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Introduction

Algebraic curves represent a very wide field of research in mathematics, and there are many
possibilities about the point of view one can adopt to approach this topic. In this thesis we want
to study some properties of two particular families of curves: elliptic curves and biquadratic
curves. For this reason, we divided the thesis in two parts, one for each of these topics.

The first part begins with an introduction to the theory of elliptic curves. This is itself an
incredibly rich area of research, because of the beautiful property of elliptic curves to have
a group structure on the set of points with coordinates on a fixed field. We briefly give a
definition by using Weierstrass equations and we give a description of the main properties
of these curves depending on the field they are defined on (Q, number fields, finite fields).
Moreover, we say something about Galois representations attached to elliptic curves, a very
important tool to discover properties of them, both algebraic and analytic. Then, we write
about reduction modulo a prime number p of an elliptic curve E defined over Q. This is an
interesting thing in itself, because, if p does not divide the discriminant of the curve, we have
a group homomorphism. Moreover, if we fix F and let the prime p vary in the set of prime
numbers, we can ask very deep and interesting questions about the reduction modulo p. Most
of these questions are about the density of primes for which a certain property holds in the
reduction mod p of the elliptic curve (we denote the reduction of F as £ mod p. One of these
questions, called the Lang-Trotter conjecture for Primitive Points (cf. [LT77]), comes from a
classical analytic number theoretical question about reductions of rational numbers, namely
the Artin primitive root conjecture (cf. [Hoo67]). The main tool to attack this kind of problems
is the Chebotarev Density Theorem, of which we write an effective version of Serre. At the end
of the first chapter we give details about the paper of 1977 in which Lang and Trotter gave the
statement of their conjecture.

In the second chapter we study a strange, but not so rare, situation when a point on an
elliptic curve is “very far” from being primitive. A point P on an elliptic curve is primitive
modulo p if P mod p generates the group E(F,). The aim of the Lang-Trotter conjecture is to
give a density of the primes for which a fixed P in E(Q) is primitive modulo p. Going in some
sense in the opposite direction, we give the definition of a never-primitive point as a point P
that is primitive modulo p only for a finite set of primes p. We give some necessary conditions
for the presence of these points on a given elliptic curve and we give a non trivial example
(cf. Section where all points on an elliptic curve of positive rank are never-primitive. These
conditions involve a precise structure of the Galois representations at a fixed prime p, both for
curves with trivial (cf. Proposition and non trivial (cf. Proposition torsion in the
group of rational points. Finally, in Section [2.5] we give a splitting condition on a polynomial
depending on E, P and a prime p, to assure the fact that P is a never-primitive point.



In the third chapter we consider a problem that is weaker than the one in the Lang-Trotter
conjecture. It is essentially the content of the submitted paper [Mell5]. Given an elliptic curve
E over Q of rank at least » > 0, and a free subgroup I" of E(Q) of rank exactly r, we want to find
the density of primes (of good reduction for E) for which E(F,)/I’ mod p is a cyclic group. This
is the content of Theorem [3.1.1] For the proof of this result, we use Chebotarev Density Theorem
on some special extensions of QQ, that are the equivalent of Kummer extensions, in the setting
of elliptic curves. The splitting of a rational prime p in such extensions says something very
precise about the structure of F(F,)/I'’ mod p, from which we can deduce a good asymptotic
formula for the density. At the end of this chapter we give a list of the possible directions of
research one can take starting from this problem about cyclicity of quotients of reductions.

The second part is an extract of a joint work (cf. [LMMI5]) with Elisa Lorenzo Garcia,
postdoctoral researcher at the University of Leiden, and Piermarco Milione, graduate student
at the University of Barcelona.

The big area of research in which this work can be placed is Arithmetic Statistics, or more
precisely Statistics about Curves over Finite Fields. The aim of our work is to extend, to families
of biquadratic curves, some statistics that were already done for other families (i.e. hyperelliptic
curves, cyclic trigonal curves and others). The interest is in the fact that we consider curves
that are non-cyclic covers of the projective line, since this can be the starting point for future
studies for general abelian covers.

The fourth chapter is dedicated to the introduction of notions and methods we need to do
statistics on families of curves over finite fields. We start with the definition of zeta functions
over function fields (i.e. finite extensions of IF,(¢), with IF, finite field) starting with the example
when the function field is F,(t). We see that, as in the classical case of Riemann zeta function,
we can write the zeta function of F,(¢) as an Euler product, in which the role of primes is
played by irreducible polynomials in F,[t]. There is a whole dictionary between number fields
and function fields, of which we give also a brief description (cf. Section . Then, we see that
there is an equivalence of categories between smooth curves over F, and finite extensions of F,(t),
that allows one to define a zeta function attached to a curve. The most important properties
of zeta functions of curves over finite fields are expressed by Weil Theorem. Thanks to these
properties we can do statistics about the number of points of curves in a given family looking
at traces of matrices called Frobenius classes. We conclude the chapter with the exposition of
some questions one can ask about families of curves, that are the questions we will answer for
biquadratic curves.

In the fifth chapter, we first define a biquadratic curve (cf. Definition and we describe
the family of biquadratic curves of fixed genus. The main result is about a subfamily, that
algebraic geometers call connected component of the coarse muduli space of biquadratic curves
of genus g. We use some methods developed, among others, in [KR09] and [BDFLI0] respectively
for hyperelliptic curves and cyclic [-covers of the projective line. We prove that the number of
points of curves in such a subfamily can be written, for the limit of ¢ that tends to infinity,
as a sum of ¢ + 1 independent and identically distributed random variables. This is exactly
the content of Theorem Nowadays, we are trying to prove a version of this theorem for
r-quadratic curves, namely curves whose function field has Galois group (Z/2Z)" over F,(t).
We have a good description of the family, and we found an interesting generalization in this
case (cf. [LMMI5] Theorem 6.6]).
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In the sixth and last chapter, we want to compute the average of the number of points on
biquadratic curves in a certain family. A biquadratic curve has an affine model that is given by
a system of two equations y? = h;(t) for i = 1,2 and we can see that, up to a certain change
of generators of the extension, one of the two polynomials has even degree. So we have to
prove a result that Rudnick gave for hyperelliptic curves defined by polynomial of odd degree
(cf. [Rud10]), in the case of polynomials of even degree. More precisely, we compute the average
of (powers of) traces of the Frobenius classes in the family of hyperelliptic curves with affine
model given by y* = h(t), with h(t) polynomial of degree 2¢g + 2 (g is the genus of the curves),
at the limit ¢ — oo. Even if we use the methods of Rudnick, some intermediate results (like
for example Proposition are quite different, and so this is an interesting result in itself,
contained in Theorem [6.1.1} The next step is the application of this result to a certain family
of biquadratic curves, different from the one in Chapter 4, that is chosen to let the results for
hyperellitpic curves be applicable. We do not arrive to a final version of an analogous theorem
for biquadratic curves, but we strongly believe that if we can give an estimate for a certain sum
of characters (cf. Section [6.7), we can finally have the desired result.
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Notations

We give a list of notations we will use in the thesis. We denote with Z the ring of integers and
with Q, R, C respectively the field of rational, real and complex numbers. [F, is the finite field
with ¢ elements, where ¢ is a power of a prime p. Given any field K, we denote with K an
algebraic closure of it.

For two real functions f(z), g(z), we write f(z) = O(g(x)) (or equivalently f(z) « g(x)) if
and only if there exists a constant C' > 0 such that |f(z)| < Cg(z) for all values of x under
consideration (generally we use it for x — o0).

Since the two parts of the thesis are mutually independent, there are some symbols used
in different ways. Anyway, there is no risk of ambiguity, as the two contexts are very different.
For this reason, we give a more specific description of the notations we are going to use.

Part

Even if the symbol K is used in general to denote a field, sometimes in we use it to denote a
number field. We always specify when this is the case. If so, we denote with O the ring of
integers of K, with p, q prime ideals of Ok, and with k, (resp. k) the residue field Ok /p (resp.

Ok/q).

Part 1

The letter p denotes a prime integer greater than 2, ¢ = p” is a positive power of p, and
k := F,(t) is the field of rational functions over IF,. We denote with (f,g) greatest common
divisor of the polynomials f, g, with lc(f) the leading coefficient of the polynomial f, and fis
the polynomial obtained inverting the order of the coefficients of f. Moreover, K is generally a
finite Galois extension of k.
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Primitive Points on Elliptic Curves






Chapter 1

Elliptic Curves and the Lang-Trotter
conjecture

1.1 Definition and the Group Law

The first part of this thesis is dedicated to results about points on Elliptic Curves with special
properties. So, in this first chapter, we introduce these objects and we recall their properties,
needed to prove our results. The main bibliographical reference is Silverman [Sil08], but we will
also mention results from Washington [Was08], Silverman [Sil94], Serre [Ser72] and [Ser89).

Definition 1.1.1. An Elliptic Curve E over a field K is the projective locus (in P?(K)) of the
(projectification of the) equation

Y24+ a1 XY +a3Y = X3+ as X? + au X + ag

with ay, as, as, as, ag € K and with the condition that the discriminant Ap = Ag(ay, az, as, ay, ag) #
0 in K. This is equivalent to say that the curve is smooth. We will denote the point at infinity
[0:1:0]as O.

The equation in is called a Weierstrass equation. If char(K') # 2,3 it can be reduced
to the easier form
E:Y?’=X"+aX+b
where a,b € K are such that A = —16(4a® + 27b?) is nonzero. For properties of Weierstrass

equations see Section III.1 of [Sil08§].

Proposition 1.1.2 (Section II1.2 [Sil08]). The set E(K) of K rational points on E has a
structure of abelian group (E(K),+), with neutral element O given by the following geometric
rule: the sum of three points equals O if and only if the points belong to the same line. As the
group law is given by this geometric rule, there are rational functions defining it.

We will need the following notion:

Definition 1.1.3 (Section I11.4 [Sil08]). Let Ej, Ey be two elliptic curves defined over a field
K. An isogeny from E; to Fs is a morphism (of algebraic curves) over K, ¢ : E; — FE, that
satisfies p(O) = O. An isogeny from E to itself is called an endomorphism.
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Omne can see that the set Endg(F) of endomorphisms of E over K is in fact a ring, with
operations defined by

(0 + ) (P) = ¢(P) +¢(P)
(0P)(P) = ¢(v(P))

1.2 Points of m-torsion

There are some natural maps that can be defined on E(K), namely the multiplication by n
maps, where n is a positive integer. If P is a point in E(K), we will denote with [n]P (or
sometimes nP) the multiplication by n of P. These maps are endomorphisms of E(K). We can
also define multiplications by negative integers, just defining [—1]P = —P, where —P is the
inverse of P in the group law of F.

Given a positive integer m, we denote with E[m] the subgroup of E(K) annihilated by m.
In other words, E[m] is the kernel of the endomorphism [m] : E(K) — E(K) that sends P to
[m]P. The group E[m] is called the group of m-torsion points of E (also known as m-division
points). The following theorem gives the structure of E[m] for elliptic curves defined over fields

of any characteristic.

Theorem 1.2.1 (Theorem 3.2 [Was08]). Let E be an elliptic curve over a field K and let m
be a positive integer. Let C,, be the cyclic group of order m. If the characteristic of K does not
divide m, or is 0, then

Elm] ~ C,, ®C,,.

If the characteristic of K is p > 0 and p | m, write m = p"m’ with ptm'. Then
E[m] ~ Cpy @ Cyyy or E[m] =~ Cyy @ C.

In the case of elliptic curves defined over Q, the set of endomorphisms [m], with m € Z, is
a ring isomorphic to Z. Then Endg(E) contains Z as a subring.

If Endg(E) = Z, we say that E is without complex multiplication (non-CM). If Endg(E) 2
Z, then E is with complex multiplication (CM) and Endg(E) is an order in an imaginary
quadratic field K = Q(v/—D), called the CM field of E. For an introduction to the theory of
Complex Multiplication we refer the reader to Chapter IT and Section A.3 of [Sil194].

1.3 Elliptic Curves over Number Fields

If K is a number field (i.e. a finite extension of Q), we have an important result about the
group structure of F(K).

Theorem 1.3.1 (Mordell-Weil, [Sil08] Chapter VIII). Let E be an elliptic curve over a number
field K. Then, the group E(K) is finitely generated, that is

E(K)~Z' ®T

where r is an integer, called the arithmetic rank of E over K, and T is a finite group called the
torsion subgroup of E(K).



In 1977, Mazur gave a list of groups that can appear instead of T, in the case of K = Q.

Theorem 1.3.2 ([Maz77]). Let E be an elliptic curve defined over Q. If C,, denotes the cyclic
group of order n, then the possible torsion subgroups of E(Q) are C,, with 1 < n < 10, or Cis
or either the direct sums of Coy @ Cy,, with 1 < m < 4.

1.4 Elliptic Curves over Finite Fields

It is an obvious observation that, if an elliptic curve E is defined over a finite field F,, with
q a power of a prime p, then the group E(F,) is finite. In this section we will recall the main
properties of this group.

Theorem 1.4.1 (Hasse, Section V.1 [Sil08]). If E/F, is an elliptic curve defined over a finite
field, then
| #E(F,) —q—1] <2/
Hasse’s theorem can be interpreted as the Riemann Hypothesis for the function field asso-
ciated with the given elliptic curve, in a sense that will be explained in Part [[T] (Section of
this thesis.

We can describe more precisely the group structure of E(F,) in the following result, that is
a consequence of the structure of torsion groups E|[m].

Proposition 1.4.2 (Theorem 4.1 [Was08|). Let E be an elliptic curve defined over F,. Then,
dn, k € N such that

Hence E(F,) is a finite group of rank at most 2 (with the notation of the previous proposition,
E(F,) is cyclic if and only if n = 1). Moreover, by using the Hasse bound given in Theorem

, we havethatq+1—2\/§<n2k<q+1+2\/§.
Given a curve E over a finite field Fy, an important endomorphism is the so called Frobenius

endomorphism
¢g: E—E

(z,y) = (29,y7).
This endomorphism has many properties and is crucial for the proof of Hasse’s Theorem. In

fact, we have that
E(F,) = ker(1 —¢,)

and (see Theorem 2.3.1 in Chapter V of [Sil08]) that, if we write
a=q+1—#E(F,),
then the ¢-th Frobenius endomorphism satisfies
¢? — ad, + ¢ =0 in Endp, (E).

Moreover, let o, 3 € C be the roots of the polynomial 7% — a1 + g. Then o and 3 are complex
conjugates satisfying |a| = [#] = /g and for every n > 1,

#E[Fp ) =¢"+1—a" — "



1.5 (salois Representations attached to Elliptic Curves

Given an elliptic curve E defined over Q, we know that E[m] ~ C,, @ C,, for every positive
integer m.

We can define Q(E[m]), adjoining to Q all the z and y-coordinates of the m-division points
of E. This is called the m-division field of E. It can be proved (Corollary 3.11 of [Was08]) that

Q(¢m) = Q(E[m]),

where (,, is an m-th primitive root of 1.
Moreover, we can associate to E[m] a Galois representation

Dy Gal(Q(E[M]/Q) — GLy(Z/mZ),

which can be seen to be injective. The question about the surjectivity of this representation
leads to one of the most relevant differences between CM and non-CM elliptic curves. In fact,
for a CM elliptic curve E, ®,, is not surjective for any integer m > 2 (proved by Deuring in
[Deudl], 1941) and in this case we have

where ¢ is the Euler totient function. The case of non-CM elliptic curves is quite different. It was
studied by Serre in 1972 (see [Ser72]). Serre showed that, if £ has no complex multiplication,
there exists a positive integer A(F), depending on E, such that ®,, is surjective for any integer
m that is coprime to A(E). Then, in the non-CM case, for such m we have

(el @) = (CLaz/mz)| ' T] (1- 1) (1- )
qlm
where ¢ are prime divisors of m.

Now, we want to give a brief description of what can happen when ®,, is not surjective,
in particular when m = p is prime. Essentially, we want to see which are the subgroups of
GLy(F,). This is the content of Section 2 of [Ser72]. A good rewriting of this paper of Serre can
be found in [Dos10].

Suppose that V' is a vector space of dimension 2 over the field F, = Z/pZ. We have GL(V') =
GLy(F,). Here are some of the possible subgroups of GLy(F,):

Cartan subgroups

Given two different lines in V', if C'is the subgroup in GL(V') of all the elements for which those
lines are stable, we call such group a split Cartan subgroup. Choosing a convenient basis of V/,

C' can be written in the form
+ 0
)
hence it is abelian of order (p — 1)2.
Let k < End(V) be a field with p? elements. We call the subgroup k* of GL(V) a non-split
Cartan subgroup. It is a cyclic group of order p? — 1.

6



Borel subgroups

Given one line in V, if B is the subgroup of GL(V') of all the elements for which that line is
stable, we call such group a full Borel subgroup of GL(V'). Choosing a convenient basis, the
elements of B can be written in the form

G 2)

and so B is of order p(p — 1)2. There are also proper subgroups of B. In the future we will
denote with pB.a.b the subgroup of B in GL.(F,) generated by the matrices

(6 )G ) )

where 7 is the least positive integer that generates Fy. So, for example, pB.1.r is the subgroup
of GLy(IF,) whose elements can be written in the form

63

and then it has cardinality (p — 1)p.

Other subgroups

There are other groups occurring as subgroups of GLy(F,,), like normalizers of Cartan subgroups
or other exceptional groups, but their treatment is not necessary to the development of this
thesis.

We will need these notions in [2| where the presence of a Borel subgroup or a split Cartan
subgroup as images of the Galois Representation at some prime will be related to the presence
of points with a particular behavior.

1.6 Reduction modulo p of Elliptic Curves

Given an elliptic curve E defined over Q by a Weierstrass equation, a good way to understand
better the nature of the group E(Q) is to study reductions of £ modulo primes. The reduction
of F modulo a prime p is given by the equation

E: Y’ 4+ XY +a3Y = X3 +a.X? + a4 X +a¢ mod p.

If we want E to be an elliptic curve over F,, p must not divide the discriminant Ag of E.
Such a prime is called prime of good reduction. It is an interesting question to ask what are
the structure and the properties of the group F(F,) as p varies. If there is ambiguity on which
prime the curve is reduced, we will use the notation F, instead of E.

As E mod p is an elliptic curve over F,, it will have all the properties described in Section

[[.4] In particular )
E(F,) ~ Z/d, 7. ® 7/ de, 7.

7



with d,, e, uniquely determined positive integers.

For details about all the problems arising from reduction of elliptic curves modulo p, we
refer the reader to the surveys of A.C. Cojocaru [Coj04] and E. Kowalski [Kow06].

In a more general situation, if F is defined over a number field K and p is a prime (ideal)
of the ring of integers Ok of K, we can define, in a similar way, the reduction £ modulo p. If
pt(Ag), then F is an elliptic curve over k,, that is the residue field of Ok at p.

1.6.1 Chebotarev Density Theorem

Let E be an elliptic curve over Q. All the primes p not dividing the discriminant Ag of E are
primes of good reduction, so one can ask the density of primes ¢ for which a certain property
is satisfied in E(F,). We will introduce in the next section a problem of this kind.

One of the most powerful tool to give an answer to these questions is the Chebotarev Density
Theorem (CDT). A good reference to understand the history, context and original proof of this
result is [LS96].

Before stating the theorem, we recall the definition of Artin symbol (Chapter X [Lan94]).
Let K/Q be a finite Galois extension and let p be prime, unramified in K, and let p be a
prime of K above p. The Frobenius element o, € Gal(K/Q) is the automorphism that has the
following property:

Ny

mod p Va e Ok.

op(a) = a
It can also be denoted by Frob, and it is essentially the lift to O of the Frobenius automorphism
of Og/p =: ky. The Artin symbol
o

p
is the conjugation class of all such o,.

Theorem 1.6.1 (Chebotarev Density Theorem). If K/Q is a finite Galois extension and C
Gal(K/Q) is a union of conjugation classes of(] = Gal(K/Q), then the density of primes p

such that the Artin symbol [KT{Q] c C equals % #g

The Chebotarev Density Theorem has also a quantitative version. The first one was proved
by Lagarias and Odlyzko in [LOTT7]. Here we give a version that can be found in [Ser81] and
IMIMSSS).

Theorem 1.6.2 (Effective CDT under GRH). Let
K/Q
Teig(x) = # {p <x: [%] c C} .

Then, assuming that the Dedekind zeta function of K satisfies the Generalized Riemann Hy-
pothesis (GRH),

reole) = 7o [ o + O (VECYalogladt )

where M 1s the product of primes numbers that ramify in K/Q.

We will use this version of CDT to prove the main theorem of Chapter [3]
An analogue version, independent on the Generalized Riemann Hypothesis and then with
a weaker error term, can be found in [Ser81].



1.7 The paper of Lang and Trotter

One problem about reductions of an elliptic curve modulo p comes from a classical problem,
known today as Artin’s conjecture on primitive roots, that predicts the density of primes p for
which a given integer a € Z (such that a is not a perfect square and different from +1) is a
primitive root modulo p, i.e. the reduction of a modulo p generates the group (Z/pZ)*. This
question can be translated in the language of elliptic curve theory in the following way:

Problem 1.7.1. Let E be an elliptic curve defined over Q, with arithmetic rank > 1. Let
P e E(Q) a point of infinite order. We want to know the asymptotic behavior of

#{p<z|ptAp EF,) =<(P modp)}
as r — O0.

In other words, this problems asks the density of primes p for which P is a primitive point
modulo p, in the sense given by the following definition.

Definition 1.7.2. Let E be an elliptic curve over Q and p a prime number. A point P € E(Q)
is said to be a primitive point modulo p if E(F,) = (P mod p).

This problem is called the Lang-Trotter conjecture for Primitive Points on Elliptic Curves,
from the names of the mathematicians who formulated it for the first time in 1977 ([LT77]).
The main difference with the Artin’s primitive root conjecture is that we even don’t know a
priori whether the group E(F,) is cyclic or not, while we know that (Z/pZ)* is always cyclic.
There are several results about cyclicity (see for example [CMO04]), but we will focus principally
on results related to the Lang-Trotter conjecture.

The conjecture, as stated in [LT77] can be synthesized in the following

Conjecture 1.7.3 (Lang-Trotter). Let E/Q be an elliptic curve without CM, and P € E(Q)
be a point of infinite order. Let Ag be the discriminant of E. Then Jag p € QY such that

#{p<x:pTAE,E(FP)=<Pmodp>}N 1_[(1_22/3_5_1 )

() aerl (—1)2(0+1)

We can observe that there are some trivial cases in which ag p = 0. For example this is the
case when E[2] < E(Q) or when P = kQ, @ € E(Q) and d = ged(k, # Tor(E(Q))) > 1, since

we have ord P | @.
Now, we want to describe the density we are looking for, introducing some tools that are
necessary in a Chebotarev-based proof.

First, let m € N and set
—P ={Qe E(Q):mQ = P}.

The cardinality of thls set is m? because —P is the fiber of P in the endomorphism [m]: E — E,
that has degree m?. We can see in [BSSQ9] IT1.4 that the multiplication by m can be defined
via some rational functions 6,,, 1., w,,, defined by induction, in the following way:

_ (Oml®) wm(z,y) € Q(z) x amx +a x
e = (955, 220 ) € Qo) x 29+ + a0)Qo)
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Since we want to find all ) such that m@) = P, we have to find the roots z¢ of the polynomial

O (1) — 2ty (),

where z¢, zp refer to the first coordinates of ) and P, respectively. This polynomial is known
to be separable and of degree m?.
If we fix Qg € %P, then

1
—P = Q(] + E [m]
m
is a Z/mZ-affine space of dimension 2. So we can consider the group of affine transformations

Aff (L P) := Aut(E[m]) x E[m].

L
If 0 = (v,7) € Aff(£P), then o acts on Q = Qo + R, with R € E[m], as
(v,7): Qo+ R— Qo+~YR+T.
Now let’s introduce

G, = Gal (Q(X P)/Q)

where Q(%P) is the extension of QQ obtained adjoining to Q all the x and y coordinates of the
points Q € =P. Q(L P) is the splitting field of 6,, — zptp2,(x), then it’s a finite Galois extension
of Q.

One easy thing to prove is that Q(£P) o Q(E[m]). In fact, if Q1,Qs € =P, and Q; # Q>
then O # Q1 — Q2 € E[m].

At this point we can look at

T, = Gal (Q(£P)/Q(E[m]))

that is the subgroup of Galois translations in GG,. This name comes from the fact that if 7 € T,,,,

R, = T(QO) - QD7 then

1 1
TI—PHEP,Q:R‘FQO'_’Q"FRM

m

so we can deduce the inclusion T,,, — E[m],7 — R;.

Since Q(E[m]) is a normal extension of QQ, we have that T, is a normal subgroup of G,,
and G,,/T,, = Gal(Q(E[m])/Q). Finally, from a result of Bashmakov ([Bas70]), we know that
IB(F) € N such that, if gcd(B(E), m) = 1, then

T, = E|m].
Now we can describe the action of another subroup of G,,, namely

Hy, = Gal(Q(7:P)/Q(Qy))-
We can easily see that H,, T, = {id1p}, in fact Q(=P) = Q(E[m], Qo). Morecover, we have

H,, = Gal(Q(E[m])/Q)

10



because, if v € H,, and R € E[m], then

1 1
7;—P—>—P,Q=Q0+RHQ0+7(R)
m m

Hence v — ~Yg(g[m]) is an isomorphism.
We can deduce the precise structure of GG, from all the properties we saw. In fact

G = Hp x Ty < Aut(E[m]) x E[m] = GLy(Z/mZ) x 7/mZ?
where the first equality is a consequence of basic Galois Theory. The action of G,, on %P is
c=(77): Q> Qo+ v(Q—Q)+T

and from the results of Bashmakov ([Bas70]) and Serre ([Ser72]) we can conclude that JA(FE)
such that if ged(m, A(E)) = 1, then

Gm = GLo(Z/mZ) w Z/mZ?.

As a first step towards the application of Chebotarev Density Theorem in this context, let’s
consider Gy, with ¢ a prime number. Let p t (A, and set 0, = (7,,7,) € G¢ be a Frobenius
element. If ¢ | #F(F,), E(F,) has an element of order . Thus, ~, has 1 as eigenvalue. So, there
are two cases:

o if v, = idpy = E[(] < E(F,). So (| [E(F,) : (P mod p)]

o If v, # idgy has 1 as eigenvalue, then

(] [E(F,) :(Pmodp)] <= o,fixesQe %P
But o = (7,7)(Q) = Q if and only if Q@ = Qo +7(Q — Qo) + 7, that is 7 = (y —idg[g)(Qo — Q).
Thus, we define

~ has eigenvalue 1 and either
Spi=13 (7,7) e Gy v =idgpgor
v # idE[g] and T € Im(7 — idE[g])

and we notice that ¢ | [E(F,) : (P mod p)] < 0, € S,.
More generally, if m is square free, then the composite

[[eGP) =Q(P).
¢
This construction allows one to define
S 1= {cr € G, : VU | m, 0|g1p) € Sg}.

Notice that, as the previous easier case, m | [E(F,) : (P mod p)] < 0, € Sp,.
Finally, we have all the ingredients to state the following
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Theorem 1.7.4 (Chebotarev Density Theorem). Let E be an elliptic curve defined over Q of
rank at least 1. Let P € E(Q) a point of infinite order. Then

Sm
##Gmw(:c).

#p <z ptmApm|[E(F,): (P modpl} ~

So, one needs a final (big) step to arrive to the

Conjecture 1.7.5 (Lang Trotter Primitive Points Conjecture). With the same notation as
before,
- ##5m
#{p<a: pfAp E(F,) =(Pmodp)} ~ ) u(m) 2o @)

meN

The first thing to remark is the main difficulty to prove this conjecture, that is the size of
Sm. This object, in fact, is too big to extend the proof Hooley gave for Artin primitive root
congecture in his paper of 1967 (see [Hoo67]).

The first (and biggest until now) step in solving this problem was made by R. Gupta and
M. Ram Murty in 1986 [GMS86]. Under GRH, they proved the Lang-Trotter conjecture for CM
elliptic curves.
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Chapter 2

Never-primitive points on Elliptic
Curves

As a first step to understand the nature of primitive points on elliptic curves, we started doing
some calculations with Pari/GP to calculate some densities in an empiric way. It turned out
that there are some curves E for which a given rational point P of infinite order such that
E(F,) %2 (P mod p) for any prime p of good reduction. It’s a very interesting phenomenon
and we are going to discover it by giving two preliminary examples.

2.1 A curve with a 2-torsion rational point and no prim-
itive points

Let E : y?> + 2y = 23 — x be the curve with conductor 65, called 65.a1 in Cremona Tables
[Cre06]. This curve has rank 1 and torsion 17" =~ Z/2Z. More explicitly:

B(Q) = ((1,0)) x {(0,0)) = Z x Z/2L.
By an easy computation, we can find that

E[2] = {O, (0,0), (_1 - (gl)jﬁ’ — (_1)6%1\/@) }j=1 >

with O the point at infinity. Then, Q(E [2]) = Q(+/65).

Since we have the rational 2-torsion point (0, 0), we know that #E(IF,) is divisible by 2 for
every prime p, since the reduction of (0,0) modulo p is always different from O. We will see
that the order of the reduction of P = (1,0) modulo p is always a divisor of #E(F,)/2, then
(1,0) can never be primitive.

If we want to solve the equation 2() = P we obtain, in particular, the two solutions

1+v5 =3+4+5 3+413 5++/13
(U T P ()

Using quadratic symbols for primes p of good reduction for E (p # 5,13), we can see that:
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o if (%) =1, then E(F,) is not cyclic;

e in the case (%5) = —1, i.e. E(F,) is cyclic, if (g) = —1, we have by multiplicativity of
symbols that (%) = 1, so the relation 2}y = P holds in E(F,);

o if (%) = —1 and (1;3) = —1, in the same way we deduce that 2¢); = P holds in E(F,).

So we can deduce that P is not primitive for any prime of good reduction for F.

A nice thing we noticed from calculations on Pari/GP is that if we take the point P’ =
(1,0) + (0,0) = (—1,1), that also generates a subroup of index 2 of F(Q), then this point is
primitive for "many” primes. So, it’s evident that for such p’ we cannot repeat an argument
similar to what we said about P.

Another curious fact is that the curve 65.a2, with conductor 65 and then isogenous to
65.al, has not a point like P. For this curve both generators of the free part of the Mordell-
Weil group generates the reduction of the curve modulo p for “many” primes p. In the next
sections we will try to understand why this can happen.

2.2 A curve of rank 1 with no rational torsion points and
no primitive points

At a first sight of this phenomenon, one can think that it is necessary to have at least one
rational torsion point to find a point on the curve that always fails to be primitive. We will see
in this second example that this is not true.

Let E : y?> +y = 2° — 38342 — 91375 be the curve with conductor equal to 189, called 189.b1
on Cremona Tables [Cre06]. We know that it has no torsion and is of rank 1 and that:

143 3
E ={{—-——=]=Z.
@=<(-2-3)
Moreover, from the same Cremona Tables, we obtain that the Galois representation on torsion

points is surjective for every prime different from 3, for which the image of Galois is the subgroub
of type B.1.2 and this means that:

* *

Gal(Q(FE[3])/Q) = {(O 1> € GLQ(Fg)} ~ Ss.

We can deduce that 3 | #E(F,) for every prime p since there exists a curve isogenous to E
(that has the same number of points modulo every prime) with a 3-torsion rational point, but
we will prove it directly.

We need to prove that for every prime p ¢ {2,3,7}, one of the following two conditions
holds:

e E[3] < E(F,) or

o (—%3, —%) = 3Q, for some Q) € E(F,).

From this we can say that either E(F,) is not cyclic or the order of (=12, —2) is a divisor
of #E(F,)/3.
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Computing F|[3]

The 3-division polynomial can be computed using the formulas at page 39 of the book of Blake,
Seroussi and Smart [BSS99]. It is:
Y3(x) = 3(36 + )(—136107 — 63722 — 3627 + z%).
We can easily compute 3-torsion from it:
E[3] = {oo, (=36, —1 + 3¢), (—36,—1 + 3¢*)} u
{ (3(4 +4¢7V/63 + ¢P/632), % + 9(% +8¢7V63 + 2@\3/@)) }
j=1,2,3

where ( = % Looking at cubic residues mod p we can easily deduce from the coordinates of
the 3-torsion points that 3|#E(F,) for every prime p of good reduction.

Computing {Q € £(Q) : 3Q = (-1, -})}

Using the formula

o Us(w)  ws(w,y)
13l y) = (<w3<x>>2’ <¢3<x,y>>3) ’

we obtain that the coordinates (z,y) of points @ € F(Q) such that 3Q = (=132, —2) satisfy
hoie) M3 w(ey) 3

(¥3(2))? 4 (Us(z,9)? 8
but this is:

2((x 4 30)* + 3%7)((x + 42)% — 3°)(190404 + 153362 + 42322 + 42%) = 0
SO7 we have the fOHOWng 9 points {Qla Q27 Q?n Q47 QS: Q67 Q77 Q87 QQ} :
3(—14 + ¢7/37),2(20 — 27¢¥ /3 + 951'\3/?)) if =123

Q; = { (=310 + ¢V/7),31 +18GYT - 18V ifj = 4,5.6;
1100 Y210C VI 51100 Yol s Y12 ) if j =7,8,9.

?

The subfields of Q (E[3], 1(—1, —2))
* Q(E[3]) = Q (¢ V63);
Q(¢V3?) iy =123
* Q@) =1Q(¢V7) ifj=456;
Q(¢V21) ifj=71.809;
« Q(EB]5(=45% 1) = QG V3.V7)

Then Q (E[3], 4(—%2, —2)) has dimension 18 on Q and its Galois group is Cy x C3. Thus

the lattice of subfields is easy to draw. The only quadratic subfield is Q((), because the only
subroup of Cy x C% of index 2 is C%. The cubic subfields are listed above, and so on.
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Proof that (—%, —%) is never primitive

The case p = 2 mod 3 is simple. In this case we have v/63, v/32, ¥/7, /21 € Fp,
1 1
E[3] n E(F,) = {(3(4 +43/63 + V/632), 5 £ 9(; - 63 + 8V/63 + 2V/632)), oo}
and {Qs3, Qs, Qo} < E(F)).

This implies that (-2, —2) has order a divisor of #E(F,)/3; so it cannot be primitive.

Hence, we can assume that p = 1 mod 3, in which case we can think at ¢ € F,,, uz = {1,{,(*} <
F, and use cubic symbols. Then

E[3] n E(F,) 2 {c0, (=36, -1+ 3¢), (=36, -1 + 3¢*)} .
Furthermore E[3] 2 E(F,) if and only if v/63 € F, and this is equivalent to

[@] =637 = 1(modp).
D 13

Now, let us assume that [%} = ( (the case [%3] = (? is completely analogous). If [%] =1,

3 3 3
then {Q47 Q57 Qﬁ} - E(]Fp)7
2

L o [ 8] [2], 1+ 000000 < 5

T = 2 22| _|63| |7 —
If [pL ¢?, then [ 1 L [pL [pL 1 e {Qr, Qs, Qo) < E(F,).

We conclude that in every case the order of (—%2,—3) is a divisor of #E(F,)/3. hence it
cannot be primitive.

2.3 Definition of Never-primitive Point
In the first two sections of this chapter we saw that in some cases, for an elliptic curve E defined
over Q of rank 1 and P € E(Q)\ Tors(E(Q))

E(F,) # (P mod q)

for all the primes gq.
In order to describe these points we give a definition that is slightly more general.

Definition 2.3.1 (Never—primitive Point). Let E be an elliptic curve defined over a number
field K and P € E(K) be a point of infinite order. Let k,; denote the residue field of a prime
ideal q of the ring of integers of K. We say that P is Never—primitive over K if
E(k"I) 7 <P mod q>7
for all but finitely many primes q.
For future computations we also need the notion of good prime.

Definition 2.3.2. Let E be an elliptic curve defined over a number field K and P be a point
in E(K). A prime q of K is called good (for E and P) if q does not divide (p), if E has good
reduction modulo q and if P is not trivial in E(k,).

It is easy to see that for P € E(K) almost all primes of K are good.
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2.4 Conditions for existence of Never-primitive points

From some calculations we did with Pari/GP, it seems that for any elliptic curve E over Q
with £(Q) = Z = (P) , if P is never primitive modulo any prime ¢, then the image of Galois
representation of a certain prime p inside GLo(F,) is of the type p B.1.r, that is the subgroup
in GLo(F,) that can be written in the form

(1)

with a € F} and b € [F,,. This is a Borel subgroup of G'Ly(F,) and has order p(p — 1).
We notice that a sufficient condition for the never-primitivity of P is the following:

3p prime s.t. p| [E(F,) : (P mod g)| for every prime g of good reduction. (2.1)

2.4.1 Elliptic Curves with trivial torsion

Now we see what condition implies on an elliptic curve over Q with trivial torsion group.
As we will use just the fact that F(Q) is free and finitely generated, we can prove our result
for curves defined over a number field K. From this, the result for Q automatically follows.

Let E be an elliptic curve over a number field K and P € E(K) be a point of infinite order.
Suppose that E(K) is torsion-free and that P is not divisible by p in E(K). If

V={Qe E(K): [p]Q e(P)}/{P)
then V is a 3-dimensional representation of Gal(Q/Q). Let G be the image of Gal(Q/Q) in
GL3(FF,). There is an exact sequence of G-modules

0— E[p] > V — Z/pZ — 0. (2.2)

Looking at this exact sequence we can deduce some interesting properties of the curves we are
studying. Moreover, we moved our problem from an elliptic curve theoretical shape to a more
group theoretic setting.

First, we need two preliminary lemmas.

Lemma 2.4.1. Let V be a vector space of dimension 2 over a field k and let H be a subgroup
of Aut(V'). Assume that det(Id —h) = 0, for all h € H. Then there exists a basis of V' such that
H, written in this base, is contained either in the subgroup (§ 1) or in the subgroup (§*).

Proof. This is Exercise 1) at page I-2 of the book of Serre [Ser89|. For completeness, we give
here a proof of this result.
By hypothesis, for all h € H and basis (v, w) of V' we have

det(h(v) — v, h(w) —w) = 0.

Let g € H with g # Id. Suppose first that 1 is the only eigenvalue of g. Then in some basis
(v, w) the matrix of g is Mat(g) = ({1). Let h € H, then for such a basis (v, w) we have:

(1) det(h(v) — v, h(w) —w) =0,
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(2) det(hg(v) — v, hg(w) — w) = det(h(v) — v, h(v) + h(w) —w) = 0.

If h(v) —v = 0, then h(v) is collinear to v. If h(w) —w, then (2) shows that h(v) is collinear to
v. If h(v) # v and h(w) # w, then h(v) + h(w) — w is collinear to h(v) —v (by (2)). The latter
is collinear to h(w) —w (by (1)). This implies that h(v) is collinear to v. Hence kv is fixed by
H and we are done in this case.

As a second case, suppose that ¢ has two distinct eigenvalues 1 and a. Then in some basis
(v, w) we have Mat(g) = (3 2).

CLAIM: if h € H then either (i) h(v) = v or (ii) h(w) is collinear to w.
Indeed, we have

det(h(v) — v, h(w) — w) =0,
det(hg(v) — v, hg(w) — w) = det(h(v) — v, ah(w) —w) = 0.

If h(v) # v, then h(w) —w and ah(w) — w are collinear to each other (because they are both
collinear to h(v) — v). Since a # 1, this implies that h(w) is collinear to w. This proves the
claim.

To conclude we have to show that either every h € H satisfies (i) or every h € H satisfies
(ii). If not, then let hy; € H not satisfying (i) and hy € H not satisfying (ii). The matrices of hy
and hy have the forms Mat(h1) = (1 9) and Mat(ho) = (}?) with a # 0 and 3 # 0. It is easy
to check that det(hihe —Id) = —af # 0 which is a contradiction. O

Lemma 2.4.2. Let E be an elliptic curve over a number field K. Suppose E(K) is torsion-free
and P € E(K) is a point of infinite order. Let

V ={Qe E(K): [p]Q e (P)}/{P).

We have that p | [E(kq) : (P mod q)] if and only if Frob, fizes a subspace Wy of V' of dimension
at least 2.

Proof. If the p-torsion E|[p]| is kq-rational, then clearly p divides [E(k,) : (P mod q)] and W,
has at least dimension 2.

So, let us suppose that the p-torsion of E(k,) is trivial. Then p { #E(k,) and a fortiori
p1[E(ky) : {P mod g)], so W, cannot have dimension 2, because by Grassmann formula

dim(E[p] nWy) =1

and this implies that E[p] contains a Fy-rational point. But this is a contradiction, as we
supposed that the p-part of F(k,) is trivial.

The last case left is when the p-torsion in E(k,) is cyclic, generated by a point R € E(k,).
In this case the p-part of E(k,) is cyclic (if not, there should be a point of order p that is
independent to R, but this is a contradiction). With this assumption, if p | [E(k,) : (P mod q)]
then 3Q € E(k,) such that [p]Q = P mod gq. Hence, we have that (Q, R) has dimension 2 and
is fixed by Frob,. Conversely, if dim(W,) = 2, then W, # E[p] (otherwise E[p] should be
kq-rational). Let us take @ € W\E[p]. Then [p]Q is non-zero in V' and generates the group
(P)/{|p]P). Namely, P = [ip]Q + [kp|P = [p]A with A e E(k,). O

With these lemmas, we can prove the following result:

18



Proposition 2.4.3. Let E be an elliptic curve defined over a number field K with E(K)
torsion-free. Let P € E(K) be a point of infinite order. If there is a prime p such that P is
not divisible by p in E(K) and p divides | E(kq) : (P)] for almost every good prime q, then the
image of Galois of Gal(K/K) into Aut(E|p]) is of the form

a b
01
with a € F; and b€ Fy. In symbols, this is the group pB.1.r, where r is a generator of F.

Proof. Since the curve E has trivial torsion group, we know that G has no fixed points. In
other words, the space of G-invariants V¢ is zero. On the other hand, by hypothesis we know
that p | [E(kq) : (P)] for every prime ¢ of good reduction, then Chebotarev Density Theorem
implies that every g € G has a fixed point in V.

Let us now consider the exact sequence . As E|p| has no non-zero rational points, we
know from Lemma that p | [E(ky) : (P)] if and only if Frob, fixes a subspace W of V' of
dimension at least 2.

By Chebotarev Density Theorem, considering G the image of Gal(Q/Q) in Aut(V), we have
that every g € G fixes a subspace W, of V' of dimension at least 2.

Since W, n E[p] has at least dimension 1, every g € G has a fixed point in E[p]. By Lemma
we have that G < (§%) or G < (}*). But E[p] has no G-invariants, so we have that
G (51) O

2.4.2 Elliptic Curves with non-trivial torsion

Let E be an elliptic curve over a number field K and let P be a point of infinite order in the
Mordell-Weil group E(K).

Let p be a prime for which the p-torsion subgroup of E(K) has order p. This means that
the image G of the Galois group Gy = Gal(K/K) acting on the group of p-torsion points E|[p]
is conjugate to a subgroup of matrices in GLy(F,) of the form

1 =

0 =
Proposition 2.4.4. Suppose that the point P is not divisible by p in E(K). If for almost every
prime ideal q of K, the index of the subgroup generated by P inside the group E(k,) is divisible

by p, then either K contains the p-th roots of unity or #G is not divisible by p. In other words,
G is conjugate to a subgroup of matrices in GLy(IF,) of the form

b))

Using the Chebotarev Density Theorem we translate the proposition into a group theoretic
statement. Let V' be the [F)-vector space

V ={Qe E(K): [p]Q e (P)}/{P).
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Then V has dimension 3 and admits continuous action by Gal(K/K). It sits in the following
exact sequence of Gal(K /K )-modules

0— E[p] — V — Z/pZ —> 0.

If P is not divisible by p in E(K), the extension is not split. -
In fact, let us suppose that the exact sequence of Galois modules splits. Then 3Q € E(K)
with these properties:

1. pQ = kP for some £k =1 mod p

2. 0(Q) = Q + mP for some m € Z

If we find a point R € F(K) with pR = P we get a contradiction.

We want to take the Gy-invariants of the exact sequence 0 — (P) — E(K) —
E(K)/{P) —> 0 but since the action of Gk on (P) is trivial, we have H'(Gg,(P)) =
Hom(G g, {P)) (see for example [Sil08, Appendix B, Remark 1.1]). Moreover Hom (G, (P)) =
Hom(Gg,Z) = 0 because G is a profinite group and Z has no finite subgroups except {0}. So

the sequence is still exact. More precisely we have 0 — (P) — E(K) — (E(K)/{P)) ox _,
0

The property 2) says that the point Q is Gg-invariant in E(K)/{P). Then, it exists a point
Q' in E(K) with Q = @ + mP for some m' € Z. This means that Q = Q' — m/P was already
in E[p]. If we write k = 1 + pk’ (see property 1)), then R = @ — k'P belongs to E(K) and
pR = P.

Let G denote the image of Gal(K/K) in Aut(V). We choose an F,-basis {ej, e, €3} as
follows. For e; we take a non-zero rational point in E|[p]. For e; we take any point in F[p] that
is independent of e;. For eg we take any point in V' that is not in E[p]. With respect to this
basis, G is contained in the subgroup of matrices of the form

o O =

01

Lemma 2.4.5. Le q be a good prime. Then the index of the subgroup generated by P inside the
group E(kq) is divisible by p if and only if the Frobenius automorphism o4 € G fizes a subspace
of V' of dimension at least 2.

Proof. Note that the dimension of the fixed point space of an element o € G only depends on
its conjugacy class, beacause taking a conjugate of ¢ is equivalent to consider a change of basis
in the linear application induced by ¢ on V. If g, fixes E[p], the p-torsion of E(k,) is not cyclic
and the equivalence is clear.

If not, then the p-torsion of E(kq) is cyclic and the index [E(k,) : (P)] is divisible by p if
and only if the reduction of P is divisible by p in E(k,). The latter happens if and only if there
is a point ) € V for which [p]Q = P and that is fixed by o,. This means precisely that the
fixed point space of o, has dimension = 2. This proves the Lemma. O

By the Chebotarev Density Theorem every o € G is the Frobenius of some good prime q.
Moreover the determinant of the Galois action on E[p]| is through the cyclotomic character.
Therefore Proposition follows from the following group theoretical proposition.
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Proposition 2.4.6. Let V' be a 3-dimensional vector space over F, with basis {e1,e9,e3}. Let
G be a finite group that acts faithfully on V. We write E[p] for the span of e; and ey. Suppose
that G fizes ey, preserves E[p]| and acts trivially on V /E[p]. If the extension

0— E|p| >V —Z/pZ — 0

is not split and if every o € G has a fized point space of dimension > 2, then the image G of G
in Aut E[p] either has order p or is not divisible by p.

Proof. The p-Sylow subgroup N of G is normal. Its elements have the form

Q
Il
O O =
O~ 8
—n

Since all ¢ € N have a fixed point space of dimension > 2, either z or z must vanish. This
means that the p-Sylow subgroup is contained in the union of two subgroups. If it is contained
in the subgroup of matrices for which z = 0, the group GG contains no elements of order p and
we are done. So N is contained in the subgroup for which z = 0.

If #G is not equal to p, then there is a matrix 7 € G of the form

1
7= 10
0

Sy &
— 2

for some ¢ # 1 of maximal order. The fixed point space of 7 has dimension > 2, by hypothesis.
Therefore it must be {ae; + bey + cez : (( — 1)b + we = 0}. In other words, it is the span of e;
and (¢ — 1)ez — wey. Since the p-Sylow subgroup N acts trivially on V /{e;), the second row of
the matrix 7o is the same for all o € N. It follows that all elements in the coset 7N have the
same fixed point space.

Since the order of ¢ is maximal, G is generated by N and 7. It follows that the group G fixes
((—1)es—wes. Therefore V' is isomorphic to the product of F[p] and the span of ((—1)es—wes.
Since this contradicts the fact the extension is not split, the proposition is proved. O

2.5 The reducibility of the polynomial [p|Q = P

In this final section we will give a criterion to understand when, given an elliptic curve E defined
over Q and a rational point P of infinite order that is not divisible by a prime p, it happens
that p | [E(F,) : (P mod g¢)] for almost every prime g of good reduction, so in particular that
the point P € E(Q) is never-primitive.

Just the divisibility of #E(F,) by p itself implies that the image of Gal(Q/Q) in Aut(E[p])
is contained either in (§ §) or in ({ *). This is Lemma So if we have no rational torsion
points different from the point at infinity O, we are in the case (§ 7).

Let @ be a point in F(Q) with [p]Q = P. Then
Ug ={(c —1d)Q : 0 € Gal(Q/Q))
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is a subgroup of E[p]. Moreover, it is an F,[H,|-submodule where H, is the Galois group
Gal(Q(E[p])/Q).

We know that G < (§ 1), with the entries denoted by the stars that are non-trivial (the
first row is different from (1 0)), because the first one is given by the cyclotomic character and
the second one cannot be only zero, because otherwise there should be a rational point in E[p],
that is a contradiction since F(Q) = Z.

Then, E[p] has a unique proper submodule by the action of G. This is the eigenspace L
generated by e;. So we have that

{O}c L c E[p].

Now Uy must be one of these three submodules. The first possibility is that Ug = {O}, but
this means that either @) is rational or that P is divisible by p. So, this option is excluded by
hypothesis.

Finally, we have

Ug=1L or Ug = E[p].

Proposition 2.5.1. With the notation as above, we have Ug = L if and only if

p|[EE,) (P mod g)]
for almost prime q of good reduction.

Proof. Using Chebotarev Density Theorem, we have to prove that only in the first case every
o € Gal(Q/Q) fixes either E[p] or some point @ + R with R € E[p]. Indeed, saying that
o = Frob, is the same as saying that p|[E(F,) : (P)].
Then we have to analyze the action of Gal(Q/Q) on the F,-vector space V = (Q, E[p])/{P).
This is the way: take an elliptic curve over Q with G < (§ }) and a rational point P of infinite
order and not divisible by a prime p. Then we write the equation that says [p](X,Y) = P. If
Ug = E|p] the polynomial (in X') should be irreducible, while if Uy = L should decompose. [
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Chapter 3

Cyclicity of Quotients of Reductions

3.1 Presentation and context of the problem

Let E be an elliptic curve defined over Q of rank at least r > 0 and I' € E(Q) a free subgroup
of rank exactly r. Consider the function

mer(x) =#{p <z :p{ Ng, E(F,)/T,is cyclic}.

Here N is the conductor of E, F(F,) is the reduction of E modulo the prime p and ', = E(F,)
denotes the reduction of the subgroup I' modulo p. The aim of this chapter is to find an
asymptotic formula for 7 r when E is a non-CM elliptic curve.

A question related to the one considered here is finding the density of primes p such that
E(F,) is cyclic. The first person who studied this problem was Serre and that was the motivation
for several papers of Cojocaru and Ram Murty (see for example [Coj03] and [CMO04]).

Several problems of this kind arise from an attempt to generalize to Elliptic Curves the clas-
sical Artin’s primitive root conjecture, proved by Hooley in 1965 [Hoo67] under the assumption
of the Generalized Riemann Hypothesis (GRH).

The analogue of the Artin conjecture for elliptic curves was first formulated by Lang and
Trotter in 1977 in [LT77]. For this reason this is called the Lang—Trotter Conjecture for Primitive
Points on Elliptic Curves.

The main (and almost only) step towards the proof of this conjecture was made by Gupta
and Ram Murty [GMS86] in 1986. They were obliged to assume GRH and they considered mainly
CM curves. For non-CM curves, they got a result that is effective only considering curves of
large rank.

A very useful survey to understand the history and evolution of Artin’s primitive root
conjecture, and its elliptic counterpart, is [MorI2].

The problem we consider in this chapter is weaker than the one formulated by Lang and
Trotter, but it can be solved with much less difficulties than the ones found by Gupta and Ram
Murty in [GMS86].

In the next sections we will prove, assuming GRH, an asymptotic formula for 7g r(x) when
FE is an elliptic curve without Complex Multiplication and, in some cases, we will see that there
are infinitely many primes such that E(F,)/T, is a cyclic group.

The main result of this chapter is the following:
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Theorem 3.1.1. Let E be an elliptic curve over Q without Complex Multiplication, of rank
at least r > 0. Let Ng be the conductor of E. Let I' = (Py,..., P,y be a subgroup of E(Q) of
rank ezactly r. Assuming the Generalized Riemann Hypothesis for the Dedekind zeta functions
attached to the extensions Q(E[m],m'T)/Q, we have

. X
7TE7F(ZL‘) =CET liz + OE,F (l()g;QT%)

where cgr = 0 is a constant depending on E and I', and is given by the formula

oe]

_ p(m)
0= 2 Q] T Q)

This chapter is also a paper (cf. [Mell5]) we submitted at the beginning of 2015. We refer
the reader to [Sil08] for the basic theory of Elliptic Curves.

m=1

3.2 Some notations and definitions

Let E be an elliptic curve over Q and Ng be its conductor.

For a positive integer m, if E[m] < E(Q) is the group of m-division points of the curve,
we denote by Q(E[m]) the field obtained by adjoining to Q all the = and y coordinates of the
points in E[m].

If tk £ > r > 0 with r a positive integer, we can find 7 linearly independent points
Py,...,P. € E(Q).Let T := (Py,..., P.)beafree abelian group of rank r. We define Q(E[m], m'T)

as the field obtained by adjoining to Q(E[m]) the x and y coordinates of all the points Q € E(Q)
such that [m]Q = P, forsomed = 1,...,r. If i is fixed, it is easy to see that there are m? points in
the set {Q € E(Q) : [m]Q = P;}. Moreover, Q(E[m], m 'I")/Q does not depend on the choice
of the generators of T.

If p is a rational prime, we denote by E and T, respectively the reductions of E and T
modulo p.

Finally, we have 7s.(z, Q(E[m], m™'T")/Q) :=

= # {p < x: pt Ng, psplits completely in @(E[m],m’lF)/@}

3.3 Preliminary lemmas

First, we give a condition for ramification of primes in field extensions involved in the proof of
the main theorem. This first lemma is Proposition 1.5 (b) in Chapter VIII Section 1 of [Sil08].

Lemma 3.3.1. Let E be an elliptic curve defined over Q of rank at least r > 0, Ng its
conductor, and let m be a positive integer. If U' = (Py,..., P,y is a free subgroup of rank r of
E(Q), then the extensions Q(E[m])/Q and Q(E[m],m'T')/Q are ramified only at the primes
that divide mNg.

In order to use the Chebotarev Density Theorem in the proof of our main theorem, we
need the following two lemmas. The first one is a slight modification of what is stated in §2 of
[GMS6].
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Lemma 3.3.2. Let E be an elliptic curve defined over Q of rank at least r > 0, Ng its
conductor. Let T' = (Py,..., P,y be a free subgroup of rank r of E(Q). If p,q are two different
rational primes with pt Ng, then the q-primary part of E(F,)/T, is non-cyclic if and only if p
splits completely in Q(E[q],q 'T).

Proof. First of all, we are sure that p { ¢Ng, because p{ Ng and p # ¢. Then, Lemma im-
plies that p is unramified in Q(E[q],¢~'T"). Let us denote with ¢, the Frobenius endomorphism
of F, that is the elliptic curve endomorphism

&=

Pp : (Fp) - E(Fp)

obtained by raising to the p-th power the coordinates of the points in F (Fp). Observe that
ker(¢, —1d) = E(F,). Now, the g-primary part of E(F,)/T, is non-cyclic if and only if E(F,)[q]
is contained in E(F,) and there exists a point Q; € E(F,), with i € {1,...,r} such that
qQ; = Pi. On the other hand, the g-primary part of E(F,)/T, is non-cyclic if and only if
E(F,)[q] < ker(¢, —Id) and p has a first degree factor in Q(¢ 'T'). But this happens if and
only if p splits completely in Q(E|q], ¢ 'T). O

At this point it is easy to deduce the following:

Lemma 3.3.3. Let E be an elliptic curve defined over Q of rank at least r > 0, Ng its
conductor. Let T' = (Py,..., P,y be a free subgroup of rank r of E(Q). Let p a prime of good
reduction for E (i.e., p{ Ng). Then E(F,)/T, is cyclic if and only if p does not split completely
in Q(E|q],q 'T) for any prime number q # p.

Proof. We know that the p-primary part of E(F,) is always cyclic (see for example Theorem
3.2 of [Was08]). If ¢ is a rational prime different from p, we know from lemma that the
g-primary part of E(F,)/T, is cyclic if and only if p does not split completely in Q(E|[g], ¢~'T).
The statement naturally follows from these remarks. O]

3.4 Proof of Theorem

Here we assume the Generalized Riemann Hypothesis to deduce an asymptotic formula for
mer(z) in the case when E has no CM (we will assume this last condition for the rest of the
chapter).

As above, we let I' = F(Q) be a free subgroup of rank r and we set

mer(r) = #{p <z :p{Ng, EF,)/T,is cyclic}.

From Lemma and inclusion-exclusion principle, we obtain

mpr(@) = ) plm)me(z, Q(E[m],m™'T)/Q),

m=1

where ms.(z, Q(E[m], m~'T)/Q) is the counting function defined in §3.2}
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The key ingredient of this discussion is the Chebotarev Density Theorem (CDT) subject to
GRH as in Serre’s [Ser81], Théoreme 4.

liz

7Tsc($7 Q(E[m]7 milr)/Q) - [@(E[m], m—lr) . Q

] LETr \/Elog(xm)

Following the idea of the proof of Theorem 1.1 of [Coj03], we split the sum in the following
way

mpr(@) = ) p(m)me(e, Q(E[m],m™'T)) = N(z,y) + O(M(x,y, 2) + M(x, 2,2/x)),

meN

where

N(z,y) :=#{p<z:pfNg, pdoes not split completely in any Q(E[q],¢"'T'),q < y}

and
M(z,y,z):=# {p < x:pf Ng, p splits completely in some Q(E[q],¢'I'),y < ¢ < z} )

First we can estimate M (z, z,2+4/x) using Lemma 14 in [GMS86]. It says that the number of
primes p satisfying |T',| < y is O(y'*?/7). In our case, if p splits completely in some Q(E|[q], ¢~ 'T),
then E(F,)/I', contains a subgroup of type (q,q), so |I';| < - < . Hence

1+2/r
M($,272ﬁ)<#{p<x:pJ{NE, #Fpg%}« (%) '
2z z

The above is o(z/log x) for z = 2+ log 2, say.
As for M(x,y, z), we can apply the CDT above. In fact

M(z,y,2) < ). #{p<az:p{Ng, psplits completely in Q(E[q],¢ 'T)}

y<gsz

« 2 Z qi%—i—O(\/}log(:rq))

log L Yy<q<z

x
<
(log z)y3*+?r logy

+ O(zv/zlog z).

The above is o(z/logz) for any y — o and for z < \/z/log’ r, say. Note that in the above
(and below) we use both the Serre’s Open Mapping Theorem and the Theorem of Bashmakov
[Bas70] as it was done in the original paper of Lang and Trotter [LT77]. Together they assure
that for ¢ large enough [Q(E[q], ¢ 'T) : Q] ~ ¢*™2".

Finally we estimate N(z,y) by a direct application of CDT. We set P(y) = ]_[Ky ¢ and we
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write

N(z,y) = Y, plm)me(e, Q(Em],m™'T)

meN,
m|P(y)
a liz + O(+/zlog(axm
mEZN, <[@(E[m], m-T) : Q] (Vzlog(zm))
m|P(y)
=cprliz+0 ZL & +2"W/zlog .
’ ey q4+27‘ log T

Here 7(y) is the prime-counting function.
By appropriate choices of y = logz/6 and z = \/z/log” " z, we obtain, on GRH,

1 .
TEr(T) = (CE,F + Ogr <log273:c)> liz,

that is the statement of Theorem [B3.1.1]

3.5 The Euler product for cgr

By Serre’s Open Mapping Theorem and the Theorem of Bashmakov (see [1]), we know that
there exists an integer Mg such that if for all squarefree m € N we write m = mymsy where
my | Mg and ged(ma, M) = 1, then

(@Bl 1)+ @) = (@l 1) @t T (1-7) (1 5).

£imo

Hence

N p(m) y 3 1
cer = [Q(E[m],m~'T) : Q] [1 (1 z%(z?—é)(z?—n)'

m|MEg YMEp

Therefore cgr is a rational multiple of

0.9560247261942427363553793  if r = 1
1 ] 0.9893253020490822330681093  if r = 2

[ ( (e =) - 1)) ] 0.9973671925557549001226583  if r = 3
0.9993457796554056279468254  if r = 4

=2

It would be interesting to test the accuracy of the asymptotic formula for 7z r(x) in some
cases. The first candidates are Serre curves where often it might happen that Mg = 2Ng.

Serre curves were introduced by Serre himself in [Ser72]. A practical account can also be
found in [LT76]. Some Serre curves are, for example, 37.al,43.a1, 53.a1,57.a1,58.al,61.al,
77.al, 79.al, 83.al, 88.al, 89.al, 91.al, and 92.al in Cremona’s Tables (see |[Cre97| or
[Cre06]).
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In fact in the special case when E/Q is a Serre curve of prime conductor ¢ of rank 1 (i.e.,
E(Q) = {P)) and such that [Q(E[m],m 'P) : Q(E[m])] = m for all square free integers m,
we expect that Mg = 2¢ and that

s (1 " 23 - 1§<q e 1)) <l (1 (- 1%(62 - 1)) |

The above should be the case for 37.a1: y* + y = 2® — x and for 43.al: y? + y = 2° + 2°.

3.6 Possible paths of future research

The result of Theorem lives in a very wide and structured environment of research. For
this reason it can be improved in many directions.

First of all, we can try to understand when the constant cg r is positive. We have a sufficient
condition for positivity, that is given by the results in Section 6 of [CMO04], in which the authors
consider the related problem of cyclicity of F(F,). The condition they give is just that E[2] is
not completely rational. To apply this to our problem, it suffices to note that if £ (IF,) is cyclic,
so E(F,)/T, is, because every quotient of a cyclic group is cyclic. It could be interesting to find
also necessary conditions for the positivity of cg .

Another interesting direction is the one we sketched in Section of this chapter. Serre
curves are always the first ones considered to compute explicitly the constants in density results
like the one we consider here.

Finally, many generalizations or modifications of the classical Artin’s primitive root con-
jecture can have a translation in the elliptic curve setting, so the same questions can often be
made for the quotients of reductions E(F,)/T,. We refer the reader to Section 9 of [Mor12] for
variations of Artin’s problem.
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Part 11

Statistics on Biquadratic Curves over
Finite Fields
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This second part of the thesis is about a joint (ongoing) work with Elisa Lorenzo Garcia
(University of Leiden) and Piermarco Milione (University of Barcelona).
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Chapter 4

Preliminaries to Arithmetic Statistics
on Curves over Finite Fields

In this chapter we give an overview of the topics and techniques related to Arithmetic Statistics
on Families of Curves over Finite Fields. We will need these notions to develop the results
contained the next two chapters. As general references, we will mainly use [Dav14] and [Ros02].

4.1 Zeta Functions over Function Fields

Let g be a power of a prime, and [F, the finite field with ¢ elements. We want to study zeta
functions and L-functions of function fields over F,,.

The first step is to study the analogue of the classical Riemann Zeta Function. We are
talking about the zeta function of the function field F (¢). It is useful to point out that there
is a sort of correspondence between the objects and functions related to number fields and the
ones occurring in the study of function fields. This is expressed by the following list:

Number Fields Function Fields

Q < F, (t)
Z < F, [t]

positive prime p <> P(t) monic irreducible polynomial
In| < |F(t)] = q¢'="

where I [t] is the ring of polynomials and F,(¢) the field of rational function. It is interesting
to see that many properties of classical number field have a counterpart on the right hand side
of the list. For example, we know that #(Z/pZ) = #(F,) = p = |p| with p a prime number,
and similarly #(F,(t)/P(t)) = ¢*8” = |P(t)|, where P(t) is a monic irreducible polynomial.
From now on, every polynomial will be considered monic, unless otherwise stated.

The analogue of the Riemann zeta function, in the setting of funciton fields, is

Gy = 3 =TT a=1pm (4.1
FeF,[t] p irreducible

The Euler product on the right hand side is deduced in the same way as in the classical
Riemann zeta function, because F,[t] is a UFD (another property in common with Z).
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As there are ¢? monic polynomials of degree d, we see that

1
Cq(s) _ Z qdq—ds _ 1_—

. (4.2)
1—s
d=0 q

We will now deduce a result that will be fundamental in the next two chapters. Let aq be
the number of irreducible polynomials of degree d over F,. Then, using (4.1]) and (4.2)), we get

Gls) =] =g ®) ™ =(1-qg"")"

d=1

and if we substitute ¢—° with the variable u, we have

1 o0
= 1 —u?) "%,
1—qu d:l( )

Taking logarithmic derivatives of both sides and multiplying by u, we get

d o d
u— log(1 —qu) =u Z Q- log(1 — u?),

d=1
that is
qu_ _ i dagu®
l—qu “1—ut

We can expand both sides of this equality in power series, using geometric series. Then, equating
coeflicients of u™, we have

Z dag = q",

din

and, by Moebius inversion formula, we get
1 n
an =~ u(d)g"". (4.3)
d|

We can now deduce the following fundamental result:

Theorem 4.1.1 ([Ros02], Theorem 2.2). (The prime number theorem for polynomials) Let
a, denote the number of monic irreducible polynomials in F,[t] of degree n. Then,

q—+0<ﬁ>.
n n

a, =
Proof. From (4.3)), we have that

n n

q q: g3

=L oL |,

an =~ e ;ﬂ ()]
d#n,3

and >, [u(d)] = 2¢) where w(n) is the number of distinct prime divisor of n. Since 2" < n,
the result follows. O
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Using (,(s), it is also possible to prove (see Lemma 3.2 of [Dav14]) that the set of monic
square-free polynomials, which we denote F,;, has cardinality

d _d-1_ q¢*
yr, (0710 =gy Hd=2
q° ifd=0,1

This result has its analogue in the language of number fields, where we know that the number
of square-free positive integer up to z is asymptotic to z/{(2) (|[Pap05], Section 1).

Now, we want to define general zeta funtions in the funtion field settings. This means that we
have to consider, beside the finite primes of F,(t), also the so-called prime at co. Moreover, we
will consider not only FF, (), but also finite extensions K 2 [F,(¢). Such a K is called a function
field over F,. A prime of K is by definition a discrete valuation ring R with maximal ideal P
such that F, € R, and the quotient field of R is K. The notation P is properly chosen, because
we refer to such a prime by P, and we denote with ordp the discrete valuation associated to P.
Also, we define deg P as the degree of the field extension R/P 2 F, and we denote with Sk the
set of primes of K. For more details about these definitions and properties we refer the reader
to [Ros02, Chapter 5.

In the case that K = F,(t), beside the primes given by the irreducible polynomials, we have
the extra prime associated to the ring A’ = F,[¢t '], with prime ideal P’ generated by ¢ '. In
fact, the localization of A" at P’ is a discrete valuation ring and defines the prime at infinity of
IF,(t). We notice that the degree of this prime is 1.

Let K be a function field, and let Dy be the group of divisors of K, which is the free abelian
group generated by the primes. We denote this group additively, so a typical divisor is a finite
sum

D =) a(P)P,

where P are primes of K. The degree of such a divisor is deg D = >}, a(P)deg(P), and the
norm of D is |D| = ¢ P. A divisor D is said to be effective if a(P) = 0 for all P. We denote
this by D > 0.

Definition 4.1.2. Let K be a function field over F, (). The zeta function of K, (k(s), is defined

by
Ck(s)= >, I =[] a—=IPI™)™,
DeDye PeSgk
D=0

where the sum runs over all divisors D € Dy, and the product over all primes P € Si. Moreover,
we can define Zx (u) as (x(u), where we use the change of variable u = ¢~*.

If K = F,(t), we can see that

1
(I—g )1 —qg"2)

This is the completed zeta function of (,(s), which did not include the prime at co.

In Chapter [f] we will study the zeta function of biquadratic extensions of Fy(t) to compute
some statistics on them.

In analogy with the number field setting, we can define Dirichlet charachters and L-functions
also in this context. For details about this, we refer the reader to [Ros02, Chapter 4].

Cx(s) =
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4.2 From Function Fields to Curves

At this point we want to define the zeta function of a curve over a finite field. First of all, we
recall that there is an equivalence of categories between smooth projective curves over [F, and
function fields over F, (see for example [Sil08, Chapter 2] or [Har77, I, Theorem 6.9]). Let C
be a smooth projective curve over F, and suppose for simplicity that C' has an affine plane
model given by the equation F(t,y) = 0, with F(¢,y) an irreducible polynomial in F,[t,y]. The
coordinate ring K[C] of C is Fy[t,y]/F(t,y) and the function field of C, denoted by K(C),
is the field of fraction of K[C], that is K(C) = F,(t,y)/(F(t,y)). So, the correspondence
C — K(C) gives the equivalence of categories and then K (C') is a finite extension of F,(t). The
corresponding maps inside the two categories are, on one side, surjective morphisms of curves
over [F,, and on the other side we have function field injections preserving F,.

Then, given a curve C over F,, with function field K (C). One can prove that primes in Sk
correspond to Galois orbits of points on C'. For example, for the function field F,(¢), the finite
primes are in one-to-one correspondence with irreducible polynomials in F,[¢] which are in one-
to-one correspondence with Gal(FF,/F,)-orbits of points in A*(F,) (the Galois orbit associated
to a given irreducible polynomial P(t) € F,[t] is the set of roots of P(t)). The degree of the
polynomial is then the number of elements in the orbit. With this example in mind, it is natural
to think that the set of primes of degree 1 in the function field K, = F m K must correspond
to the points of C defined over F,m. This brings to the definition of Zx(u), that is given in the
next section.

4.3 Weil Theorem

Given a smooth projective curve C' of genus g over a finite field F,, one of the first things one
can ask is the number of its F,-rational points. An interesting way to answer to this question,
or at least to get some information, is to introduce the zeta function associated to C, that is

defined as
un
Ze(u) = exp (H #C(]Fqn)g>
n=1

where u = ¢~° with s € C and R(s) > 1. One can prove that Zc(u) = Zx(C)(u) where Zg )
is the one defined in Definition [£.1.2] (see [Dav14l, Section 3] for details). In 1948 André Weil
([Wei48]) proved the following properties of Z¢(u):

e Rationality: »
PC u
Zol) = 0 —qw

where Po(u) is a polynomial of degree 2¢ in Z[u].

e Functional Equation:
Zo(1/qu) = ¢ 9> 29 Zo(u).

e Riemann Hypothesis:

Po(u) = | [(1 = ua;(0)), |ay(CO)] = va,



i.e. the roots a;(C)~" of Pc(u) have absolute value 1/,/q. This is called Riemann Hy-
pothesis for Curves over Finite Fields because, if we look at P as a function of s, with
q = u"*®, we see that |u| = 1/,/qg & R(s) = 1/2, that is the formulation of the Riemann
Hypothesis for the classical Riemann Zeta Function.

The generalization of all these properties to varieties of any dimension are known as Weil
Conjectures and they were proved later by different mathematicians.

4.4 Number of Points in Families of Curves as a sum of
Random Variables

We want to explain briefly the techniques we are going to use in Chapter 5] We refer the reader
to [Davl14l Section 4] for more details.

For any curve of genus g, it follows from Section [4.3] that the number of points in C'is given
by

29
#O(F) = (g+1) = Y, 05(C) = ¢/ trO¢
j=1

where O¢ is a 2¢g x 2¢g unitary matrix with eigenvalues q*1/2ozj(C’) =) j=1,...,2g.

The matrix (or rather the conjugacy class) O¢ is called the Unitarized Frobenius Class of
C.

We want to study the fluctuations in the number of points in a family of curves over F, of
genus g. When the genus of the curves is fixed and ¢ tends to ininity, ¢~ Y/2(#C(F,) — (¢ +1)) =
tr ©¢ is distributed as the trace of matrices in a symmetry group M (2g) determined by the
so-called monodromy group of the family, for natural families F(g; ¢) of curves of genus g over
F, where Deligne’s equidistribution theorem and its generalisations hold. For example, these
families can be moduli spaces, or connected components of moduli spaces. For more details
about these studies, we refer the reader to [KS99, Chapter 9.

Here, and in the next two chapters, we consider the other limit, that is the limit for ¢ — o
and ¢ fixed. In this case we will find that one can write in a natural way the distribution of
#C(F,) as a sum of ¢ + 1 independent identically distributed random variables.

This was done for several families of curves, such as hyperelliptic curves, cyclic trigonal
curves and many others. In Chapter [5 we will compute such statistics for a family of biquadratic
curves.

Hyperelliptic Curves

As an example, we write the main result of [KR09]. Let #, be the moduli space of hyperelliptic
curves of genus ¢g. Then

. #{CeM,: #OF,) =m} o,
ghjgj I, = Prob <; Xi=m],
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where the X, are i.i.d. random variables such that

0 with probability 5%
Xi =11  with probability

—1 with probability ﬁ
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Chapter 5

The fluctuations in the number of
points of a Biquadratic Curve over a

Finite Field

5.1 Number of points of Biquadratic Curves as a sum of
Random Variables

One of the most influential results in class field theory is Chebotarev’s density theorem. As it
is well known, this result is a deep generalization of the Theorem of Dirichlet about equidistri-
bution of rational primes in arithmetic progression and gives a complete understanding of the
distribution of primes in a fixed Galois number field extension with respect to their splitting
behavior (for an interesting discussion of the theorem and its original proof see [LS96]). In the
function field case the parallel statement is carried over by the Sato-Tate conjecture for curves,
which studies the distribution of the Frobenius endomorphism of the reduction modulo p of a
fixed curve, when the prime p varies.

In order to complement this line of research in other directions, several mathematicians were
led to consider the following new general problem: given a family of curves, satisfying certain
properties, of genus g over I, understand the distribution of the Frobenius endomorphism of
the curves of the family. This is sometimes called the vertical Sato-Tate conjecture, since the
prime p is fixed and the curve varies in the family. This study can be done in two different
ways, depending on whether we let the genus ¢ tend to infinity or the cardinality ¢ of the field.
It is then interesting to compare both limit results.

When g is fixed and ¢ goes to infinity the problem can be solved thanks to Deligne’s
equidistribution theorem (cf. [KS99, |) while for the complementary case different techniques
are applied depending on the particular family considered. The fluctuation in the number of
points at the g-limit has been studied for different families of curves, such as:

e Hyperelliptic curves , cf. [KR09], [BDFL09],
e Cyclic trigonal curves (i.e. cyclic 3-covers of the projective line), cf. [BDFL0O9], [Xiol0l,

e General trigonal curves, cf. [MW12],
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e p-fold cover of the projective line, [BDFLIIT],
e (-covers of the projective line, cf. [BDFL09] and [BDF™15].

In the present chapter, we study the distribution of the number of points over [F, for a genus
g curve C' defined over F, which is a quartic non-cyclic cover of the projective line IP’%Fq, at the
g-limit with ¢ fixed.

Let By(F,) be the family of such genus g curves and consider the following decomposition

B, (Fg) = U 8(91,92,93)(]Fq)

g1+92+93=g

where By, g,.95)(F) denotes the subfamily of curves C' € By (F,) such that the three hyperelliptic
quotients of C' have genera gi, g, and gs.
The main theorem of this chapter is the following:

Theorem. In the limit when the three genera gy, g2, g3 go to infinity

1
{C e B(gl,gz,gs)(FQ) : Tr(Fl"(:bc) = M} = Prob % X; =M
|B(91,gz7g3)(]Fq)|

where the X; are i.i.d. random variables such that

Jj=1

—1 withprobability 22

4(q+3)
X; = 1 with probability T3 +3)
3 with probability e +3)

These results are part of the joint work [LMMI15]. We refer the reader to it, also for a

comparison with the case of ¢-limit. Throughout all the chapter we denote with k£ the funtion
field F,(t).

5.2 The family of biquadratic curves

We first define and give the basic properties of the family of biquadratic curves. We determine
its genus in terms of the equations defining the curves, and we study the irreducible components
of the coarse moduli space of biquadratic curves.

Recall that if K/F,(t) is a finite Galois extension such that K nF, = F,, then there exists a
unique nonsingular projective curve C' with function field F,(C) = K, together with a regular
morphism ¢ : €' — Py, defined over F, (cf. [Har77, I,Th. 6.6, Th.6.9]).

Definition 5.2.1. We will call biquadratic curve a smooth projective curve C, together with

a regular morphism ¢ : C' — Pl defined over F,, that induces a field extension with Galois
group Gal(F,(C)/F,(t)) ~ Z/QZ X Z7)27.

Smce char(k) # 2, 1t is clear that every non-cyclic quartic extension of % is of the form

= k(a\/h1(t),A/h2(t)), for some hy(t), hao(t) € F,[t] different non-constant polynomials, that
we can take to be square free. Moreover, if the leading coefficient lc(h;) is a square in F, then
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we can assume that this is equal to 1. Therefore, if C' is a biquadratic curve, then an affine
model of C'in A§ is given by

ys = ha(t).

Remark 5.2.2. If K := k(4/h1(t),+/h2(t)) is a biquadratic extension of k, then there are exactly
3 different quadratic subextensions of K, namely k(v/hy), k(v/ha) and k(y/hihs).

If we write h; = f;f for i = 1,2, with f = (hq, hy), then clearly we have that (f1, f2) =
(f1, f) = (f2, f) = 1 and these three subextensions are k(v/ff1), k(v/f f2) and k(\/f1f2).

Two such extensions k(4/hi(t),/h2(t)) and k(+/h}(t),+/h4(t)) are the same if and only if

we have the equality of sets:

- {y% = n(t)

hihg , o, hihg
hi, he, ————=1} = {hy, hy, —F———}-
{ 1,162, (hl,hg)z} { 12192 (hll,hlg)2}

Remark 5.2.3. Recall that if 7 : C' — P!, whose affine plane model is y*> = F(t), with F(t)
a square-free polynomial over F,, then the point at infinity is ramified in the cover = iff the
degree d of F'is odd. Indeed, if we take take u = %, then the function field of C' is:

K(C) = k(v F(1) = k(v F(1/u)) = k(\/u"F(u))
and then it is clear that ¢ = oo ramifies iff the point u = 0 ramifies, i.e. iff d is odd.

Proposition 5.2.4. Let hy(t), hao(t) € F,[t] be different square-free polynomials, and let C' be

the curve whose function field is k(C) = k(+/h1(t), A/ ha(t)). For every i = 1,2, write h; = f f;,
with f = (h1, he), and define hg := fi fs.

If we denote by C; the hyperelliptic curve whose affine plane model is given by the equation
y? = hy(t), fori=1,2,3, then we have the following formula for the genus of C':

9(C) = g(C1) + g(Cy) + g(Cs)
Moreover, if we denote by n := deg(f) and n; := deg(f;),
Q(C) = g(nlan%n) =Ny 4+ No + N+ ep—4,
where
_J 2, if n=n1=ny=0(mod2)
Coo = 1, otherwise
Proof. Let us denote by R := Ram(m) the subset of all points of IP’[lgq which are ramified in

the cover 7 : C — IP’]qu. Riemann-Hurwitz formula (cf. [Ros02, Theorem 7.16]) implies that

29(C)—2 = 4(2:0—2)+2|R|. So, g(C') = |R|—3. Again, for the hyperelliptic cover m; : C; —> P*

— B
2

and the ramification sets R; := Ram(m;), gives g(C;) — 1. Now, the definition of h3 implies

that
2|R1 v Rg ) R3| = |R1| + |R2| + |R3|

Thus, the formula g(C) = ¢g(Cy) + g(Cs) + ¢g(C3) holds.
We can also apply Riemann-Hurwitz formula to the morphism 7, and so we have:

29 —2=4(2-0—2)+2-(ny + ng +n3 + €0 — 1).
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Now, we introduce some sets of polynomials that will be useful:

Vy = {F eF,[t]: Fmonic, deg(F) = d}
Fy={F eF,[t] : Fmonic, square-free, deg(F) = d}
Fu={F eF,[t] : Fsquare-free, deg(F) = d}
Foommny = U f1, ) € Fu x Foy % Fay (£ 1) = (ff2) = (Fus f2) = 1}
Foummny = A 1 f2) € Foux Foy x Foy o (F 1) = (£, 2) = (Fu, f2) = 1)

]:[n,nl,ng] = f(n,nl,ng) (% ]:(nfl,nl,ng) (& -F(n,rqfl,ng) & -/T_.(n,nhngfl)

A~ A~

f[n,nl,ng] = f(n,nl,ng) o f(nfl,nl,ng) o F(n,nlfl,ng) o F(n,nl,nzfl)

Definition 5.2.5. We denote by B,(F,) the family of biquadratic curves defined over F, and of
fixed genus g. It can be written as a disjoint union of subfamilies indexed by unordered 3-tuples
of positive integers g1, g2, g3, i.€.

Bg(Fq) = U 8(91792793) (]FQ)v

g1+g92+9g3=g

where B(g, g,.44)(Fq) denotes the family of curves over the set of polynomials ]?[n,nhm] such that

g = [”*"Tflj fori=1,2 and g3 = [%m_lj

The family B, (F,) of biquadratic curves defined over F, is a coarse moduli space over Z[1/2]
(cf. [PGO5D, Lemma 3.1]). A detailed geometric study of this moduli space can be found in
[PGO5b] and [PGO5a].

Remark 5.2.6. One has the following equalities:

' 1 |ﬁn,n n |
Bonw®l= 3 1= 3 Gu@) " deei)
C€B(91,92.95) (Fa) FeFinny nol

where the ' notation, applied both to cardinality and summation, means that each one of the

curves C in the moduli spaces is counted with the usual weight \AT1(C)|'

Remark 5.2.7. Notice that |.7?(n’n17n2)| = (¢—1)*|F(nn1,ne)| and that we can see the set ﬁ(nmhm)
as the set of the quadratic twists of elements in F; », n,) given by the equations

- y% = a1 ff1(1)
ys = aof fo(t)

where oy, ag € F.
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5.3 Proof of the Main Theorem

Let x denote the quadratic character in F,, we set, for any element (f, f1, f2) in ]?(n’nlm),

S f f2) = DL - fu(@) + x(f - f2(@) + X(fr - fa(2))), and

z€eFy

S fuf) = Y (X(f-f@) +x(f - L&)+ x(fi - f2(2))),

zeP1(F,)

where for the point at infinity we define

0  deg(F)odd
X(F(0)) =<1  deg(F)even, leading coefficient is a square in F,

—1 deg(F)even, leading coefficient is not a square in F,

Then, for the curve C € By, g,.4,)(Fy) defined by (f, f1, f2) we have that

#C[F) =q+1+ §(fa f1, fa)-

Hence, we have the equality

{C € Blgs go.g)(Fo) : Tr(Frobo) = M| [{(f, f1. fo) € Finuna : S(f: fr, f2) = M}
|B(g17927g3)(Fq)|, |-F[n,n1,n2]|

The goal of this section is to prove the following theorem, which is a more precise statement
of the theorem we stated in section [5.11

Theorem 5.3.1. In the limit when the three degrees n,ni,ny go to infinity

W hifo) e ]?[mf’m] S, fu, fo) = M} = Prob (%X- = M)
|f[n,n17n2]| ’

j=1
where the X; are i.i.d. random variables such that

—1 withprobability 22

4(q+3)
X, = 1  with probability ﬁ
3 withprobability (q‘i By

More precisely,

Fifis 12) € Finmamy = S, 1, fo) = M 0= pin(minym
(S, fr, f2) [|ﬁ ] |( ) =M, X, =M (1+O(q = minn, ,2)+q))
[n,n1,m2]

j=1

The proof of the Theorem runs as in [KR09] (resp. [BDFL09|) for the equivalent statement
for hyperelliptic curves (resp. [—cyclic covers).
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Lemma 5.3.2. ([BDFL09, Lemma 4.2]) For 0 <1 < q let xy,...,x; be distinct elements of IF,,.
Let U € F,[t] be such that U(z;) # 0 fori=0,...,1. Let ay, ...,a; € F;. The number of elements
in the set

(FeFy: (FU) =1, F(x;)=a;, 1<i<l}

18 the number
d-1

Uy — q —deg(P)y—1 I—d/2
S (1) O] 11:_[[](1 +q )1+ 0(¢).

Lemma 5.3.3. For0 <[ <q let zy,...,x; be distinct elements of F,. Let U € F[t] be such that
U(z;) #0 fori=0,..,1. Let ay, ...,a;,by, ..., b € Fr. The number of elements in the set

{(f1.f2) € Fou x Foy : (i, U) = (f1, f2) = 1, fi(wi) = ai, folw) = b, 1 < <}

18 the number

n1+n2_2lL 1 + 2q_1 ! 1 min(ny,ng)
mona ) G2 A —-g2)* \(1+q"')? | ] 1+ 2[P|! ( Ol )) ’

P|U

P72
where L := [ [ p prime(1 — (pl“lw)

Proof. By inclusion-exclusion principle (same notations as in [GGL95L Theorem 13.5]), with

f(D) = |{(f1af2) € Frny X Fny (fZaU) =1, D|(f17f2)a fl(xl) = Q4, fQ(wZ) =b,1<i< l}|’

g(D) = |{(f17f2) € ]:m x ‘Fnz : (flaU) =1, (f1>f2) =D, fl(xl) = g, fQ(xl) =b;,1<i< l}|7

we have

Ry, 5, (1) = 9(1) = > u(D)f(D).

D, D(w;)#0,(D,U)=1
But notice that when (D,U) =1

( ) = |{(f17f2) € ]:nl —deg(D) X fng —deg(D (f“UD) =1, fl(ﬂﬁz) Qj, fz(l’z) = bi, I<i< l}|,
hence Lemma [5.3.2] implies
f( ) Snl —deg(D) (l) ’ STZLJQDdeg(D) (l) =

n1+no—2l—2deg(D)

9 deg(D) _ min(nj,ng)
Er T [Ta+P™ (1 + Ot )) ‘
PIUD
So, one has
Ry, (1) = > (D) f(D) =
D, D(x;)#0,(D,U)=1
n1+n2 21 _ N _ min(ny,ng)
Foya = L11P) > eI TP (140 =5).
PIU P|D

D(z;)#0, (D,U)=1

deg(D)<min(nq,ng)
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Now, we observe that

>, n(D)DI [ [+ P72 =

D(x;)#0, (D,U)=1 PID

deg(D)<min(ny,ng)

Z w(D)|D|™2 H(l + P2+ O(q_gmm(m,nz))’

D, D(x;)#0, (D,U)=1 P|D

> pDIDIE ]+ P2 =

where we have that

D, D(x;)#0, (D,U)=1 P|D
_ —1 _ - _
() T () g L
A+g™)?) o \A+ P2 ) it (1+|P]71)2
o 1+2¢7! lH 1+ 2|P|™! ”L
S\ (L+g1)? pp NP '

We can prove that 0 < L < 1 (see next Remark [5.3.4). So, finally

-l
- qn1+n2—2lL 1+2q_1 1 limin(nl,ng)

= 1 .
B = agi—g o (e ) g ) (Lrou™45)

q P|U

]

Remark 5.3.4. We need to prove that the infinite product [ [p (1 — %) converges to

a real number L such that 0 < L < 1. The Prime Polynomial Theorem implies that this is
equivalent to prove that the infinite product

ql/

converges to a real number L such that 0 < L < 1 (remember that ¢ > 3).

qll

Because (1 — ﬁ) " <1, we have that L < 1. In order to prove that 0 < L, and since
for z € (0,1) we have log(1 — z) > 5,

1

IR I 1

v=1 (gv+1)? vzl vogq

is convergent. Indeed, we have

Z log —
vl

Thus,



Proposition 5.3.5. Let 0 < | < q, let x4, ..., 2y be distinct elements of F,, and ay, ..., a;, by, ...

[y, Then, for any 1 > € > 0, we have
{(f, f1, f2) € Framame) @ f(@i) fi(s) = aiy f(25) fa(ws) = b;, 1 <@ <1} =

KLqurnzwLanl q3 ! (1- o
1 e)n+el n
g@  \a-1egry) O

where K = []p(1 — s55omss7)-

(1IP0I Pl+2)

min(ny,ng)
2

).

Proof. First we observe that

|{(f> fl,f2) € F(n,n1,n2) : f(xi)fl($i) = Qg f(xi)fz(%‘) =b,1<i< l}| =

) 3 Y-

fefn fleJ—_;h f?efnl
flx) #0 filx) = aif (@)™ folws) = bif(2;)~!
(f, f)=1 (ffi, f2) =1

- >, RO

feFn, f(zi)#0

Using Lemma [5.3.3| we have that

{(fs f1s f2) € Funimg o fl@i) fi(w:) = aiy f@i) fo(ws) = biy 1 < < U} =

_ l
qn1+n2 QZL 1 ni4n _min(nl,ng)_l
“gn o (ra) 0 s+ 0w -
q UeFn,U

(z4)#0 P|U

qn1+n272lL 1 ! _min(nl,’nQ)_l
_ U O nit+ng———5—=°
goi— \ivam) 2 o !

deg(U)=n

where for any polynomial U, we define

c(U) = {“2([]) [pp =7 Ula:) #0

0 otherwise.

In order to evaluate 3.y, (;)—, ¢(U), we consider the Dirichlet series

_Nal) _ I 5
R VO o
Cq(w) 1

1Jrq‘”‘l(quQ)

)7

where

2
1w =] 10~ e



Notice that H(w) converges absolutely for Re(w) > 0, and G(w) is meromorphic for Re(w) > 0

with simple poles at the points w where (,(w) = (1—¢'~*)~! has poles, that is, 1+ @'lzgr—gz. Thus,

G(w) has a simple pole at w = 1 with residue

( )

Using Theorem 17.1 of [Ros02], which is the function field version of the Wiener-Ikehara
Tauberian Theorem, we get that

D, o) = u (ﬂ>lqn+0q(qm),

deg(U)=n Cq(2) q+ 3

for all € = 0 and where, looking at the proof of the theorem and proceding as in Proposition
4.3 in [BDEL09], we can exchange O,(¢") by O(g<"*Y). ]

Corollary 5.3.6. Let0 <1 < ¢q, let xq, ..., z; be distinct elements of Fy, and let ay, ..., a;, b1, ..., b, €
F, such that ay = ... = a,, = by = ... = by =0, Appy1 = ... = Qrgiry = 0 = bppiry41 = ... =

bTo+T1+7’2 G/]’Ld b7'0+17 "'7bro+r17@m+r1+17 "‘70’7‘0+T‘1+7'270’j7bj # O Zf] > To + ™ + o = M. Then fOT'

every € > 0, the number

|{(f7 f17f2) € f(n,m,nz) : f(ﬂfi)fl(xz’) = Qy, f(ﬂci)f2($i) = b, f1(%’)f2(95z‘) =¢, 1 <1< l}|7

where f(xz;)%c; = ab;, is equal to

e (m)m (<q SRR 3>)l_m (1+0fg 5 mntnam ity

P?"OOf. Let us write f = (ZE - l’l)(l' - xm)fla fl = (ZL‘ — $r0+1)...($ - :Bro+r1)f{a and f? =
(x = Zpgyry 1) (T — Tpg 1y 40) [ Now, apply Proposition to the pairs (f’, f1, f3) and sum.
O

Corollary 5.3.7. With notation in Corollary[5.3.6, the number

{(f, f1, f2) € Flnmima) + X(f (i) fr(@:) = ef, x(f (@) fo(i) = €F, x(fr(@) fa(:)) = i, 1 <0 < 1]
|]:(n,n1,n2)| ’

where e}, e, e; € {—1,0, 1}, x(f(x:)*)e; = ele?, and exactly 2m of them are equal to zero, is
equal to

Om = (q%l)m (%)Q(l_m) ((q - 1)1((1 + 3))m ((q - 1)3(q - 3))l_m (1+0fg Fmminmath) =

1 " q o _a-o
— 1+0 7L min(nnyna)+1y)
() (ats) (o )
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Corollary 5.3.8. Let 0 <1 < q, let 1, ...,x; be distinct elements of P1(F,), and let e}, e?,e; €

17 7))

{—1, 0, 1} be such that x(f(z;)?)e; = ele?, and exactly 2m of them are equal to zero. Then

1)

{(f, f1, £2) € Flomima) : XUF (i) fr(:)) = eiy X(f(xi) fo(@i) = ef, X(fi(xi) fo(2i)) = ei}]
|]:[n,n1,n2]|

is also equal to the number C' defined in Corollary .

Proof. Distinguish the case in which some z; is the point at infinity or not. Generalize Corollary

5.3.7| for the sets ﬁ(n,nhnz) looking at the symmetry observed in Remark |5.2.7, and add for the
different components of Fi,, n, n,]- ]

Proof. (of Theorem [5.3.1)) Apply Corollary in order to compute

{(f, f1, f2) € ﬁ[n,nlm] : g(f7 f1, f2) = M| _
|f[n,n1,n2] |

N_1
- Z Z (N'l)gNHN_lCNHJ =

(B Bas)el—1,1,3), 5 Bi=M j=0 N

N1 N_; N:
= Z QL §ﬂ EL ’ (1 + O(q_(1§€)min(n,m,n2)+fI))
4qg+3 4qg+3 4q+3

(E1,sEq+1)e{—-1,1,3}, 3 E;=M

q+1
= Prob (Z X, = M) (1 + O(q,( ge)min(n,nl,nz)—‘rq)) :
1

where we use the notation N; for the number of elements equal to ¢ in the vectors (Ey, ..., Eyi1).
O
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Chapter 6

Traces of High Powers of the Frobenius
Class in the family of Biquadratic
Curves

6.1 Introduction

In Section we saw that, for any curve of genus g over a finite field IF,, the number of points
in C' is given by

29
#HCOF,) — (q+1) = > oy(C) = ¢ trO¢
j=1

where O¢ is a 2¢ x 2¢ unitary matrix (called Unitarized Frobenius Class of C') with eigenvalues
¢ a;(C) = e j=1,...,2¢.

So, given the relation above, we can do statistics about #C(F,) in some family of curves F
just doing statistics on tr ©¢ with C' € F in some group of matrices, related to the the same
family. To do this, we have many tools about distributions in group of matrices. One of the
most important books about the Random Matrix Theory related to this kind of problems is
[KS99].

One important fact that must be taken in account in order to make statistics on families of
curves is the correspondence between a smooth projective curve over F, and its function field,
that is a finite extension of F,(¢). This correspondence is explained in Section [5.2] of this thesis
and allows one to use Number Theory of Function Fields. For a wide introduction to this topic,
we refer the reader to [Ros02], from which we briefly recalled in chapter [4] the results we are
going to use. Among them, the Prime Polynomial Theorem will be consistently used in the
following sections. It says that, if a,, denotes the number of monic irreducible polynomials in

F,[t] of degree n, then
n n/2
w=""10 (q_) |
n n

Let Hag41 be the family of hyperelliptic curves Cg defined by the equation y* = Q(z) with
() € F,[x] monic, square-free and with deg(@) = 2¢g + 1. Given a function on the family, we
denote with the angle brackets (-) its average.
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In this chapter we want to mimic the following result of Rudnick:

Theorem (Theorem 1, [Rud10]). Consider the curves Cq € Hagr1. For all n > 0 we have

—n 0<n<2g
n 1 deg P o B
<tr@Q>: _1_qu1 n=2g T E —=—— + Oy(ng 2729 4 g¢q 9)
q |P|+1
0 n > 2g deg P| 2

where the function
) 1 neven
=10 nodd
and the sum is over monic irreducible polynomials (|P|= qi%7 ).

Instead, we consider the family Hayio of curves Cj, defined by the equation y* = h(z) with
h € Fy|z] monic, square-free and with degh = 2¢g + 2. We will prove:

Theorem 6.1.1. Let Cj, € Hagio. For all n > 0 we have

qn%—nn O<n<2g+1

" - 1 deg P . 3
{rop) = %/i n=2g+1 r+m—7m Z m + O,(ng"*% + gq~9)
n>2g+1 deg P[5

(@)

From this theorem, the next result will easily follow:

Corollary 6.1.2. Let C}, € Hogyo. With the same notation as above, if n is sufficiently large,
we have

—n Tlog,g <n <2g+1 )
(tr O} = o n=2g+1 —|—0(§).
0 2g+4<n<4g—10log,g

In the proof, we will use the methods used by Rudnick in his paper, but it will be often
necessary to prove new formulas and lemmas. In this sense, Proposition is a new result.
We keep the titles of sections in [Rud10], to let the reader easily find the counterpart, for Hay1,
of the results we prove.

In the last two sections of the chapter, we will try to extend these results to a given family
of biquadratic curves (see Sections and for definition and properties of such curves).
The work is in progress, so we still do not have a final result, but we believe that this path is
going in the right direction.

For an introduction about quadratic L-functions we refer the reader to sections 1 and 2 in
[Rud10]. However, we will recall the content of these sections if needed.

6.2 The family H,,,» of hyperelliptic curves

We want to study statistics on hyperelliptic curves of the form



where h is a square-free, monic polynomial in F,[z] of degree 2g + 2 (¢ = p™ with p odd prime
number). So, C}, is a non-singular curve of genus g over F,.

We denote the family of such curves as Hyg12, and we introduce the uniform probability on
it, so we can talk about ensemble when we refer to this family. With abuse of notation, we will
write h € Hagyo instead of Cf, € Hogyo.

Given a function .# on Hyyyo, we define its expected value as

1
(F) =
#H29+2 heHzgs2

Z(h).

6.2.1 Averaging over Hy, o

We already saw that

1
#H2g+2 _ (1 . a) q29+2 _ (q . 1)q29+1.

We define the (polynomial version of the) Mébius function u as

0 if A is not square-free
(=1)" if A= P,...P, with P, irreducible Vi

Given this definition, we can observe that

1 A is square—free
D u(A) = {

A7 0 otherwise

So, if we have to compute the expected value of a function .# on Hyg2, we obtain

<9>=; > D> w(A)F(AB)

_ 2g+1
(q l)q 2a+p=2g+2 deg B=3 deg A=«

the sum over all monic A, B.

6.2.2 Averaging quadratic characters

We have the following quadratic character

From this, we can get
B\ [A\? BY) ged(A, f) =1
xazp(f) = (—> (—> = (f) ged( f) ]
f 0 otherwise

As a consequence, we obtain

W)= g 5 o) % (F)

(g 2a+B=2g+2 deg B=f

o1



where

o(fi) = Y] p(A)
gc?i?%?)il

6.2.3 A sum of Mobius values

If P is a prime polynomial of degree n, k > 1, a > 0, we define

on(a) = o(P*:a) = Z p(A).
deg A=«
ged(A,PF)=1

We can see that this quantity is independent of k.
Lemma 4 of [Rud10] states the following properties about the sums o, («):

i) For n =1,
01(0) =1,01(a) =1 —¢q for all @ > 1.

ii) If n > 2 then
1 a=0 modn
op(@) =X —¢ a=1 modn

0 otherwise

6.2.4 The probability that P {h

We can see that the shape of Lemma 5 of [Rud10] can be imitated for the family #o,19, but
we check the proof, that is slightly different as the degree of h is even.

Lemma 6.2.1. f P is a prime polynomial, then

2 1P| 29

Proof. If we define

_ )L Ptf
LP(f)'—{()’ P|f

then we have

S a(A)up(42)

_ 2g9+1
(q 1)(] o deg A2B=2g+2

9 1
xen(P )>=W Z Z 1(A) Z 1

0<a<g+]1 deg A= deg B=2g+2—2«
P{A PtB

On(P?)) = (upy =

Writing m := deg P, we obtain

1 ifm>p

1—% if m<p

#{B:deg B = P+B}=qﬁ-{
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and

Y #(A) = o (A).

deg A=«
PiA
At this point
1 : m
(e pu— A
(q =gt = 1 fg+l-F<a<g+l1
0
q O () —2 ( 1 >
q—1 (;0 ¢ ( )> P
So we have the statement. O

6.2.5 Double character sums

We define

som- Y % (3)

deg P=n deg B=B.
P prlme B 1monic

We know from Lemma 6 of [Rud10] that if n < 5 then S(8;n) = 0.
Moreover, Lemma 8 says that for even g one has

n

6.3 Proof of Theorem [6.1.1]

Formula (2.4) of Section 2 of [Rud10], for h of even degree, is

1

1
tr O = i > ANl
deg f=n

The presence of A(f) means that the sum is over all monic prime powers.

6.3.1 Contribution of squares
If n is odd we have no contribution of squares. If n even, we have

1 n

O = -] — — 729
(eay = —1 = 5 +O(g) +0(a™)

but




so this brings to the same result of [Rud10], that is
(a,y=—1+ O( 5)+0(¢ ™).

So, considering both parities of n, when n > 3log, g the contribution of squares is
1
<Dn> = _nn(l + 0(5))

6.3.2 Contribution of primes

We see that .
n
Pu=—s s 3 xa(P).

n/2 n/2
q/ q/ deg P=n

We use the formula of subsection [6.2.2] in order to find that

Po= - et 5 % a3 (B)

deg P=n 20+ B8=2g+2 deg B=
a,3=0
from which we can deduce
n
<Pn> n/2 N (q _ 1)q29+1+n/2 Z O'n(Oé)S(ﬁ, n) (62)
2(1;[3522%4—2

Let us now assume n > g + 1. Then o,(a)) # 0 = o = 0,1 mod n, but sincea < g+1<n
this implies &« = 0,1. So, if n > g+ 1

n
(Pn) = n/2 - (g — 1)q2g+1+n/2(

S(2g + 2;n) — qS(2g;n)) (6.3)

This last two formulas will be very useful in the next section.

6.3.3 Bounding the contribution of primes

Consider first the case n < g + 1. In formula (6.2)) if S(8;n) # 0 then 8 < n (Lemma 6). For

those terms, we use the bound given in Lemma 8 when [ is even, that is

8
qn+§

[S(B;n)] «

so, if we also use the fact that o,(a) < 1 for all n = 0 and « > 0, we obtain

1 qn+ﬁ/2
<7Dn> = _W ( 2g+1+4+n/2 Z

B<n

o4



where we were allowed to cancel the term q%l because the absolute value of o‘an(al) is limited. So
1 n q" 8/2
B<n
N SO VAP |
qn/2 q— ]_
1 n—2g—1
=——+40 g
q? q—1
]' n—2g—1
= _W + O (q 9 )

But n < g + 1, so the error term tends to 0 if g tends to c0. So we have

1
n<g+landg—- o0 = <Pn>:_W+O(1)'

Moreover, if n > 3log, g, we get (P,) = o (é) when g — 0.
For the case g+ 1 < n < 2g + 1, we use formula (6.3)) and we know that

S(2g +2;n) = S(2g;n) = 0.

Then
1 :
<77n>=—m ifg+l<n<2g+1
(note that it tends to 0 if g tends to o).
If n =2g+ 1, then S(2g + 2;n) = 0 and from formula (4.2) of Proposition 7 in [Rud10] we
know

5(29:29 + 1) = my(29 + 1)¢’.
So, by using formula (6.3])
1 20+1

(Pr) = (Pags1) = =557 — (q = 1)gPr3P (—qmy(29 + 1)q7)

1 29 + 1
L%

[}
N

T (g g mal2g +1)
1 N 29 +1 _ng“ O 29+ 1
5 (@Dt 29 +1 (¢ —1)g
1 q1/2
q2g27+1 " q— 1 " (gq )
g
= 1 + 0 (gq g)
In case n > 2g + 1, we have
1 n

Next estimate is crucial to bound the contribution of primes for n > 2g + 1.
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Proposition 6.3.1. If 5 is even and 0 < f <n < 20 + 2 then

wm
(N1

S(Bin) = my(n)g? (1 —1.q>" %) + O(q") (6.5)
where n, =1 for n even and n, =0 for n odd.

Proof. First, let us consider the case in which n is even. We know, from Proposition 7 of [Rud10],
that, if n is even and 1 < 8 < n — 2, then

n—B8—
S(B;n) =q" 2<—S(n—1—ﬂ +(g—1) Z ) (6.6)

We note that in this case n — 1 — 3 is odd and, using lemma 8 of [Rud10], we have

n—1—70 3

n

S(n—1—p;n) « g2 1B« q2n1B,

Now, we need an estimate for
n—pB—
(¢—1) Z

In order to do this, we split the sum in the following way:

We have (again by lemma 8 of [Rud10])
n—pB—3 3
Z S(j;n) = Z S(2k + 1;n)

& 22 2k + 1qg+2k+1

<

¢




while for the other term

n—p—2 551
S(@in) = D, S(2kin)
j &ven k=0
%_g_l ]’C
2k »
=Y (ot o)
k=0
ﬂ_ﬁ_l 2—9—2
2 2 2 n — _ 2 "
= my(n) ¢ +0 Z b qz - ¢
k=0 k=0 n
n_8
qz 2 —1 n—p—-2 . ¢"P-1
= 7y(n) 1 —i—O( A Z 1
n B 3
gz"2 —1 q2"h

So, we obtain that

q+1 qg+1
= qu*% <7r (n)(q%*Q -1+ (q§"_5)>
4 q+1
= m(n)g® (1= 7 %) + O(q") (6.7)

Let us now consider the case in which n is odd. We know, from Proposition 7 of [Rud10] that,
if 5 is even, n is odd and 0 < § < n — 1, then

S(B:n) = ¢* T S(n—1 - Bin).

In this case n — 1 — [ is even, so

S(Bin) = qﬁi%l (Wq(n)qn_;_ﬁ + O(#qgﬂllﬁ))
~ im0 (Pt

é n
= q2mg(n) + O (q") (6.8)
If we put together formulas (6.7)) and we obtain the statement. O]

Let us now consider formula (6.4) when n is odd. In this case, we can use Proposition [6.3.]]
to see that

S(2g + 2;n) = 7, (n)¢? " + O(¢")
S(2g;n) = my(n)g? + O(¢").
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So, if we insert these terms in (6.4]), we have that the contribution of the main terms is

7a(m)a®*! = qry(n)g? = 0

and then we get
n

q
29+%

P,y «
(¢ —

4q
We can conclude that if n is odd and 2g +4 < n < 49 — 10log, g this contribution goes to zero
as g — 0.

"L ng? Y.

In the case when n is even, we see that

S(2g + 2;n) = me(n)g? (1 — ¢ 72) + O(q")
and
S(2g;n) = m(n)g*(1 — ¢*~2) + O(¢").
Then
S(2g + 2;n) — qS(2g;n) = 7, (n)g? (1 — g2 2) 4+ 0" — Te(n)g" (1 — @)+ O(q")
= ()" ("2 (1 - q)) + O(¢")
= my(n)g* ™72 (1 - ¢) + O(¢")

So, if we collect all these estimates together, we obtain

n
(Pp) = n/g RS (S(29 + 2;n) — ¢S(2g;n))
1 n

= —qn/Q o (q _ 1)q29+1+n/2 (Wq(n)q2g+1—%(1 - Q) + O(q'n,))
_ L m) (W”g 1)

and using the Prime Polynomial Theorem we get

2_2¢g—-1
ng?2
(Ppy = +1+O(q/2>+0<—q_1 )

But —qn% =0 (qn%) and the error terms go to zero when ¢ tends to infinity (we recall that
we are in the case n > 2¢). So, in the limit when g — oo when n is even, we have

<Pn>=1+o(§).

Finally, we can conclude that the contribution of primes in the case 2g+4 < n < 4g—101log, g
Py =m+o(s)
n) = Tln o\ —
g

o8

18

in the limit when ¢ goes to infinity.



6.3.4 The contribution of higher prime powers

For the family Ha,2, we can easily see that the contribution of odd powers of primes P¢, with
d > 1 odd, deg P? = n, is

H, = -~ |1+ 3oy gxh(Pd)

qQ
dln deg P=7
3<d odd

Since d is odd, |xn(P%)| = |xa(P)| and we use the simple bound |x;(P)| < 1. In this way we
have

q dln
3<d odd

1 n
L — d
3<d odd

n n
« 2
qE
= nq_

o3

Then |H,| is negligible when n goes to infinity and so it is the average (H,, ). This is the case

when n > log, g and g — oo. In particular we have H,, = o(é) if n > Tlog, g.

6.3.5 Conclusion of the proof

We saw that
(brOp) = <on) + (Prp + (Ha)

and we computed the contribution of the each single term. These are:

(on) = —a(1 + o%) +0(g7)),

—qn%—i—O(q’g), 0<n<2g+1
1/2 B

(P = %—1—0(9(]9, n=2+1
77n+0(nq%’29), 20+ 1<n

and

(H,) = O(ng"s).

The sum of the three contributions gives the statement of Theorem |6.1.1}
In particular, we have
—n Tlog,g<n<2g9+1
{trep) = = n=2g9+1 + 0(5).
0 29+4<n<4g—10log,g

that gives Corollary
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6.4 The number of points of a biquadratic curve over F»

Let K denotes any function field over F, and Sk the set of finite and infinite primes of K.
Recall the definition of the zeta-function associated to K:

=2 F=1la-1pr) (6.9)

FeK PGSK

Cr(w)

AR when K is a biquadratic function field of genus g (cf. Definition

We compute the quotient
5.2.1))

On one side, by Weil Theorem (Section , we know that
Pk (g™
CK(S) - 73( ) 1-s)’
(1=g=)1-q¢")
where Pg(u) 1= H] (1 — ayu) is a degree 2g polynomial in Z[u], a; 1= ,/qe’%5) for every
j =1,...,2g9 and 0 is the 2g x 2¢g matrix representing the Frobenius class Frobs of the

biquadratic curve C' associated to K.
It is well known that {c;};=1 2, are the eigenvalues of x and so we have that

29
tr o = ¢"/? Z Q.

Jj=1

-----

On the other side we can compute the quotient explicitly, using the Euler product of the
zeta-functions, i.e.

Gl pp Q=P 1P o 1P
MOPQJ%WﬂHQN—Wﬂnghwml

_ (1 —[P[7*)~2 (=[P~
PDSQZ (1—|P[ )" Pl;[ﬂ (1—|P])? (6.10)

where S,.4x is the subset of primes of Sy with a fixed ramification behavior (for example, a
prime in Si117 is a prime that splits completely).

Denote by fy, 7o respectively the inertia degree and the number of primes appearing in the
decomposition of the infinity prime of k inside the extension K. Then, after the usual change of
variable u = ¢~*, can be written in the more elegant way using L-functions (cf. [Ros02,
Chapter 4]): ,

St L L e o e ) (6.11)

Taking logarithmic derivatives of both expressions and , we obtain:

d
ud—(logL(u, XKl) + logL(u, XKQ) + IOgL(ua XK1XK2)) =

ZdegP Xr, (P)utee”

1_XK udegP

3o P (P! | o deg P o (P (P!
1 — X (P)utee? 1= X, (P)xic (P)ueeP

= degPE X, (P) + X', (P) + X, (P) X, (P))u s ?
PeSy,
(6.12)
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and

d 1—u d & —rouf” U 29 —Qu
U@ log (m) + u@ Z log(1 — ozju) = — + Z

1l—uf» 1—u 41— aju

So finally we have the following equality between power series:

> degPZ Xy (P) + Xy (P) + X, (P)X ey (P)) u" 45T = Z Zu —ZZM

PeSk n=1 j=1ln=1

(6.13)

Equaling the n-th coefficients of the series, we reach the following formula for n-th powers
of the Frobenius:

29(K)
"ty == D af =
j=1

Z deg P - (X%degP(P) + X%QdegP(P) + X}L(/ldegp(P)X}L{/QdegP(P)) +7re + 1.
deg P|n

We just proved the following fact:

Proposition 6.4.1. Let K be a biquadratic extension and let K, Ko, K3 be the three quadratic
subextensions of K. Let denote by Xk, the quadratic Dirichlet character associated to the ex-
tension K.

Then, for every integer n = 2, the trace of the n-th power of the Frobenius 0 satisfies the
following relation:

—q”/2 tréy =re + 1+ Z AF)xg, (F)

deg F'=n

+ Z A XK2 )
deg F'=n

+ Z A XKl )XK2 (F)
deg F'=n

where A denotes the von Mangoldt function

_ (degP if F =Pt
A(F) = { 0 otherwise

Thanks to this formula we can start to compute the average < tr % > on a given family of
biquadratic curves, asymptotically for g — co.

6.5 The family 5, 4, of biquadratic curves

In this section we introduce families of biquadratic curves on which it is quite natural to compute
the average of the traces of the Frobenius classes.
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Let By, 4, be the family of biquadratic curves over [F, whose affine model is given by equations

2 = hy(t
Ch1,h2 : {y; 1( )
Yy =

with hj, hy monic square-free polynomials over F, such that degh; = d;, deghy = dy and
hi # hs. Remembering that the number of square-free monic polynomials of degree d > 2 over
F, is (¢ — 1)g* ! we have that

_ 1)2qd1+d272

1+ 5d1d2

4By, =

where 94, 4, is the Kronecker delta. So, in particular, if d; # ds we have

#Bdl,d2 = (q - 1)2qd1+d272 (614)

6.5.1 The average of a function on 5, 4,

We can easily see that if a function .# is defined on the family By, 4,, then its average is
computed by the following formula:

(Fy=—— Y F(Cum)

#Bd17d2 Chyohy€Bdy o

With the same arguments used in [Rud10, Section 3.1] we see that

S N Y XN N NN wAA)FCap )

+B1=d1 2a2+P2=dz deg B1=[1 deg Ba=[2 deg A1=a1 deg A2=c3
(6.15)

We will see that when .7 (C,, p,) = tr 9&1 », the previous formula will simplify significantly.

6.6 Average of Traces of High Powers of the Frobenius
Class in the family By 294,42

We want to generalize Theorem 1 of [Rud10] to a given family of biquadratic extensions. To do
this, we will use also Theorem that we proved in Section [6.3]
From Proposition we know that

n T + 1
tI'@K = —O;ZT — n/2 Z A XKI )

deg F'=n

n/2 Z A XK2 )
deg F'=n

n/2 Z A XKl )XK2(F)
deg F'=n
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where the sum is over all prime powers because of the presence of A.
We use again the same idea of Rudnick and we split the sum in three contributions (plus a
constant term) as follows

Teo + 1

try = —
K qn/2

+ PK,n + UKn + HK,n-

In the right hand side, ’”;;j; is the constant term given by Proposition Pk is the
contribution of primes, ok, 1s the contribution of squares and Hp,, is the contribution of odd
prime powers.

Remember that K is the function field of a biquadratic curve Cj, 5, as we defined it in

Section [6.5 so we have:

The three subextensions of K are defined respectively by K : y? = hy(t), Ky : y? = ho(t) and
Ky :y? = hy(t) = f1(t) f2(t), following the notation of Theorem [5.2.4]

We can see that that at least one of the three subextensions of K is defined by a polynomial
of even degree, so, for simplicity, we compute the average of tr 0% in the family Bog, 1+224,+2-
The computations for odd degree hyperelliptic curves in the subextensions will be very similar.
Of course, g; and g, will be the genera of the two hyperelliptic curves defining the function
fields Ky and K, respectively. Moreover, we will suppose that g; < gs.

3

Contribution of squares
We compute first the contribution to the trace given by squares of prime powers. There is such

a contribution only when n is even.

OKn = _L Z A XK1 h2 Z A XKZ h2 Z A XKI )XKz(h‘2)

q"? deg h— deg h— deg h—
Now xx, (h?), xx,(h?) = 0,1, and ry, = 0, so
ogn <0
and

ZA

degh
the last equality coming from the fact that

D, A =4

deg f=n
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This says that the contribution of squares is bounded.
We can consider separately the average of the three summands of ok ,,. The first one is

<—qn—1/2 Z A(h)XK1 (h2)> _ _qi/z (q - 1)2q12(gl+92)+2 Z Z A(h)XKl(h2)

degh=7% CeBagy +2,2g9+2 degh=5

Z XK1 (h2)

h1€M2g, +2

1 1
= qn/Z( 2921 Z A(h Z (g — 1)1

degh=7% h2€’H292+2

So, by the results of subsection [6.3.1] if we let h = P* with P prime polynomial, we have

<—qn% > A(h)xKl<h2>>=—1+ > o

degh=7%

With the same kind of computations, we also prove that

<—qn% ) A<h>m<h2>>=—1+ > o,

degh=7%

The last term contributing to (o) is

<—q71/2 2 A<h>xKl<h2>xK2<h2>>=

degh=7%
. . S A (v (h?)
2(g1 24+ 2 1 2
(q—1)%q (91+g2)+2+75 CeBags 120y 12 deg I
1
- Z Ah )2q2 (1 +9)+2+5 Z Z Xy (W) xac, (1)
degh_, q h1€'H291+2 h2€H292+2
1 1 1
=——7 AW =g 2 xk(P) =g Y xw(h)
n/2 Z _ 2g1+1 1 _ 2g2+1 2
q degh=75 (q 1)q J h1€Hag, +2 (q 1)q ’ ho€Hagy+2
1 1 1
= —— A(P) (1 — + O(ngl)) (1 — + O(ngQ))
g2 degZP:'g |P|+ 1 |P|+1

=, 2 AP (1= [y + g + 06 )+ 0)

2 deg(P) 1 deg(P) s 9
- 1 91 92y
T Zn|P|+1 7 Zn(|p|+1)2+0(q )+ 0(g)
deg P|2 deg P| 5

So, when n is even,

B 4 deg(P) 1 deg(P) om g
<DK7n> =3+ n/2 Z . |P| +1 - qn/g Z . (|P| + 1)2 + O(q ) + O(q )
degP|§ degP|§
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and we can easily bound these terms as
(Bgny =—3+ O( ) +0(q ") +0(q ™).

If we let g; and gp go to infinity, for n » 3log, go we have
1
Corny = = (3+0))

Contribution of primes

We remind the reader that while we are averaging over the family Bag, 11,2¢,+2 We always suppose

g1 < g2
The contribution of primes to tr ©% is

,Pn:_L< Z XK1(P)+ Z XK2(P)+ Z XKl(P)XK2(P)>'

qn/2
deg P=n deg P=n deg P=n

We consider separately the three terms of this contribution, as we did before with the squares.

The first one is
n
<_W Z XKl(P)> =
deg P=n

n 1
- T2 (g — 122l te) 42 Z Z Xx: (P)

q CeBzgy 12,299 +2 deg P=n
1

= _q:n (q — 1)2q2(91+2)+2 Z Z Z X (P

hle’Hzgl +2 h2€7’[2g1 +2 deg P=n

q
n 1 Bl 1
T e D VD VRLACUEDY (?)W 2 1

deg P=n 2a1+£1=2g1+2 deg B1=01 ho€Hogy+2
By
e NN e 3 (B
degP n 201+ PB1=2g1+2 deg B1=p1

where we use the notation introduced in section [6.2] Notice that this last term is formula ([6.2)
for g = g1. Then, like in that case, if n > ¢g; + 1 we can simplify this formula as

<_q”% Z XKl(P)> = _(q — 1)ngl+1+n/2 (S(2g1 + 2;n) — qS(2g1;n))

deg P=n

At this point it is easy to see that the second term of (P, is

(g 3 weln)) -ty 3% e 3 ().

deg P=n (q deg P=n2as+B2=2g2+2 deg Bo=
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When n > 2g, + 2 it becomes

<—# D XK (P)> T 1)q292+1+n/2 (S(22 + 2;n) — ¢S(292;m)).

deg P=n

Finally, we have to consider the third term:

<—# > xK1<P>sz<P>>=

deg P=n

n 1

- _qn/Q (q — 1)2¢2(91+92)+2 Z Z X1 (P) X, (P)

CEBle +2,299+2 deg P=n

n 1
B _qn/2 (q — 1)2¢*lor+g2)+2 Z Z Z X (P)xx, (P)

h1€Hag, +2 h2€Hag, +2 deg P=n

- _q:ﬂ (q- 1;q291“ 2, 2, onlen) ) (%) |

deg P=n 2a1+81=2g1+2 deg B1=01
1 B,
(g — D)g2eet1 Z on(az) Z (F)
202+ B2=2g2+2 deg B2=032

6.7 A new sum of characters

We see that there is something new to compute in order to estimate the contribution of primes.
For hyperelliptic curves it was enough to define the double sums

som= ¥ % (3)

deg P'=n deg B=B.
P prime B 1monic

For biquadratic extensions we have to understand something that is more complicated. This
is the following double sum:

wa- 3 2 () 2 )

deg P.:n deg B1=p31
P prime B; monic B> IMONIC

This is what we get in the last two lines of the estimate of <—qn% Ddeg P=n XKl(P)XKg(P)>~

If we want to average the trace of Frobenius classes in the given family, it seems necessary
to write an expression for double sums like S (B1, B2;m). At the moment, we cannot compute
these double sums, but if we will be able to solve this problem, we are convinced that there are
not going to be other major obstacles.
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