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Notations:

• Given a differentiable function F : Rn → R, we shall denote by ∂m
j = ∂m

xj
the m-th derivative of

F with respect to the j-th argument i.e. for m ≥ 1

∂m
j F := ∂m

xj
F =

∂mF

∂xm
j

,

while m = 0 has to be interpreted as ∂0
xj

F = F . If n = 1 we shall write also F ′(x) = ∂1F (x).

• Given a finite set S we denote with |S| its cardinality.

• We set Z+ := N ∪ {0} and Zd
∗ := Zd \ {0}.

• We denote by · the standard scalar product in Rd, i.e. x · y = x1y1 + . . . + xdyd for x,y ∈ Rd.

• Given a vector x ∈ Rd we set |x| := ‖x‖1 = |x1| + . . . + |xd|.

• Given a complex number z ∈ C we shall denote by z∗ its complex conjugate.

• We denote by 1 the 2 × 2 identity matrix.

• The sums and the products over empty sets have to be considered as 0 and 1, respectively.

• Given x0 ∈ R and an interval (a, b) ⊂ R such that x0 ∈ (a, b), we call half-neighbourhood of x0

each of the two intervals (a, x0) and (x0, b).

• Further notations will be introduced when needed.
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Introduction

Melnikov theory studies the fate of homoclinic and periodic orbits of two-dimensional dynamical

systems when they are periodically perturbed; see for instance [19, 46] for an introduction to the

subject. The problem can be stated as follows. Consider in R2 a dynamical system of the form




ẋ = f1(x, y) + εg1(x, y, t),

ẏ = f2(x, y) + εg2(x, y, t),
(1)

with f1, f2, g1, g2 ‘sufficiently smooth’, g1 and g2 periodic in t and ε a small parameter, called the

perturbation parameter. If f1 = ∂yh and f2 = −∂xh, for a suitable function h, the unperturbed system

is Hamiltonian. Assume that for ε = 0 the system (1) admits a homoclinic orbit u1(t) to a hyperbolic

saddle point p, and that the bounded region of the phase space delimited by γ := {u1(t) : t ∈ R}∪ {p},

is filled with a continuous family of periodic orbits uδ(t), δ ∈ (0, 1), whose periods tend monotonically

to ∞ as δ → 1; see Figure 1. Because of the assumptions, it is easy to see (as an application of the

implicit function theorem) that for ε *= 0 small enough, the system (1) admits a hyperbolic periodic

orbit ũ(t, ε) = p + O(ε); then one can ask whether the stable and unstable manifolds of ũ(t, ε) intersect

transversely (in turn if this happens it can be used to prove that chaotic motions occur). Another natural

question is what happens to the periodic orbits uδ(t) when ε *= 0. In particular one can investigate

under which conditions ‘periodic orbits persist’, that is there are periodic orbits which are close to the

unperturbed ones and reduce to them when the perturbation parameter is set equal to zero. If such

orbits exist, they are called subharmonic or resonant orbits.
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Figure 1: The phase portrait of the unperturbed system: one has supt∈R infq∈γ |uδ(t)−q| → 0 as δ → 1 and supt∈R |uδ(t)−

p0| → 0 as δ → 0. If Tδ is the period of uδ(t) one has dTδ/dδ > 0.

Both the existence of transverse intersections of the stable and unstable manifolds of ũ(t, ε) and the

persistence of periodic orbits are related to the zeroes of suitable functions. More precisely if one define

the Melnikov function as

M(t0) :=

∫ ∞

−∞
dt
(
f2(u1(t − t0))g2(u1(t − t0), t) − f1(u1(t − t0))g1(u1(t − t0), t)

)
, (2)

then if M(t0) has simple zeroes, then the stable and unstable manifolds of ũ(t, ε) intersect transversely,

while if M(t0) *= 0 for all t0 ∈ R, no intersection occurs; essentially M(t0) measures the distance between

the two manifolds along the normal to the homoclinic orbit at u1(t0).

Concerning the periodic orbits, if the period Tδ of uδ(t) is not commensurable with the period T of

the functions g1, g2, such an orbit will not persist under perturbations. Otherwise, set Tδ = mT/n and

define the (subharmonic) Melnikov function as

Mm/n(t0) :=

∫ mT

0
dt
(
f2(uδ(t − t0))g2(uδ(t − t0), t) − f1(uδ(t − t0))g1(uδ(t − t0), t)

)
. (3)

If Mm/n(t0) has a simple zero then (1) admits a subharmonic orbit u(t, ε) with period mT ; in particular,

if the functions f1, f2, g1, g2 are analytic, then u(t, ε) is analytic in both ε and t. If there are no zeroes

at all, no periodic solution persists.

The proof of the two claims above is rather standard, and it is essentially based on the application

of the implicit function theorem. A possible approach for the case of subharmonic orbits consists in

splitting the equations of motion into two separate set of equations, the so-called range equations and

bifurcation equations: one can solve the range equations in terms of the free parameter t0 and then fix

the latter by solving the bifurcation equations, which represent an implicit function problem.
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Note that the assumption that the zeroes of the Melnikov functions are simple corresponds to a

(generic) non-degeneracy condition on the perturbation. When the zeroes are not simple, the situation

is slightly more complicated. In the case of subharmonic orbits, the same result of persistence extends

to the more general cases of “topological non-degeneracy”, i.e. the existence of an isolated minimum

or maximum of the primitive of the Melnikov function [2], which in turn imply the existence of a zero

of odd order for the Melnikov function, and interesting new analytical features of the solutions appear

[3, 44, 21]; indeed the subharmonic solutions turn out to be analytics in a suitable fractional power of

ε rather than ε itself. On the other hand if the zeroes are of even order one cannot predict a priori the

persistence of periodic orbits. Finally, if the Melnikov function is identically zero, one has to consider

higher order generalisations of it and study the existence and multiplicity of their zeroes to deal with

the problem.

If one considers a quasi-periodic perturbation instead of a periodic one, i.e. gk(x, y, t) = Gk(x, y,ωt),

with Gk : R2 × Td → R2 and ω ∈ Rd, d ≥ 2, one can still ask whether there exist hyperbolic sets run

by quasi-periodic solutions with stable and unstable manifolds which intersect transversely and one can

still study the existence of quasi-periodic solutions which are “resonant” with the frequency vector ω of

the perturbation; see below – after (4) – for a formal definition of resonant solution for quasi-periodic

forcing.

Also in the quasi-periodic case, non-degeneracy assumptions are essential to prove transversality of

homoclinic intersections. Existence of a quasi-periodic hyperbolic orbit close to the unperturbed saddle

point and of its stable and unstable manifolds follows from general arguments, such as the invariant

manifold theorem [29, 47], without even assuming any condition on the frequency vector ω. Palmer

generalises Melnikov’s method to the case of bounded perturbations [58] using the theory of exponential

dichotomies [20]. A suitable generalisation of the Melnikov function for quasi-periodic forcing is also

introduced by Wiggins [68]. He shows that if such a function has a simple zero then the stable and

unstable manifolds intersect transversely. Then, generalising the Smale-Birkhoff homoclinic theorem

to the case of orbits homoclinic to normally hyperbolic tori, he finds that there is an invariant set on

which the dynamics of a suitable Poincaré map is conjugate to a subshift of finite type; in turn this

yields the existence of chaos. Similar results hold also for more general almost periodic perturbations

(which include the quasi-periodic ones as a special case): Meyer and Sell show that also in that case

the dynamics near transverse homoclinic orbits behaves as a subshift of finite type [54] and Scheurle,

relying on Palmer’s results, finds particular solutions which have a random structure [62]; again, to

obtain transversality the Melnikov function is assumed to have simple zeroes. Such assumption can be

weakened to an assumption of “topological non-degeneracy” (i.e. the existence of an isolated maximum

or minimum of the primitive of the Melnikov function) as in the case of subharmonic orbits, and one
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can deal with the problem by use of a variational approach; see for instance [24, 63, 1, 10].

A natural application for the study of homoclinic intersections, widely studied in the literature, is the

quasi-periodically forced Duffing equation [67, 54, 70]. Often, especially in applications, the frequency

vector is taken to be two-dimensional, with the two components which are nearly resonant with the

proper frequency of the unperturbed system (see for instance [70, 7] and references therein). Then a

different approach with respect to [68] is proposed by Yagasaki [70]: first, through a suitable change

of coordinates, one arrives at a system with two frequencies, one fast and one slow, and then one uses

averaging to reduce the analysis of the original system to that of a perturbation of a periodically forced

system for which the standard Melnikov’s method applies: the persistence of hyperbolic periodic orbits

and their stable and unstable manifolds for the original system is then obtained as a consequence of

the invariant manifold theorem. Transversality of homoclic intersections plays also a crucial role in the

phenomenon of Arnold diffusion [4, 52]: non-degeneracy assumptions on the perturbation are heavily

used in the proofs existing in the literature (see e.g. [27, 36, 26]) in order to find lower bounds on the

transversality, which in turn are fundamental to compute the diffusion times along the heteroclinic chains

(see e.g. [13, 32, 12, 9, 66]). A physically relevant case, studied within the context of Arnold diffusion,

is that with frequency vectors with two fast components [27, 36, 65] or with one component much faster

and one component much slower than the proper frequency (‘three scale system’) [37, 38, 11, 60]. In

such cases the homoclinic splitting is exponentially small in the perturbation parameter and this makes

the analysis rather delicate, as one has to check that the first order contribution to the splitting (the

Melnikov function) really dominates; in particular non-degeneracy conditions on the perturbation are

needed once more.

The problem of existence of quasi-periodic orbits close to the center of the unperturbed system is

harder and does not follow from the invariant manifold theorem. Second-order approximations for the

quasi-periodic solutions close to the centers of a forced oscillator are studied in [7], using the multiple

scale technique for asymptotic expansions [57, 48]. But if one wants to really prove the existence of

the solution, one must require additional assumption on ω to deal with the presence of small divisors.

In [55], Moser considers Duffing’s equation with a quasi-periodic driving term and assumes that (i) the

system is reversible, i.e. it can be written in the form ẋ = f(x), with f : Rn → Rn, and there exists

an involution I: Rn → Rn such that f(Ix) = −If(x) (so that with x(t) also Ix(−t) is a solution), and

(ii) the frequency vector of the driving satisfies some Diophantine condition involving also the proper

frequency of the unperturbed system linearised around its center. Then he shows that there exists a

quasi-periodic solution, with the same frequency vector as the driving, to a slightly modified equation,

in which the coefficient of the linear term is suitably corrected. If one tried to remove the correction

then one should deal with an implicit function problem (see [6] for a similar situation), which, without
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assuming any non-degeneracy condition on the perturbation, would have the same kind of problems as in

the present thesis. Quasi-periodically forced Hamiltonian oscillators are also considered in [16], where

the persistence of quasi-periodic solutions close to the centers of the unperturbed system is studied,

including the case of resonance between the frequency vector of the forcing and the proper frequency.

However, again, non-degeneracy conditions are assumed.

On the contrary the problem of persistence of quasi-periodic solutions far from the stationary points,

corresponding to the subharmonic solutions of the periodic case, does not seem to have been studied

a great deal (we can mention a paper by Xu and Jing [69], who consider Duffing’s equation with a

two-frequency quasi-periodic perturbation and follow the approach in [70] to reduce the analysis to

a one-dimensional backbone system; however the argument used to show the persistence of the two-

dimensional tori is incomplete and requires further hypotheses). Again the existence of resonant solutions

is related to the zeroes of a suitable function, still called Melnikov function by analogy with the periodic

case. If the zeroes are simple, assuming some Diophantine condition on ω, the analysis can be carried

out so as to reach conclusions similar to the periodic case, that is the persistence of resonant solutions.

In this thesis we study the problem of the persitence of resonant solutions in the case of zeroes of

odd order and additionally investigate what can still be said when the Melnikov function is identically

zero. As remarked before, considering non-simple zeroes means removing non-degeneracy – and hence

genericity – conditions on the perturbation. This introduces nontrivial technical complications, because

one is no longer allowed to separate the small divisor problem plaguing the range equations from the

implicit function problem represented by the bifurcation equations.

This thesis continues and extends the analysis started in [22], where more special systems were con-

sidered. The method we use is based on the analysis and resummation of the perturbation series through

renormalisation group techniques [33, 39, 45, 34, 40, 41]; for other renormalisation group approaches

to small divisors problems in dynamical systems see for instance [15, 50, 53, 49, 51]. As in [22], the

frequency vector of the perturbation will be assumed to satisfy the Bryuno condition; such a condition,

originally introduced by Bryuno [17], has been studied recently in several small divisor problems arising

in dynamical systems [40, 53, 59, 41, 42, 51] and its relevance is related to the possibility of describing

properties of the analyticity domain, such as the radius of convergence, of the solutions in terms of

the Bryuno function (1.1.3); this has been explicitly showed in some simple cases, such as the Siegel

problem [71], the semistandard map [25] and the standard map [8].

With respect to [22], we consider here also non-Hamiltonian systems: what is required on the

unperturbed system is a non-degeneracy condition on the frequency map of the periodic solutions

(anisochrony condition). In the Hamiltonian case, such a condition becomes a convexity condition on

the unperturbed Hamiltonian function, analogously to Cheng’s paper [18], where the fate of resonant
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tori is studied without imposing any non-degeneracy condition on the perturbation. In the Hamiltonian

case, the main difference with respect to [18] – and what prevents us from simply relying on that result –

is that we consider isochronous perturbations (while in [18] the unperturbed Hamiltonian is convex in all

action variables) and assume a weaker Diophantine condition on the frequency vector of the perturbation

(the Bryuno condition instead of the standard one). Furthermore, as we said, our method covers also

the non-Hamiltonian case, where Cheng’s approach, based on a sequence of canonical transformations à

la KAM, does not apply. Finally, in the Hamiltonian “completely degenerate” case (see Hypothesis 3)

we are able to prove the existence of a continuum of resonant solutions, which turn out to be analytic in

the perturbation parameter. In the Hamiltonian case, we do not require any further assumption on the

perturbation (besides analyticity), as in [18]. In the non-Hamiltonian case we shall make some further

assumptions. More precisely we shall require that some zeroes of odd order appear at some level of

perturbation theory and a suitable positiveness condition holds; see § 1.1 – in particular Hypothesis 4

– for a more formal statement.

Of course, one could also investigate what happens if the non-degeneracy condition on the unper-

turbed system is completely removed too. However, this would be a somewhat different problem and

very likely a non-degeneracy condition could become necessary for the perturbation. Not even in the

KAM theory for maximal tori, the fully degenerate case (no assumption on the unperturbed integrable

system and no assumption on the perturbation, besides analyticity) has ever been treated in the litera-

ture – as far as we know.

The thesis is organised as follows. We consider systems of the form (1) and assume that for ε = 0

there is a family of periodic solutions satisfying the same hypotheses as in the case of periodic forcing.

In particular we assume that, in suitable coordinates (β, B) ∈ T× B, with B an open subset of R, the

unperturbed system reads




β̇ = ω0(B),

Ḃ = 0,
(4)

with ω0 analytic and ∂Bω0(B) *= 0 (anisochrony condition) As a particular case we can consider that

(B,β) are canonical coordinates (action-angle coordinates), but the formulation we are giving here is

more general and applies also to non-Hamiltonian unperturbed systems; see also [5, 44]. Then we add to

the vector field a small analytic quasi-periodic forcing term with frequency vector ω = (ω1, . . . ,ωd) which

satisfy some weak Diophantine condition (Bryuno condition) and concentrate on a periodic solution of

the unperturbed system which is resonant with ω, that is a solution with B = B0 such that ω(B0)ν0 =

ω1ν1+. . .+ωdνd for suitable integers ν0, ν1, . . . , νd. In § 1.1 we state formally our two main results on the

persistence of such solution: Theorem 1.1.1 deals with the case in which the Melnikov function vanishes
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identically and the system is Hamiltonian, while Theorem 1.1.2 takes into account the case in which the

perturbation is not Hamiltonian but a zero of odd order appear at some order of perturbation theory.

In § 1.2 we shall sketch our strategy for the proof of the two Theorems above and we shall see that a

result in the same spirit of [18] (that is the existence of a quasi-periodic solution in the Hamiltonian

case, without assumptions on the perturbation besides smallness and analyticity; see Theorem 1.2.1)

follows as a corollary of Theorems 1.1.1 and 1.1.2. In § 1.3 we shall introduce some notions from graph

theory which will be used in order to prove both Theorems 1.1.1 and 1.1.2.

In Chapter 2 we shall prove Theorem 1.1.1. In particular we shall see how the Hamiltonian structure

of the equations of motion is fundamental in order to prove that suitable “cancellations” occur in the

perturbative series formally defining the solution. In turn this will imply the convergence of such a

series and hence the existence of the solution and its analyticity in the perturbation parameter. The

“cancellation mechanism” turns out to be quite similar to the one performed in [23], where Moser’s

modifying terms theorem [56] (see [6] for a review with our formalism) is proved in Cartesian coordinates

instead of action-angle coordinates. It would be interesting to understand the deep reason of such a

similarity.

In Chapter 3 we shall prove Theorem 1.1.2. As we shall see, the quasi-periodic solution will be only

continuous in the perturbation parameter. In fact, in contrast to the case of periodic perturbations, the

quasi-periodic solution is not expected to be analytic in ε nor in some fractional power of ε; already in

the non-degenerate (Hamiltonian) case the solution has been proved only to be C∞ smooth in ε [33],

and analyticity is very unlikely. However under the only Hypotheses of Theorem 1.1.2, no more than

continuity in ε can be proved.

A crucial role in both the proofs of Theorems 1.1.1 and 1.1.2 will be played by remarkable identities

between classes of diagrams; see Lemmas 2.3.3 and 3.3.8. By exploiting the analogy of the method with

the techniques of quantum field theory, one can see the solution as the one-point Schwinger function of

a suitable Euclidean field theory – this has been explicitly shown in the case of classical KAM theorem

[35]. Then the identities between diagrams, that we prove and use, can be conjectured to reflect suitable

Ward identities of the field theory symmetries also in the present case, as it has been pointed out in the

case of classical KAM theorem [15]. It would be interesting to confirm the expectation and to determine

the Ward identity explicitly.
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1. Main results

In this Chapter we shall state precisely our results and give a sketch of their proofs. Moreover we

shall introduce the basic notions from graph theory, which will be used throughout the thesis.

1.1 Statement of the results

Let us consider the ordinary differential equation




β̇ = ω0(B) + εF (ωt,β, B),

Ḃ = εG(ωt,β, B),
(1.1.1)

where (β, B) ∈ T × B, with B an open subset of R, F,G : Td+1 × B → R and ω0 : B → R are

real-analytic functions, ω ∈ Rd with d ≥ 2 and ε is a (small) real parameter called the perturbation

parameter ; hence the perturbation (F,G) is quasi-periodic in t with frequency vector ω. Without loss

of generality we can assume that ω has rationally independent components. Take the solution for the

unperturbed system given by (β(t), B(t)) = (β0 + ω0(B0)t, B0), with B0 such that ω0(B0) is resonant

with ω, i.e. such that there exists (ν0,ν) ∈ Zd+1 for which ω0(B0) ν0 + ω · ν = 0. We want to study

whether for some value of β0, that is for a suitable choice of the initial phase, such a solution can be

continued under perturbation.

The resonance condition between ω0(B0) and ω yields a “simple resonance” (or resonance of order

1) for the vector (ω0(B0),ω). The main assumptions on (1.1.1) are a Diophantine condition on the

frequency vector of the perturbation and a non-degeneracy condition on the unperturbed system. More

precisely we shall require that the vector (ω0(B0),ω) satisfies the condition

∑

n≥0

1

2n
log
(

inf
(ν0,ν)∈Zd+1

(ν0,ν)∦(ν0,ν),0<|(ν0,ν)|≤2n

|ω0(B0)ν0 + ω · ν|
)−1

< ∞ (1.1.2)

and that ω′
0(B0) *= 0.

Up to a linear change of coordinates, we can (and shall) assume ω0(B0) = 0, so that the vector ν,

such that ω0(B0) ν0 + ω ·ν = 0, must be the null vector. Therefore it is not restrictive to formulate the

1
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assumptions on B0 and ω as follows.

Hypothesis 1. ω0(B0) = 0 and ω satisfies the Bryuno condition B(ω) < ∞, where

B(ω) =
∑

n≥0

1

2n
log

1

αn(ω)
, αn(ω) = inf

ν∈Zd

0<|ν|≤2n

|ω · ν|. (1.1.3)

Hypothesis 2. For B0 as in Hypothesis 1 one has ω′
0(B0) *= 0.

Note that if ω satisfies the standard Diophantine condition |ω · ν| ≥ γ|ν|−τ for all ν ∈ Zd
∗, then it

also satisfies the Bryuno condition, since αm(ω) ≥ γ2−mτ in that case.

Let us write

F (ψ,β, B) =
∑

ν∈Zd

eiν·ψFν(β, B), G(ψ,β, B) =
∑

ν∈Zd

eiν·ψGν(β, B), (1.1.4)

and note that, since F and G are real-valued functions, one has

F−ν(β, B) = Fν(β, B)∗, G−ν(β, B) = Gν(β, B)∗. (1.1.5)

By analogy with the periodic case, the function Γ(1)
0

(β) := G0(β, B0) will be called the first order

Melnikov function.

We look for a quasi-periodic solution to (1.1.1) with frequency vector ω, that is a solution of the

form (β(t), B(t)) = (β0 + b(t), B0 + B̃(t)), with

b(t) =
∑

ν∈Zd
∗

eiν·ωtbν, B̃(t) =
∑

ν∈Zd
∗

eiν·ωtBν. (1.1.6)

Of course the existence of a quasi-periodic solution with frequency ω in the variables in which

ω0(B0) = 0 implies the existence of a quasi-periodic solution with frequency resonant with ω in terms

of the original variables (that is, before performing the change of variables leading to ω0(B0) = 0).

If we set Φ(t) := ω0(B(t)) + εF (ωt,β(t), B(t)) and Γ(t) = εG(ωt,β(t), B(t)), and write

Φ(t) =
∑

ν∈Zd

eiν·ωtΦν, Γ(t) =
∑

ν∈Zd

eiν·ωtΓν, (1.1.7)

in Fourier space (1.1.1) becomes

(iω · ν)bν = Φν, ν *= 0, (1.1.8a)

(iω · ν)Bν = Γν, ν *= 0, (1.1.8b)

Φ0 = 0, (1.1.8c)

Γ0 = 0. (1.1.8d)

2



1.1 Statement of the results

According to the usual terminology, we shall call (1.1.8a) and (1.1.8b) the range equations, while

(1.1.8c) and (1.1.8d) will be referred to as the bifurcation equations.

We start by looking for a formal solution (β(t), B(t)), with

β(t) = β(t; ε,β0) = β0 +
∑

k≥1

εkb(k)(t;β0) = β0 +
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb(k)
ν (β0),

B(t) = B(t; ε,β0) = B0 +
∑

k≥1

εkB(k)(t;β0) = B0 +
∑

k≥1

εk
∑

ν∈Zd

eiν·ωtB(k)
ν (β0)

(1.1.9)

and set U(t) := ω0(B(t)) − ω′
0(B0)(B(t) − B0) and φ(t) = U(t) + εF (ωt,β(t), B(t)). Then define

recursively for k ≥ 1

b(k)
ν (β0) =

1

(iω · ν)
φ(k)

ν (β0) +
ω′

0(B0)

(iω · ν)2
Γ(k)

ν (β0), ν *= 0

B(k)
ν (β0) =

1

(iω · ν)
Γ(k)

ν (β0), ν *= 0

B(k)
0

(β0) = −
1

ω′
0(B0)

φ(k)
0

(β0),

(1.1.10)

where we denoted Γ(k)
ν (β0) = [G(ωt,β(t), B(t))](k−1)

ν and φ(k)
ν (β0) = [U(t)](k)

ν + [F (ωt,β(t), B(t))](k−1)
ν ,

with U (1)
ν (β0) = 0, so that Γ(1)

ν (β0) = Gν(β0, B0) and φ(1)
ν (β0) = Fν(β0, B0), while, for k ≥ 2,

[U(t)](k)
ν =

∑

s≥2

1

s!
∂s

Bω0(B0)
∑

ν1+...+νs=ν
νi∈Zd, i=1,...,s

∑

k1+...+ks=k,
ki≥1

s∏

i=1

B(ki)
νi (β0), (1.1.11)

and

[P (ωt,β(t), B(t))](k−1)
ν =

∑

s≥1

∑

p+q=s

∑

ν0+...+νs=ν
ν0,νj∈Zd j=p+1,...,s

νi∈Zd
∗, i=1,...,p

1

p!q!
∂p

β∂q
BPν0(β0, B0) ×

×
∑

k1+...+ks=k−1,
ki≥1

p∏

i=1

b(ki)
νi (β0)

s∏

i=p+1

B(ki)
νi (β0), P = F,G.

(1.1.12)

As we shall prove in Chapter 2 – see Lemma 2.1.3 –, the series (1.1.9), with the coefficients defined

as above and arbitrary β0, turn out to be a formal solution of (1.1.8a)-(1.1.8c): the coefficients b(k)
ν (β0),

B(k)
0

(β0) and B(k)
ν (β0) are well defined for all k ≥ 1 and all ν ∈ Zd

∗, and solve (1.1.8a)-(1.1.8c) order

by order; moreover the functions b(k)(t;β0) and B(k)(t;β0) are analytic and quasi-periodic in t with

frequency vector ω.
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Note that if there exists k0 ≥ 1 such that Γ(k)
0

(β0) ≡ 0 for all k < k0, then the series (1.1.9) with

the coefficients b(k)
ν , B(k)

ν defined as in (1.1.10) solve the equations of motion up to order k0 − 1 and

moreover Γ(k0)
0

is a well-defined function of β0.

Assume first that the system (1.1.1) is Hamiltonian, i.e. there exists a function

H(α,β,A, B) := ω · A + h(B) + εf(α,β, B), (1.1.13)

where (α,β) ∈ Td+1 and (A, B) ∈ Rd × B, with B an open subset of R, are canonically conjugate

(action-angle) variables and the functions f : Td+1 × B → R and h : B → R are real-analytic and

such that ω0(B) = ∂1h(B), ∂Bf(α,β, B) = F (α,β, B) and −∂βf(α,β, B) = G(α,β, B), so that the

corresponding Hamilton equations for the variables (β, B) are given by





β̇ = ω0(B) + ε∂Bf(ωt,β, B),

Ḃ = −ε∂βf(ωt,β, B),
(1.1.14)

which are exactly of the form (1.1.1).

Hypothesis 3. One has Γ(k)
0

(β0) := [−∂βf(β, B)](k−1)
0

≡ 0 for all k ≥ 1.

Then we shall prove the following result.

Theorem 1.1.1. Consider the system (1.1.14) and assume Hypotheses 1, 2 and 3. Then the series

(1.1.9) are convergent for ε small enough.

Next we consider the more general system (1.1.1) and we assume that there exists k0 ∈ N such that

all functions Γ(k)
0

(β0) are identically zero for 0 ≤ k ≤ k0 − 1, while Γ(k0)
0

(β0) is not identically vanishing.

Again, by analogy with the periodic case, we shall call the function Γ(k0)
0

(β0) the k0-th order Melnikov

function.

Hypothesis 4. There exist k0 ∈ N and β0 such that Γ(k)
0

(β0) vanish identically for k < k0 and β0 is a

zero of order n̄ for Γ(k0)
0

(β0), with n̄ odd. Moreover one has εk0ω′
0(B0)∂n̄

β0
Γ(k0)

0
(β0) > 0.

Then we shall prove the following result.

Theorem 1.1.2. Consider the system (1.1.1) and assume Hypotheses 1, 2 and 4 to be satisfied. Then

for ε small enough there exists at least one quasi-periodic solution (β(t), B(t)) with frequency vector ω

such that (β(t), B(t)) → (β0, B0) for ε → 0.
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1.2 Remarks about the results and sketch of their proofs

Quasi-periodic solutions to (1.1.14) with frequency vector ω describe lower-dimensional tori (d-

dimensional tori for a system with d + 1 degrees of freedom). Such tori are parabolic in the sense that

the “normal frequency” vanishes for ε = 0. Theorems 1.1.1 and 1.1.2 imply the following result.

Theorem 1.2.1. Consider the system (1.1.14) and assume Hypotheses 1 and 2 to be satisfied. Then

for ε small enough there exists at least one quasi-periodic solution (β(t), B(t)) with frequency vector ω.

Proof. If all the coefficients Γ(k)
0

= −[∂βf ](k−1)
0

vanish identically for all k ≥ 1 we simply apply Theorem

1.1.1. Otherwise there exists k0 ≥ 1 such that all the coefficients Γ(k)
0

(β0) vanish identically for all

k < k0 while Γ(k0)
0

(β0) is not identically zero and hence we can solve the equations of motion up to order

k0 without fixing the parameter β0. Moreover one has Γ(k0)
0

(β0) = ∂β0g
(k0)(β0) with

g(k0)(β0) := [B ḃ](k0)
0

− [h(B0 + B + B(k0))](k0)
0

− [f(ωt,β0 + b,B0 + B)](k0−1)
0

,

because, if we denote

b =
k0−1∑

k=1

b(k), B =
k0−1∑

k=1

B(k).

one has

∂β0 [f(ωt,β0 + b,B0 + B)](k0−1)
0

= [∂βf(ωt,β0 + b,B0 + B)(1 + ∂β0b)]
(k0−1)
0

+ [∂Bf(ωt,β0 + b,B0 + B)∂β0B](k0−1)
0

= −Γ(k0)
0

− [Ḃ∂β0b]
(k0)
0

+ [ḃ∂β0B](k0)
0

− [ω0(B0 + B + B(k0))∂β0(B + B(k0))](k0)
0

= −Γ(k0)
0

+ ∂β0[B ḃ](k0)
0

− ∂β0 [h(B0 + B + B(k0))](k0)
0

.

Since g(k0) is analytic and periodic, and then it has at least a maximum β′
0 and a minimum β′′

0 . Then

Hypothesis 4 holds. Indeed, if εk0ω′
0(B0) > 0 one can choose β0 = β′′

0 , while if εk0ω′
0(B0) < 0 one

can choose β0 = β′
0 and hence in both cases Hypothesis 4 is satisfied. Therefore the existence of a

quasi-periodic solution with frequency vector ω follows from Theorem 1.1.2.

Theorem 1.2.1 can be seen as the counterpart of Cheng’s result [18] in the case in which all “proper

frequencies” are fixed (isochronous case) and the perturbation does not depend on the actions conjugated

to the “fast angles” (otherwise one should add a correction like in [56]); moreover, with respect to [18],

a weaker Diophantine condition is assumed on the proper frequencies.

The proofs of Theorems 1.1.1 and 1.1.2 are organised as follows.
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We first introduce a convenient graphical representation for the coefficents b(k)
ν (β0), B

(k)
ν (β0) in

(1.1.10) and we shall use it in order to prove that they are well defined.

Then we shall see that, under Hypothesis 3 and if the system is Hamiltonian, there are some suitable

“cancellations” which will yield the convergence of the series (1.1.9), so that Theorem 1.1.1 will follow.

On the other hand we are not able to prove the same “cancellations” for the system (1.1.1) without

Hypothesis 3 and the assumption that the system is Hamiltonian. Hence, in order to prove Theorem

1.1.2, besides the system (1.1.8) we shall consider first the system described by the range equations

(iω · ν)bν = Φν, ν *= 0, (1.2.1a)

(iω · ν)Bν = Γν, ν *= 0, (1.2.1b)

i.e. with no condition for ν = 0, and we shall prove that, if some further conditions (to be specified

later on) are found to be satisfied, it is possible to find, for ε small enough and arbitrary β0, B0, a

solution

(β0 + b(t), B0 + B̃(t)), (1.2.2)

to the system (1.2.1), with b(t) and B̃(t) as in (1.1.6) depending on the free parameters ε,β0, B0; such

a solution is obtained via a ‘resummation procedure’, starting from the formal solution of the range

equations (1.2.1). The conditions mentioned above can be illustrated as follows. The resummation

procedure turns out to be well-defined if the small divisors of the resummed series can be bounded

proportionally to the square of the small divisors of the formal series. However, it is not obvious at all

that this is possible, since the latter are of the form (iω · ν)−1 with ν ∈ Zd
∗, while the small divisors of

the resummed series are of the form (det((iω ·ν)1−M[n](ω ·ν; ε,β0, B0)))−1, for suitable 2×2 matrices

M[n] (see § 3.2). The bound on the small divisors of the resummed series is difficult to check without

assuming any non-degeneracy condition on the perturbation. Therefore we replace M[n](x; ε,β0, B0)

with M[n](x; ε,β0, B0)ξn(det(M[n](0; ε,β0, B0))), for suitable ‘cut-off functions’ ξn, in such a way that

the bound automatically holds. The introduction of the cut-offs changes the series in such a way that if

on the one hand the modified series are well-defined, on the other hand in principle they no longer solve

the range equations: this turns out to be the case only if one can prove that the cut-offs can be removed.

So, the last part of the proof consists in showing that, by suitably choosing the parameters β0, B0 as

continuous functions of ε, this occurs and moreover, for the same choice of β0, B0, the bifurcation

equations (1.1.8c) and (1.1.8d) hold; hence for such β0, B0, the function (1.2.2) is a solution of the whole

system (1.1.1).
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1.3 Graph and trees: a short introduction

For the proof of both Theorems 1.1.1 and 1.1.2 we shall use a graphical representation for the coef-

ficients of the solutions. The use of a graphical representation for the coefficients of perturbative series

is quite common in quantum field theory. In the context of KAM theory it was originally introduced by

Gallavotti in [31], inspired by a pioneering paper by Eliasson [28] and thereafter has been used in many

other related papers; see [43] for a review. We now introduce some basic facts from the graph theory;

see for instance [14]. Then we shall see how to use them for our purpose.

A graph G is an ordered pair G = (V,L), where V = V (G) is a non-empty set whose elements are

called vertices and L = L(G) a family of unordered couples of elements of V (G), whose elements are

called lines (or edges). Given two vertices v,w ∈ V (G), the couple + = (v,w) can appear more then

once in this family. We shall say that a graph G is simple if any couple appears only once in L(G).

A graph G is finite if |V (G)|, |L(G)| < ∞. We can represent a (finite) graph G as a set of points (the

vertices) and lines connecting them; see Figure 1.1.

v1
v2

v3

v4

v5

Figure 1.1: A representation for the simple graph G = (V, L) with V = V (G) = {v1, v2, v3, v4, v5} and L = L(G) =

{(v1, v2), (v1, v4), (v1, v5), (v2, v4), (v2, v5), (v3, v3), (v3, v5)}.

A planar graph is a (finite) graph G which can be drawn on a plane without lines crossing.

Remark 1.3.1. Note that the graph G represented in Figure 1.1 is planar: indeed also the drawning

in Figure 1.2 is a representation of the same G.

Given a graph G and two vertices v,w ∈ V (G) we shall say that v,w are connected if either (v,w) ∈

L(G), or there exist v0 = v, v1, . . . , vn−1, vn = w ∈ V (G) such that P := {(v0, v1), . . . , (vn−1, vn)} ⊆

L(G); we shall say that P is a path connecting v to w. A graph G is connected if for any v,w ∈ V (G)

either (v,w) ∈ L(G) or there exists a path connecting them, i.e. if all couples of vertices are connected.
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v1

v2

v3
v4

v5

Figure 1.2: Another representation for the graph G in Figure 1.1.

A graph G has a loop if there exists v ∈ V (G) such that either (v, v) ∈ L(G) or there exists a path P

connecting v to itself.

A subgraph S of a graph G is an ordered pair S = (V,L) such that V = V (S) ⊆ V (G), L = L(S) ⊆

L(G) and S is itself a graph.

An oriented graph G is an ordered pair (V,L), where V = V (G) is a non-empty set (of vertices) and

L = L(G) a family of ordered couples (oriented lines) of V (G); clearly, all the definitions above can be

suitably adapted also for oriented graphs: in particular a path should be consistent with the orientation.

If G is an oriented graph, we shall say that the line + = (v,w) ∈ L(G) exits the vertex v and enters

w. We can represent an oriented line + as a line with an arrow superimposed; see Figure 1.3. Given an

oriented graph G, any subgraph S inherit the orientation of G. We shall say that a line + = (v,w) ∈ L(G)

enters a subgraph S of G if v ∈ V (G) \V (S) while w ∈ V (S); analogously we shall say that +′ = (v′, w′)

exits S if v′ ∈ V (S) while w′ ∈ V (G) \ V (S). Note that if + enters or exits S then + /∈ L(S).

A tree-graph T is a finite planar connected graph with no loops. A rooted tree-graph is a tree-graph

with a (unique) special vertex called root which induces a natural orientation on the lines, towards or

away from the root.

From now on we shall consider only rooted tree-graphs T in which the lines are oriented toward the

root and the root has only one entering line (the root line +T): we shall call them “tree-graphs” for

simplicity. Given a tree-graph T, we shall call nodes all the vertices of T except the root r and denote

N(T) = V (T) \ {r}; see Figure 1.4.

Remark 1.3.2. Given a tree-graph T, a line + is uniquely determined by the vertex v which it exits,

so we may write + = +v.
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v1

v2

v3
v4

v5

Figure 1.3: A representation of an oriented graph G. Note that, because of the orientation, the line " = (v3, v3) is the

only loop.

θ =
v1

v2

v3

v4

v5

v6

Figure 1.4: A representation θ of a tree-graph T; we do not drawn the root r of T (i.e. the end-point of the line exiting

v1) to stress that r /∈ N(T).

The orientation on a tree-graph T provides a partial ordering relation on the vertices: given v,w ∈

V (T), we shall write v . w if there is a path connecting v to w; for instance in Figure 1.4 one has

v4 ≺ v2 ≺ v1, v5 ≺ v2 ≺ v1, v6 ≺ v2 ≺ v1, and v3 ≺ v1. If + = +v and +′ = +v′ we may write w ≺ + if

w . v, + ≺ w if v ≺ w and + ≺ +′ if v ≺ v′. Give a tree-graph T and two distinct lines + ≺ +′ ∈ L(T ) we

shall denote by P(+′, +) the unique path connecting + to +′.

Given a tree-graph T, for all v ∈ N(T) denote by sv the number of lines entering the node v. Note

that any subgraph S of any tree-graph T has at most one exiting line: we may denote such a line by +S .

Remark 1.3.3. One has
∑

v∈N(T)

sv = |N(T)|− 1.

A labelled tree-graph is a tree-graph together with a label function defined on N(T) and L(T). In

the following we shall call tree-graphs tout court the tree-graphs with labels, and we shall use the term
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unlabelled tree-graphs for the tree-graphs without labels.

We shall say that two representations θ1, θ2 of a tree-graph T are equivalent if they can be obtained

from each other by continuously deforming the lines without lines crossing. We shall call tree any

equivalence class of representations of a tree-graph. Of course all the definitions and notations above

can be suitably adapted also for trees; in particular, with some abuse of notation, we shall call subgraph

of a tree θ (representing a tree-graph T) the portion of θ representing a subgraph of T. Our aim is to

represent the solutions as “sum over trees” (in a sense that will be clear later on) hence their labels

shall depend on the model under study. In what follows we shall see how to use trees in order to prove

both Theorems 1.1.1 and 1.1.2.
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2. Proof of Theorem 1.1.1

In this Chapter we shall use the trees introduced in § 1.3 to represent the formal solutions (1.1.9). As

we shall see, this will allow us to prove the convergence of the formal power series under the assumption

that the system is Hamiltonian and that Hypothesis 3 holds, and hence Theorem 1.1.1 will follow.

2.1 Labels and tree values

We want to associate labels with the nodes and the lines of a tree in such a way that each tree

represents a contribution to the coefficients b(k)
ν , B(k)

ν appearing in (1.1.9).

Given a tree θ, we associate with each node v a mode label νv ∈ Zd, a component label hv ∈ {β, B}

and an order label kv ∈ {0, 1} with the constraint that kv = 1 if νv *= 0. With each line + = +v, + *= +θ,

we associate a component label h& ∈ {β, B} with the constraint that h&v = hv, and a momentum label

ν& ∈ Zd with the constraint that ν& *= 0 if h& = β. We associate with the root-line +θ a component label

h&θ
∈ {β, B,Γ,Φ} and a momentum label ν&θ

∈ Zd with the following constraints. Call v0 the node

which +θ exists: then (i) h&θ
= B,Γ if hv0 = B while h&θ

= β,Φ if hv0 = β, and (ii) ν&θ
*= 0 for h&θ

= β

while ν&θ
= 0 for h&θ

= Γ,Φ. Moreover we require kv0 = 1 if + = +v0 is such that either + = +θ and

h& = Γ, or h& = B and ν& *= 0.

We shall call total component and total momentum of θ the component and the momentum of +θ

respectively. For any node v ∈ N(θ) we denote by pv and qv the numbers of lines with component β

and B, respectively, entering the node v, of course sv = pv + qv.

If kv = 0 for some v ∈ N(θ) we force also pv = 0 and qv ≥ 1 if hv = β, while we force pv = 0 and

qv ≥ 2 if hv = B.

We impose the following conservation law

ν& =
∑

v≺&

νv (2.1.1)

and we call order of θ the number

k(θ) =
∑

v∈N(θ)

kv. (2.1.2)
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More generally given any subgraph T of a tree θ we call order of T the number

k(T ) =
∑

v∈N(T )

kv. (2.1.3)

Lemma 2.1.1. Let T be a subgraph of any tree θ. Then one has |N(T )| ≤ 4k(T ) − 2.

Proof. We shall prove the result by induction on k = k(T ). For k = 1 the bound is trivially satisfied as

a direct check shows. Assume then the bound to hold for all k′ < k. Call v the node which +T (possibly

+θ) exits, +1, . . . , +sv the lines entering v and T1, . . . , Tsv the subgraphs of T with exiting lines +1, . . . , +sv .

If kv = 1 then by the inductive hypothesis one has

|N(T )| = 1 +
sv∑

i=1

|N(Ti)| ≤ 1 + 4(k − 1) − 2sv ≤ 4k − 3.

If kv = 0 and hv = B then one has sv = qv ≥ 2 and hence

|N(T )| = 1 +
qv∑

i=1

|N(Ti)| ≤ 1 + 4k − 2qv ≤ 4k − 3.

If kv = 0 and hv = β, then if qv ≥ 2 one can reason as in the previous case. Otherwise, since the line

+ = +w entering v is such that h& = B, either kw = 1 or kw = 0 and qw ≥ 2. call +′1, . . . , +
′
sw

the lines

entering w and T ′
1, . . . , T

′
sv

the subgraphs of T with exiting lines +′1, . . . , +
′
sw

. In the first case one has

|N(T )| = 2 +
sw∑

i=1

|N(T ′
i )| ≤ 2 + 4(k − 1) − 2sw ≤ 4k − 3,

while in the second case one has

|N(T )| = 2 +
qw∑

i=1

|N(T ′
i )| ≤ 2 + 4k − 2qw ≤ 4k − 2.

Therefore the bound follows.

Remark 2.1.2. If T is a subgraph of any tree θ, one has
∑

v∈N(T ) sv ≤ 4k(T ). In particular one has

also
∑

v∈N(θ) sv ≤ 4k(θ).
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2.1 Labels and tree values

Given a tree θ we associate with each node v a node factor

Fv =






1

qv!
∂qv

1 ω0(B0), kv = 0,

1

pv!qv!
∂pv

β ∂qv+1
B fνv (β0, B0), kv = 1, hv = β,

−
1

pv!qv!
∂pv+1

β ∂qv

B fνv (β0, B0), kv = 1, hv = B, ν&v *= 0,

1

pv!qv!
∂pv

β ∂qv+1
B fνv (β0, B0), kv = 1, hv = B, ν&v = 0, h&v = B,

−
1

pv!qv!
∂pv+1

β ∂qv

B fνv (β0, B0), kv = 1, hv = B, ν&v = 0, h&v = Γ,

(2.1.4)

and with each line + a propagator

G& :=






1

iω · ν&
, ν& *= 0,

−
1

ω′
0(B0)

, ν& = 0, h& = B,

1, ν& = 0, h& = Γ,Φ

(2.1.5)

and define the value of any subgraph S of any tree θ as

V (S) =




∏

v∈N(S)

Fv








∏

&∈L(S)

G&



 . (2.1.6)

All the labels (and the constraints) above and the definitions of both the node factors and the

propagators reflect the form of the coefficients (1.1.10), taking into account the expressions (1.1.11)

and (1.1.12). Indeed if we denote by Tk,ν,h the set of trees with order k, total momentum ν and total

component h, one has (at least formally)

b(k)
ν =

∑

θ∈Tk,ν ,β

V (θ), ν ∈ Z
d
∗,

B(k)
ν =

∑

θ∈Tk,ν ,B

V (θ), ν ∈ Z
d,

Φ(k)
0

= [ω0(B(t))](k)
0

+ [∂Bf(ωt,β(t), B(t))](k−1)
0

=
∑

θ∈Tk,0,Φ

V (θ),

Γ(k)
0

= [−∂βf(ωt,β(t), B(t))](k−1)
0

=
∑

θ∈Tk,0,Γ

V (θ),

(2.1.7)

as a direct check shows, where the notation (1.1.12) have been used. Here and henceforth in this Chapter

we shall not write explicitely the dependence on the parameter β0; note however that V (θ) depends on

β0 only through the node factors.
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Lemma 2.1.3. The coefficients b(k)
ν , B(k)

ν ,Φ(k)
0

and Γ(k)
0

are well defined for all k ≥ 1.

Proof. Set

εn = εn(ω) :=
1

2n
log

1

αn(ω)
, (2.1.8)

and note that by Hypothesis 2, εn → 0 as n → ∞. Moreover the analyticity of f and h implies that

there exist positive constants F1, F2, ξ such that for all v ∈ N(θ) one has

|Fv| ≤ F1F
sv+1
2 e−ξ|νv|.

Hence, using Lemma 2.1.1 and Remark 2.1.2, for all θ ∈ Tk,ν,h one has

|V (θ)| ≤ Ck
0




∏

v∈N(θ)

e−ξ|νv|








∏

&∈L(θ)

1

|ω · ν&|



 = Ck
0 e−ξ

P
v∈N(θ) |νv|




∏

&∈L(θ)

1

|ω · ν&|





= Ck
0 e−ξ

P
v∈N(θ) |νv|/2

(
e−ξ

P
v∈N(θ) |νv|/2|L(θ)|

)|L(θ)|




∏

&∈L(θ)

1

|ω · ν&|





≤ Ck
0 e−ξ|ν|/2

∏

&∈L(θ)

e−ξ|ν%|/8k 1

|ω · ν&|

≤ Ck
0 e−ξ|ν|/2

∏

&∈L(θ)

e−ξ2n%/16k 1

αn%
(ω)

= Ck
0 e−ξ|ν|/2

∏

&∈L(θ)

e(−ξ/16k+εn%
)2n% ,

(2.1.9)

where C0 is a suitable positive constant and we have set n& = n(ν&) := inf{n ≥ 0 : |ν&| ≤ 2n}. The sum

over all the shapes and all the labels except the mode labels is bounded by a constant to the power k,

and hence one has

∑

θ∈Θk,ν

|V (θ)| ≤ e−ξ|ν|/2Ck




∑

n≥0

e(−ξ/16k+εn)2n




4k

≤ e−ξ|ν|/2CkD(k)k (2.1.10)

where C > 0 is a suitable constant and D(k) is a constant depending on k. Therefore the assertion

follows.

Remark 2.1.4. The constant D(k) grows with k (for instance if ω is Diophantine one has D(k) ≈ k)

and hence the bound (2.1.10) is not enough to obtain the convergence of the power series.

2.2 Clusters, self-energy clusters and dimensional bounds

From the proof of Lemma 2.1.3 emerges that it may be (and in fact it is) convenient to associate

with each line + a further label in order to control the “size” of the small divisor ω · ν&. Roughly we

14



2.2 Clusters, self-energy clusters and dimensional bounds

would like to associate with a line + a “scale” label n if ω · ν& ≈ αn(ω); to be more precise, since the

sequence {αn(ω)}n≥0 is only non-increasing, for the scales to be uniquely defined one should take a

decreasing subsequence {αmn(ω)}n≥0 and say that + has scale n if ω ·ν& is of order αmn(ω). It would be

tempting to use a sharp partition through step functions with supports [αmn(ω),αmn−1(ω)), in order

to associate with a line + a scale n if |ω · ν&| ∈ [αmn(ω),αmn−1(ω)). However, it turns out to be more

convenient using a smooth partition through compact support functions Ψn (because we have to take

derivatives of quantities involving such functions). Therefore we shall proceed as follows.

With each line + ∈ L(θ) we associate a scale label n& such that n& = −1 if ν& = 0, while n& ∈ Z+ if

ν& *= 0. So far there is no relation between non-zero momenta and scale labels: a constraint will appear

later on.

We denote by Θk,ν,h the set of trees with order k, total momentum ν and total component h: we

used a different notation for the set of trees to stress that if θ ∈ Θk,ν,h, each + ∈ L(θ) carries the further

label n&.

To take into account the scale labels we slightly change the definition of the value of a tree. More

precisely, for any θ ∈ Θk,ν,h we define V (θ) as in (2.1.6) but with new propagators which depend on the

scale labels as follows.

Let us introduce the sequences {mn, pn}n≥0, with m0 = 0 and, for all n ≥ 0, mn+1 = mn +

pn + 1, where pn := max{q ∈ Z+ : αmn(ω) < 2αmn+q(ω)}. Then the subsequence {αmn(ω)}n≥0 of

{αm(ω)}m≥0 is decreasing. Let χ : R → R be a C∞ function, non-increasing for x ≥ 0 and non-

decreasing for x < 0, such that

χ(x) =





1, |x| ≤ 1/2,

0, |x| ≥ 1.
(2.2.1)

Set χ−1(x) = 1 and χn(x) = χ(8x/αmn (ω)) for n ≥ 0. Set also ψ(x) = 1−χ(x), ψn(x) = ψ(8x/αmn (ω)),

and Ψn(x) = χn−1(x)ψn(x), for n ≥ 0; see Figure 2.1.

Lemma 2.2.1. For all x *= 0 and for all p ≥ 0 one has

ψp(x) +
∑

n≥p+1

Ψn(x) = 1.

Proof. For fixed x *= 0 let N = N(x) := min{n : χn(x) = 0} and note that max{n : ψn(x) = 0} ≤ N−1.

Then if p ≤ N − 1

ψp(x) +
∑

n≥p+1

Ψn(x) = ψN−1(x) + χN−1(x) = 1,

while if p ≥ N one has

ψp(x) +
∑

n≥p+1

Ψn(x) = ψp(x) = 1.

15



Proof of Theorem 1.1.1

xα0

8

α0

16

αm1

8

αm1

16

αm2

16

Ψ2(x) Ψ1(x) Ψ0(x)

Figure 2.1: Graphs of some of the C∞ functions Ψn(x) partitioning the unity in R \ {0}; here αm =

αm(ω). The function χ0(x) = χ(8x/α0) is given by the sum of all functions Ψn(x) for n ≥ 1.

In both cases the assertion follows.

We associate with each line a propagator

G& :=






Ψn%
(ω · ν&)

iω · ν&
, n& ≥ 0,

−
1

ω′
0(B0)

, n& = −1, h& = B,

1, n& = −1, h& = Γ,Φ.

(2.2.2)

Note that, although we have changed the propagators, the identities (2.1.7) still hold because of

Lemma 2.2.1.

Remark 2.2.2. Given a tree θ such that V (θ) *= 0, for any line + ∈ L(θ) with ν& *= 0 one has

Ψn%
(ω · ν&) *= 0, and hence

αmn%
(ω)

16
< |ω · ν&| <

αmn%−1(ω)

8
, (2.2.3)

where αm−1(ω) has to be interpreted as +∞. Note also that Ψn%
(ω · ν&) *= 0 implies

|ω · ν&| <
1

8
αmn%−1(ω) <

1

4
αmn%−1+pn%−1(ω) =

1

4
αmn%

−1(ω) < αmn%
−1(ω),

and hence, by definition of αm(ω), one has |ν&| > 2mn%
−1. Moreover, by the definition of {αmn(ω)}n≥0,

the number of scales which can be associated with a line + in such a way that the propagator does not

vanishes is at most 2. The same considerations apply to any subgraph of θ.

A cluster T on scale n is a maximal subgraph of a tree θ such that all the lines have scales n′ ≤ n

and there is at least one line with scale n. The lines entering the cluster T and the line coming out from

16



2.2 Clusters, self-energy clusters and dimensional bounds

it (unique if existing at all) are called the external lines of T . A self-energy cluster is a cluster T such

that (i) T has only one entering line +′T and one exiting line +T , (ii) either n = −1 and P(+T , +′T ) = ∅ or

n ≥ 0 and one has n& ≥ 0 and ν& *= ν&′T
for all + ∈ P(+T , +′T ), and (iii) one has ν&T

= ν&′T
and hence

∑

v∈N(T )

νv = 0. (2.2.4)

For any self-energy cluster T , set PT = P(+T , +′T ). More generally, if T is a subgraph of θ with

only one entering line +′ and one exiting line +, we set PT = P(+, +′). We shall say that a subgraph T

constituted by only one node v with νv = 0 such that v has only one entering line, is also a self-energy

cluster on scale −1. If a self-energy cluster is on a scale n ≥ 0 then |N(T )| ≥ 2 and k(T ) ≥ 2, as it is

easy to check.

Remark 2.2.3. Given a self-energy cluster T , the momenta of the lines in PT depend on ν&′T
because

of the conservation law (2.1.1). More precisely, for all + ∈ PT one has ν& = ν0
& + ν&′T

with

ν0
& :=

∑

w∈N(T )
w≺&

νw,

while all the other momenta in T do not depend on ν&′T
.

We shall say that two self-energy clusters T1, T2 have the same structure if setting ν&′T1
= ν&′T2

= 0

one has T1 = T2. This provides an equivalence relation on the set of all self-energy clusters. From now

on we shall call self-energy clusters tout court such equivalence classes. We denote by Sk
n,u,e the set of

self-energy clusters with order k, scale n and such that h&′T
= e and h&T

= u, with e, u ∈ {β, B}.

We shall say that a line + is resonant if there exist two self-energy clusters T , T ′, such that +T ′ = + =

+′T , otherwise + is non-resonant. Given any subgraph S of any tree θ, we denote by N∗
n(S) the number

of non-resonant lines on scale ≥ n in S. Define also, for any line + ∈ θ, the minimum scale of + as

ζ& := min{n ∈ Z+ : Ψn(ω · ν&) *= 0}

and denote by N•
n(S) as the number of non-resonant lines + ∈ L(S) such that ζ& ≥ n. By definition, if

V (S) *= 0, for each line + ∈ L(S) either n& = ζ& or n& = ζ& + 1. For any subgraph S of any tree θ, define

also

K(S) :=
∑

v∈N(S)

|νv |. (2.2.5)

Then one can prove the following results, which are based on the idea of Siegel [64].

Lemma 2.2.4. For all h ∈ {β, B,Φ,Γ}, ν ∈ Zd, k ≥ 1 and for any θ ∈ Θk,ν,h with V (θ) *= 0 ,one has

N•
n(θ) ≤ 2−(mn−3)K(θ) for all n ≥ 0.
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Proof of Theorem 1.1.1

Proof. We want to prove by induction that

N•
n(θ) ≤ max{2−(mn−3)K(θ) − 2, 0}. (2.2.6)

First of all note that N•
n(θ) ≥ 1 implies N∗

n(θ) ≥ 1 i.e. there is a line + with n& ≥ n and hence

K(θ) ≥ |ν&| ≥ 2mn−1.

Set ζ0 := ζ&θ
, n0 := n&θ

and ν := ν&θ
, and note that either n0 = ζ0 or n0 = ζ0 + 1. If ζ0 < n the

bound (2.2.6) follows from the inductive hypothesis. If ζ0 ≥ n, call +1, . . . , +r the lines with minimum

scale ≥ n closest to +θ and θ1, . . . , θr the subtrees with root lines +1, . . . , +r, respectively. If r = 0 the

bound trivially holds. If r ≥ 2, by the inductive hypothesis one has N•
n(θ) = 1+N•

n(θ1)+ . . .+N•
n(θr) ≤

1 + 2−(mn−3)K(θ) − 2r ≤ 2−(mn−3)K(θ) − 3, so that the bound follows once more.

If r = 1 call T the subgraph with exiting line +θ and entering line +1. Then either T is a self-energy

cluster or K(T ) ≥ 2mn−1. This can be proved as follows. Set ν1 := ν&1 . If T is not a cluster, then it

must contain at least one line +′ on scale n&′ = n, so that if +′ /∈ PT and θ′ is the subtree with root line

+′ one has K(T ) ≥ K(θ′) ≥ 2mn−1, while if + ∈ PT then ν&′ *= ν1 (because ζ&′ = n − 1 and ζ&1 ≥ n), so

that

|ω · (ν&′ − ν1)| ≤ |ω · ν&′ | + |ω · ν1| ≤
1

4
αmn−1(ω) < αmn−1(ω)

since both +′, +1 are on scale ≥ n, and this implies K(T ) ≥ |ν&′ − ν1| ≥ 2mn−1. If T is a cluster then

either (i) ν1 *= ν so that K(T ) ≥ |ν−ν1| ≥ 2mn−1 or (ii) ν1 = ν and there is a line + ∈ PT with n& = −1

so that K(T ) ≥ |ν0
& | = |ν| ≥ 2mn−1, or (iii) ν1 = ν and T is a self-energy cluster, otherwise there would

be a line +′ ∈ PT with ν&′ = ν1, which is incompatible with ζ&′ ≤ n − 1 and ζ&1 ≥ n.

Therefore, if K(T ) ≥ 2mn−1, the inductive hypothesis yields the bound (2.2.6). If K(T ) < 2mn−1

then T is a self-energy cluster (and hence ν1 = ν). In such a case call θ1 the tree with root line +1;

by construction N•
n(θ) = 1 + N•(θ1). We can repeat the argument above: call +′1, . . . , +

′
r′ the lines with

minimum scale ≥ n closest to +1 and θ′1, . . . , θ
′
r′ the subtrees with root lines +′1, . . . , +

′
r′ , respectively. Again

the case r′ = 0 is trivial. If r′ ≥ 2 then N•
n(θ) = 2 + N•

n(θ′1) + . . . + N•
n(θ′r′) ≤ 2 + 2−(mn−3)K(θ)− 2r ≤

2−(mn−3)K(θ)−2, so yielding the bound. Therefore the only case which does not imply immediately the

bound (2.2.6) through the inductive hypothesis is when +1 exits a subgraph T ′ with only one entering

line +′1 on minimum scale ≥ n. Set ν′
1 := ν&′1

and call θ′1 the tree with root line +′1. As before we have

that either K(T ′) ≥ 2mn−1 or T ′ is a self-energy cluster. If K(T ′) ≥ 2mn−1 then N•
n(θ) = 2 + N•

n(θ′1)

and one can reason as before to obtain the bound by relying on the inductive hypothesis. If T ′ is a

self-energy cluster then +1 is a resonant line and N•
n(θ) = 1 + N•

n(θ′1).

One can iterate again the argument until either one reaches a case which can be dealt with through

the inductive hypothesis or one obtains N•
n(θ) = 1 + N•

n(θ′′), for some tree θ′′ which has no line + with

ζ& ≥ n. Thus N•
n(θ′′) = 0 and the bound (2.2.6) follows.
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2.2 Clusters, self-energy clusters and dimensional bounds

Lemma 2.2.5. For all e, u ∈ {β, B}, n ≥ 0, k ≥ 1 and for any T ∈ Sk
n,u,e with V (T ) *= 0, one has

K(T ) > 2mn−1 and N•
p(T ) ≤ 2−(mp−3)K(T ) for all 0 ≤ p ≤ n.

Proof. Consider a self-energy cluster T ∈ Sk
n,u,e. First of all we prove that K(T ) ≥ 2mn−1. Indeed T

contains at least one line + on scale n. If + ∈ L(T ) \ PT then K(T ) ≥ |ν&| ≥ 2mn−1, while if + ∈ PT then

ν& *= ν&′T
(otherwise T would not be a self-energy cluster). But then K(T ) ≥ |ν& −ν&′T

| ≥ 2mn−1 as both

+, +′T are on scale ≥ n. Define C(n, p) as the set of subgraphs T of θ with only one entering line +′T and

one exiting line +T both on minimum scale ≥ p, such that L(T ) *= ∅ and n& ≤ n for any line + ∈ L(T ).

We prove by induction on the order the bound

N•
p(T ) ≤ 2−(mp−3)K(T ) (2.2.7)

for all T ∈ C(n, p) and all 0 ≤ p ≤ n. Consider T ∈ C(n, p), p ≤ n: call +1, . . . , +r the lines with minimum

scale ≥ p closest to +T . The case r = 0 is trivial. If r ≥ 1 and none of such lines is along the path

PT then the bound follows from (2.2.6). If one of such lines, say +1, is along the path PT , then denote

by θ2, . . . , θr the subtrees with root lines +2, . . . , +r, respectively, and by T1 the subgraph with exiting

line +1 and entering line +′T . One has N•
p(T ) ≤ 1 + N•

p(T1) + N•
p(θ2) + . . . + N•

p(θr). By construction

T1 ∈ C(n, p), so that the bound (2.2.7) follows by the inductive hypothesis for r ≥ 2.

If r = 1 then call T0 the subgraph with exiting line +T and entering line +1. By reasoning as

in the proof of Lemma 2.2.4 we find that either K(T0) ≥ 2mp−1 or T0 is a self-energy cluster. Since

N•
p(T ) ≤ 1+N•

p(T1), if K(T0) ≥ 2mp−1 the bound follows once more. If on the contrary T0 is a self-energy

cluster we can iterate the construction: call +′1, . . . , +
′
r′ the lines with minimum scale ≥ p closest to +1. If

either r′ = 0 or no line among +′1, . . . , +
′
r′ is along the path PT1 , the bound follows easily. Otherwise if a

line, say +′1 is along the path PT1 and r′ ≥ 2 one has N•
p(T ) ≤ 2+N•

p(T
′
1)+N•

p(θ
′
2)+ . . .+N•

p(θ
′
r′), where

T ′
1 is the subgraph with exiting line +′1 and entering line +′T , and hence N•

p(T ) ≤ 2 + 2−(mp−3)K(T )− 2,

by the inductive hypothesis, so that (2.2.7) follows.

If r′ = 1 let T ′
0 be the subgraph with exiting line +1 and entering line +′1. If K(T ′

0) ≥ 2mp−1 then

the inductive hypothesis implies once more the bound (2.2.7), while if K(T ′
0) < 2mp−1 then, by the

same argument as above, T ′
0 must be a self-energy cluster, so that +1 does not contribute to N•

p(T ), i.e.

N•
p(T ) ≤ 1 + Np(T ′′

1 ) where T ′′
1 is the subgraph with exiting line +′1 and entering line +′T . Again we can

iterate the argument until either one finds a subgraph T ′′ with K(T ′′) ≥ 2mp−1, so that the inductive

hypothesis compels the bound (2.2.7) for T , or one obtains N•
p(T ) ≤ 1 + Np(T ′′) for some subgraph T ′′

which has no line on minimum scale ≥ p, so that N•
p(T ) ≤ 1.

Remark 2.2.6. Inequality (2.2.3) has been repeatedly used in the proof of both Lemmas 2.2.4 and
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Proof of Theorem 1.1.1

2.2.5. Actually the proof works – as one can easily check – under the weaker condition that

αmn%
(ω)

32
< |ω · ν&| <

αmn%−1(ω)

4
(2.2.8)

as long as Ψn%
(ω · ν&) *= 0. This observation will be used later on.

The key point in the proof of the two lemmas above is that in order to have a non-resonant line

+ ∈ L(θ) with large scale (hence with large propagator) the subtree θ& ‘preceding’ + (i.e. the subtree

whose nodes and lines are the nodes and lines of θ preceding +) must be such that K(θ&) is large: this

suggest us to control the product of the propagators of the non-resonant lines with the product of the

node factors of the nodes preceding such lines. More precisely we have the following result.

Lemma 2.2.7. For any tree θ ∈ Θk,ν,h and any self-energy cluster T ∈ Sk
n,u,e denote by LNR(θ) and

LNR(T ) the sets of non-resonant lines in θ and T respectively, and set

V NR(θ) :=

(
∏

v∈N(θ)

Fv

)(
∏

&∈LNR(θ)

G&

)

,

V NR(T ) :=

(
∏

v∈N(T )

Fv

)(
∏

&∈LNR(T )

G&

)

,

Then

|V NR(θ)| ≤ ck
1e

−ξ|ν|/2, (2.2.9a)

|V NR(T )| ≤ ck
2e

−ξK(T )/2, (2.2.9b)

for some positive constants c1, c2.

Proof. We first prove (2.2.9a). One has

∏

&∈LNR(θ)

|G&| ≤
∏

n≥0

(
16

αmn(ω)

)N•
n(θ)

≤

(
16

αmn0
(ω)

)4k−2∏

n≥n0+1

(
16

αmn(ω)

)N•
n(θ)

≤

(
16

αmn0
(ω)

)4k−2∏

n≥n0+1

(
16

αmq(ω)

)2−(mn−3)K(θ)

≤ D(n0)
4k−2exp(ξ(n0)K(θ)),

with

D(n0) =
16

αmn0
(ω)

, ξ(n0) = 8
∑

n≥n0+1

1

2mn
log

16

αmn(ω)
.
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2.3 Cancellations and convergence

Then, by Hypothesis 2, one can choose n0 such that ξ(n0) ≤ ξ/2, so that, since

∏

v∈N(θ)

|Fv | ≤ Ck
0 e−ξK(θ),

(see the proof of Lemma 2.1.3) the bound (2.2.9a) follows. To obtain (2.2.9b) one can reason in the

same way, simply with T playing the role of θ.

What emerges from Lemma 2.2.7 is that, if we could ignore the resonant lines, the convergence of

the series (1.1.9) would immediately follows. On the contrary, the presence of resonant lines may be

a real obstruction for the convergence: indeed if + is a resonant line, both the self-energy cluster T

which + enters and the self-energy cluster T ′ which + exits may be on scale n 2 n& and hence the factor

≈ e−2n
coming from the product of the node factors of the nodes in T, T ′ is not enough to control the

propagator G& for which we only have the bound 16/αmn%
(ω). Moreover in principle a tree can contain

a “chain” of self-energy clusters (see Section 2.3 for a formal definition) and hence of resonant lines

which implies accumulation of small divisors. Therefore one needs a ‘gain factor’ proportional to ω · ν&

for each resonant line +, in order to prove the convergence of the power series (1.1.9).

2.3 Cancellations and convergence

Here we shall see that, for the system (1.1.14) and under Hypothesis 3, there are suitable “cancel-

lations” which allow us to prove the convergence of the series (1.1.9) and hence Theorem 1.1.1.

First of all we note that if T is a self-energy cluster, we can (and shall) write V (T ) = V T (ω · ν&′T
)

to stress the dependence on ν&′T
– see Remark 2.2.3.

Remark 2.3.1. Write V T,NR(ω · ν&′T
) := V NR(T ). By using Remark 2.2.6 one can show that also

∂j
x V T,NR(τx) admits the same bound as V T,NR(x) in (2.2.9b) for j = 0, 1, 2 and τ ∈ [0, 1], possibly

with a different constant c2. This will be used later on (in Appendix A).

For all k ≥ 0, define

M (k)
u,e (x, n) :=

∑

T∈Sk
n,u,e

V T (x), M(k)
u,e(x, n) :=

n∑

p=−1

M (k)
u,e (x, p),

M(k)
u,e(x) := lim

n→∞
M(k)

u,e(x, n).

(2.3.1)

Remark 2.3.2. One has

M(0)
β,β(x, n) = M(0)

B,B(x, n) = M(0)
B,β(x, n) = 0,

M(0)
β,B(x, n) = ω′

0(B0), M(1)
β,β(x, n) = ∂β∂Bf0 = −M(1)

B,B(x, n),
(2.3.2)
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Proof of Theorem 1.1.1

for all n ≥ −1 and all x ∈ R.

Lemma 2.3.3. For all k ≥ 1 one has

M(k)
B,β(0) +

∑

k1+k2=k

M(k1)
B,B(0)∂β0B

(k2)
0

= 0, (2.3.3a)

M(k)
β,β(0) +

∑

k1+k2=k

M(k1)
β,B (0)∂β0B

(k2)
0

= 0, (2.3.3b)

M(k)
β,β(0) = −M(k)

B,B(0). (2.3.3c)

Proof. Both (2.3.3a) and (2.3.3b) follow from the fact that

∂β0Γ
(k)
0

= M(k)
B,β(0) +

∑

k1+k2=k

M(k1)
B,B(0)∂β0B

(k2)
0

, (2.3.4a)

∂β0Φ
(k)
0

= M(k)
β,β(0) +

∑

k1+k2=k

M(k1)
β,B (0)∂β0B

(k2)
0

, (2.3.4b)

which can be obtained as follows. First of all let us write

∂β0




∑

θ∈Θk,0,Γ

V (θ)



 =
∑

θ∈Θk,0,Γ

∑

v∈N(θ)
kv=1

∂β0Fv




∏

v′∈N(θ)
v′ *=v

Fv′








∏

&∈L(θ)

G&



 , (2.3.5)

where we have used the fact that V (θ) depends on β0 only through the node factors of the nodes with

kv = 1. Each summand in the r.h.s. of (2.3.5) differs from V (θ) because we applied a further derivative

(with respect to β0) to the node factor of a node v ∈ N(θ). This can be graphically represented as the

same tree θ, but with a further line +′ (carrying a 0-momentum) entering the node v, and hence can

be seen as a subgraph S of some tree. If there is no line with 0-momentum on the path P(+θ, +′), then

V (S) is a contribution to M(k)
B,β(0). Otherwise let + be the line on P(+θ, +′) with ν& = 0 which is closest

to +θ i.e. such that ν&′′ *= 0 for all +′′ ∈ P(+θ, +). Call T the subgraph between +θ and + and note that,

by the constraints on the labels, h& = B. Call also S′ the subgraph between + and +′. Then V (T ) is a

contribution to M(k(T ))
B,B (0) while V (S′) is a contribution to ∂β0B

k(S′)
0

. On the other hand it is easy to

realise that each contribution to

M(k)
B,β(0) +

∑

k1+k2=k

M(k1)
B,B(0)∂β0B

(k2)
0

is of the form described above and hence (2.3.4a) is proved. To obtain (2.3.4b) we can reason analogously.

Therefore (2.3.3a) and (2.3.3b) follow from the fact that Φ(k)
0

≡ 0 by construction while Γ(k)
0

≡ 0 by

Hypothesis 3.
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2.3 Cancellations and convergence

To obtain (2.3.3c) one can reason as follows. For any self-energy cluster T , denote by N(T ) the set

of nodes v ∈ N(T ) such that +v ∈ PT ∪ {+T } and the line +′v ∈ PT ∪ {+′T } entering v has component

h&′v = h&v . Let T ∈ Sk
n,β,β and consider the self-energy cluster T ′ ∈ Sk

n,B,B obtained from T by changing

all the component labels of the lines in PT ∪{+T }∪{+′T } and reversing their orientation; in particular the

entering line +′T of T becomes the exiting line +T ′ of T ′ and, vice versa, the exiting line +T of T becomes

the entering line +′T ′ of T ′. Since the external lines +′T , +T , +′T ′ and +T ′ carry the same momentum ν, any

line +′ ∈ PT ′ has momentum ν′′ = ν −ν′ if ν′ is the momentum of the corresponding line in PT so that,

when computing at ν = 0, the corresponding propagator changes sign (see (2.2.2) and recall that n& ≥ 0

for all + ∈ PT ). Moreover, for any v ∈ N(T ) the node factor Fv changes sign when regarded as a node

in N(T ′), see (2.1.4). All the other factors remains the same i.e. we can write V T (0) = A(T )V (PT )

and V T ′(0) = A(T ′)V (PT ′), where

V (PT ) :=

(
∏

v∈N(T )

Fv

)(
∏

&∈PT

Gn%
(ω · ν&)

)

and analogous for V (PT ′), while A(T ) = A(T ′). Now, one has

∏

v∈N(T )

Fv = σ
∏

v∈N(T ′)

Fv

with σ = ±1. If σ = 1, then |N (T )| = |N (T ′)| is even and hence there is an odd number of lines in

PT . If on the contrary σ = −1, then there is an even number of lines in PT . In both cases the assertion

follows.

Lemma 2.3.4. For all k ≥ 1 one has

∂xM
(k)
B,β(0) = ∂xM

(k)
β,B(0) = 0, (2.3.6a)

∂xM
(k)
β,β(0) = ∂xM

(k)
B,B(0). (2.3.6b)

Proof. One reason along the same lines as the proof of (2.3.3c) in Lemma 2.3.3. Let T ∈ Sk
n,β,B and

consider the self-energy cluster T ′ ∈ Sk
n,β,B obtained from T by changing all the component labels of

the lines in PT ∪ {+T } ∪ {+′T } and reversing their orientation. The derivative ∂x acts on the propagator

on some line + ∈ PT . After differentiation, when computing the propagators at x = 0, any line +′ ∈ PT ′

turns out to have momentum ν′ = −ν, if ν is the momentum of the corresponding line in PT and

the corresponding propagator changes sign, except the differentiated propagator ∂xGn%
(ω · ν0

& + x)
∣∣
x=0

,

which is even in its argument. Moreover, for any v ∈ N(T ) (we use the same notations as in the proof
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Proof of Theorem 1.1.1

of Lemma 2.3.3) the node factor Fv changes sign when regarded as a node in N(T ′), while all the other

factors remains the same. If |N (T )| = |N(T ′)| is even (resp. odd) then there is an even (resp. odd)

number of lines in PT , but, as we said, the differentiated propagator does not change sign. Therefore

the two contributions have the same modulus but different signs, so that, once summed together, they

gives zero. Therefore (2.3.6a) is proved.

To prove (2.3.6b) reason as in proving (2.3.3c): the only difference is that, as in the previous case,

the differentiated propagator does not change sign, so that the two contributions are equal to (and not

the opposite of) each other.

Remark 2.3.5. Note that the Hamiltonian structure is fundamental in order to prove both the identity

(2.3.3c) and the identities (2.3.6).

Given p ≥ 2 self-energy clusters T1, . . . , Tp of any tree θ, with +′Ti
= +Ti+1 for i = 1, . . . , p − 1 and

+T1 , +
′
Tp

being non-resonant, we say that C = {T1, . . . , Tp} is a chain. Define +0(C) := +T1 and +i(C) := +′Ti

for i = 1, . . . , p and set ni(C) = n&i(C) for i = 0, . . . , p; we also call k(C) := k(T1) + . . . + k(Tp) the total

order of the chain C and p(C) = p the length of C. Given a chain C = {T1, . . . , Tp} we define the value

of C as

V C(x) =
p∏

i=1

V Ti(x). (2.3.7)

We denote by C(k;h, h′;n0, . . . , np) the set of all chains C = {T1, . . . , Tp} with total order k and with

fixed labels h&0(C) = h, h&p(C) = h′ and ni(C) = ni for i = 0, . . . , p.

Remark 2.3.6. Let + be a resonant line. Then there exists a chain C such that + = +i(C) for some

i = 1, . . . , p(C) − 1. If there exists a minimal self-energy cluster T containing +, then T contains the

whole chain C and all lines +0(C), . . . , +p(C) (this follows from the fact that, by definition of self-energy

cluster, ν0
&′ *= 0 for all +′ ∈ PT ). In particular L(T ) contains the two non-resonant lines +0(C) and +p(C),

with ζ&0(C) = ζ&p(C) = ζ&.

Lemma 2.3.7. For all p ≥ 2, all k ≥ 1, all h, h′ ∈ {β, B} and all n0, . . . , np ∈ Z+ such that Ψni(x) *= 0,

i = 0, . . . , p, one has ∣∣∣∣∣
∑

C∈C(k;h,h′;n0,...,np)

V C(x)

∣∣∣∣∣ ≤ Bk|x|p−1, (2.3.8)

for some constant B > 0.

The proof is rather long and technical, so that we prefer to perform it in Appendix A.

The bound (2.3.8) provides exactly the gain factor which is needed in order to prove the convergence

of the power series. Indeed given a tree θ, sum together the values of the trees obtained from θ by
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2.3 Cancellations and convergence

replacing each maximal chain C (i.e. each chain which is not contained inside any other chain) with any

other chain which has the same total order, the same length, the same scale labels associated with the

lines +0(C), . . . , +p(C) and the same component labels associated with the lines +0(C) and +p(C); in other

words, if C ∈ C(k;h, h′;n0, . . . , np) for some values of the labels, sum over all possible chain belonging

to the set C(k;h, h′;n0, . . . , np). Then we can bound the product of the propagators of the non-resonant

lines outside the maximal chains thanks to Lemma 2.2.5, while the product of the propagators of the

lines +1(C), . . . , +p−1(C) of any chain C times the sum of the corresponding chain values is bounded

through Lemma 2.3.7. Therefore Theorem 1.1.1 follows.

Remark 2.3.8. We obtained the convergence of the power series (1.1.9) for any β0 and any ε small

enough. Thus the solution turns out to be analytic in both ε,β0. Moreover, since the solution is

parameterised by β0 ∈ T, in that case the full resonant torus survives. Of course, such a situation is

highly non-generic and hence very unlikely.
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3. Proof of Theorem 1.1.2

In this Chapter we shall prove Theorem 1.1.2. The main problem is that if the system is not

Hamiltonian, then there is no reason for the symmetries (2.3.3c) and (2.3.6) to hold. Moreover in

order to obtain (2.3.3a) one needs Hypothesis 3, while in Theorem 1.1.2 we assume Hypothesis 4 so

that Hypothesis 3 is obvioulsy not satisfied. Unfortunately the symmetries (2.3.3c) and (2.3.6) and the

identity (2.3.3a) are fundamental in order to obtain the ‘gain factor’ proportional to the propagator

of the resonant lines: indeed we are not able to provide any gain factor for the case considered here.

Therefore we shall use a different approach.

3.1 Preliminary (heuristics) considerations

Let us come back to the range equations (1.2.1) and start by looking for a quasi-periodic solution

which can be formally written as

β(t; ε,β0, B0) = β0 + b(t; ε,β0, B0) = β0 +
∑

k≥1

εk
∑

ν∈Zd
∗

eiω·νtb{k}ν (β0, B0),

B(t; ε,β0, B0) = B0 + B̃(t; ε,β0, B0) = B0 +
∑

k≥1

εk
∑

ν∈Zd
∗

eiω·νtB{k}
ν (β0, B0),

(3.1.1)

where a different notation for the Taylor coefficients has been used with respect to (1.1.9) to stress that

now we are considering B0 = B0 as a parameter. If we define recurively for k ≥ 1 and ν ∈ Zd
∗

b{k}ν (β0, B0) := Φ{k}
ν (β0, B0),

B{k}
ν (β0, B0) := Γ{k}

ν (β0, B0),
(3.1.2)
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Proof of Theorem 1.1.2

where we have set

Φ{k}
ν (β0, B0) :=

∑

s≥1

1

s!
∂Bω0(B0)

∑

ν1+...+νs=ν
νi∈Zd

∗

∑

k1+...+ks=k
ki≥1

s∏

i=1

B{ki}
νi (β0, B0)

+
∑

s≥1

∑

p+q=s

∑

ν0+...+νs=ν
ν0∈Zd,νi∈Zd

∗

1

p!q!
∂p

β∂q
BFν0(β0, B0)

×
∑

k1+...+ks=k−1
ki≥1

p∏

i=1

b{ki}
νi (β0, B0)

s∏

i=p+1

B{ki}
νi (β0, B0),

Γ{k}
ν (β0, B0) :=

∑

s≥1

∑

p+q=s

∑

ν0+...+νs=ν
ν0∈Zd,νi∈Zd

∗

1

p!q!
∂p

β∂q
BGν0(β0, B0)

×
∑

k1+...+ks=k−1
ki≥1

p∏

i=1

b{ki}
νi (β0, B0)

s∏

i=p+1

B{ki}
νi (β0, B0),

(3.1.3)

for all k ≥ 1 and all ν ∈ Zd, then (3.1.1) turns out to be a formal solution to the range equations (1.2.1)

(this can be proved essentially as in Lemma 2.1.3 once one has written such coefficients as a “sum over

trees” – see below). Note that we can see the formal expansion (1.1.9) as obtained from (3.1.1) by

solving the bifurcation equation (1.1.8c) and further expanding B0 = B0(ε,β0).

We can represent the coefficients b{k}ν (β0, B0), B
{k}
ν (β0, B0) as a “sum over trees” similar to the one

in Chapter 2; of course there are some differences between the two representations: for instance there

should be no line + with 0-momentum since the subtree with root-line + represent a contribution to B0.

More precisely, given a tree θ we associate with each node v a mode label νv ∈ Zd, a component label

hv = β, B and an order label kv = 0, 1 with the constraint that kv = 1 if hv = B. With each line + = +v

we associate a component label h& = hv, a momentum label ν& ∈ Zd
∗ with the conservation law (2.1.1)

and a scale label n& ∈ Z+. We still call order of any subgraph T the number (2.1.2) and still denote

by Θk,ν,h the set of trees with order k, total momentum ν and total component h although they have

different constraints on the labels.

If we associate with each node v a node factor

Fv = Fv(β0, B0) :=






1

pv!qv!
∂pv

β ∂qv

B Fνv (β0, B0), hv = β, kv = 1,

1

qv!
∂qvω0(B0), hv = β, kv = 0,

1

pv!qv!
∂pv

β ∂qv

B Gνv (β0, B0), hv = B, kv = 1.

(3.1.4)
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3.1 Preliminary (heuristics) considerations

and a propagator

G& =






Ψn%
(ω · ν&)

iω · ν&
, + *= +θ,

1, + = +θ,

(3.1.5)

with the functions Ψn(x) defined as in § 2.2 and define the value of θ as in (2.1.6), then it strightforward

to see that
(iω · ν)b{k}ν (β0, B0) =

∑

θ∈Θk,ν ,β

V (θ),

(iω · ν)B{k}
ν (β0, B0) =

∑

θ∈Θk,ν ,B

V (θ).
(3.1.6)

We define clusters as in § 2.2 while we slight change the definition of self-energy clusters to take into

account that now there is no line with 0-momentum. Namely a self-energy cluster is a cluster T with

only one entering line +′T and one exiting line +T such that ν&′T
= ν&T

. Again we denote by Sk
n,u,e the

set of self-energy clusters T with order k, scale n and such that h&T
= u, h&′T

= e (with some abuse of

notation). Call “resonant line” any line exiting a self-energy cluster; then one can adapt all the results

in § 2.1 and 2.2 to the present case. Unfortunately, as we said, we are not able to provide any gain

factor for the resonant lines (which in turn would imply the convergence of the series). Therefore we

try a resummation procedure which can be roughly described as follows.

If we take the “tree expansion” in the r.h.s of (3.1.6), we can distinguish between contribution in

which the root-line is resonant, that we can write as





∑
T∈Sk′

n,β,β

k′<k

V T (ω · ν)
∑

T∈Sk′

n,β,B

k′<k

V T (ω · ν)

∑
T∈Sk′

n,B,β

k′<k

V T (ω · ν)
∑

T∈Sk′

n,B,B

k′<k

V T (ω · ν)





(
b{k}ν (β0, B0)

B{k}
ν (β0, B0)

)

, (3.1.7)

from the others. If we shift (3.1.7) to the l.h.s. of (3.1.6), sum over k and set

M(ω · ν, ε) :=
∑

k≥1

εk




∑

T∈Sk
n,β,β

V T (ω · ν)
∑

T∈Sk
n,β,B

V T (ω · ν)
∑

T∈Sk
n,B,β

V T (ω · ν)
∑

T∈Sk
n,B,B

V T (ω · ν)



 , (3.1.8)

we obtain formally

((iω · ν − M(ω · ν, ε)))

(
bν(β0, B0)

Bν(β0, B0)

)

=
∑

k≥1

εk




∑

θ∈Θ∗
k,ν ,β

V (θ)
∑

θ∈Θ∗
k,ν ,B

V (θ)



 , (3.1.9)

where we denoted by Θ∗
k,ν,h the set of trees with order k, total momentum ν and total component h,

whose root-line is non-resonant.
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Proof of Theorem 1.1.2

This suggests us that if we replace the “propagators” G&1 with the matrix ((iω·ν)1−M(ω·ν, ε))−1 we

obtain a “tree expansion” in which the self-energy clusters (and hence the resonant lines) are not allowed.

The problem in proceeding this way is that M(ω · ν, ε) is itself a sum over self-energy clusters which

in principle contain other self-energy clusters, and hence we cannot find ‘good bounds’ for M(ω · ν, ε).

To deal with such a difficulty we should start with the momenta ν such that Ψ0(ω · ν) *= 0, then pass

to those such that Ψ1(ω · ν) *= 0 and so on. To simplify the exposition let us write u0 + u = (β0, B0) +

(b(t; ε,β0), B̃(t; ε,β0, B0)) and say that a vector ν ∈ Zd
∗ is on scale n if |ω · ν| ∈ [αmn(ω),αmn−1(ω))

with αmn(ω) defined as in § 2.2. Let us write

u =
∑

n≥0

u[n], u[n] =
∑

ν∈Zd
∗

ν on scale n

eiν·ωtu[n]
ν (3.1.10)

and assume that u[≥n+1] :=
∑

m≥n+1 u[m] is small with respect to u[≤n] := u − u[≥n+1]. If we denote

P (u) = (εF (u0 + u), εG(u0 + u)) we can write for ν on scale 0

(iω · ν)u[0]
ν = Pν(u0) +

∑

ν′∈Zd
∗

P ′
ν−ν′(u0)u

[≥0]
ν′ + O(‖u‖2)

= Pν(u0) + P ′
0(u0)u

[0]
ν +

∑

ν′∈Zd
∗\{ν}

P ′
ν−ν′(u0)u

[≥0]
ν′ + O(‖u‖2),

(3.1.11)

for some norm ‖ · ‖. Note that M−1,0(u0) := P ′
0
(u0) is the 2 × 2 matrix whose components are the

self-energy clusters on scale −1. Since P ′
ν−ν′ ∼ e−|ν−ν′| we can shift M−1,0(u0)u

[0]
ν in the l.h.s. of

(3.1.11) and write

((iω · ν)1 −M−1,0(u0))u
[0]
ν = Pν(u0) + Q0(u

[≥1]) + corrections, (3.1.12)

for suitable Q0. If the operator with kernel (iω · ν)1 −M−1,0(u0) were invertible with ‘good bounds’

on its inverse we could apply some implicit function theorem in order to obtain u[0] = u[0](u[≥1]): since

det(M−1,0) → 0 as ε → 0 we can assume that ε is so small that this can be done. Then we pass to the

equations for u[1] which can be written in the form

(iω · ν)u[1]
ν = Pν(u0 + u[0](0)) +

∑

ν′∈Zd
∗

M0,ν,ν′(u0 + u[0](0))u[≥1]
ν′ + O(‖u[≥1]‖2)

= Pν(u0 + u[0](0)) + M0,ν,ν(u0 + u[0](0))u[1]
ν +

+
∑

ν′∈Zd
∗\{ν}

M0,ν,ν′(u0 + u[0](0))u[≥1]
ν′ + O(‖u[≥1]‖2),

(3.1.13)

where M0(u0 + u[0](0)) := P ′(u0 + u[0](0))(1 + ∂u[0](0)); if instead of the “propagators” 1/(iω · ν)1 we

use ((iω ·ν)1−M−1,0(u0))−1, we can regard M0,ν,ν(u0 +u[0](0)) as the 2×2 matrix whose components
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3.1 Preliminary (heuristics) considerations

are the sums of the values of all self-energy clusters on scale 0 which do not contain any self-energy

cluster. Under the assumption that u[0] is well defined, Lemma 2.2.7 suggests that M0,ν,ν′ ∼ e−|ν−ν′|

so that we write

((iω · ν)1 −M0,ν,ν(u0 + u[0](0)))u[1]
ν = Pν(u0 + u[0](0)) + Q1(u

[≥2]) + corrections, (3.1.14)

for suitable Q1. Again if the operator with kernel (iω · ν)1 −M0,ν,ν(u0 + u[0](0)) were invertible with

‘good bounds’ on its inverse, we could reason as done for u[0] and obtain u[1] = u[1](u[≥2]); moreover we

would like to iterate the procedure.

The problem is that, as the scale increases |ω · ν| gets smaller and smaller while, defining Mn(u0 +

u[≤n](0)) := P ′(u0 + u[≤n](0))(1 + ∂u[≤n](0)), we only know that det(Mn,ν,ν) → 0 as ε → 0, so that

for certain n it can happen that |det((iω · ν)1−Mn,ν,ν(u0 + u[≤n](0)))| is “too small”. However if we

assume that the iteration can be performed, and this turns out to be the case if we assume a bound like

|det((iω · ν)1 −Mn,ν,ν(u0 + u[≤n](0)))| ≥
(ω · ν)2

2
(3.1.15)

for all n ≥ 0 and all ν on scale n, then one can prove

Mn,ν,ν(u0 + u[≤n](0))) = Mn,0,0(u0 + u[≤n](0))) + Dn(u0 + u[≤n](0)))(ω · ν) + O(ε|ω · ν|2) (3.1.16)

where the matrix Dn(u0 + u[≤n](0))) has purely imaginary entries, so that assuming (3.1.15) is tanta-

mount to require

|(ω · ν)2 − det(Mn,0,0(u0 + u[≤n](0)))| ≥
(ω · ν)2

2
. (3.1.17)

for all n ≥ 0 and all ν on scale n; moreover we can prove the remarkable identity

Mn,0,0(u0 + u[≤n](0)) = [∂P (u0 + u)(1 + ∂u0u)]0 + O(e−2n
). (3.1.18)

On the other hand, the matrix [∂P (u0 + u)(1 + ∂u0u)]0 has the form (assume k0 = 1 in Hypothesis 4

for simplicity) (
O(ε) ω′

0(B0) + O(ε)

ε∂β0Γ
(1)(β0) + O(ε2) O(ε)

)

(3.1.19)

so that Hypothesis 4 ensures det([∂P (u0 + u)(1+ ∂u0u)]0) ≤ 0 for u0 close enough to (β0, B0). In other

words (3.1.18), (3.1.19) and Hypothesis 4 would imply the bound (3.1.17) and hence (3.1.15). Of course

we cannot proceed in this way, so that the idea is to add a cut-off

ξn =





0, if (iω · ν)1 is “too close” to Mn,0,0,

1, if (iω · ν)1 is “far enough” from Mn,0,0,
(3.1.20)
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Proof of Theorem 1.1.2

in order to recursively define for all n ≥ 0

ũ[n]
ν = ((iω · ν)1− M̃n−1,ν,νξn−1)

−1
[
Pν(u0 + u[≤n−1](0)) + Q̃n(u[≥n+1])

]
, (3.1.21)

for suitable Q̃n, where M̃n := P ′(u0 + ũ[≤n](0))(1 + ∂ũ[≤n](0)). Of course the well defined function

ũ =
∑

n≥0

ũ[n], ũ[n] =
∑

ν∈Zd
∗

ν on scale n

eiν·ωtũ[n]
ν , (3.1.22)

may no longer solve the range equation: it happens only if one can prove ξn = 1 for all n ≥ 0. As we

shall see, this can be made possible by suitably choosing the parameter u0. In what follows we shall

make this procedure more precise.

3.2 Resummed series

To take into account the considerations in § 3.1, we perform a “tree expansion” different from both

the one in Chapter 2 and the one at the beginning of § 3.1.

More precisely, given a tree θ we associate the labels with the nodes and the lines of θ as follows.

With each node v ∈ N(θ) we associate a mode label, a component label and an order label as in §

2.1, while with each line + = +v we associate a pair of component labels (e&, u&) ∈ {β, B}2, with the

constraint that u& = hv, and a momentum ν& ∈ Zd
∗, except for the root line which can have either zero

momentum or not, i.e. ν&θ
∈ Zd. For any line +, we call e& and u& the e-component and the u-component

of +, respectively.

We denote by pv and qv the numbers of lines with e-component β and B, respectively, entering the

node v, and set sv = pv + qv. If kv = 0 for some v ∈ N(θ) we force also hv = β, pv = 0 and qv ≥ 1.

We still impose the conservation law

ν& =
∑

v≺&

νv (3.2.1)

and still call order of any subgraph T of a tree θ the number

k(T ) =
∑

v∈N(T )

kv. (3.2.2)

Finally, we associate with each line + also a scale label n& as in § 2.2; note that now one can have

n& = −1 only if + is the root line of θ.

We do not change the definition of cluster given in § 2.2, while, from now on, a self-energy cluster is

a cluster T such that (i) T has only one entering line +′T and one exiting line +T , (ii) one has ν&T
= ν&′T
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3.2 Resummed series

and hence

∑

v∈N(T )

νv = 0. (3.2.3)

We shall say that a subgraph T constituted by only one node v with νv = 0 such that v has only one

entering line is a self-energy cluster on scale −1. Note that if a self-energy cluster is on a scale n ≥ 0

then |N(T )| ≥ 2 and k(T ) ≥ 1, as is easy to check.

A left-fake cluster T on scale n is a connected subgraph of a tree θ with only one entering line +′T
and one exiting line +T such that (i) all the lines in T have scale ≤ n and there is in T at least one line

on scale n, (ii) +′T is on scale n + 1 and +T is on scale n, and (iii) one has ν&T
= ν&′T

. Analogously a

right-fake cluster T on scale n is a connected subgraph of a tree θ with only one entering line +′T and

one exiting line +T such that (i) all the lines in T have scale ≤ n and there is in T at least one line on

scale n, (ii) +′T is on scale n and +T is on scale n + 1, and (iii) one has ν&T
= ν&′T

. Roughly speaking,

a left-fake (respectively right-fake) cluster T fails to be a self-energy cluster (or even a cluster) only

because the exiting (respectively the entering) line is on scale equal to the scale of T .

A renormalised tree is a tree in which no self-energy clusters appear; analogously a renormalised

subgraph is a subgraph of a tree θ which does not contains any self-energy cluster. Note that if T is

a renormalised self-energy cluster and N(T ) ≥ 2 then k(T ) ≥ 2; moreover the bound
∑

v∈N(T ) sv ≤

4k(T ) − 2 ≤ 4k(T ) provided by Lemma 2.1.1 holds also for any renormalised subgraph T of any tree θ

with the new constraints on the labels.

Given a tree θ we call total momentum of θ the momentum associated with +θ and total component

of θ the e-component of +θ. We denote by ΘR
k,ν,h the set of renormalised trees with order k, total

momentum ν and total component h; the sets of renormalised self-energy clusters, renormalised left-

fake clusters and renormalised right-fake clusters T on scale n such that u&T
= u and e&′T

= e will be

denoted by Rn,u,e, LFn,u,e and RFn,u,e, respectively.

For any θ ∈ ΘR
k,ν,h we associate with each node v ∈ N(θ) a node factor

Fv = Fv(β0, B0) :=






1

pv!qv!
∂pv

β ∂qv

B Fνv (β0, B0), hv = β, kv = 1,

1

qv!
∂qvω0(B0), hv = β, kv = 0,

1

pv!qv!
∂pv

β ∂qv

B Gνv (β0, B0), hv = B, kv = 1.

(3.2.4)

33



Proof of Theorem 1.1.2

With each line + = +v we associate a propagator G[n%]
e%,u%(ω · ν&; ε,β0, B0) formally defined recursively as

G[n](x; ε,β0, B0) =





G[n]
β,β(x; ε,β0, B0) G[n]

β,B(x; ε,β0, B0)

G[n]
B,β(x; ε,β0, B0) G[n]

B,B(x; ε,β0, B0)





:= Ψn(x)
(
(ix)1−M[n−1](x; ε,β0, B0)

)−1
,

(3.2.5)

where

M[n−1](x; ε,β0, B0) :=
n−1∑

q=−1

χq(x)M [q](x; ε,β0, B0), (3.2.6)

where, for n ≥ −1, M [n](x; ε,β0, B0) is the 2 × 2 matrix

M [n](x; ε,β0, B0) :=





M [n]
β,β(x; ε,β0, B0) M [n]

β,B(x; ε,β0, B0)

M [n]
B,β(x; ε,β0, B0) M [n]

BB(x; ε,β0, B0)



 , (3.2.7)

with (formally)

M [n]
u,e(x; ε,β0, B0) :=

∑

T∈Rn,u,e

εk(T )
V T (x; ε,β0, B0), (3.2.8)

the functions Ψn,χn defined as in § 2.2, and V T (x; ε,β0, B0) is the renormalised value of T , defined as

V T (x; ε,β0, B0) :=

(
∏

v∈N(T )

Fv

)(
∏

&∈L(T )

G[n%]
e%,u%

(ω · ν&; ε,β0, B0)

)

. (3.2.9)

Note that, differently from Chapter 2, here V T depends on ε – because the propagators do –; on

the other hand it depends on x = ω ·ν&′T
only through the propagators associated with the lines + ∈ PT

(see Remark 2.2.3).

Set M := {M[n](x; ε,β0, B0)}n≥−1. We call self-energies the matrices M[n](x; ε,β0, B0).

Remark 3.2.1. One has

∂cG
[n]
e,u(x; ε,β0, B0) =

(
G[n](x; ε,β0, B0)∂cM

[n−1](x; ε,β0, B0)
(
(ix)1 −M[n−1](x; ε,β0, B0)

)−1
)

e,u

for both c = β0, B0.

Setting also G[−1](0; ε,β0, B0) = 1, for any subgraph S of any θ ∈ ΘR
k,ν,h define the renormalised

value of S as

V (S; ε,β0, B0) :=

(
∏

v∈N(S)

Fv

)(
∏

&∈L(S)

G[n%]
e%,u%

(ω · ν&; ε,β0, B0)

)

. (3.2.10)
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3.2 Resummed series

Note that, differently from Chapter 2, here the value of a tree depends on both B0,β0; moreover it

depends on such parameters also through the propagators.

We define
b[k]
ν (ε,β0, B0) :=

∑

θ∈ΘR
k,ν ,β

V (θ; ε,β0, B0),

B[k]
ν (ε,β0, B0) :=

∑

θ∈ΘR
k,ν ,B

V (θ; ε,β0, B0),
(3.2.11)

for any ν *= 0, and

Φ[k]
0

(ε,β0, B0) :=
∑

θ∈ΘR
k,0,β

V (θ; ε,β0, B0),

Γ[k]
0

(ε,β0, B0) :=
∑

θ∈ΘR
k,0,B

V (θ; ε,β0, B0).
(3.2.12)

Set (again formally)

bR(t; ε,β0, B0) :=
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtb[k]
ν (ε,β0, B0),

B̃R(t; ε,β0, B0) :=
∑

k≥1

εk
∑

ν∈Zd
∗

eiν·ωtB[k]
ν (ε,β0, B0),

(3.2.13)

and

ΦR
0 (ε;β0, B0) :=

∑

k≥0

εkΦ[k]
0

(ε,β0, B0), ΓR
0 (ε;β0, B0) :=

∑

k≥0

εkΓ[k]
0

(ε,β0, B0), (3.2.14)

and define βR(t; ε,β0, B0) = β0 + bR(t; ε,β0, B0) and BR(t; ε,β0, B0) = B0 + B̃R(t; ε,β0, B0). Set also

ΘR,n
k,ν,h = {θ ∈ ΘR

k,ν,h : n& ≤ n for all + ∈ L(θ)}, and define

ΦR,n
0

(ε;β0, B0) :=
∑

k≥0

εk
∑

θ∈ΘR,n
k,0,β

V (θ; ε,β0, B0),

ΓR,n
0

(ε;β0, B0) :=
∑

k≥0

εk
∑

θ∈ΘR,n
k,0,B

V (θ; ε,β0, B0).
(3.2.15)

The series (3.2.13) and (3.2.14) will be called the resummed series.

Remark 3.2.2. One has

M[−1](x; ε,β0, B0) = M [−1](x; ε,β0, B0) =





ε∂β0F0(β0, B0) ω′
0(B0) + ε∂B0F0(β0, B0)

ε∂β0G0(β0, B0) ε∂B0G0(β0, B0)



 ,

where ω′
0(B0) *= 0 for B0 close enough to B0 by Hypothesis 2. In particular M[−1](x; ε,β0, B0) does not

depend on x and is a real-valued matrix.
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Proof of Theorem 1.1.2

Remark 3.2.3. If T is a renormalised left-fake (respectively right-fake) cluster, we can (and shall)

write V (T ; ε,β0, B0) = V T (ω · ν&′T
; ε,β0, B0) to stress that the propagators of the lines in PT depend

on ω · ν&′T
. In particular one has

∑

T∈LFn,u,e

εk(T )
V T (x; ε,β0, B0) =

∑

T∈RFn,u,e

εk(T )
V T (x; ε,β0, B0) = M [n]

u,e(x; ε,β0, B0).

For any renormalised subgraph S of any tree θ we denote by Nn(S) the number of lines on scale ≥ n

in S, and set

K(S) =
∑

v∈N(S)

|νv |.

Then we have the following results.

Lemma 3.2.4. For any h ∈ {β, B}, ν ∈ Zd, k ≥ 1 and for any θ ∈ ΘR
k,ν,h such that V (θ; ε,β0, B0)

*= 0, one has Nn(θ) ≤ 2−(mn−2)K(θ) for all n ≥ 0.

Proof. First of all we note that if Nn(θ) ≥ 1, then there is at least one line + with n& = n and hence

K(θ) ≥ |ν&| ≥ 2mn−1 (see Remark 2.2.2). Now we prove the bound Nn(θ) ≤ max{2−(mn−2)K(θ)− 1, 0}

by induction on the order.

If the root line of θ has scale n&θ
< n then the bound follows by the inductive hypothesis. If n&θ

≥ n,

call +1, . . . , +r the lines with scale ≥ n closest to +θ (that is such that n&′ < n for all lines +′ ∈ P(+θ, +i),

i = 1, . . . , r). If r = 0 then Nn(θ) = 1 and |ν| ≥ 2mn−1, so that the bound follows. If r ≥ 2 the bound

follows once more by the inductive hypothesis. If r = 1, then +1 is the only entering line of a cluster T

which is not a renormalised self-energy cluster as θ ∈ ΘR
k,ν,h, and hence ν&1 *= ν. But then

|ω · (ν − ν&1)| ≤ |ω · ν| + |ω · ν&1 | ≤
1

4
αmn−1(ω) < αmn−1+pn−1(ω) = αmn−1(ω),

as both +θ and +1 are on scale ≥ n, so that one has K(T ) ≥ |ν − ν&1 | ≥ 2mn−1. Now, call θ1 the subtree

of θ with root line +1. Then one has Nn(θ) = 1 + Nn(θ1) ≤ 1 + max{2−(mn−2)K(θ1) − 1, 0}, so that

Nn(θ) ≤ 2−(mn−2)(K(θ) − K(T )) ≤ 2−(mn−2)K(θ) − 1, again by induction.

Lemma 3.2.5. For any e, u ∈ {β, B}, n ≥ 0 and for any T ∈ Rn,u,e such that V T (x; ε,β0, B0) *= 0,

one has K(T ) > 2mn−1 and Np(T ) ≤ 2−(mp−2)K(T ) for 0 ≤ p ≤ n.

Proof. We first prove that for all n ≥ 0 and all T ∈ Rn,u,e, one has K(T ) ≥ 2mn−1. In fact if T ∈ Rn,u,e

then T contains at least a line on scale n. If there is + ∈ L(T )\PT with n& = n, then K(T ) ≥ |ν&| > 2mn−1

(see Remark 2.2.2). Otherwise, let + ∈ PT be the line on scale n which is closest to +′T . Call T̃ the

subgraph (actually the cluster) consisting of all lines and nodes of T preceding +. Then ν& *= ν&′T
,
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3.3 A suitable Ansatz

otherwise T̃ would be a renormalised self-energy cluster. Therefore K(T ) > |ν& − ν&′T
| > 2mn−1 as both

+, +′T are on scale ≥ n.

Given a tree θ, call C(n, p) the set of renormalised subgraphs T of θ with only one entering line +′T
and one exiting line +T both on scale ≥ p, such that L(T ) *= ∅ and n& ≤ n for any + ∈ L(T ). Note that

Rn,u,e ⊂ C(n, p) for all n, p ≥ 0 and u, e ∈ {β0, B0}. We prove that Np(T ) ≤ max{K(T )2−(mp−2) − 1, 0}

for 0 ≤ p ≤ n and all T ∈ C(n, p). The proof is by induction on the order. Call N(PT ) the set of nodes

in T connected by lines in PT . If all lines in PT are on scale < p, then Np(T ) = Np(θ1)+ . . . + Np(θr) if

θ1, . . . , θr are the subtrees with root line entering a node in N(PT ), and hence the bound follows from

(the proof of) Lemma 3.2.4. If there exists a line + ∈ PT on scale ≥ p, call T1 and T2 the subgraphs of

T such that L(T ) = {+} ∪ L(T1) ∪ L(T2). Note that if L(T1), L(T2) *= ∅, then T1, T2 ∈ C(n, p). Hence,

by the inductive hypothesis one has

Np(T ) = 1 + Np(T1) + Np(T2) ≤ 1 + max{2−(mp−2)K(T1) − 1, 0} + max{2−(mp−2)K(T2) − 1, 0}.

If both Np(T1),Np(T2) are zero the bound follows as K(T ) ≥ 2mp−1, while if both are non-zero one has

Np(T ) ≤ 2−(mp−2)(K(T1)+ K(T2))− 1 = 2−(mp−2)K(T )− 1. Finally if only one is zero, say Np(T1) *= 0

and Np(T2) = 0, then Np(T ) ≤ 2−(mp−2)K(T1) = 2−(mp−2)K(T ) − 2−(mp−2)K(T2). On the other hand,

in such a case T2 is a cluster and hence ν& *= ν&′T
, which implies K(T2) ≥ 2mp−1. The same argument

can be used in the case Np(T1) = 0 and Np(T2) *= 0.

Remark 3.2.6. Lemmas 3.2.4 and 3.2.5 are the counterpart of Lemmas 2.2.4 and 2.2.5 adapted to the

present case and their proofs contain essentially the same ingredients. In particular, as in the proofs

of Lemmas 2.2.4 and 2.2.5, inequality (2.2.3) is repeatedly used in the proof of both Lemmas above;

however, also in this case one can use instead (2.2.8).

3.3 A suitable Ansatz

Here we shall prove that, under the assumption that the propagators G[n]
e,u(ω ·ν; ε,β0 , B0) are bounded

proportionally to 1/(ω · ν)2, the series (3.2.13) converge and solve the range equations (1.2.1): the key

point is that now self-energy clusters (and hence resonant lines) are not allowed and hence a result of

that kind is expected. Then, in the next section, we shall see that the assumption is justified at least

along a curve (β0(ε), B0(ε)) satisfying also the bifurcation equations (1.1.8c) and (1.1.8d). We shall not

write the dependence on ε,β0, B0 unless needed.

Definition 3.3.1. We shall say that M satisfies property 1 if one has

Ψn+1(x)
∣∣∣det
(
(ix)1 −M[n](x)

)∣∣∣ ≥ Ψn+1(x)x2/2,
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Proof of Theorem 1.1.2

for all n ≥ −1.

Definition 3.3.2. We shall say that M satisfies property 1-p if one has

Ψn+1(x)
∣∣∣det
(
(ix)1 −M[n](x)

)∣∣∣ ≥ Ψn+1(x)x2/2.

for −1 ≤ n < p.

Lemma 3.3.3. Assume M to satisfy property 1-p. Then, for 0 ≤ n ≤ p and ε small enough, the

self-energies are well defined and one has

|M [n]
u,e(x)| ≤ |ε|K1e

−K22mn
, (3.3.1a)

|∂j
xM [n]

u,e(x)| ≤ |ε|Cje
−Cj2mn

, j = 1, 2, (3.3.1b)

for some constants K1,K2, C1, C2, C1 and C2.

Proof. We shall prove first (3.3.1a) by induction on n. Let n ≤ p and T ∈ Rn,u,e. The analyticity of

F,G and ω0 implies that there exist positive constants F1, F2, ξ such that for all v ∈ N(T ) one has

|Fv| ≤ F1F
sv
2 e−ξ|νv|.

Note that
∏

v∈N(T )

e−
1
4 ξ|νv| = exp

(
−

1

4
ξ K(T )

)
< exp

(
−

1

8
ξ 2mn

)
,

by Lemma 3.2.5. Moreover by property 1-p and the inductive hypothesis, one has (for instance)

|G[n′]
β,β (x)| ≤

2

x2

(
|ix| +

∣∣M[n′−1]
B,B (x)

∣∣
)

≤
2

x2

(
|x| + P1 + |ε|2K1

n′−1∑

q=0

e−K22mq
)
≤ γ0 αmn′ (ω)−2

for all 0 ≤ n′ ≤ n and for a suitable constant γ0, where we used that any renormalised self-energy

cluster T on scale ≥ 0 has at least two nodes and hence k(T ) ≥ 2, and that there exists P1 ≥ 0 such

that |M[−1]
u,e | ≤ P1 (see Remark 3.2.2). Of course one can reason analogously for G[n′]

β,B(x), G[n′]
B,β(x) and
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3.3 A suitable Ansatz

G[n′]
β,B(x). Hence by Lemmas 3.2.5 and 2.1.1 (see the comments after (3.2.3)) one can bound

∏

&∈L(T )

|G[n%]
e%,u%

(ω · ν&)| ≤
∏

q≥0

(
γ0

αmq(ω)2

)Nq(T )

≤

(
γ0

αmn0
(ω)2

)4k(T )−2∏

q≥n0+1

(
γ0

αmq(ω)2

)Nq(T )

≤

(
γ0

αmn0
(ω)2

)4k(T )−2∏

q≥n0+1

(
γ1/2
0

αmq(ω)

)2−(mq−3)K(T )

≤

(
γ0

αmn0
(ω)2

)4k(T )−2

exp

(

8K(T )
∑

q≥n0+1

1

2mq
log

γ1/2
0

αmq(ω)

)

≤ D(n0)
4k(T )−2exp(ξ(n0)K(T )),

with

D(n0) =
γ0

αmn0
(ω)2

, ξ(n0) = 8
∑

q≥n0+1

1

2mq
log

γ1/2
0

αmq(ω)
.

Then, by Hypothesis 1, one can choose n0 such that ξ(n0) ≤ ξ/2. Furthermore, Lemma 2.1.1 ensures

also that the sum over the other labels is bounded by a constant to the power k(T ), and hence one can

bound, for some positive constants C and K0,

|M [n]
u,e(x)| ≤

∑

T∈Rn,u,e

|ε|k(T )|V T (x)| ≤
∑

T∈Rn,u,e

|ε|k(T )Ck(T )e−K0K(T ) ≤
∑

k≥2

|ε|kCke−K22mn
, (3.3.2)

with K2 = K0/2, then (3.3.1a) is proved for ε small enough. Now we prove (3.3.1b), again by induction

on n. For n = 0 the bound is obvious. Assume then (3.3.1b) to hold for all n′ < n. For any T ∈ Rn,u,e

such that V T (x) *= 0 one has

∂x V T (x) =
∑

&∈PT




∏

v∈N(T )

Fv







∂xG
[n%]
e%,u%

(x&)
∏

&′∈L(T )\{&}

G
[n%′ ]
e%′ ,u%′

(ω · ν&′)



 , (3.3.3)

where x& = ω · ν& = x + ω · ν0
& and

∂xG
[n%](x&) =

d

dx
G[n%](ω · ν0

& + x) = ∂xΨn%
(x&)
(
(ix&)1−M[n%−1](x&)

)−1

− Ψn%
(x&)
(
(ix)1−M[n%−1](x&)

)−2 (
i1− ∂xM

[n%−1](x&)
)

.

One has

|∂xΨn%
(x&)| ≤ |∂xχn%−1(x&)| + |∂xψn%

(x&)| ≤
B1

αmn%
(ω)

,
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for some positive constant B1 and, by (3.3.1a), the inductive hypothesis and Hypothesis 1,

|∂xM
[n%−1]
u,e (x&)| ≤

n%−1∑

q=0

|(∂xχq(x&))M
[q]
u,e(x&)| +

n%−1∑

q=0

|∂xM [q]
u,e(x&)|

≤ |ε|B1K1

∑

q≥0

1

αmq(ω)
e−K22mq

+ |ε|C1

∑

q≥0

e−C12mq
≤ |ε|B2,

for some positive constant B2. Hence the differentiated propagator ∂xG
[n%]
e%,u%(x&) can be bounded by

γ1αmn%
(ω)−4 for some constant γ1. Possibly redefining the constant γ1, also the propagators of the lines

+′ *= + in (3.3.3) can be bounded by γ1 αmn
%′

(ω)−4, and hence, at the cost of replacing the previous

bound γ0αmn(ω)−2 for the propagators G[n](x) with γ1αmn(ω)−4, one can reason as in the proof of

(3.3.1a) to obtain (3.3.1b) for j = 1. For j = 2 one can reason analogously.

Remark 3.3.4. From the proof of Lemma 3.3.3 it follows that if M satisfies property 1-p the matrices

M[n](x) and G[n](x) are well defined for all −1 ≤ n ≤ p. In particular there exists γ0 > 0 such that

|G[n]
e,u(x)| ≤ γ0 αmn(ω)−2 for all 0 ≤ n ≤ p. Moreover if M satisfies property 1, the same considerations

apply for all n ≥ 0.

Lemma 3.3.5. Assume M to satisfy property 1-p. Then one has

M[n](−x) = M[n](x)∗ (3.3.4)

for all −1 ≤ n ≤ p.

Proof. We shall prove the result by induction on n. For n = −1 the result is obvious; see Remark

3.2.2. Assume (3.3.4) to hold up to scale n − 1. Then, by definition, one has also G[q](−x) = G[q](x)∗

for all 0 ≤ q ≤ n. For any renormalised self-energy cluster T contributing to M [n](x), consider the

renormalised self-energy cluster T ′ obtained from T by replacing the mode labels νv with −νv and

changing the sign of the momentum of the entering line. Then the node factors are changed into their

complex conjugated, and this holds also for the propagators because of the conservation law (3.2.1).

Then V T ′(−x) = V T (x)∗. This is enough to prove the assertion.

Lemma 3.3.6. Assume M to satisfy property 1-p. Then, for 0 ≤ n ≤ p and ε small enough, one has

∣∣∣M [n]
u,e(x) − M [n]

u,e(0) − x ∂xM [n]
u,e(0)

∣∣∣ ≤ |ε|K3e
−K42mn

x2 (3.3.5)

for some constants K3 and K4.
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3.3 A suitable Ansatz

Proof. For x2 > |ε| the bound follows trivially from Lemma 3.3.3: thus, we may assume in the following

x2 ≤ |ε|. Consider a self-energy cluster T whose value V T (x) contributes to M [n]
u,e(x) through (3.2.8)

and set AT (x) = V T (x) − V T (0) − x ∂x V T (0). Define also

n = min{n ∈ Z+ : K(T ) ≤ 2mn}.

Let us distinguish between the two cases: (a) 2mn−1 < K(T ) ≤ 2mn and (b) 2mn−1 < K(T ) ≤ 2mn−1.

In case (a), if αmn
(ω) ≤ 4|x| then one can bound |AT (x)| ≤ |V T (x)| + |V T (0)| + |x ∂x V T (0)|. As

soon as Ψn%
(ω ·ν&) *= 0 for all + ∈ L(T ), by (the proof of) Lemma 3.3.3 – see in particular (3.3.2) – each

contribution can be bounded as

|ε|k(T )Cke−K0K(T ) ≤ |ε|k(T )Cke−(K0/2)K(T )e−(K0/2)2mn−1

≤ |ε|k(T )Cke−(K0/2)K(T )αmn(ω)2 ≤ 16x2|ε|k(T )Cke−(K0/4)2mn
,

possibly redefining the constants C,K0. If on the contrary αmn
(ω) > 4|x|, one can reason as follows.

For any line + ∈ L(T ) one has |ν0
& | ≤ K(T ) ≤ 2mn and hence |ω · ν0

& | ≥ αmn(ω). Then for all τ ∈ [0, 1]

5

4

∣∣ω · ν0
&

∣∣ ≥
∣∣ω · ν0

&

∣∣+ |x| ≥
∣∣ω · ν0

& + τx
∣∣ ≥
∣∣ω · ν0

&

∣∣− |x| ≥
3

4

∣∣ω · ν0
&

∣∣ .

In particular (5/4)|ω · ν0
& | ≥ |ω · ν&| ≥ (3/4)|ω · ν0

& | and therefore

2 |ω · ν&| ≥
∣∣ω · ν0

& + τx
∣∣ ≥

1

2
|ω · ν&| . (3.3.6)

This implies that the sizes of the propagators in V T (τx) ‘do not change too much’ with respect to

V T (x): in particular (2.2.3) yields the bound (2.2.8) and hence, by Remark 3.2.6, Lemmas 3.2.4 and

3.2.5 still hold, so as to obtain |∂2
1 V T (τx)| ≤ C ′(C ′′)k(T )e−K22mn

, where ∂1 denotes the derivative with

respect to the (only) argument, for some constants C ′ and C ′′. Then

|AT (x)| ≤

∣∣∣∣x
2
∫ 1

0
dτ (1 − τ) ∂2

1 V T (τx)

∣∣∣∣ ≤ x2C ′(C ′′)ke−K22mn
, (3.3.7)

By summing over all possible self-energy values contributing to M [n]
u,e(x) the bound (3.3.5) follows.

In case (b), if αmn−1(ω) ≤ 8|x| then one can bound |AT (x)| ≤ |V T (x)|+ |V T (0)|+ |x ∂x V T (0)| and

use that K(T ) > 2mn−1 to obtain

e−(K0/2)K(T ) ≤ e−(K0/2)2mn−1
≤ αmn−1(ω)2 ≤ 64x2.

If αmn−1(ω) > 8|x|, for any line + ∈ L(T ) one has |ν0
& | ≤ K(T ) ≤ 2mn−1 and hence

|ω · ν0
& | ≥ αmn−1(ω) >

1

2
αmn−1(ω).

Then one can reason as done in case (a) and obtain (3.3.6) for all τ ∈ [0, 1]: in turn this yields the

bound (3.3.7) and hence the bound (3.3.5) follows once more.
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Remark 3.3.7. From (3.3.1) and Lemmas 3.3.5 and 3.3.6 it follows that if property 1-p (respectively

property 1) is satisfied then for all n ≤ p (respectively for all n ≥ −1) one has M[n](x) = M[n](0) +

∂xM[n](0)x + O(εx2), where M[n](0) is a real-valued matrix, while ∂xM[n](0) is a purely imaginary

one. In particular this implies that if Ψn+1(x) |x2 − det(M[n](0))| ≥ Ψn+1(x)x2/2 for all −1 ≤ n < p

(respectively for all n ≥ −1) then property 1-p (respectively property 1) holds.

The following result will be crucial to check, in the forthcoming § 3.4, that property 1 is satisfied by

M. The proof follows the lines of that for Lemma 4.8 in [22] and it is deferred to Appendix B.

Lemma 3.3.8. Assume M to satisfy property 1-p. Then

M[p](0) =





∂β0Φ
R,p
0

+ ep,β,β ∂B0Φ
R,p
0

+ ep,β,B

∂β0Γ
R,p
0

+ ep,B,β ∂B0Γ
R,p
0

+ ep,B,B



 , (3.3.8)

with |ep,u,e| ≤ |ε|A1e−A22mp+1
, u, e = β, B for suitable positive constantes A1 and A2.

Lemma 3.3.9. Assume M to satisfy property 1. Then the series (3.2.13) and (3.2.14) with the coeffi-

cients given by (3.2.11) and (3.2.12) respectively, converge for ε small enough.

Proof. Let θ ∈ ΘR
k,ν,h. By Remark 3.3.4 one can bound |G[n]

e,u(x)| ≤ γ0 αmn(ω)−2 for all n ≥ 0, and hence

by Lemma 3.2.4 one can reason as in the proof of the bound (3.3.1a) so as to obtain

∑

θ∈ΘR
k,ν

|V (θ)| ≤ C0C
k
0e

−ξ|ν|/2,

for some constants C0 and C0, which is enough to prove the assertion.

Lemma 3.3.10. Assume M to satisfy property 1. Then for ε small enough the function (3.2.13), with

the coefficients given by (3.2.11), solve the equations (1.2.1).

Proof. We shall prove that, the functions bR, BR satisfy the range equation (1.2.1), i.e. we shall

check that fR := (bR, BR) = g Ξ(ωt, fR), where g is the pseudo-differential operator with kernel

g(ω ·ν) = 1/(iω ·ν)1, and Ξ(ωt, fR) :=
(
ω(BR)+ εF (ωt,βR, BR), εG(ωt,βR, BR)

)
. We can write the

Fourier coefficients of bR and BR as

bRν =
∑

n≥0

b[n]
ν , b[n]

ν =
∑

k≥1

εk
∑

θ∈ΘR
k,ν ,β(n)

V (θ),

BR
ν =

∑

n≥0

B[n]
ν , B[n]

ν =
∑

k≥1

εk
∑

θ∈ΘR
k,ν ,B(n)

V (θ),

42



3.3 A suitable Ansatz

where ΘR
k,ν,h(n) is the subset of ΘR

k,ν,h such that n&θ
= n. Set also Θ

R
k,ν(n) := Θ

R
k,ν,β(n) × Θ

R
k,ν,B(n)

and, for (θ, θ′) ∈ Θ
R
k,ν(n), define V (θ, θ′) := (V (θ),V (θ′)).

Using Lemmas 2.2.1 and 3.3.9, in Fourier space one can write

g(ω · ν)[Ξ(ωt, fR)]ν = g(ω · ν)
∑

n≥0

Ψn(ω · ν)[Ξ(ωt, fR)]ν

= g(ω · ν)
∑

n≥0

Ψn(ω · ν)(G[n](ω · ν))−1G[n](ω · ν)[Ξ(ωt, fR)]ν

= g(ω · ν)
∑

n≥0

(
(iω · ν)1 −M[n−1](ω · ν)

)
G[n](ω · ν)[Ξ(ωt, fR)]ν

= g(ω · ν)
∑

n≥0

(
(iω · ν)1 −M[n−1](ω · ν)

)∑

k≥1

εk
∑

(θ,θ′)∈Θ
R

k,ν (n)

V (θ, θ′),

where Θ
R
k,ν(n) differs from ΘR

k,ν(n) as it also includes couples where the root line of one or both of is

the exiting line of a renormalised self-energy cluster. If we separate such couples from the others, we

obtain

g(ω · ν)[Ξ(ωt, fR)]ν = g(ω · ν)

[
∑

n≥0

(
(iω · ν)1 −M[n−1](ω · ν)

)
f [n]

ν

+
∑

n≥0

Ψn(ω · ν)
∑

p≥n

n−1∑

q=−1

M [q](ω · ν)f [p]
ν +

∑

n≥1

Ψn(ω · ν)
n−1∑

p=0

p−1∑

q=−1

M [q](ω · ν)f [p]
ν

]

= g(ω · ν)

[
∑

n≥0

(
(iω · ν)1 −M[n−1](ω · ν)

)
f [n]

ν +
∑

p≥0

(
p−1∑

q=−1

M [q](ω · ν)
∑

n≥q+1

Ψn(ω · ν)

)

f [p]
ν

]

= g(ω · ν)

[
∑

n≥0

(
(iω · ν)1 −M[n−1](ω · ν

)
f [n]

ν +
∑

n≥0

(
n−1∑

q=−1

M [q](ω · ν)χq(ω · ν)

)

f [n]
ν

]

= g(ω · ν)

[
∑

n≥0

(
(iω · ν)1 −M[n−1](ω · ν)

)
f [n]

ν +
∑

n≥0

M[n−1](ω · ν)f [n]
ν

]

=
∑

n≥0

f [n]
ν = fR

ν ,

so that the proof is complete.

Remark 3.3.11. If M satisfies property 1, one can define

M[∞](x) := lim
n→∞

M[n](x),
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Proof of Theorem 1.1.2

and, form Lemma 3.3.8, one has

M[∞](0) =





∂β0Φ
R
0 ∂B0Φ

R
0

∂β0Γ
R
0 ∂B0Γ

R
0



 . (3.3.9)

Note that (3.3.9) is pretty much the same equality provided by Lemma 4.8 in [22], adapted to the

present case.

Remark 3.3.12. If we take the formal expansion of the functions ΦR
0 (ε,β0, B0), ΓR

0 (ε,β0, B0) and

M[∞]
u,e (0; ε,β0, B0), u, e ∈ {β, B}, we obtain tree expansions where the self-energy clusters are allowed,

as in Chapter 2. Then it is easy to prove the identity (3.3.9) to any perturbation order: the proof would

follow the lines of the proof of the identities (2.3.4). In particular, if one expands

det

(
k0−1∑

k=0

εk

[

M[∞]
(
0; ε,β0, B0 +

k0−1∑

h=1

εhB(h)
0 + O(εk0)

)](k))

=
k0−1∑

k=0

εkδ(k) + O(εk0),

one has δ(k) = δ(k)(β0) ≡ 0 for all k = 0, . . . k0 − 1, if the coefficients B(h)
0 = B(h)

0
(β0) are defined as in

(1.1.10). Moreover, for such an expansion, if one writes

det

(
k0−1∑

k=0

εk

[

M[n](0,β0, B0 +
k0−1∑

h=1

εhB(h)
0 + O(εk0)

)](k))

=
k0−1∑

k=0

εkδ(k)
n + O(εk0)

one has ∣∣∣∣∣

k0−1∑

k=0

εkδ(k)
n

∣∣∣∣∣ ≤ A1e
−A22mn

for some positive constants A1, A2. However, under Hypotheses 1, 2 and 4, we are not able to prove the

convergence of the series and we need to introduce some resummation procedure to give a meaning to

the series.

Lemma 3.3.13. Assume M to satisfy property 1. Then there exists B0 = B0(ε,β0), C∞ in both ε,β0,

such that B0(ε,β0) → B0 for ε → 0, and ΦR
0

(ε,β0, B0(ε,β0)) ≡ 0 for any β0 and ε small enough.

Proof. One has ΦR
0 (ε;β0, B0) = ω0(B0)+O(ε) and it is C∞ in its arguments because of the assumption

that M satisfies property 1. Then, by Hypothesis 2 one can apply the implicit function theorem to

obtain the result. In particular one has

B0(ε,β0) = B0 +
k0∑

h=1

εhB(h)
0

(β0) + O(εk0+1),

where the coefficients B(h)
0

(β0) coincide with those defined in (1.1.10).
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3.4 Fixing the initial phase

Lemma 3.3.14. Assume M to satisfy property 1 and set g(ε,β0) := ΓR
0

(ε;β0, B0(ε,β0)), where B0(ε,β0)

is the C∞ function referred to in Lemma 3.3.13. Then there exists a continuous curve β0 = β0(ε)

such that g(ε,β0(ε)) = 0 and moreover, at least in a suitable half-neighbourhood of ε = 0, one has

det
(
M[∞](0; ε,β0(ε), B0(ε,β0(ε)))

)
≤ 0.

Proof. Using the same argument in the proof of Lemma 4.11 in [22], as property 1 and Hypothesis 4 imply

g(ε,β0) = εk0g(ε,β0) = εk0

(
Γ(k0)

0
(β0) + O(ε)

)
and ω′

0(B0(ε,β0)) has the same sign of ω′
0(B0) for ε small

enough, one can find a continuous curve β0 = β0(ε) defined at least in a suitable half-neighbourhood of

ε = 0 such that g(ε,β0(ε)) ≡ 0 and ∂β0g(ε,β0(ε))ω′
0(B0(ε,β0(ε))) ≥ 0. Indeed Hypothesis 4 implies that

there exist two half-neighbourhood V+, V− of β0 such that g(0,β0) > 0 for β0 ∈ V+ while g(0,β0) < 0 for

β0 ∈ V−. Hence, by continuity, for all β0 ∈ V+ there exists a neighbourhood U+(β0) of ε = 0 such that

g(ε,β0) > 0 for ε ∈ U+(β0) and, for the same reason for all β0 ∈ V− there exists a neighbourhood U−(β0)

of ε = 0 such that g(ε,β0) < 0 for all ε ∈ U−(β0). Therefore, again by continuity, there is a continuous

curve β0 = β0(ε), defined in a suitable neighbourhood U = (ε, ε) such that β0(0) = β0 and g(ε,β0(ε)) ≡

0. Moreover, again by continuity and Hypothesis 4, we have ∂β0g(ε,β0(ε))ω′
0(B0(ε,β0(ε))) ≥ 0, at least

in a half-neighbourhood of ε = 0. On the other hand one has

∂β0g(ε,β0) = ∂2Γ
R
0 (ε;β0, B0(ε,β0)) + ∂3Γ

R
0 (ε;β0, B0(ε,β0))∂β0B0(ε,β0),

so that

det
(
M[∞](0; ε,β0(ε), B0(ε,β0(ε)))

)
= −∂β0g(ε,β0(ε))

(
ω′

0(B0(ε,β0(ε))) + O(ε)
)

and then the assertion follows. In particular if k0 is even, the curve β0(ε) above can be defined in a

whole neighbourhood of ε = 0.

By the results above it follows that, if property 1 is satisfied, choosing β0 = β0(ε) and B0 =

B0(ε,β0(ε)) as above, the series (3.2.13) solve the equation of motion (1.1.1).

However we still have to prove that property 1 is satisfied; in the forthcoming § 3.4 we shall see that

it is possible to fix β0 = β0(ε) and B0 = B0(ε,β0(ε)) in such a way that both property 1 is satisfied and

the bifurcation equations are solved.

3.4 Fixing the initial phase

In this section, we shall complete the proof of Theorem 1.1.2 by showing that, under Hypotheses 1,

2 and 4 and by suitably choosing β0, B0, M turns out to satisfy property 1.
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Proof of Theorem 1.1.2

Define the C∞ non-increasing “cut-off” function ξ such that

ξ(x) =





1, x ≤ 1/2,

0, x ≥ 1,
(3.4.1)

and set ξ−1(x) = 1 and ξn(x) = ξ(28x/α2
mn+1

(ω)) for all n ≥ 0. Set also

B0(ε,β0, B
′
0) := B0 +

k0−1∑

h=1

εhB(h)
0

(β0) + εk0B′
0 (3.4.2)

where the coefficients B(h)
0

(β0) are defined as in (1.1.10) and k0 is as in Hypothesis 4. For all n ≥ 0 we

define recursively the regularised propagators as

G
[n]

= G
[n]

(x; ε,β0, B
′
0) := Ψn(x)

(
(ix)1−M

[n−1]
(x; ε,β0, B

′
0)ξn−1(∆n−1)

)−1
, (3.4.3)

where

M
[n−1]

(x; ε,β0, B
′
0) :=

n−1∑

q=−1

χq(x)M
[q]

(x; ε,β0, B
′
0), (3.4.4)

with the 2 × 2 matrix M
[q]

(x; ε,β0, B′
0) defined so as

M
[q]
u,e(x; ε,β0, B

′
0) :=

∑

T∈Rq,u,e

εk(T )
V T (x; ε,β0, B

′
0), (3.4.5)

where

V T (x; ε,β0, B
′
0) :=

(
∏

v∈N(T )

F̃v

)(
∏

&∈L(T )

G
[n%]
e%,u%

)

, (3.4.6)

with F̃v = Fv(β0, B0(ε,β0, B′
0)) and

∆n−1 = ∆n−1(ε,β0, B
′
0) := Dn−1(ε,β0, B

′
0) −

k0−1∑

k=0

εk
[
Dn−1(ε,β0, B

′
0)
](k)

,

with

Dn−1(ε,β0, B
′
0) := det

(
M

[n−1]
(0; ε,β0, B

′
0)
)

.

For any θ ∈ ΘR
k,ν,h, define also, for all k ≥ 0, ν ∈ Zd, h = β, B,

V (θ; ε,β0, B
′
0) :=

(
∏

v∈N(T )

F̃v

)(
∏

&∈L(T )

G
[n%]
e%,u%

)

.

Finally, set M := {M
[n]

(x; ε,β0, B′
0)}n≥−1, and M

ξ
:= {M

[n]
(x; ε,β0, B′

0)ξn(∆n)}n≥−1.
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3.4 Fixing the initial phase

Lemma 3.4.1. For ε small enough, M
ξ

satisfies property 1.

Proof. We shall prove that M
ξ

satisfies property 1-p for all p ≥ 0, by induction on p. For p = 0 it is

obvious if ε is small enough. Assume then that M
ξ

satisfies property 1-p. Then we can repeat almost

word by word the proofs of Lemmas 3.3.3 and 3.3.5, so as to obtain

M
[p]

(x; ε,β0, B
′
0) = M

[p]
(0; ε,β0, B

′
0) + x ∂xM

[p]
(0; ε,β0, B

′
0) + x2

∫ 1

0
dτ (1 − τ) ∂2

xM
[n]

(τx; ε,β0, B
′
0),

with M
[p]

(0; ε,β0, B′
0) a real-valued matrix, ∂xM

[p]
(0; ε,β0, B′

0) a purely imaginary one and

∣∣∣∣x
2
∫ 1

0
dτ (1 − τ) ∂2

xM
[n]

(τx; ε,β0, B
′
0)

∣∣∣∣ ≤ C |ε|x2

for some constant C, by Lemma 3.3.6. Then we only have to prove that – see Remark 3.3.7 –

Ψp+1(x)
∣∣x2 − Dp(ε,β0, B

′
0)ξp(∆p)

2
∣∣ ≥ Ψp+1(x)

x2

2
.

Note that, by the definition of ∆p, one has

k0−1∑

k=0

εk
[
Dp(ε,β0, B

′
0)
](k)

=
k0−1∑

k=0

εkδ(k)
p

with the coefficients δ(k)
p as in Remark 3.3.12, and hence M

ξ
satisfies property 1-(p+1) by the definition

of the function ξp.

Set

M
[∞]

(x; ε,β0, B
′
0) := lim

n→∞
M

[n]
(x; ε,β0, B

′
0), (3.4.7)

and define

Φ(ε,β0, B
′
0) :=

∑

k≥0

εk
∑

θ∈ΘR
k,0,β

V (θ, ε,β0, B
′
0), Γ(ε,β0, B

′
0) :=

∑

k≥0

εk
∑

θ∈ΘR
k,0,B

V (θ, ε,β0, B
′
0). (3.4.8)

Lemma 3.4.2. One has

[P (ε,β0, B
′
0)]

(k) = [PR
0 (ε,β0, B0(ε,β0, B

′
0))]

(k), P = Φ,Γ,

for all k = 0, . . . , k0.

Proof. Set ΘR(n)
k,ν,h := {θ ∈ ΘR,n

k,ν,h : ∃+ ∈ L(θ) such that n& = n} and write

P (ε,β0, B
′
0) =

∑

k≥0

εk
∑

n≥0

∑

θ∈Θ
R(n)
k,0,h

V (θ, ε,β0, B
′
0),
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with h = β, B for P = Φ,Γ respectively, and note that if θ ∈ ΘR(n)
k,ν,h one has

∏

v∈N(θ)

|F̃v| ≤ E|N(θ)|
1 e−E22mn

,

for some constants E1, E2. Moreover one can write formally

Gn%
= Ψn%

(x)gn%−1(x)
(
1 +
∑

m≥1

(
gn%−1(x)M̃[n%−1](x; ε,β0, B

′
0)ξn%−1(∆n%−1)

)m)
,

with

gn%−1(x) =
1

(ix)2

(
ix ω′

0(B0)ξn%−1(∆n%−1)

0 ix

)

and

M̃[n%−1](x; ε,β0, B
′
0) := M

[n%−1]
(x; ε,β0, B

′
0) −

(
0 ω′

0(B0)

0 0

)

= O(ε),

and we can write ξn%−1(∆n%−1) = 1 + ξ′n%−1(∆
∗)∆n%−1 for some ∆∗, where ∆n%−1 = O(εk0) and

|ξ′n%−1(∆
∗)| ≤

E3

αmn%
(ω)2

≤
E3

αmn(ω)2
,

for some positive constant E3 independent of n. Hence the assertion follows.

Introduce the C∞ functions Φ̂(ε,β0, B0), Φ̃(ε,β0, B0), Γ̂(ε,β0, B0) and Γ̃(ε,β0, B0) such that

(1) the first k0 coefficients of the Taylor expansion in ε of both the functions Φ̂(ε,β0, B0(ε,β0, B′
0)) and

Φ̃(ε,β0, B0(ε,β0, B′
0)) coincide with those of Φ(ε,β0, B′

0),

(2) the first k0 coefficients of the Taylor expansion in ε of both the functions Γ̂(ε,β0, B0(ε,β0, B′
0)) and

Γ̃(ε,β0, B0(ε,β0, B′
0)) coincide with those of Γ(ε,β0, B′

0),

(3) one has

M
[∞]

(0; ε,β0, B
′
0) =





∂2Φ̂(ε,β0, B0(ε,β0, B′
0)) ∂3Φ̃(ε,β0, B0(ε,β0, B′

0))

∂2Γ̂(ε,β0, B0(ε,β0, B′
0)) ∂3Γ̃(ε,β0, B0(ε,β0, B′

0))



 . (3.4.9)

Define also, for all n ≥ −1 the C∞ functions Φ̂n(ε,β0, B0), Φ̃n(ε,β0, B0), Γ̂n(ε,β0, B0), Γ̃n(ε,β0, B0)

such that

M
[n]

(0; ε,β0, B
′
0) =





∂2Φ̂n(ε,β0, B0(ε,β0, B′
0)) ∂3Φ̃n(ε,β0, B0(ε,β0, B′

0))

∂2Γ̂n(ε,β0, B0(ε,β0, B′
0)) ∂3Γ̃n(ε,β0, B0(ε,β0, B′

0))



 , (3.4.10)
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3.4 Fixing the initial phase

and

|Pn(ε,β0, B0(ε,β0, B
′
0)) − P (ε,β0, B0(ε,β0, B

′
0))| ≤ AP |ε| e

−BP 2mn
, P = Φ̂, Φ̃, Γ̂, Γ̃, (3.4.11)

for some constants AP , BP . Then, by reasoning as in the proofs of Lemmas 3.3.13 and 3.3.14, we can

find B̃0 = B̃0(ε,β0) and β̃0 = β̃0(ε) such that

(i) Φ̂(ε,β0, B0(ε,β0, B̃0(ε,β0))) ≡ 0 for all β0 and ε small enough,

(ii) Γ̂(ε, β̃0(ε), B0(ε, β̃0(ε), B̃0(ε, β̃0(ε)))) ≡ 0 for all ε small enough, and

(iii)

∂3Φ̃(ε,β0, B0(ε,β0, B̃0(ε,β0)))∂β0 Γ̂(ε,β0, B0(ε,β0, B̃0(ε,β0)))
∣∣∣
β0=eβ0(ε)

≥ 0,

at least in a suitable half-neighbourhood of ε = 0.

Lemma 3.4.3. Set C̃(ε) = (β̃0(ε), B̃0(ε, β̃0(ε))) with B̃0(ε,β0) and β̃0(ε) as above. Then, along C̃(ε)

one has ξn(∆n) ≡ 1 for all n ≥ −1.

Proof. We shall prove the result by induction on n. For n = −1 it is obvious. Assume then ξp(∆p) ≡ 1

for all p = −1, . . . , n − 1 along C̃(ε) and set C(ε) = (β̃0(ε), B0(ε, C̃(ε))). Hence G
[p]

(x; ε, C̃(ε)) ≡

G[p](x; ε, C(ε)) for all p = 0, . . . , n and thence M
[n]

(x; ε, C̃(ε)) ≡ M[n](x; ε, C(ε)). In particular M

satisfies property 1-n so that, using Lemma 3.3.8 one has

M
[n]

(0; ε, C̃(ε)) =





∂2Φ
R,n
0

(ε, C(ε)) + en,β,β ∂3Φ
R,n
0

(ε, C(ε)) + en,β,B

∂2Γ
R,n
0

(ε, C(ε)) + en,B,β ∂3Γ
R,n
0

(ε, C(ε)) + en,B,B



 ,

with |en,u,e| ≤ |ε|A1e−A22mn+1 , u, e = β, B. On the other hand one has

∂2Φ̂(ε, C(ε)) = −∂3Φ̂(ε, C(ε)) ∂β0B0(ε,β0, B̃0(ε,β0))
∣∣∣
β0=eβ0(ε)

,

∂2Γ̂(ε, C(ε)) = ∂β0Γ̂(ε,β0, B0(ε,β0, B̃0(ε,β0)))
∣∣∣
β0=eβ0(ε)

− ∂3Γ̂(ε, C(ε)) ∂β0B0(ε,β0, B̃0(ε,β0))
∣∣∣
β0=eβ0(ε)

,

so that, without writing explicitly the dependence on (ε, C(ε)), one has

M
[n]

(0; ε, C̃(ε)) =





−∂3Φ
R,n
0

∂β0B0 + γn ∂3Φ
R,n
0

+ en,β,B

∂β0Γ
R,n
0

− ∂3Γ
R,n
0

∂β0B0 + γ′
n ∂3Γ

R,n
0

+ en,B,B



 ,

with |γn|, |γ′
n| ≤ |ε|C1e−C22mn+1 for some C1, C2. Hence

∆n = −∂β0Γ
R,n
0

∂3Φ
R,n
0

+ cn = −∂β0Γ̂n∂3Φ̃n + c′n = −∂β0Γ∂3Φ̃ + c′′n ≤ c′′n,

with |cn|, |c′n|, |c
′′
n| ≤ |ε|D1e−D22mn+1 for some constants D1 and D2, so that the assertion follows by the

definition of ξn.
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Proof of Theorem 1.1.2

Lemma 3.4.4. Let C̃(ε) be as in Lemma 3.4.3 and set C(ε) = (β̃0(ε), B0(ε, C̃(ε))). One can choose the

functions Φ̂, Φ̃, Γ̂, Γ̃ such that Φ̂(ε, C(ε)) = Φ̃(ε, C(ε)) = ΦR
0 (ε, C(ε)) ≡ 0 and Γ̂(ε, C(ε)) = Γ̃(ε, C(ε)) =

ΓR
0 (ε, C(ε)) ≡ 0. In particular (β(t, ε), B(t, ε)) = C(ε) + (bR(t; ε, C(ε)), BR(t; ε, C(ε))) defined in

(3.2.13) solves the equation of motion (1.1.1)

Proof. For any Φ̂, Γ̂ there is a curve C(ε) along which M = M = M
ξ

(hence M satisfies property 1)

and Φ̂(ε, C(ε)) = Γ̂(ε, C(ε)) ≡ 0. By Remark 3.3.11 also ΦR
0 and ΓR

0 are among the primitives of M[∞]
β,β

and M[∞]
B,β respectively, and then the assertion follows.

Lemma 3.4.4 completes the proof of Theorem 1.1.2: indeed the function (β(t, ε), B(t, ε)) is a quasi-

periodic solution to (1.1.1) with frequency vector ω and, by construction, it reduces to (β0, B0) as ε

tends to 0.
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A. Proof of Lemma 2.3.7

We say that a self-energy cluster T is isolated if both its external lines are non-resonant and that is

relevant if it is not isolated. As will emerge from the proof, it is convenient to introduce a further label

dT ∈ {0, 1} to be associated with each relevant self-energy cluster T . We shall see later how to fix such

a label: for the time being we consider it as an abstract label and we define the subchains as follows.

Given p ≥ 2 relevant self-energy clusters T1, . . . , Tp of a tree θ, with +′Ti
= +Ti+1 for all i = 1, . . . , p, we

say that C = {T1, . . . , Tp} is a subchain if dTi = 1 for i = 1, . . . , p, the line +T1 either is non-resonant

or enters a relevant self-energy cluster T0 with dT0 = 0 and the line +′Tp
either is non-resonant or exits

a relevant self-energy cluster Tp+1 with dTp+1 = 0. We say that a relevant self-energy cluster T is a link

if dT = 1.

Given a subchain C = {T1, . . . , Tp}, the relevant self-energy clusters Ti are called the links of C.

Define +0(C) := +T1 and +i(C) := +′Ti
for i = 1, . . . , p and set ni(C) = n&i(C) for i = 0, . . . , p. The

lines +0(C), . . . , +p(C) are the chain-lines of C: we call +1(C), . . . , +p−1(C) the internal chain-lines of

C and +0(C), +p(C) the external chain-lines of C. For future convenience we also set +C = +0(C) and

+′C = +p(C). We also call k(C) := k(T1) + . . . + k(Tp) the total order of the subchain C and p(C) = p

the length of C. Note that for all i = 1, . . . , p − 1 one has ζ&i(C) = ζ&C
= ζ&′C

if V (θ) *= 0.

We denote by C1(k;h, h′;n0, . . . , np) the set of all subchains C = {T1, . . . , Tp} with total order k and

with fixed labels h&0(C) = h, h&p(C) = h′ and ni(C) = ni for i = 0, . . . , p.

If all relevant self-energy clusters T of θ carried a label dT = 1 the definition of subchain would

reduce to that of chain in § 2.3. We want to prove the bound (2.3.8). The sum is over all chains

C = {T1, . . . , Tp} in C(k;h, h′;n0, . . . , np); then we set dTi = 1 for i = 1, . . . , p, so that we can replace

C(k;h, h′;n0, . . . , np) with C1(k;h, h′;n0, . . . , np). Thus in (2.3.8) we can write

∑

C∈C(k;h,h′;n0,...,np)

V C(x) =
∑

C∈C1(k;h,h′;n0,...,np)

V C(x) =
∑

h1,...,hp−1∈{β,B}
k1+...+kp=k

p∏

i=1

M(ki)
hi−1,hi

(x, ni), (A.1)

where h0 = h, hp = h′ and ni = min{ni−1, ni} − 1 for i = 1, . . . , p; of course |ni − nj| ≤ 1 for all

i, j = 1, . . . , p and ki ≥ 0 for i = 1, . . . , p; see Figure A.1.
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Proof of Lemma 2.3.7

n0, h0

+0

T1

n1, k1

n1, h1

+1

T2

n2, k2

n2, h2

+2

. . . . . . . . .
np−1, hp−1

+p−1

Tp

np, kp

np, hp

+p

Figure A.1: A subchain C of length p with links T1, . . . , Tp and chain-lines +0, . . . , +p; summing over

all possible C with h0 = h, hp = h′, k1 + . . . + kp = k and n1, . . . , np fixed, one obtains a graphical

representation of (A.1).

For all k ≥ 1, all n ≥ −1 and all h, h′ ∈ {β, B} let us write

M(k)
h,h′(x, n) =

∑

δ∈∆

M(k)
h,h′(x, n, δ) (A.2)

where ∆ := {L, ∂, ∂2,R} is a set of labels and

M(k)
h,h′(x, n,L) := M(k)

h,h′(0) M(k)
h,h′(x, n, ∂) := x∂M(k)

h,h′(0),

M(k)
h,h′(x, n, ∂2) := x2

∫ 1

0
dτ(1 − τ)∂2M(k)

h,h′(τx),

M(k)
h,h′(x, n,R) := M(k)

h,h′(x, n) −M(k)
h,h′(x),

(A.3)

so that we can decompose the sum in (A.1) as

∑

δ1,...,δp∈∆

∑

h1,...,hp−1∈{β,B}
k1+...+kp=k

p∏

i=1

M(ki)
hi−1,hi

(x, ni, δi). (A.4)

There are several contributions to (A.4) which sum up to zero. This holds for all contributions with

δj = δj+1 = L for some j = 1, . . . , p − 1. Indeed one can write such contributions as

∑

δ1,...,δj−1,δj+1,...,δp∈∆

∑

h1,...,hj−1,hj+1,...hp−1∈{β,B}

k1+...+kj−1+k+kj+2+...+kp=k

p∏

i=1
i*=j

M(ki)
hi−1,hi

(x, ni, δi) ×

×

(
∑

kj+kj+1=k

M
(kj)
hj−1,β(0)M

(kj+1)
β,hj+1

(0) +
∑

kj+kj+1=k

M
(kj)
hj−1,B(0)M

(kj+1)
B,hj+1

(0)

)

, (A.5)
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Proof of Lemma 2.3.7

and by Lemma 2.3.3 one has (for instance)

∑

kj+kj+1=k

M
(kj)
β,β (0)M

(kj+1)
β,β (0) +

∑

kj+kj+1=k

M
(kj)
β,B (0)M

(kj+1)
B,β (0)

=
∑

kj+kj+1=k

M
(kj)
β,β (0)M

(kj+1)
β,β (0) +

∑

kj+kj+1=k

M
(kj)
β,B (0)

(

−
∑

k′+k′′=kj+1

M(k′)
BB (0)∂β0B

(k′′)
0

)

=
∑

kj+kj+1=k

M
(kj)
β,β (0)M

(kj+1)
β,β (0) +

∑

kj+kj+1=k

M
(kj)
BB (0)M

(kj+1)
β,β (0) = 0;

one can reason in the same way also for the cases (hj−1, hj+1) *= (β,β). By (2.3.6a) of Lemma 2.3.4,

also the contributions with δj = ∂ and hj−1 *= hj for some j = 1, . . . , p sum up zero. Finally we obtain

zero also when we sum together all contributions with δj = . . . = δj+q = ∂, hj−1 = . . . = hj+q = h for

some h ∈ {β, B} and δj−1 = δj+q+1 = L for some j = 2, . . . , p − 1 and q = 0, . . . , p − 1 − j. Indeed we

can write the sum of such contributions as

∑

h1,...,hj−2,h,hj+q+1,...,hp−1=β,B
k1+...+kp=k

(
j−2∏

i=1

M(ki)
hi−1,hi

(x, ni, δi)

)

M
(kj−1)

hj−2,h
(x, nj−1,L)×

×

(
j+q∏

i=j

M(ki)

h,h
(x, ni, ∂)

)

M
(kj+q+1)

h,hj+q+1
(x, nj+q+1,L)

(
p∏

i=j+q+2

M(ki)
hi−1,hi

(x, ni, δi)

)

=
∑

k′′≤k

∑

kj+...+kj+q=k′′

(
j+q∏

i=j

M(ki)
β,β (x, ni, ∂)

)

×

×
∑

k1+...+kj−1+kk+q+1+...+kp=k−k′

h1,...,hj−2,hj+q+1,...,hp−1=β,B

(
j−2∏

i=1

M(ki)
hi−1,hi

(x, ni, δi)

)

×

×
∑

h=β,B

M
(kj−1)

hj−2,h
(x, nj−1,L)M

(kj+q+1)

h,hj+q+2
(x, nj+q+1,L)

(
p∏

i=j+q+2

M(ki)
hi−1,hi

(x, ni, δi)

)

,

and the last sum is zero by the same argument used for (A.5); note that we used (2.3.6b) to extract a

common factor M(ki)
β,β (x, ni, ∂) in the third line.

We say that a cluster T is a fake cluster on scale n if it is a connected subgraph of a tree with only

one entering line +′T and one exiting line +T such that (i) all lines in T have scale ≤ n and there is at

least one line on T with scale n and (ii) the lines +T and +′T carry the same momentum; note that a

fake cluster can fail to be a self-energy cluster only because there the scales of the external lines have

no relation with n (and hence it can even fail to be a cluster). Denote by S∗k
m,u,e the set of fake cluster

with order k, scale m and such that h&′T
= e and h&T

= u.
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Proof of Lemma 2.3.7

In (A.4) we can expand

M(ki)
hi−1,hi

(x, ni, δi) =
∑

Ti∈S
∗ki
hi−1,hi

(ni,δi)

V Ti(x, δi), i = 1, . . . , p,

where we have set

S∗k
u,e(n, δ) :=






⋃

m≥−1

S∗k
m,u,e δ = L, ∂, ∂2,

⋃

m>n

Sk∗
m,u,e, δ = R,

(A.6)

for all k ≥ 0, n ≥ 0 and u, e ∈ {β, B}, and defined

V T (x, δ) :=






V T (0), δ = L,

x ∂ V T (0), δ = ∂,

−V T (x), δ = R,

x2
∫ 1

0
dτ(1 − τ)∂2

x V T (τx), δ = ∂2,

(A.7)

with V T (x) defined as for self-energy clusters in § 2.3. Denote by C∗(k;h, h′;n0, . . . , np) the set of fake

clusters {T1, . . . , Tp} with Ti ∈ S∗ki
hi−1,hi

(ni, δi) for any choice of the labels {ki, ni, δi}
p
i=1 and {hi}

p
i=0 with

the following constraints (see Figure A.2):

(i) k1 + . . . + kp = k,

(ii) ni < min{ni−1, ni} for i = 1, . . . , p,

(iii) h0 = h, hp = h′,

(iv) if δi = L for i = 2, . . . , p − 1, then δi−1, δi+1 *= L,

(v) if δi = ∂ for i = 1, . . . , p, then hi−1 = hi,

(vi) if δj = δj+1 = . . . = δj+q = ∂ for some j ∈ {2, . . . , p − 1} and some q ∈ {0, . . . , p − 1 − j} and

δj−1 = L, then δj+q+1 *= L.

n0, h0

+0

T1

n1, k1, δ1

n1, h1

+1

T2

n2, k2, δ2

n2, h2

+2

. . . . . . . . .
np−1, hp−1

+p−1

Tp

np, kp, δp

np, hp

+p

Figure A.2: A ∗-chain C ∈ C∗(k;h, h′;n0, . . . , np): the labels satisfy the constraints listed in the text.

We call ∗-chain any set C ∈ C∗(k;h, h′;n0, . . . , np) and ∗-links the sets T1, . . . , Tp. By the discussion
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Proof of Lemma 2.3.7

between (A.4) and (A.6), we can write (A.4) – and hence the sum in (2.3.8) – as

∑

C∈C∗(k;h,h′;n0,...,np)

V C(x), (A.8)

where

V C(x) :=
p∏

i=1

V Ti(x, δi). (A.9)

With each ∗-chain C summed over in (A.8) we associate a depth label D(C) = 0; if C = {T1, . . . , Tp}

we associate with each Ti the same depth label as C, i.e. D(Ti) = D(C) = 0 for i = 1, . . . , p; the

introduction of such a label is due to the fact that we are performing an iterative construction and we

want to keep track of the iteration step by means of the depth label.

Given a ∗-chain C = {T1, . . . , Tp}, for all i = 1, . . . , p and all + ∈ L(Ti) there exist q ≥ 1 relevant

self-energy clusters Ti = T (0)
i ⊃ T (1)

i ⊃ . . . ⊃ T (q−1)
i , with T (j)

i a maximal relevant self-energy cluster

inside T (j−1)
i for all j = 0, . . . , q − 1 and T (q−1)

i is the minimal relevant self-energy cluster containing

+. Note that both q and the relevant self-energy clusters T (1), . . . , T (q) depend on +, even though we

are not making explicit such a dependence. We call {T (j)
i }q

j=0 the cloud of + and {T (j)
i }q

j=1 the internal

cloud of +. Of course if q = 0 the internal cloud of + is the empty set.

In (A.9) consider first a factor V Ti(x, δi) with δi = L,R. Assign a label dT = 1 with each

maximal relevant self-energy cluster T contained inside Ti. Denote by C0(Ti) the set of maximal

subchains C ′ contained inside Ti. For each Cj ∈ C0(Ti) there are labels k(i)
j , h(i)

j , h(i)′
j , n(i)

j,0, . . . , n
(i)
j,pj

such that Cj ∈ C1(k
(i)
j ;h(i)

j , h(i)′
j ;n(i)

j,0, . . . , n
(i)
j,pj

). Call T̊i the set of nodes and lines obtained from Ti

by removing all nodes and lines of the subchains in C0(Ti) and F(Ti) the family of all possible sets

T ′
i ∈ S∗ki

hi−1,hi
(ni, δi) obtained from Ti by replacing, for all j = 1, . . . , |C0(Ti)|, each subchain Cj with any

subchain C ′
j ∈ C1(k

(i)
j ;h(i)

j , h(i)′
j ;n(i)

j,0, . . . , n
(i)
j,pj

). Note that T̊ ′
i = T̊i for all T ′

i ∈ F(Ti). If we sum together

all contributions in F(Ti) we obtain

∑

T ′
i∈F(Ti)

V T ′(x, δi) = a(δi)
∑

C′
j∈C1(k(i)

j ;h(i)
j ,h(i)′

j ;n(i)
j,0,...,n(i)

j,pj
)

1≤j≤|C0(Ti)|

V T̊i
(x, δi)

|C0(Ti)|∏

j=1

V C′
j
(x&C′ ,δi

), (A.10)

where

V T̊i
(x, δi) :=

(
∏

v∈N(T̊i)

Fv

)(
∏

&∈L(T̊i)

Gn%
(x&,δi

)

)

(A.11)

and

a(δ) =





1, δ = L,

−1, δ = R,
x&,δ =





ω · ν0

& , δ = L,

ω · ν&, δ = R,
(A.12)
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for all + ∈ L(T ′) with T ′ ∈ F(Ti).

Now consider a set Ti in (A.9) with δi = ∂, ∂2. Write

V Ti(x, ∂) = x
∑

&∈L(Ti)

∂xG&(x
0
& )

(
∏

v∈N(Ti)

Fv

)(
∏

&′∈L(Ti)
&′ *=&

G&′(x
0
&′)

)

, (A.13)

with x0
& := ω · ν0

& , and V Ti(x, ∂2) as in the last line of (A.7), with

∂2
x V Ti(τx) =

∑

&1 *=&2∈L(T )

(
∂xGn%1

(x&1(τ))
) (

∂xGn%2
(x&2(τ))

)( ∏

&∈L(T )\{&1,&2}

Gn%
(x&(τ))

)(
∏

v∈N(T )

Fv

)

+
∑

&1∈L(T )

(
∂2

xGn%1
(x&1(τ))

)( ∏

&∈L(T )\{&1}

Gn%
(x&(τ))

)(
∏

v∈N(T )

Fv

)

,

(A.14)

where x&(τ) = x0
& + τx if + ∈ PT and x& = x0

& otherwise. To simplify the notations we associate with

each line + a label d& = 0, 1, 2, which denotes the number of derivatives acting on the corresponding

propagator, and set

G&(x) = ∂d%
x Gn%

(x); (A.15)

then we rewrite

V Ti(x, ∂) = x
∑

&1∈L(Ti)

(
∏

&∈L(Ti)

G&(x
0
&)

)(
∏

v∈N(Ti)

Fv

)

, (A.16a)

∂2
x V Ti(τx) =

∑

&1,&2∈L(Ti)

(
∏

&∈L(Ti)

G&(x&(τ))

)(
∏

v∈N(Ti)

Fv

)

, (A.16b)

with the constraint
∑

&∈L(T ) d& = 1, 2 for δi = ∂, ∂2 respectively.

Each summand in (A.16a) can be regarded as the value of a fake cluster Ti in which the propagator

of a line +1 has been differentiated. Given a relevant self-energy cluster T contained inside Ti, we set

dT = 0 if either (1) T belongs to the cloud of +1 or (2) T is a relevant self-energy cluster with either (2a)

+T non-resonant and +′T = +T ′ for some T ′ belonging to the cloud of +1 or (2b) +′T is non-resonant and

+T = +′T ′′ for some T ′′ belonging to the cloud of +1. Moreover we set dT = 1 if T is any other maximal

relevant self-energy cluster in Ti or in T ′ with dT ′ = 0. If C0(Ti) = {C1, C2, . . .}, each Cj belongs

to C1(k
(i)
j ;h(i)

j , h(i)′
j ;n(i)

j,0, . . . , n
(i)
j,pj

) for suitable values of the labels. Call T̊i the set of nodes and lines

obtained from Ti by removing all nodes and lines of the subchains in C0(Ti) and F(Ti) the family of all

possible sets T ′
i ∈ S

∗ki
hi−1,hi

(ni, δi) obtained from Ti by replacing, for all j = 1, . . . , |C0(Ti)|, each subchain

Cj with any subchain C ′
j ∈ C1(k

(i)
j ;h(i)

j , h(i)′
j ;n(i)

j,0, . . . , n
(i)
j,pj

). Note that T̊ ′
i = T̊i for all T ′

i ∈ F(Ti). Note

also that both F(Ti) and T̊i depend on the choice of the line +1, although we are not writing explicitly

56



Proof of Lemma 2.3.7

such a dependence. By summing together all contributions obtained by choosing first the line +1 and

hence the fake clusters belonging to the corresponding family F(Ti), we obtain for δi = ∂

x
∑

&1∈L(Ti)

∑

T ′
i∈F(Ti)

(
∏

&∈L(T ′
i )

G&(x
0
&)

)(
∏

v∈N(T ′
i )

Fv

)

=
∑

&1∈L(Ti)

x
∑

C′
j∈C1(k(i)

j ;h(i)
j ,h(i)′

j ;n(i)
j,0,...,n(i)

j,pj
)

1≤j≤|C0(Ti)|

V T̊i
(x, ∂)

|C0(Ti)|∏

j=1

V C′
j
(x0

&Cj
),

(A.17)

with

V T̊i
(x, ∂) =

(
∏

&∈L(T̊i)

G&(x
0
& )

)(
∏

v∈N(T̊i)

Fv

)

. (A.18)

We deal in a similar way with (A.16b). Indeed, each summand can be regarded as the value of a fake

cluster Ti in which the propagators of two lines +1, +2 (possibly coinciding) have been differentiated. As

in the previous case we associate a label dT = 0 with (1) the relevant self-energy clusters T of the clouds

of both +1, +2 and (2) the relevant self-energy clusters T such that either (2a) +T is non-resonant and

+′T = +T ′ for some T ′ belonging to the cloud of +1 or +2 or (2b) +′T is non-resonant and +T = +′T ′ for some

T ′ belonging to the cloud of +1 or +2 or (2c) both +T , +′T are resonant and +T = +′T ′ , +′T = +T ′′ for some

T ′, T ′′ belonging to the clouds of +1, +2. Moreover we associate a label dT = 1 with the maximal relevant

self-energy clusters T in Ti or in any T ′ with dT ′ = 0. Then we reason as in the previous case, by defining

T̊i as the set of nodes and lines obtained from Ti by removing all nodes and lines of the subchains in

C0(Ti) and F(Ti) the family of all possible sets T ′
i ∈ S∗ki

hi−1,hi
(ni, δi) obtained from Ti by replacing, for

all j = 1, . . . , |C0(Ti)|, each subchain Cj with any subchain C ′
j ∈ C1(k

(i)
j ;h(i)

j , h(i)′
j ;n(i)

j,0, . . . , n
(i)
j,pj

). Then

for δi = ∂2 we obtain

x2
∫ 1

0
dτ(1 − τ)

∑

&1&2∈L(Ti)

∑

T ′
i∈F(Ti)

(
∏

&∈L(T ′
i )

G&(x&(τ))

)(
∏

v∈N(T ′
i )

Fv

)

=
∑

&1&2∈L(Ti)

x2
∫ 1

0
dτ(1 − τ)

∑

C′
j∈C1(k(i)

j ;h(i)
j ,h(i)′

j ;n(i)
j,0,...,n(i)

j,pj
)

1≤j≤|C0(Ti)|

V T̊i
(x, ∂2)

|C0(Ti)|∏

j=1

V C′
j
(x&Cj

(τ)),
(A.19)

with

V T̊i
(x, ∂2) =

(
∏

&∈L(T̊i)

G&(x&(τ))

)(
∏

v∈N(T̊i)

Fv

)

, (A.20)

where x&(τ) = x0
& + τx if + ∈ PTi and x&(τ) = x0

& otherwise.
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By summarising we obtained

∑

C∈C∗(k;h,h′;n0,...,np)

V C(x) =
∑

{T1,...,Tp}∈C∗(k;h,h′;n0,...,np)

p∏

i=1

V Ti(x, δi)

=
∑

{T1,...,Tp}∈C∗(k;h,h′;n0,...,np)

(
p∏

i=1
δi=∂

∑

&i,1∈L(Ti)

)(
p∏

i=1
δi=∂2

∑

&i,1,&i,2∈L(Ti)

)

×

×

(
p∏

i=1

a(x&Ti
, δi)

)(
p∏

i=1
δi=∂2

∫ 1

0
dτi (1 − τi)

)

×

×
p∏

i=1

1

|F(Ti)|
V T̊i

(x&Ti
, δi)

∑

Cj∈C1(k(i)
j ;h(i)

j ,h(i)′
j ;n(i)

j,0,...,n(i)
j,pj

)

V Cj (x&Cj
(τi(δi))),

(A.21)

with x&Ti
= x by construction and

V T̊i
(x, δi) =

(
∏

&∈L(T̊i)

G&(x&(τ(δi)))

)(
∏

v∈N(T̊i)

Fv

)

, (A.22)

where we have defined x&(τ) := x0
& + τx and

τi(δ) :=






0, δ = L,

1, δ = R,

0, δ = ∂,

τi, δ = ∂2,

a(x, δ) :=






1, δ = L,

−1, δ = R,

x, δ = ∂,

x2, δ = ∂2.

(A.23)

The factors 1/|F(Ti)| have been introduced in (A.21) to avoid overcountings. The last sums in (A.21)

have the same form as the sum (A.1), so that we can iterate the procedure, by writing

∑

Cj∈C1(k(i)
j ;h(i)

j ,h(i)′
j ;n(i)

j,0,...,n(i)
j,pj

)

V Cj (x&Cj
(τi(δi))) =

∑

Cj∈C∗(k(i)
j ;h(i)

j ,h(i)′
j ;n(i)

j,0,...,n(i)
j,pj

)

V Cj (x&Cj
(τi(δi))) (A.24)

for i = 1, . . . , p and j = 1, . . . , |C0(Ti)|, with V T (x) defined as in (A.9). Now we associate with each

∗-chain Cj a depth label D(Cj) = 1, and if Cj = {T (j)
1 , . . . , T (j)

pj } we associate with each T (j)
i the same

depth label as Cj, i.e. D(T (j)
i ) = D(Cj). More generally, by pursuing the construction, in order to keep

track of the iteration step, we associate a depth label D(C) = d with each ∗-chain C which appears at

the d-th step and the same depth label D(T ) = d with each ∗-link T of C. Since at each step the order

of the chains is decreased, sooner or later the procedure stops.

58



Proof of Lemma 2.3.7

To make the notation more uniform, for any ∗-link T such that C0(T ) = ∅ we write T̊ = T . Given

any ∗-link T with T̊ *= T , if two lines +, +′ ∈ L(T̊ ) are such that there exists a maximal link T ′ in T with

+T ′ = + and +′T ′ = +′, we say that the two lines are consecutive and we write +′ ≺ +.

At the end of the procedure described above we obtain a sum of terms of the form
(
∏

i∈I
δTi

=∂2

∫ 1

0
dτi(1 − τi)

)
∏

i∈I

a(x&Ti
(τ), δi)V T̊i

(x&Ti
(τ ), δi), (A.25)

where the following notations have been used:

(i) I = {1, 2, . . . , N} for some N ∈ N;

(ii) {Ti}i∈I are ∗-links such that (1) for all Ti with D(Ti) = d, d ≥ 1, there exists a ∗-link Tj, j ∈ I, with

D(Tj) = d − 1 and two consecutive lines +′ ≺ + ∈ L(T̊j) with the same labels as +′Ti
, +Ti , respectively,

and conversely (2) for all Tj with D(Tj) = d, d ≥ 0, and all pairs of consecutive lines +′ ≺ + ∈ L(T̊j),

there is a ∗-link Ti, i ∈ I, with D(Ti) = d+1, such that +′Ti
, +Ti have the same labels as +′, +, respectively

(roughly we can imagine to ‘fill the holes’ of all T̊ such that D(T ) = 0 with all T̊ ′ with D(T ′) = 1, then

‘fill the remaining holes’ with all T̊ ′′ with D(T ′′) = 2 and so on up to the ∗-links of maximal depth

which have no ‘holes’);

(iii) τ = (τ1(δ1), . . . , τN (δN )), with τi(δi) defined as in (A.23), and for all + ∈ L(T̊1) ∪ . . . ∪ L(T̊N ) we

have set

x&(τ) := x0
& + τid(δTid

)

(

x0
&d

+ τid−1(δTid−1
)
(
x0

&d−1
+ τid−2(δTid−2

)(. . . + τi0(δTi0
)x)
))

, (A.26)

where Tid is the minimal ∗-link (with depth d) containing + and +j is the line in the ∗-link Tij−1 with

depth j − 1 corresponding to the entering line of Tij , for j = 1, . . . , d.

Recall that each propagator is differentiated at most twice and note that, for T such that δT = ∂,

there is a line + ∈ L(T̊ ) with d& = 1. Then, when bounding the product of propagators, instead of

∏

&∈L(T )

γ0

2
αmn%

(ω)−1 (A.27)

for some positive constant γ0, we have (A.27) times an extra factor

c1αmn%
(ω)−1|x&T

|, (A.28)

for suitable constant c1. Analogously, for T such that δT = ∂2, either there are two lines +1, +2 with

d&1 = d&2 = 1 or one line +1 with d&1 = 2; in both cases we obtain (A.27) times an extra factor

c1αmn%1
(ω)−1αmn%2

(ω)−1|x&T
|2. (A.29)
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On the other hand we have no gain factor coming from the ∗-links with label δ = L,R, or from the

relevant self-energy clusters T ′ with dT ′ = 0. In order to deal with such lines we need some preliminary

results.

Given a ∗-link T , define T̊ as before and denote by LR(T̊ ) the set of resonant lines in T̊ . Set

(i) LNR(T̊ ) := L(T̊ ) \ LR(T̊ ),

(ii) LD(T̊ ) := {+ ∈ LR(T̊ ) : d& > 0},

(iii) L1
0(T̊ ) := {+ ∈ LR(T̊ ) : + = +T ′ for some relevant self-energy cluster T ′ ⊂ T with dT ′ = 0},

(iv) L2
0(T̊ ) := {+ ∈ LR(T̊ ) : + = +′T ′ for some relevant self-energy cluster T ′ ⊂ T with δT ′ = 0};

(v) L0(T̊ ) := L1
0(T̊ ) ∪ L2

0(T̊ );

(vi) L∗
R(T̊ ) = LD(T̊ ) ∪ L0(T̊ ).

Of course LD(T̊ ) = L0(T̊ ) = ∅ if δT = L,R. Given a ∗-link T we say that + ∈ L(T̊ ) is maximal in T ′ if

T ′ is the minimal relevant self-energy cluster contained in T̊ (with dT ′ = 0) such that + ∈ L(T ′). If there

is no such relevant self-energy cluster we say that + is maximal in T . Given a ∗-link T with δT = ∂, ∂2,

we denote by LM (T ) the set of lines which are maximal in T ; for any relevant self-energy cluster T ′

with dT ′ = 0 we denote by LM (T ′) the set of lines which are maximal in T ′.

Lemma A.1. Let T be any ∗-link with δT = ∂, ∂2. For all relevant self-energy clusters T ′ contained in

T̊ one has q0(T ′) := |LM (T ′) ∩ L0(T̊ )| ≤ 4. Moreover

q1(T
′) :=

∑

&∈LM (T ′)

d& ≤ min{4 − q0(T
′), 2}.

The same hold if we replace T ′ with the ∗-link T .

Proof. If δT = ∂ there is at most one line + ∈ L(T̊ ) such that d& = 1. Let {Tj}m
j=0 be the cloud of +,

where we denoted T0 = T , so that L0(T̊ ) ⊆ {+T1 , +
′
T1

, . . . , +Tm , +′Tm
}. Then Tm is the minimal relevant

self-energy cluster containing + and LM (Tj)∩L0(T̊ ) ⊆ {+Tj+1 , +
′
Tj+1

}, j = 0, . . . ,m−1. Hence q0(Tj) ≤ 2

and q1(Tj) = 0 for j = 0, . . . ,m − 1, while q0(Tm) = 0 and q1(Tm) = 1. If δT = ∂2 and there is one line

+ ∈ L(T̊ ) with d& = 2 one can reason as in the previous case, denoting by {Tj}m
j=0 the cloud of + and

hence obtaining q0(Tj) ≤ 2 and q1(Tj) = 0 for j = 0, . . . ,m − 1, while q0(Tm) = 0 and q1(Tm) = 2. If

there are two lines +′1, +
′
2 ∈ L(T̊ ) with d&′1

= d&′2
= 1 one proceeds as follows. Call {T (i)

j }mi
j=0 the cloud of

+′i, i = 1, 2, with T (1)
0 = T (2)

0 = T0 = T , and set

r := max{j ≥ 0 : T (1)
j = T (2)

j =: Tj}.

If r = m1 = m2 then again q0(Tj) ≤ 2 and q1(Tj) = 0 for j = 0, . . . , r − 1, while q0(Tr) = 0 and

q1(Tr) = 2. If r = m1 < m2 then q0(Tj) ≤ 2 and q1(Tj) = 0 for j = 0, . . . , r − 1, q0(Tr) ≤ 2 and
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q1(Tr) = 1, q0(T
(2)
j ) ≤ 2 and q1(T

(2)
j ) = 0 for j = r + 1, . . . ,m2, and q0(Tm2) = 0 and q1(Tm2) = 1.

Finally if r < min{m1,m2} then LM (Tr) ∩ L0(T̊ ) ⊆ {+
T

(1)
r+1

, +′
T

(1)
r+1

, +
T

(2)
r+1

, +′
T

(2)
r+1

}, so that q0(Tj) ≤ 2 and

q1(Tj) = 0 for j = 0, . . . , r − 1, q0(Tr) ≤ 4 and q1(Tr) = 0, while q0(T
(i)
j ) ≤ 2 and q1(T

(i)
j ) = 0 for

j = r + 1, . . . ,mi, and q0(Tmi) = 0 and q1(Tmi) = 1, i = 1, 2.

Define the multiplicity (function) of a non-injective map as the cardinality of its pre-image sets

[30, 61].

Lemma A.2. Let T be a ∗-link with δT = ∂, ∂2. There exists an application Λ : L∗
R(T̊ ) → LNR(T̊ ) with

multiplicity at most 2 such that ζ& = ζΛ(&).

Proof. By Lemma A.1 there are at most four lines +1, +2, +3, +4 ∈ L∗
R(T̊ ) such that, if T ′

i denote the

minimal relevant self-energy cluster containing +i, then T ′
1 = . . . = T ′

4. Moreover by Remark 2.3.6 if + is

a resonant line, then the minimal relevant self-energy cluster containing + contains also two non-resonant

lines +′1, +
′
2 with the same minimum scale as +. Therefore the assertion follows.

Now consider a ∗-link T contributing to (A.25) with largest depth, say D. Since T does not contain

any resonant line, by (2.2.9b) and Remark 2.3.1 we have

|V Ti(x&Ti
(τ),R)| ≤ ck(Ti)

2 e−ξK(Ti)/2 ≤ c3c
k(Ti)
2 |x&Ti

(τ)|2, (A.30)

for some positive constants c2 and c3; we have also used that K(Ti) ≥ 2
mn%Ti

−1
for δTi = R and

|x&Ti
(τ)| ≥ αmn%Ti

(ω) if Ψn%Ti
(x&Ti

(τ)) *= 0. Therefore we can bound

|a(x&T
(τ ), δT )||V T (x&T

(τ), δT )| ≤






ck(T )
4 , δ = L,

ck(T )
4 |x&T

(τ )|, δT = ∂,

ck(T )
4 |x&T

(τ )|2, δ = ∂2,R,

(A.31)

for some constant c4. Now consider a ∗-link T contributing to (A.25) with depth D − 1. For each

resonant line + ∈ LR(T̊ ) denote by T ′ the minimal relevant self-energy cluster containing + (set T ′ = T if

there is no minimal relevant self-energy cluster containing +). For all resonant lines +′ ∈ LM (T ′)\L0(T̊ ),

there is a subchain C ∈ C0(T ) for which +′ is an internal chain-line, such that C is uniquely associated

(see the comments after (A.25)) with a ∗-chain C∗ = {Ti1 , . . . , Tip(C)
} with depth D contributing to

(A.25), whose value can be bounded by

∣∣∣∣∣

p(C)∏

j=1

a(x&Tji
(τ), δi)V T̊i

(x&Tji
(τ ), δji)

∣∣∣∣∣ ≤ |x&Tji
(τ )|p(C)−1ck(C)

5 , (A.32)
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for some c5 ≥ 0, and this can be obtained as follows. If δTij
*= L for all j = 1, . . . , p(C) or there is

only one j = 1, . . . , p(C) such that δTij
= L, then (A.32) trivially follows from (A.31). Otherwise if

1 ≤ j < j′ ≤ p(C) are such that δTij
= δTi

j′
= L then there is at least one j′′ = j + 1, . . . , j′ − 1 such

that δTi
j′′

= ∂2,R; recall the constraints (i)–(vi) after (A.7). Then (A.32) follows.

Moreover by Lemma A.1, if there are R•
n(T ′) resonant lines in LM (T ′) with minimum scale n, we

have an overall gain ∼ αmn(ω)R
•
n(T ′)−q0(T ′) and on the other hand the product of the propagators of

such resonant lines can be bounded proportionally to αmn(ω)−(R•
n(T ′)+q1(T ′)), with q0(T ′) + q1(T ′) ≤ 4.

Therefore, by Lemma A.2, if we replace the bound for the propagators of each non-resonant line + ∈

LM (T ′), ζ& = n, with c6αmn(ω)−3 for some positive constant c6, we have exactly a gain factor which

is enough to compensate each propagator of the resonant lines with minimum scale n in LM (T ′). But

since we can reason in the same way for all n and all resonant lines in T , if we replace the bound for

the propagators of each + ∈ LNR(T̊ ) with c6αmn%
(ω)−3 we obtain a gain proportional to αmn

%′
(ω)1+d%′

for any +′ ∈ LR(T̊ ), and hence we can use again Lemma 2.2.5 in order to obtain the bound (A.31) also

for the ∗-links with depth D − 1.

Then we pass to the ∗-links with depth D−2 and reason in the same way as above and so on. When

we arrive to the ∗-links with depth 0 we only have to recall that they are associated with the maximal

relevant self-energy clusters T of θ, which all have label dT = 1. Hence we can bound (A.25) as

∣∣∣∣∣

N∏

i=1

a(x&Ti
(τ ), δi)V T̊i

(x&Ti
(τ), δi)

∣∣∣∣∣ ≤ ck(T1)+...+k(TN )
7 |x|p−1 = ck

7 |x|
p−1,

for some positive constant c7. We have still to sum over all the possible contributions of the form

(A.25). To take into account the scale labels n&, + ∈ L(T̊1) ∪ . . . ∪ L(T̊N ) simply recall that for each

momentum ν& only 2 scale labels are allowed; see Remark 2.2.2. To sum over the mode labels νv ,

v ∈ N(T̊1)∪ . . .∪N(T̊N ) we can neglect the constraints and use a factor e−(ξ/4)|νv | for each v. Moreover

the component labels h& are 2. Finally the sum over all possible unlabelled chains with order k is

bounded by a constant to the power k. Therefore the assertion follows.
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Throughout this appendix, for the sake of simplicity, we shall omit the adjective “renormalised”

referred to trees, self-energy clusters, left-fake clusters and right-fake clusters.

We shall prove explicitly only the bound

|M[p]
β,β(0; ε,β0, B0) − ∂β0Φ

R,p
0

(ε,β0, B0)| ≤ |ε|A1e
−A22mp+1

, (B.1)

as the others relations in (3.3.8) can be proved exactly in the same way.

We want to compute ∂β0Φ
R,p
0

(ε,β0, B0), with ΦR,p
0

(ε,β0, B0) given by the first line of (3.2.15). We

start by considering trees θ ∈ ΘR,p
k,0,β such that

max
&∈ΘR,p

k,0,β

{n ∈ Z+ : Ψn(ω · ν&) *= 0} ≤ p, (B.2)

and shall see later how to deal with trees in ΘR,p
k,0,β for which the condition (B.2) is not satisfied (see

case 7 at the end).

First of all, for any tree θ set

∂v V (θ; ε,β0, B0) := ∂β0Fv

(
∏

w∈N(θ)\{v}

Fw

)(
∏

&∈L(θ)

G[n%]
e%,u%

(ω · ν&; ε,β0, B0)

)

, (B.3)

and

∂& V (θ; ε,β0, B0) := ∂β0G
[n%]
e%,u%

(x&; ε,β0, B0)

(
∏

v∈N(θ)

Fv

)(
∏

λ∈L(θ)\{&}

G[nλ]
eλ,uλ

(xλ; ε,β0, B0)

)

= A&(θ, x&; ε,β0, B0) ∂β0G
[n%]
,e%,u%

(x&; ε,β0, B0)B&(θ; ε,β0, B0),

(B.4)

where x& := ω · ν&, ∂β0G
[n%]
e%,u%(x&; ε,β0, B0) is written according to Remark 3.2.1 and

A&(θ, x&; ε,β0, B0) :=

(
∏

v∈N(θ)
v *≺&

Fv

)(
∏

&′∈L(θ)
&′ *+&

G
[n%′ ]
e%′ ,u%′

(x&′ ; ε,β0, B0)

)

, (B.5a)

B&(θ; ε,β0, B0) :=

(
∏

v∈N(θ)
v≺&

Fv

)(
∏

&′∈L(θ)
&′≺&

G
[n%′ ]
e%′ ,u%′

(x&′ ; ε,β0, B0)

)

. (B.5b)
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Let us define in the analogous way ∂v V T (x; ε,β0, B0) and ∂& V T (x; ε,β0B0) for any self-energy

cluster T , and let us write

∂β0 V (θ; ε,β0, B0) = ∂N V (θ; ε,β0, B0) + ∂L V (θ; ε,β0, B0), (B.6)

where

∂N V (θ; ε,β0, B0) :=
∑

v∈N(θ)

∂v V (θ; ε,β0, B0), (B.7)

and
∂L V (θ; ε,β0, B0) :=

∑

&∈L(θ)

∂& V (θ; ε,β0, B0). (B.8)

Let us also write

∂β0 V T (x; ε,β0, B0) = ∂N V T (x; ε,β0, B0) + ∂L V T (x; ε,β0, B0), (B.9)

for any T ∈ Rn,u,e, n ≥ 0 and u, e ∈ {β, B}, where the derivatives ∂N and ∂L are defined analogously

with the previous cases (B.7) and (B.8), with N(T ) and L(T ) replacing N(θ) and L(θ), respectively, so

that we can split

∂β0Φ
R,p
0

(x; ε,β0, B0) = ∂NΦR,p
0

(x; ε,β0, B0) + ∂LΦR,p
0

(x; ε,β0, B0),

∂β0M
[n](x; ε,β0, B0) = ∂NM [n](x; ε,β0, B0) + ∂LM [n](x; ε,β0, B0),

∂β0M
[n](x; ε,β0, B0) = ∂NM[n](x; ε,β0, B0) + ∂LM

[n](x; ε,β0, B0),

(B.10)

again with obvious meaning of the symbols.

Remark B.1. We can interpret the derivative ∂v as all the possible ways to attach an extra line +

(with ν& = 0 and u& = β) to the node v, so that

∑

k≥0

εk+1
∑

θ∈ΘR,p
k+1,0

∂N V (θ; ε,β0, B0),

produces contributions to M[p]
β,β(0; ε,β0, B0).

In order to compute ∂β0Φ
R,p
0

(ε,β0, B0), we have to study the derivative (B.6) for any θ ∈ ΘR,p
k,0,β.

The terms (B.7) produce immediately contributions to M[p]
β,β(0; ε,β0, B0) by Remark B.1. Thus, we

have to study the derivatives ∂& V (θ; ε,β0, B0) appearing in the sum (B.8). From now on, we shall not

write any longer explicitly the dependence on ε,β0 and B0, in order not to overwhelm the notation.

For any θ ∈ ΘR,p
k,0,β satisfying the condition (B.2) and for any line + ∈ L(θ), either there is only one

scale n such that Ψn(x&) *= 0 (and in that case Ψn(x&) = 1 and Ψn′(x&) = 0 for all n′ *= n) or there
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exists only one 0 ≤ n ≤ p− 1 such that Ψn(x&)Ψn+1(x&) *= 0. To help following the argument below, we

divide the discussion into several steps (cases 1 to 7), marking the end of each step with a white box

(!).

1. If Ψn(x&) = 1 one has

∂& V (θ) = A&(θ, x&)

(
G[n](x&)∂β0M

[n−1](x&)
(
(ix&)1 −M[n−1](x&)

)−1
)

e%,u%

B&(θ)

= A&(θ, x&)
(
G[n](x&)∂β0M

[n−1](x&)G
[n](x&)

)

e%,u%

B&(θ),

(B.11)

with A&(θ, x&) and B&(θ) defined in (B.5).

Remark B.2. Note that if we split ∂β0 = ∂N + ∂L in (B.11), the term with ∂NM[n−1](x&) is a

contribution to M[p−1]
β,β (0) and hence to M[p]

β,β(0).

If there is only one 0 ≤ n ≤ p − 1 such that Ψn(x&)Ψn+1(x&) *= 0, then Ψn(x&) + Ψn+1(x&) = 1 and

χq(x&) = 1 for all q = −1, . . . , n − 1, so that ψn+1(x&) = 1 and hence Ψn+1(x&) = χn(x&). Moreover it

can happen only (see Remark 2.2.2) n& = n or n& = n + 1.

2. Consider first the case n& = n + 1. One has

∂& V (θ) = A&(θ, x&)
(
G[n+1](x&)∂β0M

[n](x&)((ix&)1−M[n](x&))
−1
)

e%,u%

B&(θ), (B.12)

with

G[n+1](x&)∂β0M
[n](x&)

(
(ix&)1 −M[n](x&)

)−1

= G[n+1](x&)∂β0M
[n−1](x&)

(
Ψn(x&) + Ψn+1(x&)

)(
(ix&)1−M[n](x&)

)−1

+ G[n+1](x&)∂β0M
[n](x&)χn(x&)

(
(ix&)1−M[n](x&)

)−1

= G[n+1](x&)

(
n∑

q=−1

∂β0M
[q](x&)

)

G[n+1](x&) + G[n+1](x&)

(
n−1∑

q=−1

∂β0M
[q](x&)

)

G[n](x&)

+ G[n+1](x&)

(
n−1∑

q=−1

∂β0M
[q](x&)

)

G[n](x&)M
[n](x&)G

[n+1](x&),

(B.13)

where we have used that χn(x&) = Ψn+1(x&) and

(
(ix&)1 −M[n](x&)

)−1(
1 + M [n](x&)Ψn+1(x&)

(
(ix&)1 −M[n](x&)

)−1)−1
=
(
(ix&)1−M[n−1](x&)

)−1
.

We represent graphically the three contributions in (B.13) as in Figure B.1: we represent the derivative

∂β0 as an arrow pointing toward the graphical representation of the differentiated quantity.
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n+1
≤ n

n+1
+

n+1
≤ n−1

n

+
n+1

≤ n−1
n

n n+1

Figure B.1: Graphical representation of the derivative ∂& V (θ) according to (B.13).

Remark B.3. Note that the M [n](x&) appearing in the latter line of (B.13) has to be interpreted (see

Remark 3.2.3) as the matrix with components

∑

T∈LFn,u,e

εk(T )
V T (x&).

Note also that, again, if we split ∂β0 = ∂N +∂L in (B.13), all the terms with ∂NM [q](x&) are contributions

to M[p]
β,β(0).

Now consider the case n& = n. We distinguish among several cases (see Remark B.4 below for the

meaning of “removal” and “insertion” of left-fake clusters):

(a) + does not exit any left-fake cluster and one can insert a left-fake cluster, together its entering line,

between + and the node + exists without creating any self-energy cluster (case 3 below);

(b) + does not exit any left-fake cluster and one cannot insert any left-fake cluster between + and the

node + exists because this way a self-energy cluster would appear (case 4 below);

(c) + does exit a left-fake cluster and one can remove the left-fake cluster, together its entering line,

without creating a self-energy cluster (case 3 below);

(d) + does exit a left-fake cluster and one cannot remove the left-fake cluster because a self-energy cluster

would be produced (case 5 below).

Remark B.4. Here and henceforth, if S is a subgraph with only one entering line +′S = +v and one

exiting line +S, by saying that we “remove” S together with +′S , we mean that we change u&S
into hv

and we also reattach the line +S to the node v (so that +S becomes the line exiting v). Analogously,

whenever we “insert” a subgraph S with only one entering line +′ between a line + and the node v which

+ exits, we mean that we set u&′ = hv and change u& into hw if w ∈ N(S) is the node to which we

reattach + (and + becomes the line +w exiting S).
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3. If + is not the exiting line of a left-fake cluster, set θ̄ = θ; otherwise, if + is the exiting line of a

left-fake cluster T , define – if possible – θ̄ as the tree obtained from θ by removing T and +′T In both

cases, define – if possible – τ1(θ̄, +) as the set constituted by all the renormalised trees θ′ obtained from

θ̄ by inserting a left-fake cluster, together with its entering line, between + and the node v which + exits;

see Figure B.2.

θ̄ =
n

+
θ′ =

n

+
n

n+1

Figure B.2: The renormalised tree θ̄ and the renormalised trees θ′ of the set τ1(θ̄, +) associated with θ̄.

Remark B.5. The construction of the set τ1(θ̄, +) could be impossible if the removal or the insertion

of a left-fake cluster T , together with its entering line +′T , would produce a self-energy cluster. We shall

see later (see cases 4 and 5 below) how to deal with these cases.

Then one has

∂& V (θ̄) + ∂&

∑

θ′∈τ1(θ̄,&)

V (θ′) = A&(θ̄, x&)
(
∂β0G

[n](x&)
(
1 + M [n](x&)G

[n+1](x&)
))

e%,u%

B&(θ̄), (B.14)

with

∂β0G
[n](x&)

(
1 + M [n](x&)G

[n+1](x&)
)

= G[n](x&)∂β0M
[n−1](x&)G

[n](x&)

+ G[n](x&)∂β0M
[n−1](x&)Ψn+1(x&)

(
(ix&)1−M[n−1](x&)

)−1

+ G[n](x&)∂β0M
[n−1](x&)G

[n](x&)M
[n](x&)G

[n+1](x&)

+ G[n](x&)∂β0M
[n−1](x&)Ψn+1(x&)

(
(ix&)1−M[n−1](x&)

)−1
M [n](x&)G

[n+1](x&)

= G[n](x&)∂β0M
[n−1](x&)G

[n](x&) + G[n](x&)∂β0M
[n−1](x&)G

[n+1](x&)

− G[n](x&)∂β0M
[n−1](x&)χn(x&)

(
(ix&)1−M[n−1](x&)

)−1
M [n](x&)G

[n+1](x&)

+ G[n](x&)∂β0M
[n−1](x&)G

[n](x&)M
[n](x&)G

[n+1](x&)

+ G[n](x&)∂β0M
[n−1](x&)Ψn+1(x&)

(
(ix&)1−M[n−1](x&)

)−1
M [n](x&)G

[n+1](x&)

= G[n](x&)∂β0M
[n−1](x&)G

[n](x&) + G[n](x&)∂β0M
[n−1](x&)G

[n+1](x&)

+ G[n](x&)∂β0M
[n−1](x&)G

[n](x&)M
[n](x&)G

[n+1](x&),

(B.15)
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where we have used that

(
1− Ψn+1(x&)

(
(ix&)1−M[n−1](x&)

)−1
M [n](x&)

)−1(
(ix&)1−M[n−1](x&)

)−1
=
(
(ix&)1−M[n](x&)

)−1
.

Also in this case, if we split ∂β0 = ∂N +∂L, all the terms with ∂NM[n−1] are contributions to M[p]
β,β(0) –

see Remark B.2. Again, we can represent graphically the three contributions obtained inserting (B.15)

in (B.14); see Figure B.3.

n
≤ n − 1

n
+

n
≤ n−1

n+1

+
n

≤ n−1
n

n n+1

Figure B.3: Graphical representation of the three contributions in the last two lines of (B.15).

4. Assume now that + is not the exiting line of a left-fake cluster and the insertion of a left-fake cluster,

together with its entering line, produces a self-energy cluster. Note that this can happen only if + is the

entering line of a right-fake cluster T . Let + be the exiting line (on scale n + 1) of the right-fake cluster

T , call θ the tree obtained from θ by removing T and + and call τ2(θ, +) the set of trees θ′ obtained from

θ by inserting a right-fake cluster, together with its entering line, before +; see Figure B.4.

θ′ =
n+1

+
n

n

+
θ =

+

n+1

Figure B.4: The trees θ′ of the set τ2(θ, +) obtained from θ when + ∈ L(θ) enters a right-fake cluster.

By construction one has

V (θ) = A&(θ, x&)G
[n+1]
e%,u%

(x&)B&(θ)
∑

θ′∈τ2(θ,&)

V (θ′) = A&(θ, x&)
(
G[n+1](x&)M [n](x&)G

[n](x&)
)

e%,u%

B&(θ),

where u& denotes the u-component of + as line in θ, and we have used that x& = x&̄.

Consider the contribution to ∂& V (θ) given by

A&(θ, x&)
(
G[n+1](x&)∂LM [n](x&)G

[n+1](x&)
)

e%,u%

B&(θ), (B.16)
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arising from (B.13). For u, e, e′ ∈ {β, B} and T ∈ RFn,u,e′ call Rn,u,e(T ) the subset of Rn,u,e such that if

T ′ ∈ Rn,u,e(T ) the exiting line +T ′ exits also the renormalised right-fake cluster T ; note that the entering

line + of T must be also the exiting line of some renormalised left-fake cluster T ′′ contained in T ′; see

Figure B.5.

T T ′′

T ′

n+1 n
n

n n+1

++T ′ +′T ′

Figure B.5: A self-energy cluster T ′ ∈ Rn(T ).

Define M[n](x&) as the 2 × 2 matrix with components

M[n]
u,e(x&) =

∑

e′=β,B

∑

T∈RFn,u,e′

∑

T ′∈Rn,u,e(T )

εk(T ′) V T ′(x&) (B.17)

and consider the contribution M[n](x&) to M [n](x&) in (B.16). Let us pick up the term with the derivative

acting on the line +: one has

∂&

∑

θ′∈τ2(θ,&)

V (θ′) + A&(θ, x&)
(
G[n+1](x&) ∂&M

[n](x&)G
[n+1](x&)

)

e%,u%

B&(θ)

= A&(θ, x&)
(
G[n+1](x&)M

[n](x&)∂β0G
[n](x&)

(
1 + M [n](x&)G

[n+1](x&)
))

e%,u%

B&(θ),

(B.18)

where we have used again that x& = x&. Thus, one can reason as in (B.15), so as to obtain the sum of

three contributions, as represented in Figure B.6.

n+1
n

n
≤n−1

n
+

n+1
n

n
≤ n−1

n+1

+
n+1

n
n

≤ n−1
n

n
n+1

Figure B.6: Graphical representation of the three contributions arising from (B.18).
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5. Finally, consider the case in which + is the exiting line of a left-fake cluster, T0 and the removal of

T0 and +′T0
(see Remark B.4) creates a self-energy cluster.

Set (for a reason that will become clear later) θ0 = θ and +0 = +. Then there is a maximal m ≥ 1

such that there are 2m lines +1, . . . , +m and +′1, . . . +
′
m, with the following properties:

(i) +i ∈ P(+θ0 , +i−1), for i = 1, . . . ,m,

(ii) n&i
= n + i < max{p : Ψp(x&i

) *= 0} = n + i + 1, for i = 0, . . . ,m− 1, while nm := n&m = n + m + σ,

with σ ∈ {0, 1},

(iii) ν&i
*= ν&i−1 and the lines preceding +i but not +i−1 are on scale ≤ n + i − 1, for i = 1, . . . ,m,

(iv) ν&′i
= ν&i

, for i = 1, . . . ,m,

(v) if m ≥ 2, +′i is the exiting line of a left-fake cluster Ti, for i = 1, . . . ,m − 1,

(vi) +′i ≺ +′Ti−1
and all the lines preceding +′Ti−1

but not +′i are on scale ≤ n + i − 1, for i = 1, . . . ,m,

(vii) n′
m := n&′m = n + m + σ′ with σ′ ∈ {0, 1}.

Note that one cannot have σ = σ′ = 1, otherwise the subgraph between +m and +′m would be a

self-energy cluster. Note also that (ii), (iv) and (v) imply n&′i
= n + i for i = 1, . . . ,m− 1 if m ≥ 2. Call

Si the subgraph between +i+1 and +i and S′
i the cluster between +′Ti

and +′i+1, for all i = 0, . . . ,m − 1.

For i = 1, . . . ,m, call θi the tree obtained from θ0 by removing everything between +i and the part of

θ0 preceding +′i, and note that, if m ≥ 2, properties (i)–(vii) hold for θi but with m− i instead of m, for

all i = 1, . . . ,m − 1.

For i = 1, . . . ,m, call Ri the self-energy cluster obtained from the subgraph of θi−1 between +i and +′i,

by removing the left-fake cluster Ti−1 together with +′Ti
. Note that L(Ri) = L(Si−1) ∪ {+i−1} ∪ L(S′

i−1)

and N(Ri) = N(Si−1) ∪ N(S′
i−1); see Figure B.7.

For i = 0, . . . ,m − 1, given +′, + ∈ L(θi), with +′ ≺ +, call P(i)(+, +′) the path of lines in θi connecting

+′ to + (hence P(i)(+, +′) = P(+, +′)∩L(θi)). For any i = 0, . . . ,m− 1 and any + ∈ P(i)(+i, +′m), let τ3(θi, +)

be the set of all renormalised trees which can be obtained from θi by replacing each left-fake cluster

preceding + but not +′m with all possible left-fake clusters. Set also τ3(θm−1, +′m) = θm−1.

Note that, by construction,

A&m(θm, x&m)G[nm]
e%m ,u%m

(x&m)V (Sm−1) = A&m−1(θm−1, x&m−1),

V (S′
m−1)G

[n′
m]

e%′m
,u%′m

(x&m)B&m(θm) = B&′Tm−1
(θm−1).

(B.19)

One among cases 1–4 holds for +m ∈ L(θm), so that we can consider the contribution to ∂&m V (θm)

(together with other contributions as in 3 and 4, if necessary) given by – see (B.11), (B.13) and (B.15)

–

A&m(θm, x&m)
(
G[nm](x&m)∂&m−1 V Rm(x&m)G[n′

m](x&m)
)

e%m ,u%′m

B&m(θm).
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θ0 =
n+1

+1
≤ n

S0

n

+0

n

T0

n+1

+′T0

≤ n

S′
0

+′1

n+1

θ1 =
n+1

+1
R1

n

+0

≤ n ≤ n

S′
0S0

Figure B.7: The renormalised trees θ0 and θ1 and the self-energy cluster R1 in case 5 with m = 1 and

σ = σ′ = 0. Note that the set S′
0 is a cluster, but not a self-energy cluster.

Then one has

A&m(θm, x&m)
(
G[nm](x&m)∂&m−1 V Rm(x&m)G[n′

m](x&m)
)

e%m ,u%′m

B&m(θm) + ∂&m−1

∑

θ′∈τ3(θm−1,&m−1)

V (θ′; ε,β0)

= A&m−1(θm−1, x&m−1)
(
∂β0G

[n+m−1](x&m−1) (B.20)

×
(
1 + M [n+m−1](x&m−1)G

[n+m](x&m−1)
))

e,u′
B&′Tm−1

(θm−1),

where we have shortened e, u′ = e&m−1 , u&′Tm−1
to simplify notation. By reasoning as in (B.15), this gives

A&m−1(θm−1, x&m−1)
(
G[n+m−1](x&m−1)∂β0M

[n+m−2](x&m−1)G
[n+m−1](x&m−1)

)

e,u′
B&′Tm−1

(θm−1)

+ A&m−1(θm−1, x&m−1)
(
G[n+m−1](x&m−1)∂β0M

[n+m−2](x&m−1)G
[n+m](x&m−1)

)

e,u′
B&′Tm−1

(θm−1)

+ A&m−1(θm−1, x&m−1)
(
G[n+m−1](x&m−1)∂β0M

[n+m−2](x&m−1)G
[n+m−1](x&m−1) (B.21)

×M [n+m−1](x&m−1)G
[n+m](x&m−1)

)

e,u′
B&′Tm−1

(θm−1).

where again e, u′ = e&m−1 , u&′Tm−1
.

Then, for i = m − 1, . . . , 1 we recursively reason as follows. Set

B&′Ti
(τ3(θi, +

′
i+1)) :=

∑

θ′∈τ3(θi,&′i+1)

B&′Ti
(θ′)
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and note that

A&i
(θi, x&i

)G[n+i]
e%i

,u%i
(x&i

)V (Si−1) = A&i−1(θi−1, x&i−1), (B.22)

V (S′
i−1)
(
G[n+i](x&i

)M [n+i](x&i
)G[n+i+1](x&i

)
)

e%′
i−1

,u%′
Ti

B&′Ti
(τ3(θi, +

′
i+1)) = B&′Ti−1

(τ3(θi−1, +
′
i)).

Consider the contribution

A&i
(θi, x&i

)
(
G[n+i](x&i

)∂&i−1 V Ri(x&i
)G[n+i](x&i

)

× M [n+i](x&i
)G[n+i+1](x&i

)
)

e%i
,u%′

Ti

B&′Ti
(τ3(θi, +

′
i+1)),

(B.23)

obtained at the (i + 1)-th step of the recursion. By (B.22) one has (see Figure B.8)

A&i
(θi, x&i

)
(
G[n+i](x&i

)∂&i−1 V Ri(x&i
)G[n+i](x&i

)

× M [n+i](x&i
)G[n+i+1](x&i

)
)

e%i
,u%′

Ti

B&′Ti
(τ3(θi, +

′
i+1)) + ∂&i−1

∑

θ′∈τ3(θi−1,&i−1)

V (θ′)

= A&i−1(θi−1, x&i−1)
(
∂β0G

[n+i−1](x&i−1)

×
(
1 + M [n+i−1](x&i−1)G

[n+i](x&i−1)
))

e%i−1
,u%′

Ti−1

B&′Ti−1
(τ3(θi−1, +

′
i)),

(B.24)

which produces, as in (B.21), the contribution

A&i−1(θi−1, x&i−1)
(
G[n+i−1](x&i−1)∂&i−2 V Ri−1(x&i−1)G

[n+i−1](x&i−1)

× M [n+i−1](x&i−1)G
[n+i](x&i−1)

)

e%i−1
,u%′

Ti−1

B&′Ti−1
(τ3(θi−1, +

′
i)).

(B.25)

Hence we can proceed recursively from θm up to θ0, until we obtain

A&0(θ0, x&0)
(
G[n](x&0)∂β0M

[n−1](x&0)G
[n](x&0)

)

e%0
,u%′

T0

B&′T0
(τ3(θ0, +

′
1))

+ A&0(θ0, x&0)
(
G[n](x&0)∂β0M

[n−1](x&−0)G
[n+1](x&0)

)

e%0
,u%′

T0

B&′T0
(τ3(θ0, +

′
1)) (B.26)

+ A&0(θ0, x&0)
(
G[n](x&0)∂β0M

[n−1](x&0)G
[n](x&0)M

[n](x&0)G
[n+1](x&0)

)

e%0
,u%′

T0

B&′T0
(τ3(θ0, +

′
1)).

Once again, if we split ∂β0 = ∂N + ∂L, all the terms with ∂NM[n−1] are contributions to M[p]
β,β(0).

6. We are left with the derivatives ∂LM [q](x), q ≤ n, when the differentiated propagator is not one of

those used along the cases 4 or 5; see for instance (B.18), (B.20) and (B.24). One can reason as in the
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n+i

+i
≤n+i−1

Si−1

Ri

+i−1
≤n+i−1

S′
i−1

+′i

n+i n+i n+i+1

+′
Ti

+

n+i
+i

≤n+i−1

Si−1

+i−1
n+i−1

n+i

+′Ti−1

≤n+i−1

S′
i−1

n+i

+′i
n + i n+i+1

+′
Ti

Figure B.8: Graphical representation of the left hand side of (B.24).

case ∂L V (θ), by studying the derivatives ∂& V T (x&) and proceed iteratively along the lines of cases 1 to

5 above, until only lines on scales 0 are left. In that case the derivatives ∂β0G
[0](x&) produce derivatives

∂β0M
[−1](x) =





ε∂2
β0

F0(β0, B0) ε∂2
β0,B0

F0(β0, B0)

ε∂2
β0

G0(β0, B0) ε∂2
β0,B0

G0(β0, B0)





(see Remarks 3.2.1 and 3.2.2). Therefore, for n = −1, in the splitting (B.10), there are no terms with

the derivatives ∂&, and the derivatives ∂v can be interpreted as said in Remark B.1.

7. By construction, each contribution to M[p−1]
β,β (0) appears as one term among those considered in

the discussion above, that is among the contributions to ∂β0Φ
R,p
0

(ε,β0, B0) arising from the trees θ ∈

ΘR,p
k,0,β satisfying the condition (B.2). Of course, when computing ∂β0 V (θ) for such trees, also some

contributions to M [p]
β,β(0) have been produced. Call W [p] the contributions to M [p]

β,β(0) which are not

obtained in the previous steps. Define also R[p] as the sum of the contributions to ∂β0Φ
R,p
0

such that

∂β0Φ
R,p−1
0

+ R[p] = M[p−1]
β,β (0) +

(
M [p]

β,β(0) − W [p]
)

, (B.27)

where we have used that M[p]
β,β(0) = M[p−1]

β,β (0)+M [p]
β,β(0) – see definition (3.2.6) and use that χq(0) = 1

for all q ≥ −1. Hence ∂β0Φ
R,p−1
0

+ R[p] represents the sum of all contributions to ∂β0Φ
R,p
0

used in 1–6.

One can write

∂β0Φ
R,p
0

= ∂β0Φ
R,p−1
0

+ R[p] + S[p], (B.28)

for a suitable S[p]: by construction S[p] takes into account all contributions arising from the trees

73



Proof of Lemma 3.3.8

θ ∈ ΘR,p
k,0,β which do not satisfy the condition (B.2), i.e. such that

max
&∈ΘR,p

k,0,β

{n ∈ Z+ : Ψn(ω · ν&) *= 0} = p + 1. (B.29)

Such trees have been excluded in the discussion above, because on the one hand they would produce

the remaining contributions to M [p]
β,β(0), on the other hand they would equally produce contributions to

M [p+1]
β,β (0). Therefore, by combining (B.27) and (B.28), we obtain ∂β0Φ

R,p
0

= M[p]
β,β(0) +

(
S[p] − W [p]

)
,

where both W [p] and S[p] arise from trees containing at least one line + on scale p and such that

Ψp+1(ω · ν&) *= 0: for such a line + one has |ν&| > 2mp+1−1 by Remark 2.2.2. Therefore, one has

max
{
|S[p]|, |W [p]|

}
≤ |ε|D1e−D22

mp+1
, for some constants D1,D2, and this is enough to prove the

bound (B.1).
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