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INTRODUCTION

Introduction

In this thesis we study a class of problems concerning the analysis of liquid-liquid phase

transitions, from a variational point of view. In the literature, there are many variants of

functionals of the Calculus of Variation, describing phase transitions phenomena.

We now give a brief overview of the iter that brings us through the choice of this class

of problems.

In the classical theory of phase transitions, two-phase systems are modeled as follows:

the container is represented by a bounded regular domain Ω in R
3; every configuration

of the fluid is described by a mass density u on Ω which takes only two values, α and β,

corresponding to the phases A := {u = α} and B := {u = β} = Ω \ A. The singular set

of u (the set of discontinuity points of u) is the interface between the two phases, that we

denote by Su.

Ω

SAB

SBW

SAW

A
B

Figure 0.1: A two-phase system.

The space of admissible configurations is given by all u : Ω → {α, β} satisfying some

volume constraint. The energy is located on the interface SAB := Su which separates the

two phases and on the contact surfaces SAW := ∂A ∩ ∂Ω and SBW := ∂B ∩ ∂Ω between

the wall of the container and the phases A and B (see Fig. 0.1).
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INTRODUCTION

Hence, the equilibrium configurations are assumed to minimize the capillary energy

E0(A) := σH2(SAB) + σAWH2(SAW ) + σBWH2(SBW ), (0.1)

where Hk denotes the k-dimensional Hausdorff measure. The positive constants σ, σAW ,

σBW in (0.1) are referred to as surface tensions.

In the late 50’s, Cahn and Hilliard [24] proposed an alternative way to study two-

phase fluids. They followed the continuum mechanics approach by Gibbs and assumed

that the transition is not given by a separating interface, but is a continuous phenomenon

occurring in a thin layer which, on a macroscopic level, is identified with the interface. In

this region, a fine mixture of the two-phases fluid is allowed.

Hence, a configuration of the system is described by a mass density u which varies con-

tinuously from the value α to the value β, under a suitable volume constraint.

α β

W

x

Figure 0.2: A double-well type potential W .

Neglecting the interactions between the fluid and the wall of the container, the energy in

the Cahn-Hilliard model associated to u is the sum of a bulk term

∫

Ω
W (u)dx, where W

is a so-called “double-well potential” (a continuous positive function which vanishes only

at α and β; see Fig. 0.2), and a singular perturbation ε2
∫

Ω
|Du|2dx which penalizes the

spatial non-homogeneity of the fluid:

ε2
∫

Ω
|Du|2dx+

∫

Ω
W (u)dx, (0.2)
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INTRODUCTION

where ε is a small parameter, giving the characteristic length of the thickness of the

interface. This model is also known as “diffuse interface model” for phase transitions.

Since the length ε is smaller than the size of the container, it is natural to study the

equilibrium of the fluid in an asymptotic way, as ε goes to 0 (see Section 2.2).

A connection between the classical sharp interface model and the diffuse interface

model, without taking into account the interactions with the wall, was established by

Modica only in 1987 ([48]), by means of De Giorgi’s notion of Γ-convergence (see Section

1.1). Modica proved that a suitable rescaling of the energy (0.2) Γ-converges to the surface

energy functional u 7→ σH2(Su); he was also able to prove that the minimizers arrange

themselves in order to minimize the area of the separation interface. This result was

conjectured by De Giorgi at the end of the 70’s. It is important to remark that a great

contribution to the work of Modica was already given by Modica himself and Mortola in

[50], where a suitable scaling of energy (0.2) was proposed as a first interesting example of

Γ-convergence. Since then, several results were given which extend the “Modica-Mortola”

convergence result in different directions.

It is worth noting that the extension of (0.2) to a super-quadratic version; i.e., an en-

ergy with the perturbation of the form εp
∫

Ω
|Du|pdx (p > 2), is an immediate consequence

of the result by Modica (see Section 2.3). In [54] Owen and Sternberg treated the same

problem of Modica, in a more general setting. They considered a wider class of quadratic

perturbations that may give rise to anisotropic limits; i.e., qualitatively the limit is very

similar to what one gets using the simplest perturbation ε2
∫

Ω
|Du|2dx, but the surface

tension may depend on the orientation of the interface (for more general anisotropic limits

see also Barroso and Fonseca [16] and Bouchitté [19]).

Another variation of the Cahn-Hilliard functional arises as scalings of the free energy

of a continuum limit of spin systems on lattices, or Ising systems. It is obtained by

replacing the Dirichlet energyε2
∫

Ω
|Du|2dx by suitable scalings of a non-local interaction

∫ ∫

Ω×Ω
Jε(x

′ − x)(u(x′) − u(x))2dx′dx,

where Jε(y) := ε−NJ(y/ε), with J positive interaction potential in L1(RN ). Also in this

case the qualitative behavior of the functional is similar to the Modica-Mortola functional

and the limit is possibly anisotropic (see Alberti and Bellettini in [5] and [6]).
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Ω

A
B

SAB

Lc

SBW

SAW

Figure 0.3: The line tension effect.

An extension of the classical model for two-phase fluids is obtained by adding to the

energy (0.1) a line tension energy with density τ concentrated along the line Lc ≡ ∂SAW ,

where SAB meets the wall of the container; i.e., along the “contact line” (see Fig. 0.3).

In this model, the capillary energy becomes

E(A) := σH2(SAB) + σAWH2(SAW ) + σBWH2(SBW ) + τH1(Lc). (0.3)

At the end of the 80’s, Modica provided a partial rigorous connection between this clas-

sical model and the diffuse interface model. In [49], Modica added to (0.2) a boundary

contribution of the form λ

∫

∂Ω
g(Tu)dH2, where Tu denotes the trace of u on ∂Ω, λ does

not depend on ε, and g is a positive continuous function:

Egε (u) := ε

∫

Ω
|Du|2dx+

1

ε

∫

Ω
W (u)dx+ λ

∫

∂Ω
g(Tu)dHN−1. (0.4)

Confirming a conjecture of Gurtin [43], Modica was able to prove that a sequence of

minimizers (uε) for the energy (0.4) is pre-compact in L1(Ω), each limit point u takes

only the values α and β, and the corresponding phase A := {u = α} is a solution of the

“liquid-drop” problem1 associated to the energy (0.1).

1The problem of minimizing (0.1) is called “liquid-drop” problem and the existence of a solution is
ensured by the “wetting condition” σ ≥ |σAW − σBW | (see Section 2.1 and 2.4).
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INTRODUCTION

In the 90’s, Alberti, Bouchitté and Seppecher ([9]) proved that, due to a lack of

semicontinuity, the functional E leads to ill-posed minimum problems. They explicitly

computed the relaxation of E and showed that the total energy can be properly written

by introducing, besides the usual bulk phase A ⊂ Ω, an additional variable A′ ⊂ ∂Ω,

independent of ∂A, with its complement B′ := ∂Ω \ A′: the boundary phases.

A

A′

Ω

SBA′

SBB′

SAA′

SAB′

SAB

LA′B′

Figure 0.4: An arbitrary configuration (A,A′).

In this view, the total energy Ẽ of the configurations (A,A′) is given by the sum of three

different terms: the classical surface tension on the interface between the bulk phases A

and B, a surface density on the wall of the container (depending on which bulk phase

and which boundary phase meet together) and a line density along the line LA′B′ (the

dividing line) which separates the boundary phases A′ and B′ (see Fig. 0.4):

Ẽ(A,A′) := σH2(SAB) + σAWH2(SAA′) + (σ + σAW )H2(SAB′) + σBWH2(SBB′)

+(σ + σBW )H2(SBA′) + τH1(LA′B′). (0.5)

Therefore E can be written in terms of Ẽ by choosing A′ = SAW . It is important to stress

that the boundary phase A′ may differ from the interface SAW between the bulk phase

A and the wall of the container, at equilibrium. Hence, the line tension is located on

the dividing line LA′B′ , which in general does not agree with the contact line Lc (see [9],

Example 5.2, p. 35). In this case, Alberti, Bouchitté and Seppecher speak of “dissociation

of the contact line and the dividing line”.
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In order to properly establish a connection with the associated model for capillarity

with line tension, they studied the asymptotic behavior of the following functional

Ẽε(u) := ε

∫

Ω
|Du|2dx+

1

ε

∫

Ω
W (u)dx+ λε

∫

∂Ω
V (Tu)dH2, (0.6)

where V is a double well potential with wells α′ and β′ (corresponding to the boundary

phases A′ and B′), and λε satisfies:

ε log λε → k ∈ (0,+∞) as ε goes to 0. (0.7)

This logarithmic scaling2 provides a uniform control on the oscillation of Tuε, the traces

of minimizing sequences uε, and ensures that the transition of Tuε from α′ to β′ takes

place in a thin layer. In fact, Alberti, Bouchitté and Seppecher proved that, under (0.7),

the traces Tuε converge (up to a subsequence) to a function v in BV (∂Ω, {α′, β′}) and

then the boundary phases {v = α′} and {v = β′} are divided by the line Sv. Namely,

the asymptotic behavior of Ẽε is described by a functional Ψ which depends on the two

variables u and v:

Ψ(u, v) := σH2(Su) +

∫

∂Ω
|H̃(Tu) − H̃(v)|dH2 + τH1(Sv),

∀ (u, v) ∈ BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}), (0.8)

where σ := |H̃(β)− H̃(α)|, being H̃ a primitive of 2W 1/2; and v : ∂Ω → R is the so-called

boundary mass density.

The proof of this Γ-convergence result requires several steps in which different effects

are analyzed and then different terms of the limit energy Ψ are deduced. The first term

of the limit energy can be evaluate like in [48], while the second term is obtained by

adapting the approach by Modica in [49]. Via “localization” and slicing techniques it is

possible to reduce the analysis of the line tension effect to the asymptotic analysis of the

following functional defined on a two-dimensional half-disk:

E2
ε (u) := ε

∫

Dr

|Du|2dx+ λε

∫

Er

V (Tu)dH1, (0.9)

where, for every r > 0, we denote by

Dr :=
{

(x1, x2) ∈ R
2 : x2

1 + x2
2 < r2, x2 > 0

}

,

Er :=
{

(x1, x2) ∈ R
2 : x2

1 + x2
2 < r2, x2 = 0

}

. (0.10)

2The choice of this scaling will be explained in Section 2.5, Remark 2.7.
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Then the two-dimensional Dirichlet energy (0.9) is replaced on the half-disk Dr by the

H1/2 intrinsic norm on the “diameter” Er. This is possible thanks to the existence of

an optimal constant for the trace inequality involving the L2 norm of the gradient of

a function defined on a two-dimensional domain and the H1/2 norm of its trace on a

line. Hence, the original problem is reduced to the analysis of a new kind of perturbation

problem involving a non-local term:

E1
ε (v) := ε

∫∫

I×I

∣

∣

∣

∣

v(t) − v(t′)

t− t′

∣

∣

∣

∣

2

dtdt′ + λε

∫

I
V (v) dt, (0.11)

where I is an open interval of R and λε satisfies the condition (0.7).

Alberti, Bouchitté and Seppecher analyze the asymptotic behavior of (0.11) in [8] and

prove that

E1
ε

Γ−→ 2k(β′ − α′)2H0(Sv),

and strongly use this result to obtain the boundary term in (0.8).

Note that the qualitative asymptotic behavior of (0.11) departs from all the examples

that we mentioned before. In this case the logarithmic scaling has many special effects.

In contrast with what happens to the classical Modica-Mortola functional (and similar),

in this case all the energy of the limit comes from the non-local term; so that (0.11)

does not produce “equi-partition of energy”. Moreover the limit line tension energy is

not characterized by an optimal profile problem, which instead is the case of the Modica-

Mortola energy and all the variants that we recalled above; so that the transition between

two boundary phases is always optimal as far as it occurs on a layer of order 1/λε.

The same phemonena has been observed in other variants of the energy (0.11), related

to the study of boundary vortices (see Kurzke [46], [47]), or to the study of a phase field

model for defects in crystals (see Garroni and Müller [39]). What those results have in

common is the presence of a non-local singular (non L1) regularization of H1/2 type.

Other results concerning a functional of the type (0.6) are obtained replacing the

Dirichlet energy ε2
∫

Ω
|Du|2dx by the singular perturbation ε2

∫

Ω
|D2u|2dx (see Sousa [55]).

The analysis of a non-local singular perturbation problem involving a functional of

the form (0.11) is also the first contribution of this thesis. In Chapter 3, we investigate

the asymptotic behavior in terms of Γ-convergence of the following functional

Kε(v) := εp−2

∫∫

I×I

∣

∣

∣

∣

v(t) − v(t′)

t− t′

∣

∣

∣

∣

p

dtdt′ +
1

ε

∫

I
V (v) dt (p > 2), (0.12)
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as ε→ 0.

In contrast with (0.11), the functional Kε shares similar properties with the Modica-

Mortola functional, such as the following scaling property

Kε(v, I) = K1(v
(ε), I/ε), (0.13)

where v(ε)(t) := v(εt) and I/ε := {t : εt ∈ I}. In view of this scaling property, it is

natural to consider the optimal profile problem

γ := inf

{
∫∫

R×R

∣

∣

∣

∣

w(t) − w(t′)

t− t′

∣

∣

∣

∣

p

dtdt′ +

∫

R

V (w) dt : w ∈W
1− 1

p
,p

loc (R),

lim
t→−∞

w(t) = α′, lim
t→+∞

w(t) = β′
}

. (0.14)

In [40], we prove that the asymptotic behavior of Kε is described by the following func-

tional

K(v) := γH0(Sv) , v ∈ BV (I, {α′, β′}). (0.15)

Theorem 0.1. Let Kε : W 1− 1
p
,p(I) → R and K : BV (I, {α′, β′}) → R be defined by

(0.12) and (0.15).

Then

(i) [Compactness] If (vǫ) ⊂ W
1− 1

p
,p
(I) is a sequence such that Kε(vǫ) is bounded,

then (vǫ) is pre-compact in L1(I) and every cluster point belongs to BV (I, {α′, β′}).

(ii) [Lower bound inequality] For every v ∈ BV (I, {α′, β′}) and every sequence

(vǫ) ⊂W
1− 1

p
,p
(I) such that vǫ → v in L1(I),

lim inf
ε→0

Kε(vǫ) ≥ K(v).

(iii) [Upper bound inequality] For every v ∈ BV (I, {α′, β′}) there exists a sequence

(vǫ) ⊂W 1− 1
p
,p(I) such that vǫ → v in L1(I) and

lim sup
ε→0

Kε(vǫ) ≤ K(v).

In the proof of the theorem, we strongly use the “localization” and the scaling property

of Kε. Moreover, an important role will be played by the monotonicity properties of Kε

with respect to truncations and monotone rearrangements (see Section 1.4.1). Using a

13
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monotone rearrangement result we will also prove that the infimum in (0.14) is not trivial

and is achieved.

The study of the functional Kε has its own interest, showing that the analysis per-

formed by Modica and Mortola is stable under a much larger class of perturbations,

including non-local singular perturbations, as far as they are not “critical” in the sense of

trace imbedding. On the other hand it has also been the first step towards the compre-

hension of the main problem of this thesis, that concerns the study of a functional similar

to (0.6), but with a super-quadratic growth in the perturbation term.

For every ε > 0, we consider the functional Fε defined by

Fε(u) := εp−2

∫

Ω
|Du|pdx+

1

ε
p−2
p−1

∫

Ω
W (u)dx+

1

ε

∫

∂Ω
V (Tu)dH2. (0.16)

This functional still describes a capillarity problem (0.5), but its asymptotic behavior

brings out different characteristics with respect to the energy (0.6).

Let us briefly analyze the asymptotic behavior of the functional Fε. If (uε) is a

sequence with equi-bounded energy, we observe that the term
1

ε
p−2
p−1

∫

Ω
W (uε)dx forces uε

to take values close to α and β, while the term εp−2

∫

Ω
|Duε|pdx penalizes the oscillations of

uε. We will see that when ε tends to 0, the sequence (uε) converges (up to a subsequence)

to a function u, that belongs to BV (Ω), which takes only the values α and β. Moreover

each uε has a transition from the value α to the value β in a thin layer close to the surface

Su, which separates the bulk phases {u = α} and {u = β}. Similarly, the boundary term

of Fε forces the traces Tuε to take values close to α′ and β′, and the oscillations of the

traces Tuε are again penalized by the integral εp−2

∫

Ω
|Duε|pdx. Then, as for the case of

the functional studied by Alberti, Bouchitté and Seppecher, we expect that the sequence

(Tuε) converges to a function v in BV (∂Ω) which takes only the values α′ and β′, and

that a concentration of energy occurs along the line Sv, which separates the boundary

phases {v = α′} and {v = β′}.
In view of possible “dissociation of the contact line and the dividing line”, we recall

that Tu may differ from v. Since the total energy Fε(uε) is partly concentrated in a thin

layer close to Su (where uε has a transition from α to β), partly in a thin layer close to

the boundary (where uε has a transition from Tu to v), and partly in the vicinity of Sv

(where Tuε has a transition from α′ to β′), we expect that the limit energy is the sum of

14
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a surface energy concentrated on Su, a boundary energy on ∂Ω (with density depending

on the gap between Tu and v), and a line energy concentrated along Sv.

The asymptotic behavior of the functional Fε is described by a functional Φ which

depends on the two variables u and v. If W is a primitive of W (p−1)/p, we prove that for

every (u, v) ∈ BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′})

Φ(u, v) = σpH2(Su) + cp

∫

∂Ω
|W(Tu) −W(v)|dH2 + γpH1(Sv), (0.17)

where Su and Sv denote the jump set of u and v, respectively; cp and σp are two positive

constants defined by cp :=
p

(p− 1)p/(p−1)
; σp := cp|W(β) − W(α)|; γp is given by the

optimal profile problem

γp := inf

{

∫

R2
+

|Du|pdx+

∫

R

V (Tu)dH1 : u ∈ L1
loc(R

2
+) :

∫

R2
+

|Du|pdx is finite,

lim
t→−∞

Tu(t)=α′, lim
t→+∞

Tu(t)=β′
}

.(0.18)

In Chapter 6 we prove the main convergence result, stated in the following theorem.

Theorem 0.2. Let Fε : W 1,p(Ω) → R and Φ : BV (Ω, {α, β}) × BV (∂Ω, {α′, β′}) → R

defined by (0.16) and (0.17).

Then

(i) [Compactness] If (uε) ⊂ W 1,p(Ω) is a sequence such that Fε(uε) is bounded,

then (uε, Tuε) is pre-compact in L1(Ω) × L1(∂Ω) and every cluster point belongs

to BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}).

(ii) [Lower Bound Inequality] For every (u, v) ∈ BV (Ω, {α, β})×BV (∂Ω, {α′, β′})
and every sequence (uε) ⊂ W 1,p(Ω) such that uε → u in L1(Ω) and Tuε → v in

L1(∂Ω),

lim inf
ε→0

Fε(uε) ≥ Φ(u, v).

(iii) [Upper Bound Inequality] For every (u, v) ∈ BV (Ω, {α, β})×BV (∂Ω, {α′, β′})
there exists a sequence (uε) ⊂ W 1,p(Ω) such that uε → u in L1(Ω), Tuε → v in

L1(∂Ω) and

lim sup
ε→0

Fε(uε) ≤ Φ(u, v).
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Notice that the limit functional Φ is of the same form of the functional Ψ defined by

(0.8); that is, the Γ-limit of Ẽε. Nonetheless, the variation in the power of the gradient

in the perturbation term is not a simple generalization of the quadratic case, since the

structure of these two problems is different. In fact, in the quadratic case the natural

scaling of the energy is logarithmic and this implies that the profile in which the phase

transition occurs on the boundary is not important for the first order of the energy. While,

the super-quadratic case is characterized by an optimal profile problem which determines

the line tension in the limit. This characteristic will be a double-edged sword in the proof

of Theorem 0.2: some arguments will be simplified by the presence of an optimal profile

problem, some other will require more care.

The proof of Theorem 0.2 requires several steps. We can deduce the terms of the limit

energy Φ, localizing three effects: the bulk effect, the wall effect and the boundary effect.

In the bulk term, the limit energy can be evaluate like in [48]. We will use the super-

quadratic version of the Modica-Mortola functional (see Section 2.2).

The second term of Φ can be obtained by adapting the approach by Modica in [49].

Since the results by Modica concerns a functional with quadratic growth in the singular

perturbation term and with a boundary contribution of the form λ

∫

∂Ω
g(Tu)dH2, with

λ not depending on ε and g a positive continuous function, we need to adapt part of the

results in [49] to our goal (see Chapter 4).

Finally, the boundary effect requires a deeper analysis. The main strategy consists in:

first reducing to the case in which the boundary is “flat”; hence studying the behavior of

the original energy in the three-dimensional half ball; then reducing the problem of one

dimension via a slicing argument. Thus, the main problem becomes the analysis of the

asymptotic behavior of the following two-dimensional functional

Hε(u) := εp−2

∫

D1

|Du|pdx+
1

ε

∫

E1

V (Tu)dH1, (0.19)

where D1 and E1 are defined by (0.10). Chapter 5 is devoted to the analysis of the

asymptotic behavior of (0.19) and to the proof of the existence of a minimum for the

optimal profile (0.18). We remark that we can not reduce further to a one dimensional

problem, like in the case p = 2, where one can use the optimal trace imbedding. In spite

of that, as a consequence of equi-partition of the energy, the optimal profile problem plays

an important role in the proof. In this respect, the case p = 2 represent the critical case

in the context of this type of non-local perturbations.
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A similar dichotomy occurs in the case of Ginzburg-Landau problems (see for instance

Alberti, Baldo and Orlandi [4] versus Desenzani and Fragalà [29]).

Plan of the thesis

Chapter 1. We introduce the notion of Γ-convergence, with its main properties, and we state

some preliminary results about Young measures, the slicing method and monotone

rearrangements.

Chapter 2. We briefly explain the Cahn-Hilliard model for phase transitions and state some pre-

liminary convergence results for Cahn-Hilliard functionals, with or without taking

into account the interactions with the wall.

Chapter 3. We study the asymptotic behavior of the non-local perturbed energy (0.12), pro-

viding a complete proof of the Γ-convergence result stated in Theorem 0.1 and a

characterization of the optimal profile problem (0.14).

Chapter 4. We introduce the main problem of this thesis, namely the analysis of the asymp-

totic behavior of the functional (0.16); we also exhibit the strategy of the proof of

Theorem 0.2.

Chapter 5. We study the asymptotic behavior of the two-dimensional functional (0.19) and we

provide a proof of the existence of a minimum for the optimal profile problem (0.18).

Chapter 6. We prove the main results in this thesis, namely the compactness and the Γ-

convergence results stated in Theorem 0.2.

17



Chapter 1

Preliminaries

In this chapter, we briefly give a definition of Γ-convergence and we state some results

about Young measures, the slicing method and the behavior of certain classes of integral

functionals with respect to the monotone rearrangement of functions. Every statement

in this chapter will be presented in the form that better fits to our purposes.

Notation

In this work, we consider different domains A with dimensions N = 1, 2, 3; more

precisely, A will always be a bounded open set either of R
N . We denote by ∂A the

boundary of A relative to the ambient manifold; ∂A is always assumed to be Lipschitz

regular. Unless otherwise stated, A is endowed with the corresponding N -dimensional

Hausdorff measure, HN (see [32], Chapter 2). We write

∫

A
fdx instead of

∫

A
fdHN , and

|A| instead of HN .

TheN -dimensional density of A at x is the limit (if it exists) of HN (A ∩Br(x))/ωNrN ,

where Br(x) is the ball centered in x with radius r and ωN is the measure of the unit ball

in R
N .

The essential boundary of A is the set of all points where A has neither density 0 nor

1 and where the density does not exist. Since the essential boundary agrees with the

topological boundary when the latter is Lipschitz regular, we also denote the essential

boundary by ∂A.

For every u ∈ L1
loc(A), we denote by Su the complement of the set of Lebesgue points

of u; i.e., the jump set, the set where the upper and lower approximate limits of u differ or

18



CHAPTER 1. Preliminaries

are not finite. We denote by Du the derivative of u in the sense of distributions. As usual,

for every p ≥ 1, W 1,p(A) is the Sobolev space of all u ∈ Lp(A) such that Du ∈ Lp(A);

BV (A) is the space of all u ∈ L1(A) with bounded variation; i.e., such that Du is a

bounded Borel measure on A.

For every s ∈ (0, 1) and every p ≥ 1, W s,p is the space of all u ∈ Lp(A) such that the

fractional semi-norm

∫ ∫

A×A

|u(x) − u(x′)|p
|x− x′|sp/N dxdx′ is finite.

We denote by T the trace operator which maps W 1,p(A) onto W 1−1/p,p(∂A) and

BV (A) onto L1(∂A). For details and results about the theory of BV functions and

Sobolev spaces we refer to [32] and [1].

Throughout this thesis, all the functions and sets are assumed to be Borel measurable.

Moreover, we always use the term “sequence” also to denote families (of functions) labelled

by continuous parameter ε, which tends to 0. Thus, a subsequence of (uε) is any sequence

(uεk
) such that εk → 0 as k → +∞, and we say that (uε) is pre-compact if every

subsequence admits a convergent sub-subsequence. To simplify the notation, we often do

not relabel subsequences.

1.1 Γ-Convergence

Γ-convergence was introduced by De Giorgi in the early 70’s. Its first definition was

stated in [28], where all the main properties were presented. Γ-convergence is linked to

previous notions of convergence such as Mosco’s convergence (see [51]) or Kuratowski’s

convergence of sets. Indeed, Γ-convergence of a sequence of functions can be viewed as a

convergence of their epigraphs (epiconvergence), just like semicontinuity can be seen as a

property of the epigraphs.

We give the definition and the main properties of Γ-convergence as a notion of con-

vergence for functions on a generic metric space X. Therefore, in the following, u is an

element of X and F a function from X to R := [−∞,+∞]. Here, we present a simplified

version of the original definition; we refer to [2] (see [27] and [23] for a detailed treatment

of the general theory of Γ-convergence and various applications).

Definition 1.1. We say that a sequence Fε : X → R Γ-converges to F on X as ε to 0 if

for every u ∈ X the following conditions hold:
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(i) [Lower bound inequality] for every sequence (uε) converging to u in X

F (u) ≤ lim inf
ε→0

Fε(uε); (1.1)

(ii) [Upper bound inequality] there exists a sequence (uε) converging to u in X such

that

F (u) = lim sup
ε→0

Fε(uε). (1.2)

Condition (i) means that whatever sequence we choose to approximate u, the value of

Fε(uε) is, in the limit, larger than F (u). On the other hand, condition (ii) implies that

this bound is sharp; that is, there always exists a sequence (uε) which approximates u so

that Fε(uε) → F (u).

When proving a Γ-convergence result, it is convenient to reduce the amount of verifi-

cations and constructions. To this aim, note that if (i) holds, then equality (1.2) can be

replaced by

F (u) ≥ lim sup
ε→0

Fε(uε).

From Definition 1.1, we may deduce the following properties of Γ-convergence:

(p1) The Γ-limit F is always lower semicontinuous on X;

(p2) Γ-limits are stable under continuous perturbations. This means that one Γ-limit is

computed we do not have to redo all computations if “lower-order terms” are added.

Conversely, we can always remove such terms to simplify calculations;

(p3) Under suitable conditions Γ-convergence implies convergence of minimum values

and minimizers. Note that some minimizers of the Γ-limit may not be limit of

minimizers, so that Γ-convergence may be interpreted as a choice criterion.

Now, we pass to describe how this notion of variational convergence will be used.

Assume that for every ε > 0 we are given a function uε which minimizes the functional

Fε on X, and that we want to know what happens to uε as ε goes to 0. Sometimes, the

minimizers uε can be written via some explicit formula from which we can deduce all

information about its asymptotic behavior. In many instances, no such representation of

uε is available and then we can exploit the fact that each uε solves the Euler-Lagrange

equation associated with Fε and try to understand which kind of limit equation is verified

by a limit point u of (uε). Another possibility is to use the notion of Γ-convergence.
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Suppose that we have computed the Γ-limit F of the functional Fε, by property (p3)

we can conclude that any limit point u is a minimizer of F , and in particular solves the

Euler-Lagrange equation associated with F .

Notice that such a strategy makes sense only if we know a priori that the minimizing

sequence (uε) is pre-compact in X. A Γ-convergence result for the functional Fε should

always be paired with a “compactness result” for the corresponding minimizing sequences

(uε). According to this viewpoint, the Definition 1.1 have to be completed by the following

equi-coercivity of Fε:

(iii) [Compactness] If (uε) is a sequence such that Fε(uε) is bounded, then (uε) is pre-

compact in X.

1.1.1 Choice of interesting rescalings

If uε minimizes Fε, then it also minimizes λεFε, for every positive λε. Hence, we can

recover information about the limit points of (uε) also by the Γ-limit of λεFε. Notice

that different choices of the scaling factor λε generate different Γ-limits, which provide

different information. For instance, it may happen that the functional Fε converges to a

constant functional F , and consequently we have no information about the limit points

u, while the Γ-limit of functionals λεFε may be less trivial. Therefore, before trying to

verify Definition 1.1 and a compactness result, it is important to find a suitable λε so

that the Γ-limit of the rescaled functional λεFε gives the largest amount of information.

Sometimes this optimal rescaling is evident but sometimes it is not.

1.2 Young Measures

Young measures (also called “generalized functions”) were introduced by Young in

the 30’s to solve optimal control problems that have no classical solution. The idea is to

replace functions which take values in a set A ⊂ R
N by functions that take values in the

space of probability measures. For instance, a mixture of two states can be represented

by a convex combination of two Dirac measures (see [58]). Since then, Young measures

arguments have been used in various problems.

In the following, we introduce Young measures associated to a sequence, that are

appropriate to describe the limit oscillation behavior of the sequence self. In few words,
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under mild assumption, any sequence (un) of functions has a subsequence which converges

to some Young measure.

We state some results, which will be useful to our purposes. We refer to Müller in [53]

and Valadier in [56].

1.2.1 The fundamental theorem on Young measures and applications

By C0(R
N ) we denote the closure of continuous functions on R

N with compact support.

The dual of C0(R
N ) can be identified with the space M(RN ) of signed Radon measures

with finite mass via the pairing

〈µ, f〉 =

∫

R

fdµ.

A map µ : A→ M(RN ) is called “weak-∗ measurable” if the functions x→ 〈µ(x), f〉 are

measurable for all f ∈ C0(R
N ).

Theorem 1.2. ([53], Theorem 3.1, p. 31). Let A ⊂ R
N be a measurable set of finite

measure and let un : A→ R
N be a sequence of measurable functions. Then there exists a

subsequence (unk
) and a weak-∗ measurable map ν : A→ M(RN ) such that the following

statements hold:

(i) νx ≡ ν(x) ≥ 0, ‖νx‖M(RN ) =

∫

RN

dνx ≤ 1, for a.e. x ∈ A.

(ii) For all f ∈ C0(R
N )

f(unk
)

∗
⇀ f̄ in L∞(A),

where

f̄ = 〈νx, f〉 =

∫

RN

fdνx.

(iii) Let K ⊂ R
N be compact. Then

supp(νx) ⊂ K for a.e.x ∈ A if dist(unk
,K) → 0 in measure.

(iv) Furthermore, one has

(i’)‖νx‖M(R) = 1 for a.e. x ∈ A

if and only if

lim
M→+∞

sup
k

|{|unk
| ≥M}| = 0.
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(v) If (i’) holds, if B ⊂ A is measurable, if f ∈ C(RN) and if f(unk
) is relatively weakly

compact in L1(B), then

f(unk
) ⇀ f̄ in L1(B), f̄(x) = 〈νx, f〉.

(vi) If (i’) holds, then in (iii) one can replace “if” by “if and only if”.

Definition 1.3. The map ν : E → M(RN ) is called the Young measure associated to (or

generated by) the sequence (unk
).

Note that every weak-∗ measurable map ν : E → M(RN ) that satisfies (i) of Theorem

1.2 is generated by some sequence (un).

Example.

Let us show a typical application of Theorem 1.2.

If (un) is bounded in Lp(A) and the continuous function f has a certain growth to +∞,

like |f(t)| ≤ C(1 + |t|q), with q < p.

Then, by (v), it follows

f(unk
) ⇀ f̄ in Lp/q(A).

In particular, for p > 1, choosing f ≡ id, we have

unk
⇀ u with u(x) = 〈νx, id〉, ∀x ∈ A.

The measure νx describes the probability of finding a certain value in the sequence

(unk
) in a small neighborhood Br(x) in the limits k → ∞ and r → 0.

Corollary 1.4. ([53], Corollary 3.2, p. 34). Let (un) be a sequence of measurable func-

tions from A to R
N that generates the Young measures ν : A→ M(RN ). Then

un → u in measure if and only if νx = δu(x) a.e. in A.

Another property of the Young measures associated to a sequence is stated in the

following theorem, which we will use to recover important compactness results. We denote

by Y(A) the family of all weakly-∗ measurable maps ν : A → P(R), where P(R) is the

set of probability measures on R.
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Theorem 1.5. ([56], Theorem 16, p. 166). Let un be a bounded sequence in L1(A).

There exists a subsequence unk
and a map ν ∈ Y(A) such that, for every Carathéodory

function f : R → [0,+∞) we have

lim inf
k→+∞

∫

A
f(x, unk

(x))dx ≥
∫

A
f̄dx, (1.3)

where f̄(x) :=

∫

R

f(x, t)dνx(t).

1.3 The slicing method

In this section, we describe a well-known method often used to recover compactness

and lower bound inequalities through the study of problems of lower dimension via a

slicing argument. The slicing method has been introduced by Ambrosio to treat free-

discontinuity problems (see [10]) and has been used to prove various results also within

the theory of phase transitions (see [5] and [9]).

Let us try to understand how the slicing method will be used by looking at the

Modica-Mortola functional

Eε(u) := ε

∫

A
|Du|2dx+

1

ε

∫

A
W (u)dx,

defined on H1(A), with A bounded open set of R
N . We may examine the behavior of Eε

on one-dimensional sections as follows:

for each e unit vector in R
N we consider the hyperplane

Πe :=
{

z ∈ R
N : 〈z, e〉 = 0

}

passing through 0 and orthogonal to e. We denote by Ae the projection of A onto Πe;

for every y ∈ Πe we consider the one-dimensional set (see Fig.1.1)

Aye := {t ∈ R : y + te ∈ A};

for every function u defined in A we consider the trace of u on Aye , i.e., the one-

dimensional function

uye(t) := u(y + te).

24



CHAPTER 1. Preliminaries

e A

Πe

y

Aye

Figure 1.1: A section of the domain A.

Now, we are ready to obtain a lower bound for the Γ-liminf of Eε by looking at the

limit of the functionals induced by Eε on the one-dimensional sections. Thanks to Fubini’s

Theorem, we rewrite Eε as

Eε(u) =

∫

Πe

∫

Ay
e

(

ε|Du(y + te)|2 +
1

ε
W (u(y + te))

)

dtdy. (1.4)

The main idea of the slicing method is using the Γ-limit of the one-dimensional functionals

v 7→
∫

Ay
e

(

ε|v′(t)|2 +
1

ε
W (v(t))

)

dt

and the inequality from (1.4)

Eε(u) ≥
∫

Πe

∫

Ay
e

(

ε|(uye)′(t)|2 +
1

ε
W (uye(t))

)

dtdy,

to obtain a lowerbound for the Γ-liminf of Eε, by Fatou’s Lemma and optimizing the

choice of e.

In the following subsections, we recall some general results regarding the slicing of

Sobolev functions.
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1.3.1 Some slicing results

For the sake of simplicity, we work only with one-dimensional slicing, but the following

results are true for slicing with arbitrary dimension. Let A, e, Ae and Aye be given as

before and take a Borel function u in A. By Fubini’s Theorem u belongs to Lp, 1 ≤ p <∞,

if and only if uye belongs to Lp(Aye) for a.e. y ∈ Ae and the function y → ‖uye‖Lp belongs to

Lp(Ae). Similarly, given a sequence (uk) ⊂ Lp(A) which converges to u in Lp(A), we have

that (up to a subsequence) (uk)
y
e converges to uye in Lp(Aye) for a.e. y ∈ Aye . Moreover, if

(uk)
y
e converges to uye for a.e. y ∈ Ae and the functions |uk|p are equi-integrable, then uk

converges to u in Lp(A).

Proposition 1.6. ([32], Theorem 2, p. 164). Let u ∈ Lp(A) be given. If e is an arbitrary

unit vector and u belongs to W 1,p(A), then uye ∈ W 1,p(Aye) for a.e. y ∈ Ae, and the

derivative (uye)′(t) agrees with the partial derivative ∂eu(y + te) for a.e. y ∈ Ae and

t ∈ Aye . Conversely, u belongs to W 1,p(A) if there exist N linearly independent unit

vectors e such that uye ∈W 1,p(Aye) for a.e. y ∈ Ae and the function y → ‖(uye)′‖Lp belongs

to Lp(Ae).

Proposition 1.7. ([32], Section 5.10, p. 216). Let a Borel set E ⊂ A be given. If E has

finite perimeter in A, then Eye has finite perimeter in Aye and ∂(Eye ∩ Aye) = (∂E ∩ A)ye

for a.e. y ∈ Ae, and
∫

Ae

H0(∂Eye ∩Aye)dy =

∫

∂E∩A
〈vE , e〉. (1.5)

Conversely, E has finite perimeter in A if there exist N linearly independent unit vectors

e such that the integral of H0(∂Eye ∩Aye) over all y ∈ Ae is finite.

We establish a connection between the compactness of a family of functions in L1(RN )

and the compactness of the traces of these functions. We need to recall the definition of

δ-dense family of functions.

Definition 1.8. Let F and F ′ be two families of functions on A. For every δ > 0, we

say that the family F ′ is δ-dense in F if F lies in a δ-neighborhood of F ′ with respect to

the L1(A) topology.

According to previous notation, for every family F of functions on A, we denote by

Fy
e := (uye)u∈F the family of functions on Aye .
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Theorem 1.9. ([9], Theorem 6.6, pag. 42). Let F be a family of functions v : A →
[−m,m] and assume that there exist N linearly independent unit vectors e which satisfy

the following property:

For every δ > 0 there exists a family Fδ δ-dense in F such that

(Fδ)ye is pre-compact in L1(A) for HN−1-a.e. y ∈ Ae. (1.6)

Then F is pre-compact in L1(A).

We will use the L1-pre-compactness criterion by slicing of Theorem 1.9 to prove the

pre-compactness of the traces of the minimizing sequence of the functional Fε, defined by

(0.16).

1.3.2 Isometry defect

When we work with slicings, we may also want to evaluate “the error we make” when

we perturb a three-dimensional domain to get a two-dimensional one. To this aim, we

define the “isometry defect”, introduced by Alberti, Bouchitté and Seppecher in [9].

As usual, we denote by O(3) the set of linear isometries on R
3.

Definition 1.10. Let A1, A2 ⊂ R
3 and let Ψ : A1 → A2 bi-Lipschitz homeomorphism.

Then the “isometry defect δ(Ψ) of Ψ” is the smallest constant δ such that

dist(DΨ(x), O(3)) ≤ δ, for a.e. x ∈ A1. (1.7)

HereDΨ(x) is regarded as a linear mapping of R
3 into R

3. The distance between linear

mappings is induced by the norm ‖ · ‖, which, for every L, is defined as the supremum of

|Lv| over all v such that |v| ≤ 1. Hence, for every L1, L2 : R
3 → R

3:

dist(L1, L2) := sup
x:|x|≤1

|L1(x) − L2(x)|.

Given L1, L2 : A1 → A2, with L1 isometry, such that there exists δ < 1 such that

‖L1 − L2‖ ≤ δ.

Then, L2 is invertible and ‖L−1
1 − L−1

2 ‖ ≤ δ/(1 − δ).

By (1.7), it follows

dist(DΨ−1(y), O(3)) ≤ δ/(1 − δ), for a.e. y ∈ A2,
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and then

δ(Ψ−1(y)) ≤ δ(Ψ(y))/(1 − δ(Ψ(y))), for a.e. y ∈ A2.

Inequality (1.7) also implies that

‖DΨ(x)‖ ≤ 1 + δ(Ψ) for a.e. x ∈ A1,

and then Ψ is (1 + δ(Ψ))-Lipschitz continuous on every convex subset of A1. Similarly,

Ψ−1 is (1 − δ(Ψ))−1-Lipschitz continuous on every convex subset of A2.

For every A ⊂ R
3 and every A′ ⊂ ∂A, let Fε : W 1,p(A) → R be the functional defined

by (0.16); that is:

Fε(u,A,A
′) := εp−2

∫

A
|Du|pdx+

1

ε
p−2
p−1

∫

A
W (u)dx+

1

ε

∫

A′

V (Tu)dH2.

The following proposition holds.

Proposition 1.11. Let A1, A2 ⊂ R
3,Ψ : A1 → A2 a bi-Lipschitz homeomorphism, A′

1 ⊂
∂A1, A

′
2 ⊂ ∂A2, be given such that Ψ(A′

1) = A′
2 and δ(Ψ) < 1. Then for every u ∈

W 1,p(A2)

Fε(u,A2, A
′
2) ≥ (1 − δ(Ψ))p+3Fε(u ◦ Ψ, A1, A

′
1).

Proof. The proof is a simple modification of the one by Alberti Bouchitté and Seppecher

in [9] (Proposition 4.9, p. 25), where they treat the case p = 2.

By (1.10), we get ‖DΨ(x)‖ ≤ 1 + δ(Ψ) for x a.e. in A1, that implies

|D(u ◦ Ψ)(x)| ≤ (1 + δ(Ψ))|((Du) ◦ Ψ)(x)|, a.e. in A1. (1.8)

Let g1 and g2 denote the inverse of Ψ and the restriction to ∂A2 of the inverse of Ψ,

respectively:

g1(x) := (Ψ)−1(x), g2(x) := (Ψ|∂A2)
−1(x).

g1 and g2 are locally Lipschitz and such that

|Jg1| ≤ (1 − δ(Ψ))3 a.e. on A2 and |Jg2| ≤ (1 − δ(Ψ))3 a.e. on ∂A2. (1.9)

Since δ(Ψ) < 1 then

(1 + δ(Ψ)) ≤ (1 − δ(Ψ))−1. (1.10)

Thus, using the estimates on the Jacobian determinants (1.9) and the inequality (1.10),

we obtain the desired conclusion by changing-variable formula. 2
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Proposition 1.12. ([9], Proposition 4.10, p. 25). For every x ∈ ∂Ω and every positive

r smaller than a certain critical value rx > 0, there exists a bi-Lipschitz map Ψr : Dr →
Ω ∩Br(x) such that

(a) Ψr takes Dr onto Ω ∩Br(x) and Er onto ∂Ω ∩Br(x);

(b) Ψr is of class C1 on Dr and ‖DΨr − I‖ ≤ δr everywhere in Dr, where δr → 0 as

r → 0.

Note that, in particular, the isometry defect of Ψr vanishes as r → 0.

Figure 1.2: Construction of Ψ := Ψ−1
1 ◦ Ψ2 ◦ Ψ1 ([9], Fig. 5, p. 26).

1.4 Rearrangement results

In this section we state some rearrangement results that we will use in the sequel.

Rearrangement problems have been widely studied in the literature (see for instance

[45], [15], [14], [3] and [17]). Our main concern is the behavior with respect to the

rearrangement of certain classes of integral functionals.

Before starting definitions and results, we stress that we use the terms increasing

and decreasing in the weak sense, that is, to mean non-decreasing and non-increasing

respectively.

1.4.1 Monotone rearrangement in one-dimension

We refer to [5] and [38].
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We denote by I the open bounded interval (a, b) in R.

Definition 1.13. For every measurable function v : I → R we define the monotone

increasing rearrangement of v as the function v∗ : I → R by

v∗(t+ a) := sup {λ : | {s ∈ (a, b) : v(s) ≤ λ} | ≤ t} , ∀t ∈ (0, b− a).

The following theorems hold.

Theorem 1.14. [[5], Theorem 5.6, p. 557]. Let W be a non-negative continuous function

on [α′, β′] such that W (α′) = W (β′) = 0. For every v : I → R, the following equality

holds:
∫

I
W (v)dx =

∫

I
W (v∗)dx, (1.11)

where v∗ is the increasing rearrangement of v.

Theorem 1.15. [[38], Theorem I.1, p. 67]. Let J, P : R → R be two continuous even

functions such that

(i) J(es) is convex in R and J(|s|) → +∞ as |s| → +∞;

(ii) P (|s|) → 0 as |s| → +∞.

Then, for every measurable function v : I → R such that

∫ ∫

I×I
J

(

v(t′) − v(t)

P (t′ − t)

)

dt′dt is

finite, the following inequality holds:
∫ ∫

I×I
J

(

v∗(t′) − v∗(t)

P (t′ − t)

)

dt′dt ≤
∫ ∫

I×I
J

(

v(t′) − v(t)

P (t′ − t)

)

dt′dt,

where v∗ is the monotone increasing rearrangement of v in I.

As an immediate consequence of Theorem 1.15, we have that replacing a function

v by its increasing rearrangement decreases the p-power of the fractional semi-norm of

W 1−1/p,p(I):
∫ ∫

I×I

|v∗(t′) − v∗(t)|p
|t′ − t|p dt′dt ≤

∫ ∫

I×I

|v(t′) − v(t)|p
|t′ − t|p dt′dt. (1.12)

Hence, by (1.11) and (1.12) with J(·) = | · |p and P (·) = | · |, we obtain that the same

monotonicity property with respect to monotone increasing rearrangements holds for the

following non-local functional:

Kε(v) := εp−2

∫∫

I×I

∣

∣

∣

∣

v(t) − v(t′)

t− t′

∣

∣

∣

∣

p

dtdt′ +
1

ε

∫

I
V (v) dt.
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1.4.2 Monotone rearrangement in one direction

We state a rearrangement result for the energy of Sobolev functions defined on bounded

cylinders; we refer to Kawohl [45] and Berestycky and Lachand-Robert [17].

Let ω be a smooth bounded domain in R
N−1 and let I be a bounded open interval of

R, we denote by Q := I × ω the bounded cylinder in R
N . For every measurable function

u : Q → R, we denote by u⋆ the monotone rearrangement in direction x1 of u; i.e., the

function u⋆ : Q → R which is increasing in I with respect to x1 (for almost all x′ ∈ ω),

and such that for every λ ∈ R and for every x′ ∈ ω :

|
{

x1 ∈ I : u(x1, x
′) ≥ λ

}

| = |
{

x1 ∈ I : u⋆(x1, x
′) ≥ λ

}

|.

Theorem 1.16. [[45], Corollary 2.14 , p. 51, and [17], Theorem 3, p. 10]. If u belongs

to W 1,p(Q), then its monotone increasing rearrangement in direction x1 u⋆ belongs to

W 1,p(Q) and
∫

Q
|Du⋆|pdx ≤

∫

Q
|Du|pdx.

This result will be a key point in the proof of the existence of a minimum for the

optimal profile problem (0.14).
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Phase transitions and known

results

A phase transition is a change of a thermodynamic system from one phase to another.

The main characteristic of a phase transition is a sudden transformation in one or more

physical properties, like heat capacity, with a change in a thermodynamic variable such

as the temperature. We can find many phase transition events, like the transitions be-

tween the solid, liquid and gaseous phases, due to effect of temperature and pressure, the

transitions between the ferromagnetic and paramagnetic phases of magnetic materials at

the Curie point, the emergence of superconductivity in certain metals when cooled below

a critical temperature, and so.

In the following, we pay attention to the classical model for two-phase fluids and its

mathematical approach initiated by Gibbs and revisited by Cahn and Hilliard.

2.1 The classical model for phase transitions

In the classical theory of phase transitions, a two-phase systems is modeled as follows:

the container is represented by a bounded regular domain Ω in R
3; every configuration

of the fluid is described by a mass density u on Ω which takes only two values, α and β,

corresponding to the phases A := {u = α} and B := {u = β} = Ω \ A. The singular set

of u (the set of discontinuity points of u) is the interface between the two phases, that we

denote by Su.

The space of admissible configurations is given by all u : Ω → {α, β} under some

volume constraint. The energy is located on the interface SAB := Su which separates the
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Ω

SAB

SBW

SAW

A
B

Figure 2.1: The classical model for phase transitions.

two phases and on the contact surfaces SAW := ∂A ∩ ∂Ω and SBW := ∂B ∩ ∂Ω between

the wall of the container and the phases A and B (see Fig. 2.1).

The equilibrium configurations are assumed to minimize the capillary energy

E0(A) := σH2(SAB) + σAWH2(SAW ) + σBWH2(SBW ), (2.1)

where the positive constants σ, σAW and σBW are referred to as surface tension. The

problem of minimizing (2.1) is called liquid-drop problem and the existence of a solution

is assured by the wetting condition:

σ ≥ |σAW − σBW |.

At the equilibrium, the interface SAB has constant mean curvature and meets the wall of

the container with a constant contact angle ϑ, which satisfies the Young’s law

ϑ = arccos
σAW − σBW

σ
.

See, for instance Finn in [33].

2.2 The Cahn-Hilliard model for phase transitions

In the late 50’s, Cahn and Hilliard [24] proposed an alternative way to study two-phase

fluids. They followed the continuum mechanics approach by Gibbs and assumed that

33



CHAPTER 2. Phase transitions and known results

the transition is not given by a separating interface, but is a continuous phenomenon

occurring in a thin layer in which is identified with the interface.

α β

W

x

Figure 2.2: A double-well type potential W .

Hence, the mass density u varies continuously from the value α to the value β. Neglecting

the interactions between the fluid and the wall of the container, the energy associated to u

is the sum of a free energy

∫

Ω
W (u)dx, whereW is a “double-well potential” (a continuous

positive function which vanished only at α and β; see Fig. 2.2), and a perturbation

ε2
∫

Ω
|Du|2dx which penalizes the non-homogeneity of the fluid:

ε2
∫

Ω
|Du|2dx+

∫

Ω
W (u)dx, (2.2)

where ε is a small parameter, giving the length of the thickness of the interface. This

model is known as “diffuse interface model” for phase transitions. The length ε is much

smaller than the size of the container. It is natural to study the equilibrium of the fluid

in an asymptotic way, as ε goes to 0; i.e., by considering the limit as ε tends to 0 of a

minimizer uε of a suitable rescaling of the energy (2.2).

2.3 The Modica-Mortola Theorem

A connection between the classical sharp interface model and the diffuse interface

model, without taking into account the interactions with the wall, was established by
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Modica in [48](1987). He proved that a suitable rescaling of the energy (2.2) Γ-converges

to the surface energy functional u 7→ σH2(Su); He also proved that at equilibrium the

two phases arrange themselves in order to minimize the area of the separation interface.

This result was conjectured by De Giorgi. A great contribute to the work of Modica was

already given by Modica himself and Mortola in [50] (1977).

For every ε > 0, let us consider the functional Eε defined in H1(Ω), given by the

following rescaling of (2.2)

Eε(u) := ε

∫

Ω
|Du|2dx+

1

ε

∫

Ω
W (u)dx. (2.3)

To explain the scale of this penalization, we show a heuristic scaling argument in dimension

one.

Consider an interval (t, t+δ) and suppose that u is close to α and β at the endpoints of

this interval, respectively. We can show that the contribution on this interval of the first

integral of (2.2) is of order ε/δ (since the gradient is of order ε), while the contribution

of the second integral is of order δ.

Hence

ε2
∫ t+δ

t
|u′|2ds+

∫ t+δ

t
W (u)ds ∼= ε2

δ
+ δ,

and the minimization in δ of this quantity gives δ = ε and a contribution of order ε. This

implies that if the energy is bounded then the number of such intervals is bounded and

hence u resembles a piecewise-constant function. This argument suggests a scaling of the

problem and to consider the minimum problem

min

{

ε

∫

Ω
|Du|2dx+

1

ε

∫

Ω
W (u)dx :

∫

Ω
u dx = C

}

,

whose minimizers are clearly the same as the energy (2.2).

Theorem 2.1. The functional Eε : H1(Ω) → R defined by (2.3) Γ-converges with respect

to the L1(Ω) convergence to the functional

E(u) :=

{

σH2(Su), if u ∈ BV (Ω, {α, β}),
+∞, otherwise,

(2.4)

where σ := 2

∫ β

α
W 1/2dt.
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Since the Modica-Mortola Theorem, several results were given which extend theorem

2.1 in different directions. In particular, we are interested in the possibility of replacing

the perturbation term by a p-energy of Dirichlet. In this case, a similar heuristic argument

like in the quadratic case, gives the following rescaled energy

δp−1

∫

Ω
|Du|pdx+

1

δ

∫

Ω
W (u)dx.

Anyway, choosing ε such that δp−1 = εp−2 better fits to our purposes. So that, for every

open set A ⊂ R
3 and every real function u ∈W 1,p(A), we consider the following functional

Gε(u,A) := εp−2

∫

A
|Du|pdx+

1

ε
p−2
p−1

∫

A
W (u)dx. (2.5)

Let W be a primitive of W p/(p−1), we denote by σp :=
p

(p− 1)p/(p−1)
|W(β) −W(α)|.

Theorem 2.2. For every domain A ⊂ R
3 the following statements hold.

(i) If (uε) ⊂ W 1,p(A) is a sequence with uniformly bounded energies Gε(uε, A). Then

(uε) is pre-compact in L1(A) and every cluster point belongs to BV (A, {α, β}).

(ii) For every u ∈ BV (A, {α, β}) and every sequence (uε) ⊂ W 1,p(A) such that uε → u

in L1(A),

lim inf
ε→0

Gε(uε, A) ≥ σpH2(Su),

(iii) For every u ∈ BV (A, {α, β}) there exists a sequence (uε) ⊂ W 1,p(A) such that

uε → u in L1(A) and

lim sup
ε→0

Gε(uε, A) ≤ σpH2(Su).

Moreover, when Su is a closed Lipschitz surface in A, the functions uε may be

required to be (CW /ε
p−2
p−1 )-Lipschitz continuous, and to converge to u uniformly on

every set with positive distance from Su (here CW is the supremum of W 1/p in

[α, β]).

A proof can be obtained thanks to simple modifications to the proof of the Modica-

Mortola Theorem by Modica in [48] (see also [22], Theorem 3.10, p. 42). We preferred to

enunciate the results as in the Theorem 2.2, because they will be useful in this form to

our goal.
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Remark 2.3. Either in the quadratic version or in the super-quadratic one of the Modica-

Mortola functional, the optimal constant in the limit energy comes from an optimal profile

problem. For instance, in the quadratic case, we have

σ :=

{
∫

R

|u′|2dt+

∫

R

W (u)dt : u ∈ H1(R), lim
t→−∞

u(t) = α, lim
t→+∞

u(t) = β

}

. (2.6)

The minimum problem (2.6) represents the minimal cost we pay each time we have a

transition from α to β (or conversely) in the real line. Moreover, we explicitly know the

optimal profile; it is given by the solution of the following differential equation






u′ =
√

W (u),

u(0) =
α+ β

2
;

that is, the Euler-Lagrange equation of the problem.This fact is strictly linked to the

structure of the Modica-Mortola functional, which is characterized by the “equi-partition

of the energy” between its two terms.

2.4 The interactions between the fluids and the wall of the

container

We stress that Theorem 2.1 and Theorem 2.2 do not take into account the interaction of

the fluid with the wall of the container. In this sense, an extension of the classical model

for two-phase fluids is obtained by adding to the energy (2.1) a line tension energy1

with density τ concentrated along the line Lc ≡ ∂SAW , where SAB meets the wall of the

container; i.e., along the “contact line” (see Fig. 2.3). In this model, the capillary energy

becomes

E(A) := σH2(SAB) + σAWH2(SAW ) + σBWH2(SBW ) + τH1(Lc). (2.7)

A partial rigorous connection with this classical model is provided by Modica at

the end of 80’s. In [49], Modica added to (2.3) a boundary contribution of the form

λ

∫

∂Ω
g(Tu)dH2, where Tu denotes the trace of u on ∂Ω, λ does not depend on ε, and

g is a non-negative continuous function. He proved that a sequence of minimizers uε for

1In Gibbs’ original formulation, the concept of line tension was introduced to describe the excess free
energy arising a three-phase line, that is, along a curve where three distinct phases coexist (see [41]).
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Ω

A
B

SAB

Lc

SBW

SAW

Figure 2.3: The line tension effect.

this functional is pre-compact in L1(Ω), each limit point u takes only the values α and

β, and the corresponding phase A := {u = α} is a solution of the liquid-drop problem

associated to the energy (2.1).

Modica also proved that the asymptotic behavior of the energy is related with the

following geometric minimization problem

min
{

PΩ(E) + γHN−1(∂E ∩ ∂Ω) : E ⊆ Ω, |E| = m1

}

, (2.8)

with γ and m1 fixed real constants.

For every ε > 0, we set

Egε (u) := ε

∫

Ω
|Du|2 +

1

ε

∫

Ω
W (u)dx+

∫

∂Ω
g(Tu)dHN−1, ∀u ∈ H1(Ω),

with g a non-negative continuous function.

For every t > 0,

H(t) :=

∫ t

0

√
Wds,

ĝ(t) := inf {g(s) + 2|H(s) −H(t)| : s ≥ 0} .

The main results in [49] are stated in the following theorem.
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Theorem 2.4. [[49], Theorem 2.1, p. 497]. Fix m ∈ [α|Ω|, β|Ω|] and let (uε) ⊂ C1 be a

minimizing sequence of Egε among the class of functions with fixed volume m. If uε → u0

in L1(Ω), then

(i) W (u0(x)) = 0, a.e. x ∈ Ω;

(ii) The set E0 := {x ∈ Ω : u0(x) = α} is a solution of the minimum problem (2.8), with

γ :=
ĝ(α) − ĝ(β)

2
∫ β
α

√
Wdt

and m1 :=
β|Ω| −m

β − α
;

(iii) lim
ε→0

Egε (uε) =

(

2

∫ β

α

√
Wdt

)

PΩ(E0)+ĝ(α)HN−1(∂E0∩∂Ω)+ĝ(β)HN−1(∂Ω\∂E0).

2.5 Phase transitions with line tension effect

In the 90’s, Alberti, Bouchitté and Seppecher in [9] proved that, due to a lack of

semicontinuity, the functional E leads to ill-posed minimum problems. They explicitly

compute the relaxation of E and show that the total energy can be properly written

by introducing, besides the usual bulk phase A ⊂ Ω, an additional variable A′ ⊂ ∂Ω,

independent of ∂A, with its complement B′ := ∂Ω \ A′: the boundary phases.

According to this viewpoint, the total energy Ẽ of the configurations (A,A′) is given

by the sum of three different terms: the classical surface tension on the interface between

the bulk phases A and B, a surface density on the wall of the container (depending on

which bulk phase and which boundary phase meet together) and a line density along the

line LA′B′ (the dividing line) which separates the boundary phases A′ and B′ (see Fig.

2.4)

Ẽ(A,A′) := σH2(SAB) + σAWH2(SAA′) + (σ + σAW )H2(SAB′) + σBWH2(SBB′)

+(σ + σBW )H2(SBA′) + τH1(LA′B′). (2.9)

Therefore E can be written in terms of Ẽ by choosing A′ = SAW . We stress that the

boundary phase A′ may differ from the interface SAW between the bulk phase A and the

wall of the container, at equilibrium. Hence, the line tension is located on the dividing

line LA′B′ , which in general does not agree with the contact line Lc (see [9], Example

5.2, p. 35). In this case, Alberti, Bouchitté and Seppecher speak of “dissociation of the

contact line and the dividing line”.
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A

A′

Ω

SBA′

SBB′

SAA′

SAB′

SAB

LA′B′

Figure 2.4: An arbitrary configuration (A,A′).

In order to properly establish a connection with the associated model for capillarity

with line tension, they study the asymptotic behavior of the following functional

Ẽε(u) := ε

∫

Ω
|Du|2dx+

1

ε

∫

Ω
W (u)dx+ λε

∫

∂Ω
V (Tu)dH2, ∀ u ∈ H1(Ω), (2.10)

where V is a double well potential with wells α′ and β′ (corresponding to the boundary

phases A′ and B′), and λε satisfies

ε log λε → k ∈ (0,+∞) as ε goes to 0. (2.11)

The logarithmic scaling (2.10) will be explained in the following pages (see Remark 2.7).

In the meantime, notice that it provides a uniform control on the oscillation of Tuε, the

traces of minimizing sequences uε, and ensures that the transition of Tuε from α′ to β′

takes place in a thin layer. In fact, Alberti, Bouchitté and Seppecher proved that, under

(2.11), the traces Tuε converge (up to a subsequence) to a function v in BV (∂Ω, {α′, β′})
and then the boundary phases {v = α′} and {v = β′} are divided by the line Sv. Namely,

the asymptotic behavior of Ẽε is described by a functional Ψ which depends on the two

variables u and v:

Ψ(u, v) := σH2(Su) +

∫

∂Ω
|H̃(Tu) − H̃(v)|dH2 + τH1(Sv),

∀ (u, v) ∈ BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}), (2.12)
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where τ = k(β′−α′)2

π and σ := |H̃(β)− H̃(α)|, being H̃ a primitive of 2W 1/2. Note that Ψ

reduces to (2.9) taking into account the definition of τ , σ and H̃, if we set σAA′ := |H̃(α)−
H̃(α′)|, σAB′ := |H̃(α) − H̃(β′)|, σBA′ := |H̃(β) − H̃(α′)| and σBB′ := |H̃(β) − H̃(β′)|.

Theorem 2.5. [[9], Theorem 2.6, p. 10] Let Ẽε : H1(Ω) → R and Ψ : BV (Ω, {α, β}) ×
BV (∂Ω, {α′, β′}) → R be defined by (2.10) and (2.12) respectively. Then

(i) If (uε) ⊂ H1(Ω) is a sequence with uniformly bounded energies Ẽε(uε), then the

sequence (uε, Tuε) is pre-compact in L1(Ω)×L1(∂Ω) and every cluster point belongs

to BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}).

(ii) For every (u, v) ∈ BV (Ω, {α, β}) × BV (∂Ω, {α′, β′}) and every sequence (uε) ⊂
H1(Ω) such that uε → u in L1(Ω) and Tuε → v in L1(∂Ω),

lim inf
ε→0

Ẽε(uε) ≥ Ψ(u, v),

(iii) For every (u, v) ∈ BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}) there exists a sequence (uε) ⊂
H1(Ω) such that uε → u in L1(Ω), Tuε → v in L1(∂Ω) and

lim sup
ε→0

Ẽε(uε) ≤ Ψ(u, v).

The proof of Theorem 2.5 requires several steps in which different effects are analyzed

and then different terms of the limit energy Ψ can be deduced. In the bulk term, the

limit energy can be evaluate like in [48], while the second term in Ψ is obtained by

adapting the approach by Modica in [49]. The main step in the proof concerns the analysis

of the line tension effect. Via “localization” and slicing techniques, Alberti, Bouchitté

and Seppecher reduces the analysis of the line tension to the asymptotic analysis of the

following functional defined on a two-dimensional half-disk

E2
ε (u) := ε2

∫

Dr

|Du|2dx+ λε

∫

Er

V (Tu)dH1, (2.13)

where, for every r > 0, we denote by

Dr :=
{

(x1, x2) ∈ R
2 : x2

1 + x2
2 < r2, x2 > 0

}

,

(2.14)

Er :=
{

(x1, x2) ∈ R
2 : x2

1 + x2
2 < r2, x2 = 0

} ∼= (−r, r).
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Then the two-dimensional Dirichlet energy (2.13) is replaced on the half-disk Dr by the

H1/2 intrinsic norm on the “diameter” Er. This is possible thanks to the following lemma,

concerning with the optimal constant for the trace inequality involving the L2 norm of

the gradient of a function defined on a two-dimensional domain and the H1/2 norm of its

trace on a line.

Lemma 2.6. [[9], Corollary 6.4, p. 41]. Let u be a function in H1(Dr), then the trace of

u on the segment Er × {0} belongs to H1/2(Er) and

∫ ∫

Er×Er

∣

∣

∣

∣

Tu(t′) − Tu(t)

t′ − t

∣

∣

∣

∣

2

dt′dt ≤ 2π

∫

Dr

|Du|2dx. (2.15)

Hence, the original problem is reduced to the study of a new kind of perturbation

problem involving a non-local term. Let I be an open interval in R, for every v ∈ H1/2,

we set

E1
ε (v) := ε

∫∫

I×I

∣

∣

∣

∣

v(t) − v(t′)

t− t′

∣

∣

∣

∣

2

dtdt′ + λε

∫

I
V (v) dt, (2.16)

where λε satisfies the condition (2.11).

Remark 2.7. The singular perturbation problem involving the energies (2.16) brings to

the fore the right scaling for (2.10); i.e., the choice of λ such that log λε ≈ 1/ε.

Let us consider the following energy:

Ē1
ε (v) := ε2

∫ ∫

I×I

∣

∣

∣

∣

v(t′) − v(t)

t′ − t

∣

∣

∣

∣

2

dt′dt +

∫

I
V (v)dt,

on a one-dimensional set I = (a, b).

Adapting the argument in Section 2.3, we look at a transition from α′ to β′ taking

place on an interval (t, t+ δ). We then have

Ē1
ε (v) ≥ 2ε2

∫ ∫

(a,t)×(t+δ,b)

∣

∣

∣

∣

1

s′ − s

∣

∣

∣

∣

2

ds′ds+ Cδ

≥ −2ε2(log δ + C) + Cδ.

By optimizing the last expression we get δ = 2ε2/C and hence

Ē1
ε (v) ≥ 4ε2| log ε| +O(ε2).
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We are then led to the scaled energy

1

| log ε|

∫ ∫

I×I

∣

∣

∣

∣

v(t′) − v(t)

t′ − t

∣

∣

∣

∣

2

dt′dt+
1

ε2| log ε|

∫

I
V (v)dt,

and hence, by renaming ε the scaling factor 1/| log ε|, we obtain the energy (2.16).

Notice that this natural scaling signs the main differences with the classical Modica-

Mortola problem. In fact, the asymptotic behavior of the Modica-Mortola functional

(2.3) is characterized by the equi-partition of the energy between the two terms in the

functional and by a suitable scaling property which provides an optimal profile problem

describing the shape of the optimal transition. While, the logarithmic scaling for the

functionals (2.16) produces no equi-partition of the energy at all; the limit comes only

from the non-local part of the energy and any profile is optimal as far as transition occurs

in a layer of order ε.

Similar effects can be found in other recent results for phase transition problems with

non local singular perturbation (see Garroni and Müller[39] and Kurzke[46], [47]).

Alberti, Bouchitté and Seppecher analyze the asymptotic behavior of (0.11) in [8],

proving that

E1
ε

Γ−→ 2k(β′ − α′)H0(Sv),

and strongly use this result to obtain the boundary term in (0.8).

Theorem 2.8. [[8], Theorem 1, p. 334, and [9], Theorem 4.4, p. 20.] Let E1
ε : H1/2(I) →

R be defined by (2.16) and, for every v ∈ BV (I, {α′, β′}), set E1(v) := 2k(β′−α′)2H0(Sv).

Then

(i) If (vε) ⊂ H1/2(I) is a sequence such that E1
ε (vε) is bounded, then (vε) is pre-compact

in L1(I) and every cluster point belongs to BV (I, {α′, β′}).

(ii) For every v ∈ BV (I, {α′, β′}) and every sequence (vε) ⊂ H1/2(I) such that vε → v

in L1(I),

lim inf
ε→0

E1
ε (vε) ≥ E1(v).

(iii) For every v ∈ BV (I, {α′, β′}) there exists a sequence (vε) ⊂ H1/2(I) such that

vε → v in L1(I) and

lim sup
ε→0

E1
ε (vε) ≤ E1(v).
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Chapter 3

A singular perturbation result

with a fractional norm

We study a problem involving a non-local singular perturbation for a Cahn-Hilliard

functional of the type of the energy (2.16), seen in the previous chapter:

E1
ε (v) := ε

∫∫

I×I

∣

∣

∣

∣

v(x) − v(x′)

x− x′

∣

∣

∣

∣

2

dxdx′ + λε

∫

I
V (v) dx. (3.1)

Let I be an open bounded interval of R and V a non-negative continuous function

vanishing only at α′, β′ ∈ R (0 < α′ < β′), with growth at least linear at infinity. We

investigate the asymptotic behavior in terms of Γ-convergence of the following functional

Kε(v) := εp−2

∫∫

I×I

∣

∣

∣

∣

v(x) − v(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ +
1

ε

∫

I
V (v) dx, ∀v ∈W

1− 1
p
,p
(I), (p > 2), (3.2)

as ε→ 0.

We recall that the natural logarithmic scaling in (2.16) signs the main differences with

the classical Modica-Mortola problem and, also, with our functional (3.2). In fact, the

logarithmic scaling produces no equi-partition of the energy; all the limit comes only from

the non-local part of the energy and any profile is optimal as far as transition occurs in

a layer of order ε.

If we make the same computation seen in Chapter 2, we note that both the terms in

functional (3.2) are of the first order; i.e., both the terms are important in the limit. We

can bring out this characteristic of (3.2) in view of the following scaling property (3.5)
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CHAPTER 3. A singular perturbation result with a fractional norm

and hence the limit is characterized by the following optimal profile problem

γ := inf

{
∫∫

R×R

∣

∣

∣

∣

w(x) − w(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ +

∫

R

V (w) dx : w ∈W 1− 1
p
,p

loc (R),

lim
x→−∞

w(x) = α′, lim
x→+∞

w(x) = β′
}

. (3.3)

3.1 The Γ-convergence result

The asymptotic behavior in term of Γ-convergence of Kε is described by the functional

K(v) := γH0(Sv) , v ∈ BV (I, {α′, β′}), (3.4)

where γ is given by the optimal profile problem (3.3).

The Γ-convergence result is precisely stated in the following theorem.

Theorem 3.1. [[39], Theorem , p. 113]. LetKε : W 1− 1
p
,p(I) → R and K : BV (I, {α′, β′}) →

R be defined by (3.2) and (3.4).

Then

(i) [Compactness] If (vǫ) ⊂ W 1− 1
p
,p(I) is a sequence such that Kε(vǫ) is bounded,

then (vǫ) is pre-compact in L1(I) and every cluster point belongs to BV (I, {α′, β′}).

(ii) [Lower bound inequality] For every v ∈ BV (I, {α′, β′}) and every sequence

(vǫ) ⊂W 1− 1
p
,p(I) such that vǫ → v in L1(I),

lim inf
ε→0

Kε(vǫ) ≥ K(v).

(iii) [Upper bound inequality] For every v ∈ BV (I, {α′, β′}) there exists a sequence

(vǫ) ⊂W 1− 1
p
,p(I) such that vǫ → v in L1(I) and

lim sup
ε→0

Kε(vǫ) ≤ K(v).
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CHAPTER 3. A singular perturbation result with a fractional norm

3.2 The optimal profile problem

In this section we will study the main features of our functional, namely the scaling

property and the optimal profile problem.

It is useful to introduce the localization of the functional Kε. For every open set J ⊆ I

and every function v ∈W 1− 1
p
,p(J) we will denote

Kε(v, J) := εp−2

∫∫

J×J

∣

∣

∣

∣

v(x) − v(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ +
1

ε

∫

J
V (v) dx.

Clearly, Kε(v) = Kε(v, I), for every v ∈W
1− 1

p
,p
(I).

Given J ⊆ I and v ∈ W 1− 1
p
,p(J) we set v(ε)(x) := v(εx) and J/ε := {x : εx ∈ J}. By

scaling it is immediately seen that

Kε(v, J) = K1(v
(ε), J/ε). (3.5)

In view of this scaling property, it is now natural to consider the optimal profile problem

(3.3). The constant γ represents the minimal cost in the term of the non-scaled energy

K1 for a transition from α′ to β′ on the whole real line. By (3.5) γ will also give the cost

of one jump from α′ to β′.

Using the monotone rearrangement result of Section 1.4, we will prove that the infi-

mum in (3.3) is not trivial and is achieved.

We recall that the increasing rearrangement v∗ of a function v ∈ W 1− 1
p
,p(J), with

J = (a, b), is defined by

v∗(a+ x) := sup {λ : |{t ∈ (a, b) : v(t) < λ}| ≤ x} , ∀x ∈ (0, b − a), (3.6)

and satisfies

Kε(v
∗, J) ≤ Kε(v, J) (3.7)

(see Theorem 1.14, p. 30 and Theorem 1.15, p. 30).

In order to prove the upper bound it is convenient to introduce an auxiliary optimal

profile problem. For every T > 0, we consider

γT := inf

{

K1(w,R) : w ∈W
1− 1

p
,p

loc (R), w(x) = α′ ∀x ≤ −T,w(x) = β′ ∀x ≥ T

}

. (3.8)

By the compactness of the embedding of W 1− 1
p
,p((−2T, 2T )) in Lp((−2T, 2T )), it is easy

to prove that the minimum in (3.8) is achieved. By truncation and rearrangement it
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CHAPTER 3. A singular perturbation result with a fractional norm

also follows that the minimum can be achieved by a function ϕT ∈ W
1− 1

p
,p

loc (R) which is

non-decreasing and satisfies α′ ≤ ϕT ≤ β′.

Proposition 3.2. The sequence γT is non-increasing in T and lim
T→+∞

γT = γ.

Proof. By the definition of γT , it immediately follows that γT is monotone and is greater

than or equal to γ. Hence, the limit exists and satisfies

lim
T→+∞

γT ≥ γ.

It remains to prove the reverse inequality. For every µ > 0, let us fix ψ ∈ W
1− 1

p
,p

loc (R)

such that

lim
x→−∞

ψ(x) = α′, lim
x→+∞

ψ(x) = β′ and K1(ψ,R) ≤ γ + µ.

Moreover, by truncation we may always assume that α′ ≤ ψ ≤ β′.

The idea is to modify ψ in order to construct a function ϕ which is a good competitor

for γT . To this aim we consider

Ψ(x) :=

∫

R

∣

∣

∣

∣

ψ(x) − ψ(x′)

x− x′

∣

∣

∣

∣

p

dx′.

Since Ψ ∈ L1(R) we can choose a sequence {Tn}n∈N, with Tn → +∞, such that

Ψ(−Tn) → 0 and Ψ(Tn) → 0 as n→ +∞.

For every δ > 0, due to the asymptotic behavior of ψ, we can find nδ ∈ N such that

ψ(−Tn) ≤ α′ + δ and ψ(Tn) ≥ β′ − δ, ∀n ≥ nδ. (3.9)

For every M > 0, we define a function ϕ which coincides with ψ in [−Tn, Tn], satisfies

ϕ(x) = α′ if x < −Tn−M and ϕ(x) = β′ if x > Tn+M and it is affine in (−Tn−M,−Tn)
and (Tn, Tn +M) (see Fig. 3.1).
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CHAPTER 3. A singular perturbation result with a fractional norm

α′

β′

x

ψ

Figure 3.1: The competitor ϕ.

Namely,

ϕ(x) :=















































































α′ if x ∈ (−∞,−Tn −M ],

ψ(−Tn) − α′

M
(x+ Tn) + ψ(−Tn) if x ∈ (−Tn −M,−Tn),

ψ(x) if x ∈ [−Tn, Tn],

β′ − ψ(Tn)

M
(x− Tn) + ψ(Tn) if x ∈ (Tn, Tn +M),

β′ if x ∈ [Tn +M,+∞).

Clearly, ϕ is a good competitor for γTn+M . Let us compute its energy, denoting Jn :=

48



CHAPTER 3. A singular perturbation result with a fractional norm

(−Tn, Tn),

γTn+M ≤ K1(ϕ,R)

= K1(ψ, Jn) +K1(ϕ,R \ Jn) + 2

∫∫

(R\Jn)×Jn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′

≤ γ + µ+

∫∫

(R\Jn)×(R\Jn)

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ +

∫

R\Jn

V (ϕ) dx

+2

∫∫

(R\Jn)×Jn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′

= γ + µ+ I1 + I2 + I3. (3.10)

The first two integrals in the right hand side of (3.10) can be easily estimated as follows

I1 :=

∫∫

(R\Jn)×(R\Jn)

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ ≤ 2(β′ − α′)p
∫ −Tn

−∞

∫ +∞

Tn

dxdx′

|x− x′|p

=
(β′ − α′)p

(p− 1)(p − 2)(2Tn)p−2

and

I2 :=

∫

R/Jn

V (ϕ) dx ≤ 2Mωδ,

where

ωδ := max
s∈[α′,α′+δ]∪[β′−δ,β′]

V (s). (3.11)

Instead, an upper bound for the last integral requires more attention in computation. Let

us show it in detail.

I3 := 2

∫ −Tn−M

−∞

∫ Tn

−Tn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ + 2

∫ −Tn

−Tn−M

∫ Tn

−Tn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′

+2

∫ +∞

Tn+M

∫ Tn

−Tn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ + 2

∫ Tn+M

Tn

∫ Tn

−Tn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′.
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We have

2

∫ −Tn−M

−∞

∫ Tn

−Tn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ = 2

∫ −Tn−M

−∞

∫ Tn

−Tn

∣

∣

∣

∣

ψ(x′) − α′

x− x′

∣

∣

∣

∣

p

dxdx′

≤ 2(β′ − α′)p
∫ −Tn−M

−∞

∫ Tn

−Tn

dxdx′

|x− x′|p

=
2(β′ − α′)p

(p− 1)(p − 2)Mp−2
.

Moreover

2

∫ −Tn

−Tn−M

∫ Tn

−Tn

∣

∣

∣

∣

ϕ(x) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′

= 2

∫ −Tn

−Tn−M

∫ Tn

−Tn

∣

∣

∣
ψ(x′) − ψ(−Tn) − ψ(−Tn)−α′

M (x+ Tn)
∣

∣

∣

p

|x− x′|p dxdx′

≤ 2p
∫ −Tn

−Tn−M
Ψ(−Tn)dx+ 2p

|ψ(−Tn) − α′|p
Mp

∫ −Tn

−Tn−M

∫ Tn

−Tn

∣

∣

∣

∣

x+ Tn
x− x′

∣

∣

∣

∣

p

dxdx′

≤ 2pMΨ(−Tn) +
2p−1δp

(p− 1)Mp−2
, ∀n ≥ nδ ,

where we used that

∫ −Tn

−Tn−M

∫ Tn

−Tn

|x+ Tn|p
|x− x′|p dxdx

′ =
1

p− 1

∫ −Tn

−Tn−M

(

|x+ Tn| −
|x+ Tn|p
|Tn − x|p−2

)

dx

≤ M2

2(p − 1)
.

Similarly, we can estimate the third and the fourth integrals of I3 and we get

I3 ≤ 2pM(Ψ(−Tn) + Ψ(Tn)) +
2pδp

(p− 1)Mp−2
+

4(β′ − α′)p

(p− 1)(p − 2)Mp−2
.

Finally, by (3.10), we obtain

γTn+M ≤ γ + µ+ rn + rδ +
4(β′ − α′)p

(p− 1)(p − 2)Mp−2
, ∀n ≥ nδ, (3.12)
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where

rn :=
2(β′ − α′)p

(p− 1)(p − 2)(2Tn)p−2
+ 2pM (Ψ(−Tn) + Ψ(Tn))

and

rδ :=
2p

(p− 1)Mp−2
δp + 2Mωδ.

Taking the limit as n→ +∞ and then δ → 0 and M → +∞, we get

lim
T→+∞

γT = lim
n→+∞

γTn+M ≤ γ + µ,

which concludes the proof by the arbitrariness of µ.

Let us conclude this section with the proof of the existence of an optimal profile.

Proposition 3.3. The minimum for γ defined by (3.3) is achieved by a non-decreasing

function ϕ satisfying α′ ≤ ϕ ≤ β′.

Proof. Let T > 0 and let ϕT be a non-decreasing minimizer for γT . Since the functions

ϕT are monotone and bounded, by Helly’s Theorem, there exist a subsequence ϕTk of ϕT

and a non-decreasing function ϕ, bounded by α′ and β′, such that ϕTk converges pointwise

in R to ϕ. By Fatou’s Lemma and Proposition 3.2 we also have

∫∫

R×R

∣

∣

∣

∣

ϕ(x′) − ϕ(x′)

x− x′

∣

∣

∣

∣

p

dxdx′ +

∫

R

V (ϕ) dx ≤ lim
k→∞

γTk = γ .

This implies that ϕ is a minimizer for γ. 2

3.3 Compactness

The proof of the compactness follows the lines of the proof of Alberti, Bouchitté and

Seppecher in [8], requiring a Young measure argument. We use the following lemma which

gives a (non-optimal) lower bound for Kε.

Lemma 3.4. Let (vǫ) ⊂ W 1− 1
p
,p(I) and let J ⊂ I be an open interval. For every δ such

that 0 < δ < (β′ − α′)/2, let us define

Aε := {x ∈ I : vǫ(x) ≤ α′ + δ} and Bε := {x ∈ I : vǫ(x) ≥ β′ − δ}.
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Let us set

aε :=
|Aε ∩ J |

|J | and bε :=
|Bε ∩ J |

|J | . (3.13)

Then

Kε(vǫ, J) ≥
(

2(β′ − α′ − 2δ)p

(p − 1)(p − 2)|J |p−2

(

1 − 1

(1 − aε)p−2
− 1

(1 − bε)p−2

))

εp−2 + cδ, (3.14)

where cδ does not depend on ε.

Proof. Let x0, x
′
0 ∈ R be such that J = (x0, x

′
0); we obtain

Kε(vε, J) ≥ Kε(v
∗
ε , J)

≥ 2εp−2(β′ − α′ − 2δ)p
∫ x0+aε|J |

x0

∫ x′0

x′0−bε|J |

dxdx′

|x− x′|p +
1

ε
mδ|J |(1 − aε − bε)

=
2εp−2(β′ − α′ − 2δ)p

(p− 1)(p − 2)|J |p−2

(

1 − 1

(1 − aε)p−2
− 1

(1 − bε)p−2
+

1

(1 − aε − bε)p−2

)

+
1

ε
mδ|J |(1 − aε − bε),

where v∗ε denote the non-decreasing rearrangement of vε in (x0, x
′
0) defined by (3.6) and

mδ := min{V (s) : α′ + δ ≤ s ≤ β′ − δ}.
Minimizing with respect to |J |(1 − aε − bε), we get

Kε(vε, J) ≥ εp−2

(

2(β′ − α′ − 2δ)p

(p− 1)(p − 2)|J |p−2

(

1 − 1

(1 − aε)p−2
− 1

(1 − bε)p−2

))

+2
1

p−1
(p− 1)

p−2
p−1

p− 2
(β′ − α′ − 2δ)

p
p−1m

p−2
p−1

δ ,

for every 0 < δ < (β′ − α′)/2, and hence (3.14) is proved.

We are now in a position to prove the compactness result (i.e., Theorem 3.1(i)).

Let (vǫ) ⊂ W 1−1/p,p(I) be a sequence with equi-bounded energy; i.e., a sequence

satisfying sup
ε>0

Kε(vǫ) ≤ C. In particular

∫

I
V (vǫ) dx ≤ Cε (3.15)

and this implies that

V (vǫ) → 0 in L1(I). (3.16)
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Thanks to the growth assumptions on V , (vǫ) is equi-integrable. Hence, by Dunford-

Pettis’ Theorem, (vǫ) is weakly relatively compact in L1(I); i.e., there exists v ∈ L1(I)

such that (up to subsequences) (vǫ) ⇀ v in L1(I)

We have to prove that this convergence is strong in L1(I) and that v ∈ BV (I, {α, β}).
Let νx be the Young measure associated to (vǫ). Since V ≥ 0, we can use Theorem 1.5

(see Section 1.2, p. 24). We have
∫

I

∫

R

V (t) dνx(t) ≤ lim inf
ε→0

∫

I
V (vε) dx

Hence, by (3.16), it follows that
∫

R

V (t) dνx(t) = 0, a.e. x ∈ I,

which implies the existence of a function ϑ on [0, 1] such that

νx(dt) = ϑ(x)δα′(dt) + (1 − ϑ(x))δβ′(dt) , x ∈ I

and

v(x) = ϑ(x)α′ + (1 − ϑ(x))β′ , x ∈ I.

It remains to prove that ϑ belongs to BV (I, {0, 1}). Let us consider the set Sϑ of

the points where the approximate limits of ϑ is neither 0 nor 1. For every N ≤ H0(Sϑ)

we can find N disjoint intervals {Jn}n=1,...,N such that Jn ∩ Sϑ 6= ∅ and such that the

quantities anε and bnε , defined by (3.13) replacing J by Jn, satisfy

anε → an ∈ (0, 1) and bnε → bn ∈ (0, 1) as ε goes to zero.

We can now apply Lemma 3.4 in the interval Jn and, taking the limit as ε → 0 in the

inequality (3.14), we obtain

lim inf
ε→0

Kε(uε, Jn) ≥ cδ.

Finally, we use the sub-additivity of Kε(u, ·) and we get

lim inf
ε→0

Kε(vǫ, I) ≥
N
∑

n=1

lim infKε(vǫ, Jn) ≥ Ncδ. (3.17)

Since (vǫ) has equi-bounded energy, this implies that Sϑ is a finite set and, since a function

w : I → {0, 1} is in BV (I, {0, 1}) if and only if H0(Sw) <∞, it follows θ ∈ BV (I, {0, 1}).
The proof of the compactness for Kε is complete.
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3.4 Lower bound inequality

In this section, we prove the Γ-liminf inequality. An optimal lower bound for Kε(vǫ)

is a consequence of the following proposition.

Proposition 3.5. Let J be an open interval of R. Let (vǫ) be a sequence of non-decreasing

functions in W 1− 1
p
,p(J) and assume that there exist ā, b̄ ∈ J , ā < b̄, such that for every

δ > 0 there exists εδ such that

vǫ(ā) ≤ α′ + δ and vǫ(b̄) ≥ β′ − δ ∀ε ≤ εδ.

Then

lim inf
ε→0

Kε(vε, J) ≥ γ.

Proof. Let J = (a, b). It is clearly enough to consider the case

lim inf
ε→0

Kε(vǫ, (a, b)) < +∞.

By a truncation argument, without loss of generality, we may also assume that

α′ ≤ vǫ(x) ≤ β′, ∀x ∈ (a, b).

Let us define

Uε(x) := εp−2

∫ b

a

∣

∣

∣

∣

vǫ(x) − vǫ(x
′)

x− x′

∣

∣

∣

∣

p

dx′.

By the fact that

lim inf
ε→0

∫ b

a
Uε(x) dx

is finite, we get that there exist x̃ ∈ (a, ā) and x̃′ ∈ (b̄, b) such that

lim inf
ε→0

Uε(x̃) ≤ C and lim inf
ε→0

Uε(x̃
′) ≤ C for some C > 0. (3.18)
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Fix M > 0. We now extend vǫ on the whole R as follows

ṽǫ(x) :=















































































α′ if x ∈ (−∞, x̃−Mε),

vǫ(x̃) − α′

Mε
(x− x̃) + vǫ(x̃) if x ∈ [x̃−Mε, x̃],

vǫ(x) if x ∈ (x̃, x̃′),

β′ − vǫ(x̃
′)

Mε
(x− x̃′) + vǫ(x̃

′) if x ∈ [x̃′, x̃′ +Mε],

β′ if x ∈ (x̃′ +Mε,+∞).

Denote J̃ := (x̃, x̃′) ⊆ (a, b). We have

Kε(vǫ, J̃) ≥ γ −Kε(ṽǫ,R \ J̃) − 2εp−2

∫∫

(R\J̃)×J̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′

= γ − εp−2

∫∫

(R\J̃)×(R\J̃)

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′ − 1

ε

∫

R\J̃
V (ṽǫ) dx

−2εp−2

∫∫

(R\J̃)×J̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′

= γ − I1 − I2 − I3. (3.19)

Using the definition of ṽǫ, we easily get

I1 := εp−2

∫∫

(R\J̃)×(R\J̃)

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′

≤ εp−2(β′ − α′)p
∫∫

(R\J̃)×(R\J̃)

dxdx′

|x− x′|p

=
(β′ − α′)p

(p− 1)(p − 2)|J̃ |p−2
εp−2.

Moreover, since vǫ is non-decreasing,

vǫ(x) ≤ α′ + δ ∀ x ≤ ā and vǫ(x) ≥ β′ − δ ∀ x ≥ b̄
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and, in particular,

I2 :=
1

ε

∫

R\J̃
V (ṽǫ) dx ≤ 2Mωδ,

where ωδ is defined in (3.11).

Finally, using the fact that vǫ(x̃) ≤ α′ + δ and vǫ(x̃
′) ≥ β′ − δ, we can estimate the

third integral

I3 := 2εp−2

∫∫

(R\J̃)×J̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′ = 2εp−2

∫ x̃−Mε

−∞

∫ x̃′

x̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′

+2εp−2

∫ x̃

x̃−Mε

∫ x̃′

x̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′ + 2εp−2

∫ +∞

x̃′+Mε

∫ x̃′

x̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′

+2εp−2

∫ x̃′+Mε

x̃′

∫ x̃′

x̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′. (3.20)

We have

2εp−2

∫ x̃−Mε

−∞

∫ ỹ

x̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− y

∣

∣

∣

∣

p

dxdy ≤ 2εp−2(β′ − α′)p
∫ x̃−Mε

−∞

∫ ỹ

x̃

dxdy

|x− y|p

≤ 2(β′ − α′)p

(p− 1)(p − 2)Mp−2
.

Moreover,

2εp−2

∫ x̃

x̃−Mε

∫ x̃′

x̃

∣

∣

∣

∣

ṽǫ(x) − ṽǫ(x
′)

x− x′

∣

∣

∣

∣

p

dxdx′

= 2εp−2

∫ x̃

x̃−Mε

∫ x̃′

x̃

|vǫ(x′) − vǫ(x̃) − vǫ(x̃)−α′

Mε (x− x̃)|p
|x− x′|p dxdx′

≤ 2p
∫ x̃

x̃−Mε
Uε(x̃)dx+ 2p

|vǫ(x̃) − α′|p
Mpε2

∫ x̃

x̃−Mε

∫ x̃′

x̃

|x̃− x|p
|x− x′|p dxdx

′

≤ 2pMεUε(x̃) +
2p−1δp

(p− 1)Mp−2
, ∀ ε ≤ εδ ,

where we used the fact that

∫ x̃

x̃−Mε

∫ x̃′

x̃

|x̃− x|p
|x− x′|pdxdx

′ =
1

(p− 1)

∫ x̃

x̃−Mε

(

|x− x̃| − |x− x̃|p
|x̃′ − x|p−1

)

dx ≤ (Mε)2

2(p− 1)
.
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Similarly, we can estimate the third and the fourth integrals of I3 and we get

I3 ≤ 2pM(Uε(x̃) + Uε(ỹ))ε+
2pδp

(p− 1)Mp−2
+

4(β′ − α′)p

(p− 1)(p − 2)Mp−2
, ∀ ε ≤ εδ.

Hence, by (3.19), we obtain

Kε(vǫ, J̃) ≥ γ −
(

(β′ − α′)p

(p − 1)(p − 2)|J̃ |p−2
εp−2 + 2pM(Uε(x̃) + Uε(ỹ))ε − rδ

)

− 4(β′ − α′)p

(p− 1)(p − 2)Mp−2
, ∀ ε ≤ εδ ,

with

rδ :=
2pδp

(p− 1)Mp−2
δp + 2Mωδ

vanishing as δ → 0.

Thus, by (3.18) and taking the liminf as ε→ 0 and then as δ → 0, we get

lim inf
ε→0

Kε(vǫ, J̃) ≥ γ − 4(β′ − α′)p

(p− 1)(p − 2)Mp−2
,

which concludes the proof by the arbitrariness of M .

Remark 3.6. Clearly an analogue proposition holds in the case of vǫ non-increasing

satisfying the hypotheses with ā > b̄.

In order to conclude, let us first observe that, thanks to the compactness result for Kε,

we may assume that the sequence (vǫ) converges in L1(I) to some u ∈ BV (I, {α′, β′}).
Hence, the jump set Sv is finite and we can find N := H0(Sv) disjoint subintervals

{Ii}i=1,...,N such that Sv ∩ Ii 6= ∅, for every i = 1, ..., N .

Now, let us consider the monotone rearrangement v∗ε,i of vǫ in Ii. The rearrangement

v∗ε,i is non-decreasing if u is non-decreasing in Ii and non-increasing otherwise. With

this choice clearly v∗ε,i converges to v in L1(Ii) and thus it satisfies the assumptions of

Proposition 3.5 (see also Remark 3.6) with J replaced by Ii. Then, for every i = 1, ..., N ,

we may conclude that

lim inf
ε→0

Kε(vǫ, Ii) ≥ lim inf
ε→0

Kε(v
∗
ε,i, Ii) ≥ γ.
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Finally, using the sub-additivity of Kε(vǫ, ·), we get

lim inf
ε→0

Kε(vǫ, I) ≥ lim inf
ε→0

N
∑

i=1

Kε(vǫ, Ii) ≥ Nγ = γH0(Sv)

and hence the lower bound stated by Theorem 3.1, (ii), is proved. 2

3.5 Upper bound inequality

In this section, we conclude the proof of the Theorem 3.1, proving the limsup inequality.

Let us first construct an optimal sequence for v of the form

v(x) =

{

α′, if x ≤ x0,

β′, if x > x0.

Let T > 0 be fixed and let ϕT ∈W
1− 1

p
,p

loc (R) be the minimizer for γT defined by (3.8);

i.e.,

ϕT (x) = α′ ∀ x ≤ −T, ϕT (x) = β′ ∀ x ≥ T and K1(ϕ,R) = γT .

Let us define, for every ε > 0, vǫ(x) := ϕT
(

x− x0

ε

)

, for every x ∈ I. We have

vǫ → v in L1(I)

and

Kε(vǫ) = εp−2

∫∫

I×I

∣

∣

∣

∣

∣

ϕT (x−x0
ε ) − ϕT (x

′−x0
ε )

x− x′

∣

∣

∣

∣

∣

p

dxdx′ +
1

ε

∫

I
V

(

ϕT
(

x− x0

ε

))

dx

= K1(ϕ
T , (I − x0)/ε) ≤ K1(ϕ

T ,R) = γT . (3.21)

By Proposition 3.2 we get

lim
T→+∞

lim sup
ε→0

Kε(vǫ) ≤ γ.

Then by a diagonalization argument we can construct a sequence ṽǫ converging to v in

L1(I), which satisfies

lim sup
ε→0

Kε(ṽǫ) ≤ γ.
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α′

β′

a b
x

vε

v

Figure 3.2: Construction of vε, with I = (a, b) and H0(Sv) = 3.

The optimal sequence for an arbitrary v ∈ BV (I, {α′, β′}) can be easily obtained

gluing the sequences constructed above for each single jump of v and taking into account

that, thanks to the scaling εp−2, the long range interactions between two different recovery

sequences decay as ε→ 0. See Fig. 3.2.
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Chapter 4

A class of phase transition

problems with line tension effect

In this chapter, we introduce the main problem of this thesis, that concerns the study

of a functional similar to (2.10), but with a super-quadratic growth in the perturbation

term.

Let Ω be a bounded open subset of R
3 with smooth boundary; let W and V be non-

negative continuous functions on R with growth at least linear at infinity and vanishing

respectively only in the “double well” {α, β}, with α < β, and {α′, β′}, with α′ < β′. We

also suppose that W and V are convex near their respective wells. Let p > 2 be a real

number, for every ε > 0, we consider the functional Fε defined in W 1,p(Ω), given by

Fε(u) := εp−2

∫

Ω
|Du|pdx+

1

ε
p−2
p−1

∫

Ω
W (u)dx+

1

ε

∫

∂Ω
V (Tu)dH2, (4.1)

where as usual Tu denotes the trace of u on ∂Ω.

Note that the choice of the scaling in (4.1) comes from the super-quadratic version of

the Modica-Mortola functional; i.e.,

εp−1

∫

Ω
|Du|pdx+

1

ε

∫

Ω
W (u)dx,

but we also take into account the scaling of the functional Kε studied in the previous

chapter

εp−2

∫∫

I×I

∣

∣

∣

∣

v(t) − v(t′)

t− t′

∣

∣

∣

∣

p

dtdt′ +
1

ε

∫

I
V (v) dt.

We analyze the asymptotic behavior of the functional Fε in terms of Γ-convergence.

Let (uε) be an equi-bounded sequence for Fε; i.e., there exists a constant C such that
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CHAPTER 4. A class of phase transition problems with line tension effect

F (uε) ≤ C. We observe that the term
1

ε
p−2
p−1

∫

Ω
W (uε)dx forces uε to take values close

to α and β, while the term εp−2

∫

Ω
|Duε|pdx penalizes the oscillations of uε. We will see

that when ε tends to 0, the sequence (uε) converges (up to a subsequence) to a function

u, that belongs to BV (Ω), which takes only the values α and β. Moreover each uε has a

transition from the value α to the value β in a thin layer close to the surface Su, which

separates the bulk phases {u = α} and {u = β}. Similarly, the boundary term of Fε forces

the traces Tuε to take values close to α′ and β′, and the oscillations of the traces Tuε

are again penalized by the integral εp−2

∫

Ω
|Duε|pdx. Then, we expect that the sequence

(Tuε) converges to a function v in BV (∂Ω) which takes only the values α′ and β′, and

that a concentration of energy occurs along the line Sv, which separates the boundary

phases {v = α′} and {v = β′}.
In view of possible “dissociation of the contact line and the dividing line”, we recall

that Tu may differ from v.1 Since the total energy Fε(uε) is partly concentrated in a thin

layer close to Su (where uε has a transition from α to β), partly in a thin layer close to

the boundary (where uε has a transition from Tu to v), and partly in the vicinity of Sv

(where Tuε has a transition from α′ to β′), we expect that the limit energy is the sum of

a surface energy concentrated on Su, a boundary energy on ∂Ω (with density depending

on the gap between Tu and v), and a line energy concentrated along Sv.

The asymptotic behavior of the functional Fε is described by a functional Φ which

depends on the two variables u and v. Let W be a primitive of W (p−1)/p. For every

(u, v) ∈ BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}), we will prove that

Φ(u, v) := σpH2(Su) + cp

∫

∂Ω
|W(Tu) −W(v)|dH2 + γpH1(Sv), (4.2)

where as usual the jump sets Su and Sv are the complement of the set of Lebesgue

points of u and v, respectly; cp and σp are the constants defined in Chapter 2; that are,

cp :=
p

(p− 1)p/(p−1)
; σp := cp|W(β) −W(α)|; γp is given by the optimal profile problem

γp := inf

{

∫

R2
+

|Du|pdx+

∫

R

V (Tu)dH1 : u ∈ L1
loc(R

2
+) :

∫

R2
+

|Du|pdx is finite,

lim
t→−∞

Tu(t)=α′, lim
t→+∞

Tu(t)=β′
}

. (4.3)

1See Chapter 2, p. 39.
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The main convergence result is precisely stated in the following theorem.

Theorem 4.1. Let Fε : W 1,p(Ω) → R and Φ : BV (Ω, {α, β}) × BV (∂Ω, {α′, β′}) → R

defined by (6.1) and (6.2).

Then

(i) [Compactness] If (uε) ⊂ W 1,p(Ω) is a sequence such that Fε(uε) is bounded,

then (uε, Tuε) is pre-compact in L1(Ω) × L1(∂Ω) and every cluster point belongs

to BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}).

(ii) [Lower Bound Inequality] For every (u, v) ∈ BV (Ω, {α, β})×BV (∂Ω, {α′, β′})
and every sequence (uε) ⊂ W 1,p(Ω) such that uε → u in L1(Ω) and Tuε → v in

L1(∂Ω),

lim inf
ε→0

Fε(uε) ≥ Φ(u, v).

(iii) [Upper Bound Inequality] For every (u, v) ∈ BV (Ω, {α, β})×BV (∂Ω, {α′, β′})
there exists a sequence (uε) ⊂ W 1,p(Ω) such that uε → u in L1(Ω), Tuε → v in

L1(∂Ω) and

lim sup
ε→0

Fε(uε) ≤ Φ(u, v).

We can easily rewrite this theorem in term of Γ-convergence. To this aim, we extend

each Fε to +∞ on L1(Ω)\W 1,p(Ω) and, from Theorem 4.1, we briefly deduce the following

remark.

Remark 4.2. Fε Γ-converges on L1(Ω) to F , given by

F (u) :=

{

inf {Φ(u, v) : v ∈ BV (∂Ω, {α′, β′})} if u ∈ BV (Ω, {α, β}),
+∞ elsewhere in L1(Ω).

Note that the limit functional Φ is of the same type of the functional Ψ (defined by

(2.12), Γ-limit of Ẽε. Nevertheless, the variation of the power of the gradient in the

perturbation term is not a simple generalization with respect to the quadratic case. The

structure of these two problems is different. In the quadratic case, the natural scaling

of the energy is logarithmic: this implies that the profile in which the phase transition

occurs on the boundary is not important for the first order of energy. Instead, the super-

quadratic case is characterized by an optimal profile problem which determines the line

tension in the limit. In view of this, some arguments in the proof of Theorem 4.1 will be

simplified, some other will require more care.
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4.1 Strategy of the proof and some preliminary results

The proof of Theorem 4.1 requires several steps in which we have to analyze different

effects. Then, we can deduce the terms of the limit energy Ψ, localizing three effects: the

bulk effect, the wall effect and the boundary effect.

4.1.1 The bulk effect

A

A′

Ω

Figure 4.1: The bulk.

In the bulk term, the limit energy can be evaluate like in [48]. Of course, we will use

the super-quadratic version of the Modica-Mortola functional, like seen in Chapter 2, p.

36.

4.1.2 The wall effect

A

A′

Ω

Figure 4.2: The wall.

The second term of Φ can be obtained by adapting the approach by Modica in [49].
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We recall that the results by Modica concern a Cahn-Hilliard functional with quadratic

growth in the singular perturbation term and with a boundary contribution of the form

λ

∫

∂Ω
g(Tu)dH2, with λ not depending on ε and g a positive continuous function. Hence,

we need to adapt part of Proposition 1.2 ([49], p. 492) and Proposition 1.4 ([49], p. 494)

to our goal.

For every open set A ⊂ R
3 and every real function u ∈ W 1,p(A), we consider the

functional

Gε(u,A) := εp−2

∫

A
|Du|pdx+

1

ε
p−2
p−1

∫

A
W (u)dx. (4.4)

Proposition 4.3. For every domain A ⊂ R
3 with boundary piecewise of class C1 and for

every A′ ⊂ ∂A with Lipschitz boundary, the following statements hold.

(i) For every (u, v) ∈ BV (A, {α, β}) × BV (A′, {α′, β′}) and every sequence (uε) ⊂
W 1,p(A) such that uε → u in L1(A) and Tuε → v in L1(A′),

lim inf
ε→0

Gε(uε, A) ≥ cp

∫

A′

|W(Tu) −W(v)|dH2.

(ii) Let a function v, constant on A′, and a function u, constant on A, such that u ≡ α

or u ≡ β, be given. Then there exists a sequence (uε) such that Tuε = v on A′, uε

converges uniformly to u on every set with positive distance from A′ and

lim sup
ε→0

Gε(uε, A) ≤ cp

∫

A′

|W(Tu) −W(v)|dH2.

Moreover, the function uε may be required to be
C ′
W

ε(p−2)/(p−1)
-Lipschitz continuous

(where C ′
W is the maximum of W (1)/p over any interval which contains the values

of u and v).

Proof. We may assume that Gε(uε) ≤ C. For every ε > 0, let us denote by

wε(x) := (W ◦ uε)(x), ∀x ∈ A. (4.5)

Step 1:

∫

A
|Dwε|dx ≤ constant.
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By Young’s Inequality, we have:
∫

A
|Dwε|dx =

∫

A
|W ′(uε)||Duε|dx

=

∫

A
W

p−1
p (uε)|Duε|dx (4.6)

≤ Gε(uε)

cp
≤ C

cp
.

Step 2: wε → W ◦ u ∈ BV (A) in L1(A).

For every ε > 0 let us define the function

w̄ε(x) := wε(x) − θε, ∀x ∈ A,

where

θε :=
1

|A|

∫

A
wεdx.

Then (see [10], Theorem 3.44, p. 148) there exists a constant cA, depending on A, such

that
∫

A
|w̄ε|dx ≤ cA

∫

A
|Dw̄ε|dx. (4.7)

Since
∫

A
|Dw̄ε|dx =

∫

A
|Dwε|dx,

by (4.6), we obtain
∫

A
|Dw̄ε|dx < const. (4.8)

By (4.7) and (4.8) follows that the sequence (w̄ε) is bounded in W 1,1(A). Hence, by

Rellich’s Theorem, there exists a function w̄ ∈ BV (A) such that (up to a subsequence)

w̄ε → w̄ in L1(A).

Since wε is bounded, it is not restrictive to assume that both (w̄ε) and (wε) converge

almost everywhere in A, so we have that θε converges to θ in R, and, finally, that (wε)

converges to w̄+θ in L1(A). Thus, since uε converges to u in L1(A), by (4.5), we conclude

that (wε) converges to W ◦ u in L1(A).
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Moreover, by lower semicontinuity, we have

∫

A
|D(W ◦ u)(x)| ≤ lim inf

ε→0

∫

A
|Dwε(x)| ≤ const.

Step 3: G0(z) :=

∫

A
|Dz(x)|+

∫

∂A
|Tz−W(v)|dH2 is l.s.c. on BV (A) with respect to the

topology L1(A).

Let us fix z ∈ BV (A) and let (zε) be a sequence in BV (A) converging to z in L1(A). We

will prove that

lim sup
ε→0

(G0(z) −G0(zε)) ≤ 0, (4.9)

where

G0(z) :=

∫

A
|Dz(x)| +

∫

∂A
|Tz −W(v)|dH2, ∀z ∈ BV (A). (4.10)

We can estimate the boundary part of the functional (4.10) with the L1-norm of the

difference of the traces fo z and zε:

∫

∂A
|Tz −W(v)|dH2 −

∫

∂A
|Tzε −W(v)|dH2 ≤

∫

∂A
|Tz − Tzε|dH2.

Thus, we have

G0(z) −G0(zε) ≤
∫

A
|Dz|dx−

∫

A
|Dzε(x)| +

∫

∂A
|Tz − Tzε|dH2. (4.11)

For every δ > 0, take a cut-off function ξδ ∈ C∞
0 (A) such that 0 ≤ ξδ(x) ≤ 1, ξδ(x) = 1 if

dist(x, ∂A) ≥ δ, |Dξδ| ≤ 2/δ.

Let us define

zδε(x) := (1 − ξδ(x))(z − zε), ∀x ∈ A,

Applying to zδε the trace inequality for BV functions by Anzellotti and Giaquinta (see

[11], Teorema 5, p. 13); we obtain

∫

∂A
|Tz − Tzε|dH2 ≤

∫

Aδ

|D(z − zε)(x)| +
(

2

δ
+ c′

)
∫

Aδ

|z − zε|dx, (4.12)

where Aδ := {x ∈ A : dist(x, ∂A) ≤ δ} and c is a constant that does not depend on δ.

Moreover,
∫

Aδ

|D(z − zε)(x)| ≤
∫

Aδ

|Dz(x)| +
∫

Aδ

|Dzε(x)|, (4.13)

66



CHAPTER 4. A class of phase transition problems with line tension effect

where we used that (z − zε) ∈ BV (A). Then we have

∫

∂(Ac
δ)
|D(z − zε)(x)| (for every ε > 0),

Hence, from (4.11), (4.12) and (4.13), we obtain

G0(z) −G0(zε) ≤
∫

A
|Dz(x)| +

∫

Aδ

|Dz(x)| −
∫

Ac
δ

|Dzε(x)| +
(

2

δ
+ c′

)
∫

Aδ

|z − zε|dx

= 2

∫

Aδ

|Dz(x)| +
∫

Ac
δ

|Dz(x)| −
∫

Ac
δ

|Dzε(x)| +
(

2

δ
+ c′

)
∫

Aδ

|z − zε|dx

Finally, using the lower semicontinuity in L1(A) of the functional

z 7→
∫

Ac
δ

|Dz(x)|

and the fact that zε converges to z in L1(A), we conclude that

lim sup
ε→0

(G0(z) −G0(zε)) ≤ 2

∫

Aδ

|Dz(x)| (4.14)

for almost every δ > 0. By taking δ → 0 in (4.14), we obtain the inequality (4.9).

Step 4: Proof of Statement (i).

Applying the lower semicontinuity of the functional G0 to the sequence (wε) defined by

(4.5), we obtain the following inequality

cp

∫

A
|D(W ◦ u)(x)| + cp

∫

∂A
|W(Tu) −W(v)|dH2

≤ lim inf
ε→0

cp

(
∫

A
|D(W ◦ uε)(x)| +

∫

∂A
|W(Tuε) −W(v)|dH2

)

(4.15)

≤ lim inf
ε→0

(

Gε(uε) + cp

∫

∂A
|W(Tuε) −W(v)|dH2

)

.

Since Tuε → v in L1(A′), we deduce that

lim
ε→0

cp

∫

∂A
|W(Tuε) −W(v)|dH2 = 0. (4.16)

Hence, the lower bound inequality of statement (i) follows from (4.15) and (4.16).

Step 5: Proof of Statement (ii). Let us consider the case u = β and v = γ, with α < γ < β;
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the other cases can be treated in a similar way.

Let ϕ : [0,+∞) → [γ, β] be a solution of the ordinary differential equation

{

ϕ(t)′ = p1/(p−1)

(p−1)p W
1/p(ϕ(t)), on R,

ϕ(0) = γ.

Then, ϕ is increasing, converges to β at +∞, and satisfies

∫

R

|ϕ′|pdt +

∫

R

W (ϕ)dt = cp

∫

R

W (p−1)/p(ϕ)|ϕ′|pdt

(4.17)

= cp|W(β) −W(γ)|

Now, let us denote by d(x) the distance of x from A′. For every ε > 0 and every x ∈ A,

let us set

uε(x) := ϕ

(

d(x)

ε
p−2
p−1

)

.

Since ϕ and d are C ′
W and 1-Lipschitz continuous, respectively, uε is

C ′
W

ε(p−2)/(p−1)
-Lipschitz

continuous. Moreover, uε converges to u uniformly on every set with positive distance

from A′ and satisfies

Gε(uε, A) =
1

ε
p−2
p−1

(
∫

A
|ϕ′(d/ε

p−2
p−1 )|pdx+

∫

A
W (ϕ(d/ε

p−2
p−1 ))dx

)

. (4.18)

Hence, using the Co-Area Formula, it follows

Gε(uε, A) =

∫

R

(

|ϕ′|p +W (ϕ)
)

H2(Σε(p−2)/(p−1))dt, (4.19)

with Σs := {x ∈ A : d(x,A′) = s}. Finally, using (4.17) and the Dominated Convergence

Theorem in (4.19), we obtain that Gε(uε, A) converges to cp

∫

A′

|W(β) −W(γ)|dH2. 2

4.1.3 The boundary effect

This is a delicate step, that requires a deeper analysis. The main strategy is the following

• we reduce to the case in which the boundary is flat;

• hence we study the behavior of the energy in the three-dimensional half ball;
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A

A′

Ω

Figure 4.3: The boundary.

• then we reduce the problem of one dimension via a slicing argument.

Thus, the main problem becomes the analysis of the asymptotic behavior of the following

two-dimensional functional

Hε(u) := εp−2

∫

D1

|Du|pdx+
1

ε

∫

E1

V (Tu)dH1, ∀u ∈W 1,p(D1),

where D1 and E1 are defined by (2.14).

The asymptotic analysis of Hε will be the subject of the next chapter.

4.2 Some remark about the structure of Fε

The methods used in the proof strongly requires the “localization” of the functional

Fε; i.e., looking at Fε as a function of sets. By fixing u we will be able to characterize the

various effects of the problem, in the spirit of the classical “blow-up” method, developed

by Fonseca and Müller in [36]. In this sense, for every open set A ⊂ R
3, every set A′ ⊆ ∂A

and every function u ∈W 1,p(A), we will denote

Fε(u,A,A
′) := εp−2

∫

A
|Du|pdx+

1

ε
p−2
p−1

∫

A
W (u)dx+

1

ε

∫

A′

V (Tu)dH2.

Clearly, Fε(u) = Fε(u,Ω, ∂Ω) for every u ∈W 1,p(Ω).

Let us observe that, thanks to the growth hypothesis on the potentials W and V , we

may assume that there exists a constant m such that:

−m ≤ α,α′, β, β′ ≤ m,

W (t) ≥W (m) and V (t) ≥ V (m) for t ≥ m, (4.20)

W (t) ≥W (−m) and V (t) ≥ V (−m) for t ≤ −m.
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In particular, assumption (4.20) will allow us to use the truncation argument given by

the following Lemma.

Lemma 4.4. Let a domain A ⊂ R
3, a set A′ ⊆ ∂A, and a sequence (uε) ⊂W 1,p(A) with

uniformly bounded energies Fε(uε, A,A
′) be given. If we set ūε(x) := (uε(x) ∧m) ∨−m),

then

(i) Fε(ūε, A,A
′) ≤ Fε(uε, A,A

′),

(ii) ‖ūε − uε‖L1(A) and ‖T ūε − Tuε‖L1(A′) vanish as ε→ 0.

Proof. The inequality Fε(ūε, A,A
′) ≤ Fε(uε, A,A

′) follows immediately from (4.20).

Statement (ii) follows from the fact that both W and V have growth at least linear at

infinity and the integrals

∫

W (uε)dx and

∫

V (Tuε)dx vanish as ε goes to 0.

Since W is strictly positive and continuous out of α and β, for every δ > 0, there exist

a > 0 and M > 0 such that

W (t) ≥ a ∀t ∈ [−M,α− δ] ∪ [β + δ,M ].

Moreover, since W has growth at least linear at infinity, we can find b > 0 such that

W (t) ≥ b|t| when |t| > M.

For every δ > 0, we define

Am := {x ∈ A : m+ δ ≤ |uε(x)| ≤M} and AM := {x ∈ A : |uε(x)| ≥M} .

We have

‖uε − ūε‖L1(A) =

∫

A\(Am∩AM )
|uε − ūε|dx+

∫

Am

|uε − ūε|dx+

∫

AM

|uε − ūε|dx

≤ δ|A| +M |Am| +
∫

AM

|uε|dx

(4.21)

≤ δ|A| + M

a

∫

Am

W (uε)dx+
1

b

∫

AM

W (uε)dx

≤ δ|A| +
(

M

a
+

1

b

)
∫

A
W (uε)dx.
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Since the sequence (uε) has uniformly bounded energy, there exists a constant C such

that
1

ε
p−2
p−1

∫

A
W (uε)dx ≤ C. (4.22)

Then, by (4.21) and (4.22), if follows

‖uε − ūε‖L1(A) ≤ δ|A| + C

(

M

a
+

1

b

)

ε
p−2
p−1 . (4.23)

Passing to the limit as ε goes to 0 in (4.23), we obtain

lim sup
ε→0

‖uε − ūε‖L1(A) ≤ δ|A|.

The proof is complete by the arbitrariness of δ. 2
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Chapter 5

Recovering the “contribution of

the wall”: the flat case

We will obtain “the contribution of the wall” to the limit energy Φ, defined by (4.2),

namely γpH1(Sv), by estimating the asymptotic behavior of the functional

Fε(u,B ∩ Ω, B ∩ ∂Ω) = εp−2

∫

B∩Ω
|Du|pdx+

1

ε
p−2
p−1

∫

B∩Ω
W (u)dx+

∫

B∩∂Ω
V (Tu)dH2,

when B is a small ball centered on ∂Ω and B ∩ ∂Ω is a flat disk. We will follow the idea

of Alberti, Bouchitté and Seppecher in [9], using a suitable slicing argument. Later on we

will show that the flatness assumption on B ∩ ∂Ω can be dropped when B is sufficiently

small. Hence, we need to prove a compactness result and a lower bound inequality for

the following two-dimensional functional

Hε(u) := εp−2

∫

D1

|Du|pdx+
1

ε

∫

E1

V (Tu)dH1, ∀u ∈W 1,p(D1; [−m,m]), (5.1)

where Er and Dr are defined by (2.14). We recall that we will always study Hε like a

reduction of Fε. Hence there will be some hypotheses inherited by this reduction. In

particular, the hypothesis u ∈ [−m,m] in (5.1) is justified by Lemma 4.4.

Let us introduce the “localization” of the functional Hε. For every open set A ⊂ R
2,

every set A′ ⊂ ∂A and every function u ∈W 1,p(A), we will denote

Hε(u,A,A
′) := εp−2

∫

A
|Du|pdx+

1

ε

∫

A′

V (Tu)dH1. (5.2)

If we set u(ε)(x) := u(εx) and A/ε := {x : εx ∈ A}, by scaling it is immediately seen

that

Hε(u,A,A
′) = H1(u

(ε), A/ε,A′/ε). (5.3)
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In view of this scaling property, we consider the optimal profile problem, introduced in

the previous chapter; that is,

γp = inf

{

∫

R2
+

|Du|pdx+

∫

R

V (Tu)dH1 : u ∈ L1
loc(R

2
+) :

∫

R2
+

|Du|pdx is finite,

lim
t→−∞

Tu(t) = α′, lim
t→+∞

Tu(t) = β′
}

(5.4)

and determines the line tension on the limit energy Φ.

5.1 Compactness of the traces

We prove the pre-compactness of the traces of the sequences equi-bounded for Hε,

using the trace imbedding of W 1−1/p,p(∂D1) in W 1,p(D1) and Theorem 3.1(i); that is, the

compactness result for the one-dimensional functional Kε (see Section 3.3, p. 51).

Proposition 5.1. If (uε) ⊂W 1,p(D1; [−m,m]) is a sequence such that Hε(uε) is bounded,

then (Tuε) is pre-compact in L1(E1) and every cluster point belongs to BV (E1, {α′, β′}).

Proof. By hypothesis, there exists a constant C such that Hε(uε) ≤ C.

By the trace imbedding of W 1−1/p,p(∂D1) in W 1,p(D1), there exists a constant Cp

such that for every u ∈W 1,p(D1)

‖Tu‖W 1−1/p,p(∂D1) ≤ Cp‖u‖W 1,p(D1).

It follows that there exists a constant (still denoted by Cp) such that

∫ ∫

E1×E1

|Tuε(t) − Tuε(t
′)|p

|t− t′|p dt′dt ≤ Cp

∫

D1

|uε|pdx+Cp

∫

D1

|Duε|pdx

(5.5)

≤ Cp
π

2
mp + Cp

∫

D1

|Duε|pdx.

It follows that

Kε(Tuε, E1) ≤
Cpπm

p

2
εp−2 + (1 ∧ Cp)Hε(uε) ≤ C, (5.6)

where we used the equi-boundedness of uε. Hence, by (5.6), we have that the sequence

(Tuε) is equi-bounded for Kε and then we can use Theorem 3.1(i) to obtain the desired

conclusion. 2
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5.2 Lower bound inequality

Now, we will prove an optimal lower bound for Hε.

Proposition 5.2. For every (u, v) in BV (D1, {α, β}) × BV (E1, {α′, β′}) and every se-

quence (uε) ⊂W 1,p(D1; [−m,m]) such that uε → u in L1(D1) and Tuε → v in L1(E1)

lim inf
ε→0

Hε(uε) ≥ γpH0(Sv). (5.7)

Proof. We will prove the lower bound inequality (5.7) for v such that

v(t) =

{

α′, if t ∈ (−1, 0],

β′, if t ∈ (0, 1).

Let us consider the natural extension of v to the whole real line R (still denoted by v);

i.e.,

v(t) =

{

α′, if t ≤ 0,

β′, if t > 0.

Step 0: Strategy of the proof. We are looking for an extension of uε to the whole R
2
+,

namely wε, such that wε is a competitor for (5.4) and Hε(wε,R
2
+,R) ≃ Hε(uε,D1, E1) as

ε→ 0 in a precise sense. More exactly, we will able to find s < 1 and we will construct a

competitor wε such that, for any given δ > 0 there exists εδ > 0 such that

Hε(uε) ≥ Hε(uε,Ds, Es)

= Hε(wε,R
2
+,R) −Hε(wε,R

2
+ \Ds,R \ Es)

≥ γp − δ, ∀ε ≤ εδ.

Step 1: Construction of the competitor. For every s > 0, we define the harmonic extension

of v from R \ Es to R
2
+ \Ds, namely ū, defined in polar coordinates by

ū(ρ, θ) :=
θ

π
α′ +

(

1 − θ

π

)

β′, ∀θ ∈ [0, π), ∀ρ ≥ s.

We will construct the competitor wε simply gluing the function ū and the function uε.

Hence, for every ε > 0, we consider the cut-off function ϕ in C∞(R2
+), such that ϕ ≡ 1 in
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−s−ε(p−2)/2(p−1) −s s s+ε(p−2)/2(p−1)

uǫ

ū

ϕuε + (1 − ϕ)ū

Figure 5.1: The competitor wε.

Ds, ϕ ≡ 0 in R
2
+ \Ds(ε) and |Dϕ| ≤ 1/ε

p−2
2(p−1) , where we denote by

s(ε) := s+ ε
(p−2)
2(p−1) .

Thus the function wε can be defined as

wε :=











uε in Ds,

ϕuε + (1 − ϕ)ū in Ds(ε) \ Ds,

ū in R
2
+ \Ds(ε).

Note that wε belongs to W 1,p
loc (R2

+), lim
t→−∞

Twε(t) = α′ and lim
t→+∞

Twε(t) = β′. Clearly, wε

is a good competitor for (5.4).

Step 2: Choice of the annulus. We need to choose an annulus in the half-disk, in which

we can recover a suitable quantity of energy of uε: there exists L > 0 such that for every

ε > 0 there exists s ∈
(

1

2
, 1 − ε

p−2
2(p−1)

)

such that

Hε(uε,Ds(ε) \Ds, Es(ε) \ Es) ≤ Lε
p−2

2(p−1) . (5.8)

Let us prove claim (5.8). By contradiction, for every L > 0 there exists εL such that for

every s ∈
(

1

2
, 1 − ε

p−2
2(p−1)

L

)

HεL
(uεL

,Ds(εL) \Ds, Es(εL) \Es) > Lε
p−2

2(p−1)

L . (5.9)
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In particular, we can choose a finite set (sk), for k = 1, 2, ...,

[

ε
− p−2

2(p−1)

L

]

, such that

⋃

k

(Dsk(εL) \Dsk
) = D1 \D1/2, (5.10)

with Dsk(εL) \Dsk
disjoint sets.

By (5.9) and (5.10), we get

HεL
(uεL

,D1, E1) ≥

"

ε
−

p−2
2(p−1)

L

#

∑

k=1

HεL
(uεL

,Dsk(εL) \Dsk
, Esk(εL) \Esk

)

(5.11)

>

"

ε
−

p−2
2(p−1)

L

#

∑

k=1

Lε
p−2

2(p−1)

L = L

[

ε
− p−2

2(p−1)

L

]

ε
p−2

2(p−1)

L ≥ L.

Since (uε) is equi-bounded, by taking the limit of L to +∞ in (5.11), we have a contra-

diction.

Step 3: Estimates. By the scaling property of Hε (see (5.3)), we have

γp ≤ H1(w
(ε)
ε ,R2

+,R) = Hε(wε,R
2
+/ε,R/ε)

≤ Hε(wε,R
2
+,R) = Hε(wε,Ds, Es) +Hε(wε,R

2
+ \Ds,R \ Es)

(5.12)

≤ Hε(uε) + εp−2

∫

R2
+\Ds

|Dwε|pdx+
1

ε

∫

R\Es

V (Twε)dH1

= Hε(uε) + I1 + I2.

By definition of wε, the first integral in the right hand side of (5.12) can be easily estimated

as follows

I1 = εp−2

∫

R2
+\Ds(ε)

|Dū|pdx+ εp−2

∫

Ds(ε)\Ds

|D(ϕuε + (1 − ϕ)ū)|pdx

≤ 3p−1εp−2

∫

R2
+\Ds

|Dū|pdx+ 3p−1εp−2

∫

Ds(ε)\Ds

|Duε|pdx

+6p−1mpπε
p(p−2)
2(p−1) + 3p−1(2m)pπsε

p−2
2 ,
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where we used the fact that
∫

Ds(ε)\Ds

|Dϕ|p|uε − ū|pdx ≤ 1

ε
p(p−2)
2(p−1)

∫

Ds(ε)\Ds

|uε − ū|p

≤ 2p−1mpπ

(

1

ε
(p−2)2

2(p−1)

+
2s

ε
p−2
2

)

and that |uε| < m and |ū| < m.

By definition of ū, we have
∫

R2
+\Ds

|Dū|pdx =
|β′ − α′|p

πp−1(p− 2)sp−2
.

Hence,

I1 ≤ 3p−1εp−2

∫

Ds(ε)\Ds

|Duε|pdx+
3p−1|β′ − α′|p

(p− 2)πp−2sp−2
εp−2

+6p−1mpπε
p(p−2)
2(p−1) + 3p−1(2m)pπsε

p−2
2 . (5.13)

Let us estimate the second integral in the right hand side of (5.12). Since Twε = α′

and Twε = β′ on R \ Es(ε), we have

I2 =
1

ε

∫

R\Es(ε)

V (T ū)dH1 +
1

ε

∫

Es(ε)\Es

V (Twε)dH1 ≡ 1

ε

∫

Es(ε)\Es

V (Twε)dH1.

For every δ > 0, let us define

Eδ :=
{

x ∈ Es(ε) \ Es : |Tuε − β′| > δ and |Tuε − α′| > δ
}

.

Thanks to Step 2, we get: there exists N >
L

ωδ
(where we denote by ωδ := min

|t−α′|≥δ

|t−β′|≥δ

V (t))

such that for every δ > 0 there exists εδ such that

|Eδ | ≤ Nε
p−2

2(p−1) ε, ∀ε ≤ εδ, (5.14)

In particular, choosing δ small, the convexity of V near its wells provides

I2 =
1

ε

∫

(Es(ε)\Es)\Eδ

V (Twε)dH1 +
1

ε

∫

Eδ

V (Twε)dH1

(5.15)

≤ 1

ε

∫

(Es(ε)\Es)\Eδ

V (Tuε)dH1 + ωmNε
p−2

2(p−1) ,
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where ωm := max
|t|<m

V (t) and we used the inequality (5.14).

Finally, by (5.12), (5.13) and (5.15), we obtain, for every δ > 0

Hε(uε) ≥ γp −
(

3p−1Hε(wε,Ds(ε) \Ds, Es(ε) \ Es) +
3p−1|β′ − α′|p

(p− 2)πp−1sp−2
εp−2

6p−1mpπε
p(p−2)
2(p−1) + 3p−1(2m)pπsε

p−2
2 + ωmNε

p−2
2(p−1)

)

,

(5.16)

≥ γp −
(

3p−1Lε+
3p−1|β′ − α′|p

(p− 2)πp−1sp−2
εp−2

6p−1mpπε
p(p−2)
2(p−1) + 3p−1(2m)pπsε

p−2
2 + ωmNε

p−2
2(p−1)

)

, ∀ε ≤ εδ.

Notice that for every ε > 0, s ∈
(

1/2, 1 − ε
p−2

2(p−1)

)

. Hence, taking the limit as ε → 0,

we get lim inf
ε→0

Hε(uε) ≥ γp, which concludes the proof. 2

5.3 Reduction to the flat case

We prove compactness and a lower bound inequality for the following energies

Fε(uε,D,E) = εp−2

∫

D
|Du|pdx+

1

ε
p−2
p−1

∫

D
W (u)dx+

1

ε

∫

E
V (Tu)dH2,

where D ⊂ R
3 is the open half-ball centered in 0 with radius r > 0 and E ⊂ R

2 is its

“diameter”; that is,

E :=
{

(x1, x2, x3) ∈ R
2 : |x| ≤ r, x3 = 0

}

.

We will reduce to Proposition 5.1 and Proposition 5.2 via a suitable slicing argument. In

the following we use the notation introduced in Section 1.3: e is an unit vector in the

plane P := {x3 = 0}; M is the orthogonal complement of e in P ; π is the projection of

R
3 onto M ; for every y ∈ Ee := π(E), we denote by Ey := π−1(y)∩E, Dy := π−1(y)∩D

(see Fig. 5.2).

Proposition 5.3. Let (uε) ⊂ W 1,p(D; [−m,m]) be a sequence with uniformly bounded

energies Fε(uε,D,E). Then the traces Tuε are pre-compact in L1(E) and every cluster
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D

E

E

Dy

y

y

x3

Ee

Ee

Ey

Ey

M

M

e

e

Figure 5.2: The sets D,E,Ee, E
y and Dy.
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point belongs to BV (E, {α′, β′}). Moreover, if Tuε → v in L1(E), then

lim inf
ε→0

Fε(uε,D,E) ≥ γp

∣

∣

∣

∣

∫

E∩Sv
νv

∣

∣

∣

∣

dH1. (5.17)

Proof. By Fubini’s Theorem, for every ε > 0, we get

Fε(uε,D,E) ≥ εp−2

∫

D
|Duε|pdx+

1

ε

∫

E
V (Tuε)dH2

≥
∫

Ee

[

εp−2

∫

Dy

|Duyε |pdx+
1

ε

∫

Ey

V (Tuyε)dH1

]

dy

(5.18)

=

∫

Ee

Hε(u
y
ε ,D

y, Ey)dy

We first prove that (Tuε) is pre-compact in L1(E). In view of Theorem 1.9, it suffices

to show that the family F := (Tuε) satisfies the following property: for every δ > 0

there exists a family Fδ δ-dense in F such that (Fδ)ye is pre-compact in L1(E) for H2-a.e.

y ∈ Ee. By assumption Fε(uε,D,E) ≤ C, by (5.18) we have

∫

Ee

Hε(u
y
ε ,D

y, Ey)dy ≤ C. (5.19)

Fix δ > 0 and, for every ε > 0, define vε : E → [−m,m] such that

vyε :=

{

Tuyε if y ∈ Ee and Hε(u
y
ε ,Dy, Ey) ≤ 2mrC/δ,

α′ otherwise.
(5.20)

By (5.19), we have vyε = Tuyε for every y ∈ Ee apart from a subset of measure smaller

than δ/2mr. Hence, vε = Tuε in E up to a set of measure smaller than δ/m. So, from

|Tuε| ≤ m, we deduce

‖vε − Tuε‖L1(E) ≤ δ.

Therefore, the family Fδ := (vε) is δ−dense in F .

By (5.20), Hε(v
y
ε ,D

y, Ey) ≤ 2mrC/δ for every y ∈ Ee and this implies that the

sequence (vyε ) is pre-compact in L1(Ey). By Theorem 1.9(i), the sequence (Tuε) is pre-

compact in L1(E); i.e., there exists a function v ∈ L1(E) such that

Tuε → v in L1(E).
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Let us show that v belongs to BV (E, {α′, β′}). We have that (up to a subsequence)

Tuyε → vy in L1(E) for a.e. y ∈ Ee.

Then, by Proposition 5.1, we have that vy ∈ BV (Ey, {α′, β′}). Hence, by slicing property

for BV functions, it follows that v ∈ BV (E, {α′, β′}) (see [32], Section 5.10, for details).

It remains to prove that inequality (5.17) holds. Taking the limit as ε → 0 in (5.18),

by Fatou’s Lemma, we deduce that

lim inf
ε→0

Fε(uε,D,E) ≥
∫

Ee

lim inf
ε→0

Hε(u
y
ε ,D

y, Ey)dy.

Then, using Proposition 5.2, we get

lim inf
ε→0

Fε(uε,D,E) ≥
∫

Ee

γpH0(Svy)dy. (5.21)

The right-hand side of (5.21) is finite and Svy agrees with Sv ∩ Ey for a.e. y ∈ Ee. By

(1.5)1 we may rewrite (5.21) as

lim inf
ε→0

Fε(uε,D,E) ≥ γp

∫

E∩Sv
〈νv, e〉dH1. (5.22)

Finally, (5.17) follows from (5.22) by choosing a suitable unit vector e. 2

5.4 Existence of an optimal profile problem

We conclude this chapter with the proof of the existence of a minimum for the optimal

profile problem (5.4). We will use a rearrangement result in one direction to show that

the minimum for γp is achieved by a function with non-decreasing trace.

Proposition 5.4. The minimum for γp defined by (5.4) is achieved by a function u such

that Tu is a non-decreasing function in R.

Proof. Note that, since the energy H1 is decreasing under truncation by α′ and β′, it is

not restrictive to minimize the problem (5.4) with the additional condition α′ ≤ u ≤ β′.

1See Proposition 1.7, p. 26.
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We denote by X the class of all w : R → [α′, β′] such that w ∈ L1
loc(R

2
+),

∫

R2
+

|Dw|pdx

is finite, lim
t→−∞

Tw(t) = α′, lim
t→+∞

Tw(t) = β′; we denote by X∗ the class of all w ∈ X such

that Tw is non-decreasing, Tw(t) ≥ α′ + β′

2
for t > 0 and Tw(t) ≤ α′ + β′

2
for t < 0.

Step 1: The infimum of H1 on X is equal to the infimum of H1 on X∗.

Since X∗ ⊂ X we have

inf
w∈X∗

H1(w,R
2
+,R) ≥ inf

w∈X
H1(w,R

2
+,R). (5.23)

Fix u in X, we claim that for every δ > 0 there exists a function uδ in X∗ such that

H1(uδ ,R
2
+,R) ≤ H1(u,R

2
+,R) + o(δ). (5.24)

Once we have (5.24), for every δ > 0, we get

inf
w∈X∗

H1(w,R
2
+,R) ≤ H1(u,R

2
+,R) + o(δ), ∀u ∈ X.

Taking the limit for δ → 0 and then the infimum on u ∈ X, we obtain

inf
w∈X∗

H1(w,R
2
+,R) ≤ inf

u∈X
H1(u,R

2
+,R)

and this together with (5.23) conclude the proof of the step. It remain to prove (5.24).

For every S > 0, we denote by

QS := [−S, S] × [0, S]

and by u⋆ the monotone increasing rearrangement in x1 of u in QS (see Section 1.4.2, p.

31).

For every R > 0, we define the harmonic extension of the function

α′χ(−∞,0)(t) + β′(1 − χ[0,+∞)(t))

from R \ER to R
2
+ \DR; i.e., the function ū that expressed in polar coordinates is given

by

ū(ρ, θ) :=
θ

π
α′ +

(

1 − θ

π

)

β′, ∀θ ∈ [0, π], ∀ρ ≥ R.

We will construct a function ũ ∈ X∗ gluing the function ū and the function u⋆. Hence,

for every S ≥ R > 0, we consider the cut-off function ϕ such that

ϕ = 0 in DR, ϕ = 1 in R
2
+ \DS and |Dϕ| ≤ 1/(S −R) in DS \DR.
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ū

ϕū+ (1 − ϕ)u⋆

u⋆

−S −R R S

QS

Figure 5.3: The competitor ũ.

The function ũ can be defined as

ũ :=











u⋆ in DR,

ϕū+ (1 − ϕ)u⋆ in DS \ DR,

ū in R
2
+ \DS .

Note that ũ belongs to W 1,p
loc (R2

+), lim
t→−∞

T ũ(t) = α′, lim
t→+∞

T ũ(t) = β′ and T ũ is non-

decreasing in R. Let us compute its energy.

∫

R2
+

|Dũ|pdx =

∫

DR

|Du⋆|pdx+

∫

DS\DR

|D(ϕū+ (1 − ϕ)u⋆)|pdx

(5.25)

+

∫

R2
+\DS

|Dū|pdx

We estimate the integral in the set DS \DR, using the fact that for every δ ∈ (0, 1) there

exists a(δ) → 0 as δ → 0, such that

(A+B + C)p ≤ (1 + δ)Ap + a(δ)Bp + a(δ)Cp,

for every non negative A,B,C.
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Hence, for every δ ∈ (0, 1), we have

∫

DS\DR

|D(ϕū+ (1 − ϕ)u⋆)|pdx ≤ (1 + δ)

∫

DS\DR

|Du⋆|pdx+ a(δ)

∫

DS\DR

|Dū|pdx

(5.26)

+a(δ)
|β′ − α′|pπ2(S2 −R2)

(S −R)p
,

where we used that |Dϕ| ≤ 1/(S−R) and ū, u⋆ ∈ [α′, β′]. By (5.25) and (5.26), we obtain

∫

R2
+

|Dũ|pdx ≤ (1 + δ)

∫

DS

|Du⋆|pdx+ a(δ)

∫

R2
+\DR

|Dū|pdx

(5.27)

+
a(δ)|β′ − α′|pπ2(S2 −R2)

(S −R)p
.

We can estimates the first term in the right hand side of (5.27) using the fact that

monotone increasing rearrangement in one direction decreases the Lp-norm of the gradient

(see Theorem 1.16, p. 31).

∫

DS

|Du⋆|pdx ≤
∫

QS

|Du⋆|pdx ≤
∫

QS

|Du|pdx. (5.28)

The second term in the right hand side of (5.27) can be explicitly computed

∫

R2
+\DR

|Dū|pdx =
πp−1|β′ − α′|p
(p− 2)Rp−2

. (5.29)

Finally, putting together (5.27), (5.28) and (5.29), we obtain that, for every S ≥ R > 0

and every δ ∈ (0, 1), the following estimate holds

∫

R2
+

|Dũ|pdx ≤ (1 + δ)

∫

R2
+

|Du|pdx+
a(δ)πp−1|β′ − α′|p

(p − 2)Rp−2

(5.30)

+
a(δ)|β′ − α′|pπ2(S2 −R2)

(S −R)p
,

with a(δ) → +∞ as δ → 0. In particular,

∫

R2
+

|Dũ|pdx is finite.
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Now, we evaluate the second term of H1(ũ,R
2
+,R).

∫

R

V (T ũ)dH1 =

∫

ES\ER

V
(

ϕū+ (1 − ϕ)Tu⋆
)

dH1

(5.31)

+

∫

ER

V (Tu⋆)dH1,

where we used that, by definition, ū(t) = α′ if t < −S and ū(t) = β′ if t > S.

Since Tu(t) tends to α′ and β′ as t → −∞ and +∞ respectively and V is convex

near the wells, there exists R0 > 0 such that Tu(t) lies in the convex wells of V for all

t ∈ R \ ER, for every R > R0, and the same does Tu⋆(t). This implies that for any

S > R > R0 we have

∫

ES\ER

V
(

ϕū+ (1 − ϕ)Tu⋆
)

dH1 ≤
∫

ES\ER

ϕV (ū)dH1 +

∫

ES\ER

(1 − ϕ)V (Tu⋆)dH1

≤
∫

ES\ER

V (Tu⋆)dH1. (5.32)

By (5.31) and (5.32), we have

∫

R

V (T ũ)dH1 ≤
∫

ES

V (Tu⋆)dH1 =

∫

ES

V (Tu)dH1

(5.33)

≤
∫

R

V (Tu)dH1.

Finally, by (5.30) and (5.33), we have the following estimate, for every S ≥ R > R0 > 0

and every δ ∈ (0, 1)

H1(ũ,R
2
+,R) ≤ (1 + δ)H1(u) +

a(δ)πp−1|β′ − α′|p
(p− 2)Rp−2

(5.34)

+
a(δ)|β′ − α′|pπ2(S2 −R2)

(S −R)p
.

This proves the claim, taking R and S −R large enough.

Step 2: The infimum of H1 on X∗ is achieved.

We use the Direct Method. Take a minimizing sequence (un) ⊂ X∗. In particular,
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H1(un,R
2
+,R) ≤ C, Dun converges weakly to Du in Lp(R2

+) and un converges to u weakly

in W 1,p
loc (R2

+). Since

∫

R2
+

|Dun|pdx is bounded, we can find a function u ∈ L1
loc(R

2
+) and

∫

R2
+

|Du|pdx is finite, such that (up to a subsequence)

Dun ⇀ Du in Lp(R2
+) and un ⇀ u in Lploc(R

2
+).

By the trace imbedding of W 1−1/p,p in W 1,p, we have

Tun ⇀ Tu in W
1−1/p,p
loc (R).

By the compact embedding of W
1−1/p,p
loc (R) in C0

loc(R) (see [1], Theorem 7.34, p. 231),

we have that, up to a subsequence, Tun uniformly converges to Tu. Thus Tu is non-

decreasing and satisfies

Tu(t) ≥ α′ + β′

2
for t > 0 and Tu(t) ≤ α′ + β′

2
for t < 0.

Let us show that lim
t→−∞

Tu(t) = α′ and lim
t→+∞

Tu(t) = β′. Since Tu is non-decreasing in

[α′, β′], there exist a ≤ α′ + β′

2
and b ≥ α′ + β′

2
such that

a := lim
t→−∞

Tu(t) and b := lim
t→+∞

Tu(t).

By contradiction, we assume that either a 6= α′ or b 6= β′. Then, since V is continuous

and strictly positive in (α′, β′), we obtain

∫

R

V (Tu)dH1 = +∞,

This is impossible, because, by Fatou’s Lemma, we have

∫

R

V (Tu)dH1 ≤ lim inf
n→+∞

∫

R

V (Tun)dH1 < lim inf
n→+∞

H1(un,R
2
+,R) < +∞.

Hence, u is in X∗. Since H1 is clearly lower semicontinuous on sequences such that

Dun ⇀ Du in Lp and Tun → Tu pointwise, this concludes the proof. 2
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Chapter 6

Proof of the main result

In this chapter, we will prove the main result of this thesis, namely the compactness, the

lower bound inequality and the upper bound inequality stated in Theorem 4.1.

For the sake of simplicity, we recall the definition of the functionals which we deal

with:

Fε(u) = εp−2

∫

Ω
|Du|pdx+

1

ε
p−2
p−1

∫

Ω
W (u)dx+

1

ε

∫

∂Ω
V (Tu)dH2, ∀u ∈W 1,p(Ω), (6.1)

and

Φ(u, v) = σpH2(Su) + cp

∫

∂Ω
|W(Tu) −W(v)|dH2 + γpH1(Sv),

∀(u, v) ∈ BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}). (6.2)

Theorem 6.1. Let Fε : W 1,p(Ω) → R and Φ : BV (Ω, {α, β}) × BV (∂Ω, {α′, β′}) → R

defined by (6.1) and (6.2).

Then

(i) [Compactness] If (uε) ⊂ W 1,p(Ω) is a sequence such that Fε(uε) is bounded,

then (uε, Tuε) is pre-compact in L1(Ω) × L1(∂Ω) and every cluster point belongs

to BV (Ω, {α, β}) ×BV (∂Ω, {α′, β′}).

(ii) [Lower Bound Inequality] For every (u, v) ∈ BV (Ω, {α, β})×BV (∂Ω, {α′, β′})
and every sequence (uε) ⊂ W 1,p(Ω) such that uε → u in L1(Ω) and Tuε → v in

L1(∂Ω),

lim inf
ε→0

Fε(uε) ≥ Φ(u, v).

87



CHAPTER 6. Proof of the main result

(iii) [Upper Bound Inequality] For every (u, v) ∈ BV (Ω, {α, β})×BV (∂Ω, {α′, β′})
there exists a sequence (uε) ⊂ W 1,p(Ω) such that uε → u in L1(Ω), Tuε → v in

L1(∂Ω) and

lim sup
ε→0

Fε(uε) ≤ Φ(u, v).

6.1 Compactness

Let a sequence (uε) ⊂ W 1,p(Ω) be given such that Fε(uε) is bounded. Since Fε(uε) ≥
Fε(uε,Ω, ∅) ≡ Gε(uε,Ω), by the statement (i) of Theorem 2.2, the sequence (uε) is pre-

compact in L1(Ω) and there exists u ∈ BV (Ω, {α, β}) such that uε → u in L1(Ω).

It remains to prove that (Tuε) is pre-compact in L1(∂Ω) and that its cluster points are

in BV (∂Ω, {α′, β′}). Thanks to Proposition 1.12 we can cover ∂Ω with finitely many balls

(Bi)i∈I centered on ∂Ω, of radius ri such that for every i ∈ I there exists a bi-Lipschitz

map Ψi, with isometry defect δ(Ψi) < 1, which satisfies Ψi(Dri ∩ Bi) = Ω ∩ Bi and

Ψi(Eri ∩ Bi) = ∂Ω ∩ Bri (see Section 1.3.2, p. 29). We show that (Tuε) is pre-compact

in L1(∂Ω ∩Bi) for every i ∈ I.

For every fixed i, let us set

uiε := uε ◦ Ψi.

Since the isometry defect of Ψi is smaller than 1, Proposition 1.11 implies

Fε(uε,Ω ∩Bi, ∂Ω ∩Bi) ≥ (1 − δ(Ψi))
p+3Fε(u

i
ε,Dri ∩Bi, Eri ∩Bi),

so Fε(u
i
ε,Dri ∩ Bi, Eri ∩ Bi) is bounded. Hence, the compactness of the traces Tuiε in

L1(Eri) follows from Proposition 5.3. Finally, using the invertibility of Ψi, we have that

(Tuε) is pre-compact in L1(∂Ω) and that its cluster points are in BV (∂Ω, {α′, β′}). 2

6.2 Lower bound inequality

The proof of the lower bound inequality of Theorem 6.1 follows the lines of the proof

of Theorem 2.6(ii) by Alberti, Bouchitté and Seppecher in [9], but for the estimate of

the boundary effect we will use the optimal profile problem (5.4) in connection with the

results proved in the previous chapter.
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Let a sequence (uε) ⊂ W 1,p(Ω) be given such that uε → u ∈ BV (Ω, {α, β}) in L1(Ω)

and Tuε → v ∈ BV (∂Ω, {α′β′}) in L1(∂Ω). We have to prove that

lim inf
ε→0

Fε(uε) ≥ Φ(u, v), (6.3)

where Φ is given by (6.2).

Clearly, we can assume that lim inf
ε→0

Fε(uε) < +∞.

For every ε > 0, let µε be the energy distribution associated to Fε with configuration

uε; i.e., µε is the positive measure given by

µε(B) := εp−2

∫

Ω∩B
|Duε|pdx+

1

ε
p−2
p−1

∫

Ω∩B
W (uε)dx+

1

ε

∫

∂Ω∩B
V (Tuε)dH2, (6.4)

for every B ⊂ R
3 Borel set.

Similarly, let us define

µ1(B) := σpH2(Su ∩B),

µ2(B) := cp

∫

∂Ω∩B
|W(Tu) −W(v)|dH2,

µ3(B) := γpH1(Sv ∩B).

The total variation ‖µε‖ of the measure µε is equal to Fε(uε), and ‖µ1‖ + ‖µ3‖ + ‖µ3‖ is

equal to Φ(u, v). ‖µε‖ is bounded and we can assume that µε converges in the sense of

measure to some finite measure µ in R
3. Then, by the lower semicontinuity of the total

variation, we have

lim inf
ε→0

Fε(uε) ≡ lim inf
ε→0

‖µε‖ ≥ ‖µ‖.

Since the measures µi are mutually singular, we obtain the lower bound inequality (6.3)

if we prove that

µ ≥ µi, for i = 1, 2, 3. (6.5)

We prove that µ ≥ µi by showing that µ(B) ≥ µi(B) for all sets B ⊂ R
3 such that

B ∩ Ω is a Lipschitz domain and µ(∂B) = 0. This class is large enough to imply the

inequality (6.5) for all Borel sets B.

We have

µ(B) = lim
ε→0

µε(B) ≥ lim inf
ε→0

Fε(uε,Ω ∩B, ∅) ≥ σpH2(Su ∩B) ≡ µ1(B),

where the last inequality follows from statement (ii) of Theorem 2.2.
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Similarly, we can prove that µ ≥ µ2. We have

µ(B) = lim
ε→0

µε(B) ≥ lim inf
ε→0

Fε(uε,Ω ∩B, ∅) ≥ cp

∫

∂Ω∩B
|W(Tu) −W(v)|dH2 ≡ µ2(B),

where we used Proposition 4.3(i) with A := B ∩ Ω and A′ := B ∩ ∂Ω.

The inequality µ ≥ µ3 requires a different argument. Notice that µ3 is the restriction

of H1 to the set Sv, multiplied by the factor γp. Thus, if we prove that

lim inf
r→0

µ(Br(x))

2r
≥ γp, H1-a.e. x ∈ Sv, (6.6)

we obtain the required inequality. In fact, the left-hand side of (6.6) represents the

“one-dimensional density of the measure µ at x”, and it agrees with the Radon-Nykodim

derivative of the measure µ with respect to H1 Sv for H1-a.e. x ∈ Sv.

Let us fix x ∈ Sv such that there exists lim
r→0

µ(Br(x))

2r
and Sv has one-dimensional

density equal to 1. We denote by νv the unit normal at x.

For r small enough, we choose a map Ψr such as in Proposition 1.12. Thus we have

Ψr(Dr) = Ω ∩Br(x), Ψr(Er) = ∂Ω ∩Br(x) and δ(Ψr) → 0 as r → 0.

Let us set

ūε := uε ◦ Ψr and v̄ := v ◦ Ψr.

Hence, T ūε → v̄ in L1(Er) and v̄ ∈ BV (Er, {α′, β′}). So, thanks to Proposition 1.11, we

obtain

µ(Br(x)) = lim
ε→0

µε(Br(x))

= lim
ε→0

Fε(uε,Ω ∩Br(x), ∂Ω ∩Br(x)) (6.7)

≥ lim inf
ε→0

(1 − δ(Ψr))
p+3Fε(ūε,Dr, Er).

Moreover, by Proposition 5.3, we have

lim inf
ε→0

Fε(ūε,Dr, Er) ≥ γp

∣

∣

∣

∣

∫

Sv̄∩Er

νvdH1

∣

∣

∣

∣

(6.8)

Finally, we notice that δ(Ψr) vanishes and

∣

∣

∣

∣

∫

Sv̄∩Er

νvdH1

∣

∣

∣

∣

= 2r + o(r) as r goes to 0. So

(6.7) and (6.8) give the following inequality

µ(Br(x))

2r
≥ γp

(

1 +
o(r)

2r

)

as r → 0,
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that implies µ ≥ µ3. This concludes the proof of the lower bound inequality. 2

6.3 Upper bound inequality

We will construct an optimal sequence uε according to Theorem 6.1(iii) in a suitable

partition of Ω. To this aim, and in order to use the preliminary convergence results stated

in the previous chapters, we need the following lemma

Lemma 6.2. Let A be a domain in R
3, A′ ⊂ ∂A, v : A′ → [−m,m] a Lipschitz function

(where m is given by (4.20)) and Gε defined by (4.4).

Then, for every ε > 0, there exists an extension u : A→ [−m,m] such that

Lip(u) ≤ ε−
p−2
p−1 + Lip(v)

and

Gε(u,A) ≤
(

(ε
p−2
p−1 Lip(v) + 1)p + Cm

)

(

H2(∂A) + o(1)
)

ω, as ε→ 0, (6.9)

where Cm := max
t∈[−m,m]

W (t), ω := ‖v − α‖∞ ∧ ‖v − β‖∞.

Proof. It is not restrictive to assume that A′ = ∂A; in fact, we can extend v to ∂A

without increasing its Lipschitz constant (defining v(x) := inf
x′∈A′

v(x′) + Lip(v)|x − y| for

every x in ∂A). We additionally suppose that ω = ‖v − α‖∞ (the case ω = ‖v − β‖∞
being similar).

Let us set

u(x) :=

{

v(x) on ∂A,

α on A \ Aωε(p−2)/(p−1) ,

where At is the set of all x in A such that 0 < dist(x, ∂A) < t.

Then, u is
(

ε
− p−2

p−1 + Lip(v)
)

-Lipschitz continuous on A \ Aωε(p−2)/(p−1) . Finally u can be

extended to A, without increasing its Lipschitz constant.

We have

Gε(u,A) = εp−2

∫

A
ωε(p−2)/(p−1)

|Du|pdx+
1

ε
p−1
p−2

∫

A
ωε(p−2)/(p−1)

W (u)dx

≤ |Aωε(p−2)/(p−1) |
(

εp−2(Lip(v) +
1

ε(p−1)/(p−2)
)p +

1

ε(p−1)/(p−2)
Cm

)

=
(

(H2(∂A) + o(1))(ε
p−1
p−2 Lip(v) + 1)p + Cm

)

ω, as ε→ 0,
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where we used that |At| = (H2(∂A) + o(1))t as t→ 0. 2

Proof of the upper bound inequality. We assume that u and v (up to modifications

on negligible sets) are constant in each connected component of Ω \ Su and ∂Ω \ Sv
respectively.

The idea is to construct a partition of Ω in four subsets, and to use the preliminary

convergence results of previous chapters to obtain the upper bound inequality.

u=α

u=β

v=α′

v=β′

A1 A2 B1B2 Su ∩ Γr Sv

Figure 6.1: Upper bound inequality - partition of Ω.

For every r > 0, we set

Γr := {x ∈ Ω : dist(x, ∂Ω) = r} .

Step 1: Partition of Ω. Fix r > 0 such that Γr and Γ2r are Lipschitz surfaces and Su∩Γr

is a Lipschitz curve.
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Now, we are ready to construct the following partition of Ω:

B1 := {x ∈ Ω : dist(x, Sv ∪ (Su ∩ Γr)) < 3r} ,
A1 :=

{

x ∈ Ω \B1 : dist(x, ∂Ω) < r
}

,

B2 :=
{

x ∈ Ω \B1 : r < dist(x, ∂Ω) < 2r
}

,

A2 :=
{

x ∈ Ω \B1 : dist(x, ∂Ω) > 2r
}

.

(See Fig. 6.1)

For every r > 0 and every ε < r
p−1
p−2 we construct a Lipschitz function uε,r in each

subset.

Step 2: Construction of uε,r in A2.

Modica-Mortola (p>2)

Theorem 2.2(iii)

Figure 6.2: Construction of uε,r in A2.

We take uε,r being the optimal sequence for the Modica-Mortola functional Gε in the

set A2 (see Theorem 2.2(iii), p. 36) and we extend it to ∂A2 by continuity. Hence,

uε,r is
CW

ε(p−2)/(p−1)
-Lipschitz in A2 (here CW is the maximum of W p/(p−1) in [α, β]), uε,r

converges to u pointwise on A2 and uniformly on ∂A2 ∩ ∂B2, and

Fε(uε,r, A2, ∅) ≡ Gε(uε,r, A2) ≤ σpH2(Su ∩A2) + o(1)

(6.10)

≤ σpH2(Su) + o(1) as ε→ 0.
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Step 3: Construction of uε,r in A1.

Modica (p>2)

Proposition 4.3(ii)

Figure 6.3: Construction of uε,r in A1.

The function u is constant (equal to α or β) on every connected component A of A1, and

the function v is constant (equal to α′ or β′) on ∂A∩ ∂Ω. So, we can use Proposition 4.3

to get a function uε,r such that Tuε,r = v on ∂A ∩ ∂Ω and uε,r converges to u pointwise

on A1 and uniformly on every subset with positive distance from ∂A ∩ ∂Ω.

By Proposition 4.3(ii), uε,r is
C ′
W

ε(p−2)/(p−1)
-Lipschitz continuous on A1 and we can

extend it to ∂A1 with continuity. Since the distance between two different connected

components of A1 is larger than r and
1

ε(p−2)/(p−1)
>

1

r
, choosing C ≥ 2m∨C ′

W it follows

that uε,r is
C

ε(p−2)/(p−1)
-Lipschitz continuous on A1 and agrees with v on ∂A1 ∩ ∂Ω.

Moreover, the function uε,r satisfies

Fε(uε,r, A1, ∂A1 ∩ ∂Ω) ≡ Gε(uε,r, A1) ≤ cp

∫

∂A1∩∂Ω
|W(Tu(x)) −W(v(x))|dH2

(6.11)

+o(1), as ε→ 0.
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Step 4: Construction of uε,r in B2.

Lipschitz extension

Lemma 6.2

Figure 6.4: Construction of uε,r in B2.

Note that in the previous steps we have constructed an optimal sequence in A1 ∪A2 that

is
C

ε(p−2)/(p−1)
-Lipschitz continuous; in particular it is defined and Lipschitz on ((∂A1 ∪

∂A2) ∩ ∂B), for every connected component B of B2. By virtue of Lemma 6.2 we can

extend uε,r to every B, obtaining a
C + 1

ε(p−2)/(p−1)
-Lipschitz function that satisfies

Fε(uε,r, B2, ∅) ≡ Gε(uε,r, B2) ≤
(

((C + 2)p + Cm)(H2(∂B2) + o(1))
)

ωε = o(1) as ε→ 0,

(6.12)

where we used that ωε := inf
(∂A1∪∂A2)∩∂B2

|uε,r−u| = o(1) as ε→ 0 (since uε,r is constant on

each connected components of B2).

Step 5: Construction of uε,r in B1.

We will use an optimal profile for the minimum problem (4.3). By Proposition 5.4, there

exists ψ ∈ L1
loc(R

2
+) such that

∫

R2
+

|Dψ|pdx < +∞, Tψ(t) → α′ as t → −∞, Tψ(t) → β′

as t → +∞ and H1(ψ,R
2
+,R) = γp. Now, we construct a function wε : R

2
+ → R via the

same method used to provide a good competitor uδ in the proof of Proposition 5.4(Step

1).

For every ε > 0, ρε, σε ∈ R, we take a cut-off function ξ ∈ C∞(R2
+) such that ξ ≡ 1
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Optimal profile γp

Isometry defect
(Proposition 1.11)

Figure 6.5: Construction of uε,r in B1.

on (R2
+) \Dρε and ξ ≡ 0 on Dσε such that |Dξ| ≤ 1

|ρε−σε|
. We denote by ū the function

expresses in polar coordinates θ ∈ [0, π], ρ ∈ [0,+∞), as follows:

ū(θ, ρ) :=
θ

π
α′ +

(

1 − θ

π

)

β′.

We define wε as

wε(x) :=































ψ(xε ) if x ∈ Dσε ,

ξ(x)ū(x) + (1 − ξ(x))ψ(xε ) if x ∈ Dρε \Dσε ,

ū(x) if x ∈ (R × [0,+∞)) \Dρε ,

Let us show that we can choose ρε and σε such that wε satisfies the following inequality

Hε(wε,Dρε , Eρε) ≤ γp + o(1), as ε→ 0. (6.13)
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We have

Hε(wε,Dρε , Eρε) = Hε(ψ
(ε),Dσε , Eσε) + εp−2

∫

Dρε\Dσε

|Dwε|pdx

+
1

ε

∫

Eρε\Eσε

V (Twε)dH1

(6.14)

=: Hε(ψ
(ε),Dσε , Eσε) + I1 + I2,

where ψ(ε)(x) := ψ(xε ) (see Section 5.3, p. 72).

The first integral in the right hand side of (6.14) can be easily estimated as follows

I1 ≤ 3p−1εp−2

∫

Dρε\Dσε

|Dψ(
x

ε
)|pdx+ 3p−1εp−2

∫

Dρε\Dσε

|Dξ|p|ψ(
x

ε
) − ū(x)|pdx

+3p−1εp−2

∫

Dρε\Dσε

|Dū|pdx

(6.15)

≤ 3p−1

∫

Dρε/ε\Dσε/ε

|Dψ|pdx+ 3p−1Cp
εp−2(ρ2

ε − σ2
ε)

(ρε − σε)p
+

3p−1|β′ − α′|p
(p − 2)πp−1

(

ε

σε

)p−2

.

While using the convexity of V near its wells and the asymptotic behavior of Tψ(xε ), for

ε small, we have

I2 ≤ 1

ε

∫

Dρε\Dσε

V (Tψ(
x

ε
))dH1. (6.16)

Thus, by (6.14), (6.15), (6.16) and suitably choosing of ρε and σε
1, we get

Hε(wε,Dρε , Eρε) ≤ Hε(ψ
(ε),Dρε , Eρε) + 3p−1

∫

Dρε/ε\Dσε/ε

|Dψ|pdx+ 3p−1Cp
εp−2(ρ2

ε − σ2
ε)

(ρε − σε)p

+
3p−1|β′ − α′|p
(p− 2)πp−1

(

ε

ρε

)p−2

(6.17)

≤ γp + o(1) as ε→ 0.

We now define a function w̄ε on Sv × R
2
+, by

w̄ε(x, y) := wε(x), for every x ∈ Sv and every y ∈ R
2
+. (6.18)

1For instance, we can choose ρε = ε1/3 + ε1/2 and σε = ε1/2.
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Using (6.17) and Fubini’s Theorem, we obtain2

Fε(w̄ε, Sv×Dρε , Sv×Eρε) = H1(Sv)

(

Hε(wε,Dρε , Eρε) +
1

ε(p−2)/(p−1)

∫

Dρε

W (wε)dx

)

≤ H1(Sv)
(

γp + o(1)
)

as ε→ 0. (6.19)

Since Sv is a boundary in ∂Ω, we can construct a diffeomorfism between the intersection

of a tubular neighborhood of Sv and Ω and the product of Sv with an half-disk.

For every x in Ω, let us define the oriented distance from Sv as

d′(x) :=











dist(x, Sv) if x ∈ {v = β′},

−dist(x, Sv) if x ∈ {v = α′}.

For every r > 0, we set

Sr := {x ∈ Ω : 0 < dist(x, Sv) < r} . (6.20)

For every x ∈ Ω, we define

Ψ(x) := (x′′, d′(x′),dist(x, ∂Ω)), (6.21)

where x′ is a projection of x on ∂Ω and x′′ is a projection of x′ on Sv. The function Ψ is

well-defined and is a diffeomorfism of class C2 on Ω ∩U for some neighborhood U of Sv;

and satisfies the following properties: Ψ(Ω ∩ U) = Sv × R
2
+; Ψ(∂Ω ∩ U) = Sv × R × {0};

Ψ(x) = x, for every x ∈ ∂Ω; DΨ(x) is an isometry.

We have that

lim
r→0

δr = 0,

where δr is the isometry defect of the restriction of Ψ to Sr (see Section 1.3.2).

We construct uε,r on Sρε/2 as

uε,r := w̄ε ◦ Ψ,

where w̄ε, Sr and Ψ are defined by (6.18), (6.20) and (6.21) respectively. For ε small,

the function Ψ maps Sρε/2 into Sv ×Dρε and ∂Sρε/2 ∩ ∂Ω into Sv × Eρε , so we can use

2Note that we can define the functional Fε by (6.1) also on functions u ∈ W 1,p(A), where A ⊂ R
N ,

with N ≥ 3.
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Proposition 1.11 and, by (6.19), we obtain

Fε(uε,r,Sρε/2, ∂Sρε/2 ∩ ∂Ω) ≤ (1 − δε)
−(p+3)Fε(w̄ε, Sv ×Dρε , Sv × Eρε)

(6.22)

≤ H1(Sv)
(

γp + o(1)
)

as ε→ 0,

where we also used that δε := δ(Ψ⌊Sρε) tends to 0 as ε→ 0.

Notice that for ε small enough, Ψ is 2-Lipschitz continuous. Using again Lemma 6.2,

we can extend uε,r by setting uε,r := v on the remaining part of ∂B1 ∩ ∂Ω; we have that

uε,r is equal to v on ∂Ω \ ∂Sρε/2. Thus, we can extend uε,r on the whole B1 \ Sρε/2 to a
2C + 1

ε(p−2)/(p−1)
-Lipschitz continuous function, which satisfies

Fε(uε,r, B1\Sρε/2, ∂(B1\Sρε/2) ∩ ∂Ω) = Gε(uε,r, B1 \ Sρε/2)

(6.23)

≤
(

(2C + 2)p+ Cm
)(

H2(∂B1) + o(1)
)

2m as ε→ 0,

where we used ‖uε,r − α‖∞ ∧ ‖uε,r − β‖∞ ≤ 2m.

Step 6: Upper bound inequality. We recall that for every r > 0 and every ε < r
p−2
p−1 we

have constructed a function uε,r defined on the whole Ω such that

lim sup
ε→0

‖uε,r − u‖L1(Ω) ≤ 2m(|B1| + |B2|) and lim sup
ε→0

‖Tuε,r − v‖L1(∂Ω) = 0.

Since |B1| and |B2| have order r2 and r respectively, we get that uε,r → u in L1(Ω), first

taking ε→ 0 and then r → 0.

Combining (6.10), (6.11), (6.12), (6.22) and (6.23), we obtain

lim sup
ε→0

Fε(uε,r) ≤ σpH2(Su) + cp

∫

∂Ω
|W(Tu(x)) −W(v(x))|dH2 + γpH1(Sv)

(6.24)

−σpH2(Su \A2) +
(

(2C + 2)p+ Cm
)(

H2(∂B1) + o(1)
)

2m.

Since H2(∂B1) has order r, taking r to 0 in (6.24), we deduce the upper bound

inequality (iii). Finally, applying a suitable diagonalization argument3 to the sequence

uε,r, we obtain the desired recovery sequence uε. This concludes the proof. 2

3See for instance Attouch [12], Corollary 1.18, p. 37.
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Sets, numbers, measures

a ∨ b (a ∧ b) the maximum (minimum) between a and b

Br(x) the open ball of centre x and radius r

C (if not otherwise stated) a strictly positive constant independent from the parameters

|E| the Lebesgue measure of the set E

Hk the k-dimensional Hausdorff measure

µ E the restriction of the measure µ to E

[t] the integer part of t ∈ R

Function spaces

O(3) the set of linear isometries on R
3

Ck(Ω) the space of k-times differentiable real valued functions on Ω

C0(R) the closure of continuous functions on R with compact support

M(R) (M+(R)) the space of signed (positive) Radon measure with finite mass

P(R) the set of probability measures on R.

Y(A) the family of all weakly-∗ measurable maps ν : A→ P(R)

Lp(Ω) the space of real valued p-summable functions on Ω

W 1,p(Ω) the space of Sobolev functions with p-summable derivatives on Ω

‖u‖Lp(Ω) or simply ‖u‖p the Lp norm of u

‖u‖W 1,p(Ω) the W 1,p norm of u

W k,p(ω) the fractional space of order {k, s} of functions on ω

‖v‖W k,p(ω) or simply ‖v‖k,p the W k,p norm of v

Xloc(Ω) {u : Ω → R : u ∈ X(A) for all open A ⊂⊂ Ω}, where X is a generic notation for

a function space
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Functions

χE the characteristic function of the set E
(

χE(x) = 1 if x ∈ E, χE(x) = 0 if x /∈ E
)

Su the set of essential discontinuity points of u (jump set)

νu(x) the normal to Su at x

un → u un converges strongly to u

un ⇀ u un converges weakly to u

un
∗
⇀ u un converges weakly-∗ to u
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tions, Vol. 68, Birkhäuser, Basel, 2006, pp. 111-126.

[41] J. W. Gibbs, The collected papers of J. Willard Gibbs, Yale University Press, Lon-

don, 1957.

[42] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Basel,
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