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Abstract

RBAC (Role-Based Access Control [2]) is a widely adopted access control model.
According to this model, roles are created for various job functions within the
organization. The permissions required to perform certain operations are as-
signed to specific roles. System users, in turn, are assigned to appropriate
roles based on their responsibilities and qualifications. Through role assign-
ments they acquire the permissions to perform particular system functions. By
deploying RBAC systems, organizations obtain several benefits such as simpli-
fied access control administration, improved organizational productivity, and
security policy enforcement.

Companies that plan to use RBAC model are usually large or medium or-
ganizations that are currently using other access control models and/or legacy
systems. Despite the benefits related to RBAC, it is sometimes hard for these
organizations to adopt such a model. Indeed, there is an important issue that
needs to be addressed: the model must be customized to capture the needs
and functions of the company. For this purpose, the role engineering disci-
pline [21] has been introduced. Various approaches to role engineering have
been proposed, which are usually classified as: top-down and bottom-up. The
former requires a deep analysis of business processes to identify which ac-
cess permissions are necessary to carry out specific tasks. The latter seeks to
identify de facto roles embedded in existing access control information. Since
bottom-up approaches usually resort to data mining techniques, the term role

mining is often used as a synonym for bottom-up.
This thesis is devoted to role mining techniques, and their applications

to large scale datasets. Several works prove that the role mining problem is
reducible to many other well-known NP -hard problems, such as binary ma-
trices factorization [56, 72] and tiling database [38] to cite a few. Therefore,
most of the existing theoretical approaches cannot be directly applied to large
datasets. Indeed, such algorithms have a complexity that is not linear com-i



ii Abstra
t
pared to the number of users or permissions to analyze [6, 29, 78]. In this
thesis, the main drawbacks of traditional role mining tasks that are based on
minimality measures are highlighted. Indeed, a minimal set of roles is gen-
erally not useful to the system administrators. We point out that in order to
provide a good candidate role-set, role mining algorithms have to take into
account business information as well.

We address the problem of reducing the role mining complexity in RBAC
systems by making it practical and usable. The first approach that we propose
is to elicit stable candidate roles, by contextually simplifying the role selection
task. Furthermore, we introduce two methodologies that can be combined
together in order to elicit meaningful roles, while reducing the role mining
complexity. The first is a divide et impera strategy that is driven by one or
more business attributes. The second methodology, overcomes the main limi-
tation of the divide et impera approach by reducing the problem size without
sacrificing on utility and accuracy. The original access control dataset is com-
pressed and then analyzed in order to identify interesting portions, which are
then reconstructed. Any existing role mining algorithm can be used to an-
alyze the reconstructed portions—that are orders of magnitude smaller than
the original dataset.

We point out that to effectively elicit a deployable role-set, role engineers
have to handle the noise that is always present within access control datasets.
It is important to figure out if there are assignments that have been not granted,
but that, if they would be granted, they could help the management of the
role set. Also, it is important to figure out if there are permissions that have
been accidentally granted, but that could hinder the role management. We
introduce two algorithms that are able to find missing and abnormal user-
permission assignments. Furthermore, we introduce a fast update operation
that quickly re-evaluate the dataset when a modification occurs during the
normal life cycle of the roles.

Further, we introduce a new approach to the role mining, referred to as
visual role mining. It offers a graphical way to effectively navigate the result of
any existing role mining algorithm, showing at glance what it would take a lot
of data to expound. Moreover, we allow to visually identify meaningful roles

within access control data without resorting to traditional role mining tools.
Finally, some final remarks as well as future research directions are high-

lighted.
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1
Introduction

A ccess control mechanisms are crucial design elements that aim at medi-
ating requests to data and services. Among all models proposed in the
literature, role-based access control (RBAC) [2] has become the norm

for managing permissions within commercial applications [86]. The high-level
formalism and the simplicity of its design made it an attractive and pragmatic
choice for implementing access control. Under RBAC, a role is a set of permis-
sions, while users acquire the permissions to perform system functions only
when they are assigned to specific roles. Because of the intuitiveness of RBAC,
security policies can be easily defined by business users that do not usually
have all the needed IT knowledge.

The roles definition phase, also known as role engineering, has been largely
recognized as the most expensive task in deploying RBAC [63]. Interestingly,
role design determines RBAC’s cost. When there are hundreds or thousands of
users within an organization, with individual functions and responsibilities to
be accurately reflected in terms of access permissions, only a well-defined role
engineering process allows for significant savings of time and money while
protecting data and systems [8]. Usually, role engineering approaches can be
categorized as: top-down and bottom-up. The former generally ignores exist-
ing permissions, and carefully decomposes business processes into elementary
components, identifying which access permissions are necessary to carry out
specific tasks in order to formulate roles. The latter aims at extracting roles
from the existing access permissions [52]. Top-down analysis has been rec-
ognized as the costliest part for deploying RBAC as it requires a significant
amount of analysis of the business processes, and moreover it has to be per-
formed mainly manually [21]. For this reason, and also because the com-
plexity of this task grows with the introduction of new and more complicated
information systems, bottom-up approaches are largely preferred to top-down
approaches. Indeed, they can be easily automated by resorting to data mining1
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techniques, thus leading to what is usually referred to as role mining.

In recent years, various role-definition approaches have been proposed,
where each of them bears in mind a different aspect of the problem [59].
Many of these works proved that the role mining problem is reducible to well-
known NP-hard problems, and several heuristic algorithms have been pro-
posed. However, when dealing with large organizations, such algorithms are
not practically useful. Indeed, they have a complexity that is not linear com-
pared to the number of users or permissions to analyze [6, 29, 78]. Especially
when the role engineering task is periodically and frequently performed as
part of the life-cycle of roles, the number of elicited candidate roles as well as
the running time become an issue, [8]. To overcome these limitations, role
mining products such as Oracle Identity Analytics1 or Bay31 Role Designer2

use a Divide et Impera approach. For example, Oracle Identity Analytics sep-
arates large numbers of users into more manageable groups, called “waves”,
for the purpose of defining roles. This is accomplished by first dividing users
into business units based on their managers, departments, divisions, or other
attributes. Then, these business units are grouped into waves (usually four
to six business units per wave), which are independently analyzed using role
mining, clustering and categorization algorithms. The Bay31 Role Designer
allows a “role engineering campaign” manager to delegate parts of the overall
role analysis to different people. Each of these people contributes their par-
ticular knowledge of the business and Role Designer combines it all to form a
coherent set of business role. To identify the subsets of data to analyze, the
product uses a partitioning approach inspired by one of our work [14]. In
particular, using an index referred to as “entrustability”, the access data is di-
vided into smaller subsets that are homogeneous from a business perspective.
Instead of performing a single bottom-up analysis on the entire organization,
each subset is analyzed independently. This eases the attribution of business
meaning to roles elicited by any existing role mining algorithm, and reduces
the problem complexity.

The main drawback of the afore mentioned Divide et Impera approaches
is that it is not possible to elicit roles that spread across several partitions.
Yet, such roles can be very useful to system administrators. For instance, it is
likely that users spreading across different partitions (e.g., different organiza-
tion units) have common entitlements that simply permit access to top-level
resources (i.e., to resources at their entry points). A so called “structural” role
might control access to an application’s entry point, whereby a user could only

1http://www.ora
le.
om/us/produ
ts/middleware/identity-management/ora
le-identity-analyti
s/index.html
2http://www.bay31.
om/role_designer

http://www.oracle.com/us/products/middleware/identity-management /oracle-identity-analytics/index.html
http://www.oracle.com/us/products/middleware/identity-management /oracle-identity-analytics/index.html
http://www.bay31.com/role_designer
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open that application if he or she had been assigned to a structural role that
grants that access. Conversely, “functional” roles are defined as controlling
access to resources within applications. The role engineering process should
include the definition of both structural roles and functional roles [22].

In real scenarios, no data is clean, and the access control information is not
an exception. Unfortunately, this is an often neglected aspect. Existing access
control datasets contain large portions of permissions that are exceptionally
or accidentally granted. Furthermore, it is very common to find portions of
permissions that are not explicitly granted to some users, but that may be
granted without undermining any security policy. Therefore, when taking into
account access control information, by noise we refer to a permission being
recorded as a denial or a denial being recorded as a permission.

Noise can cause multiple problems during the role mining task. Indeed,
this intrinsic factor hinders the elicitation of meaningful roles, badly biasing
the role mining analysis. For example, if we are trying to minimize some
mathematical function, we may get a suboptimal solution (i.e., larger number
of roles). Furthermore, the discovered role set will reconstitute noisy bits.
Since the discovered roles are also contaminated with noise, they perpetuate
the existing errors. Thus, due to the noise, the error affects future users who
may be mistakenly given over and under-permissions right from the start. This
can create great problems and reduce the benefits of using RBAC in the first
place. However, the difficulties that arise from noisy access control datasets
have not been adequately addressed yet. As a matter of fact, most role mining
approaches assume the input data is clean, and only attempt to optimize the
RBAC state.1.1 Candidate Contributions
The research activity of the candidate mainly focused on the Role Based Ac-
cess Control, and in particular on the problems related to the role mining.
However, the scientific interest of the candidate towards other security areas
lead to some additional publications. This thesis collects and harmonizes the
main contributions that handle the role mining, while the remaining ones are
briefly described in Section 1.1.2.1.1.1 Role Base A

ess Control
Conference and journal papers that have been published on this topic are sum-
marized in Table 1.1. For each paper, it is indicated: the bibliographical ref-
erence that gives full details of the conference/journal, the paper title, and an
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tionTable 1.1 Summary of Candidate's Contribution in RBAC areaRef. Title Contribution[20℄† Visual Role Mining: A Pi
ture IsWorth a Thousand Roles A graphi
al view of user-permission assign-ments that allows for qui
k analysis and roleeli
itation[18℄†∗ A novel Approa
h to ImputeMissing Values and Dete
tingOutliers in Binary Matri
es Simplifying the role mining task by automati-
ally dete
ting and dis
arding ex
eptions fromanalyzed data[19℄†∗ Priva
y Preserving Role-Engineering An approa
h for a priva
y-preserving outsour
-ing of the role engineering task[80℄ Role Mining: From Theory toPra
ti
e How to make role mining pra
ti
al and usablefor a
tual deployment[11℄ A Probabilisti
 Bound on the Ba-si
 Role Mining Problem and itsAppli
ations A sharp estimation of the minimum number ofroles that 
an be eli
ited by role mining algo-rithms[9℄ A Formal Framework to Eli
itRoles with Business Meaning inRBAC Systems A metri
 to evaluate the meaning of roles, touse in 
onjun
tion with [6℄[14℄ Mining Business-Relevant RBACStates Through De
omposition An entropy-based measure of the expe
ted un-
ertainty in lo
ating homogeneous users andpermissions and its appli
ations[10℄ Mining Stable Roles in RBAC Easing the mining task by dis
arding user-permission assignments that lead to �unstable�roles[16℄† Taming Role Mining Complexityin RBAC E�
ient algorithms to implement the ap-proa
h proposed in [10℄[17℄†∗ A Business-Driven De
omposi-tion Methodology for Role Min-ing An approa
h to de
ompose the role miningproblem in business drive subtasks[12℄ ABBA: Adaptive Bi
luster-BasedApproa
h to Impute Missing Val-ues in Binary Matri
es A novel approa
h to identify missing user-permission assignments that 
ould simplify therole mining task[15℄† A New Role Mining Frameworkto Eli
it Business Roles and toMitigate Enterprise Risk Two metri
s to estimate the expe
ted 
om-plexity of analyzing mining out
ome, as well asa divide-and-
onquer approa
h that use them[13℄ Evaluating the Risk of AdoptingRBAC Roles A framework to rank users and permissionsby the risk related to markedly deviating from�peers�
∗Unpublished and under review pro
ess
†Journal paper
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outline of the contribution. In the bibliography at the end of the document,
the authors of papers cited by Table 1.1 are mainly reported in alphabetical
order, but the candidate is either the first or the second contributing author
for all the papers.

When dealing with large organizations, the number of elicited candidate
roles as well as the running time become an issue. This happens especially
when the role engineering task is periodically and frequently performed as
part of the roles life-cycle. Indeed, it is often impossible to deal with datasets
involving thousand of users and permissions without using a partitioning ap-
proach. Several commercial products uses this approach, but often the parti-
tioning is manually executed. In [15], the candidate proposed a divide-and-
conquer strategy, leveraging on two indices (minability and similarity) that
measure the expected complexity to find roles with clear business meaning.
The decomposition process is driven by selecting the business attribute that
maximize such indices. In [14] the candidate introduced another index, that
provides, for a given partition, the expected uncertainty in locating homoge-
neous set of users and permissions that are manageable with the same role.
By choosing the decomposition with the highest values for any of such in-
dices, we most likely identify roles with a tight business meaning. Both [15]
and [14] suggest to restrict the role mining analysis to sets of data that are ho-
mogeneous from an enterprise perspective. The key observation is that users
sharing the same business attributes will essentially perform the same task
within the organization. Consequently, it will be easier for an analyst to assign
a business meaning to the roles elicited via bottom-up approaches. When sev-
eral attributes are at role engineers disposal, the problem that arise is to select
the attribute that induce the “best” partitioning. This problem has been taken
into account in [17], where ENTRUSTABILITY, MINABILITY GAIN, and SIMILARITY

GAIN have been introduced and compared.
Partitioning approaches, however, have a main drawback: it is not possible

to find roles that spread across several partitions. Yet, such roles can be very
useful to system administrators. For instance, it is likely that users spreading
across different partitions (e.g., different organization units) have common
entitlements that simply permit access to top-level resources (i.e., to resources
at their entry points). A so called “structural” role might control access to an
application’s entry point, whereby a user could only open that application if
he or she had been assigned to a structural role that grants that access. Con-
versely, “functional” roles are defined as controlling access to resources within
applications. The role engineering process should include the definition of
both structural roles and functional roles. Therefore, in [80] the candidate
introduced an approach that essentially provides practical and usable solu-
tions to the role mining problem, improving the scalability of the role mining
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solutions while eliciting structural roles. Hence, overcoming the main limita-
tion of existing Divide et Impera approaches. In [80], the role mining problem
is made tractable by reducing the problem size without sacrificing on utility
and accuracy. The proposed approach does this by effectively compressing the
original access control dataset, analyzing the compressed dataset to identify
interesting portions, and reconstructing the portions of the original dataset
that are worth investigating. Scalability is assured by targeted partitioning
that ensures that the created sub-problems focus only on the interesting por-
tions of the original dataset—and are therefore orders of magnitude smaller
than the original one. At this point, any existing role mining algorithm can be
used to analyze user-permission assignments within these subsets. Thus, this
approach is agnostic to the specific role mining methodology used, namely it
can be used in conjunction with them to enhance their scalability.

When performing the role mining task, it is of utmost importance to han-
dle “clean” datasets. Unfortunately, existing datasets contain large portions of
exceptionally/accidentally granted/denied permissions that can hinder the elic-
itation of meaningful roles. In [10], the candidate introduced the concept of
“stable” candidate roles: roles that likely remains unchanged during their life-
cycle. A theoretical framework that allows to identify and then discard assign-
ments that can only be managed via “unstable” roles is also introduced. Then,
in [16] the candidate introduces a fast algorithm that implements such a strat-
egy, avoiding the generation of unstable roles during the application of any
role mining algorithm. Denied permissions are represented by missing user-
permission assignments. Unfortunately, some of the missing user-permission
assignments, if would be granted, might largely simplify the mining task. Re-
ferring to the more general case of missing values in binary matrices, in [12]
the candidate introduced a viable and effective approach to identify such miss-
ing values.

In [20], the candidate proposed a visual approach to the role mining task.
In practice, abstract user-permission patterns (i.e., RBAC roles) are managed
as visual patterns. The rationale behind this approach is that visual repre-
sentations of roles can actually amplify cognition, leading to optimal analysis
results [31,48]. A graphical way to effectively navigate the result of any exist-
ing role mining algorithm is provided, showing at glance what it would take
a lot of data to expound. Visualization of the user-permission assignments
is performed in such a way to isolate the data noise, allowing role engineers
to focus on relevant patterns, leveraging their cognition capabilities. Further,
correlations among roles are shown as overlapping patterns, hence providing
an intuitive way to discover and utilize these relations.
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Additional publications that are not strictly related to RBAC but that are bound
to the general field of Information Security (Access Control is included within)
are summarized in Table 1.2. In particular, the candidate introduced the use
of epidemiological inspired models to assure information survivability in Unat-
tended Wireless Sensor Networks. In the following we will briefly introduce
the main features of these networks, highlighting the contributions of the can-
didate.

In Wireless Sensor Networks (WSNs), data sensed by the nodes are sent
in real time (or quasi real time) to the sink. Nodes may rely on a multi-hop
protocol to reach the sink, that it is however continuously available. On the
contrary, Unattended Wireless Sensor Networks (UWSNs) are characterized
by the intermittent presence of the sink. In such a scenario, nodes have to
accumulate information sensed on the field, and try to offload it to the sink as
soon as it is available. The reasons that have led to the introduction of this
type of Wireless Sensor Networks are tightly related to the inaccessibility of
the environment where the nodes may be deployed. As an example, consider
a monitor system to detect poaching in a national park. The difficulty to hide
the sink, and the size of the monitored area are the main reasons to adopt
an unattended WSN. This is also the case of an underground, or submarine
sensor network: the inaccessibility of the monitored area, and the technical
problems that arise to connect the sink with the sensors do not allow the
use of a traditional sink. In all these cases, an intermittent sink is the only
alternative.

Since sensors are usually deployed in hostile environments, and since the
sink cannot continuously check that they are correctly working, UWSNs repre-
sent an easy and attractive target for an adversary. Mainly due to cost reasons,
a typical sensor is a mass-produced commodity device with no specialized se-
cure hardware. Therefore, while the sink is away, the adversary can compro-
mise the sensors, read, delete or alter an information, and disappear without
leaving any evidence of its illegal behavior. In [26], the candidate introduced
two epidemic models that are able to assure data survivability in Unattended
Wireless. These models do not rely on any cryptographic ability of the sensors.
In [27], one of these models has been deeply analyzed. Here, a pure controlled
epidemic technique has been used to provide a trade-off between data surviv-
ability, optimal usage of sensor resources, and a fast and predictable collecting
time. The candidate proved that by estimating the maximal power of an at-
tacker it is possible to set up a probabilistic bound on the survivability of the
data. This is the first work in the area that considers the collecting time as an
issue; consequently, it might open up a new line of research. In [28], the work
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tionTable 1.2 Summary of Candidate's Contribution in other areasRef. Title Contribution[26℄ Introdu
ing Epidemi
 Modelsfor Data Survivability in Unat-tended Wireless Sensor Net-works Preliminary assessment of epidemi
-domaininspired approa
hes to model the informa-tion survivability in UWSN[27℄ Epidemi
 data survivability inunattended wireless sensor net-works A theoreti
ally sound result that assures atthe same time: Data survivability, an opti-mal usage of sensors resour
es, and a fastand predi
table 
olle
ting time[28℄34 Epidemi
 Theory and DataSurvivability in UnattendedWireless Sensor Networks:Models and Gaps Highlighting gaps of epidemi
 models for in-formation survivability
published in [26] has been extended in several directions for an invited jour-
nal version. The candidate relaxed the hypothesis regarding the availability
of point to point connectivity used in the previous paper, and introduced sev-
eral geometrical constraints that are typical of a standard deployment setting.
The candidate took into account the problems that arise in the geometrical
scenario, and proposed a simple but effective solution.1.2 Outline of the Thesis
The remainder of this thesis is organized as follows.

Chapter 2 (Background and Related Work) provides an overview of the ba-
sic access control concepts. Subsequently, the way an organization can migrate
from other access control models to RBAC through role engineering methodolo-
gies is explained, and the typical classification of the various role engineering
approaches is presented. Further, a set of concepts that is extensively used
in the following chapters is introduced, that is biclusters, maximal biclusters,
pseudo-biclusters and maximal pseudo-biclusters. Also, a few concepts related
to the graph theory and its connection with the Role Based Access Control are
described.

Chapter 3 (The Role Mining Problem) introduces the general role mining
problem and the required formalism. Since this problem has many interpre-
tations, we report the most significant definitions that have been proposed up
to this time. That is: the basic Role Mining Problem, the δ-approximated Role
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Mining Problem and the Edge Role Mining Problem. Furthermore, we high-
light the drawback of these approaches that generally seek for the minimality.

In Chapter 4 (Practical and Usable Approaches to the Role Mining), we
look at how to make role mining practical and usable for actual deployment.
We first introduce a strategy for the reduction of the role mining complexity
by pruning unstable assignments. In particular, we introduce a graph describ-
ing the existing user-permission assignments, and a pruning operation that
corresponds to the identification of unstable roles. Further, we introduce a
strategy to analyze an existing dataset, and to decompose the role mining task
in several sub-tasks. Each of these sub-tasks are executed on a partition of
the dataset that is homogeneous from an enterprise perspective. Finally, we
introduce a six step methodology that overcomes the limitations of the Divide
et Impera approaches, while still improving the scalability of the role mining
solutions. We focus on making the role mining problem tractable by reducing
the problem size without sacrificing on utility and accuracy. Results of the
application of this methodology on real data support our findings.

Chapter 5 (Data Cleansing in Access Control Datasets) deals with pre-
mining activities, and in particular “data cleansing”. In access control datasets,
it is important to figure out if there are assignments that have been not granted,
but that, if granted, could help the management of the role set. Also, it is
important to figure out if there are permissions that have been accidentally
granted, and that could hinder the role management. In this Chapter, we
introduce two algorithms that are able to find missing and abnormal user-
permission assignments. Furthermore, we introduce a fast update operation
that quickly re-evaluate the dataset when a modification occurs during the
normal life cycle of the roles.

In Chapter 6 (Visual Role Mining), we introduce a new approach to the
role mining, referred to as visual role mining. We offer a graphical way to
effectively navigate the result of any existing role mining algorithm, showing
at glance what it would take a lot of data to expound. Moreover, we allow to
visually identify meaningful roles within access control data without resorting
to traditional role mining tools. Visualization of the user-permission assign-
ments is performed in such a way to isolate the noise, allowing role engineers
to focus on relevant patterns, leveraging their cognition capabilities. Further,
correlations among roles are shown as overlapping patterns, hence providing
an intuitive way to discover and utilize these relations. In fact, this chapter
shows that a proper representation of user-permission assignments allows role
designers to gain insight, draw conclusions, and design meaningful roles from
both IT and business perspectives.

To conclude, Chapter 7 (Conclusion) offers some final remarks.
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2
Background and

Related Work

T his chapter offers a brief overview of the basic access control concepts.
Subsequently, we explain the way an organization can migrate from
other access control models to RBAC through role engineering method-

ologies. The typical classification of the various role engineering approaches is
presented. Furthermore, we introduce a set of tools that is extensively used in
the following chapters, that is biclusters, maximal biclusters, pseudo-biclusters

and maximal pseudo-biclusters. Finally, we introduce a few concepts related to
graph theory and Role Based Access Control.2.1 Role-Based A

ess Control
In the current competitive environment, data must be secured, and access to
that data must be limited to the “minimum necessary”. Security models such
as Mandatory Access Control and Discretionary Access Control have been the
means by which to secure information and regulate access. But due to the
inflexibility of these models, the rather new security concept of Role Based Ac-
cess Control (RBAC), as proposed by the National Institute of Standards and
Technology (NIST) [2], became the more prominent security model [86]. The
high-level formalism and the simplicity of its design made RBAC an attractive
and pragmatic choice for implementing access control. Under RBAC, a role
is a set of permissions, while users acquire the permissions to perform system
functions only when they are assigned to specific roles. Because of the intu-
itiveness of RBAC, security policies can be easily defined by business users that
do not usually have all the needed IT knowledge.11
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Lower technology costs and a great need for data access and sharing in a
competitive market has driven the development of new technologies and stan-
dards. Both system vendors and implementers have been looking for the
means to properly administer rapidly expanding and costly infrastructures.
Indeed, the downtime of users and the delay in account creation can provide
large economic losses. Account security in many organizations is loose at best,
perpetuated by a high volume of requests and a security administration model
grossly overpowered by the infrastructure it is forced to support. Fortunately,
Role Based Access Control (RBAC) allows for easiest administration of large
and complex corporate environments without sacrificing the need for securing
data and access to it.

The earliest forms of access control systems assigned privileges to users.
Conventionally, managing entitlements has been considered technical, as they
are related to vertically-managed applications without much business involve-
ment. However, with the publication of regulatory requirements such as the
US Sarbanes-Oxley Act [68], US Health Insurance Portability and Account-
ability Act (HIPAA) [49], Gramm-Leach-Biley Act (GLBA) [41], and EU Pri-
vacy Protection Directive 2002/58/EC [40], it is increasingly important to
revise the entitlement management process from a business perspective, as it
becomes a security governance and compliance issue. The addition of user

groups improved that situation. Many legacy systems and applications man-
aged user permissions by means of groups. Under this model, permissions are
assigned to groups, while users get permissions granted by being a member
of a group. The ability to assign permissions to a group and determine who
can inherit the permission is considered discretionary since it is typically de-
cided by system owners. However, authority to assign members to a group is
deemed non-discretionary and usually is performed by the security staff.

In order to better understand the benefits of a Role-Based Access Con-
trol (RBAC) security administrative model, we must understand some of the
current concepts being utilized. While there are many variations and ideas
behind security administration, we are going to focus on three basic concepts:
Mandatory Access Control, Discretionary Access Control and of course Role
Based Access Control.Mandatory A

ess Control (MAC) Mandatory Access Control or MAC uti-
lizes security provisions that are typically hard coded into an application or
operating system. These provisions or rules apply to all objects, applications
and various resources including the end-user that tries to access the data it is
designed to protect. More so than operating systems, applications, especially
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military, governmental or occasionally specialized in-house developed applica-
tions, incorporate the MAC concept. This typically begins by classification of
data, for example sensitive, secret and confidential, and next the classification
of resources that will be making requests for data. This type of access control
is very secure in that it can be granular in design. Some implementations of
MAC include a hierarchal structure, meaning that a user assigned secret has
access to secret and sensitive data. A user assigned confidential could also
have secret and sensitive data access in a hierarchal implementation. Another
security benefit of this model is that the security rules are hard coded into the
software so the chance for administrative error or social engineering is greatly
reduced. Where MAC can fall short is in the development or modification of
the rules within the application. Because it is hard coded programmers will
need to review the coding of the application and make changes. This could
be especially frustrating if the application is a turnkey solution from a vendor
requiring vendor assistance for modification. MAC is best suited for specialty
applications for a group of users with rather similar needs. As a rule it typically
does not function well as a corporate wide authentication and accessibility se-
curity model. The inability for MAC to change in the age of consolidation and
constant corporate mergers makes it an administrative nightmare for general
account administration in a dynamic and evolving environment.Dis
retionary A

ess Control (DAC) Discretionary Access Control (DAC)
works both as a centralized security model and a distributed model. A cen-
tralized security model is when an administrator or team of administrators
distributes access to data, applications and network devices. All requests for
access changes need to be completed by this single department. In a large or-
ganization this can be very time consuming, especially if the administrators are
off site or outsourced. A distributed model allows responsible and knowledge-
able personnel to distribute access to data and applications. In large compa-
nies this may be a manager, supervisor, or team leader. In small organizations
it may simply be a team member that is particularly skilled with computers and
security. The benefit of a distributed model is that delays can be avoided since
the administration of accounts is dispersed. Because DAC can be implemented
in a distributed security model, it can greatly reduce account access change
turnaround times by removing the middle man. While DAC would appear a
reasonable solution for both large and small network environments, there are
also some drawbacks to consider. Since access is distributed at the discretion
of the data owner, there is the potential that uniformity of access for end-users
with like job functions could be diminished. The lack of understanding by the
data owner could allow access greater than the minimum necessary. If explicit
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USERS ROLES PERMSRHUA PAFigure 2.1 RBAC entities

rights to data is not known by the data owners or administrators, then who
can be sure that the access is not carried with the user as they move from
job function to job function within the company. These issues could open the
doors to costly and embarrassing repercussions.RBAC: Fundamental Con
epts
Role-based access control (RBAC) [2] is the next evolutionary step in access
control. The fundamental concept of RBAC is that roles aggregate privileges.
Users inherit permissions by being members of roles. Based on the least privi-
lege access principle, they are given no more than what is required to perform
their job function. In this case, assignment of permissions to a role and deter-
mining membership of roles is supposed to be non-discretionary. The National

Institute of Standards and Technology (NIST) delivered in 2004 a standard for
RBAC [2] via the INCITS fast track process. The standard provides users and
vendors of information technology products with a coherent and uniform def-
inition of RBAC features. It also offers a formal description of all the entities
provided by the RBAC model. In the following, we only summarize the entities
of interest for the present thesis:

◮ PERMS, the set of all possible access permissions;
◮ USERS, the set of all system users;
◮ ROLES, the set of all roles;
◮ UA⊆ USERS×ROLES, the set of user-role assignments;
◮ PA⊆ PERMS×ROLES, the set of permission-role assignments;
◮ RH⊆ ROLES×ROLES, the set of hierarchical relationships between pairs

of roles.

For the sake of simplicity, we do not consider other entities provided by the
standard such as sessions or separation of duty constraints. Indeed, such enti-
ties are not relevant for the purpose of this thesis.
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The previous entities are also depicted in Figure 2.1. As for role hierarchy,

RH derives from the partial order [24] based on permission-set inclusion.1

Hence, 〈r1, r2〉 ∈ RH indicates that all the permissions assigned to r1 are also
assigned to r2, and some more permissions are assigned to r2. The symbol ‘�’
indicates the ordering operator. If r1 � r2, then r1 is referred to as the senior

of r2, namely r1 adds certain permissions to those of r2. Conversely, r2 is the
junior of r1. Additionally, the symbol ‘⋗’ also indicates the ordering operator,
but there is no intermediate elements between operands. In other words,

∀r1, r2 ∈ ROLES : r1⋗ r2 =⇒

∄r ′∈ ROLES : r ′ 6= r1 ∧ r ′ 6= r2 ∧ r1 � r ′ ∧ r ′ � r2.

If r1⋗ r2 then r1 is referred to as an immediate senior of r2, while r2 is referred
to as an immediate junior of r1. In the next chapters we will extensively use
the proposed mathematical formalism.

The following functions are also provided by the ANSI standard:

◮ ass_users : ROLES → 2USERS to identify users assigned to a role and to
none of its senior roles.2

◮ auth_users : ROLES→ 2USERS to identify users assigned to a role or to at
least one of its seniors.
◮ ass_perms: ROLES → 2PERMS to identify permissions assigned to a role

and to none of its senior roles.3

◮ auth_perms: ROLES→ 2PERMS to identify permissions assigned to a role
or to at least one of its seniors.

The following relation holds true:

∀r1, r2 ∈ ROLES : r1 � r2 =⇒ auth_users(r1) ⊆ auth_users(r2) ∧

auth_perms(r1) ⊇ auth_perms(r2). (2.1)

1The RBAC chapters that mention role hierarchy most often treat it as a partial order.
By maintaining only a partial order it is not possible to distinguish role dominance relation-
ships explicitly added from those implied [53]. Since consensus (on this matter) has yet
to be reached among researchers, we only consider hierarchical relationships derived from
permission-set inclusion.

2The RBAC standard does not make a clear distinction between base and derived re-
lations [53]. We therefore consider the functions ass_users as derived from UA, that is
ass_users(r) = {u ∈ USERS | 〈u, r〉 ∈ UA}. We also assume that users assigned to a role
are not assigned to its seniors.

3Analogous to ass_users, we consider the function ass_perms as derived from PA, that is
ass_perms(r) = {p ∈ PERMS | 〈p, r〉 ∈ PA}. We also assume that permissions assigned to a
role are not assigned to its juniors.
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In addition to the functions that are provided by the ANSI standard, we use
the following other entities:

◮ UP ⊆ USERS× PERMS, the existing user-permission assignments to an-
alyze;
◮ perms: USERS → 2PERMS, the function that identifies permissions as-

signed to a user. Given u ∈ USERS, it is defined as perms(u) = {p ∈
PERMS | 〈u, p〉 ∈ UP}.
◮ users: PERMS → 2USERS, the function that identifies users that have

been granted a given permission. Given p ∈ PERMS, it is defined as
users(p) = {u ∈ USERS | 〈u, p〉 ∈ UP}.2.2 Role Engineering

Many organizations are in the process of moving to role based access control.
The process of developing an RBAC structure for an organization has become
known as “role engineering”. The roles definition phase has been largely rec-
ognized as the most expensive task in deploying RBAC [63]. Interestingly,
role design determines RBAC’s cost. When there are hundreds or thousands of
users within an organization, with individual functions and responsibilities to
be accurately reflected in terms of access permissions, only a well-defined role
engineering process allows for significant savings of time and money while
protecting data and systems [8]. Usually, role engineering approaches can be
categorized as: top-down and bottom-up. The former generally ignores exist-
ing permissions, and carefully decomposes business processes into elementary
components, identifying which access permissions are necessary to carry out
specific tasks in order to formulate roles. The latter aims at extracting roles
from the existing access permissions [52]. Top-down analysis has been rec-
ognized as the costliest part for deploying RBAC as it requires a significant
amount of analysis of the business processes, and moreover it has to be per-
formed mainly manually [21]. For this reason, and also because the com-
plexity of this task grows with the introduction of new and more complicated
information systems, bottom-up approaches are largely preferred to top-down
approaches. Indeed, they can be easily automated by resorting to data mining
techniques, thus leading to what is usually referred to as role mining. In the
following we will analyze in more details these two approaches.

Top-Down approach is primarily business-driven, and roles are defined based
on the responsibilities of a given job function. For roles to be effective, a strong
alignment between business and IT objectives is of utmost importance. Roles
are defined by reviewing organizational business and job functions and map-
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ping the permissions for each job function. This approach provides business
oversight and alignment of roles with business functions and re-usability. Top-
down role engineering was first illustrated by Coyne [21]. He places system
users’ activities as high-level information for role identification; this approach
is only conceptual, thus it lacks technical details. Fernandez and Hawkins [32]
propose a similar approach where use-cases are used to determine the needed
permissions. Röckle et al. [65] propose a process-oriented approach that ana-
lyzes business processes to deduce roles. The role-finding concept is introduced
to deduce roles from business needs or functions. Information is organized in
three different layers: process layer, role layer, and access rights layer. Crook
et al. [23] leverage organizational theory to elicit role-based security policies.
Neumann and Strembeck [61] present a more concrete approach to derive
roles from business processes. They offer a scenario-based approach where a
usage scenario is the basic semantic unit to analyze. Work-patterns involving
roles are analyzed and decomposed into smaller units. Such smaller units are
consequently mapped with system permissions. Shin et al. [71] use a system-
centric approach supported by the UML language to conduct top-down role
engineering. Role engineering is discussed from the perspective of systems
to be protected, assisting with the general understanding of RBAC roles and
permissions in conjunction with business processes. Epstein and Sandhu [30]
also use UML to address role engineering. Kern et al. [50] propose an iterative
and incremental approach based on the role life-cycle, pertaining to analysis,
design, management, and maintenance. The book of Coyne and Davis [22]
is a practical reference that helps to assess some of the previously cited role
engineering approaches.

Bottom-Up approach is based on performing role-mining/discovery by ex-
ploring existing user permissions in current applications and systems. Once
roles has been elicited, the next step is to perform role normalization and ra-
tionalization. In this approach, roles are defined to meet specific application
or system access requirements. One of the challenges of this sampling is that
it requires viable tools to perform role mining. An alternate approach is to
select a set of representative users and extract the entitlements that best de-
scribe the job function. If the user population is significant, it would be ideal
to sample a certain percentage of the population to validate the accuracy of
the results. One of the outcomes of this approach is that users often accu-
mulate entitlements based on their previous job functions performed over a
period of time; it can become too daunting to validate roles without the busi-
ness involvement. This is a key aspect of role rationalization to be considered
as part of a bottom-up approach. Kuhlmann et al. [52] first introduced the
term “role mining”, trying to apply existing data mining techniques to elicit
roles from existing access data. Indeed, role mining can be seen as a particu-
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lar application of Market Basket Analysis (MBA, also known as association-rule

mining), a method of discovering customer purchasing patterns by extracting
associations or co-occurrences from transactional store databases. This trans-
lation can be done by simply considering permissions, roles and users instead
of products, transactions and customers, respectively. Among all possible al-
gorithms used in this area, Apriori [1] is the most common. After the first
proposal, the community started to identify specific algorithms to solve this
particular problem instead of using existing approaches. The first algorithm
explicitly designed for role engineering was ORCA [69] which applies hierar-
chical clustering techniques on permissions. In practice, ORCA discovers roles
by merging permissions appropriately. However, the order in which permis-
sions are merged determines the outcome of roles. Moreover, it does not allow
overlapping roles, which is a significant drawback. Vaidya at al. [78] applied
subset enumeration techniques to generate a set of candidate roles, comput-
ing all possible intersections among permissions possessed by users. Subset
enumeration techniques had been advocated earlier by Rymon [67]. More re-
cently, the same authors of [78] also studied the problem of finding the min-
imum number of roles that cover all permissions possessed by users [75, 76].
By leveraging binary integer programming, Lu et al. [56] presented a uni-
fied framework for modeling the role number minimization problem. Ene
et al. [29] offered yet another alternative model to minimize the number of
roles, reducing it to the well-known problem of the minimum biclique cover-
ing. Zhang et al. [85] provide an attempt to contextually minimize the num-
ber of user-role, permission-role, and role-role relationships. Frank et al. [34]
model the probability of user-permission relationships, thus allowing to infer
the role-user and role-permission assignments so that the direct assignments
become more likely. The authors offer a sampling algorithm that can be used
to infer their model parameters. Several works prove that the role mining
problem is reducible to many other well-known NP -hard problems, such as
clique partition, binary matrix factorization, bi-clustering, graph vertex col-
oring (see Chapter 4) to cite a few. Recently, Frank et al. [35] provided a
detailed analysis of the requirements for role mining as well as the methods
used to assess results. They also proposed a novel definition of the role min-
ing problem that fulfills the requirements that real-world enterprises typically
have.Limitations of Standard Role Engineering Approa
hes The standard top-
down and bottom-up approaches do not always lead to the optimal set of roles
from a business perspective. In [6], we firstly described an approach that al-
lows for the discovery of roles with business meanings through a role mining
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algorithm. The most similar approach to ours has been provided by Molloy at
al. [58]. It tackles the problem in two settings. When only user-permission
relations are available, the authors propose to discover roles by resorting to
formal concept analysis (FCA). FCA is a theory of data analysis which identi-
fies conceptual structures among data sets. The mathematical lattices that are
used in FCA can be interpreted as classification systems. If user attributes are
additionally available, they utilize user attributes to provide a measurement
of the RBAC state complexity, called “weighted structural complexity”. The
authors observe that adopting the RBAC model reduces the number of rela-
tionships to be managed and give a cost (weight) for each parameter of the
global structural complexity.

Above mentioned role mining approaches assume clean input data which
is not what happens in a real scenario. Indeed, the noisy input data is perva-
sive. In [60], Molloy et al. suggested a cleaning approach by dividing the role
mining problem into two steps: noise removal and candidate role generation.
They used non-binary rank reduced matrix factorization to identify noise. This
approach is also applicable outside role engineering and may be used to iden-
tify errors or predict missing values in any access control matrix. In [77],
Vaidya et al. proposed a formal model of noise and experimentally evaluated
the δ-approximated algorithm previously proposed against its robustness to
noise. Unfortunately, their algorithm is only able to handle additive noise (that
is when a permission can only be incorrectly given, not incorrectly revoked).2.3 Bi
lusters
In this section, we will introduce a set of concepts that are extensively used in
the following chapters: biclusters, maximal biclusters, pseudo-biclusters and
maximal pseudo-biclusters.De�nition 2.1 (Bi
luster) Given a binary matrix M , a bicluster B is a pair
〈R, C〉 : R⊆ [n], C ⊆ [m] such that the submatrix of M identified by selecting
only the rows R and the columns C is completely filled by 1’s, namely:

∀i ∈ R, ∀ j ∈ C : mi j = 1.De�nition 2.2 (Maximal Bi
luster) Let B = 〈R, C〉 be a bicluster in the bi-
nary matrix M . It is also a maximal bicluster if:

∄ a bicluster B′= 〈R′, C ′〉 : R× C ⊂ R′× C ′.

Informally, a maximal bicluster is “representative” for all its possible subset
of rows (or columns) that have 1’s for a given subset of columns (or rows).
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The key observation behind a maximal bicluster is that two columns (or rows)
which always contain 1’s in a certain set of rows (columns) should simulta-
neously belong to the same bicluster. Many real-world examples justify the
interest in maximal biclusters. In data mining applications, what we refer to
as maximal bicluster is also known as closed itemset [82]. Applications in-
clude the discovery of association rules, strong rules, correlations, sequential
rules, episodes, multidimensional patterns, and many other important discov-
ery tasks [43]. Thus, a maximal bicluster definitely represents an interesting
pattern to identify among the available data.

Figure 2.2(a) shows an example of binary matrix and also highlights some
of the biclusters that can be identified within it. For example, the last three
rows and last two columns—the cell grouping denoted by ‘B’ in the figure—
contains cells filled by 1’s. Hence, they represent a bicluster. However, they do
not represent a maximal cluster, because the third from last column also con-
tains 1’s in the last three rows. Indeed, the cells denoted by ‘E’ in Figure 2.2(b)
represent a maximal bicluster: ‘E’ cannot be “expanded” by adding other rows
and/or column. Further, the maximal bicluster ‘E’ contains the bicluster ‘B’.
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In the following we will extend the bicluster concept given in definitions

2.1 and 2.2:De�nition 2.3 (Pseudo-Bi
luster) Given a binary matrix M , a pseudo-bicluster

B is a pair 〈R, C〉 : R⊆ [n], C ⊆ [m] that has at least one row and one column
filled by 1’s, formally:

∃i ∈ R, ∃ j ∈ C , ∀ℓ ∈ R, ∀k ∈ C : mik = 1, mℓ j = 1.

For ease of exposition, for a given pseudo-bicluster B = 〈R, C〉 we also denote
with R̂ ⊆ R the set of rows filled by 1’s, and with Ĉ ⊆ C the set of columns
filled by 1’s, that is:

∀i ∈ R̂,∀ j ∈ C : mi j = 1,

∀ j ∈ Ĉ ,∀i ∈ R : mi j = 1.De�nition 2.4 (Maximal Pseudo-Bi
luster) Let B = 〈R, C〉 be a pseudo-
bicluster in the binary matrix M . It is also a maximal pseudo-bicluster if:

∄ a pseudo-bicluster B′= 〈R′, C ′〉 : R̂× Ĉ ⊂ R̂′× Ĉ ′.

A maximal pseudo-bicluster is a pseudo-bicluster such that its rows and
columns filled by 1’s cannot be “expanded” by adding columns and rows. Fig-
ure 2.2(c) shows some examples of pseudo-biclusters. In particular, the matrix
portion denoted by ‘H’ has all cells equal to 1 for the fourth row and the fourth
column of the matrix. However, it is not a maximal pseudo-bicluster, since the
fourth row and the fourth column contain other cells equal to 1 that are not
contained within ‘H’. Hence, the pseudo-bicluster ‘H’ can be “expanded” to
the area denoted by ‘J’ in Figure 2.2(d), which represents a maximal pseudo-
bicluster. Note that, in this case, there is more than one column filled by 1’s.

The following lemma relates biclusters to pseudo-biclusters:Lemma 2.1 If B = 〈R, C〉 is a bicluster, it is also a pseudo-bicluster.

PROOF Since B = 〈R, C〉 is a bicluster, then ∀i ∈ R, ∀ j ∈ C : mi j = 1. This also
means that ∀ℓ ∈ R : mℓ j = 1 and ∀k ∈ C , mik = 1, namely C = Ĉ and R = R̂.
Thus, B is a pseudo-bicluster according to Definition 2.3. �
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lusters in the Role Based A

ess Control Biclusters, Pseudo-Bicluster,
maximal biclusters and maximal pseudo-biclusters have been previously intro-
duced considering the general case of a binary matrix M . In the Role Based
Access Control we use these concepts related to the set UP, that defines a
binary relation between the sets USERS and PERMS.

For the sake of clarity, below we contextualize the definitions of pseudo-
bicluster, and maximal pseudo-bicluster within the role based access control
domain.De�nition 2.5 (Pseudo-Bi
luster in RBAC) Given the user-permission as-
signments UP to analyze, a pseudo-bicluster B is a pair 〈U , P〉 : U ⊆ USERS, P ⊆

PERMS such that at least one user has all the permissions P granted, and at
least one permission is granted to all the users U , formally:

∃u ∈ U , ∃p ∈ P, P ⊆ perms(u), U ⊆ users(p).

For a given pseudo-bicluster B = 〈U , P〉 we also denote with Û ⊆ U the
set of users that have all of and only those permissions p ∈ P granted, and
with P̂ ⊆ P the set of permissions that are granted to all of and only the users
u ∈ U , formally:

Û := {u ∈ USERS, perms(u) = P}

P̂ := {p ∈ PERMS, users(p) = U}De�nition 2.6 (Generator of a Pseudo-Bi
luster) An assignment 〈u, p〉 is
a generator of the Pseudo-Bicluster B = 〈U , P〉 if and only if u ∈ Û and p ∈ P̂.De�nition 2.7 (Maximal Pseudo-Bi
luster in RBAC) Let B = 〈U , P〉 be a
pseudo-bicluster of the user-permission assignments set UP. It is also a maxi-

mal pseudo-bicluster if:

∄ a pseudo-bicluster B′= 〈U ′, P ′〉 : Û × P̂ ⊂ Û ′× P̂ ′.

In other words, a maximal pseudo-bicluster B = 〈U , P〉 is a pseudo-bicluster
to which we cannot add any other user such that it has all of and only the per-
missions P granted, nor can we add any other permission that is granted to
all of and only the users U . It is important to notice that the more a max-
imal pseudo-bicluster B = 〈U , P〉 is dense – i.e., almost all the users u ∈ U

have almost all the permissions p ∈ P granted – the more likely the pattern
represented by B is interesting from the role mining perspective. Thus, dense
Maximal Pseudo-Biclusters are preferable because the users and the permis-
sions involved are likely to be more similar. Also, Maximal Pseudo-Biclusters
that involve many users and many permissions are preferable because they
can be potentially managed with “large” roles.
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We now summarize the relevant graph-related concepts that are required in
the rest of this thesis. A graph G is an ordered pair G = 〈V, E〉, where V is
the set of vertices, and E is a set of unordered pairs of vertices (or edges). The
endpoints of an edge 〈v, w〉 ∈ E are the two vertices v, w ∈ V . Two vertices in
V are neighbors if they are endpoints of an edge in E. We refer to the set of all
neighbors of a given vertex v ∈ V as N(v), namely N(v) = {v′∈ V | 〈v, v′〉 ∈ E}.
The degree of a vertex v ∈ V is indicated with d(v) and represents the number
of neighbors of v, that is d(v) = |N(v)|. The degree of a graph G = 〈V, E〉 is
the maximum degree of its vertices, namely ∆(G) =maxv∈V{d(v)}.

Given a set S ⊆ V , the subgraph induced by S is the graph whose vertex
set is S, and whose edges are the members of E such that the corresponding
endpoints are both in S. We denote with G[S] the subgraph induced by S. A
bipartite graph G = 〈V1 ∪ V2, E〉 is a graph where the vertex set can be parti-
tioned into two subsets V1 and V2, such that for every edge 〈v1, v2〉 ∈ E, v1 ∈ V1

and v2 ∈ V2. A clique is a subset S of V such that the graph G[S] is a complete
graph, namely for every two vertices in S an edge connecting the two exists.
A biclique in a bipartite graph, also called bipartite clique, is a pair of vertex
sets B1 ⊆ V1 and B2 ⊆ V2 such that 〈b1, b2〉 ∈ E for all b1 ∈ B1 and b2 ∈ B2.
In the rest of the thesis we will say that a set of vertices S induces a biclique
in a graph G if G[S] is a complete bipartite graph. In the same way, we will
say that a set of edges induces a biclique if their endpoints induce a biclique.
A maximal (bi)clique is a set of vertices that induces a complete (bipartite)
subgraph and is not a subset of the vertices of any larger complete (bipartite)
subgraph. Among all maximal (bi)cliques, the largest one is the maximum

(bi)clique. The problem of enumerating all maximal cliques in a graph is usu-
ally referred to as the (maximal) clique enumeration problem. As for maximal
biclique, Zaki and Ogihara [84] showed that there exists a one-to-one corre-
spondence among maximal bicliques and several other well-known concepts
in computer science, such as closed item sets (maximal sets of items shared
by a given set of transactions) and formal concepts (maximal sets of attributes
shared by a given set of objects). Indeed, many existing approaches to role
mining have reference to these concepts [7,29,56,58,78].

A clique partition of G = (V, E) is a collection of cliques C1, . . . , Ck such
that each vertex v ∈ C is a member of exactly one clique. It is a partition of
the vertices into cliques. A minimum clique partition (MCP) of a graph is the
smallest collection of cliques such that each vertex is a member of exactly one
clique. A biclique cover of G is a collection of biclique B1, . . . , Bk such that for
each edge 〈u, v〉 ∈ E there is some Bi that contains both u and v. We say that
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Bi covers 〈u, v〉 ∈ E if Bi contains both u and v. Thus, in a biclique cover, each
edge of G is covered at least by one biclique. A minimum biclique cover (MBC)
is the smallest collection of bicliques that covers the edges of a given bipartite
graph. The minimum biclique cover problem can be reduced to many other
NP -complete problems, like binary matrices factorization [56, 72] and tiling
database [38] to cite a few. Several role mining approaches leverage these
concepts [10,11,29,56,75].

A mathematical tool related to graph theory used is this thesis is the clus-

tering coefficient. It was first introduced by Watts and Strogatz [81] in the
social network field, to measure the cliquishness of a typical neighborhood.
Given G = 〈V, E〉, we indicate with δ(v) the number of triangles of v, formally:

δ(v) =
�

�

�

〈u, w〉 ∈ E | 〈v, u〉 ∈ E ∧ 〈v, w〉 ∈ E
	
�

� . (2.2)

A path of length two for which v is the center node is called a triple of the
vertex v. We indicate with τ(v) the number of triples of v, namely:

τ(v) =
�

�

�

〈u, w〉 ∈ V × V | 〈v, u〉 ∈ E ∧ 〈v, w〉 ∈ E
	
�

� . (2.3)De�nition 2.8 (Clustering Coe�
ient) The clustering coefficient of a graph
G is defined as:

C(G) =
1

|V |

∑

v∈V

c(v)

where

c(v) =







δ(v)

τ(v)
, τ(v) 6= 0;

1, otherwise

(2.4)

quantifies how close the vertex v and its neighbors are to being a clique. The
quantity c(v) is also referred to as the local clustering coefficient of v, while
C(G) is average of all local clustering coefficients, and it is also referred to as
the global clustering coefficient of G. Thus, C(G) can be used to quantify “how
well” a whole graph G is partitionable in cliques. Another possible definition
for the clustering coefficient is to set to 0 when there are no triples. Anyway,
our definition is more suitable for our purposes.
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The Role Mining Problem

S everal approaches exist for role mining, and majority of them employ
existing data mining techniques or their variants to discover roles [9,
29, 52, 59, 70]. In this section, we will introduce the needed formal-

ism to describe in a general framework the role mining problem, then we will
report on the main variants that have been introduced in the literature: the ba-
sic Role Mining Problem (RMP), the δ-approximated RMP and the edge RMP.
An inherent problem with these approaches is that they try to minimize some
mathematical function (i.e. the number of roles), without considering that
such a role-set would be not usable by system administrators. In Section 3.3,
we will highlight the drawbacks of these variants, while introducing the rel-
evance of the “business meaning”. Indeed, in this thesis we will introduce
several goodness/interestingness metrics for insightful bottom-up analysis, all
of them are based on some business information.3.1 Formal De�nition of Candidate Role-Sets
We now provide some definitions required to formally describe the role engi-
neering problem:De�nition 3.1 (Con�guration) Given an access control system, we refer to
its configuration as the tuple ϕ = 〈USERS, PERMS, UP〉, that is the set of all
existing users, permissions, and the corresponding relationships between them
within the system.

A system configuration represents the user authorization state before mi-
grating to RBAC, or the authorizations derivable from the current RBAC imple-
mentation. In the latter case, the user-permission relationships can be derived25
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as:

UP = {〈u, p〉 | ∃r ∈ ROLES : u ∈ ass_users(r) ∧ p ∈ ass_perms(r)}De�nition 3.2 (State) An RBAC state is a tupleψ= 〈ROLES, UA, PA〉, namely
an instance of all the sets characterizing the RBAC model.

An RBAC state is used to implement a system configuration. Indeed, the
role engineering goal is to find the “best” state that correctly describes a given
configuration. In particular we are interested in finding the following kind of
states:De�nition 3.3 (Candidate Role-Set) Given an access control system con-
figuration ϕ, a candidate role-set is the RBAC state ψ that “covers” all possible
combinations of permissions possessed by users according to ϕ, namely a set
of roles whose union of permissions matches exactly with the permissions pos-
sessed by the user. Formally

∀u ∈ USERS,∃R ⊆ ROLES :
⋃

r∈R

ass_perms(r) = {p ∈ PERMS | 〈u, p〉 ∈ UP}.De�nition 3.4 (Cost Fun
tion) Let Φ,Ψ be respectively the set of all possi-
ble system configurations and RBAC states. We refer to the cost function cost
as

cost: Φ×Ψ→ R+

where R+ indicates positive real numbers including 0; it represents an admin-
istration cost estimate for the state ψ used to implement the configuration
ϕ.

The administration cost concept was first introduced in [6]. Leveraging
the cost metric makes it possible to find candidate role-sets with the lowest
possible effort to administer the resulting RBAC state.De�nition 3.5 (Optimal Candidate Role-Set) Given a configuration ϕ, an
optimal candidate role-set is the the RBAC state ψ that simultaneously repre-
sents a candidate role-set for ϕ, and minimizes the cost function cost(ϕ,ψ).

The main goal related to mining roles is to find optimal candidate role-sets.
In the next section we focus on optimizing a particular cost function. Let cost
indicate the number of needed roles, the role mining objective becomes to find
a candidate role-set having the minimum number of roles for a given system
configuration.
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 and δ-approximated Role Mining Problem
In this section, we present the basic Role Mining Problem (RMP) and one of
its variants, δ-approx RMP [75].De�nition 3.6 (Basi
 Role Mining Problem (RMP)) Given a configuration
ϕ, find the candidate role set ψ= 〈ROLES, UA, PA〉 that minimizes the number
of roles |ROLES|.

Given the user-permission matrix, the basic RMP asks us to find a user-to-
role assignment UA and a role-to-permission assignment PA such that UA and
PA exactly describe UP while minimizing the number of roles. The basic RMP
corresponds therefore to the optimal candidate role-set (Definition 3.5) with
cost function defined as:

cost(ϕ,ψ= 〈ROLES, UA, PA〉) := |ROLES|

While exact match is a good thing to have, at times we may be satisfied with
an approximate match. For example, consider a case where we have 1000
users and 100 permissions. The size of UP is 5000 (i.e., 5000 user-permission
assignments are allowed out of the possible 100, 000). Now, suppose 100 roles
are required to exactly match the given user-permission data. However, if we
allow approximate matching—i.e., if it is good enough to match 99% of the
matrix (4950 of the user-permission assignments), assume that the minimum
number of roles required is only 60. As long as we do not add any spurious per-
missions, the second case is clearly better than the first, since we significantly
reduce the number of roles. This significantly reduces the burden of mainte-
nance on the security administrator while leaving only a few user-permission
assignments uncovered. Also, any given user-permission assignment is only a
snapshot of the current state of the organizations. Permissions and (to a lesser
extent, Roles) are dynamic. Thus while exact match may be the best descriptor
in the static case, it is probably not good for the dynamic case. Approximate
match might be a prudent choice for dynamic data.

We now introduce the notion of δ-consistency between UA, PA and UP,
and then the δ-approximated RMP.De�nition 3.7 (δ-Consisten
y) A given user-to-role assignment UA, role-to-
permission assignment PA and user-to-permission assignment UP are δ- con-
sistent if and only if

‖M(UA)×M(PA)−M(UP)‖1 ≤ δ
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where M(UA), M(PA) and M(UP) denote the matrix representation of UA, PA
and UP respectively.

Note that the L1 norm is expanded to matrices as follows: suppose A and B

are matrices in X n×m, then:

‖A− B‖1 =

n
∑

i=1

‖ai − bi‖=

n
∑

i=1

m
∑

j=1

�

�ai j − bi j

�

�

Essentially, the notion of δ-consistency allows us to bound the degree of
difference between the user-to-role assignment UA, role-to-permission assign-
ment PA and user-to-permission assignment UP. For UA, PA, and UP to be
σ-consistent, the user-permission matrix generated from UA and PA should be
within δ of UP. We now define the approximate Role Mining Problem using
δ- consistency.De�nition 3.8 (δ-approximated RMP) Given a configurationϕ, and a thresh-
old δ, find a candidate role setψ= 〈ROLES, UA, PA〉 that is δ−consistent with
UP and that minimizes the number of roles, |ROLES|.

Therefore, the basic Role Mining Problem defined earlier is a special case
of the δ-approx RMP (with δ set to 0).3.2.2 Edge Role Mining Problem
Another possibility is to discover a candidate role set in such a way that the
total number of user-to-role assignments and role-to-permission assignments
(|UA|+|PA|) is minimal. This could potentially be of more practical value from
the perspective of the security administrator as less number of assignments
need to be managed. We refer to this as the minimum edge role mining prob-
lem.De�nition 3.9 (Edge Role Mining Problem (RMP)) Given a configuration
ϕ, find the optimal candidate role set ψ= 〈ROLES, UA, PA〉 with respect to the
cost function cost(ϕ,ψ= 〈ROLES, UA, PA〉) := |UA|+|PA|.

Although, intuitively, it may appear that the basic-RMP and edge-RMP
are related (with minor modifications in the solution of one working for the
other), in fact, the two are independent. In other words, by solving the basic-
RMP one does not necessarily solve the edge-RMP, or vice versa. For example,
given ROLES, by simply increasing the number of users assigned to each role,
one may end up with larger |UA|+|PA|, which could be minimized with a dif-
ferent (larger) set of roles.
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One may note that the most useful set of roles may be different from the mini-
mal set of roles or the minimum set of edges. It is analogous to employing the
best normalization in designing a database schema: From the practical point
of view, one may denormalize the database to improve the query response.
Similarly, the minimal set of roles gives us a good set of roles to begin with. At
least, it shows the bare minimum required to accurately describe the current
access control state of the organization.

However, there is an important drawback that regards minimality: the lack
of business meaning. Roles discovered by analyzing existing access permis-
sions through role mining algorithms are often no more than a set of permis-
sions with no connection to the business practice. Indeed, the main objective
of most of the role mining approaches is only to reduce the number of roles
or to simplify the access control administration from a system perspective.
But organizations are unwilling to deploy roles they cannot understand, even
though such roles are limited in number.

By just trying to minimize the number of roles, elicited roles could be
meaningless from the administrator perspective. That is, each role will only
correspond to a group of users and permissions, without a well defined busi-
ness meaning. Obviously, such roles will be difficult to manage, they will be
error prone, and they could have some difficulties in being inserted within
the risk management framework in use within the organization. Indeed, once
a role is created, its life-cycle will follow the life-cycle of the company: new
users or new permissions can be added, old ones can be removed or replaced,
users can change their job position and subsequently the needed permissions,
etc. This continuous adjustment of access control information typically intro-
duces “noise” within the data—namely, permissions exceptionally or acciden-
tally granted or denied—, thus increasing the risk of making mistakes when
managing the access control system. As a consequence, it is important to cre-
ate roles that administrators can easily understand and manage [9].
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4
Practical and Usable Approaches to the Role

Mining

R ole Based Access Control (RBAC) is the de facto standard in access con-
trol models, and is widely used in many applications and organizations
of all sizes. However, the task of finding an appropriate set of roles,

called role engineering, remains the most challenging roadblock to effective
deployment. In recent years, this problem has attracted a lot of attention, with
several bottom-up approaches being proposed, under the field of role mining.
However, most of these theoretical approaches cannot be directly applied to
large scale datasets, which is where they are most necessary. Indeed, such al-
gorithms have a complexity that is not linear compared to the number of users
or permissions to analyze [6,29,78].

The number of elicited candidate roles as well as the running time be-
come an issue, especially when the role engineering task is periodically and
frequently performed as part of the life-cycle of roles [8]. To overcome these
limitations, role mining products use a Divide et Impera approach. For ex-
ample, administrators that use Oracle Identity Analytics1 manually separates
large numbers of users into more manageable groups, called “waves”, for the
purpose of defining roles. This is accomplished by first dividing users into
business units based on their managers, departments, divisions, or other at-
tributes. Then, these business units are grouped into waves (usually four to
six business units per wave), which are independently analyzed using role
mining, clustering and categorization algorithms.

In this chapter, we look at how to make role mining practical and usable

for actual deployment. We first introduce a strategy for the reduction of the

1http://www.ora
le.
om/us/produ
ts/middleware/identity-management/ora
le-identity-analyti
s/index.html 31
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role mining complexity by pruning unstable assignments. In particular, we
introduce a graph describing the existing user-permission assignments, and
a pruning operation that corresponds to the identification of unstable roles.
Then, we propose a strategy to analyze an existing dataset, and to decompose
the role mining task into several sub-tasks. Each of these sub-tasks is executed
on a partition of the dataset that is homogeneous from an enterprise perspec-
tive. This is quite different from the approach of Oracle Identity Analytics that
is completely manual, and not business driven. Finally, we introduce a six
steps methodology that makes role mining scalable without sacrificing on util-
ity and is agnostic to the actual role mining technique used. This last proposed
approach overcomes the drawbacks of the divide et impera approaches, and
can be combined with any existing role mining algorithm.4.1 Pruning Te
hniques to Redu
e the Role Min-ing Complexity
This section formally describes a strategy for the reduction of the role min-
ing complexity by pruning unstable assignments. We first explain the mapping
between the role engineering problem, the biclique cover and the clique par-
tition problems, as in [29]. Then we introduce a pruning methodology, and
prove the relation between the degree of graph nodes and their instability. Fi-
nally, we explain how to identify unstable assignments, and we report on the
experimental results.De�nition 4.1 (Role Weight) Given a role r ∈ ROLES, let Pr and Ur be the
sets of permissions and users associated to r, that is Pr = {p ∈ PERMS | 〈p, r〉 ∈

PA} and Ur = {u ∈ USERS | 〈u, r〉 ∈ UA}. We indicate with w : ROLES→ R the
weight function of roles, defined as

w(r) = cu

�

�Ur

�

�⊕ cp

�

�Pr

�

� , (4.1)

where the operator “⊕” represents a homogeneous2 binary function of de-
gree 1, while cu and cp are real numbers greater than 0.

2A function is homogeneous when it has a multiplicative-scaling behavior, that is if the
argument is multiplied by a factor, then the result is multiplied by some power of this factor.
Formally, if f : V → W is a function between two vector spaces over a field F , then f is
said to be homogeneous of degree k if f (αv) = αk f (v) for all nonzero α ∈ F and v ∈ V .
When the vector spaces involved are over the real numbers, a slightly more general form of
homogeneity is often used, requiring only that the previous equation holds for all α > 0. Note
that any linear function is homogeneous of degree 1, by the definition of linearity. Since we
require functions with two parameters, we can alternatively state that the multiplication must
be distributive over “⊕”. Thus, an example of valid “⊕” operator is the sum.



4.1. Pruning Te
hniques to Redu
e the Role Mining Complexity 33
In the following, we use the role weight as an indicator of the “stability” of

a role:De�nition 4.2 (Role Stability) Let r ∈ ROLES be a given role, w be the role
weight function, and t ∈ R be a real number that we refer to as a “threshold”.
We say that r is stable with respect to t if w(r) > t . Otherwise, r is unstable.De�nition 4.3 (Assignment Stability) Let the pair 〈u, p〉 ∈ UP be a given
assignment, and t ∈ R be a real number that we refer to as a “threshold”.
Let R〈u,p〉 be the set of roles that can be used to manage the assignment 〈u, p〉,
namely R〈u,p〉 = {r ∈ ROLES | 〈u, r〉 ∈ UA, 〈p, r〉 ∈ PA}, and let w be the role
weight function. We say that 〈u, p〉 is stable with respect to t if it belongs to at
least one stable role, namely ∃r ∈ R〈u,p〉 : w(r) > t . Otherwise, the assignment
is unstable, that is ∀r ∈ R〈u,p〉 : w(r) ≤ t .4.1.1 Role Engineering and Bi
lique Cover
We first observe that a given configuration ϕ = 〈USERS, PERMS, UP〉 can be
represented by a bipartite graph

G =



V1 ∪ V2, E
�

=



USERS∪ PERMS, UP
�

, (4.2)

where two vertices u ∈ USERS and p ∈ PERMS are connected by an edge if
the user u is granted permission p, namely 〈u, p〉 ∈ UP. A biclique cover of
the graph G univocally identifies a candidate role-setψ = 〈ROLES, UA, PA〉 for
the configuration ϕ. Indeed, every biclique identifies a role, and the vertices
of the biclique identify the users and the permissions assigned to this role
[10, 11, 29]. Thus, finding the optimal role-set is equivalent to identifying the
biclique cover such that the corresponding roles are optimal.

By starting from the bipartite graph G, it is possible to construct an undi-
rected unipartite graph G′ in the following way: each edge in G (i.e., an as-
signment of UP) becomes a vertex in G′, and two vertices in G′ are connected
by an edge if and only if the endpoints of the corresponding edges of G induce
a biclique. To ease the exposition, we define the function B: UP→ 2UP that in-
dicates all edges in UP which induces a biclique together with the given edge,
namely:

B(〈u, p〉) =
�

〈u′, p′〉 ∈ UP | 〈u, p′〉, 〈u′, p〉 ∈ UP ∧ 〈u, p〉 6= 〈u′, p′〉
	

. (4.3)

Note that two edges ω1 = 〈u1, p1〉 and ω2 = 〈u2, p2〉 of UP that share the same
user (that is, u1 = u2) or the same permission (that is, p1 = p2) induce a bi-
clique. Also, 〈u1, p1〉 and 〈u2, p2〉 induce a biclique if the pair 〈u1, p2〉, 〈u2, p1〉 ∈



34 Chapter 4. Pra
ti
al and Usable Approa
hes to the Role Mining
A 1

B

D

2

3C

4(a) Bipartiteview
‹A,1› ‹A,2›

‹A,3›‹B,3›

‹B,1› ‹B,2›

‹C,3›

‹D,4›

‹C,4›(b) UnipartiteviewFigure 4.1 An example of a given assignment (green) and the set of assignmentsthat indu
e a bi
lique with it (red), in both graph G and G′.
UP exist. Moreover, given ω1,ω2 ∈ UP, it can be easily verified that ω1 ∈

B(ω2) ⇐⇒ ω2 ∈ B(ω1) and ω1 ∈ B(ω2) =⇒ ω1 6= ω2. Therefore, the
undirected unipartite graph G′ induced from G can be formally defined as:

G′ = 〈V ′, E′〉 =



UP,
�

〈ω1,ω2〉 ∈ UP×UP |ω1 ∈ B(ω2)
	�

(4.4)

In this way, the edges covered by a biclique of G induce a clique in G′. Thus,
every biclique cover of G corresponds to a collection of cliques of G′ such that
their union contains all of the vertices of G′. From such a collection, a clique
partition of G′ can be obtained by removing any redundantly covered vertex
from all but one of the cliques it belongs to. Similarly, any clique partition of
G′ corresponds to a biclique cover of G.

To clarify this concept, Figure 4.1 show a simple example, where USERS =
{A,B,C,D}, PERMS = {1,2,3,4}, and UP =

�

〈A,1〉, 〈A,2〉, 〈A,3〉, 〈B,1〉,
〈B,2〉, 〈B,3〉, 〈C,3〉, 〈C,4〉, 〈D,4〉	. In the figure, the assignment 〈B,2〉 rep-
resents an edge in the bipartite graph (Figure 4.1(a)) and a vertex in the
unipartite graph (Figure 4.1(b)). The figures show in red and thicker lines all
the assignments that induce a biclique with 〈B,2〉, according to Equation 4.3;
for example, 〈B,3〉 share the same user of 〈B,2〉, while 〈A,1〉 induce a biclique
with 〈B,2〉 since the assignments 〈B,1〉 and 〈A,2〉 exist.

It is known that finding a clique partition of a graph is equivalent to finding
a coloring of its complement [10, 11, 29]. To this aim, let the graph G′ made
up of the same vertices of G′, but edges of G′ are the complement of edges of
G′. Given an assignment ω ∈ UP, we indicate with B(ω) the assignments that
do not induce a biclique together with ω, namely
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A 1

B

C

D

2

3

4

5

6(a) Bi
lique
over in
G

‹A,1› ‹A,2›

‹B,1›
‹B,2›

‹B,3› ‹A,3›

‹C,4› ‹C,5›

‹D,6›‹D,5›

‹D,4› ‹C,6›

‹B,4› ‹

(b) Clique partition in
G′

› ‹A,3›

› ‹C,6›

‹A,1› ‹A,2›

‹B,1›
‹B,2›

‹B,3› ‹A,3›

‹D,6›‹D,5›

‹D,4› ‹C,6›

‹C,4› ‹C,5›‹B,4›

(
) Vertex 
oloring in
G′Figure 4.2 Relationship among bi
lique 
over, 
lique partition, and vertex 
oloring.

B(ω) = (UP \ {ω}) \ B(ω). (4.5)

Hence, the graph G′ can be formally defined as:

G′ = 〈V ′, E′〉 =



UP,
�

〈ω1,ω2〉 ∈ UP×UP |ω1 ∈ B(ω2)
	�

(4.6)

Any coloring of the graph G′ identifies a candidate role-set of the given system
configuration ϕ = 〈USERS, PERMS, UP〉, from which we have generated G.
Thus, finding a proper coloring for G′ means finding a candidate role-set that
covers all possible combinations of permissions possessed by users according
to ϕ; namely, a set of roles such that the union of related permissions matches
exactly with the permissions possessed by the users.

The above-mentioned properties are graphically depicted in Figure 4.2. In
particular, Figure 4.2(a) shows a possible biclique cover. This cover is com-
posed by 3 different bicliques:

�

〈A,1〉, 〈A,2〉, 〈A,3〉, 〈B,1〉, 〈B,2〉, 〈B,3〉	
(green),

�

〈B,4〉	 (yellow), and
�

〈C,4〉, 〈C,5〉, 〈C,6〉, 〈D,4〉, 〈D,5〉, 〈D,6〉	
(red). Figure 4.2(b) represents the same information in the unipartite view in
terms of clique partition. Figure 4.2(c) demonstrates that the same informa-
tion represents a vertex coloring in the complement of the unipartite graph.
Edges in G belonging to the same biclique have the same color, and vertices
in G′ and G′ have the same color of their corresponding edges in G. More-
over, vertices in G′ that belong to the same clique are connected with an edge
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with the same color of their vertices, while dashed lines indicate that their
endpoints do not belong to any clique of the chosen partition.4.1.2 Methodology
To generate a candidate role-set that is stable and easily analyzable, we split
the problem in three steps:

Step 1 Define a weight-based threshold.

Step 2 Catch the unstable user-permission assignments.

Step 3 Restrict the problem of finding a set of roles that minimizes the ad-
ministration cost function by only using stable user-permission assign-
ments.

In particular, we introduce a pruning operation on the vertices of G′ that cor-
responds to identifying unstable user-permission assignments. We suggest to
not manage these assignments with roles, but to directly assign permission to
users or, equivalently, to create “special” roles composed by only one permis-
sion. In this way, we are able to limit the presence of unstable roles.

Moreover, we will show that the portion of the graph that survives after
the pruning operation can be represented as a graph G′ with a limited degree.
Since the third step corresponds to coloring G′, the information about the
degree can be leveraged to select an efficient coloring algorithms among those
available in the literature that make assumptions on the degree. The choice
of which algorithm to use depends on the definition of the administration cost
function.

It is also important to note that when the graph G is not connected, it is
possible to consider any connected component as a separate problem. Hence,
the union of the solutions of each component will be the solution of the origi-
nal graph, as proven in the following lemma:Lemma 4.1 A biclique cannot exist across two or more disconnected components

of a bipartite graph G.

PROOF Let G1, . . . , Gm be the disconnected components of G. We will show
that a biclique across two components Gi and Gk, with i 6= k, cannot exist. Let
B the biclique across Gi and Gk, with i 6= k, and let Bi and Bk be the sets of
vertices of B belonging respectively to Gi and Gk. From the biclique definition,
it follows that edges between the two vertex sets of Bi and Bk must exist. But
it is a contradiction, since Gi and Gk are two disconnected components, hence
edges between their vertices cannot exists. �
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Since a biclique corresponds to a role, the previous lemma states that a role

r, made up of users Ur and permissions Pr , cannot exist if all the users in Ur do
not have all the permissions in Pr . If this were the case, we would have intro-
duced some user-permission relationships that were not in the configuration
ϕ = 〈USERS, PERMS, UP〉. This lemma has an important implication:Theorem 4.1 If G is disconnected, the union of the biclique covers of each com-

ponent of G is a biclique cover of G.

PROOF From Lemma 4.1, we know that a biclique across two or more discon-
nected components of G cannot exist. Thus, each disconnected component
has a biclique cover that cannot intersect with the biclique cover of any other
component. Therefore, the union of these biclique covers will be a cover of
G. �

As a main consequence of the theorem, if the graph G is disconnected, we
can study each component independently. In particular, we can use the union
of the biclique cover of the different components to build a biclique cover of
G. According to what we will see in the next section, we can use this result to
limit the degree of G′ when the bipartite graph G is disconnected.Unstable Assignment Identi�
ation
In our model, the role mining problem corresponds to finding a proper col-
oring for the graph G′. Depending on the cost function used, the optimal
coloring can change. For instance, if the cost function is defined as the total
number of roles (as in the basic RMP), the optimal coloring is the one which
uses the minimum number of colors. In this section we will analyze the degree
of the graph G′ by highlighting how this information can affect the assignment
stability and, as a consequence, the administration effort.

According to Equation 4.6 the degree of the graph G′ can be expressed as:

∆(G′) =max
ω∈UP
|B(ω)| . (4.7)

To understand the relation between the graph degree and the stable assign-
ment identification problem, it is useful to recall the graph meaning in terms
of RBAC semantic. A vertex of G′ is a user-permission relationship in the set
UP. An edge in G′ between two vertices ω1 and ω2 exists if the correspond-
ing user-permission relationships cannot be in the same role, due to the fact
that the user in ω1 does not have the permission in ω2, or the user in ω2

does not have the permission in ω1. Consequently, a vertex of G′ that has a
high degree means that this vertex cannot be colored using the same colors
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of a high number of other vertices. In other words, this user-permission re-
lationship cannot be in the same role together with a high number of other
user-permission relationships.

The previous considerations have an important aftermath: if a user-perm-
ission assignment cannot be in the same role together with a high number
of other user-permission assignments, it will belong to a role with few user-
permission assignments, and we can estimate the maximal weight of such a
role. Hence, we can prune those user-permission assignments which can only
belong to roles with a weight that is lower than a fixed threshold.

In particular, suppose that for each edge ω ∈ UP of the bipartite graph G

there are at least d other edges such that the corresponding endpoints induce
a biclique together with the endpoints of ω. In this case, every edge of G

will not be in biclique with less than |UP| − d other edges, according to the
following lemma:Lemma 4.2 Let UP be the set of edges of the bipartite graph G. Then:

∀ω ∈ UP, |B(ω)|> d =⇒ ∆(G′) ≤ |UP| − d

PROOF Since ∀ω ∈ UP, |B(ω)| > d, the following holds: ∀ω ∈ UP, |B(ω)| <
|UP| − d − 1. The proof follows from ∆(G′) =maxω∈UP |B(ω)|. �

Thus, given a suitable value for d, the idea is to prune the graph G′ by
deleting the vertices that have a degree higher than |E(G)| − d. This cor-
responds to pruning edges in G that induce a biclique with at most d other
edges. Moreover:Theorem 4.2 The pruning operation based on removing from G′ verticesω such

that |B(ω)| ≤ d will prune only user-permission assignments that cannot belong

to any role r ∈ ROLES such that w(r) > d × (cU ⊕ cP).

PROOF Let ω be the assignment we would like to prune since |B(ω)| ≤ d. The
corresponding vertex in G′ has a degree strictly greater than |UP| − d. Such
a vertex cannot be colored with the colors of his neighbors, thus it can be
colored with at most the same colors of the (|UP| − 1)− (|UP| − d − 1) = d

remaining vertices. Hence, there exist at most d assignments that can belong
to the same roleω belongs to. Let r be such a role. According to Definition 4.1,
the maximal weight of r will be (cU × d)⊕ (cP × d) = d× (cU ⊕ cP), since each
assignment belonging to r could add at most one user and one permission to
the role. �

Note that many coloring algorithms known in the literature make assump-
tions on the degree of the graph. Since our pruning approach limits the degree
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of G′, it allows for an efficient application of this class of algorithms. Without
our pruning operation, the degree of the graph G′ could be high, up to |UP|−1.
This is the case when a user-permission assignment that must be managed
alone in a role exists. Note also that when the graph G is disconnected in two
or more components, any edge of one component does not induce a biclique
together with any edge of the other components. Thus, in these cases ∆(G′)
is very high. But, because Theorem 4.1, we can split the problem by con-
sidering the different components distinctly, and then join the results of each
component.4.1.3 Measuring Role Engineering Complexity
In this section we will discuss about the application of the clustering coefficient

in RBAC (Definition 2.8). In particular, we will show that the clustering co-
efficient can measure the complexity of the identification and selection of the
roles required to manage existing user-permission assignments. We will show
that the pruning operation proposed in Section 4.1.2 not only does identify
the user-permission assignments that are unstable, but it is able to simplify
the identification and selection of stable roles among all the candidate roles as
well. The main result is that stable assignments may have a low value for clus-
tering coefficient due to the presence of unstable assignments. A low value for
clustering coefficient is a synonym for high role engineering complexity. This
can be summarized with the following statement:

assignments with unstable neighbors

=⇒ low clustering coefficient

=⇒ complex role engineering task.Clustering Coe�
ient in G′

Let G′ be the unipartite graph derived from user-permission assignments UP
according to Equation 4.4. Consequently, Equation 2.3 becomes:

τ(ω) =
�

�

�

〈ω1,ω2〉 ∈ UP×UP |ω1,ω2 ∈ B(ω), ω1 6=ω2

	
�

� , (4.8)

namely τ(ω) is the set of all possible pairs of elements in UP that both induce
a biclique with ω. Further, Equation 2.2 becomes:

δ(ω) =
�

�

�

〈ω1,ω2〉 ∈ UP×UP |ω1,ω2 ∈ B(ω), ω1 ∈ B(ω2)
	
�

� , (4.9)

namely δ(ω) is the set of all possible pairs of elements in UP that both induce
a biclique with ω, and that also induce a biclique with each other.
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The clustering coefficient index (Definition 2.8) of the graph G′ derived

from an access control system configuration is thus defined as its minability
index:De�nition 4.4 (Minability)

M (UP) := C(G′) =
1

|UP|

∑

ω∈UP

c(ω), (4.10)

where c(ω) is the local clustering coefficient of ω (see Equation 2.4) defined
as:

c(ω) =







δ(ω)

τ(ω)
, τ(ω) 6= 0;

1, otherwise.

(4.11)

The value of c(ω) quantifies how close ω and its neighbors are to being
a biclique. In our model, this corresponds to measure how close ω and its
neighbors are to being a role. Hence, C(G′) quantifies how well the bipar-
tite graph, induced by the user-permission relationships UP, is coverable with
distinct bicliques. That is, the easiness of identifying a candidate role set for
the analyzed data. Notice that, according to Equation 4.11, when a user-
permission assignment does not induce a biclique with any other assignment,
or it induces biclique with just one another assignment, its local clustering
coefficient is conventionally set to 1. This case is identified by τ(ω) = 0.
Moreover, Definition 4.4 and Equation 4.11 only require UP and B(·) to be
provided, by neglecting whether we are considering the bipartite or the uni-
partite graph. Thus, in the remainder of this chapter we indicate with both
C(G′) and C(G) the global clustering coefficient of the given system configu-
ration represented by UP, while c(ω) is the local clustering coefficient without
specifying G or G′.

In the remaining of this section we explain the relationship between the
clustering coefficient and the complexity of the role mining problem. In par-
ticular, let G the bipartite graph set up from UP according to Equation 4.2.
Given a role r ∈ ROLES, let Pr = {p ∈ PERMS | 〈p, r〉 ∈ PA} be the set of its
assigned permissions, and Ur = {u ∈ USERS | 〈u, r〉 ∈ UA} be the set of its
assigned users. If the following equation holds

∄U ⊆ USERS, ∄P ⊆ PERMS : U × P ⊆ UP, Ur × Pr ⊂ U × P, (4.12)

then the role r represents a maximal biclique in G. Indeed, according to its
definition, a maximal biclique in G is a pair of vertex sets U ⊆ USERS and P ⊆
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PERMS that induces a complete subgraph, namely ∀u ∈ U , ∀p ∈ P : 〈u, p〉 ∈

UP, and is not a subset of the vertices of any larger complete subgraph, that is
∄U ′⊂ USERS and ∄P ′⊂ PERMS such that ∀u ∈ U ′, ∀p ∈ P ′ : 〈u, p〉 ∈ UP and
contextually U ′⊂ U and P ′⊂ P.

Informally, a role delineated by a maximal biclique is “representative” for
all the possible subset of permissions shared by a given set of users. The key
observation behind a maximal bicliques in RBAC is that two permissions which
always occur together among users should simultaneously belong to the same
candidate roles. Moreover, defining roles made up of as many permissions
as possible likely minimizes the administration effort of the RBAC system by
reducing the number of required role-user assignments.

The following theorem relates the clustering coefficient index to the com-
plexity of the role mining problem in terms of number of maximal bicliques:Theorem 4.3 Let M be the set of all possible maximal bicliques that can be

identified in G. Given a user-permission assignment ω ∈ UP, let M (ω) ⊆ M
be the set of all possible maximal bicliques the given user-permission assignment

belongs to. Then, the following holds:

◮ c(ω) = 1 ⇐⇒ |M (ω)|= 1;

◮ c(ω) = 0 ⇐⇒ |M (ω)|= |B(ω)|;
◮ c(ω) ∈ (0, 1) ⇐⇒ |M (ω)| ∈ (1, |B(ω)|).

PROOF To simplify the notation, given a role r ∈ ROLES we indicate the set of
users assigned to the role with Ur = {u ∈ USERS | 〈u, r〉 ∈ UA}, and the set of
permissions assigned to that role with Pr = {p ∈ PERMS | 〈p, r〉 ∈ PA}.

First, we analyze the case c(ω) = 1. Let r be a role made up of the
users and permissions involved by the assignments ω and B(ω), formally
Ur =

�

u ∈ USERS | ∃p ∈ PERMS, 〈u, p〉 ∈ B(ω) ∪ {ω}
	

and Pr =
�

p ∈

PERMS | ∃u ∈ USERS, 〈u, p〉 ∈ B(ω) ∪ {ω}
	

. We now demonstrate that at
least one maximal biclique exists and it is represented by r. According to
Equation 4.3, ∀〈u1, p1〉, 〈u2, p2〉 ∈ B(ω) ∪ {ω} =⇒ ∃〈u1, p2〉, 〈u2, p1〉 ∈ UP,
namely both users u1, u2 have permissions p1, p2 granted. According to Equa-
tion 4.11, c(ω) = 1 =⇒ τ(ω) = δ(ω), thus the previous consideration holds
for every possible pair of user-permission relationships in B(ω) ∪ {ω}. This
means that B(ω) ∪ {ω} = Ur × Pr . We now prove by contradiction that r is
a maximal biclique. If r were not a maximal biclique, two sets U ⊆ USERS
and P ⊆ PERMS would exist such that Ur × Pr ⊂ U × P ⊆ UP. Let ω = 〈u, p〉.
Yet, for each 〈u′, p′〉 ∈ (U × P) \ (Ur × Pr) it can be easily shown that both the
assignments 〈u, p′〉, 〈u′, p〉 always exists in U × P. Hence, according to Equa-
tion 4.3, 〈u′, p′〉 ∈ B(ω), meaning that (U × P) \ (Ur × Pr) = ;. Therefore, r is
a maximal biclique. We now demonstrate that another maximal biclique that
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contains ω cannot exist. Indeed, if r ′ is a maximal biclique containing ω (i.e.,
ω ∈ Ur ′ × Pr ′), for all ω′ ∈ Ur′ × Pr′ \ {ω} it can be shown that ω′ ∈ B(ω).
Hence, r = r ′. Finally, having only one maximal biclique that contains ω im-
plies that c(ω) = 1. Let r be such a maximal biclique. Since it is the only
maximal biclique, for each pair ω1,ω2 ∈ Ur × Pr such that ω1 6= ω2 we have
ω1 ∈ B(ω2). Thus, δ(ω) = τ(ω), which corresponds to state that c(ω) = 1.

When c(ω) = 0, we now demonstrate that it is possible to identify |B(ω)|
distinct maximal bicliques made up ofω combined with each element of B(ω).
Let ω = 〈u, p〉. First, observe that such maximal bicliques are distinct since
c(ω) = 0 =⇒ δ(ω) = 0. We want to show that for each 〈ui, pi〉 ∈ B(〈u, p〉),
the role r i is such that Ur i

= {u, ui} and Pr i
= {p, pi} is a maximal biclique.

We now prove by contradiction that r i is a maximal biclique. If r i were not a
maximal biclique, two sets U ⊆ USERS and P ⊆ PERMS would exist such that
{u, ui}×{p, pi} ⊂ U×P ⊆ UP. Let 〈u′, p′〉 ∈ (U×P)\({u, ui}×{p, pi}). It can be
easily shown that 〈u′, p′〉 ∈ B(〈ui, pi〉), thus δ(ω) 6= 0. But, according to Equa-
tion 4.11, this means that c(ω) > 0, which is a contradiction. Moreover, more
than |B(ω)| distinct maximal bicliques that containω cannot exist. Indeed, let
n ∈ N : n > |B(ω)| be the number of the distinct maximal bicliques that con-
tain ω. Let r i indicate the ith maximal biclique, and let ωi ∈ (Ur i

× Pr i
) \ {ω}.

Thus, ∀i ∈ 1 . . . n : ωi ∈ B(ω), contradicting the inequality B(ω) < n. We
now prove that having |B(ω)| maximal bicliques implies that c(ω) = 0. Let
r i indicate the ith maximal biclique, and let ωi ∈ (Ur i

× Pr i
) \ {ω}. Since the

roles are distinct, ∀i, j ∈ 1 . . . |B(ω)| : i 6= j we have that ωi 6∈ B(ω j). Thus,
δ(ω) = 0 and, according to Equation 4.11, c(ω) = 0.

Finally, by excluding the previous two cases we merely have that c(ω) ∈

(0, 1) ⇐⇒ 1 < |M (ω)|< |B(ω)|. �

The previous theorem allows us to make some considerations on the com-
plexity of the role mining problem. Given a user-permission assignment ω,
the higher its local clustering coefficient is, the less the number of possible
maximal bicliques to analyze is. Thus, given two assignments ω1,ω2 ∈ UP
such that c(ω1) = 1 and c(ω2) = 0, it will be more difficult to choose the
best maximal biclique to “cover” ω2 than selecting the best maximal biclique
to cover ω1. Indeed, in the first case we have only one choice, while in the
second case we have |B(ω2)| choices.Clustering Coe�
ient and Vertex Degree
In the previous section we demonstrated that the local clustering coefficient
of a given assignment expresses the ambiguity in selecting the best maximal
biclique to cover it when finding the best biclique cover. Hereafter, we show
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that the local clustering coefficient value and the number of assignments that
induce a biclique are bound. In particular, we prove that the presence of un-
stable assignments decreases the maximum local clustering value allowed for
stable assignments. Therefore, keeping unstable assignments within the data
to analyze hinders the role engineering process by increasing the ambiguity in
selecting the best roles to cover stable assignments.Theorem 4.4 Let ω ∈ UP be a user-permission assignment such that |B(ω)| >
1. Then, the following holds:

c(ω)≤

avg
ω′∈B(ω)

|B(ω′)| − 1

|B(ω)| − 1
. (4.13)

PROOF According to its definition, the local clustering coefficient of a vertex
in G′ is the ratio between its triangles (Equation 4.9) and its triples (Equa-
tion 4.8). All the neighbors of a vertex ω are represented by B(ω). Thus, we
have

τ(ω) =

�

|B(ω)|

2

�

=
|B(ω)|

�

|B(ω)| − 1
�

2
.

Each neighbor pair requires that they are also neighbors between them in
order to be a triangle. Thus, each neighbor ω′ of ω can belong to at most
|B(ω′)| − 1 triangles of ω, where ‘−1’ allows for discarding ω among the set
of the neighbors of ω′. Therefore, the number of triangles of ω is at most the
sum of all the maximal “contributions” of its neighbors, namely

δ(ω)≤
1

2

∑

ω′∈B(w)

|B(ω′)| − 1,

where ‘1/2’ is required to take into account that each triangle is considered
twice. By combining the previous equations, we obtain:

c(ω) =
δ(ω)

τ(ω)
≤

1

2

∑

ω′∈B(w)

�

�B(ω′)
�

�− 1

|B(ω)| (|B(ω)| − 1)

2

=

avg
ω′∈B(ω)

|B(ω′)| − 1

|B(ω)| − 1
,

�

completing the proof.

Notice that c(ω) = 1 means that all the neighbors of ω in G′ have, among
their neighbors, all the neighbors of ω. Thus, the right side of the inequality
in Equation 4.13 is equal to or greater than 1. Similarly, c(ω) = 0 means that
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each pair of neighbors of ω are not neighbors among them. Thus, the right
side of the inequality in Equation 4.13 is equal to or greater than 0.

Finally, let us assume that all the neighbors of ω have a degree that is
lower than the degree of ω, namely ∀ω′ ∈ B(ω) : |B(ω′)| < |B(ω)|. Then,
c(ω) < 1. This likely happens to assignments that have a high degree and
many unstable assignments as neighbors. Hence, unstable assignments make
the task of selecting the best maximal clique to cover stable assignments more
difficult. From this point of view, unstable assignments are a sort of “noise”
within the data, that badly bias any role mining analysis. Indeed, the num-
ber of elicited roles may be large when compared to the number of users and
permissions, mainly due to noise within the data—namely, permissions ex-
ceptionally or accidentally granted or denied. In such a case, classical role
mining algorithms discover multiple small fragments of the true role, but miss
the role itself [54]. The problem is even worse for roles which cover many
user-permission assignments, since they are more vulnerable to noise [57].

In Section 4.1.5 we will show through experiments on real data that the
clustering coefficient increases when pruning unstable assignments.4.1.4 Pruning Algorithms
In the following we describe two different methods to compute, for each
assignment in UP, the number of assignments that induce biclique with it.
Hence, enabling the pruning strategy thoroughly described by Theorem 4.2.
We propose two algorithms: the first one is deterministic and has a compu-
tational complexity of O(|UP|2); the second one uses a randomized approach,
leading to a complexity of O(k |UP|), where k represents the number of the
chosen random samples. Furthermore, we prove a bound for the approxima-
tion introduced by the randomized algorithm.Deterministi
 Approa
h
The idea behind the deterministic approach is the following: we scan each
assignment ω ∈ UP to identify all the neighbors, namely the set B(ω). In turn,
we increase by 1 the neighbor-counter of each assignment in B(ω) in order
to say that “assignments in B(ω) have one more neighbor, that is ω”. This
schema is perfectly equivalent to directly associating the value |B(ω)| to ω,
without increasing the complexity. Yet, it can be easily randomized, as we will
see in the next section.

We now show that computing the set of all neighbors of an assignmentω=
〈u, p〉 just requires a search on UP for all the users possessing the permission
p and all the permissions possessed by u. In particular, the following lemma
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 algorithm to prune unstable assignments1: pro
edure CountNeighbors(UP)2: for all 〈u, p〉 ∈ UP do3: for all 〈u′, p′〉 ∈ Neighbors(〈u, p〉,UP) do4: count[〈u′, p′〉]← count[〈u′, p′〉] + 15: end for6: end for7: return count[·]/ |UP |8: end pro
edure9: pro
edure Neighbors(〈u, p〉,UP)10: U ← {u′∈ USERS | 〈u′, p〉 ∈ UP}11: P ← {p′∈ PERMS | 〈u, p′〉 ∈ UP}12: return (U × P \ {〈u, p〉}) ∩UP13: end pro
edure
holds:Lemma 4.3 Given an assignment ω = 〈u, p〉 ∈ UP, let Uω = {u

′ ∈ USERS |
〈u′, p〉 ∈ UP} be the set of all users possessing the corresponding permission, and

Pω = {p
′ ∈ PERMS | 〈u, p′〉 ∈ UP} be the set of all permissions possessed by the

corresponding user. Then B(ω) = (Uω× Pω)∩UP.

PROOF First, we prove that B(ω) ⊆ Uω × Pω. By contradiction, suppose that
an assignment 〈u′, p′〉 ∈ UP exists such that 〈u′, p′〉 ∈ B(ω) but u′ 6∈ Uω and/or
p′ 6∈ Pω. According to Equation 4.3, 〈u′, p′〉 ∈ B(ω) implies one of the following
cases: 1) u′ = u; 2) p′ = p; 3) ∃〈u, p′〉, 〈u′, p〉 ∈ UP. In all these three cases
there is a contradiction, since by construction of Pω, Uω, there must be p′ ∈ Pω
and u′ ∈ Uω. Finally, by intersecting Uω × Pω with UP we discard all the
assignments that do not exist. �

Lemma 4.3 is used to define the procedure NEIGHBORS in Algorithm 4.1.
Line 10 computes all possible users possessing the given permission, Line 11
computes all possible permissions assigned to given user, while Line 12 elimi-
nates from the Cartesian product of these sets all the assignments that not exist
within UP. Note that NEIGHBORS has a complexity of O(|UP|). Indeed, both
Line 10 and Line 11 can be executed in O(|UP|) by simply scanning over all
the assignments. In the same way, the intersection of Line 12 can be executed
in O(|UP|).
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COUNTNEIGHBORS implements the described counting strategy. The loop

from Line 2 to Line 6 scans all possible assignments in order to check their
neighborhood. Lines from 3 to 5 scan all the neighborhood of the current as-
signment to increment the corresponding neighbor-counter count[·]. Notice
that Line 4 can be performed in O(1), while the inner loop in O(|UP|) and the
outer loop in O(|UP|). Hence, the computational complexity of COUNTNEIGH-
BORS is O(|UP|2). Line 7 gives the resulting neighbor-counts. All the values are
normalized by dividing them by |UP|. In this way, we assign a value to each
assignment that ranges from 0 to 1, thus the threshold d must range in this
interval as well.

Finally, to implement our pruning strategy, we only need a procedure that
searches for assignments such that count[ω] ≤ d. It is reasonable to give an
efficient implementation for it with a computational complexity of O(log |UP|),
for instance through a binary tree. However, this requires count[·] to be sorted
at the end of the procedure COUNTNEIGHBORS. This takes O(|UP| log |UP|),
hence without changing the complexity of the procedure COUNTNEIGHBORS.

It is very important to note that the neighbor-counters are inferred with
only one COUNTNEIGHBORS run, that has a complexity of O(|UP|2). In turn,
by changing a threshold d that does not require the complete re-imputation
of neighbor-counters, it is possible to generate m versions of the dataset in
O(mlog |UP|). Each run can be subsequently analyzed by trying to find the
one that better reaches a certain target function. The tuning of the thresh-
old d depends on the final objective of the data analysis problem. First, we
can define a metric that measures how well the objective has been reached.
Then, this metric can be used to evaluate the imputed dataset. This can be an
iterative process, executed several times with different thresholds, thus choos-
ing the threshold value that provides the best result. Section 4.1.5 shows a
practical application of this methodology in a real case.Randomized Approa
h
In the previous section we offered an algorithm that computes the number of
neighbors for each assignment in a time O(|UP|2). Then, in O(log |UP|) it is
possible to identify those assignments that have a number of neighbors below
the threshold, namely unstable assignments. In the following we present an
alternative algorithm to be used in place of procedure COUNTNEIGHBORS of Al-
gorithm 4.1, which compute in O(k |UP|) an approximated neighbor-counter
value for the assignments, where k is a parameter that can be arbitrarily cho-
sen. Moreover, we will show how to select the best value for k, and, when
k ≪ |UP|, it achieves good results in a significantly shorter time. Notice
that the pruning procedure can still be performed in O(log |UP|) only if the
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edure RandomizedCountNeighbors(UP, k)2: for all i = 1 . . . k do3: 〈u, p〉 ← 
hoose an assignment in UP uniformly at random4: for all 〈u′, p′〉 ∈ Neighbors(〈u, p〉,UP) do5: count[〈u′, p′〉]← count[〈u′, p′〉] + 16: end for7: end for8: return count[·]/k9: end pro
edure
neighbor-counters are sorted at the end of the procedure RANDOMIZEDCOUNT-
NEIGHBORS. Since this operation requires O(|UP| log |UP|), the complexity of
RANDOMIZEDCOUNTNEIGHBORS does not change if log |UP|= O(k).

Algorithm 4.2 describes RANDOMIZEDCOUNTNEIGHBORS as an alternative ap-
proach for the procedure COUNTNEIGHBORS of Algorithm 4.1. These two pro-
cedures have the same structure, apart from one aspect: instead of checking
the neighborhood of all assignments in UP, we select only k assignments uni-
formly at random (see Line 3). The rest of the algorithm is exactly the same
of the deterministic one, apart from Line 8 that normalizes all the counters by
dividing them by k. Therefore, RANDOMIZEDCOUNTNEIGHBORS has a computa-
tional complexity of O(k |UP|).

The following theorem demonstrates the bound on the approximation in-
troduced by RANDOMIZEDCOUNTNEIGHBORS:Theorem 4.5 Let ω = 〈u, p〉 be an assignment, and let d̃k(ω) be the output of

the procedure RANDOMIZEDCOUNTNEIGHBORS described in Algorithm 4.2 for such

an assignment. Then
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PROOF We will use the Hoeffding inequality [44] to prove this theorem. It
says that if X1 . . . Xk are independent random variables such that 0 ≤ X i ≤ 1,
then
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where E[·] is the expected value of a random variable. In our case, X i indicates
whether ω induce a biclique with a randomly chosen assignment ωi ∈ UP,
namely

X i =

(

1, ω ∈ B(ωi);

0, otherwise.

Hence, Equation 4.14 can be rewritten as
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where ǫ = t/k. Notice that the value 1
k

∑k

i=1 X i is exactly the output of Algo-
rithm 4.2. Hence, in order to prove that the algorithm gives an approximation
of |B(ω)|/|UP|, we have to prove that E

�1
k

∑k

i=1 X i

�

is equal to |B(ω)|/|UP|.
Because of the linearity of the expectation, the following equation holds:
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Since the assignment ωi is picked uniformly at random, the probability to
choose it is 1/ |UP|. Thus,

∀i ∈ 1 . . . k, E[X i] =

|UP|
∑

j=1

X j

|UP|
,

completing the proof. �

For practical applications of Algorithm 4.2, it is possible to calculate the
number of samples needed to obtain an expected error less than ǫ with a
probability greater than p. The following equation directly derives from The-
orem 4.5:

k >−
1

2ǫ2 ln

�

1− p

2

�

. (4.17)

For example, if we want an error ǫ < 0.05 with probability greater than 98.6%,
it is enough to choose k ≥ 993.4.1.5 Experimental Results
To prove the viability of our approach, we applied it to several real-world
datasets at our disposal. In the following, we first report the application of our
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model to the access control configuration related to users of an organization
unit of a large company. Then, by using the previous dataset, we highlight the
effect of the pruning operation on the role mining complexity. Finally, we show
how it is possible to compute the optimal threshold to use with our pruning
strategy. In all the tests we used the approximated version of our pruning
algorithm (with k = 1000), and normalized values for the pruning threshold,
as detailed in Section 4.1.4.A Real Case
Figure 4.3 shows an example of our strategy when applied to a real dataset.
Figure 4.3(a) represents the bipartite graph G built from the access control
configuration relative to users of an Organization Unit (OU) of a large com-
pany. The OU analyzed counts 7 users (nodes on the left) and 39 permis-
sions (nodes on the right), with a total of 71 user-permission assignments. We
have chosen an OU with few users and permissions to ease graph representa-
tion. According to a pruning threshold equal to 0.39, stable assignments are
depicted with thicker edges, while unstable assignments with thinner edges.
Figure 4.3(b) depicts the unipartite graph G′, built according to Equation 4.4.
The user-permission assignments of G correspond to the vertices of G′, and
two vertices are connected by an edge if they induce a biclique. Dashed edges
indicate that one of the two endpoints will be pruned. Figure 4.3(c) shows
only the stable assignments, namely the ones that will survive to the pruning
operation. By comparing these last two figures it is possible to see that the
main component of the whole graph survives after the pruning, while pruned
assignments correspond to “noise”. Indeed, the pruned vertices induce a bi-
clique with only a small fraction of nodes of the main component.E�e
ts of the Pruning on the Mining Complexity
Theorem 4.4 states that the local clustering coefficient of a vertex is upper
bounded by the ratio of the average neighborhoods degrees and its own de-
gree. As a consequence, stable assignments have a limited clustering coef-
ficient because of the low degree of their neighbors. This means that these
assignments are difficult to manage in a role mining process. Yet, they also are
the most “interesting” one since they are stable assignments. Our pruning op-
eration is able to increase the average degrees of neighbors, and, at the same
time, to decrease the degree of stable assignments. Thus, it is able to increase
the above limitation of the local clustering coefficient. In the following, we
will experimentally show that when the pruning is executed, not only does
the above local clustering coefficient limit increase, but even the clustering
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(a) Bipartite represen-tation of the ana-lyzed OU (b) Corresponding unipartite graph G′ (
) Pruned unipartite graphFigure 4.3 Our model applied to a real Organizational Unit
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coefficient grows.

Figure 4.4 graphically shows this behavior. The dataset analyzed is the
same that has been used in Section 4.1.5. The clustering coefficient has been
reported for all the assignments, which are ordered by descending degree (i.e.,
descending stability), and for different pruning thresholds. For representation
purposes, we have assigned 0 to the clustering coefficient of pruned assign-
ments. By analyzing Figure 4.4, it turns out that originally stable assignments
have a limited clustering coefficient. Indeed, all the assignments numbered be-
tween 0 and 20 have a clustering coefficient lower than 0.73 when no pruning
operation is executed (threshold = 0). Further, it turns out that the clustering
coefficient increases when a higher pruning threshold is used. For example,
when the threshold is equal to 0.39, all the assignments numbered between
10 and 50 have a clustering coefficient equal to 1. Note that, according to The-
orem 4.3 in these cases only one maximal biclique which they can belong to
exists. In terms of RBAC, there exists only one role (represented by a maximal
biclique) that they can belong to. Furthermore, the pruned assignments are
only 20 out of 71, the assignments with a clustering coefficient equal to 1 are
40, while only 10 assignments have a clustering coefficient between 0 and 1.
Anyway, the clustering coefficient of 5 out of these 10 assignments increased
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from 0.52 to 0.65, while it was almost steady for the other 5 assignments. This
means that the mining complexity has been actually reduced.Threshold Tuning
The tuning of the threshold to use in our pruning algorithm depends on the
final objective of the data analysis problem. In particular, we first need to de-
fine a metric that measures how well the objective has been reached. Then, it
is possible to use this metric to choose the best threshold. The metric that we
used in our tests is a multi-objective function that considers different aspects of
the role engineering problem. Multi-objective analysis often means to trade-
off conflicting goals. In a role engineering context, for example, we execute
the pruning while requiring to minimize the complexity of the mining, min-
imize the number of pruned assignments, and maximize the stability of the
candidate role-set.

A viable approach to solve a multi-objective optimization problem is to
build a single aggregated objective function from the given objective functions
[25]. One possible way to do this is combining different functions in a weighted

sum, with the following general formulation:
∑

fi∈F

αi fi. (4.18)

F is the set of the functions to optimize, and αi is a scale parameter that can be
different for each function fi ∈ F . Put another way, one specifies scalar weights
for each objective to be optimized, and then combines them into a single func-
tion that can be solved by any single-objective optimizer. Once we defined
the aggregated objective function, the problem of finding the best trade-off
corresponds to the minimization of this function. The weight parameters can
be negative or positive, according to the need of minimizing or to maximizing
the corresponding function. Clearly, the solution obtained will depend on the
values (more precisely, the relative values) of the specified weights. Thus, it
may be noticed that the weighted sum method is essentially subjective, in that
an analyst needs to supply the weights.

As for the practical computation of the best threshold, we identified the
following objective functions:

◮ Clustering Coe�
ient, that indicates the global clustering coefficient of
the unipartite graph G′ built from UP. It is a measure of the mining
complexity.
◮ Pruned Assignments, that is the number of assignments that are pruned

by our algorithm.
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◮ Maximal Bi
liques, namely the number of maximal bicliques identifiable

in G. They represent the number of maximal roles of the underlying
access control configuration.
◮ Average Weight, that is the average weight of the roles relative to the

set of maximal bicliques. The weight of a role r is defined as
�

�Ur

�

�×
�

�Pr

�

�.

These objectives have been combined in the following multi-objective func-
tion:Index =−Clustering Coe�
ient+ 0.3×Pruned Assignments

max(Pruned Assignments)
+

0.8×Maximal Bi
liques
max(Maximal Bi
liques) − 0.8×Average Weight

max(Average Weight)
Finding the “best” threshold means to minimize the previous equation.

Weights have been chosen by giving a higher relevance to the clustering coef-
ficient; an intermediate relevance to the maximal bicliques number and to the
average weight; and finally, a low relevance to the number of pruned assign-
ments. Thus, we are willing to reduce the number of pruned assignments, by
contextually reducing the complexity of the role mining task, the number of
maximal bicliques, and maximizing the average weight.

In Figure 4.5, we report two examples of the threshold tuning applied
to two real datasets at our disposal. The two analyzed cases concern two
organization units of a large company. They are comparable with respect to
their size: the first one counts 54 users and 285 permissions, with a total of
2,379 assignments; the second one is composed of 48 users, 299 permissions,
and a total of 2,081 assignments. The difference between them mainly lies on
the mining complexity: the first one has a global clustering coefficient higher
than the second one (0.84 vs. 0.66). In particular:

◮ Dataset A: high clustering coefficient (0.84), 54 users, 285 permissions,
and 2,379 assignments.
◮ Dataset B: low clustering coefficient (0.66), 48 users, 299 permissions,

and 2,081 assignments.

By using the given cost function, a high relevance is given to Clustering Coe�-
ient, a medium one is given to Average Weight and Maximal Bi
liques, while
less relevance is given to Pruned Assignments. In this way, we are willing
to prune a high number of assignments to reduce the complexity of the role
mining task, by contextually minimizing the number of maximal bicliques and
maximizing the average weight. Figures 4.5(a) and 4.5(b) represent the ag-
gregated functions for these two organization unit. Figures 4.5(c) and 4.5(d)



54 Chapter 4. Pra
ti
al and Usable Approa
hes to the Role Mining
-2

-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

In
de

x

Threshold(a) Dataset A. Best threshold: 0.39. -1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

In
de

x

Threshold(b) Dataset B. Best threshold: 0.28.
 0

 500

 1000

 1500

 2000

 2500

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Pr
un

ed
 A

ss
ig

nm
en

ts

Threshold

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Av
er

ag
e 

Ar
ea

Threshold

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

M
ax

im
al

 C
liq

ue
s

Threshold

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Threshold(
) Obje
tive fun
tions of Figure (a)

 0

 500

 1000

 1500

 2000

 2500

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Pr
un

ed
 A

ss
ig

nm
en

ts

Threshold

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Av
er

ag
e 

Ar
ea

Threshold

 0

 500

 1000

 1500

 2000

 2500

 3000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

M
ax

im
al

 C
liq

ue
s

Threshold

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Threshold(d) Obje
tive fun
tions of Figure (b)Figure 4.5 Finding the best threshold



4.2. Business-Relevant RBAC States through De
omposition 55
show the four functions that compose the aggregated one. In both cases, the
minimum of the aggregated function is highlighted with a vertical dashed line.

As for the first organization unit, the minimum is reached when the thresh-
old is equal to 0.39. Indeed, in Figure 4.5(c) it can be seen that this is a
good trade-off among all the four single functions: the pruned assignments
are 1,001 out of 2,379; the average weight (that indicates the average stabil-
ity) has grown almost 9 times from the original average weight; the number
of maximal bicliques has been decreased from 350 to 2; finally the clustering
coefficient has been increased from 0.84 to 0.96. Note that, since we have
only 2 maximal bicliques, we are able to manage all the assignments survived
to the pruning with only 2 roles. Put another way, we found two stable roles
that together are able to manage 1,378 out of 2,379 assignments.

As for the second organization unit, the minimum of the multi-objective
function is reached when the threshold is equal to 0.28 (see Figure 4.5(b)).
In this case, the pruned assignments are 1,367, the average weight increased
from 120 to 151, the number of maximal bicliques has been decreased from
3,000 to 266, while the clustering coefficient has been increased from 0.66
to 0.78. At first sight, it seems that we pruned too much assignments, but
these results depend both on the dataset we are analyzing and on the targets
that role engineers want to reach. Indeed, this dataset has a higher complexity
with respect to the first one, and we provided high weights for ClusteringCoe�
ient and Maximal Bi
liques. If we gave less relevance to these two
parameters, a lower threshold would have been a good trade off. In that case,
the pruned assignments would have been less than 1,367, and the average
weight would have been higher than the original one. In general, the role
engineers mission is to establish the weights of the multi-objective aggregated
function in such a way to get as close as possible to the target that they want
to reach.4.2 Business-Relevant RBAC States through De-
omposition
It is generally accepted that role mining must count on business requirements
to increase its effectiveness. Indeed, roles elicited without leveraging on busi-
ness information are unlikely to be intelligible by system administrators. A
business-oriented categorization of users and permissions (e.g., organizational
units, job titles, cost centers, business processes, etc.) could help administra-
tors to identify the job profiles of users and, as a consequence, which roles
should be assigned to them. Nonetheless, most of the existing role mining
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techniques yield roles that have no clear relationship with the business struc-
ture of the organization where the role mining is being applied. To face this
problem, we propose a methodology that allows role engineers to leverage
business information during the role finding process. The key idea is de-
composing the dataset to analyze into several partitions, in a way that each
partition is homogeneous from a business perspective. Each partition groups
users or permissions with the same business categorization (e.g., all the users
belonging to the same department, or all the permissions that support the
execution of the same business process). Such partitions can then be role-
mined independently, hence achieving four main results: (1) elicited roles
have a clearer relationship with business information; (2) role mining com-
plexity is reduced; (3) mining algorithms do not seek to find commonalities
among users with fundamentally different job profiles or among uncorrelated
permissions; (4) any role mining algorithm can be used within this frame-
work. When several business attributes are available, analysts need to figure
out which one produces the decomposition that leads to the most intelligible
roles.4.2.1 The Business-Driven De
omposition Approa
h
The key observation is that users sharing the same business attributes will
essentially perform the same task within the organization. For instance, if in-
voice clerks are supposed to perform similar activities (e.g., they all gather
data from vendor invoices to ensure that billing information is accurate), it
would be better off analyzing these users and their permissions separately
from users and permissions of the rest of the organization. This will avoid the
algorithm churning away to find commonalities among users with fundamen-
tally different job profiles (e.g., we do not expect common permissions be-
tween data entry clerks and invoice clerks). Rather, the role-mining algorithm
will naturally discover roles that are inherently relevant to invoice clerks’ job
function, while being more intuitive for humans. In general, restricting role
mining techniques to users that have common business attributes (e.g., same
department, job title, country, etc.) will ensure that elicited roles are only
related to such business characteristics. Consequently, it will be easier for a
role engineer to assign a business meaning to roles suggested by bottom-up
approaches. Moreover, partitioning data also introduces benefits in terms of
execution time of role mining algorithms. Indeed, most role mining algo-
rithms have a complexity that is not linear compared to the number of users
or permissions to analyze [6,29,78].

To address the above-mentioned issues, we will introduce a methodology
that helps role engineers to leverage business information during the role min-
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ing process. Instead of performing a single bottom-up analysis on the entire
organization as a whole, we propose to divide the access data into smaller
subsets that are homogeneous according to a business perspective. Each data
partition is made up of user and/or permission that share the same value for
an attribute that is relevant for the business. We advocate that using role min-
ing without applying some human insight usually leads to roles that are not
intuitive for humans. This is because role-mining algorithms usually lead to
roles that are optimal in a mathematical way (e.g., minimizing their number),
but appear to humans like arbitrary collections of permissions, without any
business meaning. One can avoid this pitfall by orienting role-mining to the
high-level classification of the organization—usually translated into user and
permission attributes.

To apply the proposed divide-and-conquer strategy, several enterprise in-
formation can be used. Business processes, workflow tasks, and organization
units are just some examples of business attributes that can be leveraged to
identify data partitions. When dealing with information from several sources,
the main problem is thus ascertaining which information induces the parti-
tioning that hits the following objectives most: (1) simplify the overall role
engineering task; and, (2) simplify the role management task, by helping de-
termine which permissions are required by the user and which roles should
be assigned. To select the most suitable business attributes, we introduce
and evaluate three different indices referred to as: ENTRUSTABILITY, MINABILITY

GAIN, and SIMILARITY GAIN. For all of them, we will show that the decomposi-
tion with the highest index value is the one that best fits access control data,
and thus it is the one that most likely leads to roles with a clear purpose for
business people. We compare the behavior of the three different indices, point-
ing out appealing features and drawbacks of each of them. Successively, we
show the application of the proposed methodology over real enterprise data.
Results support the quality and viability of the proposal.Pseudo-Roles and Entrustability
In the following, we introduce the pseudo-role concept as a means to identify
sets of users and permissions that can be managed by the same role. In turn,
we formally introduce the ENTRUSTABILITY index to measure how much a par-
tition reduces the uncertainty in locating such sets of users and permissions in
each subset of the partition.Pseudo-Roles The Pseudo-Role concept is related to the pseudo-bicluster
introduced in Section 2 (Definition 2.5). Indeed the pseudo-role generated
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by 〈u, p〉 ∈ UP is a pseudo-bicluster such that u ∈ Û and p ∈ P̂, that is a
pseudo-bicluster that has 〈u, p〉 among its generators. Formally:De�nition 4.5 (Pseudo-Role) Given a user-permission assignment 〈u, p〉 ∈

UP, the pseudo-role generated by 〈u, p〉 is a role made up of users users(p) and
permissions perms(u).

The pseudo-role tool will be employed to identify those user-permission
assignments that can be managed together with a given assignment through a
single role. Since a pseudo-role r̂ is not an actual role, with abuse of notation
we refer to its users as ass_users(r̂) and to its permissions as ass_perms(r̂).
Several user-permission assignments can generate the same pseudo-role. In
particular:De�nition 4.6 (Frequen
y of a Pseudo-Role) The percentage of user-perm-
ission assignments of UP that generates a pseudo-roles r̂ is referred to as its
frequency, defined as:

f (r̂) :=
1

|UP|

�

�{〈u, p〉 ∈ UP | ass_users(r̂) = users(p) ∧

ass_perms(r̂) = perms(u)}
�

�

The introduction of the pseudo-roles concept is supported by the following
theorem:Theorem 4.6 Given a user-permission assignment 〈u, p〉 ∈ UP, let r̂ be the

pseudo-role generated by 〈u, p〉. Then

UP̂r :=
�

ass_users(r̂)× ass_perms(r̂)
�

∩UP

is the set of all possible user-assignment relationships that can be covered by any

role to which 〈u, p〉 belongs to. Hence, for each possible RBAC state 〈ROLES, UA, PA〉
that covers the assignments in UP the following holds:

∀r ∈ ROLES : u ∈ ass_users(r), p ∈ ass_perms(r) =⇒

ass_users(r)× ass_perms(r)⊆ UP̂r .

PROOF First, we prove that any assignment that can be managed together with
〈u, p〉 must be within UP̂r . Let 〈u′, p′〉 ∈ UP be an assignment outside the
pseudo-role r̂, namely 〈u′, p′〉 6∈ UP̂r . If, by contradiction, 〈u, p〉 and 〈u′, p′〉

can be managed through the same role r ′, then by definition all the users
ass_users(r ′) must have permissions ass_perms(r ′) granted. Hence, both the
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assignments 〈u′, p〉 and 〈u, p′〉 must exist in UP. But, according to Defini-
tion 4.5, u′ ∈ ass_users(r̂) = users(p) and p′ ∈ ass_perms(r̂) = perms(u),
that is a contradiction.

Now we prove that any assignment within UP̂r can be managed together
with 〈u, p〉 via a single role. Given 〈u′′, p′′〉 ∈ UP̂r , Definition 4.5 yields u′′ ∈

ass_users(r̂) = users(p) and p′′ ∈ ass_perms(r̂) = perms(u). Thus, both the
assignments 〈u′′, p〉 and 〈u, p′′〉 exist in UP, completing the proof.

According to the previous theorem, a pseudo-role groups all user-permission
assignments that are manageable through any of the roles that also covers
the pseudo-role generators. The pseudo-role frequency indicates the mini-
mum number of assignments covered by the pseudo-role (i.e., the generators)
that are manageable through the same role. Consequently, the higher the fre-
quency of a pseudo-role is, the more pseudo-role assignments can be managed
by one role. Similarly, the lower the frequency is, the more likely it is that the
assignments covered by a pseudo-role cannot be managed by a single role.
Therefore, the ideal situation is when pseudo-role frequencies are either close
to 1 or close to 0: frequent pseudo-roles circumscribe a portion of assignments
that are worth investigating since they likely contain a role for managing most
of the assignments; conversely, unfrequent pseudo-roles identify assignment
sets that are not worth analyzing.Entrustability Based on the previous observations, we are interested in find-
ing the decomposition that produces pseudo-roles with frequencies either close
to 1 or to 0. In the following we show that the entropy concept is a natural
way to capture these circumstances. Let A be the set of all values assumed
by a given business information—for instance, A can represent the “job title”
information, and one of the actual values a ∈ A can be “accountant”. Let
P := {UPa1

, . . . , UPan
} be a n-partition of UP induced by the business informa-

tion A such that the number of subsets are n = |A |, each subset is such that
UPai

⊆ UP, the subset indices are ∀i ∈ 1, . . . , n : ai ∈ A , and the subset are such
that UP =

⋃

a∈A UPa. UPa indicates all assignments that “satisfy” the attribute
value a (e.g., if A represents the “job title” information, all the assignments
where users are “accountant” are one subset). Notice that, according to the
previous partition definition, subsets can overlap, namely

�

�UPa ∩UPa′

�

� ≥ 0
when users or permissions can be associated to more than one attribute value.
Let Ra be the set of all pseudo-roles that can be generated within the subset
UPa, and R :=

⋃

a∈A Ra ∪R∗ where R∗ represents the pseudo-roles belonging
to UP before decomposing it. Notice that the same pseudo-role might belong
to both R∗ and another set Ra, namely

�

�R∗ ∩Ra

�

� ≥ 0, but not necessarily with
the same frequencies.
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Let A∈ A be the random variable that corresponds to a value of the given

business attribute, while the random variable R ∈ R denotes a pseudo-role
generated by a generic user-permission assignment. Let Pr(r̂) be the empirical
probability of a pseudo-role r̂ ∈ R being generated by an unspecified user-
permission assignment. More specifically,

Pr(r̂) :=
1

|UP|

∑

ω∈UP

g(ω, r̂)

where

g(ω, r̂) :=

(

1, ω generates r̂ in UP;

0, otherwise.

Similarly, the empirical probability of a pseudo-role being generated by an
unspecified user-permission assignment that “satisfies” the business attribute
a is

Pr(r̂ | A= a) :=
1
�

�UPa

�

�

∑

ω∈UPa

ga(ω, r̂)

where

ga(ω, r̂) :=

(

1, ω generates r̂ in UPa;

0, otherwise.

Notice that, for each attribute value a, when r̂ ∈ Ra, then Pr(r̂) corresponds
to the frequency definition. Conversely, if r̂ ∈ R \Ra, then Pr(r̂) = 0.

As stated before, the natural measure for the information of the random
variable R is its entropy H(R). The binary entropy, defined as

H(R) :=−
∑

r̂∈R

Pr(r̂) log2 Pr(r̂)

quantifies the missing information on whether the pseudo-role r̂ is generated
from some unspecified user-permission assignment when considering the set
UP as a whole. By convention, 0 × log2 0 = 0. The conditional entropy is
defined as

H(R | A) :=−
∑

a∈A

Pr(a)
∑

x r̂∈R

Pr(r̂ | A= a) log2 Pr(r̂ | A= a) ,

where Pr(a) :=
�

�UPa

�

�/
∑

a∈A

�

�UPa

�

�measures the empirical probability of choos-
ing an assignment that satisfies a. H(R | A) quantifies the missing informa-
tion on whether the pseudo-role r̂ is generated from some unspecified user-
permission assignment when A is known. The mutual information

I(R; A) := H(R)−H(R | A)
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measures how much the knowledge of A changes the information on R. Hence,
I(R; A)measures how much the knowledge of the business information A helps
us to predict the set of users and permissions that are manageable by the same
role within each subset. Since I(R; A) is an absolute measure of the entropy
variation, we introduce the following measure for the fraction of missing in-
formation removed by the knowledge of A with respect to the entropy H(R)

before partition:

ENTRUSTABILITY(A) :=
I(R; A)

H(R)
= 1−

H(R | A)

H(R)
.

By selecting the decomposition with the highest ENTRUSTABILITY value, we
choose the decomposition that simplifies the subsequent role mining analy-
sis most. Notice that the previous equations consider one business attribute at
a time. Given ℓ business information A1, . . . ,Aℓ, it is simple to extend the defi-
nition of the ENTRUSTABILITY index by partitioning UP in subsets of assignments
that contextually satisfies all business information which has been provided.Similarity Gain
In the following we will introduce the definitions of similarity between two
users and conditioned similarity, and then we will introduce a new concept:
the similarity gain. It evaluates the gain achieved in similarity between users
when a given business information is used to induce the decomposition of the
dataset.De�nition 4.7 (Similarity Between Two Users) Given a pair of users u1, u2 ∈

USERS, the similarity between them is defined as:

s(u1, u2) :=

�

�perms(u1)∩ perms(u2)
�

�

�

�perms(u1)∪ perms(u2)
�

�

(4.19)De�nition 4.8 (Similarity Among a Set of Users) Given a set of users
USERS, the similarity index of that set is the average similarity between all
possible (unordered) user pairs, that is:

S(USERS) :=







1
�|USERS|

2

�

∑

u1,u2∈USERS:
u1 6=u2

s(u1, u2), |USERS|> 1;

1, otherwise.

(4.20)

In other words, the similarity of a set of users corresponds to the Jaccard Coef-

ficient between all possible (unordered) user pairs. The Jacccard Coefficient is
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a tool largely used in the data mining domain to group together items that are
similar. Therefore, the similarity index seems to be a good candidate metric to
find subsets of users that are similar from a business perspective.

Let P be the partition of UP induced by a given business information A =
{a1 . . . an}. In other words, let P := {UPa1

, . . . , UPan
} be an n-partition of UP

such that UPai
⊆ UP and UP =

⋃n

i=1 UPai
. Each subset UPai

identifies a set of
users Υi, such that Υi := {u ∈ USERS | ∃p ∈ PERMS, 〈u, p〉 ∈ UPai

}. According
to (4.20), the similarity of Υi can be defined as:

S(Υi) :=







1
�|Υi|

2

�

∑

u1,u2∈Υi :
u1 6=u2

sΩi
(u1, u2), |U |> 1;

1, otherwise.

(4.21)

where sΩi
(u1, u2) is the similarity of the users u1 and u2 obtained by only con-

sidering the permissions that are involved in UPai
. Equation 4.21 can also be

rewritten in the following way:

S(Υi) :=
1

σi +
�|Υi|

2

�











σi +
∑

u1,u2∈Υi :
u1 6=u2

sΩi
(u1, u2)











,

where

σi :=
�

1,
�

�Υi

�

� = 1;
0, otherwise.

Using the previous definitions, the conditioned similarity is defined as:De�nition 4.9 (Conditioned Similarity) Given a n-partition P := {UPa1
, . . . , UPan

}

for UP such that UP =
⋃n

i=1 UPai
and the induced sets of users Υi := {u ∈

USERS | ∃p ∈ PERMS, 〈u, p〉 ∈ UPai
}, we define the similarity index conditioned

by P as

SΩ(USERS) =

∑n

i=1 S(Υi)
�

σi +
�|Υi|

2

�

�

∑n

i=1

�

σi +
�|Υi|

2

�

� =

∑n

i=1σi +
∑n

i=1 S(Υi)
�|Υi|

2

�

∑n

i=1σi +
∑n

i=1

�|Υi|
2

�

.

(4.22)De�nition 4.10 (Similarity Gain) Given a partition P for UP defined as above,
the similarity gain of P is formally defined as:

SIMILARITY_GAIN
P
(USERS) := 1−

S(USERS)

SΩ(USERS)
(4.23)

where USERS is the set of all the users involved in UP.
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Therefore, the similarity gain measures the percentage increase (or de-

crease) of the similarity after partitioning UP in smaller subsets. This index
reaches the maximum on 1, but it can assume negative values as well. A neg-
ative value means that the partition P is not advantageous from the similarity
perspective, and that is probably better to analyze the whole set UP instead
of decomposing it. When we have at our disposal several user attributes, we
can evaluate the similarity gain for each induced partition, and then select the
one with the highest value. Note that we have defined the similarity index,
and the corresponding similarity gain, between users, but it is also possible to
define the similarity between permissions in a very analogous fashion. As a
matter of fact, in the experimental section we will consider both these indices.
To ease exposition, we omit the corresponding definitions.Minability Gain
The minability index has been previously introduced in Section 4.1. We will
now introduce the conditioned minability. Given an attribute A = {a1 . . . an},
let P := {UPa1

, . . . , UPan
} be the partition of UP induced by A . According to

Definition 4.4 the minability index of each subset UPai
is

M (UPai
) :=

1
�

�UPai

�

�

∑

ω∈UPai

mΩi
(ω),

where mΩi
(ω) indicates the local minability of ω obtained considering only

the user-permission assignments belonging to UPai
. This leads to the following

definition:De�nition 4.11 (Conditioned Minability) Given a n-partition P := {UPa1
, . . . , UPan

}

of UP, the minability index conditioned by P is

MΩ(UP) =

∑n

i=1M (UPai
)
�

�UPai

�

�

∑n

i=1

�

�UPai

�

�

=
1

|UP|

n
∑

i=1

∑

ω∈UPai

mΩi
(ω) (4.24)

=
1

|UP|

∑

ω∈UP

mΩi
(ω). (4.25)

We will now introduce the MINABILITY GAIN, that is the percentage minabil-
ity increase or decrease due to a given partition.De�nition 4.12 Given a n-partition P := {UPa1

, . . . , UPan
} of UP, the minabil-

ity gain of P is formally defined as:

MINABILITY_GAIN
P
(UP) := 1−

M (UP)

MΩ(UP)
(4.26)
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In the following, we will use the MINABILITY GAIN to evaluate the quality of

a partition induced by a business information. Having at our disposal several
business information, the one with the highest minability gain will be the most
suitable for decomposing the dataset in smaller subsets.4.2.2 Indi
es Comparison and Dis
ussion
In this section we discuss the distinguishing features of the proposed indices
through some practical examples. In particular, we first introduce a few triv-
ial datasets to better analyze the behavior of each index. Later, we discuss
complex real data to support the quality of the result of our methodology. In
details, our decomposition approach can leverage on any of ENTRUSTABILITY,
SIMILARITY GAIN, and MINABILITY GAIN. They grasp different aspects, and in this
section we are going to discuss and to compare them against both synthetic
and real data. Since such indices respectively rely on the entropy, similarity,
and minability concepts, we will first analyze them. To this aim, we intro-
duce a normalized version of the entropy; indeed, minability and similarity
range from 0 to 1, but the entropy index does not lie in the same range. The
worst case for the entropy index is reached when each assignment belonging
to UP generates a different pseudo-role, and in this case the entropy is equal
to log2 |UP|. Therefore, we define the normalized entropy as:De�nition 4.13 (Normalized Entropy) Given a random variable R ∈ R that
denotes a pseudo-role generated by a generic user-permission assignment be-
longing to UP, the normalized entropy of R is defined as:

H(R) := 1−
H(R)

log2 |UP|
(4.27)

A normalized entropy equal to 1 corresponds to cases where the uncer-
tainty on selecting the roles to use is minimal, while a normalized entropy
equal to 0 corresponds to cases where the uncertainty is maximal.Comparison Among Normalized Entropy, Minability and Similarity Nor-
malized entropy, minability, and similarity catch different aspects of the ana-
lyzed data. The normalized entropy evaluates the uncertainty in deciding the
role to be used to manage the assignments. The similarity index corresponds
to the Jaccard coefficient between the users, and it measures how much sim-
ilar are users in terms of their assigned permissions. Instead, the minability
index measures the complexity of selecting candidate roles given a set of user-
permission assignments. Entropy and minability look very similar, but there
are a few substantial differences that we are going to point out.
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ial 
asesCon�gurations H(R) S(USERS) M (UP)
BestRoleMin
ingCases CASE 1:One role 1 1 1CASE 2:Non-overlappingroles between 0 and 1(it depends onthe number andsize of theroles�in thisexample, 0.85)

between 0 and 1(it depends onthe number ofusers in ea
hrole�in thisexample, 0.31) 1CASE 3:Distin
tusers 0 0 1
WorstRoleMi
ningCases CASE 4 0 
lose to 1(in this example,0.80) 
lose to 1(in this example,0.81)CASE 5 0 
lose to 0(in this example,0.07) 0

Table 4.1 provides a classification of the peculiarities of the three indices.
In particular, the matrix representation of five access control configuration is
reported together with the values of H(R), S(USERS) and M (UP). In the given
representation, users are the rows of the matrix, permissions are the columns,
and a black cell indicates a permission granted to the related user—see Chap-
ter 6 for further details about the visual representation of user-permission ma-
trices. The five different access control matrices presented in Table 4.1 are
classified in two groups: the best role mining cases, and the worst ones. The
first one contains configurations that are easy to analyze, while the second
one contain configurations that can be considered the most difficult to analyze
when trying to elicit roles.

It can be seen that when all the user-permission assignments belonging to
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UP can be managed with just one role, all the indices equal 1 (CASE 1). It
means that entropy, minability, and similarity are all good indices to recognize
these kind of configurations. The second configuration (CASE 2) takes into
account a set of user-permission assignments that can be managed with sev-
eral roles that do not overlap. In this case, the minability index equals 1. As
a matter of fact, each black rectangle identifies a role, and therefore it is easy
to elicit a candidate role sets. Instead, the normalized entropy is less than 1:
It depends on the fact that the assignments have to be managed with more
than one role—so there is a certain uncertainty in selecting them. As for the
similarity between users, its value is less than 1. Indeed, it is the average of
all the similarities between pairs of users. Similarly to entropy, the similarity
index does not identify this special case as one of the most convenient config-
uration for role mining. CASE 3 is a special configuration of CASE 2, where
each user has his own permissions granted. In this case, the similarity is the
minimum one (i.e., zero) and the uncertainty in selecting a role to assign to
a random user is maximum (i.e., the normalized entropy is zero). The fourth
case is one of the worst configurations from a role mining perspective (CASE
4). Here, it is not clear which is the best role-set that has to be used, since
a large number of different roles can be elicited. The normalized entropy is
0: Each assignment will generate a different pseudo-role, and the uncertainty
on deciding the roles to use is maximal. However, the minability is greater
than 0: even if it is difficult to decide the roles, it is still possible to elicit “big”
clusters of user-permission assignments, that is roles that cover several user-
permission assignments. The similarity of users is close to 1; it depends on the
fact that each pair of users shares n−2 permissions, where n is the number of
permissions. The matrix represented in the fifth case is the worst case from a
role mining perspective (CASE 5). Indeed, no role can manage more than two
assignments, and each assignment can be covered by exactly two roles. Both
the entropy and the minability correctly recognize this case as the worst one.
Instead, similarity is greater than 0.

To conclude, among the three indices we proposed, the similarity index is
the most susceptible to particular cases, and probably the less recommended
to evaluate configuration that are “good” from the role mining perspective. It
is only useful when finding a role that covers all the users. Minability and nor-
malized entropy are instead good candidate for this purpose. However, they
capture different aspects of the dataset, and therefore they have different be-
haviors. Normalized entropy tends to 1 when the majority of the assignments
can be managed by only one “big” role, whereas not all users and permissions
are necessarily covered with such a role. Minability tends to 1 when the set
of roles required to cover all the assignments (and thus all users and permis-
sions) can be easily identified. A good practice is to take into consideration all
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these indices when trying to evaluate the quality of a given dataset for the role
mining, and this is what we will do in Section 4.2.3 analyzing real enterprise
data.4.2.3 Entrustability, Similarity gain, and Minability gain onReal Data
To complete our comparison among proposed indices, in Figure 4.6 we report
on the representation of the user-permission relationships involved in a real
case. Data relates to an organization branch of an organization that counts
29 users, 240 permissions and a total of 867 user-permission assignments. We
adopted several business information at our disposal to partition the whole
dataset in smaller subsets. For each one we show its matrix representation,
and the values of normalized entropy, similarity, and minability. The “Job Ti-
tle” attribute induces a partition of 22 tiny subsets: 20 of them have normal-
ized entropy, minability and similarity value equal to 1. Therefore, it is easy
to elicit roles with a clear business meaning to manage all the assignments
covered by these 20 subsets. Indeed, it is possible to create the roles “Military
Occupation”, “Fish Cleaner” and “Film processing technician” that are repre-
sented in Figure 4.6. Note that naming roles with the name of the attributes
they are referring to, makes it easy for the security administrator to recognize
their purpose. Further, note that the subset with the lowest indices values is
“Without a Job Title”. This subsets group-in all the users that do not have a job
title. Therefore, it is expected that their respective tasks will be quite different.

The attributes “Cost Center” and “Branch” induce a partition made up of
less subsets when compared to “Job Title”. In particular, the “Cost Center”
attribute induces 8 subsets out of 14 with normalized entropy, similarity, and
minability equal to 1. On the contrary, the “Branch” attribute induces only 3
subsets out of 8 with maximal values for all the three indices. However, only
looking to the matrix representations, it is difficult to evaluate which one of
these two attributes is the most suitable to be used when decomposing the
original dataset. To this end, we have to evaluate the quality of the partition
induced by these attributes, and we can do it by looking at their ENTRUSTA-
BILITY, MINABILITY GAIN and SIMILARITY GAIN indices. Note that in many real
cases, the dataset is so large that it would be impossible to visualize neither
the corresponding matrix representation, nor the representations of the parti-
tion induced by the attributes. Therefore the three indices that we introduced
in this section are very helpful to make decisions when dealing with very large
datasets.

Figure 4.7 reports on the values of ENTRUSTABILITY, MINABILITY GAIN, and
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upation H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Physi
al geographer H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Life skill 
ounselor H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Apartment rental agent H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Layout artist H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Fish 
leaner H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00De
ommissioning and de
ontamination worker H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Without a Job Title H(R) = 0.26 S(USERS) = 0.54 M (UP) = 0.87Te
hni
al sales support worker H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00University instru
tor H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Foreign language interpreter H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Film pro
essing te
hni
ian H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Manufa
tured Job Title and mobile home installer H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Jailer H(R) = 0.67 S(USERS) = 0.33 M (UP) = 0.88Industrial engineering te
hni
ian H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Network systems and data 
ommuni
ations analyst H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Billing and posting ma
hine operator H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Pro
ess te
hni
ian H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Marriage and family therapist H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Clini
al nurse spe
ialist H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Industrial millwright H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Textile blea
hing and dyeing ma
hine operator H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00(a) Job Title1000800 H(R) = 0.45 S(USERS) = 0.35 M (UP) = 0.841000805 H(R) = 0.69 S(USERS) = 0.47 M (UP) = 0.891002534 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001002519 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001002030 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001002267 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001002031 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001004042 H(R) = 0.68 S(USERS) = 0.41 M (UP) = 0.881000776 H(R) = 0.35 S(USERS) = 0.46 M (UP) = 0.831002928 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001003186 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.001000777 H(R) = 0.72 S(USERS) = 0.29 M (UP) = 0.911000799 H(R) = 0.55 S(USERS) = 0.34 M (UP) = 0.851001384 H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00(b) Cost CenterSolomon H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Net
ong H(R) = 0.68 S(USERS) = 0.41 M (UP) = 0.88Marysville H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00Win
hester H(R) = 0.44 S(USERS) = 0.34 M (UP) = 0.82M

ool Jun
tion H(R) = 0.43 S(USERS) = 0.72 M (UP) = 0.95Laurel H(R) = 0.56 S(USERS) = 0.37 M (UP) = 0.85Long Island City H(R) = 0.21 S(USERS) = 0.30 M (UP) = 0.75San Rafael H(R) = 1.00 S(USERS) = 1.00 M (UP) = 1.00(
) Bran
hFigure 4.6 Graphi
al representation of user-permission relationships involved in a real dataset that
ounts 29 users, 240 permissions, and a total of 867 user-permission assignments.Three attributes are used to de
ompose the dataset: �Job Title�, �Cost Center�, and�Bran
h�. For ea
h attribute, the name of the subset, normalized entropy, similarity,and minability values are shown, together with its graphi
al representation.
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Figure 4.7 Entrustability, Minability Gain and Similarity Gain when partitioning thedataset using �Job Title�, �Bran
h�, and �Cost Center� attributes
SIMILARITY GAIN for the real case described above. The figure points out that
the best partition is the one induced by the “Job Title” attribute, then there
is the one induced by “Cost Center” and finally “Branch”. This information
turns out to be clear and described in a very compact way: we do not need to
evaluate the single subsets induced by the three attributes.

In this section, we described a methodology that helps role engineers lever-
age business information during the role mining process. To drive this process,
the ENTRUSTABILITY, MINABILITY GAIN, and SIMILARITY GAIN indices have been
introduced. All of them measure the quality of the partition induced by a busi-
ness attribute, each one capturing different aspects of the dataset. Leveraging
on these indices, role engineers are able to identify the decomposition that
increases business meaning in elicited roles in subsequent role mining steps,
thus simplifying the analysis. An example on real data illustrates both the
efficiency and the effectiveness of the proposed methodology, as well as the
practical implications of the proposed indices.4.3 Over
oming the Limitations of Divide et Im-pera Approa
hes
The main drawback of all the afore mentioned Divide et Impera approaches
is that it is not possible to elicit roles that spread across several partitions.
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Yet, such roles can be very useful to system administrators. For instance, it is
likely that users spreading across different partitions (e.g., different organiza-
tion units) have common entitlements that simply permit access to top-level
resources (i.e., to resources at their entry points). A so called “structural” role
might control access to an application’s entry point, whereby a user could only
open that application if he or she had been assigned to a structural role that
grants that access. Conversely, “functional” roles are defined as controlling
access to resources within applications. The role engineering process should
include the definition of both structural roles and functional roles [22].

The main objective of this section is to offer an approach that essentially
provides practical and usable solutions to the role mining problem, improv-
ing the scalability of the role mining solutions while eliciting structural roles.
Hence, overcoming the main limitation of existing Divide et Impera approaches.
We focus on making the role mining problem tractable by reducing the prob-
lem size without sacrificing on utility and accuracy. The proposed approach
does this by effectively compressing the original access control dataset, analyz-
ing the compressed dataset to identify interesting portions, and reconstructing
the portions of the original dataset that are worth investigating. Scalability
is assured by targeted partitioning that ensures that the created sub-problems
focus only on the interesting portions of the original dataset—and are there-
fore orders of magnitude smaller than the original one. At this point, any

existing role mining algorithm can be used to analyze user-permission assign-
ments within these subsets. Thus, our approach is agnostic to the specific role
mining methodology used, namely it can be used in conjunction with them to
enhance their scalability.4.3.1 The Six Step Methodology
Our approach relies on the fact that it is possible to significantly reduce the
computational burden of role mining while still maintaining utility by judi-
ciously partitioning, locally analyzing, and recombining the given data. We
can thus decompose our approach into six successive steps, as shown in Fig-
ure 4.8. In the first step the original dataset is decomposed into several parti-
tions. In step 2, similar clusters of users are identified within each partition. In
step 3, we develop a significantly smaller set of representative users that rep-
resent each cluster. Thus, steps 1-3 can be viewed as the process of building
a compressed dataset. In the fourth step, the compressed dataset is evaluated
to find portions that are interesting to analyze. In step 5, the corresponding
portions of the original dataset are rebuilt. Once these interesting portions
are identified, in step 6, role engineering can be carried out over these por-
tions. Note that any existing (or new) role mining algorithm can be used at
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Figure 4.8 The Proposed Methodology at a Glan
e
this point. Indeed, our methodology does not rely on any specific role mining
algorithm, and is agnostic to the specific mining approach taken. We now de-
scribe in detail each individual step. Figure 4.9 depicts a small access control
dataset of 12 users, 10 permissions, and 51 user-permission assignments that
we use in the following to explain each step. Note that following the various
steps, the users and permissions represented in the matrices have been auto-
matically permuted to aid in the exposition (this is not necessary for any of
the steps, it is simply to give a more intuitive picture of the approach).Step 1. Partitioning
In this step, the original dataset is decomposed into several disjoint subsets.
This is similar to past work [14, 15] that also attempts to make analysis of
large scale data feasible. However, in all prior approaches, each partition is
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(a) Original UPA Ma-trix
Partition1
Partition2(b) Partitioning

Partition1
Partition2(
) Clusters Identi�
a-tion

(d) CompressedDataset (e) Analysis of Com-pressed Dataset (f) Re
onstru
tionof the Interest-ing PortionFigure 4.9 An Expository Example
analyzed independently, without searching for the roles that extend across
different partitions. On the contrary, in our approach, the subsequent steps
specifically focus on the identification of all roles.

Partitioning can be done in many ways – for example, by utilizing business
information, following some other rule of thumb, or even at random. How-
ever, it has been shown that using business information is typically preferable
to the others since it generates more meaningful roles [14]. Therefore, the
decomposition approach introduced in Section 4.2 can be used. Business in-
formation includes both user and permission attributes – any of these can be
used. For example, it is possible to partition users by the country they are
working in, or by organizational branches. Formally, given U ⊆ USERS, the
partition of UP induced by U is defined as the set:

{〈u, p〉 ∈ UP : u ∈ U} (4.28)



4.3. Over
oming the Limitations of Divide et Impera Approa
hes 73
Similarly, the access control dataset can be partitioned using permission

attributes as well. In this case, a subset P ∈ PERMS induces the partition

{〈u, p〉 ∈ UP : p ∈ P}

For the sake of clarity, in the following we will only consider partitions in-
duced by users attributes, though either way above is fine. The bold dotted
line between users U_10 and U_3 in Figure 4.9(a) represents a partitioning
based on some business information that splits the users into the two partitions
{U_7, U_6, U_12, U_9, U_8, U_11, U_10} and {U_3, U_4, U_5, U_2, U_1}, that
are respectively indicated with Partition 1 and Partition 2, and depicted in Fig-
ure 4.9(b).Step 2. Identi�
ation of Clusters
In step 2, we analyze each partition independently, trying to identify clusters
of users, from which representative users will be picked. Since each partition
is analyzed independently, the memory load is correspondingly reduced and it
is also easily possible to parallelize this step.

To identify clusters, we use the well known clustering algorithm: Partition-

ing Around Medoids (PAM) [47, 79]. This is similar to the k-means clustering
algorithm except that medoids are used instead of means and dissimilarities
are used instead of distances. The “medoid” of a cluster is that object whose
average dissimilarity to all the other objects in the cluster is minimal. PAM is
used within each partition to identify the clusters of users. This algorithm has
two key properties:1. It is less subject to outliers than other clustering algorithms;2. It performs clustering with respect to any specific distance metric.

These properties make it especially suitable for access control data since out-
liers are quite prevalent in these datasets and can cause major security viola-
tions, and the notion of user distance is not well defined. The distance metric
that is used to evaluate the similarity of two users is the one introduced in
Definition 4.7. For sake of clarity we report it in the following:

su

�

u1, u2

�

=

�

�perms(u1)∩ perms(u2)
�

�

�

�perms(u1)∪ perms(u2)
�

�

. (4.29)

where u1, u2 ∈ USERS. Now, the distance or dissimilarity between two users
u1 and u2 is defined as:

D
�

u1, u2

�

= 1− su

�

u1, u2

�

. (4.30)
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We now describe the basic PAM algorithm [47], and then discuss our mod-

ified heuristic for it. The PAM algorithm proceeds in five steps:1. Randomly select k initial medoids.2. Associate each user to the closest medoid.3. The cost of a configuration is defined as the sum of the distances of each
non-medoid to its closest medoid. Now, for each medoid, and for each
non-medoid, the cost of the new configuration achieved after swapping
the two, is computed.4. The configuration minimizing the cost is selected, and the previous two
steps repeated until no further improvement is possible.5. The set of medoids, and their associated objects, are finally returned.

The computational cost of this algorithm is O
�

k (n− k)
2�, where k is the num-

ber of medoids, and n − k is the number of non-medoids. Usually k ≪ n,
therefore the factor of k can be ignored, and n− k ≈ n. Therefore, the com-
putational cost is really O

�

n2�, i.e., quadratic with respect to the number of
users. The quadratic cost is due to the fact that all possible swaps of medoid
and non-medoid objects are considered before selecting the one minimizing
the overall cost.

Since the number of users is typically quite high, to reduce the cost of the
basic algorithm described above, we propose a modified heuristic presented in
Algorithm 4.3, where instead of checking all possible swaps, a small number of
random swaps are chosen, and a swap carried out immediately if the new cost
is lower than the current cost. Thus, an additional parameter to the algorithm
is s, the number of tentative swaps executed.

The computational cost of Algorithm 4.3 is O
�

sk(n − k)
�

, where s is the
number of tentative swaps, k is the number of medoids, and n is the number of
users. Asymptotically the algorithm leads to a local minimum when s grows.
Our experimental results (in Section 4.3.2), show that very good results can
be achieved even with very small values of s.

A key parameter for clustering is the number of medoids (i.e., number of
clusters) that are being searched for in each partition. One way of selecting
this is through computing the silhouette coefficients [47], that is a measure
of how tightly grouped all the data in the clusters are. Algorithm 4.3 is exe-
cuted using different values of k, the silhouette coefficients are computed in
each case, and the number of medoids giving the maximum silhouette coeffi-
cient chosen. However, computing the silhouette coefficient for different k is
a very time consuming process, and in the experimental section we will use a
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PAM(Set of Users USERS, number of swaps s, number ofmedoids k)2: MEDOIDS = Randomly sele
ted u1, . . . ,uk ∈ USERS;3: for i = 0 . . . s do4: Randomly sele
t u ∈ USERS : u /∈MEDOIDS ;5: Cal
ulate the 
ost c of the new 
on�guration, where u and its medoidare swapped;6: if c < 
ost of the old Con�guration then7: Swap u and its medoid;8: end if9: end for10: return MEDOIDS11: end pro
edure
given percentage of users in each partition as medoids. Our results show that
high quality results can be achieved by simply selecting only 5% of users as
medoids.

Figure 4.9(c) shows the result obtained by applying Algorithm 4.3, with
k = 2, in both of the partitions depicted in Figure 4.9(b). The clusters identi-
fied are highlighted with curly braces and the corresponding medoids are de-
noted with an asterisk: thus, C1 containing the users U_6, U_7, U_8, U_9 (with
medoid U_9) and C1 containing the users U_10, U_11, U_12 (with medoid
U_10) are discovered in Partition 1. Similarly, U_1, U_2 (with medoid U_2 )
and U_3, U_4, U_5 (with medoid U_3) are identified in Partition 2.Step 3. Compression
After identifying the user clusters (and associated medoids), we analyze each
of the clusters in order to create a new compressed dataset. In this dataset,
each cluster is represented by just one (virtual) user. The binarization proce-
dure described in Algorithm 4.4 is used to identify the permissions to grant
to this virtual user. Essentially, given a cluster of users U , and a binariza-
tion threshold t , each permission p ∈ PERMS is granted to the virtual user
if and only if supportU(p) ≥ t , where supportU indicates the percentage of
users possessing the permission p within the cluster U . Thus, the resulting
compressed dataset contains one user for every cluster of users identified in
Step 2. Further, the virtual user does not necessarily have the same permis-
sions as the medoid. Indeed, the threshold t plays a key role in determining
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edure(ClusterOfUsers 
lust, threshold t)2: 
reate new user virtualUser ;3: for Permission p ∈ PERMS do4: if supportU(p) ≥ t then5: Grant p to virtualUser6: end if7: end for8: return virtualUser9: end pro
edure
this: for example, when t = 1, only the permissions shared by all the the users
in the cluster will be granted to the virtual user, where as with t = 0 all the
permissions that are granted to at least one user in the cluster will be granted.
In the experimental validation, we experiment with different values for the
threshold, and provide some guidance on how this can be chosen.

Note that as before, this step can also be fully parallelized thus guarantee-
ing a noticeable speed-up of the overall analysis. Further, the kind of compres-
sion that we perform will not cause the presence of unauthorized permissions
inside the final list of roles, indeed the roles will be elicited only after ana-
lyzing the compressed dataset (Step 4) and rebuilding portions of the original
one (Step 5). Figure 4.9(d) illustrates Step 3 in the context of our example.
The compressed dataset is formed of four virtual users, each corresponding
to one of the clusters highlighted in Figure 4.9(c). The threshold used was
t = 0.5, i.e., only those permissions that are supported by at least half of
the users of the cluster are granted to the virtual user. For example, the vir-
tual user V_9 represents the cluster U_9, U_6, U_7, U_8, and is granted the
permissions P_10, P_9, P_7, P_6 and P_8. This is correct, since only those
permissions are also owned by at least two of the users in the cluster. The
virtual users V_10, V _3 and V _2 are also generated in the same way from the
corresponding user clusters.Step 4. Analysis of Compressed Dataset
After the prior three steps are completed, a compressed dataset has been built
that effectively summarizes the original dataset. Now, we analyze this com-
pressed dataset in order to discover portions of the original dataset that are
worth inspecting.
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Note that access control datasets can be represented as (often, sparse) bi-

nary matrices, where rows represents users, columns represents permissions,
and a 1 in a cell indicates the presence of a user-permission assignment, while
a 0 represents the absence. If we consider such a matrix, the portions worth
inspecting are composed of “dense” and “large” subsets of rows and columns,
since they allow us to find roles that can handle many user-permission assign-
ments. Due to the use of the binarization procedure (Algorithm 4.4), there
may exist permissions in the original user clusters that have not been granted
to the corresponding virtual users because of low support. However, these
should still be potentially taken into consideration.

To do so, we use the maximal pseudo-bicluster tool that has been intro-
duced in [12]. A pseudo-bicluster is a pattern that can be seen as a superset
of any interesting role. We can then focus the role mining on a subset of these
patterns, that identifies portions of the dataset (in this case our compressed
dataset) that are worth successively analyzing.De�nition 4.14 (Relevan
e) The relevance of a Maximal Pseudo-Bicluster
B = 〈U , P〉 is defined as the number of generators of B, and indicated with
̺(B). Formally:

̺(B) = |Û | × |P̂|

Since Û ∈ U and P̂ ∈ P, it turns out that ̺(B) < |U | × |P|. It means that a
Maximal Pseudo-Bicluster that involves few users and few permissions cannot
have a high relevance. Further, the relevance of B reaches the maximum when
Û is equal to U , and Û is equal to P. Indeed, in that case all the users and the
permissions of the Maximal Pseudo-Bicluster can be managed with just one
role. Since the relevance of a Maximal Pseudo-Bicluster is an absolute value,
we use the normalized version:De�nition 4.15 (Normalized Relevan
e) The normalized relevance of a
Maximal Pseudo-Biclusters B = 〈U , P〉 is defined as:

̺(B) =
̺(B)

|UP|

where UP ∈ USERS× PERMS is the set of the existing user-permission assign-
ments.

Note that the normalized relevance of a Maximal Pseudo-Bicluster is cor-
related with the frequency of a pseudo-role (Definition 4.6). It can be shown
that 0 < ̺(B) ≤ 1, indeed ̺(B) is always greater than 0 and lower than, or
equal to |UP|. Maximal Pseudo-Biclusters that have a high normalized rele-
vance correspond to those portions of a dataset that when inspected are likely
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to have roles that can be used to manage many user-permission assignments.
Therefore, in this step, we search for the maximal Pseudo-Biclusters having
high normalized relevance within the compressed dataset. Note that since the
virtual users many not have some of the permissions granted, the maximal
pseudo-bicluster may not correspond to a single role, but it does narrow the
search area when looking for large roles. Several strategies are possible to se-
lect the maximal Pseudo-Biclusters – for example, we can select in descending
order of size, up to a fixed number, or we can take a given percentage of the
existing maximal Pseudo-Biclusters. Once this subset has been selected, we
can proceed to Step 5.

With respect to our expository example (Figure 4.9), when the compressed
dataset shown in Figure 4.9(d) is analyzed to identify (and order) maximal
pseudo-biclusters, three maximal pseudo-biclusters are identified with the same
maximum normalized relevance. The first is composed of the virtual users
V_10, V _3, V _2, and the permissions P_4, P_5, P_3, P_2. Its normalized rele-
vance is equal to 3/51, indeed |Û | = 1, |P̂| = 3 and |UP| = 51. The second
Maximal Pseudo-Biclusters with the same relevance is composed of the vir-
tual user V_9, and the permissions P_10, P_9, P_7, P_6, P_8. In this case, it
involves only one user, and if we are searching for roles that extend across par-
titions, it can be discarded. The third Maximal Pseudo-Biclusters is identified
by the virtual users V _10, V _3, V_2, and the permissions P_5, P_3, P_2, P_10
and P_9. This Maximal Pseudo-Biclusters identifies another area that should
be further analyzed in the original dataset.Step 5. Re
onstru
tion
Once the maximal pseudo biclusters with high normalized relevance have been
identified, we recover the portions of the original dataset that these maximal
pseudo biclusters correspond to. This phase can be seen as the expansion of
the portions highlighted in the previous step. Algorithm 4.5 depicts the recon-
struction procedure. We assume that a hash map has been maintained (in the
prior steps), that, given a virtual user, returns the original users from which
the virtual user has been built (i.e., gives the association of virtual users to
user clusters). Now, the idea is simple. We start by creating a new Maximal
Pseudo-Cluster (Line 2) with no users assigned, and then, using the hash map,
we gradually add the original users into the bicluster (Line 3-5). The pro-
cedure returns the new maximal pseudo-bicluster. Thus, it identifies an area
of the original dataset that is worth inspecting. Therefore, for each maximal
pseudo-bicluster selected in Step 4, we reconstruct the corresponding origi-
nal pseudo-bicluster, and each of them identifies a given subset of the original
dataset. Compared with the original dataset, these subsets involve only few
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tion of the Original Portions1: pro
edure Re
onstru
t(MaximalPseudoBi
luster B = 〈U , P〉)2: 
reate new MaximalPseudoBi
luster B′ = 〈;, P〉;3: for User u ∈ U do4: B′.Add(HashMap(u))5: end for6: return B′7: end pro
edure
users and few permissions. So, they are easier to analyze using any role min-
ing algorithm, and this analysis can even be executed in parallel.

Figure 4.9(f) shows the result of the reconstruction of the Maximal Pseudo-
Bicluster highlighted in Figure 4.9(e). The Maximal Pseudo-Bicluster involves
the virtual users V_10, V _3 and V _2. Looking at Figure 4.9(c), it can be seen
that they respectively identify the sets: {U_11, U_10, U_12}, {U_3, U_4, U_5}
and {U_2, U_1}. For these users, only the permissions P_4, P_5, P_3, P_2 are
taken into consideration for the reconstruction, indeed only these permissions
belong to the highlighted Maximal Pseudo-Bicluster. It can be seen that, even
if the permission P_1 is granted to U_3, U_4, U_5, it will not be considered in
the reconstruction phase. Further, the portion of the original dataset that we
rebuild is effectively an area where we can find meaningful roles that involves
users belonging to different partitions. Also, it has to be considered, that
this portion of the original matrix involves the 51% of all the original user-
permission assignments, but only 4 permissions out of 10, and 7 users out
of 12. This gain will increase when thousands of users and permissions are
involved in the original dataset, and with the sparsity of the dataset.Step 6. Mining
Once the interesting portion of the dataset is reconstructed, any role mining
mining algorithm can be used to actually discover the roles. In effect, our
procedure is completely agnostic to the actual role mining methodology used
and serves to zoom attention to the interesting areas of the original dataset.
Therefore, Step 6 of our methodology corresponds to the independent analysis
of the reconstructed portions. Since the analysis is executed independently, it
can be also executed in parallel, thus further reducing the runtime complexity.
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4.3.2 Experimental Evaluation
We now experimentally validate our approach. To do this, we have evaluated
our approach on several datasets of differing characteristics, both real and syn-
thetic. We first discuss these datasets, then introduce the evaluation strategy,
and finally present the results achieved.Datasets
Our primary case study has been carried out on a large private organization
that has more than two thousand users, more than six thousand permissions,
and a total of more than 100,000 user-permissions assignments. In order to
preserve the privacy of the organization it is not possible to reveal more infor-
mation about the activities performed by the users, the applications used, and
the corresponding permissions granted. However, we actually had detailed
data on this dataset, including both user and permission attributes such as
“Job Title”, “Cost Center”, “Division”, “Organizational Unit”, “Application” etc.
Without using any compression, the binary matrix representing all of these
user-permissions assignments requires almost 12Gb of space. Using other
(sparse representation) data structures this requirement can be reduced, but
even considering only 2 bytes to store each one of the 100,000 user-permission
assignments (1 byte to store the user index, and 1 byte for the permission in-
dex), roughly 200Mb of memory space is required. Indeed, this dataset is not
the largest that we had available, but we choose it because it was still possi-
ble to analyze it using the standard approaches. Thus, we use this dataset to
compare the performance of our methodology, with respect to a traditional ap-
proach that performs the analysis of the whole dataset. Note that with larger
datasets traditional analysis becomes even more infeasible. Indeed, larger
datasets in our possession were impossible to analyze, both because computa-
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tional time and memory required.

To execute the first step of our methodology, we used a business attribute
that was at our disposal, that is the “Job Title”. As per this attribute, a total of
95 different partitions have been created during the “Partitioning” step.

In order to confirm the effectiveness of our methodology we analyzed also
several other access control datasets that are publicly available [29]. In par-
ticular, we analyzed all the dataset at our disposal with more than 1000 users.
A description of their main properties can be found in Table 4.2. Since no
business information is available for these datasets, we executed the Step 1
randomly partitioning the users in a number of partitions equal to the 1% of
the number of users.

To complete the evaluation, we applied our methodology to synthetic datasets
as well. Each dataset has been generated using the following procedure. We
created an empty matrix composed by 10000 rows and 1000 columns. In each
matrix, a given number n of subsets of rows and columns have been randomly
chosen. Each subset of rows, and each subset of columns, counts a number of
elements that are proportional to 100× x2 and 20× x2, where x is a random
number uniformly chosen between 0 and 1. The elements of the matrix that
belongs to one of such subsets are set to 1, while the other ones are set to
0. Using this procedure we generated different binary matrices, and we used
them as access control datasets that have 10000 users, and 1000 permissions.
In other words, we granted a permission to a specific user if, and only if, the
corresponding cell in the matrix was set to 1.Experiments Setup
In the following, we will report on several experiments that have been exe-
cuted to evaluate the performance of our methodology. In particular, since
our approach does not depend on any particular role mining algorithm, we
will execute our experiments searching for a general pattern inside our data:
the maximal biclusters. These patterns are related to the concept of closed
itemsets [83], that are used in the discovery of association rules, strong rules,
correlations, sequential rules, episodes, multidimensional patterns, and many
other important tasks [43].

In order to estimate the performance achieved, we will compare the results
with and without utilizing our approach. In particular, given the datasets pre-
viously described, we will search for maximal biclusters, and we will compare
this list of actual maximal biclusters with the maximal biclusters generated
by using our methodology. Since each maximal bicluster identifies a set of
users and a set of permissions, we use two similarities indices as metrics: the
similarity of two sets of users, and the similarity of two sets of permissions.
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where U1, U2 ⊆ USERSDe�nition 4.17 (Similarity of two sets of permissions)
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where P1, P2 ⊆ PERMS

Given the two lists of maximal biclusters, each element of the first list is
compared with all the elements in the second list. Among all these pairs, the
highest user and permission similarities are taken into consideration, and the
arithmetic mean of all the similarities (that we indicate with “Users Similarity”
and “Permissions Similarity”) is the index that we use to compare the two
lists of maximal biclusters . In summary, given the list of maximal biclusters
generated by our six-steps methodology and the one generated by considering
the whole dataset, high “Users Similarity” means that the two lists of roles are
very similar considering the users to role assignments. While, high “Permission

Similarity” means that the two lists of roles are very similar considering the
permission to role assignments. If the “Users Similarity” and the “Permission

Similarity” calculated as above are both equal to one, then the accuracy of our
six steps methodology is maximal, indeed it is able to elicit the same list of
maximal biclusters generated analyzing the dataset as a whole.Results
We first discuss the results achieved on our case study and then look at the
results with the other datasets. Figure 4.10(a) reports the “Permissions Simi-
larity” achieved. The number of swaps s used in Step 2 has been set equal to
100. The compression ratio used to determine the number of medoids in each
partition is depicted on the x-axis, while the values of users and permissions
similarities are reported on the y-axis. The results for different binarization
thresholds are reported. In particular, it can be noticed that in all the cases the
Permission Similarity is always greater than 90%(Figure 4.10(a)). It indicates
that we loose only around 10% of precision when adopting our methodology,
independent of the selected binarization threshold.
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As showed in Figure 4.10(b), the User Similarity is instead more sensitive.
This is mainly due do the fact that we are using a compression that involves
users instead of permissions. A low binarization threshold allows us to achieve
better results, indeed the best users similarity is reached when the binarization
threshold is equal to 0.6. In this case, using only around 5% of the users
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as medoids, we achieve an User Similarity higher than the 60%. When the
binarization threshold is higher, we reach however outstanding results: Using
the 25% of users, in all the cases the users similarity is greater than the 60%,
even when the binarization threshold is 1.

The complexity of Algorithm 4.3 is O
�

sk(n− k)
�

, therefore, a higher num-
ber of swaps s requires more effort. Figure 4.11, like Figure 4.10, reports
users and permissions similarities, but in this case the number of swaps exe-
cuted in Algorithm 4.3 is equal to 1000, that is ten times the case illustrated
in Figure 4.10. It can be seen that both the User Similarity and the Permission

Similarity, are not markedly different from the results achieved in Figure 4.10.
Therefore, already 100 swaps can be considered sufficient to achieve good re-
sults. Figure 4.12 compares the effort needed to search the maximal biclusters
without our methodology, with the effort needed to execute our methodology
with 100 and 1000 swaps. The effort is shown as a percentage: x% effort
indicates that our methodology requires only x% of the computational time
required without it. Figure 4.12(a) shows that the effort required is always
less than the 7% when s = 100. With only 5% of users as medoids, the effort
is even less than 5%.

The most important outcome of our six step methodology can be seen by
analyzing Figure 4.12(a), and Figure 4.10 together. It turns out that it is pos-
sible to achieve the 100% of Permission Similarity, and the 80% of User Sim-

ilarity with less than the 7% of effort. This largely confirms the effectiveness
and the efficiency of the proposed framework.
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As discussed above, we also analyzed several other access control datasets

that are publicly available [29]. In the following experiments, the thresh-
old t has been set to 0.6, and the value s to 100. Figure 4.13(a) shows the
Permission Similarity achieved when analyzing the four dataset described in
Table 4.2, while Figure 4.13(b) shows the User Similarity. It can be seen thatHP AMERICAS LARGE is the dataset that had the worst performance. This is
mainly due to the fact that this dataset has a larger number of permissions
than users. In cases like this, it is better to apply our methodology trying to
compress permissions instead that the number of users. In all the other cases
the permission similarity is higher than 80% when the compression ratio is
higher then 0.05, and the users similarity is higher than 60% when the com-
pression ratio is higher than 0.25. It is worth noticing that the results are
slightly worse than in the real case illustrated in figures 4.10(a) and 4.10(b).
This is mainly due to the fact that for the public datasets we do not have at
our disposal any business information to drive the partitioning step, leading to
assigning users randomly to the different partitions, and therefore users that
are not similar at all are likely assigned to the same partitions.

Figures 4.13(c) and 4.13(d) shows the Permission Similarity and the User

Similarity of the datasets that we randomly generated using the procedure
described in Section 4.3.2. Even in this case the results are similar to the
real datasets that we previously analyzed: the permissions similarity is always
higher than the users similarity, and a users similarity higher than roughly the
60% can be achieved when the compression ratio is higher than 0.25.
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5
Data Cleansing in Access Control Datasets

W hen dealing with any kind of real data, there must always be a
phase (usually referred to as data cleansing) in which noise and ir-
relevant data are removed from the collection. As a matter of fact,

most algorithms assume the data to be noise-free. This is of course a strong
assumption. Most datasets contain exceptions, invalid or incomplete informa-
tion, etc., which may complicate, if not obscure, the analysis process and in
many cases compromise the accuracy of the results. As a consequence, data
preprocessing becomes vital. Even if it is sometimes overlooked, data clean-
ing is one of the most important phases in the knowledge discovery process.
Further, reviewing the data during this preliminary step can lead to the gener-
ation of more meaningful and human understandable patterns. Indeed, noisy
data usually makes classical data mining algorithms to the discovery of mul-
tiple small fragments of the real clusters [55]. The problem is even worse for
clusters which cover many rows and columns, since they are more vulnerable
to noise [57].

The inaccurate data that can be found within a dataset can be usually
classified in two classes:

◮ missing values, namely portions of data that are unavailable or unob-
served [12].

◮ outliers, namely portions of data that are present but which appears to
be inconsistent with the remainder of that set of data [46].

Both missing values and outliers arise in many practical situations. For ex-
ample, some values can be out of the range of the measuring device, a signal
can arrive distorted or modified because of some error in the measurement,
indecision could arise due to the rounding of measurement values, etc.. When
a clean and complete dataset is required, as is the case of most data mining87
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and clustering techniques, data analysts typically have three options before
performing data analysis: to discard the rows of the matrix that contain miss-
ing data and outliers, to replace these data values with some constant, or to
estimate their values [74].

One solution for noise identification and removal problem could be to re-
peat the experiment. However, this approach is not always viable. Indeed,
depending on the investigation field and on the data that will be analyzed,
repeating the experiment for each suspicious value could either require a high
cost or even be impossible. Nevertheless, replacing the missing items with
“plausible” values or discarding outliers always gives better results than ig-
noring them. One possibility is to impute or discard them by analyzing un-
covered structures that reveal the nature of the relationships among the rows
and the columns of the binary matrix. This approach is rooted on the consid-
eration that in a binary matrix representing a given dataset, many rows and
many columns are implicitly bound to one another. For example, in a pale-
ontology dataset many sites (rows) are geographically close to each other, so
that it is predictable that they host the same species (columns), even if no
evidence have been found. Further, many species share some physical fea-
ture that strictly depends on the sites where they lived. In an access control
dataset, several users (columns) are similar with respect to the permissions
(rows) that are granted to them, so that it is possible that they have the same
job position within the organization. Furthermore, if a group of permissions is
used by a particular set of users, that may suggest that all of them are related
to a particular application.

Therefore, looking at the data makes it possible to uncover their embedded
relationships and leverage them to filter noise. Note that both relationships
between rows, and those between columns have a particular meaning, and
therefore both of them should be considered when trying to discover suspi-
cious values. In the literature, instead, only relationships between rows are
used for these purposes [3,33,39,64]. However, caution should be taken: val-
ues imputed or removed in this way are not real data. It is only an estimation,
and it could not reflect the real values.

The detection of suspicious values is not only restricted to data cleansing
applications. Indeed, it can be used in many other fields. For example, in
a recommendation system, a missing value can represent an item that will
probably attract the interest of a user. In an Intrusion Detection System, the
imputation of outliers in a dataset that describes network accesses to moni-
tored resources could be used to raise the required alarms. In many of these
cases, the matrix can slightly change during the time. For example, consider-
ing a matrix that describes friendship between users of a given social network,
imputed missing values can be used to suggest new friends of users. Each
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user can add or remove friendships at any instant, continuously modifying
the underlying dataset. In an Intrusion Detection System, accesses to the pro-
tected resources are added or deleted continuously, constantly modifying the
dataset over time. To the best of our knowledge, algorithms that aim at finding
suspicious data (missing values and outliers) do not take into account these
possible slight changes of the dataset. Indeed, they always need to completely
reprocess the whole dataset, without leveraging computation carried out over
“past” dataset—that could differ from the new one by just a single entry.

In this chapter, we will introduce a set of algorithms that are able to high-
light suspicious values within binary matrices: ABBA, ABBA⋆ and Fast-ABBA⋆.
The first is able to find missing values, the second is able to find both miss-
ing values and outliers, while the third introduces a fast incremental update
operation that can be used when a little modification of the original binary
matrix invalidates the previously computed results. We will test the perfor-
mances of these algorithms on access control datasets, showing that they can
be effectively used to isolate noise in this particular context.5.1 Handling Missing values in binary matri
es
An approach that is often used to impute missing values is the k-nearest neigh-

bors (KNN) [73]: for each row that has a missing value in the column i, the
k-nearest rows that do not have a missing value in the column i are used to
impute the missing value. This set of k-nearest rows is found according to
some similarity metric. In turn, the missing value is replaced with the aver-
age value for the cells on the column i within the k-nearest rows. One of the
critical issues using the KNN is the choice of the parameter k. On one hand,
if parameter k has a high value, rows that are significantly different from the
analyzed ones can decrease the imputing accuracy. Indeed, a “neighborhood”
that is too large could decrease the imputing accuracy. On the other hand, if
k is too small, an overemphasis is given to small patterns. In fact, the optimal
selection of k likely depends on the size of the identifiable clusters within the
given dataset. Another aspect of applying KNN is the choice of a threshold t to
decide if the imputed value has to be a 0 or a 1. Once each missing value has
been imputed, it assumes a value between 0 and 1: the threshold t is used to
switch it to 1 or to 0. To the best of our knowledge, the most frequently used
approaches for missing value imputation in binary matrices always require
that a parameter comparable to k is fixed a-priori [51,62,73].

In this section we address the challenge posed by the imputation of flagged
and not-flagged missing values. A binary matrix with flagged missing values is
a matrix where some elements are set to ‘∗’. Our target is to impute these val-
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ues by leveraging identifiable patterns within available data. In particular, we
propose an algorithm referred to as ABBA (Adaptive Bicluster-Based Approach)
that leverages the identifiable patterns within the data to infer missing val-
ues in binary matrices. Our approach provides several distinguishing features
when compared to the other approaches similar to the k-nearest neighbors
(KNN). The most important one is that ABBA does not require to fix any
parameter a-priori. Indeed, the main issue in KNN-like approaches is that a
fraction of the rows, fixed before running the algorithm, is used to impute a
missing value, regardless of the identifiable patterns within the data. Further,
our algorithm shows a better computational complexity for a wide range of
parameters when compared to KNN. Moreover, the relevance of missing val-
ues are inferred by only one algorithm run. Another distinguishing feature
is that our approach leverages the actual patterns that are identifiable within
the available data, thus making it adaptive. Conversely, changing k in KNN
requires a new run of the algorithm. Thus, obtaining the desired results with
more computational time.Theorem 5.1 All the generators of a maximal pseudo-bicluster B = 〈R, C〉 be-

long to rows and columns that have 1’s in the same positions, formally:

∀mi j, mℓk ∈ M : mi j and mℓk generate B =⇒

∀t ∈ Ĉ , ∀s ∈ R̂ : mi t = 1, mℓt = 1, ms j = 1, msk = 1

PROOF The proof is by contradiction. Let mi j and mℓk be two elements of the
matrix M that generate respectively the maximal pseudo-bicluster B = 〈R, C〉

and B′= 〈R′, C ′〉, and suppose B = B′. If mi j and mℓk belong to two columns
that do not have 1’s in the same positions, then R 6= R′; indeed, R = {s ∈ [n] |

ms j = 1} and R′= {s ∈ [n] | msk = 1}, and so B 6= B′. If mi j and mℓk belong
to two rows that do not have 1’s in the same positions, then C 6= C ′; indeed,
C = {t ∈ [m] | mi t} and C ′= {t ∈ [m] | mℓt}. Therefore, it must be B 6= B′,
and this is a contradiction. �Lemma 5.1 Let MPBS be the set of all the maximal pseudo-biclusters that exist

within the matrix M. Then, |MPBS| ≤ |M |.

PROOF Proof follows from the previous observations. Indeed, each cell that is
equal to 1 generates exactly one maximal pseudo-bicluster, and each maximal
pseudo-bicluster is generated by at least one cell. Since we have exactly |M |
cells equal to 1 within the matrix, then |MPBS| ≤ |M |. �
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The reason why we use the maximal pseudo-bicluster concept is that it

can be used to impute missing data, for both flagged and not-flagged missing
values. For each element mi j ∈ M that is equal to 1, it is possible to generate a
maximal pseudo-bicluster B = 〈R, C〉 from mi j by setting R = {ℓ ∈ [n] | mℓ j =

1} and C = {k ∈ [m] | mik = 1}. As we have seen before, a bicluster can
contain 0, 1, and ‘∗’ in the case of matrices with flagged missing values. The
intuition is that the cells of a maximal pseudo-bicluster equal to 0 (in the not-
flagged matrices) or equal to ‘∗’ (in the flagged matrices) are likely to be ‘1’
since they belong to a pattern. Note that the less cells are equal to 0 and/or ‘∗’
within a maximal pseudo-bicluster B, the more B is close to being a bicluster,
and the more the missing values contained in B are likely to be 1’s. This is the
rationale that we will use to impute missing data in binary matrices.

We will now introduce another relevance index for each element mi j ∈ M

that is based on the relevance of maximal pseudo-biclusters. With this in-
dex, we will be able to evaluate missing values mi j by leveraging all the pat-
terns represented by the maximal pseudo-bicluster which mi j belongs to. This
means that each missing value of M will be evaluated using all the patterns
(i.e., maximal pseudo-roles) that we are able to discover within the available
data, weighted by their relevance.De�nition 5.1 (Relevan
e of a Cell) Given an element mi j ∈ M , and let
MPBS be the set of all existing maximal pseudo-biclusters within the data,
the relevance of mi j is the sum of the relevances ̺(B) of all the maximal
pseudo-biclusters B which mi j belongs to. Formally:

σ(mi j) =
∑

B∈MPBS:mi j∈B

̺(B).

It is possible to normalize the value of each σ(mi j)with respect to the maximal
index found in the matrix M . In this way, the index value will range from 0
to 1. In the following, we will always consider this normalized version. By
evaluating σ(mi j) for a given mi j that is equal to ‘∗’ (flagged matrix) or 0 (not-
flagged matrix) we can impute the missing value according to the identified
patterns within the available data. In this way, each missing value is imputed
considering all and only those patterns that could involve it. This does not
happen in other approaches such as KNN. Indeed, in that case each missing
value is evaluated using a fixed number of rows (i.e., the k-nearest rows):
it may occur that the result is biased, because of not having considered a
sufficient number of relevant rows, or, even worse, by averaging rows that
are completely unrelated. Conversely, in our approach each missing value
is evaluated using a variable number of patterns, that depends on the given
data set. A high value for the index σ(mi j) indicates both a high relevance
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and a high number of patterns involved. As for flagged matrices, we will
evaluate the relevance index for each element equal to ‘∗’. Instead, when we
are dealing with not-flagged missing values, we will evaluate the relevance of
all the elements mi j ∈ M such that mi j = 0.5.1.1 ABBA: Adaptive Bi
luster-Based Approa
h
In order to identify an algorithm that evaluates the relevance of missing val-
ues, we first make some considerations on the introduced indices. In particu-
lar, definitions 4.14 and 5.1 suggest a way to practically compute the relevance
values. By simply combining the two indices, the following holds:

σ(mi j) =
∑

B∈MPBS:mi j∈B

̺(B) =
∑

B∈MPBS:mi j∈B

∑

mℓk∈B

γ(mℓk, B).

where γ(mi j, B) is defined as

γ(mi j, B) =

(

1, mi j generates B;

0, otherwise.

Notice that elements which do not belong to B cannot generate it, thus we can
replace B with M in the second sum. Moreover, only elements equal to 1 can
be generators. Hence, we can rewrite the previous equation in the following
way:

σ(mi j) =
∑

B∈MPBS:mi j∈B

∑

mℓk∈M :mℓk=1

γ(mℓk, B)

=
∑

mℓk∈M :mℓk=1

∑

B∈MPBS:mi j∈B

γ(mℓk, B),

Since γ(mℓk, B) holds true only when mℓk generates B, the second sum has
non-zero elements only when B is the maximal pseudo-bicluster generated by
mℓk, namely Bmℓk

. Additionally, according to the second sum we have that mi j

must belong to maximal pseudo-biclusters Bmℓk
. Formally:

σ(mi j) =
∑

mℓk∈M :mℓk=1

ρ(mi j, Bmℓk
) (5.1)

where

ρ(mi j, Bmℓk
) =

(

1, mi j ∈ Bmℓk

0, otherwise.
(5.2)



5.1. Handling Missing values in binary matri
es 935.1 The ABBA algorithm1: pro
edure EvaluateMissing(M)2: for all mℓk ∈ M s.t. mℓk = 1 do3: for all mi j ∈ Bmℓk
s.t. mi j = `∗' do4: mi j .
ount← mi j .
ount+ 15: end for6: end for7: return M8: end pro
edure9: pro
edure Binarize(M , t)10: for all mi j ∈ M s.t. mi j .
ount > 0 do11: if mi j.
ount > t then12: mi j ← 113: else14: mi j ← 015: end if16: end for17: return M18: end pro
edure

We used Equation 5.1 to define an algorithm referred to as ABBA (Adap-

tive Bicluster-Based Approach), that is described in Algorithm 5.1. First, we
calculate the set of all maximal pseudo-biclusters by scanning all elements
mi j ∈ M : mi j = 1. In turn, the relevance of missing values is determined
by checking their membership to the generated maximal pseudo-biclusters. In
this way, all the identifiable data patterns that could have some relation with
the missing value are involved in its imputation, according to their relevance.

Procedure EvaluateMissing is next described. The loop from Line 2 to
Line 6 generates a maximal pseudo-bicluster for each element mi j = 1 of the
matrix M . The loop from Line 3 to Line 5 increases the counter of each miss-
ing value contained in the maximal pseudo-bicluster just created. Notice that
the condition mi j = ‘∗’ in Line 3 assumes that we are dealing with a flagged
matrix. If this is not the case, we can just replace this condition with mi j = 0.
At the end of the algorithm, each missing value (i.e., elements with mi j = ‘∗’
in the flagged version, mi j = 0 in the not-flagged version) will contain a value
that corresponds to σ(mi j) in its data field referred to as ‘count’. Then, each
counter can be optionally normalized with the maximum value found for the
index. After having calculated the relevances through EVALUATEMISSING, the
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procedure BINARIZE can be called. It takes in input the matrix M and a thresh-
old t for the relevance index, thus giving back the final binarized version of
M .

The correctness of Algorithm 5.1 is guaranteed by Equation 5.1. As for its
computational complexity, it is O(µ |M |), where |M | is the number of elements
of the matrix M that are set to 1, and µ is the number of missing values.
Indeed, the first loop is executed for each element of the matrix M that is
equal to 1. The maximal pseudo-bicluster can be determined in constant time,
for example by using an hash table that gives all columns with 1’s for a given
row, and all rows with 1’s for a given column—the hash table can be created
in O(|M |). The internal loop is executed at most µ times, and the operation
of Line 4 can be executed in constant time. The worst case is when µ= |M |=
(nm/2), namely when half the matrix is filled by 1’s half by ‘∗’ (in the flagged
version) or 0’s (in the not-flagged version). Yet, this seldom happens. When
the number of missing values represents a small fraction of the data, or the
matrix is sparse, our approach outperforms other algorithms such as KNN,
that has a computational complexity O(n2m) [73].Threshold Tuning The multiple imputation method [66] is a simulation
technique that replaces each missing data with a set of m > 1 plausible values.
The m versions of the complete data are analyzed by standard complete-data
methods. According to this definition, our approach can be considered a mul-
tiple imputation method. Indeed, we first impute missing values with the
procedure EVALUATEMISSING described in Algorithm 5.1. In turn, by changing
a threshold t that does not require the complete re-imputation of missing data,
it is possible to generate m versions of the dataset through the procedure BI-
NARIZE. Each version can subsequently be analyzed by trying to find the one
that better reaches the target function. The tuning of the threshold t depends
on the final objective of the data analysis. First, a metric must be defined to
measure how well the objective has been reached. Then, it is possible to use
this metric to evaluate the imputed matrix. This can be an iterative process,
executed several times with different thresholds, thus choosing the threshold
value that provides the best result.

As a possible application of our algorithm, consider the problem of mini-
mizing the number of biclusters required to “cover” all the 1’s within the ma-
trix. Many real-world examples require the identification of a “compressed”
matrix representation through a list of biclusters, such as minimizing the
number of relationships required to manage permissions granted to users
[6, 7, 10, 11]. In particular, let us consider the case of a binary access control
matrix, where rows represent users, and columns represent permissions. A
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cell representing a user-permission assignment is then set to 1 if the user must
have the permission granted, 0 if not, and ‘∗’ in the case that he could have that
permission granted but it is not strictly needed to accomplish his work, or in
the case that it is not clear whether he should have that permission granted or
not. The so called role mining problem [9] is to find subsets of users that share
the same subset of permissions minimizing a given cost function, thus creat-
ing a set of roles that can be efficiently managed by security administrators.
Typically, missing values in this scenario are neglected, or more often they are
not flagged missing values. Thus, the quality of the clustering is severely bi-
ased by them. Yet, automatically switching all the imputed values might not
always be appropriate. Rather, it would be advisable to submit these results
to a checker. In our example, we should not forget that security still remains
the main objective. Hence, the system administrator should carefully check
the missing values, one by one. Checking all possible missing values could be
an unfeasible task. By having a sorted list of the missing user-permission rela-
tions based on the computed relevance index, a system administrator can only
focus on the most relevant ones, evaluating them in the reverse order. In this
case, a reasonable metric for the objective achievement could be the number
of generated biclusters. The main requirement is thus identifying which miss-
ing values actually reduce the final number of biclusters if switched to 1. In
this way, we only focus on the most “useful” values. Once missing values are
imputed through EVALUATEMISSING, it is only necessary to apply a clustering
algorithm over the data sets obtained through the procedure BINARIZE by using
given list of thresholds. Then, the threshold that assures the best result (i.e.,
the minimum number of biclusters) is chosen. Conversely, in KNN requires to
choose the threshold t , and the parameter k should be changed as well. Yet,
by changing that parameter k we also need to recompute all the missing data,
that is definitely more expensive.5.2 ABBA⋆: Missing Values and Outliers Dete
-tor
In this section we propose a novel algorithm that is able to evaluate both
missing values and outliers: ABBA⋆. The idea behind this algorithm is the
same that is behind ABBA: we leverage the pseudo-bicluster concept in order
to assign a relevance to the cells of the matrix M . High relevances for cells
containing 0’s are typical of missing values, low relevances for cells containing
1’s are typical of outliers. ABBA⋆ is listed as Algorithm 5.2, and described in
the following. The loop from Line 2 to Line 6 generates a maximal pseudo-
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ess Control Datasets5.2 ABBA⋆: Missing Values and Outliers Dete
tor1: pro
edure EvaluateRelevan
e(M)2: for all mℓk ∈ M s.t. mℓk = 1 do3: for all mi j ∈ Bmℓk
s.t. mi j = `∗' do4: mi j.
ount← mi j .
ount+ 15: end for6: end for7: return M8: end pro
edure9: pro
edure FindMissingsAndOutliers(M , t1, t2)10: Missings← ;11: Outliers← ;12: for all mi j ∈ M s.t. mi j = `∗' do13: if mi j .
ount > t1 then14: Missings←Missings∪ {mi j}15: end if16: if mi j .
ount < t2 then17: Outliers←Outliers∪ {mi j}18: end if19: end for20: return M ,Missings,Outliers21: end pro
edure

bicluster for each element mi j = 1 belonging to the matrix M . The loop from
Line 3 to Line 5 increases the relevance of each cell of the maximal pseudo-
bicluster just created. Notice that the condition mi j = ‘∗’ in Line 3 assumes
that we are dealing with a flagged matrix. If this is not the case, we can
just execute this loop for each mi j ∈ Bmℓk

. At the end of the algorithm, each
suspicious value (i.e., elements with mi j = ‘∗’ in the flagged version, or each
mi j in the not-flagged version) will contain a value that corresponds to σ(mi j)

in its data field referred to as ‘count’.
After having calculated the relevances through EVALUATERELEVANCE, the

procedure FINDMISSINGSANDOUTLIERS can be called. It takes in input the ma-
trix M and two thresholds t1 and t2. All the cells containing a value greater
than t1 are highlighted as missing values, while all the cells containing values
lower than t2 are highlighted as outliers.
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remental UpdateOperation
The output of ABBA⋆ is used to evaluate suspicious values in binary matri-
ces. Like many other algorithms with the same aim, a little modification of
the original binary matrix invalidates the previous algorithm outcome, requir-
ing a new computation that does not leverage previous results. However, the
particular structure of ABBA⋆ allows for an incremental update operation that
re-evaluates suspicious data considering partially modified data without the
need to recompute all the values. This is particularly useful whenever a reac-
tive or a real time algorithm is needed, or simply when few dataset entries are
modified.

For example, let us consider the use of ABBA⋆ in the social network field.
Suppose to have a binary matrix describing the existing friendship relation-
ships among users. Here rows and columns represent users, while a 1 indi-
cates that the corresponding two users are listed as friends. The matrix can be
quite large, counting millions of users. ABBA⋆ can be used to propose possible
new friendships to the users. Note that each user adding or removing friends,
contributes to the matrix modification. Therefore, a standard algorithm needs
to update its results after each friendship modification, making its use almost
impracticable in this setting. However, the update operation of ABBA⋆ intro-
duced in the following allows to efficiently execute the re-imputation of all
the suspicious values, while incurring only a computational complexity that
is linear with the cardinality of the dataset—in contrast with the quadratic
complexity required by recomputing all the values.

The idea behind the update operation is explained in the following. ABBA⋆

is based on the maximal pseudo-biclusters concept, and all the maximal pseudo-
biclusters generated by each cell m ∈ M are used to impute suspicious values.
Maximal pseudo-biclusters are generated starting from all the cells filled by
1. We only have two possible modifications of the original binary matrix, that
is when some 0’s is switched to 1’s, and/or some 1’s is switched to 0’s. Let
us denote a modified cell with mst . In the first case (0 to 1), a new maxi-
mal pseudo-bicluster has to be considered in the imputation of the relevance,
namely the one generated by mst . In the second case (1 to 0), a maximal
pseudo-bicluster that has been previously used in the computation (the one
generated from mst) must not be considered anymore in the computation of
the relevance. By switching the value of a cell, the modification of the area
of other maximal pseudo-biclusters has to be considered as well. In fact, by
switching a cell from 0 to 1 (or from 1 to 0), some maximal pseudo-biclusters
could increase (decrease) their area, then covering other cells. The maximal
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pseudo-biclusters that can be influenced by a switch are only those generated
by cells that are in the same column or in the same row of the switched cell.
Indeed, only the area of those maximal pseudo-biclusters can change. In the
case of 0 to 1, the maximal pseudo-bicluster generated by a cell that is in the
same row of mst will extend its area by also covering some cells in row s, while
the maximal pseudo-bicluster generated by a cell that is in the same column
of mst will extend its area by also covering some cells in column t . In the case
of 1 to 0, the maximal pseudo-biclusters involved are the same, but they will
decrease their area not covering anymore row s or column t .

The previous considerations can be formalized with the following two the-
orems:Theorem 5.2 By switching the value of a cell mst ∈ M from 0 to 1, the relevance

of a cell mi j ∈ M will increase by the quantity
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where the exponents (0) and (1) indicate respectively the configuration of the

matrix before and after the switch.

PROOF The binary value of a cell mi j ∈ M before and after switching the value

of mst , is indicated respectively with m
(0)
i j , and m

(1)
i j . Thus, the relevance of

mi j ∈ M before switching the cell mst ∈ M can be written as:
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while the relevance of mi j after the switch can be denoted as:

σ(m
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(1)
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According to the previous observations, the relevance of m
(1)
i j can change only

when it is involved in some pseudo-bicluster influenced by the value switch of
mst. Therefore, we only focus on these kinds of pseudo-biclusters. In particu-
lar, it can be observed that such pseudo-biclusters are only those generated by
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mst , that is by cells that equal 1 and are in the row s, and, by cells that equal
1 and are in the column t . Thus, the previous equation can be written also as:
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The first term corresponds to the contribution of the new maximal pseudo-
bicluster introduced, the second one is the contribution of the maximal pseudo-
biclusters that could have been changed after the switch of mst, while the last
one is the contribution of the maximal pseudo-biclusters that remained un-
changed. Indeed, only the maximal pseudo-biclusters generated by a cell that
is in the same row, or in the same column of mst are influenced by the switch.

The second term of Equation 5.6 can be further decomposed by considering
that the modified maximal pseudo-biclusters extended their area by including
at most row s or column t , namely:
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In Equation 5.7, the first term represents the contribution of the old maxi-
mal pseudo-biclusters, that is those built by considering mst = 0, whereas the
other two terms only consider the extended portion of the maximal pseudo-
biclusters generated by the elements in row s or column t . Indeed, by con-
sidering the bicluster generated from a cell msk that is in the same row of
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mst, when mst is switched, it will extend its area to also contain column t .
A generic cell mi j will be contained in the extended portion of this maximal
pseudo-bicluster only if j = t and the cell mik is set to 1. In the same way, by
considering the bicluster generated from a cell ml t that is in the same column
of mst , it will extend his area to also contain row s. A generic cell mi j will
be contained in the extended portion of this maximal pseudo-bicluster only if
i = s and the cell ml j is set to 1.

Putting all together, the relevance of a cell mi j ∈ M after the switch of mst

can be computed as:
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Since we are interested in the difference between σ(m(1)i j ) and σ(m(0)i j ), we
have that:
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(5.8)

The fourth term of the sum considers all the cells mlk that are not in the
same row, or in the same column of mst . Since the maximum pseudo-bicluster
generated by these elements does not change after mst has been switched, it
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can be written also as
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By simplifying Equation 5.8, we have that:
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The previous equation corresponds to the relevance increment after mst

have been switched from 0 to 1, thus completing the proof. �

The following theorem can be proved as well:Theorem 5.3 By switching the value of a cell mst ∈ M from 1 to 0, the relevance

of a cell mi j ∈ M will decrease by the quantity
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PROOF The proof is a rewriting of the proof of Theorem 5.2. �

By leveraging theorems 5.2 and 5.3, we are able to exactly compute mod-
ifications of the relevances when a change of the matrix occurs. The update
function listed in Algorithm 5.3 is a direct application of these two theorems. It
is described in the following. From Line 2 to Line 6, it is checked whether mst

is switching from 0 to 1, or from 1 to 0. Depending on the kind of switch exe-
cuted, the relevance will be increased or decreased. The rest of the algorithm
is composed by three loops, each one updating the cells involved in the three
terms of Equation 5.9. The loop from Line 7 to Line 9 increases (or decreases)
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ess Control Datasets5.3 Fast-ABBA⋆: In
remental ABBA1: pro
edure Update(mst)2: if mst swit
hes from 0 to 1 then3: δ←+14: else {mst swit
hes from 1 to 0}5: δ←−16: end if7: for all mi j ∈ B(mst) s.t. mi j = `∗' do8: mi j .
ount← mi j .
ount+ δ9: end for10: for all mi j ∈ m∗t s.t. mi j = `∗' do11: for all msk ∈ ms∗ s.t. msk = 1 do12: if mik = 1 then13: mi j .
ount← mi j .
ount+ δ14: end if15: end for16: end for17: for all mi j ∈ ms∗ s.t. mi j = `∗' do18: for all mℓt ∈ m∗t s.t. mℓt = 1 do19: if ml j = 1 then20: mi j .
ount← mi j .
ount+ δ21: end if22: end for23: end for24: return M25: end pro
edure
the counter of all the cells that are contained in the maximal pseudo-bicluster
generated by mst. It corresponds to the first term of Equation 5.9, executed
for all the cells that can be modified by this term. The loop from Line 10 to
Line 16 is only executed for the cells that are in the same column of mst . These
cells are the only ones involved in the second term of Equation 5.9, and each
one is increased (or decreased) by executing the internal loop. In particular,
the internal loop increases/decreases the relevance of a cell if the condition is
satisfied. In the same way, the third loop is executed for all the cells that are
in the same row of mst . Each one is increased/decreased by the internal loop
if the condition is satisfied. This third loop corresponds to the third term of
Equation 5.9.

Since Algorithm 5.3 is derived from the above equations and theorems, its
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correctness is assured. Moreover, since it is only composed by finite loops,
than its completeness is also assured. As for the computational complexity,
it is O(n× m). Indeed, the first loop is executed by considering all the cells
belonging to the maximal pseudo-bicluster generated by the modified cell, that
are at most n×m. The second loop is executed over all the cells in the row s

(that are at most m), and for each one the internal loop is executed over all
the cells belonging to the column t (that are at most n), giving a complexity
of O(n×m). Also the third loop can be executed in O(n×m). Indeed, it is
executed over all the cells in the column t (that are at most n), and for each
one the internal loop is executed over all the cells belonging to the row s (that
are at most m). All the other operations can be executed in constant time.
In particular, it can be used a hash table that gives all columns with 1’s for a
given row, and all rows with 1’s for a given column—that is, the same hash
table defined for ABBA⋆. Thus, the total computation complexity is equal to
O(n×m).5.4 Experimental Results
In this section, we test the quality of the results produced by our algorithms
and discuss the achieved performances. First, we report on the results of
ABBA⋆ on synthetic datasets, considering both missing values and outliers.
Then, we test the performances of both ABBA⋆ and Fast-ABBA⋆ on real data,
showing that the latter is much faster than the former. Indeed, dealing with
real datasets the incurred computational overhead is much lower than in the
worst case captured by the big O notation. Further, we directly compare with
KNN, showing that ABBA⋆ is much more reliable in all the cases. The hard-
ware used for the experiments was: a notebook with an Intel Pentium M pro-
cessor at 1.86 GHz, and 2 GB RAM at 782 MHz, the algorithms have been im-
plemented in Java, and the simulations have been executed in a GNU/Linux
operating system (Ubuntu 10.04).

To assess the quality of the achieved results, we introduce a measure based
on the Jaccard’s coefficient that has been already used in [33] to compare the
similarity of two matrices. Let ni j be the number of entries on which two ma-
trices M and R have values i and j, respectively. Thus, n11 is the number of
detected mates, n00 is the number of non-mates, while n10 and n01 count the
disagreements between the true and suggested solution. The Jaccard’s coef-
ficient is defined as n11

n11+n10+n01
. It represents the proportion of the correctly

identified mates over the sum of the correctly identified mates plus the to-
tal number of disagreements. Hence, the Jaccard’s coefficient should score
one when all the suspicious values are correctly identified. Conversely, the
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more this index is closer to zero, the less the two matrices can be consid-
ered similar. Thus, we use the Jaccard coefficient to evaluate the similarity
between imputed and original matrices, allowing us to compare the perfor-
mances achieved by different algorithms over the same dataset.

In the following simulations, when dealing with synthetic data, we first
generate a matrix M . Then, uniformly at random, we flip a fraction of the
elements of M , generating a new matrix M ′. In turn, M ′ is given in input to
our algorithm, which generates a matrix R. Using the Jaccard’s coefficient to
measure the similarity of R (the rebuilt matrix) and M (the original matrix),
we capture the quality of the rebuilt matrix, that is, how close it is to the
original one (M).Testing Missing Values Imputation
To implement our experiments on synthetic datasets, we generated sample
matrices composed by 600 rows and 100 columns. Each matrix has been
generated with the procedure described in the following. First, 20 subsets
of rows and columns have been randomly chosen. Each subset of rows, and
each subset of columns, counts a number of elements that are proportional toMaxRows× x y and MaxCols× x y , where x is a random number uniformly cho-
sen in the interval [0,1], while y, MaxRows and MaxCols are integer variables.
The elements of the matrix M that belongs to one of such subsets are set to 1,
while the other ones are set to 0. The exponent y allows to change the num-
ber of small and large patterns created. Note that y = 1 corresponds to the
uniform distribution. By increasing y we are able to generate a higher number
of patterns of small dimension, and some of high dimension. The noise has
been introduced randomly selecting cells equals to 1, and setting them to 0.
We indicate with MissingRate the fraction of cells of M that we flipped using
this procedure.

In order to show the advantages provided by our approach, we compared
our algorithm with KNN. Table 5.2 shows a summary of the results for sev-
eral sample matrices. To be fair, we chose to report several results for KNN,
obtained using different k. However, we want to highlight that in a real im-
plementation selecting the best k corresponds to an extra overhead that is not
needed in our algorithm. Each row of the table corresponds to a sample ma-
trix generated as above using the indicated parameters, and y = 5. To have
more reliable results, the results correspond to the average of 100 simulations,
where the threshold t assures that the best results is reported. The best result
for each configuration in a row is highlighted in gray. It can be seen that our
algorithm performs better than KNN (for any k used). The difference is more
noticeable when the matrix is sparse (lower values for MaxRows and MaxCols),



5.4. Experimental Results 105Table 5.1 Outliers Imputation with ABBA⋆. The Ja

ard 
oe�
ient between theoriginal and the imputed matrix is reported in ABBA⋆ 
olumn.MaxRows MaxCols OutliersRate ABBA⋆20 20 0.1 0.9800.2 0.9670.3 0.9580.4 0.9470.5 0.94530 30 0.1 0.9780.2 0.9680.3 0.9590.4 0.9530.5 0.95160 60 0.1 0.9780.2 0.9670.3 0.9570.4 0.9510.5 0.949
and above all when the number of missing values is high.Testing Outliers Imputation
As for the outliers detection, we conducted an experiment similar to the pre-
vious one. In this case, the original matrix is composed by 1,000 rows and
1,000 columns. Table 5.1 reports on the results achieved. Data has been gen-
erated using the previously described process. However, the noise has been
introduced selecting a fraction of random cells of M equal to 0 (indicated asOutliersRate in the table), and setting them to 1. It can be seen that, after
executing the outliers imputation using ABBA⋆, in all the cases the similarity
of the imputed matrix and the original one is above the 94%. Notice that this
happens also when the noise introduced is extremely high. Even with few pat-
terns of maximum 20× 20 cells it is able to distinguish them from the noise.
This shows the strong reliability of ABBA⋆ to high rates of random noise.
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Table 5.2 A 
omparison between KNN and ABBA⋆. Values in KNN and ABBA⋆ 
olumns report the Ja

ard 
oe�
ientbetween the original and the imputed matrix.MaxRows MaxCols MissingRate KNN(4) KNN(16) KNN(32) KNN(64) ABBA⋆

20 4

0.1 0.910 0.916 0.918 0.919 0.935
0.2 0.825 0.837 0.844 0.845 0.860
0.3 0.706 0.717 0.717 0.718 0.777
0.4 0.543 0.550 0.555 0.556 0.676
0.5 0.482 0.491 0.492 0.494 0.562

30 6

0.1 0.883 0.893 0.898 0.899 0.945
0.2 0.783 0.785 0.792 0.798 0.884
0.3 0.706 0.716 0.717 0.721 0.811
0.4 0.615 0.621 0.623 0.623 0.801
0.5 0.500 0.510 0.511 0.511 0.611

60 8

0.1 0.909 0.923 0.926 0.927 0.951
0.2 0.819 0.834 0.838 0.842 0.890
0.3 0.708 0.721 0.725 0.725 0.811
0.4 0.613 0.625 0.625 0.625 0.731
0.5 0.501 0.508 0.514 0.514 0.648

90 12

0.1 0.939 0.943 0.943 0.943 0.959
0.2 0.850 0.867 0.870 0.870 0.910
0.3 0.746 0.765 0.769 0.774 0.838
0.4 0.616 0.635 0.645 0.651 0.767
0.5 0.504 0.517 0.517 0.529 0.682

120 16

0.1 0.935 0.938 0.942 0.945 0.949
0.2 0.826 0.831 0.831 0.831 0.966
0.3 0.769 0.789 0.796 0.799 0.925
0.4 0.615 0.637 0.641 0.644 0.855
0.5 0.555 0.584 0.592 0.592 0.783
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We tested our algorithm on real data as well. In particular: first, we compared
the mean time to recompute all the relevances from the beginning, with the
mean time required by the update function introduced in Section 5.3, then we
compared our algorithm with KNN. Since we ran the experiments in a mul-
titasking environment, the reported results are an upper bound on the real
computation time. However, we want to use them to show the performances
of the introduced update function. Indeed, even if its computational com-
plexity is linear with the dataset size, the worst case rarely happens in a real
scenario. Experiments conducted over many real datasets show that the actual
performances are even better than the expected one.

Figure 5.1 reports on the comparison of the computational time needed to
update the suspicious values when a modification of the source data occurs.
The reported times correspond to the mean of 1000 simulations, while the
error bars correspond to their standard deviation. The analysis has been con-
ducted over 8 datasets publicly available concerning several real-world access-
control scenarios [59]. In Table 5.3 the main properties of these datasets are
summarized. Figure 5.1(a) reports the mean times needed to recompute all
the values from scratch. It can be seen that when the dataset is quite large, as
in the case of “America Large” and “America Small”, the time needed to recom-
pute all the values is around 45 seconds in the first case, and 35 in the second
one. However, for all the remaining datasets the mean requested time is lower
than 10 seconds. Comparing the properties of the datasets with the compu-
tational time needed to find missing values and outliers, it turns out that the
time to execute this computation depends on the dataset size. Instead, Fig-
ure 5.1(b) shows the time needed to execute the update function introduced
in Section 5.3. It can be noticed that in all the cases the mean time is lower
than 1 second, and above all not affected by the size of the dataset. Indeed,
even if the computational complexity of the update function is O(nm), where
n is the number of rows and m is the number of columns, this is only the worst
case, that seems to be really unlikely in real world datasets. Considering that
a dataset could be even larger than “America Large”, it appears noticeable that
the introduction of the update function allows the use of ABBA⋆ also for larger
datasets, and where the real-time re-computation of the suspicious values is
needed.

In addition to the time performances discussed above, we conducted other
tests to evaluate the performances of our algorithms against our competitors.
Since the experiments that we are going to introduce are computationally in-
tensive, we selected two of the height datasets previously introduced, that is
“Domino” and “Emea”. We use the following procedure to generate datasets
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5.4. Experimental Results 109Table 5.3 Main properties of the real world datasets used in our tests.Dataset Rows Columns |Dataset|Ameri
a Small 3,477 1,587 105,205Ameri
a Large 3,485 10,127 185,294Domino 79 231 730Apj 2,044 1,164 6,841Emea 35 3,046 7,220Fire1 365 709 31,951Fire2 325 590 36,428Customer 10,021 277 45,427
based on “Domino” and “Emea”, but containing missing values and outliers:1. We add to the existing dataset a number of rows equal to the 33% of

the original number of rows. These rows are copies of existing rows
randomly selected;2. We modify the new rows adding missing values, or outliers (depending
on the case that we are going to analyze). In the first case, we switch
each existing 1 to 0 with a probability of the 5%, in the second case we
switch each 0 to 1 with the same probability.

By varying the threshold from 0 to 1, we generate several ROC graphs for both
our algorithm and the KNN based algorithms. A ROC graph shows the false
positive rate (also called specificity, that is the ratio between true negative
and the sum of true negative and false positive) on the X axis, and the true
positive rate (also called sensitivity, that is the ratio between true positive and
the sum of true positive and false negative) on the Y axis. These graphs are
used to estimate the performances of classifiers. Indeed, our test can be read
as a classification problem: we are interested in evaluate missing values and
outliers correctly classified. In a ROC graph, the point (0,1) is reached by a
perfect classifier: it classifies all positive cases and negative cases correctly. In
the following, each point that is shown in the graphs is the mean of 10 runs.
For each run we generated a new dataset following the procedure described
above, and we evaluated missing values and outliers varying the threshold
from 0 to 1 with steps of 0.001.

Figure 5.2 shows the results related to the missing values. To be fair, we
executed the experiments using several values for the parameter k used in
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KNN, and we find out that the best results are achieved for k = 8 in both the
datasets. However, we want to stress the fact that our algorithm does not need
to set up such a parameter, resulting in a more straightforward approach. The
figure shows the results achieved by our algorithm and for KNN with k = 8
and k = 32, that we indicate with KNN(8) and KNN(32). In the case of
“Domino”, our algorithm performs better than KNN(32), indeed comparing
Figure 5.2(a) and Figure 5.2(c), it can be noticed that generally the points
are closer to the point (0,1) in the first figure. As for KNN(8), it seems to
perform slightly better than our algorithm. This is due to the range used for
the threshold, that is (0, 1). Indeed, our algorithm is more sensitive to thresh-
old variation than KNN with small k. Potentially, when a threshold equal to
0 is used, all the “empty” cells can be recognized as missing values with a
consequent grown of false positives. The choice of the threshold is therefore
quite important, and generally it is preferable a conservative approach: se-
lecting a higher threshold the number of false positive is generally reduced.
The result related to the second dataset analyzed (“Emea”) are reported in
figures 5.2(b), 5.2(d), 5.2(f). In this case our algorithm performs better than
KNN.

As for the outliers detection, we compared our algorithm against the well
known and largely used KNN based algorithm proposed in [4]. A row of the
binary matrix represents a point in the space. For each row, the algorithm
finds the m-th neighbor and calculates the distance Dm. If this distance is less
than a threshold d then the row lies in a sufficiently dense region of the data
distribution and is classified as normal. Otherwise the row is classified as out-
lier. Note that they classify rows as outliers, instead our algorithm is a more
fine-grained approach that allows to classify as outliers even individual cells
of a row. Figure 5.3 summarizes the results achieved. In all the six sub-figures,
the points are quite scattered because we are considering all the possible val-
ues for the threshold, in spite of selecting a reasonable one. However, this
choice is useful to highlight that it does not exist any threshold t used by the
KNN based algorithm that can overcome the performances achieved by our
algorithm. Indeed, using KNN(8) or KNN(32), the true positive rate is al-
ways less than 0.4 when the false positive rate is less than 0.3, while using
our approach we reach a false positive rate higher than 0.6 in both the tested
datasets.A Case Study on A

ess Control Information
To demonstrate the viability of the proposed framework, we carried out a case
study on access control information (user-permission relationships) provided
by a large private company. To simplify the analysis, we decomposed the
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problem into smaller sub-problems, each one represented by the users (and
the corresponding permissions) belonging to a representative branch of the
organization unit chart. We will only show the outcome of a representative
organization unit which numbers 29 users, 146 permissions, and a total of
740 assignments. We will discuss the application of the proposed approach for
the identification of missing values and outliers through threshold tuning.

Figure 5.4(a) depicts a binary matrix representing the user-permission re-
lationships involved with the analyzed organization unit. Columns and rows
correspond, respectively, to users and permissions, and each cell is filled in
black when a certain user has a certain permission granted. We used the algo-
rithm ABBA⋆ to identify the relevance for all the cell of the matrix. To simplify
the exposition, we will analyze missing values and outliers separately. Fig-
ure 5.4(b) highlights only the outliers proposed by the algorithm when setting
up a threshold t = 0.4, namely all the black cells that have a relevance value
less than 0.4 and thus likely represent exceptional assignments. In the picture,
outliers are those represented by light-gray cells with a small “−” within them.
In this case, IT administrators confirmed the outlier nature of the assignment,
that is most of the highlighted assignments were required to access particular
exceptional utilities. Figure 5.4(c) highlights only the missing values proposed
by the algorithm when setting up a threshold t = 0.6, namely all the white
cells that have a relevance value greater than 0.6 and thus likely represent
missing assignments. In the picture, missing values are those represented by
dark-gray cells with a small “+” within them and highlighted by a surround-
ing red line. Even in this case, IT administrators verified that many of the
proposed missing values were actually missing user-permission relationships
that could be assigned to users without violating the least privilege principle.



6
Visual Role Mining

V isual representations of roles can actually amplify cognition, leading
to optimal analysis results [31, 48]. In this chapter we introduce a
new approach, referred to as visual role mining. We offer a graphical

way to effectively navigate the result of any existing role mining algorithm,
showing at glance what it would take a lot of data to expound. Moreover, we
allow to visually identify meaningful roles within access control data without
resorting to traditional role mining tools. Visualization of the user-permission
assignments is performed in such a way to isolate the noise, allowing role
engineers to focus on relevant patterns, leveraging their cognition capabilities.
Further, correlations among roles are shown as overlapping patterns, hence
providing an intuitive way to discover and utilize these relations.

Even though visual approaches sometimes raise some skepticism, they are
generally considered to be highly beneficial when used to gain an overview of
the underlying dataset. In fact, this chapter shows that a proper representa-
tion of user-permission assignments allows role designers to gain insight, draw
conclusions, and design meaningful roles from both IT and business perspec-
tives.6.1 Role Visualization Problem
This section addresses the following problem: given a set of already discov-
ered roles of interest, we want to identify the best graphical representation for
them. In particular, we want the representation for user-permission assign-
ments that allows for both an intuitive role validation and a visual identifica-
tion of the relationships among roles. We will show that roles are easier to rec-
ognize than describe via a binary matrix representation. The proposed repre-
sentation can answer questions that classical statistical or mining approaches115



116 Chapter 6. Visual Role Mining
cannot (easily) provide. Represented roles can be the outcome of any role en-
gineering process, as well as roles already in place in a RBAC system. Hence,
making such a tool an ideal companion for any existing role mining algorithm.

The role mining objective is to analyze access control data in order to elicit
a set of meaningful roles that simplify RBAC management [6, 9, 36]. To this
aim, various business information can be analyzed [6,9], but user-permission
assignments are the minimal data-set required. A natural representation for
this information is the binary matrix, where rows and columns correspond to
users and permissions, and each cell is “on” when a certain user has a certain
permission granted.

Figure 6.1(a) shows a possible set of user-permission assignments. It is
quite clear that it is impossible to analyze such a set without resorting to a
more intuitive representation. By reading data in the same order as presented
in Figure 6.1(a) we obtain the matrix depicted in Figure 6.1(b). Though this
representation is still confusing, it is now possible to observe some patterns.
For example, all users possess the permission p1. Hence, p1 is likely involved
in “base” authorizations to be granted, for example, to new users which join
the organization. Practically, we have looked for and found out consecutive
cells that are “on”. These patterns are usually referred to as tiles [38]. Fig-
ure 6.1(c) demonstrates that it could be easier to find more patterns if users

and permissions were reordered. Given the roles listed in Figure 6.1(d), they
can be identified more easily in Figure 6.1(c) than in Figure 6.1(b). In partic-
ular, Figure 6.1(e) highlights these roles in cyan.

Several considerations can be made from the previous example. First,
we can easily deduce all the roles listed in Figure 6.1(d) by only inspecting
Figure 6.1(c), namely without resorting to any role mining algorithm. Fig-
ure 6.1(c) is definitely more communicative: for instance, it is evident thatp1 may be assigned to roles r2, r3, r4, thus making r1 no longer necessary. Al-
ternatively, if p1 represents a permission that should always be granted to all
users, keeping r1 may be more advantageous. This kind of considerations
require additional knowledge that might be hard to translate into structured
data. Putting humans in the loop allows for a better correlation of business
requirements with IT-related access control data.

Second, a visual representation can highlight potential exceptions within data

in an effective manner. For example, the user u5 is the only one that has permis-
sion p5 granted. This finding warns about a potentially wrong assignment due
to causes such as privilege accumulation or illicit authorization. One could
observe that this kind of analysis can be performed even without graphically
representing user-permission assignments by adopting approximate mining al-
gorithms [42]. However, most algorithms can lead to several false-positive
exceptions, degrading the output quality of the automatic analysis.
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User-permission Assignments

{〈u0,p1〉, 〈u0,p3〉, 〈u0,p8〉, 〈u0,p9〉, 〈u1,p1〉, 〈u1,p2〉, 〈u1,p3〉, 〈u1,p4〉,
〈u1,p6〉, 〈u1,p8〉, 〈u1,p9〉, 〈u2,p1〉, 〈u2,p2〉, 〈u2,p4〉, 〈u2,p6〉, 〈u2,p9〉,
〈u3,p1〉, 〈u3,p3〉, 〈u3,p8〉, 〈u3,p9〉, 〈u4,p1〉, 〈u4,p3〉, 〈u4,p8〉, 〈u4,p9〉,
〈u5,p1〉, 〈u5,p2〉, 〈u5,p4〉, 〈u5,p5〉, 〈u5,p6〉, 〈u5,p9〉, 〈u6,p1〉, 〈u6,p2〉,
〈u6,p4〉, 〈u6,p6〉, 〈u6,p9〉, 〈u7,p0〉, 〈u7,p1〉, 〈u7,p7〉, 〈u8,p0〉, 〈u8,p1〉,
〈u8,p7〉, 〈u9,p1〉, 〈u9,p2〉, 〈u9,p4〉, 〈u9,p6〉, 〈u9,p9〉}(a) Input data (b) Unsorted matrix

(
) Sorted matrix
Role Permissions Usersr1 {p1} {u0,u1,u2,u3,u4,u5,u6,u7,u8,u9}r2 {p2,p4,p6,p9} {u1,u2,u5,u6,u9}r3 {p3,p8,p9} {u0,u1,u3,u4}r4 {p0,p7} {u7,u8}r5 {p5} {u5}(d) Candidate roles

r1 r2 r3 r4 r5(e) Visual representation of rolesFigure 6.1 Visualization examples
Third, a textual role representation (Figure 6.1(d)) reports on informa-

tion about role-user and role-permission relationships in a less communicative
fashion than a graphical representation (Figure 6.1(e)). For instance, Fig-
ure 6.1(e) clearly shows that r2 and r3 partially overlap, without the need for
any additional textual or graphical report. Notice that these representations
are not mutually exclusive, but they can coexist in the same role engineering
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tool. The tool can also enrich the matrix by providing interactive functionali-
ties such as: drill-down capabilities, highlighting multiple roles, tooltips over
cells, etc.. Interactions on the matrix can be turned into intelligence to tune
underlying analytical process.

Finally, note that it could be difficult to produce a graphical representation
for huge datasets. Yet, scalability is a major problem in both automatic and
visual analysis [5]. In fact, a large number of user-permission assignments to
analyze usually leads existing role mining algorithms to elicit a large number
of roles, thus making hard any kind of data analysis. A viable solution is
restricting the analysis to smaller subsets of data that are “homogeneous” with
respect to some business-related information as suggested in Chapter 4 (e.g.,
partitioning users by department, job title, cost center, etc.).6.1.1 Problem Formalization
In the previous section we intuitively demonstrated that reordering rows and
columns of a user-permission matrix can ease the pattern-finding task. We
now formalize this problem, offering a tool for the identification of the best
representation for a given set of roles.

In addition to RBAC concepts introduced in Chapter 2, we also require the
following definitions:De�nition 6.1 (Matrix Permutation) A matrix permutation σUP = 〈σU,σP〉

is a pair of bijective functions defined as σU : USERS → {1, . . . , |USERS|} and
σP : PERMS→ {1, . . . , |PERMS|}.

Matrix permutation is introduced just to provide an ordering for users and
permissions by “labeling” them with a number. Note that a matrix permuta-
tion uniquely identifies a matrix representation—we will thus use the terms
“permutation” and “representation” as synonyms.De�nition 6.2 Given a matrix permutation σUP = 〈σU,σP〉 and a role r ∈

ROLES, the functionsωU : ROLES→ N andωP : ROLES→ N identify the height

and width, respectively, of r in the given permutation. That is:

ωU(r) = max
u∈ass_users(r)

σU(u) − min
u∈ass_users(r)

σU(u) + 1, (6.1)

ωP(r) = max
p∈ass_perms(r)

σP(p) − min
p∈ass_perms(r)

σP(p) + 1. (6.2)

In other words,ωU(r) (orωP(r)) represents the distance between the first and
the last user (or permission) of r in the given matrix representation.



6.1. Role Visualization Problem 119De�nition 6.3 Given a matrix permutation σUP = 〈σU,σP〉 and a role r ∈

ROLES, the functions πU : ROLES→ N and πP : ROLES→ N identify the num-

ber of user and permission fragments in the given permutation, that is

πU(r) =
∑

u∈ass_users(r)









min
u′∈ass_users(r):
σU(u

′)>σU(u)

σU(u
′)−σU(u) 6= 1









+ 1, (6.3)

πP(r) =
∑

p∈ass_perms(r)









min
p′∈ass_perms(r):
σP(p

′)>σP(p)

σP(p
′)−σP(p) 6= 1









+ 1, (6.4)

where [b] equals 1 when the predicate b is true, and 0 otherwise.

When πU(r) = 1 (or πP(r) = 1) all the users (or permissions) assigned to the
role r are contiguous in the matrix representation. Otherwise, the correspond-
ing rows (or columns) are partitioned into a certain number πU(r) (or πP(r))
of subsets of contiguous rows (or columns).De�nition 6.4 Given a matrix permutation σUP = 〈σU,σP〉 and a role r ∈

ROLES, the Role Visualization-Cost νσUP
: ROLES→ N is:

νσUP
(r) =

�

πU(r)×πP(r)
�

×
�

ωU(r)×ωP(r)− |ass_users(r)| × |ass_perms(r)|
�

. (6.5)

The previous definition is a measure of the visual fragmentation of a role.
It depends on the number of role fragments (i.e., sub-matrices made up of
contiguous “on” cells), represented by the quantity πU(r)×πP(r), weighted by
the number of cells “wasted” to represent the role with respect to its compact
representation, that is ωU(r)×ωP(r)−|ass_users(r)|× |ass_perms(r)|. Notice
that when all the cells of a role are contiguous, the corresponding cost is zero.

We would like to point out that an alternative visualization-cost that we
could have used is the half-perimeter [45], defined as:

ν ′
σUP
(r) =ωU(r) +ωP(r), (6.6)

namely the sum of the height and width of roles in the given matrix represen-
tation. In our opinion, Equation 6.5 is more straightforward because a high
role fragmentation greatly hinders the readability of the matrix, an aspect that
the previous Equation does not catch.

Having introduced a visualization cost function makes it possible to define
the following problem:



120 Chapter 6. Visual Role MiningDe�nition 6.5 Given a set of roles ROLES, let σ∗
UP
= 〈σ∗

U
,σ∗

P
〉 be a matrix

permutation, and let νσ∗
UP

be the corresponding role visualization-cost. We say
that σ∗

UP
is optimal when it minimizes the following:

argmin
σUP

∑

r∈ROLES

νσUP
(r). (6.7)

We refer to the search for the optimal permutation as the Optimal Matrix-

Permutation (OMP) optimization problem. An important property of OMP is:Theorem 6.1 The OMP optimization problem is NP -hard.

PROOF To prove the NP -hardness of OMP, we show a polynomial-time reduc-
tion of another NP -hard problem to OMP. In particular, we provide a reduc-
tion of the Minimum Linear Arrangement (MLA) problem, which is known to
be NP -hard [37], to this problem (i.e. proving that MLA ≤p OMP). The MLA
problem can be formulated as follows: given a graph G = 〈V, E〉, find an order-
ing σ for V such that

∑

〈i, j〉∈E
|σ(vi)−σ(v j)| is minimized. This can be reduced

in polynomial-time to a special case of the optimal matrix-permutation prob-
lem: that is, when we have as many roles as users, each user is assigned to
only one role, and each role is assigned with two permissions. The set V rep-
resents the permissions, and we put an edge between two permissions if they
belong to the same role, namely the edges in E correspond to users (rows)
with their own roles.

Please note that minimizing
∑

〈i, j〉∈E
|σ(vi)−σ(v j)| is equivalent to minimiz-

ing
∑

〈i, j〉∈E
(|σ(vi)−σ(v j)| − 1). In the given OMP instance, this new quantity

represents the sum of the number of “off” cells between two “on” cells in a row.
Moreover, there can only be one “gap” between the columns of each role (i.e.,
each role is represented by at most two fragments). Consequently, given this
polynomial-time many-one reduction, the identification of the optimal matrix-
permutation that sorts permissions (columns) in order to place the two “on”
cells as close as possible in each row—corresponds to MLA. Thus, completing
the proof. �

The previous theorem entails no polynomial-time solution for OMP. Hence,
the following section describes a fast heuristic algorithm that is able to find an
acceptable solution for the problem in many practical scenarios.6.1.2 Matrix Sorting Algorithm
By leveraging on the observations made in the previous section, we now de-
scribe a viable, fast heuristic algorithm called ADVISER (Access Data VISual-
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edure ADVISER(USERS ,PERMS ,ROLES ,UA,PA)2: σu← SortSet(USERS ,UA,ROLES)3: σp← SortSet(PERMS ,PA,ROLES)4: return σu,σp5: end pro
edure6: pro
edure SortSet(ITEMS , IA,ROLES)7: ITEMS ← {I ⊆ ITEMS | ∀i, i′∈ I , roles(i) = roles(i′)}8: σ← ;9: for all I ∈ ITEMS sorted by des
ending areas of roles(I) do10: if |σ| < 2 then11: σ.append(I)12: else13: if Ja

(I , σ.�rst) > Ja

(I , σ.last) then14: p← 1, j← Ja

(I , σ.�rst)15: else16: p← |σ|+ 1, j← Ja

(I , σ.last)17: end if18: for i = 2 . . . |σ| do19: jpre
← Ja

(I , σ[i − 1]), jsu

← Ja

(I , σ[i])20: j
urr← Ja

(σ[i − 1], σ[i])21: if max{ jpre
, jsu

} > j ∧ min{ jpre
, jsu

} ≥ j
urr then22: p← i, j←max{ jpre
, jsu

}23: end if24: end for25: σ.insert(p, I) {between the (p− 1)th and the pth elements}26: end if27: end for28: return σ.expand29: end pro
edure Figure 6.2 The ADVISER algorithm
izER). Given a set of roles, this algorithm is able to provide a compact rep-
resentation of them. In particular, it reorders rows and columns of the user-
permission matrix to minimize the fragmentation of each role. Despite being
relatively simple, it provides a good—though not necessarily optimal—and
fast solution to the otherwise intractable OMP problem. In particular, its run-
ning time is O

�

n× (|ROLES|+ log n)
�

where n =max {|USERS| , |PERMS|}.
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ription
As a heuristic, ADVISER is based on some intuitions, summarized in the fol-
lowing:

◮ Introducing a “gap” in the visualization of “large” roles (namely, those
roles that involve many users and permissions) increases the cost more
than introducing gaps on smaller roles. Hence, larger roles should be
better represented.

◮ The more fragments in the visualization of a role, the higher the role
visualization-cost.

◮ Reordering users but not permissions only affects the number of gaps
between columns, and so do permissions.

As for the first point, one can argue that small roles can be more important
from a business perspective since they likely represent administrative tasks. To
focus on exceptions, large roles can be removed after their identification. No-
tice that searching for large-area tiles is also the choice of many other mining
techniques [7,38,75,78].

The algorithms described in Figure 6.2 implements our approach. A de-
tailed description follows:

1. Rows and columns are sorted independently. ADVISER decomposes
the optimal matrix-permutation problem into two sub-problems, that is users
(Line 2) and permissions (Line 3) are sorted independently. Due to this sym-
metry, from now on we generically refer to rows and columns as items.

2. If some items are assigned to the same set of roles, they are put together.

For this reason, the algorithm sorts groups of items, called itemsets, instead
of individual items. In Figure 6.2 the function roles: IA → 2ROLES identifies
all roles associated with an item, namely roles(i) = {r ∈ ROLES | 〈i, r〉 ∈ IA}.
Line 7 identifies items assigned to the same roles. Given an itemset I ∈ ITEMS,
with abuse of notation in the following we refer to roles(I) as the set of roles
roles(i) for any i ∈ I .

3. Itemset positions are decided one-by-one. In order to facilitate a better rep-

resentation of large roles, itemsets involving roles with larger areas are analyzed

first. Line 9 implements this behavior. In particular, let I , I ′∈ ITEMS be two
itemsets. Then, I is considered before I ′ only if

max
r∈roles(I)\roles(I ′)

|ass_users(r)× ass_perms(r)| >

max
r′∈roles(I ′)\roles(I)

|ass_users(r ′)× ass_perms(r ′)| .
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When roles(I)\roles(I ′) = ; or roles(I ′)\roles(I) = ; we assume that max = 0.

4. The algorithm tries to avoid large gaps by putting itemsets close to each

other when they share large roles. First of all, we introduce a metric to rank
the similarity of items in terms of shared large-area roles. To do this we
resort again to the Jaccard coefficient. Given two sets X and Y , J(X , Y ) =

|X ∩ Y |/ |X ∪ Y |. A natural generalization is to consider n-dimensional non-
negative vectors X , Y and define J(X , Y ) =

∑n

i=1 min{X i, Yi} /
∑n

i=1 max{X i, Yi}.
In our context, we measure the similarity of two items i, i′ ∈ ITEMS in terms
of their assigned roles, weighted by the “depth” of possible gaps in roles. This
is done via the following variation of the Jaccard coefficient:Ja

(i, i′) =

∑

r∈roles(i)∩roles(i′) |m(r)|
∑

r∈roles(i)∪roles(i′) |m(r)|
, (6.8)

where m(·) is the membership function ass_users(·) when we sort permis-
sions, or the function ass_perms(·) when we sort users. Summarizing, we try
to put closer those users (permissions) that share roles with lots of permissions
(users). This allows to reduce the number of cells between fragments of large
roles. Given I , I ′∈ ITEMS, with abuse of notation we refer to Ja

(I , I ′) as the
value of Ja

(i, i′) for any i ∈ I and i′∈ I ′.

5. Each itemset is preferentially positioned at the beginning or at the end of

already sorted itemsets. The idea is to avoid to “worsen” already found, high
similarities. Having defined the previous similarity metric between items, lines
10–26 implement the itemset-sorting strategy by deciding a position p for the
itemset I in an itemset permutation σ. The first two itemsets are just inserted
in the first two positions (lines 10–11). Then, subsequent itemsets are inserted
among already-sorted itemsets only when this operation actually improves the
existing sorting. In particular, an itemset I is put but between two consecutive
itemsets σ[i − 1],σ[i] (i.e., the two already-sorted items at positions i − 1
and i) only when both the similarities between I and σ[i − 1] and between
I and σ[i] are below the similarity between σ[i − 1] and σ[i] (lines 19–
23). Among all possible positions, the algorithm seeks the one that provides
the highest similarity: this is done by updating the variables “ j” (maximum
similarity value found) and “p” (position where the maximum similarity has
been found). If inserting the itemset between already sorted itemsets is not
advantageous, the itemset will be inserted at the beginning (lines 13–14) or
at the end (lines 15–16) of the permutation σ.

6. Itemset sorting is converted to item sorting. This is the inverse of previous
point 2. When all itemsets in ITEMS have been sorted, they are “expanded”
(see Line 28) to return the ordering of each single item in ITEMS—instead of
providing an ordering for group of items that share the same roles.
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(a)
r2 r3 r1
r4 r5(b)Figure 6.3 Appli
ation of ADVISER on two role sets

We now demonstrate that the complexity of ADVISER as depicted in Fig-
ure 6.2 is O

�

n× (|ROLES|+ log n)
�

where n = max {|USERS| , |PERMS|}. To
prove this, we first show that SortSet has a running time equal to

O
�

|ITEMS|
�

|ROLES|+ log |ITEMS|
��

Indeed, Line 7 requires a running time O
�

|ITEMS| |ROLES|
�

because we have
to scan all items and, for each item, check the corresponding roles. The
set ITEMS, such that |ITEMS| ≤ |ITEMS|, can be sorted at Line 9 in time
O
�

|ITEMS| log |ITEMS|
�

. All the statements of the loop from Line 9 to Line 27
can be executed in a constant time, except for the computation of Ja

(·, ·)
that requires a running rime O

�

|ROLES|
�

. Consequently, the total computa-
tion cost is O

�

|ITEMS|
�

|ROLES|+ log |ITEMS|
��

. The complexity of ADVISER
immediately follows.6.1.4 Example
A simple example can help to better understand the behavior of the algo-
rithm ADVISER. Starting from the user-permission relationships introduced
in Figure 6.1, Figure 6.3(a) is obtained by applying ADVISER over the roles
depicted in Figure 6.3(b), sorted by descending area. We only describe the
sorting of users, since similar considerations can be made for permissions.

◮ First, the algorithm groups users assigned to the same roles and sort
them by descending role areas. In our example, sorted user-sets are:
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{u1} (assigned to roles r2, r3, r1), {u5} (assigned to roles r2, r1, r5), {u2,u6,u9}
(assigned to roles r2, r1), {u0,u3,u4} (assigned to roles r3, r1), and {u7,u8}
(assigned to roles r1, r4).

◮ Then, the first two user-set are just put together, namelyσ =
¦

{u1}, {u5}©.

◮ In turn, we seek a position for {u2,u6,u9}. The maximum similarity value
is Ja

({u2,u6,u9}, {u5})

=
∑

r∈{r2,r1} |ass_perms(r)| /
∑

r∈{r2,r5,r1} |ass_perms(r)|

= (4+ 1)/(4+ 1+ 1) = 0.83 (6.9)

Indeed, the first user-set has Ja

({u2,u6,u9}, {u1}) = 0.63 and then the
current user-set cannot be inserted at the beginning. Moreover, the sim-
ilarity between the two already-sorted items is Ja

({u1}, {u5}) = 0.56;
this means that inserting the user-set between them is potentially ad-
vantageous, but this would not increase the maximum similarity found
at the first position. Hence, σ =

¦

{u1}, {u5}, {u2,u6,u9}©.

◮ Similarly, {u0,u3,u4} is inserted at the beginning because the maximum
similarity is Ja

({u0,u3,u4}, {u1}) = 0.5, thus

σ =
¦

{u0,u3,u4}, {u1}, {u5}, {u2,u6,u9}©
◮ Finally, {u7,u8} is inserted at the beginning because of the Jaccard Co-

efficient Ja

({u7,u8}, {u0,u3,u4}) = 0.16. Thus, the final ordering is
equal to: σ =

¦

{u7,u8}, {u0,u3,u4}, {u1}, {u5}, {u2,u6,u9}©.

Please also note that, in this small example, all roles have been best rep-
resented. When roles are not overlapping, namely each role involves different
users and permissions, the algorithm always provides good visualization re-
sults. Notice that there is no particular strategy in positioning each role within
the matrix: the algorithm only strives to reduce the number of fragments re-
quired to represent each role.6.2 Visual Eli
itation of Roles
In Section 6.1 we pointed out that a good matrix permutation can help role
engineers elicit candidate roles. By just inspecting the matrix—that is, with-
out analyzing the outcome of any role mining algorithm—analysts can intu-
itively select the more relevant roles. When we want to identify roles through
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visual analysis, a natural question is how a role-set for ADVISER should
be made in order to facilitate this task. An approach is to first compute
all possible closed permission-sets and later trying to best represent them. A
permission-set is “closed” when no proper supersets of permissions possessed
by the same users exist. Examples of algorithms that compute such patterns
are [7, 78, 83]. Closed permission-sets provide a compressed representation
of all possible permission combinations that can be found within users [83].
Closed permission-sets are roles in RBAC terminology.

By feeding ADVISER with closed permission-sets we provide analysts with
a matrix visualization that seeks to contextually best depict all identifiable
patterns. However, the number of closed permission-sets is often too large
when compared to the number of users and permissions [42]. Hence, lead-
ing to long running time and huge memory footprint. To reduce the overall
problem complexity, we introduce a probabilistic algorithm called EXTRACT
(EXception-Tolerant Role ACTualizer). It generates a list of pseudo-roles used to
feed ADVISER in lieu of closed permission-sets. We will show that pseudo-
roles and closed permission-sets lead to very similar results. Further, we will
demonstrate that computing such pseudo-roles takes just O(k|UP|), where k is
a tunable parameter of the algorithm.6.2.1 Using Pseudo-Roles
Let us now recall the definition of pseudo-role given in Chapter 4:De�nition 6.6 Given a user-permission assignment 〈u, p〉 ∈ UP, the pseudo-

role generated by 〈u, p〉, and hereafter referred to as ̺〈u,p〉, is a role represented
by all users having the permission p granted and all permissions granted to the
user u, namely ass_users(̺〈u,p〉) = users(p) and ass_perms(̺〈u,p〉) = perms(u).

Several user-permission assignments can generate the same pseudo-role. In
particular:De�nition 6.7 Let P-ROLES be the set of all pseudo-roles that can be gener-
ated from user-permission assignments in UP. The number of assignments that
generates a pseudo-roles ˆ̺ ∈ P-ROLES is referred to as its frequency, defined
as a function f : P-ROLES→ N such that

f ( ˆ̺) =
�

�{〈u, p〉 ∈ UP | ass_users( ˆ̺) = users(p) ∧
ass_perms( ˆ̺) = perms(u)}

�

�. (6.10)

When using pseudo-roles in place of roles, the main objective is to best
represent pseudo-roles that likely have the largest area, and have no or only
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al 
on�gurations for EXTRACT
few non-existing user-permission relations. The frequency concept summa-
rizes both these aspects. An example can support the previous statement.
Figure 6.4 shows two possible submatrices of a larger user-permission matrix.
All user-permission relationships have been divided in three subsets: A, B, andC. Non-existing user-permission relationships (that is, USERS× PERMS \UP)
are indicated with D. In both figures, the same three pseudo-roles can be gen-
erated: i) every assignment in A generates a pseudo-role made up of A, B, C,D; ii) assignments in B generate A, B; and, iii) assignments in C generate A,C. In Figure 6.4(a), the most frequent pseudo-role—the one with the highest
value for f —is represented by i), since generating user-permission relation-
ships belong to the largest area A. Since D is small, it likely represents missing
assignments. Hence, it is advantageous to put together all the cells of A, B,C, and D. Conversely, in Figure 6.4(b) the most frequent pseudo-role is ii). In
this case, assignments in C likely represent exceptions. Hence, representing
the cells of C close to A, B is probably not important.

Based on the previous observations, we propose to represent frequent pseudo-

roles better than the infrequent ones. This can be done by properly adapting
Line 9 of Figure 6.2 and sorting pseudo-roles by descending frequency. More-
over, a new definition for the item similarity is required, that isJa

(i, i′) =

∑

̺∈roles(i)∩roles(i′) |m(̺)| × f (̺)
∑

̺∈roles(i)∪roles(i′) |m(̺)| × f (̺)
, (6.11)

where roles(i) = {̺〈u,p〉 | 〈u, p〉 ∈ UP ∧ i ∈ ass_users(̺〈u,p〉)} when sorting
permissions, while roles(i) = {̺〈u,p〉 | 〈u, p〉 ∈ UP ∧ i ∈ ass_perms(̺〈u,p〉)}

when sorting items.
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edure EXTRACT(UP , k)2: P-ROLES ,P-UA,P-PA← ;3: for i = 1 . . . k do4: {Identify the 
urrent pseudo-role}5: Pi
k 〈u, p〉 ∈ UP uniformly at random6: U ← users(p)7: P ← perms(u)8: {Che
k if the pseudo-role has been previously generated}9: if ∃̺∈P-ROLES : ass_users(̺)=U ∧ ass_perms(̺) = P then10: {Update the frequen
y of the existing pseudo-role}11: ̺← existing pseudo-role12: 
ount[̺]← 
ount[̺] + 113: else14: {Add a new pseudo-role to P-ROLES}15: ̺← new pseudo-role16: P-ROLES ← P-ROLES ∪ {̺}17: P-UA← P-UA∪ (U ×{̺})18: P-PA← P-PA∪ (P × {̺})19: 
ount[̺]← 120: end if21: end for22: return P-ROLES ,P-UA,P-PA,
ount[·]23: end pro
edure Figure 6.5 The EXTRACT algorithm6.2.2 Algorithm Des
ription
Based on Definition 6.6, a naïve approach to generate all pseudo-roles is to
scan all assignments in 〈u, p〉 ∈ UP and identifying the corresponding pseudo-
role by computing users(p) and perms(u). During the scanning, whenever we
generate an already existing pseudo-role, we update its frequency. This in-
tuitive and simple algorithm has a running time O

�

|UP| log |UP|
�

. Assuming
that UP is ordered, the search for all the users possessing p and all the permis-
sions assigned to u can be executed in O

�

log |UP|
�

, and this must be done for
all assignments in UP. In the worst case we generate |UP| pseudo-roles—i.e.,
a different pseudo-role for each assignment. Hence, searching and updating
the frequency requires O

�

log |UP|
�

, for instance by storing pseudo-roles in a
self-balancing binary search tree.

Although this algorithm is quite efficient, we can still obtain better results.
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In particular, in the following we present a very fast randomized algorithm to
generate pseudo-roles called EXTRACT. The key idea is that of approximat-

ing the frequencies of pseudo-roles by sampling k times a relationship in UP
uniformly at random, and then generating the corresponding pseudo-role. In
turn, for each pseudo-role we count how many times it has been generated.
Figure 6.5 summarizes this approach. The computational cost of EXTRACT
is O
�

k log |UP|
�

. Indeed, the main loop (lines 3–21) is executed k times. The
random selection of 〈u, p〉 (Line 5) is supposed to be executed in O

�

1
�

. More-
over, searching all the users possessing p and all the permissions assigned
to u (lines 6–7) can be executed in O

�

log |UP|
�

. Lines 9–9 can be executed in
O
�

log |UP|
�

. All the remaining statements can be performed in O
�

1
�

. Hence,
the overall computational complexity is O

�

k log |UP|
�

.
The following theorem gives a bound on the approximation introduced by

this sampling approach:Theorem 6.2 Let k be the number of the randomly chosen user-permission as-

signments by EXTRACT. Given a pseudo-role ̺, let f̃ (̺) be the actual number

of times the pseudo-role has been generated by the algorithm. Hence,

Pr

 �

�

�

�

�

f̃ (̺)

k
−
f (̺)

|UP|

�

�

�

�

�

≥ ǫ

!

≤ 2exp
�

−2kǫ2
�

. (6.12)

PROOF We will use the Hoeffding inequality [44] to prove this theorem. It
says that if X1 . . . Xk are independent random variables such that 0 ≤ X i ≤ 1,
then

Pr
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�

�

�

�

k
∑

i=1

X i −E





k
∑

i=1

X i





�

�

�

�

�

≥ t

!

≤ 2exp

�

−
2t2

k

�

,

where E[·] indicates the expected value of a random variable. X i is such that

X i =

(

1, the ith assignment generates the pseudo-role;

0, otherwise.

The previous equation can be rewritten as

Pr

 �

�

�

�

�

1

k

k
∑

i=1

X i −E





1

k

k
∑

i=1

X i





�

�

�

�

�

≥ ǫ

!

≤ 2exp
�

−2kǫ2
�

,

where ǫ = t/k. Note that
∑k

i=1 X i is exactly f̃ (̺).
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To complete the proof, we have to prove that E

�

1
k

∑k

i=1 X i

�

is equal to
f (̺)/ |UP|. Because of the linearity of the expectation, the following equation
holds:

E





1

k

k
∑

i=1

X i



=
1

k

k
∑

i=1

E[X i].

Since the user-permission assignments are picked uniformly at random, the
probability to choose each of them is 1/ |UP|. Thus,

∀i ∈ 1 . . . k, E[X i] =

|UP|
∑

j=1

X j

|UP|
=
f (̺)

|UP|
,

completing the proof. �

Theorem 6.2 proves that there exists a value k such that the matrix permu-
tation obtained by adopting sampled frequencies is, with a given probability,
almost the same as using exact frequencies—the absolute difference between
the two results is bounded. Both the absolute difference and the given proba-
bility are tunable parameters depending on k.

Note that if the visualization quality is poor due to the approximated fre-
quency values, it is possible to improve the quality by performing just ad-
ditional samples. Suppose to have the matrix representation generated by
feeding the algorithm ADVISER with the output of the algorithm EXTRACT
with k samples: if we are not satisfied by this matrix, we can use k′ additional
samples (namely, we run the loop from Line 3 to Line 21 k′ more times) in
order to have a more accurate frequency estimation.6.2.3 A Visual Approa
h to Role Engineering
In the following we will show an application of the visualization and sampling
algorithms finalized to a visual role engineering activity. In particular, we
will illustrate how to perform role engineering upon the matrix representation
obtained through ADVISER when fed by EXTRACT. Further, we will show
how to identify potentially wrong or missing assignments. This methodology
originates from a real case-study that has been carried out on a large private
company. To protect company privacy, we will not reveal any detail of the
results, but we limit ourself to summarizing the methodology.

The proposed approach is an iterative method, mainly inspired by the role-
finding process proposed by Kuhlmann et al. [52]. First, according to [14,15],
we simplify the role-finding task decomposing the problem into smaller sub-
problems. Then, for each sub-problem, we suggest to conduct the following
activities:
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itation of Roles 1311. Select the most relevant roles by resorting to a visual inspection. Then,
the corresponding user-permission assignments should be put aside. An-
alysts should visually recognize the most clearly visible roles, namely
those corresponding to the biggest tiles, and remove them for the next
iteration.2. Identify the business managers responsible for the involved users (typ-
ically referred to as “user managers”) and the administrators within IT
staff responsible for the involved data (typically referred to as “data own-
ers”) of each candidate role.3. In concert with user managers and data owners, understand the mean-
ing of exceptional user-permission assignments. That is, analyze those
assignments that are depicted on the “ragged edges” of the main tiles. In
particular, analysts should try to understand whether such assignments
are actually required or not. Further, they should verify whether “holes”
within almost perfect tiles are missing user-permission relationships that
could be assigned to users without violating the least-privilege principle.

After having put aside those user-permission assignments covered by al-
ready identified roles, the analysis can be iteratively repeated over the remain-
ing data. Notice that discovering exceptional assignments and subsequently
removing them is a good way to keep policy engineers in the work loop and
still provide valuable feedback. If the feedback of the analysis is fast enough,
this is a very effective technique: in real cases, we performed very few iter-
ations (up to 4), eliciting a limited number of roles when compared to the
cardinality of the assignment set.

Another important observation relates to the identification of user man-
agers and data owners. This task is often easy whenever the divide-and-
conquer approaches proposed in [14, 15] are adopted. The reason is that
the identified patterns likely reflect the actual business of the company.6.2.4 Experimental Results
This section presents practical applications of our visualization methodology.
First, we will discuss the efficiency and the quality of our algorithms. Then, we
will report on a comparative analysis against a competing approach (i.e., [45])
by using publicly available datasets. The testbed was a notebook equipped
with an Intel Pentium Core Duo Pro processor operating at 2.40 GHz, and 3 GB
RAM. The operating system was Linux Fedora 8—in order to be compatible
with the code provided by the authors of [45]. The algorithms were coded in



132 Chapter 6. Visual Role Mining
Java. Since we ran the experiments in a multitasking environment, the values
provided are an upper bound of the real computation time.6.2.5 Matrix Sorting
Figure 6.6 shows the application of our algorithms on a given dataset. Fig-
ure 6.6(a) depicts the data without any sorting. Instead, figures from 6.6(b)
to 6.6(e) show the results obtained when using ADVISER fed with the pseudo-
roles generated by EXTRACT, respectively for k = {2, 10, 100, 1000}. Ta-
ble 6.1 reports, among other data, the computation time to build each one of
these pictures.

For k = 2 (Figure 6.6(b)) only some users and some permissions have
been sorted, but a candidate role that could manage a large number of user-
permission assignments is already clear and visible. The number of “shuffled”
rows and column decreases when k = 10 (Figure 6.6(c)). By using k = 100
(Figure 6.6(d)), most of the main patterns become clearer. By using a larger
sampling parameter, namely k = 1000 (Figure 6.6(e)), there are very few
differences when compared to Figure 6.6(d). The last example (Figure 6.6(f))
shows an application of the sorting algorithm when applied to the outcome of
the algorithm proposed in [7], which computes closed permission-sets.

To provide a quantitative analysis of the quality of visualization results,
the last column of Table 6.1 indicates the cost of visualizing all possible closed
permission-sets. According to our expectation, the visualization cost decreases
as the number of samples increases. Moreover, the differences between Fig-
ure 6.6(f) and Figure 6.6(d) are minimal. Although the running time of the
algorithm proposed in [7] is definitely greater than that of EXTRACT, it does
not lead to performance bottlenecks in the case study. Yet, the advantage of
adopting EXTRACT is an almost real-time representation of the data to an-
alyze. The situation dramatically changes as the dataset becomes larger. In
particular, the time required to generate all possible closed permission-sets
grows exponentially as the dataset dimension increases, whereas the gener-
ation of pseudo-roles increases according to a logarithmic law. Even though
large matrices cannot entirely be represented on a personal computer screen,
their construction is useful anyway. For instance, visualizing a small “sliding
window” and/or zooming in/out still represents a valuable way of browsing
data. As stated before, scalability is a major problem in both automatic and
visual analysis.
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(a) Unsorted (b) k = 2
(
) k = 10 (d) k = 100

(e) k = 1000 (f) Closed permission-setsFigure 6.6 Matrix representation of the a

ess 
ontrol 
on�guration.6.2.6 Con
luding Remarks
To the best of our knowledge, this thesis is the first work in addressing the
visual role mining problem. That is, visualizing user-permission assignments
in an intuitive graphical form that makes it possible to simplify the role engi-



134 Chapter 6. Visual Role MiningTable 6.1 Comparison among di�erent algorithms and parametersFigure Algorithm Samples Number of(Pseudo-)Roles Sampling/MiningTime (nse
) Sorting Time(nse
) Total Time(nse
) Vis. 
ost νσup on
losed perm-sets6.6(a) � � � � � � 1.35× 10156.6(b) Sampling 2 2 2 2 4 1.22× 10146.6(
) Sampling 10 6 2 3 5 1.04× 10136.6(d) Sampling 100 45 15 4 19 1.07× 10126.6(e) Sampling 1000 201 149 22 171 4.55× 10116.6(f) Closed perm-sets - 315 310 23 333 2.33× 1011
neering process. The proposed representation of data allows role designers to
gain insight, draw conclusions, and ultimately design meaningful roles from
both IT and business perspectives.

We provided several contributions. First, we offered a formal description
of the visual role mining problem. Second, we demonstrated that constructing
the binary matrix representation of user-permission relations that best repre-
sents already recognized patterns is NP -hard. Moreover, we proposed a novel
heuristic algorithm called ADVISER to generate a matrix representation start-
ing from the outcome of any role mining algorithm. We also described an
efficient, tunable, and probabilistic tool referred to as EXTRACT. It produces
approximate patterns that can be used in conjunction with ADVISER to ob-
tain high-quality visualization results—the quality of the results produced byEXTRACT is formally proved. Finally, extensive applications over real and
public data confirm that our approach is efficient, both in terms of computa-
tional time and result quality.

We introduced role engineering as a process which can greatly benefit from
the visual approach proposed in this section. Our contributions, other than be-
ing useful for role engineering, can have interesting applications in other fields
as well. For instance, binary matrices are used to analyze gene-expression
data to uncover embedded relationships among DNA fingerprints. In partic-
ular, homogeneous submatrices indicate subsets of genes (rows) coexpressed
under the same conditions (columns). Another application that could benefit
from our approach is the well-known market-basket analysis. In this case, each
transaction corresponds to a row and each item corresponds to column of the
matrix. One possible application is in the identification of “dense” submatri-
ces, namely approximate frequent itemset pattern identified by “on” cells with
a small false-positive rate. In general, whenever there is a need to analyze
data representable as a binary matrix, our approach can introduce benefits.



7
Conclusion

F inal remarks on the contributions detailed in this thesis are provided in
this chapter. The candidate also points out some future research direc-
tions that can pave the way to some further research.Remarks on Contributions In this thesis we addressed the role mining

problem, and in particular we looked at how to make it practical and usable
for actual deployment. Several aspects regarding the business meaning of the
elicited roles have been considered. Furthermore, we highlighted that previ-
ously proposed approaches usually lead to candidate role-set that cannot be
easily managed by system administrators. We proposed several methodologies
that can be used to reduce the role mining complexity, still providing roles that
are meaningful from a business perspective. These methodologies can be also
combined together in order to provide to the final user the best outcome of
each approach.

The following additional observations can be made:Performan
es We tackled performance issues from several viewpoints. In
Section 4.2 we introduced a divide-and-conquer approach that, by di-
viding the dataset in smaller parts, allows for reduced running time
of mining algorithms. Further, in Section 4.3 we introduced a six step
methodology that overcome the drawback of the divide-and-conquer ap-
proach.Data Noise The automatic recognition of exceptional access control data (i.e.,
exceptionally or erroneously granted or denied entitlements) can greatly
simplify the elicitation of meaningful roles. In particular, we proposed
the concept of “unstable” assignments in Chapter 4, showing that cer-
tain user’s entitlements can be discarded from the analysis when they do
not benefit from adopting RBAC. Furthermore, in Chapter 5, we showed135
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lusion
that imputing “missing” and “outlier” assignments can also be beneficial.Role Mining Problem Complexity We accomplished a reduction of the role
mining problem complexity in Chapter 4 through two different approaches:
on the one hand, we described how to decompose a complex problem in
simpler sub-problems. On the other hand, we introduced a methodology
that overcomes the limitation of divide et impera approaches.

To conclude, this thesis provided several fundamental results for role min-
ing. Several examples, developed on both synthetic and real data, support our
claims.Future Work Possible extensions of the current work are:

◮ To investigate new visualization models that differ from the traditional
binary matrix. A candidate strategy could be the graph visualization that
we already used in this thesis.

◮ To investigate machine learning algorithms to foresee the permissions
to grant to new users when they are firstly introduced in the system.
Existing attributes of the new users could be leveraged for this purpose.

◮ To investigate how to choose an optimal value for the threshold that
is required to decide which assignments are stable and which are not.
An analogous threshold is used for missing values. Indeed, although
not expensive to tune, this parameter can hamper the applicability of
the proposed methodologies. If an optimal value were automatically
identified, role mining algorithm could directly be applied without any
preventive human action, hence putting analysts out of the loop.

The aforementioned extensions strengthen the contributions of this thesis
by paving the way to some further research.
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