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Introduction

To algebraic topologists, the cohomology of classifying spaces of linear
algebraic groups (or, equivalently, of compact Lie groups) has been an im-
portant object of study for a long time. Let G a topological group and X a
topological G-space; Armand Borel ([1]) defined the equivariant cohomology
ring with coefficient in a commutative ring &k as

H; (X k) :=H" (X x EG)/G; k)

where EG — B G is the universal principal G-bundle and the left-hand side
is the usual cohomology ring; in particular, Hf, := H¢,(pt) is identified with
the integral cohomology of the classifying space of G (we will write H*(X)
for the integral cohomology H*(X;Z)).

Recently, Burt Totaro ([19]) has introduced an algebraic analogue of
this cohomology, the Chow ring of the classifying space of a linear algebraic
group G, denoted by Ay,. There is a natural ring homomorphism A5, — Hg,
which is, in general, neither surjective not injective.

Rationally, the situation is very well understood. If G is a connected
algebraic group, then the homomorphism Ay ®Q — Hf ®Q is an isomor-
phism, and both rings coincide with the ring of invariants under the Weyl
group in the symmetric algebra of the ring of characters of a maximal torus;
this is classical, due to Leray and Borel, in the case of cohomology, and
to Edidin and Graham ([6]) for the Chow ring. Furthermore, this ring of
invariants is always a polynomial ring, as was shown by Chevalley. With
integral coeflicients, the situation is much more subtle.

The Chow ring Af has been computed for the classical groups GL,,
SLy, Sp,,, On or SO,, but not for the PGL,, series. The results are as
follows. Each of the groups above comes with a tautological representation
V', of dimension n (or 2n, in the case of Sp,,). Every representation V' of
an algebraic group G has Chern classes ¢;(V) € AL. When G is a classical
group, we denote the Chern classes of the tautological representation simply
by ¢;.

Burt Totaro ([19]) and Rahul Pandharipande ([5]) described A7, when
G = GL,, SL,, Sp,,, O, and SO,, when n is odd. We will use the follow-
ing notation: if R is a ring, t1, ..., t, are elements of R, fi, ..., f, are
polynomials in Z[x1, ..., z,], we write

R="Z[t1,...,tn)/(filt1, - tn), ., fr(ts,.. . 1))

to indicate the the ring R is generated by t1, ..., t,, and the kernel of
the evaluation map Z[z1,...,z,] — R sending x; to y; is generated by fi,
.., fr- When there are no f; this means that R is a polynomial ring in the
t;.
First the case of the special groups.

THEOREM (B. Totaro).
(1) Agy, = Zlea, .. ., el
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(2) Agy, = Z[ca, ..., cnl.
(3) Agpn = Z[CQ,C4,. . .,an].

The first two cases follow very easily from the well known description
via generators and relations of the Chow ring of a Grassmannian.
In all three cases, the Chow ring is isomorphic to the cohomology ring.

THEOREM (R. Pandharipande, B. Totaro).

(1) Ab, = Zler, ... e/ (o).
(2) If n is odd, then Ao = Zlca,...,cnl/(2¢odq)-

The notation 2c,qq means “all the elements 2¢; for ¢ odd”; in a similar
way, if ;,,...,2;, are elements of R, the notation x,qq (resp. Teven) Wil
mean “all the elements x; for ¢ odd” (resp. “all the elements x; for ¢ even”).

When n is odd, then O, ~ SO, x p,, and this allows to obtain the
result for SO,, from that for O,,. When n is even this fails, and the situation
is more complicated. Even rationally, the Chern classes of the tautological
representation do not generate the Chow ring, or the cohomology. It is
well known that when n = 2m, the tautological representation has an Euler
class €, € H3{ , whose square is (—1)™c,: this class, together with the
even Chern classes ¢z, c4, ..., cp2 generate Ajy ®Q = Hig ®Q. Totaro
noticed that when n = 4 the class e is not in the image of A5y ; shortly
afterwards, Edidin and Graham ([8]) constructed a class y, € Agy, , whose
image in Hgg  is, rationally, 2m=le ..

Subsequently, Pandharipande computed Agg,: he showed that it is gen-
erated by ca, ¢3, ¢4 and yo, and gave the relations (his description of the
class ys is different, but equivalent to that of Edidin and Graham). Finally,
in her Ph.D. thesis Rebecca Field obtained the general result ([9]), which is
as follows.

THEOREM (R. Field). When n = 2m is even, then
Agon = Z[C% <oy Cn,y ym]/(ygn - (_1)m2n—2cn’ 2Codd; ymcodd)-

The PGL,, series is much harder (this is an example of a universal phe-
nomenon, that of all the classical groups, these are the ones giving rise to
the deepest problems). For n = 2 we have that PGLy = SOj3, and for this
group everything is well understood. For n = 3 there is a difficult paper of
G. Vezzosi ([28]), where he describes App, almost completely. Here is his
basic idea. The fundamental tool is the equivariant intersection theory that
Edidin and Graham ([7]) have forged starting from Totaro’s idea. Vezzosi
stratifies the adjoint representation sls of PGL3 by type of Jordan canonical
form, compute the Chow ring of each stratum, and then get generators for
Apqr, using the localization sequence for equivariant Chow groups. To get
relations he restricts to appropriate subgroups of PGLj3. His technique has
been refined and improved by Angelo Vistoli in [24], where he studies the
Chow ring and the cohomology of the classifying space of PGL,, where p is
an odd prime.



The purpose of the first part of this thesis, written in collaboration with
Angelo Vistoli ([15]) is to show how this stratification method provides
a unified approach to all the known results on the Chow ring of classical
groups over any field. Consider a classical group G with its tautological
representation V. Then one stratifies V' in strata in which the stabilizers
are, up to an extension by a unipotent group, smaller classical group. Using
the localization sequence for equivariant Chow groups this gives generators
for the Chow rings, with relations that come out naturally. To show that
the relations suffice, one restricts to appropriate subgroups of G (a maximal
torus first, to show that the relations suffice up to torsion, then to some
finite subgroup to handle torsion).

In the second part we determine almost completely the Chow ring of
the complex spin group Sping. It is well known that for n < 6 the Spin,,
are special and isomorphic to classical groups whose Chow ring is known, so
the first interesting spin group is Spin,. In [12] Pierre Guillot determined
almost completely the Chow ring of the classifying space of Spin, localized
at (2). Using the stratification method, he firstly described the Chow ring
of the exceptional group Go; then he found generators and some relations of

§pin7, and exploited the results on Brown-Peterson cohomology in [13] to
show that relations sufficies. To state his result, set ¢; := c;(A7), where A7
is the representation given by the projection Spin; — SOz, and ¢ := ¢;(.5)
where S is the 8-dimensional spin representation. We use the following
notation: given a ring R, R (z1,...,xy) is the free R-module generated by
the elements x1,...,x,. Then Guillot proved the following:

THEOREM (P. Guillot). There is an additive isomorphism

(Adpin, ) (2) = Z2)lea, c6, c5] ® (Zzy (1, 2, ¢y, c5) ® Z/2 (&) © Z/2[er] (er) )

where &3 is a class of degree 3 that cannot be expressed in terms of Chern
classes; the products in (Ag ;. )(2) are determined by the following relations:
Spin, (2)

& =0

§3cr =0

&3(ca — ) =0
&3(cg —cg) =0
§3c0 =0

2 —dey = g(cg —cy4)

ca(cy — ca) = 6(cg — o)

2
ca(cg — cg) = §C4(C£1 — c4) + 16c%
chyer = 01683

cy(cy — cq) = ca(cy — cq) + 36¢5
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cy(cg — cg) = ca(ch — cg) + 6eack
07(021 — 04) = 526863

/ / 8 / 4
cg(cg — c6) = co(cg — c6) + 08(504 + §C4)

Our approach is similar, but, besides the stratification method, we use
the triality action of &3 on Sping. The group Sping has three 8-dimensional
representations, the first is the projection Sping — SOg and the other two
are the half-spin representations S*, S~. The isomorphism classes of these
representations are exchanged by the full symmetric group &3. Set ¢; :=
c;(A®), where A8 is the representation given by the projection Sping — SOs,
and ¢ := ¢;(S*). Here there is our main result, obtained from Corollary
8.7, Proposition 8.5, Lemma 8.6, Proposition 9.7, and Lemma 9.8 of Chapter
2:

MAIN THEOREM.
gpin8 =~ 2[027C4aCﬁvCS)CgvC37Cgr7C47<I7<55C67<§7<87C10]/R

where CZ,C:F are elements of degree i, and R is the ideal generated by the
following elements:

2Codd

2c7

265

3 —deq — 8¢ + 4Gy
c2Cs — 2Cp

el —2¢F

c2G6 — 2¢4C4 — 8(g + 8cs
ol — 2¢4C) — 16c8 + 4¢3

28 — 2C10

210 — 2cas — 8¢ Cu + 4desC
(i — 4cs

CaCi — 2¢g

CaGp — 2cacs

CaCg” — 2Ci0

Cals — 2¢8¢;
CaCro — 2es8¢q
(C)? —4cd

¢ G — 260



Cj(gr — QCgcg

Ciés —2¢8 &

Ci o — 2¢5 G

GG —Ades(ea +2¢ — G)

CGCE;F — 2¢4(s — 80§_C4 + 4C8<2_

C6Cs — 2c8(d

C6Cro — cs(eal) +12¢8 — 2¢s — 8cs)
(C)? —4cd (ca+2¢f — )

G ¢ — 2c5 o

Cg G0 — c§ (2caCs + 8Cs — 8cs)

C82 — 4080§r

(sCro — 2c2c8cq

(To — escd (des + 8¢ — 4¢a)

0B} e (Conartd 1 0Eer Conn

{08} ae (e GovensChrent B ot

cacr = S1c6C5 + 03c6(3 + 6aca(s
Cacr + 8 (05C3 + 66C3)

i er + ¢ (0265 + 67C3)

Cec7 + d8cs(s

(g er + docd G

(ser + cs(610aCs + S11ca(y + 612(7)
Croer + cs(813¢4Cs + 614¢6C3 + S15¢6(5).

Here 0; € /2 are indeterminate coefficients, and 01,02 are the same as in
[12, Proposition 9.1].

The indeterminate relations are of the same kind of that in [12]: they
are the products of ¢; with elements of even degree.

Using this result we are able to compute the Chow ring of B Spin,
whitout localizing at (2) (see Proposition 9.10).

Acknowledgments. I thank warmly my thesis advisor Angelo Vistoli
for his availability, patience and his support in the difficult moments. Many
thanks also to Pierre Guillot and Nobuaki Yagita, who pointed out some
errors and gave me precious informations and suggestions.
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CHAPTER 1

The Chow ring of the classifying space
of classical groups

1. Preliminaries on equivariant intersection theory

In this section we recall some definitions and notations, and state some
tecnical results that will be used throughout this paper.

All schemes and algebraic spaces are assumed to be of finite type over
an fixed field k. Let G a g-dimensional linear algebraic group over k, and X
a smooth scheme over k with a G-action.

Edidin and Graham ([7]), expanding on the idea of Totaro, have defined
the G-equivariant Chow ring of X, denoted Af;(X), as follows. For each
1 > 0, choose a representation V' of G with an open susbscheme U C V on
which G acts freely (in which case we call (V,U) a good pair for G), and
such that the codimension of V \ U is greater than i. The action of G on
X x U is also free, and the quotient (X x U)/G exists as a smooth algebraic
space; then Edidin and Graham define

AG(X) = AL((X % 1)/0),

where the right hand term is the Chow group of classes of cycles of codi-
mension ¢ (see [26] for the intersection theory on algebraic spaces). This
is easily seen to be independent of the good pair (V,U) chosen. Moreover,
under mild hypoteses (see [7, Proposition 23]) the quotient (X xU)/G exists
as a smooth scheme, so A*((X x U)/G) is the usual Chow group defined in
[3]. Then one sets

AL(X) = P ALX).
i>0

If G acts freely on X, then there is a quotient X/G as an algebraic space
of finite type over k, and the projection X — X/G makes X into a G-
torsor over X/G; in this case the ring Af,(X) is canonically isomorphic to
AY(X/@G).

Totaro’s definition of the Chow ring of a classifying space is a particular
case of this, as

Ay = AL (Speck).

The formal properties of ordinary Chow rings extend to equivariant
Chow rings. We recall briefly the properties that we need, which will be
used without comments in the paper, referring to [7] for the details.

9
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If f: X — Y is an equivariant morphism of smooth G-schemes there is
an induced ring homomorphism f*: A%(Y) — AfL(X), making A7, into a
contravariant functor from smooth G-schemes to graded commutative rings.
Furthermore, if f is proper there is an induced homomorphism of groups
fer AL(X) — AL(Y); the projection formula holds.

There is also a functoriality in the group: if ¢ : H — G is a homomor-
phism of algebraic groups, the action of G on X induces an action of H on
X, and there is homomorphism of graded rings

AG(X) — AR (X),

defined as follows: suppose that (U,V) (resp. (T,W)) is a good pair for
X relative to G (resp. relative to H), and let G act on V x W via g -
(v,w) = (g-v,¢(g9) - w) for g € G, (v,w) € V x W. Then the projection
X xUXxT — X xT induces a map

(XxUxT)/G— (X xT)/H

and pulling back along this map we obtain the desired ring morphism. When
H is a subgroup of G we will refer to this as a restriction homomorphism.

If H is a subgroup of GG, then there is an H-equivariant embedding X into
X x G/H, defined in set-theoretic terms by sending = into (z,1). Then the
composite of the restriction homomorphism AL (X xG/H) — AL (X xG/H)
with the pullback A% (X x G/H) — A}(X) is an isomorphism.

Of paramount importance is the localization sequence; if Y is a closed
G-invariant subscheme of X, and we denote by i: ¥ — X and j: X\Y — X
the inclusions, then the sequence

AGY) =5 AG(X) "= AGX\Y) —0

is exact.
Furthermore, if E is a G-equivariant vector bundle on X, then by [7,
Lemma 1] (E x U)/G — (X x U)/G is a vector bundle, so we can define

equivariant Chern classes ¢;(E) € AL(X) as
Cl(E) = Cz((E X U)/G),

enjoying the usual properties. Also, the pullback A5 (X) — AL(E) is an
isomorphism.

In particular, since the equivariant vector bundles over Speck are the
representations of G, we get Chern classes ¢;(V) € AE for every representa-
tion of G; and the pullback Ay, — Ay (V) is an isomorphism.

We also need other easy properties of equivariant Chow rings, for which
we do not have a suitable reference.

LEMMA 1.1. Let G a linear algebraic group, X a smooth G-scheme, H
a normal algebraic subgroup G. Suppose that the action of H on X is free
with quotient X/H. Then there is canonical isomorphism of graded rings

AL(X) = Al (X/H).
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PrOOF. Let (V,U) be a good pair for G, such that the codimension of
V' \ U is greater then i. Then

AG(X) = A((X xU)/G)
=A'((X xU)/H)/(G/H))
= AL (X xU)/H).

Now, the quotient (X x V')/H is a G/H-equivariant vector bundle over
X/H, (X x U)/H is an open subscheme of (X x V))/H whose complement
has codimension larger than 7. This yields isomorphisms

c/r (X xU)/H) = Ag,y (X x V)/H)
~ A (X/H).

The resulting isomorphisms A% (X) ~ AL s (X/H) yield the desired ring
isomorphism Ag(X) ~ Ag,  (X/H). d

LEMMA 1.2. Let G be an affine linear group acting on a smooth scheme
X, E — X an equivariant vector bundle of rank r. Call By C E the
complement of the zero section of E. Then the pullback homomorphism
AL(X) — AL (Ey) is surjective, and its kernel is generated by the top Chern
class c,(E) € AG(X).

Proor. Call s: X — FE the zero-section. Then the statement follows
immediately from the exactness of the localization sequence

AG(X) == AG(E) — AG(Eg) — 0,

from the fact that the pullback s*: Af(E) — Af(X) is an isomorphism,
and from the self-intersection formula, which implies that the composite

AL(X) 25 AL(E) <5 A%(X) is multiplication by ¢, (E). J

LEMMA 1.3. Let H a linear algebraic group with an isomorphism H ~ A}
of varieties, such that the for any field extension k C k' and any h € H(kK'),
the action of h on Hy by multiplication is corresponds to an affine automor-
phism of A}, under the isomorphism above. Furthermore, let G be a linear
algebraic group acting on H wvia group automorphisms, that corresponds to
a linear action of G on A} under this isomorphism.

If G acts on a smooth scheme X : form the semidirect product GX H, and
let G H act on X wvia the projection Gx H — G. Then the homomorphism

AG(X) — Aguu(X)
induced by the projection G x H — G is an isomorphism.

ProOOF. Let (V,U) (resp. (V',U’)) be a good pair for G x H (resp. G).
Then G x H acts on U’ via the projection G x H — G: it follows that G x H
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acts on X x H x U x U’, and since the action of G x H on H is transitive,
and the stabilizer of the origin is H, there is an isomorphism

(XxHxUxU)/(GxH)=(Xx(Gx H)/HxUxU")/(Gx H)
~ (X xUxU)/G.
Look at the following commutative diagram:

(X xHxUxU)/(Gx H) — (X xU xU")/G

(X x U x U)/(G x H) —— (X xU")/G.

Note that 71 is an affine bundle: in fact, it is a fiber bundle with fiber
isomorphic to A™, and structure group G x H that acts on A" by affine
transformations, since the action of G on H is affine and the action of H on
itself is affine. It follows from [11, p. 35] that 7} is an isomorphism. On the
other hand, since U x U’ is an open set of V' x V' on which G acts freely,
w5 is the identity on the equivariant Chow ring Af;(X), up to a degree that
can be made arbitrarily large: so we have a commutative triangle

AED(H(X X H)
T \
AEKH(X) s

where the horizontal arrow is exactly the map induced by the projection
Gx H— G. J

AG(X)

Here is another auxiliary result: it is well known (see for instance [23])
that Aj, ~Z[{]/(n§), where & is the first Chern class of the character given
by the inclusion w, — Gp. If G is an algebraic group, we will denote by
£ €Ay, , the image of & under the map A’Ln — AL, , induced by the
projection G x u,, — p,,. Using the projection G x p,, — G, we can consider
AGixp, 8s an Ag-algebra. Then Ag, , admits the following description:

LEMMA 1.4. As an Ag-algebra, AEXH” is generated by the element &,
and the kernel of the evaluation map Af[x] — AL[E] is the ideal (nx). In
other words,

AGxp, = AGlEl/(n€).

PROOF. The action of p, on A! given by the embedding u, — Gp
can be extended to an action of G x u,, by letting G act trivially on Al.
Then from Lemma 1.2 we have that Ag,,, — Ag,,, (Gm) is surjective,
and its kernel is generated by £. Since Gy, /p,, ~ Gp, from Lemma 1.1 we
deduce that Ag,,, (Gm) = AG(Gm), and since G acts trivially on Gy and
Gm is an open subset of the affine line, Af(Gn) ~ Af. So we have that

Gxp, = AGlE]/(n), as claimed. d
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2. The special groups: GL,, SL,, and Sp,,

Let us fix a field k: we write GL,, SL,, and Sp,, for the corresponding
algebraic groups over k.

These groups are always much easier to study: they are special, in the
sense that every principal bundle is Zariski locally trivial. For GL,, and Sp,,
the idea works in a very similar way: let us work out Sp,,, that is marginally
harder. We proceed by induction on n, the case n = 0 being trivial.

Consider V = A?" the tautological representation of Sp,,, with its sym-
plectic form h: V x V' — k given in coordinates by

h(z1, ..y 22m, W1, ..., Wop) = 21Wpt1 + * -+ + 2pW2p — Zpt1W1 — -+ — 22 Wn.

Denote by eq, ..., e, the canonical basis of V.
The orbit structure of V is very simple: there are two orbits, the origin
def

and its complement U = V' \ {0}. Consider the subspace
V/ — <61a ey €n—1, 67’L+17 L) 62n71>;

the restriction of h to V' is a non-degenerate symplectic form, and V =
V' @ (en, €an). This induces an embedding Sp,,_; — Sp,,, identifying Sp,,_;
with the stabilizer of the pair (e, eap).

Let GG the stabilizer of the element e,: then we have that Sp,,_; € G C
Sp,,- The first inclusion admits a splitting: if A € G, then A stabilizes the
orthogonal complement (e,,)>. It follows that A induces a linear endomor-
phism on the quotient (e,)" /(e,) ~ V', and this endomorphism is easily
seen to preserve the symplectic form h|y-, so it is an element of Sp,,_;. Thus
we have a projection G — Sp,,_;: let H its kernel, so that G = Sp,,_; x H.

The structure of H is as follows; the matrices in H are exactly those for

which there are scalars ay, ..., as,_1 such that
€; — Qjtn€n ifi=1,...,n—1
e ifi=n
Ae;=< " e
€ + ai—nen ifi=n+1,...,2n—1

ajez + -+ + agp_1€2n—1 + €2, if i =2n.

This yields an isomorphism of varieties H ~ A?"~1. It is not hard to see that
the conditions of Lemma 1.3 are satisfied for the action of Sp,,_; on H; hence
the embedding Sp,,_; C G induces an isomorphism of rings Ay, ~ A§pn717
so the composite

§pn([jr) - Agpn71 (U) - Agpnfl(e’n) = Agpn71

is an isomorphism. The restriction of the representation V' to Sp,,_; is
the direct sum of V' and of a trivial 2-dimensional representation: hence
the Chern classes ¢; = ¢;(V) restrict to the ¢;(V'). From the induction
hypothesis, we conclude that A’épn (U) is generated by the images of co,

ey, Con—2.
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From Lemma 1.2 we conclude that every class in Agpn can be written as
a polynomial in ca, ..., con—s, plus a multiple of ca,. By induction on the
degree we conclude that ca, ..., co, generate Agpn.

To prove their algebraic independence, let us restrict to A7, , where
T, ~ G} is the standard maximal torus in Sp,,, consisting of diagonal

matrices with entries (t1,...,,, tl_l, ...,ty1). Then A%, is the polynomial
ring Zlzy,...,xy], where x; is the first Chern class of the 1-dimensional

representation given by the ™" projection T}, — Gu. Then the total Chern
class of the restriction of V,, to T}, is

A+x)...(I+z)1—z1)...(1—z) =1 —2d)...(1 —22);

hence the restriction of cy; is the i'! elementary symmetric function of —a2,
.., —x2. This proves the independence of the cy;.

As we mentioned, the argument for GL,, is very similar. For SL,,, one
can proceed similarly, but it is easier to use the fact that, if GL,, acts freely
on an algebraic variety U, the induced morphism U/SL,, — U/GL,, makes
U/SL,, into a principal Gy-bundle on U/GL,,, associated with the determi-
nant homomorphism det: GL,, — Gy,. Hence, by Lemma 1.2, we have an
isomorphism A&y~ Agy /(c1), which gives us what we want.

REMARK 2.1. All these arguments work with cohomology. when k = C.
The localization sequence in cohomology does not quite work in the same
way, as the restriction homomorphism from the cohomology of the total
space to that of an open subset is not necessarily surjective. However, if Y’
is a smooth closed subvariety of a smooth complex algebraic variety X, of
pure codimension d, then there is an exact sequence

- — Hg*(Y) — Hg(X) — Hg(X\Y) — Hg (YY) — -
Hence if we know that either the pullback Hf,(X) — H (X \Y) is surjective,
or the pushforward Hf(Y) — H¢(X) is injective, we can conclude that we
have an exact sequence

0 — H;(Y) — HE(X) — HE(X\Y) — 0;

and this is sufficient to mimic the arguments above and give the result for
cohomology.

REMARK 2.2. These results can also be proved very simply from a result
of Edidin and Graham (see [6]): if G is a special algebraic group, T a max-
imal torus and W the Weyl group, the natural restriction homomorphism

A — (A})W is an isomorphism.
3. The Chow ring of the classifying space of O,

Let us fix a field k of characteristic different from 2. If V = k™ is an
n-dimensional vector space, we define a quadratic form ¢: V — k in the
standard form

Q(zla .. .,Zn) = 21Zm+1 + -+ ZmZom
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when n = 2m, and

2
q(21,- -3 2n) = 212m41 + -+ Zmzam + 2om+1

when n = 2m + 1. We will denote by O,, the algebraic group of linear
transformations preserving this quadratic form.

THEOREM 3.1 (R. Pandharipande, B. Totaro).

A6n = Z[Cl, e 7cn]/(2codd)'

REMARK 3.2. Let V/ be another n-dimensional vector space over k, with
a non-degenerate quadratic form ¢': V! — k. We can associate with this
another algebraic group O(¢’), which will not be isomorphic to O,, = O(g),
in general, unless k is algebraically closed.

However, one can show that there is an isomorphism of Chow rings
Ap, =~ A*O( ¢)» such that the classes ¢i(V) in the left hand side correspond
to the classes ¢;(V’) in the right hand side. The principle that allows to prove
this has been known for a long time ([10]): it is the existence of a bitorsor
I — Spec k. This is the scheme representing the functor of isomorphisms of
(V,q) with (V',¢’). On I there is a left action of O(¢’) and right action of
O,,, by composition. These two actions commute, and make I into a torsor
under both groups (because (V,q) and (V’,¢’) become isomorphic after a
base extensions).

In general, assume that G and G’ are algebraic groups over a field k
(in fact, any algebraic space will do as a base), and I — Speck is (G', G)-
bitorsor: that is, on I there is a right action of G' and left action of G’, and
this makes I into a torsor under both groups. If X is a k-algebraic space on
which G’ acts on the left, then we can produce a k-algebraic space I x& X
on which G acts on the left, by dividing the product I Xgpecr X by the
right action of G, defined by the usual formula (i,2)g = (ig, zg~'). The left
action of G’ is by multiplication on the first component: the quotients G\ X
and G'\(I x% X) are canonically isomorphic.

This operation gives an equivalence of the category of G-algebraic spaces
with the category of G’-algebraic spaces. When applied to representations,
it yields representations, and gives an equivalence of the category of rep-
resentations of G and of G’. Furthermore, given a representation V of G,
with an open subset U C V on which G acts freely, we get a representation
V' =1 x%V with an open subset U’ = I x% U on which G’ acts freely, so
that the quotients G\U and G'\U’ are isomorphic. In Totaro’s construction
this gives an isomorphism of A, with Ag,.

So, in particular, the result that we have stated for O,, also holds for
O(¢') for any other non-degenerate n-dimensional quadratic form ¢’, and we
have

Ag(q,) =Zle1y .. cn]/(2¢0d4)-



16 1. THE CHOW RING OF THE CLASSIFYING SPACE OF CLASSICAL GROUPS

The proof of the Theorem will be split into two parts: first we show that
the ¢; generate Ay , then that ideal of relations is generated by the given
ones.

For the first part we proceed by induction on n.

For n =1, q(z) = 27, and O1 = s, 50

O, = AZZ ~ Zlei]/(2¢1).

Forn > 1,let B = {v € A" | ¢(v) # 0}, and set Q = ¢ *(1). Then
q: B — Gy, is a fibration, with fibers isomorphic to ). This fibration is not
trivial, but it becomes trivial after an étale base change. Set

B ={(t,v) € Gm x B | £ = q(v)},
and consider the cartesian diagram

—— B

B
J q
(-2

Gn —— Gn

where the first column is projection onto the first factor, and the top row is
defined by the formula (¢,v) — tv.

There are obvious commuting actions of p, and O, on E, the first
defined by € - (t,v) = (et,v), and the second by M - (t,v) = (t, Mv). The
quotient B /o is isomorphic to B, and the induced action of O, on the
quotient coincides with the given action on B. From Lemma 1.1, we obtain
an isomorphism

A*On (B) = ANQ Xon (§> *

Then there is an isomorphism of Gy,-schemes B ~ Gm X Q defined by
the formula (¢,v) — (¢,v/t). The given actions of pu, and of O,, on B induce
commuting actions on G, X @ given by € - (t,v) = (et, ev) for € € pu, and
M(t,v) = (t, Mv) for M € O,,. These define an action of gy x O, on Gy, X Q,
and Ag (B) is isomorphic to Aj, o, (Gm X Q).

This action of py x O, on Gy, x @ extends uniquely to an action of
o X Oy on Al x Q, defined by the same formulae. This action is defined by
two separate action on A! and @, and the action on A! is linear, defined by
the non-trivial character of py through the projection py x O, — py. Call
¢ the first Chern class of this representation. From Lemma 1.2, we have an
isomorphism

(3.1) 110, (Gm X Q) ~ A 0, (Q)/(8)-

To investigate A}, ., (@) we will also use an orthogonal basis €7, ..., e
of V, in which ¢ has the form

/
n

! / 2 2 2 2
Q@21+t zn€h) = 2 o2~ —
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when n = 2m, and
qzrei 4+ zmel) =Bt 2 = Ry — e — 22
when n = 2m + 1.

Now, the action of py x Oy, on Q) is transitive; let H the stabilizer of the
point €| € Q. The structure of H is as follows. Set V' & (e,..., el), so

’ N

that V is the orthogonal sum (e}) ® V', and call ¢ the restriction of g to V.
Then the group O, of linear automorphisms of V' preserving ¢’ is naturally
embedded into O,,, as the stabilizer of e|. Notice that in an appropriate
basis ¢’ has the standard form
q/(zla <. 7Zn—1) = 21Zm+1 + -+ ZmZom
when n = 2m + 1, and the opposite of the standard form
Q21 2n1) = —(212m + -+ Zm_122m—2 + Zam_1)

when n = 2m; in both cases the orthogonal group O(q’) is isomorphic to
O,,—1, and we identify it with O,,_1.

The stabilizer of €} in py x Oy, is the group py x O,—_1, embedded into
o X Oy with the injective homomorphism

(€, M) — (€,eM).
It follows that

12 x0, (@) = Aj 0, (B2 X On)/(pg X On-1))

~ *
~ A% o, -

We obtain a chain of isomorphisms

AD, (B) ~ Al x0,(Q)/(§)
ALyx0,1 /(6):

Finally, from Lemma 1.1 we get an isomorphism

pox0, 1 /(§) = Ao, [€]/(€)

~ *
~ Ao, -

The composite Ay, — Ag (U) — AG, _, is the pullback induced by the
embedding O,,_1 C O,.

The restriction of V to O,_; is the direct sum of V' and a trivial 1-
dimensional representation, hence the restriction Ag, — Ag | carries ¢;
into ¢;(V'). Therefore, by induction hypothesis, the images of ¢1, ..., ¢,—1
generate Ag (B).

Next, we claim that the restriction homomorphism Ag (A" \ {0}) —
A, (B) is an isomorphism. To see this, set

C ={ve A"\ {0} | ¢(v) =0}
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with its reduced scheme structure, and consider the fundamental exact se-
quence

A, (C) = Ap, (A" \{0}) — Ap, (U) — 0.

We need to show that i, is the zero map. In fact, ¢: A"\ {0} — Al is smooth,
since the characteristic of the base field is not 2, so C is the scheme-theoretic
inverse image of {0}. The map ¢q: A"\ {0} — Al is O,-equivariant, if we
let O,, act trivially on A'; and the fundamental class [0] € A5 (A!) equals
zero. Since the inverse image of [0] in A5 (A™\ {0}) is [C], we can conclude
that

[C]=0¢€ Ap, (A" \ {0}).

Next we show that the pullback i*: A (A" \ {0}) — Ag, (C) is surjective:
in this case, for every o € A (C\ {0}), we have a = %3 for some 8 €
Ao, (A" \ {0}), so
ix() = 0" (B) = [C]- B=0
by the projection formula, and i, is the zero map, as claimed.
To show surjectivity, notice that the action of O, on C'is transitive. Let

us investigate the stabilizer G of e; € C. Set n = 2m or n = 2m + 1, as
usual. If we define

Vi ={ea,...,€m,emi2,--,€n)

then the restriction of g to V' has the standard form, and V' is the orthogonal
sum V' @ (e1, em41). This gives an embedding O,,—o C O, identifying O,,_2
with the stabilizer of the pair (e1, epm41).

An analysis very similar to that we have carried out for the stabilizer of
a vector under Sp,, leads to the conclusion that the stabilizer G of e; is a
semidirect product O,_o X H, where H is isomorphic to A"~ ! as a variety,
the action of an element of H is itself is given by an affine map, and the
action of O,_o on H is linear: by Lemma 1.3, the embedding O,,_s C G
induces an isomorphism of rings Ag; ~ Ag, , so the composite

Ao, (C) — Ap, ,(C) — Ap, (1) = Ap,

2

is an isomorphism. But the ¢; restrict in Ag _ to the Chern classes of V'
hence, by inductions hypothesis, they generate A¢, . Hence the pullback
O, — Ap, (C) is surjective, as claimed. This ends the proof that the ¢;
generate A . Let us investigate the relations.
The quadratic form g induces an isomorphism V' ~ V'V of representations
of Oy, hence for each i we have c;(V) = (—1)%c;(V). This shows that 2¢; = 0
when 4 is odd.
To show that these generate the ideal of relations among the ¢;, let
J C Z[X1,...,X,] be the ideal generated by 2X;, 2X3, .... Let P €
Z|Xq,...,X,] be a homogeneous polynomial such that P(ci,...,c,) =0 €
0,.: we need to check that P € J. By modifying P by an element of J, we
may assume that P is of the form @ + R, where ) is a polynomial in the
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even X;, while R is a polynomial in which every monomial contains some
X; with ¢ odd, and all of whose coefficients are either 0 or 1.
Let T,, ~ G be the standard torus in O,: the embedding 7,,, C O,

sends (t1,. .., ty) into the diagonal matrix with entries (¢1, . . ., ty, tfl, oot
if n = 2m, and (tl,...,tm,tl_l,...,tqgl,l) if n = 2m + 1. Then A}, =
Z[z1,. .., 2m], where x; is the first Chern class of the i*® projection x;: T}, —

Gn. The restriction of V to T;, splits as p o X1+ +Xm +X1_1 Xt
when m is even, and p + 1 when n is odd. Hence the total Chern class of
the restriction of V' to T, is

A+z)...(I+zn) (I —z1)...(1—zm) =1 —23)...(1—22);

and this means that the restrictions of the ¢; is 0 when 7 is odd, while cy;
restricts to the 5™ symmetric function of —z%, ..., —x2,. Hence the restric-
tions of even Chern classes are algebraically independent. In the decom-
position 0 = P(ey,...,¢,) = Q(ca,...,com) + R(cy,...,c,) the summand
R(cq, ..., cp) restricts to 0, so Q(ca, ..., com) also restricts to 0. This im-
plies that @ = 0. So we have that P has coeflicients that are either 0 or
1.

Now take a basis €], ..., e}, of V in which ¢ has a diagonal form. Consider
the subgroup py C O, consisting of linear transformations that take each
e, into €} or —e}. If we call 7; the first Chern class of the character obtained
composing the ™ projection py — o with the embedding py — Gy, then
by Lemma 1.4 we have

Al =Z[m, .. 1)/ (201, -, 200).

There is a natural ring homomorphism from AZQ into the polymomial ring
Fo[Y1,...,Y,] that sends each 7; into Y;. The restriction of V' to pf has
total Chern class (1+mn1)...(1+mny); hence the image of ¢; in Fa[Y7, ..., Y]
is the i elementary symmetric polynomial s; in the Y;. The s; are alge-
braically independent in F3[Y7,...,Y},], the image of 0 = P(c1,...,cy) 1S
P(s1,...,8n), and P has coefficients that either 0 or 1. This implies that
P =0, and completes the proof of the theorem.

4. The Chow ring of the classifying space of SO,

Let k£ be a field of characteristic different from 2, set V = k", and let
q: V — k be the same quadratic form as in the previous section. Consider
the subgroup SO,, C O,, of orthogonal linear transformations of determinant
1.

If n is odd, A§y can be easily computed from Ag , as was noticed in
[5] and [19].

THEOREM 4.1 (R. Pandharipande, B. Totaro). If n is odd, then

EOn = Z[CQ, e ,Cn]/(QCOdd = 0)
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PrOOF. When is n odd there is an isomorphism O,, ~ py x SO,; the
determinant character det: O, — po (Whose first Chern class in Ag s ¢1)
corresponds to the projection py x SO,, — p9. Then from Lemma 1.4 we
get that

Ao, ~ Ao, /(c1)
and the conclusion follows. J

4.1. The Edidin—Graham construction. From now on we shall as-
sume that n is even, and write n = 2m.

In this case, A§p,  is not generated by the Chern classes of the standard
representation, not even rationally. This can be seen easily for n = 2. We
have that SOy consists of matrices of the form

o)

and so is isomorphic to Gy,. Then

so, = Ag,, = Z[¢],
where ¢ is the first Chern class of the tautological representation L = A,
on which Gy, acts via multiplication. Hence V = L @ LV, so ca(V) = —£2.

For general n, the vector space V will still split as the direct sum of
two totally isotropic subspaces, one dual to the other: however, when n >
2 this splitting is not unique, and the totally isotropic subspaces are not
invariant under the action of SO,,, so V is not a direct sum of two nontrivial
representations (and V' is in fact irreducible). Still, in topology V has an
Euler class €, € Hj , whose square is (—1)™c,,. Let us recall Edidin and
Graham’s construction of an algebraic multiple of €, (see [8]).

In what follows we will use the classical conventions for projectivizations
and Grassmannians; those seem a little more natural in intersection theory
than Grothendieck’s. So, if W is a vector space, we denote by P(W) the
vector space of lines in W, and by G(r, W) the Grassmannian of subspaces
of dimension r; and similarly for vector bundles.

Denote by I(m, V) the smooth subvariety of G(m, V') consisting of max-
imal totally isotropic subspaces of V. It is well known that O,, acts tran-
sitively on I(m, V), and that I(m, V) has two connected components, each
of which is an orbit under the action of SO,,. Let us choose one of the
orbits, for example, the one containing the subspace (e1,...,e,). Every
totally isotropic subspace of dimension m — 1 of V' is contained in exactly
two maximal totally isotropic subspaces, one in each connected component.

There is a well known equivalence of categories between O,,-torsors and
vector bundles of rank n with a non-degenerate quadratic form. If E is a
vector bundle on a scheme X with a non-degenerate quadratic form, this
corresponds to a O,-torsor m: P — X, the torsor of isometries between F
and V' x X; with this torsor we can associate a po-torsor (that is, an étale
double cover) P/SO,, — X via the determinant homomorphism det: O,, —
Ho. This cover can be described geometrically as follows.
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Consider the subscheme I(m, E) of totally isotropic subbundles in the
relative Grassmannian G(m, E) — X ; the projection I(m, E) — X is proper
and smooth, and each of its geometric fibers has two connected components.
Let I(m, E) — I(m, E) — X be the Stein factorization; then I(m, E) — X
is an étale double cover, and is precisely the double cover P/SO,, — X. This
can be seen as follows.

On P we have, by definition, an isometry of 7*E with V x P. In V x P
we have a maximal totally isotropic subbundle (eq,...,e,) X P, so we get
a maximal totally isotropic subbundle of 7*E. This defines a morphism
P — I(m, E) over X; the composite P — I(m, E) — I(m, E) induces the
desired isomorphism P/SO,, ~ ﬁ(m, E).

Hence, to give a reduction of structure group of P — X to SO, is
equivalent to assigning a section X — I(m, E). This gives an equivalence
of the groupoid of SO,-torsors on X with the groupoid of vector bundles
E—-X of rank n with a non-degenerated quadratic form, and a section
X — I(m, E). We shall refer to such a structure as an SO,,-structure on E.

Furthermore, given an SO,-structure on F, if f: T'— X is a morphism
of algebraic varieties, and L is a totally isotropic subbundle of f*FE of rank
m, we say that L is admissible if the image of T under the morphism 7" —
I(m, X) corresponding to L is contained in the inverse image of the given
embedding X C I(m, E).

Here is the construction of Edidin and Graham. We will follow their
notation. Let E be a vector bundle of rank n with an SO,-structure on a
smooth algebraic variety X. For each ¢ = 1, ..., m consider the flag variety
fi: Q; — X of totally isotropic flags L; C Ly C --- C L,,—; C FE, with
each Ly of rank s. For each i, denote by L1 C Ly C --- C L,,—; C fI'E
the universal flag on @;. The restriction of the quadratic form to L, is
degenerate, with radical equal to L,,_;; hence on @); there lives a vector
bundle E; of Liﬂ. /Ly—; of rank 2i with a non-degenerate quadratic form.
For each i = 1, ..., m — 1 we have a projection m;: Q;—1 — @;, obtained
by dropping the last totally isotropic subbundle in the chain; and Q;_1 is
canonically isomorphic, as a scheme over ();, to the smooth quadric bundle in
P(E;) defined by the quadratic form on FE;. This means that Q;_; is a family
of quadrics of dimension 2(i — 1) over @Q;. Let us denote by h; € AN (Q;_1)
the restriction to Q;—1 of the class ¢ (Op(p;)(1)) € A (P(E;)).

Each bundle E; has a canonical SO,,_g;-structure. Call 7;: L#H. — E;
the projection. From each totally isotropic vector subbundle L C FE; of rank
m — i, we get a totally isotropic vector subbundle 7L C L#%i C ffE of
rank m; then L is admissible if and only if 7] L is admissible.

The universal flag Ly € Ly C --- C Ly, C f{E on 1 can be completed
in a unique way to a maximal totally isotropicflag L; C --- C L,;,_1 C L, C
fiE in such a way that L,, is admissible. Then Edidin and Graham define

Ym(E) = fi(s-cm(Lm)) € A™(X)
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where we have set
s=nh3hi.. . h2"72 € A*(Q).

REMARK 4.2. In this formula each of the classes h; should be pulled
back to ;. Here, and in what follows, we use the following convention:
when f: Y — X is a morphism of smooth varieties, and £ € A*(X), we will
also write £ for f*¢ € A*(Y). Similarly, if E — X is a vector bundle, we will
also write F for f*FE. This has the advantage of considerably simplifying
notation, and should not lead to confusion. With this notation, when f is
proper the projection formula reads: if £ € A*(X) and n € A*(Y'), then

f«(&n) = & fan.

There is also an inductive definition of y,,,(F). If m = 1 then there is
precisely one totally admissible isotropic line subbundle of E, and we have
y1(F) = c1(L), by definition.

For m > 1 we have a vector bundle E,,_1 on Q,,_1 with an SO,,_o-
structure.

LEMMA 4.3. The formula

Ym(E) = = fm—1, (hod" Ym—-1(Em-1))
holds.

ProoFr. To prove this, call g: Q1 — @Q,,—1 the projection: on @1 we
have a flag

Ly/Ly C L3/L1 C -+ C Ly—1/L1 Cg"Ep

that makes ()1 into the variety of totally isotropic flags of length m — 2
in E,,—1; we complete this to a maximal totally isotropic flag by adding
L,,/Li. So we get

ymfl(Emfl) = g« (h%hg ce hgnm_ilélcmfl(Lm/Ll)) .

On the other hand, on @,,—1 C P(E), the line bundle L; C f _,E is the
pullback of the tautological bundle Op(g)(—1), so c¢1(L1) = —hy,. Hence we
have

Cm(Lm) = —hmCm—1(Lm/Lm-1)
and
—fre1s (P2 Y1 (Bm-1)) = — -1, (A2 g (h3R5 ... h2" "
¢m—1(Lm/L1)))
= —f1,(R3h3 ... B2 2 e,y (L /L))
= fro(h3hs . W2 em (Lin))
= ym(E)

as claimed. J
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The Edidin-Graham class y, € Agp is defined as follows. Take a
representation W of SO,, with an open subset U on which SO,, acts freely,
and whose complement has codimension larger than m. Call E the vector
bundle with an SO, -structure associated with the SO,,-torsor U — U/SO,,.
Then we set

ym = ym(E) € A™(U/SOy) = Ago,, -
It is easy to verify that this is independent of the W and U chosen.

THEOREM 4.4 (R. Field). If n = 2m, then
Agon = Zlca, ..., cn, ym]/(yfn - (_1)m2n_20n7 2¢odd, ymcodd)-

REMARK 4.5. Once again, this result can be extended to other quadratic
forms (compare with Remark 3.2). Let V'’ be another n-dimensional vector
space over k, with a non-degenerate quadratic form ¢': V' — k. This in-
duces a non-degenerate quadratic form on the exterior powers A’ V'. Let us
assume that there is an isometry A"V ~ A" V"

This is equivalent to the following more concrete condition. We will
write det ¢’ € k*/k*? for the class in k*/k*? of the determinant of a matrix
representing ¢’ in some basis. Then two n-dimensional quadratic forms have
isomorphic top exterior powers if and only if they have the same determinant.
Hence the condition above is equivalent to the equality

detq = (-1)™ € k* /k*2.

Fix an isometry A"V ~ A"V’. We can construct an (SO(¢'),SOx)-
bitorsor I — Speck, as the scheme representing the functor of isometries
V ~ V' inducing the fixed isometry A"V ~ A"V’. So we deduce the
following result: if the condition above is satisfied, there exists a class y,, €
A’S”O( a)’ such that

m2n72

So(g) = Zlez, - -  Cns Yml/ (Y2, — (—1) Cn, 2Codd; YmCodd)-

The proof of the theorem will be split into three parts: first we verify
that the classes ¢; and y,, generate Ay , next that the relations holds, and
finally that they generate the ideal of relations.

Step 1: The generators. We proceed by induction on m. In the case
m = 1 the statement says that

Afo, = Zlea, 1]/ (i + c2) = Z[y:]

we have seen that SO; = Gy, that g is the first Chern class of the identity
character on Gy, and that c; = —y?.

Suppose m > 1. Set B = {x € A" | g(x) # 0} and C = {x € A"\ {0} |
q(x) = 0}. Proceeding precisely as for O,, one establishes the following
results.

(1) Let €], ..., e, be an orthogonal basis of V' in which ¢ has the form

/ / 2 2 2 2
qzi€] + - Fzpey) =21+ 2 — 2 — o — 2
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Then the stabilizer of ¢} € B in SO,, is isomorphic to SO,,_1, and
the composite

Afo, (B) — A%o,_,(B) — A%o, _, (1) = Ado,,_,

is an isomorphism.
(2) The stabilizer of the pair (e1,em+1) is isomorphic to SO,_2. The
composite

A50,(C) — Ago, _,(C) — Agp,,_,(e1) = Ago,_,
is an isomorphism.

Call i: C C A"\ {0} and j: B C A"\ {0} the inclusions. Then we have
an exact sequence

50, (C) 25 Agg, (A™\ {0}) 25 Azo, (B) — 0.

By induction hypothesis, we have that A5, (C) ~ A5y _, is generated
as a ring by co, ..., ¢p—2 and y,,—1. From this, and from the relation
Y2, — (—1)m12nde, o, we see that Afg, (C) is generated as a module
over Ao by 1 and y;,—1; hence, since i, is a homomorphism of Agg -
modules, by the projection formula, we see that the kernel of the pullback

S0, (A"\{0}) — A§o, (B) is generated as an ideal by .1 = [C] and .y, 1.

As in the case of O, we see that the fundamental class [C] € Ay (A™\

{0}) is 0, because C is the scheme-theoretic zero-locus of the invariant

function ¢q. Furthermore, the images of c, ... c,—1 generate Ay (U) ~
$0,_,+ and this implies that co, ..., c,—1, together with 7.y, 1, generate
S0, (A" \ {0}) = A§o, /(cn). Hence ca, ..., Cp, ixYm—1 generate Adg .

Next, we have a Lemma.

LEMMA 4.6.
ixYm—1 = —Ym € Agp, (A" \ {0}).

PROOF. Let W be a representation of SO,,, and U an open set of W on
which the action of SO,, is free, and such that the codimension of W\ U in
W is larger than m. The vector bundle associated with the SO,,-torsor U —

U/SO, is E= (A" x U)/SO,,. We set X < ((A™\ {0}) x U) /SO, so that

X C E is the complement of the zero section, while Y & (C'xU)/SO,, C X is

the closed subscheme consisting of non-zero isotropic vectors, and Z ¢ \Y.
By a slight abuse of notation, we will denote 7: ¥ — X and j: Z — X the
inclusions. Note that there is a tautological section s: X — FE defined set-
theoretically by [u, z] — [u, 2, z].

Let us first prove that j*y,, = 0 € A5y (B). In fact, the tautological
section restricted to Z has the property that ¢(s(z)) # 0 for all x, and so
FYm(E) = ym(7*E) = 0, due to the following result.

LEMMA 4.7. Let (E,q) — X be a rank n = 2m vector bundle with a non-

degenerate quadratic form. Suppose that there exists a section s: X — E
such that q(s(2)) # 0 for all z € X. Then y,,(E) = 0.
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PRroOOF. Pulling back to the flag variety Q1 — X, it suffices to show
that if L C E is a rank m totally isotropic subbundle, then c,,(L) = 0. The
quadratic form gives a perfect pairing L x E/L — Ox, so LY ~ E/L. On
the other hand the line subbundle (s) generated by s has intersection with
L equal to 0 at every point of X; hence the composite Oy — E — E /L
gives a nowhere vanishing section of F/L, so that

cm(L) = (=1)"em(E/L) =0
as claimed. i)

It follows that y,, = d - isym—1 with d € Z. We will compute d by
restricting to a maximal torus; but first observe that since SO,,_3 is included
in SO,, as the stabilizer of the pair (e1, €y+1), there is an isomorphism

(A" x U)/SOp—2 — A? x (A" 2 x U)/SOp_>)
[(z1,...,2n),u] — ((zl,zm+1), (22, Zmy Zm+2, - - .,zn),u}),
and that y,,—1 € Agom2 is the Edidin-Graham class of the vector bundle
(An_2 X U) /SOn_g — U/Son_g.
Now, let T}, C SO,, is, as before, the torus of diagonal matrices with

diagonal entries t1, ..., ,tm, tl_l, ..., t-1 and x; is the first Chern class of
the i*" projection T}, — Gpn.
LEmMA 4.8. The formulae
cn = (—1)™2? .. 22
and

Ym = mel

hold in A%, = Z[x1,...,7vn].

T1...Tm

ProOOF. Reducing the structure group to 7,,, the vector bundle E on
U/T,, associated with the standard representation T;,, — SO,, — GL,, splits
into a direct sum of line bundles A1 &®- - -@Aa,,, where the i*" summand is the
subbundle associates with the 1-dimensional subspace (e;) C V. For each
i=1,...,mwehave Ay, ~ AY. Then E has an admissible maximal totally
isotropic subbundle A1 ®- - - ® A,;,, which pulls back to an admissible totally
isotropic subbundle on @Q;. The first Chern class of A; in AL(U/T},,) = Ale
is x;, for: =1, ..., m, hence

(M@ ®Ap) =21...20 €A

On the other hand, the top Chern classes of any two admissible totally
isotropic subbundles of @); are the same, by [8, Theorem 1], so

Ym = f*(s'cm(Al @@Am))
= (fuS)T1 ... Tyy;

and it is easy to verify that f,s = 2m~L J
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It follows that
(A" 2 xU)/Tpo1 =A@ @Ay @AY @ -+ DAY,
moreover, since
(Ux (A" \{0})/Trn =M & ®An & A &--- @A)\ {0},
we have
AY(X) = A7, /(cn)
=Zz1, ..., x)/(x3. .. 22)

and our aim is to verify that the equation

(4.1) Ym1 = —2" " ey,
holds in Z[z1, ..., xn]/(z? ... 22).

The inclusion of schemes on U/T),
(M @A)\A{0} = (M@ @A @A @ B Ay) \ {0}
induces a surjection of rings
Zlxy, ... ¢m]/(@3 ... 22) = Zlxy, ... 2]/ (23);

since Zzx1 ... x;, has trivial intersection with the kernel of this map, we can
restrict to (A1DAY)\{0} to verify equation 4.1. There is a cartesian diagram

(A1 \{0}) U (AY\{0}) — (A1 & AY) \ {0}

|,

Y X
We set
X' = (A e A))\ {0},
and
Y =Y/ UY]
= (A1 \ {0}) LI (A \ {0});

call i’: Y’ — X’ the inclusion.
Also, form the vector bundle on Y’ defined as

def

FEMG @A 0N ®-- DA,
1
= <5(Y')> /<5(Y’)>.
We need to check that
Y1 (F) = =21y oay, € AM(X)).

For I =1, 2, call i;: Y/ — X’ the inclusion, s;: Y] — ¢[*E the tautological
section, F the restriction of F' to Y]’

Observe that the bundle Ao @ - - - B A, of F is totally isotropic: however,
its inverse image in Eis A1 ® ... Ap is Ao @ Ao P --- P Ay, on Yy, but is
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Ao @ - ® Ay, & AY on Yy, The first bundle is admissible, the second one is
not. Hence we have

Ym-_1(F1) = 2™ 22y .. 2 € A*(YY)
and
Ym—1(Fy) = 2™ 229 ...z, € A*(YY]).
Since we also have [Y1] = —z1 and [Ys] = x1 in A*(X), we get

ixYm—1 = 11:Ym—1(F1) + 12.Ym—1(F2)
= il*iT2m72l‘2 e T — 7:2*7;;2m72xg e Tm
= $12m72I2 e T+ $12m72l‘2 o T
="y

and Lemma 4.6 is proved. é

This proves that cz, ..., ¢, Yym generate Agq .

Step 2: the relations are satisfied. The fact that 2¢; = 0 when ¢ is odd
follows immediately, as for O,,, from the fact that V is self-dual.

To prove that y,,c; = 0, it is sufficient to show that ¢, (Ly,)c; = 0 in
A*(Q1), for any vector bundle E on X, with an SO,, structure, as y,,c; =
f1:(8 - cm(Lp)c;). But on Q1 there is an exact sequence of vector bundles

0— Ly, — f*E— L) —0

so the total Chern class ¢(f1*FE) is ¢(Ly,)c(L),) and ¢;(f*E) = 0 when i is
odd.

Finally, the normal bundle N of C in A™ \ {0} is trivial, since the ideal
of C' is generated by an invariant function on A™ — {0}, so

y72n = 1Ym—1 " Ym—1
= i*(ym—l : Z.*i*ym—l)
= ix(Ym_1 - c1(NV))
=0
in A§p, (A" \ {0}) = Alp, /(cn), by the projection formula and the self-
intersection formula. Hence there is an integer d such that y2, = dc,; we

will compute d once again by restricting to a maximal torus. By Lemma 4.8
we have

2 _ 92m—2,2 2
Yy = 2 1. T,

=2""2(=1)"¢c, € A}, ;

hence, since ¢, is not a torsion element of A7, , we get that d = "2 as
claimed.
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Step 3: the relations suffice. Consider the ideal J in the polynomial ring
Z[Xs,...,Xp,Y] generated by the polynomials Y2 — (—1)m2"2X,,, 2X 44,
Y Xoqq- Let P € Z[ X5, ..., X,, Y] a homogeneous polynomial such that

P(ea, ... cnyym) = 0;
we need to show that P € J.

By modifying P by an element of J, we may assume that it is of the
form Q1 +Y Q2+ R, where Q1 and ()2 are polynomials in the even x;, while
R is a polynomial in the X; with coefficients that are all 0 or 1, and all of
whose non-zero monomial contain some X; with ¢ odd.

The odd ¢; restrict to 0 in A7, , while c; restricts to the 4™ symmet-
ric function s; of —z%, ..., —x2: also, Yy, restricts to zy...x,. Hence
P(cay ... emyym) = 0 restricts to Q1(s2,84,...) + T1... 2, Q2(S2, 84, ... );
and this is easily seen to imply that Q1 = Q2 = 0.

Hence P is a polynomial in Xo, ..., X, all of whose coefficients are 0
or 1. Now consider the basis €], ..., e/, of V, and the subgroup u% C O,

considered in the previous section, consisting of linear transformations that

take each €/ into ¢, or —e!. The subgroup I';, & u4 N SO, consists of the

elements (ei1,...,€,) of uf such that €;...€, = 1 in py. The group I'y, is
isomorphic to ;Lg*l; if we call n; € A%n the first Chern class of the restriction
to I', of the i*" projection uf — py C Gp, then we have

Aiﬁ‘n :Z[T}l,...,nn]/(nl-}-..._'_nn).

We have a natural homomorphism A} — Fa[ny, ..., 0]/ (n1 4+ 1a),
which is an isomorphism in positive degree. If we denote by 71, ..., ry
the elementary symmetric functions of the h;, we have that ¢; restricts to
the image of r; in Fa[ny,...,n,]/(r1); hence all we need to show is that the
images of rg, ..., r, are algebraically independent in Fa[ni,...,n,]/(r1).
But 74, ..., r, are algebraically independent in Fa[ny,...,n,], s0 1o, ..., 1y,
are algebraically independent in Fa[rq,...,r,]/(r1); and the homomorphism

Fg[?“l, e ,Tn]/(T‘l) — Fg[?h, e 777n]/(741)

is injective, because the extension Fa[ry,...,r,] C Fa[n1, ..., ny] is faithfully
flat. This shows that P = 0, and completes the proof of the theorem.



CHAPTER 2

The Chow ring of the classifying space of Sping

1. Preliminaries on Clifford algebras and spin groups

We recall some facts about Clifford algebras and representations of spin
groups that will be used throughout the paper (for a detailed treatment, see
for example [22] or [25]). Suppose that n = 2m or n = 2m+1, and consider

a quadratic form (C", ¢); in a suitable basis eq, . .., e, the form ¢ is given by
Q(Zl,...,Zn) = _Z%_'”_ZEL‘

We will denote with C),, = C'(C", q) the Clifford algebra associated to (C", q),
and with Spin,, the (complex) spin group included in C,,. There is a double
covering p, : Spin,, — SO,,, that is the universal covering of SO,,: we will
write C" also for the representation of Spin,, given by py,.

Set
_V-leiteim ;v —lei—eéim
=, W=
2 2
fort=1,...,m, and let W,, C C" the subspace generated by w1, ..., wny:
then W, is a totally isotropic subspace, and the spinor space is S, = \* Wi,.
If n = 2m, S, splits as the direct sum of two irreducible representations S,
and S,;; we will denote with

oF : Spin,, — GL(S¥)

Ww;

the two representations. If n = 2m + 1, S, is an irreducible representation
of Spin,,, denoted with o,,.

By definition, a spin representation of Spin,, is a representation obtained
from an irreducible C; -module, where C;7 C C,, is the subalgebra of the
elements of even degree. Let V' C SQO,, be the subgroup of diagonal matrices:
then V' can be regarded as a vector space with a quadratic form. If h
the codimension of a maximal isotropic subspace of V, then 2" called the
Radon-Hurwitz number a,, and is the dimension of a spin representation of
Spin,, ([16, Proposition 6.1]).

On Si and S, there are a symmetric form 3 and an alternating form
B; for n = 8, (3 is Sping-invariant and agt factorizes through SO(S;E, B). It
follows that Sping has three 8-dimensional representations pg, 08i : Sping —
SOg. One way to express the phaenomenon of triality is that there is an
action of the symmetric group &3 on Sping acting as the full symmetric
group on the set of the isomorphism classes of these three representations:
suppose that 7 € G3 is a transposition that exchanges two representations

29
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p1 and py of Sping. Then the (outer) automorphism 7 : Sping — Sping is
defined as the lifting of p; in the following diagram:

Sping — ~ + Sping

N
P2
SOs.

For more details we refer the reader to [22] or [25].

2. Pull-backs from Agosz Chern and Edidin-Graham classes

For n = 8, we will omit the subscript (+)s. The following classes in Agping
are obtained by pulling back along the maps p, o™ : Sping — SOs:

ys = pys, ¢ =p(c),

yi = (05)ya, ¢ = (05,

where y4 is the Edidin-Graham class of SOg (defined up to the sign; see
Remark 2.1) and ¢; is the i-th Chern class of the tautological representation
of SOg (there should not be confusion between ¢; € Ag;,, and ¢; € Agp,).

By triality, the symmetric group &3 acts on the isomorphism classes of
the representations p,o",0~. We will use the following notation: let

u =+v—1le; € C8

1
Uy = —(wo Awy +ws Awy) € ST
2 \/5( 2 Awy + w3 A wy)
1
ug = urug = —(wo — w1 Awz Awy) € S™.
3= U \/5( 9 — w1 A ws Awy)
so that q(u;) = B(u2) = B(uz) = 1. Then we will denote with

(1) (12) the transposition that exchanges C® and S*, and acts on S~
as minus the reflexion along (Cuz)*;
(2) (13) the transposition that exchanges C® and S~, and acts on S
as minus the reflexion along (Cug)*;
(3) (23) the transposition that exchanges St and S—, and acts on C®
as minus the reflexion along (Cu)*.
Let (V,U) a good pair for Sping: then the isometry (12) : C® ~ S+
induces an isometry of vector bundles on U/Sping
(C® x U)/Sping ~ (ST x U)/Sping.
It follows that there is an isomorphism (12)* : Ag;, (C%) ~ A§;, (S7), and
composing with the isomorphisms Agp;, (C¥) ~ Adping and Agpy, (S7) ~
one finds an action on Ag;, ; this action exchanges the Chern and

12 12
Z(» ):c;raundyf1 ):y;f.

*
Sping

Edidin-Graham classes of C® and S, namely c
In an analogous way, 01(13) =c; and yilg) = y; . Moreover, (23) : C® ~ C®
(23) (23) _

reverse the orientation, so ¢, = ¢; but ¥y, = —ys.
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(Similar formulae obviously hold for the action of &3 on ST and S~.)

REMARK 2.1. We define the orientations of C8, S*, S~ according to the
following convention.

Suppose that n = 2m (resp. n = 2m + 1), and choose an appropriate
basis wi, ..., Wy, W1, ..., w,, (TeSp. Wi,..., Wy, W1, ..., w,,,e,) of C" such

that with respect to this basis the quadratic form is given by

Q(mla--'axn):xlxm"i_"'_‘_xmmn

(resp. q(1,...,Tn) = 1T + -+ + TipZom + 22).

Then in the section on the Edidin-Graham construction we choose the
class of admissible totally isotropic subbundles the one containing W, =
(wy, ..., wn): so we have a preferred orientation for C8. For ST, we deter-
mine the orientation of ST (resp. S~) by requiring that the isometry (12)
(resp. (13)) be orientation-preserving. Note that since (23) reverses the ori-
entation of C®, the isometry (23) : ST ~ S~ does not preserve orientation.

Consider the half-spin representation SI of Sping: this corresponds to
the tautological representation of SLs under the isomorphism Sping ~ SLj.
Form the 6-dimensional representation of SLy given by A%SJ: on A\? S
there is an SLy-invariant quadratic form given by

2 2
ASixA\si—c
(v1 A vg,v3 Avg) — v1 Avg Avg A vy.
So we get a map SLy — SOg, and the composition
Sping = SLy — SOg

is the double covering pg: hence /\2 SZ ~ CS.

Set v1 = 1,v9 = w1 Awa, v3 = waAws, vg = wiAws € Sit ; then restricting
to the torus Tsr,, we have that v; is an eigenvector for the character 7; given
by the i-th projection Tsr,, C G4 — Gy.

Define W+ := W12 and W~ := W3, Then W is described as
follows:

LEMMA 2.2. We have that
W = (w1 Awa,wy Aws,wy Awyg,wy Awy Aws A wy)
W™ = (w1, we, w3, wy) .

PROOF. Recall that the isometry ug : C® — ST is determined by the
formula B(va, uz - v1) = B(vy1 - v2,u3) for v; € C¥, vy € ST, where multiplica-
tion in the right hand side of the formula is given by the action of C® C Cg
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on the spinor space ST C A®* W. Then from the formulae
Blws A wy, us - wi) = B(wy Aws Awy,uz) =1/v2
B(1,uz - wa) = Blwa, uz) = —1/V2
Blwy Awy, ug - w3) = Blws Awy Awy,uz) = —1/v2
) =B(

Blwr A wg,uz - wy) = Blws Awy Aws,uz) = —1/v2

we get

As for W™, one proceed in a similar way, or apply u; to the vectors spanning
W, 4

3. Maximal tori of Spin,, and their Chow rings

Fix n = 2m or n = 2m+ 1. Recall that Spin, = {a+bejes : a®>+b* = 1}.
For i =1,...,m there is a copy of Spin, included in Spin,, via

1/)1' ra—+ b€162 —a+ b€i€i+m;

moreover, it is easy to see that 1;(Spiny) C Tspin,. Since we have that
Sping ~ Gy, via a + bejes — a + v/—1b, we obtain maps ¢; : G — Tspin,, -
Define
qZS = gf)l . ¢m : Gg — TSpinn-
The map ¢ is surjective, and its kernel is generated by elements (e1, ..., €y,) €
(Z/2)™ such that €] ...€, = 1, that is a (Z/2)™ L.
There is a canonical isomorphism Tgo, ~ GJ given by

diag(ala o '7a’m7a1_17 tee 7a’;nl) A (a17 ce 7am)7

and it is easy to see that the composition

¢ p
G:ﬁ - TSpinn — Tso,, =~ Gﬁ

is the map (a1, ...,an) — (a3,...,a2).

It follows that there is a chain of inclusion of Chow rings
Ao T A A = T, )

where z; := c¢1(x;) and y; is the character given by the i-th projection
G — Gm. Note that Az, is identified with the subring Z[2xq,. .., 2x,] C
Zlz1,. .., Tm).

Let x : Tspin, — Gm a character; if x acts trivially on the subgroup
{£1}, then it factorizes through 750, and so c¢1(x) € p*(Ap,, ). Suppose
on the contrary that x|i1y is not trivial; then, for any other character X'
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such that x\{il} is not trivial, we have that y ® x’|{i1} = 1, so we have
ci(x) +ci(x') € p*(Afq,, ). It follows that if x is a character that acts
non-trivially on {£1}, then the ring of characters of T&pi,, is isomorphic to

CIXi, - Xel @ CIX/ (X © FX -5 X))

where f is an appropriate function (notice that x? factorizes through Tso,,,
so is indeed a character of Tspin ). For example, consider the character
X1 ® @ xm : G — Gy; it is trivial on the kernel of ¢, so it lift to a
character of Tspin, - But is not trivial on {£1}, so we can choose it as our x.

LEMMA 3.1. Suppose that n = 2m: then the Chow ring of the maximal
torus of Spin,, s

}Spinn ~ Z[ula e ,Um,u]/(u — (’LL]_ + cee -+ um))7
and A7, is included in A*TSDin as the subring Zluy, . .., upy).

PROOF. We define u := ¢1(x1 ® -+ ® Xm) = @1 + -+ + Tp,: then the
lemma follows immediately from the previous discussion. é

The preceeding lemma says that Agpinn is included in Agm = Lz, ... T

as the subring generated by 2z1,...,2xy,, 21 + -+ + . In particular, we
have that e1z1 + -+ emTm € Ay, for (e1,...,€n) € (Z/2)™, and in fact
they generate Agpinn; we are going to give a precise description of Agp-mn in
terms of these elements. Forst, we need an auxiliary result:

LEMMA 3.2. The vector w;, \---Nw;, € /\' W, is an eigenvector for the
action of the mazximal torus Tspin,, , and Tspin, acts on the linear subspace
C-wi, A--- ANwj, via the character x* @ --- @ x&* where

1 forie{i,..., i}
€ =
‘ —1 otherwise.
PRrROOF. Let
(a1 + breremyr)(az + baezemya) . .. (m + bpnemeam) € Tspin,,

and consider the vector w;, A --- A w;, . Note that ejen1; = —v—1(w; +
w;)(w; — w}). Suppose that ¢ ¢ {i1,...,ix}: then

(w; + W) (w; — whwiy, A= Aw;y, = (w; + wh)w; Awiy A« A wg,
=wi; N Nwg,,

50 (a + beiejyrm)wi; A -+ ANw;,, = (a —+/—1b)w;; A -+ Aw;,. Suppose now
that ¢ = 4;: then

(wi + w;) (w; — wwiy A=+ Aw,
= (_l)l(wi + w;)wil AN NWiy g AWy A Nwgy,
= (—I)Z—H_lwil N Nwgy,

_wil/\.../\wik
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so (a+beiejrm)wi; A+ ANw;, = (a++/—1b)w;;, A--- Aw;,. Now the lemma
follows from the fact that the element (a1 + b1e1€m+1) - - (@m + bnemeam)
corresponds to (a1 + v —1b1) ... (am + vV —1by,) € G d

Set
X i={e@1+ -+ ntn e eme/m-

Suppose that n = 2m; there are two complementary subsets X7, X~ C X,,,
given by

XT—iL_ = {—xl — =Xy + 2(]}21 + oo+ xik)}wil/\"'/\wikesi
XT? = {_xl T X f 2(‘Ti1 R xilc)}wil/\---/\wikeSﬁ’
PROPOSITION 3.3. (1) Suppose that n =2m + 1. Then
2m ‘
Y clS)T = [ 1+ (az+ - +emam)T) = [] (1 +27)
i=0 €;E€L[2 r€Xnp

in Ai}spinn [T].
(2) Suppose that n = 2m. Then

2m71
Y a(shHri =[] (t+=27)
1=0 zeX;k
2m71

(ST = ] L +=T)
1=0 e X,

in Ai}spinn [T].

Proor. Immediate from Lemma 3.2. J

To simplify the notation, in the following expressions we will write
l l

l l ” ”
>, - x; for the "ordered” > oy o i < Tiy - Ty
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COROLLARY 3.4. We have that
co = 742 z?
i

c4 = 1623612:):]2
cg = —64 Z $2x2a:2

cg = 256z 3ririe]

Yys = 128x120T374

c; = —421‘2

cj{ = 621: + 4Zx — 48x1x01374

cg:—42x —|—4me —I—xa: 4OZx $%+32 Zm T1T2T3T4
cg' = Zx — QZCE-:C- +8:c1$2:1c3x4)

y;f = 823} 162:1: "+ 64x1T0T374

TSping
Moreover, suppose that C;“ = f(x1, 22,3, 24) and yzr = g(x1, 9, 3, 24):
— — . *
then ¢; = f(x1,x2, 23, —x4) and y, = —g(x1, 22,23, —T4) in ATsping'

PRrROOF. The formulae for the ¢; follow from the fact that the Chern
roots of the representation C® are +2x1, £2x5, £2x3, 214, S0 co; is the i-th
symmetric polynomial in —4x%, —423, —4z3, —4x7.

By Proposition 3.3, the Chern roots of the spin representation Sé'r are

j:(acl + 29 + 23 + $4), + (—xl + 29 + 23 — CC4),
(-1 + 29 — 23+ 24), £ (21 + 22 — 23 — 24)

SO c; is the i-th symmetric polynomial in these indeterminates.

Suppose that V' C V is an admissible maximal totally isotropic sub-
space, and that oy, as, a3, ay are Chern roots for V': then by 4.8 of Chapter
1 y4(V) = 23a1aza304. It is easy to check that 2z, 29,223,224 (resp.
1+ x9 4+ X3+ x4, —T1 + T2 + T3 — Ty, —T1 + T2 — T3+ Tg,T] + To — T3 — T4)
are Chern roots for W (resp. W7, from Lemma 2.2), and an elementary
but long computation leads to the desired expressions (we used the program
Mathematica to compute them). Note that for cg we used the fact that by
4.4, Chapter 1, 25¢f = (yf)? in ASping-

Finally, it is easy to see that sending x4 to —x4 exchanges X and X,
and carries the Chern roots of W in the Chern roots of a non-admissible
totally isotropic subspace of S7, so the last assertion is prooved too. J
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4. The localization exact sequences
Let A
C:={q=0} = C*\ {0}

P
(risp. CF := {# =0} — ST\ {0}) the cone of isotropic vectors in (A%, q)
(risp. in (ST, 3)), and

B:={q #0} < C*\ {0}

+
(risp. BT := {3 # 0} L, gt \ {0}) the locus in wich ¢ (risp. () is non-zero.
Note that the transposition (12) (resp. (13)) carries C, B isomorphically
onto C*, BT (resp. C~,B™).
Then, correspondently, we have 3 localization exact sequences

Epins (C) - Agping ((CS \ {0}) < Agpins (B) —0

(C*) = (SEN{0}) = Adpin, (BF) = 0.

Sping Sping

We now analyze the terms of the first sequence:
The term Agy;, (B). Let Q := {q = 1}: then we can consider a diagram
analogous to the one seen for O,

B——DB
| b
(-)?
Gn —— G
where B ~ Q x Gy, and é/ﬂz ~ B; the action of py induced on @ x Gy, is

given by €(v,t) = (ev, et), and it commutes with the one of Sping given by
a(v,t) = (av,t). It follows that there is an isomorphism

Agping (B) = ‘Agpinsxy,2 (Q X Gm)
Since the action of Sping X p5 extends to Q x C!,

(4.1) gpingqu (Q x Gm) =~ Agpingxyq (Q)/(c1 (Xuz))‘

Now, the action of Sping x py on @ is transitive; let I' the stabilizer of
es €  in Sping X po. Since the stabilizer of eg in SOg x 4 is an SO7 X po,
included in SOg x py via (M, €) — (eM,€), we obtain a fiber diagram

1 —— {£1} ) > SO7 X g —— 1
: j (p;id)
1 —— {£1} —— Sping x prg — SOg X prg — 1.
It follows that I' ~ Spin; X p, included in Sping X py via

(a;€) = (nae)
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where 7 = ej...eg is the element of order 2 that generates, with —1, the
center of Sping.

Hence
gpinsqu (Q) = Epin7><y,2 = Agpin7 [Cl(XHz)];
and combining this with Formula 4.1 we get

Agpins (B) = Agpin7 :

It is easy to see that j* coincides with the restriction from Sping to Spin;
along the map given by the fiber diagram

Spin7(—> Spins

| b
807(—) SOg,
where SO7 is included in SOg as the stabilizer of an element of Q.
With a slight abuse of notation, we will call j : Spin, — Sping this
inclusion.

The term Af . (C8\ {0}). We have that

Sping
Agping ((CS \ {0}) = gping /(68)'

The term Ag;, (C). The action of Sping on C'is transitive (since the
action of SOg is); let I the stabilizer of w; in Sping. Recall that the stablizer
of wy in SOg is SO¢ X H, where SOg is included in SOg as the stabilizer
of the pair (wy,w]), and H is a group isomorphic, as a variety, to an affine
space, on which SOg acts via affine transformations.

In the same way as for SO,, it is easy to see that I' ~ Sping x H’,
where Sping is included in Sping as the stabilizer of the pair (wq,w}). Then
H = H’, and there are isomorphisms

Agping (C) = AgpinG xH =~ Agpinﬁ :
Finally, since Sping ~ SLy4,
Epins (C) = Z[U% 03, 04]

where o; = ¢;(Sg), S& are the two half-spin representations of Sping.

5. The action of &3

There are other 2 inclusions j* of Spin; in Sping given by the fiber
diagrams

i+
Spin, &2 Sping

| I

SO7——— SOs,

where SOy~ is included in SOg as the stabilizer of an element of Qi.
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Similarly, there are other 2 inclusions
4 . .
v~ : SLy — Sping.

We will denote with Spin? and SleIE the corresponding subgroups of Sping.
These subgroups are carried one to another by the symmetric group Gs,
with the following geometric interpretation.

5.1. The subgroups SLy4, SLff. We have seen that there is an isomor-
phism of Sping-schemes

C ~ Sping/(SL4 x H)

where Sping acts on C' C C® via p and SLy =~ Sping is included in Sping
as the stabilizer of the pair (wi,w]). There is also an ismomorphism of
Sping-schemes

C* ~ Sping/(Sping x H)

where Sping acts on Ot = (12)(C) C St = (12)(C?®) via ot = p(12)
(Remark ??) and SL] is included in Sping as the stabilizer of the pair
((12)wy, (12)w}). Hence SL} = (12)(SL4) and the map (12)* : Aping (C) =~

Sping (C*) corresponds to the pull-back (12)* : Ay, ~ Ag+- We define
4

the elements o := (12)*0; € A;,L)f'

Exactly in the same way there is an isomorphism (13)* : Ag;, ~ A7

SL;
and we define o; := (13)*0; € A;LZ.

On the other hand, since (23) sends (wy,w]) to (w},w;) the subgroup
SLy is invariant under (23), and so there is an involution

(23) : SLy — SLy.

We claim that (23) acts on SL4 as the outer automorphism ¢ : M +— MV,
where we denote with MV the inverse of the transpose of M.

To see this, note that the restriction of (23) to C% C C?® reverse also the
orientation of C% ~ A S¢, and so acts on Sg as a linear transformation with
determinant —1: so the induced map SLy — SL4 is the conjugation by an
element of GL4 with determinant —1, that is not an inner automorphism.
Now the claim follows from the fact that Out(SL4) ~ Z/2 is generated by
the involution ¢.

In the same fashion, we see that also (13) : SL} ~ SLj and (12) : SL} ~
SL; correspond to the involution ¢.

LEMMA 5.1. (1) Let a € A§y,, and set

at = (12)*a € ASL}’ a = (13)'a € A’S“LZ )
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Then the action of &3 on the pushforwards of these elements is
summarized in the following table:

(12) (13) (23)
e ifa™ iya” —1)¥i,
ifat e (—1)’%ja+ )’f Ta~
iya” | (=D)Fi;a” (o' —1)Fif

(2) Let B € Aéping, and set

ﬁ_'_

= (12)"6, 6™ :=

(13) ﬁ € ASp1n8 :

Then the action of &3 on the pullbacks of these elements is sum-
marized in the following table:

PRroOF. First note that ¢*

(12) (13) (23)
i (i)"B6" (i)"B~ (—1)ki*ﬁ
(i)B *pr DD 6 [ (D*6) 6
@) 8| (D)) B "B RGN

0 Agp, =~ Agp, is the automorphism oy, +—

(—1)¥oy, (this can be seen for example restricting to a maximal torus), and

so it is the multiplication by (—

the anti-diagonal of the table.
Look at the following diagram in which each square is cartesian:

SL4C

1)* in degree k: this proves the formulae on

SL;¢ i > Sping
: Sping (23)
SL; ¢ - Sping

The other two formulae of the first row of the table follow by definition of

at,

and similarly for (23)
The part on the pull-backs is proved similarly.

= (12)7(13)*(12)

= (12)%i;a”

= (-1ri;a”,

% o—  —

1, O .

a~ . Finally we prove the remaining formulae in the third column:

(23)*+ + _ o4+

1, &

d

REMARK 5.2. From now on, to simplify the notation we will omit the

+

create confusion.

in the elements of ASL

4

: so we write o; € A’

SLE for a

; this should not



40 2. THE CHOW RING OF THE CLASSIFYING SPACE OF Sping

LEMMA 5.3. The restriction of the Chern classes ¢; and c;r to SL4 and
SLZr are described in the following table:

Codd 0 0

()] 20’2 20’2

c4 O'% — 4oy 03 + 204
Cg —03 20’20’4 — 0'32)
Cg 0 Oi

C;_ 202 20’2
cil"t o3+ 2(742 o2 — 4oy
Cq 20904 — 03 —03
s ol 0

Y4 0 804
yr 8oy 0

F=i*c; and i*yf =ity .

Moreover i*c; 2

PROOF. By Lemma 5.1 (i*)*¢; = (i*c;)(*?) and (it)*c] = (i*¢;)1?), so
it is sufficient to prove only the formulae in the first column of the table.
From the cartesian diagram

Spinﬁ (—Z> Sping

Jpﬁ Jf’
SO SO5
we obtain
i*c; = " pFe; = pi(i) a,
and analogously for y4. The restriction of C8 to SOg is C @ C?, where SOg

acts canonically on the first summand, and trivially on the second one. It
follows that (i')*c7 = (i')*cs = 0 in Agg,. Moreover, (i')*ys = 0 because

(") ya)? = () (43) = (')*(2°¢5) = 0.

By Remark 2.1, C6 ~ /\2 Sgr ; since Agp, is torsion-free, we can restrict
to the maximal torus to verify the formulae. We have that

A?SLz; ~ Zlt1, ta, 3, ta] /(T +t2 + t3 + ta);

using the relation t4 = —t; — to — t3, the Chern classes of the characters of
the representation C° are

t1 +to, ty +t3,te +t3, —(t1 +t2), —(t1 + t3), —(t2 + t3).

Since cg,41 is 2-torsion, we have pgcg;—1 = 0 for ¢« = 1,2,3. On the other
hand, the restriction of pgco; to the torus is the i-th symmetric function in
the variables —(t1 +t2)2, —(t1 +13)%, —(t2 +t3)?, for i = 1,2,3. (Recall that
if &, ..., &, are Chern roots for a fiber bundle E, {&, +- - -+&,, hi<ii <--<ipm<n
are Chern roots for A" FE).
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The restrictions of the Chern classes o; to the torus are

09 = — (12 + 13 + 13 + tito + tit3 + tot3)
o3 = —(tl + tg)(tl + t3)(t2 + t3)
o4 = —t1t2t3(t1 + 1o + t3).
At this point we leave to the eager reader to verify the formulae concerning
the ¢;’s.
To prove the remaining formulae, note that the restrictions of ST and S~
to Sping are both isomorphic to the direct sum 56+ @ Sg , so the restrictions

of the Chern and Edidin-Graham classes are the same. Moreover, since
Sg =~ (S§)V, we have that

i*ef = ci(S§ @ (S8)Y)
- S alsDals)

k+l=i

= > (-D'owoy

k+l=i
and these are exactly the expressions for the cf’s of the lemma.
As for y, since in Agpin, the relation (y1)? = 25¢7 holds, restricting

to SLy we obtain (i*y;)? = (804)? so we have i*y; = +804. To determine
the sign, we restrict to the maximal torus: since A}Spi% o~ A}Sping /(x4) by

Lemma 3.1, we have that i*yjf = yy mod x4, that is
iy = 8(w1 + w2 4 x3)(—m1 + T2 + 23)(— 71 + T2 — 23)(T1 + T2 — T3)
= (—2t1)(2t3)(—t4)(2t2)
= 80’4.
The formula on the restriction of y, is proved analogously. 4

COROLLARY 5.4. As an Agping -module, Agy, is generated by the follow-
ing 8 elements:

1,09,03,04,0003,0204,0304,020304.
ProOOF. By Lemma 5.3 we have that
03 = 2(03 + 204) — (05 — 404) — 804
=i*(2¢] —ca — vy );
+

2 g* 2 px 2 2 2 x A K
moreover, o3 = —i*cg and o3 = i*cg, S0 03,03,07 € i* Agyy, - d

5.2. The subgroups Spin,, Spin?. Before undertaking a similar anal-
ysis for the action of &3 on Ag;, and A;p,ni we need some auxiliary results

7

on Agp;,, . Consider the spin representation S7 of Sping, and let ¢’ € 57\ {0}
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the cone of isotropic vectors, B’ := (S7 \ {0}) \ C’. Then there is an exact
localization sequence
% h !
Spiny (Cl) - Agpin7(s7 \ {0}) - Agpin7 (B/) — 0.
Guillot ([12, Proposition 6.5]) proved the following facts:
(1) there is an isomorphism

Agpin7 (B/) = ag
where the exceptional group G is included in Spin; as the stabilizer
of any point of the quadric Q" := {3 =1} C B’;

(2) the action of Spin; on C’ is transitive, and the stabilizer of any
point is a semi-direct product SLs x H, where H is a 1-connected
solvable group (we conjecture that H is isomorphic, as a variety,
to an affine space, and SL3 acts on H via linear transormations):
hence there is an isomorphism

Agpin7(0/) = §L3;

(3) denote h : SL3 C Spin; the inclusion of SL3 as the stabilizer of
a point of C": then the restriction h* make Ag, a finite Ag,;, -
module, generated by o9, 03,0203, where o; is the i-th Chern class

of the tautological representation of SLs.
Define the elements &3 := h,09,&4 1= hy0o3,& := hi(0203) € A§p1n7 and
set ¢; := ¢;(C"), ¢, := ¢;(S7). Then Guillot ([12, Proposition 7.3]) proved

the following result:

THEOREM 5.5 (P.Guillot). The Chow ring of Spin, is generated by the
following elements:

‘537 €4> 567 C2,C4, Cp, C7, C,S'

As for SLy and SLF, the transposition (12) (resp. (13)) induces an

isomorphism (12)* : Ag;,  ~ Agpin7+ (resp. (13)" : Agyp,, =~ Agpin;) that
(B) =~

corresponds to (12)* : Ay, (B) ~ Afy, (BT) (vesp. (13)* : A,
Sping (BT)). Once fixed the elements &, c;, ¢} in Agy;, , we define &=
(12)*¢; and so on.

The next step is to investigate the relation between SLs an SLy. Com-
posing the inclusions SL3 C Spin; C Sping, we can regard SL3 as a subgroup
of Sping. Correspondingly, there are other 2 subgroups h' : SL; - Spin?’
and h~ : SL3 C Spin; .

LEMMA 5.6. The restrictions of the representations p,ot, 0~ of Sping
to the subgroups Spins, Spin7+, Spin, are summarized in the following table:
p oT o~
Spin; | pr @1 o7 o7
Spin}F o7 p7®1 o7
Sping o7 o7 pr @1
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where p7 : Spin, — SO7 (resp. oy : Spin, — SOg) is the 7-dimensional
representation (resp. the spin representation) of Spins.

ProOOF. First of all, note that thanks to the action of G5 it suffices to
prove only the formulae on the first row of the table. From the fiber diagram

Spin7% Sping

| b

SO7C—> SOg

we obtain resggiﬁz p~pr® 1.
We will show that j : Spin; C Sping is the restriction of the inclusion of
Clifford algebras C7 C Cy given by the embedding

C'=WreWiaUCCl=W, Wi U, ® U,

where the inclusion U C Uy @ Us sends 1 to 1/v/2(1,1), and the quadratic
form on U; @ Uy is given by the matrix

1
(")
Then it will follow from [4, Exercise 20.40] that the restriction of both the
two half-spin representations to Spin; are isomorphic to the spin represen-
tation.

It is easy to see that, with respect to the orthonormal basis eq,...,e7
of C” and ey, ...,eg of C®, the embedding works in the the following way:
ei — e, €43 +— ei4q for © = 1,2,3, and er — /—1/2e4. In particular,
we have that Spin; stabilizes eg, so the inclusion Spin, C Sping induced by
C7 C Cy is j, and we are done. é

It follows that Spin7i acts on C® via o7: so we can construct a commu-
tative diagram with exact rows

Al (€) 5 AL (C{0}) — AL (B) g

(ji){ (ji)f (ji)f

>’S<ping (C) L> Agping ((Cg \ {0}) J4> Agping (B) —0.
LEMMA 5.7. The subgroup SL3 is &3-invariant, and
SLs =SLsN Spin? = SL4 N Spin, .

Moreover, following the notation of Remark 2.1, h : SLg C SLy4 includes SL3
in SL4 as the stabilizer of vo.

PRrROOF. It is not difficult to see that SL; is the stabilizer of the pair
(wy,w)) in Spin}"; since SLy is the stabilizer of (w1, w]) in Sping, the state-
ment SLs = SLy N Spin7+ follows easily.
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We have that resging St~ S+ @S, , with S§ ~ (S5)V. On the other
side, j7 includes Spin;r in Sping as the stabilizer of wa A wy + w3 A wy €
QT C A°W, with wa Awy € S, ws Awy € (Sg)V: so SLy N Spiny is the
stabilizer in SL4 of wi A wg = vg € Sg. But we have more: since SLI is the
stabilizer of (w; Aws, w3 Aws) in Sping, we have also that SL; = SLyN SLZ.
Applying transposition (12) exchanges SLy and SL}, so

SL3 = (12)SL3 = (12)(SLs N SL}) = SL; N SLy = SL3.

Now we apply transposition (23) to the equality SLs = SL4 N Sping and
obtain SL3 = SL4 N Spin; . On the other hand, the same argument used for
SLE,’|r shows that SL; = SL4 N Spin; . é

COROLLARY 5.8. There are commutative diagrams

h*
§L3 7 gpin7 /(Cé)

o P
5

* 1%
ASL;t — A§p1n8 /(cs

and ¢*(0;) = 01, ¢~ (0;) = (=1)'0; € Ay,

Proor. By Lemma 5.6 there are commutative diagrams with exacts
TOWS

gpin7(ci) — Agpin7 (Si \ {O}) — Agpin7 (B:t) —0

S

i * " *
gpins (Ci) S ASpin8 (Si \ {O}) J*> ASpin8 (Bi) —0.

. . * +\ o * * +\ ~ *
We have isomorphisms Ag;, (CF) >~ Ag, and Ag;, (C7F) ~ ASL}’ and

by Lemma 5.7 the induced pull-back A;Li — Agy, is the one induced by
4
the inclusion of SLg C SLZf: it is easy to see that SLs C SLI is the usual

inclusion, while SL3 C SL; is the map ¢ followed by the usual inclusion,
whence the assertion on ¢*. J

6. Informations from mod 2 and Brown-Peterson cohomology

In what follows we will use the same notation for both the complex
algebraic group and its real maximal compact subgroup: this convention
should not lead to confusion, and it fits well to our aims, since the classifying
space of a complex algebraic group is homotopy equivalent to that of its
maximal compact subgroup.
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6.1. The mod 2 cohomology of the classifying space of spin
groups. We will denote with w; € H*(B Spin,,; Z/2) the i-th Stiefel-Whitney
class w;(R™), where R™ is the representation given by the projection Spin,, —
SO,,.

Daniel Quillen ([16]) described the mod 2 cohomology of the classifying
space of Spin,, as follows. The Milnor operations are defined recursively by
Qo = Sq* and Q; = [Sq*,Q,_4], where Sq’ is the i-th Steenrod operation
(see [14]).

THEOREM 6.1 (D. Quillen). Let A a spin representation of Spin,,, and
let 2" be the Radon-Hurwitz number: then we have that

H*(BSpin,,; Z/2) ~ Z/2[wa, . .., Wy, wp(A)]/ (w2, Qg wa, ..., Qp_i w2).

Let w)] (resp. wi) the i-th Stiefel-Whitney class w;(A7) (resp. w;(AT)),
where Ay is the 7-dimensional spin representation of Spin; (resp. Agt is the
positive/negative 8-dimensional half-spin representation of Sping): then we
have that

H*(B Spiny; Z/2) ~ Z/2[w4, wg, wr, wg)
H* (B Sping; Z/2) ~ Z/2[w4, we, w7, ws, w;].

6.2. Complex cobordism and Brown-Peterson cohomology. A
weakly complex manifold M is a smooth real manifold with a complex vector
bundle over M whose underlying real vector bundle is TM @R for some N.
In particular, a complex manifold is a weakly complex manifold, but also
some odd-dimensional manifolds admit a weakly complex struxture. We
identify two weakly complex structures on M if they are homotopic, and we
also identify a complex structure on T'M @ RY with the obvious complex
structure on TM @ RY @ R?2 = TM @ RN*2,

Let X a topological space: the i-th complex bordism group MU,(X) is
defined as the free abelian group on the set of continuous maps M — X
where M is a closed weakly complex manifold of real dimension ¢, modulo
the relations

My ] Mz — X] = [My — X]+ [My — X]
[ON — X] =0

where N is a weakly complex ¢4 1-manifold with boundary with a continuous
map N — X.

The groups MU, (X) form a generalized homology theory, that is, they
satisfy all the formal properties of the ordinary homology, except for the
dimension axiom, since MU, = MU, (pt) ~ Z[z1, z2, ... ] with z; € MU,,.

As for any generalized homology theory, there is a corresponding co-
homology theory, the complex cobordism MU*(X), which is a ring for any
topological space X, and if X is a real compact oriented n-dimensional man-
ifold there is a Poincaré duality MU?(X) ~ MU,, ;(X) (this isomorphism
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also holds for noncompact manifolds, with a variant ‘4 la Borel-Moore’ of
the (co)bordism ring: see [20]).

From now on we will assume that X is a real manifold. There is a
natural map MU*(X) — H*(X) that sends a cobordism class [M — X] to
the image under this map to the fundamental class of M. This map has an
enormous kernel, however Burt Totaro ([20]) has shown that we can refine
it to a map

MU*(X) ®@mu+ Z — H*(X)

that has the advantage that its kernel is much smaller than that of the
previous one.

Moreover, for any complex algebraic scheme X, Totaro has defined a
map

AY(X) — MU*(X) @mu- Z

that sends the class of an irreducible i-dimensional subvariety Z C X to the
class of the map Z — Z C X where Z — Z is any resolution of singularities
of Z (see [20, Theorem 3.1]).

The composition of the two maps

A*(X) — MU*(X) @mu- Z — HY(X)

is the usual cycle map.

The Brown-Peterson cohomology is a simplification of complex cobor-
dism; for any prime p, there is a cohomology theory called BP* (it is conven-
tional not to indicate the number p in the notation), whose coefficient ring is
the polynomial ring Z)[v1, va, . . . ], where v; € BP~2(?'~1)_ The BP* theory
is easier to compute than the MU* one, but BP*(X) carries essentially all
the topological information of MU*(X); moreover, it can be shown that

BP*(X) QBp* Z(p) ~ MU* (X) QMmU* Z(p)
so one can define a map

A* (X)(p) — BP*(X) KBp* Z(p) — H* (X)(p)

whose composition is the cycle map cl®Z).

Finally, in the same way as for the usual cohomology ring, given a topo-
logical group G and a topological G-space X we can define an equivariant
Brown-Peterson cohomology ring

BP(X) := BP* (X x EG)/G)

where E G — B G is the universal principal G-bundle, and B G is the classi-
fying space for G. We will denote with BP{, := BP{;(pt) the Brown-Peterson
cohomology ring of a point: this, as usual, can be identified with the Brown-
Peterson cohomology of the classifying space of G.

The main tool to compute the Brown-Peterson cohomology of a space is
by means of the Atiyah-Hirzebruch spectral sequence. Suppose that X is a
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space with the homotopy type of a CW-complex. Then there is a half-plane
spectral sequence E(X)y™ with

B(X)y" ~ H'(X;BP*),

converging to BP*(X). Moreover, some of the differentials of this spectral
sequence are given by

dyir1_1(z) = v; ® Q;z mod (quotient of (vy,...,vi—1)Ez N Ey).

REMARK 6.2 (Yagita). To start the Atiyah-Hirzebruch spectral sequence
for Brown-Peterson cohomology for a space X, we need to know H*(X; BP*).
If H*(X) has only p-torsion (and this will be the case of Gg, Spiny, Sping for
p = 2), it sufficies to know the mod p cohomology: first note that we can
identify H*(X)(,/p as a subgroup of H*(X;Z/p) in the following way (here
the Milnor operations Q,; are restricted to H*(X;Z/p)):

H* (X)) /p = ker Qp = (ker Q /im Q) ® im Qy C H*(X;Z/p).

Let B the free Z,)-module generated by the same dimensional generators in
ker Qg /im Qq: then, since B is the torsion-free part of H*(X),) and im Q,
is the torsion of H* (X)), we have that

Now, by the universal coefficient theorem H*(X;BP*) = H*(X), ®z BP*
(recall that BP* is a free Z,)-module), so we obtain

H*(X;BP*) = (B & im Q) ®7 BP".

6.3. Brown-Peterson cohomology of B Sping. The Brown-Peterson
cohomology of B Spin,, has been studied by Akira Kono and Nobuaki Yagita
n [13]. They compute, among other things, the Brown-Peterson cohomol-
ogy of some exceptional groups and of Spin,, for n < 10 using the Atiyah-
Hirzebruch spectral sequence.

From now on we will work with p = 2. The following result appears in
[13], but in a different form; here we give a direct proof, also given in an
unpublished paper by Yagita (see also [17, §7]).

We introduce the following notation: suppose that R is a ring, M
is an R-module, and choose elements zi,...,x, € M: then we denote
with R{z1,...,z,} the R-submodule of M generated by z1,...,x,. If
R{z1,...,x,} is a free R-module, we write R (x1,...,zy).
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LEMMA 6.3. There is an isomorphism of Zz)-modules
E(B Sping)5)" =Z9)|ca, c6, s, ¢§ 1 ® (BP {1, 2wy, 2wyws, 2ws, 2wy ,
2w4w;, v1Ws, Ulwg, V] WWy ,2w8w8 Wy, 2w8w8 }
e (BP*[C7]{(08 — e Jereseg 1)/ (2, v, 02703704))
@ lca, c6, ¢7, c8] © (BP*[er]{cres}/ (2, v1,v2,v3))
@ s, c6, e, ¢ @ (BP*[erl{ered }/ (2,01, v2,v3))
(2)[c1, ce] ® (BP*[erl{er}/ (2, v1,v2, v3))
[04,66,08] (BP [67]{070868 +/(2, Ul,UQ))
where 2w; € Bngin8 (resp. 2w;t € BPgpin, ) are elements that map to the
i-th Stiefel-Whitney class 2 w;(R®) (resp. 2w;(AT)) under the composition
BPgpin, — H*(BSping) — H*(B Sping; Zs).
PrOOF. The cohomology of the classifying space of the exceptional Lie
group Go is computed in [2]:
H*(B GQ; Z/Q) ~ Z/Q[w4, We, w7]
H*(B G2)(2) = Zg)[wa, ce](Z) {1} & Z/2[wr[{wr}).
Let us write Bj, i, = Z)lciy, - ¢i;]; €8, Bag = Zg)lca, ce] and write
P(n)* =BP* /(2,v1, ..., vn—1) e.g, P(2)* = BP* /(2,v1). Since Q;(w4) = wz,

we have dg(w4) = v1 ®wy. Hence the Ey-term of Atiyah-Hirzebruch spectral
sequence is

E(BGa);" = Byg ® (BP{1,2ws} & P(2)"[erl{c7, wr}).
Next differential is Qq(w7) = ¢7 and
E(B Gg)g’* = B476 (%9 (BP*{l, 2w4} D P(S)*[C7]{C7}).

which is isomorphic to E(G2)&"
Next consider the case Spin,. We have seen that the mod 2 cohomology
of Spiny is isomorphic to the polynomial ring Z /2wy, we, wy, wg], so

H*(B Spiny; Z/2) ~ H*(B Go; Z/2) @ Z/2[wg).
Since Qq(ws) = Q;(wg) = 0, we see that
E(BSping),”" ~ E(BGa)y " [ws]
~ Byg ® (BP*{1,2ws} & P(2)"[c7]{cr, wr}){1, ws}

~ Byggs @ (BP*{1, 2wy, wg, 2wsws} @ P(2)*[cr[{cr, wr, crws, wrws}).
The next differential is d7(w7) = vocr and dr(ws) = ve(wrws). Hence

B(BSpin,)}" ~
B4,6,8 X (BP*{l, 2wy, 2waws, 2ws, ’Ulwg} b P(3)* [67]{67, w7w8}).
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Since Qz(wrws) = cycs, we get
E(BSping)j5 ~ Bie ® P(3)"[erl{er}®

B4,6,8 X (BP*{I, 2w4, 211)474}87 2?1}8, 1)1'[1}8} D P(4>* [07]{6708}).

This term is also the infity term.
Now we consider the case Sping. The mod 2 cohomology is H*(B Sping; Z/2) ~
H*(B Sping; Z/2) ® Z/2[wg]; since Qq(ws) = Q;(ws) = 0, we see that

E(B Sping)}" = B(B Ga)} " [us, ]
~ Byggg+ @ (BP*{1,2ws} & P(2)*[crl{cr, wi}) {1, ws} ® {1,wg})
~ By ggg+ @ (BP™{1, 2wy, wg, 2wws, wg, 2w4w;, wgw;, 2w4wgw§}

SP(2) [cr[{er, wr, crws, wrws, C7w§,w7w§,07w8w8 , WrWswg ).

The next differential is dy (wy) = 11207 and d7(ws) = va(wrws), and d7(wg)) =
vacrwg and d7(w7w8w8+) = 07w8w8 ,. Hence

E (B Sping)g" =~
Bygs, s+ ®@(BP*{1, 2wy, 2wswsg, 2ws, viws, 2w8 , V1Wg ,2w4w§, wswg ,2w4w8w8 }

@P(3) [crl{c7, wrws, w7w8 , CTWRWg })

Since Qz(wrws) = cres, Qz(wrwg) = creq. Qz(wswgd) = cswrwg +
c§w7w8, we get

E(B Sping)js =~ By g g s+ @ (BP*{1, 2wy, 2wyws, 2ws, viws, 2w§, vlw;,
2w4w§, 2w8w§w4, 2wgw§, vlwgw;, vgwgwg}
®P(4)"[er]{creses , cswrwg + g wrws})
®Bugs ® P(4)"[cr]{eres} @ Byggr ® P(4)"[er]{cred } @ Bug ® P(3)"[er]{er}.

The next differential is
ds1 (cswrwg + cgwrws) = v4 ® (cs + g )eserey .
Therefore we get

EB Sping)ggk ~ Byggs @ (BP*{1, 2wy, 2waws, 2ws, viws, 2w§', vlwg',
2w4w8 ,2w8w§w4, 2wgw§, vlwgwg , V2WgWg }
®P(5) [cr]{(cs + cg )eresca }) @ Bagrs @ P(4)*[er]{eres}
®By 75+ @P(4)*[crl{cred YBBas@P(4)* [erl{cr} BBy 6 5+ QP (3)*[er]{escd er}.

This term is the infinite term and the proof is over. J
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The first summand of E(B Sping)s" is isomorphic to

BP*[C47 Ce, C8, Cg_} <y07 Y4, Yo, yg—7 Ys, y§_7 Y10, Y12, yii_Qv
Y14, Y16, Y20)/ (296 — V198, 208 — V1Y5 , 2910 — V1Y16, 2514 — V2ys)
& BP*[c4, c6, cs, ¢ ] [er]{(cs — ¢ )eresed 1/ (2,01, v2, v3, v4)
(here the subscripts for the y; give the cohomological degree). Note that
ci = w? € H*(B Sping, Z/2) (see for example [14, §15]).
So we obtain the following result on the Brown-Peterson cohomology of
the classifying space of Sping:

THEOREM 6.4 (N.Yagita). There is an isomorphism of Zy)[ca, ce, Cs, csl-
modules

BPSin, @Bp+Z(2) ~L(2)lca, c6, s, ¢ | (Za (T, Gas Uss Ug » G125 Uiz, §165 520)
@ Z/2(f6, Ug » 10, G14) & Z/2[cr){cr})

*

where we denoted with § € BPg;,

page B3

a class that is represented by y in the

From this, it is easy to prove the following result:
ProprosITION 6.5 (N. Yagita). The cycle map localized at (2)
* ~1 *
Afpin, ©Z(2) — BP&in, @BpZ(2)
18 an isomorphism.

PrOOF. Note that since H*(SL4; Z) has no torsion, BP(S’(S = 0: see [13,

p. 781]; moreover, by [13, p. 797-798] we have also Bngﬁ17 = Bng?m8 = 0.

From the identifications BPg;, (C) ~ BPg;, and BPg;, (B) ~ BPg;, we

obtain the exact localization sequence in the Brown-Peterson theory for the
inclusions C' C (C8\ {0}) 2 B
Bpgping (C) — BP§p1n8 (CS \ {O}) j_) Bpgpins (B) —0

and a commutative diagram
Ay, —— sy A ) —— L AL 0
BP§p, ®Bp-Z(2) Ly BPpin, /(cs8) ®pp+ Z(g) EAN BPgpin, ®BP+Z(2) — 0.
Following the notation of [12] there is an isomorphism of Z,)-modules
BP§p1n7 ®@Bp*Z(2) =~ L2)lca, cs, cs, c;] (Zg (To, T4, Tg, T12)DL/2 <3§6>EBZ/2[C7]{C7});
since j*§o = To, 101 = T4, j*Tg = 6, Ta = Ts, j* U1y = T12 we have that

U6, Us, 10, Y12, Y14, Y16, Y20 € ker j*
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and so for dimensional reasons we have the following table of pushforwards
in BPg;, ®@pp+Z2)/(cs):

«@ ‘ 0y 03 04 0903 0204 0304 0920304

ix cl(a ‘ Y6 Ys Yo Yiz2 Y4 Y6 Y20

in BPg;, ®pp+Z(z)/(cs). Recall that the restriction i* gives Agp, (resp.
BPg;,,) the structure of a finite Agp;, -module (resp. BPg;, -module), gen-
erated by the elements 1, 09,03, 04,0203, 0204, 0304, 020304 (Corollary 5.4);
then the projection formula says exaclty that the pushforward i, is a mor-
phism of Agy;, -modules (resp. BPg;, -modules). Note also that as a map
of A’gping—modules, keri, is the submodule generated by 1. Moreover, the

map cl makes BP* Sping ®pp* Z () an Agpins—module: it follows that we have
a commutative diagram of A*S‘pins—modules with exact rows

(ASL4 /keri,) ® Z(g) (Aspm /(08)) ® Z(a) AN A§p1n7 ®Z(2) —> 0

b

0+ BPy, ®@pp-Za)/ keri, S BPE ;. /(cs) @pp Ze2) > BP i, ©p-Z(2) + 0.

The right vertical arrow is an isomorphism (because BP§, = BPg[), and
by [12] also the right vertical arrow is an isomorphism: so by the 5-lemma
we have that ((Agpmg)@))/( ) (BPSpln8 ®BP*Z(2))/(CS)

N Now let z € BPg, ®Bp*%(2)7 and choose a € (Agy, )(2) such that
cl(a) mod cg = zmod cg. Then cl v = x+cgy, and by induction on the degree
we can suppose that y = clg with g € (AlSp?n )(2), and cl(a — csf8) = =,
so cl : (ASping)2) — BPSpin, ®BP*Z(2) is surjective. To show injectivity,
let o € A% Sping and suppose that cla = 0: then since clmodcg is an

isomorphism we have that o = cgf3 for some 3 € Alsp?n Since by Theorem
6.4 cg is not a zero divisor in Bngin8 ®pp+Z(3), we obtain that cl 3 = 0; once

again, by induction on the degree we deduce that 3 =0 and so a =0. &

7. Push-forward classes from Agp .

Define the following elements in Ag;, /(cs):

53 1= 1409
54 = i*O'3
55 = i*0'4

(6 = ix(0203)
(7 = ix(0204)

8 := ix(0304)
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610 = ’i*(020'30'4).
) Forv =1,...,6 there are unique elements (; € Agpins such that ¢; mod cg =
Gi € A§pin, /(cs). To define (g, 10 € Agy,;,, we need some auxiliary results.
Define the elements

Ghi=itoisa, (=0
(§ =il o903, (5 =1, 0203

LEMMA 7.1. The images of the (; under the cycle map cl A§p1n8 —
Bngins @pp+Z(2) are described in the following table:

o |G & W d 6 6 G G

Cl(a)‘ﬂﬁ Ja Us U5 G0 T2 Tie J14

PROOF. From the exact localization sequences for A’épins and Bnging it
is easy to see that the formulae hold for the {; mod cg, and so for the ;. The
formulae for the C;“ hold for dimensional reasons. J

LEMMA 7.2. We have that
cy = c; =cy
c;f —c; = =3
g —¢cg = —Co
in Agpins.

Proor. By Lemma 5.6 j*c;F = j*c; , 50 c;-" —¢; € imi,. By Corollary

5.4 we have that i, Ay, = 0,i, Al = Z(y, s A, = Z(s, hence

+ - _
cyg —Cy =0
+ - _
+

66 —Cg :d6C6-

*
Spin, >

Moreover, since c; = ¢, in A we have that j*co = j*cét, and so ¢y —
c2i, cy — ¢y € ix AéL4 = 0. Applying the transposition (12) to the last two
equations and restricting to Spin, we obtain
ey — ¢y =ds&s
c6 — ¢ = doo
in A&y, and by [12, Remark p. 19] we obtain that dy = —3 and dg =
—1. d
We know from Lemma 3.1 that Ai}spinﬁ ~ Zluy, uz,us, us]/(2us — (u1 +
ug + u3)); on the other hand, we have that Ai}SL4 ~ Z[t1, ta, ts, ta]/(t1 +t2 +

ts+1t4), where, following notation of Remark 2.1, ¢; is the Chern class of the
character ;. We wish to compare the two expressions: to do this, we need
a
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LEMMA 7.3. We have that
We = <1)2 N Vg, 02 N V3,03 N 1)4) ,

and the formulae

(51 221'1 Z—tl—tg
Uy = 29 =ty + t3
U3:2$3:—t1—t2

hold in Ai}spi% .

PROOF. The restriction of ST to Tspin, 18 isomorphic to Sgr ® S , and by
Lemma 3.2 the action of Tspin, on the subspace Cv; (resp. Cuvz, Cug, Cuy) is

given by x7 ' ®x; ®x;5 " (resp. x1®X2®X5 X1 @X2® X3, X1®X5 ' ®X3)-
It follows that Tspin, acts on Cvg Avy (resp. Cug Aws, Cvz Awy) via X2 (resp.
X%,x%). Let W3 = (wy,ws,w3) C Cb: then Tsping acts on Cw; via X%i it
follows that (possibly after rescaling the vectors) wy = vy A vg, wy = vo A v
and wg = v3 A v4.

Since Tgr,, acts on Cv; Av; via the character 7; ® 75, taking Chern classes
of these characters the second assertion is proved too. J

LEMMA 7.4. We have that
Yo — 4G =yy —4¢ =0
(i —des = () —4ef =0
i Agpin, -
PRrOOF. Obviously it is sufficient to prove only the formulae for (4, the
ones for ¢ being obtained applying transposition (12).
Consider the cartesian diagram of linear algebraic groups

Spinﬁc% Sping
lpﬁ lp
06— SOs.
Let (U,V) a good pair for Sping: then in the diagram

(U x C)/Sping—— (U x (A8\ {0})) /Sping

| |

(U x C)/S0s—"— (U x (A%\ {0}))/SOs
the horizontal arrows are proper and the vertical arrows are flat, so by [3,
Proposition 1.7] we have that
ivpga = prila

for a € Agoﬁ.
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By Lemma 4.8 of Chapter 1, the restriction of pgys to the torus Tspin, is
4ujugus, and by Lemma 7.3 this equals 4(t1 + t2)(t1 + t3)(t2 + t3) in A*TSL4.
On the other hand, it is easily seen that the restriction of o3 to Tgr, is
—(t1 +t2)(t1 + t3)(t2 + t3), and since Ag, injects in A}SM we find

(7.1) peys = —4dos € Agy, .
Since by 4.6 of Chapter 1, the relation #,y3 = —y4 holds in A§q_, we have
divos = ix(—pgys) = —p"iLys = P"Ys = ya.
We have that y3 — 2%cs = 0 € Ao, ([15, Section 5.2]), so
24(..42 = 2668 S Agpins;

it follows that CZ — 4cg = a with o a torsion element. Moreover, since
JG=j"cs=0¢€ Agpin7 it must be

o € iy AgL4 = Z(2cz —c4 — y;f) <§4> P7Z <€8> :

since y4 is not a torsion element, also (4 is not a torsion element; moreover,
by Lemmas 5.3 and 7.4 204 = i*Cj, so by the projection formula

2Cs = 1(2G3¢a) = ( Ca € A, /(cs)
so also (g is not torsion: it follows that o = 0 and the Lemma is proved. &

COROLLARY 7.5. We have that
G4 = 32x1727374
¢ = 2(2 T —2 Zl’?l‘? + 8r1x2x374)
m A*Tspms.
Proor. Use Lemmas 3.4 and 7.4. o

PROPOSITION-DEFINITION 7.6. There exist unique elements (s,C1o €
such that (; mod cg = (; and satisfying the relations

28 =C G 2Ci0 = e
PRrROOF. We have seen in the proof of Lemma 7.4 that
28s = 0.(2CsC1) = ¢ Ca € Alpin /(c8).
Choose = € Ag;,  such that zmodcs = (s: then

2 — (FCi+des=0€ A

*
Sping

gpins
with d € Z. Since by [16, Theorem 6.7] w;” = w; for i < 8, we have that
C1<4 = 3C1C4 = (j](cjlr _ CZ) — (er)Q _ (wZ)Q _ 0,

hence
0 = cl(2z — ¢ ¢4 + deg) = dw? € H* (B Sping; Z/2).
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It follows from the description of H*(B Sping;Z/2) that d must be even;
moreover, modifying x by a multiple of cg we can assume that d = 0, and
we can define (g := x.

Suppose that ¢} is another element satisfying the requirements of the
Lemma: then ¢} = (s + acg with a € Z; moreover, 2¢; = (4¢; = 2(s implies
that a = 0 and (g = ¢}.

By Lemma 5.3 209 = i*cs, so by the projection formula

2C10 = ix(2C2C3Ca) = c2Cs € A, /(c8)-
Choose © € Ag;,  such that zmod cg = C1o: then

2¢ — co(g + deacg =0 € A

gping
with d € Z.

By Lemma 7.4 4¢2 = (3(¢))? = 16cscd , hence (2 = 4csed + o with a a
torsion element; it follows that, since co(s = 2x + dcacs,

0=2x(s — 4020805; — coar + degea(y
=2x(s — 402080§ — cox + 2dcgx + d%gcg S Agping .
Now we map this relation to the Brown-Peterson cohomology of B Sping;
since the cycle map induces an isomorphism Agping ®L2) ~ Bngin8 ®@Bp*Z(2),
eventually modifying 316 (resp. ¥20) with a multiple of cg (resp. cacg), we
can suppose that cl (s = 716 and clx = fs9. So we obtain
0= 23}16?}20 - 4@4686; — Q4(Cl Oé) + 2d68g20 + dZngh S Bnging ®Bp* Z(Q)

Hence we get the expression for the product 16720 in BP’éping ®pp+ZL(2):

_ s - d? o

U16720 = 2¢8¢g Y4 — dcgloo — 5 CBla B
with § a torsion element.

Note that from the additive description of BPg;, ®pp+Z(2), the torsion-

free submodule is a free Z9)[c4, cs, cs, cg ]-module with basis
ﬂOv g4a g87 gg_v gl?v gi’—Qa glﬁv g207
so it must be d?/2 € Z(3), that is, d must be even. Modifying = by a multiple

of cocg we can assume that d = 0, and we can define (79 := x.
The uniqueness of (19 is proved analogously to the one of (s. é

REMARK 7.7. By [7, Theorem 1], for any connected reductive algebraic
group G with maximal torus T and Weyl group W there is an isomorphism

ALeQ~ (AD)Y @ Q;
it follows that an element o € Af; is torsion if and only if its restriction to
a maximal torus is zero.
Moreover, by [18, Theorem 0.1] the torsion index of Sping is 2, so A§;,
8

has only 2-torsion. Hence from now on we will tacitly assume that every
torsion element of Ag;, is a 2-torsion element.
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We will use this facts throughot the paper.

COROLLARY 7.8. We have that

G4 = 3221727374

¢ = Q(Z zi—2 Z:cfx? + 8xz0w374)

6 = —64(>_ a7)1waw324

(¢ = —4(2 x?)(z xi—2 Z T705 + 81179731 4)

(s = 32(2 CL’? -2 Z x?m? + 8x1Tox3x4)T1 X231

Cio = —64(2 $3)<Z ) Z :r?x? + 82122232 4)T1X2X3%4
mn A?Spmg.

In particular, the Cepen are not torsion.

ProOF. The formulas for (4 and Cj follow from Lemmas 7.4 and 3.4.
Next, note that since i*cy = 209, by the projection formula

206 = ix(20903) = c2Cs € Ay, /(c8) = Adi

and applying the permutation (12) we get also 2{; = c;g}f: using this two
relations it is easy to obtain the restrictions for (g and Cgr .

The restrictions of (g and (19 to Tspin, are easily computed using the
relations 2¢s = (4¢;” and 219 = cals. J

REMARK 7.9. By the exact localization sequences for the Chow and
Brown-Peterson cohomology rings, we have that cl (s = 916 and cl (19 = 920
in BPg gpin, ®Bp+Z(2)/(cs). Moreover there is an injection

*

Sping L BPj Sping @BP*Z(2)

which becomes an isomorphism after tensoring with Zy). It follows that we
can suppose, eventually modifying 16 (resp. §20) by a multiple of cg (resp.
Jacg) that gl(g = 716 and aClo = 7j90. So we can complete the table of
Lemma 7.9:

o |G G G G G & G G o

Cla‘% Ja Us U5 G0 12 s T4 T J20

We define elements Cgt and Cl% in the same way that for the others. The
action of &3 on these classes is described in the following Lemma:

LEmMMA 7.10. The action of &3 on the (; is described in the following
table:
(12) (13) (23)
Gi G G (=)™
¢ Gi (—D)™GT [ (=)
i ()G Gi (D¢




8. THE Zlca, cg, s, cg -MODULE STRUCTURE OF Aj 57

Sping
ProOOF. Immediate Lemma 5.1. é
LEMMA 7.11.
& =J"¢ = (0"
in Agpin, -
ProoOF. Immediate from Lemma 5.8. 4

8. The Z[cy, cg, cs, g |-module structure of ASping
The restriction i* provides Agy,, of the structure of Ag;, -module.

ProposITION 8.1. The ring Agpins is generated by the following ele-
ments:

027C47067C770870;7C37C;_’C47C2_7C57C67€g_7<77€8)€10'

Proor. Use the exact localization sequence, noting that by Theorem
5.5 A§p1n7 is generated by &3,&4, &6, ¢, C4, Cg, €7, C8, and by Lemma 7.11 & =

3¢ )
LEMMA 8.2. We have that
c2Codd = €2C4q = 2Codd = 25 = 0 € Adpin,

Moreover oo = 0 in Ag,;,, /(cs) for all a € keri*. In particular, for all the
possible choices of ©,j the relations

GG = GChy = Gicosa =0 € AGping /(c8)-

PROOF. Since [C] =0 € Ag,;, /(cs), we have that i.i*a = a-[C] =0 €

§pin8 /(cg) for all a € Agping.

It follows that since by Lemma 5.3 209, 204, 20904 € ©* Agping we have
203 = 2¢s = 2¢7 = 0 € Agy,, /(cs), and these relations hold in Agy,
because they live in odd degree < 9.

Next, since i*cy = 209, using the relation o2 = i*(2¢f — cq — yj) (see
the proof of Corollary 5.4) we obtain

cols = 2i,i*(2¢f —cs—yf)=0¢ ASping /(c8);
the relations ca(s = c2(7 € (cg) are obtained similarly, and they hold in
Agpin, because they live in odd degree < 9.

To get the analogous relations for the C;:i 4 one can apply the transposi-
tion (12), noting that cy = ¢ by Lemma 7.2.

Suppose that « € keri*: then by the projection formula we have that

(ixB)a = ix(Bi"ar) = 0 € Agying /(cs)
for all 8 € Agy,: it follows that
Ga=0¢€ Agping /(CS)
for all ¢ and for @ € keri*. Since ¢c;(N) =0 € A§ ;, (where N is the normal

Sping
bundle of C in A®\ {0}), because C is the zero locus of the Sping-invariant
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function ¢, we have that i*i,3 = ¢1(N)3 = 0, so (; € keri*. Moreover,
since Agy, is torsion-free, all torsion elements restrict to zero in Agy , that
concludes the proof.

LEMMA 8.3. (1) As a Z-module, i, Agﬁi is torsion-free.
(2) As a Z-module, i. ASS" is torsion.
odd

PROOF. Let o € 14 AZT, and suppose that 2a = 0. By Proposition 8.1
we can write

5
a = Z f2i(262f —C4 — yiv 66,C§)C2z‘ € A§p1n8 /(08)
i=0

(weset (o = 1,(2 = 0). By Lemma 7.11 5*(¢] +¢; ) = 0so0 ¢ +¢; = d(s and
restricting to Tspin,, we find d = 1: in particular 3@1F +3¢; —3¢ = 0. On the
other hand, applying the permutation (13) to the relation c;f —c; = =3
(Lemma 7.2) we find 3¢, = c4 — ¢ and substituting this expression in the
previous relation we obtain

(8.1) CI =c4+ 3(1 — 3. € A§p1n8

It follows that

5
a =" failca+2¢ =60, ¢, ¢ )Coi € Adpin, /(cs)
=0
and so

a= > fales co e ) oi € Adying /(c8,Car C).

i=0,3,4,5

Mapping in the Brown-Peterson cohomology we obtain

o= Y failes, co,cf )iai € BPEyin, ®ppZa)/(cs, s g )-

i=0,3,4,5
On the other hand,
BP i, @BP-Z(2)/(c8, T8, T3 ) = Z2)[cas ¢6, 5 1(Za (Gos Gas G12, Gz, G165 G20)
® Z/2 (s, Ug » 10, T1a) B Z/2[c7){c7})

so cl wmod (cs, Js, 7ig) is not torsion: hence the element clamod(cs, §s, 75)

must be zero, and this implies that fy, fs, fs, fi0 are identically zero.
So we have that

o= f(C4 + 242_ - 6(4, Cé, Cg)C4.
Since by Lemma 7.8 res%;?g (4 # 0, we have that f(cq + 2@]L — 64, cg, ch)
ng

n

is torsion; once again, it is easy to see that
fleasce,¢8) € BPE i, ©pp-Z2)/(cs, Js, T3 )

cannot be a torsion element and so f(c4,cg, cq ) identically zero. So v = 0
and the first part is proved.
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For the second part, it is sufficient to note that i, Agy' is generated

as Agping—module by the (,qq4, and these elements are 2-torsion by Lemma
8.2. 4

COROLLARY 8.4. Suppose that a € AgJ s a torsion element that
restricts to 0 in Agy, - then o = 0.

PRrOOF. By the exact localization sequence ker j* = imi,; since o €
Sping this implies that a € i, Ag%ﬂ. But by Lemma 8.3 i, Ag%i has not
torsion, so a = 0. é

PROPOSITION 8.5. The following relations hold in Agy, :

(1) ¢ = 4ey + 8¢ — 4
(2) c2Ca = 2Gp
(3) ea(f = 2¢4
(4) c2C6 = 2c4Cs + 8¢g — 8cy
(5) cals” = 2caCf + 1608 — 4¢3
(6) c2(s = 2C10
(7) c2C10 = 2¢aCs + 8cg Ca — desCy
(8) (i = 4cs
(9) GG =2
(10) C4<6 = 20268
(11) CaCs = 2Gio
(12) Cals = 2¢s()
(13) Caio = 2c8¢
(14) (¢)? = 4eg
(15) ¢ ¢ = 2Ci0
(16) ¢ ¢ = 2cacq
(17) ¢ s = 20§ Ga
(18) ¢i Cio = 2¢5 G
(19) (2 = 4cg(ca +2¢ — G)
(20) CoCd = 2¢als + 8 Ca — desCy
(21) (6Cs = 2c8(d
(22) C6Cio = es(call + 12¢f — 2¢s — 8cs)
(23) (Go)* = deg (ca +2¢ — )
(24) Co Gs = 265 Go
(25) (g Cro = 5 (2¢4Ca + 8Cg — 8cs)
(26) (3 = 4escd
(27) (sCio = 2cacscq
(28) (i = cacq (dea + 8CF — 4Ga).
PRrROOF. First of all, note that by [12, Proposition 9.1] all these relations
restrict to 0 in A§p1n7, so by Corollary 8.4 it sufficies to prove the formulas
in Agpi,, ®Q.
We will use repeatedly Lemmas 5.3 (resp. 3.4 and 7.8) for the restrictions
to SLy (resp. to Tspin, during the proof.
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By [12, Proposition 9.1(6)] the relation 3¢ — 4c4 — 8¢, = 0 holds in
(ASpin, ) (2)5 80 a(3c3 —4cq —8¢f) = by in ASping> With a € Z\2Z and b € Z.
Restricting to Tspin, we find b = 12a, so a(3c3 —dey — 8(:4F —12¢4) = 0; since
AGpin, has only 2-torsion, we have also that 3c3 —dey — 8cf —12¢4 = 0.

Substituting Equation 8.1 ¢ in the equation 3¢3 — 4cy — 8¢ —12¢4 = 0
we obtain

3¢5 = 12c4 + 24¢ — 1204 € Af,

and dividing by 3 we obtain (1).

Formulas (2) and (3) are proved in the proof of Lemma 7.8. Formulas
(8) and (14) are implied by Lemma 7.4. Formulas (6) and (9) are proved in
the definition of the elements (19 and (g respectevly (Lemma 7.6).

Since o9 = i*(cs + 2¢;) € Afp,, by the projection formula

c2Gs = 2ix(0503) = 2(ca + 2¢ ) Ca = 2¢4Ca + 8(s € Al /(cs)

by formula (9), so we have that co(s = 2¢4(4 +8(g+dcg in A§p1n85 restricting
to Tsping We find d = —8, that proves (4).
To obtain (5), note first that

12) 1 1
(8:2) G =G = 5™ = S6dd =G
then, using Formula 8.1
eaGy = (c266)"?) = € ¢ + 4G = ealf + 1267 — 2.
We have that
+ Loty2 +
G G = 5@4 )7Ca = 2cg G
that proves (16); using this equations and the projection formula we obtain
c2€10 = +(2030304) = 2(ca + 2¢])Cs = 2cals + 8¢ Cu € Afpin, /(cs)

S0 ¢2C19 = 2¢4(s + 8c§C4 + 08(dc% +ecy + [l + g@f) with d,e, f,g € Z:

restricting to Tspin, we have d =e = f = 0 and g = —4, and we get (7).
Now we can prove most of the relations of the Proposition; we list the

proofs in such an order so that each relation is obtained by the previous
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ones, and leave to the eager reader to complete the computations:
1
CaCe = §CQCZ
1
Calg = 502C4CI = ca(s

s = 3G
C4G10 = Cac2(s

¢ G = %CQQCI
G = (Gago)™
¢ Go = %CZ@C&;
G = %CQC4C6
GG = 5ol

C6Cs = 1CﬁC4C4+

2
@ =G
C6C10 = %CQC6C8

(@) = (" = def (cf +2¢] = )
Cq Cio = cad Ga
1
(sC10 = 562482
1
4120 = 103@2 :
4
LEMMA 8.6. Let A the ideal generated by the elements Coqq,C4. Then
3
A2 =c;A=0

in Agpin, -

PROOF. Let (;,(; € A: then (;(j, G(S € Ag‘ggs and (;¢j, (¢ restrict
odd.

to zero in A§p1n7- By the exact localization sequence, (;(; € i« AgL,; on
the other hand, (;(; is torsion, so by Corollary 8.4 it must be 0 € Agpins.
The same argument applies to show that c;(; = C?—Q = 0, hence applying
transposition (12) we have also ¢7(5” = 0. d
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COROLLARY 8.7. As a Zlcy, ¢, cs, cg |-module, A§p1n8 admits the follow-
ing description:

gpins 22[64706708765_](<027<47CI7<67C8_7C8_7C87410>

D Z/2((3,¢5 (5, Cr) D Z/2[er){er})

PrOOF. By Lemma 8.2 we have that ca(oqq, Ci<j7<"i<"(iid’ Cicr € (cg); ap-
plying the same proof to the pushforward i) it is easy to see that

02C$1da<‘;rc;r><;r<odd7<i+c7 € (CEJ;F)
Moreover,
CQC7 — (510§C§'_ € 1y Aé%q

where 1 € Z/2 is the indetermined coefficient of [12, Proposition 9.1].

By Lemma 8.6 we have that (,qq(oqq = Coddgiid = c7(odd = C7C;Eld = 0.

Finally, Proposition 8.5 gives the product caCeven,CabensCevenCevens CevenCatven:
using inductively this results it is easy to see that it is possible to express all
the products between the generators co, (4, Q’, Ce, Cg, C6+,C8, C10, Cg,C;_, (5,C7, ¢
with expressions in which these generators appears only linearly, with coef-
ficients in Z|cy, cs, cs, cg ], except for the powers of c7.

Note that by Lemma 7.8 the Coven, (e are not torsion, and by Lemma
3.4 02,04,06,08,0; are not torsion, while by Lemma 8.2 the Codd,ded are
torsion, and 2c7 = 0 € Agp, implies 2c; = 0 € Ag;, . This proves that the
coefficients Z and Z/2 for the module generators are as stated.

To complete the proof it sufficies to note that there is an injection of
Z[ca, cp, cs, cg |-modules

Sping BPSPins ®BP*Z(2) :

by the exact localization sequence and Remark 7.9 the module generators of
Agpins map to the module generators of Bngin8 ®pp+Z2) and the result fol-

lows easily comparing the Z[cy, cg, s, cg]—module structure of Bngins ®pp+Z(2)
in Theorem 6.4. 4

COROLLARY 8.8. The torsion ideal of Agy;,  is
(Agping)tm" = (077 Cgra Codd)~

9. The ring structure of Ag;
ProrosiTioN 9.1. We have that
Sping / (ASping Jtor = Zea, ¢, ¢6, s, 5 5 Ca, G C65 G 5 Gs, Cr0) /1
where I is the ideal generated by the relations of Proposition 8.5.

PROOF. Let R := A&y, /(Agyin, Jtor: then by Proposition 8.1 and Corol-
lary 8.8 R is generated by the elements

C2,C4,Cg, C8, Céra C4a Czrv Cﬁv ggv €8) ClO'
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It follows from Proposition 8.5 that the projection Ag,;, — R factorizes
through

®
gpins — Z[02764766708705’_7C47€I7C67Cg_a€87<10]/[ B R7

Suppose that 9(627 C4, Ceg, C8, c§_7 C47 Cz_a Cﬁv C(—ii—v <87 CIO) = 0 in R: then us-
ing the relations of I we can express g in a unique way as

g=fot fea+ D> fiG+ > £
1=4,6,8,10 1=4,6

with fi,f;“ € Z[C4,C6,08,c§]. But then by Corollary 8.7 fi,f;L must be
identically zero, so g = 0 and the relations sufficies: hence the map ¢ is an
isomorphism. o

COROLLARY 9.2. The ring Agyn. /(Adpin,)tor can be identified with a
subring of Agping : that is, the projection
Agping - A9§ping /(Agping)tm’
admits a splitting.
Proor. By Corollary 8.8
In( gping)tor =1InN (C7aC3+a€odd) = (0);
it follows that R can be identified with a subring of Ag;, . d

LEMMA 9.3. As an abelian group, A?éping is generated by (s, Cgr, C3 , with
the relations

203 =2¢ =2¢; =0
G+HEG +¢ =0.

PRrOOF. It is clear that (3, C; , (5 generate Agpins, since there is an exact
sequence of abelian groups

0— Z/2(C3) — Agpin, — Z/2(&) — 0.

3
Sping
These elements are 2-torsion, since (3 is 2-torsion by Lemma 8.2 and they
are exchanged by G3. By Corollary 7.11, Lemma 7.10 and Equation 5.1, we
have that j*(;’ =Jj"C; =& 50
I +G) =23=0

from which we obtain C; + (3 € imiy A%L4 ~ 7/2 - (3, hence C; + (3 =0C3
with 6 € Z/2. Applying transposition (12) we obtain (3 + (3 = 65 : then
by Corollary 5.8

& =7"(CG+(3) = 57(0¢5) = 063 € Afyin,
which implies § = 1. J
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LEMMA 9.4. The following equations hold in Agping :

I
cg=cg =c3 =0

=0 =¢C
=G =¢-
PROOF. Lemma 5.6 implies that j*cf = j*¢; = ¢ and j*¢; = ¢ in
§pin7 fori=1,...,8: so

¢ —o €in(Ag)).
Since by Proposition 8.1 i*(A§L4) = Z(3, applying transposition (12) we
obtain the equation
g —e3=d(3 € ASping
with d € Z/2. Since ¢§ = ¢z = 0 in Ag;,, ([12, proof of Theorem 4.4]), by
Corollary 5.8 we obtain 0 = d€3 and so d = 0.
Next, from Agpin7 = 0 we obtain that Agpins is generated by a unique

element of 2-torsion (5 = (5~ = (5 (this element is not necessarily non-zero).

Finally, by Corollary 5.8 we have that j*C;r = hy resé%i o904 = 0 so
(7 € 1 AgL4, and by Proposition 8.1 we can write

(7 = a(2¢y — ca —4¢)Cs + by = acaCs + bGr
with a,b € Z/2. Then, applying permutation (12), by Lemma 7.10 we obtain
(7= acjggr + b(;r; it follows that
0=j"¢r = acés

in A§p;, . Since by [12, Propositions 8.3,9.1] ¢j&3 = cafs # 0 € Ag,
it must be a = 0. It follows that (7 = C;r , and by a similar argument
7 =G - i)

LEMMA 9.5. (cg) N (cg) = (csed) C ASping- In particular, if a € (cs) N

(cf), then either =0 or a € Aszpli?ls'

PROOF. Suppose that cgsa = c;{ﬂ, with a, 5 € A
we can write

a=fo+faco+ Y i+ Y TG +erd ] fich

. By Corollary 8.7,

*
Sping

5290-1-92624-292'@+Zgj§j+072ggci7

with fi, fi", f1,gi, 9, 9% € Zca, c6, cs,cq] uniquely determined. It follows
that

csfi = cg i € Zlca, co, c8, 5 ]
that implies f; € (cg) and g; € (cs). Similarly, f;", f/ € (cg) and g;', g} €
(cs), s0 csa = cgcgy with v € Agping, )
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LEMMA 9.6.
(it)* ¢ = 204
(i7)"C6 = 20204
(i) =
(i")"Co=0
in ASLJr

65

PROOF. Since A;L+ is torsion-free, we can work with coefficients in Q.

Then by Lemmas 7.4, %.3 and Proposition 8.5

()¢ = 1(Z'Jr)*y4 = 204

4
()G = 57" (e260) = 200
() s = é(m*(@cz) -
() Gto = 30%)" () =

PROPOSITION 9.7. Let a € {CQaC4aCerC67<(;FaC87C§} 76 € {<37C3+>C57<7}:

then
0[/8 - O G Agpins .

d

PROOF. By Lemma 8.2 we have co(oqq = czcgrdd = 0 and (evenCodd €

(Cg): then (4(3, (5(3 € ASSI?ins 0(68) = Zcg 50 (4¢3 = (6(3 = 0.

Next, by Lemma 9.4 we have that (even(s = CevenC;' and Ceven(r =

CevenC;L , and using Lemma 9.6 and the projection formula

Gl = 2if (0904) =2¢F =0

(oG = 27 (0304) = 2(2c4 — ¢ —ya)G5 =0
C8C3 =1, (O 02) =0

Co¢y =i (0-02) =0

{4{5 =2if(62) = 2if (iM) s =0

CeC = 2if (0207) = 2c8¢ =0

C8C5 =1, (O 04) =0

C10<5 =i/ (0-04)=0

C4C7 = 22 (0204) = 208C§L =0

G6¢f = 2if (0307) =2 =if (i")*((2cs — ¢f —wu)cs) =

C8§7 :Z (0 0'20'4)—0
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v _
Go¢l =i (0 0204) =0

in Agyi,. / (cs). (We used the fact that o5 = i*(2cf — ¢4 — yj ), and applied
transposition (12) to this relation.) It follows that Ceven(Jqq € (cg); on the
other hand, by Lemma 8.2 CevenCOerd € (cg); by Lemma 9.5 we have that
Cevenq;d € (68c§r); since all this relations live in odd degree < 17, it is easy
to see that they must be zero in Agy;, . It follows that

CevenC5 - CevenC7 =0¢c A§p1n8 .
Since (g¢5 = (Cg(:;“)(%) =0, by Lemma 9.3 we have

(G = GG +¢G) =0

a similar argument shows that (10(3 = 0.
The relations (J,Coad = 0 (resp. (fen(lyy = 0) are obtained applying

transposition (12) to CevenC(Ii q = 0 (resp. CevenGodd = 0). J

LEMMA 9.8. The following relations hold in Agy;, -

cacy = 0106C5 + 03¢6(3 + d4caCs

Cacr = cs(65C3 + 86¢5)

CFer = cd (6265 + 67¢3)

Gec7 = 08c8(s

(g er = docd G5

Cscr = cs(d10cals + d11¢aCT + 612C7)

Croer = cs(813¢4Cs + 614¢6C3 + 15¢6(3)
with 6; € )2 for i =1,...,15, and 01,02 are the same of [12, Proposition
9.1].

Moreover, we have that
0203 = Cevencg = C;t/encg = 0.

PRrROOF. By Lemma 8.2 we have that (evency € (cg), and the correspond-
ing formulae follows from the fact that by Corollary 8.7, as abelian groups
there are isomorphism

A%pins = Z/2 <C37 C{;—>

Agping = Z/2 <<5>

Adping ~ Z/2 (caC3, cals , Cr, 07)
Agping = Z/2 <C4C57 06<37 C6C§r> .
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By [12, Proposition 9.1]
7*(cacr + S106¢5) = 0
75 (¢ e+ 0acd () = 0
7 (Cger) =0
in A§p1n7a and moreover using the same proof of Lemma 8.2 Cjc% {g cr €
(cs), so by Lemma 5.3
coct + 61c6C5 € i AL, = Z/2 (cals, c6C3)
CFer + bacd ¢ € Aé%4 N(cd) =2Z/2(cd ¢s)
(Ferein Af, N(ed) =Z/2(cTé5)

and the remaining formulae follow.
The last assertion follows from the previous ones and the fact that by
Lemma 8.6 c;A = 0. J

Recall that by Corollary 8.7 there is an insomorphism of Z[c4, cg, cs, c;{]-
modules

§pin8 2%[04,06768,0;](2 <C27C47C17C67<gr’<6+)<87410>

®Z/2((s, (1 G5y Cr) @ Z/2[crl{er})

COROLLARY 9.9. The products between the generators of the Z|cy, cg, cs, c;ﬂ—
module A§p1n8 are determined by Proposition 8.5, Lemma 8.6, Proposition
9.7, and Lemma 9.8.

From the exact localization sequence we can now determine almost com-
pletely the Chow ring of the classifying space of Spin; (recall that in [12]
there is the description of (A ;. )2)):

Spin, /(2)

ProrosiTioN 9.10.
Agpin7 = 2[027 C4, Cg, 6/87 537 547 éﬁ]/R/

where & are elements of degree i, and R’ is the ideal generated from the
following elements:

283

2cy

c% —4cy — 8&4

284 — 28

286 — 2c4€4 — 16¢5
& — 4

€a&e — 2c9cq

€2 — Ack(ca + 2&4)
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Here 6; € /)2 are indeterminate coefficients, and 01,92 are the same as in

[12, Proposition 9.1].

&

Escr

283

Eevenss

cacr = 010683
&ac7 + Gacgts
§6C7-
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