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Introduction

This thesis is devoted to one of the major open problems about complex surfaces:
the classification of surfaces of general type and their automorphisms. We will
always work over the complex numbers.

It is well known that complex surfaces have been classified by Enriques and
Kodaira in terms of their Kodaira dimensianwhich is defined as follows.

Definition 0.0.1. Let S be a surface. ThKodaira dimension of S is the number
K(S) = max{dim Im (o), : S — PY),m € N}

wherey,, k| is the rational map defined by the pluricanonical systenis| on
S. We will setx(S) = —oo if [mKs| = 0 for all m > 0.

While surfaces with: < 1 are quite well-known, we have much less informa-
tion about surfaces of general type, i.e. those for which 2. Their complete
classification is still an open problem even though there are important contribu-
tions from many mathematicians (for a general reference see [BCP]).

We know that minimal surfaces of general type are subdivided into classes
according to the value of three main invariants: the self-intersection of the canon-
ical divisor K 5%, the holomorphic Euler characteris§i¢S, Os) and the geometric
genusp,(S) := h%(S, Os(Ks)) = h*(S, Og). In this thesis we are mainly inter-
ested in those surfaces with the lowest invariants:

Definition 0.0.2. A numerical Godeaux surfaces a minimal complex surface of
general typeS with p,(S) = 0, Ks* = 1, x(Og) = 1.

The first example of such a surface can be found in [G] and it is the quotient
of a smooth quintic ifP* with a freeZ/5Z action. This example turns out to have
non-trivial torsion, and in fact it hag/5Z as a torsion group.
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Much information about torsion group of numerical Godeaux surfaces can be
obtained by the study of the base points of the tricanonical syst&my|. This is
an important result by Miyaoka [Miy] which is recalled in section 1.5. It is known
(see [R] and [Miy]) that the moduli spaces of numerical Godeaux surfaces with
torsion groupZ /3%, Z/4Z andZ/5Z are irreducible and have dimension 8.

As for every surface of general typeut(S) is a finite group (see also [X1],
[X2] and [X3]). Itis still a quite difficult problem to determine the grodpt(S).

The simplest case is that of a surfadesdmitting an involution. For Godeaux
surfaces in [KL] Keum and Lee study the fixed locus of the involution under the
hypothesis that the bicanonical syst&¥ 5| of the surface has no fixed compo-
nent.

In their work [CCM2] Calabri, Ciliberto and Mendes Lopes complete the
above study by removing this hypothesis. They use intersection theory and the
theory of abelian covers to get a classification result, which can be resumed in the
following theorem:

Theorem 0.0.3.A numerical Godeaux surfaceéwith an involution is birationally
equivalent to one of the following:

1. adouble plane of Campedelli type;

2. a double plane branched along a reduced curve which is the union of two
distinct linesr;, , and a curve of degree 12 with the following singularities:
e the pointgy, = r; N o of multiplicity 4;
e apointg; € r;, i = 1,2 of type[4, 4], where the tangent line is;
o further three pointsys, ¢4, g5 of multiplicity 4 and a pointys of type

[3, 3], such that there is no conic through, . . ., gs;

3. adouble cover of an Enriques surface branched along a curve of arithmetic
genus 2.

In case 3 the torsion group df is Tors(S) = Z/47Z, whilst in case 2 is either
Z7]27 or Z/AZ.

We recall that a double plane of Campedelli type is a double plane branched
along a curve of degree 10 with a 4-tuple point and 5 points of {$p#&, not
lying on a conic. An example of such a double plane can be found in [S].



We want to extend the method used in [CCM2] in order to classify such nu-
merical Godeaux surfacéshaving an automorphismof order three.

Our main result is

Theorem 0.0.4.A numerical Godeaux surface cannot have an automorphism
of order 3.

In the first chapter we recall some well-known results about complex surfaces
of general type and about fibrations of surfaces over curves. Moreover, in section
1.2 we recall some basic elements of the theory of cyclic triple covers.

In section 1.3 we show how it is possible to construct a minimal smooth reso-
lution of the coverS — ¥ = S/o, i.e. a commutative diagram

X —- 8

A

y 1%
whereX andY are smooth surfaces atdl — Y is a triple cover induced by .
The main idea is then to apply the theory of abelian covers following [P].

In section 1.4 we recall the basics about plane quadratic transformations.

In the second chapter we start our analysis, using Hurwitz formula and the
topological Euler characteristicto estimate the number of isolated fixed points
of the action ofc on S (which can be mapped either to ordinary triple points or
to double points of typel;). We determine some basic properties of the invariant
partA of the tricanonical systen3Ks|, which can be either a pencil or a net and
it is mapped to a systefV| over the quotient surfacgé. Moreover we study the
adjoint systems toN | with the help of [CCM1, lemma 2.2]. All their numerical
properties are collected in proposition 2.3.12. We also have a subdivision in three
major cases according to the intersection numRgk’s andh,, whereR; is the
divisorial part of the ramification locus af while h, is the number of isolated
fixed points ofc mapped tod,-singularities (see the list of page 33).

A numerical analysis of these three cases is worked out in the third chapter,
where using some properties of nef divisors and of fibrations it is shown (see
theorems 3.1.21 and 3.2.2) that the first two cases cannot occur. In the third case
the systemjN| on Y (and alsoA on S) is a pencil and its movable part induces
a fibration overY”. An analysis of the singular fibres determines the possibilities
listed in theorem 3.3.8. It is quite easy to see, although it is a very important
information, thaty” is a smooth rational surface (proposition 3.3.1).
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Chapter four is devoted to a deeper study of the adjoint systems to the pencil
|N| and to exclude some of the cases coming from theorem 3.3.8. We also divide
the remaining group of cases between Del Pezzo cases and ruled cases (see defi-
nitions 4.0.11 and 4.0.12), since eithéis a blow-up of?* at a certain number of
points, orY” has a rational pencil with self-intersection 0. Moreover we show that
the divisorial partRk, of the ramification locus of the order three automorphism
o on the numerical Godeaux surfagds either O or it has only one irreducible
component.

Last chapter deals with a more geometric study. The first section is devoted
to the ruled cases. We show thétafter contraction of suitable curves can be
mapped ontd,, IF; or F; and that, by blowing up a point and contracting again,
we can always reduce fi&y. Then we can actually see, birationally speaking, our
surfaces as triple plane.

A computation of the movable partl’| of the pencil| N| on Y allows us to
show that ruled cases cannot actually occur.

The second section is then devoted to the study of Del Pezzo cases where
the rational surfac&” is mapped to the projective plane blown-up at seven, eight
or thirteen points. The computation of the exceptional curves coming from the
blow-up of the isolated fixed points ahtells us that also Del Pezzo cases do not
occur.
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Chapter 1

Known results about surfaces

In this first chapter we collect some results about complex surfaces, fibrations and
cyclic covers and other general theorems which are at the base of our work. For
the results which are not proved here we refer to [BPV] or to [H], unless otherwise
specified.

1.1 Fibrations and other results about surfaces

Lemma l.l.1.Let f : X — B be a fibration, not necessarily connected. Then
h'(Xy, Ox,), i = 0,1 is independent df. In particular 2°(X,, Ox,) equals the
number of connected components of a nonsingular fibre.

Lemma 1.1.2 (Zariski's lemma).Let X, = > n,C;,n; > 0, C; C X irreducible,
be a fibre of the fibratiorf : X — B. Then we have

1. ¢; X, = 0forall i.
2. If D= ZmZCZ, m; € 7, thenD? < 0.

3. D? =0 holdsifand only ifD = rX;, r € Q.

Proposition 1.1.3 (Proposition 111.11.4 of [BPV]). Let f : X — B be a fibra-
tion and X ,, a nonsingular fibre. Then

1. e(Xp) > e(Xye,,) for all fibres X,;

2. if X is compact then
e(X) = e(Xgen)e(B) + Y _(e(X3) = e(Xgen)).

beB
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Lemma 1.1.4. An irreducible curveC; with C? = —n in a singular fibre con-
tributes to the Euler number as a curve with at leastodes.

Proof. Let us consider a reducible curve of the fibration

l
C=> hC;
i=1

As shown in [F] (see also [E, section V.1])is equivalent t@, curves with a node
where

l
Z (hi — 1)(2pa(Ci) = 2) + D _(hi + h; — 1)CiC; (1.1)
i=1 i#j

Let us consider one of the curves, sayC; with CZ = —n. Then

l
0=CC=—nhy +C1 Y G

=2
hence l
Cl Z thz = nh1

1=2

SinceC is connected we also have

l
) Ci>1
=2
Then
0o > (b1 — 1)(2pa(Ch) = 2) + > (1 + by — 1)C1C;
j>2
> (b — 1)(=2+ Y CiCy) + C1 Y ;G
Jj=2 j>2
as wanted. n

The above lemma tells us that a curve with negative self-intersection in a sin-
gular fibre can be considered as the sum of a suitable number of curves with a
node. Let us now see what the contribution of each node to the Euler number of a
fibre is.
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Lemma 1.1.5.Each node in a singular reduced fibre increases the Euler number
by one.

Proof. AssumeF is a reduced curve with nodes. Then i : £ — F is the
normalization ofF" we have the following exact sequence

0 —O0p — 1.0z —0—0
where/ is a sheaf supported on the node arid) = h°(5) = n. Then

1 —py(F) = x(Of) = x(1.05) = x(OF) + x(0) = 1 — pa(F) + h°(5)

pg(F) = pa(F) — h0<5)

We also have the following diagram

0 — Cp —— 1,Cjx 0 0 0

I £

0 —— Op — 1.O0fp

It follows

e(F) = e(F) = x(8') = 2 = 2(pa(F) — h°(8)) — h°(8) = 2 — 2pa(F) + h°(6)
= e(Xyen) + hO(6).

]

Theorem 1.1.6 (Unbranched covering trick).Let X be a connected complex
manifold.

(i) If b1(X) # 0 thenX admits unbranched coverings of any order.

(i) If Hi(X,Z) containsk-torsion, thenX has an unbranched coverings of
order k.

Proposition 1.1.7.Let S be a minimal surface of general type wilti;> = 1.
Theng(S) = 0.

Proof. Assumeq(S) > 0. Thenb,(S) # 0, H,(S,Z) is infinite and the un-
branched covering trick says th&thas unramified covers of any order Let



12 Chapter 1. Known results about surfaces

¢, : S — S be such a cover. Thet(Og) = ne(Os) andKg = ¢, *(Ks)
hence

X(Og) = nx(Os).
Sinces is of general type we fingd,(S5) > ¢(S) and

14 pg(S') > x(Og) = nx(Os) = n(1 + py(S) — q(S))

We remark that, ifS is minimal, then als@’ is.

On the other hand from the minimality 6f and from Noether’s inequality

K2, Kg?
Po(S) < = +2 =25 42
It follows
, nk g
n =1+ n(py(S) —q()) < py(S) < =5 +2
and then

and we get a contradiction when> 7. O

Proposition 1.1.8. Let S be a surface wittp,(S) = 0. Then for any effective
divisor D on S we haveh?(S, O5(D)) = 0.

Proof. Let D be an effective divisor on the surfage Then we have the short
exact sequence of sheaves (see also [H])

0— Os — Og(D) — Op(D) — 0 (1.2)

By Serre’s dualityp,(S) = h°(S, Os(Ks)) = h*(S, Os). Then from the long
exact sequence of cohomology associated to (1.2) we have

0 — H*(S,04(D)) — H*(D,0p(D)) — 0

SinceOp(D) is supported on a curve, we fid (D, Op(D)) = 0 and the result
is proved. ]

Lemma 1.1.9 (Lemma 2.2 of [CCM1]).Let D be a nef curve on aregular surface
X such thatp, (D) > 1. If Kx + D is not nef, then any irreducible curn¢é such
thatO(Kx + D) < 0isa(—1)-curve®© such tha®D = 0.
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Proof. Let us consider the short exact sequence
0 — Ox(-D) — Ox — Op — 0

Then from the associated long exact sequence of cohomology we haveXsince
is a regular surface,

0 — H'(D,0p) — H*(X,0x(—D)) — H*(X,0x) — 0
Hence

R (X,Ox(Kx + D)) = h*(X,O0x(—D)) = h'(D, Op) + h*(X, Ox)
= h(D,0p) =1+ pa(D) + py(X) > pa(D)

and we have equality D is 1-connected (e.g. I is nef and big) ang,(X) = 0.
Then, whemp, (D) > 1, Kx + D is an effective divisor.

If © is anirreducible curve such th@t{ K x + D) < 0 then we obviously have
©Kx < 0. Moreover since® cannot move (i.eh’(X,Ox(0)) = 1) from the
short exact sequence

0— Ox — O0x(0) — 0p(0) — 0
and the regularity o we findh°(X, Og(©)) = 0 and then
—h'(X,06(0) = x(0,06(0)) =1 + 6% — p,(6)
0’+0OKx ©?—-0Ky

=1+6*—-1- =
i 2 2

ThusO satisfies the three inequalities

O+ 0Ky > -2
O2—-0Kyx <0
@Kx<0

which force®? = 0Ky = —1. O

Theorem 1.1.10 (Index Theorem)Let D, E be divisors with rational coefficients
on an algebraic surfacé. If D? > 0 and DE = 0, thenE? < 0 and E? = 0 if
and only if £ is homologous to 0.
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Theorem 1.1.11 (Kawamata-Viehweg)Let X be a smooth projective variety of
dimensiom, and letL be an integral divisor (or line bundle) oX. Assume that

whereD is a big and nefQ-divisor, andA = > a;A; is a Q-divisor with simple
normal crossing support and fractional coefficients

0<a; <1 forallsi.

Then
HZ<X, Ox(KX —|—L)) =0 fori>D0.

Equivalently
H/(X,0x(—L))=0 forj<n.

For the proof of theorem 1.1.11 we refer to [L].

Finally we recall the well-known Castelnuovo’s criterion for the rationality of
surfaces:

Theorem 1.1.12 (Castelnuovo’s criterion).An algebraic surfaceX is rational
if and only ifg(X) = P»(X) = 0.

1.2 Cyclic triple covers of smooth surfaces

We now briefly recall the theory of Galois abelian covers for surfaces. A more
general and detailed description of such covers can be found in [P]. We will focus
our attention on the case of covers with Galois gréug- Z/37Z. For the case of
triple covers the reader may also refer to [Mir].

LetY be a smooth surfacé; be an abelian group with a faithful action &n
and letX be an abelian cover &f with groupG. This means that there is a finite
mapn : X — Y such thal” = X/G andr is the projection ofX to its quotient.

Under these hypotheses there is a splitting
m0x = P L'
xeG*

whereG* is the group of characters ¢f, L, = Oy andG acts onL;1 via the
charactery.
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Definition 1.2.1. For each componerit’ of the ramification divisorR on X we
can define itsnertia group

Hr:={heG|hr=zVxeT}

Lemma 1.2.2 (Lemma 1.1 of [P]).If T as above has codimension 1lthen
Hy is a cyclic group.

Lemma 1.2.3 (Lemma 1.2 of [P]).If T is as inlemma 1.2.2, then there exists a
parametert for Ox 1 such that the action ol is given by

whereo; is the representation dff on9t/9t? (90 is the maximal ideal of in
X) induced by the cotangent map.

Let B be the branch locus of the cov&r — Y. Then to each irreducible
component” of B is associated a subgroup @fwhich is the inertia groug! =
Hr of all the irreducible components af!(V/) and a charactep € H as in
lemma 1.2.3 which is a generator Bf.. Hence we can write

B=)_ > Buy
HeC veSy

where( is the set of cyclic subgroups 6f andSy is the set of generators éf*
for any H € C and we denote by, the sum of the irreducible components of
B with inertia groupH and charactey.

Definition 1.2.4. A G-cover is asimple cyclic coverif B = B, for some char-
acterq that generates:*.

Let us now fix a paif H, ). Then for anyy, x’ € G* we can write
Xig = V%, X = Y
with iy, i, € {0,...,my — 1} wheremy is the order ofH.

Then we can define

Hy 0 if ix+ixl<mH

Sxx' =

1 otherwise

The invertible sheaves, and the component8y ,, are called théuilding
data of the cover and they define uniquely the Galois cover in the sense of the
following
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Theorem 1.2.5 (Theorem 2.1 of [P]).Let G be an abelian group. LeY” be a
smooth variety X a normal one and letr : X — Y be an abelian cover with
groupG. Then the following set of linear equivalences is satisfied by the building
data of the cover:

— H,
Ly+Ly=Ly+ > Y elVBuy (1.3)

HemeC wGSH

Conversely, to any set of dafa , By, satisfying(1.3) we can associate an
abelian coverr : X — Y in a natural way. Whenever the cover so constructed
is normal,L,., By, are its building data.

Moreover, if Y is complete, then the building data determine the cover
X — Y up to isomorphisms of Galois covers.

We now restrict to the case of Galois triple cover. Wiién- Z/37Z the only
non-trivial cyclic subgroup ot~ is G itself and there are two generators@f.
We also have

1.0x = Oy @ Oy (—L1) ® Oy(—Ls) (1.4)

where G acts onOy(—L;) as the multiplication byv = ¢?>*/3 while acts on
Oy (—L») as the multiplication by.?. In this setting the conditions (1.3) can be
rewritten as

9L, = Ly + B2
Li+I,=B
9Ly =L, + B,

and can be reduced to the following two:

3L, = B+ B
Li+L,=B (1.5)

1.3 Resolution for cyclic triple covers

Assume we have a smooth surfe€evith an action ofG = Z/3Z. ThenS has a
ramification locus which is composed of a divisorial pArand of some isolated
fixed points. We pub = ¢>™/? as in the previous section.

We now look at thez-action near the isolated fixed points. Without loss of
generality we can assume the pointis= (0,0) and, by Cartan’s lemma [Car,
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lemma 2, p.98], the action @ can be linearized ne&. Then since) does not
belong to any divisorial component of the ramification locus we find two possible
actions:

(z,y) — (wz,wy)
or

(z,y) — (wz,w?y)

Then there are two different kinds of isolated fixed points. The quotient sur-
faceS/G is a normal surface, but it is singular at the image of the isolated fixed
points. Let us consider the first action

(z,y) — (wz,wy)

Locally S can be seen &pec(C[z, y|) and the coordinate ring of the quotient
surface is given by the ring of invarian®x, y|“ of C[x,y]. The ringClz, y]“
is generated by the monomias= 2®,n = y?,( = 2y?, v = 2%y satisfying the
relations¢? = vn, v? = £, Cv = &n.

Then we can locally describ®/G as

Spec(C[ﬁ, n, C7 U]/(Cz —un, U2 - 547 CU - 577)) (16)

Such a surface has an ordinary triple point singularity at the origin.

We now consider the second action
($7 y) - (wx, uﬂy)

In this case the invariant ring is generated by the monontialsz®, n = 3, =
xy with the relation(?® = ¢n.

ThensS/G can be locally described as

Spec(C[¢, n,¢]/(¢7 — &) (1.7)

and it has a double poimt, singularity at the origin.

Definition 1.3.1. Let S be a smooth surface with an action@f= Z/3Z.

An isolated fixed poinP will be saidof type | if the quotientS — S/G
mapsP to an ordinary triple point.

P will be saidof type Il if the quotientS — S/G mapsP to a double point
of typeAs;.
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We now want to show how to find a minimal desingularization of the triple
coverS — ¥ = S/G, i.e. we want to find two smooth surfac&sandY such
that X is birational toS, Y is birational to¥ and there is a triple coveX — Y
such that the following commutative diagram holds

X —— S

L

Y — X%

A description of the desingularization can be found in [T] and in [Cal]. We
now recall the explicit computation.

Since it is a local question, we reduce ourselves to consider separately the two
kinds of isolated fixed points. Without loss of generality we can assumeSthat
has local coordinates, y) and the isolated fixed point {9, 0).

Type [:
If (0,0) is of type | (see definition 1.3.1), the action@f= Z/3Z is
((L’, y) - (CUI'7 wy)

and the quotient surfaceé = S/G is described by (1.6).
We now blow upS at the isolated fixed point. Then the blow-fpwill satisfy

the condition
rk (m y> <1
Ug Uy

Tup = Uy (1.8)

Then we have

We now extend th& /37Z-action onS’ in the natural way by defining
((:U;y), [UO : ul]) - ((wx,wy), [wuo : wul]) = ((wx,wy), [UO : U1]>

Hence the exceptional diviser:= {(0,0), [ug : u1]} is fixed under the action
of G = Z/3Z and we have no more isolated fixed points. Thén= S’ and
the quotient surfac& = S’/G is smooth. Moreover the imageé of e is the
(—3)-curve obtained by blowing up the triple point singularity’of= S/G.
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Type Il

Let us now consider the case whgn0) is an isolated fixed point of type Il (see
definition 1.3.1). The action & = Z/3Z is now

(z,y) — (wz, W)

and the quotient surface = S/G is described by (1.7).
We now blow upS at the isolated fixed point. Then the blow-8pwill satisfy

the condition
rk <x y> <1
Uy U1

U1 = Ugy (19)

Then we have

We now extend th& /3Z-action onS’ in the natural way by defining

(@, 9), [uo : w]) — (W, 0), [uo : wur])

Then the exceptional divisor is invariant for the above action but it is not fixed.
Hence the action o8’ has two more isolated fixed pointy = ((0,0),[1 : 0])
andP; = ((0,0), [0 : 1]) on the exceptional divisar; = {(0,0), [uo : u1]}.

The pointP; is in the open subséf; := {u; # 0} for j = 0, 1. Let us define
v1 = u1/ug onUy andwg := ug/u; onU;. Then onlUy we can write

Y =z

and we have local coordinatés, v, ). If we compute theZ/3Z-action onlU, we
get

(z,v1) — (wz,wv1)
henceF, is an isolated fixed point of type I.

On U, instead we have

T = VoY

and the local coordinates afg vy). If we compute thé&./3Z-action onl/; we get
(yv0) — (W', w1

henceP; is again an isolated fixed point of type I.
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Therefore a further blow-up of the two points as described in page 18 gives
us the surfac& which has an action aff = Z/3Z with no isolated fixed points.
Then the quotient” = X/G is smooth as wanted. Moreoveron X is a(—3)-
curve and its image) satisfies

36 = () = &

wherer : X — Y is the quotient map. Heneg is a(—1)-curve onY'.

1.4 Quadratic transformations

In this section we recall some basic definitions and properties of planar Cremona
maps and, in particular, of quadratic transformationg®fGeneral references for
this subject are [D] or the book [AC].

Let S be a nonsingular projective surface and tS) be the category of

birational morphisms : .S’ — S of nonsingular projective surfaces.

Definition 1.4.1. Thebubble spaceS® of a nonsingular surfacé is the factor
set

S = U 9|/r
(5" 7.8)eB(S)
where R is the equivalence relation defined as follows:c S’ is equivalent to
¢" € S” if the rational mapr” ' o 7’ : S’ --» S” maps isomorphically an open
neighborhood of’ onto a neighborhood af”.

Definition 1.4.2. If o : S” — S’ is isomorphic to the blow-up of a point € S’
each pointz” € p~!(z') is said to be arinfinitely near point to z’ of the first
order. By induction one can define infinitely near points'tof orderk. We will
write x” ;. x’ to say that:” is infinitely near of ordef to x’.

Definition 1.4.3. Abubble cycleis an element)y = >~ m(x)zx € 75" such that

1. n has afinite support;
2. m(z) > 0 for anyz € S*;

3. ifz > 2/ thenm(z) < m(2).
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Definition 1.4.4. Letn be a bubble cycle and Id? be a divisor on a nonsingular
surfaceS. Then the linear systen® — 7| is homaloidal if the map associated to
|D — n| is birational onto its image. Whefi = P> and D = di € |Op:(d)| the
cyclen is also called ehomaloidal bubble cycleof degreei.

Then one can show the following theorem

Theorem 1.4.5.A bubble cycle) = Ef\il m;x; onP? is homaloidal of degred
if and only if|dl — | contains an irreducible divisor and the following numerical
conditions are satisfied:

N
dQ—mez 1, 3d—2mi:3.
=1

For the proof of the above theorem we refer to [D].

From now on we will assume that the nonsingular surfééeP?.

Definition 1.4.6. A plane Cremona transformationis a birational transforma-
tion P? --» P2,

Each plane Cremona transformation is defined by a homaloid&Vhen P*
of polynomial of some degreé¢and by a choice of a basis In. We are mainly
interested in those maps defined by a net of polynomials of degree 2.

Definition 1.4.7. A quadratic transformation is a plane Cremona transforma-
tion which is defined by a net of degree 2 homogeneous polynomials.

Since the complete linear syste@y:(2)| of conics ofP* has dimension 5, a
homaloidal netV/| inside|Op2(2)| is defined, following theorem 1.4.5, by impos-
ing three base points,, x», x3 such that) = z; + x5 + x5 is a homaloidal bubble
cycle as in definitions 1.4.3 and 1.4.4.

Definition 1.4.8. Let x1, 2, be points in(P?)". Thenz, is proximate to z; if

Lo ™1 X1.

Definition 1.4.9. Let 2, x5, x5 be points in(P?)". Thenz; is satellite to z; if
Ty =1 X1, T3 =1 Ta, T3 1 1. IN particular z3 is the intersection point between
the exceptional divisor obtained by blowing wpand the strict transform of the
exceptional divisor of;.
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When we blow up a certain number of points . . . , z,, onP? each irreducible
curve on the blow-up must satisfy the following inequalities (see also section 2.3
of [Cal])

Y omy<m; Vi=1,...,n (1.10)

Tj>1T;

wherem,, is the multiplicity of the curve at the point,.

In particular when we blow-up a bubble cygje= xz; + x5 + x3 such thates
is satellite tar; we get

m12m2+m32m3+m3:2m3

for any irreducible curve passing through the three points with multiplieity

Let us now fix a bubble cycle = z; + x5 + 3 in (P*)*. Then there are no
irreducible curves 2l — 7| if and only if one of the following cases occurs:

a) all the points im are onP? and they are collinear;
b) zo =1 21, 13 =1 71

In the former case all the conics through the three points must contain the line
joining them, hence they are reducible. In the latter case eithes satellite to
x1, hence there are no smooth curvesdh— 7| for anyd, or the conic has two
different tangent directions at, hence it is reducible since it is the union of two
distinct lines.

Example 1.4.10.Let us take three non-collinear points, =, 3 on P? (with
coordinatesyy, y1,%2). Then, up to projective transformations, we can assume
they are[1: 0: 0],[0: 1:0].[0:0: 1]. Let us now consider the system of conics
through these three points and choose a bdsis)., yoys, yoy1 } Of this system.
We now set

Tyt [yo : 1t yol — (Y192 : Yoy © Yo
It is easy to see that? = id thusTj is a birational involution.

Example 1.4.11.Let us now take three points, x9, x3 With x5 >; z; while
Ty ¥ 11,23, 11, T2 € P?. Then, up to projective transformations, we can assume
thatx,,z, are[0:0: 1], [1: 0 : 0] wherease; is the tangent direction, = 0. We
now choose the basig/?, yoys, yoy: } of the system of conics through, z», 3.
We can set

Ty [yo:y1: ya] — Wi < yove : you]
Again one had? = id thus alsadTl}, is a birational involution.
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Example 1.4.12.Let us now take three points, zo, x3 With x3 =1 x5 =1 21,
z; € P%. Then, up to projective transformations, we can assumextha[0 : 0 :
1], =5 is the tangent direction, = 0 whereasr; lies on the proper transform of
the liney, = 0. We now choose the basig?, yoy1, ¥? — yoy=} of the system of
conics throughey, 25, 3. We can set

Ts: [yo:yn: yal — Y5 - Your : Y5 — Yovel
Again one hag? = id thus alsaT} is a birational involution.

Remark 1.4.13. Each quadratic transformation d&® can be written as

/

91ig
for suitable projective transformations ¢'.

The mapsl; are defined at all points d#? except forzy, z9, x3. Let us take
a curve of degreéd passing throughy, s, x3 with multiplicities my, my, ms re-
spectively. Let us now understand what the image of such a curve under a quadra-
tic transformatioril’, 7,, T3 is. In particular we now determine the degréand
the multiplicitiesm/, m},, m}; atz,, xo, x3 of the image.

We work out the computation in the case of the transformafigisee example
1.4.10).

Let us take a homogeneous polynomidly, y1, y») of degreed which has
multiplicity mq, mg,ms atzy =[1:0:0],20 =[0:1:0],23 =[0:0: 1]. Then

_ 10,01, 42
F(yo,y1,92) = § Jioinia¥0 Y1' Y2
ig+i1+io=d
10<d—mq
11 <d—mg2
12<d—mg

The imageF” (yo, y1, y2) is then

/ _ %0, ,10,,81 01,22 12
F'lyo.yi.m2) = Y fonis VUL v v v vs
10+i1+i2=d
io<d—m1
i1 <d—mg
ig<d—m3

_ E 11+i2 , jo+i2, to+i1
- fioi1i2y0 n Ya
to+i1+i2=d
ig<d—my
i1 <d—mgo
i2<d—mg3
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_ d—ig, d—i1, d—i2 __ , mi,,ma, m3 i/
= > finn¥ Oy s = u s F (Yo, v, )
19+i1+i2=d
i9<d—my
i1 <d—ma
ig<d—m3

Thus the strict transform” = 0 of our initial curveF’ = 0 is of degree
d':2d—m1 — Mo — MNg3. (111)

Moreover each variablg; appears inf” with a powera; = d — i; — m;j; <
d — m;1 which tells us that the multiplicity of” = 0 at each point;, is

my, = (2d —my —my —my) — (d—my) =d— > _m. (1.12)
j#h

1.5 Numerical Godeaux surfaces

Definition 1.5.1. A numerical Godeaux surfaces a minimal complex surface of
general typeS with p,(S) = 0, Ks* = 1, x(Os) = 1.

Numerical Godeaux surfaces are the minimal surfaces of general type with the
lowest invariants. A first example was given by Godeaux in [G] as the quotient of a
quintic in P’ by a freeZ /57 action. Later many other examples were constructed,
but we still not have a complete classification.

From the definition 1.5.1 one can easily see that the bicanonical map of numer-
ical Godeaux surfaces cannot be a birational map, sihke| is a pencil. Thus
they are not covered by the results in [Ci].

In [Miy] Miyaoka studied the properties of the bicanonical and of the tricanon-
ical system of such surfaces. We now recall his results:

Lemma 1.5.2 (Lemma 6 of [Miy]). Let.S be a numerical Godeaux surface and
let | M| be the movable part of the bicanonical syst@is|. Then we can write
|2Ks| = |M| + T whereT is the fixed part of2Kg|. Then the generalM ¢
|M| is reduced and irreducible. Moreovél and 7" satisfy one of the following
numerical conditions:

a) T =0;
b) KsT =0,7% = -2, M?* =2, MT = 2;

¢) KsT =0,T2 = —4, M2 =0, MT = 4.
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Theorem 1.5.3 (Proposition 2, Theorem 2 and Theorem 3 of [Miy])Let S be
a numerical Godeaux surface. Then the tricanonical syg&dy| has no fixed
part. Every base point of the tricanonical system is simple and the nubndier
base points is given as follows:

b=t € Hy(S, Z)or |t # —1}[/2
Moreover the map ;| associated t¢3Ks| is birational.

The birationality of the tricanonical map; | allows us to see a numerical
Godeaux surfacé as a surface if®® with a finite number of double points as
singularities, coming from the contraction of the2)-curves.

Catanese and Pignatelli, in their work [CP1], have recently improved the study
of the bicanonical system obtaining the following result which excludes case c) of
lemma 1.5.2.

Theorem 1.5.4.Let S be a numerical Godeaux surface and fet S — P! the
fibration induced by the bicanonical pencil f Then the genus of the fibre can
only be 3 or 4.

As a consequence of theorem 1.5.3 we also have the following

Theorem 1.5.5 (Lemma 11, Theorem 2’ and following remark of [Miy]). For a
numerical Godeaux surfacethe order of the torsion group does not exceed 5 and

b=<1 if Hy(S,Z)or = Z/37 or Z/AZ;

The moduli spaces of numerical Godeaux surfaces with torsion gE@Big,
Z./4AZ or Z./57Z are known to be irreducible of dimension 8 (see [R] and [Miy]).
At the best of our knowledge, the analogous question about surfaces with torsion
group0 or Z /27 is still open. Examples with such torsion groups are constructed
in [B], [CG] and [W], while a deeper study of the numerical Godeaux surfaces
without torsion can be found in [CP2].






Chapter 2

Preliminary results

2.1 Basic properties

Let us consider a numerical Godeaux surfacécf. section 1.5) with an order
3 automorphisnv and letp : S — X be the projection of5S to its quotient
Y =S5/ <o >. Letalsor : X — Y be the resolution of the coveétr — X
with X andY smooth as in 1.3. So we have a commutative diagram

X =89

| E

y -+ %

Let us fix the notation:R; is the ramification divisor op, h, is the number
of isolated fixed point®; of o which descend to triple point singularities Bf,
whereas, is the number of isolated fixed poinisof o which descend to double
point singularities o> . We also defingy = Z?;l E; whereFE; is the exceptional
curve corresponding to the poipt. We will denote the reduciblé—1)-curve
which contracts to a point; by F; + G; + H; whereF;, H; are(—1)-curves and
G, is a(—3)-curve with F;G; = H;G; = 1, F;H; = 0. The sum of the curves
F;, G; and H; will be similarly denoted by, G, H. Let finally By = m(¢*(Ry))
andFE!, F/ etc. be the images df;, F;,... viar.

So we haveR = Ram(rn) = ¢*(Ry) + £ + F + H and, by Hurwitz formula,
Kx =7"(Ky)+ 2R =7"(Ky) +2"(Ry) + 2E + 2F + 2H (2.1)
while sinceX is a blow-up ofS

Kx=¢"(Ks)+ E+2F+G+2H (2.2)

27
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Lemma 2.1.1. We have
e (Ro)Kx = RoKg, ¢€"(Ro)n"(Ky) = BoKy (2.3)
ByKy = RyKg — 2R, (2.4)

Proof. Let us compute*(R,) K x using the two formulas 2.1 and 2.2. We notice
that, sincer*(By) = 3R,

1
€*<R0)7T*(Ky) = §7T*(Bo)7T*<Ky) = B()Ky
By (2.1) we obtain

e"(Ro)Kx = " (Ro)(m"(Ky) + 2" (Ro) + 2E + 2F + 2H)
= " (Ro)m* (Ky) + 2(*(Ry))? = BoKy + 2Ry?

Instead, by (2.2) we find
e (Ro)Kx = €"(Ro)(e"(Ks)+ E+2F +G+2H) = RyKy
The desired result follows. O]

Proposition 2.1.2.LetS, o, X, Y be as above. Then the number of isolated fixed
point of o satisfies the formula

3Ry Kg — Ro>
hy 4 2hy = 6+ 2222 —0 52 ¢ (2.5)
Moreover we have
1
K}% = g[KSQ — (h1 + 3h2) + 4R02 - 4ROKS] (26)

Proof. Computing the Euler number &f andY we obtain
e(X) =3e(Y) — 2¢(R) (2.7)
Now,
—e(R) = —e(e*(Ry)) — 2(hy + 2hy) = Ro*> + RoKs — 2(hy + 2hs)

e(X)=12—- K%, eY)=12—- K5
so from (2.7)

12 — K% =3(12 — K&) 4 2(Ro* + RoKs) — 4(hy + 2hy) (2.8)
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Again from (2.1), (2.3) and (2.4)
K3 = (7*(Ky) + 2¢*(Ry) + 2E + 2F + 2H)?
= 3K} + 4R+ 4B +4F? + AH? + AByKy + 4(E' + F' + H')Ky
=3K% +4Ry* + 4By Ky = 3K + 4Ry + 4(RoKs — 2Ry%)
= 3K2 — 4Ry*> + 4Ry K (2.9)

1 1
Ky = 5[[(;2( +4Ry* — 4Ry K] = §[KS? — (h1 + 3ho) + 4Ry* — 4Ry K]

Putting all these together and substituting (2.9) in (2.8) we obtain
12 - 3Ky +4Ry* — 4Ry Kg = 36 — 3Ky + 2(Ro* + RoKs) — 4(hy + 2hy)

from which we infer
3RyKs — Ry*
2
as wanted. n

h1—|—2h2:6—|—

Remark 2.1.3. Using the above proposition we have

1 9
K} = -[Ks*—6— hy +

11
; SR’ — 5 RoKs). (2.10)

In fact
1
Ky = g[KS2 — (hy + 3hs) + 4Ry* — 4Ry K]
1
- g[KSZ — (hy + 2hy) — hy + 4Ry* — 4Ry K|

1 3 1
= g[KSZ —6— S RoKs+ 5}202 — hy + 4Ry* — 4Ry K]

1 9 11
= 3lK P 6 —hat SRy’ = R K]

Moreover, since

3Kx = 3(r*(Ky) + 2R) = 7*(3Ky + 2B)

from (1.4) we have

1.0x = Oy @ Oy (—Ly) & Oy(—Ls)



30 Chapter 2. Preliminary results

and then

1.(Ox(2Kx — R)) = Oy (2Ky + B) @ (Oy & Oy (—L1) © Oy (—Ls))

= 0Oy (2Ky + B) ® Oy (2Ky + Lg) ® Oy (2Ky + L)
(2.11)

W*(Ox<3Kx)) = Oy(?)Ky + 23) & (Oy ) Oy(—Ll) ) Oy(—Lg))

= Oy(3Ky 4+ 2B) ® Oy(3Ky + B+ Ly) ® Oy (3Ky + B+ L)
(2.12)

In particular, we have
2 =h"(X,0x(2K%)) > h°(X,0x(2Kx — R)) > h°(Y, Oy (2Ky + B)) > 0
4 =h"X,0x(3Kx)) > h’(Y,0y(3Ky +2B)) >0

Remark 2.1.4. We note that the casé (Y, Oy (3Ky + 2B)) = 4 cannot occur,
because if so, then each curve of the tricanonical systéfg | would be invariant
under the action of, and then the tricanonical map; | would be composed
with o : this is not possible since ;| is a birational map (see [Miy]).

Lemma 2.1.5.The divisorN = 3Ky + 2By + E' — 3G’ onY is nef and big and
has the following properties:

N%=3 (2.13)
NKy =1 - 2R,Ks. (2.14)

Proof. We just observe that

™ (N) = 37*(Ky) + 6e*(Ro) + 3E — 3G
@V 3Ky — 6E — 6F — 6H + 3E — 3G
@ 3" (Ks) + 3E + 6F + 3G + 6H — 6E — 6F — 6H + 3E — 3G
= e"(3K5)
which is nef and big sincé'is of general type.
Moreover9 = (¢*(3Kg))? = (7*(N))? = 3N? and
NKy = (3Ky 4+ 2By 4+ E' — 3G")Ky = 3K2 + 2ByKy + E'Ky — 3G'Ky
CD K6® — (hy + 3hs) +4Ry® — 4Ry K5 + 2(RoKs — 2Ro?) + hy + 3hs
= K¢? —2RyKs =1—2RKg

completes the proof. O
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We now want to apply Kawamata-Viehweg theorem 1.1.11 to compute the
dimensions of°(Y, Oy (3Ky+2B)) andH°(Y, Oy (2Ky+ B)) as vector spaces.
We obtain the following

Proposition 2.1.6. In the above setting we have

(@) h°(Y,O0y(3Ky +2B)) = h°(Y,Oy(N)) = 2 + RyK3

(b) hO(Y, Oy (2Ky + B)) = 1(2hy — 2 — RoKy)
Moreover, we have < RyKs < 1 andRyKg = 1if and only ifh°(Y, Oy (2Ky +
B)) =1andhy = 3.

Proof. (a) We determine some curves in the fixed pafBéf, +2B|: we recall
that the curvedr,, I/, H! are(—3)-curves, while the7,’s are(—1)-curves.
Then

(3Ky +2B)E] = (3Ky +2B)F, = (3Ky + 2B)H] = —3
(3Ky +2B— E' — F' — H)G}, = (3Ky + 2By + F' + F' + H)G} = —1
(3Ky +2Bo+E + F' + H' — G")F{
=BKy+2By+FE +F +H —G)H; = -1
(3Ky + 2By + E' — GG = —2.

It follows that we can writd3Ky + 2B| = E' + 2F' + 2H' + 3G’ + |N|.
So we have
h(Y, Oy (3Ky +2B)) = h°(Y, Oy (N))
= h°(Y,0y(3Ky + 2B, + E' — 3G")).

Moreover, sincer*(N) = ¢*(3Kg), using the formula
7.(Ox(c°(3Ks))) = Oy (N) & Oy (N — L) ® Oy (N — Ly)
and the fact that’(S, O5(3Ks)) = 0 for all i > 0, we find
RY(Y,Oy(N)) =0 foralli> 0.

Then, using lemma 2.1.5 one has
N(N — K
0 < (Y 0y (V) = x(¥. 0y () =1 + YN

3—1+2RyK
=14 S o Ry
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(b) Again we determine some curves in the fixed patRéf, + B|:

(2Ky + B)F! = —1
2Ky + B— F')G} = —1
2Ky + By + E' + H — G')H! = —2

So we have
RO(Y, Oy (2Ky + B)) = h°(Y, Oy (2Ky + By + E' — G'))

But we can also write

1.1 2
2Ky+By+E' -G = Ky+(Ky+By+E' -G') = Ky+§N+§Bo+§E/

and by Kawamata-Viehweg theorem 1.1.11
h(Y,0y(2Ky + By + E' —G')) =0 foralli > 0.
Then, asin (a),

0<Rh(Y,O0y(2Ky + By + E' — Q') = x(Y,Oy(2Ky + By + E' — @)
2Ky +By+ FE' —G)(Ky + Bo+ E' — &)

=1+ 5

=14+ K3+ gBoKY + gEle - gG/Ky + %Bg + %Eﬂ -+ %G’Q
=1+ %[Ksz — (hy + 3hg) + 4Ry* — 4Ry K] + g(ROKS — 2Ry?*)+
+ gRo2 + ho

=1+ %[Ksz — 6 — hy — %ROKS + gROQ] + g(ROKS — Ro®) + hy
= %[3 + Kg? — 6+ 2hy — RyKg] = %(th —2— RyKs)

The last assertion follows easily by remark 2.1.4 and the fact that
0 < r’(Y,Oy(2Ky + B)) < 2.
O

So we are left with only three possible cases, according to the valuggof
and ofhs:
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(i) hO(Y,0y(N)) =3, h°(Y, Oy (2Ky + B)) =1, RyKg = 1, hy = 3
(i) hO(Y,0y(N)) =2, h0(Y, 0y (2Ky + B)) = 2, RyKg = 0, hy = 4
(i) %Y, Oy (N)) =2,h%(Y,0y(2Ky + B)) =0, RyKs =0, hy = 1

Lemma2.1.7.Foranyl <i:<2,0<j <2we have
R (Y, Oy (—L;)) = 0.
In particular L? + L; Ky = —2fori =1, 2.

Proof. SinceX is birational to a numerical Godeaux surface we hayeX') =
¢(X)=0andyx(X,0x) = 1. From (1.4) we find

0= pg(X) =py(Y) + h*(Y, Oy (~L1)) + h*(Y, Oy (~L2))
0=q(X) =q(Y)+h'(Y,Oy(=L1)) + ' (Y, Oy (~Ls))
1= KX, 0x) = h°(Y, Oy) + h°(Y, Oy (~ L)) + h(Y, Oy (~ L))
SinceY is smooth this implieg,(Y) = ¢(Y) =0, x(Y,Oy) =1 and
W(Y,0y(=L;)) =0 1<i<2,0<;j<2
as wanted. ]

Proposition 2.1.8. Assume casé¢iii) above holds and = 1. ThenR, is an
irreducible (—2)-curve andh, = 4+ ¢ = 5. Letw = ¢’3* be a primitive third root
of unity and leth;; and h, be the number of curves; such that the eigenvalue
of the action ofZ/3Z on E; is w andw? respectively. Then if is the eigenvalue
corresponding ta?, thenh;; = 2, h1o = 3.

Proof. Since case (iii) holds from (2.5) we inféf =4 + ¢ = 5.

We now write ask’, andE” the sum of the curve&] associated to the same
eigenvaluev andw? respectively. Sincé, = 5 = hy; + hi, from (1.5)

3L = By+ E\, +2E" + F' +2H'
and we find

1 _ 1
LKy = g(Bo + Eg_ +2E" + F'+2H") Ky = 5(4 + hi1 + 2hgg + 3hs)



34 Chapter 2. Preliminary results

4—|—2h1 _hll 14_h11
e —— h —
3 + 3

henceh,;; = 2 mod 3 that forcesh;; = 2, hi1, = 3 or hy; = 5, hio = 0. Further-
more

+1

1 _ 1
L= §(BO + B, +2E + F +2H')* = §(—6 — 3hy1 — 12h9y — 15hy)
—6 — 12hy + 9hy; — 15hy  —81+9h
_ 1 5 11 2 _ 5 11 — _9+ hll

From lemma 2.1.7 we know thaf + L, Ky = —2 hence

14 —h
—2=IL{+ LKy = =94 hy + 3 LA |
14 —-24+2hyy  2hy — 10
B 3 3
andh11:2. ]

2.2 The invariant part of the tricanonical system

Before going on, we want to better understand the properties of the curl&s$ in
(which is always non-empty). In particular, in lemma 2.1.5 we have seen that
N? =3andNKy =1 — 2Ry,Ks so that

N? + NK 3+1—-2RyK
LAY g 2T AR 3 Rk

J(N) =1
Pa(N) 5 5

Lemma 2.2.1.Let S be a numerical Godeaux surface and Aebe a linear sub-
system of3Kg| with dim A > 1 andA = A + ® where A is the movable part
and @ is the fixed part of\. Then the general member € A is reduced and
irreducible and one of the following conditions is satisfied:

a.) AKS =2,0Kg = 1,A2 =0,2,4 ,pa((I)) <2
b) AKs =3, ®PKs = 0 and eitherA? = 1,3,5,7, p,(®) < 0or & = 0.
Moreover, ifA? = 4 thenA ~ 2Kg.

Proof. We have
3=3K¢*=AKg=AKgs+ ®Kjg
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Moreover, by Miyaoka [Miy] (see also lemma 1.5.2), we know tHdts > 2.
This implies eithetAKs = 2, PKg = 1 or AKg = 3, K5 = 0. In the former
case by the Index Theorem

0>(A—-2Ks)?=A*+4-8=A4%—4

and
0>(®-Kg)?=*+1-2=02—1

which proves a). A similar argument shows b). To see the irreducibilityl of
simply observe that ifA = A; + A, was reducible them; K, A, Ks > 2 and
AKg > 4. Contradiction. O

Proposition 2.2.2.If the linear systemiN| has fixed part, thefV| = |A’| + &’
with A”* = 0,1, 2 and the general curve ¢f'| is smooth.

Proof. Sincen*(N) = ¢*(3K) there is a linear subsystemof |3K¢| such that
e*(A) = 7*(|N|) anddim A = h°(Y,Oy(N)) — 1 = 1+ RyKg. Thus we can
apply lemma 2.2.1 td.. Moreover the strict transform of A is the movable part
of 7*(|N]), so A = 7*(A’) where| 4’| is the movable part ofV|. Then

9> c*(A)? > A2 = 1% (A")? = 34"

This forcesA? to be 0, 3, 6 or 9. 142 = 9 then A = A and the linear syster,
hence|N|, has no fixed part. N

Lemma 2.2.3. The curves inA’| satisfy
a) AN = AKg
b) A'By = ARy
Proof. Itis an easy computation. In the former case
3A'N = (A7 (N) = Ae*(3Kg) = 3AK
In the latter case

3A'By = 7 (A" (By) = 3Ae*(Ry) = 3AR,
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We now focus our attention on the caiemn A = 1 + RyKs = 1 or equivalently
RoKg = 0. ThenA is a pencil and4? is the number of base points df

Remark 2.2.4. We note that, iRy K = 0, sinceA = A+ & = 3Ky, for each
irreducible componenk; of R, we have eitheX Ry; = 0 or Ry; < ®. Then

L

i=1

On the other hand
9=A"=A>+24D +P°

and
30Kg = DA = AD + P2

Therefore
0< ARy < AD =9 — A? — 3DKy

Moreover theA® points of intersection betwee#t and ® form an invariant set
for the action ofZ/3Z on S.

Let us write
e (A)=A+D

with D a sum of exceptional divisors with certain multiplicities.
Remark 2.2.5. Let us write
£ (®) = b+ D'
Then there exists a divisdr’ onY such thatr* (") = & and
(@) =&+ D+ D

This implies(D + D’)> = 0 mod 3. Moreover, the multiplicity of each cung,,
For Hin D+ D'is amultiple of 3, since they appear in the branch locus of the

coverr: X — Y andD + D' = 7*(®' — @) is a pull-back of a divisor ofY.
We also remark that ib = 0 we haved = D’ = 0 hencer*(®') = D.

Lemma 2.2.6.For each simple base point gff which is an isolated fixed poiigt
the self-intersectioni? of A drops exactly by 2.
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Proof. The map: : X — S blows up each of the pointg three times. For each

of the blow-ups the pre-image of each point is a fixed point under the action of the
cyclic groupZ/3Z. Lete, be the blow-up of;; with exceptional divisor7,; and

€9 ande; the blow-ups at the fixed point 6. Let alsoA; be the strict transform

of A unders, and A, the strict transform oft under the compositios, o £1. The
exceptional divisolz; of the first blow-up is an invariant (but not fixed) rational
curve for this action and it has two fixed points. The other two blow-ups are based
exactly on these two points. Therefore each pgjnthich is also a base point for

A is blown up twice and at each step the self-intersection of the strict transform
of A drops by 1. Moreover, we have

e*(A) = 5" (e2"(517(A))) = 3" (22" (A + Gyy))
= 53*<A"2 —+ ng + ng —+ ng) = AV—F 2F] + Gj + Hj

or, analogouslys*(A) = A + F; + G, + 2H; depending on which of the fixed
points ofG4; is in 2(1. l

Lemma 2.2.7.For each double base point gf which is an isolated fixed poigt
the self-intersectioni? of A drops at least by 5. In any case this can only happen
whenA? > 6.

Proof. We use the same argument as in the proof of lemma 2.2.6. At a first blow-
up the self-intersection of the strict transform 4fdrops by 4. The pre-image

of the pointg; is composed either of two simple points, or of one point (and the
curve is tangent to the exceptional diviser;) or a double point. In any case we
need to blow-up again these points, since they are fixed under the actigaff

When we have two simple points each of the remaining blowsypnde;
drops the self-intersection by 1 and thdh = A2 — 6. The points in the pre-
image ofg; are no more base points fdrand

e*(A) = 3" (22"(617(A))) = £3" (22" (A1 + 2G))
= 53*(12{2 + ng + 2G2j + 2F2j) = Z—F 3FJ -+ 2G] + 3H]

When we have one non-singular poigtwithout loss of generality we can
assume that; is the blow-up aty. Then

e*(A) = 5" (22" (17(A))) = &5" (22" (A1 + 2G))
= e3"(Ay + Fy; + 2Go; + 2Fy;) = A + 3F; + 2G, + 2H,
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hence
A = (5(A) = 3F; — 26, —2H,)? = A? 9~ 12 -4+ 12+ 8= A% — 5

The pre-image ofj; is again a base point fod. This can only happen when
A? > 6.
Finally when( is a double point
=1(A) = &5 (22" (17(A))) = &9 (2" (A1 +2Gy))
— 3" (Ay 4 2Fy; + 2Go; + 2Fy;) = A + 4F; + 2G; + 2H,

hence
A% = (e"(A) —4F; —2G; —2H;)> = A2 — 16 — 12 — 44+ 16 + 8 = A> — 8
which is impossible unlesd? = 9. O

Lemma 2.2.8.1f the generalA € A has a triple point singularity at one of the
isolated fixed poing; we haveA? = 9 andg; is an ordinary triple point.

Proof. Assumey; is a triple point for the general € A. Then after a blow-up the
pre-image of;; As in the two previous lemmas we find in the case of an ordinary
triple point

e"(A) = e3*(2"(e17(A))) = 3" (22" (A1 + 3G1y))
= 83*(}{2 + 3G2j + 3F2j) = 2{—}— 3G] + 3}‘_’] + 3H]

and then

A2 = A% 4 (3G, +3F; +3H;)> = A2+ (27T -9 -9 +18 - 18) = A~ 9 =0

If ¢; is not an ordinary triple point, its pre-image under the first blow-up is com-
posed either of a flex, or a cusp or another triple point. In all these cases it consists
of a single point) that must be blown up again. Then we have

A2 < A2—9=0
which is impossible since is nef. O

Remark 2.2.9. From remark 2.2.5 wheni?> = 9 (or equivalently® = 0) we
have D’ = 0 and each component @ different fromG has multiplicitym = 0
mod 3. In particular if we look at the multiplicities:; of A at the pointsg; we
find, using lemmas 2.2.6, 2.2.7 and 2.2.8, the following possibilities:
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1. o = 0
2. oj = 2 andg; is a node

3. o; = 3 andg;, is an ordinary triple point.

Moreover the multiplicityn; of the general curvel at any of the pointg; can
be different from O (hence:; = 3 sincem; = 0 mod 3) only whena; = 0 for
all the pointsg;.

Remark 2.2.10. Assume,(A’) = g. Then
AKy =2g—2— A"
On the other hand
3AKy = m(A)r (Ky) & A(Kyx — 2¢"(Ry) — 2E — 2F — 2H)
@2 A(e*(Kg — 2Ry) + E + 2F + G + 2H — 2E — 2F — 2H)
— A(e*(Kg — 2Ry) + G — E)

= (e"(A) — D)(e"(Ks —2Ry) + G — E)
= AKg —2ARy, — DG + DFE
Therefore

AKg — 2ARy — DG + DE =69 — 6 — 34" (2.15)

Lemma 2.2.11.In the above setting we haveG = 0 except whem? = 9 and
the generald € A has an ordinary triple point ag. In the latter caseDG = —3.
In particular the generald € .4 cannot have a cusp at

Proof. If mult,A = 0 then obviouslyDG = 0. Therefore we can assume:=
mult,A > 1. We notice that

3A'G = (AN (@) = AG = (¢*(A) — D)G = —DG (2.16)

and thenDG =0 mod 3.
If « = 1 then from the proof of lemma 2.2.6 one hdas= 2F + G + H and

DG=Q2F+G+H)G=2-3+1=0.
If « =2andD = 3F 4+ 2G + 3H then

DG = (3F +2G +3H)G=3—-6+3=0.

39
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If « =2andD = 3F + 2G + 2H then
DG =BF+2G+2H)G=3-6+2=-1

which is impossible.

Finally if « = 3 then from lemma 2.2.8& = 3F + 3G + 3H and
DG =BF+3G+3H)G=3-9+3=-3.
O

As an immediate consequence of the above lemma and of equation (2.16) we
have

Corollary 2.2.12. In the above setting we havG’ = 0 unlessA? = 9 and the
generalA has an ordinary triple point ag. ThenA'G’ = 1.

We now concentrate our analysis on the cdise A = 1 andh, = 1, which is
case (iii) of the list at page 34.

Proposition 2.2.13.Assumelim A = 1 andh, = 1. Then whemd’? = () one of
the following possibilities holds:

either® £ 0 and

(0a) A2=2,ARy=0,9=1,AKy =0,D=FE, + E,

(0b) A2=2,ARy=1,9=1,AKy =0,D=2F+G+H

(0c) A2=3,ARy=0,9=1,AKy =0,D =FE, + Ey + F;3
(0d) A2=3,ARy=1,9=1,AKy=0,D=FE, +2F +G+ H
(0e) A2=4,AR;=0,9g=1,AKy =0,D =2E,

(Of) A2:5,AR0:O,g:1,AIKYZO,D:2E1+E2
or® =0and

(0g) A2=9,ARy=0,9=2,A'Ky =2, D =3F + 3G+ 3H

(0h) A2=9,ARy=0,9=1,A 'Ky =0,D = 3E;
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Proof. Let us assumel’” = 0. We start by consideringl> < 7. From lemma
2.2.11 we haveDG = 0. Then, if D = uF + vG + wH + S, 4, E;, (2.15)

becomes
h1

AKs—2ARy = a; =69 —6 (2.17)
=1

Let us begin withA2 = 0. ThenD = 0 andA = ¢*(A). Moreover from
lemma 2.2.14AK¢ = 2 and from remark 2.2.4 we have< AR, < A® = 6.
Hence by (2.17)

2—2ARy=06g—6

and thenAR, = 1,4 since ARy, = 1 mod 3. The intersection cyclel - ¢ is
composed of six points with multiplicities. From remark 2.2.4 (we recall that we
are assuming?yKs = 0) these points are organized in orbits for the action of
Z/37Z. Each orbit contains either three distinct points or only one fixed point,
which can a priori be an isolated fixed point. The latter case cannot actually occur
since A and ® have no isolated fixed point in common. Then we should have
ARy =0 mod 3. Contradiction.

When A? = 1 we haveAKg = 3, ARy < A® = 8 and from lemma 2.2.6
D = E,. Then from remark 2.2.5 we hav& > 2F;. SinceA - ® is composed by
8 points with multiplicities and the only isolated fixed pointdm @ is p;, which
is double for the O-cycled - @, from remark 2.2.4 we havd R, = 0 mod 3.
From (2.17) we have

2 —2ARy=3—2ARy—1=6g—6
ThenARy; =1 mod 3 and this is impossible.

WhenA? = 2 we haveA? = 0, AKg = 2, AR, < A® = 4 and from lemma
2.2.6 the following possibilities fob can hold:
a)D = FE, + Es
byD =2F+G+ H
c)D =F + G+ 2H.

In case a) from (2.17)

hence eithetdRy, = 0,9 = 1, A Ky = 0or ARy = 3,9 = 0,AKy = —2.
Moreover by remarks 2.2.4 and 2.2.5 all the four points (counted with their multi-
plicities) in A N ® are fixed under the action @/3Z andD’ > 2F, + 2E,. This
forcesAR, = 0.
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In cases b) and c¢)
2—2AR, = 6g—6

hence eithedRy = 1,9 = 1, A Ky = 00r ARy = 4,9 = 0, A’Ky = —2. But
now from remarks 2.2.4, 2.2.5 and lemma 2.2/6> F + G + 2H in case b) and
D' >2F+G+Hincasec)andlRy # 4. ThenonlyARy =1,g=1, A Ky =0
can hold.

WhenA? = 3 we havedKs = 3, ARy < A® = 6. Then one of the following
is true:
a)D=FE, +E,+ E;s

—2ARy =3 —2ARy — 3 =6g — 6

hence eithedRy = 0,9 =1, A/Ky =00r ARy = 3,9 = 0, /Ky = —2. From
remark 2.2.5 we hav®’ > 2F, + 2F, + 2F5; and from remark 2.2. 4R, = 0
sincepy, ps, p3 are double ford - &. ThenARy = 0,9 = 1, A’Ky = 0 holds;
b)D=FE,+2F+G+H

2—2ARy=3—-2ARy—1=6g—6
hence eithed Ry = 1,9 =1, A/Ky =00r ARy = 4,9 = 0, A’ Ky = —2. Again
from remarks 2.2.4 and 2.2.5we habe > 2F; + F'+ G + 2H and AR, # 4.

WhenA? = 4 by lemma 2.2.1 we havé ~ 2K thereforeAR, = 0, AKg =
2 = A®. Then from (2.17) we have

h1
Zai:8—6952 mod 3

=1

Then one of the following is true:
a)D:E1+E2+2F+G+H

0=2-2=06g—6

hencey = 1, A’Ky = 0;
b) D =2F;
0=2-2=6g—6
henceg = 1, A’Ky = 0.
In the former case we have’ > 2F, +2FE5 + F + G + 2H and thenA® > 4
which is impossible.
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WhenA? = 5 we haveAdK s = 3, ARy < A® = 4. Then one of the following
is true:
a)D=FE, +E,+ Es+ E; + Es

—2—2AR, =3 —2AR, — 5 = 6g — 6

henceAR, = 2,9 = 0, /Ky = —2. From remark 2.2.5 we hav®’ > 2(F; +
.-+ + Ej5) and thenA® > 10 which is impossible.
b)D=FE, +FEy+ F3+2F+G+H

—2ARy =3 —2ARy — 3 =6g — 6

hence eithelRy = 0,9 = 1, A/Ky =00r ARy = 3,9 = 0, A’Ky = —2. Here
D' >2F, +2FE,+2FE;+ F + G+ 2H andA® > 7. Contradiction.
C) D =2F,+ FEy

—2ARy =3 —2ARy — 3 =69 — 6

hence eithetdRy = 0,9 = 1, AKy = 0or ARy = 3,9 = 0,AKy = —2.
From remarks 2.2.5 and 2.2.4 we havé> F; + 2FE; and thenARy, = 0,9 =
1, A’Ky = 0 holds.

When A% = 7 we haveAKg = 3, ARy, < A® = 2. The general curvel
cannot pass through more than one of the isolated fixed poifayp,). In fact,
otherwise we would hav® > F, + E, and from remark 2.2.5 we should have
D' > 2F, + E5; henceA® > 4. Contradiction. Then the only possibility fdp
(cf. lemmas 2.2.6, 2.2.7 and 2.2.8) is:

D=F +3F+2G+3H

2 —2ARy=3—2ARy— 1 =69 —6

henceAR, = 1,9 = 1, A’Ky = 0. This is also impossible by remarks 2.2.5 and
2.2.4 sinceD’ > 2F, andA® = 2 force ARy, = 0.

Finally we considerd? = 9. We know from lemma 2.2.1 thdt = 0. Using
remark 2.2.4 we findlR, = 0. Moreover from remarks 2.2.5 and 2.2[9, = 0
and the generall has either multiplicity O or 3 at each of the isolated fixed points
p;, and it can be 3 only if the multiplicity af is 0. Then we have the following
possibilities forD:

a)D =3F + 3G + 3H:
in this caseDG = —3 from lemma 2.2.11 and (2.15) becomes

6=3-0+3—-0=AKs—2AR, — DG + DE =69 — 6 — 34> = 69 — 6



44 Chapter 2. Preliminary results

which has the only solutiop = 2, A’Ky = 2.
b) D = 3E;:
equation (2.15) becomes

0=3-0+0-3=AKs—2ARy— DG+ DE =69 —6
which forcesg = 1, A’ Ky = 0. O

Proposition 2.2.14.Assumelim A = 1 andh, = 1. Then whem’* = 1 one of
the following possibilities holds:

either® = 0 and
(la) A2=3,ARy=0,9=2AKy=1,D=0
(1b) A2=3,AR;=3,9=1,AKy =—-1,D=0
(le) A2=3,ARy=6,9=0,AKy =—3,D=0
(1d) A2=5,ARy=0,9g=2,AKy=1,D=2F+G+H

(le) A2=5,ARy=3,9=1,AKy =-1,D=2F+G+H
or® =0and
(1f) A2=9,ARy =0,9=2,AKy =1,D =3F +2G + 3H

Proof. Let us assumé’? = 1. SinceA? = 34> = 3 we have necessarily? > 3.
Again we consider at firsti? < 7. From lemma 2.2.11 we haveG = 0. Then,
if D=uF +vG+wH+ Y., a;E;, for3 < A2 < 7 from (2.15) equation

h1
AKs—2ARy = a; = 6g — 9 (2.18)

=1
holds. We use the same argument as in the proof of proposition 2.2.13.

WhenA? = 3 we havedKg = 3, ARy < A® = 6 (see remark 2.2.4)) = 0
and
3—2ARy =69 —9

hence eithedRy, = 0,9 = 2, A/Ky = 1or ARy = 3,9 = 1,A/Ky = —1or
ARO:6,g:0,A/Ky:—3.
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WhenA? = 4 by lemma 2.2.1 we havé ~ 2K thereforeAR, = 0, AKg =

2. Then
h1

Zaizll—GgEQ mod 3

=1
which is impossible sincel> = A2 — 1 = 3.
When A% = 5 we haveAKs = 3, ARy, < A® = 4. Then the following
possibilities forD can hold:
a) D = El + EQ
1—-2ARy=3—-2ARy —2=06g—9
henceAR, = 2,9 = 1, A/Ky = —1. Here from remarks 2.2.4 and 2.2.5 we have
D' > 2F; + 2F, and this forcesA R, = 0. Contradiction.
b)D=2F+G+H
3—2ARy=6g—9
hence eithed Ry = 0,9 =2, AKy =10r ARy =3,9g =1, A Ky = —1.
When A% = 7 we haveAKs = 3, AR, < A® = 2. Then arguing as in

the proof of proposition 2.2.13, we have to consider only the cases when only the
curve F; appears inD with multiplicity 1 or 2. HenceD = 2F; and

1—24ARy=3—2ARy—2=6g—9

which impliesAR, = 2,9 = 1, A’Ky = —1. But in this case remark 2.2.4 forces
ARy = 0. Contradiction.

WhenA? = 9 instead we havé = 0 from lemma 2.2.1 and then from remark
2.2.4AR, = 0. Since from remark 2.2.5 all the curvéy, F" and H' must appear
with multiplicity m = 0 mod 3 in D, the only possibility forD (see also remark
2.2.9)isD = 3F + 2G4+ 3H. Then (2.15) becomes

3=AKg—2ARy— DG+ DE =6g—6—3A"=69—6—3=06g—9
that impliesg = 2, A’Ky = 1. O

Proposition 2.2.15.Assumelim A = 1 andhy = 1. The cased’? = 2 cannot
occur.

Proof. SinceA? = 34"* = 6, from lemma 2.2.1 we havd? € {7,9}. In all the
cases from lemma 2.2.11 we hab¥; = 0 and, from (2.15), we find

hi1
AKg —2ARy = a; = 6g — 12 (2.19)

i=1
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WhenA? = 7we havedKgs = 3, AR, < 2, D = E, and
2 —2ARy =3 —2AR, — 1 = 6g — 12

henceAR, = 1,9 = 2, A’Ky = 0. Butremarks 2.2.5 and 2.2.4 foregR, = 0.
Contradiction.

From remark 2.2.5 we can easily see that= 9 is impossible. This is because
from lemmas 2.2.6, 2.2.7 and 2.2.8 eitl¥ehas a triple point ag or at the points
p;, and thend’”” = 0 or it has a node atwhenA”” = 1. ]

Remark 2.2.16. There is only one possibility left out by propositions 2.2.13,
2.2.14 and 2.2.15. This is the cadé = 9, D = 0 or, equivalently,A’ = N.
Then from lemma 2.1.5 we kngw= 3, A’ Ky = NKy = 1.

Corollary 2.2.17. In the above setting, whel = 2F + G+ H + ) . a,E; we
find A/H' = 0.
Proof. It follows by a very simple observation:
3A'H' = 7*(A")n*(H') = A3H = 3(*(A) — D)H
=—3DH =-3Q2F+G+H+ Y a;E)H =0.

2.3 Adjoint systems to the pencil V|

We also state here some properties of the adjoint syskgmt- N | which will be
useful later.

We know thath?(Y, Oy) = 0, soY is a regular surface, and that we have a
linear system V| of nef and big curves oi’. If we look at the adjoint system
|N + Ky | from the short exact sequence

0— Oy(—N) = 0Oy - Oy —0
using thatV is nef and big we have
ho(Y; Oy(=N)) = hl(Y7 Oy(=N)) =0
and

WY, Oy (Ky + N)) = h*(Y,Oy(=N)) = h'(N,On) = pa(N) = 3 = RoKs
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Then|N + Ky| is a linear system of curves with arithmetic genus given by the
formulas (see also lemma 2.1.5)

(N +Ky)?=N?+ Ky +2NKy =5+ Ky — 4Ry Kg (2.20)

(N + Ky)Ky = Ky + NKy = K3 + 1 —2RyKg
(N + Ky)(N +2Ky)
2

Remark 2.3.1. We observe tha¥V + K5y is not nef. In fact

pa(N + Ky)=1+ =4+ Ky — 3Ry K

(N + Ky)G, = KyG, = —1

From lemma 1.1.9 ifV + Ky is not nef then every irreducible curvsuch
thatZ (N + Ky ) < 0is a(—1)-curve withZ N = 0. By contracting the curves and
repeating the above argument we can see that after contractind-eaglkycle
onY such thatZ N = 0 we get a surface on whicN and its adjoint are both nef
divisors.

Lemma 2.3.2. The number. of (—1)-cyclesZ onY different from the ones @’
for whichZN = 0 is greater or equal than

35 3 10 + 2hy
P RKg— SR - — 22
R 3

Proof. Let Z be such a cycle. Then for any other1)-cycle Z’ that does not
intersectV. we have by the Index Theorem 1.1.10

(Z+2)V=-1-14222"<0 = ZZ =0

In particularZ does not intersect any curve.
Then

0=ZN = ZB3Ky +2By+ E —3G') = -3+ 2ByZ + E'Z (2.21)

and there is @—3)-curve £/ that intersects in at least 1 point. Moreover since
E!N = 0 we have

(Z+E)*=—-1-3+2ZE=2(ZE/ —2) <0

(Z—-E)*=-1-3-2ZE, = -2(ZE/+2) <0

hence—-1 < ZFE! < 1foralli=1,..., hy.
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We know thatN, := N + Ky — > | Z; — G’ is nef and, by lemma 2.1.5,

0<(N+EKy-)Y 7Z-G)
=1
=(N+EKy)’—n—hy=2(N+Ky)()_Z+ @)
=1

=5+ K¢ —4RoKs —n — hy +2n +2hy =5 — 4Ry Kg + K¢ +n + hy

1 9 11
9% 4R Ks + g[—5 — hay + 5302 - ?ROKS] +n+hy
10+2hy 35, 35
= ", — —RyK
3 -+ 2RU 6 Ro s+n

LetussetV, .= N+ Ky -G —>" | Z,.

2.3.1 The(—1)-cyclesZ;

We now analyse the irreducible components of the aljerg-cyclesZ;.

Proposition 2.3.3.1n the above setting each irreducible component of(thé)-
cyclesZ is a curveC such thatC N = CN; = 0.

Proof. Since we have&/ N = ZN; = 0 and N andV; are nef, for any irreducible
component” of Z we find

and the result is proved. O

Corollary 2.3.4. The curved'; and H; satisfy F; N, = H;N, = 0 foranyj =
1,... ho. Inparticular Fj Y | Z; = H; )" | Z; = 0.

Proof. SinceF; andH; are(—3)-curves such that;N = 0 = H;N we find

FJ{N1:F;(N+KY—G/—ZZi):1_1_ZZifWJ{:_ZZiFJ{ZO
i=1

=1 =1

and the same holds f(H}.
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If the curveij is contained in one of the-1)-cyclesZ; we haveF;N; = 0
from proposition 2.3.3, otherwise we ha¥&C' > 0 for any irreducible compo-
nentC of the cyclesZ;. Then

ogiZiijgo

=1

and the result is proved. O

Corollary 2.3.5. For any irreducible curve®;, or By, we find

E,;izi > 0, BOkzn:Zi > 0.
i=1 i=1

Proof. The statement is obvious &) or By, are not contained in any of the
(—1)-cyclesZ; since then they have non-negative intersection with any irreducible
component” of the curvesZ;. On the other hand i/}, is contained in somé-1)-
cycles, from proposition 2.3.3 we find

0=EN =E(N+Ky -G -> Z)=1-E,> 7Z
=1 =1
henceE;, > " | Z; = 1. Analogously if By is contained is some cyclg; , then
Bor N = 0 and thenBy, is a(—6)-curve onY". Hence we find

0= BN = Bu(N + Ky —G' =) Z)=4— By » 7

=1 =1

as wanted. O

Let us now consider an irreducibfe-1)-curveC' in a cycle. Recall, from the
proof of lemma 2.3.2 and from (2.21), that there is a cutysuch thatC' E; = 1.
On the other hand*(C'))? = 3C* = —3 and, for eachF} with CE! = 1 andC
as above,

3=7*(CE)) =3r*(C)E;, = = (C)E;=1

Moreover bothC' and E! are irreducible and?> = —1 while E/*> = —3. Thus
it cannot beFE; < 7*(C). In particular7*(C) cannot be singular at the point
7™(C) N E; (otherwise we should have' (C)E; > 2).

Lemma 2.3.6.1f C'is an irreducible(—1)-curve such thalU'N = 0 andC'F} =
CH;=0(j =1,...,hy) thent*(C) is a rational curve andr*(C)? = 3.
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Proof. Suppose that*(C) = C,+C,+C} is the union of three distinct curves and
consider the curvé; above. Ther;C; > 1 for i # j since the point™(Z) N C;
is fixed foro . Each component of*(C) is a rational curve, so

-2 = QpQ(Cz) — 2= Cz<Cz -+ Kx)

Since the intersection of the componentsis fixed under the action of , we
should have, for eachsuch thatt] intersect”,

1= 7*(C)E; = (Cy + Cy + C3)E; = 3C, E;

Contradiction. It follows that*(C') is an irreducible curve. We now want to show
thatp, (7*(C')) = 0. From Hurwitz formula we have

2y (1*(C) — 2 = —2- 3+ 2r

wherer is the number of ramification points of the triple cove(C)” — C.
We have2r = 2p,(7*(C)) + 4 > 4, sor > 2. On the other hand is not greater
than the number of intersection points@fwith By + E' + F’' + H'. We have
CF' = CH' = 0and from (2.21) either

CBy=CFE' =1

or
CBy=0 CE' =3.

Furthermore
™ (C)Kx = n*(C)(7*(Ky) + 2R) = =3+ 2CBy + 2CFE’

In the former case; = 2 and7*(C)" is a smooth rational curve. In the latter case
r=2,3. If r = 2then7*(C) has geometric genus 0 and it has a singular point in
7*(C) N E, and this is a contradiction sineé(C)E; < 1,i=1,..., hy.

Whenr = 3, instead, since,(7*(C)) = py(7*(C)) = 1, #*(C) should be a
smooth elliptic curve. When we look at the image*(C)) of this curve onS,
sinceC'E’ = 3 (recall from the proof of lemma 2.3.2 that< C'E! < 1 for any
i =1,...,hy) we would haves(7*(C))* = 7*(C')*> — 3 = 0, and since it is an
elliptic curve, Kg e(7*(C')) = 0. This is impossible sincé is a minimal surface
of general type. O

Corollary 2.3.7. For any curveC' as above’' By, = CE’ = 1.
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We now want to determine the composition of the reduciblé)-cycles.

Lemma 2.3.8. The curvegs’ cannot be contained in one of the cyclés i =

1,...,n.

Proof. If one of the cycles?;, say Z;, contains a curvé’; then from corollary
2.3.4 we have

0="F)> Zi=FG+F(Zi,—G)+F Y _ Z=1+F)(Z,—G)+F Y _ Z

i=1 ii ii
henceF]f is contained either itX;, or in another cycleZ; with i # . In this latter
case we have

henceG’, is also contained it

Then there exists a cycle containing bothandF;. The same argument holds
for H’. In particularF’; and H;; are both contracted to make the adjoint divisor to
N a nef divisor.

When we contract the curv& the images of"; and /; are two(—2)-curves
meeting at one point. Since they are both contracted therg-is acycle C inter-
secting at least one of them at one pointCIpasses through the intersection point
of the (—2)-curves, then by contracting we obtain a cycle which is composed
of two (—1)-curves meeting at one point. In particular this cycle is effective with
self-intersection 0 and it does not intersect the imagef IV contradicting the
Index theorem 1.1.10.

This implies thatC' is a(—1)-cycle which intersects at one point only one of
the curves or H;. We will assume without loss of generalityr; = 1.

We show the lemma by reducing ourselves to the case whsian irreducible
(—1)-curve hencel = Z,. This is always possible after the contraction of a
suitable number of—1)-curves. In this case we have the configurations of figure
2.1 hencer > 3. Moreover we have

ZlN - Zl(?)KY + QB() + El - 3G/> — —3 + 2B021 + E’Zl

SinceZ, is irreducible then eitheByZ, = 0,E'Z, =3 0orByZ, = 1,E'Z, =
1. By the Index theorem, sincB;, N = Z;N = Oforallk = 1,...,hy,i =
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A Zy G A G}

F! F!

Figure 2.1:

1,...,n,we have-1 < E, Z; < 1. For any curvel; such that~, Z; = 1 we find
(see also corollary 2.3.5)

0<E,Y Zi=1-EN <1
i=1

and .
By Z;=3BZ+ E (Y Z) =3+ E()_Z) <1

i=1 i>4 i>4

ThenF] is contained in somé-1)-cycle Z; i > 4. ThenkE}, is contracted too
and one of the cycles has the configuration of figure 2.2.

F!

Figure 2.2:

When we contract the curve andG’; the images ofe;, and i are (—2)-
curves while the image df; is a(—1)-curve intersecting them at one point. Hence
when we contract the—1)-curve we obtain tw@d—1)-curve meeting at one point.
This new configuration has self-intersection 0 and cannot be contracted to a point.
Thus we get a contradiction and the cutvecannot be contained in a cyclel
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Corollary 2.3.9. The curvesl; and H are not contained in any of the-1)-
cyclesZz;.

Proof. If a curve F; (or H7) is contained in a cyclef; then
0=GZ; =Gi(Zi — F)) + GF; = Gi(Z; — Fj) + 1
henceG’, is also contained itr;. This contradicts lemma 2.3.8. O

Lemma 2.3.10.There is no cycleZ;, 1 < ¢ < n containing at least two curves
E;.

Proof. Let us assume that two of the curve$, say E; and £, are contained in
a reducible cycleZ;,. ThenE; N, = 0 implies £}, > . Z; = 1 and there are two
(—1)-cyclesZ; andZ, such that; 7, = 1, ELZs = 1.

Then we have the configuration of figure 2.3 whéfes a suitable cycle. One

Z1 Z2
A Zo Ei Eé
¢ |
Figure 2.3:

can easily see that, in order to contrat (and analogously), the configura-
tions of figure 2.4 aré—1)-cycles. Then we have

1 =(C+E,+7,)*=C?*-3-1+2CE,+2=C*+2CE}, -2

| |
| |
| |
| |
Cl ) Z1 I1C
| |
| |
| |
| |

Figure 2.4:
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hence
C? 4+ 20F, =1 (2.22)

and, analogously,
C?+20F; =1 (2.23)
Moreover
—1=7Z=(Z1+ E, + C + E) + Z,)?
=-1-3+C*-3-1+2+2CE] +2CE})+2
— 4+ C2+20F, +2CE, “® _3 4+ 2CE,

ThusCFEy =1= CE;,C* = —1. ThenC'is a(—1)-cycle not intersectingv
hence by the Index theorem 1.1.10 we should l@%g = 0. But

CZs=C(Zi+E\+C+Ey+ 7)) =0+1+C*+1=2-1=1
and we get a contradiction. H

Corollary 2.3.11. If there is a reducible cycle;, , thenn > 3 and forn = 3 we
have one of the following possibilities:

1. two irreducible(—1)-curvesZ, and Z, and Z3 = Z, + Z, + E;, where

2. only one irreducibl€—1)-curveZ,, Z, = Z, + C, Zs = C + 27, + E},
whereC' is a (—2)-curve intersectingZ; at one point andr;, is such that
E.Z, = 1.

Proof. From lemmas 2.3.8 and 2.3.1(uif< 2 a reduciblg —1)-cycle can contain
at most one curvé; and it does not contain any curé. Hence there is at least
an irreducible curveéZ;. Then forn = 1 the result is proved. Fot = 2 if Z, was
reducible ther?Z, > Z;. Then there exists a curvg, which intersects/; at one
point and

E(Zy+ Zy) = E.(2Z) + (Zy — Z1)) =2+ E(Zy — Z3) < 1

This is only possible whe#; is contained irZ,. But then there is at least another
(—1)-cycle Z; which intersectdZ; at one point and which does not interséct
contradicting the assumption= 2.
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Whenn = 3 we can apply the above argument and we can see tligtis
a reducible cycle then there is at least an irreducfblé)-cycle Z;. Hence, we
have one of the following configurations:

A Zo A Za
B
A Z1 c Ellc
C Z1
whereC'is an irreducibleg—2)-curve. O

2.3.2 The linear systems.V;|

We now compute the arithmetic genus/of: from equation (2.20) of page 47 we
know thatN? = 5 — 4Ry K5 + K% + n + hy while from lemma 2.1.5

NiKy = (N + Ky =) Z;—G)Ky = NKy + K} +n+ hy
i=1

=1—-2RyKs+ K2 +n+hy

SO
NP+ N K
m(M)zHlT” (2.24)
_1+5—4R0K5+Kﬁ+n+h2+1—2R0KS+K%+n+h2

2
=4 —-3RyKs+ Ky +n+hy < N}

since0 < RyKs < 1. |N| is again a linear system of nef curves, so when
po(N1) > 1 we can apply the same argument as in page 47 to study the adjoint
system|N; + Ky |. Under this hypothesed, is nef and big and we find again
h(Y, Oy (N, + Ky)) = po(Ny) > 1. N1 + Ky is not nef since the curves and



56 Chapter 2. Preliminary results

G, do not intersectVy, but there could be some other1)-cyclesZ! such that
Z!N; =0 (seelemma 1.1.9). Then

/

NQ :Nl—l—Ky—iZl—G/—nZZ;
i=1

j=1

is nef and

Ny =N+ Ky=)Y 2;-G =) Z})
i=1 j=1

= N2+ KE + 2N, Ky —n — hy — 0/ + 2n + 2hy + 20/
=5—4RyKs+ Ky +n+ hy + K3 +2(1 — 2Ry Kg + Ky +n + ho)+
+n+hy + 0/

=7—8RyKs + 4Ky +4n + 4dhy +n' >0

NoKy = (N + Ky =Y Zi=G' = Z)Ky = N\Ky + K} + n+ hy +n/
=1

j=1
=1-2RKs+K:+n+hy+ K2 +n+hy+n
=1—-2RyKg +2K2 + 2n + 2hy + 1/

and then
Pa(N2) =1+ w (2.25)
14 7—8R0KS+4K§/+4n+4h2+n’+
N 1—2R0K5+2K§,+2n+2h2+n’
=5—5RyKs + 3Ky + 3n -+ 3hy + 1/
We also remark that
NN, = N(N + Ky — i Z; —G') = N(N + Ky) (2.26)

=1

= 2pa(N) = 2=6—2RyKg — 2 =4 —2RyKg

’

NiNy = Ny(Ni + Ky =Y Z; = G' =Y Z)) = Mi(N: + Ky)  (2.27)

i=1 j=1
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= 2po(N1) — 2 =8 — 6RyKs + 2K{ + 2n + 2hy — 2
=6 — 6RyKs + 2K5 + 2n + 2hy

Moreover wherp,(N,) > 1 and N2 > 0 we can repeat the above argument.
We find h°(Y, Oy (Ny + Ky)) = pa(N2) and there aré—1)-cyclesZ! such that
Z!'Ny = 0 and

n/l

=1

i=1 =1

is nef. Let us also compute self-intersection and arithmetic geniyg:of

N2 = (Ny+ Ky -G — Zn: Z; — ﬁ: 7! — i Z!)? (2.28)
=1 =1

=1
:N22+K)2,+2N2Ky+h2+n+n'+n”
=7 —8RoKgs + 4Ky + 4n + 4hy + 1’ + K{+
+2(1 — 2Ry Kg + 2K3 4+ 2n +2hg +n') + hy +n+n' +n”
=9 — 12RyKg + 9K3 + 9hy + 9n + 4n’ +n”

n

NsKy = (No+ Ky =G' =Y Zi=> Z| =Y Z!)Ky (2.29)
=1

=1 =1
=N,Ky + Ky + ho +n+n' +n”
=1-2RyKs+2K2 +2n+2hy +n' + K& +hy+n+n' +n”
=1-2RyKs + 3Ky + 3hy + 3n + 2n' +n”

N2 + N3 K
pa(N3) = 1+3T”

9 — 12RyKg + 9KE + 9hg + 9In + 4n’ + n”
+ 5 +
N 1 —2RyKgs+ 3K% + 3hy + 3n + 2n’ +n”

2
=6—TRyKg + 6K3 + 6hy + 6n + 3n' +n”

Moreover

NoN3 = 2pa(Ny) — 2 = 2(5 — 5RyKg + 3K% 4+ 3n + 3hy + 1) — 2
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=8 — 10RyKs + 6K3 + 6hy + 6n + 21 >0

We can collect all these computations in the following proposition

Proposition 2.3.12.1n the above setting let us defing := N. Then the numeri-
cal data of the curved/;, Ny, N5 are:

N? 5—4RyKs+ K2 +n+hy | 7T—8RyKg + 4K% + 4n + 4hy +n’
NiKy | 1—-2RyKs+ K2 +n+hy | 1—2RyKs+2K2% +2n+2hy + 1’
Pa(N;) | 4 —3RyKs + K& +n+hy | 5—5RyKs+ 3K% +3n+ 3hy + 1/

Ni—lNi 4 — QR()Kg 6 — 6R()KS + 2K}2/ + 2n + 2h2

i=3

N2 | 9—12RyKgs + 9KZ + 9hy + 9n + 4n’ +n”
N;Ky | 1—2RyKg+ 3K% +3hy+3n+2n/ +n”
Pa(N;) | 6 — TRoKs + 6K% + 6hy + 6n + 3n' + n”
N,_1N; 8 — 10RyKg + 6 K% + 6hy + 6n + 20’




Chapter 3

Numerical analysis of the possible
cases

3.1 Case (l)ROKS =1,hy =3

Lemma 3.1.1.In case (i) we find
@ m=>1

(b) no positive multiple of{s — 2R, is an effective divisor.

Proof. (a) SinceRyKs = 1, there exists a unique irreducible componErdf
R, for whichT'Kg = 1. Using the index theorem we fidt# < 1. The other
irreducible components at, are(—2)-curves. Then

R <TI?<1

But nowh, = 3 therefore from (2.5)

_ 3RoKs — Ry’

> 1.
5 2

h

(b) Note thatKs(Ks — 2Ry) = —1 while K is nef.
]

Lemma 3.1.2. Suppose case (i) holds ang is the disjoint union of an irre-
ducible componerit withI' s = 1 and of? (—2)-curves. Then
R

<

K =—-4-30+ —3.

59
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Proof. It is an easy computation which uses formula (2.10) of page 29:

1 11 9 1 11 9
Ky =-(Ks®>—6—hy— —RyKs+ -Rp*) = =(-8 — — + =-T? -9/
v =3l 6—hy = S RoKs+SRo’) = 5(=8 = 5 + 3 9¢)
1 a2 —3 32 -1
= —(—12 —90) = —4 -3¢ .
3( +— 9¢) 30+ 5

Lemma 3.1.3.1n the above setting we have< ¢ < (5 +I'?)/2.

Proof. Sincer : X — Y is a surjective map we have an injectiéii(Y, C) —
H?(X,C). In particular we finde(X) = 12 — K% > e(Y) = 12 — K2 hence
K2 > K%. Thus from lemma 3.1.2 and lemma 3.1.1

32 —1 31?2
—4 — 30+ = K2 > K% =Kg*— (hi +3hy) =1— —(—-9
hence r2 2
3[“—-1 3-—
W< —44+49—-1+ 5 + 5 =5+1?
as wanted. ]

As an immediate consequence of the above lemma and of lemma 3.1.2 we find
Corollary 3.1.4. In the above setting we havéZ > —12.

Corollary 3.1.5. In the above setting we havwg < 4.

Proof. We have

_ 3Ry Ks—Ry> 3-—1? 3—F2+5+F2_
B 2 2 -2 2

ha

Proposition 3.1.6. Assume case (i) holds. Th&nis a rational surface.

Proof. By Castelnuovo’s criterion 1.1.12, sing€Y’) < ¢(X) = ¢(S) = 0, we
need to show thal,(Y) = (Y, Oy (2Ky)) = 0. We have

2Ky —2G") =2Kx — 4R — 2G = ¢*(2Ks) + 2E + 4F + 2G + 4H+
— (4e*(Ry) + AE + 4F + 4H) — 2G = £"(2Ks — 4Ry) — 2F

Since2Ky G, = —2 < 0, we find

0 < R(Y, Oy (2Ky)) = (Y, Oy (2Ky — 2G")) <
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< WYX, Ox(e*(2Ks — 4Ry) — 2F))

But using lemma 3.1.1 we find

RY(X,Ox(e*(2Ks — 4Ry) — 2E)) < h%(X, Ox(c*(2Kg — 4Ry))) =
= h%(S,05(2Ks — 4Ry)) = 0

and then
h(Y, Oy (2Ky)) = B°(Y, Oy (2Ky — 2G")) = 0.

Corollary 3.1.7. In the above setting if> = 1 thenTors(S) = Z/3Z.

Proof. Sincel'Kg = 1 = K° from the Index theorem 1.1.10 we fifid < 1.

If it was ['> = 1 then we should havE ~ K¢ and ther8I" ~ 3Kg. Let us set
I := w(e*(I")). Then onY” we have

I''~N

which impliesI” = N sinceY is rational.

The pull-backr* of 7 : X — Y is injective sincer is a surjective map and
Y is a rational surface. Using lemma 2.1.5 we find

e*(30) =" (I") = 7*(N) = £"(3K).

Thus S has a non-trivial 3-torsion element and from theorem 1.5.5 we have
Tors(S) = Z/3Z. O

WhenI? # 1 we can show a weaker result.

Proposition 3.1.8. If case (i) holds the numerical Godeaux surfatdas no 2-
torsion element.

Proof. From theorem 1.5.5 we know thi&brs(.S) is a cyclic group of ordes < 5.
If a 2-torsion elemeny exists, then it is unique since a cyclic group of order 2 or
4 has one and only one element of order two.

Then S has an unramified double covsf. MoreoverS’ has an involution
7 such thatS = S’/ < 7 >. Sincen is the only 2-torsion element & it is
fixed under the action of the order three automorphismThen we can extend
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o to an automorphism of order @ on S’ such thator = 7. Then we blow
up on S’ the isolated fixed points for the action 8f The new surfaceX’ is
clearly an unramified double cover of our surfake It is easy to see, since
ged(2,3) = 1, that the quotient” = X'/(Z/3Z) is also an unramified double
cover ofY. But then we get a contradiction sinteis a rational surface ad it has
no torsion element. O

From now on we use the same notation as in lemma 2.3.2. From proposition
2.3.12 we have

pa(N1) =4 —3RyKs + Ky + n+hy =4+ Ky +n= N} (3.1)
NN; =4 —2RyKg =2 (3.2)
Lemma 3.1.9.1n the above setting we havé’ = 0, 1.
Proof. SinceN? = 3 we have by the Index Theorem 1.1.10
0> (3N; — 2N)? = N2 + 4N2 — 12N, N &P 9N2 4 12 — 24 = 9NZ — 12
which impliesN? = 0, 1. O

Let us write| N, | = |A| 4+ T, where|A| is the movable part andl is the fixed
part of | N;|. SinceN;, A, N are nef divisors,

0<AN < NN =2

In particular it cannot b\ N = 0 otherwise, by the Index Theorem 1.1.10 and
the rationality ofY’, A = 0 whereas:’(Y, Oy (A)) = h°(Y, Oy (N;)) = 2. Thus

I1<AN < NN =2
Lemma 3.1.10.SupposéVi = 0. Then| N, | has no fixed part.
Proof. We have) = N? = N;A + N, T or, equivalently,

0=N,A=A?+ AT
0= N,T =AT + T?

which impliesA? = AT = T2 = 0.
It cannot beVA = 1 = NT": we obtain by the Index Theorem

0>(A-TYP=A*+T?>-2AT=0 = A~T
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SinceY is a rational surface, this implies = T which is impossible.
SoNA = NN; = 2 and then

0> (N, —A?*=T?=0
Again, by the rationality ot” we havel’ = 0 and|V;| has no fixed part. O

Lemma 3.1.11. SupposeN? = 1. Then|N;| has no fixed part unlesad? =
0,p.(A) = pa(N;) = 1 and eitherAN = 1,N = N; + Aor AN =2, N, =
A + Z; for some reducibl¢—1)-cycle Z;.

Proof. We know thatl = N2 = N;A + N, T.

It cannot be/N; A = 0, otherwise by the Index Theorem 1.1.10 and the ratio-
nality of Y it should beA = 0, which is impossible.

Then we haveV,A = 1, N;T = 0, and this implied™? < 0. WhenT? = 0 we
see tha{V;| has no fixed part, as wanted, whereas wheris strictly negative,
by

1=NA=A>+AT (3.3)
0=NT =AT +T? (3.4)

we findAT = 1,7% = —1, A?2 = 0. Then by (3.1)
NP =A%+ T2+ 2AT =1 = p,(N)

andN, Ky = —N? = —1. We now look atV A.
If NA =2 we have
1=NiA=(Ky +N-) Z-G)A=AKy+2-(>_ Z+G)A
=1 =1

which amounts to say
0< () Zi+G)A=1+AKy
=1

So the followings are true:
a.) AKY >0

b) there exists &—1)-curveC (which can be either one of th&’s or one of
the G’’s) which intersects\ positively.
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Using b) and the fact that N = TN = 0, the Index theorem 1.1.10 implies
0>(T—-CP=T"+C*-2TC = -2 -2TC
ThenTC > —1, whereas’’ N; = 0 impliesCT < —1. This forcesI'C = —1,
T=C.

But for any irreducible such curv€ there is a curveD such thatDN; = 0
which intersect€” at one point, i.e.D = £’ for the Z; and D = F] for G} (see
corollary 2.3.7), so that

0=DN, =DA+DC=DA+1

which contradicts the nefness &f. Then N, = A + Z; with Z; a reducible
(—1)-cycle.

We are now left with the cas® A = 1. SinceNN; = 2 we haveNT = 1.
MoreoverN;A = 1 andA? = 0 by (3.3) and (3.4). FroniN; + A)N = 3 = N?
we have

0> (N, +A—N)?=N+A*+ N?+2N,A - 2N, N —2NA
=14+0+3+2-4-2=0
thenN = N, + A =2A+T. Then
AKy =(N-N)Ky =—1+1=0 = p,(A)=1
as wanted. n

Corollary 3.1.12. We have

1— 312

n=N{+3(+ <N} +8<09.

Proof. From corollary 3.1.4 we know that? > —12. From (3.1) and lemma
3.1.9 we find

n=N}!-4—-K.<N!—4+12=N}48<9

Moreover from lemma 3.1.2

1—3r?
) =Ni+30+ 5

3z —1
2

n=N:—4— Ky =N —4—(—4-30+

]
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Remark 3.1.13. We note that from the above corollary

1— 312 2

3r -
n=N;+3l+ 5 =Ny +30+3 —1=N?—1 mod3

In particular whenN? = 0 we findn = 2 mod 3 hencen = 2,5 or 8, while
whenN? = 1 we haver = 0 mod 3 hencen = 3,6 or 9.

Lemma 3.1.14.In the above setting the penc¢ih| determines a fibratiom 4, :
Y --» P'. Let us set

5= (e(As) = e(A))

S

where the sum is taken over all the singular curfesc |A|. Thend satisfies
18<d=12+43N; +n+A*<16+n
In particular if N7 = 0 thenn = 8.

Proof. Away from its A% base points, the pendi\| determines orY” a fibration
over P! of curves of genu§ < p,(A) = N7 < 1. Computing Euler numbers
from proposition 1.1.3 we find

12— K} + A? = (V) + A =2(2 = 2N7) + > (e(A,) — e(A))

whereA, are the singular curves pA|. Let us set

5=y (e(A) —e(d))

s

Then

§ =12 — Ky + A* — 4 + 4N}
=12 — (N} —4 —n) + A* — 4+ 4N7
=12+3N; +n+A*<16+n

Recall that from lemma 1.1.4 a curve with self-intersectien in a singular
fibre contributesn to 6.

Let us first consider the curvég andH;. From lemma 2.3.2 we find

FINi=F/(N+Ky-> Zi-G)=0+1+0-1=0

=1



66 Chapter 3. Numerical analysis of the possible cases

and the same holds fdf;.

Moreover if Ny = A+T with T # 0 from the above proof, sinc¥ = N, +A
we also find
0=F/N=F/(N,+A)=FA

and, again, the same holds .

If Ny = A+ Z; instead we find from corollary 2.3.9
0=FN =F/(A+7Z)>F/A

henceF/A = H/A = 0 in any case.

Then from lemma 1.1.4 each of the curv€sand H; contributes 3 t@, hence

If N2 =0thenA =N,
18<d=12+3N; +n+A>=12+n
hencen > 6. In particular from remark 3.1.13 we can deduce- 8. O

Proposition 3.1.15.Case (i) cannot occur witiVZ = 0.
Proof. Let us assumé&'? = 0. Then from lemma 3.1.14

18<0=124+n=124+8=20

If all the eight cyclesZ; were irreducible then we should ha¥gV, = 0 hence
from lemma 1.1.4 each of them would contribute 3t husi8 +n =26 < § =
20. Contradiction.

If one of the cycles is reducible, then from lemma 2.3.8, corollary 2.3.9 and
lemma 2.3.10 there is a curvg, contained in that cycle and from lemma 1.1.4
E;, increases by 3. Then

18+3=21<6=20
and, again, we get a contradiction. H

From remark 3.1.13 we know that whéff = 1 we haven = 3,6, 9.

Proposition 3.1.16.The caseN, | = |A|+Z; with Z; reducible(—1)-cycle cannot
occur.
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Proof. From the proof of lemma 3.1.11 we know thiefV = NN; =2, AG' =0
andA? = AKy = 0. Hence

2 = NA = A(BKy + 2By + E' — 3G') = 2ByA + E'A

SinceA is nef we find eithetByA = 1, E’A = 0 or BpA = 0, E’A = 2. We
recall thatB, = I + S| By, with B2, = —6, By, = P*.

Caseil B)A=1,F'A =0.

Since none of thé—3)-curvesE; intersectsA, each of them contributes 3
to § (see lemma 1.1.4). Moreover there is only one irreducible componesy of
which intersects\.

If IVA = 1 then we also have the contribution ©irreducible(—6)-curves of
By. Then, using lemma 1.1.4 and corollary 3.1.12,

2

18 + 3hy + 60 = 18 + 3( +0)+60<5=12+3N] +n+ A?

1— 312 1— 312
=16 + 30+

=15+n=15+ N{ + 30+

hence
1—-3r% 3I2—-9
_

2+60<
TOEs 2 2

—4

and we get a contradiction.

If I'A = 0 we have necessarily’* < 0 (hencel> < —1 on the numerical
Godeaux surfacg) and there is &—6)-curve By in By such thatBy, A = 1. In
particular > 1. ThenI” contributes—1"? = —3I"2 to § and we can also consider
¢ —1 (—6)-curvesBy,, i # k, plus theh, curvesE;. Thus

2

18 =302 +6(¢ — 1) +3h; = 12+ 60 — 31 + +30<6
1 — 312
=154+n=16+ 30+
hence 2 r2
1-3 32 -9
60 < 4+ 5 + 5 +3I2=3I%<0

Contradiction.

Casell B)A =0,E'A = 2.

Sincel"A = 0 we findT["> < 0 hencel? < —1onS. In particularh; =

3‘2F2 +¢ > 2. All the irreducible components @, andh, —2 curvesE), contribute
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tod. Thus
2 , 9—3I?
18 — 312 + 60 + 3(hy —2) = 12+ 60 — 3T + +30<6
1—3I?

=154+n=164 30+

hence 1-3r? 3r?2-9

60 <4+ — t =" 307

2 2

and as before we get a contradiction. O

Proposition 3.1.17.The caseV = N; + A cannot occur.

Proof. From the proof of lemma 3.1.11 we know thatv = 1, NN, = 2, AG' =
0 andA? = AKy = 0. Hence

1=NA = A(3Ky + 2By + E' — 3G') = 2ByA + E'A

From the nefness oh we find ByA = 0, E’A = 1. Sincel”A = 0 we find
"> < 0hencel? < —10n&. In particularh, = % +¢ > 2. All the irreducible
components of3, andh; — 1 curvesE, contribute to). Thus from lemma 1.1.4
and corollary 3.1.12

9 — 31
2

18 — 3712 4+ 60 +3(hy — 1) = 15+ 6/ — 3T + +30<6

=124+3N;+n+A*=15+n

1—3I? 1—3I?
=15+ N+ 30+ =16+ 30+
hence 1-3? 3r?2-9
60 <1+ _2 + 2_ — 3% = 3432 <0
and we get a contradiction. O

Thus from lemma 3.1.11, propositions 3.1.16 and 3.1.17 we immediately find
Corollary 3.1.18. In the above setting the pen¢iV; | has no fixed part.

Proposition 3.1.19.Case (i) withN? = 1 can only occur when = 6 and either
= -3and/ =0o0rI? = —1and/ = 1. In particular I'> = 1 cannot occur.
Moreover all the curved’; intersect/V; at one point.
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Proof. From the above corollary we have = N;. Sincep,(N;) = N7 = 1 (cf.
(3.1)) we know thatV N, = 2, N;G’ = 0 andN? = 1, N, Ky = 0. Hence

2= NN, =N (3Ky +2By+ E' —3G") = =3+ 2ByN; + E'N;

Moreover, from proposition 2.3.3,

0<EN =E(N+EKy+G =Y Z)=0+1-E,» Z <1

hence from corollary 3.1.6 < E'N; < hy < 4. Then eithetByN, = 2, E'N, =
1 or BoN1 = 1, E/Nl - 3

Casel ByN; = Q,E/Nl =1.

All the (—3)-curvesE}, except for one, have no intersection with hence
each of them contributes (from lemma 1.1.4) 3taMoreover there are at most
two irreducible components @, which intersectV;.

If I N; = 2 then we have the contribution éfrreducible(—6)-curves ofB,.
Then, using lemmas 1.1.4, 3.1.14 and corollary 3.1.12,

2

184+ 3(hy — 1) + 60 = 18 4+ 3( +0—-1)+60<6

=124+3N+n+A*=16+n

1 — 312 1 — 31?2
=16+ N{ + 30+ =17+ 30+
hence 2 2
1 — —
60 <2+ 23 +3 5 Yy

and we get a contradiction.

If I"N; = 1 then there is &—6)-curve By, which intersectsV; at one point.
Hence we have the contribution 6f— 1 irreducible(—6)-curves ofB,. Then,
using lemmas 1.1.4, 3.1.14 and corollary 3.1.12,

2

184+ 3(hy —1)+6(¢ —1) =18+ 3( +0—-1)+60—-6<0

1— 312

=16+n=17+30+

hence
1— 30?2 31“2—9_

2 + 2
which forces? = 0 while we know¢ > 1. Contradiction.

60 <8+ 4
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If I"N; = 0 we have necessarily’* < 0 (hencel? < —1 on the numerical
Godeaux surfac&) and there is at least one-6)-curve By in By such that
By N1 > 1. In particular/ > 1. ThenI” contributes—1"? = —3I2to 4. If £ > 2
we can also considér— 2 (—6)-curvesBy;, i # k, plus theh; — 1 curvesE.
Thus

2

18 =372 4+ 6(¢ —2) +3(hy — 1) =3+ 60 — 3I% + +30<6
1 — 31?2
=164+n =17+ 30+
hence 1-3T% 31%2-9
60 <14+ —— + = 4312 =10+302<7

2 2
which forces/ < 1 contradicting the assumptign> 2.

If ¢ = 1 then we only have the contribution 6f and ofh; — 1 curvesE).
Then

18—3F2+3h1—3:18—3F2+9_3F2+3g_3
:18—3F2+9_3F2 §5=17+3£+1_3F2:20+1_3F2
which forces
<2+ 12 IS0 e g g <

Contradiction.

Case ” B(]Nl - 1,E,N1 - 3

In this case only one irreducible componentRf intersectsV;. Moreover
since0 < E}N; < 1weinferhy; > 3.

If I N; = 1 then we have the contribution of all tie 6)-curves inB, and of
hy — 3 curvesE;. Thus

9 — 312

18 +3(h1 —3)+60 =9+ +30+60<9

1—31?

hence r2 12
1—-3 3['* -9
60 < 8+ 5 + 5 =4
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which implies/ = 0. Since

we findI™? < —3. FromI? + T'Kg > —2it follows I'> = —3, hy = 3 and, from
corollary 3.1.12p = 1 + 1= — ¢,

If TN, = 0 we findI"? < 0 hencel? < —1 on S. As before we have
hy = % +¢ > 3. Moreover there is exactly one of tfie 6)-curves ofB, which
intersectsV;. Thus

9 — 31?2
18 —31% + 6/ — 6+ 3(hy —3) =3+ 60 — 3I* + 5 T3<S
1 —3I?
=164+n=17+ 30+ 3
hence 1-3I2 3I2-9
60 < 14 + _2 + 2_ 432 =10+3r2<7
forces/ = 1 andI'> = —1. Then
3 - I? 3 - I?
hy = 40 = +1=3
2
and )
n=N}430+——— =1+3+2=06.

We now show the following
Proposition 3.1.20.Case (i) withN? = 1 andn = 6 cannot occur.
Proof. Let us assum&/? = 1 andn = 6. Then from lemma 3.1.14

18<§=12+3N7+n+A*<16+n=16+6 = 22

If all the six cyclesZ; were irreducible then each of them would not intersect
N7 andA. Then from lemma 1.1.4 they would contribute6 = 6 to 6 hence

184+6=24<§<22

and we would get a contradiction.
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Let us assume there is at least one reducible cycle. Then one of the irreducible
(—1)-curves, sayZ;, appears with multiplicityn, > 2in >, Z;. For any curve
E;. such thatt, Z; = 1 we find

It follows that F, is contained in some cyclg;, i > 2 and then from proposition
2.3.3E,N; = 0 contradicting proposition 3.1.19. O

The results of propositions 3.1.15, 3.1.16, 3.1.17, 3.1.19 and 3.1.20 can be
summarized in the following theorem.

Theorem 3.1.21.Case (i) cannot occur.

3.2 Case (ii):RyKs=0,hy=4
Assume case (ii) holds. From proposition 2.1.6 and formula (2.11) we have
2 =h(Y,0y(2Ky + B)) < h°(X,0y(2Kx — R)) < h°(X,0x(2Kx)) = 2

which implies thatR, is in the fixed part of2Ks|. Then the numbef of disjoint
(—2)-curves that formR, is greater or equal than 2. In fact

3Ry Kg — Ry>
h1+8:h1+2h2:6+%:6+£

which forcesh; = ¢ — 2 and/ > 2.

Let M be an effective divisor in the movable part of the pef2its — Ry|.
Then M is in the movable part of the bicanonical syst@f(s| = |M| + T and,
by lemma 1.5.2 (see also [Miy]), eithéf?> = 0 or M? = 2. In any case the
general curve ofM | is smooth.

From theorem 1.5.4 we can exclude the cage= 0.

The strict transform\/ of M satisfiesM = =*(M’) for some penci|M’| on
Y. This impliesM? = 0 mod 3. ThereforeM? = (0. We have

e (M)=M+D

whereD is a sum of exceptional divisors.
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SinceM? = 2 thenD # 0 and the general curvé/, see lemma 2.2.6, passes
either through one of thé, = 4 points¢; (without loss of generality we may
assume it ig;) with multiplicity m, = 1, while my = ms = m4 = 0 hence

D=2F+G+H
or through two of the pointg; (if £ > 4) hence
D =FE, + E,.
In any case

— M?+ MK
pa(M) =1+ "—""2X —3—p (M)
and we have!T]KX =4,

Lemma 3.2.1.| M| is a pencil of elliptic curves witti/’> = 0.
Proof. We have

3M' Ky = 7*(M)7*(Ky) = M(Kx — 2¢*(Ry) — 2E — 2F — 2H)
4—2MRy—2=2—-2MR, ifD=2F+G+H

and thenM Ry = 0,1 mod 3. Since0 < MRy < MT =2we getM R, =0, 1
henceM’Ky = 0. SinceM" = 0 this proves the lemma. O

Theorem 3.2.2.Case (ii) cannot occur.

Proof. Let us consider oi” the fibration ove! given by the elliptic pencilA/’|.
From proposition 1.1.3 we have

e(Y) = e(M)e(P') + > (e(M]) — e(M')) = e(M')e(P') + (3.5)

where the sum is taken over all the singular cur¥&sin | M’| and we set

5= (e(M) — e(M)).

S

Sincee(M’) = 0 and from (2.6)

e(Y)=12— K} =12+ 3+ 30 =15+ 3(
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we findd = 15 + 34.

The generall/ on S passes only through at most one of the poiptsThen
we have

FM' = F\M' = F)M' = HiM' = H\M' = H\M' =0

and each of these disjoint curves contributes 3 ty lemma 1.1.4. Moreover
since0 < MR, < 1 (see the above proof) we have at leéast 1 irreducible

components3y; of By which do not intersect/’. Each curveB,; contributes 6
more nodes té. Therefore

6-3+6({—1)=12+60<6=15+3¢

which forces/ < 1 and we get a contradiction since we knéw 2. O

3.3 Case (iii): RyKg=0,hy =1
In this case, from formula (2.5); = 4 + ¢ where/ is the number of irreducible

components ofzy .

Proposition 3.3.1. If case (iii) holds therY” is a rational surface.

Proof. We know thatq(Y) < ¢(X) = ¢(S) = 0. Then from Castelnuovo’s
theorem 1.1.12 we only need to show tfatY) = h°(Y, Oy (2Ky)) = 0. Then,
since we are in case (iii),

RO(Y, Oy (2Ky)) < hO(Y, Oy (2Ky + B)) = 0.

]

Then the same argument of proposition 3.1.8 holds and we can show

Proposition 3.3.2.1n the above setting the numerical Godeaux surfddes no
2-torsion element.

We still have the pencilN| = |A’| + &' which is composed of curves of
arithmetic genus 3. Off thd’* base points, ,, is a fibration ovel®" of curves of
genus) < p,(A") < 2. Computing Euler numbers we obtain

e(YV)+ A" = e(A)e(P) + 3 (e(A]) — e(A)) = e(A)e(P) +5  (3.6)
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where the sum is taken over all the singular curtésn |A’| and we set

5= D7 (e(A) — e(4).

S

Lemma 3.3.3.In the above setting each of the exceptional cutvgsF’ and H’
which does not intersect’ increases by 3. Moreover each componeRy; of B,
for which By; A’ = 0 increases) by 6.

Proof. For any curve”' such thatC’ A’ = 0 we have
(A —C)C = -C?

and, by lemma 1.1.4; increases by at leastC? the Euler numbed# associated
to ¢ 4. Therefore wher®' = Ej, F', H' we add 3 toj, whereas whed’ = By,
we add 6. O

Lemma 3.3.4.1n the above setting we have
§ =144 30+ 3A” + 2A4'Ky.
Proof. Let us compute, using (2.10),

e(Y)+ A% =12 — K2 + A"
1 9
=12 -[Ks* —6—hy + =
31Ks )
1
:12—5[K52—6—1—9€]+A’2:14+A’2+3€

11
Ry? — - Bols] + A"

while
e(A)e(P') = (2 — 2 p,(4))2 = 2(~A" — AKy)

Therefore we have

0= (e(AL) —e(A) =14+ 30+ 3A” + 2A'Ky

s

as wanted. ]

Proposition 3.3.5.Assumed’? = 0. Then0 < ¢ < 1 and we have = 0 only
when(0a), (0c), (0f) or (0g) holds and¢ = 1 only when(0d) holds. Moreover
cases0b), (0e) and (0h) of the list of proposition 2.2.13 cannot occur.
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Proof. We refer to the list of proposition 2.2.13. We have from lemma 3.3.4

§ =14+ 30+ 2A'Ky

We haveA’ Ky = 0 in all cases of the list except fd0g).

In case(0a) we have to consideF’, H andh; — 2 = 2 + ( curvesE), plus
all the components aB,. Then

6+3(24+0)+60=12+90<5=14+3¢

which forces/ = 0.

In case(0b) we find¢ > 1 and we have the contribution of the curvgs, H’
(see corollary 2.2.17) and éf— 1 components oB,. Then

3440 +3+6(0—1)=9+90<§=14+3(

which implies6/ < 5. Impossible.

In case(0c) we have the contribution of”, H andh; — 3 = 1 + ¢ of the
curvesky, plus all the components @,. Then

6+3(146)+60=9+90<§=14+3(

which forces/ = 0.

In case0d) we find¢ > 1 and we have the contribution &, of h; —1 = 3+¢
of the curvest;, plus that of¢ — 1 components oB,. Then

33+0)+34+6(l—1)=6+9<o6=14+3(

which forces/ = 1.

In case(0e) we have the contribution of”, H and ofh; — 1 = 3 + ¢ of the
curvesE;, plus that of all the components 8. Then

6+3B+0)4+60=15+9<6=14+3¢

which is impossible.

In case(0f) we have the contribution of’, H" and ofh; — 2 = 2 + ¢ of the
curvesE,, plus that of all the components &f. Then

6+32+0)+60=12+90<6=14+3¢

which forces/ = 0.
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In case(0h) we have the contribution of’, H' and ofh; — 1 = 3 + ¢ of the
curvesky, plus that of all the components 6. Then

64+3B83+0)4+60=15+9<5=14+3¢

which is impossible.

Finally we consider cas@g). Then

BA'F' = 7" (A)n*(F') = 3AF = 3(¢*(A) — D)F = —3DF
=-3BF+3G+3H)F=-3(-3+3)=0

and analogously’ H’ = 0. Then we have the contribution 67, H' and of all the
curveskt; andB,,;. Consequently

6+34+30)+60=184+H<6=14+30+2A'Ky =18+ 3¢
which forces/ = 0. O]

Proposition 3.3.6. Assumed’* = 1. Then0 < ¢ < 3. If (1f) holds ther? = 0, 1.
If (1e) holds thery = 1,2, 3. If (1a) or (1d) holds thernv = 0. Caseg(1b) and
(1c) of the list of proposition 2.2.14 cannot occur.

Moreover in casgle) for each irreducible componenB,, of B, we find
BQkA, Z 1.

Proof. We refer to the list of proposition 2.2.14. From lemma 3.3.4 we have
§ =14+ 30+ 3A" + 24Ky = 17+ 30+ 24'Ky

We haveA'Ky = 1in casegla), (1d) and(1f) of the above list.

If (1a) holds all the irreducible components & and all the exceptional
curvesF’, H', E' contribute taj. Then

64+60+344+0)=184+9<5=19+3¢

This can be satisfied only wheén= 0. If (1d) holds all the components &f,, H’
(see corollary 2.2.17) and all the curvBs contribute tad. Thus

60+3+34+4)=154+9<06=19+ 3/

hencel = 0.
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If (1f) holds all the components dB, and the curveds; contribute too.
Hence
60+34+0)=124+9<6=19+3/(

forces/ =0, 1.
We haveA'Ky = —1 in caseg1b) and(le) of the list.

If (10) holds, all the exceptional curvés, H', £ contribute toy and we have
also to consider a certain numhbiex h < ¢ — 1 of irreducible components a8,
(this can only happen wheh> 1). Then

6+3(4+0)+6h=18+30+6h<5=15+30

which is impossible.

When(1e) holds,? > 1 and we have to consider the curngs, H' and0 <
h < ¢ — 1 irreducible components d8,. Then

3(A4+0)+3+6h=15+30+6h <5=15+3¢

henceh = 0 and1 < ¢ < 3. In particular, for any irreducible componeaBt,. of
By we haveBy, A" > 1.

Finally we haveA’ Ky = —3 only in case(1c) when? > 1. In this case all
the exceptional curveB’, H', £’ contribute taj and we also have < h < /¢ — 1
components of3,. Then

6+3(4+€)+6h=18+30+6h<5=11+3(

which is impossible. O

From proposition 2.2.15 it cannot b&” = 2. Then (see remark 2.2.16) we
are left with the casel’ = N.

Proposition 3.3.7.Assumed’ = N. Then0 < ¢ < 1.

Proof. WhenA’ = N from lemmas 2.1.5 and 3.3.4 we have
=144+ 30+3N?4+2NKy =14+ 30+ 9+ 2 =25+ 3/.

All the exceptional curveg”, H' and E; contribute tod as all the irreducible
components of3; do. Then

6+34+4)+60=184+90 <§=25+3(

which forces/ = 0, 1. [
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As a consequence of propositions 2.2.13, 2.2.14, 2.2.15, 3.3.5, 3.3.6, 3.3.7 and
of remark 2.2.16 we obtain

Theorem 3.3.8.Case (iii) of page 34 can only occur when one of the following
conditions is satisfied:

1.7/=0

— Caseg0a), (0c), (0f), (0g)
— Caseqla), (1d), (1f)

- A =N
2.0=1
— Case(0d)
— Casedle), (1f)
- A'=N
3. (=2
— Case(le)
4. 1 =3
— Case(le).

Moreover in case$0g), (1f) and A’ = N we haved = 0, i.e. the invariant
pencil A < |3K| has no fixed part.






Chapter 4

More on the caseRyKq¢ =0, hg =1

We recall that from a numerical analysis we are left only with the ¢ag€s = 0,
hs = 1 for which the following possibilities can hold:

1. Ry=0
2. Rqis a union of¢ < 3 smooth irreduciblé—2)-curves

Moreover there is a pendilN | on the rational surfacé whose general element is
a nef and big curve of genus 3 (see proposition 3.3.1 and lemma 2.1.5).

We also note that from (2.3), = 4 + ¢ and from (2.10)

1 11 1
Ky = 5[K’52—6—h2+g/7%02—EROKS] = 3[l=6-1-90 =—-2-3¢ (4.1)

From now on we refer to the formulas of proposition 2.3.12 when computing the
arithmetic data of the curves in the linear systeéni§ |V, |, | Na|, | N3|.

We start by computingvZ andp, (N, ):
N} =5—4RyKs+ K2 +n+hy=5—-2-3+n+1=4-30+n>0 (4.2)

Pa(N1) =4—3RyKs+ Ky +n+hy =4—2-3+n+1=3-3(+n=N;—1

(4.3)
Moreover we have the following
Lemma 4.0.9.1n the above setting we hagé — 4 < n < 3/.
Proof. Let us consider the short exact sequence of sheaves
0 — Oy (N = N;) — Oy(N) — On, (N) — 0 (4.4)

81
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Then, sinc&’ is a rational surface, from the definition of,
R*(Y,Oy(N — Ny)) = R°(Y, Oy (Ky — N + Ny))
= 1Y, 0y 2Ky — G’ — i 7)) <
=1
< h(Y, 0y (2Ky)) =0
MoreoverN — N; cannot be effective, otherwise
3=h"(Y,0y(Ny)) < h'(Y,Oy(N)) =2
The long exact sequence of (4.4) gives therefore
0 — H(Y,0y(N)) — H°(Ny,Op, (N)) — H'(Y,0y(N — N;)) — 0
0 — H' (N, Opn, (N)) — 0
This forcesH' (N1, On, (N)) = 0. SinceN, is big and nef, hence 1-connected,
KO(Ny, On, (N)) = x(On, (N)) = 1+ NNy —po(Ny) = 5—3+30—n = 24+3(—n

Then
2 =h(Y,0y(N)) < h*(N;,Opn,(N)) =2+ 30 —n

and3/ — 4 < n < 3¢ as wanted (see formula (4.2)). O

Remark 4.0.10. When/ = 0 one can easily see that = 3¢/ = 0 is the only
possibility forn.

We will see in the following sections that a deeper study of the adjoint linear
systemgV;| to the pencil N| onY allows us to collect the cases listed in theorem
3.3.8 into two main groups

Definition 4.0.11. We callruled casesthose for which one of the linear systems
| N;| induce a morphisniy’ — F, for somea > 0.

Definition 4.0.12. We callDel Pezzo casethose which are not ruled cases.

Moreover in section 4.6 we will show that not all the cases listed in theorem
3.3.8 can actually occur.
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4.1 n=3—14

Proposition 4.1.1.In the case:r = 3¢ — 4 the net|V;| has no fixed part and we
have|N;| = |2©| where|©)] is a pencil of rational curves wit®? = 0.

Proof. Assume thatr = 3¢ — 4. Then|N, | is a net of curves wittN? = 0. Let us
write | V| = |A| 4+ T whereT and|A| are the fixed and the movable part|of, |
respectively. Thef < A? < AN, < N? henceAN; = 0 and

0=NA=A24+TA

0=N,T =AT+T?

It follows A? = AT = T? = 0. Therefore there exists a pen@®| such that
|A| = [20]. Then
4=NN; =2NO© + NT

and N© > 1 otherwise by the Index Theorem and the rationalityvoive have
©=0.1f N© =1, NT = NA = 2then
(A-=TP=A*+T>-2AT =0

henceA = T which is impossible. Thu&v© = 2 and NT = 0 which forces
T = 0 by the Index Theorem.

Therefore we havéV; = A and

20020 + K
1 =) = pu(2) = py(20) =14 2PEOER) g,
forces® Ky = —2. Then|©| is a pencil of rational curves. O

Theorem 4.1.2.The casen = 3¢ — 4 cannot occur.

Proof. If n = 3¢ —4 > 0 we havel/ > 2 and we are in casg@e) of proposition
2.2.14 (see also theorem 3.3.8). Therefore we have a pencil of elliptic dutes
for which A’ = 1. Then, from proposition 4.1.1, lemmas 2.2.1 and 2.2.3 and
corollary 2.2.12,

240 = AN, = AN+ Ky -G =Y _ 7))
i=1

23—1—A/zn:Zi:2—A/2n:Zi§2
i=1 i=1
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andA’N; > 1 by the Index Theorem 1.1.10, whend&V; = 2 andA’© =1

We haveh’(A4’, O 4(0)) = 2 since otherwise the poimt’ N © should be a
base point for the penciB|, wherea®? = 0. Then we get a contradiction since
for any divisorD of degree 1 on the smooth elliptic curv h°(A’, O 4/(D)) =
L. O

42 n=30 -3

In this case we have < ¢ < 3 and from equations (4.2) and (4.3) we fitvg = 1
andp, (V) = 0.

Lemma4.2.1.1f n = 3¢ —3 then|N;| has no fixed part. Then the general element
of | V;| is a smooth rational curve.

Proof. We can use the same argument as in lemma 3.1.11 and we findihat
has no fixed part unle$d/;| = |A|+ T with A? = 0,AN, = AT =1,T? = —1.
SinceA? = 0 and|A| is a net, there exists a pen¢d| such thatA = 20. But
then

1=AT =20T

and we get a contradiction. O

In this setting V, | is base point free and we have a birational morphis, :
Y — P2

Theorem 4.2.2.The caser = 3¢ — 3 cannot occur whe® # 0 and/ = 1.

Proof. Assumen = 3¢ — 3 and/ = 1. Thenn = 0 and when we contract the
curveG’ we get a rational surfadé” such that

Kl =Ki+1=-2-30+1=—4.

Let us consider o’ the imagesV andN; of N and N, respectively. Since,
as we have already sediV;| gives a birational morphism, 5, : W — P?, the
plane image of V| is the net of lines oP?.

In this setting, the plane image p¥| is the linear system of quartics through
13 points, which has virtual dimensidd — 13 = 1.
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Let us also assum® # 0. From theorem 3.3.8 either ca@rl) of proposition
2.2.13 or caséle) of proposition 2.2.14 holds. In any case, see the proofs of
propositions 3.3.5 and 3.3.6, we have

Bo A" > 1
for all the irreducible components; of B,. Then
By®' = Byi(N — A') = =By, A’ < —1
and we can deducB, < 9.
We now compute
BoNy = Bo(N+ Ky —G')=04+40—-0=14
while from the nefness a¥; and of A’ we should have
BoN, < ®'Ny = (N — A)Ny = NN, — A'N; =4 — AN, < 3.

Contradiction. O

Whenn > 3¢ — 2 it makes sense to consideY,| = [Ny + Ky — > | Z; —
G — Z?’zl Z;| which is a linear system of dimensi@n- 3/ +n = p,(N;) < 3
and3 — 3¢ + n > 1 and from proposition 2.3.12
N2 =7—-8RyKs+4K2 +4n+4hy+n' =7—-8— 120 +4n+ 4+ 0/
=3—-120+4n+n’
pa(No) =5 —5RoKs + 3Ky +3n+3hy+n' =5—-6—-90+3n+3+n'
=2—-90+3n+n (4.5)
NiNy = 2pg(Ny) —2=2(3—304+n)—2=4—6(+2n

43 n=30—-2

In this casel < ¢ < 3 and we haveV; N, = 0 and by the Index Theorem 1.1.10
we infer N, = 0. Then from (4.5 = N2 — 3 + 12 — 4n =5 and

M=XY1,Z+G+3_ Z — Ky
N=2Y0",Z;+2G' + Y] Z) — 2Ky (4.6)
_ n 5 /
2BO —|— E/ = 2 Z’iZl ZZ + 5G, + Z]’:]_ ZJ - 5KY
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4.4 n=30—1
This case can happen for< ¢ < 3. We haveN, N, = 2, N? = 3 (cf. equations
(4.2), (4.3) and (4.5)) and sindé, (3N, — 2N;) = 0 then

(3Ny — 2N;)? = 9N; + 4N7 — 12NNy = 9Ny + 12 — 24 = 9N; — 12 < 0
Hence from (4.5) < N7 =n'—1 < landn' = 1,2.

Lemma 4.4.1.1f N2 = 0 (i.e. n’ = 1) then|N;| has no fixed part. In particular
the general member ¢V, is a smooth rational curve with self-intersection O.

Proof. Let us write|N2| = |A|+ T with |A| andT the movable and the fixed part
of N, respectively. We have = N2 = N,A + N,T or, equivalently,

0= NoA =A%2+ AT
0= NT = AT+ T?

which impliesA? = AT = T2 = 0.

We know thatV, N, = 2. Then0 < N;A < N; N, = 2. ItcannotbeV,;A =0
otherwise, by the index theorem and the rationality ofA = 0.

It cannot beV;A = 1 = N;T: we obtain by the Index Theorem
0>(A-TYP=A*+T>-2AT=0 = A~T

SinceY is a rational surface, this implies = T which is impossible.
SoN;A = N; N, = 2 and then

0> (Na—AP?=T?=0
Again, by the rationality ot” we havel’ = 0 and|N,| has no fixed part. O]

Then there exists a morphisth— F, for somea > 0.

If n” = 2 then|N| is a pencil of curves with arithmetic genus 1 and therefore
N3 = 0. But now from proposition 2.3.12

NI =9—-12RyKs + 9KZ + 9hy + In + 4n’ +n”
=9—-18—-2T1+9+421—-9+8+n"=n"—-1=0

Then

Ny=G +30  Zi+57  ZI+ 7" — Ky
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Ny =2G" +230 \ Zi+237 Zi+ Z" — 2Ky
N=3G+3Y",Z+257  ZI+ 7" — 3Ky
2By + E'= N + 3G — 3Ky =6G' + 3%, Z;+23.. | Zl+ 7" — 6Ky

45 n=3/

In this case we have < ¢ < 3. Now N? = 4 = N; N, and
Ny=n'+3>3
By the Index theorem
(N1 = Ny)? = N2+ N2 —2N Ny =4+n'"+3-8=n"-1<0
Moreover ifn’ = 1 we haveN; = N, and then
Ky EG’%—iZﬂ-Z’
i=1
which is impossible sinc&y is not effective. This implies’ = 0, N2 = 3 and

pa(Ng) = 2.
If we look at N3 we have (see also proposition 2.3.12)

NI =9-12RyKs+9K; +9ho+In+4n'+n" = 9—18—270+9+27(+n" = n"

Pa(N3) = 6—TRyKs+6K;+6hy+-6n-+3n"+n" = 6—12—18(+6-+18(+n" = n”
SinceNy N3 = 2p,(Ny) — 2 = 2 we have

(3N3 — 2N5)* = ONZ + 4NZ — 12N,N3 = 9n” — 12 < 0

Thenn” = 0,1. In the former caséN;| is a pencil of rational curves of self-
intersection 0 (see also the formulas of proposition 2.3.12), whereas in the latter
case we have a pencil of curves with arithmetical genus one. Again we infer

n///

N4:N3+KY—G,—iZZ'—Z”—ZZZ{”E .

i=1 i=1

Then

N} = N2+ K2 +2NsKy +1+n+n" 4+n"+n"
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=1—-2—-3—-2414+34+14+n"=n"-1=0
Therefore

Ns=G +> ,Zi+2"+ 72" — Ky
Ny =2G"+23" | Z;+22"+ Z" — 2Ky
N, =3G"+330, Z;+ 22" + Z" — 3Ky
N=4G +43"  Zi+22" + Z" — 4Ky
2By + E' =7G' +4Y" | Z;+2Z" +Z" — TKy

In case|N;| is a pencil of rational curves we can show arguing as in lemma
4.4.1 thaf N3| has no fixed part.

Therefore we have a map — F, for somea > 0.

4.6 Further results

Proposition 4.6.1. Case(1e) of proposition 2.2.14 cannot occur.

Proof. Assume caséle) holds. Thent” has an elliptic pencil4’| with A% = 1.
From lemma 1.1.9 i’ + Ky is not nef then there exi$t-1)-cyclesD; such that
D; A" = 0. Moreover by the Index theorem 1.1.10 we have

A=A+ Ky-> D=0 4.7)

J

We now look at the intersection number= A’N;: we have (cf. corollary
2.2.12)

ANy =AN+EKy -G =) Z)=3-1-A>Y Z;=2-A> Z>1
i=1 =1 =1

otherwiseN; = 0. Moreover from theorem 4.1.2 we have< N? < 4 (cf.
sections 4.2, 4.3, 4.4 and 4.5).

Then by the Index theorem 1.1.10 we ha¥/¢N; — sA’) = 0 and

(N; — sA)? = N2 + s2A% —2sN;A' = N2 — 62 < 0
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Then if s = 1 we should haveV? = 1 and, from the rationality of", N; = A’
which is impossible sincgd’| is a pencil wherealV;| is a net. Hencel’ N; = 2
andA’'Y"" | Z; = 0. Moreover, whenV;{ = 4 (or, equivalentlyp = 3¢) we get,
because of the rationality af,

N1 = 2./4/
which is impossible since then (see lemma 2.1.5 and proposition 2.2.14)

4= NN, =2NA =6.

Hence in caséle) we can only haves = 3¢ —1,n =3¢ —20orn = 3¢ — 3.

SinceA’N; = 2, all the curvesZ; do not intersectd’. Therefore from (4.7)
A=A +Ky -G => Zi-> C;=0
i=1 j=1
and

0=A2=A"+ K2+ 24Ky +1+n+m (4.8)
=1-2-34-24+14+n+m=n—-2-3+m

hencen = 3¢ —n + 2.

We also know that in cas@de) for any irreducible componens,, of By we
haveBy. A’ > 1 (see proposition 3.3.6). Moreovdf N = 3, &' N = 0. Then

0 = BopN = Bop(A' + @) > 1 + By, @'
foranyk =1,..., ¢ forcesBy, < @'.

We recall that

NEy=(N+Ky -G =Y Z)Ky=1-2-30+1+n=n—3
=1
Then we find
0=AN =Ni(A+Ky -G => Zi-> C)
j=1

=1

=24n-30—-N; Y Cj<n—(3-2)

J=1
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This excludes:, = 3¢ — 3.

Whenn = 3¢ — 2 allthem = 3¢ — n + 2 = 4 curvesC; do not intersectV;.
Hence they are 4 of the’ = 5 curvesZ!. SinceN, = A, = 0 we find

EiZi—l—G/—l—iZ;—KyzA'—b—Zé.
=1 =1
Hence we get a contradiction since
0=FN=FA+FZ;=1+0=1.
Whenn = 3¢ — 1 we havem = 3¢ —n + 2 = 3 and, using proposition 2.3.12,

0=AN; = Ni(A + Ky -G — ZZ ZC

:2—1—leoj=1—leOj
j=1 Jj=1

Thus there is exactly one curvey with C; N; = 1 whereas the remaining two
have to be chosen among thé < 2 curvesZ]. This also excludes the case
n' =1.

Whenn' = 2 we have

ANy = AN+ Ky -G =Y Zi-Y Z)=2-1=1

i=1

and
(A —No)>’=1+1-2=0.

ThusA’ = N, but we get a contradiction since
PNy =P A =(N-A)A =3-1=2

and
2 Z BoN2 - B()A/ == 3

Proposition 4.6.2. The casé0d) of proposition 2.2.13 cannot occur.



4.6. Further results 91

Proof. Assume casé0d) holds. Then we havé = 1 (see theorem 3.3.8) and
K = —2 — 3¢ = —5. Moreover|A’| is a pencil of elliptic curves such that
A% = 0 = A'Ky. Then if we look at the adjoint syste’ + Ky we find
A'(A"+ Ky) = 0. From lemma 1.1.9 there afe-1)-cyclesD; such that

A=A+ Ky =) D;
j=1
is nef andD,;A" = 0. SinceA’A; = A'(A' + Ky) = 0 we necessarily have
A? = 0. Hence (recall that?’ A’ = 0 from corollary 2.2.12)

0=Af= (A +Ky =G =) C)=0+EK;+0+1+m=—4+m
j

and

MKy = EKy(A+ Ky =G =) C))=0-5+1+m=A7=0
j=1
Since from lemma 2.2.3’ N = 3 we can write
0SAN=NA+Ey-G-) C)=3+1-N>» C;<4

J=1 J=1

Assume nowl < AN = s < 4. Then we haveV(34; — sA’) = 0 and by
the Index theorem 1.1.10 and the rationalityyof

(341 — sA')? = 9A2 + $?A” — 6sA'A; =0

andsA’ = 3A;. Thus
1 S S = SA/BO = 3AlBO

forcess = 3 and A’ = A; which is impossible since otherwidéy, would be
effective. Thusd; N = 0 henceA; = 0 and

4
0=A1By = By(A'+ Ky = G' =Y C)) (4.9)

j=1
4 4
=144-By» C;j=5-By» C,
j=1 j=1

We note thatB, cannot be contained in any singular fibrg.4f| sinceBy, A’ =
1 > 0. In particular it is not contained in any of the-1)-cyclesC;. Then
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ByC; > 0foranyj =1,...,4 and from (4.9) there exists a cydlg, sayC; such
thatC, By, > 2. But(C; A’ = 0 forcesC; < A’ and

2 S ClBO S A/BO = 1
and we get a contradiction. O

As a byproduct of propositions 4.6.1, 4.6.2 and theorem 3.3.8 we obtain

Theorem 4.6.3.0ne has) < ¢ < 1. We can havé = 1 only in caseg1f) and
A= N.

Proposition 4.6.4.Case(0a), (0c) and (0f) of proposition 2.2.13 cannot occur.

Proof. Let us begin with cas@a) of proposition 2.2.13. Then = 3¢/ =n’ = 0,
A'N =2and
AN, = AN+ Ky —G')=AN =2

henced’'N; = (N — A")N; = 2. Moreover
ANy =A (N + Ky —G')= AN, =2

and
NNy =N(N,+ Ky —G')=4+1=5

which implies®’ N, = 3. But we know, from proposition 2.2.13,
Ed' =E/(N—-A)=-1
fori = 1,2 which forcesE] + E, < &’. Moreover
E; Ny = E; (N 4+ 2Ky —2G") =2
forallk =1,...,h;. Then we get a contradiction since
4= (E] + E))Ny < ®'N, = 3.

Assume now that either cagec) or case(0f) of proposition 2.2.13 holds. Then
n=30=0,AN=3,&N =0and

A/Nl - A/(N + Ky - G/) - A/N - 3

Then
N, =(N-AN, =4-3=1
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SinceN; is nef there exists exactly one irreducible componerndf ¢’ such that
DN, =1.

We also know, from proposition 2.2.13,
Ed' = E/(N—-A4) < -1
for i = 1,2 and then since
ELNi=E.(N+Ky—-G)=1
forallk =1,..., h; we get a contradiction. O

From theorems 3.3.8, 4.1.2, 4.2.2 and propositions 4.6.1, 4.6.2 and 4.6.4 we
obtain the following result:

Theorem 4.6.5.Case (iii) of page 34 can only occur when one of the following
conditions is satisfied:

1. /=0
— Case(0g)
— Caseqla), (1d), (1f)
- A'=N
2. 0=1
— Case(1f)
- A =N

Moreover in case$0g), (1f) and A’ = N we haved = 0, i.e. the invariant
pencil A < |3Kg| has no fixed part.

4.7 Summary

From a numerical analysis the only possible case is
ROKS - O, hg == 1

and eitherR, = 0 or Ry has/ < 3 irreducible components which are smooth
(—2)-curves. In all cases we have a pendil of nef and big curves of genus 3 on
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the rational surfac® which corresponds to the invariant parof the tricanonical
system|3Ks| on the numerical Godeaux surfase

The list of possible cases depends on the numbafrcurves (different from
(') that we have to contract in order to find a surfécéwhere the adjoint system
| V1| of [N is nef. Then we will contractV’’ to W where the adjoint systems of
|| of any index are nef curves (if they are non-empty).

We can actually show thdt, is composed of at most one irreducible compo-
nent (see theorem 4.6.3) and we have- 3 < n < 3/.

Let us start by assuming = 3¢. Then to gef”’ we need to contract’ and
the curvesZ;. We have two possibilities:

e W =W’"and

|N| is a pencil of curves of genus 3 anédt = 3

| V1| is a net of curves of genus 3 and = 4

| N,| is a net of curves of genus 2 anf = 3

| N3] is a pencil of curves of genus 0 an = 0

with ¢ g,; morphism fromi to P! andg : W — F, birational morphism.

e we have to contract two more curvg$ andZ"” to getl’ and

|N| is a pencil of curves of genus 3 and = 16

| V| is a net of curves of genus 3 and = 9

| N,| is a net of curves of genus 2 and = 3

| V3| is a pencil of curves of genus 1 anéd = 1

- N4 =0
In this case we also find

Na=G + 30" Zi+ 2"+ 2" — Ky
Ny =2G"+23" | Z;+ 22"+ Z" — 2Ky
N, =3G" +330", Z; + 22" + 2" — 3Ky
N=4G +4Y1  Zi+22" + Z" — 4Ky
2By + E' =7G' +4Y" | Z;+22" +Z" — TKy
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If we assume, = 3/—1 we have to add to the above list two more possibilities:

e we have to contract one more cycététo getiV and

- |N| is a pencil of curves of genus 3 and = 4
- || is a net of curves of genus 2 and = 3

- | N,| is a pencil of curves of genus 0 and = 0
with ¢, g, morphism fromit’ to P! andg : W — F, birational morphism.

e we have to contract three more cyclés 2, andZ"” to geti and

|N| is a pencil of curves of genus 3 anéf = 12

|V, | is a net of curves of genus 2 ang = 4

| V5| is a pencil of curves of genus 1 ang = 1

- Ng =0
In this case we also find

No=G'+ 30, Zi+ Z?:1 Zi+27" — Ky
Ny =2G'+23 0, Zi+ 230, Zi+ 2" — 2Ky
N=3G+3%01, Zi+230, Z+ 2" = 3Ky
2By + B' = 6G' + 331, Zi+ 20, Z+ 2" — 6Ky

Whenn = 3¢ — 2 we need to contract five more cycl&s, .. ., Z; to getW
and

- |N|is a pencil of curves of genus 3 ané# = 8

- | V4| is a net of curves of genus 1 andf = 1

In this case we also find
N1 = G/ + Z?:l ZZ —|— Z?:l ZZI — Ky

N=2G"+2Y0  Zi+ 3, Zl — 2Ky
2By + E' =5G'+23 " Z;+ >0 Z! — 5Ky
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Finally whenn = 3¢ — 3 we have/ = 1 (thenn = 0) and the first adjoinf/V |
to | N| is a net of rational curves and it gives a birational morphisi*to

Moreover only the cases listed in theorem 4.6.5 can occur.
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Geometric analysis

5.1 Ruled cases

511 n=3/

By definition 4.0.11 and the results of section 4.5 we know [tNat gives a mor-
phismg : W — F, for somea > 0 with K2, = K2 + 1+ 3¢ = —1. Then we
have

Kp, = —2c—(a+2)f, ¢"(f) = N3

wherec is the(—a)-section offF, and f is a fibre of the rulindgf, — P;. Then
Kw = —2g*(c) — (a + 2) N3 + A whereA is the exceptional divisor af.

Therefore

NQ = Ng - KW = 29*<C) + (a—|—3)N3 —A
Nl :NQ—KW :49*(0) (2&+5)N3—2A

+
N = N, — Ky = 6g*(c) + (3a+ 7)N3 — 3A
Lemma 5.1.1.1n the above setting < a < 2.

Proof. SinceN is nef we find
g(c)N=7-3a>0
and ther) < a < 2. O
We look at23, + E': from the definition of NV on the surfac& one has
2By + E' = N — 3Ky = 12¢g*(c) + (6a + 13) N3 — 6A (5.1)

97
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whencey(2B, + E') = 12¢ + (6a + 13) f.

Furthermore
g (c)(2Bo+E') = g*(c) (129" (¢)+(6a+13) N3—6A) = —12a+13+6a = 13—6a

From theorem 4.6.3 we have= 0, 1.

(=0

Let us assumé = 0. Then2B, + £’ = E’ and we can writeZ! = a;g*(c) +
BiNs + 37,74, We also recall thak, = 4 + ¢ = 4 from (2.5). Then

3 = N3E; = N3[aug™(c) + BiNs + Z%‘ZAJ‘] =
J
This implies
g (c)E} = g*(c)[aig™(c) + BN + Z Vi = —ac; + Bi = i — 3a
J

Lemma 5.1.2.In the above setting we hayeé(c)E; > 0. In particular we have
G; >3aforalli=1,... 4.

Proof. It is obvious sincey*(c)E! < 0 and the irreducibility of£’ would im-
ply £/ < g*(c) and thereforel! = ¢ the strict transform of. Then we get a
contradiction since

3= E_’Z/Ng = ENg = g*(C)Ng = 1.

Moreover from equation (5.1) we ha@é‘:1 B; = 13 + 6a.

Lemma 5.1.3. Each irreducible componerd’ in the singular fibres ofp 5, :
W — P! is a rational curve withC? = —1, —2.

Proof. We know thatN, = N; — Ky is nef. C satisfiesCN; = 0 hence, by
Zariski’'s lemma 1.1.2C? < 0 and

CNy = C(N3 — Ky) > 0

which impliesC' Ky, < 0. By the Index theorem 1.1.10 and the rationality/iof
if it was C Ky = 0 we should have€? < 0 henceC? = —2. On the other hand,
if CKy < —1thenC? > —2 — CKy > —1forcesC? = —1 = CKyy. O
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Remark 5.1.4. For any (—2)-curveC” which is contained in a singular fibre we
have
C'E' =C'(Ns — 6Kw) =0

soC’ does not intersect any of the curvgs. Therefore the intersection éf; with
the singular fibres is only given by the points of intersection with the-curves.

Lemma 5.1.5. Each singular fibre contains two irreducible-1)-curves with
multiplicity 1.

Proof. Assume that there are irreducible (—1)-curves appearing with multi-
plicity b, > 17 = 1,...,m. Then from lemma 5.1.3 and the rationality |o¥;|
we find

i=1
hence eithem = 1,b; =20rm = 2,b; = by = 1.
SinceE;, N; = 3 foranyk = 1,..., 4 and since the curves;, cannot intersect
the (—2)-curves in each singular fibre (see remark 5.1.4) there cannot be a fibre
with only one(—1)-curve of multiplicity 2. O

Lemma 5.1.6. For each singular fibre the curvé&’ intersects the exceptional
curves of that fibre.

Proof. Assume there is a singular fibveof g : W — F, such that?’ does not
intersect any of the exceptional curves of that fibre. Then there exists alcurve
¢ such thal" £’ = £/ N5 = 12 andT is not contracted by : W — F,. Hence

12=TFE =T(12g9*(c) + (13 + 6a) N5 — 6A) = 12I'g*(c) — 6T'A
SinceT'A > 1 andI’A =0 mod 2 we find
12 < 12Ig*(e) — 12

hencel'g*(c) > 2. Letg(I") = f; be the fibre of the ruling of, obtained byi".
Then

1= fic=g"(f1)g"(c) =Tg"(c) > 2

and we get a contradiction. O

Lemma 5.1.7.In the above setting we can reduce to the casel unlessa = 2
andy g, : W — P! has at most two singular fibres.
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Proof. We know that/” N; = H'Ns; = 0 and the two(—2)-curves are contained
in a singular fibre ofp 5, . We can choose the mapso that it contracts these
curves to a point which is now on a nonsingular filfgef the mapF, — P'.

If « = 0 and we blow up the above point and we consider the sectwaimch
intersectsf, at that point, the strict transform ofis a (—1)-curve. By contract-
ing the strict transform of, the exceptional divisor becomes a curve with self-
intersection 0. Therefore the surface now obtainé is

We can do the same far= 2 if the point is not the intersection point between
fo and the(—2)-sectionc on Fs.

Assume now that = 2 andc¢ passes through the above poifit We can
reduce tax = 1 if we find a singular fibref; such that does not pass through the
point obtained by contracting all the exceptional curveg ofit — T, in that
fibre.

Let us suppose such a fibfe does not exist. Then for any singular fibfé
the (—2)-sectionc passes through the poift which is the contraction of all the
exceptional curves in that fibre. From lemma 5.1.6 we can deduc#’thmist be
a pointinE’. Sinceg*(c)E’ = 13 — 6a = 1 there can be at most one such fibre.
Thus, if the number of singular fibres is at least 3 we are done. O

Lemmab5.1.8.Forany:=1,...,4andj =1,...,9 we have

AR vy =0 if AR = -2
J

Proof. Since

we have

From lemma 5.1.3 the curves, have self-intersection2 < A% < —1.

Furthermore, from remark 5.1.4,4%2 = —2

EAL =0
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hence
J

which proves the lemma. ]

Corollary 5.1.9. In the above setting for any= 1, ...,4 we have
A Z VjiAj < 67
j
wherer is the number of singular fibres gf: W — TF,.

Proof. Let us set
Vi={v|AZ2= -1}

From the above proposition we have

A Z’inAj = Z Ayl < 3|V
J

veV

where|V'| is the cardinality of the sét. From lemma 5.1.5 there are two simple
(—1)-curves in each of the singular fibres then

V| <2r
as wanted. O
We are now ready to show that the reduction te 1 it is always possible.
Proposition 5.1.10.The case: = 2 cannot occur with- < 2 singular fibres.
Proof. We know from the formulas of page 97 that
Ny =2g*(c) + (a + 3)N3 — A
Then
2= E/N, = E{N, = (3¢g"(c) + BiNs + > _7;i3;)(297(c) + (a + 3)N3 — A)
j

= —6a+3a+9+23— A

J

hence
AN vl =28 +17—3a
J
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Thus, from lemma 5.1.2 and corollary 5.1.9,
T4+ 3a <20;,+7—3a < 6r
wherer is the number of singular fibres of: W — F,. Whena = 2 we get
6r > 13

and then > 3 as wanted. O

From now on we assume = 1. The pencil| ;| is mapped to the pencil of
lines of P* through a pointP. Then|N,| maps to the net of quartics with 1 double
point and 9 simple base pointsy;| to the net of curves of degree 7 with 1 triple
point and 9 double points (with no other simple base points)/aido the pencil
of curves of degree 10 with one 4-tuple point, 9 triple points and no other base
points.

Theorem 5.1.11.The caser = 3¢ = 0,n’ = n” = 0 cannot occur.

Proof. We compute the plane image pf’|. From theorem 4.6.5 we know that
¢ = 0 can only occur in cas@)g) of proposition 2.2.13, in caséda), (1d) or
(1f) of proposition 2.2.14 and whe#’ = N. Then, using also lemma 2.2.3 and
corollary 2.2.12,4% = 0,AKy = 2, AN = 3, AG’ = 1 in the former case
while we haved’'Ky = 1, A’'N = 3, A'G’ = 0 in the latter cases withl’* = 1
unlessA’ = N. Hence we find

A'N3 = A (N +3Ky —3G') =3 +34A'Ky —3A'G' =6

in all the above cases. Thedi is mapped onto a plane curve of degrewith
a point of multiplicityd — 6 at P and, denoting by; the number of points of
multiplicity j amongP, ..., Py,

3=AN=AN=10d—-3) js;—4(d—6)

J

hence
> jsj=2d+7 (5.2)
j

We also havel”” = 1, p,(A’) = 2 in all the above cases except faf = N.
Then, ifA" # N,
=A% =d =" j%;
j
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hence

> Psy=d—1 (5.3)
J

and

=iy = =D 5 D) (=0T

& —3d+2—d®+13d — 42 G —1)
- 2 —2nT

J

hence
> s — 1) = 10d — 44 (5.4)

j
Then comparing (5.2), (5.3) and (5.4) we get
10d —44=d*>—-1—(2d+7)=d* —2d — 8
hence
d* —12d+36 = (d — 6)* =0
which forcesd = 6. In this case (5.2) and (5.3) become

> isj=19
J

ZjQSj =35
J

We now easily inferj < 5. Subtracting the first equation from the second one
we find
16 =35—19 = (2585 + 1684 + 983 + 482 + 81)+
— (585 + 4s4 + 353 + 252 + 51) = 2085 + 1254 + 653 + 259
Thenss = 0,54 < 1.

Then we find
653 + 282 =16 — 1284

or equivalently,
3$3+82:8—684

and substituting in (5.2)

S1+82:19—4S4—(383+82):19—434—(8—684):11+284
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which gives a contradiction singe ; s; < 9.
We now discuss the casé = N. ThenA’”” = N2 = 3 andp,(A’) = 3. Then

3=A" = — ZjQSj
J

forces

> Psy=d=3 (5.5)
J

and

ST P IR O AL R

42— 3d+2 — d?+ 13d — 42 i —1)
2 -2 2

J

hence
> s5(j — 1) = 10d — 46 (5.6)

J

Thus comparing (5.2), (5.5) and (5.6) we find

10d —46 =d*> —3 — (2d+7) = d* — 2d — 10

hence

d*> —12d+36 = (d — 6)* =0
forcesd = 6 while we knowd = 10 sinceA’ = N. ]
/=1

Let us now assums, # 0. For any curvel; on the rational surfac¥ there is at
most one of the curveg; which intersects; (see corollary 2.3.7).

Assumen = 3¢ = 3. If all the cyclesZ; are irreducible then there are exactly
3 ofthe 5 curved’! (we can suppose they aké, £} andEY) which are intersected
by one (and only one) of the curves: we havel; N; = 0 for each of them. This
implies that they are contained in singular fibres of the map, : ¥ — P1.

If one of the cyclesZ; is reducible then, from corollary 2.3.11, eith&y, Z,
are irreducible and’; = 7, + Z, + E, for somel < k < hy = 50r Z; is
irreducible,Z, = Z, + C (with C a(—2)-curve) andZ; = 7, + Z, + £ for some
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k < 5. In any case we have; N; = 0 (see proposition 2.3.3) hendg N; = 0.
Moreover sinc¢ = 1 from lemma 2.3.6 and corollary 2.3.7

By Z Z; = 2ByZ, + 2By 7y = 4

=1
henceBy N, = 0 forcesByN; = 0.

We now can show the following

Theorem 5.1.12.The caser = 3¢,n’ = n” = 0 with ¢ = 1 cannot occur.

Proof. Let us now consider the fibration given by the rational pep€y|. If we
setd := ) (e(Nss — e(N3)) from proposition 1.1.3 we have

§=e(Y)—e(Na)e(P) =12 — K2 — 4% 1212430 -4 =13

From lemma 3.3.3 every cun in a singular fibre contributesC? to 4. If
71, Zy, Z5 are irreducible then we know that tlie-3)-curvesrt”, H', £}, £}, E,
are disjoint and they are contained in singular fibres.

If Z5 is reducible then the—3)-curvesF’, H', £} and the(—6)-curve B, are
contained in singular fibres.

In any case we find
13 =9 > 15.

Contradiction. O]

512 n=3(—-1

From section 4.4 we know thaiV,| gives a morphisny : W — [, for some
a>0with K%, = K2 +1+3(—1+ 1= —1. Then we have

Kp, = =2c—(a+2)f, g°(f) =N,

andKy = —2g*(c) — (a + 2) N, + A whereA is the exceptional divisor of.

Therefore

Nl = NQ — KW = 2g*<0) + ((l+3)NQ - A
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Lemma 5.1.13.In the above setting < a < 2.

Proof. SinceN is nef we find

g (c)N=5—-2a>0
and therd < a < 2. O

Then we look aRB, + E’: since
2By + E' = N — 3Ky = 10g*(c) + (5a + 11) Ny — 5A
we haveg(2By + E') = 10c + (5a + 11) f.
Furthermore

g (c)(2Bo+E') = g*(c)(10g* (¢)+(5a+11) No—5A) = —10a+11+5a = 11—ba

We recall thatn = 3¢ — 1 can only occur wheri > 1. From theorem 4.6.5
and the results of section 4.4 we have- 1,n = 2,n’ = 1. By definition of v
we find

1=2Z'N=7'2By+ E' +3Ky —3G") =2ByZ'+ E'Z' — 3
hence2B,Z' + E'Z' = 4. This impliesO0 < ByZ' < 2and0 < E'Z' =4 —
2By7" < 4.

We also compute using corollary 2.3.7

BoNa = By(N + 2Ky — 2G' — 27, — 275 — Z')
—048-0-2-2—ByZ =4— ByZ'

ELN; = EL(N + 2Ky — 2G' — 27, — 22, — Z')
—042-0—2(Z + Z)E, — E,Z' <2 — E,Z

Since from corollaries 2.3.11 and 2.3.7 we ha&gw’ = Z,FE' = 1 there
exist two curvest), (say £y and E7) such that each of them intersedis or Z,
at one point. For those curves we necessarily hay®, = E;N, = 0 and
E\7Z' = E.7Z' =0,

Lemma 5.1.14.In the above setting it cannot g, 7’ = 0, E'Z’ = 4. In partic-
ularwe have) < £} 7' < 1forallk =1,...,5.
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Proof. Let us consider the Euler number of the fibratiog, : Y — P, accord-
ing to proposition 1.1.3. If we set

§ = Z(G(st) —e(Ny))

S

where the sum is taken over all the singular curves\is}, we have
§=e(Y)—e(Ny)e(Py) =12 — K2 — 441245 -4 =13,
Since every curv€’ in a singular fibre contributesC? to § (see also lemma

3.3.3) and we know that the-3)-curvesE’, H', £, EX are disjoint and they are
contained in singular fibres we find

12 <6 =13.

If it was £, Z" = 2 for somek = 1,2,3 we would also have’, N, = 0 and £},
would be disjoint from all the above ones and contained in a singular fibre. Then
it would be

15=3+12<9=13.

Contradiction. Thet’Z’ = (E} + Ef + E%)Z’ < 3 as wanted. O
Lemma 5.1.14 forces one of the two following options:
1. ByZ' =2, E'Z' =0,ByNy =2, E; Ny =2,k =1,...,3
2. ByZ' =1,E'Z' =2,ByNy = 3, E{Ny = 2, E; Ny = 1,k = 2,3

Remark 5.1.15.1t is easy to see that in both cases 1 and 2 there is a chfysay
Ej, such thatF} Z; = E}Z' = 0. ThenkE} is a(—3)-curve such thats} N = 0.

Let us sett), := By.

Lemma 5.1.16.In the above setting for any curve such that=! N, > 2 we have
g(c)EL > 0.

Proof. It is obvious sincey*(c)E! < 0 and the irreducibility ofE would im-
ply E! < g*(c) and thereforel! = ¢ the strict transform ot. Then we get a
contradiction as in lemma 5.1.2 since
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Lemma 5.1.17.Each irreducible componertt' in the singular fibres ob g, :
W — P! is a rational curve withC? = —1, —2.

Proof. We know thatN; = N, — Ky is nef. C satisfiesC N, = 0 hence, by
Zariski’'s lemma 1.1.2C? < 0 and

CNy = C(Ny — Ky) > 0

which impliesC' Ky, < 0. By the Index theorem 1.1.10 and the rationality/igf
if it was C Ky = 0 we should have&? < 0 henceC? = —2. On the other hand,
if CKyw < —1thenC? > -2 — CKy > —1forcesC? = —1 = CKyy. O

Remark 5.1.18. For any (—2)-curve C’ different fromE), and E% which is con-
tained in a singular fibre we have

C'(2By + E') = C'(Ny — 5Ky) =0
so(’ does not intersect the curvés and B,.

Lemma 5.1.19.Each singular fibre contains at most two irreducilplel )-curves.

Proof. Assume that there are irreducible(—1)-curves appearing with multiplic-
ity b, > 1¢=1,...,m. Then from lemma 5.1.17 and because of the rationality
of | N,| we find
i=1
hence eithem = 1,b; =20rm = 2,b; = by, = 1. O

Lemma 5.1.20. For each singular fibre the curv&’ intersects the exceptional
curves of that fibre.

Proof. Assume there is a singular fibreof g : W — F, such thatt’ does not
intersect any of the exceptional curves of that fibre. Then there exists alcurve
in the singular fibres such th&{2B, + E’') = (2B, + E')N, = 10 andI is not
contracted by : W — F,. Then

10 =T'(2By + £') = I'(10g*(¢) + (11 + 5a) N5 — 5A) = 10I'g*(c) — 5T'A
Since’A > 1 andI’'’A =0 mod 2 we find

10 < 10T'g*(c) — 10
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hencel'g*(c) > 2. Letg(I") = f; be the fibre of the ruling of , obtained byl".
Then

1= fic=g"(fi)g"(c) =Tg"(c) > 2

and we get a contradiction. H

Lemma 5.1.21.In the above setting we can always reduce to the case 1
unlessa = 2 andy g, : W — P! has at most two singular fibres.

Proof. We know that/” N, = H'N, = 0 and the two(—2)-curves are contained
in a singular fibre ofy . We can choose the mgpto contract these curves to a
point which is now on a nonsingular fibig of the mapF, — P'.

If « = 0 and we blow up the above point and we consider the sectwaimch
intersectsf, at that point, the strict transform ofis a (—1)-curve. By contract-
ing the strict transform of, the exceptional divisor becomes a curve with self-
intersection 0. Therefore the surface now obtaindid is

We can do the same far= 2 if the point is not the intersection point between
fo and the(—2)-sectionc on Fs.

Assume now that = 2 andc¢ passes through the above poffit We can
reduce taz = 1 if we find a singular fibref; such that does not pass through the
point obtained by contracting all the exceptional curveg ofit — T, in that
fibre.

Let us suppose such a fibfe does not exist. Then for any singular fibfé
the (—2)-sectionc passes through the poift which is the contraction of all the
exceptional curves in that fibre. From lemma 5.1.6 we can deduc&’thmitst be
apointinZ’. Sinceg*(c)(2By+ E') = 11 —5a = 1 there can be at most one such
fibre. Then, if the number of singular fibres is at least 3 we are done. O

We can write

E6 = BO = Ckgg*(C) -+ ﬁONQ -+ Z’onAj.

J
E,: = ozig*(c) —|— ﬁzNQ —|— Z’YJZAJ
j
Then for any; > 0

NyEj = Nploig™(c) + BN + Z%‘ZAJ‘] = Q.
J
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This implies
g ()E! = g*(c)[aug*(c) + B; N3 + Z Vil = —aq; + 5 (5.7)
J

Lemmab5.1.22.Foranyi=1,...,3andj =1,...,9 we have

J

J

Proof. Since
E'; = ;9" (c) + B: Ny + Z’inAj
j
if Ay # £, E we have

0< A Z’sz’Aj = E/Ay < ENy = q (5.8)
J

From lemma 5.1.17 the curves, have self-intersectior-2 < A7 < —1.
Furthermore, from remark 5.1.18,42 = —2, A, # E}, E.

EA, =0
hence
j
which proves the lemma. O]

Corollary 5.1.23. In the above setting for any= 1, ..., 3 we have

ANyl < 20ir + ELE] + BLE!
J

wherer is the number of singular fibres gf: W — TF,.

Proof. Let us define
Vi={v|AZ = -1}

From the above proposition (see (5.8)) we have

A Z Vi = Z Ayy;il\; + (Ey + EY) Z Vil
g J

veV
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=) Al + (By+ B E] < ool V] + (B + B3 B

veV

where|V| is the cardinality of the seét’. From lemma 5.1.19 there are at most
two (—1)-curves in each of the singular fibres then

V| <2r

as wanted. O]

We are now ready to show that the reductiomte 1 it is always possible.

Proposition 5.1.24.The case: = 2 cannot occur with- < 2 singular fibres.

Proof. We know from the formulas of page 105 that
Ny =2g*(c) + (a+3)Ny — A
Then

E/N; = E{Ni = (cig™(c) + BiNa + ) 73i2;)(297(¢) + (a + 3)N3 — A)
j

= —2aq; + aq; + 3a; + 20, — A Z ’sz'Aj
J

hence
AZ’}/]ZA] = 2ﬁz + (3 - CL)OQ‘ - E;Nl
J

Let us now fixi = 1. From remark 5.1.15 we know that, is a (—3)-curve
andE|Z' = E\Z, = E1Zy = 0 hence
E\N, =E|(N+Ky -G — 2, — 7)) = E\Ky = 1
ay = E{Ny = BNy = E|(N + 2Ky — 27, — 27y — 7Z') = 2.
Thus, from lemma 5.1.16, equation (5.7) and corollary 5.1.23,

23+a)—1=(B+a)a; —1 <26+ (3—a)oy — 1
= AZ%AJ‘ < 2ayr + EY(E} + E}) = 2047 = 4r

J

wherer is the number of singular fibres gf: W — F,. Whena = 2 we get
4r > 9

and then > 3 as wanted. O]
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From now on we assume = 1. The pencil| N,| is mapped to the pencil of
lines of P? through a pointP.

Then|N;| maps to the net of quartics with 1 double point and 9 simple base
points,|N| to the system of curves of degree 7 with 1 triple point and 9 double
points (with no other simple base points).

We now want to show the following

Theorem 5.1.25.The casen = 3¢ — 1 = 2,n/ = 1 cannot occur.

Proof. We compute the plane image of the pereil|. From theorem 4.6.5 we
know that/ = 1 can only occur in casélf) of proposition 2.2.14 or when
A’ = N. Then, using also lemma 2.2.3 and corollary 2.2A42{y = 1, A'N =
3, A'G" = 0 and we find

1 < A'Ny= A(N + 2Ky —2G' — 2(Zy + Zo) — Z') (5.9)
:5+O—2A,(21+ZQ) —A/Z/ S 5

Let us first consider the cas€ = N. ThenA’'Ny = NNy =5 - NZ' =4
andA’ = N maps to a plane curve of degréeavith a point of multiplicityd — 4
atpP.

Then
4=AN=7d-2) js;—3(d—4)
J
and

> s =2d+4 (5.10)
J

Moreover sinced’”” = A% + 1 = 4 we have
D sy =d> -4 (5.11)
j
hence we find

?>—4=2d+4=0 mod 2

andd should be an even number. Sindé= N we knowd = 7 and we get a
contradiction.

Let us now study the cage f). We know thatd’> = 1 and, for anyi = 1, 2,

1=Z'N=Z'A"+7'0
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Thus if Z/A" > 2 thenZ’ and®’ have some irreducible component in common
hence
2<Z'A<Z'N+AdP =3 (5.12)
This impliesO < A’Z" < 3. Letus set := A’ 7',

We notice that since = 2 from corollary 2.3.117; and Z, are irreducible
(—1)-curves hence

henceA'(Z, + Z;) = 0.
Then from (5.9) and (5.12}Y' N, =5 — s > 2 and

AN =AN+s=3+5=Td—2) js;—3(d—5+5s)
J

hence
> jsj=2d+6—2s (5.13)

J

Furthermored”” = A% 4 s2 = 1 + s? implies

Y fsi=d—1- (5.14)
J

Then

po(d) = pu(a) + D g D

(d—1)(d—2) §(G—1) (d—5+s)(d—6+s)
_f_;‘sj 2

N 2

d2—3d—|—2—(d2—6d—|—3d—5d—|—30—53—|—sd—6s+32)+
2

i =1
_;Sj :

—3d+2+11d — 2sd — 30 + 11s — s? iG—1)
N 2 P

J
hence
D sl — 1) = (8 — 2s)d — 32 + 125 — 25° (5.15)
J

Then comparing (5.13), (5.14) and (5.15) we get

(8—25)d—32+125—2s* = d* —1—s° — (2d+6 —25) = d*> — 2d — 7T+ 25 — 5*
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or equivalently
d®>— (10+2s)d+25—10s+s*=(d—5+35)* =0

henced =5 — s.
Sincep,(A’) > 2 we haved > 4 and we can exclude= 2, 3.
Whens = 0,1 we can rewrite (5.13) and (5.14) as

D Gsj=2(5—5)+6—2s=16—4s
J

and

d Psi=(5-5)7—1-5=25+5"—10s— 1 — s> =24 —10s
J

In particular one can see thak 4 and we can write

4s, + 353 + 289 + 51 = 16 — 4s
16s4 + 953 + 4s9 + 51 = 24 — 10s

Subtracting the second equation from the first one we find
12s4 + 653 + 253 = 8 — 6s
which forcess, = 0 and3ss + sy = 4 — 2s. Then
S1+ 82 =16 —4s —4sy — (3s3 + $2) =16 —4s — 4+ 25 =12 — 25 > 10

while we knows; + s, < Z]. s; < 9. Contradiction. O

5.2 Del Pezzo cases

We now treat separately those cases With 0 from those with? = 1. We refer
then to the list of theorem 4.6.5.

521 (=0

From theorem 4.6.5 we know that we are in cafep of proposition 2.2.13,
(la), (1d) or (1f) of proposition 2.2.14 oA’ = N. We use the same notation
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as in section 4.5. Sinc&? = 1, when we contract the curves’, 7", 7" we
obtain a rational surfacd” which is isomorphic to the projective plaifé blown
up at eight points?,, . . ., Ps. We will denote byD the image oriV of a divisor
D € Div(Y). We note that sincéV, = 0 then|N;| is mapped to the system of
cubics through the eight pointg,| to the system of sextics with eight double
points, |V, | to that of curves of degree 9 with eight triple points dnd to the
system of curves of degree 12 with eight quadruple points.

From the definition ofV (sinceB, = 0 andZ”G’ = 0) we have
2=7"N=27"(3Ky +2By+ E'—3G') = -3+ FE'Z"
henceE’'Z” = 5 and analogouslyy’Z"” = 6.

Lemma 5.2.1.In the above setting” is an irreducible(—1)-curve.

Proof. If Z” was a reduciblé—1)-cycle then it should necessarily contaifi.
Then

0=F'Ns=F(N+3Ky—3G - 2" = —FZ2"'=—F(G + (2" - &)

andF'G’' = 1 forcesF’ < Z” (and analogously!’ < Z”). Then as in the proof
of lemma 2.3.8 there should be anottierl)-curve C' not intersectingV, such
thatC' < Z”. Sincen = n’ = 0 it should ber” > 2. Contradiction. Hencg” is
irreducible andF”Z" = H'Z" = 0. O

From lemma 5.2.1 we havg,Z"” > 0. Since
EyNy = Ej(N + 2Ky — 2G") =2

while Z"" N, = 1 from the nefness o, we deduce thak’;, cannot be contained
in Z" henceE; Z" > 0 too.

SinceN, = 0 we find
0=E,N,=E, (N +4Ky — 4G — 272" - 7"y =4-2E.Z" — E.Z"

hence
2E, 7"+ B 7" =4 (5.16)
foranyk =1,..., hy = 4.
Thus0 < E.Z" <2andE,Z" =4 —2E,Z" foranyk = 1,...,4. We now
compute

E}N3y = E; N3 = E;(N+3Ky —3G' - Z")=3-E,Z" > 1
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If £, 7" = 0then from (5.16) we have) 2" = 4. Then we get a contradiction
since;, N3 = 3 and from the Index theorem 1.1.10

(Ep —3N3)> = E: —9<0
k k

while we know
B =E+16=13.

If E/,Z" = 1 then from (5.16) we havé&) Z" = 2. The plane image of’}, is
a curve of degreéd with s; points of multiplicity ;. Then

N jisi=d - By = -Ef—1-4=d"-2
J

and
> jsj=3d— EyNy = 3d — EjNy = 3d — 2
J
hence
d>—2-3d+2=d*-3d=d(d—3)>0
andd > 3.

If E;.Z" = 2 then from (5.16) we hav&),Z"” = 0. ThenE} N3 = 1 and from
the Index theorem 1.1.10 we find

(B, —N3)> = FE7 —1<0

Since we know
Ei=E7+4=1
we find £, = N; and the plane image df;, is a cubic through eight points
P, ... B
Furthermore sincé”’Z” = 5 we have exactly one curve, s&y, such that
E1Z" = 2 and three curves (i = 2, 3,4) such thatt) 2" = 1.

FromE' = N — 3Ky the sum of the curveg), has total degree 21. Then we
have the following possibilities for the degre@s, d-, ds, d,):

(3,3,3,12)
(3,3,4,11)
(3,3,5,10)
(3,3,6,9)
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(3,3,7,8)
(3,4,6,8)
(3,4,7,7)
(3,5,5,8)
(3,5,6,7)
(3,6,6,6)

As we have already sedhy is a cubic through 8 points.

Moreover sincel| 2" = 1, E!Z" = 2 fori = 2,3,4 we find E/E} = 2 and
E/E, = EE, +1+4=>5fori#52<i,j<4.

Let us conside,i > 2. ThenE’> = 2 and E/N, = 2 forcesE! to be a
solution of the linear system

s =d2— B =d2—2

7 J 7 7 7
E]j3]:3dl_El/N2:3dz_2
Z]S]§8

By an easy computation we have the following list of solutions:

—_

) di=3,51=7

) di=4,59=2,5=6

)  di=5,85=>5,81=3

) di=6,53=1,80="6,51=1
)

)

)

Ot = W N

di=1T,s3=3,52=5
di:8,83:6782:2
di:9,84:1,8327

D

7

Proposition 5.2.2. All the above solutions are equivalent up to a finite number of
Cremona quadratic transformations Bf based atP,, . . . , Ps.

Proof. Let us consider a curve of degree 9 as in 7) and let us take the 4-tuple
point ); and two of the seven triple point3,, ();. Then they are not collinear
otherwise there should be a line meeting the above curve at 10 points. Moreover
Q. is onP?, i.e. it is not infinitely near to any other point (see also definition
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1.4.2), since is the unique point of maximal multiplicity for the curve. SiAge
is an irreducible curve if botl),, )3 were proximate ta” (see definition 1.4.8)
from the inequalities (1.10) we should have

4>3+3=6

If Q, or Q5 are not infinitely near t@); we can choose them to be BA. Then a
guadratic transformation (see section 1.4) basé&g, af),, Q5 is well-defined and
takes the curve of degree 9 onto an octic as in 6).

Let us consider the octic in 6) and let us take three of the six triple points
@1, Q2, Q3. Then they are not collinear otherwise there should be a line meeting
the octic at 9 points. Moreover we can choose the points in such a way that one
of them, sayQ,, is onP? i.e. it is not infinitely near to any other point. Siné#
is an irreducible curve if botly),, ()3 were proximate ta”; from the inequalities
(1.10) we should have

3>3+3=6

If @, or Q4 are not infinitely near t@); we can choose them to be . Then
a quadratic transformation based:at ()2, Q3 is well-defined and takes the octic
onto a septic as in 5).

Let us now take two triple point9;, (), and a double poinf); for the septic
5). Then they are not collinear otherwise there should be a line meeting the octic
at 8 points. Moreover we can choose the points in such a way that one of them,
say (@, is onP?, i.e. it is not infinitely near to any other point. If both,, Qs
were proximate ta”; from the inequalities (1.10) we should have

3>3+2=5

If Q, is not infinitely near toQ; we can choose it to be oB?. If Qs is not
infinitely near toQ, ()> then either it is a plane double point or it is infinitely
near to a plane double point or it is infinitely near to a plane triple point. In the
first case we have nothing to do. In the second case we chodge the plane
double point, while in the third case we choos&ighe plane triple point. Then

a quadratic transformation basedat ()., (5 is well-defined and takes the septic
onto a sextic as in 4).

To get 3) we consider the triple poit; and two double point§,, Q3 of the
sextic. They are not collinear arg, is necessarily of?*>. Moreover

3<2+2=4
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hence),, ;3 cannot be both proximate 19;. If () or Q3 are not infinitely near
to Q; we can choose them to be BA. Then a quadratic transformation based at
@1, @2, Q3 takes the sextic onto a quintic.

With a similar argument one can see that we can choose three double points
for the quintic such that a quadratic transformation based at those points sends the
quintic onto a quartic as in 2). Eventually, if we base a quadratic transformation
at the two double points of the quartic and at one of the six simple points, we can
take the quartic onto the cubic in 1). The result is then proved. ]

Thus we can assume that one of the cuigs > 2, sayF}, is a cubic. There-
fore, up to a finite number of quadratic transformations, we liéyvel,, ds, ds) =
(3,3,7,8) or (3,3,6,9) (we note that?; is invariant for any quadratic transfor-
mation based at three points amafg. . ., ).

The plane image of’ = Y}, E! is | — 7Kp:|. Then the total multiplicity of
E'atPy,..., Psis 7. SinceE/E; = 5 for 2 < i,j < 4, we obtain the following
configurations

P, P P, P, P, P, P, P
3/1 1 1 1 1 1 1 1
3/1 1 1 1 1 1 1 0
712 2 2 2 2 3 3 3
8/3 3 3 3 3 2 2 3

P P P3Py P B P R
3/1 1 1 1 1 1 1 1
3/1 1 1 1 1 1 1 0
6/1 2 2 2 2 2 2 3
9/4 3 3 3 3 3 3 3

If we denote byP, the point obtained by contracting”, by P, the contraction
of Z” and by P, the contraction ofs’ we can write

PP P Py P P P P3Py P Pi
3;I17 1.1 1 1 1 1 1 O 2 0
3;I17 1.1 1 1 1 1 O 2 1 0
/712 2 2 2 2 3 3 3 2 1 0
83 3 3 3 3 2 2 3 2 1 0
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PP P Py P P P P3Py P Pi
3;I17 1.1 1 1 1 1 1 O 2 0
3;I'17 1.1 1 1 1 1 O 2 1 0
6,1 2 2 2 2 2 2 3 2 1 0
9,4 3 3 3 3 3 3 3 2 1 0

Let us now compute the images 6f and H'. We haveF'G’ = H'G' =
1,F'Z" =G'Z" =0hence alsd' 2" = H'Z" = 0. In particular the images of
F"andH’ are curves of degreé> 0 with multiplicity O at P, Py,.

Theorem 5.2.3.The caser = 3/,n' = 0,n” = n" = 1 cannot occur with/ = 0.

Proof. We look at the eigenvalues of the curvgs 1 < i < 4, F andH' for the
action of the automorphism of order 3. We know tl#&tand H’ correspond to
different eigenvalues since they come from the blow-up of a singularity of type
Asy. Let us setv := ¢?™/3, If £ corresponds to the eigenvaluethen it appears
with multiplicity 1 in the branch locus of the simple triple cover associated to
X — Y = X/(Z/3Z). Let us assume thai, corresponds to the eigenvalug,

F' corresponds to the eigenvalu&” and H' to w?r.

The pointPq is double forE’ hence it is not infinitely near to any other point.
The point Py is double forEY, hence again it is not infinitely near to any other
point.

The total multiplicity at those two points of the branch divisor has to be a
multiple of 3. Then we obtain the two equations

209 + 203+ 2, =0 mod 3
21 + v+ 3+, =0 mod 3

which forcer; = 0 mod 3. Contradiction. O

522 (=1

When? = 1 from theorem 4.6.5 we always hade= 0 and either casél f) of
proposition 2.2.14 oA’ = N holds. Moreover we havg= 3/—3 < n < 3¢ = 3.

n =3¢

From the results of section 4.5 when we contract(the)-cyclesG’, Z,, Z,, Zs,
Z",Z" we get a rational surfacd” which is isomorphic to the projective plane
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PP? blown up at eight point#,, . . ., Ps.

Case 1 The cycles?y, Z,, Z5 are irreducible.

In this case
BoNi =Bo(N+ Ky —G' —Z, —Zy—Z3) =0+4—-0—-1-1-1=1

and

3
ByN; = Bo(N + 2Ky —2G' =2 " Z;)=0+8-0—-6=2
=1
In particular, sinceZ” N, = 0 andZ"”’ N, = 1, from the nefness aW, one can see
that By cannot be an irreducible component of any of these cyclesBpes not
contracted oVV/. Let us compute (recall tha{, = 0)

3
0=ByN; = Bo(N + 4Ky — 4G’ —4) " 7; — 27" — Z")
=1

2
=0+16—-0—12— By(22" + 2") =4 - By(2>_ Z| + 2")

i=1

henced < By,Z"” < 2 and we have

2
ByN3 = BoNs = By(N + 3Ky —3G' =3 7Z;— Z")
=1
—0412-0-9—ByZ"=3—-ByZ" > 1

Thus we can write the following table

\BOZ1 BoZs BoZs BoZ" BoZ" ByNs

a)| 1 1 1 2 0 1
by| 1 1 1 1 2 2
ol 1 1 1 0 4 3

We now apply the Index theorem 1.1.10. Siné¢ = 1 andByN3 = s > 1
we find B2 < s% which excludes case c) and forcBs = N in case a). We also
note that in case b) we havg? = 2.

Lemma 5.2.4.Case a) cannot occur.

Proof. Assume case a) holds. SinBg = N3, ByZ, = ByZ, = ByZs = 1 and
ElZ, = E\Zy, = 1 = E\Zs, if E}, E}, E} were not contracted o’ we should
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2

1 < EyBy = ENs = E{N; = E{(N + 3Ky —3G' =3 %, - Z")=—E; 2"
i=1

for k = 3,4,5. Then we should have, < Z” and0 < E; N3 < Z"N; = 0.

Contradiction.

ThusEj, is contracted oV’ and, from the nefness of;, £, Z" = E;.Z" =0
(k = 3,4,5). From the definition ofV and fromZ"”’N = 3 we find

6=2B,2" + E'Z" = EZ" = (E, + E)Z" (5.17)

Moreover, fork = 1,2

2
0=EN, = Ej(N + 4Ky —4G' = 4> Z; - 22"~ Z")
=1

=04+4-0-0—EL(22"+2")=4— E,(22" + Z")

and

2
EjNs = Ej(N + 3Ky —3G' =3 7 — Z")
=1

=043-0-0-EZ"=3-E,Z" >0

Moreover sincel; N, = 2 while Z”N, = 0, Z" N, = 1, it cannot beFE;, <
Z", Z" for k = 1,2. In particularE, 2", £, Z"" > 0. Thus

2ELZ" + ELZ" =4 (5.18)

forcesO < E;Z" < 4 and from (5.17) there should be at least one of the curves
E; (say E}) such that, 7" = 4, B N3 = 3. We get a contradiction since from
the Index theorem 1.1.10 we should have

(FBy —3N3)* <0
. —,2
or equivalentlyE’; < 9. [

We now study case b). Let us denotedythe degree of the plane image of
By. Since
2By + F' = N — 3Ky
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the curve2 B, + E’ is sent to an element ¢f- 7Kp:|.

We note that a quadratic transformation leaves the plane imagéeft E|
unchanged. In particular even after any quadratic transformation the equation

5
2o+ d; =21 (5.19)

=1
holds, wherel, is the degree of the image &, while d;,i = 1,...,5 are the
degrees of the plane images of the curizésin particular we have, < 10.

The curveB, satisfies the linear system
> J%s; =di — Bf = dj — 2
ijSj = 3d0 — BQNQ = 3d0 -2
Zj Sj S 8
wheres; is the number of points amonfg,, . .., P of multiplicity j for B,. By

an easy computation one can see that- 3 and we have the following list of
solutions:

1) doy=3,51=7

2)  dy=4,80=2,51="0

3) dy="5,80=>5,8 =3

4)  dy=06,53=1,80=06,5 =1
5 dy="T,83=3,8=5

6) dy=8,53=0,50=2

7 do=9,84=1,83=T7

Proposition 5.2.5. All the above solutions are equivalent up to a finite number of
Cremona quadratic transformations Bf based atP,, . . . , Ps.

Proof. See the proof of proposition 5.2.2. ]

From the above proposition, up to Cremona transformations, we cag set
9. In particular we can assume that the quadruple point of the chsve F.
Then we find

5
> di=21-2dy=3

=1

.. 5.

andd; < 3foranyi=1,..
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Proposition 5.2.6.In the above setting case | cannot occur.

Proof. Let us consider the curvds), i = 1,2. Then

3
E/N; = E|(N + 2Ky — 2G' =2 " Z;) =2
=1
while Z"N, = 0, Z"” Ny = 1. In particular, from the nefness of,, £ and E},
cannot be contained id” or Z"" and they are not contracted &in. Thus

EZ; =0, 2EZ'+EZ"=4 (i=1,2j=1,23) (5.20)

Since (5.20) holds we have a priori three possibilities. In the former case
E!Z" = 2,E/Z" = 0 and thenE’> = 1 henceE!B, = 2 andd; = 3,s; = 8.
In the second casB!Z" = 1, E/Z" = 2 and thenE’> = 2 henceE!B, = 5 and
d; = 3,51 = 7. In the latter case”/Z” = 0, E!Z" = 4 henceE!N; = 3 and
E’? = 13 contradicting the Index theorem 1.1.10 as in the proof of lemma 5.2.4.

Thus, sincey.”_, d; = 3, one among?; and F}, is necessarily contracted on
W and we get a contradiction. O

Case Il At least one of the cycles; is reducible.

We know from corollary 2.3.11 that eithéf,, Z, are irreducible and/; =
7y + Zy + Ej for a suitablel < k < 5 or Z; is irreducibleZ, = 7, + C,
Zy =27, + C + Ej for a suitablel < k& <5 whereC is a(—2)-curve.

Let us look at the(—6)-curve By. In any case we hav8,7, = ByZ; =
1, B()Z3 = 2

Proposition 5.2.7.In the above setting case Il cannot occur.

Proof. If B, was contracted ofi/, then it should be contained eitherd#{ or in
7. But when we contract the cycle§, 75, Z, the self-intersection of the image
Bj of By is

Bi=B 4+1+1+4=-6+6=0

SinceB,, henceBy, is irreducible, it cannot be a component gf-al )-cycle.

ComputingB, N3 and By N, and recalling thatVs is nef whereasv, = 0, one
can easily see thdt,Z" = B,Z" = 0. Thus the image3, of B, on the rational
surfacelV is a curve of self-intersection 0 having a node or a cusp (depending on
the structure of the cycles;) at the point obtained by contractidfy, 7, Z5.
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In particular we note thaB,N; = By;N3; = 0. Hence by the Index theorem
1.1.10 and the rationality d# we infer B, = 0. Contradiction. O

Hence we obtain

Theorem 5.2.8.The caser = 3¢/, n' = 0,n” = n" = 1 cannot occur with/ = 1.

n=30—1

From the results of section 4.4 when we contract(thé)-cyclesG’, Z,, Z,, Z,
75, Z" we get a rational surfad®” which is isomorphic to the projective plaifé
blown up at eight point#’, . . ., Fx.

We also recall that from corollary 2.3.11 the cyclésand Z, are irreducible
(—1)-curves and

BNi =By(N+ Ky —G' —Z,—Zy) =04+4—-0-1—-1=2

In particular, sinceZ| N, = Z,N; = 0andZ”N; = 1, from the nefness oW, one
can see thaB, cannot be an irreducible component of any of these cyclesij.e.
is not contracted ofl/.

Let us compute (recall that; = 0)
2 2
0= BoNs = By(N + 3Ky —3G' =3> 2, —2) Z - Z")
=1 =1

2 2
=0+12-0-6-By(2Y Z+2Z")=6-By(2) _ Z+Z")

=1 =1
henced < B, 3.7, Z! < 3 and we have
2 2
BNy = BoNy = By(N + 2Ky —2G' —2) " Z; = Y _ Z))
=1 =1

2 2
=0+8-0-4-DByY Z/=4—-DByy Z/>4-3=1

i=1 =1
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Thus we can write the following table

BoZy ByZs BoZ, BoZ, BoZ" BoN,
a)| 1 1 3 0 0 1
b)| 1 1 2 1
ol 1 1 1 1 2 2
d| 1 1 1 0 4 3
e)| 1 1 0 0 6 4

We now apply the Index theorem 1.1.10. Sinég = 1 andByN, = s > 1
we find B2 < s? which excludes cases a), d), e) and forégs= N, in case b).
We also note that in case c) we havg = 2.

Lemma 5.2.9. Case b) cannot occur.

Proof. Assume case b) holds. Siné® = N,, ByZ, = ByZ, = 1 andELZ, =
E\Z, = 1,if E}, El were not contracted o’ we should have

2 2
1 < EyBy = BNy = BNy = B (N + 2Ky —2G' =2 Z; = Y Z))
=1

=1
2
_ / /
- _Ek E Zz‘
=1

for k = 4,5. Then we should have;, < Z! for somei and0 < E; Ny < Z/Ny =
0. Contradiction.

Thus we have?;, is contracted oml” and, from the nefness of,, E; >, Z! =
E.Z" =0 (k = 4,5). From the definition ofV and fromZ"” N = 2 we find
5=2ByZ"+FE'Z"=FEZ"=(E|+ E)+ Ey)Z" (5.21)

Moreover, fork = 1,2,3

2 2
0=E;N; = Ej(N +3Ky —3G' =3) Z -2 Z - Z")

=1 =1
2 2
=0+3-0-0-E,(2> Z/+2Z")=3-E2> Z+2")
=1 =1
and

2 2
BN, = Ej(N + 2Ky —2G' =2 Zi = > Z))
=1

=1
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2 2
=0+2-0-0-E,) Z/=2-E, Y Z>0

i=1 i=1

Thus
2

2B,y Z|+EZ" =3 (5.22)

i=1
andE;, Y7 | 7! < 2forces—1 < E, 7" < 3.

ThusE, Z" is odd and from (5.21) there should be at least one of the curves
E;, (say Ej) such thate, Z” = 3, E, N, = 2. We get a contradiction since from
the Index theorem 1.1.10 we should have

(Ey —2N5)* <0
. 1,2
or equivalentlyE'’; < 4. O

We now study case c). Let us denotedyythe degree of the plane image of
By. Since
2B0+E/:N—3KW
the curve2 B, + E’ is sent to an element of- 6 Kpz|.

We note that a quadratic transformation leaves the plane imagéef E|
unchanged. In particular even after any quadratic transformation the equation

5
2dy + > d; =18 (5.23)

=1
holds, wherel, is the degree of the image &, while d;,i = 1,...,5 are the
degrees of the plane images of the curiZsin particular we havé, < 9.

The curveB, satisfies the linear system
> % =d2— B =d2 2
ijSj = 3d0 — BQNQ = 3d0 -2
Zj Sj S 8

wheres; is the number of points amonfg,, . .., P of multiplicity j for B,. By
an easy computation one can see that> 3 and we have the following list of
solutions:

1) d0:3,81:7
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2)  dy=4,59=2,51=06
3) dy=D5,8=5,8=3
4)  dy=06,53=1,80=06,51=1
5) dy=1T7,83=3,82=05
6) dy=8,83="0,8,=2
7 dy=9,84=1,83="7

Proposition 5.2.10.All the above solutions are equivalent up to a finite number
of Cremona quadratic transformations Bf based atP,, . . ., Ps.

Proof. See the proof of proposition 5.2.2. O

From the above proposition, up to Cremona transformations, we cap set
8. In particular we can assume that the two double points of the octi©are.
Then we find

5
> di =18 —2dg =2
=1

andd; < 2foranyi=1,...,5.
If one of the curved?! is contracted oV then it hasd; = 0 and the multi-
plicity at each of the point#, ..., P is 0.

If E!is not contracted ofl” we have two different numerical possibilities:

2
E}Y Z;=1,EZ =E/Zy=0,EZ" =0 (i=4,5) (5.24)

J=1

2
E|Z\ = EZy=0,2E Z/+ EZ" =3 (i=1,2,3) (5.25)

j=1

When (5.24) holds we fin@f = —2 hence, sincd; < 2, eitherd; = 1,s; =
3ord; = 2,5, = 6. MoreoverE! B, = 1.

When (5.25) holds we have a priori two more possibilities. In the former case
E! Z?Zl Z, = 1,E/Zz" = 1 and thenE’”> = —1 henceE!B, = 3 and either
di = 1,5y =20rd; = 2,51 = 5. In the latter casé; Y2 | 7 = 0, E/Z" = 3
henceE!N, = 2 and £7 = 6 contradicting the Index theorem 1.1.10 as in the
proof of lemma 5.2.9.
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We now fixi = 4,5. Then sinceE!N, = 0 we have} " m; = 3d; where
m; is the multiplicity of £/ at P;. Moreover

1= 1/ 0:8d1—3(m1+—|—m6)—2(m7—|—m8)
8

:8di—32m]~~l—(m7+mg):—di+m7+m8
j=1

hence

since there are no singular points amafg. .., ;. Henced, < 1 and when
d; = 1the line £/ must pass througR; and P;.

This excludes the 6-tuplely, di, ds, ds, dy, ds) = (8,0,0,0,1,1) since both
E' and E!, would be lines through the poinf& and Ps.

Then we have the following list of 6-tupl€dy, d;, ds, ds, d4, ds):
(8,2,0,0,0,0)
(8,1,1,0,0,0)
(8,1,0,0,1,0)

Fori = 1,2,3, sinceE/N, = 1 (hence_"_, m; = 3d; — 1), we have
3:E:BO:8dz—3(m1+—|—m6) —2(m7+m8)
8
:8di—32mj+(m7+m8) = —di—0—3+m7+m8
j=1
hence
mr+mg =d; <2 (5.27)

We now study the 6-tuple of degregs 2,0,0,0,0). Using (5.26), (5.27) and
the fact tha B, + E’ has total multiplicity 6 at each of the poing, ..., P; we
find the following configuration

PP P P P P P Iy

O O O O O W
O O O O O W
O O O O O Ww
O O O B

R OO OFrN

O O O O N
o
o
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For the 6-tuplg8, 1,1, 0,0,0) we find

P P Py P P P Pr By
8/3 3 3 3 3 3 2 2
111 0 0 O O O 1 o
110 1 0 O O O O 1
0/0 0 O O O O o0 o
o0/-1 0 0 0 O O 1 o
o0/0 -1 0 0O O O 0 1
For the 6-tuplg8,1,0,0,1,0) we have
P P, P3 P, Ps Ps P B
8/3 3 3 3 3 3 2 2
111 0 0 O O O 1 o0
o0/-1 0 0 0O O O o0 O
0/0 0 O O O O o0 o
10 1 0 O O O 1 1
o0/0 -1 0 0O O O o0 1
Remark 5.2.11.The conditiong5.26)and (5.27) the total multiplicity 6 o2B,+
E' at each of the point®,, ..., P; and the computation of the intersection num-
bers

0 i=4,5i%#]
ElEj=q>1 i#j,1<ij<3

~1 1<i=j<3

are sufficient to uniquely determine the configuration of points for each 6-tuple
(d07 d17 d27 d37 d47 d5)

Lemma 5.2.12.The three above configurations are equivalent up to a finite num-
ber of quadratic transformations.

Proof. We consider the 6-tuplés, 1,1,0,0,0). Let us apply a quadratic trans-
formation based aP;, P, Ps. Since P, is a point of maximal multiplicity for
both B, and £ while P, is a point of maximal multiplicity for bothB3, and £},

they cannot be infinitely near to any other point. Moreokgis proximate toP;
since the line£), joins the two points and does not pass through any of the other
points. Hence a quadratic transformation basef ab,, Ps is well-defined and

we obtain(8,1,0,0,0, 1).
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We now show that8,1,1,0,0,0) is equivalent ta(8,2,0,0,0,0). We know
that P is proximate toP,. A similar argument shows thdt; is proximate toP; .
Let us now consider the pointg, P,, Ps, Fs. We claim that none of them can be
proximate toP; or to P,. If this was the case, in fact, the octic should satisfy the
inequalities (1.10)
3>3+2=5

Contradiction. Hence at least one of them, $gyhas to be a planar point and we
can perform a quadratic transformation base@-atP;, Py obtaining the 6-tuple
(8,2,0,0,0,0). O

Thus all the 6-tuples are equivalent up to quadratic transformations and we
can reduce to one of them, s&;2,0,0,0,0). We also note that the cun, is
contracted oV. In particular we have

2
By 7y =2 EZ" = —1.

j=1

Moreover since; < Z" we find E5 N, = 0 and then from the Index theorem
1.1.10 we have (recall that; N, = 0 for anyj = 1,2)

(By+ Z))* = —3—1+2E4Z; <0 (5.28)
henceE;Z] = E{Z) = 1.

We now look at the surfacg which is isomorphic to the plane blown up at 14
points. Let us denote b¥, the point obtained by contractirig’, P, and P;; the
points obtained by contracting the cycl5§ P, and P;5 the contractions of/;
andZ, and, finally, P, the contraction ofs’. From section 4.4

n 2
2By + E'=6G'+3) Z;+2) Z+ 2" 6Ky

=1 =1

hence the total multiplicity o2 B, + E’ at P, is 5, atP;, and Py, is 4, atP;; and
Psis3anditis 0 atP,,.
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Therefore we can write the following table

P P Py P Ps B P By Py Pop Pu P Piz Pu
83 3 3 3 3 3 2 2 2 1 1 1 1 0
2/1 1 1 0 O O 1 1 1 1 0 0 0 0
6,1 0 0 0 0 O O O 1 O 1 0 0 0
oo o o 0 0 0o O o0 -1 1 1 0 0 0
6,0 1 0 0 O O 1 O 0 O 0 1 0 0
6/0 0 1 o 0 O O 1 0 O 0 0 1 0

Let us now see what the images Bf and H' are. We know thatt’'G' =
H'G’ = 1 hence their images pass through the péint We also know they have
no intersection withB, and with any of the curves’.

Let us now consideF”. The computation fod’ is similar. Its plane image
is a curve of degre€ with multiplicities m;, ..., my4 at the pointsPy, ..., Pi4.
From the above remarks we find the following relations

4
m14:1

3 Z?:l mi + 2 2?27 m; + Ziliw m; = 8d

Z?:1 mi + 2327 m; = 2d

—mq1+mg+mq =0 (5.29)
—mg + myo+my =0

—m2+m7+m12:0

\—m3+m8+m13:0

Let us first assume thdt’ is contracted ori}. Then we immediately find
d=0,m; =0,i < 8. The system (5.29) becomes

.
m14:1

2mg + Zglo m; =0
mg +myp =0
mg+mq; =0

—mg + myg +my; =0

m12:O

\mlg =0

which forcesmg = myig = my1 = mi2 = mz3 = 0,my4 = 1. Then we get a
contradiction sincé” is a(—3)-curve onY’.
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Then F’ (henceH’) is not contracted oml’. SinceF’'N; = F'N, = 0 we
haveF’ S22 | Z; = F'S2 | 7/ = 0 = F'Z". This forcesF'Z; = F'Z! = 0 for
i = 1,2, hence

m; =0 9<:<13
We can then rewrite (5.29) as

.
m14:1

33 iy mi+ 23 my = 8d
Sy i+ Y my = 2d
—my; =0

0=0

—m2+m7:()

\—m3+m8:()

which is also equivalent to

p
m14:1

mle
m2+m3:d (530)

m7 = Mo

mg = M3

\m4+m5+m6:d

SinceF"’ is a(—3)-curve we have

14
2 2 2 2 2 2 2

—3:d2—2m?:dz—mg—m3—m4—m5—m6—m7—m8—ml4
i=1
=d*—m35— (d—my)> —mi —m2 —mi—m3—(d—my)* —1
= —(d—2my)* —mi—m2 —m2—1
hence
(d —2mg)? +m3 +m2 +mg =2

First of all we note that

2 > mj +m:+mg>my+ms+mg=d
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forcesd < 2. If d = 2 we findmy = 1 and (my4, ms, mg) = (1,1,0),(1,0,1)

or (0,1,1). Using (5.30) we findny = mg = my; = mg = myy = 1. HenceF’

and H' cannot both be sent to conics, since otherwise they should have at least 5
common points whilg"H’ =0 onY..

Whend = 1 we find—1 < 1 — 2my < 1 hence eithefny, = my; = 0, ms =
mg = 1 0rms =my; =1,m3 =mg = 0. F"and H’ cannot be sent to a conic and
a line respectively, since they should have at least 3 common paat®{, P4
or P3, Py, P4). Contradiction.

If d =0then—1 < —2m, < 1 forcesmy, = 0. Hence from (5.30) we get

mo =m3 = m7; =mg = 0,my +ms + mg = 0. Thus
{m47m57m6} = {17()’_1}

From the above analysis eithef and H' are both sent to lines or one of them
is contracted of?*. In the former case we have the configuration

PP P P, P B P PR PRy Py Pu P Pz Pu
83 3 3 3 3 3 2 2 2 1 1 1 1 0
2,1 1 1 0 O o0 1 1 1 1 0 0 0 0
0,21 0 0 0O O O O o0 1 0 1 0 0 0
o,o0 o o0 O O o o o -1 1 1 0 0 0
ojo 12 0 0o O 0o 1 o0 o 0 0 1 0 0
oo o -1 o O O O 1 O 0 0 0 1 0
170 1 0 1 O O 1 o0 O 0 0 0 0 1
110 0 1 0 1 0 0 1 O 0 0 0 0 1

In the latter case we can assume that the contracted curve (resp: one of the
contracted curves) has, = 1, m; = —1, mg = 0. If the second curve is a conic
we find the configuration

P P Py P P5 B Pr By Py P Pu Pio Pi3 Pu
8 3 3 3 3 3 2 2 2 1 1 1 1 0
2/1 1 1 0 O O 1 1 1 1 0 0 0 0
0f,1 0 0 0 0 O O O 1 O 1 0 0 0
6,0 0o o 0 0O O O o0 -1 1 1 0 0 0
o, 1 o 0 0 O 1 O O O 0 1 0 0
o0 0o 12 0 0 O O 1 o0 O 0 0 1 0
6,0 0o 0 1 -1 0 O O O O 0 0 0 1
2/0 1.1 o0 1 1 1 1 O O 0 0 0 1
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Ifitis a line we find

P P P P, P FB PP R Py Py Pu Po P3 Py
8/3 3 3 3 3 3 2 2 2 1 1 1 1 0
2/1 1 1 0 0o o0 1 1 1 1 0 0 0O O
o0/f-1 0o 0 0o 0O O O O0o 1 o0 1 0 0O O
o,0 0o 0 O O O O o0 -1 1 1 0 0O O
o,0 1 0 0 0 0O 1 0o O O0 o 1 0O O
o,o0 o -1 0 0 O O 1 0 o0 o 0 1 0
o,o o o 1 -1 0 0 0O O O0 o 0 0 1
110 0 1 0 1 O O 1 O o0 O 0 0 1

while if they are both contracted we have

PP P3Py P B P R Py P P P2 Pi3 Py
8 3 3 3 3 3 2 2 2 1 1 1 1 0
2/1 1 1 0 0o o 1 1 1 1 0 0 0O O
0,1 0 0 0 0 O O O 1 O 1 0 0O O
o,0 0o 0 O O O O o0 -1 1 1 0 0O O
o,0 1 0 0 0 0O 1 0o O O0 o 1 0O O
o,o0o o -1 0 0O O O 1 0 o0 o 0 1 0
o,o0 o 0 1 12 0 0 O O O0 O 0 0 1
o,o o o 0 1 2 0 0o O O0 O 0 0 1

Lemma 5.2.13.The configurationg8,2,0,0,0,0,1,1) and (8,2,0,0,0,0,0,1)

are equivalent up to quadratic transformations.

Proof. Let us study the configuration with two lines. One can easily seefhat
and P; are planar points since they are of maximal multiplicity for the octic, the
conic and one of the two lines simultaneously. Moreokelis proximate tor,
while P; is proximate toFs. Thus P, cannot be proximate té, or to P; since
otherwise the octic would contradict the inequalities (1.10)

3>3+2=5

With a similar argument one can show ttigtand P; are planar points too.

If we base a quadratic transformationfat P,, Ps we obtain the configuration
with a line and a contracted curve. l

Proposition 5.2.14.The case: = 3¢ — 1,n’ = 2,n” = 1 cannot occur with de-
greeS(do, dl, dg, d3, d4, d5, dF, dH) = (8, 2, 07 0, 0, O, 1, 1) and (8, 2, O, O, 0, 0, 1)
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Proof. We look at the eigenvalues of the curvBg E!, 1 < i < 5, F" andH’ for

the action of the automorphism of order 3. We know thaand H’ correspond

to different eigenvalues since they come from the blow-up of a singularity of type
A, (see section 1.3). Let us set:= ¢>™/3, If B, corresponds to the eigenvalue

w then it appears with multiplicity 1 in the branch locus of the simple triple cover
associated t&f — Y = X/(Z/3Z). Let us assume thdf; corresponds to the
eigenvaluev”i, I’ corresponds to the eigenvalu& andH’ to w?'7.

We have already shown that the two configuratigfi22, 0,0,0,0,1,1) and
(8,2,0,0,0,0,0,1) are equivalent up to quadratic transformations. Let us con-
sider the configuration

P P P3Py P B PP K Py Po Pun P Pz Py
8, 3 3 3 3 3 3 2 2 2 1 1 1 1 0
2/1 1 1 0 O O 1 1 1 1 0 0 0 0
oj-1 o 0 O O O O 0 1 0 1 0 0 0
o,o0 o 0 0O O O o o -1 1 1 0 0 0
o,0 12 0 0 O O 1 0 O 0 0 1 0 0
o,o 0 -1 0 O O O 1 o 0 0 0 1 0
170 1 0 1 O O 1 0 O 0 0 0 0 1
110 0 1 0 1 O 0 1 O 0 0 0 0 1

Since the total degree of the branch curveP3rhas to be multiple of 3 and
since the two lines correspond to different eigenvalues, the conic appears with
multiplicity 2 in the branch divisor, hencg = 2 mod 3.

The pointsP,, P; are not infinitely near to any other point since they are the
only points which are triple for the octic and simple for both the conic and one of
the two lines.

The total multiplicity atP; of the branch divisor has to be a multiple of 3.
Then we obtain the equation

3+ +uvs+rvg=3+2+vs+rvg=0 mod3

which forcesvy + vs = 2vp + 5 =1 mod 3.

On the other hand the same computationfpgives us
3+t t+vrp=3+2414+rvp=0 mod 3

which forcesvr + v, =1 mod 3.
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Then since/;, vr = 1,2 mod 3 we find
vpP=vy, =2 mod 3
hencevs = 0 mod 3. Contradiction. O

Proposition 5.2.15.The casen = 3¢/ — 1,n’ = 2,n” = 1 cannot occur with
degreeidm d17 d27 d37 d47 d57 dF; dH) = (87 27 07 07 07 07 07 2)

Proof. Let us consider the points,, P», P;. They are of maximal multiplicity for

both the octic and one of the two conics hence they cannot be infnitely near to any
of the pointsP;, j > 4. Since there is an irreducible conic passing through all the
three points, we can perform a quadratic transformation baséyl &, P; and

we obtain the following configuration

P P P3Py P B PP B Py Po P P Pz Py
7172 2 2 3 3 3 2 2 2 1 1 1 1 0
110 0 O O O O 1 1 1 1 0 0 0 0
11,0 1 1 0 O O O O 1 0 1 0 0 0
o,0 o o O o o o o -1 1 1 0 0 0
111 0 1 O O O 1 O O 0 0 1 0 0
1112 1 0 O O O O 1 O 0 0 0 1 0
o,o o o0 1 12 0 O o0 o 0 0 0 0 1
2,0 1 1 o0 1 1 1 1 O 0 0 0 0 1

We now show that this new configuration cannot occur.

Let us consider the point8,, P5, Ps. Since they are triple points for the septic
they cannot be infinitely near to any other poiyt j < 3 or j > 7. Moreover
the conicH'’ passes througl?s and P; but not throughP,. Hence one among
Ps and P has to be a planar point. We look at the eigenvalues of the clyes
El,1 < i < 5, F" and H' for the action of the automorphism of order 3. We
know that F” and H’ correspond to different eigenvalues since they come from
the blow-up of a singularity of typel, (see section 1.3). Let us set:= ¢2™/3,

If By corresponds to the eigenvaluethen it appears with multiplicity 1 in the
branch locus of the simple triple cover associatedto— Y = X/(Z/3Z).
Let us assume thaf, corresponds to the eigenvalué&, F’ corresponds to the
eigenvaluesr and H' to w?.

If Ps was planar, then the total multiplicity d@% in the branch divisor of the
simple triple cover has to be a multiple of 3. Thus

3+vg =0 mod 3
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which forcesvy = 0 mod 3. We get a contradiction sincg’ is an irreducible
component of the branch divisor.

Thus P; is a planar point and is proximate toPs. But then when we blow
up P the exceptional divisof” should pass throughR;. Contradiction. m

Proposition 5.2.16.The casen = 3¢/ — 1,n’ = 2,n” = 1 cannot occur with
degreeqdy, di, ds, d3, dy, ds, dr, dg) = (8,2,0,0,0,0,0,0).

Proof. Let us consider the points,, P», P;. They are of maximal multiplicity for

both the octic and one of the two conics hence they cannot be infnitely near to any
of the pointsP;, j > 4. Since there is an irreducible conic passing through all the
three points, we can perform a quadratic transformation baséy &, P; and

we obtain the following configuration

PP P P, P B PP PR PRy Py Pu P Pz Pu
712 2 2 3 3 3 2 2 2 1 1 1 1 0
10 0 O O O O 1 1 1 1 0 0 0 0
170 1 1 0 O O 0 o0 1 0 1 0 0 0
o,o0 o 0 O O O o o -1 1 1 0 0 0
111 0 1 0 O O 1 0 O 0 0 1 0 0
111 1 0 O O O o 1 O 0 0 0 1 0
o,o o o0 1 -1 0 O O O 0 0 0 0 1
o,o o o O 1 -1 0 0 o0 0 0 0 0 1

We now show that this new configuration cannot occur.

Let us consider the point8,, P5, Ps. Since they are triple points for the septic
they cannot be infinitely near to any other pal)t j < 3 or j > 7. Moreover we
haveP, - P5 = Ps (cf. definition 1.4.2). In particulaF; is a planar point.

We look at the eigenvalues of the curvBs, F!,1 < i < 5, F and H' for
the action of the automorphism of order 3. We know thaand H’ correspond
to different eigenvalues since they come from the blow-up of a singularity of type
A, (see section 1.3). Let us set:= ¢>™/3, If B, corresponds to the eigenvalue
w then it appears with multiplicity 1 in the branch locus of the simple triple cover
associated t& — Y = X/(Z/3Z). Let us assume thdt, corresponds to the
eigenvaluev”i, F’ corresponds to the eigenvalu&” and H' to w?'r.

Since F; is planar, the total multiplicity of%s in the branch divisor of the
simple triple cover has to be a multiple of 3. Thus

3+vg =0 mod 3
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which forcesvy = 0 mod 3. We get a contradiction sincg’ is an irreducible
component of the branch divisor. O

Hence we obtain

Theorem 5.2.17.The casen = 3¢ — 1,n’ = 2,n” = 1 cannot occur.

n=30—2

Assumen = 3(—2 = 1. Then we contractthe-1)-cyclesG’, Z, Z!,i = 1,...,5
and we obtain a surfad®” with K2, = K2 + 7 = 2 which is isomorphic to the
plane blown-up at seven poinfy, ..., P;. Thus|N;| maps to the linear system
of cubics through the seven points. Then

BoNy = ByNy = By(N+ Ky —G' — Z) =044 —0— ByZ

Corollary 2.3.11 tells us thdt is an irreduciblg —1)-curve. Then from corollary
2.3.7we findByZ = 1.

We also notice that from formula (4.6)
5 5
0=NBy=(2Z+2G'+Y Z —2Ky)By=2+By Y Z, -8
j=1 j=1

hence .
By» Z;=6
j=1
Moreover by definition ofV = 3Ky + 2B, + E' — 3G’ we have
1 =ZiN = Z;(3Ky + 2By + E' = 3G") = =3+ (2By + £') Z;

and then
(2By + E')Z} = 4.

We notice thatB, cannot be contained in any of the cyclésotherwise we
should have
BoN1 =3 < ZiN; =0

henceogBOZ§§2forallj:1...,5.
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Therefore we can have one of possibilities of the following table:

| BoZ, BoZy BoZy BoZ, BoZl
a)| 2 2 2 0 0
b)y| 2 2 1 1 0
ol 2 1 1 1 1

Proposition 5.2.18.Cases a) and b) cannot occur.

Proof. Let us consider ofl” the imageB, of B,.
SinceByN; = ByN; = 3 andN? = 2 from the Index theorem 1.1.10 we find

(2By — 3N,)?> =4B; — 18 <0

henceB? < 4.

If a) holds then we find (recall that in any case we h&y& = 1, BoG' = 0)
Bi=Bi+1+4+4+4=B+13=-6+13=7
If b) holds then we find
Bi=Bi+1+4+4+14+1=Bj+11=-6+11=5
Finally if ¢) holds then we find

By =Bi+1+4+1+1+14+1=Bi+9=-6+9=3
The result is then proved. O

Let us consider the systed3, + £’ = N —3Ky,. This is mapped to the linear
system| — 5K3p2| of curves of degree 15 with 7 quintuple points. In particular the
plane image of3, has degred, < 7.

From proposition 5.2.18 only c) can actually hold. In this cBseatisfies the
linear system

ijSj ZBdO_BONl :3d0—3
> 5% =ds — By =dj — 3
stj S 7

wheres; is the number of points of multiplicity of B, amongP,, ..., P;.
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One can easily see thdy > 3 and the system has the following solutions
(recall thatd, < 7):

) do=3,51=6
) do=4,59=2,51=5
3) dy=D5,8=05,8 =2
) dp=06,53=1,50=06

Proposition 5.2.19. All the possibilities forB, are equivalent up to Cremona
guadratic transformations based at three of the seven péints. ., P.

Proof. Let us consider a sextic as in 4) and let us take the triple g@inand
two of the six double point§),, Q3. Then they are not collinear otherwise there
should be a line meeting the sextic at 7 points. Moredygis onP?, i.e. it is not
infinitely near to any other point, since is the unique point of maximal multiplicity
for the curve. Sincér is an irreducible curve if botky),, Q5 were proximate to

P, from the inequalities (1.10) we should have

3>2+2=4

If Q, or Q5 are not infinitely near t@); we can choose them to be BA. Then a
guadratic transformation (see section 1.4) basé&g af),, O3 is well-defined and
takes the sextic onto a quintic as in 3).

Let us consider the quintic in 3) and let us take three of the five double points
@1, @2, Q3. Then they are not collinear otherwise there should be a line meeting
the quintic at 6 points. Moreover we can choose the points in such a way that one
of them, sayQ,, is onP?, i.e. it is not infinitely near to any other point. Siné#
is an irreducible curve if botl),, ()3 were proximate ta”; from the inequalities
(1.10) we should have

2>2+2=4

If Q, or Q5 are not infinitely near t@); we can choose them to be BA. Then a
guadratic transformation based@t, (02, Qs is well-defined and takes the quintic
onto a quartic as in 2).

Let us now take two double pointg;, () and a simple poin); for the quartic
2). Then they are not collinear otherwise there should be a line meeting the quartic
at 5 points. Moreover we can choose the points in such a way that one of them,
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say(,, is onP?, i.e. it is not infinitely near to any other point. If both,, Qs
were proximate ta”; from the inequalities (1.10) we should have

2>1+2=3

If Q. is not infinitely near toQ; we can choose it to be oB?. If Qs is not
infinitely near toQ)+, Q- then either it is a plane simple point or it is infinitely near
to a plane simple point or it is infinitely near to a plane double point. In the first
case we have nothing to do. In the second case we chodgeths plane simple
point, while in the third case we choose @s the plane double point. Then a
guadratic transformation based@t, (02, Q5 is well-defined and takes the quartic
onto a cubic as in 1). O

From now on we assume that the plane imagégfs a sextic with a triple
point and six double points. We also note that a quadratic transformation leaves
the plane image o5, + £’| unchanged (in fact it is— 5K32)|). In particular
after any quadratic transformation the equation

5
2dy + > d; =15 (5.31)
=1
holds, whered, is the degree of the image &, while d;,i = 1,...,5 are the

degrees of the plane images of the curiésWhen we fixd, = 6 we obtain

Remark 5.2.20. We observe that for any < i < 4 we haveE/N; = 1. In
particular E; cannot be contained in @-1)-cycleZ’ since otherwise

1= E/N, < ZIN; = 0.
Moreover since/ N, = E/N; = 1 and N7 = 2 we have
(2E, — N> =4E”? —2<0

henceE’> < 0. Computing

5 5
0=E/N,=E/(N+2Ky -2G' =22 Y Z})=2-E|> Z

J=1 J=1

the Index theorem 1.1.10 forcésZ; = E;Z’, = 1 for suitablej; and js.
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From remark 5.2.20 we can subdivide the analysis as follows:
Case 1 E is contracted on W
Case Il E! is not contracted on WV

Before studying the two cases we add some useful remarks.

Remark 5.2.21.From the results of section 4.3 we have

5
2By + E' =22 +5G' + Y Z; — 5Ky

j=1

hence the total multiplicity B, + E’ at the pointsPy, . .., P; is 5, while if we
denote byrx, . . ., P, the points obtained by contracting the cyclés by Pi; the
point obtained by contracting and by P, the point which is the contraction of
G', 2By+ E' has multiplicity 4 atP, . . ., Py, multiplicity 3 at P;3 and multiplicity
0 at Pyy.

Remark 5.2.22.SinceE/N, = 1 the curvesk!, 1 < i < 4 satisfy>_ m; =
3d; — 1. Moreover eitheiBy E! = 2 or ByE! = 3. In the former case we find

7

=1
hencem,; = 0.
In the latter case we find

7

i=1
hencem; = —1 andd; = 0.

From(5.31)we haver:1 d; = 3whencel; < 3forall i. Whenl <i <4 E!
is a (—1)-curve such that! N, = 1. Thus it is a solution of the following linear
system

> itsi=di+1

S8 =3d; — 1

Zj s; <7
Sinced; < 3 we find the solutions:

1) di:1751:2
2)  di=2,5=5
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3) di:3,52:1,81:6

From the computation of! B, we havem; = 0, —1 which excludes case 3).
In particulard; < 2for1 <i < 4.

Case 1 E is contracted on W.

If E5 is contracted oV then there exists @-1)-cycle Z; such thatF; 7 =
—1. Thends; = 0 and the multiplicity of X at each point;. ..., P; is 0. Then
we have the following possibilities for the 6-tupleg, d1, da, ds, d4, ds):

(6,2,1,0,0,0)
(6,1,1,1,0,0)

In any of the two cases using the remarks 5.2.21 and 5.2.22 and the fact that
E;E; = 0fori # j and E; B, = 0 on the surfac&” we can uniquely determine
the multiplicities of each curve at the poin, . . ., Pi4:

P P Py Py B P Pr Iy Py Py Pu P Pig Pu
6/3 2 2 2 2 2 2 2 1 1 1 1 1 0
0,1 0 0 0 0 O O 1 1 O 0 0 0 0
2/0 1 1 1 1 1 O O O 1 1 0 0 0
110 1. 0 0 0 O 1 O O 1 0 1 0 0
o, 1 0 0 0 O O O o o 1 1 0 0
oo o o 0 0 0O O -1 1 O 0 0 1 0

P P Py Py Ps B P By Py P Pu P Pz Pu
6/3 2 2 2 2 2 2 2 1 1 1 1 1 0
6,1 0 0 0 O O O 1 1 O 0 0 0 0
1,0 1 1. 0 0 O O O O 1 1 0 0 0
1,0 0o O0 1 1 0 O O O 1 0 1 0 0
1,0 0 0 O O 1 1 O O O 1 1 0 0
6,0 0o 0o 0 0 0O O -1 1 O 0 0 1 0

Let us consider the second configuration. THgrand P5 are the only points
which are of maximal multiplicity for both the sextic and the lif§. Hence at
least one of them has to be a planar point, BayAnalogously one betweeR;
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and P, say P, has to be a planar point. Thus a quadratic transformation based at
Ps, P, P; is well-defined (see section 1.4) and it takes the second configuration

to the first one. Hence they are equivalent up to Cremona transformations and we
can assumég, 2, 1,0, 0, 0) holds.

We now compute the images 6f andH'. They have no intersection with all
the above curves while’G’ = H'G' = 1. In particular they pass through,.
Moreover sinceF’N; = H'N; = 0we find F'Z = H'Z = 0 hence they do not
pass througlP; ;. Thus they satisfy the following conditions

p
m14:1

m13:0

—m8+mg+m13:0

—Ms9 + Mq1 + M2 =0 (532)
ma + Mz + myg +miz = d
m2+m3+m4+m5+m6+m10+m11:2d

—m1+m8+m9:O

3m1 + 2 ZiS:Q m; + leig m; = 6d

\

If one of the two curves, sa¥’, is contracted ofl” we haved = m; = my =
ms = my4 = ms = mg = my; = 0 and (5.32) becomes

p
m14:1

mqz =0

—mg + mg +my3 =0
myp +mig =0

mio + mig =0

myg +my; =0

mg +mg =0

2mg + S 12y m; =0

\
which has the Only SOIUtiOﬂlg =Mg = Mg = M1 = Mz = M3 = 0, myu = 1.
Then we get a contradiction sinéé” = —3 onY..

It follows that neithetZ” nor H' are contracted oi/. This forcesng = mg =
Mig = M1 = Mz = my3 = 0. Then (532) becomes
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(

mis =1
mi3 =0
0=0

me =20

m2+m7:d
m2+m3+m4—|—m5+m6:2d
m1:0

[ 3my +23°_,m; = 6d

which forcesm; = my = 0, m7 = d, ms + my + ms + mg = 2d.

Moreover since’> = —3 we have
—3=d*—mi—mi—mi-mi—d*—1
which forces

m3 +m3 +mi +mg =2 > mg +my +ms +mg = 2d (5.33)

henced < 1. Ifitwasd = 1 for both F/ and H' we would get a contradiction
since the two distinct lines would meet Bt and P,,. Thus for at least one of
them we havel = 0. Then from (5.33) we have

—1<m<1 3<i<6.

Without loss of generality we can assumg = 1, my = —1, m5 = mg = 0 for
one of the two curves, say’.

If H'is a line we have the configuration

PP P P, P P PP PR By Po Pun P Pz Py
6,3 2 2 2 2 2 2 2 1 1 1 1 1 0
0,12 0 0 0 O O O 1 1 0 0 0 0 0
2/0 1 1 1 1 1 O 0 O 1 1 0 0 0
110 1 0 O O O 1 0 O 1 0 1 0 0
o,o0 12 0 0 O O O o0 o 0 1 1 0 0
o,o0 0o 0O O O O O -1 1 0 0 0 1 0
o,o 0 1 12 0 O O 0 o0 0 0 0 0 1
10 0 O 1 1 O 1 0 O 0 0 0 0 1
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whereas if it is contracted we find

P P Py P P5 B P By Py P Pu P Pi3 Pu
6/3 2 2 2 2 2 2 2 1 1 1 1 1 0
0,1 0 0 0 0 O O 1 1 O 0 0 0 0
2/0 1 1 1 1 1 O O O 1 1 0 0 0
1,0 1 0 0 O O 1 O O 1 0 1 0 0
o, 1 0o 0 0 O O O o o 1 1 0 0
o, o o 0 0 0 O -1 1 O 0 0 1 0
6,0 0 1. 12 0 O O O O O 0 0 0 1
6,0 0 1 o 1 0 O O O0 O 0 0 0 1

Lemma 5.2.23.The two configurations are equivalent up to quadratic transfor-
mations.

Proof. We now consider the first configuration. The palytcannot be infinitely
near to any other point, since it is of maximal multiplicity for both the conic and
the line £%,. P; cannot be infinitely near t&, since it is on the ling{’. Then we
can easily see thdt; is a planar point too. Then with a similar argument one can
see that eitheP, or P; is planar. Let us assun¥g is not planar. Hencé, is and

we can perform a quadratic transformation baseg,aP,, P;. Then we obtain

P P Py P P5 B P B Py P Pu Pio Pi3 Pu
6/3 2 2 2 2 2 2 2 1 1 1 1 1 0
0,1 0 0 0 0 O O 1 1 O 0 0 0 0
2/0 1 1 1 1 1 O O O 1 1 0 0 0
o, 0o 0o -1 0 0 O O O 1 0 1 0 0
1,0 0o 0 1 0 O 1 O O O 1 1 0 0
oo o o 0 0 0o O -1 1 O 0 0 1 0
1,0 1 1. 0 0 O 1 O O O 0 0 0 1
60/0 1 0 0 1 0 O O 0 O 0 0 0 1

Then the lineF’ hasmy + m; = 2 # 1 contradicting (5.32). Thus we can
apply a quadratic transformation basedRat Ps, P; and we obtain the second
configuration. O

Proposition 5.2.24.1n the above setting case | cannot occur.

Proof. We look at the eigenvalues of the curvBg E!, 1 < : < 5, F andH’ for
the action of the automorphism of order 3. We know thaand H’ correspond
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to different eigenvalues since they come from the blow-up of a singularity of type
A, (see section 1.3). Let us set:= ¢>™/3, If B, corresponds to the eigenvalue

w then it appears with multiplicity 1 in the branch locus of the simple triple cover
associated t& — Y = X/(Z/3Z). Let us assume thdt; corresponds to the
eigenvaluev”i, F’ corresponds to the eigenvalue” and H' to w?'r.

The pointP; is not infinitely near to any other point since it is the only point
of maximal multiplicity of the sextic. The total multiplicity at this point of the
branch divisor has to be a multiple of 3. Then we obtain the equation

3+, =0 mod3
which forces/; = 0 mod 3. Contradiction. O

Case Il E! is not contracted on WV

Let us now assumé’ is not contracted owl. Then we haveElZ = 1,
ELZ! = 0forall j < 5. MoreoverE, N, = 0 hence}_;_, m; = 3ds. In particular
we can compute

7
1:B()Eé:6d5—3m1—22m1:6d5—m1—6d5

=2
which forcesn; = —1 andds = 0.

Then, as before, we have the following possibilities(fdy, di, ds, ds, d4, ds):

(6’ 27 17 07 07 O)
(6,1,1,1,0,0)

Using remarks 5.2.20, 5.2.21, 5.2.22 and the fact#jat, = 0, £/ B, = 0 for
anyi # j onY each 6-tuple gives us a unique configuration of the points

PP P Py P P P Ps Py P Pu Pa Pg Py
6(3 2 2 2 2 2 2 2 1 1 1 1 1 0
2/0 0 1 1 1 1 1 O 1 1 0 0 0 0
1,0 0 1 1 0 O O O O O 1 1 0 0
o, o o -1 0 0 O O O 1 0 1 0 0
o0 0o 12 0 O O O O 1 O 1 0 0 0
06/ 1. 60 0 0O O O O o0 O 0 0 1 0
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and

PP P P, P P PP PR PRy Po Pu P Pz Py
6,3 2 2 2 2 2 2 2 1 1 1 1 1 0
110 o 1 1 0 O O O 1 1 0 0 0 0
110 0 1 0 1 0 O O o0 o 1 1 0 0
110 0 0O O O 1 1 O O 1 0 1 0 0
o0/0 0 1 0 0O O O o 1 o0 1 0 0 0
0/f-1 1. 0o 0 0O O O O0o o0 o0 0 0 1 0

Let us consider the second configuration. Then we can base a quadratic trans-
formation (see 1.4) at the point3, P, P5. In fact P; is a planar point since it is
of maximal multiplicity for the linest] and £, and double for the sextic.

P, and P5 cannot both be proximate t8; otherwise from (1.10) the sextic
should satisfy
2:m3§m4+m5:2—|—2:4

Hence they are planar points too. Thus we can reduce the second configuration
to the first one. Then we can assume thét d,, da, ds, ds, d5) = (6,2,1,0,0,0)
holds.

Let us now compute the images bf and H’'. As before they have no inter-
section with all the above curves and we know thR&Y = H’'Z = 0. Moreover
they both pass through the poiRt, which is the contraction of”’. Thus we find
the conditions

mia =1

mq3 =0

—my+mo+mi3 =0

—mg + mg+mq; =0 (5.34)
—my + myo+mi2 =0

ms + mg +mq +mia =d

ms + my + ms + mg + My + mg + Mg = 2d

8 13
\3m1 + 2 Zi:Q m; + Zi:9 m; = 6d

If F" or H' are contracted ol thend = m; = ma = mg = my = ms =
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me = my; = 0 and (5.34) becomes

(

m14:1
m13:0
0=0

mg +my; =0
mio +miz =0
myr +miz =0
mg + myg = 0

K2’mg + Zzlig m; = 0

which forcesmg = 0, mg = myy = —my = —my;. SinceF”? = H? = —3 we
obtain a contradiction.

Hence neither” nor H' are contracted ofl’. In this case we haveiy =
Mg = Mg = M1 = M2 = M3 =0 and (534) becomes

(
m14:1

myz3 =0

my = mgy

ms =20

my =20

ms+my=d

ms + my + ms + mg + m7; = 2d

3my +23_,m; = 6d

\
which forcesd = 0, m; = my = m3 = my = 0, ms + mg + my = 0. Thus since
the self-intersection of” and H’ is —3 we have

{m5> mg, m?} = {17 07 _1}
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Hence we can write the following configuration (recall th&H’ = 0 onY’)

P P P Py B P Pr Py Py Py Pu P Pi3 Pu
6/3 2 2 2 2 2 2 2 1 1 1 1 1 0
2/0 0 1 1 1 1 1 O 1 1 0 0 0 0
1,0 0 1 1 0 O O O O O 1 1 0 0
o0/0 0 0 1 0 O O O 0 1 0 1 0 0
o, 0 12 0 0 O O O 1 O 1 0 0 0
0,1 1 o 0 0 0O O O o o 0 0 1 0
6,0 o0 0 o 1 -1 0 0 0 O 0 0 0 1
60,0 o 0 0o -1 0 1 0 0 O 0 0 0 1

A similar argument as in proposition 5.2.24 shows

Proposition 5.2.25.In the above setting case Il cannot occur.

As an immediate consequence we obtain

Theorem 5.2.26.The case:r = 3¢ — 2, n’ = 5 cannot occur.

n=230—3

The caser = 3¢ — 3 can only occur (see theorem 4.6.5) when we are in dd$8s
of proposition 2.2.14 or whed’ = N. Thenn = 0 and when we contract ori
the curveG’ we obtain a rational surfad®” with K%, = —5+ 1 = —4 having a
netN, = N + Ky, of rational curves such tha? = 1.

Then as we have already seen in section 4.2 we have a birational morphism
5 W — P2 The net|Ny| is then mapped onto the net of linesif while
|N| is mapped to the system of quartics through 13 points. Thls + £'| =
N — 3Kyy| is mapped to the system of curves of degree 13 with 13 quadruple
points.

The curvest” and H' onY have no intersection withV; (cf. corollary 2.3.4)
hence they are contracted by the map, .

We now compute the plane imagesi®f and E’. We have
B()Nl :B()N1 :Bo(N+KY—G/> :O+4—O:4
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By is then mapped onto a quartic and none of the cuiess contracted.
Since the total multiplicity of any 023, + £’ of any of the thirteen points is 4,
B, can only have simple or double pointsAt . .., Pi5. Then

> j%sj=d’— B} =16 — Bf + 16+ 6 = 22
J
and
> jsj=4d — BN =16 — BoN = 16

J
with 7 < 2. Hence

282 = (482+81) — (282+81) =22—-16=6

forcess, = 3,5, = 10.

The (—3)-curvesE;, satisfy Ej,N; = E; N; = 1 hence their plane images are
lines through four points. Sincéj’.E,’C = 0 for any;j # k and sinc&B, + E' has
multiplicity 4 at the pointsP, ..., Pi3 it is easy to see that, up to reordering the
points, the only possible configuration f8f and the curves), is

Pl P2 PS P4 P5 PG P? PB PQ PlO Pll P12 P13 P14

L e

oOooooonN
OoooonN
OoooonwN
OO0 OoORrR LR
OO Fr Or PR
O OO0 F R,
P OO0 O FR P
OO Fr PR Or
Or OFr O PR
P O ORrR OR
OFr rPr OO R
P OFr OO PR
P P OO O R
O o0ooooo

We know thatF” and H’ are(—3)-curves contracted aB since they have no
intersection with/V;. Moreover they do not interseét, and the curvet! while
they intersect:’ at one point.

Thus they solve the linear system

,
m14:1

2(my +my +ms) + 300, mi =0
my +ms +mg+my =10

my + mg +mg + mqg =0

ms +mg +mq; +mpp =0

meg +mg +mq; +miz =0

my + myg + Mz + myz3 =0
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The sum of the last five equations gives

13
=4

hence alson; + ms + ms = 0.
Sincel"? = H'? = —3 we also have

13

=y mi=-2 (5.35)

and then—1 < m; < 1foranyl < ¢ < 13. Each numbem,,i > 4,i # 14
appears in three of the seven equations. Thus if itavas- 1 there should be at
least two valueg such thatn,; = —1. For example when = 4 we have

1+m5+m6+m7:0

1—|—m8—|—m9—|—m10:0

which force two values, say.; andmg to be -1. This contradicts (5.35). Hence

and
{mh mao, m3} = {_17 07 ]-}

Thus the total configuration of the curves, £/, F', H' is

PP P Py P P P Ps Py P Pun Pa P3Py
4,2 2 2 1 1 1 1 1 1 1 1 1 1 0
1,0 0 o0 1 1 1 1 O O O 0 0 0 0
1,0 0o 0 1 0 O O 1 1 1 0 0 0 0
1,0 0o 0 O 1 O O 1 0 O 1 1 0 0
1,0 0o 0 O O 1 O O 1 o0 1 0 1 0
110 0 0 O O O 1 O O 1 0 1 1 0
6,1 1 0o 0 0 O O O o o 0 0 0 1
o, 12 1 0 0 O O O O O 0 0 0 1

Theorem 5.2.27.The caser = 3/ — 3 cannot occulr.

Proof. We now want to compute the eigenvalues corresponding to each curve of
the branch locus. Let us consider the simple triple cover associatéd-te> Y.
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Without loss of generality we can assume thgtcorresponds to the eigenvalue
w = e*/3, Each curvels! corresponds ta”: hence it will appear with multiplic-
ity v; in the branch locus of the simple cover. Moreo¥&rand H' have different
eigenvalues, since they come from the blow-up of a singularity of #end their
multiplicities in the branch locus will be denoted by andvy = 2vr mod 3
respectively.

Then we look at the pointBy, P;, s, P, onP?. F" andH’ do not pass through
any of these points and we find the numerical conditions

141+, =0 mod3
1411 +1v3=0 mod 3
1411+, =0 mod3
1+ +v5=0 mod3

which forcerv, = v, = 113 = vy = 15 = 1 sincey; = 1,2 mod 3. This
contradicts proposition 2.1.8. ]

5.3 The final statement

Theorem 5.3.1.A numerical Godeaux surface cannot have an automorphism
of order 3.

Proof. See the proofs of theorems 3.1.21, 3.2.2, 4.6.5, 5.1.11, 5.1.12, 5.1.25,
5.2.3,5.2.8,5.2.17,5.2.26 and 5.2.27. O
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