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1 INTRODUCT ION

It is very fascinating how the human being’s beliefs dramatically changed over the history,
proportionally to the level of his own scientific and technologic knowledge, and how the scien-
tific discovery is going on by making a series of bizarre missteps. Just think at the Geocentric
model, believed to be true by the ancient civilizations, supported among the others by the
two eminent Greeks intellectuals Aristotle and Ptolemy. In a more modern era, this general
thinking started to change when the Polish astronomer Mikolaj Kopernik (Copernicus), in
1543, published his “revolutionary” De revolutionibus orbium coelestium. At that time, the sun
was believed to be at the center of the solar system, at the center of the Universe, and the six
known planets were thought to follow circular orbits around it. More than fifty years later Jo-
hannes Kepler, in his Prodromus dissertationum continens mysterium cosmographicum de admirabili
proportione orbium coelestium, reinterpreted the Copernicus model in a more “geometrical”
fashion. His aim was to explain the God’s geometrical plan for the universe, namely the idea that
God created the Universe following geometrical principles based on the five Platonic solids.
Between 1609 and 1619, with his three Kepler’s laws the same scientist achieved one of the most
important results of celestial mechanics. Then, circular orbits were replaced by elliptic ones
and the sun was posed at the focal point of the elliptical orbit. Some years later, one of the
fathers of the scientific revolution, G. Galilei, provided the foundations of his “controversial ”
principle of inertia that, in 1687, found its mathematical formulation thanks to Sir Isaac Newton.
His Philosophiae Naturalis Principia Mathematica, considered as one of the most important
scientific works of all the time, marked the beginning of the modern science. It was the
birth of classical mechanics. After the formulation of the three Newton’s laws, describing the
rules that govern the kinematics and the dynamics of bodies, the basic principles underlying
such revolutionary theory were established, and a systematic study addressed to achieve a
better understanding of the motion was begun. It was the time of the controversy between
Newton and Leibniz about the discovery of the infinitesimal calculus. The abstract idea of
predicting the motion of a body was then rephrased in terms of a well-defined mathematical
problem: given the initial position and velocity of a body, finding out the solution of the
three second-order differential equations F = mẍ, for the vector x = (x, y, z) ∈ R3 describing
the position of the body in the space. The theory implies that, given the resulting forces
F = (Fx, Fy, Fz) ∈ R3 acting on the body, at fixed initial conditions, there exists a unique
vector x(t) = (x(t), y(t), z(t)) ∈ R3 that, ∀t ∈ R, determines the exact position of the body
in the space. It was the era of determinism. If the system can be solved exactly, then it is
possible to find an analytic expression for the components of the vector x, and the motion is
completely solved, i.e. it is possible to predict where the particle will be located at a given
time. More than one-hundred years later, the Italian mathematician J. L. Lagrange, with his
work Mecanique analitique, marked the birth of the modern approach to classical mechanics.
The Newton’s equations of motion, rephrased in terms of the Euler-Lagrange equations, were
recovered starting from a fundamental quantity obtained as a difference between kinetic and
potential energy, the Lagrangian. Later, the Irish scientist Sir W. R. Hamilton, who defined the
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work of Lagrange a kind of a scientific Poem, introduced another equivalent way to describe
classical mechanical systems, now known as Hamiltonian’s mechanics. The Lagrangians were
replaced by the Hamiltonians, the sum of the potential and kinetic energy, and the equivalence
between the two approaches was then understood in terms of Legendre tranformations, which
connect the two formulations. In this theory, if the Hamiltonian function does not depend
explicitly on time, then it is an integral of motion, which means that the Energy of the system
is conserved, as it should be for conservative systems. At that time, the central role of the
position vector, and consequently of the configuration space, was replaced by a kind of duality
between position and momentum of a particle, and the phase space became the fundamental
arena of classical systems. The final goal behind such approach to classical mechanics is to
find out, at given initial conditions, the trajectories in the phase space of a given model in RN

(at fixed N). This would be achieved by solving the Hamilton’s equations of motion, a set of
2N first-order ordinary differential equations involving the time derivatives of positions and
momenta. Anyway, it was already clear at the time that this result is not always reachable,
and that there exists a relatively small subset of classical models for which this turns out
to be possible. This is the subset of those models that are called integrable. The notion of
integrability is multifaceted, and has to be explained in each specific field where it appears.
The state of the art about integrability can be summarized in the quote of N. Hitchin given
in the introduction of [1] where, paraphrasing the answer to a question that was posed to
Luiss Armstrong about Jazz, he states that Integrability is like Jazz, if you have to ask what it is,
you will never know. Surely, one thing that is common to integrable systems is the existence of
special properties that the others systems do not possess. For example, in classical mechanics,
such systems present a regular behaviour: by varying a little bit the initial conditions, it
cannot happen something too strange (the motion is not chaotic). The regular motions of
integrable systems is a consequence of the existence of conserved quantities in the dynamics
(Poisson-commuting with the Hamiltonian), which force the motion to be restricted in a subset
of the phase space. As a matter of fact, each conserved quantity drops one degree of freedom
of the system and, as a logical consequence, less freedom implies more regularity. Physically,
keeping in mind the milestone result of the German mathematician E. Noether on symmetries
and conservation laws, this fact reflects the general idea that more symmetries imply a more
regular behaviour. The existence of a sufficient number of functionally independent costants of
motion (in involution) for an Hamiltonian system is sufficient to ensure the quasi-periodicity
of the motion and, as a consequence, the solvability of the Hamilton’s equations. These are the
integrable systems (in the Liouville sense). At the present days, this concept is understood in
terms of the Arnold-Liouville Theorem [2], which encloses in a unique statement the notion of
(Liouville) integrability for Hamiltonian systems, i.e. the existence of N involutive constants of
motion (in dimension N), and the solvability of the Hamilton’s equations. Roughly speaking,
the idea behind such result concerns the possibility of rephrasing the original problem in terms
of a set of canonical (called action-angle) variables that linearize the Hamilton’s equations,
and to solve them by means of easy algebraic manipulations and straightforward integrations
(in other words by quadratures).

In 1873, another fundamental result was achieved by the French mathematician J. L. F.
Bertrand, which proved that among all the central force potentials, there exist only two cases
for which all bounded orbits are closed, and they are the Kepler-Coulomb and the harmonic
potentials [3]. This result, known as Bertrand’s theorem, introduced a new restriction to the
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whole set of Hamiltonian systems. The peculiarity of the Kepler-Coulomb and the (isotropic)
harmonic oscillator is due to the fact that, they not only define integrable systems in the
Euclidean space, but they also belong to that subset of Hamiltonian systems that are called, at
the present days, superintegrable [4]. This theorem has been also generalized to non-Euclidean
spaces [5], where the two (multi-parameter) families of Bertrand-Perlick Hamiltonians [6],
defining respectively (intrinsic) Kepler-Coulomb and harmonic potentials on their correspond-
ing curved spaces [7], took the place of the original Bertrand systems, the latter recovered in a
suitable (flat) limit. The physical reason why superinitegrable systems are so interesting is
due to the fact that they possess the maximum possible number of symmetries, and this forces
the motion to be regular. The best one can require to a N-dimensional (ND) classical model is
to be Maximally Superintegrable (MS). In this case, one deals with an integrable ND Hamilto-
nian system which is endowed with the maximum possible number of 2N− 1 functionally
independent integrals of motion. For such (very special) subset of Hamiltonian systems,
their large number of symmetries implies that all finite trajectories are closed and the motion
is periodic [4]. Moreover, the notion of solutions by quadratures is replaced by algebraic
solvability, meaning that in principle these systems can be solved algebraically, without the
need of any differential calculus. The Kepler-Coulomb and the (isotropic) harmonic oscillator
potentials are the prototype examples. They are endowed with additional constants of motion,
the Laplace-Runge-Lenz vector [8] and the Demkov-Fradkin tensor [9, 10] respectively, which
ensure their bounded motion to be periodic. As reasonable to expect, this turned out to be
true also for both the curved versions of the Bertrand systems, endowed with a deformed
(curved) version of the Laplace-Runge-Lenz and the Demkov-Fradkin tensor respectively [5].

These special properties also found applications in a more modern perspective, where the
Hamiltonian mechanics, coming from the old Newton’s ideas, made way to the modern view
of mechanics. As we know, in the XXth century the concept of determinism was contradicted
by the notion of uncertainty principle and classical mechanics was replaced by quantum me-
chanics. Another scientific revolution, based on the ideas of M. Planck, L. De Broglie, W.
Heisenberg, N. Bohr, E. Schrödinger just to cite a few, changed once again the entire game.
New notions, such as wave function, probability interpretation, observable, average value
of operators, Hilbert space, became familiar into the dictionary of Physicists. Solvability in
quantum mechanics is related to the solutions of the Schrödinger equation, which means
finding spectrum and eigenfunctions of a given spectral problem, whereas the notions of
conserved quantities and symmetries are connected to the abstract idea of compatible observ-
ables, mathematically rephrased in terms of commuting Hermitian operators. The original
definitions given in classical mechanics have been extended also in the quantum theory, where
a definition of quantum integrability and quantum superintegrability has been introduced. The
importance of superintegrable quantum systems is related to a conjecture (born out by all
known examples [4]) formulated by P. Tempesta, V. Turbiner and P. Winternitz, which states
that all MS quantum systems are exactly solvable [11]. It is then possible to calculate spectrum
and eigenfunctions in a closed form. This explains the exact solvability of the hydrogen atom
and the harmonic oscillator in any dimension and, in turn, the reason why their spectrum
is characterized by a (previously called) “accidental degeneracy”. Quantum versions of the
Laplace-Runge-Lenz vector and the Demkov-Fradkin tensor make them quantum MS systems
(the degeneracy is anything but “accidental”). This is a quite general result, deformations
of (super)integrable systems (curvature, q-deformations, discrete deformations, . . . ) should
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preserve the fundamental defining properties of the original (undeformed) systems. Clearly,
since the superintegrability is a notion linked to exact solvability, it is not difficult to imagine
that there exist profound connections between the theory of superintegrable systems and
special functions: the Askey scheme [12], organizing hypergeometric orthogonal polynomials,
can be derived as a consequence of contractions of two-dimensional second-order superinte-
grable systems [4]. Moreover, since the exact solvability of quantum systems is often related
to the possibility of factorizing the Hamiltonian [13–15], together with an additional condition
of shape invariance, it is reasonable that superintegrable systems present also interesting
connections with the theory of SUperSYmmetric Quantum Mechanics (SUSYQM) [16, 17].
At the present days, the principal research activity in this area involves the discovery, classifi-
cation and solution of superintegrable systems in both Euclidean and non-Euclidean space,
and characterization of their structure, in particular their underlying symmetry algebra. There
is also an increasing interests for discrete superintegrable systems, where finite difference
versions of the Schrödinger equation replace the usual standard differential realizations [18].
The physical idea behind such theories is to think about the continuous theory as an ap-
proximation of a more fundamental discrete theory, from which the former is recovered in
a suitable limit, i.e. when the lattice spacing goes to zero (the continuous limit). This is
also compatible with Heisenberg’s idea that, at a certain point of the microscopic ladder, a
fundamental length would appear in the theory [19]. In the last few years, with the main
goal of extending the small set of known discrete models, several superintegrable discrete
systems have been constructed, many of them describing superintegrable discrete versions of
the harmonic oscillator [20–22]. As for the continuous case, the main difficulties arising in
this research grows proportionally to the dimensionality of the problem.

An algebraic method that has been extensively used in the continuous case in order to
overcome the difficulties arising from the higher dimensional extensions of superintegrable
systems is the so-called coalgebra symmetry approach [23–31]. This technique, which works
in both classical and quantum mechanics, consists in defining both the Hamiltonians and
its constants of motion as functions of the generators of a given algebra endowed with a
coproduct map. Once an algebra representation is chosen, then the coproduct can be used
to rise the dimension of the representation without losing the superintegrability properties.
This is because the map provides, at each application, a set of additional symmetries “the
partial Casimirs”, which help to keep the system superintegrable. A limitation of this technique
resides in the fact that it is not possible to obtain the maximal superintegrability, i.e. it is not
possible to construct algebraically the entire set of 2N− 1 functionally independent conserved
quantities. Anyway, with an sl(2, R) coalgebra symmetry one can arrive very close to that
result, since 2N− 2 functionally independent first integrals can be constructed. Then, the left
quantity can be found by using other techniques.
Another algebraic method introduced to deal with (both classical and quantum) symmetries
of superintegrable systems, which has deep roots in the paper [32], is the so-called factorization
method (or extended factorization method) [33, 34]. This approach consists in extending the
standard factorization method, which we commonly use in ordinary quantum mechanics, to
separable systems depending on several variables [35]. It establishes that, if the Hamiltonian
can be separated in a given coordinate system, it is possible to construct for each coordinate
two sets of ladder and shift functions (resp. operators in quantum mechanics). Then, if certain
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1.1 outline of the thesis

further conditions are satisfied, the additional integrals of motion can be obtained by taking a
suitable combination of them.

1.1 outline of the thesis

This Thesis is the result of a collection of related problems, in the field of superintegrable
systems, which have been investigated in different joint collaborations [36–40]. The work is
divided in two main parts whose distinction resides both in the purposes and the methodolo-
gies. In the first part, dedicated to discrete superintegrable models, the coalgebra symmetry
technique represents the main algebraic tool. Whereas, in the second one, specific continu-
ous systems have been investigated in terms of the factorization method and the SUSYQM
approach. In both parts, we investigate superintegrable Hamiltonians sharing the same
sl(2, R) coalgebra symmetry. They are superintegrable deformations, in a suitable sense, of
the harmonic oscillator and the Kepler-Coulomb system.

Concerning the internal structure, in each Chapter we added a section Motivations and
definitions in order to explain the main reasons why we decided to investigate a given problem.
This, together with a section Concluding remarks and open perspectives which underlying the
main results and the future developments, marks the beginning and the end of the individual
studies.

Precisely:

• Chapter 2, common for both parts of the Thesis, is devoted to a terse introduction to
the basic notions and definitions that will be used throughout the work. After a brief
review dedicated to autonomous Hamiltonian systems, the notions of integrability and
superintegrability for classical and quantum Hamiltonians will be introduced, following
as a main reference [4]. To be more clear as possible, we will take as prototype examples
the harmonic oscillator and the Kepler-Coulomb system. The main aim is to establish a
common dictionary needed to understand the main Chapters.

• Chapter 3 is fully dedicated to the coalgebra symmetry and, in particular, to the possibil-
ity of applying it in a discrete quantum mechanical framework. After a comprehensive
review of the method, we will introduce the building blocks of discrete Quantum Me-
chanics, a discrete version of the ordinary quantum theory proposed by S. Odake and R.
Sasaki [19]. The main goal of the Chapter is to show that the coalgebraic approach to
superintegrable systems can be also extended to quantum discrete models. By using
the prototype example of the harmonic oscillator, we will introduce a procedure to
discretize the one-dimensional Hamiltonian and, once solved the spectral problem on the
lattice, we will make use of a discrete representation of the sl(2, R) coalgebra in order to
construct a higher dimensional MS extension of the discrete quantum Hamiltonian [40].

• Chapter 4 is devoted to the application of factorization approaches in both classical
and quantum mechanics. After a brief review of the classical factorization method for
one-dimensional systems [32], we will use it in order to investigate the classical analog
of f -oscillators [41–44], a family of deformed Hamiltonian systems which represents
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a generalization of q-oscillators [45, 46]. The main aim is to show how this method
allows us to write down the deformed Poisson algebra characterizing the entire family of
non-linear oscillators and to contruct its general solution algebraically [39]. The analysis
concludes with a discussion about the MS multidimensional generalization of classical
f -deformations, once again obtainable by means of the coalgebra symmetry technique.

The final part of the Chapter is instead devoted to a (both classical and quantum)
analysis of two prototype examples of N-dimensional MS systems defined on space on
nonconstant curvature, the so-called Taub-NUT and Darboux III Hamiltonian systems.
These models, which have been extensively studied in the literature for their mathemati-
cal as well as physical relevance [47–56], according to the Perlick’s classification [5–7],
belong to the family of type II, they can be therefore regarded as intrinsic oscillators
on their corresponding curved spaces. On the other hand, from an analytic point of
view, they represent a one-parameter deformation of the Kepler-Coulomb and harmonic
oscillator systems respectively, and their maximal superintegrability is ensured thanks
to the existence of a curved version of the Laplace-Runge-Lenz vector as well as of
the Demkov-Fradkin tensor. The main aim of the Chapter is to present an algebraic
analysis of both models [36–38]. The classical one-dimensional radial dynamics will be
investigated by using the classical factorization method, whereas for the quantum case
the spectral problem will be solved by means of standard SUSYQM techniques, thus
providing new features from the ones already presented in previous works.

• Chapter 5 is devoted to the concluding remarks. A brief review of the main results will
be given and the most relevant open problems will be summarized.
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2 SUPER INTEGRAB I L I TY IN CLASS ICAL AND
QUANTUM MECHANICS

Chapter 2 is devoted to a short introduction to the basic notions and definitions that will
be used throughout the work. In particular, after a brief review dedicated to autonomous
Hamiltonian systems, following mainly the structure of the review paper [4], we will recall the
notions of integrability and superintegrability for classical and quantum Hamiltonian systems.

2.1 superintegrability in classical mechanics

There exist several ways to define the concept of Hamiltonian system and to introduce the
notions of integrability and superintegrability in classical mechanics. Our starting point is the
following system of ODE’s: {

ẏ = f(y, t)

y(t0)
.
= y0 ,

(1.1)

where we denoted ẏ .
= dy

dt , with f(y, t) = ( f1(y, t), . . . , fd(y, t)) ∈ Rd, y = (y1, . . . , yd) ∈ Rd,
y0 = (y0 1, . . . , y0 d) ∈ Rd. This dynamical system defines a trajectory on the phase space
manifold Rd tangent to the vector field f(y, t). If the dimension of the phase space is even, i.e.
d = 2N, and there exists a (smooth) function H = H(y, t) defined on R2N ×R, such as the
system of ODE’s (1.1) can be cast in form:{

ẏ = J∇yH(y, t)

y(t0)
.
= y0 ,

(1.2)

where J .
=

(
0N 1N

−1N 0N

)
is the 2N × 2N skew-symmetric matrix and ∇y

.
= (∂y1 , . . . , ∂y2N ),

then the dynamical system is called Hamiltonian [2]. One of the reason why this subclass of
dynamical systems has a fundamental importance in physics is related to their connection
with the theory of conservative systems in classical mechanics. In fact, in the special case
when H is independent of the time variable t, so that H : R2N → R, the differential equations
(1.2) are autonomous, and the Hamiltonian system is conservative. As a matter of fact, the
Hamiltonian formalism represents the mathematical structure where the theory of such
systems has been developed. This formalism allows to describe the dynamics of a physical
system in N dimensions by relating the time derivatives of the position and momentum
coordinates to a single function defined on the phase space, the Hamiltonian H [8, 57]. In
particular, by introducing the pair of coordinates y .

= (x, p)T ∈ R2N , which represent the
position coordinates of a particle and their (conjugated) momenta, together with ∇y =

(∇x,∇p) = (∂x1 , . . . , ∂xN , ∂p1 , . . . , ∂pN ), the dynamical system takes the following form:{
ẋ = +∇pH(x, p)

ṗ = −∇xH(x, p) ,
(1.3)
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superintegrability in classical and quantum mechanics

together with the initial conditions (x(t0), p(t0))
.
= (x0, p0), which are the familiar Hamilton’s

equations. These set of equations, once fixed the 2N initial conditions, uniquely1 determine a
collection of points (xi(t), pi(t)) ∈M allowed in the motion of the physical system, which is
the trajectory in the phase space manifold2 M, which we can think locally as an open set in
R2N . So, the second Newton’s law, described by N second-order differential equations in the
position coordinates variables x(t) ∈ RN , is now “embedded” into the Hamilton’s equations,
i.e. a set of 2N first-order differential equation in (local) coordinates (x(t), p(t)) ∈ R2N .
When the Hamiltonian function is expressed in natural form, i.e. H(x, p) = T(x, p) + V(x),
T : R2N → R and V : RN → R being the kinetic energy and the potential function respectively,
then it can be interpreted as the total energy of the mechanical system. In particular, for many
physical systems, the Hamiltonian H : R2N → R is defined as:

H(x, p) .
=

1
2m

N

∑
i,j=1

gij(x)pi pj + V(x) , (1.4)

where m ∈ R+ is the mass of the particle and gij(x) is a contravariant metric tensor of an
underlying Riemannian manifold M for which g−1 .

= det(gij) 6= 0 and gij = gji [4]. The
metric of the Riemannian manifold in which the motion takes place is given by the following
quadratic form:

ds2 =
N

∑
i,j=1

gij(x)dxidxj , (1.5)

gij(x) being the covariant metric tensor (the inverse of the contravariant metric tensor) such
that ∑N

k=1 gikgkj = δi
j. Let us observe that in the dynamics of a free particle on a Riemannian

manifold, for which the Hamiltonian function corresponds to the kinetic energy of the system,
i.e. (from now on we shall fix m = 1 unless explicitly stated):

H(x, p) =
1
2

N

∑
i,j=1

gij(x)pi pj , (1.6)

the main difference with respect to the Euclidean case, when gij = δij, is related to the fact that
the symmetry properties holding in an Euclidean space, such as the translation and rotation
invariance coming from the conservation of the linear and angular momenta, are in general
not preserved.
A notion that is of crucial importance in the Hamiltonian theory is the one regarding the
conservation of quantities in the motion of the physical system. In particular, a conserved
quantity f (x, p, t) ∈ R2N ×R is characterized by the fact that its time derivative is zero:

ḟ =
d f (x, p, t)

dt
= 0 , (1.7)

which means that there is no variation in time, i.e. f = c ∈ R is a constant, or first integral.
This simple equality can be rephrased in terms of a binary operation playing a central role in
the classical Hamiltonian theory. Expanding the l.h.s. of (1.7) we can write:

1 Classical mechanics is a deterministic theory.
2 For a brief introduction to the notion of manifold see Appendix A.
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2.1 superintegrability in classical mechanics

0 = ḟ = ft + ẋ · ∇x f + ṗ · ∇p f

= ft +∇pH · ∇x f −∇xH · ∇p f
.
= ft + { f , H}(x,p) , (1.8)

where, in the second equality, we made use of the Hamilton’s equations and in the third we
have defined the Poisson bracket, i.e.:

{ f , g}(x,p)
.
= ∇x f · ∇p g−∇p f · ∇x g ∀ f , g ∈ C∞(R2N ×R). (1.9)

If f , g and h are three smooth functions defined on the phase space manifold R2N , α,
β are constants, and we indicate as “·” the usual pointwise (symmetric and associative)
multiplication of functions on C∞(R2N), then the following properties are satisfied:



{ f , g}(x,p) = −{g, f }(x,p)

{α f + βg, h}(x,p) = α{ f , h}(x,p) + β{g, h}(x,p)

{h, { f , g}(x,p)}(x,p) + {g, { f , h}(x,p)}(x,p) + {h, {g, f }(x,p)}(x,p) = 0

{F( f ), g}(x,p) = F′( f ){ f , g}(x,p)

{h, f · g}(x,p) = {h, f }(x,p) · g + f · {h, g}(x,p) .

(1.10)

The first two properties allows us to call the Poisson bracket a skew-symmetric bilinear operation,
the third shows that it satisfies the Jacoby identity, and the last two are known as the chain and
Leibniz rules respectively. Let us briefly comment that the last rule has to be intended as a
compatibility condition between the pointwise multiplication and the Poisson brackets, since
they are intertwined by this property.
As a matter of fact, the set PRN

.
= (C∞(R2N), {·, ·}, ·) define a so-called Poisson algebra. In

the Euclidean case, physically, we could think it as the algebra of classical observables of a
point particle moving on the space RN , with xi being the position coordinates, and pi the
corresponding canonical conjugated momenta (for i = 1, . . . , N).
The Poisson brackets of the phase space coordinates results in a subalgebra hc(N) ⊂ PRN :

{xi, xj}(x,p) = {pi, pj}(x,p) = 0 , {xi, pj}(x,p) = δij , (1.11)

generated by the 2N + 1 elements {xi, pi, 1}i=1,...,N , and the Hamilton’s equations can be
rephrased as follows: {

ẋi = {xi, H}(x,p) (i = 1, . . . , N)

ṗi = {pi, H}(x,p) (i = 1, . . . , N) .
(1.12)

In general, the system of 2N equations (1.12) will be solvable if it admits a sufficient number
of first integrals. In fact, for each constant of motion we can reduce by one the degrees
of freedom of the system. At this level it is straightforward to show that, for autonomous
Hamiltonian systems, one (trivial) first integral is:

Ḣ ≡ ∂tH = 0 , (1.13)
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i.e. the total energy is a conserved quantity: H = E ∈ R, as expected from Newtonian
mechanics. In general, for a given function f ∈ C∞(M) that does not depends on time
explicitly, the time-evolution is governed by the equation:

d f
dt

= { f , H}(x,p) , (1.14)

which implies that a classical observable is conserved along the dynamics (is a constant of
motion) if and only if its Poisson bracket with the Hamiltonian function is zero. This gives
an algebraic operational way to establish if a given function of the phase space coordinates
is conserved or not. Geometrically, the existence of such integral of the motion forces the
trajectory of the mechanical system to lie in an hypersurface of dimension 2N − 1 contained
in the 2N dimensional phase space.

Figure 1.: graphical representation of a level set f (x, p) = c ∈ R.

Such a result is a good starting point to introduce the definition of integrability in classical
mechanics. In particular, we will say that an Hamiltonian system is integrable (in the Liouville
sense) if it admits N first integrals fi=1,...,N , with f1 = H, which are in involution, i.e.:

{ fi, f j}(x,p) = 0 , (1 ≤ i , j ≤ N) , (1.15)

and such as they form a functionally independent set of conserved quantities on some local region of the
phase space. Moreover, if the constants of motion are polynomials in the momenta globally
defined (except possibly for singularities on a lower dimensional manifold), then the system
is called (polynomially) integrable [4].
The notion of functional independence is related to the rank of the n× 2N matrix involving
the partial derivatives (with respect to the 2N coordinates (x, p) ∈ R2N) of the set of n smooth
functions fk=1,...,n defined on some region of the phase space. More precisely, a set of first
integrals O

.
= { f1(x, p), . . . , fn(x, p)} is said to be functionally independent if the matrix:

M
.
= (∂xi fk, ∂pj fk) (1 ≤ i, j ≤ N ; 1 ≤ k ≤ n) , (1.16)

has rank n throughout the region. In other words, if there exists at least one n-minor of
M (a submatrix of dimension n× n) whose determinant is not zero. In general, if a set is
functionally dependent, in some local region of the phase space there exists a (nonzero)
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2.1 superintegrability in classical mechanics

analytic function F of n variables such as F( f1, . . . , fn) = 0 [4], which encodes the functional
dependence of the conserved quantities (in this case the rank of the matrix is less than n).
Roughly speaking, we can think at the integrability as the property of a classical system
to exhibit regular (quasi-periodic) behaviour, which in turn is a track of its solvability. In
particular, a fundamental result holding in the theory of integrable systems is known as Arnold-
Louville theorem. The basic idea behind such a theorem is to find out a suitable canonical
tranformation that linearize the problem. We recall that for a canonical change of variables
(x, p)→ (x̄, p̄) on the 2N-dimensional phase space, i.e.:{

x̄ = x̄(x, p)

p̄ = p̄(x, p)
with (local) inverse

{
x = x(x̄, p̄)

p = p(x̄, p̄) ,
(1.17)

such as (for 1 ≤ i, j ≤ N):

{x̄i(x, p), x̄j(x, p)}(x,p) = {x̄i(x, p), x̄j(x, p)}(x,p) = 0 , {x̄i(x, p), p̄j(x, p)}(x,p) = δij , (1.18)

the Hamilton’s equations preserve their form, since the Poisson structure remains unchanged.
Moreover, it is also known that such transformations can be defined by the means of generating
functions [2, 8].
The aforementioned theorem states that [2, 58] for any integrable system defined in a 2N-
dimensional phase space M, which is endowed with fk=1,...,N(x, p) first integrals in involution
that are functionally independent on the intersection of the level sets of the N functions
fk = ck, i.e. in the N-dimensional (compact and connected) level surface M f

.
= {(x, p) ∈M :

fk = ck ∈ R}, which is diffeomorphic to a torus TN .
= S1 × · · · × S1, it is possible to introduce

a set of canonical action-angles variables (in a neighborhood of TN): J1 . . . JN and θ1 . . . θN ,
where θk=1,...,N ∈ [0, 2π] are cyclic coordinates, in such a way the Hamilton’s equations are
linearized, i.e.: {

θ̇ = +∇J H̃ = ω(J)

J̇ = −∇θH̃ = 0 ,
(1.19)

where the action variables J1, . . . , JN , and then also the frequencies ω(J) = (ω1(J), . . . , ωN(J)),
are first integrals for the new tranformed Hamiltonian H̃ = H(x(J, θ), p(J, θ)) ≡ H(J), which
is a function of just the action coordinates. In this way the integration is straightforward, the
dynamics is characterized by N circular motions with constant angular velocities:

J(t) = J(0) θ(t) = θ(0) + ω(J)t . (1.20)

This implies that integrable systems are solvable by performing a finite number of integrations
and algebraic manipulations of given functions or, in other words, by quadratures. The
trajectory (1.20) may be closed or it may cover the torus densely, and this is a consequence of
the values that the angular velocities assume. For example, in dimension N = 2, the trajectory
will be closed if the ratio ω1

ω2
= m

n ∈ Q (where m, n ∈ N∗) and dense otherwise (in this case
the motion is quasi-periodic).
An extension of such result has been obtained also in the case of non-commutative algebras
of constants of motion where, under suitable hypotesis [59, 60], it has been proved that the
trajectory can be also calculated by means of quadratures (see also the recent paper [61]).

Sometimes, Hamiltonian systems can be characterized by a very special property, stronger
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than the integrability. This property, called superintegrability, requires for such systems to
have additional constants of motion besides the usual N that are required in the definition
of integrability. In particular, there exists a notion of minimal and maximal superintegrability,
in relation with the total number of first integrals that the Hamiltonian system possesses.
Maximal superintegrability (MS) requires the existence of 2N − 2 integrals of motion that,
together with the Hamiltonian, form a set of 2N− 1 functionally independent functions on the
phase space (the maximum number allowed). More precisely, a classical Hamiltonian system in
N dimensions is (polynomially) superintegrable if it admits N +m with m = 1, . . . , N− 1 functionally
independent constants of the motion that are (polynomial in the momenta and) globally defined, except
possibly for singularities on a lower dimensional manifold. It is minimally superintegrable if m = 1
and maximally superintegrable if m = N − 1 [4].
For example, in dimensions N = 2, a system will be superintegrable if there exist 2 first
integrals fi=1,2 polynomial in the momenta that, together with the Hamiltonian H, form a
functionally independent set {H, f1, f2} of constants of motion, such that { fi, H}(x,p) = 0,
with { f1, f2}(x,p) 6= 0. Let us observe that the constants of motion are not in mutual involution,
but their Poisson brackets will close in general a non-abelian polynomial algebra or, in some
exeptional case, finite dimensional Lie Algebras or more complicated structures, such as
Kac-Moody algebras [4, 62]. The analysis of these algebras represents one of the (sub)domains
of research that has its own mathematical interest for the community working on the subject.
Superintegrable systems are always presented together with their symmetry algebras. The
maximal order (in the momenta) of the first integrals (apart from H) defines the order of
the classical superintegrable system (is in some sense its ID). This means that by definition
we will have an m-order superintegrable systems if its defining symmetries are of order m
in the momenta. Let us remark that several distinct N-subsets of the 2N − 1 functionally
independent polynomial constants of the motion for a superintegrable system could be in
involution (is the maximum number allowed), and this fact gives rise to the notion of multi-
integrability [4]. Physically, the importance of classical MS systems is related to the fact that,
at least in principle, the trajectories can be calculated without resorting to any differential
calculus. In fact, due to their large number of symmetries, they can be solved algebraically:
maximal superintegrability restricts trajectories in the phase space to be curves, and implies
that all finite trajectories are closed and motion is periodic [4, 63]. More precisely, since the
existence of a constant of motion forces the trajectory to lie in an hypersurface of dimension
2N − 1, then the existence of 2N − 1 first integrals, let’s say f1 = H, . . . , f2N−1, restricts the
trajectory in the phase space to be the common intersection of such hypersurfaces, let’s say
f1 = E, f j = cj, where the real constants E, cj (j = 2, . . . , 2N − 1) are uniquely determined
by imposing the initial conditions [4, 64]. In poor words, the existence of an extra set of
m = N − 1 first integrals, besides the N required for the integrability, forces the trajectory to
lie in a 2N − (2N − 1) = 1 dimensional submanifold of the phase space, i.e. a curve in M.
The two most important models of (maximally) superintegrable systems, which we will take
as prototype examples to illustrate the basic definitions we need to introduce, are the harmonic
oscillator (HO) and the Kepler-Coulomb (KC) system. On one hand, the harmonic oscillator is a
universal model in physics: a mass at equilibrium under the influence of any conservative
force, in the limit of small perturbations, behaves as a simple harmonic oscillator. On the other
hand, the Kepler-Coulomb system is of crucial importance because it describes both the motion
of planets around the sun, governed by the three Kepler’s laws, and the interaction between
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the proton and the electron, governed by the Coulomb attraction force (the hydrogen atom).
Their maximal superintegrability is related to the existence of two physical quantities besides
the ones related to the rotational symmetry. They are the Demkov-Fradkin (DF) tensor [9, 10]
and the Laplace-Runge-Lenz (LRL) vector [8] respectively. In particular, a milestone result
in the theory of superintegrable systems dated back to 1873, due to J. L. F. Bertrand, is the
so-called Bertrand Theorem [3]. It asserts that any three-dimensional spherically symmetric natural
Hamiltonian system in (a subset of) the Euclidean space, described by the Hamiltonian function:H(x, p) = 1

2 ∑3
i,j=1 δij pi pj + V(|x|) = p2

2 + V(|x|) (|x| .
=
√

x2 =
√

x2
1 + x2

2 + x2
3 )

ds2 = ∑3
i,j=1 δij dxidxj = ∑3

i=1(dxi)2 ,
(1.21)

such as for each point of its configuration space R3 there exists a stable circular trajectory passing
through it, and all whose bounded trajectories are closed, is either a harmonic oscillator (HO) or a
Kepler-Coulomb system (KC).
This means that the two Hamiltonians:{

HHO(x, p) .
= p2

2 + VHO(|x|) = p2

2 + 1
2 ω2x2

HKC(x, p) .
= p2

2 + VKC(|x|) = p2

2 −
k
|x| ,

(1.22)

where ω, k are two positive constants, which describe the motion in the configuration space
R3 of a point particle (of unit mass) under the influence of the forces:{

FHO(x) = −∇xVHO(|x|) = −ω2x

FKC(x) = −∇xVKC(|x|) = − k
|x|3 x ,

(1.23)

are the only two spherically symmetric systems that possess the maximal superintegrability
property. As we said, this result is related to the existence of the above mentioned quantities,
which provide another set of constants of motion besides the ones generated by the three
components of the angular momentum (related to the rotational symmetry), and that can be
used to construct the orbit’s equation [65]. Explicitly, the LRL vector R, defined as:

R
.
= L× p +

k
|x|x , (1.24)

provides the following three additional constants of motion for the KC system:{
Ri

.
= ∑3

j=1(xj pi − xi pj)pj +
k
|x|xi (i = 1, 2, 3) ,

{Ri, HKC}(x,p) = 0 .
(1.25)

For the sake of clarity we need to mention that the definition (1.24) suffers of a global minus
sign from the usual one used in the classical textbook [8]. Clearly, this does not affect the
physics of the problem. Concerning the (symmetric) DF tensor, it provides the following six
conserved quantities for the HO system:{

Iij
.
=

pi pj
ω + ωxixj (i ≤ j; i, j = 1, 2, 3)

{Iij, HHO}(x,p) = 0 .
(1.26)
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Let us observe that both sets of constants of motion are quadratic in the momenta. We are
dealing with second-order superintegrable systems, a special subclass of superintegrable systems
which admits separation of variables both in the classical and the quantum case [4]. Let us
recall that the magnitude of the LRL vector R turns out to be expressible in terms of the
Hamiltonian HKC itself and of the modulus squared of the total angular momentum, i.e.:

R2 =
3

∑
i=1

R2
i = 2L2HKC + k2 where L2 .

=
3

∑
i=1

L2
i , (1.27)

where Li
.
= 1

2 εijkLjk. Here, we have introduced the usual notation for the rotation generators
Lij

.
= xi pj − xj pi (i < j; i, j = 1, 2, 3). This relation shows a functional dependence between

the Hamiltonian, the angular momentum and the LRL vector. Moreover, it also holds:

R · L = 0 , (1.28)

which means that the LRL vector lies in the plane of the orbit (the angular momentum is
perpendicular to the orbit).
Thus, at this level, we have a total number of eight conserved quantities {HKC, L2, L,R},
together with three functional relations given in (1.27,1.28). This implies that only five of them
are independent (as expected).

Concerning the HO, a functional relation is given in terms of the trace of the Demkov-
Fradkin tensor, which turns out to be proportional to the oscillator Hamiltonian:

HHO =
ω

2

3

∑
i=1

Iii . (1.29)

Moreover, this tensor is “perpendicular”to the angular momentum in the sense that [65]:

3

∑
j=1

IijLj = 0 (i = 1, 2, 3) . (1.30)

Thus, we have a total number of eleven conserved quantities {HHO, L2, L, Iij}, together with
the four functional relations given in (1.29,1.30) and the one relating the components of
the angular momentum with its modulus squared. The last functional relation is given by
taking the determinant of the DF tensor, which turns out to be zero. This implies that only
five of them are independent. Thus, we can choose a functionally independent subset of
2N − 1 = 2 · 3− 1 = 5 first integrals, for example:{

OKC
.
= {HKC,L23,L13,L12,R1}

OHO
.
= {HHO,L23,L13,L12, I11} ,

(1.31)

to ensure the maximal superintegrability of the two models. Moreover, the constants
{HKC,L23,R1}, {HHO,L23, I11} are in mutual involution. As we previously explained, if
we are not interested in finding explicitly the functional relations between the constants of
motion, it is sufficient to calculate the rank of the 5× 6 matrix (1.16), which is equal to 5 for
both subsets in (1.31).
Concerning the symmetry algebras of the two MS systems, first of all let us observe that they
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2.1 superintegrability in classical mechanics

are both endowed with an so(3) Lie-Poisson symmetry. This is because they are defined on
a spherically symmetric space. More precisely, the three functions Lij satisfy the following
so(3) Lie-Poisson algebra:

{L12,L13}(x,p) = L23 {L12,L23}(x,p) = −L13 {L13,L23}(x,p) = L12 . (1.32)

Also, we observe that the LRL vector R closes the Poisson algebra3:

{Ri,Rj}(x,p) = −2HKCLij (i < j, i, j = 1, 2, 3) (1.33)

that, together with the Poisson brackets:

{Lij,Rk}(x,p) = δikRj − δjkRi , (1.34)

leads to an so(4) dynamical symmetry algebra. In fact, by defining the quantities:

L̃0i
.
=

Ri√
−2HKC

, L̃ij
.
= Lij , (1.35)

one finds that the functions L̃ij are the generators of an so(4) Lie-Poisson algebra, given by:

{L̃ij, L̃ik}(x,p) = L̃jk {L̃ij, L̃jk}(x,p) = −L̃ik {L̃ik, L̃jk}(x,p) = L̃ij (i < k < j) (1.36)

with i, j, k = 0, 1, 2, 3. As far as the isotropic harmonic oscillator is concerned, the three angular
momentum components Li, together with components of the DF tensor, lead to the following
Poisson brackets:

{Li, Lj}(x,p) = εijkLk , (1.37)

{Li, IJk}(x,p) = εijmImk + εikmIjm , (1.38)

{Iij, Ikl}(x,p) = (δijεklm + δilεjkm + δjkεilm + δjlεikm)Lm , (1.39)

and in particular the five (traceless) components of the DF tensor, together with the three
components of L, yields to an su(3) symmetry algebra [65].

Besides these two prototype examples (which are very special since they are defined on a
spherically symmetric space), over the years many other superintegrable systems have been
discovered and extensively investigated, also in connection with applications that have been
found in condensed matter physics, nuclear physics and celestial mechanics (see [6, 66–69]
and references therein). The research involved also a deep interest in quantum systems,
where a notion of superintegrability also exists. In particular, an influential conjecture that
has been proposed in [11], states that all superintegrable quantum systems are exactly solvable,
and the solution is given in terms of special functions (basically hypergeometric orthogonal
polynomials multiplied by some gauge factor). This conjecture, which works for all known
superintegrable systems, has been of crucial importance since established a relation between
the concepts of superintegrability and exact solvability in quantum mechanics. Clearly, this
fact increased the interest for such quantum systems that, once found (and this step is highly
not trivial), can be explicitly solved. In that case, the last step would be find a physical
application for the model.

3 Let us point out that this is not a Lie-Poisson algebra, and the reason is related to the presence of the quadratic
term involving the Hamiltonian. It can be considered as a Poisson-Lie algebra if we restrict the Hamiltonian on
the level surface H = E ∈ R.
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2.2 superintegrability in quantum mechanics

We have just seen that in classical mechanics the state of a N-dimensional system is represented
in terms of points in phase space, which has the structure of a 2N-dimensional manifold4 M,
and the observables are C∞ real-valued functions on M. A state of a quantum mechanical
system is instead defined by a vector belonging to an infinite dimensional (separable) complex
Hilbert space H, and the observables are described in terms of Hermitian operators on it. One
of these observables is the Hamiltonian Ĥ, which we can use to perform the evolution of a
quantum observable f̂ under the Heisenberg equation [71]:

d f̂
dt

= − i
h̄
[ f̂ , Ĥ] . (2.40)

This relation has to be thought as the quantum counterpart of (1.14), and suggests a direct
correspondence between classical and quantum dynamics [72]. Here, we have introduced the
reduced Planck’s constant h̄ .

= h/2π, and the new skew-symmetric bilinear operation [·, ·], the
commutator. The latter satisfies the following properties: if f̂ j (j = 1, 2, 3) are three operators
defined on a given Hilbert space H, and α, β are two complex constants, then it holds:

[ f̂1, f̂2] = −[ f̂2, f̂1]

[α f̂1 + β f̂2, f̂3] = α[ f̂1, f̂3] + β[ f̂2, f̂3]

[ f̂3, [ f̂1, f̂2]] + [ f̂2, [ f̂3, f̂1]] + [ f̂1, [ f̂2, f̂3]] = 0

[ f̂3, f̂1 f̂2] = [ f̂3, f̂1] f̂2 + f̂1[ f̂3, f̂2] .

(2.41)

These properties show that the commutator is, like the Poisson bracket, a skew-symmetric
bilinear operation satisfying the Jacobi identity and the Leibniz rule. In contrast to classical
mechanics, where the product of functions on phase space is both associative and commutative,
here the product of operators is still associative but not commutative, and this gives rise to
ordering problems. As we know, the commutator replace the Poisson brackets at the quantum
level. This means that if a mapping between classical and quantum observables exists, then
it has to be defined in such a way to satisfy the “Poisson brackets → commutators rule” [73].
For example, in the Euclidean space RN , the classical position and momentum coordinates
(xi, pi) ∈M are replaced by self-adjoint operators (x̂i, p̂i) defined on a given Hilbert space H:

xi → Qh̄(xi)
.
= x̂i , pi → Qh̄(pi)

.
= p̂i (i = 1, . . . , N) , (2.42)

such that:
[x̂i, x̂j] = [ p̂i, p̂j] = 0 , [x̂i, p̂j] = ih̄δij1̂ , (2.43)

where Qh̄ : hc(N) ⊂ PRN → h(N) is a quantization map that links the (classical) elements
of (1.11) to the (quantum) elements of h(N), the abstract 2N + 1 dimensional Heisenberg
algebra (the basic algebra of quantum observables). Actually, the quantization procedure is a
very hard task from the mathematical point of view, and several (still open) problems have
been faced. Roughly speaking, the general idea behind such a procedure is to “quantize”

4 Precisely, it is a 2N-dimensional symplectic manifold, i.e. a 2N-dimensional manifold endowed with a closed (non
degenerate) two form ω0

.
= ∑N

i=1 dxi ∧ dpi , written in local coordinates xi, pi (that always exist because of the
Darboux’s Theorem [70]).
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consistently a Lie subalgebra U (containing the Heisenberg algebra) of the full Poisson algebra
PRN

.
= (C∞(R2N), {·, ·}, ·), i.e. to assign at each element of U a self-adjoint operator on a

given Hilbert space H, in such a way for any f , g ∈ U ⊂ PRN some fundamental properties
have to be satisfied, among which the well-known Poisson brackets→ commutators rule, i.e.:

Qh̄({ f , g}) = − i
h̄
[Qh̄( f ),Qh̄(g)] (together with Qh̄(1) = 1̂) , (2.44)

which shows that Qh̄ is an homomorphism of the corresponding Lie bracket structures. The
fact that one is forced to take a subalgebra of PRN is related to the restriction that one has in
quantizing the (full) Poisson algebra PRN [74–77]. We will not deal explicitly with such issues
because, besides to be very complicated, they are also behind the purposes of this paragraph.
As far as we are concerned, a standard representation for the basic observables in ordinary
quantum mechanics is given through the so-called Schrödinger quantization prescription [72]:

x̂j = xj , p̂j = −ih̄∂xj (j = 1, . . . , N) , (2.45)

for which the 2N + 1 dimensional Heisenberg algebra (2.43) is fulfilled. Clearly, the commutation
relations (2.43) have to be thought as the quantum version of the classical (canonical) relations
(1.11), now expressed in terms of Hermitian operators on a given Hilbert space instead of
positions and momentum coordinates on the phase space manifold M.
The notion of Hermiticity is strictly related to the inner product of the Hilbert space where
the quantum model is defined. For example, in a standard Euclidean space RN , the state
of a quantum mechanical system with N degrees of freedom, at time t, is characterized by
(state) vectors represented by square integrable functions on H

.
= L2(RN , dµ(x)), dµ(x) .

= dx
being the measure on RN . They are complex-valued functions ψ : RN → C that are usually
normalized in such a way that ||ψ||2 .

= 〈ψ, ψ〉 = 1, where 〈,〉 denotes the inner product:

〈ψ, ϕ〉 .
=
∫

RN
ψ∗(x, t)ϕ(x, t)dµ(x) . (2.46)

In this case, if f̂ is Hermitian, then:

〈 f̂ ψ, ϕ〉 =
∫

RN
( f̂ ψ(x, t))∗ϕ(x, t)dµ(x) =

∫
RN

ψ∗(x, t)( f̂ ϕ(x, t))dµ(x) = 〈ψ, f̂ ϕ〉 . (2.47)

As we previously said, this subset of operators is of fundamental importance in the quantum
theory since they correspond to observable quantities. In particular, unlike what one has in
(deterministic) classical mechanics, here one has to deal with probability density and average
values of observables [71, 72]. In this sense, the self-adjoint operators x̂i, p̂i can be used to
calculate the (average) value of positions and momenta 〈xi〉t , 〈pi〉t in the following way:

〈xi〉t
.
= 〈ψ, x̂iψ〉 =

∫
RN

xi|ψ(x, t)|2 dµ(x) ,

〈pi〉t
.
= 〈ψ, p̂iψ〉 =

∫
RN

ψ∗(x, t)(−ih̄∂xi ψ(x, t))dµ(x) . (2.48)

Here the modulus squared of the wavefunction |ψ(x, t)|2 plays the role of probability density.
Its physical meaning is clearly explained in [71]: “when we use a detector that ascertains the
presence of the particle within a small volume element dx around x, the probability of recording a
positive result at time t is given by |ψ(x, t)|2dx ”.
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The equation that governs the dynamics of quantum mechanical states is the time-dependent
Schrödinger equation:

ih̄ ∂tψ(x, t) = Ĥψ(x, t) , (2.49)

where the Hamiltonian Ĥ is the operator given by:

Ĥ = Ĥ(x̂, p̂) =
p̂2

2
+ V(x̂) = − h̄2

2
∆x + V(x) , (2.50)

where we restricted our consideration to time-independent Hamiltonians. Moreover, the fol-
lowing notation for the Laplacian operator: ∆x

.
= ∇2

x = ∂2

∂2x1
+ · · ·+ ∂2

∂2xN
has been introduced.

Here, the conservation of the energy is related to the equation:

d
dt
〈Ĥ〉t = 0 , (2.51)

which, in analogy with classical mechanics, should imply the existence of a real number E,
such that (the expectation value of) the Hamiltonian always takes such a value ∀t ∈ R. In
particular, for the Hamiltonian (2.50), the wavefunction ψ(x, t) oscillates in time according to:

ψ(x, t) ∼ exp(− i
h̄

E t)Ψ(x) . (2.52)

This formula is obtained by separation of variables in the time-dependent Schrödinger
equation (2.49). In this case, the equation characterizing the so-called “stationary states” is
the time-independent Schrödinger equation:

Ĥ Ψ(x) = E Ψ(x) , (2.53)

which is an eigenvalue equation for the Hamiltonian operator. For example, in the Euclidean
case, equation (2.53) results in:

− h̄2

2
∆xΨ(x) + V(x)Ψ(x) = E Ψ(x) . (2.54)

Similarly to classical mechanics, where we are interested in solving equations of motion to
find trajectories in phase space, here the goal is to solve the equation (2.54) in order to find
spectrum and eigenfunctions of the quantum system under investigation. Generally, if the
system is exactly solvable, the eigenstates will be given in terms of families of polynomials,
which will be orthogonal in the domain of definition of the model. Also, the solution of (2.54)
will depend on the coordinate system that is chosen to solve it. For example, we can think
of the N-dimensional harmonic oscillator expressed in cartesian coordinates, whose solution
is factorized in terms of the Hermite polynomials (for each coordinate xj=1,...,N), multiplied
by a factor given by the product of the single gaussians arising as kernels of the lowering
operators that factorize the problem. Here, the model is defined in RN and the Hilbert space is
H

.
= L2(RN , dx). The same problem, when expressed in (hyper)spherical coordinates, leads to

a radial solution given in terms of the generalized Laguerre polynomials, which are orthogonal
on the positive semi-line, with respect to a weight function given by a gaussian in the radial
coordinate r > 0 times a factor rl , where l is the angular momentum quantum number coming
from the angular part of the solution (given in terms of hyperspherical harmonics).
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2.2 superintegrability in quantum mechanics

When one deals with systems that are defined on non-Euclidean spaces, i.e. in some
Riemannian manifold M, it is possible to define a quantum analog of the classical Hamiltonian
(1.4), which takes into account the ordering issues arising in the quantum theory (and in
particular the fact that in this case the metric tensor depends on the position operator). The
representation of such Hamiltonian operator turns out to be [4]:

Ĥ(x̂, p̂) = − h̄2

2
∆M + V(x) , (2.55)

where:

∆M
.
=

N

∑
i,j=1

1
√

g
∂xi(
√

g gij∂xj) , g .
= det gij , (2.56)

is the so-called Laplace-Beltrami operator, which represents a generalization of the Laplace
operator, the latter being recovered in the Euclidean case, e.g. when gij = δij. In this case, the
time-independent Schrödinger equation reads:

− h̄2

2
∆MΨ(x) + V(x)Ψ(x) = E Ψ(x) , (2.57)

and the inner product will be equipped with the new (hyper)volume measure dµg(x)
.
=
√

g dx.
Now, since our aim is to define the concepts of integrability and superintegrability in

quantum mechanics, as we made in the classical case, we need to understand the meaning of
quantum conserved quantities in this framework, and how this notion can be useful in the
analysis of quantum models. In particular, by taking into account the Heiseinberg equation
(2.40), the rate of variation of the expectation value of an observable f̂ will be calculated
according to:

d
dt
〈 f̂ 〉t = −

i
h̄
〈[ f̂ , Ĥ]〉t , (2.58)

and this shows that, in full analogy to classical mechanics, there will be no (average) variation
on time if and only if [ f̂ , Ĥ] = 0, i.e. if f̂ and Ĥ are two compatible observables. In that case,
we can choose a basis of eigenfunctions on the Hilbert space that are eigenstates of both f̂
and Ĥ. For this reason, one of the fundamental challenges in quantum mechanics is to find
out (observable) quantities commuting with the Hamiltonian to characterize the system [71].
From this point of view, the interest in introducing a notion of integrability also in the
quantum framework arose quite naturally, and a rigorous definition of quantum integrability
has been formulated. Precisely, it states that an N-dimensional quantum Hamiltonian system is
integrable if there exist N integrals of motion f̂ j , (j = 1, . . . , N) satisfying the following conditions:

1. they are well-defined self-adjoint operators in the enveloping algebra of the Heisenberg algebra
h(N), or convergent series in the basis vectors x̂, p̂;

2. the integrals f̂ j (j = 1, . . . , N) commute pair-wise;

3. they are algebraically independent.

Moreover, if the quantum integrals are finite order partial differential operators, we will speak
of finite order integrability (which is the quantum analogue of polynomial integrability) [4].
As we previously discussed, in classical mechanics the notion of functional independence

25



superintegrability in classical and quantum mechanics

is related to the rank of the matrix (1.16), which is a well-defined (also operative) property.
In quantum mechanics, such a notion is not so straightforward and, as the authors claim
in [4]: “there is no upon-agreed operator equivalence for this concept”. In particular, they consider a
set of n operators f̂ j=1...n algebraically independent, if there is no nonzero Jordan polynomial
that vanishes identically. This means that there is no symmetrized polynomial P in n non-
commuting variables such that P( f̂1, ..., f̂n) = 0. We might think at a such algebraic relation as
the quantum analog of the classical relations F( f1, . . . , fn) = 0, where in that case we recall
that F was a nonzero analytic function defined in some region of the phase space.
In complete analogy to classical mechanics, we can also provide a notion of quantum superinte-
grability (of finite order). We will say that a quantum system in N dimensions is superintegrable
(of finite order) if it admits N + m, m = 1, . . . , N − 1 algebraically independent finite order partial
differential operators f̂1 = Ĥ, . . . , f̂N+m in the variables x globally defined (except for singularities on
lower dimensional manifolds), such that [ f̂ j, Ĥ] = 0. It is minimally superintegrable if m = 1 and
maximally superintegrable if m = N − 1 [4].
To make clear these points, let us think about the classical oscillator and Kepler-Coulomb
problems that we have previously discussed. In these cases, the quantum integrals of motion
required for the maximal superintegrability are given by the quantum counterpart of the LRL
vector5 and DF tensor respectively, i.e.:

R̂i
.
=

1
2

3

∑
j=1

(x̂j p̂i − x̂i p̂j) p̂j +
1
2

3

∑
j=1

p̂j(x̂j p̂i − x̂i p̂j) +
k
|x̂| x̂i , (2.59)

Îij
.
=

p̂i p̂j

ω
+ ωx̂i x̂j , (2.60)

for i, j = 1, 2, 3, where ordering issues have been taken into account. These quantities, together
with the angular momentum operators L̂ij

.
= x̂i p̂j − x̂j p̂i, commute with the corresponding

quantum Hamiltonians ĤKC and ĤHO:{
ĤHO(x̂, p̂) = p̂2

2 + 1
2 ω2x̂2 = − h̄2

2 ∆x +
1
2 ω2x2

ĤKC(x̂, p̂) = p̂2

2 −
k
|x̂| = −

h̄2

2 ∆x − k
|x| ,

(2.61)

and we can choose a subset of 2N− 1 = 2 · 3− 1 = 5 functionally independent first integrals:{
OKC

.
= {ĤKC, L̂23, L̂13, L̂12, R̂1}

OHO
.
= {ĤHO, L̂23, L̂13, L̂12, Î11} ,

(2.62)

to determine the maximal superintegrability. Futhermore, the quantum version of the clas-
sical Lie-Poisson algebras so(4) and su(3) can be used to construct the spectrum of the two
quantum systems with a group-theoretical approach [79, 80]. Even in this quantum case,
by definition, we are dealing with second-order superintegrable systems. In fact, both the
(quantum) LRL and DF tensor are represented by second-order partial differential operators.

To sum up:

• in classical mechanics, superintegrability restricts trajectories to a N −m dimensional
subspace of the phase space (0 < m < N). In the case of maximal superintegrability,

5 To the best of our knowledge, the quantum LRL vector has been proposed for the first time by Pauli in [78].
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2.2 superintegrability in quantum mechanics

i.e. when m = N − 1, all bounded orbits are closed and the motion is periodic. In
principle, the trajectories can be performed algebraically, with no need to calculate any
integral. Moreover, as we mentioned, the Bertrand Theorem [3] states that the only
two spherically symmetric potentials (in the three dimensional Euclidean space) for
which all bounded trajectories are closed, are the harmonic oscillator and the Kepler-
Coulomb potentials. This means that no other superintegrable systems on such space
are spherically symmetric. Concerning the algebras of the integrals of motion, we saw
that they are in general non Abelian. Typically, they are finitely generated (polynomial)
algebras [4].

• In quantum mechanics, most of the systems that have been shown to be maximally su-
perintegrable, have also been shown to be exactly solvable. This support the truthfulness
of the conjecture proposed in [11]. In particular, the maximal superintegrability leads
to an additional “accidental” degeneracy in the spectrum, which is now understood in
terms of superintegrability. The polynomial algebras of first integrals can be used to
construct the spectra and eigenfunctions of quantum systems (see for example [79–81]).

The search and classification for MS systems has been performed over the years by using many
different approaches. A possibility consists in considering a general Hamiltonian function
H(x, p) = T(x, p) + V(x) and imposing the existence of a set of constants of motion { fi}
(resp. { f̂i} in the quantum case), under some specific assumptions, such that { fi, H}(x,p) = 0
(resp. [ f̂i, Ĥ] = 0). The above constraints turn into a set of determining equations which
can be used to completely classify a given class of MS systems. However, the complexity
of these determining equations grows in a severe way with the Hamiltonian degrees of
freedom, and this partially justifies the abundance of studies of superintegrable systems in
two dimensions [82–84]. In order to construct higher dimensional superintegrable systems
without tackling the above mentioned issues, Ballesteros et al. [23–25] introduced a novel
algebraic approach based on Hopf Algebras, in particular on their coalgebra sector. The main
aim of the next chapter is to explain the basic notions of such approach to superintegrability.
In particular, we will show how it works in classical and ordinary quantum mechanics and,
after an overview of the fundamental ideas behind this algebraic technique, we will discuss
the way how to introduced it in a discrete quantum-mechanical framework, which is our
original contribution to the field.
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3 COALGEBRA SYMMETRY AND
SUPER INTEGRAB I L I TY

In order to overcome the technical problems related to the multidimensional extensions of
superintegrable systems, a powerful method has been introduced. It is known with the name
of coalgebra symmetry. This technique consists in defining both the Hamiltonians and its
constants of motion as functions of generators of a given algebra equipped with a coproduct.
Once an algebra representation is chosen, then the coproduct can be used to rise the dimension
of the representation without losing the superintegrability properties. This is because the
coproduct provides, at each application, a set of additional symmetries “the partial Casimirs”,
which help to keep the system superintegrable. This method has been successfully applied:
several well-known classical integrable and superintegrable systems have been recovered (and
reinterpreted from this new “external”point of view), and new families have been discovered,
see e.g. [26–30]. This approach to superintegrability is still extensively used in the literature
because of its wide range of applicability, both in classical and in quantum mechanics, and
there are very recent papers on the subject where the coalgebraic analysis has been applied
to give new insights about the already known classifications of superintegrable systems:
in [85], for example, it has been shown that a canonical transformation can generate different
coalgebraic systems which, once embedded in higher dimensional spaces, generate genuinely
new superintegrable systems as deformations, or generalizations, of TTW systems [86, 87]
to non-Euclidean spaces. The same philosophy has been reproposed in [88], involving a
gauge transformation applied to a two dimensional scalar Hamiltonian. In that case the
two-dimensional coalgebraic Hamiltonian, when realized in three dimensions, turned out to
be a non-scalar superintegrable Hamiltonian with spin interactions.

The main aim of the chapter is to carry along this path, by showing that the coalgebra
symmetry analysis can be succesfully introduced also in a discrete framework, where differential
operators are replaced by finite difference operators. The chapter is organized as follows,
first of all we will review the basics of the coalgebra symmetry approach for superintegrable
systems, focusing the analysis on the classical case. Since the approach is purely algebraic,
the quantum case is very similar, and conceptually nothing changes. We will introduce the
method in its own generality but, to make it as clear as possible, we will explicitly discuss the
case of the harmonic oscillator, elucidating its sl(2, R) coalgebra symmetry and constructing
explicitly its constants of motion for the N-dimensional (both classical and quantum) case.
After that, we will introduce our original work, based on the results contained in [40], which
show that is possible to introduce the concepts proper of the coalgebra symmetry approach in
the realm of discrete quantum superintegrable systems.

3.1 coalgebra symmetry and superintegrable systems

The coalgebra method, introduced by A. Ballesteros and O. Ragnisco in [24], is an algebraic
approach that allows to propagate the integrability of a (classical or quantum) mechanical
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coalgebra symmetry and superintegrability

system to any arbitrary dimension starting from a one dimensional problem, that is (trivially)
integrable. The key idea is to use Hopf algebras, more precisely their coalgebra sector, in
order to construct higher dimensional versions of the system with the help of the coproduct. In
fact, because of the homomorphism and coassociativity properties that this map satisfies, it is
possible to propagate the integrability by constructing two sets of integrals of motion arising
from the so-called right and left Casimirs of the algebra. In the following, we will review the
basic ideas of such approach to superintegrability by taking classical mechanics as “target
framework”. Anyway, as we will show later, the method equally works in quantum mechanics:
in all the construction we have to think the Poisson brackets replaced by the commutators.
Before explaining how the method works, let us briefly recall some definitions that will be
useful in the following.

3.1.1 Poisson-Hopf algebras and the homomorphism property

First of all we recall that a Hopf algebra A [89] is a vector space over a field K endowed with
the linear applications: 

m : A⊗A→ A multiplication

η : K → A unit

∆ : A→ A⊗A coproduct

ε : A→ K counit

γ : A→ A antipode

(1.63)

satisfying, ∀ u, v, w ∈ A and c ∈ K, the following properties:

1. m(m(u, v), w) = m(u, m(v, w))

2. m(η(c), u) = m(u, η(c)) = cu

3. (id⊗ ∆)∆(u) = (∆⊗ id)∆(u)

4.

{
(id⊗ ε)∆(u) = u⊗ 1

(ε⊗ id)∆(u) = 1⊗ u

5. ∆(m(u, v)) = m(∆(u), ∆(v))

6. ε(m(u, v)) = m(ε(u), ε(v))

7. γ(m(u, v)) = m(γ(v), γ(u))

8. m((γ⊗ id)∆(u)) = m((id⊗ γ)∆(u)) = η(ε(u)) ,

where id is the identity map on A, m is the multiplication mapping, i.e. m(u, v) .
= u · v and

the identity η is defined as η(c) .
= c · 1. In particular, a vector space endowed with the linear

applications (m,η) satisfying the properties 1-2 is called associative algebra, while if a vector
space is equipped with the homomorphisms (∆, ε) satisfying the properties 3-4 then it is
known with the name of coassociative coalgebra. Finally, we deal with a bialgebra structure when
the vector space is endowed with the operations (m, η, ∆, ε) satisfying the properties 1-5.
Thus, a Hopf algebra is a bialgebra with an antipode, which is an antihomomorphism [24].
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3.1 coalgebra symmetry and superintegrable systems

Diagrammatically:

A⊗A A⊗A

A K A

A⊗A A⊗A

γ⊗id

m

∆

∆

ε η

id⊗γ

m

As we already mentioned the method we want to introduce deals mainly with coalgebras, i.e.
algebras endowed with the coassociative coproduct map ∆. In the classical case, the key role
of this game is played by the so-called Poisson coalgebras, which are Poisson algebras endowed
with a compatible coproduct structure. If P and Q are two Poisson algebras, for all u, v ∈ P

and w, z ∈ Q, it is possible to define the following Poisson structure on the tensor product
space P⊗ Q [24]:

{u⊗ w, v⊗ z}(P⊗Q) = {u, v}(P) ⊗ wz + uv⊗ {w, z}(Q) . (1.64)

In particular, (P, ∆) is a Poisson coalgebra if P is a Poisson algebra and the coproduct map ∆
is a Poisson algebra homomorphism between P and P⊗ P, which means:

{∆(u), ∆(v)}(P⊗P) = ∆({u, v}(P)) ∀ u, v ∈ P . (1.65)

Moreover, the linear maps previously introduced are defined on the generators of P, which
we indicate as ξα (α = 1, . . . , dim(P)), as:

∆(ξα) = ξα ⊗ 1 + 1⊗ ξα ∆(1) = 1⊗ 1

ε(ξα) = 0 ε(1) = 1

γ(ξα) = −ξα γ(1) = 1 .

(1.66)

Here we can appreciate that we have a full Hopf algebra structure, which means that in
general we are dealing with the so-called Poisson-Hopf algebras.

Connection with classical mechanics: symplectic representations

Once we have introduced the algebraic structures we are interested in, we want to understand
in which way a classical one-dimensional system can be linked to them. The key role of this
game is played by the symplectic representation of the Poisson algebra. In other words, we want
to realize the algebra by means of smooth functions on the phase space R2. This means that
the generators will be represented as:

D(ξα) ≡ ξα(x, p) α = 1, . . . , dim(P) , (1.67)

and will close a “1-particle” realization of the Poisson-Lie algebra, which will be given in
terms of the usual Poisson brackets, i.e.:

{ξα(x, p), ξβ(x, p)}(x,p) = cσ
αβ ξσ(x, p) , (1.68)
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where cσ
αβ are the structure constants of the algebra we are dealing with. Let us remark that

fixing the symplectic representation is an important point of the whole construction, since
it is a bridge for establishing a connection between a one-dimensional Hamiltonian system,
i.e. a smooth function on the phase space manifold expressed in terms of local coordinates
(x, p) ∈ R2, and the abstract theory of Hopf algebras. If we express the Hamiltonian as a
combination of the generators ξα ∈ P ( α = 1, . . . , dim(P)

.
= d), the representation that we

choose defines the classical system we are dealing with, so the meaning of this choice is of
crucial importance from the physical point of view.

(abstract theory) H(ξ1, . . . , ξd)
D−→ H(ξ1(x, p), . . . , ξd(x, p)) (classical mechanics) ,

(1.69)
As a matter of fact, once this link has been established, we are able to use all the tools deriving
from the abstract theory in such a way to be suitable for dealing with the physics, and in
particular for constructing higher dimensional (super)integrable systems. To appreciate the
core of this statement, first of all let us explain how to construct a two-dimensional system by
using the coproduct map, and how to find out its conserved quantities. The operation is quite
simple, if we apply the primitive coproduct to the generators ξα ∈ P we obtain:

ξ
[2]
α

.
= ∆(ξα) = ξα ⊗ 1 + 1⊗ ξα

.
= ξ

(1)
α + ξ

(2)
α , (1.70)

where we introduced the notation ξα ⊗ 1 .
= ξ

(1)
α and 1⊗ ξα

.
= ξ

(2)
α to indicate the element of

the single copy in the tensor product. Thus, the realization of this mapping from P to P⊗ P

will generate at a fixed representation two copies of (1.67), given in terms of two pairs of local
coordinates (x1, p1) ∈ R2 and (x2, p2) ∈ R2, respectively labelled by the superscripts (1) and
(2). We can represent this operation as:

D(∆(ξα))
.
= (D⊗ D)∆(ξα) = D(ξα)⊗ 1 + 1⊗ D(ξα) = D(ξ

(1)
α ) + D(ξ

(2)
α )

≡ ξα(x1, p1) + ξα(x2, p2)

=: ∆(ξα)(x1, x2, p1, p2) . (1.71)

Now, the essential feature of a Poisson coalgebra is that, because of the homomorphism
property (1.65), the d functions ∆(ξα)(x1, x2, p1, p2) define the same Lie-Poisson algebra (1.68),
i.e.:

{∆(ξα), ∆(ξβ)}(P⊗P) = ∆({ξα, ξβ}(P)) = cσ
αβ∆(ξσ) , (1.72)

where, at a fixed realization, the bracket is:

{ f , g}(x,p)
.
= ∇x f · ∇pg−∇p f · ∇xg ∀ f , g ∈ C∞(R4) , (1.73)

with x = (x1, x2), p = (p1, p2), ∇x = (∂x1 , ∂x2) and ∇p = (∂p1 , ∂p2). Therefore, the new
generators will close a “2-particle”realization of the initial algebra. Moreover, we can extend
the Hamiltonian to the two-dimensional case by applying the coproduct:

H[2] .
= ∆(H(ξ1, . . . , ξd)) = H(∆(ξ1), . . . , ∆(ξd)) , (1.74)

which means that, when the representation is fixed, we will have:

H[2](x, p) .
= (D⊗ D)∆(H(ξ1, . . . , ξd)) = (D⊗ D)H(∆(ξ1), . . . , ∆(ξd)) (1.75)

= H(∆(ξ1)(x, p), . . . , ∆(ξd)(x, p)) , (1.76)
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3.1 coalgebra symmetry and superintegrable systems

which represents the Hamiltonian (smooth) function extended in R4. Let us now focus on the
Casimirs of the algebras, and in particular let us suppose that our initial Lie-Poisson algebra
(1.68) is endowed with a Casimir C(ξ1, . . . , ξd) that assumes the value:

D(C(ξ1, . . . , ξd)) = C(D(ξ1), . . . , D(ξd)) = c ∈ R . (1.77)

If we apply the coproduct map on the Casimir, we obtain:

C[2] .
= ∆(C(ξ1, . . . , ξd)) = C(∆(ξ1), . . . , ∆(ξd)) , (1.78)

and this object, once the representation is fixed, can assume nontrivial values: its image under
the chosen representation is a function of the phase space coordinates (x, p) ∈ R4, in fact:

C[2](x, p) .
= (D⊗ D)∆(C(ξ1, . . . , ξd)) = (D⊗ D)C(∆(ξ1), . . . , ∆(ξd)) (1.79)

= C(∆(ξ1)(x, p), . . . , ∆(ξd)(x, p)) . (1.80)

This is a remarkable result because we also have:

{∆(C(ξ1, . . . , ξd)), ∆(ξα)}(P⊗P) = ∆({C(ξ1, . . . , ξd), ξα}(P)) = 0 ∀ ξα ∈ P , (1.81)

because the Casimir, by definition, Poisson-commutes with all the generators of the initial
Poisson-Lie algebra. But now, since the Hamiltonian is a combination of the generators of the
algebra, it will be also true that:

{∆(C(ξ1, . . . ξd)), ∆(H(ξ1, . . . ξd))}(P⊗P) = ∆({C(ξ1, . . . ξd), H(ξ1, . . . ξd)}(P)) = 0 , (1.82)

which means that we found an integral of motion for the new two-dimensional Hamiltonian
system, represented by the image (under the given symplectic representation) of the coproduct
of the Casimir. In fact, by construction, if we calculate the Poisson bracket we obtain:

{C[2](x, p), H[2](x, p)}(x,p) = 0 . (1.83)

Thus, we can conclude that the realization of the coproduct of any (smooth) function H(ξ1, . . . ξd) of
the generators of a coalgebra, with Casimir element C(ξ1, . . . ξd), defines a two-dimensional integrable
Hamiltonian.
This is a good point to introduce an explicit example in order to fix these ideas.

The harmonic oscillator and its coalgebra symmetry: the 2-dimensional case

What we are interested to provide in this section is another characterization of the harmonic
oscillator, in terms of an underlying hidden symmetry, which is useful for a physical un-
derstanding of its superintegrability properties and, more pragmatically, for appreciating
the power of the coalgebra symmetry approach. To this aim, let us consider the following
oscillator Hamiltonian (smooth) function H : M → R, defined on the symplectic manifold
(M

.
= R2, ω0 = dx ∧ dp) (for simplicity, from now on we shall set m = ω = 1):

H(x, p) =
p2 + x2

2
, (1.84)
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where x, p are canonical (local) coordinates on M such as {x, p} = 1. This Hamiltonian
can be expressed in terms of the generators ξα (α = ±, 3) of the three-dimensional sl(2, R)

Poisson-Lie coalgebra, defined through the Poisson commutation relations:

{ξ−, ξ+}(sl(2,R)) = 4ξ3 , {ξ3, ξ±}(sl(2,R)) = ±2ξ± , (1.85)

and equipped with the (primitive) coproduct map ∆ : sl(2, R)→ sl(2, R)⊗ sl(2, R):

∆(ξα)
.
= ξα ⊗ 1 + 1⊗ ξα , ∆(1) .

= 1⊗ 1 (with α = ±, 3). (1.86)

The Casimir of the algebra is given by C(ξ±, ξ3)
.
= ξ+ξ− − ξ2

3. A symplectic realization of
(1.85) can be taken in terms of the classical observables:

D(ξ+)
.
= ξ+(x, p) = p2 , D(ξ−)

.
= ξ−(x, p) = x2 , D(ξ3)

.
= ξ3(x, p) = xp , (1.87)

it is in fact easy to show that the following Poisson brackets are satisfied:

{ξ−(x, p), ξ+(x, p)}(x,p) = 4ξ3(x, p) , {ξ3(x, p), ξ±(x, p)}(x,p) = ±2ξ±(x, p) , (1.88)

together with the Casimir D(C(ξ±, ξ3)) = C(D(ξ±), D(ξ3)) = D(ξ+)D(ξ−)− (D(ξ3))2 = 0,
in the given representation. Now, because of this link, it is quite clear that the oscillator
Hamiltonian (1.84) can be abstractly rephrased in terms of the coalgebra generators as follows:

H(ξ+, ξ−) =
ξ+ + ξ−

2
, (1.89)

and we have to think it as a function on sl(2, R). In particular, since the coproduct map (1.86)
defines an homomorphism for the Poisson-Lie algebra (1.85), i.e.:

{∆(ξ−), ∆(ξ+)}(sl(2,R)⊗sl(2,R)) = 4∆(ξ3) , {∆(ξ3), ∆(ξ±)}(sl(2,R)⊗sl(2,R)) = ±2∆(ξ±) , (1.90)

it is straightforward to extend the classical system to higher dimensions, passing through the
symplectic realization that we have chosen. In particular, the generators of the algebra are:

ξ
[2]
+ (x, p) .

= (D⊗ D)∆(ξ+) = D(ξ+)⊗ 1 + 1⊗ D(ξ+) = p2
1 + p2

2

ξ
[2]
− (x, p) .

= (D⊗ D)∆(ξ−) = D(ξ−)⊗ 1 + 1⊗ D(ξ−) = x2
1 + x2

2

ξ
[2]
3 (x, p) .

= (D⊗ D)∆(ξ3) = D(ξ3)⊗ 1 + 1⊗ D(ξ3) = x1 p1 + x2 p2 ,

(1.91)

and the following relations are satisfied (now in R4):

{ξ [2]− (x, p), ξ
[2]
+ (x, p)}(x,p) = 4ξ

[2]
3 (x, p) , {ξ [2]3 (x, p), ξ

[2]
± (x, p)}(x,p) = ±2ξ

[2]
± (x, p) . (1.92)

Furthermore, it is immediate to show that the two-particle Hamiltonian can be constructed
through the coproduct of H, which results in:

H[2] .
= ∆

(
ξ+ + ξ−

2

)
=

∆(ξ+) + ∆(ξ−)
2

=
ξ
[2]
+ + ξ

[2]
−

2
, (1.93)

that implies:

H[2](x, p) .
= (D⊗ D)∆(H(ξ+, ξ−)) =

ξ
[2]
+ (x, p) + ξ

[2]
− (x, p)

2
=

p2
1 + p2

2
2

+
x2

1 + x2
2

2
, (1.94)
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3.1 coalgebra symmetry and superintegrable systems

which is the two-dimensional harmonic oscillator Hamiltonian. As far as the Casimir function
is concerned, and here is the main point, if we apply the coproduct on it we obtain:

∆(C(ξ±, ξ3)) = C(∆(ξ±), ∆(ξ3)) = ∆(ξ+)∆(ξ−)− (∆(ξ3))
2 , (1.95)

or, explicitly:

∆(C) = (ξ+ ⊗ 1 + 1⊗ ξ+)(ξ− ⊗ 1 + 1⊗ ξ−)− (ξ3 ⊗ 1 + 1⊗ ξ3)
2

= ξ+ξ− ⊗ 1 + 1⊗ ξ+ξ− + ξ+ ⊗ ξ− + ξ− ⊗ ξ+ − ξ2
3 ⊗ 1 + 1⊗ ξ2

3 − 2(ξ3 ⊗ ξ3)

= (ξ+ξ− − ξ2
3)⊗ 1 + 1⊗ (ξ+ξ− − ξ2

3) + ξ+ ⊗ ξ− + ξ− ⊗ ξ+ − 2(ξ3 ⊗ ξ3)

= C⊗ 1 + 1⊗ C + ξ+ ⊗ ξ− + ξ− ⊗ ξ+ − 2(ξ3 ⊗ ξ3) . (1.96)

At this point, fixing the representation, we obtain the “new” Casimir C[2](x, p) that is:

C[2](x, p) .
= (D⊗ D)∆(C(ξ±, ξ3))

= D(C)⊗ 1 + 1⊗ D(C) + D(ξ+)⊗ D(ξ−) + D(ξ−)⊗ D(ξ+)− 2(D(ξ3)⊗ D(ξ3))

= p2
1x2

2 + x2
1 p2

2 − 2x1 p1x2 p2 (1.97)

= (x1 p2 − x2 p1)
2 . (1.98)

Thus, the image of the Casimir is nothing but the angular momentum squared of the two-
dimensional harmonic oscillator. Clearly, we already know that this quantity is conserved
because of the rotational symmetry, but the point is that with the coalgebra technique it has
been obtained algebraically. Also, because of the homomorphism property, we know that this
quantity is conserved by construction, since we have:

0 = ∆({C, H}(sl(2,R))) = {∆(C), ∆(H)}(sl(2,R)⊗sl(2,R)) = {C[2], H[2]}(sl(2,R)⊗sl(2,R)) (1.99)

that is:
{C[2](x, p), H[2](x, p)}(x,p) = 0 . (1.100)

Therefore, in conclusion, by using this approach we have obtained the conserved quantity
that is necessary to ensure the integrability of the harmonic oscillator in dimension N = 2.
Now, the question naturally arises: it is possible to extend such procedure to higher dimensions?
The answer is affirmative, and it is related to the above mentioned coassociativity property of
the coproduct.

3.1.2 Higher dimensional superintegrability through coassociativity

As we previously discussed the Poisson coalgebra (P, ∆) is a unital associative algebra P

endowed with a coproduct map ∆ that satisfies the coassociativity property:

(id⊗ ∆) ◦ ∆ = (∆⊗ id) ◦ ∆ , (1.101)

in other words, the following diagram is commutative:

P P⊗ P

P⊗ P P⊗ P⊗ P

∆

∆

∆⊗id

id⊗∆
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coalgebra symmetry and superintegrability

Roughly speaking, this property allows one to define an object on the tensor product space
P⊗P⊗P in two possible ways, and this is intimately related to the superintegrability properties
of the system under consideration. Let us explain why. First of all, let us indicate the coproduct
∆ ≡ ∆[2] to make explicit its connection with the two-particle realization. Now, the point is
that the map ∆[3] : P→ P⊗ P⊗ P can be defined by using both the left and right expressions1:

∆[3] .
= (id⊗ ∆[2]) ◦ ∆[2] ∆[3]

R
.
= (∆[2] ⊗ id) ◦ ∆[2] , (1.102)

and this result, since of (1.101), is unique (i.e. ∆[3] = ∆[3]
R ). Once the construction of the “3-

particle”system has been performed through coassociativity, this procedure can be generalized
to higher dimensional tensor product spaces of P, i.e. we can construct a 4-th order coproduct
∆[4] : P→ P⊗4 as:

∆[4] .
= (id⊗ id⊗ ∆[2]) ◦ ∆[3] ∆[4]

R
.
= (∆[2] ⊗ id⊗ id) ◦ ∆[3]

R , (1.103)

and the more general N-th coproduct map ∆[N] : P→ P⊗N :

∆[N] .
= (

N−2︷ ︸︸ ︷
id⊗ · · · ⊗ id⊗∆[2]) ◦ ∆[N−1] ∆[N]

R
.
= (∆[2] ⊗

N−2︷ ︸︸ ︷
id⊗ · · · ⊗ id) ◦ ∆[N−1]

R (N > 2) ,
(1.104)

which means that given the (N − 1)-th coproduct, the N-th one is obtained by applying ∆[2]

onto the space located at the very right (respectively left) site. Now, due to the coassociativity
property, for the N-th order coproduct of any generators in P, the application of these two
(left and right) maps will be equivalent, i.e.:

∆[N] ≡ ∆[N]
R . (1.105)

Moreover, ∆[N] is a Poisson homorphism, now between P and P⊗N [24, 25]:

{∆[N](u), ∆[N](v)}(P⊗N) = ∆[N]({u, v}(P)) ∀ u, v ∈ P . (1.106)

Anyway, if one labels from 1 to N the sites of the chain P⊗N , lower dimensional m-th
coproducts (with 2 ≤ m ≤ N − 1) will be different in the sense that the left coproducts
∆[m] will contain objects living on the tensor product space 1⊗ · · · ⊗ m, whereas the right
coproducts ∆[m]

R will be defined on the sites (N − m + 1) ⊗ (N − m + 2) ⊗ · · · ⊗ N. This
leads to the possibility of finding out two sets of left and right Casimir functions that are in
involution and Poisson-commute with the N-dimensional Hamiltonian H[N], under a fixed
representation of the algebra [24, 25]. So, in short, this is the general idea: constructing a set
of involutive functions in P⊗N by applying the coproducts ∆[m] (∆[m]

R ) to the Casimirs in P. Let us
explain this in more detail.
Let us suppose that a Poisson-Lie coalgebra (P, ∆) is characterized by d generators ξα (α =

1, . . . , d) and r Casimirs Ci(ξ1, . . . , ξd) (i = 1, . . . , r), then using the coproducts it is possible to
construct the two following sets composed by the (resp. left and right) functions on the tensor
product space of the algebra:{

{∆[1]
Ξ (ξα), . . . , ∆[m]

Ξ (ξα), . . . , ∆[N]
Ξ (ξα)} (α = 1, . . . , d)

{∆[1]
Ξ (Ci), . . . , ∆[m]

Ξ (Ci), . . . , ∆[N]
Ξ (Ci)} (i = 1, . . . , r) ,

(1.107)

1 Following the notations of [25] we indicate the right application with the subscript R.
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3.1 coalgebra symmetry and superintegrable systems

where, in what follow, we will indicate with “Ξ” both the right and left applications (1.104),
and we are using the convention ∆[1] = id. Because of the coassociativity property, given a
smooth function H(ξ1, . . . , ξd), we can uniquely define the N-dimensional Hamiltonian as the
N-th coproduct of H(ξ1, . . . , ξd), i.e.:

H[N] .
= ∆[N](H(ξ1, . . . , ξd)) = H(∆[N](ξ1), . . . , ∆[N](ξd)) = H(ξ

[N]
1 , . . . , ξ

[N]
d ) , (1.108)

where we dropped the subsript Ξ because the two applications are equivalent (see (1.105)).
Now, and this is the main point, the two sets of r · N left and right Casimir functions:

C[m]
i, Ξ

.
= ∆[m]

Ξ (Ci(ξ1, . . . , ξd)) = Ci(∆
[m]
Ξ (ξ1), . . . , ∆[m]

Ξ (ξd)) (m = 1, . . . , N ; i = 1, . . . , r) ,
(1.109)

Poisson-commute with the N-th coproduct of the generators ξα ∈ P, namely:

{C[m]
i, Ξ , ξ

[N]
α }(P⊗N) = 0 (m = 1, . . . , N ; i = 1, . . . , r ; α = 1, . . . , d) , (1.110)

where we defined as usual ξ
[N]
α

.
= ∆[N](ξα). This implies that both the left and right Casimirs

are in involution within the Hamiltonian H[N] on P⊗N :

{C[m]
i, Ξ , H[N]}(P⊗N) = 0 (m = 1, . . . , N ; i = 1, . . . , r) , (1.111)

where C[1]
i,Ξ = ci,Ξ are constants. Moreover, they themselves are in involution on P⊗N [24]:

{C[m]
i, Ξ , C[l]

j, Ξ}(P⊗N) = 0 , (m, l = 1, . . . , N ; i, j = 1, . . . , r ; Ξ = Left or Right) . (1.112)

Thus, at the end of the game, this method will provide us a way to construct higher dimensional
version of a given one-dimensional Hamiltonian system, equipped with an underlying coalgebra
symmetry, propagating its integrability properties. In particular, it allows us to obtain, by construction,
an N-dimensional Hamiltonian H[N] equipped with two sets of r · N integrals of motion represented by
the image of the two (left and right) sets of partial Casimirs under a given symplectic representation.
Each set is composed by Casimirs that are in mutual involution.
This construction can be applied to any Poisson coalgebra, and here [24–31] the reader can
find a lot of examples, among which the cases of Poisson analogues of quantum algebras
and quantum groups. In fact, this algebraic approach has been shown to be extremely useful
also in the framework of “q-deformed integrable systems”, for which the coproduct map is
no longer primitive. Moreover, since it is a purely algebraic approach, it can be applied to
noncommutative coalgebras as well, which means that quantum mechanical systems can also
be investigated by using this method. For our porpuses we will deal explicitly with the specific
case of the sl(2, R) coalgebra endowed with the primitive coproduct map, which we already
introduced to analyze the classical harmonic oscillator and that will be of interest for dealing
with the models studied in this Thesis, which share the same sl(2, R) coalgebra symmetry. In
this case, if N is the dimension of the ambient space, being the number of Casimirs r = 1, such
a method will provide to us a total number of 2N− 3 left and right Casimir functions (see Table
1) that together with the Hamiltonian itself, at a fixed representation, define a functionally
independent set of 2N − 2 first integrals. This ensures the quasi-maximal superintegrability
of the Hamiltonian systems equipped with such a “hidden”coalgebra symmetry. In particular,
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coalgebra symmetry and superintegrability

we will have that the three N-dimensional generators ξ
[N]
±,3 Poisson-commute with an m-fold

right and left applications of the coproduct (2 ≤ m ≤ N), i.e.:

{ξ [N]
±,3 , C[m]}(sl(2,R)⊗N) = {ξ

[N]
±,3 , C[m]}(sl(2,R)⊗N) = 0 ,

C[m] .
= ∆[m](C)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

N−m

,

C[m]
.
= 1⊗ · · · ⊗ 1︸ ︷︷ ︸

N−m

⊗∆[m](C) ,

(1.113)

with C[N] = C[N]. This means that we will have a total number of 2N− 3 (nontrivial) Casimirs
C[2] . . . C[N], C[2] . . . C[N−1] that, due to the above properties, are in involution with the N-

dimensional Hamiltonian H[N] = ∆[N](H(ξ+, ξ−, ξ3)) = H(ξ
[N]
+ , ξ

[N]
− , ξ

[N]
3 ). Moreover, each set

is composed by functions that are in involution.

Left set of (N − 1) Casimirs Right set of (N − 1) Casimirs
C[2] .

= ∆[2](C) C[2]
.
= ∆[2]

R (C)
...

...
C[m] = ∆[m](C)⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

N−m

C[m]
.
= ∆[m]

R (C) = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
N−m

⊗∆[m](C)

...
...

C[N] .
= ∆[N](C) C[N]

.
= ∆[N]

R (C) = ∆[N](C)

Table 1.: The 2 · (N − 1)− 1 left and right integrals of motion coming from the Casimir C. We
remark that one Casimir has to be eliminated in the final calculation because of the
equivalence ∆[N] ≡ ∆[N]

R .

To summarize, in the case of sl(2, R), for N = 2 the Hamiltonian will be integrable with
a single constant of motion C[2] = C[2], for N = 3 it will be minimally superintegrable
with three constants of motion {C[2], C[3] = C[3], C[2]} and for any N it will result quasi-
maximally superintegrable with (2N − 3) integrals of motion {C[m], C[N] = C[N], C[m]} for
m = 2, . . . , N − 1. This is the best one can do by using this approach to superintegrable
systems endowed with an underlying sl(2, R) coalgebra symmetry. If we are interested to
ensure the maximal superintegrability we need to construct the missing quantity by using
alternative methods.
Let us observe that generalizations of the coalgebra method also exist in the literature, and
they involve more complicated structures such as comodule algebras or loop algebras. We
will not deal explicitly with such algebraic structures, anyhow we refer the interested reader
to the papers [90, 91].

The harmonic oscillator and its coalgebra symmetry: the N-dimensional case

Let us come back to the harmonic oscillator in order to see explicitly how the coassociativity
property works. We have already shown how to construct the conserved quantity for the
2-dimensional case (the angular momentum squared). Here, we are interested in showing
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3.1 coalgebra symmetry and superintegrable systems

how to construct an N-dimensional version of the system (1.84) and its 2N − 3 conserved
quantities provided by the left and right partial Casimirs.
Let us begin our construction by analyzing the 3-dimensional extension of the system. Since
the primitive coproduct ∆ of sl(2, R) defines a coassociative map:

sl(2, R) sl(2, R)⊗2

sl(2, R)⊗2 sl(2, R)⊗3

∆

∆

∆⊗id

id⊗∆

as we previously explained we are able to define an object on the tensor product space
sl(2, R)⊗3 in two possible ways. First of all let us construct the 3-dimensional version of the
generators ξα (α = ±, 3):

ξ
[3]
α

.
= ∆[3](ξα) = (id⊗ ∆)∆(ξα) = (id⊗ ∆)(ξα ⊗ 1 + 1⊗ ξα)

= id(ξα)⊗ ∆(1) + id(1)⊗ ∆(ξα)

= ξα ⊗ 1⊗ 1 + 1⊗ (ξα ⊗ 1 + 1⊗ ξα)

= (ξα ⊗ 1⊗ 1) + (1⊗ ξα ⊗ 1) + (1⊗ 1⊗ ξα) , (1.114)

which implies, when we fix the representation, the following realizations:


ξ
[3]
+ (x, p) .

= (D⊗ D⊗ D)∆[3](ξ+) = p2
1 + p2

2 + p2
3

ξ
[3]
− (x, p) .

= (D⊗ D⊗ D)∆[3](ξ−) = x2
1 + x2

2 + x2
3

ξ
[3]
3 (x, p) .

= (D⊗ D⊗ D)∆[3](ξ3) = x1 p1 + x2 p2 + x3 p3 ,

(1.115)

where, we now have x .
= (x1, x2, x3) ∈ R3, p .

= (p1, p2, p3) ∈ R3. It is easy to show that
the application of the right coproduct leads, as it must be, at the same result. Therefore as
expected the Hamiltonian function H[3](x, p) ∈ C∞(R6) will be given by:

H[3](x, p) .
= (D⊗ D⊗ D)∆[3](H(ξ+, ξ−)) =

ξ
[3]
+ (x, p) + ξ

[3]
− (x, p)

2

=
p2

1 + p2
2 + p2

3
2

+
x2

1 + x2
2 + x2

3
2

. (1.116)

Now, what we want to find out in the following are the two (left and right) Casimirs C[2]

and C[2], together with the Casimir C[3] = C[3]. As we know from the theory, they are in
involution with the Hamiltonian H[3] on sl(2, R)⊗3. This implies that, when the realization is
fixed, we will have three integrals of motion commuting within the Hamiltonian H[3](x, p) on
M = R6. Firstly, let us calculate the Casimir C[3] .

= ∆[3](C) = (id⊗ ∆)∆(C), this will allow
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us to understand how this kind of calculations have to be performed. In particular, we have
explicitly:

C[3] = (id⊗ ∆)(C⊗ 1 + 1⊗ C + ξ+ ⊗ ξ− + ξ− ⊗ ξ+ − 2(ξ3 ⊗ ξ3))

= id(C)⊗ ∆(1) + id(1)⊗ ∆(C) + id(ξ+)⊗ ∆(ξ−) + id(ξ−)⊗ ∆(ξ+)− 2(id(ξ3)⊗ ∆(ξ3))

= (C⊗ 1⊗ 1) + 1⊗ (C⊗ 1 + 1⊗ C + ξ+ ⊗ ξ− + ξ− ⊗ ξ+ − 2(ξ3 ⊗ ξ3))

+ (ξ+ ⊗ (ξ− ⊗ 1 + 1⊗ ξ−)) + (ξ− ⊗ (ξ+ ⊗ 1 + 1⊗ ξ+))− 2(ξ3 ⊗ (ξ3 ⊗ 1 + 1⊗ ξ3))

= (C⊗ 1⊗ 1) + (1⊗ C⊗ 1) + (1⊗ 1⊗ C) + (1⊗ ξ+ ⊗ ξ−) + (1⊗ ξ− ⊗ ξ+)

− 2(1⊗ ξ3 ⊗ ξ3) + (ξ+ ⊗ ξ− ⊗ 1) + (ξ+ ⊗ 1⊗ ξ−) + (ξ− ⊗ ξ+ ⊗ 1) + (ξ− ⊗ 1⊗ ξ+)

− 2(ξ3 ⊗ ξ3 ⊗ 1)− 2(ξ3 ⊗ 1⊗ ξ3) . (1.117)

Thus, when we fix the representation D⊗3∆[3](C), taking into account that D(C) = 0, we get
the following function on R6:

C[3](x, p) = p2
2x2

3 + x2
2 p2

3 + x2
1 p2

3 + x2
2 p2

1 + p2
1x2

3 + x2
1 p2

2 − 2x2 p2x3 p3 − 2x1 p1x2 p2 − 2x1 p1x3 p3

= (x1 p2 − x2 p1)
2 + (x2 p3 − x3 p2)

2 + (x1 p3 − x3 p1)
2 , (1.118)

where, for example, D⊗3(ξ− ⊗ 1⊗ ξ+) = D(ξ−)⊗ D(1)⊗ D(ξ+) = x2
1 p2

3. As we can observe,
the Casimir function living on the tensor product space of three sl(2, R) algebras is realized in
terms of the total angular momentum squared of 3-dimensional Hamiltonian system H[3](x, p).
The other two Casimir functions are realized in terms of the following expressions:C[2] .

= ∆[2] ⊗ 1 D⊗3

→ C[2](x, p) = (x1 p2 − x2 p1)
2 (site : 1⊗ 2)

C[2]
.
= 1⊗ ∆[2] D⊗3

→ C[2](x, p) = (x2 p3 − x3 p2)2 (site : 2⊗ 3).
(1.119)

Therefore, we found the three conserved quantities we were looking for:{
{C[3](x, p), H[3](x, p)}(x,p) = 0

{C[2](x, p), H[3](x, p)}(x,p) = {C[2](x, p), H[3](x, p)}(x,p) = 0 ,
(1.120)

where the Poisson brackets are clearly performed on R6. Thus, since the 3-dimensional
Hamiltonian H[3](x, p) is in involution with the three Casimirs C[2](x, p), C[2](x, p) and
C[3](x, p) = C[3](x, p) we can conclude that the system is minimally superintegrable (3 + 1 = 4
integrals of motion).
The more general N-dimensional case follows directly by considering the N-particle realization
of the sl(2, R), given in terms of the coproduct ∆[N] : sl(2, R)→ sl(2, R)⊗N :

ξ
[N]
+ (x, p) .

= (D⊗N)∆[N](ξ+) = ∑N
i=1 p2

i = p2

ξ
[N]
− (x, p) .

= (D⊗N)∆[N](ξ−) = ∑N
i=1 x2

i = x2

ξ
[N]
3 (x, p) .

= (D⊗N)∆[N](ξ3) = ∑N
i=1 xi pi = x · p ,

(1.121)

which allows us to construct the N-particle realization of the Hamiltonian in the usual way:

H[N](x, p) .
= (D⊗N)∆[N](H(ξ+, ξ−)) =

ξ
[N]
+ (x, p) + ξ

[N]
− (x, p)

2
=

p2 + x2

2
. (1.122)
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In particular, performing the calculations, one finds that the 2N − 3 left and right conserved
quantities provided by the method are given by:{

C[m](x, p) = ∑1≤i<j≤m(xi pj − xj pi)
2 , C[m](x, p) = ∑N−m<i<j≤N(xi pj − xj pi)

2

C[N](x, p) = C[N](x, p) = ∑1≤i<j≤N(xi pj − xj pi)
2 (total angular momentum squared) ,

(1.123)
for m = 2, . . . , N − 1. In fact, it is not difficult to check that on R2N it holds:{
{C[N](x, p), H[N](x, p)}(x,p) = 0

{C[m](x, p), H[N](x, p)}(x,p) = {C[m](x, p), H[N](x, p)}(x,p) = 0 (m = 2, . . . , N − 1) .
(1.124)

Moreover, the set O
.
= {H[N](x, p), C[m](x, p), C[m](x, p)} for (m = 2, . . . , N) is function-

ally independent, providing in this way 2N − 2 conserved quantities required for the
quasi-maximal superintegrability. Furthermore, each of the two sets {H[N](x, p); C[m](x, p)},
{H[N](x, p); C[m](x, p)} (m = 2, . . . , N) is formed by N functionally independent involutive
functions.
Let us observe that the KC system is also endowed with the constants of motion (1.124), and
this can be also explained in terms of the coalgebra symmetry. In fact, the KC system admits
a coalgebraic N-dimensional version of the form:

H[N] .
= H(ξ

[N]
+ , ξ

[N]
− ) =

ξ
[N]
+

2
− k√

ξ
[N]
−

(k > 0) . (1.125)

It is easy to see that, under the same symplectic representation (1.121), the coalgebraic
Hamiltonian (1.125) reads:

H[N](x, p) =
p2

2
− k√

|x|2
(1.126)

with (x, p) ∈ R2N , which is the Hamiltonian function describing the (cartesian) KC system in
N-dimensions. As a matter of fact, the HO and the KC systems represent just two specific
examples of a more general N-dimensional family of coalgebraic Hamiltonians, i.e.:

H[N] = H(ξ
[N]
+ , ξ

[N]
− , ξ

[N]
3 ) . (1.127)

Once the symplectic representation (1.121) is fixed, then the Hamiltonian can be any smooth
function of the form:

H[N](x, p) = H
(

p2, x2, x · p
)

(1.128)

and, by construction, it results to be endowed with the integrals of motion (1.123). It is also
worth mentioning that a more general family also exists, and it is related to a symplectic
realization involving centrifugal terms coming from the representation of the generators ξ+,
i.e. when the representation is such that at the N-dimensional level we have:

ξ
[N]
+ (x, p) .

= (D⊗N)∆[N](ξ+) = ∑N
i=1(p2

i +
βi
x2

i
) = p2 + ∑N

i=1
βi
x2

i

ξ
[N]
− (x, p) .

= (D⊗N)∆[N](ξ−) = ∑N
i=1 x2

i = x2

ξ
[N]
3 (x, p) .

= (D⊗N)∆[N](ξ3) = ∑N
i=1 xi pi = x · p ,

(1.129)
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with βi ∈ R. In this case the N-dimensional Hamiltonian function takes the form:

H[N](x, p) = H
(

p2 +
N

∑
i=1

βi

x2
i

, x2, x · p
)

(1.130)

and the following 2N − 3 functions (m = 2, . . . , N):
C[m](x, p) = ∑1≤i<j≤m

(
(xi pj − xj pi)

2 + βi
x2

j

x2
i
+ β j

x2
i

x2
j

)
+∑N

i=1 βi

C[m](x, p) = ∑N−m<i<j≤N

(
(xi pj − xj pi)

2 + βi
x2

j

x2
i
+ β j

x2
i

x2
j

)
+∑N

i=N−m+1 βi

, (1.131)

Poisson-commute with the family of Hamiltonians H[N](x, p) defined in (1.130). They are
universal integrals of motion [92]. Let us notice that the rotational symmetry is recovered when
all βi’s are set equal to zero (we have a generalization of the hyperspherical symmetry that
characterizes central potentials). This freedom of choice is due to the fact that we can start,
at the one-dimensional level, with a symplectic representation of the sl(2, R) that includes
the term β/x2 in the generator ξ+, and the only difference is related to the representation
of the Casimir, which in this case results in D(C) = β 6= 0. Thus, in conclusion, because of
the existence of such an underlying coalgebra symmetry the entire family of N-dimensional
Hamiltonians previously defined is at least QMS, being the universal integrals of motion
nothing but the partial Casimirs of the algebra. Let us mention that a lot of known examples
(also MS) belonging to this family have been recovered and also generalized on curved spaces
of constant and non-costant curvature [92]. Moreover, new remarkable examples have been
constructed [93], also in relation to a (non)-standard quantum deformation of the sl(2, R),
which has been used to define another family of N-dimensional QMS Hamiltonians on
manifold with variable curvature [94].

To summarize, over the years the coalgebra approach became a very well-known method
to deal with (both classical and quantum) superintegrable systems, and opened various
directions of research, which have been recognized by the scientific community working on
the subject of superintegrability (see the introduction of the review paper [4]). Noteworthy
results have been obtained also from a geometric point of view, where a notion of coalgebra
spaces has been introduced in order to define those manifolds characterized by geodesic
flows, i.e. the kinetic energy Hamiltonians corresponding to geodesic motion on such spaces,
which are endowed with an sl(2, R) coalgebra symmetry [95, 96]. In particular, such class of
coalgebraic kinetic energy Hamiltonians, defined as [95]:

H(ξ+, ξ−, ξ3)
.
= F(ξ−)ξ+ + G(ξ−)ξ

2
3

D⊗N
= F(x2)p2 + G(x2) (x · p)2 , (1.132)

for any arbitrary (smooth) functions F, G, have shown to be very general, as they contain
as subcases N-dimensional spaces of constant curvature (such as the N-sphere SN and the
hyperbolic space HN), spherically symmetric spaces and Darboux spaces [83, 84], the latter
implying a non-trivial (actually superintegrable) generalization of the 2-dimensional Darboux
surfaces [97]. At this point, the richness and power of the coalgebra symmetry approach
should be clear. Furthermore, it should be also clear that the choice of the representation plays
a crucial role in the entire game. This fact will represent a crucial point for our construction.
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3.2 discrete quantum mechanics, coalgebra symmetry and superintegrability

3.2 discrete quantum mechanics, coalgebra symmetry and su-
perintegrability

3.2.1 Motivations and definitions

As we previously sketched, the coalgebra approach can be used in the very same way in
the quantum mechanical framework, clearly when ordering problems have been taken into
account. The commutators replace the Poisson brackets and, once a representation of the
algebra in terms of (finite order) differential operators have been constructed, the coproduct
can be used to rise the dimension of the representation, exactly as we have previously shown
for the classical case. What we are interested to investigate in this first part of the work, is
the possibility of introducing such (co)algebraic method in a discrete quantum-mechanical
framework, where differential operators are replaced by finite difference operators, and
where the time-independent Schrödinger equation is no longer represented by a second
order differential equation but a second order difference equation involving shift operators.
In this case, roughly speaking, the quantum theory is defined on a lattice, i.e. on a finite or
infinite set of points. The fundamental operators are shifts that allows us to move from a
point of the lattice to another. The reason why we decided to investigate such a problem is
basically two-fold: on one hand there is an increasing interest on discrete (superintegrable)
systems, where the main aim is to enlarge the restricted set of known models, to describe
their symmetry algebras and to understand their connection with special functions in terms
of families of (discrete) orthogonal polynomials. Some progress has been done during the
last decades in this direction, for example in the paper [18] the authors obtained a version
of (non)relativistic quantum mechanics in a discrete space-time by applying a method that
involves the so-called umbral calculus to discretize the Schrödinger equation. They also showed
that models which are superintegrable and exactly solvable preserve these properties after
discretization. Moreover, several examples of superintegrable discrete models appeared in the
last few years [20–22], of which most of them followed the guidelines of previous works based
on discrete oscillator models [98–103]. The possibility of introducing a powerful method like
the coalgebra symmetry might be very useful to study discrete models from a slightly different
point view, offering an alternative way to deal with them, with the purpose of obtaining
discrete N-dimensional generalization of superintegrable families defined for continuous
systems, or as an elegant way to unify different families of superintegrable systems as different
realizations of a common coalgebraic structure.
On the other hand, we are interested in a multidimensional extension of the results concerning
discrete Quantum Mechanics (dQM), a variant of the ordinary quantum theory proposed by S.
Odake and R. Sasaki (see the review paper [19] with references therein), which represents the
target framework for our coalgebraic approach. As the authors explain in [19], this quantum
discrete theory, very well established from a mathematical point of view, can be thought as
a deformation of the ordinary Quantum Mechanics (oQM) in the sense that the continuous
theory is obtained in a suitable limit, physically speaking when the characteristic lenght scale
of the lattice goes to zero. Even if the Hamiltonians are completely different from the ones
that we have in the ordinary continuous theory (they are finite difference operators), the
probability interpretation, the Hilbert space structure, the continuous real time, and all the
physical features characterizing oQM are unchanged. This theory has been widely studied
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over the years, mostly by the two aforementioned authors, and remarkable results have been
obtained: they proposed a systematic understanding of various orthogonal polynomials
satisfying second order difference equations with the pure imaginary shifts (i.e. when the
shift on the lattice is in the pure imaginary direction), as well as the real shifts (i.e. when the
shift is in the real direction). The former notion of shift led to the discovery of the so-called
imaginary discrete Quantum Mechanics (from now on indicated as idQM), whereas the latter
led to the definition of real discrete Quantum Mechanics (rdQM) and, as we will explicitly
discuss in the following, they present very different characteristics. Moreover, they have
also recast in this framework new infinite families of exceptional orthogonal polynomials
(the exceptional Wilson, Askey-Wilson, Racah and q-Racah) [104, 105], understood as the
generic discrete counterpart of the exceptional Laguerre and Jacobi orthogonal polynomials
investigated two years before [106–108]. As a matter of fact, one of the main result was
the extension of the interwining relations and Crum’s theorem [109, 110] in such a discrete
framework [111, 112]. This theorem, if rephrased in terms of the factorization method [15], or
in the more modern language of supersymmetric Quantum Mechanics (SUSYQM) [16, 17], is
well-known: it describes the relationship between the original and the associated Hamiltonian
systems (the supersymmetric partners in poor words), which are iso-spectral except for the
lowest energy state. Moreover, in total analogy to the ordinary quantum case, they also
rephrased the notion of shape invariance for potentials in dQM, thus elucidating their exact
solvability from an algebraic point of view.
For all these reasons, it was quite clear to us that this discrete version of the quantum
theory was the expected target we would have obtained in terms of coalgebraic discrete
representations. To be more precise, it represents a (mathematically) well-established extension
of the ordinary Quantum Mechanics, and most of the concepts that we already know for the
continuous theory have been reformulated in this framework. Thus, if for example we would
look for a discrete representation of a given algebra endowed with a coproduct, in order to
introduce coalgebraic structures for discrete models, it would be a good result to obtain a
(coalgebraic) Hamiltonian whose representation belongs to such a discrete theory.

Our hope is that, even if the example that we are going to discuss represents just a little
step in this direction, the coalgebra symmetry approach could shed some light in the analysis
of (superintegrable) discrete models, where remarkable results have been obtained in the
continuous classical and quantum cases.

3.2.2 An introduction to the structure of discrete Quantum Mechanics

In this brief section we want to define the very basic notions of discrete Quantum Mechanics.
In particular, we are interested in introducing the shift operators, the explicit form of the
discrete Hamiltonians, their factorization (together with the explicit form of the ladder operators)
both for idQM and rdQM. Let us point out that we are not going to discuss explicitly the
Crum’s Theorem and the Shape Invariance in this discrete case, since they are not crucial in our
construction, and we prefer to mantain a straight approach to our results. Anyhow, these
subjects are very clearly explained in [19], the reference that we plan to use as a main guide
for this introduction, where are also reported most of the results obtained in dQM by the two
authors. Therefore, we refer the interested reader to such a reference for detailed explanations.
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The shift operators, the domain of definition of the dynamical coordinates x and the inner product
of wavefunctions in dQM

The main difference between the oQM and the dQM resides in the fact that the momentum
operator p̂ = −ih̄∂x (where we keep implicit the given representation D) appears in exponen-
tiated form, so that the fundamental operators of the theory are represented by difference
operators called shifts, defined as (from now on we shall set h̄ = 1):

T̂±
.
= e±β p̂ = e∓iβ∂x , (2.133)

where β can be both a real or a pure imaginary number. These two choices define two types of
discrete quantum theories: {

idQM when β = γ ∈ R/{0} ,

rdQM when β = i ∈ C/R ,
(2.134)

and the reason of this nomenclature is due to the results of the action of these operators when
applied on a wavefunction, which are the following:{

idQM : e∓iγ∂x Φ(x) = Φ(x∓ iγ) ,

rdQM : e±∂x Φ(x) = Φ(x± 1) .
(2.135)

In the first case (idQM), the eigenfunctions, the potential functions and all the objects involving
the x coordinate are intended as analytic functions of x in their domain of definition, which can
also include the real axes or some subset of it where the variable x is defined [19]. Conversely,
in the second case (rdQM), the wavefunctions take values only on equally spaced lattice
points2 (this is a “true” lattice in the sense that we are commonly used to think about) and the
authors, after proper rescaling, define the x variables to take nonnegative integer values. To
summarize, the domain of definition of the coordinate x takes continuous or discrete values
depending on the version of the theory we are dealing with, i.e.:{

idQM : x ∈ R , x ∈ (x1, x2) ,

rdQM : x ∈ Z≥0 , x ∈ [0, xmax] ,
(2.136)

where (x1, x2) can be finite or (−∞,+∞) and xmax = N (finite case) or xmax = ∞. Concerning
the inner product of wavefunctions, taking into account the previous definitions, it takes the
following form: {

idQM : 〈Φ1, Φ2〉
.
=
∫ x2

x1
dx Φ∗1(x)Φ2(x) ,

rdQM : 〈Φ1, Φ2〉
.
= ∑xmax

x=0 Φ∗1(x)Φ2(x) ,
(2.137)

and the wavefuntions are normalized with respect to the usual norm ||Φ||2 .
= 〈Φ, Φ〉. Let

us mention that the ∗-operation in dQM is defined as follows: if f (x) = ∑j ajxj is a function
defined in terms of a polynomial expansion with complex coefficients aj ∈ C, then f ∗(x) .

=

∑j a∗j xj, where a∗j is the complex conjugation of aj. If f (x) = f ∗(x), then such a function just
takes real values. Moreover, it also (trivially) holds f (x) = f ∗∗(x) and f ∗(x) = f ∗(x∗) [19].

2 Let us mention that orthogonal polynomials involving real shifts are known as orthogonal polynomial of discrete
variable [113].
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Discrete Hamiltonians, factorization and ladder operators

Let us now introduce the definition of Quantum Hamiltonians in dQM. First of all, let us
observe that will be considered only Hamiltonian operators having a finite (rdQM with finite
N) or semi-infinite number of discrete energy levels (an arbitrary additive constant of the
Hamiltonian is chosen in such a way the energy associated to the ground state vanishes). All
the Hamiltonians belonging to this theory are semi-positive definite and have a factorized
form in terms of two operators, which we will indicate as Â and Â† (the adjoint of Â). In
particular, in the case of imaginary discrete Quantum Mechanics they are given by:{

Â .
= i
(
e

γ p̂
2
√

V∗(x)− e−
γ p̂
2
√

V(x)
)

, Â† = −i
(√

V(x)e
γ p̂
2 −

√
V∗(x)e−

γ p̂
2
)

Ĥ = Â† Â =
√

V(x)eγ p̂
√

V∗(x) +
√

V∗(x)e−γ p̂
√

V(x)− V(x)− V∗(x) ,
(2.138)

where γ ∈ R/{0}, and the (analytic) function V(x), together with its (always analytic) complex
conjugate V∗(x), are complex-valued functions. As far as the case of real discrete Quantum
Mechanics is concerned, the ladder operators and the Hamiltonians are defined as follows:{

Â .
=
√

B(x)− ei p̂
√

D(x) , Â† =
√

B(x)−
√

D(x)e−i p̂

Ĥ = Â† Â = −
√

B(x)ei p̂
√

D(x)−
√

D(x)e−i p̂
√

B(x) +B(x) +D(x) ,
(2.139)

where the (discrete-valued) functions B(x),D(x) are defined in such a way B(x) > 0 for
x ≥ 0 (with B(N) = 0 in the finite case) and D(x) > 0 for x > 0, together with the condition
D(0) = 0, which is necessary in order to drop out the term ψ(−1) when we apply the
Hamiltonian to an eigenfunctions ψ(0). Similarly, the condition B(N) = 0 is necessary for the
finite case. It is interesting to notice that the Hamiltonians in dQM are (formally) self-adjoint,
being p̂ = p̂† (a self-adjoint operator). Anyhow, for completeness we have to point out that
in the case of idQM the selfadjointness of the Hamiltonian has to be verified by taking into
account that, for specific choices of the potential functions, singularities may arise in the
calculation of the Cauchy integral (additional integration contours appear) and they have to
be cancelled by the zeroes of the ground state wave functions (see appendix A in [114] where
three specific examples are discussed). Let us conclude by observing that the expressions
for the (finite difference) Hamiltonian operators can be rephrased in a unified way using the
following notation:

Ĥ = ε
(√

V+(x)eβ p̂
√

V−(x) +
√

V−(x)e−β p̂
√

V+(x)− V+(x)− V−(x)
)

,

idQM : ε = +1 , β = γ , V+(x) = V(x) , V−(x) = V∗(x) ,

rdQM : ε = −1 , β = i , V+(x) = B(x) , V−(x) = D(x) .

(2.140)

Thus, in the full theory the time-independent Schrödinger equation results:

ĤΦ(x) = E Φ(x) , (2.141)

that is:

ε
(√

V+(x)
√

V−(x− iβ)Φ(x− iβ) +
√

V−(x)
√

V+(x + iβ)Φ(x + iβ)− (V+(x) + V−(x))Φ(x)
)
= E Φ(x) .

(2.142)
This second order difference equation, once the values of ε, β have been fixed, for specific
choices of the potential functions V+(x) and V−(x), includes a lot of exactly solvable ex-
amples of one-dimensional (real and imaginary) discrete quantum models, whose spectra
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and eigenfunctions are related to specific families of known orthogonal polynomials, such
as for example Wilson, Askey-Wilson, Meixner Pollaczek (idQM) and Meixner, Racah, q-Racah
(rdQM) [12], together with new families developed by the two authors, such as the exceptional
Meixner and exceptional Meixner-Pollaczek [19]. Such equation, when a lattice parameter is
(in some way) introduced, have to collapse into the continuous Schrödinger equation of the
ordinary quantum theory in an appropriate limit. An example of this limit procedure will be
clear immediately, when we will present our construction.
Before concluding this brief introduction to the building blocks of dQM, let us comment that
the work of the two authors has been remarkable, both for its originality and its complete
generality. As a matter of fact, our original contribution can be considered as a specific
example belonging to this general framework, which we have selected ad hoc in order to
convey the notions commonly used in the literature about coalgebra symmetries to this field.
In particular, we will explicitly deal with the simplest case of real discrete quantum mechanical
system, the one involving the Charlier orthogonal polynomials, and in the next section we will
explain the reason why we decided to exploit such a particular case.

3.2.3 Coalgebra symmetry and real discrete Quantum Mechanics

As we previously discussed when we were introducing the coalgebra symmetry approach, in
this method the fundamental task is to find out a suitable representation of a given algebra
endowed with a coproduct, in such a way to use this map to rise the dimension of the (classical
or quantum) model we are dealing with. Then, the construction of the integrals of motion
is done by taking the images of the partial Casimirs under the given representation. We
discussed how in classical mechanics the representation is given in terms of C∞ functions
on the phase space, whereas in quantum mechanics it is given in terms of (finite order)
differential operators defined on some Hilbert space. In this discrete case it is quite clear that
we need to look for a quantum discrete representation of the algebra, given in terms of the
finite difference operators previously defined. So, the problem we want to deal with is quite
clear (even if highly nontrivial): find out a quantum discrete representation of a given coalgebra.
Now, a question arising almost automatically is: which coalgebra? An important step to
answer this question was done when we were analyzing the structure of the Askey-Scheme
for orthogonal polynomials. In fact, if we take a look at the Askey Scheme in Figure 2 (taken
from [115]), we can appreciate that the simplest family of (discrete) orthogonal polynomials is
represented by the Charlier polynomials Cn(x; a) (x = {0, 1, 2, . . . ∞}), that involve just one free
parameter a > 0. This parameter governs the contraction from the Charlier polynomials to
the Hermite polynomials under the following limit relation [115]:

lim
a→∞

(2a)
n
2 Cn

(
(2a)

1
2 x + a; a

)
= (−1)n Hn(x) . (2.143)

This mathematical relation contains a rich physical meaning, since plays the role of a bridge
between two families of hypergeometric orthogonal polynomials, which are respectively
discrete (and then described in terms of rdQM) and continuous (then described in oQM). Thus,
the idea is basically to treat some quantity proportional to the inverse of the parameter a > 0
(that has to be find out) as the lattice spacing, in order to obtain the Hermite polynomials when
such a quantity goes to zero (i.e. when a → ∞). Physically speaking, this would represent
the continuous limit, when the reticular step goes to zero and the discrete theory collapses
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Figure 2.: Askey scheme. The number of free real parameters is zero for Hermite polynomials
and increases by one for each row. The scheme terminates at the fifth row, where
are involved four free real parameters for the Wilson and Racah polynomials.

to the continuous one. Now, since we know that the Hermite Polynomials (multiplied by a
gaussian gauge factor) appear as the solution of the harmonic oscillator expressed in cartesian
coordinates, we expect to obtain a (discrete) deformation, in the sense of Sasaki and Odake,
of such a system. If we found this model, its solution would be expressed in terms of the
Charlier orthogonal polynomials multiplied by some gauge factor. Moreover, and this is the
fundamental point, since we know all about the coalgebra symmetry of the harmonic oscillator,
in particular we know that it is described by the generators of an sl(2, R) (co)algebra, we
expect to find a discrete representation of the sl(2, R), which would collapse to the differential
one in an (appropriate) continuous limit.
An important comment about the Charlier polynomials was done in [19], where the authors
claimed: “The simplest example of rdQM, the Charlier polynomial, has no shiftable parameter. Its
shape invariance relation ÂÂ† − Â† Â = 1̂ gives another realisation of the oscillator algebra”. Thus,
strengthened by this further hint, it seemed reasonable to us to choose such a family of
(discrete) othogonal polynomials to start connecting the coalgebra symmetry within the
framework of discrete Quantum Mechanics. Poorly speaking, we started thinking how to
construct such a representation of the oscillator algebra. If we succeed in this, we are able
to use the coproduct in order to generalize the discrete system to higher dimensions and to
construct its discrete quantum integrals of motion. These integrals, clearly, in the continuous
limit must collapse to the ones of the standard quantum harmonic oscillator. As a matter
of fact, a discrete representation of such an oscillator algebra can be found in [100], where
the Charlier oscillator represent just a particular case of the more general (two-parameters)
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Meixner oscillators investigated by the authors. Anyhow, as we will see, we obtained such
a representation in a slightly different way, by using a construction which starts from the
classical case (we mean classical mechanics). In what follows, we will present this construction.
In particular, we will see how it allowed us to obtain a discrete representation of the oscillator
algebra. More precisely, we constructed a discrete representation of the Heisenberg algebra
h(1) and we use it to generate a discrete representation of the sl(2, R). Then, since all the
results are obtained algebraically, we have been able to introduce the coalgebra symmetry
approach. The following results have been obtained in a joint work with D. Riglioni, and are
based on the work [40].

3.3 from continuous to discrete quantum mechanics: the char-
lier oscillator

In order to introduce our construction, let us briefly review the application of the coalgebra
symmetry in the quantum case. As we previously discussed the picture is exactly the same, the
bracket of the Poisson-Lie algebra are replaced with a new binary operation, the commutator,
and the generators are represented by Hermitian operators on the Hilbert Space H, rather
than C∞ functions on the symplectic manifold M. In particular, by performing the canonical
quantization procedure, it is straightforward to map the classical representation of the sl(2, R)

algebra to its quantum counterpart. In fact, by replacing the momentum p ∈ R and the
coordinate x ∈ R with their quantum analogs3:

p→ p̂ = −ih̄∂x , x → x̂ = x , (3.144)

we easily find that these operators, together with the central element ĉ, generate the three
dimensional Heisenberg algebra h(1):

[ p̂, ĉ] = [x̂, ĉ] = [ĉ, ĉ] = 0 , [x̂, p̂] = ĉ , (3.145)

where ĉ .
= ih̄ 1̂. Using these generators, we can construct the quantum representation of the

sl(2, R), a representation given in terms of differential operators that reads:
ξ̂+(x̂, p̂) ≡ p̂2 = −h̄2∂xx ,

ξ̂−(x̂, p̂) ≡ x̂2 = x2 ,

ξ̂3(x̂, p̂) ≡ 1
2 [x̂, p̂]+ = −ih̄(x∂x +

1
2 ) ,

(3.146)

where we defined [x̂, ŷ]+
.
= x̂ŷ + ŷx̂ , ∀ x̂, ŷ ∈ H. Let us notice that here we took the

anticommutator in the definition of the operator ξ̂3, so an ordering has been implicitly chosen.
Using this representation, we immediately obtain:

[ξ̂−(x̂, p̂), ξ̂+(x̂, p̂)] = 4ih̄ξ̂3(x̂, p̂) , [ξ̂3(x̂, p̂), ξ̂±(x̂, p̂)] = ±2ih̄ξ̂±(x̂, p̂) , (3.147)

that is the quantum analog of the classical Poisson-Lie sl(2, R) algebra (1.88). In this case, the
Casimir of the algebra is represented by the following operator:

Ĉ(ξ̂±, ξ̂3)
.
=

1
2
[ξ̂+, ξ̂−]+ − ξ̂2

3 = (ih̄)2 1
2
(

1
2
+ 1)1̂ , (3.148)

3 To simplify the notation, we will often drop the symbol D to indicate the given representation, except where it is
important to emphasize it.
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in the given representation. Thus, the quantum harmonic oscillator will be expressed as a
function of the quantum generators of the algebra in the following way:

Ĥ(ξ̂−, ξ̂+) =
ξ̂+ + ξ̂−

2
D
= − h̄2

2
∂xx +

x2

2
. (3.149)

The usual factorization procedure will be therefore rephrased in terms of these generators. In
particular, we shall define the two (ladder) operators:

 â(ξ̂−, ξ̂3)
.
= i√

2
ξ̂
− 1

2
− (ξ̂3 +

ih̄
2 ) +

1√
2
ξ̂

1
2
− = h̄√

2
∂x +

x√
2

â†(ξ̂−, ξ̂3)
.
= − i√

2
ξ̂
− 1

2
− (ξ̂3 +

ih̄
2 ) +

1√
2
ξ̂

1
2
− = − h̄√

2
∂x +

x√
2

,
(3.150)

where in the last equality we fixed the representation. Let us notice that it is possible to
interpret inverses and roots as Taylor series in the enveloping algebra of the representation
for sl(2, R) [88]. These two operators, as we know, are such that:

[â(ξ̂−, ξ̂3), â†(ξ̂−, ξ̂3)] = h̄1̂ . (3.151)

Let us observe that, coalgebraically, the following relation holds ξ̂
− 1

2
− (ξ̂3 +

ih̄
2 ) ≡ ξ̂

1
2
+. As usual,

in terms of the two ladders, the Hamiltonian is factorized as:

Ĥ(ξ̂−, ξ̂+) =
ξ̂+ + ξ̂−

2
= â†(ξ̂−, ξ̂3)â(ξ̂−, ξ̂3) +

h̄
2

. (3.152)

The eigenfunctions of the harmonic oscillator will be therefore computed by applying the
raising operator â†(ξ̂−, ξ̂3) to the kernel of the operator â(ξ̂−, ξ̂3), which we obtain by solving
the first order differential equation â(ξ̂−, ξ̂3)Ψ0(x) = 0. This leads to the vacuum state:

Ψ0(x) ∝ exp
(
− x2

2h̄

)
. (3.153)

Then, the (unnormalized) eigenfunctions of the spectral problem will be given by:

Ψn(x) ∝ [â†(ξ̂−, ξ̂3)]
nΨ0(x) =

(
h̄
2

) n
2

Hn

(
x√
h̄

)
Ψ0(x) , (3.154)

where Hn(x) are the Hermite orthogonal polynomials, which are orthogonal on the whole
real axes with respect to the measure |Ψ0(x)|2dx = w(x)dx, w(x) being the weight function. In
particular, the orthonormality condition reads:

O(Hermite)
nm

.
=

(h̄/2)−n

2nn!
√

πh̄

∫ ∞

−∞
dx Ψ∗n(x)Ψm(x) .

=
(h̄/2)−n

2nn!
√

πh̄
〈Ψn, Ψm〉 = δnm , (3.155)

being 〈,〉 the scalar product on H
.
= L2(R). So, we have obtained the known normalized

eigenfunctions that solve the spectral problem, i.e.:

Ψn(x) =
1

√
2nn! (πh̄)

1
4

Hn

(
x√
h̄

)
Ψ0(x) , (3.156)
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3.3 from continuous to discrete quantum mechanics: the charlier oscillator

and the corresponding spectrum for the stationary states reads:

Ĥ(ξ̂−, ξ̂+)Ψn(x) = (â†(ξ̂−, ξ̂3)â(ξ̂−, ξ̂3) + h̄/2 )Ψn(x) = h̄(n + 1/2)Ψn(x) . (3.157)

As we already said, the advantage of having such a representation is related to the multi-
dimensional generalisation of the system, the latter straightforwardly obtainable by means
of the coproduct. As an instructive example, we apply this technique to construct the N-
dimensional version of the quantum harmonic oscillator (3.149), focusing the analysis on its
superintegrability properties. To this aim, let us apply the coproduct map ∆ to the Hamiltonian:

Ĥ[2] .
= ∆(Ĥ(ξ̂−, ξ̂+)) = ∆

(
ξ̂+ + ξ̂−

2

)
=

∆(ξ̂+) + ∆(ξ̂−)
2

D⊗D
=

2

∑
j=1

Ĥj(x̂j, p̂j) , (3.158)

being Ĥj(x̂j, p̂j)
.
= − h̄2

2 ∂xjxj +
x2

j
2 in the given representation. The new (abstract) Hamiltonian

lives in the tensor product space of two copies of the sl(2, R) algebra and, when the represen-
tation is fixed, it represents the two-dimensional quantum harmonic oscillator expressed in
cartesian coordinates. As already known, this Hamiltonian can be factorized in terms of two
copies of the ladder operators:

Ĥ[2] =
2

∑
k=1

â†
k(ξ̂(−,k), ξ̂(3,k))âk(ξ̂(−,k), ξ̂(3,k)) + h̄ , (3.159)

that are defined as: âk(ξ̂(−,k), ξ̂(3,k))
.
= i√

2
ξ̂
− 1

2
(−,k)(ξ̂(3,k) +

ih̄
2 ) +

1√
2
ξ̂

1
2
(−,k) =

h̄√
2
∂xk +

xk√
2

â†
k(ξ̂(−,k), ξ̂(3,k))

.
= − i√

2
ξ̂
− 1

2
(−,k)(ξ̂(3,k) +

ih̄
2 ) +

1√
2
ξ̂

1
2
(−,k) = −

h̄√
2
∂xk +

xk√
2

,
(3.160)

where in this case we used the following notation for the single copies in the tensor product:

ξ̂(+,k)
.
= −h̄2∂xkxk , ξ̂(−,k)

.
= x2

k , ξ̂(3,k)
.
=

1
2
[x̂k, p̂k]+ = −ih̄(xk∂xk +

1
2
) (k = 1, 2). (3.161)

Clearly, because of the homomorphism property, the coproduct of the generators:

ξ
[2]
+ = ∆(ξ̂+)

D⊗D
=

2

∑
k=1

ξ̂(+,k) , ξ
[2]
− = ∆(ξ̂−)

D⊗D
=

2

∑
k=1

ξ̂(−,k) , ξ
[2]
3 = ∆(ξ̂3)

D⊗D
=

2

∑
k=1

ξ̂(3,k) ,

(3.162)
is such that:

[∆(ξ̂−), ∆(ξ̂+)] = 4ih̄∆(ξ̂3) , [∆(ξ̂3), ∆(ξ̂±)] = ±2ih̄∆(ξ̂±) . (3.163)

Moreover, the image of the Casimir operator under such a representation results:

Ĉ[2] .
= ∆(Ĉ) = ∆

(1
2
(ξ̂+ ξ̂− + ξ̂− ξ̂+)− ξ̂2

3
)
=
(

L̂2
z − h̄2) , (3.164)

where we defined L̂2
z

.
= (−ih̄x1∂x2 + ih̄x2∂x1)

2. As in the classical case, by construction, the
Casimir commutes with the Hamiltonian, i.e. [Ĉ[2], Ĥ[2]] = 0. This commutation relation is
related to the conservation of the physical quantity:

L̂z
.
=
(
Ĉ[2] + h̄2) 1

2 = (−ih̄x1∂x2 + ih̄x2∂x1) = x̂1 p̂2 − x̂2 p̂1 , (3.165)
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coalgebra symmetry and superintegrability

that is the angular momentum of the system (where we used the subscript “z” in analogy
to the three dimensional case). At this level, our system is QMS4 since it is endowed with
2N − 2 = 2 conserved quantities, being the dimension of the ambient space N = 2. The other
quantity necessary to ensure the maximal superintegrability, which cannot be obtained by using
this approach, as we already seen is nothing but the quantum version of the Demkov-Fradkin
tensor, which reads (m = ω = 1):

Îij
.
= p̂i p̂j + x̂i x̂j , (i, j = 1, 2) . (3.166)

This object provides four quantities commuting with the Hamiltonian Ĥ[2], moreover [Î11, Î22] =

[Î12, Î21] = 0, being Î21 = Î12. This implies that the set {Ĥ[2], Ĉ[2], Îii} at fixed index i provides 3
algebraically independent observables, the Hamiltonian Ĥ[2] being Ĥ[2] = 1

2 ∑2
i=1 Îii.

Clearly, the spectrum of the two dimensional harmonic oscillator will be performed by
applying the raising operators â†

k(ξ̂−, ξ̂3) to the kernel of the operators âk(ξ̂−, ξ̂3) (k = 1, 2),
calculated by solving the first order differential equations âk(ξ̂−, ξ̂3)Ψ0(xk) = 0. This leads to
the following solutions:

Ψ0(xk) ∝ exp
(
−

x2
k

2h̄

)
(k = 1, 2). (3.167)

Thus, the vacuum state of the system can be defined as:

Ψ(0,0)(x1, x2)
.
= Ψ0(x1)Ψ0(x2) ∝ exp

(
− x2

1 + x2
2

2h̄

)
, (3.168)

and the corresponding (unnormalized) eigenfunctions of the spectral problem result:

Ψ(n,m)(x1, x2) ∝ [â†
1(ξ̂(−,1), ξ̂(3,1))]

n[â†
2(ξ̂(−,2), ξ̂(3,2))]

mΨ(0,0)(x1, x2)

=

(
h̄
2

) n+m
2

Hn

(
x1√

h̄

)
Hm

(
x2√

h̄

)
Ψ(0,0)(x1, x2) . (3.169)

Finally, the spectrum for the stationary states reads:

Ĥ[2]Ψ(n,m)(x1, x2) = h̄(n + m + 1)Ψ(n,m)(x1, x2) , (3.170)

where n, m = 0, 1, . . . ∞ the quantum numbers of the single one-dimensional realization of the
harmonic oscillator. Concerning the N-dimensional extension, as we previously discussed in
the general theory, it can be straightforwardly constructed by iterating the application of the
coproduct, and the coassociativity property can be used to generate the conserved quantities
as partial (respectively left and right) Casimirs of the sl(2, R). In this case, the N-dimensional
quantum Hamiltonian results:

Ĥ[N] .
= ∆[N](Ĥ(ξ̂−, ξ̂+)) = ∆[N]

(
ξ̂+ + ξ̂−

2

)
=

∆[N](ξ̂+) + ∆[N](ξ̂−)

2
D⊗N
=

N

∑
j=1

Ĥj(x̂j, p̂j) ,

(3.171)
where the generators are given in terms of the following N-dimensional representation:

ξ̂
[N]
+ (x̂, p̂) .

= (D⊗N)∆[N](ξ+) = −h̄2 ∑N
i=1 ∂xixi

ξ̂
[N]
− (x̂, p̂) .

= (D⊗N)∆[N](ξ−) = ∑N
i=1 x2

i

ξ̂
[N]
3 (x̂, p̂) .

= (D⊗N)∆[N](ξ3) = −ih̄ ∑N
i=1(xi∂xi +

N
2 ) .

(3.172)

4 Or integrable, since in dimension N = 2 the two definitions coincide.
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3.3 from continuous to discrete quantum mechanics: the charlier oscillator

The Hamiltonian (3.171) commutes with the 2N − 3 left and right conserved quantities
provided by the coalgebra symmetry. Apart from a (trivial) additive constant h̄2

4 m(m− 4) that
appears in the quantum case [52], they are given by:{

Ĉ[m](x̂, p̂) = ∑1≤i<j≤m(x̂i p̂j − x̂j p̂i)
2 , Ĉ[m](x̂, p̂) = ∑N−m<i<j≤N(x̂i p̂j − x̂j p̂i)

2

Ĉ[N](x̂, p̂) = Ĉ[N](x̂, p̂) = ∑1≤i<j≤N(x̂i p̂j − x̂j p̂i)
2 ,

(3.173)

and, together with the N(N+1)/2 components of the quantum Demkov-Fradkin tensor, ensure
the maximal superintegrability of the quantum oscillator in N dimensions. As we known, in
this general case, the solution of the spectral problem is factorized in terms of N single copies
of one dimensional harmonic oscillators (in cartesian coordinates): the spectrum is expressed
in terms of an additive sum of the quantum numbers of the single realizations, whereas the
eigenfunctions are factorized in terms of the product of Hermite polynomials (one for each
cartesian variable) multiplied by a gauge gaussian factor involving the N coordinates x1 . . . xN .

3.3.1 real discrete Quantum Mechanics as a difference realization of the sl(2, R) coalgebra:
the harmonic oscillator on the lattice

What we would point out in this section is an interesting connection between ordinary
quantum mechanics (oQM) and discrete quantum mechanics (dQM). We will show how
two oscillator Hamiltonian systems, respectively defined on oQM and rdQM, can be linked
through canonical transformations. Most importantly, we will use such a link in order to
introduce, for the first time to the best of our knowledge, the notion of coalgebra symmetry
in a quantum-mechanical discrete framework. This link will be used to construct an N-
dimensional (maximally) superintegrable quantum discrete version of the harmonic oscillator.
In particular, we will show how the maximal superintegrability is ensured thanks to the
existence of a discrete version of both the angular momentum and Demkov-Fradkin tensor.
Let us start our construction by recalling the classical oscillator Hamiltonian (smooth) function
H : M→ R, defined on the symplectic manifold (M = R2, ω0 = dx ∧ dp) (where we fix as
usual m = ω = 1):

H(x, p) =
p2 + x2

2
, (3.174)

where x, p are canonical (local) coordinates on M such as {x, p} = 1. Let us introduce the
following algebraic transformation, a one-parameter change of variables on the symplectic
manifold defined as follows:

x̄(x, p) = x + λ
p2 + x2

2
p̄(x, p) =

1
λ

arctan
(

λp
1 + λx

) with (local) inverse


x(x̄, p̄) =

√
1 + 2λx̄ cos(λ p̄)− 1

λ

p(x̄, p̄) =
√

1 + 2λx̄ sin(λ p̄)
λ

,

(3.175)

which maps the classical oscillator Hamiltonian (3.174) to the new Hamiltonian function:

H(x̄, p̄) =
1 + λx̄−

√
1 + 2λx̄ cos(λ p̄)

λ2 , (3.176)
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coalgebra symmetry and superintegrability

where the parameter λ > 0 and − 1
2λ ≤ x̄ < ∞, − π

2λ < p̄ < π
2λ . The transformation (3.175) is

connected to the identity function being:{
limλ→0 x(x̄, p̄) = x̄

limλ→0 p(x̄, p̄) = p̄ ,
(3.177)

and, by direct computation, we can show that it respects the canonical constraints:

{x̄(x, p), p̄(x, p)}(x,p) = 1 , {x̄(x, p), x̄(x, p)}(x,p) = { p̄(x, p), p̄(x, p)}(x,p) = 0 . (3.178)

Moreover:
{x(x̄, p̄), p(x̄, p̄)}(x̄,p̄) = 1 . (3.179)

This is a crucial observation because, by definition of canonical tranformation, all the algebraic
sl(2, R) relations characterizing the harmonic oscillator will remain unchanged if expressed in
terms of the new coordinates (x̄, p̄). In other words, this implies that we can construct a new
representation of the sl(2, R) Poisson-Lie algebra simply by replacing the old coordinates pair
(x, p) with the new one (x̄, p̄), giving rise to the following new symplectic representation:


ξ̄+(x̄, p̄) .

= D̄(ξ+) ≡ p2(x̄, p̄) =
(1 + 2λx̄) sin2(λ p̄)

λ2

ξ̄−(x̄, p̄) .
= D̄(ξ−) ≡ x2(x̄, p̄) =

(1 + 2λx̄) cos2(λ p̄)− 2
√

1 + 2λx̄ cos(λ p̄) + 1
λ2

ξ̄3(x̄, p̄) .
= D̄(ξ3) ≡ x(x̄, p̄)p(x̄, p̄) =

(1 + 2λx̄) cos(λ p̄)−
√

1 + 2λx̄
λ2 sin(λ p̄) ,

(3.180)

such as:

{ξ̄−(x̄, p̄), ξ̄+(x̄, p̄)}(x̄,p̄) = 4ξ̄3(x̄, p̄) , {ξ̄3(x̄, p̄), ξ̄±(x̄, p̄)}(x̄,p̄) = ±2ξ̄±(x̄, p̄) . (3.181)

Clearly, the Hamiltonian (3.176) will be (abstractly) expressed in terms of these classical
generators in the usual form (where we use the bar in order to keep in mind that we are using
a different symplectic representation):

H(ξ̄−, ξ̄+) =
ξ̄+ + ξ̄−

2
, (3.182)

which shows that we just changed representation preserving the coalgebraic structure inaltered.
In what follows, our goal is to construct the quantum counterpart of (3.176) in the basis of
these new coordinates. For this purpose, we will perform the usual quantisation procedure
with the goal of obtaining a discrete representation of the Heisenberg algebra.
Let us replace the classical coordinates pair (x̄, p̄) with their quantum analog:

p̄→ ˆ̄p = −ih̄∂x̄ , x̄ → ˆ̄x = x̄ . (3.183)

By requiring a (formal) Hermiticity condition in order to construct the quantum analog of
(3.175), we obtain:


x̂(x̄,−ih̄∂x̄) =

√
1 + 2λ(x̄ + λh̄) eλh̄∂x̄ +

√
1 + 2λx̄ e−λh̄∂x̄ − 2

2λ

p̂(x̄,−ih̄∂x̄) =

√
1 + 2λ(x̄ + λh̄) eλh̄∂x̄ −

√
1 + 2λx̄ e−λh̄∂x̄

2iλ
.

(3.184)
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3.3 from continuous to discrete quantum mechanics: the charlier oscillator

Moreover, it is not difficult to show by direct computation that the following commutation
relation, the quantum counterpart of (3.179), holds:

[x̂(x̄,−ih̄∂x̄), p̂(x̄,−ih̄∂x̄)] = ih̄ 1̂ , (3.185)

which means that we have constructed a discrete quantum representation of the algebra h(1).
Here is the fundamental point: the transformation that we have performed maps the old
oscillator Hamiltonian to a new classical Hamiltonian whose quantum counterpart is defined
on the lattice, where the operators T̂±

.
= e±λh̄∂x̄ act as follows:

T̂± f (x̄) = f (x̄± h̄λ). (3.186)

The functions f (x̄) have now to be thought as functions defined on the set of points character-
izing this one-dimensional lattice. This suggests us to interpret the new coordinate x̄ as an
effective discrete coordinate. As we will immediately show, this construction converges to the
framework described in [19]. In particular, our example belongs to the rdQM case, the shift
operators being translations on a real lattice, whose origin is fixed at x̄0

.
= − 1

2λ and where the
points are equally spaced of the quantity h̄λ > 0.

Once we found the new representation of x̂ and p̂ it is immediate to construct a (difference)
realization of the sl(2, R) algebra generators, the quantum analog of (3.180), which reads:


D̄(ξ̂+) =

2(λ2 h̄+2λx̄+1)−
√

2λ(λh̄+x̄)+1
√

2λ(2λh̄+x̄)+1T̂++−
√

2λx̄+1
√

2λ(x̄−λh̄)+1T̂−−

4λ2

D̄(ξ̂−) =
2(λ2 h̄+2λx̄+3)+

√
2λx̄+1

(√
2λ(x̄−λh̄)+1T̂−−−4T̂−

)
+
√

2λ(λh̄+x̄)+1
(√

2λ(2λh̄+x̄)+1T̂++−4T̂+
)

4λ2

D̄(ξ̂3) = i
√

2λx̄+1
(√

2λ(x̄−λh̄)+1T̂−−−2T̂−
)
+
√

2λ(λh̄+x̄)+1
(

2T̂+−
√

2λ(2λh̄+x̄)+1T̂++
)

4λ2 ,
(3.187)

where we defined T̂++ .
= e2λh̄∂x̄ , T̂−− .

= e−2λh̄∂x̄ . These finite difference operators realize a
discrete version of the sl(2, R) algebra, since the following commutation relations hold:

[ ˆ̄ξ−(x̄,−ih̄∂x̄), ˆ̄ξ+(x̄,−ih̄∂x̄)] = 4ih̄ ˆ̄ξ3(x̄,−ih̄∂x̄) , [ ˆ̄ξ3(x̄,−ih̄∂x̄), ˆ̄ξ±(x̄,−ih̄∂x̄)] = ±2ih̄ ˆ̄ξ±(x̄,−ih̄∂x̄) ,
(3.188)

and the Casimir operator reads Ĉ( ˆ̄ξ±, ˆ̄ξ3)
.
= 1

2 [
ˆ̄ξ+, ˆ̄ξ−]+ − ˆ̄ξ2

3 = (ih̄)2 1
2 (

1
2 + 1)1̂. The algebra

(3.188) represents the quantum analog of the Lie-Poisson algebra (3.181). This means that, by
replacing the classical x̄ and p̄ coordinates with their quantum analog, and by requiring the
Hermiticity of the operators, we have succesfully provided the quantization of the system
described by the classical Hamiltonian (3.176), which turns out to be:

ˆ̄H .
= Ĥ( ˆ̄ξ−, ˆ̄ξ+) =

ˆ̄ξ+ + ˆ̄ξ−
2

D̄
=

(
λ2h̄ + 2λx̄ + 2

)
−
√

2λ(λh̄ + x̄) + 1 T̂+ −
√

2λx̄ + 1 T̂−

2λ2 . (3.189)

The interesting feature to point out is that, since the transformation (3.175) is connected to the
identity, the parameter λ acquires a rich physical meaning: it can be interpreted as a deformation
parameter allowing us to recover the original continuous system in the limit λ→ 0:

limλ→0 x̂(x̄,−ih̄∂x̄) = x̄ ≡ x

limλ→0 p̂(x̄,−ih̄∂x̄) = −ih̄∂x̄ ≡ −ih̄∂x

limλ→0 Ĥ( ˆ̄ξ−, ˆ̄ξ+) = − h̄2

2 ∂xx +
x2

2 .

(3.190)
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coalgebra symmetry and superintegrability

Moreover, the finite difference representation of sl(2, R) collapses into the standard differential
realization (3.146). Therefore, this approach based on the introduction of a classical canonical
tranformation connected to the identity function, allowed us to introduce in a quite natural
way a lattice parameter governing the continuous limit. Moreover, the other parameter
appearing in the construction, i.e. the reduced Planck’s constant h̄, will not be fixed to assume
value h̄ = 1, since we prefer to mantain the discussion as general as possible. As a matter of
fact, it governs the classical limit.

3.3.2 Spectral problem, higher dimensional extension and discrete quantum integrals of motion

So far we have presented a one-dimensional discrete version of the Harmonic oscillator, in the
sense that we constructed a finite difference Hamiltonian whose continuous limit collapses
to the quantum harmonic oscillator. Thus, it is expected that the solution of the (discrete)
spectral problem should converge to the one of the harmonic oscillator in such a limit. This is
exactly the case. In particular, since we know how the factorization is expressed in terms of
the coalgebra generators, we automatically possess also the factorization of the new (discrete)
Hamiltonian. It is sufficient to replace the difference realization with the differential one, in
order to introduce the analog of the ladder operators (3.150) on the lattice. Thus, we have all
the ingredients to solve the following spectral problem:

ˆ̄H Φ(x̄) = E Φ(x̄) , (3.191)

which is a genuine discrete analog of (3.157). To this aim, let us firstly connect our notations
with the ones usually used in the framework of rdQM. To this purpose, we need to define the
following quantities:

B(x̄, λ)
.
=

1
2λ2 > 0 , D(x̄, λ)

.
=

1 + 2λx̄
2λ2 ≥ 0 , (3.192)

where we immediately see that D(x̄0, λ) = 0. Let us notice that this condition is the same as
the one given in [19] that we have previously discussed. In our construction the origin of the
lattice is not rescaled to assume the value x̄0 = 0. Clearly, this does not affect the results. By
means of these two definitions, it is not difficult to show that the Hamiltonian (3.189) can be
cast in the following familiar form:

Ĥ( ˆ̄ξ−, ˆ̄ξ+) = −
√

B(x̄, λ) T̂+
√

D(x̄, λ)−
√

D(x̄, λ) T̂−
√

B(x̄, λ) + (B(x̄, λ) +D(x̄, λ) + h̄/2) , (3.193)

that is, apart from the constant h̄
2 , characteristic of the harmonic oscillator (is the eigenvalue

associated to the groundstate), formula (3.193) yields the typical finite difference Hamiltonian
in rdQM. In particular, this Hamiltonian operator can be factorized in terms of the following
discrete ladder operators: â( ˆ̄ξ−, ˆ̄ξ3)

.
= i√

2
ˆ̄ξ−

1
2
− ( ˆ̄ξ3 +

ih̄
2 ) +

1√
2

ˆ̄ξ
1
2
− = T̂+

√
D(x̄, λ)−

√
B(x̄, λ) ,

â†( ˆ̄ξ−, ˆ̄ξ3)
.
= − i√

2
ˆ̄ξ−

1
2
− ( ˆ̄ξ3 +

ih̄
2 ) +

1√
2

ˆ̄ξ
1
2
− =

√
D(x̄, λ) T̂− −

√
B(x̄, λ) ,

(3.194)

where we used the D̄ representation, as:

Ĥ( ˆ̄ξ−, ˆ̄ξ+) = â†( ˆ̄ξ−, ˆ̄ξ3)â( ˆ̄ξ−, ˆ̄ξ3) +
h̄
2

. (3.195)
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3.3 from continuous to discrete quantum mechanics: the charlier oscillator

As expected, in the continuous limit, the two discrete ladder operators collapse to the standard
first order differential operators (3.150). At this point, to compute the spectral problem, as
in the continuous case we need to find the kernel of the lowering operator, now solving the
following difference equation:

â( ˆ̄ξ−, ˆ̄ξ3)Φ0(x̄) =
√

D(x̄ + λh̄, λ)Φ0(x̄ + λh̄)−
√

B(x̄, λ)Φ0(x̄) = 0 . (3.196)

The solution of (3.196) is Φ0(x̄) ∝

√√√√ ( 1
2h̄λ2 )

(
x̄

λh̄+
1

2h̄λ2

)
( x̄

λh̄ +
1

2h̄λ2

)
!

and, in turn, it allows us to find the

(unnormalized) eigenfunctions of the spectral problem:

Φn(x̄) ∝ [â†( ˆ̄ξ−, ˆ̄ξ3)]
nΦ0(x̄) =

(
−1√

2λ

)n

Cn

(
x̄

λh̄
+

1
2h̄λ2 ;

1
2h̄λ2

)
Φ0(x̄) , (3.197)

which are given in terms of the Charlier orthogonal polynomials Cn(x; a), with a > 0. As we
said, these polynomials belong to the Askey scheme and are orthogonal on the real lattice
x ∈ [0, 1, . . . ) with respect to the weight function w(x, a) .

= ax

x! [115].
In our case, the physical coordinate is x̄, whose domain of definition is − 1

2λ ≤ x̄ < ∞ and
the parameter a, defined in terms of λ, reads a .

= 1
2h̄λ2 > 0. Moreover, for the orthonormality

condition it holds:

O(Charlier)
nm

.
=

(
−1√

2λ

)−2n exp
(
− 1

2h̄λ2

)
n!
( 1

2h̄λ2

)−n

∞

∑
j=0

Φ∗n

(
− 1

2λ
+ jλh̄

)
Φm

(
− 1

2λ
+ jλh̄

)

=

(
−1√

2λ

)−2n exp
(
− 1

2h̄λ2

)
n!
( 1

2h̄λ2

)−n 〈Φn, Φm〉

= δnm , (3.198)

the symbol 〈,〉 denoting the scalar product on the new Hilbert space H, where the domain
Dλ

.
= [− 1

2λ , ∞
)
, and the sum is evaluated on the points of the lattice. They are equally spaced

of h̄λ. So, the normalized eigenfunctions of the spectral problem (3.191) result:

Φn(x̄) =
exp (− 1

4h̄λ2 )√
n! ( 1

2h̄λ2 )
− n

2
Cn

(
x̄

λh̄
+

1
2h̄λ2 ;

1
2h̄λ2

)
Φ0(x̄) . (3.199)

Finally, the corresponding spectrum for the stationary states reads:

Ĥ( ˆ̄ξ−, ˆ̄ξ+)Φn(x̄) = (â†( ˆ̄ξ−, ˆ̄ξ3)â( ˆ̄ξ−, ˆ̄ξ3) + h̄/2 )Φn(x̄) = h̄(n + 1/2)Φn(x̄) . (3.200)

In the continuous limit, i.e. for λ → 0 at fixed h̄, the discrete spectral problem (3.200)
transforms to the standard quantum harmonic oscillator problem (3.157).

At this point, as shown for the continuous case, we can use the coproduct map to perform
a multidimensional extension of the system, which is the crucial advantage of having a
coalgebraic structure also in the discrete case. Thus, we provide in the following the N-
dimensional maximally superintegrable generalization of the discrete Hamiltonian (3.193).
For this purpose, let us apply the coproduct map to the Hamiltonian ˆ̄H:

ˆ̄H[2] .
= ∆

( ˆ̄H
)
= ∆

( ˆ̄ξ+ + ˆ̄ξ−
2

)
=

∆( ˆ̄ξ+) + ∆( ˆ̄ξ−)
2

D̄
=

2

∑
j=1

ˆ̄Hj( ˆ̄xj, ˆ̄pj) , (3.201)
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where:

ˆ̄Hj( ˆ̄xj, ˆ̄pj)
.
=

(
λ2h̄ + 2λx̄j + 2

)
−
√

2λ(λh̄ + x̄j) + 1 T̂+
j −

√
2λx̄j + 1 T̂−j

2λ2 (j = 1, 2) , (3.202)

with T±j
.
= e±λh̄∂x̄j . Let us point out that, to keep just a one-parameter limit, we took the same

λ in both copies of the tensor product. Anyway, we stress that the construction works also if
we take different λ’s.

Once again, the new Hamiltonian lives in the tensor product of two copies of the sl(2, R)

algebra, and represents the two dimensional generalization of the discrete harmonic oscillator
expressed in cartesian coordinates. As usual, this system can be rewritten in terms of two
copies of the discrete ladder operators:

ˆ̄H[2] =
2

∑
k=1

â†
k(

ˆ̄ξ(−,k), ˆ̄ξ(3,k))âk(
ˆ̄ξ(−,k), ˆ̄ξ(3,k)) + h̄ , (3.203)

which are defined as: âk(
ˆ̄ξ(−,k), ˆ̄ξ(3,k))

.
= i√

2
ˆ̄ξ−

1
2

(−,k)(
ˆ̄ξ(3,k) +

ih̄
2 ) +

1√
2

ˆ̄ξ
1
2
(−,k) = T̂+

k

√
D(x̄k, λ)−

√
B(x̄k, λ)

â†
k(

ˆ̄ξ(−,k), ˆ̄ξ(3,k))
.
= − i√

2
ˆ̄ξ−

1
2

(−,k)(
ˆ̄J(3,k) +

ih̄
2 ) +

1√
2

ˆ̄ξ
1
2
(−,k) =

√
D(x̄k, λ) T̂−k −

√
B(x̄k, λ) ,

(3.204)

where:
ˆ̄ξ(+,k)

.
=

2(λ2 h̄+2λx̄k+1)−
√

2λ(λh̄+x̄k)+1
√

2λ(2λh̄+x̄k)+1T̂++
k −

√
2λx̄k+1

√
2λ(x̄k−λh̄)+1T̂−−k

4λ2

ˆ̄ξ(−,k)
.
=

2(λ2 h̄+2λx̄k+3)+
√

2λx̄k+1
(√

2λ(x̄k−λh̄)+1T̂−−k −4T̂−k
)
+
√

2λ(λh̄+x̄k)+1
(√

2λ(2λh̄+x̄k)+1T̂++
k −4T̂+

k

)
4λ2

ˆ̄ξ(3,k)
.
= i
√

2λx̄k+1
(√

2λ(x̄k−λh̄)+1T̂−−k −2T̂−k
)
+
√

2λ(λh̄+x̄k)+1
(

2T̂+
k −
√

2λ(2λh̄+x̄k)+1T̂++
k

)
4λ2 ,

(3.205)

being T̂++
k

.
= e2λh̄∂x̄k , T̂−−k

.
= e−2λh̄∂x̄k (k = 1, 2). Also in this discrete case the coproduct of the

generators:

∆( ˆ̄ξ+)
D̄⊗D̄
=

2

∑
k=1

ˆ̄ξ(+,k) , ∆( ˆ̄ξ−)
D̄⊗D̄
=

2

∑
k=1

ˆ̄ξ(−,k) , ∆( ˆ̄ξ3)
D̄⊗D̄
=

2

∑
k=1

ˆ̄ξ(3,k) , (3.206)

is an homomorphism for the sl(2, R) algebra, the commutation relations being:

[∆( ˆ̄ξ−), ∆( ˆ̄ξ+)] = 4ih̄∆( ˆ̄ξ3) , [∆( ˆ̄ξ3), ∆( ˆ̄ξ±)] = ±2ih̄∆( ˆ̄ξ±) . (3.207)

Moreover, the Casimir obtained by applying the coproduct results:

ˆ̄C[2] .
= ∆( ˆ̄C) = ∆

(1
2
( ˆ̄ξ+ ˆ̄ξ− + ˆ̄ξ− ˆ̄ξ+)− ˆ̄ξ2

3
)
=
( ˆ̄L2

z − h̄2) , (3.208)

where, under this difference realization, the angular momentum operator reads:

ˆ̄Lz
.
=

i
2λ2

(√
2λx̄1 + 1 T̂−1 −

√
2λx̄2 + 1 T̂−2 −

√
2λ(λh̄ + x̄2) + 1

(√
2λx̄1 + 1 T̂−+12 − T̂+

2

)
−
√

2λ(x̄1 + λh̄) + 1
(
T̂+

1 −
√

1 + 2x̄2λT̂+−
12

))
, (3.209)
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3.3 from continuous to discrete quantum mechanics: the charlier oscillator

with T̂±∓ij
.
= T̂±i T̂∓j = e±λh̄∂x̄i∓λh̄∂x̄j . Thus, we have obtained a discrete representation of the

angular momentum operator. Clearly, also in this discrete case, by construction the Casimir
is an observable commuting with the Hamiltonian ˆ̄H[2], i.e. [ ˆ̄C[2], ˆ̄H[2]] = 0. This leads to the
conservation of the (discrete) angular momentum, which can be also expressed as:

ˆ̄Lz
.
=
( ˆ̄C[2] + h̄2) 1

2 = x̂1( ˆ̄x1, ˆ̄p1) p̂2( ˆ̄x2, ˆ̄p2)− x̂2( ˆ̄x2, ˆ̄p2) p̂1( ˆ̄x1, ˆ̄p1) . (3.210)

As expected, in the continuous limit, the discrete angular momentum collapses into the stan-
dard differential operator (3.165). So, at this level, we have the quasi-maximal superintegrability.
In order to ensure the maximal superintegrability, as shown for the standard case, we need to
introduce the Demkov-Fradkin tensor, which reads:

ˆ̄Iij
.
= p̂i( ˆ̄xi, ˆ̄pi) p̂j( ˆ̄xj, ˆ̄pj) + x̂i( ˆ̄xi, ˆ̄pi)x̂j( ˆ̄xj, ˆ̄pj) , (i, j = 1, 2) , (3.211)

and its discrete representation can be immediately constructed by means of (3.184). In
particular, the diagonal elements are given by the one-particle realization of the discrete
Hamiltonian (3.202), whereas the off-diagonal elements are given by the following expressions:

ˆ̄I12 = ˆ̄I21 =
1

2λ2

(
2−

√
2λx̄2 + 1 T̂−2 −

√
2λx̄1 + 1 T̂−1 +

√
2λ(λh̄ + x̄1) + 1

(√
2λx̄2 + 1 T̂+−

12 − T̂+
1

)
+
√

2λ(λh̄ + x̄2) + 1
(√

2λx̄1 + 1 T̂−+12 − T̂+
2

))
. (3.212)

Once again, in the λ → 0 limit, the components of the continuous Demkov-Fradkin tensor
(3.166) are recovered. To sum up, the set { ˆ̄H[2], ˆ̄C[2], ˆ̄Iii} at fixed index i provides 3 observables
commuting with the Hamiltonian ˆ̄H[2], being ˆ̄H[2] = 1

2 ∑2
i=1

ˆ̄Iii.
In analogy with the continuous case, we can assert that the two-dimensional discrete system
we have obtained is maximally superintegrable. Also in this case, the eigenfunctions will
be constructed by applying the raising operators â†

k(
ˆ̄ξ−, ˆ̄ξ3) to the kernel of the operators

âk(
ˆ̄ξ−, ˆ̄ξ3) (k = 1, 2), obtained by solving the difference equations âk(

ˆ̄ξ−, ˆ̄ξ3)Φ0(x̄k) = 0, i.e.:

Φ0(x̄k) ∝

√√√√ ( 1
2h̄λ2 )

(
x̄k
λh̄+

1
2h̄λ2

)
( x̄k

λh̄ +
1

2h̄λ2

)
!

(k = 1, 2). (3.213)

So, the vacuum state of the discrete system (3.201) results:

Φ(0,0)(x̄1, x̄2)
.
= Φ0(x̄1)Φ0(x̄2) ∝

√√√√ ( 1
2h̄λ2 )

(
x̄1
λh̄+

1
2h̄λ2

)
( 1

2h̄λ2 )

(
x̄2
λh̄+

1
2h̄λ2

)
( x̄1

λh̄ +
1

2h̄λ2

)
!
( x̄2

λh̄ +
1

2h̄λ2

)
!

, (3.214)

and the (unnormalized) eigenfunctions of the spectral problem are:

Φ(n,m)(x̄1, x̄2) ∝ [â†
1(

ˆ̄ξ(−,1), ˆ̄ξ(3,1))]
n[â†

2(
ˆ̄ξ(−,2), ˆ̄ξ(3,2))]

mΦ(0,0)(x̄1, x̄2)

=

(
−1√

2λ

)n+m

Cn

(
x̄1

λh̄
+

1
2h̄λ2 ;

1
2h̄λ2

)
Cm

(
x̄2

λh̄
+

1
2h̄λ2 ;

1
2h̄λ2

)
Φ(0,0)(x̄1, x̄2) .

(3.215)
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Finally, the corresponding spectrum for the stationary states reads:

ˆ̄H[2]Φ(n,m)(x̄1, x̄2) = h̄(n + m + 1)Φ(n,m)(x̄1, x̄2) , (3.216)

being n, m = 0, 1, . . . ∞ the principal quantum numbers of the single one-dimensional realiza-
tion of the discrete oscillators. At this point of the work it is clear that the superintegrable
N-dimensional extension of the system can be immediately obtained. In this discrete case
nothing changes conceptually, the N-dimensional Hamiltonian results:

ˆ̄H[N] .
= ∆[N]

( ˆ̄H
)
= ∆

( ˆ̄ξ+ + ˆ̄ξ−
2

)
=

∆[N]( ˆ̄ξ+) + ∆[N]( ˆ̄ξ−)
2

D̄⊗N
=

N

∑
j=1

ˆ̄Hj( ˆ̄xj, ˆ̄pj) , (3.217)

and the 2N − 3 discrete versions of the conserved quantities (3.173), together with the N(N+1)
2

components of the discrete Demkov-Fradkin tensor, obtained by replacing the differential
representation with the finite difference one, allow us to obtain a maximally superintegrable
N-dimensional extension of the discrete harmonic oscillator. As far as the spectral problem is
concerned, in total analogy with the continuous case, it will be factorized in terms of single
copies of ladder operators. The eigenfunctions will be expressed in terms of a product of
Charlier polynomials (one for each variable) multiplied by the gauge factors arising from the
kernels of the lowering operators. Moreover, the spectrum will be expressed as an additive
sum of the principal quantum numbers related to the single copy of harmonic oscillators.

Before to conclude this part of the work, it is interesting to point out the connection between
the 2-dimensional Hamiltonian (3.201), constructed by means of the coproduct map, and
the one discussed in the recent work [22], where the authors also discussed a 2-dimensional
superintegrable model based on the Charlier polynomials. To this aim, let us focus on the
difference operator:

ˆ̄H[2] .
= ˆ̄H[2] − h̄ =

2

∑
k=1

â†
k(

ˆ̄ξ(−,k), ˆ̄ξ(3,k))âk(
ˆ̄ξ(−,k), ˆ̄ξ(3,k)) , (3.218)

and let us perform the following gauge transformation:

ˆ̄H[2]
g

.
= Φ−1

(0,0)(x̄1, x̄2) ˆ̄H[2] Φ(0,0)(x̄1, x̄2) . (3.219)

The resulting discrete Hamiltonian is:

ˆ̄H[2]
g =

2

∑
k=1

[
−
(

x̄k

λ
+

1
2λ2

)
e−λh̄∂x̄k − 1

2λ2 eλh̄∂x̄k +
x̄k

λ
+

1
λ2

]
=

2

∑
k=1

[
−
(

x̄k

λ
+

1
2λ2

)
e−λh̄∂x̄k − 1

2λ2 eλh̄∂x̄k +

(
x̄k

λ
+

1
2λ2

)
+

1
2λ2

]
. (3.220)

Now, if we perform the following change of variables:

x̄′k =
x̄k

λ
+

1
2λ2 , x̄′k ∈ [0, ∞) , (3.221)

then ∂x̄k =
∂x̄′k
∂x̄k

∂x̄′k
= λ−1∂x̄′k

(k = 1, 2), and the gauged Hamiltonian results:

ˆ̄H′[2]g =
2

∑
k=1

[
−x̄′k e

−h̄∂x̄′k − 1
2λ2 e

h̄∂x̄′k + x̄′k +
1

2λ2

]
. (3.222)
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At this point, if we set h̄ = 1 and define the quantities α2
1 = α2

2
.
= 1

2λ2 > 0, we obtain:

ˆ̄H′[2]g =
2

∑
k=1

[
−x̄′k e

−∂x̄′k − α2
ke

∂x̄′k + (x̄′k + α2
k)

]
, (3.223)

where x̄′ = [0, 1, 2, . . . , ∞). This operator is such that:

ˆ̄H′[2]g Cn(x1; α2
1)Cm(x2; α2

2) = (n + m)Cn(x1; α2
1)Cm(x2; α2

2) n, m = 0, 1, 2, . . . (3.224)

where Cn(x; α2
k) are the Charlier polynomials with parameter α2

k > 0 for (k = 1, 2). Thus, in
this case, we are working in the basis given by the gauged generators:

ˆ̄ξ [2]
(σ,g)

.
= Φ−1

(0,0) ◦
ˆ̄ξ [2]σ ◦Φ(0,0) , (σ = ±, 3). (3.225)

Let us notice that the Hamiltonian (3.223) is the one investigated in the paper [22], where
the authors have α2

1 6= α2
2 (in that paper α2

1 = α2 and α2
2 = β2). We observe that, since we

have chosen the same λ in both copies of the tensor product, we got the following relation:
α2

1 = α2
2 = 1

2λ2 . This is our particular choice, basically the simplest one, and has been done
in order to keep just a one-parameter continuous limit (also in the N-dimensional case).
Anyway, we remark once again that the coproduct allows us to introduce different parameters
λ, labelled with the number of the site that we are taking in the tensor product. This means
that our construction works also if we take λ1 6= λ2 6= · · · 6= λn, i.e. for different values of the
Charlier parameters. In this case, the two-dimensional gauged Hamiltonian that we would
have obtained is the following (remember h̄ = 1):

ˆ̄H[2]
g =

2

∑
k=1

[
−
(

x̄k

λk
+

1
2λ2

k

)
e−λk∂x̄k − 1

2λ2
k

eλk∂x̄k +

(
x̄k

λk
+

1
2λ2

k

)
+

1
2λ2

k

]
, (3.226)

which, after the following change of variables:

x̄′k =
x̄k

λk
+

1
2λ2

k
(k = 1, 2) , (3.227)

would have resulted in:

ˆ̄H′[2]g =
2

∑
k=1

[
−x̄′k e

−∂x̄′k − α2
ke

∂x̄′k + (x̄′k + α2
k)

]
, (3.228)

with α2
k =

1
2λ2

k
(k = 1, 2). To conclude, let us mention that in our setting, physically speaking,

this choice would have implied a theory defined on a rectangular lattice instead of a squared
one (that is the case λ1 = λ2 = λ). In the N-dimensional case we would have had an
N-orthotope instead of an N-cube.

3.4 concluding remarks and open perspectives

Even if this analysis represents just a first step towards a more complete understanding of
coalgebraic structures in discrete quantum theories, we hope that the main message of this
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research has been delivered: the coalgebraic symmetry approach can be used also in discrete quantum
theories, where finite difference equations replace differential equations: as a main result, in fact, we have
succesfully applied the coalgebra symmetry approach in (real) discrete quantum mechanics, providing a
new way to investigate discrete quantum models in terms of coalgebraic structures.

We summarize here the main results of our construction: starting from the classical
oscillator Hamiltonian (3.174) and performing the tranformation (3.175), we have derived
the new classical Hamiltonian (3.176) that, after the application of the canonical quantization
procedure (together with the Hermiticity condition), turned out to represent a discrete version
of the quantum oscillator system (3.149). We have proved that this Hamiltonian belongs to
the realm of real discrete Quantum Mechanics: the Hamiltonian can be cast in form (3.193).
The introduction of a new representation for the algebra h(1) and, consequently, for the
algebra sl(2, R) allowed us to keep the formalism of ladder operators in order to compute
both the spectrum and the eigenfunctions for the discrete system (3.189). The latters are
expressed in the basis of the Charlier orthogonal polynomials. Clearly, the fundamental
parameters appearing in our analysis are λ and h̄, governing the continuous and the classical
limit respectively, as graphically explained by the following diagram:

ˆ̄H(x̄,−ih̄∂x̄) Ĥ(x,−ih̄∂x)

H̄(x̄, p̄) H(x, p)

h̄→0

λ→0

h̄→0

λ→0

All our construction has been performed by means of the sl(2, R) coalgebra, that allowed us
to extend the dimension of the system to an arbitrary N, by preserving the superintegrability
properties of the Hamiltonian. Let us stress once again that the algebra representation
which generates the discrete orthogonal polynomials has been obtained combining two main
ingredients: a “classical canonical transformation” together with the standard quantization
procedure. This procedure can be therefore regarded as an algorithm that allows to pass
from continuous to discrete orthogonal polynomials. In other words, we have discretized the
quantum harmonic oscillator by preserving its superintegrability properties. As a byproduct,
we proved that the Charlier orthogonal polynomials share the same coalgebraic structure of the Hermite
orthogonal polynomials. Just to emphasize the usefulness of such construction, as a further result
we have immediately obtained a N-dimensional extension of already known results, such as
the ones contained in [22]. As a future perspective, we plan to investigate whether these results
can be extended also to other families of orthogonal polynomials belonging to the Askey
scheme, in order to understand which coalgebraic structures are involved. Moreover, since
we showed that the coalgebra symmetry approach can also be used in the realm of discrete
quantum mechanics, we will investigate the possibility of constructing (quasi)-maximally
and, hopefully, maximally superintegrable generalization of one-dimensional discrete system
endowed with an underlying coalgebra symmetry. To be more precise, a further step in that
direction could be done, for example, if we would be able to construct a discrete version of the
hydrogen atom. A possible strategy could be the following: we know that, at least formally,

62



3.4 concluding remarks and open perspectives

the hydrogen atom can be defined in terms of the coalgebraic Hamiltonian (or in terms of
coalgebraic related expressions [69]):

Ĥ .
= Ĥ(ξ̂+, ξ̂−) =

ξ̂+
2
− k√

ξ̂−

, (4.229)

which, under the quantum (differential) representation (3.146), implies the possibility of
extending such a system in N-dimensions preserving its quasi-maximal superitegrability.
After that, the components of the quantum version of the Laplace-Runge-Lenz vector provide
the way to obtain the maximal superintegrability. In turn, the quantum integrals of motion
related to the radial symmetry are the same as the ones of the N-dimensional harmonic
oscillator, and are provided by the partial Casimirs of the algebra. So, it is tempting to say that
the discrete quantum integrals of motion related to the angular momenta are also commuting
observables of a (possible) discrete version of the hydrogen atom, obtainable by replacing the
differential representation with the difference one that we have constructed. However, even
if this seems to be formally true, there is a technical problem related to the representation
of the inverse of the discrete operator x̂(x̄,−ih̄∂x̄) defined in (3.184), which would be crucial
to provide a discrete representation at the hydrogen atom. If we succeed in finding such a
representation, the next step would be use it in order to construct a discrete version of the
LRL vector. After that, the spectrum and the eigenfunctions of the system could be performed
by means of a discrete version of the shape invariance [19]. Along this direction, another
interesting point is related to the fact that our discrete representation could also be used
to introduce superintegrable discrete versions of coalgebraic oscillators that are defined on
curved spaces (see for example [116]). Clearly, all these open problems have to be better
understood, and further studies are needed. Work on all these lines is still in progress.
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4 FACTOR IZAT ION METHODS ,
SUPER INTEGRAB I L I TY AND EXACT
SOLVAB I L I TY

So far we have discussed a method for dealing with classical and quantum superintegrable
systems by using coalgebraic structures. In the general theoretical section we showed how
this approach allows us to obtain at most 2N − 3 conserved quantities given by the (left and
right) partial Casimirs that, together with the Hamiltonian, form a set of 2N − 2 functionally
independent first integrals (the quasi-maximal superintegrability is ensured algebraically).
As we said, the other quantity required for the maximal superintegrability has to be found
along other routes. Another algebraic method that has been recently introduced to deal
with symmetries of superintegrable systems, is the so-called factorization method, or extended
factorization method [33–35]. This approach consists in a revisitation the factorization method
in quantum mechanics [13–15]. In particular, it represents an extension of such method to
separable systems which depends on several variables. The idea is that, if an Hamiltonian
function (resp. operator in the quantum case) admits separation of variables in a certain
coordinate system, then for each coordinate it is possible to define two sets of ladder B± and
”shift” A± functions (operators) and, if certain further conditions are satisfied, the additional
constants of motion can be explicitly constructed by using a combination of them (see [35]
for an introduction of such algebraic approach). This method has been shown to be very
powerful and, recently, it provided the way to introduce for the first time an exactly solvable
anisotropic oscillator defined on curved spaces (in particular on the sphere S2 and on the
hyperbolic plane H2) [117].
This approach has deep roots in the paper [32], where the subclass of ”trivially” maximally
(super)integrable classical systems, composed by the one-dimensional ones, has been in-
vestigated in terms of a classical version of the factorization method there introduced. As
we know, for these conservative systems the Hamiltonians are integrals of motion and the
integrability is fulfilled in a trivial way: in dimension N = 1, the conservation of the energy is
sufficient to determine the maximal superintegrability (or, equivalently, integrability) being
2N − 1 = 1. In quantum mechanics, the solvability of such systems is often related to the
existence of a pair of ladder operators, that together with the Hamiltonian, close a spectrum
generating algebra [17,118,119]. The simplest example is the harmonic oscillator for which, as
we discussed explicitly, the ladder operators a, a† close the Heisenberg algebra, which allows
to construct the spectrum and the eigenfunctions for the stationary states algebraically. Let us
remark once again that this represents the simplest case since no shape invariance is required.
More complicated systems, such as for example the hydrogen atom, the Poschl-Teller or the
Morse systems just to cite a few, involve more complicated underlying algebraic structures [16].
It is know that by using the theory of SUSYQM, we can solve exactly the quantum problem
associated to a physical system if and only if the superpartner potentials, related each other by
a Riccati-type equation, are not “too different”, e.g. if there exists a shape invariance condition
(SIC) between them.
In [32], with the aim of establishing a bridge to fill the gap between the algebraic structures
arising in classical and quantum mechanics, the authors developed a method for solving in
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an algebraic way the motion of one-dimensional Hamiltonian systems. The key idea was the
introduction of deformed Poisson structures in classical mechanics closed in terms of “ladder
operators” (now functions on the phase space) which factorize the Hamiltonian in a suitable
way. This structures, which can be viewed as the classical version of the quantum spectrum
generating algebras (for this reason the name classical spectrum generating algebras (cSGA)),
can be used to define two time-dependent constants of motion which allow to construct the
trajectories on the phase space algebraically. The systems obtained so obtained represent the
classical counterpart of the factorizable one-dimensional quantum mechanical systems.

This second part of the Thesis is devoted to a series of works related to the application of
factorization methods in classical mechanics and quantum mechanics. The common thread
with the first part of the work is the superintegrability, and in particular the fact that the
systems that we are going to discuss share the same sl(2, R) coalgebra symmetry, being a
deformation (in an appropriate sense) of the harmonic oscillator and the Kepler-Coulomb
system. Precisely, the aim of the chapter is the following:

• in order to become familiar with such a method, we will start our discussion presenting
the results that we have obtained in relation with a family of deformed oscillators.
Firstly, we will show how the method works taking as a prototype example the harmonic
oscillator. Then, after introducing the motivations and definitions behind our work, we
will extend the construction to the classical analog of f -oscillators, a generalization of
q-oscillators given in [42]. We will show how this method allows us to write down the
deformed Poisson algebra characterizing the entire family of non-linear oscillators and
to contruct its general solution algebraically. The original results presented here are
based on a joint work with R. Kullock, and are based on the paper [39].

• afterwards, we will present the results regarding the effective one-dimensional radial
dynamics of two prototype examples of MS systems defined on space on nonconstant
curvature, the so-called Taub-NUT and Darboux III Hamiltonian systems. These models,
which have been extensively studied in the literature for their mathematical as well as
physical relevance, according to the Perlick’s classification [5–7], belong to the family
of type II, therefore can be regarded as intrinsic oscillators on such curved spaces. On
the other hand, from an analytic point of view, they can be thought as a one-parameter
superintegrable deformation of the KC and HO systems respectively, and their maximal
superintegrability is ensured thanks to the existence of a deformed version of the LRL
vector as well as of the DF tensor in their corresponding curved spaces. The idea of
investigating such systems was proposed to me by prof. O. Ragnisco, and the results
are based on the papers [36–38].

• finally, we will dedicate the closing section to the investigation of the quantum case.
In particular, our aim is to show that the exact solvability of the two aforementioned
MS systems is related to the fact that they define two shape invariant potentials (SIP)
on their corresponding conformally flat space. We will see that the spectral problem is
solved by means of the SUSYQM approach (factorization method and shape invariance)
for positive values of the deformation parameters. For negative values of the parameters
the problem is still open.
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4.1 factorization method and deformed poisson algebras

In order to get the phase space trajectories of one-dimensional classical systems, it is possible
to use an approach that allows us to determine the solution algebraically in a direct way. This
is the so-called classical factorization method introduced by S. Kuru and J. Negro in [32].
Here, we summarize which is the general idea of the method and introduce the basic notions
that we will need in the following. Clearly, for a more detailed discussion, we refer the reader
to the original work [32], where a lot of examples are presented and explicitly solved. Let us
consider the classical Hamiltonian function H0 : R2 → R given by:

H0(x, p) =
p2

2m
+ V(x) , (1.230)

where x and p are canonical coordinates such as {p, x} = 1 and V(x) is the potential term1. We
deal with Hamiltonian that can be factorised in terms of two complex-conjugate differentiable
functions A±0 : M→ C defined on the phase space M = R2 ' C, namely:

H0(x, p) =
p2

2m
+ V(x) = A+

0 A−0 + γ(H0) , (1.231)

where A±0 = A±0 (x, p) and γ(H0) is a function depending on just the Hamiltonian H0. The
method requires that the functions A±0 and H0 close the following deformed Poisson algebra:

{A+
0 , A−0 } = −iβ(H0) , {H0, A±0 } = ±iα(H0)A±0 , (1.232)

with α(H0), β(H0), γ(H0) functions to be determined. The crucial point is that, for these
systems, it is possible to introduce two time-dependent functions Q±0 : M×R→ C defined as:

Q±0 (x, p, t) = A±0 (x, p) e∓iα(H0)t , (1.233)

such that:
dQ±0

dt
= {H0, Q±0 }+ ∂tQ±0 = 0 , (1.234)

which means that Q±0 are constants of motion. By using these integrals of motion, whose
values given by q±0 = |q±0 |e±iθ0 are fixed by the initial conditions, it is possible to construct
the trajectories (x(t), p(t)) ∈ R2 in the phase space algebraically [32]. In particular, because
of the factorisation (1.231), the modulus of q±0 turns out to be a function of the energy, i.e.
|q±0 | = q0(H0)|H0=E0 . Moreover, for bounded orbits, the frequency of the motion is given
by the underlying Poisson algebra. In fact, we can immediately observe from (1.233) that it
actually results α(H0)|H0=E0 . Then, the dynamical information regarding the motion of the
system (1.230) is contained into the two algebraic relations:

A±0 (x, p) e∓iα(E0)t = q0(E0) e±iθ0 . (1.235)

As a matter of fact, by knowing the explicit form of the two functions A±0 in terms of x and p,
by means of (1.235) we can find x(t) and p(t) as a function of the total (conserved) energy.
Thus, in other words, this method allows to solve Hamiltonian differential equations without

1 To be coherent with the conventions of the original work [32], we took the same convention for the Poisson
brackets.
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the need of performing integrations. This construction will be clear in a moment when the
simple example of the harmonic oscillator will be presented.
We should point out that by using this approach we have access to the solution (x(t), p(t)) for
both bounded and unbounded motion. In fact, as we know there exist systems, such as the
Kepler-Coulomb, which are characterized by both bound and unbounded motions, depending
on the energy sector that we are analyzing. In such cases the complex nature of the factors
can change according to the energy sector, and the same happens for the deformed Poisson
algebra. We point out that this technique, based on the factorisation of the Hamiltonian in
terms of two functions that, together with the Hamiltonian itself, close a Poisson algebra
has been considered also to study classical mechanical systems with position-dependent
mass [120–122]. Let us discuss in the following how to solve the motion of the harmonic
oscillator by using this method.

4.1.1 The standard harmonic oscillator

It is straightforward to obtain the solution (x(t), p(t)) of the harmonic oscillator by means of
the factorization and its classical spectrum generating algebra. To see this, let us consider the
usual Hamiltonian function (in units m = ω = 1):

H0(x, p) =
p2 + x2

2
. (1.236)

It is trivial to verify that (1.236) is factorised in terms of the two complex functions:

A±0 (x, p) =
x∓ ip√

2
, (1.237)

namely:
H0 = A+

0 A−0 , (1.238)

which implies γ(H0) = 0. Moreover, computing the Poisson brackets we obtain the oscillator
algebra:

{A+
0 , A−0 } = −i , {H0, A±0 } = ±iA±0 , (1.239)

which means β(H0) = α(H0) = 1 (this is because we set ω = 1). Using these relations we are
able to define the two “time-dependent” integrals of motion Q±0 :{

Q±0 (x, p, t) .
= A±0 (x, p) e∓iα(H0)t

Q̇±0 (x, p, t) = 0 ,
(1.240)

which we can use to construct the solution. In fact, using their polar decomposition we can
write:

Q±0 (x, p, t) .
= A±0 (x, p) e∓iα(E0)t = q0(E0) e±iθ0 , (1.241)

with q2
0(E0) = A+

0 A−0 = E0, where E0 is the total (conserved) energy of the system. This
means that the two following relations hold:

x−ip√
2

=
√

E0 ei(α(E0)t+θ0)

x+ip√
2

=
√

E0 e−i(α(E0)t+θ0) ,
(1.242)
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and from these we can immediately obtain the well-known solution of the harmonic oscillator:

{
x(t) =

√
2E0 cos(t + θ0)

p(t) = −
√

2E0 sin(t + θ0) ,
(1.243)

where E0 and θ0 are fixed by the initial conditions (this is the solution of a second-order
differential equation). We observe that taking the sum of the square of these two equations
we obtain (1.236) restricted to the level surfaces H0 = E0. Thus, in conclusion, the motion has
been straightforwardly solved algebraically. In what follow, we will show how this method
can be succesfully used in order to solve the motion of the classical analog of f-oscillators.
Thus, let us dedicate the following section to give a concise introduction to such systems.

4.2 f -deformations

4.2.1 Motivations and definitions

The q-deformation is by now a well established subject [123]. As a matter of fact suq(2) is
often the prototype model for the study of quantum groups, deformations of usual groups,
and it is related to solutions of the Yang-Baxter equation [124] or, for instance, to (broken)
symmetries in solids [125]. Related to this, are the q-bosons [126]. Developed on its own right,
they are related to the suq(2), depending on how one defines it [46]. They can be used as in
the undeformed case, for the Jordan-Schwinger construction of the su(2), or they can be seen
as the contraction of it [127]. In [42] the authors describe how one of these q-bosons may be
written as non-linear expressions from the undeformed algebra. They also generalize this
idea to the so-called f -bosons. In the same paper, they show how for the q-bosons oscillator
model the classical problem is a non-linear oscillator, with its frequency depending on the
initial data. Following the idea, looking into the classical model equivalent to the quantum
deformation can be very insightful. In fact, even if in the quantum version we are able to
describe its spectrum and stationary states, it is on the classical side that we can get a physical
intuition of its real meaning. This idea was further developed in [43], where the classical
aspects of these quantum deformations have been considered and applications to quantum
optics have been discussed.

For these reasons, we are interested in the classical analog of f -oscillators. In other words,
we ask the question: what physical systems are represented by these spectra? To give an answer,
we will investigate these non-linear systems by implementing the classical factorization
method, proposed in this deformed framework. We will show that it is possible to prove
that all f -oscillators are in fact a rather simple example of deformations, and we can find out
their solutions explicitly. These are nothing more than energy dependent frequencies and
amplitudes, and the phase space trajectories are undeformed, except for a change in their
radius.
As a matter of fact, the aim of this research is two-fold. On one hand, as we already claimed
we are interested to give a physical intuitive interpretation of these kind of systems. On the
other hand, we want to provide a first exploration of the connection between f-deformations
and classical SGA.
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4.2.2 q-deformations and f -deformations

There are a few options for the q-deformation of the Heisenberg algebra (see for example [123]
and references within). The one we are currently interested in is2:

ÂÂ† − qÂ† Â = q−N̂ , (2.244)

with q ∈ R+, [N̂, Â†] = Â† and [N̂, Â] = −Â. Moreover, Â† Â = [N̂] and ÂÂ† = [N̂ + 1],
where [x] is the usual notation for a q-number, given by3:

[x] .
=

qx − q−x

q− q−1 =
sinh (λx)

sinh λ
. (2.245)

Here we introduced the parameter λ
.
= log q ∈ R. In particular, this algebra can be represented

as non-linear expressions of the usual Heisenberg algebra. Indeed, considering the operators
â, â†:

[â, â†] = 1 , N̂ = â† â , (2.246)

we can define the new operators:

Â = â f (N̂) , Â† = f (N̂)â†, (2.247)

where:

f (N̂)
.
=

√
sinh (λN̂)

N̂ sinh λ
=

√
[N̂]

N̂
. (2.248)

If we start with an oscillator Hamiltonian for the deformed case, it may be written in terms of
the usual coordinates as (in units h̄ = ω = 1):

Ĥ = Â† Â = f 2(N̂) â† â = [N̂] , (2.249)

leading to the spectrum:

En = [n] =
sinh (λn)
sinh (λ)

. (2.250)

Notice we choose here a zero vacuum energy for the deformed oscillator. This setting may be
generalized by taking an arbitrary “dressing” of the ladder operators and choosing another
function f (N̂). These are the f -deformations [42, 43]. Clearly, the spectrum of the harmonic
oscillator changes accordingly. As an example we could choose f 2(N̂) = N̂λ, then:

En = n1+λ . (2.251)

To understand the physical meaning of these spectra, we will investigate their classical
counterpart, by means of the method described in the following section. Before doing this,
we should point out that these classical f -deformations have been analyzed in the paper [42].
This is also discussed in [41], where the authors comment about the different coordinates
and their physical interpretation for the q-oscillator. Moreover, quite recently it has been
shown in [44] that an arbitrary one-dimensional integrable system can be represented as an
f -oscillator, and the action-angle variables play a crucial role for this representation.

2 For the Fock space representation, the q→ q−1 symmetric expression will be also valid.
3 This expression can be extended to operators in the usual way, by means of formal power series.
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4.2.3 The classical q-deformed harmonic oscillator

The q-deformed oscillator is given by the Hamiltonian function:

H(x, p) =
sinh(λ p2+x2

2 )

sinh λ
=

sinh(λH0(x, p))
sinh λ

, (2.252)

where λ ∈ R is a deformation parameter such as limλ→0 H(x, p) = H0(x, p). In order to
factorize this Hamiltonian we rewrite the latter as follows:

H =
sinh(λH0)

H0 sinh λ
H0 . (2.253)

It is now straightforward to show that it is possible to factorize (2.253) in terms of the two
functions:

A±(x, p) =

√
sinh(λH0)

H0 sinh λ
A±0 (x, p) =

√
H
H0

A±0 (x, p) , (2.254)

so that:
H = A+A− . (2.255)

What we have here is essentially a dressing of the functions A±0 (x, p). In fact, we have
introduced the new functions: 

A± = Fλ(H0)A±0

Fλ(H0)
.
=

√
sinh(λH0)

H0 sinh λ
,

(2.256)

such that limλ→0 Fλ(H0) = 1, i.e. we recover the functions A±0 , namely the harmonic oscillator.
Notice that we don’t take these as actual coordinates of the system: they provide just a
convenient factorization of the Hamiltonian. Nevertheless, considering the original q-deformed
coordinates of the quantum problem, we could also use them as physical coordinates, with√

2A± .
= X∓ iP, changing the interpretation of the phase space. This should not be confused

with the approach in [42,43], where such transformations are seen as changing the perspective
on whether the system is nonlinear or has deformed Poisson brackets.
Now, we have all the ingredients needed to close the deformed Poisson algebra, which results:

{A+, A−} = −i
λ

sinh λ
cosh(λH0) , {H, A±} = ±i

λ

sinh λ
cosh(λH0)A± . (2.257)

We notice immediately that the function α(H) = β(H) = λ
sinh λ cosh(λH0) depends on H0

and not on H. Clearly, H0 Poisson commutes with H, which means that it is a constant of
motion [42]. Now, it turns out that whenever H0 can be expressed as a function of the new
Hamiltonian H, then we can close the classical SGA and follow the same procedure applied
for the standard harmonic oscillator in order to get the trajectories in the phase space, i.e. we
can define the time-dependent constants of motion and construct the solution algebraically.
In this case, this operation is possible. In fact, by inverting (2.252), we find:

H0 =
1
λ

arcsinh(H sinh λ) , (2.258)
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and the non-linear Poisson algebra becomes:

{A+, A−} = −i
λ

sinh λ

√
1 + H2 sinh2 λ , {H, A±} = ±i

λ

sinh λ

√
1 + H2 sinh2 λ A± ,

(2.259)
where we used the fact that cosh(arcsinh(x)) =

√
1 + x2. This is the cSGA characterizing

the q-deformed oscillator. We notice that, in the limit λ→ 0, the deformed Poisson algebra
(2.259) reduces to the “original” oscillator algebra (1.239). At this point, by considering the
two functions Q±(x, p, t) = A±(x, p) e∓iα(E)t = q(E) e±iθ (in this case q2(E) = A+A− = E)
and, by taking into account (2.258), we easily arrive to:

√
λE

arcsinh(E sinh λ)
x−ip√

2
=
√

E ei(α(E)t+θ)√
λE

arcsinh(E sinh λ)
x+ip√

2
=
√

E e−i(α(E)t+θ) ,
(2.260)

from which we can immediately write the solution in terms of the total (conserved) energy E:x(t) =
√

2
λ arcsinh(E sinh λ) cos(α(E)t + θ)

p(t) = −
√

2
λ arcsinh(E sinh λ) sin(α(E)t + θ) ,

(2.261)

where α(E) = λ
sinh λ

√
1 + E2 sinh2 λ is the angular frequency of the motion given by the

underlying algebra. It is not difficult to verify that this solution is the same as the one obtained
in [42]. We notice also that taking the sum of the square of (2.261) we find equation (2.252)
restricted to the level surfaces H(x, p) = E. Moreover, in the λ → 0 limit, we recover the
results obtained for the standard harmonic oscillator.

In comparison with the undeformed case two main differences emerge. The first one, quite
obvious, is that the frequency is energy dependent. The second one is related to the amplitude
of the oscillations. In fact, it may be written as

√
2H0, as in the undeformed case. However we

have to be careful here with the definition of the energy of the system. For this deformed case,
the energy is given by the full Hamiltonian, and so this implies that the amplitude will vary
with the energy differently, following the expression above. In fact, in terms of the coordinates
(X, P), the solution for the trajectories reads:{

X(t) =
√

2E cos(α(E)t + θ)

P(t) = −
√

2E sin(α(E)t + θ) .
(2.262)

Here, the amplitude of the trajectories have the same dependence on the energy as in the
undeformed case. Therefore, while the energy dependent frequency is always present in the
deformed system, the change in the amplitude depends on the physical interpretation.

4.2.4 The classical non-linear f -oscillators

The Hamiltonian function defining the non-linear f -oscillators is given by:

H(x, p) = F2
λ

( x2 + p2

2

) x2 + p2

2
= F2

λ(H0(x, p))H0(x, p) , (2.263)
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where F2
λ

(
H0
)

is a function such that limλ→0 F
2
λ

(
H0
)
= 1. We can factorize this Hamiltonian

introducing the following functions on the phase space:

A±(x, p) = Fλ(H0)A±0 (x, p) , (2.264)

such as:
H = F2

λ(H0)H0 = A+A− . (2.265)

In this case, the deformed Poisson algebra reads:

{A+, A−} = −i
dH
dH0

, {H, A±} = ±i
dH
dH0

A± . (2.266)

This result is interesting since we know that in order to close the spectrum generating algebra
the function dH

dH0
has to be a function of the Hamiltonian H. This implies that we have to

require the following condition:
dH
dH0

= α(H) . (2.267)

In other words, this means that if we start with the Hamiltonian:

H = F2
λ(H0)H0

.
= Hλ(H0) , (2.268)

we need to require the function Hλ to be (differentiable and) invertible, that means there
exists the function H−1

λ : R→ R+, such that:

H0 = H−1
λ (H) . (2.269)

Notice that this condition is nothing but the generalization of (2.258) that we used in the
particular case of the q-oscillator. If it is satisfied we can perform:

dH
dH0

= H′λ(H0)|H0=H−1
λ (H) = H′λ(H

−1
λ (H)) , (2.270)

to obtain the Poisson algebra:

{A+, A−} = −iH′λ(H
−1
λ (H)), {H, A±} = ±iH′λ(H

−1
λ (H)) A± . (2.271)

This is the classical SGA underlying the entire family of f -oscillators. In particular, we can
immediately observe that the angular frequency of the motion results:

α(E) = H′λ(H
−1
λ (H))|H=E = H′λ(H

−1
λ (E)) . (2.272)

At this point we can go further to construct the explicit solution (x(t), p(t)) for the entire class.
Once again we introduce the two integrals of motion Q±(x, p, t) such as:

A±(x, p) e∓iα(E)t = q(E) e±iθ , (2.273)

that is:

Fλ(H
−1
λ (E))

x∓ ip√
2

=
√

E e±i(α(E)t+θ) . (2.274)
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Now, taking into account (2.268), we can write Fλ(H
−1
λ (E)) =

√
E

H−1
λ (E)

to obtain:

x∓ ip =
√

2H−1
λ (E) e±i(α(E)t+θ) . (2.275)

Finally, using the two equations (2.275) we arrive at the solution:x(t) =
√

2H−1
λ (E) cos(H′λ(H

−1
λ (E))t + θ)

p(t) = −
√

2H−1
λ (E) sin(H′λ(H

−1
λ (E))t + θ) .

(2.276)

This is the classical solution characterizing the entire class of non-linear f -oscillators. We
remark that physically speaking, like before, this solution involves for both the frequency
and the amplitude a change in the energy dependence. Let us notice that in terms of the
coordinates (X, P) we have the amplitude

√
2E. In this general framework, it is straightforward

to recover the q-deformed oscillator simply by observing that the function Hλ is given by
Hλ(H0) =

sinh(λH0)
sinh λ . To summarize, we can rewrite the problem and its solution as follows:

Factorization : H = Hλ(H0) = A+A− , A± =

√
Hλ(H0)

H0
A±0 , A±0 (x, p) =

x∓ ip√
2

; (2.277)

cSGA : {A+, A−} = −iH′λ(H
−1
λ (H)) , {H, A±} = ±iH′λ(H

−1
λ (H)) A± ; (2.278)

Solution :

x(t) =
√

2H−1
λ (E) cos(H′λ(H

−1
λ (E))t + θ)

p(t) = −
√

2H−1
λ (E) sin(H′λ(H

−1
λ (E))t + θ) .

(2.279)

The problem is well-defined if the function Hλ : R+ → R satisfies the following properties:

1. ∃ limλ→0 Hλ(H0) = H0, i.e. in this limit Hλ reduces to the identity function;

2. Hλ is at least a class C1(R+) function, with the first derivative never vanishing in R+.

These conditions, together with the formulas (2.277)-(2.279), represent the main result of
this study. We point out that, depending on the mathematical model of deformation we are
considering, the above hypotesis can be restricted to hold in open subdomains of the positive
real line.

Before concluding this section we mention that the result we have obtained is intimately
connected to the one recently proposed in [44]. In that paper, the author showed that any one-
dimensional integrable system can be represented as an f -oscillator, and the (canonical) action-
angle variables (J, θ), defined as (the integral is taken along the full period of oscillations):

J(H)
.
=

1
2π

∮
p(x, H)dx , θ

.
=

∂S(x, J)
∂J

, (2.280)

with generating function S(x, J) .
=
∫ x p(x, H)dx, are the main ingredients of this representa-

tion. The Hamilton’s equations in such variables are given by:

J̇ = −∂H(J)
∂θ

= 0 , θ̇ =
∂H(J)

∂J
.
= ω(J) . (2.281)
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In particular, in our case the action variable is J = H0 = A+
0 A−0 , and the Hamiltonian function

reads:
H = Hλ(H0) = Hλ(J) = A+A− , (2.282)

where the complex functions A± can be expressed in terms of these variables as [44]:

A± =

√
H(J)

J
A±0 , (2.283)

and the underlying frequency of the motion is ω(J) = ∂H(J)
∂J , which is equivalent to (2.267) in

our notations. What we remark is that in our analysis we are considering the full Hamiltonian
H as the function representing the energy of the system. Every quantity has been therefore
expressed in terms of this integral of motion. This physical interpretation has a natural
algebraic counterpart that automatically arises when we think in terms of deformed Poisson
algebras. As a matter of fact, the crucial point is related to the inversion formula (2.269),
which connects the old Hamiltonian H0 with the new deformed one H. This formula, in fact,
is the one allowing us to close the deformed Poisson algebra in terms of its three “natural”
generators H, A±.

4.2.5 Another example of deformation

Now, we present a second example of a specific choice of f -deformation parametrized by λ.
Let us consider the classical counterpart of (2.251), described by the following Hamiltonian
function:

H = H1+λ
0 , (2.284)

where λ ∈ (−1, ∞) ⊂ R is the deformation parameter. The function Hλ : H0 → H = H1+λ
0 is

invertible and its inverse results4:

H−1
λ (H) = H

1
1+λ . (2.285)

Then, considering that H′λ(H0) = (1 + λ)Hλ
0 , we find:

H′λ(H
−1
λ (H)) = (1 + λ)H

λ
1+λ , (2.286)

and the non-linear Poisson algebra results:

{A+, A−} = −i(1 + λ)H
λ

1+λ , {H, A±} = ±i(1 + λ)H
λ

1+λ A± , (2.287)

where A± = H
λ
2

0 A±0 . Then, the solution characterizing this non-linear oscillator is:x(t) =
√

2E
1

2(1+λ) cos
(
(1 + λ)E

λ
1+λ t + θ

)
p(t) = −

√
2E

1
2(1+λ) sin

(
(1 + λ)E

λ
1+λ t + θ

)
.

(2.288)

Clearly, in the undeformed (i.e. λ→ 0) limit, the harmonic oscillator is recovered.

4 We remark that H0 is a positive definite quantity.
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4.2.6 Multidimensional extension and superintegrability of f -deformations

The multidimensional generalization of such systems can be easily obtained by applying
the coproduct map to the Hamiltonian H = Hλ(H0). This is because they can be seen as
coalgebraic sl(2, R) Hamiltonians. In particular, for “sufficiently good” functions Hλ, we can
apply the coproduct map ∆ : sl(2, R)→ sl(2, R)⊗N in the usual way:

∆[N](H) = Hλ(∆[N](H0)) , (2.289)

where H0 = H0(ξ+, ξ−) =
ξ++ξ−

2 is now a function on the sl(2, R) Poisson-Lie coalgebra. This
implies that:

∆[N](H(ξ+, ξ−)) = H(∆[N](ξ+), ∆[N](ξ−)) = Hλ

(
∆[N](ξ−) + ∆[N](ξ+)

2

)
(2.290)

D⊗N
= Hλ

(
p2 + x2

2

)
, (2.291)

where we used the usual representation of the sl(2, R). Thus, the superintegrability of such
systems is trivially ensured. The same functions obtained by taking the images of the 2N − 3
left and right Casimirs C[m](x, p),C[m](x, p) (m = 2, . . . N), together with the components Iij
(i, j = 1, . . . , N) of the Demkov-Fradkin tensor, are first integrals of motion also for these
f-deformed systems. For the sake of completeness, let us mention that by using the dressed
ladder operators A± = A±(x, p), it is possible to write down a deformed version of both the
angular momentum and the DF tensor. In particular, within the convention A±i

.
= A±(xi, pi),

we can write:
Lλij = −i (A+

i A−j − A+
j A−i ) =

√
Hλ(H0(xi, pi))Hλ(H0(xj, pj))

H0(xi, pi)H0(xj, pj)
Lij

Iλij = A+
i A−j + A+

j A−i =

√
Hλ(H0(xi, pi))Hλ(H0(xj, pj))

H0(xi, pi)H0(xj, pj)
Iij ,

(2.292)

for i, j = 1, . . . , N. Clearly, these quantities also Poisson commute with the ND Hamiltonian
(2.291) and, in the λ→ 0 limit, smoothly tranforms to the undeformed angular momentum
and DF tensor components.

4.2.7 Concluding remarks and open perspectives

The aim of the present section is to show that the classical factorization method has a natural
application in the framework of f -deformations. In fact, by means of the factorization tech-
nique we have fully solved the entire class of f -oscillators, writing down an explicit solution
for the phase space trajectories, valid for the entire family of deformations. It is interesting to
point out that all the information needed to solve this family of Hamiltonian systems, are in
fact related to the properties of the function Hλ, which maps the old undeformed Hamiltonian
onto the new f -deformed ones. In fact, we have shown that in order to close the deformed
Poisson algebra in terms of the three (dressed) generators H and A±, we automatically obtain
a restriction for the class of functions that we can implement to “ f -deform” the original
system H0. Regarding the question as it was posed in the introduction it is obvious that,
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qualitatively, the entire class of deformations leads to the same physical result. Any such
f -deformation on a one-dimesional harmonic oscillator will lead to a change in the frequency
and in the amplitude, although the shape of the phase space trajectories will remain the same.
We should point out the difference in interpretation when compared to [42, 43]. There, the
authors consider H0 to be the energy of the system, while here we use the whole Hamiltonian.
Both quantities are conserved during the evolution. To argue in favor of the interpretation
used here, take the quantum expression we started with. There, the spectrum of the total
Hamiltonian is the energy of the system. On the other hand, using H0 would be equivalent to
take the energy in the quantum case to be simply the one of the usual harmonic oscillator.
Along those lines, we should also note that we take x as the actual coordinate, the one with
physical meaning. We could also argue that these are only convenient coordinates, so we
could write the deformed system as a nonlinear expression. As we have shown, it is also
possible to describe these systems by {X, P} coordinates, related in the quantum case to the
original f -boson algebra. This, along with an investigation regarding the Poisson algebra, will
be further developed in the future.

Actually, many other possible directions could be taken. First of all, since we showed
this connection between the Poisson algebra generators and f -deformations, it would be
interesting to construct f -deformations for systems other than the harmonic oscillator [32]. In
fact, dressing the undeformed generators of the deformed Poisson algebras, we should be
able to construct these kind of deformations for other systems.
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4.3 factorization and classical sga for ms systems on curved
spaces

4.3.1 Motivations and definitions

In a paper of 1992 [6] V. Perlick showed that the Bertrand theorem [3] arises naturally also in
General Relativity. In particular, the aim of the author was to present the relativistic analogue
of Bertrand’s theorem, by providing all spherically symmetric and static spacetimes whose
bounded trajectories are periodic, giving rise to the so-called Bertrand spacetimes. His result can
be summarized as follows: let us consider a static 3 + 1 dimensional spherically symmetric
spacetime (M×R, η), where M is a 3-manifold and η is the Lorentzian metric:

η
.
=

3

∑
µ,ν=0

ηµνdxµdxν =
3

∑
i.j=1

gij(x)dxidxj −V−1(r)dt2 (3.293)

= h2(r)dr2 + r2(dθ2 + sin2 θdϕ2)−V−1(r)dt2 (3.294)
.
= g−V−1(r)dt2 , (3.295)

where g is a Riemannian metric on the 3-manifold in the coordinate system ξ = (r, θ, ϕ) and
h(r), V(r) are two smooth functions. The Lorentzian (3 + 1)-manifold (M×R, η) is defined
to be a Bertrand spacetime if, besides to be static and spherically symmetric, for each point of M
there exists a circular (r = constant) trajectory passing through it, and such circular trajectories
are stable. Under these assumptions, Perlick succeeded in classyfing all such spacetimes. In
particular, he obtained two multiparametric families of metrics ηI , ηI I by deriving the explicit
form of the functions h(r), V(r). Precisely, he found that (M, η) is a Bertrand spacetime iff:

ηI =
1

β2(1 + Kr2)
dr2 + r2(dθ2 + sin2 θ dϕ2)−

(
G +

√
1
r2 + K

)−1dt2

η±I I =
2(1− Dr2 ±

√
(1− Dr2)2 − Kr4)

β2((1− Dr2)2 − Kr4)
dr2 + r2(dθ2 + sin2 θ dϕ2)+

−
(
G∓ r2(1− Dr2 ±

√
(1− Dr2)2 − Kr4)−1)−1dt2 ,

(3.296)

where D, G and K are real constants, and β = m
n ∈ Q. These two metrics are linked to a pair

of Hamiltonian systems whose equations of motion define trajectories that are coincident with
the timelike geodesic determined by the metrics ηI and η±I I , the so-called Perlick’s systems of
type I and I I, namely:

H(β,K,G)
I = β2(1 + Kr2)

p2
r

2
+

L2

2r2 + G +
√

1
r2 + K

H(β,K,D,G,±)
I I =

β2((1− Dr2)2 − Kr4)

2(1− Dr2 ±
√
(1− Dr2)2 − Kr4

p2
r

2
+

L2

2r2 + G∓ r2

1− Dr2 ±
√
(1− Dr2)2 − Kr4

,

(3.297)

where, as usual, L2 = p2
θ +

p2
ϕ

sin2 θ
. These Hamiltonians can be therefore regarded as describ-

ing particles moving on a non-Euclidean three-dimensional space subjected to an “intrin-
sic”potential whose physical meaning was apparently not pointed out by Perlick in his original
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paper. Neverthless, under the above hypotheses the classification is complete and contains
as subcases, for a suitable choice of the parameters, other known families of spherically
symmetric superintegrable systems, such as models defined on flat spaces, constant curvature
spaces, Iway - Katayama and Darboux spaces [128]. These results have been extensively studied
in the literature, since they provided the main ingredients for a generalization of the Bertrand
theorem [3]. In particular, along this way in a remarkable paper [5], the authors showed
that these Hamiltonians are superintegrable, by constructing a generalized version of the
Laplace-Runge-Lenz vector, allowing them to propose a theorem that extended the Bertrand
result for curved spaces. The theorem asserts that if H is an Hamiltonian function associated to
a Bertrand spacetime, i.e., an autonomous, spherically symmetric natural Hamiltonian system on a
Riemannian 3-manifold (M, g) satisfying the above mentioned conditions, then:

• H is of the form (3.297);

• The potential V(r) is the intrinsic Kepler or oscillator potential in (M, g);

• H is superintegrable.

In particular, the second statement of the theorem was firstly investigated in [7], where the
authors showed that for any Bertrand’s spacetime the potential V(r) is either an intrinsic
Kepler–Coulomb or harmonic oscillator potential on its associated Riemannian 3-manifold
(M, g), thus providing a physical interpretation of these Hamiltonians which was missing
in the original Perlick’s work. Thereafter, the same authors extended the Perlick’s results to
any arbitrary dimensions N and expressed them in a conformally flat form [54]. In this case
timelike geodesics in an (N + 1)-dimensional spacetime (MN , η), where MN is a N-manifold
equipped with metric:

η = g−V−1(r)dt2 = f 2(|x|)|dx|2 −V−1(|x|)dt2

= f 2(r)(dr2 + r2dΣ2
(N−1))−V−1(r)dt2 , (3.298)

where |x| =
√

x2 = r, with x = (x1, . . . , xN) ∈ RN and dΣ2
(N−1)

.
= ∑N−1

j=1 dθ2
j ∏

j−1
k=1 sin2 θk is the

metric of the unit (N − 1)-sphere SN−1, are related to the trajectories of the N-dimensional
classical Hamiltonian in M given by:

H(x, p) =
p2

2 f 2(|x|) + V(|x|)

=
p2

r +
L2

r2

2 f 2(r)
+ V(r) , (3.299)

where p =
√

p2, pr is the radial momentum canonically conjugated to the radial coordinate
r and L2 .

= ∑N−1
j=1 p2

θj
∏

j−1
k=1

1
sin2 θk

is the total angular momentum squared. The motion takes
place in a Riemannian N-manifold characterized by the metric:

gij = f 2(r)δij, (3.300)

with f (r) playing the role of conformal factor of the Euclidean metric g0 = |dx|2 .
= ∑N

j=1 dx2
j ,

with scalar (in general non-constant) curvature given by [95]:

R(r) = (1− N)
(N − 4) f ′(r)2 + f (r)(2 f ′′(r) + 2(N − 1)r−1 f ′(r))

f (r)4 . (3.301)
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Here hyperspherical coordinates have been introduced. They are given by a radial coordinate
r ≥ 0 and N− 1 angular coordinates θj, with θk ∈ [0, π) for 1 ≤ k ≤ N− 2, and θN−1 ∈ [0, 2π),
together with their canonical conjugated momenta pr, pθj , (j = 1, . . . , N − 1). In the ambient
space RN , they are defined as [52]:{

xj = r cos θj ∏
j−1
k=1 sin θk (1 ≤ j ≤ N − 1)

xN = r ∏N−1
k=1 sin θk ,

(3.302)

where any product ∏l
m for m > l is assumed to be equal to 1. Together with these set of

coordinates, their conjugated momenta are given by:


pj = pr cos θj ∏

j−1
k=1 sin θk +

cos θj

r ∑
j−1
l=1

∏
j−1
k=l+1 sin θk

∏l−1
m=1 sin θm

cos θl pθl −
sin θj

r ∏
j−1
k=1 sin θk

pθj

pN = pr ∏N−1
k=1 sin θk +

1
r ∑N−1

l=1
∏N−1

k=l+1 sin θk

∏l−1
m=1 sin θm

cos θl pθl ,

(3.303)

where the sum ∑l
m such that l < m is assumed to be zero. Clearly, the notion of intrinsic

potential have been consequently extended to the N dimensional case. At the end of the game,
the authors showed that the Perlick’s Hamiltonians, after a change of variables and various
redefinitions of the parameters can be cast in the form [54]:

H(β,k)
I = r2(r−β + krβ)2 p2

2
+ µ(r−β − krβ)

H(γ,λ,δ)
I I =

r2(r−2γ − λ2r2γ)2

r−2γ + λ2r2γ − 2δ

p2

2
+

ν

r−2γ + λ2r2γ − 2δ
,

(3.304)

where A,B ∈ R are the coupling constants of the potential and β, γ ∈ Q are rational
parameters. The flat harmonic oscillator and Kepler-Coulomb systems are recovered in the
particular cases: 

H(1,0)
I =

p2

2
+

µ

r
(KC system)

H(1,0,0)
I I =

p2

2
+ ν r2 (HO system) ,

(3.305)

highlighting the intrinsic nature of the two families of Hamiltonians. In particular, such
an intrinsic nature can be understood geometrically from the following definitions. In a N-
dimensional spherically symmetric space MN with coordinates (x1, . . . , xN) ∈ RN , endowed
with the metric (3.300), the Laplace-Beltrami operator reads:

∆MN =
N

∑
i,j=1

1
√

g
∂xi

√
g gij∂xj , g .

= det gij ,

The radial symmetric Green function V(|x|) = V(r) on MN (up to multiplicative and additive
constants) is defined as the positive nonconstant solution to the following equation [54]:

∆MN V(r) = 0 on MN\{0} , (3.306)
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that is:

V(r) =
∫ r dr′

r′2 f (r′)
. (3.307)

In particular, the intrinsic KC potential on the ND space MN is defined as:

VKC(r)
.
= a V(r) + b, (3.308)

whereas the intrinsic oscillator potential is defined to be proportional to the inverse square of
the KC potential, namely:

VHO(r)
.
=

c
V2(r)

+ d, (3.309)

where a, b, c and d are real constants. By applying these definitions to the two families of
Bertrand systems, it follows [7] that type I and type II Hamiltonians (3.304) always define
respectively intrinsic KC systems and oscillator potentials [54].

As we mentioned such systems have been shown to be superintegrable in the three-
dimensional space thanks to the existence of a generalized version of the LRL vector. In
the N-dimensional case 2N − 3 conserved quantities are ensured thanks to an underlying
coalgebra symmetry. In fact, the general Hamiltonian (3.299) is defined on sl(2, R) coalgebra
spaces, being:

H(ξ
[N]
− , ξ

[N]
+ ) =

ξ
[N]
+

2 f 2(
√

ξ
[N]
− )

+ V(

√
ξ
[N]
− ) , (3.310)

and we know that such systems are QMS by construction thanks to the existence of the left
and right Casimirs of the algebra.

Among the systems of the form (3.299), considerable attention has been paid to a couple
of special cases. They are two MS N-dimensional Hamiltonian systems associated to a
Darboux type-III metric and to a Taub-NUT metric respectively. From now on we will refer
to them as the Darboux III (D-III) and Taub-NUT (TN) Hamiltonian systems. They have been
carefully investigated because of their remarkable properties and a plethora of papers can
be found in the literature dedicated to their analysis, both for the classical and the quantum
versions [47–56]. On one hand, from the geometrical point of view, both systems pertain to
the Perlick’s family II, so they can be regarded as intrinsic oscillators on the corresponding
spherically symmetric curved space. On the other hand, from an analitycal point of view,
they represent a one-parameter superintegrable deformation of the N-dimensional isotropic
harmonic oscillator (the one associated to the Darboux space) and of the Kepler-Coulomb
system (the one associated to the Taub-NUT space) respectively.

4.3.2 A superintegrable system associated with the Darboux III metric

The classical D-III system is defined by the Hamiltonian function:

Hλ(x, p) = Tλ(x, p) + Vλ(x) =
p2

2(1 + λx2)
+

ω2x2

2(1 + λx2)
, (3.311)

with ω > 0 and λ ∈ R, where x = (x1, . . . , xN) ∈ RN , p = (p1, . . . , pN) ∈ RN . In this case,
the kinetic energy term:

Tλ(x, p) =
N

∑
i,j=1

gij(x)pi pj , (3.312)
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generates the geodesic motion of a particle with unit mass on a conformally flat space
MN = (RN ; g), which is the Riemannian manifold endowed with the conformal metric:

ds2
λ =

N

∑
i,j=1

gij(x)dxidxj = (1 + λ|x|2)|dx|2

= (1 + λr2)(dr2 + r2dΣ2
(N−1)) , (3.313)

and non-constant scalar curvature:

Rλ(r)
.
= R(r)| f (r)=√1+λr2 = −λ(N − 1)

2N + 3λ(N − 2)r2

(1 + λr2)3 . (3.314)

Such a curved space represents a N-dimensional spherically symmetric generalization of the
Darboux surface of type III [83, 84, 97], which was constructed in [95]. This N-dimensional
Hamiltonian has been shown to be maximally superintegrable in ref. [47]. In fact, because of the
hyperspherical symmetry, it is endowed with an so(N) Lie-Poisson symmetry ensuring the
existence of the usual 2N − 3 conserved quantities:{

C[m](x, p) = ∑1≤i<j≤m(xi pj − xj pi)
2

C[m](x, p) = ∑N−m<i<j≤N(xi pj − xj pi)
2 (m = 2, . . . , N) ,

(3.315)

with C[m] = C[m] = L2. Moreover, other N(N+1)/2 conserved quantities are provided by a
λ-deformation of the Demkov-Fradkin tensor, whose components:

Iλij =
pi pj

ω
+ (ω− 2λ

ω
Hλ)xixj (i, j = 1, . . . N) , (3.316)

Poisson-commute with the Hamiltonian Hλ. In particular, the elements of the subset
O = {Hλ, C[m], C[m], Iλii} for (m = 2, . . . , N), for a fixed index i, are functionally independent,
providing in this way the 2N − 1 conserved quantities required for the maximal superinte-
grability. Moreover, each of the three sets {Hλ; C[m]}, {Hλ; C[m]} (m = 2, . . . , N) and {Iλii} for
(i = 1, . . . , N) is formed by N functionally independent functions in involution.
This Hamiltonian system, by using the coordinates (3.302)-(3.303), takes the form:

Hλ(r, pr) = Tλ(r, pr) + Vλ(r) =
p2

r +
L2

r2

2(1 + λr2)
+

ω2r2

2(1 + λr2)
, (3.317)

which, at a fixed value of the total angular momentum |L| = l ∈ R+, describes an effective
one-dimensional radial dynamics. Moreover, when the parameter λ tends to zero, it smoothly
tranforms to the isotropic harmonic oscillator:

limλ→0 Hλ(r, pr) = H0(r, pr) =
p2

r
2 + L2

2r2 +
ω2r2

2

limλ→0 ds2
λ = ds2

0 = dr2 + r2dΣ2
(N−1)

limλ→0 Rλ(r) = R0(r) = 0 ,

(3.318)

which means that it can be regarded as a genuine λ-deformation of the N-dimensional HO
system. According to the definitions given in (3.309), it easy to show that this Hamiltonian
system define an intrinsic oscillator on its underlying Riemannian manifold. In fact, by
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considering the conformal factor f (r) =
√

1 + λr2 appearing in the metric, taking into account
of the above definitions we can calculate the integral (3.307), thus obtaining:

V(r) = −
√

1 + λr2

r
, (3.319)

which, taking into account of (3.309) under the identification c = ω2

2 and d = 0, gives rise to
the potential:

Vλ(r) =
c

V2(r)
+ d =

ω2r2

2(1 + λr2)
, (3.320)

which is the one appearing in the Darboux III Hamiltonian Hλ. This intrinsic oscillator for
N = 3 appears as a particular case of the so-called multifold Kepler 3-dimensional Hamiltonians
constructed in [129, 130] as generalizations of the MIC-Kepler and Taub-NUT systems [50].
Geometrically, the Hamiltonian Hλ describes different classes of dynamical systems depending
on the sign selected for the deformation parameter λ. In fact, even if the superintegrability
properties hold ∀λ ∈ R, the underlying space and the related potential change accordingly to
the sign of λ. The Darboux space defines in this way three different underlying manifolds:

λ > 0 : MN = (RN , g) gij = (1 + λx2)δij

λ < 0 : MN = (B|x|c , g) gij = (1− |λ|x2)δij

with B|x|c = [0, |x|c) |x|c
.
= 1/

√
|λ| (interior space)

λ < 0 : MN = (RN/B|x|c , g) gij = (|λ|x2 − 1)δij

with RN/Brc = (rc, ∞) (exterior space) ,

(3.321)

and the scalar curvature changes accordingly [50]. Here B|x|c denotes the open ball centered
at the origin of radius |x|c (the critical value for the metric and for the Hamiltonian Hλ).

4.3.3 A superintegrable system associated with the Taub-NUT metric

The classical TN system is defined by the Hamiltonian function on R2N :

Hη(x, p) = Tη(x, p) + Vη(x) =
|x|
|x|+ η

p2

2
− k

η + |x| , (3.322)

where k, η ∈ R, x = (x1, . . . , xN) ∈ RN , p = (p1, . . . , pN) ∈ RN . The kinetic energy term:

Tη(x, p) =
N

∑
i,j=1

gij(x)pi pj , (3.323)

is the one generating the geodesic motion of a particle with unit mass on a conformally flat
space MN = (RN/{0}; g), which is the Riemannian manifold with the conformal metric:

ds2
η =

N

∑
i,j=1

gij(x)dxidxj =

(
1 +

η

|x|

)
|dx|2 (3.324)

=

(
1 +

η

r

)
(dr2 + r2dΣ2

(N−1)) , (3.325)
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and non-constant scalar curvature:

Rη(r)
.
= R(r)| f (r)=√1+ η

r
= η(N − 1)

4(N − 1)r + 3(N − 2)η
4r(r + η)3 . (3.326)

This system is naturally related to the Taub-NUT system [131–135] since MN can be regarded
as the (Riemannian) N-dimensional Taub-NUT space [93]. This N-dimensional Hamiltonian
has been shown to be maximally superintegrable in [49]. In fact, as for the Euclidean KC system,
it is endowed with an so(N) Lie-Poisson symmetry, due to the fact that it can be constructed
on an N-dimensional spherically symmetric space. The maximal superintegrability is ensured
thanks to the existence of the usual 2N − 3 right and left conserved quantities given by the
Casimirs of the sl(2, R) and the N conserved quantities:

Rηi =
N

∑
j=1

(xj pi − xi pj)pj +
(k + ηHη)

|x| xi (i = 1, . . . , N), (3.327)

which are the components of an N-dimensional η-deformed version of the LRL vector. In
particular one can take the subset O = {Hη , C[m], C[m],Rηi} for (m = 2, . . . , N) that, for a fixed
index i, is functionally independent, providing in this way the 2N − 1 conserved quantities
required for the maximal superintegrability. Moreover, each of the two sets {Hη ; C[m]},
{Hη ; C[m]} (m = 2, . . . , N) is formed by N functionally independent functions in involution.
In total analogy with the Euclidean case, the square of the Laplace-Runge-Lenz vector turns
out to be radially symmetric, and expressible in terms of the Hamiltonian and of the angular
momentum, e.g.:

Rη
2 =

N

∑
i=1

R2
ηi = 2L2Hη + (k + ηHη)

2 . (3.328)

Moreover, even in this deformed case, together with the Lie-Poisson algebra so(N) com-
mutation relations generated by the N(N−1)

2 angular momenta Lij = xi pj − xj pi (i < j;
i, j = 1, . . . , N), namely:

{Lij,Lik}(x,p) = Ljk {Lij,Ljk}(x,p) = −Lik {Lik,Ljk}(x,p) = Lij (i < k < j) (3.329)

the deformed LRL vector closes the quadratic Poisson algebra:

{Rηi,Rη j}(x,p) = −2HηLij (i < j ; i, j = 1, . . . , N) , (3.330)

that, together with the Poisson brackets:

{Lij,Rηk}(x,p) = δikRη j − δjkRηi , (3.331)

leads to an so(N + 1) symmetry algebra, which in this case is obtainable by means of the
definitions:

L̃0i
.
=

Rηi√
−2Hη

, L̃ij
.
= Lij . (3.332)

In fact, taking into account (3.332), it holds:

{L̃ij, L̃ik}(x,p) = L̃jk {L̃ij, L̃jk}(x,p) = −L̃ik {L̃ik, L̃jk}(x,p) = L̃ij (i < k < j) (3.333)

84



4.3 factorization and classical sga for ms systems on curved spaces

with i, j, k = 0, . . . , N. Clearly, in dimensions N = 3, if we take the limit η → 0 we recover the
relations of the original so(4) algebra (1.36) of the KC system. Also in this case, by using the
coordinates (3.302)-(3.303), we can write the system in radial form:

Hη(r, pr) = Tη(r, pr) + Vη(r) =
r

r + η

(
p2

r
2

+
L2

2r2

)
− k

r + η
. (3.334)

When the parameter η tends to zero, for positive values of the coupling constant k, it smoothly
tranforms to the KC system:

limη→0 Hη(r, pr) = H0(r, pr) =
p2

r
2 + L2

2r2 − k
r

limη→0 ds2
η = ds2

0 = dr2 + r2dΣ2
(N−1)

limη→0 Rη(r) = R0(r) = 0 ,

(3.335)

which implies that it can be regarded as a genuine MS η-deformation of the N-dimensional KC
system. Once again, according to the definitions given in (3.309), it easy to show that (3.334)
defines an intrinsic oscillator on its underlying Riemannian manifold. In fact, by considering

the conformal factor f (r) =
√

1 + η
r appearing in the metric, taking into account of the above

definitions we can calculate the integral (3.307), which gives (up to multiplicative and additive
constants):

V(r) = −
√

1 +
η

r
. (3.336)

Taking into account of (3.309) under the identification c = −d = k/η, we obtain the potential:

Vη(r) =
c

V2(r)
+ d = − k

r + η
, (3.337)

which is the one appearing in the Taub-NUT Hamiltonian Hη . Before concluding, we should
also remark that geometrically speaking the Hamiltonian Hη contains different classes of
dynamical systems depending on the sign of the parameter η. Analogously to the D-III case,
the sign of η determines the domain of definition of the radial coordinate r in MN :

η > 0 : MN = (RN/{0}, g) gij = (1 + η
|x| )δij

η < 0 : MN = (B|x|c , g) gij = (1− |η||x| )δij

with B|x|c = (|x|c, ∞) |x|c
.
= |η| ,

(3.338)

and the scalar curvature changes accordingly [55]. In this case we have indicated with Brc the
open ball centered at the origin of radius |x|c = |η| (the singularity of the metric and of the
Hamiltonian Hη).

In what follows, our main goal is to investigate the one-dimensional effective radial dy-
namics of these two MS Hamiltonian systems by means of the classical factorization method.
Following as a guideline the papers [136, 137], where the KC system has been investigated,
we will start by presenting the results regarding TN [36]. In particular, we will construct the
solution of its radial equation of motion algebraically. Moreover, we will present a standard
classical analysis for the closed orbits and we will also discuss a deformed version of the
third Kepler’s law for the planetary motion. After that, we will describe analogous results for
the D-III system based on the work [37], the latter obtained in a joint collaboration with our
spanish colleagues.
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4.4 the classical taub-nut system: factorization, classical sga
and solution of the motion

As already mentioned we are interested in investigating the one-dimensional effective radial
dynamics described by the classical model (3.334). In particular, we want to adapt the results
derived in [136, 137] for the KC problem to this η-deformed KC system, therefore our starting
Hamiltonian is (in the classical case we will keep m 6= 0 in the entire construction):

Hη = Tη(r, pr) + Vη(r) =
rp2

r
2m(r + η)

+
l2

2mr(r + η)
− k

r + η
= Kη(r)H0 , (4.339)

where m, k and l are positive constants, η > 0 is the deformation parameter, pr is the radial
momentum, H0 is the “undeformed” Kepler-Coulomb Hamiltonian and

Vη(r) ≡ Veff(r) =
l2

2mr(r + η)
− k

r + η
, Kη(r)

.
=

r
r + η

. (4.340)

The main idea is to use the classical factorization method in classical mechanics to derive
algebraically the classical radial trajectories [32]. To this end, let us multiply the Hamiltonian
(4.339) by the factor r(r + η):

r(r + η)Hη = r2
(

p2
r

2m
+

l2

2mr2 −
k
r

)
=

1
2m

(r2 p2
r + l2 − 2mkr). (4.341)

Now, as it has been done in the undeformed case by Kuru and Negro [136, 137], at any r 6= 0
we can factorize (4.341) as follows:

r2 p2
r − 2mr(k + ηHη)− 2mr2Hη = A+

η A−η + γ(Hη) = −l2 , (4.342)

where for the time being A±η = A±η (r, pr) are unknown functions of r, pr. Paraphrasing
the construction of the two aforementioned authors for the undeformed case, we make the
following ansatz for A±η :

A±η =

(
∓irpr + ar

√
−Hη +

b(Hη)√
−Hη

)
e± fη(r,pr) . (4.343)

The “arbitrary function” fη(r, pr) will be determined by requiring the closure of the Poisson
algebra generated by H and A±. More precisely, we impose:

{Hη , A±η } = ∓iα(Hη)A±η (4.344)

{A+
η , A−η } = iβ(Hη) , (4.345)

where the functions α, β wait to be determined. Inserting A±η in (4.342) we get:

a =
√

2m , b(Hη) = −
√

m
2
(k + ηHη) , γ(Hη) =

m(k + ηHη)2

2Hη
, (4.346)

and requiring that A±η obey the proper Poisson brackets we arrive at:

fη(r, pr) = −i

√
2
m

rpr
√
−Hη

(k− ηHη)
, α(Hη) = −

√
2
m

2Hη
√
−Hη

(k− ηHη)
, β(Hη) =

√
2m

(k + ηHη)√
−Hη

, (4.347)
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and finally:

A±η =

(
∓irpr + r

√
−2mHη −

√
m
2
(k + ηHη)√
−Hη

)
e
∓i

√
2
m

rpr
√
−Hη

(k− ηHη) (4.348)

{Hη , A±η } = ±i

√
2
m

2Hη

√
−Hη

(k− ηHη)
A±η , {A+

η , A−η } = i
√

2m
(k + ηHη)√
−Hη

. (4.349)

A mandatory requirement is that in the limit η → 0 one gets back the undeformed Poisson
algebra that is in fact, for 2m = k = 1, the result found in [136,137]. To make the identification
even more perspicuous we can introduce the quantity:

A0
η

.
=

√
m
2
(k + ηHη)√
−Hη

, (4.350)

entailing the following su(1, 1) Poisson-Lie algebra relations:

{A0
η , A±η } = ∓iA±η , {A+

η , A−η } = 2iA0
η . (4.351)

In analogy to the undeformed case, it is reasonable to think at this algebra as the classical
analog of a spectrum generating algebra for the TN system. At this point, we can introduce
the two “time-dependent constants of the motion”:

Q±η = A±η e∓iα(Hη)t , (4.352)

such that
dQ±η

dt = {Q±η , H} + ∂tQ±η = 0. These dynamical variables take complex values
admitting the polar decomposition Q±η = q0 e±iθ0 and allowing in fact to determine the motion,
which turns out to be bounded for E = −|E| < 0. Indeed we have:(

∓irpr + r
√

2m|E| −
√

m
2
(k− η|E|)√
|E|

)
e∓i
(√

2
m

rpr
√
|E|

(k+η|E|)+
√

2
m

2|E|
√
|E|

(k+η|E|) t
)
= q0 e±iθ0 , (4.353)

or else:
−irpr + r

√
2m|E| −

√m
2
(k−η|E|)√
|E|

= q0 ei
(√

2
m

rpr
√
|E|

(k+η|E|)+
√

2
m

2|E|
√
|E|

(k+η|E|) t+θ0

)
+irp− r + r

√
2m|E| −

√m
2
(k−η|E|)√
|E|

= q0 e−i
(√

2
m

rpr
√
|E|

(k+η|E|)+
√

2
m

2|E|
√
|E|

(k+η|E|) t+θ0

)
,

(4.354)

where q0 = q0(η, E) .
=
√
−l2 + m(k−η|E|)2

2|E| (from A+
η A−η + γ(Hη) = q2

0 + γ(Hη) = −l2). Sum-
ming and subtracting (4.354) we obtain:

2r
√

2m|E| −
√

2m (k−η|E|)√
|E|

= 2q0 cos
(√

2
m

rpr
√
|E|

(k+η|E|) +
√

2
m

2|E|
√
|E|

(k+η|E|) t + θ0

)
rpr = −q0 sin

(√
2
m

rpr
√
|E|

(k+η|E|) +
√

2
m

2|E|
√
|E|

(k+η|E|) t + θ0

)
.

(4.355)
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It is immediate to verify that taking the sum of the square of these two equations we obtain
the equation (4.342) restricted to the level surface H = −|E|. Finally, thanks to the above
relations, we are able to obtain t as a function of r:

t(r) =
1

Ωη(E)

[
arccos

(
−
√

m
2

(
(k− η|E|)− 2|E|r

)
q0
√
|E|

)
−
√

2
m

√
|E|

k + η|E|

√
2mr(k− η|E|)− 2m|E|r2 − l2 − θ0

]
,

(4.356)
where:

Ωη(E) =

√
2
m

2|E|
√
|E|

k + η|E| ≡ α(E) (4.357)

is the angular frequency of the motion. Concerning (4.356) it is evident that, due to the
presence of the “inverse cosine” function, t is a multivalued function of r defined mod 2π/Ω.
To recover univaluedness, we have to introduce a “uniformization map” which is trivially
given by the periodic function cos(Ωt). In the limit η → 0, the results for the flat Kepler-
Coulomb are recovered (see [136, 137]). Thus, at this level, we can say that the radial motion
in time of the TN system has been algebraically determined.
A number of plots are reported, showing the behavior of Veff(r)

.
= l2

2mr(r+η)
− k

r+η as a function
of r, and the orbits on the phase plane (r, pr) for different values of the deformation parameter
(for 2l = m = k = 1, E = −1, in appropriate units).

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

2

r

p 0.5 1.0 1.5 2.0
r

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Veff (r)

Figure 3.: phase space (r, pr) and effective potential Veff(r) for η = 0.1 .

4.4.1 Explicit formula for the orbits and third Kepler’s law

As we have shown in the section 4.3.3 dedicated to the TN system, our system is maximally
superintegrable and its maximal superintegrability is strictly related to the existence of the
Runge-Lenz vector: then, as it happens for the standard Kepler-Coulomb system, we expect
that this extra symmetry will play a crucial role in determining the shape of the orbits. As is
well known, in the undeformed case the orbits are conic sections, namely ellipses for bounded
trajectories. To identify the analytic form of the orbits when η 6= 0, we will consider the
simplest and more physical case, corresponding to η > 0, also in order to present a deformed
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Figure 4.: phase space (r, pr) for η = 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25 .

version of the third Kepler’s law. To this end, we will closely follow [8]. In particular, the LRL
vector Rη, when evaluated on-shell, can be written as:

Rη =
1
m
(L× p) +

k− η|E|
|x| x . (4.358)

Again, we see that its expression is formally identical to the one holding in the flat case and is
obtained by letting k→ kη

.
= k− η|E| > 0. For its square we can write:

Rη
2 = k2

η −
2l2|E|

m
. (4.359)

Moreover, it holds:
|Rη||x| cos θ = − l2/m + kη |x| , (4.360)

where the second equality has been calculated by considering the cartesian components of
both x and Rη. At this point, by easy algebraic manipulations, we can write the equation for
the orbits in terms of r .

= |x| and θ, getting:

r(θ) =
pη

1− εη cos θ
, (4.361)

(pη being the parameter and εη the eccentricity of the ellipses) which is formally the same
expression holding in the flat case. But now we have:{

pη ≡ p(E, η) = l2/mkη

εη ≡ ε(E, η) = |Rη|/kη ,
(4.362)

so that ε2
η = 1− 2|E|l2/mk2

η. Clearly, in the above expression, θ is the angle between the vectors
x and Rη. To check whether the third Kepler’s law holds in the deformed case as well, we
have to compute the ratio τ2/a3 = 4π2/a3Ω2, where in our deformed case:

Ωη(E) =
4|E|

√
|E|√

2m(k + η|E|)
, (4.363)
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and a is the larger semi-axis defined as a = r++r−
2 . The inversion points r± (where pr+ =

pr− = 0) are obtained by taking the roots of the equation:

r2 − (k− η|E|)
|E| r +

l2

2m|E| = 0 ⇒ rη± =
k− η|E|

2|E| ±

√
(k− η|E|)2

4|E|2 − l2

2m|E| , (4.364)

entailing:

aη =
rη+ + rη−

2
=

k− η|E|
2|E| . (4.365)

In the limit η → 0 we recover the larger semi-axis of the flat case, and then:

τ2

a3 =
4π2m

k
. (4.366)

We remind that the so-called third Kepler’s law is obtained by assuming that the ratio m
M

between the mass of the planet and the mass of the sun be very small, so that the reduced
mass µ

.
= mM/m+M can be identified with the mass of the planet. The substitution k = GMm

leads to: τ2

a3 = 4π2m
k = 4π2

GM . In the deformed case the analogous formula reads:

τ2
η

a3
η

= 4π2m
(k + η|E|)2

(k− η|E|)3 . (4.367)

The Kepler’s third law is then violated as the r.h.s. of (4.367), again assuming k = GMm,
keeps its dependence upon m and E:

τ2
η

a3
η

= 4π2m
(k + η|E|)2

(k− η|E|)3 ≈
4π2

GM
(
1 +

5η|E|
GMm

+ O(η2)
)

. (4.368)

Incidentally, we observe that the identification of the reduced mass with the mass of the planet
might not always be acceptable. In the solar system, for example, the mass of Jupiter is about
0.1% of the mass of the Sun [8].

4.4.2 Explicit evaluation of the trajectory: comparison with algebraic method

For the sake of completeness we present here the explicit derivation of the motion in time by
using the standard analytic method [8]. A comparison with the results obtained through the
Spectrum Generating Algebra will provide a definite proof of the correctness of the algebraic
approach. The starting point is the usual Hamiltonian (4.339):

Hη =
r

r + η

[
p2

r
2m

+
l2

2mr2 −
k
r

]
. (4.369)

The radial momentum pr is related to the radial component of the velocity through the
Hamilton’s equation:

ṙ = ∂pr Hη =
r

r + η

pr

m
⇒ pr =

r + η

r
mṙ . (4.370)
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Inserting in the Hamiltonian the expression of pr in terms of r and ṙ we obtain:

Hη =
r

r + η

[
(r + η)2

r2
m
2

ṙ2 +
l2

2mr2 −
k
r

]
. (4.371)

By solving the above expression with respect to ṙ(t) and setting Hη = E we get:

ṙ(t) = ±
√

2
m

r
r + η

√
E +

k + ηE
r
− l2

2mr2 . (4.372)

Comparing with the Euclidean case (η = 0), besides the coupling constant metamorphosis,
the essential difference consists in the presence of a nontrivial conformal factor. As a next
step, we calculate t(r) by taking the positive branch of the square root:

t(r)− t0 =

√
m
2

∫ r

r0

dr
r + η

r
√

E + k+ηE
r − l2

2mr2

=

√
m
2

∫ r

r0

dr√
E + k+ηE

r − l2

2mr2

+

√
m
2

η
∫ r

r0

dr

r
√

E + k+ηE
r − l2

2mr2

.

(4.373)
The two integrals involved in the above formula can be conveniently calculated by introducing
the so-called eccentric anomaly Ψη through the relation [8]:

r = aη(1− εη cos Ψη) . (4.374)

In the previous section we have already shown that aη = − k+ηE
2E and the eccentricity reads

εη =
√

1 + 2l2E
m(k+ηE)2 . Let us now pass to the explicit calculation of the two integrals contained

in (4.373), setting there E = −|E| < 0. It is not too difficult to arrive at the following results:√
m
2

∫ r

r0

dr√
−|E|+ k−η|E|

r − l2

2mr2

=

√
ma3

η

k− η|E|

∫ Ψη

0
dΨ′η(1− εη cos Ψ′η)

=

√
ma3

η

k− η|E| (Ψη − εη sin Ψη) , (4.375)

√
m
2

η
∫ r

r0

dr

r
√
−|E|+ k−η|E|

r − l2

2mr2

=

√
maη

k− η|E|η
∫ Ψη

0
dΨ′η =

√
maη

k− η|E|ηΨη . (4.376)

Hence, dividing and multiplying the output of the second integral by the same quantity aη

and rearranging the two integrals in a single expression, we get (with the initial data t0 = 0):

t(r) =

√
ma3

η

k− η|E|

(
η + aη

aη

)
Ψη −

√
ma3

η

k− η|E|εη sin Ψη , (4.377)

namely:

t(r) =

√
ma3

η

k− η|E|

(
η + aη

aη

)[
Ψη −

aη

η + aη
εη sin Ψη

]
=

1
Ωη(E)

[
Ψη −

aη

η + aη
εη sin Ψη

]
, (4.378)
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which is a η-deformed version of the Kepler’s equation [8]:

Ωη(E) t(r) = Ψη −
aη

η + aη
εη sin Ψη . (4.379)

The frequency of the motion is given by:

Ωη(E) =

√
k− η|E|

ma3
η

aη

η + aη
=

√
2
m

2|E|
√
|E|

k + η|E| , (4.380)

which is nothing but the same frequency appearing in the deformed Poisson algebra that we
have obtained algebraically. Now we have just to plug in the equation (4.379) the explicit
form of Ψη and check whether it coincides with the one derived via the algebraic method. By
solving for Ψη one gets:

Ψη = arccos
[

1
εη

(
1− r

aη

)]
, (4.381)

from which it follows:

Ωη(E)t(r) = arccos
[

1
εη

(
1− r

aη

)]
−

aη

η + aη

√
ε2

η −
(

1− r
aη

)2

. (4.382)

Equation (4.382) represents the trajectory calculated through the standard analytic method.
On the other hand, the equation (4.356) for the trajectory derived by means of the algebraic
method, after easy algebraic manipulations equation acquires the form:

Ωη(E)t(r) = arccos
[
− 1

εη

(
1− r

aη

)]
−

aη

η + aη

√
ε2

η −
(

1− r
aη

)2

. (4.383)

In other words, by the algebraic method we get t(r) evaluated for −εη . As we expected, this
expression is just the η−deformation of the results contained in [136, 137].
Here, some comments are in order, which seem to imply a sort of difference between the
classical and the quantum case. Namely, according to the results obtained in [55] in the
quantum case, for η > 0, one has a very simple coupling constant metamorphosis, amounting
just to replace in the Euclidean system k by k + ηE both in the expressions for the discrete
spectrum and for the corresponding eigenfunctions. However, in the classical case, just looking
at (4.372), it turns out that we have not just coupling constant metamorphosis. This is because,
besides the term k + ηE, there is an extra η dependence in the overall conformal factor. An
analogous behaviour, as we will see immediately, is exhibited by the classical D-III.

4.4.3 The case η < 0 : new features

This section is devoted to a terse investigation of the main features arising in the case k > 0
for negative values of the deformation parameter η. In this case the conformal factor r

r+η can be
more conveniently written as r

r−|η| which emphasizes the singularity at r = |η|. One relevant
question is whether the singularity can be overcome or not. In the first case there might be
trajectories intersecting the line r = |η|. In the second case the phase plane (r, ṙ) will consist
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of two non overlapping domains. In particular, for closed orbits one may ask under what
conditions the following (mutually excluding) inequalities for the inversion points hold:

rη− > |η| , rη+ < |η| . (4.384)

A careful analysis of (4.384) shows that to characterise the corresponding regions one has to
look at both parameters η and λ, a characteristic lenght scale defined5 as λ

.
= l2/2mk > 0, or

better at their ratio α
.
= |η|/λ, and at the behaviour of the effective potential:

Veff(r) =
l2

2mr(r− |η|) −
k

r− |η| = −
k
r

(
r− λ

r− αλ

)
. (4.385)

case α < 1

The most interesting situation occurs in the case α < 1, where one has indeed two non-
overlapping regions separated by the straight-line r = |η|.
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Figure 5.: potential Veff(r) for α = 4
5 . The straight horizontal lines represent the Energies

associated to the critical points.

• In the external domain r > |η| the conformal factor is positive. We have a Riemannian
manifold with non constant curvature and there will be closed trajectories whenever the
energy belongs to the (negative) open interval

(
0, Veff(r+)

)
, where Veff(r+) = −k

λ(1+
√

1−α)2

is the value of the effective potential at the critical point r+
.
= λ(1 +

√
1− α) (green line

in Figure 5).

• In the internal domain r < |η| the conformal factor is negative entailing that the kinetic
energy is also negative. In order to get a physically significant system we are naturally
led to define in this region a new Hamiltonian:

H̃η
.
= −Hη =

r
|η| − r

p2
r

2m
+ Ṽeff(r)

Ṽeff(r)
.
=

l2

2mr(|η| − r)
− k
|η| − r

.
(4.386)

5 We point out that in the case l = 0 the motion takes place on straight lines implying that no two-dimensional
closed orbits are allowed.
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As shown by Figure 6, after that transformation in the region 0 < r < |η|, the effective
potential acquires a typical ”confining” shape. There will be closed orbits for any positive
energy higher than Ṽe f f (r−), where r−

.
= λ(1−

√
1− α). We point out that the minimum

of the potential is a monotonically decreasing function of |η|, so that it goes to infinity
as |η| goes to zero: the parameter η governs the shape of the potential.
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Figure 6.: potential Veff(r) for the new Hamiltonian system, i.e. Ṽeff(r)
.
= −Veff(r) calculated

for α = 4
5 . The latter is contained into the region 0 < r < |η|.

In both regions, the we can characterize the solution t(r). In the domain r > |η|, we have
to change the sign of the parameter η in the formula (4.383). Conversely, in the domain
0 < r < |η|, we should factorize the new Hamiltonian H̃ following the same steps as in the
case η > 0.

case α > 1

Here the dynamics is certainly less interesting because no closed orbits will come out.
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Figure 7.: potential Veff(r) calculated for α = 2.
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In the region r > |η| the effective potential will be proportional to −(r− |η|)−1 while in the
bounded region 0 < r < |η| its image is the full real line and furthermore it exhibits an
inflection point at the value r̄ = λ

(
1− (α− 1)1/3 + (α− 1)2/3).

case α = 1

When the parameter α = 1 the situation is totally different from the previous cases and things
are definetely less clear. It looks like that the singularity could be overcome, in the sense
that it does not affect the potential term. By the way, a plot of the effective potential for this
particular value of the parameter α, i.e. Veff(r) = − k

r , shows that the distinction between the
two regions (r > |η|, r < |η|) seems to vanish, since we have a single continuous line with a
monotonically increasing behaviour (see Figure 8).
However, this is not the case because the singularity still appears in the kinetic term, that turns
out to be divergent at the boundary r = |η|. In any case, the dynamics is not so interesting
since no closed orbits are allowed.
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Figure 8.: potential Veff(r) calculated for α = 1. The centrifugal and gravitational contributions
add up to give the behaviour −kr−1. In this case the singularity in the effective
potential disappears.

4.5 the classical d-iii oscillator: factorization, classical sga
and solution of the motion

4.5.1 The undeformed case: isotropic harmonic oscillator

In this section we want to provide an analogous investigation for the D-III system. In
particular, before using the machinery of the classical factorization method to tackle the λ 6= 0
case, we will firstly review the results concerning the Euclidean case, in order to check our
future results in the flat (λ→ 0) limit. Therefore, let us consider the one-dimensiona radial
Hamiltonian:

H0(r, pr) = T0(r, pr) + V0(r) =
p2

r
2m

+
l2

2mr2 +
1
2

mω2r2 , (5.387)
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where r is the radial coordinate and pr is the radial momentum related to the particle of mass
m, frequency ω and conserved angular momentum l > 0. The effective potential is so given
by:

V0(r) ≡ V0,eff(r) =
l2

2mr2 +
1
2

mω2r2 . (5.388)

Clearly, in order to have closed orbits, the values of the energy have to be confined in the
region V0,eff(rmin) < E < ∞, where V0,eff(rmin) = lω is the minimum of the effective potential,

i.e. its value calculated at rmin =
√

l
mω (see l.h.s. of Figure 9). Now, we proceed by factorizing

the Hamiltonian (5.387) as follows:

p2
r r2 + m2ω2r4 − 2mr2H0 = A+

0 A−0 + γ(H0) = −l2 , (5.389)

where A±0 are unknown functions to be determined. In particular, taking into account (5.389),
we obtain:

A±0 = ∓irpr + mωr2 − H0

ω
, (5.390)

and then:

γ(H0) = −
H2

0
ω2 . (5.391)

The Hamiltonian H0 and A±0 are functions of the canonical coordinates (r, pr) and they have
to close as usual the following non-linear Poisson algebra:

{H0, A±0 } = ∓iα(H0)A±0 , {A+
0 , A−0 } = iβ(H0) .

In particular, using the expressions (5.390), we obtain that

α(H0) = 2ω , β(H0) =
4H0

ω
.

Summarizing, we have the following relations:

{H0, A±0 } = ∓ i2ωA±0 , {A+
0 , A−0 } = i

4H0

ω
. (5.392)

At this point, we can introduce the two time-dependent constants of motion:

Q±0 = A±0 e∓iα(H0)t ,

such that:
dQ±0

dt
= {Q±0 , H0}+

∂Q±0
∂t

= 0 .

As we know, these dynamical variables allow us to determine the motion. In this case it holds:(
∓irpr + mωr2 − H0

ω

)
e∓2i ωt = q0 e±iθ0 . (5.393)

By imposing (5.389), taking into accounto (5.391), that is: A+
0 A−0 −

H2
0

ω2 = q2
0 −

H2
0

ω2 = −l2 , we
find: 

−irpr + mωr2 − H0

ω
= q0 ei

(
2 ωt+θ0

)
,

irpr + mωr2 − H0

ω
= q0 e−i

(
2 ωt+θ0

)
,

(5.394)
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Figure 9.: effective potential V0,eff(r) (5.388) and phase plane (r, pr) calculated for m = ω =
l = 1 and E = 2, 4, 6, 8, 10, 12, 14 (in appropriate units).
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Figure 10.: trajectory r(t) and momentum pr(t) calculated for m = ω = l = 1 and E = 2.

where q0
.
=
√
−l2 +

H2
0

ω2 |H0=E0 . Now, since the Hamiltonian does not depend explicitly on
time, it is a constant of motion, i.e. the energy of the system H0 = E0. Therefore, summing
and subtracting (5.394) we obtain (on the level surface H0 = E0): mωr2 − E0

ω
= q0 cos (2 ωt + θ0) ,

rpr = −q0 sin (2 ωt + θ0) .
(5.395)

Finally, using (5.395) we are able to write r and p as functions of t:
r(t) =

√
E0

mω2 +
q0

mω
cos (2 ωt + θ0) ,

pr(t) = −
q0 sin (2 ωt + θ0)√

E0

mω2 +
q0

mω
cos (2 ωt + θ0)

.
(5.396)

In this way we have found r(t) and pr(t) and then the motion has been fully determined
by means of the classical factorization method. In the r.h.s. of Figure 9 the phase plane is
depicted, while in Figure 10 the curves (5.396) are represented.
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In the following, we shall deal with the deformed case using the same procedure. Clearly,
the results just obtained in this section have to be recovered in the Euclidean (i.e. λ→ 0) limit.

4.5.2 The deformed λ > 0 case: D-III oscillator

In this section we focus our attention on the D-III oscillator Hamiltonian (3.317) written as a
one-dimensional radial system, namely:

H(r, pr) = Tλ(r, pr) + Vλ(r) =
p2

r
2m(1 + λr2)

+
l2

2mr2(1 + λr2)
+

mω2r2

2(1 + λr2)
= Fλ(r)H0 ,

(5.397)
where m, ω and l are positive constants, λ is the deformation parameter, H0 is the ‘undeformed’
isotropic oscillator Hamiltonian (5.387) and

Vλ(r) ≡ Veff(r) =
l2

2mr2(1 + λr2)
+

mω2r2

2(1 + λr2)
, Fλ(r)

.
=

1
1 + λr2 . (5.398)

Multiplying both sides of (5.397) by r2(1 + λr2) 6= 0 we get:

r2(1 + λr2)Hλ = r2
(

p2
r

2m
+

l2

2mr2 +
1
2

mω2r2
)
=

1
2m

(r2 p2
r + l2 + m2ω2r4). (5.399)

Now, as it has been done in the previous section for the undeformed case, we can factorize
(5.399) as:

r2 p2
r + m2r4

(
ω2 − 2λ

m
Hλ

)
− 2mr2Hλ = A+

λ A−λ + γ(Hλ) = −l2 , (5.400)

where A±λ = A±λ (r, pr) are unknown functions of r, pr. We make the following ansatz for A±λ :

A±λ =

∓irpr + mr2

√
ω2 − 2λ

m
Hλ −

Hλ√
ω2 − 2λ

m Hλ

 e± fλ(r,pr) .

Once again, we have to require the closure of the Poisson algebra generated by Hλ and A±λ :

{Hλ, A±λ } = ∓iα(Hλ)A±λ
{A+

λ , A−λ } = iβ(Hλ) , (5.401)

where the functions α, β have to be determined. Inserting A±λ in (5.400) we obtain:

γ(Hλ) = −
H2

λ

ω2 − 2λ
m Hλ

, (5.402)

and requiring that A±λ obey the proper Poisson brackets we arrive at:

fλ(r, pr) = −
iλrpr

√
ω2 − 2λ

m Hλ

m(ω2 − λ
m Hλ)

, α(Hλ) =
2
(
ω2 − 2λ

m Hλ

) 3
2

ω2 − λ
m Hλ

, β(Hλ) =
4Hλ√

ω2 − 2λ
m Hλ

.
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Hence we find that:

A±λ =

(
∓irpr + mr2

√
ω2 − 2λ

m
Hλ −

Hλ√
ω2 − 2λ

m Hλ

)
exp

∓ iλrpr

√
ω2 − 2λ

m Hλ

m(ω2 − λ
m Hλ)

 ,

{Hλ, A±λ } = ∓i
2
(
ω2 − 2λ

m Hλ

) 3
2

ω2 − λ
m Hλ

A±λ , {A+
λ , A−λ } = i

4Hλ√
ω2 − 2λ

m Hλ

.

We notice that in the limit λ → 0 one gets back the undeformed Poisson algebra (5.392) as
expected. We also point out that the requirement ω2 − 2λ

m Hλ > 0 implies the upper bound
E < mω2

2λ . Moreover, for bounded motion, the energy has to be greater than the minimum of
the effective potential Veff(r). The latter turns out to be:

Veff(rmin) =
l2

m

(√
λ2 +

m2ω2

l2 − λ

)
, r2

min =
l2

m2ω2

(
λ +

√
λ2 +

m2ω2

l2

)
.

As a consequence the energy belongs to the interval (see l.h.s. of Figure 11 and Figure 12):

Veff(rmin) < E <
mω2

2λ
. (5.403)
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Figure 11.: effective potential Veff(r) (5.397) and phase plane (r, pr) calculated for m = ω = l =
1 and E = 1.00, 1.25, 1.50, 1.75, 2.00, 2.25. The deformation parameter is λ = 0.20.

Next, as usual, by defining the two time-dependent constants of the motion Q±λ we arrive to the
equations (on-shell):∓irpr + mr2

√
ω2 − 2λ

m
E− E√

ω2 − 2λ
m E

 exp

∓i

λrpr

√
ω2 − 2λ

m E

m(ω2 − λ
m E)

+
2
(
ω2 − 2λ

m E
) 3

2

ω2 − λ
m E

t


= q e±iθ ,
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Figure 12.: Effective potential Veff(r) (5.397) and phase plane (r, pr) calculated for m = ω = l =
1 and E = 2. The deformation parameter take the values λ = 0, 0.05, 0.10, 0.20, 0.50.

or else:
−irpr + mr2

√
ω2 − 2λ

m E− E√
ω2 − 2λ

m E
= q exp

i
(

λrpr
√

ω2− 2λ
m E

m(ω2− λ
m E)

+
2
(

ω2− 2λ
m E
) 3

2

ω2− λ
m E

t + θ

) ,

+irpr + mr2
√

ω2 − 2λ
m E− E√

ω2 − 2λ
m E

= q exp

−i
(

λrpr
√

ω2− 2λ
m E

m(ω2− λ
m E)

+
2
(

ω2− 2λ
m E
) 3

2

ω2− λ
m E

t + θ

) ,

(5.404)

where now q = q(E) =
√
−l2 + E2

ω2− 2λ
m E

. Once again, after easy manipulations we get:

mr2

√
ω2 − 2λ

m
E− E√

ω2 − 2λ
m E

= q cos

λrpr

√
ω2 − 2λ

m E

m(ω2 − λ
m E)

+
2
(
ω2 − 2λ

m E
) 3

2

ω2 − λ
m E

t + θ

 ,

rpr = −q sin

λrpr

√
ω2 − 2λ

m E

m(ω2 − λ
m E)

+
2
(
ω2 − 2λ

m E
) 3

2

ω2 − λ
m E

t + θ

 .

Taking the sum of the square of these two equations we recover (5.400) restricted to the level
surface Hλ = E. Finally, thanks to the above relations, we are able to find t as a function of r:

t(r) =
1

Ωλ(E)

arccos

mr2(ω2 − 2λ
m E)− E

q
√

ω2 − 2λ
m E

 − λ
√

ω2 − 2λ
m E

m(ω2 − λ
m E)

√
2mEr2 − l2 −m2r4

(
ω2 − 2λ

m E
)
− θ

 ,

(5.405)
where in this case we have obtained the angular frequency:

Ωλ(E) = 2

(
ω2 − 2λ

m E
) 3

2

ω2 − λ
m E

≡ α(E). (5.406)

In the r.h.s. of Figures 11 and 12 some pictures of the resulting phase space can be found. At
this point, in total analogy to the Taub-NUT case, by introducing the quantities:

a2
λ

.
=

r2
λ+ + r2

λ−

2
=

E
m
(
ω2 − 2λ

m E
) , ελ

.
=

√
1−

(
ω2 − 2λ

m E
)
l2

E2 ,
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Figure 13.: effective potential Veff(r) (5.408) calculated for m = ω = l = 1 and λ = −0.20. The
singularity is located at the point rc =

√
5 ' 2.24.

where ελ is a parameter related to the shape of the ellipse and r2
λ± are the solutions of the

quadratic equation obtained by setting pr = 0 in (5.400), we are able to rewrite the equation
(5.405) in the following form:

Ωλ(E)t(r) + θ = arccos
[
− 1

ελ

(
1−

(
r

aλ

)2)]
−

λa2
λ

1 + λa2
λ

√
ε2

λ −
[

1−
(

r
aλ

)2]2

, (5.407)

whose structure is very similar to the one obtained for the classical Taub-NUT system. In the
limit λ→ 0 the equation (5.407) can be inverted to obtain the trajectory r(t) given in (5.396),
showing that it just represents the λ-deformation of the solution of the Euclidean isotropic
harmonic oscillator.

4.5.3 The deformed λ < 0 case

In this case the deformation parameter λ = −|λ| is negative and the Hamiltonian can be
written as follows:

Hλ(r, pr) = Tλ(r, p) + Vλ(r) =
p2

r
2m(1− |λ|r2)

+
l2

2mr2(1− |λ|r2)
+

mω2r2

2(1− |λ|r2)
. (5.408)

where the effective potential is now given by Vλ(r) ≡ Veff(r)|λ=−|λ|. As expected, it exhibits
a singularity at the point rc

.
= 1√

|λ|
. As a matter of fact, owing to the above singularity,

the domain of definition of the effective potential splits in two subdomains. The first one,
corresponding to the punctured open ball 0 < r < rc, is characterized by a positive kinetic
energy term in the Hamiltonian and the effective potential acquires a typical confining shape.
Viceversa, the second one, rc < r < ∞, is characterized by a negative kinetic energy and the
effective potential has no critical points (see figure 13 and l.h.s. of figure 14).

The interesting region is the open set 0 < r < rc. Indeed, in this case there will be only
closed orbits for energy values Veff(rmin) < E < ∞, where:

Veff(rmin) =
l2

m

(√
λ2 +

m2ω2

l2 + |λ|
)

, r2
min =

l2

m2ω2

(
−|λ|+

√
λ2 +

m2ω2

l2

)
.
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Figure 14.: effective potential Veff(r) (5.408) and phase plane (r, pr) calculated for m = ω =
l = 1 and E = 2, 4, 6, 8, 10, 12 in the region 0 < r < rc. The deformation parameter
is fixed at the value λ = −0.2.

In that bounded region the solution can be obtained by considering the negative sign of λ in
the entire construction. Clearly, since the term ω2 − 2λ

m E = ω2 + 2|λ|
m E is always positive, no

further restrictions on the energy will apply, i.e. the energy has no upper bound, as expected.
For this case the phase plane is depicted in the r.h.s. of Figure 14.
Viceversa, in order to obtain the solution in the unbounded region r > rc, as we already
noticed in the case of the Taub-NUT system, we should proceed with the factorization of
the new Hamiltonian H̃ = −H, the latter being defined with an overall change of sign. This
allows us to restore a positive kinetic energy and then to obtain a physically meaningful
Hamiltonian (see also [50]). However, this case is not so interesting since no closed orbits are
allowed. This conclude the analysis of the classical cases.

So far, we have discussed the two MS systems in the classical case by analysing their
one-dimensional radial dynamics in terms of the classical factorization method. In what
follows, to complete the analysis, we will discuss the quantum case. In particular, we will
show that their exact solvability is ensured thanks to the fact that their defining potentials
are both shape invariants (in their underlying conformally flat spaces). In particular, our
goal is to solve the spectral problem for both systems by means of the quantum factorization
method that, if a shape invariance condition for the potentials is satisfied, leads directly to
an algebraic construction of both the spectrum and the eigenfunctions, as explained in the
literature dedicated to the supersymmetric approach to quantum mechanics [16, 17].

4.6 the quantum taub-nut and d-iii systems: factorization and
shape invariance

As it is well known, for models that are defined on curved spaces, a problem to overcome in
order to deal with the quantum case is related to the order ambiguity arising in the quanti-
zation of the kinetic terms. This task can be faced by applying three different quantization
procedures [51, 52]: the Schrödinger quantization, the Laplace–Beltrami quantization (which
makes use of the Laplace operator on curved spaces) and a position dependent mass (PDM)
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quantization. We will make use of the first one, the Schrödinger quantization. In particular, it
has been shown [48] that by using this prescription to quantize the system Hη , the quantum
Taub-NUT keeps the maximal superintegrability property. This means that it is endowed
with (2N − 1) algebraically independent operators that commute with Hη . This has been also
proved for the quantum version of the Hamiltonian Hλ defining the D-III system [52, 53].
The other two approaches, the Laplace-Beltrami and PDM quantizations, also lead to MS
quantum Hamiltonians once an additional quantum potential term is added to the initial
quantum Hamiltonian, and such potential terms are related through gauge transformations to
the Schrödinger quantization [51]. Our aim here, is to look at the quantum problem from the
point of view of SUSYQM: we will factorize the two quantum Hamiltonians (in hyperspherical
coordinates) and we will solve them by means of the shape invariance: these two systems are
exactly solvable because their defining potentials are shape invariant on their corresponding
space of nonconstant curvature. As a matter of fact, the coupling constant metamorphosis
(CCM) plays a central role in the quantum case, since it allows us to simplify drastically the
spectral problem.

4.6.1 The quantum Taub-NUT: superintegrability

Let us consider the quantum Taub-NUT Hamiltonian operator Ĥη given by [48]:

Ĥη =
|x̂|

2(η + |x̂|) p̂2 − k
η + |x̂| = −

h̄2

2
|x|
|x|+ η

∆x −
k

|x|+ η
, (6.1)

where we are using the standard definitions for the quantum positions x̂ and momenta p̂
operators:

x̂i ψ(x) = xi ψ(x), p̂i ψ(x) = −ih̄∂xi ψ(x), [x̂i, p̂j] = ih̄δij1̂, i, j = 1, . . . , N,

together with the usual conventions:

∇x =

(
∂

∂x1
, . . . ,

∂

∂xN

)
, ∆x = ∇2

x =
N

∑
i=1

∂2

∂2xi
, x · ∇x =

N

∑
i=1

xi
∂

∂xi
.

It turns out that for any value of η and k it is verified that:

1. Ĥη commutes with the following operators (m = 2, . . . , N; i = 1, . . . , N):

Ĉ[m] = ∑
1≤i<j≤m

(x̂i p̂j − x̂j p̂i)
2, Ĉ[m] = ∑

N−m≤i<j≤N
(x̂i p̂j − x̂j p̂i)

2, (6.2)

R̂ηi =
1
2

N

∑
j=1

(x̂j p̂i − x̂i p̂j) p̂j +
1
2

N

∑
j=1

p̂j(x̂j p̂i − x̂i p̂j) +
x̂i

|x̂|
(
k + ηĤη

)
, (6.3)

where Ĉ[N] = Ĉ[N] ≡ L̂2 is the total quantum angular momentum. Furthermore:

R̂η
2
=

N

∑
i=1

R̂2
ηi = 2Ĥη

(
L̂2 + h̄2 (N − 1)2

4

)
+
(
k + ηĤη

)2 . (6.4)

Each of the two sets {Ĥη , Ĉ[m]}, {Ĥη , Ĉ[m]} (m = 2, . . . , N) is formed by N algebraically
independent commuting operators. Moreover, the set {Ĥη , Ĉ[m], Ĉ[m], R̂ηi} for m =

2, . . . , N, at a fixed index i, is formed by 2N − 1 algebraically independent operators.
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2. Ĥη is formally self-adjoint on the Hilbert space L2(MN), endowed with the scalar
product:

〈Ψ|Φ〉η =
∫
MN

Ψ∗(x)Φ(x)
(

1 +
η

|x|

)
dx. (6.5)

We remark that all the above results are well defined for any value of the parameters η and
k. Nevertheless, the explicit solution of the quantum Hamiltonian depends on the sign of
both of them. In particular, hereafter we shall restrict our considerations for η > 0, implying
r ∈ (0, ∞) and k > 0, which corresponds to the proper curved hydrogen atom potential.

4.6.2 The quantum Taub-NUT: separation in hyperspherical coordinates, factorization and
shape invariance

Starting from the Hamiltonian (6.1), and using hyperspherical coordinates, together with:

p̂r = −ih̄
∂

∂r
, p̂θj = −ih̄

∂

∂θj
, j = 1, . . . , N − 1, (6.6)

we obtain the following quantum radial Hamiltonian:

Ĥη =
r

2(r + η)

(
1

rN−1 p̂r rN−1 p̂r +
L̂2

r2 −
2k
r

)
, (6.7)

where L̂2 is the square of the total quantum angular momentum operator, now given by:

L̂2 =
N−1

∑
j=1

(
j−1

∏
k=1

1
sin2 θk

)
1

(sin θj)N−1−j p̂θj(sin θj)
N−1−j p̂θj . (6.8)

After reordering terms and by inserting the differential operators (6.6) within the Hamiltonian
(6.7), we arrive at the following Schrödinger equation:

r
2(r + η)

(
−h̄2∂2

r −
h̄2(N − 1)

r
∂r +

L̂2

r2 −
2k
r

)
Ψ(r, θ) = E Ψ(r, θ), (6.9)

where θ
.
= (θ1, . . . , θN−1). By taking into account that the hyperspherical harmonics Y(θ)

fulfill the eigenvalue equation:

L̂2Y(θ) = Ĉ[N]Y(θ) = h̄2l(l + N − 2)Y(θ), l = 0, 1, 2 . . . ,

where l is the total angular momentum quantum number, the equation (6.9) admits a complete
set of factorized solutions of the form:

Ψ(r, θ) = Φ(r)Y(θ),

and, moreover:
Ĉ[m]Ψ = cmΨ, m = 2, . . . , N,

where cm are the eigenvalues of the operators Ĉ[m] (m = 2, . . . , N) defined in (6.2), such that
cm are related to the (N − 1) quantum numbers of the angular observables in the form:

ck ↔ lk−1, k = 2, . . . , N − 1, cN ↔ l.
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Therefore, we can write:

Y(θ) ≡ YcN
cN−1,...,c2

(θ1, θ2, . . . , θN−1) ≡ Yl
lN−2,...,l1(θ1, θ2, . . . , θN−1),

and the radial Schrödinger equation provided by Ĥη reads:

r
r + η

(
− h̄2

2

(
d2

dr2 +
N − 1

r
d
dr
− l(l + N − 2)

r2

)
− k

r

)
Φ(r) = E Φ(r). (6.10)

After performing a “coupling constant metamorphosis”, eq. (6.10) can be rewritten as:(
− h̄2

2

(
d2

dr2 +
N − 1

r
d
dr
− l(l + N − 2)

r2

)
−

kη

r

)
Φ(r) = E Φ(r) , (6.11)

where we defined kη
.
= k + ηE > 0. This is the equation we want to solve for E < 0 with

k, η > 0 (bound states). To this aim, we will apply standard methods from SUSYQM [16, 17].
In particular, our goal is to factorize the one-dimensional radial Hamiltonian (6.11) in terms
of a pair of ladder operators Â(α), Â† (α) (depending on a shape invariance parameter α that
has to be found) in order to construct the solution algebraically.
Let us begin our analysis by performing the following “gauge” transformation:

w(r)Ĥηw−1(r)︸ ︷︷ ︸
Ĥη,g

w(r)Φ(r)︸ ︷︷ ︸
Φg(r)

= E w(r)Φ(r)︸ ︷︷ ︸
Φg(r)

, (6.12)

with w(r) .
= r

N−1
2 . This leads to the following gauged Hamiltonian operator:

Ĥη,g = − h̄2

2
d2

dr2 +
h̄2 (l(l + N − 2) + (N−1)(N−3)/4)

2r2 −
kη

r
. (6.13)

Thanks to the tranformation (6.12), we got rid of the first derivative term and so we can use
the standard SUSYQM techniques in order to factorize the Hamiltonian. As a matter of fact,
we are formally dealing with a one-dimensional problem characterized by radial the effective
potential (depending on the energy and the deformation parameter):

Vη,g(r)
.
=

h̄2 (l(l + N − 2) + (N−1)(N−3)/4)

2r2 −
kη

r
. (6.14)

Thus, after subtracting the Hamiltonian of the energy associated to the ground state, let’s
say E0,η , we can construct the ladder operators of the gauged Hamiltonian by imposing the
Riccati-type equation for the potential Vη,g(r) in terms of the (super)potential Wη(r), namely:

W2
η(r)−

h̄√
2
W′η(r) + E0,η = Vη,g(r) , (6.15)

where W′η(r)
.
= d

drWη(r). This equation is solved for the following values of the superpotential
and eigenvalue E0,η : 

Wη(r) =
kη√

2h̄(l + N−1
2 )
− h̄√

2r
(l + N−1

2 )

E0,η = −
k2

η

2h̄2(l + N−1
2 )2

.
(6.16)
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It is interesting to notice that E0,η = E0,η(E) depends on the full energy of the deformed
Hamiltonian. Let us also observe that in the flat limit (for N = 3) the standard (undeformed)
results for the hydrogen atom are recovered [16,17]. In this η-deformed case the SUSY partner
potential is obtained through the superpotential Wη in the usual way:

Uη,g(r)
.
= W2

η(r) +
h̄√
2
W′η(r) + E0,η

=
h̄2 (l(l + N) + (N−1)(N+1)/4)

2r2 −
kη

r
. (6.17)

This means that the two superpartners are given by:
Ṽη,g(r)

.
= Vη,g − E0,η =

h̄2 (l(l + N − 2) + (N−1)(N−3)/4)

2r2 −
kη

r
+

k2
η

2h̄(l + N−1
2 )2

Ũη,g(r)
.
= Uη,g − E0,η =

h̄2 (l(l + N) + (N−1)(N+1)/4)

2r2 −
kη

r
+

k2
η

2h̄(l + N−1
2 )2

.
(6.18)

In fact, it is easy to show that by taking the angular momentum quantum number l as the
shape invariance parameter the following relation holds6:

Ũ(l)
η,g(r) = Ṽ(l+1)

η,g (r) + R(l)
η

R(l)
η

.
=

(l + N
2 )(k + ηE)2

h̄2(l + N−1
2 )2(l + N+1

2 )2
,

(6.19)

where R(l)
η is a reminder (it does not depend on r). Formula (6.19) is known as shape invariance

condition (SIC) and ensure that the quantum Hamiltonian Ĥg,η is exactly solvable. The reason
why this turns out to be true is due to the fact that the condition (6.19) can be rephrased as a
factorizability property of the Hamiltonian in terms of a pair of ladder operators, i.e.:

Â(l)
g,η Â† (l)

g,η − Â† (l+1)
g,η Â(l+1)

g,η = R(l)
η 1̂ , (6.20)

where the ladder operators are defined through the superpotential as:

Â(l)
η,g =

h̄√
2

∂r +W
(l)
η (r) , Â† (l)

η,g = − h̄√
2

∂r +W
(l)
η (r) , (6.21)

and factorize the gauged Hamiltonian:

Ĥ(l)
η,g = Â† (l)

η,g Â (l)
η,g + E(l)

0,η . (6.22)

Thus, at this point it is clear what is the basic idea behind the shape invariance: it represents
a generalization of the algebraic method that we commonly use for the harmonic oscillator. Here, the
Heisenberg algebra is replaced by the algebraic relation (6.20). Now, to obtain a factorization of the
original Hamiltonian Ĥη , we only need to perform the inverse gauge transformation:

Ĥ(l)
η = w−1(r)Ĥ(l)

η,gw(r) = w−1(r)Â† (l)
η,g w(r)︸ ︷︷ ︸

Â† (l)
η

w(r)−1Â (l)
η,gw(r)︸ ︷︷ ︸

Â(l)
η

+E(l)
0,η (6.23)

6 From now on we keep explicit its dependence in the formulae.
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where the representation of the ladder operators reads:

Â(l)
η

.
=

h̄√
2

∂r +
kη

h̄(l + N−1
2 )
− h̄l√

2r
, Â† (l)

η
.
= − h̄√

2
∂r +

kη

h̄(l + N−1
2 )
− h̄(l + N − 1)√

2r
(6.24)

As usual, in order to construct the spectrum we need firstly to find the kernel of the lowering
operator, which turns out to be:

Â(l)
η Φ(l)

0,η(r) = 0 ⇒ Φ(l)
0,η(r) ∝ rl exp

(
−

kηr

h̄2(l + N−1
2 )

)
, (6.25)

and we can use the algebraic relation (6.20) (that does not change under gauge transformations)
to find the eigenvalues and the eigenfunctions of the Hamiltonian Ĥλ. In fact, if we apply
(6.20) to the ground state calculated at l + 1 and apply the operator A† (l)

η from the left, we
obtain:

Â† (l)
η Â(l)

η Â† (l)
η Φ(l+1)

0,η (r)− Â† (l)
η Â† (l+1)

η Â(l+1)
η Φ(l+1)

0,η (r) = R(l)
η Â† (l)

η Φ(l+1)
0,η (r) (6.26)

that is:
(Ĥ(l)

η − E(l)
0,η)Â† (l)

η Φ(l+1)
0,η (r) = R(l)

η Â† (l)
η Φ(l+1)

0,η (r) . (6.27)

This means that, if we define the new eigenfunction Φ(l)
1,η(r)

.
= Â† (l)

η Φ(l+1)
0,η (r), we immediately

obtain: 
Ĥ(l)

η Φ(l)
1,η(r) = (E(l)

0,η + R(l)
η )Φ(l)

1,η(r) = E(l)
1,ηΦ(l)

1,η(r)

E(l)
1,η = −

k2
η

2h̄2(1 + l + N−1
2 )2

.
(6.28)

This procedure can be iterated. For example, to find the second excited state we write:

Â† (l)
η Â(l)

η Â† (l)
η Φ(l+1)

1,η (r)− Â† (l)
η Â† (l+1)

η Â(l+1)
η Φ(l+1)

1,η (r) = R(l)
η Â† (l)

η Φ(l+1)
1,η (r) (6.29)

namely:

(Ĥ(l)
η − E(l)

0,η)Â† (l)
η Φ(l+1)

1,η (r)− Â† (l)
η (E(l+1)

1,η − E(l+1)
0,η )Φ(l+1)

1,η (r) = R(l)
η Â† (l)

η Φ(l+1)
1,η (r) (6.30)

and, for the new eigenfunction Φ(l)
2,η(r)

.
= Â† (l)

η Φ(l+1)
1,η (r), we obtain the eigenvalue:


Ĥ(l)

η Φ(l)
2,η(r) = (E(l)

0,η − E(l+1)
0,η + E(l+1)

1,η + R(l)
η )Φ(l)

2,η(r) = E(l)
2,ηΦ(l)

2,η(r)

E(l)
2,η = −

k2
η

2h̄2(2 + l + N−1
2 )2

.
(6.31)

By applying this construction iteratively we obtain the following solution:
Φ(l)

n,η(r) ∝ rl exp
(
− kηr

h̄2(n+l+ N−1
2 )

)
L(2l+N−2)

n

(
2kηr

h̄2(n+l+ N−1
2 )

)
E(l)

n,η = −
k2

η

2h̄2(n + l + N−1
2 )2

,
(6.32)
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that coincides with the result obtained in [48], here achieved in terms of the shape invariance.
In particular, the main point for this system is that the constant kη depends on the energy.
Thus, in order to find the discrete spectrum we need to solve the algebraic equation:

E(l)
n,η = −

(k + ηE(l)
n,η)

2

2h̄2(n + l + N−1
2 )2

, (6.33)

that leads to:

E(l)
n,η =

−h̄2(n + l + N−1
2 )2 − ηk +

√
h̄4(n + l + N−1

2 )4 + 2ηkh̄2(n + l + N−1
2 )2

η2 . (6.34)

In this way, as already noticed, the eigenfunctions Φ(l)
n (r), can be explicitly obtained by

introducing (6.34) into kη and, next, by substituting the latter in (6.32). Note that in the limit
η → 0 the entire construction collapses to the standard one, and the well-known expression
for the energies of the hydrogen atom is recovered:

E(l)
n,0 = lim

η→0
E(l)

n,η = − k2

2h̄2(n + l + N−1
2 )2

, (6.35)

where k .
= e2/4πε0 (ε0 is the electric constant). In conclusion, the general solution of the

problem (6.9) is given by:

Ψn,l,l1,...,lN−2(r, θ) ∝ Φ(l)
n,η(r)Yl

lN−2,...,l1(θ1 . . . , θN−1) , (6.36)

and the eigenfunctions are orthogonal w.r.t. the measure:

dµ(r, θ)
.
= rN−1 sinN−2(θ1) sinN−3(θ2) . . . sin(θN−2)dr dθ1 dθ2 . . . dθN−1 (6.37)

with θ1, . . . , θN−2 ∈ [0, π) and θN−1 ∈ [0, 2π) and r ∈ (0, ∞). It is worth to mention that the
effect of the coupling constant metamorphosis, as we can appreciate in (6.37), is to eliminate the
conformal factor in the measure, which is now fully-fledged flat (the deformation parameter
that is related to the curvature only appears in the new constant kη).

4.6.3 The quantum Darboux III system: superintegrability

Our aim now is to perform an analogous investigation for the quantum mechanical counterpart
of the N-dimensional classical Hamiltonian (3.322). The resulting MS Schrödinger quantization
of Hλ is characterized in the following: let Ĥλ be the N-dimensional quantum Darboux
Hamiltonian given by:

Ĥλ =
p̂2

2(1 + λx̂2)
+

ω2x̂2

2(1 + λx̂2)
= − h̄2

2(1 + λx2)
∆x +

ω2x2

2(1 + λx2)
. (6.38)

For any real value of λ it turns out that:

1. Ĥλ commutes with the following observables (m =, 2 . . . , N; i, j = 1, . . . , N):
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Ĉ[m] = ∑
1≤i<j≤m

(x̂i p̂j − x̂j p̂i)
2, Ĉ[m] = ∑

N−m<i<j≤N
(x̂i p̂j − x̂j p̂i)

2, (6.39)

Îλij =
p̂i p̂j

ω
+ ωx̂i x̂j −

2λ

ω
x̂i x̂jĤλ(x̂, p̂), (6.40)

where the quantum curved DF tensor is such that Ĥλ = ω
2 ∑N

i=1 Îλii [51]. Each of the
three sets {Ĥλ, Ĉ[m]}, {Ĥλ, Ĉ[m]} (m = 2, . . . , N) and {Îλii} (i = 1, . . . , N) is formed by N
algebraically independent commuting observables. Moreover, the set {Ĥλ, Ĉ[m], Ĉ[m], Îλii}
for m = 2, . . . , N with a fixed index i is formed by 2N − 1 algebraically independent
observables.

2. Ĥλ is formally self-adjoint on the Hilbert space L2(MN), endowed with the scalar
product:

〈Ψ|Φ〉λ =
∫
MN

Ψ∗(x)Φ(x)(1 + λx2)dx.

Clearly, these results should be adapted to each of the three different underlying manifold
described in (3.321). In particular, we consider here the case λ > 0 and r ∈ (0, ∞), for bound
states (discrete spectrum). We remark that the system has been fully solved in [53].

4.6.4 The quantum Darboux III: separation in hyperspherical coordinates, factorization and
shape invariance

Starting from the Hamiltonian (6.38), using hyperspherical coordinates and following the very
same steps that we have performed for the TN case, we arrive to the one-dimensional radial
equation:

1
1 + λr2

(
− h̄2

2

(
d2

dr2 +
N − 1

r
d
dr
− l(l + N − 2)

r2

)
+

1
2

ω2r2

)
Φ(r) = E Φ(r), (6.41)

where Φ(r) is the radial part of the wavefunction Ψ(r, θ) = Φ(r)Y(θ), Y(θ) denoting as usual
the hyperspherical harmonics. Once again, the mechanism of the CCM allows to simplify the
problem, being the new Hamiltonian given by:(

− h̄2

2

(
d2

dr2 +
N − 1

r
d
dr
− l(l + N − 2)

r2

)
+

1
2

ω2
λr2
)

Φ(r) = E Φ(r), (6.42)

where we have introduced the new (energy-dependent) frequency ωλ
.
=
√

ω2 − 2λE, with
the additional condition ω2 > 2λE. Once again, in order to find the ladder operators, let us
perform the following gauge transformation:

w(r)Ĥλw−1(r)︸ ︷︷ ︸
Ĥλ,g

w(r)Φ(r)︸ ︷︷ ︸
Φg(r)

= E w(r)Φ(r)︸ ︷︷ ︸
Φg(r)

, (6.43)

for the same gauge function w(r) = r
N−1

2 . This leads to the following gauged Hamiltonian
operator:

Ĥλ,g = − h̄2

2
d2

dr2 +
h̄2 (l(l + N − 2) + (N−1)(N−3)/4)

2r2 +
1
2

ω2
λr2 , (6.44)
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which implies that the radial effective potential (depending on the energy and the deformation
parameter) is:

Vλ,g(r)
.
=

h̄2 (l(l + N − 2) + (N−1)(N−3)/4)

2r2 +
1
2

ω2
λr2 . (6.45)

Thus, after the proper shift of the Hamiltonian, we can construct the ladder operators by
imposing the usual Riccati-type equation for the potential Vλ,g(r), namely:

W2
λ(r)−

h̄√
2
W′λ(r) + E0,λ = Vλ,g(r) , (6.46)

where we introduced the λ-deformed superpotential Wλ(r). This equation is solved for:Wλ(r) =
ωλr√

2
− h̄√

2r
(l + N−1

2 )

E0,λ = h̄ωλ(l + N/2) .
(6.47)

Also in this case, let us notice that E0,λ = E0,λ(E) depends on the full energy of the λ-deformed
Hamiltonian. Let us also observe that in the flat limit (for N = 3) the standard (undeformed)
results for the isotropic oscillator are recovered [16, 17]. In this λ-deformed case the SUSY
partner potential obtained through the superpotential Wλ reads:

Uλ,g(r)
.
= W2

λ(r) +
h̄√
2
W′λ(r) + E0,λ

=
h̄2 (l(l + N) + (N−1)(N+1)/4)

2r2 +
1
2

ωλr2 + h̄ωλ . (6.48)

This means that the two superpartners are given by:
Ṽλ,g(r)

.
= Vλ,g − E0,λ =

h̄2 (l(l + N − 2) + (N−1)(N−3)/4)

2r2 + 1
2 ωλr2 − h̄ωλ(l + N/2)

Ũλ,g(r)
.
= Uλ,g − E0,λ =

h̄2 (l(l + N) + (N−1)(N+1)/4)

2r2 + 1
2 ωλr2 − h̄ωλ(l + N/2− 1) .

(6.49)

Also in this case, if we take the angular momentum quantum number l as the shape invariance
parameter, we obtain the following shape invariance condition:{

Ũ(l)
λ,g(r) = Ṽ(l+1)

λ,g (r) + R(l)
λ

R(l)
λ

.
= 2h̄ωλ ,

(6.50)

where R(l)
η is the reminder associated to the SIP. Once again, we can rewrite such a relation in

terms of a pair of ladder operators that factorize the Hamiltonian:

Â(l)
g,λ Â† (l)

g,λ − Â† (l+1)
g,λ Â(l+1)

g,λ = R(l)
λ 1̂ , (6.51)

where the ladder operators are defined through the superpotential as:

Â(l)
λ,g =

h̄√
2

∂r +W
(l)
λ (r) , Â† (l)

λ,g = − h̄√
2

∂r +W
(l)
λ (r) , (6.52)

and factorize the gauged Hamiltonian as follows:

Ĥ(l)
λ,g = Â† (l)

λ,g Â (l)
λ,g + E(l)

0,λ . (6.53)
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Now, if we perform the inverse gauge transformation:

Ĥ(l)
λ = w−1(r)Ĥ(l)

λ,g w(r) = w−1(r)Â† (l)
λ,g w(r)︸ ︷︷ ︸

Â† (l)
λ

w(r)−1Â (l)
λ,gw(r)︸ ︷︷ ︸

Â(l)
λ

+E(l)
0,λ , (6.54)

the original Hamiltonian is recovered, and the representation of the ladder operators reads:

Â(l)
λ

.
=

h̄√
2

∂r +
ωλr√

2
− h̄l√

2r
, Â† (l)

λ
.
= − h̄√

2
∂r +

ωλr√
2
− h̄(l + N − 1)√

2r
. (6.55)

In this case, the kernel of the lowering operator turns out to be:

Â(l)
λ Φ(l)

0,λ(r) = 0 ⇒ Φ(l)
0,λ(r) ∝ rl exp

(
−ωλr2

2h̄

)
. (6.56)

As we know, starting from (6.56) calculated in l + 1 and by acting with the operator A† (l)
λ

from the left, we obtain:

Â† (l)
λ Â(l)

λ Â† (l)
λ Φ(l+1)

0,λ (r)− Â† (l)
λ Â† (l+1)

λ Â(l+1)
λ Φ(l+1)

0,λ (r) = R(l)
λ Â† (l)

λ Φ(l+1)
0,λ (r) , (6.57)

that is:
(Ĥ(l)

λ − E(l)
0,λ)Â† (l)

λ Φ(l+1)
0,λ (r) = R(l)

λ Â† (l)
λ Φ(l+1)

0,λ (r) . (6.58)

This means that, for the eigenfunction Φ(l)
1,λ(r)

.
= Â† (l)

λ Φ(l+1)
0,λ (r), we immediately obtain:{

Ĥ(l)
λ Φ(l)

1,λ(r) = (E(l)
0,λ + R(l)

λ )Φ(l)
1,λ(r) = E(l)

1,λΦ(l)
1,λ(r)

E(l)
1,λ = h̄ωλ(2 + l + N/2) .

(6.59)

For the second excited state we have:

Â† (l)
λ Â(l)

λ Â† (l)
λ Φ(l+1)

1,λ (r)− Â† (l)
λ Â† (l+1)

λ Â(l+1)
λ Φ(l+1)

1,λ (r) = R(l)
λ Â† (l)

λ Φ(l+1)
1,λ (r) (6.60)

namely:

(Ĥ(l)
λ − E(l)

0,λ)Â† (l)
λ Φ(l+1)

1,λ (r)− Â† (l)
λ (E(l+1)

1,λ − E(l+1)
0,λ )Φ(l+1)

1,λ (r) = R(l)
λ Â† (l)

λ Φ(l+1)
1,λ (r) (6.61)

which implies, for the new eigenfunction Φ(l)
2,λ(r)

.
= Â† (l)

λ Φ(l+1)
1,λ (r), the following eigenvalue:{

Ĥ(l)
λ Φ(l)

2,λ(r) = (E(l)
0,λ − E(l+1)

0,λ + E(l+1)
1,λ + R(l)

λ )Φ(l)
2,λ(r) = E(l)

2,λΦ(l)
2,λ(r)

E(l)
2,λ = h̄ωλ(4 + l + N/2) .

(6.62)

By applying this construction iteratively we obtain the following solution of the D-III oscillator:Φ(l)
n,λ(r) ∝ rl exp

(
−ωλr2

2h̄

)
L(l+ N−2

2 )
n

(
ωλr2

h̄

)
E(l)

n,λ = h̄ωλ(2n + l + N/2) ,
(6.63)

which coincides with the result obtained in [53]. In particular, as it happens in TN case, the
new novel feature with respect to the isotropic harmonic oscillator is that the constant ωλ
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depends on the energy and, in order to find the discrete spectrum, we need to solve the
(quadratic) algebraic equation:

E(l)
n,λ = h̄

√
ω2 − 2λE(l)

n,λ(2n + l + N/2) , (6.64)

which leads to:

E(l)
n,λ = −λh̄2(2n + l + N/2)2 +

√
h̄2ω2(2n + l + N/2)2 + λ2h̄4(2n + l + N/2)4 , (6.65)

Once again, the eigenfunctions Φ(l)
n,λ(r), can be explicitly obtained by introducing (6.65) into

kη and, next, by substituting the latter in (6.63). Note that in the limit λ → 0 the entire
construction collapses to the one of the isotropic harmonic oscillator, and the well-known
expression for the energies is recovered:

E(l)
n,0 = lim

λ→0
E(l)

n,λ = h̄ω(2n + l + N/2) . (6.66)

In conclusion, the general solution is given by:

Ψn,l,l1,...,lN−2(r, θ) ∝ Φ(l)
n,λ(r)Y

l
lN−2,...,l1(θ1 . . . , θN−1) , (6.67)

and the eigenfunctions are orthogonal w.r.t. to the flat measure dµ(r, θ) previously defined.

4.7 concluding remarks and open perspectives

To summarize briefly the results of this section, we have presented a classical and quantum
analysis for two specific examples of N-dimensional radially symmetric MS models, the
Taub-NUT and the D-III systems. On one hand, in the classical case, we have shown how their
one-dimensional effective radial dynamics can be solved by means of the classical factorization
method: the classical Poisson algebras close in terms of the deformed Hamiltonians which
define the two systems, and the motion in time is solved thanks to the existence of a deformed
version of the two time-dependent constants of motion Q± = Q±(r, pr, t) for both systems.
On the other hand, at the quantum level, the separation of the Schrödinger equation in
hyperspherical coordinates allowed us to use the quantum factorization method and the
shape invariance (for positive values of the deformation parameters) in order to solve the
spectral problem for bound states. The main point to emphasize in the latter case is related
to the possibility of applying SUSYQM techniques, in the standard way, also on curved
spaces. As we mentioned, at least in these two cases, this turns out to be a consequence of
the coupling constant metamorphosis phenomenon, which “rephrased” the curved problem
into an effective flat problem characterized by a new energy-dependent coupling constant.
This is indeed a crucial simplification. In this respect, it is worth mentioning that in [138, 139]
similar MS models have been investigated, in that case by means of a deformed version of
the shape invariance [140]. We conclude by adding a few remarks, which might be useful to
outline some possible future developments. One important question that has to be faced, and
hopefully solved, concerns the extension of the approaches used here to the whole classes of
systems that have been shown by V. Perlick to be, at a classical level, multiparametric families
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of maximally superintegrable deformations of HO and KC. At the quantum level, this question
got an essentially positive answer in the paper [85]. A further issue worthing a deeper analysis
has to do with the quantum behaviour of both Taub-NUT and D-III Hamiltonians, for negative
values of the deformation parameters, such that the potential acquires a typical confining
shape: in this case the exact solvability has to be investigated, and the possibility of finding
the spectrum in a closed form is still an open problem. Work on this last issue is in progress7.

7 In the appendix B the interested reader can find an example of an exactly solvable radially symmetric system with
confined potential, whose solution is given in terms of the Jacobi orthogonal polynomials. This example has been
introduced very recently in order to achieve a better understanding of the behaviour of such ND confined models.
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5 CONCLUS IONS

In this Thesis we dealt with different aspects regarding classical and quantum superintegrabil-
ity, both continuous and discrete. The methodological approach has been of algebraic nature.
All the models that have been investigated represent superintegrable deformations of two
prototype example of physical systems, the harmonic oscillator and the Kepler-Coulomb.
They also share the same coalgebra symmetry. Here we summarize the main results and the
open issues which would deserve to be investigated in the future.

1. Chapter 3 contains the main result of the Thesis. We have in fact proved, for the first time
to the best of our knowledge, that the coalgebra technique can be succesfully applied
in real discrete Quantum Mechanics, thus providing a new intriguing link between
superintegrable discrete systems and coalgebra symmetries. The main idea behind such
a work was to show the effective usefulness of this method also in the multidimensional
generalization of discrete quantum models. In particular our research, focused on the
cartesian harmonic oscillator, led us to achieve the multidimensional extension of a
discrete quantum system based on the Charlier orthogonal polynomials, the Charlier
oscillator. As a matter of fact, we have shown that this model share exactly the same
coalgebra symmetry of the Hermite oscillator. This is the reason why we have achieved
the discrete representation of the sl(2, R) algebra: like the standard Hermite oscillator, the
Charlier oscillator is described in terms of an sl(2, R) coalgebraic Hamiltonian. In particular,
after having solved the spectral problem on the lattice using the standard factorization
method, simply by replacing the differential representation with its finite-difference
counterpart, the coproduct map of the sl(2, R) coalgebra have been used to extended
the discrete system to higher dimensions preserving its superintegrability properties.
The discrete quantum integrals of motion, a discrete analog of the angular momentum
and the Demkov-Fradkin tensor on the lattice, have been also explicitly constructed.
A gauge equivalent problem has been investigated in [22], where the authors also
described a two-dimensional model based on the Charlier polynomials. As a byproduct
of our construction, we have immediately obtained a generalization of their Hamiltonian.
To mention some future perspective related to this work, now that we have established
such a link between coalgebra symmetries and discrete quantum mechanical systems, it
would be interesting to use it in order to provide some new discrete superintegrable
model. The analysis should be focused on a generalization of previous results obtained
in the continuous case. From this point of view, a still open problem resides in the
discrete representation of the inverse of the position operator. This would be crucial
to construct, for instance, a coalgebraic discrete version of the hydrogen atom and,
consequently, some of its coalgebraic generalizations appeared in the literature.

2. In Chapter 4 we have collected two main results:

• On one hand, we have proved that the classical factorization method find a natural
application in the framework of f -deformations. In particular, we wrote down the
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deformed Poisson algebra characterizing the entire class of non-linear oscillators
and we found its general solution algebraically. The latter has been constructed
thanks to the existence of two time-dependent constants of motion shared by the
entire family of deformations. Moreover, we have also shed some light on the
physical meaning behind such Hamiltonian systems, they represent in fact a rather
simple example of deformations. With respect to the harmonic oscillator, there is
nothing more than energy dependent frequencies and amplitudes, and the phase
space trajectories are undeformed, except for a change in their radius. In turn, this
is the reason why the multidimensional generalization of such systems, which we
have also presented, can be easily achieved by means of the primitive coproduct
of the sl(2, R) coalgebra. The superintegrability of such models in ND is trivially
ensured, the family of f -deformations share in fact the same first integrals of
motion of the standard harmonic oscillator. This is true by construction.
Regarding future perspectives, since we showed this connection between the
(dressed) Poisson algebra generators and f -deformations, it would be interest-
ing to construct f -deformed version for systems other than the harmonic oscillator.
Also, the quantization of the deformed Poisson algebras obtained in the analysis is
another issue that should be investigated.

• On the other hand, by using the same algebraic approach, we have constructed the
classical solutions of the motion for two well-known Maximally Superintegrable
systems defined on spherically symmetric curved spaces, the Taub-NUT (a de-
formed Kepler-Coulomb system) and Darboux III (a deformed isotropic oscillator),
highlighting new features also on the case of negative values of the deformation
parameters. As a matter of fact, for the TN case, in the confined region we have
been able to define a new Hamiltonian, characterized by a confined potential, which
led us to investigate confined models, mainly for what concern the corresponding
quantum system.
Along these lines, concerning the quantum case, for positive values of the de-
formation parameters we have shown that the solution of the spectral problem,
for both systems, can be achieved by means of the standard SUSYQM approach
(quantum factorization method and shape invariance condition). This is because
the Schrödinger equation associated to the curved problem, after performing a
coupling constant metamorphosis, collapses to a standard Schrödinger equation
associated to a flat problem with a new energy dependent coupling constant. This
mechanism allowed us to deal with such systems as in the standard undeformed
case and, in turn, elucitated the reason behind their exact solvability. Precisely, we
have shown that after separation in hyperspherical coordinates the two systems
admits a factorization of the Hamiltonian in terms of a pair of ladder operators
that, by imposing a shape invariance condition in the angular momentum quantum
number, can be used to construct the spectrum and the eigenfunctions algebraically.
The main open problem is surely related to the investigation of the quantum case
for negative values of the deformation parameters, where the effective potential
acquires a confining shape. In that case, in fact, an analytic closed form for the
spectrum and the eigenfunctions could not be guaranteed, and numerical solutions
could take the place of the exact ones.
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Concerning these issues, we should also mention that preliminary results about an
exactly solvable ND confined system have been obtained. They are discussed in
the appendix B.
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A MANIFOLDS

In this appendix, we would like to give a pedagogical introduction to the notion manifold. To
this aim, we will strictly follow the reference [141]. We will start the appendix by recalling the
notions of maps between sets, open sets, charts and atlas. After that, we will go straight to the
definition of manifold. We will conclude the discussion by illustrating some example.

a.1 maps between sets

Let us consider two sets M and N. One defines a map ϕ : M→ N as a relationship that assigns
at each element of M exactly one element of N (it is a generalization of the concept of function).
Given two maps ϕ : M→ N ed φ : N→ O one defines the composition (φ ◦ ϕ) : M→ O as:

(φ ◦ ϕ)(x) .
= φ(ϕ(x)) ∀ x ∈M . (1.68)

Figure 15.: composition of maps.

1. A map ϕ is called one-to-one (injective) if each element of N has at most one element of
M mapped into it.

2. A map ϕ is called onto (surjective) if each element of N has at least one element of M
mapped into it.
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Figure 16.: exponential map.

• The map ϕ : R→ R+ ϕ(x) = exp(x) is both injective and surjective (bijective). If
we had considered a different codomain, such as ϕ(x) : R → R, we would have
lost the surjectivity (this is because the elements belonging to the codomain R−

does not have elements of M mapped into them).

Figure 17.: surjective map (left) and bijective map (right).

• The map ϕ : R→ R ϕ(x) = x(x2 − 1) is surjective but not injective.
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(x)

Figure 18.: map ϕ(x) = x(x2 − 1). Onto, not one-to-one.

• The map ϕ : R→ R ϕ(x) = x2 is neither surjective nor injective. If we restrict the
codomain to R+ it becomes surjective.

The set M is known as the domain of the map ϕ and set of points in N in which M is
mapped is known as the image of ϕ. For some subset U ⊂ N, the set of elements of M
which get mapped to U is called the preimage U under the map ϕ, e.g. ϕ−1(U).
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Figure 19.: Map ϕ(x) = x2. Neither onto nor one-to-one.

3. A map that is both one-to-one and onto is also known as invertible. In this case it is
possible to define the inverse map ϕ−1 : N→M so that:

(ϕ−1 ◦ ϕ)(x) .
= ϕ−1(ϕ(x)) = x ∀ x ∈M . (1.69)

Figure 20.: the inverse of a map.

A simple example of inverse map is given by ϕ−1(x) = log(x) : R+ → R. This map
represents the inverse of the exponential map ϕ(x) = exp(x) : R → R+. If we had
considered as a codomain of the exponential map the entire real axes, being in this case
the map not more surjective, we would have lost the invertibility.

4. A map from Rm → Rn between Euclidean spaces takes m-tuple (x1, . . . , xm) to n-tuple
(x1, . . . , xn). It can be thought as a collection of n functions ϕj (j = 1, . . . , n) of m
variables, i.e.: 

y1 = ϕ1(x1, . . . , xm)
...

yn = ϕn(x1, . . . , xm) .

(1.70)

Any one of these functions is said to be Cp if continuous and p-times differentiable. The
entire map ϕ : Rm → Rn is Cp if each of its component functions is at least Cp. Let us
remark that C∞ maps are also called smooth.

5. Two sets are said to be diffeomorphic if there exists a smooth map ϕ : M → N whose
inverse ϕ−1 : N→M is also smooth. Such a map is known as diffeomorphism.
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a.2 definition of manifold

Before to define what a manifold is, we need to provide the notion of open set, where we can
introduce a coordinate system, and then sew the open sets together in an appropriate way.
An open set is a set formed by an arbitrary union of open balls. In other words the set U ∈ Rn

is open if ∀ x ∈ U, there exists an open ball Bε(x), centered at x with radius ε, completely
contained in U. Let us recall that an open ball is defined as the set of all points x ∈ Rn such
that |x− x0| < ε, for some fixed x0 ∈ Rn, with ε ∈ R+, where it has been defined the distance
|x− x0|

.
=
√

∑n
i=1(xi − x0i)2. An open ball is therefore the enterior of an n-sphere centered

in x0. Let us mention that in order to define the concept of open set, we have implicitly
introduced the notion of metric (namely a way for measuring distances).

Figure 21.: open set of Rn.

Let us provide now two notions that we need in the following for the definition of manifold,
the concept of chart and atlas.

1. A chart, or coordinates system, consist in a subset U of a set M together with an injective
map ϕ : U → Rn such that the image of U, ϕ(U), is open in Rn (any map is onto its
image so the map ϕ is invertible). The subset U ⊂ Rn is an open set of Rn.

2. A C∞ atlas is an indexed collection of charts {(Uα, ϕα)} such that:

• The union of all the Uα (i.e.
⋃

α Uα) is equal to M (i.e. the Uα cover the entire set M);

• The charts are smoothly sewn together (compatibles). This means that if the two charts
overlap, i.e. Uα ∩Uβ 6= 0, then the map (ϕα ◦ ϕ−1

β ) takes points in ϕβ(Uα ∩Uβ) ⊂ Rn

onto ϕα(Uα ∩ Uβ) ⊂ Rn, and all of these maps must be smooth where they are
defined.

To summarize, a chart is what we normally think of as a coordinate system on some open set,
whereas an atlas is a system of charts which are smoothly related on their overlaps.

At this point we have all the ingredients to provide the definition of manifold. We will
say that an n-dimensional C∞ manifold is a set M equipped with a maximal atlas, e.g. an atlas which
contains every possible compatible chart.
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Figure 22.: graphical representation of a chart (coordinate system).

Figure 23.: graphical representation of an atlas.
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Intuitively, the notion of a manifold captures the basic idea of a space which may be curved,
and characterized by a complicated topology, but in local regions it simply looks like Rn [141].

a.2.1 Examples of manifolds

Here, some examples of manifolds are listed:

• Rn itself is a manifold equipped with a single chart (this represents a trivial example
since Rn looks like Rn globally, not only locally);

• The unit circumference S1: {(x0, x1) ∈ R2 | x2
0 + x2

1 = 1} is a manifold. In order to cover
the entire manifold we need at least of two charts:{(

U1 = (0, 2π), ϕ1 : S1/{pn} → R
)(

U2 = (−π, π), ϕ2 : S1/{ps} → R
)

,
(2.71)

where pn and ps are the north pole and the south pole respectively.

Figure 24.: circumference as a manifold.

In this way the entire set M is covered, and the manifold is (S1, {Ui, ϕi}) (i = 1, 2).

• The unit sphere S2: {(x0, x1, x2) ∈ R3 | x2
0 + x2

1 + x2
3 = 1} is a manifold if equipped with

two charts ϕi (i = 1, 2) given by the stereographic projections:{(
U1 = S2/pn, ϕ1 : S2/{pn} → R2)(
U2 = S2/ps, ϕ2 : S2/{ps} → R2) .

(2.72)

The Figure 25 shows the chart (U1, ϕ1), the stereographic projection (with respect the
north pole).
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Figure 25.: chart (U1, ϕ1) for the sphere S2.

A straight line starts from the north pole located at x2 = 1 and reaches the plane situated
at x2 = −1, intercepting a point on S2. When projected to the plane, a pair of cartesian
coordinates (y0, y1) are assigned to that point. This procedure is defined by the map:

ϕ1(x0, x1, x2) =

(
2x0

1− x2
,

2x1

1− x2

)
=: (y0, y1) . (2.73)

In total analogy to the circumference S1, the second chart will be given by the stereo-
graphic projection of the sphere, with respect the south pole, to the plane located at
x2 = 1. In this case the map ϕ2 : S2/{ps} → R2 results:

ϕ2(x0, x1, x2) =

(
2x0

1 + x2
,

2x1

1 + x2

)
=: (z0, z1) . (2.74)

When are sewn together, these two charts cover the entire sphere S2. Moreover, they
overlap in the region −1 < x2 < 1. The composition ϕ2 ◦ ϕ−1

1 is given by:

ϕ−1
1 (y0, y1) =

(
(1− x2)

y0

2
, (1− x2)

y1

2
, x2

)
⇒ ϕ2(ϕ−1

1 (y0, y1)) =

(
4y0

y2
0 + y2

1
,

4y1

y2
0 + y2

1

)
,

(2.75)
whereas the composition ϕ1 ◦ ϕ−1

2 results in:

ϕ1(ϕ−1
2 (z0, z1)) =

(
4z0

z2
0 + z2

1
,

4z1

z2
0 + z2

1

)
, (2.76)

and they are C∞ in the overlapping domain.

• The n-torus Tn appearing in the Arnold-Liouville theorem, which results on the cartesian
product of n spheres S1, is a manifold. This is a general result, the cartesian product of
manifolds is a also manifold.
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B NEGAT IVE VALUES OF THE DEFORMAT ION
PARAMETERS : A CASE STUDY

In the section 4.6 we have shown that the exact solvability of the two MS systems on curved
space (the Taub-NUT and the D-III) can be solved in terms of the shape invariance. As
a matter of fact, the coupling constant metamorphosis allowed us to perform a standard
SUSYQM analysis in order to find out the discrete spectrum and the eigenfunctions of the
two models. This works for positive values of the deformation parameters. For negative
values the situation is not so clear and, indeed, is still an open problem. For example, in [55]
an explicit discussion for different values of the sign of the parameters η and k has been
presented for the TN, and the problems related to the possibility of obtaining an analytical
form of the spectrum and the eigenfunctions, related to the boundary conditions, have been
also sketched. Anyway, the model described by the effective potential obtained by an overall
change of sign in the original Hamiltonian was not discussed there. The crucial point here
is related to the fact that, even if the potential is confined, an analytic closed form for the
spectrum and the eigenfunctions is not guaranteed and, at a first glance, it seems reasonable
that the solution could be calculated only numerically. A major detailed investigation on these
issues, together with our spanish collegues, is in progress. Personally, since I never dealt with
such confined models in N-dimensions, I started thinking how to tackle such a problem. In
particular, since we are dealing with problems confined on a segment, one reasonable solution
would be a set of eigenfunctions associated with (confined) orthogonal polynomials, where
I mean polynomials that are orthogonal on a segment. This simple observation led me to
investigate, just as a prototype example, the family of Jacobi orthogonal polynomials. The
goal of this appendix is to present such analysis.

b.1 a confined exactly solvable model based on the jacobi poly-
nomials

In this appendix, in order to make some progress on N-dimensional confined models on
curved spaces, we will present an example based on the Jacobi orthogonal polynomials. The
basic idea here is to construct an N-dimensional model starting from the one-dimensional
secular problem associated to the Jacobi polynomials. The main result of this work can be
summarized by the following:

theorem 1. Let us consider the two-parameter family of N-dimensional (ND) classical Hamiltonian
systems given by:

Hξ = Tξ(x, p) + Vξ(x) =
(

1− |x|
ξ

)
|x|
ξ

p2

2
+

k
ξ − |x| , (1.77)

where ξ and k are positive real parameters, x, p ∈ RN are conjugate coordinates and momenta with
0 < |x| < ξ. This model, after performing a direct Schrödinger quantization, and a separation of
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variables in (hyper)spherical coordinates defined in the punctured open hyperball 0 < |x| < ξ, admits
the discrete set of eigenvalues (n = 0, 1, . . . ; l = 0, 1, . . . ):

En,l =
h̄2

8ξ2

(
1 + 2n +

√
1 +

8kξ

h̄2

)(
1 + 2n + 4

(
l +

N − 2
2

)
+

√
1 +

8kξ

h̄2

)
, (1.78)

together with the corresponding eigenfunctions:

Ψn,l,lN−2,...,l1(r, θ) ∝ Yl
lN−2,..,l1(θ1, θ2, ..., θN−1)Φn,l(r) , (1.79)

where Yl
lN−2,..,l1

(θ1, θ2, ..., θN−1) are the usual hyperspherical harmonics related to the angular part of
the solution and:

Φn,l(r) = cn,l (1− r/ξ)
1
2

√
1+ 8kξ

h̄2 + 1
2 (r/ξ)l P

(√
1+ 8kξ

h̄2 , 2l+N−2
)

n (2r/ξ − 1) (1.80)

is the radial solution. Here, cn,l
.
=

√
n!
(

2n+2l+N−1+
√

1+ 8kξ

h̄2

)
Γ
(

n+2l+N−1+
√

1+ 8kξ

h̄2

)
ξN−2Γ(n+2l+N−1) Γ

(
n+1+

√
1+ 8kξ

h̄2

) is a normalization

factor and P(α,β)
n (x) are the Jacobi polynomials with parameters α

.
=
√

1 + 8kξ

h̄2 and β
.
= 2l + N − 2.

The eigenfunctions are othonormal w.r.t. the measure:

dµ(r, θ)
.
=

rN−1

r(ξ − r)
sinN−2(θ1) sinN−3(θ2) . . . sin(θN−2)dr dθ1 dθ2 . . . dθN−1 , (1.81)

with θ1, . . . , θN−2 ∈ [0, π) and θN−1 ∈ [0, 2π) and r ∈ (0, ξ).

Proof. After rephrasing our problem in hyperspherical coordinates (taking into account that
r ∈ (0, ξ)) we arrive at the following classical radial Hamiltonian:

Hξ(r, pr) = Tξ(r, pr) + Vξ(r) =
(

1− r
ξ

)
r
ξ

(
p2

r
2

+
L2

2r2

)
+

k
ξ − r

, (1.82)

where L2 = ∑N−1
j=1 p2

θj
∏

j−1
k=1

1
sin2 θk

is the square of the (conserved) total angular momentum. In
this case, the effective one-dimensional potential reads:

Vξ,eff(r) =
ξ − r

r
L2

2ξ2 +
k

ξ − r
. (1.83)

Hence:
lim
r→0

Vξ,eff(r) = +∞, lim
r→ξ

Vξ,eff(r) = +∞.

Observing the Figure 26 we can appreciate that the qualitative behaviour of the effective
potential is similar to the one of the confined TN: the deformation parameter governs the
shape of the potential, which dissolves in the ξ → 0 limit. Let us notice that in this limit, as
expected, the model ceases to exist (the domain of definition of the radial coordinate collapses
to a point and the potential dissolves).
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Figure 26.: effective potential Vξ,eff(r) calculated for L2 = 1, k = 1 and ξ = 0.5 (on the left)
and for L2 = 1, k = 1, ξ = 0.5 (blue), 0.25 (orange), 0.10 (green) (on the right). The
vertical lines represent the singularities at rc = ξ.

In order to define the quantum counterpart of the classical Hamiltonian (1.77), we proceed ex-
actly as in the TN and D-III cases by applying the usual Schrödinger quantization prescription.
This leads to the quantum Hamiltonian operator:

Ĥξ =

(
1− |x̂|

ξ

)
|x̂|
ξ

p̂2

2
+

k
ξ − |x̂| = −

h̄2

2

(
1− |x|

ξ

)
|x|
ξ

∆x +
k

ξ − |x| . (1.84)

Now, by using the hyperspherical coordinates, together with the usual definition:

p̂r = −ih̄
∂

∂r
, p̂θj = −ih̄

∂

∂θj
, j = 1, . . . , N − 1 ,

the quantum radial Hamiltonian corresponding to (1.84) reads:

Ĥξ =
1
2

(
1− r

ξ

)
r
ξ

(
1

rN−1 p̂r rN−1 p̂r +
L̂2

r2

)
+

k
ξ − r

, (1.85)

where L̂2 is the square of the total quantum angular momentum operator, previously defined
in (6.8). Once again, after reordering terms and by introducing the differential operators
p̂rj , p̂θj within the Hamiltonian (1.85), we arrive at the following Schrödinger equation:

(
1− r

ξ

)
r
ξ

(
−h̄2

2
∂2

r −
h̄2(N − 1)

2r
∂r +

L̂2

2r2+

)
Ψ(r, θ) +

k
ξ − r

Ψ(r, θ) = E Ψ(r, θ), (1.86)

where θ = (θ1, . . . , θN−1). Now, as usual, by taking into account that the hyperspherical
harmonics Y(θ) satisfy:

L̂2Y(θ) = h̄2l(l + N − 2)Y(θ), l = 0, 1, 2 . . . ,

where l is the angular momentum quantum number, the equation (1.86) admits a complete
set of factorized solutions of the form:

Ψ(r, θ) = Φ(r)Y(θ),
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and the radial Schrödinger equation provided by Ĥξ reads:(
1− r

ξ

)
r
ξ

(
−h̄2

2

(
d2

dr2 +
N − 1

r
d
dr
− l(l + N − 2)

r2

))
Φ(r) +

k
ξ − r

Φ(r) = E Φ(r), (1.87)

that can be rewritten as:

− h̄2

2ξ2 (ξ − r)r
(

d2

dr2 +
N − 1

r
d
dr
− l(l + N − 2)

r2

)
Φ(r) +

k
ξ − r

Φ(r) = E Φ(r), (1.88)

with k, ξ > 0 and 0 < r < ξ. By direct computation, it can be proved that the solution
of this second-order differential equation is given by (1.80), and that the wavefunctions
Ψn,l(r, θ) = cn,lYl

lN−2,..,l1
(θ1, θ2, ..., θN−1)Φn,l(r) are orthonormal w.r.t. the measure (1.81).
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Figure 27.: radial eigenfunctions Φ0,0(r) (blue), Φ1,0(r) (orange), Φ1,1(r) (green), Φ2,0(r) (red),
Φ2,1(r) (purple) and Φ2,2(r) (brown), calculated for k = h̄ = 1, ξ = 0.5 and N = 3.

Let us notice that the dimension of the radial wave function is [Φ]=L
2−N

2 (L ≡ length)
and its square modulus integrated with respect to the radial part of the measure (1.81) is
dimensionless as expected. Let us also point out that the spectum cannot be written in terms
of a single combination of the quantum numbers n and l. This should be an indicator that
the system is not maximally superintegrable. However, the quasi-maximal superintegrability
(QMS) is ensured due to the hyperspherical symmetry inside the punctured (open) hyperball
BN

ξ
.
= {xj > 0|∑N

j=1 x2
j < ξ2}: this system is radially symmetric in that domain of definition. In

the following we will conclude our discussion by defining the metric and the scalar curvature
characterizing this exactly solvable ND model.

b.2 metric and scalar curvature

The classical Hamiltonian:

Hξ = Tξ(r, pr) + Vξ(r) =
1

f 2
ξ (r)

(
p2

r
2

+
L2

2r2

)
+Vξ(r), (2.89)
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describes a particle (with unit mass) on an ND spherically symmetric space:

MN = (BN
ξ , g) gij =

ξ2

(ξ − |x|)|x|δij , (2.90)

under the action of the central potential Vξ(r) = k
ξ−r , with k, ξ > 0. In hyperspherical

coordinates the ND spherically symmetric metric is given by:{
ds2

ξ = f 2
ξ (r)(dr2 + r2dΩ2

N−1)

dΩ2
N−1

.
= ∑N−1

j=1 dθ2
j ∏

j−1
k=1 sin2 θk ,

(2.91)

where dΩ2
N−1 is the metric of the unit (N − 1)-sphere SN−1. Here fξ(r) = ξ√

(ξ−r)r
> 0, so

we have two singularities of the metric in the limit r → 0 and r → ξ. Concerning the scalar
curvature, it turns out to be:

Rξ(r) = −(N − 1)
(N − 4) f ′2ξ (r) + fξ(r)(2 f ′′ξ (r) +

2(N−1)
r f ′ξ(r))

f 4
ξ (r)

| fξ (r)=
ξ√

(ξ−r)r

= (N − 1)
(N − 2)(4r2 + 3ξ2)− 4ξr(2N − 3)

4ξ2r(ξ − r)
(0 < r < ξ) . (2.92)
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[56] Á. Ballesteros, A. Enciso, F. J. Herranz, O. Ragnisco, and D. Riglioni, “Exactly solvable
deformations of the oscillator and Coulomb systems and their generalization.” Journal of
Physics Conference Series 597 no. 1, (Apr., 2015) 012014, arXiv:1411.7569 [quant-ph].

[57] K. Meyer, G. Hall, and D. Offin, Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem. Applied Mathematical Sciences. Springer New York, 2008.

136

http://dx.doi.org/10.1088/0031-8949/90/7/074010
http://dx.doi.org/10.1088/0031-8949/90/7/074010
http://dx.doi.org/10.1088/0305-4470/22/18/004
http://dx.doi.org/10.1088/0305-4470/22/21/020
http://dx.doi.org/10.1016/j.physd.2007.09.021
http://dx.doi.org/10.1016/j.physd.2007.09.021
http://arxiv.org/abs/math-ph/0612080
http://dx.doi.org/10.1088/1742-6596/474/1/012008
http://dx.doi.org/10.3842/SIGMA.2011.048
http://dx.doi.org/10.1007/s10773-011-0750-x
http://dx.doi.org/10.1007/s10773-011-0750-x
http://dx.doi.org/10.1088/1742-6596/284/1/012011
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2011.03.002
http://dx.doi.org/10.1016/j.physleta.2011.02.034
http://dx.doi.org/10.1016/j.physleta.2011.02.034
http://dx.doi.org/10.1142/9789814518550_0025
http://dx.doi.org/10.1142/9789814518550_0025
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2014.09.013
http://dx.doi.org/10.1088/1742-6596/597/1/012014
http://dx.doi.org/10.1088/1742-6596/597/1/012014
http://arxiv.org/abs/1411.7569


Bibliography

[58] M. Dunajski, “Integrable systems.” Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, UK (2012) 20–35.

[59] A. S. Mishchenko and A. T. Fomenko, “Generalized liouville method of integration of
hamiltonian systems.” Functional Analysis and Its Applications 12 no. 2, (1978) 113–121.

[60] V. Kozlov, “Remarks on a Lie theorem on the integrability of differential equations in
closed form.” Differential Equations 41 no. 4, (2005) 588–590.
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