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Introduction

Statement of the problem

For any d ∈ Z and g, n ≥ 0 such that 2g − 2 + n > 0, denote by Picd,g,n the
stack whose sections over a scheme S consist of flat and proper families
π : C → S of smooth curves of genus g, with n distinct sections si : S → C

and a line bundle L of relative degree d over C. Morphisms between two
such objects are given by cartesian diagrams

C

π

��

β2 // C′

π′

��
S

β1

//

si

HH

S′

si′

UU

such that si′ ◦ β1 = β2 ◦ si, 1 ≤ i ≤ n, together with an isomorphism
β3 : L→ β∗

2(L′).
Picd,g,n is endowed with a natural forgetful map onto Mg,n and it is, of

course, not complete.
In the present thesis we search for a compactification of Picd,g,n over

Mg,n. By this we mean to construct an algebraic stack Pd,g,n with a map
Ψd,g,n onto Mg,n with the following properties.

1. Pd,g,n and Ψd,g,n fit in the following diagram;

Picd,g,n

��

�

� // Pd,g,n

Ψd,g,n

��
Mg,n

�

� // Mg,n

2. Ψd,g,n is proper (or, at least, universally closed);

i
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3. Pd,g,n has a geometrically meaningful modular description.

Note that in order to complete Picd,g,n over Mg,n it is not enough to
consider the stack of line bundles over families of n-pointed stable curves,
since this is not complete as well. So, it is necessary to enlarge the category
either admitting more general sheaves than line bundles or a bigger class
of curves.

Motivation

The problem of compactifying the (generalized) Jacobian of curves or of fa-
milies of curves has been widely studied in the last decades, starting from
the work of Igusa [I56] and of Mayer and Mumford [MM]. Since then, se-
veral solutions where found, specially in the case of irreducible curves (see
[A04] for an overview and comparison results on these constructions). For
irreducible curves a first answer was given by D’Souza in [DS79]. Later,
Altman, Kleiman and others extended this work to families of irreducible
curves with more general singularities than nodes (see [AK80] and also
[Es01]). For reducible curves the situation is more intricate since one has
to deal also with nontrivial combinatorial problems. A first solution, for
a single reducible curve, is given by Oda and Seshadri in [OS79]. Then,
in [C94], Caporaso constructs a compactification the universal Picard va-
riety over Mg and later, in [P96], Pandharipande makes a more general
construction that holds also for vector bundles of higher rank and coin-
cides with Caporaso’s in the case of line bundles. We also recall Simpson’s
general construction of moduli spaces of coherent sheaves on projective
schemes in [Si94] and Schmitt’s construction of algebraic stacks compacti-
fying the universal moduli space of semistable vector bundles over smooth
curves in [S04].

On the other hand, the construction of the moduli space of stable curves
with marked points was done by Knudsen in [K83], following ideas of
Mumford, with the scope of proving the projectivity of the moduli space
of stable curves. Since then, Mg,n itself became the subject of great inte-
rest, because of its rich geometry, and because of several applications. In
particular, Mg,n has a central role in Gromov-Witten theory and enume-
rative geometry. In fact, in part motivated by Witten’s conjecture ([W91]),
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the study of the cohomology ring of Mg,n attracted the attention of several
algebraic geometers in the last decades and led to very important results.

We recall, for instance, Kontsevich’s first proof of the Witten conjec-
ture in ([K92]); the interaction between geometry and physics leading to
the development of quantum cohomoly and Gromov-Witten theory (see e.g.
[FP97]); the algebro-geometric inductive calculations on the cohomology
ring of Mg,n due to Arbarello and Cornalba in [AC98]; Faber’s conjec-
tures on the structure of the tautological ring of Mg and its pointed ver-
sions ([F99], [P02]), the ELSV formulas relating intersection formulas in
Mg,n with Hurwitz numbers ([ELSV1], [ELSV2]) and the recent proof by
Faber, Shadrin and Zvonkine in [FSZ] of the generalized Witten conjecture
([W93]).

So, it is natural to search for a compactification of Picd,g,n over Mg,n

and to study its applications. Nevertheless, at least to our knowledge,
there was no construction of compactified Picard varieties for curves with
marked points until now.

Our interest in constructing such a space is also due to Goulden, Jack-
son and Vakil’s “generalized ELSV formula”conjecturing a relation between
the intersection theory of a (4g−3+n)-dimensional space and certain dou-
ble Hurwitz numbers (see [GJV05] and [LV]). According to these authors,
this space should be a suitable compactification of Picd,g,n over Mg,n sup-
porting particular families of classes satisfying certain properties. Unfor-
tunately, we do not know yet if our space supports such classes, except for
what they call ψ-classes, which turn out to be the pullback of the ψ-classes
in Mg,n. It is certainly interesting to consider this as a future research
problem.

Balanced Picard stacks over Mg

Let us start by considering the case n = 0 (and g ≥ 2). As we already men-
tioned, the situation here is particularly fortunate since there are many
constructions of compactified Picard varieties of stable curves.

In particular, in [C94], Caporaso addresses the problem of compacti-
fying Picdg over Mg, where Picdg denotes the “universal Picard variety of
degree d”over M0

g , parametrizing isomorphism classes of line bundles of
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degree d over automorphism-free nonsingular curves. We will now briefly
describe this construction.

Fix an algebraically closed field k and consider the Hilbert scheme H
of genus g curves defined over k embedded in Pr as nondegenerate curves
of degree d, where r = d − g. There is a natural action of PGL(r + 1) in
H corresponding to the choice of the coordinates used to embed the curves.
For d≫ 0, define

P d,g := Hd//PGL(r + 1)

as the GIT-quotient of Hd by the natural action of PGL(r + 1), the locus
of GIT-semistable points for this action (under a fixed suitable lineariza-
tion). By results of [G82] and [C94], we know that, for g ≥ 2, points in Hd

correspond exactly to quasistable curves of genus g embedded by balanced

line bundles (of degree d), where quasistable curves are semistable curves
such that two exceptional components never meet, and balanced is a com-
binatorial condition on the multidegree of the line bundle on the curve (see
Definition 2.1.1 below). In particular, given a quasistable curve X , there
are only finitely many balanced multidegrees summing up to d.

By construction, P d,g is endowed with a proper morphism φd onto Mg

such that, for g ≥ 3, φ−1
d (M0

g ) is isomorphic to Picdg. Moreover, given
[X ] ∈ Mg, φ−1

d (X) is a projective connected scheme with a finite number
of components (that can not exceed a certain numerical invariant of the
curve) and, if X has trivial automorphism group, φ−1

d (X) is reduced and
its smooth locus is isomorphic to the disjoint union of a finite number of
copies of the Jacobian of X , JX .

Let d≫ 0 such that (d− g+1, 2g−2) = 1. Then, the GIT-quotient yield-
ing P d,g is geometric (see [C94], Proposition 6.2) and the quotient stack
associated to it, [Hd/G], is a Deligne-Mumford stack with a strongly re-
presentable morphism onto Mg, where with G we will denote the group
PGL(r + 1) (see [C05], 5.9). Moreover, it has the following modular des-
cription.

Consider the stack Pd,g over SCHk whose sections over a k-scheme S
consist of families π : X → S of genus g quasistable curves over S endowed
with a balanced line bundle of relative degree d over X and whose mor-
phisms are cartesian diagrams of the curves plus an isomorphism between
the line bundles (as in Picd,g,n above, ignoring the sections). There is a
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natural action of Gm on Pd,g given by fiberwise scalar multiplication on
the line bundles, leaving the curves fixed. Then, [Hd/G] is isomorphic to
the rigidification (in the sense of [ACV01]) of Pd,g by the action of BGm

(see [C05] 5.10).

Let us now suppose that (d− g+1, 2g− 2) 6= 1. Then, the quotient stack
[Hd/G] is not Deligne-Mumford and it is not possible to give a modular
description of it using the same reasoning of Caporaso’s in [C05], since it
uses the existence of the analogue of Poincaré line bundles for families of
stable curves, which does not exist in this more general case. The main
result of the first part of the present thesis consists exactly in showing
that, if d≫ 0, the quotient stack [Hd/G] has the same modular description
as in the case that (d− g + 1, 2g − 2) = 1. This follows from Theorem 2.3.1,
where we show that Pd,g is isomorphic to [Hd/GL(r + 1)], where GL(r + 1)

acts by projection onto G = PGL(r + 1). This implies that Pd,g is a smooth
and irreducible Artin stack of dimension 4g−3 endowed with a universally
closed map onto Mg. Since, for d and d′ such that d = d′ + m(2g − 2) for
some m ∈ Z, Pd,g is isomorphic to Pd′,g, we get that the same statement
holds in general for any d ∈ Z and for g ≥ 2.

Then, using the universal property of the notion of rigidification, we
give a modular description of the rigidification of Pd,g along the action of
BGm, Pd,g ( Gm, and we show that it is isomorphic to [Hd/G] (see section
2.4 below). It also follows that Pd,g is a Gm-gerbe over [Hd/G] (see 2.4.1).

In section 2.2 we consider the restriction of [Hd/G] to the locus M
d

g of
d-general curves, i.e., the locus of genus g stable curves over which the
GIT-quotient above is geometric. In Prop. 2.2.2 we show that this restric-
tion, denoted by [Ud/G], is a Deligne-Mumford stack and is endowed with
a strongly representable map onto M

d

g. In particular, it gives a functorial
way of getting a compactification of the relative degree d Picard variety for
families of d-general curves (see Corollary 2.2.4 below). By this we mean
that, given a family of stable curves f : X → S, the base change of the
moduli map µf : S → Mg by [Hd/G] → Mg is a scheme, P

d

f , yielding a
compactification of the relative degree d Picard variety associated to f (see
1.1 for the Definition of the Picard variety associated to a morphism). This
generalizes Proposition 5.9 of [C05] as observed in Remark 2.2.5. Instead,
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if the fibers of the family f are not d-general, the fiber product of the mo-
duli map of f , µf : S → Mg, by the map [Hd/G] → Mg is not a scheme.
Indeed, it is not even an algebraic space. However, it is canonically en-
dowed with a proper map onto a scheme yielding a compactification of the
relative degree d Picard variety associated to f (see Prop. 2.4.12).

In section 2.2.2 we give a combinatorial description of the locus in Mg

of d-general curves, M
d

g. For each d, M
d

g is an open subscheme of Mg

containing all genus g irreducible curves and M
d

g = M
d′

g if and only if
(d− g + 1, 2g − 2) = (d′ − g + 1, 2g − 2). In Proposition 2.2.14 we also show
that the M

d

g ’s yield a lattice of open subschemes of Mg parametrized by the
(positive) divisors of 2g − 2.

LetB be a smooth curve defined over an algebraically closed field k with
function field K and XK a smooth genus g curve over K whose regular
minimal model over B is a family f : X → B of stable curves. Then, if
(d − g + 1, 2g − 2) = 1, the smooth locus of the map P

d

f → B is isomorphic
to the Néron model of PicdXk over B (see Theorem 6.1 of loc. cit.). We
end chapter 2 by asking if, for any d, [Hd/G], parametrizes Néron models
of Jacobians of smooth curves as it does if (d− g + 1, 2g− 2) = 1. In section
2.4.2 we show that the answer is no if (d − g + 1, 2g − 2) 6= 1, essentially
because [Hd/G] is not representable over Mg. We here focus on the case
d = g−1, which is particularly important. In fact for this degree all known
compactified Jacobians are canonically isomorphic and are endowed with
a theta divisor which is Cartier and ample (see [A04]).

Compactified Picard stacks over Mg,n

A consequence of what we have said so far is that, if we define Pd,g,0 to be
equal to Pd,g, it gives an answer to our initial problem for g ≥ 2 and n = 0.
Chapter 3 is devoted to the case n > 0.

We start by introducing the notions of n-pointed quasistable curve and
of balanced line bundles over these (see Definitions 3.1.3 and 3.1.4 below)
and by noticing that, for n = 0 and g ≥ 2, these coincide with the old no-
tions. It turns out that, for n > 0, n-pointed quasistable curves are the
ones we get by applying the stabilization morphism defined by Knudsen in
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[K83] (see 3.4.3 below) to (n− 1)-pointed quasistable curves endowed with
an extra section without stability conditions. Moreover, balanced line bun-
dles on n-pointed quasistable curves correspond to balanced line bundles
on the quasistable curves obtained by forgetting the points and by con-
tracting the rational components that get quasidestabilized without the
points (see Lemma 3.1.10).

As a consequence, we also get a definition of n-pointed quasistable
curves and of balanced line bundles over these for curves of genus 0 with
at least 3 marked points and for curves of genus 1 with at least 1 marked
point. It turns out that, for genus 0 curves, the notion of n-pointed qua-
sistable coincides with the notion of n-pointed stable. Moreover, given an
n-pointed stable curve X of genus 0, for each degree d, there is exactly one
balanced multidegree summing up to d (see Remark 3.1.6).

We define Pd,g,n to be the stack whose sections over a scheme S are
given by families of genus g n-pointed quasistable curves over S endowed
with a relative degree d balanced line bundle. Morphisms between two
such sections are like in Picd,g,n above. We prove that Pd,g,n is a smooth
and irreducible algebraic (Artin) stack of dimension 4g − 3 + n, endowed
with a universally closed morphism onto Mg,n, giving a solution for our
initial problem for all g, n ≥ 0 such that 2g− 2 +n > 0 (see Theorem 3.2.2).

Our definitions imply that, for every integer d, Pd,0,3 is isomorphic to
M0,3 × BGm, that Pd,1,1 is isomorphic to M1,1 × BGm (see Propositions
3.2.7 and 3.2.10, respectively) and that Theorem 3.2.2 is true for g ≥ 2 and
n = 0 (see Theorem 2.3.1).

Then, for n > 0 and 2g − 2 + n > 1, we proceed by induction in the
number of marked points n. Our construction goes along the lines of Knu-
dsen’s construction of Mg,n in [K83], which consisted on showing that, for
n ≥ 0, Mg,n+1 is isomorphic to the universal family over Mg,n. In the
same way, we show that there is an isomorphism between Pd,g,n+1 and
the universal family over Pd,g,n, Zd,g,n (see theorem 3.2.5), where Zd,g,n

is the stack whose sections over a k-scheme S are families of n-pointed
quasistable curves over S, endowed with a balanced line bundle L and with
an extra section. Zd,g,n is naturally endowed with a universal line bundle
L, (see Proposition 3.2.3 below). The isomorphism between Pd,g,n+1 and
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Zd,g,n is built explicitly and it generalizes Knudsen’s notion of contraction
and stabilization of n-pointed stable curves in this more general context of
quasistable curves endowed with balanced line bundles. The main diffe-
rence here is that we use the balanced line bundle itself tensored with the
sections to contract and stabilize the curves, instead of the dualizing sheaf
of the families used by Knudsen.

In order to make contraction work, we also need to prove some techni-
cal properties for line bundles over nodal curves. For instance, we show
that a line bundle with sufficiently big multidegree is nonspecial, globally
generated and normally generated (see Propositions 3.3.3 and 3.3.10). In
particular, we get that, if L is a balanced line bundle of degree d≫ 0 in an
(n+1)-pointed quasistable curve X of genus g ≥ 0 with 2g−2+n > 0, then
L(p1 + · · · + pn) is nonspecial, globally generated and normally generated,
where p1, . . . , pn, pn+1 are the marked points of X (see Corollaries 3.3.6 and
3.3.12). We also get that the same holds for (ωX(p1 + · · · + pn + pn+1))

m,
form ≥ 3, where ωX denotes the dualizing sheaf of X (see Corollaries 3.3.5
and 3.3.11).

In section 3.5 we show that Pd,g,n is endowed with a (forgetful) mor-
phism Ψd,g,n onto Mg,n, given on objects by taking the stable model of the
families and by forgetting the line bundle. We further study the fibres of
Ψd,g,n.

Finally, in section 3.6, we study further properties of Pd,g,n. For instan-
ce, we show that if d and d′ are such that 2g − 2 divides d− d′, then Pd,g,n

is isomorphic to Pd′,g,n. We also study the map form Pd,g,n+1 to Pd,g,n and
its sections and we show that these yield Cartier divisors on Pd,g,n+1 with
possibly interesting intersection properties.

Again, there is an action of BGm on Pd,g,n given by scalar product on
the line bundles, leaving the curves and the sections fixed, so Pd,g,n can
never be Deligne-Mumford. By construction, for n > 0 and 2g − 2 + n > 1,
the rigidification of Pd,g,n along this action of Gm, denoted by Pd,g,n ( Gm,
is Deligne-Mumford if and only if Pd,g,n−1 is and, in the same way, the
natural map from Pd,g,n(Gm onto Mg,n, denote it again by Ψd,g,n, is proper
and strongly representable if and only if Ψd,g,n−1 is. (Notational remark:
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we will use the \fatslash symbol ( as proposed by Romagny in [R05]
rather than P

Gm

d,g,n, as originaly denoted by [ACV01], since we already use
this notation for fixed points). So, we get that, for any n ≥ 0 and g ≥ 2,
Pd,g,n(Gm is a Deligne-Mumford stack proper and strongly representable
over Mg,n if and only if (d − g + 1, 2g − 2) = 1 (see Proposition 3.6.3). For
g = 0 and 1 we get that, for any integer d ∈ Z, Pd,0,n ( Gm is isomorphic to
M0,n for n ≥ 3 and that Pd,1,n ( Gm is isomorphic to M1,n+1 for n ≥ 1 (see
Proposition 3.6.4).

We would also like to observe that another possible approach to the
construction of Pd,g,n would be to use Baldwin and Swinarski’s GIT cons-
truction of the moduli space of stable maps and, in particular, of Mg,n, in
[BS08], and then proceed as Caporaso did in [C94].
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Chapter 1

Preliminaries and

notation

We will always consider schemes and algebraic stacks locally of finite type
over an algebraically closed base field k. We will always indicate schemes
with roman letters and stacks with calligraphic letters.

1.1 The relative Picard functor

LetX be an S-scheme with structural morphism π : X → S. Given another
S-scheme T , we will denote by πT : XT → T the base-change of π under
the structural morphism T → S.

XT := T ×S X

πT

��

// X

π

��
T // S

Given a family of nodal curves f , we will denote by Picf the relative

Picard functor associated to f and by Picdf its subfunctor of line bun-
dles of relative degree d. Picf is the fppf-sheaf associated to the functor
P : SCHB → Sets which associates to a scheme T over B the set Pic(XT ).
In particular, if the family f has a section, Picf(T ) = Pic(XT )/Pic(T ) (see
[BLR], chapter 8 for the general theory about the construction of the rela-

1



2 1. PRELIMINARIES AND NOTATION

tive Picard functor).
Thanks to more general results of D. Mumford and A. Grothendieck

in [M66] and [Gr], we know that Picf (and also Picdf ) is representable
by a scheme Picf , which is separated if all geometric fibers of f are ir-
reducible (see also [BLR], 8.2, Theorems 1 and 2). Picdg, the “universal
degree d Picard variety”, coarsely represents the degree d Picard func-
tor for the universal family of (automorphism-free) nonsingular curves of
genus g, fg : Zg → M0

g . Furthermore, it was proved by Mestrano and
Ramanan in [MR85] for chark = 0 and later on by Caporaso in [C94] for
any characteristic that Picdg is a fine moduli space, that is, there exists a
Poincaré line bundle over Picdg ×M0

g
Zg, if and only if the numerical condi-

tion (d− g + 1, 2g − 2) = 1 is satisfied.

1.2 Curves

Let S be a scheme. By a genus g curve X over S (or a family of curves over
S) we mean a proper and flat morphism X → S whose geometric fibers are
connected projective and reduced curves of genus g over k having at most
nodes as singularities.

If we do not specify the base scheme S, by a curve X we will always
mean a curve over k.

1.2.1 Line bundles on reducible curves

We will denote by ωX the canonical or dualizing sheaf ofX . For each proper
subcurve Z of X (which we will always assume to be complete), denote by
Z ′ := X \ Z, by kZ := ♯(Z ∩Z ′) and by gZ its arithmetic genus. Recall that,
if Z is connected, the adjunction formula gives

wZ := degZ ωX = 2gZ − 2 + kZ . (1.1)

For L ∈ PicX its multidegree is degL := (degZ1
L, . . . ,degZγ

L) and its
(total) degree is degL := degZ1

L + · · · + degZγ
L, where Z1, . . . , Zγ denote

the irreducible components of X .
Given d = (d1, . . . , dγ) ∈ Zγ , we set PicdX := {L ∈ PicX : degL = d} and

PicdX := {L ∈ PicX : degL = d}. We have that PicdX =
∑

|d|=d PicdX ,
where |d| =

∑γ
i=1 di.
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The generalized Jacobian of X is

Pic0 X = {L ∈ PicX : degL = (0, . . . , 0)}.

1.2.2 Stable and semistable curves

A stable curve is a nodal (connected) curve of genus g ≥ 2 with ample
dualizing sheaf. We will denote by Mg (resp. Mg) the moduli scheme
(resp. stack) of stable curves and by M

0

g ⊂ Mg the locus of curves with
trivial automorphism group.

A semistable curve is a nodal connected curve of genus g ≥ 2 whose
dualizing sheaf has non-negative multidegree.

It is easy to see that a nodal curve X is stable (resp. semistable) if, for
every smooth rational component E of X , kE ≥ 3 (resp. kE ≥ 2). If X is
semistable, the smooth rational components E such that kE = 2 are called
exceptional.

A semistable curve is called quasistable if two exceptional components
never meet.

The stable model of a semistable curve X is the stable curve obtained
by contracting all the exceptional components of X .

A family of stable (resp. semistable, resp. quasistable) curves is a flat
projective morphism f : X → B whose geometrical fibers are stable (resp.
semistable, resp. quasistable) curves. A line bundle of degree d on such a
family is a line bundle on X whose restriction to each geometric fiber has
degree d.

1.2.3 n-pointed stable and semistable curves

An n-pointed curve is a connected, projective and reduced nodal curve X
together with n distinct marked points pi ∈ X such that X is smooth at pi,
1 ≤ i ≤ n.

Suppose that g and n are such that 2g−2+n > 0. Then, we will say that
an n-pointed curve of genus g is stable (resp. semistable) if the number of
points where a nonsingular rational component E of X meets the rest of X
plus the number of points pi on E is at least 3 (resp. 2).

Suppose that (X ; p1, . . . , pn) is an n-pointed curve. It is easy to see that,
analogous to the case of curves without marked points, (X ; p1 . . . , pn) is
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stable (respectively semistable) if and only if the dualizing sheaf of X ten-
sored with the marked points, ωX(p1 + · · ·+pn), is ample (has non-negative
multidegree) (see for instance [HM], p. 84).

A family of n-pointed stable (resp. semistable) curves is a flat and proper
morphism π : X → S together with n distinct sections si : S → X such that
the geometric fibers Xs together with the points si(s), 1 ≤ i ≤ n, are n-
pointed stable (resp. semistable) curves.

1.3 Algebraic stacks

Let S be a category endowed with a Grothendieck topology.
Roughly speaking, a stack is a category fibered in groupoids over S such

that isomorphisms are a sheaf and every descent datum is effective.
We will not give any details about this definition since there are plenty

of good references; see, for instance [FGA] or [V89]. For a short introduc-
tion to the subject see also [F] or [E00].

We will denote by SCH (resp SCHk) the category of schemes (resp. sche-
mes over k) endowed with the flat topology.

Remark 1.3.1. Given a scheme S, the category SCH /S of schemes over
S is a stack: the objects are morphisms of schemes with target S and a
morphism from f : T → S to f ′ : T ′ → S is a morphism of schemes g : T →

T ′ such that f ′ = f ◦ g; the projection functor sends the object T → S to T
and a morphism g to itself.

1.3.1 Representability

Definition 1.3.2. A stack F is said to be strongly representable if it is

isomorphic to the stack induced by a scheme (see Remark 1.3.1 above).

We say that a morphism of stacks f : F → G is representable (resp.
strongly representable) if, for any scheme Y with a morphism Y → G, the

fiber product F ×G Y is an algebraic space (resp. a scheme).

Note that morphisms of schemes are always strongly representable.

Example 1.3.3. The morphism φ : Mg,1 → Mg forgetting the section is
strongly representable. In fact, giving a map of Y to Mg is equivalent to
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give a curve π : C → Y in Mg(Y ): the image of the identity morphism
IdY : Y → Y . Then, given any other morphism g : Z → Y , its image
under the map to Mg is necessarily π∗(f). It follows that the fiber product
Y ×Mg

Mg,1 is isomorphic to C.

Definition 1.3.4. Let P be a property of morphisms of schemesX → Y that

is stable under base change and that is local for the étale topology on Y (e.g.
flat, smooth, étale, separated, proper). A strongly representable morphism

of stacks f : F → G has property P if for any map S → G, where S is a
scheme, the morphism of schemes F ×G S → S has property P.

1.3.2 Algebraicity

In what concerns to algebraic stacks, we will always follow the definitions
of [L-MB00].

Definition 1.3.5. A stack F is algebraic in the sense of Artin (resp. Deligne-
Mumford) if there exists a smooth (resp. étale) and surjective strongly re-

presentable morphism S → F , where S is (the stack associated to) a scheme.
We will also say that S → F is a presentation or a smooth (resp. étale) atlas

of F .

Note that it makes sense to say that S → F is smooth or étale in virtue
of Definition 1.3.4 above.

1.3.3 Quotient stacks

Since almost all stacks that we will consider throughout this thesis are
quotient stacks, we will say something more about these now.

Let G be an algebraic group acting on a scheme S on the left. Let [S/G]

be the following category fibered over SCH: its objects are principal homo-
geneous G-bundles with a G-equivariant morphism to S and morphisms
are those pullback diagrams which are compatible with the morphism to
S.

Then, [S/G] is an algebraic Artin stack since there is a natural map

S → [S/G]

which is a smooth and surjective presentation of [S/G] of relative dimen-
sion dimG.
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Definition 1.3.6. A quotient stack is a stack of the form [S/G], for some S

and G as above.

If the stabilizers of the action of G on S are all finite and reduced (for
instance, if it is a GIT-geometric action), it turns out that [S/G] is indeed
Deligne-Mumford (see for instance [V89], 7.17).

Example 1.3.7. The satcks Mg and Mg are a quotient stacks for the ac-
tion of PGL(r + 1) in suitable subschemes of a certain Hilbert scheme H
(see for instance [E00] for an overview of this construction).

1.3.4 Coarse moduli spaces for algebraic stacks

Definition 1.3.8. A coarse moduli space for a stack F is an algebraic space
F together with a morphism π : F → F satisfying the following properties:

• for any algebraically closed field Ω, the morphism induced by π in the

connected components of the groupoid F(Spec Ω) and F (Spec Ω) is an
isomorphism;

• π is universal for morphisms from F onto algebraic spaces.

Example 1.3.9. GIT-geometric quotients by the action of an algebraic
group in a scheme are coarse moduli spaces for the quotient stack asso-
ciated to that action (see [V89] 2.1 and 2.11). So, for instance Mg and Mg

are coarse moduli spaces for the stacks Mg and Mg, respectively.



Chapter 2

Balanced Picard stacks

over Mg

In the present chapter we will try to give an answer to our initial problem
for n = 0. So, we consider the stack Picd,g, parametrizing families of non-
singular curves of genus g endowed with a line bundle of relative degree d
over these families and we try to get a modular compactification of it over
Mg.

As we already mentioned, this case is particularly fortunate since there
are already several constructions of compactified Jacobians for families of
stable curves.

Our approach will be to consider Caporasos’s construction, which is
made by means of a GIT quotient, and try to give a modular description of
the quotient stack associated to it (see 1.3.3 above).

We will start by giving an overview of the whole construction and by
discussing some details associated to it. For example, we give, for every in-
teger d, a geometrical description of the locus of genus g stable curves over
which we get Deligne-Mumford stacks strongly representable over Mg. In
this case, our stacks parametrize Néron models of Jacobians of smooth
curves in a sense that will be made precise (see 2.4.2 below). We also show
that this point of view allows us to get compactified Picard varieties (of
degree d) for families of stable curves in a functorial way. By this we mean
that, given a family of stable curves f : X → S, the fiber product of our

7
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stacks by the moduli map µf : S → Mg is either a compactification of the
relative degree d Picard variety associated to f or has a canonical map onto
it (see 1.1 for the definition of Picard variety associated to a morphism).

2.1 Balanced line bundles over semistable

curves

Recall that Gieseker’s construction of Mg consists of a GIT-quotient of the
action of SL(N), for someN ∈ Z, on a Hilbert scheme where it is possible to
embed all semistable curves of genus g (the “Hilbert point”of the curve) (see
[G82]). Gieseker shows that in this Hilbert scheme, in order for the Hilbert
point of a curve to be GIT-semistable, it is necessary that the multidegree
of the line bundle giving its projective realization satisfies an inequality,
called the “Basic Inequality”. Later, in [C94], Caporaso shows that this
condition is also sufficient.

We will now give the definition of this inequality, extending the termi-
nology introduced in [CCC04].

Definition 2.1.1. LetX be a semistable curve of genus g ≥ 2 and L a degree

d line bundle on X .

(i) We say that L (or its multidegree) is semibalanced if, for every con-
nected proper subcurve Z ofX the following (“Basic Inequality”) holds

mZ(d) :=
dwZ

2g − 2
−
kZ
2

≤ degZ L ≤
dwZ

2g − 2
+
kZ
2

:= MZ(d). (2.1)

(ii) We say that L (or its multidegree) is balanced if it is semibalanced
and if degE L = 1 for every exceptional component E of X . The set of

balanced line bundles of degree d of a curve X is denoted by BdX .

(iii) We say that L (or its multidegree) is stably balanced if it is balanced

and if for each connected proper subcurve Z of X such that degZ L =

mZ(d), the complement of Z, Z ′, is a union of exceptional components.

The set of stably balanced line bundles of degree d onX will be denoted
by B̃dX .
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Remark 2.1.2. Balanced multidegrees are representatives for multide-
gree classes of line bundles on X up to twisters (that is, to elements in
the degree class group of X , ∆X , which is a combinatorial invariant of the
curve defined in [C94]). More particularly, in [C05], Proposition 4.12, Ca-
poraso shows that, if X is a quasistable curve, every multidegree class in
∆X has a semibalanced representative and that a balanced multidegree is
unique in its equivalence class if and only if it is stably balanced.

In [BMS1] and [BMS2] we have studied, together with Simone Bu-
sonero and Lidia Stoppino, several geometrical and topological properties
of stable curves using exactly this invariant and its combinatorial proper-
ties. It is remarkable how combinatorics give interesting tools to the study
of reducible nodal curves.

We now list some easy consequences of the previous definition.

Remark 2.1.3. (A) If a semistable curve X admits a balanced line bun-
dle L, then X must be quasistable.

(B) To verify that a line bundle L is balanced it is enough to check that
degZ L ≥ mZ(d), for each proper subcurve Z of X and that degEL = 1

for each exceptional component E of X .

(C) If X is a stable curve, then a balanced line bundle L on X is stably
balanced if and only if, for each proper connected subcurve Z of X ,
degZ L 6= mZ(d).

(D) Let X be a stable curve consisting of two irreducible components, Z
and Z ′, meeting in an arbitrary number of nodes. Then X admits a
degree d line bundle which is balanced but not stably balanced if and
only if d−g+1

2g−2 wZ ∈ Z (equivalently if d−g+1
2g−2 wZ′ ∈ Z).

(E) A line bundle is balanced (resp. stably balanced) if and only if L⊗ω⊗n
X

is balanced (resp. stably balanced), for n ∈ Z. So, given integers d
and d′ such that ∃n ∈ Z with d ± d′ = n(2g − 2), there are natural
isomorphisms BdX ∼= Bd

′

X (and B̃dX ∼= B̃d
′

X ).

For (A) and (B) see [CE] Remark 3.3. (C) and (E) are immediate conse-
quences of the definition. For (D) note that, given a balanced γ-uple d ∈ Zγ

such that |d| = d, there exists a (balanced degree d) line bundle L in X
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such that degL = d. Since kZ = wZ − 2gZ + 2, we can write mZ(d) as
d−g+1
2g−2 wZ + gZ − 1, which is an integer by hypothesis. In the same way,
MZ′(d) = d − mZ(d) is an integer too, so (mZ(d),MZ′(d)) is a balanced
multidegree which is not stably balanced.

2.1.1 Caporaso’s construction

Let P d,g → Mg be Caporaso’s compactification of the universal Picard va-
riety of degree d, Picdg →M0

g , constructed in [C94]. We will now recall some
basic facts about this construction.

For d≫ 0, and g ≥ 2, P d,g is the GIT-quotient

πd : Hd → Hd//PGL(r + 1) =: P d,g

where Hd := (Hilbdt−g+1
Pr )ss, the locus of GIT-semistable points in the Hil-

bert scheme Hilbdt−g+1
Pr , with r = d − g, which is naturally endowed with

an action of PGL(r + 1) leaving Hd invariant. P d,g naturally surjects onto
Mg via a proper map φd : P d,g → Mg such that, for g ≥ 3, φ−1

d (M
0

g) is
isomorphic to Picdg.

Remark 2.1.4. Note that, even if Caporaso’s original results were stated
for g ≥ 3, the whole GIT construction holds also for g = 2. In fact, the
universal Picard variety Picdg over M0

g in [C94] exists only for g ≥ 3 (since
M0
g is empty otherwise), so it only makes sense to compactify it for g ≥ 3.

However, the description of the GIT-stable and semistable points of the
Hilbert schemes where we embed the curves, works also for g = 2 as we
can see by analyzing the proofs in [C94]. This description is all we need for
our results.

For [X ] ∈ Mg, denote by P d,X the inverse image of X by φd. P d,X is
a connected projective scheme having at most ∆X irreducible components,
all of dimension g. In addition, ifX is automorphism-free, the smooth locus
of P d,X is isomorphic to the disjoint union of a finite number of copies of
JX .

Points in Hd correspond to nondegenerate quasistable curves in Pr em-
bedded by a balanced line bundle.

Let Hs
d ⊆ Hd be the locus of GIT-stable points. These correspond to

nondegenerate quasistable curves in Pr embedded by a stably balanced
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line bundle of degree d.

Definition 2.1.5. Let X be a semistable curve of arithmetic genus g ≥ 2.
We say that X is d-general if all degree d balanced line bundles on X are

stably balanced. Otherwise, we will say that X is d-special.

Denote by Ud := (φd ◦ πd)−1(M
d

g) the subset of Hd corresponding to
d-general curves. Ud is an open subset of Hd where the GIT-quotient is
geometric (i.e., all fibers are PGL(r+1)-orbits and all stabilizers are finite
and reduced), invariant under the action of PGL(r + 1).

Ud = Hd if and only if (d−g+1, 2g−2) = 1, so the GIT-quotient yielding
P d,g is geometric if and only if (d− g + 1, 2g − 2) = 1 (see Proposition 6.2 of
loc. cit.).

2.2 Balanced Picard stacks on d-general

curves

For reasons that will be clear in a moment (see Section 2.2.1 below), call
P

Nér

d,g the GIT-quotient of Ud by PGL(r + 1), for g ≥ 2.
For the time being let

G := PGL(r + 1).

Let us now consider the quotient stack [Ud/G].

Recall that, given a scheme S over k, a section of [Ud/G] over S consists
of a pair (φ : E → S, ψ : E → Ud) where φ is a G-principal bundle and ψ is
a G-equivariant morphism. Arrows correspond to those pullback diagrams
which are compatible with the morphism to Ud.

Let M
d

g ⊂ Mg be the moduli stack of d-general stable curves. There

is a natural map from [Ud/G] to M
d

g, the restriction to d-general curves of
the moduli stack of stable curves, Mg. In fact, the restriction to Ud of the
stabilization morphism from Hd to Mg factors through M

d

g and, since Ud is

invariant under the action of G, this yields a map from [Ud/G] to M
d

g.
We will start by proving the following general result about representa-

bility of morphisms of Deligne-Mumford stacks.



12 2. BALANCED PICARD STACKS OVER Mg

Lemma 2.2.1. Let f : F → G be a representable morphism of Deligne-

Mumford stacks admitting coarse moduli spaces F and G, respectively.
Then, if the morphism induced by f on the coarse moduli spaces, π : F → G,

is strongly representable, also f is strongly representable.

Proof. We must show that, given a scheme B with a morphism to G, the
fiber product of f with this morphism, FB, is a scheme.

FB

��

// F //

f

��

F

π

��
B // G // G

Since f is representable, we know that FB is an algebraic space, so to show
that it is indeed a scheme it is enough to show that there is a projective
morphism from FB to a scheme (see [K71], II, 6.16). Consider the fiber
product of the induced morphism from B to G with π, FB . Since, by hy-
pothesis, π is representable, FB is a scheme and is endowed with a natural
morphism to FB, ρ : FB → FB, the base change over B of the map from F

to F . Since F is the coarse moduli space of F , this map is proper (see [V89]
2.1), so also ρ is proper. Now, to show that ρ is projective it is enough to
see that it has finite fibers, which follows from the fact that the stacks are
Deligne-Mumford.

Proposition 2.2.2. The quotient stack [Ud/G] is Deligne-Mumford for eve-

ry d ∈ Z and for every g ≥ 2 and its natural map onto M
d

g is strongly
representable.

Proof. The fact that [Ud/G] is Deligne-Mumford comes from the well known
fact that a quotient stack is Deligne-Mumford if and only if the action of the
group on the scheme is GIT-geometric, that is, if all stabilizers are finite
and reduced. Since Ud is the locus of curves where balanced line bundles
are necessarily stably balanced, the Hilbert point of a d-general curve is
GIT-semistable if and only if it is GIT-stable, so the GIT-quotient of Ud by
G is geometric.

The proof of the strong representability of the natural map from [Ud/G]

to M
d

g consists on two steps: first we prove that it is representable and
then we use it to prove strong representability.
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To prove representability it is sufficient to see that given any section
of our quotient stacks over the spectrum of an algebraically closed field k′,
the automorphism group of it injects into the automorphism group of its
image in M

d

g (see for example [AV02] 4.4.3). But a section of our quotient
stack over an algebraically closed field consists of a map onto a orbit of the
action of G in Ud. So, the automorphism group of that section is isomorphic
to the stabilizer of the orbit. The image of our section consists of a stable
curve X : the stable model of the projective curve associated to that orbit.
As this must be d-general, it is GIT-stable and we can use [C94] section 8.2
to conclude that the stabilizer of the orbit injects into the automorphism
group of X .

So, the map from [Ud/G] to M
d

g is representable. It follows now immedi-
ately that it is also strongly representable from Lemma 2.2.1 and the fact
that the GIT-quotients yielding P

Nér

d,g and Mg are geometric (see Example
1.3.9).

Definition 2.2.3. Let f : X → S be a family of stable curves. A com-

pactification of the relative Picard variety of degree d associated to f is a
projective S-scheme P whose fiber over closed points ξ of S corresponding to

automorphism-free fibers Xξ of f is isomorphic to φ−1
d (Xξ).

The following is an immediate consequence of the previous Proposition.

Corollary 2.2.4. The Deligne-Mumford stack [Ud/G] gives a functorial way
of getting compactifications of the relative Picard variety of degree d for

families of d-general curves in the sense of Definition 2.2.3.

Remark 2.2.5. Consider [Hd/G], the quotient stack of the action of G =

PGL(r + 1) in Hd. Then, if (d − g + 1, 2g − 2) = 1, [Hd/G] = [Ud/G] and all
we said in this section was already proved in [C05], section 5, for [Hd/G].
Note also that in loc. cit. [Hd/G] is denoted by Pd,g.

2.2.1 Néron models of families of d-general curves

Recall that, given a DVR (discrete valuation ring) R with function field K
and an abelian variety AK over K, the Néron model of AK , N(AK), is a
smooth model of AK over B = SpecR defined by the following universal
property (cf. [BLR] Definition 1): for every smooth scheme Z over B with
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a map uK : ZK → AZ of its generic fiber, there exists an unique extension
of uK to a B-morphism u : Z → N(AK). Note that N(AK) may fail to be
proper over B but it is always separated.

Let f : X → B be a family of stable curves with X nonsingular. Denote
by Xk the closed fiber of the family and by XK its generic fiber. The ques-
tion is how to construct the Néron model of the Picard variety PicdXK in a
functorial way over Mg. Even if it is natural to look at the Picard scheme
(of degree d) of the family, Picdf → B, which is smooth and has generic
fiber equal to PicdXK , it turns out to be unsatisfactory since it fails to be
separated over B if the closed fiber Xk of f is reducible.

Consider the quotient stack [Ustd /G], where Ustd is the locus of points in
Ud that parametrize d-general stable curves.

It is clear that the statement of Proposition 2.2.2 holds for [Ustd /G] since
Ustd is a G-invariant subscheme of Ud. So, given a family of d-general stable
curves f : X → B, the fiber product [Ustd /G] ×

M
d

g

B, where B → Mg is the

moduli map associated to the family f , is a scheme over B, denoted by P df .

P df

��

// PNér
d,g

��

B // M
d

g

Suppose X is regular. Then, from [C05], Theorem 6.1, we get that P df ∼=

N(PicdXK).

2.2.2 Combinatorial description of d-general curves in

M g

Recall the notions of d-general and d-special curve from Definition 2.1.5.
Following the notation of [CE], we will denote by Σdg the locus in Mg of

d-special curves. So, Σdg consists of stable curves X of genus g such that
B̃dX \ BdX 6= ∅ (see Definition 2.1.1). In particular, Σdg is contained in the
closed subset of Mg consisting of reducible curves. Let us also denote by
M

d

g the locus of d-general genus g stable curves (so Σdg ∪M
d

g = Mg, for all
d ∈ Z).

From [C94], Lemma 6.1, we know that M
d

g is the image under φd of Ud,
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so it is an open subset of Mg.
Recall that a vine curve is a curve with two smooth irreducible compo-

nents meeting in an arbitrary number of nodes. The closure in Mg of the
vine curves of genus g is precisely the locus of reducible curves.

In Proposition 2.2.10, we give a geometric description of Σdg.

Example 2.2.6. Let d = 1. From [CE], Prop. 3.15, we know that, if g
is odd, Σ1

g is empty and that if g is even, Σ1
g is the closure in Mg of the

locus of curves X = C1 ∪C2, with C1 and C2 smooth of the same genus and
♯(C1 ∩ C2) = k odd.

Observe that, from the above example, we get that Σ1
g is the closure in

Mg of the 1-special vine curves of genus g. In what follows we will see that
this is always the case for any degree.

Lemma 2.2.7. Let d be an integer greater or equal than 1. Then Σdg is the
closure in Mg of the locus of d-special vine curves.

Proof. Let X be a genus g d-special curve. As X is stable, using Remark
2.1.3 (C), this means that there is a connected proper subcurve Z of X and
a balanced line bundle L on X such that degZ L = mZ(d).

So, let Z be a connected proper subcurve of X such that degZ L = mZ(d)

and such that wZ is maximal among the subcurves satisfying this condi-
tion. The complementary curve of Z in X , Z ′ must be such that

degZ′ L = d− degZ L = d−mZ(d) = MZ′(d).

Let us see that Z ′ is connected as well.
By contradiction, suppose Z ′ = Z ′

1 ∪ · · · ∪ Z ′
s is a union of connected

components with s > 1. As degZ′ L = MZ′(d), also each one of its connected
components Z ′

i, i = 1, . . . , s, must be such that degZ′
i
L = MZ′

i
(d). In fact,

suppose one of them, say Z ′
j, is such that degZ′

j
L < MZ′

j
(d). Then,

degZ′ L =

s∑

i=1

degZ′
i
L <

s∑

i=1

dwZ′
i

2g − 2
+
kZ′

i

2
=

dwZ′

2g − 2
+
kZ′

2
= MZ′(d)

leading us to a contradiction. Note that the sum of the kZ′
i
’s is kZ′ because,

being the Z ′
i ’s the connected components of Z ′, they do not meet each other.
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Now, let us consider W := Z ∪ Z ′
1. As s > 1, W is a connected proper

subcurve of X with wW = wZ + wZ′
1
> wZ . Indeed, as X is stable,

0 < wY < 2g − 2 (2.2)

for every proper subcurve Y of X , since there are no exceptional compo-
nents. Moreover,

degW L = degZ L+ degZ′
1

L =
dwZ

2g − 2
−
kZ
2

+
dwZ′

1

2g − 2
+
kZ′

1

2
=

dwW
2g − 2

−
kW
2

because, as Z ′
1 is a connected component of Z ′, we have that

kZ − kZ′
1

= kZ − ♯(Z ∩ Z ′
1) = kW .

So, W is a connected proper subcurve of X with degW L = mW (d) and with
wW > wZ . In this way, we have achieved a contradiction by supposing that
Z ′ is not connected.

As both Z and Z ′ are limits of smooth curves and Σdg is closed in Mg,
then X lies in the closure in Mg of the locus of genus g d-special vine
curves.

Given integers d and g, we will use the following notation to indicate
greatest common divisor

µg,d := (d− g + 1, 2g − 2).

From [C94], we know that Σdg is a proper closed subset of Mg and that
Σdg = ∅ if and only if µg,d = 1 (see Prop. 6.2 of loc. cit.).

Remark 2.2.8. From Lemma 2.2.7 and Remark 2.1.3(D) we conclude that
a stable curve X is d-special if and only if there is a connected proper
subcurve Z of X such that X \ Z is connected and 2g−2

µg,d
divides wZ .

Remark 2.2.9. If µg,d = 2g−2, which means that d ≡ (g−1) (mod 2g−2),
an immediate consequence of the previous Remark is that all reducible
curves are (g−1)-special. This is the opposite situation to the case µg,d = 1.

From Remark 2.2.8 we see that Σdg depends only on µg,d. This is evident
in the following proposition, where we give a geometric description of Σdg.
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Proposition 2.2.10. Let d be an integer greater or equal than 1. Then Σdg
is the closure in Mg of vine curves X = C1 ∪ C2 such that

2g − 2

µg,d
| wC1

.

More precisely, Σdg is the closure in Mg of the following vine curves:
given integers m and k with

1 ≤ m < µg,d

and

1 ≤ k ≤ min{
2g − 2

µg,d
m+ 2, 2g −

2g − 2

µg,d
m}, k ≡

2g − 2

µg,d
m (mod 2),

then X = C1 ∪ C2, with ♯(C1 ∩ C2) = k, and

• g(C1) = g−1
µg,d

m− k
2 + 1;

• g(C2) = g − g−1
µg,d

− k
2 .

Proof. The first part of the proposition is an immediate consequence of
Lemma 2.2.7 and Remark 2.2.8.

Let X be a d-special genus g vine curve X = C1∪C2 with ♯(C1∩C2) = k.
From Remark 2.2.8 we know that there exists an integer m such that

m
2g − 2

µg,d
= wC1

with 1 ≤ m < µg,d because, as X is a stable curve, wC1

2g−2 must be smaller
than 1.

As wC1
= 2g(C1) − 2 + k, we get that k ≡ 2g−2

µg,d
m (mod 2) and that

g(C1) =
g − 1

µg,d
m−

k

2
+ 1.

Now, as g = g(C1) − g(C2) + k − 1, we get that

g(C2) = g −
g − 1

µg,d
−
k

2
.

As g(C1) and g(C2) must be greater or equal than 0, we get, respectively,
that

k ≤
2g − 2

µg,d
m+ 2 and k ≤ 2g −

2g − 2

µg,d
m.
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It is easy to see that if g(C1) or g(C2) are equal to 0 then k ≥ 3. So, the vine
curves we constructed are all stable.

Remark 2.2.11. Since by smoothing a vine curve in any of its nodes we
get an irreducible curve, we see that the above set of “generators”of Σdg is
minimal in the sense that none of them lies in the closure of the others.

The dependence of Σdg on µg,d gets even more evident in the following
proposition.

Proposition 2.2.12. For every d, d′ ∈ Z, µg,d|µg,d′ if and only if Σdg ⊂ Σd
′

g .

Proof. That µg,d|µg,d′ implies that Σdg ⊂ Σd
′

g is immediate from Remark
2.2.8.

Now, suppose Σdg ⊂ Σd
′

g . If µg,d = 1 then obviously µg,d|µg,d′ . For µg,d 6= 1

we will conclude by contradiction that µg,d|µg,d′ . So, suppose µg,d′ ∤ µg,d.
Then, also 2g−2

µ′
g,d

∤ 2g−2
µg,d

. We will show that there exists a stable curve X
consisting of two smooth irreducible components C1 and C2 meeting in δ

nodes (δ ≥ 1) which is d-special but not d′-special.
Take X such that wC1

= 2g−2
µg,d

. If such a curve exists and is stable
then we are done because X will clearly be d-special and not d′-special. In
fact, by construction, 2g−2

µg,d′
does not divide wC1

and 2g−2
µg,d′

will not divide wC2

either because wC2
= (2g − 2) − 2g−2

µg,d
.

So, X must be such that

• g(C1) = g−1
µg,d

+ 1 − δ
2

• g(C2) = g − g−1
µg,d

− δ
2

• δ ≥ 1 and δ ≡ 2g−2
µg,d

(mod 2).

As g(Ci) must be greater or equal than 0 and the curve X must be stable,
we must check if such a construction is possible.

So, if 2g−2
µg,d

≡ 1 (mod 2), take δ = 1. Then we will have that g(C1) =
g−1
µg,d

+ 1
2 and g(C2) = g− g−1

µg,d
− 1

2 , which are both greater than 1 because we
are considering µg,d > 1.

If 2g−2
µg,d

≡ 0 (mod 2), take δ = 2. Then we will have that g(C1) = g−1
µg,d

and g(C2) = g − g−1
µg,d

− 1, again both greater than 1. We conclude that X is
a stable curve.
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The following is immediate.

Corollary 2.2.13. For all d and d′, Σdg = Σd
′

g if and only if µg,d = µg,d′ .

For each positive divisor M of 2g − 2 there is an integer d = M + g − 1

such that µg,d = M . So, for each such M , we can define

Σg,M := Σdg and M
M

g = Mg \ Σg,M .

For example, M
2g−2

g consists of irreducible curves of genus g and M
1

g =

Mg.
The following is now immediate.

Proposition 2.2.14. The open subsets M
M

g associated to the positive di-

visors M of 2g − 2, form a lattice of open subschemes of Mg such that

M
M

g ⊂M
M ′

g if and only if M ′|M .

2.3 Modular description of balanced Picard

stacks over Mg

Suppose g ≥ 2 and (d − g + 1, 2g − 2) = 1. Then M
d

g = Mg and [Ud/G] =

[Hd/G] (see section 2.2.2). Moreover, from [C05], 5.10, we know that [Hd/G]

is the “rigidification”in the sense of [ACV01] (see section 2.4 below) of the
category whose sections over a scheme S are pairs (f : X → S,L) where f is
a family of quasistable curves of genus g and L is a balanced line bundle on
X of relative degree d. Arrows between such pairs are given by cartesian
diagrams

X

f

��

h // X ′

f ′

��
S // S′

and an isomorphism L ∼= h∗L′ ⊗ f∗M , for some M ∈ Pic S.
This description uses heavily the existence of Poincaré line bundles for

families of quasistable curves, established in loc. cit., Lemma 5.5. How-
ever, this works only if (d− g + 1, 2g − 2) = 1.

In order to overcome this difficulty we will try to define the stack of line
bundles of families of stable curves.
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We will start by recalling the definition of “Picard stack associated to
a morphism of schemes”. Roughly speaking, a Picard stack is a stack to-
gether with an “addition”operation which is both associative and commuta-
tive. The theory of Picard stacks is developed by Deligne and Grothendieck
on Section 1.4 of Exposé XVIII in [SGA4]. We will not include here the pre-
cise definition but we address the reader to [ibid.], [L-MB00] 14.4 and [BF],
section 2.

Given a scheme X over S with structural morphism f : X → S, the S-
stack of (quasi-coherent) invertible OX -modules, PicX/S , is a Picard stack:
the one associated to the complex of length one

τ≤0(Rf∗Gm[1]).

So, given an S-scheme T , PicX/S(T ) is the groupoid whose objects are
invertible OXT

-modules and whose morphisms are the isomorphisms be-
tween them (with notation as in 1.1).

PicX/S fits in the exact sequence below, where, given an S-scheme T ,
PicX/S(T ) is defined as PicXT /f

∗
T (PicT ) and BGm(T ) is the group of line

bundles over T .
0 → BGm → PicX/S → PicX/S → 0

Now, let us consider the forgetful morphism of stacks π : Mg,1 → Mg.
The morphism π is strongly representable since, given a morphism Y with
a map h : Y → Mg, the fiber product Y ×Mg

Mg,1 is isomorphic to the
image of IdY under h, which is a family of stable curves of genus g, say
C → Y (see Remark 1.3.3).

So, we define the category PicMg,1/Mg
associated to π as follows. Given

a scheme Y , morphisms from Y to Mg correspond to families of stable
curves over Y . So, the objects of PicMg,1/Mg

(Y ) are given by pairs (C →

Y, L) where C → Y is the family of stable curves of genus g associated to
a map Y → Mg and L is a line bundle on C ∼= Y ×Mg

Mg,1. Morphisms
between two such pairs are given by cartesian diagrams

C

��

h // C′

��
Y // Y ′

(2.3)

together with an isomorphism L ∼= h∗L′.
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We will now concentrate on the following full subcategory of PicMg,1/Mg

(and on a compactification of it).

Definition 2.3.1. Let Pd,g (respectively Pd,g) be the category whose objects

are pairs (f : C → Y, L) where f is a family of stable (respectively qua-
sistable) curves of genus g and L a balanced line bundle of relative degree

d over Y . Morphisms between two such pairs are defined as in PicMg,1/Mg
.

The aim of the present section is to show that both Pd,g and Pd,g are
algebraic (Artin) stacks. We will do it directly by showing that they are
isomorphic to the quotient stacks we are about to define.

Recall from the section before that GL(r + 1) acts on Hd, the locus of
GIT-semistable points in Hilbdt−g+1

Pr , with r = d − g, by projecting onto
PGL(r + 1). Consider also the open subset of Hd parametrizing Hilbert
points of stable curves and denote it by Hst

d . It is easy to see that Hst
d is a

GL(r + 1)-equivariant subset of Hd.
So, we can consider the quotient stacks [Hst

d /GL(r+1)] and [Hd/GL(r+

1)]. Given a scheme S, [Hst
d /GL(r + 1)](S) (respectively [Hd/GL(r + 1)](S))

consists of GL(r + 1)-principal bundles φ : E → S with a GL(r + 1)-
equivariant morphism ψ : E → Hd (respectively ψ : E → Hst

d ). Morphisms
are given by pullback diagrams which are compatible with the morphism
to Hd (resp. Hst

d ).

Theorem 2.3.2. Let d ≫ 0 and g ≥ 2. Then, Pd,g and Pd,g are isomorphic,
respectively, to the quotient stacks [Hst

d /GL(r + 1)] and [Hd/GL(r + 1)].

Proof. Since the proof is the same for both cases, we will consider only the
case of [Hd/GL(r + 1)].

We must show that, for every scheme S ∈ SCHk, the groupoids Pd,g(S)

and [Hd/GL(r + 1)](S) are equivalent.
Let (f : X → S,L) be a pair consisting of a family f of quasistable

curves and a balanced line bundle L of relative degree d on X . We must
produce a principal GL(r + 1)-bundle E on S and a GL(r + 1)-equivariant
morphism ψ : E → Hd. Since we can take d very large with respect to g
(see Remark 2.1.3 (E)), we may assume that f∗(L) is locally free of rank
r + 1 = d− g + 1. Then, the frame bundle of f∗(L) is a principal GL(r + 1)-
bundle: call it E. Now, to find the GL(r + 1)-equivariant morphism to Hd,
consider the family XE := X ×S E polarized by LE, the pullback of L to



22 2. BALANCED PICARD STACKS OVER Mg

XE. XE is a family of quasistable curves of genus g and LE is balanced and
relatively very ample. By definition of frame bundle, fE∗(LE) is isomorphic
to C(r+1) × E, so that LE gives an embedding over E of XE in Pr × E. By
the universal property of the Hilbert scheme H , this family determines a
map ψ : E → Hd. It follows immediately that ψ is a GL(r + 1)-equivariant
map.

Let us check that isomorphisms in Pd,g(S) lead canonically to isomor-
phisms in [Hd/GL(r + 1)](S).

An isomorphism between two pairs (f : X → S,L) and (f ′ : X ′ → S,L′)

consists of an isomorphism h : X → X ′ over S and an isomorphism of line
bundles L ∼= h∗L′.

X
h //

f ��@
@@

@@
@@

X ′

f ′

~~}}
}}

}}
}}

S

These determine an unique isomorphism between f∗(L) and f ′
∗(L

′) as
follows

f∗(L) ∼= f∗(h
∗L′) ∼= f ′

∗(h∗(h
∗L′))) ∼= f ′

∗(L
′).

As taking the frame bundle gives an equivalence between the category of
vector bundles of rank r+ 1 over S and the category of principal GL(r+ 1)-
bundles over S, the isomorphism f∗(L) ∼= f ′

∗(L
′) leads to an unique iso-

morphism between their frame bundles, call them E and E′ respectively.
This isomorphism must be compatible with the GL(r+1)-equivariant mor-
phisms ψ : E → Hd and ψ′ : E′ → Hd because they are determined by the
induced curves XE and X ′

E′ embedded in Pr by LE and L′
E′ .

Conversely, given a section (φ : E → S, ψ : E → Hd) of [Hd/GL(r + 1)]

over S, let us construct a family of quasistable curves of genus g over S
and a balanced line bundle of relative degree d on it.

LetCd be the restriction toHd of the universal family on Hilbdt−g+1
Pr . The

pullback of Cd by ψ gives a family CE on E of quasistable curves of genus
g and a balanced line bundle LE on CE which embeds CE as a family of
curves in Pr. As ψ is GL(r + 1)-invariant and φ is a GL(r + 1)-bundle, the
family CE descends to a family CS over S, where CS = CE/GL(r + 1). In
fact, since CE is flat over E and E is faithfully flat over S, CS is flat over S
too (see [EGA4], Proposition 2.5.1).
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Now, since the action of GL(r + 1) on Cd is naturally linearized (see
[C94], 1.4), also the action ofGL(r+1) onE can be linearized to an action on
LE, yielding descent data for LE ([SGA1], Proposition 7.8). Moreover, LE
is relatively (very) ample so, using the fact that φ is a principal GL(r + 1)-
bundle, we conclude that LE descends to a relatively very ample balanced
line bundle on CS , LS (see proof of Proposition 7.1 in [GIT]).

It is straightforward to check that an isomorphism on [Hd/GL(r+1)](S)

leads to an unique isomorphism in Pd,g(S).

Remark 2.3.3. For a different proof that a section (φ : E → S, ψ : E → Hd)

of [Hd/GL(r + 1)] over S leads to a family of quasistable curves of genus g
over S and a balanced line bundle of relative degree d on it see the proof of
Proposition 3.2.6 below.

We will call Pd,g and Pd,g, respectively, balanced Picard stack and com-
pactified balanced Picard stack.

Remark 2.3.4. Since Gm is always included in the stabilizers at every
point of the action of G both in Hd and in Hst

d , the quotient stacks above
are never Deligne-Mumford. However, they are, of course Artin stacks
with a smooth presentation given by the schemes Hst

d and Hd, respectively.
Notice also that, since the scheme Hd is nonsingular, irreducible and

closed (see Lemmas 2.2 and 6.2 in [C94]), the algebraic stack Pd,g is a
smooth compactification of Pd,g.

Moreover, combining the statement of Theorem 2.3.2 with the Remark
2.1.3 (E) above, we conclude that, for g ≥ 2, Pd,g and Pd,g are smooth and
irreducible algebraic stacks for every d ∈ Z.

Let

dPd,g

be the category over SCHk whose sections over a scheme S, dPd,g(S), con-
sists of pairs (f : X → S,L), where f is a family of d-general quasistable
curves of genus g and L is an S-flat balanced line bundle on X of relative
degree d. Arrows between two such pairs are given by cartesian diagrams
like in (2.3).

Using the same proof of Proposition 2.3.2 we conclude that dPd,g is iso-
morphic to the quotient stack [Ud/G].
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2.4 Rigidified balanced Picard stacks

In what follows we will relate Pd,g and Pd,g, respectively, with [Hst
d /G] and

[Hd/G], where G denotes PGL(r + 1), using the notion of rigidification of
a stack along a group scheme defined by Abramovich, Vistoli and Corti in
[ACV01], 5.1 (recall that Hst

d ⊂ Hd parametrizes embedded stable curves).
Note that each object (f : X → S,L) in Pd,g have automorphisms given

by scalar multiplication by an element of Γ(X,Gm) along the fiber of L.
Since these automorphisms fix X , there is no hope that our stack Pd,g can
be representable over Mg (see [AV02], 4.4.3). The rigidification procedure
removes those automorphisms.

More precisely, the set up of rigidification consists of:

• a stack G over a base scheme S;

• a finitely presented group scheme G over S;

• for any object ξ of G over an S-scheme S, an embedding

iξ : G(S) → AutS(ξ)

compatible with pullbacks.

Then the statement (Theorem 5.1.5 in [ACV01]) is that there exists a stack
G (G and a morphism of stacks G → G (G over S satisfying the following
conditions:

• For any object ξ ∈ G(S) with image η ∈ G (G(S), the set G(S) lies in
the kernel of AutS(ξ) →AutS(η);

• The morphism G → G (G above is universal for morphisms of stacks
G → F satisfying condition (1) above;

• If S is the spectrum of an algebraically closed field, then in (1) above
we have that AutS(η) = AutS(ξ)/G(S);

• A moduli space for G is also a moduli space for G (G.

G (G is the rigidification of G along G.
By taking S = Spec k, G = Pd,g and G = Gm we see that our situation

fits into the setting above. It is easy to see that, since GL(r + 1) acts on
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Hd by projection onto PGL(r + 1), [Hd/PGL(r + 1)] is the rigidification of
[Hd/GL(r+1)] ∼= Pd,g along Gm: denote it by Pd,g(Gm. Naturally, the same
holds for [Hst

d /PGL(r+1)] and Pd,g(Gm. The following is now immediate.

Proposition 2.4.1. The quotient stacks [Hst
d /G] and [Hd/G] are isomor-

phic, respectively, to Pd,g ( Gm and to Pd,g ( Gm.

Remark 2.4.2. The previous proposition holds, of course, also for the rigi-
dification along Gm of dPd,g, dPd,g(Gm, and [Ud/G], which we have studied
in section 2.2 (see the definition of dPd,g in the end of section 2.3).

Recall from the beginning of section 2.3 that, if (d − g + 1, 2g − 2) = 1,
[Hd/G] has a modular description as the rigidification for the action ofBGm

in a certain category.
In order to remove from Pd,g the automorphisms given by the action

of BGm, we first consider the auxiliar category Ad,g, whose objects are
the same of Pd,g but where morphisms between pairs (C → Y, L) and
(C′ → Y ′, L′) are given by equivalence classes of morphisms in Pd,g by
the following relation. Given a cartesian diagram

C

��

h // C′

��
Y // Y ′

(2.4)

and isomorphisms φ : L→ h∗L′ and ψ : L → h∗L′, we say that φ is equiva-
lent to ψ if there exists α ∈ Gm such that α ◦ ψ = φ, where by α we mean
the morphism induced by α in L′ (fiberwise multiplication by α).

There is an obvious morphism of Pd,g → Ad,g satisfying property (1)

above and universal for morphisms of Pd,g in categories satisfying it. How-
ever, it turns out that Ad,g is not a stack. In fact, it is not even a prestack
since, given an étale cover {

∐
i Yi → Y } of Y , the natural morphism from

Ad,g(Y ) to Ad,g(
∐
i Yi → Y ), the category of effective descent data for this

covering, is not fully faithful but just faithful. The fact that it is faithful is
technically very easy to show; the fact that it is not fully faithful follows in
particular from what we show here below.

Let us now consider the category Cd,g, with the following modular des-
cription. A section of Cd,g over a scheme S is given by a pair (f : X → S,L),
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where f is a family of quasistable curves of genus g and L is a balanced
line bundle on X of relative degree d. Arrows between two such pairs are
given by cartesian diagrams

X

f

��

h // X ′

f ′

��
S // S′

and equivalence classes of isomorphisms L ∼= h∗L′ ⊗ f∗M , for some M ∈

Pic S, for the following relation. We will say that two isomorphisms φ :

L → h∗L′ ⊗ f∗M and ψ : L → h∗L′ ⊗ f∗N are equivalent if there exists
an isomorphism g : N → M of line bundles on S such that the following
diagram commutes.

L
φ//

ψ %%JJJ
JJJ

JJ
JJJ

h∗L′ ⊗ f∗M

h∗L′ ⊗ f∗N

id⊗f∗g

OO

Since descent is effective for the category of line bundles on schemes (see,
for instance, [FGA], 4.2.2), straightforward computations show that Cd,g is
a prestack. Moreover, given the étale cover (

∐
i Yi → Y ) of Y , we get that

Ad,g(
∐
i Yi → Y ) is isomorphic to Cd,g(

∐
i Yi → Y ).

So, we conclude that the stackification of Cd,g is the rigidification of Pd,g
by the action of Gm.

Proposition 2.4.3. The stack [Hd/G] (respectively [Hst
d /G]) is the stacki-

fication of the prestack whose sections over a scheme S are given by pairs

(f : X → S,L), where f is a family of quasistable (respectively stable) curves
of genus g and L is a balanced line bundle onX of relative degree d. Arrows

between two such pairs are given by cartesian diagrams

X

f

��

h // X ′

f ′

��
S // S′

and an isomorphism L ∼= h∗L′ ⊗ f∗M , for some M ∈ Pic S.
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Remark 2.4.4. Let d ≫ 0. Then, as in the case (d − g + 1, 2g − 2) = 1,
there is a canonical map from [Hd/G] and [Hst

d /G] to P d,g and Pd,g, the
GIT-quotients of Hd and Hst

d , respectively, by the action of PGL(r + 1). If
(d−g+1, 2g−2) 6= 1, these quotients are not geometric, which implies that
these maps are universally closed but not separated. So, P d,g and Pd,g are
not coarse moduli spaces for those stacks since the associated maps from
the stacks onto them are not proper. However, at least if the base field has
characteristic 0, we have that the GIT-quotients are good moduli spaces in
the sense of Alper (see [A08]).

2.4.1 Gerbes

The content of this subsection is probably well known to experts.

Definition 2.4.5. Let X be an S-space. A gerbe over X is an S-stack G

endowed with a 1-morphism of S-stacks A : G → X , called the structural
morphism, such that:

1. A is an epimorphism;

2. The diagonal ∆ : G → G ×X G is an epimorphism.

Remark 2.4.6. 1. To say that A is an epimorphism means that given U
in S and x ∈ X(U) there exists U ′ in S, x′ ∈ G(U ′) and η : U ′ → U

surjective and flat such that f(x′) ∼= η∗(x).

2. To say that ∆ is an epimorphism means that given U in S and x, x′ ∈
X(U) such that A(x) ∼= A(x′), ∃U ′ in S and η : U ′ → U surjective and
flat such that η∗(x) ∼= η∗(x′).

Let H be a scheme endowed with a left action of GL(m). Then we can
form the quotient stack [H/GL(m)]. Recall that the objects of [H/GL(m)]

are principal homogeneousGL(m)-bundles with aGL(m)-equivariant mor-
phism to H and the morphisms are pullback diagrams which are compati-
ble with the morphism to H .

Suppose this action has the property of being constant along Gm, i.e.,
given α ∈ Gm, αh = h ∀h ∈ H . This way we have naturally an in-
duced action of PGL(m) on H and, again, we can form the quotient stack
[H/PGL(m)]. Of course, even if set theoretically, both quotients H/GL(m)
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and H/PGL(m) are the same, the quotient stacks are different. In fact, we
have the following exact sequence of quotient stacks:

0 → [∗/Gm] → [H/GL(m)] → [H/PGL(m)] → 0 (2.5)

where the map [H/GL(m)] → [H/PGL(m)], call it p, associates to an ele-
ment (E → S, φ : E → H) in [H/GL(m)] the PGL(m)-bundle E/Gm → S

with the PGL(m)-equivariant map φp : E/Gm → H , which is well defined
as φ is GL(m)-equivariant and the action of GL(m) on H is Gm-invariant.

Note that [∗/Gm] is isomorphic to the classifying stack BGm.
The following lemma is an immediate consequence of a more general

well-known result. We include it here for completeness.

Lemma 2.4.7. Under the above hypotheses, the quotient stack [H/GL(m)]

is a gerbe over [H/PGL(m)].

Proof. Let (E → S, φ : E → H) be an element in [H/PGL(m)]. As E → S

is a PGL(m)-bundle, ∃η : S′ → S surjective and flat such that η∗(E) is
isomorphic to the trivial PGL(m)-bundle PGL(m)×S′. So, the image under
p of the trivial GL(m)-bundle GL(m) × S′ → S′ is, of course, isomorphic to
η∗(E) → S′. So, p is an epimorphism.

Now, suppose we have (F → T, φ : F → H) and (F ′ → T, φ′ : F ′ → H)

in [H/GL(m)] which image under p in [H/PGL(m)] are isomorphic. As
both F and F ′ are GL(m)-bundles over T , we can find η : T ′ → T , surjec-
tive and flat, such that both η∗(F ) and η∗(F ′) are isomorphic to the trivial
GL(m)-bundle over T ′, GL(m) × T ′, with equivariant maps to H given by
composition with φ and φ′, respectively. To conclude, we must see that
these maps are the same. But this follows from the fact that the image
of φ and φ′ image under p are isomorphic and the fact that they must be
constant along Gm.

Remark 2.4.8. Once we have the exact sequence (2.5) above, we will say
that [H/GL(m)] is a Gm-gerbe over [H/PGL(m)].

The folowing is now immediate.

Corollary 2.4.9. The compactified balanced Picard stack Pd,g, defined in

section 2.3, is a Gm-gerbe over [Hd/G]. Analogously, Pd,g is a Gm-gerbe over

[Hst
d /G].
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2.4.2 Rigidified balanced Picard stacks and Néron mod-

els

Let us now consider the following question: does our balanced Picard stack
[Hst

d ] parametrizes Néron models of families of stable curves for every d as
[Ustd /G] does for families of d-general curves (see 2.2.1)?

Given a family of stable curves f : X → B = SpecR, we will denote by
Qdf the base-change of the map [Hst

d ] → Mg by the natural map B → Mg:
B ×Mg

[Hst
d ]. Is Qdf isomorphic to N(PicdXK)?

The problem here is that the map [Hst
d ] → Mg is not representable in

general. In fact, if it were, [Hst
d ] would be a Deligne-Mumford stack. In-

deed, it is easy to see that a stack with a representable map to a Deligne-
Mumford stack is necessarily Deligne-Mumford. As we already mentioned,
[Hst

d ] is not Deligne-Mumford in general since it is the quotient stack asso-
ciated to a non-geometric GIT-quotient.

As a consequence of this, if the closed fiber of f is not d-general, then
Qdf is not even equivalent to an algebraic space. In fact, from a common
criterion for representability (see for example [AV02], 4.4.3 or the proof of
Proposition 2.2.2), we know that Qdf would be equivalent to an algebraic
space if and only if the automorphism group of every section of [Hst

d ] over
k with image in Mg isomorphic to Xk → k injects into the automorphism
group of Xk. Since such a section corresponds to a map onto its orbit in
Hd by the action of PGL(r + 1), the automorphism group of such a section
is isomorphic to the stabilizer of that orbit. So, as Xk is not d-general,
the stabilizer of its associated orbit in Hd is not finite, which implies that
it cannot have an injective morphism to the automorphism group of Xk,
which is, of course, finite.

The following example will clarify what we have just said.

Example 2.4.10. Let d = g−1 and f : X → B = SpecR be a family of stable
curves such that X is regular and Xk is a reducible curve consisting of two
smooth components C1 and C2 of genus g1 and g2 respectively, meeting in
one point (of course, g = g1+g2). Then, the fiber over k of Qdf is a stack with
a presentation given by a subscheme of the Hilbert scheme Hd, consisting
of two connected components of dimension r(r+ 2)+ g (see [C94], Example
7.2). These correspond to projective realizations of Xk on Pr given by line
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bundles with the two possible balanced multidegrees on Xk: (g1, g2 − 1)

and (g1 − 1, g2). By Proposition 5.1 of [C94], given a point h in one of these
components, there is a point in OPGL(r+1)(h) representing a quasistable
curve with stable modelXk embedded in Pr by a line bundle of multidegree
(g1 − 1, 1, g2 − 1).

So, as a stack, the fiber of Qdf over k is reducible but the GIT quotient of
the Hilbert scheme presenting it by the action of PGL(r + 1) is irreducible
and isomorphic to the Jacobian of Xk. As a consequence, Qdf can never be
isomorphic to the Néron model N(PicdXK).

This is an example of a situation where the GIT-quotient identifies two
components of the Hilbert scheme while in the quotient stack these two
components remain separated.

Proposition 2.4.11. Let f : X → B = SpecR be a family of stable curves
with X regular. Then, using the notation above, Qdf ∼= N PicdXK) if and

only if and only if Xk is a d-general curve.

2.4.3 Functoriality for non d-general curves

Let f : X → S be a family of stable curves. Denote by P
d

f the fiber product
of [Hd/G] by the moduli map of f , µf : S → Mg.

Recall that, if (d − g + 1, 2g − 2) = 1, P
d

f is a compactification of the
relative degree d Picard variety associated to f in the sense of 2.2.3 (see
Remark 2.2.5).

Let now (d− g + 1, 2g − 2) 6= 1. Then, since [Hd/G] is not representable
over Mg, we have just observed that the same cannot be true in general.

However, we have the following result.

Proposition 2.4.12. Using the notation we have just introduced, P
d

f has

a canonical proper map onto a compactification P of the relative degree d
Picard variety associated to f .

Proof. If all fibers of f are d-general, then from Corollary 2.2.4 it follows
that P

d

f is a scheme and it gives a compactification of the relative degree d
Picard variety associated to f .

Suppose now that not all fibers of f are d-general. Then, P
d

f is a stack
with a presentation given by the subscheme Hf

d of Hd corresponding to the
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closure in Hd of the locus parametrizing curves isomorphic to the fibers of
f . Hf

d is naturally invariant for the action of PGL(r + 1) on it.
Let P be the GIT -quotient of Hf

d by PGL(r + 1). P gives a compactifi-
cation of the relative degree d Picard variety associated to f . The proper
map Hf

d → P factorizes through Hf
d → P

d

f , the presentation map. In fact,

even if P is not a coarse moduli space for P
d

f , there is a canonical map from

P
d

f onto P , which is universal for morphisms of P
d

f into schemes (see [V89]

section 2). Now, since the map Hf
d → P is proper, then P

d

f → P must be
proper as well.
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Chapter 3

Compactifying the

universal Picard stack

over Mg,n

The stacks Pd,g defined in Chapter 2 give an answer to our initial problem
for n = 0 and g ≥ 2. In fact, they are algebraic stacks with a geome-
trically meaningful modular description and endowed with a universally
closed map Ψd,g onto Mg such that Ψ−1

d,g(Mg) = Picd,g,0. We will now try to
generalize this construction to curves with marked points.

Our strategy is inspired in Knudsen’s construction of Mg,n in [K83],
which is done by induction in the number of marked points n. The crucial
technical point of this construction is the precise definition and construc-
tion of the contraction morphism from Mg,n+1 onto Mg,n. In fact, the exis-
tence of such a morphism is intuitively very reasonable, but technically
nontrivial to prove. Then, using exactly the contraction morphism, Knud-
sen shows that, for n ≥ 0 and 2g − 2 + n > 0, Mg,n+1 is isomorphic to the
universal family over Mg,n. As a consequence, it follows that the contrac-
tion morphism is representable, which implies that Mg,n+1 is algebraic if
Mg,n is.

We will start by introducing the definitions of quasistable curve with
marked points and of balanced line bundle over it. Then, for all g, n ≥ 0

33
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such that 2g−2+n > 0, we will define Pd,g,n to be the stack whose sections
over a scheme S are families of n-pointed quasistable curves endowed with
balanced line bundles of relative degree d over these families (see Defini-
tion 3.2.1 below). Also in our case, the crucial point will be to generalize the
notion of contraction in this more general context of n-pointed quasistable
curves endowed with balanced line bundles and prove that this yields an
isomorphism between Pd,g,n+1 and the universal family over Pd,g,n.

3.1 Pointed quasistable curves and balanced

line bundles

In the present section we will introduce the notions of quasistable curve
and of balanced line bundle for curves with marked points. Our definitions
are generalizations of the notions of quasistable and balanced for n = 0

and g ≥ 2 introduced by Gieseker and Caporaso and that we dealt with in
the previous chapter (see Definition 2.1.1 and 1.2.2).

As a consequence, we also get the notions of quasistable curves and ba-
lanced line bundles for g = 0 and n ≥ 3 and for g = 1 and n ≥ 1. Then, for
n > 0 and 2g − 2 + n > 1, n-pointed quasistable curves turn out to be the
ones we get by applying the stabilization morphism defined by Knudsen in
[K83] (see 3.4.3 below) to (n− 1)-pointed quasistable curves endowed with
an extra section without stability conditions. Balanced line bundles on
n-pointed quasistable curves correspond to balanced line bundles on the
quasistable curves obtained by forgetting the points and by contracting
the rational components that get quasidestabilized without the points (see
Lemma 3.1.10).

Recall that, according to Paragraph 1.2.3, n-pointed (semi)stable curves
admit chains of smooth rational curves meeting the rest of the curve in one
or two points. Since these will be very important in the whole discussion,
we shall introduce the following notation for them.

Definition 3.1.1. Let g, n ≥ 0 with 2g − 2 + n > 0 and let (X ; p1, . . . , pn) be
an n-pointed semistable curve of genus g.

• Let T be a proper subcurve of X with gT = 0 and kT = 1. Then T is a

rational tail of X either if g > 0 or if g = 0 and if T contains at most
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one point among {p1, p2, p3};

• Let B be a proper subcurve of X with gB = 0 and kB = 2. Then B

is a rational bridge of X either if g > 1 or if g = 0 and B does not

contain any point among {p1, p2, p3} or if g = 1 and B does not contain

p1.

• A nonsingular rational component E such that the number of points

where E meets the rest of X plus the number of marked points pi on

E is exactly 2 is called a destabilizing component. An exceptional

component is a destabilizing component without marked points.

We will also say that a rational bridge (resp. a rational tail) of an n-
pointed semistable curve X is maximal if it is not contained in any other
rational bridge (resp. rational tail) of X .

Remark 3.1.2. Note that the condition that 2g − 2 + n > 0 implies that
curves of genus g = 0 must have at least 3 marked points and that curves
of genus g = 1 curves must have at least 1 marked point, so the previous
definition makes sense.

Definition 3.1.3. An n-pointed quasistable curve is an n-pointed semi-

stable curve X such that

1. all destabilizing components are exceptional;

2. exceptional components can not be contained in rational tails;

3. each rational bridge contains at most one exceptional component.

A family of n-pointed quasistable curves is a proper and flat morphism
with n distinct sections whose geometric fibers are n-pointed quasistable

curves.

See Figure 3.1 for examples of pointed semistable curves which are not
quasistable.

Note that, in virtue of the previous definition, if X has genus g = 0,
then X is quasistable if and only if X is stable. In fact, since X is rational,
either it is irreducible or all proper subcurves of X that do not contain at
least two points of {p1, p2, p3} are contained in a rational tail of X , so no
exceptional components are allowed.
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Figure 3.1: Examples of 3-pointed semistable curves which are NOT qua-
sistable

Suppose now that X is a 1-pointed quasistable curve of genus 1. Then
X can be of 3 distinguished topological types, as we can see in Figure 3.2,
where the numbers near the curves indicate the geometric genus of the
respective components.

For n > 1, all n-pointed genus 1 curves can be obtained from these
by attaching rational tails and rational bridges. So, all n-pointed genus
1 curves will have at most one maximal rational bridge which is not con-
tained in any rational tail (recall that a rational component E intersecting
the rest of the curve in two points and with p1 ∈ E is not considered to be
a rational bridge) and, in particular, at most one exceptional component.
The definition of balanced line bundles on n-pointed quasistable curves of
genus 1 that we propose below is inspired by these facts.

To each proper subcurve Z of X , denote by tZ the number of rational
tails meeting Z.

Let us now define balanced line bundles on pointed quasistable curves.

Definition 3.1.4. Let X be an n-pointed quasistable curve of genus g with
2g − 2 + n > 0 and L a line bundle on X of degree d. We say that L (or its

multidegree) is balanced if the following conditions hold:

• degEL = 1 for every exceptional component E of X ;

• the degree of L on rational bridges can be either 0 or 1;

• if T is a rational tail of X , then degTL = −1;

• if g 6= 1 and Z is a proper subcurve of X which is not contained in any
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p
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    1
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Figure 3.2: 1-pointed quasistable curves of genus 1.

rational tail and in any rational bridge of X , then the degree of L on
Z must satisfy the following inequality

|degZL−
d(wZ − tZ)

2g − 2
− tZ | ≤

kZ − tZ − 2bLZ
2

(3.1)

where bLZ denotes the number of rational bridges where the degree of

L is zero meeting Z in two points.

• if g = 1 and Z is a proper subcurve of X which is not contained in any

rational tail and in any rational bridge of X , then degZ L must satisfy
the following inequality

|degZL− d− tZ | ≤
kZ − tZ

2
. (3.2)

Note that, if g ≥ 2 and n = 0, tZ and bLZ are equal to 0 for all proper
subcurves Z of X , and inequality (3.1) reduces to the “Basic Inequality”in-
troduced by Gieseker in [G82]. In fact, for n = 0, Definition 3.1.4 coincides
with the definition 2.1.1 of balanced multidegree for quasistable.

Notice also that if g = 0 and Z is an irreducible component of X which
is not contained in any tail of X , we have that kZ = tZ . So, for rational
curves, Definition 3.1.4 can be rewritten as follows.
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Definition 3.1.5. Let L be a line bundle of degree d on an n-pointed (quasi)-

stable curve X of genus 0. We say that L is balanced if the following two
conditions hold.

1. degT L = −1 if T is a tail of X ,

2. if Z is a proper subcurve of X which is not contained in any tail of X ,
degZ L = d+ kZ .

Remark 3.1.6. From Lemma 3.1.9 below and the previous definition it
follows that if X is an n-pointed (quasi)stable curve of genus 0 then, for
each degree d ∈ Z, there is exactly one balanced multidegree summing up
to d.

It follows also that the multidegree of a balanced line bundle on an
n-pointed quasistable curve of genus 1 is uniquely determined except if
it has rational bridges which are not contained in rational tails and no
exceptional component.

Remark 3.1.7. In [C1] there is a general notion of balanced line bundles
for binary curves, i. e., curves consisting of two nonsingular rational curves
meeting in an arbitrary number of points. In particular, if the curves meet
in two points, then the genus of the curve is equal to 1. We point out that
our definition of balanced line bundles for n-pointed quasistable curves of
genus 1 is different from that one since ours takes into account the marked
points of the curve and works just for curves with at least one marking.

Using the notation of 3.1.4, denote by

mZ(d, L) :=
dwZ + (3g − 3 − d)tZ

2g − 2
+ bLZ −

kZ
2

and by

MZ(d, L) :=
dwZ + (g − 1 − d)tZ

2g − 2
− bLZ +

kZ
2
.

Then, inequality (3.1) can be rewritten in the following way

mZ(d, L) ≤ degZL ≤MZ(d, L)

Example 3.1.8. In figure 3.3 we can see an example of a 12-pointed qua-
sistable curve X consisting of two components of genus bigger than 0, C
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Figure 3.3: 12-pointed quasistable curve with assigned balanced multide-
gree in rational tails and rational bridges.

and D, intersecting each other in 1 point and other rational components
belonging to rational tails or rational bridges. The numbers on the figure
indicate the multidegrees of a balanced line bundle on rational tails and
on rational bridges. They are uniquely determined with the exception of
the rational bridge where there is no exceptional component. In this case,
other possibilities would be either (1, 0) or (0, 1).

Consider d = 0. Then, from Inequality (3.1), we see that the only pos-
sibility for a balanced line bundle of degree 0 on X completing the multi-
degree of the figure is to assign to C degree 0 and to D degree 1. In fact,
inequality (3.1) states that the degree of L on C can be either 0, 1 or 2,
while on D it must be 0 or 1, so (0, 1) is the only possible choice in order to
the total degree sum up to 0. If, instead, we had chosen the degree in the
rational bridge with no exceptional component to be 1, then L should have
degree −1 on C. However, in this case inequality (3.1) would change to C:
it would give −1, 0, 1, 2, 3 as possible degrees.

Consider now the case d = g − 1. Then, since g = gC + gD + 2, we can
write g− 1 as gC + gD +1. However, since the multidegrees assigned in the
figure to rational tails and rational bridges sum up to −1, the sum of the
degree of L on C with the degree of L on D must be gC + gD + 2. Inequa-
lity (3.1) asserts that the degree of L on C must be in between gC + 1 and
gC + 4 while on D it must be gD or gD + 1. So, we have two possibilities:
(gC + 2, gD) and (gD + 1, gD + 1). If, instead, we had chosen the degree on
the rational bridge to be 1, then the sum of the degree of L on C with the
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degree of L on D should be gC + gD + 1. However, inequality (3.1) would
change to C, giving gC , . . . , gC + 5 as the possible degrees on C. So, also in
this case we would have two possibilities for the degrees of a balanced line
bundle of total degree g − 1 on C and D: (gC , gD + 1) and (gC + 1, gD).

3.1.1 First properties

Lemma 3.1.9. Let X be an n-pointed quasistable curve and suppose X
admits a balanced line bundle L on X of degree d, for some d ∈ Z. Then,

if Z is a proper subcurve of X that is contained in a rational tail, we have
that degZ L = kZ − 2. If Z is contained in a rational bridge, then degZ L is

either equal to kZ − 2 or kZ − 1.
In particular, the multidegree of L on rational tails is unique and is

independent of d.

Proof. Let us begin by showing that the multidegree of L on rational tails
is uniquely determined. So, suppose T is a rational tail of X . If T is irre-
ducible, then the multidegree of L on T is just the degree of L on T , which
is necessarily −1.

Now, suppose T is reducible. Then there is exactly one irreducible com-
ponent E of T meeting the rest of the curve (in exactly one point). We will
call E the foot of the rational tail. E is a smooth rational curve meeting
the rest of T in kE − 1 points: denote by E1, . . . , EkE−1 the irreducible com-
ponents of T meeting E. Then, each Ei, i = 1, . . . , kE − 1 is the foot of a
rational tail contained in T . In fact, each one of these, if not irreducible,
is attached to another rational chain that cannot intersect the rest of the
curve since in that case T would contain cycles (which would force pa(T ) to
be bigger than 0). So, T is the union of E with kE−1 rational tails meeting
E, and

−1 = degT L = degE L+ degT\E L = degEL− (kE − 1)

which implies that

degE L = kE − 2.

Note that we don’t have to check if inequality (3.1) is satisfied since it does
not apply for subcurves of X contained in rational tails.
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Now, iterating the same procedure, it is clear that the degree of each
irreducible component of T will be determined since T is the union of E
with other kE − 1 rational tails with foots E1, . . . , EkE−1.

Now, consider a rational bridge B. Then, B meets the rest of the curve
in two points, p1 and p2, and these are linked by a chain of (rational) irre-
ducible components of B, E1, . . . , ElB , each one meeting the previous and
the next one, for i = 2, . . . , lB − 1. Moreover, each Ei can have rational
tails attached. Denote by B1, . . . , BlB respectively the proper subcurves of
B consisting of Ei and the rational tails attached to it, for i = 1, . . . , lB. So,
B = B1 ∪ · · · ∪BlB is the union of lB rational bridges of length 1.

By definition, the degree of L in B can be either 0 or 1, and the same
holds for each Bi, i = 1, . . . , lB. If degBi

L = 0, then, in order to the mul-
tidegree of L on Bi sum up to 0, degEi

L must be equal to the number of
rational tails attached to it: tEi

= kEi
− 2. If, instead, the degree of L on Bi

is equal to one, then degBi
L must be equal to tEi

+ 1 = kEi
− 1. Note that

inequality (3.1) gives that

tEi
− 1 ≤ degEi

L ≤ tEi
+ 1

for i = 1, . . . , lZ , so either tEi
or tEi

+ 1 are allowed. The multidegree of
L on the rest of Bi is fixed since Bi \ Ei consists of rational tails (that, of
course, cannot intersect each other).

Now, if B contains one exceptional component E among the Ei’s, say
Ej , the degree of B must be necessarily 1 (note that on each rational tail
we can have at most one exceptional component by definition of pointed
quasistable curve). In this case, we must have that kEj

= 2, which implies
that Ej has no rational tails attached, and the degree of L on it must be
1. Moreover, the degree of L on the other rational subcurves Bi, for i 6= j,
must be 0.

If, instead, B does not contain any exceptional component, then we can
choose the degree of L in B to be either 1 or 0. If we choose it to be 0, then
the degree of L on each Bi must be 0, for i = 1, . . . , lB. If we choose it to be
1, we can freely choose one of the Bi’s where the degree of L is 1 and in all
the others the degree of L must be 0.

Lemma 3.1.10. Let X be an n-pointed quasistable curve with assigned

multidegree on rational bridges. Let X ′ be the quasistable curve obtained
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by contracting all rational tails and rational bridges with assigned degree

0 and by forgetting the points. Then, for each degree d, the set of balanced
multidegrees on X ′ summing up to d and the set of balanced multidegrees

on X summing up to d with the given assigned multidegree on rational
bridges are in bijective correspondence.

Proof. Let L′ be a balanced line bundle on X ′ with degree d. This means
that, given a proper subcurve Z ′ of X ′, inequality 2.1 holds for Z ′, that is,

−
kZ′

2
+

dwZ′

2g − 2
≤ degZ′ L′ ≤

dwZ′

2g − 2
+
kZ′

2
(3.3)

and that the degree of L′ on exceptional components is equal to 1.
Let Ci be an irreducible component of X = C1 ∪ · · · ∪ Cγ such that Ci

is not contained in any rational tail and in any rational bridge. Define
the multidegree d = (d1, . . . , dγ) on X by declaring that di = degC′

i
L′ + tCi

where C′
i is the image of Ci on X ′. Then we easily see that this defines

a balanced multidegree on X (note that the multidegree of L on rational
bridges is fixed by hypothesis). In fact, since kCi

= kC′
i
+ tCi

+ 2rLCi
and

gCi
= gC′

i
− bLCi

, we have that

di = degC′
iL

+tCi

≤
dwC′

i

2g − 2
+
kC′

i

2
+ tCi

=
d(2gC′

i
− 2 + kC′

i
)

2g − 2
+
kCi

− tCi

2
− bLCi

+ tCi

=
d(2gCi

+ 2bLCi
− 2 + kCi

− tCi
− 2bLCi

)

2g − 2
+
kCi

+ tCi

2
− bLCi

=
dwCi

2g − 2
+
kCi

2
−

d

2g − 2
tCi

+
tCi

2
− bLCi

=
dwCi

2g − 2
+
kCi

2
+
g − 1 − d

2g − 2
tCi

− bLCi

and also that

di ≥
dwC′

i

2g − 2
−
kC′

i

2
+ tCi

=
dwCi

2g − 2
−
kCi

2
+

3g − 3 − d

2g − 2
tCi

+ bLCi
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so inequality (3.1) holds for Ci if and only if inequality (2.1) holds for C′
i. It

is easy to see that this is true more generally for any proper subcurve Z of
X not contained in any rational tail and in any rational bridge.

3.2 Balanced Picard stacks over quasistable

curves with marked points

We will now generalize Definition 2.3.1 of balanced Picard stacks to curves
with marked points.

Definition 3.2.1. For any integer d and g, n ≥ 0 with 2g− 2+n > 0, denote
by Pd,g,n the following category fibered in groupoids over the category of

schemes over k. Objects over a k-scheme S are families (π : X → S, si : S →

X,L) of n-pointed quasistable curves over S and a balanced line bundle L

on X of relative degree d.
Morphisms between two such objects are given by cartesian diagrams

X

π

��

β2 // X ′

π′

��
S

β1

//

si

HH

S′

ti

UU

such that ti ◦ β1 = β2 ◦ si, 1 ≤ i ≤ n, together with an isomorphism

β3 : L→ β∗
2 (L′).

We will refer to Pd,g,n as the degree d balanced Picard stack for n-
pointed quasistable curves of genus g. The terminology stack will be clear
immediately from the following theorem.

Note that Pd,g,n contains Picd,g,n for all n ≥ 0.
In what follows we will prove the following statement.

Theorem 3.2.2. The degree d Balanced Picard stack Pd,g,n is a smooth and

irreducible algebraic (Artin) stack of dimension 4g − 3 + n endowed with a
universally closed map onto Mg,n.

Recall that, for n = 0 and g ≥ 2, Pd,g,0 coincides with the stack Pd,g

defined in Chapter 2, so Theorem 3.2.2 holds in this case.
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The cases g = 0 and g = 1 must be treated separately: we will show
that Pd,0,3 ∼= M0,3 ×BGm and Pd,1,1 ∼= M1,2 ×BGm (see Propositions 3.2.7
and 3.2.10, respectively), so Theorem 3.2.2 clearly holds in this case.

Then, following Knudsen’s construction of Mg,n (see [K83]), we will
show that Theorem 3.2.2 holds for all d ∈ Z and g, n ≥ 0 such that 2g −

2 + n > 0 using the following induction argument. We will prove that, for
n > 0 with 2g − 2 + n > 1, Pd,g,n+1 is isomorphic to the universal family
over Pd,g,n.

By universal family over Pd,g,n we mean an algebraic stack Zd,g,n with
a map onto Pd,g,n admitting n-sections σid,g,n : Pd,g,n → Zd,g,n, i = 1, . . . , n

and endowed with an (universal) invertible sheaf L such that, given a fa-
mily f : C → S, si : S → C, i = 1, . . . , n of n-pointed quasistable curves and
a balanced line bundle L over C of relative degree d, the following diagram,
commuting both in the upward and downward directions,

C
π2 //

f

��

Zd,g,n

��
S µf

//

si

II

Pd,g,n

σi
d,g,n

UU
(3.4)

is cartesian and induces an isomorphism between π∗
2(L) and L.

Let Zd,g,n be the category whose sections over a scheme Y are families
of n-pointed quasistable curves X → Y, ti : Y → X, i = 1, . . . , n endowed
with a balanced line bundle M of relative degree d and with an extra sec-
tion ∆ : Y → X . Morphisms in Zd,g,n are like morphisms in Pd,g,n com-
patible with the extra section. Zd,g,n is an algebraic stack endowed with a
forgetful morphism onto Pd,g,n admitting n sections given by the diagonals
δ1,n+1, . . . , δn,n+1.

It is easy to see that, given a family of n-pointed quasistable curves
f : C → S, si : S → C, i = 1, . . . , n and a balanced line bundle L over
C of relative degree d, diagram (3.4) is cartesian, where π2 is defined by
associating to the identity morphism 1C : C → C the fiber product of f :

C → S with itself
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C ×S C
p2 //

p1

��

C

f

��
C

f
//

f∗si

II

S

si

VV (3.5)

endowed with an extra section ∆ : C → C ×S C given by the diagonal
and with the relative degree d line bundle p∗2(L). Given another object
h : Y → C of C, π2(h) is defined to be the fiber product of h and p1 defined
in (3.5), naturally endowed with the n + 1 pullback sections and with the
pullback of p∗2(L).

The universal sheaf over Zd,g,n, L, is defined by associating to each
section (X → Y, ti,M,∆) of Zd,g,n over Y , the line bundle ∆∗(M) over Y . It
is easy to see that this defines an invertible sheaf on Zd,g,n.

Now we easily check that L is the universal sheaf over Zd,g,n. Indeed,
given an object h : Y → C on C, π∗

2(L)(h) = L(π2(h)) ∼= h∗(L), so it is
isomorphic to the sheaf defined by L on C, considered as a stack.

We have just proved the following.

Proposition 3.2.3. The algebraic stack Zd,g,n defined above endowed with
the invertible sheaf L is the universal family over Pd,g,n for the moduli pro-

blem of n-pointed quasistable curves with a balanced degree d line bundle.

Remark 3.2.4. From propositions 3.2.7 and 3.2.10 we have that for n ≥ 3,
Zd,0,n ∼= M0,n+1 ×BGm and that for n ≥ 1, Zd,1,n ∼= M1,n+2 ×BGm.

Now, suppose we can show that, for all n ≥ 0, there is a forgetful mor-
phism Ψd,g,n from Pd,g,n onto Mg,n such that the image under Ψd,g,n of
an n-pointed quasistable curve X over S endowed with a balanced degree
d line bundle is the stable model of X over S forgetting the line bundle.
These morphisms would yield commutative diagrams as follows, for all
n > 0 such that 2g − 2 + n > 1.
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Pd,g,n
Ψd,g,n

$$H
HH

HHH
HH

H
Φd,g,n

yysssssssss

Pd,g,n−1

Ψd,g,n−1 %%K
KKKKKKKK

Mg,n

Πg,nzzvv
vv

vvv
vv

Mg,n−1

(3.6)

Since Πg,n and Φd,g,n are the morphisms from the universal families
over Pd,g,n−1 and Mg,n−1, respectively, it follows that Ψd,g,n is universally
closed (or proper) if and only if ψd,g,n−1 is. For g ≥ 2 and n = 0, it follows
from Chapter 2 (see Remark 2.4.4), that ψd,g,0 is universally closed, so we
have that ψd,g,n is universally closed for all n ≥ 0 for all n ≥ 0 and g ≥ 2.
For g = 0 and g = 1 the result follows immediately in virtue of Propositions
3.2.7 and 3.2.10 and Remark 3.2.4.

So, Theorem 3.2.2 will follow from the following statement, that we will
prove in 3.4.3 bellow.

Theorem 3.2.5. For all d ∈ Z and n > 0 with 2g − 2 + n > 1, Pd,g,n+1 is

isomorphic to the algebraic stack Zd,g,n.

Recall that, for g ≥ 2 and n = 0, our proof of Theorem 3.2.2 consisted on
showing that Pd,g,0 = Pd,g is isomorphic to the quotient stack [Hd/GL(r +

1)] (see Theorem 2.3.2 above). The action of GL(r + 1) in Hd naturally lifts
to an action in Zd, where Zd is the restriction to Hd of the universal family
over the Hilbert scheme. Using a similar proof we can show that Zd,g,1 is
isomorphic to the quotient stack [Zd/GL(r+1)]. Nevertheless, we will now
give a proof of this fact that, in one direction, is slightly different of the
proof of Theorem 2.3.2 and that could be an alternative proof of it.

Proposition 3.2.6. Let d ≫ 0. Then the stack Pd,g,1 is isomorphic to the
quotient stack [Zd/GL(r + 1)].

Proof. We must show that, For every scheme S ∈ SCHk, the groupoids
Zd,g,1(S) and [Zd/GL(r + 1)](S) are equivalent. Let (f : C → S, s : S →

C,L) be a section of Zd,g,1 over S, i.e., a triple consisting of a family f of
quasistable curves with a section s and a balanced line bundle L of relative
degree d on C. Denote by G the group GL(r + 1). We must produce a
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principal GL(r + 1)-bundle E on S and a G-equivariant morphism q : E →

Zd. We will proceed as in the proof of Theorem 2.3.2. Since we are conside-
ring d to be very large, we may assume that f∗(L) is locally free of rank
r + 1 = d− g + 1. Then, the frame bundle of f∗(L) is a principal GL(r + 1)-
bundle: call it E. Now, to find the G-equivariant morphism to Zd, consider
the family CE := C ×S E polarized by LE, the pullback of L to CE . CE

is a family of quasistable curves of genus g, endowed with a section sE

and LE is balanced and relatively very ample. Moreover, the pullback of a
morphism endowed with a section is naturally endowed with a section, call
it sE . By definition of frame bundle, fE∗(LE) is isomorphic to C(r+1) × E,
so that LE gives an embedding over E of CE in Pr × E. By the universal
property of the Hilbert scheme H , this family determines a map ψ : E →

Hd, which is clearly G-equivariant. Furthermore, the following diagram is
cartesian

CE
q //

fE

��

Zd

f

��
C

ψ
//

sE

II

Hd

(3.7)

Since q is naturallyG-equivariant and sE isG-equivariant by construction,
qsE is a G-equivariant morphism from E to Zd. This way, we get a section
(E, qsE) of [Zd/G](S). It is easy to check that isomorphisms in Zd,g,1(S)

lead canonically to isomorphisms in [Zd/G](S).
Conversely, given a section (φ : E → S, q : E → Zd) of [Zd/G] over S, let

us construct a family of quasistable curves of genus g over S with a section
and a balanced line bundle of relative degree d on it. This part of the proof
is different from the proof of Theorem 2.3.2.

The pullback of the identity morphism of Zd by q gives a family CE on
E of quasistable curves of genus g and a balanced line bundle LE on CE

which embedsCE as a family of curves in Pr. In fact, CE is obtained pulling
back Zd → Hd via ψ, where ψ is the composition of q with Zd → Hd, which
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is naturally G-equivariant.

CE
p //

fE

��

Zd

f

��
S E

φ
oo

ψ
//

q
=={{{{{{{{
Hd

Moreover, by the universal property of the pullback, q induces a section
sE : E → CE .

As ψ is G-invariant and φ is a G-bundle, the family CE descends to a
family CS over S, where CS = CE/G. We must check that both the section
sE and the balanced line bundle LE also descend to CS and that CS is flat
over S.

Let us see that CS is a flat family by showing that CE is locally G-
equivariantly a product CW × G for some W -flat family CW for an open
W ⊂ S.

Since G = GL(r+1) is a special group (in the sense that every principal
G-bundle is locally trivial in the Zariski topology), the principal bundle E
is trivial locally in the Zariski topology. So, let V ⊂ S be an open subset of
S such that E|V

∼= V ×G.
Let ψ0 : V → Hd be defined as follows:

ψ0(x) = ψ(x, 1G)

for each x ∈ V . As ψ is G-invariant, ψ|(V×G)(x, g) = ψ0(x).g, for every x ∈ V

and every g ∈ G and, similarly, q|(V×G)(x, g) = g.q(x, 1G).
Let fV : CV → V be the family of quasistable curves of genus g over

V induced by the morphism ψ0 and LV the balanced line bundle of rela-
tive degree d embedding CV as a family of curves in V × Pr. Since LV

is relatively very ample, fV ∗(LV ) is locally free of rank r + 1. Up to res-
tricting to an open subset of V , we can assume fV ∗(LV ) is trivial. Let
fV×G : CV × G → V × G be the pullback family and π∗(LV ) ∼= LV ×G the
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pullback of LV to CV ×G.

LV

}}{{
{{

{{
{{

LV ×G

yyrrrrrrrrrr

CV

fV

��

CV ×G
πoo

fV ×G

��
V V ×G

φ|V ×G

oo

The frame bundle of fV ∗(LV ) is isomorphic to V × G, which is isomor-
phic to E|V . Furthermore, fV×G∗(π

∗(LV )) is isomorphic to φ∗|V×G(fV ∗(LV ))

which is isomorphic to V × G × Cr+1. So, fV×G∗(π
∗(LV )) gives an embed-

ding of CV×G as a family of d-general quasistable curves in V × G × Pr.
By the universal property of the Hilbert scheme, such a family induces a
G-equivariant morphism to Hd. By construction, this morphism must be
equal to ψ|(V×G).

We conclude that, locally, CE is a G-equivariant product of a flat family
CV by G. In particular, we can apply Kempf’s descent lemma which states
that LE descends to a line bundle over CS if and only if, for every closed
point ξ ∈ E its stabilizer acts trivially on the fiber of LE in ξ (see, for
example, Theorem 2.3 of [DN]). From the local description of the family, we
conclude that LE descends to a line bundle LS on CS . Moreover, since q =

psE and by the local description of q, we get that also sE is G-equivariant,
so it descends to a section s : S → CS . So, (CS → S, s : S → CS , LS) ∈ Zd,g,1.

It is straightforward to check that an isomorphism on [Zd/G](S) leads
to a unique isomorphism in Zd,g,1(S).

3.2.1 Balanced Picard stacks over genus 0 curves

Recall that the notions of n-pointed stable and quasistable curve coincide
for curves of genus 0 (and n ≥ 3) (see Remark 3.1.6 above).

In the present section we describe Balanced Picard stacks over (families
of) n-pointed stable curves of genus 0. We will start by considering the case
n = 3.
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Let (π : X → S, si : S → X) ∈ M0,3, i = 1, . . . , 3. Then X is necessarily a
trivial family: a stable rational curve with 3 distinguished marked points
is necessarily smooth and has trivial automorphism group. Then, for any
d ∈ Z, OX/S(d) is a line bundle of relative degree d over X and it is clearly
balanced (since all fibers of the family are irreducible). Moreover, any other
line bundle of relative degree d overX is isomorphic to it, the isomorphism
being given by an element of Gm.

So, we have proved the following result.

Proposition 3.2.7. For any d ∈ Z, Pd,0,3 ∼= M0,3 ×BGm(∼= BGm).

Let now n > 3. In view of theorem 3.2.5, consider the universal family
over Pd,0,n−1, Zd,0,n−1. By applying an inductive argument based on the
previous Proposition we have that Zd,0,n−1

∼= M0,n × BGm. So, Theorem
3.2.2 will give the following result.

Proposition 3.2.8. Let d ∈ Z and n ≥ 3. Then Pd,0,n is isomorphic to
M0,n ×BGm.

3.2.2 Balanced Picard stacks over genus 1 curves

In order to describe Balanced Picard stacks over genus 1 curves, analo-
gously to the case g = 0, we will start by considering n = 1. The general
result will then follow from the induction process in the number of marked
points that will be developed in section 3.4, yielding a proof of Theorem
3.2.2.

It is convenient to do a further assumption in this case: let us suppose
that d = 1. In fact, in virtue of the next Lemma, this assumption is not a
restriction at all.

Lemma 3.2.9. Let d, d′ be any integers. Then, Pd,1,1 ∼= Pd′,1,1.

Proof. It is enough to show that, for any d ∈ Z, Pd,1,1 ∼= Pd+1,1,1.
Let (π : X → S, s : S → X,L) be an 1-pointed quasistable curve over S

of genus 1 endowed with a balanced line bundle L of relative degree d over
X , i. e., an element of Pd,1,1(S). Then, (π : X → S, s : S → X,L(s)) is an
object of Pd+1,1,1(S). In fact, since n = 1, the geometric fibers of π must
be either irreducible genus 1 curves or curves consisting in two smooth
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rational curves meeting in two points (see Figure 3.2 above). To check that
L(s) is a balanced line bundle (of degree d+ 1) over (π : X → S, s : S → X),
it is enough to see that, given a geometric fiberXs of π, L|Xs

is balanced, so
only the later case when Xs is reducible matters. In this case, Definition
2.1.1 implies that the multidegree of L restricted to Xs is (d − 1, 1), where
1 is the degree on the exceptional component and d− 1 is the degree on the
rational component containing the marking. It follows immediately now
that L is balanced (of degree d) if and only if L(s) is balanced (of degree
d+ 1).

One checks immediately that this defines an equivalence of (fibered)
categories and the result follows.

Proposition 3.2.10. For any integer d, we have that Pd,1,1 ∼= M1,2 ×BGm.

Proof. From Lemma 3.2.2 it is enough to consider the case d = 1.
Moreover, instead of showing directly that M1,2 × BGm is isomorphic

to P1,1,1, let us prove that Z1,1 ×BGm is isomorphic to P1,1,1, where Z1,1 is
the universal family over M1,1.

Let (π : X → S, s : S → X,∆ : S → X) ∈ Z1,1(S) (∆ is the extra section
of π). Then, if ∆ lies in the smooth locus of X , it is easy to see that (π : X →

S, s : S → X,OX/S(∆)) is an element of P1,1,1(S). In fact, all geometric
fibers of π must be irreducible curves, so OX/S(∆) is certainly balanced.
Otherwise, using an analogous procedure to the proof of Theorem 3.2.5 in
3.4.3, we will construct an element of P1,1,1 out of this datum. Let I be the
OX/S-ideal defining ∆ and K the cokernel of the natural injective map

OX/S → I−1.

Define
Xs := P(K)

and consider the natural S-morphism p : Xs → X . Then, Xs is a family
of curves over S and it is not isomorphic to X → S if and only if ∆ meets
singular points of some geometric fibers of X over S. In this case, locally,
Xs is the total transform of the blow up of X at that point with the reduced
structure. Moreover, from Theorem 2.4 of [K83], the sections s and ∆ have
unique liftings to sections s′ and ∆′ of Xs → S compatible with the mor-
phism p. So, in the geometric fibers where the curve has been blown up,
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∆′ must lie in a smooth point of the exceptional components of the blow
up. So, it is easy to see that (Xs → S, s′ : S → Xs,OXs/S(∆′)) ∈ P1,1,1(S).
In fact, in the geometric fibers were the curve is reducible, ∆′ must lie in
the exceptional component of the blow up, so OXs/S(∆′) restricted to those
fibers has degree 1 on the exceptional components and degree 0 in the com-
ponent containing the image of s′, so it satisfies the conditions of Definition
2.1.1.

Let now β be an automorphism of (π : X → S, s : S → X,∆ : S → X)

and α ∈ BGm(S). β is an S-automorphism of π : X → S leaving the two
sections fixed and α is just an element of Gm. It is easy to see that β
corresponds biunivocally to an automorphism β′ of (πs : Xs → S, s′ : S →

Xs,∆′ : S → Xs) leaving s′ and ∆′ fixed. In fact, this follows from the
fact that any automorphism of P1 fixing 3 distinct points is necessarily the
identity.

Xs

π′

  B
BB

BB
BB

B

β′

// Xs

π′

~~||
||

||
||

S
s′,∆′

XX

s′,∆′

FF

So, β′ induces an automorphism of (Xs → S, s′ : S → Xs,OXs/S(∆′)),
that is, an automorphism of Xs → S fixing s′ and inducing an automor-
phism of OXs/S(∆′). So, we associate to (β, α) the automorphism β′ of
Xs → S and the isomorphism α : OXS/S(∆′) → β∗(OXs/S(∆′)) ∼= OXs/S(∆′)

given by fiberwise scalar multiplication by α.
Moreover, any other automorphism of (Xs → S, s′ : S → Xs,OXs/S(∆′))

must fix ∆′ because the isomorphism class of OXs/S(∆′) corresponds to
the linear equivalence class of ∆′, which is given just by ∆′ since the
geometric fibers of Xs → S are genus 1 curves. So, automorphisms of
(Xs → S, s′ : S → Xs,OXs/S(∆′)) correspond to automorphisms of (Xs →

S, s′ : S → Xs,∆′ : S → XS) fixing the two sections and to an automor-
phism of OXs/S(∆′) on itself, which is given by an element of Gm.

So, we constructed a functor from Z1,1 × BGm to P1,1,1 which is full
and faithful. In order to conclude that Z1,1 × BGm

∼= P1,1,1 it is enough
to check that this functor is essentially surjective. Let (π : Y → S, s :

S → Y, L) ∈ P1,1,1(S). Since L is a line bundle of degree 1 in a genus 1

curve, it is associated to an unique efective divisor (of degree 1): call it ∆.
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Of course, ∆ can also be seen as a section of π. So, if all fibers of π are
1-pointed stable curves, it follows immediately that (π : Y → S, s : S →

Y,∆ : S → Y ) ∈ Z1,1(S). Instead, if some of the geometric fibers of π
have exceptional components, the idea is to blow down these components
and endow this new curve with the extra section given by the image of
∆. The way to do it rigorously is standard: it is enough to define X :=

Proj(⊕i≥1π∗((ωY/S(s))3i)) → S. In fact, the fibers of ωY/S(s) over S have
degree 0 exactly in the exceptional components and positive degree in all
the others, so the result is that X → S is isomorphic to Y → S everywhere
except in the exceptional components, that get contracted to points in X

(see section 3.5 for a rigorous proof). Moreover, there is an S-morphism
γ : Y → X making the following diagram commute.

Y
γ //

π

��?
??

??
??

X

��~~
~~

~~
~

S
s,∆

WW

So, X → S endowed with the sections γs and γ∆ is an object of Z1,1(S). It
is easy to check that the above functor applied to (X → S, γs, γ∆) yields an
object of P1,1,1(S) which is isomorphic to (π : Y → S, s : S → Y, L).

Let now n > 1. In view of theorem 3.2.5, consider the universal family
over Pd,1,n, Zd,0,n. By applying an inductive argument based on the previ-
ous Proposition we have that Zd,0,n ∼= M1,n+1 × BGm. So, Theorem 3.2.2
will give the following result.

Proposition 3.2.11. Let d ∈ Z and n ≥ 1. Then Pd,1,n is isomorphic to
M1,n+1 ×BGm.

3.3 Properties of line bundles on reducible

nodal curves

In this section we prove some technical properties of line bundles over
(reducible) nodal curves that will be used later in the proof of Theorem
3.2.5.
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3.3.1 Nonspecialty and global generation

Lemma 3.3.1. Let X be a rational curve and L a line bundle on X such

that, for each irreducible component Z of X , the degree of L on Z is smaller

or equal to kZ − 2, except possibly for one component Z0, where the degree
of L can be equal to kZ0

− 1. Then, H0(X,L) = 0.

Proof. We will argue by induction on the number of irreducible compo-
nents γ of X .

If X = Z is irreducible, then kX = 0 and degX L ≤ −1, which clearly
implies that H0(X,L) = 0.

Now, suppose that X has γ > 1 irreducible components. Let Z0 be an
irreducible component of X such that degZ0

L− (kZ0
−2) is maximal among

the irreducible components of X . In particular, if there is an irreducible
component Z of X with degZ L = kZ − 1, then necessarily Z0 = Z. Then,
X \ Z0 = X1 ∪ · · · ∪ Xδ is a disjoint union of (rational) subcurves of X
and (Xi, L|Xi

) satisfies the hypothesis, for i = 1, . . . , δ. So, since each Xi

has a number of irreducible components smaller than γ, we can apply the
induction hypothesis on each one of them and conclude that H0(Xi, L|Xi

) =

0 for i = 1, . . . , δ. So, a global section of L onX must be trivial alongX \ Z0,
and in particular it must be equal to zero in each one of the kZ0

points
where Z0 meets the rest of X . Since degZ0

L ≤ kZ − 1, we conclude that all
sections of L must be trivial also on Z. It follows that H0(X,L) = 0.

Corollary 3.3.2. Let X be an n-pointed rational curve, with n ≥ 3. Then,

X is semistable if and only if ωX(p1 + · · ·+ pn) is globally generated, where
p1, . . . , pn are the marked points of X .

Proof. Let ω denote ωX(p1 + . . . , pn). We will start by showing that if X is
semistable then ω is globally generated. So, for all x ∈ X , we must see that
there are sections of ω that do not annulate in x.

Start by assuming that x is a nonsingular point of X . We must show
that h0(X,ω(−x)) < h0(X,ω).

By Riemann-Roch, we have that

h0(ω) = h1(ω) − 2 + n+ 1 = h0(OX(−p1 − · · · − pn)) − 1 + n

and, since (X ; p1, . . . , pn) is semistable, (X,OX(−p1 − · · · − pn)) satisfies
the hypothesis of Lemma 3.3.1, so h0(X,OX(−p1 − · · · − pn)) = 0. In fact,
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given an irreducible component Z of X , we have that degZ OX(−p1 − · · · −

pn) ≤ 0 ≤ kZ − 2 if Z is not a rational tail of X and for rational tails that
degT OX(−p1 − · · · − pn) ≤ −1 = kZ − 2.

So, again by Riemann-Roch, to show that h0(X,ω(−x)) < h0(X,ω), we
must show that h1(X,ω(−x)) = h0(X,O(−p1 − · · · − pn + x)) = 0. But it
is easy to see that, if (X ; p1, . . . , pn) is semistable, then also (X,O(−p1 −

· · · − pn + x)) satisfies the hypothesis of Lemma 3.3.1, which implies that
h0(X,O(−p1 − · · · − pn + x)) = 0.

Now, suppose that x is a singular point of X . To show that x is not a
base point of X we must show that h0(X,ω ⊗Ix) < h0(X,ω). By contradic-
tion, suppose these are equal. Let ν : Y → X be the partial normalization
of X at x. Then, if p and q denote the preimages of x under ν, we have that
h0(Y, ν∗ω(−p − q)) = h0(X,ω). Since x is necessarily a disconnecting node
of X , Y = Y1 ∪ Y2 is the union of two rational curves. Arguing in the same
way as before in Y1 and Y2 we easily see that h0(Y, ν∗ω(−p − q)) = n − 2,
which is a contradiction, and we conclude.

Now, suppose that X is not semistable and let us see that ω is not glo-
bally generated. X being semistable means that there is a tail T of X
without marked points; we will show that all x ∈ T are base points for ω.
From what we have said so far it is enough to see that h0(X,OX(−p1−· · ·−

pn)) < h0(X,O(−p1−· · ·−pn+x)). Since h0(X,OX(−p1−· · ·−pn)) = 0, again
by Lemma 3.3.1, it is enough to see that OX(−p1−· · ·−pn+x) has nontrivial
sections. But this follows by observing that OX(−p1 − · · · − pn + x)|T is a
line bundle of degree one in a rational curve, so its space of sections has
dimension 2. So, even if the node connecting T with the rest of X imposes
one condition, there is a section of OX(−p1 − · · · − pn + x) that is nontrivial
on T and we conclude.

Note that the statement of 3.3.2 does not hold in the case of curves with
higher genus. In fact, if X is a nonsingular curve of genus greater or equal
than one with one marked point p, ωX(p) is not globally generated since p
itself is a base point for H0(X,ωX(p)).

Instead, for curves without marked points, the global generation of the
dualizing sheaf is indeed related to the connectivity of the curve. In fact,
from [BE91], Proposition 2.5, we know that if X is a graph curve, i.e, a
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stable curve such that all irreducible components are rational curves, then
H0(X,ωX) has no base points if and only if X has no disconnecting nodes
(and analogously that ωX is very ample if and only if X is 3-connected).

Lemma 3.3.3. Let X be a nodal curve of genus g and L ∈ PicdX . If
degZ L ≥ 2gZ − 1 for every connected subcurve Z ⊆ X , then H1(X,L) = 0.

Moreover, if strict inequality holds above for all Z ⊆ X , then L has no base
points.

To prove Lemma 3.3.3 we will use the following Lemma, which is Lem-
ma 2.2.2 in [C2].

Lemma 3.3.4 (Caporaso,[C2]). Let X be a nodal curve of genus g and L ∈

PicdX . If, for every connected subcurve Z of X , degZ L ≥ 2gZ − 1, then
h0(X,L) = d− g + 1.

Proof (of Lemma 3.3.3). The first assertion follows immediately by Serre
duality and by Lemma 3.3.4.

Now, assume that, for every Z ⊆ X , degZ L ≥ 2gZ. We must show that
L has no base points. Consider a closed k-rational point x in X . Suppose
that x is a nonsingular point of X . We must show that

h0(X,L(−x)) < h0(X,L).

By our assumption on L, we can apply again Lemma 3.3.4 to L(−x) to get
that h0(X,L(−x)) = d− 1 − g + 1 = h0(X,L) − 1.

Suppose now that x is a node of X . We must show that

H0(X,L⊗ Ix) ( H0(X,L).

By contradiction, suppose these are equal. Then, if ν : Y → X is the partial
normalization of X at x, we get that

H0(X,L) = H0(Y, ν∗L(−p− q)),

where p and q are the preimages of x by ν.
Suppose that x is not a disconnecting node for X . Then, it is easy to

see that we can apply Lemma 3.3.4 to (Y, ν∗L(−p − q)). Let Z ′ ⊆ Y and
Z ⊆ X the subcurve of X such that Z ′ = ν−1(Z). In fact, since x is not
a disconnecting node for X , if Z ′ contains p and q, then gZ′=gZ − 1, so
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degZ′ ν∗L(−p − q) = degZ L − 2 ≥ 2gZ − 2 = 2gZ′ − 1. If Z contains only
one of the points {p, q}, then gZ′ = gZ but degZ′ ν∗L(−p− q) = degZ L− 1 ≥

2gZ − 1 = 2gZ′ − 1. Finally, if Z does not contain none of the points p
and q, gZ′ = gZ and degZ′ ν∗L(−p − q) = degZ L ≥ 2gZ. So, we get that
h0(Y, ν∗L(−p−q)) = (d−2)−(g−1)+1 = d−g, leading us to a contradiction.

Suppose now that x is a disconnecting node for X . Then, Y is the union
of two connected curves, Y1 and Y2, of genus g1 and g2, respectively, with
g1 + g2 = g. Suppose that p ∈ Y1 and q ∈ Y2. Then,

h0(Y, ν∗L(−p− q)) = h0(Y1, ν
∗(L)|Y1

(−p)) + h0(Y2, ν
∗(L)|Y2

(−q)).

Also in this case, we can apply Lemma 3.3.4 to (Yi, h
0(Y1, ν

∗(L)|Y1
(−p)))

and to (Y2, h
0(Y1, ν

∗(L)|Y2
(−q))). We get that

h0(Y, ν∗L(−p− q)) = (degY1
(ν∗L) − g1) + (degY2

(ν∗L) − g2) = d− g,

a contradiction.

Corollary 3.3.5. Let X be an n-pointed semistable curve of genus g with

2g − 2 + n > 0 and let M := ωX(p1 + · · · + pn), where p1, . . . , pn are the n
marked points of X . Then, for all m ≥ 2, we have that

1. H1(X,Mm) = 0;

2. Mm is globally generated.

Proof. According to Lemma 3.3.3, it is enough to show that, given a sub-
curve Z of X , degZM

m ≥ 2gZ , for all m ≥ 2. It is sufficient to prove the
result for m = 2.

Let Z be a subcurve of X . Then,

degZ ωX = 2gZ − 2 + kZ

and
degZ(M2) ≥ 4gZ − 4 + 2kZ = (2gZ) + (2gZ − 4 + 2kZ).

So, if both gZ and kZ are bigger than zero or if one of them is bigger than
two, we are done. We must threat the remaining cases separately.

Start by supposing that gZ = 0 and kZ ≤ 1. Then either kZ = 0 and
Z = X has at least three marked points since 2g − 2 + n > 0 or kZ = 1
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and Z has at least one marked point of X . In both cases we have that
degZ(M2) ≥ 2(−2 + 2) = 0 = 2gZ.

It remains to control the case when gZ = 1 and kZ = 0. Then X = Z

has genus one and since 2g − 2 + n > 0, we have that n > 0 which implies
that it has at least one marked point. So, degZ(M)2 ≥ 2(0 + 1) = 2 = 2gZ.

Corollary 3.3.6. Let d ≫ 0, n > 0 and X an n-pointed quasistable curve

of genus g with 2g − 2 + n > 0 endowed with a balanced line bundle L of
degree d. Denote by p1, . . . , pn the n marked points of X and let M be the

line bundle L(p1 + · · ·+pn−1)⊗ (ωX(p1 + · · ·+pn−1))
−k, for any k ≤ 1. Then,

we have that, for all m ≥ 1,

1. H1(X,Mm) = 0;

2. Mm is globally generated.

Proof. Again, accordingly to Lemma 3.3.3, the result follows if we prove
that, for every subcurve Z of X , degZM

m ≥ 2gZ. It is enough to prove the
result for m = 1.

Let Z be a subcurve of X which is not contained in any rational tail or
in any rational bridge of X . Since degZ ωZ(p1 + · · · + pn−1) ≥ 0, we have
that degZM ≥ degZ L⊗ω−1

Z . Then, if g = 0, degZM ≥ d+ tZ − (kZ − 2) and
if g = 1, degZM ≥ d+ tZ − kZ−tZ

2 − kZ (see Definitions 2.1.1 and 3.1.5). In
both cases, since we are considering d≫ 0, clearly degZM ≥ 2gZ.

Now, suppose g ≥ 2. By definition of balanced (see 2.1.1 above), we have
that

degZ L ≥
d

2g − 2
(wZ − tZ) + iX,Z =

d

2g − 2
(2gZ − 2 + kZ − tZ) + iX,Z ,

where iX,Z is independent of d. If Z is rational, kZ−tZ ≥ 3, so degZ L≫ 0 if
d≫ 0. In fact, if kZ = tZ , X would be rational; by the other hand, if kZ− tZ

is 1 or 2 and g ≥ 2, Z should be contained in a rational tail or in a rational
bridge of X , respectively, which cannot be the case by our assumption on
Z. Suppose now that gZ = 1. Then, kZ − tZ ≥ 1, since otherwise X would
have genus 1. So, also in this case, degZ L ≫ 0. Finally, if gZ ≥ 2, it
follows immediately that degZ L≫ 0. The same holds for degZM , which is
asymptotically equal to degZ L since d≫ 0.
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Suppose now that Z is contained in a rational tail or in a rational bridge
of X . Then, from Lemma 3.1.9, we have that degZ L ≥ kZ − 2, so degZM ≥

(kZ − 2) − (kZ − 2) = 0 = 2gZ and we conclude.

3.3.2 Normal generation

Recall the following definition.

Definition 3.3.7. A coherent sheaf F on a schemeX is said to be normally

generated if, for all m ≥ 1, the canonical map

H0(X,F)m → H0(X,Fm)

is surjective.

Note that if we take F to be an ample line bundle L on X , then if L
is normally generated it is, indeed, very ample (see [M70], section 1). In
this case, saying that L is normally generated is equivalent to say that the
embedding of X via L on PN , for N = h0(X,L) − 1, is projectively normal.

Normal generation of line bundles on curves has been widely studied.
For instance, we have the following theorem of Mumford:

Theorem 3.3.8 (Mumford, [M70], Theorem 6). Let X be a nonsingular

irreducible curve of genus g. Then, any line bundle of degree d ≥ 2g + 1 is
normally generated.

Mumford’s proof of Theorem 3.3.8 is based on the following Lemma.

Lemma 3.3.9 (Generalized Lemma of Castelnuovo, [M70], Theorem 2).
Let N be a globally generated invertible sheaf on a complete scheme X of

finite type over k and F a coherent sheaf on X such that

Hi(X,F ⊗N−i) = 0 for i ≥ 1.

Then,

1. Hi(X,F ⊗N j) = 0 for i+ j ≥ 0, i ≥ 1.

2. the natural map

H0(X,F ⊗N i) ⊗H0(X,N) → H0(X,F ⊗N i+1)

is surjective for i ≥ 0.
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The proof of the following statement uses mainly the arguments of
Knudsen’s proof of Theorem 1.8 in [K83].

Proposition 3.3.10. Let X be an n-pointed semistable curve of genus g

with 2g − 2 + n > 0 and L ∈ PicdX . If, for every subcurve Z of X , degZ L ≥

2gZ, then L ⊗ ωX(p1 + · · · + pn) is normally generated, where p1 . . . , pn are

the marked points of X .

Proof. LetD denote the divisor p1+· · ·+pn. Let Z be a subcurve ofX . Since
the multidegree of ω(D) is non-negative, degZ L ⊗ ω(D) ≥ degZ L ≥ 2gZ,
so both statements of Lemma 3.3.3 hold also for L ⊗ ω(D). So, we can
apply the generalized Lemma of Castelnuovo with F = (L ⊗ ωX(D))m and
N = L⊗ ωX(D), for any m > 1, and get that the natural map

H0(X, (L⊗ ωX(D))m) ⊗H0(X,L⊗ ωX(D)) → H0(X, (L⊗ ωX(D))m+1)

is surjective. So, to prove that L⊗ωX(D) is normally generated, it remains
to show that the map

H0(X,L⊗ ωX(D)) ⊗H0(X,L⊗ ωX(D))
α
→ H0(X, (L⊗ ωX(D))2)

is surjective.
Start by assuming that X has no disconnecting nodes. Then, if g = 0,

X is necessarily nonsingular and n ≥ 3, so degL⊗ ωX(D) ≥ 2g + 1 and the
result follows from Theorem 3.3.8.

Now, assume g ≥ 1 and consider the following commutative diagram

Γ(L⊗ ωX(D)) ⊗ Γ(ωX) ⊗ Γ(L(D))

β

��

// Γ(L⊗ ωX(D)) ⊗ Γ(L⊗ ωX(D))

α

��
Γ(L⊗ ω2

X(D)) ⊗ Γ(L(D))
γ // Γ((L⊗ ωX(D))2)

where Γ(−) indicates H0(X,−).
If g = 1, then X is either nonsingular or it is a ring of P1’s. In both

cases ωX is isomorphic to OX , so it is globally generated. Instead, if g ≥ 2,
from the proof of Theorem 1.8 in Knudsen we have that, since X has no
disconnecting nodes, ωX is globally generated too.

Moreover, from Lemma 3.3.3 applied to L(D), we get that H1((L ⊗

ωX(D)) ⊗ ω−1
X ) = H1(L(D)) = 0. So, we can apply the Generalized Lemma
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of Castelnuovo with F = L ⊗ ωX(D) and N = ωX to conclude that β is
surjective.

Now, since X has no disconnecting nodes, it cannot have rational tails.
So, we can see X as a semistable curve without marked points and apply
Corollary 3.3.5 to X and ωX and get that H1((L ⊗ ω2

X(D)) ⊗ (L(D))−1) =

H1(ω2
X) = 0. Since L(D) is globally generated, again by Lemma 3.3.3, we

can apply the Generalized Lemma of Castelnuovo with F = L⊗ω2
X(D) and

N = L(D) to conclude that also γ is surjective.
Since the above diagram is commutative, it follows that also α is sur-

jective and we conclude.
Now, to show that α is surjective in general, let us argue by induction

in the number of disconnecting nodes of X .
Let x be a disconnecting node of X and X1 and X2 the subcurves of X

such that {x} = X1 ∩X2.
The surjectivity of α follows if we can prove the following two state-

ments.

(1) The image of α contains a section s ∈ H0(X, (L ⊗ ωX(D)2)) such that
s(x) 6= 0;

(2) The image of α contains H0(X, (L⊗ ωX(D))2 ⊗ Ix)).

The first statement follows immediately from the fact that L ⊗ ωX(D)

is globally generated (once more by 3.3.3).
Let M denote L ⊗ ωX(D). To prove (2) let us consider σ ∈ H0(X,M2 ⊗

Ix). Then, σ = σ1 + σ2, with

σ1 ∈ H0(X,M2 ⊗ IX1
) ∼= H0(X2, (M

2 ⊗ IX1
)|X2

) ∼= H0(X2, (M
2)|X2

⊗ Ix),

σ2 ∈ H0(X,M2 ⊗ IX2
) ∼= H0(X1, (M

2 ⊗ IX2
)|X1

) ∼= H0(X1, (M
2)|X1

⊗ Ix).

By induction hypothesis, σ1 is in the image of

H0(X2,M|X2
) ⊗H0(X2,M|X2

) → H0(X2, (M
2)|X2

)

and σ2 in the image of

H0(X1,M|X1
) ⊗H0(X1,M|X1

) → H0(X1, (M
2)|X1

)

with both σ1 and σ2 vanishing on x.
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Write σ1 as
∑r
l=1 ul ⊗ vl, with ul and vl in H0(X2,M|X2

), for l = 1, . . . , r.
Let ν : Y → X be the partial normalization of X in x and p and q be the
preimages of x on X1 and X2, respectively, via ν. Since M|X1

is globally ge-
nerated, there is s ∈ H0(X1,M|X1

) with s(p) 6= 0. Then there are constants
al and bl for l = 1, . . . , r and i = 1, . . . , k such that

als(p) = ul(q) and bls(p) = vl(q). (3.8)

Define the sections ūl and v̄l as ul (resp. vl) on X2 and as als (resp. bls) on
X1, for l = 1, . . . , r. By (3.8), these are global sections of M and

r∑

l=1

ūl ⊗ v̄l

maps to σ1. In fact,

σ1(x) =

r∑

l=1

ul(q) ⊗ vl(q) =

r∑

l=1

(als(p) ⊗ bls(p)) = (

r∑

l=1

albl)s(p) ⊗ s(p)

and, by hypothesis, σ1(x) = 0 and s(p) 6= 0. This implies that
∑r

l albl = 0,
so (

∑r
l=1 ūl ⊗ v̄l)|X1

= 0. We conclude that σ1 is in the image of α.
In the same way, we also get that σ2 is in the image of α, so (2) holds

and we are done.

The next result follows from the proof of Theorem 1.8 in [K83], but we
include it here since we shall use it in the following slightly more general
form.

Corollary 3.3.11. Let X be an n-pointed semistable curve of genus g such

that 2g − 2 + n > 0 and let p1 . . . , pn be the marked points of X . Then, for
m ≥ 3, (ωX(p1 + · · · + pn))

m is normally generated.

Proof. Is an immediate consequence of Proposition 3.3.10 and the proof of
Corollary 3.3.5.

Corollary 3.3.12. Let X be an n-pointed quasistable curve of genus g such

that 2g − 2 + n > 0 and L a balanced line bundle on X of degree d ≫ 0.
Then, if n > 0, L(p1 + · · · + pn−1) is normally generated.
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Proof. Since X is an n-pointed quasistable curve, it is easy to see that X ,
endowed with the first n − 1 marked points (p1, . . . , pn−1), is an (n − 1)-
pointed semistable curve. Moreover, by the proof of Corollary 3.3.6, we can
apply Proposition 3.3.10 to L(p1 + · · · + pn−1) ⊗ ω−1

X (p1 + · · · + pn−1). The
result follows immediately now.

Corollary 3.3.13. Let d ≫ 0, n > 0 and X an n-pointed quasistable curve
of genus g, with 2g− 2 +n > 0, endowed with a balanced line bundle L. Let

M denote the line bundle L(p1 + · · · + pn), where p1, . . . , pn are the marked
points of X . We have:

1. M is normally generated;

2. M is very ample.

Proof. Statement (1) follows from the proof of the previous Corollary, which
obviously works for M = L(p1 + · · · + pn) as well.

To show (2) it is enough to observe that M is ample since its degree
on each irreducible component of X is positive. Since M is also normally
generated, it follows thatM is indeed very ample (see [M70], section 1).

3.4 The contraction functor

The following definition generalizes the notion of contraction introduced by
Knudsen in [K83] to the more general case of pointed quasistable curves
endowed with balanced line bundles.

Definition 3.4.1. Let 2g − 2 + n > 0 and (π : X → S, si : S → X,L) be

an (n + 1)-pointed curve of genus g endowed with a line bundle of relative
degree d. A contraction of X is an S-morphism from X into an n-pointed

curve (π′ : X ′ → S, ti : S → X ′, L′) endowed with a line bundle of relative
degree d, L′, and with an extra section ∆ : S → X ′ such that

1. for i = . . . , n, the diagram

X
f //

π

��

X ′

π′

~~||
||

||
||

S

si

HH

ti

FF
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commutes both in the upward and downward directions,

2. ∆ = fsn+1,

3. f induces an isomorphism between the line bundles L(s1 + · · · + sn)

and f∗L′(t1 + · · · + tn),

4. the morphism induced by f in the geometric fibers Xs is either an
isomorphism or there is an irreducible rational component E ⊂ Xs

such that sn+1(s) ∈ E which is contracted by f into a closed point
x ∈ X ′

s and

fs : Xs \E → X ′
s \ {x}

is an isomorphism.

3.4.1 Properties of contractions

Proposition 3.4.2. Let S = Spec k and f : X → X ′ a contraction from an

(n + 1)-pointed curve (X ; p1, . . . , pn+1) endowed with a degree d line bun-
dle L into an n-pointed curve (X ′; q1, . . . , qn), endowed with a degree d line

bundle L′ and with an extra point r. If (X ; p, . . . , pn+1) is quasistable, then
(X ′; q1, . . . , qn) is quasistable and, in this case, L is balanced if and only if

L′ is balanced.

Proof. Clearly, the assertion follows trivially if no irreducible component
of X gets contracted by f . So, assume that there is an irreducible compo-
nent E of X that gets contracted by f . Then, necessarily, pn+1 ∈ E, so no
exceptional component of X gets contracted. Moreover, the condition that
f∗L′(q1 + · · · + qn) ∼= L(p1 + · · · + pn) implies that L(p1 + · · · + pn) is trivial
on the fibers of f , so it must have degree 0 on E. Now, we have only two
possibilities: either f(E) = {r} is a smooth point of X ′ or it is nodal.

Start by considering the case when r is smooth. Since f(E) = {r},
we must have that kE = 1, i. e., E is a rational tail of X . So, if X is
quasistable, E must contain exactly another special point pi, for some i =

1, . . . , n and r = qi. Let F ′ be the irreducible component of X ′ containing
r and F the corresponding irreducible component of X (recall that f is an
isomorphism between F and F ′ away from r). If gF > 0, then it is clear
that also X ′ is quasistable. Instead, if F is rational, even if kF ′ = kF −1, F ′
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Figure 3.4: Contractions of quasistable pointed curves over k and balanced
degree d line bundles.

has one more marked point than F . So, X ′ has the same destabilizing and
exceptional components as X . In fact, if X is quasistable, it cannot be an
exceptional component of X because F is would be contained in a rational
tail of X . It follows that, if (X ; p1, . . . , pn+1) is quasistable, (X ′; q1, . . . , qn)

is a quasistable too.
Let us now check that, if we are contracting a rational tail of a qua-

sistable curve, L is balanced if and only if L′ is balanced. From the defini-
tion of contraction, we get that the multidegree of L(p1 + · · · + pn) in the
irreducible components of X that are not contracted must agree with the
multidegree of L′(q1+· · ·+qn) in their images by f . In our case, this implies
that the multidegree of L′ on the irreducible components of X ′ coincides
with the multidegree of L on the corresponding irreducible components of
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X , except on F ′, where we must have that

degF ′ L′ = degF L− 1.

So, given a proper subcurve Z ′ of X ′, if Z ′ does not contain r, the balanced
condition will be satisfied by L on Z if and only if it is satisfied by L′ on
Z ′ since mZ′(d, L′) = mZ(d, L), MZ′(d, L′) = MZ(d, L) and degZ′(d, L′) =

degZ(d, L). Now, suppose r ∈ Z ′ and let Z be the preimage of Z ′ by f .
Then, kZ′ = kZ − 1, wZ′ = wZ − 1, bLZ = bL

′

Z′ and tZ′ = tZ − 1, which implies
that

mZ′(d, L) = mZ(d, L) − 1

and
MZ′(d, L′) = MZ(d, L) − 1.

Since also degF ′ L′ = degF L − 1, we conclude that, if L is balanced, then
L′ is balanced too. Now, to conclude that if L′ is balanced then also L is
balanced, we must check what happens with E and X \ E. In fact, X \ E

does not correspond to any proper subcurve of X ′. It is enough to observe
that the degree of L on E is forced to be equal to −1 since E contains
2 special points and that the inequality (2.1) is verified on X \ E since
mX\E(d, L) = MX\E(d, L) = d+ 1 = degX\E L.

Now, suppose r is a nodal point of X . Then, pn+1 is the only marked
point of X in E (otherwise, the condition that f(pi) = qi for i = 1, . . . , n

would imply that one of these qi’s should coincide with r, which is nodal,
and (X ′, q1, . . . , qn) would not be a pointed curve). So, if (X ; p1, . . . , pn+1) is
quasistable, we must have that kE = 2, i. e., E is a rational bridge of X
(note that if g = 1 then necessarily n > 0, so p1 /∈ E). We must make a fur-
ther distinction here. Suppose first that E intersects just one irreducible
component of X : call it F and F ′ its associated irreducible component on
X ′. Now, if X = E ∪ F , and if F is rational, X ′ is an irreducible genus
1 curve, which is clearly quasistable. If, instead, gF > 0 or if kF ≥ 3, we
see that all destabilizing and exceptional components of X ′ correspond to
destabilizing and exceptional components of X and are contained in the
same type of rational chains.

If, instead, E intersects two distinct irreducible components of X , it is
easy to see that, also in this case, all destabilizing and exceptional compo-
nents of X ′ correspond to destabilizing and exceptional components of X
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and are contained in the same type of rational chains. So, (X ′; q1, . . . , qn)

will be quasistable if (X ; p1, . . . , pn+1) is.
Now, since pn+1 is the only marked point in E, all irreducible compo-

nents of X ′ have the same marked points as the corresponding irreducible
components of X , so f∗L′(q1 + · · · + qn) ∼= L(p1 + · · · + pn) implies that the
multidegree of L on the irreducible components of X ′ coincides with the
multidegree of L on the corresponding irreducible components of X and
that the degree of L on E is zero. Let Z ′ be a proper subcurve of X ′ and Z
the corresponding proper subcurve of X . If Z does not intersect E or if it
intersects E in a single point, then it is immediate to see that inequality
(2.1) holds for L and Z if and only if it holds for L′ and Z ′. If, instead, Z
intersects E in two points, then g(Z ′) = g(Z) + 1, tZ′ = tZ , bLZ′ = bLZ − 1 and
kZ′ = kZ − 2, so, we get that

mZ′(d, L) = mZ(d, L)

and
MZ′(d, L′) = MZ(d, L).

Since also degZ′ L′ = degZ L, we conclude that if we are contracting a ra-
tional bridge, if L is balanced, L′ will be balanced too. Now, to conclude
that the fact that L′ is balanced implies that also L is balanced we have
to further observe that, by definition of contraction, the degree of L on E

is forced to be 0 and that the inequality (2.1) is verified on X \ E since
m
X\E

(d, L) = M
X\E

(d, L) = d = deg
X\E

L.

The following lemma is Corollary 1.5 of [K83].

Lemma 3.4.3. Let X and Y be S-schemes and f : X → Y a proper S-
morphism, whose fibers are at most one-dimensional. Let F be a coherent

sheaf on X , flat over S such that H1(f−1(y),F ⊗OY
k(y)) = (0) for each

closed point y ∈ Y . Then f∗F is S-flat, R1f∗F = 0 and, given any morphism

T → S, there is a canonical isomorphism

f∗F ⊗OS
OT

∼= (f × 1)∗(F ⊗OS
OT ).

If, moreover, F ⊗OY
k(y) is globally generated we have also that the canoni-

cal map f∗f∗F → F is surjective.
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Corollary 3.4.4. Let (π : X → S, si : S → X,L) be an (n + 1)-pointed

quasistable curve endowed with a balanced line bundle of degree d ≫ 0.
Let M be either the line bundle L(s1 + · · · + sn) or (ωX(s1 + · · · + sn+1))

3.

Then, for all m ≥ 1, we have that

(1) π∗(Mm) is S-flat;

(2) R1(π∗(M
m)) = 0;

(3) For all i ≥ 1, the natural map

αi : π∗M
i ⊗ π∗M → π∗M

i+1

is surjective;

(4) π∗π∗M
m →Mm is surjective.

Proof. (1) (2) and (4) follow immediately from Corollaries 3.3.6 with k = 0

and 3.3.5, which assert that we can apply Lemma 3.4.3 to π and M , in both
cases.

Let us now show that (3) holds. From Propositions 3.3.12 and 3.3.11,
the statement holds if S = Spec k. Since M satisfies the hypothesis of
Lemma 3.4.3, the formation of π∗ commutes with base change. So, αi is
surjective at every geometric point of S and we use Nakayama’s Lemma to
conclude that αi is surjective.

We now show that Knudsen’s main lemma also holds for quasistable
pointed curves and balanced line bundles of high degree.

Lemma 3.4.5. Let d ≫ 0 and consider a contraction f : X → X ′ as in
Definition 3.4.1. Denote by M and M ′, respectively, the line bundles L(s1 +

· · · + sn) and L′(t1 + · · · + tn). Then, for all m ≥ 1, we have that

(1) f∗(M ′)
m ∼= Mm and (M ′)m ∼= f∗(M

m);

(2) R1f∗(M
m) = 0;

(3) Riπ∗(Mm) ∼= Riπ′
∗(M

′m) for i ≥ 0.

Proof. That f∗(M ′)m is isomorphic to Mm comes from our definition of
contraction morphism. So, also f∗f∗(M ′m) is isomorphic to f∗(Mm). So,
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composing this with the canonical map from M ′m into f∗f∗(M ′m), we get
a map

M ′m → f∗(M
m).

Since the fibers of f are at most smooth rational curves and M is trivial on
them, also Mm is trivial on the fibers of f , so we can apply Lemma 3.4.3 to
it. Since the previous morphism is an isomorphism on the geometric fibers
of f and f∗(Mm) is flat over S, we conclude that it is an isomorphism over
S.

That R1f∗(M
m) = 0 follows directly from Lemma 3.4.3 while (3) follows

from (1) and the Leray spectral sequence, which is degenerate by (2).

3.4.2 Construction of the contraction functor

From now on, consider d ≫ 0. Using the contraction morphism defined
above, we will define a natural transformation from Pd,g,n+1 to Zd,g,n. Let
(π : X → S, si : S → X,L) be an (n + 1)-pointed quasistable curve with a
balanced line bundle L of relative degree d. For i ≥ 0, define

Si := π∗(L(s1 + · · · + sn)
⊗i)

Since we are considering d ≫ 0, then, by Corollary 3.4.4, R1(Si) = 0, so Si

is locally free of rank h0(L(s1 + · · · + sn)
⊗i) = i(d + n) − g + 1, for i ≥ 1.

Consider
P(S1) → S.

Again by Corollary 3.4.4, the natural map

π∗(π∗L(s1 + · · · + sn)) → L(s1 + · · · + sn)

is surjective, so we get a natural S-morphism

X
q //

π

��

P(S1)

||yyyy
yyyy

S

si

HH

Define Y := q(X), N := OP(S1)(1)|Y , and, by abuse of notation, call q the
(surjective) S-morphism from X to Y . N is an invertible sheaf over Y and
q∗N ∼= L(s1 + · · · + sn).
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Moreover, by Corollary 3.4.4 (3), we have that

Y ∼= Proj(⊕i≥0Si).

So, since all Si are flat over S (again by Corollary 3.4.4), also Y is flat
over S, so it is a projective curve over S of genus g (since the only possible
contractions are of rational components).

So, if we endow πc : Y → S with the sections ti := qsi, for 1 ≤ i ≤ n, the
extra section ∆ := qsn+1 and Lc := N(−t1 − · · · − tn) as above, we easily
conclude that q : X → Y is a contraction. Now, consider a morphism

X

π

��

β2 // X ′

π′

��
S

β1

//

si

HH

S′

s′i

UU (3.9)

of (n + 1)-pointed quasistable curves with balanced line bundles L and L′

of relative degree d in Pd,g,n and let us see that (β1, β2, β3), where β3 is the
isomorphism between L and β∗

2L
′, induces in a canonical way a morphism

in Zd,g,n between the contracted curves.
Define S′ := π′

∗L
′(s′1 + · · · + s′n). Recall that, giving an S′-morphism

from P(S1) to P(S′) is equivalent to giving a line bundle M on P(S1) and a
surjection

(β1π
c)∗(π′

∗(L
′(s′1 + · · · + s′n))) →M

where by πc we denote the natural morphism P(S1) → S.

P(S1)

πc

""D
DD

DD
DD

DD

((l
h

c _ [ V
R

X
qoo

π

��

β2 // X ′
q′ //

π′

��

P(S′)

π′c

||yy
yyy

yy
y

S
β1

//

si

HH

S′

s′i

UU

Since we are considering d ≫ 0, for s′ ∈ S′, h0((π′)−1(s′), L′(s′1 + · · · +

s′n)|(π′)−1(s′)) is constant and equal to d + n − g + 1. So, we can apply the
theorem of cohomology and base change to conclude that there is a natural
isomorphism

β∗
1π

′
∗L

′(s1 + · · · + s′n)
∼= π∗β

∗
2L

′(s′1 + · · · + s′n).
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Now, since diagram 3.9 is cartesian and commutes un the upward direction
two, the isomorphism β3 : L→ β∗

2L
′ induces

L(ss + · · · + sn) ∼= β∗
2 (L′(s′1 + · · · + s′n)),

yielding a natural isomorphism

πc∗β∗
1(π′

∗(L
′(s′1 + · · · + s′n)))

∼= πc∗(π∗(L(s1 + · · · + sn))).

Composing this with the natural surjection

πc∗(π∗L(ss + · · · + sn)) → OP(S1)(1),

we conclude that there is a canonical surjection

πc∗β∗
1(π′

∗(L
′(s′1 + · · · + s′n))) → OP(S1)(1)

defining a natural S′-morphism from P(S1) → P(S′). This morphism natu-
rally determines a morphism from Xc to X ′c, where X ′c is the image of X ′

in P(S′) via q′, inducing a natural isomorphism between Lc and the pull-
back of L′c, which is defined analogously to Lc by restricting OP(S′)(1) to
X ′c and tensorizing with minus the sections of π′c. The fact that all these
morphisms are canonical implies that this construction is compatible with
the composition of morphisms, defining a natural transformation. We have
just proved the following proposition.

Proposition 3.4.6. There is a natural transformation c from Pd,g,n+1 to
Zd,g,n given on objects by the contraction morphism defined in 3.4.1.

3.4.3 Proof of the main Theorem

We can now prove our main Theorem.

Proof. (of Theorem 3.2.5) We must show that the contraction functor is an
equivalence of categories, i. e., it is fully faithful and essentially surjective
on objects. The fact that it is full is immediate. We can also conclude easily
that it is faithful from the fact that a morphism of P1 fixing 3 distinct points
is necessarily the identity. In fact, contraction morphisms induce isomor-
phisms on the geometric fibers away from contracted components and the
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contracted components have at least 3 special points and it is enough to
use flatness to conclude.

In order to show that c is essentially surjective on objects we will use
Knudsen’s stabilization morphism (see [K83], Def. 2.3) and check that it
works also for pointed quasistable curves with balanced line bundles.

So, let π : X → S be an pointed quasistable curve, with n sections
s1, . . . , sn, an extra section ∆ and a balanced line bundle L onX , of relative
degree d. Let I be the OX -ideal defining ∆. Define the sheaf K on X via
the exact sequence

0 → OX
δ
→ I−1 ⊕OX(s1 + · · · + sn) → K → 0

where δ is the diagonal morphism, δ(t) = (t, t).
Define

Xqs := P(K).

and let p : Xqs → X be the natural morphism from Xqs to X . Theorem
2.4 of [K83] asserts that, in the case that X is a pointed stable curve, the
sections s1 . . . , sn and ∆ have unique liftings s′1, . . . , s

′
n+1 to Xqs making

Xqs → S an (n+1)-pointed stable curve and p : Xqs → X a contraction. One
checks easily that the same construction holds also if X is a quasistable
pointed curve instead of a stable one. In fact, the assertion is local on S,
the problem being the points where ∆ meets non-smooth points of the fiber
or other sections since in the other points Xqs is isomorphic to X . In the
case where ∆ meets a non-smooth point of a geometric fiber, locally Xqs

is the total transform of the blow-up of X at that point with the reduced
structure and s′n+1 is a smooth point of the exceptional component. In the
case where ∆ coincides with another section si in a geometric fiber Xs of
X , then, locally, on Xqs is the total transform of the blow-up of X at si(s),
again with the reduced structure, and s′i and s′n+1 are two distinct smooth
points of the exceptional component.

Let Lqs := p∗(L(s1 + · · · + sn))(−s′1 − · · · − s′n). Then the multidegree of
Lqs(s′1 + · · · + s′n) on a geometric fiber Xqs

s coincides with the multidegree
of L(s1 + · · · + sn) in the irreducible components of Xqs

s that correspond to
irreducible components of X and, in the possibly new rational components,
the degree is 0. So, Lqs is balanced of relative degree d.

To conclude, we must check that c(Xqs) is isomorphic to X . By defi-
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0

d d

p

∆

Figure 3.5: Stabilization of pointed quasistable curves with balanced de-
gree d line bundles.

nition, c(Xqs) is given by the image of Xqs on P(πs∗(L
qs(s′1 + · · · + s′n))).

Consider the line bundle L(s1 + · · ·+ sn) on X . By Corollary 3.4.4, there is
a natural surjection

π∗π∗(L(s1 + · · · + sn)) → L(s1 + · · · + sn).

But, since π∗(L(s1 + · · ·+sn)) is naturally isomorphic to πs∗p
∗L(s1+ · · ·+sn),

we get a natural surjection

π∗(πs∗L
qs(s′1 + · · · + s′n)) → L(s1 + · · · + sn)

so, equivalently, a morphism f from X to P(Lqs(s′1 + · · · + s′n)). Since
p∗(L(s1 + · · · + sn)) = Lqs(s′1 + · · · + s′n) induces the natural morphism
q : Xqs → P(πs∗(s

′
1 + · · · + s′n)), whose image is c(Xqs), naturally the image

of f is c(Xqs). It is easy to check that f is an isomorphism on the geo-
metric fibers, so, by flatness, we conclude that f gives an S-isomorphism
between X and c(Xqs) as pointed quasistable curves and determines an
isomorphism between the respective balanced degree d line bundles.

3.5 The forgetful morphism from Pd,g,n onto

Mg,n

Now, for each n > 0, we will construct a morphism Ψd,g,n : Pd,g,n → Mg,n

fitting in diagram (3.6) above.
Let (π : X → S, si : S → X), i = 1, . . . , n be an n-pointed quasistable

curve over S. Denote by ω the line bundle (ωX/S(s1 + · · · + sn))
3. Then,

by Corollary 3.4.4, R1(π∗ω) = 0, so it is locally free and there is an S-
morphism γ : X → P(π∗ω) making the following diagram commute.



74 3. COMPACTIFYING THE UNIVERSAL PICARD STACK OVER Mg,n

X
γ //

π

��?
??

??
??

?
P(π∗(ω))

{{vvvvvvvvv

S
si

WW (3.10)

The restriction of γ to any fiber Xs of π maps Xs to its stable model
in P(ω), which is naturally endowed with the sections γsi, for i = 1, . . . , n.
This follows from the fact that ω is very ample on the stable components of
each fiber, whereas it has degree 0 on the exceptional components. More-
over, γ(X) is flat over S. In fact, from Corollary 3.4.4, for any i ≥ 1, the
natural map

π∗ω
i ⊗ π∗ω → π∗ω

i+1

is surjective. It follows that γ(X) ∼= Proj(⊕i≥0π∗(ω
i)), which is flat over S

because each π∗(ω
i) is S-flat, again by Corollary 3.4.4.

Let us check that this yields a surjective morphism Ψd,g,n from Pd,g,n

onto Mg,n fitting in diagram (3.6) and making it commutative.
Let (π : X → S, si : S → X,L) be an (n + 1)-pointed quasistable curve

of genus g endowed with a balanced line bundle L of relative degree d over
X . It is immediate to check that, restricting ourselves to the geometric
fibers of π, the diagram is commutative since in both directions we get the
n-pointed curve which is the stable model of the initial one, after forgetting
the last point. Now, since all families are flat over S, we conclude that the
diagram is commutative.

The surjectivity of Ψd,g,n follows from the fact that Ψd,g,0 is surjective
(see [C05], Proposition 4.12) and from the commutativity of the diagram
because Φd,g,n and Πg,n are the universal morphisms onto Pd,g,n−1 and
Mg,n, respectively.

Moreover, the fibers of Ψd,g,n over a pointed curve X ′ ∈ Mg,n are the
quasistable pointed curvesX with stable modelX ′ endowed with balanced
degree d line bundles.

3.6 Further properties

Let X be an n-pointed quasistable curve over k. By applying the contrac-
tion morphism we get an (n − 1)-pointed quasistable curve with an extra
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section. If we forget about this extra section and we iterate the contraction
procedure n times, at the end we get a quasistable curve with no marked
points. Call it X0. Denote by f this morphism from X to X0.

Let ωX0
be the dualizing sheaf of X0. For each proper subcurve Z0 of

X0, the degree of ωX0
in Z0 is wZ0

= 2gZ0
− 2 + kZ0

. In particular, it has
degree 0 on exceptional components of X0. Consider now the pullback of
ωX0

via f , f∗(ωX0
). This is a line bundle on X having degree 0 on rational

bridges and on rational tails; moreover, given a proper subcurve Z of X
whose image under f is a proper subcurve Z0 of X0, f∗(ωX0

) has degree
wZ0

= wZ − tZ on Z.
So, a line bundle L of degree d on X with given balanced multidegree

on rational tails and rational bridges of X is balanced on X if and only
if L ⊗ f∗(ωX0

) is balanced on X of degree d + (2g − 2) and with the same
multidegree on rational tails and rational bridges. In fact, for each proper
subcurve Z ofX which is not contained in rational tails or rational bridges,
we have that

degZ(L⊗ f∗ωX0
) = degZL+ wZ − tZ

≤
dwZ

2g − 2
+
g − 1 − d

2g − 2
tZ − bLZ +

kZ
2

+ wZ − tZ (3.11)

=
(d+ 2g − 2)wZ + (g − 1 − d+ 2g − 2)tZ

2g − 2
− bLZ +

kZ
2

and similarly that

degZ(L ⊗ f∗ωX0
) ≥

dwZ
2g − 2

+
3g − 3 − d

2g − 2
tZ − bLZ −

kZ
2

+ wZ − tZ (3.12)

=
(d+ 2g − 2)wZ + (3g − 3 − d+ 2g − 2)tZ

2g − 2
− bLZ −

kZ
2
,

so (L⊗ f∗ωX0
)|Z satisfies inequality (3.1) if and only if L|Z does.

In conclusion, we have the following result.

Proposition 3.6.1. Let d and d′ be integers such that there exists an m ∈ Z

such that d′ = d+m(2g − 2). Then, Pd,g,n and Pd′,g,n are isomorphic.

Proof. We must show that there is an equivalence of categories between
Pd,g,n and Pd′,g,n. So, let (π : X → S, si : S → X,L), i = 1, . . . , n be an object
of Pd,g,n. Consider its image under Φd,g,0◦Φd,g,1◦· · ·◦Φd,g,n and denote it by
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(π0 : X0 → S,L0). According to 3.4.2, there is an S-morphism q0 : X → X0.
Then, according (3.11) and (3.12), L′ := L ⊗ q∗0(ωmX0/S

) is a balanced line
bundle of relative degree d′ over X , so (π : X → S, si : S → X,L′) ∈ Pd′,g,n.

It is easy to check that this defines an equivalence between Pd,g,n and
Pd′,g,n.

Proposition 3.6.2. For all n > 0, there are forgetful morphisms Φd,g,n :

Pd,g,n+1 → Pd,g,n endowed with n sections σ1
d,g,n, . . . , σ

n
d,g,n yielding Cartier

divisors ∆i
d,g,n+1, i = 1, . . . , n such that σid,g,n gives an isomorphism between

Pd,g,n and ∆i
d,g,n+1.

Proof. The statement is true if we consider Zd,g,n instead of Pd,g,n+1 (the
sections are given by the diagonals δi,n+1, for i = 1, . . . , n, as we observed
in section 3.2). In virtue of Theorem 3.2.5 the result follows if we define
σid,g,n as c−1 composed with δi,n+1 for i = 1 . . . , n.

3.6.1 Rigidified balanced Picard stacks over quasistable

curves with marked points

Analogously to the case g ≥ 2 and n = 0, each object (π : X → S, si : S →

X,L), i = 1, . . . , n, in Pd,g,n has automorphisms given by scalar multipli-
cation by an element of Γ(X,Gm) along the fibers of L leaving the curves
fixed. In other words, there is an action of BGm on Pd,g,n which is inva-
riant on the fibers of Ψd,g,n. So, Pd,g,n is not representable over Mg,n (see
[AV02], 4.4.3). Recall that the rigidification procedure, defined in [ACV01]
(see section 2.4 above), fits exactly on our set up and produces an algebraic
stack with those automorphisms removed.

Denote by Pd,g,n ( Gm the rigidification of Pd,g,n along the action of
BGm. Exactly because the action of BGm on Pd,g,n leaves Mg,n invari-
ant, the morphism Ψd,g,n descends to a morphism from Pd,g,n ( Gm onto
Mg,n, which we will denote again by Ψd,g,n, making the following diagram
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commutative.

Pd,g,n ( Gm

Ψd,g,n

%%LLLLLLLLLL
Φd,g,n

wwnnnnnnnnnnnn

Pd,g,n−1 ( Gm

Ψd,g,n−1 ''PPPPPPPPPPPP
Mg,n

Πg,nyyrrrrrrrrrr

Mg,n−1

(3.13)

So, the same argument we used to show that Ψd,g,n is universally closed
for all n > 0 with 2g − 2 + n > 1 if and only if Ψd,g,0 is universally closed
holds also in this case. Moreover, since, for g ≥ 2 and n = 0, we have that
Ψd,g,0 : [Hd/G] → Mg is proper and strongly representable if and only if
(d − g + 1, 2g − 2) = 1, we have that the same statement holds in general
for every n ≥ 0.

Proposition 3.6.3. Let g ≥ 2, n ≥ 0 and d ∈ Z. Then Pd,g,n ( Gm is a

Deligne-Mumford stack (of dimension 4g−3+n) with a proper and strongly

representable morphism onto Mg,n if and only if (d− g + 1, 2g − 2) = 1.

For curves of genus 0 and 1, propositions 3.2.8 and 3.2.11 immediately
give the following result.

Proposition 3.6.4. If g = 0 and n ≥ 3, Pd,0,n(Gm
∼= M0,n and if g = 1 and

n ≥ 1, Pd,1,n ( Gm
∼= M1,n+1. In particular, for any integer d and g = 0, 1

with 2g − 2 + n > 0, Pd,g,n ( Gm is Deligne-Mumford and Ψd,g,n is proper

and strongly representable.

Remark 3.6.5. Let d ≫ 0, g ≥ 2 and n = 0. Then, there is a canonical
map from Pd,g,0 ( Gm to P d,g (see 2.4.4 above). At least if the base field
has characteristic 0, we have that P d,g is a good moduli space for Pd,g,0

in the sense of Alper (see 2.4.4) (if (d − g + 1, 2g − 2) = 1 it is indeed a
coarse moduli space). It would be certainly interesting to investigate if it
is possible to construct good moduli spaces for Pd,g,n in the general case,
for example by investigating if our stacks are quotients stacks in general
and then applying Theorem 13.6 of [A08].
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