
Study of Kaon semileptonic decays on

the lattice using twisted-mass fermions

and stochastic techniques for

light-meson propagators

Author

Lorenzo Orifici

Dipartimento di Fisica “E. Amaldi”
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Introduction

Weak hadron decays are very interesting processes because measuring the decay

widths for such processes allow to extract some of the fundamental parameters of the

Standard Model of electroweak interaction [1]. In particular it is possible to extract the

modulus of the elements of the Cabibbo–Kobayashi–Maskawa (CKM ) flavour mixing

matrix [2; 3], which describe the flavour sector of the Standard Model.

The needed theoretical quantity, thanks to which one can obtain from the exper-

imental measure of a given decay the related CKM matrix elements, are standard

perturbative computing and the form factors which parametrize the hadron matrix

element relevant for the decay.

The strong interaction physics is described by means of the Quantum Chromody-

namics (QCD) [4; 5; 6]. It is known that QCD is a gauge theory characterized by the

presence of the asymptotic freedom: the interaction’s coupling goes to zero as the en-

ergy which describe the process become much greater than a characteristic scale of the

theory, known as ΛQCD (≃ 1 GeV ). Conversely, in the low energy limit (E . ΛQCD), it

is no more possible to treat the interaction by means of perturbative methods because

the coupling constant is O(1).

Lattice QCD (LQCD) [7] is a non-perturbative formulation of QCD based on first

principles. In particular, it provides a peculiar regularization scheme in which the

ultraviolet cut–off for momenta is given by the inverse of the lattice spacing; however,

the specific importance of the lattice approach to QCD lies in the fact that it provides

a systematic methodology via Monte Carlo simulations for carrying out quantitative

calculations in the energy range in which it is not possible to perform perturbative

estimates of the physical observables. This energy range overlaps with the energy scale

characteristic of the weak hadron decays.
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Introduction

The processes which we are interested in are the ones in which a single hadron

is present in both the initial and/or final state. These processes include leptonic de-

cays, semileptonic decays and neutral meson oscillations. The study of processes with

more than one hadron in the final state (for instance K → ππ decays) present greater

difficulties within LQCD standards methods.

LQCD calculation exploit the deep analogy between the lattice formulation of quan-

tum field theories (in euclidean space–time) and the statistical mechanic description of

a physical system. In particular it is possible to use Monte Carlo simulation techniques.

We would like to underline that LQCD allows a continuous improvement of the

precision for the obtained results. The systematic error sources can, in fact, be kept

under control using increased computational power, refined algorithms and improved

techniques. Statistical errors can be reduced using bigger samples; discretization ef-

fects get less relevant reducing the lattice spacing; finite volume effects can be avoided

increasing the lattice volume in which the quark and gluon’s dynamics is simulated.

The present computational power strongly constraints the possible quark masses

which can be simulated in LQCD, and in particular we are obliged to use light quark

masses which are heavier than physical ones; thus, in order to obtain physical predic-

tions for the quantities of interest we have to fit the dependence of our observables with

respect to the quark masses. Chiral Perturbation theory can express meson masses as a

function of the (bare) quark masses and so in our simulations we have chosen to study

the quantities of interest as a function of meson masses (in particular the Kaon and

pion mass). The light physical meson extrapolations, called chiral extrapolations, are

another source of systematic error which must be kept under control.

For heavy mesons, another limitation is present: on a lattice with spacing a it is

possible to simulate only states with mass lighter than the theory cut-off, which is given

by the inverse lattice spacing (π/a). If we want to predict something about hadrons

heavier than the ones which can be simulated on the lattice we will have to employ

extrapolation again, this time in the heavy hadron mass.

The target is to be able to simulate energy regions in which it is possible to apply

effective descriptions of QCD and perform the extrapolations using their predictions.

Chiral perturbation theory (ChPT) describe the limit of vanishing light u and d (and s if

one is considering SU(3) ChPT) quark masses. Heavy quark effective theories (HQET,

NRQCD) can instead describe the B and D meson physics. A combination of the two
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Introduction

theories (known as Heavy Mesons χPT) allow one to describe the decays of heavy to

light hadrons; the subject of this work are the semileptonic kaon decays K → πlνl and

so we will limit our attention to SU(2) and SU(3) ChPT for extrapolating our form

factors to the physical point.

In the lattice simulations performed in this work we have adopted the twisted-

mass formulation of LQCD [8] and we have used the gauge configurations produced

by the ETM collaboration [9] using the so-called tree-level Symanzik improved gauge

action. The light mesons, built with two u– and d–like quarks (mass degenerate in the

simulations), are heavier than the physical pion (the lightest pion used in the simulation

has Mπ ∼ 260 MeV ) and so the chiral extrapolation to the physical point will play a

fundamental role. On the other hand, the strange quark have masses such as the lattice

K mesons are near the physical kaon and so we will only need to smoothly interpolate

our results for reaching the physical kaon mass.

There is also another source of systematic error which has affected past years simu-

lations. Because of the high computation cost of a realistic QCD simulation, usually the

so–called quenched approximation was used which consist of neglecting the sea quark

loops contribution in the generation process of gauge field configurations. This approx-

imation, even if it has allowed to obtain results which were usually in good agreement

with the experimental measures, introduce a systematic error which can be quantified

only by a direct comparison with unquenched simulations.

Recently, the available computational power has reached a level which allow to

perform unquenched QCD simulations with two, three or four flavors of dynamical

quarks, in which the Dirac sea is composed by two degenerate u and d quarks (Nf = 2)

with heavier s (Nf = 2 + 1) and c (Nf = 2 + 1 + 1) quarks.

In this thesis we have performed a lattice QCD study of semileptonic kaon decays,

using the gauge configurations produced by the ETM collaboration with two dynamical

light u and d quarks. We have adopted the twisted-mass formulation for the fermionic

action and we have considered three different lattice spacings a = 0.10 fm (a−1 =

1.94 GeV ), a = 0.079 fm (a−1 = 2.30 GeV ) and a = 0.063 fm, (a−1 = 2.91 GeV ) and

two different volumes (V × T = 243 × 48 a4 and V × T = 323 × 64 a4).

In this work we provide an estimate of the form factors related to the K → πlνl

decays, for different values of the momentum transfer, using the double ratio method.

We also present the calculation of the ratio of the kaon to pion decay constants, fK/fπ,
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as well as an explicit estimate of the CKM matrix element Vus using both Kl3 and Kl2

experimental decay rate. The comparison of our results with the RBC/UKQCD result

obtained using Nf = 2 + 1 flavour of dynamical quarks shows an excellent agreement

between the two theoretical calculation. We have compared also our form factor’s q2

shape with the experimental one, finding an excellent agreement as well.

In the study of the semileptonic form factors an important technical ingredient is

the use of the stochastic technique for the estimate of the so–called fermionic all–to–all

propagator, which will be described in detail in chapter 3. Such a technique turns out

to be important for increasing significantly the signal-to-noise ratio in the correlation

functions calculated in this work. At the same time it opens also the possibility to

attack a different problem, namely the evaluation of a class of Feynman diagrams char-

acterized by the presence of disconnected fermionic loops. These diagrams appear in

the calculation of many important observables, like the neutron electric dipole moment

(EDM), which are of utmost importance for the phenomenology of the Standard Model

and its possible extensions.

The second part of this thesis deals with an exploratory study of the application

of the stochastic approach to the calculation of the disconnected trace of the fermionic

propagator, known as the fermionic bubble.

A preliminary study of stochastic techniques for discon-

nected diagrams

Within the standard model and its possible extensions, CP symmetry can be vio-

lated both in the electroweak and strong sector. In the electroweak sector by means of

the complex phase present in the CKM matrix while in the strong sector because of the

presence of the so–called θ–term [10]. This term involve the QCD field strength tensor

and can induce an electric dipole moment (EDM) for the neutron. The existence of

such a phenomena imply a T–violating effect which, assuming the validity of the CPT

theorem, means a CP violating effect in the strong sector. It is known [11] that the

calculation of the relevant matrix element of the neutron electric dipole moment, on the

lattice, is a difficult task because it involves the topological charge operator and so the

authors of [12] have proposed an alternative method which is based on the substitution
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of the topological charge with the disconnected insertion of the flavour singlet pseu-

doscalar density. Using this method the problem of estimating the topological charge

is traded with that of estimating the disconnected insertion of a fermion loop which

involves the so–called all-to-all propagator.

Calculating the fermionic propagator for each degree of freedom and from every

space–time point to any other space–time point of the lattice is an enormous task,

well beyond the present available computational power. To solve this problem the key

observation is that what is really involved in the physical amplitudes is the correlation

of the hadronic propagators with a quark-antiquark loop or the correlation between

quark-antiquark loop. So the interesting object is the trace of the fermionic propagator

over all its degree of freedom. This means that one can profit of stochastic techniques

which, focusing their attention to the trace of the fermionic propagator instead of the

propagator itself, try to evaluate it with approximate methodologies. We have used as

lattice testing observables for these stochastic techniques the 2–point functions of the

η′ and of the π0, which involve such a trace.

The present techniques available for calculating the fermionic bubble are two: the

dilution method of [13] and the direct method of [14]. After a detailed study of these

techniques, we have worked out an hybrid method, which combine what we think are

the best virtues of the two methods and which we have called spin–direct method. We

will also show a third method [15], the twisted method, which can be employed only

using twisted mass fermions and which is less general with respect to the one of [13]

and [14] (and to our hybrid method too), but is particularly fast and effective in the

case of η′ correlation.

In the η′ case, the authors of [16] have succeeded to extract a signal, using the twisted

method, and were able to calculate the η′ mass; although they employed some, so–called,

variance reduction methods, these techniques are specific of the zero momentum two–

points function characteristic of the η′ case. It is clear that such a trick can only be

used when doing spectroscopy while, on the other hand, we want to apply our methods

to the neutron EDM calculation and so we can not profit of their variance reduction

tricks and we will need to investigate further on a method well suited for the topology

calculation characteristic of the EDM.
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Analysis and physical results

All our calculations will be carried out at the ApeNext supercomputing center of

INFN in Rome using a computational power of few TeraFlop.

Using the correlation functions calculated by the ETM collaboration, we have ex-

tract the semileptonic kaon decays form factors at different values of the quark masses

simulated on the lattice. We have used the method of the so–called double ratios out-

lined in [17; 18; 19] which allows one to gain a high statistical precision in the form

factors calculation.

For the K → πlνl we have used two different strategies for the extrapolation/interpolation

at the physical point: we have exploited quadratic splines to interpolate in the kaon

mass, while following the works [19; 20] we have used the SU(2) limit of the SU(3)

Gasser and Leutwyler ChPT formulae [21; 22] for reaching the physical point in the

pion mass.

Our strategy will be to perform a multi–combined fit of the q2–shape, Mπ and a

dependence of the form factors, using also the constraint given by the Callan-Treiman

theorem to further reduce the number of the low–energy constants. In this way we are

able give an estimate for the following physical quantities

f+(0) = 0.9610(30)(28),
fK

fπ
= 1.189(8), V Kl3

us = 0.2250(14), V Kl2
us = 0.2258(16),

where the first error is statistical while the second, where available, is systematic.

Our results are in very good agreement with the non-lattice ones obtained from the

FLAVIANET collaboration [23] and from the lattice ones by Nf = 2+1 simulations of

the RBC/UKQCD collaboration; also the compatibility of our form factor’s q2 shape

with the one obtained by a dispersive fit, based on the form factor parametrization of

[24], to the experimental data from KLOE, KTeV, NA48 (without muons branching

ratios) and ISTRA+ performed by the authors of [23] is good as well.

As far as the use of the stochastic technique to evaluate the disconnected fermionic

diagrams is concerned, our main conclusion is that the spin direct method is the most

general and promising one. However, since a quite large number of stochastic sources

is needed to get a statistically significant signal in the case of the fermionic bubbles,

the application of such a method to the more interesting cases related to the neutron
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EDM, or to other quantities of phenomenological interest, is possible only on super

computers at the PetaFlop scale which will be available in the next future.

Thesis Plan

The first chapter will start introducing some basic notions about flavour physics.

We will recall the basis of the Standard Model paying a particular attention to the

CKM flavour mixing matrix. We will illustrate some of its related theoretical features

and the (phenomenological) determination of its matrix elements. We will then move

to leptonic and semileptonic kaon decays, introducing the semileptonic form factors,

which are the subject of the present work, ending the chapter introducing weak and

strong CP violation, with the latter which is responsible of the neutron electric dipole

dipole moment generation.

The second chapter will be dedicated to the introduction of the calculation technique

employed in this work: lattice QCD. After a general introduction we will present the

Twisted Mass action used by the ETMC and we will also discuss a particular choice for

the boundary conditions used in our lattice simulations, the so–called twisted boundary

condition.

Chapter three will explain in details the methods which we will employ in our anal-

ysis of the form factors as well as the stochastic techniques which are good candidates

to be used in a future calculation of the neutron EDM.

In chapter four we will present the results of this work. We will start introduc-

ing some basic information about the ETMC simulation which we have analyzed and

then we will discuss statistical and systematic error analysis, present our form factor’s

analysis strategy and give our final physical results followed by a final discussion of the

present status of our stochastic techniques.
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1

Flavour Physics

1.1 The Standard Model

The standard model of electroweak and strong interaction is a Gauge theory invari-

ant under the symmetry group SU(3)C ⊗ SU(2)L ⊗ U(1)Y ; more specifically, it is a

quantum field theory (QFT) with the additional request of invariance under a contin-

uous and local1 transformation group.

SU(3)C is the group associated to the so-called color symmetry, on which is based

the present description of the theory of the strong interaction, the quantum chromo-

dynamics (QCD). Modern quantum field theories are described as carried by a medi-

ator, mathematically represented as a gauge field, which is responsible for the force

propagation and interaction and which is called gluon for QCD and represented as

Ga, (a = 1, . . . , 8). We will describe QCD and his mathematical formalization in de-

tails in chapter 2. The group SU(2)L ⊗ U(1)Y is the correct one for describing the

electromagnetic and weak coupling interactions involving gauge (W±, Z0, γ) and mat-

ter fields [1]. The electroweak theory is an example of what is called a ”chiral” theory,

i.e. a theory in which the left-handed and right-handed components of the fermionic

field undergoes different transformation properties; this is what is meant by the letter

L which suggests that the interactions described by SU(2)L gauge group involve only

the left-handed components.

Let us point out that, instead, Y labels the weak hypercharge group U(1)Y while with

U(1)Q we will indicate the quantum electrodynamics (QED) gauge group, whose gener-

1A transformation whose parameter is a function of the space-time coordinate is called a local one.
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ator, the electric charge Q, is related to Y and to the third component of weak isospin

by Q = T3 + Y/2. It is clear that being Y a function of the SU(2)L generator, also the

hypercharge group will exibit a chiral character.

Let us now go to discuss some aspects of the model which are particularly relevant for

what we will say in the rest of the work.

The gauge invariance request for the interaction is of crucial relevance in building

the Standard Model because it provides precise relations between the couplings of the

theory and these relations are experimentally confirmed with a high degree of precision;

once said that, it is important to remember that for a model with unbroken gauge sym-

metry the vector bosons must be massless: an explicit mass term would not be gauge

invariant. However the masses of the electroweak gauge bosons W± and Z0 have been

experimentally determined to be different from zero (while photons remain massless1).

The solution to this picture was found in the spontaneous symmetry breaking mecha-

nism. With the word spontaneous one mean that a theory, symmetric under a certain

group of transformations and with a degenerate vacuum state (think about a potential

with a certain number of minima), turns out to be realized selecting a particular vac-

uum state among the several possible ones, breaking in that way the formal invariance

of the theory. In this framework one has a picture in which the symmetry group is

respected by the interaction terms but it is not shared by the vacuum state.

At a somehow practical level, the spontaneous breaking of the electroweak symmetry

group is obtained adding an appropriate scalar fields multiplet of SU(2)L ⊗ U(1)Y ,

with vacuum expectation value (VEV) different from zero, and which makes possible

the achievement of the following breaking path

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)Q . (1.1)

What is important to underline is that building a gauge invariant QFT including

spontaneous symmetry breaking permits to generate mass terms, proportional to the

scalar multiplet vacuum expectation value, for those gauge bosons associated to the

broken symmetries (the so called Higgs mechanism [25; 26; 27; 28]). In other words,

the spontaneous breaking of the symmetries associated to the W±, Z0 (i.e. SU(2)L

1This, in turn, imply that because of the weak interaction has a massive mediator, its range is finite

in contrast with the electromagnetic interaction which has an infinite range.
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1.1 The Standard Model

and U(1)Y ) allows one to keep all the gauge couplings relations but also to generate a

mass term for the electroweak gauge bosons, while leaving SU(3)C ⊗ U(1)Q unbroken

guaranties that the gluon and the photon remain massless.

What has been described up to here can be formalized and summarized writing

down the Standard Model lagrangian

LSM = LSU(3)C
+ LSU(2)L⊗U(1)Y

+ LHiggs , (1.2)

composed of three gauge invariant terms, the first two of them being

LSU(N) = −1

4
F a

µνF
aµν + iψ̄γµDµψ . (1.3)

It is a Yang-Mills lagrangian [29] plus a fermionic matter field term. In (1.3) we have

indicated with F a
µν the field strength tensor associated with the Aa

µ gauge field

F a
µν

.
= ∂µAa

ν − ∂νA
a
µ − gfabcAb

µAc
ν , (1.4)

with ψ a fermionic field which transforms as in the fundamental gauge group represen-

tation and with Dµ the covariant derivative, defined as

Dµ
.
= (∂µ + igAa

µT a) , (1.5)

which, in turn, is composed of a kinetic term for the fermionic field and an interaction

term between fermionic and gauge fields.

In the electroweak sector of the theory, the already mentioned fermionic fields are

organized in a particular way: left-handed components (in the interaction eigenstates

basis) are grouped in SU(2)L doublets

E1
L =

(
νe

e−

)

L

, E2
L =

(
νµ

µ−

)

L

, E3
L =

(
ντ

τ−

)

L

;

Q1
L =

(
u
d′

)

L

, Q2
L =

(
c
s′

)

L

, Q3
L =

(
t
b′

)

L

;

(1.6)
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while the right-handed components of quark fields and of the three massive leptons

(neutrinos are assumed to be massless in the framework of the Standard Model) are

SU(2)L singlets. The choice for the fermionic fields to transform according to this

peculiar representation is motivated by the experimental observation that only the

left-handed components of the fermion fields have a role in a weak interaction.

The “chirality feature” of the electroweak interaction forbid the presence of mass

terms in the lagrangian not only for gauge bosons, but also for fermions, as can be

easily seen from the behavior of a fermionic mass term under a generic gauge group

transformation:

Lm = m
(
f̄LfR + f̄RfL

)
→ L

′
m = m

(
f̄LU †

LURfR + f̄RU †
RULfL

)
6= Lm , (1.7)

with UL 6= UR. However, it has been shown that, in a gauge invariant QFT, it is

possible to obtain mass terms for fermions, once again, using the VEV of the Higgs

scalar doublet.

The electroweak interaction lagrangian between matter and gauge fields emerge con-

sidering non-kinetic terms in the covariant derivatives, which can be of two kinds:

L
EW
int = LCC + LNC , (1.8)

charged currents couplings to W± bosons and neutral currents one to γ and Z0 bosons.

In particular one finds that charged currents interactions are described by

LCC =
g

2
√

2

(
J†

µWµ + W †
µJµ

)
, (1.9)

with

J†
µ =

∑

i=1,3

ūi
Lγµdi

L + l̄iLγµνi
L , (1.10)

where we have indicated with i the family index for both lepton and quark fields.

In view of the fact that we are going to deal with semileptonic meson decays, for which

|∆Q| = 1, we are interested in the very (1.9) term of the Standard Model lagrangian.
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1.1 The Standard Model

We remember, for the sake of completeness, that for neutral currents interactions one

has

LNC = −eJµ
emAµ +

g

2 cos θW
Jµ

ZZµ , (1.11)

where

Jµ
em =

∑
f Qf f̄γµf,

Jµ
Z =

∑
f f̄γµ (vf − afγ5) f,

(1.12)

with

vf = T f
3 − 2Qfsin2θW , af = T f

3 . (1.13)

In these expressions Qf and T f
3 represents, respectively, the electric charge and the third

components of weak isospin (different from zero only for left-handed fermions); we have

also indicated with g and e the SU(2)L and U(1)Q coupling constants, respectively,

and with θW the weak1 mixing angle between the unphysical SU(2)L ⊗ U(1)Y gauge

bosons W 3 and B and the physical ones Z0 and γ. In table 1.1 we have collected all

the electroweak quantum numbers for the different fermions.

νl

L
l−
L

l−
R

uL dL uR dR

Q 0 -1 -1 2/3 -1/3 2/3 -1/3

T3 1/2 -1/2 0 1/2 -1/2 0 0

Y -1 -1 -2 1/3 1/3 4/3 -2/3

Table 1.1: Electroweak quantum numbers - for leptons and quarks. We have in-

dicated with Q the electric charge, T3 the third component of weak isospin and with

Q = T3 + Y/2 the weak hypercharge.

Finally, we can describe the so called Higgs sector of the Standard Model lagrangian

LHiggs = |Dφ|2 − V (φ, φ†) + LY (1.14)

1The angle θW is sometimes wrongly called “Weinberg angle” because of the common initial letter.
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1. FLAVOUR PHYSICS

whose expression is determined only by the request of being the most general gauge

invariant renormalizable lagrangian for a complex scalar field, φ, which is an SU(2)L

doublet:

φ =

(
φ+

φ0

)
. (1.15)

The potential V (φ, φ†) is invariant under a SU(2)L⊗U(1)Y transformation and, because

of the renormalizabily constraint, it contains up to quartic terms in φ:

V (φ, φ†) = −µ2φ†φ +
1

2
λ(φ†φ)2 , (1.16)

with λ > 0. In this framework, spontaneous symmetry breaking happens if the potential

minimum, which represents the classical version of the quantum vacuum state, occurs

for values of the φ field which are different from zero; from the shape of the potential

V (φ, φ†) it is easy to see that this will happen if µ2 > 0. Assuming that this is the

case, let us choose as the VEV φ value

〈0|φ(x) |0〉 =

(
0
v

)
6= 0 . (1.17)

The field component with VEV different from zero is the neutral one and this imply

that the vacuum has trivial transformation properties under U(1)Q and that this group

will still be a symmetry of theory after the spontaneous breaking. It is possible to make

more explicit the particle spectrum of the theory, taking advantage of the arbitrariness

of the gauge choice. In particular one can parametrize the Higgs doublet as a VEV

part plus a part which measure how much the field is different from v :

φ(x) = U(x)
1√
2

(
0

v + h(x)

)
, (1.18)

where h(x) is a real field whose VEV is zero and U(x) ∈ (SU(2) ⊗ U(1)Y ); U(x) can

be simplified making the inverse gauge transformation U(x)−1 which brings us in the

so called unitary gauge. In this gauge the field φ becomes
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1.1 The Standard Model

φ(x) =
1√
2

(
0

v + h(x)

)
, (1.19)

and the particle content (and spectrum) of the theory is already manifest at a lagrangian

level: the goldstone boson degrees of freedom appear only as the longitudinal gauge

boson degrees of freedom and we are left only with physical particles1.

Let’s now describe the Standard Model lagrangian term which is responsible for the

fermionic masses: LY ; assuming there are no right handed neutrinos, this term is the

most general one describing the coupling of the Higgs doublet with fermionic fields,

again constrained only by gauge invariance and renormalizability requests:

LY = −λij
l Ēi

Lφej
R − λij

d Q̄i
Lφdj

R − λij
u Q̄i

Lφ̄uj
R + h.c. , (1.20)

where the field φ̄ is defined as φ̄α = ǫαβφ∗
β , with ǫ the SU(2)L antisymmetric tensor

and α, β the relative (isospin) indices. The complex-valued matrices λl, λu and λd are

not necessarily hermitian nor symmetric and i,j = 1, 2, 3 are generation indices; unless

one don’t ask for a flavour conserving symmetry, interactions with Higgs field will be

flavour changing.

It is always possible to diagonalize λl by means of a redefinition of the leptonic fields: a

generic, complex valued matrix can always be rewritten in terms of a diagonal matrix

Dl = diag(λ̃e, λ̃µλ̃τ ) with positive eigenvalues and two unitary matrices

λl = UlDlW
†
l (1.21)

in order that, rescaling the fields

Ei
L → U ij

l Ej
L , ei

R → W ij
l ej

R , (1.22)

the leptonic part of the Yukawa term becomes

1We want to stress the fact that, although the unitary gauge is a good choice to analyze the particle

content and mass spectrum of the theory, it is less well suited for studying quantum corrections to the

classical theory and, to this end, different gauges should be chosen.
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− λ̃eĒ
e
LφeR − λ̃µĒµ

LφµR − λ̃τ Ē
τ
LφτR . (1.23)

Both the weak isospin doublet components undergoes the same Ul transformation and

this imply that the matrices Ul and Wl cancels everywhere in the theory1 and the

phenomenological consequence of this cancellation is that one has exact conservation

of the leptonic number for each generation and no CP violation, as has been precisely

tested in the experiments [30]. Inserting the expression (1.19) for the φ field in the

unitary gauge one has, for a generic lepton li

L
(l)
Y = −mi

l l̄
ili

(
1 +

h

v

)
, mi

l
.
=

1√
2
Dii

l v . (1.24)

The spontaneous breaking of gauge symmetry generates an interaction term with the

Higgs field h(x) as well as a mass term for leptons.

Next section will be dedicated to the analogous mechanism for the quark sector.

1.2 Cabibbo-Kobayashi-Maskawa matrix

In this section we will broaden the Standard Model flavour sector overview, describ-

ing the flavour mixing matrix, also known as Cabibbo-Kobayashi-Maskawa matrix.

What we are going to show is that weak interactions, in the quark sector, are not

flavour diagonal in the mass eigenstates basis and the mixing matrix contains all the

information we need to know about the relative weights for quark decays in their weak

isospin partner of each generation.

1.2.1 Definition & parametrization

Let us analyze the Yukawa coupling between the Higgs doublet and the quark fields.

First of all it is important to underline that the effect of the CP discrete symmetry is

equivalent to the substitution

λij
d → (λij

d )∗ , λij
u → (λij

u )∗ , (1.25)

1This is a so-called accidental cancellation due to massless neutrinos.
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1.2 Cabibbo-Kobayashi-Maskawa matrix

and so CP is a symmetry only if the matrices λij are real.

Following what has been done in the previous section for the leptonic sector we are

going to perform chiral transformations of the kind

λu = UuDuW †
u and λd = UdDdW

†
d , (1.26)

where the matrices D are diagonal with positive eigenvalues, while U and W are unitary

matrices; rescaling right-handed fields with

ui
R → W ij

u uj
R and di

R → W ij
d dj

R , (1.27)

one is able to simplify the W matrices present in the Yukawa coupling lagrangian.

The same can be done in covariant derivatives leaving unchanged right-handed quarks

kinetic terms. Similarly, on left-handed quark we can make the transformation

ui
L → U ij

u uj
L , di

L → U ij
d dj

L , (1.28)

and we are able to simplify the U matrices from the Yukawa coupling lagrangian which

become

L
(q)
Y = −mi

dd̄
i
Ldi

R

(
1 +

h

v

)
− mi

uūi
Lui

R

(
1 +

h

v

)
, (1.29)

where

mu,d
.
=

1√
2
Dii

u,dv . (1.30)

What is now different is that we are analyzing left-handed field, and left-handed fields

participate in the SU(2)L interaction, which is the flavour mixing one, and it makes

necessary studying how does it changes, if it does, the rest of the lagrangian under the

transformations (1.28).

First of all, U matrices cancel out in kinetic terms and in the interaction ones with

gluonic fields because they are both flavour diagonal; the interaction terms with the

9



1. FLAVOUR PHYSICS

electromagnetic (Aµ) and the neutral weak mediator (Z0) fields remain unchanged too,

considered that they don’t mix up fields with down fields. On the contrary, charged

currents transforms as

Jµ† =
1√
2
ūi

Lγµdi
L → 1√

2
ūi

LγµV ij
CKMdj

L , (1.31)

expression in which we have defined the Cabibbo-Kobayashi-Maskawa (CKM) [2; 3]

flavour mixing matrix as

VCKM
.
= U †

uUd (1.32)

and it connects the interaction eigenstates (d′, s′, b′) with the mass eigenstates (d, s, b):




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d
s
b


 . (1.33)

From this point of view it is clear that mass eigenstate are different from the interaction

ones and that charged current interaction mix different flavours with weight Vij in the

mass eigenstates basis. It is worthwhile to underline that within the Standard Model

the only flavour changing mechanism is represented by this matrix and that VCKM

unitarity guarantees that there are no flavour changing neutral currents (FCNC) to

first order of perturbation theory; moreover the suppression of FCNC at higher orders,

the so called GIM mechanism [31], is a consequence of VCKM and well represents what

has been experimentally observed in nature.

The CKM matrix, in the case of three quark generations, is a 3×3 unitary complex

matrix which depends on nine real numbers1. Exploiting the quark fields phase redefi-

nition freedom, it can be easily shown that VCKM depends only on 4 real parameters,

three angles and one phase, which, together with fermion masses, constitute the free

parameters relative to the flavour sector of the Standard Model.

Once the number of the independent physical parameters of the matrix is known,

one can introduce a set of different parametrization for that matrix depending on what

1A 3×3 unitary complex matrix has 9×2 = 18 real parameters with 9 unitarity constraint relations.
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one has to study. The most natural choice is the one presented in [32] which writes the

matrix as a product of three different rotations

VCKM =




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1


 , (1.34)

which leads to

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12c23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c13c23


 , (1.35)

where sij = sin θij , cij = cos θij (and θ12 is the Cabibbo angle) and δ is the phase. The

angles θij can be chosen in the first quadrant in order that sij and cij ≥ 0. What is

important to underline is that if δ = 0 the matrix VCKM becomes real and one has

no CP violation in the quark sector too. Another interesting feature of the matrix is

that the δ phase is present in the Standard Model because the quark are organized in

three generations. In the old Cabibbo version of the theory, which involved only two

generations (u, d) and (c, s), the mixing matrix was a real rotation (in flavour space)

and there was no room for CP violation. Moreover in order for CP violation to happen,

it is necessary for up - like (as well as down - like) quark masses to be different because

if it is not the case, by means of suitable unitary transformation, one could redefine

quark fields in order to simplify the CP violating phase. It can be shown that the

necessary condition for having CP violation is

(m2
t − m2

c)(m
2
t − m2

u)(m2
u − m2

c)(m
2
b − m2

s)(m
2
b − m2

d)(m
2
d − m2

s) × JCP 6= 0 (1.36)

where we have introduced the Jarlskog parameter [33; 34]

JCP
.
= |Im(VijVklV

∗
il V

∗
jk)| , (i 6= k, j 6= l) , (1.37)

which can be thought as a quantitative way of measuring how much CP symmetry is

violated. JCP is not dependent on quark fields phase conventions and VCKM unitarity

11
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imply that all the allowed i,j,k,l combinations will give the same quantity. Using Maiani

parametrization (1.35) one has

JCP = s12s13s23c12c23c
2
13 sin δ ; (1.38)

experimentally it has been measured JCP ≃ O(10−5).

As one can clearly see from (1.36) the CP violation root can be traced back to the

quark mass hierarchy problem; as already said, fermion masses are free parameters

in the Standard Model. The weak interaction mixes flavors according to a specific

hierarchy: the diagonal elements of the matrix (1.33) describe transition within the

same generation and are bigger (∼ O(1)) than off diagonal elements (∼ O(10−1) to ∼
O(10−3)), which, on the other hand, represent transitions between generations, for which

experimentally one has s13 ≪ s23 ≪ s12 ≪ 1. This has been pictorially represented in

figure 1.1 where transitions within the same generation are represented with bold black

lines, while transitions between different generations are represented with dashed and

dotted lines of different colors.

Figure 1.1: Flavour mixing hierarchy - It is shown the hierarchy of charged currents

flavour mixing transition; picture taken from [35] (Fleisher’s lecture).

It is convenient to exhibit this hierarchy setting

s12
.
= λ , s23

.
= Aλ2 , s13e

−iδ .
= Aλ3(ρ.iη) , (1.39)

and substituting them in (1.35) one obtains the CKM matrix parametrization in terms

of (λ, A, ρ, η) proposed by Wolfenstein in [36]. Expanding the matrix elements in powers

of λ, neglecting terms O(λ4) one has

12
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1.2 Cabibbo-Kobayashi-Maskawa matrix

VCKM =




1 − λ2

2 λ Aλ3(ρ − iη)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1


 + O(λ4) . (1.40)

With this variables the Jarlskog invariant becomes

JCP = Aλ6η , (1.41)

and the measure of CP violation, analogous to δ of the standard parametrization, is η

(as can be seen from (1.40), if η is zero elements (VCKM )13 and (VCKM )31 become real

and no CP violation is possible).

Other important information can be extracted from CKM matrix performing the

so called unitarity triangle analysis. This kind of analysis is based on the unitarity of

VCKM which can be expressed as

V †
CKMVCKM = VCKMV †

CKM = 1 , (1.42)

and, if expressed element by element, it consists of nine relations, six of orthogonality

and three of normalization. The former can be represented as six triangles in a complex

plane, all having the same area A∆ = JCP /2; using Wolfenstein’s parametrization

for CKM elements it can be realized that only the triangle’s sides coming from the

orthogonality of first and third row and first and third column are of the same order of

magnitude (O(λ3)); they are

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.43)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (1.44)

for other triangles one has a side that is smaller than the other roughly by a factor

O(λ2) o O(λ4). Actually relations (1.43) and (1.44) are equivalent at order O(λ3) and

one can write them as

[(ρ + iη) + (−1) + (1 − ρ − iη)] Aλ3 + O(λ4) = 0 (1.45)
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and so at this order one has only one independent triangle and we will choose in the

following the usual (1.43) also known as unitary triangle of CKM matrix.

It can be shown [37] that performing in (1.45) the substitution (ρ, η) → (ρ̄, η̄), with the

barred parameters defined by

ρ − iη =
ρ̄ − iη̄√
1 − λ2

, (1.46)

one can obtain a unitarity relation valid up to order O(λ7)

[(ρ̄ + iη̄) + (−1) + (1 − ρ̄ − iη̄)] Aλ3 + O(λ7) = 0 (1.47)

and the associated unitary triangle is shown in fig. 1.2

Figure 1.2: Unitary triangle - It is shown the unitary triangle related to (1.47); picture

taken from [30] (PDG 2008)

where sides and angles are defined as follows

α
.
= φ2

.
= arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, (1.48)

β
.
= φ1

.
= arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, (1.49)

γ
.
= φ3

.
= arg

(
−VudV

∗
ub

VcdV
∗
cb

)
, (1.50)

Rb
.
=

|VudV
∗
ub|

|VcdV
∗
cb|

≃
(

1 − λ2

2

)
1

λ

∣∣∣∣
Vub

Vcb

∣∣∣∣ , (1.51)

Rt
.
=

|VtdV
∗
tb|

|VcdV
∗
cb|

≃ 1

λ

∣∣∣∣
Vtd

Vcb

∣∣∣∣ . (1.52)
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1.2.2 Experimental determination

Assuming the Standard Model as a complete model, the “experimental” measure

of VCKM elements should verify its unitarity. Deviation from that expected unitarity

would unambiguously indicate the presence of physics beyond the Standard Model;

hence it is of crucial relevance to perform as precise as possible measures to increase

our knowledge of the Standard Model and of potential new physics. For instance, in

view of the upcoming measures which will be performed at the LHC, it will be very

important to know the flavour sector parameters as well as possible in order to better

understand a possible discovery of new particles or new physics.

Within the Standard Model, all flavour violating processes, both CP violating and con-

serving ones, are ruled by CKM matrix and, as a consequence, can be described by

means of four parameters (three angles and one phase or, using Wolfenstein parametriza-

tion, A,λ,ρ and η); this means that the large variety of flavour physics phenomena which

are nowadays measurable (i.e. semileptonic decays, CP asymmetries, neutral mesons

mixing, rare decays and so on) are all strongly connected and the unitary triangle is an

optimal tool for studying these correlations. More specifically, thanks to the B-factories

measures as well as to D and K decays measurements and moreover to the higher lat-

tice QCD accuracy in providing theoretical inputs, it is possible to overconstrain the

unitary triangle. This means that, eventually, it is possible to correctly test the CKM

mechanism within the Standard Model and to set limits on the possible new physics

contributes. Let us now briefly remind, according to the 2008 edition of the Review

of particle physics [30], the physical processes from which it is possible to measure the

CKM elements.

Starting from Vud, the most precise determination of the module of this element

comes from superallowed JP = 0+ → JP = 0+ nuclear beta decays, which are pure

vector transitions and are free from nuclear structure uncertainties. This yields

|Vud| = 0.97418 ± 0.00027 . (1.53)

It is also possible to measure this matrix element using neutrino lifetimes or from the

branching ratio for the process π+ → π0e+ν and both give results consistent with (1.53)

but with a slightly bigger error.
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Without going into details, as these are going to be the subject of next section,

let’s mention that |Vus| can be extracted from K0
L → πeν decays using the form factor

extracted from lattice QCD as theoretical input, and it yields [23] 1

|Vus| = 0.2254 ± 0.0013 . (1.54)

Other possible determination of |Vus| involve leptonic kaon decays, hyperon decays and

τ decays. From the first, one can extract a value of [23]

|Vus| = 0.2312 ± 0.0013 , (1.55)

using again the lattice QCD input of the ratio of the pion and kaon decay constants

togheter with the knowledge of |Vud|.
What is important to underline is that the quoted errors in (1.54) and (1.55) are

dominated by the uncertainty on the LQCD hadronic quantity used to obtain Vus

matrix element from the experimental data (respectively, the form factor and the ratio

of decay constants). It is clear that a precise determination of these quantities on the

lattice is needed in order to improve more and match the experimental precision.

For extracting |Vcd| one can use a measure based on neutrino and antineutrino

interaction. The measure of the difference of the ratio of double muon to single muon

production is proportional to the charm cross section off valence d-quarks and therefore

to |Vcd|2. Using a suitable average one can obtain

|Vcd| = 0.230 ± 0.011 . (1.56)

A direct determination of |Vcs| is possible from semileptonic D or leptonic Ds de-

cays, using again lattice QCD calculations as input for D form factors and Ds decay

constants. Here the state of the art is similar to the |Vus| one, in which the error on

the CKM element is completely dominated from the theoretical one. From averaged

leptonic and semileptonic determinations ref. [30] quotes

1The value presented here is slightly different from the one in [30] because of the updated value

recently presented in [23].
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1.2 Cabibbo-Kobayashi-Maskawa matrix

|Vcs| = 1.04 ± 0.06 . (1.57)

The |Vcb| matrix element can be determined from exclusive and inclusive semilep-

tonic decays of B mesons to charm. The inclusive determination use the semileptonic

decay rate measurement, together with the leptonic energy and the hadronic invariant

mass. Exclusive determinations are based on semileptonic B decays to D and D∗. In

the limit mb,c ≫ ΛQCD the form factors can be calculated using heavy-quark effective

theory (HQET) and Vcb can be obtained from and extrapolation guided by this effective

theory. The exclusive determination is less precise than the inclusive one, because the

theoretical uncertainty in the form factors and the experimental uncertainty in the rate

near the physical point are about 3%. A suitable combination of the two results yields

|Vcb| = (41.2 ± 1.1) × 10−3 . (1.58)

The determination of |Vub| from inclusive B → Xulν̄ decay suffers from large

B → Xclν̄ backgrounds. In most regions of phase space where the charm background

is kinematically forbidden, hadronic physics enters via unknown nonperturbative func-

tions, called shape functions. These functions must be measured in different processes,

such as B → Xsγ, and then applied to several spectra in B → Xulν̄. There are also

other methods in which one applies phase space methods to reduce the number of shape

functions presents in the rate; another alternative approach is to extend the measure-

ment deeper into the B → Xclν̄ region to reduce the theoretical uncertainties. Vub

can also be extracted from an exclusive channel, assuming the form factors are known.

Form factors can be measured or calculated using LQCD (in the kinematic region of

q2 > 16 GeV 2) or light cone QCD sum rules for q2 < 14 GeV 2 and all yield similar

results when used in Vub calculation. The theoretical uncertainties in extracting |Vub|
from inclusive and exclusive decays are different; a combination of the determinations

is quoted as

|Vub| = (3.93 ± 0.36) × 10−3 , (1.59)
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which is dominated by the inclusive measurement.

The CKM elements |Vtd| and |Vts| cannot be measured from tree-level decays of

the top quark, so one has to rely on determinations from B − B̄ oscillations mediated

by box diagrams with top quarks, or loop-mediated rare K and B decays. Theoretical

uncertainties in hadronic effects limit again the accuracy of the current determination.

These can be reduced by taking ratios of processes, as an example one could quote the

quantity ∆md/∆ms, that are equal in the flavour SU(3) limit to determine |Vtd/Vts|.
Without doing so and using unquenched LQCD calculation for the hadronic quantities

one finds

|Vtd| = (8.1 ± 0.6) × 10−3 , |Vts| = (38.7 ± 2.3) × 10−3 . (1.60)

The uncertainties are dominated by LQCD calculations; however if one takes the ratio

∆md/∆ms, which in turn involve the ratio of the hadronic quantities determined on

the lattice, is able to obtain the more reliable constraint for

∣∣∣∣
Vtd

Vts

∣∣∣∣ = 0.209 ± 0.001stat ± 0.006sys . (1.61)

A complementary determination for the ratio of these matrix elements is possible from

the ratio of B → ργ and K∗γ rates, which gives |Vtd/Vts| = 0.21 ± 0.04 while for the

product |VtdV
∗
ts| one can use the rare decay K+ → π+νν̄ but experimentally only three

events has been observed and much more data are needed for a precision measurement.

Finally the determination of Vtb from top decays uses the ratio of the branching

fractions R = B(t → Wb)/B(t → Wq) = |Vtb|2, with q = b, s, d. Experimental measures

give for these quantities |Vtb| > 0.78 and |Vtb| > 0.89. Direct determination of Vtb

without assuming unitarity is possible from single top quark production cross section.

In this way it is possible to set the limit

|Vtb| > 0.74 . (1.62)

Also, one can constrain |Vtb| from electroweak data and the result, mostly driven by

the top loop contribution to Γ(Z → bb̄), gives
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1.2 Cabibbo-Kobayashi-Maskawa matrix

|Vtb| = 0.77+0.18
−0.24 . (1.63)

To summarize we can write, restricting our attention to the direct measure of the

module of CKM elements

V exp
CKM =




0.97418 ± 0.00027 0.2254 ± 0.0013 (3.93 ± 0.36) × 10−3

0.230 ± 0.011 1.04 ± 0.06 (41.2 ± 1.1) × 10−3

(8.1 ± 0.6) × 10−3 (38.7 ± 2.3) × 10−3 0.77+0.18
−0.24


 . (1.64)

To proceed with unitary triangle angles, measurement of CP violation effects in

neutral B mesons decays provide a determination of sin 2β. Word average quotes

sin 2β = 0.681 ± 0.025 , (1.65)

while the results for α, coming from time dependent CP asymmetries in b → uūd

dominated decays, and for γ, coming mainly from B± → DK± are

α =
(
88+6

−5

)◦
(1.66)

γ =
(
77+30

−32

)◦
(1.67)

Another way for extracting values of the CKM matrix elements which are more

accurate with respect to ones in (1.64), is to perform a fit [38; 39] of all the latest

available measures imposing all the Standard Model constraints. The results obtained

in that way reported in [30] are

V fit
CKM =




0.97419 ± 0.00022 0.2257 ± 0.0010 (3.59 ± 0.16) × 10−3

0.2256 ± 0.0010 0.97344 ± 0.00023
(
41.5+1.0

−1.1

)
× 10−3

(
8.74+0.26

−0.37

)
× 10−3 (40.7 ± 1) × 10−3 0.999133+0.000044

−0.000043


 , (1.68)

while Wolfenstein’s parameters are

λ = 0.2257+9
−10 , (1.69)

A = 0.814+21
−22 , (1.70)

ρ̄ = 0.135+31
−16 , (1.71)

η̄ = 0.349+15
−17 . (1.72)
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Let us conclude this section underlining again the importance of the lattice QCD

calculation of meson decay form factors. First of all, it is important because the form

factors are needed both in the theoretical as well as on the experimental side, to extract

from what one experimentally measures the CKM matrix element; moreover it is

important to give a precise estimate of the form factors because in most of the processes

the experimental precision is so high that, at the end of the day, all the systematic

error comes from the theoretical side , and in the present case, from the lattice QCD

uncertainty on the hadronic quantity.

A special mention for the semileptonic K decay is in order, as the experimental precision

is so high, of the order of 0.2%, that the form factor at zero momentum must be

determined with a precision better that the percent level. This is feasible with a

technique which will be shown in chapter 3.

1.3 Leptonic and semileptonic meson decays

Within the Standard Model, as we have already mentioned, leptonic and semilep-

tonic meson decays can be used to obtain accurate determinations of the magnitude

of the CKM elements and, in particular, semileptonic Kaon decays gives us the best

determination of the magnitude of the Vus element. A general feature of standard anal-

ysis is that for extracting these elements from decay widths one need precise estimates

about the relevant hadronic quantities involved in the process; to be more specific, it is

necessary to know decay constants and semileptonic form factors, as a function of the

transfer momentum, in a very precise fashion.

At the energy scale characteristic of an hadronic decay process, strong interaction can-

not be treated by means of perturbative methods because αs & 1. This means that the

hadronic quantities involved in the decay widths must be estimated using non pertur-

bative techniques, and in particular a lattice QCD calculation of the kaon semileptonic

decay constant and form factor will be presented in chapter 4 and will be one of the

main goals of this work.

Within the quark model mesons are represented as quark-antiquark bound states

q̄q′ with the two quarks, known as valence quarks, which can have different flavour.

Writing the orbital angular momentum of the system as l, the meson parity P can be

calculated as P = (−1)l+1; total angular momentum, J, is as usual made up of orbital
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1.3 Leptonic and semileptonic meson decays

angular momentum and spin angular momentum and will take values in the interval

|l − s| < J < |l + s|, where s = 0, 1 if the quark’s spins are antiparallel or parallel, re-

spectively. In real word, however, mesons, and more generally hadrons, are much more

complicated objects and valence quarks are responsible only for the particle’s quan-

tum numbers. An hadron is composed of an infinite number of quarks, antiquarks and

virtual gluons, known as Dirac sea, which gives null contribution to the hadron quan-

tum numbers. In this framework, hadron decays can be seen as their valence quarks

weak decays. The matrix element spin structure is particularly simple for pseudoscalar

mesons (JP = 0−) and their description can be done in terms of few free parameters.

We will distinguish between two meson’s classes: light mesons, composed of two light

quarks q, q′ = u, d, s and heavy-light mesons, built up by one heavy quark Q = c, b and

one light quark q = u, d, s; moreover we will also restrict ourselves to that decays which

are first order in the weak coupling, focusing our attention to the flavour changing

processes which, as we have already seen in the previous section, at tree level come

only from charged current interactions in the Standard Model because of unitarity of

the CKM matrix.

Let us now introduce a new element which will be useful in the following sections: Fermi

effective theory of weak interaction. Semileptonic decays are processes in which W±

bosons (but this is true also for Z0 boson) have masses which are large in comparison

with q, the typical transfer momentum involved; in practice, this means that terms

of order O(q2/M2
W ) and higher, can be safely neglected from the physical amplitudes.

This is usually referred to as the W± decouples from the theory in the low energy

regime and they end up “integrated out”. The result of this operation is an effective

theory, valid at energies E ≪ MW,Z , in which there are no more W± or Z0 and the

non local interaction which were mediated by these bosons are now seen as local four

fermions interactions:

−igµν

q2 − M2
W

−−−−−→
M2

W≫q2

−igµν

M2
W

. (1.73)

At a lagrangian level one has

L
eff
CC =

GF√
2
J†

µJµ

[
1 + O(

q2

M2
W

)

]
, (1.74)
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where GF is the so called Fermi constant defined in terms of the weak coupling constant

g as

GF√
2

.
=

g2

8M2
W

. (1.75)

As charged weak currents (1.10) describe both quarks and leptons, it follows that the

effective lagrangian (1.74) will in turn describe interactions between two lepton currents,

which are responsible for processes such as τ or µ leptonic decays, between one lepton

current and an hadronic one, which can account for leptonic and semileptonic hadron

decays and, in the end, between two hadronic currents which describe non leptonic

hadron decays.

1.3.1 Leptonic Kaon decays

Leptonic decays are processes in which the final state is purely leptonic. Among

them one could quote

π+ → µ+ + νµ

D±
s → µ± + νµ(ν̄µ)

B+ → τ+ + ντ

and so the prototype, for the case of a negative meson M−, can be represented as

M− → l−ν̄l which is related to the underlying quark process qq̄′ → lνl, as can be seen

in figure 1.3

The decay width for such a process can be written as

Γ(M− → l−νl) =
1

2M

∑

pol

∫
|A2|dΩ2 (1.76)

where M is the meson mass, the sum is over the polarization of the final state leptons,

A is the Feynman amplitude for the process and dΩ2 is the two body phase space. The

amplitude, at lowest order in the electroweak interaction but to all orders in the strong

interaction, can be written as
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1.3 Leptonic and semileptonic meson decays

Figure 1.3: Leptonic decay prototype - Feynman diagram which contribute to a

leptonic decay of a general meson M. The hadronic part (left) must be evaluated by means

of non perturbative methods.

A(M− → l−νl) = −GF√
2
V ∗

q′q 〈l−νl|
[
ν̄lγµ

(
1 − γ5

)
l
] [

q̄γµ
(
1 − γ5

)
q′

]
|M−〉 ; (1.77)

because of the point-like interaction between the two currents, the amplitude factors

out in two parts, one leptonic and one hadronic:

A(M− → l−νl) = −GF√
2
V ∗

udH
µLµ (1.78)

where it has been defined

Hµ .
= 〈0| q̄γµγ5q′ |M−〉 , (1.79)

Lµ .
= 〈l−ν̄l| l̄γµ

(
1 − γ5

)
νl |0〉 . (1.80)

Two remarks are in order. First of all, the vacuum insertion is possible only because

(at this order) there are no radiative corrections between the initial and the final state.

The second one is that because of in (1.79) the initial and the final states have different

parity, only the axial contribute to the amplitude is present. The problem is now

shifted to the evaluation of Hµ. Taking into account Lorentz-invariance one knows

that expression (1.79) must be parametrized as a vector times a quantity, fM , which

has the dimension of an energy and must be experimentally determined; as the only

vector present in the process is the meson momentum pµ, one can write
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〈0| q̄γµγ5q′ |M−〉 = −ifMpµ . (1.81)

The parameter f
M

is called the M meson decay constant and represents the overlap of

the two valence quark and antiquark wave functions.

Evaluating two body phase space and kinematics, the square module of the Feynman

amplitude (1.78) and substituting them into eq. (1.76), one obtain the decay width

Γ(M− → l−νl) =
G2

F

8π
f2

M |Vq′q|2Mm2

(
1 − m2

M2

)2

, (1.82)

where m is the l lepton mass, assuming antineutrinos are massless.

Formula (1.82) is the starting point for the evaluation of the CKM matrix element

Vus using leptonic Kaon decays. In particular, what is usually employed is not expres-

sion (1.82) specified for H± = K± alone (the so called K±
l2 decay width), but the ratio

of the K± → l±ν to π± → l±ν (called π±
l2) [40; 41] decay width:

ΓKl2

Γπl2

=
|Vus|2
|Vud|2

f2
K

f2
π

mK

(
1 − m2

l

m2
K

)2

mπ

(
1 − m2

l

m2
π

)2 (1 + δEM ) . (1.83)

where fK and fπ are the kaon and the pion decay constants and δEM denotes the effect

of long distance electromagnetic corrections. Short distance radiative effects are uni-

versal and cancel in the ratio. In the approximation of point-like kaons and pions, the

long distance electromagnetic corrections depend only on particle masses. The domi-

nant uncertainty on δEM comes from terms depending on the hadronic structure. Most

analysis to date make use of the results quoted in ref. [42; 43], which was computed

using a model with Breit - Wigner form factors for the low - lying vector resonances.

These results give δEM = −0.0070(35) (see [44]). Using chiral perturbation theory

(ChPT)[40; 45], it has been shown that to leading non trivial order O(e2p2), the struc-

ture dependent corrections to δEM can be expressed in terms of the electromagnetic

pion mass splitting. With the relative theoretical uncertainty estimated at 25% to

account for O(e2p4) effects suppressed by chiral power counting, one obtains

δEM = −0.0070(18) . (1.84)
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With experimental measurements of the inclusive Kl2 and πl2 decay rates and precise

knowledge of the radiative corrections, eq. (1.83) can be used to obtain the value of

the product |Vus/Vud|2 × f2
K/f2

π , from which one can estimate Vus once estimated the

ratio fK/fπ on the lattice.

1.3.2 Semileptonic Kaon decays

Semileptonic decays are processes in which the final state is composed of leptons

and hadrons; among them one can quote

N → N ′ + e± + νe(ν̄e) (1.85)

π+ → π0 + e+ + νe (1.86)

k+ → π0 + e+ + νe (1.87)

D+ → K̄0 + e+ + ν̄e (1.88)

where N is a generic nucleus and N ′ differs from N by one u → d in the valence content.

In each decay the quark underlying process is q → q′′lνl and the quark q′ participate

only as spectator (see fig. 1.4).

Figure 1.4: Semileptonic decay prototype - Feynman diagram which contribute to

the semileptonic decay process M → M ′lν̄l. The hadronic part (bottom) must be evaluated

by means of non perturbative methods.

In this case the situation is much more complicated, with respect to the leptonic

case, because of the composition of the final state (leptons plus an hadron); writing
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1. FLAVOUR PHYSICS

the initial state meson as M and the final state one as M ′, the Feynman amplitude for

the process, at lowest order in the electroweak interaction but all orders in the strong

interaction, can be written as

A(M → M ′lνl) = −GF√
2
V ∗

q′q 〈M ′l−νl|
[
ν̄lγµ

(
1 − γ5

)
l
] [

q̄γµ
(
1 − γ5

)
q′

]
|M−〉 ; (1.89)

however, the amplitude factors out in an hadronic times a leptonic part. This is again

because the leptons present in the final state do not strongly interact and moreover

because the hadronization process involves only the valence quark of the final state

meson. This can be written as

A(M → M ′l−νl) = −GF√
2
V ∗

q′q 〈l−νl| ν̄lγµ

(
1 − γ5

)
l |0〉 〈M ′| q̄γµ

(
1 − γ5

)
q′ |M〉 . (1.90)

Limiting our attention to the case in which the JP of the initial state is the same of

the final state one, that is 0− → 0− decays which, by the way, are the subject of the

present work, the hadronic matrix element receive only the vector contribution and we

are left with

A(M → M ′l−νl) = −GF√
2
V ∗

q′qH
µLµ (1.91)

where

Hµ .
= 〈M ′(k)| q̄γµq′ |M(p)〉 , (1.92)

Lµ .
= 〈lν̄l| l̄γµ

(
1 − γ5

)
νl |0〉 . (1.93)

Eq. (1.92) tell us that the matrix element transform as a vector and so we can

parametrize it using the only two vectors at our disposal in the process, i.e. the initial

state meson momentum p and the final state meson one k, so

〈M ′(k)| q̄γµq′ |M(p)〉 = (p + k)µf+(q2) + qµf−(q2) (1.94)

where we have used the independent linear combinations p + k and q = p − k and

hadronic effects, which do not follow by symmetry arguments, are described by means
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1.3 Leptonic and semileptonic meson decays

of the form factors f±(q2). f+(q2) is called vector form factor and usually f−(q2) is

traded for the scalar form factor, defined as

f0(q
2) = f+(q2) +

q2

M2
f − M2

i

f−(q2) (1.95)

which satisfy the kinematic constraint f0(0) = f+(0) and where Mi(Mf ) is the mass of

the meson state M(M ′).

Let us specialize to the case, relevant for this work, of the kaon semileptonic decays;

these decays are the relevant one for extracting the CKM matrix element Vus and their

prototype is represented by processes such as

K+ → π0 + l+ + νl (1.96)

K0 → π+ + l− + ν̄l (1.97)

which are usually called Kl3 decays and in which the underlying quark transition is

s → u + W−. The partial conservation of the vector current (PCVC)

∂µV a
µ = iψ̄

[
λa

2
, m

]
ψ , (1.98)

where V a
µ = ψ̄γµtaψ is the non singlet vector current, m is the quark mass matrix and

ta = λa/2 are the SU(3) generators, can be considered for the s → u transition under

exam, obtaining

∂µ (ūγµs) ∝ (ms − mu) ūs , (1.99)

where ms(u) is the mass of the s(u) quark; Neglecting SU(3)V flavour breaking effects,

i.e.

δm → 0 ⇒ ∂µV µ = 0 (1.100)

a conserved current and a related conserved charge will exist and it is possible to show

that
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f−(q2) = 0 , (1.101)

f+(0) = 1 . (1.102)

However for the δm = ms − mu under exam, one can not neglect isospin breaking

and so this means non conservation of the vector current and an f+(0) 6= 1; in particular

the Ademollo Gatto (AG) theorem [46], which will be explained in details in section

1.3.3, ensures that corrections to (1.102) are of second order in the breaking parameter

δm. In this situation lattice QCD plays an important role as one is obliged to use

a non perturbative estimate of the form factor to extract the CKM matrix elements,

similarly to what happened in the leptonic channel. To be more precise, experimentally

one can measure the photon inclusive K → πlνl decay rate [23] which is described by

the master formula

ΓKl3
=

G2
F m5

K

192π3
C2

KSEW (|Vus|f+(0))2 IKl ×
(
1 + δKl

EM + δKπ
SU(2)

)2
. (1.103)

where SEW = 1.0232(3) [41; 47] is the short-distance electroweak correction, CK is a

Clebsch-Gordan coefficient (1 for K0 and 1/
√

2 for K± decays), IKl is a phase space

integral that is sensitive to the momentum dependence of the form factors, δKl
EM is a

channel dependent long distance EM correction and δKπ
SU(2) a correction which takes

into account isospin breaking. To extract |Vus| from Kl3 decays using (1.103), one

must measure Kl3 decay rate, compute the phase space integrals from the form factors

measurement and make use of theoretical results for δKl
EM , δKπ

SU(2) and f+(0). On the

theoretical side instead, one will have to calculate the K → π vector form factor at

zero momentum, which will be one of the main results of this work, and extract the

CKM matrix element Vus using the latest experimental result [23] for the product

(f+(0)|Vus|2) = 0.2163 ± 0.0005.

1.3.3 Ademollo Gatto theorem

We have said, in the previous section, that the deviation of f+(0) from unity is

predicted to be second order in the SU(3) symmetry breaking, i.e. (ms − ml)
2 where

ml is the mass of the light u,d quarks. We are going to prove this result, the so-called

Ademollo-Gatto (AG) theorem, following the proof given in [48].
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1.4 CP violation

Let us consider the commutation of the quark vector charges,

[
Qūs, Qs̄u

]
= Qūu−s̄s , (1.104)

where

Qīj ≡
∫

d3xq̄i(x)γ0qj(x) . (1.105)

Taking matrix elements between K0 − out and K0 − in (|K0〉 = |ds̄〉) and inserting a

complete set of intermediate states give

1 =
∑

n

(
| 〈n|Qs̄u |K0〉 |2 − | 〈n|Qūs |K0〉 |2

)
. (1.106)

Finally we can isolate the single π− state from the sum and note that in the SU(3)V

limit the charge operator can only connect the kaon to another state within the same

SU(3)V multiplet. This implies

〈n 6= π−|Qūs |K0〉 = O(ǫ) , (1.107)

where ǫ is a measure of SU(3) breaking, and thus we conclude that

1 − [f+(0)]2 = O(ǫ2) , (1.108)

which is the result we were seeking. This theorem has a number of important conse-

quences and it will prove itself useful in section 4.7.2 when we will treat the strange

quark quenching of our simulation setup.

1.4 CP violation

Within the standard model and its possible extensions, CP symmetry can be vio-

lated both in the electroweak and strong sector. In section 1.2.1 we have introduced the

CKM matrix and explained that, being a 3×3 unitary matrix, it can be parametrized
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by means of three angles and one phase. It is this one phase that makes some coupling

of the W+ boson to quarks complex and allows the presence of CP violation in the

electroweak sector. However it is known from [2] that this phase can be removed in

a theory with only two generations and this means that the phase of VCKM can have

physical consequences only in a process that involves all three generations and in prac-

tice it will manifest itself only in processes involving weak interaction loop correction

or in complicated exclusive decays. Thus the SU(3)c × SU(2)L × U(1)Y theory can

account for CP violation and it also explains why this effect is much weaker even than

the weak interaction. It is interesting to note that Kobayashi and Maskawa originally

proposed the existence of a third generation in order to provide a mechanism for CP

violation [3]. At this moment there is no conclusive evidence that the origin of CP

violation is only in the phase of CKM matrix. More general model of Higgs sector

may lead to a more complicated set of quarks - Higgs couplings, and some of them may

be CP violating as well.

There is also a still unexcluded source of CP violation, which finds its place in the strong

sector of the theory. To simplify the Lagrangian of the gauge theory of quarks to its

final form, we performed chiral rotations of the quarks fields (see e.g. (1.27), (1.28) and

so on) and such a change of variable is able to introduce in the theory1 a new T- and

P- violating term. It can be shown, using the fact that these terms are total derivative,

that the ones involving SU(2)L and U(1)Y field strengths have no observable effects

(they can be integrated out) while the term involving QCD field strength can induce

a neutron electric dipole moment (EDM). This is due to the fact that after the chiral

rotation a term which is a total derivative involving the QCD gluon field strenghts is

generated, but this term does not vanish in the integration over the whole space-time

because of the presence of non trivial topological excitations, called instantons. Even

if the present experimental upper limit on the neutron EDM is of dN < 6.31̇0−26, the

possible existence of such a phenomenon would imply a T- violating effect which, con-

sidering the validity of the CPT theorem, means a CP violating effect in the strong

sector.

The next two section will be dedicated to discuss weak and strong CP violation.

We will start with a very brief introduction, in section 1.4.1, of the basic concepts

1This will became much more clear in section 1.4.2 of this chapter when the functional formalism

will be introduced.
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of particle-antiparticle mixing and weak CP violation, introducing the parameters ǫ

and ǫ′ relative to the standard classification of the so called indirect and direct CP

violation1. In section 1.4.2 we will focus our attention to the strong CP violation as it

is the responsible for neutron EDM, one of the most challenging observables in lattice

QCD.

1.4.1 Weak CP violation

Let us start our discussion with the phenomenon of particle-antiparticle mixing,

which is responsible for the indirect CP violation in the K system, discovered in 1964.

Being a process known as flavour changing neutral current (FCNC), in the Standard

Model it appears only at one loop level and involves heavy quark loops. It is conse-

quently a sensitive measure of the top (t) quark couplings Vti (i = d, s, b) and of the top

quark mass. On the basis of the SM theory, it turns out that the main new informations

obtainable from the study of this phenomenon are the values of |Vtd| and of the phase

δ of the CKM matrix.

K0 = (s̄d) and K̄0 = (d̄s) are flavour eigenstates which in the Standard Model may

mix via weak interactions through the box diagram of fig. 1.5. We will choose the phase

conventions so that

Figure 1.5: K0 − K̄0 mixing. - Box diagram contributing to K0 − K̄0 mixing in the

Standard Model; picture taken from [49] (Buras 2001)

CP |K0〉 = − |K̄0〉 , CP |K̄0〉 = − |K0〉 . (1.109)

1We will use here the standard approach to the subject and split CP violating processes in direct

and indirect, even if it exists a different and probably much more useful classification, as can be read

in [49].

31

2/figures/Box_diagram.eps
http://arxiv.org/abs/hep-ph/0101336


1. FLAVOUR PHYSICS

In the absence of mixing the time evolution of |K0(t)〉 would be given by

|K0(t)〉 = |K0(0)〉 exp (−iHt) , H = M − i
Γ

2
, (1.110)

where M is the mass and Γ the width of K0. A similar formula would hold for K̄0.

On the other hand, in the presence of flavour mixing the time evolution of the K0 − K̄0

system (with wave function ψ) can be described by

i
dψ(t)

dt
= Ĥψ(t) ψ(t) =

(
|K0(t)〉
|K̄0(t)〉

)
, (1.111)

where

Ĥ = M̂ − i
Γ̂

2
=

(
M11 − iΓ11

2 M12 − iΓ12
2

M21 − iΓ21
2 M22 − iΓ22

2

)
, (1.112)

with M̂ and Γ̂ being hermitian matrices having positive (real) eigenvalues. Mij and

Γij are the transition matrix elements from virtual and physical intermediate states

respectively. Setting

M21 = M∗
12 , Γ21 = Γ∗

12 (hermiticity), (1.113)

M11 = M∗
22 ≡ M , Γ11 = Γ∗

22 ≡ Γ (CPT), (1.114)

we have

Ĥ ==

(
M − iΓ

2 M12 − iΓ12
2

M∗
12 − i

Γ∗
12
2 M − iΓ

2

)
. (1.115)

The next step is to diagonalize the system to obtain the mass eigenstates

KL,S =
(1 + ǭ)K0 ± (1 − ǭK̄0)√

2(1 + |ǭ|2)
(1.116)

which are a combination of the physical K0 and K̄0, with ǭ which is a small complex

parameter given by

32



1.4 CP violation

1 − ǭ

1 + ǭ
=

√
M∗

12 − iΓ∗
12/2

M12 − iΓ12/2
. (1.117)

The corresponding eigenvalues are

ML,S = M ± Re(Q) , ΓL,S = Γ ∓ 2Im(Q) (1.118)

with

Q =
√

(M12 − iΓ12/2) (M∗
12 − iΓ∗

12/2) . (1.119)

As a consequence we have

∆M = ML − MS = 2Re(Q), ∆Γ = ΓL − ΓS = −4Im(Q) . (1.120)

Is should be noted that the mass eigenstates KS and KL differ from CP eigenstates

K1 =
1√
2

(
K0 − K̄0

)
, CP |K1〉 = |K1〉 (1.121)

K2 =
1√
2

(
K0 + K̄0

)
, CP |K2〉 = − |K2〉 (1.122)

by a small admixture of the opposite CP - parity eigenstate:

KS =
K1 + ǭK2√

1 + |ǭ|2
, KL =

K2 + ǭK1√
1 + |ǭ|2

(1.123)

with ǭ defined as in (1.117). The quantity ǭ can also be written as

1 − ǭ

1 + ǭ
=

∆M − i∆Γ/2

2M12 − iΓ12
≡ r exp(ik). (1.124)

It should be stressed that the small parameter ǭ depends on the phase convention chosen

for K0 and K̄0. Therefore it may not be taken as a physical measure of CP violation.

Since ǭ is O(10−3), we find, using (1.117) that
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Im(M12) ≪ Re(M12), Im(Γ12) ≪ Re(Γ12). (1.125)

Consequently, to a very good approximation

∆MK = 2Re(M12), ∆ΓK = 2Re(Γ12), (1.126)

where the subscript K has been added to stress the fact that these formulas apply only

to the K0 − K̄0 system.

The KL − KS mass difference is experimentally measured to be ∆MK = (3.491 ±
0.009)10−15 GeV . In the Standard Model roughly 70% of the measured ∆MK is de-

scribed by the real parts of the box diagrams with charm quark and top quark ex-

changes and among them the contribution of the charm exchanges is by far dominant.

The remaining 30% of the measured ∆MK is imputable to long distance contribu-

tions. ∆ΓK is instead fully dominated by long distance effects. Experimentally one

has ∆ΓK = −7.4×10−15 GeV and consequently ∆ΓK ≃ −2∆MK . A non perturbative

method is needed in order to estimate these contribution.

Since two pion final state is CP even while three pion final state is CP odd, KS and KL

mainly decay to 2π and 3π, respectively via the following CP conserving decay modes:

KL → 3π (via K2), KS → 2π (via K1). (1.127)

This difference is responsible for the large disparity in their life-times. However, KL

and KS are not CP eigenstates and may decay with small branching ratios as

KL → 2π (via K1), KS → 3π (via K2). (1.128)

This violation of CP is called indirect as it happens not via explicit breaking of CP

symmetry in the decay itself but via the component of the CP state with opposite

parity with respect to the dominant one. The measure of this indirect CP violation is

defined as
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ǫ =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
, (1.129)

where ǫ is, contrary to ǭ, independent of the phase conventions. It can be shown that

[50]

ǫ = ǭ + iξ with ξ =
Im(A0)

Re(A0)
(1.130)

where the isospin amplitude A0 is defined below. The phase convention dependence of

the term iξ cancels the convention dependence of ǭ.

While indirect CP violation reflects the fact that the mass eigenstates are not CP

eigenstates, the so called direct one is realized via a direct transition of a CP odd to

a CP even state or vice versa. A measure of such direct CP violation in KL → ππ is

characterized by a complex parameter ǫ′ defined as

ǫ′ =
1√
2
Im

(
A2

A0
eiΦ

)
, Φ = π/2 + δ2 − δ0 , (1.131)

where the isospin amplitudes AI in K → ππ decays are introduced through

A(K+ → π+π0) =

√
3

2
A2e

iδ2 (1.132)

A(K0 → π+π−) =

√
2

3
A0e

iδ0 +

√
1

3
A2e

iδ2 (1.133)

A(K0 → π0π0) =

√
2

3
A0e

iδ0 − 2

√
1

3
A2e

iδ2 (1.134)

Here the subscript I = 0, 2 denotes different isospin states equivalent to ∆I = 1/2 and

∆I = 3/2 transitions, respectively, and δ0,2 are the corresponding strong phases. The

weak CKM phases are contained in A0 and A2. By extracting the strong phases δ0,2

from ππ scattering, it turns out that Φ ≃ π/4.

The isospin amplitudes AI are complex quantities which depend on phase conventions.

On the other hand, ǫ′ measures the difference between the phases of A2 and A0 and is

a physical quantity.

Experimentally ǫ and ǫ′ can be found by measuring the ratios
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η00 =
A(KL → π0π0)

A(KS → π0π0)
, η+−

A(KL → π+π−)

A(KL → π0π0)
. (1.135)

Indeed, assuming ǫ and ǫ′ to be small numbers one finds

η00 = ǫ − 2ǫ′

1 −√
ω

≃ ǫ − 2ǫ′ , η+− = ǫ +
ǫ′

1 + ω/
√

2
≃ ǫ + ǫ′, (1.136)

where experimentally ω = Re(A2)/Re(A0) = 0.045 which corresponds to the ∆I = 1/2

rule. In the absence of direct CP violation η00 = η+−. The ratio ǫ′/ǫ can then be

measured through

∣∣∣∣
η00

η+−

∣∣∣∣
2

≃ 1 − 6Re

(
ǫ′

ǫ

)
. (1.137)

We will conclude here our brief remind about Standard Model’s weak CP violation and

in the next section we are going to introduce the more exotic subject of strong CP

violation.

1.4.2 Strong CP violation

Let us introduce the so called path integral formalisms. It is a powerful tool which

is particularly suited for non perturbative treatment of a quantum field theory, as well

as, in this context, it will allow us to easily show how strong CP violation is generated

within the Standard Model.

This technique was first introduce by Feynman [51] as an alternative mean for treating

non relativistic quantum mechanics, but which is also applicable to the relativistic

quantum mechanic case. The fundamental element of this approach is the generating

functional of all the green functions of the theory which can be defined starting by the

so called functional integral

Z [J ] =

∫
Dφ e

i
~

SJ [φ] , (1.138)

in which the integration measure is defined as the product of the differential of all

elementary fields involved in the theory under consideration (for QCD one has the
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differential of quark and gluon fields), in each space-time point, for each degree of

freedom and φ is a generic field which stands for any field (spinorial, scalar or vectorial)

from which the functional SJ [φ] may depend; SJ [φ] is the classical action for the

theory’s fields plus an interaction term of the kind

∫
d4x φi(x)Ji(x) (1.139)

in which fields are coupled with a generic source Ji (i = 1, . . . , n with n the number of

fields of the theory) in order that, after defining the generating functional as W = log Z,

one is able to calculate all the relevant Green functions of the theory by simply taking

the functional derivative of W and then setting the sources equal to zero. In the scalar

case one has

〈φ(x1) . . . φ(xn)〉 =
δW

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (1.140)

From this is easy to prove that the expectation value of a generic operator O, which is

a function of the fields of the theory, can be written as

〈O(φ)〉 =
1

Z[0]

∫
Dφ O(φ) e

i
~

S0[φ] , (1.141)

where Z[0], as well as S0(φ), are calculated for J = 0.

Expression (1.138), as it is, represents an ill-defined integral and it needs further expla-

nations; from a mathematical point of view the functional integral can be regarded as

an infinite field configuration sum, each weighted with an oscillating exponential factor

which can not guarantee the convergence of an infinite sum. This is the reason why it

is useful to consider the same theory but in a euclidean space, by means of the Wick

rotation (x0
E = ix0

M e xi
E = xi

M ), carry out all the calculation in that space and then

rotate back to the physical Minkowsky space-time. In the euclidean space, in partic-

ular, the complex exponential factor becomes a real and decreasing one. The analytic

continuation to Minkowskyan space can be done only if the Osterwalder−Schrader pos-

itivity constraint [52] is fulfilled. Unless otherwise specified, we will always consider

euclidean quantum field theories from now on. The actions, in the different geometric

spaces, are connected by
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iS = −SE , (1.142)

and so the functional integral, in the euclidean space, can be regarded as the partition

function of a statistical system, with Boltzmann exponential factors as weights. The

euclidean version of (1.138) is

Z [J ] =

∫
Dφ e

−1
~

SJ [φ] . (1.143)

Let us now take a look at the QCD symmetry group, and to the associated conserved

currents, in order to write down Ward-Takahashi Identities (WTI) for the (euclidean)

theory. The symmetry group is

G = SU(Nf )L × SU(Nf )R × U(1)A × U(1)V ; (1.144)

and WTIs are a consequence of the invariance of (1.141) under (non-anomalous) local

changes of fermionic integration variables (with α as local parameter):

〈
δO(x1, . . . , xn)

δα

∣∣∣∣
α=0

〉
−

〈
O(x1, . . . , xn)

δS

δα

∣∣∣∣
α=0

〉
= 0 . (1.145)

in this case the action in (1.145) must be the QCD action which can be obtained from

lagrangian (1.3) with gluon and quark fields as, respectively, bosonic and matter degree

of freedom.

In the case of infinitesimal SU(Nf )L × SU(Nf )R × U(1)V there are no anomalies and

using (1.145) one obtains

U(1)V :
δS

δαV

∣∣∣∣
αV =0

= −∂µ(ψ̄γµψ) (1.146)

SU(Nf )V :
δS

δαa
V

∣∣∣∣
αa

V =0

= −∂µ(ψ̄γµ
λa

2
ψ) − ψ̄

[
λa

2
, m

]
ψ (1.147)

SU(Nf )A :
δS

δαa
A

∣∣∣∣
αa

A=0

= −∂µ(ψ̄γµγ5 λa

2
ψ) − ψ̄

{
λa

2
, m

}
γ5ψ (1.148)

38



1.4 CP violation

where the sum over flavour is understood and the λa matrices are the Gell-Mann

matrices acting in flavour space. It is clear that all the currents are conserved in

the limit of massless quarks.

The last symmetry law, U(11)A, deserves a special treatment: at a näıve level, treating

this symmetry as a non anomalous one, one obtains

U(11)A :
δS

δαA

∣∣∣∣
αA=0

= −∂µ(ψ̄γµγ5ψ) − 2im(ψ̄γ5ψ) + . . . (1.149)

where the dots are there to underline that this current is the only one which is not

conserved in the massless quark limit because of the presence of the so called anomalous

term. This term is not calculable by means of (1.145) and is a typical example of a

classical symmetry1 which is spoiled at the quantum level.

The reason why (1.145) gives an incomplete answer is that it has been obtained under

the assumption of performing a local change of variable which leaves the integration

measure invariant ; while under the chiral singlet rotation

ψ′
L,R(x) =

(
1 ∓ i

α

2

)
ψL,R(x) (1.150)

ψ̄′
L,R(x) = ψ̄L,R(x)

(
1 ± i

α

2

)
(1.151)

the measure of the functional integral Dφ ≡ DψDψ̄ in (1.143) changes according to

[53; 54]

(
DψDψ̄

)′
= DψDψ̄ eiNf α

R

d4x g2

32π2 Ga
µνG̃a,µν

(1.152)

where G̃a,µν = 1
2ǫµνρσGa

ρσ is the dual of the gluonic field Gµν . Performing (1.150) and

(1.151) transformations and applying (1.145) taking now into account (1.152) gives

δS

δαA

∣∣∣∣
αA=0

= −∂µ(ψ̄γµγ5ψ) − 2im(ψ̄γ5ψ) + Nf
g2

32π2
Ga

µνG̃
a,µν (1.153)

which is the correct anomalous WTI as found in [55; 56; 57].

We have now all the elements to understand how this affect the Standard Model la-

grangian via the so called strong CP problem. Let us see the problem from an “inverse”

1With classical symmetry we mean a symmetry which is an exact one at a lagrangian level.
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point of view, following [10]: in the massless limit, even if QCD is formally invariant

under a U(11)A transformation (1.150), the chiral anomaly (1.153) affects the action

through

∆S = α

∫
d4x ∂µJµ

5 = α
g2
sNf

32π2

∫
d4x GaµνG̃a

µν (1.154)

where Jµ
5 = ψ̄γµγ5ψ. It is known [58] that the GG̃ term of (1.153) can be written as a

total divergence

GaµνG̃a
µν = ∂µKµ (1.155)

where

Kµ = ǫµαβγAa
α

(
Ga

βγ − gs

3
fabcA

b
βAc

γ

)
. (1.156)

This means that the variation (1.154) is a surface integral

∆S = α
g2
sNf

32π2

∫
d4x ∂µKµ = α

g2
sNf

32π2

∫
dσµKµ . (1.157)

Hence, using the näıve boundary condition that Aa
µ = 0 at (spatial) infinity, one has

∫
dσµKµ = 0, and U(1)A appears to be a symmetry again. What was pointed out by

’t Hooft [59; 60; 61], however, is that the correct boundary condition to use is that

Aa
µ should be a pure gauge field at (spatial) infinity, i.e., either Aa

µ = 0 or a gauge

transformation of 0. It turns out that, with these boundary conditions, there are gauge

configurations for which
∫

dσµKµ 6= 0 and thus U(1)A is not a symmetry of QCD.

This is most easily exemplified by working in the Aa
0 gauge. Studying SU(2) QCD for

simplicity, in this gauge [62], one has only spatial gauge fields Aa
i and under a gauge

transformation these fields transforms as

1

2
τaAa

i
.
= Ai → ΩAiΩ

−1 +
i

gs
∇iΩΩ−1 , (1.158)
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where τa are SU(2) generators. Thus, vacuum configurations either vanish or have

the form ig−1
s ∇iΩΩ−1. In the Aa

0 = 0 gauge, one can further classify these vacuum

configurations by how Ω goes to unity as r → ∞:

Ω → ei2πn as r → ∞ with n = 0,±1,±2, . . . . (1.159)

The integer n, the winding number, is related to the Jacobian of an S3 → S3 map and

is given by [63]

n =
ig3

s

24π2

∫
d3r Tr

(
ǫijkA

iAjAk
)

. (1.160)

This expression is closely related to the Bardeen current Kµ. Indeed, in the Aa
0 = 0

gauge, only K0 6= 0 and one finds for pure gauge fields

K0 = −gs

3
ǫijkǫabcA

i
aA

j
bA

k
c =

4

3
igsǫijkTr

(
AiAjAk

)
. (1.161)

The true vacuum is a superposition of these, so called, n-vacua and is called

θ−vacuum

|θ〉 =
∑

n

e−inθ |n〉 . (1.162)

It is easy to see that in the vacuum to vacuum transition amplitude there are transitions

with
∫

dσµKµ 6= 0. Indeed

n|t=+∞ − n|t=−∞ =
g2
s

24π2

∫
dσµKµ

∣∣∣∣
t=+∞

t=−∞

. (1.163)

Using (1.163) one can write the vacuum to vacuum transition amplitude as

〈θ+| θ−〉 =
∑

m,n

eimθe−inθ 〈m+|n−〉 =
∑

ν

eiνθ
∑

n

〈(n + ν)+| ν−〉 . (1.164)

It is easy to see that the difference in winding number ν is
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ν =
g2
sNf

32π2

∫
dσµKµ

∣∣∣∣
t=+∞

t=−∞

=
g2
s

32π2

∫
d4x GaµνG̃a

µν . (1.165)

Using now the path integral representation for the vacuum to vacuum amplitude

〈θ+| θ−〉 one finds

〈θ+| θ−〉 =
∑

ν

∫
DA eiSeff [A]δ

(
ν − g2

s

32π2

∫
d4x GaµνG̃a

µν

)
, (1.166)

where

Seff [A] = SQCD [A] + θ
g2
s

32π2

∫
d4x GaµνG̃a

µν . (1.167)

The resolution of the U(1)A problem, by recognizing the complicated nature of the

QCD vacuum, effectively adds an extra term to the QCD lagrangian

Lθ = θ
g2
s

32π2
GaµνG̃a

µν . (1.168)

This term violates parity and time reversal invariance but conserves charge conjugation

invariance, so it violates CP. It induces a neutron EDM dn which, with the strong

experimental bound of |dn| < 3 × 10−26 e cm [64], implies θ < 10−9. Why this should

be so is known as strong CP problem.

If besides QCD, one include also the weak interaction, as we have already seen, the

quark mass matrix is complex (see (1.7)); to go to a physical basis, one must diagonalize

this mass matrix and when does so, in general, one performs a chiral transformation of

the kind (1.150)-(1.151) that changes θ by θEW =arg detM. So, in the Standard Model,

the coefficient of GG̃ is

θ̄ = θ + θEW = θ + arg detM . (1.169)

The strong CP problem is why this angle, which is the result of a fine tuning between

strong and weak effects, results to be so small.
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Whatever the order of magnitude of θ is, the interesting thing is that (1.168) is able

to generate a neutron EDM, whose standard definition can be written as

~dN ≡
∫

d3y ~y θ〈N |J0(y)|N〉θ , (1.170)

where J0 is the time component of the e.m. current operator. If the θ-term (1.168) is

neglected in the QCD Lagrangian, then the moment ~dN identically vanishes. Treating

Lθ as a perturbation at first order, one has

~dN ≡ −iθ
g2

32π2

∫
d3y ~y 0〈N |J0(y)

[∫
d4x GG̃(x)

]
|N〉0 , (1.171)

where |N〉0 is a shorthand for |N〉θ=0. As well known [11], the direct calculation

of (1.171) is a difficult task due to the presence of the topological charge operator.

Therefore, the authors of [12] have investigated the possibility of replacing the insertion

of the topological charge with the OZI-violating (which will be called quark-disconnected

from now on) insertions of the flavor-singlet pseudoscalar density

PS(x) = ū(x)γ5u(x) + d̄(x)γ5d(x) + s̄(x)γ5s(x). (1.172)

in the presence of the charge density operator J0. To this end, in [12], it has been shown

that exploiting the axial ward identity (1.148) and the anomalous one (1.153), within

the functional expectation value (1.141) in presence of the θ–term (1.168), expression

(1.171) can be rewritten as

2Nf
g2
s

32π2

∫
d4x 〈OGG̃(x)〉 = −2m

∫
d4x

{
[〈OPS(x)〉]disc.(a) + [〈OPS(x)〉]disc.(b)

}
,(1.173)

with m̄−1 = (m−1
u + m−1

d + m−1
s )/3 and the operator O of interest, looking at the

definition (1.171), is given by

O = Nα(z) J0(y) N̄β(0) (1.174)

where J0(y) is the e.m. charge density
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J0(y) = eu ū(y)γ0u(y) + ed d̄(y)γ0d(y) + es s̄(y)γ0s(y) , (1.175)

and Nα(β) are the interpolating fields of the neutron [65]

Nα =
1√
6

εijkdi
α

(
dTj

Cγ5u
k
)

(1.176)

i, j, k being color indexes, α and β Dirac spinor indexes, and C the charge conju-

gation operator. It is worth mentioning that the author of [12] have found that

quark-connected diagrams do not contribute to the matrix element (1.173), as already

found in [66]. A pictorial representation of all the explicit diagrams contributing to

[〈OPS(x)〉]disc.(a) and [〈OPS(x)〉]disc.(b) is shown in figure 1.6. Note that: i) in the

SU(3) symmetric limit the diagrams of type (b) vanish, because the disconnected inser-

tions of the charge density J0 are zero due to the relation eu +ed +es = 0; ii) the r.h.s.

of (1.173) is proportional to m. Since m = 0 when at least one of the quark masses is

zero, the insertion of the topological charge has no effect in such a limit and the neutron

EDM is vanishing; iii) the only insertions of the singlet pseudoscalar density, which

are left in the final result (1.173), are those disconnected diagrams which are related

to the operator GG̃ via the anomaly.

Let us now close this section stressing out that it is now clear that the bulk of the

neutron EDM calculation, as well as the main obstacle, will be the evaluation of these

disconnected insertions, as these are known to be very difficult and time consuming

quantities to be evaluated on the lattice. The details about their structure, in terms

of the all-to-all fermionic propagator, as well as the present available techniques for

calculating these diagrams, will be treated in section 3.3.1 in the (much more) simple

case of the mesonic π0 and 2–flavour η′ correlation functions. The results and our final

remarks about the different methods within this framework will be given in chapter 4.
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e eu d+( )OP NS disc a c[ ] = −
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Figure 1.6: neutron EDM topology - The disconnected diagrams contributing to

the r.h.s. of (1.173). Solid lines are u- and d-quark propagators, while dashed lines are

s-quark propagators; the hatched ovals are the operators which create and destroy the

neutron while open dots and full squares represent the insertion of γ5 (PS) and γ0 (J0),

respectively. Gluon lines as well as extra quark loops are not shown; as already explained

in the text quark-connected diagrams do not contribute to the relevant matrix element

(1.173). Picture taken from [12] (Guadagnoli et al.).

45

2/figures/EDM_final_diags.eps
http://iopscience.iop.org/1126-6708/2003/04/019


1. FLAVOUR PHYSICS

46



2

Lattice Quantum

Chromodynamics

This chapter will be dedicated to explain in details the technique used in this

work for the non perturbative estimate of hadronic observables, which is lattice QCD

(LQCD). We will start describing the fundamental theory of the strong interaction to-

gether with a particular formulation of quantum field theories, the so called Feynman’s

path integral [51] which is a well suited approach for numerical simulations. We will

then show how to simulate quarks and gluons on a discrete lattice, and in particular

we will discuss the twisted mass action which is a particular kind of fermionic action,

as well as how to overcome the kinematic constraint imposed to the lattice momenta

by the finite volume. We will end the chapter showing how in practice it is possible to

perform Monte Carlo simulations with the introduced lattice action.

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) [4; 5; 6] is the model currently accepted for de-

scribing the theory of the strong interaction. This theory exhibits two different regimes

depending on whether the process has an energy greater or smaller than a characteristic

scale, known as ΛQCD ≃ 0.2− 0.3 GeV . The need to distinguish between two different

ranges can be traced back to the existence of the so called asymptotic freedom property

of QCD [5; 67; 68; 69; 70], which means that the renormalized coupling goes to zero in

the high energy region (E ≫ ΛQCD) as the first coefficient of the β function expansion
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2. LATTICE QUANTUM CHROMODYNAMICS

is1

β0 =
11

3
Nc −

2

3
Nf (2.1)

where Nc = 3 is the QCD color number and Nf is the number of dynamical flavors.

The coefficient β0 remains positive as long as Nf < 16.5 and it is known that Nf = 6

in nature, and this implies that the renormalized coupling at the µ2 scale,

αs(µ) =
4π

β0ln(µ2/ΛQCD)
, (2.2)

gets smaller as µ2 grows with respect to ΛQCD.

This means that in a high energy process, i.e. a process with a characteristic energy

E ≫ ΛQCD, quarks can be considered as free from the mutual strong interaction and

a perturbative approach is able to explain processes as deep inelastic scattering, the

mass spectrum of heavy quarks bound states, hadron production from e+e− collisions

and Drell-Yan processes [71; 72]. On the other hand, in the low energy regime E ≪
ΛQCD, the coupling constant becomes large and one can not use perturbative methods

anymore. This assumption is necessary to explain the quark confinement mechanism

or, in other words, the phenomena for which free quarks and gluons has never been

observed; LQCD works [73] support this assumption too, even if at present an analytic

demonstration is still missing. As a result, for such a theory quark or hadron mass

estimates, hadronic matrix elements, decay matrix elements and so on need a non

perturbative approach, as they are low energy properties.

At a more formal level, QCD is a gauge theory which possess, as elementary degree

of freedom, the quark and gluon fields and more specifically it is a Yang Mills theory

[29] with exact (i.e. unbroken) color symmetry SU(3)c; fermionic fields (spin 1/2)

are described by means of Dirac spinors and each quark flavour transforms as the

fundamental representation of the gauge group (a 3) while gauge fields, which represent

1Let us remember that the β function is defined as

∂αs

∂lnµ2
= β(αs) = αs

»

−β0
αs

4π
− β1

“ αs

4π

”2

− β2

“ αs

4π

”3

− . . .

–

,

where αs is related to the QCD gauge coupling constant as αs = gs/(4π).
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2.1 Quantum Chromodynamics

the massless force carrier bosons (spin 1), transforms as the adjoint representation of

SU(3). We will define

ψa
α a=1,..Nc (2.3)

as fermionic field, with α as Dirac index and a as color index, and with

Aµ(x) =

N2
c −1∑

A=1

AA
µ (x)TA (2.4)

we will represent gauge boson fields. Nc = 3 for SU(3)c, TA = λA/2 are the eight

generators of the symmetry group proportional to the Gell-Mann matrices (λA) and µ

is the Lorentz index (µ = 1, . . . , 4). Using the introduced fields one can write the QCD

action as

SQCD =

∫
d4xLQCD =

=

∫
d4x





Nf∑

i=1

ψ̄a
iα(x)(γµ

αβDab
µ − miδ

abδαβ)ψb
iβ(x) − 1

4

8∑

A=1

GA
µνG

µν
A



 , (2.5)

where i is the flavour index which labels the different (u,d,c,s,t,b) quarks, Dab
µ is the

covariant derivative defined as

Dab
µ = (δab∂µ − igs(T

A)abAA
µ ) (2.6)

and Ga
µν is the gauge fields strength tensor

Gµν
A = ∂µAA

ν − ∂νA
A
µ − gsf

ABCAB
µ AC

ν . (2.7)

From (2.5) is clear that the interaction between gluons and quarks is a vectorial

one and that means that a mass term for each flavour is not forbidden, while on the

contrary being the SU(3)c symmetry unbroken, gluons remain massless.

At present, the only known technique to perform non perturbative calculations

without making specifying assumptions is to simulate the theory on a space-time lattice,

following the Wilson’s approach [7], as we will show in the following.
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2.2 Lattice gauge theories

As we have already mention in section 1.4.2, the functional formalism is more conve-

nient with respect to a canonical approach for the formulation of a field theory because

it allows to treat different regimes in a unified formalism. One can simply add the de-

sired interaction term, multiplied by its coupling constant, in the exponential of (1.143);

then if one is studying a process in which this coupling constant is small (≪ 1) then

one will need only to expand the exponential and (1.141) will give the usual Feynman

rules for the process. To be honest, perturbation theory with lattice regularization

[74] converges more slowly with respect to the dimensional regularization case, but

the functional formalism allows one to obtain a non perturbative estimate of physical

quantities associated to various operators using Monte Carlo techniques. This estimate

is made possible by approximating the integrals in (1.141) and (1.143), defined in the

formal theory on an infinite volume, on a discreet space-time of finite volume (the so

called lattice). Hence, let us introduce an hypercubical lattice

Λ = aZ4 = {x|xµ/a ∈ Z} , (2.8)

where a represents the lattice spacing. Boundary conditions for such a lattice can be

chosen in different ways: the most used one is employ periodic boundary conditions

(PBC), and in the beginning we will suppose this is the case. In section 2.5 we will

describe an alternative choice for boundary conditions, as they are going to be used

in this work. On the lattice, the value of a generic field Φ(x) will be defined on

each x ∈ Λ, and so operator mean values will become multiple integrals which can be

numerically evaluated. At the same time, having introduced a lattice, allows one to

non perturbatively regularize the integral (1.143) because of the inverse lattice spacing

(a−1) acts like an ultraviolet cut-off in momentum space. On a discrete lattice the only

allowed momenta are

− π

a
< pµ <

π

a
. (2.9)

In what follows, we will indicate with x,y . . . a set of integer numbers which identify

a lattice site, with µ,ν . . . the four hypercubic lattice directions and with µ̂,ν̂ . . . the
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2.2 Lattice gauge theories

corresponding unit vectors. We will also show how the integrands must be modified

after undergoing the discretization they need to be put on the lattice; essentially the

discretization procedure can be summarized by means of these three steps

� Integrands must be discretized;

� It must be checked that the discretization procedure of step 1 does not produce

unwanted features (as the fermion doubling problem, which will be treated in

section 2.2.2).

� It must be checked that in the continuum limit, a → 0, the discretized integrands

tend to their continuum expression and that irrelevant operators (which have

dimension greater than 4) go to zero in that limit.

In the next sections, we will follow these three steps to get a discretized version of the

fermionic as well as bosonic action and in the end we will present (2.5) in a suitable

way for numerical lattice simulations.

2.2.1 Gauge bosons action

In the continuum the gauge fields Gµ are introduced, for instance, int the fermionic

free field action in order to promote the global gauge invariance to a local one, which

means invariance under the transformation

ψ(x) −→ ψ′(x) = Λ(x)−1ψ(x) , (2.10)

with the matrix Λ function of x. To obtain the invariance of the Dirac action under

(2.10) the gauge field is introduced, and it is brought into the theory using the covari-

ant derivative defined as (2.6). In this way the term ψ̄(x)/∂ψ(x) becomes the gauge

invariant term ψ̄(x) /Dψ(x); this substitution produce an invariant term because, in the

continuum, the derivative operator depends only on infinitesimal increments. On a

hypercubical lattice, however, the shortest distance different from zero is the lattice

spacing a and so the (forward) derivative is defined as a ratio of finite increments

∂µψ(x) −→ ∇f
µψ(x) =

ψ(x + aµ̂) − ψ(x)

a
(2.11)
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and, as a consequence, if one consider a kinetic term either bilinear in ∇f
µψ(x) (scalar

field action kinetic term) or linear in ∇f
µψ(x) (Dirac action kinetic term) non gauge

invariant1 terms of the kind ψ̄(x)γµψ(x + aµ̂) are generated. In order to restore gauge

invariance, we must define a parallel transport operator which allows the field to be

transported from one point of the lattice to its nearest neighbor and so it follows that

a gauge field on the lattice will be associated to the b links, which connect nearest

neighbor among them; if x is a lattice point and x + aµ̂ his nearest neighbor in the

µ direction, the corresponding link b will be the path which goes straight from x to

x + aµ̂. This b link will be identified with the ordered points couple as

b =< x + aµ̂, x >≡ (x, µ) . (2.12)

The parallel transport operator, associated to the b link, will be the one which bring

the field from x to x + aµ̂, and will be represented as

U(b) ≡ U(x + aµ̂, x) ≡ Uxµ ∈ G , (2.13)

where G is the gauge symmetry group of the theory. U(b) is called link variable.

Considering an arbitrary path on the lattice,

C = bn ◦ .... ◦ b2 ◦ b1 , (2.14)

the associated parallel transport operator will be

U(C) = U(bn)....U(b2)U(b1) ≡
∏

b∈C

U(b) (2.15)

and is composed of link variables. We will consider as lattice gauge field the ensemble

of all the gauge link variables {U(b)}.
Under a local gauge transformation the link variables transform as

1The reason why such terms are not gauge invariant is because the fields ψ are not in the same

space-time point.
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2.2 Lattice gauge theories

U(y, x) −→ U(y, x)′ = Λ(y)−1U(y, x)Λ(x) , (2.16)

from which one can infer that coupling terms like

ψ̄(x)U(x, y)ψ(y) or Tr (U(x, x)) (2.17)

are gauge invariant terms. It is the second term in (2.17) which will be used in the

lattice invariant gauge fields action.

The smallest closed path which can be taken on a lattice is called plaquette and is

composed of four links

< x + aµ̂, x >, < x + aµ̂ + aν̂, x + aµ̂ >, < x + aν̂, x + aµ̂ + aν̂ >, < x, x + aν̂ >(2.18)

with the following orientation

x + aν̂

²²

x + aµ̂ + aν̂oo

x // x + aµ̂

OO (2.19)

let us refer to this plaquette as

p = (x; µν) , (2.20)

while the corresponding parallel transport operator will be

Up ≡ Ux;µν ≡ U(x, x + aν̂)U(x + aν̂, x + aµ̂ + aν̂) · (2.21)

· U(x + aµ̂ + aν̂, x + aµ̂)U(x + aµ̂, x) ,

and is called plaquette variable. The action, which was first proposed by Wilson, for a

free lattice gauge field (with no matter field interaction term) can now be defined in

term of the plaquette variable as
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S(U) =
∑

p

Sp(Up) (2.22)

where

Sp(U) = −β

{
1

2TrI

(
TrU + TrU−1

)
− 1

}
(2.23)

= β

{
1 − 1

N
Re[Tr(U)]

}

and the last step is true for the case of SU(N) gauge symmetry group. The sum over

plaquettes is to be understood as

∑

p

≡
∑

x

∑

1≤µ<ν≤4

. (2.24)

The constant term of the action, see (2.23), has no physical meaning and can be omitted;

thus we arrive to the final expression for the hypercubical lattice SU(N) lattice gauge

fields action

S
W
G (U) =

∑

p

− β

N
Re[Tr(Up)] , (2.25)

where
∑

p is limited to the domain defined in (2.24). As U ≡ Up ≡ U(x, x) (the

plaquette lives over a closed path) one can show, substituting (2.16) into (2.17), that

(2.25) is gauge invariant, real and positive.

It can be shown that the SU(N) Wilson action just defined has, as its own limit,

the Yang-Mills action. To this end, one must think that as an SU(N) object, it can

always be written as1

U(x, µ) ≡ e−iagsAa
µ(x)T a

, (2.26)

1When it will not be necessary for a specific reason, we will adopt the convention of omitting sums

over repeated indices.
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so that, expanding in powers of the lattice spacing a and using the two following

expression

Aν(x + aµ̂) = Aν(x) + a∇f
µAν(x) , (2.27)

and the Campbell-Baker-Hausdorff formula

exey = ex+y+ 1
2
[x,y]+... , (2.28)

one has

Up = e−a2Gµν + O(a4) (2.29)

with Gµν(x) = ∇f
µAν(x) −∇f

νAµ(x) + [Aµ(x), Aν(x)]; it is enough to substitute (2.29)

in (2.25) to obtain

S
W
G (U) −−−→

a−→0
− β

4N

∫
d4xGa

µνG
µν
a + O(a2) (2.30)

which clearly shows that the leading term of SW
G (U), for a → 0, is equal to the Yang-

Mills action, assuming β = 2Nc/g2
s and identifying gs with the lattice bare coupling

constant.

2.2.2 Fermionic Wilson action

It is more difficult to obtain a discrete fermionic action, with the right physical

properties, in comparison to the bosonic case. In what follow, we will give a lagrangian

formulation of the fermionic action and we will show the solution of the so called

fermion doubling problem. The fermionic lagrangian density in euclidean space-time

can be written as1

LF = ψ̄(x)
(
/∂ + M0

)
ψ(x) , (2.31)

1In this section, flavour indices will be understood in each fermionic action and lagrangian formulas,

for the sake of readability. This means that each expression must be thought as summed over the flavour

of the quark involved.
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from which it is straightforward to write the fermionic action

SF =

∫
d4xd4yψ̄(x)αK(x, y)αβψβ(y) , (2.32)

with K(x, y)αβ = (i/∂+M0)αβδ(x−y). Symmetrizing derivative operators and imposing

that fermionic fields are zero at spatial infinity in (2.32), one gets

SF =

∫
d4xψ̄(x)

(
−1

2
γµ

←

∂µ +
1

2
γµ

→

∂µ +M0

)
ψ(x) . (2.33)

Equation(2.33) can be put on the lattice by means of the usual substitutions





ψα(x) → ψα(x) with x ∈ Λ

∂µψ(x) → ∇f
µψ(x) = ψ(x+aµ̂)−ψ(x)

a

∫
d4x → ∑

x a4

(2.34)

where we have indicated with Λ the hypercubical lattice of spacing a and side L;

Substituting (2.34) in (2.33) it can be obtained

S
N
F = a4

∑

x,y



M0 ψ̄(x)δ(x − y)ψ(y) + ψ̄(x)


 1

2a

4∑

µ=1

γµδ(y − (x + µ̂))+

− 1

2a

4∑

µ=1

γµδ(y − (x − µ̂))


 ψ(y)



 , (2.35)

where the suffix N stands for näıve1; it has been given that name because action (2.35)

introduces in the theory new and unwanted degrees of freedom. To show this problem

we will analyze the propagator S(x) which can be calculated starting from the näıve

fermionic action. S(x) satisfy

M0S(x) +
1

2a

∑

µ

γµ(S(x + µ̂) − S(x − µ̂)) = δx0 , (2.36)

1In this context näıve, stands for sloppy regularization.
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which, solved in the Fourier space, gives

S(p) =
a

−i
∑

µ γµ sin apµ + aM0
(2.37)

with S(x) =
1

Ω

∑

p

S(p)e−iapx (2.38)

where Ω is the lattice site number and p can take values among the first Brillouin zone

(-π/a ≤ p ≤ π/a). Expanding in powers of a one gets

S(p) → 1

−iγµpµ + M0
+ O(a2) (2.39)

That result seems to show that, in the a → 0 limit, one obtains the usual fermionic

propagator in continuum space. However, while taking the previous limit, one must

be very careful near the Brillouin zone boundary. In particular, when a p component,

say pµ, takes the value π/a the function sin apµ in (2.37) becomes null (as it happens

for pµ = 0). This, in turn, imply that near the point pµ = 0 or pµ = π/a (let us call

this point p̄) the propagator S(p) defined in (2.37) will tend to an expression similar to

(2.39)1 in the continuum limit.

As a result, if one discretizes the theory in that way, one is considering 16 different

fermionic species with degenerate mass. This is the so called fermion doubling problem.

From [75] one can learn that this multiplicity in the mass spectrum has its origin in the

implemented regularization scheme which, when m = 0, retain an exact axial symmetry

whatever the value of the lattice spacing is. As a consequence this theory cannot

have an axial anomaly, in contrast with the usual regularization schemes employed

in the continuum space, and it has created further fermionic species which cancel that

anomaly. The latter can be recovered only by introducing some explicit axial symmetry

breaking term. From this one can infer that there is no chance of finding a discrete

version of (2.33) which solve the doubling problem and keeps chiral symmetry unbroken

1For a point p̄, the fermionic propagator can be obtained substituting in (2.39) pµ with kµ = pµ− p̄µ

and the γ matrices with s(p̄)γµs(p̄)−1 where the matrices s(p̄) are combination of γ matrices, as can

be found in [75].
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in the m → 0 limit. This can be shown calculating the propagator of an hypothetical

chiral invariant action

S(p) =
a∑

µ γµFµ(ap)
. (2.40)

For small a values, it must be Fµ(ap) ∼ apµ so that the correct continuum limit is

preserved; this means that the F -function will go to zero with a definite slope in pµ = 0

as well as in pµ = 2π/a for periodicity. Being F a continuous function it will at least

exist another zero in the interval 0 < apµ < 2π (where Fµ vanishes with the opposite

slope) and the theory will necessarily produce undesired fermionic species.

There are different approaches to avoid the doubling problem and in this work we

will follow the Wilson’s one [7], which we are going to explain below. This method

consist of adding to (2.35) an irrelevant term which explicitly brakes chiral symmetry

even in the m = 0 limit. In order to leave the action as local as possible, this term is

composed of nearest neighbor lattice point

a4
∑

x

r

2a

4∑

µ=1

[
ψ̄(x + µ̂) − ψ̄(x)

]
[ψ(x + µ̂) − ψ(x)] (2.41)

and r is a parameter which takes values between 0 and 1. If we consider the action

(2.35) together with the Wilson term (2.41), we have

S
W
F = a4

∑

x



ψ̄(x)(M0 +

4r

a
)ψ(x) − 1

2a

4∑

µ=1

[
ψ̄(x + µ̂)(r + γµ)ψ(x)+

− 1

2a

4∑

µ=1

ψ̄(x)(r − γµ)ψ(x + µ̂)
]


 , (2.42)

which is the fermionic Wilson action without the doubling problem; this action is in-

variant under rotations and translations on an hypercubic 4-dimensional lattice. What

must be stressed is that, as already mentioned, if on one hand the Wilson term solves

the doubling problem, on the other it breaks chiral symmetry for finite values of the

lattice spacing. Chiral symmetry is restored in the continuum limit, but the fact that it
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is broken on the lattice has important consequences. First of all it introduces O(a) er-

rors, while the original näıve formulation (2.35) is affected only by O(a2) errors. Then,

the chiral symmetry breaking implies that the quark mass renormalize multiplicatively

as well as additively; in fact, in the limit m → 0, only if chiral symmetry is unbroken

and no anomaly is present then the mass renormalization is multiplicative and one is

guaranteed, to all orders, that quantum correction will not generate a mass different

from zero. If chiral symmetry is no longer a symmetry of the theory, nothing forbids

additive terms to appear which are no longer proportional to the bare mass. In this

context it is useful to introduce a mass, called critical mass, which must be subtracted

from the bare mass M0

mq = M0 − Mcr . (2.43)

The critical mass will be determined so as to properly define the chiral point, for

instance by imposing that the lightest pseudoscalar meson (which is the pion in the

two flavour case) is massless at that point.

In the Euclidean space discretization one is free to choose a normalization for the

fields which greatly simplifies the lattice action. The first step is to make (2.42) gauge

invariant

S
W
F = a4

∑

x



ψ̄(x)(m0 +

4r

a
)ψ(x) − 1

2a

4∑

µ=1

[
ψ̄(x)Uµ(x)(r − γµ)ψ(x + µ̂)+

− 1

2a

4∑

µ=1

ψ̄(x + µ̂)U †
µ(x)(r + γµ)ψ(x)

]


 ; (2.44)

then, introducing the Hopping parameter

k =
1

8r + 2am0
(2.45)

and defining new dimensionless quark fields

ψ(x) −→
√

2k

a3
ψ(x) (2.46)
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one can obtain an equivalent version of the discrete Dirac action, in the Wilson’s ap-

proach

S
W
F =

∑

x



ψ̄(x)ψ(x) − k

4∑

µ=1

(
ψ̄(x)Uµ(x)(r − γµ)ψ(x + µ̂)+

−k
4∑

µ=1

ψ̄(x + µ̂)U †
µ(x)(r + γµ)ψ(x)

)


 . (2.47)

The free quark propagator satisfies

S(x) − kq

∑

µ

[(r − γµ)S(x + µ̂) + (r + γµ)S(x − µ̂)] = a−4δx0 (2.48)

which is solved, in momentum space, by

S(p) =
a

1 − 2kq
∑

µ[iγµ sin(apµ) + r cos(apµ)]
. (2.49)

It can be verified that for p → 0 the new propagator (2.49) will tend to (2.39) form

as in the case of (2.35) action. On the other hand, when a p component approaches

the value π/a, the effective quark mass is of order O(1/a) implying S(p) ∼ O(a); this

guarantees that, in the continuum limit, the extra fermions gain infinite mass and only

one species with mass m survive.

Action (2.47) represents the starting point for writing the fermionic Dirac action

on the lattice and it is important to underline that even if this formulation contains

the r parameter, the physical quantities in the continuum limit must be independent

from the value chosen for that parameter. The numerical results which we are going to

show have been obtained using r = 1.

2.3 Improvement

In this section we will briefly present the procedure, commonly known as improve-

ment, which allows one to reduce the cut-off dependence of the physical quantities

calculated on the lattice. If a ≃ 0, the lattice theory can be described by means of a

local effective theory, defined in the continuum, with action
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Seff =

∫
d4x

{
L0 + aL1 + a2

L2 + . . .
}

, (2.50)

where L0 is the continuum QCD lagrangian while the Lk terms represent linear com-

bination of local operators with dimension 4+k. Among all the possible operators, the

allowed ones are the ones which share the same symmetry of the lattice action.

It is not only the lattice action which is responsible for the cut-off effects, but

also the composite local operators which enter the green functions of interest. Let us

consider a gauge invariant operator Φ(x), composed of a product of quark and gluon

fields; for the sake of simplicity let us assume that the renormalization procedure does

not mix Φ(x) with other operators. We will expect then that the renormalized n-point

correlation function1

Gn(x1, . . . , xn) = (ZΦ)n 〈Φ(x1) . . .Φ(xn)〉cont (2.51)

will have a well defined continuum limit if the renormalization constant ZΦ is properly

chosen and the points x1, . . . , xn are kept well separated each other. Within the frame-

work of the local effective theory, the renormalized field ZΦΦ(x) can be represented as

the effective field

Φeff(x) = Φ0(x) + aΦ1(x) + a2Φ2(x) + O(a2) , (2.52)

where again the fields Φk(x) are a linear combination of local fields with the proper

dimension and symmetry properties. At order O(a), the connected correlation function

on the lattice are given by

Gn(x1, . . . , xn) = 〈Φ0(x1), . . . ,Φ0(xn)〉0
− a

∫
d4y 〈Φ0(x1), . . . ,Φ0(xn)L1(y)〉0

+ a
n∑

k=1

〈Φ0(x1), . . . ,Φ1(xk), . . . ,Φ0(xn)〉0 + O(a2) , (2.53)

1Green functions calculated in euclidean space are usually called correlation function.

61



2. LATTICE QUANTUM CHROMODYNAMICS

where the subscript 0 indicate that the expectation values on the right hand side must

be taken in the continuum limit, i.e. using L0 as the lagrangian on the functional

exponential. The second term is the O(a) effective action contribution to the correlation

function which, being an integral over y, it is in principle divergent for y = xk and need

a subtraction prescription. The exact subtraction procedure does not really matter as

a different choice for the inserted local operator cause only a redefinition of the field

Φ1(x).

However it must be stressed that equation (2.53) does not take into account all

the lattice spacing dependence of the correlation functions, as there are also implicit

dependencies. These hidden dependence’s have their root in the Φ1 and L1 operators,

which are a linear combination of a lattice fields basis. The basis elements are inde-

pendent of a indeed, but the coefficients may be. These coefficient can be calculated

within perturbation theory and they are a function of g2
s ∼ log a and aM0.

The improvement consists of adding both to the action and field operators a com-

plete set of irrelevant operators. The coefficient will be determined, at a given order in

perturbation theory, to cancel at that order (which is typically O(a) for the fermionic

action and O(a2) for the pure gauge action) the finite lattice spacing effects. The orig-

inal idea, due to Symanzik [76; 77; 78], involved only the fermionic action but the

procedure has been extended to the gauge sector too [79]. In this case the tree-level

Symanzik improved gauge action [80] can be written as

S
TSI
G [U ] =

β

3

∑

x


b0

∑

1≤µ≤ν≤4

[1 − ReTr(Up(x; µ, ν))] +

b1

∑

µ 6=ν

[1 − ReTr(U1×2(x; µ, ν))]


 (2.54)

where besides the plaquette term Up there is also the rectangular (1 × 2) Wilson loop

term, U1×2, and β = 6/g2
s is again the bare inverse coupling and the coefficient are

b1 = −1/12 and b0 = 1 − 8b1.

It will be shown in section 2.4.1 that using a particular formulation for the fermionic

lattice action, known as twisted mass lattice QCD (tm-LQCD) action, one is able to

gain O(a) improvement in an automatic way only by tuning appropriately M0 to its
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critical value Mcr, instead of improving both the action and the operators involved in

the simulation.

2.4 Twisted-mass Lattice QCD

In this section we will present the fermionic action employed in the simulations,

known as twisted mass lattice QCD action [8; 81; 82; 83]; the choice for this particular

kind of regularization is justified, as we have already said and as we will show in

section (2.4.1), because it provides the O(a) improvement for the correlation functions

in a automatic way.

Let us consider two flavors, Nf = 2, of degenerate quark and let us write down the

action for the two flavors doublet χ

Stm[χ, χ̄, G] = a4
∑

x

χ̄(x) [DW + m0 + iµγ5τ3] χ(x) = a4
∑

x

χ̄(x)Dtmχ(x) , (2.55)

where we have called with DW the Wilson-Dirac operator of (2.44), written in the more

convenient form as

DW ≡ DW [U ] = γµ(∇µ + ∇∗
µ) − ar∇µ∇∗

µ , (2.56)

with the covariant (forward and backward) lattice derivative defined as

∇µψ(x) ≡ 1
a [Uµ(x)ψ(x + aµ̂) − ψ(x)],

∇∗
µψ(x) ≡ 1

a [ψ(x) − U †
µ(x − aµ̂)ψ(x − aµ̂)] .

(2.57)

In (2.55) µ is the so called twisted mass and τ3 is the third Pauli matrix of the flavour

symmetry group SU(2)f . We have used the term regularization because it is easy to

show that this action differs from the original Wilson scheme only by cut off effects

(which are irrelevant in the continuum limit)1. Let us start by taking the continuum

limit of (2.55)

1Moreover, it is possible to prove that the twisted Dirac operator is bounded from below, and this

was the first reason why this operator has been originally proposed [8].
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Stm[χ, χ̄, G] −−−→
a−→0

∫
d4xχ̄(x) [γµDµ + mq + iµγ5τ3] χ. (2.58)

We can write the mass term in the polar form as

mq + iµγ5τ3 = Meiαγ5τ3 , (2.59)

where

M =
√

m2
q + µ2, tan α = µ/mq . (2.60)

It is now easy to recognize that (2.58) is the standard Wilson action with a mass M ,

written in a different basis connected to the ψ one by

χ → e−iωγ5τ3/2χ = ψ, χ̄ → χ̄e−iωγ5τ3/2 = ψ̄ , (2.61)

provided we have choose ω = α, i.e. tanω = µ/mq. Indeed, under transformation

(2.61)

Meiαγ5τ3 → Mei(α−ω)γ5τ3 , (2.62)

and for that choose of ω one has

Scont
tm [χ, χ̄, G]|M0,µ → Scont

W [χ, χ̄, G]|M =

∫
d4xψ̄(x) (γµDµ + M)ψ(x) . (2.63)

Once established this, we will call twisted the basis χ, χ̄ while physical the basis ψ,

ψ̄. The physical interpretation for quark and gluon correlation function is easier and

more transparent in that basis, hence the name physical basis, but it can be proved that

the twisted one makes easier to work out the renormalization of the gauge invariant

correlators, including the ones with local operators insertion. It is of particular relevance

the case mq = 0, hence M0 = Mcr (see (2.43))
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Scont
mtm[χ, χ̄, G] =

∫
d4xχ̄(x) [γµDµ + iµγ5τ3] , (2.64)

which is connected to the standard action by a rotation of ω = π/2 and which is called

maximally twisted action (or twisted mass action at maximal twist). On the lattice this

is equivalent to the mtm-LQCD action

Smtm[χ, χ̄, G] = a4
∑

x

χ̄(x) [DW + mcr + iµγ5τ3] χ . (2.65)

Let us note that the term Mcr is again present because of the Wilson term, implicit

in DW , breaks chiral symmetry and so the additive quark mass renormalization is still

needed.

Applying (2.61) to the Wilson action and using the definition (2.56) of DW we can

explicitly write the twisted mass action in the physical basis as

Stm[ψ, ψ̄, G] = a4
∑

x

ψ̄(x)

[
1

2

∑

µ

γµ(∇∗
µ + ∇µ)+

(
−ar

2

∑

µ

∇∗
µ∇µ + mcr

)
e−iωγ5τ3 + mq

]
ψ(x) . (2.66)

In this basis, the Wilson term is the twisted one, while the mass term is left real.

2.4.1 Automatic improvement

The idea is to show that, if quarks are arranged in SU(2)f flavour doublets, O(a)

discretization effects are absent from the average of correlators (Wilson average, WA)

computed with lattice actions having Wilson terms of opposite sign and a common

value of the subtracted (unrenormalized) lattice quark mass

mq = M0 − Mcr , (2.67)

where M0 is the bare mass. For short, in the following, we will occasionally call mq the

“excess” quark mass.
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Absence of O(a) discretization errors in WA’s is proved by referring to the Symanzik

expansion of (connected, on-shell) lattice correlators in terms of continuum Green func-

tions and exploiting the relations derived by matching the “R5-parity” of lattice corre-

lators under the transformation

R5 :





ψ → ψ′ = γ5ψ

ψ̄ → ψ̄′ = −ψ̄γ5

(2.68)

to the R5-parities of the related continuum Green functions. R5 is an element of the

chiral SU(2)L ⊗ SU(2)R group, for it can be expressed as the product of the follow-

ing three transformations u
(1)
V (π) = exp(iπτ1/2), u

(2)
V (π) = exp(iπτ2/2), u

(3)
A (π) =

exp(iπγ5τ3/2), with τ1, τ2, τ3 the Pauli matrices. Obviously [R5]
2 = 11. The improve-

ment of WA’s is the result of the use of simple dimensional and symmetry consider-

ations combined with certain algebraic identities holding between pairs of correlators

computed with opposite signs of M0 and r. These identities come from a generalized

spurion analysis, which in turn follows from the fact that the lattice fermionic action

is left invariant if the field transformation (2.68) is accompanied by a simultaneous

change of sign of M0 and the coefficient, r, sitting in front of the Wilson term. From

these considerations one can prove that the Symanzik coefficients necessary to match

lattice correlators to the continuum ones have such properties under r → −r that all

O(a) corrections to the continuum result cancel in WA’s. What we are going to show,

following [82], is that fully O(a) improved lattice data for energy levels (hence hadronic

masses), matrix elements and renormalization constants can be obtained, without the

need of computing anyone of the usual lattice improvement coefficients, if one takes

averages of correlators evaluated with tm-LQCD actions having twisted Wilson terms

of opposite sign.

2.4.2 Wilson Average and O(a) improvement

Exploiting expression (2.56) for the Wilson Dirac operator, one can rewrite the

usual Wilson action (2.44) as

S
W
F (ψ, ψ̄, U) = a4

∑

x

ψ̄(x)

[
1

2

∑

µ

γµ(∇⋆
µ + ∇µ) − a

r

2

∑

µ

∇⋆
µ∇µ + M0

]
ψ(x) , (2.69)
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where again we have used the lattice forward and backward derivatives defined in (2.57).

The key observation of the work [82] is that under the R5 transformation (2.68) the

fermionic action (2.69) goes into itself, if at the same time we change sign to the Wilson

term (i.e. to r) and M0. In the spirit of the spurion analysis, a quick way of studying

the situation is to consider r and M0 momentarily as fictitious fields and consider the

combined transformation

R
sp
5 ≡ R5 × [r → −r] × [M0 → −M0] (2.70)

as a symmetry of the lattice theory. In this situation it is easy to prove that any

multiplicative renormalizable (m.r.) operator will be either even or odd under R
sp
5 .

This means that indicating with O that m.r. operator we can write

〈O(x1, x2, . . . , xn)〉
∣∣∣(r,M0) = (−1)PR5

[O]〈O(x1, x2, . . . , xn)〉
∣∣∣
(−r,−M0)

, (2.71)

where the sign inversion of r and M0 has to be performed both in the action and in the

mixing coefficients. This result can be proved by performing the change of fermionic

integration variables induced by (2.68) in the functional integral defining the l.h.s.

of (2.71).

The interest of (2.71) lies in the fact that from it one can prove that discretization

effects associated to the presence of the Wilson term in the action, induce in correlators

O(a) corrections having well defined properties under r → −r (r-parity for short). The

latter are such that averages of Green functions computed in lattice theories with

opposite values of r have a faster approach to the continuum limit and a better chiral

behavior than the two correlators separately.

Before explaining how cut- off effects are eliminated, let us establish how the r-parity

property of Mcr(r). Since Wilson’s lattice theory is invariant under the spurionic trans-

formation R
sp
5 , the mass action counterterm a4

∑
x ψ̄(x)Mcr(r)ψ(x) must be naturally

chosen so as to maintain this spurionic invariance. From this simple but crucial remark,

given the definition of R5, it is immediately concluded that the critical mass must be

an odd function of r1

1The interested reader will find in [82] how this this key property is born out by the definitions of

Mcr that are commonly employed either in PT or at the non-perturbative level on the lattice.
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Mcr(−r) = −Mcr(r) . (2.72)

Once established this, we start by noting that, since Mcr(r) is odd in r, the excess quark

mass mq (2.43), changes sign under M0 → −M0 and r → −r. The transformation R
sp
5

under which the Wilson action is invariant can then be also written as

R
sp
5 = R5 × [r → −r] × [mq → −mq] . (2.73)

Correspondingly, the relation (2.71), which expresses the implications of the spurionic

symmetry R
sp
5 on lattice correlators, takes the form

〈O〉
∣∣∣(r,mq) = (−1)PR5

[O]〈O〉
∣∣∣
(−r,−mq)

, (2.74)

where, by slightly changing the notation employed up to here, we have indicated the

parameters that specify the fermionic action by using, besides r, the excess quark mass,

mq = M0 − Mcr, instead of the bare mass M0.

In order to discuss the issue of O(a) improvement we will follow the formalism of [82]

and where it is made reference to the notion of effective theory introduced by Symanzik

and use the related Symanzik expansion of lattice correlators in terms of correlators

of the continuum theory [84]. Schematically up to O(a) terms, one can write for the

lattice expectation value of a m.r. operator the expansion

〈O〉|(r,mq) = [ζO
O (r) + amqξ

O
O(r)]〈O〉

∣∣cont

(mq)
+

+a
∑

ℓ

(mq)
nℓηO

Oℓ
(r)〈Oℓ〉

∣∣∣∣∣

cont

(mq)

+ O(a2) . (2.75)

The label |cont
(mq) in the correlators appearing on the r.h.s. of eq. (2.75) is meant to recall

that they are continuum Green functions renormalized at the scale a−1. They are com-

puted employing the continuum QCD action, regularized by using, e.g., a second lattice

regularization with lattice spacing much smaller than a. Consistently, the parameter

mq on the r.h.s. is to be interpreted as the continuum value of the quark mass at the
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subtraction point a−1. Even in the limit of vanishing lattice spacing, the previous equa-

tion has a logarithmically divergent a-dependence. This divergency can be disposed of

by multiplying both sides of eq. (2.75) by the renormalization constant of the operator

O. The coefficients ζ, ξ and η are finite functions of r and g2
0. All these coefficients are

necessary to match the lattice correlator on the l.h.s. to the continuum Green functions

on the r.h.s. of (2.75).

The sum over ℓ is extended over all operators, Oℓ 6= O, with (mass) dimension (d[O]

is the dimension of O)

d[Oℓ] = d[O] − nℓ + 1 , (2.76)

having the same unbroken quantum numbers of O. The obvious positivity of d[O] and

d[Oℓ] puts an upper bound, nmax, to the possible values of nℓ ≥ 0. The sum over ℓ

is extended to all the operators Oℓ which share the same symmetry of the operator

O on the l.h.s of (2.75). Moreover we observe that the transformation (2.68) is part

of the chiral group and, acting on the continuum action, is equivalent to changing the

sign of mq; since [R5]
2 = 11, the operators Oℓ can always be taken to have well defined

γ5-chiralities, PR5 [Oℓ]; consequently their continuum expectation values will have a

definite parity under mq → −mq, namely

〈Oℓ〉
∣∣∣
cont

(mq)
= (−1)PR5

[Oℓ]〈Oℓ〉
∣∣∣
cont

(−mq)
. (2.77)

Now, using (2.77) and the Symanzik expansion (2.75) together with (2.74) and by mak-

ing some algebraic manipulations, it is possible to show that the Symanzik coefficients

ζ are even functions of r, while all the others (ξ and η) are odd, which in turn imply

[82]

〈O 〉|WA
(mq) ≡

1

2

[
〈O〉|(r,mq) + 〈O〉|(−r,mq)

]
= ζO

O (r) 〈O〉|cont
(mq) + O(a2) . (2.78)

Making use of (2.74) in the second term of previous relation, we can rewrite the latter

in the equivalent form (mass average - MA)
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〈O〉
∣∣∣
MA

(mq)
≡ 1

2

[
〈O〉

∣∣∣
(r,mq)

+ (−1)PR5
[O]〈O〉

∣∣∣
(r,−mq)

]
=

= ζO
O (r)〈O〉

∣∣∣
cont

(mq)
+ O(a2) , (2.79)

which says that an O(a) improved lattice correlator can be obtained by taking the

sum with an appropriate relative sign of the two correlators computed within the same

lattice regularization (same value of r) but with opposite sign of the excess quark mass,

mq.

Since, as we have seen, (2.78) and (2.79) are identical, in the following we will often

refer to either one of them as Wilson average.

2.4.3 Improved physics from tm-LQCD

To make the discussion of the improvement technique more transparent it is conve-

nient to use the form (2.66) of the tm-LQCD action. The proof of the improvement of

WA’s (or MA’s) of correlators in tm-LQCD exactly parallels the argument presented

in section 2.4.2, observing that tm-LQCD action (2.66) is invariant under the spuri-

onic transformation (2.73). We only remark for future use that changing the sign of

the Wilson term is equivalent to shifting the twisting angle by π. In other words the

combined transformation [r → −r] × [ω → ω + π] leaves the action (2.66) invariant.

The proof proceeds by showing that all the steps considered in the untwisted, Wilson

case remain valid also here. One starts with the Symanzik expansion

〈O〉
∣∣∣
(ω)

(r,mq)
= [ζO

O (ω, r) + amqξ
O
O(ω, r)]〈O〉

∣∣∣
cont

(mq)
+

+a
∑

ℓ

(mq)
nℓηO

Oℓ
(ω, r)〈Oℓ〉

∣∣∣
cont

(mq)
+ O(a2) , (2.80)

where O is again a multi-local, m.r. operator. Lattice expectation values in (2.80) are

characterized by r, mq and ω. The parameter ω is kept fixed in all the arguments of

this section and the dependence on g2
0 is always understood. As in the standard Wilson

case we are concerned with the r-dependence of the Symanzik coefficients ζ, ξ and η.

It should be noted that for generic values of ω more operators, Oℓ, contribute to the

expansion (2.80), as compared to the standard Wilson case. The new operators arise

due to the breaking of parity and isospin induced by the chiral twist of the Wilson term
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in (2.66). This fact, however, does not harm the argument presented in section 2.4.2

as well as the presented formulas which remain valid in this context at any fixed value

of ω; in particular formula (2.78) becomes

〈O〉|(ω)WA
(mq) ≡ 1

2
[〈O〉|(ω)

(r,mq) + 〈O〉|(ω)
(−r,mq)] = ζO(ω, r) 〈O〉|cont

(mq) + O(a2) , (2.81)

and as in the case of standard Wilson fermions, O(a) improvement via WA’s is equiva-

lent to the observation that the Symanzik coefficients ζ, ξ and η appearing in the r.h.s.

of eq. (2.80) have definite r-parity properties

ζO
O (ω, r) = ζO

O (ω,−r) = ζO
O (ω + π, r)

ξO
O(ω, r) = −ξO

O(ω,−r) = −ξO
O(ω + π, r) (2.82)

ηO
Oℓ

(ω, r) = −ηO
Oℓ

(ω,−r) = −ηO
Oℓ

(ω + π, r) .

In (2.82) the second equality of each line follows from the invariance of the ac-

tion (2.66) under [r → −r] × [ω → ω + π].

Starting from (2.81) one can show some interesting relations which can be proved

introducing a set of eigenstates of the transfer matrix T̂ (ω, r, mq) represented as

|h, n,k〉|(ω)
(r,mq) (2.83)

where h, k ed n stand for the quantum numbers, the spatial momentum and the excita-

tion level, respectively, which characterize the (covariantly normalized) state under con-

sideration; moreover at each eigenstate is associated an eigenvalue Eh,n( k ; ω, r, mq).

It is possible to show that [82]

1

2
[Eh,n(k; ω, r, mq) + Eh,n( k ; ω,−r, mq)] = Econt

h,n ( k; mq) + O(a2) ,

(2.84)

and

1

2

[
〈h, n,k|B |h′, n′,k′〉|(ω)

(r,mq) + (r → −r)
]

=

ζB(ω, r) 〈h, n,k|B |h′, n′,k′〉|cont
(mq) + O(a2)

(2.85)
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where B is a generic multi-local m.r. and gauge invariant operator. We want to stress

the fact that in [82] all the steps which prove the WA’s in (2.84) and (2.85) involve

the ω angle merely as a parameter. A very special instance is represented by the case

ω = π/2 which is the already mentioned full twist case. In this situation all the ω -even

quantities are automatically O(a) improved with no need to perform WA’s at all. This

result is a consequence of the invariance of (2.66) under the spurionic symmetry

P × (r → −r) (2.86)

where

P :





U0(x) → U0(xP ) Uk(x) → U †
k(xP − ak̂) k = 1, 2, 3

ψ(x) → γ0ψ(xP )

ψ̄(x) → ψ̄(xP )γ0

(2.87)

which imply the possibility of defining a kind of parity of the transfer matrix eigenstates,

even if the twisting term in the action makes the theory non invariant under the physical

parity P. Hence, it can be introduced for each eigenstate |h, n, k 〉(ω)
(r,mq) the index ηh,n,

ω- independent, which is equivalent to the physical parity of the continuum state to

which |h, n,k〉|(ω)
(r,mq) is associated. Similarly, it can be proved that any multi- local m.r.

operator O can be chosen such as it always has a well defined parity p which can be

inferred from

〈O(p)({xi})〉
∣∣∣
(ω)

(r,mq)
= (−1)p 〈O(p)({xiP })〉

∣∣∣
(−ω)

(r,mq)
.

In particular, choosing the value ω = π/2, it can be proved [82] that the WA’s (2.84)

and (2.85) can be written as

〈h, n,k|B|h′, n′,k′〉
∣∣∣
(r,mq)

+ ηB
hnh′n′〈h, n,−k|B|h′, n′,−k′〉

∣∣∣
(r,mq)

=

= 2ζB
B (r)〈h, n,k|B|h′, n′,k′〉

∣∣∣
cont

(mq)
+ O(a2) , (2.88)

with ηB
hn,h′n′ = ηhn(−1)pBηh′n′ = ±1, and
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Eh,n(k; r, mq) + Eh,n(−k; r, mq) = 2Econt
h,n (k; mq) + O(a2) ,

(2.89)

relations which clearly show how it can be possible to obtain O(a) improved estimates

having at one’s disposal matrix elements and energetic levels obtained by means of only

one simulation with only one value of r.

2.4.4 Local operator renormalization within mtm-LQCD

In this section we are going to write down explicitly the expression of the renor-

malized operators (currents and quark densities) entering the flavour non- singlet WTI

of the theory described by the fermionic action (2.66), in the maximally twisted case

(ω = π/2). The formulae presented here can be derived starting from the much more

general one presented in [82], where they have been calculated starting from a fermionic

action with a generic twist angle ω.

Let us write our expression in terms of the (bare) local currents and quark density

operators; moreover, the relevant renormalization coefficients are expressed in terms

of the renormalization constants of the local operators of the standard Wilson theory.

The renormalized vector and axial currents can be taken to be

V̂ 1
µ = ZAψ̄γµ

τ1

2
ψ (2.90)

V̂ 2
µ = ZAψ̄γµ

τ2

2
ψ (2.91)

V̂ 3
µ = ZV ψ̄γµ

τ3

2
ψ (2.92)

Â1
µ = ZV ψ̄γµγ5

τ1

2
ψ (2.93)

Â2
µ = ZV ψ̄γµγ5

τ2

2
ψ (2.94)

Â3
µ = ZAψ̄γµγ5

τ3

2
ψ (2.95)

where we have indicated with the symbolˆthe renormalized continuum operators and

with ZA (ZV ) the renormalization constant of the lattice axial (vector) current. With

reference to the currents (2.90) to (2.95), the WTI’s with the insertion of the renormal-

ized (multi- local) generic operator Ô(y) (y 6= x) take the expected form (b = 1, 2, 3)
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〈∂⋆
µV̂ b

µ (x)Ô(y)〉|ω=π/2
(r,mq) = O(a) (2.96)

〈∂⋆
µÂb

µ(x)Ô(y)〉|ω=π/2
(r,mq) = 2m̂q〈P̂ b(x)Ô(y)〉|ω=π/2

(r,mq) + O(a) (2.97)

with

m̂q = Z−1
P mq , (2.98)

provided we define in terms of bare quantities the renormalized pseudo-scalar operators,

P̂ b, to be

P̂ b = ZP ψ̄
τb

2
γ5ψ b = 1, 2 (2.99)

P̂ 3 = ZS0ψ̄
τ3

2
γ5ψ + ZP ρP (amq, π/2)11

i

a3
(2.100)

were we have indicated with ∂⋆
µ the discretized backward derivative, with ZP the renor-

malization constant of the lattice pseudo-scalar quark current and with ZS0 the mul-

tiplicative renormalization constant of the (subtracted) isosinglet scalar quark density.

Two special comments to (2.100) are in order: the first one for the function ρP (amq, ω),

which is a coefficient function, even in ω, and it admits a simple polynomial expansion

in amq, while the second one about the unusual mixing (at the maximal twist1) of

ψ̄ τ3
2 γ5ψ with the identity operator, which is due to the breaking of parity and isospin

induced in the action (2.66) by the twisting of the Wilson term.

2.5 Twisted boundary conditions

2.5.1 Continuum definition

Simulating QCD dynamics on a finite volume lattice imposes severe restrictions

on the allowed hadron momenta which, usually, depend on the boundary conditions

chosen. It is known that, on a lattice with finite volume V = L3, the allowed momenta

in the i (i = 1, 2, 3) direction are

1For a generic value of ω, in the physical basis, the mixing which we are going to show must include

also the scalar operator ψ̄ψ, in addition to the identity one.
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ki = ±2π

L
ni ni = 0, . . . , L/2a , (2.101)

and so it is clear that the possible values are quantized and depend on the lattice

extension (L).

In particular, let us underline that the smallest permitted momenta different from

zero is 2π/L and for certain lattices it can be rather constrictive (e.g., for a−1 = 2.3 GeV

and L/a = 24 one has 2π/L = 0.6 GeV ). Moreover, for simulations where high values

of momenta are employed, the noise to signal ratio is usually high and, as a result, the

kinematically accessible region is small. This has severe consequences because it makes

difficult to study quantities, such as form factors for decay processes, which depend on

momenta.

In [85] It has been proved that using non periodic boundary conditions for the

spatial directions, called twisted boundary condition, or θ− BC in short, allows to

simulate hadrons with arbitrary small values of the spatial momentum. As choosing

boundary condition is an infrared feature, we will treat the subject in the continuum.

Let us choose, following [86], a euclidean space time with an infinite temporal dimension

and cubic spatial volume, of side aL.

It is useful to specify boundary condition in order to avoid contact terms in the

Green functions. Periodic boundary conditions are equivalent, for the spatial part, to

consider a theory defined on a tridimensional torus with single- valued fields (φ(xi+L) =

φ(x)). It is not a necessary choice: the quantities which need to be single- valued on

the torus are the physical observables that can be obtained from correlators evaluated

with the (less constraining) condition of a single- valued action. This request means a

greater freedom for defining boundary conditions for the fields, which can be expressed

for a generic φ field as

φ(xi + L) = Uiφ(xi) , i = 1, 2, 3 , (2.102)

where Ui is a global symmetry of the action.

The fermionic action can be specified by means of a Dirac operator and a mass

matrix. In the Nf flavour continuum QCD, the more general continuous symmetry

allowed for the Dirac operator is the flavour symmetry U(Nf ). The mass matrix, as-

suming Nf non- degenerate flavors, will reduce this symmetry to a subgroup, generated
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by the {T a} algebra of the operators which commute with M . Hence, it is natural to

identify

Ui = eiαa
i T a

=: e2πiΘi . (2.103)

The boundary condition, brought in Fourier space, shows that the momentum is still

quantized, but it gains an additional contribution related to the θ–BC. Assuming that

Θi is a generic diagonal matrix in flavour space

Θi = diag
(
θ1
i , . . . θ

Nf

i

)
, (2.104)

the boundary condition for a given flavour f, in coordinate space, is

q̃f (xi + L) = exp
(
2πiθf

i

)
q̃f (xi) i = 1, 2, 3 , (2.105)

which in Fourier space is equivalent to impose

exp

[
i

(
pi −

2πθf
i

L

)
L

]
= 1 ⇐⇒ pi =

2π

L

(
θf
i + ni

)
, i = 1, 2, 3 , ni ∈ Z .

(2.106)

Let us show that choosing θ–BC is equivalent to introducing in the theory an ex-

ternal U(1) gauge field. Rescaling the fields as

q̃(x) := V (x)qθ(x) , V (x) := exp

(
2πi

Θi

L
xi

)
, (2.107)

we have that they satisfy (spatial) periodic boundary conditions and can be described

by a lagrangian with a modified Dirac operator in which appear the mentioned gauge

field. We have

¯̃q(x)γµDµq̃(x) = q̄θ(x)γµ[Dµ + V †(x)∂µV (x)]qθ(x) (2.108)

= q̄θ(x)γµ (Dµ + iBµ) qθ(x) (2.109)

= q̄θ(x)γµD̃µqθ(x) (2.110)

with
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Bµ =

{
2πΘi/L µ = i = 1, 2, 3
0 µ = 0

(2.111)

In this basis it is clear that the topological contribute to allowed momenta is a

physical one: the propagator is

S̃(x) := 〈q̃(x)̄̃q(0)〉 =

∫
dp4

2π

1

L3

∑

~k

ei(k+B)·x

iγµ(k + B)µ + M
= eiB·xSθ(x) , (2.112)

where the sum is over the allowed momenta ~k = 2π~n/L and S̃(x) satisfy θ–BC, while

the propagator in the qθ basis is

Sθ(x) := 〈qθ(x)q̄θ(0)〉 =

∫
dp4

2π

1

L3

∑

~k

eik·x

iγµ(k + B)µ + M
, (2.113)

from which it is clear that, in Fourier space, fermionic lines carry a momentum which

is k +B. Let us underline that the qθ fields, as well as Sθ(x), satisfy periodic boundary

conditions.

2.5.2 Lattice implementation

In order to employ θ–BC in lattice QCD simulations, let us point out that imposing

such a condition on all quark fields we will need to generate a gauge field configurations

for each value of the twisting vector ~θf , which in turn imply a considerable demand of

computation time. In practice, we can obtain arbitrary shift of the simulated hadron

momenta even imposing twisted boundary condition only in the valence sector, using

the same formalism of the partial quenching [87]. Let us consider the theory, which we

will call partially twisted QCD (ptQCD), defined by the generating functional

Z =

∫
Dqv Dq̄v Dqs Dq̄s Dqg Dq̄gDU

e−
R

d4x[ 1
4
G2+q̄s(γµDµ+M)qs+q̄v(γµDµ+M)qv+q̄g(γµDµ+M)qg] , (2.114)

where the variable qs are sea quark fields, which are the ones involved in the gauge

field configurations generation process, while the qv are the valence quark fields whose

determinant, instead, is cancelled out by construction by the corresponding (bosonic)
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ghost fields qg; hence, it follows that the sea sector is exactly the same as the QCD one

considered that the valence quark fields have no influence on the gauge fields. Let us

remind, moreover, that the ghost fields do not satisfy the spin- statistics theorem and

ptQCD is not a unitary theory, as they are related to an Hilbert space with negative

metric.

In ptQCD the mentioned fields obey to the following (spatial partially twisted)

boundary conditions

qs(xi + L) = qs(xi) , q̃v,g(xi + L) = ei2πΘi q̃v,g(xi) . (2.115)

In this scheme, the gauge field configurations generation is independent from the θ–BC

and can be performed only once. The breaking of the valence-sea symmetry induced

by the partial twist is a finite volume effect, which is expected to go to zero in the

infinite volume limit. It has been proved in [86; 88] that, for many physical quantities

of interest, the corrections induced by this effect exponentially decrease with the lattice

volume, so it is negligible, and ptQCD can be used in the simulations.

On the lattice, for a given flavor, the all-to-all quark propagator S(x, y) ≡ 〈q(x) q(y)〉U ,

where 〈. . .〉U indicates the average over gauge field configurations weighted by the lattice

QCD action, satisfies the following equation

∑

z

D(x, z) S(z, y) = δx,y (2.116)

where D(x, z) is the Dirac operator of the fermionic tm-LQCD action, and we have

omitted color and Dirac indices, for simplicity. We now consider the case in which the

valence and the sea quarks satisfy anti–periodic BC in time while spatially they satisfy

BC as in (2.115). In this situation the propagator S̃(x, y) ≡ 〈q̃(x) q̃(y)〉 still satisfies

(2.116), with the same Dirac operator D(x, z), but with quark field with different BC’s

∑

z

D(x, z) S̃(z, y) = δx,y . (2.117)

Technically in order to work always with fields satisfying periodic BC’s in space and

time we follow [85; 89] by introducing a new quark field as
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q
eθ
(x) = e−2πieθ·x/Lq̃(x) (2.118)

where the four-vector θ̃ is given by (L/2T, ~θ )1. In such a way the new quark propagator

S
eθ(x, y) ≡ 〈q

eθ
(x) q

eθ
(y)〉 satisfies the equation

∑

z

D
eθ(x, z) S

eθ(z, y) = δx,y (2.119)

with a modified Dirac operator D
eθ(x, z) but periodic BC’s in both space and time. The

θ̃–dependent Dirac operator can be obtained by means of a simple re-phasing of the

gauge links

Uµ(x) → U
eθ
µ(x) ≡ e2πiaeθµ/L Uµ(x) . (2.120)

In terms of S
eθ(x, y), related to the quark fields q

eθ
(x) with periodic BC’s, the all-to-all

quark propagator S̃(x, y), corresponding to the quark fields q̃(x) with twisted BC’s, is

simply given by

S̃(x, y) = e2πieθ·(x−y)/L S
eθ(x, y) . (2.121)

2.6 Numerical methods for Gauge theories

The formulation of a field theory on the lattice, besides providing an ultraviolet cut

off, represents also an operative definition for calculating vacuum expectation values of

multilocal operators. Using a finite volume lattice transforms the functional integral

(1.143) in an ordinary multiple integral. Hence, in the framework of a lattice theory,

numerical simulations are the basis for a non perturbative calculation of the mean

values of a generic operator

〈O(U, q, q̄)〉 =
1

Z

∫
DUDq̄Dq O(U, q, q̄)e−S(U,q,q̄) . (2.122)

1The difference between qθ and qθ̃ is that the former satisfy periodic BC only in space while the

latter both in space and time.
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In this section we will describe some of the numerical simulation techniques em-

ployed in this work first for a pure gauge theory and then in the more general case in

which one has also fermionic fields.

2.6.1 Pure gauge theories

In a theory where the gauge fields are the only degrees of freedom, the mean value

(2.122) can be written as

〈O(U)〉 =

∫
DU O(U)e−S(U) (2.123)

where S(U) is the action (2.25). In a SU(N) gauge theory, on a lattice volume Ω, the

number of integration variable for the measure

DU ≡
∏

link

dUl (2.124)

of (2.123) is equal to 4Ω(N2−1) angles, which for the typically employed lattice volumes

Ω is of the order of 107-108 variables; for systems described in terms of so many degree

of freedom, the only chance for estimating the mean value (2.123) is to use Monte Carlo

methods.

In principle, a Monte Carlo integration of (2.123) can be obtained extracting the

{U} configuration randomly and then calculating the mean value associating with each

configuration the statistical weight e−S . This procedure, called static Monte Carlo, is

highly inefficient for large lattice volumes Ω; the reason is that in (2.123) the config-

uration which contribute more to the integral are the ones which make minimum the

thermodynamic free energy F , defined as the difference between the action S(U) and

the thermodynamic entropy. Hence, if one extracts a finite number of gauge configu-

rations by means of the static method, the configurations which, among the randomly

extracted ones, will nearly minimize this energy will be a negligible fraction and the

mean value integral estimate will be very imprecise.

This is the reason why it is preferred to employ the so called dynamic Monte Carlo,

or importance sampling, method. In this approach, the sample of gauge field configu-

ration ({U}n, n = 1, N) is not generated following a random distribution, instead it is
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generated according to the e−S probability density; then, the mean value (2.123) can

be evaluated by means of the mean over the sample

〈O〉 ≃ O =
1

N

N∑

i=1

O({U}i) . (2.125)

The deviation from the mean value O of the values O({U}i) will give a measure of

uncertainty of O (2.125), related to the employed sample; in section 4.2 we will be

discuss two different methods for evaluating statistical errors. It is possible, in general,

to extract gauge field configuration samples following a desired probability distribu-

tion, using different Monte Carlo algorithms. This work is based on gauge ensemble

generated by employing a state-of-the-art Generalized Hybrid Monte Carlo (GHMC)

algorithm.

2.6.2 Numerical methods for fermionic systems

In section 2.6.1 it has been briefly described Monte Carlo simulations for pure gauge

theories on the lattice. The extension of the subject to theories which include fermionic

fields is a delicate matter, because the fermionic integration in (2.122), taking into ac-

count the anticommutation properties of the fermionic fields, can not be defined as

an ordinary sum, but it becomes a complex linear operator from the anticommuting

variables space to the complex numbers one. At present the only possible solution to

overcome the problem is to analytically perform the integration over the fermionic vari-

ables and then apply Monte Carlo methods to the remaining bosonic effective theory,

as it will be shown in what follows.

Quark fields, because of the anticommutation properties, must be represented in

(2.122) by means of anticommuting numbers, called Grassmann variables

{qi, qj} = {q̄i, q̄j} = 0 {qi, q̄j} = 0 ; (2.126)

then, the Grassmann variable integration is defined as a linear operator such as

∫
dq̄i =

∫
dqi = 0

∫
dq̄iq̄i =

∫
dqiqi = 1 . (2.127)
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In principle, these variables could be described also using suited anticommuting

matrix, but this approach would require too much memory and computation time

as well as rather complicated algorithms. Moreover, being the Wilson- Dirac action

(as well as the twisted mass one) bilinear in the q and q̄ fields, for each gauge field

configuration one has to calculate a fermionic integral which is analytically solvable.

To this end, let us write the LQCD action as

S = S(U) + SF = S(U) +
∑

q;i,j

q̄i∆ij(U, kq)qj , (2.128)

where i and j generically represent all the indexes (lattice variable sites, color and spin)

which characterize a quark field of q flavour; then, using Grassmann integration rules

(2.127) the functional integral on the lattice can be written as

Z(J, η̄, η) =

∫ ∏

link

dUl





Nf∏

q=1

det ∆(U, kq)e
−(S(U)+JmUm+η̄i∆

−1
ij (U,kq)ηj)



 , (2.129)

where we have indicated with J , η and η̄ external currents coupled, respectively, to

gauge and matter fields. Let us note that the determinant in (2.129) is real (as ∆ =

γ5∆
†γ5) and assuming that it is positive defined, we can write





Nf∏

q=1

det ∆(U, kq)



 e−S(U) = e−[S(U)−

PNf
q=1 Tr ln ∆(U,kq)] . (2.130)

In this way, after the fermionic variables integration, the gauge fields dynamic will be

ruled by the bosonic effective action

Seff (U) ≡ S(U) −
Nf∑

q=1

Tr ln∆(U, kq), (2.131)

which can also be written as

Seff (U) ≡ S(U) −
Nf∑

q=1

ln det ∆(U, kq) . (2.132)
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In the last two expression, the second term can be interpreted as the virtual quark loop

effect as, considered the identity

∫ ∏

x

dqx

∏

x

dq̄x e−SF =

Nf∏

q=1

det ∆(U, kq) , (2.133)

the fermionic matrix determinant can be regarded as the vacuum-to-vacuum transition

amplitude for the quark theory on a classical (arbitrary) gauge background.

Exploiting what we have seen up to here, the functional integral can be expressed

as

Z(J, η̄, η) =

∫ ∏

link

dUle
(−Seff (U)+JmUm+η̄i∆

−1
ij (U,kq)ηj) , (2.134)

and, as it was already mentioned in section (1.4.2), from the functional derivatives with

respect to the external sources J, η, η̄, evaluated at J = η = η̄ = 0, one can calculate

the correlation function for any operator of the theory. In particular, for composite

operators which involve only gauge fields, one will have

〈O(U)〉 =

∫
DU O(U)e−S(U)eff . (2.135)

This formula can be easily generalized to the case of mean values of observables which

involve fermionic variables too.

Let us conclude this section with some considerations about the fermionic determi-

nant. In principle, it is possible to perform simulations of lattice gauge theories with

fermionic fields by generating a gauge field sample, Uµ(x), distributed with the Boltz-

mann density factor defined by the effective action (2.131); however, at present, this

operation is still highly expensive in terms of computational time. The reason lies in the

fact that the second term in (2.131) is a non local one: because of the virtual fermionic

loop, a given link variable can directly interact not only with the nearest neighbor,

but with far gauge variables too. Hence, in the updating procedure of each link, the

computation time is mainly spent calculating the factor Tr ln∆(U). This is the reason

why past lattice fermion simulations usually employed the so called quenched approx-

imation, which consist in setting the fermion matrix determinant equal to one. From
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a physical point of view, the quenching operation can be interpreted as neglecting the

contribute to the process under consideration of the Feynman diagrams which involve

internal fermion loop. Within this approximation, the Zweig rule is exactly observed

and hadrons are composed of valence quark and gluons with no quark- antiquark sea

pairs. This approximation is not so far from what happens in the real world, but for

some observables the physical predictions obtained within this approximation are in

disagreement from what can be observed in nature. For instance, let us consider the

ρ → 2π decay, which is forbidden by the Zweig rule, while using the quenched approx-

imation, it becomes the main decay channel for ρ mesons. For this and other physical

reasons, in this work we have employed only unquenched gauge field configurations for

the calculation we are going to present in chapter 4.
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What has to be computed

This chapter will be dedicated to explain in details the employed techniques for the

lattice calculation of the semileptonic form factors and, as an introductory study for a

future calculation of the neutron EDM, we will present a critical review of the present

available techniques for calculating the disconnected diagrams.

The section 3.1 will show how we can extract quantities such as meson masses or

hadronic matrix elements from the two–point and three–point correlation functions

which we are going to calculate on the lattice.

In section 3.2.1 we will explain our technique of the so–called double ratios method

for calculating the K → π matrix element and the related semileptonic form factors.

Section 3.2.2 will be dedicated to discuss the relevant Feynman diagrams for the

semileptonic two– and three–point functions as well as to introduce the stochastic

methods for calculating connected diagrams.

We will close the chapter with section 3.3 in which we will consider, and explain,

all the available techniques ([13; 14; 15]) for calculating the disconnected insertions

characteristic of the flavour singlet physics; we will also present our hybrid method

which we think can be a good tool for evaluating these noisy diagrams.

3.1 Extracting information from LQCD

This section will explain how one can extract the physical information of interest

from tm-LQCD. We will restrict our attention to a special class of the euclidean operator

expectation values (2.122), called two– and three–point correlation functions; these
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quantities allow one to determine the hadron mass spectrum and the one particle to

vacuum as well as the one particle to one particle matrix element.

The first part of the section describes how one can extract, from two–point corre-

lators, hadron masses and one particle to vacuum matrix elements.

The second part shows that the matrix elements of a given operator between hadron

states can be calculated starting from suitable three–point functions.

3.1.1 Two–point correlation functions

Let us show what is the relation between the quantities extracted from the euclidean

theory, which is the one employed in simulations, and the physical ones proper of the

Minkowskian theory, introducing the standard procedure used for the calculation of the

hadronic masses in a given regularization of the fermionic action. Let us assume that

the fields ψ and ψ̄ are expressed in the physical basis.

The euclidean two–point correlation function, for two generic operators OA and OB,

can be written as

G(x, 0) = 〈0|OA(x)OB(0) |0〉 , (3.1)

with x which is a shorthand for the four-vector (x0 = t, ~x ), hence we are in the case

t > 0. G(x, 0), once rotated back to Minkowsky space-time, gives 〈0|T [OA(x)OB(0)] |0〉
with T which is the time-ordered product. This quantity represents the probability

amplitude for the creation of a state with the OB quantum number in the space–time

point x = 0, the propagation of that state up to the point x = (x0, ~x ) and its final

annihilation from the OA operator. By integrating over space one can obtain the zero

momentum component of the Fourier representation of the correlation function

CAB(t)
.
=

∑

~x

〈0|OA(x)OB(0) |0〉 . (3.2)

Let us take t > 0 and insert in (3.2) a complete set of covariantly normalized energy

eigenstates with well definite momentum |n, ~pn〉

〈n, ~pn|m, ~pm〉 = (2π)32Enδn,m , (3.3)
∑

n,~pn

|n, ~pn〉
1

(2π)32En
〈n, ~pn| = 11 , (3.4)
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where the sum indicates that we are integrating over all possible momenta (anticipating

its application on the lattice). Identifying x0 = t one has

CAB(t) =
∑

~x

∑

n,~pn

〈0|OA(x) |n, ~pn〉 〈n, ~pn|OB(0) |0〉
2En

=
∑

~x

∑

n,~pn

〈0| eHt+i ~P ·~x OA(0,~0 ) e−Ht−i ~P ·~x |n, ~pn〉 〈n, ~pn|OB(0) |0〉
2En

=
∑

~x

∑

n,~pn

〈0|OA(0) |n, ~pn〉 〈n, ~pn|OB(0) |0〉
2En

e−Ent−i~pn·~x

=
∑

n

〈0|OA(0) |n, ~pn = ~0 〉 〈n, ~pn = ~0 |OB(0) |0〉
2Mn

e−Mnt (3.5)

where we have exploit the use of the translation operator which shifts the field in the

origin O(x) = eHt+i ~P ·~xO(0,~0)e−Ht−i ~P ·~x and the Dirac delta involved in the spatial

“integration”
∑

~x e−i~pn·~x = δ(~pn); moreover we have assumed that single particle states

|n, ~pn〉 which has an overlap different from zero with the operator Oi exists and are

stable, in order that, for zero momentum, one has En(~pn = ~0; Mn) = Mn, with Mn

which is the mass of the nth state.

Without making further assumptions, the sum in (3.5) will be over a lot of possible

intermediate states n; however, for t large enough, there will be only one term which

will survive because of the exponential suppression, and it will be the single particle

state φ with the lower mass value. Defining

√
ZO

φ
.
= 〈0|O(0,~0 ) |φ〉 , (3.6)

one has

∑

~x

〈0|OA(x)OB(0) |0〉 −−−→
t→∞

√
ZOA

φ

√
ZOB

φ

2Mφ
e−Mφt . (3.7)

It is now possible to extract the Mφ mass from the euclidean correlator by means of an

exponential fit in a suitable temporal region t ∈ [tmin, tmax] which ensures one to have

isolated the ground state contribution to the correlator. Let us stress the fact that the

peculiar feature of this procedure is that it does not require to rotate the result back

to the Minkowsky space. This consideration about euclidean correlation functions and
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physical observables is valid also in the case of the hadronic matrix elements; what is

important to bear in mind is that (3.5), and in particular (3.7) which is the one directly

involving the physical quantities of interest, are valid only if the states involved in the

n–sum are stable.

This procedure can be extended to other Fourier components, obtaining

CAB(t; ~p ) :=
∑

~x

〈0|OA(x)OB(0) |0〉 ei~p·~x −−−→
t→∞

√
ZOA

φ,~p

√
ZOB

φ,~p

2Eφ
e−Eφt , (3.8)

where E2
φ = m2

φ + |~pφ|2, and Z
OA(B)

φ,~p=0 (~0 ) ≡ Z
OA(B)

φ .

For fields defined in a finite time interval (t ∈ [0, T ]), with periodic boundary

conditions, (3.7) and (3.8) are no longer valid and must be modified in order to include

contributions from forward and backward propagation; hence, if we call η the (temporal)

parity of the two–point correlator with respect to the transformation t → T − t (which

will be given by the product of ηOA
× ηOB

), in the case of zero momentum we will have

CAB(t) −−−→
t→∞

√
ZOA

φ

√
ZOB

φ

2Mφ

(
e−Mφt + ηe−Mφ(T−t)

)
. (3.9)

In the η = 1 case, this expression reads

CAB(t) −−−→
t→∞

√
ZOA

φ

√
ZOB

φ

Mφ
e−Mφ

T
2 cosh

[(
t − T

2

)
Mφ

]
. (3.10)

In the rest of the chapter our formulae will be always presented (for simplicity) in the

infinite (lattice) time extension limit.

In this work we will consider local operators which interpolate mesons, i.e. operators

with quantum numbers appropriate to create the meson states of interest from the

vacuum. In the flavour non-singlet case, such composite operators can be written as

OΓ(x) =
∑

a

q̄a
1(x)Γqa

2(x) , (3.11)

where q1 and q2 are two valence quarks of different flavour, a is a color index and

the spinorial indices have been omitted for the sake of readability. Γ is one of the 16

combination (see tab. 3.1) of Dirac γ matrices which are responsible for the spin (J),
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State JPC Dirac Matrix

Scalar 0++ I

0++ γ0

Pseudo–scalar 0−+ γ5

0−+ γ5γ0

Vector 1−− γi

1−− γ0γi

Axial Vector 1++ γ5γi

Tensor 1+− γiγk

Table 3.1: It is shown the JPC quantum numbers of the 16 Dirac covariants and

the Lorentz group transformation properties.

parity (P) and charge conjugation (C) quantum numbers of the composite operator

OΓ(x).

The correlators

〈0|P5(x)P †
5 (0) |0〉 , 〈0|A0(x)P †

5 (0) |0〉 , (3.12)

where P5 = q̄1γ5q2 and A0 = q̄1γ0γ5q2, are of particular interest because thanks to

the quantum numbers of the operators therein and, by suitably choosing the 1 and 2

flavors, it is possible to exploit (3.10) for estimating in LQCD the corresponding meson

masses and matrix elements.

Let us close this section clarifying that, beside the exponential fit to the large time

behavior of the euclidean lattice correlator, there is another method for estimating

meson masses, inspired again by (3.7). It is possible to calculate the so–called effective

mass (in lattice units), defined by

aMeff (t) = ln

[
CAB(t)

CAB(t + 1)

]
, (3.13)

a quantity which, for large t, will tend to a constant value equal to the mass of the

ground state (or to its energy if the correlation CAB(t) has not been taken at zero

momentum).
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3.1.2 Three–point correlation functions

We have already anticipated, at the beginning of this section that, from the large

time behavior of the three–point correlation functions, it is possible to extract matrix

elements of operators between one particle states; hence, let us consider a three–point

function in the Fourier space

CBA
Γ (t, ts; ~p, ~q )

.
=

∑

~x,~xs

〈0|B(ts, ~xs)OΓ(t, ~x )A(0,~0 ) |0〉 ei~p·~xs+i~q·~x , (3.14)

where A, B are operators which interpolate two A and B mesons, differing by the flavour

of one single quark, and OΓ is the operator (3.11). Following the manipulation steps

used for the two–point function case, let us insert the identity (3.4) twice

CBA
Γ (t, ts; ~p, ~q ) =

∑

~x,~xs

∑

n,~pn

∑

n′,~pn′

〈0|B(ts, ~xs) |n′, ~pn′〉 1

(2π)32En′
〈n′, ~pn′ |OΓ(t, ~x ) |n, ~pn〉 ·

1

(2π)32En
〈n, ~pn|A(0,~0 ) |0〉 ei~p·~xs+i~q·~x . (3.15)

Using again the translation law to shift the operators in the origin and the Dirac delta

to eliminate the spatial volume integration, we have that

CBA
Γ (t, ts; ~p, ~q ) =

∑

n,n′

√
ZA

An,~p

√
ZB

Bn′ ,~p+~q e−En′ (ts−t)e−Ent

4EnEn′
〈Bn′ , ~p |OΓ(0,~0 ) |An, ~p + ~q 〉 ,

(3.16)

where An (Bn′) states belong to the subset of the states n (n′), with momentum ~p

(~p + ~q), which have the right quantum numbers to interpolate the A (B) operator and

with and ZA
An,~p ZB

Bn′ ,~p
we have indicated, as in (3.6), the square modulus of the matrix

elements

ZA
An,~p = | 〈0|A(0,~0 ) |An, ~pn〉 |2 , (3.17)

ZB
Bn′,~p

= | 〈0|B(0,~0 ) |Bn′ , ~pn′〉 |2 . (3.18)

Considering a temporal region for which both t and ts − t are large enough, only the

first two excited states A1 = A and B1 = B will contribute to the sum; hence, the

correlation function limit is (with somewhat simplified notation)

90



3.2 Semileptonic Kaon decays

CBA
Γ (t, ts; ~p, ~q )−−−−−−−−→

t → ∞
(ts − t) → ∞

√
ZA

√
ZB e−EB(ts−t)e−EAt

4EAEB
〈B, ~p |OΓ(0,~0 ) |A, ~p + ~q 〉 . (3.19)

It is now clear that the general strategy is to extract, from the corresponding two–point

functions fit, the energies and the constants ZA and ZB and then, analyzing the large

time behavior of the three-point correlator it is possible to extract the relevant operator

matrix element (r.h.s. of (3.19)).

3.2 Semileptonic Kaon decays

In this section we will show in details how to extract the semileptonic K → π decay

form factors starting from the three and two point function of suitable local composite

operators. We will recall the so called standard method, employed for the first time

in the pioneering quenched calculation [17] and also in the more recent one [19], and

then we will generalize it to the case in which one is interested in calculating the full

q2 dependence of the form factor. We will also discuss some systematic errors of the

standard technique and present a ratio method which is able to achieve a high precision

at any value of q2.

3.2.1 The ratio and the double ratio method

We want to extract form factors from lattice correlation functions, employing suit-

able ratios of two and three point functions, following what has already been done

in the works [17; 18; 19]. The gain, using this technique, is that statistical fluctua-

tions mainly get canceled out between the numerator and the denominator. Another

source of systematic error, in these kind of analysis, is the determination of the lattice

renormalization constants so, as much as we can, we will always avoid their explicit

calculation by means of a suitable trick which modifies the ratio in order to avoid the

renormalization constant direct estimate.

We are interested in the calculation of the K → π matrix element of the weak vector

current Vµ = s̄γµu, defined as (cfr. (1.94) with M ′ = π and M = K)

〈πi(p′)|Vµ(0) |Ki(p)〉 = Ci

[
f i
+(q2)(p + p′)µ + f i

−(q2)(p − p′)µ

]
, q2 = (p − p′)2 (3.20)
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where Ci is a Clebsch-Gordan coefficient, equal to 1 (21/2) for neutral (charged) kaons, p

(p′) is the kaon (pion) four–momentum and q2 is the squared four–momentum transfer.

As usual, we express f i
−(q2) in terms of the so-called scalar form factor

f i
0(q

2) = f i
+(q2) +

q2

M2
K − M2

π

f i
−(q2) . (3.21)

By construction f i
0(0) = f i

+(0) and the differences between K0 → π− and K+ → π0

channels are only due to isospin–breaking effects. In the following we shall concentrate

on the K0 → π− case and work in the isospin–symmetric limit, dropping also the

superscript i on the form factors.

From (3.20) it is clear that the form factors can be expressed as a linear combination

of hadronic matrix elements, as will be shown in a while; to this end, let us recall the

two– and three– point formula written in a suitable notation

CKπ
µ (t, t′, ~p, ~p ′ ) =

1

L3T

∑

x,y,z

〈Oπ(y)Vµ(x)O†
K(z)〉 δt,tx−tzδt′,ty−tz e−i~p·(~x−~z )+i~p ′·(~x−~y ) ,

(3.22)

CK(π)(t, ~p ) =
1

L3T

∑

x,z

〈OK(π)(x)O†

K(π)(z)〉 δt,tx−tz e−i~p·(~x−~z ) (3.23)

where Vµ = ūγµs while O
†
π = ūγ5d and O

†
K = s̄γ5d are the operators interpolating the

π and K mesons. Let us underline that since we want to use all-two-all propagators, in

(3.22) and (3.23) there is an additional sum over the space–time lattice volume, which

helps improving the signal quality with respect to the case of a fixed–point source

(z = 0). We will not enter here in details about the particular techniques employed

for the calculation of this particular lattice fermion propagator, as they will be the

subject of subsection 3.2.3; in this section we will limit our discussion to the method

for calculating the form factors.

Taking in (3.22) and (3.23) values of t and t′ − t large enough, one gets

CKπ
µ (t, t′, ~p, ~p ′ ) −−−−−−−−→

t → ∞
(t′ − t) → ∞

√
ZKZπ

4EKEπ

1

ZV
〈π(p′ )| V̂µ |K(p)〉 e−EK(~p )t−Eπ(~p ′ )(t′−t) , (3.24)

CK(π)(t, ~p ) −−−→
t→∞

ZK(π)

2EK(π)(~p )
e−EK(π)(~p )t (3.25)
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3.2 Semileptonic Kaon decays

with V̂µ which is the renormalized lattice vector current and where, up to discretization

effects, Eπ(~p ) =
√

M2
π + |~p |2, EK(~p ′ ) =

√
M2

K + |~p ′ |2 and
√

ZK(π) = 〈0|OK(π)(0) |K(π)〉.
The latter is independent on the meson momentum ~p [90]. Then it follows

CKπ
µ (t, t′, ~p, ~p ′ )

CK(t, ~p )Cπ(t′ − t, ~p ′ )
−−−−−−−−→

t → ∞
(t′ − t) → ∞

1

ZV

〈π(p′)| V̂µ |K(p)〉√
ZKZπ

. (3.26)

Consequently, the hadronic matrix element 〈π(p′ )| V̂µ |K(p)〉 can be obtained from the

plateau of the l.h.s. of (3.26), once ZK and Zπ are separately extracted from the large–

time behavior of the two–point correlators in (3.25) and ZV has been calculated in the

standard way which we are going to show in a while; for now let us concentrate about

the fact that the procedure outlined above is the standard one to calculate form factors

on the lattice. In this way, however, it is very hard to reach the percent level precision

required for the present calculation; the operation which makes this procedure highly

inefficient is the multiplication of the l.h.s. of (3.26) for the matrix elements ZK and

Zπ. The adopted solution is to introduce another three–point function, which is the

symmetrized version of (3.22) and which corresponds to the unphysical process π → K;

for t and t′ − t large enough it goes as

CπK
µ (t, t′, ~p, ~p ′ ) −−−−−−−−→

t → ∞
(t′ − t) → ∞

√
ZKZπ

4EK(~p ′ )Eπ(~p )

1

ZV
〈K(p′ )| V̂ †

µ |π(p)〉 ·

· e−Eπ(~p )t−EK(~p ′ )(t′−t) , (3.27)

and allows one to calculate, in the Breit frame where ~p = −~p ′ = ~θ, the improved double

ratio Rµ(t, θ)

Rµ(t, t′; θ) =
CKπ

µ (t, t′, ~θ,−~θ )CπK
µ (t, t′, ~θ,−~θ )

CK(t, ~θ )Cπ(t′ − t,−~θ )Cπ(t, ~θ )CK(t′ − t,−~θ )
. (3.28)

Let us verify that this expression indeed tend to the desired matrix element; to this

end, using (3.24), (3.25) and (3.27) one gets in the usual way
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Rµ(t, t′; θ) =
CKπ

µ (t, t′, ~θ,−~θ )

CK(t, ~θ )Cπ(t′ − t,−~θ )
·

CπK
µ (t, t′, ~θ,−~θ )

Cπ(t, ~θ )CK(t′ − t,−~θ )
−−−−−−−−→

t → ∞
(t′ − t) → ∞

1

Z2
V

〈π(−~θ )| V̂µ |K(~θ )〉 〈K(−~θ )| V̂ †
µ |π(~θ )〉

ZKZπ
;

(3.29)

on the other hand, realizing that

CK(t, ~θ )CK(t′ − t,−~θ ) −−−→
t→∞

ZK

2EK

ZK

2EK
e−EKte−EK(t′−t) =

ZK

2EK
· CK(t′, ~θ ) (3.30)

the l.h.s. of (3.29) can be written as

Rµ(t, t′; θ) =
2EK

ZK

CKπ
µ (t, t′, ~θ,−~θ )

CK(t′, ~θ )
· 2Eπ

Zπ

CπK
µ (t, t′, ~θ,−~θ )

Cπ(t′, ~θ )
(3.31)

which, compared with the r.h.s of (3.29), makes clear that we have gained the desired

kinematic factors in order that, setting N = ZKZπ/(4EKEπ), we can arrive to the

following expression

N · Rµ(t, t′; θ) =
CKπ

µ (t, t′, ~θ,−~θ )

CK(t′, ~θ )
·
CπK

µ (t, t′, ~θ,−~θ )

Cπ(t′, ~θ )
−−−−−−−−→

t → ∞
(t′ − t) → ∞

1

Z2
V

〈π(−~θ )| V̂µ |K(~θ )〉 〈K(−~θ )| V̂ †
µ |π(~θ )〉

4EKEπ
. (3.32)

It is important to stress the fact that in the right hand side there is no sum over µ.

Let us now turn our attention to what we had postponed at the beginning of this

section: the calculation of the vector current renormalization constant and its automatic

inclusion in the ratio (3.32). Let us introduce the pion-to-pion three–point correlation

function, analogue to (3.22)1 but formally with K = π, which in the large t and t′ − t

limit goes as

1For a definition of the pion-to-pion three–point correlation function for every value of t and t′ − t

see [90].
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Cππ
µ (t, t′, ~p, ~p ′ ) −−−−−−−−→

t → ∞
(t′ − t) → ∞

Zπ

4Eπ(~p )Eπ(~p ′ )

1

ZV
〈π(p′ )| V̂ †

µ |π(p)〉 ·

· e−Eπ(~p )t−Eπ(~p ′ )(t′−t) ; (3.33)

now, exploiting the fact that the matrix element of the time component of the vector

current evaluated between degenerate states is the matrix element of the conserved

electromagnetic current, the electric charge normalization imply that

〈π(K)| V̂0(0) |π(K)〉 = 2Mπ(K)f
π(K)→π(K)(q2 = 0) = 2Mπ(K) , (3.34)

and this allows one to introduce two equivalent definition of ZV

Zππ
V

.
=

Cπ(t′,~0 )

Cππ
0 (t, t′,~0,~0 )

−−−−−−−−→
t → ∞

(t′ − t) → ∞

ZV , and (3.35)

ZKK
V

.
=

CK(t′,~0 )

CKK
0 (t, t′,~0,~0 )

−−−−−−−−→
t → ∞

(t′ − t) → ∞

ZV . (3.36)

For reasons which will become clear later, let us define the vector renormalization

constant as the geometric mean

ZV =
√

Zππ
V ZKK

V , (3.37)

where Zππ and ZKK are the one defined in (3.35) and (3.36). Exploiting (3.37), together

with (3.35) and (3.36), one is able to modify (3.32) obtaining

N · Rµ(t, t′; θ) =
CKπ

µ (t, t′, ~θ,−~θ )

CK(t′, ~θ )
·
CπK

µ (t, t′, ~θ,−~θ )

Cπ(t′, ~θ )
· Cπ(t′,~0 )

Cππ
0 (t, t′,~0,~0 )

· CK(t′,~0 )

CKK
0 (t, t′,~0,~0 )

−−−−−−−−→
t → ∞

(t′ − t) → ∞

〈π(−~θ )| V̂µ |K(~θ )〉 〈K(−~θ )| V̂ †
µ |π(~θ )〉

4EKEπ
. (3.38)

Let us make some considerations about the matrix elements involved in (3.38).

Exploiting the symmetry of the theory under time reversal (T) and charge conjugation
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(C) transformations and profiting of the Breit kinematic employed in the calculation

(~p ′ = −~p), one can write the K → π form factors in (3.21) as

〈π(~p ′ )| V̂µ(0) |K(~p )〉 = fK→π
+ (q2)(p + p′ )µ + fK→π

− (q2)(p − p′ )µ . (3.39)

The corresponding (unphysical) π → K matrix element is given by

〈K(~p ′ )| V̂ †
µ (0) |π(~p )〉 = fπ→K

+ (q2)(p + p′ )µ + fπ→K
− (q2)(p − p′ )µ . (3.40)

Indeed, only two of these four form factors are really independent. These matrix

elements are connected by a time reversal and charge conjugation transformation and

one can find

〈K(−~θ )| V̂ †
µ (0) |π(~θ )〉 =

{
+〈π(−~θ )|V̂0(0)|K(~θ )〉 µ = 0

−〈π(−~θ )|V̂i(0)|K(~θ )〉 µ = i = 1, 2, 3
(3.41)

Writing (3.39) and (3.40) in the Breit frame, one can find these interesting relations

between form factors

fπ→K
+ (q2) = fK→π

+ (q2)
.
= f+(q2) , (3.42)

fπ→K
− (q2) = −fK→π

− (q2)
.
= −f−(q2) . (3.43)

and using (3.41) we can finally write (i = 1, 2, 3)

〈π(−~θ )| V̂µ(0) |K(~θ )〉 · 〈K(−~θ )| V̂ †
µ (0) |π(~θ )〉 =





+
(
〈π(−~θ )| V̂0(0) |K(~θ )〉

)2
µ = 0

−
(
〈π(−~θ )| V̂i(0) |K(~θ )〉

)2
µ = i

(3.44)

Let us note that for the maximum transfer momentum q2
MAX which, in our language,

correspond to θ = 0 we find that (3.38) becomes

N · R0(t, t
′;~0) =

CKπ
0 (t, t′,~0,~0 )CπK

0 (t, t′,~0,~0 )

Cππ
0 (t, t′,~0,~0 )CKK

0 (t, t′,~0,~0 )
−−−−−−−−→

t → ∞
(t′ − t) → ∞

(MK + Mπ)2

4MKMπ
f2
0 (q2

MAX)(3.45)
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expression which gives access directly to the form factor calculated at q2
MAX with a

high statistical precision, as can be seen from the results quoted in [17; 18; 19]. The

reason why, by means of (3.45), one is able to achieve a high statistical precision is

connected with the high precision which one has both in the meson mass extraction

and in the numerical calculation of zero momentum correlation function.

The form factors for any value of q2, different from q2
MAX , can instead be calculated

studying the following linear system; with respect to (3.39), we call 〈V̂0〉 the time

component of the matrix element of V̂µ given by

〈V̂0〉 = (EK + Eπ) f+(q2) + (EK − Eπ) f−(q2) . (3.46)

The divergence of the matrix element of the spatial component of V̂µ, in momentum

space, is

〈qiV̂i〉 .
=

3∑

i=1

qi 〈π( ~p ′ )| V̂i(0) |K( ~p )〉 , (3.47)

which, in the Breit system ~p = −~p ′ = 2π~θ/L, imply

〈qiV̂i〉 =
48π2θ2

L
f−(q2) ; (3.48)

then, the form factors f±(q2) can be calculated solving the linear system defined by

(3.46) and (3.48). Using (3.21), which connect f0 and f±, one can finally determine

the form factors of interest.

3.2.2 Semileptonic correlators & the all-to-all propagator

In order to introduce the so–called all-to-all quark propagator, let us note that for

the two– and three–point functions it exists also another representation, beside the

(asymptotic) quantum mechanical one presented in (3.8) and (3.19); if one starts from

the usual definition for the correlators (3.22) and (3.23), which we remind here for the

reader’s convenience
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CKπ
µ (t, t′, ~p, ~p ′ ) =

1

L3T

∑

x,y,z

〈Oπ(y)Vµ(x)O†
K(z)〉 δt,tx−tzδt′,ty−tz e−i~p·(~x−~z )+i~p ′·(~x−~y ) ,

(3.49)

CK(π)(t, ~p ) =
1

L3T

∑

x,z

〈OK(π)(x)O†

K(π)(z)〉 δt,tx−tz e−i~p·(~x−~z ) , (3.50)

from the explicit decomposition of the Vµ, Oπ and OK composite operators in terms

of the quark constituent fields and by expressing the T-product by means of the Wick

theorem (i.e. by performing all the possible Wick contractions between equal flavour

quark operators), one can actually find an equivalent expression for (3.49) and (3.50)

as a function of the all-to-all quark propagators Su,d,s(x, z). The two–point functions

becomes

CK(π)(t, ~p ) =
∑

x,z

〈Tr
[
Ss(u)(x, z)γ5Sd(z, x)γ5

]
〉 δt,tx−tze

−i~p·(~x−~z ) ; (3.51)

this expression can be pictorially represented, in terms of Feynman diagrams, as in

figure 3.1

Figure 3.1: Kaon two–point function - It is shown the Feynman diagram correspond-

ing to the (connected) two–point function of the Kaon, for the case tx > tz.

For the tm-LQCD action, the γ5–hermiticity property

Sd(z, x) = γ5S
†
u(x, z)γ5 (3.52)

holds with the dagger operation acting on the (suppressed) color and Dirac indices.

As for the three-point function (3.49) in the Breit frame, CKπ
µ (t, t′, ~p,−~p ), one gets
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3.2 Semileptonic Kaon decays

CKπ
µ (t, t′, ~p,−~p ) =

∑

x,z

〈Tr
[
Ss(x, z)γ5Σ̄du(z, x; t′;−~p )γµ

]
〉 · (3.53)

· δt,tx−tz e−2i~p·(~x−~z ) , (3.54)

where Σdu(z, x; t′;−~p ) = γ5[Σdu(x, z; t′;−~p )]†γ5 and

Σdu(x, z; t′; ~p ) =
∑

y

Sd(x, y)γ5Su(y, z) e−i~p·(~z−~y ) δt′,ty−tz . (3.55)

The sequential propagator Σdu(x, z; t′; ~p ) satisfies the equation

∑

y

Dd(x, y) Σdu(y, z; t′; ~p ) = γ5Su(x, z) δt′,tx−tz ei~p·(~x−~z ) . (3.56)

The three–point function (3.53) can be represented as in figure 3.2.

Figure 3.2: Kaon three–point function - It is shown the Feynman diagram corre-

sponding to the (connected) three–point function describing the underlying quark process

relative to the decay K → π. It is the case tz < tx < ty.

As we have anticipated in section 2.5, in this work we have employed θ–BC and

so we must now rewrite the correlators in terms of quark fields which satisfy these

constraints. For (3.51) to (3.56) we have only to replace the propagators S and Σ

with the corresponding twisted ones, S̃ and Σ̃, and also take into account the change

of the quantized momenta, namely pj → p̃j = pj + 2πθj/L (see (2.106)). The two–

and three–point correlators can be expressed in terms of quark propagators satisfying

periodic BC’s, e.g. in terms of the S
eθ in (2.121). We now write down the explicit

formulae for sake of completeness.
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In order to work in the Breit frame we consider three choices of the twisting four-

vector θ̃, namely θ̃ = θ̃± = (L/2T,±~θ ) and θ̃ = θ̃0 = (L/2T,~0 ) for various values of ~θ.

Writing ~p in the generic form ~p = 2π~θ/L, we get

CK(π)(t,
2π

L
~θ ) =

1

L3T

∑

x,z

〈Tr[S
eθ+

s(u)(x, z)γ5S
eθ0
d (z, x)γ5]〉 δt,tx−tz , (3.57)

CKπ
µ (t, t′,

2π

L
~θ,−2π

L
~θ ) =

1

L3T

∑

x,z

〈Tr[S
eθ+
s (x, z)γ5Σ

eθ0,eθ−
du (z, x; t′)γµ]〉 δt,tx−tz ,(3.58)

where, thanks to the γ5-hermiticity property, one has

Σ
eθ0,eθ−
du (z, x; t′) = γ5[Σ

eθ−,eθ0

du ]†(x, z; t′ )γ5 (3.59)

and the sequential propagator Σ
eθ−,eθ0

du (x, z; t′ ) satisfies the modified Dirac equation

∑

y

D
eθ−
d (x, y) Σ

eθ−,eθ0

du (y, z; t′ ) = γ5S
eθ0
u (x, z) δt′,tx−tz . (3.60)

Note that, because of (2.121), no exponential factors appear in the r.h.s. of (3.57)-

(3.60) and the dependence on the vector ~θ is totally embedded in the twisted quark

propagators S
fθ+ and Σ

eθ−,eθ0

du .

3.2.3 Stochastic procedures for connected diagrams

The next point to be addressed is the evaluation of the all-to-all propagator S
eθ(x, z)

which is the solution of the modified Dirac equation (2.119). Restoring color and spin

indices, denoted by Latin and Greek letters respectively, one has

∑

y

[D
eθ(x, y)]ab

αβ [S
eθ(y, z)]bcβγ = δx,z δa,c δα,γ . (3.61)

The computation of exact all-to-all quark propagators is a formidable task well beyond

present computational capabilities, because it involves a huge number of inversions of

the Dirac equation for all possible locations of the source in space and time. Conse-

quently most of the lattice computations of connected two– and three–point correlation
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3.2 Semileptonic Kaon decays

functions are till now carried out using the point-to-all propagator by fixing the source

at some space-time point, referred to as the origin. To get the expressions of our two–

and three–point correlators in terms of point-to-all propagators it is enough to limit the

sum over the variable z to z = 0 everywhere in (3.57)–(3.60). The basic advantage of

the all-to-all propagator with respect to the point-to-all one relies in the fact that the

former contains all the information on the gauge configuration, which in turn means

that the calculation of two– and three–point functions using all-to-all propagators is

expected to have much less gauge noise.

An efficient way to estimate the all-to-all propagator is based on stochastic tech-

niques with the help of variance reduction methods to better separate the signal from

the noise (see [91] and references therein). In recent years new stochastic methods have

been developed, like the dilution method [13] and the so-called ”one-end-trick” [92; 93].

The former will be treated in section 3.3.1, where we will introduce the disconnected

diagrams evaluation techniques, because this is one of the methods we have tested be-

fore choosing an optimal one; the latter, already applied by the ETM collaboration to

the calculation of neutral meson masses (see [15] and [16]), allows to achieve a great

reduction of the noise-to-signal ratio and it will be applied in this work to the calcula-

tion of the connected diagrams involved, for instance, in the semileptonic three–point

correlation functions (see also [18] and [94]) and in general in all the connected diagram

which we are going to calculate.

The starting point of all stochastic approaches is to consider random sources ηa
r (x),

which, for reasons that will become clear later on, we take independent of both the

spin variable and the twisting vector θ̃ (i.e., of the quark momentum). The index

r (r = 1, ...Nr) enumerates the generated random sources, which must satisfy the

following constraint

lim
Nr→∞

1

Nr

Nr∑

r=1

ηa
r (x)[ηb

r(y)]∗ = δa,b δx,y . (3.62)

In this work we will always adopt for the sources a random choice of ±1 values. Then

one introduces the “φ-propagator”

[φ
eθ
r(x)]aαβ =

∑

y

[S
eθ(x, y)]ab

αβ ηb
r(y) , (3.63)
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which is solution of the equation

∑

y

[D
eθ(x, y)]ab

αβ [φ
eθ
r(y)]bβγ = ηa

r (x) δα,γ . (3.64)

where the sum over repeated color or spin indices is understood. As explained in details

in [15], the quantity (1/Nr)
∑Nr

r=1[φ
eθ
r(x)]aαβ [ηb

r(y)]∗ is an unbiased estimator of the all-

to-all propagator [S
eθ(x, y)]ab

αβ . However, while the signal is of order O(11), the noise is

of the order
√

V/Nr (where V is the space-time volume) and therefore a huge number

of random sources and inversions of (3.64) would be required.

The “one-end-trick” is based on the observation that the product of two “φ-propagators”

is an unbiased estimator of the product of two all-to-all propagators summed over the

intermediate space-time points. In this case, however, the signal is of order V, while

the noise is of order V/
√

Nr, so that it is even sufficient to employ one random source

(Nr = 1) per gauge configuration, as we do in this work.

Choosing the random source ηr
a(x) to be non-vanishing only for a randomly-chosen

time slice, located at tr
1, the two–point correlation function (3.57) can be estimated

as

CK(π)(t,
2π

L
~θ ) =

∑

~x,tx

〈[φeθ+

s(u),r(~x, tx)]aαβ {[φeθ0
u,r(~x, tx)]aβα}∗ δt,tx−tr〉 (3.65)

Looking at the above equation the φ-propagator [φ
eθ
r(x)]aαβ plays a role quite similar

to the one of the point-to-all propagator [S
eθ(x, 0)]ab

αβ with only one color index, being

the other one carried by the random source. This means that the time needed for the

calculation of the φ-propagator is 1/3 of the one required for the point-to-all propa-

gator. Note also that both φ
eθ+
r (x) and φ

eθ0
r (x) are solutions of (3.64) with the same

random source ηr(x). This is essential to properly get the r.h.s. of (3.65). Moreover

the independence of the random source from spin indices allows to evaluate two–point

correlation functions with interpolating fields of the form (q̄Γq′) for any Dirac matrix

Γ.

1The random choice of the time slice at tr is mainly motivated by the reduction of autocorrelations

observed for fermionic quantities using the ETM gauge ensembles (see [15]).
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3.3 The road to the neutron EDM calculation

The stochastic estimate of the three–point correlation function (3.58) requires the

introduction of the sequential “Φ-propagator”

[Φ
eθ−,eθ0

du,r (x; t′ )]aαβ =
∑

y

[Σ
eθ−,eθ0

du,r (x, y; t′ )]ab
αβ ηb

r(y), (3.66)

which is solution of the equation

∑

y

[D
eθ−
d (x, y)]ab

αβ [Φ
eθ−,eθ0

du,r (y; t′ )]bβρ = [γ5]αγ [φ
eθ0
u,r(x)]aγρ δt′,tx−tr . (3.67)

One gets

CKπ
µ (t, t′,

2π

L
~θ,−2π

L
~θ ) =

∑

~x,tx

〈 [φ
eθ+
s,r(~x, tx)]aαβ {[Φeθ−,eθ0

du,r (~x, tx; t′ )]aβγ}∗

· [γ5γµ]γα δt,tx−tr〉 . (3.68)

Let us note that for each value of the quark momentum ~θ injected via the twisted

BC an inversion of the θ-dependent Dirac operator is required.

3.3 The road to the neutron EDM calculation

We have already mentioned that the resolution of the U(11)A problem effectively

adds the extra term (1.168) to the QCD lagrangian, and that this term is able to

generate an EDM for the neutron. This quantity can be estimated using LQCD by

means of several strategies. The first approach (cfr. [95] and the more recent one

[96]) is to measure the energy difference between spin-up and spin-down neutrons, in

presence of a uniform and static electric field. The second one [97; 98] is to parametrize

the matrix element of the electromagnetic current between nucleons in terms of form

factors and then measure the CP–odd one (F3(q
2)). The third [12] is based on the

evaluation of the disconnected insertion of the singlet pseudo-scalar density, as we have

outlined in section 1.4.2.

As we are planning a future calculation of the neutron EDM, it is of fundamental

importance to carry out a feasibility study of the lattice techniques at our disposal for

calculating these disconnected diagrams. To this end we have considered the methods
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exposed in [13], [14] and [15] and applied them for calculating the disconnected part of

the π0 and (2–flavour) η′ 2–point correlation functions.

The next section will be spent to explain in details these techniques, show their

differences and then present an hybrid method which in our opinion can be a good

tool for evaluating these noisy diagrams; in this framework we will also discuss how the

all-to-all propagator fits within disconnected insertions.

The results and the comparisons among these techniques will be presented in chapter

4.

3.3.1 Quark-Disconnected diagrams & all-to-all propagators

Quark-Disconnected diagrams1 are a particular class of Feynman diagrams in which

fermionic lines are not explicitly connected, but they are linked only through the gluons

of the underlying gauge bosons configuration. They are involved in the, so–called,

flavour singlet physics observables which can be described by means of operators such

as (1.172), which can be generically written as

O
Γ
S = ūΓu + d̄Γd + s̄Γs ; (3.69)

these operators contribute to many physically interesting observables in the low energy

region of QCD. From a theoretical point of view, the correlation functions which in-

volve flavour singlet operators differ from the non-singlet one because of the presence

of this disconnected insertions which are correlations of hadronic propagators with a

quark–antiquark loop or correlations between quark-antiquark loops. An example of

the former has been seen in figure 1.6 which is the case where a composite particle,

such as the neutron, because of the complex properties of the QCD vacuum (GG̃),

interacts with the pseudoscalar density (1.172) (for the sake of clearness, let us neglect

its interaction with the other current J0 ); then, quantum field theory tells us that

beside the direct coupling between the current and the nucleon there is also another

term coming from the interaction of the PS(x) current with a quark-antiquark loop

within the neutron field.

1For the sake of shortness we will call this class of diagrams simply “disconnected diagrams” in

what will follow.
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3.3 The road to the neutron EDM calculation

The second kind of disconnected insertions are the correlations between quark-

antiquark loops which, for instance, can be found in some mesonic two–point functions;

let us use this second class of disconnected insertions and, in particular, the π0 and

the two–flavour1 η′ correlation functions, as a testing ground for the available methods

which will result in a formulation of our hybrid technique that might give us a chance

for a future evaluation of the much more complicated neutron EDM diagrams. To this

end, let us consider the operators

φ(x) =i
ū(x)γ5u(x) − d̄(x)γ5d(x)√

2
, with φ = φ† , (3.70)

η2(x) =i
ū(x)γ5u(x) + d̄(x)γ5d(x)√

2
, with η2 = η†2 (3.71)

which possess the same quantum numbers of the π0 and the η′, and let us define the

related correlation functions

Cπ0
(t, ~p ) =

1

L3T

∑

x,y

〈φ(~y, ty)φ(~x, tx)†〉 δt,ty−tx e−i~p·(~x−~y ) , (3.72)

Cη′
(t, ~p ) =

1

L3T

∑

x,y

〈η2(~y, ty)η2(~x, tx)†〉 δt,ty−tx e−i~p·(~x−~y ) . (3.73)

By carrying out, as usual, all the Wick contractions between the quark fields composing

the two operators φ and η2, one arrive at the expression (for ty > tx)

Cπ0
(t, ~p ) =

1

L3T

∑

x,y

1

2
[A(x, y) + Dπ(x, y)] δt,ty−tx e−i~p·(~x−~y ) (3.74)

Cη′
(t, ~p ) =

1

L3T

∑

x,y

1

2
[A(x, y) + Dη(x, y)] δt,ty−tx e−i~p·(~x−~y ) (3.75)

where, we have indicated with A(x, y) and Dπ,η(x, y), respectively, the connected and

the disconnected part of the two correlation functions. The connected part is the same

for both the π0 and the η′ and can be explicitly written as

A(x, y) = Tr [Su(x, y)γ5Su(y, x)γ5] + Tr [Sd(x, y)γ5Sd(y, x)γ5] , (3.76)

1From now on, for shortness, we will always refer to the 2–flavour η′ considered in this work as

simply η′.
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indicating with Su,d(y, x) the all-to-all u,d quark propagator and with Tr the trace

operator over all the propagator’s degree of freedom (color, spin, space and time). The

corresponding topology can be represented as in figure 3.3.

Figure 3.3: Connected topology - of the π0 and η′ 2–point correlation functions. Solid

lines are quark propagators, while wavy lines are gluons. Extra (sea) quark loops are not

shown.

The disconnected parts, instead, can be written as

Dπ(x, y) = Tr [Su(x, x)γ5] · Tr [Sd(y, y)γ5] + Tr [Sd(x, x)γ5] · Tr [Su(y, y)γ5]

− Tr [Su(x, x)γ5] · Tr [Su(y, y)γ5] − Tr [Sd(x, x)γ5] · Tr [Sd(y, y)γ5] ;
(3.77)

Dη(x, y) = Tr [Su(x, x)γ5] · Tr [Sd(y, y)γ5] + Tr [Sd(x, x)γ5] · Tr [Su(y, y)γ5]

+ Tr [Su(x, x)γ5] · Tr [Su(y, y)γ5] + Tr [Sd(x, x)γ5] · Tr [Sd(y, y)γ5] .
(3.78)

and the corresponding Feynman diagrams are represented in figure 3.4.

Figure 3.4: Disconnected topology - of the π0 (a) and η′ (b) 2–point correlation

functions. Solid lines are quark propagators, while wavy lines are gluons. Extra (sea)

quark loops are not shown.

It is now clear that the goal of the calculation is the estimate of the quantity, which

we will call fermionic bubble, defined as
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3.3 The road to the neutron EDM calculation

B
Γ(t) =

∑

~x

Tr [Si(~x, t; ~x, t)Γ] with i = u, d (3.79)

where Γ is any of the sixteen Dirac γ matrices combinations.

The are two main methods, conceived by the authors of [13] and of [14] which allows

one to obtain the quantity in (3.79) and which we are going to explain in what follows;

for reasons which will become clear later , after a detailed study of these techniques, we

have worked out an hybrid method, which combine what we think are the best virtues

of the two methods. We will also show a third method [15], which can be employed

only with the twisted mass action and which is less general with respect to the one of

[13] and [14] (and to our hybrid method too), but which is particularly effective in the

case of η′ correlation.

Let us start with the one exposed in [13], called “dilution” method. The method

starts from equation (3.64) solved by the “φ-propagator”, considered in this contest

independent from the twisting vector θ̃, which can be rewritten and generalized as

∑

y

[D(x, y)]ab
αβ [φr(y)]bβ = [ηr(x)]aα . (3.80)

We note that now the ηr sources are (color-spin) vectors, filled with (random) ±1, and

which must satisfy the orthogonality relation (3.62) as the only constraint; then, the

dilution procedure uses one volume source ηr (Nr = 1), on the r.h.s. of (3.80) by

breaking it up into pieces, which only have support on a single time–slice each,

η(~x, t) =

Nt−1∑

j=0

η(j)(~x, t) with η(j)(~x, t) = 0 if j 6= t (3.81)

where j stands for the dilution index (in this example time–dilution) and Nt is the

number of the lattice time–slices.

This dilution procedure can be carried out on any index of the employed source, up

to the so called homeopathic limit in which one dilute every single degree of freedom of

the ηr vector. Using a noise vector such as the one in (3.81) means that one will have

to solve (3.80) for each η(j) obtaining, in the time–dilution case, Nt couples of vectors

107



3. WHAT HAS TO BE COMPUTED

{
φj , ηj

}
while in the general case, defining Nd =

∏
i Ni (with Ni which quantifies the

dilution on the index i), one will have Nd vector couples
{
φj , ηj

}
. These Nd couples of

vectors can be used for estimating the fermionic bubble (3.79) by means of

B
A(t) =

Nd∑

j=1

O
(j)A(t) with (3.82)

O
(j)A(t) =

∑

~x

[
η(j)

r (~x, t)†
]a

α

[
ΓAφ(j)

r (~x, t)
]a

α
. (3.83)

We want to stress the fact that, in physical applications where Nf flavour are contem-

porary involved the computation cost is Nd×Nf inversions per configuration; moreover,

we point out that for applications such as (3.77) and (3.78), in which one has to multiply

propagators with the same flavour, the number of inversions get doubled (2×Nd ×Nf )

because one has to give two independent estimates of the propagator for each flavour

involved in the product in order to avoid undesired contractions between the η vectors.

This is a general argument when dealing with amplitudes which involve products of

fermionic bubbles of the same flavour, and from now on this multiplicity factor will be

always omitted, unless otherwise specified.

Let us explain why one should use this method and spend Nd inversions per con-

figuration, instead of only one for each flavour: the reason is that, diluting the source,

one is able to exactly reconstruct the trace over the diluted degree of freedom, and this

is of great importance when dealing with stochastic noise reduction1.

Before moving to the second method, we summarize the dilution procedure, and its

principal features, for calculating a single fermionic bubble

1. Generate a volume source η(~x, t) filled with random ±1.

2. Dilute the volume source on the desired degree of freedom η(~x, t) → η(j)(~x, t)

(one must consider that the larger the variable is, the greater will be the number

of inversion per configuration).

3. Calculate the solution vector solving Dφ(j) = η(j), where D stands for any regu-

larization of the Dirac operator.

1In principle, reaching the homeopathic limit, one is able to exactly calculate the all-to-all prop-

agator and exactly reconstruct the trace over any degree of freedom of the source thus completely

eliminating the stochastic noise. In practice this limit is not yet reachable.
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4. Construct the quantity O(j)A(t).

5. Repeat steps 1 to 4 Nd times.

6. Construct the fermionic bubble BA(t).

7. Repeat preceding steps for each desired flavour and for each configuration.

It is of great importance to understand that, with this procedure (with Nr set to 1), the

stochastic sample average, essential to get the orthogonality property (3.62), is carried

out together with the gauge field configuration mean.

Let us now move to the method exposed in [14], which we will call the “direct”

method; we will start with the procedure recipe, as the method is far easier that the

dilution one, and then we will make some comments. The fermionic bubble calculation

by means of the direct method proceeds as follows

1. Generate a volume source ηr(~x, t) filled with random ±1, defined on the whole

space–time.

2. Calculate the solution vector solving Dφr = ηr.

3. Construct the rth fermionic bubble using

BA
r (t) =

∑

~x

[
ηr(~x, t)†

]a

α

[
ΓAφr(~x, t)

]a

α
(3.84)

4. Repeat steps 1 to 3 for Nr stochastic sources (r = 1, . . . , Nr).

5. Start the stochastic sample average by means of

B
A(t) =

Nr∑

r=1

BA
r

Nr
(3.85)

6. Repeat steps 1 to 5 for the number of desired flavors and for the number of gauge

field configurations. Let us stress the fact that if one is dealing with expressions

such as (3.77) and (3.78) one will have to calculate two independent determina-

tions of the fermionic bubble (3.85) i.e. repeat steps 1 to 5 one time more for

each flavour and gauge field configuration.
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The differences with the dilution method are two: the first is about computation time

while the second is about procedure. The direct method uses noise vector defined

on the whole space–time and it means, translated at a computation time level, that

the number of inversions employed by the method are Nr × Nf , against the Nd × Nf

of the dilution method which, depending on which index one is diluting, typically

employs an Nd greater than the typical Nr used in the simulations. As a result the

dilution method can have the drawback of being volume–dependent1 and more time–

consuming; moreover, looking, at the two procedures, it is easy to understand that

the direct method, with the sample average at point 5, already starts, on each single

configuration, the stochastic mean and this allows one to better suppress gauge-variant

terms deriving from the non–exact closure of the fermionic trace (it becomes exact ony

when relation (3.62) is exactly fulfilled).

From these simple features and from some numerical simulations, in the quenched

approximation, which we are going to show it is easy to understand what will be the

idea standing behind our hybrid method. We show in figure 3.5 and 3.6, respectively,

the disconnected contributions (3.77) and (3.78) to the neutral pion and to the eta

prime (zero momentum) correlators as a function of time, calculated using both the

direct method and the dilution technique applied to the color and spin variables of the

sources. The presented results has been obtained averaging data from 300 gauge field

configurations, at β = 6.0, using a lattice volume of V ×T = 163×32 and a bare quark

mass which correspond to 300 MeV pions2. In our opinion these tests show that the

(spin) dilution technique is more effective in reproducing the euclidean Green function

in the η′ case (see figure 3.6) while start averaging over the stochastic sample on each

gauge field configuration is more crucial for reproducing the π0 Green function (see

figure 3.5): so we have decided to combine these two main features in a method which

we have called “spin–direct”.

The spin–direct method uses sources which, like the one employed by the “one-end-

trick”, are spin independent and then are also diluted on the spin variable employing

the usual technique as

1We are referring to the time–dilution case.
2For more detailed informations about the simulation set up, see [99]
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Figure 3.5: Direct V.S. color spin dilution method (π0) - We show the disconnected

part of the neutral pion correlator at zero momentum (disconnected part of (3.74), with

~p = 0) as a function of time (in lattice units). The full dots represent the data obtained

using the direct method, while the full squares are obtained using the color spin dilution

technique. Data are obtained from 300 gauge field configuration at β = 6.0 for a volume of

V × T = 163 × 32 and a bare quark mass which correspond to 300MeV pions, generated

in the quenched approximation. The number of inversions per configuration amounts to

Nf × 2 × 12 for the color spin dilution method while for the direct one it is Nf × 24. For

the sake of readability, the color spin dilution correlator has been translated in t/a of 0.3.
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Figure 3.6: Direct V.S. color spin dilution method (η′) - We show the disconnected

part of the η′ correlator at zero momentum (disconnected part of (3.75), with ~p = 0) as a

function of time (in lattice units). The full dots represent the data obtained using the direct

method, while the full squares are obtained using the color spin dilution technique. Data

are obtained from 300 gauge field configuration at β = 6.0 for a volume of V ×T = 163×32

and a bare quark mass which correspond to 300MeV pions, generated in the quenched

approximation. The number of inversions per configuration amounts to Nf ×2×12 for the

color spin dilution method while for the direct one it is Nf ×24. For the sake of readability,

the color spin dilution correlator has been translated in t/a of 0.3.
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η(~x, t) =
∑

i

η(i)(~x, t)δα,β with η(i) = 0 if i 6= α , (3.86)

then, the procedure for obtaining the fermionic bubble can be schematically presented

as

1. Generate a volume source ηr(~x, t) filled with random ±1, defined on the whole

space–time.

2. Spin-dilute the noise vector ηr(~x, t) → η
(j)
r (~x, t).

3. Calculate the solution vector solving Dφ
(j)
r = η

(j)
r .

4. Construct the fermionic quantity

O
(j)A
r (t) =

∑
~x

[
η

(j)
r (~x, t)†

]a

α

[
ΓAφ

(j)
r (~x, t)

]a

α
. (3.87)

5. Repeat steps 1 to 4 Nr times.

6. Start the stochastic sample average building

O
(j)A(t) =

∑Nr

r=1
O(j)A(t)

Nr
. (3.88)

7. Repeat steps 1 to 6 Nd (Nd = 4) times and then construct the fermionic bubble

as

B
A(t) =

∑Nd

j=1 O(j)A(t) . (3.89)

Let us stress the fact that with this method one is able to achieve an exact trace over

the spin index while the mean operation of point 6 improves the trace over the other,

non-diluted, degrees of freedom. The method’s computation time is of 4×Nr and saves

a factor of two with respect to the other methods because, as it uses spin-independent

sources, inversions results are relevant both for the u flavour and the d one1. With this

1The reason for this extra gain with respect to the other methods must be traced back to the peculiar

algorithm which we employ for the twisted-mass Dirac operator inversion which, in the physical basis,

dut to the spin-independence of the sources, does not distinguish between the u–like and the d–like

flavors.
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technique one is able to well reproduce both the π0 and the η′ disconnected correlation

functions, as can be seen in figure 3.7 and 3.8, where we show the comparison between

this method and the direct one in the π0 and η′ case, respectively. These data have been

calculated at the same beta, same number of gauge field configurations and volume of

the previous comparisons, presented in figure 3.5 and 3.6.
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Figure 3.7: Spin–direct V.S. direct method (π0) - We show the disconnected part

of the neutral pion correlator at zero momentum (disconnected part of (3.74), with ~p = 0)

as a function of time (in lattice units). The full dots represent the data obtained using the

direct method, while the full diamonds are obtained using the spin–direct technique. Data

are obtained from 300 gauge field configuration at β = 6.0 for a volume of V ×T = 163×32

and a bare quark mass which correspond to 300MeV pions, generated in the quenched

approximation. The number of inversions per configuration amount to 4× 24 for the spin–

direct method while for the direct one it is Nf × 24. For the sake of readability, the direct

correlator has been translated in t/a of 0.3.
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Figure 3.8: Spin–direct V.S. direct method (η′) - We show the disconnected part of

the η′ correlator at zero momentum (disconnected part of (3.75), with ~p = 0) as a function

of time (in lattice units). The full dots represent the data obtained using the direct method,

while the full diamonds are obtained using spin–direct technique. Data are obtained from

300 gauge field configuration at β = 6.0 for a volume of V ×T = 163×32 and a bare quark

mass which correspond to 300MeV pions, generated in the quenched approximation. The

number of inversions per configuration amount to 4× 24 for the spin–direct method while

for the direct one it is Nf × 24. For the sake of readability, the direct correlator has been

translated in t/a of 0.3.

The last method which we are going to present is the one used in [15], which we will

call “twisted” method. The name of the method derive from the fact that it exploits

a particular algebraic identity of the twisted mass operator in the twisted basis (2.55),

for which one has that

Dtw|u − Dtw|d = −2iµγ5 , (3.90)

where we have omitted all the space, time, spin and color indices, as they are irrelevant
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for what we are going to show and we have used the index tw to explicitly remind that

we are considering the twisted mass Dirac operator in the twisted basis. Let us now

consider a particular combination of the fermionic propagators

Stw
u − Stw

d , (3.91)

and let us write it down as

Stw
u

[
(Stw

d )−1 − (Stw
u )−1

]
Stw

d . (3.92)

Using (3.90) one can find the relation

[
Stw

u − Stw
d

]
= 2iµ Stw

u γ5S
tw
d ; (3.93)

multiplying by a generic Dirac Γ matrix and taking the trace of both the l.h.s and the

r.h.s of (3.93), one is able to obtain the key identity

Tr
[
Γ

(
Stw

u − Stw
d

)]
= 2iµ Tr

[
ΓStw

u γ5S
tw
d

]
. (3.94)

Let us bring this expression to the physical basis, using the relations (at maximal twist)

Stw
u = eiγ5π/4 Su eiγ5π/4 (3.95)

Stw
d = e−iγ5π/4 Sd e−iγ5π/4 (3.96)

which relate the twisted propagators Stw
i to the physical ones Si. Performing the

transformations (3.95) and (3.96) in (3.94) one is able to obtain

Tr [Γ (Su − Sd)] = 2µ Tr [ΓSuγ5Sdγ5] if {Γ, γ5} = 0, (3.97)

Tr [Γγ5 (Su + Sd)] = 2µ Tr [ΓSuγ5Sd] if [Γ, γ5] = 0 ; (3.98)

these relations are very important because show that it is possible to express suited

combination of fermionic bubbles as a connected–like diagrams, which we are able to

determine with a high degree of precision exploiting the modified one-end-trick method.
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A convenient extension of the one-end-trick, which allows (3.97) and (3.98) to be

translated in terms of the usual φ–propagator, requires again the consideration of four

(β = 1, 2, 3, 4) linked sources, as in (3.63), of the form

[ηa
α(~x, t)]β = ηa(~x, t)δαβ , (3.99)

which satisfy the usual orthogonality constraint (3.62) but that now, at variance with

respect to the one-end-trick, are defined not only on a particular time slice1 but are

different from zero at all space-time lattice sites. This allows to rewrite (3.97) and

(3.98) as

Tr [Γ (Su − Sd)] = 2µ
∑

~x

Tr
{ [

φ∗
u;r(~x, t)

]a

γα
Γαβ [φu;r(~x, t)]aβγ

}
if

{
Γ, γ5

}
= 0,

(3.100)

Tr [Γγ5 (Su + Sd)] = 2µ
∑

~x

Tr
{ [

φ∗
u;r(~x, t)

]a

γα
(Γγ5)αβ [φu;r(~x, t)]aβγ

}
if

[
Γ, γ5

]
= 0 .

(3.101)

Exploiting the γ5-hermiticity property (3.52) of the tm-LQCD action, one can derive

an analogue expression to (3.100) and (3.101) where, at the r.h.s. one has

Tr [Γ (Su − Sd)] = − 2µ
∑

~x

Tr
{ [

Γφ∗
d;r(~x, t)

]a

γα
[φd;r(~x, t)]aβγ

}
if

{
Γ, γ5

}
= 0,

(3.102)

Tr [Γγ5 (Su + Sd)] = 2µ
∑

~x

Tr
{ [

Γγ∗
5φ∗

d;r(~x, t)
]a

γα
[φd;r(~x, t)]aαγ

}
if

[
Γ, γ5

]
= 0 ,

(3.103)

which, together with (3.100) and (3.101), can help to improve the statistical precision

for the fermionic bubble combination on the l.h.s.; let us stress the fact that with the

twisted method, the procedure for evaluating these combination of fermionic bubbles

is greatly simplified with respect to the other ones as it is enough to simply solve the

φ–propagator equation, with Nr = 1, performing only 4×Nf inversions and then, with

the need of diluting or averaging nothing, construct the connected operators on the

1This was the one called tr in the one-end-trick method.
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r.h.s. of (3.100), (3.101), (3.102), and (3.103). The drawback to that approach is that

one is obliged to use the twisted mass Dirac action as fermionic regularization as well

as that it allows to calculate only the disconnected diagrams combination obtainable

from (3.100), (3.101), (3.102), and (3.103).
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4

Results

In this chapter we will present the results obtained in this PhD thesis. As said

before, the work is divided in two parts: the first consists of a LQCD study of the form

factors for the semileptonic kaon decays K → πlν at different values of the momentum

transfer. The second one consists of showing our preliminary results obtained for the

disconnected fermionic bubble.

The first part start with section 4.1 giving some simulation details about the ETMC

gauge field configurations with Nf = 2 dynamical flavour of quarks, paying special

attention to the number and the values of valence light and strange quarks as well as

the number and values of the momenta employed in the simulation.

In section 4.2 statistical errors will be treated, explaining in details the jackknife

and bootstrap methods used in this work; with sections 4.3 and 4.4 the very form

factor analysis begins: first we will show the time region in which we are able to isolate

single ground state mesons and then we will show, for fixed kaon and pion masses, our

results for the form factors at different values of the meson momenta. Section 4.5 will

be dedicated to explain our procedure to interpolate the form factors at the physical

kaon mass. Once fixed the kaon mass, in section 4.6 we will show how to keep under

control the systematic errors which affect a typical lattice calculation: discretization

effects and finite size effects. In Section 4.7 the chiral extrapolation will be treated

and this first part will end with section 4.8 where we present our results, extrapolated

at the physical point, for the vector form factor at zero momentum f+(0), the ratio

fK/fπ and for the CKM matrix element Vus calculated using both Kl2 and Kl3 decay

amplitudes. A comparison with the FLAVIANET 2010 results [23] will also be given.
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The chapter ends with section 4.9 in which we present some unquenched results

obtained with our spin–direct and twisted stochastic techniques. We will compare the

precision of the methods in obtaining the η′ disconnected and complete correlators and

make some considerations about the future applicability of the techniques.

4.1 Simulation details

ETM collaboration has recently completed an extensive program of lattice calcula-

tion of two– and three–point correlation functions, using the gauge field configurations

generated with the tree-level Symanzik improved action (2.54) and the Nf = 2 twisted

mass action, for two degenerate valence quarks, at maximal twist (2.66).

These simulations have been carried out for different values of the lattice spacing

as well as for different sizes of the lattice space-time volume. It this work, taking

[100] as a notation reference, we have used the gauge field configuration ensemble

denoted as A2, . . . , A4, B1, . . . , B7, and C1, . . . , C3 generated, respectively, at values of

the inverse gauge coupling equal to β = 3.8 (a = 0.10 fm, a−1 = 1.94 GeV ), β = 3.9

(a = 0.079 fm, a−1 = 2.30 GeV ), and β = 4.05 (a = 0.063 fm, a−1 = 2.91 GeV ).

We remark here that all the configurations produced by ETMC are now public and

available on the international lattice data grid (ILDG1). Each ensemble corresponds to

as many values of dynamical quark masses, they are

A2 . . . A4 : amsea ∈
{

0.0080, 0.0110, 0.0165
}

, (4.1)

B1 . . . B7 : amsea ∈
{

0.0040, 0.0064, 0.0085, 0.0100, 0.0150, 0.0040, 0.0030
}

, (4.2)

C1 . . . C3 : amsea ∈
{

0.0030, 0.0060, 0.0080
}

; (4.3)

let us notice that for the ensembles A2, . . . , A4 and B1 . . . B5 the employed lattice

volume was, in lattice units (l.u.), L× T = 243 × 48 while for the remaining ensembles

B6, B7, C1, . . . , C3 it was used L×T = 323×64; We have carried out several simulations

at different lattice volumes keeping all the other parameters fixed in order to study finite

size effects (FSE).

The simulation algorithm used to generate these ensembles is a Hybrid Monte Carlo

algorithm with multiple time scales and mass preconditioning. It is described in [102]

1See [101], and references therein, for a further details about this network.
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and one implementation described in [103] is freely available. With this procedure it

has been generated a sample of 240 independent gauge field configurations for each of

the ensembles A2, . . . , A4, B1, . . . , B7, and C1, . . . , C3. For the sake of clarity, we have

summarized all the gauge field configuration set up in table 4.1.

Ensemble (L/a)3 × T/a β a (fm) aµs kcrit Mπ Mπ · L

A2 243 × 48 3.8 0.10 0.0080 0.164111 ∼ 400 4.9

A3 243 × 48 0.0110 ∼ 480 5.9

A4 243 × 48 0.0165 ∼ 580 7.1

B1 243 × 48 3.9 0.079 0.0040 0.160856 ∼ 300 3.3

B2 243 × 48 0.0064 ∼ 370 4.0

B3 243 × 48 0.0085 ∼ 435 4.7

B4 243 × 48 0.0100 ∼ 470 5.0

B5 243 × 48 0.0150 ∼ 575 6.2

B6 323 × 64 0.0040 ∼ 300 4.3

B7 323 × 64 0.0030 ∼ 260 3.7

C1 323 × 64 4.05 0.063 0.0030 0.157010 ∼ 300 3.3

C2 323 × 64 0.0060 ∼ 410 4.5

C3 323 × 64 0.0080 ∼ 470 5.3

Table 4.1: Gauge field configurations set up Summary of the ensembles generated

by ETMC. We have given the lattice volume L × T (in lattice units), the value of the

inverse coupling β, the lattice spacing a, the twisted mass parameter aµ for the sea quark

masses, the critical hopping parameter kcrit, the approximate pion mass and the value of

the product Mπ · L which is an important quantity when considering FSE.

For each value of β, several values of the bare twisted mass parameter aµv have

been employed in the simulation and they can be divided in two classes: light and

strange. The light-one have the same mass of the sea quarks, and corresponds to the

up and down quarks, which are degenerate in our simulation. We have always chose

to work in the unitary limit, which means that we have employed equal masses for the

light valence quarks and for the sea quarks, i.e.

ml = msea (for each ensemble) (4.4)

in order to avoid partial quenching effects for the two light quarks.
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The latter have masses around the strange quark mass, and in particular

A2 . . . A4 : ams ∈
{

0.016, 0.020, 0.030, 0.036
}

around mphys
s ∼ 0.020, (4.5)

B1 . . . B7 : ams ∈
{

0.015, 0.022, 0.027, 0.032
}

around mphys
s ∼ 0.018, (4.6)

C1 . . . C3 : ams ∈
{

0.015, 0.018, 0.022, 0.026
}

around mphys
s ∼ 0.015; (4.7)

we have reported also the physical value of the strange quark mass (in l.u.) because, as

we will explain in details in section 4.5, we will perform an interpolation in the strange

quark mass, or equivalently in the K meson mass, in order to have our observables

fixed at the physical point (for the Kaon mass variable); to carry out this operation as

precisely as possible, we have chosen to employ a set of strange quark masses which

encompasses the physical one.

It is important to underline that employing in a simulation light valence quark

masses such as (4.1), (4.2), and (4.3) allows one to simulate pion as light as 280 MeV

while using strange quark masses such as (4.5), (4.6), and (4.7) results in K meson

masses between 530 and 650 MeV .

Let us close this section mentioning that for the valence light quarks we have used

twisted boundary conditions, as already explained in section 2.5, which allows one to

simulate smaller momenta on the lattice with respect to the discrete ones imposed by

finite volume quantization. We remind that the chosen kinematic for the three–point

functions is the Breit frame in which the two mesons carry the same momenta, but

in opposite directions. At a quark level, referring to figure 3.2, this means that we

have assigned a unique vector ~θ in order that the decaying quark (s) carries 2π~θ/L

momentum while the produced quark (u) has −2π~θ/L. The spectator quark (d), which

is the same both for the two– and for the three–point functions, is always taken at

rest. Hence, we are left to chose only one twisting vector, which we have taken as

~θ = θ(1, 1, 1) with a different θ for each set of gauge fields configuration in order that

θ/L has the same value in physical units (and so the meson momentum) regardless of

what simulation is considered. The values chosen are
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A2 . . . A4 : θ ∈
{

0.00, 0.12, 0.22, 0.31, 0.40, 0.51
}

, (4.8)

B1 . . . B5 : θ ∈
{

0.00, 0.11, 0.19, 0.27, 0.35, 0.44
}

, (4.9)

B6 . . . B7 : θ ∈
{

0.00, 0.14, 0.25, 0.36, 0.46, 0.58, 0.70, 1.00
}

, (4.10)

C1 . . . C3 : θ ∈
{

0.00, 0.11, 0.20, 0.28, 0.36, 0.46, 0.70, 1.00
}

. (4.11)

4.2 Error analysis

In lattice simulations one has a certain number of uncertainty sources which enter

the evaluation of the quantities of interest. Among them, there are the statistical errors

which arise from the use of Monte Carlo methods for calculating hadronic quantities.

As it is clearly not possible to calculate the expectation value mean over an infinite

sample, the equality between the sample and the ensemble average will not be an exact

one and will be affected by statistical errors. We will discuss in subsection 4.2.1 how

to treat that kind of intrinsic error.

A second class of errors is represented by the so–called discretization errors, which

arise from the finiteness of the lattice spacing a employed in the simulations. These

effects can be systematically taken into account performing an à la Symanzik analysis of

discretization effects and can be quantitavely estimated by means of a simple power law

fit on data calculated using different values of the lattice spacing a (i.e. different values

of the inverse gauge coupling β). Then one can take the continuum limit of the quantity

of interest to keep under control discretization errors. These kind of systematics will

be treated in subsection 4.6.1.

Another error source is the finiteness of the volume where one is going to simulate

the quark dynamics. Finite size effects (FSE) can be estimated repeating the same

analysis employing different volumes and will be treated in subsection 4.6.2.

In the end, we mention that using Nf = 2 gauge field configurations means that in

our simulations we will systematically commit an error arising from the quenching of

the strange quark. This kind of error will be treated in subsection 4.7.2.
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4.2.1 Statistical errors

We will indicate with Oi the i -th measurement of the observable O. In the ideal case

in which the single measurements are not correlated and can be considered an infinite

number of statistically independent estimates of the observable O, the sample average

will be equal to the ensemble average which by definition is the expectation value.

If, instead, we consider a finite sample of N independent measurements Oi, the sam-

ple average will approximately be gaussianly distributed around the ensemble average

with variance

σ2
N (O) =

〈O2〉N − 〈O〉2N
N − 1

, (4.12)

where 〈O〉N is the sample average (
∑N

i=1 Oi/N). We will then have that the expectation

value Ō in terms of 〈O〉N , and according to the central limit theorem, will be given by

Ō = 〈O〉N ± σN (O) . (4.13)

The error estimate (4.13) is not a realistic one, if employed in lattice QCD simula-

tions. This is due to the fact that the updating procedure employed in Monte Carlo

simulations, even if usually choosing not to consider as significant consecutive mea-

surements and discard a certain number of them between one extraction and the next

one can somewhat reduce the correlation, the sample will include partially correlated

objects Oi.

To properly take into account this correlation it is useful to introduce the integrated

autocorrelation time τint

τint
.
=

1

2

+∞∑

t=−∞

ΓO(|t|)
ΓO(0)

, (4.14)

where with t we have indicated the “Monte Carlo time” and with ΓO the autocorrelation

function, defined as

ΓO(|ti − tj |) .
= 〈

(
O − 〈O〉

)
·
(

O
|
− 〈O〉

)
〉 . (4.15)
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This function exponentially decrease with a characteristic time scale of τc, called auto-

correlation time, which usually is of the same order of magnitude of τint.

At this point, to incorporate the integrated autocorrelation time in the estimate of

the statistical error, one can start from the naive error (4.13) and using the value of

τint it is possible to estimate the statistical error of the correlated measurements by

σ2
N (O) ≃

(
〈O2〉N − 〈O〉2N

) 2τint

N
. (4.16)

It is now clear that, because of the autocorrelation, the number of really independent

measurement is N/(2τint). If the numeric estimate of the quantity O requires a relevant

computation time cost, it is convenient to ignore 2τint measurements between one

configuration and the next one.

In this work we have selected only one configuration on which performing the ob-

servable measurement among each sample of 20 generated.

4.2.2 Jackknife analysis

As discussed in the previous section, a reasonable estimate of the real statistical

error of a numerical measure obtained using the Monte Carlo updating recipe requires

a precise knowledge of the integrated autocorrelation time τint. This estimate can be

obtained , in general, only thanks to accurate numerical procedure, as discussed in

[104].

An alternative method is represented by the so–called binning procedure; it consist

of calculating a certain number of consecutive gauge field configuration sub–samples,

called bins, over which one calculates some preliminary means. These averages can

be considered as the result of single (lattice) measures and exploited in the variance

estimate procedure. If the bins are large enough these measure can be considered

uncorrelated and the error estimator (4.12) can be considered appropriate.

If, as it usually happens, the bins are not a statistically significant sample, i.e. they

are not large enough so that the bin averages can be considered as valid estimates of

the expectation value, a good method is to perform a jackknife analysis. The idea is

to use, as preliminary averages, the ones carried over the complement set with respect

to each bin, in order that the sub–sample under exam is large enough.
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In practice, starting from an N–objects sample, one must split the configurations

in Ns bin and then consider Ns jackknife estimators, defined as the average over the

complement set with respect to each bin

O
J
s

.
=

1

Ns − 1

∑

r 6=s

Or . (4.17)

The optimum estimate for the expectation value of the observable O is 〈O〉N ±σJ,Ns(O),

where the jackknife variance estimator is given by

σ2
J,Ns

.
=

Ns − 1

Ns

Ns∑

s=1

(
O

J
s − 〈OJ〉

)2
. (4.18)

4.2.3 Bootstrap analysis

The bootstrap procedure is a general purpose approach to statistical inference which

falls within the broader class of resampling methods. Bootstrapping is the practice

of estimating properties of an estimator (such as its variance) by measuring those

properties when sampling from an approximating distribution. One standard choice

for an approximating distribution is the empirical distribution of the observed data. In

the case where a set of observations can be assumed to be from an independent and

identically distributed population, this can be implemented by constructing a number

of resamples of the observed dataset (and of equal size to the observed dataset), each

of which is obtained by random sampling with replacement from the original dataset.

To be more clear let us consider an argument which is related to our specific case of

the form factors analysis. We suppose we have to compare two, statistically indepen-

dent, quantities A and B, to obtain a third quantity, C, which derive from the other

two. We have at our disposal, for the input quantities, Ns jackknife averages AJ
s and

BJ
s , defined as in (4.17). By comparison of the mean values 〈A〉 and 〈B〉 one can obtain

the ensemble average estimate of the dependent quantity C.

A priori, one could calculate the statistical error by means of the jackknife proce-

dure. However there is no particular reason for making a jackknife analysis on the Ns

sub–samples defined by the couples (AJ
s , BJ

s ) with s = 1, . . . , Ns. Actually, as there
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4.3 Momentum dependence of the two–point correlation function

is no correlation between the two samples AJ
s and BJ

s , we can in principle chose as

sub–samples whatever of the N2
s couples (AJ

s , BJ
s′) with s, s′ = 1, . . . , Ns.

The bootstrap procedure consists of generating, following a random distribution,

a Nboot number (high enough) of (ib, jb) couples; then, once defined the sub–samples

(AJ
ib
, BJ

jb
), one will proceed to evaluate for each b the dependent quantity CB

b . As

already anticipated, the mean value C will be equal to the ensemble average. The

bootstrap error for that quantity will be given by

σ2
B,Nboot,Ns

(C)
.
=

Ns − 1

Nboot

Nboot∑

b=1

(
C

B
b − 〈CB

c 〉
)2

. (4.19)

4.3 Momentum dependence of the two–point correlation

function

In section 3.1.1 we have shown that two–point correlation functions bear important

information about the simulated lattice mesons. In particular, by means of a temporal

dependence analysis, one can check if the lattice volume employed, as well as the lattice

spacing used, allows to study single particle properties in order to isolate ground state

within the correlators. Using this strategy it is possible to extract the mass and the

probability amplitude
√

ZP , related to the isolated single particle ground state. The

knowledge of the masses and, more generally, of the energies of the simulated lattice

mesons for different values of the quark masses is needed in the form factors analysis,

as we have already explained in details in section 3.2.1.

The two–point correlation functions (3.65) have been calculated for various values

of the twisting angle ~θ, listed in (4.8)-(4.11) depending on the simulation. From the

time dependence of the effective mass, defined in (3.13), which we report here for the

case under exam

aMeff (t, θ) = log

[
CK(π)(t, 2π~θ/L)

CK(π)(t + a, 2π~θ/L)

]
, (4.20)

one is able to extract the time interval after which the ground state is reached. We

show in figure 4.1 the time behavior of the effective mass of a light-light (π–like) meson
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and in figure 4.2 that of a strange-light (K-like) one, for ensemble B2 (a) and C3 (b),

in nearly degenerate cases.
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b) β = 4.05, V = (32)
3
 x 64

light-light effective mass

Figure 4.1: Light-light effective mass - versus the (Euclidean) time distance in lattice

units. We have shown (4.20) calculated for β = 3.9 with V · T = 243 · 48 a4 (a) and for

β = 4.05 with V ·T = 323 · 64 a4 (b). The twisting angle ~θ is chosen in the symmetric form
~θ = θ(1, 1, 1). The dots, squares,diamonds, triangles, full dots and full squares correspond

to the first six θ values listed in (4.9) and (4.11), respectively. The dashed vertical line is

drawn where the ground state starts to dominate.
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4.3 Momentum dependence of the two–point correlation function
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Figure 4.2: Strange-light effective mass - Same as figure 4.1, but in the case of a

strange-light meson.
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It can be seen that the statistical precision is remarkably high and it allows to extract

quite precisely the energy Eπ ,K(~p ) (see (3.25)), whose contribute to the correlator starts

to dominate from t/a = 10 (t/a = 13) for a spatial volume of 243 (323).

The values obtained for the light-light (π–like) energy Eπ( ~θ ) are shown in figure

4.3 as a function of the pion momentum given by ~p ≡ 2πθ/L, again for ensemble B2 (a)

and C3 (b); the same results are show in figure 4.4, but in the case of a strange-light

meson (K–like).
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Figure 4.3: Light-light energy - E( ~p ) in lattice units obtained from the plateau of the

effective mass shown in figure 4.1 (choosing the time interval 10 ≤ t/a ≤ 21 and 13 ≤ t/a ≤
30 respectively) plotted against the squared pion momentum p2 ≡ 3(2πθ/L)2 in lattice

units, for β = 3.9 with V · T = 243 · 48 a4 (a) and for β = 4.05 with V · T = 323 · 64 a4 (b).

The dashed line represents the continuum–like dispersion relation E2
π( ~p ) = (M2

π(L)+| ~p |2).

133

5/figures/pion_E_test.eps


4. RESULTS

0 0.01 0.02 0.03 0.04 0.05

(ap)
2

0.04

0.05

0.06

0.07

0.08

0.09

[a
E

K
(p

)]
2

lattice points

[aM
K
(p)]

2
 = (aM

K
)
2
 + (ap)

2

a) β = 3.9, V = 24
3
 x 48

0 0.01 0.02 0.03 0.04 0.05

(ap)
2

0.04

0.05

0.06

0.07

0.08

0.09

[a
E

K
(p

)]
2

lattice points

[aM
K
 (p)]

2
 = (aM

K
)
2
 + (ap)

2

b) β = 4.05, V = 32
3
 x 64

Figure 4.4: Strange-light energy - Same as figure 4.3, but in the case of a strange-light

meson.

4.4 Momentum dependence of the semileptonic form fac-

tors

As discussed in section 3.2.1, considering the large time distances limit of the time

and vector components of the ratio Rµ(t, t′; θ) defined in (3.38), allows one to calculate

the form factors f±(q2), and then eventually determine the form factors of interest

f0,+(q2).

We show in figure 4.5 and 4.6, respectively, the scalar (f0) and the vector (f+) form

factors as a function of time for different momenta, and for different values of Mπ and

MK at β = 3.9 and V · T = 243 · 48a4.

In figures 4.5 and 4.6 a plateau is identifiable for the time interval t ∈ [10, 14] while

for the other runs we give the plateau time intervals in table 4.2; in these regions both

the initial kaon and the final pion ground states are isolated and within this time range

one can extract the form factors by means of a weighted average. We have checked that

different choices of the time interval for the plateau region lead to values of the vector

and scalar form factors which are largely consistent within the statistical precision. It

can be seen that a remarkable precision has been achieved in the plateau region: if we
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Figure 4.5: Scalar form factor (time) plateau - It is shown the scalar form

factor f0(q
2) for different values of q2 and for Mπ = 320MeV MK = 540MeV

(a), Mπ = 390MeV MK = 560MeV (b), Mπ = 450MeV MK = 580MeV (c),

Mπ = 490MeV MK = 600MeV (d) at β = 3.9 with V · T = 243 · 48 a4. The full

dots, open dots, full diamonds, open diamonds and full squares correspond to (aq)2 =

(−0.01,−0.03,−0.06,−0.10,−0.16), respectively. The dashed vertical lines identify the re-

gion 10 ≤ t ≤ 14, where both the initial kaon and the final pion ground states are isolated,

so that the scalar form factor can be calculated by means of a weighted average.
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Figure 4.6: Vector form factor (time) plateau - It is shown the vector form

factor f+(q2) for different values of q2 and for Mπ = 320MeV MK = 540MeV

(a), Mπ = 390MeV MK = 560MeV (b), Mπ = 450MeV MK = 580MeV (c),

Mπ = 490MeV MK = 600MeV (d) at β = 3.9 with V · T = 243 · 48 a4. The full

dots, open dots, full diamonds, open diamonds and full squares correspond to (aq)2 =

(−0.01,−0.03,−0.06,−0.10,−0.16), respectively. The dashed vertical lines identify the re-

gion 10 ≤ t ≤ 14, where both the initial kaon and the final pion ground states are isolated,

so that the vector form factor can be calculated by means of a weighted average.
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Ensemble (L/a)3 × T/a plateau

A2 243 × 48 t/a ∈ [10 − 14]

A3 243 × 48 t/a ∈ [10 − 14]

A4 243 × 48 t/a ∈ [10 − 14]

B1 243 × 48 t/a ∈ [10 − 14]

B2 243 × 48 t/a ∈ [10 − 14]

B3 243 × 48 t/a ∈ [10 − 14]

B4 243 × 48 t/a ∈ [10 − 14]

B5 243 × 48 t/a ∈ [10 − 14]

B6 323 × 64 t/a ∈ [10 − 22]

B7 323 × 64 t/a ∈ [10 − 22]

C1 323 × 64 t/a ∈ [12 − 20]

C2 323 × 64 t/a ∈ [12 − 20]

C3 323 × 64 t/a ∈ [12 − 20]

Table 4.2: Time plateau We have reported the time interval (in lattice units), for each

ensemble of gauge field configurations, in which it is possible to identify the plateau for

the vector and scalar form factor, as in figure 4.5 and 4.6

consider the case presented in figures 4.5 we have reached a precision which is at best

of (full dots a,b,c,d) 5� while at worst (full squares a,b,c,d) it is 5%; for the vector

form factor case of figure 4.6 the situation is slightly better.

The scalar form factor f0(q
2
MAX) deserves a special mention. We have said in section

3.2.1 that its determination, thanks to the special ratio (3.45), is a very accurate one

because it is a ratio of only three–point functions at zero momentum: we show in figure

4.7 that it is indeed the case.

The precision level for the form factor at this special kinematic can be as good as

1 �, for each of the four Mπ and MK combinations presented.

Once extracted the form factors from the plateau presented in figure 4.5, 4.6 and

4.7, we are left only with the momentum dependence of the form factors f+,0(q
2), at

each pion and kaon masses. The momentum dependencies of both the form factors are

nicely fitted either by a pole behavior

f+,0(q
2) =

f+(0)

1 − s+,0q2
(4.21)
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Figure 4.7: Scalar form factor at q2
MAX (time) plateau - It is shown the scalar form

factor f0 for the special kinematic q2
MAX and for Mπ = 320MeV MK = 540MeV (full

dots), Mπ = 390MeV MK = 560MeV (open dots), Mπ = 450MeV MK = 580MeV

(full diamonds), Mπ = 490MeV MK = 600MeV (open diamonds) at β = 3.9 with

V · T = 243 · 48 a4. The dashed vertical lines identify the region 10 ≤ t ≤ 14, where both

the initial kaon and the final pion ground states are isolated, so that the scalar form factor

can be calculated by means of a weighted average.
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or by a quadratic dependence on q2

f+,0(q
2) = f+(0) · (1 + s̄+,0q

2 + c̄+,0q
4), (4.22)

where the condition f0(0) = f+(0) is understood. The quality of the two fits are

illustrated in figure 4.8, for Mπ = 320MeV MK = 540MeV (a), Mπ = 390MeV

MK = 560MeV (b), Mπ = 450MeV MK = 580MeV (c), Mπ = 490MeV MK =

600 MeV (d) at β = 3.9 and V · T = 243 · 48 a4. We will come back later on to the

details about the momentum parametrization of the form factors (section 4.7.1) when

we will explain our analysis strategy.

4.5 Fixing the strange quark mass

The values obtained for the form factors f0(q
2) and f+(q2), presented in figure 4.8,

depend on both the pion and kaon masses. The dependence on the latter is shown

in figure 4.9 at β = 3.9 and Mπ ∼ 450 MeV ; as already found in [19] it appears to

be quite smooth so that an interpolation at the physical strange quark mass can be

easily performed using quadratic splines. ChPT tells us that pseudoscalar masses can

be written (at LO) in terms of quark masses,

MK = B(ml + ms) + O(m2) (4.23)

M2
π± = B(2ml) + O(m2) (4.24)

where ml stands for the mass of the light u,d quarks while B is a LEC entering the

ChPT lagrangian at lowest order, which is related to the quark condensate. This allow

us to trade the strange quark mass for the kaon mass and fix it to its physical value

by fixing the combination (2M2
K − M2

π) at its physical value which, at each pion mass

defines a reference kaon mass M ref
K

2
[
M ref

K

]2
− M2

π = 2
[
Mphys

K

]2
−

[
Mphys

π

]2
(4.25)

using Mphys
π = 135.0 MeV and Mphys

K = 494MeV . Fixing the K mass instead of the

s mass is very convenient as the first is known from experiments while the second is
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Figure 4.8: Form factors momentum dependence - It is shown the scalar f0(q
2) and

vector f+(q2) form factors versus q2 (in lattice units) for Mπ = 320MeV MK = 540MeV

(a), Mπ = 390MeV MK = 560MeV (b), Mπ = 450MeV MK = 580MeV (c), Mπ =

490MeV MK = 600MeV (d) at β = 3.9 with V · T = 243 · 48 a4. The solid and dashed

lines are the results of the fits based on (4.21) and (4.22), respectively.
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Figure 4.9: Form factors M2
K dependence - It is shown the scalar f0(q

2) (a) and

the vector f+(q2) (b) form factors, for different values of ~θ, versus M2
K for Mπ = 450MeV

at β = 3.9 with V · T = 243 · 48 a4. The (full) red,violet, green, blue and orange circles

corresponds to the θ listed in (4.9). The red full squares represent the value of the form

factor at the reference Kaon mass M ref
K ∼ 557MeV defined in (4.25).

not directly measurable, because of quark confinement, and it is know only from lattice

calculation or other theoretical calculation which are affected by different systematic

errors.

Once the form factors f+,0(q
2) has been interpolated to the reference kaon mass,

they depend only on the pion mass, as can be seen in figure 4.10, and their dependence

can be described using ChPT.

From now on we are getting to the second, and final, part of the analysis. As we

have already said the first part consist of calculating the form factors at fixed values of

the meson masses. The second one, by means of a study of the meson mass dependence

of the form factors, consists of first interpolating the results at the physical kaon mass

and then extrapolating them to the physical pion mass (we will also refer to this last

step as reaching the physical point). The extrapolation to the physical pion is carried

out using the SU(2) limit of SU(3) ChPT, as we will explain in section 4.7.

Before getting to the physical point let us discuss, in the next section, the issue of

the systematic (non statistical) errors of this analysis.
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Figure 4.10: Form factors momentum dependence at M ref
K - It is shown the

scalar f0(q
2) and vector f+(q2) form factors versus q2 (in lattice units), interpolated at

the reference kaon mass defined in (4.25), for Mπ = 320MeV (a), Mπ = 390MeV (b),

Mπ = 450MeV (c), Mπ = 490MeV (d) at β = 3.9 with V ·T = 243 · 48 a4. The solid and

dashed lines are the results of the fits based on (4.21) and (4.22), respectively.
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4.6 Systematic errors

We have already mentioned that, beside the statistical errors considered in section

4.2.1, there are also other sources of systematic errors on the lattice. The first is

connected with the size of the lattice spacing a while the second is due to the size of

the lattice volume.

Let us show, in the two next section, how these effects can be studied and how one

can estimate them.

4.6.1 Discretization errors

In this section we will give a qualitative estimate of the discretization errors which

affect our calculation of the quantities of interest, i.e. the semileptonic form factors.

We have investigated the impact of the lattice artifacts on the K → π form factors by

considering together the results of the runs A3, B4 and C3 (see table 4.1), extrapolated

at the reference kaon mass (4.25). All these runs correspond to pion masses equal to

Mπ ∼ 480 MeV and with a lattice size almost kept fixed but with a lattice spacing of

a ∼ 0.10 fm, a ∼ 0.079 fm and a ∼ 4.05 fm, respectively. This allows us to study the

a–scaling of our form factors. In figure 4.11 and 4.12, we show our results versus the

square transfer momentum (in GeV ) for three values of the lattice spacings.

It can be clearly seen that the size of the discretization effects is comparable to the

statistical error, as it has already been verified in [90].

4.6.2 Finite size effects

In this section we will give a qualitative estimate of the finite volume effects (FSE)

affecting our lattice calculation of the semileptonic form factors.

We have investigated the effects of the FSE related to the finite L extension of our

lattice boxes by comparing the results of the runs B1 and B6. In our simulation the

former has the smallest value of the quantity MπL, which governs finite size effects in

the p-regime. The physical extension of the two boxes is L ≃ 2.1 fm and L ≃ 2.8 fm,

respectively. The values of the angle θ are chosen differently at the two volumes in

order to keep the values of q2 fixed (in physical units).

The comparison of semileptonic form factors calculated for different size of the boxes

are shown in figures 4.13 and 4.14.

143



4. RESULTS

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

q
2
   ( GeV

 2
 )

0.5

0.6

0.7

0.8

0.9

1

1.1

f 0(q
2 )

 a ~ 0.10 fm 
a ~ 0.079 fm 
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Figure 4.11: Discretization errors for f0(q
2) at M ref

K - It is shown the scalar f0(q
2)

form factor versus q2, for Mπ ∼ 480MeV , interpolated at the reference kaon mass defined

in (4.25), for the runs A3, B4 and C3. The dashed lines are the results of the polynomial

fit based on (4.22).
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Figure 4.12: Discretization errors for f+(q2) at M ref
K - It is shown the vector f+(q2)

form factor versus q2, for Mπ ∼ 480MeV , interpolated at the reference kaon mass defined

in (4.25), for the runs A3, B4 and C3. The dashed lines are the results of the polynomial

fit based on (4.22).
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Figure 4.13: Finite size effects for f0(q
2) at M ref

K - It is shown the scalar f0(q
2) form

factor versus q2 (lattice units), for Mπ ∼ 300MeV , interpolated at the reference kaon mass

defined in (4.25), for the runs B1 and B6, which correspond to different lattice boxes of

size L ≃ 2.1 fm and L ≃ 2.8 fm, respectively. The lines are the results of the polynomial

fit based on (4.22).
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Figure 4.14: Finite size effects for f+(q2) at M ref
K - It is shown the vector f+(q2) form

factor versus q2 (lattice units), for Mπ ∼ 300MeV , interpolated at the reference kaon mass

defined in (4.25), for the runs B1 and B6 which correspond to different lattice boxes of size

L ≃ 2.1 fm and L ≃ 2.8 fm, respectively. The lines are the results of the polynomial fit

based on (4.22).
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It can be seen that in the case of the scalar form factor (figure 4.13) the size of

the FSE is well comparable to the statistical error, while in the case of the vector form

factor (figure 4.14) not all the kinematics are unaffected by FSE and a more quantitative

analysis is required.

We show in table 4.3 a direct comparison of the form factor’s key parameters f+(0),

s+ and s̄+ (see (4.21) and (4.22)) as obtained from a pole and polynomial fit to the

data of runs B1 and B6.

(L/a) Mπ · L f+(0)(pole) f+(0)(polynomial) s+(pole) s̄+(polynomial)

24 (B1) 3.3 0.9852(42) 0.9846(43) 0.290(21) 0.272(11)

32 (B6) 4.3 0.9792(43) 0.9776(45) 0.330(29) 0.289(17)

Table 4.3: Form factor’s parameters FSE We have reported the form factor’s key

parameters f+(0), s+ and s̄+ as calculated from a pole (4.21) and a polynomial (4.22) fit

to the data of runs B1 and B6, which correspond to Mπ ∼ 300MeV .

4.7 Reaching the physical point

Once obtained the scalar and the vector form factors, as a function of momentum,

for each pion and kaon mass and once having interpolated them to the reference kaon

mass, we can outline our final strategy which consist of performing a multi-combined fit

of the form factor’s q2, Mπ and a dependence in order to obtain an all-comprehensive

parametrization. It will allow us to predict the vector form factor at zero momentum

f+(0) as well as the q2 shape, at the physical point, and to compare them with the

experimental Vus and q2 -shape results.

We will show in section 4.7.1 the main parametrization for the momentum depen-

dence of the form factors, as well as the Mπ dependence which will be described by

means of ChPT . We will end next section introducing the polynomial parametrization

chosen for taking into account lattice discretization artifacts.

4.7.1 Form factors structure

Following [23], among the different parametrization proposed in the literature, one

can distinguish two classes [105]. Parametrization based on a systematic mathematical
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expansion are the most widely used and in this class (called Class II in [105]) one finds

the Taylor expansion

fTaylor
+,0 (q2) = f+(0)

(
1 + λ′

+,0

q2

m2
π

+
1

2
λ′′

+,0

(
q2

m2
π

)2

+
1

6
λ′′′

+,0

(
q2

m2
π

)3

+ . . .

)
, (4.26)

λ′
+,0 and λ′′

+,0 are the slope and the curvature of the form factors, respectively. Another

well known parametrization which belongs to Class II parametrization is the so called

z-parametrization of [106]. In Class II parametrization the parameters describing higher

order terms of the form factors expansion are free to be determined from data. It has

been shown in [24] that in order to describe the form factor shapes accurately in the

physical region (0 < q2 < q2
MAX , with q2

MAX = (MK −Mπ)2), one has to go at least up

to the second order in the Taylor expansion. Moreover, as it will be discussed below,

for tests of low - energy dynamics involving the Callan Treiman theorem, f0(q
2) must

be extrapolated up to q2 = ∆Kπ ≡ M2
K − M2

π which is well above the endpoint of

the physical q2 region of Kl3 decays. A parametrization that accounts for even higher

order terms is therefore desirable.

The parametrizations belonging to Class I circumvent this problem by incorporating

additional physical constraints to reduce the number of independent parameters. A

typical example is the pole parametrization

fpole
+,0 (0) =

M2
V,S

M2
V,S − q2

, (4.27)

where the dominance of a single resonance is assumed, and the corresponding pole mass

MV,S is the only free parameter. While for the vector form factor a pole parametriza-

tion with MV ∼ 892 MeV (i.e. K∗ resonance mass) is enough to reproduce the

observed shape, for the scalar form factor there is no such obvious dominance. The

most well-motivated Class I parametrization are those based on dispersion relations.

These are based on the observation that the vector and scalar form factors are analytic

functions in the complex q2 plane, except for a cut along the positive real axis for

q2 > q2
lim ≡ (MK + Mπ)2, where discontinuities are developed. One can therefore

write
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f0,+(q2) =
1

π

∫ ∞

tlim

dt
Imf+,0(t)

(t − q2 − iǫ)
+ sub terms . (4.28)

The imaginary part, Imf+,0(t), can be determined from data on Kπ scattering and con-

tains all the intermediate state contributions with quantum numbers consistent with

f+,0 ones, i.e. JP = 1− and JP = 0+, while the ultraviolet component of the integral is

absorbed into the subtraction terms. In the vector case, the dispersive parametrization

turns out to be very similar to the pole parametrization due to the dominant K∗(892)

contribution to Imf+(t). On the other hand the dispersive parametrization is particu-

larly useful in the scalar case, where there is no such dominant one particle intermediate

state.

There is also another form factors parametrization which is obtained within the

framework of Chiral perturbation theory, the low energy theory of QCD. This theory

has been developed after the observation that even if QCD is highly non perturbative at

low energies, the spectrum of the theory at that energy is rather simple as it is composed

of only the octet of the light pseudoscalar mesons π, K and η. Experimentally, we also

know that, at very low energies, these pseudoscalar mesons interact weakly, both among

themselves and with nucleons. It is then reasonable to expect that QCD can be treated

pertubatively even at low energies, provided a suitable transformation of degree of

freedom is performed. This is exactly the goal of ChPT, where the pseudoscalar mesons

are assumed to be fundamental degree of freedom. Within this effective theory, it is

“straightforward”, using the technology developed in [21; 22], to calculate the vector

and the scalar form factors of the K → π process to the first non leading order in the

low energy expansion (NLO).

The vector form factor can be written as [21]

f+(q2) = 1 +
3

2
HKπ(q2) +

3

2
HKη(q

2) , (4.29)

with the quantity H(q2) which is related to the invariant functions M r(q2) and L(q2)

by1

1The indices attached to H(q2) denote the masses of the mesons running around the loop; for

instance, to obtain HKπ(q2) one has to substitute in Mr(q2), L(q2), and in all the sub-functions on

which they depend on, MP = MK and MQ = Mπ.
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H(q2) =
1

F 2
0

{
q2M r(q2) − L(q2)

}
+

2

3F 2
0

Lr
9q

2. (4.30)

In the previous expression, beside Lr
9 which is one of the coupling constants in the

effective lagrangian, renormalized at the running scale µ1, the notation goes as follow

M r =
1

12q2

{
q2 − 2Σ

}
J̄ +

∆2

2(q2)2
¯̄J − 1

6
k +

1

288π2
(4.31)

L =
∆2

4q2
J̄ , (4.32)

K =
∆

2q2
J̄ , (4.33)

with

k =
1

32π2

M2
P log

(
M2

P /µ2
)
− M2

Q log M2
Q/µ2

M2
P − M2

Q

(4.34)

¯̄J(q2) = J̄(s) − q2J̄ ′(0) , (4.35)

J̄(q2) =
1

32π2

{
2 +

∆

q2
log

M2
Q

M2
P

− Σ

∆
log

M2
Q

M2
P

− ν

q2
log

(s + ν)2 − ∆2

(s − ν)2 − ∆2

}
, (4.36)

and

ν2 ≡ ν2
PQ = (q2)2 + M4

P + M4
Q − 2q2(M2

P + M2
Q) − 2M2

P M2
Q , (4.37)

Σ ≡ ΣPQ = M2
P + M2

Q, ∆ ≡ ∆PQ = M2
P − M2

Q , (4.38)

the function J̄(q2) represent the contribute of the scalar loop integrals, subtracted at

q2 = 0.

The analogous low-energy representation of the scalar form factor f0(q
2) is given

by

1One can easily check that the scale dependence of the function Mr(q2) compensate the scale

dependence of the constant Lr
9 so that the function H(q2) is scale independent (as it should be being

a physical observable).
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f0(q
2) = 1 +

1

8F 2
0

(
5q2 − 2ΣKπ − 3

∆2
Kπ

q2

)
J̄Kπ(q2)

+
1

24F 2
0

(
3q2 − 2ΣKπ − ∆2

Kπ

q2

)
J̄Kη

+
q2

4∆2
Kπ

(5µπ − 2µK − 3µη) +
4Lr

5

F 2
0

q2 ; (4.39)

where here we have

µP =
1

32π2

M2
P

F 2
0

log
M2

P

µ2
, (4.40)

and the scale dependence of the low-energy constant Lr
5 is compensated by the scale

dependence of the chiral logarithms µπ, µK and µη.

Even if conventionally it has been SU(3) ChPT which has been applied to the study

of Kl3 decay amplitudes, we are going to take an SU(2) limit of the NLO SU(3) ChPT

formulas (4.29) (4.39). The reason which motivates this procedure lays in the very

difference between SU(2) and SU(3) expansions; in SU(3) ChPT the strange quark

satisfies chiral symmetry, and this means that we are in presence of a more general and

predictive theory (respect to SU(2)) but which hides a subtlety: as we will see later on,

starting from the chiral point (mu = md = ms = 0), around which an SU(3) expansion

is performed, we have to reach two physical points, the pion mass and the kaon mass.

The pion mass is not too far from the chiral point but the kaon mass is heavy enough

that the NLO expansion may not be sufficient to guarantee the convergence of our

formulae. On the other hand, in SU(2) ChPT the strange quark has been integrated

out and as a result the LEC’s will depend on ms. This means that if we are able to fix

somehow this dependence, as we have done interpolating our form factors at M ref
K , we

will be left with only one physical point to reach and it will be the pion mass for which

a NLO order approximation will be enough to guarantee the expansion convergence.

Starting from the NLO SU(3) ChPT formulas (4.29) (4.39) and rewriting them in

terms of the two following variables
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x =
M2

π

M2
K

, (4.41)

s =
q2

M2
K

, (4.42)

expanding in powers of x and keeping only O(x) and O(x log x) terms, one is able to

obtain this SU(2) limit for the form factors

f0(s) = F0(s)

{
1 + C0(s)x +

M2
K

(4πf)2
×

[
−3

4
x log x + T 0

1 − T 0
2

]}
, (4.43)

f+(s) = F+(s)

{
1 + C+(s)x +

M2
K

(4πf)2
×

[
−3

4
x log x − T+

1 − T+
2

]}
(4.44)

where F0,+(s) and C0,+(s) are unknown LECs while T 0,+
1 (x, s) and T 0,+

2 (s) are known

function of (s, x) and x, namely

T 0
1 = x(9 + 7s2)

[
log (1 − s) + s(1 + s/2)

4s2

]
, (4.45)

T 0
2 = (1 − s)(3 + 5s)

[
(1 − s) log (1 − s) + s(1 − s/2)

4s2

]
, (4.46)

T+
1 = 3x(1 + s)

[
(1 − s) log (1 − s) + s(1 − s/2)

4s2

]
, (4.47)

T+
2 = (1 − s)2

[
(1 − s) log (1 − s) + s(1 − s/2)

4s2

]
. (4.48)

As can be seen from their explicit expression, they are functions of both s and x, but

the important terms are the ones involving

log (1 − s) . (4.49)

These terms are zero at q2 = 0 (i.e. s = 0), so that the chiral logarithm (−3/4)x log x

receive no contribution and we are left with

f0(0) = f+(0) ∝ −3

4
M2

π log

{
M2

π

µ2

}
; (4.50)
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however, when q2 → q2
MAX (i.e. s → (1 − √

x)2) the chiral logarithm coefficient, as

already calculated in [107] using SU(2) ChPT, get a correction and we have

f0(q
2
MAX) ∝ −11

4
M2

π log

{
M2

π

µ2

}
. (4.51)

We have seen that these expressions involve a great number of LEC’s so, in addition

to these information about the form factors pion mass and q2 dependence, it is a good

thing to profit of another constraint coming from ChPT, which is the Callan-Treiman

(CT) theorem [108]; it implies that the scalar form factor at the CT point, defined

as q2 = ∆Kπ = M2
K − M2

π , is determined in terms of the ratio fK/fπ, up to O(mu,d)

corrections:

f0(∆Kπ) =
fK

fπ
+ ∆CT . (4.52)

The quantity ∆CT = O(mu,d/4πfπ) is vanishing in the SU(2) chiral limit mu,d → 0;

this means that using the chiral expansion for the decay constants

fK

fπ
= 1 +

1

4
(5µπ − 2µK − 3µη) +

4

F0

(
M2

K − M2
π

)
Lr

5 , (4.53)

rewriting it in terms of the adimensional variables (s, x)

fK

fπ
=

(
fK

fπ

)

0

[
1 + Bx +

M2
K

(4πF0)2
5

4
x log x

]
, (4.54)

and exploiting the Callan-Treiman theorem one is able to further constraint the scalar

form factor as

F0(s = 1) =

(
fK

fπ

)

0

. (4.55)

Let us conclude this section explaining explicitly our strategy for the form factors

analysis: we are going to fit our ensemble of data using (4.43) and (4.44) formulas for

the form factors, assuming for the momentum-depending LEC’s F0,+(s) and C0,+(s) a

functional form of the pole and polynomial kind, as follows
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F0(+)(s) =
F

1 − λ0(+)s
, (4.56)

C0(+)(s) =C0 + C
0(+)
1 s + C

0(+)
2 s2 , (4.57)

where the constraint for the form factors at zero momentum (f+(0) = f0(0)) is implied.

Moreover the CT theorem in the chiral limit (Mπ = 0) imposes the constraint (4.55),

which implies

F

1 − λ0
=

(
fK

fπ

)

0

. (4.58)

To estimate lattice artifacts in the spirit of the Symanzik analysis of discretization

effects, and taking into account O(a) improvement guaranteed by twisted mass fermions

at maximal twist, we will also add to both our form factor formulas (4.43) and (4.44)

the polynomial function

D = da2 + d′a2s , (4.59)

with d and d′ two unknown coefficient.

In figure 4.15 and 4.16 we show, respectively, the fit quality for the scalar and

the vector form factors, at fixed values of q2, plotted against the squared pion mass,

obtained from the data taken from ensembles A2, . . . , A4, B2, . . . , B7 and C2, C3; they

are almost all the data at our disposal, except for ensemble B1 and C1 which have a

value of the product Mπ · L not high enough to be considered FSE-safe.

4.7.2 Quenching of the strange quark

The effect of our partially quenched (PQ) set up has already been estimated in [19]

using SU(3) ChPT.

Within SU(3) ChPT one can perform a systematic expansion of the vector form

factor at zero momentum, of the type

f+(0) = 1 + f2 + f4 + . . . , (4.60)
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Figure 4.15: Scalar form factor fit quality - It is shown the scalar form factor f0(q
2),

for the first four values of q2 (i.e. θ) employed in our simulations, as a function of the

squared pion mass M2
π in GeV 2; (full) circles, squares and diamonds are data taken, re-

spectively, from the runs A2, . . . , A4, B2, . . . , B7 and C2, C3 in order to guarantee that

Mπ · L ≥ 3.7. The continuous black line is the result of an a = 0 fit while the dashed

green, red and blue lines represent a = 0.100 fm, a = 0.079 fm and a = 0.063 fm fits,

respectively. The dashed vertical line represent the value of the physical pion mass.
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Figure 4.16: Vector form factor fit quality - It is shown the vector form factor f+(q2),

for the first three values of q2 (i.e. θ) employed in our simulations, as a function of the

squared (physical) pion mass M2
π in GeV 2; (full) circles, squares and diamonds are data

taken, respectively, from the runs A2, . . . , A4, B2, . . . , B7 and C2, C3 in order to guarantee

that Mπ · L ≥ 3.7. The continuous black line is the result of an a = 0 fit while the dashed

green, red and blue lines represent a = 0.100 fm, a = 0.079 fm and a = 0.063 fm fits,

respectively. The dashed vertical line represent the value of the physical pion.
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where fn = O[Mn
K,π/(4πfπ)n], and the first term is equal to unity due to the current

conservation in the SU(3) limit; because of the the AG theorem [46], valid also in

both quenched (Q) [17] and PQ [109] setups, the NLO terms f2 can be unambiguously

computed in terms of MK , Mπ and fπ. At the physical point it takes the values:

fQ
2 = +0.022 in the quenched case Nf = 0 [17], fPQ

2 = −0.0168 for our PQ setup with

Nf = 2 [109] and f2 = −0.0226 for Nf = 2 + 1 [110]. Thus the effect of quenching

the strange quark is exactly known at NLO: at the physical point f2 − fPQ
2 = 0.0058

(≃ 26% of f2). This correction will be added to the central value of our estimate of

f+(0) and it has no error.

Introducing the quantity

∆f ≡ f4 + f6 + · · · = f+(0) − (1 + f2) (4.61)

the task is reduced to the problem of estimating the quenching effect on this O(p6) term.

For this quantity, it has been found evidence [19] that the chiral logs, which are the

most sensitive to quenching effects, are small compared to the contribution of the local

terms. The authors of [19] have thus estimated that the relative quenching effect in ∆f

is at most 50% of the same relative effect on f2, which amounts to 0.0028 (i.e. ≃ 13%

of ∆f). Note that this value is of the same size of the difference between the estimate

of ∆f at Nf = 2 and the quenched one of [17]. Thus this estimate of the quenching

error is expected to be a conservative one. We will add (in quadrature) the value 0.0028

to the systematic error we will give for f+(0). Let us conclude this section showing in

figure 4.17 our ∆f (Nf = 2) as a function of the pion mass squared compared with the

∆f (Nf = 2 + 1) calculated by the RBC collaboration in [111]; as can be seen in figure

our values fit well with the one calculated by the RBC collaboration.
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Figure 4.17: ∆f comparison - It is shown our ∆f (Nf = 2 ), defined in (4.61), as a

function of the pion mass squared compared with the ∆f (Nf = 2 + 1 ) calculated by the

RBC collaboration [111]. It can be clearly seen that our data fit well with the RBC ones.
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4.8 Physical results: semileptonic form factors & Vus

We present here our results for the semileptonic form factors at the physical point,

obtained from simulations with two flavour of dynamical twisted-mass fermions, using

pion masses in the range 260 to 575MeV .

Our main results are listed in the first column of table 4.4 and are the vector form

factor at zero momentum f+(0), the ratio of the Kaon decay constant over the pion one

fK/fπ and the related prediction for the CKM-matrix element Vus, as obtained from

the analysis of the runs A2, · · · , A4, B2, · · · , B7 and C1, . . . , C3 (all with Mπ ·L ≥ 3.7).

For the vector form factors we have quoted two errors: the first one is the statistical

one while the second is the systematic one and is due mainly to the quenching of the

strange quark.

this work FLAV IANET 2010

f+(0) 0.9610 ± 0.0030 ± 0.0028 0.959(5) [112]

(fK/fπ) 1.189 ± 0.008 1.193(6) [23]

V Kl3
us 0.2250 ± 0.0014 0.2254 ± 0.0013 [23]

V Kl2
us 0.2258 ± 0.0016 0.2252 ± 0.0013 [23]

Table 4.4: Physical results We show in the first column the physical results using

ETMC configurations A2, · · · , A4, B2, · · · , B7 and C1, . . . , C3 (all with Mπ ·L ≥ 3.7). The

errors, where both available, are statistical and systematical. The second column shows

the corresponding values as given in [23].

Our results for f+(0) and fK/fπ in table 4.4 (first column) compares positively

within errors with the ETMC results already published, namely f+(0) = 0.9560(84) of

[19] and (fK/fπ) = 1.210(18) of [113].

As can be seen from the table, and as we have already explained in chapter 1,

we have quoted two values for the Vus matrix element. The first one, which we have

indicated with V Kl3
us , is obtained using the experimental measure of the product |Vus| ·

f+(0) = 0.2163(5), from Kl3 semileptonic decays in [23], combined with our estimate

of f+(0) given in the first row of table 4.4.

The second one, called V Kl2
us , can be obtained from the ratio of Kl2 to πl2 decay

rates (1.83), using the experimental measure of the quantity |Vus/Vud| · (fK/fπ) =
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0.2758(5) given in [23] and exploiting our estimate for the fK/fπ ratio combined with

the knowledge of Vud = 0.97425(22) from nuclear beta decays.

We also quote, in the second column of table 4.4, the results given by the FLA-

VIANET collaboration [23] for the presented quantities. They were able to give pre-

dictions for Vus using the lattice input of f+(0) and fK/fπ taken, respectively, from

their symmetrization of the recent RBC/UKQCD results [112] and from a weighted

average (by means of the statistical errors) of the results of the analysis from BMW

[114], MILC ‘09 [115] and HPQCD/UKQCD [116].

As can be clearly seen our results turn out to be in good agreement with the ones

quoted by the FLAVIANET collaboration.

In table 4.5 we present a comparison between our scalar and vector form factor’s

slopes and curvature (with respect to q2) parameters (see (4.26)) with the ones evalu-

ated in [23] by means of an average of the experimental results of KLOE, KTeV, NA48

(without muons branching ratios) and ISTRA+; we also show our form factors as a

function of q2, extrapolated to the physical point, togheter with the ones obtained from

a dispersive fit, based on the form factor parametrization of [24], to the experimental

data (from the already mentioned experiments) performed by the authors of [23]. This

second comparison is shown in figure 4.18 and it can be clearly seen that there is a

good agreement for the vector and the scalar form factor.

this work FLAV IANET 2010 [23]

λ′
0 (16.01 ± 0.80) · 10−3 (15.90 ± 0.79) · 10−3

λ′
+ (23.78 ± 1.10) · 10−3 (25.04 ± 0.82) · 10−3

λ′′
+ (1.15 ± 0.09) · 10−3 (1.57 ± 0.36) · 10−3

Table 4.5: Form factor’s parameters We show in the first column the form factor’s

slopes (λ′) and curvature (λ′′) as obtained using the ETMC configurations A2, · · · , A4,

B2, · · · , B7 and C1, . . . , C3 (all with Mπ · L ≥ 3.7). The errors, where both available, are

statistical and systematical. The second column shows the corresponding values as given

in [23].

4.9 Present status of our stochastic technique

We show in this section our results obtained using the spin–direct and the twisted

stochastic technique for calculating the disconnected fermionic bubble (3.79). We have
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Figure 4.18: Scalar and vector form factors experimental comparison - It is

shown the scalar (left) and vector (right) form factors 1σ allowed region, as a function of

q2 at the physical point. The form factors has been obtained from the runs A2, . . . , A4,

B2, . . . , B7 and C2, C3 in order to guarantee that Mπ · L ≥ 3.7. The shaded blue region is

the 1σ allowed region for the form factors as obtained from the authors of [23] performing

the dispersive fit of the form [24] on the KLOE, KTeV, NA48 (without muons branching

ratios) and ISTRA+ experimental data.
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used, as testing ground, the η′ zero momentum two–point function (3.75), obviously

paying a particular attention to the disconnected part of the correlator. The data at

our disposal were calculated using the ETMC gauge field configurations generated with

the tree-level Symanzik improved action (2.54) and the Nf = 2 twisted mass action,

for two degenerate valence quarks, at maximal twist (2.66). As we were carrying out

a feasibility study, we have tested our methods using a single β = 3.9 (a = 0.0079 fm,

a−1 = 2.30 GeV ) a single lattice volume of V = 243×48 a4 and a single sea quark mass

aµsea = 0.0040. To work in the unitary limit we have employed a valence quark mass

equal to our sea quark mass.

In figure 4.19 we show the comparison between the disconnected part (3.78) of the

η′ correlator as a function of time, evaluated both with the spin direct method (full

dots) and with the twisted method (full squares) on 120 gauge field configurations. The

twisted method appear to be superior with respect to the spin–direct one especially if

one looks at figure 4.20 where we have shown the same quantities shown in figure 4.19

but with the spin–direct method calculated using 480 gauge field configuration while

the twisted one is again a 120 configurations estimate, and it appears to be still better.

Even if the precision of the methods is an encouraging one, when one calculate the

complete, zero momentum, η′ correlator (3.75), encounter some difficulties.

We show in figure 4.21 the complete η′ (zero momentum) two–point correlator as a

function of time, calculated using both the methods at our disposal. It can be seen that

we are able to extract no signal, because the stochastic fluctuations make our correlator

still noisy. This means that there are two options once obtained such a result: the first

one is turn our attention to a more powerful machine with which one can use more

stochastic sources per gauge field configurations, thus easily reducing the stochastic

noise. The second one is to employ further techniques or tricks to achieve the desired

signal to noise ratio.

In the η′ case, the authors of [16] have succeeded to extract a signal and were able

to calculate the η′ mass; although they employed some, so–called, variance reduction

methods, these techniques are specific of the zero momentum two–points function char-

acteristic of the η′ case. For instance, one of these methods consists in the excited state

removal for which one basically replace the connected neutral pseudoscalar correlator

by just the ground state contribution. It is clear that such a trick can only be used
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0 5 10 15 20 25
t/a

1e-05

0.0001

0.001

0.01

0.1

D
η(t

)

spin direct (N
f
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f
 = 2)

spin direct and twisted on 120 confs

Figure 4.19: η′ disconnected diagrams (I) - We show the disconnected part of the

η′ correlator at zero momentum (disconnected part of (3.75), with ~p = 0) as a function

of time (in lattice units). The full dots represent the data obtained using the spin–direct

method, while the full squares are obtained using the twisted technique. Data are obtained

from 120 gauge field configuration at β = 3.9 for a volume of V = 243 × T = 48, in the

Nf = 2 case. The number of inversions per configuration amount to 4 × 24 for the spin

direct method while for the twisted one it is only Nf × 4. For the sake of readability, the

twisted correlator has been translated in t/a of 0.3.
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Figure 4.20: η′ disconnected diagrams (II) - We show the disconnected part of the η′

correlator at zero momentum (disconnected part of (3.75), with ~p = 0) as a function of time

(in lattice units). The full dots represent the data obtained using the spin–direct method,

while the full diamonds are obtained using the twisted technique. Data are obtained in

the Nf = 2 case, at β = 3.9, for a volume of V = 163 × T = 32 from 480 gauge field

configurations for the spin–direct method while for the twisted method only 120 have been

used. The number of inversions per configuration amount to 4 × 24 for the spin direct

method while for the twisted one it is only Nf × 4. For the sake of readability, the twisted

correlator has been translated in t/a of 0.3.
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Figure 4.21: η′ complete correlator - We show the η′ complete correlator at zero mo-

mentum ((3.75), with ~p = 0) as a function of time (in lattice units). The full dots represent

the data obtained using the spin–direct method, while the full squares are obtained using

the twisted technique. Data are obtained from 120 gauge field configuration at β = 3.9 for

a volume of V = 243 ×T = 48, in the Nf = 2 case. For the sake of readability, the twisted

correlator has been translated in t/a of 0.3.
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when doing spectroscopy while, on the other hand, we want to apply our methods to

the neutron EDM calculation and so we can not profit of their variance reduction tricks.

Our next step will be to use an increased number of stochastic sources, of the order

of hundreds, with respect to the few dozen employed in our present calculation carried

out on the TeraFlop ApeNext supercomputing center. It is clear that using such a

number of stochastic sources is a target achievable only on super computers with a

computing power at the PetaFlop scale which will be available in the next future.
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Conclusions

In this work we have presented a lattice QCD determination of the form factors for

the semileptonic decay K → πlνl and a preliminary study of the stochastic techniques

needed to reproduce the disconnected fermionic bubble in view of a future calculation

of the neutron electric dipole moment.

We have used the correlation functions calculated by the European Twisted Mass

collaboration using the tree–level Symanzik improved gauge action and the Twisted

Mass Nf = 2 flavour of degenerate dynamical quarks, at maximal twist [9]. In particular

we have considered three different lattice spacings a = 0.10 fm (a−1 = 1.94 GeV ),

a = 0.079 fm (a−1 = 2.30 GeV ) and a = 0.063 fm, (a−1 = 2.91 GeV ) and two

different volumes (V × T = 243 × 48 a4 and V × T = 323 × 64 a4). The method we

have employed in calculating the form factors is the double ratios method, which uses

three–point double ratios in order to minimize the statistical fluctuations which cancel

out in this ratio.

Our analysis strategy was that of extracting the form factors for different MK and

Mπ. Then, since the Kaon masses employed in the simulations cover a range which

includes the physical Kaon mass, we have performed a smooth interpolation of our

data to a reference Kaon mass, which corresponds to fix the strange quark mass at

its physical value. Then we have performed a multi–combined fit of the q2, Mπ and a

dependence of the form factors using, respectively, a pole parametrization, an SU(2)

chiral parametrization and a polynomial parametrization. The quality of the multi–

combined fit is very high and , at the physical point, gives us the following values for

the quantity of interest

f+(0) = 0.9610(30)(28),
fK

fπ
= 1.189(8).
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where the first error is statistical while the second, where available, is systematic. Our

results are in very good agreement with the ones obtained from the FLAVIANET col-

laboration [23] and from the Nf = 2+1 simulations of the RBC/UKQCD collaboration;

also the compatibility of our form factor’s q2 shape with the one obtained by a dis-

persive fit, based on the form factor parametrization of [24], to the experimental data

from KLOE, KTeV, NA48 (without muons branching ratios) and ISTRA+ performed

by the authors of [23] is good as well. Using our zero momentum vector form factor

and our ratio of the kaon to pion decay constants together with, respectively, the Kl3

and Kl2 decay width quoted in [23], we have calculated the values of the CKM matrix

element Vus obtaining

V Kl3
us = 0.2250(14), V Kl2

us = 0.2258(16). (4.62)

Also in this case our results are in good agreement with the ones quoted in [23] where the

lattice input used were taken from their symmetrization of the recent RBC/UKQCD

results [112] (f+(0)) and from a weighted average (by means of the statistical errors) of

the results of the analysis from BMW [114], MILC ‘09 [115] and HPQCD/UKQCD [116]

(fK/fπ).

Our stochastic technique analysis has given us two powerful tools, the spin–direct

and the twisted methods, for calculating the trace of the fermionic all-to-all propagator,

even if they are not yet precise enough to be used in the neutron electric dipole moment

calculation.

There are several future perspective for this work. For the semileptonic decay sector

we are planning to employ a different q2 form factor parametrization, the so–called z–

parametrization of [106] and eventually to repeat this analysis on the future ensemble

with Nf = 2 + 1 + 1 flavours of dynamical quarks.

For the neutron electric dipole moment calculation instead there is a lot of work to be

done, as we have to improve our two methods developing some variance reduction tricks

in analogy to the ones employed by the authors of [16]. An important enhancement,

however, is expected to come when the access to supercomputers at the PetaFlop scale

will be available.
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