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Introduction

This thesis is devoted to one of the major open problems about complex surfaces:

the classification of surfaces of general type and their automorphisms. We will

always work over the complex numbers.

It is well known that complex surfaces have been classified by Enriques and

Kodaira in terms of their Kodaira dimensionκ, which is defined as follows.

Definition 0.0.1. LetS be a surface. TheKodaira dimension of S is the number

κ(S) := max{dim Im(ϕ|mKS | : S −→ PN),m ∈ N}

whereϕ|mKS | is the rational map defined by the pluricanonical system|mKS| on

S. We will setκ(S) = −∞ if |mKS| = ∅ for all m ≥ 0.

While surfaces withκ ≤ 1 are quite well-known, we have much less informa-

tion about surfaces of general type, i.e. those for whichκ = 2. Their complete

classification is still an open problem even though there are important contribu-

tions from many mathematicians (for a general reference see [BCP]).

We know that minimal surfaces of general type are subdivided into classes

according to the value of three main invariants: the self-intersection of the canon-

ical divisorKS
2, the holomorphic Euler characteristicχ(S,OS) and the geometric

genuspg(S) := h0(S,OS(KS)) = h2(S,OS). In this thesis we are mainly inter-

ested in those surfaces with the lowest invariants:

Definition 0.0.2. A numerical Godeaux surfaceis a minimal complex surface of

general typeS with pg(S) = 0, KS
2 = 1, χ(OS) = 1.

The first example of such a surface can be found in [G] and it is the quotient

of a smooth quintic inP3 with a freeZ/5Z action. This example turns out to have

non-trivial torsion, and in fact it hasZ/5Z as a torsion group.
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6 Introduction

Much information about torsion group of numerical Godeaux surfaces can be

obtained by the study of the base points of the tricanonical system|3KS|. This is

an important result by Miyaoka [Miy] which is recalled in section 1.5. It is known

(see [R] and [Miy]) that the moduli spaces of numerical Godeaux surfaces with

torsion groupZ/3Z, Z/4Z andZ/5Z are irreducible and have dimension 8.

As for every surface of general typeAut(S) is a finite group (see also [X1],

[X2] and [X3]). It is still a quite difficult problem to determine the groupAut(S).

The simplest case is that of a surfacesS admitting an involution. For Godeaux

surfaces in [KL] Keum and Lee study the fixed locus of the involution under the

hypothesis that the bicanonical system|2KS| of the surface has no fixed compo-

nent.

In their work [CCM2] Calabri, Ciliberto and Mendes Lopes complete the

above study by removing this hypothesis. They use intersection theory and the

theory of abelian covers to get a classification result, which can be resumed in the

following theorem:

Theorem 0.0.3.A numerical Godeaux surfaceS with an involution is birationally

equivalent to one of the following:

1. a double plane of Campedelli type;

2. a double plane branched along a reduced curve which is the union of two

distinct linesr1, r1 and a curve of degree 12 with the following singularities:

• the pointq0 = r1 ∩ r2 of multiplicity 4;

• a pointqi ∈ ri, i = 1, 2 of type[4, 4], where the tangent line isri;

• further three pointsq3, q4, q5 of multiplicity 4 and a pointq6 of type

[3, 3], such that there is no conic throughq1, . . . , q6;

3. a double cover of an Enriques surface branched along a curve of arithmetic

genus 2.

In case 3 the torsion group ofS is Tors(S) = Z/4Z, whilst in case 2 is either

Z/2Z or Z/4Z.

We recall that a double plane of Campedelli type is a double plane branched

along a curve of degree 10 with a 4-tuple point and 5 points of type[3, 3], not

lying on a conic. An example of such a double plane can be found in [S].
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We want to extend the method used in [CCM2] in order to classify such nu-

merical Godeaux surfacesS having an automorphismσ of order three.

Our main result is

Theorem 0.0.4.A numerical Godeaux surfaceS cannot have an automorphism

of order 3.

In the first chapter we recall some well-known results about complex surfaces

of general type and about fibrations of surfaces over curves. Moreover, in section

1.2 we recall some basic elements of the theory of cyclic triple covers.

In section 1.3 we show how it is possible to construct a minimal smooth reso-

lution of the coverS −→ Σ = S/σ , i.e. a commutative diagram

X
ε−−−→ S

π

y yp
Y

η−−−→ Σ

whereX andY are smooth surfaces andX −→ Y is a triple cover induced byσ .

The main idea is then to apply the theory of abelian covers following [P].

In section 1.4 we recall the basics about plane quadratic transformations.

In the second chapter we start our analysis, using Hurwitz formula and the

topological Euler characteristice to estimate the number of isolated fixed points

of the action ofσ on S (which can be mapped either to ordinary triple points or

to double points of typeA2). We determine some basic properties of the invariant

partΛ of the tricanonical system|3KS|, which can be either a pencil or a net and

it is mapped to a system|N | over the quotient surfaceY . Moreover we study the

adjoint systems to|N | with the help of [CCM1, lemma 2.2]. All their numerical

properties are collected in proposition 2.3.12. We also have a subdivision in three

major cases according to the intersection numberR0KS andh2, whereR0 is the

divisorial part of the ramification locus ofσ while h2 is the number of isolated

fixed points ofσ mapped toA2-singularities (see the list of page 33).

A numerical analysis of these three cases is worked out in the third chapter,

where using some properties of nef divisors and of fibrations it is shown (see

theorems 3.1.21 and 3.2.2) that the first two cases cannot occur. In the third case

the system|N | on Y (and alsoΛ on S) is a pencil and its movable part induces

a fibration overY . An analysis of the singular fibres determines the possibilities

listed in theorem 3.3.8. It is quite easy to see, although it is a very important

information, thatY is a smooth rational surface (proposition 3.3.1).
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Chapter four is devoted to a deeper study of the adjoint systems to the pencil

|N | and to exclude some of the cases coming from theorem 3.3.8. We also divide

the remaining group of cases between Del Pezzo cases and ruled cases (see defi-

nitions 4.0.11 and 4.0.12), since eitherY is a blow-up ofP2 at a certain number of

points, orY has a rational pencil with self-intersection 0. Moreover we show that

the divisorial partR0 of the ramification locus of the order three automorphism

σ on the numerical Godeaux surfaceS is either 0 or it has only one irreducible

component.

Last chapter deals with a more geometric study. The first section is devoted

to the ruled cases. We show thatY after contraction of suitable curves can be

mapped ontoF0,F1 or F2 and that, by blowing up a point and contracting again,

we can always reduce toF1. Then we can actually see, birationally speaking, our

surfaceS as triple plane.

A computation of the movable part|A′| of the pencil|N | on Y allows us to

show that ruled cases cannot actually occur.

The second section is then devoted to the study of Del Pezzo cases where

the rational surfaceY is mapped to the projective plane blown-up at seven, eight

or thirteen points. The computation of the exceptional curves coming from the

blow-up of the isolated fixed points onS tells us that also Del Pezzo cases do not

occur.
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Chapter 1

Known results about surfaces

In this first chapter we collect some results about complex surfaces, fibrations and

cyclic covers and other general theorems which are at the base of our work. For

the results which are not proved here we refer to [BPV] or to [H], unless otherwise

specified.

1.1 Fibrations and other results about surfaces

Lemma 1.1.1.Let f : X −→ B be a fibration, not necessarily connected. Then

hi(Xb,OXb
), i = 0, 1 is independent ofb. In particular h0(Xb,OXb

) equals the

number of connected components of a nonsingular fibre.

Lemma 1.1.2 (Zariski’s lemma).LetXb =
∑
niCi, ni > 0,Ci ⊂ X irreducible,

be a fibre of the fibrationf : X −→ B. Then we have

1. CiXb = 0 for all i.

2. IfD =
∑
miCi,mi ∈ Z, thenD2 ≤ 0.

3. D2 = 0 holds if and only ifD = rXb, r ∈ Q.

Proposition 1.1.3 (Proposition III.11.4 of [BPV]). Let f : X −→ B be a fibra-

tion andXgen a nonsingular fibre. Then

1. e(Xb) ≥ e(Xgen) for all fibresXb;

2. ifX is compact then

e(X) = e(Xgen)e(B) +
∑
b∈B

(e(Xb)− e(Xgen)).

9



10 Chapter 1. Known results about surfaces

Lemma 1.1.4. An irreducible curveC1 with C2
1 = −n in a singular fibre con-

tributes to the Euler number as a curve with at leastn nodes.

Proof. Let us consider a reducible curve of the fibration

C =
l∑

i=1

hiCi

As shown in [F] (see also [E, section V.1])C is equivalent toδ0 curves with a node

where

δ0 ≥
l∑

i=1

(hi − 1)(2pa(Ci)− 2) +
∑
i6=j

(hi + hj − 1)CiCj (1.1)

Let us consider one of the curvesCj, sayC1 with C2
1 = −n. Then

0 = C1C = −nh1 + C1

l∑
i=2

hiCi

hence

C1

l∑
i=2

hiCi = nh1

SinceC is connected we also have

C1

l∑
i=2

Ci ≥ 1

Then

δ0 ≥ (h1 − 1)(2pa(C1)− 2) +
∑
j≥2

(h1 + hj − 1)C1Cj

≥ (h1 − 1)(−2 +
∑
j≥2

C1Cj) + C1

∑
j≥2

hjCj

≥ (h1 − 1)(−1) + nh1 = (n− 1)h1 + 1 ≥ n

as wanted.

The above lemma tells us that a curve with negative self-intersection in a sin-

gular fibre can be considered as the sum of a suitable number of curves with a

node. Let us now see what the contribution of each node to the Euler number of a

fibre is.
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Lemma 1.1.5.Each node in a singular reduced fibre increases the Euler number

by one.

Proof. AssumeF is a reduced curve withn nodes. Then ifν : F̃ −→ F is the

normalization ofF we have the following exact sequence

0 −→ OF −→ ν∗OF̃ −→ δ −→ 0

whereδ is a sheaf supported on the node andχ(δ) = h0(δ) = n. Then

1− pg(F ) = χ(OF̃ ) = χ(ν∗OF̃ ) = χ(OF ) + χ(δ) = 1− pa(F ) + h0(δ)

hence

pg(F ) = pa(F )− h0(δ)

We also have the following diagram

0 −−−→ CF −−−→ ν∗CF̃

β−−−→ δ −−−→ 0y γ

y yα
0 −−−→ OF −−−→ ν∗OF̃

δ−−−→ δ −−−→ 0

It follows

e(F ) = e(F̃ )− χ(δ′) = 2− 2(pa(F )− h0(δ))− h0(δ) = 2− 2pa(F ) + h0(δ)

= e(Xgen) + h0(δ).

Theorem 1.1.6 (Unbranched covering trick).Let X be a connected complex

manifold.

(i) If b1(X) 6= 0 thenX admits unbranched coverings of any order.

(ii) If H1(X,Z) containsk-torsion, thenX has an unbranched coverings of

orderk.

Proposition 1.1.7. Let S be a minimal surface of general type withKS
2 = 1.

Thenq(S) = 0.

Proof. Assumeq(S) > 0. Then b1(S) 6= 0, H1(S,Z) is infinite and the un-

branched covering trick says thatS has unramified covers of any ordern. Let
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ϕn : S ′ −→ S be such a cover. Thene(OS′) = ne(OS) andKS′ ≡ ϕn
∗(KS)

hence

χ(OS′) = nχ(OS).

SinceS is of general type we findpg(S) ≥ q(S) and

1 + pg(S
′) ≥ χ(OS′) = nχ(OS) = n(1 + pg(S)− q(S))

We remark that, ifS is minimal, then alsoS ′ is.

On the other hand from the minimality ofS ′ and from Noether’s inequality

pg(S
′) ≤ K2

S′

2
+ 2 =

nKS
2

2
+ 2

It follows

n− 1 + n(pg(S)− q(S)) ≤ pg(S
′) ≤ nKS

2

2
+ 2

and then

0 ≤ pg(S)− q(S) ≤ 1

n

(
nKS

2

2
+ 2 + 1− n

)
=

1

n

(
3− n

2

)
and we get a contradiction whenn ≥ 7.

Proposition 1.1.8. Let S be a surface withpg(S) = 0. Then for any effective

divisorD onS we haveh2(S,OS(D)) = 0.

Proof. Let D be an effective divisor on the surfaceS. Then we have the short

exact sequence of sheaves (see also [H])

0 −→ OS −→ OS(D) −→ OD(D) −→ 0 (1.2)

By Serre’s dualitypg(S) = h0(S,OS(KS)) = h2(S,OS). Then from the long

exact sequence of cohomology associated to (1.2) we have

0 −→ H2(S,OS(D)) −→ H2(D,OD(D)) −→ 0

SinceOD(D) is supported on a curve, we findh2(D,OD(D)) = 0 and the result

is proved.

Lemma 1.1.9 (Lemma 2.2 of [CCM1]).LetD be a nef curve on a regular surface

X such thatpa(D) ≥ 1. If KX +D is not nef, then any irreducible curveΘ such

thatΘ(KX +D) < 0 is a (−1)-curveΘ such thatΘD = 0.
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Proof. Let us consider the short exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0

Then from the associated long exact sequence of cohomology we have, sinceX

is a regular surface,

0 −→ H1(D,OD) −→ H2(X,OX(−D)) −→ H2(X,OX) −→ 0

Hence

h0(X,OX(KX +D)) = h2(X,OX(−D)) = h1(D,OD) + h2(X,OX)

= h0(D,OD)− 1 + pa(D) + pg(X) ≥ pa(D)

and we have equality ifD is 1-connected (e.g. ifD is nef and big) andpg(X) = 0.

Then, whenpa(D) ≥ 1,KX +D is an effective divisor.

If Θ is an irreducible curve such thatΘ(KX +D) < 0 then we obviously have

ΘKX < 0. Moreover sinceΘ cannot move (i.e.h0(X,OX(Θ)) = 1) from the

short exact sequence

0 −→ OX −→ OX(Θ) −→ OΘ(Θ) −→ 0

and the regularity ofX we findh0(X,OΘ(Θ)) = 0 and then

−h1(X,OΘ(Θ) = χ(Θ,OΘ(Θ)) = 1 + Θ2 − pa(Θ)

= 1 + Θ2 − 1− Θ2 + ΘKX

2
=

Θ2 −ΘKX

2

ThusΘ satisfies the three inequalities
Θ2 + ΘKX ≥ −2

Θ2 −ΘKX ≤ 0

ΘKX < 0

which forceΘ2 = ΘKX = −1.

Theorem 1.1.10 (Index Theorem).LetD,E be divisors with rational coefficients

on an algebraic surfaceS. If D2 > 0 andDE = 0, thenE2 ≤ 0 andE2 = 0 if

and only ifE is homologous to 0.
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Theorem 1.1.11 (Kawamata-Viehweg).LetX be a smooth projective variety of

dimensionn, and letL be an integral divisor (or line bundle) onX. Assume that

L ∼ D +
∑

aiAi

whereD is a big and nefQ-divisor, and∆ =
∑
aiAi is a Q-divisor with simple

normal crossing support and fractional coefficients

0 ≤ ai < 1 for all i.

Then

H i(X,OX(KX + L)) = 0 for i > 0.

Equivalently

Hj(X,OX(−L)) = 0 for j < n.

For the proof of theorem 1.1.11 we refer to [L].

Finally we recall the well-known Castelnuovo’s criterion for the rationality of

surfaces:

Theorem 1.1.12 (Castelnuovo’s criterion).An algebraic surfaceX is rational

if and only ifq(X) = P2(X) = 0.

1.2 Cyclic triple covers of smooth surfaces

We now briefly recall the theory of Galois abelian covers for surfaces. A more

general and detailed description of such covers can be found in [P]. We will focus

our attention on the case of covers with Galois groupG = Z/3Z. For the case of

triple covers the reader may also refer to [Mir].

Let Y be a smooth surface,G be an abelian group with a faithful action onY

and letX be an abelian cover ofY with groupG. This means that there is a finite

mapπ : X −→ Y such thatY = X/G andπ is the projection ofX to its quotient.

Under these hypotheses there is a splitting

π∗OX =
⊕
χ∈G∗

L−1
χ

whereG∗ is the group of characters ofG, L1 = OY andG acts onL−1
χ via the

characterχ.
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Definition 1.2.1. For each componentT of the ramification divisorR onX we

can define itsinertia group

HT := {h ∈ G |hx = x ∀x ∈ T}

Lemma 1.2.2 (Lemma 1.1 of [P]).If T as above has codimension 1 inX then

HT is a cyclic group.

Lemma 1.2.3 (Lemma 1.2 of [P]).If T is as in lemma 1.2.2, then there exists a

parametert for OX,T such that the action ofHT is given by

ht = %T (h)t ∀h ∈ HT

where%T is the representation ofHT on M/M2 (M is the maximal ideal ofT in

X) induced by the cotangent map.

Let B be the branch locus of the coverX −→ Y . Then to each irreducible

componentV of B is associated a subgroup ofG which is the inertia groupH =

HT of all the irreducible components ofπ−1(V ) and a characterψ ∈ H∗
T as in

lemma 1.2.3 which is a generator ofH∗
T . Hence we can write

B =
∑
H∈C

∑
ψ∈SH

BH,ψ

whereC is the set of cyclic subgroups ofG andSH is the set of generators ofH∗

for anyH ∈ C and we denote byBH,ψ the sum of the irreducible components of

B with inertia groupH and characterψ.

Definition 1.2.4. AG-cover is asimple cyclic coverif B = BG,ψ for some char-

acterψ that generatesG∗.

Let us now fix a pair(H,ψ). Then for anyχ, χ′ ∈ G∗ we can write

χ|H = ψiχ , χ′|H = ψiχ′

with iχ, iχ′ ∈ {0, . . . ,mH − 1} wheremH is the order ofH.

Then we can define

εH,ψχ,χ′ =

0 if iχ + iχ′ < mH

1 otherwise

The invertible sheavesLχ and the componentsBH,ψ are called thebuilding

data of the cover and they define uniquely the Galois cover in the sense of the

following
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Theorem 1.2.5 (Theorem 2.1 of [P]).LetG be an abelian group. LetY be a

smooth variety,X a normal one and letπ : X −→ Y be an abelian cover with

groupG. Then the following set of linear equivalences is satisfied by the building

data of the cover:

Lχ + Lχ′ ≡ Lχχ′ +
∑

H∈mcC

∑
ψ∈SH

εH,ψχ,χ′BH,ψ (1.3)

Conversely, to any set of dataLχ, BH,ψ satisfying(1.3) we can associate an

abelian coverπ : X −→ Y in a natural way. Whenever the cover so constructed

is normal,Lχ, BH,ψ are its building data.

Moreover, if Y is complete, then the building data determine the coverπ :

X −→ Y up to isomorphisms of Galois covers.

We now restrict to the case of Galois triple cover. WhenG = Z/3Z the only

non-trivial cyclic subgroup ofG is G itself and there are two generators ofG∗.

We also have

π∗OX = OY ⊕OY (−L1)⊕OY (−L2) (1.4)

whereG acts onOY (−L1) as the multiplication byω = e2πi/3 while acts on

OY (−L2) as the multiplication byω2. In this setting the conditions (1.3) can be

rewritten as

2L1 ≡ L2 +Bω2

L1 + L2 ≡ B

2L2 ≡ L1 +Bω

and can be reduced to the following two:

3L1 ≡ B +Bω2

L1 + L2 ≡ B (1.5)

1.3 Resolution for cyclic triple covers

Assume we have a smooth surfaceS with an action ofG = Z/3Z. ThenS has a

ramification locus which is composed of a divisorial partR and of some isolated

fixed points. We putω = e2πi/3 as in the previous section.

We now look at theG-action near the isolated fixed points. Without loss of

generality we can assume the point isO = (0, 0) and, by Cartan’s lemma [Car,
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lemma 2, p.98], the action ofG can be linearized nearO. Then sinceO does not

belong to any divisorial component of the ramification locus we find two possible

actions:

(x, y) −→ (ωx, ωy)

or

(x, y) −→ (ωx, ω2y)

Then there are two different kinds of isolated fixed points. The quotient sur-

faceS/G is a normal surface, but it is singular at the image of the isolated fixed

points. Let us consider the first action

(x, y) −→ (ωx, ωy)

LocallyS can be seen asSpec(C[x, y]) and the coordinate ring of the quotient

surface is given by the ring of invariantsC[x, y]G of C[x, y]. The ringC[x, y]G

is generated by the monomialsξ = x3, η = y3, ζ = xy2, υ = x2y satisfying the

relationsζ2 = υη, υ2 = ξζ, ζυ = ξη.

Then we can locally describeS/G as

Spec(C[ξ, η, ζ, υ]/(ζ2 − υη, υ2 − ξζ, ζυ − ξη)). (1.6)

Such a surface has an ordinary triple point singularity at the origin.

We now consider the second action

(x, y) −→ (ωx, ω2y)

In this case the invariant ring is generated by the monomialsξ = x3, η = y3, ζ =

xy with the relationζ3 = ξη.

ThenS/G can be locally described as

Spec(C[ξ, η, ζ]/(ζ3 − ξη)) (1.7)

and it has a double pointA2 singularity at the origin.

Definition 1.3.1. LetS be a smooth surface with an action ofG = Z/3Z.

An isolated fixed pointP will be saidof type I if the quotientS −→ S/G

mapsP to an ordinary triple point.

P will be saidof type II if the quotientS −→ S/G mapsP to a double point

of typeA2.
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We now want to show how to find a minimal desingularization of the triple

coverS −→ Σ = S/G, i.e. we want to find two smooth surfacesX andY such

thatX is birational toS, Y is birational toΣ and there is a triple coverX −→ Y

such that the following commutative diagram holds

X −−−→ Sy y
Y −−−→ Σ

A description of the desingularization can be found in [T] and in [Cal]. We

now recall the explicit computation.

Since it is a local question, we reduce ourselves to consider separately the two

kinds of isolated fixed points. Without loss of generality we can assume thatS

has local coordinates(x, y) and the isolated fixed point is(0, 0).

Type I:

If (0, 0) is of type I (see definition 1.3.1), the action ofG = Z/3Z is

(x, y) −→ (ωx, ωy)

and the quotient surfaceΣ = S/G is described by (1.6).

We now blow upS at the isolated fixed point. Then the blow-upS ′ will satisfy

the condition

rk

(
x y

u0 u1

)
≤ 1

Then we have

xu1 = u0y (1.8)

We now extend theZ/3Z-action onS ′ in the natural way by defining

((x, y), [u0 : u1]) −→ ((ωx, ωy), [ωu0 : ωu1]) = ((ωx, ωy), [u0 : u1])

Hence the exceptional divisore := {(0, 0), [u0 : u1]} is fixed under the action

of G = Z/3Z and we have no more isolated fixed points. ThenX = S ′ and

the quotient surfaceY = S ′/G is smooth. Moreover the imagee′ of e is the

(−3)-curve obtained by blowing up the triple point singularity ofΣ = S/G.
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Type II:

Let us now consider the case when(0, 0) is an isolated fixed point of type II (see

definition 1.3.1). The action ofG = Z/3Z is now

(x, y) −→ (ωx, ω2y)

and the quotient surfaceΣ = S/G is described by (1.7).

We now blow upS at the isolated fixed point. Then the blow-upS ′ will satisfy

the condition

rk

(
x y

u0 u1

)
≤ 1

Then we have

xu1 = u0y (1.9)

We now extend theZ/3Z-action onS ′ in the natural way by defining

((x, y), [u0 : u1]) −→ ((ωx, ω2y), [u0 : ωu1])

Then the exceptional divisor is invariant for the above action but it is not fixed.

Hence the action onS ′ has two more isolated fixed pointsP0 = ((0, 0), [1 : 0])

andP1 = ((0, 0), [0 : 1]) on the exceptional divisore1 = {(0, 0), [u0 : u1]}.

The pointPj is in the open subsetUj := {uj 6= 0} for j = 0, 1. Let us define

v1 := u1/u0 onU0 andv0 := u0/u1 onU1. Then onU0 we can write

y = v1x

and we have local coordinates(x, v1). If we compute theZ/3Z-action onU0 we

get

(x, v1) −→ (ωx, ωv1)

henceP0 is an isolated fixed point of type I.

OnU1 instead we have

x = v0y

and the local coordinates are(y, v0). If we compute theZ/3Z-action onU1 we get

(y, v0) −→ (ω2x, ω2v1)

henceP1 is again an isolated fixed point of type I.
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Therefore a further blow-up of the two points as described in page 18 gives

us the surfaceX which has an action ofG = Z/3Z with no isolated fixed points.

Then the quotientY = X/G is smooth as wanted. Moreovere1 onX is a(−3)-

curve and its imagee′1 satisfies

3e′1
2

= π∗(e′1)
2 = e21

whereπ : X −→ Y is the quotient map. Hencee′1 is a(−1)-curve onY .

1.4 Quadratic transformations

In this section we recall some basic definitions and properties of planar Cremona

maps and, in particular, of quadratic transformations ofP2. General references for

this subject are [D] or the book [AC].

Let S be a nonsingular projective surface and letB(S) be the category of

birational morphismsπ : S ′ −→ S of nonsingular projective surfaces.

Definition 1.4.1. Thebubble spaceSbb of a nonsingular surfaceS is the factor

set

Sbb =

 ⋃
(S′ π′

−→S)∈B(S)

S ′

 /R

whereR is the equivalence relation defined as follows:x′ ∈ S ′ is equivalent to

x′′ ∈ S ′′ if the rational mapπ′′−1 ◦ π′ : S ′ 99K S ′′ maps isomorphically an open

neighborhood ofx′ onto a neighborhood ofx′′.

Definition 1.4.2. If ϕ : S ′′ −→ S ′ is isomorphic to the blow-up of a pointx′ ∈ S ′

each pointx′′ ∈ ϕ−1(x′) is said to be aninfinitely near point tox′ of the first

order. By induction one can define infinitely near points tox′ of orderk. We will

write x′′ �k x
′ to say thatx′′ is infinitely near of orderk to x′.

Definition 1.4.3. A bubble cycleis an elementη =
∑
m(x)x ∈ ZSbb

such that

1. η has a finite support;

2. m(x) ≥ 0 for anyx ∈ Sbb;

3. if x � x′ thenm(x) ≤ m(x′).
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Definition 1.4.4. Letη be a bubble cycle and letD be a divisor on a nonsingular

surfaceS. Then the linear system|D − η| is homaloidal if the map associated to

|D − η| is birational onto its image. WhenS = P2 andD ≡ dl ∈ |OP2(d)| the

cycleη is also called ahomaloidal bubble cycleof degreed.

Then one can show the following theorem

Theorem 1.4.5.A bubble cycleη =
∑N

i=1mixi on P2 is homaloidal of degreed

if and only if|dl− η| contains an irreducible divisor and the following numerical

conditions are satisfied:

d2 −
N∑
i=1

m2
i = 1, 3d−

N∑
i=1

mi = 3.

For the proof of the above theorem we refer to [D].

From now on we will assume that the nonsingular surfaceS is P2.

Definition 1.4.6. A plane Cremona transformation is a birational transforma-

tion P2 99K P2.

Each plane Cremona transformation is defined by a homaloidal net|V | on P2

of polynomial of some degreed and by a choice of a basis inV . We are mainly

interested in those maps defined by a net of polynomials of degree 2.

Definition 1.4.7. A quadratic transformation is a plane Cremona transforma-

tion which is defined by a net of degree 2 homogeneous polynomials.

Since the complete linear system|OP2(2)| of conics ofP2 has dimension 5, a

homaloidal net|V | inside|OP2(2)| is defined, following theorem 1.4.5, by impos-

ing three base pointsx1, x2, x3 such thatη = x1 + x2 + x3 is a homaloidal bubble

cycle as in definitions 1.4.3 and 1.4.4.

Definition 1.4.8. Let x1, x2 be points in(P2)bb. Thenx2 is proximate to x1 if

x2 �1 x1.

Definition 1.4.9. Let x1, x2, x3 be points in(P2)bb. Thenx3 is satellite to x1 if

x2 �1 x1, x3 �1 x2, x3 �1 x1. In particular x3 is the intersection point between

the exceptional divisor obtained by blowing upx2 and the strict transform of the

exceptional divisor ofx1.
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When we blow up a certain number of pointsx1, . . . , xn onP2 each irreducible

curve on the blow-up must satisfy the following inequalities (see also section 2.3

of [Cal]) ∑
xj�1xi

mj ≤ mi ∀ i = 1, . . . , n (1.10)

wheremh is the multiplicity of the curve at the pointxh.

In particular when we blow-up a bubble cycleη = x1 + x2 + x3 such thatx3

is satellite tox1 we get

m1 ≥ m2 +m3 ≥ m3 +m3 = 2m3

for any irreducible curve passing through the three points with multiplicitymi.

Let us now fix a bubble cycleη = x1 + x2 + x3 in (P2)bb. Then there are no

irreducible curves in|2l − η| if and only if one of the following cases occurs:

a) all the points inη are onP2 and they are collinear;

b) x2 �1 x1, x3 �1 x1

In the former case all the conics through the three points must contain the line

joining them, hence they are reducible. In the latter case eitherx3 is satellite to

x1, hence there are no smooth curves in|dl − η| for anyd, or the conic has two

different tangent directions atx1 hence it is reducible since it is the union of two

distinct lines.

Example 1.4.10.Let us take three non-collinear pointsx1, x2, x3 on P2 (with

coordinatesy0, y1, y2). Then, up to projective transformations, we can assume

they are[1 : 0 : 0], [0 : 1 : 0].[0 : 0 : 1]. Let us now consider the system of conics

through these three points and choose a basis{y1y2, y0y2, y0y1} of this system.

We now set

T1 : [y0 : y1 : y2] −→ [y1y2 : y0y2 : y0y1]

It is easy to see thatT 2
1 = id thusT1 is a birational involution.

Example 1.4.11.Let us now take three pointsx1, x2, x3 with x3 �1 x1 while

x2 6� x1, x3, x1, x2 ∈ P2. Then, up to projective transformations, we can assume

thatx1, x2 are [0 : 0 : 1], [1 : 0 : 0] whereasx3 is the tangent directiony0 = 0. We

now choose the basis{y2
1, y0y2, y0y1} of the system of conics throughx1, x2, x3.

We can set

T2 : [y0 : y1 : y2] −→ [y2
1 : y0y2 : y0y1]

Again one hasT 2
2 = id thus alsoT2 is a birational involution.
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Example 1.4.12.Let us now take three pointsx1, x2, x3 with x3 �1 x2 �1 x1,

x1 ∈ P2. Then, up to projective transformations, we can assume thatx3 is [0 : 0 :

1], x2 is the tangent directiony0 = 0 whereasx3 lies on the proper transform of

the liney2 = 0. We now choose the basis{y2
0, y0y1, y

2
1 − y0y2} of the system of

conics throughx1, x2, x3. We can set

T3 : [y0 : y1 : y2] −→ [y2
0 : y0y1 : y2

1 − y0y2]

Again one hasT 2
3 = id thus alsoT3 is a birational involution.

Remark 1.4.13.Each quadratic transformation onP2 can be written as

gTig
′

for suitable projective transformationsg, g′.

The mapsTi are defined at all points ofP2 except forx1, x2, x3. Let us take

a curve of degreed passing throughx1, x2, x3 with multiplicitiesm1,m2,m3 re-

spectively. Let us now understand what the image of such a curve under a quadra-

tic transformationT1, T2, T3 is. In particular we now determine the degreed′ and

the multiplicitiesm′
1,m

′
2,m

′
3 atx1, x2, x3 of the image.

We work out the computation in the case of the transformationT1 (see example

1.4.10).

Let us take a homogeneous polynomialF (y0, y1, y2) of degreed which has

multiplicity m1,m2,m3 atx1 = [1 : 0 : 0], x2 = [0 : 1 : 0], x3 = [0 : 0 : 1]. Then

F (y0, y1, y2) =
∑

i0+i1+i2=d
i0≤d−m1

i1≤d−m2

i2≤d−m3

fi0i1i2y
i0
0 y

i1
1 y

i2
2

The imageF ′(y0, y1, y2) is then

F ′(y0, y1, y2) =
∑

i0+i1+i2=d
i0≤d−m1

i1≤d−m2

i2≤d−m3

fi0i1i2y
i0
1 y

i0
2 y

i1
0 y

i1
2 y

i2
0 y

i2
2

=
∑

i0+i1+i2=d
i0≤d−m1

i1≤d−m2

i2≤d−m3

fi0i1i2y
i1+i2
0 yi0+i2

1 yi0+i1
2
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=
∑

i0+i1+i2=d
i0≤d−m1

i1≤d−m2

i2≤d−m3

fi0i1i2y
d−i0
0 yd−i11 yd−i22 = ym1

0 ym2
1 ym3

2 F ′′(y0, y1, y2)

Thus the strict transformF ′′ = 0 of our initial curveF = 0 is of degree

d′ = 2d−m1 −m2 −m3. (1.11)

Moreover each variableyj appears inF ′′ with a powerαj = d − ij − mj+1 ≤
d−mj+1 which tells us that the multiplicity ofF ′′ = 0 at each pointxh is

m′
h = (2d−m1 −m2 −m3)− (d−mh) = d−

∑
j 6=h

mj. (1.12)

1.5 Numerical Godeaux surfaces

Definition 1.5.1. A numerical Godeaux surfaceis a minimal complex surface of

general typeS with pg(S) = 0, KS
2 = 1, χ(OS) = 1.

Numerical Godeaux surfaces are the minimal surfaces of general type with the

lowest invariants. A first example was given by Godeaux in [G] as the quotient of a

quintic inP3 by a freeZ/5Z action. Later many other examples were constructed,

but we still not have a complete classification.

From the definition 1.5.1 one can easily see that the bicanonical map of numer-

ical Godeaux surfaces cannot be a birational map, since|2KS| is a pencil. Thus

they are not covered by the results in [Ci].

In [Miy] Miyaoka studied the properties of the bicanonical and of the tricanon-

ical system of such surfaces. We now recall his results:

Lemma 1.5.2 (Lemma 6 of [Miy]). LetS be a numerical Godeaux surface and

let |M | be the movable part of the bicanonical system|2KS|. Then we can write

|2KS| = |M | + T whereT is the fixed part of|2KS|. Then the generalM ∈
|M | is reduced and irreducible. MoreoverM andT satisfy one of the following

numerical conditions:

a) T = 0;

b) KST = 0, T 2 = −2,M2 = 2,MT = 2;

c) KST = 0, T 2 = −4,M2 = 0,MT = 4.
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Theorem 1.5.3 (Proposition 2, Theorem 2 and Theorem 3 of [Miy]).LetS be

a numerical Godeaux surface. Then the tricanonical system|3KS| has no fixed

part. Every base point of the tricanonical system is simple and the numberb of

base points is given as follows:

b = |{t ∈ H2(S,Z)tor | t 6= −t}|/2

Moreover the mapϕ|3KS | associated to|3KS| is birational.

The birationality of the tricanonical mapϕ|3KS | allows us to see a numerical

Godeaux surfaceS as a surface inP3 with a finite number of double points as

singularities, coming from the contraction of the(−2)-curves.

Catanese and Pignatelli, in their work [CP1], have recently improved the study

of the bicanonical system obtaining the following result which excludes case c) of

lemma 1.5.2.

Theorem 1.5.4.Let S be a numerical Godeaux surface and letf : S → P1 the

fibration induced by the bicanonical pencil ofS. Then the genus of the fibre can

only be 3 or 4.

As a consequence of theorem 1.5.3 we also have the following

Theorem 1.5.5 (Lemma 11, Theorem 2’ and following remark of [Miy]). For a

numerical Godeaux surfaceS the order of the torsion group does not exceed 5 and

b =


0 if H2(S,Z)tor = 0 or Z/2Z;

1 if H2(S,Z)tor = Z/3Z or Z/4Z;

2 if H2(S,Z)tor = Z/5Z.

The moduli spaces of numerical Godeaux surfaces with torsion groupZ/3Z,

Z/4Z or Z/5Z are known to be irreducible of dimension 8 (see [R] and [Miy]).

At the best of our knowledge, the analogous question about surfaces with torsion

group0 or Z/2Z is still open. Examples with such torsion groups are constructed

in [B], [CG] and [W], while a deeper study of the numerical Godeaux surfaces

without torsion can be found in [CP2].
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Preliminary results

2.1 Basic properties

Let us consider a numerical Godeaux surfaceS (cf. section 1.5) with an order

3 automorphismσ and letp : S −→ Σ be the projection ofS to its quotient

Σ = S/ < σ >. Let alsoπ : X −→ Y be the resolution of the coverS −→ Σ

with X andY smooth as in 1.3. So we have a commutative diagram

X
ε−−−→ S

π

y yp
Y

η−−−→ Σ

Let us fix the notation:R0 is the ramification divisor ofp, h1 is the number

of isolated fixed pointspi of σwhich descend to triple point singularities ofΣ ,

whereash2 is the number of isolated fixed pointsqj of σwhich descend to double

point singularities ofΣ . We also defineE =
∑h1

i=1Ei whereEi is the exceptional

curve corresponding to the pointpi. We will denote the reducible(−1)-curve

which contracts to a pointqj by Fj +Gi +Hj whereFj, Hj are(−1)-curves and

Gj is a (−3)-curve withFjGj = HjGj = 1, FjHj = 0. The sum of the curves

Fi, Gi andHi will be similarly denoted byF , G, H. Let finallyB0 = π(ε∗(R0))

andE ′
i, F

′
i etc. be the images ofEi, Fi,... viaπ.

So we haveR = Ram(π) = ε∗(R0) + E + F +H and, by Hurwitz formula,

KX = π∗(KY ) + 2R = π∗(KY ) + 2ε∗(R0) + 2E + 2F + 2H (2.1)

while sinceX is a blow-up ofS

KX = ε∗(KS) + E + 2F +G+ 2H (2.2)

27
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Lemma 2.1.1.We have

ε∗(R0)KX = R0KS, ε∗(R0)π
∗(KY ) = B0KY (2.3)

B0KY = R0KS − 2R0
2. (2.4)

Proof. Let us computeε∗(R0)KX using the two formulas 2.1 and 2.2. We notice

that, sinceπ∗(B0) = 3R0,

ε∗(R0)π
∗(KY ) =

1

3
π∗(B0)π

∗(KY ) = B0KY

By (2.1) we obtain

ε∗(R0)KX = ε∗(R0)(π
∗(KY ) + 2ε∗(R0) + 2E + 2F + 2H)

= ε∗(R0)π
∗(KY ) + 2(ε∗(R0))

2 = B0KY + 2R0
2

Instead, by (2.2) we find

ε∗(R0)KX = ε∗(R0)(ε
∗(KS) + E + 2F +G+ 2H) = R0KS

The desired result follows.

Proposition 2.1.2.LetS, σ ,X, Y be as above. Then the number of isolated fixed

point ofσ satisfies the formula

h1 + 2h2 = 6 +
3R0KS −R0

2

2
. (2.5)

Moreover we have

K2
Y =

1

3
[KS

2 − (h1 + 3h2) + 4R0
2 − 4R0KS]. (2.6)

Proof. Computing the Euler number ofX andY we obtain

e(X) = 3e(Y )− 2e(R) (2.7)

Now,

−e(R) = −e(ε∗(R0))− 2(h1 + 2h2) = R0
2 +R0KS − 2(h1 + 2h2)

e(X) = 12−K2
X , e(Y ) = 12−K2

Y

so from (2.7)

12−K2
X = 3(12−K2

Y ) + 2(R0
2 +R0KS)− 4(h1 + 2h2) (2.8)
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Again from (2.1), (2.3) and (2.4)

K2
X = (π∗(KY ) + 2ε∗(R0) + 2E + 2F + 2H)2

= 3K2
Y + 4R0

2 + 4E2 + 4F 2 + 4H2 + 4B0KY + 4(E ′ + F ′ +H ′)KY

= 3K2
Y + 4R0

2 + 4B0KY = 3K2
Y + 4R0

2 + 4(R0KS − 2R0
2)

= 3K2
Y − 4R0

2 + 4R0KS (2.9)

hence

K2
Y =

1

3
[K2

X + 4R0
2 − 4R0KS] =

1

3
[KS

2 − (h1 + 3h2) + 4R0
2 − 4R0KS]

Putting all these together and substituting (2.9) in (2.8) we obtain

12− 3K2
Y + 4R0

2 − 4R0KS = 36− 3K2
Y + 2(R0

2 +R0KS)− 4(h1 + 2h2)

from which we infer

h1 + 2h2 = 6 +
3R0KS −R0

2

2

as wanted.

Remark 2.1.3. Using the above proposition we have

K2
Y =

1

3
[KS

2 − 6− h2 +
9

2
R0

2 − 11

2
R0KS]. (2.10)

In fact

K2
Y =

1

3
[KS

2 − (h1 + 3h2) + 4R0
2 − 4R0KS]

=
1

3
[KS

2 − (h1 + 2h2)− h2 + 4R0
2 − 4R0KS]

=
1

3
[KS

2 − 6− 3

2
R0KS +

1

2
R0

2 − h2 + 4R0
2 − 4R0KS]

=
1

3
[KS

2 − 6− h2 +
9

2
R0

2 − 11

2
R0KS]

Moreover, since

2KX −R = 2(π∗(KY ) + 2R)−R = π∗(2KY ) + 3R = π∗(2KY +B)

3KX = 3(π∗(KY ) + 2R) = π∗(3KY + 2B)

from (1.4) we have

π∗OX = OY ⊕OY (−L1)⊕OY (−L2)
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and then

π∗(OX(2KX −R)) = OY (2KY +B)⊗ (OY ⊕OY (−L1)⊕OY (−L2))

= OY (2KY +B)⊕OY (2KY + L2)⊕OY (2KY + L1)

(2.11)

π∗(OX(3KX)) = OY (3KY + 2B)⊗ (OY ⊕OY (−L1)⊕OY (−L2))

= OY (3KY + 2B)⊕OY (3KY +B + L2)⊕OY (3KY +B + L1)

(2.12)

In particular, we have

2 = h0(X,OX(2KX)) ≥ h0(X,OX(2KX −R)) ≥ h0(Y,OY (2KY +B)) ≥ 0

4 = h0(X,OX(3KX)) ≥ h0(Y,OY (3KY + 2B)) ≥ 0

Remark 2.1.4. We note that the caseh0(Y,OY (3KY + 2B)) = 4 cannot occur,

because if so, then each curve of the tricanonical system|3KX |would be invariant

under the action ofσ , and then the tricanonical mapϕ|3KX | would be composed

with σ : this is not possible sinceϕ|3KX | is a birational map (see [Miy]).

Lemma 2.1.5.The divisorN = 3KY + 2B0 +E ′ − 3G′ onY is nef and big and

has the following properties:

N2 = 3 (2.13)

NKY = 1− 2R0KS. (2.14)

Proof. We just observe that

π∗(N) = 3π∗(KY ) + 6ε∗(R0) + 3E − 3G

(2.1)
= 3KX − 6E − 6F − 6H + 3E − 3G

(2.6)
= 3ε∗(KS) + 3E + 6F + 3G+ 6H − 6E − 6F − 6H + 3E − 3G

= ε∗(3KS)

which is nef and big sinceS is of general type.

Moreover9 = (ε∗(3KS))
2 = (π∗(N))2 = 3N2 and

NKY = (3KY + 2B0 + E ′ − 3G′)KY = 3K2
Y + 2B0KY + E ′KY − 3G′KY

(2.6)
= KS

2 − (h1 + 3h2) + 4R0
2 − 4R0KS + 2(R0KS − 2R0

2) + h1 + 3h2

= KS
2 − 2R0KS = 1− 2R0KS

completes the proof.
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We now want to apply Kawamata-Viehweg theorem 1.1.11 to compute the

dimensions ofH0(Y,OY (3KY +2B)) andH0(Y,OY (2KY +B)) as vector spaces.

We obtain the following

Proposition 2.1.6. In the above setting we have

(a) h0(Y,OY (3KY + 2B)) = h0(Y,OY (N)) = 2 +R0KS

(b) h0(Y,OY (2KY +B)) = 1
3
(2h2 − 2−R0KS)

Moreover, we have0 ≤ R0KS ≤ 1 andR0KS = 1 if and only ifh0(Y,OY (2KY +

B)) = 1 andh2 = 3.

Proof. (a) We determine some curves in the fixed part of|3KY +2B|: we recall

that the curvesE ′
i, F

′
i , H

′
i are(−3)-curves, while theG′

i’s are(−1)-curves.

Then

(3KY + 2B)E ′
i = (3KY + 2B)F ′

i = (3KY + 2B)H ′
i = −3

(3KY + 2B −E ′ − F ′ −H ′)G′
i = (3KY + 2B0 +E ′ + F ′ +H ′)G′

i = −1

(3KY + 2B0+E
′ + F ′ +H ′ −G′)F ′

i

= (3KY + 2B0 + E ′ + F ′ +H ′ −G′)H ′
i = −1

(3KY + 2B0 + E ′ −G′)G′
i = −2.

It follows that we can write|3KY + 2B| = E ′ + 2F ′ + 2H ′ + 3G′ + |N |.
So we have

h0(Y,OY (3KY + 2B)) = h0(Y,OY (N))

= h0(Y,OY (3KY + 2B0 + E ′ − 3G′)).

Moreover, sinceπ∗(N) = ε∗(3KS), using the formula

π∗(OX(ε∗(3KS))) = OY (N)⊕OY (N − L1)⊕OY (N − L2)

and the fact thathi(S,OS(3KS)) = 0 for all i > 0, we find

hi(Y,OY (N)) = 0 for all i > 0.

Then, using lemma 2.1.5 one has

0 ≤ h0(Y,OY (N)) = χ(Y,OY (N)) = 1 +
N(N −KY )

2

= 1 +
3− 1 + 2R0KS

2
= 2 +R0KS



32 Chapter 2. Preliminary results

(b) Again we determine some curves in the fixed part of|2KY +B|:

(2KY +B)F ′
i = −1

(2KY +B − F ′)G′
i = −1

(2KY +B0 + E ′ +H ′ −G′)H ′
i = −2

So we have

h0(Y,OY (2KY +B)) = h0(Y,OY (2KY +B0 + E ′ −G′))

But we can also write

2KY +B0+E
′−G′ = KY +(KY +B0+E

′−G′) = KY +
1

3
N+

1

3
B0+

2

3
E ′

and by Kawamata-Viehweg theorem 1.1.11

hi(Y,OY (2KY +B0 + E ′ −G′)) = 0 for all i > 0.

Then, as in (a),

0 ≤ h0(Y,OY (2KY +B0 + E ′ −G′)) = χ(Y,OY (2KY +B0 + E ′ −G′))

= 1 +
(2KY +B0 + E ′ −G′)(KY +B0 + E ′ −G′)

2

= 1 +K2
Y +

3

2
B0KY +

3

2
E ′KY −

3

2
G′KY +

1

2
B2

0 +
1

2
E ′2 +

1

2
G′2

= 1 +
1

3
[KS

2 − (h1 + 3h2) + 4R0
2 − 4R0KS] +

3

2
(R0KS − 2R0

2)+

+
3

2
R0

2 + h2

= 1 +
1

3
[KS

2 − 6− h2 −
11

2
R0KS +

9

2
R0

2] +
3

2
(R0KS −R0

2) + h2

=
1

3
[3 +KS

2 − 6 + 2h2 −R0KS] =
1

3
(2h2 − 2−R0KS)

The last assertion follows easily by remark 2.1.4 and the fact that

0 ≤ h0(Y,OY (2KY +B)) ≤ 2.

So we are left with only three possible cases, according to the values ofR0KS

and ofh2:
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(i) h0(Y,OY (N)) = 3, h0(Y,OY (2KY +B)) = 1,R0KS = 1, h2 = 3

(ii) h0(Y,OY (N)) = 2, h0(Y,OY (2KY +B)) = 2,R0KS = 0, h2 = 4

(iii) h0(Y,OY (N)) = 2, h0(Y,OY (2KY +B)) = 0,R0KS = 0, h2 = 1

Lemma 2.1.7.For any1 ≤ i ≤ 2, 0 ≤ j ≤ 2 we have

hj(Y,OY (−Li)) = 0.

In particularL2
i + LiKY = −2 for i = 1, 2.

Proof. SinceX is birational to a numerical Godeaux surface we havepg(X) =

q(X) = 0 andχ(X,OX) = 1. From (1.4) we find

0 = pg(X) = pg(Y ) + h2(Y,OY (−L1)) + h2(Y,OY (−L2))

0 = q(X) = q(Y ) + h1(Y,OY (−L1)) + h1(Y,OY (−L2))

1 = h0(X,OX) = h0(Y,OY ) + h0(Y,OY (−L1)) + h0(Y,OY (−L2))

SinceY is smooth this impliespg(Y ) = q(Y ) = 0, χ(Y,OY ) = 1 and

hj(Y,OY (−Li)) = 0 1 ≤ i ≤ 2, 0 ≤ j ≤ 2

as wanted.

Proposition 2.1.8. Assume case(iii) above holds and̀ = 1. ThenR0 is an

irreducible(−2)-curve andh1 = 4+ ` = 5. Letω = e
2πi
3 be a primitive third root

of unity and leth11 andh12 be the number of curvesEi such that the eigenvalue

of the action ofZ/3Z onEi is ω andω2 respectively. Then ifω is the eigenvalue

corresponding toR0 thenh11 = 2, h12 = 3.

Proof. Since case (iii) holds from (2.5) we inferh1 = 4 + ` = 5.

We now write asĒ ′
+ andĒ ′

− the sum of the curvesE ′
i associated to the same

eigenvalueω andω2 respectively. Sinceh1 = 5 = h11 + h12 from (1.5)

3L1 ≡ B0 + E ′
+ + 2Ē ′

− + F ′ + 2H ′

and we find

L1KY =
1

3
(B0 + E ′

+ + 2Ē ′
− + F ′ + 2H ′)KY =

1

3
(4 + h11 + 2h22 + 3h2)
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=
4 + 2h1 − h11

3
+ h2 =

14− h11

3
+ 1

henceh11 ≡ 2 mod 3 that forcesh11 = 2, h12 = 3 or h11 = 5, h12 = 0. Further-

more

L2
1 =

1

9
(B0 + E ′

+ + 2Ē ′
− + F ′ + 2H ′)2 =

1

9
(−6− 3h11 − 12h22 − 15h2)

=
−6− 12h1 + 9h11 − 15h2

9
=
−81 + 9h11

9
= −9 + h11

From lemma 2.1.7 we know thatL2
1 + L1KY = −2 hence

−2 = L2
1 + L1KY = −9 + h11 +

14− h11

3
+ 1

=
14− 24 + 2h11

3
=

2h11 − 10

3

andh11 = 2.

2.2 The invariant part of the tricanonical system

Before going on, we want to better understand the properties of the curves in|N |
(which is always non-empty). In particular, in lemma 2.1.5 we have seen that

N2 = 3 andNKY = 1− 2R0KS so that

pa(N) = 1 +
N2 +NKY

2
= 1 +

3 + 1− 2R0KS

2
= 3−R0KS

Lemma 2.2.1.LetS be a numerical Godeaux surface and letΛ be a linear sub-

system of|3KS| with dim Λ ≥ 1 andΛ = A + Φ whereA is the movable part

and Φ is the fixed part ofΛ. Then the general memberA ∈ A is reduced and

irreducible and one of the following conditions is satisfied:

a) AKS = 2, ΦKS = 1,A2 = 0, 2, 4 , pa(Φ) ≤ 2

b) AKS = 3, ΦKS = 0 and eitherA2 = 1, 3, 5, 7, pa(Φ) ≤ 0 or Φ = 0.

Moreover, ifA2 = 4 thenA ∼ 2KS.

Proof. We have

3 = 3KS
2 = ΛKS = AKS + ΦKS
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Moreover, by Miyaoka [Miy] (see also lemma 1.5.2), we know thatAKS ≥ 2.

This implies eitherAKS = 2, ΦKS = 1 or AKS = 3, ΦKS = 0. In the former

case by the Index Theorem

0 ≥ (A− 2KS)
2 = A2 + 4− 8 = A2 − 4

and

0 ≥ (Φ−KS)
2 = Φ2 + 1− 2 = Φ2 − 1

which proves a). A similar argument shows b). To see the irreducibility ofA

simply observe that ifA = A1 + A2 was reducible thenA1KS, A2KS ≥ 2 and

AKS ≥ 4. Contradiction.

Proposition 2.2.2. If the linear system|N | has fixed part, then|N | = |A′| + Φ′

withA′2 = 0, 1, 2 and the general curve of|A′| is smooth.

Proof. Sinceπ∗(N) = ε∗(3KS) there is a linear subsystemΛ of |3KS| such that

ε∗(Λ) = π∗(|N |) anddim Λ = h0(Y,OY (N)) − 1 = 1 + R0KS. Thus we can

apply lemma 2.2.1 toΛ. Moreover the strict transform̃A of A is the movable part

of π∗(|N |), soÃ = π∗(A′) where|A′| is the movable part of|N |. Then

9 ≥ ε∗(A)2 ≥ Ã2 = π∗(A′)2 = 3A′2

This forcesÃ2 to be 0, 3, 6 or 9. IfÃ2 = 9 thenÃ = A and the linear systemΛ,

hence|N |, has no fixed part.

Lemma 2.2.3.The curves in|A′| satisfy

a) A′N = AKS

b) A′B0 = AR0

Proof. It is an easy computation. In the former case

3A′N = π∗(A′)π∗(N) = Ãε∗(3KS) = 3AKS

In the latter case

3A′B0 = π∗(A′)π∗(B0) = 3Ãε∗(R0) = 3AR0
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We now focus our attention on the casedim Λ = 1 + R0KS = 1 or equivalently

R0KS = 0. ThenA is a pencil andA2 is the number of base points ofA.

Remark 2.2.4. We note that, ifR0KS = 0, sinceΛ = A + Φ ≡ 3KS, for each

irreducible componentR0i ofR0 we have eitherAR0i = 0 or R0i ≤ Φ. Then

AR0 =
∑̀
i=1

AR0i ≤ AΦ

On the other hand

9 = Λ2 = A2 + 2AΦ + Φ2

and

3ΦKS = ΦΛ = AΦ + Φ2

Therefore

0 ≤ AR0 ≤ AΦ = 9− A2 − 3ΦKS

Moreover theAΦ points of intersection betweenA and Φ form an invariant set

for the action ofZ/3Z onS.

Let us write

ε∗(A) = Ã+D

with D a sum of exceptional divisors with certain multiplicities.

Remark 2.2.5. Let us write

ε∗(Φ) = Φ̃ +D′

Then there exists a divisorΦ′′ onY such thatπ∗(Φ′′) = Φ̃ and

π∗(Φ′) = Φ̃ +D +D′

This implies(D+D′)2 ≡ 0 mod 3. Moreover, the multiplicity of each curveEk,

F or H in D +D′ is a multiple of 3, since they appear in the branch locus of the

coverπ : X −→ Y andD +D′ = π∗(Φ′ − Φ̃) is a pull-back of a divisor onY .

We also remark that ifΦ = 0 we havẽΦ ≡ D′ ≡ 0 henceπ∗(Φ′) ≡ D.

Lemma 2.2.6.For each simple base point ofA which is an isolated fixed pointqj
the self-intersectioñA2 of Ã drops exactly by 2.
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Proof. The mapε : X −→ S blows up each of the pointsqj three times. For each

of the blow-ups the pre-image of each point is a fixed point under the action of the

cyclic groupZ/3Z. Let ε1 be the blow-up ofqj with exceptional divisorG1j and

ε2 andε3 the blow-ups at the fixed point ofG1j. Let alsoÃ1 be the strict transform

of A underε1 andÃ2 the strict transform ofA under the compositionε2 ◦ ε1. The

exceptional divisorG1 of the first blow-up is an invariant (but not fixed) rational

curve for this action and it has two fixed points. The other two blow-ups are based

exactly on these two points. Therefore each pointqj which is also a base point for

A is blown up twice and at each step the self-intersection of the strict transform

of A drops by 1. Moreover, we have

ε∗(A) = ε3
∗(ε2

∗(ε1
∗(A))) = ε3

∗(ε2
∗(Ã1 +G1j))

= ε3
∗(Ã2 + F2j +G2j + F2j) = Ã+ 2Fj +Gj +Hj

or, analogously,ε∗(A) = Ã + Fj + Gj + 2Hj depending on which of the fixed

points ofG1j is in Ã1.

Lemma 2.2.7.For each double base point ofA which is an isolated fixed pointqj
the self-intersectioñA2 of Ã drops at least by 5. In any case this can only happen

whenA2 ≥ 6.

Proof. We use the same argument as in the proof of lemma 2.2.6. At a first blow-

up the self-intersection of the strict transform ofA drops by 4. The pre-image

of the pointqj is composed either of two simple points, or of one point (and the

curve is tangent to the exceptional divisorG1j) or a double point. In any case we

need to blow-up again these points, since they are fixed under the action ofZ/3Z.

When we have two simple points each of the remaining blow-upsε2 andε3

drops the self-intersection by 1 and theñA2 = A2 − 6. The points in the pre-

image ofqj are no more base points for̃A and

ε∗(A) = ε3
∗(ε2

∗(ε1
∗(A))) = ε3

∗(ε2
∗(Ã1 + 2G1j))

= ε3
∗(Ã2 + F2j + 2G2j + 2F2j) = Ã+ 3Fj + 2Gj + 3Hj

When we have one non-singular pointQ without loss of generality we can

assume thatε2 is the blow-up atQ. Then

ε∗(A) = ε3
∗(ε2

∗(ε1
∗(A))) = ε3

∗(ε2
∗(Ã1 + 2G1j))

= ε3
∗(Ã2 + F2j + 2G2j + 2F2j) = Ã+ 3Fj + 2Gj + 2Hj
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hence

Ã2 = (ε∗(A)− 3Fj − 2Gj − 2Hj)
2 = A2 − 9− 12− 4 + 12 + 8 = A2 − 5

The pre-image ofqj is again a base point for̃A. This can only happen when

A2 ≥ 6.

Finally whenQ is a double point

ε∗(A) = ε3
∗(ε2

∗(ε1
∗(A))) = ε3

∗(ε2
∗(Ã1 + 2G1j))

= ε3
∗(Ã2 + 2F2j + 2G2j + 2F2j) = Ã+ 4Fj + 2Gj + 2Hj

hence

Ã2 = (ε∗(A)− 4Fj − 2Gj − 2Hj)
2 = A2 − 16− 12− 4 + 16 + 8 = A2 − 8

which is impossible unlessA2 = 9.

Lemma 2.2.8. If the generalA ∈ A has a triple point singularity at one of the

isolated fixed pointqj we haveA2 = 9 andqj is an ordinary triple point.

Proof. Assumeqj is a triple point for the generalA ∈ A. Then after a blow-up the

pre-image ofqj As in the two previous lemmas we find in the case of an ordinary

triple point

ε∗(A) = ε3
∗(ε2

∗(ε1
∗(A))) = ε3

∗(ε2
∗(Ã1 + 3G1j))

= ε3
∗(Ã2 + 3G2j + 3F2j) = Ã+ 3Gj + 3Fj + 3Hj

and then

Ã2 = A2 + (3Gj + 3Fj + 3Hj)
2 = A2 + (−27− 9− 9 + 18− 18) = A2 − 9 = 0

If qj is not an ordinary triple point, its pre-image under the first blow-up is com-

posed either of a flex, or a cusp or another triple point. In all these cases it consists

of a single pointQ that must be blown up again. Then we have

Ã2 < A2 − 9 = 0

which is impossible sincẽA is nef.

Remark 2.2.9. From remark 2.2.5 whenA2 = 9 (or equivalentlyΦ = 0) we

haveD′ = 0 and each component ofD different fromG has multiplicitym ≡ 0

mod 3. In particular if we look at the multiplicitiesαj of A at the pointsqj we

find, using lemmas 2.2.6, 2.2.7 and 2.2.8, the following possibilities:
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1. αj = 0

2. αj = 2 andqj is a node

3. αj = 3 andqj is an ordinary triple point.

Moreover the multiplicitymi of the general curveA at any of the pointspi can

be different from 0 (hencemi = 3 sincemi ≡ 0 mod 3) only whenαj = 0 for

all the pointsqj.

Remark 2.2.10.Assumepa(A′) = g. Then

A′KY = 2g − 2− A′2

On the other hand

3A′KY = π∗(A′)π∗(KY )
(2.1)
= Ã(KX − 2ε∗(R0)− 2E − 2F − 2H)

(2.2)
= Ã(ε∗(KS − 2R0) + E + 2F +G+ 2H − 2E − 2F − 2H)

= Ã(ε∗(KS − 2R0) +G− E)

= (ε∗(A)−D)(ε∗(KS − 2R0) +G− E)

= AKS − 2AR0 −DG+DE

Therefore

AKS − 2AR0 −DG+DE = 6g − 6− 3A′2 (2.15)

Lemma 2.2.11.In the above setting we haveDG = 0 except whenA2 = 9 and

the generalA ∈ A has an ordinary triple point atq. In the latter caseDG = −3.

In particular the generalA ∈ A cannot have a cusp atq.

Proof. If multqA = 0 then obviouslyDG = 0. Therefore we can assumeα :=

multqA ≥ 1. We notice that

3A′G′ = π∗(A′)π∗(G′) = ÃG = (ε∗(A)−D)G = −DG (2.16)

and thenDG ≡ 0 mod 3.

If α = 1 then from the proof of lemma 2.2.6 one hasD = 2F +G+H and

DG = (2F +G+H)G = 2− 3 + 1 = 0.

If α = 2 andD = 3F + 2G+ 3H then

DG = (3F + 2G+ 3H)G = 3− 6 + 3 = 0.
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If α = 2 andD = 3F + 2G+ 2H then

DG = (3F + 2G+ 2H)G = 3− 6 + 2 = −1

which is impossible.

Finally if α = 3 then from lemma 2.2.8D = 3F + 3G+ 3H and

DG = (3F + 3G+ 3H)G = 3− 9 + 3 = −3.

As an immediate consequence of the above lemma and of equation (2.16) we

have

Corollary 2.2.12. In the above setting we haveA′G′ = 0 unlessA2 = 9 and the

generalA has an ordinary triple point atq. ThenA′G′ = 1.

We now concentrate our analysis on the casedim Λ = 1 andh2 = 1, which is

case (iii) of the list at page 34.

Proposition 2.2.13.Assumedim Λ = 1 andh2 = 1. Then whenA′2 = 0 one of

the following possibilities holds:

eitherΦ 6= 0 and

(0a) A2 = 2, AR0 = 0, g = 1, A′KY = 0,D = E1 + E2

(0b) A2 = 2, AR0 = 1, g = 1, A′KY = 0,D = 2F +G+H

(0c) A2 = 3, AR0 = 0, g = 1, A′KY = 0,D = E1 + E2 + E3

(0d) A2 = 3, AR0 = 1, g = 1, A′KY = 0,D = E1 + 2F +G+H

(0e) A2 = 4, AR0 = 0, g = 1, A′KY = 0,D = 2E1

(0f) A2 = 5, AR0 = 0, g = 1, A′KY = 0,D = 2E1 + E2

or Φ = 0 and

(0g) A2 = 9, AR0 = 0, g = 2, A′KY = 2,D = 3F + 3G+ 3H

(0h) A2 = 9, AR0 = 0, g = 1, A′KY = 0,D = 3E1
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Proof. Let us assumeA′2 = 0. We start by consideringA2 ≤ 7. From lemma

2.2.11 we haveDG = 0. Then, ifD = uF + vG + wH +
∑h1

i=1 aiEi, (2.15)

becomes

AKS − 2AR0 −
h1∑
i=1

ai = 6g − 6 (2.17)

Let us begin withA2 = 0. ThenD = 0 and Ã = ε∗(A). Moreover from

lemma 2.2.1AKS = 2 and from remark 2.2.4 we have0 ≤ AR0 ≤ AΦ = 6.

Hence by (2.17)

2− 2AR0 = 6g − 6

and thenAR0 = 1, 4 sinceAR0 ≡ 1 mod 3. The intersection cycleA · Φ is

composed of six points with multiplicities. From remark 2.2.4 (we recall that we

are assumingR0KS = 0) these points are organized in orbits for the action of

Z/3Z. Each orbit contains either three distinct points or only one fixed point,

which can a priori be an isolated fixed point. The latter case cannot actually occur

sinceA andΦ have no isolated fixed point in common. Then we should have

AR0 ≡ 0 mod 3. Contradiction.

WhenA2 = 1 we haveAKS = 3, AR0 ≤ AΦ = 8 and from lemma 2.2.6

D = E1. Then from remark 2.2.5 we haveD′ ≥ 2E1. SinceA ·Φ is composed by

8 points with multiplicities and the only isolated fixed point inA∩Φ is p1, which

is double for the 0-cycleA · Φ, from remark 2.2.4 we haveAR0 ≡ 0 mod 3.

From (2.17) we have

2− 2AR0 = 3− 2AR0 − 1 = 6g − 6

ThenAR0 ≡ 1 mod 3 and this is impossible.

WhenA2 = 2 we haveÃ2 = 0, AKS = 2, AR0 ≤ AΦ = 4 and from lemma

2.2.6 the following possibilities forD can hold:

a)D = E1 + E2

b)D = 2F +G+H

c)D = F +G+ 2H.

In case a) from (2.17)

−2AR0 = 2− 2AR0 − 2 = 6g − 6

hence eitherAR0 = 0, g = 1, A′KY = 0 or AR0 = 3, g = 0, A′KY = −2.

Moreover by remarks 2.2.4 and 2.2.5 all the four points (counted with their multi-

plicities) inA ∩ Φ are fixed under the action ofZ/3Z andD′ ≥ 2E1 + 2E2. This

forcesAR0 = 0.
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In cases b) and c)

2− 2AR0 = 6g − 6

hence eitherAR0 = 1, g = 1, A′KY = 0 or AR0 = 4, g = 0, A′KY = −2. But

now from remarks 2.2.4, 2.2.5 and lemma 2.2.6D′ ≥ F +G+ 2H in case b) and

D′ ≥ 2F+G+H in case c) andAR0 6= 4. Then onlyAR0 = 1, g = 1, A′KY = 0

can hold.

WhenA2 = 3 we haveAKS = 3,AR0 ≤ AΦ = 6. Then one of the following

is true:

a)D = E1 + E2 + E3

−2AR0 = 3− 2AR0 − 3 = 6g − 6

hence eitherAR0 = 0, g = 1, A′KY = 0 orAR0 = 3, g = 0, A′KY = −2. From

remark 2.2.5 we haveD′ ≥ 2E1 + 2E2 + 2E3 and from remark 2.2.4AR0 = 0

sincep1, p2, p3 are double forA · Φ. ThenAR0 = 0, g = 1, A′KY = 0 holds;

b)D = E1 + 2F +G+H

2− 2AR0 = 3− 2AR0 − 1 = 6g − 6

hence eitherAR0 = 1, g = 1, A′KY = 0 orAR0 = 4, g = 0, A′KY = −2. Again

from remarks 2.2.4 and 2.2.5 we haveD′ ≥ 2E1 + F +G+ 2H andAR0 6= 4.

WhenA2 = 4 by lemma 2.2.1 we haveA ∼ 2KS thereforeAR0 = 0,AKS =

2 = AΦ. Then from (2.17) we have

h1∑
i=1

ai = 8− 6g ≡ 2 mod 3

Then one of the following is true:

a)D = E1 + E2 + 2F +G+H

0 = 2− 2 = 6g − 6

henceg = 1, A′KY = 0;

b)D = 2E1

0 = 2− 2 = 6g − 6

henceg = 1, A′KY = 0.

In the former case we haveD′ ≥ 2E1 + 2E2 +F +G+ 2H and thenAΦ ≥ 4

which is impossible.
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WhenA2 = 5 we haveAKS = 3,AR0 ≤ AΦ = 4. Then one of the following

is true:

a)D = E1 + E2 + E3 + E4 + E5

−2− 2AR0 = 3− 2AR0 − 5 = 6g − 6

henceAR0 = 2, g = 0, A′KY = −2. From remark 2.2.5 we haveD′ ≥ 2(E1 +

· · ·+ E5) and thenAΦ ≥ 10 which is impossible.

b)D = E1 + E2 + E3 + 2F +G+H

−2AR0 = 3− 2AR0 − 3 = 6g − 6

hence eitherAR0 = 0, g = 1, A′KY = 0 orAR0 = 3, g = 0, A′KY = −2. Here

D′ ≥ 2E1 + 2E2 + 2E3 + F +G+ 2H andAΦ ≥ 7. Contradiction.

c)D = 2E1 + E2

−2AR0 = 3− 2AR0 − 3 = 6g − 6

hence eitherAR0 = 0, g = 1, A′KY = 0 or AR0 = 3, g = 0, A′KY = −2.

From remarks 2.2.5 and 2.2.4 we haveD′ ≥ E1 + 2E2 and thenAR0 = 0, g =

1, A′KY = 0 holds.

WhenA2 = 7 we haveAKS = 3, AR0 ≤ AΦ = 2. The general curveA

cannot pass through more than one of the isolated fixed pointspi (sayp1). In fact,

otherwise we would haveD ≥ E1 + E2 and from remark 2.2.5 we should have

D′ ≥ 2E1 + E2 henceAΦ ≥ 4. Contradiction. Then the only possibility forD

(cf. lemmas 2.2.6, 2.2.7 and 2.2.8) is:

D = E1 + 3F + 2G+ 3H

2− 2AR0 = 3− 2AR0 − 1 = 6g − 6

henceAR0 = 1, g = 1, A′KY = 0. This is also impossible by remarks 2.2.5 and

2.2.4 sinceD′ ≥ 2E1 andAΦ = 2 forceAR0 = 0.

Finally we considerA2 = 9. We know from lemma 2.2.1 thatΦ = 0. Using

remark 2.2.4 we findAR0 = 0. Moreover from remarks 2.2.5 and 2.2.9,D′ = 0

and the generalA has either multiplicity 0 or 3 at each of the isolated fixed points

pj, and it can be 3 only if the multiplicity atq is 0. Then we have the following

possibilities forD:

a)D = 3F + 3G+ 3H:

in this caseDG = −3 from lemma 2.2.11 and (2.15) becomes

6 = 3− 0 + 3− 0 = AKS − 2AR0 −DG+DE = 6g − 6− 3A′2 = 6g − 6
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which has the only solutiong = 2, A′KY = 2.

b)D = 3E1:

equation (2.15) becomes

0 = 3− 0 + 0− 3 = AKS − 2AR0 −DG+DE = 6g − 6

which forcesg = 1, A′KY = 0.

Proposition 2.2.14.Assumedim Λ = 1 andh2 = 1. Then whenA′2 = 1 one of

the following possibilities holds:

eitherΦ 6= 0 and

(1a) A2 = 3, AR0 = 0, g = 2, A′KY = 1,D = 0

(1b) A2 = 3, AR0 = 3, g = 1, A′KY = −1,D = 0

(1c) A2 = 3, AR0 = 6, g = 0, A′KY = −3,D = 0

(1d) A2 = 5, AR0 = 0, g = 2, A′KY = 1,D = 2F +G+H

(1e) A2 = 5, AR0 = 3, g = 1, A′KY = −1,D = 2F +G+H

or Φ = 0 and

(1f) A2 = 9, AR0 = 0, g = 2, A′KY = 1,D = 3F + 2G+ 3H

Proof. Let us assumeA′2 = 1. SinceÃ2 = 3A′2 = 3 we have necessarilyA2 ≥ 3.

Again we consider at firstA2 ≤ 7. From lemma 2.2.11 we haveDG = 0. Then,

if D = uF + vG+ wH +
∑h1

i=1 aiEi, for 3 ≤ A2 ≤ 7 from (2.15) equation

AKS − 2AR0 −
h1∑
i=1

ai = 6g − 9 (2.18)

holds. We use the same argument as in the proof of proposition 2.2.13.

WhenA2 = 3 we haveAKS = 3, AR0 ≤ AΦ = 6 (see remark 2.2.4),D = 0

and

3− 2AR0 = 6g − 9

hence eitherAR0 = 0, g = 2, A′KY = 1 or AR0 = 3, g = 1, A′KY = −1 or

AR0 = 6, g = 0, A′KY = −3 .
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WhenA2 = 4 by lemma 2.2.1 we haveA ∼ 2KS thereforeAR0 = 0,AKS =

2. Then
h1∑
i=1

ai = 11− 6g ≡ 2 mod 3

which is impossible sincẽA2 = A2 − 1 = 3.

WhenA2 = 5 we haveAKS = 3, AR0 ≤ AΦ = 4. Then the following

possibilities forD can hold:

a)D = E1 + E2

1− 2AR0 = 3− 2AR0 − 2 = 6g − 9

henceAR0 = 2, g = 1, A′KY = −1. Here from remarks 2.2.4 and 2.2.5 we have

D′ ≥ 2E1 + 2E2 and this forcesAR0 = 0. Contradiction.

b)D = 2F +G+H

3− 2AR0 = 6g − 9

hence eitherAR0 = 0, g = 2, A′KY = 1 orAR0 = 3, g = 1, A′KY = −1.

WhenA2 = 7 we haveAKS = 3, AR0 ≤ AΦ = 2. Then arguing as in

the proof of proposition 2.2.13, we have to consider only the cases when only the

curveE1 appears inD with multiplicity 1 or 2. HenceD = 2E1 and

1− 2AR0 = 3− 2AR0 − 2 = 6g − 9

which impliesAR0 = 2, g = 1, A′KY = −1. But in this case remark 2.2.4 forces

AR0 = 0. Contradiction.

WhenA2 = 9 instead we haveΦ = 0 from lemma 2.2.1 and then from remark

2.2.4AR0 = 0. Since from remark 2.2.5 all the curvesEk, F ′ andH ′ must appear

with multiplicity m ≡ 0 mod 3 in D, the only possibility forD (see also remark

2.2.9) isD = 3F + 2G+ 3H. Then (2.15) becomes

3 = AKS − 2AR0 −DG+DE = 6g − 6− 3A′2 = 6g − 6− 3 = 6g − 9

that impliesg = 2, A′KY = 1.

Proposition 2.2.15.Assumedim Λ = 1 andh2 = 1. The caseA′2 = 2 cannot

occur.

Proof. SinceÃ2 = 3A′2 = 6, from lemma 2.2.1 we haveA2 ∈ {7, 9}. In all the

cases from lemma 2.2.11 we haveDG = 0 and, from (2.15), we find

AKS − 2AR0 −
h1∑
i=1

ai = 6g − 12 (2.19)
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WhenA2 = 7 we haveAKS = 3, AR0 ≤ 2,D = E1 and

2− 2AR0 = 3− 2AR0 − 1 = 6g − 12

henceAR0 = 1, g = 2, A′KY = 0. But remarks 2.2.5 and 2.2.4 forceAR0 = 0.

Contradiction.

From remark 2.2.5 we can easily see thatA2 = 9 is impossible. This is because

from lemmas 2.2.6, 2.2.7 and 2.2.8 eitherA has a triple point atq or at the points

pj, and thenA′2 = 0 or it has a node atq whenA′2 = 1.

Remark 2.2.16. There is only one possibility left out by propositions 2.2.13,

2.2.14 and 2.2.15. This is the caseA2 = 9, D = 0 or, equivalently,A′ = N .

Then from lemma 2.1.5 we knowg = 3, A′KY = NKY = 1.

Corollary 2.2.17. In the above setting, whenD = 2F + G + H +
∑

i aiEi we

findA′H ′ = 0.

Proof. It follows by a very simple observation:

3A′H ′ = π∗(A′)π∗(H ′) = Ã3H = 3(ε∗(A)−D)H

= −3DH = −3(2F +G+H +
∑
i

aiEi)H = 0.

2.3 Adjoint systems to the pencil|N |

We also state here some properties of the adjoint system|KY +N | which will be

useful later.

We know thath2(Y,OY ) = 0, soY is a regular surface, and that we have a

linear system|N | of nef and big curves onY . If we look at the adjoint system

|N +KY | from the short exact sequence

0 → OY (−N) → OY → ON → 0

using thatN is nef and big we have

h0(Y,OY (−N)) = h1(Y,OY (−N)) = 0

and

h0(Y,OY (KY +N)) = h2(Y,OY (−N)) = h1(N,ON) = pa(N) = 3−R0KS
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Then |N + KY | is a linear system of curves with arithmetic genus given by the

formulas (see also lemma 2.1.5)

(N +KY )2 = N2 +K2
Y + 2NKY = 5 +K2

Y − 4R0KS (2.20)

(N +KY )KY = K2
Y +NKY = K2

Y + 1− 2R0KS

pa(N +KY ) = 1 +
(N +KY )(N + 2KY )

2
= 4 +K2

Y − 3R0KS

Remark 2.3.1. We observe thatN +KY is not nef. In fact

(N +KY )G′
i = KYG

′
i = −1

From lemma 1.1.9 ifN + KY is not nef then every irreducible curveZ such

thatZ(N+KY ) < 0 is a(−1)-curve withZN = 0. By contracting the curves and

repeating the above argument we can see that after contracting each(−1)-cycle

onY such thatZN = 0 we get a surface on whichN and its adjoint are both nef

divisors.

Lemma 2.3.2.The numbern of (−1)-cyclesZ onY different from the ones ofG′

for whichZN = 0 is greater or equal than

35

6
R0KS −

3

2
R0

2 − 10 + 2h2

3
.

Proof. Let Z be such a cycle. Then for any other(−1)-cycleZ ′ that does not

intersectN we have by the Index Theorem 1.1.10

(Z + Z ′)2 = −1− 1 + 2ZZ ′ < 0 ⇒ ZZ ′ = 0

In particularZ does not intersect any curveG′
i.

Then

0 = ZN = Z(3KY + 2B0 + E ′ − 3G′) = −3 + 2B0Z + E ′Z (2.21)

and there is a(−3)-curveE ′
i that intersectsZ in at least 1 point. Moreover since

E ′
iN = 0 we have

(Z + E ′
i)

2 = −1− 3 + 2ZE ′
i = 2(ZE ′

i − 2) < 0

(Z − E ′
i)

2 = −1− 3− 2ZE ′
i = −2(ZE ′

i + 2) < 0

hence−1 ≤ ZE ′
i ≤ 1 for all i = 1, . . . , h1.
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We know thatN1 := N +KY −
∑n

i=1 Zi −G′ is nef and, by lemma 2.1.5,

0 ≤ (N +KY −
n∑
i=1

Zi −G′)2

= (N +KY )2 − n− h2 − 2(N +KY )(
n∑
i=1

Zi +G′)

= 5 +K2
Y − 4R0KS − n− h2 + 2n+ 2h2 = 5− 4R0KS +K2

Y + n+ h2

(2.10)
= 5− 4R0KS +

1

3
[−5− h2 +

9

2
R0

2 − 11

2
R0KS] + n+ h2

=
10 + 2h2

3
+

3

2
R0

2 − 35

6
R0KS + n

Let us setN1 := N +KY −G′ −
∑n

i=1 Zi.

2.3.1 The(−1)-cyclesZi

We now analyse the irreducible components of the above(−1)-cyclesZi.

Proposition 2.3.3. In the above setting each irreducible component of the(−1)-

cyclesZ is a curveC such thatCN = CN1 = 0.

Proof. Since we haveZN = ZN1 = 0 andN andN1 are nef, for any irreducible

componentC of Z we find

0 ≤ CN1 ≤ ZN1 = 0, 0 ≤ CN ≤ ZN = 0

and the result is proved.

Corollary 2.3.4. The curvesF ′
j andH ′

j satisfyF ′
jN1 = H ′

jN1 = 0 for any j =

1, . . . , h2. In particularF ′
j

∑n
i=1 Zi = H ′

j

∑n
i=1 Zi = 0.

Proof. SinceF ′
j andH ′

j are(−3)-curves such thatF ′
jN = 0 = H ′

jN we find

F ′
jN1 = F ′

j(N +KY −G′ −
n∑
i=1

Zi) = 1− 1−
n∑
i=1

ZiF
′
j = −

n∑
i=1

ZiF
′
j ≥ 0

and the same holds forH ′
j.
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If the curveF ′
j is contained in one of the(−1)-cyclesZi we haveF ′

jN1 = 0

from proposition 2.3.3, otherwise we haveF ′C ≥ 0 for any irreducible compo-

nentC of the cyclesZi. Then

0 ≤
n∑
i=1

ZiF
′
j ≤ 0

and the result is proved.

Corollary 2.3.5. For any irreducible curveE ′
k or B0k we find

E ′
k

n∑
i=1

Zi ≥ 0, B0k

n∑
i=1

Zi ≥ 0.

Proof. The statement is obvious ifE ′
k or B0k are not contained in any of the

(−1)-cyclesZi since then they have non-negative intersection with any irreducible

componentC of the curvesZi. On the other hand ifE ′
k is contained in some(−1)-

cycles, from proposition 2.3.3 we find

0 = E ′
kN1 = E ′

k(N +KY −G′ −
n∑
i=1

Zi) = 1− E ′
k

n∑
i=1

Zi

henceE ′
k

∑n
i=1 Zi = 1. Analogously ifB0k is contained is some cycleZi0, then

B0kN = 0 and thenB0k is a(−6)-curve onY . Hence we find

0 = B0kN1 = B0k(N +KY −G′ −
n∑
i=1

Zi) = 4−B0k

n∑
i=1

Zi

as wanted.

Let us now consider an irreducible(−1)-curveC in a cycle. Recall, from the

proof of lemma 2.3.2 and from (2.21), that there is a curveE ′
i such thatCE ′

i = 1.

On the other hand,(π∗(C))2 = 3C2 = −3 and, for eachE ′
i with CE ′

i = 1 andC

as above,

3 = π∗(CE ′
i) = 3π∗(C)Ei ⇒ π∗(C)Ei = 1

Moreover bothC andE ′
i are irreducible andC2 = −1 while E ′

i
2 = −3. Thus

it cannot beEi ≤ π∗(C). In particularπ∗(C) cannot be singular at the point

π∗(C) ∩ Ei (otherwise we should haveπ∗(C)Ei ≥ 2).

Lemma 2.3.6. If C is an irreducible(−1)-curve such thatCN = 0 andCF ′
j =

CH ′
j = 0 (j = 1, . . . , h2) thenπ∗(C) is a rational curve andπ∗(C)2 = −3.
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Proof. Suppose thatπ∗(C) = C1+C2+C3 is the union of three distinct curves and

consider the curveEi above. ThenCiCj ≥ 1 for i 6= j since the pointπ∗(Z)∩Ci
is fixed forσ . Each component ofπ∗(C) is a rational curve, so

−2 = 2pa(Ci)− 2 = Ci(Ci +KX)

Since the intersection of the componentsCi is fixed under the action ofσ , we

should have, for eachi such thatE ′
i intersectC,

1 = π∗(C)Ei = (C1 + C2 + C3)Ei = 3C1Ei

Contradiction. It follows thatπ∗(C) is an irreducible curve. We now want to show

thatpg(π∗(C)) = 0. From Hurwitz formula we have

2pg(π
∗(C))− 2 = −2 · 3 + 2r

wherer is the number of ramification points of the triple coverπ∗(C)ν −→ C.

We have2r = 2pg(π
∗(C)) + 4 ≥ 4, sor ≥ 2. On the other handr is not greater

than the number of intersection points ofC with B0 + E ′ + F ′ + H ′. We have

CF ′ = CH ′ = 0 and from (2.21) either

CB0 = CE ′ = 1

or

CB0 = 0 CE ′ = 3.

Furthermore

π∗(C)KX = π∗(C)(π∗(KY ) + 2R) = −3 + 2CB0 + 2CE ′

In the former case,r = 2 andπ∗(C)ν is a smooth rational curve. In the latter case

r = 2, 3. If r = 2 thenπ∗(C) has geometric genus 0 and it has a singular point in

π∗(C) ∩ E, and this is a contradiction sinceπ∗(C)Ei ≤ 1, i = 1, . . . , h1.

Whenr = 3, instead, sincepa(π∗(C)) = pg(π
∗(C)) = 1, π∗(C) should be a

smooth elliptic curve. When we look at the imageε(π∗(C)) of this curve onS,

sinceCE ′ = 3 (recall from the proof of lemma 2.3.2 that0 ≤ CE ′
i ≤ 1 for any

i = 1, . . . , h1) we would haveε(π∗(C))2 = π∗(C)2 − 3 = 0, and since it is an

elliptic curve,KS ε(π
∗(C)) = 0. This is impossible sinceS is a minimal surface

of general type.

Corollary 2.3.7. For any curveC as aboveCB0 = CE ′ = 1.
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We now want to determine the composition of the reducible(−1)-cycles.

Lemma 2.3.8. The curvesG′
j cannot be contained in one of the cyclesZi, i =

1, . . . , n.

Proof. If one of the cyclesZi, sayZi0 contains a curveG′
j then from corollary

2.3.4 we have

0 = F ′
j

n∑
i=1

Zi = F ′
jG

′
j+F

′
j(Zi0−G′

j)+F
′
j

∑
i6=i0

Zi = 1+F ′
j(Zi0−G′

j)+F
′
j

∑
i6=i0

Zi

henceF ′
j is contained either inZi0 or in another cycleZi with i 6= i0. In this latter

case we have

0 = G′
jZi = G′

j(Zi − F ′
j) +G′

jF
′
j = G′

j(Zi − F ′
j) + 1

henceG′
j is also contained inZi.

Then there exists a cycle containing bothG′
j andF ′

j. The same argument holds

for H ′
j. In particularF ′

j andH ′
j are both contracted to make the adjoint divisor to

N a nef divisor.

When we contract the curveG′
j the images ofF ′

j andH ′
j are two(−2)-curves

meeting at one point. Since they are both contracted there is a(−1)-cycleC inter-

secting at least one of them at one point. IfC passes through the intersection point

of the (−2)-curves, then by contractingC we obtain a cycle which is composed

of two (−1)-curves meeting at one point. In particular this cycle is effective with

self-intersection 0 and it does not intersect the imageN̄ of N contradicting the

Index theorem 1.1.10.

This implies thatC is a (−1)-cycle which intersects at one point only one of

the curvesF ′
j orH ′

j. We will assume without loss of generalityCF ′
j = 1.

We show the lemma by reducing ourselves to the case whenC is an irreducible

(−1)-curve henceC = Z1. This is always possible after the contraction of a

suitable number of(−1)-curves. In this case we have the configurations of figure

2.1 hencen ≥ 3. Moreover we have

Z1N = Z1(3KY + 2B0 + E ′ − 3G′) = −3 + 2B0Z1 + E ′Z1

SinceZ1 is irreducible then eitherB0Z1 = 0, E ′Z1 = 3 orB0Z1 = 1, E ′Z1 =

1. By the Index theorem, sinceE ′
kN = ZiN = 0 for all k = 1, . . . , h1, i =
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Z1 Z1 G′
j

F ′
j

Z1 G′
j

H′
j

F ′
j

Figure 2.1:

1, . . . , n, we have−1 ≤ E ′
kZi ≤ 1. For any curveE ′

k such thatE ′
kZ1 = 1 we find

(see also corollary 2.3.5)

0 ≤ E ′
k

n∑
i=1

Zi = 1− E ′
kN1 ≤ 1

and

E ′
k

n∑
i=1

Zi = 3E ′
kZ1 + E ′

k(
∑
i≥4

Zi) = 3 + E ′
k(
∑
i≥4

Zi) ≤ 1

ThenE ′
k is contained in some(−1)-cycleZi i ≥ 4. ThenE ′

k is contracted too

and one of the cycles has the configuration of figure 2.2.

Z1 G′
j

E′
k

H′
j

F ′
j

Figure 2.2:

When we contract the curvesZ1 andG′
j the images ofE ′

k andH ′
j are(−2)-

curves while the image ofF ′
j is a(−1)-curve intersecting them at one point. Hence

when we contract the(−1)-curve we obtain two(−1)-curve meeting at one point.

This new configuration has self-intersection 0 and cannot be contracted to a point.

Thus we get a contradiction and the curveG′
j cannot be contained in a cycle.
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Corollary 2.3.9. The curvesF ′
j andH ′

j are not contained in any of the(−1)-

cyclesZi.

Proof. If a curveF ′
j (orH ′

j) is contained in a cycleZi then

0 = G′
jZi = G′

j(Zi − F ′
j) +G′

jF
′
j = G′

j(Zi − F ′
j) + 1

henceG′
j is also contained inZi. This contradicts lemma 2.3.8.

Lemma 2.3.10.There is no cycleZi, 1 ≤ i ≤ n containing at least two curves

E ′
k.

Proof. Let us assume that two of the curvesE ′
k, sayE ′

1 andE ′
2 are contained in

a reducible cycleZi0 . ThenE ′
kN1 = 0 impliesE ′

k

∑
i Zi = 1 and there are two

(−1)-cyclesZ1 andZ2 such thatE ′
1Z1 = 1, E ′

2Z2 = 1.

Then we have the configuration of figure 2.3 whereC is a suitable cycle. One

Z1 Z2 E′
1 E′

2

Z1 Z2

C _______________

Figure 2.3:

can easily see that, in order to contractE ′
1 (and analogouslyE ′

2), the configura-

tions of figure 2.4 are(−1)-cycles. Then we have

−1 = (C + E ′
2 + Z2)

2 = C2 − 3− 1 + 2CE ′
2 + 2 = C2 + 2CE ′

2 − 2

C

�
�
�
�
�
�
�
�
�

Z2

E′
2

Z1 C

�
�
�
�
�
�
�
�
�

E′
1

Figure 2.4:
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hence

C2 + 2CE ′
2 = 1 (2.22)

and, analogously,

C2 + 2CE ′
1 = 1 (2.23)

Moreover

−1 = Z2
3 = (Z1 + E ′

1 + C + E ′
2 + Z2)

2

= −1− 3 + C2 − 3− 1 + 2 + 2CE ′
1 + 2CE ′

2 + 2

= −4 + C2 + 2CE ′
1 + 2CE ′

2

(2.22)
= −3 + 2CE ′

2

ThusCE ′
2 = 1 = CE ′

1, C
2 = −1. ThenC is a(−1)-cycle not intersectingN

hence by the Index theorem 1.1.10 we should haveCZ3 = 0. But

CZ3 = C(Z1 + E ′
1 + C + E ′

2 + Z2) = 0 + 1 + C2 + 1 = 2− 1 = 1

and we get a contradiction.

Corollary 2.3.11. If there is a reducible cycleZi0, thenn ≥ 3 and forn = 3 we

have one of the following possibilities:

1. two irreducible(−1)-curvesZ1 andZ2 andZ3 = Z1 + Z2 + E ′
k where

E ′
kZ1 = E ′

kZ2 = 1;

2. only one irreducible(−1)-curveZ1, Z2 = Z1 + C, Z3 = C + 2Z1 + E ′
k

whereC is a (−2)-curve intersectingZ1 at one point andE ′
k is such that

E ′
kZ1 = 1.

Proof. From lemmas 2.3.8 and 2.3.10 ifn ≤ 2 a reducible(−1)-cycle can contain

at most one curveE ′
k and it does not contain any curveG′

j. Hence there is at least

an irreducible curveZ1. Then forn = 1 the result is proved. Forn = 2 if Z2 was

reducible thenZ2 ≥ Z1. Then there exists a curveE ′
k which intersectsZ1 at one

point and

E ′
k(Z1 + Z2) = E ′

k(2Z1 + (Z2 − Z1)) = 2 + E ′
k(Z2 − Z2) ≤ 1

This is only possible whenE ′
k is contained inZ2. But then there is at least another

(−1)-cycleZ3 which intersectsE ′
k at one point and which does not intersectN

contradicting the assumptionn = 2.
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Whenn = 3 we can apply the above argument and we can see that ifZ3 is

a reducible cycle then there is at least an irreducible(−1)-cycleZ1. Hence, we

have one of the following configurations:

Z1 Z2 Z1 Z2

E′
k

Z1 Z1

C

C E′
k

Z1

whereC is an irreducible(−2)-curve.

2.3.2 The linear systems|Ni|

We now compute the arithmetic genus ofN1: from equation (2.20) of page 47 we

know thatN2
1 = 5− 4R0KS +K2

Y + n+ h2 while from lemma 2.1.5

N1KY = (N +KY −
n∑
i=1

Zi −G′)KY = NKY +K2
Y + n+ h2

= 1− 2R0KS +K2
Y + n+ h2

so

pa(N1) = 1 +
N2

1 +N1KY

2
(2.24)

= 1 +
5− 4R0KS +K2

Y + n+ h2 + 1− 2R0KS +K2
Y + n+ h2

2

= 4− 3R0KS +K2
Y + n+ h2 ≤ N2

1

since0 ≤ R0KS ≤ 1. |N1| is again a linear system of nef curves, so when

pa(N1) ≥ 1 we can apply the same argument as in page 47 to study the adjoint

system|N1 + KY |. Under this hypothesesN1 is nef and big and we find again

h0(Y,OY (N1 +KY )) = pa(N1) ≥ 1. N1 +KY is not nef since the curvesZi and



56 Chapter 2. Preliminary results

G′
i do not intersectN1, but there could be some other(−1)-cyclesZ ′

i such that

Z ′
iN1 = 0 (see lemma 1.1.9). Then

N2 := N1 +KY −
n∑
i=1

Zi −G′ −
n′∑
j=1

Z ′
j

is nef and

N2
2 = (N1 +KY −

n∑
i=1

Zi −G′ −
n′∑
j=1

Z ′
j)

2

= N2
1 +K2

Y + 2N1KY − n− h2 − n′ + 2n+ 2h2 + 2n′

= 5− 4R0KS +K2
Y + n+ h2 +K2

Y + 2(1− 2R0KS +K2
Y + n+ h2)+

+ n+ h2 + n′

= 7− 8R0KS + 4K2
Y + 4n+ 4h2 + n′ ≥ 0

N2KY = (N1 +KY −
n∑
i=1

Zi −G′ −
n′∑
j=1

Z ′
j)KY = N1KY +K2

Y + n+ h2 + n′

= 1− 2R0KS +K2
Y + n+ h2 +K2

Y + n+ h2 + n′

= 1− 2R0KS + 2K2
Y + 2n+ 2h2 + n′

and then

pa(N2) = 1 +
N2

2 +N2KY

2
(2.25)

= 1 +
7− 8R0KS + 4K2

Y + 4n+ 4h2 + n′

2
+

+
1− 2R0KS + 2K2

Y + 2n+ 2h2 + n′

2

= 5− 5R0KS + 3K2
Y + 3n+ 3h2 + n′

We also remark that

NN1 = N(N +KY −
n∑
i=1

Zi −G′) = N(N +KY ) (2.26)

= 2pa(N)− 2 = 6− 2R0KS − 2 = 4− 2R0KS

N1N2 = N1(N1 +KY −
n∑
i=1

Zi −G′ −
n′∑
j=1

Z ′
j) = N1(N1 +KY ) (2.27)
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= 2pa(N1)− 2 = 8− 6R0KS + 2K2
Y + 2n+ 2h2 − 2

= 6− 6R0KS + 2K2
Y + 2n+ 2h2

Moreover whenpa(N2) ≥ 1 andN2
2 > 0 we can repeat the above argument.

We findh0(Y,OY (N2 + KY )) = pa(N2) and there are(−1)-cyclesZ ′′
i such that

Z ′′
i N2 = 0 and

N3 := N2 +KY −G′ −
n∑
i=1

Zi −
n′∑
i=1

Z ′
i −

n′′∑
i=1

Z ′′
i

is nef. Let us also compute self-intersection and arithmetic genus ofN3:

N2
3 = (N2 +KY −G′ −

n∑
i=1

Zi −
n′∑
i=1

Z ′
i −

n′′∑
i=1

Z ′′
i )

2 (2.28)

= N2
2 +K2

Y + 2N2KY + h2 + n+ n′ + n′′

= 7− 8R0KS + 4K2
Y + 4n+ 4h2 + n′ +K2

Y +

+ 2(1− 2R0KS + 2K2
Y + 2n+ 2h2 + n′) + h2 + n+ n′ + n′′

= 9− 12R0KS + 9K2
Y + 9h2 + 9n+ 4n′ + n′′

N3KY = (N2 +KY −G′ −
n∑
i=1

Zi −
n∑
i=1

Z ′
i −

n∑
i=1

Z ′′
i )KY (2.29)

= N2KY +K2
Y + h2 + n+ n′ + n′′

= 1− 2R0KS + 2K2
Y + 2n+ 2h2 + n′ +K2

Y + h2 + n+ n′ + n′′

= 1− 2R0KS + 3K2
Y + 3h2 + 3n+ 2n′ + n′′

pa(N3) = 1 +
N2

3 +N3KY

2

= 1 +
9− 12R0KS + 9K2

Y + 9h2 + 9n+ 4n′ + n′′

2
+

+
1− 2R0KS + 3K2

Y + 3h2 + 3n+ 2n′ + n′′

2

= 6− 7R0KS + 6K2
Y + 6h2 + 6n+ 3n′ + n′′

Moreover

N2N3 = 2pa(N2)− 2 = 2(5− 5R0KS + 3K2
Y + 3n+ 3h2 + n′)− 2
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= 8− 10R0KS + 6K2
Y + 6h2 + 6n+ 2n′ ≥ 0

We can collect all these computations in the following proposition

Proposition 2.3.12.In the above setting let us defineN0 := N . Then the numeri-

cal data of the curvesN1, N2, N3 are:

i = 1 i = 2

N2
i 5− 4R0KS +K2

Y + n+ h2 7− 8R0KS + 4K2
Y + 4n+ 4h2 + n′

NiKY 1− 2R0KS +K2
Y + n+ h2 1− 2R0KS + 2K2

Y + 2n+ 2h2 + n′

pa(Ni) 4− 3R0KS +K2
Y + n+ h2 5− 5R0KS + 3K2

Y + 3n+ 3h2 + n′

Ni−1Ni 4− 2R0KS 6− 6R0KS + 2K2
Y + 2n+ 2h2

i = 3

N2
i 9− 12R0KS + 9K2

Y + 9h2 + 9n+ 4n′ + n′′

NiKY 1− 2R0KS + 3K2
Y + 3h2 + 3n+ 2n′ + n′′

pa(Ni) 6− 7R0KS + 6K2
Y + 6h2 + 6n+ 3n′ + n′′

Ni−1Ni 8− 10R0KS + 6K2
Y + 6h2 + 6n+ 2n′



Chapter 3

Numerical analysis of the possible

cases

3.1 Case (i):R0KS = 1, h2 = 3

Lemma 3.1.1. In case (i) we find

(a) h1 ≥ 1

(b) no positive multiple ofKS − 2R0 is an effective divisor.

Proof. (a) SinceR0KS = 1, there exists a unique irreducible componentΓ of

R0 for whichΓKS = 1. Using the index theorem we findΓ2 ≤ 1. The other

irreducible components ofR0 are(−2)-curves. Then

R0
2 ≤ Γ2 ≤ 1

But nowh2 = 3 therefore from (2.5)

h1 =
3R0KS −R0

2

2
≥ 1.

(b) Note thatKS(KS − 2R0) = −1 whileKS is nef.

Lemma 3.1.2. Suppose case (i) holds andR0 is the disjoint union of an irre-

ducible componentΓ with ΓKS = 1 and of` (−2)-curves. Then

K2
Y = −4− 3`+

3Γ2 − 1

2
≤ −3.

59
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Proof. It is an easy computation which uses formula (2.10) of page 29:

K2
Y =

1

3
(KS

2 − 6− h2 −
11

2
R0KS +

9

2
R0

2) =
1

3
(−8− 11

2
+

9

2
Γ2 − 9`)

=
1

3
(−12 +

9Γ2 − 3

2
− 9`) = −4− 3`+

3Γ2 − 1

2
.

Lemma 3.1.3. In the above setting we have0 ≤ ` ≤ (5 + Γ2)/2.

Proof. Sinceπ : X −→ Y is a surjective map we have an injectionH2(Y,C) −→
H2(X,C). In particular we finde(X) = 12 − K2

X ≥ e(Y ) = 12 − K2
Y hence

K2
Y ≥ K2

X . Thus from lemma 3.1.2 and lemma 3.1.1

−4− 3`+
3Γ2 − 1

2
= K2

Y ≥ K2
X = KS

2 − (h1 + 3h2) = 1− 3− Γ2

2
− `− 9

hence

2` ≤ −4 + 9− 1 +
3Γ2 − 1

2
+

3− Γ2

2
= 5 + Γ2

as wanted.

As an immediate consequence of the above lemma and of lemma 3.1.2 we find

Corollary 3.1.4. In the above setting we haveK2
Y ≥ −12.

Corollary 3.1.5. In the above setting we haveh1 ≤ 4.

Proof. We have

h1 =
3R0KS −R0

2

2
=

3− Γ2

2
+ ` ≤ 3− Γ2

2
+

5 + Γ2

2
= 4.

Proposition 3.1.6.Assume case (i) holds. ThenY is a rational surface.

Proof. By Castelnuovo’s criterion 1.1.12, sinceq(Y ) ≤ q(X) = q(S) = 0, we

need to show thatP2(Y ) = h0(Y,OY (2KY )) = 0. We have

π∗(2KY − 2G′) = 2KX − 4R− 2G = ε∗(2KS) + 2E + 4F + 2G+ 4H+

− (4ε∗(R0) + 4E + 4F + 4H)− 2G = ε∗(2KS − 4R0)− 2E

Since2KYG
′
i = −2 < 0, we find

0 ≤ h0(Y,OY (2KY )) = h0(Y,OY (2KY − 2G′)) ≤
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≤ h0(X,OX(ε∗(2KS − 4R0)− 2E))

But using lemma 3.1.1 we find

h0(X,OX(ε∗(2KS − 4R0)− 2E)) ≤ h0(X,OX(ε∗(2KS − 4R0))) =

= h0(S,OS(2KS − 4R0)) = 0

and then

h0(Y,OY (2KY )) = h0(Y,OY (2KY − 2G′)) = 0.

Corollary 3.1.7. In the above setting ifΓ2 = 1 thenTors(S) = Z/3Z.

Proof. SinceΓKS = 1 = KS
2 from the Index theorem 1.1.10 we findΓ2 ≤ 1.

If it was Γ2 = 1 then we should haveΓ ∼ KS and then3Γ ∼ 3KS. Let us set

Γ′ := π(ε∗(Γ)). Then onY we have

Γ′ ∼ N

which impliesΓ′ ≡ N sinceY is rational.

The pull-backπ∗ of π : X −→ Y is injective sinceπ is a surjective map and

Y is a rational surface. Using lemma 2.1.5 we find

ε∗(3Γ) ≡ π∗(Γ′) ≡ π∗(N) ≡ ε∗(3KS).

ThusS has a non-trivial 3-torsion element and from theorem 1.5.5 we have

Tors(S) = Z/3Z.

WhenΓ2 6= 1 we can show a weaker result.

Proposition 3.1.8. If case (i) holds the numerical Godeaux surfaceS has no 2-

torsion element.

Proof. From theorem 1.5.5 we know thatTors(S) is a cyclic group of orders ≤ 5.

If a 2-torsion elementη exists, then it is unique since a cyclic group of order 2 or

4 has one and only one element of order two.

ThenS has an unramified double coverS ′. MoreoverS ′ has an involution

τ such thatS = S ′/ < τ >. Sinceη is the only 2-torsion element ofS it is

fixed under the action of the order three automorphismσ . Then we can extend
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σ to an automorphism of order 3̃σ on S ′ such that̃στ = τ σ̃. Then we blow

up onS ′ the isolated fixed points for the action ofσ̃. The new surfaceX ′ is

clearly an unramified double cover of our surfaceX. It is easy to see, since

gcd(2, 3) = 1, that the quotientY ′ = X ′/(Z/3Z) is also an unramified double

cover ofY . But then we get a contradiction sinceY is a rational surface ad it has

no torsion element.

From now on we use the same notation as in lemma 2.3.2. From proposition

2.3.12 we have

pa(N1) = 4− 3R0KS +K2
Y + n+ h2 = 4 +K2

Y + n = N2
1 (3.1)

NN1 = 4− 2R0KS = 2 (3.2)

Lemma 3.1.9. In the above setting we haveN2
1 = 0, 1.

Proof. SinceN2 = 3 we have by the Index Theorem 1.1.10

0 ≥ (3N1 − 2N)2 = 9N2
1 + 4N2 − 12N1N

(3.2)
= 9N2

1 + 12− 24 = 9N2
1 − 12

which impliesN2
1 = 0, 1.

Let us write|N1| = |∆|+ T , where|∆| is the movable part andT is the fixed

part of|N1|. SinceN1, ∆,N are nef divisors,

0 ≤ ∆N ≤ N1N = 2

In particular it cannot be∆N = 0 otherwise, by the Index Theorem 1.1.10 and

the rationality ofY , ∆ = 0 whereash0(Y,OY (∆)) = h0(Y,OY (N1)) = 2. Thus

1 ≤ ∆N ≤ N1N = 2

Lemma 3.1.10.SupposeN2
1 = 0. Then|N1| has no fixed part.

Proof. We have0 = N2
1 = N1∆ +N1T or, equivalently,

0 = N1∆ = ∆2 + ∆T

0 = N1T = ∆T + T 2

which implies∆2 = ∆T = T 2 = 0.

It cannot beN∆ = 1 = NT : we obtain by the Index Theorem

0 ≥ (∆− T )2 = ∆2 + T 2 − 2∆T = 0 ⇒ ∆ ∼ T
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SinceY is a rational surface, this implies∆ ≡ T which is impossible.

SoN∆ = NN1 = 2 and then

0 ≥ (N1 −∆)2 = T 2 = 0

Again, by the rationality ofY we haveT ≡ 0 and|N1| has no fixed part.

Lemma 3.1.11.SupposeN2
1 = 1. Then|N1| has no fixed part unless∆2 =

0, pa(∆) = pa(N1) = 1 and either∆N = 1, N = N1 + ∆ or ∆N = 2, N1 =

∆ + Zi for some reducible(−1)-cycleZi.

Proof. We know that1 = N2
1 = N1∆ +N1T .

It cannot beN1∆ = 0, otherwise by the Index Theorem 1.1.10 and the ratio-

nality of Y it should be∆ = 0, which is impossible.

Then we haveN1∆ = 1,N1T = 0, and this impliesT 2 ≤ 0. WhenT 2 = 0 we

see that|N1| has no fixed part, as wanted, whereas whenT 2 is strictly negative,

by

1 = N1∆ = ∆2 + ∆T (3.3)

0 = N1T = ∆T + T 2 (3.4)

we find∆T = 1, T 2 = −1, ∆2 = 0. Then by (3.1)

N2
1 = ∆2 + T 2 + 2∆T = 1 = pa(N1)

andN1KY = −N2
1 = −1. We now look atN∆.

If N∆ = 2 we have

1 = N1∆ = (KY +N −
n∑
i=1

Zi −G′)∆ = ∆KY + 2− (
n∑
i=1

Zi +G′)∆

which amounts to say

0 ≤ (
n∑
i=1

Zi +G′)∆ = 1 + ∆KY

So the followings are true:

a)∆KY ≥ 0

b) there exists a(−1)-curveC (which can be either one of theZi’s or one of

theG′
i’s) which intersects∆ positively.
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Using b) and the fact thatCN = TN = 0, the Index theorem 1.1.10 implies

0 ≥ (T − C)2 = T 2 + C2 − 2TC = −2− 2TC

ThenTC ≥ −1, whereasCN1 = 0 impliesCT ≤ −1. This forcesTC = −1,

T ≡ C.

But for any irreducible such curveC there is a curveD such thatDN1 = 0

which intersectsC at one point, i.e.D = E ′
j for theZi andD = F ′

i for G′
i (see

corollary 2.3.7), so that

0 = DN1 = D∆ +DC = D∆ + 1

which contradicts the nefness of∆. ThenN1 ≡ ∆ + Zi with Zi a reducible

(−1)-cycle.

We are now left with the caseN∆ = 1. SinceNN1 = 2 we haveNT = 1.

MoreoverN1∆ = 1 and∆2 = 0 by (3.3) and (3.4). From(N1 + ∆)N = 3 = N2

we have

0 ≥ (N1 + ∆−N)2 = N2
1 + ∆2 +N2 + 2N1∆− 2N1N − 2N∆

= 1 + 0 + 3 + 2− 4− 2 = 0

thenN ≡ N1 + ∆ ≡ 2∆ + T . Then

∆KY = (N −N1)KY = −1 + 1 = 0 ⇒ pa(∆) = 1

as wanted.

Corollary 3.1.12. We have

n = N2
1 + 3`+

1− 3Γ2

2
≤ N2

1 + 8 ≤ 9.

Proof. From corollary 3.1.4 we know thatK2
Y ≥ −12. From (3.1) and lemma

3.1.9 we find

n = N2
1 − 4−K2

Y ≤ N2
1 − 4 + 12 = N2

1 + 8 ≤ 9

Moreover from lemma 3.1.2

n = N2
1 − 4−K2

Y = N2
1 − 4− (−4− 3`+

3Γ2 − 1

2
) = N2

1 + 3`+
1− 3Γ2

2
.
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Remark 3.1.13.We note that from the above corollary

n = N2
1 + 3`+

1− 3Γ2

2
= N2

1 + 3`+ 3
1− Γ2

2
− 1 ≡ N2

1 − 1 mod 3

In particular whenN2
1 = 0 we findn ≡ 2 mod 3 hencen = 2, 5 or 8, while

whenN2
1 = 1 we haven ≡ 0 mod 3 hencen = 3, 6 or 9.

Lemma 3.1.14.In the above setting the pencil|∆| determines a fibrationϕ|∆| :

Y 99K P1. Let us set

δ :=
∑
s

(e(∆s)− e(∆))

where the sum is taken over all the singular curves∆s ∈ |∆|. Thenδ satisfies

18 ≤ δ = 12 + 3N2
1 + n+ ∆2 ≤ 16 + n

In particular if N2
1 = 0 thenn = 8.

Proof. Away from its∆2 base points, the pencil|∆| determines onY a fibration

over P1 of curves of genus0 ≤ pa(∆) = N2
1 ≤ 1. Computing Euler numbers

from proposition 1.1.3 we find

12−K2
Y + ∆2 = e(Y ) + ∆2 = 2(2− 2N2

1 ) +
∑
s

(e(∆s)− e(∆))

where∆s are the singular curves of|∆|. Let us set

δ :=
∑
s

(e(∆s)− e(∆))

Then

δ = 12−K2
Y + ∆2 − 4 + 4N2

1

= 12− (N2
1 − 4− n) + ∆2 − 4 + 4N2

1

= 12 + 3N2
1 + n+ ∆2 ≤ 16 + n

Recall that from lemma 1.1.4 a curve with self-intersection−m in a singular

fibre contributesm to δ.

Let us first consider the curvesF ′
i andH ′

i. From lemma 2.3.2 we find

F ′
iN1 = F ′

i (N +KY −
n∑
i=1

Zi −G′) = 0 + 1 + 0− 1 = 0
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and the same holds forH ′
i.

Moreover ifN1 ≡ ∆+T with T 6= 0 from the above proof, sinceN ≡ N1+∆

we also find

0 = F ′
iN = F ′

i (N1 + ∆) = F ′
i∆

and, again, the same holds forH ′
i.

If N1 ≡ ∆ + Zi instead we find from corollary 2.3.9

0 = F ′
iN1 = F ′

i (∆ + Zi) ≥ F ′
i∆

henceF ′
i∆ = H ′

i∆ = 0 in any case.

Then from lemma 1.1.4 each of the curvesF ′
i andH ′

i contributes 3 toδ, hence

δ ≥ 6h2 = 18.

If N2
1 = 0 then∆ ≡ N1

18 ≤ δ = 12 + 3N2
1 + n+ ∆2 = 12 + n

hencen ≥ 6. In particular from remark 3.1.13 we can deducen = 8.

Proposition 3.1.15.Case (i) cannot occur withN2
1 = 0.

Proof. Let us assumeN2
1 = 0. Then from lemma 3.1.14

18 ≤ δ = 12 + n = 12 + 8 = 20

If all the eight cyclesZi were irreducible then we should haveZiN1 = 0 hence

from lemma 1.1.4 each of them would contribute 1 toδ. Thus18+n = 26 ≤ δ =

20. Contradiction.

If one of the cycles is reducible, then from lemma 2.3.8, corollary 2.3.9 and

lemma 2.3.10 there is a curveE ′
k contained in that cycle and from lemma 1.1.4

E ′
k increasesδ by 3. Then

18 + 3 = 21 ≤ δ = 20

and, again, we get a contradiction.

From remark 3.1.13 we know that whenN2
1 = 1 we haven = 3, 6, 9.

Proposition 3.1.16.The case|N1| = |∆|+Zi withZi reducible(−1)-cycle cannot

occur.
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Proof. From the proof of lemma 3.1.11 we know that∆N = NN1 = 2,∆G′ = 0

and∆2 = ∆KY = 0. Hence

2 = N∆ = ∆(3KY + 2B0 + E ′ − 3G′) = 2B0∆ + E ′∆

Since∆ is nef we find eitherB0∆ = 1, E ′∆ = 0 or B0∆ = 0, E ′∆ = 2. We

recall thatB0 = Γ′ +
∑`

i=1B0i with B2
0i = −6,B0i

∼= P1.

Case I: B0∆ = 1, E ′∆ = 0.

Since none of the(−3)-curvesE ′
k intersects∆, each of them contributes 3

to δ (see lemma 1.1.4). Moreover there is only one irreducible component ofB0

which intersects∆.

If Γ′∆ = 1 then we also have the contribution of` irreducible(−6)-curves of

B0. Then, using lemma 1.1.4 and corollary 3.1.12,

18 + 3h1 + 6` = 18 + 3(
3− Γ2

2
+ `) + 6` ≤ δ = 12 + 3N2

1 + n+ ∆2

= 15 + n = 15 +N2
1 + 3`+

1− 3Γ2

2
= 16 + 3`+

1− 3Γ2

2

hence

2 + 6` ≤ 1− 3Γ2

2
+

3Γ2 − 9

2
= −4

and we get a contradiction.

If Γ′∆ = 0 we have necessarilyΓ′2 ≤ 0 (henceΓ2 ≤ −1 on the numerical

Godeaux surfaceS) and there is a(−6)-curveB0k in B0 such thatB0k∆ = 1. In

particular` ≥ 1. ThenΓ′ contributes−Γ′2 = −3Γ2 to δ and we can also consider

`− 1 (−6)-curvesB0i, i 6= k, plus theh1 curvesE ′
k. Thus

18− 3Γ2 + 6(`− 1) + 3h1 = 12 + 6`− 3Γ2 +
9− 3Γ2

2
+ 3` ≤ δ

= 15 + n = 16 + 3`+
1− 3Γ2

2

hence

6` ≤ 4 +
1− 3Γ2

2
+

3Γ2 − 9

2
+ 3Γ2 = 3Γ2 < 0

Contradiction.

Case II: B0∆ = 0, E ′∆ = 2.

SinceΓ′∆ = 0 we find Γ′2 ≤ 0 henceΓ2 ≤ −1 on S. In particularh1 =
3−Γ2

2
+` ≥ 2. All the irreducible components ofB0 andh1−2 curvesE ′

k contribute
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to δ. Thus

18− 3Γ2 + 6`+ 3(h1 − 2) = 12 + 6`− 3Γ2 +
9− 3Γ2

2
+ 3` ≤ δ

= 15 + n = 16 + 3`+
1− 3Γ2

2

hence

6` ≤ 4 +
1− 3Γ2

2
+

3Γ2 − 9

2
− 3Γ2

and as before we get a contradiction.

Proposition 3.1.17.The caseN ≡ N1 + ∆ cannot occur.

Proof. From the proof of lemma 3.1.11 we know that∆N = 1, NN1 = 2,∆G′ =

0 and∆2 = ∆KY = 0. Hence

1 = N∆ = ∆(3KY + 2B0 + E ′ − 3G′) = 2B0∆ + E ′∆

From the nefness of∆ we findB0∆ = 0, E ′∆ = 1. SinceΓ′∆ = 0 we find

Γ′2 ≤ 0 henceΓ2 ≤ −1 onS. In particularh1 = 3−Γ2

2
+ ` ≥ 2. All the irreducible

components ofB0 andh1 − 1 curvesE ′
k contribute toδ. Thus from lemma 1.1.4

and corollary 3.1.12

18− 3Γ2 + 6`+ 3(h1 − 1) = 15 + 6`− 3Γ2 +
9− 3Γ2

2
+ 3` ≤ δ

= 12 + 3N2
1 + n+ ∆2 = 15 + n

= 15 +N2
1 + 3`+

1− 3Γ2

2
= 16 + 3`+

1− 3Γ2

2

hence

6` ≤ 1 +
1− 3Γ2

2
+

3Γ2 − 9

2
− 3Γ2 = −3 + 3Γ2 < 0

and we get a contradiction.

Thus from lemma 3.1.11, propositions 3.1.16 and 3.1.17 we immediately find

Corollary 3.1.18. In the above setting the pencil|N1| has no fixed part.

Proposition 3.1.19.Case (i) withN2
1 = 1 can only occur whenn = 6 and either

Γ2 = −3 and` = 0 or Γ2 = −1 and` = 1. In particular Γ2 = 1 cannot occur.

Moreover all the curvesE ′
k intersectN1 at one point.



3.1. Case (i):R0KS = 1, h2 = 3 69

Proof. From the above corollary we have∆ ≡ N1. Sincepa(N1) = N2
1 = 1 (cf.

(3.1)) we know thatNN1 = 2, N1G
′ = 0 andN2

1 = 1, N1KY = 0. Hence

2 = NN1 = N1(3KY + 2B0 + E ′ − 3G′) = −3 + 2B0N1 + E ′N1

Moreover, from proposition 2.3.3,

0 ≤ E ′
kN1 = E ′

k(N +KY +G′ −
∑
i

Zi) = 0 + 1− E ′
k

∑
i

Zi ≤ 1

hence from corollary 3.1.50 ≤ E ′N1 ≤ h1 ≤ 4. Then eitherB0N1 = 2, E ′N1 =

1 orB0N1 = 1, E ′N1 = 3.

Case I: B0N1 = 2, E ′N1 = 1.

All the (−3)-curvesE ′
k, except for one, have no intersection withN1 hence

each of them contributes (from lemma 1.1.4) 3 toδ. Moreover there are at most

two irreducible components ofB0 which intersectN1.

If Γ′N1 = 2 then we have the contribution of` irreducible(−6)-curves ofB0.

Then, using lemmas 1.1.4, 3.1.14 and corollary 3.1.12,

18 + 3(h1 − 1) + 6` = 18 + 3(
3− Γ2

2
+ `− 1) + 6` ≤ δ

= 12 + 3N2
1 + n+ ∆2 = 16 + n

= 16 +N2
1 + 3`+

1− 3Γ2

2
= 17 + 3`+

1− 3Γ2

2

hence

6` ≤ 2 +
1− 3Γ2

2
+

3Γ2 − 9

2
= −2

and we get a contradiction.

If Γ′N1 = 1 then there is a(−6)-curveB0k which intersectsN1 at one point.

Hence we have the contribution of` − 1 irreducible(−6)-curves ofB0. Then,

using lemmas 1.1.4, 3.1.14 and corollary 3.1.12,

18 + 3(h1 − 1) + 6(`− 1) = 18 + 3(
3− Γ2

2
+ `− 1) + 6`− 6 ≤ δ

= 16 + n = 17 + 3`+
1− 3Γ2

2

hence

6` ≤ 8 +
1− 3Γ2

2
+

3Γ2 − 9

2
= 4

which forces̀ = 0 while we know` ≥ 1. Contradiction.
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If Γ′N1 = 0 we have necessarilyΓ′2 ≤ 0 (henceΓ2 ≤ −1 on the numerical

Godeaux surfaceS) and there is at least one(−6)-curveB0k in B0 such that

B0kN1 ≥ 1. In particular̀ ≥ 1. ThenΓ′ contributes−Γ′2 = −3Γ2 to δ. If ` ≥ 2

we can also consider̀− 2 (−6)-curvesB0i, i 6= k, plus theh1 − 1 curvesE ′
k.

Thus

18− 3Γ2 + 6(`− 2) + 3(h1 − 1) = 3 + 6`− 3Γ2 +
9− 3Γ2

2
+ 3` ≤ δ

= 16 + n = 17 + 3`+
1− 3Γ2

2

hence

6` ≤ 14 +
1− 3Γ2

2
+

3Γ2 − 9

2
+ 3Γ2 = 10 + 3Γ2 ≤ 7

which forces̀ ≤ 1 contradicting the assumptioǹ≥ 2.

If ` = 1 then we only have the contribution ofΓ′ and ofh1 − 1 curvesE ′
k.

Then

18− 3Γ2 + 3h1 − 3 = 18− 3Γ2 +
9− 3Γ2

2
+ 3`− 3

= 18− 3Γ2 +
9− 3Γ2

2
≤ δ = 17 + 3`+

1− 3Γ2

2
= 20 +

1− 3Γ2

2

which forces

0 ≤ 2 +
1− 3Γ2

2
+

3Γ2 − 9

2
+ 3Γ2 = −2 + 3Γ2 < −2

Contradiction.

Case II: B0N1 = 1, E ′N1 = 3.

In this case only one irreducible component ofB0 intersectsN1. Moreover

since0 ≤ E ′
kN1 ≤ 1 we inferh1 ≥ 3.

If Γ′N1 = 1 then we have the contribution of all the(−6)-curves inB0 and of

h1 − 3 curvesE ′
k. Thus

18 + 3(h1 − 3) + 6` = 9 +
9− 3Γ2

2
+ 3`+ 6` ≤ δ

= 16 + n = 17 + 3`+
1− 3Γ2

2

hence

6` ≤ 8 +
1− 3Γ2

2
+

3Γ2 − 9

2
= 4



3.1. Case (i):R0KS = 1, h2 = 3 71

which implies` = 0. Since

h1 =
3− Γ2

2
+ ` =

3− Γ2

2
≥ 3

we findΓ2 ≤ −3. FromΓ2 + ΓKS ≥ −2 it follows Γ2 = −3, h1 = 3 and, from

corollary 3.1.12,n = 1 + 1−3Γ2

2
= 6.

If Γ′N1 = 0 we find Γ′2 ≤ 0 henceΓ2 ≤ −1 on S. As before we have

h1 = 3−Γ2

2
+` ≥ 3. Moreover there is exactly one of the(−6)-curves ofB0 which

intersectsN1. Thus

18− 3Γ2 + 6`− 6 + 3(h1 − 3) = 3 + 6`− 3Γ2 +
9− 3Γ2

2
+ 3` ≤ δ

= 16 + n = 17 + 3`+
1− 3Γ2

2

hence

6` ≤ 14 +
1− 3Γ2

2
+

3Γ2 − 9

2
+ 3Γ2 = 10 + 3Γ2 ≤ 7

forces` = 1 andΓ2 = −1. Then

h1 =
3− Γ2

2
+ ` =

3− Γ2

2
+ 1 = 3

and

n = N2
1 + 3`+

1− 3Γ2

2
= 1 + 3 + 2 = 6.

We now show the following

Proposition 3.1.20.Case (i) withN2
1 = 1 andn = 6 cannot occur.

Proof. Let us assumeN2
1 = 1 andn = 6. Then from lemma 3.1.14

18 ≤ δ = 12 + 3N2
1 + n+ ∆2 ≤ 16 + n = 16 + 6 = 22

If all the six cyclesZi were irreducible then each of them would not intersect

N1 and∆. Then from lemma 1.1.4 they would contribute1 · 6 = 6 to δ hence

18 + 6 = 24 ≤ δ ≤ 22

and we would get a contradiction.
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Let us assume there is at least one reducible cycle. Then one of the irreducible

(−1)-curves, sayZ1, appears with multiplicitym1 ≥ 2 in
∑

i Zi. For any curve

E ′
k such thatE ′

kZ1 = 1 we find

E ′
k

∑
i

Zi = E ′
k(miZ1 + (

∑
i

Zi −miZ1)) = mi + E ′
k(
∑
i

Zi −miZ1)

It follows thatE ′
k is contained in some cycleZi, i ≥ 2 and then from proposition

2.3.3E ′
kN1 = 0 contradicting proposition 3.1.19.

The results of propositions 3.1.15, 3.1.16, 3.1.17, 3.1.19 and 3.1.20 can be

summarized in the following theorem.

Theorem 3.1.21.Case (i) cannot occur.

3.2 Case (ii):R0KS = 0, h2 = 4

Assume case (ii) holds. From proposition 2.1.6 and formula (2.11) we have

2 = h0(Y,OY (2KY +B)) ≤ h0(X,OY (2KX −R)) ≤ h0(X,OX(2KX)) = 2

which implies thatR0 is in the fixed part of|2KS|. Then the number̀ of disjoint

(−2)-curves that formR0 is greater or equal than 2. In fact

h1 + 8 = h1 + 2h2 = 6 +
3R0KS −R0

2

2
= 6 + `

which forcesh1 = `− 2 and` ≥ 2.

Let M be an effective divisor in the movable part of the pencil|2KS − R0|.
ThenM is in the movable part of the bicanonical system|2KS| = |M | + T and,

by lemma 1.5.2 (see also [Miy]), eitherM2 = 0 or M2 = 2. In any case the

general curve of|M | is smooth.

From theorem 1.5.4 we can exclude the caseM2 = 0.

The strict transform̃M of M satisfiesM̃ = π∗(M ′) for some pencil|M ′| on

Y . This impliesM̃2 ≡ 0 mod 3. ThereforeM̃2 = 0. We have

ε∗(M) = M̃ +D

whereD is a sum of exceptional divisors.
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SinceM2 = 2 thenD 6= 0 and the general curveM , see lemma 2.2.6, passes

either through one of theh2 = 4 points qi (without loss of generality we may

assume it isq1) with multiplicity m1 = 1, whilem2 = m3 = m4 = 0 hence

D = 2F +G+H

or through two of the pointspj (if ` ≥ 4) hence

D = E1 + E2.

In any case

pa(M̃) = 1 +
M̃2 + M̃KX

2
= 3 = pa(M)

and we havẽMKX = 4.

Lemma 3.2.1. |M ′| is a pencil of elliptic curves withM ′2 = 0.

Proof. We have

3M ′KY = π∗(M ′)π∗(KY ) = M̃(KX − 2ε∗(R0)− 2E − 2F − 2H)

=

4− 2MR0 − 2 = 2− 2MR0 if D = 2F +G+H

4− 2MR0 − 4 = −2MR0 if D = E1 + E2

and thenMR0 ≡ 0, 1 mod 3. Since0 ≤ MR0 ≤ MT = 2 we getMR0 = 0, 1

henceM ′KY = 0. SinceM ′2 = 0 this proves the lemma.

Theorem 3.2.2.Case (ii) cannot occur.

Proof. Let us consider onY the fibration overP1 given by the elliptic pencil|M ′|.
From proposition 1.1.3 we have

e(Y ) = e(M ′)e(P1) +
∑
s

(e(M ′
s)− e(M ′)) = e(M ′)e(P1) + δ (3.5)

where the sum is taken over all the singular curvesM ′
s in |M ′| and we set

δ :=
∑
s

(e(M ′
s)− e(M)).

Sincee(M ′) = 0 and from (2.6)

e(Y ) = 12−K2
Y = 12 + 3 + 3` = 15 + 3`
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we findδ = 15 + 3`.

The generalM on S passes only through at most one of the pointsqj. Then

we have

F ′
2M

′ = F ′
3M

′ = F ′
4M

′ = H ′
2M

′ = H ′
3M

′ = H ′
4M

′ = 0

and each of these disjoint curves contributes 3 toδ by lemma 1.1.4. Moreover

since0 ≤ MR0 ≤ 1 (see the above proof) we have at least` − 1 irreducible

componentsB0i of B0 which do not intersectM ′. Each curveB0i contributes 6

more nodes toδ. Therefore

6 · 3 + 6(`− 1) = 12 + 6` ≤ δ = 15 + 3`

which forces̀ ≤ 1 and we get a contradiction since we know` ≥ 2.

3.3 Case (iii):R0KS = 0, h2 = 1

In this case, from formula (2.5),h1 = 4 + ` where` is the number of irreducible

components ofR0 .

Proposition 3.3.1. If case (iii) holds thenY is a rational surface.

Proof. We know thatq(Y ) ≤ q(X) = q(S) = 0. Then from Castelnuovo’s

theorem 1.1.12 we only need to show thatP2(Y ) = h0(Y,OY (2KY )) = 0. Then,

since we are in case (iii),

h0(Y,OY (2KY )) ≤ h0(Y,OY (2KY +B)) = 0.

Then the same argument of proposition 3.1.8 holds and we can show

Proposition 3.3.2. In the above setting the numerical Godeaux surfaceS has no

2-torsion element.

We still have the pencil|N | = |A′| + Φ′ which is composed of curves of

arithmetic genus 3. Off theA′2 base pointsϕ|A′| is a fibration overP1 of curves of

genus0 ≤ pa(A
′) ≤ 2. Computing Euler numbers we obtain

e(Y ) + A′2 = e(A′)e(P1) +
∑
s

(e(A′
s)− e(A′)) = e(A′)e(P1) + δ (3.6)
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where the sum is taken over all the singular curvesA′
s in |A′| and we set

δ =
∑
s

(e(A′
s)− e(A′)).

Lemma 3.3.3. In the above setting each of the exceptional curvesE ′
k, F

′ andH ′

which does not intersectA′ increasesδ by 3. Moreover each componentB0i ofB0

for whichB0iA
′ = 0 increasesδ by 6.

Proof. For any curveC such thatCA′ = 0 we have

(A′ − C)C = −C2

and, by lemma 1.1.4,C increases by at least−C2 the Euler numberδ associated

to ϕ|A′|. Therefore whenC = E ′
k, F

′, H ′ we add 3 toδ, whereas whenC = B0i

we add 6.

Lemma 3.3.4. In the above setting we have

δ = 14 + 3`+ 3A′2 + 2A′KY .

Proof. Let us compute, using (2.10),

e(Y ) + A′2 = 12−K2
Y + A′2

= 12− 1

3
[KS

2 − 6− h2 +
9

2
R0

2 − 11

2
R0KS] + A′2

= 12− 1

3
[KS

2 − 6− 1− 9`] + A′2 = 14 + A′2 + 3`

while

e(A′)e(P1) = (2− 2 · pa(A′))2 = 2(−A′2 − A′KY )

Therefore we have

δ =
∑
s

(e(A′
s)− e(A′)) = 14 + 3`+ 3A′2 + 2A′KY

as wanted.

Proposition 3.3.5. AssumeA′2 = 0. Then0 ≤ ` ≤ 1 and we havè = 0 only

when(0a), (0c), (0f) or (0g) holds and̀ = 1 only when(0d) holds. Moreover

cases(0b), (0e) and(0h) of the list of proposition 2.2.13 cannot occur.
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Proof. We refer to the list of proposition 2.2.13. We have from lemma 3.3.4

δ = 14 + 3`+ 2A′KY

We haveA′KY = 0 in all cases of the list except for(0g).

In case(0a) we have to considerF ′, H ′ andh1 − 2 = 2 + ` curvesE ′
k, plus

all the components ofB0. Then

6 + 3(2 + `) + 6` = 12 + 9` ≤ δ = 14 + 3`

which forces̀ = 0.

In case(0b) we find` ≥ 1 and we have the contribution of the curvesE ′
k, H

′

(see corollary 2.2.17) and of`− 1 components ofB0. Then

3(4 + `) + 3 + 6(`− 1) = 9 + 9` ≤ δ = 14 + 3`

which implies6` ≤ 5. Impossible.

In case(0c) we have the contribution ofF ′, H ′ andh1 − 3 = 1 + ` of the

curvesE ′
k, plus all the components ofB0. Then

6 + 3(1 + `) + 6` = 9 + 9` ≤ δ = 14 + 3`

which forces̀ = 0.

In case(0d) we find` ≥ 1 and we have the contribution ofH ′, of h1−1 = 3+`

of the curvesE ′
k, plus that of̀ − 1 components ofB0. Then

3(3 + `) + 3 + 6(`− 1) = 6 + 9` ≤ δ = 14 + 3`

which forces̀ = 1.

In case(0e) we have the contribution ofF ′, H ′ and ofh1 − 1 = 3 + ` of the

curvesE ′
k, plus that of all the components ofB0. Then

6 + 3(3 + `) + 6` = 15 + 9` ≤ δ = 14 + 3`

which is impossible.

In case(0f) we have the contribution ofF ′, H ′ and ofh1 − 2 = 2 + ` of the

curvesE ′
k, plus that of all the components ofB0. Then

6 + 3(2 + `) + 6` = 12 + 9` ≤ δ = 14 + 3`

which forces̀ = 0.
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In case(0h) we have the contribution ofF ′, H ′ and ofh1 − 1 = 3 + ` of the

curvesE ′
k, plus that of all the components ofB0. Then

6 + 3(3 + `) + 6` = 15 + 9` ≤ δ = 14 + 3`

which is impossible.

Finally we consider case(0g). Then

3A′F ′ = π∗(A′)π∗(F ′) = 3ÃF = 3(ε∗(A)−D)F = −3DF

= −3(3F + 3G+ 3H)F = −3(−3 + 3) = 0

and analogouslyA′H ′ = 0. Then we have the contribution ofF ′, H ′ and of all the

curvesE ′
k andB0i. Consequently

6 + 3(4 + 3`) + 6` = 18 + 9` ≤ δ = 14 + 3`+ 2A′KY = 18 + 3`

which forces̀ = 0.

Proposition 3.3.6.AssumeA′2 = 1. Then0 ≤ ` ≤ 3. If (1f) holds theǹ = 0, 1.

If (1e) holds theǹ = 1, 2, 3. If (1a) or (1d) holds theǹ = 0. Cases(1b) and

(1c) of the list of proposition 2.2.14 cannot occur.

Moreover in case(1e) for each irreducible componentB0k of B0 we find

B0kA
′ ≥ 1.

Proof. We refer to the list of proposition 2.2.14. From lemma 3.3.4 we have

δ = 14 + 3`+ 3A′2 + 2A′KY = 17 + 3`+ 2A′KY

We haveA′KY = 1 in cases(1a), (1d) and(1f) of the above list.

If (1a) holds all the irreducible components ofB0 and all the exceptional

curvesF ′, H ′, E ′ contribute toδ. Then

6 + 6`+ 3(4 + `) = 18 + 9` ≤ δ = 19 + 3`

This can be satisfied only when` = 0. If (1d) holds all the components ofB0,H ′

(see corollary 2.2.17) and all the curvesE ′
k contribute toδ. Thus

6`+ 3 + 3(4 + `) = 15 + 9` ≤ δ = 19 + 3`

hencè = 0.
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If (1f) holds all the components ofB0 and the curvesE ′
k contribute toδ.

Hence

6`+ 3(4 + `) = 12 + 9` ≤ δ = 19 + 3`

forces` = 0, 1.

We haveA′KY = −1 in cases(1b) and(1e) of the list.

If (1b) holds, all the exceptional curvesF ′, H ′, E ′ contribute toδ and we have

also to consider a certain number0 ≤ h ≤ `− 1 of irreducible components ofB0

(this can only happen wheǹ≥ 1). Then

6 + 3(4 + `) + 6h = 18 + 3`+ 6h ≤ δ = 15 + 3`

which is impossible.

When(1e) holds,` ≥ 1 and we have to consider the curvesE ′
k, H

′ and0 ≤
h ≤ `− 1 irreducible components ofB0. Then

3(4 + `) + 3 + 6h = 15 + 3`+ 6h ≤ δ = 15 + 3`

henceh = 0 and1 ≤ ` ≤ 3. In particular, for any irreducible componentB0k of

B0 we haveB0kA
′ ≥ 1.

Finally we haveA′KY = −3 only in case(1c) when` ≥ 1. In this case all

the exceptional curvesF ′, H ′, E ′ contribute toδ and we also have0 ≤ h ≤ `− 1

components ofB0. Then

6 + 3(4 + `) + 6h = 18 + 3`+ 6h ≤ δ = 11 + 3`

which is impossible.

From proposition 2.2.15 it cannot beA′2 = 2. Then (see remark 2.2.16) we

are left with the caseA′ = N .

Proposition 3.3.7.AssumeA′ = N . Then0 ≤ ` ≤ 1.

Proof. WhenA′ = N from lemmas 2.1.5 and 3.3.4 we have

δ = 14 + 3`+ 3N2 + 2NKY = 14 + 3`+ 9 + 2 = 25 + 3`.

All the exceptional curvesF ′, H ′ andE ′
k contribute toδ as all the irreducible

components ofB0 do. Then

6 + 3(4 + `) + 6` = 18 + 9` ≤ δ = 25 + 3`

which forces̀ = 0, 1.
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As a consequence of propositions 2.2.13, 2.2.14, 2.2.15, 3.3.5, 3.3.6, 3.3.7 and

of remark 2.2.16 we obtain

Theorem 3.3.8.Case (iii) of page 34 can only occur when one of the following

conditions is satisfied:

1. ` = 0

– Cases(0a), (0c), (0f), (0g)

– Cases(1a), (1d), (1f)

– A′ = N

2. ` = 1

– Case(0d)

– Cases(1e), (1f)

– A′ = N

3. ` = 2

– Case(1e)

4. ` = 3

– Case(1e).

Moreover in cases(0g), (1f) andA′ = N we haveΦ = 0, i.e. the invariant

pencilΛ ≤ |3KS| has no fixed part.
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More on the caseR0KS = 0, h2 = 1

We recall that from a numerical analysis we are left only with the caseR0KS = 0,

h2 = 1 for which the following possibilities can hold:

1. R0 = 0

2. R0 is a union of̀ ≤ 3 smooth irreducible(−2)-curves

Moreover there is a pencil|N | on the rational surfaceY whose general element is

a nef and big curve of genus 3 (see proposition 3.3.1 and lemma 2.1.5).

We also note that from (2.5)h1 = 4 + ` and from (2.10)

K2
Y =

1

3
[KS

2−6−h2 +
9

2
R0

2− 11

2
R0KS] =

1

3
[1−6−1−9`] = −2−3` (4.1)

From now on we refer to the formulas of proposition 2.3.12 when computing the

arithmetic data of the curves in the linear systems|N |, |N1|, |N2|, |N3|.

We start by computingN2
1 andpa(N1):

N2
1 = 5− 4R0KS +K2

Y +n+ h2 = 5− 2− 3`+n+ 1 = 4− 3`+n ≥ 0 (4.2)

pa(N1) = 4−3R0KS +K2
Y +n+h2 = 4−2−3`+n+1 = 3−3`+n = N2

1 −1

(4.3)

Moreover we have the following

Lemma 4.0.9. In the above setting we have3`− 4 ≤ n ≤ 3`.

Proof. Let us consider the short exact sequence of sheaves

0 −→ OY (N −N1) −→ OY (N) −→ ON1(N) −→ 0 (4.4)

81
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Then, sinceY is a rational surface, from the definition ofN1,

h2(Y,OY (N −N1)) = h0(Y,OY (KY −N +N1))

= h0(Y,OY (2KY −G′ −
n∑
i=1

Zi)) ≤

≤ h0(Y,OY (2KY )) = 0

MoreoverN −N1 cannot be effective, otherwise

3 = h0(Y,OY (N1)) ≤ h0(Y,OY (N)) = 2

The long exact sequence of (4.4) gives therefore

0 −→ H0(Y,OY (N)) −→ H0(N1,ON1(N)) −→ H1(Y,OY (N −N1)) −→ 0

0 −→ H1(N1,ON1(N)) −→ 0

This forcesH1(N1,ON1(N)) = 0. SinceN1 is big and nef, hence 1-connected,

h0(N1,ON1(N)) = χ(ON1(N)) = 1+NN1−pa(N1) = 5−3+3`−n = 2+3`−n

Then

2 = h0(Y,OY (N)) ≤ h0(N1,ON1(N)) = 2 + 3`− n

and3`− 4 ≤ n ≤ 3` as wanted (see formula (4.2)).

Remark 4.0.10. When` = 0 one can easily see thatn = 3` = 0 is the only

possibility forn.

We will see in the following sections that a deeper study of the adjoint linear

systems|Ni| to the pencil|N | onY allows us to collect the cases listed in theorem

3.3.8 into two main groups

Definition 4.0.11. We callruled casesthose for which one of the linear systems

|Ni| induce a morphismY −→ Fa for somea ≥ 0.

Definition 4.0.12. We callDel Pezzo casesthose which are not ruled cases.

Moreover in section 4.6 we will show that not all the cases listed in theorem

3.3.8 can actually occur.
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4.1 n = 3`− 4

Proposition 4.1.1. In the casen = 3` − 4 the net|N1| has no fixed part and we

have|N1| = |2Θ| where|Θ| is a pencil of rational curves withΘ2 = 0.

Proof. Assume thatn = 3`− 4. Then|N1| is a net of curves withN2
1 = 0. Let us

write |N1| = |∆|+ T whereT and|∆| are the fixed and the movable part of|N1|
respectively. Then0 ≤ ∆2 ≤ ∆N1 ≤ N2

1 hence∆N1 = 0 and

0 = N1∆ = ∆2 + T∆

0 = N1T = ∆T + T 2

It follows ∆2 = ∆T = T 2 = 0. Therefore there exists a pencil|Θ| such that

|∆| = |2Θ|. Then

4 = NN1 = 2NΘ +NT

andNΘ ≥ 1 otherwise by the Index Theorem and the rationality ofY we have

Θ ≡ 0. If NΘ = 1,NT = N∆ = 2 then

(∆− T )2 = ∆2 + T 2 − 2∆T = 0

hence∆ ≡ T which is impossible. ThusNΘ = 2 andNT = 0 which forces

T = 0 by the Index Theorem.

Therefore we haveN1 = ∆ and

−1 = pa(N1) = pa(∆) = pa(2Θ) = 1 +
2Θ(2Θ +KY )

2
= 1 + ΘKY

forcesΘKY = −2. Then|Θ| is a pencil of rational curves.

Theorem 4.1.2.The casen = 3`− 4 cannot occur.

Proof. If n = 3` − 4 ≥ 0 we havè ≥ 2 and we are in case(1e) of proposition

2.2.14 (see also theorem 3.3.8). Therefore we have a pencil of elliptic curves|A′|
for which A′2 = 1. Then, from proposition 4.1.1, lemmas 2.2.1 and 2.2.3 and

corollary 2.2.12,

2A′Θ = A′N1 = A′(N +KY −G′ −
n∑
i=1

Zi)

= 3− 1− A′
n∑
i=1

Zi = 2− A′
n∑
i=1

Zi ≤ 2
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andA′N1 ≥ 1 by the Index Theorem 1.1.10, whenceA′N1 = 2 andA′Θ = 1.

We haveh0(A′,OA′(Θ)) = 2 since otherwise the pointA′ ∩ Θ should be a

base point for the pencil|Θ|, whereasΘ2 = 0. Then we get a contradiction since

for any divisorD of degree 1 on the smooth elliptic curveA′ h0(A′,OA′(D)) =

1.

4.2 n = 3`− 3

In this case we have1 ≤ ` ≤ 3 and from equations (4.2) and (4.3) we findN2
1 = 1

andpa(N1) = 0.

Lemma 4.2.1.If n = 3`−3 then|N1| has no fixed part. Then the general element

of |N1| is a smooth rational curve.

Proof. We can use the same argument as in lemma 3.1.11 and we find that|N1|
has no fixed part unless|N1| = |∆|+T with ∆2 = 0,∆N1 = ∆T = 1, T 2 = −1.

Since∆2 = 0 and|∆| is a net, there exists a pencil|Θ| such that∆ ≡ 2Θ. But

then

1 = ∆T = 2ΘT

and we get a contradiction.

In this setting|N1| is base point free and we have a birational morphismϕ|N1| :

Y −→ P2.

Theorem 4.2.2.The casen = 3`− 3 cannot occur whenΦ 6= 0 and` = 1.

Proof. Assumen = 3` − 3 and` = 1. Thenn = 0 and when we contract the

curveG′ we get a rational surfaceW such that

K2
W = K2

Y + 1 = −2− 3`+ 1 = −4.

Let us consider onW the imagesN̄ andN̄1 of N andN1 respectively. Since,

as we have already seen,|N̄1| gives a birational morphismϕ|N̄1| : W −→ P2, the

plane image of|N̄1| is the net of lines ofP2.

In this setting, the plane image of|N̄ | is the linear system of quartics through

13 points, which has virtual dimension14− 13 = 1.
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Let us also assumeΦ 6= 0. From theorem 3.3.8 either case(0d) of proposition

2.2.13 or case(1e) of proposition 2.2.14 holds. In any case, see the proofs of

propositions 3.3.5 and 3.3.6, we have

B0kA
′ ≥ 1

for all the irreducible componentsB0k of B0. Then

B0kΦ
′ = B0k(N − A′) = −B0kA

′ ≤ −1

and we can deduceB0 ≤ Φ′.

We now compute

B0N1 = B0(N +KY −G′) = 0 + 4`− 0 = 4

while from the nefness ofN1 and ofA′ we should have

B0N1 ≤ Φ′N1 = (N − A′)N1 = NN1 − A′N1 = 4− A′N1 ≤ 3.

Contradiction.

Whenn ≥ 3`− 2 it makes sense to consider|N2| = |N1 +KY −
∑n

i=1 Zi −
G′ −

∑n′

j=1 Z
′
j| which is a linear system of dimension3 − 3` + n = pa(N1) ≤ 3

and3− 3`+ n ≥ 1 and from proposition 2.3.12

N2
2 = 7− 8R0KS + 4K2

Y + 4n+ 4h2 + n′ = 7− 8− 12`+ 4n+ 4 + n′

= 3− 12`+ 4n+ n′

pa(N2) = 5− 5R0KS + 3K2
Y + 3n+ 3h2 + n′ = 5− 6− 9`+ 3n+ 3 + n′

= 2− 9`+ 3n+ n′ (4.5)

N1N2 = 2pa(N1)− 2 = 2(3− 3`+ n)− 2 = 4− 6`+ 2n

4.3 n = 3`− 2

In this case1 ≤ ` ≤ 3 and we haveN1N2 = 0 and by the Index Theorem 1.1.10

we inferN2 ≡ 0. Then from (4.5)n′ = N2
2 − 3 + 12`− 4n = 5 and

N1 ≡
∑n

i=1 Zi +G′ +
∑5

j=1 Z
′
j −KY

N ≡ 2
∑n

i=1 Zi + 2G′ +
∑5

j=1 Z
′
j − 2KY (4.6)

2B0 + E ′ ≡ 2
∑n

i=1 Zi + 5G′ +
∑5

j=1 Z
′
j − 5KY
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4.4 n = 3`− 1

This case can happen for1 ≤ ` ≤ 3. We haveN1N2 = 2, N2
1 = 3 (cf. equations

(4.2), (4.3) and (4.5)) and sinceN1(3N2 − 2N1) = 0 then

(3N2 − 2N1)
2 = 9N2

2 + 4N2
1 − 12N1N2 = 9N2

2 + 12− 24 = 9N2
2 − 12 ≤ 0

Hence from (4.5)0 ≤ N2
2 = n′ − 1 ≤ 1 andn′ = 1, 2.

Lemma 4.4.1. If N2
2 = 0 (i.e. n′ = 1) then|N2| has no fixed part. In particular

the general member of|N2| is a smooth rational curve with self-intersection 0.

Proof. Let us write|N2| = |∆|+T with |∆| andT the movable and the fixed part

of N2 respectively. We have0 = N2
2 = N2∆ +N2T or, equivalently,

0 = N2∆ = ∆2 + ∆T

0 = N2T = ∆T + T 2

which implies∆2 = ∆T = T 2 = 0.

We know thatN1N2 = 2. Then0 ≤ N1∆ ≤ N1N2 = 2. It cannot beN1∆ = 0

otherwise, by the index theorem and the rationality ofY , ∆ = 0.

It cannot beN1∆ = 1 = N1T : we obtain by the Index Theorem

0 ≥ (∆− T )2 = ∆2 + T 2 − 2∆T = 0 ⇒ ∆ ∼ T

SinceY is a rational surface, this implies∆ ≡ T which is impossible.

SoN1∆ = N1N2 = 2 and then

0 ≥ (N2 −∆)2 = T 2 = 0

Again, by the rationality ofY we haveT ≡ 0 and|N2| has no fixed part.

Then there exists a morphismY −→ Fa for somea ≥ 0.

If n′ = 2 then|N2| is a pencil of curves with arithmetic genus 1 and therefore

N3 ≡ 0. But now from proposition 2.3.12

N2
3 = 9− 12R0KS + 9K2

Y + 9h2 + 9n+ 4n′ + n′′

= 9− 18− 27`+ 9 + 27`− 9 + 8 + n′′ = n′′ − 1 = 0

Then

N2 ≡ G′ +
∑n

i=1 Zi +
∑2

i=1 Z
′
i + Z ′′ −KY
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N1 ≡ 2G′ + 2
∑n

i=1 Zi + 2
∑2

i=1 Z
′
i + Z ′′ − 2KY

N ≡ 3G′ + 3
∑n

i=1 Zi + 2
∑2

i=1 Z
′
i + Z ′′ − 3KY

2B0 + E ′ ≡ N + 3G′ − 3KY ≡ 6G′ + 3
∑n

i=1 Zi + 2
∑2

i=1 Z
′
i + Z ′′ − 6KY

4.5 n = 3`

In this case we have0 ≤ ` ≤ 3. NowN2
1 = 4 = N1N2 and

N2
2 = n′ + 3 ≥ 3

By the Index theorem

(N1 −N2)
2 = N2

1 +N2
2 − 2N1N2 = 4 + n′ + 3− 8 = n′ − 1 ≤ 0

Moreover ifn′ = 1 we haveN1 ≡ N2 and then

KY ≡ G′ +
n∑
i=1

Zi + Z ′

which is impossible sinceKY is not effective. This impliesn′ = 0, N2
2 = 3 and

pa(N2) = 2.

If we look atN3 we have (see also proposition 2.3.12)

N2
3 = 9−12R0KS+9K2

Y +9h2+9n+4n′+n′′ = 9−18−27`+9+27`+n′′ = n′′

pa(N3) = 6−7R0KS+6K2
Y +6h2+6n+3n′+n′′ = 6−12−18`+6+18`+n′′ = n′′

SinceN2N3 = 2pa(N2)− 2 = 2 we have

(3N3 − 2N2)
2 = 9N2

3 + 4N2
2 − 12N2N3 = 9n′′ − 12 ≤ 0

Thenn′′ = 0, 1. In the former case|N3| is a pencil of rational curves of self-

intersection 0 (see also the formulas of proposition 2.3.12), whereas in the latter

case we have a pencil of curves with arithmetical genus one. Again we infer

N4 = N3 +KY −G′ −
n∑
i=1

Zi − Z ′′ −
n′′′∑
i=1

Z ′′′
i ≡ 0.

Then

N2
4 = N2

3 +K2
Y + 2N3KY + 1 + n+ n′ + n′′ + n′′′
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= 1− 2− 3`− 2 + 1 + 3`+ 1 + n′′′ = n′′′ − 1 = 0

Therefore

N3 ≡ G′ +
∑n

i=1 Zi + Z ′′ + Z ′′′ −KY

N2 ≡ 2G′ + 2
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 2KY

N1 ≡ 3G′ + 3
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 3KY

N ≡ 4G′ + 4
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 4KY

2B0 + E ′ ≡ 7G′ + 4
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 7KY

In case|N3| is a pencil of rational curves we can show arguing as in lemma

4.4.1 that|N3| has no fixed part.

Therefore we have a mapY −→ Fa for somea ≥ 0.

4.6 Further results

Proposition 4.6.1.Case(1e) of proposition 2.2.14 cannot occur.

Proof. Assume case(1e) holds. ThenY has an elliptic pencil|A′| with A′2 = 1.

From lemma 1.1.9 ifA′ +KY is not nef then there exist(−1)-cyclesDj such that

DjA
′ = 0. Moreover by the Index theorem 1.1.10 we have

A1 = A′ +KY −
∑
j

Dj ≡ 0 (4.7)

We now look at the intersection numbers := A′N1: we have (cf. corollary

2.2.12)

A′N1 = A′(N +KY −G′ −
n∑
i=1

Zi) = 3− 1− A′
n∑
i=1

Zi = 2− A′
n∑
i=1

Zi ≥ 1

otherwiseN1 ≡ 0. Moreover from theorem 4.1.2 we have1 ≤ N2
1 ≤ 4 (cf.

sections 4.2, 4.3, 4.4 and 4.5).

Then by the Index theorem 1.1.10 we haveA′(N1 − sA′) = 0 and

(N1 − sA′)2 = N2
1 + s2A′2 − 2sN1A

′ = N2
1 − s2 ≤ 0
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Then if s = 1 we should haveN2
1 = 1 and, from the rationality ofY , N1 ≡ A′

which is impossible since|A′| is a pencil whereas|N1| is a net. HenceA′N1 = 2

andA′∑n
i=1 Zi = 0. Moreover, whenN2

1 = 4 (or, equivalently,n = 3`) we get,

because of the rationality ofY ,

N1 ≡ 2A′

which is impossible since then (see lemma 2.1.5 and proposition 2.2.14)

4 = NN1 = 2NA′ = 6.

Hence in case(1e) we can only haven = 3`− 1, n = 3`− 2 or n = 3`− 3.

SinceA′N1 = 2, all the curvesZi do not intersectA′. Therefore from (4.7)

A1 = A′ +KY −G′ −
n∑
i=1

Zi −
m∑
j=1

Cj ≡ 0

and

0 = A2
1 = A′2 +K2

Y + 2A′KY + 1 + n+m (4.8)

= 1− 2− 3`− 2 + 1 + n+m = n− 2− 3`+m

hencem = 3`− n+ 2.

We also know that in case(1e) for any irreducible componentB0k of B0 we

haveB0kA
′ ≥ 1 (see proposition 3.3.6). MoreoverA′N = 3,Φ′N = 0. Then

0 = B0kN = B0k(A
′ + Φ′) ≥ 1 +B0kΦ

′

for anyk = 1, . . . , ` forcesB0 ≤ Φ′.

We recall that

N1KY = (N +KY −G′ −
n∑
i=1

Zi)KY = 1− 2− 3`+ 1 + n = n− 3`

Then we find

0 = A1N1 = N1(A
′ +KY −G′ −

n∑
i=1

Zi −
m∑
j=1

Cj)

= 2 + n− 3`−N1

m∑
j=1

Cj ≤ n− (3`− 2)
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This excludesn = 3`− 3.

Whenn = 3`− 2 all them = 3`− n + 2 = 4 curvesCj do not intersectN1.

Hence they are 4 of then′ = 5 curvesZ ′
i. SinceN2 ≡ A1 ≡ 0 we find

N1 ≡
n∑
i=1

Zi +G′ +
5∑
j=1

Z ′
j −KY ≡ A′ + Z ′

5.

Hence we get a contradiction since

0 = F ′N1 = F ′A′ + F ′Z ′
5 = 1 + 0 = 1.

Whenn = 3`− 1 we havem = 3`−n+ 2 = 3 and, using proposition 2.3.12,

0 = A1N1 = N1(A
′ +KY −G′ −

n∑
i=1

Zi −
m∑
j=1

Cj)

= 2− 1−N1

m∑
j=1

Cj = 1−N1

m∑
j=1

Cj

Thus there is exactly one curveC1 with C1N1 = 1 whereas the remaining two

have to be chosen among then′ ≤ 2 curvesZ ′
i. This also excludes the case

n′ = 1.

Whenn′ = 2 we have

A′N2 = A′(N1 +KY −G′ −
n∑
i=1

Zi −
n′∑
j=1

Z ′
j) = 2− 1 = 1

and

(A′ −N2)
2 = 1 + 1− 2 = 0.

ThusA′ ≡ N2 but we get a contradiction since

Φ′N2 = Φ′A′ = (N − A′)A′ = 3− 1 = 2

and

2 ≥ B0N2 = B0A
′ = 3.

Proposition 4.6.2.The case(0d) of proposition 2.2.13 cannot occur.
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Proof. Assume case(0d) holds. Then we havè = 1 (see theorem 3.3.8) and

K2
Y = −2 − 3` = −5. Moreover|A′| is a pencil of elliptic curves such that

A′2 = 0 = A′KY . Then if we look at the adjoint systemA′ + KY we find

A′(A′ +KY ) = 0. From lemma 1.1.9 there are(−1)-cyclesDj such that

A1 = A′ +KY −
m∑
j=1

Dj

is nef andDjA
′ = 0. SinceA′A1 = A′(A′ + KY ) = 0 we necessarily have

A2
1 = 0. Hence (recall thatG′A′ = 0 from corollary 2.2.12)

0 = A2
1 = (A′ +KY −G′ −

∑
j

Cj)
2 = 0 +K2

Y + 0 + 1 +m = −4 +m

and

A1KY = KY (A′ +KY −G′ −
m∑
j=1

Cj) = 0− 5 + 1 +m = A2
1 = 0

Since from lemma 2.2.3A′N = 3 we can write

0 ≤ A1N = N(A′ +KY −G′ −
m∑
j=1

Cj) = 3 + 1−N
m∑
j=1

Cj ≤ 4

Assume now1 ≤ A1N = s ≤ 4. Then we haveN(3A1 − sA′) = 0 and by

the Index theorem 1.1.10 and the rationality ofY

(3A1 − sA′)2 = 9A2
1 + s2A′2 − 6sA′A1 = 0

andsA′ ≡ 3A1. Thus

1 ≤ s = sA′B0 = 3A1B0

forcess = 3 andA′ ≡ A1 which is impossible since otherwiseKY would be

effective. ThusA1N = 0 henceA1 ≡ 0 and

0 = A1B0 = B0(A
′ +KY −G′ −

4∑
j=1

Cj) (4.9)

= 1 + 4−B0

4∑
j=1

Cj = 5−B0

4∑
j=1

Cj

We note thatB0 cannot be contained in any singular fibre of|A′| sinceB0A
′ =

1 > 0. In particular it is not contained in any of the(−1)-cyclesCj. Then
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B0Cj ≥ 0 for anyj = 1, . . . , 4 and from (4.9) there exists a cycleCj, sayC1 such

thatC1B0 ≥ 2. ButC1A
′ = 0 forcesC1 ≤ A′ and

2 ≤ C1B0 ≤ A′B0 = 1

and we get a contradiction.

As a byproduct of propositions 4.6.1, 4.6.2 and theorem 3.3.8 we obtain

Theorem 4.6.3.One has0 ≤ ` ≤ 1. We can havè = 1 only in cases(1f) and

A′ = N .

Proposition 4.6.4.Case(0a), (0c) and(0f) of proposition 2.2.13 cannot occur.

Proof. Let us begin with case(0a) of proposition 2.2.13. Thenn = 3` = n′ = 0,

A′N = 2 and

A′N1 = A′(N +KY −G′) = A′N = 2

henceΦ′N1 = (N − A′)N1 = 2. Moreover

A′N2 = A′(N1 +KY −G′) = A′N1 = 2

and

NN2 = N(N1 +KY −G′) = 4 + 1 = 5

which impliesΦ′N2 = 3. But we know, from proposition 2.2.13,

E ′
iΦ

′ = E ′
i(N − A′) = −1

for i = 1, 2 which forcesE ′
1 + E ′

2 ≤ Φ′. Moreover

E ′
kN2 = E ′

k(N + 2KY − 2G′) = 2

for all k = 1, . . . , h1. Then we get a contradiction since

4 = (E ′
1 + E ′

2)N2 ≤ Φ′N2 = 3.

Assume now that either case(0c) or case(0f) of proposition 2.2.13 holds. Then

n = 3` = 0, A′N = 3,Φ′N = 0 and

A′N1 = A′(N +KY −G′) = A′N = 3

Then

Φ′N1 = (N − A′)N1 = 4− 3 = 1
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SinceN1 is nef there exists exactly one irreducible componentD of Φ′ such that

DN1 = 1.

We also know, from proposition 2.2.13,

E ′
iΦ

′ = E ′
i(N − A′) ≤ −1

for i = 1, 2 and then since

E ′
kN1 = E ′

k(N +KY −G′) = 1

for all k = 1, . . . , h1 we get a contradiction.

From theorems 3.3.8, 4.1.2, 4.2.2 and propositions 4.6.1, 4.6.2 and 4.6.4 we

obtain the following result:

Theorem 4.6.5.Case (iii) of page 34 can only occur when one of the following

conditions is satisfied:

1. ` = 0

– Case(0g)

– Cases(1a), (1d), (1f)

– A′ = N

2. ` = 1

– Case(1f)

– A′ = N

Moreover in cases(0g), (1f) andA′ = N we haveΦ = 0, i.e. the invariant

pencilΛ ≤ |3KS| has no fixed part.

4.7 Summary

From a numerical analysis the only possible case is

R0KS = 0, h2 = 1

and eitherR0 = 0 or R0 has` ≤ 3 irreducible components which are smooth

(−2)-curves. In all cases we have a pencil|N | of nef and big curves of genus 3 on
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the rational surfaceY which corresponds to the invariant partΛ of the tricanonical

system|3KS| on the numerical Godeaux surfaceS.

The list of possible cases depends on the numbern of curves (different from

G′) that we have to contract in order to find a surfaceW ′ where the adjoint system

|N̄1| of |N̄ | is nef. Then we will contractW ′ to W where the adjoint systems of

|N̄ | of any index are nef curves (if they are non-empty).

We can actually show thatR0 is composed of at most one irreducible compo-

nent (see theorem 4.6.3) and we have3`− 3 ≤ n ≤ 3`.

Let us start by assumingn = 3`. Then to getW ′ we need to contractG′ and

the curvesZi. We have two possibilities:

• W = W ′ and

- |N̄ | is a pencil of curves of genus 3 and̄N2 = 3

- |N̄1| is a net of curves of genus 3 and̄N2
1 = 4

- |N̄2| is a net of curves of genus 2 and̄N2
2 = 3

- |N̄3| is a pencil of curves of genus 0 and̄N2
3 = 0

with ϕ|N̄3| morphism fromW to P1 andg : W −→ Fa birational morphism.

• we have to contract two more curvesZ ′′ andZ ′′′ to getW and

- |N̄ | is a pencil of curves of genus 3 and̄N2 = 16

- |N̄1| is a net of curves of genus 3 and̄N2
1 = 9

- |N̄2| is a net of curves of genus 2 and̄N2
2 = 3

- |N̄3| is a pencil of curves of genus 1 and̄N2
3 = 1

- N̄4 ≡ 0

In this case we also find

N3 ≡ G′ +
∑n

i=1 Zi + Z ′′ + Z ′′′ −KY

N2 ≡ 2G′ + 2
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 2KY

N1 ≡ 3G′ + 3
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 3KY

N ≡ 4G′ + 4
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 4KY

2B0 + E ′ ≡ 7G′ + 4
∑n

i=1 Zi + 2Z ′′ + Z ′′′ − 7KY
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If we assumen = 3`−1 we have to add to the above list two more possibilities:

• we have to contract one more cycleZ ′ to getW and

- |N̄ | is a pencil of curves of genus 3 and̄N2 = 4

- |N̄1| is a net of curves of genus 2 and̄N2
1 = 3

- |N̄2| is a pencil of curves of genus 0 and̄N2
2 = 0

with ϕ|N̄2| morphism fromW to P1 andg : W −→ Fa birational morphism.

• we have to contract three more cyclesZ ′
1, Z

′
2 andZ ′′ to getW and

- |N̄ | is a pencil of curves of genus 3 and̄N2 = 12

- |N̄1| is a net of curves of genus 2 and̄N2
1 = 4

- |N̄2| is a pencil of curves of genus 1 and̄N2
2 = 1

- N̄3 ≡ 0

In this case we also find

N2 ≡ G′ +
∑n

i=1 Zi +
∑2

i=1 Z
′
i + Z ′′ −KY

N1 ≡ 2G′ + 2
∑n

i=1 Zi + 2
∑2

i=1 Z
′
i + Z ′′ − 2KY

N ≡ 3G′ + 3
∑n

i=1 Zi + 2
∑2

i=1 Z
′
i + Z ′′ − 3KY

2B0 + E ′ ≡ 6G′ + 3
∑n

i=1 Zi + 2
∑2

i=1 Z
′
i + Z ′′ − 6KY

Whenn = 3` − 2 we need to contract five more cyclesZ ′
1, . . . , Z

′
5 to getW

and

- |N̄ | is a pencil of curves of genus 3 and̄N2 = 8

- |N̄1| is a net of curves of genus 1 and̄N2
1 = 1

- N̄2 ≡ 0

In this case we also find

N1 ≡ G′ +
∑n

i=1 Zi +
∑5

i=1 Z
′
i −KY

N ≡ 2G′ + 2
∑n

i=1 Zi +
∑5

i=1 Z
′
i − 2KY

2B0 + E ′ ≡ 5G′ + 2
∑n

i=1 Zi +
∑2

i=1 Z
′
i − 5KY
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Finally whenn = 3`− 3 we havè = 1 (thenn = 0) and the first adjoint|N1|
to |N | is a net of rational curves and it gives a birational morphism toP2.

Moreover only the cases listed in theorem 4.6.5 can occur.



Chapter 5

Geometric analysis

5.1 Ruled cases

5.1.1 n = 3`

By definition 4.0.11 and the results of section 4.5 we know that|N̄3| gives a mor-

phismg : W −→ Fa for somea ≥ 0 with K2
W = K2

Y + 1 + 3` = −1. Then we

have

KFa = −2c− (a+ 2)f, g∗(f) = N̄3

wherec is the(−a)-section ofFa andf is a fibre of the rulingFa −→ P1. Then

KW = −2g∗(c)− (a+ 2)N̄3 + ∆ where∆ is the exceptional divisor ofg.

Therefore

N̄2 = N̄3 −KW = 2g∗(c) + (a+ 3)N̄3 −∆

N̄1 = N̄2 −KW = 4g∗(c) + (2a+ 5)N̄3 − 2∆

N̄ = N̄1 −KW = 6g∗(c) + (3a+ 7)N̄3 − 3∆

Lemma 5.1.1. In the above setting0 ≤ a ≤ 2.

Proof. SinceN̄ is nef we find

g∗(c)N̄ = 7− 3a ≥ 0

and then0 ≤ a ≤ 2.

We look at2B̄0 + Ē ′: from the definition ofN on the surfaceY one has

2B̄0 + Ē ′ = N̄ − 3KW = 12g∗(c) + (6a+ 13)N̄3 − 6∆ (5.1)

97
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whenceg(2B̄0 + Ē ′) = 12c+ (6a+ 13)f .

Furthermore

g∗(c)(2B̄0+Ē
′) = g∗(c)(12g∗(c)+(6a+13)N̄3−6∆) = −12a+13+6a = 13−6a

From theorem 4.6.3 we have` = 0, 1.

` = 0

Let us assumè = 0. Then2B̄0 + Ē ′ = Ē ′ and we can writeĒ ′
i = αig

∗(c) +

βiN̄3 +
∑

j γji∆j. We also recall thath1 = 4 + ` = 4 from (2.5). Then

3 = N̄3Ē
′
i = N̄3[αig

∗(c) + βiN̄3 +
∑
j

γji∆j] = αi

This implies

g∗(c)Ē ′
i = g∗(c)[αig

∗(c) + βiN̄3 +
∑
j

γji∆j] = −aαi + βi = βi − 3a

Lemma 5.1.2. In the above setting we haveg∗(c)Ē ′
i ≥ 0. In particular we have

βi ≥ 3a for all i = 1, . . . , 4.

Proof. It is obvious sinceg∗(c)Ē ′
i < 0 and the irreducibility ofĒ ′

i would im-

ply Ē ′
i ≤ g∗(c) and thereforeĒ ′

i = c̄ the strict transform ofc. Then we get a

contradiction since

3 = Ē ′
iN̄3 = c̄N̄3 = g∗(c)N̄3 = 1.

Moreover from equation (5.1) we have
∑4

i=1 βi = 13 + 6a.

Lemma 5.1.3. Each irreducible componentC in the singular fibres ofϕ|N̄3| :

W −→ P1 is a rational curve withC2 = −1,−2.

Proof. We know thatN̄2 = N̄3 − KW is nef. C satisfiesCN̄3 = 0 hence, by

Zariski’s lemma 1.1.2,C2 ≤ 0 and

CN̄2 = C(N̄3 −KW ) ≥ 0

which impliesCKW ≤ 0. By the Index theorem 1.1.10 and the rationality ofW

if it was CKW = 0 we should haveC2 < 0 henceC2 = −2. On the other hand,

if CKW ≤ −1 thenC2 ≥ −2− CKW ≥ −1 forcesC2 = −1 = CKW .
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Remark 5.1.4. For any(−2)-curveC ′ which is contained in a singular fibre we

have

C ′Ē ′ = C ′(N̄3 − 6KW ) = 0

soC ′ does not intersect any of the curvesĒ ′
k. Therefore the intersection of̄E ′

k with

the singular fibres is only given by the points of intersection with the(−1)-curves.

Lemma 5.1.5. Each singular fibre contains two irreducible(−1)-curves with

multiplicity 1.

Proof. Assume that there arem irreducible(−1)-curves appearing with multi-

plicity bi ≥ 1 i = 1, . . . ,m. Then from lemma 5.1.3 and the rationality of|N̄3|
we find

−2 = N̄3K̄W = −
m∑
i=1

bi

hence eitherm = 1, b1 = 2 orm = 2, b1 = b2 = 1.

SinceĒ ′
kN̄3 = 3 for anyk = 1, . . . , 4 and since the curves̄E ′

k cannot intersect

the (−2)-curves in each singular fibre (see remark 5.1.4) there cannot be a fibre

with only one(−1)-curve of multiplicity 2.

Lemma 5.1.6. For each singular fibre the curvēE ′ intersects the exceptional

curves of that fibre.

Proof. Assume there is a singular fibreψ of g : W −→ Fa such thatĒ ′ does not

intersect any of the exceptional curves of that fibre. Then there exists a curveΓ in

ψ such thatΓĒ ′ = Ē ′N̄3 = 12 andΓ is not contracted byg : W −→ Fa. Hence

12 = ΓĒ ′ = Γ(12g∗(c) + (13 + 6a)N̄3 − 6∆) = 12Γg∗(c)− 6Γ∆

SinceΓ∆ ≥ 1 andΓ∆ ≡ 0 mod 2 we find

12 ≤ 12Γg∗(c)− 12

henceΓg∗(c) ≥ 2. Let g(Γ) = f1 be the fibre of the ruling ofFa obtained byΓ.

Then

1 = f1c = g∗(f1)g
∗(c) = Γg∗(c) ≥ 2

and we get a contradiction.

Lemma 5.1.7. In the above setting we can reduce to the casea = 1 unlessa = 2

andϕ|N̄3| : W −→ P1 has at most two singular fibres.
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Proof. We know thatF̄ ′N̄3 = H̄ ′N̄3 = 0 and the two(−2)-curves are contained

in a singular fibre ofϕ|N̄3|. We can choose the mapg so that it contracts these

curves to a point which is now on a nonsingular fibref0 of the mapFa −→ P1.

If a = 0 and we blow up the above point and we consider the sectionc which

intersectsf0 at that point, the strict transform ofc is a (−1)-curve. By contract-

ing the strict transform off0 the exceptional divisor becomes a curve with self-

intersection 0. Therefore the surface now obtained isF1.

We can do the same fora = 2 if the point is not the intersection point between

f0 and the(−2)-sectionc onF2.

Assume now thata = 2 andc passes through the above pointP0. We can

reduce toa = 1 if we find a singular fibref1 such thatc does not pass through the

point obtained by contracting all the exceptional curves ofg : W −→ F2 in that

fibre.

Let us suppose such a fibref1 does not exist. Then for any singular fibref ′

the(−2)-sectionc passes through the pointP ′ which is the contraction of all the

exceptional curves in that fibre. From lemma 5.1.6 we can deduce thatP must be

a point inĒ ′. Sinceg∗(c)Ē ′ = 13 − 6a = 1 there can be at most one such fibre.

Thus, if the number of singular fibres is at least 3 we are done.

Lemma 5.1.8.For anyi = 1, . . . , 4 andj = 1, . . . , 9 we have

∆k

∑
j

γji∆j = 0 if ∆2
k = −2

0 ≤ ∆k

∑
j

γji∆j ≤ 3 if ∆2
k = −1.

Proof. Since

Ē ′
i = 3g∗(c) + βiN̄3 +

∑
j

γji∆j

we have

0 ≤ Ē ′
i∆̄k = ∆k

∑
j

γji∆j ≤ Ē ′
iN̄3 = 3

From lemma 5.1.3 the curves∆k have self-intersection−2 ≤ ∆2
k ≤ −1.

Furthermore, from remark 5.1.4, if∆2
k = −2

Ē ′
i∆k = 0
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hence

0 = Ē ′
i∆k = ∆k

∑
j

γji∆j

which proves the lemma.

Corollary 5.1.9. In the above setting for anyi = 1, . . . , 4 we have

∆
∑
j

γji∆j ≤ 6r

wherer is the number of singular fibres ofg : W −→ Fa.

Proof. Let us set

V := {v |∆2
v = −1}

From the above proposition we have

∆
∑
j

γji∆j =
∑
v∈V

∆vγji∆j ≤ 3|V |

where|V | is the cardinality of the setV . From lemma 5.1.5 there are two simple

(−1)-curves in each of ther singular fibres then

|V | ≤ 2r

as wanted.

We are now ready to show that the reduction toa = 1 it is always possible.

Proposition 5.1.10.The casea = 2 cannot occur withr ≤ 2 singular fibres.

Proof. We know from the formulas of page 97 that

N̄2 = 2g∗(c) + (a+ 3)N̄3 −∆

Then

2 = E ′
iN2 = Ē ′

iN̄2 = (3g∗(c) + βiN̄3 +
∑
j

γji∆j)(2g
∗(c) + (a+ 3)N̄3 −∆)

= −6a+ 3a+ 9 + 2βi −∆
∑
j

γji∆j

hence

∆
∑
j

γji∆j = 2βi + 7− 3a
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Thus, from lemma 5.1.2 and corollary 5.1.9,

7 + 3a ≤ 2βi + 7− 3a ≤ 6r

wherer is the number of singular fibres ofg : W −→ Fa. Whena = 2 we get

6r ≥ 13

and thenr ≥ 3 as wanted.

From now on we assumea = 1. The pencil|N̄3| is mapped to the pencil of

lines ofP2 through a pointP . Then|N̄2|maps to the net of quartics with 1 double

point and 9 simple base points,|N̄1| to the net of curves of degree 7 with 1 triple

point and 9 double points (with no other simple base points), and|N̄ | to the pencil

of curves of degree 10 with one 4-tuple point, 9 triple points and no other base

points.

Theorem 5.1.11.The casen = 3` = 0, n′ = n′′ = 0 cannot occur.

Proof. We compute the plane image of|Ā′|. From theorem 4.6.5 we know that

` = 0 can only occur in case(0g) of proposition 2.2.13, in cases(1a), (1d) or

(1f) of proposition 2.2.14 and whenA′ = N . Then, using also lemma 2.2.3 and

corollary 2.2.12,A′2 = 0, A′KY = 2, A′N = 3, A′G′ = 1 in the former case

while we haveA′KY = 1, A′N = 3, A′G′ = 0 in the latter cases withA′2 = 1

unlessA′ = N . Hence we find

A′N3 = A′(N + 3KY − 3G′) = 3 + 3A′KY − 3A′G′ = 6

in all the above cases. ThenA′ is mapped onto a plane curve of degreed with

a point of multiplicity d − 6 at P and, denoting bysj the number of points of

multiplicity j amongP1, . . . , P9,

3 = A′N = Ā′N̄ = 10d− 3
∑
j

jsj − 4(d− 6)

hence ∑
j

jsj = 2d+ 7 (5.2)

We also havēA′2 = 1, pa(Ā
′) = 2 in all the above cases except forA′ = N .

Then, ifA′ 6= N ,

1 = Ā′2 = d2 −
∑
j

j2sj
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hence ∑
j

j2sj = d2 − 1 (5.3)

and

2 = pa(Ā
′) =

(d− 1)(d− 2)

2
−
∑
j

sj
j(j − 1)

2
− (d− 6)(d− 7)

2

=
d2 − 3d+ 2− d2 + 13d− 42

2
−
∑
j

sj
j(j − 1)

2

hence ∑
j

sjj(j − 1) = 10d− 44 (5.4)

Then comparing (5.2), (5.3) and (5.4) we get

10d− 44 = d2 − 1− (2d+ 7) = d2 − 2d− 8

hence

d2 − 12d+ 36 = (d− 6)2 = 0

which forcesd = 6. In this case (5.2) and (5.3) become∑
j

jsj = 19

∑
j

j2sj = 35

We now easily inferj ≤ 5. Subtracting the first equation from the second one

we find

16 = 35− 19 = (25s5 + 16s4 + 9s3 + 4s2 + s1)+

− (5s5 + 4s4 + 3s3 + 2s2 + s1) = 20s5 + 12s4 + 6s3 + 2s2

Thens5 = 0, s4 ≤ 1.

Then we find

6s3 + 2s2 = 16− 12s4

or equivalently,

3s3 + s2 = 8− 6s4

and substituting in (5.2)

s1 + s2 = 19− 4s4 − (3s3 + s2) = 19− 4s4 − (8− 6s4) = 11 + 2s4
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which gives a contradiction since
∑

j sj ≤ 9.

We now discuss the caseA′ = N . ThenĀ′2 = N̄2 = 3 andpa(Ā′) = 3. Then

3 = Ā′2 = d2 −
∑
j

j2sj

forces ∑
j

j2sj = d2 − 3 (5.5)

and

3 = pa(Ā
′) =

(d− 1)(d− 2)

2
−
∑
j

sj
j(j − 1)

2
− (d− 6)(d− 7)

2

=
d2 − 3d+ 2− d2 + 13d− 42

2
−
∑
j

sj
j(j − 1)

2

hence ∑
j

sjj(j − 1) = 10d− 46 (5.6)

Thus comparing (5.2), (5.5) and (5.6) we find

10d− 46 = d2 − 3− (2d+ 7) = d2 − 2d− 10

hence

d2 − 12d+ 36 = (d− 6)2 = 0

forcesd = 6 while we knowd = 10 sinceĀ′ = N̄ .

` = 1

Let us now assumeB0 6= 0. For any curveE ′
i on the rational surfaceY there is at

most one of the curvesZj which intersectsE ′
i (see corollary 2.3.7).

Assumen = 3` = 3. If all the cyclesZj are irreducible then there are exactly

3 of the 5 curvesE ′
i (we can suppose they areE ′

3, E
′
4 andE ′

5) which are intersected

by one (and only one) of the curvesZj: we haveE ′
iN3 = 0 for each of them. This

implies that they are contained in singular fibres of the mapϕ|N3| : Y −→ P1.

If one of the cyclesZj is reducible then, from corollary 2.3.11, eitherZ1, Z2

are irreducible andZ3 = Z1 + Z2 + E ′
k for some1 ≤ k ≤ h1 = 5 or Z1 is

irreducible,Z2 = Z1 +C (with C a(−2)-curve) andZ3 = Z1 +Z2 +E ′
k for some
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k ≤ 5. In any case we haveE ′
kN1 = 0 (see proposition 2.3.3) henceE ′

kN3 = 0.

Moreover sincè = 1 from lemma 2.3.6 and corollary 2.3.7

B0

n∑
i=1

Zi = 2B0Z1 + 2B0Z2 = 4

henceB0N1 = 0 forcesB0N3 = 0.

We now can show the following

Theorem 5.1.12.The casen = 3`, n′ = n′′ = 0 with ` = 1 cannot occur.

Proof. Let us now consider the fibration given by the rational pencil|N3|. If we

setδ :=
∑

s(e(N3s − e(N3)) from proposition 1.1.3 we have

δ = e(Y )− e(N3)e(P1) = 12−K2
Y − 4

(4.1)
= 12 + 2 + 3`− 4 = 13.

From lemma 3.3.3 every curveC in a singular fibre contributes−C2 to δ. If

Z1, Z2, Z3 are irreducible then we know that the(−3)-curvesF ′, H ′, E ′
3, E

′
4, E

′
5

are disjoint and they are contained in singular fibres.

If Z3 is reducible then the(−3)-curvesF ′, H ′, E ′
k and the(−6)-curveB0 are

contained in singular fibres.

In any case we find

13 = δ ≥ 15.

Contradiction.

5.1.2 n = 3`− 1

From section 4.4 we know that|N̄2| gives a morphismg : W −→ Fa for some

a ≥ 0 with K2
W = K2

Y + 1 + 3`− 1 + 1 = −1. Then we have

KFa = −2c− (a+ 2)f, g∗(f) = N̄2

andKW = −2g∗(c)− (a+ 2)N̄2 + ∆ where∆ is the exceptional divisor ofg.

Therefore

N̄1 = N̄2 −KW = 2g∗(c) + (a+ 3)N̄2 −∆

N̄ = N̄1 −KW = 4g∗(c) + (2a+ 5)N̄2 − 2∆
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Lemma 5.1.13.In the above setting0 ≤ a ≤ 2.

Proof. SinceN̄ is nef we find

g∗(c)N̄ = 5− 2a ≥ 0

and then0 ≤ a ≤ 2.

Then we look at2B̄0 + Ē ′: since

2B̄0 + Ē ′ = N̄ − 3KW = 10g∗(c) + (5a+ 11)N̄2 − 5∆

we haveg(2B̄0 + Ē ′) = 10c+ (5a+ 11)f .

Furthermore

g∗(c)(2B̄0+Ē
′) = g∗(c)(10g∗(c)+(5a+11)N̄2−5∆) = −10a+11+5a = 11−5a

We recall thatn = 3` − 1 can only occur wheǹ ≥ 1. From theorem 4.6.5

and the results of section 4.4 we have` = 1, n = 2, n′ = 1. By definition ofN

we find

1 = Z ′N = Z ′(2B0 + E ′ + 3KY − 3G′) = 2B0Z
′ + E ′Z ′ − 3

hence2B0Z
′ + E ′Z ′ = 4. This implies0 ≤ B0Z

′ ≤ 2 and0 ≤ E ′Z ′ = 4 −
2B0Z

′ ≤ 4.

We also compute using corollary 2.3.7

B0N2 = B0(N + 2KY − 2G′ − 2Z1 − 2Z2 − Z ′)

= 0 + 8− 0− 2− 2−B0Z
′ = 4−B0Z

′

E ′
kN2 = E ′

k(N + 2KY − 2G′ − 2Z1 − 2Z2 − Z ′)

= 0 + 2− 0− 2(Z1 + Z2)E
′
k − E ′

kZ
′ ≤ 2− E ′

kZ
′

Since from corollaries 2.3.11 and 2.3.7 we haveZ1E
′ = Z2E

′ = 1 there

exist two curvesE ′
k (sayE ′

4 andE ′
5) such that each of them intersectsZ1 or Z2

at one point. For those curves we necessarily haveE ′
4N2 = E ′

5N2 = 0 and

E ′
4Z

′ = E ′
5Z

′ = 0.

Lemma 5.1.14.In the above setting it cannot beB0Z
′ = 0, E ′Z ′ = 4. In partic-

ular we have0 ≤ E ′
kZ

′ ≤ 1 for all k = 1, . . . , 5.
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Proof. Let us consider the Euler number of the fibrationϕ|N2| : Y −→ P1 accord-

ing to proposition 1.1.3. If we set

δ :=
∑
s

(e(N2s)− e(N2))

where the sum is taken over all the singular curves in|N2|, we have

δ = e(Y )− e(N2)e(P1) = 12−K2
Y − 4

(4.1)
= 12 + 5− 4 = 13.

Since every curveC in a singular fibre contributes−C2 to δ (see also lemma

3.3.3) and we know that the(−3)-curvesF ′, H ′, E ′
4, E

′
5 are disjoint and they are

contained in singular fibres we find

12 ≤ δ = 13.

If it was E ′
kZ

′ = 2 for somek = 1, 2, 3 we would also haveE ′
kN2 = 0 andE ′

k

would be disjoint from all the above ones and contained in a singular fibre. Then

it would be

15 = 3 + 12 ≤ δ = 13.

Contradiction. ThenE ′Z ′ = (E ′
1 + E ′

2 + E ′
3)Z

′ ≤ 3 as wanted.

Lemma 5.1.14 forces one of the two following options:

1. B0Z
′ = 2, E ′Z ′ = 0, B0N2 = 2, E ′

kN2 = 2, k = 1, . . . , 3

2. B0Z
′ = 1, E ′Z ′ = 2, B0N2 = 3, E ′

1N2 = 2, E ′
kN2 = 1, k = 2, 3

Remark 5.1.15.It is easy to see that in both cases 1 and 2 there is a curveE ′
k, say

E ′
1, such thatE ′

1Zi = E ′
1Z

′ = 0. ThenĒ ′
1 is a (−3)-curve such that̄E ′

1N̄ = 0.

Let us setĒ ′
0 := B̄0.

Lemma 5.1.16.In the above setting for any curvēE ′
i such thatĒ ′

iN̄2 ≥ 2 we have

g∗(c)Ē ′
i ≥ 0.

Proof. It is obvious sinceg∗(c)Ē ′
i < 0 and the irreducibility ofĒ ′

i would im-

ply Ē ′
i ≤ g∗(c) and thereforeĒ ′

i = c̄ the strict transform ofc. Then we get a

contradiction as in lemma 5.1.2 since

2 ≤ Ē ′
iN̄2 = c̄N̄2 = g∗(c)N̄2 = 1.
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Lemma 5.1.17.Each irreducible componentC in the singular fibres ofϕ|N̄2| :

W −→ P1 is a rational curve withC2 = −1,−2.

Proof. We know thatN̄1 = N̄2 − KW is nef. C satisfiesCN̄2 = 0 hence, by

Zariski’s lemma 1.1.2,C2 ≤ 0 and

CN̄1 = C(N̄2 −KW ) ≥ 0

which impliesCKW ≤ 0. By the Index theorem 1.1.10 and the rationality ofW

if it was CKW = 0 we should haveC2 < 0 henceC2 = −2. On the other hand,

if CKW ≤ −1 thenC2 ≥ −2− CKW ≥ −1 forcesC2 = −1 = CKW .

Remark 5.1.18.For any (−2)-curveC ′ different fromĒ ′
4 and Ē ′

5 which is con-

tained in a singular fibre we have

C ′(2B̄0 + Ē ′) = C ′(N̄2 − 5KW ) = 0

soC ′ does not intersect the curves̄E ′
k andB̄0.

Lemma 5.1.19.Each singular fibre contains at most two irreducible(−1)-curves.

Proof. Assume that there arem irreducible(−1)-curves appearing with multiplic-

ity bi ≥ 1 i = 1, . . . ,m. Then from lemma 5.1.17 and because of the rationality

of |N̄2| we find

−2 = N̄2K̄W = −
m∑
i=1

bi

hence eitherm = 1, b1 = 2 orm = 2, b1 = b2 = 1.

Lemma 5.1.20.For each singular fibre the curvēE ′ intersects the exceptional

curves of that fibre.

Proof. Assume there is a singular fibreψ of g : W −→ Fa such thatĒ ′ does not

intersect any of the exceptional curves of that fibre. Then there exists a curveΓ

in the singular fibres such thatΓ(2B̄0 + Ē ′) = (2B̄0 + Ē ′)N̄2 = 10 andΓ is not

contracted byg : W −→ Fa. Then

10 = Γ(2B̄0 + Ē ′) = Γ(10g∗(c) + (11 + 5a)N̄3 − 5∆) = 10Γg∗(c)− 5Γ∆

SinceΓ∆ ≥ 1 andΓ∆ ≡ 0 mod 2 we find

10 ≤ 10Γg∗(c)− 10
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henceΓg∗(c) ≥ 2. Let g(Γ) = f1 be the fibre of the ruling ofFa obtained byΓ.

Then

1 = f1c = g∗(f1)g
∗(c) = Γg∗(c) ≥ 2

and we get a contradiction.

Lemma 5.1.21. In the above setting we can always reduce to the casea = 1

unlessa = 2 andϕ|N̄2| : W −→ P1 has at most two singular fibres.

Proof. We know thatF̄ ′N̄2 = H̄ ′N̄2 = 0 and the two(−2)-curves are contained

in a singular fibre ofϕ|N̄2|. We can choose the mapg to contract these curves to a

point which is now on a nonsingular fibref0 of the mapFa −→ P1.

If a = 0 and we blow up the above point and we consider the sectionc which

intersectsf0 at that point, the strict transform ofc is a (−1)-curve. By contract-

ing the strict transform off0 the exceptional divisor becomes a curve with self-

intersection 0. Therefore the surface now obtained isF1.

We can do the same fora = 2 if the point is not the intersection point between

f0 and the(−2)-sectionc onF2.

Assume now thata = 2 andc passes through the above pointP0. We can

reduce toa = 1 if we find a singular fibref1 such thatc does not pass through the

point obtained by contracting all the exceptional curves ofg : W −→ F2 in that

fibre.

Let us suppose such a fibref1 does not exist. Then for any singular fibref ′

the(−2)-sectionc passes through the pointP ′ which is the contraction of all the

exceptional curves in that fibre. From lemma 5.1.6 we can deduce thatP must be

a point inĒ ′. Sinceg∗(c)(2B̄0 + Ē ′) = 11−5a = 1 there can be at most one such

fibre. Then, if the number of singular fibres is at least 3 we are done.

We can write

Ē ′
0 = B̄0 = α0g

∗(c) + β0N̄2 +
∑
j

γj0∆j.

Ē ′
i = αig

∗(c) + βiN̄2 +
∑
j

γji∆j.

Then for anyi ≥ 0

N̄2Ē
′
i = N̄2[αig

∗(c) + βiN̄2 +
∑
j

γji∆j] = αi.
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This implies

g∗(c)Ē ′
i = g∗(c)[αig

∗(c) + βiN̄3 +
∑
j

γji∆j] = −aαi + βi (5.7)

Lemma 5.1.22.For anyi = 1, . . . , 3 andj = 1, . . . , 9 we have

∆k

∑
j

γji∆j = 0 if ∆2
k = −2,∆k 6= Ē ′

4, Ē
′
5

0 ≤ ∆k

∑
j

γji∆j ≤ αi if ∆2
k = −1.

Proof. Since

Ē ′
i = αig

∗(c) + βiN̄2 +
∑
j

γji∆j

if ∆k 6= Ē ′
4, Ē

′
5 we have

0 ≤ ∆k

∑
j

γji∆j = Ē ′
i∆̄k ≤ Ē ′

iN̄2 = αi (5.8)

From lemma 5.1.17 the curves∆k have self-intersection−2 ≤ ∆2
k ≤ −1.

Furthermore, from remark 5.1.18, if∆2
k = −2, ∆k 6= Ē ′

4, Ē
′
5

Ē ′
i∆k = 0

hence

0 = Ē ′
i∆k = ∆k

∑
j

γji∆j

which proves the lemma.

Corollary 5.1.23. In the above setting for anyi = 1, . . . , 3 we have

∆
∑
j

γji∆j ≤ 2αir + Ē ′
4Ē

′
i + Ē ′

5Ē
′
i

wherer is the number of singular fibres ofg : W −→ Fa.

Proof. Let us define

V := {v |∆2
v = −1}

From the above proposition (see (5.8)) we have

∆
∑
j

γji∆j =
∑
v∈V

∆vγji∆j + (Ē ′
4 + Ē ′

5)
∑
j

γji∆j
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=
∑
v∈V

∆vγji∆j + (Ē ′
4 + Ē ′

5)Ē
′
i ≤ αi|V |+ (Ē ′

4 + Ē ′
5)Ē

′
i

where|V | is the cardinality of the setV . From lemma 5.1.19 there are at most

two (−1)-curves in each of ther singular fibres then

|V | ≤ 2r

as wanted.

We are now ready to show that the reduction toa = 1 it is always possible.

Proposition 5.1.24.The casea = 2 cannot occur withr ≤ 2 singular fibres.

Proof. We know from the formulas of page 105 that

N̄1 = 2g∗(c) + (a+ 3)N̄2 −∆

Then

E ′
iN1 = Ē ′

iN̄1 = (αig
∗(c) + βiN̄2 +

∑
j

γji∆j)(2g
∗(c) + (a+ 3)N̄3 −∆)

= −2aαi + aαi + 3αi + 2βi −∆
∑
j

γji∆j

hence

∆
∑
j

γji∆j = 2βi + (3− a)αi − E ′
iN1

Let us now fixi = 1. From remark 5.1.15 we know that̄E ′
1 is a (−3)-curve

andE ′
1Z

′ = E ′
1Z1 = E ′

1Z2 = 0 hence

E ′
1N1 = E ′

1(N +KY −G′ − Z1 − Z2) = E ′
1KY = 1

α1 = Ē ′
1N̄2 = E ′

1N2 = E ′
1(N + 2KY − 2Z1 − 2Z2 − Z ′) = 2.

Thus, from lemma 5.1.16, equation (5.7) and corollary 5.1.23,

2(3 + a)− 1 = (3 + a)α1 − 1 ≤ 2β1 + (3− a)α1 − 1

= ∆
∑
j

γj1∆j ≤ 2α1r + Ē ′
1(Ē

′
4 + Ē ′

5) = 2α1r = 4r

wherer is the number of singular fibres ofg : W −→ Fa. Whena = 2 we get

4r ≥ 9

and thenr ≥ 3 as wanted.
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From now on we assumea = 1. The pencil|N̄2| is mapped to the pencil of

lines ofP2 through a pointP .

Then|N̄1| maps to the net of quartics with 1 double point and 9 simple base

points,|N̄ | to the system of curves of degree 7 with 1 triple point and 9 double

points (with no other simple base points).

We now want to show the following

Theorem 5.1.25.The casen = 3`− 1 = 2, n′ = 1 cannot occur.

Proof. We compute the plane image of the pencil|Ā′|. From theorem 4.6.5 we

know that ` = 1 can only occur in case(1f) of proposition 2.2.14 or when

A′ = N . Then, using also lemma 2.2.3 and corollary 2.2.12,A′KY = 1, A′N =

3, A′G′ = 0 and we find

1 ≤ A′N2 = A′(N + 2KY − 2G′ − 2(Z1 + Z2)− Z ′) (5.9)

= 5 + 0− 2A′(Z1 + Z2)− A′Z ′ ≤ 5

Let us first consider the caseA′ = N . ThenA′N2 = NN2 = 5 − NZ ′ = 4

andĀ′ = N̄ maps to a plane curve of degreed with a point of multiplicityd − 4

atP .

Then

4 = Ā′N̄ = 7d− 2
∑
j

jsj − 3(d− 4)

and ∑
j

jsj = 2d+ 4 (5.10)

Moreover sinceĀ′2 = A′2 + 1 = 4 we have∑
j

j2sj = d2 − 4 (5.11)

hence we find

d2 − 4 ≡ 2d+ 4 ≡ 0 mod 2

andd should be an even number. SinceA′ = N we knowd = 7 and we get a

contradiction.

Let us now study the case(1f). We know thatA′2 = 1 and, for anyi = 1, 2,

1 = Z ′N = Z ′A′ + Z ′Φ′
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Thus if Z ′A′ ≥ 2 thenZ ′ andΦ′ have some irreducible component in common

hence

2 ≤ Z ′A′ ≤ Z ′N + A′Φ′ = 3 (5.12)

This implies0 ≤ A′Z ′ ≤ 3. Let us sets := A′Z ′.

We notice that sincen = 2 from corollary 2.3.11Z1 andZ2 are irreducible

(−1)-curves hence

0 = ZiN = ZiA
′ + ZiΦ

′ = ZiA
′ + Zi(F

′ + 2G′ +H ′) = ZiA
′

henceA′(Z1 + Z2) = 0.

Then from (5.9) and (5.12)A′N2 = 5− s ≥ 2 and

Ā′N̄ ′ = A′N + s = 3 + s = 7d− 2
∑
j

jsj − 3(d− 5 + s)

hence ∑
j

jsj = 2d+ 6− 2s (5.13)

FurthermoreĀ′2 = A′2 + s2 = 1 + s2 implies∑
j

j2sj = d2 − 1− s2 (5.14)

Then

pa(Ā
′) = pa(A

′) +
s(s− 1)

2
= 2 +

s(s− 1)

2

=
(d− 1)(d− 2)

2
−
∑
j

sj
j(j − 1)

2
− (d− 5 + s)(d− 6 + s)

2

=
d2 − 3d+ 2− (d2 − 6d+ sd− 5d+ 30− 5s+ sd− 6s+ s2)

2
+

−
∑
j

sj
j(j − 1)

2

=
−3d+ 2 + 11d− 2sd− 30 + 11s− s2

2
−
∑
j

sj
j(j − 1)

2

hence ∑
j

sjj(j − 1) = (8− 2s)d− 32 + 12s− 2s2 (5.15)

Then comparing (5.13), (5.14) and (5.15) we get

(8−2s)d−32+12s−2s2 = d2−1− s2− (2d+6−2s) = d2−2d−7+2s− s2
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or equivalently

d2 − (10 + 2s)d+ 25− 10s+ s2 = (d− 5 + s)2 = 0

henced = 5− s.

Sincepa(Ā′) ≥ 2 we haved ≥ 4 and we can excludes = 2, 3.

Whens = 0, 1 we can rewrite (5.13) and (5.14) as∑
j

jsj = 2(5− s) + 6− 2s = 16− 4s

and ∑
j

j2sj = (5− s)2 − 1− s2 = 25 + s2 − 10s− 1− s2 = 24− 10s

In particular one can see thatj ≤ 4 and we can write4s4 + 3s3 + 2s2 + s1 = 16− 4s

16s4 + 9s3 + 4s2 + s1 = 24− 10s

Subtracting the second equation from the first one we find

12s4 + 6s3 + 2s3 = 8− 6s

which forcess4 = 0 and3s3 + s2 = 4− 2s. Then

s1 + s2 = 16− 4s− 4s4 − (3s3 + s2) = 16− 4s− 4 + 2s = 12− 2s ≥ 10

while we knows1 + s2 ≤
∑

j sj ≤ 9. Contradiction.

5.2 Del Pezzo cases

We now treat separately those cases with` = 0 from those with̀ = 1. We refer

then to the list of theorem 4.6.5.

5.2.1 ` = 0

From theorem 4.6.5 we know that we are in cases(0g) of proposition 2.2.13,

(1a), (1d) or (1f) of proposition 2.2.14 orA′ = N . We use the same notation
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as in section 4.5. SinceN2
3 = 1, when we contract the curvesG′, Z ′′, Z ′′′ we

obtain a rational surfaceW which is isomorphic to the projective planeP2 blown

up at eight pointsP1, . . . , P8. We will denote byD̄ the image onW of a divisor

D ∈ Div(Y ). We note that sincēN4 ≡ 0 then|N̄3| is mapped to the system of

cubics through the eight points,|N̄2| to the system of sextics with eight double

points, |N̄1| to that of curves of degree 9 with eight triple points and|N̄ | to the

system of curves of degree 12 with eight quadruple points.

From the definition ofN (sinceB0 = 0 andZ ′′G′ = 0) we have

2 = Z ′′N = Z ′′(3KY + 2B0 + E ′ − 3G′) = −3 + E ′Z ′′

henceE ′Z ′′ = 5 and analogouslyE ′Z ′′′ = 6.

Lemma 5.2.1. In the above settingZ ′′ is an irreducible(−1)-curve.

Proof. If Z ′′ was a reducible(−1)-cycle then it should necessarily containG′.

Then

0 = F ′N3 = F ′(N + 3KY − 3G′ − Z ′′) = −F ′Z ′′ = −F ′(G′ + (Z ′′ −G′))

andF ′G′ = 1 forcesF ′ ≤ Z ′′ (and analogouslyH ′ ≤ Z ′′). Then as in the proof

of lemma 2.3.8 there should be another(−1)-curveC not intersectingN2 such

thatC ≤ Z ′′. Sincen = n′ = 0 it should ben′′ ≥ 2. Contradiction. HenceZ ′′ is

irreducible andF ′Z ′′ = H ′Z ′′ = 0.

From lemma 5.2.1 we haveE ′
kZ

′′ ≥ 0. Since

E ′
kN2 = E ′

k(N + 2KY − 2G′) = 2

while Z ′′′N2 = 1 from the nefness ofN2 we deduce thatE ′
k cannot be contained

in Z ′′′ henceE ′
kZ

′′′ ≥ 0 too.

SinceN4 ≡ 0 we find

0 = E ′
kN4 = E ′

k(N + 4KY − 4G′ − 2Z ′′ − Z ′′′) = 4− 2E ′
kZ

′′ − E ′
kZ

′′′

hence

2E ′
kZ

′′ + E ′
kZ

′′′ = 4 (5.16)

for anyk = 1, . . . , h1 = 4.

Thus0 ≤ E ′
kZ

′′ ≤ 2 andE ′
kZ

′′′ = 4− 2E ′
kZ

′′ for anyk = 1, . . . , 4. We now

compute

Ē ′
kN̄3 = E ′

kN3 = E ′
k(N + 3KY − 3G′ − Z ′′) = 3− E ′

kZ
′′ ≥ 1
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If E ′
kZ

′′ = 0 then from (5.16) we haveE ′
kZ

′′′ = 4. Then we get a contradiction

sinceĒ ′
kN̄3 = 3 and from the Index theorem 1.1.10

(Ē ′
k − 3N̄3)

2 = Ē ′2
k − 9 ≤ 0

while we know

Ē ′2
k = E ′2

k + 16 = 13.

If E ′
kZ

′′ = 1 then from (5.16) we haveE ′
kZ

′′′ = 2. The plane image of̄E ′
k is

a curve of degreed with sj points of multiplicityj. Then∑
j

j2sj = d2 − Ē ′2
k = d2 − E ′2

k − 1− 4 = d2 − 2

and ∑
j

jsj = 3d− Ē ′
kN̄3 = 3d− E ′

kN3 = 3d− 2

hence

d2 − 2− 3d+ 2 = d2 − 3d = d(d− 3) ≥ 0

andd ≥ 3.

If E ′
kZ

′′ = 2 then from (5.16) we haveE ′
kZ

′′′ = 0. ThenĒ ′
kN̄3 = 1 and from

the Index theorem 1.1.10 we find

(Ē ′
k − N̄3)

2 = Ē ′2
k − 1 ≤ 0

Since we know

Ē ′2
k = E ′2

k + 4 = 1

we find Ē ′
k ≡ N̄3 and the plane image of̄E ′

k is a cubic through eight points

P1, . . . , P8.

Furthermore sinceE ′Z ′′ = 5 we have exactly one curve, sayE ′
1, such that

E ′
1Z

′′ = 2 and three curvesE ′
i (i = 2, 3, 4) such thatE ′

iZ
′′ = 1.

FromĒ ′ ≡ N̄ − 3KW the sum of the curvesE ′
k has total degree 21. Then we

have the following possibilities for the degrees(d1, d2, d3, d4):

(3, 3, 3, 12)

(3, 3, 4, 11)

(3, 3, 5, 10)

(3, 3, 6, 9)



5.2. Del Pezzo cases 117

(3, 3, 7, 8)

(3, 4, 6, 8)

(3, 4, 7, 7)

(3, 5, 5, 8)

(3, 5, 6, 7)

(3, 6, 6, 6)

As we have already seen̄E ′
1 is a cubic through 8 points.

Moreover sinceE ′
iZ

′′ = 1, E ′
iZ

′′′ = 2 for i = 2, 3, 4 we find Ē ′
iĒ

′
1 = 2 and

Ē ′
iĒ

′
j = E ′

iE
′
j + 1 + 4 = 5 for i 6= j, 2 ≤ i, j ≤ 4.

Let us consider̄E ′
i, i ≥ 2. ThenĒ ′2

i = 2 and Ē ′
iN̄2 = 2 forcesĒ ′

i to be a

solution of the linear system
∑

j j
2sj = d2

i − Ē ′2
i = d2

i − 2∑
j jsj = 3di − Ē ′

iN̄2 = 3di − 2∑
j sj ≤ 8

By an easy computation we have the following list of solutions:

1) di = 3, s1 = 7

2) di = 4, s2 = 2, s1 = 6

3) di = 5, s2 = 5, s1 = 3

4) di = 6, s3 = 1, s2 = 6, s1 = 1

5) di = 7, s3 = 3, s2 = 5

6) di = 8, s3 = 6, s2 = 2

7) di = 9, s4 = 1, s3 = 7

Proposition 5.2.2.All the above solutions are equivalent up to a finite number of

Cremona quadratic transformations ofP2 based atP1, . . . , P8.

Proof. Let us consider a curve of degree 9 as in 7) and let us take the 4-tuple

pointQ1 and two of the seven triple pointsQ2, Q3. Then they are not collinear

otherwise there should be a line meeting the above curve at 10 points. Moreover

Q1 is on P2, i.e. it is not infinitely near to any other point (see also definition
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1.4.2), since is the unique point of maximal multiplicity for the curve. SinceĒ ′
i

is an irreducible curve if bothQ2, Q3 were proximate toP1 (see definition 1.4.8)

from the inequalities (1.10) we should have

4 ≥ 3 + 3 = 6

If Q2 orQ3 are not infinitely near toQ1 we can choose them to be onP2. Then a

quadratic transformation (see section 1.4) based atQ1, Q2, Q3 is well-defined and

takes the curve of degree 9 onto an octic as in 6).

Let us consider the octic in 6) and let us take three of the six triple points

Q1, Q2, Q3. Then they are not collinear otherwise there should be a line meeting

the octic at 9 points. Moreover we can choose the points in such a way that one

of them, sayQ1, is onP2, i.e. it is not infinitely near to any other point. SincēE ′
i

is an irreducible curve if bothQ2, Q3 were proximate toP1 from the inequalities

(1.10) we should have

3 ≥ 3 + 3 = 6

If Q2 or Q3 are not infinitely near toQ1 we can choose them to be onP2. Then

a quadratic transformation based atQ1, Q2, Q3 is well-defined and takes the octic

onto a septic as in 5).

Let us now take two triple pointsQ1, Q2 and a double pointQ3 for the septic

5). Then they are not collinear otherwise there should be a line meeting the octic

at 8 points. Moreover we can choose the points in such a way that one of them,

sayQ1, is onP2, i.e. it is not infinitely near to any other point. If bothQ2, Q3

were proximate toP1 from the inequalities (1.10) we should have

3 ≥ 3 + 2 = 5

If Q2 is not infinitely near toQ1 we can choose it to be onP2. If Q3 is not

infinitely near toQ1, Q2 then either it is a plane double point or it is infinitely

near to a plane double point or it is infinitely near to a plane triple point. In the

first case we have nothing to do. In the second case we choose asQ3 the plane

double point, while in the third case we choose asQ1 the plane triple point. Then

a quadratic transformation based atQ1, Q2, Q3 is well-defined and takes the septic

onto a sextic as in 4).

To get 3) we consider the triple pointQ1 and two double pointsQ2, Q3 of the

sextic. They are not collinear andQ1 is necessarily onP2. Moreover

3 < 2 + 2 = 4
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henceQ2, Q3 cannot be both proximate toQ1. If Q2 orQ3 are not infinitely near

toQ1 we can choose them to be onP2. Then a quadratic transformation based at

Q1, Q2, Q3 takes the sextic onto a quintic.

With a similar argument one can see that we can choose three double points

for the quintic such that a quadratic transformation based at those points sends the

quintic onto a quartic as in 2). Eventually, if we base a quadratic transformation

at the two double points of the quartic and at one of the six simple points, we can

take the quartic onto the cubic in 1). The result is then proved.

Thus we can assume that one of the curvesĒ ′
i, i ≥ 2, sayĒ ′

2 is a cubic. There-

fore, up to a finite number of quadratic transformations, we have(d1, d2, d3, d4) =

(3, 3, 7, 8) or (3, 3, 6, 9) (we note thatĒ ′
1 is invariant for any quadratic transfor-

mation based at three points amongP1, . . . , P8).

The plane image of̄E ′ =
∑4

i=1 Ē
′
i is | − 7KP2|. Then the total multiplicity of

Ē ′ atP1, . . . , P8 is 7. SinceĒ ′
iĒ

′
j = 5 for 2 ≤ i, j ≤ 4, we obtain the following

configurations

P1 P2 P3 P4 P5 P6 P7 P8

3 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 0

7 2 2 2 2 2 3 3 3

8 3 3 3 3 3 2 2 3

P1 P2 P3 P4 P5 P6 P7 P8

3 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 0

6 1 2 2 2 2 2 2 3

9 4 3 3 3 3 3 3 3

If we denote byP9 the point obtained by contractingZ ′′′, by P10 the contraction

of Z ′′ and byP11 the contraction ofG′ we can write

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

3 1 1 1 1 1 1 1 1 0 2 0

3 1 1 1 1 1 1 1 0 2 1 0

7 2 2 2 2 2 3 3 3 2 1 0

8 3 3 3 3 3 2 2 3 2 1 0
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P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

3 1 1 1 1 1 1 1 1 0 2 0

3 1 1 1 1 1 1 1 0 2 1 0

6 1 2 2 2 2 2 2 3 2 1 0

9 4 3 3 3 3 3 3 3 2 1 0

Let us now compute the images ofF ′ andH ′. We haveF ′G′ = H ′G′ =

1, F ′Z ′′ = G′Z ′′ = 0 hence alsoF ′Z ′′′ = H ′Z ′′′ = 0. In particular the images of

F ′ andH ′ are curves of degreed ≥ 0 with multiplicity 0 atP9, P10.

Theorem 5.2.3.The casen = 3`, n′ = 0, n′′ = n′′′ = 1 cannot occur with̀ = 0.

Proof. We look at the eigenvalues of the curvesE ′
i, 1 ≤ i ≤ 4, F ′ andH ′ for the

action of the automorphism of order 3. We know thatF ′ andH ′ correspond to

different eigenvalues since they come from the blow-up of a singularity of type

A2. Let us setω := e2πi/3. If E ′
1 corresponds to the eigenvalueω then it appears

with multiplicity 1 in the branch locus of the simple triple cover associated to

X −→ Y = X/(Z/3Z). Let us assume thatE ′
i corresponds to the eigenvalueωνi,

F ′ corresponds to the eigenvalueωνF andH ′ to ω2νF .

The pointP10 is double forE ′
1 hence it is not infinitely near to any other point.

The pointP9 is double forE ′
2 hence again it is not infinitely near to any other

point.

The total multiplicity at those two points of the branch divisor has to be a

multiple of 3. Then we obtain the two equations2ν2 + 2ν3 + 2ν4 ≡ 0 mod 3

2ν1 + ν2 + ν3 + ν4 ≡ 0 mod 3

which forceν1 ≡ 0 mod 3. Contradiction.

5.2.2 ` = 1

When` = 1 from theorem 4.6.5 we always haveΦ = 0 and either case(1f) of

proposition 2.2.14 orA′ = N holds. Moreover we have0 = 3`−3 ≤ n ≤ 3` = 3.

n = 3`

From the results of section 4.5 when we contract the(−1)-cyclesG′, Z1, Z2, Z3,

Z ′′, Z ′′′ we get a rational surfaceW which is isomorphic to the projective plane
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P2 blown up at eight pointsP1, . . . , P8.

Case I: The cyclesZ1, Z2, Z3 are irreducible.

In this case

B0N1 = B0(N +KY −G′ − Z1 − Z2 − Z3) = 0 + 4− 0− 1− 1− 1 = 1

and

B0N2 = B0(N + 2KY − 2G′ − 2
3∑
i=1

Zi) = 0 + 8− 0− 6 = 2

In particular, sinceZ ′′N2 = 0 andZ ′′′N2 = 1, from the nefness ofN2 one can see

thatB0 cannot be an irreducible component of any of these cycles, i.e.B0 is not

contracted onW . Let us compute (recall thatN4 ≡ 0)

0 = B0N4 = B0(N + 4KY − 4G′ − 4
3∑
i=1

Zi − 2Z ′′ − Z ′′′)

= 0 + 16− 0− 12−B0(2Z
′′ + Z ′′) = 4−B0(2

2∑
i=1

Z ′
i + Z ′′)

hence0 ≤ B0Z
′′ ≤ 2 and we have

B̄0N̄3 = B0N3 = B0(N + 3KY − 3G′ − 3
2∑
i=1

Zi − Z ′′)

= 0 + 12− 0− 9−B0Z
′′ = 3−B0Z

′′ ≥ 1

Thus we can write the following table

B0Z1 B0Z2 B0Z3 B0Z
′′ B0Z

′′′ B̄0N̄3

a) 1 1 1 2 0 1

b) 1 1 1 1 2 2

c) 1 1 1 0 4 3

We now apply the Index theorem 1.1.10. SinceN̄2
3 = 1 andB̄0N̄3 = s ≥ 1

we findB̄2
0 ≤ s2 which excludes case c) and forcesB̄0 ≡ N̄3 in case a). We also

note that in case b) we havēB2
0 = 2.

Lemma 5.2.4.Case a) cannot occur.

Proof. Assume case a) holds. SincēB0 ≡ N̄3, B0Z1 = B0Z2 = B0Z3 = 1 and

E ′
5Z1 = E ′

4Z2 = 1 = E ′
3Z3, if E ′

3, E
′
4, E

′
5 were not contracted onW we should
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have

1 ≤ Ē ′
kB̄0 = Ē ′

kN̄3 = E ′
kN3 = E ′

k(N + 3KY − 3G′ − 3
2∑
i=1

Zi − Z ′′) = −E ′
kZ

′′

for k = 3, 4, 5. Then we should haveE ′
k ≤ Z ′′ and0 ≤ E ′

kN3 ≤ Z ′′N3 = 0.

Contradiction.

ThusE ′
k is contracted onW and, from the nefness ofN3,E ′

kZ
′′ = E ′

kZ
′′′ = 0

(k = 3, 4, 5). From the definition ofN and fromZ ′′′N = 3 we find

6 = 2B0Z
′′′ + E ′Z ′′′ = E ′Z ′′′ = (E ′

1 + E ′
2)Z

′′′ (5.17)

Moreover, fork = 1, 2

0 = E ′
kN4 = E ′

k(N + 4KY − 4G′ − 4
2∑
i=1

Zi − 2Z ′′ − Z ′′′)

= 0 + 4− 0− 0− E ′
k(2Z

′′ + Z ′′′) = 4− E ′
k(2Z

′′ + Z ′′′)

and

E ′
kN3 = E ′

k(N + 3KY − 3G′ − 3
2∑
i=1

Zi − Z ′′)

= 0 + 3− 0− 0− E ′
kZ

′′ = 3− E ′
kZ

′′ ≥ 0

Moreover sinceE ′
kN2 = 2 while Z ′′N2 = 0, Z ′′′N2 = 1, it cannot beE ′

k ≤
Z ′′, Z ′′′ for k = 1, 2. In particularE ′

kZ
′′, E ′

kZ
′′′ ≥ 0. Thus

2E ′
kZ

′′ + E ′
kZ

′′′ = 4 (5.18)

forces0 ≤ E ′
kZ

′′′ ≤ 4 and from (5.17) there should be at least one of the curves

E ′
k (sayE ′

2) such thatE ′
kZ

′′′ = 4, Ē ′
kN̄3 = 3. We get a contradiction since from

the Index theorem 1.1.10 we should have

(Ē ′
2 − 3N̄2)

2 ≤ 0

or equivalentlyĒ ′2
2 ≤ 9.

We now study case b). Let us denote byd0 the degree of the plane image of

B̄0. Since

2B̄0 + Ē ′ = N̄ − 3KW
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the curve2B̄0 + Ē ′ is sent to an element of| − 7KP2 |.

We note that a quadratic transformation leaves the plane image of|2B̄0 + Ē ′|
unchanged. In particular even after any quadratic transformation the equation

2d0 +
5∑
i=1

di = 21 (5.19)

holds, whered0 is the degree of the image of̄B0 while di, i = 1, . . . , 5 are the

degrees of the plane images of the curvesĒ ′
i. In particular we haved0 ≤ 10.

The curveB̄0 satisfies the linear system
∑

j j
2sj = d2

0 − B̄2
0 = d2

0 − 2∑
j jsj = 3d0 − B̄0N̄2 = 3d0 − 2∑
j sj ≤ 8

wheresj is the number of points amongP1, . . . , P8 of multiplicity j for B̄0. By

an easy computation one can see thatd0 ≥ 3 and we have the following list of

solutions:

1) d0 = 3, s1 = 7

2) d0 = 4, s2 = 2, s1 = 6

3) d0 = 5, s2 = 5, s1 = 3

4) d0 = 6, s3 = 1, s2 = 6, s1 = 1

5) d0 = 7, s3 = 3, s2 = 5

6) d0 = 8, s3 = 6, s2 = 2

7) d0 = 9, s4 = 1, s3 = 7

Proposition 5.2.5.All the above solutions are equivalent up to a finite number of

Cremona quadratic transformations ofP2 based atP1, . . . , P8.

Proof. See the proof of proposition 5.2.2.

From the above proposition, up to Cremona transformations, we can setd0 =

9. In particular we can assume that the quadruple point of the curveB0 is P8.

Then we find
5∑
i=1

di = 21− 2d0 = 3

anddi ≤ 3 for anyi = 1, . . . , 5.
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Proposition 5.2.6. In the above setting case I cannot occur.

Proof. Let us consider the curvesE ′
i, i = 1, 2. Then

E ′
iN2 = E ′

i(N + 2KY − 2G′ − 2
3∑
i=1

Zi) = 2

while Z ′′N2 = 0, Z ′′′N2 = 1. In particular, from the nefness ofN2, E ′
1 andE ′

2

cannot be contained inZ ′′ orZ ′′′ and they are not contracted onW . Thus

E ′
iZj = 0, 2E ′

iZ
′′ + E ′

iZ
′′′ = 4 (i = 1, 2, j = 1, 2, 3) (5.20)

Since (5.20) holds we have a priori three possibilities. In the former case

E ′
iZ

′′ = 2, E ′
iZ

′′′ = 0 and thenĒ ′2
i = 1 henceĒ ′

iB̄0 = 2 anddi = 3, s1 = 8.

In the second caseE ′
iZ

′′ = 1, E ′
iZ

′′′ = 2 and thenĒ ′2
i = 2 henceĒ ′

iB̄0 = 5 and

di = 3, s1 = 7. In the latter caseE ′
iZ

′′ = 0, E ′
iZ

′′ = 4 henceĒ ′
iN̄3 = 3 and

Ē ′2
i = 13 contradicting the Index theorem 1.1.10 as in the proof of lemma 5.2.4.

Thus, since
∑5

i=1 di = 3, one amongE ′
1 andE ′

2 is necessarily contracted on

W and we get a contradiction.

Case II: At least one of the cyclesZi is reducible.

We know from corollary 2.3.11 that eitherZ1, Z2 are irreducible andZ3 =

Z1 + Z2 + E ′
k for a suitable1 ≤ k ≤ 5 or Z1 is irreducibleZ2 = Z1 + C,

Z3 = 2Z1 + C + E ′
k for a suitable1 ≤ k ≤ 5 whereC is a(−2)-curve.

Let us look at the(−6)-curveB0. In any case we haveB0Z1 = B0Z2 =

1, B0Z3 = 2.

Proposition 5.2.7. In the above setting case II cannot occur.

Proof. If B0 was contracted onW , then it should be contained either inZ ′′ or in

Z ′′′. But when we contract the cyclesZ1, Z2, Z2 the self-intersection of the image

B′
0 of B0 is

B′2
0 = B2

0 + 1 + 1 + 4 = −6 + 6 = 0

SinceB0, henceB′
0, is irreducible, it cannot be a component of a(−1)-cycle.

ComputingB0N3 andB0N4 and recalling thatN3 is nef whereasN4 ≡ 0, one

can easily see thatB0Z
′′ = B0Z

′′′ = 0. Thus the imagēB0 of B0 on the rational

surfaceW is a curve of self-intersection 0 having a node or a cusp (depending on

the structure of the cyclesZi) at the point obtained by contractingZ1, Z2, Z3.
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In particular we note that̄B0N̄3 = B0N3 = 0. Hence by the Index theorem

1.1.10 and the rationality ofW we inferB̄0 = 0. Contradiction.

Hence we obtain

Theorem 5.2.8.The casen = 3`, n′ = 0, n′′ = n′′′ = 1 cannot occur with̀ = 1.

n = 3`− 1

From the results of section 4.4 when we contract the(−1)-cyclesG′, Z1, Z2, Z
′
1,

Z ′
2, Z

′′ we get a rational surfaceW which is isomorphic to the projective planeP2

blown up at eight pointsP1, . . . , P8.

We also recall that from corollary 2.3.11 the cyclesZ1 andZ2 are irreducible

(−1)-curves and

B0N1 = B0(N +KY −G′ − Z1 − Z2) = 0 + 4− 0− 1− 1 = 2

In particular, sinceZ ′
1N1 = Z ′

2N1 = 0 andZ ′′N1 = 1, from the nefness ofN1 one

can see thatB0 cannot be an irreducible component of any of these cycles, i.e.B0

is not contracted onW .

Let us compute (recall thatN3 ≡ 0)

0 = B0N3 = B0(N + 3KY − 3G′ − 3
2∑
i=1

Zi − 2
2∑
i=1

Z ′
i − Z ′′)

= 0 + 12− 0− 6−B0(2
2∑
i=1

Z ′
i + Z ′′) = 6−B0(2

2∑
i=1

Z ′
i + Z ′′)

hence0 ≤ B0

∑2
i=1 Z

′
i ≤ 3 and we have

B̄0N̄2 = B0N2 = B0(N + 2KY − 2G′ − 2
2∑
i=1

Zi −
2∑
i=1

Z ′
i)

= 0 + 8− 0− 4−B0

2∑
i=1

Z ′
i = 4−B0

2∑
i=1

Z ′
i ≥ 4− 3 = 1
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Thus we can write the following table

B0Z1 B0Z2 B0Z
′
1 B0Z

′
2 B0Z

′′ B̄0N̄2

a) 1 1 3 0 0 1

b) 1 1 2 1 0 1

c) 1 1 1 1 2 2

d) 1 1 1 0 4 3

e) 1 1 0 0 6 4

We now apply the Index theorem 1.1.10. SinceN̄2
2 = 1 andB̄0N̄2 = s ≥ 1

we find B̄2
0 ≤ s2 which excludes cases a), d), e) and forcesB̄0 ≡ N̄2 in case b).

We also note that in case c) we haveB̄2
0 = 2.

Lemma 5.2.9.Case b) cannot occur.

Proof. Assume case b) holds. SincēB0 ≡ N̄2, B0Z1 = B0Z2 = 1 andE ′
5Z1 =

E ′
4Z2 = 1, if E ′

4, E
′
5 were not contracted onW we should have

1 ≤ Ē ′
kB̄0 = Ē ′

kN̄2 = E ′
kN2 = E ′

k(N + 2KY − 2G′ − 2
2∑
i=1

Zi −
2∑
i=1

Z ′
i)

= −E ′
k

2∑
i=1

Z ′
i

for k = 4, 5. Then we should haveE ′
k ≤ Z ′

i for somei and0 ≤ E ′
kN2 ≤ Z ′

iN2 =

0. Contradiction.

Thus we haveE ′
k is contracted onW and, from the nefness ofN2,E ′

k

∑
i Z

′′
i =

E ′
kZ

′′ = 0 (k = 4, 5). From the definition ofN and fromZ ′′N = 2 we find

5 = 2B0Z
′′ + E ′Z ′′ = E ′Z ′′ = (E ′

1 + E ′
2 + E ′

3)Z
′′ (5.21)

Moreover, fork = 1, 2, 3

0 = E ′
kN3 = E ′

k(N + 3KY − 3G′ − 3
2∑
i=1

Zi − 2
2∑
i=1

Z ′
i − Z ′′)

= 0 + 3− 0− 0− E ′
k(2

2∑
i=1

Z ′
i + Z ′′) = 3− E ′

k(2
2∑
i=1

Z ′
i + Z ′′)

and

E ′
kN2 = E ′

k(N + 2KY − 2G′ − 2
2∑
i=1

Zi −
2∑
i=1

Z ′
i)
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= 0 + 2− 0− 0− E ′
k

2∑
i=1

Z ′
i = 2− E ′

k

2∑
i=1

Z ′
i ≥ 0

Thus

2E ′
k

2∑
i=1

Z ′
i + E ′

kZ
′′ = 3 (5.22)

andE ′
k

∑2
i=1 Z

′
i ≤ 2 forces−1 ≤ E ′

kZ
′′ ≤ 3.

ThusE ′
kZ

′′ is odd and from (5.21) there should be at least one of the curves

E ′
k (sayE ′

3) such thatE ′
kZ

′′ = 3, Ē ′
kN̄2 = 2. We get a contradiction since from

the Index theorem 1.1.10 we should have

(Ē ′
3 − 2N̄2)

2 ≤ 0

or equivalentlyĒ ′2
3 ≤ 4.

We now study case c). Let us denote byd0 the degree of the plane image of

B̄0. Since

2B̄0 + Ē ′ = N̄ − 3KW

the curve2B̄0 + Ē ′ is sent to an element of| − 6KP2 |.

We note that a quadratic transformation leaves the plane image of|2B̄0 + Ē ′|
unchanged. In particular even after any quadratic transformation the equation

2d0 +
5∑
i=1

di = 18 (5.23)

holds, whered0 is the degree of the image of̄B0 while di, i = 1, . . . , 5 are the

degrees of the plane images of the curvesĒ ′
i. In particular we haved0 ≤ 9.

The curveB̄0 satisfies the linear system
∑

j j
2sj = d2

0 − B̄2
0 = d2

0 − 2∑
j jsj = 3d0 − B̄0N̄2 = 3d0 − 2∑
j sj ≤ 8

wheresj is the number of points amongP1, . . . , P8 of multiplicity j for B̄0. By

an easy computation one can see thatd0 ≥ 3 and we have the following list of

solutions:

1) d0 = 3, s1 = 7
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2) d0 = 4, s2 = 2, s1 = 6

3) d0 = 5, s2 = 5, s1 = 3

4) d0 = 6, s3 = 1, s2 = 6, s1 = 1

5) d0 = 7, s3 = 3, s2 = 5

6) d0 = 8, s3 = 6, s2 = 2

7) d0 = 9, s4 = 1, s3 = 7

Proposition 5.2.10.All the above solutions are equivalent up to a finite number

of Cremona quadratic transformations ofP2 based atP1, . . . , P8.

Proof. See the proof of proposition 5.2.2.

From the above proposition, up to Cremona transformations, we can setd0 =

8. In particular we can assume that the two double points of the octic areP7, P8.

Then we find
5∑
i=1

di = 18− 2d0 = 2

anddi ≤ 2 for anyi = 1, . . . , 5.

If one of the curvesE ′
i is contracted onW then it hasdi = 0 and the multi-

plicity at each of the pointsP1, . . . , P8 is 0.

If E ′
i is not contracted onW we have two different numerical possibilities:

E ′
i

2∑
j=1

Zj = 1, E ′
iZ

′
1 = E ′

iZ
′
2 = 0, E ′

iZ
′′ = 0 (i = 4, 5) (5.24)

E ′
iZ1 = E ′

iZ2 = 0, 2E ′
i

2∑
j=1

Z ′
i + E ′

iZ
′′ = 3 (i = 1, 2, 3) (5.25)

When (5.24) holds we find̄E ′2
i = −2 hence, sincedi ≤ 2, eitherdi = 1, s1 =

3 or di = 2, s1 = 6. MoreoverĒ ′
iB̄0 = 1.

When (5.25) holds we have a priori two more possibilities. In the former case

E ′
i

∑2
j=1 Z

′
j = 1, E ′

iZ
′′ = 1 and thenĒ ′2

i = −1 henceĒ ′
iB̄0 = 3 and either

di = 1, s1 = 2 or di = 2, s1 = 5. In the latter caseE ′
i

∑2
j=1 Z

′
j = 0, E ′

iZ
′′ = 3

henceĒ ′
iN̄2 = 2 andĒ ′2

i = 6 contradicting the Index theorem 1.1.10 as in the

proof of lemma 5.2.9.
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We now fix i = 4, 5. Then sinceĒ ′
iN̄2 = 0 we have

∑8
j=1mj = 3di where

mj is the multiplicity ofĒ ′
i atPj. Moreover

1 = Ē ′
iB̄0 = 8di − 3(m1 + · · ·+m6)− 2(m7 +m8)

= 8di − 3
8∑
j=1

mj + (m7 +m8) = −di +m7 +m8

hence

di + 1 = m7 +m8 ≤ 2 (5.26)

since there are no singular points amongP1, . . . , P8. Hencedi ≤ 1 and when

di = 1 the lineĒ ′
i must pass throughP7 andP8.

This excludes the 6-tuple(d0, d1, d2, d3, d4, d5) = (8, 0, 0, 0, 1, 1) since both

Ē ′
4 andĒ ′

5 would be lines through the pointsP7 andP8.

Then we have the following list of 6-tuples(d0, d1, d2, d3, d4, d5):

(8, 2, 0, 0, 0, 0)

(8, 1, 1, 0, 0, 0)

(8, 1, 0, 0, 1, 0)

For i = 1, 2, 3, sinceĒ ′
iN̄2 = 1 (hence

∑8
j=1mj = 3di − 1), we have

3 = Ē ′
iB̄0 = 8di − 3(m1 + · · ·+m6)− 2(m7 +m8)

= 8di − 3
8∑
j=1

mj + (m7 +m8) = −di + 3 +m7 +m8

hence

m7 +m8 = di ≤ 2 (5.27)

We now study the 6-tuple of degrees(8, 2, 0, 0, 0, 0). Using (5.26), (5.27) and

the fact that2B̄0 + Ē ′ has total multiplicity 6 at each of the pointsP1, . . . , P8 we

find the following configuration

P1 P2 P3 P4 P5 P6 P7 P8

8 3 3 3 3 3 3 2 2

2 1 1 1 0 0 0 1 1

0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 1 0

0 0 0 -1 0 0 0 0 1
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For the 6-tuple(8, 1, 1, 0, 0, 0) we find

P1 P2 P3 P4 P5 P6 P7 P8

8 3 3 3 3 3 3 2 2

1 1 0 0 0 0 0 1 0

1 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 1 0

0 0 -1 0 0 0 0 0 1

For the 6-tuple(8, 1, 0, 0, 1, 0) we have

P1 P2 P3 P4 P5 P6 P7 P8

8 3 3 3 3 3 3 2 2

1 1 0 0 0 0 0 1 0

0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 1

0 0 -1 0 0 0 0 0 1

Remark 5.2.11.The conditions(5.26)and(5.27), the total multiplicity 6 of2B̄0+

Ē ′ at each of the pointsP1, . . . , P8 and the computation of the intersection num-

bers

Ē ′
iĒ

′
j =


0 i = 4, 5, i 6= j

≥ 1 i 6= j, 1 ≤ i, j ≤ 3

−1 1 ≤ i = j ≤ 3

are sufficient to uniquely determine the configuration of points for each 6-tuple

(d0, d1, d2, d3, d4, d5).

Lemma 5.2.12.The three above configurations are equivalent up to a finite num-

ber of quadratic transformations.

Proof. We consider the 6-tuple(8, 1, 1, 0, 0, 0). Let us apply a quadratic trans-

formation based atP1, P2, P8. SinceP1 is a point of maximal multiplicity for

both B̄0 andĒ ′
1 while P2 is a point of maximal multiplicity for both̄B0 andĒ ′

2,

they cannot be infinitely near to any other point. MoreoverP8 is proximate toP2

since the lineE ′
2 joins the two points and does not pass through any of the other

points. Hence a quadratic transformation based atP1, P2, P8 is well-defined and

we obtain(8, 1, 0, 0, 0, 1).
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We now show that(8, 1, 1, 0, 0, 0) is equivalent to(8, 2, 0, 0, 0, 0). We know

thatP8 is proximate toP2. A similar argument shows thatP7 is proximate toP1.

Let us now consider the pointsP3, P4, P5, P6. We claim that none of them can be

proximate toP1 or toP2. If this was the case, in fact, the octic should satisfy the

inequalities (1.10)

3 ≥ 3 + 2 = 5

Contradiction. Hence at least one of them, sayP3, has to be a planar point and we

can perform a quadratic transformation based atP2, P3, P8 obtaining the 6-tuple

(8, 2, 0, 0, 0, 0).

Thus all the 6-tuples are equivalent up to quadratic transformations and we

can reduce to one of them, say(8, 2, 0, 0, 0, 0). We also note that the curveE ′
3 is

contracted onW . In particular we have

E ′
3

2∑
j=1

Z ′
j = 2, E ′

3Z
′′ = −1.

Moreover sinceE ′
3 ≤ Z ′′ we findE ′

3N2 = 0 and then from the Index theorem

1.1.10 we have (recall thatZ ′
jN2 = 0 for anyj = 1, 2)

(E ′
3 + Z ′

j)
2 = −3− 1 + 2E ′

3Z
′
j < 0 (5.28)

henceE ′
3Z

′
1 = E ′

3Z
′
2 = 1.

We now look at the surfaceY which is isomorphic to the plane blown up at 14

points. Let us denote byP9 the point obtained by contractingZ ′′, P10 andP11 the

points obtained by contracting the cyclesZ ′
j, P12 andP13 the contractions ofZ1

andZ2 and, finally,P14 the contraction ofG′. From section 4.4

2B0 + E ′ ≡ 6G′ + 3
n∑
i=1

Zi + 2
2∑
i=1

Z ′
i + Z ′′ − 6KY

hence the total multiplicity of2B0 + E ′ atP9 is 5, atP10 andP11 is 4, atP12 and

P13 is 3 and it is 0 atP14.
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Therefore we can write the following table

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

8 3 3 3 3 3 3 2 2 2 1 1 1 1 0

2 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

0 0 -1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 1 0 0 0 0 1 0

Let us now see what the images ofF ′ andH ′ are. We know thatF ′G′ =

H ′G′ = 1 hence their images pass through the pointP14. We also know they have

no intersection withB0 and with any of the curvesE ′
i.

Let us now considerF ′. The computation forH ′ is similar. Its plane image

is a curve of degreed with multiplicitiesm1, . . . ,m14 at the pointsP1, . . . , P14.

From the above remarks we find the following relations

m14 = 1

3
∑6

i=1mi + 2
∑9

i=7mi +
∑13

i=10mi = 8d∑3
i=1mi +

∑10
i=7mi = 2d

−m1 +m9 +m11 = 0

−m9 +m10 +m11 = 0

−m2 +m7 +m12 = 0

−m3 +m8 +m13 = 0

(5.29)

Let us first assume thatF ′ is contracted onW . Then we immediately find

d = 0,mi = 0, i ≤ 8. The system (5.29) becomes

m14 = 1

2m9 +
∑13

i=10mi = 0

m9 +m10 = 0

m9 +m11 = 0

−m9 +m10 +m11 = 0

m12 = 0

m13 = 0

which forcesm9 = m10 = m11 = m12 = m13 = 0,m14 = 1. Then we get a

contradiction sinceF ′ is a(−3)-curve onY .
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ThenF ′ (henceH ′) is not contracted onW . SinceF ′N1 = F ′N2 = 0 we

haveF ′∑2
i=1 Zi = F ′∑2

i=1 Z
′
i = 0 = F ′Z ′′. This forcesF ′Zi = F ′Z ′

i = 0 for

i = 1, 2, hence

mi = 0 9 ≤ i ≤ 13

We can then rewrite (5.29) as

m14 = 1

3
∑6

i=1mi + 2
∑8

i=7mi = 8d∑3
i=1mi +

∑8
i=7mi = 2d

−m1 = 0

0 = 0

−m2 +m7 = 0

−m3 +m8 = 0

which is also equivalent to

m14 = 1

m1 = 0

m2 +m3 = d

m7 = m2

m8 = m3

m4 +m5 +m6 = d

(5.30)

SinceF ′ is a(−3)-curve we have

−3 = d2 −
14∑
i=1

m2
i = d2 −m2

2 −m2
3 −m2

4 −m2
5 −m2

6 −m2
7 −m2

8 −m2
14

= d2 −m2
2 − (d−m2)

2 −m2
4 −m2

5 −m2
6 −m2

2 − (d−m2)
2 − 1

= −(d− 2m2)
2 −m2

4 −m2
5 −m2

6 − 1

hence

(d− 2m2)
2 +m2

4 +m2
5 +m2

6 = 2

First of all we note that

2 ≥ m2
4 +m2

5 +m2
6 ≥ m4 +m5 +m6 = d
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forcesd ≤ 2. If d = 2 we findm2 = 1 and(m4,m5,m6) = (1, 1, 0), (1, 0, 1)

or (0, 1, 1). Using (5.30) we findm2 = m3 = m7 = m8 = m14 = 1. HenceF ′

andH ′ cannot both be sent to conics, since otherwise they should have at least 5

common points whileF ′H ′ = 0 onY .

Whend = 1 we find−1 ≤ 1 − 2m2 ≤ 1 hence eitherm2 = m7 = 0,m3 =

m8 = 1 orm2 = m7 = 1,m3 = m8 = 0. F ′ andH ′ cannot be sent to a conic and

a line respectively, since they should have at least 3 common points (P2, P7, P14

or P3, P8, P14). Contradiction.

If d = 0 then−1 ≤ −2m2 ≤ 1 forcesm2 = 0. Hence from (5.30) we get

m2 = m3 = m7 = m8 = 0,m4 +m5 +m6 = 0. Thus

{m4,m5,m6} = {1, 0,−1}.

From the above analysis eitherF ′ andH ′ are both sent to lines or one of them

is contracted onP2. In the former case we have the configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

8 3 3 3 3 3 3 2 2 2 1 1 1 1 0

2 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

0 0 -1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 1 0 0 0 0 1 0

1 0 1 0 1 0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

In the latter case we can assume that the contracted curve (resp: one of the

contracted curves) hasm4 = 1,m5 = −1,m6 = 0. If the second curve is a conic

we find the configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

8 3 3 3 3 3 3 2 2 2 1 1 1 1 0

2 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

0 0 -1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1

2 0 1 1 0 1 1 1 1 0 0 0 0 0 1
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If it is a line we find

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

8 3 3 3 3 3 3 2 2 2 1 1 1 1 0

2 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

0 0 -1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1

1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

while if they are both contracted we have

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

8 3 3 3 3 3 3 2 2 2 1 1 1 1 0

2 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

0 0 -1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1

Lemma 5.2.13.The configurations(8, 2, 0, 0, 0, 0, 1, 1) and (8, 2, 0, 0, 0, 0, 0, 1)

are equivalent up to quadratic transformations.

Proof. Let us study the configuration with two lines. One can easily see thatP2

andP3 are planar points since they are of maximal multiplicity for the octic, the

conic and one of the two lines simultaneously. MoreoverP7 is proximate toP2

while P3 is proximate toP8. ThusP1 cannot be proximate toP2 or to P3 since

otherwise the octic would contradict the inequalities (1.10)

3 ≥ 3 + 2 = 5

With a similar argument one can show thatP4 andP5 are planar points too.

If we base a quadratic transformation atP3, P4, P8 we obtain the configuration

with a line and a contracted curve.

Proposition 5.2.14.The casen = 3` − 1, n′ = 2, n′′ = 1 cannot occur with de-

grees(d0, d1, d2, d3, d4, d5, dF , dH) = (8, 2, 0, 0, 0, 0, 1, 1) and(8, 2, 0, 0, 0, 0, 1).
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Proof. We look at the eigenvalues of the curvesB0, E ′
i, 1 ≤ i ≤ 5, F ′ andH ′ for

the action of the automorphism of order 3. We know thatF ′ andH ′ correspond

to different eigenvalues since they come from the blow-up of a singularity of type

A2 (see section 1.3). Let us setω := e2πi/3. If B0 corresponds to the eigenvalue

ω then it appears with multiplicity 1 in the branch locus of the simple triple cover

associated toX −→ Y = X/(Z/3Z). Let us assume thatE ′
i corresponds to the

eigenvalueωνi, F ′ corresponds to the eigenvalueωνF andH ′ to ω2νF .

We have already shown that the two configurations(8, 2, 0, 0, 0, 0, 1, 1) and

(8, 2, 0, 0, 0, 0, 0, 1) are equivalent up to quadratic transformations. Let us con-

sider the configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

8 3 3 3 3 3 3 2 2 2 1 1 1 1 0

2 1 1 1 0 0 0 1 1 1 1 0 0 0 0

0 -1 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

0 0 -1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 -1 0 0 0 0 1 0 0 0 0 1 0

1 0 1 0 1 0 0 1 0 0 0 0 0 0 1

1 0 0 1 0 1 0 0 1 0 0 0 0 0 1

Since the total degree of the branch curve onP2 has to be multiple of 3 and

since the two lines correspond to different eigenvalues, the conic appears with

multiplicity 2 in the branch divisor, henceν1 ≡ 2 mod 3.

The pointsP2,P3 are not infinitely near to any other point since they are the

only points which are triple for the octic and simple for both the conic and one of

the two lines.

The total multiplicity atP3 of the branch divisor has to be a multiple of 3.

Then we obtain the equation

3 + ν1 + ν5 + νH ≡ 3 + 2 + ν5 + νH ≡ 0 mod 3

which forcesνH + ν5 ≡ 2νF + ν5 ≡ 1 mod 3.

On the other hand the same computation forP2 gives us

3 + ν1 + ν4 + νF ≡ 3 + 2 + ν4 + νF ≡ 0 mod 3

which forcesνF + ν4 ≡ 1 mod 3.
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Then sinceνi, νF ≡ 1, 2 mod 3 we find

νF ≡ ν4 ≡ 2 mod 3

henceν5 ≡ 0 mod 3. Contradiction.

Proposition 5.2.15.The casen = 3` − 1, n′ = 2, n′′ = 1 cannot occur with

degrees(d0, d1, d2, d3, d4, d5, dF , dH) = (8, 2, 0, 0, 0, 0, 0, 2).

Proof. Let us consider the pointsP1, P2, P3. They are of maximal multiplicity for

both the octic and one of the two conics hence they cannot be infnitely near to any

of the pointsPj, j ≥ 4. Since there is an irreducible conic passing through all the

three points, we can perform a quadratic transformation based atP1, P2, P3 and

we obtain the following configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

7 2 2 2 3 3 3 2 2 2 1 1 1 1 0

1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1

2 0 1 1 0 1 1 1 1 0 0 0 0 0 1

We now show that this new configuration cannot occur.

Let us consider the pointsP4, P5, P6. Since they are triple points for the septic

they cannot be infinitely near to any other pointPj, j ≤ 3 or j ≥ 7. Moreover

the conicH ′ passes throughP5 andP6 but not throughP4. Hence one among

P5 andP6 has to be a planar point. We look at the eigenvalues of the curvesB0,

E ′
i, 1 ≤ i ≤ 5, F ′ andH ′ for the action of the automorphism of order 3. We

know thatF ′ andH ′ correspond to different eigenvalues since they come from

the blow-up of a singularity of typeA2 (see section 1.3). Let us setω := e2πi/3.

If B0 corresponds to the eigenvalueω then it appears with multiplicity 1 in the

branch locus of the simple triple cover associated toX −→ Y = X/(Z/3Z).

Let us assume thatE ′
i corresponds to the eigenvalueωνi, F ′ corresponds to the

eigenvalueωνF andH ′ to ω2νF .

If P6 was planar, then the total multiplicity ofP6 in the branch divisor of the

simple triple cover has to be a multiple of 3. Thus

3 + νH ≡ 0 mod 3
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which forcesνH ≡ 0 mod 3. We get a contradiction sinceH ′ is an irreducible

component of the branch divisor.

ThusP5 is a planar point andP6 is proximate toP5. But then when we blow

upP5 the exceptional divisorF ′ should pass throughP6. Contradiction.

Proposition 5.2.16.The casen = 3` − 1, n′ = 2, n′′ = 1 cannot occur with

degrees(d0, d1, d2, d3, d4, d5, dF , dH) = (8, 2, 0, 0, 0, 0, 0, 0).

Proof. Let us consider the pointsP1, P2, P3. They are of maximal multiplicity for

both the octic and one of the two conics hence they cannot be infnitely near to any

of the pointsPj, j ≥ 4. Since there is an irreducible conic passing through all the

three points, we can perform a quadratic transformation based atP1, P2, P3 and

we obtain the following configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

7 2 2 2 3 3 3 2 2 2 1 1 1 1 0

1 0 0 0 0 0 0 1 1 1 1 0 0 0 0

1 0 1 1 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 1 0 0 0

1 1 0 1 0 0 0 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 -1 0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1

We now show that this new configuration cannot occur.

Let us consider the pointsP4, P5, P6. Since they are triple points for the septic

they cannot be infinitely near to any other pointPj, j ≤ 3 or j ≥ 7. Moreover we

haveP4 � P5 � P6 (cf. definition 1.4.2). In particularP6 is a planar point.

We look at the eigenvalues of the curvesB0, E ′
i, 1 ≤ i ≤ 5, F ′ andH ′ for

the action of the automorphism of order 3. We know thatF ′ andH ′ correspond

to different eigenvalues since they come from the blow-up of a singularity of type

A2 (see section 1.3). Let us setω := e2πi/3. If B0 corresponds to the eigenvalue

ω then it appears with multiplicity 1 in the branch locus of the simple triple cover

associated toX −→ Y = X/(Z/3Z). Let us assume thatE ′
i corresponds to the

eigenvalueωνi, F ′ corresponds to the eigenvalueωνF andH ′ to ω2νF .

SinceP6 is planar, the total multiplicity ofP6 in the branch divisor of the

simple triple cover has to be a multiple of 3. Thus

3 + νH ≡ 0 mod 3
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which forcesνH ≡ 0 mod 3. We get a contradiction sinceH ′ is an irreducible

component of the branch divisor.

Hence we obtain

Theorem 5.2.17.The casen = 3`− 1, n′ = 2, n′′ = 1 cannot occur.

n = 3`− 2

Assumen = 3`−2 = 1. Then we contract the(−1)-cyclesG′, Z, Z ′
i, i = 1, . . . , 5

and we obtain a surfaceW with K2
W = K2

Y + 7 = 2 which is isomorphic to the

plane blown-up at seven pointsP1, . . . , P7. Thus|N̄1| maps to the linear system

of cubics through the seven points. Then

B̄0N̄1 = B0N1 = B0(N +KY −G′ − Z) = 0 + 4− 0−B0Z

Corollary 2.3.11 tells us thatZ is an irreducible(−1)-curve. Then from corollary

2.3.7 we findB0Z = 1.

We also notice that from formula (4.6)

0 = NB0 = (2Z + 2G′ +
5∑
j=1

Z ′
j − 2KY )B0 = 2 +B0

5∑
j=1

Z ′
j − 8

hence

B0

5∑
j=1

Z ′
j = 6

Moreover by definition ofN = 3KY + 2B0 + E ′ − 3G′ we have

1 = Z ′
jN = Z ′

j(3KY + 2B0 + E ′ − 3G′) = −3 + (2B0 + E ′)Z ′
j

and then

(2B0 + E ′)Z ′
j = 4.

We notice thatB0 cannot be contained in any of the cyclesZ ′
j otherwise we

should have

B0N1 = 3 ≤ Z ′
jN1 = 0

hence0 ≤ B0Z
′
j ≤ 2 for all j = 1 . . . , 5.
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Therefore we can have one of possibilities of the following table:

B0Z
′
1 B0Z

′
2 B0Z

′
3 B0Z

′
4 B0Z

′
5

a) 2 2 2 0 0

b) 2 2 1 1 0

c) 2 1 1 1 1

Proposition 5.2.18.Cases a) and b) cannot occur.

Proof. Let us consider onW the imageB̄0 of B0.

SinceB̄0N̄1 = B0N1 = 3 andN̄2
1 = 2 from the Index theorem 1.1.10 we find

(2B̄0 − 3N̄1)
2 = 4B̄2

0 − 18 ≤ 0

henceB̄2
0 ≤ 4.

If a) holds then we find (recall that in any case we haveB0Z = 1, B0G
′ = 0)

B̄2
0 = B2

0 + 1 + 4 + 4 + 4 = B2
0 + 13 = −6 + 13 = 7

If b) holds then we find

B̄2
0 = B2

0 + 1 + 4 + 4 + 1 + 1 = B2
0 + 11 = −6 + 11 = 5

Finally if c) holds then we find

B̄2
0 = B2

0 + 1 + 4 + 1 + 1 + 1 + 1 = B2
0 + 9 = −6 + 9 = 3

The result is then proved.

Let us consider the system2B̄0+Ē ′ = N̄−3KW . This is mapped to the linear

system| − 5KP2 | of curves of degree 15 with 7 quintuple points. In particular the

plane image of̄B0 has degreed0 ≤ 7.

From proposition 5.2.18 only c) can actually hold. In this caseB̄0 satisfies the

linear system 
∑

j jsj = 3d0 − B̄0N̄1 = 3d0 − 3∑
j j

2sj = d2
0 − B̄2

0 = d2
0 − 3∑

j sj ≤ 7

wheresj is the number of points of multiplicityj of B̄0 amongP1, . . . , P7.
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One can easily see thatd0 ≥ 3 and the system has the following solutions

(recall thatd0 ≤ 7):

1) d0 = 3, s1 = 6

2) d0 = 4, s2 = 2, s1 = 5

3) d0 = 5, s2 = 5, s1 = 2

4) d0 = 6, s3 = 1, s2 = 6

Proposition 5.2.19.All the possibilities forB̄0 are equivalent up to Cremona

quadratic transformations based at three of the seven pointsP1, . . . , P7.

Proof. Let us consider a sextic as in 4) and let us take the triple pointQ1 and

two of the six double pointsQ2, Q3. Then they are not collinear otherwise there

should be a line meeting the sextic at 7 points. MoreoverQ1 is onP2, i.e. it is not

infinitely near to any other point, since is the unique point of maximal multiplicity

for the curve. SincēE ′
i is an irreducible curve if bothQ2, Q3 were proximate to

P1 from the inequalities (1.10) we should have

3 ≥ 2 + 2 = 4

If Q2 orQ3 are not infinitely near toQ1 we can choose them to be onP2. Then a

quadratic transformation (see section 1.4) based atQ1, Q2, Q3 is well-defined and

takes the sextic onto a quintic as in 3).

Let us consider the quintic in 3) and let us take three of the five double points

Q1, Q2, Q3. Then they are not collinear otherwise there should be a line meeting

the quintic at 6 points. Moreover we can choose the points in such a way that one

of them, sayQ1, is onP2, i.e. it is not infinitely near to any other point. SincēE ′
i

is an irreducible curve if bothQ2, Q3 were proximate toP1 from the inequalities

(1.10) we should have

2 ≥ 2 + 2 = 4

If Q2 orQ3 are not infinitely near toQ1 we can choose them to be onP2. Then a

quadratic transformation based atQ1, Q2, Q3 is well-defined and takes the quintic

onto a quartic as in 2).

Let us now take two double pointsQ1, Q2 and a simple pointQ3 for the quartic

2). Then they are not collinear otherwise there should be a line meeting the quartic

at 5 points. Moreover we can choose the points in such a way that one of them,
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sayQ1, is onP2, i.e. it is not infinitely near to any other point. If bothQ2, Q3

were proximate toP1 from the inequalities (1.10) we should have

2 ≥ 1 + 2 = 3

If Q2 is not infinitely near toQ1 we can choose it to be onP2. If Q3 is not

infinitely near toQ1, Q2 then either it is a plane simple point or it is infinitely near

to a plane simple point or it is infinitely near to a plane double point. In the first

case we have nothing to do. In the second case we choose asQ3 the plane simple

point, while in the third case we choose asQ1 the plane double point. Then a

quadratic transformation based atQ1, Q2, Q3 is well-defined and takes the quartic

onto a cubic as in 1).

From now on we assume that the plane image ofB̄0 is a sextic with a triple

point and six double points. We also note that a quadratic transformation leaves

the plane image of|2B̄0 + Ē ′| unchanged (in fact it is| − 5KP2)|). In particular

after any quadratic transformation the equation

2d0 +
5∑
i=1

di = 15 (5.31)

holds, whered0 is the degree of the image of̄B0 while di, i = 1, . . . , 5 are the

degrees of the plane images of the curvesĒ ′
i. When we fixd0 = 6 we obtain

5∑
i=1

di = 3.

Remark 5.2.20. We observe that for any1 ≤ i ≤ 4 we haveE ′
iN1 = 1. In

particularE ′
i cannot be contained in a(−1)-cycleZ ′

j since otherwise

1 = E ′
iN1 ≤ Z ′

jN1 = 0.

Moreover sinceĒ ′
iN̄1 = E ′

iN1 = 1 andN̄2
1 = 2 we have

(2Ē ′
i − N̄1)

2 = 4Ē ′2
i − 2 ≤ 0

henceĒ ′2
i ≤ 0. Computing

0 = E ′
iN2 = E ′

i(N + 2KY − 2G′ − 2Z −
5∑
j=1

Z ′
j) = 2− E ′

i

5∑
j=1

Z ′
j

the Index theorem 1.1.10 forcesE ′
iZ

′
j1

= E ′
iZ

′
j2

= 1 for suitablej1 andj2.
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From remark 5.2.20 we can subdivide the analysis as follows:

Case I: E ′
5 is contracted on W .

Case II: E ′
5 is not contracted on W .

Before studying the two cases we add some useful remarks.

Remark 5.2.21.From the results of section 4.3 we have

2B0 + E ′ ≡ 2Z + 5G′ +
5∑
j=1

Z ′
j − 5KY

hence the total multiplicity of2B0 + E ′ at the pointsP1, . . . , P7 is 5, while if we

denote byP8, . . . , P12 the points obtained by contracting the cyclesZ ′
j, byP13 the

point obtained by contractingZ and byP14 the point which is the contraction of

G′, 2B0+E
′ has multiplicity 4 atP8, . . . , P12, multiplicity 3 atP13 and multiplicity

0 atP14.

Remark 5.2.22. SinceĒ ′
iN̄1 = 1 the curvesE ′

i, 1 ≤ i ≤ 4 satisfy
∑7

i=1mi =

3di − 1. Moreover eitherB̄0Ē
′
i = 2 or B̄0Ē

′
i = 3. In the former case we find

2 = B̄0Ē
′
i = 6di − 3m1 − 2

7∑
i=1

mi = 6di −m1 − 6di + 2

hencem1 = 0.

In the latter case we find

3 = B̄0Ē
′
i = 6di − 3m1 − 2

7∑
i=1

mi = 6di −m1 − 6di + 2

hencem1 = −1 anddi = 0.

From (5.31)we have
∑5

i=1 di = 3 whencedi ≤ 3 for all i. When1 ≤ i ≤ 4 Ē ′
i

is a (−1)-curve such that̄E ′
iN̄1 = 1. Thus it is a solution of the following linear

system 
∑

j j
2sj = d2

i + 1∑
j jsj = 3di − 1∑
j sj ≤ 7

Sincedi ≤ 3 we find the solutions:

1) di = 1, s1 = 2

2) di = 2, s1 = 5
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3) di = 3, s2 = 1, s1 = 6

From the computation of̄E ′
iB̄0 we havem1 = 0,−1 which excludes case 3).

In particular di ≤ 2 for 1 ≤ i ≤ 4.

Case I: E ′
5 is contracted on W .

If E ′
5 is contracted onW then there exists a(−1)-cycleZ ′

j such thatE ′
5Z

′
j =

−1. Thend5 = 0 and the multiplicity ofE ′
5 at each pointP1. . . . , P7 is 0. Then

we have the following possibilities for the 6-tuples(d0, d1, d2, d3, d4, d5):

(6, 2, 1, 0, 0, 0)

(6, 1, 1, 1, 0, 0)

In any of the two cases using the remarks 5.2.21 and 5.2.22 and the fact that

E ′
iE

′
j = 0 for i 6= j andE ′

iB0 = 0 on the surfaceY we can uniquely determine

the multiplicities of each curve at the pointsP1, . . . , P14:

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

0 -1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 0 1 1 1 1 1 0 0 0 1 1 0 0 0

1 0 1 0 0 0 0 1 0 0 1 0 1 0 0

0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 -1 1 0 0 0 1 0

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

0 -1 0 0 0 0 0 0 1 1 0 0 0 0 0

1 0 1 1 0 0 0 0 0 0 1 1 0 0 0

1 0 0 0 1 1 0 0 0 0 1 0 1 0 0

1 0 0 0 0 0 1 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 -1 1 0 0 0 1 0

Let us consider the second configuration. ThenP4 andP5 are the only points

which are of maximal multiplicity for both the sextic and the lineE ′
3. Hence at

least one of them has to be a planar point, sayP5. Analogously one betweenP6
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andP7, sayP7, has to be a planar point. Thus a quadratic transformation based at

P5, P6, P7 is well-defined (see section 1.4) and it takes the second configuration

to the first one. Hence they are equivalent up to Cremona transformations and we

can assume(6, 2, 1, 0, 0, 0) holds.

We now compute the images ofF ′ andH ′. They have no intersection with all

the above curves whileF ′G′ = H ′G′ = 1. In particular they pass throughP14.

Moreover sinceF ′N1 = H ′N1 = 0 we findF ′Z = H ′Z = 0 hence they do not

pass throughP13. Thus they satisfy the following conditions

m14 = 1

m13 = 0

−m8 +m9 +m13 = 0

−m2 +m11 +m12 = 0

m2 +m7 +m10 +m12 = d

m2 +m3 +m4 +m5 +m6 +m10 +m11 = 2d

−m1 +m8 +m9 = 0

3m1 + 2
∑8

i=2mi +
∑13

i=9mi = 6d

(5.32)

If one of the two curves, sayF ′, is contracted onW we haved = m1 = m2 =

m3 = m4 = m5 = m6 = m7 = 0 and (5.32) becomes



m14 = 1

m13 = 0

−m8 +m9 +m13 = 0

m11 +m12 = 0

m10 +m12 = 0

m10 +m11 = 0

m8 +m9 = 0

2m8 +
∑13

i=9mi = 0

which has the only solutionm8 = m9 = m10 = m11 = m12 = m13 = 0,m14 = 1.

Then we get a contradiction sinceF ′2 = −3 onY .

It follows that neitherF ′ norH ′ are contracted onW . This forcesm8 = m9 =

m10 = m11 = m12 = m13 = 0. Then (5.32) becomes
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m14 = 1

m13 = 0

0 = 0

m2 = 0

m2 +m7 = d

m2 +m3 +m4 +m5 +m6 = 2d

m1 = 0

3m1 + 2
∑7

i=2mi = 6d

which forcesm1 = m2 = 0,m7 = d,m3 +m4 +m5 +m6 = 2d.

Moreover sinceF ′2 = −3 we have

−3 = d2 −m2
3 −m2

4 −m2
5 −m2

6 − d2 − 1

which forces

m2
3 +m2

4 +m2
5 +m2

6 = 2 ≥ m3 +m4 +m5 +m6 = 2d (5.33)

henced ≤ 1. If it was d = 1 for bothF ′ andH ′ we would get a contradiction

since the two distinct lines would meet atP7 andP14. Thus for at least one of

them we haved = 0. Then from (5.33) we have

−1 ≤ mi ≤ 1 3 ≤ i ≤ 6.

Without loss of generality we can assumem3 = 1,m4 = −1,m5 = m6 = 0 for

one of the two curves, sayF ′.

If H ′ is a line we have the configuration

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

0 -1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 0 1 1 1 1 1 0 0 0 1 1 0 0 0

1 0 1 0 0 0 0 1 0 0 1 0 1 0 0

0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 -1 1 0 0 0 1 0

0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 0 1 0 0 0 0 0 0 1
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whereas if it is contracted we find

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

0 -1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 0 1 1 1 1 1 0 0 0 1 1 0 0 0

1 0 1 0 0 0 0 1 0 0 1 0 1 0 0

0 0 -1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 -1 1 0 0 0 1 0

0 0 0 1 -1 0 0 0 0 0 0 0 0 0 1

0 0 0 -1 0 1 0 0 0 0 0 0 0 0 1

Lemma 5.2.23.The two configurations are equivalent up to quadratic transfor-

mations.

Proof. We now consider the first configuration. The pointP2 cannot be infinitely

near to any other point, since it is of maximal multiplicity for both the conic and

the lineE ′
2. P7 cannot be infinitely near toP2 since it is on the lineH ′. Then we

can easily see thatP7 is a planar point too. Then with a similar argument one can

see that eitherP4 or P5 is planar. Let us assumeP5 is not planar. HenceP4 is and

we can perform a quadratic transformation based atP2, P4, P7. Then we obtain

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

0 -1 0 0 0 0 0 0 1 1 0 0 0 0 0

2 0 1 1 1 1 1 0 0 0 1 1 0 0 0

0 0 0 0 -1 0 0 0 0 0 1 0 1 0 0

1 0 0 0 1 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 -1 1 0 0 0 1 0

1 0 1 1 0 0 0 1 0 0 0 0 0 0 1

0 0 -1 0 0 1 0 0 0 0 0 0 0 0 1

Then the lineF ′ hasm2 + m7 = 2 6= 1 contradicting (5.32). Thus we can

apply a quadratic transformation based atP2, P5, P7 and we obtain the second

configuration.

Proposition 5.2.24.In the above setting case I cannot occur.

Proof. We look at the eigenvalues of the curvesB0, E ′
i, 1 ≤ i ≤ 5, F ′ andH ′ for

the action of the automorphism of order 3. We know thatF ′ andH ′ correspond
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to different eigenvalues since they come from the blow-up of a singularity of type

A2 (see section 1.3). Let us setω := e2πi/3. If B0 corresponds to the eigenvalue

ω then it appears with multiplicity 1 in the branch locus of the simple triple cover

associated toX −→ Y = X/(Z/3Z). Let us assume thatE ′
i corresponds to the

eigenvalueωνi, F ′ corresponds to the eigenvalueωνF andH ′ to ω2νF .

The pointP1 is not infinitely near to any other point since it is the only point

of maximal multiplicity of the sextic. The total multiplicity at this point of the

branch divisor has to be a multiple of 3. Then we obtain the equation

3 + ν1 ≡ 0 mod 3

which forcesν1 ≡ 0 mod 3. Contradiction.

Case II: E ′
5 is not contracted on W .

Let us now assumeE ′
5 is not contracted onW . Then we haveE ′

5Z = 1,

E ′
5Z

′
j = 0 for all j ≤ 5. MoreoverĒ ′

5N̄1 = 0 hence
∑7

i=1mi = 3d5. In particular

we can compute

1 = B̄0Ē
′
5 = 6d5 − 3m1 − 2

7∑
i=2

mi = 6d5 −m1 − 6d5

which forcesm1 = −1 andd5 = 0.

Then, as before, we have the following possibilities for(d0, d1, d2, d3, d4, d5):

(6, 2, 1, 0, 0, 0)

(6, 1, 1, 1, 0, 0)

Using remarks 5.2.20, 5.2.21, 5.2.22 and the fact thatE ′
iE

′
j = 0, E ′

iB0 = 0 for

anyi 6= j onY each 6-tuple gives us a unique configuration of the points

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

2 0 0 1 1 1 1 1 0 1 1 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 -1 0 0 0 0 0 1 0 1 0 0

0 0 0 -1 0 0 0 0 0 1 0 1 0 0 0

0 -1 1 0 0 0 0 0 0 0 0 0 0 1 0
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and

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

1 0 0 1 1 0 0 0 0 1 1 0 0 0 0

1 0 0 1 0 1 0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 1 1 0 0 1 0 1 0 0

0 0 0 -1 0 0 0 0 0 1 0 1 0 0 0

0 -1 1 0 0 0 0 0 0 0 0 0 0 1 0

Let us consider the second configuration. Then we can base a quadratic trans-

formation (see 1.4) at the pointsP3, P4, P5. In factP3 is a planar point since it is

of maximal multiplicity for the linesE ′
1 andE ′

2 and double for the sextic.

P4 andP5 cannot both be proximate toP3 otherwise from (1.10) the sextic

should satisfy

2 = m3 ≤ m4 +m5 = 2 + 2 = 4.

Hence they are planar points too. Thus we can reduce the second configuration

to the first one. Then we can assume that(d0, d1, d2, d3, d4, d5) = (6, 2, 1, 0, 0, 0)

holds.

Let us now compute the images ofF ′ andH ′. As before they have no inter-

section with all the above curves and we know thatF ′Z = H ′Z = 0. Moreover

they both pass through the pointP14 which is the contraction ofG′. Thus we find

the conditions

m14 = 1

m13 = 0

−m1 +m2 +m13 = 0

−m3 +m9 +m11 = 0

−m4 +m10 +m12 = 0

m3 +m4 +m11 +m12 = d

m3 +m4 +m5 +m6 +m7 +m9 +m10 = 2d

3m1 + 2
∑8

i=2mi +
∑13

i=9mi = 6d

(5.34)

If F ′ or H ′ are contracted onW thend = m1 = m2 = m3 = m4 = m5 =
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m6 = m7 = 0 and (5.34) becomes

m14 = 1

m13 = 0

0 = 0

m9 +m11 = 0

m10 +m12 = 0

m11 +m12 = 0

m9 +m10 = 0

2m8 +
∑12

i=9mi = 0

which forcesm8 = 0, m9 = m12 = −m10 = −m11. SinceF ′2 = H ′2 = −3 we

obtain a contradiction.

Hence neitherF ′ nor H ′ are contracted onW . In this case we havem8 =

m9 = m10 = m11 = m12 = m13 = 0 and (5.34) becomes



m14 = 1

m13 = 0

m1 = m2

m3 = 0

m4 = 0

m3 +m4 = d

m3 +m4 +m5 +m6 +m7 = 2d

3m1 + 2
∑7

i=2mi = 6d

which forcesd = 0,m1 = m2 = m3 = m4 = 0,m5 +m6 +m7 = 0. Thus since

the self-intersection ofF ′ andH ′ is−3 we have

{m5,m6,m7} = {1, 0,−1}.
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Hence we can write the following configuration (recall thatF ′H ′ = 0 onY )

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

6 3 2 2 2 2 2 2 2 1 1 1 1 1 0

2 0 0 1 1 1 1 1 0 1 1 0 0 0 0

1 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 -1 0 0 0 0 0 1 0 1 0 0

0 0 0 -1 0 0 0 0 0 1 0 1 0 0 0

0 -1 1 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 -1 0 0 0 0 0 0 0 1

0 0 0 0 0 -1 0 1 0 0 0 0 0 0 1

A similar argument as in proposition 5.2.24 shows

Proposition 5.2.25.In the above setting case II cannot occur.

As an immediate consequence we obtain

Theorem 5.2.26.The casen = 3`− 2, n′ = 5 cannot occur.

n = 3`− 3

The casen = 3`−3 can only occur (see theorem 4.6.5) when we are in cases(1f)

of proposition 2.2.14 or whenA′ = N . Thenn = 0 and when we contract onY

the curveG′ we obtain a rational surfaceW with K2
W = −5 + 1 = −4 having a

netN̄1 = N̄ +KW of rational curves such that̄N2
1 = 1.

Then as we have already seen in section 4.2 we have a birational morphism

ϕ|N̄1| : W −→ P2. The net|N̄1| is then mapped onto the net of lines ofP2 while

|N̄ | is mapped to the system of quartics through 13 points. Thus|2B̄0 + Ē ′| =

|N̄ − 3KW | is mapped to the system of curves of degree 13 with 13 quadruple

points.

The curvesF ′ andH ′ onY have no intersection withN1 (cf. corollary 2.3.4)

hence they are contracted by the mapϕ|N̄1|.

We now compute the plane images ofB0 andE ′. We have

B̄0N̄1 = B0N1 = B0(N +KY −G′) = 0 + 4− 0 = 4

Ē ′
iN̄1 = E ′

iN1 = E ′
i(N +KY −G′) = 0 + 1− 0 = 1
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B̄0 is then mapped onto a quartic and none of the curvesE ′
i is contracted.

Since the total multiplicity of any of2B̄0 + Ē ′ of any of the thirteen points is 4,

B̄0 can only have simple or double points atP1, . . . , P13. Then∑
j

j2sj = d2 − B̄2
0 = 16−B2

0 + 16 + 6 = 22

and ∑
j

jsj = 4d− B̄0N̄ = 16−B0N = 16

with j ≤ 2. Hence

2s2 = (4s2 + s1)− (2s2 + s1) = 22− 16 = 6

forcess2 = 3, s1 = 10.

The(−3)-curvesĒ ′
k satisfyĒ ′

kN̄1 = E ′
kN1 = 1 hence their plane images are

lines through four points. SincēE ′
jĒ

′
k = 0 for anyj 6= k and since2B̄0 + Ē ′ has

multiplicity 4 at the pointsP1, . . . , P13 it is easy to see that, up to reordering the

points, the only possible configuration forB̄0 and the curves̄E ′
k is

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

4 2 2 2 1 1 1 1 1 1 1 1 1 1 0

1 0 0 0 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 1 1 0 0 0 0

1 0 0 0 0 1 0 0 1 0 0 1 1 0 0

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0

1 0 0 0 0 0 0 1 0 0 1 0 1 1 0

We know thatF ′ andH ′ are(−3)-curves contracted onP2 since they have no

intersection withN1. Moreover they do not intersectB0 and the curveE ′
i while

they intersectG′ at one point.

Thus they solve the linear system

m14 = 1

2(m1 +m2 +m3) +
∑13

i=4mi = 0

m4 +m5 +m6 +m7 = 0

m4 +m8 +m9 +m10 = 0

m5 +m8 +m11 +m12 = 0

m6 +m9 +m11 +m13 = 0

m7 +m10 +m12 +m13 = 0
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The sum of the last five equations gives

2
13∑
i=4

mi = 0

hence alsom1 +m2 +m3 = 0.

SinceF ′2 = H ′2 = −3 we also have

−
13∑
i=1

m2
i = −2 (5.35)

and then−1 ≤ mi ≤ 1 for any 1 ≤ i ≤ 13. Each numbermi, i ≥ 4, i 6= 14

appears in three of the seven equations. Thus if it wasmi = 1 there should be at

least two valuesj such thatmj = −1. For example wheni = 4 we have

1 +m5 +m6 +m7 = 0

1 +m8 +m9 +m10 = 0

which force two values, saym5 andm8 to be -1. This contradicts (5.35). Hence

mi = 0 i ≥ 4

and

{m1,m2,m3} = {−1, 0, 1}.

Thus the total configuration of the curvesB0, E
′
i, F

′, H ′ is

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14

4 2 2 2 1 1 1 1 1 1 1 1 1 1 0

1 0 0 0 1 1 1 1 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 1 1 1 0 0 0 0

1 0 0 0 0 1 0 0 1 0 0 1 1 0 0

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0

1 0 0 0 0 0 0 1 0 0 1 0 1 1 0

0 -1 1 0 0 0 0 0 0 0 0 0 0 0 1

0 0 -1 1 0 0 0 0 0 0 0 0 0 0 1

Theorem 5.2.27.The casen = 3l − 3 cannot occur.

Proof. We now want to compute the eigenvalues corresponding to each curve of

the branch locus. Let us consider the simple triple cover associated toX −→ Y .
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Without loss of generality we can assume thatB0 corresponds to the eigenvalue

ω = e2πi/3. Each curveE ′
i corresponds toωνi hence it will appear with multiplic-

ity νi in the branch locus of the simple cover. MoreoverF ′ andH ′ have different

eigenvalues, since they come from the blow-up of a singularity of typeA2 and their

multiplicities in the branch locus will be denoted byνF andνH ≡ 2νF mod 3

respectively.

Then we look at the pointsP4, P5, P6, P7 onP2. F ′ andH ′ do not pass through

any of these points and we find the numerical conditions

1 + ν1 + ν2 ≡ 0 mod 3

1 + ν1 + ν3 ≡ 0 mod 3

1 + ν1 + ν4 ≡ 0 mod 3

1 + ν1 + ν5 ≡ 0 mod 3

which forceν1 = ν2 = ν3 = ν4 = ν5 = 1 sinceνi ≡ 1, 2 mod 3. This

contradicts proposition 2.1.8.

5.3 The final statement

Theorem 5.3.1.A numerical Godeaux surfaceS cannot have an automorphism

of order 3.

Proof. See the proofs of theorems 3.1.21, 3.2.2, 4.6.5, 5.1.11, 5.1.12, 5.1.25,

5.2.3, 5.2.8, 5.2.17, 5.2.26 and 5.2.27.
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