+, g−) = 〈jab,−~nba|Y †D(j+ab)
(
(g+
a )−1g+

b

)
⊗D(j−ab)

(
(g−a )−1g−b

)
Y (Eba)i|jab, ~nab〉 , (441)

so that

〈W |Ena ·Enb|j,Φ(~n)〉 =

∫ 5∏

a=1

dg+
a dg−a δ

ijQnai Q
nb
j

∏

cd

′
P cd(g+, g−) . (442)

The product
∏′ is over couples (cd) different from (na), (nb). Thanks to the invariance properties of the

map Y , we have that
Y Jabi |jab,mab〉 = (Jab+i + Jab−i )Y |jab,mab〉 . (443)

17Similar formulae can be found also in the remaining cases but are not needed for the calculation of the LQG propagator.
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Thus Qabi can be written as
Qabi = Qab+i P ab− + P ab+Qab−i (444)

with
Qab±i = γ 〈j±ab,−~nba|D(j±ab)

(
(g±a )−1g±b

)
Jab±i |j±ab, ~nab〉 . (445)

Now we show that Qab±i is given by a function Aab±i linear in the spin j±ab, times the quantity P ab± defined
in (436),

Qab±i = Aab±i P ab± . (446)

The function Aab±i is determined as follows. The generator Jab±i of SU(2) in representation j±ab can be
obtained as the derivative

i
∂

∂αi
D(j±ab)

(
h(α)

)∣∣∣∣
αi=0

= Jab±i (447)

where the group element h(α) is defined via the canonical parametrization h(α) = exp(−iαi σi
2 ). Therefore,

we can write Qab±i as

Qab±i = i γ
∂

∂αi

(
〈j±ab,−~nba|D(j±ab)

(
(g±a )−1g±b

)
D(j±ab)

(
h(α)

)
|j±ab, ~nab〉

)∣∣∣∣
αi=0

= i γ
∂

∂αi

(
γ 〈−~nba|(g±a )−1g±b h(α)|~nab〉

)2j±ab

∣∣∣∣
αi=0

= γ j±ab 〈−~nba|(g±a )−1g±b σ
i|~nab〉

(
〈−~nba|(g±a )−1g±b |~nab〉

)2j±ab−1
. (448)

Comparing expression (448) with (446) and (436), we find that Ana±i is given by

Ana±i = γj±na
〈−~nan|(g±a )−1g±n σ

i|~nna〉
〈−~nan|(g±a )−1g±n |~nna〉

. (449)

A vectorial expression for Ana±i can be given, introducing the rotation R±
a = D(1)(g±a ),

Ana±i = γj±na (R±
n )−1R

±
n nna −R±

a nan − i(R±
n nna ×R±

a nan)

1 − (R±
a nan) · (R±

n nna)
. (450)

Thanks to (444) and (446), we have that the expression for Qabi simplifies to

Qabi = Aabi P ab (451)

with
Aabi = Aab+i +Aab−i . (452)

As a result, equation (442) reduces to

〈W |Ean ·Ebn|j,Φ(~n)〉 =

∫ 5∏

a=1

dg+
a dg−a δijAnai A

nb
j

∏

cd

P cd(g+, g−) , (453)
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which is of the form (437) with the insertion Ana · Anb. Therefore, comparing with equation (439), we
have that

qabn (g+, g−) = Ana · Anb (454)

for a 6= b. The case with a = b can be computed using a similar technique but the result is rather simple
and expected, thus we just state it

qaan (g+, g−) = γ2jna(jna + 1) . (455)

As far as 〈Ean ·Ebn Ecm ·Edm〉 a similar result can be found. In particular, for n 6= m and a, b, c, d 6= n,m
the result is stated at the beginning of this section, equation (440), with the same expression for the
insertion qabn (g+, g−) as in equation (454) and equation (455).

Substituting (439)-(440) in (431) we obtain a new expression for the propagator in terms of group
integrals:

Gabcdnm =

∑
j µ(j)ψ(j)

∫
dg± qabn qcdm eS

∑
j µ(j)ψ(j)

∫
dg± eS

−
∑

j µ(j)ψ(j)
∫

dg± qabn eS
∑

j µ(j)ψ(j)
∫

dg± eS

∑
j µ(j)ψ(j)

∫
dg± qcdm eS

∑
j µ(j)ψ(j)

∫
dg± eS

. (456)

This expression with metric operators written as insertions in an integral is the starting point for the large
j0 asymptotic analysis of next section.

10.6 LQG propagator: stationary phase approximation

The correlation function (456) depends on the scale j0 fixed by the boundary state. We are interested
in computing its asymptotic expansion for large j0. The technique we use is an (extended) stationary
phase approximation of a multiple integral over both spins and group elements. In 10.7 we put expression
(456) in a form to which this approximation can be applied. Then in 10.8 we recall a standard result in
asymptotic analysis regarding connected two-point functions and in 10.9-10.10 we apply it to our problem.

10.7 The total action and the extended integral

We introduce the “total action” defined as Stot = logψ + S or more explicitly as

Stot(jab, g
+
a , g

−
a ) = − 1

2

∑

ab,cd

α(ab)(cd) jab − j0ab√
j0ab

jcd − j0cd√
j0cd

− i
∑

ab

φab0 (jab − j0ab)

+ S+(jab, g
+
a ) + S−(jab, g

−
a ) . (457)

Notice that the action S+ + S− is a homogeneous function of the spins jab therefore, rescaling the spins
j0ab and jab by an interger λ so that j0ab → λj0ab and jab → λjab, we have that the total action goes to
Stot → λStot. We recall also that qabn → λ2qabn . In the large λ limit, the sums over spins in expression
(456) can be approximated with integrals over continuous spin variables18:

∑

j

µ

∫
d5g± qabn eλStot =

∫
d10j d5g± µ qabn eλStot +O(λ−N ) ∀N > 0 . (458)

18The remainder, i.e. the difference between the sum and the integral, can be estimated via Euler-Maclaurin summation
formula. This approximation does not affect any finite order in the computation of the LQG propagator.
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Moreover, notice that the action, the measure and the insertions in (456) are invariant under a SO(4)
symmetry that makes an integration dg+dg− redundant. We can factor out one SO(4) volume, e.g.
putting g+

1 = g−1 = 1, so that we end up with an integral over d4g± =
∏5
a=2dg

+
a dg−a .

As a result we can re-write expression (456) in the following integral form

Gabcdnm = λ4(

∫
d10j d4g±µ qabn qcdm eλStot

∫
d10j d4g±µ eλStot

−
∫

d10j d4g±µ qabn eλStot

∫
d10j d4g±µ eλStot

∫
d10j d4g±µ qcdm eλStot

∫
d10j d4g±µ eλStot

) . (459)

To this expression we can apply the standard result stated in the following section.

10.8 Asymptotic formula for connected two-point functions

Consider the integral

F (λ) =

∫
dx f(x) eλS(x) (460)

over a region of Rd, with S(x) and f(x) smooth complex-valued functions such that the real part of
S is negative or vanishing, ReS ≤ 0. Assume also that the stationary points x0 of S are isolated so
that the Hessian at a stationary point H = S′′(x0) is non-singular, detH 6= 0. Under these hypothesis
an asymptotic expansion of the integral F for large λ is available: it is an extension of the standard
stationary phase approximation that takes into account the fact that the action S is complex [171]. A key
role is played by critical points, i.e. stationary points x0 for which the real part of the action vanishes,
ReS(x0) = 0. Here we assume that there is a unique critical point. Then the asymptotic expansion of
F (λ) for large λ is given by

F (λ) =

(
2π

λ

) d
2 ei IndHeλS(x0)

√
|detH|

(
f(x0) +

1

λ

(1
2
f ′′ij(x0)(H

−1)ij +D
)

+ O( 1
λ2 )

)
(461)

with f ′′ij = ∂2f/∂xi∂xj and IndH is the index19 of the Hessian. The term D does not contain second

derivatives of f , it contains only20 f(x0) and f ′i(x0). Now we consider three smooth complex-valued
functions g, h and µ. A connected 2-point function relative to the insertions g and h and w.r.t. the
measure µ is defined as

G =

∫
dxµ(x) g(x)h(x) eλS(x)

∫
dxµ(x) eλS(x)

−
∫

dxµ(x) g(x) eλS(x)

∫
dxµ(x) eλS(x)

∫
dxµ(x)h(x) eλS(x)

∫
dxµ(x) eλS(x)

. (463)

Using (461) it is straightforward to show that the (leading order) asymptotic formula for the connected
2-point function is simply

G =
1

λ
(H−1)ij g′i(x0)h

′
j(x0) + O( 1

λ2 ) . (464)

19The index is defined in terms of the eigenvalues of hk of the Hessian as IndH = 1
2

P

k arg(hk) with −π
2
≤ arg(hk) ≤ +π

2
.

20More explicitly, the term D is given by

D = f ′
i(x0)R

′′′
jkl(x0)(H

−1)ij(H−1)kl +
5

2
f(x0)R

′′′
ijk(x0)R

′′′
mnl(x0)(H

−1)im(H−1)jn(H−1)kl (462)

with R(x) = S(x) − S(x0) −
1
2
Hij(x0)(x − x0)

i(x − x0)
j .
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Notice that both the measure function µ and the disconnected term D do not appear in the leading term
of the connected 2-point function; nevertheless they are present in the higher orders (loop contributions).
The reason we are considering the quantity G, built from integrals of the type (460), is that the LQG
propagator has exactly this form. Specifically, in sections 10.9 we determine the critical points of the total
action, in 10.10 we compute the Hessian of the total action and the derivative of the insertions evaluated
at the critical points, and in 10.12 we state our result.

10.9 Critical points of the total action

The real part of the total action is given by

ReStot = −
∑

ab,cd

(Reα)(ab)(cd)
jab − j0ab√

j0ab

jcd − j0cd√
j0cd

+ (465)

+
∑

ab

j−ab log
1 − (R−

a nab) · (R−
b nba)

2
+
∑

ab

j+ab log
1 − (R+

a nab) · (R+
b nba)

2
. (466)

Therefore, having assumed that the matrix α in the boundary state has positive definite real part, we have
that the real part of the total action is negative or vanishing, ReStot ≤ 0. In particular the total action
vanishes for the configuration of spins jab and group elements g±a satisfying

jab = j0ab , (467)

g±a such that R±
a nab(j) = −R±

b nba(j) . (468)

Now we study the stationary points of the total action and show that there is a unique stationary
point for which ReStot vanishes.

The analysis of stationary points of the action S++S− with respect to variations of the group variables
g±a has been performed in full detail by Barrett et al. in [159]. Here we briefly summarize their result
as they apply unchanged to the total action. We invite the reader to look at the original reference for a
detailed derivation and a geometrical interpretation of the result.

The requirement that the variation of the total action with respect to the group variables g±a vanishes,
δgStot = 0, leads to the two sets of equations (respectively for the real and the imaginary part of the
variation):

∑

b6=a
j±ab

R±
a nab −R±

b nba

1 − (R±
a nab) · (R±

b nba)
= 0 ,

∑

b6=a
j±ab

(R±
a nab) × (R±

b nba)

1 − (R±
a nab) · (R±

b nba)
= 0 . (469)

When evaluated at the maximum point (468), these two sets of equations are trivially satisfied. Infact
the normals ~nab in the boundary state are chosen to satisfy the closure condition (407) at each node.
Therefore the critical points in the group variables are given by all the solutions of equation (468).

For normals ~nab which define non-degenerate tetrahedra and satisfy the continuity condition (411),
the equation Ranab = −Rbnba admits two distinct sets of solutions, up to global rotations. These two sets
are related by parity. The two sets can be lifted to SU(2). We call them ḡ+

a and ḡ−a . Out of them, four
classes of solutions for the couple (g+

a , g
−
a ) can be found. They are given by

(ḡ+
a , ḡ

−
a ), (ḡ−a , ḡ

+
a ), (ḡ+

a , ḡ
+
a ), (ḡ−a , ḡ

−
a ) . (470)

105



10. LQG PROPAGATOR FROM THE NEW SPIN FOAMS

The geometrical interpretation is the following. The couples (jab~nab, jab~nab) are interpreted as the selfdual
and anti-selfdual parts (with respect to some “time" direction, e.g. (0, 0, 0, 1)) of area bivectors associated
to triangles in 4-dimensions; since these bivectors are diagonal, they live in the 3-dimensional subspace ofR4 orthogonal to the chosen “time” direction. Because of the closure condition (407), for a fixed n the four
bivectors (jna~nna, jna~nna) define an embedding of a tetrahedron in R4. The two group elements g+

a and
g−a of the action (438) define an SO(4) element which rotates the “initial” tetrahedron. The system (468) is
a gluing condition between tetrahedra. The first two classes of solutions in (470) glue five tetrahedra into
two Euclidean non-degenerate 4-simplices related by a reflection, while the second two classes correspond
to degenerate configurations with the 4-simplex living in the three-dimensional plane orthogonal to the
chosen “time” direction.

The evaluation of the action S(jab, g
+
a , g

−
a ) = S+(jab, g

+
a ) + S−(jab, g

−
a ) on the four classes of critical

points gives

S(jab, ḡ
+
a , ḡ

−
a ) = + SRegge(jab) , (471)

S(jab, ḡ
−
a , ḡ

+
a ) = − SRegge(jab) , (472)

S(jab, ḡ
+
a , ḡ

+
a ) = + γ−1SRegge(jab) , (473)

S(jab, ḡ
−
a , ḡ

−
a ) = − γ−1SRegge(jab) , (474)

where SRegge(jab) is Regge action for a single 4-simplex with triangle areas Aab = γjab and dihedral angles
φab(j) written in terms of the areas

SRegge(jab) =
∑

ab

γjabφab(j) . (475)

Now we focus on stationarity of the total action with respect to variations of the spin labels jab. We
fix the group elements (g+

a , g
−
a ) to belong to one of the four classes (470). For the first class we find

0 =
∂Stot

∂jab

∣∣∣∣
(ḡ+a ,ḡ

−
a )

= −
∑

cd

α(ab)(cd)(jcd − j0cd)√
j0ab

√
j0cd

− iφab0 + i
∂SRegge

∂jab
. (476)

The quantity ∂SRegge/∂jab is γ times the extrinsic curvature at the triangle fab of the boundary of a
4-simplex with triangle areas Aab = γjab. As the phase φab0 in the boundary state is choosen to be exactly
γ times the extrinsic curvature, we have that equation (476) vanishes for jab = j0ab. Notice that, besides
being a stationary point, this is also a critical point of the total action as stated in (467).

On the other hand, if equation (476) is evaluated on group elements belonging to the classes (ḡ−a , ḡ
+
a ),

(ḡ−a , ḡ
−
a ), (ḡ+

a , ḡ
+
a ), we have that there is no cancellation of phases and therefore no stationary point with

respect to variations of spins. This is the feature of the phase of the boundary state: it selects a classical
contribution to the asymptotics of a spin foam model, a fact first noticed by Rovelli for the Barrett-Crane
model in [61].

10.10 Hessian of the total action and derivatives of the insertions

Here we compute the Hessian matrix of the total action Stot at the critical point jab = j0ab, (g+
a , g

−
a ) =

(ḡ+
a , ḡ

−
a ). We introduce a local chart of coordinates (~p+

a , ~p
−
a ) in a neighborhood of the point (ḡ+

a , ḡ
−
a ) on
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SU(2) × SU(2). The parametrization is defined as follows: we introduce

g±a (p±a ) = h(p±a ) ḡ±a (477)

with h(p±a ) =
√

1 − |~p±a |2 + i~p±a ·~σ. The vector ~p±a is assumed to be in a neighborhood of the origin, which

corresponds to the critical point ḡ±a . We introduce also the notation n±a

n±a = R̄±
a na (478)

where R̄±
a is the rotation associated to the SU(2) group element ḡ±a . The bivectors (jabn

+
ab, jabn

−
ab) have

the geometrical interpretation of area bivectors associated to the triangles of a 4-simplex with faces of
area proportional to jab.

The Hessian matrix is obtained computing second derivatives of the total action with respect to jab,
p+
a and p−a , and evaluating it at the point jab = j0ab and p±a = 0. With this definitions we have that the

(gauge-fixed) Hessian matrix is a (10+ 12+ 12)× (10+ 12+ 12) matrix (as it does not contain derivatives
w.r.t. g±1 ) and has the following structure:

S′′
tot =




∂2Stot

∂j∂j 010×12 010×12

012×10
∂2Stot

∂p+∂p+
012×12

012×10 012×12
∂2Stot

∂p−∂p−


 (479)

as
∂2Stot

∂pi±a ∂p
j∓
b

∣∣∣∣∣
~p=0

= 0 ,
∂2Stot

∂jab∂p
j∓
c

∣∣∣∣
~p=0

= 0 . (480)

For the non-vanishing entries we find

Q(ab)(cd) =
∂2Stot

∂jab∂jcd

∣∣∣∣
~p=0

= − α(ab)(cd)

√
j0ab

√
j0cd

+ (S′′
Regge)(ab)(cd) , (481)

H±
(ai)(bj) =

∂2Stot

∂pi±a ∂p
j±
b

∣∣∣∣∣
~p=0

= 2iγ±j0ab(δ
ij − ni±abn

j±
ab + iǫijknk±ab ) , (482)

H±
(ai)(aj) =

∂2Stot

∂pi±a ∂p
j±
a

∣∣∣∣
~p=0

= −2iγ±
∑

b6=a
j0ab(δ

ij − ni±abn
j±
ab ) , (483)

where we have defined the 10×10 matrix of second derivatives of the Regge action

(S′′
Regge)(ab)(cd) =

∂2SRegge

∂jab∂jcd

∣∣∣∣
j0ab

. (484)
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We report also the first derivatives of the insertion qabn (g+, g−) evaluated at the critical point:

∂qabn
∂~p±a

∣∣∣∣
~p=0

= iγ2γ±j0naj0nb(~n
±
nb − ~nna · ~nnb ~n±na + i ~n±na × ~n±nb) , (485)

∂qabn
∂~p±n

∣∣∣∣
~p=0

= −iγ2γ±j0naj0nb(~n
±
na + ~n±nb)(1 − ~nna · ~nnb) , (486)

∂qabn
∂jcd

∣∣∣∣
~p=0

= γ2∂(jna~nna · jnb~nnb)
∂jcd

∣∣∣∣
j0ab

. (487)

We recall that in all these expressions the normals ~nab are functions of jab as explained in section 10.1.
These expressions will be used in section 10.12 to compute the leading order of the LQG propagator.

10.11 Expectation value of metric operators

Before focusing on the LQG propagator, i.e. on the two-point function, here we briefly discuss the one-
point function 〈Ean · Ebn〉. Its meaning is the dynamical expectation value of the metric operator. The
fact that it is non-vanishing provides the background for the propagator. Using the technique developed
in the previous sections we can compute it at the leading order in the large spin expansion. We use the
integral formula for the metric operator (439)-(440) and the stationary phase analysis of section 10.6 and
find that the expectation value of the metric operator is simply given by the evaluation of the insertion
qabn (g+, g−) at the critical point

〈Ean · Ebn〉 = qabn (g+, g−)
∣∣∣
j0ab,ḡ+,ḡ−

+ O(j0). (488)

For the diagonal components a = b we have that the insertion is simply given by qaan = (γjna)
2 so that its

evaluation at the critical point gives the area square of the triangle fna. For the off-diagonal components
we have that qabn = Aan · Abn where Aain is given in equation (450). Its evaluation at the critical point can
be easily found using equation (468) in expression (450). We find

~Ana
∣∣∣
j0ab,ḡ+,ḡ−

= ~Ana+
∣∣∣
j0ab,ḡ+

+ ~Ana−
∣∣∣
j0ab,ḡ−

= γj+0na~nna(j0) + γj−0na~nna(j0) = γj0na~nna(j0) (489)

so that ~Ana at the critical point evaluates to the classical value ~Eancl = γj0na~nna(j0), the normal to the face
a of the tetrahedron n (normalized to the area of the face). It is the classical counterpart of the operator
(Ean)

i. Therefore we have that at the leading order the expectation value of the off-diagonal components
is given by the dihedral angle between two faces of a tetrahedron

〈Ean · Ebn〉 = ~Eancl · ~Ebncl + O(j0)

= γ2j0naj0nb ~nna(j0) · ~nnb(j0) + O(j0) . (490)

They have the expected geometrical meaning. We observe that the same quantities computed with the
Barrett-Crane spinfoam dynamics do not show the right behavior when the off-diagonal components of
the metric operator are considered.
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Using the same technique we can evaluate the leading order of the two-point function. We have that

〈Ean ·Ebn Ecm ·Edm〉 = Eancl ·EbnclE
c
mcl ·Edmcl + O(j30) . (491)

The quantity we are specifically interested in in this chapter is the connected two-point function. It is
of order O(j30), therefore it requires the next-to-leading orders in equations (490) and (491). Such orders
depend on the measure µ(j). However in the computation of the connected part, these contributions
cancel. The technique we use in next section for the calculation of the connected two-point function is the
one introduced in section (10.8) and captures directly the leading order.

10.12 LQG propagator: the leading order

We have defined the LQG propagator as the connected two-point function Gabcdnm = 〈Ean · EbnEcm · Edm〉 −
〈Ean · Ebn〉 〈Ecm · Edm〉. Using the integral formula (439)-(440) and the result (464) for the asymptotics
of connected two-point functions, we can compute the LQG propagator in terms of (the inverse of) the
Hessian of the total action and of the derivative of the metric operator insertions at the critical point.
These two ingredients are computed in section 10.10. Using them, we find that the LQG propagator is
given by

Gabcdnm (α) =
∑

p,q,r,s

Q−1
(pq)(rs)

∂qabn
∂jpq

∂qcdm
∂jrs

+

+

5∑

r,s=2

3∑

i,k=1

(
(H+)−1

(ri)(sk)

∂qabn
∂pi+r

∂qcdm
∂pk+s

+ (H−)−1
(ri)(sk)

∂qabn
∂pi−r

∂qcdm
∂pk−s

)

+ O(j20 ) (492)

where all the terms appearing in this expression are defined in section 10.10. From this expression we can
extract the dependence on the boundary spin j0 and on the Immirzi parameter γ. We notice that the
combinations

Rabcdnm =
1

γ3j30

∑

p<q,r<s

Q−1
(pq)(rs)

∂qabn
∂jpq

∂qcdm
∂jrs

, (493)

Xabcd
nm =

1

2γ4j30

5∑

r,s=2

3∑

i,k=1

( 1

γ+
(H+)−1

(ri)(sk)

∂qabn
∂pi+r

∂qcdm
∂pk+s

+
1

γ−
(H−)−1

(ri)(sk)

∂qabn
∂pi−r

∂qcdm
∂pk−s

)
, (494)

Y abcd
nm =

1

2γ4j30

5∑

r,s=2

3∑

i,k=1

( 1

γ+
(H+)−1

(ri)(sk)

∂qabn
∂pi+r

∂qcdm
∂pk+s

− 1

γ−
(H−)−1

(ri)(sk)

∂qabn
∂pi−r

∂qcdm
∂pk−s

)
, (495)

are in fact independent from j0 and from γ. In terms of these quantities we have that the LQG propagator
has the following structure

Gabcdnm (α) = (γj0)
3
(
Rabcdnm (α) + γXabcd

nm + γ2Y abcd
nm

)
+ O(j20) (496)
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where the dependence on γ and on j0 has been made explicit now. The matrices Rabcdnm , Xabcd
nm and Y abcd

nm can
be evaluated algebraically. Only the matrix Rabcdnm depends on the three parameters α0, α1, α2 appearing
on the boundary state. We find that

Rabcdnm =







c1 c3 c3
c3 c2 c4
c3 c4 c2








c3 c5 c6
c5 c3 c6
c6 c6 c4








c3 c6 c5
c6 c4 c6
c5 c6 c3








c3 c5 c6
c5 c3 c6
c6 c6 c4








c2 c3 c4
c3 c1 c3
c4 c3 c2








c4 c6 c6
c6 c3 c5
c6 c5 c3








c3 c6 c5
c6 c4 c6
c5 c6 c3








c4 c6 c6
c6 c3 c5
c6 c5 c3








c2 c4 c3
c4 c2 c3
c3 c3 c1








(497)

where

c1 = 4β1 , c2 = 4β2 , c3 = −2

3
(2β0 − 3β1 + 3β2) , (498)

c4 =
1

3
(8β0 − 12β1) , c5 =

1

9
(49β0 − 93β1 + 48β2) , c6 = −1

9
(23β0 − 42β1 + 15β2) , (499)

and21

β0 =
1

10

(
− 1

α0 + 6α1 + 3α2
+

32

−8α0 − 8α1 + 16α2 + i
√

15
− 5

α0 − 2α1 + α2 + i
√

15

)
, (502)

β1 =
1

30

(
− 3

α0 + 6α1 + 3α2
+

16

−8α0 − 8α1 + 16α2 + i
√

15
+

5

α0 − 2α1 + α2 + i
√

15

)
, (503)

β2 =
1

30

(
− 3

α0 + 6α1 + 3α2
− 64

−8α0 − 8α1 + 16α2 + i
√

15
− 5

α0 − 2α1 + α2 + i
√

15

)
. (504)

The matrices Xabcd
nm and Y abcd

nm turn out to be proportional

Xabcd
nm =

7

36
Zabcdnm , Y abcd

nm = −i
√

15

36
Zabcdnm , (505)

21We notice that the inverse of the matrix Q(ab)(cd) can be written in terms of the parameters βk using the formalism (422)
introduced in section 10.1,

(Q−1)(ab)(cd) =
2

X

k=0

j0βkP
(ab)(cd)
k . (500)

The matrix Q(ab)(cd) is defined in equation (481) and is given by

Q(ab)(cd) =
1

j0

2
X

k=0

(ihk − αk)P
(ab)(cd)
k , (501)

with h0 = − 9
4

q

3
5

, h1 = 7
8

q

3
5

, h2 = −
q

3
5

.
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with the matrix Zabcdnm given by

Zabcdnm =







0 0 0
0 0 0
0 0 0








0 −1 ei

π
3

−1 0 e−i
π
3

ei
π
3 e−i

π
3 0








0 e−i

π
3 −1

e−i
π
3 0 ei

π
3

−1 ei
π
3 0








0 −1 ei

π
3

−1 0 e−i
π
3

ei
π
3 e−i

π
3 0








0 0 0
0 0 0
0 0 0








0 ei

π
3 e−i

π
3

ei
π
3 0 −1

e−i
π
3 −1 0








0 e−i

π
3 −1

e−i
π
3 0 ei

π
3

−1 ei
π
3 0








0 ei

π
3 e−i

π
3

ei
π
3 0 −1

e−i
π
3 −1 0








0 0 0
0 0 0
0 0 0








. (506)

This is the main result of the chapter, the scaling and the tensorial structure of metric correlations in
LQG. In the following we collect some remarks on this result:

- The LQG propagator scales as j30 , as expected for correlations of objects with dimensions of area
square, Ean · Ebn ∼ (γj0)

2.

- The off-diagonal components are not suppressed as happened for the Barrett-Crane model [91, 106]
and have the same scaling as the diagonal ones.

- The contribution Rabcdnm in (496) matches exactly with the matrix of correlations of areas and angles
computed in perturbative quantum Regge calculus with a boundary state as done in [147].

- On the other hand, the ‘γ-terms’ in (496), γXabcd
nm + γ2Y abcd

nm , are new and proper of the spin foam
model. They come from SU(2) × SU(2) “group” fluctuations. They don’t contribute to area-area
correlations, nor to area-angle correlations. On the other hand, their contribution to angle-angle
correlations is non-trivial.

- In the limit γ → 0 and j0 → ∞ with γj0 = const = A0, only the Regge contribution survives. It
is interesting to notice that the same limit was considered in [172] in the context of loop quantum
cosmology.

- The ‘γ-terms’ have an interesting feature that we now describe. Let us focus on the tensorial

components G4 = G
(34)(45)
12 and G5 = G

(35)(45)
12 . They are related by a permutation of the vertices 4

and 5, keeping the other three vertices fixed. The ‘Regge-term’ is invariant under this permutation,

R
(34)(45)
12 = R

(35)(45)
12 . On the other hand the ‘γ-terms’ are not. In particular we have that

γX
(35)(45)
12 + γ2Y

(35)(45)
12 = ei

2π
3

(
γX

(34)(45)
12 + γ2Y

(34)(45)
12

)
. (507)

It would be interesting to identify the origin of the phase 2π
3 . We notice that the permutation of the

vertex 4 with the vertex 5 of the boundary spin-network corresponds to a parity transformation of
the four-simplex. In this sense the ‘γ-terms’ are parity violating.

In next section we investigate the relation of the result found with the graviton propagator computed
in perturbative quantum field theory.
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10.13 Comparison with perturbative quantum gravity

The motivation for studying the LQG propagator comes from the fact that it probes a regime of the
theory where predictions can be compared to the ones obtained perturbatively in a quantum field theory
of gravitons on flat space [144, 145, 146]. Therefore it is interesting to investigate this relation already at
the preliminary level of a single spin foam vertex studied in this chapter. In this section we investigate
this relation within the setting discussed in [91, 106, 107].

In perturbative quantum gravity22, the graviton propagator in the harmonic gauge is given by

〈hµν(x)hρσ(y)〉 =
−1

2|x− y|2 (δµρδνσ + δµσδνρ − δµνδρσ). (508)

Correlations of geometrical quantities can be computed perturbatively in terms of the graviton propagator.
For instance the angle at a point xn between two intersecting surfaces fna and fnb is given by23

qabn = gµν(xn)gρσ(xn)B
µρ
na(xn)B

νσ
nb (xn) (509)

where Bµν is the bivector associated to the surface24. As a result the angle fluctuation can be written in
terms of the graviton field

δqabn = hµν(xn) (T abn )µν , (511)

where we have defined the tensor (T abn )µν = 2δρσB
µρ
na(xn)B

νσ
nb (xn). The angle correlation (Gabcdnm )qft is

simply given by
(Gabcdnm )qft = 〈hµν(xn)hρσ(xm)〉 (T abn )µν(T cdm )ρσ . (512)

In particular, this quantity can be computed for couples of surfaces identified by triangles of area A0

living on the boundary of a regular Euclidean 4-simplex. This quantity has been computed in [106] and
we report it here for reference,

(
Gabcdnm

)

qft
=

−A3
0

18
√

3 × 512
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The question we want to answer here is if the quantity (Gabcdnm )qft and the leading order of the LQG
propagator given by equation (496) can match. As we can identify γj0 with the area A0, we have that the

22Here we consider the Euclidean case.
23We thank E. Alesci for a discussion on this point.
24To be more specific, we consider local coordinates (σ1, σ2) for a surface t and call tµ(σ) its embedding in the 4d manifold.

The bivector Bµν
t (x) is defined as

Bµν
t (x) =

∂tµ

∂σα

∂tν

∂σβ
εαβ . (510)
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two have the same scaling. The non-trivial part of the matching is the tensorial structure. Despite the
fact that we have 9×9 tensorial components, only six of them are independent as the others are related by
symmetries of the configuration we are considering. On the other hand the semiclassical boundary state
|Ψ0〉 we used in the LQG calculation has only three free parameters, α0, α1, α2. Therefore we can ask if
there is a choice of these 3 parameters such that we can satisfy the 6 independent equations given by the
matching condition (

Gabcdnm (α)
)

lqg
=
(
Gabcdnm

)

qft
. (513)

We find that a solution in terms of the parameters αk can be found only in the limit of vanishing Immirzi
parameter, keeping constant the product γj0 = A0. In this limit we find a unique solution for αk given by

α0 =
1

100
(495616

√
3 − 45

√
15 i) , (514)

α1 =
1

200
(−299008

√
3 + 35

√
15 i) , (515)

α2 =
1

25
(31744

√
3 − 5

√
15 i) . (516)

Therefore the matching condition (513) can be satisfied, at least in the specific limit considered. Having
found a non-trivial solution, it is interesting to study the real part of the matrix α(ab)(cd) in order to
determine if it is positive definite. Its eigenvalues (with the associated degeneracy) are

λ5 = 9216
√

3 , deg = 5 , (517)

λ4 =
4608

√
3

5
, deg = 4 , (518)

λ1 = − 1024
√

3

5
, deg = 1 . (519)

We notice that all the eigenvalues are positive except one, λ1. The corresponding eigenvector represents
conformal rescalings of the boundary state, j0ab → λj0ab. It would be interesting to determine its origin
and to understand how the result depends on the choice of gauge made for the graviton propagator (508).
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11 Conclusions and outlook

In this last part we want to discuss and put in the light of a future research some of the original results
contained in this thesis. We have presented, unfortunately in a very concise and partial way, the theory of
Loop Quantum Gravity and its tentative covariant version given by Spin Foams. We showed preliminary
indications in favor of the good semiclassical limit of the new EPRL Spin Foam Model, through the
new technique of the propagation of wave-packets and through the asymptotic analysis of the fusion
coefficients. The main result in this thesis is the calculation of the graviton propagator in the new model
and its comparison with the one of perturbative quantum gravity, but we would like to emphasize the
importance of semiclassical states in the calculation, and start our discussion from these.

We have presented a proposal of coherent states for Loop Quantum Gravity and shown that, in a
specific limit, they reproduce the states used in the Spin Foam framework. Moreover, these states coincide
with Thiemann’s complexifier coherent states with the natural choice of complexifier operator, a rather
specific choice of heat-kernel time and a clear geometrical interpretation for their SL(2,C) labels. Coherent
spin-networks are candidate semiclassical states for full Loop Quantum Gravity. Given a space-time metric
(for instance the Minkowski or de Sitter ones), we can identify an intrinsic and extrinsic metric on a spatial
slice Σ. Then, we can consider a cellular decomposition of Σ and a graph Γ embedded in Σ and dual to
the decomposition. The data captured by the graph is easy to determine: we can smear the Ashtekar-
Barbero connection on links of the graph and the electric field on surfaces dual to links. This procedure
determines a finite amount of data that can be used as labels for the coherent state. In the case of
a simplicial decomposition, we know that this data correspond to a Regge geometry with dislocations.
These geometries are studied in [111] and are called ‘twisted’.

The remarkable fact that, in the large spin limit, the states we consider reproduce the Livine-Speziale
coherent intertwiners on nodes guaranties that they are actually peaked on a classical expectation value of
non-commuting geometric operators. For instance, we know that the expectation value of the volume of
a region containing a 4-valent node is given by the classical volume of an Euclidean tetrahedron with the
normals to faces and the areas as prescribed by the labels of the coherent spin-network. What needs to
be better understood is the relation and the origin of the tension with the results of Flori and Thiemann
[120, 121] where they claim that only nodes of valency 6 can have a semiclassical behavior.

Coherent spin-networks are coherent in the strict mathematical sense, because they form an overcom-
plete basis of the kinematical Loop Quantum Gravity Hilbert space KΓ on a fixed graph Γ, are eigenstates
of suitable annihilation operators, and saturate Heisenberg uncerty relations. An aspect that needs fur-
ther investigation regards the redundancy of the labels of these states. The situation is analogous to the
one of the labels of the Livine-Speziale coherent intertwiners (four unit-normals) [57] as opposed to the
constrained labels of the same states obtained by Conradi and Freidel via geometric quantization of a
classical tetrahedron [108, 109]. Similarly, it is possible that the coherent states obtained via geometric
quantization of the phase space of LQG associated to a graph actually coincide with a subset of the coher-
ent states introduced here via heat-kernel methods. This would be an instance of Guillemin-Sternberg’s
‘quantization commutes with reduction’ statement. Notice that the situation here is slightly more involved:
geometric quantization seemingly knows nothing about heat kernels. Nevertheless, explicit computations
by Hall [126] show that amazingly the two approaches give precisely the same coherent states in all the
studied cases. This aspect deserves to be understood better.

A surprising property of the states we have discussed is that they bring together so many (apparently
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conflicting) ideas that have been proposed in the search for semiclassical states in Loop Quantum Gravity.
We consider this convergence to be a measure of the robustness of the theory. In particular, the convergence
makes stronger the semiclassical calculations done in Spin Foams.

Now we discuss our calculation of the correlation functions of metric operators in Loop Quantum
Gravity. The analysis presented involves two distinct ingredients:

• The first is a setting for defining correlation functions. The setting is the general boundary formal-
ism. It involves a boundary semiclassical state |Ψ0〉 which identifies the regime of interest, LQG
operators Ean · Ebn which probe the quantum geometry on the boundary, a spin foam model 〈W |
which implements the dynamics. The formalism allows to define semiclassical correlation functions
in a background-independent context.

• The second ingredient consists in an approximation scheme applied to the quantity defined above. It
involves a vertex expansion and a large spin expansion. It allows to estimate the correlation functions
explicitly. The explicit result can then be compared to the graviton propagator of perturbative
quantum gravity. We focused on the lowest order in the vertex expansion and the leading order in
the large spin expansion.

The results found can be summarized as follows:

1. In section 10.1 we have introduced a semiclassical state |Ψ0〉 peaked on the intrinsic and the extrinsic
geometry of the boundary of a regular Euclidean 4-simplex. The technique used to build this state
is the following: (i) we use the coherent intertwiners introduced in [57, 108] to label spin-network
nodes as in [159]; (ii) we choose the normals labelling intertwiners so that they are compatible with
a simplicial 3-geometry (411). This addresses the issue of discontinuous lengths identified in [167];
(iii) then we take a gaussian superposition over coherent spin-networks in order to peak on extrinsic
curvature as in [61, 104]. This state is an improvement of the ansatz used in [91, 106, 107], as it
depends only on the three free parameters α0, α1, α2.

2. In section 10.3 we have defined expectation values of geometric observables on a semiclassical state.
The LQG propagator is defined in equation (430) as a connected correlation function for the product
of two metric operators

Gabcdnm = 〈Ean ·Ebn Ecm ·Edm〉 − 〈Ean ·Ebn〉 〈Ecm ·Edm〉 . (520)

This is the object that in principle can be compared to the graviton propagator on flat space: the
background is coded in the expectation value of the geometric operators and the propagator measures
correlations of fluctuations over this background.

3. In section 10.5 we have introduced a technique which allows to write LQG metric operators as
insertions in a SO(4) group integral. It can be interpreted as the covariant version of the LQG
operators. The formalism works for arbitrary fixed triangulation. Having an integral formula for
expectation values and correlations of metric operators allows to formulate the large spin expansion
as a stationary phase approximation. The problem is studied in detail restricting attention to the
lowest order in the vertex expansion, i.e. at the single-vertex level.
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4. The analysis of the large spin asymptotics is performed in section 10.6. The technique used is the one
introduced by Barrett et al in [159]. There, the large spin asymptotics of the boundary amplitude
of a coherent spin-network is studied and four distinct critical points are found to contribute to the
asymptotics. Two of them are related to different orientations of a 4-simplex. The other two come
from selfdual configurations. Here, our boundary state is peaked also on extrinsic curvature. The
feature of this boundary state is that it selects only one of the critical points, extracting exp iSRegge

from the asymptotics of the EPRL spin foam vertex. This is a realization of the mechanism first
identified by Rovelli in [61] for the Barrett-Crane model.

6. In 10.11 we compute expectation values of LQG metric operators at leading order and find that they
reproduce the intrinsic geometry of the boundary of a regular 4-simplex.

7. Computing correlations of geometric operators requires going beyond the leading order in the large
spin expansion. In section 10.8 we derive a formula for computing directly the connected two-point
correlation function to the lowest non-trivial order in the large spin expansion. The formula is used
in section 10.10.

8. The result of the calculation, the LQG propagator, is presented in section 10.12. We find that the
result is the sum of two terms: a “Regge term” and a “γ-term”. The Regge term coincides with
the correlations of areas and angles computed in Regge calculus with a boundary state [147]. It
comes from correlations of fluctuations of the spin variables and depends on the parameters αk of
the boundary state. The “γ-term” comes from fluctuations of the SO(4) group variables. An explicit
algebraic calculation of the tensorial components of the LQG propagator is presented.

9. The LQG propagator can be compared to the graviton propagator. This is done in section 10.13.
We find that the LQG propagator has the correct scaling behaviour. The three parameters αk
appearing in the semiclassical boundary state can be chosen so that the tensorial structure of the
LQG propagator matches with the one of the graviton propagator. The matching is obtained in the
limit γ → 0 with γj0 fixed.

Now we would like to put these results in perspective with respect to the problem of extracting the low
energy regime of Loop Quantum Gravity and Spin Foams (see in particular [173]).

Deriving the LQG propagator at the level of a single spin foam vertex is certainly only a first step.
Within the setting of a vertex expansion, an analysis of the LQG propagator for a finite number of spinfoam
vertices is needed. Some of the techniques developed generalize to this more general case. In particular
superpositions of coherent spin-networks can be used to build semiclassical states peaked on the intrinsic
and the extrinsic curvature of an arbitrary boundary Regge geometry. Moreover, the expression of the
LQG metric operator in terms of SO(4) group integrals presented here works for an arbitrary number of
spin foam vertices and allows to derive an integral representation of the LQG propagator in the general
case, analogous to the one of [158] but with non-trivial insertions. This representation is the appropriate
one for the analysis of the large spin asymptotics along the lines discussed for Regge calculus in [96]. The
non-trivial question which needs to be answered then is if the semiclassical boundary state is able to enforce
semiclassicality in the bulk. Another feature identified which appears to be general is that, besides the
expected Regge contribution, correlations of LQG metric operators have a non-Regge contribution which
is proper of the spin foam model. It would be interesting to investigate if this contribution propagates
when more than a single spin foam vertex is considered.
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Thèse de Doctorat - Résumé

Analyse semi-classique de la gravité quantique à boucles

Au siècle dernier, la relativité générale (RG) et la mécanique quantique (MQ)
ont révolutionné la physique et démoli deux préjugés profondément enracinés
sur la Nature: le déterminisme des lois physiques et le caractère absolu,
inerte de l’espace et du temps. La RG a modifié la notion de l’espace et
du temps; la MQ la notion de causalité, de matière et de mesure, mais
cette notions modifiées ne s’accordent pas facilement. La MQ nécessite d’un
background statique spatial et une variable temporelle externe, alors que
la RG décrit l’espace comme une seule entité dynamique; de plus la RG
est une théorie classique déterministe alors que la mécanique quantique est
probabiliste et nous enseigne que tout les champs dynamiques sont quantifiés.
Les deux théories travaillent extrêmement bien à échelles opposées, mais
cette image est manifestement incomplète, à moins que nous voulons accepter
que la nature a des fondations opposées dans les domaines quantique et
cosmologique.

La gravité quantique à boucles (GQB) a comme objectif principal de
combiner la relativité générale et la mécanique quantique. Elle est le résultat
de la quantification “canonique” de la relativité générale hamiltonienne. En
bref, ces principales caractéristiques sont les suivantes:

• Elle met en oeuvre les enseignements de Einstein. Le monde est rela-
tionnel: seuls les événements indépendants des coordonnées sont signi-
ficatifs. La physique doivent être décrite par des théories généralement
covariantes. Le champ gravitationnel est la géométrie de l’espace-
temps et la géométrie de l’espace-temps est dynamique: le champ
gravitationnel définie la géométrie sur laquelle ses propres degrés de
liberté et celles des champs de matière se propagent. La RG n’est pas
une théorie des champs en mouvement sur une géométrie courbe de
background; la RG est une théorie ou les champs se déplacent les uns
sur les autres, donc elle indépendant du background.

• Elle suppose que la MQ, correctement formulé pour être compati-
ble avec la covariance générale, soit correcte; également les équations
d’Einstein, bien que ils peuvent être modifiées à haute énergie, sont
supposées correctes.

• Elle est non-perturbative: la métrique n’est pas coupée en un back-
ground de Minkowski plus une perturbation.
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• Il n’y a pas d’extra-dimensions: elle est formulé en quatre dimensions.

• Elle prévoit une structure combinatoire discrète quantique de l’espa-
ce: les spectres des observables géométriques quantiques, tels que les
opérateurs longueur, surface et volume, sont discrets et les états quan-
tiques de la géométrie sont définis en termes relationnels. En outre,
elle est finie dans le régime UV.

• Ses applications en cosmologie ont donné lieu à la cosmologie quantique
à boucles. Des résultats obtenus par cette théorie sont l’explication de
la formule de Bekenstein-Hawking pour l’entropie des trous noirs et
l’absence de la singularité initiale du Big Bang.

Le formalisme des modeles de mousse de spin (MMS) fournit une défini-
tion non-perturbative de l’intégrale de chemin pour la relativité générale, et
au même temps il est une tentative de définir la version covariante de la GQB.
Les nouveaux MMS (soit euclidiens, soit lorentziens) réalisent une équiva-
lence au niveau cinématique entre les approches canoniques et covariante,
tandis que la pleine équivalence a été prouvée que en trois dimensions.

Dans cette thèse nous allons discuter plusieurs aspects de la dynamique
semi-classique de la gravité quantique à boucles, par ca formulation covarian-
te des MMS. En particulier on a analysé les nouveaux MMS, candidats pour
l’amplitude de vertex de la GQB. On a introduit une technique pour tester
le comportement semi-classique, la propagation des paquets semi-classiques,
en obtenant des bonnes indications preliminaires.

Ensuite, on a étudié l’asymptotique d’une composante fondamentale des
amplitudes des MMS: les coefficients de fusion, symboles combinatoires qui
effectuent la correspondence entre la cinématique de la QGB e la cinématique
des MMS. Leur asymptotique montre des bonne propriétés semi-classiques.

Mais un des tests les plus important est la comparaison des fonctions à n
point calculées un GQB avec celle de la gravité quantique perturbative stan-
dard. On à calcule la fonction connectée à 2 points des opérateurs métriques,
et comparé avec le propagateur du graviton standard, en trouvant un accord
complet pour une choix opportune des paramètres libres. Ce resultat est un
test important pour les MMS, en particulier pour le modèle étudié appelé
modèle EPRL (Engle-Pereira-Rovelli-Livine). Le calcul du propagateur est
basé sur une choix particulier de l’état de bord (l’état quantique qui repré-
sente la géométrie semi-classique de background sur laquelle le graviton se
propage), dictée par l’intuition géométrique.

La robustesse du formalisme pour le calcul des observables semi-classiques
dans les MMS a été renforcé dans mon récent article “Coherent spin-networks”,
reporté en détail dans cette thèse. On à défini des état cohérentes pour la
gravité quantique a partir du noyaux du chaleur sur l’espace des phases
(comme en MQ ordinaire) et on a trouvé que dans la limite semi-classique
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ils correspondent aux états utilisés dans les MMS. L’importance des spin-
networks cohérentes est que on a une interprétation claire de la géométrie
classique (intrinsèque et extrinsèque) ou ils sont centrés.

Par conséquent on peut, en principe, construire des états quantiques
avec incertitude minimale dans les quantités conjuguées qui représentent un
espace-temps classique donné.
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Tesi di dottorato - Riassunto

Analisi semiclassica della gravità quantistica a loop

All’inizio del secolo scorso, la relatività generale (RG) e la meccanica quan-
tistica (MG) anno rivoluzionato la fisica e demolito due pregiudizi profonda-
mente radicati sulla Natura: il determinismo delle leggi fisiche e il carattere
assoluto e inerte dello spazio e del tempo. La RG ha modificato le nozioni di
spazio e di tempo; la MQ la nozione di causalità, di materia e di misura. Ma
queste nozioni modificate non si accordano facilmente. La MQ necessita di
un background statico spaziale e di una variabile temporale esterna, mentre
la RG descrive lo spazio-tempo come una singola entità dinamica; inoltre la
RG è una teoria classica deterministica, mentre la MQ è probabilistica e ci
insegna che i campi dinamici sono quantizzati. Le due teorie funzionano bene
a scale di energia (distanza) opposte, ma il quadro è certamente incompleto,
a meno che non si vuole accettare che la natura ha fondamenti opposti tra
il dominio quantistico e cosmologico.

La gravità quantistica a loop (Loop Quantum Gravity, or LQG) ha co-
me obbiettivo principale di combinare la relatività generale e la meccanica
quantistica in un quadro coerente. E’ il risultato della quantizzazione “ca-
nonica” della relatività generale hamiltoniana. In breve, le sue principali
caratteristiche sono le seguenti:

• Mette in opera gli insegnamenti di Einstein. Il mondo è relazionale:
solo gli eventi indipendenti dalle coordinate arbitrarie hanno significato
fisico. La fisica deve essere descritta da teorie generalmente covarianti.
Il campo gravitazionale è la geometria dello spazio-tempo e la geome-
tria della spazio-tempo è dinamica: il campo gravitazionale definisce
la geometria sulla quale i propri gradi di libertà e quelli dei campi di
materia si propagano. La RG non è una teoria di campi in movimento
su una geometria curva, la RG è una teoria dove i campi si muovo-
no gli uni rispetto agli altri, ed è dunque indipendente da qualunque
background.

• Suppone che la MQ, correttamente formulate per essere compatibile
con la covarianza generale, sia corretta; allo stesso modo, le equazioni
di Einstein, benché possano essere modificate ad alta energia, sono
supposte corrette.

• E’ non-perturbativa: la metrica non è suddivisa in una parte di back-
ground più una perturbazione.
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• Non vi sono dimensioni extra: la teoria è formulata in quattro dimen-
sioni.

• Prevede una struttura combinatoria e discreta dello spazio-tempo: gli
spettri di osservabili geometriche come l’operatore lunghezza, volume
e area sono discreti. Gli stati quantistici della geometria sono defi-
niti in termini relazionali. Inoltre, la LQG non presenta divergenze
ultraviolette.

• La sua applicazione in cosmologia ha fatto nascere la cosmologia quan-
tistica a loop (Loop Quantum Cosmology, or LQC). Alcuni risultati ot-
tenuti da questa teoria sono la derivazione della formula di Bekenstein-
Hawking per l’entropia dei buchi neri, e l’assenza della singolarità
iniziale del Big Bang.

Il formalismo dei modelli di Spin Foam (Spin Foam Models, or SFM)
fornisce una definizione non-perturbativa dell’integrale sui cammini di Feyn-
man per la relatività generale, e quindi implementa l’idea della somma sulle
geometrie di Misner-Hawking. Allo stesso tempo, è il tentativo di definire
la versione covariante della LQG. I nuovi SFM (sia euclidei che lorentziani)
realizzano una equivalenza a livello cinematico tra l’approccio canonico e co-
variante, mentre l’equivalenza completa (dinamica) è stata mostrata solo in
3 dimensioni.

In questa tesi discutiamo molti aspetti della dinamica semiclassica della
gravità quantistica a loop, attraverso la sua formulazione covariante. In par-
ticolare, analizziamo i nuovi modelli di Spin Foam, candidati per l’ampiezza
di vertice della LQG. A questo scopo abbiamo introdotto una tecnica per
testare il comportamento semiclassico, la propagazione dei pacchetti d’onda,
ottenendo buone indicazioni preliminari.

In seguito studiamo l’asintotica di uno dei costituenti fondamentali delle
ampiezze di vertice degli Spin Foam: i coefficienti di fusione, simboli com-
binatori che realizzano la corrispondenza tra la cinematica della LQG e la
cinematica degli SFM. L’asintotica mostra buone proprietà semiclassiche.

Ma uno dei test più importanti è il confronto delle funzioni a n punti
calcolate in LQG con quelle della gravità quantistica perturbativa standard.
Abbiamo calcolato la funzione a due punti connessa per gli operatori metrici,
e l’abbiamo confrontata con il propagatore del gravitone standard, trovando
un accordo completo (sia scaling che struttura tensoriale) per un’opportuna
scelta dei pochi parametri liberi. Questo risultato è un test importante per i
modelli di spin foam, in particolare per il modello analizzato, chiamato EPRL
(Engle-Pereira-Rovelli-Livine). La definizione di propagatore si basa su una
particolare scelta dello stato di bordo (lo stato che rappresenta la geometria
classica di background sulla quale il gravitone si propaga), e questa scelta è
in parte arbitraria.
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Tuttavia la robustezza del formalismo del propagatore in LQG, e più in
generale del calcolo delle osservabili semiclassiche è rafforzata nel mio recente
articolo “Coherent spin-networks”, riportato interamente in questa tesi. In
questo lavoro abbiamo discusso una proposta di stati semiclassici (o stati
coerenti) per la gravità quantistica a loop. Questi stati sono costruiti attra-
verso la complessificazione dell’heat-kernel sullo spazio delle configurazioni,
come nella MQ di una particella. Abbiamo trovato che nel limite semiclassico
(grandi distanze) gli spin-network coerenti corrispondono esattamente agli
stati utilizzati nei modelli di Spin Foam. L’importanza degli spin-network
coerenti sta nel fatto che hanno una chiara interpretazione in termini della
geometria classica intrinseca ed estrinseca di una superficie 3-dimensionale,
e sono dunque dei candidati per gli stati quantistici che meglio approssimano
una data metrica classica.
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