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Abstract

The purpose of this thesis is to study invariants on divisors of finite graphs and al-

gebraic curves. Analysing the construction of the Caporaso’s Compactified Jacobian,

we present modifications of the algebraic rank with the aim of getting closer to an

algebraic interpretation of the combinatorial rank. The new ranks defined here satisfy

some important properties and results such as versions of the Riemann-Roch theorem.
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Introduction

This work is devoted to the study of the combinatorial properties of the rank of

a divisor on a graph and the familiarities with the algebraic rank of divisors on nodal

curves.

Motivation and objectives

A divisor on a graph is a formal sum of integers on its vertices. In particular, there

is a notion of principal divisor defining equivalence classes of divisors. Baker and Norine

in [3] defined the combinatorial rank of a divisor motivated by the theory of ranks on

algebraic curves. This invariant on a divisor class [d] is the maximum integer r such

that, for all effective divisors e of degree r, the divisor d− e is linearly equivalent to an

effective divisor. The combinatorial rank satisfies a number of interesting properties,

more notably it satisfies the Riemann-Roch theorem (see [3]) and the specialization

lemma (see [11]). In [9], Caporaso extended the definition of combinatorial rank for

weighted graphs and introduced the algebraic rank of a divisor on a graph. Given a

weighted graph G, the algebraic rank of a divisor class δ on G is defined by

ralg(G, δ) := max

{
min

{
max{r(X,L);∀L ∈ Picd(X)};∀d ∈ δ

}
;∀X ∈Malg(G)

}
,

where Malg(G) is the locus inside the moduli space of stable curves having G as dual

graph (see sections 1.2.1 and 1.2.5). This new invariant of divisors on graphs reflects
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2 CONTENTS

the ranks of line bundles (i.e., its number of independent global sections) with a given

multidegree on all the nodal curves dual to the given graph. Applying the divisor

theory for graphs to the theory of linear series on singular algebraic curves, several cases

were exhibited where the value of the algebraic rank coincides with the value of the

combinatorial rank, leading to the conjecture that those two invariants would be equal.

Later on, Len, Melo and Caporaso, in [11], were able to prove that the combinatorial

rank is an upper bound for the algebraic rank of divisors on finite graphs. However, they

also present examples when the inequality is strict, therefore disproving the conjecture

(see examples 2.6.1 and 2.6.2). Further examples were considered by Yoav Len in [14]

showing that the analogous conjecture in the cases of metrized complexes also fails.

By investigating the relation between the rank of divisors on metrized complexes, and

the algebraic rank of divisors obtained by forgetting the metrized complex structure,

Len showed that, in general, there is no inequality between one and the other.

Given a (connected, reduced, projective) curve X of genus g over an algebraically

closed field k, the Jacobian of X, J(X), is the set of isomorphism classes of line bundles

of degree 0 on every irreducible component of X. The Jacobian of a singular curve is

in general not compact. The problem of presenting a “good” compactification of the

Jacobian has been studied by a large number of authors. Here, we are interested in the

compactification of the Universal Jacobian constructed by Caporaso in [7], treating the

case of a family of curves. This construction is given by admitting not only line bundles

of balanced multidegrees on a Deligne-Mumford stable curve X, but also certain line

bundles on partial normalizations of X. This leads to a stratification of JdX given by

the set of nodes that are normalized and the multidegree on this partial normalization.

In Chapter 1 we introduce the theory of divisors on finite graphs in the first section,

and dedicate the second section to moduli spaces of curves and universal compactified

Jacobians. Chapter 2 focus on the important results related to the combinatorial rank

and the algebraic rank.
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Contributions

The third chapter of this work is dedicated to the study of different approaches for

the algebraic rank. We start but analysing the min-max order in the definition of the

algebraic rank, introducing the modifications rMAX and rALG. For rMAX we consider

the maximum of rmax(X, d) on the curves dual to the graph G, maintaining the same

divisor d. In symbols,

rMAX(G, d) := max{rmax(X, d);∀X ∈Malg(G)}.

For rALG we consider the minimum of rMAX(G, δ) among the divisors d ∈ δ. We

prove that these new ranks satisfy the Riemann-Roch theorem, and that we have the

following inequality of ranks: rALG(G, δ) ≤ rG(δ). Furthermore, we investigate cases

where this definition coincides with the original definition of algebraic rank, i.e., when

ralg(G, δ) = rALG(G, δ), for a given graph G and a divisor class δ on G, e.g., the case

when G is a weighted binary graph. We conclude the section proving that rALG is an

upper bound for ralg.

Analysing the counterexamples presented in [11], where strict inequality of ranks

occurs, we calculated the rMAX of degenerations of these linear series. We observed that

modifications could be made in order to arrive at the exact value of the combinatorial

rank of a divisor d on a graph G: calculating the rank rMAX of a balanced line bundle

on a quasistable curve such that its stabilization is a dual curve of G. In symbols, let

δ be a divisor class on G and consider a balanced representative d of δ. If (G, d) is a

weighted exceptional contraction of (G′, d′), with d′ balanced, we write (G′, d′) ≥ (G, d).

We define the compactified algebraic ranks for a balanced divisor d as

rb(G, d) := max{rMAX(G′, d′) : (G′, d′) ≥ (G, d) and d′ is a balanced divisor}.

We show that rb satisfies the Riemann-Roch theorem and we present a version of the
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Specialization lemma. Later we present a generalization for the Dhar decomposition

and give a definition of a divisor of generalized Clifford type (see Definition 3.3.10).

These new definitions allow us to extend the proof of the original inequality between

ranks to the case where d ∈ Div(G) is of generalized Clifford type, S-reduced with

respect to all proper subset of vertices in the graph with contain the vertices where d

possibly has negative degree, obtaining that rMAX(G, d) ≤ rG(d). This new result helps

us to calculate the ranks of a weighted rank for some specific divisors. In Section 3.3.3

we prove that the combinatorial rank equals the balanced algebraic rank of a balanced

divisor on a binary graph. In symbols, if G is a binary graph of genus g and d is a

balanced divisor on G, then rG(d) = rb(G, d). We also calculate the balanced algebraic

rank of a certain balanced divisor on a weighted binary graph, i.e., a graph consisting

on two vertices, each of them possibly weighted, joined by k edges.

In the last chapter we point out the future work and expose some conjectures and

examples that we can aim to be extended to more general cases, related to the objects

that we defined and studied in this work.



Chapter 1

Background theory

The aim of this chapter is to present the theory of divisors on finite graphs and

later the moduli spaces of curves and universal compactified Jacobians.

1.1 Graphs and divisors on graphs

Throughout this thesis G = (V,E, ω) is a finite weighted graph, where V = V (G)

denotes the set of vertices of G, E = E(G) its set of edges and ω : V → Z≥0 its weight

function. If ω = 0, G is called weightless1.

If a vertex v is an endpoint of an edge e we say that they are incident. When two

vertices u and v of G are both incident to an edge e ∈ E(G), we write e = uv and say

that u and v are adjacent. When u = v, we say that e = uu is a loop and we denote

by l(v) the number of loops adjacent to v. The number of incident edges of a vertex v

is the valency of v (or the degree of v) and it is denoted by val(v) (or deg(v)), where

loops based at a vertex are counted twice.

The number of edges adjacent to both v, w ∈ V (G) is denoted by (v · w), or just

1In our figures, vertices with weight zero are represented by “◦”, while the ones with weight bigger
than zero are represented by “•”.

5



6 Chapter 1. Background theory

v · w. We set

(v · v) = −
∑

w∈V \{v}

(w · v).

If W,Z ⊂ V (G) we write

W · Z =
∑

w∈W,z∈Z

(w · z).

Observe that when v /∈ Z, we have

v · Z = #{ edges joing v with a vertex of Z},

by contrast, if v ∈ Z we have v · Z ≤ 0.

The genus of a connected graph G is

g(G) :=
∑

v∈V (G)

ω(v) + |E(G)| − |V (G)|+ 1

=
∑

v∈V (G)

ω(v) + b1(G),

where b1(G) := |E(G)| − |V (G)|+ 1 is the first Betti number of G.

Example 1.1.1 (Weighted binary graph). The weighted binary graph, B(ω1,ω2)
k , consists

of two vertices v1, v2 joined by k edges, i. e., v1 · v2 = k, such that ωi = ω(vi), i = 1, 2.

v1 v2

Figure 1.1: The weighted binary graph Bω1,ω2

k .

When ω1 = ω2 = 0, we write Bk := B
(ω1,ω2)
k and say that Bk is a binary graph. In

this case, the genus of Bk is g = k − 1.

A subgraph H of G is itself a graph consisting of subsets V (H) ⊆ V (G) and

E(H) ⊆ E(G). A tree is a connected undirected graph with no cycles and the edges
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of a tree are called branches. A spanning tree T of a connected graph G is a subgraph

of G such that T is a tree and contains all vertices of G.

Definition 1.1.2. Let G be a graph, an exceptional vertex is a vertex with valency 2

and weight zero. The set of all exceptional vertices of G is denoted by V exc
G .

Definition 1.1.3. Let G be a connected graph of genus g such that g ≥ 2. We say that

G is a stable (respectively semistable) graph if every vertex of weight zero has valency

at least 3 (respectively 2). A semistable graph is quasistable is no two exceptional

vetices are adjacent.

1.1.1 Divisors on finite graphs

Fixing an ordering V (G) = {v1, . . . , vλ}, we denote by Div(G) the free Z-module

generated by elements of V (G), i.e.,

Div(G) :=

{
λ∑
i=1

divi, di ∈ Z

}
∼= Zλ.

Definition 1.1.4. An element d of Div(G) is called a divisor on G. Given a divisor

d =
∑λ

i=1 divi its multidegree is denoted by (d1, . . . , dλ), where di := d(vi) is the degree

of d on the vertex vi, i = 1, . . . , λ.

The degree of d = (d1, . . . , dλ) is the integer |d| :=
∑λ

i=1 di. Other notations for

the degree of d are deg(d) and d. A divisor d is effective if di ≥ 0 for all v ∈ V , we

write d ≥ 0. The subset of divisors of degree d is denoted by Divd(G) and Div+(G)

denotes the subset of effective divisors on Div(G). Furthermore, the subset of effective

divisors of degree d is denoted by Divd+(G).

Given Z ⊆ V (G) we write

d(Z) =
∑
v∈Z

d(v).
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If d is a divisor in a graph G, then given a subgraph G′ of G, we denote by dG′ the

divisor in G′ such that dG′(v) = d(v), ∀v ∈ V (G′) ⊆ V (G).

The canonical divisor in each vertex v of G is defined by

kG(v) = val(v) + 2ω(v)− 2.

Notice that |kG| = 2g(G)− 2.

Now, proceeding in analogy with classical geometry, we introduce rational func-

tions on graphs. A rational function f on a graph G is a map f : V (G) → Z and the

principal divisor associated to f is a divisor of the form

div(f) =
∑
v∈V

ordv(f)v,

where

ordv(f) =
∑
v 6=w

(f(v)− f(w))(v · w).

Therefore, if f is constant then its divisor is 0.

Remark 1.1.5. The degree of a principal divisor is zero. Indeed, if f is a rational

function on G, we have

| div(f)| =
∑
v∈V

(∑
v 6=w

(f(v)− f(w))(v · w)

)

=
∑
v∈V

(∑
v 6=w

f(v)(v · w)

)
−
∑
v∈V

(∑
v 6=w

f(w)(v · w)

)
.

So, a change of variables on the vertices in the second equality gives that | div(f)| = 0.

By the remark above and noticing that ordv(f) = − ordv(−f) and ordv(f + g) =

ord(f)+ord(g), we have that the principal divisors form a subgroup of Div0(G), denoted

by Prin(G).
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We say that two divisors d and d′ are linearly equivalent if their difference is a

principal divisor, we write d ∼ d′. We define

Pic(G) = Div(G)/ ∼ .

The equivalence class of a divisor d is denoted by [d]. We also use the notation δ for an

element of Pic(G), we write d ∈ δ if d is a representative. Since the principal divisors

have degree zero, we have that equivalent divisors have the same degree. We set, for

an integer d,

Picd(G) = Divd(G)/ ∼ .

Given a subset Z ⊂ V (G), we denote Zc := V (G) \Z and define the divisor tZ(v) such

that

tZ(v) :=


v · Z if v /∈ Z

−v · Zc if v ∈ Z.

Example 1.1.6. Let G be a graph such that V (G) = {v1, v2, v3} with v1 · v2 = 2 and

v3 ·v1 = v3 ·v2 = 1. Consider the subset Z = {v1, v2} ⊂ V (G), we have tZ = (−1,−1, 2).

The graph G and the divisors tv1 , tv2 and tv3 are pictured as follows:

v1 v2

v3

−3 2

1

2 −3

1

1 1

−2

G =

Figure 1.2: The graph G with ordered vertices {v1, v2, v3} followed by the divisors tv1 , tv2 and tv3 on
G.

Remark 1.1.7. The subgroup of principal divisors is generated by divisors of the form

tZ , for all Z ⊂ V (G).

Remark 1.1.8. [11, Remark 2.1] Given a t ∈ Pic(G) there is a decomposition

V (G) = Z0 t . . . t Zm,
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with Z0 and Zm non-empty, such that

t =
m∑
i=0

itZi .

Indeed, by definition we have t = tY1 + · · ·+ tYk , where each Yj is a set of vertices. For

each a ≥ 0, let Y ′a be the set of vertices that are contained in a different such sets (Y ′a

may be empty). Then the sets Y ′a are a disjoint cover of V , and t = 0 · tY ′0 + · · ·+k · tY ′k .

Let b be the first integer so that Y ′b is non-empty. Since
∑
tY ′i+b , we are done.

This implies that we have t|Zm ≤ (t|Zm)|Zm . Indeed, pick v ∈ Zm, we have tZm(v) =

−Zc
m · v; on the other hand

t(v) =
m−1∑
i=0

iZi · v −mZc
m · v ≥ (m− 1)

m−1∑
i=0

Zi · v −mZc
m · v = mZc

m · v.

The equivalence class of a divisor d on a weightless graph G can be also described

via a solitaire game played on the vertices of G, the chip-firing (or the Dollar Game).

The goal of this game is to transform, if possible, a given divisor into one that is

effective using chip-firing moves. There are two types of chip-firing moves: lending

moves and borrowing moves.

A lending move based at v ∈ V (G) consists of replacing a divisor d by a divisor

d′ in the following way

d′(v) = d(v)− val(v) and d′(w) = d(w) + v · w,

where w is a vertex of G other than v. A borrowing move based at v ∈ V (G) consists

of replacing a divisor d by a divisor d′ such that

d′(v) = d(v) + val(v) and d′(w) = d(w)− v · w,
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where w is a vertex of G other than v. This way, d can be obtained from d′ by a series

of chip-firing moves if and only if d ∼ d′. In effect, suppose that d − d′ = t, with

t ∈ Prin(G). So, by Remark 1.1.8, there is a decomposition V (G) = Z0t . . .tZm such

that t =
∑m

i=0 itZi . Therefore, firing from the set Zi i times we obtain the sequence

of chip-firing moves. Conversely, t is obtained by reconstructing the sets Zi from chip-

firing moves in the obvious manner.

We say that d is winnable if it is possible to get to an effective configuration

starting from d. Equivalently, d is winnable if it is equivalent to an effective divisor.

1.1.2 Reduced divisors and Dhar decomposition

Baker and Norine, in [3], introduced the theory of reduced divisors that we expose

in this section.

Definition 1.1.9 (Reduced divisors). Let d be a divisor on a weightless and loopless

graph G and fix a vertex u ∈ V (G). We say that d is u-reduced if

1. d(v) ≥ 0, for all v ∈ V (G) \ {u};

2. for every non-empty set A ⊂ V (G) \ {u}, there exists a vertex v ∈ A such that

d(v) < v · Ac.

Proposition 1.1.10. [3, Proposition 3.1] Let G be a weightless loopless graph and fix

a vertex u ∈ G. Then for every divisor d of G there exists a unique u-reduced divisor

d′ ∈ Div(G) on the equivalence class of d.

We can define a decomposition on the set of vertices of a graph that gives us a

criterion to determine if a divisor is reduced with respect to a given vertex and is very

helpful with inductive arguments. This decomposition is called the Dhar decomposition

and it does not depend on the loops or the weights of the vertices. Let G be a graph

and fix a vertex u ∈ V (G). Given a divisor d ∈ Div(G) whose restriction to V \ {u} is
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effective, the Dhar decomposition of G associated to d with respect to u is denoted by

V = Y0 t Y1 t . . . t Yl tW.

The construction of the decomposition is as follows. Denote Y0 := {u} and W0 :=

V \{u}. If the divisor d+tW0
is effective then we writeW = W0, and the decomposition

is V = Y0 tW . This is the case when d is not u-reduced. Otherwise, define

Y1 := {v ∈ W0 : (d+ tW0
)(v) < 0}.

Now we iterate the process, defining the sets Y0, Y1, · · · , Yj. Denote Wj := V \ Y0 t

. . . t Yj. If the divisor d + tWj
is effective, then W = Wj and it is done. Otherwise,

define

Yj+1 := {v ∈ Wj : (d+ tWj
)(v) < 0}.

The graph is finite, so the process will eventually exhaust all the vertices of the graph

and stop and then W will be the empty set. This is the case when d is u-reduced.

Remark 1.1.11. [11] Given the Dhar decomposition of a graph G associated to a divisor

d on G with respect to a vertex u of G, vertices in Yj or W can be characterized as

follows

v ∈ Yj ⇔ v /∈ Yj−1 and d(v) < v · (Y0 t Y1 t . . . t Yj−1) for j = 1, . . . , l − 1.

1.1.3 Balanced divisors

Definition 1.1.12. Let G be a semistable graph of genus g ≥ 2, and let d ∈ DivdG.

Given a subset Z ⊂ V (G), we define the parameters

mZ(d) := d
kG(Z)

2g − 2
− (Z · Zc)

2
and MZ(d) := d

kG(Z)

2g − 2
+

(Z · Zc)

2
.
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We say that d is semibalanced if for every Z ⊂ V (G) the following inequality holds:

mZ(d) ≤ d(Z) ≤MZ(d).

We say that d is balanced if it is semibalanced and if for every exceptional vertex

v we have d(v) = 1.

The following definition was adapted by Caporaso and Christ in [10] from the

definition at [15].

Definition 1.1.13 (Break divisor). Let G be a graph. A divisor d ∈ Divg(G) is called

a break divisor, if there is a spanning tree T of G such that

d = ω +
∑

ei∈E(G)\E(T ), vi∈ei

(vi),

where ω :=
∑

v∈V ω(v)v and by writing vi ∈ ei we mean that for each ei we choose

only one of the end vertices vi of ei.

Note that a break divisor is effective by construction. For any spanning tree T we

have |E(G) \E(T )| = b1(G). Thus for a break divisor d we have deg(d) = b1(G) +ω =

g(G), so d has degree g.

Theorem 1.1.14 ([10]). Let δ ∈ Picg(G), then there is a unique d ∈ δ such that d is a

break divisor. Therefore the set of break divisors on G is canonically in bijection with

Picg(G).

Proposition 1.1.15 ([10]). Given a divisor d ∈ Divg(G), the following are equivalent

1. d is break divisor.

2. d is balanced.
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1.2 Moduli spaces of curves and universal compacti-

fied Jacobians

1.2.1 Nodal curves

In this work, a curve is a one-dimensional scheme, projective over an algebraically

closed field k. But also, unless otherwise specified, the word "curve" stands for a nodal

curve, i.e., a reduced (possibly reducible) curve having at most nodes as singularities.

For a curve X, we will denote by g(X) the arithmetic genus of X and by ωX the

dualizing sheaf of X.

The dual graph G of a curve X is defined such that V (G) is identified with the

set of irreducible components of X, E(G) with the set of nodes of X (so that loops

correspond to internal nodes of irreducible components) and the value of its weight

function on a vertex is the geometric genus of the corresponding component on X

(i.e., the genus of its desingularization). We denote by Malg(G) the set of isomorphism

classes of curves having G as dual graph (also referred to as dual curves to G). For

example, when G has only one vertex, Malg(G) parametrizes irreducible curves.

We write

X =
λ⋃
i=1

Ci

for the irreducible component decomposition of X, and we denote by gCi , or just gi,

the arithmetic genus of Ci. In some cases, when X is a dual curve to the graph G, it

will be more appropriate to write

X =
⋃

v∈V (G)

Cv,

meaning that Cv is the component corresponding to the vertex v ∈ V (G), and gv

denotes the arithmetic genus of Cv.
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Example 1.2.1. Let G be a graph such that V (G) = {v1, v2} with ω(v1) = 1, v1 ·v2 = 3

and having one loop at v2. A curve X ∈Malg(G) has two components C1 and C2 such

that C1 ∩C2 = {p1, p2, p3}, C1 has geometric genus 1, and C2 has one self intersection.

Figure 1.3: The dual curve X = C1 ∪ C2 of the graph G.

Given a proper subcurve Z of X, we denote

Zc := X \ Z.

The Weil divisor
∑

n∈Z∩Zc n is denoted by Z · Zc, with

δZ := #Z ∩ Zc = degZ · Zc.

Recall that the adjunction formula gives

wZ := degZ ωX = 2gZ − 2 + δZ .

Remark 1.2.2. A curve X has its arithmetic genus equal to the genus of its dual graph.

Let δ be the number of nodes of X =
⋃
v∈V (G)Cv, and consider the total normal-

ization of X

ν : Xν =
⊔
v∈V

Cν
v −→ X.

The associated map of structure sheaves OX ↪→ OXν yeilds an exact sequence

0→ OX → ν∗OXν → N (1.1)
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where N is a skyscraper sheaf supported on the nodes of X. So, (1.1) yields the

following exact sequence in cohomology:

0 −→ H0(X,OX) −→ H0(Xν ,OXν ) −→ kδ −→ H1(X,OX) −→ H1(Xν ,OXν ) −→ 0.

(1.2)

From (1.2) we obtain

g(X) = h1(Xν ,OXν ) + δ − |V |+ 1 =
∑
v∈V

gv + b1(G) = g(G).

We denote by Pic(X) the Picard scheme of X parametrizing line bundles on X up

to isomorphism. Given a curve X, we denote by KX the dualizing line bundle on X.

For a line bundle L ∈ Pic(X), we denote h0(X,L) := dim(H0(X,L)) the dimension of

the vector space of global sections of L, and

r(X,L) := h0(X,L)− 1.

Denote X =
⋃
v∈V (G)Cv. The multidegree of L ∈ Pic(X) is

degL := (degC1
L, . . . , degCλ L),

and its total degree is

degL :=
λ∑
i=1

degCi L.

Notice that degL can be viewed as a divisor onG setting degL(v) = degCv L. Therefore,

there is a surjective group homomorphism

deg : Pic(X)→ Pic(G)

that sends a line bundle to its multidegree. For every curve X ∈ Malg(G) we have

degKX = kG.
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Given d = (d1, . . . , dλ) ∈ Zλ, we set

Picd(X) := {L ∈ Pic(X) : degL = d},

the variety of isomorphism classes of line bundles of multidegree d. If |d| = d1+· · ·+dλ,

we have decompositions

Pic(X) =
⊔
d∈Z

Picd(X) and Picd(X) =
⊔
|d|=d

d∈Div(G)

Picd(X).

Let ν : Y → X be some partial normalization, so Y =
⊔λY
i=1 Yi. Let R be the

set of nodes normalized by ν : Y → X and let δR = #R, and for each node ni

let {pi, qi} = ν−1(ni) be its branches, i = 1, . . . , δR. Consider the pull-back map

ν∗ : PicX → PicY , we have

PicY =

λY∏
i=1

PicYi.

For every L′ ∈ PicY we denote the fiber of ν∗ over L′ by

FL′(X) := {L ∈ PicX : ν∗L = L′}.

Lemma 1.2.3 (cf. [6]). Using the notation above, we have the isomorphism

FL′(X) ∼= (k∗)δR−λY +1.

Proof. First, assume that Y is connected. Let c = (c1, . . . , cδR) ∈ (k∗)δR ; c determines

a unique L ∈ PicX such that ν∗L = L′. Indeed, for every j = 1, . . . , δR consider

the two fibres of L′ over pj and qj and fix an isomorphism between them. We define

L = Lc on the curve X. Lc pulls back to L′ by gluing L′pj to L
′
qj

via the isomorphism

L′pj → L′qj given by multiplication by cj. Conversely, every L ∈ FL′(X) is of type Lc.
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Now, consider the case where Y has λY connect components. The curve X is

connected, so we have λY − 1 ≤ δR. There exist some subsets T ⊂ {n1, . . . , nδR} such

that #T = λY − 1 and such that if we remove from the dual graph of X every node

that is not in T , the remaining graph is a spanning tree of the dual graph of X.

Fix T and, if necessary, reorder the nodes in {n1, . . . , nδR} so that

{n1, . . . , nδR} = {n1, . . . , nδR−λY +1} ∪ T.

Now, consider the factorization ν : Y
ν′−→ Y ′

νT−→ X of ν so that ν ′ is the partial

normalization of X at {n1, . . . , nδR} \ T and νT is the normalization at the nodes of

Y preimages of the nodes in T . Finally, to construct the finer of PicX → PicY over

M ∈ PicY we proceed as in the previous part.

The above lemma gives us that for every c ∈ (k∗)δR−λY +1 we associate a unique

Lc ∈ PicY . Remark that a section s ∈ H0(Y,M) descends to a section s̄ ∈ H0(X,Lc)

if and only if for every j = 1, . . . , δR we have s(qj) = cj(pj).

1.2.2 Stable curves

Given a nodal curve X, a smooth component E of X is exceptional if it is rational

and |E ∩ (X \ E)| = 2. An exceptional node is a node that lies on an exceptional

component.

Definition 1.2.4. A curve X is called

1. stable if every irreducible component Cv of arithmetic genus zero satisfies

|Cv ∩ Cc
u| ≥ 3;

2. semistable if every irreducible component Cv of arithmetic genus zero satisfies

|Cv ∩ Cc
u| ≥ 2;
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3. quasistable if it is semi-stable and no two excepcional components intersect each

other.

Observe that X is stable (resp. semistable, resp. quasistable) if and only if its

dual graph G is stable (resp. semistable, resp. quasistable).

Let X̂ be a quasistable curve, there is a unique morphism ς : X̂ → st(X̂) con-

tracting all the exceptional components of X̂. Observe that the curve st(X̂) is stable.

Now, let X be a stable curve and let R be a set of nodes of X, with εR = #R. Denote

by X̂R the blow up of Y at R. The curve X̂R is quasitable such that st(X̂R) = X,

where the contracting morphism ς : X̂R → st(X̂R) is defined by contracting all the

exceptional components of X̂R to R. We have the normalization map ν : Xν
R → X,

where Xν
R is the normalization of X at R such that

X̂R = Xν
R ∪ (∪r∈REr),

with Er an exceptional component, for r ∈ R.

A family of stable (resp. semistable, resp.quasistable) curves is a flat projective

morphism f : X → B whose geometrical fibers are stable (resp. semistable, resp.

quasistable) curves. A line bundle of degree d on f : X → B is a line bundle on X

whose restriction to each geometric fiber has degree d.

1.2.3 Linear series on nodal curves

In the following, we present some results concerning global sections on a nodal

curve X and how to glue them.

Remark 1.2.5 (cf. [8]). Let R be a set of nodes of X, with δR = #R. Given L′ ∈
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Pic(Xν
R), let L ∈ FL′(X), i.e., ν∗L = L′, then we have the exact sequence

0 −→ L −→ ν∗L
′ −→

∑
n∈R

kn −→ 0.

Now, consider the associated long exact sequence in cohomology

0 −→ H0(X,L)
α−→ H0(Xν

R, L
′)

β−→ kεR −→ H1(X,L) −→ H1(Xν
R, L

′) −→ 0.

From the sequence above we get the bound

h0(X,L) ≤ h0(Xν
R, L

′).

Fix L′ ∈ PicXν
R, thus, by Lemma 1.2.3, every L ∈ FL′(X) is of the form L(c) for

some c ∈ (k∗)ε−γ+1. For convenience, we set cj = 1, for ε − γ + 1 ≤ j ≤ ε. Let

h0(Xν
R, L

′) = m, and consider a basis s1, . . . , sm for H0(Xν
R, L

′). Let s ∈ H0(Xν
R, L

′)

be such that s =
∑m

i=1 xisi where xi ∈ k. Now s lies in the image of α if and only if

m∑
i=1

xi(si(q
j
2)− cjsi(q

j
1)) = 0, ∀j = 1, . . . , ε.

So we have above a linear system of ε homogeneous equations inm unknowns x1, . . . , xm.

The space of its solutions is identified with H0(X,L(c)). The space of solutions of the

system is a subspace ofH0(Xν
R, L

′) of dimension at leastm−ε. Hence h0(X,L) ≥ m−ε.

So we established that

h0(Xν
R, L

′)− εR ≤ h0(X,L) ≤ h0(Xν
R, L

′). (1.3)

In the following, we investigate the cases when the equality h0(X,L) = h0(Xν
R, L

′)

holds.
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Fact 1. Given a curve X, a point p ∈ X and a line bundle L ∈ Pic(X), then

h0(X,L)− h0(X,L(−p)) = 0 or 1.

If h0(X,L)− h0(X,L(−p)) = 1, for all points p ∈ X then L is basepoint-free.

Definition 1.2.6. [8, Definition 1.1] Let Y be a curve, M ∈ PicY and p and q

nonsingular points of Y . We say that p and q are a neutral pair of M , and write

p ∼M q, if

h0(Y,M(−p)) = h0(Y,M(−q)) = h0(Y,M(−p− q)).

The relation p ∼M q is an equivalence relation.

Lemma 1.2.7. [8, Lemma 1.4] Let Y be a nodal curve, p and q be two nonsingular

points of Y and Y → X = Y/{p=q}. Let M ∈ PicY be such that h0(Y,M) 6= 0. There

exists L ∈ PicX, ν∗L = M , such that

h0(X,L) = h0(Y,M)

if and only if p ∼M q. If Y is connected, such L is unique (if it exists) if and only if p

and q are not base points for M .

Fact 2. [6, Corollary 2.2.5] Let X be the dual curve of G, and assume d = 0. Then for

every L ∈ Pic0X we have h0(X,L) ≤ 1, and equality holds if and only if L = OX .

Definition 1.2.8. Given L ∈ Pic(X), L is admissible if, for every exceptional compo-

nent E of X, we have degL|E = 1.
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Lemma 1.2.9 ([17]; [6], Lemma 4.2.5). Given R ⊂ Xsing and Lν ∈ PicXν
R. Pick an

admissible L̂ ∈ Pic X̂R such that L̂|Xν
R

= Lν. Then

h0(X̂R, L̂) = h0(Xν
R, L

ν).

In other words, if L ∈ Pic(X̂R) is admissible and i : Xν
R ↪→ X̂R an inclusion map,

we have

h0(X̂R, L) = h0(Xν
R, L

′),

for a given L′ = i∗L.

Proof. Once L̂ is admissible we have L̂|E = OE(1), for every exceptional component E

of X̂R. We know that every section ofH0(X̂R, L̂) restricts to a section of Lν . Conversely,

given a pair of points p1, p2 ∈ P1, consider a trivialization of OP1(1) locally at such

points. Now, for any pair b1, b2 ∈ k, there exists a unique section s ∈ H0(P1,OP1(1))

such that s(p1) = bi, for i = 1, 2. Therefore, for every section sR ∈ H0(Xν
R, L

ν) extends

to a unique section of H0(X̂R, L̂) determined by sR and by gluing data defining L̂.

Definition 1.2.10. Let X be a curve of genus g such that X has two smooth rational

components intersecting in g + 1 points. We write V (G) = {v1, v2} and X = C1 ∪ C2,

with Ci = Cvi
∼= P1. Therefore, the dual graph G of X is a binary graph of genus g.

We say X is binary curve. Recall that v1 · v2 = g + 1.

Let X be a semistable curve of genus g ≥ 3 and let L ∈ PicdX, for a certain

multidegree d. L is called semibalanced (respec. balanced) if its multidegree is semibal-

anced (balanced), as defined in Definition 1.1.12. The set of balanced line bundles of

degree d on X will be denoted by Bd
X . We say that L (or its multidegree) is stably

balanced if it is balanced and if for each connected proper subcurve Z of X such that

|dZ | = mZ(d), Zc is a union of exceptional components. The set of stably balanced

line bundles of degree d on X will be denoted by B̃d
X .
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Proposition 1.2.11. [5, Proposition 4.12] Fix d ∈ Z and g ≥ 2.

1. Let X be a quasistable curve of genus g and δ multidegree class on X of degree

d. Then δ admits a semibalanced representative.

2. A balanced multidegree is unique in its equivalence class if and only if it is stably

balanced.

3. (d− g+ 1, 2g− 2) = 1 if and only if for every quasistable curve X of genus g and

every δ ∈ Picd(G), δ has a unique semibalanced representative.

Remark 1.2.12. Let X be a quasistable curve and let L ∈ PicX be balanced. Then,

once L is admissible, by Lemma 1.2.9 we have

h0(X,L) = h0(Xν , Lν)

for a given Lν = i∗L, where i : Xν ↪→ X is an inclusion map.

The follow result is the Balanced Riemann-Roch, the extension of Riemann’s

theorem for singular curves in the case where the divisor is balanced.

Theorem 1.2.13. [8, Theorem 2.3] Let G be a semistable graph of genus g ≥ 2 and

d ∈ Div(G) a balanced divisor. Given a curve X ∈ Malg(G) and a line bundle L ∈

Picd(X), if d ≥ 2g − 1, then

r(X,L) = d− g.

Let X be a smooth curve and L ∈ Picd(X) a line bundle on X with 0 ≤ d ≤ 2g−2,

then one has the following inequality

r(X,L) ≤ d

2
,

called Clifford’s inequality. The equality holds if and only if L is the trivial line bundle,

the canonical line bundle or a multiple of a hyper elliptic line bundle.
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This is a classical result, but this statement fails for line bundles on nodal curves.

As a matter of fact, for any reducible stable curve X and any 0 ≤ d ≤ 2g − 2 there

exist infinitely many d of degree d such that for every line bundle L with deg(L) = d

one has r(X,L) > d
2
.

The next result is the Uniform Clifford, it is an extension of the Clifford’s theorem

for all curves of all degrees, with the additional uniform condition on the degree of each

irreducible components of the curve.

Theorem 1.2.14. [8, Theorem 3.1] Let X = ∪λi=1Ci be a connected curve of genus

g ≥ 2 e let d = (d1, . . . , dλ) ∈ Divd(X) be such that 0 ≤ di ≤ 2gi, for every i = 1, . . . , λ.

Then d ≤ 2g and for every L ∈ Picd(X) we have

r(X,L) ≤ d

2
.

The following result establishes that, for every balanced multidegree, Clifford’s

inequality holds for semistable curves with two irreducible components.

Theorem 1.2.15. [8, Theorem 3.3] Let G be a semistable weighted binary graph of

genus g ≥ 2. Let 0 ≤ d ≤ 2g and d ∈ Divd(G) be a balanced divisor. Given X ∈

Malg(G) we have that for all L ∈ Picd(X),

r(X,L) ≤ d

2
.

1.2.4 Moduli space of curves of genus g

We will denote by Mg the moduli space of smooth curves of genus g. It coarsely

represents the functor that associates to a base scheme at families of smooth curves

of genus g. The space Mg is a quasiprojective variety of dimension 3g − 3 but it is

not proper. It is a classical result of Deligne and Mumford, [12], that Mg can be
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compactified in a modular way by stable curves. We will denote byMg this compactifi-

cation, the so called Deligne-Mumford compactification. It parametrizes isomorphism

classes of stable curves of genus g, see Section 1.2.2. We denote by M0

g the locus of

curves with trivial automorphism group. As proved by Deline and Mumford, M g is a

projective variety of dimension 3g − 3 containing Mg as a dense open subvariety.

1.2.5 Compactified Jacobian

Generalized Jacobian of a nodal curve

Let X be a nodal curve, the generalized Jacobian of X, denoted by J(X), is

a connected algebraic variety identified with Pic0(X), parametrizing line bundles of

degree zero on each irreducible component of X. We have

J(X) = Pic0(X) = {L ∈ Pic(X) : degL = (0, . . . , 0)}.

When every node of X is a separating node, the dual graph of X is a tree. In this case,

the pullback map induces an isomorphism Pic(X) ∼= PicXν
R. Such X is said to be a

curve of compact type.

Remark 1.2.16. Pic0(X) is compact if and only if X is a curve of compact type. In

fact, we have the following short exact sequence

0→ (k∗)b1(G) → Pic0(X)
α→ Pic0(Xν

E)→ 0.

The map α is given by taking the pullback of a line bundle along the total normalization

ν : Xν
E → X, and ker(α) consists of the different ways to glue the structural sheaf of

Xν
E over the nodes of X and one checks that up to isomorphism this amount to giving

b1(G) elements of k∗. We have that

Pic0(Xν
E) =

γ∏
i=1

Pic0(Cν
i ),



26 Chapter 1. Background theory

so it is compact because it is the product of Picard schemes of smooth curves. On the

other hand, the torus (k∗)b1(G) is not compact if b1(G) 6= 0. Thus J(X) is compact if,

and only if, b1(G) = 0, i.e., if G is a tree.

If X is smooth then Picd(X) is isomorphic to an abelian variety. If X is singular,

Picd(X) may not be projective.

A compactification of the Universal Jacobian

As mentioned before, the Jacobian of a singular curve is in general not compact.

The problem of compactifying the Jacobian of singular curves is natural and therefore

there are many different approaches to solve the problem. The question has been

considered already in pionnering work of Mayer-Mumford and of Igusa in the 50’s, and

has been developed later in different generalities by D’Souza, Oda-Seshadri, Altmann-

Kleiman, Caporaso, Pandharipande, Simpson, Esteves, etc. We refer the reader to the

introduction of Esteves in [13] for an account on the different constructions.

In the present work we will follow the approach of Caporaso in [7]. In loc. cit.,

the author constructs a modular compactification of the universal Picard variety over

the moduli space of stable curves M g. The construction is done via a GIT quotient

of a suitable Hilbert scheme and therefore consists of a projective variety Jd,g with a

proper map onto M g. The fibers of this map over a stable curve X therefore yield

compactifications for the Jacobian variety of given degree over X.

The degree d compactified Picard scheme of X, denoted by JdX , is constructed as

the GIT-quotient of a certain scheme VX containing only GIT semistable points, by a

certain group G, so that there is a quotient morphism

VX → J
d

X = VX/G.

Equivalence classes of strictly balanced line bundles of degree d on quasistable curves
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of X correspond to the closed (and GIT-semistable) orbits of G on VX .

The smooth locus of JdX consists of the disjoint union of the Picd(X) with d strictly

balanced. Points in JdX consist of line bundles in quasistable modifications of X. More

precisely, given a stable curve X, points in JdX correspond to balanced line bundles on

quasistable curves Y having X as stable model. In [7] it is established that for a stable

curve X, the compactified Jacobian JdX is a coarse moduli space for equivalence classes

of stably balanced line bundles on quasistable curves having X as stable model.

We recall from [7] that the compactified Jacobians JdX glue over M g in the sense

that there is a proper scheme and a projective morphism

ψg,b : Jd,g →M g

whose fiber over [X] ∈M g is JdX/Aut(X).

Stratification by partially ordered sets

Definition 1.2.17. Given a set P, we say that the pair (P,≤) is partially ordered

set (poset for short) if ≤ is a binary relation on P that is reflexive, antisymmetric and

transitive. For p1, p2 ∈ P, we will say p2 covers p1 if p1 ≤ p2, p1 6= p2 (denoting p1 < p2)

and there is no p ∈ P such that p1 < p < p2.

The dual poset P∗ = (P,≤∗) is set to be the partial order defined on P by inverting

the order given by ≤. Amorphism of posets is a map µ : (P,≤)→ (P′,≤′) that respects

the partial ordering. An isomorphism of posets is a bijective morphism of posets whose

inverse is also a morphism of posets.

A rank function on a poset P is a morphism of posets ρ : P → N such that if p1

covers p2 in P then ρ(p2) covers ρ(p1) in N. A poset together with a rank function is

called agraded poset.
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Suppose we have a topological space P together with a decomposition P =

P1 t . . . t Pn into disjoint, locally closed subspaces Pi. We will denote by P strat =

{P1, . . . , Pn} the set of strata and endow it with a partial order ≤ by setting Pi ≤ Pj

if Pi ⊂ P j. This gives a poset. The decomposition P = P1 t . . . t Pn of P is called a

stratification by a partially ordered set P, if the following hold:

1. Pi is locally closed, for all i = 1, . . . , n.

2. If Pi ∩ Pj 6= ∅ then Pi ≤ Pj in P strat.

3. There is an isomorphism of posets s : P strat → P.

We say that the Mi are the strata of this stratification if P is stratified by P.

A stratification s : P strat → P of a topological space P by P is called a graded

stratification if the Pi are equidimensional and

ρ : P → N

p 7→ dim(s−1(p)) ,

is a rank function for P. If P and the Pi are algebraic varieties and the Pi are irreducible,

viewed as endowed with the Zariski topology, the stratification is called algebraic.

The stratification of M g mainly describes the structure of the boundary of a

compactification, in this caseM g \Mg. That is to say, the whole open subsetMg forms

a single maximal dimensional stratum.

We denoted by SGg the set of stable graphs of genus g.

Definition 1.2.18. We define a partial order on SGg by setting G ≤ H if for some

S ⊂ E(G), there is a contracting map G→ H such that contracting S in G gives H.

Define ρSGg(G) = 3g− |E(G)| − 3, a rank function on SGg preserving the covering

relation. H has to be obtained from G by contracting a single edge once H covers G.
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Recall that

Malg(G) = {[X] ∈Mg : G is the dual graph of X},

which provides the decomposition

Mg =
⊔

G∈SGg

Malg(G).

From [6], we have that the above decomposition is an algebraic stratification by the

graded poset SGg where Mg
strat → SGg is given by Malg(G)→ G.

The strata of compactified Jacobians

Let QSg be the category of quasistable curves. Recall that if X is a quasistable

curve and R is a set of nodes of X, then, considering the contracting morphism ς :

X̂R → ς(X) contracting all exceptional components of X, the image of ς is a stable

curve denoted by st(X̂R). Conversely, if X is stable, then X̂R, the blow up on X at R,

is a quasistable curve such that X = st(X̂R) and we have X̂R = Xν
R ∪ (∪r∈REr), with

Er an exceptional component, for r ∈ R.

The dual graph of the quasistable curve X̂R is denoted by ĜR, and it is defined

by adding one vertex vr on each edge r of R ⊆ E(G). These new vertices vr are

exceptional vertices. Denote by er the edges on ĜR adjacent to the exceptional vertex

vr and let S = {er|r ∈ R}. In this case, there is a contraction

σ : ĜR → G = ĜR/S

contracting edges of S, this contraction is not unique and depends only on the choice

of the edge er for each r ∈ R. Given a divisor d ∈ Div(G), define the divisor d̂ by

setting d̂ = d(v) if v ∈ Div(G), and d̂(v) = 1 if v is an exceptional vertex on ĜR.
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Denote by QGg,d the set of elements (G, d) such that G is a quasistable graph G

and d ∈ Div(G) is a balanced divisor of degree d.

Definition 1.2.19. We define a partial order on QGg,d by setting (G′, d) ≥ (G, d) if

there exists R ∈ E(G′) such that (G′, d′) is an exceptional weighted contraction of

(G, d) on R, we have

1. The contracting map σR : G′ → G contracting every edge in R.

2. The morphism λ : Div(G′)→ Div(G) induced by σR, where λ∗(d)(v) =
∑

u∈λ−1(v) d(u).

Denote by JdS the subset of stably balanced line bundles on X̂S whose restriction

to Xν
S has multidegree dS. Equivalently, these are the divisors in G such that dS is

strictly balanced on G \ S. By [7], we have the following decomposition

J
g

X = tJdS .



Chapter 2

Ranks of divisors on graphs

2.1 The combinatorial rank

This section is dedicated to study the combinatorial invariant in an equivalence

class of a divisor defined for weightless and loopless graphs by Baker and Norine, [3],

and extended for graphs with weights and loops by Caporaso, [9], the combinatorial

rank.

Definition 2.1.1. Let G be a loopless, weightless graph, the combinatorial rank is

defined by

rG(d) = max{k : ∀e ∈ Divk+(G) ∃ d′ ∼ d such that d′ − e ≥ 0}

with rG(d) = −1 if the set is empty.

Given a graph G with weights and with loops, consider the graph G• defined by

attaching at each vertex v ∈ V (G) a number ω(v) of loops based at v, and then at

each loop adding one new vertex in the middle of the edge. The graph G• is weightless

and loopless, and the vertices of G are vertices of G•.

31
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G :

ω(v1) = 1

v1 v2
G : v1 v2

Figure 2.1: The graphs G and G•.

For each d ∈ Div(G) we can define d• ∈ Div(G•) such that

d•(v) =


d(v) if v ∈ Div(G)

0 otherwise, i.e., if v is a new vertex of G•.

There is a natural injective homomorphism

ι : V (G) → Div(G•)

d 7→ d•
,

which induces an injective homomorphism Pic(G) ↪→ Pic(G•). Therefore, principal

divisors on G are principal divisors on G•. For each v ∈ V (G), set

g(v) := ω(v) + l(v),

where l(v) is the number of loops adjacent to v, and denote by z1v , . . . , z
g(v)
v the vertices

in V (G•) \ V (G) adjacent to v, and by Rv the complete subgraph of G• whose vertices

are {v, z1v , . . . , z
g(v)
v }.

Remark 2.1.2. We can extend Definition 2.1.1 to a weighted graph with loops G, by

considering

rG(d) := rG•(ι(d)),

where G• is weightless and loopless graph obtained from G by gluing to each vertex

v ∈ V (G) a number of loops equal to ω(v), then inserting a vertex in every loop, and
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ι is the inclusion Div(G) ↪→ Div(G•) defined above.

Remark 2.1.3. The combinatorial rank is constant in an equivalence class.

In the light of the remark above, we can apply the following notation

rG(δ) = rG(d)

if d is a representative of the divisor class δ = [d].

Remark 2.1.4. For any divisor d ∈ Divd(G) we have

−1 ≤ rG(d) ≤ max{−1, d}.

Lemma 2.1.5 ([3], Lemma 2.1). Given d, d′ ∈ Div(G) with non-negative combinatorial

ranks, we have

rG(d) + rG(d′) ≤ rG(d+ d′).

Proposition 2.1.6. [11, Lemma 3.8] Let δ be a divisor class on a graph G.

1. rG(δ) = −1 if and only there exists a vertex u whose u-reduced representative

d ∈ δ has d(u) ≤ 0.

2. rG(δ) = 0 if and only if there exists a vertex u whose u-reduced representative

d ∈ δ has d(u) = 0.

2.1.1 Riemann-Roch for graphs

The Riemann-Roch for weightless and loopless graphs was proved by Baker and

Norine in [[3], Theorem 1.12] and provides a discrete, graph-theoretic version of the

classical algebraic Riemann-Roch theorem. In the proof of this result they used the

notion of reducedness of a divisor with respect to a vertex of the graph as an important
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tool. The generalization of this result for all graphs is due to Amini and Caporaso, [1].

Theorem 2.1.7 (Riemann-Roch for graphs). Given G a loopless, weightless graph, for

every divisor d ∈ Div(G) we have

rG(d)− rG(kG − d) = d− g + 1.

Corollary 2.1.8. [9] Let G be a graph of genus g and let d ∈ Divd(G). Then the

following facts hold.

(a) If d = 0, then rG(d) ≤ 0, and the equality occurs if and only if d ∼ 0.

(b) If d = 2g − 2, then rG(d) ≤ g − 1 and the equality happens if and only if d ∼ kG.

(c) If d < 0, then rG(d) = −1

(d) If d > 2g − 2, then rG(d) = d− g

The following result is Corollary 3.5 in [3].

Lemma 2.1.9 (Clifford’s theorem for graphs). Suppose that d ∈ Divd(G), for any

0 ≤ d ≤ 2g − 2, we have

rG(d) ≤ d

2
.

Proof. By Lemma 2.1.5 we have

rG(d) + rG(kG − d) ≤ rG(kG) = g − 1.

By Theorem 2.1.7 we have

2rG(d) ≤ d.

Proving the lemma for a weightless loopless graph, the extension follows considering

the graph G•.
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Definition 2.1.10. Let G be a graph and let e be an effective divisor of G. We define

the effective divisor edeg on G so that for every v ∈ V we have

edeg(v) = e(v) + min{e(v), g(v)}.

Remark that if G is a weightless and loopless graph then edeg = e.

The following lemma is a useful tool to find a bound for the combinatorial rank.

Lemma 2.1.11. [11, Lemma 3.3] Let G be a graph and let d ∈ Div(G). If for every

effective divisor e of degree s the divisor d − edeg is equivalent to an effective divisor,

then rG(d) ≥ s.

The following notation was introduced in [11] and helps us to calculate the com-

binatorial rank of divisors on weighted graphs with loops.

Definition 2.1.12. Let G be a graph and let d ∈ Div+(G). We define the effective

divisor drk by

drk(v) = d(v)g(v) := max

{
d(v)− g(v),

⌊
d(v)

2

⌋}
,

for every v ∈ V (G). When G is weightless and loopless, we have drk(u) = d(u), for all

divisor d on G.

For any divisor d we define

`G(d) :=


min{drk(v),∀v ∈ V (G), } if d ≥ 0

−1, otherwise.

Proposition 2.1.13. [11, Proposition 3.10] Let G be a weightless, loopless graph. Let

d ∈ Div(G) be such that for some u ∈ V with d(u) = `G(d) we have that d is u-reduced.

Then rG(d) = `G(d).
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Proof. Suppose that `G(d) = −1, then the statement is a consequence of [11, Lemma

3.8]. Now, assume `G(d) ≥ 0. By by the definition of `G(d) we have rG(d) ≥ `G(d), so

it suffices to prove

rG(d) < `G(d) + 1. (2.1)

Let u be a vertex as in the statement and consider the effective divisor

e := (`G(d) + 1)u ∈ Div(G)

of degree `G(d) + 1. Set c = d− e. Now, c is u-reduced, hence the previous case yields

rG(c) = −1.

The combinatorial rank of a divisor on a (weightless) binary graph was calculated

in [11].

Lemma 2.1.14 ([11]). Let G be a binary graph Bk and d = (d1, d2) be a divisor on G

such that 0 ≤ d1 ≤ d2. Then, writing g = k − 1, we have that

1. rG(d) = d1, if d2 ≤ g.

2. rG(d) = d1 + d2 − g, if d2 ≥ g + 1.

Proof. If d2 ≤ g, we have that d is v1-reduced and `G(d) = d(v1), then by Proposition

2.1.13, rG(d) = d1. If d2 ≥ g + 1, then `G(kG − d) = −1. So, by Prop. 2.1.13, we have

rG(kG − (d1, d2)) = rG(g − 1− d1, g − 1− d2) = −1,

Therefore, rG(d) = d1 + d2 − g by Riemann-Roch for graphs.

Proposition 2.1.15. [11, Proposition 3.17] Let G be any graph. Let d ∈ Div(G) be

such that for some u ∈ V with drk(u) = `G(d) we have that d is u-reduced. Then

rG(d) = `G(d).
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A direct result of the proposition above is that we can calculate the combinatorial

rank of certain divisors on weighted binary graphs.

Corollary 2.1.16. Let Bω1,ω2

k be a weighted binary graph, with the order V (G) =

{v1, v2}. Let d ∈ Div(G) be such that 0 ≤ drk(v1) ≤ drk(v2) and d(v2) ≤ k − 1. Then

rG(d) = drk(v1).

Proof. From the hypothesis that drk(v1) ≤ drk(v2) it follows that `G(d) = drk(v1).

Secondly, the divisor d is v1-reduced because drk(v2) ≤ k − 1. So rG(d) = drk(v1)

follows from Proposition 2.1.15.

The remaining cases occurs when the divisor d is such that d(v2) ≥ k. For a

balanced divisor, we expect to have the following:

Conjecture 1. Let Bω1,ω2

k be a weighted binary graph, with the order V (G) = {v1, v2}.

Let d ∈ Div(G) be a balanced divisor such that 0 ≤ drk(v1) ≤ drk(v2) and d(v2) ≥ k. If

2ωi ≥ di, for i = 1, 2, then

rG(d) = drk(v1) + drk(v2)−
k

2
+ 1.

Example 2.1.17. If the divisor d ∈ Div(Bω1,ω2

k ) is balanced and d = g− 1 = k+ω1 +

ω2 − 2, we have

wi − 1 ≤ di ≤ wi − 1 + k,

for i = 1, 2.
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2.2 The algebraic rank

Caporaso, in [8], defined an invariant on graphs reflecting the rank of line bundles

with a certain degree on all the nodal curves dual to the given graph, the algebraic

rank. Its construction is given as follows.

We define, for any δ ∈ Picd(G) and d ∈ δ,

rmax(X, d) := max{r(X,L);∀L ∈ Picd(X)},

rmin(X, δ) := min{rmax(X, d);∀d ∈ δ}

and we define the algebraic rank by

ralg(G, δ) := max{rmin(X, δ);∀X ∈Malg(G)}.

In the above definitions we kept the notations as in [8], except for rmin(X, δ) for

which the author uses the notation r(X, δ). We say that a pair (X,L) realizes ralg(G, δ)

if ralg(G, δ) = r(X,L).

2.2.1 Riemann-Roch for the algebraic rank

The algebraic rank also satisfies the Riemann-Roch theorem.

Remark 2.2.1. Now we introduce a notation used in [11]. Given L ∈ Picd(X), denote

L∗ = KXL
−1, so that L∗∗ = L. Analogously, denote d∗ = degL∗ = kG − d and

d∗ = deg d∗ = 2g − 2 − d. Once d ∼ e implies d∗ ∼ e∗, we have that δ∗ := [d∗] is well

defined. So δ∗ ∈ Pic|d
∗|(G), δ∗∗ = δ and d∗∗ = d.

Thus we have the bijection Picd(X) → Picd
∗
(X) sending L 7→ L∗; the bijection

between the representatives of δ and those of δ∗ sending d 7→ d∗; and the bijection

Picd(X)→ Picd
∗
(X) sending δ 7→ δ∗.
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Theorem 2.2.2. [11, Proposition 2.6] Let G be a finite graph of genus g. Given a

divisor class δ on G of degree d, with d ∈ δ, and a curve X ∈Malg(G). Then

(a) rmax(X, d)− rmax(X, kG − d) = d− g + 1;

(b) rmin(X, δ)− rmin(X, kG − δ) = d− g + 1;

(c) ralg(G, δ)− ralg(G, kG − δ) = d− g + 1.

Proof. Given a curve X ∈ Malg(G) and a line bundle L ∈ Picd(X). First, we want to

prove that

rmax(X, d) = r(X,L)⇔ rmax(X, d∗) = r(X,L∗). (2.2)

By the algebro-geometric Riemann-Roch applied to L on X it is clear that (2.2) implies

(a).

By the bijection Picd(X) → Picd
∗
(X) in Remark 2.2.1, it suffices to prove only

one implication of (2.2). So assume rmax(X, d) = r(X,L). By contradiction, suppose

r(X,L∗) < rmax(X, d∗), and let M∗ ∈ Picd
∗
(X) be such that r(X,M∗) = rmax(X, d∗).

Now by Riemann-Roch for X we have

r(X,L) = r(X,L∗) + d− g + 1 < r(X,M∗) + d− g + 1 = r(X,M)

hence rmax(X, d) = r(X,L) < r(X,M), which is impossible as M ∈ Picd(X). (2.2) is

thus proved, and (a) with it.

Similarly, to prove (b) it suffices that:

rmax(X, d) = rmin(X, δ)⇔ rmax(X, d∗) = rmin(X, δ∗). (2.3)

Assume rmin(X, δ) = rmax(X, d) and let L ∈ Picd(X) be such that r(X,L) = rmax(X, d).

By (2.2) we have r(X,L∗) = rmax(X, d∗), so it suffices to prove that r(X,L∗) =

rmin(X, δ∗). Suppose by contradiction that this is not the case. Then there exists
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e∗ ∈ δ∗ and N∗ ∈ Pice
∗
(X) such that

r(X,L∗) > r(X,N∗) = rmax(X, e∗).

By Riemann-Roch on X we have

r(X,L) = r(X,L∗) + d− g + 1 > r(X,N∗) + d− g + 1 = r(X,N).

By (2.2) we have

r(X,N) = rmax(X, e) ≤ rmax(X, d) = r(X,L),

a contradiction with the previous inequality; (4) and (b) are proved.

Now, let L ∈ Picd(X) be such that r(X,L) = ralg(G, δ). As r(X,L) = rmax(X, d) =

rmin(X, δ), by (2.2) and (2.3) we have r(X,L∗) = rmax(X, d∗) = rmin(X, δ∗). By con-

tradiction, suppose there exists a curve Y ∈Malg(G) and a line bundle P ∗ ∈ Pice
∗
(Y )

with e∗ ∈ δ∗ such that

r(X,L∗) < ralg(G, δ∗) = r(Y, P ∗) = rmax(Y, e∗). (2.4)

Arguing as before we get

r(X,L) = r(X,L∗) + d− g + 1 < r(Y, P ∗) + d− g + 1 = r(Y, P ).

Now claims (2.2) and (2.3) yield, as e ∈ δ,

r(Y, P ) = rmin(Y, δ) ≤ ralg(G, δ) = r(X,L),

contradicting (2.4). The theorem is proved.
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2.3 Inequality of ranks

Caporaso, Len and Melo, in [11], established that the algebraic rank is bounded

above by the combinatorial rank of divisors on graphs.

The following lemma is a key step to prove the inequality of ranks.

Lemma 2.3.1 ([11], Lemma 4.1). Let X be a nodal curve whose dual graph is G. Let

L be a line bundle on X, and denote d = degL. Suppose that for some u ∈ V (G), and

effective divisor e ∈ Div(G), the divisor d− edeg is u-reduced. Then the space of global

sections of L vanishing identically on Cu has dimension at most |e| − e(u).

Sketch of the proof. Consider the Dhar decomposition V = Y1 t . . . t Yl associated to

the u-reduced divisor d − edeg. Denote, for each 0 ≤ j ≤ l, the space of sections of

L vanishing on the components of X corresponding to the vertices of Y1 t . . . t Yl.

We want to prove that dim Λ0 ≤ |e| − e(u). The prove is conducted by induction on

0 ≤ j ≤ l, showing that

dim Λj ≤
l∑

i=j+1

|e|Yi .|

Lemma 2.3.2 ([11]). Let d ∈ Div(G) be such that ralg(G, d) = k. Fix a vertex u of G.

Given e ∈ Divk+(G) such that d− edeg is u-reduced we have that d− edeg is effective.

Sketch of the proof. Since d− edeg is u-reduced, we know by definition that this divisor

is effective at V (G) \ {u}. And since ralg(G, δ) = k, there exist X ∈ Malg(G) and

L ∈ Picd(X) such that r(X,L) ≥ s. Now, consider the following exact sequence

0→ ker(π)→ H0(X.L)→ H0(Cu, LCu) (2.5)

where π is the restriction of sections to Cu. Observe that ker(π) is the set of global



42 Chapter 2. Ranks of divisors on graphs

sections of L vanishing at Cu, hence by Lemma 2.3.1,

dim(ker(π)) ≤ s− e(u).

And from (3.14) we have

h0(Cu, LCu) ≥ h0(X,L)− dim(ker(π)) ≥ s+ 1− s+ e(u) = e(u) + 1.

From Definition 2.1.10, we have that

edeg(u) = e(u) + min{e(u), g(u)}.

So, by the Riemann-Roch theorem and Clifford’s theorem, edeg(u) is the minimum

degree of a line bundle on Cu of rank e(u) more precisely

degCu L ≥ edeg(u),

which implies that d(u) ≥ edeg(u). Proving that d(v)−edeg(v) ≥ 0, for all v ∈ V (G).

Theorem 2.3.3 ([11], Theorem 4.2). Let G be a finite, connected, weighted graph of

genus g, and let δ be a divisor class on G, then we have

ralg(G, δ) ≤ rG(δ). (2.6)

Sketch of the proof. We can assume ralg(G, δ) = s ≥ 0, once the combinatorial rank is

bounded below by −1.

Assuming s ≥ 0, observe that, if for any effective divisor e of degree s there exists

a representative d of δ such that d−edeg is effective, then rG(d) ≥ s. So, fixing a vertex

u ∈ V (G), let e ∈ Divs+(G). By Proposition 1.1.10 that there exists d ∈ δ such that

d− edeg is u-reduced divisor. Therefore, the proof follows from Lemma 2.3.2.
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As a consequence of Theorem 2.3.3 and Clifford inequality for graphs proved in [3],

we have the following result establishing that Clifford inequality holds for the algebraic

rank.

Proposition 2.3.4 ([11],Proposition 4.6). Let G be a graph of genus g and δ ∈ Picd(G)

with 0 ≤ d ≤ 2g − 2. Then

ralg(G, δ) ≤ bd/2c.

Moreover, rmin(X, δ) ≤ bd/2c, for every X ∈ Malg(G). In other words, for every

X there exists a multidegree d ∈ δ such that every L ∈ Picd(X) satisfies Clifford

inequality.

2.4 Specialization lemma

Let X be a regular 2-dimensional variety, B a regular 1-dimensional variety with

a marked point b0 ∈ B and let φ : X→ (B, b0) be a regular one-parameter smoothing

of a connected curve X, i.e., φ is a fibration in curves such that the fiber over b0 is

X and the fibers over b ∈ B \ {b0} are smooth projective curves. The relative Picard

scheme of φ is written Picφ → B so that the fiber of Picφ over a point b ∈ B is the

Picard schemes of the curve Xb := φ−1(b). Let L0 and L′0 be two line bundles on X. If

for some D on X entirely supported on X we have

L−10 ⊗ L0 = OX(D)|X ,

then L0 and L′0 are φ-equivalent, and we denote L′0 ∼φ L0

The following form of the Specialization Lemma proved by Caporaso, Len and

Melo in [11] is a generalization of the one proved by Baker in [2].
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Lemma 2.4.1 (Specialization Lemma). Let φ : X → B be a regular one-parameter

smoothing of a connected curve X. Let G be the dual graph of X. Then for every

L ∈ Picφ(B) there exists an open neighbourhood U ⊂ B of b0 such that for every

b ∈ U \ {b0} we have

r(Xb,L(b)) ≤ ralg(G, degL(b0)).

Proof. For every L′(b0) ∈ Pic(X) such that L′(b0) ∼φ L(b0), by uppersemicontinuity

of h0, we have, for every b in a neighborhood U ⊂ B of b0,

r(Xb,L(b)) ≤ r(X,L′(b0)).

Hence,

r(Xb,L(b)) ≤ rmax(X, degL′(b0))

Bearing in mind that L′(b0) varies in its φ-class the values of degL′(b0) cover all the

representatives of [d], therefore we obtain

r(Xb,L(b)) ≤ r(X, δ).

2.5 When the ranks are equal

In this section several cases of graphs and divisors where the algebraic rank coin-

cides with the combinatorial rank are exposed.

By Proposition 1.2.11 we have that every divisor class has a balanced represen-

tative. The following theorem ensures that, for a divisor of degree d ≥ 2g − 2, these

semibalanced divisors realize the algebraic rank. Furthermore, for such divisors the

value of both algebraic and combinatorial rank coincides.
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Theorem 2.5.1. [9, Theorem 2.9] Let G be a semistable graph of genus g. Then, if

d ≥ 2g − 2, for every δ ∈ Picd(G) the following facts hold.

(a) Every semibalanced d ∈ δ satisfies rmax(X, d) = rG(d) for every curve X ∈

Malg(G).

(b) rG(δ) = ralg(G, δ).

The proof of the theorem follows from the Balanced Riemmann theorem [8,

Theorem 2.3] for singular curves that states that for every L ∈ Picd(X) we have

r(X,L) = d− g. And the fact that this result and the Clifford’s theorem [8, Theorem

4.4] extend to semibalanced multidegrees.

Let G be a weighted graph of genus g and let δ ∈ Picd(G). The other cases treated

in [9] where the equality rG(δ) = ralg(G, δ) holds are the following:

• g ≤ 1.

• d ≤ 0.

• G has only on vertex.

• G is a stable graph of genus 2.

2.5.1 Special curves

Now we describe curves on which line bundles of a fixed multidegree tend to have

the highest possible rank, the special curves. The description of such curves that we

introduce here is from [11], where it is proved that certain line bundles in such curves

realize the algebraic rank and achieve the combinatorial rank value.

In a weightless, loopless graph G we have the following structure maps:

• the endpoint map ε : H(G)→ V (G), where H(G) is the set of half edges of G;

• the gluing map γ : H(G)→ E(G).
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The gluing map is surjective and two-to-one and induces an involution on H free from

fixed points, denoted by ι. We write [h, h] to denote the orbits of ι. These orbits

are identified with the edges of G. For any v ∈ V (G), we denote by Hv = ε−1(v)

and Ev = γ(ε−1(v)) the sets of half-edges and edges adjacent to v. We denote by

Hv,w = Hv ∩ γ−1(Ew).

Let X = ∪v∈V (G)Cv be a dual curve to G. We have a set Pv ⊂ Cv of labeled

distinct points of Cv mapping to smooth points of X lying in Cv:

Pv := {ph;∀h ∈ Hv} = tw∈V (G)Pv,w,

where

Pv,w := {ph;∀h ∈ Hv,w} ⊂ Cv.

We have the following description of X

X =
tv∈V (G)Cv

ph = ph,∀h ∈ H(G)
.

Definition 2.5.2 (Special curves). Let G be a weightless, loopless and let X ∈

Malg(G). We say that X is special if there exists a collection

{φv,w : (Cv;Pv,w)→ (Cw;Pw,v), ∀v, w ∈ V },

where φv,w is an isomorphism of pointed curves such that for every u, v, w ∈ V and

h ∈ Hv,w the following properties hold:

1. φv,w(ph) = ph;

2. φ−1v,w = φw,v;

3. φv,u = φw,u ◦ φv,w.
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If G is not connected, then X ∈ Malg(G) is defined to be special if every connected

component of X is special.

Remark 2.5.3. [11, Remark 5.4] Let X be a special curve. Then every subcurve of X,

and every parcial normalization of X, is special. Moreover, let p be a nonsingular point

of X lying in the irreducible component Cu; then for every component Cv of X the

curve

Y :=
X

p = φu,v(p)

is also special. The quotient map π : X → Y describes X as a partial normalization

of Y .

Lemma 2.5.4. [11, Lemma 5.5] For every weightless, loopless graph G, the setMalg(G)

contains a special curve.

Proposition 2.5.5. [11, Proposition 5.6] Given a binary graph Bk, we have that

rG(δ) = ralg(G, δ), for every δ ∈ Pic(G).

2.5.2 Rank-explicit

There are divisors for which its combinatorial rank equals its minimal entry, in

the case where the graph is weightless and loop less.

Definition 2.5.6. Let G be a weighted and loopless graph. A divisor d in G is called

rank-explicit if d is u-reduced for some vertex u such that d(u) = `G(d).

In the general case, a divisor d is called rank-explicit if d is u-reduced for some

vertex u such that drk(u) = `G(d).

Lemma 2.5.7. [11, Lemma 5.12] Let G be a weightless loopless graph and let d ∈

Div(G) be a rank-explicit divisor. Then, for every special curve X ∈ Malg(G), there

exists a line bundle L ∈ Picd(G) such that H0(X,L) ∼= H0(P1, (O(`G(d))).
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Theorem 2.5.8. [11, Theorem 5.13] Let G be a weightless loopless graph. If δ ∈ Pic(G)

is rank-explicit, then ralg(G, δ) = rG(d).

2.6 Counterexamples

Caporaso, Len and Melo presented in [11] examples where the combinatorial rank

is not equal to the algebraic rank. The following is an example of rank-explicit divisor

in a weighted binary graph.

Example 2.6.1. [11, Example 5.15] Let G be a weighted graph with V (G) = {v1, v2},

ω(v1) = 1, ω(v2) = 2 and such that v1 · v2 > 12.

v1 v2G =

Figure 2.2: The graph G.

Consider the divisor d = (3, 4). Observe that d is u-reduced, for u = v1, v2. We

have that rG(d) = 2.

Claim. Given any curve X ∈Malg(G), we have rmax(X, d) < rG(d).

Indeed, let X ∈ Malg, writing X = C1 ∪ C2, where Ci corresponds to the vertex

vi, i = 1, 2. Now, consider L a line bundle on Picd(X) and write Li = L|Ci . Proceeding

by contradiction, suppose that r(X,L) = 2. By Riemann-Roch, as deg(L) = (3, 4), we

have

r(C1, L1) = r(C2, L2) = 2.

Observe that the number |C1∩C2| is large enough so that a section of Li can be extended

to all X. Therefore, the map φL : X → P2 defined by L restricts to non-degenerated

maps φ1 : C1 → P2 and φ2 : C2 → P2. The image of φ1 is a irreducible curve of degree

3, so it is a cubic or a line with multiplicity 3. Once φ1 is non-degenerated, the image
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has to be a cubic.

Likewise, the image of φ2 is a non-degenerated irreducible curve of degree 4. So

φ2(C2) is either a quadric or a conic of multiplicity 2. Therefore, φL(X) consists of two

distinct irreducible curves of degree 3 and 4, respectively. By Bézout’s theorem, they

intersect in at most 12 points, which is a contradiction.

Then, in this case, every curve X ∈Malg(G) satisfies rmax(X, d) < rG(d) = 2 and

ralg(G, d) < rG(d).

Example 2.6.2. [11, Example 5.16] Let G be a weightless graph such that V (G) =

{v1, v2, v3} with v1 · v3 = 3 and v2 · v3 > 6.

v1 v2
v3

G =

Figure 2.3: The graph G.

Consider X ∈ Malg(G) writing X = C1 ∪ C2 ∪ C3, where Ci is the rational curve

corresponding to the vertex vi, i = 1, 2, 3. Let d = (1, 2, 3) such that the degree of d on

Ci is i, so we have rG(d) = 2. The statement here is that for every L ∈ Picd(X) we have

r(X,L) < 2. With an analogous analysis as in the precedent example, this statement

can be proved by contradiction assuming that r(X,L) = 2. The line bundle L defines a

non-degenerated map φL : X → P2. Now, treating the possible cases for images of φL,

we get a contradiction in each of them. At the end we have that 2 = rG(d) > ralg(G, d).

The following problem remains unsolved.

Problem 1. What are the cases where in (2.6) we have a strict inequality?



Chapter 3

Different approaches to the algebraic

rank

The goal in this chapter is to understand and/or characterize the cases where we

have a strict inequality in (2.6). Furthermore, we introduce a number of modifications

of the algebraic rank with the aim of getting closer to an algebraic interpretation of

the combinatorial rank in the cases where the strict inequality of ranks occurs.

Our modifications will mainly be inspired by the geometry of compactified Jaco-

bians, so we will consider refinements of the curves together with the line bundles.

3.1 Modifications on the min-max order of the alge-

braic rank

The purpose of this section is to analyse what happens if we change the order of

variation of the different objects we consider when computing the algebraic rank, ralg,

in particular we will focus on varying the curve first. This will be useful as it will be

more appropriate to the modifications we intend to do to the algebraic rank in what

50
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follows. Thereunto, we prove that a new version of the Riemann-Roch theorem can be

obtained under this new definition.

Given a graph G and a divisor d ∈ DivG, we define

rMAX(G, d) := max{rmax(X, d);∀X ∈Malg(G)},

and for any δ ∈ Picd(G), we define

rALG(G, δ) := min{rMAX(G, d);∀d ∈ δ}.

Theorem 3.1.1 (Riemann-Roch). Using the notation introduced above, let G be a

finite graph of genus g, d a divisor of degree d on G, then

(a) rMAX(G, d)− rMAX(G, kG − d) = d− g + 1.

(b) rALG(G, d)− rALG(G, kG − d) = d− g + 1.

Proof. Here we follow the arguments of the proof of [Proposition 2.6, [11]] and use the

notation of Remark 2.2.1. By the same proposition we know that

rmax(X, d)− rmax(X, d∗) = d− g + 1. (3.1)

We claim that, given X ∈Malg(G) and L ∈ Picd(X), we have

rMAX(G, d) = rmax(X, d)⇐⇒ rMAX(G, d∗) = rmax(X, d∗). (3.2)

Observe that (3.1) and (3.2) imply that (a) holds. Furthermore, it follows from the

bijection described on the discussion after Remark 2.2.1 that it suffices to prove only

one implication of (3.2). Assume therefore that rMAX(G, d) = rmax(X, d) = r(X,L),

for L ∈ Picd(X). By (3.1) we have rmax(X, d∗) = r(X,L∗). Suppose by contradiction
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there exists a curve Y ∈Malg(G) and M ∈ Picd
∗
(Y ) such that

r(Y,M∗) = rmax(Y, d∗) = rMAX(G, d∗) > r(X,L∗).

In this case, by Riemann-Roch on X, we have

r(X,L) = r(X,L∗) + d− g + 1 < r(X,M∗) + d− g + 1 = r(Y,M).

By (3.1)

rMAX(G, d) = rmax(X, d) = r(X,L) ≥ rmax(Y, d) = r(Y,M).

contradicting the previous inequality. Therefore (3.2) is proven.

Now, let rALG(G, δ) = r(X,L). So, by (3.1) and (3.2),

rMAX(G, d) = rmax(X, d) = r(X,L)

gives us

rMAX(G, d∗) = rmax(X, d∗) = r(X,L∗).

By Riemann-Roch on X, to prove (b) it suffices to prove that rALG(G, δ∗) = r(X,L∗).

By contradiction, suppose that it exists Y ∈ Malg(G), e∗ ∈ δ∗ and N ∈ Pice
∗
(Y ) such

that

r(X,L∗) > rALG(G, δ∗) = rMAX(Y,N∗) = rmax(Y, e∗) = r(Y,N∗).

By Riemann-Roch on X we have

r(X,L) = r(X,L∗) + d− g + 1 > r(X,N∗) + d− g + 1 = r(Y,N).

Once e ∈ δ, it follows from (3.1) and (3.2) that

r(X,L) = rALG(G, δ) ≤ rMAX(Y,N) = r(Y,N),
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contradicting the preceding inequality. The theorem is proved.

Analogous to what happens with the algebraic rank, rALG is also upper bounded

by the combinatorial rank.

Theorem 3.1.2 (Inequality of Ranks). Given a divisor class δ on a graph G, we have

rALG(G, δ) ≤ rG(δ).

Proof. The inequality above is satisfied once the min-max order does not play an

important role in the proof of the inequality ralg(G, δ) ≤ rG(δ) on [Theorem 4.2, [11]].

We claim that we can change ralg by rALG in the original proof. Suppose that

rALG(G, δ) = s so we want to prove that rG(δ) ≥ s. Observe that if rALG(G, δ) = s,

then for all d′ ∈ δ, rMAX(G, d′) ≥ s. So if we consider the representative d of δ such that

d− edeg is u-reduced, there exist a curve X ∈Malg(G) and a line bundle L ∈ Picd(X)

such that h0(X,L) ≥ s+ 1. And this argument is the only one that involves ralg in the

proof of Lemma 2.3.2 and consequently the proof of Theorem 2.3.3.

The following result is analogous to Theorem 2.5.1.

Theorem 3.1.3. Let G be a semistable graph of genus g. Then, if d ≥ 2g − 2, for

every δ ∈ Picd(G) the following facts hold:

(a) Every semibalanced d ∈ δ satisfies rMAX(G, d) = rG(d).

(b) rG(δ) = rALG(G, δ).

Proof. The existence of semistable representative of δ is given by Proposition 1.2.11.

(a) follows directly from Theorem 2.5.1(b) once it states that, if d is at least 2g − 2,

every semibalanced d ∈ δ satisfies rmax(X, d) = rG(d), for every X ∈ Malg(G). For
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part (b), once rALG satisfies the Riemann-Roch theorem, if d ≥ 2g − 2 we have

rALG(G, δ) ≥ d− g. (3.3)

So, if d ≥ 2g − 1, by Theorem 2.1.7 we have that rG(d) = d − g. Therefore, in this

case we have rG(δ) = rALG(G, δ). Now, if d = 2g − 2 then rG(δ) ≤ g − 1 with equality

if and only if δ = [kG]. If δ is the canonical class then rG(δ) = g − 1 and (b) follows

from (3.3) and Theorem 3.1.2. If δ is not the canonical class then rG(δ) = g − 2, on

the other hand we have rALG(G, d) = g − 2, and we are done.

Corollary 3.1.4. Let G be a semistable graph of genus g and let d ∈ Divd(G) be a

semibalanced divisor. Then the following facts hold.

(a) If d < 0 then rMAX(G, d) = −1.

(b) If d > 2g − 2 then rMAX(G, d) = d− g.

(c) If d = 2g − 2 then rMAX(G, d) ≤ g − 1 and the equality happens if and only if

d ∼ kG.

(d) If d = 0 then rMAX(G, d) ≤ 0 and the equality occurs if and only if d ∼ 0.

Proof. Since d is semibalanced, By Theorem 3.1.3 we know that

rMAX(G, d) = rG(d). (3.4)

To prove (a) suppose that d < 0, then d∗ := kG− d is a semibalanced divisor of degree

greater than 2g − 2. So, by (3.4) and Riemann-Roch Theorem for graphs we have

rMAX(G, d∗) = rG(d) = d− g.
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On the other hand, by Theorem 3.1.1 we have

rMAX(G, d∗) = rMAX(G, kG)− d∗) + d− g + 1 = rMAX(G, d) + d− g + 1.

Therefore,

rMAX(G, d) = d− g − d+ g − 1 = −1.

Now, suppose that d > 2g − 2. By Theorem 3.1.3 we have

rMAX(G, d) = rG(d) = rG(kG − d) + d− g + 1.

But d > 2g − 2 implies |kG − d| < 0, so Corollary 2.1.8 implies (b).

If d = 2g − 2 then by Corollary 2.1.8 we have that rG(d) = g − 1 if d ∼ kG and

rG(d) ≤ g − 2 otherwise. Therefore (c) follows from (3.4). Now, (d) follows from (c)

by Theorem 3.1.1 and (3.4).

Remark 3.1.5. Observe that examples 2.6.1 and 2.6.2 will work the same for rALG,

meaning that in both situations rG(d) > rALG(G, d). In fact, the min-max order do

not play a key role on the proof of the inequalities.

Proposition 3.1.6 (Clifford Inequality). Let G be a graph of genus g and δ ∈ Picd(G)

with 0 ≤ d ≤ 2g − 2, then

rALG(G, δ) ≤ bd/2c.

Proof. It follows from Theorem 3.1.2 and the Clifford inequality for graphs [Corollary

3.5, [3]].

Lemma 3.1.7 (Binary curves). If G is a binary graph of genus g, given δ ∈ Pic(G),

we have rALG(G, δ) = rG(δ).

Proof. The proof of Proposition 2.5.5 gives a stronger statement. Indeed, in the case
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where d2 ≤ g for every curve X ∈ Malg(G), Proposition 2.5.5 states that we have

rmin(X, δ) = rG(δ). Consider (Y, d) the pair that realizes rMAX(G, d) and rmin(Y, δ).

Then we have rmax(Y, d) = rG(δ). Therefore rALG(G, δ) = rG(d) = ralg(G, δ).

In the case where d2 ≥ g + 1, we have r(X,L) ≥ rG(δ) for every X ∈ Malg(G),

every d ∈ δ and every L ∈ Picd(X). So it is clear that we have

rG(δ) = ralg(G, δ) = rALG(G, δ),

for all δ ∈ Pic(G).

A natural question that arises is whether or not ralg equals rALG. We show in the

following that rALG is an upper bound for ralg. Even though we cold not find a way

to prove the equality so far, we believe that the answer to this question is yes, once

analysing the problem from the strictly numerical point of view, varying the min-max

order could actually change the final result as exemplified below.

Example 3.1.8. Let G be a graph such that Malg(G) = {X1, X2} and let δ ∈ Pic(G)

such that d1, d2 ∈ δ. Suppose that the have the following data for Malg(G) and δ:

δ

Malg(G)
X1 X2

d1 rmax(X1, d1) = 1 rmax(X2, d1) = 2

d2 rmax(X1, d2) = 2 rmax(X2, d2) = 1

Hence, in principle we could have rmin(X1, δ) = 1 = rmin(X2, δ) and rMAX(G, d1) =

2 = rMAX(G, d). So, ralg(G, δ) = 1 but rALG(G, δ) = 2. This example is purely

numerical so it ignores the fact that there are more dual curves to the graph G and

more representatives of δ. And we intuit that it is not possible if we consider the

geometry of the problem.
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Proposition 3.1.9. Let G be a graph and let δ ∈ Pic(G), then

ralg(G, δ) ≤ rALG(G, δ).

Proof. Suppose that ralg(G, δ) is realized by (X1, d1) , i.e.,

ralg(G, δ) = rmin(X1, δ) = rmax(X1, d1)

and suppose also that rALG(G, δ) is realized by (X2, d2), i.e.,

rALG(G, δ) = rMAX(G, d2) = rmax(X2, d2),

where X1, X2 ∈ Malg(G) and d1, d2 ∈ [d]. So, since ralg(G, d) = rmax(X1, d1), we have

rmax(X1, d1) ≤ rmax(X1, d
′), for all d′ ∈ [d]. In particular,

rmax(X1, d1) ≤ rmax(X1, d2). (3.5)

Since rALG(G, d) = rmax(X2, d2) we have rmax(X2, d2) ≥ rmax(Y, d2), for all

Y ∈Malg(G). In particular,

rmax(X2, d2) ≥ rmax(X1, d2). (3.6)

By (3.5) and (3.6) we have

rmax(X1, d1) ≤ rmax(X1, d2) ≤ rmax(X2, d2).

Therefore,

ralg(G, d) ≤ rALG(G, d).
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3.2 Refinement of graphs

The aim of this section is to investigate the relations between the combinatorial

and the algebraic rank of a divisor on the dual graph of a curve and the ranks on the

dual graph of suitable degenerations of it.

Recall that a quasistable graph is a semistable graph where no two exceptional

vertices are adjacent (see Definition 1.1.3).

Definition 3.2.1. Let G be a quasistable graph. A divisor d ∈ Div(G) is admissible

if d(v) = 1, for all v ∈ V exc
G .

Let G be a graph, we define the graph ĜR by adding one vertex on each edge

of R ⊆ E(G), these new vertices are exceptional vertices. Define the graph GR by

subtracting from G all the edges of R, such that V (GR) = V (G) ⊆ V (ĜR). When

R = E(G), the graph ĜE is called the total resolution of G. So, if G is a stable graph

we have that ĜR is a quasistable graph.

Now, we compare the combinatorial and algebraic rank of a divisor and of its

admissible desinguarizations. For this we now define some graph contractions that

reflect the degenerations in the curves.

Definition 3.2.2. Given graphsG andG′ with respective weights ω and ω′, we say that

(G,ω) is a weighted contraction of (G′, ω′), if there exist H ⊆ E(G′) and a (contracting)

map σ : G′ → G such that G = G′/H, i.e., G is obtained from G′ by contracting every

edge in H, and for all v ∈ V (G) we have

ω(v) = g(σ−1(v)).

The following definition extends weighted contractions at exceptional components

to divisors.
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Definition 3.2.3. Let G and G′ be graphs with respective weights ω and ω′ and let

d be a divisor on G and d′ be a divisor on G′. We say that (G,ω, d) is an exceptional

weighted contraction of (G′, ω′, d′) if

(a) V (G′) \ V (G) ⊆ V exc
G′ .

(b) There exists a subset H ⊂ E(G′) obtained by choosing one of the edges between

each new vertex and one of its adjacent vertices, and such that (G,ω) is a weighted

contraction of (G′, ω′) by the morphism σ : G′ → G contracting every edge of H.

(c) σ induces a morphism

η : DivG′ → DivG

d′ 7→ η(d′) = d ,

with d(v) =
∑

v′=η−1(v)

d′(v′), for all v ∈ V .

If (G,ω, d) is an exceptional weighted contraction of (G′, ω′, d′) we write (G′, ω′, d′) ≥E

(G,ω, d), or just (G′, d′) ≥E (G, d) if the weights are clear from the context.

Observe that if F ⊂ E(G) is the empty set, (G,ω, d) is an exceptional weighted

contraction of itself. When (G′, ω′, d′) ≥E (G,ω, d) and G′ is different than G we write

(G′, ω′, d′) >E (G,ω, d).

Notice that if (G′, d′) ≥E (G, d), G and G′ have the same genus and d and d′ have

the same degree.

Notation 1. From now on, instead of considering exceptional weighted contractions of

all divisors on a graph (as in Definition 3.2.3), we are only considering exceptional

contraction of admissible divisors. To emphasize this we write

(G′, d′, ω′) ≥ (G, d, ω)
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if (G′, d′, ω′) ≥E (G, d, ω) and d′ is admissible.

Example 3.2.4. Let G be the graph as in Example 2.6.2 (Figure 2.3), and let X̂R be

the blow up of X in one point of C1 ∩ C3. Consider the normalization ν : Xν
R → X.

Denoting R = {v̂}, the dual graph of X̂R is as in Figure 3.1.

v1 v2
v3

v̂

ĜR =

Figure 3.1: The graph GR dual to the curve X̂R.

Consider the divisor d̂ = (1, 1, 2, 2), with respect to the ordering V (Ĝ) = {v1, v̂, v3, v2}.

One can see that the combinatorial rank of d̂ is equal to 2. We claim that the rmax of

this divisor is also 2. We have GR as in Figure 3.2.

v1 v2
v3

GR =

Figure 3.2: The graph GR, whose dual curves are normalizations of dual curves of ĜR.

Suppose that C = C3∪C2 is a special curve. The combinatorial rank of the divisor

(2, 2) in the dual graph of C is 2, and so is the algebraic rank of (2, 2) once C is a

binary curve, by Theorem 2.3.3 (b). Moreover, there is a LC ∈ Pic(2,2)C such that

h0(C,LC) = 3.

Now, let Cv1 be the component associated with v1 in Xν
R and consider µ : Y → Xν

R

the normalization on all the nodes of Cv1 ∩ C. Let L ∈ Pic(1,2,2)(Y ) be such that

L|C = LC . Then, given L′ ∈ Pic(1,2,2)(Xν
R) such that µ∗L′ = L, by Remark 1.2.5, we

have

h0(Xν
R, L

′) ≥ h0(Y, L)− 2 = 2 + 3− 2 = 3.

Given M ∈ Picd̂(X̂R), such that L′ = i∗M , we have by Lemma 1.2.9 that h0(X̂R,M) =
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h0(Xν
R, L

′). So r(X̂R,M) ≥ 2 = rĜR(d̂), hence

rMAX(ĜR, d̂) = rĜR(d̂) = rG(d).

Remark 3.2.5. The divisor d = (1, 2, 3) ∈ Div(G) in Example 3.2.4 is balanced. Writing

n := v2 · v3 > 6 we have g(G) = n+ 1. The canonical divisor of G is kG = (1, val(v2)−

2, val(v3) − 2), where val(v2) = n > 6 and val(v3) = n + 3 > 9. Consider the subsets

Zi = {vi} and Zij = {vi, vj}, for i, j = 1, 2, 3. We have

mZi(d) = 6
kG(vi)

2(n+ 1)− 2
− val(vi)

2
and MZi(d) = 6

kG(vi)

2(n+ 1)− 2
+

val(vi)

2
,

for i, j = 1, 2, 3. Thus, since d(vi) = i for i = 1, 2, 3, we have

mZ1(d) =
3

2n
− 3

2
< d(v1) < MZi(d) =

3

2n
+

3

2
,

mZ2(d) = 3
n− 2

2n
− n

2
< d(v2) < MZi(d) = 3

n− 2

2n
+
n

2
,

mZ3(d) = 3
n+ 1

2n
− n+ 3

2
< d(v3) < MZi(d) = 3

n+ 1

2n
+
n+ 3

2
.

Also, since n > 6, kG(Z12) = n− 1, kG(Z13) = n+ 2 and kG(Z23) = 2n− 1, we have

mZ12(d) = 3
n− 1

n
− n+ 3

2
< d(Z12) < MZ12(d) = 3

n− 1

n
+
n+ 3

2
,

mZ13(d) = 3
n+ 2

n
− n

2
< d(Z13) < MZij(d) = 3

n+ 2

n
+
n

2
,

mZ23(d) = 3
2n− 1

n
− 3

2
< d(Z23) < MZ23(d) = 3

2n− 1

n
+

3

2
,

with d(Z12) = 3, d(Z13) = 4 and d(Z23) = 5. Therefore, d is balanced.

Now, for d̂ = (1, 1, 2, 2) ∈ Div(G′) with (G′, ω′, d′) ≥ (G,ω, d), with analogous

calculation we have that the divisor d′ is also balanced.
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Example 3.2.6. Let G be a graph as in Example 2.6.1 (Figure 2.2). Here, we calculate

rMAX considering a different desingularization of a curve X ∈Malg(G) considering the

geometric genera of its irreducible components. Let (G′, ω′) be the graph with V (G′) =

{v′1, v′2, v̂} such that v′1 ·v′2 > 12, v′2 · v̂ = 2, which weights are ω′(v′1) = 1, ω′(v′1) = 1

and ω′(v̂) = 0.

v′1 v′2 v̂
G′ =

Figure 3.3: The weighted graph G′ such that ω′(v′1) = 1, ω′(v′1) = 1 and ω′(v̂) = 0.

Now, let d′ = (3, 3, 1) be a divisor on G′ and observe that (G′, ω′, d′) ≥ (G,ω, d).

Consider X̂ ∈Malg(G′) and L̂ ∈ Picd
′
(X̂), we write

X̂ = Cv′1 ∪ Cv′2 ∪ Cv̂.

By Lemma 1.2.9, we have h0(X̂, L̂) = h0(Y,M), where Y = Cv′1 ∪ Cv′2 and Y t Cv̂ is

the normalization of X̂ at Cv′2 ∩ Cv̂ by µ and M ∈ Pic(3,3)(Y ) is such that µ∗M = L̂.

Let G′H be the dual graph of Y . Observe that Y is on the union of two irreducible

curves of the same geometric genus, 1, so, there is an isomorphism Cv′1
∼= Cv′2 . Then

there exists M ∈ Pic(3,3)(Y ) such that r(Y,M) = 2. By Riemann-Roch on Y , we have

rmax(Y, (3, 3)) = 2 = rG(d).

Remark 3.2.7. The divisor d ∈ Div(G) in Example 3.2.6 is balanced. The graph G

is a weighted binary graph Bω1.ω2
k with k = v1 · v2 > 12 and ω1 = 1 and ω2 = 2, its

canonical divisor is kG = (k, k + 2). So, for Z1 = {v1} and Z2 = {v2} we have

mZi(d) = 7
kG(vi)

2(k + 1)− 2
− k

2
and MZi(d) = 7

kG(vi)

2(k + 1)− 2
+
k

2
,
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i = 1, 2. So,

mZ1(d) =
7− k

2
< 3 <

7 + k

2
= MZ1(d),

mZ2(d) =
7

k
+

7− k
2

< 4 <
7

k
+

7 + k

2
= MZ2(d).

Therefore, d is balanced.

Now, for d′ = (3, 3, 1) ∈ Div(G′) with (G′, ω′, d′) ≥ (G,ω, d), with analogous

calculation we have that the divisor d′ is also balanced.

From the examples above we can notice that even if the algebraic ranks are strictly

smaller than the combinatorial ranks in the respective original curves and divisors,

that the ranks of suitable refinements of the curves together with the divisors attain

the respective combinatorial ranks.

Example 3.2.8. Let G = Bk be a binary graph of genus g = k − 1. For every

d = (d1, d2) divisor in G, with 0 ≤ d1 ≤ d2, by Proposition 2.5.5 we have that rG(d) =

ralg(G, d). Consider the binary graph GR where R has only one edge and consider the

divisors d1 = (d1− 1, d2) and d2 = (d1, d2− 1) on GR. In this case, GR has genus g− 1.

So, we have the following cases:

• if d2 ≤ g, then by Lemma 2.1.14, rG(d) = d1 and rGR(d1) = d1 − 1. Therefore,

once Bk is binary graph, by Proposition 2.5.5, we have

d1 = ralg(G, d) 6= ralg(GR, d1) = d1 − 1.

However, if d1 6= d2, for d2 we have rGR(d2) = d1 = ralg(GR, d2). Therefore,

ralg(G, d) = ralg(GR, d2).
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• If d2 ≥ g + 1, then by Lemma 2.1.14, rG(d) = d1 + d2 − g,

rGR(d1) = d1 − 1 + d2 − (g − 1) = d1 + d2 − g

and

rGR(d2) = d1 + d2 − 1− (g − 1) = d1 + d2 − g.

We have

ralg(G, d) = d1 + d2 − g = ralg(GR, d1) = ralg(GR, d2).

In conclusion, rG(d) is in all cases the maximum of the ranks of these modifications of

d.

We wonder if similar configuration could hold in general. More precisely, we can

ask the following question:

Question 1. Let G be a stable graph and d ∈ [δ] such that

rALG(G, δ) = rMAX(G, d),

then is it true that there is a triple (G,ω, d) such that (G′, ω′, d′) ≥ (G,ω, d) and

rG(d) = rMAX(G′, d′)?

Notice that if rALG(G, δ) = rG(δ) then the answer is yes and it suffices to consider

(G′, ω′, d′) = (G,ω, d).

Moreover, the answer should be yes as well for the situations illustrated in the examples

of this section.
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3.3 Balanced compactified rank

Definition 3.3.1 (Compactified algebraic rank, for weighted graphs). Given a graph

G of weight ω, we define the compactified algebraic rank of a divisor d ∈ Div(G) as

r(G, d) = max
(G′,ω′,d′)≥(G,ω,d)

rMAX(G′, d′). (3.7)

Remark that rMAX(G, d) ≤ r(G, d), since (G, d) ≥ (G, d).

Such as in the definition of the algebraic rank, we would like to extend the defini-

tion of the compactified algebraic rank for the equivalence class of a divisor. In order

to do so we first have to find a divisor in each equivalence class that better adjusts to

the value of the combinatorial rank, at least in some special cases of curves. Given a

quasistable graph G and δ ∈ Pic(G), by Proposition 1.2.11 we have that there exists

a balanced representative divisor d of δ. Moreover, for line bundles of semibalanced

multidegree we have extensions of Riemann’s theorem and partially Clifford’s theorem

(see [8]). Motivated by this we define the compactified rank for balanced divisors.

Definition 3.3.2 (Balanced compactified rank). Let G be a stable graph (weighted

and possibly with loops). Let d be a balanced divisor on G. We define the balanced

compactified rank of d as

rb(G, d) := max{rMAX(G′, d′) : (G′, d′) ≥ (G, d) and d′ is a balanced divisor }.

Remark 3.3.3. Given δ ∈ Pic(G), by Proposition 1.2.11 a balanced representative d of

δ is unique if and only if d is stably balanced. Therefore, in general, Definition 3.3.2

may not be constant in the equivalence class of a divisor so it cannot be extended

to the divisor class. However, if d ∈ δ is stably balanced it is the unique balanced

divisor of its equivalence class. An important example of a stably balanced divisor is a

break divisor: if G has genus g and δ ∈ Picg(G), by Theorem 1.1.14, there is a unique
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representative d of δ that is a break divisor.

Firstly, we compute the balanced compactified rank of the canonical divisor of a

stable graph. Observe that the canonical divisor itself is balanced.

Lemma 3.3.4. Given a stable graph G of genus g, we have

rb(G, kG) = rMAX(G, kG) = g − 1.

Proof. Suppose that the pair (G′, d′) is such that (G′, d′) ≥ (G, kG), we know that G′

also has genus g and that d′ also has degree 2g − 2. Additionally, d′ is a balanced

divisor on G′ of degree 2g − 2, hence, by Corollary 3.1.4 we have

rMAX(G′, d′) ≤ g − 1 and rMAX(G, kG) = g − 1.

So

rMAX(G′, d′) ≤ rMAX(G, kG).

Therefore, since (G, kG) ≥ (G, kG), we have that (G, kG) realizes rb(G, kG).

3.3.1 Riemann-Roch theorem for the balanced compactified rank

The aim of this section is to prove the Riemann-Roch theorem for the balanced

compactified rank. Let G be a stable graph and let d be a balanced divisor on G.

In order to calculate the balanced compactified rank of the divisor d∗ := kG − d,

rb(G, kG − d), we calculate rMAX(G′, d′∗) for pairs (G′, d′∗) ≥ (G, d∗) for which the

divisor d′∗ is balanced. Observe that if the divisor d′ ∈ Div(G′) realizes rb(G, d), the

divisor kG′ − d′ is not necessarily balanced.

In the following construction we establish that it is sufficient to calculate rMAX

on a suitable desingularization of the graph G′. We show that this is true for different

configurations of G′.
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Construction 1. Suppose that the graph G′ is such that (G′, d′) ≥ (G, d). We set

E = {v̂1, . . . , v̂n} ⊆ V (G′) the set of exceptional vertices of G′, hence V (G′) = V (G)∪E.

Denote by H the set of all edges of G′ adjacent to a vertex of E. By the definition of

exceptional contraction, there exists a subset F of H and a contraction map σF : G′ →

G contracting all the edges of F . Let v̂ ∈ E, then there are two possibilities, either

there is only one edge in F adjacent to v̂ or there are two edges of F adjacent to v̂.

This provides the following decomposition F = F 1 t F 2 where

F 1 := {e ∈ F : ∃ v̂ ∈ E such that e is the only edge of F adjacent to v̂}

and

F 2 := {e ∈ F : ∃ v̂ ∈ E such that e is one of the two edges of F adjacent to v̂}.

In this last situation, σF (v̂) is a vertex w of G such that ωG(w) > ωG′(w). In order

to better visualise this construction, consider the following example of graphs G and

G′ pictured in Figure 3.4. The graphs G′ and G are such that G′ ≥ G, we also have

ωG(v1) = 0, ωG(v2) = ω2, and ωG′(v2) = ω2 − 1.

v1v2v1

v̂2

v2

G :G′ :
e1

e2

e3

e14
e11

e21

e22e04

e01

v̂1

e3

e12 v̂3 e4

e02

Figure 3.4: The graphs G and G′.

Let F 0 := H \ F and notice that #F 1 = #F 0. In our reference example, we

have the sets H = {e01, e11, e02, e12, e21, e22, e04, e14}, F = {e11, e12, e21, e22, e14}, F 1 = {e11, e12, e14},

F 2 = {e21, e22} and F 0 = {e01, e02, e04}.

Given a set A ⊆ E(G′) and a vertex v ∈ V (G′), we set γA(v) the number of edges
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in A adjacent to v. Since (G′, d′) ≥ (G, d) with exceptional contraction σF , the divisor

d′ is obtained from d as follows

d′(v) =


1 if v ∈ E,

d(v)− γF 1(v)− γF2 (v)

2
otherwise.

In our reference example, the divisor d′ is given as in the figure below.

d′ :

d(v1)− 2

1

1

1
1

d(v2)− 2

Now, consider the graph G′H = G′ − £, the graph obtained by subtracting from

G′ the subset £ and the subset H of all the edges incident to vertices in £. Observe

that g(G′H) = g(G′)−n = g(G)−n, where n = |E| is the cardinality of the exceptional

vertices in G′.

v1 v2G′H :
e3

Consider the divisor d′H in G′H , we have d′H(u) = d′(u) for all u ∈ V (G′H). Given

v ∈ V (G′H) we denote by valG′H (v) the valency of v as a vertex of G′H , if we consider v

as a vertex of G′ we have that the valency of v as a vertex of G′ is valG′H (v) + γH(v).

So kG′H (v) = 2ωG′H (v) + valG′H (v)− 2 and d′H
∗

:= kG′H − d
′
H is given by

d′H
∗
(v) = 2ωG′H (v) + valG′H (v)− 2− d(v) + γF 1(v) +

γF 2(v)

2
. (3.8)

Set R = F 0∪F 2 and consider G′ contracted by a different map σR : G′ → G contracting

all the edges of F 0 and F 2. Recall that V (G′) = V (G) ∪ E. The divisor d∗′ such that



3.3. Balanced compactified rank 69

σR(d∗′) = d∗ := kG − d is given by

d∗′(v) =


1 if v ∈ E,

kG′(v)− d(v)− γF 0(v)− γF2 (v)

2
otherwise.

Now, consider the graph G′H . Denote by d∗′H the restriction of the divisor d∗′ to the

graph G′H , we have d∗′H(v) = kG′(v)− d(v)− γF 0(v)− γF2 (v)

2
, for v ∈ V (G′H).Thus,

d∗′H(v) =2ωG′(v) + valG′(v)− 2− d(v)− γF 0(v)− γF 2(v)

2

=2ωG′H (v) + (valG′H (v) + γH(v))− 2− d(v)− γF 0(v)− γF 2(v)

2

=2ωG′H (v) + valG′H (v)− 2− d(v) + γF 1(v) +
γF 2(v)

2
; (3.9)

since γH(v) = γF 0(v) + γF 1(v) + γF 2(v). Therefore, (3.9) is equal to (3.8).

Remark 3.3.5. Recall from Section 3.2 that given a quasistable graph G′ whose set of

edges adjacent to an exceptional vertex is H, the graph G such that G = G′H/H is

stable. So, a dual curve X of G is stable and the blow up of X on H, denoted by X̂H ,

is a quasistable curve and has G′ as its dual graph. We also consider the curve Xν
H ,

the normalization of X̂H at H, and whose dual graph is G′H , defined by subtracting

from G all the edges of H.

If d ∈ Div(G) is balanced, in order to calculate rb(G, d) we calculate rMAX(G′, d′)

where d′ is an admissible balanced divisor on G′ whose exceptional contraction is d.

Observe that if a line bundle L′ ∈ Picd
′
(G′) is admissible, hence, by Lemma 1.2.9, we

know that

h0(X̂H , L
′) = h0(Xν

H , L
ν
H) (3.10)

where L′|X̂H = LνH . Using the notation in Construction 1, as a result of (3.10), we have

rMAX(G′, d′) = rMAX(G′H , d
′
H),
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where d′H ∈ Div(G′H) is such that dH(v) = d′(v), for all v ∈ V (G).

Therefore, as a consequence of Construction 1, in order to calculate rb(G, kG−d),

where d is a balanced divisor on G, we can calculate rMAX(G′R, d
′
H), where d′H is the

restriction of a divisor d′ ∈ Div(G′) to the graph G′H such that (G′, d′) ≥ (G, d).

Theorem 3.3.6 (Riemann-Roch). Let G be a stable graph of genus g, d ∈ Bd
X , then

rb(G, d)− rb(G, kG − d) = d− g + 1.

Proof. It follows from Remark 3.3.5 that rb(G, kG − d) is realized by

rMAX(ĜH , kĜH − d̂H), with (Ĝ, d̂) ≥ (G, d) and G = Ĝ/H. It is sufficient to prove

that if (G′, d′) is the pair that realizes rb(G, d), with G = G′/R, then rb(G, kG − d) is

realized by rMAX(G′, kG′R − d
′
R). Suppose that rb(G, kG − d) = rMAX(ĜH , kĜH − d̂H).

Then applying Theorem 3.1.1 we have

rMAX(G′R, d
′
R)− rMAX(G′R, kG′R − d

′
R) = d− g + 1

= rMAX(ĜH , d̂H)− rMAX(ĜH , kĜH − d̂H).

Implying that

0 ≤ rMAX(G′R, d
′
R)− rMAX(ĜH , d̂H) = rMAX(G′R, kG′R − d

′
R)− rMAX(ĜH , kĜH − d̂H),

Hence

rMAX(G′R, kG′R − d
′
R) ≥ rMAX(ĜH , kĜH − d̂H).

Corollary 3.3.7. Let G be a stable graph of genus g and let d ∈ Divd(G) be a balanced

divisor, then

(a) if d = 2g − 2, we have rb(G, d) ≤ g − 1, and equality holds if d = kG.
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(b) If d > 2g − 2, we have rb(G, d) = d− g.

(c) If d = 0, we have rb(G, d) ≤ 0, and equality holds if d = 0.

(d) If d < 0, we have rb(G, d) = −1.

Proof. If d > 2g − 2, by Corollary 3.1.4 we have rMAX(G, d) = d− g, and this equality

holds for any (G′, d′) ≥ (G, d) because d = |d′| and g = g(G) = g(G′). Therefore,

rb(G, d) = d− g, and item (b) is proved.

If d < 0 then |d∗| = |kG(d)− d| = 2g − 2− d > 2g − 2. So, by item (b), it follows

that

rb(G, kG − d) = (2g − 2− d)− g = g − d− 2.

Therefore, by Theorem 3.3.6 we have

rb(G, d) = rb(G, kG − d) + d− g + 1 = (g − d− 2) + d− g + 1 = −1.

If d = 2g − 2, we know that rG(d) ≤ g − 1 and the equality holds if and only if

d ∼ kG. Since d is balanced, we have, by Theorem 3.1.3, that

rMAX(G, d) = rG(d) ≤ g − 1. (3.11)

Notice that given (G′, d′) ≤ (G, d) the degree of d′ equals the degree of d, hence (3.11)

holds for (G′, d′). Therefore, rb(G, d) ≤ g − 1. Lemma 3.3.4 asserts that the equality

occurs if d = kG, i.e., rb(G, kG) = g − 1.

If d = 0, then |d∗| = |kG − d| = 2g − 2, and it follows from item (a) that



72 Chapter 3. Different approaches to the algebraic rank

rb(G, kG − d) ≤ g − 1. By Theorem 3.3.6, we have

rb(G, d) = rb(G, kG − d) + d− g + 1

≤ (g − 1) + (2g − 2− g + 1)

≤ g − 1− g + 1 = 0.

The balanced compactified rank satisfies a version of the Specialization Lemma.

Lemma 3.3.8. Let φ : X → B be a regular one-parameter smoothing of a connected

curve X. Let G be the dual graph of X. Then for every L ∈ Picφ(B) there exists an

open neighbourhood U ⊂ B of b0 such that for every b ∈ U \ {b0} we have

r(Xb,L(b)) ≤ rb(G, d),

where d is a balanced multidegree equivalent to degL(b0).

Proof. Take L′(b0) ∼φ L(b0) with degL′(b0) = d balanced. As explained during the

proof of Lemma 2.4.1, we know that, once L′(b0) is on the φ-class of L(b0), by up-

persemicontinuity of h0 and by definition of rmax we have

r(Xb,L(b)) ≤ rmax(X, d)

for every b in an open neighbourhood U ⊂ B of b0. On the other hand, by definition

of rMAX, rmax(X, d) ≤ rMAX(G, d). Once (G, d) ≥ (G, d) and d is balanced we have

rMAX(G, d) ≤ rb(G, d). Therefore,

r(Xb,L(b)) ≤ rb(G, d).
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3.3.2 Inequality of ranks and generalized Dhar decomposition

Divisors of generalized Clifford type

In [8], Caporaso presents some examples where Clifford’s inequality fails for some

balanced divisors. In particular, there is an example of a curve with a line bundle of

degree d ≥ 3 that can be seen as a degeneration of a semistable curve.

Example 3.3.9. [8, Example 4.15] Fix an integer d ≥ 3. Let G be a semistable graph

and set the order V (G) = {v1, . . . , vd} such vi · vi+1 = 1 = vd · v1, for i ≥ 1. Also

ω(vi) = 1, for all i ≥ 1. Observe that g = d+ 1.

v1
+1

v2
+1

v3
+1

G =

Figure 3.5: The graph G, for d = 3.

Consider the divisor d = (1, . . . , 1) on G of degree d. Now, consider the graph G′

obtained from G by adding one new exceptional vertex at each edge of G. We write

V (G′) = {v1, v̂1, · · · , vd, v̂d}.

v1

v̂1

+1

v2

v̂2

+1
v3

v̂3

+1
G′ =

Figure 3.6: The graph G′, for d = 3.

So, a curve Y ∈ Malg(G′) is such that Y = C1 ∪ · · · ∪ C2d, with C2i
∼= P1 and

C2i−1 has geometric genus 1, for all i. Notice that Y has 2d nodes. Now, set the

balanced divisor d′ = (0, 1, . . . , 0, 1) on G′ and observe that (G′, d′) ≥ (G, d). For

any L ∈ Picd
′
(Y ), L is such that LC2j−1

∼= OC2j−1
and LC2j

∼= OP1(1). Consider the
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total normalization Y ν = C1 t . . . t C2d of Y . Given a line bundle L ∈ Picd
′
(Y ), let

Lν ∈ Pic(Y ν) be such that ν∗L = Lν . By Remark 1.2.9 we have

h0(Y, L) ≥ h0(Y ν , Lν)− 2d = d+ 2d− 2d = d.

Therefore, Clifford’s inequality fails for any L ∈ Picd
′
(X) such that the restrictions to

the Ci are as above, once h0(X,L) > d/2 + 1.

We know that the combinatorial rank satisfies Clifford’s inequality (Theorem

2.1.9), i.e., for any 0 ≤ d ≤ 2g − 2, we have

rG(d) ≤ d

2
,

where d ∈ Divd(G). Therefore, in this case, since d ≥ 3 one has

rMAX(G, d) ≥ d− 1 >
d

2
≥ rG(d).

Let us now study curves and line bundles for which Clifford’s inequality holds not

only for the curve but also for each one of its subcurves.

Definition 3.3.10. Let d be a divisor on G. We say that d is of generalized Clifford

type if given X ∈ Malg(G) for every line bundle L ∈ Picd(X) we have that Clifford’s

Inequality holds for every subcurve Z of X (not necessarily proper). In other words,

we have

r(Z,L|Z) ≥ eZ ⇒ degL|Z ≥ e
g(Z)
Z := eZ + min{eZ , g(Z)}.

Remark 3.3.11. By Clifford’s theorem, if |V (G)| = 1, any d ∈ Div(G), with 0 ≤

degL ≤ 2g, is of generalized Clifford type. Indeed, if X is a dual curve of G then X is
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irreducible and any L ∈ Picd(X) is such that

h0(X,L) ≤ d

2
+ 1.

Example 3.3.12. Let G be the weighted binary graph Bω1,ω2

k . Let d = (d1, d2) ∈

Div(G) be a balanced divisor with 0 ≤ d ≤ 2g. By Theorem 1.2.15, we have that for

every X ∈Malg(G) and L ∈ Picd(X),

h0(X,L) ≤ d

2
+ 1.

By Remark 3.3.11, each irreducible component ofX satisfies Clifford’s theorem. Namely,

writing X = C1 ∪ C2, we have

h0(Ci, L|Ci) ≤
di
2

+ 1.

for i = 1, 2. Therefore, d is of generalized Clifford type.

Generalized Dhar decomposition

Now, we present a generalization to the Dhar decomposition introduced in Section

1.1.2. Let G be a stable graph and let d a divisor in G. Fix a proper subset S of V (G)

such that in V \ S the divisor d is effective. The generalized Dhar decomposition of G

associated to d with respect to S is

V = Y0 t Y1 t . . . t Yl tW.

The construction of the decomposition is the following. Denote by Y0 = S and W0 =

V \ S. If the divisor d + tW0
is effective then we set W = W0 and we have the

decomposition V = Y0 tW . Otherwise, set Y1 the set of vertices of W0 where d+ tW0
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is negative. Now, we iterate the process, after defining Y0, . . . , Yj−1, denote

Wj−1 := V \ Y0 t . . . t Yj−1

and consider the divisor d + tWj−1
. If this divisor is effective then we set W := Wj−1.

Otherwise, define Yj the set of vertices ofWj−1 where d+tWj−1
is negative. This process

eventually exhausts all the vertices of the graph G, and in this case W will be empty.

Definition 3.3.13. Given a proper subset S of vertices of a graph G, we say that a

divisor d ∈ Div(G) is S-reduced if in the Dhar decomposition of G we have that W is

empty.

The S-reducedness of a divisor can be characterized analogously to the definition

of reducedness with respect to a vertex. Namely, given a proper subset S ⊂ V (G), a

divisor d ∈ Div(G) is S-reduced if

1. d(v) ≥ 0, for all v ∈, V (G) \ S;

2. For all A ⊂ V (G) \ S, there is a v ∈ A such that d(v) < v · (V (G) \ A).

Now, we show that the proof given by Baker and Norine in [3] for the existence

of a u-reduced divisor can be extend for S-divisors.

Proposition 3.3.14. Let G be a graph and let δ ∈ Pic(G), then for any proper subset

S ⊂ V (G) the divisor class δ has a S-reduced representative.

Proof. Given a divisor d ∈ Div(G) and a proper subset S ⊂ V (G), the proof starts with

the construction of divisor linearly equivalent to d that later is proved to be S-reduced.

The first step is to construct a divisor in the class of d that is effective outside S.

For v ∈ V (G), let D(v, S) denote the length of the shortest path in G between v

and a vertex of S. Let Rk = {v ∈ V (G) : D(v, S) = k} for 0 ≤ k ≤ d, so we can thus
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arrange the vertices of V (G) \ S in an order such that every vertex outside S has a

neighbour preceding it in this order.

Let D = maxv∈V (G)D(v, S) and define the vectors µ1(d) ∈ ZD and µ2(d) ∈ ZD+1

by

µ1(d) :=

 ∑
v∈RD
d(v)<0

d(v),
∑

v∈RD−1

d(v)<0

d(v), . . . ,
∑
v∈R1
d(v)<0

d(v)

 ,

µ2(d) :=

(∑
v∈R0

d(v),
∑
v∈R1

d(v), . . . ,
∑
v∈RD

d(v)

)
.

Replacing d by an equivalent divisor if necessary, we may assume without loss of gen-

erality that

µ1(d) = max
d′∼d

µ1(d
′) and µ2(d) = max

d′∼d
µ1(d)=µ1(d

′)

µ2(d
′),

where the maxima are taken in the lexicographic order. The vector µ1(d) tell

us how negative d is outside S in the order of the subsets Sk’s. So, calculating the

maximum of the vectors µ1 in the divisor class of d we are making a series of chip-firing

moves, starting by the last vertex in the giving order, to orderly make the degree of d

at no vertex outside S negative. It is easy to see that both maxima are attained.

Claim. The resulting divisor d is S-reduced.

Suppose that d(v) < 0 for some vertex v ∈ V (G) \S. Let v′ be adjacent to v such

that D(v′, S) < D(v, S) and d′ = d− tv′ . Then d′(v) > d(v), and d′(u) ≥ d(u) for every

u such that D(u, S) ≥ D(v, S). It follows that µ1(d
′) > µ1(d), contradicting the choice

of d. Therefore d(v) ≥ 0 for every v ∈ V (G) \ S.

Suppose now that for some non-empty subset A ⊆ V (G)\S, we have d(v) ≥ (v, A)

(the out degree of v in A) for every v ∈ A. Let d′ = d− tA and DA = minv∈AD(v, S).

We have d′(v) ≥ d(v) for all v ∈ V (G)\A and d′(v) = d(v)−(v, A) ≥ 0 for every v ∈ A.

Therefore µ1(d) = µ1(d
′), as they are both the zero vector. There must be a vertex
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v′ ∈ V (G) such that D(v, S) < DA, and for which v′ is adjacent to a vertex of A. It

follows that d′(v′) > d(v′), and consequently µ2(d
′) > µ2(d), once again contradicting

the choice of d. This finishes the proof of claim and of the proposition.

Notice that we have that the S-reduced representative is unique if S = {u}, but

not in the general case.

Example 3.3.15. Let G be the graph pictured bellow in Figure 3.7. Consider the order

V (G) = {v1, v2, v3, v4, v5, v6} and the divisor d = (0, 2, 1, 1, 2, 1). Then the generalized

Dhar decoposition of G associated to d with respect to S1 = {v1, v6} is as follows

Y0 t Y1 tW = {v1, v6} t {v4} t {v2, v3, v5}.

On the hand, the decomposition with respect to S2 = {v3, v5} is

Y0 t Y1 t Y2 t Y3 t Y4 = {v3, v5} t {v1} t {v4} t {v2, v6}.

In this case, since W is empty, the divisor d is S2-reduced.

G =

v1

v2

v3

v4

v5 v6
0 1

1

1

2

2

Figure 3.7: The graph G and the divisor d = (0, 2, 1, 1, 2, 1).

The inequality of ranks for divisors of generalized Clifford type

Recall that given X ∈ Malg(G), we denote X = ∪v∈V (G)Cv, where Cv is the

component corresponding to the vertex v ∈ V (G); and given d ∈ Div(G) and S ⊆
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V (G), we write d(S) :=
∑

v∈S d(v). If S ⊆ V (G), we denote by CS the curve ∪v∈SCv.

Similarly to Lemma 2.3.1, we have the following generalization.

Lemma 3.3.16. Let d ∈ Div(G) and let X be a nodal curve whose dual graph is G and

let L ∈ Picd(X). Suppose that for some S ⊂ V (G), and effective divisor e ∈ Div(G),

the divisor d − edeg is S-reduced. Then the space of global sections of L vanishing

identically on CS has dimension at most |e| − e(S).

Proof. Consider the Dhar decomposition V = Y0 t Y1 t . . . t Yl associated to the S-

reduced divisor d − edeg. Denote by Λj, for each 0 ≤ j ≤ l, the space of sections of L

vanishing on the components of X corresponding to the vertices of Y0 t Y1 t . . . t Yl.

We want to prove that dim Λ0 ≤ |e| − e(S). The prove is conducted by induction on

0 ≤ j ≤ l, showing that

dim Λj ≤
l∑

i=j+1

|e|Yi |. (3.12)

For j = l, the claim is true, since Λl is the space of sections vanishing on the entire

curve, and its dimension is 0. Now, assume that (3.12) holds for j and consider Λj−1.

Let v be any vertex of Yj, and let Dv be the divisor on Cv consisting exactly of the

intersection points of Cv with the components of X corresponding to Y0 t . . . t Yj−1.

Notice that Remark 1.1.11 is also valid for the case of S-reduced divisors. So, since

d− edeg is S-reduced, we have

(d− edeg)(v)− deg(Dv) < 0.

Hence

degCvL(−Dv) < edeg(v),
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and therefore, we have

h0(Cv, L(−Dv)) ≤ e(v).

We obtain

dim

⊕
v∈Yj

H0(Cv, L(−Dv))

 ≤∑
v∈Yj

e(v) = |e|Yj |. (3.13)

Now, consider the exact sequence

0 −→ Λj −→ Λj−1
α−→
⊕
v∈Yj

H0(Cv, L(−Dv)),

where α is the map restricting a section to each component. Then

dim Λj−1 ≤ Λj + dim

⊕
v∈Yj

H0(Cv, L(−Dv))

 ≤ l∑
i=j

|e|Yi |,

where the last inequality follows from the induction hypothesis and (3.13). The Lemma

is proved.

Lemma 3.3.17. Let d ∈ Div(G) be of generalized Clifford type and such that

rMAX(G, d) = s. Fix a subset S of V (G). Given e ∈ Divs+(G) such that d − edeg

is S-reduced we have that d(S)− edeg(S) ≥ 0.

Proof. The proof follows the proof of Lemma 2.3.2. Since d − edeg is S-reduced, we

know by definition that this divisor is effective at V (G)\S. And since rMAX(G, d) = s,

there exist X ∈ Malg(G) and L ∈ Picd(X) such that r(X,L) ≥ s. Now, consider the

following exact sequence

0→ ker(π)→ H0(X,L)→ H0(CS, LCS) (3.14)

where π is the restriction of sections to CS. Observe that ker(π) is the set of global
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sections of L vanishing at CS, hence by Lemma 3.3.16,

dim(ker(π)) ≤ s− e(S).

And from (3.14) we have

h0(CS, LCS) ≥ h0(X,L)− dim(ker(π)) ≥ s+ 1− s+ e(S) = e(S) + 1.

From Definition 2.1.10, we have that

edeg(S) = e(S) + min{e(S), g(S)}.

Since d is of generalized Clifford type, edeg(S) is the minimum degree of a line bundle

on CS of rank e(S), more precisely

degCS L ≥ edeg(S),

which implies that d(S) ≥ edeg(S). The proof is complete.

Theorem 3.3.18. Let G be a stable graph and let d ∈ Div(G) be of generalized Clifford

type. If d is S-reduced with respect to all S ( V (G) which contain the vertices where d

possibly has negative degree, then

rMAX(G, d) ≤ rG(d).

Proof. Let rMAX(G, d) = s. If s = −1, the result follows from Corollary 3.3.7. So, we

can assume s ≥ 0. We want to prove that rG(d) ≥ s, by Lemma 2.1.11 it is enough to

show that for all e ∈ Divs+(G) there exists a d′ ∼ d such that d′ − edeg ≥ 0.
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Given an effective divisor e on G of degree s, set

S = {v ∈ V (G) : (d− edeg)(v) < 0} ⊂ V (G).

Notice that if S is empty then the divisor d − edeg is effective and we are done. We

want to show that S is proper. Suppose by contradiction that S = V (G), i.e.,

(d− edeg)(v) < 0, ∀v ∈ V (G). (3.15)

Recall from Definition 2.1.10 that edeg(v) = e(v) + min{e(v), g(v)}, for all v ∈ V (G).

So, we have

|edeg| =
∑

v∈V (G)

e(v) +
∑

v∈V (G)

min{e(v), g(v)} ≤ s+
∑

v∈V (G)

g(v) ≤ s+ g. (3.16)

On the other hand,

|edeg| =
∑

v∈V (G)

e(v) +
∑

v∈V (G)

min{e(v), g(v)} ≤ 2s. (3.17)

Since rMAX(G, d) = s, there exist a curve X ∈Malg(G) and a line bundle L ∈ Picd(X)

such that r(X,L) ≥ s. It follows from the fact that d is of generalized Clifford type

that

d = degL ≥ r(X,L) + min{r(X,L), g} ≥ s+ min{s, g}. (3.18)

Subtracting (3.16) from (3.18) we obtain

d− |edeg| ≥ min{s, g} − g, (3.19)

on the other hand, subtracting (3.17) from (3.18) we obtain

d− |edeg| ≥ min{s, g} − s. (3.20)
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So, if min{s, g} = g, then, by (3.19), d − |edeg| ≥ 0. Otherwise, min{s, g} = s and

d− |edeg| ≥ 0 follows from (3.20), which contradicts (3.15).

So we have that S is proper and, by hypothesis, that d is S-reduced since S is

the set of vertices where d− edeg has negative degree. Thus, d− edeg is also S-reduced.

Then, since d is of generalized Clifford type and d−edeg is S-reduced, by Lemma 3.3.17

we have d(S)− edeg(S) ≥ 0, implying that S is empty. Therefore, d− edeg ≥ 0 and the

proof is complete.

Corollary 3.3.19. Let G = Bω1,ω2

k be a weighted binary graph of genus g and let

0 ≤ d ≤ 2g. If d = (d1, d2) ∈ Divd(G) is a balanced divisor and d2 ≤ k, then

rMAX(G, d) ≤ rG(d).

Proof. We verified in Example 3.3.12 that if d is a balanced divisor with 0 ≤ d ≤ 2g on

a weighted binary graph Bω1,ω2

k then d = (d1, d2) is of generalized Clifford type. In this

case, the only non-empty proper subsets of V (Bω1,ω2

k ) are S1 = {v1} and S2 = {v2}.

For instance, since d ≥ 0, thus d2 ≥ 0 and since d2 ≤ k we have that d is S1-reduced.

Please remark that S1 is the only proper subset of V (Bω1,ω2

k ) containing the vertices

where d possibly has negative degree. Therefore, it follows from Theorem 3.3.18 that

rMAX(G, d) ≤ rG(d).

3.3.3 The rank of divisors on binary weighted graphs

The purpose of this section is to establish cases where the combinatorial rank

equals the balanced algebraic rank of a divisor on a (weighted) binary graph. We

begin by making the following useful remark.

Remark 3.3.20. Let G be a weighted binary graph and d ∈ Div(G). We know that

in order to calculate rb(G, d) we have to calculate the maximum value of rMAX(G′, d′)

among all (G′, d′) ≥ (G, d), where d′ is balanced.
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An argumentation similar to the one done in Construction 1 shows that rb(G, d)

is calculated considering the rMAX on weighted binary graphs and balanced degrees

obtained by partially normalization of the ones weightily contracted to (G, d). From

now on we use the same notation as Construction 1. As discussed in Construction 1

and in Remark 3.3.5, these normalizations correspond to subtracting from G′ all the

edges of £, so the calculations are done in G′H = G′−£, where £ ⊂ V (G′) is the set of

exceptional vertices of G′. But notice that G′H is a weighted binary graph (see Figure

3.8).

G : G′ : G′H :

ω1 ω2

v1 v2

ω1 − 1

v1 v2

ω2

v1 v2

ω1 − 1 ω2

v̂1

v̂2

v̂3

Figure 3.8: The graphs G, G′ and G′H .

In point of fact, we know that the F2 is the set of edges in the loops in G′ being

contracted to weights of G. So subtracting from G′ all the vertices in £ adjacent to

edges in F2 the resulting graph from this contraction has no loops. On the other hand,

subtracting from G′ all the exceptional vertices adjacent to F1 results on a weighted

graph with the two vertices joined by k′ edges, with k′ ≤ k.

Proposition 3.3.21. Let G be a binary graph and let d ∈ Div(G) be balanced, then

rb(G, d) = rG(d).

Proof. Here we use the same notation of Example 3.2.8, so we consider d = (d1, d2)

with 0 ≤ d1 ≤ d2. If d2 ≤ g, d is the unique effective representative on the divisor class,

and there exists a special binary curveX ∈Malg(G) such that rmax(X, d) = rG(d) = d1.
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Moreover d is balanced on X once

d− g − 1

2
≤ di ≤

d+ g + 1

2
, for i = 1, 2.

Let R = {e} ⊂ E(G) and set d′′ = (d1, 1, d2 − 1) ∈ Divd(ĜR).

v1
v2

v̂

ĜR =

Consider the binary graph GR and the curve XR ∈ Malg(GR) the normalization in R

of X. The restriction of the divisor d′′ = (d1, 1, d2 − 1) to GR is d2 = (d1, d2 − 1). The

divisor d′′ is admissible (and balanced) hence rmax(ĜR, d
′′) = rmax(GR, d2). We have

rmax(X, d) = rmax(XR, d2) = rG(d),

once GR is a binary graph and d2 − 1 ≤ g − 1. Therefore, by Theorem 3.3.18 and

Example 3.3.2 we have rb(G, d) = rG(d).

When d2 ≥ g + 1, the representative d of the divisor class is chosen such that is

balanced. Set d′ = (d1− 1, 1, d2) and d′′ = (d1, 1, d2− 1) balanced divisors on ĜR. The

restrictions of these divisors to GR are d1 and d2, respectively. By Example 3.2.8 we

know that

rG(d) = rGR(d1) = rGR(d2) = d1 + d2 − g.

Pick any curve X ∈Malg(G), then for XR ∈Malg(GR), we have

rmax(X̂R, d
′) = rmax(XR, d1) and rmax(X̂R, d

′′) = rmax(XR, d2).
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Let LR ∈ Picdi(XR), i = 1, 2, by [7, Lemma 10(i)], we have

r(XR, LR) = d1 + d2 − 1− (g − 1) = d1 + d2 − g.

So,

rMAX(XR, d1) = rMAX(XR, d2) = rG(d).

For another (G′, d′) ≥R′ (G, d), we have

rMAX(XR, di) ≥ rMAX(XR′ , dGR′ ), for i = 1, 2.

Therefore, rb(G, d) = rG(d).

Proposition 3.3.22. Let G = Bω1,ω2

k be a weighted binary graph, with ω1 = ω2. Let

d = (d1, d2) ∈ Div(G) be balanced such that d1 ≤ d2 ≤ k. If 0 ≤ d ≤ 2g, then

rb(G, d) = rG(d). (3.21)

Proof. Set the order V (G) = {v1, v2}. Notice that d is v1-reduced, and by balanced

hypothesis. If d1 < 0 then it follows from Proposition 2.1.6 that rG(d) = −1. Since

d ≥ 0, we have that d2 ≥ 0, so by Corollary 3.3.7(d) we have that

rMAX(G, d) ≤ rG(d) = −1,

thus equality.

Hence, we may assume d1 ≥ 0, by Corollary 2.1.16 we have

rG(d) = drk(v1) = max{bd/2c, d1 − ω1}.
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Let C1 be a curve of genus ω1 and LC1 be a line bundle on C1 such that

r(C1, LC1) = max{bd1/2c, d1 − ω1}.

Since ω1 = ω2, there exists a special curve

X = (C1 ∪ C2)/{pi = qi, i = 1, . . . k}

dual to G such that there is an isomorphism φ : C1 → C2 with φ(pi) = qi, i = 1, . . . k.

Let L ∈ Picd(X), we have

r(X,L) ≥ r(C1, LC1) = max{bd1/2c, d1 − ω1}.

So, rMAX(G, d) ≥ max{d1 − ω1, bd/2c}. By Corollary 3.3.19 we have

rMAX(G, d) = rG(d). (3.22)

Notice that (3.22) implies that rb(G, d) ≥ rG(d). In order to prove that

rb(G, d) = rG(d) it is enough to prove that for any (G, d′, ω′) ≥ (G, d, ω) we have

rG(d) ≥ rMAX(G′, d′).

We know from Remark 3.3.20 that rb(G, d) is calculated on binary curves and

balanced degrees obtained by possibly normalizing dual curves to G′. Using the no-

tation utilized in Construction 1, the weighted contraction depends on the sets F 1

and F 2, they determine if the contraction happens on loops to weights or on edges of

F 1 to original edges of G. Either way, it is at the weighted binary graph G′H where

we calculate rMAX of d′H , where d
′
H(vi) = d′(vi), for i = 1, 2 (see Figure 3.8). Thus,

for what was discussed here for the weighted binary graph G, the ranks can only

decrease once d′(v2) and ω′i may decrease, and consequently min{d′(v1), d′(v2)} and
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min{d′(v1)− ω′1, d′(v2)− ω′2} may also decrease. Therefore,

rMAX(G′, d′) = rMAX(G′H , d
′
H(v)) ≤ rG(d).

Remark 3.3.23. Let (G′, ω′, d′) and (G,ω, d) be triples of (weighted) stable graphs and

balanced divisors such that (G′, ω′, d′) ≥ (G,ω, d). Let the triple (G′H , ω
′
H , d

′
H) be a

normalization of the exceptional components of (G′, ω′, d′), then

rb(G, d) ≥ rb(G′, d′) = rMAX(G′H , d
′
H).

This is due to the fact that the rMAX of degenerations of (G′, d′) are also calculate when

calculating rb(G, d).

Example 3.3.24. Example 2.6.1 illustrates the case of a balanced divisor d in a

weighted binary graph whose algebraic rank is strictly smaller than its combinatorial

rank. Later, in Example 3.2.6 we show that it is possible to find a triple (G′, ω′, d′) ≥

(G,ω, d) such that in order to calculate rMAX(G′, d′) we calculate the normalizations

suitable refinement Y (with dual graph G′H) of the curve X with the divisor (3, 3) ∈

Div(G′H) such that

rmax(Y, (3, 3)) = rG(d) = 2. (3.23)

Consider the weighted binary graph B2,2
k with k > 12 and let (4, 4) ∈ Div(B2,2

k ).

Now, let the triple (G1, ω1, d1) be such that V (G1) = {v̂1, v1, v2} with v1 · v2 = k and

v1 · v̂1 = 2, ω1(v1) = 1, ω1(v2) = 2 and ω1(v̂1) = 0, and d1 = (1, 3, 4). Observe that

(G1, ω1, d1) ≥ (B2,2
k , ωB2,2

k
, (4, 4)) and that the graph G is the normalization of G1 in its

rational components (the two edges whose ends are the vertices v1 and v̂1). However,
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since the graph B2,2
k is a weighted binary graph and

0 < |(4, 4)| = 8 < 2(k + 3) = 2g(B2,2
k ),

it follows from Proposition 3.3.22 that

rb(B2,2
k , (4, 4)) = rB2,2

k
(4, 4) = 2 = rG(d).

By Remark 3.3.23, we have that rb(B2,2
k , (4, 4)) ≥ rb(G, d). Therefore, it follows from

(3.23) and that rb(G, d) = 2 = rG(d).

In particular, to illustrate another possible degeneration of G consider the com-

plete degeneration on its weights. For instance, let G′′ be the weightless graph such

that V (G′′) = {v1, v2, v̂1, v̂2, v̂3} such that v1 · v̂1 = v2 · v̂2 = v2 · v̂3 = 2 and v1 · v2 = k,

and let d′′ = (2, 2, 1, 1, 1) ∈ Div(G′′).

G′′R :

v1 v2

G′′ :

v1 v2

v̂2

v̂3
v̂1

Figure 3.9: The weightless graph G′′ and the binary graph G′′R.

We have that (G′′, ω′′, d′′) ≥ (G,ω, d) and in order to calculate rMAX(G′′, d′′) we

calculate rMAX(G′′R, d
′′
R), where R = {v̂1, v̂2, v̂3}. The graph G′′R is a binary graph (see

Figure 3.9), therefore Proposition 3.3.21 give us that

rb(G′′R, d
′′
R) = rG′′R,d′′R = 2.

Example 3.3.25. Let G = Bω1,ω2

k be a weighted binary graph, with the order V (G) =

{v1, v2}. Let d ∈ Div(G) be balanced such that d1 = d(v1) ≤ 2ω1, d2 = d(v2) ≤ 2ω2
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and d2 ≥ k. If d1, d2 and k are even integers, we expect to be true that

rb(Bω1,ω2

k , d) =
d1
2

+
d2
2
− k

2
+ 1. (3.24)

In fact, if we consider the graph ĜR with R = V (G) and d′ = (d1, 1, . . . , 1, d2−k) ∈

Div(ĜR), we have that (ĜR, d
′) ≥ (Bω1,ω2

k , d). Let X ∈ Malg(Bω1,ω2

k ) be a curve and

consider the total normalization Xν
E = C1 t C2 ∈ Malg(G′) of X. Given a line bundle

L ∈ Picd(X), let Lν ∈ Picd
′
(Xν

E) be such that ν∗L = Lν . By Uniform Clifford (Theorem

1.2.14), we have

h0(C1, L
ν
C1

) ≤ d1
2

+ 1 and h0(C2, L
ν
C2

) ≤ d2 − k
2

+ 1. (3.25)

By Remark 1.2.9, we have

r(X,L) ≤
(
d1
2

+ 1

)
+

(
d2 − k

2
+ 1

)
− 1 =

d1
2

+
d2
2
− k

2
+ 1.

Therefore, if there is a curve X ∈Malg(G) such that in (3.25) we have equalities, then

we would have

rb(Bω1,ω2

k , d) ≥ d1
2

+
d2
2
− k

2
+ 1.
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Conclusion and forthcoming work

In this thesis we addressed the problem of explaining the gap between the com-

binatorics of rank of divisors on finite graphs and the geometry of ranks of divisors on

algebraic curves.

The initial way we approached this problem was defining the rank rALG. This

new rank was proved to satisfy some results analogous to those already existing for

ralg, such as the Riemann-Roch theorem and Clifford’s theorem. We intuit that these

two invariants are equal, we conclude Section 3.1 by proving that ralg is an upper

bound for rALG, the proof was constructed having a strictly numeric point of view.

But this perspective ignores the geometry and combinatorics of the objects involved in

the problem. So it is natural that we ask the following question.

Question 2. Do we have, for all δ ∈ Pic(G), ralg(G, δ) = rALG(G, δ)?

Recall that, by Theorem 3.1.3, if G is semistable graph g and δ ∈ Picd(G), with

d ≥ 2g−2, then every semibalanced d ∈ δ, in particular balanced, satisfies rMAX(G, d) =

rG(d). In this case, do we also have rb(G, d) = rG(d)? More generally, we ask the

following question:

Question 3. Suppose that d ∈ Div(G) is balanced, is it true that rG(d) = rMAX(G′, d′)

91
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for some (G′, d′) ≥ (G, d) and d′ balanced?

The initial problem was to find an algebraic interpretation of the combinatorial

rank, but now that we have introduced the balanced compactified rank, we ask if

whether or not rb has a combinatorial interpretation.

Regardless of the correlation with the combinatorial rank, we question if the bal-

anced compactified rank carries with it interesting properties related to the geometry

of the compactified Jacobian.
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