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Introduction

This thesis is devoted to study certain interesting properties of Hy-
perkähler manifolds and of their automorphism groups. Hyperkähler
manifolds have been studied mainly due to their appearance in the fa-
mous Bogomolov’s decomposition theorem. This theorem states that
any manifold with a Ricci flat metric is, up to a finite cover, a direct
product of complex tori, Calabi-Yau manifolds and Hyperkähler man-
ifolds. By Yau’s proof of Calabi’s conjecture having a Ricci flat metric
is equivalent to having trivial first Chern class.
The field of Hyperkähler geometry is quite recent, although a classi-
cal example consists in K3 surfaces1. The first higher dimensional 2

examples where found by Fujiki [26] and by Beauville [9]. They con-
sist of the Hilbert scheme3 of length n subschemes on a K3 surface
S, denoted S[n], and of generalized Kummer manifolds4. We remark
that the generic deformation of S[n] for any K3 surface S is not the
Hilbert scheme on another K3 surface. We will call elements of this
deformation class Manifolds of K3[n]-type .
Fujiki, Beauville and Bogomolov developed much of the theory con-
cerning the second cohomology of Hyperkähler manifolds, proving the
existence of what is commonly known as Beauville-Bogomolov form (or
also Fujiki-Beauville-Bogomolov in Japanese literature). An interest-
ing feature of Hyperkähler manifolds is that any family of Hyperkähler
manifolds has a dense subset consisting of projective Hyperkähler man-
ifolds, therefore in their study it is possible to apply both analytical
and geometric methods. Some results, who are apparently deeply alge-
braic in nature, such as Proposition 1.1.7, have a complex analytical
proof. While other results, such as Theorem 1.3.11, deeply use recent
progress in minimal model program.
For quite some time all known examples consisted of manifolds de-
formation equivalent to those found by Beauville [9], with interest-
ing projective examples as Fano variety of lines on cubic fourfolds
(Beauville and Donagi, [6]), Double covers of certain special sextic
fourfolds (O’Grady, [63]), variety of sums of powers of cubic fourfolds

1All Hyperkähler manifolds of dimension 2 are K3 surfaces.
2i. e. of dimension greater than 2.
3See Example 1.0.4.
4See Example 1.0.5.
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iv INTRODUCTION

(Iliev and Ranestad, [41]) and subspaces of certain grassmanians (De-
barre and Voisin, [22]).
A notable impulse to the research in this field is due to the discovery
made by Mukai [54] of a symplectic form on moduli spaces of certain
sheaves on symplectic surfaces. This fact led to the hope that new
Hyperkähler manifolds could be found with these construction and a
good theory was developed by various mathematicians; for a complete
set of references the interested reader can consult [40]. However it has
been proved that all nonsingular Hyperkähler manifolds obtained in
this way were a deformation of known examples and the singular ones
had a resolution of singularities which is Hyperkähler just in two cases,
namely in O’Grady’s six dimensional manifold [65] and in O’Grady’s
ten dimensional manifold [66].
Recently a long standing question of Hyperkähler geometry has been
partially resolved, namely the Torelli problem. Verbitsky [79], Mark-
man [49] and Huybrechts [39] have proven theorems explaining to
which extent a Hyperkähler manifold can be recovered by its integral
Hodge structure on its second cohomology. This result will be instru-
mental in our work and will allow, under some hypothesis, to construct
a group of birational transformation on a Hyperkähler manifolds from
a group of isometries on a lattice.
In recent years there have been several works concerning automor-
phisms of Hyperkähler manifolds, starting from the foundational work
of Nikulin [58], Mukai [53] and Kondo [47] and an explicit example
of Morrison [52] in the case of K3 surfaces. Then isolated examples
of automorphisms of higher dimensional Hyperkähler manifolds were
given by Namikawa [55], by Beauville [8] and later by Kawatani [44]
and Amerik [2]. Some further work was done by Boissière, Nieper-
Wißkirchen and Sarti [11], which also paved the way for a generaliza-
tion of the notion of Enriques surface, independently developed also
by Oguiso and Schröer in [69] and [70]. Some general work on the
automorphisms and birationalities was done by Oguiso [71] and by
Boissière [10] and yet again recently by Boissière and Sarti [13] while
order 2 automorphisms were fully analyzed by Beauville if they are
antisymplectic [7] and partially analyzed by Camere ([14], where also
an exhaustive list of examples can be found). Before those works on
involutions came the work of O’Grady ([63] and [64]) on Double-EPW
sextics which are naturally endowed with an antisymplectic involution
and form a family of the maximal dimension for such involutions.
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Overview of the results

In order to present our results we introduce some definitions:

Definition 0.1. LetX, Y be two deformation equivalent Hyperkähler
manifolds and let G ⊂ Aut(X), H ⊂ Aut(Y ). Then (X,G) is deforma-
tion equivalent to (Y,H) if G ∼= G′ ∼= H and there exists a flat family
X → B and two maps {a} → B, {b} → B such that Xa ∼= X and
Xb ∼= Y . Moreover we require that there exists a faithful action of the
group G′ on X inducing fibrewise faithful actions of G′ such that its
restriction to Xa and Xb coincides with G and H.

Definition 0.2. Let S be a K3 surface and let G ⊂ Aut(S). Then
G induces automorphisms on S[n] which are called natural. We will
also call (S[n], G) a natural couple.

Definition 0.3. Let X be a manifold of K3[n]-type and let G ⊂
Aut(X). Then the couple (X,G) is standard if it is deformation equiv-
alent to (S[n], H), where S is a K3 surface and H is a group of natural
automorphisms. We call G exotic otherwise.

Definition 0.4. Let X be a Hyperkähler manifold, we define
Auts(X) ⊂ Aut(X) as the subgroup of the automorphism group that
preserves the symplectic form on X. We call its elements symplectic
automorphisms and we call it the group of symplectic automorphisms.

The results contained in the present thesis can be grouped in 3
deeply connected areas: new exotic symplectic automorphisms, stan-
dardness of known automorphisms and a classification of prime order
symplectic automorphisms on a wide class of Hyperkähler manifolds.
New exotic symplectic automorphisms can be found in Chapter 4.
We remark that a symplectic automorphism on a K3 surface has at
most order 8, we have written down two examples of order 11 auto-
morphisms on manifolds of K3[2]-type . Namely one is defined on the
Fano scheme of lines of a cubic fourfold and the other on a double
EPW-sextic5. Moreover we have given also an example of an order 15
symplectic automorphism again on the Fano scheme of lines of a cubic
fourfold. Mukai [53] proved that a group of symplectic automorphisms
on a K3 surface has order at most 960, however the situation is very
different on manifolds of K3[2]-type as we have given an example with
a group of symplectic automorphisms of order 2520 and one of order
29160.
For what concerns deformational behaviour of symplectic automor-
phisms we have proven that any couple (X,ϕ) consisting of a manifold
of K3[2]-type and a symplectic automorphism of order 2 or 5 is stan-
dard. Moreover we proved that points corresponding to natural couples

5See Subsection 1.4.1
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are dense in the moduli space of manifolds of K3[2]-type having a sym-
plectic automorphism of order 2 and 5. The same result also holds for
manifolds of K3[2]-type with a symplectic automorphism of order 3 if
this automorphism satisfies a condition on the fixed locus Xϕ.
In the last part of the thesis we take a lattice theoretic approach, much
in the spirit of what Nikulin [58], Mukai [53] and Kondo [47] did in
the case of K3 surfaces. We work towards classification results. For
a general Hyperkähler manifold of the known types we can only prove
some limitations on the possible prime orders of a symplectic automor-
phism (or, more precisely, on the order of the induced Hodge isometry
on H2). If we specialize to manifolds of K3[n]-type we can give a full
classification of all possible prime order symplectic automorphisms and
also of their Co-invariant lattices6. In the case of K3 surfaces we have
that the maximal prime order is 7, while in this case it is 11. Moreover
we prove also a theorem stating sufficient conditions to give a group of
symplectic birational transformations of a manifold of K3[n]-type from
a group of isometries on a Niemeier lattice. Finally, restricting even
more to manifolds of K3[2]-type , we improve our classification result
giving all prime order symplectic automorphisms together with their
fixed locus and their co-invariant lattice. We wish to stress that this
does not give a result on the number of deformation classes of couples
(X,ϕ), where X is of K3[2]-type and ϕ is symplectic of prime order.
Now let us briefly talk about the interplay between these three kind
of results: our classification of prime order symplectic automorphisms
is made more precise thanks to our results on the standardness of au-
tomorphisms, namely because it allows to prove that in these cases
there is only one deformation equivalence class. On the other hand
our examples can be improved by our classification and by the lattice
theoretic approach, since it allows us to compute the Picard lattices
of these examples as we did in Section 7.4. Moreover it allows also
to determine, in the case of order 11 automorphisms, the number of
deformation equivalence classes in dimension 4. There are 2 such de-
formation classes and we give a projective element of both of them
among our examples. Finally, using our classification, the standard-
ness question proven in Theorem 5.2.11 can be reformulated with
less conditions as we did in Corollary 7.2.8.

Structure of the thesis

Chapter 1 provides a survey on several well known results on Hy-
perkähler manifolds, almost all of the material contained here is present
in the literature, apart for Proposition 1.4.16 whose proof was com-
municated to me by Prof. B. Van Geemen [43] and is due to him, A.
Iliev and K. Ranestad.

6In the sense of Definition 7.1.1
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Chapter 2 contains various results on lattices which are instrumental
in the analysis of symplectic automorphisms on Hyperkähler manifolds.
Some of the material contained here is classical, like Niemeier’s list of
unimodular lattices and Nikulin’s results on discriminant forms. How-
ever a portion of this chapter contains some results I could not find in
the literature, like Section 2.6.
Chapter 3 gives a brief overview on symplectic automorphisms of K3
surfaces, illustrating the classical results of Nikulin and Mukai. We give
explicit proofs of most of the material contained here. Whenever possi-
ble these proofs are adapted to exploit only the Hyperkähler structure
of K3 surfaces, providing an easier generalization.
Chapter 4 gathers a series of examples of symplectic automorphisms
on Hyperkähler manifolds, it focuses on manifolds of K3[2]-type but
some more examples are given. This chapter contains also some ex-
amples of exotic automorphisms, i. e. automorphisms which are not
obtained as deformations of the automorphism group induced on the
Hilbert scheme of points of a K3 surface by the underlying automor-
phism group of the surface itself.
Chapter 5 is devoted to establish whether a symplectic automorphism
on a manifold of K3[2]-type can be obtained through the above cited
process of deformation of an induced automorphism group. In the liter-
ature automorphisms of S[2] induced by those on S are called Natural7.
Often the same terminology is used for automorphisms obtained as de-
formations of (S[2], ϕ[2]), however we prefer to use the term Standard8 to
denote automorphisms obtained by deformation. This chapter proves
that the deformation-theoretical question on the standardness of a sym-
plectic automorphism of order 2,3 or 5 on a manifold of K3[2]-type is
only a cohomological condition: such an automorphism is standard as
soon as its action on the second cohomology is the same of that of a
natural symplectic automorphism.
Chapter 6 consists of a series of computations providing a general-
ization of Section 3.3 in the case of manifolds of K3[2]-type . Let us
stress that some of the techniques used on K3 surfaces do not work in
the higher dimensional case: in dimension 2 the fixed locus of a sym-
plectic automorphism ϕ consists of isolated points, therefore there is
a crepant resolution of X/ϕ which is again a K3 surface. This allows
to compute the possible orders of ϕ and the number of fixed points.
However in higher dimensions usually there is no crepant resolution of
the quotient, it only exists if the fixed locus has pure codimension 2.
Furthermore in this case the resolution is still a Hyperkähler manifold
which need not be deformation equivalent to the one we started with.
At present it is not possible to provide a full generalization of Section
3.3 mainly because the computations are quite hard and, as the case

7See [10] and Definition 0.2
8See Definition 0.3
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of order 3 shows in Theorem 6.2.4, these computations provide only
a series of possible fixed loci for a symplectic automorphism without
giving any hint on the existence of such a morphism. Therefore the use
of the methods contained in the following chapter are preferrable.
Chapter 7 contains the main general results of the present work: we
are able to establish a connection between finite groups of symplec-
tic automorphisms on Hyperkähler manifolds and isometries of certain
well known lattices. In the particular case of Hyperkähler manifolds of
K3[n]-type we can embed finite groups of symplectic automorphisms in
the sporadic simple group9 Co1 and, to some extent, we provide also a
converse. Moreover we give also a classification result for prime order
symplectic automorphisms on manifolds of K3[n]-type . In the partic-
ular case of manifolds of K3[2]-type our classification provides indeed
all known examples, however for higher dimensions there are no known
examples for 3 of the possible cases appearing in Table 7.3.5.

Notations

In this section we gather several definitions that will be used through-
out the rest of the paper, most of our notation is standard, apart for
Definition 0.8 where we define the Leech lattice as a negative definite
lattice instead of a positive definite one. Also Definition 0.10 is non-
standard but coincides with the standard definition in the projective
case.

Definition 0.5. Let R be a free Z-module and let ( , )R : R×R →
Z be a bilinear pairing. We call the couple (R, ( , )R) a lattice and we
denote it by R whenever the pairing is understood.

If the pairing takes values in 2Z we will say that the lattice is even,
odd otherwise.

Definition 0.6. A pair (R, ( , )R) is called generalized lattice when-
ever R is as above and the pairing takes values over Q.

Moreover we denote R(n) the lattice R with pairing multiplied by
n and we denote (n) the lattice (Z, q) with q(1) = n. We also call a n
vector an element of square n inside a lattice. We will say that a lattice
R ⊂ L is primitive if the quotient L/R is torsion free. If on the other
hand the quotient is a finite group we say that L is an overlattice of
R. We will say that a lattice R represents an integer n if there exists
a (primitive) element of R with square n.
We will show that a Hyperkähler manifold X has a lattice structure
on its second cohomology and we will often denote ( , )X the pairing
and qX the induced quadratic form. If on the other hand the pairing
is understood we will denote qX(e) = e2 for all e ∈ H2(X,Z).

9See Definition 0.9 or [18].
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Definition 0.7. Let R be a lattice and let e ∈ R. We denote
div(e)R = n if (e, R) = nZ and we say that e is n-divisible. If the
lattice R is understood we just denote it div(e).

Definition 0.8. The Leech lattice Λ is the unique negative definite
unimodular lattice of rank 24 that does not contain any element of
square −2. We will also provide explicit definitions in Example 2.3.7
and Example 2.5.2.

Definition 0.9. Let Co0 = Aut(Λ) be the automorphism group
of the Leech lattice and let Co1 = Co0/(±Id) be its quotient by its
center. It is a well known fact (see [4] and [18]) that Co1, usually
called Conway’s first sporadic group, is a simple group.

Definition 0.10. Let X be a symplectic manifold. Then we define
the transcendental part T (X) as the smallest integral Hodge structure
containing the symplectic form σX . If X is Hyperkähler there is a
quadratic form on H2(X,Z) and we will denote S(X) = T (X)⊥ .





CHAPTER 1

Hyperkähler manifolds

This chapter gathers several known results on Hyperkähler mani-
folds and provides an introductory guide to such manifolds. Many of
these results are taken from the survey of Huybrechts [38].
Obviously we start with the following:

Definition 1.0.1. Let X be a Kähler manifold, it is called a irre-
ducible holomorphic symplectic manifold if the following hold:

• X is compact.
• X is simply connected.
• H2,0(X) = CσX , where σX is an everywhere nondegenerate

symplectic 2-form.

Definition 1.0.2. Let X be a Kähler manifold and let i, j, k be
three complex Kähler metrics such that Re(i) = Re(j) = Re(k) =
g. Then the Riemannian metric g is called Hyperkähler if the three
complex structures I, J,K induced by i, j, k respectively on TX satisfy
IJ = K.

Definition 1.0.3. Let X be a Kähler manifold, it is called a Hy-
perkähler manifold if the following hold:

• X is compact.
• X is simply connected.
• There exists a Hyperkähler metric g on X.

Often in the literature Hyperkähler manifolds denotes just mani-
folds with a Hyperkähler metric, without requiring compactness and
simple connectedness. At first sight a Hyperkähler manifold seems
quite different from an irreducible holomorphic symplectic manifold
but Yau’s proof of Calabi’s Conjecture [77] can be used to associate
a Hyperkähler metric to any Kähler class on an irreducible symplectic
holomorphic manifold, therefore we will not distinguish between the
two definitions.
There are not many known examples of Hyperkähler manifolds, for
a long time the only known Hyperkähler manifolds were K3 surfaces
(which are the only example in dimension 2), but two families of ex-
amples were given by Beauville [9]:

1



2 1. Hyperkähler MANIFOLDS

Example 1.0.4. Let S be a K3 surface and let S(n) be its n-th
symmetric product. There exists a minimal resolution of singularities

S[n] HC→ S(n),

where S[n] is the Douady space parametrizing zero dimensional analytic
subsets of S of length n. Furthermore this resolution of singularities
endows S[n] with a symplectic form induced by the symplectic form on
S. Moreover if n ≥ 2 we have b2(S[n]) = 23.
The case n = 2 was first studied by Fujiki [26], notice that in this case
the resolution of singularities is simply the blow-up along the diagonal.
Whenever X is a Hyperkähler manifold deformation of one of these
manifolds we will call X of K3[n]-type.

Example 1.0.5. Let T be a complex torus and let

T [n+1] HC→ T (n+1)

be the minimal resolution of singularities of the symmetric product.
As in Example 1.0.4 Beauville proved that the symplectic form on
T induces a symplectic form on T [n+1]. However this manifold is not
Hyperkähler since it is not simply connected, but if we consider

T (n+1) Σ→T(1.1)

(t1, . . . , tn+1)→
∑
i

ti.

And we set Kn(T ) = HC−1 ◦ Σ−1(0) we obtain a new Hyperkähler
manifold called Generalized Kummer manifold of T . If n = 1 then
Kn(T ) is just the usual Kummer surface, otherwise it has b2 = 7.
Whenever X is a Hyperkähler manifold deformation of one of these
manifolds we will call X of Kummer n-type.

Two more examples of Hyperkähler manifolds are known and they
were both discovered by O’Grady (see [65] and [66]), we do not give a
precise definition but we will call Og6 the 6-dimensional example and
Og10 the 10 dimensional example. It is known that b2(Og6) = 8 and
b2(Og10) = 24.

Example 1.0.6. Let X be a Hyperkähler manifold of dimension
2n > 2 and let Pn ∼= P ⊂ X. Then there exists a birational map,
called Mukai flop [54], defined as follows: let Z be the blowup of X
along P and let D be the exceptional divisor. The projection D → P
is isomorphic to the projective bundle P(NP |X) ∼= P(ΩP ) → Pn. It is
a well known fact that this projective bundle has a second projection
D → (Pn)∨ and this gives a blowdown Z → X ′ on a smooth manifold
X ′ such that D is the exceptional divisor. Moreover if X ′ is Kähler it
is also Hyperkähler .
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1.1. Cohomology of Hyperkähler manifolds

This section is devoted to illustrate the peculiar nature of the co-
homology of a Hyperkähler manifold. The first interesting fact is the
following:

Theorem 1.1.1. Let X be a Hyperkähler manifold of dimension 2n.
Then there exists a canonically defined pairing ( , )X on H2(X,C), the
Beauville-Bogomolov pairing, and a constant cX (the Fujiki constant)
such that the following holds:
(1.2)

(α, α)X = cX

(
n/2

∫
X
α2(σσ)n−1 + (1− n)(

∫
X
ασn−1σn)(

∫
X
ασnσn−1)

)
.

Here σ is a symplectic form such that
∫
X

(σσ)n = 1. Moreover cX and
( , )X are deformation and birational invariants.

This fact is quite striking and unexpected for n ≥ 2, furthermore
the Beauville-Bogomolov pairing can be used to define a lattice on
H2(X,Z) of signature (3, b2(X)− 3). These lattices have been studied
by Beauville [9] for manifolds of K3[n]-type or of Kummer n-type. The
cases of O’Grady’s examples were studied by Rapagnetta ([74] and
[75]).

Example 1.1.2. Let X be a Hyperkähler manifold of K3[n]-type.
Then H2(X,Z) endowed with its Beauville-Bogomolov pairing is iso-
morphic to the lattice

(1.3) Ln := U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)⊕ (2− 2n).

Where U is the hyperbolic lattice, E8(−1) is the unique unimodular
even negative definite lattice of rank 8, (2 − 2n) is (Z, q) with q(1) =
2− 2n and ⊕ denotes orthogonal direct sum. In the following chapters
we will often denote L = L2.

Example 1.1.3. The Beauville-Bogomolov form on the second co-
homology allows also an easy computation of Euler characteristic of a
divisor. In the case X is a manifold of K3[n]-type and D a divisor on
it we have

(1.4) χ(D) =

(
(D,D)X/2 + n+ 1

n

)
.

See [38, Example 23.19] for a proof.

Example 1.1.4. Let X be a Hyperkähler manifold of Kummer n-
type. Then H2(X,Z) endowed with its Beauville-Bogomolov pairing is
isomorphic to the lattice

(1.5) LK.n = U ⊕ U ⊕ U ⊕ (−2− 2n).
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Example 1.1.5. Let X be a Hyperkähler manifold deformation
equivalent to O’Grady’s 6 dimensional example. Then H2(X,Z) en-
dowed with its Beauville-Bogomolov pairing is isomorphic to the lattice

(1.6) LO.6 = U ⊕ U ⊕ U ⊕ (−2)⊕ (−2).

Example 1.1.6. Let X be a Hyperkähler manifold deformation
equivalent to O’Grady’s 10 dimensional example. Then H2(X,Z) en-
dowed with its Beauville-Bogomolov pairing is isomorphic to the lattice

(1.7) LO.10 = U ⊕ U ⊕ U ⊕ E8(−1)⊕ E8(−1)⊕ A2(−1).

Here A2(−1) is a Dynkin lattice defined in Example 2.1.11.

The Beauville-Bogomolov form also allows a useful projectivity cri-
terion:

Proposition 1.1.7. Let X be a Hyperkähler manifold. Then X is
projective if and only if there exists v ∈ H1,1(X,Z) such that qX(v) > 0.

Another interesting result relating H2(X,C) to higher cohomologies
has been given by Verbitsky [80]:

Theorem 1.1.8. Let X be a Hyperkähler manifold of dimension 2n
and Beauville-Bogomolov form qX . Let SymH2(X,C) be the subalgebra
generated by H2(X,C). Then

(1.8) SymH2(X,C) = S∗H2(X,C)/ < αn+1|qX(α) = 0 > .

1.2. Moduli of Hyperkähler manifolds and the Torelli
problem

Let us start with two well known deformations of a Hyperkähler
manifold X: the universal deformation Def(X) and the twistor space
TW (X) .

Lemma 1.2.1. Let X be a Hyperkähler manifold with Kähler class
ω and symplectic form σX . Then there exists a family

TWω(X) :=X × P1(1.9)

↓
{(a, b, c) ∈ R3, a2 + b2 + c2 = 1} = S2 ∼=P1

called Twistor space such that TWω(X)(a,b,c) = X with complex struc-
ture given by the Kähler class aω + b(σX + σX) + c(σX − σX).

A proof that the above defined class gives a complex structure can
be found in [36]
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Lemma 1.2.2. Let X be a Hyperkähler manifold. Then there ex-
ists a flat family X → Def(X) such that 0 ∈ Def(X), X0

∼= X.
Moreover for every flat family Y → S such that Y0

∼= X there exists
a commutative diagram

Y → X
↓ ↓
S → Def(X).

Definition 1.2.3. Let X be a Hyperkähler manifold and let
H2(X,Z) ∼= N . An isometry f : H2(X,Z) → N is called a marking
of X. A couple (X, f) is called a marked Hyperkähler manifold.

We can use this universal deformation and the twistor family to
define a moduli space of marked Hyperkähler manifolds:

Definition 1.2.4. Let (X,φ) be a marked Hyperkähler manifold
and let H2(X,Z) ∼= N . Let MN be the set {(X,φ)}/ ∼ of marked
Hyperkähler manifolds where (X,φ) ∼ (X ′, φ′) if and only if there
exists an isomorphism f : X → X ′ such that f ∗ = φ−1 ◦ φ′.

A priori this definiton endowsMN only with the structure of a set,
but we will use Theorem 1.2.7 to prove that this is indeed a compact
non Hausdorff complex space.

Definition 1.2.5. Let X be a Hyperkähler manifold and let N be
a lattice such that H2(X,Z) ∼= N . Then we define the period domain
ΩN as

(1.10) ΩN = {x ∈ P(N ⊗ C) | (x, x)N = 0, (x+ x, x+ x)N > 0}.

Definition 1.2.6. Let X → S be a flat family of deformations of
X and let f be a marking of X into the lattice N . Let moreover F be a
marking of X compatible with f . Then the period map P : S → ΩN

is defined as follows:

(1.11) P(s) = Fs(H
2,0(Xs)).

Whenever we choose X → Def(X) as flat family of deformations
of X we call P the local period map.

Theorem 1.2.7 (Local Torelli, Beauville [9]). Let (X, f) and N be
as above, let moreover F be a compatible marking of X → Def(X).

Then the map Def(X)
P→ ΩN is a local isomorphism.

Now this local isomorphism allows to glue the various universal
deformations into a complex space. Another well known fact about the
period map is the following:

Theorem 1.2.8 (Huybrechts, [38]). Let M0
N be a connected com-

ponent of MN . Then the period map P :M0
N → ΩN is surjective.
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An interesting question is whether we have a global Torelli theorem
as in the case of K3 surfaces, in general this is false as in the following

Example 1.2.9. Let S be a K3 surface such that Pic(S) = ZO(C)
were C ⊂ S is a smooth rational curve. Let X = S[2], it contains
C [2] ∼= P2. Let X ′ be the Mukai flop of X along C [2]. Debarre [21]
proved that X ′ is not isomorphic to X and moreover there exist two
markings f, f ′ such that P(X, f) = P(X ′, f ′).

This implies that we cannot hope to have an isomorphism between
manifolds with the same period, however the situation is even worse,
as the following shows:

Example 1.2.10. Let T be a complex torus such that T∨ is not
isomorphic to it and such that Pic(T ) = 0. Let X = K2(T ) and
X ′ = K2(T∨) and let E and E ′ be respectively the exceptional divisors
of X → T (3) and X ′ → (T∨)(3).
It has been shown by Namikawa [56] that there exist two markings f
and f ′ such that P(X, f) = P(X ′, f ′). Suppose there exists a bira-
tional map ψ : X 99K X ′. This map is regular in codimension two
and defines a birational map E 99K E ′. However the Albanese is a
birational invariant hence we obtain T ∼= Alb(E) ∼= Alb(E ′) ∼= T∨

which is absurd.

However, under some more hypothesis, a weaker Global Torelli the-
orem holds, see [39], [49] and [79].

Theorem 1.2.11 (Global Torelli, Verbitsky, Markman and Huy-
brechts). Let X and Y be two Hyperkähler manifold of K3[n]-type and
let n− 1 be a prime power. Suppose ψ : H2(X,Z) → H2(Y,Z) is an
isometry preserving the Hodge structure. Then there exists a birational
map φ : X 99K Y .

Related to this there is also the following useful theorem, due to
Huybrechts [49, Theorem 3.2]:

Theorem 1.2.12. Let (X, f) be a marked Hyperkähler manifold and
(X ′, g) be another marked Hyperkähler manifold such that P(X, f) =
P(X ′, g) and such that the points (X, f) and (X ′, g) are not separated.
Then there exists an effective cycle Γ = Z+

∑
j Yj in X×X ′ satisfying

the following conditions:

• Z is the graph of a bimeromorphic map from X to X ′.
• The codimensions of π1(Yj) and π2(Yj) are equal.
• The composition g−1◦f is equal to Γ∗ : H2(X,Z) → H2(X ′,Z).
• If πi(Yj) has codimension 1 then it is supported by an effective

uniruled divisor.
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1.2.1. Moduli spaces of polarized Hyperkähler manifolds.
In this subsection we will analyze the behaviour of families of Hy-
perkähler manifolds with some conditions imposed on their Picard lat-
tice. Let us start with the following:

Definition 1.2.13. Let (X, f) be a marked Hyperkähler manifold
with H2(X,Z) ∼= N . Let h ∈ N be a primitive vector such that h2 ≥ 0.
We call X a h-polarized Hyperkähler manifold if f−1(h) is represented
by an ample divisor on X.

If X is a h-polarized manifold for some marking f it is clear that in a
projective family X of Hyperkähler manifolds containing X the generic
element is still h-polarized for a marking F of the family compatible
with f . Moreover on those elements Xt such that F−1

t (h) is not ample
we still have a closed subset where F−1

t (h) is Nef. Thus we will weaken
Definition 1.2.13 by imposing only the Nefness of the divisor. The
interesting fact is that there is a honest moduli space of such manifolds,
see [30]. In Chapter 5 we will be interested in a more general case,
namely in Hyperkähler manifolds such that a given lattice is primitively
contained in the Picard lattice:

Definition 1.2.14. Let (X, f) be a marked Hyperkähler manifold
with H2(X,Z) ∼= N . Let R ⊂ N be a primitive sublattice of signature
(a, b). We call X a R-polarized Hyperkähler manifold if f−1(R) ⊂
Pic(X) and, if a > 0, f−1(h) is represented by a Nef divisor on X for
some h ∈ R, h2 > 0.

Also in this case we have a moduli space of such manifolds and we
denote it MR,N or MR whenever N is understood.

1.3. Kähler and positive Cones

This section analyzes the shape of the Ample (Kähler in the general
case) Cones of Hyperkähler manifolds, and of other related cones of
interest in Chapter 7. Recall that the Beauville-Bogomolov form
allows to define a notion of positivity on divisors as in the case of
surfaces.

Definition 1.3.1. Let X be a Hyperkähler manifold and let ω be
a Kähler class. Let {l ∈ H1,1

R (X), l2 > 0} be the set of positive classes

in H1,1
R (X) and let the positive cone CX be its connected component

containing ω.
Let the Kähler cone KX ⊂ CX be the set of Kähler classes.
The birational Kähler cone is the union

(1.12) BKX =
⋃

f :X 99KX′

f ∗KX′ ,

where f : X 99K X ′ runs through all birational maps X 99K X ′ from
X to another Hyperkähler manifold X ′.
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There are several results on the structure of these cones and there
are also some conjectures, see [38, Section 27 and 28], [50, Section 9]
and [33]. Let us summarize most of them:

Proposition 1.3.2. Let X be a Hyperkähler manifold. The closure
KX of the Kähler cone is the set of all classes α ∈ CX such that

∫
C
α ≥ 0

for all rational curves C ⊂ X.

Proposition 1.3.3. Let X be a Hyperkähler manifold. The closure
BKX of the birational Kähler cone is the set of all classes α ∈ CX such
that qX(α,D) ≥ 0 for all uniruled divisors D ⊂ X.

The latter is often used together with the following numerical cri-
terion:

Proposition 1.3.4. Let X be as before and let D ⊂ X be an irre-
ducible effective divisor such that qX(D,D) < 0. Then D is uniruled.

If we specialize to the case of K3[n]-type manifolds there are more
precise results due to Markman ([49] and [50]). Let X be a mani-
fold of K3[n]-type, he proved that, if n > 3, the quotient Q(X) :=
H4(X,C)/(S2H2(X,C)) is an integer Hodge structure of weight 2 and
there is a bilinear pairing giving its integer part the structure of a lat-
tice isometric to U4 ⊕E8(−1)2. Moreover he proved the existence of a
unique primitive embedding i : H2(X,Z)→ Q(X). We remark that if
n = 2 or 3 there exists a unique (up to isometry) primitive embedding
H2(X,Z) → U4 ⊕ E8(−1)2. Let e ∈ H2(X,Z). Let r be the divisi-
bility of e in H2(X,Z). Let H2(X,Z) ⊂ U4 ⊕ E8(−1)2 using either i
or the unique embedding. Let v be a generator of H2(X,Z)⊥ in this
embedding. Let ρ be the integer such that e+v

ρ
is a primitive class in

U4⊕E8(−1)2, let σ be the integer such that e−v
σ

is a primitive class in
U4⊕E8(−1)2. We set rs(e) to be the unordered set {ρ, σ} if n is even
and r = n− 1, otherwise we set it to be {ρ/2, σ/2}.

Definition 1.3.5. Let X be a manifold of K3[n]-type and let h be
a Kähler class. A primitive class e ∈ H2(X,Z) is called numerically
exceptional if (h, e) > 0, (e, e) = −2 or (e, e) = 2 − 2n and one of the
following holds:

• div(e) = 2n− 2 and rs(e) = {1, n− 1}.
• div(e) = 2n− 2, rs(e) = {2, (n− 1)/2} and n ≡ 3 mod 4.
• div(e) = n− 1, n is even and rs(e) = {1, n− 1}.
• div(e) = n− 1, n is odd and rs(e) = {1, (n− 1)/2}.

We denote NExcX the set of numerically exceptional classes

We can use this to define the following:

Definition 1.3.6. Let X be as before, we define the fundamental
exceptional chamber FExcX to be the set of α ∈ H2(X,Z) such that
(α, e) > 0 for all numerically exceptional class e.
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Theorem 1.3.7. [50, Theorem 1.11 and Proposition 1.5] Let X be a
Hyperkähler manifold of K3[n]-type. Let e ∈ H2(X,Z) be a numerically
exceptional class. Then ke is the class of a reduced irreducible effective
divisor, where k is as follows:
If e2 = 2− 2n then

• k = 2 if div(e) = 2n− 2 and rs(e) = {1, n− 1}.
• k = 1 if div(e) = 2n− 2 and rs(e) = {2, (n− 1)/2}.
• k = 1 if div(e) = n− 1.

If e2 = −2 we have

• k = 2 if div(e) = 2 and n = 2.
• k = 1 if div(e) = 2 and n > 2.
• k = 1 if div(e) = 1.

This yields the following result:

Theorem 1.3.8. [49, Prop 5.6] Let X be a manifold of K3[n]-type
, then BKX = FExcX .

In the case of K3 surfaces we indeed have FExc = BK = K.
Let us specialize further to the case of K3[2]-type manifolds: Theorem
1.3.8 implies that BKX is cut out by (−2) divisors. Let moreoverNKX
be the following cone:

NKX ={α ∈ CX | (α, e) > 0∀ effective e ∈ Pic(X)(1.13)

s.t. e2 = −2 or e2 = −10 and div(e) = 2}.

Then there is the following conjecture made by Hassett and Tschinkel:

Conjecture 1.3.9. [33] Let X be a fourfold of K3[2]-type, then
KX = NKX and moreover for all e ∈ Pic(X) such that e2 = −10 and
div(e) = 2 either e or −e is represented by an effective divisor.

Some evidence for this conjecture is given by the following:

Remark 1.3.10. Let (X, g) and (X ′, g′) be two marked projective
manifolds of K3[2]-type and let f : X 99K X ′ be a Mukai flop. Then
the induced map g ◦ f ∗ ◦ g′−1 on L2 is the reflection along an element
e such that e2 = −10 and div(e) = 2.

and by this result:

Theorem 1.3.11 (Hassett and Tschinkel, [34]). Let X be a projec-
tive manifold of K3[2]-type and let w be a Kähler class. Let h be the
class of a divisor such that (h,w) > 0 and (e, h) > 0 for all e ∈ NExcX
and for all e such that e2 = −10, div(e) = 2 and (e, w) > 0. Then h is
ample.

There are higher dimensional analogues for this behaviour, see [31].
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Example 1.3.12. Let S be a K3 surface such that Pic(S) = Zh,
h2 = 14. Let X = S[2]. We wish to use Theorem 1.3.11 and The-
orem 1.3.8 to compute the Kähler cone of X. Let 2δ be the class of
the exceptional divisor on X, then Pic(X) =< h, δ >. Let now C be a
curve on S in the same numerical class of h and let Cp be a curve in X
given by analytical subsets of S consisting in a point of C and a point
p /∈ C. Cp is an effective curve dual to h, therefore the positive cone CX
consists of all elements ah+ bδ with a > 0 and b ≤

√
7a or −b ≤

√
7a.

Let us remark that all Kähler classes ω = ah + bδ must satisfy b < 0.
By Theorem 1.3.8 the birational Kähler cone BKX is cut out by (−2)
effective divisors. A direct computation shows that these divisors are
the integer solutions of 7a2− b2 = −1 with a ≥ 0. Therefore we have δ
and two series of divisors {anh+ bnδ}n and {anh− bnδ}n where an/bn
tends to

√
7

7
from below.

Therefore BKX is the set of elements orthogonal to these divisors. It
is easy to see that BKX = CX ∩ {b < 0}. Finally we apply Theorem
1.3.11: there are no elements of Pic(X) with square −10, therefore
KX = BKX .

1.4. Projective families of manifolds of K3[n]-type

In this section we gather several examples of projective Hyperkähler
manifolds, mainly in the case of manifolds of K3[2]-type . Notice that
most of these examples share the property of being a locally complete
family, i. e. the image of the local period map has the maximal di-
mension. In some cases compactifications of these families have been
studied, see for example [48] and [68].

1.4.1. Double EPW Sextics. Double EPW sextics were first in-
troduced by O’Grady in [63], they are in many ways a higher dimen-
sional analogous to K3 surfaces obtained as the double cover of P2

ramified along a sextic curve.
Let V ∼= C6 be a six dimensional vector space with basis given by
{e0, e1, e2, e3, e4, e5} and let

vol(e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5) = 1

be a volume form, giving a symplectic form σ on Λ3V defined by

σ(α, β) = vol(α ∧ β).

Let LG(Λ3V ) be the set of lagrangian subspaces of Λ3V with respect
to σ. Furthermore let F be the vector bundle on P(V ) with fibre

Fv = {α ∈ Λ3V , α ∧ v = 0}.

Let A ⊂ LG(Λ3V ) and let λA(v) be the following composition

(1.14) Fv → Λ3V → (Λ3V )/A,
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where the first map is injection of Fv as a subspace of Λ3V and the
second is the projection to the quotient with respect to A.
Therefore we define YA[i] as the following locus:

(1.15) YA[i] = {[v] ∈ P(V ) , dim(A ∩ Fv) ≥ i}.
Here YA[1] = YA is the EPW-sextic associated to A and coincides with
the degeneracy locus of λA if A is general.

Definition 1.4.1. Let LG(Λ3V )0 be the open subset of lagrangian
subspaces A such that the following hold

• YA[3] = ∅.
• Gr(3, 6) ∩ P(A) = ∅, where Gr(3, 6) ⊂ P(Λ3C6) via the

Plücker embedding.

Let us remark that LG(Λ3V )0 contains the general lagrangian sub-
set.

Theorem 1.4.2. [63, Theorem 1.1] For A ∈ LG(Λ3V )0 there ex-
ists a double cover XA → YA ramified along YA[2] such that XA is a
hyperkähler manifold of K3[2]-type .

A polarization h of a Double EPW sextic XA is given by the pull-
back of the hyperplane section OYA(1) of YA, a direct computation
yields h2 = 2.

Lemma 1.4.3. Let A be a generic lagrangian subspace and let Y ∨A ⊂
P(V ∨) be the dual hypersurface. then Y ∨A = Yδ(A) where δ is the follow-
ing map

δ : LG(Λ3V )→LG(Λ3V ∨)(1.16)

A→{α ∈ Λ3V ∨ , s.t. < α,A >= 0}.
Here < , > is the standard pairing.

Remark 1.4.4. It is a well known fact that for A /∈ LG(Λ3V )0

the situation can be dire indeed: there are degenerate examples where
YA = P(V ) or when XA has very bad singularities.

Let us look a little into what can happen if the lagrangian A
contains some decomposable tensors, first of all we have a result of
O’Grady:

Proposition 1.4.5. [67, Proposition 4.8] Let A be as before and
let I be the set of decomposable tensors contained in A. If I is finite
then its cardinality is at most 20.

If on the other hand we have an infinite set of decomposable tensors
inside A we obtain an infinite set of planes intersecting each other in a
point and we have the following classical result of Morin [51].
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Theorem 1.4.6. Let W be an infinite complete (i. e. contains all
planes meeting all elements ofW in a point) set of planes in P5 meeting
each other in a point. Then W satisfies one of the following

• There exists v ∈ P5 s.t. v ∈ ∩W∈WW .
• There exists a plane W ′ such that W ∩ W ′ is a line for all
W ∈ W.
• The set of vectors contained inside some element of W spans

a hyperplane.
• All elements of W are the planes contained in a quadric Q.
• All elements of W are tangent to a Veronese surface.
• All elements of W meet a Veronese surface in a conic.

Since we will be interested in automorphisms of EPW-sextics we
will need the following:

Proposition 1.4.7. Let G ⊂ PGL(6,C) be a simple group of auto-
morphisms of P5 leaving a lagrangian subspace A ∈ LG(Λ3C6)0 invari-
ant. Let XA → YA be the Hyperkähler cover of YA. Then G extends
to a group of automorphisms of YA and of XA. Suppose that G acts
faithfully on YA and trivially on a section of KYA. Then G acts on XA

as a group of symplectic automorphisms acting trivially on its natural
polarization.

Proof. Let y ∈ YA[i], since G preserves A we have g(y) ∈ YA[i]
for all g ∈ G. Therefore G induces automorphisms on YA and, since it
preserves also YA[i], it extends also to its cover XA → YA ramified along
YA[2]. Notice that we obtain a (usually nontrivial) extension of G with
the covering involution τA of XA. If we suppose moreover that G acts
trivially on a section of the Canonical divisor of YA we have that all its
elements act trivially also on sections of KXA , such as σ2

XA
. Therefore

g ∈ G acts as ±Id on the symplectic form σXA . If g(σXA) = −σXA
we can use τA to obtain nonetheless a symplectic automorphism gτA of
XA. �

1.4.2. Fano schemes of lines on cubic fourfolds. Fano schemes
of lines on cubic fourfolds were first studied By Beauville and Donagi
[6], where the authors proved that they are Hyperkähler manifolds of
K3[2]-type .
Let X ⊂ P5 be a smooth cubic fourfold and let F (X) be the scheme
parametrizing lines contained in X.

Theorem 1.4.8. Keep notation as above, then the following hold:

• F (X) is a Hyperkähler manifold.
• F (X) is deformation equivalent to K3[2].
• the Abel-Jacobi map

(1.17) α : H4(X,C) → H2(F (X),C)

is an isomorphism of rational Hodge structures.
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Let us remark that the proof of Theorem 1.4.8 gives also a polar-
ization h of F (X) which is the restriction of the Plücker polarization
of Gr(2, 6) to F (X). Moreover we have h2 = 6 and div(h) = 2.

Remark 1.4.9. Since X is a hypersurface it is possible to give
generators of its cohomology in terms of the residues of its defining
equation f , as proved classically by Griffiths [28]. By [81, Théorème

18.1] we have that H3,1(X) = C Res(Ω)
f2 , where Ω =

∑
(−1)ixix0 ∧

. . . x̂i · · ·∧x5. This formula is particularly useful in determining whether
an automorphism induced on F (X) by one on X is symplectic or not.

Remark 1.4.10. Let f = x3
0+f ′ be a nonsingular cubic polynomial,

where f ′ is a polynomial in x1, . . . , x5 and let Y = V (f) be a cubic
fourfold. The natural projection of Y from e0 to the hyperplane e∨0 is
a 3 : 1 cover ramified along a cubic threefold. Obviously the covering
morphism induces an order 3 morphism on F (Y ). A direct computation
with Remark 1.4.9 shows that this automorphism is nonsymplectic.

1.4.3. Moduli spaces of sheaves on K3 surfaces. Some very
interesting examples of projective Hyperkähler manifold are given by
moduli spaces of sheaves on polarized K3 surfaces. These examples
have been studied by several people, we will refer to [40] for a complete
list of references. First of all we have to define what are the Mukai
vector of a sheaf and the Mukai pairing.

Definition 1.4.11. Let X be a smooth manifold and let E,F be
two coherent sheaves. Then v(E) = ch(E)

√
td(X) is the Mukai vector

of E and (v(E), v(F ))M := −χ(E,F ) is their Mukai pairing.

We will denoteMv(S,H) to be the moduli spaces of stable sheaves
on a K3 surface S with Mukai vector v with respect to the polarization
H of S. To state the fundamental result we will need the concept of
v-generic polarization, we will not state this condition precisely but it
is sufficient to know that this condition is indeed generic.

Theorem 1.4.12. Let S be a K3 surface, let v ∈ H∗(S,Z) be a
primitive Mukai vector such that (v, v)M ≥ 0 and rk(v) > 0. Let H be
a v-generic polarization. Then Mv(S,H) is a Hyperkähler manifold of
dimension 2 + (v, v)M .

In the realm of Hyperkähler manifolds the most interesting case is
when (v, v)M = n ≥ 2, in this case Mv(S,H) is a Hyperkähler mani-
fold of K3[n]-type and the Hodge structure of its second cohomology is
given by the weight 2 Hodge structure on v⊥ ⊂ H∗(S,Z) with pairing
given by the Mukai pairing.

1.4.4. Varieties of sums of powers. In [41] and [42] Iliev and
Ranestad introduce another maximal projective family of manifolds of
K3[2]-type , namely the variety of sums of powers of a cubic fourfold.
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Definition 1.4.13. Let f be a homogeneous polynomial of degree
d in n+ 1 variables, defining the hypersurface X ⊂ Pn. Let V SP (f, s)
be the closure of
(1.18)
{{< l1 >, . . . , < ls >} ∈ Hilbs((Pn)∨) , ∃λi ∈ C : f = λ1l

d
1+· · ·+λslds}.

Theorem 1.4.14. [41] Let f be a general cubic polynomial in 6
variables, then V SP (f, 10) is a Hyperkähler manifold of K3[2]-type with
a polarization given by an embedding V SP (f, 10)→ Gr(4,Λ2C6).

Iliev and Ranestad also analyze the natural correspondence between
the Fano scheme of lines of the cubic hypersurface X = V (f) and
V SP (f, 10) and prove that the two families are distinct:

Lemma 1.4.15. [41] Let f = f(x0, x1, . . . , x5) be a general cubic
polynomial, and let F = F (V (f)) be the associated fano scheme of
lines. Let V SP (f, 10) be the fourfold given by the variety of sums of
powers. Then the two families

F(U) VSP(U, 10)

↘ ↙
U = {general cubic polynomials}.

Intersect transversally along a locus given by Hilbert schemes of two
points on a K3 surface of degree 14.

The following was first computed by A. Iliev, K. Ranestad and B.
Van Geemen:

Proposition 1.4.16. [43] Keep notation as above, then the natural
polarization on V SP (f, 10) ⊂ Gr(4,Λ2C6) has square 38 and divisibil-
ity 2.

Proof. Without loss of generality we can compute everything in
the codimension 1 locus of Hilbert schemes of 2 points on a K3 surface
of degree 14. Let S be a generic K3 surface of degree 14 such that
X = S[2] ∼= F (V (f)) ∼= V SP (f ′, 10) for some cubic polynomials f and
f ′. Since S is generic we know Pic(S) = Zh, where h2 = 14. Moreover
this implies Pic(S[2]) =< h, δ > where 2δ is the class of the exceptional
fibre, (h, δ) = 0, (δ, δ) = −2 and δ has divisibility 2. We also have the
polarizations induced by those on the Fano scheme of lines and on the
variety of sum of powers, namely two classes lFano and lvsp. It is known
that lFano = 2h−5δ by [6], it has square 6 and divisibility 2. Moreover
let C be a divisor of S representing the polarization h, let p ∈ S and
let Cp ⊂ X be a curve given by length 2 subschemes of S containing p
and a point of C. Let Dp be the rational curve parametrizing length 2
subschemes of S supported on p. Notice that h is represented by CS,
i. e. subschemes of length 2 of S supported on a point of S and one of
C. Moreover 2δ is represented by {Dp}p∈S.
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Cp and Dp are nothing else than a basis of H3,3(X,Q) dual to h and δ
in the following sense:

(h,Cp) =14,(1.19)

(h,Dp) =0,(1.20)

(δ, Cp) =0,(1.21)

(δ,Dp) =− 1.(1.22)

Here (1.19) is obtained by setting h = C ′S, for C ′ ⊂ S a curve linearly
equivalent to C, (1.20) and (1.21) are a consequence of (h, δ) = 0 and
(1.22) is obtained by linearity from the fact that (lFano, Dp) = 5 (see
[42]). In the same paper it is proved that (lvsp, Dp) = 3, therefore
lvsp = ah − 3δ. Now we only need to evaluate a. First of all a ≥ 2
otherwise lvsp would have negative square. The polarization lvsp is the
restriction of the Plücker embedding Gr(4,Λ2C6) ⊂ P(Λ4C6) (see [41,
Proof of Lemma 3.6]) and the dimension of the Plücker embedding of
this grassmanian is 1364, therefore h0(lvsp) ≤ 1365. It is possible to
compute χ(lvsp) in terms of its Beauville-Bogomolov form (see Exam-
ple 1.1.3). Moreover by Kodaira’s vanishing one can conclude that

h0(lvsp) = χ(lvsp) ≤ 1365. However χ(lvsp) =
(

(lvsp)2/2+3
2

)
, which is

greater than 1365 as soon as a ≥ 3. Therefore lvsp = 2h − 3δ, it has
square 38 and divisibility 2. �

We must remark that the hypothesis on the generality of f is in-
deed necessary, as the following example with a nonsingular polynomial
shows:

Remark 1.4.17. Let f = x3
0 + x3

1 + f ′, where f ′ is a general cubic
polynomial on {x1, . . . , x5}. This is a 10-dimensional subset of cubic
polynomials and we have the following inclusion:

(1.23) V SP (f ′, 8) ⊂ V SP (f, 10).

Here V SP (f ′, 8) is obtained by points of the form (x0, x1, l1, . . . , l8)
inside Hilb2((P2)∨) × Hilb8((P4)∨). However it was proven in [73]
that V SP (f ′, 8) has dimension 5, therefore V SP (f, 10) has dimension
greater than 4.

1.4.5. Subspaces of Grassmannians. This last example was in-
troduced by Debarre and Voisin [22] and deals with a certain subspace
of a Grassmannian. Let V be a 10 dimensional vector space and let
σ ∈ Λ3V ∨ be a generic 3-form on V . Let moreover Yσ ⊂ G(6, V ) be the
set of six dimensional subspaces where σ vanishes identically and let
Fσ ⊂ G(3, V ) be the set of 3 dimensional subspaces where σ vanishes.
Notice that Fσ is a hypersurface in G(3, V )
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Theorem 1.4.18. [22] Let V, σ, Fσ and Yσ be as before. Then Yσ
is a Hyperkähler fourfold of K3[2]-type . Moreover there is an isomor-
phism of weight 2 rational Hodge structures

(1.24) H20(Fσ,C)van ∼= H2(Yσ,C)van.

Debarre and Voisin also prove that Yσ has a polarization of square
22.



CHAPTER 2

Lattice theory

This chapter is devoted to gather all necessary results about lattices
and quadratic forms, in particular we make extensive use of discrimi-
nant forms and groups. The interested reader can consult [59] for what
concerns discriminant forms, [17] for what concerns most of the lattices
treated in this chapter and also [4] for some information on the groups
we treat often here.

2.1. Discriminant forms and applications

First of all let us start with the basic notions of discriminant groups
and forms: given an even lattice N with quadratic form q we can con-
sider the group AN = N∨/N which is called discriminant group and
whose elements are denoted [x] for x ∈ N∨. We denote with l(AN)
the least number of generators of AN . On AN there is a well defined
quadratic form qAN taking values inside Q/2Z which is called discrim-
inant form; moreover we call (n+, n−) the signature of q and therefore
of N as a lattice. It is possible to define the signature sign(q) of a
discriminant form q (modulo 8) as the signature modulo 8 of a lattice
having that discriminant form. This notion is well defined since 2 lat-
tices N,N ′ such that qAN = qAN′ are stably equivalent, i. e. there exist
2 unimodular lattices T, T ′ such that N ⊕ T ∼= N ′ ⊕ T ′.
One more definition we will need is that of the genus of a lattice: two
lattices N and N ′ are said to have the same genus if N ⊗Zp ∼= N ′⊗Zp
for all primes p. Notice that there might be several isometry classes in
the same genus.

Lemma 2.1.1. [59, Corollary 1.13.5] Let S be an even lattice of
signature (t+, t−). Then the following hold:

• If t+ > 0, t− > 0 and t+ + t− > 2 + l(AS) then S ∼= U ⊕ T for
some lattice T .
• If t+ > 0, t− > 7 and t+ +t− > 8+ l(AS) then S ∼= E8(−1)⊕T

for some lattice T .

Lemma 2.1.2. [59, Proposition 1.4.1] Let S be an even lattice.
There exists a bijection S ′ → HS′ between even overlattices of finite
index of S and isotropic subfactors of AS, moreover the following hold:

(1) AS′ = (H⊥S′)/HS′ ⊂ AS.

17
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(2) qAS′ = qAS |AS′ .

Proof. Let us briefly give an idea of the proof: suppose v ∈ S ′−S,
then it defines an element of AS and its square is v2 modulo 2Z, i. e. it
is 0. Let HS′ be the image of all elements in S ′ − S. Clearly in the
natural inclusion AS′ ⊂ AS all elements of AS′ are orthogonal to HS

and the intersection is 0. Conversely, if we have an isotropic subgroup
H ′S ⊂ AS where its elements are of the form v/n, v ∈ S and v2 is
a multiple of 2n2 we define an overlattice S ′ by adding the vectors
v/n. �

Remark 2.1.3. Lemma 2.1.2 is particularly useful in the partic-
ular case of overlattices R of T ⊕ S where both S and T are primitive
in R. In this case our isotropic subgroup HT⊕S is of the form (a, φ(a)),
where a ∈ BT ⊂ AT is not isotropic and φ is an isometry between BT

and its image in AS(−1).

We will often need to analyze primitive embeddings of an even
lattice into another one, let us make some useful remarks whose proofs
can also be found in [59]:

Remark 2.1.4. A primitive embedding of an even lattice S into an
even lattice N is equivalent to giving N as an overlattice of S ⊕ S⊥N
corresponding to an isotropic subgroup HS of AS ⊕ AS⊥N . Moreover
there exists an isometry γ : pS(HS) → pS⊥N (HS) between qS and
qS⊥N (pS denotes the natural projection AS ⊕ AS⊥N → AS). Note
moreover that this implies HS = Γγ(pS(HS)) where Γγ is the pushout
of γ in AS ⊕ AS⊥N .

Remark 2.1.5. Suppose we have a lattice S with signature (s+, s−)
and discriminant form q(AS) primitively embedded into a lattice N
with signature (n+, n−) and discriminant form q(AN) and let K be a
lattice, unique in its genus and such that O(K)→ O(qAK ) is surjective,
with signature (k+, k−) and discriminant form −q(AN).
It follows from [59] that primitive embeddings of S into N are equiva-
lent to primitive embeddings of S ⊕K into an unimodular lattice T of
signature (n+ + k+, n− + k−) such that both S and K are primitively
embedded in T . By Remark 2.1.4 an embedding of S ⊕ K into a
finite overlattice V such that both S and K are primitively embedded
into it is equivalent to giving subgroups HS of AS and HN of AN and
an isometry γ : qAS |HS → −qAN |HN . Finally a primitive embedding of
V into T is given by the existence of a lattice with signature (v−, v+)
and discriminant form −qV .

Keeping the same notation as before we give a converse to these
remarks:

Lemma 2.1.6. [59, Proposition 1.15.1] Primitive embeddings of S
into an even lattice N are determined by the sets (HS, HN , γ,K, γK)
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where K is an even lattice with signature (n+−s+, n−−s−) and discrim-
inant form −δ where δ ∼= (qAS ⊕−qAN )|Γ⊥γ /Γγ and γK : qK → (−δ) is
an isometry.
Moreover two such sets (HS, HN , γ,K, γK) and (H ′S, H

′
N , γ

′, K ′, γ′K) de-
termine isomorphic sublattices if and only if

• HS = λH ′S, λ ∈ O(qS),
• ∃ ε ∈ O(qAN ) and ψ ∈ Isom(K,K ′) such that γ′ = ε ◦ γ and
ε ◦ γK = γ′K ◦ ψ, where ε and ψ are the isometries induced
among discriminant groups.

For many purposes we will use only the following simplified version
of Lemma 2.1.6:

Lemma 2.1.7. Let S be an even lattice of signature (s+, s−). The
existence of a primitive embedding of S into some unimodular lattice
L of signature (l+, l−) is equivalent to the existence of a lattice M of
signature (m+,m−) and discriminant form qAM such that the following
are satisfied:

• s+ +m+ = l+ and s− +m− = l−.
• AM ∼= AS and qAM = −qAS .

We will also use a result on the existence of lattices, the following
is a simplified version of [59, Theorem 1.10.1]

Lemma 2.1.8. Suppose the following are satisfied:

• sign(qT ) ≡ t+ − t− mod 8.
• t+ ≥ 0, t− ≥ 0 and t+ + t− ≥ l(AT ).
• There exists a lattice T ′ of rank t+ + t− and discriminant form
qT over the group AT .

Then there exists an even lattice T of signature (t+, t−), discriminant
group AT and form qAT .

Remark 2.1.9. Let M and M ′ be lattices and let N be an overlat-
tice of M ⊕ M ′. Then l(AN) ≤ l(AM) + l(AM ′).

Let us give a few examples on the computation of discriminant
forms and groups:

Example 2.1.10. Let L be as in (1.3) for n = 2, then

(2.1) AL = Z/(2), qAL(1) = −1

2
.

Example 2.1.11. Let An be the Dynkin lattice given by { v =∑
aiei ∈ Zn+1,

∑
ai = 0 } with the bilinear form induced by the eu-

clidean bilinear form, then it has discriminant group Z/(n+1) generated
by an element of the form ( 1

n+1
, . . . , 1

n+1
,− n

n+1
).

Example 2.1.12. Let {(x1, . . . , xn) ∈ Zn,
∑
xi is even} be the

positive definite Dynkin lattice of type Dn . Then its discriminant
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group is Z2
/(2) if n is even and Z4 otherwise. In any case its 4 ele-

ments are the modulo Dn classes of (0, . . . , 0), (1
2
, . . . , 1

2
), (0, . . . , 0, 1)

and (1
2
, . . . , 1

2
,−1

2
).

Example 2.1.13. Let n = 4k and let D+
n ⊂ Zn be the lattice

generated by Dn and (1
2
, . . . , 1

2
). It is an unimodular lattice and it is

even if k is even. Moreover D+
8 is usually defined as the Dynkin lattice

E8 . If k is even this gives an easy example to Lemma 2.1.2 where
the isotropic subgroup of ADn is generated by the class of (1

2
, . . . , 1

2
).

Example 2.1.14. Let v, w ∈ E8 be two elements of square 2 such
that < v,w >∼= A2. Then v⊥ = E7 and < v,w >⊥= E6 . By Lemma
2.1.7 we have AE6 = AA2 and qE6 = −qA2 . Analogously AE7 = AA1

and qE7 = −qA1 .

Example 2.1.15. The lattice E8(−2) has discriminant group (Z/(2))
8

and discriminant form qE8(−2) given by the following matrix:

1 0 0 1
2

0 0 0 0
0 1 1

2
0 0 0 0 0

0 1
2

1 1
2

0 0 0 0
1
2

0 1
2

1 1
2

0 0 0
0 0 0 1

2
1 1

2
0 0

0 0 0 0 1
2

1 1
2

0
0 0 0 0 0 1

2
1 1

2
0 0 0 0 0 0 1

2
1


.

Example 2.1.16. Let

L′ = U4 ⊕ E8(−1)2,(2.2)

M2 = E8(−2)⊕ U3 ⊕ (−2).(2.3)

Since L′ is unimodular AL′ = {0}.
The lattice (−2) has discriminant group Z/(2) and discriminant form
q′ with q′(1) = qA1(−1)(1) = −1

2
as in Example 2.1.10. Therefore the

lattice M2 has discriminant form qE8(−2) ⊕ q′ over the group (Z/(2))
9.

We wish to remark that often L′ is called the Mukai lattice because
it is isometric to the lattice given by H∗(S,Z), where S is a K3 surface
and the pairing is the Mukai pairing.

Example 2.1.17. Let R = U(n). Then its discriminant group is

Z2
/(n) with discriminant form

(
0 1

n
1
n

0

)
.

Example 2.1.18. Let M3 = U ⊕ U(3)2 ⊕ A2(−1)2 ⊕ (−2). Then
AM3 = Z6

/(3) ×Z/(2) and its discriminant form is obtained as the direct
sum of those of its addends as detailed in Example 2.1.17, Example
2.1.10 and Example 2.1.11 (with the appropriate sign changes).
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Example 2.1.19. Let M5 = U ⊕ U(5)2 ⊕ (−2). Then AM5 =
Z4
/(5) × Z/(2) with discriminant form obtained from Example 2.1.17

and Example 2.1.10.

Example 2.1.20. Let M7 = U(7)⊕
(

4 1
1 2

)
⊕ (−2) ∼= U⊕U(7)⊕

(14). Then M7 has discriminant group Z2
/(7)×Z/(14) with discriminant

form

(2.4)

 0 1
7

0
1
7

0 0
0 0 1

14

 .

To conclude this section we analyze the behaviour of (-2) vectors
inside L, M2,M3 and M7, since they will play a fundamental role in
Lemma 5.2.8. Hence we will need the following:

Lemma 2.1.21. Let (−2) be A1(−1) and let e be one of its genera-
tors. Let L,M2,M3 and M5 be as before. Then the following hold:

• Up to isometry there is only one primitive embedding (−2) ↪→
M2 such that (e,M2) = 2Z (i. e. e is 2-divisible). Moreover
e⊕ e⊥ = M2.
• Up to isometry there is only one primitive embedding (−2) ↪→
L such that (e, L) = 2Z. Moreover e⊕ e⊥ = L.
• Up to isometry there is only one primitive embedding (−2) ↪→
M3 such that (e,M3) = 2Z. Moreover e⊕ e⊥ = M3.
• Up to isometry there is only one primitive embedding (−2) ↪→
M5 such that (e,M5) = 2Z. Moreover e⊕ e⊥ = M5.

Furthermore all other primitive embeddings into M2 given by
(He, HM2 , γ,K, γK) satisfy the following:

(2.5) ∃s ∈ AK , qAK (s, s) = ±1

2
.

Proof. By Lemma 2.1.6 we know that the quintuple
(He, HM2 , γ,K, γK) determines primitive embeddings of e inside M2

and the quintuple (He, HL, γ,K, γK) provides those into L.
A direct computation shows that primitive embeddings of e into L are
2-divisible only for the quintuple (Z/(2), AL, Id, U

3 ⊕ E8(−1)2, Id).
Now let us move on to the case of M2:
If He = Id then we have K ∼= U2 ⊕ E8(−2) ⊕ (2) ⊕ (−2), obviously e
is not 2-divisible in this case and this satisfies (2.5). If He = Z/(2) and

(HM2 , A
⊥AE8
M2

) 6= 0 we obtain nonetheless condition (2.5) and again e is

not 2-divisible in this embedding since e ⊕ e⊥M2 is properly contained

in M2 with index a multiple of 2. Therefore (Z/(2), A
⊥AE8
M2

, Id, U3 ⊕
E8(−2), Id) is the only possible case. The proof goes the same for M3

and M5.
�
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2.2. Lattices over cyclotomic fields

In this section we define a special class of lattices, namely lattices
defined over rings different from Z. Most of the lattices of Chapter 7
can be better understood in this context. Throughout this section all
integer lattices will be definite, either positive or negative.

Definition 2.2.1. Let ωn be an n-th primitive root of unity and
let Dn := Z[ωn] be the ring of cyclotomic integers. A free Dn-module C
is a Dn-lattice if it is endowed with a nondegenerate hermitian pairing

(2.6) ( , )Dn : C × C → Dn ⊗Q.

Notice that we allow the bilinear pairing to take non-integer values,
the reason will become apparent in the following examples.

Remark 2.2.2. Let R be a Dn-lattice generated by e1 . . . el and
let ω1 . . . , ωφ(n) be the set of primitive n-th roots of unity. Then R
has the structure of a free Z-module with generators eiωj and rank
φ(n)rankDn(R). Moreover it is a generalized lattice when endowed
with the following pairing:

(2.7) (a, b)Z =
1

φ(n)

∑
ρ∈Γn

ρ(a, b)Dn .

Here Γn = Gal(Dn⊗Q,Q). Notice moreover that multiplication by ωn
defines an isometry of the integer lattice.

Remark 2.2.3. Let R be a definite lattice of rank m and let ϕ ⊂
O(R) be a free isometry of order n ≥ 3, i. e. ϕi(v) = v if and only if
v = 0 or i ≡ 0modn. Suppose moreover there is an isomorphism η of

Dn modules between R and Dm/φ(n)
n , where ηϕ(v) = ωnη(v). Then R

is a Dn lattice of rank m
φ(n)

.

If a lattice R can be given both structures we denote as R the Z
lattice and as RDn the Dn lattice.

This section cries out for examples, so let us give quite a few:

Example 2.2.4. Let n ≥ 3 and An ⊂ Zn+1 be the Dynkin lattice as
defined in Example 2.1.11 and let ϕ be the automorphism defined by
the permutation (1 2 . . . n+ 1) on the standard basis of Zn+1. If n+ 1
is prime then An is a Dn+1 lattice of rank 1. Let us see two particular
cases, n = 2 and n = 5: A2 has basis {e1, e2} = {(1,−1, 0), (0, 1,−1)}
and ϕ(1,−1, 0) = (0, 1,−1) hence as a D3 lattice we have ω3e1 = e2

and (e1, e1)D3 = 2, (e1, e2)D3 = −2ω3.
A5 has basis {e1, e2, e3, e4, e5} = {(1,−1, 0, 0, 0, 0), . . . , (−1, 0, 0, 0, 0, 1)}
as before. As a D6 lattice we should have ϕ3(ei) = ω3

6(ei) = −ei but
this is not the case.
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Example 2.2.5. Let E6 be the Dynkin lattice as in Example
2.1.14. E6 is isometric to the rank 3 D3 lattice with matrix 2 0 2i

√
3

3

0 2 2i
√

3
3

−2i
√

3
3
−2i

√
3

3
2

 .

Example 2.2.6. Let K12 ⊂ D6
3 be the D3 lattice generated by

1√
2

(±i
√

3,±1,±1,±1,±1,±1),

where i
√

3 can be in any position and there are an even number of
minus signs. This is the Coxeter-Todd lattice. Applying Remark
2.2.2 we obtain a lattice with discriminant group Z6

/(3), which we still
call K12. The minimal norm of its elements is 4 and its hermitian form
over D3 is the following:

(2.8)


4 0 0 2 2ω3 2ω3

0 4 0 2ω3 2 2ω3

0 0 4 2ω3 2ω3 2
2 2ω3 2ω3 4 2 2

2ω3 2 2ω3 2 4 2
2ω3 2ω3 2 2 2 4

 .

In its integer form the isometry induced by multiplication by ω3 acts
trivially on the discriminant group.

The following two lattices are taken from [27], where to my knowl-
edge they were explicitly computed for the first time. They correspond
to the Co-invariant lattice (cfr. Definition 2.3.1) of a symplectic
automorphism of order 5 and 7 of a K3 surface.

Example 2.2.7. Let S5.K3 be the lattice associated with the fol-
lowing bilinear form on Z16:
(2.9)

−4 2 0 0 0 −1 0 0 0 −1 0 0 −1 1 −1 0

2 −4 2 0 5 2 −1 0 0 2 −1 0 1 −1 1 1
0 2 −4 2 −5 −1 2 −1 0 −1 2 −1 1 −1 0 −1

0 0 2 −4 0 0 −1 2 0 0 −1 2 −1 1 1 −1
0 5 −5 0 −50 0 0 0 0 0 0 0 0 0 5 −15
−1 2 −1 0 0 −6 4 −1 −3 0 0 0 0 0 0 0

0 −1 2 −1 0 4 −6 4 1 0 0 0 0 0 0 0

0 0 −1 2 0 −1 4 −6 0 0 0 0 0 0 0 0
0 0 0 0 0 −3 1 0 −4 3 −1 0 2 0 0 0

−1 2 −1 0 0 0 0 0 3 −6 4 −1 −3 0 0 0
0 −1 2 −1 0 0 0 0 −1 4 −6 4 1 0 0 0

0 0 −1 2 0 0 0 0 0 −1 4 −6 0 0 0 0

−1 1 1 −1 0 0 0 0 2 −3 1 0 −4 3 −1 0
1 −1 −1 1 0 0 0 0 0 0 0 0 3 −6 4 −1

−1 1 0 1 5 0 0 0 0 0 0 0 −1 4 −6 4

0 1 −1 −1 −15 0 0 0 0 0 0 0 0 −1 4 −6


.
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This lattice has the structure of a D5 lattice (see [27]) and is isometric
to the following:

{ (x1, x2, x3, x4) ∈ D4
5, x1 ≡ x2 ≡ 2x3 ≡ 2x4 mod (1− ω5) and

(3− ω5)(x1 + x2) + x3 + x4 ≡ 0mod (1− ω5)2}.

With the following hermitian form:

(x, y) = x1y1 + x2y2 + fx3fy3 + fx4fy4, where f = 1− (ω2
5 + ω3

5).

Example 2.2.8. Let S7.K3 be the lattice associated with the fol-
lowing bilinear form on Z18:
(2.10)

−4 2 0 0 0 0 0 −1 0 0 0 0 0 1 −1 0 0 0

2 −4 2 0 0 0 0 2 −1 0 0 0 0 −1 1 1 −1 0
0 2 −4 2 0 0 7 −1 2 −1 0 0 0 0 0 −1 1 1

0 0 2 −4 2 0 −7 0 −1 2 −1 0 1 −1 0 0 0 −1
0 0 0 2 −4 2 0 0 0 −1 2 −1 −1 1 1 −1 0 0

0 0 0 0 2 −4 0 0 0 0 −1 2 −1 0 −1 1 1 −1

0 0 7 −7 0 0 −98 0 0 0 0 0 0 0 0 0 7 −21
−1 2 −1 0 0 0 0 −6 4 −1 0 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 4 −6 4 −1 0 0 0 0 0 0 0

0 0 −1 2 −1 0 0 −1 4 −6 4 −1 0 0 0 0 0 0
0 0 0 −1 2 −1 0 0 −1 4 −6 4 −1 0 0 0 0 0

0 0 0 0 −1 2 0 0 0 −1 4 −6 3 0 0 0 0 0

0 0 0 1 −1 −1 0 0 0 0 −1 3 −4 3 −1 0 0 0
1 −1 0 −1 1 0 0 0 0 0 0 0 3 −6 4 −1 0 0

−1 1 0 0 1 −1 0 0 0 0 0 0 −1 4 −6 4 −1 0

0 1 −1 0 −1 1 0 0 0 0 0 0 0 −1 4 −6 4 −1
0 −1 1 0 0 1 7 0 0 0 0 0 0 0 −1 4 −6 4

0 0 1 −1 0 −1 −21 0 0 0 0 0 0 0 0 −1 4 −6



.

This lattice has the structure of a D7 lattice (see [27]) and is isometric
to the following:

{ (x1, x2, x3) ∈ D3
7, x1 ≡ x2 ≡ 6x3 mod (1− ω7) and

(1 + 5ω7)x1 + 3x2 + 2x3 ≡ 0mod (1− ω7)2}.

With the following hermitian form:

(x, y) = x1y1 + f1x2f1y2 + f2x3f2y3,

where f1 = 3 + 2(ω7 + ω7) + (ω2
7 + ω2

7) and f2 = 2 + (ω7 + ω7).

Example 2.2.9. Let Λ be the Leech lattice, Craig [19] proved that
it has the structure of a D39 lattice, however its proof is fairly compli-
cated. Notice that this implies that Λ has also the structure of D3 and
D13 lattice, a fact that will lead to Lemma 7.2.5.

Example 2.2.10. Let us consider a lattice over Dp of rank 1, where
p is a prime. It is generated by an element v of square a ∈ Dp.
Let us look at its integer form: it has rank p − 1 and its basis is
v, ωpv, . . . , ω

p−2
p v. Let us suppose a ∈ Z. In this case we have

(v, ωpv)Z = −a/2. Thus this lattice is nothing else than Ap−1(a/2) in
a different form, see [17, Section 4.6]. This implies moreover that the
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discriminant group of a rank 1 cyclotomic lattice has (in its integer
form) p− 1 generators as soon as |a| > 2.

We need to consider one more lattice, which was first introduced
by Wall [82] and studied also by Nebe and Plesken [57, page 65]:

Example 2.2.11. Let W be the lattice associated to the following
bilinear form on Z18:
(2.11)

4 2 −2 −2 −2 0 0 0 −2 1 −2 −2 −2 −2 2 −2 2 2

2 4 −2 0 −2 −1 −1 −1 −2 −1 0 0 0 −1 2 0 1 2
−2 −2 4 1 2 1 −1 1 1 −1 0 2 2 2 −2 0 0 −2

−2 0 1 4 2 1 0 1 1 −1 0 2 2 0 −1 1 −2 −2

−2 −2 2 2 4 2 1 1 1 −1 0 2 2 0 −2 0 −2 −2
0 −1 1 1 2 4 0 0 0 0 0 0 0 −1 −2 −2 −1 0

0 −1 −1 0 1 0 4 1 1 0 0 0 −1 −2 0 0 0 −1

0 −1 1 1 1 0 1 4 0 1 −2 0 1 −1 1 −1 1 −1
−2 −2 1 1 1 0 1 0 4 1 0 0 1 1 −2 2 −1 −1

1 −1 −1 −1 −1 0 0 1 1 4 −2 −2 −1 0 1 0 1 1

−2 0 0 0 0 0 0 −2 0 −2 4 1 0 1 −1 1 −1 0
−2 0 2 2 2 0 0 0 0 −2 1 4 2 1 −1 1 −1 −2

−2 0 2 2 2 0 −1 1 1 −1 0 2 4 1 −1 1 −1 −1

−2 −1 2 0 0 −1 −2 −1 1 0 1 1 1 4 −1 2 0 −1
2 2 −2 −1 −2 −2 0 1 −2 1 −1 −1 −1 −1 4 0 2 1

−2 0 0 1 0 −2 0 −1 2 0 1 1 1 2 0 4 −1 −1
2 1 0 −2 −2 −1 0 1 −1 1 −1 −1 −1 0 2 −1 4 1

2 2 −2 −2 −2 0 −1 −1 −1 1 0 −2 −1 −1 1 −1 1 4



.

This lattice has Aut(W ) = 31+4 : Sp4(Z/(3)).2 (in the notation of Sec-
tion 2.5). We also have AW = (Z/(3))

5, therefore it can be embedded
in a positive definite unimodular lattice of rank 24.

2.3. Isometries, Invariant and Co-invariant Lattices

In this section we analyze two kind of lattices linked to an isometry,
namely the co-invariant and invariant lattices. We will give also some
proofs related to some lattices useful in Chapter 5 and we will present
an easy construction of fundamental relevance in the proof of Theorem
7.2.4.

Definition 2.3.1. Let R be a lattice and let G ⊂ O(R). Then we
define TG(R) = RG as the invariant lattice of G and
SG(R) = TG(R)⊥ as the co-invariant lattice.

Remark 2.3.2. Let R be a lattice, and let G ⊂ O(R). Then the
following hold:

• TG(R) contains
∑

g∈G gv for all v ∈ R.

• SG(R) contains v − gv for all v ∈ R and all g ∈ G.
• If R is definite then TG(R) and SG(R) are nondegenerate.
• R/(TG(R)⊕ SG(R)) is of |G|-torsion.
• Suppose G is of prime order p and R is definite, then SG(R)

is a Z[ωp] lattice.
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Proof. It is obvious that
∑

g∈G gv is G-invariant for all v ∈ R. Let

w ∈ TG(R), since g is an isometry we have (w, v) = (gw, gv) = (w, gv)
for all v ∈ R and all g ∈ G. Therefore v − gv is orthogonal to all
G-invariant vectors, hence it lies in SG(R). Obviously whenever R is
definite all of its sublattices are nondegenerate. Let t ∈ R, we can
write |G|t =

∑
g∈G g(t) +

∑
g∈G(t − g(t)), where the first term lies in

TG(R) and the second in SG(R). Finally if |G| = p we let g be one of
its generators. g acts freely on SG(R), therefore by Remark 2.2.3 it
can be defined as a Z[ωp] lattice. �

Lemma 2.3.3. Let L be as in Example 2.1.10 and let L′ be the
Mukai lattice. Let g ∈ O(L), then there exists an embedding L ⊂ L′

and an isometry g ∈ O(L′) such that g|L = g.

Proof. The isometry g induces an automorphism of the discrim-
inant group AL. Since AL = Z/(2) this automorphism is the identity.
Let [v/2] be a generator of AL such that v2 = −2. We then have
g([v/2]) = [v/2] i. e. g(v) = v + 2w. Consider now a lattice of rank
1 generated by an element x of square 2, its discriminant group is
still Z/(2) and is generated by [x/2] with discriminant form given by
q(x/2) = 1/2.
Notice that L⊕ Zx has an overlattice isometric to L′ which is generated
by L and x+v

2
.

We now extend g on L ⊕ x by imposing g(x) = x and we thus obtain
an extension g of g to L′ defined as follows:

g(e) = g(e) ∀ e ∈ L,

g(x) = x,

g(
x+ v

2
) =

x+ g(v)

2
.

�

Remark 2.3.4. Let L be as in Example 2.1.10 and let G ⊂ O(L).
Then there exists a primitive embedding L→ L′ ∼= U4⊕E8(−1)2 such
that G extends to a group of isometries of L′ and SG(L) = SG(L′).

Proof. Let x be a vector of square 2 and v ∈ L a vector of square
−2 such that (v, L) = 2Z. Let L′ be the overlattice of L⊕Zx generated
by L and x+v

2
and let us extend the action of G to L′ as in Lemma

2.3.3. A direct computation shows SG(L) = SG(L′). �

2.3.1. S-lattices. In this subsection we analyze briefly a few sub-
lattices of the Leech lattice which arise as TG(Λ) for some interesting
groups G. Let us start with the basics:

Definition 2.3.5. LetM ⊂ Λ. ThenM is a S-lattice if all elements
of M are congruent modulo 2Λ to an element of M of norm 0,−4 or
−6.
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There are not many examples of S-lattices and they were classified
by Curtis:

Lemma 2.3.6. [20] Up to isomorphisms there are 12 S-lattices in-
side Λ.

He classified also their stabilizers and their automorphism groups
inside Co0, a full table can be found in [4, page 180]. For our purpose
it is better to give an explicit presentation of the Leech Lattice Λ:

Example 2.3.7. Let us consider the vector space RW , where W =
P1(Z/(23)) is a set with 24 elements and let us endow it with a quadratic
form defined as the opposite of the euclidean form. Let Q ⊂ W be the
set whose elements are quadratic residues modulo 23 and 0, and let
a = 8−1/2. Then Λ ⊂ RW is spanned by the following elements:

a(2, . . . , 2, 0, . . . , 0), where the twelve non zero elements are

supported on a translate of Q by an element of W,

a(−3, 1, . . . , 1),

a(±4,±4, 0, . . . , 0).

Let us introduce a piece of notation: a S-lattice M is denoted 2i3j

if (up to sign) it contains i vectors of norm −4 and j vectors of norm
−6.

Example 2.3.8. The easiest example possible is that of a lattice
M = (−4) = 21 in the above notation. The condition of Defini-
tion 2.3.5 is trivially satisfied and Aut(M) = ±Id, Stab(M) = Co2

i. e. M = TCo2(Λ).

Example 2.3.9. Let us consider the S-lattice M = 25310, it has
rank 4 and it is TG(Λ) where G is an extension of (Z/(5))

3 with Z/(4).
We wish to remark that G contains an element of the conjugacy class
5C in the notation of [4]. We will later denote M⊥ as the lattice S5.exo

, which is shown in Example 2.5.6 to be just S5C(Λ). Moreover M is
isometric to the following

−4 −1 −1 1
−1 −4 1 −1
−1 1 −4 −1
1 −1 −1 −4

 .

From Nipp’s [62] list of definite quadratic forms we have that M is the
unique lattice in its genus, moreover M⊕M has E8(−1) as overlattice.

Example 2.3.10. The S-lattice M = 2936 is a lattice of rank 4 and
it is the stabilizer of a group G ⊂ Co0 which is a nontrivial extension
of (Z/(3))

4 with A6. If we consider Λ as the lattice defined in Example
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2.3.7 then M is spanned by the following 9 elements:

a(0, 0, 0, 0, 0, 0, 0, 0,−4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0),

a(4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−4, 0, 0, 0, 0, 0, 0, 0),

a(−4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a(0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0,−2,−2,−2,−2, 0, 0, 0, 0),

a(−2,−2,−2,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0),

a(2, 2, 2, 2, 0, 0, 0, 0,−2,−2,−2,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

a(0, 0, 0, 0, 0, 0, 0, 0, 2,−2,−2,−2, 0, 0, 0, 0,−2, 2, 2, 2, 0, 0, 0, 0),

a(−2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,−2,−2,−2, 0, 0, 0, 0),

a(2,−2,−2,−2, 0, 0, 0, 0,−2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

where a = 8−1/2. A direct computation shows that it is isometric to
the lattice 

−4 2 −2 1
2 −4 1 −2
−2 1 −4 2
1 −2 2 −4

 .

A look at Nipp’s table [62] shows again that it is unique in its genus.
This time however M ⊕M has not an unimodular overlattice, however
M ⊕ A2(−1) ⊕ A2(−3) does. Notice moreover that A2(−1) ⊕ A2(−3)
is again unique in its genus by [62].

Example 2.3.11. The S-lattice M = 227336 is a lattice of rank
6 and discriminant group (Z/(3))

5 and it is the stabilizer of a group
G ⊂ Co0, where G is a nontrivial extension of (Z/(3))

5 with Z/(2). Its
orthogonal inside Λ is a lattice which contains the group O(E6) in its
automorphism group. We do not give a direct proof that its orthogonal
is isometric to the lattice W (−1) of Example 2.2.11, however it is
implied by the following facts:

(1) G contains an element of conjugacy class 3C in the notation
of [4].

(2) W (−1) embeds into a negative definite unimodular lattice N
of rank 24 such that Sϕ(N) = W (−1), where ϕ is induced by
an isometry of order 3 of W (−1) acting trivially on W (−1)⊥N .

(3) There are 24 lattices in the genus of N , see Section 2.5 for
details, and only Λ has an element ϕ of order 3 (of conjugacy
class 3C) such that Sϕ(N) has rank 18.

2.4. Eichler transvections

In this section we make good use of a certain class of Isometries,
known as Eichler’s transvections [24]. Our exposition follows very
much [29], where all the proofs we omit can be found.
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Definition 2.4.1. Let R be a lattice and let e ∈ R be an isotropic
vector. Let a ∈ e⊥. The map

(2.12) t′(e, a) : v → v − (a, v)e

defines an isometry of e⊥.

Lemma 2.4.2. t′(e, a) extends to a unique isometry t(e, a) of R,
called Eichler’s transvection.

Proof. Let us define

(2.13) t(e, a) : v → v − (a, v)e+ (e, v)a− 1

2
(a, a)(e, v)e.

Its restriction on e⊥ is t′(e, a). �

Lemma 2.4.3. Let us consider the lattice R = U ⊕ U1, where U1
∼=

U . Then for all v ∈ R there exists an isometry g of R generated by
Eichler’s transvections such that g(v) ∈ U1.

Remark 2.4.4. Lemma 2.4.3 can be easily extended to R =
U(n)⊕ U1(n).

The following is known as Eichler’s criterion, see [29, Proposition
3.3] for a proof.

Lemma 2.4.5. Let T be a lattice such that T ∼= U2⊕N for some lat-
tice N and let v, w ∈ T be two primitive vectors such that the following
hold:

• v2 = w2.
• (v, T ) ∼= mZ ∼= (w, T ).
• [ v

m
] = [w

m
] in AT .

Then there exists an isometry g of T such that g(v) = w.

We will also need a slight generalization of it to prove Lemma
5.2.6 and Lemma 5.2.7:

Lemma 2.4.6. Let T ∼= U(n)2⊕N for some lattice N and some in-
teger n and let v, w ∈ T be two primitive vectors such that the following
hold:

• v2 = w2,
• (v, T ) ∼= mZ ∼= (w, T ),
• There exists an isometry h such that [ v

m
] = h[w

m
] in AT .

Then there exists an isometry g of T such that g(v) = w.

Proof. First of all we use the generalized version of Lemma 2.4.3
to obtain two isometries f and f ′ such that f(v) = v′ and f ′(w) =
w′ are both orthogonal to the first copy of U(n). By hypothesis the
isometry f−1 ◦h◦f ′−1 sends [w

′

m
] to [ v

′

m
] and let f−1 ◦h◦f ′−1(w′) = w”.
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Let d, e be a basis of the first copy of U(n), then let k be the following
isometry:

(2.14) v′
t(e,v′)→ (v −me) t(d,(v′−w”)/m)→ (w”−me) t(e,−w”)→ w”.

Here v′ is an element orthogonal to the first copy of U such that
(v′, v′) = m and the same goes for w” and w”. Therefore h−1 ◦ f ◦k ◦ f
sends v to w. �

2.5. Niemeier lattices and Leech-type lattices

In this section we recall Niemeier list of negative definite even uni-
modular lattices in dimension 24 and we introduce a class of lattices
which will be of fundamental interest in the rest of the section. De-
tailed information about these lattices can be found in [17, Chapter
16] and in [59, Section 1.14].

Definition 2.5.1. Let M be a lattice and let G ⊂ O(M). Then M
is a Leech type lattice with respect to G if the following are satisfied:

• M is negative definite.
• M contains no vectors of square −2.
• G acts trivially on AM .
• SG(M) = M .

Moreover we call (M,G) a Leech couple and G a Leech type group.

Notice that (Λ, Co0) is a Leech couple. Now we recall Niemeier’s
list of definite even unimodular lattices of dimension 24. Usually they
are defined as positive definite lattices but we will use them as negative
definite ones. All of these lattices can be obtained by specifying a 0
or 24 dimensional Dynkin diagram such that every semisimple compo-
nent has a fixed Coxeter number, in Table 2.5 we recall the possible
choices. Having the Dynkin lattice A(−1) of the lattice N we obtain
it by adding a certain set of glue vectors, which are a subset G(N) of
A∨/A. The precise definition of the glue vectors can be found in [17,
Section 4] and we keep the same notation contained therein. Notice
that the set of glue vectors forms an additive subgroup of A∨/A.
Another fundamental data is what we call maximal Leech-type group
Leech(N), i. e. the maximal subgroupG ofAut(N) such that (SG(N), G)
is a Leech-type couple. It is a well known fact that this group is ob-
tained as Aut(N)/W (N), where W (N) is the Weyl group generated
by reflections on −2 vectors. These groups where first computed by
Erokhin [25].
This data is summarized in Table 2.5, let us explain briefly the nota-
tion used therein: for the Leech-type group we used standard notation
from [4], where n denotes a cyclic group of order n, pn denotes an ele-
mentary p-group of order pn, G.H denotes any group F with a normal
subgroup G such that F/G = H and Lm(n) denotes the group PSLm
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over the finite field with n elements. Mn denotes the Mathieu group
on n elements and Con denotes Conway groups.
Regarding the glue codes we kept the notation of [17], hence a glue
code [abc] means a vector (g, h, f) where g is the glue vector of type
a, h is the one of type b and f of type c. Moreover [(abc)] indicates
all glue vectors obtained from cyclic permutations of {a, b, c}, hence
[abc], [bca], [cab].

Table 2.5. Niemeier lattices and their Leech automorphisms

Name Dynkin Leech-type Coxeter Generating glue code
diagram Group Number

N1 D24 1 46 [1]
N2 D16E8 1 30 [10]
N3 E3

8 S3 30 [000]
N4 A24 2 25 [5]
N5 D2

12 2 22 [12], [21]
N6 A17E7 2 18 [31]
N7 D10E

2
7 2 18 [110], [301]

N8 A15D9 2 16 [21]
N9 D3

8 S3 14 [(122)]
N10 A2

12 4 13 [15]
N11 A11D7E6 2 12 [111]
N12 E4

6 of order 48 12 [1(012)]
N13 A2

9D6 22 10 [240], [501], [053]
N14 D4

6 S4 10 [even perm. of {0, 1, 2, 3}]
N15 A3

8 S3 × 2 9 [(114)]
N16 A2

7D
2
5 23 8 [1112], [1721]

N17 A4
6 of order 24 7 [1(216)]

N18 A4
5D4 as N12 6 [2(024)0], [33001], [30302], [30033]

N19 D6
4 3× S6 6 [111111], [0(02332)]

N20 A6
4 2.L2(5).2 5 [1(01441)]

N21 A8
3 23.L2(7).2 4 [3(2001011)]

N22 A12
2 2.M12 3 [2(11211122212)]

N23 A24
1 M24 2 [1(00000101001100110101111)]

Λ ∅ Co0 0 ∅

By Lemma 2.1.7 all of the Niemeier lattices can be defined as
primitive sublattices of Π1,25

∼= U ⊕ E8(−1)3 by specifying a primitive
isotropic vector v and setting N = (v⊥ ∩ Π1,25)/v.
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Example 2.5.2. Let Π1,25 ⊂ R26 (the first coordinate of R26 is the
positive definite one) be as before and let

v =(17, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5)

w =(70, 0, 1, 2, 3, 4, 5, . . . , 24)

be two isotropic vectors in the standard basis of R26. Then

Λ ∼= (w⊥ ∩ Π1,25)/w

and
N15
∼= (v⊥ ∩ Π1,25)/v.

2.5.1. The ”holy” construction. In this subsection we give a
few different constructions of the Leech lattice Λ arising from the other
Niemeier lattices. These constructions will be instrumental in the proof
of Theorem 7.2.7.
The detailed construction is contained in [17, Section 24], in the present
paper we just sketch it: Let An be a Dynkin lattice defined by

An = {(a1, . . . , an+1) ∈ Zn+1,
∑

ai = 0}.

And let fj be the vector with −1 in the j−th coordinate and 1 in the
(j + 1)−th, zero otherwise. Let moreover f0 = (1, 0, . . . , 0,−1). In
general the fi form a set of extended roots for the Dynkin lattice.
Let g0 = h−1(−1

2
n,−1

2
n+ 1, . . . , 1

2
n) where h is the Coxeter number of

An and let the gi’s be a cyclic permutation of coordinates of g0. Now
let An(−1)m be a 24 dimensional lattice and let hk = (gi1 , . . . , gim)
where [i1i2 . . . im] is a glue code obtained from Table 2.5. Let f ji =

(0, . . . , 0, fi, 0, . . . , 0) where fi belongs to the j−th copy of An. Let mj
i

and nw be integers.
Then the following holds: the set of vectors satisfying

(2.15)
m∑
j=1

∑
i

mj
if

j
i +

∑
w

nwhw,
∑
w

nw = 0

is isometric to the Niemeier lattice with Dynkin diagram Amn . While
the set of vectors

(2.16)
m∑
j=1

∑
i

mj
if

j
i +

∑
w

nwhw,
∑
w

nw +
∑
i,j

mj
i = 0

is isometric to the Leech lattice Λ. We call the set defined by (2.16)
the holy construction of Λ with hole (2.15).
Moreover the glue code provides several automorphisms of the Leech
lattice, where the action of t ∈ G(N) is given by sending hw to hw+t.

Remark 2.5.3. For all sets of extended roots of a Dynkin lattice
there exists a linear combination

∑
i aifi = 0 such that

∑
i ai = h, the

coxeter number. This implies that (2.15) and (2.16) can be rewritten
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as congruences modulo h. Notice moreover that this implies also that
the lattice N ∩ Λ has index h both inside N and inside Λ.

This construction is really useful to explicit the action of some ele-
ments of Co0 on Λ, namely in the following examples:

Example 2.5.4. Let us apply this construction to the lattice E8(−1)3

and let ϕ be an order 3 permutation of the 3 copies of E8(−1). With
the holy construction with hole N3 it induces an automorphism ϕ of
Λ of order 3 which fixes the only glue vector g0. A direct computation
shows that Tϕ(N3) ∼= E8(−3) and Sϕ(N3) ∼= Sϕ(Λ) = {a − ϕ(a), a ∈
E8(−1)3}. Let us call this lattice S3.exo , it is Sg(Λ) for any g ∈ Co0 in
the conjugacy class 3D (in the notation of [4]).

Example 2.5.5. Let us apply this construction to the latticeA2(−1)12,
we then have G(N) = (Z/(3))

6 acting on Λ. The normalizer of this
group (inside Co1) is one of the maximal subgroups of Co1, therefore
its structure is analyzed in [4]. The elements of G(N) fall under three
conjugacy classes labeled 3A, 3B and 3C. Each conjugacy class has re-
spectively 24, 262 and 440 representatives. Therefore we can compute
the rank of the invariant lattice inside Λ for each of these conjugacy
classes. This rank is 6 for elements of class 3C, 12 for elements of class
3B and 0 for elements of class 3A.

Example 2.5.6. Let us apply this construction to the latticeA4(−1)6,
we then have G(N) = (Z/(5))

3 acting on Λ. The normalizer of this
group (inside Co1) is one of the maximal subgroups of Co1, therefore
its structure is analyzed in [4]. The elements of G(N) fall under three
conjugacy classes labeled 5A, 5B and 5C. Each conjugacy class has re-
spectively 40, 60 and 24 representatives inside G(N). Therefore we can
compute the rank of the invariant lattice inside Λ for each of these con-
jugacy classes. This rank is 4 for elements of class 5C, 8 for elements
of class 5B and 0 for elements of class 5A.

Example 2.5.7. Let us apply this construction to the latticeA12(−1)2,
we then have G(N) = Z/(13). Let φ be an automorphism of Λ of order
13 generated by a non trivial element g of G(N) on this holy construc-
tion. φ cyclically permutes the extended roots of both copies of A12

and therefore has no fixed points in Λ.

Example 2.5.8. Let us look back at Example 2.5.5 and let us
analyze an automorphism of order 11: it can be defined by leaving the
first copy of A2(−1) fixed and by cyclically permuting the remaining
11, and the action is extended accordingly to the glue vectors. This
automorphism is defined on both N22 and Λ. Let ϕ be this isometry
on A12

2 (−1)⊗Q.
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A direct computation shows TϕN22 is spanned by

f 1
1 , f

2
1 ,

12∑
2

f i1,

12∑
2

f i2,

11∑
1

gj,

where gj are generators for the glue code as in Table 2.5. Keeping
the same notation as before one sees that SϕN22 has rank 20 and is
spanned by

(2.17) (fk1 − ϕfk1 ), (fk2 − ϕfk2 ), (gj − ϕgj).

Where k runs from 2 to 12. This vectors satisfy (2.16), therefore this
lattice is contained in Λ and, since they are both primitive, Sϕ(N22) =
Sϕ(Λ).

Example 2.5.9. A similar computation can be done for A1(−1)24.
We use a standard notation where the copies of A1(−1) are indexed by
the set

{∞, 0, 1, . . . , 22} = P1(Z/(23)).

Here the isometry ϕ of order 11 is defined by the following permutation
on the coordinates:

(2.18) (0)(15 7 14 5 10 20 17 11 22 21 19)(∞)(3 6 12 1 2 4 8 16 9 18 13).

As before this isometry preserves both N23 and Λ and the lattice
Sϕ(N23) is generated by the following vectors:

(2.19) (fk1 − ϕfk1 ), (f l1 − ϕf l1), (gj − ϕgj).

Here k runs along the indexes contained in the first 11-cycle of
(2.18), l runs along the second one and j along the generators of the
glue code contained in Table 2.5.
Once again all of these generators lie also in Λ hence Sϕ(N23) =
Sϕ(Λ) := S11.K3[2] . A direct computation shows that the lattice
Sϕ(N23) is given by the following quadratic form:
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(2.20)

−4 1 −2 −2 −1 1 −1 1 −1 −1 2 1 −1 2 −1 −2 −2 2 1 −1

1 −4 −1 −1 −1 −1 −1 1 −1 2 −1 −2 2 0 −1 0 0 −1 −2 1
−2 −1 −4 −2 −1 −1 0 1 0 −1 1 0 −1 2 −2 −1 −1 0 0 1

−2 −1 −2 −4 0 0 −2 0 −1 0 2 1 0 1 0 0 −1 1 0 −1
−1 −1 −1 0 −4 1 −1 2 −2 −1 1 0 −1 0 −2 −2 0 1 1 −1

1 −1 −1 0 1 −4 0 −1 0 1 −2 −1 0 −1 −1 0 −1 0 −1 1

−1 −1 0 −2 −1 0 −4 1 −2 1 1 1 0 −1 0 −1 0 2 0 −2
1 1 1 0 2 −1 1 −4 0 0 −1 1 1 0 2 1 0 −1 1 0

−1 −1 0 −1 −2 0 −2 0 −4 0 0 1 1 0 −1 −2 0 2 0 −2

−1 2 −1 0 −1 1 1 0 0 −4 1 1 −2 1 0 0 1 1 1 0
2 −1 1 2 1 −2 1 −1 0 1 −4 −2 2 −1 0 0 0 −1 −2 1

1 −2 0 1 0 −1 1 1 1 1 −2 −4 1 0 −1 0 −1 −1 −2 2

−1 2 −1 0 −1 0 0 1 1 −2 2 1 −4 0 −1 0 0 1 2 0
2 0 2 1 0 −1 −1 0 0 1 −1 0 0 −4 1 1 1 0 0 −1

−1 −1 −2 0 −2 −1 0 2 −1 0 0 −1 −1 1 −4 −2 −1 1 0 0

−2 0 −1 0 −2 0 −1 1 −2 0 0 0 0 1 −2 −4 −2 2 0 −1
−2 0 −1 −1 0 −1 0 0 0 1 0 −1 0 1 −1 −2 −4 1 0 0

2 −1 0 1 1 0 2 −1 2 1 −1 −1 1 0 1 2 1 −4 0 2
1 −2 0 0 1 −1 0 1 0 1 −2 −2 2 0 0 0 0 0 −4 1

−1 1 1 −1 −1 1 −2 0 −2 0 1 2 0 −1 0 −1 0 2 1 −4



.

2.6. Prime order Leech automorphisms of Niemeier lattices

In this section we give a brief analysis of prime order Leech automor-
phisms on Niemeier lattices, which will be used for Theorem 7.2.7.
Our analysis focuses on automorphisms of order 3,5 and 7, while order
11 automorphisms have already been analyzed in Example 2.5.9 and
Example 2.5.8.
The fact that the co-invariant lattices in Example 2.5.9 and Exam-
ple 2.5.8 are isomorphic is part of a more general behaviour:

Lemma 2.6.1. Let N 6= Λ be a Niemeier lattice and let
s ∈ Aut(N)/W (N) be a Leech isometry. Let moreover h be the Coxeter
number of N and let n be the order of s. Suppose that h and n are
relatively prime. Then Ss(N) ∼= Ss(Λ), where s is the automorphism
of Λ obtained by extending the action of s to the holy construction of
Λ with hole N . Moreover this lattice consists of elements of the form
v − ϕ(v) for v ∈ N .

Proof. Let fi, i ∈ I be a set of root vectors for the holy construc-
tion corresponding to N and let fi, i ∈ I ′ ⊂ I be a basis for the Dynkin
lattice R(N) contained in N . s acts on I ′ by permuting its elements,
and s is univoquely determined by such permutation. Moreover if we
let gj, j ∈ J be the corresponding glue vectors we have that s induces
a permutation on J , univoquely determined by the permutation on I ′.
This implies that there exists an isometry s of Λ defined by these per-
mutations, hence by s itself. Let us denote as s both the isometry on
N and that on Λ.
Let us first prove that Ss(R(N)) is generated by elements of the form
fi−s(fi). By Remark 2.3.2 all elements of this form are contained in
Ss(R(N)), let us suppose on the contrary that there exists an element
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v in Ss(R(N)) which is not of this form. This is equivalent to saying
that we can write v =

∑
k∈I′/s

∑
i∈k aifi, where I ′/s is the set of orbits

of I ′ under the permutation action of s and there exists an orbit k′

such that
∑

i∈k′ ai 6= 0.Therefore we have 0 6=
∑

l<n s
l(v) ∈ Ts(R(N))

since the coefficient of any fi, i ∈ k′ is non zero. But this is absurd
since Ss(R(N)) is nondegenerate and orthogonal to Ts(R(N)). Now by
Remark 2.3.2 we have that nv is a sum of elements w − s(w) for all
v ∈ Ss(N) or v ∈ Ss(Λ). Moreover we have that hv lies in N ∩Λ for all
v in N or in Λ as in Remark 2.5.3 and elements of the form w− s(w)
are all in N ∩ Λ. This implies that all elements of Ss(N) and of Ss(Λ)
lie in the intersection N ∩ Λ and they are equal. �

In some cases this lemma can be improved, as in the following:

Example 2.6.2. Let us consider the lattice D4(−1)6 ⊂ N19. In this
case, for v ∈ N19, we have 2v ∈ D4(−1)6. Therefore we can modify
the proof of Lemma 2.6.1 so that it works for all automorphisms of
prime order p 6= 2.

Remark 2.6.3. If we analyze what happens for Niemeier lattices
Ni containing a summand of type Dn or En we obtain a refining of
Lemma 2.6.1 in the same spirit of Example 2.6.2: although the
coxeter numbers of these components are usually quite large, there is
a lower integer n such that nv ∈ R(Ni), its root lattice, for all v ∈ Ni.
Let us see the values of n:

i Dynkin diagram of R(Ni) n
1 D24 2
2 D16E8 2
3 E3

8 1
5 D2

12 2
6 A17E7 6
7 D10E

2
7 2

8 A15D9 8
9 D3

8 2
12 E4

6 3
14 D4

6 2
19 D6

4 2

In the general case we cannot give explicit generators of co-invariant
lattices, anyhow the following holds:

Lemma 2.6.4. Let N 6= Λ be a Niemeier lattice whose Dynkin di-
agram contains only elements of type An and let G ⊂ Leech(N) be a
group of Leech isometries. Then SG(N) ∼= SG(Λ), where the action of
G on Λ is induced by the holy construction with hole N .
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Proof. It is enough to prove that Sϕ(N) ∼= Sϕ(Λ) for all ϕ ∈ G
of prime order p. Let fi, i ∈ I be a basis of the (negative) root lattice
R(N). As in Lemma 2.6.1, ϕ acts as a permutation on I, therefore we
have Sϕ(R(N)) =< fi−ϕfi >i∈I . Analogously the (generalized) lattice
R(N)∨ has an induced action of ϕ and, since this action preserves its
standard dual basis (ei)i∈I , Sϕ(R(N)∨) is generated by elements of the
form ei − ϕ(ei). Let us remind what is this dual basis: for a Dynkin
lattice An ⊂ Rn+1 we have ei = (i, . . . , i,−(h−i), . . . ,−(h−i))/(h) with
h = n+ 1 and h− i coordinates with value i/(h), i ≤ n. Let us remark
moreover that the glue vectors gj, j ∈ J for the holy construction lie
in R(N)∨.
Let now S ′ = {v − ϕ(v)}v∈N and let w ∈ Sϕ(N) − S ′. Since we
have the obvious inclusions R(N) ⊂ N ⊂ R(N)∨ we can write w =∑

i∈I ai(ei − ϕ(ei)). Moreover we can suppose |ai| < h otherwise we
can consider w− [ai/h]h(ei−ϕ(ei)). Analogously we can suppose that
the |ai| are minimal, i. e. w in R(N)⊗Q can be written in the basis fi
with coordinates with absolute value less than 1. However this implies
that in the holy construction with hole N it can be written only in
terms of the gj, j ∈ J , therefore w ∈ Λ.
Analogously let us consider < hfi >i∈I⊂ Λ ⊂< ei

h
>i∈I by (2.16) and

let S ′ = {v − ϕ(v)}v∈Λ. As above ϕ preserves a basis of < hfi >
and of its dual < ei

h
>, therefore the co-invariant lattice is generated

by elements of the form v − ϕ(v). Let w ∈ Sϕ(Λ) − S ′. We can write
w =

∑
i∈I ai(ei−ϕ(ei)/h) and we can suppose that |ai| < h2, otherwise

we can consider w− [ai/h
2]h(ei − ϕ(ei)). As above this implies that w

can be written only in terms of the gj, therefore w ∈ N . �

Example 2.6.5. Let us apply the holy construction to the lattice
A8(−1)3 and let ϕ be an order 3 permutation of the 3 copies of A8(−1).
With the holy construction with hole N15 it induces an automorphism
ϕ of Λ of order 3 which fixes a rank 8 lattice, therefore by Example
2.5.5 this element is in conjugacy class 3D and Sϕ(Λ) ∼= S3.exo as in
Example 2.5.4. Now by Lemma 2.6.4 we have Sϕ(N15) ∼= S3.exo.

Moreover many of the computations will be simplified by the use
of the following lemma, making good use of what is known for K3
surfaces (see Chapter 3, in particular Theorem 3.2.3):

Lemma 2.6.6. Let (M,G) be a Leech couple such that there exists
a primitive embedding M → U3 ⊕ E8(−1)2 Then G ∼= G′ for some
finite algebraic group G′ on a K3 surface Y ′. Moreover if G is abelian
then M is univoquely determined.

We remind that a sufficient condition for the existence of a primitive
embedding M → U3 ⊕ E8(−1)2 is that rank(M)+l(AM) ≤ 21. Let us
introduce some notation: suppose we have a negative definite Dynkin
lattice A ⊂ N ⊂ A ⊗ Q for some Niemeier lattice and suppose A =
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CrDm, where C and D are different semisimple component. Then the
isometry τ(a ... b) is the permutation (a . . . b) acting on the r copies of C,
while τ ′(a ... b) does the same thing on the m copies of D. If C=An(−1) we
denote σi the isometry obtained by a central simmetry on the Dynkin
diagram of the i-th copy of An. If C=D4(−1) we denote γi the isometry
which rotates by 120◦ the Dynkin diagram of the i-th copy of D4 and
we denote λkij the isometry exchanging the i-th and j-th root on the
Dynkin diagram of the k-th copy of D4.

2.6.1. Leech automorphisms of order 3. Let N be a Niemeier
lattice and let ϕ ⊂ Leech(N) be a Leech automorphism of order 3.

Proposition 2.6.7. Let N , ϕ be as above, then one of the following
holds:

• Sϕ(N) = K12(−2),
• Sϕ(N) = W (−1),
• Sϕ(N) = S3.exo as in Example 2.5.4,
• rank(Sϕ(N)) = 24.

Proof. By Lemma 2.6.1 and Lemma 2.6.4 we need only to
analyze what happens in the case of N = Λ and N = Ni for i =
3, 12, 18, 19. Moreover by Remark 2.6.3 we can avoid considering the
case of N3 and N19. Therefore the proof is a case by case analysis
on this 3 Niemeier lattices. For ease of reference in this proof we will
denote all Niemeier lattices with the Dynkin diagram they contain,
apart for Λ.

E4
6 There is only one conjugacy class of automorphism of order 3,

namely that of τ(1 2 3). Hence rank(Sϕ(N12)) = 12. Moreover
Tϕ(N12) contains a copy of E6(−1), hence rank(Sϕ(N12)) +
l(ASϕ) ≤ 19 by Remark 2.1.9. This implies Sϕ(N12) ∼=
K12(−2) by Lemma 2.6.6.

A4
5D4 There is only one conjugacy class of automorphism of order 3,

namely that of τ(1 2 3)γ1. Hence rank(Sϕ(N18)) = 12. Moreover
Tϕ(N18) contains a copy of A5(−1), hence rank(Sϕ(N18)) +
l(ASϕ) ≤ 20 by Remark 2.1.9. This implies Sϕ(N18) ∼=
K12(−2) by Lemma 2.6.6.

Λ There are 4 conjugacy classes of automorphisms of order 3 in
Co0, denoted 3A, 3B, 3C and 3D in [4].
In Example 2.5.5 we already computed the rank of Tϕ for ϕ
in conjugacy classes 3A, 3B and 3C. Therefore we know that
the element of class 3A has no fixed points, moreover it can be
used to define the complex Leech lattice (see [17, chapter 10,
section 3.6] and [4, page 131 and 181] or use Remark 2.2.3 to
endow Λ with a D3-lattice structure of rank 12). The element
of class 3D has already been computed in Example 2.5.4
and it is isometric to S3.exo. Lemma 2.6.1 implies S3B(Λ) ∼=
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Sψ1(N23), where ψ1 is an isometry of N23 of order 3 given by 6
cycles of length 3 inside M24. Therefore Rank(S3B(Λ)) = 12,
moreover 3B fixes on N23 a copy of A1(−1)6⊕A1(−3)6, hence
we have rank(S3B(Λ)) + l(AS3B

) ≤ 18 by Remark 2.1.9.
This implies S3B(Λ) ∼= K12(−2) by Lemma 2.6.6. S3C(Λ) is
given by the remaining case of Example 2.5.5 and from that
example we see that Rank(S3C(Λ)) = 18. We also obtain that
S3C
∼= W (−1) as we argued in Example 2.3.11.

�

2.6.2. Leech automorphisms of order 5. Let N be a Niemeier
lattice and let ϕ ⊂ Leech(N) be a Leech automorphism of order 5.

Proposition 2.6.8. Let N , ϕ be as above, then one of the following
holds:

• Sϕ(N) = S5.K3 as in Example 2.2.7,
• Sϕ(N) ∼= S5.exo as in Example 2.3.9,
• rank(Sϕ(N)) = 24.

Proof. By Lemma 2.6.1 and Lemma 2.6.4 we need only to
analyze what happens in the case of N = Λ. There are 3 conjugacy
classes of order 5 elements in Co1, and they can be obtained using
the ”holy” construction on A6

4 as in Example 2.5.6. Keeping the
same notation of that example we have that an element of class 5A
fixes no elements of Λ. An element of class 5C fixes a lattice of rank
4, therefore we have S5C(Λ ∼= S5.exo by Example 2.3.9. Finally if
ϕ is in class 5B there is a lattice F of rank 4 and l(AF ) = 1 inside
TϕΛ, therefore rank(Sϕ(Λ)) + l(ASϕ) ≤ 21. This implies our claim by
Lemma 2.6.6. �

2.6.3. Leech automorphisms of order 7. Let N be a Niemeier
lattice and let ϕ ⊂ Leech(N) be a Leech automorphism of order 7.

Proposition 2.6.9. Let N , ϕ be as above, then one of the following
holds:

• Sϕ(N) = S7.K3 as in Example 2.2.8,
• rank(Sϕ(N)) = 24.

Proof. By Lemma 2.6.1 we need only to analyze what happens
in the case of N = Λ. There are 2 conjugacy classes 7A, 7B of el-
ements of order 7 and they can be both obtained by applying the
”holy” construction to the lattice A4

6 and considering automorphisms
given by the glue code G(N17): One class, such as that of the glue
code [1 2 1 6], has rank(Sϕ(Λ)) = 24. If we take the other class, like
that of [2 1 3 0], we obtain rank(Sϕ(Λ)) = 18. Moreover in this case
Tϕ(Λ) contains the lattice (−6)6, hence by Remark 2.1.9, we obtain
rank(Sϕ(Λ))+l(ASϕ) ≤ 21 therefore our claim holds by Lemma 2.6.6.

�





CHAPTER 3

Known results on K3 surfaces

Since Hyperkähler manifolds in dimension 2 are nothing else but K3
surfaces it is worthwhile looking at what happens for automorphisms
of K3 surfaces. This is an active field of research, however there are
fundamental results encompassing most of the theory.
This chapter is meant as a short survey on the topic and emphasizes
the similarities between K3 surfaces and manifolds of K3[2]-type .
Notice that the stronger results in this case are mainly due to the
stronger statement of the global Torelli, which we recall in Theorem
3.0.1, and to the nature of the Kähler cone of a K3 surface, which we
recall in Remark 3.0.2. For the general theory of K3 surfaces one can
see [5].
In this chapter we let L = U3 ⊕ E8(−1)2 ∼= H2(K3,Z) be the K3
unimodular lattice.

Theorem 3.0.1. Let S and S ′ be two K3 surfaces and let ψ :
H2(S,Z) → H2(S ′,Z) be an isometry respecting the Hodge structure
and sending a Kähler class ω in S to a Kähler class ω′ in S ′.
Then there exists a unique isomorphism f : S → S ′ such that f ∗ = ψ.

Remark 3.0.2. Let S be a K3 surface, then the Kähler cone KS is
cut out by -2 divisors, i. e.

(3.1) KS = {α ∈ CS | (α, e) > 0 ∀ e ∈ Pic(S), e effective, e2 = −2}.

3.1. On Automorphisms and Cohomology

In this section we analyze briefly two lattices linked to a group
of automorphism on a K3 surface, namely the invariant and the co-
invariant lattices.

Definition 3.1.1. Let X be a K3 surface and let G ⊂ Aut(X). Let
SG(X) = SG(H2(X,Z)) be the Co-invariant lattice and let TG(X) =
TG(H2(X,Z)) be the invariant lattice.

These lattices share several properties with their higher dimensional
analogues (see Lemma 7.1.4 and Lemma 7.1.8 for a comparison).
First of all let us remind that for every finite group G of automorphisms
on a K3 surface X there is an exact sequence

(3.2) 1 → G0 → G → Z/(n) → 1,

41
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for some n. Here G0 ⊂ Auts(X) is a group of symplectic automor-
phisms, the first map being the natural inclusion and the last map
sends an automorphism to its eigenvalue on H2,0(X).

Lemma 3.1.2 (Nikulin, [58]). Let X be a K3 surface and let G ⊂
Aut(X) be a finite group. Let G0 and n be as above. Then the following
hold:

(1) If n > 1, X is algebraic.
(2) g ∈ G acts trivially on T (X) if and only if g ∈ G0.
(3) The representation of G/G0 on T (X) ⊗ Q is isomorphic to

a direct sum of irreducible representations each of which has
maximal rank φ(n).

Proof. • Suppose that n > 1. X/G is a normal complex
space and let Y be its minimal resolution of singularities. We
have that H2(Y,C) = H2(X/G,C)⊕E, where E is generated
by the exceptional divisors. However H2(X/G,C) is generated
by divisors, hence h2,0(Y ) = 0, i. e. Y is algebraic.
• Let g ∈ G0, let σX be a holomorphic 2-form on X and let σ

be the map from T (X) to C sending α to (σX , α). g preserves
the intersection form and the Hodge structure, therefore for
x ∈ T (X) we have

(3.3) σ(x) = (gσX , gx) = gσ(gx) = σ(gx).

Therefore x− gx lies in Ker(σ) = T (X) ∩ S(X) and g is the
identity on T (X)/Ker(σ). This kernel is either 0 or 1 dimen-
sional, in the first case we are done, otherwise let
< c >= Ker(σ). By Riemann-Roch either c or −c is rep-
resented by an effective divisor (c has square zero), therefore
gc = c. This implies that all eigenvalues of g on T (X) are 1
but, since it has finite order, this means that it is actually the
identity. Conversely let g ∈ G act as the identity on T (X),
therefore it acts as the identity also on T (X)⊗ C which con-
tains σX .
• To prove this we must show that every nontrivial element of
G/G0 has no eigenvalue equal to 1 on T (X), so let g ∈ G−G0,
i. e. gσX = λσX , λ 6= 1. Since we now know that X is algebraic
the map σ : T (X) → C is an embedding and, for all nonzero
x ∈ T (X), σ(x) 6= 0. This implies

(3.4) (λ−1σX , x) = (g−1σX , x) = (σX , gx),

i. e. gx 6= x.
�

As a consequence of this lemma we have some limitation to the
possible order of nonsymplectic automorphisms:
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Corollary 3.1.3. Let X and n be as before, then φ(n) ≤ 21 and
n ≤ 66.

Proof. By Lemma 3.1.2 the representation of Z(n) over T (X)⊗Q
is irreducible of maximal rank, i. e. of rank φ(n). Since X is algebraic
rk(T (X)) ≤ 21, hence our claim. �

It is interesting to remark that this bound is attained by an example
of I. Dolgachev, moreover most of the intermediate cases also exist, see
the recent work of Keum [45].
Now let us specialize to the symplectic case, our proof of the following
lemma differs a little from the original one of Nikulin, but it is almost
identical to the higher dimensional case of Lemma 7.2.1:

Lemma 3.1.4. Let X be a K3 surface and let G = G0 a finite
symplectic group of automorphisms of X. Then the following hold:

• SG(X) is nondegenerate and negative definite.
• SG(X) does not contain elements with square -2.
• SG(X) ⊂ S(X) and T (X) ⊂ TG(X).
• G acts trivially on the discriminant group ASG(X).

Proof. The third assertion is an immediate consequence of Lemma
3.1.2 because G acts as the identity on σX and therefore on all of
T (X).
To prove that SG(X) and TG(X) are nondegenerate let H2(X,C) =
⊕ρUρ be the decomposition in orthogonal representations of G, where
Uρ contains all irreducible representations of G of character ρ inside
H2(X,C). Obviously TG(X) = UId|Z and SG(X) = H2(X,Z)∩⊕ρ 6=IdUρ,
which implies they are orthogonal and of trivial intersection. Hence
they are both nondegenerate.
Since G is finite there exists a G-invariant Kähler class ωG given by∑

g∈G gω, where ω is any Kähler class on X. Therefore we have:

σXC⊕ σXC⊕ ωGC ⊂ TG(X)⊗ C.

Hence the lattice SG(X) is negative definite.
To prove the last assertion we use the natural G-equivariant isomor-
phism between ASG(X) and ATG(X) given by Remark 2.1.3. On the
latter G acts as the identity, therefore it does the same on the former.
Let us prove that there are no −2 vectors inside SG(X). Assume on
the contrary that we have an element c ∈ SG(X) such that (c, c) = −2.
Then by Riemann-Roch either c or −c is represented by an effective
divisor D on X. Let D′ =

∑
g∈G gD which is also an effective divisor

on X, but [D′] ∈ SG(X) ∩ TG(X) = {0}. This implies D′ is linearly
equivalent to 0, which is impossible. �
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3.2. Main results on symplectic automorphisms

In this section we state the most important results on finite sym-
plectic groups of automorphisms of K3 surfaces, let us start with the
results of Nikulin:

Theorem 3.2.1. [58, Theorem 4.3] Let G ⊂ O(L) be a finite group
and suppose the following are satisfied:

• SG(L) is negative definite.
• SG(L) does not contain any element with square −2.
• rank(SG(L)) ≤ 18.

Then there exists a K3 surface S and G′ = Auts(S) such that G′ ∼= G
and SG(L) ∼= SG′(S).

Let GalgK3 be the set whose elements are isomorphisms classes of finite
symplectic subgroups of Aut(S) for some K3 surface S. Let moreover

Galg,abK3 be the subset of GalgK3 obtained by considering only abelian groups.

Theorem 3.2.2. [58, Theorem 4.5] The following assertions hold:

• GalgK3 is closed under the operations of taking a subgroup of one
of its elements or taking a quotient.
• Let G ∈ GalgK3. Then every abelian subgroup of G belongs to

Galg,abK3 . If [G,G] is its commutator then G/[G,G] ∈ Galg,abK3 .

Moreover

Galg,abK3 ={(Z/(2))
k, k ≤ 4; Z/(4), Z/(2) × Z/(4); (Z/(4))

2; Z/(8); Z/(3);

Z/(5); Z/(7); Z/(6); Z/(2) × Z/(6)}.
The following is an important statement on co-invariant lattices

which happens to be false for non abelian groups (see [32]):

Theorem 3.2.3. [58, Theorem 4.7] Let G ∈ Galg,abK3 and let G ⊂
Auts(S) and G ⊂ Auts(S

′) for two K3 surfaces S and S ′. Then the
action of G on H2(S,Z) is isomorphic to the action of G on H2(S ′,Z).

which is almost equivalent to the following:

Theorem 3.2.4. [58, Theorem 4.8] Let i : G → O(L) and j :
G → O(L) be two embeddings of a finite abelian group G into O(L).
Suppose moreover that G satisfies the conditions of Theorem 3.2.1
for both embeddings. Then G ∈ Galg,abK3 and there exists φ ∈ O(L) such
that i(g) = φ ◦ j(g) ◦ φ−1 for all g ∈ G.

Concerning non abelian groups of symplectic automorphisms and
the Mathieu group M23 there is the beautiful result of Mukai [53]:

Theorem 3.2.5. Let S be a K3 surface and let G ⊂ Aut(S) be
a finite group of symplectic automorphisms. Then G ⊂ M23 and the
natural G-action as a subset of M23 on the set with 24 elements has at
least 5 orbits.
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Mukai also classified all elements of GalgK3 without computing the
co-invariant lattices, however Kondo’s proof [47] of this result allows

an explicit computation of SG(S) for all G ∈ GalgK3 and G ⊂ Aut(S),
namely in the following way:

Theorem 3.2.6. Let G ∈ GalgK3 and let S be a K3 surface on which
G acts symplectically. Then SG(X) ∼= SG′(N) where N is one of the
24 negative definite Niemeier lattices and G′ ∼= G is a subgroup of
Leech(N).

We remark that Kondo’s proof allows to exclude only the case N =
Λ and allows also to impose G ⊂M23.

3.3. Fixed locus of an automorphism and the abelian case

In this section we compute the fixed locus of a finite abelian sym-
plectic automorphism group on a K3 surface S using a simple topo-
logical argument. Let x ∈ S be a fixed point of G, i. e. the stabilizer
StabG(x) = Gx is non trivial. Let us choose local coordinates around
x such that the action of Gx is linear. By hypothesis we have that Gx

preserves the symplectic form σS and moreover σS(x) 6= 0, therefore we
can set Gx ⊂ Sl(2,C). It is a well known fact that finite subgroups of
Sl(2,C) are cyclic, therefore in suitable local coordinates a generator
of Gx can be written as

(3.5)

(
ξ 0
0 ξ

)
,

where ξ is a primitive root of unity of order mx = |StabG(x)|. Since
G is abelian the orbit of x consists of |G/StabG(x)| points and each
of them has stabilizer StabG(x). Locally in a neighbourhood of x the
quotient X/G has a singularity of type Amx−1 whose resolution yields
mx−1 rational curves whose intersection matrix is given by the Dynkin
lattice Amx−1(−1). We wish to remark that the minimal resolution of
singularities of X/G is still simply connected and has trivial canonical
class, hence it is again a K3 surface. Let now Gi, i = 1 . . . N be all
nontrivial cyclic subgroups of G and let mi = |Gi|, m = |G|. Let ki
be the number of points with stabilizer Gi and let k =

∑
ki. We have

that m/mi divides ki. Let xi,j, j = 1 . . . ki be the points with stabilizer
Gi. Let X ′ = X − {xi,j}i,j, we know χ(X ′) = 24 − k. Let Y be the
minimal resolution of X/G and let Y ′ be Y without the exceptional
divisor. Since by removing the resolution of a Al singularity the Euler
characteristic decreases by l + 1 we have

(3.6) χ(Y ′) = 24−
N∑
i=1

kim
2
i

m
.



46 3. KNOWN RESULTS ON K3 SURFACES

Notice moreover that X ′/G ∼= Y ′ and the restriction of the quotient
map X ′ → X ′/G is a topological |G| : 1 cover. Therefore

(3.7)
24− k
m

= 24−
N∑
i=1

kim
2
i

m
.

To obtain the result in Theorem 3.2.2 it is enough to work out a few
cases, let us analyze some:

• Let G = Z/(p), where p is a prime number. In this case k is
just the number of fixed points, each of them has stabilizer G.
Applying (3.7) we obtain k = 24

p+1
, therefore p ≤ 11. Moreover

the case p = 11 can be eliminated since we would have

A10(−1)⊕ A10(−1) ⊂ NS(Y ),

which is clearly impossible since NS(Y ) has signature (3, 19).
• Let G = Z/(p2), where p is a prime number. Let tp and tp2 the

number of points with stabilizer Z/(p) and Z/(p2) respectively.
Using (3.7) and substituting by the previous case tp = 24

p+1
−tp2

we have

24(p2 − 1) = (
24

p+ 1
− tp2)(p− 1) + tp2(p4 − 1).

i. e. 24 = 24
p+1

+ tp2p2. This implies p ≤ 3, but if p = 3 we have

t3 = 4 and t9 = 2 which is impossible since 3 must divide t3,
therefore p = 2.
• Let G = Z/(pq), where p and q are both prime numbers. Let
tp, tq and tpq be as above. We have tp = 24

p+1
− tpq and tq =

24
q+1
− tpq, therefore (3.7) yields

24(pq − 1) = (
24

p+ 1
− tpq)(p2 − 1)

+ (
24

q + 1
− tpq)(q2 − 1) + tpq(p

2q2 − 1).

Therefore either p = 3, q = 5 or p = 2, q = 3. However the
first case is impossible since we would have

A2(−1)⊕ A4(−1)⊕ A14(−1) ⊂ NS(Y ).

Proceeding with all possible cases one sees also that every abelian group
G can act symplectically in a unique way for what concerns the topol-
ogy of X/G. In the nonsymplectic case the situation is quite the oppo-
site, since already non symplectic involutions form several topologically
distinct families, see [60] and [61].
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3.4. The nonabelian case

The aim of this section is to prove Theorem 3.2.6, our proof is
slightly different from that given by Kondo [47] but it is almost iden-
tical to the proof of Theorem 7.2.4. Let X be a K3 surface and
let G ⊂ Aut(X) be a finite symplectic group of automorphisms. Let
moreover H2(X,Z)→ L′ = U4⊕E8(−1)2 be a primitive embedding of
the K3 lattice such that (H2(X,Z))⊥ is just the first hyperbolic sum-
mand. Let RG(X) = SG(X)⊥L′ , it has signature (4, 20 − rk(SG(X))).
By Lemma 2.1.8 there exists a negative definite lattice T ′ of rank
24 − rk(SG(X)) with the same discriminant group of RG(X) and the
same discriminant form. Since RG(X) and SG(X) are unimodular com-
plements they have the same discriminant group and opposite discrim-
inant forms by Remark 2.1.3. Hence T ′ ⊕ SG(X) ⊂ N , where N is
unimodular, even, negative definite and of rank 24. Moreover G acts
trivially on ASG(X), hence the equivariant morphism of Lemma 2.1.2
allows us to extend G to a group of isometries of N such that it acts as
the identity on T ′. As we saw in Section 2.5 N is a negative definite
Niemeier lattice and, since SG(X) contains no element of square −2,
G ⊂ Leech(N). Up to now we have simply proved that G ⊂ Co0, we
need to eliminate the case N = Λ. Here comes Kondo’s clever trick:
it is sufficient to prove that T ′ can be chosen in such a way that it
contains a −2 vector. Obviously there are −2 vectors inside RG(X)
since it contains a copy of U , therefore we let R′G(X) be the orthogonal
complement inside RG(X) of one of these vectors and we let T” be a
negative definite lattice with its discriminant form, group and rank by
Lemma 2.1.8. As before SG(X) ⊕ (−2) ⊕ T” ⊂ N , but this time
N contains a −2 vector, hence we can choose N 6= Λ and moreover
G ⊂ M24. The last step for Theorem 3.2.5 is now easy: G ⊂ M23

since it fixes at least a −2 vector (remember that the action of M24 on
A24

1 is by permutations) and it has at least 5 orbits since the rank of
T ′ is equal to the number of orbits and rank(SG(X)) ≤ 19.

3.5. A few examples

In this section we give a few interesting examples of K3 surfaces
with symplectic automorphisms. The interested reader can consult [53]
for a full list of K3 surfaces endowed with a maximal symplectic group.

Example 3.5.1. Let Xt be the zero locus of the polynomial
∑
x4
i +

tx0x1x2x3 in P3. The group of permutation S4 on the coordinates of
P3 induces automorphisms of Xt, however not all of them preserve the
symplectic form, but the alternating subgroup A4 does.

Example 3.5.2. Let X be the complete intersection in P5 given by
0 =

∑6
i=1 xi =

∑6
i=1 x

2
i =

∑6
i=1 x

3
i . Again the group of permutations S6

of the coordinates induces automorphisms of X, but only its alternating
subgroup A6 is symplectic.
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Example 3.5.3. Let X be the zero locus of Klein’s quartic poly-
nomial x3

0x1 + x3
1x2 + x3

2x0 + x4
3. This is a cyclic 4 : 1 cover of P2

ramified along the curve C = V (x3
0x1 + x3

1x2 + x3
2x0), it is a classical

fact that Aut(C) = PSL2(Z/(7)) and a direct computation shows that
these induce symplectic automorphisms on X.

Example 3.5.4 (Sarti, Van Geemen, [78]). Let X be a K3 surface
with an elliptic fibration. Suppose moreover that X has a zero section
δ and a section τ of order 2. If X is general with respect to these
conditions we can suppose

(3.8) X = V (x(x2 + a(t)x+ b(t))− y2),

where t ∈ P1, a has degree 4 and b has degree 8. Moreover δ(t) is the
point at infinity and τ(t) = (0, 0). The section τ induces an automor-
phism ϕ of order 2 on X which is symplectic, moreover if we let Y be
the minimal resolution of singularities of X/ϕ we have:

(3.9) Y = V (x(x2 − 2a(t)x+ (a(t)2 − 4b(t)))− y2).

This kind of involutions were first considered by Van Geemen and Sarti
and in the literature they are often referred to as Van Geemen-Sarti
involutions.



CHAPTER 4

Examples of Symplectic automorphisms

This chapter is devoted to providing examples of symplectic auto-
morphisms on Hyperkähler manifolds. There is a natural way to extend
an automorphism of a K3 surface S to an automorphism of its Douady
space S[n] and the same holds for automorphism of abelian surfaces in-
ducing automorphisms on generalized Kummer manifolds. We will call
an automorphism standard if it can be deformed to an automorphism
induced in this way and we will call an automorphism exotic other-
wise. A precise definition will be given in Definition 5.0.5. We wish
to remark that if the fixed locus of a finite order automorphism ψ is
topologically different from the fixed locus of a standard automorphism
of the same order then ψ is exotic. Examples 4.2.6 and 4.2.7 concern-
ing Fano schemes of lines on a cubic fourfold are already present in
the literature, we only study in greater detail their group of symplectic
automorphisms.

Remark 4.0.1. Let G ⊂ PGL6(C) and let [f ] be a G-invariant
class of a nonsingular cubic homogeneous polynomial on 6 variables.
Let X = F (V (f)) be the Fano scheme of lines of the cubic fourfold
associated to f and let Y = V SP (f, 10) be the variety of sums of
powers. Then G ⊂ Aut(X) and G ⊂ Aut(Y ). Notice however that
Y might not be a Hyperkähler manifold if f is not general. Moreover
if G is simple then G ⊂ Auts(X) and G ⊂ Auts(Y ) (whenever this is
well defined) using (7.2). We must remark moreover that the natural
polarization of X is G-invariant.

4.1. Involutions

Example 4.1.1. Let S be a K3 surface and let ϕ ∈ Auts(X) be a
symplectic involution. Let X = S[n], ϕ induces a symplectic involution
ϕ[n] on it. If we analyze the fixed locus Xϕ[n]

we see that, in case n = 2,
it consists of 28 isolated points and 1 K3 surface Y . The 28 points are
given by pairs (a, b), where a, b ∈ Sϕ. The fixed K3 surface is the
closure of the analytic subsets (x, ϕ(x)) where x ∈ S and ϕ(x) 6= x.
Therefore Y is the resolution of singularities of X/ϕ. If n ≥ 3 the fixed
locus consists in a series of points, K3 surfaces isomorphic to Y and
their Douady schemes.

49
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Example 4.1.2. This example appeared in a paper of Camere [14],
let
(4.1)
f = x2

0L1(x2, . . . , x5) + x0x1L2(x2, . . . , x5) + x2
1L3(x2, . . . , x5) +G(x2, . . . , x5)

be a cubic polynomial in six variables, where Li are linear forms and
G is a cubic polynomial. Let Y = V (f) and let ϕ be the involution in-
duced on it by the projectivity sending [x0, . . . , x5] in [−x0,−x1, . . . , x5].
By Remark 1.4.9 this involution induces a symplectic involution ψ on
the Fano scheme of lines F (Y ). Moreover this family is 12 dimensional
and the fixed locus of ψ consists of 28 isolated points and 1 K3 surface.

Example 4.1.3. Let T be an abelian surface and let X = Kn(T )
be a generalized Kummer manifold. Then the automorphism −Id of T
induces an automorphism of T [n+1] preserving X. This involution acts
trivially on H2(X), therefore it is also symplectic.

4.2. Automorphisms of order 3

Example 4.2.1. Let S be a K3 surface and let ϕ ∈ Auts(S) be an
automorphism of order 3. Let X = S[n] and let ψ = ϕ[n]. If n = 2 then
the fixed locus of ψ on X consists of 27 isolated points given by 15
points of the form (a, b) with a, b ∈ Sϕ, a 6= b and 12 points which are
given as the nonreduced points corresponding to the two eigenspaces
in TaS for all fixed points a ∈ Sϕ. If n = 3 then the fixed locus consists
in some isolated points and a K3 surface Y , given as the closure of the
surface {(x, ϕ(x), ϕ2(x)), x ∈ S, ϕ(x) 6= x}. This is precisely the K3
surface obtained from the resolution of singularities of X/ϕ. If n ≥ 4
then the fixed locus consists in a series of isolated points, K3 surfaces
isomorphic to Y and their Douady schemes.

Example 4.2.2. Let ϕ be the projectivity of P5 sending [x0, . . . , x5]

to [ωx0, ωx1, ωx2, ωx3, x4, x5], where ω = e
2πi
3 . There exists a nonsin-

gular cubic polynomial f invariant for the induced action of ϕ. Then
Y = V (f) has an automorphism of order 3 induced by ϕ. Moreover
by Remark 1.4.9 it induces a symplectic automorphism of the Fano
variety of lines F (Y ) with 27 isolated fixed points. We remark that
these examples form a family with 8 moduli. We will prove in the next
chapters that this example is standard.

Example 4.2.3. Let ϕ be the projectivity of P5 sending [x0, . . . , x5]

to [ωx0, ωx1, x2, x3, x4, x5], where ω = e
2πi
3 . There exists a nonsingular

cubic polynomial f invariant for the induced action of ϕ, it has the form
ax3

0 + bx3
1 + L(x2, x3, x4, x5)x0x1 + C(x2, x3, x4, x5), where a, b ∈ C,

L is linear and C is a cubic polynomial. Then Y = V (f) has an
automorphism of order 3 induced by ϕ. Moreover by Remark 1.4.9 it
induces a symplectic automorphism of the Fano variety of lines F (Y )
with 27 isolated fixed points which are precisely the 27 lines on the
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cubic surface V (C) ⊂ P3. We remark that these examples form a
family with 8 moduli. We will prove in the next chapters that this
example is standard.

Example 4.2.4. Let ϕ be as in Example 4.2.2 and let A ∈
LG(Λ3C6) be a ϕ-invariant Lagrangian subspace. Then ϕ induces an
automorphism of order 3 on the EPW-sextic YA, moreover this auto-
morphism acts trivially on KYA if YA 6= P5. Notice that a ϕ-invariant
lagrangian subspace is generated by eigenvectors for the action of ϕ on
Λ3C6. Since A ∈ LG0 is an open condition we must only find a ϕ-
invariant lagrangian in LG0 to obtain a family of Double-EPW Sextics
with an order 3 symplectic automorphism. To avoid tedious computa-
tion we just refer to Example 4.5.2 which satisfies these conditions.
We remark that these manifolds form a family with 8 moduli and we
will prove in the next chapters that this example is standard.

Example 4.2.5. Let ϕ be the following automorphism of V = C6:

(4.2) (x0, x1, x2, x3, x4, x5) → (x0, x1, x2, x3, ωx4, ωx5),

where ω = e
2πi
3 And let Vi be the eigenspace with eigenvalue i for ϕ.

Let σ be the symplectic form on Λ3V induced by the standard volume
form vol(e0 ∧ . . . ∧ e5) = 1 and let A be a ϕ-invariant lagrangian.Let
us remark that ϕ fixes a sextic surface inside YA. The action of ϕ
preserves the canonical class of YA, thus it induces an automorphism
on XA which is still trivial on the canonical class. Therefore if there
exists a Hyperkähler resolution of XA where the action of ϕ can be
extended we would have found an order 3 symplectic automorphism
with a fixed surface and an invariant polarization of square 2. We will
prove in Section 7.4 that this is impossible.

Example 4.2.6. Let C,D ⊂ P2 be two elliptic curves given as the
zero locus of the cubic polinomials f and g respectively and let X ⊂ P5

be the zero locus of the polinomial f(x0, x1, x2) + g(x3, x4, x5). Let
F = F (X) be the Fano scheme of lines of X. It was first shown in
[55] that F has a symplectic automorphism of order 3 which is not
standard, here we show that indeed F has a bigger group of symplectic
automorphisms. Without loss of generality we can suppose that f and
g are in Hesse’s normal form, hence the equation of X is

(4.3) x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 + λ1x0x1x2 + λ2x3x4x5.

We can moreover consider C = X ∩ {x3 = x4 = x5 = 0} and D =
X ∩ {x0 = x1 = x2 = 0}. Let ψ be Namikawa’s automorphism, which
is defined by

(4.4) {x0, x1, x2, x3, x4, x5} → {ωx0, ωx1, ωx2, x3, x4, x5},

where ω = e
2πi
3 . A direct computation shows that the fixed locus on

F of the automorphism it induces is isomorphic to an abelian surface
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(namely C ×D), hence it is exotic.
But there are several more automorphisms of F , we wish to see which
automorphisms of C and D extend to automorphisms of X given by
projectivities. Let p0 be an inflection point of C, we have

(4.5) OC(1) = OC(3p0).

Let f be a translation on C given by a point q or order n, f is induced
by a projectivity of P2 if and only if f ∗OC = OC . By (4.5) we must
have n = 3, therefore the group of points of order 3 of C and D induce
a group of automorphisms of X isomorphic to Z4

/(3). Here we list four
generators:

{x0, x1, x2, x3, x4, x5} → {x0, ωx1, ω
2x2, x3, x4, x5},(4.6)

{x0, x1, x2, x3, x4, x5} → {x2, x0, x1, x3, x4, x5},(4.7)

{x0, x1, x2, x3, x4, x5} → {x0, x1, x2, x3, ωx4, ω
2x5},(4.8)

{x0, x1, x2, x3, x4, x5} → {x0, x1, x2, x5, x3, x4}.(4.9)

Notice that there are several automorphisms of X inducing the same
automorphisms on C and D but they are all conjugate through the
action of ψ. By Remark 1.4.9 these automorphisms are all symplectic,
furthermore also the involution σ1σ2 is, where

{x0, x1, x2, x3, x4, x5}
σ1→ {x0, x2, x1, x3, x4, x5},(4.10)

{x0, x1, x2, x3, x4, x5}
σ2→ {x0, x1, x2, x3, x5, x4}.(4.11)

Therefore we have Z5
/(3).Z/(2) ⊂ Auts(F ). Notice that this examples

form a family with 2 moduli.

Example 4.2.7. Let X ⊂ P5 be Fermat’s cubic, i. e. the zero locus
of x3

0 + · · ·+ x3
5. Let F be its Fano scheme of lines. Obviously the per-

mutation group S6 acts on X and, by Remark 1.4.9, it is easy to see
that its alternating subgroup A6 induces symplectic automorphisms on
F . Furthermore Kawatani [44] found other symplectic automorphisms
ψi,j,k given by

ψi,j,k(xl) = xl if l /∈ {i, j, k},(4.12)

ψi,j,k(xl) = ωxl else.(4.13)

Here ω = e
2πi
3 . These automorphisms generate a group isomorphic to

Z4
/(3), hence we have Z4

/(3).A6 ⊂ Auts(F ).

4.3. Automorphisms of order 5

Example 4.3.1. Let S be a K3 surface and let ϕ ∈ Auts(S) be an
automorphism of order 5. Let X = S[n] and let ψ = ϕ[n]. If n ≤ 4 then
the fixed locus of ψ on X consists only of isolated points (14 if n = 2).
If n = 5 then the fixed locus consists in some isolated points and a K3
surface Y , given as the closure of the surface {(x, ϕ(x), . . . , ϕ4(x)), x ∈
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S, ϕ(x) 6= x}. This is precisely the K3 surface obtained from the
resolution of singularities of X/ϕ. If n ≥ 6 then the fixed locus consists
in a series of isolated points, K3 surfaces isomorphic to Y and their
Douady schemes.

Example 4.3.2. Let ϕ be the projectivity of P5 sending (e0, . . . , e5)

to (ωe0, ω
2e1, ωe2, ω2e3, e4, e5), where ω = e

2πi
5 . Let f be a nonsingular

cubic polynomial invariant for the induced action of ϕ. Then Y = V (f)
has an automorphism of order 5 induced by ϕ. Moreover by Remark
1.4.9 it induces a symplectic automorphism of the Fano variety of lines
F (Y ) with 14 isolated fixed points. We remark that these examples
form a family with 4 moduli and we will prove in the next chapters
that this example is standard.

Example 4.3.3. Let ϕ be as in Example 4.3.2 and let A ∈
LG(Λ3C6) be a ϕ-invariant Lagrangian subspace. Then ϕ induces an
automorphism of order 5 on the EPW-sextic YA, moreover this au-
tomorphism acts trivially on KYA if YA 6= P5. We wish to remark
that a ϕ-invariant lagrangian subspace must be generated by eigen-
vectors for the action of ϕ on Λ3C6. These eigenspaces are all 4
dimensional and decomposable tensors inside them span a 2 dimen-
sional subspace, therefore it is always possible to choose a lagrangian
A without decomposable eigenvectors. As an example let Vi ⊂ C6

be the i eigenspace for ϕ. Then the 1 eigenspace (Λ3C6)1 on Λ3C6 is
(Vω ⊗ Vω ⊗ V1) ⊕ (Vω2 ⊗ Vω2 ⊗ V1). Projectivizing we have two lines
P(Vω2 ⊗ Vω2 ⊗ V1) and P(Vω ⊗ Vω ⊗ V1) of decomposable tensors inside
P(Λ3C6)1

∼= P3. We can therefore choose a line P(< a1, a2 >) with
empty intersection with them. Since A ∈ LG0 is an open condition
we must only find a ϕ-invariant lagrangian in LG0 to obtain a fam-
ily of Double-EPW Sextics with an order 5 symplectic automorphism.
To avoid tedious computation we just refer to Example 4.5.2 which
satisfies these conditions. We will prove in the next chapters that this
example is standard.

4.4. Automorphisms of order 7

Example 4.4.1. Let S be a K3 surface and let ϕ ∈ Auts(S) be an
automorphism of order 7. Let X = S[n] and let ψ = ϕ[n]. If n ≤ 6 then
the fixed locus of ψ on X consists only of isolated points (9 if n = 2).
If n = 7 then the fixed locus consists in some isolated points and a K3
surface Y , given as the closure of the surface {(x, ϕ(x), . . . , ϕ6(x)), x ∈
S, ϕ(x) 6= x}. This is precisely the K3 surface obtained from the
resolution of singularities of X/ϕ. If n ≥ 8 then the fixed locus consists
in a series of isolated points, K3 surfaces isomorphic to Y and their
Douady schemes.
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Example 4.4.2. Let ϕ be the projectivity of P5 sending (e0, . . . , e5)

to (ωe0, ω
2e1, ω

3e2, ωe3, ω2e4, ω3e5), where ω = e
2πi
5 . There exist non-

singular cubic polynomials invariant for the induced action of ϕ, let
f be one of them. Then Y = V (f) has an automorphism of order 7
induced by ϕ. Moreover by Remark 1.4.9 it induces a symplectic
automorphism of the Fano variety of lines F (Y ) with 9 isolated fixed
points. We remark that these examples form a family with 2 moduli.

Example 4.4.3. Let T be an abelian surface and let t ∈ T be a
point of order 7. Let X = Kn(T ) be the generalized Kummer of T
and let n = 7m− 1. Then we can consider the automorphism given by
adding t to any point of T : it induces an automorphism of T (n+1) which
can be used to induce an order 7 automorphism on T [n+1] preserving
Kn(T ). Hence we have an order 7 automorphism on X. It is a well
known fact that this automorphism acts trivially on H2(X), therefore
it is also symplectic. This kind of examples can be given for any n,
obtaining a symplectic automorphism of order n+ 1.

4.5. Automorphisms of order 11

Symplectic automorphisms of order 11 are not present in the case
of K3 surfaces, let us state some examples.

Example 4.5.1. Let X ⊂ P5 be the zero locus of x3
0 + x2

1x5 +
x2

2x4 + x2
3x2 + x2

4x1 + x2
5x3 and let FKl = F (X) be the Fano scheme

of lines of X. The group of symplectic automorphisms of FKl induced
by projectivities on X is particularly interesting. Let ϕ be the au-
tomorphism given by Diag(1, ω, ω3, ω4, ω5, ω9), where ω = e

2πi
11 . This

automorphism is symplectic on FKl by Remark 1.4.9 and has order
11, therefore it is automatically exotic. Let KA ⊂ P4 be the zero lo-
cus of x2

0x4 + x2
1x3 + x2

2x3 + x2
3x0 + x2

4x2, it is shown in [1] and [46]
that the group PSL2(Z/(11)) = L2(11) acts through projectivities on
KA. X is a 3 to 1 cover of P4 ramified along KA through the map
(x0, . . . , x5) → (x1, . . . , x5), therefore the group L2(11) acts also on
X and on FKl. Let (1 4 2 3 5) be a permutation and let β be the auto-
morphism it induces on P4 by permuting the coordinates [x1, . . . , x5].
β leaves KA invariant, hence it induces an automorphism β of order 5
on FKl.
Using Remark 1.4.9 one obtains that β is symplectic on FKl. Fur-
thermore a direct computation on the Jacobian ring of XKl shows that
rk (Sβ(FKl)) = 16.
Let us consider the following exact sequence:

(4.14) 1 → H → Z/(3) × L2(11) → C∗,
where the last map is given by the action of Z/(3)×L2(11) on H2,0(FKl)
and H is the quotient of Z/(3)×L2(11) by the image in C∗. Therefore H
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is a normal subgroup of L2(11), which is simple. Since β ∈ H we have
H = L2(11), therefore L2(11) acts symplectically on FKl. Furthermore
FKl has a ϕ invariant polarization of square 6 and divisibility 2, hence
it must lie in T 2

11.

Example 4.5.2. Let V = C6 =< e0, e1, e2, e3, e4, e5 > and let
vol(e0∧e1∧e2∧e3∧e4∧e5) = 1 be a volume form inducing a symplectic
form on Λ3C6. Let us consider as in Example 4.5.1 a representation
of G := PSL2(Z/(11)) on V : it splits as the direct sum of a trivial rep-
resentation on < e0 > and an irreducible representation of dimension
5 on V ′ =< e1, e2, e3, e4, e5 >. Let us keep calling ϕ the element of
order 11 given by Diag(1, ω, ω3, ω4, ω5, ω9), where ω = e

2πi
11 . G has

elements of order 2, 3, 5, 6 and 11. Apart for the elements of order 11
their action on V depends only on their order and can be given in a ba-
sis of eigenvectors by Diag(1, 1, 1, 1,−1,−1), Diag(1, 1, η2, η2, η4, η4),
Diag(1, 1, ν, ν2, ν3, ν4) and Diag(1, 1, η, η2, η4, η5) respectively, where
ν5 = η6 = 1 are primitive roots of unity (see the character tables in
[4] for more details). The induced G-representation on Λ6V is triv-
ial, hence G acts on the set of lagrangians of Λ3V . We wish to find
a G-invariant lagrangian A and to prove that there exists a double
EPW-sextic XA which is Hyperkähler . The induced G-representation
on Λ3V splits as the direct sum of 2 isomorphic (and lagrangian) irre-
ducible representations of dimension 10, given respectively by Fe0 and
Λ3V ′. We remark that therefore there is no G-invariant element in-
side Λ3V . Let now f be a G-equivariant isomorphism between Fe0 and
Λ3V ′, let us denote with F the involution of Λ3V given by

F (x) = f(x), if x ∈ Fe0 ,(4.15)

F (x) = f−1(x), if x ∈ Λ3V ′.(4.16)

We remark that vol(x, y) = −vol(F (x), F (y)). LetA := {(x, f(x)), x ∈
Fe0}. Notice that we have

(x, f(x)) ∧ (y, f(y)) = x ∧ y + f(x) ∧ f(y) + x ∧ f(y) + f(x) ∧ y
= x ∧ f(y) + f(x) ∧ y = x ∧ f(y) + f(x) ∧ y
= x ∧ f(y)− F (f(x)) ∧ F (y) = 0.

Therefore A is lagrangian. Let us give explicitly the lagrangian A:

A = < e0 ∧ e2 ∧ e5 − e2 ∧ e3 ∧ e4, e0 ∧ e3 ∧ e5 + e1 ∧ e2 ∧ e5,(4.17)

e0 ∧ e4 ∧ e5 + e1 ∧ e3 ∧ e5, e0 ∧ e1 ∧ e2 − e1 ∧ e4 ∧ e5,

e0 ∧ e1 ∧ e3 + e2 ∧ e3 ∧ e5, e2 ∧ e4 ∧ e5 − e0 ∧ e1 ∧ e4,

e0 ∧ e2 ∧ e3 − e3 ∧ e4 ∧ e5 , e1 ∧ e2 ∧ e3 − e0 ∧ e2 ∧ e4,

e1 ∧ e2 ∧ e4 − e0 ∧ e3 ∧ e4, e1 ∧ e3 ∧ e4 + e0 ∧ e1 ∧ e5 >
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Then YA[3] is empty. In fact by Subsection 1.4.1 this is equivalent
to

minv∈V Rank(λM(v)) ≥ 8.

This condition can be easily checked with some computer algebra and
holds true.
Moreover with the help of computer algebra we also establish that
Gr(3, 6)∩A = ∅. We would like a more theoretic proof of this fact but
we could find none. Therefore A ∈ LG(Λ3V )0 and the double cover XA

of YA is a manifold of K3[2]-type . A direct computation shows that Xϕ
A

consists of the 5 points [e1], [e2], [e3], [e4], [e5]. Moreover G ⊂ Auts(XA)
by Remark 4.0.1.

4.6. Alternating groups

Example 4.6.1. Let f = x2
0x1 +x2

1x2 +x2
2x3 +x2

3x0 and let C ⊂ P3

be its zero locus. Let g = x3
4 + x3

5 and let Y be the zero locus of f + g
inside P5. Let us consider C ⊂ Y in the obvious way. A direct compu-
tation shows that Y is nonsingular. Let ω = e

2πi
15 be a 15-th primitive

root of unity and let ψ = diag(ω, ω13, ω4, ω7, ω5, 1) be a projectivity.
Recall that ψ5

|C = IdC . Let X = F (Y ) be the Fano scheme of lines
of Y and let ϕ be the automorphism induced by ψ on X. Applying
Remark 1.4.9 one quickly sees that ϕ is symplectic and has order 15.
Moreover if we consider the permutation (0 1 2 3)(4 5) acting on the
standard coordinates of P5 we have that it induces an automorphism ν
of X which has order 4 and, again by Remark 1.4.9, it is symplectic
on X. A natural question would be to determine all possible automor-
phisms of X, let us restrict ourselves to its automorphisms induced by
projectivities of Y . It is obvious that all automorphisms of the cubic
surface C can be extended to automorphisms of Y , so let us use the
classical work of Segre [76] and the more recent computations of Hosoh
[37]. Aut(C) contains an element of order 4 given by νC and one of
order 5 given by ψ3

C , therefore its order is a multiple of 20. Looking
at the list of possible automorphism group we see that Aut(C) = S5 is
the only possibility and that C is isomorphic to Clebsch’s cubic surface
Cl ⊂ P4 [16] given by

(4.18)
4∑
i=0

x3
i =

4∑
i=0

xi = 0,

where S5 acts by permutations on the standard coordinates. However
only the elements of A5 induce symplectic automorphisms, but if we
compose the others with the permutation sending [x0, x1, x2, x3, x4, x5]
to [x0, x1, x2, x3, x5, x4] we have S5 ⊂ Auts(X). We remark that ψ5

commutes with the subgroup A5 ⊂ S5, we therefore have (Z/(3) ×
A5).Z/(2) ⊂ Auts(X).
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Example 4.6.2. Let f be the following cubic polynomial:

(4.19) x3
0 + x3

1 + x3
2 + x3

3 + x3
4 + x3

5 − (x0 + x1 + x2 + x3 + x4 + x5)3.

Let Y = V (f) ⊂ P5 and let X = F (Y ) be its Fano scheme of lines. A
direct computation shows that Y is nonsingular and therefore so is X,
moreover the symmetric group S7 naturally acts as permutations on
the set {e0, . . . , e5,−(e0 + · · ·+ e5)} and it preserves Y . Another direct
computation shows that its alternating subgroup A7 induces symplectic
automorphisms of X. Considering the natural covering morphism as
in Remark 1.4.10 we obtain S7.Z/(3) ⊂ Aut(X) in the notation of [4].





CHAPTER 5

Deformations of automorphisms

The aim of this chapter is to analyze the behaviour of automor-
phisms of a Hyperkähler manifold on deformations of the same man-
ifold. The main result contained here is the density of points corre-
sponding to Hilbert squares of points on a K3 and an automorphism
induced from the K3 surface inside certain moduli spaces of manifolds
of K3[2]-type with a symplectic automorphism of order 2,3 or 5.
First of all let us start with the basic:

Definition 5.0.1. Let X be a manifold and let G ⊂ Aut(X). We
call a G-deformation of X (or a deformation of the couple (X,G)) the
following data:

• A flat family X → B and a map {0} → B such that X0
∼= X.

• A faithful action of the group G on X inducing fibrewise faith-
ful actions of G.

From this we give an equivalent to Definition 0.1, i. e. two cou-
ples (X,G) and (Y,H) are deformation equivalent if (Y,H) lies in a
G-deformation of X. If G is a cyclic group whose action is generated
by the automorphism ϕ we will call all G-deformations as deformations
of the couple (X,ϕ). The first interesting remark is that, to some ex-
tent, all symplectic automorphism groups of a Hyperkähler manifold
can be deformed:

Remark 5.0.2. Let X be a Hyperkähler manifold such that G ⊂
Auts(X) and |G| < ∞. Let ω be a G invariant Kähler class. Then
TWω(X) is a G deformation of X.

There is a natural question wheneverX is ofK3[n]-type or ofKn(T )-
Type which is the following:

Question 5.0.3. Let X be a Hyperkähler manifold of K3[n]-type
and let G ⊂ Auts(X). Is it possible to deform the couple (X,G) to
a manifold (S[n], G) such that G ⊂ Auts(S) and its action on S[n] is
induced by that on S?

The same can be phrased for generalized Kummer manifolds:

Question 5.0.4. Let X be a Hyperkähler manifold of Kn(T )-type
and let G ⊂ Auts(X). Is it possible to deform the couple (X,G) to a

59
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manifold (Kn(T ), G) such that G ⊂ Auts(T ) and its action on Kn(T )
is induced by that on T?

This answer is false in general, see Example 4.5.1 for a counter-
example. However there are many cases where these questions hold
true, let us give the following:

Definition 5.0.5. Let (X,G) be a couple consisting in a Hy-
perkähler manifold and a finite group G such that Question 5.0.3
or Question 5.0.4 holds true. Then we call (X,G) a standard couple
and G a standard automorphism group.

We call (X,G) exotic otherwise. These definition is equivalent to
Definition 0.3. In Chapter 4 we have given several examples of
manifolds endowed with an exotic automorphism group.

5.1. The universal deformation of (X,G)

In this section we will give a representative to the functor of small
deformations of the couple (X,G), where X is a Hyperkähler manifold
and G ⊂ Auts(X) a finite group. Our construction uses the universal
family of deformations X → Def(X).

Let us choose a small ball U representing Def(X) whose tangent
space at the origin is given by H1(TX).
Let us extend locally the action of G on U using its natural action on
H1(TX). Let us shrink U if needed, therefore we can suppose G(U) =
U .
The action of G on X and on U extends to an automorphism of the
versal deformation family X → U as follows:

G×X M−→ X
↓ ↓

G× U MU−→ U

.

Moreover MU induces an action of G on X which yields fibrewise iso-
morphisms between Xt and Xg(t) for all g ∈ G. The differential of g
at 0 is given by the action of g on H1(TX). On the other hand UG is
smooth since G is linearizable and hence

dim(UG) = dim(H1(TX)G) = dim(H2(X)G)− 2,

which is always positive by Remark 5.0.2. We wish to obtain a
deformation of the couple (X,G), hence we need to restrict to UG to
get a fibrewise action of G. Therefore we obtain the following diagram:

(5.1)
G× Y = G×X|UG

M−→ X
↓ ↓

G× UG MU−→ U,
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where Y → UG represents the functor of deformations of the couple
(X,G), i. e. all small deformations of this couple must embed in Y →
UG. We remind that the action G×UG is trivial. The automorphisms
gt are given by M|Xt(g,−).
It is obvious that this deformation space is ”maximal” in some sense,
let us make this more precise using the period map.

Definition 5.1.1. Given a finite group G acting faithfully on a
lattice M , we call ΩG the set of points (X, f) in the period domain ΩN

such that f(σX) ∈ TG(M).

Definition 5.1.2. Given (X, f) with a finite group G acting faith-
fully on it via symplectic bimeromorphisms we call the following a
maximal family of deformations of (X,GBir)

X
i−→ XU

↓ ↓
{0} i−→ U,

where the family X over U is endowed with a fibrewise faithful bimero-
morphic action of G and the period map P , given a compatible mark-
ing, sends surjectively a neighbourhood of 0 ∈ U inside a neighbour-
hood of P(X, f) ∩ ΩG.
We give the same definition for maximal families (X,GAut) or (X,GHod)
having G acting as symplectic automorphisms or Hodge isometries on
H2(X,Z) respectively.
Notice that the family Y → UG we stated before is a maximal family
for the couple (X,ϕ).

Remark 5.1.3. We remark that the set

(5.2) Ω′G =
⋃

v∈TG(L)

{x ∈ ΩG : (x, v) = 0}

is the union of countable codimension 1 subsets and consists of Hodge
structures on marked varieties (X, f) over ΩG such that the inclusion
f(T (X)) ↪→ TG(L) is proper. Moreover outside this set T (X) is irre-
ducible.

Proposition 5.1.4. Let X be a manifold of K3[2]-type and let ϕ ⊂
Aut(X) be a symplectic automorphism of finite order. Suppose ϕ fixes
at least one complex torus T . Then Tϕ(X) has rank at most 6.

Proof. Suppose on the contrary that Tϕ(X) has rank ≥ 7. Let us
consider small deformations of the couple (X,ϕ) over a representative
U of Def(X) given by

(5.3)
X|UG

Φ−→ X
↓ ↓
UG MU (Id,−)−→ U,
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as shown in (5.1), where G = 〈ϕ〉. We let σt be the symplectic form on
Xt.
We remark that, by linear algebra, the fixed locus Xϕ is smooth and
consists only of symplectic varieties since the symplectic form σ re-
stricts to a nonzero symplectic form on all connected components of
Xϕ. Moreover it is stable for small deformations of the couple (X,ϕ),
i. e. the fixed loci XΦ is a small deformation of the fixed locus Xϕ.
Therefore we have a well defined map of integral Hodge structures
H2(Xt,C)Φt → H2(Tt,C) sending a class on H2(Xt) to its restriction
to Tt, where Tt is a small deformation of T fixed by Φt (i. e. is a com-
ponent of the fibre over t of XΦ). Since Φt(σt) = σt and σt|Tt 6= 0 this
map is not the zero map and, being a map of Hodge structures, its
kernel is again a Hodge structure.
Given a marking F over X we have that (X , F ) is a maximal family
of deformations of the couple (X,ϕ). Let V = {P(Xt, Ft), t ∈ UG} ⊂
Ωϕ, by Remark 5.1.3 there exists u ∈ V \Ω′ϕ and this period cor-
responds to a marked manifold (Xt, Ft) such that T (Xt) = TΦt(Xt),
i. e. this Hodge structure is irreducible. Therefore we have that the
map H2(Xt,C)Φt → H2(Tt,C) is an injection. But this is absurd if
Tϕ(X) has rank greater than 6 since H2(Tt) has dimension 6. �

5.2. Standard automorphisms

In this section we will prove that symplectic automorphisms ϕ of
order 2, 3 and 5 are standard if some conditions on the lattices Sϕ(X)
are met, however Theorem 7.2.7 allows us to improve considerably
the statement of Theorem 5.2.11. The technique of the proof is the
same in all these cases, we will prove that given any couple (X,ϕ)

with the above properties there exists a sequence of couples (S
[2]
n , ψ

[2]
n )

converging to (X,ϕ) in an appropriate moduli space.
To prove this result we will need a series of technical lemmas. Let
us first fix some notation: Let L be as in (1.3), M2 and L′ be as in
Example 2.1.16. Let M3 be as in Example 2.1.18, K12(−2) be as
in Example 2.2.6, M5 be as in Example 2.1.19 and S5.K3 be as in
Example 2.2.7.

Lemma 5.2.1. Let M,R ⊂ L such that M ∼= R ∼= E8(−2). Then
there exists f ∈ O(L) such that f(M) = R.

Proof. By Example 2.1.15 we know the discriminant form and
group of E8(−2). Therefore we can apply Lemma 2.1.6, obtaining
that embeddings of E8(−2) into L are given by quintuples (H,H ′, γ,K, γK).
Moreover two such embeddings (H,H ′, γ,K, γK) and (N,N ′, γ′, K ′, γ′K′)
are conjugate if and only if we have H conjugate to N through an au-
tomorphism of (Z/(2))

8 sending γ into γ′. In our case the computations
are particularly simple: due to the values of qE8(−2) (all elements have
square 0 or 1) and qL (all non zero elements have square 1

2
) the only
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possible choices of H and H ′ are given by the one element group and
so we obtain our claim.
Moreover this implies that we can always choose a marking of (X,ϕ),
where ϕ is a symplectic involution such that the induced action of ϕ
on L is given by leaving (−2) ⊕ U3 invariant and exchanging the two
remaining E8(−1), so that Sϕ is given by the differences a − ϕ(a) for
a ∈ E8(−1). �

Lemma 5.2.2. Let M,R ⊂ L such that M ∼= R ∼= K12(−2). Then
there exists f ∈ O(L) such that f(M) = R.

Proof. By Example 2.2.6 we know the discriminant form and
group of K12(−2). Therefore we can apply Lemma 2.1.6, obtaining
that embeddings ofK12(−2) into L are given by quintuples (H,H ′, γ,K, γK).
Moreover two such embeddings (H,H ′, γ,K, γK) and (N,N ′, γ′, K ′, γ′K′)
are conjugate if and only if we have H conjugate to N through an au-
tomorphism of (Z/(3))

6 sending γ into γ′. In our case the computations
are particularly simple: due to the structure of AK12(−2) (all non zero
elements have order 3) and AL (all non zero elements have order 2) the
only possible choices of H and H ′ are given by the one element group
and so we obtain our claim.

�

Lemma 5.2.3. Let M,R ⊂ L such that M ∼= R ∼= S5.K3. Then
there exists f ∈ O(L) such that f(M) = R.

Proof. The proof goes as in Lemma 5.2.2, this time uniqueness
up to isometry is a consequence of AS5.K3

= Z4
/(5). �

Now we define some moduli spaces, namely M2 = ME8(−2),L as
in Definition 1.2.14 and analogously M3 = MK12(−2),L and M5 =
MS5.K3,L. Notice that lemmas 5.2.1, 5.2.2 and 5.2.3 imply that these
are univoquely determined.

Definition 5.2.4. Let Ωi = P(Mi), i = 2, 3, 5 and furthermore
let Ωv,i denote the set of ω ∈ Ωi such that (v, ω) = 0 for v ∈ L.

Let M2, M3 and M5 be as before, there is a sublattice Mi,0 of L
isomorphic to Mi, i = 2, 3, 5 given by f(Tϕ[2](S[2])) where (S[2], f) is a
marked Hyperkähler manifold and ϕ is a symplectic automorphism of
order i on S. Moreover, by Lemma 5.2.1, Lemma 5.2.2 and Lemma
5.2.3, all such lattices are conjugate through an isometry of L, hence
without loss of generality we fix M5,0,M3,0,M2,0 ⊂ L, Mi

∼= Mi,0,
i = 2, 3, 5 and we can impose

P(X, f) ∈ P(Mi,0 ⊗ C), i = 2, 3, 5

for all couples (X,ϕ) where ϕ is a symplectic automorphism of order i
and f is an appropriate marking.
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Lemma 5.2.5. Let 0 6= w ∈M2 be a primitive isotropic vector, then
there exist a sublattice w ∈ T ⊂M2 and a (−2) vector p such that:

• p is 2-divisible in M2,
• qM2|T is nondegenerate,
• R := T⊥M2 ∼= U⊕ < p > ⊕R′ for some lattice R′.

Proof. Since M2 = U2 ⊕ (U ⊕ E8(−2) ⊕ (−2)) we can apply
Lemma 2.4.5. Therefore we can analyze up to isometry all isotropic
vectors inside M2 knowing only their divisibility m (i. e. (w,M2) = mZ)
and their image [w

m
] in AM2 . Let us give a basis of M2 as follows:

(5.4) {e1, f1, e2, f2, e3, f3, a1, a2, a3, a4, a5, a6, a7, a8, t},
where {ei, fi} is a standard basis of U , {a1, . . . , a8} is a standard basis
of E8(−2) and t is a generator of the lattice (−2).
The first key remark is that since AM2 is of 2-torsion m can either be
1 or 2. Therefore if m = 1 we have that w

m
lies in M2, which implies

[w
m

] = 0 in AM2 . Thus by Lemma 2.4.5 there exists an isometry g of
M2 sending w to e1. To obtain our claim we let T = g−1(< e1, f1 >),
p = g−1(t) and R = g−1(< e2, f2, e3, f3, a1, a2, a3, a4, a5, a6, a7, a8, t >).
If m = 2 we have that w

2
is a square zero element of M∨

2 , i. e. [w
2
] has

square zero in AM2 . Looking at Example 2.1.15 it is easy to see that
square zero elements must lie in AE8(−2) ⊂ AM2 and they are given by
[v
2
] where v is a primitive vector of square c ≡ 0 mod 8 inside E8(−2).

Therefore by Lemma 2.4.5 there exists an isometry g of M2 sending
w to r = 2e1 + c

4
f1 + v. Thus we set T = g−1(< r, f1 >), p = g−1(t),

K = v⊥E8(−2) and R = g−1(< e2, f2, e3, f3, K, t >). �

Lemma 5.2.6. Let 0 6= w ∈M3 be a primitive isotropic vector, then
there exist a sublattice w ∈ T ⊂M3 and a (−2) vector p such that:

• p is 2-divisible in M3,
• qM3|T is nondegenerate,
• R := T⊥M3 ∼=< p > ⊕R′ for some lattice R′.

Proof. We can apply Lemma 2.1.1 to obtain that M3
∼= U2⊕P

for some lattice P . Hence we can apply Lemma 2.4.5. Therefore we
can analyze up to isometry all isotropic vectors inside M3 knowing only
their divisibility m (i. e. (w,M) = mZ) and their image [w

m
] in AM3 .

Let us give a basis of M3 as follows:

(5.5) {e, f, e1, f1, e2, f2, a1, a2, b1, b2, t},
where {e, f} is a standard basis of U , {ei, fi} is a standard basis of
U(3), {a1, a2} and {b1, b2} are a standard basis of A2(−1) and t is a
generator of the lattice (−2).
The first key remark is that since AM3 is of 6-torsion m can either be 1,
2, 3 or 6. Moreover a direct computation shows m 6= 2 and m 6= 6 due
to the values the discriminant form (see Example 2.1.18). Therefore
if m = 1 we have that w

m
lies in M3, which implies [w

m
] = 0 in AM3 .
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Thus by Lemma 2.4.5 there exists an isometry g of M3 sending w to
e. To obtain our claim we set T =< g−1(e), g−1(f) >, p = g−1(t) and
R′ = g−1(< e1, . . . , b2 >).
Now suppose m = 3: by Lemma 2.4.5 we have that there exists an
isometry g sending w inside D =< e1, f1, e2, f2, a1, a2, b1, b2 >, there-
fore we can set p = g−1(t), T =< w, g−1(e), g−1(f) > and R′ =
g−1(g(w)⊥D).

�

Lemma 5.2.7. Let 0 6= w ∈M5 be a primitive isotropic vector, then
there exist a (−2) vector p such that:

• p is 2-divisible in M5,
• (w, p) = 0.

Proof. Let p be an element of divisibility 2 and square −2. By
Lemma 2.1.6 these elements form a single orbit under the action of
O(M5). By Lemma 2.4.6 we need only to prove that [w/div(w)] is
orthogonal to [p/2] in AM5 . By Example 2.1.19 we know the dis-
criminant form and group of M5. Since w2 = 0 we have also that
[w/div(w)]2 ≡ 0mod 2. Let e1, f1 and e2, f2 be two standard genera-
tors respectively of the first and second copy of U(5) ⊂M5. Then AM5

is generated by x1 = [e1/5], y1 = [f1/5], x2 = [e2/5], y2 = [f2/5] and
z = [p/2] with the following bilinear form:

0 1
5

0 0 0
1
5

0 0 0 0
0 0 0 1

5
0

0 0 1
5

0 0
0 0 0 0 −1

2

 .

Let [w/m] = a1x1 +b1y1 +a2x2 +b2y2 +cz, ai, bi ∈ Z/(5) for i = 1, 2 and
c ∈ Z/(2). A direct computation shows that w2 = 0 implies c = 0. �

Lemma 5.2.8. Let 0 6= w0 ∈ Mi,0, i = 2, 3, 5 be a primitive vector
of square 0.
There exists an element q ∈ Mi,0 of square −2 and divisibility 2 in L
such that w0 ⊥ q.

Proof. We keep the same notation as before and we fix an isom-
etry ηi : Mi,0 → Mi.
First of all let us prove that there exists such a q with divisibility 2
inside Mi,0. The proof goes identically for all i, let us do it for i = 2.
Let w = η2(w0), since it satisfies the hypothesis of Lemma 5.2.5 we
have an element p orthogonal to w, where p is a 2-divisible (−2) vector.
hence we can impose q = η−1

2 (p). Now we need to prove that div(q) = 2
also inside L, i. e. that q⊕q⊥L = L. We know that p⊥M2 ∼= U3⊕E8(−2)
hence q⊥L is an overlattice of U3⊕E8(−2)2 which, by Lemma 2.1.21,
implies η−1(p) is 2-divisible in L. �
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Definition 5.2.9. Let Pi,exc = {f ∈ Mi,0 : f 2 = −2 , (f, L) =
2Z} be the set of exceptional primitive classes inside Mi,0.

Notice that P−1(v) contains the Hilbert square of a K3 surface for
all periods v orthogonal to some element of Pi,exc.

Lemma 5.2.10. ∪v∈Pi,excΩv,i is dense in Ωi.

Proof. The proof goes the same for i = 2, 3, 5. It is enough to
prove that ∪v∈Pi,excΩv,i is dense in Ωi ∩ P(Mi,0 ⊗ C) by lemmas 5.2.1,
5.2.2 and 5.2.3.
Let QMi,0

be the subset of isotropic vectors inside P(Mi,0 ⊗ C). Let
QMi,0

(R) and QMi,0
(Q) be the subsets of isotropic vectors spanned by

real (respectively rational) isotropic vectors. Let ω be in Ωi ∩P(Mi,0⊗
C), we have ω⊥Mi,0 ∩ QMi,0

(R) = (αω + ωσ)⊥Mi,0 ∩ QMi,0
(R).

But since (αω+αω)⊥Mi,0 has signature (1, j), j > 3 we have that ∃ u ∈
QMi,0

(R) ∩ (αω + αω)⊥Mi,0 . Since QMi,0
(Q) is non-empty it is dense

inside QMi,0
(R), therefore ∃ {vn} such that [vn] → [u] in P(Mi,0 ⊗ C),

where the vn are primitive isotropic vectors inside Mi,0. Thus we can
apply Lemma 5.2.8 to find a sequence {wn} of elements of Pi,exc such
that [vn]→ [u] and wn ⊥ vn. �

Theorem 5.2.11. Let (X,ϕ) be a couple consisting in a manifold
of K3[2]-type and a symplectic automorphism of order i = 2, 3 or 5.
Suppose moreover that Sϕ(X) ∼= E8(−2) if i = 2, Sϕ(X) ∼= K12(−2) if
i = 3 and Sϕ(X) ∼= S5.K3 if i = 5. Then the couple (X,ϕ) is standard.

Proof. Keeping notation as above we have Tϕ(X) ∼= Mi. Let f be
a marking of X such that P(X, f) ⊂ P(Mi,0⊗C) and f(Sϕ(X)) ⊥Mi,0.
Moreover let X → U be a maximal family of deformations of the couple
(X,ϕ) as in (5.1) and let F be a marking of X compatible with f such
that V = {P(Xt, Ft), t ∈ U} is a small neighbourhood of P(X, f). By
Lemma 5.2.10 there exist a point v ∈ V and a 2-divisible primitive
vector e of square (−2) such that v ⊥ e. Since the global Torelli
theorem holds we can use Theorem 1.2.12 on the manifold Xu such
that P(Xu, Fu) = v. This gives that Xu is bimeromorphic to the Hilbert
square of a certain K3 surface S.
Thus we get a bimeromorphic morphism ϕ on S[2] such that Sϕ(S[2]) ⊂
Pic(S) ⊂ Pic(S[2]), where

Pic(S) = {t ∈ Pic(S[2]), e ⊥ t}.
By Theorem 3.2.1 and Theorem 3.2.3 we have a symplectic mor-
phism ψ of order i on S given by the action of ϕ on e⊥ ∼= H2(S,Z)
which induces a symplectic automorphism ψ[2] on S[2]. Furthermore the
birational map (ψ[2])i−1 ◦ ϕ induces the identity on H2(S[2],Z), there-
fore it is biregular (sends any Kähler class into itself), and it is also the
identity. This means ϕ = ψ[2], which implies our claim. �



CHAPTER 6

Fixed loci of automorphisms

In this chapter we will use an approach similar to Section 3.3 to
compute the fixed locus of automorphisms on Hyperkähler manifolds.
In this more general setting the computations are harder and we are
able only to provide partial results, namely only in the setting of man-
ifolds of K3[2]-type .

6.1. Fixed point formulas

Our main tool is a formula first devised by Atiyah and Singer [3] in
the analytic context and then specialized by Donovan [23] in the alge-
braic case. It is usually referred to as Holomorphic Lefschetz-Riemann-
Roch formula.
The formula works in a broader context, but we will use it only for co-
herent sheaves endowed with an automorphism of finite order induced
by an automorphism ψ of the manifold Y .

Definition 6.1.1. Let Y be a Complex manifold and let ψ ∈
Aut(Y ) be an automorphism of finite order. Then we define the fol-
lowing:

• ct(F , ψ) ∈ H∗(Y,Q) ⊗ C is the chern trace with respect to
ψ of F , where F is a coherent sheaf and, with an abuse of
notation, ψ : F → F is the automorphism induced by ψ on
Y . It is given as follows: suppose F decomposes as the direct
sum of Ls which are eigensheaves of eigenvalue s for ψ, then
ct(F , ψ) =

∑
s×ch(Ls) where ch is the usual chern character.

• (⊕ΛtN∨Z , λZ) is a couple consisting in a sheaf, defined for every
variety Z fixed by ψ and an automorphism given as follows:
with a further abuse of notation let ψ be also the natural
automorphism on N∨Z induced by ψ on Y and define λZ =
(−1)tΛtψ on ΛtN∨Z .

Now the formula can be written as:

(6.1) (−1)ttr(H t(F)) =
∑∫

Todd(Z)ct(F|Z , ψ|Z)

ct(⊕tΛtN∨Z , λZ)
,

where the sum is taken on all Z varieties inside the fixed locus of ψ.
Another useful tool is a formula developed recently by Boissière, Nieper

67
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Wißkirchen and Sarti. We must stress that this formula applies only
to manifolds of K3[2]-type , although potentially it might be possible
to extend it to some more Hyperkähler manifolds, see [12]. Let us
introduce a few more notations: let X be a Hyperkähler manifold and
let G be a group of automorphisms, let aG(X) = l(ASG(X)) and let
mG(X) = rank(SG(X))/(|G| − 1). Notice that Remark 2.3.2 implies
that these are both integers when G has prime order.

Theorem 6.1.2. [12, Theorem 1.2] Let X be a manifold of K3[2]-
type and let G be a group of automorphisms of prime order p, 3 ≤ p ≤
19, p 6= 5. Then the following holds:

Dim(H∗(XG,Z/(p))) = 324− 2aG(X)(25− aG(X))−(6.2)

+ (p− 2)mG(X)(25− 2aG(X))+

+
1

2
mG(X)((p− 2)2mG(X)− p).

6.2. Automorphisms on fourfolds of K3[2]-type

In this section we specialize the computations to a manifold X of
K3[2]-type and a symplectic automorphism ϕ of prime order p.
We wish to remark that the results contained herein will be instrumen-
tal in the proof of Theorem 7.2.7. Moreover we will only compute
what is needed in the proof of the above cited theorem since it will
already give a full classification of all possible fixed loci Xϕ. Next is a
remark taken from [14]:

Remark 6.2.1. A Symplectic automorphism of finite order on a
manifold X of K3[2]-type has a smooth fixed locus, moreover its con-
nected components are one of the following:

• An isolated point.
• An abelian surface.
• A K3 surface.

Proof. The statement on smoothness is proven in [23] in the more
general case of actions by finite groups, while the latter statement is due
to the classification of Kähler Symplectic surfaces and to the fact that
TXZ = U ⊕ V ⊕ V ∨ where Z is a connected component of the fixed
locus, U = TZ is the 1-eigenspace of the action and the symplectic
form is locally defined on Λ2U ⊕ V ⊗ V ∨. �

6.2.1. p=2. Let τ be the trace on H2(X,C) of a symplectic invo-
lution ϕ, the following is a result due to Camere [14]:

Proposition 6.2.2. Let X,ϕ and τ be as before. Then the fixed
locus of ϕ and the values of τ are one of the following:

• Xϕ = 28 isolated points and 1 K3 surface, τ = 5,
• Xϕ = 12 isolated points and at least 1 abelian surface, τ = −3,
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• Xϕ = 36 isolated points and at least 1 abelian surface, τ = 3.

We give an improvement of this result by eliminating the last two
items:

Theorem 6.2.3. Let X be a Hyperkähler manifold of K3[2]-type
with a symplectic involution ϕ. Then the fixed locus Xϕ consists of 28
isolated points and one K3 surface. Moreover the lattice Sϕ(X) has
rank 8.

Proof. By Proposition 6.2.2 we have that rank(Tϕ(X)) ≥ 11.
By Proposition 5.1.4 we therefore have that symplectic involutions
cannot fix complex tori, hence we have our claim. �

6.2.2. p=3. As before let X be a manifold of K3[2]-type and
let now ϕ be a symplectic automorphism of order 3. We proceed
to classify Xϕ using (6.1). We will work this formula in detail for
F = OX , Ω1

X , Ω2
X which are the sheaves whose cohomology generates

all of H∗(X).

In this subsection let ω = e
2πi
3 and let a be the dimension of the ω-

eigenspace on H1,1(Y ) (notice that a = mG(X)).

Theorem 6.2.4. Let X and ϕ be as before, then one of the following
holds:

• Xϕ consists of 27 isolated points and a = 6.
• Xϕ consists of at least 1 abelian surface, a = 9.
• Xϕ consists of 6 isolated points and 2 K3 surfaces, a = 5.

To my knowledge these computations where also independently
done by Camere [15].

Remark 6.2.5. We can use proposition Proposition 5.1.4 to con-
clude that no fixed abelian surface exists in the last and first cases but
we cannot use it to exclude the middle case, infact an example of such
an action exists (see [44], [55] and Example 4.2.6).

We begin the proof by evaluating Todd(Z)/ct(⊕ΛtN∨Z , λZ) for all
possible connected components Z of Xϕ.

Proposition 6.2.6. Let X,ϕ be as above and let Z be a connected
component of Xϕ. Then the following hold:

• Todd(Z)/ct(⊕ΛtN∨Z , λZ) = 1
3

+ i
√

3
9
c1(N∨ωZ )− 5

36
c2(Z)+ c2(X)[Z]

6
if Z is a surface.
• Todd(Z)/ct(⊕ΛtN∨Z , λZ) = 1

9
if Z is an isolated point.

Here N∨ωZ is the ω eigensheaf inside N∨Z .

Proof. First of all we have Todd(Z) = 1 for an isolated point and
Todd(Z) = 1 + 1

12
c2(Z) for a K3 or abelian surface.

Locally around an isolated fixed point the automorphism can be written
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as


ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 ω

 since the matrix must be inside Sp(2,C), of order

3 and must not have 1 as an eigenvalue (otherwise the automorphism
would locally fix at least a curve), moreover this is also the local form
on N∨Z hence it decomposes as a trivial ω-eigensheaf of rank 2 and a
trivial ω-eigensheaf of rank 2, which implies that⊕ΛtN∨Z decomposes as
trivial eigensheaves of eigenvalues 1,−ω,−ω, ω, ω of rank respectivelly
6, 4, 4, 1, 1. Therefore ct(⊕ΛtN∨Z , λZ) = 9.
Locally around a fixed surface the automorphism can be written as

ω 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 1

 which decomposes as N∨Z ⊕ TZ where TZ is the 1-

eigensheaf. This means we need only the chern classes of N∨ωZ and N∨ωZ
to evaluate ct.
We obtain all the chern classes of N∨Z by the exact sequence

0→ TZ → TY|Z → NZ → 0,

which are c1(N v
Z) = 0 and c2(N v

Z) = c2(X)[Z]− c2(Z).
Now we consider the exact sequence 0→ N∨ωZ → N∨Z → N∨ωZ → 0.
Thus we have

(6.3) c1(N∨Z ) = 0 = c1(N∨ωZ ) + c1(N∨ωZ )

and

(6.4) c2(N∨Z ) = c2(X)[Z]− c2(Z) = c1(N∨ωZ )c1(N∨ωZ ).

This gives

(6.5) ct(⊕ΛtN∨Z , λZ) = 3− i
√

3c1(N∨ωZ ) +
c2(Z)

2
− c2(X)[Z]

2
.

And inverting it we obtain our claim. �

We need now only to evaluate ct(Ω1
X|Z) and ct(Ω2

X|Z):

Proposition 6.2.7. Let X,ϕ be as above and let Z be a connected
component of Xϕ. Then the following hold:

• ct(Ω1
X|Z) = −2 if Z is an isolated fixed point.

• ct(Ω1
X|Z) = 1 + i

√
3c1(N∨ωZ ) + c2(X)[Z]

2
− 3

2
c2(Z) if Z is a fixed

surface.
• ct(Ω2

X|Z) = 3 if Z is an isolated fixed point.

• ct(Ω2
X|Z) = 2i

√
3c1(N∨ωZ ) + c2(X)[Z] if Z is a fixed surface.

Proof. These computations are easier: we have Ω1
X|Z = N∨Z for Z

an isolated fixed point, hence ct(Ω1
X|Z) = −2 and Ω1

X|Z = N∨Z ⊕TZ for
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Z a fixed surface. Therefore ct(Ω1
X|Z) = ct(N∨Z ) + ct(TZ) which yields

our claim.
The sheaf Ω2

X|Z is locally the exterior product of the preceeding, thus
we obtain the desired result. �

Now we have all we need to obtain the theorem, let us denote N
the number of isolated fixed points, K the number of fixed K3s and
A =

∑∫
Z
c2(X)[Z]. Let us further remark that

∫
Z
c2(Z) = 0 for an

abelian surface and
∫
Z
c2(Z) = 24 for a K3. By applying Donovan’s

formula to the sheaves OX , Ω1
X , Ω2

X we obtain the following system:

3 =
N

9
− 10K

3
+
A

6
,(6.6a)

6a− 42 =− 2N

9
− 70K

3
+

2A

3
,(6.6b)

N

3
− 16K + A =

9a2

2
− 129a

2
+ 234.(6.6c)

We use the first equation to eliminate A from the other two and we
obtain:

6a− 54 =− 2N

3
− 10K,(6.7a)

−N
3

+ 4K =
9a2

2
− 129a

2
+ 216.(6.7b)

Since N,K ≥ 0 we have a ≤ 9, and by eliminating N from the last
equation we obtain

(6.8) 9a2 − 135a+ (486− 18K) = 0,

whose integer solutions with a ≤ 9 give us the three cases described
in the theorem. For the proof of Theorem 7.2.7 we need also to
specialize to one particular case:

Proposition 6.2.8. Let ϕ and X be as before, let moreover
Sϕ(X) = W (−1). Then Xϕ consists of one abelian surface.

Proof. Let G be the group of automorphisms generated by ϕ.
We have aG(X) = 5 and mG(X) = 9. Using (6.2) we obtain that
Dim(H∗(Xϕ)) = 16 and, by Theorem 6.2.4, this implies that Xϕ

consists of one abelian surface. �

6.2.3. p=5. Let X be a manifold of K3[2]-type and let ϕ be a
symplectic automorphism of order 5. As before we use (6.1) on F =
OX , Ω1

X , Ω2
X .

In this subsection let ω = e
2πi
5 and let a be the dimension of the ω-

eigenspace of ϕ on H1,1(X).

Theorem 6.2.9. Let X, ϕ be as before. Then Xϕ consists of 14
isolated points and a = 4.
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Remark 6.2.10. In this case there is an important change: the
local action of the automorphism on the connected components of the
fixed loci is not univocally determined by its topological type but there
are several choices:

(1) Fixed points with local action of ϕ given by


ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 ω


and we call those points of the first kind.

(2) Fixed points with local action given by


ω2 0 0 0
0 ω2 0 0
0 0 ω2 0
0 0 0 ω2


and we call those points of the second kind.

(3) Fixed points with local action given by


ω 0 0 0
0 ω2 0 0
0 0 ω 0
0 0 0 ω2


and we call those points of the third kind.

(4) Fixed surfaces with local action given by


ω 0 0 0
0 ω 0 0
0 0 1 0
0 0 0 1

 and

we call those surfaces of the first kind.

(5) Fixed surfaces with local action given by


ω2 0 0 0
0 ω2 0 0
0 0 1 0
0 0 0 1


and we call those surfaces of the second kind.

Moreover there is another important

Remark 6.2.11. Given a Symplectic automorphism ϕ of order 5
with N1 fixed points of the first kind, N2 fixed points of the second
kind, N3 fixed points of the third kind, S1 fixed surfaces of the first
kind and S2 fixed surfaces of the second kind we have that ϕ2 is a
symplectic automorphism of order 5 with N2 fixed points of the first
kind, N1 fixed points of the second kind, N3 fixed points of the third
kind, S2 fixed surfaces of the first kind and S1 fixed surfaces of the
second kind.
Furthermore among the surfaces we have the same number of K3’s and
abelian surfaces being of the first kind in one case and of the second in
the other.

We now need to evaluate the same characteristic classes as before
and we start with the following:
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Proposition 6.2.12. Let X,ϕ be as above and let Z be a connected
component of Xϕ. Then the following hold:

• ct(⊕ΛtN∨Z , λZ) = 15−5
√

5
2 for Z a point of the first kind.

• ct(⊕ΛtN∨Z , λZ) = 15+5
√

5
2 for Z a point of the second kind.

• ct(⊕ΛtN∨Z , λZ) = 5 for Z a point of the third kind.

• ct(⊕ΛtN∨Z , λZ) = 5−
√

5
2 −c1(N∨ωZ )

√
10+2

√
5

2 +(c2(X)[Z]−c2(Z))(−1−
√

5
4 )

for Z a surface of the first kind.

• ct(⊕ΛtN∨Z , λZ) = 5+
√

5
2 −c1(N∨ω

2

Z )

√
10−2

√
5

2 +(c2(X)[Z]−c2(Z))(−1+
√

5
4 )

for Z a surface of the second kind.

Proof. The evaluation goes as in Proposition 6.2.6, we need
only to change the eigenvalues and we obtain our claim. �

Proposition 6.2.13. Let X,ϕ be as above and let Z be a connected
component of Xϕ. Then the following hold:

• Todd(Z)/ct(⊕ΛtN∨Z , λZ) = 5+
√

5
10 +c1(N∨ωZ )

√
10+2

√
5

15−5
√

5
−9+3

√
5

20 c2(X)[Z]+

59+19
√

5
120 c2(Z) for Z a surface of the first kind.

• Todd(Z)/ct(⊕ΛtN∨Z , λZ) = 5−
√

5
10 +c1(N∨ω

2

Z )

√
10−2

√
5

15+5
√

5
+−5+2

√
5

10 c2(X)[Z]+

13−5
√

5
24 c2(Z) for Z a surface of the second kind.

The final computation is the evaluation of ct(Ω1
Z|Z) and ct(Ω2

Z|Z):

Proposition 6.2.14. Let X,ϕ be as above and let Z be a connected
component of Xϕ. Then the following hold:

• ct(Ω1
Z|Z) = −1 +

√
5 if Z is a point of the first kind.

• ct(Ω1
Z|Z) = −1−

√
5 if Z is a point of the second kind.

• ct(Ω1
Z|Z) = −1 if Z is a point of the third kind.

• ct(Ω1
Z|Z) = 3+

√
5

2 + c1(N∨ωZ )

√
10+2

√
5

2 − 1+
√

5
4 c2(X)[Z]− 3+

√
5

4 c2(Z)

if Z is a surface of the first kind.

• ct(Ω1
X|Z) = 3−

√
5

2 +c1(N∨ω
2

Z )

√
10−2

√
5

2 +−1+
√

5
4 c2(X)[Z]+−3+

√
5

4 c2(Z)

if Z is a surface of the second kind.

• ct(Ω2
X|Z) = 7−

√
5

2 if Z is a point of the first kind.

• ct(Ω2
X|Z) = 7+

√
5

2 if Z is a point of the second kind.

• ct(Ω2
X|Z) = 1 if Z is a point of the third kind.

• ct(Ω2
X|Z) = 1 +

√
5 + c1(N∨ω

2

Z )
√

10 + 2
√

5− 1+
√

5
2 c2(X)[Z] + c2(Z)

if Z is a surface of the first kind.

• ct(Ω2
X|Z) = 1−

√
5+c1(N∨ω

2

Z )
√

10− 2
√

5+ −1+
√

5
2 c2(X)[Z]+c2(Z)

if Z is a surface of the second kind.

Proof. This computation mimics that of Proposition 6.2.7 only
with different eigenvalues. �

Now let us call N1 the number of points of the first kind, N2 the
number of points of the second kind, N3 the number of points of the
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third kind, K1 the number of K3’s of the first kind, K2 the number of
K3’s of the second kind, A1 =

∫
c2(X)[Z] over surfaces of the first kind

and A2 =
∫
c2(X)[Z] over surfaces of the second kind.

Summing all these propositions and dividing the rational part from the
irrational one we have:

60 =6N1 + 6N2 + 4N3 − 9A1 − 10A2 + 216K1 + 260K2,(6.9a)

0 =2N1 − 2N2 − 3A1 + 4A2 + 76K1 − 100K2,(6.9b)

100a− 420 =− 8N1 − 8N2 − 2N3 − 23A1 − 25A2 + 452K1 + 440K2,
(6.9c)

0 =4N1 − 4N2 − 10A1 + 11A2 + 194K1 − 168K2,(6.9d)

4680− 2150a+ 250a2 =16N1 + 16N2 + 4N3 − 74A1 − 70A2 + 1816K1 + 1960K2,

(6.9e)

0 =4N1 − 4N2 − 34A1 + 36A2 + 744K1 − 792K2.(6.9f)

We use (6.9b) in (6.9d) and (6.9f) to eliminate A1 and A2 and we
obtain

A1 =
225

7
K1 −

332

7
K2,

A2 =
62

7
K1 −

144

7
K2.

Using this and multiplying by 7 we get the following system

420 =42N1 + 42N2 + 28N3 − 1133K1 + 6248K2,(6.10a)

0 =14N1 − 14N2 − 105K1 + 280K2,(6.10b)

700a− 2940 =− 56N1 − 56N2 − 14N3 − 3561K1 + 14316K2,(6.10c)

32760− 15050a+ 1750a2 =112N1 + 112N2 + 28N3 − 8278K1 + 48368K2,

(6.10d)

7A1 =225K1 − 332K2,(6.10e)

7A2 =62K1 − 144K2.(6.10f)

We can now use Remark 6.2.11 on (6.10a) to obtain

420 =42N1 + 42N2 + 28N3 − 1133K1 + 6248K2,

420 =42N2 + 42N1 + 28N3 − 1133K2 + 6248K1.



6.2. AUTOMORPHISMS ON FOURFOLDS OF K3[2]-type 75

i. e. 42(N2−N1)+3113(K2−K1) = 0 which gives us another equation.
We now use (6.10b) to eliminate N1:

210 =42N2 + 14N3 − 409K1 + 2704K2,(6.11a)

3953K2 =3428K1,(6.11b)

700a− 2940 =− 112N2 − 14N3 − 3981K1 + 15436K2,(6.11c)

32760− 15050a+ 1750a2 =224N2 + 28N3 − 8338K1 + 46128K2,

(6.11d)

7A1 =225K1 − 332K2,(6.11e)

7A2 =62K1 − 144K2,(6.11f)

14N1 =14N2 + 105K1 − 280K2.(6.11g)

We finally use (6.11a) to eliminate N3 and Remark 6.2.11 on (6.11c)
to obtain

3953K2 =3428K1,

853K2 =1728K1,

700a− 2730 =− 70N2 − 4390K1 + 18140K2,

33180− 15050a+ 1750a2 =140N2 − 7520K1 + 40720K2,

7A1 =225K1 − 332K2,

7A2 =62K1 − 144K2,

14N1 =14N2 + 105K1 − 280K2,

14N3 =210− 42N2 + 409K1 − 2704K2.

We can easily see this implies K1 = K2 = A1 = A2 = 0 i. e. the result
of Theorem 6.2.9.

6.2.4. p=7. We will not use Donovan’s formula in this case, the
only tool we will need for Theorem 7.2.7 is an easy application of
(6.2).

Proposition 6.2.15. Let X be a manifold of K3[2]-type and let ϕ
be a symplectic automorphism of order 7 such that Sϕ(X) = S7.K3 as
defined in Example 2.2.8. Then Xϕ consists of 9 isolated points.

Proof. Let G be the group of automorphisms generated by ϕ. We
have aG(X) = mG(X) = 3, therefore by (6.2) we obtain Dim(H∗(XG))=9,
which implies by Remark 6.2.1 our claim. �

6.2.5. p=11. Again we avoid using Donovan’s formula and we
only make a simple computation with (6.2).

Proposition 6.2.16. Let ϕ be a symplectic automorphism of order
11 of a Hyperkähler manifold X of K3[2]-type such that aϕ = mϕ = 2.
Then Xϕ consists of 5 isolated points.



76 6. FIXED LOCI OF AUTOMORPHISMS

Proof. Using (6.2) we see that dim(H∗(Xϕ)) = 5. Since it con-
sists of symplectic varieties we obtain our claim. �



CHAPTER 7

Sporadic groups and Symplectic Automorphisms

This chapter is devoted to obtain an analogue of Chapter 3 for
what concerns the link between symplectic automorphisms on a Hy-
perkähler manifold and isometries of its second cohomology.

7.1. Automorphisms and cohomology on Hyperkähler
manifolds

In this section we prove some useful general properties concern-
ing automorphisms of Hyperkähler manifolds and then we specialize to
manifolds which are not of K3[n]-type . We are thus able to provide
limitations on the order of finite symplectic automorphisms on those
manifolds. We also provide a way to compute the coinvariant lattice for
those automorphisms using isometries of certain well known unimodu-
lar lattices. These results are not effective, i. e. there exist isometries
of the above cited lattices which do not come from automorphisms of
Hyperkähler manifolds. We wish to remark that some among these re-
sults are already contained in [8], such as most of Lemma 7.1.4 and
(7.2).
Throughout this section G will denote a finite group of automorphisms
on a Hyperkähler manifold X.

Definition 7.1.1. Let G be a group acting faithfully on a Hy-
perkähler manifold X, we define TG(X) inside H2(X,Z) to be the sub-
group fixed by the induced action of G on H2(X,Z). Moreover we
define the co-invariant locus SG(X) ⊂ H2(X,Z) as TG(X)⊥. The fixed

locus of G on X will be denoted XG as before.

We wish to remark that the map

(7.1) Aut(X)
ν→ O(H2(X,Z))

might have nontrivial kernel if X is not of K3[n]-type, as in Example
4.1.3 and Example 4.4.3. We will soon discuss in greater detail
the injectivity of ν. We will call G the image of G by ν. Obviously
SG(H2(X,Z)) = SG(X), therefore we will not distinguish between the
two notations. Moreover we have the following exact sequence for any
finite group G of Hodge isometries on H2(X,Z):

(7.2) 1 → G0 → G
π→ Γm → 1,

77
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where Γm ⊂ U(1) is a cyclic group of order m. In fact the action of G
on H2,0 is the action of a finite group on C. Let γX be the following
useful map:

(7.3) γX : T (X) → C.
Here γX(x) = (σ, x)X , which has kernel T (X) ∩ S(X) = 0.

Remark 7.1.2. We wish to remark that recently Oguiso [72] proved
that in the case of manifolds of Kummer n-type the map

(7.4) Aut(X)→ Aut(H∗(X,Z))

has trivial kernel.

Lemma 7.1.3. Let X be a manifold of K3[n]-type . Then the map

Aut(X)
ν(X)→ O(H2(X,Z)) is injective.

Proof. Hassett and Tschinkel [35, Theorem 2.1] proved thatKer(ν(X))
is invariant under smooth deformations. Beauville [8, Lemma 3] proved
that, if S is a K3 surface with no nontrivial automorphisms then
Aut(S[n]) = Id, therefore Id = Ker(ν(S[n])) = Ker(ν(X)). �

Lemma 7.1.4. Let X be a Hyperkähler manifold and let G ⊂ Aut(X)
be a group such that ν(G) =: G is finite. Then the following hold:

(1) g ∈ G acts trivially on T (X) ⇐⇒ g ∈ G0.
(2) The representation of Γm on T (X)⊗Q splits as the direct sum

of irreducible representations of the cyclic group Γm having
maximal rank (i. e. of rank φ(m)).

Proof. First of all let us remark that without loss of generality we
can consider only elements of G instead of G.

(1) Let g ∈ G0. Let us show that g∗ acts trivially on T (X)⊗Q. We
start by considering the kernel of the map g∗−IdT (X) which is
a lattice (and a Hodge substructure) R inside T (X). Hence, by
minimality of T (X), R⊗Q is either 0 or R⊗Q = T (X)⊗Q.
Considering the map (7.3), since g∗ is a Hodge isometry we
have

γX(x) = (g∗σ, g∗x) = (σ, g∗x).

Since g∗σ = σ we have that g∗x − x ∈ ker(γX) = T (X) ∩
S(X) = 0. Thus R is all of T (X).
To obtain the converse we prove that g∗σ = λσ with λ 6= 1
implies that 1 is not an eigenvalue of g∗ on T (X). In fact

γX(x) = (g∗σ, g∗x) = λγX(g∗x),

i. e. g∗x 6= x.
(2) The preceeding arguments show that every nontrivial element

ofG/G0 has no eigenvalue 1 on T (X) and hence also on T (X)⊗
Q, this implies our claim.
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�

As a consequence we have the following:

Corollary 7.1.5 (Oguiso, Schröer, [70]). Let X be a Hyperkähler
manifold and let ϕ ∈ Aut(X) be an automorphism of finite order m
such that ϕ(σX) = ωσX , where ω is a primitive m-th root of unity.
Then the following hold:

• m ≤ 66 and φ(m) ≤ 22 if X is of K3[n]-type.
• m ≤ 18 and φ(m) ≤ 6 if X is of Kummer n-type.
• m ≤ 18 and φ(m) ≤ 7 if X is deformation equivalent to Og6.
• m ≤ 66 and φ(m) ≤ 23 if X is deformation equivalent to Og10.

Remark 7.1.6. Let us stress that if X is of K3[n]-type and ϕ is as
above then only m = 23 and m = 46 cannot be obtained via standard
automorphisms.

To obtain stronger results we will need one more definition:

Definition 7.1.7. Let X be a Hyperkähler manifold and let G ⊂
Auts(X). We say that G is quadratically nontrivial if G = ν(G) = G.
Furthermore we say that G is discriminant preserving if its induced
action on the discriminant group of H2(X,Z) is trivial.

Before proceeding further let us briefly analyze what this two con-
ditions imply in the known cases:
If X is a manifold of K3[n]-type then there are no quadratically trivial
automorphisms by Lemma 7.1.3, moreover the discriminant group
of Ln ∼= H2(X,Z) has only a few isometries given by multiplying
1 ∈ Z/(2n−2) by a square root of 1 in Z/(2n−2). Therefore all groups
of odd order are discriminant preserving.
If X is a manifold of Kummer n-type then quadratically trivial au-
tomorphisms form a group isomorphic to the semidirect product of
(Z/(n+1))

4 and Z/(2), see [11]. Again isometries of the discriminant
groups of LK.n ∼= H2(X,Z) have order 1 or 2 and are multiplication by
a square root of 1 in Z/(2n+2). Therefore all groups of odd order are
discriminant preserving.
IfX is deformation equivalent toOg6 orOg10 then it is not known which
automorphisms can act trivially on the second cohomology. However in
the six dimensional case there are only two isometries of the discrim-
inant group of LO.6 ∼= H2(Og6,Z), namely the identity and the one
induced by exchanging the two copies of (−2) inside LO.6. This implies
that once more all odd order automorphism groups are discriminant
preserving. Finally for the 10 dimensional case there are no nontrivial
isometries of the discriminant group of LO.10

∼= H2(Og10,Z), therefore
all groups are discriminant preserving.

Let now G be a group of automorphisms such that G = G0 and G
is finite.
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Lemma 7.1.8. Let X be a Hyperkähler manifold and let G ⊂ Auts(X)
be a group such that G is finite. Then the following assertions are true:

(1) SG(X) = SG(X) is nondegenerate and negative definite.
(2) T (X) ⊂ TG(X) and SG(X) ⊂ S(X).
(3) Suppose G is discriminant preserving. Then G acts trivially

on ASG(X).

Proof. The second assertion is an immediate consequence of Lemma
7.1.4 because G acts as the identity on σ and therefore on all of T (X).
To prove that SG(X) and TG(X) are nondegenerate let H2(X,C) =
⊕ρUρ be the decomposition in orthogonal representations of G, where
Uρ contains all irreducible representations of G of character ρ inside
H2(X,C). Obviously TG(X) = UId|Z and SG(X) = H2(X,Z)∩⊕ρ 6=IdUρ,
which implies they are orthogonal and of trivial intersection. Hence
they are both nondegenerate.
Since G is finite there exists a G-invariant Kähler class ωG given by∑

g∈G gω, where ω is any Kähler class on X. Therefore we have:

σC⊕ σC⊕ ωGC ⊂ TG(X)⊗ C.

Hence the lattice SG(X) is negative definite.
To prove the last assertion let us proceed as in Lemma 2.3.3, i. e. let us
choose a primitive embedding of H2(X,Z) into an unimodular lattice
M of signature (4, r), where r ≥ b2(X) − 3. And let us extend the
action of G trivially outside the image of H2(X,Z). Therefore SG(X) ∼=
SG(M) and ASG(M)

∼= ATG(M), where the isomorphism is G-equivariant.
G acts trivially on TG(M), thus its induced action on ATG(M) is trivial.
Using the G-equivariant isomorphism we have that G acts trivially also
on ASG(M) = ASG(X).

Let us specify that M = U4 ⊕ E8(−1)2 if X is of K3[n]-type, M = U4

if X is of Kummer n-type, M = U4 ⊕ E8(−1) if X is deformatione
equivalent to Og6 and M = U4⊕E8(−1)3 if X is deformation equivalent
to Og10.

�

In the rest of this section we will not consider anymore manifolds
of K3[n]-type, they will be analyzed in greater detail in Section 7.2
and Section 7.3. Now we wish to provide some restriction on possible
finite groups G = ν(G), G ⊂ Auts(X):

Proposition 7.1.9. Let X be a Hyperkähler manifold and let G ⊂
Auts(X) be a group such that G = ν(G) is finite and discriminant
preserving. Then there exists an embedding SG(X)→ P and G extends
to a group of isometries of P acting trivially on SG(X)⊥P . Here P is
as follows:

• E8(−1) if X is of Kummer n-type.
• E8(−1)2 or D+

16(−1) if X is deformation equivalent to Og6.
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• U ⊕ Λ if X is deformation equivalent to Og10.

Proof. Since the group G is discriminant preserving we have that
SG(X) is negative definite and G acts trivially on ASG(X). We will
embed H2(X,Z) in an unimodular lattice W , let us look separately at
the 3 cases:

Kn(T ) Let us give an embedding LK,n → U4 and let T = SG(X)⊥U4 .
Since T is the unimodular complement of SG(X) it has the
same discriminant group and G acts trivially on it, therefore
we can estend G to a group of isometries of U4 acting trivially
on T . Let r ≤ 4 be the rank of SG(X) and let m = l(ASG(X)) ≤
4. By Lemma 2.1.8 there exists a negative definite lattice T ′

of rank 8− r and discriminant group ASG(X) with the opposite
discriminant form. Therefore by Lemma 2.1.7 there exists a
primitive embedding SG(X)→ P , where P is an even negative
definite unimodular lattice of rank 8 (i. e. E8(−1)) and G
extends to a group of isometries of E8(−1) acting trivially on
the orthogonal complement T ′.

Og6 The proof is similar, this time we embed LO.6 in U5 and we
have that G extends to O(U5) satisfying SG(U5) = SG(X) and
TG(U5) = T . Let r ≤ 5 be the rank of SG(X) and let m =
l(ASG(X)) ≤ 5. Again by Lemma 2.1.8 we have a negative
definite lattice T ′ of discriminant group ASG(X) and opposite
discriminant form. However this time if m = 5 it has rank
16 − r. Therefore by Lemma 2.1.7 there exists a primitive
embedding SG(X)→ P , where P is an even negative definite
unimodular lattice of rank 16 (i. e. E8(−1)2 or D+

16(−1)) and
G extends to a group of isometries of P acting trivially on the
orthogonal complement T ′.

Og10 The proof goes the same, this time we embed LO,10 into R =
U5 ⊕ E8(−1)2 and we remark that TG(R) contains the lat-
tice A2, therefore by Remark 2.1.9 we have rank(SG(X)) +
l(ASG(X)) ≤ 25, which implies by Lemma 2.1.7 that SG(X)
embeds into an unimodular lattice of rank 26 and signature
(1, 25). Since all of these lattices are isometric we obtain our
claim.

�

Let us remark that we choose to embed SG(Og10) into an indefinite
lattice for two reasons: the first is that otherwise we would have had
to choose a definite lattice of rank 32, which number in the millions.
The second is that the isometry group of U ⊕ Λ has been studied in
greater detail (see [17, Chapter 27]).
Using the group structure of definite lattices and the cyclotomic struc-
ture of some coinvariant lattices we are able to prove the following:
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Corollary 7.1.10. Let X be a Hyperkähler manifold of Kummer
n-type and let ϕ ∈ Auts(X) be an automorphism such that ν(ϕ) has
prime order p. Then p ≤ 5. Moreover if p = 5 we have Sϕ(X) ∼=
A4(−1).

Proof. The first trivial remark is that an odd order automorphism
is discriminant preserving, hence Sϕ(X) is negative definite and ϕ acts
trivially on ASϕ(X). By Remark 2.3.2 Sϕ(X) can be given the struc-
ture of a Dp-lattice as in Remark 2.2.3, which implies rank(Sϕ(X)) =
(p−1)m ≤ 4, therefore p ≤ 5. If p = 5 then Sϕ(X) is a rank 1 D5-lattice,
thus by Example 2.2.10 it is a multiple ofA4. By looking at conjugacy
classes of isometries of E8 one easily sees that Sϕ(X) = A4(−1). �

Corollary 7.1.11. Let X be a Hyperkähler manifold deformation
equivalent to Og6 and let ϕ ∈ Auts(X) be an automorphism such that
ν(ϕ) has prime order p. Then p ≤ 5. If p = 5 we have Sϕ(X) ∼=
A4(−1).

Proof. As in Corollary 7.1.10 we have p ≤ 5 due to the limi-
tation rank(Sϕ(X)) ≤ 5 and we can proceed in the same way for the
case p = 5. �

Corollary 7.1.12. Let X be a Hyperkähler manifold of deforma-
tion equivalent to Og10 and let ϕ ∈ Auts(X) be an automorphism such
that ν(ϕ) has prime order p. Then p ≤ 19. Moreover if p ≥ 13 then
Sϕ(X) ∼= Ap−1(−1).

Proof. As in Corollary 7.1.10 we have p ≤ 19 due to the limita-
tion rank(Sϕ(X)) ≤ 21 and in cases p = 13, 17 or p = 19 we would get
a rank 1 negative definite Dp-lattice Ap−1(n). However if n 6= −1 these
lattices do not embed primitively into H2(X,Z), therefore n = −1. �

7.2. The K3[2]-type case

In this section we provide a specialization of the results of Sec-
tion 7.1 to manifolds of K3[2]-type . This section provides the closest
possible generalization of Chapter 3. We are in fact able to give clas-
sification results for prime order symplectic automorphisms and also
to give a way to compute Coinvariant lattices of symplectic automor-
phisms. We wish to remark that in this case the map ν of (7.1) is
injective, therefore we will not distinguish between G and G. Moreover
the discriminant group of H2(X,Z) = L is Z/(2) if X is of K3[2]-type
, therefore it has no nontrivial isometries, i. e. all possible groups of
isometries G are discriminant preserving. Let us suppose that G is a
finite group of automorphisms such that G = G0.

Lemma 7.2.1. Let X be a manifold of K3[2]-type and let G ⊂
Auts(X) be a finite group. Then the following assertions are true:

(1) SG(X) is nondegenerate and negative definite.
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(2) SG(X) contains no element with square -2.
(3) T (X) ⊂ TG(X) and SG(X) ⊂ S(X).
(4) G acts trivially on ASG(X).

Proof. By Lemma 7.1.8 we need only to prove the second asser-
tion. Assume on the contrary that we have an element c ∈ SG(X) such
that (c, c) = −2. Then by Theorem 1.3.7 it is known that either ±c
or ±2c is represented by an effective divisor D on X. Let D′ =

∑
g∈G gD

which is also an effective divisor on X, but [D′] ∈ SG(X) ∩ TG(X) =
{0}. This implies D′ is linearly equivalent to 0, which is impossible. �

Notice that this amounts to saying that (SG(X), G) is a negative
definite Leech couple in the sense of Definition 2.5.1.

Now we can use Theorem 1.2.12 to give sufficient conditions for
an isometry ψ of L to be induced by a birational map ψ′ of some
marked Hyperkähler manifold (X, f) such that f ◦ψ′∗ ◦ f−1 = ψ. Thus
we obtain a generalization of Theorem 3.2.1:

Theorem 7.2.2. Let G be a finite subgroup of O(L). Suppose that
the following hold:

(1) SG(L) is nondegenerate and negative definite.
(2) SG(L) contains no element with square (−2).

Then G is induced by a subgroup of Bir(X) for some manifold (X, f)
of K3[2]-type.

Proof. By the surjectivity of the period map and by Lemma
7.2.1 we can consider a marked K3[2]-type 4-fold (X, f) such that

T (X)
f→ TG(L) is an isomorphism and also S(X)

f→ SG(L) is.
Let g ∈ G, let us consider the marked varieties (X, f) and (X, g ◦ f).
They have the same period in Ω and hence by Theorem 1.2.12 we
have f−1 ◦ g ◦ f = Γ∗. Here Γ = Z +

∑
j Yj in X × X, where Z is

the graph of a bimeromorphic map from X to itself and Yj’s are cycles
with codim(πi(Yj)) ≥ 1.
We will prove that all Yj’s contained in Γ have codim(πi(Yj)) > 1,
thus implying Γ∗ = Z∗ on H2

Z. We know those of codimension 1 are
uniruled and effective, moreover it is known (see Proposition 1.3.3)
that uniruled divisors cut out the closure of the birational Kähler cone
BKX , i. e. (α,D) ≥ 0 for all α ∈ BKX and for all uniruled D. We wish
to remark that the manifold X we chose has BKX = CX by Theorem
1.3.8 (it contains no -2 divisors).
Let β ∈ CX be a Kähler class and let D ∈ Pic(X) be a uniruled divisor,
we can write

β = α + γ, f(α) ∈ TG(L)⊗ R, f(γ) ∈ SG(L)⊗ R.

Hence 0 < (β,D) = (γ,D) and moreover we have (f−1 ◦ g ◦ f(β), D) =
(f−1 ◦ g ◦ f(γ), D) = (γ, f−1 ◦ g−1 ◦ f(D)) ≥ 0 because f−1 ◦ g ◦ f(β) ∈
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BKX and D is uniruled. Here is the contradiction:

0 < (β,
∑
h∈G

f−1 ◦ h ◦ f(D)),

which implies 0 6= D′ =
∑

h∈G hD ∈ f−1(TG(L) ∩ SG(L)) = 0, hence
there are no uniruled divisors inside Pic(X). Moreover we obtain Γ∗ =
Z∗, i. e. there exists a bimeromorphic map ψ′ of X such that ψ′∗ =
f−1 ◦ g ◦ f on H2(X). �

Proposition 7.2.3. Let (S,G) be a couple consisting in a Leech-
type lattice and its Leech automorphism group as in Definition 2.5.1.
Let moreover S ⊂ N , one of the 24 Niemeier lattices.
Suppose there exists a primitive embedding S → L.
Then G extends to a group of bimeromorphisms on some Hyperkähler
manifold X of K3[2]-type.

Proof. This is an immediate consequence of Theorem 7.2.2: G
acts trivially on AS, therefore we can extend G to a group of isometries
of L acting trivially on S⊥L . Thus we have SG(L) ∼= S. Moreover since
S is a Leech-type lattice contained in a negative definite lattice N the
other conditions of Theorem 7.2.2 are satisfied. �

We are now ready to prove the main result of this section:

Theorem 7.2.4. Let X be a Hyperkähler manifold of K3[2]-type
and let G be a finite group of symplectic automorphisms of X, then
G ⊂ Co1.

Proof. Let b = Rank(SG(X)), by Lemma 7.2.1 SG(X) has sig-
nature (0, b). By Remark 2.3.4 we have a lattice T ′ of signature
(4, 20 − b) such that AT ′ = ASG(X) and qT ′ = −qASG(X)

. Therefore we

can apply Lemma 2.1.8 obtaining a lattice T of signature (0, 24− b)
and discriminant form −qASG(X)

. Thus by Lemma 2.1.7 there exists a

primitive embedding SG(X)→ N , where N is one of the lattices con-
tained in Table 2.5. Again by Lemma 7.2.1 we see that (SG(X), G)
is a Leech couple, hence G lies inside the Leech group of N . A di-
rect computation using the 23 holy constructions shows that all these
groups are contained in Co0. Obviously the central involution of Co0

has a co-invariant lattice of rank 24, hence we can restrict ourselves to
Co1. �

7.2.1. Prime order symplectic automorphisms in the K3[2]-
type case. The aim of this subsection is to give a first application
of Theorem 7.2.4, i. e. the classification of prime order symplectic
automorphisms on manifolds of K3[2]-type up to their fixed locus and
their co-invariant lattice. Let us first give a bound to the possible prime
orders:
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Lemma 7.2.5. Let ϕ be a symplectic automorphism of prime order
p on a Hyperkähler fourfold X of K3[2]-type . Then p ≤ 11.

Proof. By Theorem 7.2.4 the order of a symplectic automor-
phism must divide the order of the group Co1. That sorts out all
primes apart for 2, 3, 5, 7, 11, 13, 23. An automorphism of order 23 has
a co-invariant lattice which is negative definite and of rank 22, therefore
it cannot embed into H2(X,Z). This can be explicitly computed using
an order 23 element of M24 and letting it act on Λ or on N23, other-
wise we can just rely on Example 2.2.10 for a different method. The
only Niemeier lattice with an automorphism of order 13 is Λ, where all
elements of order 13 are conjugate. It is a well known fact that these
automorphisms have no fixed points on Λ, as in Example 2.5.7 or as
in Example 2.2.9.

�

Then we need to analyze what happens only for p ≤ 11, however
our result for p = 2 can be proven separately without using Theorem
7.2.4:

Proposition 7.2.6. Let X be a manifold of K3[2]-type and let ϕ ⊂
Aut(X) be a symplectic involution. Then Xϕ consists of 28 isolated
points and a K3 surface and Sϕ(X) ∼= E8(−2).

Proof. First of all by Theorem 6.2.3 we have that Xϕ con-
sists of 28 isolated points and a K3 surface and Sϕ(X) has rank 8.
We now define an isometry ϕ of L′ as in Remark 2.3.4 such that
Sϕ(X) ∼= Sϕ(X), hence l(Sϕ(L′)) ≤ 8, and so does its unimodular
complement Tϕ(L′). This means that we can apply Lemma 2.1.1 ob-
taining Tϕ(L′) = U ⊕T ′, which means that we can define an involution
of U3⊕E8(−1)2 having Sϕ(X) as the anti-invariant lattice. By Lemma
7.2.1 this involution satisfies the conditions of Theorem 3.2.1 which
implies that this involution on U3⊕E8(−1)2 is induced by a symplectic
involution ψ on some K3 surface S and hence also Sψ(S) ∼= Sϕ(X).
Thus, by the work of Morrison on involutions [52], we know Sϕ(X) =
E8(−2). �

Then we can proceed to prove our result.

Theorem 7.2.7. Let ϕ be a symplectic automorphism of prime or-
der p on a Hyperkähler fourfold X of K3[2]-type . Then the following
holds:

Proof. This result for p = 2 is contained in Proposition 7.2.6.
By Theorem 7.2.4 and its proof it is sufficient to look at all possible
Leech couples (S, ϕ) where S is in a Niemeier lattice N and ϕ is a prime
order isometry inside Aut(N)/W (N). First of all let us work on the
co-invariant lattice. For p = 3 we obtain our result by Proposition
2.6.7 and Theorem 6.2.4. For p = 5 this is proven by Proposition
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p Fixed locus Xϕ Lattice Sϕ(X)
2 1 K3 surface and 28 isolated points E8(−2)
3 27 isolated points K12(−2), as in Example 2.2.6
3 1 abelian surface W (−1) as in Example 2.2.11
5 14 isolated points S5.K3 as in Example 2.2.7
7 9 isolated points S7.K3 as in Example 2.2.8
11 5 isolated points S11.K3[2] as in Example 2.5.9

2.6.8 and Theorem 6.2.9. For p = 7 this is precisely Proposition
2.6.9. Finally we already proved the result for p = 11 in Example
2.5.9 and Example 2.5.8. For the fixed locus we still need to prove
the result for p = 3, 7 and 11, however this is just Proposition 6.2.8,
Proposition 6.2.15 and Proposition 6.2.16. �

As a consequence we have an improvement of Theorem 5.2.11:

Corollary 7.2.8. Let (X,ϕ) be a couple consisting in a Hyperkähler
manifold and a symplectic automorphism of order i = 2, 3, 5. If i = 3
suppose moreover that Xϕ consists of 27 isolated points. Then (X,ϕ)
is standard.

Proof. By Theorem 7.2.7 these hypothesis are equivalent to
those of Theorem 5.2.11, therefore the claim holds. �

7.3. The K3[n]-type case

In this section we specialize to the case of manifolds of K3[n]-type.
The results in this section are similar to those of Section 7.2, however
we cannot compute the fixed locus of prime order symplectic automor-
phisms since the computations of Chapter 6 are not possible in this
more general setting. We keep the notation Ln ∼= H2(X,Z) for X a
manifold of K3[n]-type . Let us recall that also in this case the map
(7.1) is injective. Let us recall that in Definition 1.3.5 we defined a
class NExc of numerically exceptional divisors which have an effective
power by Theorem 1.3.7. Let us give a further definition:

Definition 7.3.1. LetX be a manifold ofK3[n]-type and letME(X)
be the set of elements v in S(X) such that mv ∈ NExc(X) for some
m.

Lemma 7.3.2. Let X be a manifold of K3[n]-type . Let moreover
G ⊂ Auts(X) be a finite group. Then the following hold:

• SG(X) is nondegenerate and negative definite.
• SG(X) ∩ME(X) = ∅.
• T (X) ⊂ TG(X) and SG(X) ⊂ S(X).
• Suppose moreover that G is discriminant preserving, then G

acts trivially on ASG(X).
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Proof. Apart for the second assertion everything has been proven
in Lemma 7.1.8. The elements of ME(X) have a multiple which is
effective, therefore we can reason as in Lemma 7.2.1 to conclude that
they cannot be inside SG(X). �

Theorem 7.3.3. Let n ≥ 2. Let Ln be as above and let G be a
finite subgroup of O(Ln). Suppose that the following hold:

(1) SG(Ln) is nondegenerate and negative definite.
(2) SG(Ln) ∩ h(ME(Y )) = ∅ for all marked manifolds (Y, h) of

K3[n]-type .

Then G is induced by a subgroup of Birs(X) for some manifold (X, f)
of K3[n]-type .

Proof. We can proceed as in Theorem 7.2.2 choosing (X, f) as
a manifold with f(T (X)) = TG(Ln). Again we have BKX = CX by
Theorem 1.3.8 and we prove in the same way that all elements of G
are induced by a (symplectic) birational morphism of X. �

Theorem 7.3.4. Let X be a manifold of K3[n]-type and let G ⊂
Auts(X) be a finite discriminant preserving group. Then there exists
and embedding SG(X) → N , where N is one of the 24 Niemeier lat-
tices and G extends to a group of isometries of N acting trivially on
SG(X)⊥N . Moreover G ⊂ Leech(N) ⊂ Co1.

Proof. The proof goes as in Theorem 7.2.4. Since we have no
−2 vectors inside SG(X) (they would be in ME(X)), we obtain G ⊂
Leech(N) ⊂ Co1. �

Corollary 7.3.5. Let X be a manifold of K3[n]-type and let ϕ ∈
Auts(X) be of prime order p 6= 2. Then one of the following holds:

p Lattice Sϕ(X)
3 S3.exo, as defined in Example 2.5.4
3 K12(−2), where K12 is as in Example 2.2.6
3 W (−1) as in Example 2.2.11
5 S5.K3 as in Example 2.2.7
5 S5.exo as in Example 2.3.9
7 S7.K3 as in Example 2.2.8

11 S11.K3[2] as in Example 2.5.9

Proof. This is just a direct consequence of Proposition 2.6.7,
Proposition 2.6.8, Proposition 2.6.9 and Example 2.5.9. �

Remark 7.3.6. A comparison between Corollary 7.3.5 and The-
orem 7.2.7 shows that the cases in the corollary might not happen in
some dimensions, let us look a little more into this. Obviously all the
cases corresponding to standard automorphisms exist in all possible
dimensions, as the examples 4.2.1, 4.3.1 and 4.4.1 show. To analyze
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all of the other cases we must embed the lattices Si contained in Ta-
ble 7.3.5 inside the Mukai lattice L′ and look at their orthogonal: if
it represents the integer 2(n − 1) with a primitive vector then there
exists a primitive embedding of Si inside Ln, i. e. by Theorem 7.3.3
there exists a Hyperkähler manifold of K3[n]-type having a birational
morphism ϕ such that Sϕ ∼= Si. We will compute what happens up to
n = 9, let us look at all cases one by one:

Si = W (−1) In this case we will look at a greater lattice: let F be the or-
thogonal inside Λ to the S-lattice 2936. Then W (−1) ⊂ F by
2936 ⊂ 227336. Let us now embed F into L′ and let T = F⊥L .
A necessary condition for W (−1) → Ln is that 2(n − 1) is
represented by a primitive vector of T . By Example 2.3.10
T ∼= A2⊕A2(3) and a direct computation shows that it repre-
sents the integers 2, 6, 8 and 14, therefore W (−1) primitively
embeds into L,L4, L5 and L8 but might not embed into L3, L6

and L7.
Si = S3.exo Let us fix an embedding Si → L′ and let T = S⊥i . Suppose

that the integer r is represented by a primitive element of
T , then the lattice T ′ = r⊥T exists, which in turn implies
l(AT ′) ≤ 7, therefore by Lemma 2.1.6 r must be a multiple
of 3, i. e. Si → Ln implies n = 3m+ 1.

Si = S5.exo Let us fix an embedding B → L′ and let T = B⊥. By Exam-
ple 2.3.9 T is in the same genus of the S-lattice 25310(−1),
however there is only one lattice in this genus, which we recall
is 

4 1 1 −1
1 4 −1 1
1 −1 4 1
−1 1 1 4

 .

A direct computation shows that its primitive vectors repre-
sent the integers 4, 6, 10, 12, 14 and 16 but not 8, therefore it
does not embed into L5.

Si = S11.K3[2] Let us fix an embedding S11.K3[2] → L′ and let T = S⊥
11.K3[2] .

T has determinant 121 and, by [62], there is only one genus
of such lattices, containing the following:

4 2 1 0
2 4 1 1
1 1 4 2
0 1 2 4

 ,


2 1 1 0
1 2 1 1
1 1 8 4
0 1 4 8

 ,


2 0 1 0
0 2 0 1
1 0 6 0
0 1 0 6

 .

A direct computation shows that the integers 2, 4, 6, 8, 10, 12, 14
and 16 are represented by these lattices, therefore S11.K3[2] em-
beds into L,L3, L4, L5, L6, L7, L8 and L9.
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7.4. Examples revisited

In this section we look back at the examples of Chapter 4 and we
use our classification results to compute the Picard lattice of several of
our examples.

7.4.1. Standard automorphisms. Let us look at the automor-
phisms defined in the examples 4.1.2, 4.2.2, 4.2.3, 4.3.2 and 4.3.3. By
Corollary 7.2.8 all of these automorphisms are standard. We can
easily compute the Neron-Severi lattice S(X) for the generic elements
of the families in the above examples. Let X be a generic Fano scheme
of lines defined in Example 4.1.2 and let ϕ be its symplectic involu-
tion. Then S(X) is an overlattice of (6)⊕E8(−2) by Theorem 7.2.7
and Remark 4.0.1. However there are no nontrivial overlattices of it,
therefore we have S(X) = (6)⊕ E8(−2).
LetX be a generic Fano scheme of lines satisfying the hypothesis of Ex-
ample 4.2.2 or of Example 4.2.3 and let ϕ be its symplectic automor-
phism of order 3. Then S(X) is an overlattice of (6)⊕K12(−2) by The-
orem 7.2.7 and Remark 4.0.1. However also in this case there are no
nontrivial overlattices of it, therefore we have S(X) = (6)⊕K12(−2).
Analogously let X be a generic Double-EPW-sextic satisfying the hy-
pothesis of Example 4.2.4 and let ϕ be its symplectic automorphism
of order 3. Then S(X) is an overlattice of (2)⊕K12(−2) by Theorem
7.2.7 and Proposition 1.4.7. However also in this case there are no
nontrivial overlattices of it, therefore we have S(X) = (2)⊕K12(−2).
Let X be a generic Fano scheme of lines satisfying the hypothesis of
Example 4.3.2 and let ϕ be its symplectic automorphism of order
5. Then S(X) is an overlattice of (6)⊕ S5.K3 by Theorem 7.2.7 and
Remark 4.0.1. However also in this case there are no nontrivial over-
lattices of it, therefore we have S(X) = (6)⊕ S5.K3.
Finally let X be a generic Double-EPW-sextic satisfying the hypothe-
sis of Example 4.3.3 and let ϕ its symplectic automorphism of order
5. Then S(X) is an overlattice of (2)⊕ S5.K3 by Theorem 7.2.7 and
Proposition 1.4.7. However also in this case there are no nontrivial
overlattices of it, therefore we have S(X) = (2)⊕ S5.K3.

7.4.2. Fano scheme of lines on Fermat’s cubic. Let us look
back at the Fano scheme of lines F defined in Example 4.2.7, and
let G = (Z/(3))

4.A6 be the group of symplectic automorphisms of F
contained in that example. By Theorem 7.2.4 we can evaluate the
action ofG onH2(X,Z) by looking at its action on the Niemeier lattices
N . Since G ⊂ Leech(N) only if N = Λ and since there is only one
conjugacy class of G inside Co1 we have that SG(F ) ∼= (2936)⊥Λ , where
2936 is the S-lattice of Example 2.3.10. A direct computation using
primitive embeddings of SG(F ) into the Mukai lattice L′ as in Remark
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7.3.6 shows that TG(F ) = (6) ⊕ A2(3). Therefore we have T (F ) ∼=
A2(3) and S(F ) ∼= (−2)⊕ A2(−3)⊕ U ⊕ E8(−1)2.

7.4.3. Exotic automorphism of order 3. In our classification
of Theorem 7.2.7 we proved that there exists an automorphism ϕ
of order 3 which fixes an abelian surface. Moreover it is defined on
manifolds belonging to a 3-dimensional subset M3.exo of the Moduli
space of manifolds of K3[2]-type . A projective example of these au-
tomorphisms is given by Example 4.2.6. We also proved that it has
Sϕ(X) ∼= W (−1) for all X ∈ M3.exo. Therefore Tϕ(X) has discrimi-
nant 2 · 35 and its discriminant group is Z/(6) × (Z/(3))

4 which has 5
generators. Let us suppose that X is projective: thus there exists a
polarization v ∈ Tϕ(X). However v2 must be a multiple of 3, otherwise
v⊥ ⊂ Tϕ(X) would have a discriminant group with 5 generators and
rank 4, which is impossible. This implies that automorphisms of order
3 which fix a surface cannot be found on Double EPW-sextics, vari-
eties of sums of powers or subspaces of the Grassmannian where the
automorphism preserves their natural polarization (i. e. it is induced
by an automorphism of P5 or of the Grassmannian respectively). This
implies that the double EPW-sextics in Example 4.2.5 cannot be
resolved while preserving their automorphisms.

7.4.4. Automorphisms of order 11. In this subsection we an-
alyze deformation classes of manifolds of K3[2]-type with a symplectic
automorphism of order 11 and we look at their possible invariant po-
larizations. Let X be a manifold of K3[2]-type with a symplectic auto-
morphism ψ of order 11 and let ω be a ψ-invariant Kähler class. First
of all let us remind that Theorem 7.2.7 implies that non trivial de-
formations of (X,ψ) are of maximal dimension 1, moreover the twistor
family TWω(X) is naturally endowed with a symplectic automorphism
of order 11 as in Remark 5.0.2. Therefore TWω(X) is already a fam-
ily of the maximal dimension for such manifolds (X,ψ). Moreover we
have that the twistor family TWω(X) is actually a family over the base
P(Tψ(X)⊗ R) since Tψ(X) =< ω, σX , σX > ∩H2

Z(X).
Thus what we really need to analyze are the possible lattices Tψ(X) up
to isometry. We have already proved that there exists only one isometry
class of lattices Sψ(X). However there might be several isomorphism
classes of lattices Tψ(X). In fact Theorem 7.2.4 and Proposition
7.2.3 can be used only to compute its genus.
A direct computation shows that there are two such lattices, namely
the following:

(7.5) T 1
11 =

 2 1 0
1 6 0
0 0 22

 ,
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(7.6) T 2
11 =

 6 −2 −2
−2 8 −3
−2 −3 8

 .

Therefore there are 2 distinct families of Hyperkähler manifolds en-
dowed with a symplectic automorphism of order 11, let us call TW (X1)
the first and TW (X2) the second. Another direct computation shows
that Tψ(X) has a primitive element of square 2 only if we are in case
(7.5), therefore the Double-EPW-sextic of Example 4.5.2 belongs to
TW (X1). Moreover there is an element of square 6 and divisibility
2 in Tψ(X) only in case (7.6), therefore the Fano scheme of lines of
Example 4.5.1 belongs to TW (X2).
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Set of abelian groups of symplectic
automorphisms on some K3

surface, GalgK3 , 44
Set of groups of symplectic

automorphisms on some K3

surface, GalgK3 , 44
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