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Introduction

Artin’s conjecture (AC) on primitive roots is one of the most important open problems in number
theory. The conjecture states that for any given integer a # 0, —1 which is not a square there
exist infinitely many prime numbers p such that a is a primitive root modulo p. More precisely,
if No(z) := #{p < v : F; = {a (mod p))}, then as x — o©

Ny(z) ~ A(a) Li(z) ,

where the constant A(a) is a rational multiple of the so-called Artin’s constant

1
A= 1—— ] .
1;[ ( p(p— 1))
Many attempts have been made to prove this conjecture and, so far, the only proofs of the
“classical” AC and of many of its “variations” (like the higher rank AC, the weighted AC and
the AC on average, studied in this thesis) rely on the Generalized Riemann Hypothesis (GRH).

In particular, the classical AC has been proved under GRH by Hooley [9], so that we have the
following:

Theorem (Hooley). Consider an integer a # 0,—1 which is not a perfect square and let h be
the largest integer such that a = a(})‘; denote with d the discriminant of the quadratic extension
Q(+v/a). Assuming GRH for the number field Q(C,,a'/™) for every squarefree n, then

log 1
Na(z) = 6o Li(z) + O, [ 2287
log?

where

A(h) if d# 1 (mod4),
5, = 2 p(n) _
2 [0, a/) - Q] (1 ~ i) Ty 7 T 1) A() if d=1 (modd).,
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A possible generalization of the classical A(ﬂ is the so-called “higher rank AC” or “r-rank
AC”, meaning that we now deal with a finitely generated subgroup of the rationals I' < Q
of rank r < o (instead of the classical 1-rank conjecture): this subgroup will have the form
I'=<{q,...,9r) where (g1 ...g,) is an r-tuple of multiplicatively independent rational numbers
and its reduction I'y, = (g1 (mod p), ..., g, (mod p)) is well-defined for almost all prime numbers.

In Chapter [I] we will see some results concerning the r-rank AC, where one is interested in
those primes p for which the index i, := [F} : I',] = 1, together with the “quasi” r-rank AC,
where one looks after those primes for which i, = m for a certain natural number m dividing
p — 1: these results will be used to prove the original results of Chapters [2| and

Chapter [2] deals with what can be called “weighted r-rank AC”, meaning that we consider

the sum
D7 F(ip) (1)

pP<T

where f(n) is a generic arithmetic function that “weights” the indices i,. This is the r-rank
generalization of the work of Pappalardi [23], where the specific case I' = (2) was considered.
Various theorems on the asymptotic behavior for x — o0 of the sum are presented, both
unconditionally and under GRH, together with different applications. The original results of this
Chapter appear in the submitted paper [16].

In Chapter |3|is presented a joint work with Cihan Pehlivan [I7] on the r-rank AC on average.
This work is the higher rank generalization of the original work of Stephens [31], where it was
proved that, if T > exp(4(log z log log x)'/?), then

% 3 Na@) = ¥ (P;p__f) +0 ((10;96)1?) = ALi(@) +0 ((logxx)D) ’

a<T p<z

where D is an arbitrary constant greater than 1; in the same paper it was also proved that,
assuming T > exp(6(log  log log x)'/?), then

1 ) — i(2)) « ————
7 2, WNelo) ~ AL} « oty

2

for any constant D’ > 2. In Chapter 3| the analogous averages are studied, for the case I' =
{ai,--- ,ar), with a; € Z for all i = 1,...,r; the following unconditional theorems are proved:

Theorem. Let T* := min{T; : i = 1,...,r} > exp(4(log z log log a;)%) and m < (logz)P for an
arbitrary positive constant D. Then

1 ) T
ﬁ 2 N<a17...’ar>’m($) = Cnm Ll(ﬂ?) + O ((logl’)]w) s

r a; €7
O0<a1<Th

O0<a,<T)

!For an exhaustive survey that discuss different generalizations of AC, see [20].
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where Cyp i= Y51 % and M > 1 is arbitrarily large.

nm)”o{nm

Theorem. Let T* > exp(6(log z log log x)%) and m < (logx)P for an arbitrary positive constant
D. Then

1 . 2 x?
T Y N aym(@) = CrpLi(@)} « log )™
1 r aiGZ g
O0<a1<Th
0<aT:<TT

where M' > 2 is arbitrarily large.

Finally, in Chapter [4| we expose the ongoing work that will be subject of a future joint paper
with Francesco Pappalardi [18].
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Notations

We give a list of notations we will use in the thesis. We denote with Z the ring of integers
and with Q, R, C respectively the field of rational, real and complex numbers. If not differently
specifies, p, ¢ and ¢ will always denote prime numbers. F, is the finite field with p elements.
Given an integer n # 0, its p-adic valuation is vy(n) = max{k € N : p* | n}; hence, the p-adic
valuation of a rational number g = a/b is defined as v,(g) = vp(a) — vp(b).

In the whole thesis, I' € Q¥ is a finitely generated subgroup of the rationals with rank r: we
can think about it as I' = (g1, ..., g,) with generators g; multiplicatively independent, that is
g1 g5t - gir =1lonlyife; =ex =...=e, =0. We define Supp(I") = {p: vp(g) # 0,9 € T'} and
or = l_[pesupp(r) p The reduction of I modulo a prime p is well defined for every prime p { or
and it’s denoted as I'y, = (g1 (mod p),..., g, (mod p)). The order of I, is indicated as |I',| and
the relative index is i, = [y : T',].

For every positive integer n, we set K, (I') := Q((,, /"), the (Kummer) field generated by
the n-th roots of the elements of I' and by the n-th root of unity ¢, = e2™/™; we also indicate
with k,(T") := [K,(T) : Q] the relative degree.

For two real functions f(x), g(x), we write f(x) = O(g(z)) (or equivalently f(z) < g(x)) as
x — oo if and only if there exists a constant C' > 0 and a real number x( such that |f(z)| < Cg(x)
for all x > z¢. As a consequence, O(1) stands for an arbitrary constant. We write f(x) = o(g(x))

The logarithmic integral Li(z) is defined as

Todt
Li(z) == | —
5 logt
and from the Prime Number Theorem we know that, asymptotically as x — oo, Li(z) ~
z/logx ~ m(x), where 7(x) := #{p < x} is the prime counting function.
Given a number field K (i.e. a finite-dimensional field extension of QQ), we consider the set

7T of the non-zero ideals I of its ring of integers Ok . The Dedekind zeta function of K is then
defined as

1
)= 2 iy

1eT
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where N(I) =[Ok : I] is the norm of the ideal I and s = o + it is a complex number: it can
be shown that (i (s) has an analytic continuation to a meromorphic function on C\{1}, having
a single pole at s = 1. The Generalized Riemann Hypothesis (GRH) is an unproven conjecture
which says that if (x(s) =0 and 0 < o <1, then o = 1/2.
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Chapter 1

Higher rank Artin’s conjecture on
primitive roots: an overview

In this Chapter we present some results that will be used in Chapters [2] and

1.1 Artin’s conjecture on primitive roots: an overview

We describe in this Section the basic ideas behind the study of Artin’s conjecture on primitive
roots; we first focus on the classical 1-rank case, then we generalize the problem for a generic
(finite) rank r.

In 1927 Artin conjectured that, given any number a € Q\{0, —1} which is not a perfect
square, then there exist infinitely many prime numbers p for which a is a primitive root modulo
p- Moreover, Artin estimated that if we denote Ny(x) := #{p < z : [F}; : {a (mod p))|] = 1},
then

Ny(x) ~ §, Li(z) ,

as r — o0, where §, is a non-vanishing constant depending only on a.
For a fixed prime number p, a rational number a such that v,(a) = 0 is a primitive root

-1
modulo p if and only if a’T # 1 (mod p) for every prime ¢ | (p — 1). In order to study the
asymptotic behavior of N,(z) as © — o we can think of fixing ¢ in order to look after those

-1
primes p = 1 (mod ¢) such that a’ T # 1 (mod p) and we do that for every fixed prime number

q. Consequently, a not be a primitive root modulo p if the conditions p = 1 (mod ¢) and
—1
T =1 (mod p) are simultaneously satisfied. But p = 1 (mod ¢) if and only if the equation
-1
x? = 1 (mod p) has ¢ distinct solutions and a’T # 1 (mod p) if and only if the equation

-1
x? = a (mod p) is solvable. Then, the primes p = 1 (mod ¢) satisfying a7 # 1 (mod p) split

1



completely in the field K,(a) = Q((y, at/ 7); since the converse is also true, we have

p=1 (mod q) A T =1 (mod p) <= p splits completely in K,(a) .

So if we indicate with P,[K,(a)] the probability that a prime p splits completely in K4(a), a
naive probabilistic approach to Artin’s conjecture should lead to the probability

H(l — Bp[Kq(a)])

q

for a to be a primitive root modulo p. Unfortunately, for generic primes p,p’,q,q the events
P,|K4(a)] and Py|Ky(a)] are not in general independent and the previous reasoning must be
modified, as was already known to Artin himself by the numerical results of the Lehmers [14].

1.1.1 The Chebotarev Density Theorem

One of the main tools used in the study to Artin’s conjecture on primitive roots is the Chebotarev
Density Theorem [3]. This powerful theorem can be stated as follows:

Theorem 1.1.1 (Chebotarev). Let F' be a number field and K/F a finite Galois extension with
Galois group G = Gal(K/F); given any conjugacy class C < G, then the set of unramified primes
p € O for which the Frobenius substitution o, has conjugacy class C' has density |C|/|G|.

In our case, we are interested in those primes p € Z that split completely in K,(a), so that
the conjugacy class we are dealing with is the trivial one C' = {id}. From Chebotarev Density
Theorem then

#{p < x : splits completely in Ky(a)} ~

as r — o0.

For any squarefree n, we can consider the compositum K,,(a) of the fields K,(a) with ¢ | m
and we have K,,(a) = Q((pm, al/ ™); since we are looking for those primes p that do not split
in any K,(a), by the inclusion-exclusion principle we are led to formulate Artin’s conjecture as
follows:

Conjecture 1.1.2 (Artin). Let a € Q\{0, 11} and h = max{n € N: a € Q*"}, then
Nol@) = #{p < 2 [F3: (o (mod p))] = 1} ~ &, Ti(x), 2 — o,
with

A(h) if d # 1 (mod4),
© -

v )
0o = ,,; [Kom(a) : Q] (1 — u(|d]) HQEZ = qu‘,‘f q?lql> A(h) if d=1 (mod4),
q q

2



and A(R) = 1;[ (1 - p((]])j’—h)1)> '

= [F}; : {a (mod p))], Supp(a) := {p : vp(a) # 0} and, for any squarefree m,
To(x,m) := {p < x:p¢supp(a),m | ip}; we notice that, for any prime p ¢ Supp(a),

1

p=1(modm)Aam =1 (mod p) <= m | ip.

The following theorem is effective version of Chebotarev Density Theorem due to Lagarias and
Odlyzko [12]:

Theorem 1.1.3. Assuming GRH for the Dedekind zeta function of K,(a), then
1

mo(x,m) = —————— Li(z) + O(+/zlog(mxz)) . 1.1
(:m) = oy gy M) + O log(ma) (1)
Unconditionally, there exists an absolute constant A such that, if m < (log x)1/7, then
1
To(x,m) = ——————Li(z) + O(z exp(—A+/logz/m)) . 1.2
(:m) = Ty g M) + Olwesp(=Aylogn/m) (12)

Conjecture[1.1.2) was first proven by Hooley [9] assuming GRH for the Dedekind zeta function
associated to the field K,,(a) for any m. The necessity of assuming GRH can be explained as
follows: one can prove unconditionally that, if £(x) is a real-valued function that goes to infinity
slowly enough, then the proportion of prime numbers p that do not split completely in K,(a)
for any prime ¢ < £(z) is exactly d, as x — 00, but one cannot prove the same for those primes
g > &(x). The reason for that lies in the tail of the inclusion-exclusion: without GRH, the errors
for all the prime numbers ¢ > £(x) due to unconditional version of Chebotarev Density Theorem
give a contribution that overwhelms the main term d,2/logx in Artin’s conjecture. But,
assuming GRH, the errors from in the tail give an overall error which is o(z/log x).

1.2 r-rank Artin’s conjecture

One of the most impressive results on Artin’s conjecture is the unconditional theorem by Gupta
and Ram Murty [7] and its successive refinement by Heath-Brown [10]: it is a 3-rank case whose
main result can be stated as follows:

Theorem (Gupta, Ram Murty, Heath-Brown). Let a1, as and ag be non-zero multiplicatively
independent integers. Suppose that none of a1, as, as, —3aias, —3a1as, —3asa3 and aiasas is
a square. Then for at least one i € {1,2,3} we have

Ng.(x) » .
() log? =



If we consider I'y, the reduction modulo p of a finitely generated subgroup of rationals
I' € Q* of rank » > 1, the problem is now to study the asymptotic behavior of the quantity
Nr(z) := #{p < z : [F}, : T)] = 1}. The strategy is similar to the one used in the 1-rank case
but, instead of the field K, (a) previously discussed, we now need to take into account the field
Kpn(T) = Q(Cm, T'Y™). This problem has been studied by Pappalardi in [24] and few years later
together with Cangelmi in [2]:

Theorem 1.2.1 (Pappalardi). Let I' € Q* be a finitely generated subgroup of rank r. Assuming
GRH for the Dedekind zeta function of Q(Cm, V™), we have

40 e
log z (logz)"t1(loglogx)" ) ’

where the implied O-constant depends only on I' and

B p(n)
=2, [Q(¢m, TV™) : Q]

Np(l') = 5F

mz=1

The density or was first computed in [24] for the case I' = {p1, ..., p,) with p; odd prime for
every ¢ = 1,...,r and successively in the general case I' = Q* in [2]. In order to perform density
computations in the r-rank case, we need expressions for the degree k,(I') := [K,(I") : Q]. We
know (see Lang [13, Theorem 8.1]) that the degree of the extension

k() = (n)# {TQ(G)*" /Q(C)*"} - (1.3)

In particular, to express or as an Euler product, we should exploit a useful formula for k, (T');
we can investigate the properties of this extension degree using the results in [25, Lemma 1,
Corollary 1]:

Lemma 1.2.2. (Pappalardi) Let T'  Q*, if a = va(n) is the 2-adic valuation, then

e(n) [L(n)|
kn(T) |1~“(n)| ) (1.4)
where
P(n) =T-Q"/Q""
and

F(n) = (0 Q)™ H Q" /@
Moreover, if I € Q" then

T(n) = {me N: m|op, m* Q" eD(2%), A(m) |n} , (1.5)
where A(m) is the field discriminant of the real quadratic extension Q(4/m).

4



Different results in this thesis depend on equation , which holds only for r-rank positive
subgroups of the rationals. To widen the validity of these results, the author, in collaboration
with Francesco Pappalardi, is currently working on a generalization of equation to the case
of arbitrary finitely generated subgroups I' ¢ Q*, as will be briefly discussed in Chapter

Similarly to the 1-rank case, the key ingredient for the proof of Theorem is the
Chebotarev Density Theorem, which provides us with an asymptotic formula with error for
mr(z,n) = #{p<x: ptor, nlip}. The following statement is obtained using the effective
versions[30, Théoreme 4] and [26, Lemma 4.1] in the conditional case, [I2] Theorem 1.3-1.4] and
[25, Lemma 4] in the unconditional case.

Theorem 1.2.3 (Chebotarev Density Theorem). Let I' ¢ Q* be a finitely generated subgroup
of rank r and n € NT. suppose that the Generalized Riemann Hypothesis (GRH) holds for the
Dedekind zeta function of K,(T'). Then, as © — o0,

li(z) + Or (v/z log(zn" 1)) . (1.6)

Unconditionally, there exist constants ¢1 and co depending only on I' such that, uniformly for
log 2 1/(3r+3)
n<e |l )
(loglog x)?

mr(z,n) =

as T — o0,

. Xz
(D) @) + Or (6(:2 WW) ' (L7)

1.3 r-rank quasi-Artin’s conjecture
For every m dividing p — 1, let

Nr(z,m):=#{p<z: ptor, ip =m}; (1.8)

the asymptotic behavior of Np(z,m) is the subject of study of the so-called r-rank quasi-Artin’s
conjecture.
Concerning the case r = 1, the first result of this kind, due to Murata, appears in [22]:

Theorem 1.3.1. (Murata) Let I' = (g) with g € Q*\{£1} not a perfect square. Assuming GRH,
for every € > 0 we have

mex log logx) ’ (1.9)

N<g> ({L‘, m) = X{g>m 11(:17) + 0 ( 10g2 .

where the implied constant depends only on €.



Recently in [26] Pappalardi and Susa proved the following:

Theorem 1.3.2. (Pappalardi, Susa) Let T' < Q* be finitely generated subgroup of rank r =
and let m € N. Assume that the GRH holds for the fields of the form Q(Cy,TV*) with k € N

Then, for any € > 0 and for m < :):(r+1>(47“+2) -

Pram =Y ) (1.10)

where

In particular, if T < QT = {ge Q: ¢ > 0} and with the notation T'(k) = T - Q*¢/Q**,

prom & ———— H ( )|F(p)|) . (1.11)

p>2

ptm

Notice that pr ., is a rational multiple of

C”_mu oh H( 1>)’

the so-called r-Artin’s constant.




Chapter 2

r-rank Artin’s conjecture with
weights

The results discussed in this Chapter appears in the work [16].

2.1 Introduction

Given an arithmetic function f : N — C, we study the asymptotic behavior of the sum

Zf(ip), T — 0.

p<w

plor

In the case
1 ifn=1,

f(n) = xpuy(n) = {0 I

we obtain the generalization of the original Artin’s conjecture on primitive roots to the case
of subgroups of rationals with finite rank r for which the main result is Theorem The
sum (2.1 is the r-rank generalization of the analogous sum considered in [23], where the author

focused on the case I' = (2). Notice that, from (1.8, the sum (2.1]) can be rewritten as

2. flip) = Y f(m) Ne(z,m) .
pPsT mz1

plor

Setting
mr(z,n) :=#{p<z: ptor, nli} ,

7
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we have shown in Chapter [I| that, when I = {(a), with a € Z\{0, £1} being not a perfect square,
the intuition behind Hooley’s proof of Artin’s conjecture (under GRH) is based on the identity

#lp<a:ptor, ip=1}= Y p(n)mr(z,n), (2.3)

n=1

which is nothing but the inclusion-exclusion principle. The natural generalization of (2.3) is the

identity N
Z f(lp) = 2 f(n)wr(x,n) ) (24)
p<x n=1
plor

where, by Mébius inversion, f(n) = 2 #(n/d) f(d) and f(m) =3, f(n).
To prove the unconditional results of Section [2.2.2] we will provide in Lemma [2.2.3] the

unconditional analogue of Theorems and

Remarks/assumptions.

e The sum appearing in the right-hand side of equation ([2.2)) is finite: in fact, Np(x,m) =0
ifm = x;

e from the estimate (L.11)), obviously prm, < 1/¢(m);

e if not conversely specified, p and ¢ indicate prime numbers;
e we will indicate (a,b) := ged(a, b);

e in the whole paper we will suppose that

DI m)] prm < o0 (2.5)

mz=1

together with

3 ol (2.6)

For the theorems we are going to prove, the results of Matthews [I5] are vital and, in our
particular case, they can be summarized through the following;:

Lemma 2.1.1. (Matthews) Let T' = Q* be a finitely generated subgroup of rank r = 2; then for
everyt € R, t > 1, we have

t1+1/r
#{p ¢ supp(I') : [Tp| <t} = Or gt | -



2.2 Main results for 3, _, . f(i))

2.2.1 Conditional case

The following theorems are r-rank generalizations of the conditional statements in [23, Theo-
rem 2J:

Theorem 2.2.1. Let I' < Q¥ be a finitely generated subgroup of rank rand let f : N — C be
an arithmetic function such that max,<.{|f(m)|} « (logz)®, for some positive real constant
C'; assuming that the GRH holds for the Dedekind zeta function of the field Q((k, Fl/k) for each
k €N, then

D flip) ~ > F(m)prm Li(z :Z f(n )Ll(:c), as T — o , (2.7)

psxT mz=1 n(

plor
where f(n) = ¥y, nln/d) f(d).

Proof. We first consider the case r = 2. Using the identity ., we split our sum as

Zf ) Np(x,m) + Zf( ) Np(x,m) + Zf ) Np(x,m) . (2.8)

m<y y<m<z mz=z

\_/

We first deal with the last sum in (2.8]) and, in order to do that, we use the results of Lemma
1
2.1.1} under the choice z = x7+1 (logx)®, with B > C:

Zf ) Np(xz,m)

mzz

« (logz)¢ Or (

< max{|f(m)[} # {p ¢ supp(1) : 1| < £}

(x/z)H'I/T

(s3] ) = o(Li(z)) .

r—1

Concerning the first sum in 1' we choose y = x(+D@r+2)+1 g0 that we can make use of

Theorem [1.3.2] and get

2} Jm) Now,m) = 3 f(m)prn Li(e +O<Zf Jorm L ))w(m)

m<y mz1 m=y
= > f(m)prm Li(z) + o(Li(z)) ,
m=1

where the last equality comes from the hypothesis that »; , |f(m)|prm converges. Finally, the
middle term in (2.8) is estimated using the conditional version of Chebotarev Density Theorem,

9



equation (1.6, as

Li(z)
ki (T)

Ef ) Np(x, m)

y<m<z

< (log2)? Y ar(z,m) = (log2) ) [

y<m<z y<m<z

+ Or (ﬁlog(wm”l))]

:O( (log z)¢~! Z G )) +0 (2(log2)“Ty/x) .

From Hooley’s work [9], we know that if k,(a) = [Q((y,a'/™) : Q] is the degree of a Kummer
extension for a fixed integer a, a # 0, +1, then writing a = b" for some integer b = bob%, with by
squarefree integer and h = max{n € N: a = b"}, we have

_ np(n)
k(@) = Syl )

where §(n) = 1,2 depends on the congruence class of a (mod 4); now, if g1 = a/b with (a,b) =1,
since Q((a/b)"/™) = Q((ab™ 1)/, the previous argument still works to give the lower bound

() = [0 977,077 1 01> (@G ™) @) > A (29)

for a fixed C' € N. In the end, using Abel’s summation,

Z f(m) Np(z, m)‘ =0 (g(logx)c> +0 (z(log:n)CH\/E) = o(Li(z)) .

y<m<z

The proof still works when r = 1 if, instead of Theorem we exploit Theorem [1.3.1] O

Theorem 2.2.2. Let I' € Q* be a finitely generated subgroup of rank r and let f : N — C be
an arithmetic function such that f(m) = 0 for every m; assuming that the GRH holds for the
Dedekind zeta function of the field Q((,, TV*) for each k € N, then

M Flp) 2 Y, f(m)prm Li() (2.10)

p<z mz=1

plor
where g(x) 2 h(zx) if for every € > 0 exists z. such that |g(x)| = (1 + €)|h(z)| whenever x > x..
Proof. Suppose initially that > 2. The proof is easily adapted from the one of [23, Theorem 2.b]

10



and proceeds as follows: take y = x® with 0 < a < (L, then by Theorem W

D
3. i) = 33 7m) Nefam) > 33 1m) N, m)
plor
= 3 100 (i + 0 g ) ) 1
= 3 ) prn1iGe) = 3, $om) s Lit) = O (1; > %0{’%)) Li(z)
= (;ﬂ F(m) prm — o(l)) Li(x) ,

where we have used the convergence of the series Y., - f(m)/p(m" ™), which is a consequence of
the assumption together with the bound |I'(m)| = m”" /A, ()|, where A,(T") is a computable
constant which depends only on I' (see [25], equation (7)). Also in this proof, we deal with the
case r = 1 using the results in Theorem analogously to what we have done before with
Theorem when r > 2. O

2.2.2 Unconditional case

Here follows an upper bound for Np(x, m) without assuming GRH and, to to this, we need the

unconditional statement in Theorem [1.2.3k

Lemma 2.2.3. Let I' ¢ QF be a finitely generated subgroup of rank r = 2; there exists a
(0%

computable constant c¢; depending only on T' such that, if m < ¢y (@%) with o < 3T—1+3,

then
1

W) Li(z) . (2.11)

Proof. As a consequence of the inclusion-exclusion principle we can write

Nr(z,m) = Z w(k) mr(x, mk) .
k=1

Nr(z,m) < pr, Li(z) + o (

For every y € [1,z], if P(y) denotes the product of the prime numbers less or equal than y then

Np(z,m) < Z wu(d) mp(z, md) .
d|P(y)

Given the computable constant ¢; of Theorem we choose y such that

1
log 3r+3
mP(y) < ¢ ((log log $)2> , (2.12)

11



so that we can apply the unconditional version of the Chebotarev Density Theorem:

Nr(z,m) < d%}y) p(d) [;::jéz) + Or (3: exp (—cz(log )6 (log log x)l/g) )]
= prmLi(z) + 0O kLlj(z)) + Or (QW(y)SU exp (—62 (log z)"/%(log log x)1/3(>2)13)
dzy ™

for a certain computable constant co. From [26, Corollary 4.3] we know that

L 2A(D)
Frna(D) ~ (md)p(md)

for a certain constant A,(I') depending only on I'. Through partial summation we obtain the

following bound:
1
¢1Z>yk mrJrl dE>ydr yrgp(merl) :

Choosing y = logloglog x, which satisfies the condition (2.12)) as can be seen from [28|, formula
(3.15)], the two error terms in (2.13)) become

0 (m@)) +0r (2702 exp (~ea(log ) P loglog )'7) ) = 0 (Iﬂ(@) .

y" p(mrtt) @(mr+1)

O]

Theorem 2.2.4. Let I' © Q* be a finitely generated subgroup of rank r = 2 and let f : N — C
be an arithmetic function such that max,<.{|f(m)|} « 79, for some real constant 0 < § < 1;

if the series >, - |f(n)|/@(n) converges, then

Z flip) < 2 f(m)prm Li(z), asz— 0, (2.14)
p<zT m>=1
plor

where g(x) < h(x) if Ve > 0 exists ¢ such that |g(z)] < (1 + €)|h(z)| whenever x > z..

Proof. We start splitting the (finite) sum », _, f(m)Nr(z,m) as

Zf )JNr(z,m) + Zf( )Nr(z,m) + Zf YNr(z,m) .

m<y y<m<z mzz

12



From Lemma|2.2.3] there exists a computable constant c¢; such that, choosing y = ¢; ((loglol%x)?
then
Z f(m)Np(z,m) < Z f(m) [pr,m +o <1r+1>] Li(z) =
7n<y ﬂzgy (p(n% )
Li(x)
:Zf( )prm Li(z) + O Zf )prm Li(z) +Zf(m)0 o(mT)
mz=1 m>y m<y ¥
= > f(m)prm Li(z) + o(Li(z)) . (2.15)
mz=1

Thanks to Lemma 2.1.1] we estimate

log(z/z) log(z/z) '

mzz

Z f(m)Nr(z,m) < E}%ﬁﬂf(m)l}Op ((x/z)lﬂ/r) « 21O (x/z) U

r+2-=456r
which becomes o(Li(z)) taking z = = ~+1 . Finally, the last estimate we need is

D fm)Ne(z,m) < D) |fm)|w(zlm) « Y F(m)] Li(z) = o(Li(z)) ,

y<m<z y<m<z m>y So(m)

where we have used the Brun-Titchmarsh Theorem together with the convergence of the series

Yz |F(m)]/(m). =

The following Theorem gives an unconditional estimate for the sum » p<z f(ip).
pfor

Theorem 2.2.5. LetI' < @*Nbe a finitely generated subgroup of rankr = 2 and let f : N — C be
an arithmetic function with f(n) = >4, p(n/d) f(d). Suppose that 3., [f(n)|/¢(n) converges

and that ), _ . |f(n)|/n = o(log™! x), then

Zf n)rr(z,n) Z

nz=1 nzx1 n

(2.16)

as r — Q0.

Proof. We first perform the following splitting,

Zf n)rr(z,n) Zf( n)rr(z,n) Z n)rp(z,n) ,

nz=1 n<y n>y

13
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1/(3r+3)
where, as in the previous proof, y = m;f%) and ¢ is the constant appearing in
unconditional statement of Theorem Hence, the first sum is

5t 2f<n><:;:z;za+0r o -t )

J) | Fm)l .
_nZ:l k., (F (;y o (T) Ll(m))
+ Or (]Oa;;ll(:)gg:; exp (—62(10g x)l/ﬁ(log log x)1/3))
- (n) o(Li
n;k @) W@ +olli@))

where the assumption (2.6) has been used. To conclude the proof, we split the second sum as

Zf n)mr(z,n) Z f n)mr(z,n) Zf n)mr(z,n)

n>y y<n<y/T n>\/x

since mp(z,n) < w(x;1,n) = #{p < x :n|p— 1}, by the Brun-Titchmarsh Theorem we have

y<nz<:ff )r(z,n) < y<§ﬁ|f(n)|80(n)10g($/n) = o(Li(2)) ,

while

S Fmmen < Y lom#m <z nm -1} < Y 1)l = ofLic).
n>\/T n>\/T n>\/x

2.3 Examples and applications

In this section we want to generalize some applications in [23] to the higher rank case: we will do
it in the case I' € Q™, where Q" denotes the set of positive rational numbers. We first compute
the densities corresponding to the cases f(n) multiplicative and totally multiplicative function
respectively, where f : N — C is the arithmetic function appearing in the sum . Lastly
we will apply those results to the case of f(n) = xp(n), the characteristic function of certain
subsets B c N, and f(n) = x(n) mod b, a Dirichlet character modulo b.

14



2.3.1 f(n) multiplicative function

~

Suppose that the arithmetic function f(n) in {i is multiplicative; consequently, also f(n) is
multiplicative. We want to compute the density

or.f = 7;1 ]j;(("r)) : (2.17)

From now on, we will restrict to the case I' € Q" so that we can make use of Lemma kngamma.
In order to compute the density (2.17) we begin splitting it as a sum over odd integers, S,, plus
a sum over even integers, Se:

~ ~

_ s g, —
op =S, + S, ;1 (p(n)mn”lf( )| +nZ>]1 IO
2tn 2In

To lighten the next formulas, we denote

~

which is a multiplicative function since f(n), ¢(n) and |I'(n)| are. Noticing that I'(n) = 1
whenever n is odd, the sum over odd integers has the following Euler product:

So= D hn) =[] <2 h(p’“>> :

n>1 >3 \k>0
2tn

~_~

For every m | o we write A(m) = 2U2(20™) /. hence the sum over even integers can be written
as

Se= Y h(n) >, 1= > D ohn)= > > h(2%) > h(n)

n=1 mef‘(n) m‘o’r a=1 n=1 m‘o’r a}%} n=1

2)(71 g1 *2a a 'U2(n):a 20— 1 342 « 2{”
m Q*” eI'(2%) m Q*” eI'(2%) y
A(m)|n azva(A(m)) m/|n
Y% eIl (g ()
mlor az1 p=3 \k=0 p=3 \j=1
m2* 1 er(2e) ptm plm
azva(A(m))
1711
=> > ) [T |1+ (2 h(pj))
mlor az1 p>3 i1
m2*7 Q*? er(29) plm

azvz(A(m))

15



We define

p min{z € Nu {0} : m> Q" e ['(2**1)} if 32 € N such that m?” e I'(2*71),
B otherwhise,
and vy, 1= max{l + t,,, v2(A(m))}, so that

- -1

-1
orp=Seq1+ >, > he)]] 1+(2 h(pj)>

mlop @ZYm p=3 j=1
plm’ =
-1 1711
=11 (2 h(pk)> > h(27) L+ >0 > )] |1+ (2 h(;ﬁ))
p k=0 5=0 m|or ¢ZTm p=3 j=1

plm

Rearranging the terms in the previous expression we arrive at

-1

9a -1
ory=1] (Z h(p’“>> 1+ 2 2“;”;" )) [T+ (Z h(ﬁ))

P \k=0 p|2m j=1

In order to express dr s in terms of the function f(n), we note that FF) = fF(*) = FpFY);

moreover sum mes zero i = 0. Hence w in
oreover, the s asm, M(27%) becomes zero if vy, = 00. Hence we obta

B B 1 p f 1 _ 1 X
5F,f—H[1 (»— DT (p) Z ( o) p|F(pk+1)|>]

p k>1

f@m-1) f(2%)
_2mel\r(2vm T2 2z, o
1+ >

f(25) 1 1
mer i + 2 S 157 (i — )

-1
1 fl 1 1
I 1+< (¢ — D|T(q) q—1Z ¢’ (IF (¢7)] qIF(qj“)I))

ql2m J=1

(ke = i)
ReRIIENCEDIN

-1

This formula can be made more compact introducing appropriate quantities, as we do in the
following:

16



Theorem 2.3.1. Given a subset I' ¢ QF of finite rank r and a multiplicative function f(n),

then
B, .
srp=]Ja+4,)1+ > (1+AQ)H(1+Aq1) e (2.18)
P m|op ql2m
m#1
Ym <O
where
1 f(p®) 1 1
A = A~ ( - ) 2.19
=4 TR T el B T ) 2
and
ym—1 a— 1 «a
B f2070) = f(2%)
By =By =2 2 2a|r S (2.20)

Let us focus on the case r = 1, i.e. suppose I' = (a) with a € Q*\{£1}. We first state the
following;:

Lemma 2.3.2. Let I' = {(a) with a € Q*\{£1} and let h be the largest integer such that a = b"
for some rational number b = b1b3, with by € Z unique squarefree integer with such a property.
For any m # 1 squarefree positive integer we have tp, = vo(h) and t,, = 0 if m # by.

Proof. First note that in this case

<bh>Q*n _ n
Q" (n,h)

Since [(a)(25F1)| = 2511 /(2241 h) = gmax{0z+1-v2()} \ye have that t,, > vy(h) for all integers
m # 1. Also note that, if we write

(@)l =|

h = hIQUQ(h) = 2”2(h) + hl/2v2(h)+1

then

gua(h)+1

vg (h) /N
a =" (b0

so that
vo (h)+ vo (h vo(h)+1

We deduce that
<a>(2v2(h)+1) _ {(Q*)QUQ(h)+1 b%vg(h) . (@*)QUQ(}L)+1} ‘

17



which implies that 3, = va(h). More in general, for z = va(h) + k and k > 0,

<a>(2z+1) _ {aj . (Q*)2Z+1 e Z/2k+1Z} )

For m # 1 square free, the identity

2U2(h)+1 w27 +1

m2z . (Q*)2z+1 _ aj ) (@*)2z+1 _ b{2v2(h) (bh”bh,)
is satisfied if and only if j = 2* and m = b;. —

Lemma leads to the following:

Theorem 2.3.3. Let T' = (a) with a € QT\{1}, where h is the largest integer such that a = b
and b = b1b3, with by € Z unique squarefree integer with such a property. Then

2

Oay,f = H (1+A4,)<1+ (1 + ibl) H (1+ (Aj}.{)*l)*1 , (2.21)

p q|2b1
with
k+1 h)

A :A<“>’f: _ (pa f ( N (p ) ) 2.99

e p(p— ,;1 p2* ") p? (2.22)
and

S (22, h)
By, = B\ =2 Z (21 = 1) G (2.23)

with 7, — 1 = max{va(h), v2(A(a)) — 1}.

We can now easily retrieve the classical result of Hooley [9, Theorem] from Theorem
in the case of positive rationals, choosing f(n) = x{1;(n):

Theorem 2.3.4 (Hooley). Consider a positive rational a # 0 which is not a perfect square and
let h be the largest integer such that a = b"; denote with d the discriminant of the quadratic
extension Q(y/a). Assuming GRH for the number field Q((n, a'/™) for every squarefree n, then

Ny(x) ~ 4 Li(x)

18



as x — o0, where
A(h) if d=2,3 (mod4),
5, = Z p(n) _
24 TG, /) - Q] (1 ~ (4 Ty 742 Ty 1) A(h) i d=1 (modd),
qth

qlh

with

-1

pth plh

In general, the expressions (2.19)) and (2.20) cannot be further simplified, unless we make
additional suppositions on I" and consequently on |I'(p¥)|. An interesting case is the following:

Corollary 2.3.5. Suppose I' = (p1,...,p), with p; generic prime number, then for any multi-
plicative function f(n) we have

B, 1y —1
Sipryeprny = JA+Ap) L1+ D] (1 + Az) []a+4" , (2.24)
P mlop ql2m
m#1
where
1 P -1 o fOY)
A — A<p1’“'ﬁp7">7f — + 2.25
P (p—Dp~  (p—1)p" ,; prr+1) (2.25)
and
0 if m =1 (mod4),

By, = B&rwonf = | 121Q) if m =3 (mod4), (2.26)

> |1 7@ (5) - 45| it m=2(mods).

Moreover, if f(n) is totally multiplicative and the series ZkZl(f(p)/p”l)k converges for every
p, then
—1)
A — A<p1,~..,pr>,f — p(f(p) 227
= - D - /) (227
and
0 if m =1 (mod4),
By, = B = | 1) if m = 3 (mod4), (2.28)
%T(z) (1 - ;(E)l) if m =2 (mod4).



Proof. 1t is sufficient to apply Theorem with |I'(p¥)| = p*" because of [2, Proposition 2].
Moreover, since t,, = 0 for every m | or, notice also that

1 if m =1 (mod4),
Ym =43 if m=2(mod4),
2 if m=3(mod4).

O]

Notice that the previous Corollary holds, in general, for all the subgroups I' € Q* such that
IT'(n)| = n" for every natural number n.

2.3.2 f(n) = xp(n) characteristic function of a subset B c N

Let xp be the characteristic function of a subset B < N, then defining

mrp(z) ==#{p<z: pfor, i€ B} = Z xs(m) Nr(z,m)

mz=1

by Mobius inversion formula we obtain

mr,B(x) = Z XB{(m)mr(z,m),

mz=1

where
X(m) =Y. p(m/d) xp(d) = Y, p(m/d) .
" i
Define

then, assuming GRH, we have from Theorem that
7T1“7B($) ~ 51“’3 Li(l‘)

as x — 0. We will also see explicitly some examples where the unconditional results from

Theorems and can be applied.
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xp(n) characteristic function of the primes

Let B = P be the set of prime numbers. Applying Theorem [2.2.1] we obtain the asymptotic
density result appeared in [24, Theorem 1.1] in the case I' = {ay, ..., a,), with aq,..., a, multi-
plicatively independent integers different from 0, +1 and not all perfect squares.

Lemma 2.3.6. Under GRH, if I' € Q* is a finitely generated subgroup of rank r, then
Nr(z)=#{p<z: ptor, ip =1} ~dppLi(x), asz—>ow0,

where

e 30

mz1

xp(n) multiplicative function

Suppose B < N is such that xp(n) is multiplicative, then we can apply Theorem with
f(n) = xB(n) to get the following:

Theorem 2.3.7. Consider the r-rank subgroup I' < QT and a subset B — N such that its
characteristic function xp(n) is multiplicative; assuming GRH we have

7TF7B({L‘)~5F7BLi(1'), T — O,
where
By, i
oo =[]A+4)1+ )] <1+A)H(1+Aq1) . (2.29)
p mlor 2 q|2m
m#1
Yrn <00
where
1 p x5(P") ( 1 1 )
A, = ADE = _ + — (2.30)
v p-1T@| p-1 ,; pF AT pT(p*+)
and
’Ym*l -1
297%) — xB(2%)
By — BLE —o S X8 . 2.31
P IeD] (2:31)

We can apply the previous results in the simpler case I' = (p1,...,p;) to get the following:
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Corollary 2.3.8. Let I = (p1,...,pr), with p; generic prime number. For every subset B c N
such that its characteristic function xp(n) is multiplicative, assuming GRH we have

7TF,B(I') ~ 5<p1 ..... pr>,B Ll(l‘) ’ r — 0,
with
Opreprn =] [(L+4p) {1+ 3 (14 . [Ta+47h) ¢, (2.32)
p m|op 2 q|2m
m#1
where
1 pr+1 -1 1
A, = A<P1,~~,pr>,B - — +
T (p—Dp"  (p—1p" ,; pre+D)
p*eB
and
0 if m =1(mod4),
By, = BB — ) 12X if m =3 (mod4),
1= x5 (%rt) - 32| if m =2 (modd).
0 if pe B,
Ap = { 1 1 i
and

B _{O if m=1(mod4) or 2 € B,

& if m=2,3(mod4) and 2 ¢ B.

Let us consider some examples in a more detailed way.
Example 1. Let Hy = {n € N:n = m”*, m € N} be the set of k-powers. For k > 2, the sum

1 1
2, p(n) — 2. (m*)

neHy m=1 ¥

converges, so that from Theorems and we derive the following:

Corollary 2.3.9. Let I' ¢ Q* be a finitely generated subgroup and let H, = {n € N : n =
m* m € N} be the set of k-powers, with k > 2. Then, as x — o0, g, (r) < Orm, Li(z)

unconditionally and mr g, (x) Z r g, Li(x) under GRH.
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In the case T' = (p1,...,p,), formula (2.32) can be applied with

k(r+1)—r

A — A<p17---7p1”>7Hk — p -p
v (p = DD —1)
and
0 if m=1(mod4),
By, = Bpr-oper e = o if m = 3 (mod4),
= (1 - X;ﬁ(f)) if m=2(mod4).

In Table we compute the density values or g, for the cases k = 2,3,4 and I" = (p;, p;), with
37

distinct p;, p; € {2,3,5,7,11,13}, and compare them with the numerical results (5{1?% , computed

up to p < 237, using the software GP/PARI CALCULATOR Version 2.7.5ﬂ

Example 2. Let k > 2, let F}, = {n € N:v,(n) <k, Vp prime} be the set of k-free numbers.

Since

w(im) if n=m",

S n) =
Xr () {0 otherwise,

the conditions of Theorem are satisfied, so that we can state the following:

Corollary 2.3.10. Let I' © Q* be a finitely generated subgroup and let Fj, = {n € N : vp(n) <
k, Vp prime} be the set of k-free numbers, with k > 2. Then, as x — oo, 7t g, () ~ Or g, Li(z)
unconditionally.

T ={p1,...,pr), formula (2.32) holds with

1
pFr+D=1(p — 1)

Ay = APrPFe

and

0 if m=1,3(mod4),

B.. = BPLpr)F 3
" " {w if m =2 (mod4).

2.3.3 Indices ¢, in arithmetic progression

Given two coprime positive integers a and b, consider the set

Sr(z;a,b) :={p<z: pfor, ip =a(modb)}

!Together with Henri Cohen’s script (see http://pari.math.u-bordeaux.fr/Scripts/), which includes the function
prodeuleratt for calculating Euler products.
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Table 2.1: Comparison between the theoretical (GRH) dr y, and numerical (up to p < 237)

density 5{135;:7, where I' = {p;, p;», pi,pj € {2,3,5,7,11,13}.

r 5F’H327 6F’H337 5F’H§17
O i, OF i, O i,

(2,3) 0.7204017835 | 0.7035521973 | 0.6982514901
’ 0.7204008108 | 0.7035514839 | 0.6982504751
(2,5) 0.7237918508 | 0.7062105809 | 0.7006387110
’ 0.7237946933 | 0.7062128444 | 0.7006414714
2,7 0.7216069808 | 0.7039046595 | 0.6982955321
’ 0.7216104694 | 0.7039091705 | 0.6983004502
(2,11) 0.7216653483 | 0.7039211320 | 0.6982975876
’ 0.7216666678 | 0.7039209604 | 0.6982978180
(2,13) 0.7217878018 | 0.7040379691 | 0.6984125550
’ 0.7217875330 | 0.7040386343 | 0.6984125509
(3,5) 0.7255448866 | 0.7028723530 | 0.7002221463
’ 0.7255450297 | 0.7028728547 | 0.7002227099
(3,7 0.7233268507 | 0.7004972642 | 0.6978294779
’ 0.7233301700 | 0.7004996641 | 0.6978328171
3,11 0.7234237628 | 0.7005403348 | 0.6978658086
’ 0.7234241660 | 0.7005412999 | 0.6978673966
(3,13 0.7235577077 | 0.7006673436 | 0.6979919473
’ 0.7235598185 | 0.7006681588 | 0.6979936959
(5,7 0.7269084536 | 0.7030468041 | 0.7002439449
’ 0.7269133076 | 0.7030492041 | 0.7002473531
(5,11) 0.7269744910 | 0.7030549572 | 0.7002449623
’ 0.7269774849 | 0.7030499313 | 0.7002449623
(5,13) 0.7270967856 | 0.7031695617 | 0.7003586371
’ 0.7270997051 | 0.7031721896 | 0.7003617319
1,11 0.7248102383 | 0.7007270610 | 0.6978984668
’ 0.7248161001 | 0.7007316472 | 0.6979033861
(7,13 0.7249343967 | 0.7008434877 | 0.6980139575
’ 0.7249362846 | 0.7008475860 | 0.6980175153
(11,13) 0.7250010696 | 0.7008517199 | 0.6980149847
’ 0.7250008316 | 0.7008527808 | 0.6980159664

with cardinality Np(z;a,b) = #Sr(z;a,b). Let x : N — C be a Dirichlet character modulo b,
then the ortogonality relations can be used to define the following characteristic function:

1 2 (@) (n) = if n =a (mod b)

(n) 1
n) = —-
e x mod b 24 0 otherwhise .

©(b)



Consider the density

Xa,b(1) 1 _
Or,(a,p) = Or,Sp(ap) = : = — x(a)dy ,
where v
xX\n
Oy = (2.33)
* nx1 kn(r)

From Theorem follows the following:

Corollary 2.3.11. Let I' c¢ Q* be a finitely generated subgroup. On GRH we have, as x — o0,
NF(.CIZ; a, b) ~ 5F,(a,b) Li(m) .

A Dirichlet character x(n) is a totally multiplicative function, so in the case I' € Q* we can
compute the density (2.33) making use of formula (2.18)). In the specific case I' = {p1,...,p;)
we can apply formulas (2.24), (2.27) and (2.28) to get

1 _
Opr .o do(a,b) :@ Z X(a) H (1+A4,)x

x mod b p
. (2.34)
v 3 (e B TTheag )}
m|p1---pr >/ gl2m
m#1
with (x(p) — 1)
A = APLPrX PAXAP) 2.35
P (p=1DE* = x(p) (2:35)
and
0 if m =1 (mod4),
By, = B@vpx = 1’232(2) if m = 3 (mod4), (2.36)
1_2XT(2) (1 _ ;ﬁf%) if m =2 (mod4).

2.3.4 Average order of I', over primes

In the special case when I' = (g), where g € Q*\{£1}, Kurlberg and Pomerance [I1, Theorem 2]
proved under GRH an asymptotic formula for the average over primes up to x of the order

op(g) = |{g (mod p))|:

Ll(:E) Z Op(g) - E‘T +0 <(10gx)24/10g10g10gx> ’

PsZT
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as x — o0, where

©(n) Rad(n)(—1)«)
;1 n?kn({9)) ‘

For a finitely generated subgroup I'  Q* of rank r, the previous result has been generalized by
Pehlivan in [27]:

1 loglog x
I = O —_— 2.37
trey 0 = a0 () (230

as x — o0, where

— Je(n) (Rad(n))t(_l)w(n)
Crt = ;1 thkn(<g>)

with the Jordan’s totient function defined by Ji(n) := n Hq‘n(l — 1/q"). We can retrieve the
main term in (2.37)), as  — 00, choosing the function f(n) = 1/n! and, starting with the sum

T L7

p<x P

all we need to do is to perform a summation by parts after writing

,u

ablip
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Chapter 3

Average r-rank Artin’s conjecture

The results discussed in this Chapter appears in the joint work of the author with Cihan Pehlivan
[17].

3.1 Introduction

In the case of rank 7 = 1, a first unconditional result on the average behavior of N,(z) was pre-
sented by Goldfeld [6] in 1967, who proved that for any constant D > 1,if A =[], (1 - m>
indicates the Artin’s constant, the asymptotic formula

Na(z) = ALi(z) + O <(logxx)D)

holds for all integers a < N with at most

_ logx
~logN '’

e NO(510g x + 1)9+P+2

exceptions, where ¢; and the constant implied by the O-notation are positive and depend at
most on D.
Stephens [31] in 1969 proved that, if T > exp(4(log x log log x)'/?), then

1 o(p—1) x . x
72 N =2, " +O<<log:c>D>:ALI(”””Ongm)D)’ (3.1)

a<T p<x

where ¢ is the Euler totient function and D is an arbitrary constant greater than 1. Stephens
also proved that, if T' > exp(6(log z loglog x)'/?), then

2

1 .
= D1 {No(2) — ALi(z)}? « fog )7

q (3.2)
a<T
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for any constant D’ > 2. In 1976, Stephens refined his results with different methods [32], getting
both the asymptotic bounds and under the weaker assumption T > exp(C(log z)/?),
with C positive constant.

If we set, for any a € N\{0, £1} and m € N, N, ,,(x) to be the number of primes p =
1 (mod m) not exceeding x such that the index [F, : (a (mod p))] = m, then for T" >
exp(4(log z log log 2)/?) Moree [2I] showed that

—1)/m T
1 Z Nom(z) = Z @((pp_l)/ )—l—O ((k)gx)E) ’ (3.3)

a<T p<T
p=1 (mod m)

for any constant £ > 1.

Here we restrict ourselves to studying subgroups I' = {ay,--- ,a,), with a; € Z for all i =
1,...,r, and we prove the following Theorems:

Theorem 3.1.1. Let T* := min{T; : i = 1,...,7} > exp(4(logacloglogm)%) and m < (logz)?
for an arbitrary positive constant D. Then

1 T
- Nea, .. =, Li S
o B Newasm@ =0, 1(x)+0<(logx)M>

0<0?1<T1
O<a;<TT

where

and M > 1 s arbitrarily large.

Theorem 3.1.2. Let T* > exp(6(log x loglog l‘)%) and m < (logz)P for an arbitrary positive
constant D. Then

2
e > Ny (@) = Crm L)} «

a;EZL
0<CL]_ T1

(log z)M

0<a;<TT
where M’ > 2 is arbitrarily large.
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Now since p(mn) = p(m)p(n) ged(m,n)/p(ged(m,n)) and ged(m,n) is a multiplicative
function of n for any fixed integer m, we also have the following Fuler product expansion:

S R N ()

n=1 plged(m,n)
e = () (-5 5)

1 p" -1
- ] (1 - i 1) C, |
plm

The results found in the present paper (see in particular equation (3.8) and Lemma [3.3.3))
will lead as a side product to the asymptotic identity

| J((p— 1)/m) ( 2 )
S — Negr oo asom() = ST o T )
Ty ---T, a;Z {ay,, r>7m( ) IZ;E (p—1)" (log :E)M
O0<a1<T p=1 (mod m)
O<ar:<Tr

if T; > exp(4(logwloglogx)%) foralli=1,...,r, m < (logz)”

where .
Jr(n) =n" H (1 - gr)
Ln
£ prime

and M > 1 arbitrary constant,

is the so called Jordan’s totient function. This provides a natural generalization of Moree’s result
in [21].
Theorem leads to the following Corollary:
Corollary 3.1.3. For any € > 0, let
H:={aeZ :0<a; <Tyie{l,...,r},|Noym(x) — CrnLi(x)| > eLi(x)} ;
then, supposing T* > exp(6(log xloglog z)'/?), we have
#H < K|I|/62(log:c)F
for every positive constant F'.

Proof of Corollary[3.1.3 The proof of this Corollary is a trivial generalization of that in [31]
(Corollary, page 187). O
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3.2 Notations and conventions

In order to simplify the formulas, we introduce the following notations. Underlined letters stand
for general r-tuples defined within some set, e.g. a = (a1,...,a,) € (Fp)" or I = (T1,...,T;) €
(R>%)7: moreover, given two r-tuples, a and n, their scalar product is @ -n = ayng + - -+ + a,n,..
The null vector is 0 = {0, ...,0}. Similarly, x = (x1,.--,Xr) is a r-tuple of Dirichlet characters
and, given a € Z", we denote the product X@) = x1(a1) -+ - x+(a,) € C.

In addition, (¢,a) := (q,a1,...,a,) = ged(q, a1, ...,a,); otherwise, to avoid possible misin-
terpretations, we will write explicitly ged(nq,...,n,) instead of (n). Given any r-tuple a € Z",
we indicate with

{ayp := (a1 (mod p),...,a, (mod p))

the reduction modulo p of the subgroup {a) = {ai,...,a,) < Q; if I' = {ay,...,a,), then

Iy = @)y
In the whole paper, ¢ and p will always indicate prime numbers. Given a finite field I, then

Fy = Fp\{0} and ]i% will denote its relative dual group (or character group). Finally, given an
integer a, vy(a) is its p-adic valuation.

3.3 Lemmata

Let ¢ > 1 be an integer and let n € Z". We define the multiple Ramanujan sum as

cq(n) == Z p2mian/q
as(Z/qL)"
(g:2)=1

It is well known (see [8, Theorem 272]) that, given any integer n,

(9)
=) 2P

In the following Lemma, we generalize this result to r-rank.

Lemma 3.3.1. Let

Jr(m) :=m" [ | (1 - ;)

Lm

be the Jordan’s totient function, then




Proof. Let us start by considering the case when ¢ = £ is prime. Then

6271'@@/6

a€(Z/eZ)"\{0}
T y4 .
0 -1 if £4ged(ng,--- ,n.)
=1+ eQmaJn]/é _ ) y )
1y )

c(n) =

iR " —1 otherwise.
j=la;=1

Next we consider the case when g = ¢¥ with k > 2 and ¢ prime. We need to show that

0 if gk—1 fged(ny, -+ ,n,),
cor(n) = { —¢r=1) if 571 ged(ng, -+ ,n.),
(11— F) if | ged(na, e ).

To prove that, we start writing

culw) = 3 e/t

ae(Z/ekz)"
(ta)=1
r (k .
= cm (nl) H Z eQmCLjnj/e + Cgk Ng,....n Z 2 eQmalnl/Z
j=2a;=1 3=1 a,e7/*7.
(al,fk):ﬁj
r ¢k
= Cék ni H Z e?ma]n]/é +Cgk ng,...,N ZC@ j 711
j=2a;=1

If we apply (3.4), we obtain

j=2a;=1

cpr(ny, ... ,ny) = 'u((ékljknl)) ( )ﬁz 2miagn; /OF

¢k n1)
k

k—j k—j
(")
+cp(ng, ... n ( ) - .
‘ 1 th3,m) W( 2 )

Jj= (Zk_ﬂ’nl)

Now, for k = 2, let us distinguish the two cases:
1. /F=yged(ng, ..., n,),

2. (k=1 ged(ng, ..., n,).
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In the first case we can assume, without loss of generality, that ¥~ { n;. Hence p (ﬁ) =0
and if k1 = vp(n1) < k — 1, then
, 0 ifl<j<k—k —2,
- 0,k—k1—j
pl e ) = (ORI = 81 i =k =k - 1,
(Z 7, nl)
1 if 7= k— k.

Hence

@) J=hh

k k—j k—j k
v () k k—j
Zu( T ) —— ==l Y () =0,
j (6 7 nl) © < £k—3j )
In the second case, from the definition of ¢,(n) we find

corlm) = D ¢y (2 W)ZEMO—éﬁwﬂgmmwwm%
ok \ 1T C\ g1 g1 _ypr(k=1) if gk—lH ged(ni, ..., n,) .

So, the formula holds for the case ¢ = ¢*.
Finally, we claim that if ¢/, ¢" € N are such that ged(q’,¢") = 1, then

cgqr(n) = cy(n)cyr(n);

this amounts to saying that the multiple Ramanujan sum is multiplicative in q. Indeed

. . "
ZaG(Z/ q7)" e?rian/d Z ePribn/a

(¢ a)=1 be(Z/q"Z)"
(¢".b)=1
- 2 e2miln (¢’ a1+q'br)+-+nr(q"ar+q'br)1/(d'¢")

a€(Z/q'Z)"
be(Z/q"2)"
ged(q’,a)=1
ged(q” ,b)=1

and the result follows from the remark that, since ged(¢’, ¢") = 1,

e forall j =1,...7, as a; runs through a complete set of residues modulo ¢’ and as b; runs
through a complete set of residues modulo ¢”, ¢"a; + ¢'b; runs through a complete set of
residues modulo ¢'¢".

o forall a € (Z/¢'Z)" and for all be (Z/¢"Z)",

ged(¢’,a) =1 and ged(q”,b) = 1

v/

— ng(q q 7qlbl + q”al) cee 7qlbr + q”ar) =1.
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The proof of the Lemma now follows from the multiplicativity of y and of J,. O
From the previous Lemma we deduce the following Corollary:

Corollary 3.3.2. Let p be an odd prime, let m € N be a divisor of p — 1. Given a r-tuple
X = (X1,---,Xr) of Dirichlet characters modulo p, we set

1
CW(X) = r 2 X(Q)
(p—l) ae(F*)
[F3 app]=m
Then
—1
en) = — da
m() = — - " (35
=07 \mged (521 Sty b ) ) o, = &
mng( m Jord(xq1)’" ’org(x'r-))

Proof. Let us fix a primitive root g € Fy;. For each j = 1,...,7, let n; € Z/(p — 1)Z be such that

27Tinj

X;=x(g) =er 1 ;
if we write a; = g% for j =1,...,7, then

[F} :{ap]=m <= (p-1la)=m.

Therefore, naming ¢ = 2= ! , we have

1 a a.
em(X) = =) @M (9
(p - 1) a€(F*)r
:1 a%:m
L , (3.6)
= >, et = cp-1(n)
=1 Ty (p—1)r "=
(t,a')=1
By definition we have that ord(x;) = (p — 1)/gcd(n;,p — 1), so
-1 B p—1
B p—1 _p—1 p—1
mgcd( n) mgcd(m ’ord(xﬂ""’ord(xT))
and this, together with Lemma 1, concludes the proof. O
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For a fixed rank r, define R,(m) := #{a € (Z/(p — 1)Z)" : (a,p — 1) = m}. Then using
well-known properties of the M6bius function, we can write

Qe(m)r ‘(%’pm;l) ”‘%
where )
_ a{_7pr
hm(n)_#{ae(p—l)z n|m} nm
so that N (n) .
p— pn p—
R =(— — =J,{— ] . 3.7
o = () 5 A= (M) 67)
Defining
1 wu(n) 1 (p - 1)
Sm(z) = — — = Jy ,
(@) mr = ;1 nr pZ;c (p—1) m (3.8)
p=1 (mod m) S p=1 (mod m)

we have the following Lemma:

Lemma 3.3.3. If m < (logz)?, with D arbitrary positive constant, then for every arbitrary
constant M > 1

Sn() = Cppm Li(z) + O (W) ,

_ p(n)
where Crom = D51 (o) g (rm)
Proof. We choose an arbitrary positive constant B, and for every coprime integers a and b, we
denote m(z;a,b) = #{p <z :p=a (mod b)}, then

Sm(z) = Z (/;S))Tw(:c;l,nm)

- > M(n)T m(z;1,nm) + O
n<(logx)B (nm)

The sum in the error term is

2 (n;)rw(w;l,nm) < % Z % Z 1

(logz)B<n<z n>(logz)B 2<axz
a=1 (mod mn)

< 1 Z X « X
N nr+l mr+1 (log x)rB )
n>(log x)B
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For the main term we apply the Siegel-Walfisz Theorem [34], which states that for every arbitrary
positive constants B and C, if a < (logx)?, then

m(2;1,a) = I;j((j)) +0 ((logxx)c> '

So, if we restrict m < (logz)? for any positive constant D,

n . x 1 i
Suw) = Y 1w+ 0| e Y 40 ()

n<(log )? )" p(mn) n<(logz)B
i Li(‘r) X 10g log x T
S WP Y e e +O<rc +O\ —a B
n>(logz)B (nm) go(nm) m (logx) m (log $)
sreo 1y ) o (s
mre(m) = (log 2) n’o(n) m’ (log z)

x
o —=>
- (mrJrl(lng)rB) ’
where we have used the elementary inequality ¢(mn) = ¢(m)e(n). Since, for every n > 3, we
have (see [I, Theorem 8.8.7])

3
ML loglogn + ———— « loglogn , (3.9)
o(n) log logn
then 1 log 1 loglogl
oglogn logloglogx
Z & Z <
1 B
n>(logz)B n"gp(n) n>(log z)B n (log ;1;)7"
Thus ) )
x
— Z ——— Li(z) « 5
wre(m) &, ) 7 p(m) (log )"
proving the lemma for a suitable choice of D, B and C. 0

The following Lemma concerns the Titchmarsh Divisor Problem [33] in the case of primes
p =1 (mod m). Asymptotic results on this topic can be found in [4] and [5].

Lemma 3.3.4. Let 7 be the divisor function and m € N. If m < (logx)? for an arbitrary
positive constant D, we have the following inequality:

Z T (p— 1) < 8—x
= m m
p=1 (mod m)
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Proof. Let us write p—1 = mjk so that jk < (z—1)/m and let us set Q = 4/ % and distinguish
the three cases

J<Q, k>Q,
¢ j>Q,k<Q,
J<Q,E<LQ.

So we have the identity

S (%)

DI P AP

i< 2 k< 0?2 i< k<
p=1 (mod m) J=e QI:',-kngT . ngcjjli% . ’ Qmjk—i—l%rime
mj prim 11
= 2> > 1+ > 1
k<Q mkQ+1l<p<ax k<@ p<mkQ+1
p=1 (mod km) p=1 (mod km)
= 2 Z (x;1,km) — m(mkQ + 1;1, km))
k<Q
+ Z m(mkQ + 1;1, km)
k<@
= 22 (z;1,km) — Zﬂ(ka—i-l;l,km).
k<Q k<Q

Using the Montgomery—Vaughan version of the Brun—Titchmarsh Theorem:
2x
o(q)log(z/q)

for m < (logz)” with D arbitrary positive constant, then we obtain
p— 4x 1
(=) < 2 <
P ( ) 2 S oete/m) < ogla/nd) 21 oG

p=1 (mod m)
8x 1
log(z/m) ,g;g p(km) -

Now, substitute the elementary inequality ¢(km) = me(k) and use a result of Montgomery [19]

log Q)
Q M

> 1/<; =AlogQ+B+O<
=5 PR
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where

A:C%Zé)(?’)zl.%%... and B:Aﬂy—ZW:—O.%OG...

which in particular implies that, for ) large enough,

n=1

1
AlogQ—1< > —— < AlogQ < log(z/m) .
=5 PR

Z T (p— 1) < 8—1: .
= m m
p=1 (mod m)

Finally

O]

Lemma 3.3.5. Let p be an odd prime number and let x # xo be a non-principal Dirichlet
character modulo p. Define

dm,z(X) = 2 |Cm(X)| ,

then

Proof. From equation (3.6) and Lemma we have

p—1

1 -nm\ (%)
- — 1) 2 N2 p— ’
P gy N () L (f2)

)
n;=n m

where y = e2/(—1) with n € Z/(p — 1)Z\{0}; naming t = 2=X and u = ged (t,n;) we get

o NAWAL
dm,z(X)_(p_l)rth;,U' <d> 0 H(d)

where




Then

_ 1 AVEACNIRNY()
D) = Gy 2 (d) )

(p dt K%
1 t t p?(k) 1 1
<Zu2<>d= =— 1] (1+5
p—ld‘t d p—lk‘t k mmE 14

3.4 Proof of Theorem 1

We follow the method of Stephens [31]. By exchanging the order of summation we obtain that

N Nawm@ = Y MMND),

a€Z” p<sz
O<a1<T1 p=1 (mod m)

O0<a,r<T,

where M;”(I) is the number of r-tuples a € Z", with 0 < a; < T; and vp(a;) = 0 for each
i =1,...,7, whose reductions modulo p satisfies [F}, : {ay,] = m. We can write

MMT) = > tpml(a),

a€ezZ”
O<a1<Th

O0<a,r<T,

with |
tpm(a) = {1 if [Fp {ayp] =m,

0 otherwise.

Given a r-tuple x of Dirichlet characters mod p, by orthogonality relations it is easy to verify
that

tpm(a) = > em()x(a) ; (3.10)

XE(FE)”
so we have
Y Naml@) = . 1D em(0x(a) (3.11)
QEZT psT QEZT E(]F/;)T
O<a1<T p=1 (mod m)0<a;<T1 X=Ep
0<a;<Tr O<a;<TT
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Let X = (X0, - - -, X0) be the r-tuple consisting of all principal characters, then

[Ff{appl=m

1 - _
_ m#{g e(Z/(p—1)Z)" : (a,p—1) = m}

1
= —R,(m) .
(p—1r p(m)
Denoting |T'| :=[];_; T; and T* := min{T; : ¢ = 1,...,r}, through (3.8) and (3.7), we can write
the main term in (3.11]) as

1
@ Z Z Em (XO)XO (a)

p<z a€eZ”
p=1 (mod m)0<a1<T}

O<a,<Ty

1 r
= 7 N el [THTI =17/l
7| L
PSZT i=1
p=1 (mod m)
1 " 1
— Z Cm(X0)<1—T+---+T+ O(z‘l))
p<x p p O i
p=1 (mod m)
= Y. cmlxy) +O0 >, 1+O( - )
p<z e vz P T*logx
p=1 (mod m) p=1 (mod m)
x
Sin(2) + Ollogloga) + O (T* 10%)

By hypothesis m < (logz)”, D > 0, and T* > exp(4(log z loglog z)'/?), so we can apply Lemma
[3.3.3 to obtain

1 . T
73] Z Z em(Xy)Xo(@) = Crom Li(z) + O (”W) ;

p<T ae”Z”
p=1 (mod m)0<a; <T}

O<a,<T),
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where M > 1. For the error term we need to estimate the sum

() :=|fp| D Y Y x@ (3.12)

- P<sT oA a€Z”
p=1 (mod m) XG(FP) \x} O<a1<T
0<a7..<TT
51
<YF X 2 dmi)| X x@)
i=1"" p<a - a€Z
p=1 (mod m) XEFF\{xo0} 0<a<T;

since the r main contributions to (3.12)) comes from the cases in which just one Dirichlet character
in x is non-principal, say x; = x # Xo, while for every j # ¢ we choose x; = xo, giving

Yo=Y @ Y Y <Y @
a€ez” a€Z 0j<r  aj€Z | ez
O<a1<T 0<a<T; J#1 0<a;<T} 0<a<T;

: pla;
0<a,'.<T,.

Define

B} () 1= D dmi0)] Y, x(@)] (3.13)

o €Z
d m) x€FE\{xo} 0<aa<Ti

then by Holder’s inequality

2s;—1
(E@P <! Y Y (dei}E

p<w o
=1 (m x€FE\{xo}
p=t (mod m) T o, (3.14)

DI P

pszT ek a€Z
p=1 (mod m) X€Fp\{xo} 0<a<T;
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As before, given a primitive root g modulo p, write x;(g) = e2mini/(0=1) for every j =1, ...

with nj € Z/(p — 1)Z, so that by equation (3.6)

g
o
B
=
I
=
|| =
—_
—
|
9}
I
B

Denoting again t = (p — 1)/m, from Lemma we derive the following upper bound:

Z dm,i(x) < 2 |em (X))
XEFE\{x0} xe(FF) "\
SN IO N
< () o= |# e @o-2r 0w -
B 0 L) e uk) L) t
- %’“‘2 (d) d””Jr(t/d)k'Z; T %“2 (d)
1
= 1— — ) ow®) < ouw®)
10-2)

Call Dy, ;(p) := max{dymi(x) : x € IE%\{XO}}, then the following asymptotic estimate holds for
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every s; = 1:

2s; 1
2 2, ldmaC}mT < ) > A0 {dm s ()}
p=1 ?nfg:d m) X€FE\{xo} p=1 ?nfgd m) xe€FF\{x0}
1
< Y DT Y dei)
=1 (mod m) XeFF\{xo}
1 -
<Y DaapyEoeCE
psT
p=1 (mod m)
_7} 1 w(p*l)
< m 2si—1 Z H 1 —+ Z 2 m
p<x g‘ﬂ
p=1 (mod m) = ™
S IR (21
«Lm 251 Z H 1—= kS
p<z g‘ﬂ ¢
p=1 (mod m) ™
1 p—1
«m *i—1loglogx 2 T ()
p< m
p=1 (mod m)

254
«m *i~1zloglogz ,

where we have used Lemma and Lemma together with the simple observation
1 1\ 7T 1
2s;—1
o< T (145) " < I (1+7)

To estimate the other factor in (3.14)) we use Lemma 5 in [31]:

257;

Z Z Z X(a) < (xQ _l_Tisi)Tisi (log(eﬂsi_l))812—1 .
p=1 I()ricw)d m) XeFF\{xo} o fngi
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So, for every positive constant M > 1, we find

I;I 2 Negym(®) = CT’mLi(x)JrO(a:N[)

0<7a1 <Ti

O<a,<T,

i=1

with

* 1| (zloglogz )T i

Bo(a) « Y o | [ 22882 ) (22 4 moymsi(log (e 1))t |

i=1 Ti mQSiil

If we choose s; = H)lgngJ +1fori=1,...,r, then Tf“l <2? < T and
1 " 1— L 9 521
E,m(zr) « - Z;(x loglogz)™ i (log(ex”)) 2
1=

Now, if T; > 2® foralli=1,...,7, then sy = --- =5, = 1 and

1
E,m(z) « —(xloglog z)Y?
m

in particular, we have E,,(z) « z/(logz)M for every constant M > 1. Otherwise, if Tj < z
for some j € {1,...,r}, then s; > 2 and the corresponding contribution to E,,(z) will be

1 3logx

. 1 1
El . (x) « —(xlog loggs)1 255 (10g(6x2))2logTj .
’ m

By hypothesis
T* > exp(4(log z loglog z) /%)

and, through computations similar to those in [3I] (page 184), we can derive the following

estimate:

1
E,m(z) < —mloglogm(T*)_% .
m

Also in this case, using (3.15), we have E, () « z/(logz)M for every M > 1. This ends the

proof of Theorem O
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3.5 Proof of Theorem 2

We now consider

H: =|;| > {Nwym(z) = Crm Li(2)}.

- a€eZ”
O<a1<Ty

O<a,<Ty

We start bounding H as follows:

2 {N<g>7m(l') — C,«,m Ll($)}2

a€Z’”

O0<a1<Ty

0<a;<Tr

< ) ML@-2mLi) Y MPND) +IL(Crm) L)
P,gsx p<x

p,q=1 (mod m) p=1 (mod m)

where M% (T') denotes the number of r-tuples a € Z" , with a; < T; and vp(a;) = vy(a;) = 0 for
each i = 1,...,r, whose reductions modulo prime numbers p and ¢ satisfy [F} : {a),] = [F} :

(@)q] = m.
From Theorem [B.1.1] we obtain
H< o > M™ (T) — (Cr.n)? Li%(z) + O o
= (log 2"~
p,q=1 (mod m)

for every constant M’ > 2. If we write

>oooML@m= Y MO+ Y, M),

p,gsT PST D,g<T
p,g=1 (mod m) p=1 (mod m) p,q=1 (mod m)
PFq

Theorem gives, for arbitrary M > 1,

: |T|x
M™MT) = Cym|T| Li(z) + O ( .
P ! (log )™
p=1 (mod m)

In the same spirit as in the proof Theorem we use equation (3.10)) to deal with the following
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sum

2 M;:Lq (T) = Z Z tpm(a)tqm(a)

DP,gsT DgsT a€eZ”
p,g=1 (mod m) p,q=1 (mod m) 0<a1<T}
pPF#q p#q
O<ar Tr
= XX elyenly) ) x(e)x@), (3.16)
D,g<T e(F F" a€ezZ”
p,g=1 (mod m) Xy &( p) XQE( q) O<a1<Th
P#q
0<a,<Tr

where X, and X denote r-tuple of Dirichlet characters modulo p, ¢ respectively. Therefore

Z M) (T) = Hy + 2H; + Hsz + O(|T| Li(z)) ,

P,q<T
p,g=1 (mod m)

where Hq, Ho, H3 are the contributions to the sum when X; = Xy = Xp only one between
X, and X, is equal to Xo» neither X, nor x, is X, respectlvely First we deal with the inner sum

in Hy. To avoid confusion, we set X(p ) and X(Q) as the r-tuples whose all entries are principal
characters modulo p and modulo ¢ respectively, so that

> xXPUa)x(a) =ﬁ {[TA — H;J — {TJ + [TJ} .

aeZ’” i=1
O<a1<Ty

0<<a,<T,

Using Lemma with M’ > 2 arbitrary constant:

Hy = > en(XPem(x?) > xP(a)x(?(a)
PasT ae’Z”
p,g=1 (mod m) O<a1<Th
P#q .
O<a;<TT
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= 171 Y, enxP)emx?) (1

D<T

@m
Q\ﬁ
+
5
Q|
-

+
L~
L

Q

N

=

N
N—

p,q=1 (mod m)
P#q
= |z e (X)) (em(x{)*
p<x p<z
p=1 (mod m) p=1 (mod m)
log1
( —i—O( +|T|O xogogw
log

2
B 9 x xlog log
- 1215500+ (g +0 (o) )

= Iz <CimLiQ<x>+O<w<bimM>) '

Focus now on Hs and assume without loss of generality that X, = Xy 7 Xy

Hy= >0 alMenlxy) Y, xPa)x,(a)

pg<z ik (a) aeZ”
p,g=1 (mod m) X,6(F3)"\Mxo } 0<a1<T
pP#q
0<ar<T
= ) 2 enln) ) (@)
IS qsz ok (a) a€Z”
p=1 (mod m) ¢=1 (mod m) X,€F)"\{xo 0<a1<T
q#p
0<a,<Ty
T
pilliz1 i

Identically to what was done in the proof of Theorem 1, the quantity

Upi= Y. D lemlxy) DL x,(@)

g<z TE\T\ f0q aezZ”
¢=1 (mod m) X2E(Fq) \{XO} O<a1<Ty
0<ar<T

can be estimated through Holder’s inequality combined with the large sieve inequality, to get
Us « z/(logz)™ for any constant M > 1. Moreover, Lemmam gives an upper bound for the
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following quantity:

Vo = Z Z Cm(XQ) Z XQ(Q)

q<zT S (@ aelr
g=1 (mod m)X2&Fa)"\Mxo"} 0
0<a,<T}
pl[Ticq @
1T
« =X S femlyy)l
< o~
g=1 gmsd m) Xze(F:lk)r\{X(()Q)}

T q-1\ |T|=
< 7”, Z T T < prim .

g<z
¢=1 (mod m)

Thus, for every constant M’ > 2,

2|2

HQ < Z (U2+‘/2) <<W.

PST
p=1 (mod m)

Finally, assume x1 € @%\{Xgp)} and xo € Iﬁ'\g\{xéq)}, with p # ¢, then y1x2 is a primitive
character modulo pg. Given

Hy= ) > D anl)emxy) YL x(@)x,(a)

ST FE . €7
pa=l ?mod m) X EED V) DN 0<ar<Ti
p#q
0<a,<T)

we will apply again Holder’s inequality and the large sieve (Lemma 5 in [31]) to obtain an upper
bound. In order to do that, since the r-tuples of characters, X, and X,» appearing in Hj are both
non-principal, we indicate with y; the i-th component of the r-tuple X, of Dirichlet characters
to the modulus p (similarly for x2;). Then the contributions to Hs have two possible sources:
a “diagonal” term H¢ (in which for a certain i € {1,...,7} both x; and X2, are non-principal)
and a “non-diagonal” term HZJ? (in which for none of the indices i € {1,...,7} is possible to
have x1 and x2,; both non-principal). Analogously to what was done for the estimate of the
error term 1) in the proof of Theorem 1, the main contributions to Hg and Hg‘d derive from
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the cases in which, for a certain r-tuple of characters modulo p or ¢, we pick just one character
non-principal and the other  — 1 all principal. Explicitly, H. g = >.i_, H3;, where

H;:= Y D D enlx)em(x,) Y, X (@)x,(@)

DqsT E\T E\T a€eZ”
p,g=1 (mod m) Xl/e\(IFp )( ) X,€(F7) 0<a1<T
P —~
PR xafFG" ) aeF R\ (x ) :
O<ar<Ty

< > > D dmix)dmi(x2) | Y, xalai)xa(ai)

T;
b g ok _— i Z
=1 ‘(szd m) X1\ (X} xoeF\ x5} 0<ar<T;
PFq
and ngd = Z;;jzl Hj ;;, with
1#]
Hs,ij = 2 2 2 emlemly) Y, x(@)x,(@)
D,gsx T T a€eZ’”
p,q=1 (mod m) K1/6\(]1711 )( ) X2€(]Fq) O0<a1<Ty
* p —~
P#q X1€F5\{xg }XZG]F«?\{X(()(I)} :
O<a,<Ty

« > > D dmilx)dm;(2) | D xalai)xa(ay)

,q<T > b i,a;EZL
pamt b oy XLEFEAO) TP\ ) 0cur<T,
pP#q O<aj gTj

Dealing first with H3;, we use again Holder’s inequality together with the large sieve to get

2s;—1
2s;
Hs; 1 o,
|T,|’L < T 2 2 [dm,z (Xl)dm,z(XQ)] 2s;,—1
4 i 4
pa=t e m) MIEERNG)
pEe R\
287; E
8 Z Z Z n(a;)
P,gsT n (mod pq) | a;€Z
p,g=1 (mod m) 0<a;<T;
P#q
1
1 xlog logw 12 4 Si\Si si—1\ys2—1 e
CEal\Te ) @ AT log(eT ) .

48



We now choose s; = H{}gngJ + 1, so that Tfi_l <at« T;" and

2
s7 -1

1
22 (loglog z)?(log(ex?)) 2%

Hy 1
] <

If T, > 2% then s; = 1 and Hs3,;/|T| « z(log log z)2. Otherwise, if T; < 2% then s; > 2 and
assuming T; > exp(6(log x log log )'/?), similarly to what was done to prove Theorem 1 we get

3logx 1»2

HZ' _1
L (loglog z)?(log(ex?)) e Ti « (logz)D

T

for any positive constant D > 2.
It remains to estimate Hj3;; where ¢ # j. In this case H3;; can be factorized in two products
and through the same methods used for (3.13)) we have

Hs i 1
Ef < TT; 2 D dmix)| D) xa(a)

Pz F £ (P) ai€L
p=1 (mod m) x1€fp\{xo ) 0<a;<T;

X 2 dm,j(Xx2) Z x2(a;)

q=1 ((]Ifua)cd m) XQE@\{XE){Z)} 0<a(ije<ZTj
1
1 zloglog 2ot 2 Si\rSi si—1yys2—1 s
K3
2s,—1 35
1 xloglogx\ %™~ N 2 g |
() e )
21 21
We choose s; = llogngJ + 1 and s; = lbgngJ + 1, so that
H3,ij 1'2

«
7] (loga)®

for every constant E > 2.
Eventually, since Hy « Hg + Hg”d, summing the upper bounds for Hy, Ho and Hs we get the

proof of Theorem O
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Chapter 4

Work in progress

In this Chapter we present the current results of a joint work with Francesco Pappalardi that,
given a finitely generated subgroup I' = Q¥, allow to determine an explicit formula for the order
of the Galois group # Gal(Q(¢m, ') /Q) where d | m, ¢ = €2™/™ and TY? = {a e C: o? e T}.
In this way, we can generalize equation and, consequently, every result which makes use of
that formula, like those in Section or formula from [26].

By the standard properties of Kummer extensions (see for example [13, Theorem 8.1]), we
have that

Gal(Q(Gm, T4 /Q) = Gal(Q((n)/Q) ®T(d)/T

where
() :=T-Q*/Q*" and Tpa:={yel(d): v el Q" (Q(¢n)")%,

where for v € T'(d), 7/ € Z denotes the unique d-power free representative of v (y =+ - Q*d).
This notation will be used extensively throughout this paper. Note that the sign of 4’ is chosen
to be positive if d is odd or if v = +/ .Q* = QF and is negative otherwise. Furthermore if d > 1
is odd, then (Q(Gn)*)¢ A Q* = Q*%. Hence, if for ¢ prime, ve(d) denotes the —adic valuation of
d, then
g = H Lo =T gu@.
¢ld

If n € Z, we denote by §(n) = disc(Q(,/n) the field discriminant. So, if 7 is squarefree, then
d(n) = n or 4n according with 7 = 1 mod 4 or not. It was observed in [25, Corollary 1] that, in
the case when I' © Q7 then if 2% | m,

Tooe = {y€T2%) : 7' =", 5(n) | m}]] (4.1)

'Note that if we denote by Supp I the support of T, i.e. the finite set of those primes £ such that the ¢-adic
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In particular, if a = 0, then fmi is the trivial group and if o = 1 and m is squarefree, then
in [2, page 124, (24)] is was proven that

Tmo={yeT(2):5(v)|mand §(v') = 1 mod (m)}.

Note that for 4 { m, the condition §(7') = 1(modm) above is irrelevant as it is implied by the
condition that 6(7’) | m. So that the formula for T, 9 and that in coincide.

Our first task is to extend the above formula for f‘mg in the case when m is not necessarily
squarefree.

Proposition 4.0.1. Let I' € Q* be a finitely generated subgroup, let m € N be even. Then

Pma={yeT(2):(+)[m}

Although the proof of the Proposition is the same as the proof of Corollary 1 in [25], we add
it here for completeness.

Proof of the Proposition. Let us start from the definition:
Lz :={7€D(2): 7' el Q* n (QGn)*")?)

and note that if v/ € I - Q*? is squarefree, then 7' € (Q(¢n)*)? if and only if v/7" € Q((n)* and
this happens if and only if §(v") | m (see for example Weiss [35, page 264]). This completes the
proof. O

So we are left with the case o = 2. We have the general

Proposition 4.0.2. Let I' € Q* be a finitely generated group. Let m € N and let « € N, o # 0
be such that 2% | m. Finally set

f‘:,rﬂa ={yeTl(2%) :9 = w2 and o(u) | m}

and

m,2¢

- {'Y € F(QO‘) :'Y, — _u20¢—1 and (5(u) | m} if 9o+l | m
{yel(2%):4 = —u®"" and S(u) | 2m but 6(u) tm} if 22ty m.

Then

_ Tt -
meza - Fm,2°‘ v Fm,2a'

valuation of some elements of I' is nonzero and we set

or = H £,

LeSupp I’

then ~ € T’y 2o such that 4" = n2(!71, implies that n | ged(m, or).
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The proof is, in spirit, the same as the proof of [29] Lemma 4].

Proof. From the discussion above, we can restrict ourselves to the case when o > 2. Suppose
that o € Z, ' > 0 is 2%-power free and that %/9" € Q(¢y). Then Q( /') is a Galois, real,

a—1
2 for

extension of Q and this can only happen if its degree over Q is at most 2. Hence 7/ = u
some u € N.

Next suppose that 7/ € Z, v < 0 and that n € Q((y) is such that 72° = 4. We claim
that v/ = —u2""" for some u € N. In fact 72 > 0 and 72 = 12*"". Hence we can apply the
argument above to deduce that 72 = 42" so that 7' = —u2*"'. From this property we dedce
that n = Cé“a“\/ﬁ for some k € N, < 2°T!, k odd. Clearly we can assume that k = 1 so that
N = (aat14/U € Q(¢r). We need to distinguish two cases: 2°! | m or 29||m. In the first case,
Coa+1 € Q((m) so that the condition n € Q((,,) is equivalent to v/u € Q((,,) which is equivalent
to d(u) | m. In the second case we have that (ya+1 ¢ Q((p). So /u ¢ Q(() but (oat1 € Q(Cam),

hence y/u € Q(C2m )\Q((m ). Viceversa, if 4/u € Q(C2m)\Q((n ), we have that
QGm) = Q6m) (V1) = QGm) (V/C2) = Q(Gm) (Goar1).-

Hence v/u = aya+1 for some a € Q((n). S0 Coat14/u € Q((n)-
Finally v/u € Q(2m)\Q(¢m) is equivalent to d(u) | 2m but 6(u) { m. O

Corollary 4.0.3. LetI' € Q* be a finitely generated subgroup. Suppose that m,d € N with d | m.

Then
-1

# Gal(Q(Gns T1)/Q) = [QGn, T) : Q] = () x [T(@)] x |, 000
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