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Introduction

Flat limits are a fundamental tool in algebraic geometry and also one of
the first examples on how schemes appear naturally from classical algebraic
varieties. However such versatility also means that even questions that are
easily formulated can be hard to answer. Such is the problem of computing
the flat limit, for a complex parameter t approaching 0, of n fat points in P2

of given multiplicities m1, . . . ,mn at p1(t), . . . , pn(t) when, for t→ 0, all the
points pi(t) tend to the same point p.

A few elementary examples are known and some appear in textbooks.
There are results of C. Ciliberto and R. Miranda in [6], where an answer is
given under some generality hypothesis and when there are up to 5 points of
the same multiplicity coming together, of L. Evain in [10], where an answer is
given for up to four fat points of the same multiplicity colliding in a sequence,
and of J. Roé in [14].

The collision problem is closely related to the problem of polynomial
interpolation and problems of this kind have some importance in the appli-
cations (e.g. algebraic statistic). In fact, one of the main techniques used to
work on polynomial interpolation consists of performing some kind of degen-
eration on the configuration of the points, moving them into a particularly
good special position and then close with a semicontinuity argument. Find-
ing a suitable position for this kind of argument is delicate, since it should
be special enough to be treatable and at the same time general enough that
the numbers involved do not “jump” on the special fiber. In this frame-
work, the study of general collisions of fat points to a single point proposes
itself as a useful tool to construct suitable degenerations. An example of an
argument of this kind has recently be made by Evain in [10] to prove the
Segre-Gimigliano-Harbourne-Hirshowitz conjecture (1.18) when the number
of points is a square.

Our techinque consists in degenerating the linear system Lt given by the
curves passing through the points pi(t) with the assigned multiplicities: in
this setting the local equations of the curves in the limit system L0 are the
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elements of the ideal defining the limit scheme. Since the problem is local
around p, we consider A2 rather than the more commonly used P2 as our
ambient space; with minimal effort, the core arguments can be adapted to
any quasiprojective surface.

To find the linear system L0 we extend the analysis of the matching condi-
tions, introduced by Ciliberto and Miranda, which is based on a degeneration
of the plane to the union of two surfaces V and W , where V is A2 blown
up at the coaelscence point p and W ∼= P2 is the exceptional divisor of the
blowup at p of the total space of a trivial family of affine planes (cf. Figure
2.1). The technique presented here allows one to move the study of the limit
scheme to the study of some linear system on W , which is of the same type
as those appearing in the problem of polynomial interpolation.

Particular attention should be paid to any multiple fixed components that
may appear in this linear system. Most efforts revolved around determining
the matching conditions associated to the presence of these curves. The
fact that these base curves have to be blown-up repeatedly until the linear
system becomes nef brings the analysis to infinitesimal neighborhoods of
higher order. This analysis was started in [6] when the fixed curves are either
lines or conics in the projective plane W ; this work continues that project
extending the class of fixed curves whose associated matching conditions have
been analyzed and applying the analysis to a wider number of cases.

Using these methods we obtain a complete classification for the general
limits of up to 9 points of the same multiplicity (except for the case of 8
points, for which we only give a partial answer), for up to 4 points of any
multiplicities and for several more particular cases.

In most cases the limit schemes we find are complicated; they cannot be
expressed as a set of points with multiplicities in some infinitesimal neighbor-
hoods and for this reason they require more work to be used in applications
as part of a degeneration argument. There are however a handful of cases
where the limit schemes are as simple as a fat point counted with some
greater multiplicity; these cases are the most promising for easy application
but are unforunately uncommon for reasons that will be clear. A list of those
cases can be found in the last chapter.



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Introduction v

1 General results 1
1.1 Nonreduced schemes . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Zero-dimensional schemes . . . . . . . . . . . . . . . . . . . . 2
1.3 Degenerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Polynomial interpolation . . . . . . . . . . . . . . . . . . . . . 5

2 Matching Conditions 9
2.1 First degeneration of the plane . . . . . . . . . . . . . . . . . . 9
2.2 Matching Conditions . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Elimination of the fixed (−1)-curves . . . . . . . . . . . . . . . 20

2.3.1 Fixed infinitely near points . . . . . . . . . . . . . . . . 20
2.3.2 Further matching conditions . . . . . . . . . . . . . . . 26

2.4 Elimination of fixed genus 1 curves . . . . . . . . . . . . . . . 46

3 Limits of a small number of fat points 53
3.1 Non-homogeneous Collisions . . . . . . . . . . . . . . . . . . . 53

3.1.1 Collisions of three points . . . . . . . . . . . . . . . . . 54
3.1.2 Collisions of four points . . . . . . . . . . . . . . . . . 55

3.2 Homogeneous collisions . . . . . . . . . . . . . . . . . . . . . . 61
3.2.1 Simple points . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.2 Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.3 6 points . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.4 7 points . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.5 8 points . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.6 9 points . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 74

vii



viii CONTENTS



Chapter 1

General results

Throughout this work all the schemes we will mention will be noetherian
schemes over the field of the complex numbers C.

1.1 Nonreduced schemes

We will encounter mainly two kinds of nonreduced schemes: multiple points
and their limits, which we will discuss in the next section, and varieties
whose irreducible components are counted with some multiplicity, intended
as follows:

Notation 1.1 (Subscheme counted with multiplicity n). If Z is a reduced
closed subscheme of a variety X corresponding to the ideal sheaf IZ ⊆ OX
then, for any positive integer n, by “the subscheme X counted with mul-
tiplicity n” we mean the closed subscheme of X defined by the ideal sheaf
InZ ⊆ OX and denote it by nZ. Similarly if X is reducible by saying that one
of its irreducible components X0 has multiplicity m means that X contains
mX0 (i.e. it has it as a subscheme) but not (m+ 1)X0.

Remark 1.2: The notion of being counted with some multiplicity does
depend on the ambient space. For instance, a double point (say, the origin) in

a complex affine line will be a scheme isomorphic to Spec C[x]
(x2)

while a double

point in a complex affine plane will be isomorphic to Spec C[x,y]
(x2,xy,y2)

.
The following proposition gives us a way to compute the cohomology

spaces of line bundles on hypersurfaces counted with multiplicity.

Proposition 1.3. Let Y be an integral scheme and X an integral effective
Cartier divisor in Y . Let N ∗X|Y be the conormal sheaf of X in Y . Then for
any integer n ≥ 2 there is a short exact sequence of OnX-modules

0→
(
N ∗X|Y

)⊗n−1 → OnX → O(n−1)X → 0

1



2 CHAPTER 1. GENERAL RESULTS

Proof. We already know that the second morphism exists and is surjective
as it comes from the restriction of nX to (n− 1)X; we need to determine its
kernel. Let IX be the ideal sheaf of X; we have the following diagram:

0 −→ InX −→ OY −→ OnX −→ 0
↓ || ↓

0 −→ I(n−1)X −→ OY −→ O(n−1)X −→ 0

where last vertical morphism is the one whose kernel we are interested in.
Since the central morphism is the identity and the left one is an injection the
snake lemma says that

ker
(
OnX → O(n−1)X

) ∼= I(n−1)X

InX
.

Let U = SpecA be any open affine subscheme of Y and let f be a local
equation of X. We have an isomorphism(

(f)

(f 2)

)⊗n−1

∼=
(fn−1)

(fn)

defined by sending the elements a1f ⊗ · · · ⊗ an−1f into a1 . . . an−1f
n−1; the

morphism is obviously surjective and it is injective because A is an integral
domain and f is prime. The morphisms we get from the different open
sets glue together to an isomorphism of sheaves and we find the short exact
sequence we sought.

1.2 Zero-dimensional schemes

Zero-dimensional schemes are our main object of interest; it is not our inten-
tion to provide a complete survey on this subject here but merely to report
a few results for ease of reference. More details can be found in many text-
books; [9] in particular provides and discusses several explicit examples of
nonreduced schemes.

Definition 1.4. Let Z be a 0-dimensional scheme. The degree of Z, denoted
by degZ, is the dimension of its ring of regular functions as a complex vector
space.

Proposition 1.5. Let Z ⊆ Pr be a 0-dimensional subscheme. The degree
of Z, the Hilbert polynomial of Z and the number of conditions that passing
through Z imposes to the hypersurfaces of large enough degree d are all equal.
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Proof. Let IZ be the homogeneous ideal of C[X0, . . . , Xr] defining Z and let
(IZ)d be the homogeneous part of degree d. The number of conditions im-
posed to hypersurfaces of degree d by the passage through Z is the dimension
of the quotient vector space

C[X0, . . . , Xr]d
(IZ)d

which is the value at d of the Hilbert function of Z. For d large enough, the
values of the Hilbert function are given by the Hilbert polynomial of Z and
the degree of the Hilbert polynomial is equal to the dimension of Z, which
is 0.

The constant term (in this case the only term) of the Hilbert polynomial
can be computed in general as χ(OZ). If R is the ring of regular functions
on Z we have that χ(OZ) = h0(Z,OZ) = dimCR = degZ.

Remark 1.6: This proposition means that the number of conditions
imposed by Z is intrinsic; i.e. it does not depend on d (as long as it is large
enough), on the immersion of Z in Pr or even on r itself.

Proposition 1.7. Let X, Y be 0-dimensional schemes such that X ⊆ Y and
degX = deg Y . Then X = Y .

Proof. Let Y = SpecB for some C-algebra B and let I ⊆ B be the ideal
defining X. We have the exact sequence of C-vector spaces

0→ I → B → B

I
→ 0

and we know that the second and third term have the same dimension. This
means that the dimension of I is 0 i.e. I is the zero ideal. Since I is the ideal
defining the subscheme X we have that X = Y .

1.3 Degenerations

Definition 1.8. A 1-dimensional degeneration is a morphism π : X → ∆
where ∆ is a complex disk, X is a Cohen-Macaulay variety and π is proper
and flat. For any t ∈ ∆ we will denote the fiber of π over t by Xt.

A 1-dimensional degeneration of varieties of dimension n is a 1-dimensional
degeneration whose fibers have all dimension n i.e. X has dimension n+ 1.

Definition 1.9. We will say that a 1-dimensional degeneration π : X → ∆
with X smooth is Global Normal Crossing (GNC) if
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1. the generic fiber Xt is smooth.

2. if Xt0 is a singular fiber, then for all p ∈ Xt0 there is an analytic
open neighborhood U of p with local coordinates (x0, . . . , xn) such that
(Xt0)red ∩ U has equation x0 · · · · · xk = 0 for some k ≤ n.

3. if Xt0 is a singular fiber then Xt0 =
∑

i niVi where all the Vi are irre-
ducible smooth Weil divisors.

Proposition 1.10 (Triple Point Formula). Let π : X → ∆ be a GNC 1-
dimensional degeneration. Let X be a singular fiber of π and let X1 and X2

be two irreducible components of Xred that appear with multiplicities m1 and
m2 respectively. Let E = X1∩X2 and let DE be the divisor on E of the triple
points of Xred along E. Then

N⊗m2

E|X1
⊗N⊗m1

E|X2
⊗OE(DE) ∼= OE

and, if π is a degeneration of surfaces, passing to the degrees,

m2(E
2)X1 +m1(E

2)X2 + deg(DE) = 0

Proof. X is a Cartier divisor on X and it is the fiber of a map over the
complex disk, so

OX(X) ∼= OX
which, restricted to E, gives

OE(X) ∼= OE.

Let X =
∑

imiXi; we have that

OE(m1X1)⊗OE(m2X2)⊗OE

(∑
i≥3

miXi

)
∼= OE

OE(X1)
⊗m1 ⊗OE(X2)

⊗m2 ⊗OE

(∑
i≥3

miXi

)
∼= OE (1.1)

We have that

NE|X1
∼= OX1(E)⊗OE ∼= OX1(X2)⊗OE ∼= OE(X2)

and similarly OE(X1) ∼= NE|X2 . Moreover since Xred is a normal crossing
surface no more than two components can meet along E and any component
other than X1 and X2 that meets E must do so transversally; since the Xi’s
are smooth the only triple points of X are those where three components
meet, meaning that DE =

∑
i≥3Xi ∩ E. We can then obtain the result by

substituting these three sheaves in (1.1).
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1.4 Polynomial interpolation

Given n points p1, . . . , pn in Ar one could ask to find a polynomial of a given
degree d whose value and all its higher order derivatives up to a certain order
mi at the points pi match an assigned set of values. This problem is called
the problem of polynomial interpolation and is still far from being solved in
general.

To reduce the difficulty of the problem, people reduce the problem to
asking that at each point pi the polynomial and all its derivatives up mi

vanish. In this form the problem can be formulated for projective spaces
and can be rephrased geometrically as to describe the linear system of the
hypersurfaces of degree d having multiplicity at least mi at each point pi and,
in particular, find its dimension.

In dimension one there are the Hermite interpolation formulas, which
give a complete and general answer, but in higher dimensions the situation
is much more complicated. The main issue is the fact that the conditions
imposed to the polynomial may not be independent.

In this work we will only be concerned with the two-dimensional case. A
further common reduction that we will make in the following is to assume
that the points p1, . . . , pn are in general position.

Notation 1.11. By Ld(m1, . . . ,mn) we will indicate a linear system on P2 of
all the plane curves of degree d having multiplicities m1, . . . ,mn respectively
at some assigned points p1, . . . , pn in general position. If some multiplicities
mi, . . . ,mi+k are all equal to some value m we might write mk in their place.

For the scope of this work, the problem of polynomial interpolation will
be to determine the dimension of Ld(m1, . . . ,mn). The virtual dimension of
such a system is defined as

vdimLd(m1, . . . ,mn) :=
d(d+ 3)

2
−

n∑
i=1

mi(mi + 1)

2

that is the dimension of the linear system of the curves of degree d minus
the total number of equations expressing the conditions imposed to them. If
the degree d is too small this number can get very negative, so we define the
expected dimension of the system as

expdimLd(m1, . . . ,mn) := max{vdimLd(m1, . . . ,mn);−1}

where dimension −1 indicates that the linear system is empty.
In general

dimL ≥ expdimL ≥ vdimL.
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The first inequality is an equality when either the system is empty or all the
conditions imposed are linearly independent.

Definition 1.12. A linear system L = Ld(m1, . . . ,mn) is said to be special
when dimL > expdimL and nonspecial when dimL = expdimL.

Proposition 1.13. Let L be a linear system of type Ld(m1, . . . ,mn) and
D be the 0-dimensional scheme defined by taking the points p1, . . . , pn with
multiplicities m1, . . . ,mn. Let L be the ideal sheaf of D twisted by d, ID|P2(d).
Then vdimL = χ(L) − 1 and the linear system L is special if and only if
h1(L) > 0 and L 6= ∅.

Proof. First note that L = P
(
H0
(
ID|P2(d)

))
. Then consider the short exact

sequence
0→ L → OP2(d)→ OD → 0

from which is immediate that

χ(L) = χ(OP2(d))− χ(OD) = vdimL.

Finally it is known that both h2(OP2(d))) and h1(OD) are zero, which means
that h2(L) is zero as well and then

vdimL = χ(L)− 1 = h0(L)− 1− h1(L) = dimL− h1(L)

Example 1.14. Let’s consider the linear system L2(2, 2): the conics with
two double points. The virtual dimension of this system is −1, so its expected
dimension is −1 too and we expect the system to be empty. However there
exists a line through the two points and this line counted with multiplicity
two gives us a divisor in L2(2, 2), so the actual dimension of the linear system
is different from the expected one.

This example was known classically, among others. All of these exam-
ples involve some curve counted with multiplicity 2 or more, leading to the
following conjecture (see [15]).

Conjecture 1.15 (Segre). If a linear system Ld(m1, . . . ,mn) is special, its
general element is not reduced.

One can consider π : P → P2 the blowup of P2 at the points p1, . . . , pn.
We will call Ei the divisor π−1(pi) for each i. We have that

π∗Ld(m1, . . . ,mn) = dH −
n∑
i=1

miEi
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which is a complete linear system. We will often abuse notation and confuse
the original linear system with its pull-back and thus refer to things such
as its associated line bundle or its Euler characteristic. Moreover when we
compute its intersection numbers with some curve C it will be assumed that
the intersection is computed on P rather than P2. Elsewhere it should be
clear from the context whether we are referring to the original system on P2

or to its pull-back on P .

Definition 1.16. Let S be a surface. A (−1)-curve is a smooth rational
curve C on S whose self-intersection number C2 is −1.

Definition 1.17. Let L = Ld(m1, . . . ,mn) be a linear system on a surface
and π : P → P2 be the blowup of P2 at p1, . . . , pn. We say that L is (−1)-
special if and only if there exists a (−1)-curve C on P such that (π∗L).C ≤ −2

Conjecture 1.18 (Harbourne-Gimigliano-Hirshowitz). A linear system on
P2 is special if and only if it is (−1)-special.

This conjecture still stands, although one direction can be easily proved:

Proposition 1.19. A (−1)-special linear system is special.

Proof. Let L be the linear system and C the (−1)-curve such that L.C =
−m ≤ −2. Let L′ be the linear system |L −mC|. Since mC is in the base
locus of L the linear systems L and L′ have the same dimension.

Moreover, the Euler characteristics of O(L) and O(L′) are related. The
short exact sequence

0→ O(L− C)→ O(L)→ OC(L.C)→ 0

shows that χ(O(L − C)) = χ(O(L) − (m − 1) and the same argument can
be iterated m times, yielding that

χ (O(L′)) = χ (O(L)) +

(
m

2

)
.

Putting it together, we have

dimL = dimL′ ≥ χ (O(L′))− 1 = χ (O(L)) +

(
m

2

)
− 1

which is greater than the virtual dimension of L, making it special.

Ciliberto and Miranda proved in [5] that the Segre conjecture and the
Harbourne-Gimigliano-Hirshowitz conjecture are in fact equivalent. Conjec-
ture 1.18 is then now the Segre-Harbourne-Gimigliano-Hirshowitz (or SHGH)
conjecture.

Conjecture 1.18 has been proved to be true in a few particular cases.
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• SHGH is true if the points are 9 or less [2]

• SHGH is true if the multiplicities are 11 or less [8]

• SHGH is true if the multiplicities are all equal and 42 or less [7]

• SHGH is true if the number of points is a square [10]

Moreover the homogeneous (−1)-special systems where the assigned points
are 9 or less have been classified in [4]; since 1.18 is true for such linear
systems that list is a comlete classification of homogeneous special systems
with up to 9 assigned points. We will often refer to this list in chapter 3.

Polynomial interpolation and collisions of fat points

Degenerations are one of the most used tools in the study of polynomial
interpolation. The idea is to arrange the points in a particular position, so
that the dimension of limit linear system can be computed and proven to
be equal to the expected dimension of the system. One can then say by
semicontinuity that also the dimension of the linear system on the generic
fiber cannot exceed the expected dimension, making the system nonspecial.
This is the technique Evain used in [10] to prove conjecture 1.18 in the case
where the number n of points is a square.

This technique requires some clever balance when choosing the degener-
ation because the degenerated linear system has to be both special enough
that its dimension can be computed and general enough that its dimension
still is the expected one. In this light the results contained in this work both
use and hope to be useful tools for this study, since, while we will need to
rely on the cases where 1.18 has been proved, knowing the general collision of
fat points can help in devising degenerations that strike the balance between
generality and computability.



Chapter 2

Matching Conditions

In this chapter we will provide the tools that we are going to use to study the
collisions of fat points in a general way. We will make our constructions in
the affine plane but since the study is local (in the analytic sense) around the
limit point, what we say here can be applied to any smooth quasi-projective
surface.

2.1 First degeneration of the plane

We want to take n points p1(t), . . . , pn(t) moving in the affine plane A2 ac-
cording to some parameter t. Let ∆ be a complex disk, and let’s consider the
trivial family of affine planes over ∆, φ : A = A2 ×∆→ ∆, and let p1 . . . pn
be n sections of it. Later we will make some generality assumption on these
sections but for now we will just assume that the sections are disjoint (except
at 0) and that p1(0) = · · · = pn(0) = p.

Let m1, . . . ,mn be positive integers and let’s consider the closed sub-
scheme of A

D :=
⋃
i

miIm(pi).

For every t ∈ ∆ the fiber Dt of the restriction of φ to D is a closed subscheme
of the affine plane At. When t 6= 0 the fibers Dt consist of the points pi(t),
each counted with its multiplicity mi, while the fiber D0 is their flat limit.

A general surface C containing D can be thought of as a projective family
of curves with parameter space ∆ whose general element Ct passes through
the points p1(t), . . . , pn(t) with multiplicities at least m1, . . . ,mn. This means
that our limit scheme is the largest scheme that is contained in any curve C0
which is limit of curves Ct passing through p1(t), . . . , pn(t) with multiplicities
m1, . . . ,mn; such limit scheme can be obtained as the intersection of all such

9
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p

pi(∆)pi(∆)

V

W

p̃i(∆)p̃i(∆)

Figure 2.1: Blowing up p changes the central fiber

curves C0. For this reason our study of the limit scheme becomes the study
of the linear system of the surfaces C ⊂ A containing D.

Now we want to state what we mean by “n points coming together in
a general way”. Consider the blow up of A at the point p. The resulting
3-fold still has a flat morphism over ∆ whose fiber over t 6= 0 is A2. The
fiber over 0 has two irreducible components: a projective plane W , which is
the exceptional divisor of the blowup, and a surface V , which is the original
central fiber A0 blown up at p. The intersection of these two components is
a curve R which is a line on W and the exceptional divisor on V .

The sections p1, . . . , pn can be lifted to sections p̃1, . . . , p̃n of the blowup
map. Since all the original sections pass through p, their liftings will meet
the central fiber somewhere in W .

Definition 2.1. We will say that the sections p1, . . . , pn represent n points
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coming together in a general way if

1. p1(0) = · · · = pn(0) = p

2. The points p̃1(0), . . . , p̃n(0) are in general position on W .

Remark 2.2: If the sections p1, . . . , pn represent n points coming to-
gether in a general way then for the generic t ∈ ∆ the points p1(t), . . . , pn(t)
are in general position on the affine plane At.

Remark 2.3: Part of the analysis we are going to make holds even if
the sections are not general; in that case, however, several special cases arise
that would need separate treatment.

Remark 2.4: Even if we drop the generality hypothesis on the sections,
none of the points p1(0), . . . , pn(0) can be on the line R, which is the double
locus of the fiber over 0.

The limit scheme is not, in general, just the point p counted with some
multiplicity; however we can ask ourselves what the multiplicity of the limit
scheme is, meaning by this the largest integer k such that kp is contained in
it. To answer this question we will use the following result:

Proposition 2.5. Let X be a smooth variety, L a complete linear system
on X and Z a smooth subvariety of X. Let π : X̃ → X be the blowup of X
along Z and E be the exceptional divisor. Then

multZL ≥ min
{
j ∈ N / h0

(
E,O eX(π−1L− jE)|E

)
> 0
}
.

Proof. Let L′ be π−1L. There is an obvious chain of inclusions

π∗(L
′ − (j + 1)E) ⊆ π∗(L

′ − jE)

since the first linear system contains the hypersurfaces of X whose multiplic-
ity along Z is at least (j + 1) and the second one is made of those whose
multiplicity along Z is at least j. These inclusions are equalities when all
surfaces that have such multiplicity of at least j actually have it greater than
j; this will be the case for all values of j up to the multiplicity of L along
Z, which will then be the least value of j for which the above inclusion is
proper; in short

multZL = min {j ∈ N /π∗(L
′ − (j + 1)E) ( π∗(L

′ − jE)} . (2.1)

We have the short exact sequence

0→ O eX(L′ − (j + 1)E)→ O eX(L′ − jE)→ O eX (L′ − jE)⊗OE → 0
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If h0
(
O eX (L′ − jE)⊗OE

)
= 0 we have that H0(O eX(L′ − (j + 1)E)) =

H0(O eX(L′− jE)) and the isomorphism carries over to π∗(L
′− (j+ 1)E) and

π∗(L
′− jE), implying that they are equal. This means that the minimum in

equation 2.1, and then the multiplicity, cannot be reached by values of j for
which h0

(
O eX (L′ − jE)⊗OE

)
> 0.

This proposition only provides a bound on the multiplicity rather than
its exact value; however, in all the cases we have considered, this bound is
later proven to be the actual value by a length computation.

The proposition only applies to complete linear systems, so we need to
make our linear system of hypersurfaces containing D complete. To do so, we
blow up the images of the p̃i’s. We call X the blowup and Ei the exceptional
divisor over p̃i(∆) for all i = 1, . . . , n. We name the blowup maps and their
compositions as in the following diagram:

ABlDAX

∆

φ′′
φ′

φ

ψ′′ ψ′

The general fiber Xt of φ′′ over t is now an affine plane blown up at
n points and each exceptional divisor is a line of the corresponding ruled
surface Ei. The fiber X0 over 0 still has two irreducible components; we will
denote by P the proper transform of W and keep the name V for the proper
transform of V since it has not been changed by this blowup. We will denote
by Ei the restrictions of Ei to P .

Theorem 2.6. The multiplicity of the limit scheme is at least the minimum
integer j such that the linear system Lj(m1, . . . ,mn) on W , given by the
projective plane curves of degree j having multiplicities at least m1, . . . ,mn

at p̃1(0), . . . , p̃n(0), is not empty.

Proof. We use proposition 2.5 and just need to give an interpretation of the
cohomology space that appears in its statement. The linear system we want
to consider is that of the hypersurfaces of X containing the pull-back of D),
which is OX (−

∑
imiEi). Since Xt|P ∼ 0 for all t,

P |P ∼ (X0 − V )|P ∼ −V |P ∼ −R.

Put together, we have that the sheaf appearing in proposition 2.5 is

OP

(
jR−

∑
i

miEi

)
= ψ′′∗Lj(m1, . . . ,mn).
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From now on we will call k this lower bound, L the linear system on X
|−
∑

imiEi − kP | and L the associated line bundle.

Example 2.7. We can compute in this way the limit of three single points
coming together in a general way. Following the construction just described
we have to consider the least k for which h0(OP (kR− E1 − E2 − E3) 6=
0, which means the least k such that there are curves of degree k passing
through three assigned points in a general position. There are obviously no
lines passing through them but k = 2 is already enough; then the limit has
multiplicity at least 2, i.e. it contains the point p counted with multiplicity
2.

A point of multiplicity 2 in the plane is a scheme of length 3, which is
the same as the length of the union of 3 single points; this means, by the
proposition 1.7, that the limit scheme is exactly a double point.

Example 2.8. More generally, if we have l(l+1)
2

single points coming to-

gether in a general way, we have that k = l since dimLl−1(1
l(l+1)

2 ) = 0 while

dimLl(1
l(l+1)

2 ) = l. The length of a point of multiplicity l is exactly the
length of the limit scheme so, by proposition 1.7, the limit scheme is a point
of multiplicity l.

Example 2.9. We can compute the multiplicity of three points of multi-
plicity two coming together in a general way. Again, after following the
construction just described, we have that there are no lines or conics with
three double points in general position but there are such cubics since the
virtual dimension of L3(2

3) is greater than 0. Three double points make up
a scheme of length 9 so the limit scheme must have length 9 while a point
of multiplicity 4 has length 10; this means that the limit scheme contains a
point of multiplicity 3 but not one of multiplicity 4 i.e. its multiplicity is 3.

The limit scheme has to be larger than just a triple point since the limit
scheme has length 9 while a triple point has only length 6; we will deal with
situations like this in the next section.

2.2 Matching Conditions

The surface V is isomorphic to the affine plane A (in which the limit scheme
lies) blown up at the point p; the line R is the exceptional divisor of this
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V

W

R
q1

q2

q3

LW

LVLV

p̃1(0)

p̃2(0)p̃3(0)

Figure 2.2: LP consists of three lines (the picture represents LW ). All the
elements of LV must then pass through the points q1, q2, and q3 where these
three lines intersect R.

blowup and thus its closed points parametrize the tangent directions at p.
This means that in order to look at the first infinitesimal neighborhood of
the limit scheme, seen as the intersection of all curves passing through it,
one has to look at the base locus of the restriction of L to V . Moreover the
elements of L|V and L|P are related since they are both different restrictions
of the elements of L.

In this section we assume to have a perfect knowledge of the linear system
L|P and our aim is to find the conditions this implies on the elements of L|V .
We will call these conditions matching conditions.

Example 2.10. Consider again the collision of three points of multiplicity 2.
We saw in Example 2.9 that the limit scheme has length 9 and its multiplicity
at p is 3, meaning that the push-forward of an element of LV not only has
multiplicity 3 at p, but has to satisfy 3 more independent conditions.

The sheaf L is OX (−3P − 2E1 − 2E2 − 2E3); its restrictions are LP ∼=
OP (3R − 2E1 − 2E2 − 2E3) and LV = OV (−3R) (in particular the linear
system LV is properly contained in |LV |). In the projecive plane W , let B1

be the line through p̃2(0) and p̃3(0), B2 be the line through p̃2(0) and p̃3(0)
and B3 be the line through p̃1(0) and p̃1(0) (see figure 2.2). The linear system
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|LP | has only one element which is the strict transform of the three lines B1,
B2 and B3. Each of these three lines intersects the line R at one point; we
call these intersection points q1, q2 and q3.

The general element of |LV | intersects R in three points; we claim that
for the general element of LV these three points have to be q1, q2 and q3.
This means that any curve in A0 containing the limit scheme not only needs
to have a multiplicity of at least 3 at p but, if the multiplicity is exactly 3,
its three tangent lines at p need to be those corresponding to the points q1,
q2 and q3. This is a total of 9 linearly independent conditions, which is the
length of the limit scheme. This means that the set of the equations of the
curves that satisfy these conditions is the ideal defining the limit scheme.

To prove the claim, note that any element C of LV has to be the restriction
to V of some element C of L; this means that the restriction of C to R is the
restriction of C to R, which can also be found by restricting C to P and then
to R; the restriction of C to P has to be the unique element of |LP | and then
its subsequent restriction to R consists of the three points q1, q2 and q3.

We saw that the fiber X0 has two irreducible components, P and V , meet-
ing along a line R; we will denote by LP , LV and LR the restrictions of L to
them and will use a similar notation LP , LV and LR for the restrictions of the
sheaf L. While the linear system L is complete, i.e. L = |L| = P (H0(L)),
this is not true in general for its restrictions.

The sheaf LP is L (kR−
∑

imiEi). We can observe that the associated
linear system is the pull-back from W of the linear system of curves of degree
k having multiplicity at least mi at the point p̃i(0) for each i. In other words,
it is of the type Lk(m1, . . . ,mn). Moreover, the linear system LP is complete,
as proved below.

Lemma 2.11. The linear system LP is complete.

Proof. Consider the exact sequence:

0→ L(−P )→ L → LP → 0

The system LP is the projectivization of the image of the map H0(L) →
H0(LP ). The system is then complete if the map is surjective. We can prove
it by showing that h1(L(−P )) = 0.

The sheaf L(−P ) is the pull-back of the ideal sheaf I on A of the scheme-
theoretic union of D and (k + 1)p; this means that H1(L(−p)) ∼= H1(I) = 0
since A is affine.

The sheaf LV is OV (−kR). The corresponding linear system consists
of all curves whose push-down (contracting R back to the point p) have
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multiplicity at least k at p. This is usually larger than LV . See for instance
the last example 2.10.

The sheaf LR is OR(k), as can be seen by further restricting LP . As is
the case for LV , the linear system LR is not complete in general.

We have the following commutative diagram of restriction maps:

|LR|

|LP |

ρPR

|LV |

ρVR

|L|
ρP ρV

We are interested in the base locus of LV and the diagram shows that all
the elements of LV have the property that their restriction is in LR. LR
can be written as either

(
ρVR ◦ ρV

)
(L) or

(
ρPR ◦ ρP

)
(L) since the diagram

is commutative; the latter expression is equivalent to ρPR(LP ) since ρP is
surjective and this allows LR to be computed from LP .

One might hope to infer all the conditions defining the elements of LV
in |LV | by looking at |LR|. Unfortunately the restriction map ρVR loses some
relevant information and when we deal with nonreduced elements of LR this
loss is also visible on the number of conditions imposed to the elements of
LV .

Example 2.12. Consider the situations depicted in figure 2.3 where we have
that LP consists of a line B counted twice and the only divisor of LR is the
intersection point q counted twice (this situation arises when one considers
the limit of two points of multiplicity 2 coming together and we will see that
in that particular case the left part of the picture is the correct one). It could
be that all the elements of L are singular along B (case (a)), implying that all
the elements of LV have a node at q, or it could be that the general element
of L is just tangent to P along B, which would imply that the elements of
LV need to only have multiplicity 1 at q and be tangent to B there. The
first possibility would impose 3 conditions on the elements of LV while the
second one only 2.

As we saw in the example above, the cases where the multiplicity of the
elements of LR at a point q is 2 or more require a deeper analysis. By Bertini’s
theorem, the general element of LR has multiplicity 0 or 1 at any point q that
is not a base point for LR. The base points of LR must also be base points for
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L L

q
P

V

RB

(a)

q
P

V

RB

(b)

Figure 2.3: In these pictures LP consists of the line B counted twice. The
general element of L could be singular along B (a) or tangent to P along B
(b)

LP and the assumption of generality we made on the points p̃1(0), . . . , p̃n(0)
assures that the linear system LP has no isolated base points on the line R.
This means that when the multiplicity of the elements of LR at a point q is 2
or more, q is in the intersection with R of some fixed component of LP . We
will address these cases in the next sections.

Let M be the movable part of LP and MR the movable part of LR;
what we said above means that MR = ρPR(M). Since LP was of the type
Lk(m1, . . . ,mn) M will be of type Lk(m1, . . . ,mn), where k is the residual
degree and the integers m1, . . . ,mn are the residual multiplicities, obtained
by subtracting the degree and the multiplicities at p̃i(0) of the fixed part of
LP from the corresponding integers (some of the residual multiplicities might
be 0). We have the following proposition:

Proposition 2.13. The movable part of ρVR(LV ) is ρPR(Lk(m1, . . . ,mn)).
This amounts to a total of k+1−h0(Lk(m1, . . . ,mn)) independent conditions
on the elements of LV .

Proof. The first part of the statement comes from what we said in this section
since ρVR(LV ) = LR, its movable part MR is ρPR(M) and M can be written as
Lk(m1, . . . ,mn).
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The number of independent conditions that are imposed to elements of
|LV | by the fact of having their image via ρVR lie in MR is equal to the

dimension of the quotient vector space |OR(k)|
MR

which is k+ 1− (dimMR + 1).
Finally, we have the exact sequence

H0(OP (M −R)) −→ H0(OP (M)) −→ H0(OR(M)).

The sheaf OP (M −R) has no global sections because of the minimality of k,
which means that the second map is injective. This means that the map ρPR
is also injective and then ρPR(M), which is MR, has the same dimension as
M , completing the proof.

When there are no fixed components in the linear system LP proposition
2.13 is enough to identify the limit scheme. Unfortunately this is not going
to be true in general: the linear system π∗LP is the linear system of curves
of minimal degree that pass through n ponts with assigned multiplicites; this
system will often be special and conjecture 1.18 would require it to have at
least one (−1)-curve as a multiple fixed component. Since conjecture 1.18
has been already proved in several cases, we know that fixed (−1)-curves are
going to appear quite often.

Example 2.14. Let’s compute in this way the limit of two points coming
together. The minimum k for which we can find a curve passing through two
points is 1. LP has only one element: the line through p̃1(0) and p̃2(0), which
intersects R at a point q. The exact location of q is determined by where
the points p̃1(0) and p̃2(0) lie on W , which in turn is determined by the first
order behavior around 0 of the two originally given sections p1 and p2.

The matching condition is that any curve in LV has to pass through q.
The points of R represent the tangent directions at p in A0 so this means
that any curve C containing the limit scheme contains this direction in its
tangent space at p.

p1(t)

p2(t)

p
 

Our candidate limit scheme is then the scheme of length 2 supported at p
having tangent space generated by that direction. This scheme is contained
in the limit scheme and has length 2, which is the same as the limit scheme,
so we can use proposition 1.7 to conclude that this is the limit scheme.
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V

P

R

q1

q2

LP

LV

Figure 2.4: The presence in LP of the fixed double conic B implies that the
curves in LV pass through q1 and q2 and are tangent to R there. In this case
a general surface L is tangent to P along B.

Example 2.15. Consider the limit of 4 points coming together. The lowest
degree for a curve on the projective plane W passing through the 4 assigned
points is 2, so the limit contains p with multiplicity two.

The linear system LP is a pencil of conics passing through the 4 points; its
restriction to R is then a linear system of degree 2 and dimension 1, which
is not complete. The general element of |LV | meets R in two points but
the elements of LV need to cut on R an element of LR; since |OR(2)| has
dimension 2 while LR has dimension 1 we cannot pick the two points in any
way we want: we can pick one of them arbitrarily but then the other point is
determined. Looking at the situation on W , this chosen point together with
the p̃i(0)s will determine a conic in W and then the other point has to be
the other intersection of such conic with R. There is exactly one matching
condition because the codimension of LR in |LR| is one. The exact expression
of this condition depends on the positions of the four points on W , which
are in turn determined by the first order behavior around 0 of the sections
p1, . . . , p4 in A.

The candidate limit scheme is then a double point (3 conditions) together
with this one further condition on the two tangent directions at this double
point; this scheme has length four which, again, is the degree of the limit
scheme which then has to coincide with the candidate limit.
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2.3 Elimination of the fixed (−1)-curves

Let B be a (smooth, irreducible) curve on P that appears in LP with multi-
plicity σ. We assume that B meets R transversally at τ points q1

1, . . . , q
1
τ . As

we saw in the previous section, the presence of such curves with σ > 1 poses
a problem since then the restriction to R does not keep enough information.
In this section we will suppose that the curve B is a rational curve such that
(B2)P = −1 while in the next section we will deal with curves of genus 1
and such that (B2)P = 0. This limitation is motivated by the fact that, if
conjecture 1.18 is true, these are the only cases that will arise for general
collisions.

Notation 2.16. In this and later sections we will make several blowups along
curves. We will not introduce a different notation for the proper transform
of something that is not changed by the blowup, such as the surfaces that
contain the blown-up curves and the curves and surfaces that do not intersect
them.

2.3.1 Fixed infinitely near points

We will look at the higher-order ifinitesimal nieghborhoods of the points q1
i .

Roughly speaking, we will proceed as follows:

1. Blow up B.

2. Called T the exceptional divisor of the blowup, find the minimum α
such that the total transform of L minus αT is effective. Then the
system L has multiplicity at least α at the points q1

i .

3. If the intersection of P and T still has negative intersection with L
call that B1, define the points q2

i to be its intersection with the proper
transform of V and repeat.

The results of the analysis differ depending on the genus of B; in this work
we treat the genus 0 and genus 1 cases.

We will have go through the cycle sketched above a number of times. Let
h and e be integers such that σ = τh− e and 0 ≤ e < τ .

First step: Let π(1) : X (1) → X be the blow up of X along B. The
exceptional divisor of π(1) is a rational ruled surface T1 that intersects P
along B transversally; we will call B1 the curve B on T1 and F1 a fiber. We
call V (1) the proper transform of V ; V (1) is isomorphic to V blown up at
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q1
1, . . . , q

1
τ . The triple point formula (proposition 1.10) applied to B1 tells us

that (B2
1)T1 = 1− τ , meaning that T1

∼= Fτ−1.
We use proposition 2.5 to have a lower bound on the multiplicity of L

alongB. We have to find the minimum integer j such that h0(T1,O(π(1)∗(L)−
jT1)) > 0.

The restriction of T1 to itself is T1|T1 ∼ −B1 − τF1 and the restriction of
π(1)∗(L) to T1 is

π(1)∗(L)|T1 ∼ π(1)∗(L)|π(1)∗(B) ∼ π(1)∗(L|B) ∼ −σF1

We can then write

π(1)∗(L)− jT1 ∼ −σF1 + j(B1 + τF1) = jB1 + (τ(j − h) + e)F1.

This is effective if and only if j ≥ h, which means that L has multiplicity
at least h along B and, in particular, its restriction L|V has multiplicity at
least h at the points q1

1, . . . , q
1
τ .

From now on we will call L(1) the linear system π(1)∗(L)− hT1.
Finally, to tell whether we need to take further steps we compute the the

intersection number

(L(1)|T1 .B1)T1 = hB2
1 + eB1.F1 = −h(τ − 1) + e.

If τ = 1 this number is nonnegative for any possible value of h and e, meaning
that L(1) does not have B in its base locus, and we are done. If τ ≥ 2 we
repeat the process.

Remark 2.17: If τ ≥ 2 but h = 1 and e = τ −1 the intersection number
is also 0. It is however convenient to continue with the process until the
intersection number is nonnegative for any value of h, in order to keep the
case h = 1 into the general case rather than to give it separate treatment.

i-th step: In the previous steps we constructed a sequence of blowups

X. . .X (n−1)

∆

φ′′

π(i−1) π(1)

For each j < i, Tj is the exceptional divisor of π(j) and it is isomorphic to the
Hirzebruch surface Fτ−i; Bj is its base curve, Fj is a fiber and Bi−1 coincides
with B. V (j) is the proper transform of V via π(j) ◦ · · ·◦π(1), L(j) is the linear
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system obtained by subtracting from the transform of L a suitable number of
copies of the exceptional divisors and L(j) is the associated invertible sheaf.
The fiber over t = 0 of the composition of all these blowups with φ′′ is

X (i−1)
0 = P +

i−1∑
l=1

lTl + V (i−1).

Moreover in step (i− 1) we computed the intersection number

L(i−1).Bi−1 =

{
−h(τ − (i− 1)) + e if i− 1 < τ − e
−(h− 1)(τ − (i− 1)) if i− 1 ≥ τ − e

Note that if τ = e the two expressions coincide and at the end of step 1 we
came out with an expression that matches the top one.

Let qi1, . . . , q
i
τ be the points that B cuts on V (i−1). Let π(i) : X (i) → X (i−1)

be the blow up of X (i−1) along B. The exceptional divisor of π(i) is a rational
ruled surface Ti that intersects transversally P in B and Ti−1 in Bi−1; we
will call Bi its base curve, which coincides with B, and Fi a fiber. We call
V (i) the proper transform of V (i−1); V (i) is isomorphic to V (i−1) blown up at
qi1, . . . , q

i
τ . The triple point formula applied to Bi tells us that (B2

i )Ti = i− τ ,
meaning that Ti ∼= Fτ−i.

Again, we want to use proposition 2.5 to have a bound on the mul-
tiplicity of L(i−1) along B. We have to find the minimum j such that
h0(Ti,O(π(i)∗L(i−1) − jTi)) > 0.

The restriction of Ti to itself is 1
i
(−Bi−τFi−(i−1)Bi−1). The equivalence

class of Bi−1 can be computed: Bi−1 ∼ aBi + bFi for some integers a and b;
the fact that Bi−1.Fi = 1 implies that a = 1 and then Bi−1.Bi = 0 implies
b = τ − i. Then Bi−1 ∼ Bi + (τ − i)Fi on Ti and

Ti|Ti ∼ −(Bi + (τ − i+ 1)Fi).

The restriction of π(i)∗(L(i−1)) to Ti is

π(i)∗ (L(i−1)
)
|Ti = π(i)∗ (L(i−1)

)
|π(i−1)∗(Bi−1)

= π(i−1)∗ (L(i−1)|Bi−1

)
∼

(
L(i−1).Bi−1

)
Fi

Now we need to separate two cases depending on the expression for
L(i−1).Bi−1. If i < τ − e+ 1

L(i)
l|Ti ∼

(
L(i−1).Bi−1

)
Fi + lBi + l(τ − i+ 1)Fi

= −h(τ − i+ 1)Fi + eFi + lBi + l(τ − i+ 1)Fi

= lBi + (τ − i+ 1)(l − h)Fi + eFi
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since in this case e < τ − i+1 this is effective when l ≥ h, meaning that Li−1

has multiplicity at least h along B and then that Li−1|V (i−1) has multiplicity
at least h at q1

1, . . . , q
i
τ . From now on we will call L(i) the linear system L(i)

h.
Let’s compute the intersection number

L(i)|Ti .Bi = hB2
i + eBi.Fi = −h(τ − i) + e

If i = τ this number is nonnegative for all possible values of h and e; this
means that B is not in the base locus of Li and we are done. If i < τ this
is not the case and we need to repeat the process again. In this case note
that the expression we found for the intersection number matches the one we
stated earlier: if i < τ − e this is immediate and if i = τ − e the intersection
number can be also written as −(h− 1)(τ − i).

if i ≥ τ − e+ 1

L(i)
l|Ti ∼

(
L(i−1).Bi−1

)
Fi + lBi + l(τ − i+ 1)Fi

= −(h− 1)(τ − i+ 1)Fi + lBi + l(τ − i+ 1)Fi

= (τ − i+ 1)(l − h+ 1)Fi + lBi

which is effective when l ≥ h− 1, meaning that Li−1 has multiplicity at least
h − 1 along B and then that Li−1|V (i−1) has multiplicity at least h − 1 at
qi1, . . . , q

i
τ . From now on we will call L(i) the linear system L(i)

h−1.
Let’s compute the intersection number

L(i)|Ti .Bi = (h− 1)B2
i = −(h− 1)(τ − i)

If i = τ this number is nonnegative for all possible values of h and e; this
means that B is not in the base locus of Li and we are done. If i < τ this
is not the case and we need to repeat the process again; in this case note
that the expression we found for the intersection number matches the one
we stated earlier. It cannot happen that i > τ since we saw that we stop
iterating process when i = τ .

Remark 2.18: If h = 1 the curve B ceases to be contained in the base
locus of L(i−1) for i > τ − e. Again, it is more convenient to make some
unnecessary steps until the intersection number is nonnegative for any h
rather than to deal with the h = 1 case separatedly. Consistently, we find
that in such cases the bound on the multiplicity at the points qi1, . . . , q

i
τ is 0.

Sets of points of type (α1, . . . , αn)

During the process described above we found many conditions on the ele-
ments of L. These conditions translate into more conditions for the surfaces
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F 1
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Figure 2.5: The curve R and its total transforms after 0, 1, 2 and n blowups.
The gray curves are (the proper transforms of) a curve that contains the
τ -ple of points (q1

1, . . . , q
1
τ ) of type (1n): it passes once through all the points

qji for j ≤ n.

containing D and therefore into a larger candidate limit scheme. Here we
find a 0-dimensional subscheme of A such that the condition of containing
this subscheme is equivalent to the conditions we have found so far. This
form will also have the benefit of being intrinsic to the affine plane A rather
than requiring to reference to the whole degeneration.

Let S be a surface, R a curve on S and q1
1, . . . , q

1
τ be τ distinct points on

R (cf. Figure 2.5). Let π1 : S(1) → S be the blow up of S at q1
1, . . . , q

1
τ .

This creates an exceptional divisors consisting of τ components which we
will indicate as F 1

i , for 1 ≤ i ≤ τ , labeled so that π1(F
1
i ) = q1

i . Let q2
1, . . . , q

2
τ

be the intersections of F 1
1 , . . . , F

1
τ with (the proper transform of) R.

Repeat this n times: the j-th repetition consists of making the blow up
πj : S(j) → S(j−1) of S(j−1) at qj1, . . . , q

j
τ , defining F j

1 , . . . , F
j
τ , as the new

exceptional divisors and qj+1
1 , . . . , qj+1

τ as their intersection with R. Let Πj

be the composition map πj ◦ · · · ◦ π1.

Finally, once we completed all the steps up to S(n), we will denote by F
j

i

the total transform of F j
i on S(n); F

j

i =
∑n

l=j F
l
i .

Definition 2.19. Under the construction just exposed, we define the set of
points q1

1, . . . , q
1
τ of type (α1, ...αn) along R to be the subscheme of S defined

by the ideal sheaf

Πn∗OS(n)

(
τ∑
i=1

n∑
j=1

−αjF
j

i

)

If in the type there appears a string of equal consecutive values αj =
· · · = αj+k = m, we might instead write mk.
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Definition 2.20. Let S be a surface, p ∈ S a smooth point, and X a closed
subscheme of S supported at p. Let π : S ′ → S be the blow up of S at p. By
adding τ infinitely near points of type (α1, ...αn) in q1

1, . . . , q
1
τ to the scheme

X we mean to take the scheme

π
(
π−1(X) ∪N

)
whereN is the subscheme of S ′ given by the points q1

1, . . . , q
1
τ of type (α1, ...αn)

along the exceptional divisor of π.

Example 2.21. The image of an immersion of Spec C[ε]
(εn)

in S is the set of

a single point of type (1n) or a point of multiplicity one together with one
infinitely near point of type (1n−1).

We can then express the results of this section as the following proposition:

Proposition 2.22. Let p1(t), . . . , pn(t) be n fat points of multiplicities m1, . . . ,mn

coming together at a point p and make the construction exposed in proposi-
tion 2.1. Let k be the minimum integer such that h0 (Lk(m1, . . . ,mn)) > 0
and L be the linear system on P associated to the sheaf Lk(m1, . . . ,mn).

If there are s rational curves B1, . . . , Bs ⊂ P such that B2
i = −1, Bi.L =

−σi < 0 and Bi meets V transversally at τi points qi,1, . . . , qi,τi let hi and ei
be integers such that σi = τihi − ei and 0 ≤ ei < τi. Then the limit scheme
contains the point p with multiplicity k together with s sets of τi infinitely
near points of type (hi

τi−ei , (hi − 1)ei) at qi,1, . . . , qi,τi.

Example 2.23. Let’s consider the case of five points of multiplicity m com-
ing together. Those colliding points translate into five points of the same
multiplicity on P . The minimal degree k of a curve having multiplicity m
at all of them is 2m and the linear system on W has only one element: the
conic B passing through those five points counted with multiplicity m (see
figure 2.4). B is a rational curve and B2 = −1, so we can apply the process
we just described.

In this situation σ = −(mB).B = m, τ = 2 and we can write m = 2h− e
and define h and e. We need to blow up B twice; the first time we create an
exceptional divisor T1

∼= F1 and the second time we get T2
∼= P1 × P1.

After the first blow up there are two fixed points for the system LV : the
two points where B intersects R. Blowing up B results in blowing up V in
both points and we know that this time we had to remove the exceptional
divisor h times, implying that there were two fixed points of multiplicity
h in the first infinitesimal neighborhood of p. Since the curve B on P is
still a fixed component for L

(1)
P , with the same argument each of those two
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points has another fixed point of multiplicity α2 = h − e in its infinitesimal
neighborhood.

The candidate limit so far is a point of multiplicity 2m with two infinitely
near points of type (h, h − e). However, even for m = 2, the length of this
candidate is too low to be the limit scheme, meaning that there are more
conditions to be found.

2.3.2 Further matching conditions

The linear system on the tower

In the previous section we created by blowup several ruled surfaces; we will
call the exceptional divisor of the composition of these blowups the tower
over B. In this section we want to find expressions for the restrictions of the
linear system L(τ) to the various components of the tower and to the surface
P .

Lemma 2.24. The following are the restrictions of Tj to iTi for all suitable
values of i and j:

1. if |i− j| ≥ 2, Tj|iTi ∼ 0

2. Ti+1|iTi ∼ Bi

3. Ti−1|iTi ∼ Bi + (τ − i)Fi

4. Tτ |τTτ ∼ −Bτ − Fτ

5. if j = i and 1 ≤ i < τ , Ti|iTi ∼ −2Bi − (τ − i+ 1)Fi

Proof. If |i− j| ≥ 2, Ti and Tj are disjoint; hence Tj|iTi ∼ 0. The second and
third cases are also immediate from the construction, remembering that we
found that, on Ti, Bi−1 ∼ Bi + (τ − i)Fi.

The other two cases can be computed using the fact that the iTis are
irreducible components of a fiber of a degeneration over ∆. This means
that we can write their normal class as the linear equivalence class of their
intersections with the other components of the fiber.

The surface Tτ intersects Tτ−1 and V (τ), so

Tτ |τTτ ∼ −1

τ
((τ − 1)Tτ−1|τTτ + V (τ)|τTτ + P |τTτ )

∼ −1

τ
((τ − 1)Bτ + τFτ +Bτ ) = −Bτ − Fτ .
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T1

T2

T3

T4

T1

T2

T3

T4

e = 3 e = 2

T1

T2

T3

T4

T1

T2

T3

T4

e = 1 e = 0

Figure 2.6: The tower of blowups and the linear system L(τ)|T for τ = 4,
h = 3 and the four possible values for e

If τ = 1 the surface Tτ−1 does not exist. Coherently, in this expression it
appears with multiplicity τ − 1, so the same formula holds even if τ = 1.

The surface T1 intersects T2 and V (τ), so T1|T1 ∼ −(2T2)|T1 − V (τ)|T1 ∼
−2B1 − τF1.

If j = i and 1 < i < τ , Ti intersects Ti−1, Ti+1 and V (τ).

Ti|iTi ∼ −1

i
((i− 1)Ti−1|iTi + (i+ 1)Ti+1|iTi + V (τ)|iTi)

∼ −1

i
((i− 1)Bi + (i− 1)(τ − i)Fi + (i+ 1)Bi + τFi)

= −2Bi − (τ − i+ 1)Fi
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Proposition 2.25. The linear system L(τ) has the following restrictions (cf.
Figure 2.6):

1. L(τ)|P ∼ LP − σB.

2. if e 6= 0

L(τ)|iTi ∼


eFi for i < τ − e
Bi + eFi for i = τ − e
0 for τ − e < i < τ
(h− 1)Bi for i = τ

.

3. if e = 0

L(τ)|iTi ∼
{

0 for i < τ
hBi for i = τ.

.

Proof. Let αl be the number of times we subtracted Tl from the linear system
during the l-th step of the construction of the tower over B. The linear system
we have at the end of the construction is

L(τ) ∼ π∗(L)−
τ∑
j=1

(
j∑
l=1

αl

)
Tj.

We found that αl = h for 1 ≤ l ≤ τ − e and αl = h − 1 for τ − e < l ≤ τ .
Putting in these values we obtain:

L(τ) ∼ π−1(L)−
τ−e∑
j=1

jhTj −
τ∑

j=τ−e+1

(jh− (j − (τ − e)))Tj

= π−1(L)−
τ∑
j=1

jhTi +
τ∑

j=τ−e+1

(j − (τ − e))Tj. (2.2)

First, consider the restriction to P . The only surface of the Tis that intersects
P is Tτ , then we can write

L(τ)|P ∼ LP − τhTτ |P + eTτ |P = LP − (τh− e)B = LP − σB.

If τ = 1 the rest of the proof is immediate since then the (2.2) reduces to

L(1)|T1 ∼ π−1(L)|T1 − σT1|T1 ∼ −σF1 + σB1 + σF1 = σB1 = hB1.

In what follows we will then suppose τ ≥ 2.
To compute the restrictions to the Tis we will first consider π−1(L) and

then the two sums appearing in (2.2) one at a time.
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It is fairly easy to compute L(τ)|iTi . If T =
∑

i iTi and F is the fiber of π
over a point of B, F =

∑
i iFi, we have that

π−1(L)|T = π−1(L)|π−1(B) = π−1(L|B) = ((L.B)X)F = −σF

and the further restriction to iTi is −σFi.
Now let’s subtract from it the first of the two sums appearing in (2.2).

We need to consider the cases i = 1 and i = τ separatedly.
If i = 1

π−1(L)|T1 − hT1|T1 − 2hT2|T1

∼ −τhF1 + eF1 + 2hB1 + τhF1 − 2hB1

= eF1

If 1 < i < τ

π−1(L)|iTi − (i− 1)hTi−1|iTi − hiTi|iTi − (i+ 1)hTi+1|iTi
∼ −τhF1 + eFi − h(i− 1)Bi − h(i− 1)(τ − i)Fi +

+2hiBi + hi(τ − i+ 1)Fi − h(i+ 1)Bi)

= eFi

If i = τ

π−1(L)|τTτ − (τ − 1)hTτ−1|τTτ − τhTτ |τTτ
∼ −τhFτ + eFτ − (τ − 1)hBτ + τhBτ + τhFτ

= hBτ + eFτ

If e = 0 the second sum appearing in (2.2) is empty and the proof is
complete. If e ≥ 1 we go on and add the second sum.

If i < τ − e the second sum is empty and the proof is complete.
If i = τ − e only the first term of the second sum is relevant and it is

Ti+1|Ti , which is linearly equivalent to Bi. Adding it to what we already
computed we have

L(τ)|Tτ−e ∼ Bτ−e + eFτ−e.

If τ − e + 1 < i < τ the sum contains three relevant terms: those for
j = i− 1, j = i and j = i+ 1.

(i− 1− τ + e)Ti−1|Ti + (i− τ + e)Ti|Ti + (i+ 1− τ + e)Ti+1|Ti
= (i− 1− τ + e)Bi + (i− 1− τ + e)(τ − i)Fi − 2(i− τ + e)Bi

−(i− τ + e)(τ − i+ 1)Fi + (i+ 1− τ + e)Bi

= −eFi
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which gives
L(τ)|Ti ∼ eFi − eFi = 0.

If i = τ − e + 1 the sum contains two relevant terms: those for j = i
and j = i + 1. This case folds back into the previous one because then the
coefficient of the j = i−1 term that appears there is zero when we substitute
i with τ − e+ 1.

If i = τ and e ≥ 2 the second sum has two relevant terms:

(e− 1)Tτ−1|Tτ + eTτ |Tτ
= (e− 1)Bτ − eBτ − eFτ
= −Bτ − eFτ

which gives

L(τ)|Tτ ∼ hBτ + eFτ −Bτ − eFτ = (h− 1)Bτ .

If e = 1 the sum only has one relevant term. This case folds back into the
previous one because then the coefficient of the j = τ − 1 term that appears
there is zero when we substitute i with τ .

Matching conditions of a higher order

For each of the curves B1, · · · , Br, let T i =
∑τi

j=1 jTj be the tower of ruled

surfaces obtained in the previous section. Let Ṽ be the transform of V after
all these blowups; let Y = P +

∑
i T

i. Any element of L|eV has to match with

an element of L|Y along the intersection scheme Z = Y ∩ Ṽ ; we know the
system L|Y and in this section we will compute how many conditions this
imposes on the elements of L|eV .

We want to find out how many conditions we have to impose on a global
section of L|Z to be able to lift it to a global section of L|Y , i.e. the dimension
of the cokernel of the linear map φ : H0(L|Y )→ H0(L|Z). We have an exact
sequence

0→ H0(L|Y (−Z))→ H0(L|Y )
φ→ H0(L|Z)→ coker(φ)→ 0

and we claim that H0(L|Y (−Z))=0. To prove it, remember that we obtained
L by making several blowups, considering its total transform and subtracting
from it the exceptional divisor the minimum number of times. Now note that
L|Y (−Z) ∼= L(Y )|Y and Y is the sum of the exceptional divisors, taken with
some positive multiplicity. This means that L|Y (−Z) is what we would have
obtained instead of L|Y if we had subtracted each of the exceptional divisors



2.3. ELIMINATION OF THE FIXED (−1)-CURVES 31

with a lower multiplicity. We know that this sheaf cannot have sections by
construction because of the minimality.

Then

#{new matching conditions} = dim coker(φ) =

= h0 (L|Z)− h0 (L|Y )

both terms can be decomposed, since the irreducible components of Z and
Y intersect transversally

= h0(L|R) +
r∑
i=1

h0(L|eV ∩T i)−
r∑
i=1

h0(L|R∩eV ∩T i)−

− h0 (L|P )−
r∑
i=1

h0(L|T i) +
r∑
i=1

h0(L|T i∩P )

P and Ṽ also intersect transversally. We can then collect three of the sum-
mations above and have

=
(
h0(L|R)− h0 (L|P )

)
+

r∑
i=1

(
h0(L|T i∩(eV ∪P ) − h

0(L|T i))
)
.

The first difference is the same we already considered in proposition 2.13.
For the second term we will deal with each tower separatedly.

Let B be one of the curves B1, . . . , Br; in the following computations we
will use the same notation we used while making the blowups in the previous
section. Let T =

∑τ
j=1 jTj be the tower over B; we have

h0
(
L|T∩(eV ∪P )

)
− h0(L|T )) =

=
τ∑
i=1

h0(L|iTi∩eV )−
τ−1∑
i=1

τi(i+ 1) + h0(L|τTτ∩P )− τ 2

−
τ∑
i=1

h0(L|iTi) +
τ−1∑
i=1

h0(L|iTi∩(i+1)Ti+1
)

Now we need to compute the restrictions of L and the dimensions of the
cohomology spaces that appear here.
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Computation of the dimensions

Lemma 2.26. Let T ∼= Fe be a rational ruled surface of base curve B and
let F be a fiber. For any integer values a and b with a ≥ 0 we have that

hi(OT (aB + bF )) =
a∑
j=0

hi(OP1(b− je)).

Proof. T is a ruled surface and (aB + bF ).F = a ≤ 0, so we know that

hi(T,OT (aB + bF )) = hi (B, π∗OT (aB + bF ))

we can write the push-forward using the symmetric product

= hi (Sa (OB ⊕OB(−e))⊗OB(b))

= hi

(
a⊕
j=0

(OB(−je))⊗OB(b)

)

=
a∑
j=0

hi(OP1(b− je)).

Lemma 2.27. Let 0 ≤ i ≤ τ and D a Cartier divisor on iTi. Suppose that

for any j < i we have that h1

(
OTi(D)⊗

(
N ∗
Ti|X (τ)

)j)
= 0. Then

h0(OiTi(D)) =
i−1∑
j=0

h0

(
OTi(D)⊗

(
N ∗Ti|X (τ)

)j)

Proof. By induction: if i = 0 the statement is an identity; if i > 1 the result
comes inductively via the exact sequence

0→ OTi(D)⊗
(
N ∗Ti|X (τ)

)i−1

→ OiTi(D)→ O(i−1)Ti(D)→ 0

thanks to the assumption that the first cohomology space of the sheaf on the
left is zero.

Unfortunately, h1(OTi(L)⊗ (N ∗
Ti|X (τ))

j) = 0 only for τ ≤ 4. If τ ≥ 5 there

are examples where this is not true so we will limit ourselves to τ ≤ 4 for the
time being.
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Example 2.28. Let’s suppose to have curve B such that τ = 5 and e = 0
(i.e. σ = 5h). The surface T2

∼= F3 appears with multiplicity 2, L(τ)|T2
∼= OT2

and N ∗
T2|X (τ)

∼= OT2(2B2 + 4F2). Then for j = 1

h1
(
OT2 ⊗

(
N ∗
T2|X (τ)

))
= h1(OT2(2B + 4F )) =

= h1(OP1(4)) + h1(OP1(1)) + h1(OP1(−2)) = 1.

We need to make two different computations for i = τ and 0 ≤ i < τ
because in those two cases the expression we found in 2.24 for the normal
sheaf of Ti is different.

We know that L|τTτ = aBτ where a is either h or h − 1. Both cases are
covered by the following lemma:

Lemma 2.29. One has

h0 (OτTτ (aBτ )) =
τ(τ + 1)(3a+ 2τ + 1)

6
.

Proof. By 2.24 we know thatN ∗Tτ is effective and since Tτ ∼= P1×P1, h1(L|Ti⊗
(N ∗

Ti|X (τ))
j) is going to be 0 for any positive j. We can then conclude, by 2.27,

that

h0 (OτTτ (aBτ )) =
τ−1∑
j=0

h0((a+ j)Bτ + jFτ ) =

=
τ−1∑
j=0

(j + 1)(a+ j + 1) =
τ∑
j=1

j(a+ j) =

= a
τ(τ + 1)

2
+
τ(τ + 1)(2τ + 1)

6
=

=
τ(τ + 1)(3a+ 2τ + 1)

6

For 1 ≤ i < τ , i 6= τ − e we know that L|iTi is either eFi or 0. Both cases
are covered by the following lemma.

Lemma 2.30. Let 1 ≤ i < τ and b < τ . Suppose also that τ ≤ 4. Then

h0 (OiTi(bFi)) =
4i3 + 3(2b+ 1)i2 − i

6

Proof. Since i < τ , N ∗Ti = OTi(2Bi + (τ − i+ 1)Fi).

hl
(
OTi(eFi)⊗

(
N ∗Ti|X (τ)

)j)
= hl(OTi(2jBi + (j(τ − i) + j + b)Fi))

=

2j∑
u=0

hl(OP1(j(τ − i) + j + b− u(τ − i)))
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We start by checking the condition on the h1 for all j < i. We have h1 > 0
if and only if j(τ − i) + j + b− u(τ − i) ≤ −2; u varies between 0 and 2j, so
this happens only if it happens for u = 2j

j(τ − i) + j + b− 2j(τ − i) ≥ −1

j ≤ j + b+ 1

τ − i

If τ ≤ 4, τ − i can only be 1, 2 or 3. If τ − i = 1 the inequality is always
satisfied, if τ − i = 2 then i is at most (if τ = 4) 2, j is either 0 or 1 and in
both cases the inequality is satisfied, if τ − i = 3, i can be at most 1 and j
has to be zero which satisfies the inequality too.

Now we can apply 2.27 and write

h0 (OiTi(bFi)) =
i−1∑
j=0

2j∑
u=0

j(τ − i+ 1) + b− u(τ − i) + 1

=
i−1∑
j=0

(2j + 1)(j(τ − i+ 1) + b+ 1)− (τ − i)j(2j + 1)

=
i−1∑
j=0

2j2 + (2b+ 3)j + b+ 1

= i(b+ 1) +
i(i+ 1)

2
(2b+ 3) + 2

i(i− 1)(2i− 1)

6

=
4i3 + 3(2b+ 1)i2 − i

6
.

If e 6= 0 the restriction of L to Tτ−e cannot be written as some number of
fibers and needs to be treated separatedly:

Lemma 2.31. Let’s suppose that we are in a case where e 6= 0. Let i = τ−e.
Then

h0
(
L|iTτ−e

)
=
i(i+ 1)(4i+ 3e+ 2)

6

Proof. Since i = τ − e, N ∗Ti = OTi(2Bi + (e+ 1)Fi).

hl
(
OTi(L)⊗

(
N ∗Ti|X (τ)

)j)
= hl(OTi((2j + 1)Bi + (je+ j + e)Fi))

=

2j+1∑
u=0

hl(OP1(je+ j + e− ue))
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First we check that the h1 is zero for all j < i. We have h1 > 0 if and only
if je + j + e − ue ≤ −2; this can only happen if it happens for the greatest
possible value of u, which is 2j + 1

je+ j + e− 2je− e ≥ −1

j(e− 1) ≤ 1

If τ ≤ 4, e can only be 1, 2 or 3. If e = 1 the inequality is always satisfied,
if e = 2 then i is at most 2 (and i = 2 can be reached only when τ = 4), j is
either 0 or 1 and in both cases the inequality is satisfied, if e = 3, i can be
at most 1 and j has to be zero which satisfies the inequality too.

Now we can apply 2.27 and write

h0
(
OiTτ−e(Bi + eFi)

)
=

i−1∑
j=0

2j+1∑
u=0

(j + 1)(e+ 1)− ue

=
i−1∑
j=0

(2j + 2)(j + 1)(e+ 1)− e(j + 1)(2j + 1)

=
i−1∑
j=0

2(j + 1)2 + e(j + 1)

= 2
i(i+ 1)(2i+ 1)

6
+ e

i(i+ 1)

2

=
i(i+ 1)(4i+ 3e+ 2)

6
.

The following lemma covers the intersections between the Ti’s.

Lemma 2.32. Let i < τ and 0 ≤ b < τ . Then

h0(OiTi∩(i+1)Ti+1
(b)) =

i(i+ 1)

2
(τ + 2b+ 1).

Proof. In the exact sequence

0→ OiTi(bFi − (i+ 1)Bi)→ OiTi(bFi)→ OiTi∩(i+1)Ti+1
(b)→ 0

we know the cohomology of the middle sheaf and its H1 and H2 spaces are
zero, so if h2(OiTi(bFi − (h+ 1)Bi)) = 0 we have that

h0(OiTi∩(i+1)Ti+1
(b)) = h0(OiTi(bFi)) + χ(OiTi(bFi − (i+ 1)Bi)).

One can see that h2(OiTi(bFi − (i + 1)Bi)) = 0 by induction on the
multiplicity of Ti, using 1.3 and the fact that, for any j ≥ 0, h2(OTi(−jBi +
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bFi) ⊗
(
N|Ti|X (τ)

)∗
) = 0. This last vanishing can be verified by noting that

the conormal bundle is effective and that this could not happen if the divisor
associated to that bundle were smaller than the anticanonical divisor of Ti.

χ (OiTi(−(i+ 1)Bi + bFi)) = (by 1.3)

=
i−1∑
j=0

χ

(
OiTi(−(i+ 1)Bi + bFi ⊗

(
N|∗Ti|X (τ)

)j)

=
i−1∑
j=0

χ (OTi((2j − i− 1)Bi + (j(τ − i+ 1) + (τ − i) + b+ 2)Fi))

=
i−1∑
j=0

1

2
(−(τ − i)(2j − i+ 1)(2j − i− 1) + (2j − i+ 1)(τ − i+ b+ 2)) +

+(2j − i− 1)(j(τ − i+ 1) + (τ − i) + b+ 2) + 1

=
i−1∑
j=0

2j2 + j((τ − i− 1)(i+ 1) + 2b+ 3)− (τ − i)i(i+ 1)

2
− i(b+ 1)

We found earlier that, if τ ≤ 4,

h0 (OiTi(bFi)) =
i−1∑
j=0

2j2 + j(2b+ 3) + b+ 1;

then:

h0(OiTi∩(i+1)Ti+1
(b)) = h0(OiTi(bFi)) + χ (OiTi(−(i+ 1)Bi + bFi)) =

=
i−1∑
j=0

−j((τ − i− 1)(i+ 1)) + (τ − i)i(i+ 1)

2
+ (b+ 1)(i+ 1)

=
i(i+ 1)

2
(τ + 2b+ 1).

The following is the computation for the intersection of T with P .

Lemma 2.33. One has:

h0 (OτTτ∩P (L)) =
τ(τ + 1)

2
.
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Proof. We know that OsTτ (L) = OτTτ (hBτ ). In the exact sequence

0→ OτTτ ((h− 1)Bτ )→ OτTτ (hBτ )→ OτTτ∩P (L)→ 0

we know the cohomology of the first two sheaves which is zero in dimension
1 and 2. Therefore

h0(L|τTτ∩P ) = h0(OτTτ (hBτ ))− h0(OτTτ ((h− 1)Bτ ))

= h
τ(τ + 1)

2
+
τ(τ + 1)(τ + 1)

6
−

−(h− 1)
τ(τ + 1)

2
− τ(τ + 1)(2τ + 1)

6

=
τ(τ + 1)

2
.

Now we move to make the computations at the intersections between the
components of T and Ṽ . We need to make different cases according to the
expressions we found for h0(L|iTi).

Lemma 2.34. Let i ≤ τ and suppose τ ≤ 4.

h0
(
L|iTi∩eV ) = h0 (L|iTi) + χ(L|iTi ⊗OiTi(−τFi))

hl
(
L|iTi∩eV ) = 0 for l > 0

Proof. In the exact sequence

0→ L(−Ṽ )|iTi → L|iTi → L|iTi∩eV → 0

we know the cohomology of the middle sheaf and its H1 and H2 spaces are
zero, so we only need to prove that h2(L(−Ṽ )|iTi) = 0. Let D be the Cartier
divisor associated to the restriction of L; D is of the form aBi+bFi for suitable
a and b and the computation made in 2.25 shows that a ≥ 0. h2(L(−Ṽ )|iTi) =
h2(OiTi(aBi + (b− τ)Fi)) and it is easy to see that this is 0 by induction on
s, using 1.3 and the fact that h2(OTi(aBi + (b− τ)Fi)⊗

(
N|Ti|X (τ)

)∗
) is 0 for

any j ≥ 0.

Lemma 2.35. Let 1 ≤ i < τ ≤ 4, i 6= τ − e, L|iTi = bFi. Then

h0
(
L|iTi∩eV ) = τi2.

Note that the result does not depend on b.
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Proof.

χ (L ⊗OiTi(−τFi)) =

=
i−1∑
j=0

χ

(
L ⊗OTi(−τFi)⊗

(
N|∗Ti|X (τ)

)j)

=
i−1∑
j=0

χ (OTi(2jBi + (b− τ + j(τ − i) + j)Fi))

=
i−1∑
j=0

1

2
(−(τ − i)2j(2j + 2) + 2j(b− τ + j(τ − i+ 1) + (τ − i) + 2) +

+2(j + 1)(e− τ + j(τ − i+ 1)) + 1

=
i−1∑
j=0

2j2 + j(2b+ 3− 2τ) + b− τ + 1

We found earlier that, if τ ≤ 4,

h0 (OiTi(bFi)) =
i−1∑
j=0

2j2 + j(2b+ 3) + b+ 1;

the difference is

i−1∑
j=0

τ(2j + 1) = τi2.

Lemma 2.36. Same hypothesis as above, except that i = τ − e. Then

h0
(
L|(τ−e)Tτ−e∩eV

)
= τ(τ − e)2 + τ(τ − e).
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Proof.

χ
(
L ⊗O(τ−e)Tτ−e(−τFτ−e)

)
=

=
τ−e−1∑
j=0

χ

(
L ⊗OTτ−e(−τFτ−e)⊗

(
N|∗Tτ−e|X (τ)

)j)

=
τ−e−1∑
j=0

χ (OTτ−e((2j + 1)Bτ−e + (b− τ + j(e+ 1))Fτ−e))

=
τ−e−1∑
j=0

1

2
(−e(2j + 1)(2j + 3) + (2j + 1)((e+ 1)(j + 2)− τ) +

+(2j + 3)(e− τ + j(e+ 1)) + 1

=
τ−e∑
j=1

1

2
(−e(2j − 1)(2j + 1) + (2j − 1)((e+ 1)(j + 1)− τ) +

+(2j + 1)(e− τ + (j − 1)(e+ 1)) + 1

=
τ−e∑
j=1

2j2 + (e− 2τ)j

We found earlier that, if τ ≤ 4,

h0
(
O(τ−e)Tτ−e(Bτ−e + eFτ−e)

)
=

τ−e∑
j=1

2j2 + ej;

therefore

h0
(
L|(τ−e)Tτ−e∩eV

)
=

τ−e∑
j=1

2τj = τ(τ − e)(τ − e+ 1).

Lemma 2.37. Same hypothesis as above, except that i = τ and let a be any
nonnegative integer. Then

h0
(
L|iTτ∩eV ) = τ

i(i+ 1)

2
+ τai.
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Proof.

χ (L ⊗OiTτ (−τFτ )) =

=
i−1∑
j=0

χ

(
L ⊗OTτ (−τFτ )⊗

(
N|∗Tτ |X (τ)

)j)

=
i−1∑
j=0

χ (OTi((a+ j + 2)Bτ + (j − τ + 2)Fτ ))

=
i−1∑
j=0

(a+ j + 1)(j + 1− τ)

=
i∑

j=1

(a+ j)(j − τ)

We found earlier that, if τ ≤ 4,

h0 (OiTτ (aBτ )) =
i∑

j=1

j(a+ j);

and therefore

h0
(
L|iTτ∩eV ) =

i∑
j=1

τ(a+ j) = τ
i(i+ 1)

2
+ τai.

We can now complete the computation from the beginning of the section.
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If e = 0 then

h0
(
L|T∩(P∪eV )

)
− h0 (L|T ) =

=
τ−1∑
i=1

h0
(
OiTi∩eV )+ h0

(
OτTτ∩eV (h)

)
−

τ−1∑
i=1

τi(i+ 1) + h0 (OτTτ∩P )− τ 2

−
τ−1∑
i=1

h0 (OiTi)− h0 (OτTτ (hBτ )) +
τ−1∑
i=1

h0
(
OiTi∩(i+1)Ti+1

)
=

τ−1∑
i=1

(
h0
(
OiTi∩eV )− τi(i+ 1)− h0(O|iTi) + h0(O|iTi∩(i+1)Ti+1

)
)

+

+h0
(
OτTτ∩eV (h)

)
+ h0 (OτTτ∩P )− τ 2 − h0 (OτTτ (hBτ ))

=
τ−1∑
i=1

(
i(i+ 1)

2
+ τ 2h− τi(i+ 1)− 4i3 + 3i2 − i

6
+ τi2

)
+

+
τ 2(τ + 1)

2
+
τ(τ + 1)

2
− τ 2 − τ(τ + 1)(3h+ 2τ + 1)

6

=
τ−1∑
i=1

(
−2

3
i3 +

1

2
τi2 +

(
2

3
− τ

2

)
i

)
+
τ 3 + (3h− 3)τ 2 + (2− 3h)τ

6

= −τ(τ 2 − 3τ + 2)

6
+
τ 3 + (3h− 3)τ 2 + (2− 3h)τ

6

= h
τ(τ − 1)

2
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If e > 0

h0
(
L|T∩(P∪eV )

)
− h0 (L|T ) =

=
τ−1∑
i=1

h0(OiTi∩eV ) +
(
h0(L|(τ−e)Tτ−e∩eV )− h0(O(τ−e)Tτ−e∩eV )

)
+

+ h0(OτTτ∩eV ((h− 1)Bτ )) −
τ−1∑
i=1

τi(i+ 1) + h0(OτTτ∩P ) − τ 2 −

−
τ−1∑
i=1

h0(OiTi) +
τ−e−1∑
i=1

(
h0(OiTi)− h0(OiTi(eFi))

)
+

+(h0(O(τ−e)Tτ−e)− h0(O(τ−e)Tτ−e(Bτ−e + eFτ−e)))−

− h0(OτTτ ((h− 1)Bτ )) +
τ−1∑
i=1

h0(OiTi∩(i+1)Ti+1
) −

−
τ−e−1∑
i=1

(
h0(OiTi∩(i+1)Ti+1

)− h0(OiTi∩(i+1)Ti+1
(e))

)
The shaded terms are exactly what appeared for e = 0, except that h − 1
appears where h used to. We replace them with (h− 1) τ(τ−1)

2
and we get

h0
(
L|T∩(P∪eV )

)
− h0 (L|T ) =

= (h− 1)
τ(τ − 1)

2
+
(
τ(τ − e)2 + τ(τ − e)− τ(τ − e)2

)
+

+
τ−e−1∑
i=1

(
4i3 + 3i2 − i

6
− 4i3 + (3 + 6e)i2 − i

6

)
+

(
4(τ − e3) + 3(τ − e)2 − (τ − e)

6
−

−(τ − e)(τ − e+ 1)(4(τ − e) + 3e+ 2)

6

)
−

−
τ−e−1∑
i=1

(
i(i+ 1)

2
(τ + 1)− i(i+ 1)

2
(τ + 2e+ 1)

)

= (h− 1)
τ(τ − 1)

2
+

τ−e−1∑
i=1

(ei)− (e+ 1)
(τ − e)(τ − e+ 1)

2
+ τ(τ − e)

= (h− 1)
τ(τ − 1)

2
+

(τ − e)(τ − e− 1)

2
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Note that if we put e = 0 in this formula we obtain exactly the one we found
for e = 0.

Results

Putting the above lemmas together we obtain the following proposition:

Proposition 2.38. Let p1(t), . . . , pn(t) be n points coming together for t = 0
in a general way and let’s make the construction described earlier. If there is
a (smooth, irreducible) rational curve B on P meeting R transversally at the
points q1

1, . . . , q
1
τ , with τ ≤ 4, and such that L.B = −σ < 0 and (B2)P = −1,

then the limit scheme contains in its first infinitesimal neighborhood a set of
τ points of type (hτ−e; (h − 1)e) at q1

1, . . . , q
1
τ together with (h − 1) (τ−1)τ

2
+

(τ−e−1)(τ−e)
2

extra conditions that are visible on the restriction of the linear
system L(τ) to the succesive blowups of B.

This reveals a number of conditions on the curves of L|X0 . Adding those
up we have that:

Corollary 2.39. Every such curve B contributes to the length of the candi-
date limit scheme by σ(σ+2τ−1)

2
.

Proof. The proof is a straightforward computation, remembering that σ =
τh− e by the definition of τ and e.

τ

(
e

(h+ 1)h

2
+ (τ − e)h(h+ 1)

2

)
+ (h− 1)

(τ − 1)τ

2
+

(τ − e− 1)(τ − e)
2

= τ 2h(h+ 1)

2
− τhe+

τ 2h− τh− τ 2 + τ + τ 2 − 2τe+ e2 − τ + e

2

=
τ 2h+ 2 + τ 2h− 2τhe+ τ 2h− τh− 2τe+ e2 + e

2

=
τ 2h2 − 2τhe+ e2 + 2τ 2h− 2τe− τh+ e

2

=
(τh− e)(τh− e+ 2τ − 1)

2

=
σ(σ + 2τ − 1)

2

We have come to the following strengthening of 2.22
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Theorem 2.40. Let p1(t), . . . , pn(t) be n fat points of multiplicities
m1, . . . ,mn coming together at a point p in a general way and suppose that
after the first blowup there are s rational curves B1, . . . , Bs on P such that
B2
i = −1, Bi.L = −σi < 0, and Bi meets V transversally at τi points

qi,1, . . . , qi,τi. Let hi and ei be integers such that 0 ≤ ei < τi and σi = τihi−ei.
Let k be the minimum integer such that there is a curve of degree k in the
projective plane passing through n points in general position of multiplici-
ties m1, . . . ,mn and let L be the linear system we obtain after the process of
removing the fixed components.

Then the limit scheme contains the scheme defined by the point p with
multiplicity k together with s sets of τi infinitely near points of type (hi

τi−ei , (hi−
1)ei) in qi,1, . . . , qi,τi and the further matching conditions. If all τi ≤ 4, this
scheme has length

k(k + 1)

2
+ deg |LR| − dim |LR|+

s∑
i=1

(
τi(τi − ei)

hi(hi + 1)

2
+

+τiei
hi(hi − 1)

2
+ (hi − 1)

τi(τi − 1)

2
+

(τi − ei)(τi − ei − 1)

2

)
Note that in order to compute this number effectively one has to know

the value of k and have perfect knowledge of the system LP , including its
dimension, its degree and all its fixed components Bi. All this is related to
conjecture 1.18.

Writing explicit expressions for those conditions is still a work in progress.
However some of these conditions are easy to understand since they are visible
by looking at the restriction of L to Tred. They appear and are described in
the following examples.

Even if our comprehension of the candidate limit scheme is not complete
yet, being able to count how many conditions come from matching is enough
to narrow considerably the possible limit schemes for a general collision of
fat points. Since we know the length of this candidate limit scheme we can
compare it with the length of the limit scheme and prove that it is the limit,
as we will do in the following applications.

Example 2.41. Continuing on example 2.23, the computations made in this
section call for a total of (h−1)+(1−e) = h−e conditions coming from the
matching of L. We can see that L(2)|T1 ∼ eB1 + eF and L(2)|T2 ∼ (h− e)B2;
the first system intersects F1 at e points and the second one intersects F2 at
h− e points. If e = 0 the system L(2)

P |T1 is trivial; if e = 1 there is one point
on each of the two fibers over q1 and q2 and however we choose those points
there is a curve in |B1 + F1| that contains both, so restricting to this linear
system does not pose any extra conditions on the positions of those points.
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On the other hand, on T2
∼= P1×P1 we have two fibers with h− e points

on each and the system is L(2)
P |T2 ∼ (h− e)B2, that is h− e lines from the

fibration other than the one of the fibers. This means that any given position
of the h−e points that lie on one of the two fibers already determines a unique
element of the linear system and thus forces where the points on the other
fiber have to lie. Restricting to an element of that linear system then poses
for a curve h− e more conditions to the second order.

Let’s now compute the length of the limit scheme. Since e is either 0 or
1, we have that e2 − e = 0

5
m(m+ 1)

2
= 5

4h2 − 4eh+ e2 + 2h− e
2

= 10h2 − 10eh+ 5h

while the candidate limit scheme has length

2m(2m+ 1)

2
+ 2(2− e)h(h+ 1)

2
+ 2e

h(h− 1)

2
+ h− e =

= 8h2 − 8he+ 2e2 + 2h− e+ 2h2 + 2h− 2eh+ h− e
= 10h2 − 10eh+ 5h

then the candidate limit is the limit scheme.

For τ ≥ 3 there are conditions that are only visible looking at the nonre-
duced structure of iTi.

Example 2.42. Let’s consider the case of one point of multiplicity 6 and
six points of multiplicity 3 coming together. Those colliding points translate
into points of the same multiplicity on P . The minimal degree k needed to
have a curve with the assigned multiplicities is 9 and the linear system on W
is the unique cubic having one node at the multiplicity 6 point and passing
through the other six, counted three times. Let B be the corresponding
reduced curve on P ; this means the linear system on P is 3B.

In this situation σ = −(3B).B = 3, τ = 3 and e and h assume value
0 and 1 respectively. We need to blow up B three times; the first time we
create an exceptional divisor T1

∼= F2, the second time the exceptional divisor
is T2

∼= F1 counted twice and the third and final time we get T3
∼= P1 × P1

surface counted three times. The linear system on T3 is B3 and the restriction
to 2T2 and T1 is empty.

Now let’s look at the conditions that this imposes to the corresponding
system on V (2). With the same arguments of the previous example the
construction tells us that the limit scheme contains a point of multiplicity 9
with three infinitely near points of type (1, 1, 1). This adds up to

9 · 10

2
+ 3(1 + 1 + 1) = 54
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conditions. The statement of 2.40 calls for a total of 3 more conditions, for
a total of 57. And the length of the limit scheme is the same as the general
fiber of D, which is one point of multiplicity 6 (21 conditions) and 6 points
of multiplicity 3 (6 conditions each, 36 total) for a total of 57 conditions; the
candidate limit described by 2.40 is then the flat limit.

Among the 3 “extra” conditions , 2 are visible looking at the reduced
level: Any element of L|eV intersects each of the fibers over the points q1, q2
and q3 in a point of T3

∼= P1 × P1 and the linear system there is made by a
single line of the fibration of B3. This means that one of these points is free
but then the choice of the other two is forced, giving two more conditions.
The missing condition is only visible on the nonreduced structure on 3T3.

2.4 Elimination of fixed genus 1 curves

Let now B be a (smooth, irreducible) genus 1 curve on P appearing as a fixed
component of LP with multiplicity σ. We assume that B meets R transver-
sally at τ points q1

1, . . . , q
1
τ , that B does not meet the other components of

LP and that (B2)P = 0 but its self-intersection divisor is not trivial. The
curve B is the proper transform from the projective plane W of a (possibly
singular) curve of degree τ ; let’s write the self-intersection divisor of B as
τH −D, where H is the pull-back of the hyperplane section.

As we did in the rational case, we proceed iteratively

First step: Let X (1) π(1)

−→ X be the blowup of X along B and let T1 be the
exceptional divisor; the surface T1 is isomorphic to a scroll with base curve
B1. The surfaces T1 and P intersect transversally along a curve which is the
base curve of T1 and the curve B on P ; we will refer to it either way depending
on which surface we are considering. Let V (1) be the proper transform of V ;
V (1) is isomorphic to the blowup of V at the points q1

1, . . . , q
1
τ .

We apply proposition 2.5 again; The bound on the multiplicity of L along
B is the least j such that h0

(
T1, π

(1)∗(L)⊗O(−jT1)|T1

)
> 0.

The restriction of the first factor can be done as follows:

π(1)∗(L)|T1 ∼ π(1)∗(L)|π(1)∗(B) ∼ π(1)∗(L|B) ∼ σ(τH −D)f1

while the second factor can be computed using the fact that

T1|T1 ∼ (X (1)
0 − P − V (1))|T1 ∼ −B1 −Hf1

This tells us that(
π(1)∗(L)⊗O(−jT1)

)
|T1 ∼ σ(τH −D)f1 + j(B1 +Hf1)
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For j = 0 this is not an effective divisor on T1 but j = 1 is already enough
since then the f1 part is a divisor on B of degree τ > 0 and, by Riemann-Roch
theorem, every divisor of positive degree on a curve of genus 1 has an effective
divisor in its linear equivalence class. This means that the multiplicity of L
along B is at least 1.

Let L(1) be the linear system |π(1)∗L − T1| on X (1) and let us now check
whether B is a fixed component of L(1); we have that

L(1)|B1 ∼ L(1)|T1|B1 ∼ (B1|B1)|T1 + (στ + 1)H − σD

here the divisor (B1|B1)|T1 can be computed via the triple point formula
(proposition 1.10) as −(τ + 1)H +D to obtain

L(1)|B ∼ (σ − 1)(τH −D).

Then if σ = 1 we are done; otherwise we have to apply the procedure again.

i-th step: In the previous steps we have constructed a sequence of blowups

X (i−1) π
(i−1)

−→ · · · π
(1)

−→ X .

For each j < i, Tj is the exceptional divisor of π(j) and it is isomorphic to a
ruled surface; we called Bj its base curve. Where they are both defined Tj
intersects Tj−1 transversally along Bj−1 and Tj and Tk are disjoint if j and k
are not consecutive; the surfaces P and Ti−1 intersect transversally along B.

We also called V (j) the proper transform of V via π(j) ◦ · · · ◦ π(1), L(j)

the linear system obtained by subtracting from the transform of L a suitable
number of copies of the exceptional divisors and L(j) the associated invertible
sheaf.

The fiber over t = 0 of the composition π(j) ◦ · · · ◦ π(1) ◦ ψ′′ is

X (i−1)
0 = P +

i−1∑
l=1

lTl + V (i−1).

Moreover in step (i− 1) we computed the intersection divisor

L(i−1).B = (σ − (i− 1))(τH −D).

Let X (i) π
(i−1)

−→ X (i−1) be the blowup of X (i−1) along B; the proper trans-
form of P under this blowup is isomorphic to P itself so we still call it P
and we can still talk about B meaning by that the corresponding curve on
P . Let Ti be the exceptional divisor; Ti is isomorphic to a scroll with base
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curve B. The surfaces Ti and P intersect transversally along a curve which
is the base curve Bi of Ti and the curve B on P ; we will refer to it either
way depending on which surface we are considering. Let V (i) be the proper
transform of V (i−1); V (1) is isomorphic to the blowup of V (i−1) at the points
qi1, . . . , q

i
τ .

We apply proposition 2.5 again; The bound on the multplicity of L(i−1)

along B is the least j such that h0
(
Ti, π

(i)∗(L(i−1))⊗O(−jTi)|Ti
)
> 0.

The restriction to Ti of the first factor can be done as follows:

π(i)∗(L(i−1))|Ti ∼ π(i)∗(L(i−1))|π(i)∗(B)

∼ π(1)∗(L(i−1)|B)

∼ (σ − (i− 1))(τH −D)fi

the computation of the second factor is slightly more complicated since this
time the Ti component of X (i)

0 is not reduced.

− iTi|Ti ∼ −

(
X (i)

0 − P − V (1) −
i−1∑
l=1

lTl

)∣∣∣∣∣
Ti

∼ Hfi +Bi +Bi−1 (2.3)

here we need to substitute to Bi−1 a divisor of the form aBi+Mfi, where M
is a divisor on Bi. Since Bi meets any fiber in one point we have that a = 1
and the fact that Bi−1 and Bi are disjoint implies that M = −(Bi|Bi)Ti . This
divisor M can be computed via the triple point formula (proposition 1.10)
as −(τi + 1)H + iD. Plugging this result into the 2.3 and dividing by i we
obtain that

−Ti|Ti ∼ Bi + ((τi− τ + 1)H − (i− 1)D)fi

This tells us that(
π(i)∗(L(i−1))⊗O(−jTi)

)∣∣∣
Ti
∼ (σ−i+1)(τH−D)fi+jBi+j((τi−τ+1)H−(i−1)D)fi

For j = 0 this is not an effective divisor on T1 but j = 1 is already enough
since then the f1 part is a divisor on B of degree τ > 0 and, by Riemann-Roch
theorem, every divisor of positive degree on a curve of genus 1 has an effective
divisor in its linear equivalence class. This means that the multiplicity of
L(i−1) along B is at least 1.

Let L(i) be the linear system |π(i)∗L(i−1)−Ti| on X (())i and let’s now check
whether B is a fixed component of L(i); we have that

L(i)|B ∼ L(i)|Ti |Bi
∼ (Bi|Bi)Ti + (τσ − iτ + τ + iτ − τ + 1)H − σD
∼ −(τi+ 1)H + iD + τσH +H − σD
∼ (σ − i)(τH −D).
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Then if i = σ we are done; otherwise this divisor is not effective and we have
to apply the procedure again. This also means that the procedure is repeated
exactly σ times, regardless of τ .

We can summarize the results of this section in the following proposition:

Proposition 2.43. Let p1(t), . . . , pn(t) be n points coming together for t = 0
in a general way and let’s make the construction described in the previous
section. If there is a (smooth, irreducible) curve B of genus 1 on P appearing
with multiplicity σ as a fixed component of LP such that B does not meet any
other component of LP , it meets R transversally at the points q1

1, . . . , q
1
τ and

(B2)P = 0 but the self-intersection divisor is not trivial, then the limit scheme
contains in its first infinitesimal neighborhood a set of τ points of type (1σ)
at q1

1, . . . , q
1
τ .

This accounts for στ conditions on the curves of L|X0 and thus every such
curve B contributes to the length of the candidate limit scheme by στ .

Example 2.44. Let’s consider the case of nine points of multiplicity m
coming together. Those colliding points translate into nine points of the
same multiplicity on P . The minimal degree k of a curve having multiplicity
m at all of them is 3m and the linear system on W has only one element:
the cubic B passing through those points counted with multiplicity m. B is
curve of genus one and the self-intersection divisor of B is 3H −D, where D
is the divisor

∑9
i=1 p̃i(0); 3H −D has degree 0 so we can apply the process

we just described.
In this situation σ = −(mB).B = m and τ = 3. We need to blow up B

m times. The candidate limit is then a point of multiplicity 3m with three
infinitely near points of type (1m). This scheme has length

3m(3m+ 1)

2
+ 3 ·m · 1 = 9

m(m+ 1)

2

which is the same as the limi scheme, meaning that it is indeed the limit.

Example 2.45. Let a,m be positive integers, with a ≥ 3. Let’s consider the
collision of a point of multiplicity m(a − 2), a − 3 points of multiplicity 2m
and 8 points of multiplicity m.

One can see that the minimum degree of a plane curve that passes through
all those points with the assigned multiplicities is am by induction on m.

If m = 1 we claim that the the minimum degree is a. To prove this we note
that the (projective) virtual dimension of the linear system La(a−2; 2a−3; 18)
is 0, meaning that there exist a curve B of degree a passing through the
assigned points with those multiplicities. If degree a − 1 were enough we
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would have that the linear system La−1(a− 2; 2a−3; 18) would contain all the
a − 3 lines from the multiplicity a − 2 point to each of the nodes as fixed
components; the remaining part would only have degree 2 but would have to
pass through a+ 6 points in general position, which is impossible.

If m ≥ 2 then degree am is enough (just take the curve B counted with
multiplicity m) while degree am − 1 is not; in fact the intersection number
|Lam−1((a− 2)m; 2ma−3;m8)|.B = −a, meaning that B is a fixed component
of the system which can then be rewritten as |La(m−1)((a− 2)(m− 1); 2(m−
1)a−3; (m−1)8)|+B which is empty by the inductive hypothesis. This proves
that the minimal degree is always am.

Now we observe that for a = 3 the problem is the collision of nine points
of multiplicity m which we treated in example 2.44; speifically, we know that
the linear system L3m(m9) has a unique element which is the cubic curve
passing through the 9 points counted m times.

If a > 3 we can use Cremona transformations on W to reduce ourselves
back to this case. Cremona transformations preserve the dimension of linear
systems, therefore that will prove that the curve is unique, and they induce a
birational morphism between corresponding curves, therefore the curve will
be irreducible. This would then prove that the linear system Lam(m(a −
2), 2md−3,m8) has a unique irreducible element which is the (unique) curve
B in La(a− 2, 2d−3, 18) counted m times.

If a = 4 the points have multiplicities (2m, 2m,m8). We can apply a
Cremona transformation centered at the two points of multiplicity 2m and
one of the points of multiplicity m which gives us the reduction

degree multiplicities
4m 2m 2m m m7

3m m m 0 m7

If a ≥ 5 we can apply a Cremona transformation centered at the point of
high multiplicity and at two of the points of multiplicity 2m; this yields the
reduction

degree multiplicities
am (a− 2)m 2m 2m 2md−5 m8

(a− 2)m (a− 4)m 0 0 2md−5 m8

where the second line is the same problem where a has been reduced by 2.
We can then proceed iteratively picking two other of the points of multiplicity
2m until we lower a to either 4 or 3.

Following the construction outlined the linear system L on P is just mB.
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It is easy to see that the curve B has genus 1, meets the line R at am points
and that these intersections are transversal for the genericity of the collision.
Our candidate limit scheme is then a point of multiplicity am with a points
of type (1m) in its first order neighborhood. The length of such a scheme is

am(am+ 1)

2
+ am =

am(am+ 3)

2

while the length of the limit scheme is

m(a−2)(m(a−2)+1)
2

+ (a− 3)2m(2m+1)
2

+ 8m(m+1)
2

=

= am(am+3)
2

Proving that the candidate is the limit scheme.

The last example covers cases of a curve B of genus 1 for any values of
τ and σ; this means that, differently from the rational case, fixed curves of
genus one do not impose in general any condition to the limit scheme other
than having τ points of type (1σ) in the first infinitesimal neighborhood.
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Chapter 3

Limits of a small number of fat
points

In this chapter we will use the techniques developed so far to compute the
limit of n points p1, . . . , pn of multiplicities m1, . . . ,mn. We will treat each n
separately.

Our general procedure will be the following:

1. Determine the minimum k such that dimLk(m1, . . . ,mn) > 0.

2. Find the fixed components of L = Lk(m1, . . . ,mn).

3. Look at the movable part of L; compare its dimension with its degree.

4. Use the results in chapter 2 to produce a candidate limit scheme.

5. Verify that the length of the candidate limit scheme matches the length
of the actual limit scheme and close the argument with proposition 1.7.

We will use this method to get the limit of up to four points of any
multiplicity, the limit of to nine points having the same multiplicity and a
few other easy cases. For a higher number of points it is considerably more
difficult to execute the first part of our strategy because there are fewer
results for the polynomial interpolation problem.

3.1 Non-homogeneous Collisions

Proposition 3.1. The flat limit of two points p1, p2 of multiplicities m1,m2

respectively, with m1 ≥ m2, coming together in a general way is a point of
multiplicity m1 with an infinitely near point of multiplicity m2

53
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Proof. After the first construction we find two points of multiplicity m1 and
m2 on W . The lowest k such that Lk(m1,m2) 6= ∅ is m1 and the linear system
consists of the line B through p1 and p2 counted m2 times plus m1 − m2

more lines through the point of multiplicity m1. This linear system has
thus dimension m1 −m2, which is also the degree of its movable part, and
this means that the moveable part of LP imposes no conditions. The only
fixed component is the line B. The only condition on the first infinitesimal
neighborhood is then to have a fixed point of multiplicity m2.

The candidate limit scheme is then a point of multiplicity m1 with a
point of multiplicity m2 in its first infinitesimal neighborhood. The length
of this scheme is the same as the length of a point of multiplicity m1 plus
the length of a point of multiplicity m2, so, by proposition 1.7, the candidate
limit scheme is the limit scheme.

3.1.1 Collisions of three points

Lemma 3.2. Let m1, m2, m3 be positive integers, m1 ≥ m2 ≥ m3. The
lowest degree d for which the linear system Ld(m1,m2,m3) is not empty is

max

{
m1;

⌈
m1 +m2 +m3

2

⌉}
=

 m1 if m1 ≥ m2 + m3⌈
m1 +m2 +m3

2

⌉
if m1 < m2 +m3

Moreover, if Bij is the line through pi and pj, the linear system is of the
following form:

If m1 ≥ m2 +m3, the fixed part is m2B12 +m3B13 and the movable part
consists of m1 −m2 −m3 lines through p1.

If m1 < m2 + m3, the fixed part is (m1 + m2 − d)B12 + (m1 + m3 −
d)B13 + (m2 +m3−d)B23. If m1 +m2 +m3 is even there is no movable part;
if m1 + m2 + m3 is odd the movable part is the linear system of the conics
pasisng through p1, p2 and p3.

Proof. The minimum degree is at least m1 since no curve of a lower degree
can have a point of multiplicity m1. If m1 ≥ m2 + m3 there exist a suitable
linear system of degree exactly m1, so the minimum degree in this case is m1.
Comparing the intersection numbers with the dimension of the system one
finds that the elements of the linear system realizing this minimum consist of
m1 lines through the point p1, so that m2 of them also pass through p2 and
m3 others pass through p3. This leaves m1 −m2 −m3 lines passing through
p1 as the movable part of the system.

If m1 < m2 +m3 it is easy to see that the linear system described in the
statement has the stated degree and has multiplicity mi at each pi. To prove
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that that is the one having minimum degree, let k be an integer such that
Lk(m1,m2,m3) 6= ∅. We can apply a quadratic Cremona transformation with
base points p1, p2 and p3; the transformed system has degree 2k−m1−m2−m3

and is not empty, meaning that k ≥
⌈
m1+m2+m3

2

⌉
.

To prove that the system has the stated fixed part, consider that, on the
blowup of P2 at p1, p2 and p3, Lk(m1,m2,m3).Bij = k − mi − mj; since
the lines Bij are (−1)-curves, they need to be contained in the system with
multiplicity mj +mi − k.

Proposition 3.3. Let p1, p2 and p3 be three points of positive multiplicities
m1, m2 and m3 respectively, with m1 ≥ m2 ≥ m3, coming together in a
general way.

1. If m1 ≥ m2 + m3, the flat limit is a point of multiplicity m1 with two
infinitely near points of multiplicities m2 and m3.

2. If m1 < m2 +m3, let m1 +m2 +m3 = 2k− e, with e either 0 or 1. The
flat limit is a point of multiplicity k with three infinitely near points of
multiplicities k − e−m1, k − e−m2 and k − e−m3.

Proof. The multiplicity of the limit point is the minimum degree found earlier
and each line which is a fixed component of the system on W gives a fixed
infinitely near point of the same multiplicity.

Each line present in the fixed part of LW with multiplicity σ requires LV to
have multiplicity σ at its intersection point with R. The multiplicities stated
are the ones found in the previous lemma, remembering that m1 +m2 +m3 =
2k − e. If m is even there is nothing more to say. If m is odd the presence
of the conics still does not impose any conditions since they cut a complete
linear series on R.

In both cases the number of conditions imposed match the length of the
limit scheme, meaning that the canddate limit scheme is the limit scheme.

3.1.2 Collisions of four points

Throughout this section, we will consider the four multiplicities ordered as
m1 ≥ m2 ≥ m3 ≥ m4.

Lemma 3.4. Let d = d(m1,m2,m3,m4) be the minimum degree d for which
the linear system Ld(m1,m2,m3,m4) is not empty. We have that

d ≥
⌈
m1 +m2 +m3 +m4

2

⌉
.
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Proof. Let k be any degree such that Lk(m1,m2,m3,m4) 6= ∅. We can apply
a Cremona transformation based in p1, p2 and p3 to the system and the
transformed system is of the type L2k−m1−m2−m3(k − m1 − m2, k − m1 −
m3, k − m2 − m3,m4). The original system is not empty if and only if the
transformed one is and this system is empty if its degree is less than m4

since it is required to have a fixed point of multiplicity m4. This means that
2k − m1 − m3 − m3 ≥ m4 or k ≥ m1+m2+m3+m4

2
and, since k is an integer,

k ≥
⌈
m1+m2+m3+m4

2

⌉
.

The bound we found in this lemma is the minimum degree except in the
case where one point has multiplicity greater than the sum of the other three.
We prove this in three cases and then will reduce all the others to one of these
three.

Lemma 3.5. The minimum d such that the system Ld(m
4) is not empty is

2m. The system that realizes this minimum has dimension m and its mem-
bers are the unions of m conics, each passing through the points p1, . . . , p4.

Proof. The union of m conics each passing through p1, . . . , p4 realizes the
lower bound on the degree found in 3.4, so 2m is the minimum degree. These
unions of conics form a linear system of dimension m so we only need to
prove that this is the dimension of L2m(m4); we can do so by applying a
Cremona transformation of base points three of the four points and find that
dimL2m(m4) = dimLm(m) = m.

Lemma 3.6. The minimum d such that the system Lk(m + 1,m3) is not
empty is 2m+1. The system that realizes this minimum has dimension equal
to its degree and has no fixed components.

Proof. 2m + 1 is the lower bound found in 3.4; we need to prove that it is
realized. Consider the linear system L2m+1(m+ 1,m3) and apply a Cremona
transformation based at the points p1, p2 and p3 to it; the transformed system
is of type Lm+1(1,m) and we know that it is nonspecial since it is obtained
by adding a single point to Lm+1(m), which is not. The dimension of both

systems is then (m+1)(m+4)
2

− (m−1)m
2
− 1 = 2m+ 1.

Moreover, the original linear system does not have any of the fundamental
lines of the Cremona transformation as fixed components since its intersec-
tion number with them is not negative. Any other fixed component should
correspond to a fixed component of the transformed system but the general
element of Lm+1(m) is irreducible, preventing that.

Lemma 3.7. The minimum d such that the system Lk(m
3,m − 1) is not

empty is 2m. The system that realizes this minimum has dimension equal to
its degree and has no fixed components.
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Proof. 2m is the lower bound found in 3.4; we need to prove that it is real-
ized. Consider the linear system L2m(m3,m− 1) and apply to it a Cremona
transformation centered at the three multiplicity m points; the transformed
system is of type Lm(m − 1) and we know that it has dimension m, so the
original system has dimension m as well.

Moreover, the original linear system does not have any of the fundamental
lines of the Cremona transformation as fixed components since its intersec-
tion number with them is not negative. Any other fixed component should
correspond to a fixed component of the transformed system but the general
element of Lm(m− 1) is irreducible, preventing that.

Proposition 3.8. Let m1, m2, m3 and m4 be positive integers, m1 ≥ m2 ≥
m3 ≥ m4. The linear system Ld(m1,m2,m3,m4), where d is the minimum
degree for which the system is not empty, is of the following form:

1. if m1 ≥ m2 +m3 +m4 then d = m1 and the system consists of m2B12 +
m3B13 +m4B14 as the fixed part and m1−m2−m3−m4 lines through
p1 as the movable part.

2. if m1 < m2 +m3 +m4 then d =
⌈
m1+m2+m3+m4

2

⌉
. The system realizing

this minimum has fixed part given by the sum of:

(a) (m1 +m2 − d)B12

(b) (m1 +m3 − d)B13

(c) If m1+m4 ≥ d, (m1+m4−d)B14. If m1+m4 < d, (m2+m3−d)B23.

and

(i) If m1 +m2 +m3 +m4 is odd, the movable part of the system has
degree equal to its dimension equal to n; n is 2(d − m1) + 1 if
m1 +m4 ≥ d or 2m4 + 2 if m1 +m4 < d.

(ii) If m1 + m2 + m3 + m4 is even, the movable part of the system
is made of n conics, each passing through the four points. n is
d−m1 if m1 +m4 ≥ d and m4 if m1 +m4 < d.

Proof. In the case where m1 ≥ m2 +m3 +m4 the proof is immediate.
Ifm1 < m2+m3+m4, let k and e be integers such thatm1+m2+m3+m4 =

2k − e and 0 ≤ e ≤ 1. Let us consider the system L = Lk(m1,m2,m3,m4).
The intersection numbers of L with B12 and B13 are less than or equal to 0
because of the ordering of the mi’s, proving that those lines are contained
in the fixed part of L with multiplicities k − m1 − m2 and k − m1 − m3

respectively. For the same reason, if m1 + m4 ≥ k the line B14 appears in
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the fixed part of L with multiplicity k − m1 − m4; if m1 + m4 < k then
m2 +m3 > k− e, which implies m2 +m3 ≥ k− e+ 1 ≥ k, allowing us to say
the same thing on B23.

Subtracting those fixed lines, the residual system has degree k′ and has
to pass through the points p1, . . . , p4 with multiplicities m′1, . . . ,m

′
4.

If m1 +m4 ≥ k

k′ = k − (m1 +m2 − k)− (m1 +m3 − k)− (m1 +m4 − k)

= 4k − 2m1 −m1 −m2 −m3 −m4 = 2k − 2m1 + e

m′1 = m1 − (m1 +m2 − k)− (m1 +m3 − k)− (m1 +m4 − k)

= 3k − 2m1 −m2 −m3 −m4 = k −m1 + e

m′2 = m2 − (m1 +m2 − k) = k −m1

m′3 = m3 − (m1 +m3 − k) = k −m1

m′4 = m4 − (m1 +m4 − k) = k −m1

otherwise, if m1 +m4 < k

d′ = k − (m1 +m2 − k)− (m1 +m3 − k)− (m2 +m3 − k)

= 4k − 2m1 − 2m2 − 2m3 = 2m4 + 2e

m′1 = m1 − (m1 +m2 − k)− (m1 +m3 − k) =

= 2k −m1 −m2 −m3 = m4 + e

m′2 = m2 − (m1 +m2 − k)− (m2 +m3 − k) =

= 2k −m1 −m2 −m3 = m4 + e

m′3 = m3 − (m1 +m3 − k)− (m2 +m3 − k) =

= 2k −m1 −m2 −m3 = m4 + e

m′4 = m4

If e = 0 we get to a case where all multiplicities are equal and their degree
is double that number, which is not empty and is described 3.5. If e = 1, we
have that all multiplicities are equal except for one which is either greater or
smaller than the others by one; those are the cases covered by 3.6 and 3.7
and in both cases Lk′(m

′
1,m

′
2,m

′
3,m

′
4) is not empty.

The system Lk(m1,m2,m3,m4) realizes the lower bound found in 3.4,
then k is the minimum degree d for which the system is not empty.

Theorem 3.9. Consider the case where p1, p2, p3 and p4 are four points
of positive multiplicities m1, m2, m3 and m4 respectively, with m1 ≥ m2 ≥
m3 ≥ m4, coming together in a general way.

1. If m1 ≥ m2 +m3 +m4, the flat limit is a point of multiplicity m1 with
three infinitely near points of multiplicities m2, m3 and m4.
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2. If m1 < m2 + m3 + m4, let m1 + m2 + m3 + m4 = 2k − e, with e
either 0 or 1. The flat limit is a point of multiplicity k and in its first
infinitesimal neighborhood there are

(a) If m1 +m2 > k, one point of multiplicity (m1 +m2 − d)

(b) If m1 +m3 > k, one point of multiplicity (m1 +m3 − d)

(c) If m1 + m4 > k, one point of multiplicity (m1 + m4 − d). If
m2 + m3 > k, (m2 + m3 − d). Note that only one of them may
exist.

(d) If e = 0, there is a correspondence between the points on the first
neighborhood and the points of the limit scheme on the first in-
finitesimal neighborhood that are not fixed by the conditions above
form a set that is invariant under this correspondence. Those
points are 2m4 if m1+m4 < d and 2k−2m1 otherwise and the cor-
respondence depends on the way in which the four general points
were coming together.

Now we want to write a characterization for the polynomials belonging to
the ideal of the limit scheme; for simpicity we do this only in the homogeneous
case (i.e. m1 = m2 = m3 = m4 = m). We denote by Z the limit scheme; we
suppose that its support, p is the origin.

What theorem 3.9 tells us is that the limit scheme is a point p of multi-
plicity 2m and that there is an involution ι, defined on R, such that the 2m
points on R that correspond to the tangent directions at p are divided into
m pairs of points and each pair is sent into itself by ι.

Let’s put projective coordinates on R such that the line λ1X + λ2Y = 0
has coordinates [λ1 : λ2]. Any involution on R is represented by an element
Aa,b,c ∈ PGLn(C) of type

Aa,b,c =

[
a b
c −a

]
where a, b, c ∈ C and a2+bc 6= 0, so the datum of ι is equivalent to the datum
of a suitable triple (a, b, c), and let f =

∑
i,j≥0 αi,jX

iY j be a polynomial in X
and Y . We want to characterize the polynomials f contained in the ideal IZ
defining Z i.e. the polynomials f such that the curve defined by f contains
Z.

If Z ⊂ V (f) then the fact that V (f) has a point of multiplicity at least
2m at the origin means that αi,j = 0 whenever i + j < 2m. To describe
the condition on the tangents at this point we write the part of degree 2m
(supposing for now that it is not zero) as
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f2m(X, Y ) =
m∏
h=1

(γh2,0X
2 + γh1,1XY + γh0,2Y

2)

or

f2m(X, Y ) =
m∏
h=1

(λh1X + λh2Y )(µh1X + µh2Y ),

where γh2,0X
2 + γh1,1XY + γh0,2Y

2 = (λh1X + λh2Y )(µh1X + µh2Y ), so that the
points [λh] and [µh] are exchanged by ι.

We have to impose that, for every h, [µh] = [Aa,b,c ·λh] i.e. µh1 = aλh1 +bλh2
and µh2 = cλh1 − aλh2 . It follows that, up to a common factor, the coefficients
γhi,j are

γh2,0 = a(λh1)2 + bλh1λ
h
2

γh1,1 = c(λh1)2 + b(λh2)2

γh0,2 = −a(λh2)2 + cλh1λ
h
2 .

and we can find the following relation among them:

cγh2,0 − aγh1,1 − bγh0,2 = 0. (3.1)

What we have proved is that if a polynomial f is contained in IZ , then
there exists a factorization of its homogeneous part of degree 2m in m poly-
nomials of degree two whose coefficients satisfy 3.1 (this is also true for the
polynomials of order greater than 2m). These conditions, together with the
fact that the order of f needs to be at least 2m, are all linearly independent
and their total number is exactly the length of Z, so they define the ideal of
Z.

Corollary 3.10. The limit of four multiple points of multiplicities m1 ≥
· · · ≥ m4 coming together in a general way is a point of some multiplicity k
with no extra conditions in its first infinitesimal neighborhood if and only if
m2 = m3 = m4 = m1 − 1 or m2 = m3 = m1 and m4 = m1 − 1. In the first
case the multiplicity of the limit point is k = 2m1 + 1 and in the second case
it is k = 2m1.

Proof. The limit of four points of multiplicities m,m − 1,m − 1,m − 1 and
m,m,m,m − 1 can be computed via 3.9 or directly via lemmas 3.6 and 3.7
and it has to contain a point of multiplicity respectively 2m−1 and 2m. The
length of a point with multiplicity k is already the length of the limit scheme
therefore the limit scheme is just a point of multiplicity k.

Conversely, we know that m1+m2+m3+m4 has to be odd since otherwise
there would be conditions on the first infinitesimal neighborhood of the limit
point given by the last part of 3.9; this means that k = m1+m2+m3+m4+1

2
.
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In order to have no conditions on the first infinitesimal neighborhood,
none of the conditions in the statement of 3.9 has to be satisfied. The ordering
of the points and the expression found for the mutliplicity k implies that
m1 +m2 ≥ k and having to not satisfy the first condition in 3.9 tell us that
m1 +m2 ≤ k as well. This means that

m1 +m2 = m3 +m4 + 1

and the same argument holds for m3, yielding (after reordering)

m1 −m2 = m4 + 1−m3.

Adding up the two we find that m4 = m1 − 1 and subtracting the second
one form the first we get that m2 = m3; given the ordering we gave to the
multiplicities only m2 = m3 = m1 or m2 = m3 = m1 − 1 are possible.

3.2 Homogeneous collisions

In this section we treat the cases where the colliding points have the seme
multiplicity m. This assumption greatly simplifies the things because it is
easier to find the minimum degree k that makes the linear system Lk(m

n) not
empty and because there exist a complete classification of the homogeneous
(−1)-special linear systems for up to 9 points in [4]. Homogeneous collisions
of 5 points or less have already been described in [3]; we won’t repeat them
here.

3.2.1 Simple points

Proposition 3.11. Let’s consider any number n of points of multiplicity
1 coming together in a general way. Then the limt scheme is a point of

multiplicity k =
⌈
−3+

√
9+8n

2

⌉
together with k(k+3)

2
− n conditions given by the

fact that the k points forming the first ininitesimal neighborhood of the limit
scheme have to lie on the restriction to R of the linear system Lk(1

n) on W .

Proof. The least d such that h0(Ld(1
n)) > 0 can be computed by looking

at the virtual dimension of the system since linear systems of that kind are
never special; this leads to find k as stated. The conditions mentioned in the
statement then come from the analysis made in section 2.2.

Corollary 3.12. Any scheme which is a point with multiplicity m can be
obtained as a collision of m(m+1)

2
simple points coming together in a general

way.
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3.2.2 Nodes

Proposition 3.13. Let’s consider any number n 6= 2, 5 of double points
coming together in a general way. The limit scheme is a point of multiplicity

k =
⌈
−3+

√
9+24n
2

⌉
together with k −

(
k(k+3)

2
− 3n

)
conditions given by the

fact that the k points in the first infinitesimal neighborhood have to lie in the
restriction to R of Lk(2

n).
If n = 2 the limit is a double point with an infinitely near double point and

if n = 5 the limit is a point of multiplicity 4 with a pair of points of type (1, 1)
with matching second order tangents in its first infinitesimal neighborhood.

Proof. We use the fact that the linear system Ld(2
n) is not special for any

n 6= 2, 5. This means that the minimum degree k such that h0(Ld(2
n)) > 0

can be found by looking at the virtual dimension as the least integer d such

that d(d+3)
2
− 3n ≥ 0, which is k =

⌈
−3+

√
9+24n
2

⌉
.

The k points in the first infinitesimal neighborhood need to lie on the
restriction to R of the linear system on P Lk(2

n). The number of indepen-
dent conditions that this imposes can be obtained as h0 (R, (Lk(2

n))|R) −
h0 (P,Lk(2

n)); the first number is k + 1 and the second one is the virtual
dimension of the system plus 1.

The length of the candidate limit scheme found in this way is

k(k + 1)

2
+ k −

(
k(k + 3)

2
− 3n

)
= 3n

which is the same as the limit scheme.
If n = 2 the minimum degree for which h0(Ld(2, 2)) > 0 is 2, so the

candidate limit contains a double point; moreover the system L2(2, 2) consists
of the line through the two points counted twice; we can then apply the results
from section 2.3 and conclude that the limit scheme needs to also contain a
double point in its first infinitesimal neighborhood. This gives us a candidate
limit scheme of length 6, which is the same as the limit scheme.

If n = 5 the minimum degree for which h0(Ld(2
5)) > 0 is 4, so the

candidate limit contains a point of multiplicity 4; moreover the system L4(2
5)

consists of the conic through the five points counted twice; we can then apply
the results from section 2.3 and conclude that the candidate limit scheme is
as described. This candidate limit scheme has length 15, which is again the
same as the limit scheme.

Corollary 3.14. A point of multiplicity m can be obtained as the limit of
n general points of multiplicity 2 coming together in a general way if and
only if either m ≡ 0 or m ≡ 2 (mod 3). In this case it can be realized as
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the limit of m(m+3)
6

double points. Conversely, the limit of n double points
coming together in a general way is a point of multiplicity m with no other
conditions if and only if n can be written as m(m+1)

6
for some m, which is

then the multiplicity of the limit point.

Proof. If m ≡ 1 (mod 3) we have that the length of a point of multiplicity m
is not a multiple of 3 and thus cannot match the length of a union of double
points. Conversely, if m(m+3)

6
is a natural number, plugging it as n into the

result above tells us that the limit of that many double points is a point of
multiplicity m with no other conditions.

The second part is just a particular case of the previous result.

3.2.3 6 points

Proposition 3.15. Let’s consider 6 points of multiplicity m coming together
in a general way. Let k and r be the integers such that 12m = 5k − r with
0 ≤ r < 5 and n be 5m− 2k. Let us also suppose that m is not 1 or 3. Then
the limit scheme is a point of multiplicity k with six infinitely near matching
couples of points of type

(⌊
n+1

2

⌋
,
⌊
n
2

⌋)
and the remaining 5r points in the

first order neighborhood lie on the restriction of L5r((2r)
6).

Proof. Let Ci be the conic through the five points other than p̃i. Let’s look
at the linear system Lk(m

6). Ci is a (−1)-curve, its intersection number (in
P ) with the system is 2k − 5m = −n; since n ≥ 0 for m 6= 1, 3, we have
that Ci is contained in the system as a fixed component at least n times.
If we remove these conics from the system, the residual part has degree
d′ = k − 12n = 5(5k − 12m) = 5r and will have to pass through each of the
six points with multiplicity m − 5n = 2(5k − 12m) = 2r. For each suitable
value of r the linear system L5r((2r)

6) is nonspecial and is not empty, so
Lk(m

6) is nonempty as well.
Now we need to prove that if d is an integer such that the system Ld(m

6)
is nonempty then d ≥ k. For any such d we have that Ld(m

6).Ci = 2d− 5m
for all the six curves Ci, which means that either d ≥ 5

2
m or each of the Cis

is a fixed component of the system; if we are in the latter case we can remove
the six conics and repeat the process for the system Ld−12((m − 5)6) until,
after some number j of such steps, we fall in the first case and have that
d− 12j ≥ 5

2
(m− 5j). Now

d ≥ 5

2
(m− 5j) + 12j ≥ 12

5
(m− 5j) + 12j =

12

5
m

and since k is the least integer greater or equal than 12
5
m, we have that d ≥ k.
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To finish the proof we need to count the conditions imposed by the passage
through the six points and compare it with the length of the scheme that is
described by theorem 2.40. By remark 2.39 each pair of points coming from
the fixed conics imposes n(n+3)

2
conditions; if we subtract these conditions

and those imposed by the passage through p with multiplicity k from the
ones imposed by the six original multiple points we have

6
m(m+ 1)

2
− k(k + 1)

2
− 6

n(n+ 3)

2
=
r(7− r)

2

which, for the values of r between 0 and 4, is the difference between the degree
ad the dimension of the residual system L5r((2r)

6). This means that the
candidate limit scheme obtained through theorem 2.40 is the limit scheme.

The only cases we have left to deal with are m = 1 and m = 3. For m = 1
we saw in proposition 3.11 that the limit scheme is a point of multiplicity
3. For m = 3 it is easy to see that the minimum degree is 8 and a point of
multiplicity 8 has length 36, which is also the length of the limit scheme, so
the limit scheme is exactly a point of multiplicity 8.

3.2.4 7 points

Proposition 3.16. Let’s consider 7 points of multiplicity m coming together
in a general way. Let k and r be the integers such that 21m = 8k−r with 0 ≤
r < 8 and n be 8m−3k. Let us also suppose that m is not 1,2,4,5,7,10 or 13.
Then the limit scheme is a point of multiplicity k with seven infinitely near
matching sets of three points of type

(⌊
n+2

3

⌋
,
⌊
n+1

3

⌋
,
⌊
n
3

⌋)
and the remaining

8r points in the first order neighborhood lie on the restriction of L8r((3r)
7).

Proof. Let Ci be the cubic having a double point at p̃i and passing through
the other six points. Let’s look at the linear system Lk(m

7). Ci is a (−1)-
curve, its intersection number (in P ) with the system is 3k − 8m = −n;
since n ≥ 0 except for the values of m excluded in the statement, we have
that Ci is contained in the system as a fixed component at least n times.
If we remove these curves from the system, the residual part has degree
d′ = k − 21n = 8(8k − 21m) = 8r and will have to pass through each of the
fixed points with multiplicity m− 8n = 3(8k− 21m) = 3r. For each suitable
value of r the linear system L8r((3r)

7) is nonspecial and is not empty, so
Lk(m

7) is nonempty as well.
Now we need to prove that if d is an integer such that the system Ld(m

7)
is nonempty then d ≥ k. For any such d we have that Ld(m

7).Ci = 3d− 8m
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for all seven curves Ci, which means that either d ≥ 8
3
m or each of the Cis is

a fixed component of the system; if we are in the latter case we can remove
the seven curves and repeat the process for the system Ld−21((m−8)7) until,
after some number j of such steps, we fall in the first case and have that
d− 21j ≥ 8

3
(m− 8j). Now

d ≥ 8

3
(m− 8j) + 21j ≥ 21

8
(m− 8j) + 21j =

21

8
m

and since k is the least integer greater or equal than 21
8
m, we have that d ≥ k.

To finish the proof we need to count the conditions imposed by the passage
through the seven points and compare it with the length of the scheme that is
described by theorem 2.40. By remark 2.39 each triple of points coming from
the fixed cubics imposes n(n+5)

2
conditions; if we subtract these conditions and

those imposed by the passage through p with multiplicity k from the ones
imposed by the six original multiple points we have

7
m(m+ 1)

2
− k(k + 1)

2
− 7

n(n+ 5)

2
=
r(13− r)

2

which, for the values of r between 0 and 7, is the difference between the
degree and the dimension of the residual system L8r((3r)

7). This means
that the candidate limit scheme obtained through theorem 2.40 is the limit
scheme.

We are left with the special cases that have been excluded in the state-
ment; it is not hard to deal with them. First let’s note that in all those cases
the minimum degree is still d = k as defined in the statement and that the
linear system Lk(m

7) is not special. We can then fill out a table

extra conditions length of the
m k dimLk(m

7) conditions given by kp limit scheme

1 3 2 1 6 7
2 6 6 0 21 21
4 11 7 4 66 70
5 14 14 0 105 105
7 19 13 6 190 196

10 27 20 7 378 385
13 35 28 7 630 637

The first column reports the multiplicity m of the colliding points. The
second column is the least degree k such that Lk(m

7) is not empty and also
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the multiplicity of the limit scheme at p; it is calculated as 21
8
m rounded

up. The third column is the dimension of the linear system on P ; it is
calculated as the virtual dimension since we know that it is not special. The
fourth column lists how many conditions come from the matching of the
restrictions to R of LP and LV ; it is calculated as k− dimLk(m

7). The fifth
column lists the length of the scheme kp. The last column lists the length of
the limit scheme.

It can be checked that the last column corresponds to the sum of the pre-
vious two, meaning that the conditions found are represented by a candidate
limit scheme which has the same length as the actual limit, proving that also
in these cases the candidate limit is the limit.

3.2.5 8 points

In this case we will have to deal with some rational (−1)-curves with τ = 6.
Due to the restriction we had to assume in section 2.3.2 our result is not
complete in this case and we can only show a candidate limit scheme that
has to be contained in the limit.

Proposition 3.17. Let’s consider 8 points of multiplicity m coming together
in a general way. Let k and r be the integers such that 48m = 17k − r with
0 ≤ r < 17 and n be 17m− 6k. Let us also suppose that m is not such that
n > 0 (see remark below).

Then the limt scheme contains a point of multiplicity k with 8 infinitely
near sets of 6 points of type

(⌊
n+5

6

⌋
,
⌊
n+4

6

⌋
,
⌊
n+3

6

⌋
,
⌊
n+2

6

⌋
,
⌊
n+1

6

⌋
,
⌊
n
6

⌋)
and

where the remaining 17r points in the first order neighborhood lie on the
restriction of L17r((6r)

8).

Proof. Let Si be the sextic having a triple point at p̃i and double points at
the other seven points. Let’s look at the linear system Lk(m

8). Si is a (−1)-
curve, its intersection number (in P ) with the system is 6k − 17m = −n;
since n ≥ 0 we have that Si is contained in the system as a fixed component
at least n times. If we remove these curves from the system, the residual part
has degree d′ = k−48n = 17r and will have to pass through each of the fixed
points with multiplicity m−17n = 6r. For each suitable value of r the linear
system L17r((6r)

8) is not empty (it has a positive expected dimension), so
Lk(m

8) is nonempty as well.
Now we need to prove that if d is an integer such that the system Ld(m

8) is
nonempty then d ≥ k. For any such d we have that Ld(m

8).Si = 6d−17m for
all the eight curves Si, which means that either d ≥ 17

6
m or each of the Sis is

a fixed component of the system; if we are in the latter case we can separate
the eight curves and repeat the process for the system Ld−48((m − 17)8)
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until, after some number j of such steps, we fall in the first case and have
that d− 48j ≥ 17

6
(m− 17j). Now

d ≥ 17

6
(m− 17j) + 48j ≥ 48

17
(m− 17j) + 48j =

48

17
m

and since k is the least integer greater or equal than 48
17
m, we have that

d ≥ k.

Again, we are left with several (but finitely many) special cases that have
been excluded in the statement.

The same approach we used in the last section still works and we list the
results in another table:

extra conditions length of the
m k dimLk(m

8) conditions given by kp limit scheme

1 3 1 2 6 8
2 6 3 3 21 24
3 9 6 3 45 48
4 12 10 2 78 80
5 15 15 0 120 120
7 20 6 14 210 224
8 23 11 12 276 288
9 26 17 9 351 360

10 29 24 5 435 440
11 32 32 0 528 528
13 37 12 25 703 728
14 40 20 20 820 840
15 43 29 14 946 960
16 46 39 7 1081 1088
19 54 19 35 1485 1520
20 57 30 27 1653 1680
21 60 42 18 1830 1848
22 63 55 8 2016 2024
25 71 27 44 2556 2600
26 74 41 33 2775 2808
27 77 56 21 3003 3024
28 80 72 8 3240 3248
31 88 36 52 3916 3968
32 91 53 38 4186 4224
33 94 71 23 4465 4488
Continued on Next Page. . .
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extra conditions length of the
m k dimLk(m

8) conditions given by kp limit scheme

37 105 46 59 5565 5624
38 108 66 42 5886 5928
39 111 87 24 6216 6240
43 122 57 65 7503 7568
44 125 80 45 7875 7920
45 128 104 24 8256 8280
49 139 69 70 9730 9800
50 142 95 47 10153 10200
55 156 82 74 12246 12320
56 159 111 48 12720 12768
61 173 96 77 15051 15128
62 176 128 48 15576 15624
67 190 111 79 18145 18224
73 207 127 80 21528 21608
79 224 144 80 25200 25280

The first column reports the multiplicity m of the eight colliding points.
The second column is the least degree k such that Lk(m

8) is not empty
and also the multiplicity of the limit scheme at p; it is calculated as 48

17
m

rounded up. The third column is the dimension of the linear system on P ;
it is calculated as the virtual dimension since we know that it is not special.
The fourth column lists how many conditions come from the matching of the
restrictions to R of LP and LV ; it is calculated as k− dimLk(m

8). The fifth
column lists the length of the scheme kp. The last column lists the length of
the limit scheme.

It can again be checked that the last column corresponds to the sum
of the previous two, meaning that the conditions found are represented by a
candidate limit scheme which has the same length as the actual limit, proving
that also in these cases the candidate limit is the limit.

Remark 3.18: It is worth noting that if, the obvious generalization
of remark 2.39 were true, the length of the (new, larger) candidate limit
scheme given by the number of conditions imposed by the sextics plus the
ones imposed by the residual linear system L17r((6r)

8) would be the same as
the length of the limit scheme. Each set of six points coming from the fixed
sextics would impose n(n+5)

2
conditions; if we detract these conditions and

those imposed by the passage through p with multiplicity k from the ones
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imposed by the six original multiple points we have

7
m(m+ 1)

2
− k(k + 1)

2
− 7

n(n+ 5)

2
=
r(13− r)

2

which, for the values of r between 0 and 7, is the difference between the
degree ad the dimension of the residual system L17r((6r)

8), meaning that the
candidate limit would indeed be the limit scheme.

3.2.6 9 points

We already dealt with this case in chapter 2 as example 2.44. We copy the
result here for completeness of this section

Proposition 3.19. The flat limit of nine fat points of multiplicity m coming
together in a general way is a point of multiplicity 3m together with a set of
nine points of type (1m) in its first infinitesimal neighborhood.

3.3 Applications

Most of this chapter consists of results that can be used in various ways to
construct degenerations. Some limits can be quite complicated and of difficult
use until their internal structure is better understood while others can be
worked with with ease. Among these the easiest to use will be those cases
where the limit scheme is a fat point. Here by a fat point we intend a point
counted with some positive multiplicity k rather than any 0-dimensional
subscheme of A2 supported at a single point.

Proposition 3.20. The limit of n fat points coming together in a general
way for 2 ≤ n ≤ 4 is a fat point if and only if either n = 3 and all the
multiplicities are 1 or n = 4 and the multiplicities are either m,m,m,m− 1
or m+ 1,m,m,m for some positive integer m.

Proof. The case where n = 4 has been proved as Corollary 3.10. There are
no such cases for n = 2 or n = 3 because, as seen in the relative subsections,
their limits never take that form. The only exception is the limit of three
simple points which can be seen as being a collision of type m,m,m,m − 1
with m = 1.

Proposition 3.21. The only cases where the limit of n ≤ 9 fat points of the
same multiplicity m coming together in a general way is a fat point are the
following:
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number multiplicity
of points multiplicity of the limit

3 1 2
6 1 3
6 3 8
7 2 6
7 5 14
8 5 15
8 11 32

Proof. Looking through the results of the previous section these are the only
cases appearing.

These cases are relatively few. This can be ascribed to the fact that the
minimum degree is often realized by a special linear system. The fixed com-
ponents that the linear system has will then translate into some conditions in
the first infinitesimal neighborhood. This argument only applies to general
degenerations, meaning that one could conceivably construct a degeneration
of fat points that does not appear in this list whose limit is a fat point.

All this cases are summarized in Table 3.5. In particular the first lines
in the table lend themselves to be used as a base for more constructions.
Note that these constructions might not be general collisions in the sense we
intend it in this work. We present here a few application of this idea to prove
conjecture 1.18 in some cases.

Proposition 3.22. The following linear systems satisfy SHGH conjectureare
for any positive value of m and n.

1. Ld(m
10n2

, (m+ 1)6n2
)

2. Ld(m
6n2
, (m+ 1)10n2

)

3. Ld(m
36n2

, (m+ 1)28n2
)

4. Ld(m
28n2

, (m+ 1)36n2
)

5. Ld(m
3n2
, (m+ 1)12n2

, (m+ 2)n
2
)

Proof. We observe in Table 3.5 that the limit of four points of multiplicities
m3,(m + 1) is a single point of multiplicity 2m + 1. We can then construct
a degeneration of 12 points of multiplicities m9, (m + 1)3 to three points of
multiplicity 2m + 1 or, by also using the other limit for 4 points appearing
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in the table, a degeneration of 16 points of multiplicities m10, (m + 1)6 to
three points of multiplicity 2m + 1 and one point of multiplicity 2m + 2.
We can then construct a degeneration of the 16 points to a single point of
multiplicity 4m+ 3 by having the four limit points collide.

The linear systems appearing in case 1 can then be degenerated to Ld
(

(4m+ 3)n
2
)

by taking n2 groups of 16 points of multiplicities m10, (m+1)6 and have each
group of fat points collide as described above. The limit linear system has the
same expected dimension than the original one and 1.18 holds for it because
it has a square number of assigned points. We can then say by semicontinuity
that conjecture 1.18 holds for the original linear system as well.

All the other cases are done in the same way, taking other combination
of points that can degenerate to a single point. In the second case the first
degeneration yields four points of multiplicities (2m + 2)3, 2m + 1; cases 3
and 4 are done starting with 64 points and then making three degenerations
first to 16, then to 4 and finally to a single point. Case 5 is similar to the
first two.

Many other cases can be constructed, that can be treated in a similar
way. Moreover it is known that conjecture 1.18 holds and there are no (−1)-
special systems if the points are either 4 or 9 and the points have the same
multiplicity. One can reason along the same lines to produce examples of
nonspecial linar systems with many assigned points.

Example 3.23. The linear system Ld((2m)2,m6, (m− 1)2) is nonspecial for
any positive value of m. Indeed one can degenerate the linear system to
Ld((2m)4), which has the same expected dimension and is nonspecial. By
semicontinuity the system in the statement has the expected dimension as
well.
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number multiplicity
of points multiplicity of the limit notes

m(m+1)
2

1 m for any positive integer m
m(m+3)

6
2 m for m 6≡ 1 mod 3

4 m+ 1, m3 2m+ 1 for any positive integer m
4 m3, m− 1 2m for any m ≥ 2
6 1 3
6 3 8
7 2 6
7 5 14
8 5 15
8 11 32

Table 3.5: This is the list of all the collections of fat points whose general
flat limit is a fat point. No other examples exist with 4 points or less or with
9 points or less if the colliding points have the same multiplicity.
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