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Introduction

To algebraic topologists, the cohomology of classifying spaces of linear
algebraic groups (or, equivalently, of compact Lie groups) has been an im-
portant object of study for a long time. Let G a topological group and X a
topological G-space; Armand Borel ([1]) defined the equivariant cohomology
ring with coefficient in a commutative ring k as

H∗
G(X; k) := H∗ (

(X × EG)/G; k
)

where EG→ BG is the universal principal G-bundle and the left-hand side
is the usual cohomology ring; in particular, H∗

G := H∗
G(pt) is identified with

the integral cohomology of the classifying space of G (we will write H∗(X)
for the integral cohomology H∗(X; Z)).

Recently, Burt Totaro ([19]) has introduced an algebraic analogue of
this cohomology, the Chow ring of the classifying space of a linear algebraic
group G, denoted by A∗

G. There is a natural ring homomorphism A∗
G → H∗

G,
which is, in general, neither surjective not injective.

Rationally, the situation is very well understood. If G is a connected
algebraic group, then the homomorphism A∗

G⊗Q → H∗
G⊗Q is an isomor-

phism, and both rings coincide with the ring of invariants under the Weyl
group in the symmetric algebra of the ring of characters of a maximal torus;
this is classical, due to Leray and Borel, in the case of cohomology, and
to Edidin and Graham ([6]) for the Chow ring. Furthermore, this ring of
invariants is always a polynomial ring, as was shown by Chevalley. With
integral coefficients, the situation is much more subtle.

The Chow ring A∗
G has been computed for the classical groups GLn,

SLn, Spn, On or SOn, but not for the PGLn series. The results are as
follows. Each of the groups above comes with a tautological representation
V , of dimension n (or 2n, in the case of Spn). Every representation V of
an algebraic group G has Chern classes ci(V ) ∈ Ai

G. When G is a classical
group, we denote the Chern classes of the tautological representation simply
by ci.

Burt Totaro ([19]) and Rahul Pandharipande ([5]) described A∗
G when

G = GLn, SLn, Spn, On and SOn when n is odd. We will use the follow-
ing notation: if R is a ring, t1, . . . , tn are elements of R, f1, . . . , fr are
polynomials in Z[x1, . . . , xn], we write

R = Z[t1, . . . , tn]/
(
f1(t1, . . . , tn), . . . , fr(t1, . . . , tn)

)
to indicate the the ring R is generated by t1, . . . , tn, and the kernel of
the evaluation map Z[x1, . . . , xn] → R sending xi to yi is generated by f1,
. . . , fr. When there are no fi this means that R is a polynomial ring in the
ti.

First the case of the special groups.

Theorem (B. Totaro).
(1) A∗

GLn
= Z[c1, . . . , cn].
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(2) A∗
SLn

= Z[c2, . . . , cn].
(3) A∗

Spn
= Z[c2, c4, . . . , c2n].

The first two cases follow very easily from the well known description
via generators and relations of the Chow ring of a Grassmannian.

In all three cases, the Chow ring is isomorphic to the cohomology ring.

Theorem (R. Pandharipande, B. Totaro).
(1) A∗

On
= Z[c1, . . . , cn]/(2codd).

(2) If n is odd, then A∗
SOn

= Z[c2, . . . , cn]/(2codd).

The notation 2codd means “all the elements 2ci for i odd”; in a similar
way, if xi1 , . . . , xin are elements of R, the notation xodd (resp. xeven) will
mean “all the elements xi for i odd” (resp. “all the elements xi for i even”).

When n is odd, then On ' SOn × µ2, and this allows to obtain the
result for SOn from that for On. When n is even this fails, and the situation
is more complicated. Even rationally, the Chern classes of the tautological
representation do not generate the Chow ring, or the cohomology. It is
well known that when n = 2m, the tautological representation has an Euler
class εm ∈ H2m

SOn
, whose square is (−1)mcn: this class, together with the

even Chern classes c2, c4, . . . , cn−2 generate A∗
SOn

⊗Q = H∗
SOn

⊗Q. Totaro
noticed that when n = 4 the class ε2 is not in the image of A∗

SOn
; shortly

afterwards, Edidin and Graham ([8]) constructed a class ym ∈ Am
SOn

, whose
image in H∗

SOn
is, rationally, 2m−1εm.

Subsequently, Pandharipande computed A∗
SO4

: he showed that it is gen-
erated by c2, c3, c4 and y2, and gave the relations (his description of the
class y2 is different, but equivalent to that of Edidin and Graham). Finally,
in her Ph.D. thesis Rebecca Field obtained the general result ([9]), which is
as follows.

Theorem (R. Field). When n = 2m is even, then

A∗
SOn

= Z[c2, . . . , cn, ym]/
(
y2

m − (−1)m2n−2cn, 2codd, ymcodd

)
.

The PGLn series is much harder (this is an example of a universal phe-
nomenon, that of all the classical groups, these are the ones giving rise to
the deepest problems). For n = 2 we have that PGL2 = SO3, and for this
group everything is well understood. For n = 3 there is a difficult paper of
G. Vezzosi ([23]), where he describes A∗

PGL3
almost completely. Here is his

basic idea. The fundamental tool is the equivariant intersection theory that
Edidin and Graham ([7]) have forged starting from Totaro’s idea. Vezzosi
stratifies the adjoint representation sl3 of PGL3 by type of Jordan canonical
form, compute the Chow ring of each stratum, and then get generators for
A∗

PGL3
using the localization sequence for equivariant Chow groups. To get

relations he restricts to appropriate subgroups of PGL3. His technique has
been refined and improved by Angelo Vistoli in [24], where he studies the
Chow ring and the cohomology of the classifying space of PGLp, where p is
an odd prime.
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The purpose of the first part of this thesis, written in collaboration with
Angelo Vistoli ([15]) is to show how this stratification method provides
a unified approach to all the known results on the Chow ring of classical
groups over any field. Consider a classical group G with its tautological
representation V . Then one stratifies V in strata in which the stabilizers
are, up to an extension by a unipotent group, smaller classical group. Using
the localization sequence for equivariant Chow groups this gives generators
for the Chow rings, with relations that come out naturally. To show that
the relations suffice, one restricts to appropriate subgroups of G (a maximal
torus first, to show that the relations suffice up to torsion, then to some
finite subgroup to handle torsion).

In the second part we determine almost completely the Chow ring of
the complex spin group Spin8. It is well known that for n ≤ 6 the Spinn

are special and isomorphic to classical groups whose Chow ring is known, so
the first interesting spin group is Spin7. In [12] Pierre Guillot determined
almost completely the Chow ring of the classifying space of Spin7 localized
at (2). Using the stratification method, he firstly described the Chow ring
of the exceptional group G2; then he found generators and some relations of
A∗

Spin7
, and exploited the results on Brown-Peterson cohomology in [13] to

show that relations sufficies. To state his result, set ci := ci(A7), where A7

is the representation given by the projection Spin7 → SO7, and c′i := ci(S)
where S is the 8-dimensional spin representation. We use the following
notation: given a ring R, R 〈x1, . . . , xn〉 is the free R-module generated by
the elements x1, . . . , xn. Then Guillot proved the following:

Theorem (P. Guillot). There is an additive isomorphism

(A∗
Spin7

)(2) ' Z(2)[c4, c6, c
′
8]⊗

(
Z(2)

〈
1, c2, c′4, c

′
6

〉
⊕ Z/2 〈ξ3〉 ⊕ Z/2[c7] 〈c7〉

)
where ξ3 is a class of degree 3 that cannot be expressed in terms of Chern
classes; the products in (A∗

Spin7
)(2) are determined by the following relations:

ξ23 = 0
ξ3c7 = 0

ξ3(c4 − c′4) = 0

ξ3(c6 − c′6) = 0
ξ3c2 = 0

c22 − 4c4 =
8
3
(c′3 − c4)

c2(c′4 − c4) = 6(c′6 − c6)

c2(c′6 − c6) =
2
3
c4(c′4 − c4) + 16c′8

c′2c7 = δ1c6ξ3

c′4(c
′
4 − c4) = c4(c′4 − c4) + 36c′8
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c′4(c
′
6 − c6) = c4(c′6 − c6) + 6c2c′8

c7(c′4 − c4) = δ2c8ξ3

c′6(c
′
6 − c6) = c6(c′6 − c6) + c8(

8
3
c′4 +

4
3
c4)

c7(c′6 − c6) = 0.

Our approach is similar, but, besides the stratification method, we use
the triality action of S3 on Spin8. The group Spin8 has three 8-dimensional
representations, the first is the projection Spin8 → SO8 and the other two
are the half-spin representations S+, S−. The isomorphism classes of these
representations are exchanged by the full symmetric group S3. Set ci :=
ci(A8), where A8 is the representation given by the projection Spin8 → SO8,
and c±i := ci(S±). Here there is our main result, obtained from Corollary
8.7, Proposition 8.5, Lemma 8.6, Proposition 9.7, and Lemma 9.8 of Chapter
2:

Main Theorem.

A∗
Spin8

' Z[c2, c4, c6, c8, c+8 , ζ3, ζ
+
3 , ζ4, ζ

+
4 , ζ5, ζ6, ζ

+
6 , ζ8, ζ10]/R

where ζi, ζ+
i are elements of degree i, and R is the ideal generated by the

following elements:

2ζodd
2c7
2ζ+

3

c22 − 4c4 − 8ζ+
4 + 4ζ4

c2ζ4 − 2ζ6
c2ζ

+
4 − 2ζ+

6

c2ζ6 − 2c4ζ4 − 8ζ8 + 8c8
c2ζ

+
6 − 2c4ζ+

4 − 16c+8 + 4ζ8
c2ζ8 − 2ζ10
c2ζ10 − 2c4ζ8 − 8c+8 ζ4 + 4c8ζ+

4

ζ2
4 − 4c8
ζ4ζ

+
4 − 2ζ8

ζ4ζ6 − 2c2c8
ζ4ζ

+
6 − 2ζ10

ζ4ζ8 − 2c8ζ+
4

ζ4ζ10 − 2c8ζ+
6

(ζ+
4 )2 − 4c+8

ζ+
4 ζ6 − 2ζ10
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ζ+
4 ζ

+
6 − 2c2c+8

ζ+
4 ζ8 − 2c+8 ζ4
ζ+
4 ζ10 − 2c+8 ζ6
ζ2
6 − 4c8(c4 + 2ζ+

4 − ζ4)

ζ6ζ
+
6 − 2c4ζ8 − 8c+8 ζ4 + 4c8ζ+

4

ζ6ζ8 − 2c8ζ+
6

ζ6ζ10 − c8(c4ζ+
4 + 12c+8 − 2ζ8 − 8c8)

(ζ+
6 )2 − 4c+8 (c4 + 2ζ+

4 − ζ4)

ζ+
6 ζ8 − 2c+8 ζ6
ζ+
6 ζ10 − c+8 (2c4ζ4 + 8ζ8 − 8c8)

ζ2
8 − 4c8c+8
ζ8ζ10 − 2c2c8c+8
ζ2
10 − c8c

+
8 (4c4 + 8ζ+

4 − 4ζ4)

{αβ}α∈{ζodd,ζ+
3 },β∈{c7,ζodd,ζ+

3 }

{αβ}α∈{c2,ζeven,ζ+
even},β∈{ζodd,ζ+

3 }

c2c7 = δ1c6ζ
+
3 + δ3c6ζ3 + δ4c4ζ5

ζ4c7 + c8(δ5ζ3 + δ6ζ
+
3 )

ζ+
4 c7 + c+8 (δ2ζ+

3 + δ7ζ3)
ζ6c7 + δ8c8ζ5

ζ+
6 c7 + δ9c

+
8 ζ5

ζ8c7 + c8(δ10c4ζ3 + δ11c4ζ
+
3 + δ12ζ7)

ζ10c7 + c8(δ13c4ζ5 + δ14c6ζ3 + δ15c6ζ
+
3 ).

Here δi ∈ Z/2 are indeterminate coefficients, and δ1, δ2 are the same as in
[12, Proposition 9.1].

The indeterminate relations are of the same kind of that in [12]: they
are the products of c7 with elements of even degree.

Using this result we are able to compute the Chow ring of B Spin7

whitout localizing at (2) (see Proposition 9.10).

Acknowledgments. I thank warmly my thesis advisor Angelo Vistoli
for his availability, patience and his support in the difficult moments. Many
thanks also to Pierre Guillot and Nobuaki Yagita, who pointed out some
errors and gave me precious informations and suggestions.
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CHAPTER 1

The Chow ring of the classifying space
of classical groups

1. Preliminaries on equivariant intersection theory

In this section we recall some definitions and notations, and state some
tecnical results that will be used throughout this paper.

All schemes and algebraic spaces are assumed to be of finite type over
an fixed field k. Let G a g-dimensional linear algebraic group over k, and X
a smooth scheme over k with a G-action.

Edidin and Graham ([7]), expanding on the idea of Totaro, have defined
the G-equivariant Chow ring of X, denoted A∗

G(X), as follows. For each
i ≥ 0, choose a representation V of G with an open susbscheme U ⊂ V on
which G acts freely (in which case we call (V,U) a good pair for G), and
such that the codimension of V \ U is greater than i. The action of G on
X×U is also free, and the quotient (X×U)/G exists as a smooth algebraic
space; then Edidin and Graham define

Ai
G(X) := Ai

(
(X × U)/G

)
,

where the right hand term is the Chow group of classes of cycles of codi-
mension i (see [26] for the intersection theory on algebraic spaces). This
is easily seen to be independent of the good pair (V,U) chosen. Moreover,
under mild hypoteses (see [7, Proposition 23]) the quotient (X×U)/G exists
as a smooth scheme, so Ai

(
(X ×U)/G

)
is the usual Chow group defined in

[3]. Then one sets

A∗
G(X) :=

⊕
i≥0

Ai
G(X).

If G acts freely on X, then there is a quotient X/G as an algebraic space
of finite type over k, and the projection X → X/G makes X into a G-
torsor over X/G; in this case the ring A∗

G(X) is canonically isomorphic to
A∗(X/G).

Totaro’s definition of the Chow ring of a classifying space is a particular
case of this, as

A∗
G := A∗

G(Spec k).

The formal properties of ordinary Chow rings extend to equivariant
Chow rings. We recall briefly the properties that we need, which will be
used without comments in the paper, referring to [7] for the details.

9
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If f : X → Y is an equivariant morphism of smooth G-schemes there is
an induced ring homomorphism f∗ : A∗

G(Y ) → A∗
G(X), making A∗

G into a
contravariant functor from smooth G-schemes to graded commutative rings.
Furthermore, if f is proper there is an induced homomorphism of groups
f∗ : A∗

G(X) → A∗
G(Y ); the projection formula holds.

There is also a functoriality in the group: if φ : H → G is a homomor-
phism of algebraic groups, the action of G on X induces an action of H on
X, and there is homomorphism of graded rings

A∗
G(X) −→ A∗

H(X),

defined as follows: suppose that (U, V ) (resp. (T,W )) is a good pair for
X relative to G (resp. relative to H), and let G act on V × W via g ·
(v, w) = (g · v, φ(g) · w) for g ∈ G, (v, w) ∈ V ×W . Then the projection
X × U × T → X × T induces a map

(X × U × T )/G −→ (X × T )/H

and pulling back along this map we obtain the desired ring morphism. When
H is a subgroup of G we will refer to this as a restriction homomorphism.

IfH is a subgroup ofG, then there is anH-equivariant embeddingX into
X ×G/H, defined in set-theoretic terms by sending x into (x, 1). Then the
composite of the restriction homomorphism A∗

G(X×G/H) → A∗
H(X×G/H)

with the pullback A∗
H(X ×G/H) → A∗

H(X) is an isomorphism.
Of paramount importance is the localization sequence; if Y is a closed

G-invariant subscheme of X, and we denote by i : Y ↪→ X and j : X\Y ↪→ X
the inclusions, then the sequence

A∗
G(Y ) i∗−→ A∗

G(X)
j∗−→ A∗

G(X \ Y ) −→ 0

is exact.
Furthermore, if E is a G-equivariant vector bundle on X, then by [7,

Lemma 1] (E × U)/G → (X × U)/G is a vector bundle, so we can define
equivariant Chern classes ci(E) ∈ Ai

G(X) as

ci(E) := ci

(
(E × U)/G

)
,

enjoying the usual properties. Also, the pullback A∗
G(X) → A∗

G(E) is an
isomorphism.

In particular, since the equivariant vector bundles over Spec k are the
representations of G, we get Chern classes ci(V ) ∈ Ai

G for every representa-
tion of G; and the pullback A∗

G → A∗
G(V ) is an isomorphism.

We also need other easy properties of equivariant Chow rings, for which
we do not have a suitable reference.

Lemma 1.1. Let G a linear algebraic group, X a smooth G-scheme, H
a normal algebraic subgroup G. Suppose that the action of H on X is free
with quotient X/H. Then there is canonical isomorphism of graded rings

A∗
G(X) ' A∗

G/H(X/H).
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Proof. Let (V,U) be a good pair for G, such that the codimension of
V \ U is greater then i. Then

Ai
G(X) = Ai

(
(X × U)/G

)
= Ai

(
((X × U)/H)/(G/H)

)
= Ai

G/H

(
(X × U)/H

)
.

Now, the quotient (X × V )/H is a G/H-equivariant vector bundle over
X/H, (X × U)/H is an open subscheme of (X × V )/H whose complement
has codimension larger than i. This yields isomorphisms

Ai
G/H

(
(X × U)/H

)
' Ai

G/H

(
(X × V )/H

)
' Ai

G/H(X/H).

The resulting isomorphisms Ai
G(X) ' Ai

G/H(X/H) yield the desired ring
isomorphism A∗

G(X) ' A∗
G/H(X/H). n

Lemma 1.2. Let G be an affine linear group acting on a smooth scheme
X, E → X an equivariant vector bundle of rank r. Call E0 ⊆ E the
complement of the zero section of E. Then the pullback homomorphism
A∗

G(X) → A∗
G(E0) is surjective, and its kernel is generated by the top Chern

class cr(E) ∈ Ar
G(X).

Proof. Call s : X → E the zero-section. Then the statement follows
immediately from the exactness of the localization sequence

A∗
G(X) s∗−→ A∗

G(E) −→ A∗
G(E0) −→ 0,

from the fact that the pullback s∗ : A∗
G(E) → A∗

G(X) is an isomorphism,
and from the self-intersection formula, which implies that the composite
A∗

G(X) s∗−→ A∗
G(E) s∗−→ A∗

G(X) is multiplication by cr(E). n

Lemma 1.3. Let H a linear algebraic group with an isomorphism H ' An
k

of varieties, such that the for any field extension k ⊆ k′ and any h ∈ H(k′),
the action of h on Hk′ by multiplication is corresponds to an affine automor-
phism of An

k′ under the isomorphism above. Furthermore, let G be a linear
algebraic group acting on H via group automorphisms, that corresponds to
a linear action of G on An

k under this isomorphism.
If G acts on a smooth scheme X: form the semidirect product GnH, and

let GnH act on X via the projection GnH → G. Then the homomorphism

A∗
G(X) −→ A∗

GnH(X)

induced by the projection GnH → G is an isomorphism.

Proof. Let (V,U) (resp. (V ′, U ′)) be a good pair for GnH (resp. G).
Then GnH acts on U ′ via the projection GnH → G: it follows that GnH
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acts on X ×H × U × U ′, and since the action of GnH on H is transitive,
and the stabilizer of the origin is H, there is an isomorphism

(X ×H × U × U ′)/(GnH) = (X × (GnH)/H × U × U ′)/(GnH)

' (X × U × U ′)/G.

Look at the following commutative diagram:

(X ×H × U × U ′)/(GnH) //

π1

��

(X × U × U ′)/G

π2

��

(X × U × U ′)/(GnH)
f

// (X × U ′)/G.

Note that π1 is an affine bundle: in fact, it is a fiber bundle with fiber
isomorphic to An, and structure group G n H that acts on An by affine
transformations, since the action of G on H is affine and the action of H on
itself is affine. It follows from [11, p. 35] that π∗1 is an isomorphism. On the
other hand, since U × U ′ is an open set of V × V ′ on which G acts freely,
π∗2 is the identity on the equivariant Chow ring A∗

G(X), up to a degree that
can be made arbitrarily large: so we have a commutative triangle

A∗
GnH(X ×H)

77
π∗1

'nnnnnnnnnnnn gg

' OOOOOOOOOOO

A∗
GnH(X) A∗

G(X)
f∗

oo

where the horizontal arrow is exactly the map induced by the projection
GnH → G. n

Here is another auxiliary result: it is well known (see for instance [23])
that A∗

µn
' Z[ξ]/(nξ), where ξ is the first Chern class of the character given

by the inclusion µn ↪→ Gm. If G is an algebraic group, we will denote by
ξ ∈ A∗

G×µn
the image of ξ under the map A∗

µn
→ A∗

G×µn
induced by the

projection G×µn → µn. Using the projection G×µn → G, we can consider
A∗

G×µn
as an A∗

G-algebra. Then A∗
G×µn

admits the following description:

Lemma 1.4. As an A∗
G-algebra, A∗

G×µn
is generated by the element ξ,

and the kernel of the evaluation map A∗
G[x] → A∗

G[ξ] is the ideal (nx). In
other words,

A∗
G×µn

= A∗
G[ξ]/(nξ).

Proof. The action of µn on A1 given by the embedding µn ↪→ Gm

can be extended to an action of G × µn by letting G act trivially on A1.
Then from Lemma 1.2 we have that A∗

G×µn
→ A∗

G×µn
(Gm) is surjective,

and its kernel is generated by ξ. Since Gm/µn ' Gm, from Lemma 1.1 we
deduce that A∗

G×µn
(Gm) ' A∗

G(Gm), and since G acts trivially on Gm and
Gm is an open subset of the affine line, A∗

G(Gm) ' A∗
G. So we have that

A∗
G×µn

' A∗
G[ξ]/(nξ), as claimed. n
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2. The special groups: GLn, SLn and Spn

Let us fix a field k: we write GLn, SLn and Spn for the corresponding
algebraic groups over k.

These groups are always much easier to study: they are special, in the
sense that every principal bundle is Zariski locally trivial. For GLn and Spn

the idea works in a very similar way: let us work out Spn, that is marginally
harder. We proceed by induction on n, the case n = 0 being trivial.

Consider V = A2n, the tautological representation of Spn, with its sym-
plectic form h : V × V → k given in coordinates by

h(z1, . . . , z2n, w1, . . . , w2n) = z1wn+1 + · · ·+ znw2n − zn+1w1 − · · · − z2nwn.

Denote by e1, . . . , e2n the canonical basis of V .
The orbit structure of V is very simple: there are two orbits, the origin

and its complement U def= V \ {0}. Consider the subspace

V ′ = 〈e1, . . . , en−1, en+1, . . . , e2n−1〉;

the restriction of h to V ′ is a non-degenerate symplectic form, and V =
V ′ ⊕ 〈en, e2n〉. This induces an embedding Spn−1 ↪→ Spn, identifying Spn−1

with the stabilizer of the pair (en, e2n).
Let G the stabilizer of the element en: then we have that Spn−1 ⊆ G ⊆

Spn. The first inclusion admits a splitting: if A ∈ G, then A stabilizes the
orthogonal complement 〈en〉⊥. It follows that A induces a linear endomor-
phism on the quotient 〈en〉⊥ / 〈en〉 ' V ′, and this endomorphism is easily
seen to preserve the symplectic form h|V ′ , so it is an element of Spn−1. Thus
we have a projection G→ Spn−1: let H its kernel, so that G = Spn−1 nH.

The structure of H is as follows; the matrices in H are exactly those for
which there are scalars a1, . . . , a2n−1 such that

Aei =


ei − ai+nen if i = 1, . . . , n− 1
en if i = n

ei + ai−nen if i = n+ 1, . . . , 2n− 1
a1e2 + · · ·+ a2n−1e2n−1 + e2n if i = 2n.

This yields an isomorphism of varieties H ' A2n−1. It is not hard to see that
the conditions of Lemma 1.3 are satisfied for the action of Spn−1 on H; hence
the embedding Spn−1 ⊆ G induces an isomorphism of rings A∗

G ' A∗
Spn−1

,
so the composite

A∗
Spn

(U) −→ A∗
Spn−1

(U) −→ A∗
Spn−1

(en) = A∗
Spn−1

is an isomorphism. The restriction of the representation V to Spn−1 is
the direct sum of V ′ and of a trivial 2-dimensional representation: hence
the Chern classes ci = ci(V ) restrict to the ci(V ′). From the induction
hypothesis, we conclude that A∗

Spn
(U) is generated by the images of c2,

. . . , c2n−2.
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From Lemma 1.2 we conclude that every class in A∗
Spn

can be written as
a polynomial in c2, . . . , c2n−2, plus a multiple of c2n. By induction on the
degree we conclude that c2, . . . , c2n generate A∗

Spn
.

To prove their algebraic independence, let us restrict to A∗
Tn

, where
Tn ' Gn

m is the standard maximal torus in Spn, consisting of diagonal
matrices with entries (t1, . . . , tn, t−1

1 , . . . , t−1
n ). Then A∗

Tn
is the polynomial

ring Z[x1, . . . , xn], where xi is the first Chern class of the 1-dimensional
representation given by the ith projection Tn → Gm. Then the total Chern
class of the restriction of Vn to Tn is

(1 + x1) . . . (1 + xn)(1− x1) . . . (1− xn) = (1− x2
1) . . . (1− x2

n);

hence the restriction of c2i is the ith elementary symmetric function of −x2
1,

. . . , −x2
n. This proves the independence of the c2i.

As we mentioned, the argument for GLn is very similar. For SLn, one
can proceed similarly, but it is easier to use the fact that, if GLn acts freely
on an algebraic variety U , the induced morphism U/SLn → U/GLn makes
U/SLn into a principal Gm-bundle on U/GLn, associated with the determi-
nant homomorphism det : GLn → Gm. Hence, by Lemma 1.2, we have an
isomorphism A∗

SLn
' A∗

GLn
/(c1), which gives us what we want.

Remark 2.1. All these arguments work with cohomology. when k = C.
The localization sequence in cohomology does not quite work in the same
way, as the restriction homomorphism from the cohomology of the total
space to that of an open subset is not necessarily surjective. However, if Y
is a smooth closed subvariety of a smooth complex algebraic variety X, of
pure codimension d, then there is an exact sequence

· · · −→ Hi−2d
G (Y ) −→ Hi

G(X) −→ Hi
G(X \ Y ) −→ Hi−2d+1

G (Y ) −→ · · · .
Hence if we know that either the pullback H∗

G(X) → H∗
G(X \Y ) is surjective,

or the pushforward H∗
G(Y ) → H∗

G(X) is injective, we can conclude that we
have an exact sequence

0 −→ H∗
G(Y ) −→ H∗

G(X) −→ H∗
G(X \ Y ) −→ 0;

and this is sufficient to mimic the arguments above and give the result for
cohomology.

Remark 2.2. These results can also be proved very simply from a result
of Edidin and Graham (see [6]): if G is a special algebraic group, T a max-
imal torus and W the Weyl group, the natural restriction homomorphism
A∗

G →
(
A∗

T

)W is an isomorphism.

3. The Chow ring of the classifying space of On

Let us fix a field k of characteristic different from 2. If V = kn is an
n-dimensional vector space, we define a quadratic form q : V → k in the
standard form

q(z1, . . . , zn) = z1zm+1 + · · ·+ zmz2m
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when n = 2m, and

q(z1, . . . , zn) = z1zm+1 + · · ·+ zmz2m + z2
2m+1

when n = 2m + 1. We will denote by On the algebraic group of linear
transformations preserving this quadratic form.

Theorem 3.1 (R. Pandharipande, B. Totaro).

A∗
On

= Z[c1, . . . , cn]/(2codd).

Remark 3.2. Let V ′ be another n-dimensional vector space over k, with
a non-degenerate quadratic form q′ : V ′ → k. We can associate with this
another algebraic group O(q′), which will not be isomorphic to On = O(q),
in general, unless k is algebraically closed.

However, one can show that there is an isomorphism of Chow rings
A∗

On
' A∗

O(q′), such that the classes ci(V ) in the left hand side correspond
to the classes ci(V ′) in the right hand side. The principle that allows to prove
this has been known for a long time ([10]): it is the existence of a bitorsor
I → Spec k. This is the scheme representing the functor of isomorphisms of
(V, q) with (V ′, q′). On I there is a left action of O(q′) and right action of
On, by composition. These two actions commute, and make I into a torsor
under both groups (because (V, q) and (V ′, q′) become isomorphic after a
base extensions).

In general, assume that G and G′ are algebraic groups over a field k
(in fact, any algebraic space will do as a base), and I → Spec k is (G′, G)-
bitorsor: that is, on I there is a right action of G and left action of G′, and
this makes I into a torsor under both groups. If X is a k-algebraic space on
which G′ acts on the left, then we can produce a k-algebraic space I ×G X
on which G acts on the left, by dividing the product I ×Spec k X by the
right action of G, defined by the usual formula (i, x)g = (ig, xg−1). The left
action of G′ is by multiplication on the first component: the quotients G\X
and G′\(I ×G X) are canonically isomorphic.

This operation gives an equivalence of the category of G-algebraic spaces
with the category of G′-algebraic spaces. When applied to representations,
it yields representations, and gives an equivalence of the category of rep-
resentations of G and of G′. Furthermore, given a representation V of G,
with an open subset U ⊆ V on which G acts freely, we get a representation
V ′ = I ×G V with an open subset U ′ = I ×G U on which G′ acts freely, so
that the quotients G\U and G′\U ′ are isomorphic. In Totaro’s construction
this gives an isomorphism of A∗

G with A∗
G′ .

So, in particular, the result that we have stated for On also holds for
O(q′) for any other non-degenerate n-dimensional quadratic form q′, and we
have

A∗
O(q′) = Z[c1, . . . , cn]/(2codd).
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The proof of the Theorem will be split into two parts: first we show that
the ci generate A∗

On
, then that ideal of relations is generated by the given

ones.
For the first part we proceed by induction on n.
For n = 1, q(z) = z2

1 , and O1 = µ2, so

A∗
O1

= A∗
µ2
' Z[c1]/(2c1).

For n > 1, let B = {v ∈ An | q(v) 6= 0}, and set Q = q−1(1). Then
q : B → Gm is a fibration, with fibers isomorphic to Q. This fibration is not
trivial, but it becomes trivial after an étale base change. Set

B̃ = {(t, v) ∈ Gm ×B | t2 = q(v)},

and consider the cartesian diagram

B̃ //

��

B

q

��

Gm
(−)2

// Gm

where the first column is projection onto the first factor, and the top row is
defined by the formula (t, v) 7→ tv.

There are obvious commuting actions of µ2 and On on B̃, the first
defined by ε · (t, v) = (εt, v), and the second by M · (t, v) = (t,Mv). The
quotient B̃/µ2 is isomorphic to B, and the induced action of On on the
quotient coincides with the given action on B. From Lemma 1.1, we obtain
an isomorphism

A∗
On

(B) ' Aµ2×On(B̃).

Then there is an isomorphism of Gm-schemes B̃ ' Gm × Q defined by
the formula (t, v) 7→ (t, v/t). The given actions of µ2 and of On on B̃ induce
commuting actions on Gm × Q given by ε · (t, v) = (εt, εv) for ε ∈ µ2 and
M(t, v) = (t,Mv) for M ∈ On. These define an action of µ2×On on Gm×Q,
and A∗

On
(B) is isomorphic to A∗

µ2×On
(Gm ×Q).

This action of µ2 × On on Gm × Q extends uniquely to an action of
µ2×On on A1×Q, defined by the same formulae. This action is defined by
two separate action on A1 and Q, and the action on A1 is linear, defined by
the non-trivial character of µ2 through the projection µ2 ×On → µ2. Call
ξ the first Chern class of this representation. From Lemma 1.2, we have an
isomorphism

(3.1) A∗
µ2×On

(Gm ×Q) ' A∗
µ2×On

(Q)/(ξ).

To investigate A∗
µ2×On

(Q) we will also use an orthogonal basis e′1, . . . , e′n
of V , in which q has the form

q(z1e′1 + · · ·+ zne
′
n) = z2

1 + · · ·+ z2
m − z2

m+1 − · · · − z2
n
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when n = 2m, and

q(z1e′1 + · · ·+ zne
′
n) = z2

1 + · · ·+ z2
m+1 − z2

m+2 − · · · − z2
n

when n = 2m+ 1.
Now, the action of µ2×On on Q is transitive; let H the stabilizer of the

point e′1 ∈ Q. The structure of H is as follows. Set V ′ def= 〈e′2, . . . , e′n〉, so
that V is the orthogonal sum 〈e′1〉⊕V ′, and call q′ the restriction of q to V ′.
Then the group Oq′ of linear automorphisms of V ′ preserving q′ is naturally
embedded into On, as the stabilizer of e′1. Notice that in an appropriate
basis q′ has the standard form

q′(z1, . . . , zn−1) = z1zm+1 + · · ·+ zmz2m

when n = 2m+ 1, and the opposite of the standard form

q′(z1, . . . , zn−1) = −(z1zm + · · ·+ zm−1z2m−2 + z2
2m−1)

when n = 2m; in both cases the orthogonal group O(q′) is isomorphic to
On−1, and we identify it with On−1.

The stabilizer of e′1 in µ2 ×On is the group µ2 ×On−1, embedded into
µ2 ×On with the injective homomorphism

(ε,M) 7−→ (ε, εM).

It follows that

A∗
µ2×On

(Q) ' A∗
µ2×On

(
(µ2 ×On)/(µ2 ×On−1)

)
' A∗

µ2×On−1
.

We obtain a chain of isomorphisms

A∗
On

(B) ' A∗
µ2×On

(Q)/(ξ)

A∗
µ2×On−1

/(ξ).

Finally, from Lemma 1.1 we get an isomorphism

A∗
µ2×On−1

/(ξ) ' A∗
On−1

[ξ]/(ξ)

' A∗
On−1

.

The composite A∗
On

→ A∗
On

(U) → A∗
On−1

is the pullback induced by the
embedding On−1 ⊆ On.

The restriction of V to On−1 is the direct sum of V ′ and a trivial 1-
dimensional representation, hence the restriction A∗

On
→ A∗

On−1
carries ci

into ci(V ′). Therefore, by induction hypothesis, the images of c1, . . . , cn−1

generate A∗
On

(B).
Next, we claim that the restriction homomorphism A∗

On
(An \ {0}) →

A∗
On

(B) is an isomorphism. To see this, set

C = {v ∈ An \ {0} | q(v) = 0}
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with its reduced scheme structure, and consider the fundamental exact se-
quence

A∗
On

(C) i∗−→ A∗
On

(An \ {0}) −→ A∗
On

(U) −→ 0.

We need to show that i∗ is the zero map. In fact, q : An\{0} → A1 is smooth,
since the characteristic of the base field is not 2, so C is the scheme-theoretic
inverse image of {0}. The map q : An \ {0} → A1 is On-equivariant, if we
let On act trivially on A1; and the fundamental class [0] ∈ A∗

On
(A1) equals

zero. Since the inverse image of [0] in A∗
On

(An \ {0}) is [C], we can conclude
that

[C] = 0 ∈ A∗
On

(An \ {0}).
Next we show that the pullback i∗ : A∗

On
(An \ {0}) → A∗

On
(C) is surjective:

in this case, for every α ∈ A∗
On

(C \ {0}), we have α = i∗β for some β ∈
A∗

On
(An \ {0}), so

i∗(α) = i∗i
∗(β) = [C] · β = 0

by the projection formula, and i∗ is the zero map, as claimed.
To show surjectivity, notice that the action of On on C is transitive. Let

us investigate the stabilizer G of e1 ∈ C. Set n = 2m or n = 2m + 1, as
usual. If we define

V ′ = 〈e2, . . . , em, em+2, . . . , en〉

then the restriction of q to V ′ has the standard form, and V is the orthogonal
sum V ′⊕〈e1, em+1〉. This gives an embedding On−2 ⊆ On, identifying On−2

with the stabilizer of the pair (e1, em+1).
An analysis very similar to that we have carried out for the stabilizer of

a vector under Spn leads to the conclusion that the stabilizer G of e1 is a
semidirect product On−2 nH, where H is isomorphic to An−1 as a variety,
the action of an element of H is itself is given by an affine map, and the
action of On−2 on H is linear: by Lemma 1.3, the embedding On−2 ⊆ G
induces an isomorphism of rings A∗

G ' A∗
On−2

, so the composite

A∗
On

(C) −→ A∗
On−2

(C) −→ A∗
On−2

(e1) = A∗
On−2

is an isomorphism. But the ci restrict in A∗
On−2

to the Chern classes of V ′:
hence, by inductions hypothesis, they generate A∗

On−2
. Hence the pullback

A∗
On

→ A∗
On

(C) is surjective, as claimed. This ends the proof that the ci
generate A∗

On
. Let us investigate the relations.

The quadratic form q induces an isomorphism V ' V ∨ of representations
of On, hence for each i we have ci(V ) = (−1)ici(V ). This shows that 2ci = 0
when i is odd.

To show that these generate the ideal of relations among the ci, let
J ⊆ Z[X1, . . . , Xn] be the ideal generated by 2X1, 2X3, . . . . Let P ∈
Z[X1, . . . , Xn] be a homogeneous polynomial such that P (c1, . . . , cn) = 0 ∈
A∗

On
: we need to check that P ∈ J . By modifying P by an element of J , we

may assume that P is of the form Q + R, where Q is a polynomial in the
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even Xi, while R is a polynomial in which every monomial contains some
Xi with i odd, and all of whose coefficients are either 0 or 1.

Let Tm ' Gm
m be the standard torus in On: the embedding Tm ⊆ On

sends (t1, . . . , tm) into the diagonal matrix with entries (t1, . . . , tm, t−1
1 , . . . , t−1

m )
if n = 2m, and (t1, . . . , tm, t−1

1 , . . . , t−1
m , 1) if n = 2m + 1. Then A∗

Tm
=

Z[x1, . . . , xm], where xi is the first Chern class of the ith projection χi : Tn →
Gm. The restriction of V to Tn splits as ρ def= χ1 + · · ·+χm +χ−1

1 + · · ·+χ−1
m

when m is even, and ρ + 1 when n is odd. Hence the total Chern class of
the restriction of V to Tn is

(1 + x1) . . . (1 + xm)(1− x1) . . . (1− xm) = (1− x2
1) . . . (1− x2

m);

and this means that the restrictions of the ci is 0 when i is odd, while c2j

restricts to the jth symmetric function of −x2
1, . . . , −x2

m. Hence the restric-
tions of even Chern classes are algebraically independent. In the decom-
position 0 = P (c1, . . . , cn) = Q(c2, . . . , c2m) + R(c1, . . . , cn) the summand
R(c1, . . . , cn) restricts to 0, so Q(c2, . . . , c2m) also restricts to 0. This im-
plies that Q = 0. So we have that P has coefficients that are either 0 or
1.

Now take a basis e′1, . . . , e′n of V in which q has a diagonal form. Consider
the subgroup µn

2 ⊆ On consisting of linear transformations that take each
e′i into e′i or −e′i. If we call ηi the first Chern class of the character obtained
composing the ith projection µn

2 → µ2 with the embedding µ2 ↪→ Gm, then
by Lemma 1.4 we have

A∗
µn

2
= Z[η1, . . . , ηn]/(2η1, . . . , 2ηn).

There is a natural ring homomorphism from A∗
µn

2
into the polymomial ring

F2[Y1, . . . , Yn] that sends each ηi into Yi. The restriction of V to µn
2 has

total Chern class (1+ η1) . . . (1+ ηn); hence the image of ci in F2[Y1, . . . , Yn]
is the ith elementary symmetric polynomial si in the Yi. The si are alge-
braically independent in F2[Y1, . . . , Yn], the image of 0 = P (c1, . . . , cn) is
P (s1, . . . , sn), and P has coefficients that either 0 or 1. This implies that
P = 0, and completes the proof of the theorem.

4. The Chow ring of the classifying space of SOn

Let k be a field of characteristic different from 2, set V = kn, and let
q : V → k be the same quadratic form as in the previous section. Consider
the subgroup SOn ⊆ On of orthogonal linear transformations of determinant
1.

If n is odd, A∗
SOn

can be easily computed from A∗
On

, as was noticed in
[5] and [19].

Theorem 4.1 (R. Pandharipande, B. Totaro). If n is odd, then

A∗
SOn

= Z[c2, . . . , cn]/(2codd = 0).
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Proof. When is n odd there is an isomorphism On ' µ2 × SOn; the
determinant character det : On → µ2 (whose first Chern class in A∗

On
is c1)

corresponds to the projection µ2 × SOn → µ2. Then from Lemma 1.4 we
get that

A∗
SOn

' A∗
On
/(c1)

and the conclusion follows. n

4.1. The Edidin–Graham construction. From now on we shall as-
sume that n is even, and write n = 2m.

In this case, A∗
SOn

is not generated by the Chern classes of the standard
representation, not even rationally. This can be seen easily for n = 2. We
have that SO2 consists of matrices of the form(

t 0
0 t−1

)
and so is isomorphic to Gm. Then

A∗
SO2

= A∗
Gm

= Z[ξ],

where ξ is the first Chern class of the tautological representation L = A1,
on which Gm acts via multiplication. Hence V = L⊕ L∨, so c2(V ) = −ξ2.

For general n, the vector space V will still split as the direct sum of
two totally isotropic subspaces, one dual to the other: however, when n >
2 this splitting is not unique, and the totally isotropic subspaces are not
invariant under the action of SOn, so V is not a direct sum of two nontrivial
representations (and V is in fact irreducible). Still, in topology V has an
Euler class εm ∈ H2m

SOn
, whose square is (−1)mcm. Let us recall Edidin and

Graham’s construction of an algebraic multiple of εm (see [8]).
In what follows we will use the classical conventions for projectivizations

and Grassmannians; those seem a little more natural in intersection theory
than Grothendieck’s. So, if W is a vector space, we denote by P(W ) the
vector space of lines in W , and by G(r,W ) the Grassmannian of subspaces
of dimension r; and similarly for vector bundles.

Denote by I(m,V ) the smooth subvariety of G(m,V ) consisting of max-
imal totally isotropic subspaces of V . It is well known that On acts tran-
sitively on I(m,V ), and that I(m,V ) has two connected components, each
of which is an orbit under the action of SOn. Let us choose one of the
orbits, for example, the one containing the subspace 〈e1, . . . , em〉. Every
totally isotropic subspace of dimension m − 1 of V is contained in exactly
two maximal totally isotropic subspaces, one in each connected component.

There is a well known equivalence of categories between On-torsors and
vector bundles of rank n with a non-degenerate quadratic form. If E is a
vector bundle on a scheme X with a non-degenerate quadratic form, this
corresponds to a On-torsor π : P → X, the torsor of isometries between E
and V ×X; with this torsor we can associate a µ2-torsor (that is, an étale
double cover) P/SOn → X via the determinant homomorphism det : On →
µ2. This cover can be described geometrically as follows.
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Consider the subscheme I(m,E) of totally isotropic subbundles in the
relative Grassmannian G(m,E) → X ; the projection I(m,E) → X is proper
and smooth, and each of its geometric fibers has two connected components.
Let I(m,E) → Ĩ(m,E) → X be the Stein factorization; then Ĩ(m,E) → X
is an étale double cover, and is precisely the double cover P/SOn → X. This
can be seen as follows.

On P we have, by definition, an isometry of π∗E with V ×P . In V ×P
we have a maximal totally isotropic subbundle 〈e1, . . . , em〉 × P , so we get
a maximal totally isotropic subbundle of π∗E. This defines a morphism
P → I(m,E) over X; the composite P → I(m,E) → Ĩ(m,E) induces the
desired isomorphism P/SOn ' Ĩ(m,E).

Hence, to give a reduction of structure group of P → X to SOn is
equivalent to assigning a section X → Ĩ(m,E). This gives an equivalence
of the groupoid of SOn-torsors on X with the groupoid of vector bundles
E → X of rank n with a non-degenerated quadratic form, and a section
X → Ĩ(m,E). We shall refer to such a structure as an SOn-structure on E.

Furthermore, given an SOn-structure on E, if f : T → X is a morphism
of algebraic varieties, and L is a totally isotropic subbundle of f∗E of rank
m, we say that L is admissible if the image of T under the morphism T →
I(m,X) corresponding to L is contained in the inverse image of the given
embedding X ⊆ Ĩ(m,E).

Here is the construction of Edidin and Graham. We will follow their
notation. Let E be a vector bundle of rank n with an SOn-structure on a
smooth algebraic variety X. For each i = 1, . . . , m consider the flag variety
fi : Qi → X of totally isotropic flags L1 ⊆ L2 ⊆ · · · ⊆ Lm−i ⊆ E, with
each Ls of rank s. For each i, denote by L1 ⊆ L2 ⊆ · · · ⊆ Lm−i ⊆ f∗i E
the universal flag on Qi. The restriction of the quadratic form to L⊥m−i is
degenerate, with radical equal to Lm−i; hence on Qi there lives a vector
bundle Ei

def= L⊥m−i/Lm−i of rank 2i with a non-degenerate quadratic form.
For each i = 1, . . . , m − 1 we have a projection πi : Qi−1 → Qi, obtained
by dropping the last totally isotropic subbundle in the chain; and Qi−1 is
canonically isomorphic, as a scheme overQi, to the smooth quadric bundle in
P(Ei) defined by the quadratic form on Ei. This means that Qi−1 is a family
of quadrics of dimension 2(i − 1) over Qi. Let us denote by hi ∈ A1(Qi−1)
the restriction to Qi−1 of the class c1

(
OP(Ei)(1)

)
∈ A1

(
P(Ei)

)
.

Each bundle Ei has a canonical SOn−2i-structure. Call πi : L⊥m−i → Ei

the projection. From each totally isotropic vector subbundle L ⊆ Ei of rank
m − i, we get a totally isotropic vector subbundle π∗i L ⊆ L⊥m−i ⊆ f∗i E of
rank m; then L is admissible if and only if π∗i L is admissible.

The universal flag L1 ⊆ L2 ⊆ · · · ⊆ Lm−1 ⊆ f∗1E onQ1 can be completed
in a unique way to a maximal totally isotropic flag L1 ⊆ · · · ⊆ Lm−1 ⊆ Lm ⊆
f∗1E in such a way that Lm is admissible. Then Edidin and Graham define

ym(E) = f∗
(
s · cm(Lm)

)
∈ Am(X)
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where we have set
s = h2

2h
4
3 . . . h

2m−2
m ∈ A∗(Q1).

Remark 4.2. In this formula each of the classes hi should be pulled
back to Q1. Here, and in what follows, we use the following convention:
when f : Y → X is a morphism of smooth varieties, and ξ ∈ A∗(X), we will
also write ξ for f∗ξ ∈ A∗(Y ). Similarly, if E → X is a vector bundle, we will
also write E for f∗E. This has the advantage of considerably simplifying
notation, and should not lead to confusion. With this notation, when f is
proper the projection formula reads: if ξ ∈ A∗(X) and η ∈ A∗(Y ), then

f∗(ξη) = ξf∗η.

There is also an inductive definition of ym(E). If m = 1 then there is
precisely one totally admissible isotropic line subbundle of E, and we have
y1(E) = c1(L), by definition.

For m > 1 we have a vector bundle Em−1 on Qm−1 with an SOn−2-
structure.

Lemma 4.3. The formula

ym(E) = −fm−1∗
(
h2m−1

m ym−1(Em−1)
)

holds.

Proof. To prove this, call g : Q1 → Qm−1 the projection: on Q1 we
have a flag

L2/L1 ⊆ L3/L1 ⊆ · · · ⊆ Lm−1/L1 ⊆ g∗Em−1

that makes Q1 into the variety of totally isotropic flags of length m − 2
in Em−1; we complete this to a maximal totally isotropic flag by adding
Lm/L1. So we get

ym−1(Em−1) = g∗
(
h2

2h
4
3 . . . h

2m−4
m−1 cm−1(Lm/L1)

)
.

On the other hand, on Qm−1 ⊆ P(E), the line bundle L1 ⊆ f∗m−1E is the
pullback of the tautological bundle OP(E)(−1), so c1(L1) = −hm. Hence we
have

cm(Lm) = −hmcm−1(Lm/Lm−1)

and

−fm−1∗
(
h2m−1

m ym−1(Em−1)
)

= −fm−1∗
(
h2m−1

m g∗
(
h2

2h
4
3 . . . h

2m−4
m−1

cm−1(Lm/L1)
))

= −f1∗
(
h2

2h
4
3 . . . h

2m−4
m−1 h

2m−1
m cm−1(Lm/L1)

)
= f1∗

(
h2

2h
4
3 . . . h

2m−4
m−1 h

2m−2
m cm(Lm)

)
= ym(E)

as claimed. n
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The Edidin–Graham class ym ∈ Am
SOn

is defined as follows. Take a
representation W of SOn with an open subset U on which SOn acts freely,
and whose complement has codimension larger than m. Call E the vector
bundle with an SOn-structure associated with the SOn-torsor U → U/SOn.
Then we set

ym = ym(E) ∈ Am(U/SOn) = Am
SOn

.

It is easy to verify that this is independent of the W and U chosen.

Theorem 4.4 (R. Field). If n = 2m, then

A∗
SOn

= Z[c2, . . . , cn, ym]/
(
y2

m − (−1)m2n−2cn, 2codd, ymcodd

)
.

Remark 4.5. Once again, this result can be extended to other quadratic
forms (compare with Remark 3.2). Let V ′ be another n-dimensional vector
space over k, with a non-degenerate quadratic form q′ : V ′ → k. This in-
duces a non-degenerate quadratic form on the exterior powers

∧i V ′. Let us
assume that there is an isometry

∧n V '
∧n V ′.

This is equivalent to the following more concrete condition. We will
write det q′ ∈ k∗/k∗2 for the class in k∗/k∗2 of the determinant of a matrix
representing q′ in some basis. Then two n-dimensional quadratic forms have
isomorphic top exterior powers if and only if they have the same determinant.
Hence the condition above is equivalent to the equality

det q′ = (−1)m ∈ k∗/k∗2.

Fix an isometry
∧n V '

∧n V ′. We can construct an
(
SO(q′),SOn

)
-

bitorsor I → Spec k, as the scheme representing the functor of isometries
V ' V ′ inducing the fixed isometry

∧n V '
∧n V ′. So we deduce the

following result: if the condition above is satisfied, there exists a class ym ∈
Am

SO(q′), such that

A∗
SO(q′) = Z[c2, . . . , cn, ym]/

(
y2

m − (−1)m2n−2cn, 2codd, ymcodd

)
.

The proof of the theorem will be split into three parts: first we verify
that the classes ci and ym generate A∗

SOn
, next that the relations holds, and

finally that they generate the ideal of relations.
Step 1: The generators. We proceed by induction on m. In the case

m = 1 the statement says that

A∗
SO1

= Z[c2, y1]/(y2
1 + c2) = Z[y1]

we have seen that SO1 = Gm, that y1 is the first Chern class of the identity
character on Gm, and that c2 = −y2

1.
Suppose m > 1. Set B = {x ∈ An | q(x) 6= 0} and C = {x ∈ An \ {0} |

q(x) = 0}. Proceeding precisely as for On, one establishes the following
results.

(1) Let e′1, . . . , e′n be an orthogonal basis of V in which q has the form

q(z1e′1 + · · ·+ zne
′
n) = z2

1 + · · ·+ z2
m − z2

m+1 − · · · − z2
n.
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Then the stabilizer of e′1 ∈ B in SOn is isomorphic to SOn−1, and
the composite

A∗
SOn

(B) −→ A∗
SOn−1

(B) −→ A∗
SOn−1

(e′1) = A∗
SOn−1

is an isomorphism.
(2) The stabilizer of the pair (e1, em+1) is isomorphic to SOn−2. The

composite

A∗
SOn

(C) −→ A∗
SOn−2

(C) −→ A∗
SOn−2

(e1) = A∗
SOn−2

is an isomorphism.
Call i : C ⊆ An \ {0} and j : B ⊆ An \ {0} the inclusions. Then we have

an exact sequence

A∗
SOn

(C) i∗−→ A∗
SOn

(An \ {0}) j∗−→ A∗
SOn

(B) −→ 0.

By induction hypothesis, we have that A∗
SOn

(C) ' A∗
SOn−2

is generated
as a ring by c2, . . . , cn−2 and ym−1. From this, and from the relation
y2

m−1 − (−1)m−12n−4cn−2, we see that A∗
SOn

(C) is generated as a module
over A∗

SOn
by 1 and ym−1; hence, since i∗ is a homomorphism of A∗

SOn
-

modules, by the projection formula, we see that the kernel of the pullback
A∗

SOn
(An\{0}) → A∗

SOn
(B) is generated as an ideal by i∗1 = [C] and i∗ym−1.

As in the case of On, we see that the fundamental class [C] ∈ A∗
SOn

(An \
{0}) is 0, because C is the scheme-theoretic zero-locus of the invariant
function q. Furthermore, the images of c2, . . . cn−1 generate A∗

SOn
(U) '

A∗
SOn−1

: and this implies that c2, . . . , cn−1, together with i∗ym−1, generate
A∗

SOn
(An \ {0}) = A∗

SOn
/(cn). Hence c2, . . . , cn, i∗ym−1 generate A∗

SOn
.

Next, we have a Lemma.

Lemma 4.6.
i∗ym−1 = −ym ∈ A∗

SOn
(An \ {0}).

Proof. Let W be a representation of SOn, and U an open set of W on
which the action of SOn is free, and such that the codimension of W \ U in
W is larger than m. The vector bundle associated with the SOn-torsor U →
U/SOn is E def= (An × U)/SOn. We set X def=

(
(An \ {0})× U

)
/SOn, so that

X ⊆ E is the complement of the zero section, while Y def= (C×U)/SOn ⊆ X is
the closed subscheme consisting of non-zero isotropic vectors, and Z def= X\Y .
By a slight abuse of notation, we will denote i : Y ↪→ X and j : Z ↪→ X the
inclusions. Note that there is a tautological section s : X → E defined set-
theoretically by [u, z] 7→ [u, z, z].

Let us first prove that j∗ym = 0 ∈ A∗
SOn

(B). In fact, the tautological
section restricted to Z has the property that q(s(x)) 6= 0 for all x, and so
j∗ym(E) = ym(j∗E) = 0, due to the following result.

Lemma 4.7. Let (E, q) → X be a rank n = 2m vector bundle with a non-
degenerate quadratic form. Suppose that there exists a section s : X −→ E
such that q(s(z)) 6= 0 for all z ∈ X. Then ym(E) = 0.
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Proof. Pulling back to the flag variety Q1 → X, it suffices to show
that if L ⊂ E is a rank m totally isotropic subbundle, then cm(L) = 0. The
quadratic form gives a perfect pairing L×E/L −→ OX , so L∨ ' E/L. On
the other hand the line subbundle 〈s〉 generated by s has intersection with
L equal to 0 at every point of X; hence the composite OX

w−→ E → E/L
gives a nowhere vanishing section of E/L, so that

cm(L) = (−1)mcm(E/L) = 0

as claimed. n

It follows that ym = d · i∗ym−1 with d ∈ Z. We will compute d by
restricting to a maximal torus; but first observe that since SOn−2 is included
in SOn as the stabilizer of the pair (e1, em+1), there is an isomorphism

(An × U)/SOn−2 −→ A2 ×
(
(An−2 × U)/SOn−2

)
[(z1, . . . , zn), u] 7−→

(
(z1, zm+1), [(z2, . . . , zm, zm+2, . . . , zn), u]

)
,

and that ym−1 ∈ A∗
SOn−2

is the Edidin-Graham class of the vector bundle(
An−2 × U

)
/SOn−2 → U/SOn−2.

Now, let Tm ⊂ SOn is, as before, the torus of diagonal matrices with
diagonal entries t1, . . . , ,tm, t−1

1 , . . . , t−1
m , and xi is the first Chern class of

the ith projection Tm → Gm.

Lemma 4.8. The formulae

cn = (−1)mx2
1 . . . x

2
m

and

ym = 2m−1x1 . . . xm

hold in A∗
Tm

= Z[x1, . . . , xm].

Proof. Reducing the structure group to Tm, the vector bundle E on
U/Tm associated with the standard representation Tm ↪→ SOn ↪→ GLn splits
into a direct sum of line bundles Λ1⊕· · ·⊕Λ2m, where the ith summand is the
subbundle associates with the 1-dimensional subspace 〈ei〉 ⊆ V . For each
i = 1 , . . . ,m we have Λi+n ' Λ∨i . Then E has an admissible maximal totally
isotropic subbundle Λ1⊕· · ·⊕Λm, which pulls back to an admissible totally
isotropic subbundle on Q1. The first Chern class of Λi in A1(U/Tm) = A1

Tm

is xi, for i = 1, . . . , m, hence

cm(Λ1 ⊕ · · · ⊕ Λm) = x1 . . . xm ∈ Am
Tm

On the other hand, the top Chern classes of any two admissible totally
isotropic subbundles of Q1 are the same, by [8, Theorem 1], so

ym = f∗
(
s · cm(Λ1 ⊕ · · · ⊕ Λm)

)
= (f∗s)x1 . . . xm;

and it is easy to verify that f∗s = 2m−1. n
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It follows that

(An−2 × U)/Tm−1 = Λ2 ⊕ · · · ⊕ Λm ⊕ Λ∨2 ⊕ · · · ⊕ Λ∨m;

moreover, since(
U × (An \ {0})

)
/Tm = (Λ1 ⊕ · · · ⊕ Λm ⊕ Λ∨1 ⊕ · · · ⊕ Λ∨m) \ {0},

we have

A∗(X) = A∗
Tm

/(cn)

= Z[x1, . . . , xm]/(x2
1 . . . x

2
m)

and our aim is to verify that the equation

(4.1) i∗ym−1 = −2m−1x1 . . . xm

holds in Z[x1, . . . , xm]/(x2
i . . . x

2
m).

The inclusion of schemes on U/Tm

(Λ1 ⊕ Λ∨1 ) \ {0} ↪→ (Λ1 ⊕ · · · ⊕ Λm ⊕ Λ∨1 ⊕ · · · ⊕ Λ∨m) \ {0}
induces a surjection of rings

Z[x1, . . . , xm]/(x2
1 . . . x

2
m) → Z[x1, . . . , xm]/(x2

1);

since Zx1 . . . xm has trivial intersection with the kernel of this map, we can
restrict to (Λ1⊕Λ∨1 )\{0} to verify equation 4.1. There is a cartesian diagram

(Λ1 \ {0}) t (Λ∨1 \ {0})

��

// (Λ1 ⊕ Λ∨1 ) \ {0}

��

Y
i // X

We set

X ′ = (Λ1 ⊕ Λ∨1 ) \ {0},

and

Y ′ = Y ′
1 t Y ′

2

= (Λ1 \ {0}) t (Λ∨1 \ {0});
call i′ : Y ′ ↪→ X ′ the inclusion.

Also, form the vector bundle on Y ′ defined as

F
def= Λ2 ⊕ · · · ⊕ Λm ⊕ Λ∨2 ⊕ · · · ⊕ Λ∨m

=
〈
s(Y ′)

〉⊥
/

〈
s(Y ′)

〉
.

We need to check that

i′∗ym−1(F ) = −2m−1x1 . . . xm ∈ A∗(X ′).

For l = 1, 2, call i′l : Y
′
l ↪→ X ′ the inclusion, s′l : Y

′
l → i′∗l E the tautological

section, Fl the restriction of F to Y ′
l .

Observe that the bundle Λ2⊕· · ·⊕Λm of F is totally isotropic: however,
its inverse image in E is Λ1 ⊕ . . .Λm is Λ2 ⊕ Λ2 ⊕ · · · ⊕ Λm on Y1, but is
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Λ2 ⊕ · · · ⊕Λm ⊕Λ∨1 on Y2. The first bundle is admissible, the second one is
not. Hence we have

ym−1(F1) = 2m−2x2 . . . xm ∈ A∗(Y ′
1)

and

ym−1(F2) = −2m−2x2 . . . xm ∈ A∗(Y ′
1).

Since we also have [Y1] = −x1 and [Y2] = x1 in A∗(X ′), we get

i∗ym−1 = i1∗ym−1(F1) + i2∗ym−1(F2)

= i1∗i
∗
12

m−2x2 . . . xm − i2∗i
∗
22

m−2x2 . . . xm

= x12m−2x2 . . . xm + x12m−2x2 . . . xm

= 2m−1x1 . . . xm

and Lemma 4.6 is proved. n

This proves that c2, . . . , cn, ym generate A∗
SOn

.
Step 2: the relations are satisfied. The fact that 2ci = 0 when i is odd

follows immediately, as for On, from the fact that V is self-dual.
To prove that ymci = 0, it is sufficient to show that cm(Lm)ci = 0 in

A∗(Q1), for any vector bundle E on X, with an SOn structure, as ymci =
f1∗(s · cm(Lm)ci). But on Q1 there is an exact sequence of vector bundles

0 −→ Lm −→ f∗E −→ L∨m −→ 0

so the total Chern class c(f1
∗E) is c(Lm)c(L∨m) and ci(f∗E) = 0 when i is

odd.
Finally, the normal bundle N of C in An \ {0} is trivial, since the ideal

of C is generated by an invariant function on An − {0}, so

y2
m = i∗ym−1 · i∗ym−1

= i∗(ym−1 · i∗i∗ym−1)

= i∗(y2
m−1 · c1(N))

= 0

in A∗
SOn

(An \ {0}) = A∗
SOn

/(cn), by the projection formula and the self-
intersection formula. Hence there is an integer d such that y2

m = dcn; we
will compute d once again by restricting to a maximal torus. By Lemma 4.8
we have

y2
m = 22m−2x2

1 . . . x
2
m

= 2n−2(−1)mcn ∈ An
Tm

;

hence, since cn is not a torsion element of A∗
Tm

, we get that d = 2n−2, as
claimed.
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Step 3: the relations suffice. Consider the ideal J in the polynomial ring
Z[X2, . . . , Xn, Y ] generated by the polynomials Y 2 − (−1)m2n−2Xn, 2Xodd,
Y Xodd. Let P ∈ Z[X2, . . . , Xn, Y ] a homogeneous polynomial such that

P (c2, . . . , cn, ym) = 0;

we need to show that P ∈ J .
By modifying P by an element of J , we may assume that it is of the

form Q1 +Y Q2 +R, where Q1 and Q2 are polynomials in the even xi, while
R is a polynomial in the Xi with coefficients that are all 0 or 1, and all of
whose non-zero monomial contain some Xi with i odd.

The odd ci restrict to 0 in A∗
Tm

, while c2j restricts to the jth symmet-
ric function sj of −x2

1, . . . , −x2
m; also, ym restricts to x1 . . . xm. Hence

P (c2, . . . , cm, ym) = 0 restricts to Q1(s2, s4, . . . ) + x1 . . . xmQ2(s2, s4, . . . );
and this is easily seen to imply that Q1 = Q2 = 0.

Hence P is a polynomial in X2, . . . , Xn, all of whose coefficients are 0
or 1. Now consider the basis e′1, . . . , e′n of V , and the subgroup µn

2 ⊆ On

considered in the previous section, consisting of linear transformations that
take each e′i into e′i or −e′i. The subgroup Γn

def= µn
2 ∩ SOn consists of the

elements (ε1, . . . , εn) of µn
2 such that ε1 . . . εn = 1 in µ2. The group Γn is

isomorphic to µn−1
2 ; if we call ηi ∈ A1

Γn
the first Chern class of the restriction

to Γn of the ith projection µn
2 → µ2 ⊆ Gm, then we have

A∗
Γn

= Z[η1, . . . , ηn]/(η1 + · · ·+ ηn).

We have a natural homomorphism A∗
Γn
→ F2[η1, . . . , ηn]/(η1 + · · ·+ ηn),

which is an isomorphism in positive degree. If we denote by r1, . . . , rn
the elementary symmetric functions of the hi, we have that ci restricts to
the image of ri in F2[η1, . . . , ηn]/(r1); hence all we need to show is that the
images of r2, . . . , rn are algebraically independent in F2[η1, . . . , ηn]/(r1).
But r1, . . . , rn are algebraically independent in F2[η1, . . . , ηn], so r2, . . . , rn
are algebraically independent in F2[r1, . . . , rn]/(r1); and the homomorphism

F2[r1, . . . , rn]/(r1) −→ F2[η1, . . . , ηn]/(r1)

is injective, because the extension F2[r1, . . . , rn] ⊆ F2[η1, . . . , ηn] is faithfully
flat. This shows that P = 0, and completes the proof of the theorem.



CHAPTER 2

The Chow ring of the classifying space of Spin8

1. Preliminaries on Clifford algebras and spin groups

We recall some facts about Clifford algebras and representations of spin
groups that will be used throughout the paper (for a detailed treatment, see
for example [22] or [25]). Suppose that n = 2m or n = 2m+1, and consider
a quadratic form (Cn, q); in a suitable basis e1, . . . , en the form q is given by

q(z1, . . . , zn) = −z2
1 − · · · − z2

n.

We will denote with Cn = C(Cn, q) the Clifford algebra associated to (Cn, q),
and with Spinn the (complex) spin group included in Cn. There is a double
covering ρn : Spinn → SOn, that is the universal covering of SOn: we will
write Cn also for the representation of Spinn given by ρn.

Set

wi :=
√
−1ei + ei+m

2
, w′i :=

√
−1ei − ei+m

2
for i = 1, . . . ,m, and let Wn ⊆ Cn the subspace generated by w1, . . . , wm:
then Wn is a totally isotropic subspace, and the spinor space is Sn =

∧•Wn.
If n = 2m, Sn splits as the direct sum of two irreducible representations S+

n

and S−n ; we will denote with

σ±n : Spinn −→ GL(S±n )

the two representations. If n = 2m + 1, Sn is an irreducible representation
of Spinn, denoted with σn.

By definition, a spin representation of Spinn is a representation obtained
from an irreducible C+

n -module, where C+
n ⊆ Cn is the subalgebra of the

elements of even degree. Let V ⊆ SOn be the subgroup of diagonal matrices:
then V can be regarded as a vector space with a quadratic form. If h
the codimension of a maximal isotropic subspace of V , then 2h, called the
Radon-Hurwitz number an, and is the dimension of a spin representation of
Spinn ([16, Proposition 6.1]).

On S±n and Sn there are a symmetric form β and an alternating form
β̄; for n = 8, β is Spin8-invariant and σ±8 factorizes through SO(S±8 , β). It
follows that Spin8 has three 8-dimensional representations ρ8, σ

±
8 : Spin8 →

SO8. One way to express the phaenomenon of triality is that there is an
action of the symmetric group S3 on Spin8 acting as the full symmetric
group on the set of the isomorphism classes of these three representations:
suppose that τ ∈ S3 is a transposition that exchanges two representations

29
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ρ1 and ρ2 of Spin8. Then the (outer) automorphism τ : Spin8 → Spin8 is
defined as the lifting of ρ1 in the following diagram:

Spin8
τ //___

ρ1

$$HH
HH

HH
HH

H
Spin8

ρ2

��

SO8.

For more details we refer the reader to [22] or [25].

2. Pull-backs from A∗
SO8

: Chern and Edidin-Graham classes

For n = 8, we will omit the subscript (·)8. The following classes in A∗
Spin8

are obtained by pulling back along the maps ρ, σ± : Spin8 → SO8:

y4 = ρ∗y4, ci = ρ∗(ci),

y±4 = (σ±)∗y4, c+i = (σ±)∗ci,

where y4 is the Edidin-Graham class of SO8 (defined up to the sign; see
Remark 2.1) and ci is the i-th Chern class of the tautological representation
of SO8 (there should not be confusion between ci ∈ A∗

Spin8
and ci ∈ A∗

SO8
).

By triality, the symmetric group S3 acts on the isomorphism classes of
the representations ρ, σ+, σ−. We will use the following notation: let

u1 =
√
−1e1 ∈ C8

u2 =
1√
2
(w2 ∧ w1 + w3 ∧ w4) ∈ S+

u3 = u1u2 =
1√
2
(w2 − w1 ∧ w3 ∧ w4) ∈ S−.

so that q(u1) = β(u2) = β(u3) = 1. Then we will denote with
(1) (12) the transposition that exchanges C8 and S+, and acts on S−

as minus the reflexion along (Cu3)⊥;
(2) (13) the transposition that exchanges C8 and S−, and acts on S+

as minus the reflexion along (Cu2)⊥;
(3) (23) the transposition that exchanges S+ and S−, and acts on C8

as minus the reflexion along (Cu1)⊥.
Let (V,U) a good pair for Spin8: then the isometry (12) : C8 ' S+

induces an isometry of vector bundles on U/Spin8

(C8 × U)/Spin8 ' (S+ × U)/Spin8.

It follows that there is an isomorphism (12)∗ : A∗
Spin8

(C8) ' A∗
Spin8

(S+), and
composing with the isomorphisms A∗

Spin8
(C8) ' A∗

Spin8
and A∗

Spin8
(S+) '

A∗
Spin8

one finds an action on A∗
Spin8

; this action exchanges the Chern and

Edidin-Graham classes of C8 and S+, namely c
(12)
i = c+i and y

(12)
4 = y+

4 .
In an analogous way, c(13)

i = c−i and y
(13)
4 = y−4 . Moreover, (23) : C8 ' C8

reverse the orientation, so c(23)
i = ci but y(23)

4 = −y4.
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(Similar formulae obviously hold for the action of S3 on S+ and S−.)

Remark 2.1. We define the orientations of C8, S+, S− according to the
following convention.

Suppose that n = 2m (resp. n = 2m + 1), and choose an appropriate
basis w1, . . . , wm, w1, . . . , w

′
m (resp. w1, . . . , wm, w1, . . . , w

′
m, en) of Cn such

that with respect to this basis the quadratic form is given by

q(x1, . . . , xn) = x1xm + · · ·+ xmxn

(resp. q(x1, . . . , xn) = x1xm + · · ·+ xmx2m + x2
n).

Then in the section on the Edidin-Graham construction we choose the
class of admissible totally isotropic subbundles the one containing Wn =
〈w1, . . . , wm〉: so we have a preferred orientation for C8. For S±, we deter-
mine the orientation of S+ (resp. S−) by requiring that the isometry (12)
(resp. (13)) be orientation-preserving. Note that since (23) reverses the ori-
entation of C8, the isometry (23) : S+ ' S− does not preserve orientation.

Consider the half-spin representation S+
4 of Spin6: this corresponds to

the tautological representation of SL4 under the isomorphism Spin6 ' SL4.
Form the 6-dimensional representation of SL4 given by

∧2 S+
4 : on

∧2 S+
4

there is an SL4-invariant quadratic form given by

2∧
S+

4 ×
2∧
S+

4 −→ C

(v1 ∧ v2, v3 ∧ v4) 7−→ v1 ∧ v2 ∧ v3 ∧ v4.

So we get a map SL4 → SO6, and the composition

Spin6
'−→ SL4 −→ SO6

is the double covering ρ6: hence
∧2 S+

4 ' C6.
Set v1 = 1, v2 = w1∧w2, v3 = w2∧w3, v4 = w1∧w3 ∈ S+

6 ; then restricting
to the torus TSL4 we have that vi is an eigenvector for the character τi given
by the i-th projection TSL4 ⊆ G4

m → Gm.

Define W+ := W (12) and W− := W (13). Then W+ is described as
follows:

Lemma 2.2. We have that

W+ = 〈w1 ∧ w2, w2 ∧ w3, w2 ∧ w4, w1 ∧ w2 ∧ w3 ∧ w4〉
W− = 〈w1, w2, w3, w4〉 .

Proof. Recall that the isometry u3 : C8 → S+ is determined by the
formula β(v2, u3 · v1) = β(v1 · v2, u3) for v1 ∈ C8, v2 ∈ S+, where multiplica-
tion in the right hand side of the formula is given by the action of C8 ⊆ C8
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on the spinor space S+ ⊆
∧•W . Then from the formulae

β(w3 ∧ w4, u3 · w1) = β(w1 ∧ w3 ∧ w4, u3) = 1/
√

2

β(1, u3 · w2) = β(w2, u3) = −1/
√

2

β(w1 ∧ w4, u3 · w3) = β(w3 ∧ w1 ∧ w4, u3) = −1/
√

2

β(w1 ∧ w3, u3 · w4) = β(w4 ∧ w1 ∧ w3, u3) = −1/
√

2

we get

u3(〈w1〉) = 〈w1 ∧ w2〉
u3(〈w2〉) = 〈w1 ∧ w2 ∧ w3 ∧ w4〉
u3(〈w3〉) = 〈w2 ∧ w3〉
u3(〈w4〉) = 〈w2 ∧ w4〉 .

As for W−, one proceed in a similar way, or apply u1 to the vectors spanning
W+. n

3. Maximal tori of Spinn and their Chow rings

Fix n = 2m or n = 2m+1. Recall that Spin2 = {a+be1e2 : a2+b2 = 1}.
For i = 1, . . . ,m there is a copy of Spin2 included in Spinn via

ψi : a+ be1e2 7−→ a+ beiei+m;

moreover, it is easy to see that ψi(Spin2) ⊆ TSpinn
. Since we have that

Spin2 ' Gm via a + be1e2 7→ a +
√
−1b, we obtain maps φi : Gm → TSpinn

.
Define

φ := φ1 . . . φm : Gm
m −→ TSpinn

.

The map φ is surjective, and its kernel is generated by elements (ε1, . . . , εm) ∈
(Z/2)m such that ε1 . . . εm = 1, that is a (Z/2)m−1.

There is a canonical isomorphism TSOn ' Gm
m given by

diag(a1, . . . , am, a
−1
1 , . . . , a−1

m ) ↔ (a1, . . . , am),

and it is easy to see that the composition

Gm
m

φ−→ TSpinn

ρ−→ TSOn ' Gm
m

is the map (a1, . . . , am) 7−→ (a2
1, . . . , a

2
m).

It follows that there is a chain of inclusion of Chow rings

A∗
TSOn

� � ρ∗
// A∗

TSpinn

� � φ∗
// A∗

Gm
m
' Z[x1, . . . , xm]

where xi := c1(χi) and χi is the character given by the i-th projection
Gm

m → Gm. Note that A∗
TSOn

is identified with the subring Z[2x1, . . . , 2xm] ⊆
Z[x1, . . . , xm].

Let χ : TSpinn
→ Gm a character; if χ acts trivially on the subgroup

{±1}, then it factorizes through TSOn and so c1(χ) ∈ ρ∗(A∗
TSOn

). Suppose
on the contrary that χ|{±1} is not trivial; then, for any other character χ′
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such that χ|{±1} is not trivial, we have that χ ⊗ χ′|{±1} = 1, so we have
c1(χ) + c1(χ′) ∈ ρ∗(A∗

TSOn
). It follows that if χ is a character that acts

non-trivially on {±1}, then the ring of characters of TSpinn
is isomorphic to

C[χ2
1, . . . , χ

2
m]⊗ C[χ]/

(
χ2 ⊗ f(χ2

1, . . . , χ
2
m)

)
where f is an appropriate function (notice that χ2

i factorizes through TSOn ,
so is indeed a character of TSpinn

). For example, consider the character
χ1 ⊗ · · · ⊗ χm : Gm

m → Gm; it is trivial on the kernel of φ, so it lift to a
character of TSpinn

. But is not trivial on {±1}, so we can choose it as our χ.

Lemma 3.1. Suppose that n = 2m: then the Chow ring of the maximal
torus of Spinn is

A∗
TSpinn

' Z[u1, . . . , um, u]/
(
u− (u1 + · · ·+ um)

)
,

and A∗
TSOn

is included in A∗
TSpinn

as the subring Z[u1, . . . , um].

Proof. We define u := c1(χ1 ⊗ · · · ⊗ χm) = x1 + · · · + xm: then the
lemma follows immediately from the previous discussion. n

The preceeding lemma says that A∗
Spinn

is included in A∗
Gm

m
= Z[x1, . . . , xm]

as the subring generated by 2x1, . . . , 2xm, x1 + · · · + xm. In particular, we
have that ε1x1 + · · ·+ εmxm ∈ A∗

Spinn
for (ε1, . . . , εm) ∈ (Z/2)m, and in fact

they generate A∗
Spinn

; we are going to give a precise description of A∗
Spinn

in
terms of these elements. Forst, we need an auxiliary result:

Lemma 3.2. The vector wi1 ∧· · ·∧wik ∈
∧•Wn is an eigenvector for the

action of the maximal torus TSpinn
, and TSpinn

acts on the linear subspace
C · wi1 ∧ · · · ∧ wik via the character χε1

1 ⊗ · · · ⊗ χεn
n where

εi =

{
1 for i ∈ {i1, . . . , ik}
−1 otherwise.

Proof. Let

(a1 + b1e1em+1)(a2 + b2e2em+2) . . . (am + bmeme2m) ∈ TSpinn

and consider the vector wi1 ∧ · · · ∧ wik . Note that eiem+i = −
√
−1(wi +

w′i)(wi − w′i). Suppose that i /∈ {i1, . . . , ik}: then

(wi + w′i)(wi − w′i)wi1 ∧ · · · ∧ wik = (wi + w′i)wi ∧ wi1 ∧ · · · ∧ wik

= wi1 ∧ · · · ∧ wik ,

so (a + beiei+m)wi1 ∧ · · · ∧ wik = (a −
√
−1b)wi1 ∧ · · · ∧ wik . Suppose now

that i = il: then

(wi + w′i)(wi − w′i)wi1 ∧ · · · ∧ wik

= (−1)l(wi + w′i)wi1 ∧ · · · ∧ wil−1
∧ wil+1

∧ · · · ∧ wik

= (−1)l+l−1wi1 ∧ · · · ∧ wik

= −wi1 ∧ · · · ∧ wik
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so (a+ beiei+m)wi1 ∧ · · · ∧wik = (a+
√
−1b)wi1 ∧ · · · ∧wik . Now the lemma

follows from the fact that the element (a1 + b1e1em+1) . . . (am + bmeme2m)
corresponds to (a1 +

√
−1b1) . . . (am +

√
−1bm) ∈ Gm

m . n

Set

Xn := {ε1x1 + · · ·+ εmxm}(ε1,...,εm)∈(Z/2)m .

Suppose that n = 2m; there are two complementary subsets X+
n , X

−
n ⊆ Xn,

given by

X+
n := {−x1 − · · · − xn + 2(xi1 + · · ·+ xik)}wi1

∧···∧wik
∈S+

n

X−
n := {−x1 − · · · − xn + 2(xi1 + · · ·+ xik)}wi1

∧···∧wik
∈S−n

.

Proposition 3.3. (1) Suppose that n = 2m+ 1. Then

2m∑
i=0

ci(Sn)T i =
∏

εj∈Z/2

(
1 + (ε1x1 + · · ·+ εmxm)T

)
=

∏
x∈Xn

(1 + xT )

in A∗
TSpinn

[T ].
(2) Suppose that n = 2m. Then

2m−1∑
i=0

ci(S+
n )T i =

∏
x∈X+

n

(1 + xT )

2m−1∑
i=0

ci(S−n )T i =
∏

x∈X−
n

(1 + xT )

in A∗
TSpinn

[T ].

Proof. Immediate from Lemma 3.2. n

To simplify the notation, in the following expressions we will write∑
xl

i1
. . . xl

is
for the ”ordered”

∑
1≤i1<···<is≤m xl

i1
. . . xl

is
.
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Corollary 3.4. We have that

c2 = −4
∑

i

x2
i

c4 = 16
∑

x2
ix

2
j

c6 = −64
∑

x2
ix

2
jx

2
k

c8 = 256x2
1x

2
2x

2
3x

2
4

y4 = 128x1x2x3x4

c+2 = −4
∑

x2
i

c+4 = 6
∑

x4
i + 4

∑
x2

ix
2
j − 48x1x2x3x4

c+6 = −4
∑

x6
i + 4

∑
(x2

ix
4
j + x4

ix
2
j )− 40

∑
x2

ix
2
jx

2
k + 32(

∑
x2

i )x1x2x3x4

c+8 = (
∑

x4
i − 2

∑
x2

ix
2
j + 8x1x2x3x4)2

y+
4 = 8

∑
x4

i − 16
∑

x2
ix

2
j + 64x1x2x3x4

in A∗
TSpin8

.
Moreover, suppose that c+i = f(x1, x2, x3, x4) and y+

4 = g(x1, x2, x3, x4):
then c−i = f(x1, x2, x3,−x4) and y−4 = −g(x1, x2, x3,−x4) in A∗

TSpin8
.

Proof. The formulae for the ci follow from the fact that the Chern
roots of the representation C8 are ±2x1,±2x2,±2x3,±2x4, so c2i is the i-th
symmetric polynomial in −4x2

1,−4x2
2,−4x2

3,−4x2
4.

By Proposition 3.3, the Chern roots of the spin representation S+
8 are

±(x1 + x2 + x3 + x4),± (−x1 + x2 + x3 − x4),

±(−x1 + x2 − x3 + x4),± (x1 + x2 − x3 − x4)

so c+2i is the i-th symmetric polynomial in these indeterminates.
Suppose that V ′ ⊆ V is an admissible maximal totally isotropic sub-

space, and that α1, α2, α3, α4 are Chern roots for V ′: then by 4.8 of Chapter
1 y4(V ) = 23α1α2α3α4. It is easy to check that 2x1, 2x2, 2x3, 2x4 (resp.
x1 + x2 + x3 + x4,−x1 + x2 + x3− x4,−x1 + x2− x3 + x4, x1 + x2− x3− x4)
are Chern roots for W (resp. W+, from Lemma 2.2), and an elementary
but long computation leads to the desired expressions (we used the program
Mathematica to compute them). Note that for c+8 we used the fact that by
4.4, Chapter 1, 26c+8 = (y+

4 )2 in A∗
Spin8

.
Finally, it is easy to see that sending x4 to −x4 exchanges X+ and X−,

and carries the Chern roots of W+ in the Chern roots of a non-admissible
totally isotropic subspace of S−, so the last assertion is prooved too. n



36 2. THE CHOW RING OF THE CLASSIFYING SPACE OF Spin8

4. The localization exact sequences

Let
C := {q = 0} i

↪→ C8 \ {0}

(risp. C± := {β = 0} i±
↪→ S± \ {0}) the cone of isotropic vectors in (A8, q)

(risp. in (S±, β)), and

B := {q 6= 0}
j
↪→ C8 \ {0}

(risp. B± := {β 6= 0}
j±

↪→ S± \ {0}) the locus in wich q (risp. β) is non-zero.
Note that the transposition (12) (resp. (13)) carries C,B isomorphically

onto C+, B+ (resp. C−, B−).
Then, correspondently, we have 3 localization exact sequences

A∗
Spin8

(C) i∗−→ A∗
Spin8

(C8 \ {0}) j∗−→ A∗
Spin8

(B) → 0

A∗
Spin8

(C±)
i±∗−→ A∗

Spin8
(S± \ {0}) (j±)∗−→ A∗

Spin8
(B±) → 0.

We now analyze the terms of the first sequence:
The term A∗

Spin8
(B). Let Q := {q = 1}: then we can consider a diagram

analogous to the one seen for On

B̃ //

��

B

q

��

Gm
(−)2

// Gm

where B̃ ' Q×Gm and B̃/µ2 ' B; the action of µ2 induced on Q×Gm is
given by ε(v, t) = (εv, εt), and it commutes with the one of Spin8 given by
a(v, t) = (av, t). It follows that there is an isomorphism

A∗
Spin8

(B) ' A∗
Spin8×µ2

(Q×Gm).

Since the action of Spin8 × µ2 extends to Q× C1,

(4.1) A∗
Spin8×µ2

(Q×Gm) ' A∗
Spin8×µ2

(Q)/(c1(χµ2
)).

Now, the action of Spin8 × µ2 on Q is transitive; let Γ the stabilizer of
e8 ∈ Q in Spin8×µ2. Since the stabilizer of e8 in SO8×µ2 is an SO7×µ2,
included in SO8 × µ2 via (M, ε) 7→ (εM, ε), we obtain a fiber diagram

1 // {±1} // Γ //
� _

��

SO7 × µ2
//

� _

��

1

1 // {±1} // Spin8 × µ2

(ρ,id)
// SO8 × µ2

// 1.

It follows that Γ ' Spin7 × µ2 included in Spin8 × µ2 via

(a, ε) 7→ (ηa, ε)
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where η = e1...e8 is the element of order 2 that generates, with −1, the
center of Spin8.

Hence
A∗

Spin8×µ2
(Q) ' A∗

Spin7×µ2
' A∗

Spin7
[c1(χµ2

)];

and combining this with Formula 4.1 we get

A∗
Spin8

(B) ' A∗
Spin7

.

It is easy to see that j∗ coincides with the restriction from Spin8 to Spin7

along the map given by the fiber diagram

Spin7
� � //

��

Spin8

ρ

��

SO7
� � // SO8,

where SO7 is included in SO8 as the stabilizer of an element of Q.
With a slight abuse of notation, we will call j : Spin7 → Spin8 this

inclusion.
The term A∗

Spin8
(C8 \ {0}). We have that

A∗
Spin8

(C8 \ {0}) ' A∗
Spin8

/(c8).

The term A∗
Spin8

(C). The action of Spin8 on C is transitive (since the
action of SO8 is); let Γ the stabilizer of w1 in Spin8. Recall that the stablizer
of w1 in SO8 is SO6 n H, where SO6 is included in SO8 as the stabilizer
of the pair (w1, w

′
1), and H is a group isomorphic, as a variety, to an affine

space, on which SO6 acts via affine transformations.
In the same way as for SOn, it is easy to see that Γ ' Spin6 n H ′,

where Spin6 is included in Spin8 as the stabilizer of the pair (w1, w
′
1). Then

H = H ′, and there are isomorphisms

A∗
Spin8

(C) ' A∗
Spin6nH ' A∗

Spin6
.

Finally, since Spin6 ' SL4,

A∗
Spin8

(C) ' Z[σ2, σ3, σ4]

where σi = ci(S+
6 ), S±6 are the two half-spin representations of Spin6.

5. The action of S3

There are other 2 inclusions j± of Spin7 in Spin8 given by the fiber
diagrams

Spin7
� � j±

//

��

Spin8

σ±

��

SO7
� � // SO8,

where SO7 is included in SO8 as the stabilizer of an element of Q±.
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Similarly, there are other 2 inclusions

i± : SL4 −→ Spin8.

We will denote with Spin±7 and SL±4 the corresponding subgroups of Spin8.
These subgroups are carried one to another by the symmetric group S3,
with the following geometric interpretation.

5.1. The subgroups SL4,SL±4 . We have seen that there is an isomor-
phism of Spin8-schemes

C ' Spin8/(SL4 ×H)

where Spin8 acts on C ⊆ C8 via ρ and SL4 ' Spin6 is included in Spin8

as the stabilizer of the pair (w1, w
′
1). There is also an ismomorphism of

Spin8-schemes

C+ ' Spin8/(Spin+
6 ×H)

where Spin8 acts on C+ = (12)(C) ⊆ S+ = (12)(C8) via σ+ = ρ(12)
(Remark ??) and SL+

4 is included in Spin8 as the stabilizer of the pair
((12)w1, (12)w′1). Hence SL+

4 = (12)(SL4) and the map (12)∗ : A∗
Spin8

(C) '
A∗

Spin8
(C+) corresponds to the pull-back (12)∗ : A∗

SL4
' A∗

SL+
4
. We define

the elements σ+
i := (12)∗σi ∈ A∗

SL+
4
.

Exactly in the same way there is an isomorphism (13)∗ : A∗
SL4

' A∗
SL−4

and we define σ−i := (13)∗σi ∈ A∗
SL−4

.

On the other hand, since (23) sends (w1, w
′
1) to (w′1, w1) the subgroup

SL4 is invariant under (23), and so there is an involution

(23) : SL4 → SL4.

We claim that (23) acts on SL4 as the outer automorphism ι : M 7→ M∨,
where we denote with M∨ the inverse of the transpose of M .

To see this, note that the restriction of (23) to C6 ⊆ C8 reverse also the
orientation of C6 '

∧
S+

6 , and so acts on S+
6 as a linear transformation with

determinant −1: so the induced map SL4 → SL4 is the conjugation by an
element of GL4 with determinant −1, that is not an inner automorphism.
Now the claim follows from the fact that Out(SL4) ' Z/2 is generated by
the involution ι.

In the same fashion, we see that also (13) : SL+
4 ' SL+

4 and (12) : SL−4 '
SL−4 correspond to the involution ι.

Lemma 5.1. (1) Let α ∈ Ak
SL4

, and set

α+ := (12)∗α ∈ Ak
SL+

4
, α− := (13)∗α ∈ Ak

SL−4
.
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Then the action of S3 on the pushforwards of these elements is
summarized in the following table:

(12) (13) (23)
i∗α i+∗ α

+ i−∗ α
− (−1)ki∗α

i+∗ α
+ i∗α (−1)ki+∗ α

+ (−1)ki−∗ α
−

i−∗ α
− (−1)ki−∗ α

− i∗α (−1)ki+∗ α
+

(2) Let β ∈ Ak
Spin8

, and set

β+ := (12)∗β, β− := (13)∗β ∈ Ak
Spin8

.

Then the action of S3 on the pullbacks of these elements is sum-
marized in the following table:

(12) (13) (23)
i∗β (i+)∗β+ (i−)∗β− (−1)ki∗β

(i+)∗β i∗β+ (−1)k(i+)∗β (−1)k(i−)∗β−

(i−)∗β (−1)k(i−)∗β− i∗β (−1)k(i+)∗β+

Proof. First note that ι∗ : A∗
SL4

' A∗
SL4

is the automorphism σk 7→
(−1)kσk (this can be seen for example restricting to a maximal torus), and
so it is the multiplication by (−1)k in degree k: this proves the formulae on
the anti-diagonal of the table.

Look at the following diagram in which each square is cartesian:

SL+
4==

}}zz
zz

zz
zz

OO

��

� � i+ // Spin8;;
(12)

{{wwwwwwwww OO

(23)

��

SL4 aa

!!D
DD

DD
DD

D
� � i // Spin8cc

(13) ##GGGGGGGGG

SL−4
� � i− // Spin8

.

The other two formulae of the first row of the table follow by definition of
α+, α−. Finally we prove the remaining formulae in the third column:

(23)∗i+∗ α
+ = (12)∗(13)∗(12)∗i+∗ α

+

= (12)∗i−∗ α
−

= (−1)ki−∗ α
−,

and similarly for (23)∗i−∗ α
−.

The part on the pull-backs is proved similarly. n

Remark 5.2. From now on, to simplify the notation, we will omit the
± in the elements of A∗

SL±4
: so we write σi ∈ A∗

SL±4
for σ±i ; this should not

create confusion.
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Lemma 5.3. The restriction of the Chern classes ci and c+i to SL4 and
SL+

4 are described in the following table:

i∗ (i+)∗

codd 0 0
c2 2σ2 2σ2

c4 σ2
2 − 4σ4 σ2

2 + 2σ4

c6 −σ3 2σ2σ4 − σ2
3

c8 0 σ2
4

c+2 2σ2 2σ2

c+4 σ2
2 + 2σ4 σ2

2 − 4σ4

c+6 2σ2σ4 − σ2
3 −σ3

c+8 σ2
4 0

y4 0 8σ4

y+
4 8σ4 0

Moreover i∗c+i = i∗c−i and i∗y+
4 = i∗y−4 .

Proof. By Lemma 5.1 (i+)∗ci = (i∗c+i )(12) and (i+)∗c+i = (i∗ci)(12), so
it is sufficient to prove only the formulae in the first column of the table.
From the cartesian diagram

Spin6
� � i //

ρ6

��

Spin8

ρ

��

SO6
� � i′ // SO8

we obtain
i∗ci = i∗ρ∗ci = ρ∗6(i

′)∗ci,
and analogously for y4. The restriction of C8 to SO6 is C6 ⊕C2, where SO6

acts canonically on the first summand, and trivially on the second one. It
follows that (i′)∗c7 = (i′)∗c8 = 0 in A∗

SO6
. Moreover, (i′)∗y4 = 0 because(

(i′)∗y4

)2 = (i′)∗(y2
4) = (i′)∗(26c8) = 0.

By Remark 2.1, C6 '
∧2 S+

6 ; since A∗
SL4

is torsion-free, we can restrict
to the maximal torus to verify the formulae. We have that

A∗
TSL4

' Z[t1, t2, t3, t4]/(t1 + t2 + t3 + t4);

using the relation t4 = −t1 − t2 − t3, the Chern classes of the characters of
the representation C6 are

t1 + t2, t1 + t3, t2 + t3,−(t1 + t2),−(t1 + t3),−(t2 + t3).

Since c2i+1 is 2-torsion, we have ρ∗6c2i−1 = 0 for i = 1, 2, 3. On the other
hand, the restriction of ρ∗6c2i to the torus is the i-th symmetric function in
the variables −(t1 + t2)2,−(t1 + t3)2,−(t2 + t3)2, for i = 1, 2, 3. (Recall that
if ξ1, ..., ξn are Chern roots for a fiber bundle E, {ξi1 + · · ·+ξim}1≤i1<···<im≤n

are Chern roots for
∧mE).
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The restrictions of the Chern classes σi to the torus are

σ2 = −(t21 + t22 + t23 + t1t2 + t1t3 + t2t3)

σ3 = −(t1 + t2)(t1 + t3)(t2 + t3)

σ4 = −t1t2t3(t1 + t2 + t3).

At this point we leave to the eager reader to verify the formulae concerning
the ci’s.

To prove the remaining formulae, note that the restrictions of S+ and S−

to Spin6 are both isomorphic to the direct sum S+
6 ⊕S

−
6 , so the restrictions

of the Chern and Edidin-Graham classes are the same. Moreover, since
S−6 ' (S+

6 )∨, we have that

i∗c+i = ci

(
S+

6 ⊕ (S+
6 )∨

)
=

∑
k+l=i

(−1)lck(S+
6 )cl(S+

6 )

=
∑

k+l=i

(−1)lσkσl

and these are exactly the expressions for the c+i ’s of the lemma.
As for y+

4 , since in A∗
Spin8

the relation (y+
4 )2 = 26c+8 holds, restricting

to SL4 we obtain (i∗y+
4 )2 = (8σ4)2 so we have i∗y+

4 = ±8σ4. To determine
the sign, we restrict to the maximal torus: since A∗

TSpin6
' A∗

TSpin8
/(x4) by

Lemma 3.1, we have that i∗y+
4 = y4 modx4, that is

i∗y+
4 = 8(x1 + x2 + x3)(−x1 + x2 + x3)(−x1 + x2 − x3)(x1 + x2 − x3)

= (−2t1)(2t3)(−t4)(2t2)
= 8σ4.

The formula on the restriction of y−4 is proved analogously. n

Corollary 5.4. As an A∗
Spin8

-module, A∗
SL4

is generated by the follow-
ing 8 elements:

1, σ2, σ3, σ4, σ2σ3, σ2σ4, σ3σ4, σ2σ3σ4.

Proof. By Lemma 5.3 we have that

σ2
2 = 2(σ2

2 + 2σ4)− (σ2
2 − 4σ4)− 8σ4

= i∗(2c+4 − c4 − y+
4 );

moreover, σ2
3 = −i∗c6 and σ2

4 = i∗c+8 , so σ2
2, σ

2
3, σ

2
4 ∈ i∗ A∗

Spin8
. n

5.2. The subgroups Spin7,Spin±7 . Before undertaking a similar anal-
ysis for the action of S3 on A∗

Spin7
and A∗

Spin±7
we need some auxiliary results

on A∗
Spin7

. Consider the spin representation S7 of Spin7, and let C ′ ⊆ S7\{0}
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the cone of isotropic vectors, B′ := (S7 \ {0}) \ C ′. Then there is an exact
localization sequence

A∗
Spin7

(C ′) h−→ A∗
Spin7

(S7 \ {0})
f−→ A∗

Spin7
(B′) → 0.

Guillot ([12, Proposition 6.5]) proved the following facts:
(1) there is an isomorphism

A∗
Spin7

(B′) ' A∗
G2

where the exceptional group G2 is included in Spin7 as the stabilizer
of any point of the quadric Q′ := {β = 1} ⊆ B′;

(2) the action of Spin7 on C ′ is transitive, and the stabilizer of any
point is a semi-direct product SL3 nH, where H is a 1-connected
solvable group (we conjecture that H is isomorphic, as a variety,
to an affine space, and SL3 acts on H via linear transormations):
hence there is an isomorphism

A∗
Spin7

(C ′) ' A∗
SL3

;

(3) denote h : SL3 ⊆ Spin7 the inclusion of SL3 as the stabilizer of
a point of C ′: then the restriction h∗ make A∗

SL3
a finite A∗

Spin7
-

module, generated by σ2, σ3, σ2σ3, where σi is the i-th Chern class
of the tautological representation of SL3.

Define the elements ξ3 := h∗σ2, ξ4 := h∗σ3, ξ6 := h∗(σ2σ3) ∈ A∗
Spin7

and
set ci := ci(C7), c′i := ci(S7). Then Guillot ([12, Proposition 7.3]) proved
the following result:

Theorem 5.5 (P.Guillot). The Chow ring of Spin7 is generated by the
following elements:

ξ3, ξ4, ξ6, c2, c4, c6, c7, c
′
8.

As for SL4 and SL±4 , the transposition (12) (resp. (13)) induces an
isomorphism (12)∗ : A∗

Spin7
' A∗

Spin+
7

(resp. (13)∗ : A∗
Spin7

' A∗
Spin−7

) that

corresponds to (12)∗ : A∗
Spin8

(B) ' A∗
Spin8

(B+) (resp. (13)∗ : A∗
Spin8

(B) '
A∗

Spin8
(B+)). Once fixed the elements ξi, ci, c′i in A∗

Spin7
, we define ξ+i :=

(12)∗ξi and so on.
The next step is to investigate the relation between SL3 an SL4. Com-

posing the inclusions SL3 ⊆ Spin7 ⊆ Spin8, we can regard SL3 as a subgroup
of Spin8. Correspondingly, there are other 2 subgroups h+ : SL+

3 ⊆ Spin+
7

and h− : SL−3 ⊆ Spin−7 .

Lemma 5.6. The restrictions of the representations ρ, σ+, σ− of Spin8

to the subgroups Spin7,Spin+
7 ,Spin−7 are summarized in the following table:

ρ σ+ σ−

Spin7 ρ7 ⊕ 1 σ7 σ7

Spin+
7 σ7 ρ7 ⊕ 1 σ7

Spin−7 σ7 σ7 ρ7 ⊕ 1
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where ρ7 : Spin7 → SO7 (resp. σ7 : Spin7 → SO8) is the 7-dimensional
representation (resp. the spin representation) of Spin7.

Proof. First of all, note that thanks to the action of S3 it suffices to
prove only the formulae on the first row of the table. From the fiber diagram

Spin7
� � j

//

��

Spin8

ρ

��

SO7
� � // SO8

we obtain resSpin8
Spin8

ρ ' ρ7 ⊕ 1.
We will show that j : Spin7 ⊆ Spin8 is the restriction of the inclusion of

Clifford algebras C7 ⊆ C8 given by the embedding

C7 = W7 ⊕W ′
7 ⊕ U ⊆ C8 = W7 ⊕W ′

7 ⊕ U1 ⊕ U2,

where the inclusion U ⊆ U1 ⊕ U2 sends 1 to 1/
√

2(1, 1), and the quadratic
form on U1 ⊕ U2 is given by the matrix(

1
1

)
.

Then it will follow from [4, Exercise 20.40] that the restriction of both the
two half-spin representations to Spin7 are isomorphic to the spin represen-
tation.

It is easy to see that, with respect to the orthonormal basis e1, . . . , e7
of C7 and e1, . . . , e8 of C8, the embedding works in the the following way:
ei 7→ ei, ei+3 7→ ei+4 for i = 1, 2, 3, and e7 7→

√
−1/2e4. In particular,

we have that Spin7 stabilizes e8, so the inclusion Spin7 ⊆ Spin8 induced by
C7 ⊆ C8 is j, and we are done. n

It follows that Spin±7 acts on C8 via σ7: so we can construct a commu-
tative diagram with exact rows

A∗
Spin±7

(C) // A∗
Spin±7

(C8 \ {0}) // A∗
Spin±7

(B) // 0

A∗
Spin8

(C) i∗ //

(j±)∗

OO

A∗
Spin8

(C8 \ {0}) j∗
//

(j±)∗

OO

A∗
Spin8

(B) //

(j±)∗

OO

0.

Lemma 5.7. The subgroup SL3 is S3-invariant, and

SL3 = SL4 ∩ Spin+
7 = SL4 ∩ Spin−7 .

Moreover, following the notation of Remark 2.1, h : SL3 ⊆ SL4 includes SL3

in SL4 as the stabilizer of v2.

Proof. It is not difficult to see that SL+
3 is the stabilizer of the pair

(w1, w
′
1) in Spin+

7 ; since SL4 is the stabilizer of (w1, w
′
1) in Spin8, the state-

ment SL3 = SL4 ∩ Spin+
7 follows easily.
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We have that resSpin8
SL4

S+ ' S+
6 ⊕ S−6 , with S+

6 ' (S−6 )∨. On the other
side, j+ includes Spin+

7 in Spin8 as the stabilizer of w2 ∧ w1 + w3 ∧ w4 ∈
Q+ ⊆

∧•W , with w2 ∧ w1 ∈ S+
6 , w3 ∧ w4 ∈ (S+

6 )∨: so SL4 ∩ Spin+
7 is the

stabilizer in SL4 of w1 ∧w2 = v2 ∈ S+
6 . But we have more: since SL+

4 is the
stabilizer of (w1∧w2, w3∧w4) in Spin8, we have also that SL+

3 = SL4∩SL+
4 .

Applying transposition (12) exchanges SL4 and SL+
4 , so

SL3 = (12)SL+
3 = (12)(SL4 ∩ SL+

4 ) = SL+
4 ∩ SL4 = SL+

3 .

Now we apply transposition (23) to the equality SL3 = SL4 ∩ Spin+
7 and

obtain SL3 = SL4 ∩ Spin−7 . On the other hand, the same argument used for
SL+

3 shows that SL−3 = SL4 ∩ Spin−7 . n

Corollary 5.8. There are commutative diagrams

A∗
SL3

h∗ // A∗
Spin7

/(c′8)

A∗
SL±4

i±∗ //

φ±

OO

A∗
Spin8

/(c±8 )

j∗

OO

and φ+(σi) = σi, φ
−(σi) = (−1)iσi ∈ A∗

SL3
.

Proof. By Lemma 5.6 there are commutative diagrams with exacts
rows

A∗
Spin7

(C±) // A∗
Spin7

(S± \ {0}) // A∗
Spin7

(B±) // 0

A∗
Spin8

(C±) i±∗ //

j∗

OO

A∗
Spin8

(S± \ {0}) j∗
//

(j±)∗

OO

A∗
Spin8

(B±) //

OO

0.

We have isomorphisms A∗
Spin7

(C±) ' A∗
SL3

and A∗
Spin8

(C±) ' A∗
SL±4

, and
by Lemma 5.7 the induced pull-back A∗

SL±4
→ A∗

SL3
is the one induced by

the inclusion of SL3 ⊆ SL±4 : it is easy to see that SL3 ⊆ SL+
4 is the usual

inclusion, while SL3 ⊆ SL−4 is the map ι followed by the usual inclusion,
whence the assertion on φ±. n

6. Informations from mod 2 and Brown-Peterson cohomology

In what follows we will use the same notation for both the complex
algebraic group and its real maximal compact subgroup: this convention
should not lead to confusion, and it fits well to our aims, since the classifying
space of a complex algebraic group is homotopy equivalent to that of its
maximal compact subgroup.
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6.1. The mod 2 cohomology of the classifying space of spin
groups. We will denote with wi ∈ H∗(B Spinn; Z/2) the i-th Stiefel-Whitney
class wi(Rn), where Rn is the representation given by the projection Spinn →
SOn.

Daniel Quillen ([16]) described the mod 2 cohomology of the classifying
space of Spinn as follows. The Milnor operations are defined recursively by
Q0 = Sq1 and Qi = [Sq2i

,Qi−1], where Sqi is the i-th Steenrod operation
(see [14]).

Theorem 6.1 (D. Quillen). Let ∆ a spin representation of Spinn, and
let 2h be the Radon-Hurwitz number: then we have that

H∗(B Spinn; Z/2) ' Z/2[w2, . . . , wn, wh(∆)]/(w2,Q0w2, . . . ,Qh−1w2).

Let w′i (resp. w±i ) the i-th Stiefel-Whitney class wi(∆7) (resp. wi(∆±
8 )),

where ∆7 is the 7-dimensional spin representation of Spin7 (resp. ∆±
8 is the

positive/negative 8-dimensional half-spin representation of Spin8): then we
have that

H∗(B Spin7; Z/2) ' Z/2[w4, w6, w7, w
′
8]

H∗(B Spin8; Z/2) ' Z/2[w4, w6, w7, w8, w
+
8 ].

6.2. Complex cobordism and Brown-Peterson cohomology. A
weakly complex manifold M is a smooth real manifold with a complex vector
bundle over M whose underlying real vector bundle is TM⊕RN for some N .
In particular, a complex manifold is a weakly complex manifold, but also
some odd-dimensional manifolds admit a weakly complex struxture. We
identify two weakly complex structures on M if they are homotopic, and we
also identify a complex structure on TM ⊕ RN with the obvious complex
structure on TM ⊕ RN ⊕ R2 = TM ⊕ RN+2.

Let X a topological space: the i-th complex bordism group MUi(X) is
defined as the free abelian group on the set of continuous maps M → X
where M is a closed weakly complex manifold of real dimension i, modulo
the relations

[M1

∐
M2 → X] = [M1 → X] + [M2 → X]

[∂N → X] = 0

whereN is a weakly complex i+1-manifold with boundary with a continuous
map N → X.

The groups MUi(X) form a generalized homology theory, that is, they
satisfy all the formal properties of the ordinary homology, except for the
dimension axiom, since MU∗ = MU∗(pt) ' Z[x1, x2, . . . ] with xi ∈ MU2i.

As for any generalized homology theory, there is a corresponding co-
homology theory, the complex cobordism MU∗(X), which is a ring for any
topological space X, and if X is a real compact oriented n-dimensional man-
ifold there is a Poincaré duality MUi(X) ' MU2n−i(X) (this isomorphism
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also holds for noncompact manifolds, with a variant ‘á la Borel-Moore’ of
the (co)bordism ring: see [20]).

From now on we will assume that X is a real manifold. There is a
natural map MU∗(X) → H∗(X) that sends a cobordism class [M → X] to
the image under this map to the fundamental class of M . This map has an
enormous kernel, however Burt Totaro ([20]) has shown that we can refine
it to a map

MU∗(X)⊗MU∗ Z −→ H∗(X)

that has the advantage that its kernel is much smaller than that of the
previous one.

Moreover, for any complex algebraic scheme X, Totaro has defined a
map

A∗(X) −→ MU∗(X)⊗MU∗ Z
that sends the class of an irreducible i-dimensional subvariety Z ⊆ X to the
class of the map Z̃ → Z ⊆ X where Z̃ → Z is any resolution of singularities
of Z (see [20, Theorem 3.1]).

The composition of the two maps

A∗(X) −→ MU∗(X)⊗MU∗ Z −→ H∗(X)

is the usual cycle map.
The Brown-Peterson cohomology is a simplification of complex cobor-

dism; for any prime p, there is a cohomology theory called BP∗ (it is conven-
tional not to indicate the number p in the notation), whose coefficient ring is
the polynomial ring Z(p)[v1, v2, . . . ], where vi ∈ BP−2(pi−1). The BP∗ theory
is easier to compute than the MU∗ one, but BP∗(X) carries essentially all
the topological information of MU∗(X); moreover, it can be shown that

BP∗(X)⊗BP∗ Z(p) ' MU∗(X)⊗MU∗ Z(p)

so one can define a map

A∗(X)(p) −→ BP∗(X)⊗BP∗ Z(p) −→ H∗(X)(p)

whose composition is the cycle map cl⊗Z(p).
Finally, in the same way as for the usual cohomology ring, given a topo-

logical group G and a topological G-space X we can define an equivariant
Brown-Peterson cohomology ring

BP∗G(X) := BP∗
(
(X × EG)/G

)
where EG→ BG is the universal principal G-bundle, and BG is the classi-
fying space for G. We will denote with BP∗G := BP∗G(pt) the Brown-Peterson
cohomology ring of a point: this, as usual, can be identified with the Brown-
Peterson cohomology of the classifying space of G.

The main tool to compute the Brown-Peterson cohomology of a space is
by means of the Atiyah-Hirzebruch spectral sequence. Suppose that X is a
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space with the homotopy type of a CW-complex. Then there is a half-plane
spectral sequence E(X)∗,∗∗ with

E(X)h,k
2 ' Hh(X; BPk)(p)

converging to BP∗(X). Moreover, some of the differentials of this spectral
sequence are given by

d2i+1−1(x) = vi ⊗Qi x mod
(
quotient of (v1, . . . , vi−1)E2 ∩ Er

)
.

Remark 6.2 (Yagita). To start the Atiyah-Hirzebruch spectral sequence
for Brown-Peterson cohomology for a spaceX, we need to know H∗(X; BP∗).
If H∗(X) has only p-torsion (and this will be the case of G2,Spin7,Spin8 for
p = 2), it sufficies to know the mod p cohomology: first note that we can
identify H∗(X)(p)/p as a subgroup of H∗(X; Z/p) in the following way (here
the Milnor operations Qi are restricted to H∗(X; Z/p)):

H∗(X)(p)/p = kerQ0 = (kerQ0 / im Q0)⊕ im Q0 ⊆ H∗(X; Z/p).

Let B the free Z(p)-module generated by the same dimensional generators in
ker Q0 / im Q0: then, since B is the torsion-free part of H∗(X)(p) and im Q0

is the torsion of H∗(X)(p), we have that

H∗(X)(p) ' B ⊕ im Q0 .

Now, by the universal coefficient theorem H∗(X; BP∗) = H∗(X)(p) ⊗Z BP∗

(recall that BP∗ is a free Z(p)-module), so we obtain

H∗(X; BP∗) ' (B ⊕ im Q0)⊗Z BP∗ .

6.3. Brown-Peterson cohomology of B Spin8. The Brown-Peterson
cohomology of B Spinn has been studied by Akira Kono and Nobuaki Yagita
in [13]. They compute, among other things, the Brown-Peterson cohomol-
ogy of some exceptional groups and of Spinn for n ≤ 10 using the Atiyah-
Hirzebruch spectral sequence.

From now on we will work with p = 2. The following result appears in
[13], but in a different form; here we give a direct proof, also given in an
unpublished paper by Yagita (see also [17, §7]).

We introduce the following notation: suppose that R is a ring, M
is an R-module, and choose elements x1, . . . , xn ∈ M : then we denote
with R{x1, . . . , xn} the R-submodule of M generated by x1, . . . , xn. If
R{x1, . . . , xn} is a free R-module, we write R 〈x1, . . . , xn〉.



48 2. THE CHOW RING OF THE CLASSIFYING SPACE OF Spin8

Lemma 6.3. There is an isomorphism of Z(2)-modules

E(B Spin8)
∗,∗
∞ =Z(2)[c4, c6, c8, c

+
8 ]⊗

(
BP∗{1, 2w4, 2w4w8, 2w8, 2w+

8 ,

2w4w
+
8 , v1w8, v1w

+
8 , v1w8w

+
8 , 2w8w

+
8 w4, 2w8w

+
8 }

⊕
(
BP∗[c7]{(c8 − c+8 )c7c8c+8 }

)
/(2, v1, v2, v3, v4)

)
⊕ Z(2)[c4, c6, c7, c8]⊗

(
BP∗[c7]{c7c8}/(2, v1, v2, v3)

)
⊕ Z(2)[c4, c6, c7, c

+
8 ]⊗

(
BP∗[c7]{c7c+8 }/(2, v1, v2, v3)

)
⊕ Z(2)[c4, c6]⊗

(
BP∗[c7]{c7}/(2, v1, v2, v3)

)
⊕ Z(2)[c4, c6, c

+
8 ]⊗

(
BP∗[c7]{c7c8c+8 }/(2, v1, v2)

)
.

where 2wi ∈ BP∗Spin8
(resp. 2w+

i ∈ BP∗Spin8
) are elements that map to the

i-th Stiefel-Whitney class 2 wi(R8) (resp. 2 wi(∆+)) under the composition

BP∗Spin8
−→ H∗(B Spin8) −→ H∗(B Spin8; Z2).

Proof. The cohomology of the classifying space of the exceptional Lie
group G2 is computed in [2]:

H∗(B G2; Z/2) ' Z/2[w4, w6, w7]

H∗(B G2)(2) ' Z(2)[w4, c6](Z(2){1} ⊕ Z/2[w7]{w7}).
Let us write Bi1,...,ij = Z(2)[ci1 , ..., cij ], e.g., B4,6 = Z(2)[c4, c6] and write
P (n)∗ = BP∗ /(2, v1, ..., vn−1) e.g, P (2)∗ = BP∗ /(2, v1). Since Q1(w4) = w7,
we have d3(w4) = v1⊗w7. Hence the E4-term of Atiyah-Hirzebruch spectral
sequence is

E(B G2)
∗,∗
4
∼= B4,6 ⊗ (BP∗{1, 2w4} ⊕ P (2)∗[c7]{c7, w7}).

Next differential is Q2(w7) = c7 and

E(B G2)
∗,∗
8
∼= B4,6 ⊗ (BP∗{1, 2w4} ⊕ P (3)∗[c7]{c7}).

which is isomorphic to E(G2)
∗,∗
∞ .

Next consider the case Spin7. We have seen that the mod 2 cohomology
of Spin7 is isomorphic to the polynomial ring Z/2[w4, w6, w7, w

′
8], so

H∗(B Spin7; Z/2) ' H∗(B G2; Z/2)⊗ Z/2[w′8].

Since Q0(w8) = Q1(w8) = 0, we see that

E(B Spin7)
∗,∗
4 ' E(B G2)

∗,∗
4 [w8]

' B4,6,8 ⊗ (BP∗{1, 2w4} ⊕ P (2)∗[c7]{c7, w7}){1, w8}
' B4,6,8 ⊗ (BP∗{1, 2w4, w8, 2w4w8} ⊕ P (2)∗[c7]{c7, w7, c7w8, w7w8}).

The next differential is d7(w7) = v2c7 and d7(w8) = v2(w7w8). Hence

E(B Spin7)
∗,∗
8 '

B4,6,8 ⊗ (BP∗{1, 2w4, 2w4w8, 2w8, v1w8} ⊕ P (3)∗[c7]{c7, w7w8}).
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Since Q3(w7w8) = c7c8, we get

E(B Spin7)
∗,∗
16 ' B4,6 ⊗ P (3)∗[c7]{c7}⊕

B4,6,8 ⊗ (BP∗{1, 2w4, 2w4w8, 2w8, v1w8} ⊕ P (4)∗[c7]{c7c8}).
This term is also the infity term.

Now we consider the case Spin8. The mod 2 cohomology is H∗(B Spin8; Z/2) '
H∗(B Spin7; Z/2)⊗ Z/2[w+

8 ]; since Q0(w8) = Q1(w8) = 0, we see that

E(B Spin8)
∗,∗
4 ' E(B G2)

∗,∗
4 [w8, w

+
8 ]

' B4,6,8,8+ ⊗ (BP∗{1, 2w4} ⊕ P (2)∗[c7]{c7, w7}){1, w8} ⊗ {1, w+
8 })

' B4,6,8,8+ ⊗ (BP∗{1, 2w4, w8, 2w4w8, w
+
8 , 2w4w

+
8 , w8w

+
8 , 2w4w8w

+
8 }

⊕P (2)∗[c7]{c7, w7, c7w8, w7w8, c7w
+
8 , w7w

+
8 , c7w8w

+
8 , w7w8w

+
8 }).

The next differential is d7(w7) = v2c7 and d7(w8) = v2(w7w8), and d7(w+
8 )) =

v2c7w
′
8 and d7(w7w8w

+
8 ) = c7w8w

+
8 ,. Hence

E(B Spin8)
∗,∗
8 '

B4,6,8,8+⊗(BP∗{1, 2w4, 2w4w8, 2w8, v1w8, 2w+
8 , v1w

+
8 , 2w4w

+
8 , w8w

+
8 , 2w4w8w

+
8 }

⊕P (3)∗[c7]{c7, w7w8, w7w
+
8 , c7w8w

+
8 }).

Since Q3(w7w8) = c7c8,Q3(w7w
+
8 ) = c7c

+
8 . Q3(w8w

+
8 ) = c8w7w

+
8 +

c+8 w7w8, we get

E(B Spin8)
∗,∗
16 ' B4,6,8,8+ ⊗ (BP∗{1, 2w4, 2w4w8, 2w8, v1w8, 2w+

8 , v1w
+
8 ,

2w4w
+
8 , 2w8w

+
8 w4, 2w8w

+
8 , v1w8w

+
8 , v2w8w

+
8 }

⊕P (4)∗[c7]{c7c8c+8 , c8w7w
+
8 + c+8 w7w8})

⊕B4,6,8⊗P (4)∗[c7]{c7c8}⊕B4,6,8+ ⊗P (4)∗[c7]{c7c+8 }⊕B4,6⊗P (3)∗[c7]{c7}.
The next differential is

d31(c8w7w
+
8 + c′8w7w8) = v4 ⊗ (c8 + c+8 )c8c7c+8 .

Therefore we get

E(B Spin8)
∗,∗
32 ' B4,6,8,8′ ⊗ (BP∗{1, 2w4, 2w4w8, 2w8, v1w8, 2w+

8 , v1w
+
8 ,

2w4w
+
8 , 2w8w

+
8 w4, 2w8w

+
8 , v1w8w

+
8 , v2w8w

+
8 }

⊕P (5)∗[c7]{(c8 + c+8 )c7c8c+8 })⊕B4,6,7,8 ⊗ P (4)∗[c7]{c7c8}

⊕B4,6,7,8+⊗P (4)∗[c7]{c7c+8 }⊕B4,6⊗P (4)∗[c7]{c7}⊕B4,6,8+⊗P (3)∗[c7]{c8c+8 c7}.
This term is the infinite term and the proof is over. n
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The first summand of E(B Spin8)
∗,∗
∞ is isomorphic to

BP∗[c4, c6, c8, c+8 ]〈y0, y4, y6, y
+
6 , y8, y

+
8 , y10, y12, y

+
12,

y14, y16, y20〉/(2y6 − v1y8, 2y+
6 − v1y

+
8 , 2y10 − v1y16, 2y14 − v2y8)

⊕ BP∗[c4, c6, c8, c+8 ][c7]{(c8 − c+8 )c7c8c+8 }/(2, v1, v2, v3, v4)

(here the subscripts for the yi give the cohomological degree). Note that
ci = w2

i ∈ H∗(B Spin8,Z/2) (see for example [14, §15]).
So we obtain the following result on the Brown-Peterson cohomology of

the classifying space of Spin8:

Theorem 6.4 (N.Yagita). There is an isomorphism of Z(2)[c4, c6, c8, c
+
8 ]-

modules

BP∗Spin8
⊗BP∗Z(2) 'Z(2)[c4, c6, c8, c

+
8 ]

(
Z2

〈
ỹ0, ỹ4, ỹ8, ỹ

+
8 , ỹ12, ỹ

+
12, ỹ16, ỹ20

〉
⊕ Z/2

〈
ỹ6, ỹ

+
6 , ỹ10, ỹ14

〉
⊕ Z/2[c7]{c7}

)
where we denoted with ỹ ∈ BP∗Spin8

a class that is represented by y in the
page E∗,∗

∞ .

From this, it is easy to prove the following result:

Proposition 6.5 (N. Yagita). The cycle map localized at (2)

A∗
Spin8

⊗Z(2)
c̃l−→ BP∗Spin8

⊗BP∗Z(2)

is an isomorphism.

Proof. Note that since H∗(SL4; Z) has no torsion, BPodd
SL4

= 0: see [13,
p. 781]; moreover, by [13, p. 797-798] we have also BPodd

Spin7
= BPodd

Spin8
= 0.

From the identifications BP∗Spin8
(C) ' BP∗SL4

and BP∗Spin8
(B) ' BP∗Spin7

we
obtain the exact localization sequence in the Brown-Peterson theory for the
inclusions C ⊆ (C8 \ {0}) ⊇ B

BP∗Spin8
(C) i∗−→ BP∗Spin8

(C8 \ {0}) j∗−→ BP∗Spin8
(B) → 0

and a commutative diagram

A∗
SL4

i∗ //

c̃l
��

A∗
Spin8

/(c8)
j∗

//

c̃l
��

A∗
Spin7

//

c̃l
��

0

BP∗SL4
⊗BP∗Z(2)

i∗ // BP∗Spin8
/(c8)⊗BP∗ Z(2)

j∗
// BP∗Spin7

⊗BP∗Z(2) // 0.

Following the notation of [12] there is an isomorphism of Z(2)-modules

BP∗Spin7
⊗BP∗Z(2) ' Z(2)[c4, c6, c8, c

+
8 ]

(
Z2 〈x̃0, x̃4, x̃8, x̃12〉⊕Z/2 〈x̃6〉⊕Z/2[c7]{c7}

)
;

since j∗ỹ0 = x̃0, j
∗ỹ4 = x̃4, j

∗ỹ+
6 = x̃6, j

∗ỹ+
8 = x̃8, j

∗ỹ+
12 = x̃12 we have that

ỹ6, ỹ8, ỹ10, ỹ12, ỹ14, ỹ16, ỹ20 ∈ ker j∗
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and so for dimensional reasons we have the following table of pushforwards
in BP∗Spin8

⊗BP∗Z(2)/(c8):

α σ2 σ3 σ4 σ2σ3 σ2σ4 σ3σ4 σ2σ3σ4

i∗ c̃l(α) ỹ6 ỹ8 ỹ10 ỹ12 ỹ14 ỹ16 ỹ20

in BP∗Spin8
⊗BP∗Z(2)/(c8). Recall that the restriction i∗ gives A∗

SL4
(resp.

BP∗SL4
) the structure of a finite A∗

Spin8
-module (resp. BP∗Spin8

-module), gen-
erated by the elements 1, σ2, σ3, σ4, σ2σ3, σ2σ4, σ3σ4, σ2σ3σ4 (Corollary 5.4);
then the projection formula says exaclty that the pushforward i∗ is a mor-
phism of A∗

Spin8
-modules (resp. BP∗Spin8

-modules). Note also that as a map
of A∗

Spin8
-modules, ker i∗ is the submodule generated by 1. Moreover, the

map c̃l makes BP∗ Spin8⊗BP∗ Z(2) an A∗
Spin8

-module: it follows that we have
a commutative diagram of A∗

Spin8
-modules with exact rows

0 // (A∗
SL4

/ ker i∗)⊗ Z(2)
i∗ //

c̃l
��

(
A∗

Spin8
/(c8)

)
⊗ Z(2)

j∗
//

c̃l
��

A∗
Spin7

⊗Z(2) //

c̃l
��

0

0 // BP∗SL4
⊗BP∗Z(2)/ ker i∗

i∗// BP∗Spin8
/(c8)⊗BP∗ Z(2)

j∗
// BP∗Spin7

⊗BP∗Z(2) // 0.

The right vertical arrow is an isomorphism (because BP∗SL4
= BPeven

SL4
), and

by [12] also the right vertical arrow is an isomorphism: so by the 5-lemma
we have that

(
(A∗

Spin8
)(2)

)
/(c8) '

(
BP∗Spin8

⊗BP∗Z(2)

)
/(c8).

Now let x ∈ BPi
Spin8

⊗BP∗Z(2), and choose α ∈ (Ai
Spin8

)(2) such that

c̃l(α) mod c8 = xmod c8. Then c̃lα = x+c8y, and by induction on the degree
we can suppose that y = c̃lβ with β ∈ (Ai−8

Spin8
)(2), and c̃l(α − c8β) = x,

so c̃l : (A∗
Spin8

)(2) → BP∗Spin8
⊗BP∗Z(2) is surjective. To show injectivity,

let α ∈ Ai
BSpin8

and suppose that c̃lα = 0: then since c̃l mod c8 is an
isomorphism we have that α = c8β for some β ∈ Ai−8

Spin8
. Since by Theorem

6.4 c8 is not a zero divisor in BP∗Spin8
⊗BP∗Z(2), we obtain that c̃lβ = 0; once

again, by induction on the degree we deduce that β = 0 and so α = 0. n

7. Push-forward classes from A∗
SL4

Define the following elements in A∗
Spin8

/(c8):

ζ̄3 := i∗σ2

ζ̄4 := i∗σ3

ζ̄5 := i∗σ4

ζ̄6 := i∗(σ2σ3)

ζ̄7 := i∗(σ2σ4)

ζ̄8 := i∗(σ3σ4)
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ζ̄10 := i∗(σ2σ3σ4).

For i = 1, . . . , 6 there are unique elements ζi ∈ A∗
Spin8

such that ζi mod c8 =
ζ̄i ∈ A∗

Spin8
/(c8). To define ζ8, ζ10 ∈ A∗

Spin8
we need some auxiliary results.

Define the elements

ζ+
i := i+∗ σi−1, ζ−i := i−∗ σi−1

ζ+
6 := i+∗ σ2σ3, ζ−6 := i−∗ σ2σ3

Lemma 7.1. The images of the ζi under the cycle map c̃l : A∗
Spin8

→
BP∗Spin8

⊗BP∗Z(2) are described in the following table:

α ζ3 ζ+
3 ζ4 ζ+

4 ζ5 ζ6 ζ+
6 ζ7

c̃l(α) ỹ6 ỹ+
6 ỹ8 ỹ+

8 ỹ10 ỹ12 ỹ+
12 ỹ14

Proof. From the exact localization sequences for A∗
Spin8

and BP∗Spin8
it

is easy to see that the formulae hold for the ζi mod c8, and so for the ζi. The
formulae for the ζ+

i hold for dimensional reasons. n

Lemma 7.2. We have that

c2 = c+2 = c−2

c+4 − c−4 = −3ζ4
c+6 − c−6 = −ζ6

in A∗
Spin8

.

Proof. By Lemma 5.6 j∗c+i = j∗c−i , so c+i − c−i ∈ im i∗. By Corollary
5.4 we have that i∗ A1

SL4
= 0, i∗ A3

SL4
= Zζ4, i∗ A5

SL4
= Zζ6, hence

c+2 − c−2 = 0

c+4 − c−4 = d4ζ4

c+6 − c−6 = d6ζ6.

Moreover, since c2 = c′2 in A∗
Spin7

, we have that j∗c2 = j∗c±2 , and so c2 −
c±2 , c

+
2 − c−2 ∈ i∗ A1

SL4
= 0. Applying the transposition (12) to the last two

equations and restricting to Spin7 we obtain

c4 − c′4 = d4ξ4

c6 − c′6 = d6ξ6

in A∗
Spin7

, and by [12, Remark p. 19] we obtain that d4 = −3 and d6 =
−1. n

We know from Lemma 3.1 that A∗
TSpin6

' Z[u1, u2, u3, ū3]/(2ū3 − (u1 +
u2 + u3)); on the other hand, we have that A∗

TSL4
' Z[t1, t2, t3, t4]/(t1 + t2 +

t3 + t4), where, following notation of Remark 2.1, ti is the Chern class of the
character τi. We wish to compare the two expressions: to do this, we need
a
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Lemma 7.3. We have that

W6 = 〈v2 ∧ v4, v2 ∧ v3, v3 ∧ v4〉 ,
and the formulae

u1 = 2x1 = −t1 − t3

u2 = 2x2 = t2 + t3

u3 = 2x3 = −t1 − t2

hold in A∗
TSpin6

.

Proof. The restriction of S+ to TSpin6
is isomorphic to S+

6 ⊕S
−
6 , and by

Lemma 3.2 the action of TSpin6
on the subspace Cv1 (resp. Cv2,Cv3,Cv4) is

given by χ−1
1 ⊗χ−1

2 ⊗χ−1
3 (resp. χ1⊗χ2⊗χ−1

3 , χ−1
1 ⊗χ2⊗χ3, χ1⊗χ−1

2 ⊗χ3).
It follows that TSpin6

acts on Cv2∧ v4 (resp. Cv2∧ v3,Cv3∧ v4) via χ2
1 (resp.

χ2
2, χ

2
3). Let W3 = 〈w1, w2, w3〉 ⊆ C6: then TSpin6

acts on Cwi via χ2
i : it

follows that (possibly after rescaling the vectors) w1 = v2 ∧ v4, w2 = v2 ∧ v3
and w3 = v3 ∧ v4.

Since TSL4 acts on Cvi∧vj via the character τi⊗τj , taking Chern classes
of these characters the second assertion is proved too. n

Lemma 7.4. We have that

y4 − 4ζ4 = y+
4 − 4ζ+

4 = 0

ζ2
4 − 4c8 = (ζ+

4 )2 − 4c+8 = 0

in A∗
Spin8

.

Proof. Obviously it is sufficient to prove only the formulae for ζ4, the
ones for ζ+

4 being obtained applying transposition (12).
Consider the cartesian diagram of linear algebraic groups

Spin6
� � i //

ρ6

��

Spin8

ρ

��

SO6
� � i′ // SO8.

Let (U, V ) a good pair for Spin8: then in the diagram

(U × C)/Spin8
� � i //

��

(
U × (A8 \ {0})

)
/Spin8

��

(U × C)/SO6
� � i′ //

(
U × (A8 \ {0})

)
/SO8

the horizontal arrows are proper and the vertical arrows are flat, so by [3,
Proposition 1.7] we have that

i∗ρ
∗
6α = ρ∗i′∗α

for α ∈ A∗
SO6

.
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By Lemma 4.8 of Chapter 1, the restriction of ρ∗6y3 to the torus TSpin6
is

4u1u2u3, and by Lemma 7.3 this equals 4(t1 + t2)(t1 + t3)(t2 + t3) in A∗
TSL4

.
On the other hand, it is easily seen that the restriction of σ3 to TSL4 is
−(t1 + t2)(t1 + t3)(t2 + t3), and since A∗

SL4
injects in A∗

TSL4
we find

(7.1) ρ∗6y3 = −4σ3 ∈ A∗
SL4

.

Since by 4.6 of Chapter 1, the relation i′∗y3 = −y4 holds in A∗
SO8

, we have

4i∗σ3 = i∗(−ρ∗6y3) = −ρ∗i′∗y3 = ρ∗y4 = y4.

We have that y2
4 − 26c8 = 0 ∈ A∗

SO8
([15, Section 5.2]), so

24ζ2
4 = 26c8 ∈ A∗

Spin8
;

it follows that ζ2
4 − 4c8 = α with α a torsion element. Moreover, since

j∗ζ4 = j∗c8 = 0 ∈ A∗
Spin7

it must be

α ∈ i∗ A7
SL4

= Z(2c+4 − c4 − y+
4 )

〈
ζ̄4

〉
⊕ Z

〈
ζ̄8

〉
;

since y4 is not a torsion element, also ζ4 is not a torsion element; moreover,
by Lemmas 5.3 and 7.4 2σ4 = i∗ζ+

4 , so by the projection formula

2ζ̄8 = i∗(2ζ3ζ4) = ζ+
4 ζ4 ∈ A∗

Spin8
/(c8)

so also ζ̄8 is not torsion: it follows that α = 0 and the Lemma is proved. n

Corollary 7.5. We have that

ζ4 = 32x1x2x3x4

ζ+
4 = 2(

∑
x4

i − 2
∑

x2
ix

2
j + 8x1x2x3x4)

in A∗
TSpin8

.

Proof. Use Lemmas 3.4 and 7.4. n

Proposition-Definition 7.6. There exist unique elements ζ8, ζ10 ∈
A∗

Spin8
such that ζi mod c8 = ζ̄i and satisfying the relations

2ζ8 = ζ+
4 ζ4 2ζ10 = c2ζ8.

Proof. We have seen in the proof of Lemma 7.4 that

2ζ̄8 = i∗(2ζ3ζ4) = ζ+
4 ζ4 ∈ A∗

Spin8
/(c8).

Choose x ∈ A∗
Spin8

such that xmod c8 = ζ̄8: then

2x− ζ+
4 ζ4 + dc8 = 0 ∈ A∗

Spin8

with d ∈ Z. Since by [16, Theorem 6.7] w+
i = w−i for i < 8, we have that

cl ζ4 = 3 cl ζ4 = cl(c+4 − c−4 ) = (w+
4 )2 − (w−4 )2 = 0;

hence
0 = cl(2x− ζ+

4 ζ4 + dc8) = dw2
8 ∈ H∗(B Spin8; Z/2).
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It follows from the description of H∗(B Spin8; Z/2) that d must be even;
moreover, modifying x by a multiple of c8 we can assume that d = 0, and
we can define ζ8 := x.

Suppose that ζ ′8 is another element satisfying the requirements of the
Lemma: then ζ ′8 = ζ8 + ac8 with a ∈ Z; moreover, 2ζ ′8 = ζ4ζ

+
4 = 2ζ8 implies

that a = 0 and ζ8 = ζ ′8.
By Lemma 5.3 2σ2 = i∗c2, so by the projection formula

2ζ̄10 = i∗(2ζ2ζ3ζ4) = c2ζ8 ∈ A∗
Spin8

/(c8).

Choose x ∈ A∗
Spin8

such that xmod c8 = ζ̄10: then

2x− c2ζ8 + dc2c8 = 0 ∈ A∗
Spin8

with d ∈ Z.
By Lemma 7.4 4ζ2

8 = ζ2
4 (ζ+

4 )2 = 16c8c+8 , hence ζ2
8 = 4c8c+8 + α with α a

torsion element; it follows that, since c2ζ8 = 2x+ dc2c8,

0 = 2xζ8 − 4c2c8c+8 − c2α+ dc8c2ζ8

= 2xζ8 − 4c2c8c+8 − c2α+ 2dc8x+ d2c2c
2
8 ∈ A∗

Spin8
.

Now we map this relation to the Brown-Peterson cohomology of B Spin8;
since the cycle map induces an isomorphism A∗

Spin8
⊗Z(2) ' BP∗Spin8

⊗BP∗Z(2),
eventually modifying ỹ16 (resp. ỹ20) with a multiple of c8 (resp. c2c8), we
can suppose that c̃l ζ8 = ỹ16 and c̃lx = ỹ20. So we obtain

0 = 2ỹ16ỹ20 − 4ỹ4c8c
+
8 − ỹ4(c̃lα) + 2dc8ỹ20 + d2c28ỹ4 ∈ BP∗Spin8

⊗BP∗Z(2).

Hence we get the expression for the product ỹ16ỹ20 in BP∗Spin8
⊗BP∗Z(2):

ỹ16ỹ20 = 2c8c+8 ỹ4 − dc8ỹ20 −
d2

2
c28ỹ4 + β

with β a torsion element.
Note that from the additive description of BP∗Spin8

⊗BP∗Z(2), the torsion-
free submodule is a free Z(2)[c4, c6, c8, c

+
8 ]-module with basis

ỹ0, ỹ4, ỹ8, ỹ
+
8 , ỹ12, ỹ

+
12, ỹ16, ỹ20,

so it must be d2/2 ∈ Z(2), that is, d must be even. Modifying x by a multiple
of c2c8 we can assume that d = 0, and we can define ζ10 := x.

The uniqueness of ζ10 is proved analogously to the one of ζ8. n

Remark 7.7. By [7, Theorem 1], for any connected reductive algebraic
group G with maximal torus T and Weyl group W there is an isomorphism

A∗
G⊗Q ' (A∗

T )W ⊗Q;

it follows that an element α ∈ A∗
G is torsion if and only if its restriction to

a maximal torus is zero.
Moreover, by [18, Theorem 0.1] the torsion index of Spin8 is 2, so A∗

Spin8

has only 2-torsion. Hence from now on we will tacitly assume that every
torsion element of A∗

Spin8
is a 2-torsion element.
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We will use this facts throughot the paper.

Corollary 7.8. We have that

ζ4 = 32x1x2x3x4

ζ+
4 = 2(

∑
x4

i − 2
∑

x2
ix

2
j + 8x1x2x3x4)

ζ6 = −64(
∑

x2
i )x1x2x3x4

ζ+
6 = −4(

∑
x2

i )(
∑

x4
i − 2

∑
x2

ix
2
j + 8x1x2x3x4)

ζ8 = 32(
∑

x4
i − 2

∑
x2

ix
2
j + 8x1x2x3x4)x1x2x3x4

ζ10 = −64(
∑

x2
i )(

∑
x4

i − 2
∑

x2
ix

2
j + 8x1x2x3x4)x1x2x3x4

in A∗
TSpin8

.
In particular, the ζeven are not torsion.

Proof. The formulas for ζ4 and ζ+
4 follow from Lemmas 7.4 and 3.4.

Next, note that since i∗c2 = 2σ2, by the projection formula

2ζ6 = i∗(2σ2σ3) = c2ζ4 ∈ A6
Spin8

/(c8) = A6
Spin8

and applying the permutation (12) we get also 2ζ+
6 = c+2 ζ

+
4 : using this two

relations it is easy to obtain the restrictions for ζ6 and ζ+
6 .

The restrictions of ζ8 and ζ10 to TSpin8
are easily computed using the

relations 2ζ8 = ζ4ζ
+
4 and 2ζ10 = c2ζ8. n

Remark 7.9. By the exact localization sequences for the Chow and
Brown-Peterson cohomology rings, we have that c̃l ζ8 = ỹ16 and c̃l ζ10 = ỹ20

in BP∗BSpin8
⊗BP∗Z(2)/(c8). Moreover there is an injection

A∗
Spin8

c̃l−→ BP∗BSpin8
⊗BP∗Z(2)

which becomes an isomorphism after tensoring with Z(2). It follows that we
can suppose, eventually modifying ỹ16 (resp. ỹ20) by a multiple of c8 (resp.
ỹ4c8) that c̃l ζ8 = ỹ16 and c̃l ζ10 = ỹ20. So we can complete the table of
Lemma 7.9:

α ζ3 ζ+
3 ζ4 ζ+

4 ζ5 ζ6 ζ+
6 ζ7 ζ8 ζ10

c̃lα ỹ6 ỹ+
6 ỹ8 ỹ+

8 ỹ10 ỹ12 ỹ+
12 ỹ14 ỹ16 ỹ20

We define elements ζ±8 and ζ±10 in the same way that for the others. The
action of S3 on these classes is described in the following Lemma:

Lemma 7.10. The action of S3 on the ζi is described in the following
table:

(12) (13) (23)
ζi ζ+

i ζ−i (−1)i+1ζi
ζ+
i ζi (−1)i+1ζ+

i (−1)i+1ζi
ζ−i (−1)i+1ζ−i ζi (−1)i+1ζ+

i

.
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Proof. Immediate Lemma 5.1. n

Lemma 7.11.
ξi = j∗ζ+

i = (−1)i+1j∗ζ−i

in A∗
Spin7

.

Proof. Immediate from Lemma 5.8. n

8. The Z[c4, c6, c8, c+8 ]-module structure of A∗
Spin8

The restriction i∗ provides A∗
SL4

of the structure of A∗
Spin8

-module.

Proposition 8.1. The ring A∗
Spin8

is generated by the following ele-
ments:

c2, c4, c6, c7, c8, c
+
8 , ζ3, ζ

+
3 , ζ4, ζ

+
4 , ζ5, ζ6, ζ

+
6 , ζ7, ζ8, ζ10.

Proof. Use the exact localization sequence, noting that by Theorem
5.5 A∗

Spin7
is generated by ξ3, ξ4, ξ6, c2, c4, c6, c7, c8, and by Lemma 7.11 ξi =

j∗ζ+
i . n

Lemma 8.2. We have that

c2ζodd = c2ζ
+
odd = 2ζodd = 2ζ+

odd = 0 ∈ A∗
Spin8

Moreover ζiα = 0 in A∗
Spin8

/(c8) for all α ∈ ker i∗. In particular, for all the
possible choices of i, j the relations

ζiζj = ζiζ
+
odd = ζicodd = 0 ∈ A∗

Spin8
/(c8).

Proof. Since [C] = 0 ∈ A∗
Spin8

/(c8), we have that i∗i∗α = α · [C] = 0 ∈
A∗

Spin8
/(c8) for all α ∈ A∗

Spin8
.

It follows that since by Lemma 5.3 2σ2, 2σ4, 2σ2σ4 ∈ i∗ A∗
Spin8

we have
2ζ3 = 2ζ5 = 2ζ7 = 0 ∈ A∗

Spin8
/(c8), and these relations hold in A∗

Spin8

because they live in odd degree ≤ 9.
Next, since i∗c2 = 2σ2, using the relation σ2

2 = i∗(2c+4 − c4 − y+
4 ) (see

the proof of Corollary 5.4) we obtain

c2ζ3 = 2i∗i∗(2c+4 − c4 − y+
4 ) = 0 ∈ A∗

Spin8
/(c8);

the relations c2ζ5 = c2ζ7 ∈ (c8) are obtained similarly, and they hold in
A∗

Spin8
because they live in odd degree ≤ 9.

To get the analogous relations for the ζ+
odd one can apply the transposi-

tion (12), noting that c2 = c+2 by Lemma 7.2.
Suppose that α ∈ ker i∗: then by the projection formula we have that

(i∗β)α = i∗(βi∗α) = 0 ∈ A∗
Spin8

/(c8)

for all β ∈ A∗
SL4

: it follows that

ζiα = 0 ∈ A∗
Spin8

/(c8)

for all i and for α ∈ ker i∗. Since c1(N) = 0 ∈ A∗
Spin6

(where N is the normal
bundle of C in A8 \ {0}), because C is the zero locus of the Spin8-invariant
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function q, we have that i∗i∗β = c1(N)β = 0, so ζi ∈ ker i∗. Moreover,
since A∗

SL4
is torsion-free, all torsion elements restrict to zero in A∗

SL4
, that

concludes the proof. n

Lemma 8.3. (1) As a Z-module, i∗ Aodd
SL4

is torsion-free.
(2) As a Z-module, i∗ Aeven

SL4
is torsion.

Proof. Let α ∈ i∗ Aodd
SL4

and suppose that 2α = 0. By Proposition 8.1
we can write

α =
5∑

i=0

f2i(2c+4 − c4 − y+
4 , c6, c

+
8 )ζ2i ∈ A∗

Spin8
/(c8)

(we set ζ0 = 1, ζ2 = 0). By Lemma 7.11 j∗(ζ+
4 +ζ−4 ) = 0 so ζ+

4 +ζ−4 = dζ4 and
restricting to TSpin8

, we find d = 1: in particular 3ζ+
4 +3ζ−4 −3ζ4 = 0. On the

other hand, applying the permutation (13) to the relation c+4 − c−4 = −3ζ4
(Lemma 7.2) we find 3ζ−4 = c4 − c+4 and substituting this expression in the
previous relation we obtain

(8.1) c+4 = c4 + 3ζ+
4 − 3ζ4. ∈ A∗

Spin8

It follows that

α =
5∑

i=0

f2i(c4 + 2ζ+
4 − 6ζ4, c6, c+8 )ζ2i ∈ A∗

Spin8
/(c8)

and so
α =

∑
i=0,3,4,5

f2i(c4, c6, c+8 )ζ2i ∈ A∗
Spin8

/(c8, ζ4, ζ+
4 ).

Mapping in the Brown-Peterson cohomology we obtain

c̃lα =
∑

i=0,3,4,5

f2i(c4, c6, c+8 )ỹ4i ∈ BP∗Spin8
⊗BP∗Z(2)/(c8, ỹ8, ỹ

+
8 ).

On the other hand,

BP∗Spin8
⊗BP∗Z(2)/(c8, ỹ8, ỹ

+
8 ) ' Z(2)[c4, c6, c

+
8 ]

(
Z2

〈
ỹ0, ỹ4, ỹ12, ỹ

+
12, ỹ16, ỹ20

〉
⊕ Z/2

〈
ỹ6, ỹ

+
6 , ỹ10, ỹ14

〉
⊕ Z/2[c7]{c7}

)
so c̃lαmod(c8, ỹ8, ỹ

+
8 ) is not torsion: hence the element c̃lαmod(c8, ỹ8, ỹ

+
8 )

must be zero, and this implies that f0, f6, f8, f10 are identically zero.
So we have that

α = f(c4 + 2ζ+
4 − 6ζ4, c6, c+8 )ζ4.

Since by Lemma 7.8 resSpin8
TSpin8

ζ4 6= 0, we have that f(c4 + 2ζ+
4 − 6ζ4, c6, c+8 )

is torsion; once again, it is easy to see that

f(c4, c6, c+8 ) ∈ BP∗Spin8
⊗BP∗Z(2)/(c8, ỹ8, ỹ

+
8 )

cannot be a torsion element and so f(c4, c6, c+8 ) identically zero. So α = 0
and the first part is proved.
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For the second part, it is sufficient to note that i∗ Aeven
SL4

is generated
as A∗

Spin8
-module by the ζodd, and these elements are 2-torsion by Lemma

8.2. n

Corollary 8.4. Suppose that α ∈ Aeven
Spin8

is a torsion element that
restricts to 0 in A∗

Spin7
: then α = 0.

Proof. By the exact localization sequence ker j∗ = im i∗; since α ∈
Aeven

Spin8
, this implies that α ∈ i∗ Aodd

SL4
. But by Lemma 8.3 i∗ Aodd

SL4
has not

torsion, so α = 0. n

Proposition 8.5. The following relations hold in A∗
Spin8

:

(1) c22 = 4c4 + 8ζ+
4 − 4ζ4

(2) c2ζ4 = 2ζ6
(3) c2ζ+

4 = 2ζ+
6

(4) c2ζ6 = 2c4ζ4 + 8ζ8 − 8c8
(5) c2ζ+

6 = 2c4ζ+
4 + 16c+8 − 4ζ8

(6) c2ζ8 = 2ζ10

(7) c2ζ10 = 2c4ζ8 + 8c+8 ζ4 − 4c8ζ+
4

(8) ζ2
4 = 4c8

(9) ζ4ζ+
4 = 2ζ8

(10) ζ4ζ6 = 2c2c8
(11) ζ4ζ+

6 = 2ζ10

(12) ζ4ζ8 = 2c8ζ+
4

(13) ζ4ζ10 = 2c8ζ+
6

(14) (ζ+
4 )2 = 4c+8

(15) ζ+
4 ζ6 = 2ζ10

(16) ζ+
4 ζ

+
6 = 2c2c+8

(17) ζ+
4 ζ8 = 2c+8 ζ4

(18) ζ+
4 ζ10 = 2c+8 ζ6

(19) ζ2
6 = 4c8(c4 + 2ζ+

4 − ζ4)
(20) ζ6ζ+

6 = 2c4ζ8 + 8c+8 ζ4 − 4c8ζ+
4

(21) ζ6ζ8 = 2c8ζ+
6

(22) ζ6ζ10 = c8(c4ζ+
4 + 12c+8 − 2ζ8 − 8c8)

(23) (ζ6)2 = 4c+8 (c4 + 2ζ+
4 − ζ4)

(24) ζ+
6 ζ8 = 2c+8 ζ6

(25) ζ+
6 ζ10 = c+8 (2c4ζ4 + 8ζ8 − 8c8)

(26) ζ2
8 = 4c8c+8

(27) ζ8ζ10 = 2c2c8c+8
(28) ζ2

10 = c8c
+
8 (4c4 + 8ζ+

4 − 4ζ4).

Proof. First of all, note that by [12, Proposition 9.1] all these relations
restrict to 0 in A∗

Spin7
, so by Corollary 8.4 it sufficies to prove the formulas

in A∗
Spin8

⊗Q.
We will use repeatedly Lemmas 5.3 (resp. 3.4 and 7.8) for the restrictions

to SL4 (resp. to TSpin8
during the proof.
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By [12, Proposition 9.1(6)] the relation 3c22 − 4c4 − 8c′4 = 0 holds in
(A∗

Spin7
)(2), so a(3c22− 4c4− 8c+4 ) = bζ4 in A∗

Spin8
, with a ∈ Z \ 2Z and b ∈ Z.

Restricting to TSpin8
we find b = 12a, so a(3c22− 4c4− 8c+4 − 12ζ4) = 0; since

A∗
Spin8

has only 2-torsion, we have also that 3c22 − 4c4 − 8c+4 − 12ζ4 = 0.
Substituting Equation 8.1 c+4 in the equation 3c22− 4c4− 8c+4 − 12ζ4 = 0

we obtain

3c22 = 12c4 + 24ζ+
4 − 12ζ4 ∈ A∗

Spin8

and dividing by 3 we obtain (1).
Formulas (2) and (3) are proved in the proof of Lemma 7.8. Formulas

(8) and (14) are implied by Lemma 7.4. Formulas (6) and (9) are proved in
the definition of the elements ζ10 and ζ8 respectevly (Lemma 7.6).

Since σ2 = i∗(c4 + 2ζ+
4 ) ∈ A∗

SL4
, by the projection formula

c2ζ6 = 2i∗(σ2
2σ3) = 2(c4 + 2ζ+

4 )ζ4 = 2c4ζ4 + 8ζ8 ∈ A∗
Spin8

/(c8)

by formula (9), so we have that c2ζ6 = 2c4ζ4 +8ζ8 +dc8 in A∗
Spin8

; restricting
to TSpin8

we find d = −8, that proves (4).
To obtain (5), note first that

(8.2) ζ+
8 = ζ

(12)
8 =

1
2
(ζ4ζ+

4 )(12) =
1
2
ζ4ζ

+
4 = ζ8;

then, using Formula 8.1

c2ζ
+
6 = (c2ζ6)(12) = c+4 ζ

+
4 + 4ζ+

8 = c4ζ
+
4 + 12c+8 − 2ζ8.

We have that

ζ+
4 ζ8 =

1
2
(ζ+

4 )2ζ4 = 2c+8 ζ4

that proves (16); using this equations and the projection formula we obtain

c2ζ10 = i∗(2σ2
2σ3σ4) = 2(c4 + 2ζ+

4 )ζ8 = 2c4ζ8 + 8c+8 ζ4 ∈ A∗
Spin8

/(c8)

so c2ζ10 = 2c4ζ8 + 8c+8 ζ4 + c8(dc22 + ec4 + fζ4 + gζ+
4 ) with d, e, f, g ∈ Z:

restricting to TSpin8
we have d = e = f = 0 and g = −4, and we get (7).

Now we can prove most of the relations of the Proposition; we list the
proofs in such an order so that each relation is obtained by the previous
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ones, and leave to the eager reader to complete the computations:

ζ4ζ6 =
1
2
c2ζ

2
4

ζ4ζ
+
6 =

1
2
c2ζ4ζ

+
4 = c2ζ8

ζ4ζ8 =
1
2
ζ2
4ζ

+
4

ζ4ζ10 = ζ4c2ζ8

ζ+
4 ζ6 =

1
2
c2ζ4ζ

+
4

ζ+
4 ζ

+
6 = (ζ4ζ6)(12)

ζ+
4 ζ10 =

1
2
ζ+
4 c2ζ8

ζ2
6 =

1
2
c2ζ4ζ6

ζ6ζ
+
6 =

1
2
c2ζ4ζ

+
6

ζ6ζ8 =
1
2
ζ6ζ4ζ

+
4

ζ2
8 =

1
4
ζ2
4 (ζ+

4 )2

ζ6ζ10 =
1
2
c2ζ6ζ8

(ζ+
6 )2 = (ζ2

6 )(12) = 4c+8 (c+4 + 2ζ+
4 − ζ4)

ζ+
6 ζ10 = c2ζ

+
6 ζ8

ζ8ζ10 =
1
2
c2ζ

2
8

ζ2
10 =

1
4
c22ζ

2
8 .

n

Lemma 8.6. Let A the ideal generated by the elements ζodd, ζ+
3 . Then

A2 = c7A = 0

in A∗
Spin8

.

Proof. Let ζi, ζj ∈ A: then ζiζj , ζiζ
+
3 ∈ Aeven

Spin8
and ζiζj , ζiζ

+
3 restrict

to zero in A∗
Spin7

. By the exact localization sequence, ζiζj ∈ i∗ Aodd
SL4

; on
the other hand, ζiζj is torsion, so by Corollary 8.4 it must be 0 ∈ A∗

Spin8
.

The same argument applies to show that c7ζi = c+7 ζi = 0, hence applying
transposition (12) we have also c7ζ+

3 = 0. n
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Corollary 8.7. As a Z[c4, c6, c8, c+8 ]-module, A∗
Spin8

admits the follow-
ing description:

A∗
Spin8

'Z[c4, c6, c8, c+8 ]
( 〈
c2, ζ4, ζ

+
4 , ζ6, ζ

+
6 , ζ

+
6 , ζ8, ζ10

〉
⊕ Z/2

〈
ζ3, ζ

+
3 , ζ5, ζ7

〉
⊕ Z/2[c7]{c7}

)
Proof. By Lemma 8.2 we have that c2ζodd, ζiζj , ζiζ

+
odd, ζic7 ∈ (c8); ap-

plying the same proof to the pushforward i+∗ it is easy to see that

c2ζ
+
odd, ζ

+
i ζ

+
j , ζ

+
i ζodd, ζ

+
i c7 ∈ (c+8 ).

Moreover,
c2ζ7 − δ1c

+
8 ζ

+
3 ∈ i∗ A10

SL4

where δ1 ∈ Z/2 is the indetermined coefficient of [12, Proposition 9.1].
By Lemma 8.6 we have that ζoddζodd = ζoddζ

+
odd = c7ζodd = c7ζ

+
odd = 0.

Finally, Proposition 8.5 gives the product c2ζeven,ζ
+
even,ζevenζeven, ζevenζ

+
even:

using inductively this results it is easy to see that it is possible to express all
the products between the generators c2, ζ4, ζ+

4 , ζ6, ζ
+
6 , ζ

+
6 ,ζ8, ζ10, ζ3,ζ

+
3 , ζ5,ζ7, c7

with expressions in which these generators appears only linearly, with coef-
ficients in Z[c4, c6, c8, c+8 ], except for the powers of c7.

Note that by Lemma 7.8 the ζeven, ζ
+
even are not torsion, and by Lemma

3.4 c2, c4, c6, c8, c
+
8 are not torsion, while by Lemma 8.2 the ζodd, ζ

+
odd are

torsion, and 2c7 = 0 ∈ A∗
SO8

implies 2c7 = 0 ∈ A∗
Spin8

. This proves that the
coefficients Z and Z/2 for the module generators are as stated.

To complete the proof it sufficies to note that there is an injection of
Z[c4, c6, c8, c+8 ]-modules

A∗
Spin8

c̃l−→ BP∗Spin8
⊗BP∗Z(2) :

by the exact localization sequence and Remark 7.9 the module generators of
A∗

Spin8
map to the module generators of BP∗Spin8

⊗BP∗Z(2) and the result fol-
lows easily comparing the Z[c4, c6, c8, c+8 ]-module structure of BP∗Spin8

⊗BP∗Z(2)

in Theorem 6.4. n

Corollary 8.8. The torsion ideal of A∗
Spin8

is

(A∗
Spin8

)tor = (c7, ζ+
3 , ζodd).

9. The ring structure of A∗
Spin8

Proposition 9.1. We have that

A∗
Spin8

/(A∗
Spin8

)tor ' Z[c2, c4, c6, c8, c+8 , ζ4, ζ
+
4 , ζ6, ζ

+
6 , ζ8, ζ10]/I

where I is the ideal generated by the relations of Proposition 8.5.

Proof. LetR := A∗
Spin8

/(A∗
Spin8

)tor: then by Proposition 8.1 and Corol-
lary 8.8 R is generated by the elements

c2, c4, c6, c8, c
+
8 , ζ4, ζ

+
4 , ζ6, ζ

+
6 , ζ8, ζ10.
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It follows from Proposition 8.5 that the projection A∗
Spin8

→ R factorizes
through

A∗
Spin8

−→ Z[c2, c4, c6, c8, c+8 , ζ4, ζ
+
4 , ζ6, ζ

+
6 , ζ8, ζ10]/I

φ−→ R;

Suppose that g(c2, c4, c6, c8, c+8 , ζ4, ζ
+
4 , ζ6, ζ

+
6 , ζ8, ζ10) = 0 in R: then us-

ing the relations of I we can express g in a unique way as

g = f0 + f2c2 +
∑

i=4,6,8,10

fiζi +
∑
i=4,6

f+
i ζ

+
i

with fi, f
+
i ∈ Z[c4, c6, c8, c+8 ]. But then by Corollary 8.7 fi, f

+
i must be

identically zero, so g = 0 and the relations sufficies: hence the map φ is an
isomorphism. n

Corollary 9.2. The ring A∗
Spin8

/(A∗
Spin8

)tor can be identified with a
subring of A∗

Spin8
: that is, the projection

A∗
Spin8

→ A∗
Spin8

/(A∗
Spin8

)tor

admits a splitting.

Proof. By Corollary 8.8

I ∩ (A∗
Spin8

)tor = I ∩ (c7, ζ+
3 , ζodd) = (0);

it follows that R can be identified with a subring of A∗
Spin8

. n

Lemma 9.3. As an abelian group, A3
Spin8

is generated by ζ3, ζ+
3 , ζ

−
3 , with

the relations

2ζ3 = 2ζ+
3 = 2ζ−3 = 0

ζ3 + ζ+
3 + ζ−3 = 0.

Proof. It is clear that ζ3, ζ+
3 , ζ

−
3 generate A3

Spin8
, since there is an exact

sequence of abelian groups

0 → Z/2 〈ζ3〉 −→ A3
Spin8

−→ Z/2 〈ξ3〉 → 0.

These elements are 2-torsion, since ζ3 is 2-torsion by Lemma 8.2 and they
are exchanged by S3. By Corollary 7.11, Lemma 7.10 and Equation 5.1, we
have that j∗ζ+

3 = j∗ζ−3 = ξ3 so

j∗(ζ+
3 + ζ−3 ) = 2ξ3 = 0

from which we obtain ζ+
3 + ζ−3 ∈ im i∗ A2

SL4
' Z/2 · ζ3, hence ζ+

3 + ζ−3 = δζ3
with δ ∈ Z/2. Applying transposition (12) we obtain ζ3 + ζ−3 = δζ+

3 : then
by Corollary 5.8

ξ3 = j∗(ζ3 + ζ−3 ) = j∗(δζ+
3 ) = δξ3 ∈ A∗

Spin7

which implies δ = 1. n
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Lemma 9.4. The following equations hold in A∗
Spin8

:

c3 = c+3 = c−3 = 0

ζ5 = ζ+
5 = ζ−5

ζ7 = ζ+
7 = ζ−7 .

Proof. Lemma 5.6 implies that j∗c+i = j∗c−i = c′i and j∗ci = ci in
A∗

Spin7
for i = 1, . . . , 8: so

c+i − c−i ∈ i∗(Ai−1
SL4

).

Since by Proposition 8.1 i∗(A2
SL4

) = Zζ3, applying transposition (12) we
obtain the equation

c+3 − c3 = dζ−3 ∈ A∗
Spin8

with d ∈ Z/2. Since c′3 = c3 = 0 in A∗
Spin7

([12, proof of Theorem 4.4]), by
Corollary 5.8 we obtain 0 = dξ3 and so d = 0.

Next, from A5
Spin7

= 0 we obtain that A5
Spin8

is generated by a unique
element of 2-torsion ζ5 = ζ+

5 = ζ−5 (this element is not necessarily non-zero).
Finally, by Corollary 5.8 we have that j∗ζ+

7 = h∗ resSL4
SL3

σ2σ4 = 0 so
ζ7 ∈ i∗ A6

SL4
, and by Proposition 8.1 we can write

ζ+
7 = a(2c+4 − c4 − 4ζ+

4 )ζ3 + bζ7 = ac4ζ3 + bζ7

with a, b ∈ Z/2. Then, applying permutation (12), by Lemma 7.10 we obtain
ζ7 = ac+4 ζ

+
3 + bζ+

7 ; it follows that

0 = j∗ζ7 = ac′4ξ3

in A∗
Spin8

. Since by [12, Propositions 8.3,9.1] c′4ξ3 = c4ξ3 6= 0 ∈ A∗
Spin7

,
it must be a = 0. It follows that ζ7 = ζ+

7 , and by a similar argument
ζ7 = ζ−7 . n

Lemma 9.5. (c8) ∩ (c+8 ) = (c8c+8 ) ⊆ A∗
Spin8

. In particular, if α ∈ (c8) ∩
(c+8 ), then either α = 0 or α ∈ A≥16

Spin8
.

Proof. Suppose that c8α = c+8 β, with α, β ∈ A∗
Spin8

. By Corollary 8.7,
we can write

α = f0 + f2c2 +
∑

i

fiζi +
∑

i

f+
i ζ

+
i + c7

∑
i

f ′ic
i
7

β = g0 + g2c2 +
∑

i

giζi +
∑

i

g+
i ζ

+
i + c7

∑
i

g′ic
i
7

with fi, f
+
i , f

′
i , gi, g

+
i , g

′
i ∈ Z[c4, c6, c8, c+8 ] uniquely determined. It follows

that
c8fi = c+8 gi ∈ Z[c4, c6, c8, c+8 ]

that implies fi ∈ (c+8 ) and gi ∈ (c8). Similarly, f+
i , f

′
i ∈ (c+8 ) and g+

i , g
′
i ∈

(c8), so c8α = c8c
+
8 γ with γ ∈ A∗

Spin8
. n
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Lemma 9.6.

(i+)∗ζ4 = 2σ4

(i+)∗ζ6 = 2σ2σ4

(i+)∗ζ8 = 0

(i+)∗ζ10 = 0

in A∗
SL+

4
.

Proof. Since A∗
SL+

4
is torsion-free, we can work with coefficients in Q.

Then by Lemmas 7.4, 5.3 and Proposition 8.5

(i+)∗ζ4 =
1
4
(i+)∗y4 = 2σ4

(i+)∗ζ6 =
1
2
(i+)∗(c2ζ4) = 2σ2σ4

(i+)∗ζ8 =
1
2
(i+)∗(ζ4ζ+

4 ) = 0

(i+)∗ζ10 =
1
2
(i+)∗(c2ζ8) = 0.

n

Proposition 9.7. Let α ∈
{
c2, ζ4, ζ

+
4 , ζ6, ζ

+
6 , ζ8, ζ

+
8

}
, β ∈

{
ζ3, ζ

+
3 , ζ5, ζ7

}
:

then
αβ = 0 ∈ A∗

Spin8
.

Proof. By Lemma 8.2 we have c2ζodd = c2ζ
+
odd = 0 and ζevenζodd ∈

(c8): then ζ4ζ3, ζ6ζ3 ∈ A≤9
Spin8

∩(c8) = Zc8 so ζ4ζ3 = ζ6ζ3 = 0.
Next, by Lemma 9.4 we have that ζevenζ5 = ζevenζ

+
5 and ζevenζ7 =

ζevenζ
+
7 , and using Lemma 9.6 and the projection formula

ζ4ζ
+
3 = 2i+∗ (σ2σ4) = 2ζ+

7 = 0

ζ6ζ
+
3 = 2i+∗ (σ2

2σ4) = 2(2c4 − c+4 − y4)ζ+
5 = 0

ζ8ζ
+
3 = i+∗ (0 · σ2) = 0

ζ10ζ
+
3 = i+∗ (0 · σ2) = 0

ζ4ζ
+
5 = 2i+∗ (σ2

4) = 2i+∗ (i+)∗c8 = 0

ζ6ζ
+
5 = 2i+∗ (σ2σ

2
4) = 2c8ζ+

3 = 0

ζ8ζ
+
5 = i+∗ (0 · σ4) = 0

ζ10ζ
+
5 = i+∗ (0 · σ4) = 0

ζ4ζ
+
7 = 2i+∗ (σ2σ

2
4) = 2c8ζ+

3 = 0

ζ6ζ
+
7 = 2i+∗ (σ2

2σ
2
4) = 2 = i+∗ (i+)∗

(
(2c4 − c+4 − y4)c8

)
= 0

ζ8ζ
+
7 = i+∗ (0 · σ2σ4) = 0



66 2. THE CHOW RING OF THE CLASSIFYING SPACE OF Spin8

ζ10ζ
+
7 = i+∗ (0 · σ2σ4) = 0

in A∗
Spin8

/(c+8 ). (We used the fact that σ2
2 = i∗(2c+4 − c4 − y

+
4 ), and applied

transposition (12) to this relation.) It follows that ζevenζ+
odd ∈ (c+8 ); on the

other hand, by Lemma 8.2 ζevenζ
+
odd ∈ (c8); by Lemma 9.5 we have that

ζevenζ
+
odd ∈ (c8c+8 ); since all this relations live in odd degree ≤ 17, it is easy

to see that they must be zero in A∗
Spin8

. It follows that

ζevenζ5 = ζevenζ7 = 0 ∈ A∗
Spin8

.

Since ζ8ζ−3 = (ζ8ζ+
3 )(23) = 0, by Lemma 9.3 we have

ζ8ζ3 = ζ8(ζ+
3 + ζ−3 ) = 0;

a similar argument shows that ζ10ζ3 = 0.
The relations ζ+

evenζodd = 0 (resp. ζ+
evenζ

+
odd = 0) are obtained applying

transposition (12) to ζevenζ
+
odd = 0 (resp. ζevenζodd = 0). n

Lemma 9.8. The following relations hold in A∗
Spin8

:

c2c7 = δ1c6ζ
+
3 + δ3c6ζ3 + δ4c4ζ5

ζ4c7 = c8(δ5ζ3 + δ6ζ
+
3 )

ζ+
4 c7 = c+8 (δ2ζ+

3 + δ7ζ3)
ζ6c7 = δ8c8ζ5

ζ+
6 c7 = δ9c

+
8 ζ5

ζ8c7 = c8(δ10c4ζ3 + δ11c4ζ
+
3 + δ12ζ7)

ζ10c7 = c8(δ13c4ζ5 + δ14c6ζ3 + δ15c6ζ
+
3 )

with δi ∈ Z/2 for i = 1, . . . , 15, and δ1, δ2 are the same of [12, Proposition
9.1].

Moreover, we have that

c2c
2
7 = ζevenc

2
7 = ζ+

evenc
2
7 = 0.

Proof. By Lemma 8.2 we have that ζevenc7 ∈ (c8), and the correspond-
ing formulae follows from the fact that by Corollary 8.7, as abelian groups
there are isomorphism

A3
Spin8

' Z/2
〈
ζ3, ζ

+
3

〉
A5

Spin8
' Z/2 〈ζ5〉

A7
Spin8

' Z/2
〈
c4ζ3, c4ζ

+
3 , ζ7, c7

〉
A9

Spin8
' Z/2

〈
c4ζ5, c6ζ3, c6ζ

+
3

〉
.
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By [12, Proposition 9.1]

j∗(c2c7 + δ1c6ζ
+
3 ) = 0

j∗(ζ+
4 c7 + δ2c

+
8 ζ

+
3 ) = 0

j∗(ζ+
6 c7) = 0

in A∗
Spin7

, and moreover using the same proof of Lemma 8.2 ζ+
4 c7, ζ

+
6 c7 ∈

(c+8 ), so by Lemma 5.3

c2c7 + δ1c6ζ
+
3 ∈ i∗ A8

SL4
= Z/2 〈c4ζ5, c6ζ3〉

ζ+
4 c7 + δ2c

+
8 ζ

+
3 ∈ i∗ A10

SL4
∩(c+8 ) = Z/2

〈
c+8 ζ3

〉
ζ+
6 c7 ∈ i∗ A12

SL4
∩(c+8 ) = Z/2

〈
c+8 ζ5

〉
and the remaining formulae follow.

The last assertion follows from the previous ones and the fact that by
Lemma 8.6 c7A = 0. n

Recall that by Corollary 8.7 there is an insomorphism of Z[c4, c6, c8, c+8 ]-
modules

A∗
Spin8

'Z[c4, c6, c8, c+8 ]
(
Z

〈
c2, ζ4, ζ

+
4 , ζ6, ζ

+
6 , ζ

+
6 , ζ8, ζ10

〉
⊕ Z/2

〈
ζ3, ζ

+
3 , ζ5, ζ7

〉
⊕ Z/2[c7]{c7}

)
Corollary 9.9. The products between the generators of the Z[c4, c6, c8, c+8 ]-

module A∗
Spin8

are determined by Proposition 8.5, Lemma 8.6, Proposition
9.7, and Lemma 9.8.

From the exact localization sequence we can now determine almost com-
pletely the Chow ring of the classifying space of Spin7 (recall that in [12]
there is the description of (A∗

Spin7
)(2)):

Proposition 9.10.

A∗
Spin7

' Z[c2, c4, c6, c′8, ξ3, ξ4, ξ6]/R
′

where ξi are elements of degree i, and R′ is the ideal generated from the
following elements:

2ξ3
2c7
c22 − 4c4 − 8ξ4
c2ξ4 − 2ξ6
c2ξ6 − 2c4ξ4 − 16c′8
ξ24 − 4c′8
ξ4ξ6 − 2c2c′8
ξ26 − 4c′8(c4 + 2ξ4)
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ξ23
ξ3c7

c2ξ3

ξevenξ3

c2c7 = δ1c6ξ3

ξ4c7 + δ2c
′
8ξ3

ξ6c7.

Here δi ∈ Z/2 are indeterminate coefficients, and δ1, δ2 are the same as in
[12, Proposition 9.1].
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