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Introduction

In the last decade the lattice kinetic approach to fluid dynamics, and notably the

Lattice Boltzmann (LB) method, has consolidated into a powerful alternative to

the discretization of the Navier-Stokes equations for the numerical simulation of

a wide range of complex fluid flows [97, 67, 18, 139]. To date, the overwhelming

majority of LB work has been directed to the investigation of classical (non quan-

tum) fluids. Nonetheless a small group of authors have also investigated lattice

kinetic formulations of quantum mechanics [24, 22, 19, 98, 99] which led to the

definition of the so-called quantum lattice gas methods for solving linear and non-

linear Schrödinger equations.

Due to its central role in quantum mechanics, many numerical studies have

been devoted to the solution of the time-dependent (nonlinear) Schrödinger equa-

tion and of the time-independent Gross-Pitaevskii equation (GPE), which is a

special Schrödinger equation with a cubic nonlinearity describing the behavior of

Bose-Einstein condensates. In particular, to solve the time-dependent Scrödinger

equation, Chiofalo et al. proposed a particle-inspired scheme [33, 34], finite differ-

ence methods have been proposed by Ruprecht et al. [120], Ensher et al. [54] and

Wang [144], and a time-splitting spectral (TSSP) method was developed by Bao

and coworkers initially for the Schrödinger equation in the semi-classical regime

[15, 16] and then extended to the GPE [14, 11]. In particular, the TSSP method

shows good properties of accuracy and efficiency.

To compute stationary solutions of the GPE, several approaches have been also

proposed: Runge-Kutta methods [53, 1], explicit imaginary-time algorithms [33,

35, 10, 13] and direct minimization of the energy functional [12]. It is remarkable

that by far the most numerical works for these methods have appeared in the

physical literature.

The earliest LB model for quantum motion was proposed by Succi and Benzi

in 1993 and it built upon a formal analogy between the Dirac equations and a

Boltzmann equation satisfied by a complex distribution function [138, 133]. It

was then shown that the non-relativistic Schrödinger equation derives from the
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complex Boltzmann equation under the same adiabatic assumptions (in imaginary

time), which takes the Boltzmann equation for classical molecules into the Navier-

Stokes equations of continuum fluid mechanics. Based on this formal analogy, a

quantum lattice Boltzmann scheme was formulated, in which the discrete speeds

are identified with the four-spinor components of the Dirac’s wave function. For

1+1-dimensional problems (evolutionary problems in one space dimension) this

identification is fairly natural, since the spin can always be aligned with momen-

tum (unit helicity). In higher dimensions, however, such helicity=1 representation

is no longer viable because the spin does not transform as ordinary vectors and

consequently the Dirac propagation matrices cannot be diagonalized simultane-

ously. To cope with this problem, the classical stream-collide structure of the

Boltzmann equation was augmented with a ’rotation’ step, designed in such a way

as to secure alignment between momentum and spin degrees of freedom along each

direction of propagation (operator splitting).

However, such a multi-dimensional version of the quantum lattice Boltzmann

(qLB) method was not numerically validated in Refs. [138, 133]. Indeed, the

first result of this thesis is the effective numerical extension and validation of the

multi-dimensional qLB scheme.

In particular, in Ref. [105], we present a numerical study of the two- and three-

dimensional qLB model, based on an operator splitting approach. Our results

show a satisfactory agreement with the analytical solutions, thereby demonstrat-

ing the validity of the three-step stream-collide-rotate theoretical structure of the

multi-dimensional qLB scheme.

Moreover, in Ref. [108], we extend the qLB model by developing an imaginary-

time version of the scheme in order to compute the ground state solution of the

Gross-Pitaevskii equation (GPE). The GPE is commonly used to describe the dy-

namics of zero-temperature Bose-Einstein condensates (BEC) and it is a nonlinear

Schrödinger equation with a cubic nonlinearity. The ground state solution of the

GPE is the eigenstate which corresponds to the minimum energy level. Typically,

this minimizer is found by applying to the GPE a transformation, known as Wick

rotation, which consists on “rotating” the time axis on the complex plane so that

time becomes purely imaginary [2, 33, 35, 100]. With this rotation of the time

axis, the GPE becomes a diffusion equation with an absorption/emission term

given by the nonlinear potential.

Thus, the basic idea behind the imaginary-time qLB model is to apply the Wick

rotation to the real-time qLB scheme. The imaginary-time qLB scheme proposed

in Ref. [108] is also extended to multi-dimensions by using the same splitting

operator approach already applied to the real-time qLB model [105, 107].
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In addition, we apply the qLB scheme to the study of the dynamics of a BEC

in a random potential [106], which is a very active topic in present time research

on condensed matter and atomic physics research. In particular, based on Ref.

[124], we investigate the conditions under which an expanding BEC in a random

speckle potential can exhibit Anderson localization.

Recently, a large number of experimental and numerical studies have been devoted

to the localization properties of Bose gases [123, 93, 36, 56, 37, 101, 3, 130, 94].

Indeed, it is well known that disorder can profoundly affect the behavior of quan-

tum systems, Anderson localization being one of the most fascinating phenomena

in point [8]. Back in 1958, Anderson showed that the eigenstates of single quan-

tum particles in a weak random potential can become localized, which means that

the corresponding wave functions exhibit an exponential decay at large distances

[123].

In Ref. [106], we explore the use of qLB for the case of nonlinear interactions with

random potentials and, in particular, we investigate the mechanism by which the

localized state of the BEC is modified by the residual self-interaction in the (very)

long-time term evolution of the condensate.

These studies have demonstrated the viability of the qLB model as numeri-

cal algorithm for solving linear and nonlinear Schrödinger equations for both the

time-dependent and ground state solutions, even in external random potentials.

The qLB method is also very promising as a suitable algorithm for prospec-

tive quantum computers. Indeed, as it was first suggested by Feynman [55], the

most natural application of quantum computers would be solving problems from

quantum mechanics [50]. The lattice kinetic approach is particularly well suited

for quantum computing since, as observed in [91], the stream-and-collide structure

of the quantum lattice Boltzmann equation maps naturally onto the structure of

quantum networks, i. e., quantum computing devices consisting of quantum logic

gates, whose computational operation proceeds synchronously in time. The out-

puts of some gates are wire-connected to the input of some others (streaming step),

and locally processed by unitary operations (the collision step). Moreover, it was

shown that the so-called quantum lattice gas cellular automata [98], which bears

many similarities with the qLB model, can be used to simulate systems of nonrela-

tivistic quantum particles with exponential speedup in the number of particles [24].

Besides this attractive but still hypothetical future application to quantum

computing, such lattice kinetic methods for quantum mechanics represent inter-

esting numerical schemes, which can be easily implemented on classical computers,

retaining the usual attractive features of LB methods: simplicity, computational
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speed, straightforward parallel implementation.

Indeed, as an explicit numerical method, qLB offers an appealing set of prop-

erties, norm preserving (unitary) and amenability to parallel processing. More-

over, being based on a first-order, relativistic formulation, the qLB method offers

stability provided that ∆z = c∆t for any value of ∆t. This contrasts with stan-

dard explicit schemes, whose numerical stability is constrained by the Courant-

Friedrichs-Lewy (CFL) conditions of the form ∆t < 2m
~

∆z2.

This dissertation is organized as follows.

• In Chapter 1, we introduce the qLB model as first presented by Succi and

Benzi [138]. In particular, we review the derivation of the Schrödinger equa-

tion in the adiabatic limit for the one dimensional model and discuss the

theoretical procedure for the extension to multi-dimensions. Moreover, we

include some one dimensional numerical results taken from Ref. [133] in

order to validate the one dimensional qLB model.

• In Chapter 2, we discuss in detail the extension to multi-dimensions present-

ing numerical results in both, two and three space dimensions. However,

most of the simulations and comparisons against analytical results are per-

formed for the two-dimensional case. This is due to the fact that the scheme

requires a large amount of memory (the distribution fields are complex), thus

allowing only for small lattices in three dimensions. This difficulty could be

overcome implementing the algorithm in parallel, which task is being con-

sidered at the present time.

• In Chapter 3, we extend the qLB model to the computation of the ground

state of the nonlinear Schrödinger equation. In particular, the imaginary-

time qLB model is defined and numerical results are compared with Crank-

Nicolson results and theoretical approximations of the solutions such as the

Thomas-Fermi ground state solutions.

• In Chapter 4, we present the application of the qLB scheme to the study of

the dynamics of a BEC in a random potential. Our results are compared

with classical Crank-Nicolson scheme for validation.

• In Chapter 5, we study a particular nonlinear equation, namely the GPE

with attractive interactions coupled with a Newton-like potential. This last

work was inspired by a paper by Moroz, Penrose and Tod [102], where they

consider a particular nonlinear quantum wave equation, namely the so-called
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Schrödinger-Newton equation (SNE) proposed by Penrose [115] within a the-

ory which explains the quantum state reduction as a gravitational effect.

Due to the similar mathematical structure of the GPE with attractive in-

teractions and the SNE, we applied the approach presented in Ref. [102] to

the GPE equation in order to compare the eigenstates of these two systems

and we then coupled the GPE with the Newtonian potential.

This part of the work deviates from the rest of the thesis because we de-

cided to not use the quantum lattice Boltzmann scheme. This choice was

induced by several considerations which are summarized in the introduction

of Chapter 5.

• In Chapter 6, we briefly discuss future prospectives of this work, such as

the extension to complex geometries and the development of a parallel im-

plementation in order to fully appreciate the computational efficiency of the

qLB model for large, three-dimensional problems. Finally, we suggest to use

such a parallel version of the scheme to compute the solution of a set of

coupled eigenvalues equations known as Khon-Sham equations.





Chapter 1

A lattice kinetic approach to

quantum mechanics

Quantum wave equations, in particular the non-relativistic Schrödinger equa-

tion, play a central role in both theoretical and experimental physics (see e. g.

[126, 146]). The fundamental idea that matter, similarly to electromagnetic ra-

diation, has a dual character behaving sometimes like corpuscular particles and,

some other times, like a wave, was first suggested by Louis de Broglie in 1923

[40]. However, in the development of quantum mechanics a different approach

was proposed in the years 1925-1926 by Werner Heisenberg, Max Born, Pascual

Jordan and Wolfang Pauli, the so-called matrix formulation [66, 26, 44, 110] and

the wave mechanics was then temporarily abandoned.

In 1926, Erwin Schrödinger showed how the wave mechanics formalism could be

used in order to reproduce the results obtained with the matrix formulation. In

a famous series of papers [128, 127, 129], Schrödinger first suggested the famil-

iar non-relativistic equation which is now named after him and then presented a

relativistic extension of this equation. The relativistic Schrödinger equation was

independently derived also by Oskar Klein [81] and Walter Gordon [61] and nowa-

days it is known as the Klein-Gordon equation.

However, the Klein-Gordon equation (or relativistic Schrödinger) presents an un-

physical behavior, it can lead to negative probabilities. In order to solve this

problem, in 1928, Paul Dirac [45, 46] formulated the first relativistic theory which

takes into account the electron’s spin from the beginning [146]. This theory leads

to the famous relativistic Dirac equation (which can also be though of as the rela-

tivistic limit of the non-relativistic Schrödinger equation) for particle with spin-1/2

which, in particular, is a relativistic formalism with positive probabilities.

Even though, the Dirac equation is an answer to the negative probability problem,

it gave rise to a much more troublesome question: negative energies. In fact, given



8 A lattice kinetic approach to quantum mechanics

a momentum p, there are four independent solutions of the Dirac equation in the

form of plane waves and two of them are associated to a positive energy, but the

remaining two have a negative energy. Dirac proposed many interpretations of

this effect [47] and finally he “predicted” the existence of a new kind of positively

charged particle of the same mass of an electron [48]. This particle was effectively

discovered by Carl D. Anderson [6, 7] in 1932 and it is now known as positron.

In this work, we propose a method to numerically integrate the quantum wave

equations, such as the linear and nonlinear Schrödinger equation, by means of a

lattice kinetic approach. In particular, we inspect and extend the quantum lattice

Boltzmann (qLB) model originally proposed in 1993 [138].

As we shall see in detail, the qLB model is based on a formal analogy between

the Dirac equation and the kinetic lattice Boltzmann equation (LBE), so that the

Dirac equation can be written as a kinetic quantum lattice Boltzmann equation

(qLBE) and it can be shown that the non-relativistic Schrödinger equation ensues

from this complex qLBE under the same adiabatic assumption which takes the

LBE for classical molecules into the Navier-Stokes equations of continuum fluid

mechanics.

The basic idea is to associate the wave functions composing the Dirac quadrispinor

with the discrete distribution functions of the LBE. In one spatial dimension, this

analogy is natural and the quadrispinor components can be assimilated to quan-

tum particles of different types propagating with velocities ±c and colliding when

they meet at the same space-time location.

However, in multi-dimensional formulation, the analogy is no longer straightfor-

ward. This is mainly due to the fact that the Dirac streaming operator is not

diagonal along all the spatial directions (i. e. Dirac matrices can not be simul-

taneously diagonalized). We could roughly say that, unlike classical particles,

quantum particles of different types mix up while propagating (“spinning parti-

cles”). To cope with this problem, a new step has to be included besides the

classical collision and streaming steps: a so-called “rotation” step. A detailed

discussion on the extension of the qLB model to multi-dimensions is presented in

Chapter 2.

The qLB scheme is one of the first attempts to export the basic concepts of

lattice Boltzmann (LB) models [97, 67, 68, 18, 89] to quantum mechanics.

Indeed, LB models have been initially proposed as a numerical tool for simulating

fluid flows and, nowadays, they have consolidated into a powerful alternative to

more classical computational fluid dynamics models based on the discretization of

the Navier-Stokes equations of continuum mechanics.

The LB models were historically derived from lattice gas cellular automata (LGCA)
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(for a review see e. g. [148]).

The basic idea of LGCA is to simulate the macroscopic behavior of a fluid flow

by implementing an extremely simplified model of the microscopic interactions

between particles. The LB schemes were developed, starting from LGCA, in the

attempt to overcome their major drawbacks: statistical noise, increasing complex-

ity of the collision operator (especially for three dimensional problems) and high

viscosity (due to small number of collisions) [97, 67, 68].

However, LB models and, in general, the lattice kinetic approach, have been mainly

used with classical (non quantum) fluid.

The intriguing and well known analogies between quantum mechanics and fluid

mechanics, which were pointed out since the early days of the formulation of quan-

tum theory [95], suggested to extend the lattice kinetic approach also to quantum

mechanics.

Furthermore, with the increasing interest on quantum computing, the qLB scheme

and, more generally, the so-called quantum lattice gas (QLG) models have been

studied with particular attention since they seem to be good candidates for per-

spective quantum computers [24, 22, 23, 19, 98, 99, 151, 143, 152].

In particular, in Ref. [24], Boghosian and Taylor demonstrate how the QLG could

be used to solve the many-particle Schrödinger equation with exponential speed

up in the number of particles if it was possible to implement the model on a quan-

tum computer.

Besides its hypothetical and future application to quantum computing, the

qLB model for quantum wave equations is an interesting numerical scheme which

can be implemented on a classical computer retaining the usual attractive fea-

tures of LB schemes: simplicity, computational speed and straightforward parallel

implementation. Moreover, it is norm-preserving and stable for any value of the

time step provided that the light-cone rule is fulfilled (i. e. ∆t = c∆z), and these

are remarkable properties for an explicit numerical scheme.

In this chapter, we revise the theoretical derivation of the qLB model and

describe its one-dimensional implementation. Numerical results presented in Ref.

[133] are revised in order to validate the one-dimensional model, moreover the

operator splitting approach proposed in Ref. [138] to extend the scheme to two

and three spatial dimensions is also outlined. In order to maintain the discussion

self-consistent as much as possible, we briefly introduce the Schrödinger and Dirac

equations which are central elements of the qLBE theory.
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1.1 The non-relativistic Schrödinger equation

As previously mentioned, the non-relativistic Schrödinger equation was formulated

in the attempt to obtain a quantitative description of the non-relativistic motion

of a particle. To derive this partial differential equation many assumptions need

to be done, but the starting idea is to suppose that the wave-particle duality, char-

acteristic of photons, holds also for all other particles such as electrons or protons.

Let ψ(x, t) be the wave function representing the quantum state of a particle,

the Schrödinger equation describing the dynamics of this particle of mass m in an

external potential V (x, t) reads as follows:

i~∂tψ(x, t) = − ~
2

2m
∆ψ(x, t) + V (x, t)ψ(x, t). (1.1)

The wave function density

|ψ(x, t)|2 = ψ(x, t)ψ∗(x, t)

(where ψ∗ denotes the complex conjugate of ψ), represents the position probabil-

ity density. This means that |ψ(x, t)|2 dx is the probability of finding a particle

in the volume element dx about position x at time t.

The interpretation of |ψ(x, t)|2 as a probability density implies the following nor-

malization constraint on ψ:
∫

|ψ(x, t)|2dx = 1.

Simple algebra shows that Eq. (1.1) can be written in fluid form thus revealing

an interesting analogy between quantum mechanics and fluid mechanics.

In particular, multiplying Eq. (1.1) by ψ∗ on the left and the conjugate of Eq.

(1.1) by ψ on the right and then subtracting the resulting equations, we obtain

i~∂t|ψ(x, t)|2 = − ~
2

2m
[ψ∗(x, t)∆(ψ(x, t)) − ∆(ψ∗(x, t))ψ(x, t)] , (1.2)

and, observing that

∇ · [ψ∗∇ψ − (∇ψ∗)ψ] = ψ∗∆ψ − (∆ψ∗)ψ,

Eq. (1.2) becomes

∂t|ψ|2 +
~

2im
∇ · [ψ∗∇ψ − (∇ψ∗)ψ] = 0. (1.3)

Eq. (1.3) is a familiar continuity equation for a quantum fluid of density ρ = |ψ|2
and current density J , where

J =
~

2im
[ψ∗∇ψ − (∇ψ∗)ψ] . (1.4)
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This analogy becomes even more revealing if we use the eikonal formalism [87]:

ψ(x, t) = ρ(x, t)1/2 exp(iθ(x, t)), (1.5)

so that |ψ|2 = ρ and, upon inserting Eq. (1.5) into Eq. (1.4), we obtain

J =
~

m
ρ∇θ ≡ ρu.

Hence, in this representation, ρ is the density of the quantum fluid and (~/m)∇θ
represents its velocity.

The fluid formulation of the Schrödinger equation can be obtained by simply

inserting Eq. (1.5) into Eq. (1.1) and taking the imaginary and the real part, re-

spectively. In particular, by computing the imaginary part we obtain the analogue

of Eq. (1.3):

∂tρ(x, t) +
~

m
∇ · (ρ(x, t)∇θ(x, t)) = 0,

while, taking the real part, we derive the following dynamic equation for θ

~ρ(x, t)∂tθ(x, t) =
~

2

2m
ρ(x, t)

[
ρ−1/2(x, t)∆ρ1/2(x, t) − (∇θ(x, t))2

]

− V (x, t)ρ(x, t).

In conclusion, the Schrödinger equation can be written in fluid form and, as we

shall illustrate in the following, there is a strong similarity between the relativistic

associate to the Schrödinger equation, namely the Dirac equation, and the kinetic

lattice Boltzmann equation (LBE).

For all their intellectual charm, it is now commonly accepted that this similar-

ities are only formal. However they can be extremely useful for modeling purposes

to formulate non-relativistic quantum mechanics in terms of first-order (relativis-

tic) numerical schemes.

Roughly speaking, the idea is that the Schrödinger equation can be obtained in the

non-relativistic limit from the Dirac equation under an adiabatic assumption that

is formally similar to the one which takes the LBE to the Navier-Stokes equations

of fluid mechanics in the macroscopic limit.

1.2 The Dirac equation

As previously mentioned, the Dirac equation was formulated in 1928 by Paul

Dirac in the attempt to provide a description of elementary spin-1/2 particles,

such as electrons, consistent with both the principle of quantum mechanics and

the theory of special relativity. In particular, this equation is derived by formally
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requiring Lorence invariance on quantum mechanics which implies a symmetric

balance between space and time derivatives. This balance is evidently broken by

the non-relativistic Schrödinger equation where the time derivative is only first

order whereas the space derivative is second order.

This situation is once again similar to the fluid dynamics case, indeed, in the LBE

time and space derivatives are in balance (both first order), while in the Navier-

Stokes equations they shows the same asymmetry as in the Schrödinger equation.

For a free particle of mass m, the Dirac equation reads as follows:

∂tψ + cα · ∇ψ = −imc
2

~
βψ, (1.6)

where ψ = (ψ1, ψ2, ψ3, ψ4)
T is a complex quadrispinor, α = (αx, αy, αz) and β are

4 × 4 matrices and, in the standard form, they are defined as follows

αx =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 , αy =




0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


 ,

αz =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


 , β =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 .

(1.7)

It is known that the choice of the Dirac matrices is not unique, indeed all possible

choices are related by similarity transformations by means of a unitary matrix.

For the following, it will be very useful to recast Eq. (1.6) into a form where all

streaming matrices are real-valued. This is the so-called Majorana form [87] and

it can be simply accomplished by applying to the standard Dirac matrices and to

the quadrispinor ψ of Eq. (1.6) the unitary transformation

S =
1√
2
(αy + β) =

1√
2




1 0 0 −i
0 1 i 0

0 −i −1 0

i 0 0 −1


 ,



1.2 The Dirac equation 13

which yields the following transformed matrices

αx
S ≡




0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0


 = −αx, αy

S ≡




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 = β,

αz
S ≡




0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0


 = −αz, βS ≡




0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0


 = αy.

Hence, Eq. (1.6) can be equivalently written as

∂tψ + c(−αx∂x + β∂y − αz∂z)ψ = −imc
2

~
αyψ ≡ −iωcα

yψ, (1.8)

where ωc = mc2/~ is the Compton frequency and the Dirac quadrispinor is also

transformed by applying S.

1.2.1 Inclusion of an electromagnetic potential

Up to this point, we have considered the Dirac equation for a free particle, however

the inclusion of an external electromagnetic potential is straightforward. In fact,

terms that involve electromagnetic potentials can be added to Eq. (1.6) in a

relativistic way by making the following usual replacement of the operators [87]:

i~∂t −→ i~∂t + qV,

−i~∇ −→ −i~∇ +
q

c
A,

(1.9)

where qV + q
cA is the interaction of the elementary charge q with an external

electromagnetic field described by the 4-component potential (V,A).

Upon replacing the operators of Eq. (1.6) as prescribed by Eq. (1.9), the Dirac

equation transforms into

∂tψ + cα · ∇ψ = −iωcβψ + i
q

~
Vψ − i

q

~
(A ·α)ψ ≡ iMψ, (1.10)

where

M = −ωc +
q

~
V − q

~
(A ·α), (1.11)

thus, the external interaction is easily accommodated into a formal redefinition of

the mass matrix M .
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1.2.2 Fluid formulation of the Dirac equation

As the Schrödinger equation, also the Dirac equation can be written in fluid form

by multiplying Eq. (1.10) on the left by ψ† and the hermitian adjoint equation

∂tψ
† + c(∇ψ†) ·α = −iψ†M,

on the right by ψ and then summing the resulting equations [49]. This yields

∂t(ψ
†ψ) + c∇ · (ψ†αψ) = 0,

and, by defining

ρ = ψ†ψ, J = cψ†αψ,

we obtain

∂tρ+ ∇ · J = 0. (1.12)

Note that ρ = ψ†ψ is always positive so that it can be interpreted as a position

probability density, while cα is a sort of fluid velocity.

Since ψ is a quadrispinor, the quantum fluid can be seen as a four-component

fluid mixture.

The fluid interpretation of the Dirac equation and, in particular, the analogy

with the LBE is transparent: the quadrispinor components can be assimilated to

quantum particles of different types propagating in space with velocities ±c and

colliding via the “scattering” matrix M when they meet at the same space-time

location. However, unlike classical particles, quantum particles of different type

mix up while propagating (“spinning particles”), this is due to the fact that the

Dirac streaming operator is not diagonal along all the three spatial directions.

As we shall see in the following of this chapter, this is the major problem to over-

come to obtain a full correspondence between the LBE and the Dirac equation.

In the following section we introduce the LBE and we briefly sketch the adi-

abatic procedure which takes us from the LBE to the Navier-Stokes equations of

fluid dynamics in order to substantiate the analogy

Dirac Eq. −→ Schrödinger Eq.

Lattice Boltzmann Eq. −→ Navier-Stokes Eqs.

1.3 The hydrodynamic lattice Boltzmann equation

In this section, since many indices are involved in some computations, in order

to maintain a compact notation, vector components are indicated by italic sub-

script, i. e. vl is an equivalent substitute of v. Moreover, the Einstein notation is
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adopted, this means that sum on repeated indices is implicitly assumed, so that

the scalar product v ·w is equivalently written as vlwl.

The hydrodynamic lattice Boltzmann equation is a fully discrete kinetic equa-

tion of the form

fi(x+ ci∆t, t+ ∆t) − fi(x, t) =
b∑

j=1

Aij(fj − feq
j ), i = 1, . . . , b, (1.13)

where fi are the discrete distribution functions propagating along directions ci, Aij

is the scattering matrix mediating collisions between the i-th and j-th distributions

and b is the number of discrete speeds connecting each site to its nearest neighbors.

Here, feq
i represent the equilibrium distribution functions expanded up to second

order terms in the flow field in order to retain convective effects. Formally, one

has

feq
i =

ρ

b

(
1 +

cilul

c2s
+
Qilmulum

2c4s

)
,

where c2s = c2/D with c = |ci| (not to be confused with the light speed), Qilm =

cilcim−c2sδlm and D is the dimension of the space. The hydrodynamical quantities

ρ and ul are defined as follows

ρ =
b∑

i=1

fi, ul =
1

ρ

b∑

i=1

cilfi.

In order for Eq. (1.13) to reproduce the Navier-Stokes equations in the continuum

limit, the following sum-rules have to be fulfilled by the collision matrix:

b∑

i=1

Aij = 0, for all j = 1, . . . , b,

b∑

i=1

cilAij = 0, for all j = 1, . . . , b; l = 1, . . . , D,

which correspond to mass and momentum conservation, respectively. In addition,

fourth order tensors of the form Tlmno =
∑b

i=1 cilcimQino must be isotropic to

ensure rotational invariance at the macroscopic level [18].

These conditions are fulfilled only by a restricted class of lattices, the most popu-

lar being the hexagonal lattice proposed by Frish, Hasslacher and Pomeau in two

dimensions and the face-centered-hypercube in four dimensions [57].

The discrete LBE of Eq. (1.13) can be though of as a discretization of the

following set of partial differential equations:

∂tfi + cia∂afi =
b∑

j=1

Aij(fj − feq
j ), i = 1, . . . , b. (1.14)
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It can be shown that Eq. (1.14) is the first-order equation resulting from the

multiscale expansion procedure commonly adopted to study the macro-dynamics

of LBE [18].

By projecting Eq. (1.14) upon the eigenvectors of the scattering matrix Aij , a

set of hyperbolic equations for the hydrodynamic fields ρ, ρul ≡ Jl and Slm =∑
iQilmfi are derived [134]. In particular, restricting to the hydrodynamic sector,

we obtain

∂tρ+ ∂lJl = 0, (1.15)

∂tJl + ∂mPlm = 0, l = 1, . . . , D, (1.16)

∂tSlm + ∂nRlmn = λ(Slm − Seq
lm), l,m = 1, . . . , D, (1.17)

where

Plm =
b∑

i=1

cilcimfi = Slm + Pδlm, with P = ρc2s,

and the tensor Rlmn is defined as

Rlmn =
b∑

i=1

fiQilmcin. (1.18)

Eqs. (1.15)-(1.17) does not exhaust all the equations which are obtained by pro-

jecting upon the eigenvectors of Aij . In fact, Eq. (1.15) and Eq. (1.16) (which is

a group of D equations) are related to the eigenvectors corresponding to the zero

eigenvalues, whereas Eq. (1.17) (which is composed by D(D + 1)/2 − 1 indepen-

dent equations) is associated to the leading non-zero eigenvalue of Aij , λ. There

are still other eigenvectors of Aij associated to non-zero eigenvalues.

Projecting upon those eigenvectors yields equations similar to those in Eqs. (1.15)-

(1.17) but related to fields which have no physical meaning and do not emerge

from the microscopic to the macroscopic level, these are called ghost fields. Even

though they do not add physical information, they cannot be erased from the

dynamics in order to preserve essential symmetries [134].

As macroscopic fields ρ, Jl, Slm can be expressed as linear combination of the

distribution functions fi, it is possible to write fi as a linear combination of the

macroscopic fields. Considering only the hydrodynamic components, we obtain

fH
i =

ρ

b

[
1 +

cilul

c2s
+
QilmSlm

2c4s

]
. (1.19)

By directly inserting this expression into the definition of the tensor Rlmn given

by Eq. (1.18) and using the property of isotropy of the lattice, we obtain that the

divergence of the hydrodynamic part of Rlmn corresponds to the Navier-Stokes
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stress tensor [134]:

Hlm ≡ ∂nR
H
lmn = c2s

D

D + 2

[
∂lJm + ∂mJl −

2

D
(∂nJn)δlm

]
. (1.20)

1.3.1 The adiabatic assumption

The system of Eqs. (1.15)-(1.17), with the additional equations for the ghost

fields, contains exactly the same amount of information of the LBE just projected

on a different base set. This system is an hyperbolic super-set of the Navier-Stokes

equations, note, indeed, that it contains some redundancy with respect to Navier-

Stokes equations because of the ghost fields which are inactive on a macroscopic

scale but crucial to maintain the correct symmetries of the macroscopic dynamics.

To recover the Navier-Stokes equations, we need to break the hyperbolic nature of

this system and write it in a dissipative form, where spatial and temporal deriva-

tives are no more in balance.

The key idea is adiabatic assumption on the “fast”, non-conserved modes, in this

case the shear stress tensor Slm. With adiabatic assumption, in this contest, we

mean that we assume that Slm relaxes to its local equilibrium on a time-scale

which is much smaller of any typical hydrodynamic scale.

Mathematically, this is equivalent to neglect the time derivative on the evolution-

ary equation of the shear tensor (see Eq. (1.17))

|∂tSlm| ≪ λ|Slm − Seq
lm|.

Assuming that the ghost fields are negligible (∂nRlmn ∼ Hlm), from Eq. (1.17),

we obtain

Hlm ∼ λ(Slm − Seq
lm),

and this yields

Slm ∼ Seq
lm +

Hlm

λ
. (1.21)

Inserting Eq. (1.21) into Eq. (1.16), we obtain

∂tJl + ∂m

(
Seq

lm +
Hlm

λ
+ Pδlm

)
= 0.

For a proper choice of the equilibrium functions, Seq
lm = ρulum, and this finally

yields

∂tJl + ∂m(ρulum + Pδlm) = −c2s
D

D + 2

1

λ
∂m

[
∂lJm + ∂mJl −

2

D
(∂nJn)δlm

]
,

where Eq. (1.20) has been used.

This is the Navier-Stokes equation with kinematic viscosity ν ∼ 1/λ. Clearly,
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this is a very cheap approach to the hydrodynamic limit, in this treatment all the

details of the multiscale Chapman-Enskog procedure [148] have been hidden.

From LGCA theory, it is known that neglecting some details of the multiscale

expansion does not change the qualitative structure of the macroscopic equations,

but it does introduce quantitative errors on the transport coefficients [134]. In

particular, it can be shown that the correct expression for the viscosity is

ν = −c2s
D

D + 2

(
1

λ
+

1

2

)
.

In conclusion, the Navier-Stokes equations are obtained as the large-scale limit

of the kinetic LBE.

In particular, the adiabatic assumption is valid in the low Knudsen limit, where

the Knudsen number, Kn, is the ratio between the particle mean free path length

lµ (i. e. the mean distance covered by a particle between two subsequent colli-

sions), and a typical macroscopic length scale lM .

As we shall see in the next section, the Schrödinger equation ensues from the

Dirac equation in a formally equivalent adiabatic assumption valid in the non-

relativistic limit β = v/c→ 0, where c denotes the light speed. Hence, the formal

parallel emerging from this analogy is

Kn =
lµ
lM

∼ β =
v

c
,

so that as the LBE tends to the Navier-Stokes equations for Kn → 0, similarly

the Dirac equation tends to the Schrödinger equation for β → 0 under a formally

equivalent adiabatic assumption.

1.4 Formal parallel between LBE and Dirac equation

In this section, we substantiate the formal parallel between the LBE and the Dirac

equation by deriving the Schrödinger equation from the Dirac equation under an

adiabatic assumption which is valid in the non-relativistic limit β = v/c≪ 1.

Here, for the sake of simplicity, we consider only the one-dimensional version of

Eq. (1.6) and, consequently, we derive the one-dimensional Schrödinger equation.

The details of the extension to two and three spatial dimensions of this procedure

are discussed in the next chapter where we introduce the multi-dimensional for-

mulation of the qLB model. However, this one-dimensional version is sufficient to

show the basic ideas underlying the adiabatic approximation procedure leading to

the Schrödinger equation.

The following discussion is based on the original work by Succi and Benzi [138]
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and on a recent review article by Palpacelli and Succi [107].

Let us consider, the one dimensional version of Eq. (1.6) written in the Majo-

rana form [87], where all the streaming matrices are real valued, this reads:

∂tu1,2 + c∂zu1,2 = ωcd2,1,

∂td1,2 − c∂zd1,2 = −ωcu2,1.
(1.22)

Here, we denote the quadrispinor components as ψ = (u1, u2, d1, d2) to recall that

the u1,2 components are moving “up” (i. e. with speed c), while the d1,2 compo-

nents are moving “down” (i. e. with speed −c).
Let us define the symmetric/antisymmetric modes according to the unitary trans-

formation

φ±1,2 =
1√
2
(u1,2 ± id2,1). (1.23)

Starting from Eq. (1.22), it is easy to check that φ±1,2 fulfill the following equations:

∂tφ
+
1,2 + c∂zφ

−
1,2 = −iωcφ

+
1,2,

∂tφ
−
1,2 + c∂zφ

+
1,2 = iωcφ

−
1,2.

(1.24)

Up to now, the system is still symmetric and time and space derivatives are in

balance (both first order). As in kinetic theory, we need to break the symmetry of

this hyperbolic system and write it in a dissipative form, where spatial and time

derivative are no more in balance. The symmetry is broken by choosing a specific

time direction via the energy phase-shift [136]

φ±1,2 −→ φ±1,2 exp(iωct).

With this definition of φ±1,2, Eq. (1.24) transforms into:

∂tφ
+
1,2 + c∂zφ

−
1,2 = 0, (1.25)

∂tφ
−
1,2 + c∂zφ

+
1,2 = 2iωcφ

−
1,2. (1.26)

In the non-relativistic limit, β = v/c ≪ 1, the following adiabatic assumption

holds:

|∂tφ
−
1,2| ≪ 2ωc|φ−1,2|.

From Eq. (1.26), by neglecting the time derivative, we obtain

φ−1,2 ∼ c

2iωc
∂zφ

+
1,2. (1.27)

Inserting Eq. (1.27) into Eq. (1.25), we finally obtain the Schrödinger equation

for a free particle of mass m,

i~∂tφ
+
1,2 = − ~

2

2m
∂2

zφ
+
1,2.
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The antisymmetric modes φ−1,2 can be assimilated to the ghost fields of the LBE,

in the sense that they are needed to preserve the correct symmetries, although

they do not “emerge” at the macroscopic scale.

Indeed, relativistic motion implies that any particle of momentum p is invari-

ably associated to an antiparticle with opposite momentum −p. The symmetric

combination of these two give rise to a smooth, emergent field, whereas the an-

tisymmetric combination defines a low amplitude, high frequency mode which

decouples from the system dynamics in the limit β → 0.

To better illustrate this point, we inspect the behavior of φ−1,2 with respect to

φ+
1,2 by rewriting Eq. (1.24) in terms of the energy and momentum operators of

quantum mechanics

i~∂t −→ E,

−i~∂z −→ pz.

By inserting these expressions into Eq. (1.24), we obtain

Eφ+
1,2 − cpzφ

−
1,2 = mc2φ+

1,2,

Eφ−1,2 − cpzφ
+
1,2 = −mc2φ−1,2.

(1.28)

In order to take the non-relativistic limit, we make the usual replacement [126]

E −→ E′ +mc2, with E′ ≪ mc2 for β → 0.

This corresponds to the energy shift and the adiabatic assumption performed

above to transform Eq. (1.24) into Eqs. (1.25) and (1.26). Hence, Eq. (1.28)

becomes

E′φ+
1,2 − cpzφ

−
1,2 = 0, (1.29)

(E′ + 2mc2)φ−1,2 − cpzφ
+
1,2 ∼ 2mc2φ−1,2 − cpzφ

+
1,2 = 0. (1.30)

From Eq. (1.30), we obtain

|φ−1,2|
|φ+

1,2|
=

1

2

v

c
=
β

2
.

From a standard Fourier analysis of Eqs. (1.25) and (1.26), we can study the

relation between the frequencies of φ+ and φ−. In particular, let us assume

φ+ = ρ+ exp[i(kz − ω+t)],

φ− = ρ− exp[i(kz − ω−t)],
(1.31)

substituting Eq. (1.31) into Eqs. (1.25) and (1.26), it can be checked that

ω−

ω+
∼ 1

β2
.
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Summarizing, the amplitude of φ−/φ+ scales like β, whereas the frequency ra-

tio ω−/ω+ goes like 1/β2. This means that, as β goes to zero, the antisymmetric

modes become smaller and smaller in amplitude and faster and faster in frequency

so that they finally becomes unobservable on scales longer than 1/ω−.

This picture recall closely the adiabatic elimination of the slow modes in kinetic

theory, however there is a fundamental difference. Kinetic theory describes dissi-

pative phenomena in which transient modes tends to die out in a short time due to

the real-valued relaxation coefficient. Quantum mechanics is time-reversible, and

fast modes never die out (their relaxation coefficient is purely imaginary), they

just oscillate so fast that any observation on time-scales longer than their period

of oscillation overlooks them [134].

Note that is the fast mode, not the antiparticle mode, that fades away, the particle-

antiparticle twin-link does not dissolve even in the low energy limit.

Another interesting remark concerns the symmetry breaking induced by a non-

zero mass. If the particle mass is taken to be null, then the “up” and “down”

components move with velocity ±c, respectively with no interaction, they do not

even “see” each other, the result being the wave equation for photons. Evidently,

this is a singular limit which cannot be described by the Schrödinger equation.

Any non-zero mass causes “collisions” which slow down the wave packets and

confer on them a subluminal speed v < c.

1.5 Quantum lattice Boltzmann equation

In the previous section, we finally showed the intriguing analogy between the Dirac

equation and the LBE: the Schrödinger equation can be obtained from the Dirac

equation in the same way as the Navier-Stokes equations are derived from the LBE.

This invites a quantitative correspondence between LBE and Dirac equation. To

this end, let us rewrite the three-dimensional Dirac equation in Majorana form,

this reads

∂tψ + c(−αx∂x + β∂y − αz∂z)ψ = −iωcα
yψ. (1.32)

The formal parallel between Eq. (1.32) and Eq. (1.14) is based on the identifica-

tion of the wave functions composing the Dirac quadrispinor ψ = (ψ1, ψ2, ψ3, ψ4)
T

with the discrete distribution functions fi of the LBE.

In one spatial dimension, this analogy is natural and the quadrispinor components

can be assimilated to quantum particles of different types propagating with veloc-

ities ±c.
In this more general, three-dimensional, situation the proposed identification is as

follows:

• the discrete distribution functions fi are the analogue of the Dirac quadrispinor
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components ψj ;

• the discrete speeds ci are the analogue of the streaming matrices L ≡
c(−αx, β,−αz);

• the scattering matrix A is the analogue of the mass matrix −iωcα
y, or, more

generally, of the mass matrix M defined in Eq. (1.11).

Let us examine these positions in detail taking into account the distinct physical

nature of LBE and Dirac equation, there are indeed some fundamental differences:

1. the discrete distribution functions fi are b real-valued variables, with b being

a sensitive function of dimensionality, whereas ψj are always four complex-

valued wave functions in any spatial dimension;

2. the scattering matrix Aij is symmetric whereas Mij is skew-Hermitian;

3. the LBE streaming operators is diagonal along all the spatial directions,

while the Dirac streaming operator is not, because it is not possible to si-

multaneously diagonalize the three matrices L = c(−αx, β,−αz).

From point (1) above, the quantity ρj = (ψ∗
j )ψj (instead of ψj) represents the

probability density of finding a particle along link j-th. In this respect, point

(2) is the necessary condition in order for the probability density ρ =
∑

j ρj to

be locally conserved. Moreover, point (1) clearly requires an extension of LBE

to complex-valued distribution functions. However, the major drawback coming

from point (1) is the dimensionality mismatch between LBE and Dirac equation.

Indeed, the Dirac quadrispinor has always four components, in any spatial di-

mension, whereas the array of the discrete distribution functions is composed of b

elements with b being a parameter whose actual value is a function of the spatial

dimension.

Point (3) above represents the main problem of this proposed identification, there

is a structural mismatch between LBE and Dirac equation conceiving the stream-

ing operator. While the streaming operator of LBE is always diagonal there is

no way the three Dirac matrices can be simultaneously diagonalized. Both the

dimensionality and structural mismatch are basically due to the quantum nature

of the spin variable. In quantum mechanics, spin has dimensions of angular mo-

mentum (r × p) and the spin quantization is a true physical effect due to the

impossibility of measuring the speed and position at a time. In particular, only

one component of the spin is measurable and, once it is fixed, it takes only two

values ±1 (here we restrict to particle with spin 1/2).

To achieve a full correspondence between LBE and Dirac equation, one should be

able to [138]:
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1. simultaneously diagonalize the three matrices L = (−αx, β,−αz);

2. fix b to the value of 4;

in order to solve the structural and dimensionality mismatches.

As previously mentioned, point (1) is forbidden, it would be equivalent to state

that the spin is a common three-dimensional vector. Point (2) seems also hard

to be accomplished, because it is incompatible with the interpretation of ψj as

complex particle distributions propagating along the links of a three-dimensional

lattice. In fact, by symmetry, at least 2D propagating directions are needed, that

is two opposite directions along each coordinate axis.

In conclusion, despite the intriguing qualitative analogies between LBE and

Dirac equations, a deeper analysis shows a quantitative conflict which, at a first

sight, seems difficult to be overcome. However, a way out of both of these diffi-

culties can be found and it is based on the idea that even though simultaneous

diagonalization of the streaming matrices is not possible, they can be diagonalized

separately in a sequence [138].

In Ref. [138], it is suggested to use an operator splitting technique and hence con-

sider three equivalent formulations of the same equation, each having a diagonal

streaming operator along x, y and z, respectively. The key point is that we do not

work with the same representation of the Dirac equations during the three sepa-

rate streaming steps, instead we perform each one-dimensional partial streaming

in the representation where the corresponding streaming matrix is diagonal. This

is possible, because we diagonalize only one streaming matrix at a time, never all

of them together.

In practice, the classical stream-collide structure of the Boltzmann equation is

augmented with a “rotation” step, designed in such a way as to secure alignment

between momentum and spin along each direction of propagation.

In particular, let us assume we start from the representation where the spin is

aligned along z, this means we consider the one-dimensional Dirac equation under

a proper unitary transformation Z such that the streaming matrix along z is di-

agonal. In this one-dimensional version, a full correspondence between LBE and

Dirac equation is achieved, thus collision and streaming along z can be performed.

Next, we need to move along y, then the system is “rotated”, i. e. a unitary trans-

formation matrix Y is applied to the Dirac equation so that the y-streaming matrix

is diagonalized and the collision and streaming steps are performed along y for

the transformed quadrispinor ψy = Yψ. Finally, the system is rotated again, by

means of a unitary transformation matrix X, so that the x-streaming matrix is

diagonal and the collision and streaming steps are performed once again. After
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the three sequential applications of the one dimensional stream-collide operator,

the resulting quadrispinor is transformed back in order to obtain the original wave

function only displaced at (z + ∆z, y + ∆y, x+ ∆x, t+ ∆t).

In Ref. [138], this procedure is outlined but it is not numerically implemented

and verified, moreover the collision matrix Q of each one of the three steps is as-

sumed to be exactly the one dimensional collision matrix (see Eq. (1.36) below).

As we shall clarify in Chapter 2, which is entirely devoted to the multi-dimensional

extension of the model, this is not correct and leads to a scheme that does not

solve the Schrödinger equation in the adiabatic limit.

From this discussion, it is evident that the model is built upon the one-

dimensional version of Eq. (1.32), hence, in the following sections, we introduce

the one-dimensional qLB scheme and revise the numerical results reported in Ref.

[133] in order to validate the model.

1.6 One-dimensional quantum lattice Boltzmann model

Let us rewrite the one-dimensional Dirac equation in Majorana form for the com-

plex quadrispinor ψ = (u1, u2, d1, d2)
T , this reads:

∂tu1,2 + c∂zu1,2 = ωcd2,1,

∂td1,2 − c∂zd1,2 = −ωcu2,1.
(1.33)

As observed in Ref. [138], this is a Boltzmann equation for a couple of complex

bispinor u1,2 and d1,2. The propagation step consists on streaming u1,2 and d1,2

along z with speeds ±c, respectively, while the collision is performed according to

the scattering matrix of the right hand side of (1.33). The quantum lattice Boltz-

mann model is obtained by discretizing Eq. (1.33) and an important difference

with the LBE for classical fluids is to be pointed out.

In fact, an explicit time-marching along the trajectories would deliver the exact

analogue of the LBE for classical fluids [18, 89, 135]:

u1,2(z + ∆z, t+ ∆t) − u1,2(z, t) = ∆tωcd2,1(z, t),

d1,2(z − ∆z, t+ ∆t) − d1,2(z, t) = −∆tωcu2,1(z, t),

where ∆z = c∆t according to the light-cone discretization rule. However, such an

explicit light-cone marching is unconditionally unstable for any size of ∆t [135]

and the resulting scheme is not norm-preserving.
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This is due to the fact that the collision matrix

S =




1 0 0 m̃

0 1 m̃ 0

0 −m̃ 1 0

−m̃ 0 0 1


 ,

where m̃ = ωc∆t, is not unitary. In particular, this implies that

‖S‖2 =

(
max

k
|λk|

)
= [1 + (ωc∆t)

2]1/2 > 1,

where λk, for k = 1, . . . , 4, denotes the eigenvalues of the scattering matrix S.

Hence the post-collision quadrispinor, ψ′(z, t+ ∆t), which is computed as

ψ′(z, t+ ∆t) = Sψ(z, t),

satisfies ‖ψ′‖2 = ‖S‖2‖ψ‖2 > ‖ψ‖2, thus driving an instability into the system

and also failing to satisfy local norm conservation.

A simple and effective way out is to discretize the right hand side of Eq. (1.33)

computing an implicit (Crank-Nicolson) average between the term at time t and

position z and the same term at time t+∆t and position z±∆z for u1,2 and d1,2,

respectively. The left hand side is discretized integrating along the characteristics

(light-cone rule). The resulting (implicit) scheme reads as follows:

û1,2 − u1,2 =
m̃

2
(d2,1 + d̂2,1),

d̂1,2 − d1,2 = −m̃
2

(u2,1 + û2,1),

(1.34)

where û1,2 = u1,2(z + ∆z, t + ∆t), d̂1,2 = d1,2(z − ∆z, t + ∆t), u1,2 = u(z, t),

d1,2 = d(z, t) and m̃ = ωc∆t is the dimensionless Compton frequency.

The scheme of Eq. (1.34) is implicit, but it can be solved algebraically for û1,2

and d̂1,2 thus yielding the following explicit form

û1,2 = au1,2 + bd2,1,

d̂1,2 = ad1,2 − bu2,1,
(1.35)

where

a =
1 − m̃2/4

1 + m̃2/4
, b =

m̃

1 + m̃2/4
.

We note that, in analogy with the classical lattice Boltzmann model for fluid

dynamics, the scheme of Eq. (1.34) can be derived from Eq. (1.33) by integrating

along the characteristics of u and d respectively and approximating the right hand
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side by means of the trapezium rule. Moreover, since the qLB operator is linear,

while the classical LB operator is not, the resulting scheme of Eq. (1.34) can be

directly solved for û1,2 and d̂1,2 (as we see in Eq. (1.35)). This is in contrast

with the classical case where, to avoid implicitness of the scheme, the equilibrium

distribution function is introduced, which is nonlinearly related to the original one

[64]. Such nonlinearity stems from the quadratic dependence of the classical local

equilibrium on the fluid speed, as required to describe nonlinear hydrodynamic

interactions.

The scheme of Eq. (1.35) is a lattice Boltzmann equation in matrix form [68],

where the collision step is performed by applying the unitary collision matrix

Q =




a 0 0 b

0 a b 0

0 −b a 0

−b 0 0 a


 , (1.36)

to the quadrispinor ψ = (u1, u2, d1, d2)
T and the streaming step consists on

propagating u1,2 forwards and d1,2 backwards according to the light-cone rule,

∆z = c∆t. Note that stability is secured by the unitarity of the collision matrix

Q for any value of ∆t such that ∆z = c∆t. This contrasts with standard explicit

schemes, whose numerical stability is constrained by CFL-like inequalities of the

form ∆t < 2m
~

∆z2.

In particular, the stability of the scheme can be proved by setting

vn := (u1(z + n∆z, t+ n∆t), u2(z + n∆z, t+ n∆t),

d1(z − n∆z, t+ n∆t), d2(z − n∆z, t+ n∆t))T , n = 0, 1, . . . ,

and writing the collision matrix Q as follows

Q =




cosϑ 0 0 sinϑ

0 cosϑ sinϑ 0

0 − sinϑ cosϑ 0

− sinϑ 0 0 cosϑ


 ,

where

cosϑ :=
1 − m̃2/4

1 + m̃2/4
.

With these positions, the basic scheme obtained solving (hence, making explicit)

the modified Crank-Nicolson scheme, reads

v1 = Qv0,
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and iterating,

vn+1 = Qvn = . . . = Qn+1v0.

Therefore, a direct computation of the entries of vn+1 is only affected by the

rounding errors in evaluating the matrix-vector product Qn+1v0, being

Qn+1 =




cos((n+ 1)ϑ) 0 0 sin((n+ 1)ϑ)

0 cos((n+ 1)ϑ) sin((n+ 1)ϑ) 0

0 − sin((n+ 1)ϑ) cos((n+ 1)ϑ) 0

− sin((n+ 1)ϑ) 0 0 cos((n+ 1)ϑ)


 ,

which is not worse than computing Uv0. Therefore, vn is computed in a stable

way, for every n.

Moreover, the unitarity of the collision matrix Q also yields another important

property, namely norm-preservation. In particular, the 2-norm of Q satisfies

‖Q‖2 =

(
max

k
|λk|

)
= (|a|2 + |b|2)1/2 = 1,

thus, the norm is preserved by the scheme on each node.

Finally, we observe that the qLB scheme produces the correct dispersion relation

up to second order in the time step ∆t [135]. Indeed, by performing a standard

Fourier analysis of Eq. (1.34), we insert

u(z, t) ∼ Uei(kz−ωt),

d(z, t) ∼ Dei(kz−ωt),

into Eq. (1.34), we obtain (since the dynamics of the pairs (u1, d2) and (u2, d1) is

equivalent, indices are dropped for simplicity)

{
Uei(k∆z−ω∆t) = U + em

2 D(1 + e−i(k∆z+ω∆t)),

De−i(k∆z+ω∆t) = D − em
2 U(1 + ei(k∆z−ω∆t)),

this is an homogeneous system in U and D, thus admitting non-trivial solutions

only when the determinant is null. By requiring that the determinant is equal to

zero we derive the following dispersion relation

cos(ω∆t) =

(
1 − m̃2/4

1 + m̃2/4

)
cos(k∆z).

It is readily checked that a second order expansion of the cosines of the above dis-

persion relation, in the limit ∆t→ 0, yields the well known continuum dispersion

relation for relativistic bosons

ω2 = k2c2 + ω2
c ,
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up to terms of order ∆t3.

Large time steps, m̃ = ωc∆t > 1, lead to unphysical results as is to be expected

since the Compton frequency ωc is no longer resolved. Indeed, even though the

qLB method offers stability for any value of ∆t provided that ∆z = c∆t, its

accuracy is subjected to the condition

ωc∆t =
∆z

λB
≤ 1,

where λB = c/ωc is the de Broglie wavelength of the particle.

Since the time step scales linearly with the mesh spacing, the grid resolution can

be increased without suffering the time step collapse typical of classical explicit

schemes where the CFL stability condition holds. On the other hand, a lack of

adiabaticity could occur for ωc∆t≪ 1, and this effect must be carefully watched,

while decreasing the lattice spacing, in order to preserve the validity of qLB.

Summarizing, the qLB is an explicit, norm-preserving scheme which is stable

for any value of ∆t = ∆z/c. Moreover, since most of the computational work

is placed upon the collision step, which is completely local, no communication is

required between neighbors during this phase, whence its outstanding amenability

to parallel computing [138].

1.6.1 Adding a potential to the qLB model

Interactions with an external or self-consistent fields are readily included by a

minor extension of the “collision operator”. In particular, we consider the one-

dimensional Dirac equation with an electrostatic potential interaction, this reads

∂tu1,2 + c∂zu1,2 = ωcd2,1 + igu1,2,

∂td1,2 − c∂zd1,2 = −ωcu2,1 + igd1,2,
(1.37)

where g = qV/~ is the space dependent frequency coupling to the potential V and

q is the particle electric charge. Self-consistent potentials, such as those arising in

connection with the nonlinear Schrödinger equation, are easily accommodated by

making g a function of the density |φ+|2 + |φ−|2 (see Eq. (1.23)).

We note that, in the presence of an interaction potential, non-relativistic motion

is still reproduced by the model in the adiabatic (low-frequency) limit

|ω − ωc| ≪ |ωc + g|,

where ω is the typical frequency or energy of the solution, ψ, so that one can

estimate |∂tψ| ∼ ω|ψ|, but with the additional constraint of “small” potential
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interaction

|g| ≪ ωc. (1.38)

Indeed, by defining as above the symmetric and antisymmetric modes

φ±1,2 =
1√
2

exp(iωct)(u1,2 ± id2,1),

from Eq. (1.37), it is easy to check that the following equations are satisfied

∂tφ
+
1,2 + c∂zφ

−
1,2 = igφ+

1,2,

∂tφ
−
1,2 + c∂zφ

+
1,2 = 2iωcφ

−
1,2 + igφ−1,2.

(1.39)

From Eq. (1.39), after adiabatic elimination of the fast antisymmetric modes

|∂tφ
−
1,2| ≪ |2ωc + g||φ−1,2|,

we obtain

i~∂tφ
+
1,2 = −~

2c2

2ωc
∂z

(
2ωc

2ωc + g
∂zφ

+
1,2

)
− qV φ+

1,2 ≈ − ~
2

2m
∂2

zφ
+
1,2 − qV φ+

1,2, (1.40)

where the last approximation in Eq. (1.40) is valid in the small potential interac-

tion limit given by Eq. (1.38).

The qLB scheme is obtained by integrating Eq. (1.37) along the characteristics

of u1,2 and d1,2 respectively and approximating the right hand side integral by

using the trapezoidal rule. Assuming ∆z = c∆t, the following scheme is obtained

û1,2 − u1,2 =
m̃

2
(d2,1 + d̂2,1) +

ig̃

2
(u1,2 + û1,2),

d̂1,2 − d1,2 = −m̃
2

(u2,1 + û2,1) +
ig̃

2
(d1,2 + d̂1,2),

(1.41)

where û1,2 = u1,2(z + ∆z, t + ∆t), d̂1,2 = d1,2(z − ∆z, t + ∆t), u1,2 = u1,2(z, t),

d1,2 = d1,2(z, t) and m̃ = ωc∆t, g̃ = g∆t. The linear system of Eq. (1.41) is

algebraically solved for û1,2 and d̂1,2 and yields the explicit scheme:

û1,2 = agu1,2 + bgd2,1,

d̂1,2 = agd1,2 − bgu2,1,
(1.42)

where

ag =
1 − Ω/4

1 + Ω/4 − ig̃
, bg =

m̃

1 + Ω/4 − ig̃
,

with Ω = m̃2 − g̃2.
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1.7 Numerical results for the one-dimensional qLB scheme

The one-dimensional qLB scheme has been numerically validated in a series of

calculations for which analytical results are known [133]. In particular, in Ref.

[133], the qLB has been tested by simulating

• free particle propagation;

• harmonic oscillator;

• scattering from a rectangular barrier.

Here, we briefly revise these results in order to show the viability of the scheme

in its one-dimensional formulation. In this section, in order to have reasonable

numerical values for the parameter of the scheme, we work in atomic units (c =

~ = 1 and q = −1) and we normalize space time in units of lattice spacings (in

particular, we set ∆z = ∆t = 1). Note that, with these assumptions, the Compton

frequency ωc = mc2/~ becomes equal tom, hence the parameter m̃ = ωc∆t is given

by m̃ = m∆t.

1.7.1 Free particle propagation

The motion of a quantum particle in the absence of any external force is charac-

terized by the well known phenomenon of loss of coherence, i. e. the spatial extent

of the wave function increases in time so that the wave packet becomes less and

less localized.

This behavior can be analyzed for the so-called “minimum uncertainty wave

packet” [126], since, in this case, analytical solutions are available. A minimum

uncertainty wave packet is a wave packet for which minimum uncertainty in both

position z and momentum p is attained. In one dimension, this reads

ψ0(z) = (2π∆2
0)

−1/4 exp(−imvzz) exp

(
−(z − z0)

2

4∆2
0

)
. (1.43)

This is a Gaussian wave packet centered about z0, with initial width ∆0 and

propagating along z with speed vz. In order to set this initial condition on the

model, we set

u1 = u2 =
1

2
ψ0,

d1 = d2 = − i

2
ψ0,

so that φ+
1,2 = ψ0/

√
2 and |ψ+|2 = |φ+

1 |2 + |φ+
2 |2 = |ψ0|2.

With the initial condition given in Eq. (1.43), the analytical solution of the
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Schrödinger equation for a freely propagating particle is given by (recall that

we are using atomic units: c = ~ = 1):

ψan(z, t) = (2π)−1/4

(
∆0 +

it

2m∆0

)−1/2

exp

(
−(z − z0 − vzt)

2

4∆2
0 + (2it/m)

)

× exp(imvzz) exp

(
− imv

2
z t

2

)
.

(1.44)

Based on this solution, the mean position Z(t) and the mean spread ∆z(t) defined

as

Z(t) =

∫
z|ψ(z, t)|2 dz,

∆z(t) =

∫
(z − Z(t))2|ψ(z, t)|2 dz,

evolve according to the equations

Z(t) = z0 + vzt,

∆z(t) =

(
∆2

0 +
t2

4m∆2
0

)1/2

.
(1.45)

In Fig. 1.1, we show Z(t) − z0 and ∆z(t) as functions of time for the following

choice of parameters: m = 0.2, ∆0 = 50, vz = 0.1 and z0 = 1024 on a lattice of

size Nz = 2048 nodal points. In particular, Z(t) and ∆z(t) are computed on |φ+|2
and are compared with the analytical curves of (1.45).

In Fig. 1.2, we show the probability distribution function |φ+|2 as a function of

the space for three different times. These results show a good agreement between

the analytical behavior and the numerical solution, thus proving that the model

correctly describes non-relativistic Schrödinger dynamics in the adiabatic limit.

However, as observed in Ref. [133], the accuracy of the results is affected by

the value of m (since m̃ = m∆t must be lower than one but not too small for

the adiabaticity condition to hold) and also by the choice of ∆0. In particular,

∆0 must be well resolved (i. e. discretized with a large number of grid points,

typically above 16 nodes) so as to prevent high wave number components of the

wave packet from violating the adiabaticity condition.

1.7.2 Harmonic oscillator

As a second example, we consider a one-dimensional harmonic oscillator that

is a quantum particle trapped within a parabolic potential centered about the

midpoint of the computational domain. Hence, the external potential reads as

follows:

V (z) =
1

2
mω2

0(z − z0)
2. (1.46)
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Figure 1.1: Comparison between Z(t) and ∆z(t) and the expected curves given by

Eq. (1.45) for the following setting: Nz = 2048, vz = 0.1, ∆0 = 50, and m = 0.2.

Solid lines represent Z(t) and ∆z(t) given by the model while dashed lines are the

expected curves. Time and space are expressed in lattice units.
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Figure 1.2: Probability distribution function |φ+|2 as a function of the space

for three different times. Parameters are set as follows:: Nz = 2048, vz = 0.1,

∆0 = 50, and m = 0.2. Time and space are expressed in lattice units.
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The initial condition is given again by the minimum uncertainty wave packet of

Eq. (1.43). The analytical solution of the Schrödinger equation with the external

potential given in Eq. (1.46) is known and the mean position, Z(t), and momen-

tum, P (t), obey the classical equations of motion of the harmonic oscillator

Ż(t) = P (t)/m, Z̈(t) + ω2
0Z(t) = 0,

and this yields

Z(t) = z0 +
vz

ω0
sin(ω0t).

Moreover, by setting ∆0 such that the relation

ω0 =
1

2m∆2
0

,

is fulfilled, then the initial wave packet spreading is preserved all along the evolu-

tion.

We want to check the ability of the model to preserve ∆0 for different parameter

settings.

In Tab. 1.1, the numerical results are reported, the spreading ∆z is the wave func-

tion variance averaged over ten periods, T = 2π/ω0, of the harmonic oscillator. In

those simulations we set vz = 0. From the table, we observe that good agreement

Table 1.1: Averaged variances of the packet along z for different setting of the

parameters Nz, m and ω0. Here vz = 0.

Nz ω0 m ∆z Expected ∆

1024 8/642 1/16 64.08 ± 1.23 64

1024 2/322 1/4 32.07 ± 0.32 32

512 4/322 1/8 32.05 ± 0.60 32

512 2/322 1/4 31.99 ± 0.16 32

256 2/162 1/4 16.04 ± 0.32 16

256 1/162 1/2 15.99 ± 0.09 16

is obtained on smaller grids.

An example of the solution for vz = 0.1 and Nz = 512, m = 1/4, ω0 = 2/322,

∆0 = 32 at times 0, 1/4T and 3/4T is shown in Fig. 1.3

1.7.3 Scattering from a rectangular barrier

As a final test, we consider the scattering of a wave packet by a rectangular

repulsive potential of the form

V (z) =

{
V0 z1 < z < z2,

0 otherwise.
(1.47)
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Figure 1.3: Wave function density |φ+|2 for the harmonic oscillator potential of

Eq. (1.46) at times t = 0, t = T/4 and t = 3/4T . Parameters are set as follows:

Nz = 512, vz = 0.1, m = 1/4, ω0 = 2/322, ∆0 = 32. Time and space are expressed

in lattice units.

A typical manifestation of quantal effects is a finite probability for the quantum

particle to go through the potential barrier even if its energy E is lower than the

potential energy V0 (quantum tunneling) [134].

Under tunneling conditions, an incident plane wave ψin = Aeikinz at z = z1
develops transmitted and reflected components of the form

ψ(z) = T exp(iktz) +R exp(−ikrz),

where the reflected and transmitted wave numbers are given by

kt =
√

2m(E − V0), kr =
√

2mE,

respectively.

Clearly, where the potential exceeds the total energy E, the wave number becomes

imaginary, and the transmitted wave undergoes an exponential decay.

The presence of both oscillating and decaying behaviors is well visible from Fig. 1.4,

which illustrates the dynamics of a minimum uncertainty wave packet colliding

with the potential barrier. The main numerical parameters are set as in Ref.

[133]:

Nz = 16384, m = 0.2, vz = 0.1, V0 = 0.002, ∆0 = 128.

From the figure, we can easily detect the bounce-back of the wave function and its
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Figure 1.4: Wave function density |φ+|2 for scattering from a potential barrier of

Eq. (1.47) at different times. Parameters are set as follows: Nz = 16384, vz = 0.1,

m = 0.2, V0 = 0.002, ∆0 = 128. Time and space are expressed in lattice units.

exponential decaying penetration into the classically forbidden region z1 < z < z2.

These tests demonstrate the viability of the qLB in one dimension. However,

the extension to multi-spatial dimensions following the idea suggested in Ref. [138]

and presented in Sec. 1.5 was not validated by actual numerical simulations. This

is indeed one of the major achievements of this work and it is presented in full

detail in the next chapter and in Ref. [105].





Chapter 2

The multi-dimensional

quantum lattice Boltzmann

model

As discussed in the previous chapter, the earliest LB model for quantum motion

built upon a formal analogy between the Dirac equation and a Boltzmann equa-

tion for a complex distribution function [138, 133, 135]. It was then shown that

the non-relativistic Schrödinger equation derives from the complex Boltzmann

equation under the same adiabatic assumptions (in imaginary time) which take

the Boltzmann equation for classical molecules into the Navier-Stokes equations

of continuum fluid mechanics. Based on this analogy, a quantum lattice Boltz-

mann scheme was formulated, in which the discrete speeds are identified with

the four-spinor components of the Dirac’s wave function. For 1+1-dimensional

problems (evolutionary problems in one spatial dimension) this identification is

fairly natural, since the spin can always be aligned with momentum (unit helic-

ity). In higher dimensions, however, such helicity=1 representation is no longer

viable because the spin does not transform like ordinary vectors and consequently

the Dirac propagation matrices cannot be diagonalized simultaneously. To cope

with this problem, the classical stream-collide structure of the Boltzmann equa-

tion was augmented with a “rotation” step, designed in such a way as to secure

alignment between momentum and spin degrees of freedom along each direction of

propagation (operator splitting). However, such multi-dimensional version of the

quantum lattice Boltzmann (qLB) scheme was not validated by actual numerical

simulations in Ref. [138].

In this chapter, which is an extended version of the paper in Ref. [105], we

present the first such validation for the case of a free particle and the harmonic
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oscillator in both two and three-dimensions.

Moreover, we revise the theoretical procedure proposed in Ref. [138] for the ex-

tension to the multi-dimensional case and discuss its actual implementation. In

particular, we point out a difference with respect to the algorithm described in

Ref. [138] which would lead to a scheme that does not solve the Schrödinger equa-

tion in the adiabatic limit.

Our numerical results show a satisfactory agreement with the analytical solutions,

thereby proving the viability of the three-step, stream-collide-rotate, theoretical

structure of the multi-dimensional qLB scheme. However, most of the numerical

results presented here refer to the two-dimensional scheme. This is due to the fact

that the qLB scheme is computationally expensive in terms of storage require-

ments, since the distribution functions are complex valued. As a result, in three

dimensions, on a single PC, only small lattices (not larger than 100 × 100 × 100

nodal points) are allowed. A detailed analysis of the numerical results for the

three-dimensional scheme could be performed by implementing a parallel version

of the algorithm, a study which is indeed under development at the present time.

2.1 Extension to two and three dimensions: a survey

In this section, we work out the details of multidimensional qLB scheme. For the

sake of simplicity, we restrict our discussion to the free particle case (V = 0),

however the inclusion of a potential is straightforward.

According to the idea presented in [138], we start from the representation of the

Dirac equation in which all the spin matrices are real. For a free particle of mass

m in three dimensions, this reads:

∂tψ + c(−αx∂x + β∂y − αz∂z)ψ = −imc
2

~
αyψ ≡ −iωcα

yψ, (2.1)

where αa for a = x, y, z and β are the standard 4×4 Dirac matrices (see Eq. (1.7))

and ψ is the Dirac quadrispinor. In [138], a formal parallel between the discrete

speeds of LBE and the discrete spin states of the Dirac quadrispinor is proposed

in order to solve Eq. (2.1) by means of a kinetic equation (see Sec. 1.5).

As mentioned in the previous chapter, the main problem with this idea is that, in

order to achieve a full correspondence between LBE and Dirac equation, the ma-

trices L = (−αx, β,−αz) should be simultaneously diagonalized, which is clearly

forbidden. However, even though simultaneous diagonalization of the three ma-

trices is impossible, we can diagonalize each of them separately in a sequence.

This means we need to find two 4× 4 transformation matrices Y and X such that

L̃y = Y −1LyY and L̃x = X−1LxX are diagonal. We have then three equivalent

formulations of the same equation, each featuring a diagonal streaming operator
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along x, y and z respectively. Hence, we split the operator and use the one-

dimensional LBE three times in sequence.

In practice, this means that collision and streaming are first performed along one

direction, then the system is “rotated” using a transformation matrix and col-

lision and streaming are performed again along a second direction. Finally the

same procedure is applied to the third direction.

To summarize, the three-step algorithm reads as follows:

1. • Collision along z:

ψ′(P, t+ ∆t) = Q̂ψ(P, t),

where P = (x, y, z) and Q̂ is the collision matrix (see Eq. (2.7) below

for details on the definition of Q̂ in the two dimensional case).

• Streaming along z:

ψ(Pz, t+ ∆t) = Szψ
′(P, t+ ∆t),

where Pz = P + k̂∆z and Sz is the streaming operator along z.

2. • Rotation of the system:

ψy = Yψ, Q̂y = Y −1Q̂Y.

• Collision along y:

ψ′
y(Pz, t+ ∆t) = Q̂yψy(Pz, t+ ∆t).

• Streaming along y:

ψy(Pyz, t+ ∆t) = Syψ
′
y(Pz, t+ ∆t),

where Pyz = P + ̂∆y+ k̂∆z and Sy is the streaming operator along y.

3. • Rotation of the system:

ψxy = Xψy, Q̂xy = X−1Q̂yX.

• Collision along x:

ψ′
xy(Pyz, t+ ∆t) = Q̂xyψxy(Pyz, t+ ∆t).

• Streaming along x:

ψxy(Pxyz, t+ ∆t) = Sxψ
′
xy(Pyz, t+ ∆t),

where Pxyz = P + ı̂∆x+ ̂∆y + k̂∆z and Sx is the streaming operator

along x.
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Finally the updated value is transformed back

ψ(Pxyz, t+ ∆t) = Y −1X−1ψxy(Pxyz, t+ ∆t).

In [138], the matrix Q̂ is the one-dimensional collision matrix Q itself (see Eq.

(1.36)). This is not correct (as we will clarify in the following) and leads to a

scheme which does not solve the Schrödinger equation in the adiabatic limit. In

the next subsection, we describe the details of the two dimensional model and we

show that the evolution of the slow modes φ+
1,2 is governed by the two-dimensional

Schrödinger equation.

2.2 Two-dimensional model

Let us consider the two dimensional version of Eq. (2.1)

(∂t + cβ∂y − cαz∂z)ψ = −iωcα
yψ,

It is known that the choice of the Dirac matrices is not unique, in fact all possible

choices are related by similarity transformations. Therefore, we apply a trans-

formation to the matrices in order to diagonalize αz. In particular, we use the

transformation matrix

Z =
1√
2




0 −1 0 1

1 0 −1 0

0 1 0 1

1 0 1 0


 . (2.2)

This transformation yields the following equivalent problem:

{
(∂t + cAz∂z + cAy∂y)ψ = ωcCψ

ψ(z, y, 0) = ψ0(z, y),
(2.3)

where

Az =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 , Ay =




0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0


 ,

C =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 .

(2.4)
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The problem of Eq. (2.3) is solved by using the operator splitting approach. In

particular, we use the sequential splitting in order to treat separately the two

spatial dimensions.

Then, defining the splitting step ∆t > 0, for (n − 1)∆t < t ≤ n∆t, we consider

the sequence of initial value problems of the form

{
(∂t + cAz∂z)ψ

n
1 = ωc

2 Cψ
n
1 , (n− 1)∆t < t ≤ ∆t,

ψn
1 [(n− 1)∆t] = ψn−1

2 [(n− 1)∆t],
(2.5)

and {
(∂t + cAy∂y)ψ

n
2 = ωc

2 Cψ
n
2 , (n− 1)∆t < t ≤ ∆t

ψn
2 [(n− 1)∆t] = ψn

1 (n∆t),
(2.6)

for n = 1, 2, . . . , N . To start the procedure we set ψ0
2(0) = ψ0.

If we suppose to be able to exactly solve these two problems, then the function

ψsp(z, y, n∆t) = ψn
2 (z, y, n∆t), defined at points tn = n∆t, is called splitting solu-

tion of the problem and represents a first order approximation of the real solution.

The two dimensional problem is now subdivided into two one dimensional prob-

lems which can be numerically solved by using the lattice Boltzmann model pro-

posed for the one dimensional case.

However, in the two dimensional version of the model, the collision matrix Q̂ is

slightly different from Q of Eq. (1.36) due to the factor 1/2 in front of matrix C

in Eqs. (2.5) and (2.6). In particular, for the free particle case (V = 0), Q̂ is given

by:

Q̂ =




â 0 0 b̂

0 â b̂ 0

0 −b̂ â 0

−b̂ 0 0 â


 , (2.7)

where

â =
1 − m̃2

2/4

1 + m̃2
2/4

, b̂ =
m̃2

1 + m̃2
2/4

,

with

m̃2 = m̃/2, and m̃ = ωc∆t.

Note that, in order to apply the Lattice Boltzmann model to the problem of Eq.

(2.6), the equation must be transformed to diagonalize Ay. Thus, we need to find

the transformation Y such that Y −1AyY is diagonal and the same transformation

has to be applied to C, as well, in order to obtain an equivalent equation. One
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possible choice for Y is

Y =
1√
2




−1 0 0 1

0 −1 1 0

1 0 0 1

0 1 1 0


 . (2.8)

As for the one-dimensional case, by defining the wave functions

φ±1,2 =
1√
2

exp(iωct)(u1,2 ± id2,1),

it is possible to verify that if ψ is solution of Eq. (2.3), then φ±1,2 satisfy the

following equations:

∂tφ
+
1,2 + c∂zφ

−
1,2 − ic∂yφ

−
2,1 = 0, (2.9)

∂tφ
−
1,2 + c∂zφ

+
1,2 + ic∂yφ

+
2,1 = 2iωcφ

−
1,2. (2.10)

From Eq. (2.10), after adiabatic elimination of the “fast” antisymmetric modes

|∂tφ
−
1,2| << 2ωc|φ−1,2|,

we obtain

φ−1,2 ≈ c

2iωc

(
∂zφ

+
1,2 + i∂yφ

+
2,1

)
,

and substituting in Eq. (2.9), we have

i~∂tφ
+
1,2 = − ~

2

2m

(
∂2

zφ
+
1,2 + ∂2

yφ
+
1,2

)
.

This shows that the slow symmetric modes φ+
1,2 obey the Schrödinger equation for

a free particle of mass m.

As previously mentioned, the procedure proposed in [138] needs a little, and

yet significant, correction by a factor 2. In fact, in Ref. [138], the operator splitting

is performed by taking Q̂ = Q. This corresponds to solving the following sequence

of problems:
{

(∂t + cAz∂z)ψ
n
1 = ωcCψ

n
1 , (n− 1)∆t < t ≤ ∆t,

ψn
1 [(n− 1)∆t] = ψn−1

2 [(n− 1)∆t],

and {
(∂t + cAy∂y)ψ

n
2 = ωcCψ

n
2 , (n− 1)∆t < t ≤ ∆t

ψn
2 [(n− 1)∆t] = ψn

1 (n∆t),

for (n − 1)∆t < t ≤ n∆t, instead of problems of Eqs. (2.5) and (2.6). Hence, we

are not solving Eq. (2.3), but rather the following equation:
{

(∂t + cAz∂z + cAy∂y)ψ = 2ωcCψ

ψ(z, y, 0) = ψ0(z, y),
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Performing the same analysis as above, one sees that the wave functions φ±1,2 have

to be defined as

φ±1,2 =
1√
2

exp(i2ωct)(u1,2 ± id2,1),

so that φ+
1,2 are now solving

i2~∂tφ
+
1,2 = − ~

2m

(
∂2

zφ
+
1,2 + ∂2

yφ
+
1,2

)
.

This brings up a factor, 2, only on the time derivative term, thereby delivering an

incorrect factor 2 in the governing equation.

2.2.1 Inclusion of a potential interaction

As for the one-dimensional case, the inclusion of an external potential is straight-

forward. We consider the two-dimensional Dirac equation with an electrostatic

potential interaction in Majorana form, this reads:

(∂t + cβ∂y − cαz∂z)ψ = −iωcα
yψ + igψ, (2.11)

where g = qV/~ is the space dependent frequency coupling to the potential V and

q is the particle electric charge. Proceding as we did above for the case of a free

particle (V = 0), it is easy to check that in the adiabatic limit |ω−ωc| ≪ |ωc + g|
and with the additional constraint of small potential interaction, |g| ≪ ωc, the

non-relativistic motion is reproduced by the symmetric modes φ+
1,2.

The qLB scheme is obtained by applying to Eq. (2.11), the operator splitting

technique described above. In particular, upon transforming Eq. (2.11) by means

of the unitary matrix Z of Eq. (2.2), we obtain the following equivalent problem

{
(∂t + cAz∂z + cAy∂y)ψ = ωcCψ + igψ

ψ(z, y, 0) = ψ0(z, y),
(2.12)

where the matrices Az, Ay and C are the same as given in Eq. (2.4). Using the

sequential splitting approach, the two spatial dimensions are treated separately

by transforming Eq. (2.12) into two one-dimensional problems

{
(∂t + cAz∂z)ψ

n
1 = ωc

2 Cψ
n
1 + ig2ψ

n
1 , (n− 1)∆t < t ≤ ∆t,

ψn
1 [(n− 1)∆t] = ψn−1

2 [(n− 1)∆t],

and
{

(∂t + cAy∂y)ψ
n
2 = ωc

2 Cψ
n
2 + ig2ψ

n
2 , (n− 1)∆t < t ≤ ∆t

ψn
2 [(n− 1)∆t] = ψn

1 (n∆t).
(2.13)
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Each of the two problems above can be numerically solved by using the one-

dimensional qLB scheme. Note that, in order to apply the one-dimensional model

to Eq. (2.13), the equation must be transformed by means of a unitary matrix

Y (e. g. the matrix of Eq. (2.8)), such that the scattering matrix Ay becomes

diagonal.

However, as previously mentioned, the two-dimensional scattering matrix is slightly

different from the one-dimensional one, this is due to the presence of the factor

1/2 in the collision term. This factor also multiplies the interaction term, thus

yielding the following scattering matrix

Q̂g =




âg 0 0 b̂g
0 âg b̂g 0

0 −b̂g âg 0

−b̂g 0 0 âg


 ,

where

âg =
1 − Ω2/4

1 + Ω2/4 − ig̃2
, b̂g =

m̃2

1 + Ω2/4 − ig̃2
,

with

Ω2 = m̃2
2 − g̃2

2, m̃2 = m̃/2, g̃2 = g̃/2,

and m̃ = ωc∆t, g̃ = g∆t.

2.3 Free propagation of a quantum wave packet

In this section and in the following two, we validate the two-dimensional version of

the qLB scheme by performing numerical calculations for which analytical results

are known. In particular, here we consider the dynamics of a quantum particle of

mass m which propagates freely.

In order to have reasonable numerical values for the parameters of the scheme,

we work in atomic units (c = ~ = 1 and q = −1) and we express space and

time in lattice units. Note that, working in atomic units, the Compton frequency

ωc = mc2/~ becomes equal to m, hence the parameter m̃ = ωc∆t is given by

m̃ = m∆t.

To validate the model in this regime we set, as initial condition, a minimum

uncertainty wave packet

ψ0(z, y) = (2π∆0z∆0y)
−1/2 exp

(
−(z − z0)

2

4∆2
0z

)

× exp

(
−(y − y0)

2

4∆2
0y

)
exp (−im(vzz + vyy)) .

(2.14)



2.3 Free propagation of a quantum wave packet 45

This is a wave packet centered about (z0, y0) with initial spreads ∆0z, ∆0y along

z and y respectively and propagating at speed (vz, vy). To impose this initial

condition on the model, as for the one-dimensional case, we set

u1 = u2 =
1

2
ψ0,

d1 = d2 = −i1
2
ψ0.

With the initial condition given by Eq. (2.14), the analytical solution of the

Schrödinger equation for a free propagating particle is given by

ψan(z, y, t) =

[
2π

(
∆0z +

it

2m∆0z

)(
∆0y +

it

2m∆0y

)]−1/2

× exp

(
−(z − z0 − vzt)

2

4∆2
0z + 2it/m

)
exp

(
−(y − y0 − vyt)

2

4∆2
0y + 2it/m

)

× exp (im(vzz + vyy)) exp

(
−
im(v2

z + v2
y)t

2

)
.

(2.15)

Based on this solution, the mean position (Z(t), Y (t)) and the mean spreads ∆z(t),

∆y(t) evolve accordingly to the equations

Z(t) = z0 + vzt, Y (t) = y0 + vyt, (2.16)

and

∆z(t) =

[
∆2

0z +
t2

4m2∆2
0z

]1/2

, ∆y(t) =

[
∆2

0y +
t2

4m2∆2
0y

]1/2

, (2.17)

For a free particle, the mean energy 〈E〉 is given by

〈E〉 = i~

∫
(ψ∗∂tψ) dzdy

= − ~
2

2m

∫
(ψ∗∆ψ) dzdy =

~
2

2m

∫
(∇ψ∗∇ψ) dzdy.

Hence, for the minimum uncertainty wave packet (and recalling that we are using

atomic units), we obtain

〈E〉 =
1

2m

(
m2(v2

z + v2
y) +

1

4∆2
0z

+
1

4∆2
0y

)
. (2.18)

Since our model provides both wave functions φ±1,2, we can compute E+
1,2, E

−
1,2 on

φ+
1,2 and φ−1,2 respectively and then define

E+ = E+
1 + E+

2 , E− = E−
1 + E−

2 , E = E+ + E−.
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2.3.1 Comparison with the analytical solution and convergence

test

To study the convergence of the model, we need to fix the domain [zmin, zmax] ×
[ymin, ymax] and to discretize it by using an increasing number of points nz × ny.

Moreover, the lattice must be uniform (i. e. ∆z = ∆y ≡ h) and the relation

h = ∆t must be preserved (recall c = 1 in lattice units). In general, h is given by

h =
zmax − zmin

nz − 1
=
ymax − ymin

ny − 1
.

This setting implies that the model parameter m̃ = ωc∆t is given by mh which

corresponds to an “effective” mass. For this reason, we need to take a sufficiently

large domain, so that m̃ is not too close to zero, indeed for m̃ ≪ 1 a lack of

adiabaticity could occur.

In this numerical test we set [zmin, zmax] × [ymin, ymax] = [0, 512] × [0, 512] and

Nz = nz − 1 and Ny = ny − 1 take the values 128, 256, 512 and 1024. The

remaining parameters are set as follows: ∆0z = ∆0y = 40, vz = 0.02, vy = 0.04

and m = 1/8. The error with respect to the analytical solution, Eq. (2.15), is

computed in L2 norm. In particular, we define

e2(t) = ‖ψan(z, y, t) − φ+(z, y, t)‖2

=

(∫
|ψan(z, y, t) − φ+(z, y, t)|2dzdy

)1/2

.

The error e2 was found to decrease from 0.08 to 0.009 as the grid resolution was

increased from 128 to 1024 points in each direction, but with no clear evidence

of a specific convergence rate. We tentatively interpret this as the concurrent

effect of time-discretization errors, (O(h2)), the splitting error (O(h)) and lack of

adiabaticity in the limit mh→ 0. In Fig. 2.1 the function

e(z, y, t) = |ℜ(ψan(z, y, t)) −ℜ(φ+(z, y, t))| (2.19)

taken at y = y0 for the different values of Nz and Ny is plotted at times 100, 300

and 500. In Fig. 2.2 the same function evaluated in z = z0 is shown.

In Tab. 2.1 we report the propagation velocity and the mean spread of the

packet while increasing the number of discretization points. For the present set-

ting the expected velocity is vz = 0.02 and vy = 0.04 and the spread at time

t = 500 is computed by Eq. (2.17) and is 64.03 since ∆0z = ∆0y = 40.

In the following subsection we will check the ability of the model to reproduce

mean position and spread for different sets of parameters.
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Figure 2.1: Difference between the real part of the analytical solution and the

model result for y = y0 (see Eq. (2.19)) and for different values of Nz = Ny

and taking vz = 0.02, vy = 0.02, ∆0z = ∆0y = 40 and m = 1/8. Solid line:

Nz = Ny = 128; Dashed line: Nz = Ny = 256; Dotted line: Nz = Ny = 512;

Dash-dotted line: Nz = Ny = 1024. (a) t = 100; (b) t = 300; (c) t = 500. Space

and time are expressed in lattice units.
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Figure 2.2: Difference between the real part of the analytical solution and the

model result for z = z0 (see Eq. (2.19)) and for different values of Nz = Ny

and taking vz = 0.02, vy = 0.02, ∆0z = ∆0y = 40 and m = 1/8. Solid line:

Nz = Ny = 128; Dashed line: Nz = Ny = 256; Dotted line: Nz = Ny = 512;

Dash-dotted line: Nz = Ny = 1024. (a) t = 100; (b) t = 300; (c) t = 500. Space

and time are expressed in lattice units.
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Table 2.1: Propagation velocity and spread of the packet at time t = 500 for

different values of Nz = Ny. The expected values are: vz = 0.02, vy = 0.04 and

∆z(500) = ∆y(500) = 64.03. Here m = 1/8 and ∆0z = ∆0y = 40.

Nz = Ny vz vy ∆z(500) ∆y(500)

128 0.0175 0.0355 60.20 60.19

256 0.0189 0.0379 62.41 62.40

512 0.0191 0.0384 62.97 62.95

1024 0.0193 0.0386 63.11 63.09

The model is able to preserve a unit norm: quantity

‖φ+‖2 + ‖φ−‖2 =

∫
|φ+(z, y, t)|2dzdy

+

∫
|φ−(z, y, t)|2dzdy.

It follows that ‖φ+‖ cannot be preserved equal to one during the evolution. Indeed

we have ‖φ−‖ ≪ ‖φ+‖ and both of them are oscillating in such a way that ‖φ+‖2+

‖φ−‖2 = 1. In Fig. 2.3 ‖φ+‖2, ‖φ−‖2 and ‖φ+‖2 + ‖φ−‖2 are shown, while in

Fig. 2.4 only ‖φ+‖2 is plotted, in order to have a closer appreciation of its evolution.
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Figure 2.3: ‖φ+‖2 (solid line), ‖φ−‖2 (dotted line) and ‖φ+‖2 + ‖φ−‖2 (dashed

line) for Nz = Ny = 1024 (h = 1/2), m = 1/8, ∆0z = ∆0y = 40, vz = 0.02 and

vy = 0.04. Time is expressed in lattice units.
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Figure 2.4: ‖φ+‖2 for Nz = Ny = 1024 (h = 1/2), m = 1/8, ∆0z = ∆0y = 40,

vz = 0.02 and vy = 0.04. Time is expressed in lattice units.

A similar behavior is obtained for the energy. The model keeps constant, and

very close to the expected value given by Eq. (2.18), the total kinetic energy

E = E+ + E−, while E+ and E− are oscillating with E− ≪ E+. In Fig. 2.5 E+,

E− and E are shown.

Finally, in Tab. 2.2 we report the mean values of ‖φ+‖2, E+ and E while

increasing the number of nodes. Note that, for the present setting, the expected

value for the energy given by Eq. (2.18) is 1.375 × 10−3.

Table 2.2: Mean values of ‖φ+‖2, E+ and E for different values of Nz = Ny. The

expected value for the energy is 1.375 × 10−3. Here m = 1/8, ∆0z = ∆0y = 40,

vz = 0.02 and vy = 0.04.

Nz = Ny ‖φ+‖2 E+ E

128 0.980 1.234 × 10−3 1.3712 × 10−3

256 0.985 1.240 × 10−3 1.3741 × 10−3

512 0.987 1.293 × 10−3 1.3748 × 10−3

1024 0.988 1.320 × 10−3 1.3749 × 10−3

2.3.2 Mean position and mean spreads

In all of the following simulations we take h ≡ ∆z = ∆y = ∆t = 1, hence the

computational domain is [0, nz]× [0, ny] and is not fixed as in the previous section.
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Figure 2.5: E+ (solid line), E− (dotted line) and E = E+ +E− (dashed line) for

Nz = Ny = 512 (h = 1), m = 1/8, ∆0z = ∆0y = 40, vz = 0.02 and vy = 0.04.

Time is expressed in lattice units.

As we mentioned, mean position and mean spreads evolve according to Eqs. (2.16)

and (2.17). We can check the ability of the model to reproduce these evolutions

under a number of different conditions.

In all of the following tests, we use a grid of size 1024 × 1024. As to the position,

we measure the propagation velocity of the packet for different values of the pa-

rameters m and ∆0z = ∆0y, while keeping vz = 0.05 and vy = 0.025. In Tab. 2.3,

the results of the model are reported.

To verify the asymptotic behavior of ∆z(t) and ∆t(t) we set vz = vy = 0 so that

the wave packet is not hitting the grid boundary too early. The results are re-

ported in Tab. 2.4.

Finally, we set vz 6= vy and ∆0z 6= ∆0y, in particular we choose vz = 0.05,

vy = 0.02, ∆0z = 50, ∆0y = 32 and m = 0.2. In Fig. 2.6, we compare Z(t)

and ∆z(t) with the analytical curves given by Eqs. (2.16) and (2.17). A similar

comparison for Y (t) and ∆y(t) is shown in Fig. 2.7.

2.4 Two-dimensional harmonic oscillator

As a second example, we consider a two dimensional harmonic oscillator. The

potential is given by

V (z, y) =
1

2
mω2

0[(z − z0)
2 + (y − y0)

2],
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Table 2.3: Results on the propagation velocity for different values of m and ∆0z =

∆0y ≡ ∆0. With Rz and Ry are indicated the ratios between the model result and

the expected value along z and y respectively. Here nz = ny = 1024, vz = 0.05

and vy = 0.025.

∆0 m vz vy Rz Ry

50 0.1 0.048 0.024 1.038 1.040

32 0.1 0.047 0.023 1.073 1.076

32 0.2 0.048 0.024 1.034 1.035

16 0.2 0.046 0.023 1.084 1.092

Table 2.4: Asymptotic behavior of ∆z(t) and ∆y(t) for different values of m and

∆0z = ∆0y ≡ ∆0. With Rz and Ry are indicated the ratios between the model

result and the expected value along z and y respectively. Here nz = ny = 1024

and vz = vy = 0.

∆0 m ∆z ∆y Expected value Rz Ry

50 0.1 0.087 0.087 0.1 1.155 1.115

32 0.1 0.144 0.144 0.15625 1.083 1.083

32 0.2 0.0719 0.0719 0.078125 1.083 1.083

16 0.2 0.145 0.145 0.15625 1.080 1.080
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Figure 2.6: Comparison between Z(t) and ∆z(t) and the expected curves given

by Eqs. (2.16) and (2.17) for the following setting: nz = ny = 1024, vz = 0.05,

vy = 0.02, ∆0z = 50, ∆0y = 32 and m = 0.2. Solid lines represent Z(t) and ∆z(t)

given by the model; dashed lines are the expected curves. Space and time are

expressed in lattice units.
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Figure 2.7: Comparison between Y (t) and ∆y(t) and the expected curves given

by Eqs. (2.16) and (2.17) for the following setting: nz = ny = 1024, vz = 0.05,

vy = 0.02, ∆0z = 50, ∆0y = 32 and m = 0.2. Solid lines represent Y (t) and ∆y(t)

given by the model; dashed lines are the expected curves. Space and time are

expressed in lattice units.
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where we are assuming for simplicity ωz = ωy = ω0. The initial condition is still

given by the minimum uncertainty wave packet of Eq. (2.14).

With these assumptions, it is known that the mean quantities (Z(t), Y (t)) and

P (t) = (Pz(t), Py(t)) obey the classical equations of motion of the harmonic oscil-

lator

Ż = Pz(t)/m, Ẏ = Py(t)/m,

Z̈ + ω2
0Z = 0, Ÿ + ω2

0Y = 0,

hence,

Z(t) = z0 +
vz

ω0
sin(ω0t),

Y (t) = y0 +
vy

ω0
sin(ω0t).

(2.20)

Moreover, by setting ∆0 ≡ ∆0z = ∆0y so that

ω0 =
1

2m∆2
0

,

the initial spreading is preserved all along the evolution. We want to check the

ability of the model to preserve ∆0 for different parameter settings. In Tab. 2.5,

the results are shown, here ∆z and ∆y are the packet spreads averaged over two

periods. In all of the simulations we set vz = 0.02 and vy = 0.04. In Fig. 2.8, Z(t)

Table 2.5: Averaged variances of the packet along z and y for different setting of

the parameters Nz = Ny, m̃ and ω0. Here vz = 0.02 and vy = 0.04.

Nz = Ny ω0 m̃ ∆z ∆y Expected ∆

1024 8/642 1/16 64.35 ± 1.33 64.35 ± 1.33 64

1024 2/322 1/4 32.25 ± 0.70 32.27 ± 0.75 32

512 4/322 1/8 32.16 ± 0.70 32.17 ± 0.69 32

512 2/322 1/4 31.87 ± 0.27 31.87 ± 0.29 32

512 1/162 1/2 16.01 ± 0.69 16.02 ± 0.70 16

256 2/162 1/4 16.05 ± 0.37 16.05 ± 0.38 16

256 1/162 1/2 15.74 ± 0.32 15.74 ± 0.32 16

and ∆z(t) are shown for Nz = Ny = 512, ω0 = 2/322, m = 1/4, in Fig. 2.9, Y (t)

and ∆y(t) are reported for the same set of parameters.

When an external potential V is acting on the particle, as in this case, the total

energy of a wave function ψ satisfying the Schrödinger equation is given by:

〈E〉 = i~

∫
(ψ∗∂tψ) dzdy =

=
~

2

2m

∫
(∇ψ∗∇ψ) dzdy +

∫
(ψ∗V ψ) dzdy.
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Figure 2.8: Z(t) and ∆z(t) for the harmonic oscillator with parameters Nz = Ny =

512, ω0 = 2/322, m = 1/4, vz = 0.02 and vy = 0.04. The solid line is Z(t), while

the dotted one is ∆z(t). Space and time are expressed in lattice units.
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Figure 2.9: Y (t) and ∆y(t) for the harmonic oscillator with parameters Nz =

Ny = 512, ω0 = 2/322, m = 1/4, vz = 0.02 and vy = 0.04. The solid line is Y (t),

while the dotted one is ∆y(t). Space and time are expressed in lattice units.
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In analogy with classical mechanics, 〈E〉 satisfies the relation

〈E〉 =
1

2m
〈P 2〉 + 〈V 〉.

In Fig. 2.10 kinetic and potential energy and their sum are plotted for the harmonic

oscillator defined by the parameters: Nz = Ny = 512, ω0 = 2/322, m = 1/4. In

particular, the energies are computed on φ+
1,2, so E+

kin, E+
pot and E+ = E+

kin +E+
pot

are shown. From this figure, a satisfactory energy conservation is observed.
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Figure 2.10: Plots of E+
kin, E+

pot and E+ = E+
kin +E+

pot for the harmonic oscillator

with parameters Nz = Ny = 512, ω0 = 2/322, m = 1/4, vz = 0.02 and vy = 0.04.

Solid line: E+
kin; dotted line: E+

pot; dashed line: E+ = E+
kin + E+

pot. Time and

energy are expressed in lattice units.

Finally, in order to verify the isotropy of the model we plot the isolines taken

at some values of ρ = |ψ(z, y)|2. This test is performed for the following set of

parameters: Nz = Ny = 256, ω0 = 1/128, m = 1/4. The contour plot obtained

after two periods is shown in Fig. 2.11. In particular, the isolines taken at ρ =

1 × 10−4, 2 × 10−4, 3 × 10−4, 4 × 10−4, 5 × 10−4 and 6 × 10−4 are plotted.

2.5 Two-dimensional rotated, non-isotropic oscillator

As a third test we model a non-isotropic oscillator by using the following potential

V (z, y) =
1

2
mω2

0

[
(z − z0)

2

a2
+

(y − y0)
2

b2

]
,

then the characteristic frequencies along z and y are given by

ω0z =
ω0

a
, ω0y =

ω0

b
.
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Figure 2.11: Contour plot for ρ = |ψ(z, y)|2 for the harmonic oscillator with

parameters Nz = Ny = 256, ω0 = 1/128, m = 1/4, vz = vy = 0.0 and ∆0 = 16.

The isolines correspond to the following values of ρ: 1× 10−4, 2× 10−4, 3× 10−4,

4 × 10−4, 5 × 10−4 and 6 × 10−4 going from the outside toward the inside. Space

is expressed in lattice units.

The evolution of Z(t) and Y (t) is thus described by

Z(t) = z0 +
vz

ω0z
sin(ω0zt),

Y (t) = y0 +
vy

ω0y
sin(ω0yt),

and choosing ∆0z and ∆0y such that

ω0z =
1

2m∆2
0z

, ω0y =
1

2m∆2
0y

, (2.21)

the initial spreadings are preserved all along the evolution.

Consider, now, a rotated coordinate system

{
z′ = z cos(α) − y sin(α),

y′ = z sin(α) + y cos(α).
(2.22)

The mean position in the rotated system (Z ′(t), Y ′(t)), is still following the laws

Z ′(t) =
vz′

ω0z
sin(ω0zt),

Y ′(t) =
vy′

ω0y
sin(ω0yt),

(2.23)
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and, from Eq. (2.22), we have that (Z(t), Y (t)) must satisfy

Z(t) = Z ′(t) cos(α) + Y ′(t) sin(α),

Y (t) = −Z ′(t) sin(α) + Y ′(t) cos(α).
(2.24)

We next check the ability of the model to reproduce these evolutions for Z(t) and

Y (t) for this elliptic-rotated oscillator.

As a first example, we set the parameters as follows: Nz = Ny = 1024, a2 = 2,

b2 = 4, m = 1/8, ω0 = 1/512, vz′ = 0.05, vy′ = 0 and α = π/4. With this setting

we have:

ω0z =
1√
2

1

512
ω0y =

1

1024
,

and, from Eq. (2.21), we obtain

∆0z = 53.817, ∆0y = 64.

Moreover, since vy′=0, from Eqs. (2.23) and (2.24), we expect the following evo-

lution for Z(t) and Y (t)

Z(t) =
vz′

ω0z
sin(ω0zt) cos(α) =

vz′

ω0z
sin(ω0zt)

√
2

2
,

Y (t) = − vz′

ω0z
sin(ω0zt) sin(α) = − vz′

ω0z
sin(ω0zt)

√
2

2
.

In Fig. 2.12, Z(t) and Y (t) are plotted. We also observe that

vz′

ω0z

√
2

2
= 25.6,

in close agreement with the maximum absolute value reached by Z(t) and Y (t),

which is 25.47.

As a second example we set Nz = Ny = 1024, a2 = 1, b2 = 2, m = 1/4,

ω0 = 1/1024, vz′ = 0.05, vy′ = 0.0 and α = π/6. With this parameters we obtain:

ω0z =
1

1024
ω0y =

1√
2

1

1024
,

and, from Eq. (2.21)

∆0z = 45.255, ∆0y = 53.817.

As in the previous example, since vy′=0, from Eqs. (2.23) and (2.24), we expect

the following evolution for Z(t) and Y (t)

Z(t) =
vz′

ω0z
sin(ω0zt) cos(α) =

vz′

ω0z
sin(ω0zt)

√
3

2
,

Y (t) = − vz′

ω0z
sin(ω0zt) sin(α) = − vz′

ω0z
sin(ω0zt)

1

2
.
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Figure 2.12: Z(t) and Y (t) for the rotated elliptic oscillator of the first test. The

solid line is Z(t), while the dotted one is Y (t). In this first test, the parameters

are as follows: Nz = Ny = 1024, a2 = 2, b2 = 4, m = 1/8, ω0 = 1/512, vz′ = 0.05,

vy′ = 0 and α = π/4. Space and time are expressed in lattice units.

In Fig. 2.13, Z(t) and Y (t) are plotted. We also observe that

vz′

ω0z

√
3

2
= 44.34,

vz′

ω0z

1

2
= 25.6,

again in close agreement with the maximum absolute values reached by Z(t) and

Y (t), namely 43.90 and 25.27, respectively.

2.6 Three-dimensional model

The two dimensional model just described can be easily extended to three dimen-

sions. In this case, as a result of the application of transformation Z (see Eq.

(2.2)), the Dirac equation given in Eq. (2.1) takes the form

{
(∂t + cAx∂x + cAy∂y + cAz∂z)ψ = ωcCψ + igψ

ψ(x, y, z, 0) = ψ0(x, y, z),
(2.25)

where Ay, Az and C are the same as in Eq. (2.4) and

Ax =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 .
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Figure 2.13: Z(t) and Y (t) for the rotated elliptic oscillator of the second test. The

solid line is Z(t), while the dotted one is Y (t). In this second test, the parameters

are as follows: Nz = Ny = 1024, a2 = 1, b2 = 2, m = 1/4, ω0 = 1/1024, vz′ = 0.05,

vy′ = 0.0 and α = π/6. Space and time are expressed in lattice units.

By using the sequential splitting method, we consider the sequence of three initial

value problems for (n− 1)∆t < t ≤ n∆t

{
∂tψ

n
1 + cAx∂xψ

n
1 = ωc

3 Cψ
n
1 + ig3ψ

n
1 ,

ψn
1 [(n− 1)∆t] = ψn−1

3 [(n− 1)∆t],
(2.26)

{
∂tψ

n
2 + cAy∂yψ

n
2 = ωc

3 Cψ
n
2 + ig3ψ

n
2 ,

ψn
2 [(n− 1)∆t] = ψn

1 (n∆t),

and {
∂tψ

n
3 + cAz∂zψ

n
3 = ωc

3 Cψ
n
3 + ig3ψ

n
3 ,

ψn
3 [(n− 1)∆t] = ψn

2 (n∆t).

To start the procedure, we set ψ0
3(0) = ψ0 and ψsp(x, y, z, n∆t) = ψn

3 (x, y, z, n∆t)

is the splitting solution of the problem.

The three-dimensional problem is now subdivided into three one-dimensional

problems which can be numerically solved by using the lattice Boltzmann model

proposed for the one-dimensional case.

The collision matrix Q̂g is different from Q of Eq. (1.36) due to the factor 1/3 in
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front of the scattering matrix C, in particular, it reads

Q̂g =




âg 0 0 b̂g
0 âg b̂g 0

0 −b̂g âg 0

−b̂g 0 0 âg


 ,

where

âg =
1 − Ω3/4

1 + Ω2/4 − ig̃3
, b̂g =

m̃3

1 + Ω3/4 − ig̃3
,

with

Ω3 = m̃2
3 − g̃2

3, m̃3 = m̃/3, g̃3 = g̃/3,

and m̃ = ωc∆t, g̃ = g∆t.

Note that, in order to solve Eq. (2.26) with the one-dimensional qLB scheme, Ax

needs to be diagonalized. A possible choice for the transformation matrix is given

by

X =
1√
2




1 0 −1 0

0 −1 0 1

1 0 1 0

0 1 0 1


 .

For the free particle case (V = 0), by defining the wave functions

φ±1,2 =
1√
2

exp(iωct)(u1,2 ± id2,1),

it is possible to verify that, since ψ is solution of Eq. (2.25), then the symmetric

and antisymmetric modes φ±1,2 satisfy the following equations:

∂tφ
+
1 + c∂zφ

−
1 − ic∂yφ

−
2 − ic∂xφ

−
1 = 0, (2.27)

∂tφ
+
2 + c∂zφ

−
2 − ic∂yφ

−
1 + ic∂xφ

−
2 = 0, (2.28)

and

∂tφ
−
1 + c∂zφ

+
1 + ic∂yφ

+
2 + ic∂xφ

+
1 = 2iωcφ

−
1 , (2.29)

∂tφ
−
2 + c∂zφ

+
2 + ic∂yφ

+
1 − ic∂xφ

+
2 = 2iωcφ

−
2 . (2.30)

From Eqs. (2.29) and (2.30), after adiabatic elimination of the fast antisymmetric

modes |∂tφ
−
1,2| ≪ 2ωc|φ−1,2|, we obtain

φ−1 ≈ c

2iωc
(∂zφ

+
1 + i∂yφ

+
2 + i∂xφ

+
1 ),

φ−2 ≈ c

2iωc
(∂zφ

+
2 + i∂yφ

+
1 − i∂xφ

+
2 ),

and substituting into Eqs. (2.27) and (2.28), we obtain the three-dimensional

Schrödinger equation for a free particle of mass m:

i~∂tφ
+
1,2 = − ~

2

2m
(∂2

x + ∂2
y + ∂2

z )φ+
1,2.
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2.6.1 Three-dimensional harmonic oscillator

In order to test the isotropy of the three dimensional model, we simulate a three

dimensional harmonic oscillator potential:

V (x, y, z) =
1

2
mω2

0[(x− x0)
2 + (y − y0)

2 + (x− x0)
2],

and we show that by fixing ∆0x = ∆0y = ∆0z ≡ ∆0 such that

ω0 =
1

2m∆2
0

, (2.31)

the packet spreading is kept constant all along the evolution.

For this test we set Nx = Ny = Nz = 100, ∆0 = 14, m = 0.1, vx = vy = vz = 0,

the initial condition is given by the three-dimensional minimum uncertainty wave

packet and periodic boundary conditions are imposed. With this setting, from

Eq. (2.31), we obtain ω0 = 0.02551. The numerical values given by the model for

∆x, ∆y and ∆z averaged over a quarter of a period are

∆x = 15.35 ± 1.38, ∆y = 14.40 ± 0.88, ∆z = 15.47 ± 1.50.

Let us consider the radius r defined as r2 = (x−x0)
2 +(y−y0)

2 +(z−z0)2, where

the point (x0, y0, z0) is the center of the initial Gaussian packet and, for this test,

corresponds to the center of the computational domain (Nx/2, Ny/2, Nz/2). In

Fig. 2.14, a scatter plot of |φ+(x, y, z)|2 against r2 at time t = T/4 (where T is the

harmonic oscillator period, T = 2π/ω0 ≈ 250 lattice units) is reported in order

to show the degree of isotropy of the model. In the figure, results are shown for

r2 < (3∆0)
2, because for larger values of r2, |φ+|2 takes such small values that a

statistical behavior is no more observable. To be noted that due to the exponential

dependence of |φ+|2 on the radius (|φ+|2 ∼ e−r2/(2∆2

0
)), even mild lack of isotropy

results in large (exponential) fluctuations in the large-radius region of the scatter

plot representation. This is well shown in Fig. 2.14. In particular, for r2 < ∆2
0, the

linear dependence of log(|φ+|2) from r2 is clearly visible and a minimum scatter

is shown. For increasing values of r2, however, the scatter also increases. Finally,

for r2 close to (3∆0)
2 the boundary conditions effects start to show up. In fact, we

note that the solution is not affected by periodic boundary conditions as long as

the wave function remains negligible at the boundary. Going much further on time

with this setting is not possible since the effect due to the boundary conditions will

propagate into the domain compromising the solution even for smaller values of

r2. To overcome this limitation, a much larger domain should be used or different

boundary conditions should be imposed.
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Figure 2.14: Scatter plot of |φ+(x, y, z)|2 against r2 for a three dimensional har-

monic oscillator with parameters: Nz = Ny = Nz = 100, m = 0.1, vx = vy = vz =

0, ∆0 = 14 and ω0 = 0.02551 at time t = T/4. |φ+(x, y, z)|2 is represented on a

logarithmic scale in order to show its linear dependence from r2. Here, coordinates

x, y and z are expressed in lattice units.

In conclusion, the above results explicitly demonstrates the viability of the

quantum lattice Boltzmann (qLB) scheme for the numerical solution of the time-

dependent Schrödinger equation in multiple spatial dimensions. Being based on a

unitary, first-order, relativistic formulation, at variance with most explicit schemes

for non-relativistic quantum wave equations, the qLB method offers unconditioned

stability with the size of the time-step/mesh-size provided that ∆z = c∆t. How-

ever, as previously mentioned, its accuracy is subject to the condition ωc∆t =

∆z/λB ≤ 1, λB = c/ωc being the De Broglie wavelength of the particle. Since the

time-step scales linearly with the mesh-spacing (a result of the relativistic formula-

tion), qLB can be taken down to very refined grids without suffering the time-step

collapse typical of non-relativistic Courant-Friedrichs-Lewy stability conditions,

∆t < 2m
~

∆z2, thus compensating for its low-order accuracy. However, care must

be taken to ensure that errors due to lack of adiabaticity remain under control

when ωc∆t is sent to zero.





Chapter 3

Ground state computation of

Bose–Einstein condensates

The staggering achievements in Bose-Einstein condensation [38, 90] over the last

decade are fueling an increasing demand of efficient and accurate computational

schemes for the numerical solution of nonlinear quantum wave equations, most

notably, the Gross-Pitaevskii equation (GPE) describing zero-temperature Bose-

Einstein condensates (BEC) [63, 117]. In particular, the time-independent GPE

has been numerically solved by using several approaches: Runge-Kutta methods

[53, 1], explicit imaginary-time algorithms [33, 35, 10, 13] and direct minimiza-

tion of the energy functional [12]. In Ref. [108], we propose an imaginary-time

quantum lattice Boltzmann (qLB) model obtained by performing a so-called Wick

rotation of the original, real-time qLB scheme.

In this chapter, which is an extended version of the paper in Ref. [108], the

nonlinear qLB is defined and applied to the numerical computation of the ground-

state of the GPE in one and two spatial dimensions, and its viability demonstrated

through systematic comparison with numerical solutions obtained via standard

implicit methods, as well as with analytical results based on the Thomas-Fermi

approximation. For completeness, in Sec. 3.1 and Sec. 3.2, we briefly introduce

the time-dependent and time-independent GPE, respectively.

3.1 The time–dependent Gross–Pitaevskii equation

At zero temperature, the dynamics of a trapped Bose–Einstein condensates (BEC)

is described by the time–dependent Gross–Pitaevskii equation (GPE). The GPE
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for a quantum wave function ψ(r, t) with r = (x, y, z)T ∈ R
3 reads as:

i~
∂ψ(r, t)

∂t
=

(
− ~

2

2m
∆r + Vext(r) +NU0|ψ(r, t)|2

)
ψ(r, t), (3.1)

where m is the atomic mass, U0 = 4π~
2a/m is the coupling strength, a is the

scattering length and N is the number of particles in the condensate, Vext(r) is

the external trapping potential. Furthermore, the wave function ψ(r, t) satisfies

the normalization condition ∫

R3

|ψ(r, t)|2dr = 1.

Typically, the external potential is taken in the form of an harmonic trap:

Vext(x, y, z) =
1

2
m
(
ω2

x(x− x0)
2 + ω2

y(y − y0)
2 + ω2

z(z − z0)
2
)
.

The three dimensional GPE can be reduced to two dimensions or even one di-

mension for two particular choices of the harmonic trap [72, 88, 12, 1]. We briefly

revisit this reduction procedure following [12].

• Disk–shaped condensation:

ωz ≈ ωy, ωx ≫ ωz.

The three dimensional GPE of Eq. (3.1) can be reduced to a two dimensional

GPE by assuming that the time evolution does not affect the wave function

along the x-axis. Thus, one assumes that the wave function along x is always

well described by the ground state wave function φg(x, y, z):

ψ(x, y, z, t) = ψzy(z, y, t)ψx(x) with ψx(x) =

(∫

R2

|φg(x, y, z)|2dzdy
)1/2

.

By means of this assumption the GPE of Eq. (3.1) is reduced to a two

dimensional GPE for r = (z, y)T of the same form of Eq. (3.1), where the

coupling strength is now given by

Ũ0 = U0

∫

R

ψ4
x(x)dx.

• Cigar–shaped condensation:

ωx ≫ ωz, ωy ≫ ωz.

In this case, the three dimensional GPE can be reduced to a one dimensional

GPE for r = z. As in the previous case, one assumes that the wave function

along x and y is always well described by the ground state φg(x, y, z):

ψ(x, y, z, t) = ψz(z, t)ψxy(x, y) with ψxy(x, y) =

(∫

R

|φg(x, y, z)|2dz
)1/2

.
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The GPE of Eq. (3.1) is then reduced to a one dimensional GPE of the same

form, where the coupling strength is given by

Ũ0 = U0

∫

R2

ψ4
xy(x, y)dxdy.

In the following we will consider the GPE in the following form

i~
∂ψ(r, t)

∂t
=

(
− ~

2

2m
∆r + Vext(r) +NUd|ψ(r, t)|2

)
ψ(r, t), (3.2)

for r ∈ R
d with d = 1, 2, 3 and

Ud =





U0

∫
R2 ψ

4
xydxdy, d = 1

U0

∫
R
ψ4

xdx, d = 2

U0, d = 3

. (3.3)

Furthermore, we require ∫

Rd

|ψ(r)|2dr = 1.

However, in this work, we solve Eq. (3.2) in one and two dimensions using NUd

as a coupling parameter. In particular, we do not compute Ud from Eq. (3.3), we

simply consider the value of NUd ≡ Vnl as a measure of the interaction strength.

Moreover, we do not use the classical scaling usually applied to make the GPE

dimensionless, but a qLB scaling (see Sec. 3.11 for details) which transforms Eq.

(3.1) into

i
∂ψ(r, t)

∂t
=

(
− 1

2m̃
∆r + Vext(r) + Vnl|ψ(r, t)|2

)
ψ(r, t), (3.4)

where all quantities are expressed in lattice units and m̃ = ωc∆t. Unless differently

stated, in our numerical examples Vext(r) is an harmonic potential in one and two

dimensions and is given by:

Vext(z) =
1

2
m̃ω2

z(z − z0)
2, d = 1, (3.5)

Vext(z, y) =
1

2
m̃
(
ω2

z(z − z0)
2 + ω2

y(y − y0)
2
)
, d = 2, (3.6)

where again lattice units are used.



68 Ground state computation of Bose–Einstein condensates

3.2 The ground state solution of the GPE

Following [10, 13], we derive the nonlinear eigenvalue problem from which one can

compute the ground state solution of the GPE of Eq. (3.2).

In order to find a stationary solution of Eq. (3.2), we set

ψ(r, t) = e−iµt/~φ(r), (3.7)

where µ is the chemical potential of the condensate and φ(r) is a real-valued

function independent of time. Inserting Eq. (3.7) into Eq. (3.2), we find the

following equation for φ(r):

µφ(r) =

(
− ~

2

2m
∆r + Vext(r) +NUd|φ(r)|2

)
φ(r), (3.8)

with the normalization condition
∫

Rd

|φ(r)|2dr = 1. (3.9)

This is a nonlinear eigenvalue problem under a constraint and any eigenvalue µ can

be computed from its corresponding eigenfunction φ. In particular, multiplying

Eq. (3.7) by φ(r) and integrating we obtain

µ =

∫

Rd

(
− ~

2

2m
(∆rφ(r))φ(r) + Vext(r)|φ(r)|2 +NUd|φ(r)|4

)
dr.

Thus, integrating by parts the first term of the right hand side, we have

µ =

∫

Rd

(
~

2

2m
|∇rφ(r)|2 + Vext(r)|φ(r)|2 +NUd|φ(r)|4

)
dr. (3.10)

The ground state solution of the Bose–Einstein condensate, φg(r), is a real-valued

function which can be found by minimizing Eq. (3.10) under the constraint of Eq.

(3.9). Typically, this minimizer is found by applying to Eq. (3.2) a transformation,

known as Wick rotation, which consists on “rotating” the time axis on the complex

plane so that time becomes purely imaginary [2, 33, 35, 100]. With this rotation

of the time axis, the GPE of Eq. (3.2) becomes a diffusion equation with an

absorption/emission term given by the potential.

Wick rotation consists of introducing an imaginary variable τ which is related to

the time t by the relation t = −iτ . Applying this transformation to Eq. (3.2), we

have

~
∂ψ(r, τ)

∂τ
=

(
~

2

2m
∆r − Vext(r) −NUd|ψ(r, τ)|2

)
ψ(r, τ). (3.11)

Finally, our problem is to solve Eq. (3.11) under the constraint
∫

Rd

|ψ(r, t)|2dr = 1. (3.12)



3.3 The imaginary-time quantum lattice Boltzmann model 69

Applying the qLB scaling (see Sec. 3.11) to Eq. (3.11) and hence expressing all

quantities in lattice units, Eq. (3.11) becomes

∂ψ(r, τ)

∂τ
=

(
1

2m̃
∆r − Vext(r) − Vnl|ψ(r, τ)|2

)
ψ(r, τ), (3.13)

where m̃ = ωc∆t and Vext(r) is given by Eqs. (3.5) and (3.6).

3.3 The imaginary-time quantum lattice Boltzmann

model

The model we propose is obtained by applying the Wick rotation to the quantum

lattice Boltzmann model [138, 133, 105]. We recall that the qLB is based on

a formal analogy between the Dirac quadrispinor ψ = (u1, u2, d1, d2)
T and the

discrete distribution functions of the lattice Boltzmann equation [138]. As shown

in the previous chapter, by using an operator splitting approach, the model can

be easily extended to two and three dimensions [138, 105].

In this section, we show that, by applying the Wick rotation to the qLB model,

we obtain a scheme for the computation of the ground state solution for the GPE.

For the sake of simplicity, we first describe the scheme in one and two dimensions

for the free-particle case (Vext = 0 and Vnl = 0), and subsequently discuss how to

include interactions in the model.

3.3.1 Imaginary-time qLB in one dimension

Consider the Dirac equation in one dimension. Using the Majorana representation

[87], and projecting upon chiral eigenstates, the Dirac equation reads

∂tu1,2 + c∂zu1,2 = ωcd2,1

∂td1,2 − c∂zd1,2 = −ωcu2,1,
(3.14)

where ωc = mc2/~ is the Compton frequency.

We introduce the imaginary variable τ = it and write Eq. (3.14) in terms of τ :

∂τu1,2 − ic∂zu1,2 = −iωcd2,1

∂τd1,2 + ic∂zd1,2 = iωcu2,1.
(3.15)

Let ∆τ = i∆t be the time discretization step (note that ∆τ is a purely imaginary

number) and ∆z = −ic∆τ the spatial discretization step. Integrating Eq. (3.15)

between τ and τ + ∆τ and approximating the right hand side integral by
∫ ∆τ

0
d2,1

(
z − s

∆z

δτ
, τ + s

)
ds ∼ 1

2
∆τ(d2,1(z − ∆z, τ + ∆τ) + d2,1(z, τ)),

∫ ∆τ

0
u2,1

(
z + s

∆z

δτ
, τ + s

)
ds ∼ 1

2
∆τ(u2,1(z + ∆z, τ + ∆τ) + u2,1(z, τ)),
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we obtain

u1,2(z + ∆z, τ + ∆τ) − u1,2(z, τ) =

− i
ωc

2
(d2,1(z − ∆z, τ + ∆τ) + d2,1(z, τ))∆τ,

d1,2(z − ∆z, τ + ∆τ) − d1,2(z, τ) =

i
ωc

2
(u2,1(z + ∆z, τ + ∆τ) + u2,1(z, τ))∆τ.

(3.16)

By defining

ωc∆t ≡ m̃,

we obtain

û1,2 − u1,2 = −im̃
(
d̂2,1 + d2,1

2

)
,

d̂1,2 − d1,2 = im̃

(
û2,1 + u2,1

2

)
,

(3.17)

where û1,2 = u1,2(z + ∆z, τ + ∆τ), d̂1,2 = d1,2(z − ∆z, τ + ∆τ), u1,2 = u1,2(z, τ)

and d1,2 = d1,2(z, τ).

The system of Eq. (3.17) can be algebraically solved for û1,2 and d̂1,2 and yields

the imaginary-time qLB model in explicit form:

û1,2 = au1,2 − bd2,1,

d̂1,2 = ad1,2 + bu2,1,
(3.18)

where

a =
1 + m̃2/4

1 − m̃2/4
, b =

im̃

1 − m̃2/4
. (3.19)

Note that |a|2 + |b|2 6= 1, hence the collision matrix is not unitary. This implies

that the model does not verify the normalization condition, as it happens for the

real-time version of the scheme This is usual for models which compute the ground

state solution by solving dynamic equations in fictitious time, such as Eq. (3.11).

Hence, the normalization condition of Eq. (3.12) must be imposed at each time

step by directly normalizing the wave function [35, 10, 13].

In analogy with the real-time qLB, we define the wave functions

φ±1,2 =
1√
2
eωcτ (u1,2 ± id2,1). (3.20)

Since u1,2 and d1,2 fulfill Eq. (3.15), φ±1,2 satisfy the following equations

∂τφ
+
1,2 − ic∂zφ

−
1,2 = 0, (3.21)

∂τφ
−
1,2 − ic∂zφ

+
1,2 = 2ωcφ

−
1,2. (3.22)
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By taking the z derivative of Eq. (3.21), multiplying Eq. (3.22) by i and deriving

it with respect to τ and then subtracting the resulting equations, we obtain the

following equation for φ−1,2

~∂τφ
−
1,2 =

~
2

2m
∂2

zφ
−
1,2 +

~
2

2ωc
∂2

τφ
−
1,2. (3.23)

The second order time derivative term drives an instability which tends to amplify

φ−1,2 while preserving its spatial profile. However, the normalization step tames the

effect of this term. We will clarify this point in the following, through the analysis

of the dispersion relation of the governing equation for φ−1,2 when a potential is

switched on (see Sec. 3.5). Here, we just observe that, for the free-particle case

(Vext = 0 and Vnl = 0), φ−1,2 obey a diffusion equation with the correct diffusion

coefficient (see Eq. (3.13)).

The wave functions φ−1,2 are the ones whose dynamics tends to the ground state

solution of the GPE, while the wave functions φ+
1,2 are “ghost” variables, which

are initialized at zero and remain negligible all along the simulation, as compared

to φ−1,2.

When a potential is included, the analysis of the governing equation for φ−1,2 is not

as simple as in the free-particle case. Hence, in the following subsection, we show

how to include the potential effect in the model, while in Sec. 3.5 we discuss in a

more detail the equation satisfied by φ−1,2 in the interacting case.

3.3.2 Adding a potential to the imaginary-time qLB

As we mentioned above, the wave functions φ−1,2 tends to the ground state solution,

hence, in the imaginary-time qLB, the total potential of the GPE of Eq. (3.2) in

one spatial dimension is defined as follows:

V (x, τ) = Vext(x) + Vnl|φ−|2, (3.24)

where |φ−|2 ≡ |φ−1 |2 + |φ−2 |2 To include the effect of this potential into the model,

we consider the Dirac equation with a potential and apply to this equation the

Wick rotation. This yields

∂τu1,2 − ic∂zu1,2 = −iωcd2,1 + gu1,2

∂τd1,2 + ic∂zd1,2 = iωcu2,1 + gd1,2,
(3.25)

where g = qV/~ and q is the particle electric charge.

Applying to Eqs. (3.25) the same discretization already described for the free

particle case, we obtain the following scheme

û1,2 = agu1,2 − bgd2,1,

d̂1,2 = agd1,2 + bgu2,1,
(3.26)
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where

ag =
(1 − g̃/2)(1 + g̃/2) + m̃2/4

(1 − g̃/2)2 − m̃2/4
, bg =

im̃

(1 − g̃/2)2 − m̃2/4
, (3.27)

and m̃ = ωc∆t, g̃ = g∆t, û1,2 = u1,2(z+ ∆z, τ + ∆τ), d̂1,2 = d1,2(z−∆z, τ + ∆τ),

u1,2 = u1,2(z, τ) and d1,2 = d1,2(z, τ). Note that g is evaluated at time τ , i. e. there

is no iteration over the nonlinearity. For real-time computations this might hamper

norm-conservation, but in the case of the present ground-state computations this

is not an issue because the norm is not conserved in time due to the potential

interactions.

3.4 Extension to two spatial dimensions

As for the real-time qLB, we describe how to extend the model to two spatial

dimensions (extension to three dimensions is a straightforward generalization of

this procedure) in the absence of a potential. The inclusion of a potential is

completely analogous to the one dimensional case.

The extension to higher dimensions is based on an operator splitting approach

and follows the strategy already used to extend the real-time qLB model to the

two and three-dimensional case [138, 105] (see Chapter 2).

Let us consider the two dimensional Dirac equation in Majorana form [87], so that

all spin matrices have real coefficients. Furthermore, we apply to the equation a

transformation in order to diagonalize the matrix of the ∂zψ term. With these

assumptions, the equation reads

[∂t + cAz∂z + cAy∂y]ψ(z, y, t) = ωcCψ(z, y, t), (3.28)

where

Az =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 Ay =




0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0


 C =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 .

Applying to Eq. (3.28) the Wick rotation, we obtain
[
∂τ + cÃz∂z + cÃy∂y

]
ψ(z, y, τ) = ωcC̃ψ(z, y, τ), (3.29)

where

Ãz =




−i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 i


 Ãy =




0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0


 C̃ =




0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0


 .
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To solve Eq. (3.29) we use the same sequential splitting technique already intro-

duced for the real-time qLB [105]. In particular, in the interval [(n− 1)∆τ, n∆τ ],

we consider the sequence of the two problems:

{
(∂τ + cÃz∂z)ψ

n
1 = ωc

2 C̃ψ
n
1

ψn
1 [(n− 1)∆τ ] = ψn−1

2 [(n− 1)∆τ ],
(3.30)

and {
(∂τ + cÃy∂y)ψ

n
2 = ωc

2 C̃ψ
n
2

ψn
2 [(n− 1)∆τ ] = ψn

1 (n∆τ),
(3.31)

for n = 1, 2, . . . .

To start the procedure we set ψ0
2(0) = ψ0 and, at time n∆τ , the approximated

solution is given by ψn
2 (x, y, n∆τ).

After this splitting, the two dimensional problem of Eq. (3.29) is transformed into

a sequence of two one-dimensional problems. In particular, problem of Eq. (3.30)

is analogous to the system of Eq. (3.15), with the only difference being a factor

1/2 in front of matrix C̃. Hence, to solve Eq. (3.30), the scheme of Eq. (3.18) (or

scheme of Eq. (3.26) if the potential is switched on) is used, where a and b (or

ag and bg) are slightly changed due to the factor 1/2. In particular, a and b are

turned into

â =
1 + m̃2

2/4

1 − m̃2
2/4

, b̂ =
im̃2

1 − m̃2
2/4

, (3.32)

while ag and bg become

âg =
(1 − g̃2/2)(1 + g̃2/2) + m̃2

2/4

(1 − g̃2/2)2 − m̃2
2/4

, b̂g =
im̃2

(1 − g̃2/2)2 − m̃2
2/4

, (3.33)

with m̃2 = m̃/2 and g̃2 = g̃/2.

In order to solve problem of Eq. (3.31) by means of a qLB scheme, the equation

must be transformed into an equivalent one where matrix Ãy is diagonal. In

practice, we apply to Ãy, C̃ and ψ the transformation Y :

Y =
1√
2




−1 0 0 1

0 −1 1 0

1 0 0 1

0 1 1 0


 .

After this transformation, writing explicitly Eq. (3.31), we obtain

∂τu
y
1,2 − ic∂yu

y
1,2 = i

ωc

2
d1,2

∂τd
y
1,2 + ic∂yd

y
1,2 = −iωc

2
u1,2,

(3.34)
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where we indicate with uy
1,2 and dy

1,2 the components of the transformed quadrispinor

ψy = Yψ.

Form Eq. (3.34), using the same discretization scheme already described in the

one dimensional case, we obtain

ûy
1,2 = âuy

1,2 + b̂dy
1,2

d̂y
1,2 = âdy

1,2 − b̂uy
1,2,

with â and b̂ as in Eq. (3.32) (or as in Eq. (3.33) if we include the potential).

Finally, we return to the original wave function via the inverse transformation

ψ = Y −1ψy.

As in one dimension, we define the wave functions φ±1,2

φ±1,2 =
1√
2
eωcτ (u1,2 ± id2,1).

Since u1,2 and d1,2 fulfill Eq. (3.29), we have

∂τφ
+
1 − ic∂zφ

−
1 − c∂yφ

−
2 = 0, (3.35)

∂τφ
+
2 − ic∂zφ

−
2 − c∂yφ

−
1 = 0, (3.36)

and

∂τφ
−
1 − ic∂zφ

+
1 + c∂yφ

+
2 = 2ωcφ

−
1 , (3.37)

∂τφ
−
2 − ic∂xφ

+
2 + c∂yφ

+
1 = 2ωcφ

−
2 . (3.38)

By deriving Eq. (3.35) with respect to z, multiplying Eq. (3.36) by i and deriving

it with respect to y, multiplying Eq. (3.37) by −i and deriving it with respect to

τ and finally summing up the resulting equations, we obtain

~∂τφ
−
1 =

~
2

2m
(∂2

zφ
−
1 + ∂2

yφ
−
1 ) +

~
2

2ωc
∂2

τφ
−
1 .

Similarly, multiplying Eq. (3.35) by i and deriving it with respect to y, deriving

Eq. (3.36) with respect to z, multiplying Eq. (3.38) by −i and deriving it with

respect to τ and finally summing up the resulting equations, we obtain

~∂τφ
−
2 =

~
2

2m
(∂2

zφ
−
2 + ∂2

yφ
−
2 ) +

~
2

2ωc
∂2

τφ
−
2 .

In conclusion, we obtain in two dimensions the same result we have derived in

one dimension (see Eq. (3.23)). The second order time derivative term represents

once again an instability which is kept under control by the normalization step.

The inclusion of the potential yields an equation for φ−1,2, whose interpretation

requires a more systematic analysis. To this purpose, we shall inspect the disper-

sion relation in order to verify that the model is solving the correct equation (see

Sec. 3.5).
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3.5 Dispersion relation for the equation governing φ−

In this section, we derive the equation satisfied by φ−1,2 and we analyze it by

computing its dispersion relation. We will perform this computation only in one

dimension, the two dimensional generalization is, however, straightforward. In the

following the indices 1, 2 on φ−1,2 shall be dropped because the dynamics of the two

wave functions is exactly the same.

In order to check that φ− has a correct asymptotic behavior, we derive the dis-

persion relation of the equation we intend to be solved by φ−. Hence, suppose

that φ− is a solution of the imaginary–time GPE of Eq. (3.11). Let us rewrite

Eq. (3.11) as

~∂τφ
− =

~
2

2m
∂2

zφ
− − V φ−, (3.39)

where

V (z, τ) =
1

2m
ω2

zz
2 + Vnl|φ−|2. (3.40)

Note that the computation of the dispersion relation is not a rigorous procedure

in this case because V is space and time dependent. However, this analysis can

be useful in the limit where the potential does not change in time (because a

stationary solution is reached) and is changing very slowly in space (at least in

the region where φ− 6= 0). Hence, locally, we can think of V as of a constant and

compute the dispersion relation in the “WKB” spirit.

Assuming φ− ∼ ei(kz−ωτ)/~ and inserting this into Eq. (3.39), we obtain

ω = −i
(
k2

2m
+ V

)
. (3.41)

This is the “correct” dispersion relation we will refer to.

However, φ− is not solving exactly Eq. (3.39). To derive the governing equation

for φ− we need to start from the Dirac equation given in Eq. (3.25) fulfilled by

u1,2 and d1,2. Dropping indices, Eq. (3.25) reads

∂τu− ic∂zu = −iωcd− (V/~)u

∂τd+ ic∂zd = iωcu− (V/~)d,

where V is defined as in Eq. (3.40).

From u and d we define φ± = exp(ωcτ)(u± id)/
√

2 and one can easily show that

for φ± the following equations yield:

∂τφ
+ − ic∂zφ

− = −(V/~)φ+, (3.42)

∂τφ
− − ic∂zφ

+ = 2ωcφ
− − (V/~)φ−, (3.43)
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On the assumption V ∼ constant, we derive Eq. (3.42) with respect to z and Eq.

(3.43) with respect to τ . We then multiply Eq. (3.42) by c and Eq. (3.43) by i

and subtract the resulting equations, to finally obtain:

∂τφ
− =

~

2m
∂2

zφ
− +

1

2ωc
∂2

τφ
− +

V

2mc2
(∂τφ

− + ic∂zφ
+). (3.44)

From Eq. (3.43), we have

∂τφ
− + ic∂zφ

+ = 2∂τφ
− − 2ωcφ

− + V φ−, (3.45)

and inserting Eq. (3.45) into Eq. (3.44) we obtain the governing equation for φ−:

~∂τφ
− =

~
2

2m
∂2

zφ
− − V φ− +

~

2ωc

(
∂2

τφ
− + 2

V

~
∂τφ

− +
V 2

~2
φ−
)
. (3.46)

Assuming φ− ∼ ei(kz−ωτ)/~ and inserting this into Eq. (3.46), we obtain

ω2 − 2iω(mc2 − V ) + k2c2 + 2mc2V − V 2 = 0. (3.47)

Solving Eq. (3.47), we obtain

ω± = i(mc2 − V ) ± i
√
k2c2 +m2c4.

Hence, for small values of k, we obtain

ω+ ≈ −i
(
V − k2

2m
− 2mc2

)
, ω− ≈ −i

(
k2

2m
+ V

)
.

In conclusion, φ− is composed by two modes, ω− is the correct stable mode we

would expect according to Eq. (3.41), while ω+ is a second mode, whose effect

consists of a uniform amplification of φ− and is dominated by 2mc2 at long wave-

lengths k2

2m ≪ V . As previously discussed, the normalization step compensates

this effect. In the sequel, we shall validate qLB for ground-state computations

by comparing it against well-established methods such as Crank-Nicolson time-

marching and Backward Euler Finite Difference scheme.

3.6 Crank-Nicolson and Backward Euler Finite Differ-

ence schemes

Let us rewrite Eq. (3.13) for a real–valued function φ(r, τ) (since the ground state

wave function is real-valued):

∂τφ(r, τ) =

(
1

2m̃
∆r − Vext(r) − Vnl|φ(r, τ)|2

)
φ(r, τ), (3.48)
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with the normalization condition
∫

Rd

|φ(r, τ)|2dr = 1. (3.49)

Here we use the same scaling imposed by the qLB model (see Sec. 3.11 for details).

The external potential is given by Eqs. (3.5) and (3.6) in one and two dimensions

respectively.

In order to make a comparison and validate our results, Eq. (3.48) is solved by

using the classical Crank-Nicolson (CN) and Backward Euler Finite Difference

(BEFD) schemes in the same computational domain and with the same set of

parameters of the qLB.

We note that to guarantee that φ(r, τ) fulfills condition of Eq. (3.49) a normal-

ization step is needed also for CN and BEFD schemes [10].

3.6.1 One dimensional CN and BEFD schemes

Let us consider a computational domain [zmin, zmax] subdivided into N subinter-

vals of width h = (zmax − zmin)/N . Furthermore, let k be the time step, zi the

nodal points and τn the discrete instants of time:

zi = zmin + ih, τn = nk, i = 0, . . . , N, n = 0, 1, 2, . . . .

We indicate with φn
i the numerical approximation of φ(zi, τn) and with φ̃n

i the

non-normalized φn
i . With this notation, the CN scheme reads

φ̃n+1
i − φn

i

k
=

1

4m̃h2

(
φ̃n+1

i+1 − 2φ̃n+1
i + φ̃n+1

i−1 + φn
i+1 − 2φn

i + φn
i−1

)

− Vext(zi)

2

(
φ̃n+1

i + φn
i

)
− Vnl

2
|φn

i |2
(
φ̃n+1

i + φn
i

)
,

while the BEFD scheme is given by

φ̃n+1
i − φn

i

k
=

1

2m̃h2

(
φ̃n+1

i+1 − 2φ̃n+1
i + φ̃n+1

i−1

)

− Vext(zi)φ̃
n+1
i − Vnl|φn

i |2φ̃n+1
i ,

for i = 1, . . . , N − 1 and n = 0, 1, 2, . . . .

Dirichlet boundary conditions are imposed for both schemes

φ̃n+1
0 = φ̃n+1

N = 0,

and the normalization step is performed as follows

φn+1
i =

φ̃n+1
i

‖φ̃n+1‖
,

for i = 0, . . . , N and n = 0, 1, 2, . . . .
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3.6.2 Two dimensional CN and BEFD schemes

Let us consider a squared computational domain [zmin, zmax] × [ymin, ymax] ≡
[lmin, lmax]× [lmin, lmax] and let us assume, for the sake of simplicity, hx = hy ≡ h.

Hence, we subdivide [lmin, lmax] into Nx = Ny ≡ N subintervals of width h.

Furthermore, let be k the time step. We indicate with (zi, yj) the nodal points of

the lattice and with τn the discrete instants of time:

zi = lmin + ih, yj = lmin + jh, τn = nk, i, j = 0, . . . , N, n = 0, 1, 2, . . . .

Let be φn
i,j the numerical approximation of φ(zi, yj , τn) and φ̃n

i,j the non-normalized

φn
i,j . With this notation, the normalized CN scheme in two dimensions reads:

φ̃n
i,j − φn

ij

k
=

1

4m̃h2

(
φ̃n+1

i+1,j − 2φ̃n+1
i,j + φ̃n+1

i−1,j + φn
i+1,j − 2φn

i,j + φn
i−1,j

)

+
1

4m̃h2

(
φ̃n+1

i,j+1 − 2φ̃n+1
i,j + φ̃n+1

i,j−1 + φn
i,j+1 − 2φn

i,j + φn
i,j−1

)

− Vext(zi, yj)

2

(
φ̃n+1

i,j + φn
i,j

)
− Vnl

2
|φn

i,j |2
(
φ̃n+1

i,j + φn
i,j

)
,

while the BEFD scheme is given by

φ̃n
i,j − φn

ij

k
=

1

2m̃h2

(
φ̃n+1

i+1,j − 2φ̃n+1
i,j + φ̃n+1

i−1,j

)

+
1

2m̃h2

(
φ̃n+1

i,j+1 − 2φ̃n+1
i,j + φ̃n+1

i,j−1

)

− Vext(zi, yj)φ̃
n+1
i,j − Vnl|φn

i,j |2φ̃n+1
i,j ,

for i, j = 1, . . . , N − 1 and n = 0, 1, 2, . . . .

Dirichlet boundary conditions are imposed for both schemes

φ̃n+1
0,j = φ̃n+1

i,0 = φ̃n+1
N,j = φ̃n+1

i,N = 0, i, j = 0, . . . , N, n = 0, 1, 2, . . . ,

and the normalization step is performed as follows

φn+1
i,j =

φ̃n+1
i,j

‖φ̃n+1‖
,

for i, j = 0, . . . , N and n = 0, 1, 2, . . . .

3.7 Thomas–Fermi approximation

It is useful to discuss the solution of the Gross–Pitaevskii equation in the so-called

Thomas–Fermi approximation, which corresponds to the strong-interaction limit

in which kinetic energy contributions can be neglected [39]. This limit is reached
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by setting large values of the parameter NUd.

Consider the time–independent GPE of Eq. (3.8), by ignoring the kinetic energy

term, we have

µTFφ(r) =
(
Vext(r) +NUd|φ(r)|2

)
φ(r),

where we indicate µ with µTF to recall that this is the Thomas–Fermi chemical

potential.

In this case, the solution of the GPE is trivial and the wave function φ(r) satisfies

|φ(r)|2 =

{
1

NUd
(µTF − Vext(r)) , if µ > Vext(r),

0, otherwise.
(3.50)

The chemical potential given by this approximation, µTF , can be found by impos-

ing the normalization condition of Eq. (3.9).

3.7.1 Thomas–Fermi chemical potential in one dimension

We recall that, in one dimension, the harmonic external potential is given by

Vext(z) =
1

2
mω2

z(z − z0)
2. (3.51)

The normalization condition of Eq. (3.9) for the Thomas–Fermi wave function of

Eq. (3.50) is ∫

µTF−Vext(z)>0
(µTF − Vext(z)) dz = NU1.

Including the definition of Vext(z) of Eq. (3.51), the condition µTF − Vext(z) > 0

implies

z0 − C < z < z0 + C, where C =

(
2µTF

mω2
z

)1/2

.

Hence, the normalization condition can be written as

∫ z0+C

z0−C
µTFdz −

1

2
mω2

z

∫ z0+C

z0−C
(z − z0)

2dz = NU1.

Upon integrating we obtain

µTF =

(
3

4
NU1

)2/3(mω2
z

2

)1/3

.

Using the qLB scaling (see Sec. 3.11), we get

µTF =

(
3

4
Vnl

)2/3(m̃ω2
z

2

)1/3

, (3.52)

where each quantity is expressed in lattice units.
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3.7.2 Thomas–Fermi chemical potential in two dimensions

Let us consider a two dimensional harmonic potential with ωz = ωy ≡ ω

Vext(z, y) =
1

2
mω2(z2 + y2), (3.53)

in this case, for the sake of simplicity, we assume (z0, y0) = (0, 0), a choice which

does not affect the computation of µTF .

In order to impose the normalization condition to the Thomas–Fermi wave func-

tion of Eq. (3.50), we need to solve

1

2
mω2(z2 + y2) < µTF .

In polar coordinates
(
ρ = (z2 + y2)1/2, θ = arctan(y/z)

)
we have

1

2
mω2ρ2 < µTF ,

from which

0 < ρ <

(
2µTF

mω2

)1/2

≡ C.

The normalization condition is then given by

∫ C

0
[µTF − Vext(ρ)] ρdρ =

NU2

2π
.

Integrating we obtain

µTF =

(
NU2

mω2

π

)1/2

.

Using the qLB scaling (see Sec. 3.11), we get

µTF =

(
Vnlm̃ω

2

π

)1/2

, (3.54)

where each quantity is expressed in lattice units.

3.8 Numerical results

In this section we compare the qLB model against the numerical results obtained

by the normalized CN and BEFD schemes, as well as via the Thomas–Fermi

approximation.
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3.8.1 Numerical results in one dimension

Recall that in one dimension and using the qLB scaling (see Eq. (3.13) and

Sec. 3.11 for details), the potential is given by

V (z, τ) = Vext(z) + Vnl|φ(z, τ)|2 =
1

2
m̃ω2

z(z − z0)
2 + Vnl|φ(z, τ)|2.

As initial condition, we take a Gaussian packet centered about z0 and with initial

spreading ∆0

φ(z, 0) = (2π∆2
0)

−1/4 exp

(
−(z − z0)

2

4∆2
0

)
.

By working in lattice units (for qLB, CN and BEFD schemes), we fix a computa-

tional domain given by the interval [0, nz] = [0, 1024] and set z0 = 512. Moreover,

we set ∆0 = 16, ωz = 1/128 and m̃ = 1/8. For the qLB the discretization steps

are fixed at 1 and Dirichlet boundary conditions are used (i. e. φ− = 0 on the

boundary). For CN and BEFD schemes, instead, we set h = 0.1 and k = 0.1. The

models asymptotically tend to a stationary solution. Hence, for all models, the

simulation is stopped whenever:

max
i=0,...,N

|φn+1
i − φn

i | < ε, (3.55)

where N is the number of nodal points (and it is smaller for qLB than CN and

BEFD) and ε = 10−8.

Our results are compared at varying the parameter Vnl. In Tab. 3.1 the limit value

of µ is reported for qLB, CN and BEFD models. Moreover, the Thomas–Fermi

chemical potential µTF given by Eq. (3.52) is also shown. We observe that, for

Vnl ≥ 40, the qLB chemical potential becomes slightly smaller than the Thomas–

Fermi chemical potential, which should always be a lower bound instead. However,

by increasing the accuracy of the qLB model (i. e. halving the discretization step)

the values of µqLB becomes larger than µTF (see Sec. 3.10 for details), as they

should. In Tab. 3.2, the maximum value of φ at the end of the simulation (φg(z0))

is reported for all the three models.

In Fig. 3.1, we compare the ground-state wave function φg(z) given by the models

for some values of Vnl, in Fig. 3.2 the same comparison is reported for the chemical

potential decay profiles. In Fig. 3.3, we compare the ground state profile given

by the qLB model with the wave function of the Thomas–Fermi approximation of

Eq. (3.50) for some values of Vnl. Finally, in Fig. 3.4, we report the ground-state

profiles given by qLB varying Vnl.
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Table 3.1: Ground state chemical potential µ for qLB, CN and BEFD models.

Numerical results are also compared with the Thomas–Fermi chemical potential

(see Eq. (3.52)). The results are computed for different values of Vnl, the other

parameters are set as ωz = 1/128, m̃ = 1/8, ∆0 = 16, nz = 1024.

Vnl µ qLB µ CN µ BEFD µ TF

0 0.003906 0.003906 0.003906 –

1 0.013678 0.013740 0.013740 0.012898

5 0.037978 0.038078 0.038071 0.037714

10 0.060007 0.060112 0.060112 0.059868

20 0.095084 0.095201 0.095201 0.095034

30 0.124540 0.124663 0.124663 0.124530

40 0.150843 0.150971 0.150971 0.150858

50 0.175024 0.175154 0.175154 0.175055

60 0.197637 0.197769 0.197769 0.197680

70 0.219023 0.219157 0.219157 0.219075

80 0.239412 0.239548 0.239548 0.239472

Table 3.2: Maximum value reached by the ground state profile φg(z0) for qLB,

CN and BEFD models. The results are computed for different values of Vnl, the

other parameters are set as ωz = 1/128, m̃ = 1/8, ∆0 = 16, nz = 1024.

Vnl φg(z0) qLB φg(z0) CN φg(z0) BEFD

0 0.1316 0.1327 0.1328

1 0.1105 0.1109 0.1109

5 0.0867 0.0868 0.0867

10 0.0773 0.0774 0.0774

20 0.0689 0.0689 0.0689

30 0.0644 0.0644 0.0644

40 0.0614 0.0614 0.0614

50 0.0591 0.0592 0.0592

60 0.0574 0.0574 0.0574

70 0.0559 0.0559 0.0559

80 0.0547 0.0547 0.0547
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Figure 3.1: Ground state profile φg(z) for different values of Vnl. Simulation

parameters are set as: m̃ = 1/8, ∆0 = 16, ωz = 1/128, nz = 1024. (a) Vnl = 1,

(b) Vnl = 10, (c) Vnl = 50, (d) Vnl = 80. Solid lines: qLB model; dashed lines: CN

model; dotted lines: BEFD model. The deviations of qLB from CN and BEFD

are not visible on this scale, hence in (e) and (f) the differences |(φg)qLB −(φg)CN |
and |(φg)qLB − (φg)BEFD| computed at the qLB nodal points are plotted. Space

is expressed in lattice units.



84 Ground state computation of Bose–Einstein condensates

(a) (b)

0 200 400 600
0.012

0.014

0.016

0.018

0.02

0.022

0.024

τ

µ(
τ)

qLB
CN
BEFD

V
nl

 = 1

0 100 200 300 400 500

0.05

0.1

0.15

0.2

τ

µ(
τ)

qLB
CN
BEFD

V
nl

 = 10

(c) (d)

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

τ

µ(
τ)

qLB
CN
BEFD

V
nl

 = 50

0 100 200 300 400
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

τ

µ(
τ)

qLB
CN
BEFD

V
nl

 = 80

Figure 3.2: Chemical potential decay for different values of Vnl. Simulation pa-

rameters are set as: m̃ = 1/8, ∆0 = 16, ωz = 1/128, nz = 1024. (a) Vnl = 1, (b)

Vnl = 10, (c) Vnl = 50, (d) Vnl = 80. Solid lines: qLB model; dashed lines: CN

model; dotted lines: BEFD model. Time and chemical potential are expressed in

lattice units.
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Figure 3.3: Ground state profile φg(z) for different values of Vnl. Simulation

parameters are set as: m̃ = 1/8, ∆0 = 16, ωz = 1/128, nz = 1024. (a) Vnl = 10,

(b) Vnl = 50, (c) Vnl = 80. Solid lines: qLB model; dashed lines: Thomas–Fermi

approximation. Space is expressed in lattice units. The tails associated with the

kinetic energy contribution are well visible.
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Figure 3.4: Ground state profiles given by the qLB model for different values of

Vnl. Simulation parameters are set as: m̃ = 1/8, ∆0 = 16, ωz = 1/128, nz = 1024.

For increasing values of Vnl, curves goes from the top toward the bottom. Vnl

takes the following values: 0, 1, 5, 10, 50 and 80. Space is expressed in lattice

units.

3.8.2 Numerical results in two dimensions

In this section we present results referring to the following two-dimensional po-

tential:

V (z, y, τ) = Vext(z, y) + Vnl|φ(z, y, τ)|2

=
1

2
m̃[ω2

z(z − z0)
2 + ω2

y(y − y0)
2] + Vnl|φ(z, y, τ)|2.

As initial condition, we consider a Gaussian packet centered about (z0, y0) and

with initial spreads ∆0z, ∆0y along z and y respectively:

φ(z, y, 0) = (2π∆0z∆0y)
−1/2 exp

(
−(z − z0)

2

4∆2
0z

)
exp

(
−(y − y0)

2

4∆2
0y

)
. (3.56)

Let [0, nz] × [0, ny] = [0, 512] × [0, 512] be our domain and (z0, y0) = (256, 256),

furthermore we fix ∆0z = ∆0y = 16, ωz = ωy = 1/128 and m̃ = 1/8. Discretization

steps for the qLB model are again fixed to unity, while for CN and BEFD we set

h = 0.5 and k = 0.1. Dirichlet boundary conditions are imposed in all qLB

simulations. The stop condition for the simulation is

max
i,j=0,...,N

|φn+1
i,j − φn

i,j | < ε, (3.57)
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with ε = 10−9.

In Tab. 3.3, the limit value of µ is reported for the three models. Moreover,

the Thomas–Fermi chemical potential µTF given by Eq. (3.54) is also shown.

In Tab. 3.4, the maximum value of φ at the end of the simulation (φg(z0, y0))

computed by qLB, CN and BEFD is reported.

In Fig. 3.5, we compare the ground-state wave function φg(z, y) taken at y = y0

given by the models for some values of Vnl, in Fig. 3.6 the same comparison is

reported for the chemical potential decay profiles. In Fig. 3.7, we compare the

ground state profile taken at y = y0 given by the qLB model with the wave

function of the Thomas–Fermi approximation of Eq. (3.50) for some values of Vnl.

Finally, in Fig. 3.8, we report the ground-state profiles given by qLB varying Vnl

at the cross section y = y0.

Table 3.3: Ground state chemical potential µ for qLB, CN and BEFD models.

Numerical results are also compared with the Thomas–Fermi chemical potential

(see Eq. (3.54)). The results are computed for different values of Vnl, the other

parameters are set as ωz = ωy = 1/128, m̃ = 1/8, ∆0z = ∆0y = 16, nz = ny = 512.

Vnl µ qLB µ CN µ BEFD µ TF

0 0.007816 0.007812 0.007812 –

10 0.009219 0.009250 0.009250 0.004928

100 0.017489 0.017597 0.017597 0.015584

500 0.035802 0.035949 0.035949 0.034846

1000 0.049964 0.050125 0.050125 0.049280

2000 0.070161 0.070338 0.070338 0.069692

3000 0.085721 0.085905 0.085905 0.085355

4000 0.098860 0.099050 0.099050 0.098560

5000 0.110447 0.110642 0.110642 0.110193

10000 0.155967 0.156176 0.156176 0.155837

These data witness a satisfactory agreement between qLB and the reference

CN and BEFD solutions, while CN and BEFD are in excellent agreement with

each other (this is due to the high resolution adopted in these reference cases).

As a second example, we consider an external potential where a Gaussian

stirring term (representing, for example, a far-blue detuned laser beam [30]) is

added to the harmonic trap:

Vext(z, y) =
1

2
m̃
[
ω2

z(z − z0)
2 + ω2

y(y − y0)
2
]
+ ω0e

−δ{[(z−z0)−r0]2+(y−y0)2}. (3.58)

A similar example is given in [10]. As mentioned in [10], in the time-dependent
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Figure 3.5: Ground state profile φg(z, y) taken at y = y0 for different values

of Vnl. Simulation parameters are set as: m̃ = 1/8, ∆0z = ∆0y = 16, ωz =

ωy = 1/128, nz = ny = 512. (a) Vnl = 10, (b) Vnl = 100, (c) Vnl = 1000,

(d) Vnl = 10000. Solid lines: qLB model; dashed lines: CN model; dotted lines:

BEFD model. The deviations of qLB from CN and BEFD are not visible on

this scale, hence in (e) and (f) the differences |(φg)qLB(z, y0)− (φg)CN (z, y0)| and

|(φg)qLB(z, y0)− (φg)BEFD(z, y0)| computed at the qLB nodal points are plotted.

Space is expressed in lattice units.
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Figure 3.6: Chemical potential decay for different values of Vnl. Simulation pa-

rameters are set as: m̃ = 1/8, ∆0z = ∆0y = 16, ωz = ωy = 1/128, nz = ny = 512.

(a) Vnl = 10, (b) Vnl = 100, (c) Vnl = 1000, (d) Vnl = 10000. Solid lines: qLB

model; dashed lines: CN model; dotted lines: BEFD model. Time and chemical

potential are expressed in lattice units.
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Figure 3.7: Ground state profile φg(z, y) taken at y = y0 for different values of Vnl.

Simulation parameters are set as: m̃ = 1/8, ∆0z = ∆0y = 16, ωz = ωy = 1/128,

nz = ny = 512. (a) Vnl = 1000, (b) Vnl = 5000, (c) Vnl = 10000. Solid lines: qLB

model; dashed lines: Thomas–Fermi approximation. Space is expressed in lattice

units. The tails associated with the kinetic energy contribution are well visible.
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Table 3.4: Maximum value reached by the ground state wave function φg(z0, y0)

for qLB, CN and BEFD models. The results are computed for different values of

Vnl, the other parameters are set as ωz = ωy = 1/128, m̃ = 1/8, ∆0z = ∆0y = 16,

nz = ny = 512.

Vnl φg(z0, y0) qLB φg(z0, y0) CN φg(z0, y0) BEFD

0 0.01723 0.01763 0.01763

10 0.01627 0.01656 0.01656

100 0.01218 0.01226 0.01225

500 0.00835 0.00837 0.00836

1000 0.00702 0.00704 0.00703

2000 0.00590 0.00591 0.00591

3000 0.00533 0.00534 0.00534

4000 0.00496 0.00497 0.00496

5000 0.00469 0.00470 0.00470

10000 0.00395 0.00395 0.00395
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Figure 3.8: Ground state profiles given by the qLB model for different values of Vnl.

Simulation parameters are set as: m̃ = 1/8, ∆0z = ∆0y = 16, ωz = ωy = 1/128,

nz = ny = 512. For increasing values of Vnl, curves go from the top to bottom.

Vnl takes the following values: 0, 10, 100, 500, 1000, 5000 and 10000. Space is

expressed in lattice units.
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GPE, such a potential (where the stirring Gaussian term is itself time-dependent

through the motion of the center r0(t)) is used to generate vortices in BEC [30, 73].

The initial condition is still given by the Gaussian packet given in Eq. (3.56).

We consider the computational domain [0, nz] × [0, ny] = [0, 512] × [0, 512] and

z0 = y0 = 256 and we choose m̃ = 1/8, ∆0z = ∆0y = 22.63, ωz = ωy = 1/128,

Vnl = 1000, ω0 = 8/128, r0 = 50 and δ = 1/512. For CN and BEFD schemes,

we set h = 0.5 and k = 0.1, while for the qLB scheme the discretization steps are

set to unit value. With these parameters, the ground state chemical potentials

computed by qLB, CN and BEFD schemes are as follows:

µqLB = 0.052238, µCN = 0.052408, µBEFD = 0.052408.

In Fig. 3.9 a comparison between the chemical potential decays obtained by qLB,

CN and BEFD models is reported. Finally, in Fig. 3.10, the ground state surfaces

computed by qLB, CN and BEFD models are shown by plotting the isolines taken

at different values of |φg(z, y)|. Again, a satisfactory agreement between qLB and

the reference CN and BEFD results is generally observed.
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Figure 3.9: Chemical potential decay profiles given by qLB, CN and BEFD models

with the external potential of Eq. (3.58). Simulation parameters are set as:

m̃ = 1/8, ∆0z = ∆0y = 22.63, ωz = ωy = 1/128, nz = ny = 512, Vnl = 1000,

ω0 = 8/128, r0 = 50 and δ = 1/512. Solid line: qLB; dashed line: CN; dotted

line: BEFD. Time and chemical potential are expressed in lattice units.
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Figure 3.10: Ground state contour plots computed by qLB, CN and BEFD models

with the external potential of Eq. (3.58). Simulation parameters are set as:

m̃ = 1/8, ∆0z = ∆0y = 22.63, ωz = ωy = 1/128, nz = ny = 512, Vnl = 1000,

ω0 = 8/128, r0 = 50 and δ = 1/512. (a) qLB model, (b) CN model, (c) BEFD

model. The isolines correspond to the following values of φg(x, y): 0.001, 0.002,

0.003, 0.004, 0.005, 0.006 and 0.007 going from the outside toward the inside.

Space is expressed in lattice units.
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3.9 Computation of the first excited state

In [10], it is observed how the normalized gradient flow (and its discretization)

is able to directly compute the first excited state solution. In particular, when

the external potential is the harmonic oscillator potential, the first excited state

solution in one dimension, φ1(z), is a real odd function. In [10], it is numerically

shown that, in such a case, the normalized gradient flow can be applied to compute

φ1(z) provided that the initial data is an odd function.

Here, we apply the imaginary-time qLB method to the computation of the first

excited state solution and we compare our numerical results with the ones obtained

by the Crank–Nicolson scheme.

Our model shows different behaviors in one and two dimensions, respectively. In

one dimension, the model reaches the first excited state solution which is then

kept constant up to the required precision. In two dimensions, instead, the first

excited state solution is reached and kept almost constant for a certain number

of time steps. However, the chemical potential keeps decreasing below the first

excited state energy and finally reaches the ground state value. It is possible to

observe that larger is the ratio between the first excited state chemical potential,

µ1, and the ground state chemical potential µ0, larger is the number of time steps

during which the first excited state solution is kept constant by the model.

3.9.1 Computation of the first excited state in one dimension

Let us consider the usual external potential

V (z, τ) =
1

2
m̃ω2

z(z − z0)
2 + Vnl|φ(z, τ)|2,

and the following odd function as initial condition

φ(z, 0) = (2π∆2
0)

−1/4 (z − z0)

∆0
exp

(
−(z − z0)

2

4∆2
0

)
.

By working in lattice units (for qLB, CN and BEFD schemes), we fix a computa-

tional domain given by the interval [0, nz] = [0, 2048] and set z0 = 1024. Moreover,

we set ∆0 = 16, ωz = 1/512 and m̃ = 1/4. The stop criterion is given by Eq.

(3.55) with ε = 10−8. For the qLB, the discretization steps are fixed at 1 and

Dirichlet boundary conditions are used, while for CN and BEFD schemes, we set

h = 0.1 and k = 0.1. In Tab. 3.5 the chemical potential of the first excited state µ1

is reported for both qLB and CN models and for different values of Vnl. Moreover,

the ground state chemical potential µ0 computed by the qLB scheme and the ratio

µ1/µ0 are also shown. We observe that, for Vnl = 0, µ1/µ0 ≈ 3 as expected (in

fact, for Vnl = 0, µ0 = ωz~/2 and µ1 = (3/2)ωz~), then, for increasing values of
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Vnl, µ1/µ0 tends to unit value. In Fig. 3.11 the first excited state profile is shown

for some values of Vnl and for both qLB and CN models. In Fig. 3.12 the same

comparison is reported for the chemical potential decay. Finally, in Fig. 3.13 the

first excited state profiles given by the qLB model for some values of Vnl are also

reported.

Table 3.5: First excited state chemical potential for qLB and CN. The ground

state chemical potential given by the qLB model and the ratio µ1/µ0 are also

reported. The results are computed for different values of Vnl. Parameters are set

as follows: ωz = ωy = 1/512, m̃ = 1/4, ∆0 = 16.

Vnl µ1 CN µ1 qLB µ0 qLB (µ1/µ0) qLB

0 0.002930 0.002929 0.000976 3.001

1 0.008038 0.008021 0.006567 1.223

5 0.020315 0.020280 0.018903 1.073

10 0.031366 0.031314 0.029963 1.045

25 0.056549 0.056461 0.055154 1.024

50 0.088928 0.088790 0.087535 1.014

65 0.105655 0.105490 0.104263 1.012

80 0.121132 0.120941 0.119740 1.010

3.9.2 Computation of the first excited state in two dimensions

Let us consider the two-dimensional potential given by

V (z, y, τ) =
1

2
m̃[ω2

z(z − z0)
2 + ω2

y(y − y0)
2] + Vnl|φ(z, y, τ)|2.

and the following wave function as initial condition

φ(z, y, 0) = (2π∆0z∆0y)
−1/2 (z − z0)(y − y0)

∆0z∆0y

× exp

(
−(z − z0)

2

4∆2
0z

)
exp

(
−(y − y0)

2

4∆2
0y

)
.

Let [0, nz] × [0, ny] = [0, 256] × [0, 256] be our domain and (z0, y0) = (128, 128),

furthermore we fix ∆0z = ∆0y = 16, ωz = ωy = 1/256 and m̃ = 1/4. Discretization

steps for the qLB model are again fixed to unity, while for CN and BEFD we set

h = 0.5 and k = 0.1. Dirichlet boundary conditions are imposed in all qLB

simulations. The stop criterion is given by Eq. (3.57) with ε = 10−9.

As previously mentioned, in this case the qLB model does not stop at the first
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Figure 3.11: First excited state profile φ1(z) for different values of Vnl. Simulation

parameters are set as: m̃ = 1/4, ∆0 = 16, ωz = 1/512. (a) Vnl = 1, (b) Vnl = 10,

(c) Vnl = 50, (d) Vnl = 80, Solid lines: qLB model; dashed lines: CN models.

Space is expressed in lattice units.
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Figure 3.12: Chemical potential decay for different values of Vnl for the first excited

state. Simulation parameters are set as: m̃ = 1/4, ∆0 = 16, ωz = 1/512. (a)

Vnl = 1, (b) Vnl = 10, (c) Vnl = 50, (d) Vnl = 80, Solid lines: qLB model; dashed

lines: CN models. Time and chemical potential are expressed in lattice units.
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Figure 3.13: First excited state profiles given by the qLB model for different values

of Vnl. Simulation parameters are set as: m = 1/4, ∆0 = 16, ωx = 1/512. For

increasing values of Vnl, curves goes from the top toward the bottom. Vnl takes

the following values: 0, 1, 10, 25, 50 and 80. Space is expressed in lattice units.

excited state solution. In particular, it reaches the first excited state chemical

potential and then remains almost constant for a large number of time steps, but

then the chemical potential starts to further decrease toward the ground state

level. Hence, for the qLB model in two dimensions, we identify two relevant

chemical potential values (see Fig. 3.14): µ1 and µ̃0. The first one corresponds to

the first excited state chemical potential, the second is the limit value reached by

the model that is found to be in close agreement with the ground state chemical

potential which we denote with µ0. In Tab. 3.6, we report µ1, µ̃0, µ0 and the

ratio µ1/µ0 as computed by the qLB model, we also show the first excited state

chemical potential given by the CN scheme.

In Fig. 3.14, the chemical potential decay for qLB and CN models and for different

values of Vnl is reported. We can observe that the qLB chemical potential profiles

show a first “plateau” which corresponds to the first excited state solutions, the

plateau is larger for lower values of Vnl (or higher values of the ratio µ1/µ0). In

Fig. 3.15, we show the first excited state solutions given by qLB and CN models,

in particular we report the the cross section taken for y = z and for y = N − z,

where N ≡ nz = ny. The solutions computed by qLB are taken in correspondence

with the first plateau observed in Fig. 3.14. Finally, in Fig. 3.16, we show the first

excited state surfaces for Vnl = 50 and Vnl = 300 for both schemes.
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Table 3.6: First excited state chemical potential in two dimensions for qLB and

CN. For the qLB model µ1 and µ̃0 are reported. Moreover, the ground state

chemical potential given by the qLB model µ0 and the ratio µ1/µ0 are shown.

The results are computed for different values of Vnl, the other parameters are set

as m̃ = 1/4, ∆0z = ∆0y = 16 and ωz = ωy = 1/256.

Vnl µ1 CN µ1 qLB µ̃0 qLB µ0 qLB (µ1/µ0) qLB

0 0.011718 0.011711 0.003908 0.003908 3.00

10 0.012553 0.012534 0.005243 0.005243 2.39

50 0.015322 0.015265 0.008779 0.008779 1.74

100 0.018026 0.018031 0.011779 0.011774 1.53

300 0.025602 0.025739 0.019625 0.019531 1.32
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Figure 3.14: Chemical potential decay for different values of Vnl for the first excited

state. Simulation parameters are set as: m̃ = 1/4, ∆0z = ∆0y = 16 and ωz =

ωy = 1/256. (a) Vnl = 10, (b) Vnl = 50, (c) Vnl = 100, (d) Vnl = 300. Solid lines:

qLB model; dashed lines: CN models. Time and chemical potential are expressed

in lattice units.



100 Ground state computation of Bose–Einstein condensates

(a) (b)

0 100 200
0

0.002

0.004

0.006

0.008

0.01

0.012

z

φ 1(z
,y

=
z)

qLB
CN

V
nl

 = 50

0 50 100 150 200 250

−10

−5

0

x 10
−3

z
φ 1(z

,y
=

N
−

z)

qLB
CN

V
nl

 = 50

(c) (d)

0 100 200
0

0.002

0.004

0.006

0.008

0.01

0.012

z

φ 1(z
,y

=
z)

qLB
CN

V
nl

 = 100

0 50 100 150 200 250

−10

−8

−6

−4

−2

0

2

4
x 10

−3

z

φ 1(z
,y

=
N

−
z)

qLB
CN

V
nl

 = 100

(e) (f)

0 100 200
0

0.002

0.004

0.006

0.008

0.01

z

φ 1(z
,y

=
z)

qLB
CN

V
nl

 = 300

0 50 100 150 200 250

−8

−6

−4

−2

0

2

x 10
−3

z

φ 1(z
,y

=
N

−
z)

qLB
CN

V
nl

 = 300

Figure 3.15: First excited state solution φ1(z, y) computed by qLB and CN for

different values of Vnl, the solutions are taken at the cross sections y = z and

y = N − z. Simulation parameters are set as: m̃ = 1/4, ∆0z = ∆0y = 16 and

ωz = ωy = 1/256. (a) Vnl = 500, section y = z, the qLB solution is taken at

time τ = 400; (b) Vnl = 50, section y = N − z, the qLB solution is taken at time

τ = 400; (c) Vnl = 100, section y = z, the qLB solution is taken at time τ = 340;

(d) Vnl = 100, section y = N − z, the qLB solution is taken at time τ = 340; (e)

Vnl = 300, section y = z, the qLB solution is taken at time τ = 260; (f) Vnl = 300,

section y = N − z, the qLB solution is taken at time τ = 260;. Space is expressed

in lattice units.
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Figure 3.16: First excited state surfaces for Vnl = 50 and Vnl = 300 computed by

qLB and CN. Simulation parameters are set as: m̃ = 1/4, ∆0z = ∆0y = 16 and

ωz = ωy = 1/256. (a) qLB model with Vnl = 50 , (b) CN model with Vnl = 50,

(c) qLB model with Vnl = 300, (d) CN model with Vnl = 300.
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3.10 Halving the discretization step

One of the distinctive properties of qLB, as opposed to usual explicit schemes

for quantum wave equations, is that the time-step scales linearly with the mesh-

spacing.

In order to verify this linear dependence, we halved ∆z (and consequently ∆τ)

while keeping ωc fixed and we checked the model still gives the same solution.

As an example, we consider the interval [0, 1024] and set m̃ = 1/8, ωz = 1/128,

∆0 = 16 and Vnl = 10. To make a comparison, we compute the solution with

CN and BEFD schemes for h = 0.0625 and k = 0.1. In Tab. 3.7 the values of

µ obtained halving ∆ are reported. The “exact” value given by CN and BEFD

models with a very small spatial discretization step is µexact = 0.060112. We

can observe that, by halving ∆, the value of µ given by the qLB model increases

towards µexact. In Fig. 3.17 φg(z) is plotted for different values of ∆ and the curves

are almost coinciding.

Table 3.7: Chemical potential µ obtained halving the discretization step ∆. Sim-

ulation parameters are set as: m̃ = 1/8, ωz = 1/128, ∆0 = 16 and Vnl = 10.

∆ µ

1 0.060010

0.5 0.060026

0.25 0.060040

0.125 0.060059

0.0625 0.060096

µexact 0.060112

Although a systematic study of the computational efficiency of the qLB method

lies beyond the scope of the present work, as an indication, we just provide some

representative data on the computational performance of the scheme. To this

end, we consider a domain [0, 256] × [0, 256] and set m̃ = 1/8, ωz = ωy = 1/128,

∆0z = ∆0y = 16 and Vnl = 50. The simulation is stopped when time Tmax = 1000

is reached. To compare qLB, CN and BEFD performances, we choose the same

mesh-spacing and time step for the three models:

∆ ≡ ∆z = ∆y = −i∆τ = h = k,

and ∆ is initially set to unit value and then halved twice. In Tab. 3.8, the CPU

times required by the models on a standard PC (Intel Pentium 4 CPU 3 GHz) are

reported.
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Figure 3.17: Ground state profiles for different values of ∆. Simulation parameters

are set as: m̃ = 1/8, ωz = 1/128, ∆0 = 16 e Vnl = 10. Space is expressed in lattice

units.

Table 3.8: CPU times required by qLB, CN and BEFD models using the same

mesh-spacing and time step. The discretization step ∆ is initially set to unit

value and then halved twice. Simulation parameters are as follows: m̃ = 1/8,

ωz = ωy = 1/128, ∆0z = ∆0y = 16, Vnl = 50 and Tmax = 1000.

∆ Mesh CPU time qLB CPU time CN CPU time BEFD

size (sec) (sec) (sec)

1 256 × 256 95 81 114

0.5 512 × 512 760 810 1014

0.25 1024 × 1024 6120 9544 10672
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These data indicate that qLB performs competitively with respect to CN and

BEFD, especially as grid resolution is increased.

3.11 From qLB to physical units

Let us consider the Gross–Pitaevskii equation in three dimensions expressed in

physical units:

i~
∂ψ(r, t)

∂t
=

(
− ~

2

2m
∆r + Vext(r) +NU0|ψ(r, t)|2

)
ψ(r, t), (3.59)

where r = (x, y, z)T and Vext(r) = (1/2)mω2
Hr

2 and we are assuming, for the sake

of simplicity, ωx = ωy = ωz ≡ ωH and we recall that U0 = 4π~
2a/m.

The qLB scaling is given by

t̃ = t/∆t, r̃ = r/∆r where (∆x = ∆y = ∆z ≡ ∆r),

ψ̃(r̃, t̃) = (∆r)3/2ψ(r, t), ω̃H = ωH∆t,
(3.60)

where ∆t and ∆r are the discretization steps expressed in physical units.

From ω̃H = ωH∆t, the time step is readily computed as ∆t = ω̃H/ωH . Since the

relation ∆z = c∆t must hold, it is apparent that in order to simulate physical

situations c must be taken much smaller than the physical light speed. Otherwise,

we would need a very small time step to achieve a reasonable ∆r. In particular,

from the definition of the model parameter

m̃ = ωc∆t =
mc2

~
∆t,

we obtain

c2 =
m̃~

m∆t
and, consequently

∆r = c∆t =

(
m̃~

m∆t

)1/2

∆t (3.61)

Applying the qLB scaling of Eq. (3.60) to Eq. (3.59), we obtain

i∂etψ̃ = − ~

2m

∆t

(∆r)2
∆erψ̃ +

1

2

mω̃2
H

~

(∆r)2

∆t
r̃2 +

NU0

~

∆t

(∆r)3
|ψ̃|2ψ̃.

Let us indicate each term as follows:

D̃ = − ~

2m

∆t

(∆r)2
, (3.62)

Ṽext =
1

2

mω̃2
H

~

(∆r)2

∆t
, (3.63)

Ṽnl =
NU0

~

∆t

(∆r)3
. (3.64)
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Consider now D̃ (see Eq. (3.62)), from Eq. (3.61), we obtain

D̃ = − ~

2m

∆t

(∆r)2
= − 1

2m̃
. (3.65)

As to Ṽext, we obtain

Ṽext =
1

2

mω̃2
H

~

(∆r)2

∆t
=

1

2
m̃ω̃2

H . (3.66)

Finally, consider the nonlinear term Vnl

Ṽnl =
NU0

~

∆t

(∆r)3
=
N4πã~

m

∆t

(∆r)2
=
N4πã

m̃
, (3.67)

where ã = a/∆r is the dimensionless s-wave scattering length.

A typical set of physical parameters, used in current experiments with 87Rb, reads

as follows:

m = 1.44 × 10−25Kg, ωH = 20π1/s, a = 5.1 × 10−9m

and usual values for the model parameters ω̃H and m̃ are

ω̃H = 1/128, m̃ = 1/8,

thus delivering

c = 6.2916 × 10−4m/s, ∆z = 1.4487 × 10−7m, ∆t = 2.3026 × 10−4s,

from which the number of atoms composing the simulated condenstae can be

computed

N =
Ṽnl

4π

m̃

a
∆r ∼ Ṽnl

4π
3.55.

From Eqs. (3.65), (3.66) and (3.67), removing all the ·̃ (apart from m̃, in order

to not confuse this scaling parameter with the particle mass), we conclude that,

with the qLB scaling, the GPE given in Eq. (3.59) becomes

i
∂ψ(r, t)

∂t
=

(
− 1

2m̃
∆r +

1

2
m̃ω2

Hr
2 + Vnl|ψ(r, t)|2

)
ψ(r, t),

where each quantity is expressed in lattice units.





Chapter 4

Quantum LB simulation of

expanding BECs in random

potentials

The study of the dynamics of Bose-Einstein condensates (BEC) in the pres-

ence of a random potential is a very active topic in modern condensed matter

and atomic physics research. Recently, a large number of experimental and nu-

merical studies have been devoted to the localization properties of Bose gases

[123, 93, 36, 56, 37, 101, 3, 130, 94]. It is well known that disorder can profoundly

affect the behavior of quantum systems, Anderson localization being one of the

most fascinating phenomena in point [8]. Back in 1958, Anderson showed that the

eigenstates of single quantum particles in a weak random potential can become lo-

calized, which means that the corresponding wave functions exhibit an exponential

decay at large distances [123]. Indeed, strong suppression of transport phenom-

ena in expanding BEC’s in the presence of disorder has been recently observed

experimentally and confirmed by numerical simulations [36, 56, 37, 130, 101, 3].

However, this suppression of transport is not due to Anderson localization, but

rather to the fragmentation of the BEC, as it gets trapped between the peaks of

the random potential. In Ref. [124], a theoretical and numerical study prescribes

the conditions under which a one-dimensional BEC can exhibit Anderson local-

ization. These conditions basically amount to require that the amplitude of the

random potential be sufficiently large to promote destructive interference between

free-propagating plane waves, and yet significantly smaller than the condensate

energy, so as to avoid disruptive fragmentation of the wave function. In addition,

the correlation length of the random potential should be smaller than the healing

length of the condensate (the scale below which kinetic energy is dominant), so

that noise can couple to a sizeable fraction of the spectrum of kinetic-energy car-
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riers.

The aim of this chapter, which is an extended version of the paper in Ref. [106], is

to further investigate these conditions by means of a quantum lattice Boltzmann

model (qLB). As shown in the previous chapters, qLB has been originally devel-

oped starting from a formal analogy between the Dirac equation and a Boltzmann

equation for a complex distribution function [138, 135, 133]. A major feature of

qLB is that unitarity/stability can be achieved with time-step scaling linearly with

mesh-size rather than quadratically like most explicit schemes for quantum wave

functions [84]. Moreover, a multidimensional formulation of the qLB scheme has

been proposed and also extended to the case of nonlinear interactions, as described

by the Gross-Pitaevskii equation (GPE) [105, 108] (see Chapter 2 and Chapter 3).

In the past decade, many different numerical approaches have been applied to the

solution of the time-dependent GPE: a particle-inspired scheme proposed by Chio-

falo et al. [33, 34], finite difference methods proposed by Ruprecht et al. [120],

Ensher et al. [54] and Wang [144] and a time-splitting spectral (TSSP) method

developed by Bao and coworkers initially for the Schrödinger equation in the semi-

classical regime [15, 16] and then extended to the GPE [14, 11]. In particular, the

TSSP method shows good properties of accuracy and efficiency.

In the present chapter, we explore the use of qLB for the case of nonlinear

interactions with random potentials. A systematic comparison with the classical

Crank-Nicolson (CN) scheme is also presented, in order to validate qLB numerical

results and assess the computational performances at different space-time reso-

lutions. Finally, we investigate the mechanism by which the localized state of

the BEC is modified by the residual self-interaction in the (very) long-time term

evolution of the condensate.

4.1 Review of the quantum Lattice Boltzmann model

The quantum lattice Boltzmann (qLB) model proposed in Refs. [138, 135, 133]

is based on a formal analogy between the Dirac equation and the discrete kinetic

equation known as lattice Boltzmann equation (LBE). In particular, it is possible

to show that the non-relativistic Schrödinger equation ensues from the relativistic

Dirac equation in the adiabatic limit where antisymmetric fast modes are enslaved

to the symmetric slow ones (see Chapter 1 for details).

In this section, we briefly revise the one dimensional qLB model in order to recall

the most important properties of the scheme.
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4.1.1 The real-time qLB model

Let us recall the main ideas behind the quantum lattice Boltzmann scheme in one

dimension. Consider the Dirac equation in one dimension. Using the Majorana

representation [87] and projecting upon chiral eigenstates, the Dirac equation

reads:

∂tu1,2 + c∂zu1,2 = ωcd2,1 + igu1,2,

∂td1,2 − c∂zd1,2 = −ωcu2,1 + igd1,2,
(4.1)

where u1,2 and d1,2 are complex wave functions composing the Dirac quadrispinor

ψ = (u1, u2, d1, d2)
T , and ωc = mc2/~ is the Compton frequency, g = qV/~ is

the space-dependent frequency coupling to the external potential V and q is the

particle electric charge. Since we restrict our attention to electrostatic potentials,

the spinorial indices will be dropped in the following.

As observed in Ref. [138], Eq. (4.1) is a discrete Boltzmann equation for a couple

of complex wave functions u and d. In particular, the propagation step consists

of streaming u and d along the z-axis with opposite speeds ±c, while the collision

step is performed according to the scattering matrix defined by the right hand

side of Eq. (4.1).

Non-relativistic motion is reproduced by the model in the adiabatic (low fre-

quency) limit:

|ω − ωc| ≪ |ωc + g|, (4.2)

where ω is the typical frequency (energy) of the solution ψ. With the additional

constraint of “small” potential interaction

|g| ≪ ωc, (4.3)

it can be shown that the “slow” mode (to be defined shortly) dynamics is governed

by the Schrödinger equation for a spinless particle of mass m. In particular, under

the unitary transformation

φ± =
1√
2

exp(iωct)(u± id),

from Eq. (4.1) it is easy to check that the following equations are satisfied

∂tφ
+ + c∂zφ

− = igφ+,

∂tφ
− + c∂zφ

+ = 2iωcφ
− + igφ−.

(4.4)

From Eq. (4.4), after adiabatic elimination of the “fast” antisymmetric mode

|∂tφ
−| ≪ |2ωc + g||φ−|,
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we obtain

i~∂tφ
+ = −~c2

2ωc
∂z

(
2ωc

2ωc + g
∂zφ

+

)
− qV φ+ ≈ − ~

2

2m
∂2

zφ
+ − qV φ+, (4.5)

where the last approximation in Eq. (4.5) is valid in the “small” potential inter-

action limit given by Eq. (4.3).

The qLB scheme is obtained by integrating Eq. (4.1) along the characteristics

of u and d respectively and approximating the right hand side integral by using

the trapezoidal rule. Assuming ∆z = c∆t, the following scheme is obtained

û− u =
m̃

2
(d+ d̂) +

ig̃

2
(u+ û),

d̂− d = −m̃
2

(u+ û) +
ig̃

2
(d+ d̂),

(4.6)

where û = u(z + ∆z, t + ∆t), d̂ = d(z − ∆z, t + ∆t), u = u(z, t), d = d(z, t) and

m̃ = ωc∆t, g̃ = g∆t . The linear system of Eq. (4.6) is algebraically solved for û

and d̂ and yields the explicit scheme:

û = au+ bd,

d̂ = ad− bu,
(4.7)

where

a = (1 − Ω/4)/(1 + Ω/4 − ig̃), b = m̃/(1 + Ω/4 − ig̃),

with Ω = m̃2 − g̃2. Here m̃ = ωc∆t represents the dimensionless Compton fre-

quency. Note that, since |a|2 + |b|2 = 1, the collision matrix is unitary, thus the

method is norm-preserving and the stability is secured provided that ∆z = c∆t

for any value of ∆t. In particular, the quantity ‖φ+‖2+‖φ−‖2, where ‖·‖ indicates

the L2 norm, is kept at unit value all along the evolution. It follows that ‖φ+‖2

cannot be preserved during the evolution. Indeed, we have ‖φ−‖ ≪ ‖φ+‖ with

both terms oscillating in such a way that ‖φ+‖2 + ‖φ−‖2 = 1.

4.2 The Gross-Pitaevskii equation

Let us briefly introduce the three-dimensional Gross-Pitaevskii equation (GPE)

and the procedure which leads to its reduction to one dimension for a special set-

ting of the harmonic trap.

At zero temperature, the dynamics of a trapped Bose-Einstein condensate

(BEC) is described by the time-dependent Gross-Pitaevskii equation (GPE). The
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GPE for a quantum wave function ψ(r, t), with r = (x, y, z)T ∈ R
3, reads as

follows

i~∂tψ(r, t) =

(
− ~

2

2m
∆r + Vext(r) +NU0|ψ(r, t)|2

)
ψ(r, t), (4.8)

where m is the atomic mass, U0 = 4π~
2a/m is the coupling strength, a is the

scattering length, N is the number of particles in the condensate and Vext(r) is

the external trapping potential.

Typically, the external potential is taken in the form of an harmonic trap:

Vext(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2).

The three-dimensional GPE can be easily reduced to one dimension for a particular

choice of the harmonic trap [72, 88, 12, 1, 33] (see Chapter 3). In particular, for

ωx = ωy ≡ ω⊥ and ωz ≪ ω⊥, the GPE of Eq. (4.8) is transformed into

i~∂tψ(z, t) =

(
− ~

2

2m
+ Vext(z) +NU1|ψ(z, t)|2

)
ψ(z, t), (4.9)

where U1 = 2a~ω⊥ is the one-dimensional coupling constant equivalent to the

three-dimensional one and Vext(z) = (1/2)mω2
zz

2.

In order to numerically solve Eq. (4.9) by using qLB and CN scheme, the so-called

qLB scaling (see Sec. 3.11) is applied to Eq. (4.9). In the following subsection, we

describe the scaling procedure for the one dimensional GPE in order to compute

the nonlinearity coupling coefficient in lattice units.

4.2.1 qLB scaling

The qLB scaling is defined by

t̃ =
t

∆t
, z̃ =

z

∆z
, ψ̃(z̃, t̃) = (∆z)

1/2ψ(z, t), ω̃z = ωz∆t,

where ∆z and ∆t are the discretization steps in physical units. From ω̃z = ωz∆t,

the time step is readily computed ∆t = ω̃z/ωz. As observed in Ref. [108], since

the relation ∆z = c∆t must hold, it is apparent that in order to simulate physical

situations c must be taken much smaller than the physical light speed. Otherwise,

we would need a very small time step to achieve a reasonable ∆z. In particular,

from the definition of the model parameter m̃ = ωc∆t = (mc2/~)∆t, we have

c2 =
m̃~

m∆t
,

and then

∆z = c∆t =

(
m̃~

m∆t

)1/2

∆t.
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By applying this scaling to Eq. (4.9) and removing all the ·̃, we obtain

i∂tψ(z, t) =

(
− 1

2m̃
∂2

z +
1

2
m̃ω2

zz
2 + βqLB|ψ(z, t)|2

)
ψ(z, t),

where the nonlinearity coupling constant βqLB is given by

βqLB =
2a2

zaωzN

∆za2
⊥

,

with az =
√

~/(mωz) and a⊥ =
√

~/(mω⊥). From the above expression, it is

clear that the adiabatic assumption underlying the qLB theory, sets a limit on the

strength of the non linear interactions, i.e. on the number of bosons, N . More

precisely, the high-energy components of the wave functions, evolve accordingly to

a second-order hyperbolic (Klein-Gordon) equation, rather than to the first-order

parabolic (Schrödinger) diffusive dynamics.

4.3 Numerical construction of the random speckle po-

tential

In this section, we describe how the random speckle distribution is numerically

constructed. For the sake of simplicity, here we use arbitrary, dimensionless units

(i. e., lengths are expressed in units of an arbitrary scale whose actual value is

irrelevant here).

For this discussion we follow closely the work of Modugno [101] which describes a

one-dimensional version of an algorithm presented in Ref. [71]. A mathematical

analysis of the statistical properties of the speckle distribution can be found in

Ref. [60].

The speckle distribution is constructed by starting from a random complex field

φ(z) whose real and imaginary part are obtained from two independent Gaussian

random distribution η(z) with zero mean, 〈η(z)〉 = 0, unit standard deviation and

correlation function 〈η(x)η(y)〉 = 0. The speckle intensity field is then defined as

I(z) = |F−1 [W (k)F [φ(z)]] |2, (4.10)

where the operator F indicates the Fourier transform operator and W (k) is the

following frequency filter

W (k) =

{
1 if |k| < D/2,

0 elsewhere.

The resulting distribution probability of the speckle intensities is

P (I) =
e−I/〈I〉

〈I〉 . (4.11)
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The spatial autocorrelation function is

C(z) = 〈I(z′)I(z′ + z)〉 = 1 +

(
sin(πDz)

(πDz)

)2

, (4.12)

where 〈· ·〉 stands for an integration over z′ and an average over many realiza-

tions.

The distribution of Eq. (4.10) can be easily transformed so to have zero mean and

unit standard deviation, let us define the normalized speckle distribution:

vn(z) =
I(z) − 〈I〉

(〈I2〉 − 〈I〉2)1/2
, (4.13)

the corresponding distribution probability of the intensities is

P (vn) = exp(−[vn + 1])Θ(vn + 1), (4.14)

where Θ is the Heaviside step function.

The autocorrelation function then becomes

Cn(z) = 〈vn(z′)vn(z′ + z)〉 =

(
sin(πDz)

(πDz)

)2

. (4.15)

In particular, in order to obtain a fixed value of the correlation length, σ, we set

D =
1

πσ
,

so that

Cn(z) = 〈vn(z′)vn(z′ + z)〉 = sinc2(z/σ), where sinc(x) := sin2(x)/x2.

In Fig. 4.1, autocorrelation function of the normalized speckle distribution, vn(z),

obtained by averaging over 500 realizations of the speckle potential is compared

with C(z) of Eq. (4.15). For this test we set D = 0.1 and we used a lattice of

8192 nodal points. In Fig. 4.2 the intensity distribution, P (vn), is compared with

the expected exponential curve given by Eq. (4.14).

4.4 Anderson localization of expanding BEC in speckle

potential

The aim of this chapter is to apply the qLB scheme to the study of an expanding

BEC in the presence of disorder. As it is well known, quantum systems can be

highly affected by disorder, one of the most famous phenomena which may occur

being Anderson localization (AL) [8], whereby the eigenstates of single quantum
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Figure 4.1: Autocorrelation function for the normalized speckle potential obtained

by averaging over 500 realizations. The autocorrelation function is compared with

the expected analytical curve of Eq. (4.15). The filter aperture is set as D = 0.1.
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Figure 4.2: Intensity distribution for the normalized speckle potential obtained by

averaging over 500 realizations. The intensity distribution is compared with the

expected analytical curve of Eq. (4.14). The filter aperture is set as D = 0.1.
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particles in weak random potential can become localized, i. e. the eigenstates

exhibit an exponential decay at large distances [123]. In one spatial dimension,

the entire wave function is localized, i. e. all eigenstates are localized. Recently,

both experimental and numerical studies have been devoted to localization of

Bose gases [123, 93, 36, 56, 37, 101, 3] in order to fully understand the interplay

between nonlinear interactions and disorder. The strength of the interaction is

characterized by the inverse ratio of the initial healing length ξh = ~/
√

4mµ,

to the Thomas-Fermi half length LTF =
√

2µ/mω2
z , where µ is the chemical

potential, m the boson mass and ωz the longitudinal frequency of the optical trap

[123]. The properties of random potential are summarized by its intensity VR and

correlation length σR.

As shown in Ref. [124], for σR < ξh and for a weak disorder VR/µ < 1, a

one-dimensional BEC can exhibit Anderson localization.

As observed in Ref. [124], localization of BEC in a random potential has been

already reported in Refs. [36, 56, 37]. However, in this case, suppression of trans-

port was not due to Anderson localization, but rather to the fragmentation of the

BEC, as a result of trapping between the peaks of the potential.

Following the model proposed in Ref. [124], we consider a one-dimensional

Bose-Einstein condensate trapped in an harmonic potential in the presence of a

random potential V (z). The corresponding Gross-Pitaevskii equation reads as

follows:

i~∂tψ(z, t) =

(
− ~

2

2m
∂2

z +
1

2
mω2

zz
2 + V (z) +NU1|ψ(z, t)|2 − µ

)
ψ(z, t), (4.16)

where U1 is the coupling constant and µ is the chemical potential. The random

potential V (z) is taken in the form of a one dimensional speckle potential [60, 71,

70, 101], with a truncated negative exponential single-point distribution:

P (V ) =
exp(−[V + VR]/VR)

VR
Θ

(
V

VR
+ 1

)
, (4.17)

where Θ is the Heaviside step function. This particular for of the speckle potential

is obtained by multiplying the normalized speckle potential vn(z) of Eq. (4.13),

which has zero average and unit standard deviation, by VR, hence V (z) = VRvn(z).

The average of V over the disorder vanishes, while < V 2 >= VR. The correlation

function C(z) =< V (z′)V (z′ +z) > can be written as a function of the correlation

length of the potential, σR, in particular it reads as follows [60, 37]:

C(z) =< V (z′)V (z′ + z) >= V 2
Rsinc2(z/σR), where sinc(x) := sin(x)/x,

(4.18)
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where < · · > stands for integration over z′ and average over many realizations.

The Fourier transform of C(z) is given by

Ĉ(k) = V 2
RσRĉ(kσR), where

ĉ(κ) =

√
π

2

(
1 − |κ|

2

)
Θ

(
1 − |κ|

2

)
,

(4.19)

so that Ĉ(k) = 0 for |k| > 2/σR. This form of the Fourier transform of C(z) (and,

in particular, its finite support), are crucial for the quantitative estimation of the

localization length.

Let us summarize the procedure outlined in Ref. [124] in order to derive a

large-distance asymptotic behavior of the wave function density n(z).

Initially, the BEC is assumed to be at equilibrium in the harmonic trap and in the

absence of disorder. In the Thomas-Fermi regime (TF) where µ≫ ~ω, the initial

BEC density is an inverted parabola n(z) = (µ/g)(1 − z2/L2
TF )Θ(1 − |z|/LTF ).

The expansion is induced by switching off the confining trap at time t = 0 still in

absence of disorder. Repulsive atom-atom interaction are significant in the short-

time (t ≤ 1/ω) expansion, while at larger times (t ≫ 1/ω) the interactions are

no longer important and the expansion becomes free. Hence, the expanding BEC

density profile is rescaled but remain an inverted parabola [75, 32]:

ψ(z, t) =
(
ψ(z/b(t), 0)/

√
b(t)
)

exp(imz2ḃ(t)/2~b(t)), (4.20)

where b(t) = 1 for t = 0 and b(t) ∼
√

2ωt for t ≫ 1/ω [36]. Then the random

potential is switched on at time t0 ≫ 1/ω. Since the atom-atom interactions are

no longer important, the BEC may be represented as a superposition of almost

independent plane waves:

ψ(z, t) =

∫
dk√
2π
ψ̂(k, t) exp(ikz). (4.21)

The momentum distribution D(k) follows from Eq. (4.20). For t ≫ 1/ω it is

stationary and has a high-momentum cutoff at 1/ξh:

D(k) = |ψ̂(k, t)|2 ∼ 3ξh
4

(1 − k2ξ2h)Θ(1 − kξh), (4.22)

with the normalization condition
∫ +∞
−∞ D(k)dk = 1.

According to Anderson localization theory, k waves will exponentially localize

as a result of multiple scattering from the random potential. Thus components

exp(ikz) in Eq. (4.21) will become localized function φk(z). At long distances,

φk(z) decay exponentially such that ln |φk(z)| ∼ −γ(k)|z|, where γ(k) is the so
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called Lyapunov exponent. Assuming that the phases of the functions φk(z) are

random uncorrelated functions for different momenta, the BEC density is given

by

n0(z) = 〈|ψ(z)|2〉 = 2

∫ ∞

0
dkD(k)〈|ψk(k)|2〉, (4.23)

where we have taken into account that D(k) = D(−k) and 〈|φk(z)|2〉 = 〈|φ−k(z)|2〉.
In Ref. [124], an approximation for the Lyapunov exponent γ(k) is computed and

is given by

γ(k) =

√
2π

8σR

(
VR

E

)2

(kσR)2ĉ(2kσR), (4.24)

where E = ~
2k2/(2m). The approximation of Eq. (4.24) is valid assuming that

the following inequalities holds

VRσR ≪
(

~k

m
(kσR)1/2

)
. (4.25)

Deviations from a pure exponential decay of φk can be computed and, at large

distances (γ(k)|z| ≫ 1), one obtains

〈|φk(z)|2〉 ≈
π7/2

64
√

2γ(k)
|z|−3/2 exp(−2γ(k)|z|). (4.26)

From Eq. (4.24), we observe that the localization effect is closely related to the

properties of the correlation function. For the speckle potential of Eq. (4.17),

substituting Eq. (4.19) into Eq. (4.24), we obtain

γ(k) ∼ γ0(k)(1 − |k|σR)Θ(1 − |k|σR), γ0(k) =
πm2V 2

RσR

2~4k2
, (4.27)

so that γ(k) > 0 only for kσR < 1.

We now use Eqs. (4.22), (4.26) and (4.27) to calculate the density profile of the

localized BEC at large distances from Eq. (4.23).

In particular, since the high-momentum cutoff for D(k) is 1/ξh (see Eq. (4.22)),

while for γ(k) the cutoff is given by 1/σR, the upperbound for the integration of

Eq. (4.23) is

kc = min{1/ξh, 1/σR}.

Since the density profile is a sum of functions 〈|φk(z)|2〉 which decay exponentially

with a rate 2γ(k), the long tail behavior is mainly determined by the components

with the smallest k, i. e. those with k close to kc.

For ξh > σR, the high-momentum cutoff in Eq. (4.23) is set by the momentum

distribution D(k) and is equal to ξh. In this case, all functions 〈|φk(z)|2〉| have a

finite Lyapunov exponent, γ(k) > γ(1/ξh), and the whole BEC wave function is
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exponentially localized.

For the long-tail behavior, from Eqs. (4.22), (4.23) and (4.26), we obtain

n(z) ∝ |z|−3/2 exp(−2γ(1/ξh)|z|). (4.28)

Moreover, according to Eq. (4.25), since the typical momentum of the expanding

BEC is 1/ξh, this approach is valid for

VR ≪ µ(ξh/σR)1/2. (4.29)

As shown in Ref. [124], for ξh < σR, kc is provided by the Lyapunov exponents of

〈|φk(z)|2〉 and in this case the localization becomes algebraic and it is only partial

since the part of the BEC wave function corresponding to the waves with momenta

in the range 1/σR < |k| < 1/ξh continues to expand.

Here, we consider a parameter setting such that σR < ξh and the condition

of Eq. (4.29) is fulfilled so that the expanding condensate can exhibit Anderson

localization.

4.5 Numerical results

The time evolution of the BEC wave function is traced by solving Eq. (4.16) by

means of qLB and CN schemes. We observe that qLB is designed so as to solve

Eq. (4.16) in the qLB scaling, whereby c∆t/∆z = 1, so that ∆z and ∆t scale

linearly with each other. The unitarity of the collision matrix implies that the

scheme is stable and norm-preserving for any value of ∆z = c∆t. The CN is

an implicit scheme, hence unconditionally stable, although its accuracy depends

on the diffusion Courant-Friedrichs-Lewy (CFL) coefficient CD = D∆t
(∆z)2

, where

D = ~/(2m) and the potential CFL coefficient CV = V ∆t
~

, where V = VR +

NU1 maxz(|ψ(z)|2).
We solve Eq. (4.16) with the qLB scaling by using both qLB and CN and we

increase time and space resolution while keeping ∆z = ∆t (c = 1 in atomic units)

as required by qLB.

As observed in Sec. 4.1, the real-time qLB scheme solves GPE in the limit of

“small” potential interaction. Hence, large values for the coupling constant βqLB

violate the adiabatic assumption. This implies limitations to the ratio between

LTF and ξh, where LTF =
√

2µ/mω2
z is the Thomas-Fermi half length. In practice,

qLB is constrained to λ ≡ LTF /ξh ∼ 10.

In particular, for the present simulations, parameters are set as follows:

ωz = 5 × 10−3, βqLB = 2, m̃ = 1/4,
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This set-up delivers µ = 0.01943, LTF = 78.85 and ξh = 7.17. The domain length

is set to L = 32000 ∼ 400LTF and the simulation span at T = 150/ωz = 30000.

As a result, λ = 10.997 and we set VR = 0.2µ and σR = 0.5ξh, so that σR < ξh
and condition of Eq. (4.29) are fulfilled.

As previously mentioned, localization of expanding BEC in random potentials has

been experimentally observed in Refs. [36, 56, 130, 37, 94]. However, in those

experiments, the parameter setting does not fulfill the condition σR < ξh and the

constraint of Eq. (4.29), which are crucial in order to detect the Anderson lo-

calization phenomena [124]. Nonetheless, the parameter setting proposed in Ref.

[124] and used here is definitely accessible in current experiments. Indeed, recent

experiments reported in Ref. [21] have investigated this range of parameters and

reported clear evidence of Anderson localization, in good agreement with theoret-

ical predictions of Refs. [124, 92]. In particular, in the experiment of Ref. [21],

the authors consider a BEC composed of N = 1.7 × 104 atoms of 87Rb with an

initial chemical potential µ/(2π~) = 219 Hz. The BEC is initially trapped by an

elongated harmonic potential with a transverse frequency ω⊥/(2π) = 70 Hz and

a longitudinal frequency ωz/(2π) = 5.4 Hz. This implies a Thomas-Fermi half

length LTF = 41.75 µm and an initial healing length ξh = 0.364 µm, thus yielding

a separation scale λ = 114. The speckle potential can be accurately controlled

in order to attain specific values for the mean intensity VR and correlation length

σR. In Ref. [21], the mean intensity is tuned so that VR/µ varies in the range

0.07 − 0.34, while the correlation length is set at σR = 0.26 µm, thus satisfying

the condition σR < ξh and the constraint of Eq. (4.29).

With this setting, the exponential localization is clearly observed and the local-

ization length Lloc is found to vary from about 2 mm to 0.25 mm, while increasing

the mean intensity of the speckle potential VR.

In our simulations, we are considering a weaker interacting BEC, which could be

experimentally achieved by decreasing the inter-atomic interaction either by den-

sity control (i. e. lower number of atoms) or by Feshbach resonances [21]. In

particular, by leaving all the other parameters unchanged, we are simulating a

BEC with µ/(2π~) = 21 Hz, which delivers LTF = 13 µm and ξh = 1.18 µm, thus

yielding λ ∼ 11. As we shall see below, with this setting we obtain a localization

length Lloc = 1.19 mm for VR/µ = 0.2.

In conclusion, our set of parameters is representative of current BEC experiments,

although with possibly a weaker nonlinearity, i. e. narrower separation between

the outer and inner length-scales, LTF and ξh, respectively.

As we shall demonstrate, a scale separation λ ∼ 10 is nonetheless sufficient to

yield clear evidence of Anderson localization.

In Fig. 4.3, we present the averaged wave function for five different values of the

separation parameter λ.
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From this figure, a clear delocalization trend with decreasing values of λ is

observed.

The separation parameter λ is changed by tuning the coupling constant βqLB. By

changing βqLB, the chemical potential µ also changes and, consequently, LTF and

ξh are modified. Parameters are chosen in such a way that the ratios VR/µ and

σR/ξh are kept at 0.2 and 0.5, respectively. Discretization steps are chosen so that

a sufficient resolution is achieved. In particular, numerical experiments show that

satisfactory results are obtained for R > 5, where R ≡ ξh/∆z is the resolution

parameter. This has been set to the following values:

λ = 1 : R = 23.78(∆z = 1), λ = 5 : R = 10.63(∆z = 1),

λ = 10 : R = 7.16(∆z = 1), λ = 20 : R = 10.62(∆z = 0.5),

λ = 50 : R = 6.72(∆z = 0.5).

For λ > 10, an unphysical pile-up on the tails of the wave function is observed,

which is due to the lack of adiabaticity of the fast (high-frequency) modes. As

we shall see, this problem also arises for λ ∼ 10, when the grid resolution is

not sufficient, i,e whenever the wavelength of the highest frequencies becomes

comparable with the lattice spacing.
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Figure 4.3: Averaged wave function densities computed by qLB for five different

values of the ratio λ ≡ LTF /ξh = 1, 5, 10, 20, 50 (top-down). Parameters are set

as follows: ωz = 5 × 10−3, m̃ = 1/4, VR = 0.2µ, σR = 0.5ξh, T = 150/ωz. The

delocalization trend at decreasing values of λ is well visible.

It is instructive to investigate the effects of spatial resolution, as measured

by the parameter R, representing the number of nodal points covering the initial
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healing length. We start with an under-resolved situation, R = 0.448 (correspond-

ing to Ng = 2000 nodal points), and subsequently increase the resolution up to

R = 28.68 (Ng = 128000). While increasing the spatial resolution, we also increase

the time resolution by keeping ∆t = ∆z. The elapsed time spent by qLB and CN

are pretty similar at all resolutions, with a mild tendency of qLB to outperform

CN at high-resolutions (5058 versus 6242 CPU seconds for Ng = 128000 on a

standard PC Intel Pentium 4, 3 GHz).

The wave function density is computed by averaging over the solutions obtained

with 100 realizations of the speckle potential. In Fig. 4.4 and Fig. 4.5, the aver-

aged wave function densities computed by qLB and CN respectively at the four

spatial resolutions (Ng = 2000, 8000, 32000, 128000) are shown and compared with

the asymptotic behavior given by Eq. (4.28). In qLB simulations, pile-up at high-

frequencies/large distances is observed (see Fig. 4.4), which is due to the lack of

the adiabaticity assumption at high energies. The CN solution, on the other hand,

shows a very different behavior at low-resolution, namely an over-localization of

the wave-function (see Fig. 4.5 for Ng = 2000). This signals the potential ’danger’

that under-resolved CN simulations may over -estimate Anderson localization.
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Figure 4.4: Averaged wave function density computed by qLB at four different

resolutions. The numerical results are compared with the long-tail asymptotic

behavior given by Eq. (4.28). Parameters are set as follows: ωz = 5 × 10−3,

βqLB = 2, m̃ = 1/4, VR = 0.2µ, σR = 0.5ξh, λ = 10.997, T = 150/ωz.

In Fig. 4.6, the averaged wave-function densities, computed at the four differ-

ent resolutions by qLB and CN respectively, are compared. We observe that for

Ng ≥ 32000 the two methods are in good agreement with each other, as well as

with the predicted asymptotic behavior.
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Figure 4.5: Averaged wave function density computed by CN using the qLB scaling

at four different resolutions. The numerical results are compared with the long-

tail asymptotic behavior described by Eq. (4.28). Parameters are set as follows:

ωz = 5 × 10−3, βqLB = 2, m̃ = 1/4, VR = 0.2µ, σR = 0.5ξh, λ = 10.997,

T = 150/ωz

4.6 Long-time depletion

In Ref. [124], it is argued that the expanding and then localized BEC might

be a long-lived metastable state rather than a true ground-state solution. If so,

the residual self-interaction should cause a long-term depletion of the BEC. The

question arises as to whether such long-term depletion really occurs, and, if so, on

which time-scale. In order to explore this question, we have performed very-long

time simulations up to time t = 15000/ωz, one hundred times longer than in the

previous literature. As previously mentioned, the qLB scheme is norm-preserving

due to the unitarity of the collision matrix, a property which has been verified also

for such long simulations. The global norm ‖φ+‖2 + ‖φ−‖2 is observed to remain

at a unit value up to the sixth digit at the end of our longest simulation (3 × 106

time steps); in particular the mean value is 〈‖φ+‖2 + ‖φ−‖2〉 = 1.00000019 with

a standard deviation of 1.47 × 10−7 to be compared with the value 3.72 × 10−8

after 3 × 105 time steps. These values indicate that the qLB solver does not

seem to suffer of any significant degradation in the course of the very-long time

simulations.

The averaged wave function densities at times t = 1500/ωz and t = 15000/ωz
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Figure 4.6: Comparison between the averaged wave function densities computed

by qLB and CN at four different resolutions. The numerical results are compared

with the long-tail asymptotic behavior described by Eq. (4.28). Parameters are

set as follows: ωz = 5 × 10−3, βqLB = 2, m̃ = 1/4, VR = 0.2µ, σR = 0.5ξh,

λ = 10.997, T = 150/ωz. (a) Ng = 2000, (b) Ng = 8000, (c) Ng = 32000, (d)

Ng = 128000.
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are compared with the one obtained at time t = 150/ωz, as shown in Fig. 4.7.

The BEC is still well localized, but clearly on the way of loosing its localization.

In particular, by fitting the numerical wave function densities with the analytical

curve n(z) ∝ |z|−3/2 exp(−2γ|z|), the following time-decay law for γ is found (see

Fig. 4.8):

LTFγ(t) =
0.055

(ωzt)1/3
. (4.30)

In Fig. 4.7, the analytical curves obtained with the values of γ given by Eq. (4.30)

for tωz = 150, 1500 and 15000 are also shown. In Fig. 4.8, numerical results for

LTFγ as a function of ωzt are reported and compared with the scaling law, Eq.

(4.30). For this numerical test, we used the qLB scheme with N = 32000 nodal

points, while other parameters are set as before.

Although a direct comparison with experimental results reported in Ref. [21]

is not possible, since we are simulating a BEC with a weaker nonlinearity (λ ∼ 11

instead of λ ∼ 114) and with a different value for the ratio σR/ξh, in Fig. 4.8

we report the experimental value obtained in Ref. [21] for λ = 114, σR/ξh ∼ 0.7

and VR/µ = 0.2. This last parameter is the same as in our simulations. The

experimental result corresponds to a localization length of about Lloc = 0.5 mm,

while in our simulation, we obtain Lloc = 1.19 mm.

The pictures show a clear delocalization trend in the very-long term evolution of
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Figure 4.7: Averaged wave function densities computed by qLB with N = 32000

discretization points up to times T = 150/ωz, T = 1500/ωz and T = 15000/ωz.

Parameters are set as follows: ωz = 5 × 10−3, βqLB = 2, m̃ = 1/4, VR = 0.2µ,

σR = 0.5ξh, λ = 10.997.
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Figure 4.8: Numerical values of LTFγ at different times compared with the de-

caying law of Eq. (4.30). Parameters are set as follows: ωz = 5× 10−3, βqLB = 2,

m̃ = 1/4, VR = 0.2µ, σR = 0.5ξh, λ = 10.997. Error bars indicate the min-max

values over the ensemble of realizations. The ′X ′ point indicates the experimental

result obtained in Ref. [21] for VR/µ = 0.2, as in our simulation, but for a different

setting of λ and σR/ξh, which take the values 114 and 0.7, respectively.

the condensate, thereby supporting the conjecture that Anderson localization is a

long-lived metastable state of the expanding condensate.





Chapter 5

Ground state computation of

the GPE-Newton equations

Inspired by a work of Moroz, Penrose and Tod [102], we considered a particu-

lar nonlinear quantum wave equation, namely the so-called Schrödinger-Newton

equation (SNE) proposed by Penrose [115] within a theory which explains the

quantum state reduction as a gravitational effect.

Due to the similar mathematical structure of the GPE with attractive interac-

tions and the SNE, we applied the approach presented in Ref. [102] to the GPE

equation in order to compare the eigenstates of these two systems. Moreover, we

combined the GPE with a “gravitational”-like intearaction in order to study the

effects of such a potential in the ground state solutions.

In the following we first introduce the SNE, then we present the GPE with at-

tractive interactions and finally we combine the two equations and we inspect the

perturabtion in the GPE solution due to the “gravitational” potential.

In this chapter, we present a work which deviates from the main stream of

this thesis because we decided to not use the quantum lattice Boltzmann scheme.

This choice was induced by several considerations which are briefly summarized

in the following.

As we shall explain in more detail below, the SNE is a Schrödinger equation

coupled with a Newtonian gravitational potential

i~∂tψ = − ~
2

2m
∆ψ + Uψ,

∆U = 4πGm2|ψ|2,
(5.1)

where G is the gravitational constant and m is the mass of the particle. Moreover,

the normalization condition
∫
|ψ|2 = 1 is imposed. Initially, we intended to apply



128 Ground state computation of the GPE-Newton equations

the imaginary-time qLB scheme to Eq. (5.1), however, the qLB scheme implies a

particular scaling to the target equation. To be more precise, let us consider the

qLB scaling (see Sec. 3.11):

t̃ = t/∆t, r̃ = r/∆r where (∆x = ∆y = ∆z ≡ ∆r),

ψ̃(r̃, t̃) = (∆r)3/2ψ(r, t),

where ∆t and ∆r are the discretization steps expressed in physical units.

We recall that, from the definition of the model parameter

m̃ = ωc∆t =
mc2

~
∆t,

we obtain

c2 =
m̃~

m∆t

and, consequently

∆r = c∆t =

(
m̃~

m∆t

)1/2

∆t.

Applying this scaling to the time-dependent version of Eq. (5.1), we obtain

i∂etψ̃ = − 1

2m̃
∆̃ψ̃ + Ũ ψ̃,

∆̃Ũ =
4πGm3∆r

m̃2~2
|ψ̃|2,

where Ũ = U/(ωc~). For a typical set of parameters we have m ∼ 10−27 and

m̃ ∼ 0.1, thus delivering 4πGm3/(m̃2
~

2) ∼ 10−21, forcing ∆r to be of order 1020

in order to have reasonable numerical coefficients.

From Ref. [102], we can observe that, for a single particle, this is indeed the case,

since the length scale of the wave function is of order 1022. However, our intention

is to compare this kind of attractive gravitational interaction with the nonlinear

interactions of an attractive BEC and, possibly, to couple these systems.

As we shall point out in the following, it turns out that SNE and attractive GPE

are characterized by parameters separated by several orders of magnitude.

In addition, for this kind of problems, the dimensionality is very important, in-

deed these systems can show a significantly different behavior in one, two or three

spatial dimensions. In Ref. [115], the authors consider a three-dimensional system

with the assumption of spherical symmetry. This assumption allows to transform

the system of three-dimensional partial differential equations of Eq. (5.1) into a

system of two ordinary differential equations, thus highly simplifying the compu-

tations. Unfortunately, the qLB is designed for Cartesian geometries and it is not

yet suitable for spherical coordinates.
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For all of these reasons, in this case, it seemed more convenient to extend the

scheme proposed in Ref. [102] for the SNE to the GPE with attractive interactions,

rather than using the qLB scheme.

5.1 Quantum state reduction as a gravitational effect

The collapse of the wave function is a highly debated issue in quantum mechanics,

the main question being how to explain the collapse of the wave function when

a measurement is performed. A measurement consists of the isolated quantum

system becoming entangled with the physical apparatus with this entanglement

leading to the reduction of the state vector.

An interesting approach to this problem is to argue that present-day quantum

mechanics is a limiting case of a more general, unified theory, such that both the

reduction operator and the evolution operator (described by the linear Schrödinger

equation) should be viewed as approximations to a more general theory of physical

reality [115]. Inspired by this idea, many schemes of reality have been proposed

[20, 59, 145, 111] and, over the years, several arguments have been presented

to support the idea that the deviation from standard quantum evolution, which

leads to the collapse of the wave function, is due to some gravitational effect

[77, 78, 79, 42, 43, 58, 113, 114, 115, 116].

In 1996, Penrose proposed a model of this type [115] according to which a macro-

scopic quantum superposition of two different mass distributions is unstable and

would decay to one of the two states after a characteristic time T . Starting from

this idea, Moroz, Penrose and Tod in [102] have shown that this decorrelation

time would be of order 1053 seconds. for a single particle, but it would become

of order 1 second for 1011 nucleons. This is in agreement with observations, since

it means that a single particle will not self-reduce on a time scale of relevance to

any actual experiment, while, for a larger system, the reduction effect can become

measurable.

The closest easily available approximation to such a system is given by Bose-

Einstein condensate with attractive interactions [38] (an hypothetical experimen-

tal test with up to 1014 atoms has been discussed in [96]).

In this chapter, we apply the same analysis performed in [102] for the Schrödinger-

Newton equations (SNE) to the attractive BEC. Indeed, the Gross-Pitaevskii equa-

tion (GPE) describing a BEC is mathematically similar to the SNE, yet with an

important difference on the scaling of the potential energy, as we shall see in the

following. As it is known, a BEC with attractive interactions is more unstable

than a repulsive condensate, and indeed it can exhibit a stable stationary state

only up to a limited number of particles. Theoretical studies on the stationary and

dynamical behavior of an attractive BEC have been performed by several authors
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[131, 74, 118, 120, 17, 80, 25] and the problem of the collapse of the wave function

for attractive interactions in the absence of the confining potential has also been

investigated by using a variational approach [147, 121, 142, 85, 80]. However, to

the best of our knowledge, none of these papers include the study of the coupling

between the GPE and a Newton equation.

Here, the ground state solution for a three-dimensional spherically symmet-

ric, attractive condensate is numerically computed by using a Runge-Kutta based

method similar to the one proposed in [53]. The time-independent GPE has been

numerically solved by using several approaches: Runge-Kutta methods [53, 1],

explicit imaginary-time algorithms [33, 35, 10, 13, 133, 105, 108] and direct mini-

mization of the energy functional [12].

Moreover, we have also explored the coupling between GPE and SNE comparing

this system of equations with the SNE proposed by Penrose. Indeed, these two

systems of equations show a similar structure even though there is a fundamental

difference which we clarify in the following.

Finally, we have found that the effects of ordinary gravity are totally negligible

since the BEC’s attractive potential is much stronger than the gravitational attrac-

tion. Indeed, in order to observe an effect due to the “gravitational” interaction,

this must be amplified of several orders of magnitude.

5.2 The Schrödinger-Newton model

As previously mentioned, in 1996, Penrose [115] proposed an interpretation of

the wave function collapse due to measurement. In particular, he argued that a

superposition of two quantum states, each of which would be stationary on its

own, but characterized by two different mass distributions, is unstable due to the

gravitational interaction. Consequently, this superposed state would decay, after

a characteristic lifetime T , into one of the two states. According to this proposal,

the decorrelation time can be calculated as the reciprocal of the gravitational self-

energy E of the difference between the mass distributions of the two states, namely

T = ~/E. However, the major difficulty with such a proposal is to determine

the basic, stationary states into which a superposition of such states is supposed

to decay. The approach proposed by Penrose in [115] is to regard these basic

stationary states as the solutions of the Schrödinger equation with the addition of

a term including the effect of a gravitational potential. The proper form of this

gravitational potential term would depend on the gravitational theory considered,

and in [102, 115] it is assumed that it is sufficient to consider Newtonian gravity.
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This assumption gives rise to the so-called Schrödinger-Newton equations (SNE):

− ~
2

2m
∆ψ + Uψ = µψ,

∆U = 4πGm2|ψ|2
(5.2)

where G is the gravitational constant, µ is the energy eigenvalue, and the normal-

ization condition
∫
|ψ|2 = 1 is also imposed. By multiplying the first of Eq. (5.2)

by ψ∗ and integrating, we obtain µ as a function of the eigenstate ψ

µ[ψ] =

∫

R3

(
~

2

2m
|∇ψ(r)|2 + U(r)|ψ(r)|2

)
dr,

where U is given by the Poisson equation in Eq. (5.2).

The energy functional is defined as

E[ψ] =

∫

R3

(
~

2

2m
|∇ψ(r)|2 +

U(r)

2
|ψ(r)|2

)
dr. (5.3)

In [102], a family of solutions is found, the so-called “bound-state” solutions,

labelled by the non negative integers. The wave function of the n-th solution

has n zeros and the wave functions are normalizable. The corresponding energy

eigenvalues are negative, converging monotonically to zero as n is increased [102].

In particular, the energy eigenvalues associated to each eigenstate reads as follows

µ = 2

(
m

mp

)5

Epφn, (5.4)

where mp = (~c/G)1/2 is the Planck mass, Ep = mpc
2 is the Planck energy and

φn is a dimensionless factor describing the sequence of excited eigenstates (i. e. it

takes different values for the ground state (n = 0), the first excited state (n = 1),

and so on).

Summarizing, in [102] it is argued that the eigenstate of Eq. (5.2) are the basic

states to which any other quantum state reduces in a time which is proportional

to ~/µ. By directly computing µ, for example for the ground state, it turns out

that the reduction time is of the order of 1053 seconds for the the mass of a single

nucleon and of order 1 second for 1011 nucleon masses.

In [102], the computation of the eigenstates of Eq. (5.2) is performed by prop-

erly transforming the variables ψ and U and restricting to spherically-symmetric

solutions, so that Eq. (5.2) is transformed into a system of two ODEs which can

be analytically studied [140] and then numerically integrated.

Now, let us rewrite Eq. (5.2) in dimensionless form by rescaling the variables as

follows: r̃ = r/lc, ψ̃(r̃) = (lc)
3/2ψ(r) and µ̃ = µ/Ec where lc = ~/(mc) is the
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Compton length and Ec = mc2/2 is the Compton energy. Using this scaling, Eq.

(5.2) is transformed into

−∆̃ψ̃ + γSN

(
∆̃−1|ψ̃|2

)
ψ̃ = µ̃ψ̃, (5.5)

where γSN = 8π(lp/lc)
2, with lp = (~G/c3)1/2 being the Planck length.

A simple dimensional analysis of Eq. (5.5) shows that the energy functional al-

ways has a minimum. Indeed, assuming that σ is the characteristic width of the

wave function, then the kinetic energy is O(σ−2), while the interaction term is

O(σ−1), thus always allowing stable solutions. A direct insight into the behavior

of the energy functional can be obtained by means of a variational approach based

on Gaussian functions [17]. On the assumption of spherical symmetry, one can

substitute the following ansatz

ψ̃(r̃) =

(
1

σ3π3/2

)1/2

exp

(
− r̃2

2σ2

)
, (5.6)

into the energy functional of Eq. (5.3). This yields

Ẽ[σ] =
3

2
σ−2 − γSN

2
(2π)−3/2σ−1,

which always has a minimum at σmin = 6(2π)3/2/γSN .

The solution of Eq. (5.5) corresponding to this minimum is the ground state solu-

tion. From Eq. (5.4), since φ0 = 0.081385, the decorrelation time corresponding

to the the ground state energy goes from 1053 seconds for N = 1 to the order of

one second for N = 1011 nucleon masses.

5.3 The attractive Bose-Einstein condensate

In order to experimentally reproduce the situation described in the previous sec-

tion, one should keep together 1011 nucleons in a quantum macroscopic state.

Since this is not feasible yet, we consider an “approximation” to this system as

provided by attractive BEC.

As it is well known, at zero temperature the dynamics of a trapped BEC is de-

scribed by the time-dependent Gross-Pitaevskii equation (GPE). Since we are

interested to stationary solutions of the GPE, we consider its time-independent

version, namely: (
− ~

2

2m
∆ + V (r) +NU0|ψ|2

)
ψ = µψ, (5.7)

where r = (x, y, z)T , m is the atomic mass, U0 = 4π~
2a/m is the coupling strength,

a is the s-wave scattering length, N is the number of particles in the condensate
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and µ is the chemical potential. The external trap V (r) is usually taken in the

form of an harmonic potential and here we consider an isotropic harmonic trap

V (r) = mω2r2/2. Furthermore, the wave function ψ satisfies the normalization

condition ∫
|ψ(r)|2dr = 1. (5.8)

Multiplying Eq. (5.7) by ψ∗ and integrating we obtain µ as a function of the

eigenstate ψ

µ[ψ] =

∫

R3

(
~

2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +NU0|ψ(r)|4

)
dr,

while the energy functional associated to Eq. (5.7) is given by

E[ψ] =

∫

R3

(
~

2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

NU0

2
|ψ(r)|4

)
dr. (5.9)

Depending on the type of atoms in the condensate, the s-wave scattering length

can be positive or negative, denoting repulsive or attractive interactions between

the particles of the condensate, respectively. Here, we restrict to the attractive

interaction case, since this is the situation in which GPE presents direct similari-

ties with the SNE.

As previously mentioned, the case of attractive interaction is more critical than

the repulsive one. This is due to the fact that, for attractive forces, the condensate

tends to increase its density in the center of the trap in order to lower the inter-

action energy. This tendency is contrasted by the kinetic energy which eventually

manages to stabilize the system. However, as the central density keeps growing,

the kinetic energy is no longer able to prevent the collapse of the condensate [38].

In practice, it is possible to obtain a stable state only up to a limited number of

particles [131, 74, 118, 25].

Let us write Eq. (5.7) in dimensionless form by expressing the variables in Comp-

ton units, this reads

−∆̃ψ̃ +

(
ωlc
c

)2

r̃2ψ̃ − γBEC |ψ̃|2ψ̃ = µ̃ψ̃, (5.10)

where γBEC = 8π|a|N/lc. The GPE of Eq. (5.10) is mathematically similar

to the SNE of Eq. (5.5), yet with the important distinction on the scaling of

the potential energy due to the Laplace operator. Indeed, by using the same

variational approach [17] described above for the SNE, we substitute the Gaussian

ansatz of Eq. (5.6) into the energy functional of Eq. (5.9) associated to Eq. (5.10)

to obtain:

Ẽ[σ] =
3

2
σ−2 +

3

2

(
ωlc
c

)2

σ2 − γBEC

2
(2π)−3/2σ−3. (5.11)
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This functional has a minimum only for sufficiently small values of the coupling

constant γBEC (i. e. a small number of atoms in the condensate). Note that, in

the absence of the harmonic potential, the energy functional never has a minimum,

which is why we need to add the external trap in order for a ground state to exist.

The critical number of atoms has been exactly computed for a spherically sym-

metric trap [120] and it turns out to satisfy the following relation

N < Ncr = 0.575
a0

|a| , (5.12)

where a0 =
√

~/(mω) is the harmonic unit length. For a typical experimental

setting [28, 27, 122] where the BEC is composed of 7Li atoms, the trap frequency

is ω = 147 Hz, a = −1.44 × 10−9 m, expression of Eq. (5.12) yields Ncr ∼ 3137.

Attractive BECs composed of N ∼ 1500 atoms are typically accessible to current

experiments [27], so that the above inequality is indeed fulfilled.

We now turn to the numerical solution of Eq. (5.7) by means of a Runge-

Kutta scheme similar to the one proposed in [102] for the SNE. In order to have

reasonable numerical coefficients, it is necessary to write Eq. (5.7) in dimensionless

form using the harmonic scaling: r̂ = r/a0, ψ̂(r̂) = (a0)
3/2ψ(r), µ̂ = µ/(~ω). We

apply this scaling and then remove all the ·̂ apart from the one on the nonlinearity

coefficient, not to confuse it with γBEC expressed in Compton units. This yields

(
−1

2
∆ +

1

2
r2 − γ̂BEC |ψ|2

)
ψ = µψ, (5.13)

where γ̂BEC = 4π|a|N/a0.

Since we are assuming that the solution is spherically symmetric, the wave function

depends only on r = |r| and the normalization condition of Eq. (5.8) becomes

4π

∫ +∞

0
r2|ψ(r)|2dr = 1. (5.14)

Moreover, Eq. (5.13) reduces to an ordinary differential equation which can be

solved by using a Runge-Kutta method. In particular, we set ψ(0) = 1 and

ψ′(0) = 0 (this latter position is necessary in order to have smooth solutions in

r = 0) and we solve the following ODE

µψ = − 1

2r

d2

dr2
(rψ(r)) +

1

2
r2ψ −A|ψ|2ψ, (5.15)

for a given value, A, of the nonlinearity coefficient. Let ψA(r) be a solution of

Eq. (5.15) satisfying the proper boundary condition (ψA(r) → 0 for r → +∞ so

that
∫
r2|ψA|2 <∞) and having no zero, this solution corresponds to the ground
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state. However, in general, ψA(r) does not satisfy the normalization condition of

Eq. (5.14), i. e.

4π

∫ +∞

0
r2|ψA(r)|2dr = IA 6= 1.

From ψA(r), we derive the wave function ψ(r) satisfying the correct normalization

condition which solves Eq. (5.15) for a value of the nonlinearity coefficient different

from A. In particular, by defining

ψ(r) =
ψA(r)√
IA

,

then ψ(r) is the ground state solution of Eq. (5.13) with γ̂BEC = AIA and

satisfying the normalization condition of Eq. (5.14). From the relation γ̂BEC =

AIA, we easily compute the number of atoms composing the BEC:

N =
AIAa0

4π|a| .

Recalling that, in three dimensions, the attractive BEC is unstable if the number

of atoms is larger than a critical value, from Eq. (5.12), we can compute the

threshold value for the nonlinearity coefficient

γ̂cr =
4π|a|Ncr

a0
= 7.2256.

As it is known, the attractive self-interaction of the condensate destabilizes the

harmonic oscillator ground state and gives rise to new ones with lower energy

eigenvalues. As a result, the decorrelation time induced by the attractive inter-

actions can be estimated as the time required for the wave packet to switch from

the harmonic oscillator ground state (corresponding to γ̂BEC = 0) to the GPE

ones (γ̂BEC 6= 0), namely, T ∼ ~/(µ(0) − µ(γBEC)). In Tab. 5.1 we report the

numerical results for an increasing value of the nonlinearity coefficient γ̂BEC up to

the critical value. In the table we report the ground state chemical potential, the

maximum value of ψ, ψ(0), and the decorrelation time associated to these ground

state solutions. Note that these decorrelation times are of order 10−3 and 10−2,

hence they should be observable on a macroscopic scale.

Finally, in Fig. 5.1, we show the ground state wave function for different values

of γ̂BEC , and note that for increasing values of γ̂BEC the eigenfunction is more and

more localized and its energy eigenvalue decreases. In Fig. 5.2, the total potential,

Vtot = (1/2)r2 − γ̂BEC |ψ|2, corresponding to the ground state wave functions of

Fig. 5.1 is also shown.
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Table 5.1: GPE only. Ground state chemical potential µ̃ and maximum value of

ψ, ψ(0) computed for different values of the nonlinearity coefficient γ̂BEC . In the

table, the chemical potential gap µ(0) − µ(γBEC) is given in harmonic units and

indicated as ∆µ̂. Finally, the nonlinearity coefficient A, imposed while solving Eq.

(5.15) to compute ψA is also reported.

γ̂BEC µ̂ ψ(0) ∆µ̂ A

0 1.5 0.423778 0 0

2.2952 1.336852 0.466740 0.163148 0.5

3.8508 1.196837 0.509596 0.303163 1

5.6661 0.966978 0.594116 0.533022 2

6.5546 0.782733 0.676529 0.717267 3

6.9846 0.628297 0.756759 0.871703 4

7.1721 0.494329 0.834951 1.005671 5

7.2255 0.375029 0.911251 1.124971 6
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Figure 5.1: Ground state wave function for different values of the coupling constant

γ̂BEC .
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Figure 5.2: Total potential, Vtot = (1/2)r2 − γ̂BEC |ψ|2, corresponding to the

ground state wave functions of Fig. 5.1.

5.4 Adding a “gravitational” term to the attractive

BEC

In this section we combine the two models presented in the above sections: the

Schrödinger-Newton equations and the GPE for an attractive BEC. We assume

the GPE system as a reference case (macroscopic quantum system) and study the

perturbation of its energy levels due to “gravitational” interactions.

As we shall illustrate in the following, by taking the physical values for the param-

eters, the coupling constant of the gravitational term turns out to be much smaller

than the attractive interaction between the atoms due to the BEC self-interaction

term. Therefore, we expect gravity to be totally negligible, and in this section we

provide numerical evidence that this is indeed the case.

However, we study the perturbation in the solution due to a “gravitational”-like

potential in order to inspect the mathematical effect of such an interaction.

Let us consider the following GPE with the addition of a gravitational potential

term as in Eq. (5.2)
(
− ~

2

2m
∆ +

1

2
mω2r2 +NU0|ψ|2 +NU

)
ψ = µψ,

∆U = 4πGm2|ψ|2.
(5.16)

In order to compare the magnitude of the attractive and gravitational terms, we

rescale Eq. (5.16) by writing it in Compton units. In particular, the scaling reads
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as follows: r̃ = r/lc, ψ̃(r̃) = (lc)
3/2ψ(r) and µ̃ = µ/Ec, where lc = ~/mc is the

Compton length and Ec = mc2/2 is the Compton energy.

With this scaling Eq. (5.16) becomes
(
− ~

2

2m
∆̃ +

(
ωlc
c

)2

r̃2 − γBEC |ψ̃|2 + γSN Ũ

)
ψ̃ = µ̃ψ̃,

∆Ũ = |ψ̃|2,
(5.17)

where we recall that γBEC = 8π|a|N/lc, while γSN = 8πN(lp/lc)
2 with lp being

the Planck length.

In order to compare the energy associated to each of the two potential terms, let

us define the following dimensionless quantities:

• ESN/Ec, is the gravitational potential energy in Compton units;

• EBEC/Ec, is the attractive interaction energy.

From Eq. (5.17), we have that

ESN/Ec ≈ 8πN

(
lp
lc

)2

∆̃−1(|ψ̃|2) ≈
8πNl2p
lc

1

l
,

EBEC/Ec ≈
8π|a|N
lc

|ψ̃|2 ≈ 8π|a|Nl2c
l3

,

where |ψ̃|2 ∼ (lc/l)
3, ∆̃ ∼ (lc/l)

2 and l is the physical length which characterize

the system, i. e. the typical length scale of an attractive BEC.

For a fixed value of the physical length parameter l, the ratio between the attrac-

tive interaction energy and the gravitational potential energy is given by

γ(l) =
EBEC(l)

ESN (l)
≈ |a|l3c

l2p

1

l2
.

For a typical attractive BEC the parameters are as follows: |a| ∼ 10−9 m, lc ∼
10−17 m and l ∼ 10−5 m, while lp ∼ 10−35 m, thus γ(l) ∼ 1020.

From this observation, we conclude that in the presence of an attractive potential,

the gravitational effect is totally negligible.

Therefore, in order to appreciate the qualitative effect of such a term, let us

artificially magnify the gravitational term and consider the following equation
(
− ~

2

2m
∆ +

1

2
mω2r2 +NU0|ψ|2 +NU

)
ψ = µψ,

∆U = ηSN |ψ|2,
(5.18)

where ηSN is an amplified “gravitational” parameter which is varied in order to

study the effect of this additional term into the attractive GPE.
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As in the previous section, in order to have reasonable numerical coefficients, it is

useful to write Eq. (5.18) in harmonic units: r̂ = r/a0, ψ̂(r̂) = (a0)
3/2ψ(r) and

µ̂ = µ/(~ω). With this scaling, Eq. (5.18) becomes

(
−1

2
∆̂ +

1

2
r̂2 − γ̂BEC |ψ̂|2 + η̂SN Û

)
ψ̂ = µ̂ψ̂,

∆Û = |ψ̂|2,
(5.19)

where γ̂BEC = 4π|a|N/a0 and η̂SN = NηSN/(a0~ω). Note that, the physical value

of η̂SN for the true gravitational potential is of order 10−22.

We note that, the addition of the gravitational term is not sufficient to stabilize

the system which remains stable only up to a limited number of atoms. By using

the same variational approach described above, we substitute the Gaussian ansatz

ψ̂(r̂) =

(
1

σ3π3/2

)1/2

exp

(
− r̂2

2σ2

)
,

into the energy functional associated to Eq. (5.19) and we obtain

Ê(σ) =
3

4
(σ−2 + σ2) − (2π)−1/2N |a|

a0
σ−3 − η̂SN

2
(2π)−3/2σ−1. (5.20)

This functional has a minimum only for N |a|/a0 smaller than a critical value and,

for each value of N |a|/a0, the minimum exists only up to a critical value of η̂SN .

In particular, by requiring that both the first and second derivatives of Ê(σ) vanish

at the critical point σ = σcr and η̂SN = η̂cr, for each fixed value of N |a|/a0 one can

compute the corresponding η̂cr. The resulting relation between N |a|/a0 and η̂cr is

shown in Fig. 5.3. We observe that for N |a|/a0 → 0, η̂cr → ∞ as expected, since

when the attractive potential vanishes we obtain the SNE whose energy functional

always has a minimum. On the other hand, for N |a|/a0 which tends toward its

critical value (in the Gaussian approximation the critical value for N |a|/a0 is 0.671

[38]), η̂cr → 0.

A qualitative understanding of the behavior of the energy functional is obtained

by plotting the energy functional of Eq. (5.20) for a fixed value of N |a|/a0 and

varying η̂SN . In Fig. 5.4, we show the energy functional of Eq. (5.20) computed

for N |a|/a0 = 0.3064 and for some values of η̂SN .

From Fig. 5.4, we observe that, as expected, gravitational interactions desta-

bilize the GPE ground state and give rise to new ones with lower energy (the top

curve indicates the reference case without gravity, Emin(0) ≡ EGPE). The data in

Fig. 5.4 indicate that the energy gap between the minimum of the GPE with the

gravitational term and the reference minimum of the pure GPE curve are of the

same order of magnitude as EGPE . The actual numerical values for the case shown

in Fig. 5.4 are reported in Tab. 5.2. In order to compare these results obtained
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Figure 5.3: Critical value for η̂SN computed as a function of the attractive potential

coupling constant N |a|/a0. The solid line is just for eye-guiding purposes.

N |a|/a0 = 0.3064
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Figure 5.4: Energy functional of Eq. (5.20) given by the Gaussian ansatz and

computed for a fixed value of the attractive interaction coefficient N |a|/a0 =

0.3064 and varying the “gravitational” coupling constant η̂SN . The full circles

denote the point of minimum (where it exists).
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Table 5.2: GPE coupled with SNE (Gaussian approximation). The computation is

performed for a fixed value of N |a|/a0 = 0.3064 and varying η̂SN . For comparison

with the results computed below by the numerical scheme we also report the

approximated chemical potentials µ(ηSN ). The energy gap Emin(0) − Emin(ηSN )

expressed in harmonic units is indicated as ∆Ê, while the chemical potential

difference µ(0) − µ(ηSN ) in harmonic units is denoted as ∆µ̂.

η̂SN Êmin ∆Ê µ̂ ∆µ̂

N |a|/a0 = 0.3064

0 1.3638 0 1.21 0

5 1.1892 0.1746 0.8385 0.3715

15 0.8172 0.5466 0.0071 1.2029

20 0.6173 0.7465 -0.4693 1.6793

30 0.1793 1.1845 -1.6243 2.8343

40 -0.3374 1.7012 -3.4001 4.6101

from the Gaussian approximation with the ones given below by the numerical

scheme, we also report in Tab. 5.2 the approximated chemical potentials µ(ηSN ).

To be noted that in the transition between the various gravitational ground-

states, the wave packet undergoes a progressive shrinking, as also explicitly shown

in Fig. 5.5 and Fig. 5.7. Beyond a critical threshold of the gravitational cou-

pling, the kinetic energy is no longer capable of balancing the GPE attraction and

the wave function collapse cannot be escaped (no energy minimum can exist any

longer).

We now turn to the numerical solution of Eq. (5.19) by means of a Runge-

Kutta scheme similar to the one already described for the attractive BEC. To this

end, let us rewrite Eq. (5.19) by removing all the ·̂ apart from the ones on γ̂BEC

and η̂SN and define

V = µ̂− Û .

Hence, Eq. (5.19) becomes

(
−1

2
∆ +

1

2
r2 − γ̂BEC |ψ|2

)
ψ = V ψ,

∆V = −η̂SN |ψ|2.
(5.21)

In analogy with the numerical treatment of [102], the energy eigenvalue of Eq.

(5.21), µ, is obtained for r → +∞ as V (∞).

We assume once again that the solution is spherically symmetric, so that the wave
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function depends only on r = |r| and the normalization condition is given by

Eq. (5.14). Moreover, Eq. (5.21) reduces to a system of two ordinary differential

equations which can be solved by using a Runge-Kutta method.

In particular, we set ψ(0) = 1, while V (0) is varied until the solution meets the

proper boundary condition for r → +∞. We then set ψ′(0) = 0 and V ′(0) = 0 in

order to have smooth solutions in r = 0 and we solve the following set of ODEs

V ψ = − 1

2r

d2

dr2
(rψ(r)) +

1

2
r2ψ −A|ψ|2ψ,

1

r

d2

dr2
(rV (r)) = −B|ψ|2,

(5.22)

for two given values of the two parameters A and B. As already seen for the

attractive BEC, let ψAB(r) be a solution of Eq. (5.22) satisfying the proper

boundary condition (ψAB(r) → 0 for r → +∞ so that
∫
r2|ψAB|2 < ∞) and

having no zero, this solution corresponds to the ground state. However, in general,

ψAB(r) does not satisfy the normalization condition of Eq. (5.14), but it rather

verifies

4π

∫ +∞

0
r2|ψAB(r)|2dr = IAB 6= 1.

From ψAB we define

ψ(r) =
ψAB(r)√
IAB

,

which is the ground state solution of Eq. (5.22) with

γ̂BEC = AIAB and η̂SN = BIAB.

In this section, we explore the effect of the gravitational term, hence we fix the

attractive potential constant γ̂BEC , while varying the gravitational constant η̂SN .

In Fig. 5.5, we show the ground state solutions for γ̂BEC = 3.8508 (corresponding

to N |a|/a0 = 0.3064, that is case considered above for the Gaussian approxima-

tion). In Fig. 5.6, the total potential, Vtot = (1/2)r2 − γ̂BEC |ψ|2 + η̂SNU , is also

shown for each one of the ground state wave functions plotted in Fig. 5.5. In

Fig. 5.7 and Fig. 5.8, the same simulation is performed for γ̂BEC = 6.5546.

The chemical potential eigenvalues associated to this numerical tests are re-

ported in Tab. 5.3 for γ̂BEC = 3.8508 and γ̂BEC = 6.5546.
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Figure 5.5: Ground state wave function for a fixed value of the coupling constant

γ̂BEC = 3.8508 and varying the “gravitational” constant η̂SN .
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Figure 5.6: Total potential, Vtot = (1/2)r2 − γ̂BEC |ψ|2 + η̂SNU , corresponding to

the ground state wave functions of Fig. 5.5. Results are computed for a fixed value

of the coupling constant γ̂BEC = 3.8508 and varying the “gravitational” constant

η̂SN .
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Figure 5.7: Ground state wave function for a fixed value of the coupling constant

γ̂BEC = 6.5546 and varying the “gravitational” constant η̂SN .
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Figure 5.8: Total potential, Vtot = (1/2)r2 − γ̂BEC |ψ|2 + η̂SNU , corresponding to

the ground state wave functions of Fig. 5.7. Results are computed for a fixed value

of the coupling constant γ̂BEC = 6.5546 and varying the “gravitational” constant

η̂SN .
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Table 5.3: GPE coupled with SNE (numerical solution). Ground state chemical

potential µ̂ and maximum value of ψ, ψ(0) computed for two fixed values of the

nonlinearity coefficient γ̂BEC = 3.8508 and γ̂BEC = 6.5546 and varying η̂SN . In

the table, the chemical potential gap µ(0)−µ(ηSN ) is expressed in harmonic units

and indicated as ∆µ̂. Finally, the coefficients A and B, imposed while solving Eq.

(5.22) to compute ψAB are also reported.

γ̂BEC = 3.8508

η̂SN µ̂ ψ(0) ∆µ̂ A B

0 1.1968 0.5096 0 1 0

3.4640 0.9813 0.5373 0.2155 1.111 1

12.5910 0.3009 0.6302 0.8959 1.5291 5

26.1937 -0.9338 0.8738 2.1306 2.9375 20

32.284 -1.9931 1.1131 3.1899 4.77 40

γ̂BEC = 6.5546

η̂SN µ̂ ψ(0) ∆µ̂ A B

0 0.7827 0.6765 0 3 0

3.3464 0.4275 0.7731 0.3502 3.9091 2

4.6169 0.2988 0.8061 0.4839 4.2 3

5.1018 0.1388 0.8855 0.6439 5.1388 4

5.4937 0.0008 0.9540 0.7819 5.965 5





Chapter 6

Future research

To date, the popularity and, consequently, the success of the qLB scheme is not

comparable with that of the classical LB model for hydrodynamics. This is be-

cause, while the LB model solves the Navier-Stokes equations (NSEs) in the macro-

scopic limit, the qLB solves the linear and nonlinear Schrödinger equation in the

adiabatic limit. The NSEs represent a much more complex systems to solve with

respect to the single Schrödinger equation, thus a simple and fast method capable

to solve NSEs should be welcome and widely used.

However, even relatively simple problems may become extremely difficult to cope

with, when arbitrary geometries are involved and/or the computational domain

becomes “large”. In such situations, the qLB scheme could be an excellent candi-

date since, similarly to the LB algorithm for fluid dynamics, it could be extended

to complex geometries, while parallel implementation of the model is also straight-

forward.

In addition, as suggested in Ref. [137], the qLB model could be further extended

in order to solve a set of coupled eigenvalue equations, known as Khon - Sham

equations, within the density functional theory (DFT) developed in the 60’s by

Hohenberg-Kohn and Khon-Sham [69, 83].

Hence, some directions for future research which should be pursued are:

• extension of the qLB model to complex geometries;

• parallel implementation of the qLB model;

• application to the solution of the Kohn-Sham equations.

Let discuss briefly each of such points.
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6.1 Complex geometries

The lattice Boltzmann equation (LBE), both in its classical and quantum ver-

sion, is not suitable for simulation in realistic complex geometries [134]. This is

basically due to the constraint of discretizing the space-time under the light-cone

rule (∆z = c∆t). A similar limitation was already pointed out for the LBE for

hydrodynamics, and several methods have been proposed to overcome such a dif-

ficulty [82, 103, 29, 65]. The basic strategy, common to these efforts is to gain

geometrical freedom by coupling the LB model with well established techniques

which can afford it, e. g., finite volumes (FV) or finite differences (FD).

Here, we intend merely put forth some ideas on how this merging is possible

and to point out that, since the qLB model is essentially a complex-valued LB

model, it seems a promising approach to extend these techniques to the quantum

lattice Boltzmann equation.

The coupling of the classical LBE with FV or FD can be presented within

the more general framework of coarse-graining. The idea is to gain geometrical

flexibility by coarse graining the information carried by the differential form of

LBE and define macroscopic observables on a coarse grid of virtually arbitrary

shape. The crucial idea is that the coarse grid need not to be tied down to the

symmetries of the underlying fine grid [134].

The starting point of the coarse-graining process is the differential form of LBE

∂tfi + cia∂afi = Ci, i = 1, . . . , b, a = x, y, z, (6.1)

where fi are the discrete distribution functions, b is the number of the lattice

speeds, ci, and the Ci’s are suitable collision operators acting on the fi’s.

Note that the corresponding differential form of the quantum LBE is the Dirac

equation

∂tψl + cαa
lj∂aψj = i

mc2

~
βljψj , l, j = 1, . . . , 4, a = x, y, z, (6.2)

where ψ = (ψ1, ψ2, ψ3, ψ4) is the Dirac quadrispinor, αa and β are the standard

Dirac matrices and c is the speed of light. Eqs. (6.1) and (6.2) are formally similar,

both of them consist of a set of respectively b and 4 hyperbolic partial differential

equations which are amenable to standard FV or FD discretization. In general,

the result of such a discretization on Eq. (6.1) is a set of bN ordinary differential

equations (ODEs) for the generic distribution function f l
i representing the i-th

population attached to the spatial node/cell labeled ℓ. Similarly, for Eq. (6.2), we

would obtain a set of 4N ODEs for the generic wave function ψl
i representing the
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i-th component of the Dirac quadrispinor attached to the node/cell labeled by l.

Here, we will not further describe the methods which can be obtained by

realizing the merging between LBE and FV or FD schemes. However, the FV

approach has proven to be successful and lead to the so called Finite Volume-LBE

(FVLBE) scheme [104, 4, 5, 149, 112, 150]. The Finite Difference-LBE schemes

developed by Chen and co-workers [29] achieve second-order accuracy in both

space and time and have been demonstrated to be effective for various flow in

bounded domains.

6.2 Parallel computing

One of the main features of LB methods, either classical or quantum, is their

amenability to parallel processing. This is due to the intrinsic local nature of

the method, indeed the collision step is completely local, and all such steps are

performed at each node simultaneously, while the streaming step involves only

interactions with neighboring nodes of each lattice element. On the other hand,

depending on the dimension of the problems, LB schemes can become computa-

tionally very expensive in terms of both, the number of operations and the storage

requirements. Hence, a parallel implementation is sometimes mandatory in order

to be able to accurately simulate certain systems (especially in three dimensions).

For classical LB methods a number of parallel implementations have been pro-

posed [125, 9, 109, 52, 41, 76] and a detailed analysis of their performance is

available [109, 119, 31].

In general, due to the uniformity of the amount of computations per lattice

site and to the locality of LB models, a regular domain decomposition may be

the most suitable decomposition strategy [41], in this approach the computational

domain is geometrically decomposed in equal subsets, whose task is then assigned

to separate processors. A regular domain decomposition can be implemented us-

ing one of three standard approaches: a one-dimensional slice decomposition, a

two-dimensional shaft decomposition, or a three dimensional cubic decomposition

[109].

A more efficient way to distribute data among parallel processors is to use

block partitioning [51, 86]. A block partitioning parallel algorithm for LB model

is presented in Ref. [125] and it indeed shows a higher performance with respect

to a simpler slice decomposition.

For both data decomposition approaches, the implementation of the paral-
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lel code for a Distribute Memory System would be performed by using a Single

Program Multiple Data parallel programming model, which means that the same

program is executed on each processor operating over distinct data regions [125].

In order to assure portability, we would perform the parallel implementation by

using the Message Passing Interface (MPI) library which is now the main standard

for parallel computing [62, 132]. MPI provides primitives and data-structure for

point-to-point and collective communications and it also allows the definition of

derived data-types and operations.

The general structure of a parallel code for LB models (either classical or

quantum) is as follows:

1. the computational domain is divided among the processes so that each pro-

cess only stores its local sub-lattice;

2. each process exchanges information about communication sizes and locations

with its neighboring processes;

3. each process properly initialize its sub-lattice;

4. the classical LB time iterations proceed by performing the following steps:

a) the collision step is locally performed by each process in its local sub-

lattice;

b) the streaming step is performed by each process; this phase require

communications between neighboring processes, they need to exchange

information about the nodes at the boundary of each sub-lattice.

For the quantum LB scheme, the collision-streaming structure of the model

is augmented with a rotation step in order to align the system along each

spatial direction. The rotation step is completely local and can be performed

by each process in its sub-lattice with no need to exchange data. However,

the global structure of the qLB algorithm for a three-dimensional simulation

is slightly more complicated than the one for classical LB models. In ad-

dition, it requires exchanging more data among neighboring processes since

the streaming step is performed D times (where D = 1, 2, or 3 is the space

dimension), once for each space dimension. Summarizing, the quantum par-

allel time iteration, for a three-dimensional system, is as follows:

a) collision along x (completely local operation performed by each proces-

sor on its sub-lattice with no data exchange);

b) streaming along x (with data exchange between neighboring processes);
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c) rotation of the system so that it becomes aligned along y;

d) collision along y (no data exchange);

e) streaming along y (data exchange between neighboring processes);

f) rotation of the system so that it becomes aligned along z;

g) collision along z (no data exchange);

h) streaming along z (data exchange between neighboring processes);

i) transformation back of the quadrispinor components, ψj .

Besides these more classical approaches to parallel computing, in these last

few years, the programmable Graphics Processor Unit (GPU) has evolved into a

very powerful computing tool. With multiple cores driven by very high memory

bandwidth, today’s GPUs offer incredible resources for both graphics and non-

graphics processing. The lattice Boltzmann model is particularly well suited for

being computed on such a device, this is due to the simplicity of the required oper-

ation. Indeed, there are already some implementations of three-dimensional lattice

Boltzamann scheme on GPU developed by using the Compute Unified Device Ar-

chitecture (CUDA) interface developed by nVIDIA. They show an efficiency gain

of up to two orders of magnitude with respect to the computational performance

of a PC (see e. g. Ref. [141] and references therein).

An implementation of the qLB scheme on GPUs is now under development.

6.3 Application of the qLB scheme to the Khon-Sham

equations

The Khon-Sham equations are a set of eigenvalue equations within the density

functional theory (DFT). DFT is a quantum mechanical theory used in physics

and chemistry to investigate the eigenstate structure (mainly the ground state)

of many-body systems, in particular atoms, molecules, and condensed phases. A

stationary state of many-body quantum system is described by a wave function,

ψ(r1, . . . , rN ), satisfying the many-body Schrödinger equation

Hψ :=


− ~

2

2m

N∑

i

∆i +
N∑

i

V (ri) +
∑

i<j

U(ri, rj)


ψ = Eψ, (6.3)

where H is the total Hamiltonian of the system, N is the number of the particles,

U is the particle-particle interaction potential, and V is a static external potential.

From Eq. (6.3), we can see that the difference between a single particle problem

and a many-body system arises from the interaction term U . The computational

cost to solve Eq. (6.3) is huge, in terms of computational complexity as well as of
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computer storage, for realistic values of N , hence the problem becomes intractable

for conventional electronic computers when more than a few hundreds particles

[137] are considered.

DFT provides an appealing alternative mapping theN -body problem (where U

is present) onto a single-body problem (without U). In particular, DFT basically

claims that the ground state of a many-body wave function is uniquely determined

by the electronic density

n(r) =
N∑

j=1

|φj(r)|2,

where the φj ’s are one-particle orbitals. The ground state energy can then be

obtained by summing up the single-particle orbital energies obtained by solving

the Khon-Sham equations:

HKSφj = Eφj ,

where the Khon-Sham Hamiltonian is

HKS := − ~
2

2m
∆j + V (r) + e2

∫
n(p)

|p− r|dp+ Vex[n].

Here the first two terms are the usual kinetic and external potential operators,

the third one relates to the Hartree-Fock potential and the fourth one is an effec-

tive “exchange-correlation” energy functional, including the effects of the N -body

interactions.

The basic idea is that an effective functional of the electron density exists such

that the ground state energy of a fictitious system of independent particles mov-

ing in such a potential is exactly the same ground state energy of the N -body

interaction system.

In conclusion, a very interesting subject to investigate would be the extension

of the qLB scheme for both time-dependent and time-independent (nonlinear)

Schrödinger equation so to handle the Khon-Sham potential in order to solve a

Khon-Sham set of equations like:

HKSφj = Ejφj , or i~∂tφj = HKSφj .

In this respect, the possibility of using a parallel implementation of the code would

be mandatory, to be able to solve systems of practical interest.
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In this work we have mainly analyzed the quantum lattice Boltzmann model which

was first presented by Succi and Benzi in 1993 [138] as a numerical scheme to solve

the Schrödinger quantum wave equation.

In particular, the qLB (quantum lattice Boltzmann) models represent one of the

first attempts to extend the lattice Boltzmann concepts to quantum mechanics.

The lattice Boltzmann model is nowadays a consolidated tool for simulating fluid

flows in a variety of complex settings. The idea to export the lattice kinetic

approach to quantum mechanics was initially inspired by the known analogies

between fluid dynamics and quantum mechanics. In particular, as we briefly il-

lustrate in Chapter 1, quantum mechanics can be formulated in a fluid dynamic

language.

Indeed, the qLB model is based on a formal analogy between the lattice Boltzmann

equation (LBE) and the Dirac equation. It can be shown that the Schrödinger

equation can be formally derived from the Dirac equation under an adiabatic con-

dition which is formally equivalent to the one which takes us from the LBE to the

Navier-Stokes equations.

From this analogy, a numerical scheme can be obtained basically associating the

wave functions which together form the Dirac quadrispinor with the discrete dis-

tribution functions of the LBE.

The resulting model is the qLB and, as we discussed in detail in Chapter 1, the one-

dimensional version of the qLB model derives naturally from the formal analogy

between Dirac equation and LBE. However, in multi-dimensional formulations,

the analogy is no longer straightforward. This is due to the quantum mechanical

nature of the Dirac equation, in particular to the fact that, unlike classical parti-

cles, quantum particles of different types mix up – somehow –, while propagating.

From a mathematical point of view, this means that the Dirac streaming matrices

cannot be simultaneously diagonalized. To solve this problem, a new step has to

be added besides the classical collision and streaming steps, a so-called “rotation”

step, which consists of transforming the system in such a way to secure alignment

between momentum and spin degrees of freedom along each direction of propaga-

tion.
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Indeed, the first result of this work is the numerical validation of the multi-

dimensional version of the qLB scheme. In Chapter 2, we illustrate in full detail

how to extend the model to two and three space dimensions resorting to an oper-

ator splitting approach.

In addition, we present numerical results which explicitly demonstrate the applica-

bility of the qLB scheme for the numerical simulation of the Schrödinger equation

in the multidimensional case. However, most of the numerical results presented

in Chapter 2 were obtained with the two-dimensional model. A detailed numeri-

cal study of the three-dimensional algorithm would necessarily require a parallel

implementation. This is due to the fact that, since the distribution functions are

complex valued, qLB is computationally expensive in terms of storage require-

ments. A systematic analysis of the numerical results given by the three dimen-

sional model is now under development resorting to a parallel implementation of

the qLB scheme on GPUs (Graphics Processing Units), see Sec. 6.2.

As a numerical scheme for quantum wave equations, the qLB model presents

the usual attractive features of LB models: simplicity, computational speed and

straightforward parallel implementation. Moreover it is norm-preserving and sta-

ble for any value of the time step provided that the light-cone rule is satisfied (i. e.

∆t = c∆z). Its accuracy, however, is subject to the condition ωc∆t = ∆z/λB ≤ 1,

λB = c/ωc being the De Broglie wavelength of the particle. Since the time-step

scales linearly with the mesh-spacing (a result of the relativistic formulation), qLB

can be taken down to very refined grids without suffering the time-step collapse

typical of non-relativistic stability conditions, ∆t < 2m
~

∆z2, thus compensating

for its low-order accuracy. However, care must be taken to ensure that errors “due

to lack of adiabaticity” remain under control when ωc∆t is sent to zero.

The second objective reached by this work is the extension of the qLB model to

the case of non linear quantum wave equations, most notably the Gross-Pitaevskii

equation (GPE) describing the dynamics of zero-temperature Bose-Einstein con-

densates.

As discussed in Chapter 3, we formulated an imaginary-time version of the qLB

model by applying the so-called Wick rotation to the real-time qLB scheme.

The imaginary-time qLB model has been used to compute the ground state of the

GPE in one and two-dimensions, and its viability demonstrated through system-

atic comparison with numerical solutions obtained via standard implicit methods,

as well as with analytical results based on the Thomas-Fermi approximation.

We then investigated the use of the qLB model for the case of nonlinear inter-
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actions with random potentials.

In particular, we simulated the phenomenon of Anderson localization within ex-

panding Bose-Einstein condensates, solving numerically the GPE equation with a

random speckle potential.

In Chapter 4, we present this application observing that qLB simulations show

evidence of Anderson localization even for relatively low-energy condensates. In

addition, very-long time simulations, hundred times longer than in the previous

literature, show evidence of a progressive, though very slow ( t−1/3), delocalization

of the condensate.

Finally, in Chapter 5, starting from a work by Moroz, Penrose and Tod [102],

we investigate a special non linear quantum wave equation proposed by Penrose

within his theory of quantum state reduction viewed as a gravitational effect,

namely the Schrödinger-Newton equation (SNE).

In particular, we extended the procedure outlined in Ref. [102] for the computation

of the eigenstates of the SNE to the GPE with attractive interactions.

This last part of the work deviates, in some sense, from the main stream of this

thesis because we decided to not use the qLB model for numerical computations

since it seemed more convenient to apply directly the approach presented in Ref.

[102] to the GPE as explained in Chapter 5.

The mathematical structures of the SNE and GPE are compared and, despite

their similar behavior, there is an important difference due to the presence of

the Laplacian operator in the potential energy term of the SNE. The presence

of the Laplacian operator guarantees the existence of a minimum for the energy

functional associated to the SNE, while the same is not true for the GPE.

Eigenfunctions of the attractive GPE are numerically computed by using a Runge-

Kutta scheme under the assumption of spherical symmetry. The coupled system

composed of the GPE and the SNE has also been investigated. Consistently with

the theoretical expectations, the effects of ordinary gravity are found to be totally

negligible with respect to the attractive force between the atoms due to the self-

interaction potential of the GPE.
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