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Kazhdan-Lusztig Kombinatorik
und Impulsgraphen

Zusammenfassung

Impulsgraphen, sowie Kazhdan-Lusztig-Polynome, liegen an der Schnittstelle von alge-
braischer Kombinatorik, Darstellungstheorie und geometrischer Darstellungstheorie. Wéahrend
die Kombinatorik der Kazhdan-Lusztig Theorie schon seit dem grundlegenden Artikel von
Kazhdan und Lusztig (1979), das diese Polynome definiert, untersucht wurde, wurden Im-
pulsgraphen noch nicht als kombinatorische Objekte betrachtet.

Das Ziel dieser Arbeit ist, zuerst eine axiomatische Theorie iber Impulsgraphen und
Garben auf ihnen zu entwickeln und anschliefend diese auf die Untersuchung einer funda-
mentalen Klasse von Impulsgraphen, nédmlich die -reguldren und parabolischen- Bruhat—
Impulsgraphen, anzuwenden. Sie sind mit jeder symmetrisierbaren Kac—-Moody Algebra
verbunden und die zugehorigen Braden—MacPherson Garben beschreiben die projektiven
unzerlegbaren Objekten der - reguldren oder singuléren- Kategorie O. Dies ist fiir uns
der wichtigste Grund, zusammen mit ihrem inneren kombinatorischen Interesse, Bruhat—
Impulsgraphen zu untersuchen.

Im ersten Kapitel definieren und beschreiben wir die Kategorie der k-Impulsgraphen auf
einem Gitter. Zentraler Punkt dieses Teils ist die Definition des Begriffs von Morphismus.

Das zweite Kapitel ist iiber die Kategorie der Garben auf einem k-Impulsgraph. Wir
definieren die Pullback und Push-Forward Funktoren und wir beweisen, dass sie gute Eigen-
schaften haben. Wie in der klassischen Garbentheorie ist der Pullback links-adjungiert
zum Push-Forward. Auferdem zeigen wir, dass der Pullback eines Isomorphismus die
wichtigste Klasse von Garben auf einem k-Impulsgraph, genauer die unzerlegbaren Braden-
MacPherson Garben, erhélt. Dieses Ergebnis wird ein grundlegendes Instrument im Kapitel
5 werden.

Im folgenden Kapitel betrachten wir die Familie von Bruhat k-Impulsgraphen, die mit
einer symmetrisierbaren Kac-Moody-Algebra verbunden sind. Das interessanteste Ergebnis
des ersten Teils dieses Kapitels ist die Realisierung von parabolischen Bruhat—Impulsgraphen
als Quotienten - im Sinne von Kapitel 1 - des reguldren Bruhat-Impulsgraph. Im zweiten
Teil des Kapitels untersuchen wir den affinen Fall. Insbesondere bekommen wir eine ex-
plizite Beschreibung von gewissen endlichen Intervallen des Bruhat—Impulsgraphs die zur
affine Grassmannschen assoziiert sind.

In Kapitel 4 verallgemeinern wir eine Kategorifizierung von Fiebig der Hecke-Algebra
auf den parabolischen Fall. Der grundlegende Schritt ist die Definition eines involutiven
Automorphismus der Strukturalgebra des parabolischen Bruhat-Impulsgraphen.

In den letzten zwei Kapiteln kategorifizieren wir gewisse Eigenschaften der Kazhdan—
Lusztig-Polynome durch Garben auf Impulsgraphen. Insbesondere werden die Ergebnisse
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aus Kapitel 5 iber die Kombinatorik und Eigenschaften der unzerlegbaren Braden-MacPherson
Garbe sowie die Aussagen aus Kapitel 1 iiber den Pullback Funktor angewendet. Der Beweis
des Hauptergebnisses des Kapitels 6 ist ziemlich aufwendig und benutzt neben Ergebnissen
von Fiebig die bis dahin entwickelten Techniken aus den vorherigen Kapiteln.
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Kazhdan-Lusztig combinatorics
in the moment graph setting

Abstract

Moment graphs, as well as Kazhdan-Lusztig polynomials, straddle the intersection of
algebraic combinatorics, representation theory and geometric representation theory. While
the combinatorial core of the Kazhdan-Lusztig theory has been investigated for thirty years,
after the seminal paper of Kazhdan-Lusztig (1979) where these polynomials were defined,
moment graphs have not yet been studied as combinatorial objects.

The aim of this thesis is first to develop an axiomatic theory of moment graphs and
sheaves on them and then to apply it to the study of a fundamental class of moment
graphs: the -regular and parabolic- Bruhat (moment) graphs. They are attached to any
symmetrisable Kac-Moody algebra and the associated indecomposable Braden-MacPherson
sheaves describe the indecomposable projective objects in the corresponding deformed -
regular or singular- category O. This is for us the most important reason to consider
Bruhat graphs, together with their intrinsic combinatorial interest.

In the first chapter, we define and describe the category of k-moment graphs on a lattice.
The fundamental point of this part is the definition of the notion of morphism.

The second chapter is about the category of sheaves on a k-moment graphs. We give
the definition of the pullback and push-forward functors and we prove that they have nice
properties. In particular, as in classical sheaf theory, the pullback ist left adjoint to the
push-forward. Moreover, we show that the pullback of an isomorphism preserves the most
important class of sheaves on a k-moment graph: the indecomposable Braden-MacPherson
sheaves. This result will be a fundamental tool in Chapter 5.

In the following chapter we study the family of Bruhat (k-moment) graphs associated
to a simmetrisable Kac-Moody algebra. The most interesting result of the first part of this
chapter is the realisation of parabolic Bruhat graphs as quotients - in the sense of Chapter
1- of the regular one. The second part of the chapter is devoted to the study of the affine
case. In particular, we describe certain finite intervals of the Bruhat graph corresponding
to the Affine Grassmannian in a very precise way.

In Chapter 4 we generalise to the parabolic setting a categorification, due to Fiebig, of
the Hecke algebra. The fundamental step is the definition of an involutive automorphism
of the structure algebra of parabolic moment Bruhat graphs.

In the last two chapters we categorify some properties of Kazhdan-Lusztig polynomials
via sheaves on moment graphs. In particular, the techniques we use in Chapter 5 play only
with combinatorics, intrinsic properties of the indecomposable Braden-MacPherson sheaf
and the pullback property we proved in Chapter 1. The proof of the main result of Chapter
6 is quite complicated. We need to use almost all the machinery we developped in the
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previous chapters together with results due to Fiebig.
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Introduction

Moment graphs appeared for the first time in 1998, in the remarkable paper of Goresky,
Kottwitz and MacPherson (cf.[20]). Their aim was to describe the equivariant cohomology
of a "nice" projective algebraic variety X, where "nice" means that an algebraic torus T'
acts equivariantly formally (cf.[[20], §1.2]) on X with finitely many 1-dimensional orbits
and finitely many fixed points (all isolated). In these hypotheses, they proved that Hp(X)
can be described using data coming from the 1-skeleton of the T-action. In particular, such
data were all contained in a purely combinatorial object: the associated moment graph.
After Goresky, Kottwitz and MacPherson’s paper, several mathematicians, as Lam, Ram,
Shilling, Shimozono, Tymozcko, used moment graphs in Schubert calculus (cf.[33], [34],
[42], [43], [44]).

In 2001, Braden and MacPherson gave a combinatorial algorithm to compute the T'-
equivariant intersection cohomology of the variety X, having a T-invariant Whitney strat-
ification (cf. |7]). In order to do that, they associated to any moment graph an object that
they called canonical sheaf; we will refer hereafter to it also as Braden-MacPherson sheaf.
Even if their algorithm was defined for coefficients in characteristic zero, it works in positive
characteristic too. In this case, Fiebig and Williamson proved that, under certain assump-
tions, it computes the stalks of indecomposable parity sheaves (cf.[19]), that are a special
class of constructible (with respect to the stratification of X) complexes in D5(X;k), the
T-equivariant bounded derived category of X over the local ring k. Parity sheaves have
been recently introduced by Juteau, Mautner and Williamson (cf.[25]), in order to find
a class of objects being the positive characteristic counterpart of intersection cohomology
complexes. Indeed, intersection cohomology complexes play a very important role in geo-
metric representation theory thanks to the decomposition theorem, that in general fails in
characteristic p, while for parity sheaves holds.

The introduction of moment graph techniques in representation theory is due to the
fundamental work of Fiebig. In particular, he associated a moment graph to any Coxeter
system and defined the corresponding category of special modules, that turned out to be
equivalent to a combinatorial category defined by Soergel in [41] (cf.[13]). The advantage
of Fiebig’s approach is that, as we have already pointed out, the objects he uses may be
defined in any characteristic and so they may be applied in modular representation the-
ory. In particular, they provided a totally new approach to Lusztig’s conjecture (cf.[37]) on

vii
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the characters of irreducible modules of semisimple, simply connected, reductive algebraic
groups over fields of characteristic bigger than the corresponding Coxeter number (cf.[18]).
This conjecture was proved to be true if the characteristic of the base field is big enough
(by combining [31], [27] and [1]), in the sense that it is true in the limit, while Fiebig’s
work provided an explicit -but still huge!- bound (cf.[16]). The characteristic zero analog of
Lusztig’s conjecture, stated by Kazhdan and Lusztig a year before in [29], and proved a cou-
ple of years later, independently, by Brylinski-Kashiwara (cf.|8]) and Beilinson -Bernstein
(cf.[4]), admits a new proof in this moment graph setting (cf.[14]). In an ongoing project
Fiebig and Arakawa are working on the Feigin-Frenkel conjecture on the restricted category
O for affine Kac-Moody algebras at the critical level via sheaves on moment graphs (cf.|2],
[3]). A very recent paper of Shan, Varagnolo and Vasserot uses moment graphs to prove the
parabolic/singular Koszul duality for the category O of affine Kac-Moody algebras (cf.[39)]),
showing that the role played by these objects in representation theory is getting more and
more important.

The aim of this thesis is first to develop an axiomatic theory of moment graphs and
sheaves on them and then to apply it to the study of a fundamental class of moment
graphs: the -regular and parabolic- Bruhat (moment) graphs. They are attached to any
symmetrisable Kac-Moody algebra and the associated indecomposable Braden-MacPherson
sheaves give the indecomposable projective objects in the corresponding deformed -regular
or singular- category O (cf.[[14],86]). This is for us the most important reason to consider
Bruhat graphs, together with their intrinsic combinatorial interest.

Thesis organisation

Here we describe the structure of our dissertation and present briefly the main results.

From now on, Y will denote a lattice of finite rank, k a local ring such that 2 € k* and
Yk =Y ®y k.

In the first chapter, we develop a theory of moment graphs. In order to do that, we
first had to choose if we were going to work with moment graphs on a vector space (as
Goresky-Kottwitz and MacPherson do in [20]) or on a lattice. The first possibility would
enable us to associate a moment graph to any Coxeter system (cf.[13]), while the second
one has the advantage that a modular theory could be developed (cf. [18]). We decided to
work with moment graphs on a lattice, because our results of Chapter 5 and Chapter 6 in
characteristic zero categorify properties of Kazhdan-Lusztig polynomials, while in positive
characteristic they give also information about the stalks of indecomposable parity sheaves
([19]). Thus, from now on we will speak of k-moment graphs, where k is any local ring
with 2 € k*. However, our proofs can be adapted to moment graphs on a vector space, by
slightly modifying some definitions.

After recalling the definition of k-moment graph on a lattice Y, following [16], we in-
troduce the new concept of homomorphism between two k-moment graphs on Y. This is
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given by nothing but an order-preserving map of oriented graphs together with a collection
of automorphisms of the k-module Y}, satisfying some technical requirements (see §1.2).
In this way, once proved that the composition of two homomorphisms of k-moment graphs
is again a homomorphism of k-moment graphs (see Lemma 1.2.1), we get the category
MG(Y}) of k-moment graphs on the lattice Y and in the rest of the chapter we describe
some properties of it.

The following chapter is about the category Shy(G), of sheaves on the k-moment graph
G. We start with recalling some concepts and results from [7], [14], [15], [19]; in particular,
the definition of canonical or Braden-MacPherson sheaves. Even if these objects are not
sheaves in the algebro-geometric sense but only combinatorial and commutative algebraic
objects, we define pull-back and push-forward functors (see §2.2). Let f : § — G be a
homomorphism of k-moment graphs on Y, then we are able to prove that, as in algebraic
geometry, the adjunction formula holds.

Proposition 0.0.1. Let f € Homprg(y,) (9, g, then f* is left adjoint to f., that is for all
pairs of sheaves F € Shy(S9) and H € Shi(G') the following equality holds

Homgp, () (f*H, F) = Homgp, () (3, f.F) (1)

We end the chapter with proving a fundamental property of canonical sheaves, namely
we show that, if f : § — G’ is an isomorphism, then the pullback functor f* preserves
indecomposable Braden-MacPherson sheaves (see Lemma 2.2.2). This result will provide
us with an important technique to compare indecomposable canonical sheaves on different
k-moment graphs, that we will use in Chapter 5.

Let g be a Kac-Moody algebra, then there is a standard way to associate to g certain
k-moment graphs on its coroot lattice (cf. [15]), the corresponding reqular and parabolic
(k-moment) Bruhat graphs. Denote by W the Weyl group of g, that it is in particular a
Coxeter group. Let 8 be its set of simple reflections, then, for any subset J C 8 there
is exactly one parabolic Bruhat graph, that we denote G”/. These are the main objects
of Chapter 3. After giving some examples, we prove that all parabolic k-moment Bruhat
graphs associated to g are nothing but quotients of its regular Bruhat graph (see Corollary
3.1.2). We then focus our attention on the case of g affine Kac-Moody algebra. The most
interesting parabolic Bruhat graph attached to g is the one corresponding to the Affine
Grassmannian, that we denote GP*" = GP?'(g), and we consider it in §3.2.2. Once showed
that the set of vertices of GP?" may be identified with the set of alcoves in the fundamental
Weyl chamber €T, we study finite intervals of GP? far enough in €. We are able to describe
these intervals in a very precise way (see Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.1, Lemma
3.2.4). In particular, we notice that the set of edges is naturally bipartite and this gives
rise to the definition of a new k-moment graph attached to g: the stable moment graph
(see §3.2.3), that is a subgraph of GP?'.

In Chapter 4, we generalise a construction of Fiebig. Let g be a Kac-Moody algebra,
then we may consider the attached Bruhat graphs. In the case of the regular Bruhat graph
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§= 9®(g), Fiebig defined translation functors on the category of Z-graded Z-modules, where
Z is the structure algebra (see §2.1.1) of §. Moreover, in [18] he considered a subcategory
H of the category of Z-graded Z-modules and proved that it gives a categorification of the
Hecke algebra H of W. In a similar way, for any parabolic moment graph G” attached
to g, we are able to define translation functors {*0}.cs and the category H”. Actually, if
H is the parabolic Hecke algebra defined by Deodhar in [9], this admits an action of the
regular Hecke algebra H. Recall that Kazhdan and Lusztig in [29] defined the canonical
basis of H, that we denote, following Soergel’s notation, by {H,},cw. Then, if (}”) is the
Grothendieck group of H”, we may define a character map h : (7)) — H’ (see §4.2.2) and,
for any simple reflection s € 8, we get the following commutative square (see Proposition
4.2.1).

(HT) "> M :

Seo{l}l lH

(HTy >\
where {1} denotes the degree shift functor on the Z-graded category 7.

In Chapter 5 we report and expand results that have been already presented in our
paper [35]. We were motivated by the multiplicity conjecture (cf. [16]), a conjectural
formula relating the stalks of the indecomposable Braden-MacPherson sheaves on a Bruhat
graph G” to the corresponding Deodhar’s parabolic Kazhdan-Lusztig polynomials for the
parameter u = —1 (cf. [9]), that we denote {m;,} as Soergel does in [40]. The aim of this
chapter is then to lift properties of the miy’s to the level of canonical sheaves, that is to
categorify some well-know equalities concerning Kazhdan-Lusztig polynomials. We mainly
use three strategies to get our claims:

o Technique of the pullback. We look for isomorphisms of k-moment graphs and then,
via the pullback functor (see Lemma 2.2.2), we get the desired equality between stalks
of Braden-MacPherson sheaves (see §5.2).

o Technique of the set of invariants. For any s € § we define an involution o4 of the
set of local sections of a canonical sheaf on an s-invariant interval of G. In this case,
the study of the space of the invariants gives us the property we wanted to show (see
§5.3).

o Flabbiness of the structure sheaf. It is known (cf. [17]) that the so-called structure
sheaf (see Example 2.1.1) is isomorphic to an indecomposable Braden-MacPherson
sheaf if and only if it is flabby and this is the case if and only if the corresponding
Kazhdan-Lusztig polynomials evaluated in 1 are all 1. We prove in a very explicit way
that the structure sheaf is flabby to categorify the fact that the associated polynomials
evaluated in lare 1 (see§5.1 and §5.4).
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The aim of the last chapter is to describe indecomposable canonical sheaves on finite
intervals of GP? far enough in €. Our motivation comes from the multiplicity conjecture
together with a result, due to Lusztig (cf. [37]), telling us that for any pair of alcoves
A, B C C" there exists a polynomial ¢4 g, called the generic polynomial of the pair A, B,
such that

. par _
h_m>mA+u,B+u = 4A,B- (2)
pneet

Actually, this result relates the Hecke algebra of the affine Weyl group W to its pe-
riodic module M. Our interest in M is motivated now by the fact that M governs the
representation theory of the affine Kac-Moody algebra, whose Weyl group is W®, at the
critical level.

Suppose that A, B, A 4+ i, B + p are alcoves far enough in the fundamental chamber.

Then results of §3.2.2 show that the two moment graphs SﬁirB] and ﬁi piy 2T in general
s 1y m
not isomorphic, while there is always an isomorphism of moment graphs between 9?;:2] and
T;j‘j Bl Since the stable moment graph is a subgraph of GP?" there is a monomorphism
w,B+p
gstab « y gpar  The following diagram summarises this situation:
9par par
l{a,B [[A+p, Byl
i [
stab stab
Ilas Tiatsea

We then get a functor -St2b .= §* . Shglpar — Shthab . The main theorem of this
[A,B] [A,B]
chapter is the following one.

Theorem 0.0.1. The functor -5/ . Shk(S‘p[ZrB]) — Shk(Sf[ill;]) preserves indecomposable

Braden-MacPherson sheaves.

The stabilisation property, that is the categorification of Equality (2), follows by apply-
ing the technique of the pullback to the previous result.

In the case of g = gﬂ, we are able to prove the claim via the third technique we quoted
above, that is, for any finite interval of §**2P we show that in characteristic zero its structure
sheaf is flabby, so it is invariant by weight translation for all integral weights ;. € €T. On
the other hand, we know already that the structure sheaf for the affine Grassmannian is
flabby (see §5.4) and this concludes the sl,-case.

For the general case, we apply a localisation technique due to Fiebig (that we recall in
Chapter 4), which enables us to use the sly-case, together with results of [18].
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Perspectives

Since the theory of sheaves on moment graphs is related to geometry, representation
theory and algebraic combinatorics, we briefly present three possible applications or devel-
opments of this theory on which we are interested in, one for each of these fields.

Equivariant cohomology of affine Bott-Samelson varieties.

In a joint project with Stéphane Gaussent and Michael Ehrig (cf.[12]), we try to gen-
eralise to the affine setting the paper [21]| of Hérterich, where the author describes the T-
equivariant cohomology of Bott-Samelson varieties in terms of Braden-MacPherson sheaves
on the corresponding Schubert varieties.

Periodic patterns and the Feigin-Frenkel conjecture.

The Feigin-Frenkel conjecture provides a character formula involving Lusztig’s periodic
polynomials (cf.[37]). In 28], Kato related these polynomials to the generic polynomials. In
particular, he showed that generic polynomials are sum of periodic polynomials with certain
multiplicities. We believe that a natural development of the results we got in Chapter 5 is
to prove an analog of this periodicity property for canonical sheaves. It should correspond
to a filtration of the space of global sections of the indecomposable Braden-MacPherson
sheaf. In an ongoing project with Peter Fiebig we try to understand this phenomenon
and to apply it to get a further step in the proof of the Feigin-Frenkel conjecture. The
representation theory of affine Kac-Moody algebras at the critical level is very complicated
and, thanks to the fundamental work of Frenkel and Gaitsgory, it is related to the geometric
Langlands correspondence.

Moment graphs and Littelmann path model.

In 2008, during the Semester " Combinatorial Representation Theory" at the MSRI
of Berkeley, Ram conjectured a connection between the Littelmann path model and affine
Kazhdan-Lusztig polynomials (the so—called "Théoréve"). Since in characteristic zero the
multiplicity conjecture is proved, our hope is that we may get a better understanding of
this connection via the study of indecomposable Braden-MacPherson sheaves, by applying
results we obtained in this thesis.
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Chapter 1

The category of k-moment graphs on
a lattice

Moment graphs were introduced by Goresky, Kottwitz and MacPherson in 1998, in
order to give a combinatorial description of the T-equivariant cohomology of a complex
algebraic variety X equipped with an action of a complex torus 7', satisfying some technical
assumptions (cf.[20]). A couple of years later, Braden and MacPherson, in |7], used moment
graphs to compute the T-equivariant intersection cohomology of X. Since 2006, thanks
to the seminal work of Fiebig (cf.[13],[14],[18],[16],[17]), moment graphs have become a
powerful tool in representation theory as well. Even if in the last years moment graphs
appeared in several papers, a proper "moment graph theory" has not been developped yet.
The aim of this section is to define the category of moment graphs on a lattice and to
discuss some examples and properties of it.

1.1 Moment graphs

In |20] and |7], moment graphs were constructed from a geometrical datum, but it is
actually possible to give an axiomatic definition.

Definition 1.1.1 ([16]). Let Y be a lattice of finite rank. A moment graph on the lattice
Y is given by (V,E,<,1), where:

(MG1) (V,€) is a directed graph without directed cycles nor multiple edges,
(MG2) < is a partial order on 'V such that if v,y €V and E:x —y € &, then x 1y,
(MG3) 1: & — Y \{0} is a map called the label function.

Following Fiebig’s notation ([16]), we will write x — y if we are forgetting about the
orientation of the edge.
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Studying complex algebraic varieties, Braden, Goresky, Kottwitz and MacPherson con-
sidered moment graphs only in characteristic zero, while they turned out to be very impor-
tant in prime characteristic (see [18], [19]).

From now on, k& will be a local ring such that 2 is an invertible element. Moreover, for
any lattice Y of finite rank, we will denote by Y :=Y ®gy k.

Definition 1.1.2. Let G be a moment graph on the lattice Y. We say that G is a k-moment
graph on Y if all labels are non-zero in Yy

Definition 1.1.3. [19] The pair (9, k) is called a GK M-pair if all pairs Ey, Eo of distinct
edges containing a common vertex are such that k- 1(Ey) Nk -1(E2) = {0}.

1.1.1 Examples

Example 1.1.1. The empty k-moment graph is given by the graph having empty set of
vertices. All the other data are clearly uniquely determined. We will denote it by ().

Example 1.1.2 (cf.[16]). A generic k-moment graph is a moment graph having a unique
verter. As in the previous example, all the other data are uniquely determined.

Example 1.1.3 (cf.[16]). A subgeneric k-moment graph on Y is a moment graph having
two vertices and an (oriented) edge, labelled by a non-zero element x € Y, such that x ® 1
s non-zero in Yy too.

Example 1.1.4. We recall here the construction, due to Braden an MacPherson, appeared
in [7]. Let G be an irreducible complex projective algebraic variety, with an algebraic action
of a complex torus T = (C*)?. Denote moreover by X*(T) the character lattice of the torus.
If G has a T-invariant Whitney stratification by affine spaces and the action of T is nice
enough (see [7], §1.1), then the associated moment graph is defined as follows. Thanks to
the technical assumptions made by Braden and MacPherson, any 1-dimensional orbit turns
out to be a copy of C*, whose closure contains exactly two fixed points. Thus, it makes
sense to declare that the set of vertices, resp. of edges, of the associated moment graph is
given by the set of fized points, resp. of 1-dimensional orbits, with respect this T-action.
Moreover, the assumptions on the variety imply that any stratum contains exactly one fixed
point. Then, taken any two (distinct) fixed points, x,y, that is two vertices of the graph
we are building, we set x < y if and only if the closure of the stratum corresponding to y
contains the stratum corresponding to x.

Now, we want to label all edges of the graph, in order to record more informations about
the torus action. Let E be an edge. Any point z of the one-dimensional orbit E has clearly
the same stabilizer Stabr(z) in T', that is the kernel of a character x € X*(T'). We then
set I(E) := x. We obtain in this way a moment graph on X*(T).

In Chapters 3, 4, 5 and 6 we will focus our attention on a class of moment graphs
associated to a symmetrisable Kac-Moody algebra: the Bruhat graphs. These graphs are
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nothing but an example of the Braden-MacPherson construction for the associated flag
variety that we described above (cf.[19], §7).

1.2 Morphisms of k-moment graphs

In this section, we give the definition of morphism between two k-moment graphs. Since
a k-moment graph is an ordered graph, whose edges are labeled by (non-zero) elements of
Y having non-zero image in Y}, a morphism will be given by a morphism of oriented graphs
together with a family of automorphisms of Y.

Definition 1.2.1. A morphism between two k-moment graphs
frvE,40) - W, e, 9.0)

is given by (fv, {fi,z}zev), where
(MORPHI1) fy : V — V' is any map of posets such that, if vt —— y € &, then either

fo(@)—fv(y) € &, or fv(x) = fo(y). (z) # fo(y),
we will denote fe(E) = fy(z) — fv(y).

(MORPH2) For allx €V, fi,: Yy = Yy € Auty(Yy) is such that, if E : x — y € € and
fv(x) # fv(y), the following two conditions are verified:

(MORPH2a) fi,(I(E)) =h-U(fe(E)), for some h € k™

(MORPHZ2b) mo f , = mofy,,, where 7 is the canonical quotient map 7 : Yy, — Y3 /U'(fe(E))Y%.
Iff:9=Mm"¢e<I0)—-9=W,&<0)andg:9 = g’ = (V' &, I"1") are two

morphisms of k-moment graphs, then there is a natural way to define the composition.

Namely, g o f := (gv © fv, {90, fy(2) © fr.e}eev)-

Lemma 1.2.1. The composition of two morphisms between k-moment graphs is again a
morphism, and it is associative.

Proof. The only conditions to check are (MORPH2a) and (MORPH2b). Suppose that E :
Tr—Y € € and gy Ofv($) 75 qgvr Ofv(y), that is fv(%) 7é fv(’U) and gvl(fv(l‘)) 75 gv/(fv(v)).

If fio((E)) =K -U(fe(E)) and gy s, @) (U (fe(E))) = h" - 1"(ger o fe(E)), with 1/, h" € k>,
then

(90 fo(@) © i) (UE)) = g @) (W - U(fe(E))) = B - b -1"(ger o fe(E)) = h-1"(ger o fe(E)),
and clearly h = b’ - b € k*.

Moreover,
(91 fo(@) © fra)(A) =
= 9U fy(@) (fly()‘) + n'l'(fe( ) =
= 91, fy(2) (Jiy(X) + 0/ - B 1" (ger o fe(E)) =
= 9v,fo(y) (fry(N) + n’” 1"(ger o fe(E)) +n' - B - 1"(ges o fe(E))
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where n,n” € k.
Finally, the associativity follows from the definition. O

For any k-moment graph § = (V, &, <,1), we set idg = (idy, {idy, }sev). Thus we may
give the following definition

Definition 1.2.2. We denote by MG(Y}) the category whose objects are the k-moment
graphs on Y and whose morphisms are as in Def.1.2.1.

1.2.1 Mono-, epi- and isomorphisms

Here we characterise some particular morphisms of k-moment graphs: monomorphisms,
epimorphisms and isomorphisms in M G(Y%).

Lemma 1.2.2. Let§ = (V,&,3,1),5" = (V, &, L,I') € MG(Y},) and | € Hompze(v,) (9, 9)-

(i) f is a monomorphism if and only if fy is an injective map of sets (satisfying condition

(MORPH1))

(ii) f is an epimorphism if and only if fy is a surjective map of sets (satisfying condition
(MORPH1))

Proof.

(i) f is a monomorphism if and only if, for any pair of parallel morphisms g1, g2 : H — G,
fogs = fogo implies g1 = ¢g2. Then, f is a monomorphism if and only if fy is a
monomorphisms in the category of sets and, for any z € V, f;, is a monomorphism in the
category of the k-modules, but by definition it is an automorphism of Y}, so this condition
is empty.

(ii) As in (i), we conclude easily that f is an epimorphism if and only if fy s a surjective
map of sets. O

Example 1.2.1. Consider the following map between graphs

If we set f1 . = fiy = fiw = tdy,, we get an homomorphism of k-moment graphs that is, by
Lemma 1.2.2, a monomorphism and an epimorphism.



A map between sets, that is both injective and bijective, is an isomorphism. Here, we
show that such a property does not hold for a homomorphism of k-moment graphs, even
if it is given by a map between the sets of vertices and an automorphism of Yj. This is
actually not surprising, since k-moment graphs will play in our theory (see next chapter)
the role that topological spaces play in sheaf theory and not all bijective continuous maps
between topological spaces are homeomorphisms.

Lemma 1.2.3. Let§ = (V,€,4,1),9 = (V, &, ') € MG(Y%) and f = (fv,{fiz}zev) €
Hompra(v,)(9,9'). f is an isomorphism if and only if the following two conditions hold:

(1SO1) fy is an isomorphism of posets

(ISO2) for all w — w € &', there exists an edge v — y € & such that fy(x) = u and
fo(y) =

Proof. At first, we show that a homomorphism satisfying (ISO1) and (ISO2) is invertible.
Denote by =1 := (f{, {f} wtuevr), where we set fy, := fy ! and firw = fz_fl—l(u)' We have
to verify that f~! is well-defined, that is we have to check conditions (MVORPHQCL) and
(MORPH2b). Suppose there exists an edge F' : v — w € &', then, by (iii), there is an
edge E : © — y € &€ such that fy(z) = v and fy(y) = w. Since f satisfies (MORPH2a),
fiz(I(E)) =h-U(F) for h € k* and we get

FiraW () = fy s (o (C(F)) = fi (V(F) = A1 U(E)

Now, let p € Yi and take \ := fljyl(,u). By (MORPHZ2a), 1 = f14(\) = fiz(A\) +7r-U(F)
for some r € k. It follows

Fira(pe) = fi (1) = fx(flx( )+ rl'(F))
=\t f (V) = £, ( )+r- b7 U(E)
= [y () +7"-1(E)

Suppose f is an isomorphism. If (ISO1) is not satisfied, then fy, and hence f, is not
invertible. Moreover, (ISO1) implies that for all u — v € &', there exists at most one
x — y € &€ such that fy(x) = u and fy(y) = v (otherwise fy would not be injective). Now,
let f be the following homomorphism, (we do not care about the f; ,’s)

Condition (ISO1) holds, but f is not invertible, since fy,'(u) # fy'(w) but fy, ' (u) —
fy H(w) ¢ € (this contradicts (MORPH1)). O
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Example 1.2.2. All the generic k-moment graphs are in the same isomorphism class in
MG(Yy). Then, we will say in the sequel the generic k-moment graph and we will denote

it by {pt}.
Example 1.2.3. If k is a field, then all the subgeneric k-moment graphs are isomorphic.

Example 1.2.4. The homomorphism in Ex. 1.2.1 is surjective and injective but is not an
isomorphism.

Example 1.2.5. Let o, be a basis of Yi. Consider the following morphism of graphs
(fv, fe):

Define

a— o O« a— a— o
fl’$1::{ﬁ’_>ﬁ fl7z2::{ﬁ’_)ﬁ fl,:l‘3::{ﬁ'_>a+ﬂ fl,$4::{ﬁ’_>a+ﬁ

We have to show that these data define a morphism of k-moment graphs. Condition
(MORPHZ2a) is trivially satisfied. Moreover, for any pair a,b € k,

Jrz(ace +08) — fi2,(ac +bB3) =0
fras(aa +08) — fiz,(aa +bB8) =0
Jra (e +08) = fiz,(aa+bB) = —ba = —b- (x5 — 1)
Jrazs (@ +08) — fiz,(aa+bB) = —ba = —b- (x4 — z2)

Then, condition (MORPH2b) holds too. Since the fi , are all automorphisms of Yy, f is an
isomorphism.

Lemma 1.2.4. Let G = (V,€,4,1),9 = (V,&,<2.I') € MG(Yy). Then, any isomorphism
= (v, {fiz}) € Homprgy,)(S,9') can be written, in a unique way, as composition of two
isomorphisms f = g ot with g = (fy,{idy, }) and t = (idy,{fi»}).



Proof. We have to show that there exists a k-moment graph J{ such that ¢ € Hompg(vy) (G, H),
g € Homppgy;) (3, §') and the following diagram commutes

g (L1)

Define H as the k-moment graph, whose set of vertices, set of edges and partial order are
the same as G and, for any edge  — y € €, the label function is defined as follows

lsc(z = y) = U(fo(z) = fo(y))

Now, it is easy to check that ¢ € Hompg(y,) (9, H) and g € Hompyig(y,) (3, §'). Clearly,
Diagram (1.1) commutes. Observe that 3 is not the only k-moment graph having the
desired properties, but this does not affect the uniqueness of the decomposition of f. [

1.2.2 Automorphisms

For any § € MG(Y%), denote by Aut(G) the automorphisms group of §. Moreover, we
set

T = {f € Awt(S)|f = (idv, {i:})} (1.2)
G = {f € Aut($) | f = (fy, fidy, )} (1.3)

Lemma 1.2.5. Let § € MG(Yy), then T and G is are normal subgroups of (Aut(9),o).
Moreover, Aut(9) =T x G.

Proof. For any f € Aut(§) and t € T',
fhf = (fytoidyo fy, {fl,_flv(x) oty fy(x) © f12}) = (idy, {f[fl\,(x) oty fy@) © fia) €T
For any f € Aut(9) and g € G,
Fraf = (Fy o gvo fo{fipyw 0idv, 0 fied) = (fy o gvo fo, {idy,}) € G

Now, T'N G = {idg} and the second statement follows by Lemma 1.2.1. O

1.3 Basic constructions in MG(Y})

1.3.1 Subgraphs and subobjects

Definition 1.3.1. Let § = (V,€,<,1),9' = (V, &, < l') € MG(Yy). We say that §' is a
k-moment subgraph of G if
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(SUB1) V' CV

(SUB2) & C &

(SUB3) 31’:§|V,

(SUB4) 1 = Uy

Lemma 1.3.1. Any k-moment subgraph of G is a representative of a subobject of G.
Proof. We have to show that, for any §’, k-moment subgraph of G, there exists a monomor-

phism i : § — G. Define ¢ as iy/(z) := z and iy , = idy, for any z € V'. From Lemmal.2.2
(i), it follows that i is a monomorphism. O

1.3.2 Quotient graphs

Definition 1.3.2. Let § = (V,&,<,1) € MG(Y)) and ~ an equivalence relation on V. We
say that ~ is G-compatible if the following conditions are satisfied:

(EQV1) x1 ~ xo itmplies x1 ~ x for all x1 <z < x9

(EQV2) for all x1,y1 €V, if x1 ot y1 and x1 — y1 € &, then for any xo ~ x1 there exists a
unique yo € V such that ya ~ y1, o — yo and l(x1 — y1) = l(x2 — y2).

Definition 1.3.3. Let §= (V,€,9,1) € MG(Yy) and let ~ be a G-compatible equivalence
relation. We define the oriented labeled graph quotient of § by ~, and we denote it by
G/ ~= Vo, €, <o, 1), in the following way

(QUOT1) V. is a set of representatives of the equivalence classes
(QUOT2) €. ={([z] = [y]) |z 2y, Jz1 ~x, y1 ~ y with x1 — y1}
(QUOTS) <. is the transitive closure of the relation [x] <. [y] if [x] — [y] € E~

(QUOTY) If [x] — [y] and x1 ~ x, y1 ~ y are such that x1 — y1, we set [.([x] = [y]) =
l(.%’l — yl).

Lemma 1.3.2. The graph G/~ is a k-moment graph on'Y .

Proof. The only condition to be checked is that G/~ has no oriented cycles, but it follows
easily from (EQV1) and (EQV2). Indeed, suppose there were an oriented cycle

[z1] = [x2] = ... = [Tn] = [71]
By (QUOT2) and (EQV2), this means that there exists the following path on the graph S:
T = Th = ., =,

for certain x; ~ z;. But now we would get a sequence 1 < 25 < ... Jx
x1 ~ 2} and |, by (EQV1), it would follow [x1] = [z;] for all i. O



Lemma 1.3.3. Let § € MG(Yy) and let ~ be a G-compatible equivalence relation. Then
the quotient of G by ~ is a representative of a quotient of G.

Proof. Suppose §' = G/~ and define p = (py, pe, {p1,2}) € Hompg(y,)(9,9') as py(z) :=
[z], where [z] is the representative of the equivalence class of z and p;, = idy, for any
x € V. By Lemmal.2.2 (ii), this is an epimorphism. O

Example 1.3.1. Consider the following map of graphs

- - —

/’//

“ze

Set f1. = idy, for any vertex x. This is an epimorphism of k-moment graphs and it is
clear that the graph on the right is a quotient of the left one by the (compatible) relation
x ~ 9y if and only if x and y are connected by an edge having the following direction

N

1.3.3 Initial and terminal objects
Remark 1.3.1. For any § € MG(Yy), |Hompev,)(0,9)| = 1, then () is an initial object.
Lemma 1.3.4. If |Auti(Yy)| > 1, there are no terminal objects in MG(Yy).

Proof. Since in the category of sets the terminal objects are the singletons, all k-moment
graphs with more than one vertex cannot be terminal. Let § € MG(Y}) be a k-moment
graph with at least one vertex and let f € Hommgy;)(9, {pt}). Then, fy is uniquely
determined, but, for any vertex z of G, f;, can be any automorphism of Y}. Indeed, since
{pt} does not have edges, conditions (MORF3a) and (MORF3b) are empty. O
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It follows

Corollary 1.3.1. MG(Y}) is not an additive category.

Proof. This is because there are no zero objects in MG(Y}). Observe, that this is true also
if Y = 79, Indeed, in this case the generic graph is the (unique) terminal object but it is
not initial. O

Products
Lemma 1.3.5. If |Auty(Yy)| > 1, MG(Yy) has no products.
Proof. Suppose MG(Y}) had products. Then, for any § = (V, €, J,1) € MG(Y}) it would

exist the product (G x G, {p1,p2}). In particular, there would exist a g € Hompig(y;)(9, 9 %
9) such that the following diagram commutes

S
AN
X

9<79 9?9

(1.4)

Let G be the generic graph and let = be unique vertex. Then, from (1.4), we would get
the following commutative diagram

Yy (1.5)

(where we denoted p; = (%, pt/, {p} y}) ). The commutativity of the triangles in (1.5)

mplies gr = (P gy @) = P gy()) "+ thAt IS Dl g o) = Py gy(a) = Prgu(e)-

Now, choose f € Hompg(y,)(9,9) such that f;, # idy, (such an f;, exists, since we
have by hypothesis [Auty(Yy)[ > 1). There would exists an h € Hommg(y,) ({pt}, {pt} X
{pt}) such that the following diagram commutes

{pt}

{pt} <—; {pt} x {pt} ;;— {pt}
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But this is impossible; indeed, the diagram above would give us the following commutative

diagram
1dy \
Ll

kpl’ 29y () kpl' gv(z)

Coproducts

Definition 1.3.4. Let {G; = (V;,&;, 45,15)}jes be a family of objects in MG(Y},). Then
es 95 = (V,€,2,1)) is defined as follows:

(PROD1) V is given by the disjoint union [];c;V; = ;e {(v,5) [v € V;}
(PROD2) (x,j) — (y,i) if only ifi =j and x — y € &;
(PROD3) (x,7) < (y,i) if and only if i = j and x <; y
(PROD4) 1((2,5) — (y.4)) = li(x — )

We get:

Lemma 1.3.6. MG(Y}) has finite coproducts

Proof. Denote by i; : §; — [, 9; the morphism given by i;y(v) = (v,j) and fi; = idy,
for any x € V;. Then, for any H € MG(Y}) with a family of morphisms f; : §; — 3 there

exists a unique morphism f : []. jed 9] — H such that f; = f oi;. In particular, f is given

by fi1,.,v.((2,9)) = fi(2) and fi (2 j) = ()i O
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Chapter 2

The category of sheaves on a
k-moment graph

The notion of sheaf on a moment graph is due to Braden and MacPherson (cf.[7]) and it
has been used by Fiebig in several papers (cf. [13],[14],[18],[16],[17]). In the first part of this
chapter, we recall the definition of category of sheaves on a k-moment graph and we present
two important examples, namely, the structure sheaf and the canonical sheaf (cf.|7]). In
the second part, for any homomorphism of k-moment graphs f, we define the pullback
functor f* and the push-forward functor f,.. These two functors turn out to be adjoint (see
Proposition 2.2.1). We prove that, if f is a k-isomorphism, then the canonical sheaf turns
out to be preserved by f*. This result will be an important tool in the categorification of
some equalities coming from Kazhdan-Lusztig theory (see Chapter 5).

2.1 Sheaves on a k-moment graph

For any finite rank lattice Y and any local ring k (with 2 € k*), we denote by S =
Sym(Y) its symmetric algebra and by Sy := S ®z k its extension. Sy is a polynomial ring
and we provide it with the grading induced by the setting (Sk){2) = Yk. From now on, all
the Sk-modules will be finitely generated and Z-graded. Moreover, we will consider only
degree zero morphisms between them. Finally, for j € Z and M a graded Si-module we
denote by M{j} the graded Sx-module obtained from M by shifting the grading by j, that

is M{j}piy = Mgy

Definition 2.1.1 ([7]). Let § = (V,€&,<,1) € MG(Y}), then a sheaf F on G is given by the
fOUOUJan data ({?I}U {?E}> {pr,E})

(SH1) for all x € V, F* is an Sk-module;

(SH2) for all E € &, FF is an Si-module such that I(E) - F¥ = {0};

13
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(SH3) forz €V, E€ &, ppp:F* — FE is a homomorphism of Si-modules defined if x is
in the border of the edge E.

Remark 2.1.1. We may consider the following topology on G (cf. [7],§1.8 or [24], §2.4).
We say that a subgraph 3 of G is open, if whenever a vertex x is H, then also all the edges
adjacent to x are in H. With this topology, the object we defined above is actually a proper
sheaf of Si-modules on G. Anyway, we will not work with this topology in what follows.

Example 2.1.1 (cf. [7], §1). Let § = (V,&,9,1) € MG(Y}), then its structure sheaf 2 is
given by
o forallz eV, Z* =5
o forall E€ &, ZF = S, /I(E) - Sy,
o forallz € V and E € &, such that x is in the border of the edge E, py g : Si, —
Si/U(E) - Sk is the canonical quotient map

Definition 2.1.2. [15] Let G = (V,&,<,1) € MG(Y;) and let F = ({F}, {FP}, {pu.e}).
g = ({F"*}, {FF}, {p, p}) be two sheaves on it. A morphism ¢ : F — F' is given by the
following data

(i) for allz €V, p* : F* — F'* is a homomorphism of Sk-modules

(ii) for all E € &, ¥ : FE — FE s a homomorphism of Si-modules such that, for any
x €V on the border of E € &, the following diagram commutes

ls@z ls@E
P m
?/x H’ 34/E
Definition 2.1.3. Let § € MG(Y}). We denote by Shy(3) the category, whose objects are
the sheaves on G and whose morphisms are as in Def.2.1.2.

Remark 2.1.2. If § = {pt}, then Shi(G) is equivalent to the category of finitely generated
Z-graded Sy-modules.

2.1.1 Sections of a sheaf on a moment graph

Even if Shi(9) is not a category of sheaves in the topological meaning, we may define,
following [14], the notion of sections.

Definition 2.1.4. Let § = (V,€,<,1) € MG(Yy), F = ({F°}, {FEY, {pz.p}) € Shi(S) and
J C V. Then the set of sections of F over J is denoted I'(J,F) and defined as

['(3,9) = {(mz)xej € @Sm Vo —yet pl’,E(mLE) = py,E(my)}

zed
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We will denote I'(F) :=I'(V, F), that is the set of global sections of F.

Example 2.1.2. A very important example is given by the set of global sections of the
structure sheaf % (cf. FEx. 2.1.1). In this case, we get the structure algebra:

2:=0(%)= {(zx)zev € @Sk\VE:x—ye E zp — 2y EZ(E)-Sk} (2.1)

€V

Goresky, Kottwitz and MacPherson proved in [20] that, if G is as in Ex. 1.1.4, i.e. it
describes the algebraic action of the complex torus T on the irreducible complex variety
X, then Z is isomorphic, as graded Si-module, to the T-equivariant cohomology of X. It
is easy to check that, for any F € Shi(9), the k-structure algebra Z acts on I'(¥F) via
componentwise multiplication. We will focus our attention on a subcategory of the category
of Z--graded Z-modules from Chapter 4.

2.1.2 Flabby sheaves on a k-moment graph

After Braden and MacPherson (|7]), we define a topology on the set of vertices of a
k-moment graph §. We state a result about a very important class of flabby (with respect
to this topology) sheaves: the BMP-sheaves. This notion, due to Fiebig and Williamson
(cf. [19]), generalizes the original construction of Braden and MacPherson.

Definition 2.1.5. ([7]) Let § = (V,&,<,1) € MG(Yy), then the Alexandrov topology on 'V
is the topology, whose basis of open sets is given by the collection {> z} := {y € V|y > x},
forallx eV.

A classical question in sheaf theory is to ask if a sheaf is flabby, that is whether any
local section over an open set extends to a global one or not. In order to characterise the
objects in Sh(9) having this property, we need some notation.

Let §=(V,&,4,1) € MG(Y}). For any x € V, we denote (cf. [14], §4.2)

ng::{E€8|E:x—>y}

ng::{ye\ﬂ3E€85rsuchthatE:x—>y}

Consider F € Shy(9) and define F%% to be the image of I'({>x}, F) under the composition
uy of the following maps

©py,
r({pa}, F)—> BT’ —> Dyev, T e E Bpee, T (2.2)

\_—//

Ug

Moreover, denote
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dy = (pz,B)pee,, * T —> Opee,,T”

T

Observe that m € I'({pz},F) can be extended, via my, to a section m = (m,my) €
F'({> =z}, %) if and only if dy(my) = ug(m). This fact motivates the following result, due
to Fiebig, that gives a characterization of the flabby objects in Shy(9).

Proposition 2.1.1 ([14], Prop. 4.2). Let F € Shy(G). Then the following are equivalent:

(i) F is flabby with respect to the Alexandrov topology, that is for any open I C 'V the
restriction map T'(F) — T'(3,F) is surjective.

(it) For any vertex x € V the restriction map I'({> x}, F) — T'({pa}, F) is surjective.

(iii) For any verter x € V the map Spees, pop @ F° — Dpee,, FE contains F°F in its
1mage.

2.1.3 Braden-MacPherson sheaves

We introduce here the most important class of sheaves on a k-moment graph. We recall
the definition given by Fiebig and Williamson in [19].

Definition 2.1.6 ([19], Def. 6). Let § € MG(Yy) and let B € Shi(SG). We say that £ is
a Braden-MacPherson sheaf if it satisfies the following properties:
(BMP1) for any x € V, B is a graded free Si-module
(BMP2) for any E:x —y € &, pyp: BY — BY is surjective with kernel I(E) - 5Y
(BMP3) for any open set I C 'V, the map T'(B) — I'(J, B) is surjective
(BMP/) for any x € V, the map I'(B) — B* is surjective
Hereafter, Braden-MacPherson sheaves will be referred to also as BMP-sheaves or

canonical sheaves. An important theorem, characterising Braden-MacPherson sheaves, is
the following one.

Theorem 2.1.1 ([19], Theor. 6.3). Let G € MG(Yy)

(i) For any w € 'V, there is up to isomorphism unique Braden-MacPherson sheaf #(w) €
Shy(G) with the following properties:

(BMP0) #(w) is indecomposable in Shi(9)
(BMP1a) B(w)? = S, and B(w)* =0, unless v < w

(i) Let B be a Braden-MacPherson sheaf. Then, there are wi,...,w, €V andly...l, €Z
such that
B=B(w)l] ... D B(w)ly]
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If & is an indecomposable BMP-sheaf, that is Z = #(w) for some w € V, then condi-
tions (BMP3) and (BMP/) may be replaced by the following condition (cf. [7], Theor.1.4)

(BMP3’) for all z € V, with x <w, d; : B(w)* — B(w)°* is a projective cover
in the category of graded Sy-modules

Remark 2.1.3. If X is a complex irreducible algebraic variety with an algebraic action
of a torus T', as in Ex. 1.1.4, the associated k-moment graph turns out to have a unique
mazimal vertex, that we denote by w. For k = C, Braden and MacPherson proved in [7]
that the space of global sections of the sheaf B(w) can be identified with the T -equivariant
intersection cohomology of X. In positive characteristic, Fiebig and Williamson related
PB(w) to a (very special) indecomposable object in the T-equivariant constructible bounded
derived category of sheaves on X with coefficients in k: a parity sheaf. Parity sheaves
have been recently defined by Juteau, Mautner and Williamson (cf. [25]) and they have
applications in many situations arising in representation theory.

Remark 2.1.4. Canonical sheaves are strictly related to important conjectures in represen-
tation theory. We will (briefly) discuss this connection in Chapter 5.

We end this section with a result, that connects structure sheaves and canonical sheaves.

Proposition 2.1.2 ([17]|, Prop). Let § € MG(Y;)" and let w be its highest vertex. Then
B(w) =2 Z if and only if Z is flabby.

Remark 2.1.5. The structure sheaf of a k-moment graph G is not in general flabby. Ac-
tually, if G is as in Ex.1.1.4, the flabbiness of its structure sheaf is equivalent to the k-
smoothness of the variety X (cf. [19]). Indeed, if X is rationally smooth, its intersection
cohomology coincides with its ordinary cohomology.

2.2 Direct and inverse images

Let f = (fv.{fiz}) : G = V&, 1,1) - G = (V,€,,1) be a homomorphism of k-
moment graphs. We want to define, in analogy with classical sheaf theory, two functors

5
T
Shy(9) Sh,(9)

\T/

From now on, for any ¢ € Autg(Y%), we will denote by ¢ also the automorphism of Sk
that it induces.
We need a lemma, in order to make consistent the definitions we are going to give.
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Lemma 2.2.1. Let s € Sk, f € Homuyey,)(5,9), T € Shi(G) and H € Shi(F'). Let
E:x—yel and F: fy(z) — fv(y) € &, then

(i) the twisted actions of Sy, on FF defined via ssmp == f; .} (s)-mp and ssmp = ffyl(s)-mE
coincide on FF/I'(F) . F¥ (- denotes the action of S, on F¥ before the twist). Moreover,
I'(F).FE = {0} in both cases.

(ii) the twisted actions of S, on HE defined via s.np = fi.(s) -nr and s.np = fi,(s) np
coincide on HE JI(E)HE (- denotes the action of S on F¥ before the twist). Moreover,
I(E) . HE = {0} in both cases.

Proof. Tt is enough to prove the claim for s € (Sy){2y = Y%, since Sk, is a k-algebra generated
by Yk

(i) The statement follows from (MORPHZ2a), (MORPH2b) and the computations we made
in the proof of Lemma 1.2.3.

(ii) It is an immediate consequence of conditions (MORPH2a), (MORPH2b). O

If ¢ is an automorphism of Si, for any Si-module M, we will denote Tw,, : M — M
the map sending M to M and twisting the action of Sy on M by .

2.2.1 Definitions

Definition 2.2.1. Let F € Shy(5), then f.F € Shi(S') is defined as follows

(PUSH1) for any u € V',
(L) =T (fy ' (), F)

and the structure of Si-module is given by s . (mz)xefgl( )= =(s- mﬂf)xefvl(u)
(PUSH2) for any u €V,
(£ = P F°

E:fe(E)=F

and the action of Sy is twisted in the following way: s . (mg)g.s, (E) (flx( s) -
ME)p:f. (B)=F, wWhere T is on the border of E

(PUSH3) for alluw € V' and F € &', such that u is in the border of the edge F,(fsp)u r is
defined as the composition of the following maps:

_ r PPz,
F(fvl(u), )C—>@va (z)= ud HE@E]‘V(E Fﬂj H@Efv(E) Fg

where Tw = & Tw (e We call f, direct image or push-forward functor.

Definition 2.2.2. Let H € Shy(9'), then f*H € Shi(G) is defined as follows
(PULL1) for allz €V, (f*H)® := 3@ and s € Sy, acts on it via fi.(s)
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(PULL2) for all E:x —y €&

wqeyE = § IO UBHIEif fol@) = foly)
(907 = { FHFe(E) otherwise

and of s € Sy, acts on (f*H)¥ via f,.(s).
(PULLS3) for allx € V and E € &, such that x is in the border of the edge E,

i canonical quotient map if fv(z) = fv(y)
(f P)m,E = wazle O Pry(z),fe(E) © wal?zl otherwise

We call f* inverse image or pullback functor.

Example 2.2.1. Let § € MG(Y);) and let p : G — {pt} be the homomorphism of k-moment
graphs having p; 5 = idy, for all x, vertex of §. Then, for any I € Shi(3) p«(F) = I'(F).
Moreover p*(Sk) = %, the structure sheaf of G.

2.2.2 Adjunction formula

Proposition 2.2.1. Let f € Hompg(v,)(G,9'), then f* is left adjoint to f, that is for all
pair of sheaves F € Shi(G) and H € Shy(5') the following equality holds

HomShk(g) (f*f}f, 95) = HomShk(g/) (J‘C, f*gj) (23)

Proof. Take ¢ € Homgp, g)(f*H,F), that is ¢ = ({¢"}sev, {¢F}pee) such that, for all
x €V and E € € such that x is on the border of E, the following diagram commutes

(f*?C)x Rl 3"‘”” (2.4)

(f*@’,)x,E Pz, B

v
(fr30)F B FE

We want to show that there is a bijective map « : Homgp, (g)(f*H, F) — Homgy, (5 (3, fF)
and it is given by ¢ = ({¢"}eev, {9"}ree) = ¥ = ({¢"}uev, {7} peer), where
x)T

U . F._ E
Y= (@xef\;l(u) ¥ ) Yo o= @Eefgl(F) ¥

We start with verifying that this map is well-defined. We have to show that for any h €
Y, () € (fF)" =T (f; (u),F), that is, for any z,y € f, ' (u) such that F: 2 —vy € €,
pz,2(¢Y(h)) = py,p(¢’(h)).
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From Diagram (2.4), we get the following commutative diagram

x

(f*H)* = Ffr(@) — geu ¥ F (2.5)
(f*ﬁl)LE P:c‘,E
E
(f*30F = 93 I (BYH* ————FE
A
(f*‘Pr)y,E Pw‘,E
(30 = HW) =g — gy

But (f*p)y.z = (f*p)s.e by definition (they are both the canonical projection) and we
obtain

pa,p 09" =" o (f* pap = 0" o (f*p)y,5 = pyp o ¥

It is clear that the map v : Homgy, ) (f*H,F) — Homgy, (g (H, fxTF) we defined is
injective. To conclude our proof, we have to show the surjectivity of .

Suppose ¢ = ({¢"}uev, {F }peer) € Homgy, (g (3, foF), where, for all u € V' and
F € &' such that u is on the border of F, the following diagram commutes

,[p:z

}‘cu L(fy ' (w),5) (2.6)
\
p;,F @(walyzopz,E)
V
* E
(f*30)F — Doerm T

We claim that there exist ¢ = ({¢*}) € Homgp, (g)(f*H, F) such that y(¢) = .
For any x € V, let us consider u := fy(x) and define p* as the composition of the
following maps

" ~
g ——T(fy  (u), ) DByesstw T —2 9=

"

For any F : x — y € & such that fy(x) # fy(y), that is there exists an edge F € &
such that fe(E) = F, we define ¢ as the composition of the following maps

?/JF TWle

e

o

Now, it is clear that v(¢) = 9. Indeed, if u & fy(V), then p* = 0 and the claim is
trivial. Otherwise, u € fy(V) and we get the following diagram, with Cartesian squares
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©
Py _
g{‘u (fvl(u)vg)(—>®y€f§1(u)? —F7
P (f*‘p)y,F @PJ,L Pz‘ E
F TWfl,y

As application of the previous proposition, we get the following corollary.

Corollary 2.2.1. Let § € MG(Y)) and let Z, resp. Z, be its structure sheaf, resp. its
structure algebra. Then the functors I'(—), Homgp, (g)(Z', —) : Shi(G) — Z — modules are
naturally equivalent. In particular, we get the following isomorphism of Si-modules

Z = End‘ghk(g)(ﬁ?)

Proof. Consider the homomorphism p : § — {pt}, where we set p; , = idy, for all z, vertex
of G. The structure sheaf of {pt} is just a copy of Sy and, for all F € Shy(G), by Prop.
2.2.1, we get

Homgy, (g)(P" Sk, F) = Homgy, ({pt}) (Sk, P+F)

Bu we have already noticed in Example 2.2.1 that p*Sy, = 2 and p,F = I'(F). Moreover,
that Homg, (Sk, Z) = Z and we get the claim.
O

2.2.3 Inverse image of Braden-MacPherson sheaves.

The following lemma tells us that the pullback functor f* preserves canonical sheaves
if f is an isomorphism.

Lemma 2.2.2. Let §,§ € MG(Yy)". Let w, resp. w’, be the (unique) mazximal vertex
of G, resp. 9, and let f : G — G be an isomorphism. If $B(w) and B'(w') are the
corresponding indecomposable BMP-sheaves, then #(w) = f*%'(w') in Shy(9).

Proof. Let § = (V) &, ﬁ],l), g = (Vla 8/7 Sllvl/) and f = (fV7 {fl,x})

Notice that J C V is an open subset if and only if I’ := fy(J) C V' is an open subset.
We prove that #(w)|, = f*%'(w')|,, by induction on |J| = |J'], for J open.

If |9 = |7) = 1, we have J = {w} and 7’ = {w'}. In this case B(w)* = Sy, B'(w')* =
Si and the isomorphism ¢® : B(w)* — Z'(w')* is just given by the twisting of the
Si—action, coming from the automorphism of Sy, induced by the automorphism f;,, of Y.
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Now let [J| = |9| =n > 1 and y € J be a minimal element. Obviously, 3/ := fy(y) is
also a minimal element for 3. Moreover, for any F € & we set E' := fe(E).
First of all, observe that z € Vs, if and only if 2’ := fy(z) € V. By the inductive

hypothesis, for all z >y there exists an isomorphism % : Z(w)* = %' (w')* such that
P*(s-m) = fiz(s) - p*(m), for s € S and m € B(w)*. Moreover, if £ ¢ s, and x
is on the border of F with x >y, by the inductive hypothesis we have an isomorphism
o : Bw)F = B (w')F such that o (s-n) = fi.(s) - ¥ (n), for s € Sy and n € B(w)¥
and such that the following diagram commutes

Pz ,E

B(w)* ——— B(w)F

e I

/
(@/(w/)z’ p””/’E; %/(w/)E’

Now, if E: y — x and E' : ¢y — 2/, then
B(w)F = B(w)* /I(E)B(w)* and BT = B (W) I (E)B (w')*

By assumption, f; x( (E)) = h l’(E’) for some invertible element h € k* and ¢*(I(E)%A(w)*) =
/

fiz((E)) - B (W) = (E’)%7 (w ) Thus the quotients are also isomorphic and so there
exists ¥ : B(w)F = A (w' )P such that the following diagram commutes:

B(w)® "> B(w)P

P/E/

Now we have to construct Z(w)% and %'(w')%'. Observe that (p%), induces an
isomorphism of Sg-modules between the sets of sections I'({py}, B(w)) = T({p'y'}, Z'(w'))
and, from what we have observed above, the following diagram commutes:
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It follows that there exists an isomorphism of Si-modules Z(w)% = &' (w')%" and by
the unicity of the projective cover we obtain Z(w)¥ = %' (w')¥". This proves the statement.
O

The lemma above will be a very useful tool in Chapter 5.
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Chapter 3

Moment graphs associated to a
symmetrisable Kac-Moody algebra

The aim of this chapter is to recall standard notions related to the theory of Weyl
groups and to study some classes of moment graphs coming from this theory. At first, we
will define regular and parabolic Bruhat graphs associated to a symmetrisable Kac-Moody
algebra. In particular, we will see that parabolic Bruhat graphs are quotients of the regular
ones in the sense of §1.3.2. The second part of this section is devoted to the affine and
affine Grassmannian cases. The main result of this chapter is a characterisation of finite
intervals of the moment graph associated to the affine Grassmannian (see §3.2.2 and §3.2.3)
that motivates the definition of the stable moment graph.

3.1 Bruhat graphs

Here, we define a very important class of moment graphs: the Bruhat graphs. As
unlabelled oriented graphs, moment graphs were introduced by Dyer in 1991 (cf.[10]) in
order to study some properties of the Bruhat order on a Coxeter group; already in 1993, he
considered them as edge—labelled oriented graphs. Actually, he was labelling the edges by
reflections of the Coxeter group (cf.[11]), instead of the corresponding positive coroots (see
Def.3.1.1). Even if his definition seems equivalent to ours, the extra structure coming from
the whole root lattice turns out to be fundamental when we are considering morphisms be-
tween two Bruhat (k-moment) graphs (see §1.2). An important (and still open) conjecture,
the so-called combinatorial invariance conjecture (due to Lusztig and Dyer, independently),
states that the Kazhdan-Lusztig polynomial h, , (see §4.2.1) only depends on the interval
[,y] in the Bruhat graph. As moment graphs, Bruhat graphs constitute a very important
example and in fact they have been introduced already in [7].

We start by recalling some notation from [26]. Let g be a symmetrisable Kac-Moody al-
gebra, that is the Lie algebra g(A) associated to a symmetrisable generalised Cartan matrix

25
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A, and b its Cartan subalgebra. Let IT = {a;}i=1,..n C b*, resp. IIY = {a;V}iz1,.n C b,
be the set of simple roots, resp. coroots; let A, resp. A, resp. A be the root system,
resp. the set of positive roots, resp. the set of positive real roots; and let Q = Y"1 | Zoy,
resp. Q¥ = >, Z«a;", be the root lattice, resp. the coroot lattice. For any a € A, we
denote by s, € GL(h*) the reflection, whose action on v € h* is given by

sa(v) = v — {(v,a")a (3.1)

Let W = W(A) be the Weyl group associated to A, that is the subgroup of GL(h*) generated
by the set of simple reflections § = {s,|a € II}. Recall that (W, 8) is a Coxeter system (cf.
[26], §3.10).

However, W can be seen also as subgroup of GL(h), by the setting, for any X € b

5a(A) ==X — {a, )" (3.2)
We will denote by T C ‘W the set of reflections, that is
‘J':{sa|a€Alf}:{w5w_1|w€W, se 8} (3.3)

Hereafter we will write a; to denote the positive real root corresponding to the reflection
t € 7. Finally, denote by ¢ : W — Z>( the length function and by < the Bruhat order on
W.

3.1.1 Regular Bruhat graphs

Definition 3.1.1. Let (W,8) be as above. Then the regular Bruhat (moment) graph § =
S(g) = (V,&,<,1) associated to g is a moment graph on QY and it is given by

(i) V=W, that is the Weyl group of g

(ii) € = {x_ﬂ/‘%<y,3a€Af suchthaty:sax}
= {z—ylz<y,3It €T such that y = tx}
(111) l(x — sqx) =’

Remark 3.1.1. Such a moment graph has an important geometric meaning. If G is the
Kac-Moody group, whose Lie algebra is g, and B C G is a standard Borel subgroup, then
there is an algebraic action of a mazximal torus T C B on the flag variety B = G/B (cf.
[32]). Moreover, the stratification coming from the Bruhat decomposition is T-invariant
and satisfies all the assumptions of [[7],§1]. It turns out that this is a particular case of
Example 1.1.4. In fact, the vertices are the 0-dimensional orbits with respect to the T -action,
while the edges represent the 1-dimensional orbits (cf.§2.1 of [19]). The partial order on
the set of wvertices is induced by the Bruhat decomposition B = | |, cyy Xw, where, indeed,

Xi’w = |_|y§w Xy'
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Example 3.1.1. If g = sly, then the corresponding root system is A1 = {£a} and W = Ss.
The associated Bruhat moment graph is the following subgeneric graph (see Example

1.1.8).

\
e.%.sa

For any local ring k, this graph is clearly a k-moment graph and (G(sl2), k) is trivially a
GKM-pair.

Example 3.1.2. Ifg = sl3, then the corresponding root system is Ay = {£a, £5, =(a+8)},
W = S3. In this case, we get the following Bruhat graph.

54885 = Sa+B8 = 535453

/ K
SBSa (a+ﬁ)v SasSpg
B o
(a+8) (a+8)"
Sa \ SIB
‘\ /
e

3.1.2 Parabolic Bruhat graphs

We introduce a class of Bruhat graphs, that generalises the one we described in §3.1.1.
In order to do this, we need some combinatorial results.

Let W be a Weyl group and let 8 be its set of simple reflections. For any subset J C 8,
we denote W := (J) and W/ = {w € W|ws > w Vs € J}. The following results hold.
Proposition 3.1.1 (|5], Prop. 2.4.4).

(i) Every w € W has a unique factorization w = w”’ - wy such that w’ € W and wy € Wj.
(ii) For this factorization, ((w) = L(w”) + £(wy).
Corollary 3.1.1 ([5], Cor. 2.4.5). Each left coset wW; has a unique representative of

minimal length.

It follows that W’ is a set of representatives for the equivalence classes in W/W .
In order to make consistent Definition 3.1.2, we prove the following lemma.

Lemma 3.1.1. Let W, 8,J be as before. Let x,y,z € W and let y/ = 27 # x/. If there
erist a, B € A such that v = sqy = sgz, then o = 3 and so y = z.
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Proof. Take v € h* such that Wy = Stabw(v) (such a v exists thanks to [[26], Prop. 3.2(a)).
By hypothesis, 2/ = 3/ and then there exists a w € W such that z = yw. It follows

say(v) = z(v) = sgyw(v) = spy(v)

That is

y(v) = (y(v),a")a = y(v) = (y(v), 87)B

This equality holds if and only if (y(v),a")a = (y(v), 8Y)3. But this is the case if and only
if (y(v),a") = (y(v),BY) =0 or v is a multiple of 3.

If it were (y(v), @) = 0, then (v, (a)") = 0 too. But this would imply that Sy—1(a) =
vy~ Lsay € Stabw(v) = Wy, that is there would exist a u € Wy such that s, = yuy~!. But
then we would get © = s,y = (yuy~ ')y = yu, that is 2/ = y/. This contradicts the
hypotheses.

If o is a multiple of 3, then o = £ and, since a, 8 € AY, we get o = 3. O

Definition 3.1.2. Let W, 8§ and J be as above. Then the parabolic Bruhat (moment)
graph G/ = G(W/) = (V, &, <,1) associated to W’ is a moment graph on QV and it is given
by
(i) V=W’
(i) E={z —ylz <y, JacA¥, Jwe W, such that ywz™ = 5.}

(iii) 1(x — sqrw™t) := oV, well-defined by Lemma 3.1.1.
Remark 3.1.2. Clearly, S(W?) = G(g).

Remark 3.1.3. The moment graph we defined describes a geometric situation similar to
the one of Remark 3.1.1, once replaced the flag variety with the corresponding partial flag

variety (cf. [32]).

Example 3.1.3. Let g = sly. In this case, A = A3, Il = {a, 5,7}, W =S4 and 8§ =
{Sa,55.5¢}, where sqsy = sySq. If we chose J = {sq,s~}, the associated parabolic Bruhat
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graph G7 is the following octahedron.

3.1.3 Parabolic graphs as quotients of regular graphs

Here we show that, if W, 8 and J are as in the previous section, then G/ is a quotient of
G by a G-compatible relation (cf. §1.3.2). To give this characterisation of parabolic Bruhat
graphs, we recall two well-known results.

The first one is the so-called lifting Lemma and it is a classical tool in combinatorics of
Coxeter groups.

Lemma 3.1.2 ([22]|, Lemma 7.4). Let (W, 8) be a Cozeter system. Let s € 8 and v,u € W
be such that vs < v and u < v.

(i) If us < u, then us < vs.

(ii) If us > u, then us < v and u < vs. Thus, in both cases, us < v.

We will use this lemma several times in what follows.
The following proposition tells that the poset structure of W is preserved in W”.

Proposition 3.1.2 ([5], Prop.2.5.1). Let (W, 8) be a Coxeter system, J C 8 and x,y € W.
If x <y, then 2/ < y’.

Using the previous results, we get

Lemma 3.1.3. Let (W,8) be a Cozeter system and J C 8. Ify! e W, y; € Wy, t €T
are such that (y?)~ty” € Wy. Then, ty’ <y’ if and only if ty”y; < y”y.
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Proof. We prove the lemma by induction on ¢(yy). If [(y;) = 0, there is nothing to prove.
Suppose ty? < y” and let £(ys) > 0. Then there exists a simple reflection s € .J such
that yys <y, that is y’yss < y’y;. Now, by the inductive hypothesis t(y’yss) < y’yss
and, from Lemma 3.1.2, it follows ty”y; = (ty”/yss)s < y'y;.
Viceversa, suppose ty’y; < y”’y; and £(ys) > 0. Then there exists a simple reflection
s € J such that yys < yy, that is y/yss < y’ys;. By hypothesis, ty'y; < y’y;. If
tylyss < ty’ys, by Lemma 3.1.2 (i), we get ty”’yss < y”’yss and the claim follows from the
inductive hypothesis. Otherwise, ty”y ;s > ty’y; and, by Lemma 3.1.2 (ii), ty”/y;s < y”y,
and ty’y; < ylyss. If it were ty’yss £ y’yss, then ty’yss > y’yss (because they are
comparable) and so y’yss < tyYyss < y”’ys, that would imply ty’yss = y’y;. But this
is a contradiction, since they are not even in the same equivalence class. Thus we get
ty’yss < y’yss and hence, from the inductive hypothesis, the statement.
O

Lemma 3.1.4. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with S, the
set of simple reflections, and let J C 8. Let G be the Bruhat graph associated to g, then
the equivalence relation on its set of vertices V, given by x ~ y if and only if 7/ =y’ is
G-compatible.

Proof. We have to check conditions (EQVI1) and (EQV2).

(EQV1) From Proposition 3.1.2, if # < y and 2/ = y”, then for all z € [z,y], 27 < 27 <
y) =/, that is 27/ = 2.

(EQV2) Let z1,y1 € W and t € T be such that 21 £ y1 Wy and x1 — y1 =tz € €. If 29 ~

x1, that is z9 = z1w for some w € W, then we set yo := y1w, clearly xo — yo = tao € €
and [(x9g — y2) = (1 — y1) = 4. By Lemma 3.1.1, yo is the only element equivalent to
y1 and connected to xo. Finally, from Lemma 3.1.3, it follows that xo < ys. O

Corollary 3.1.2. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with 8,
the set of simple reflections, and let J C 8. Let G be the Bruhat graph associated to g and
S7 the one associated to W”. Then G’ is the quotient of G by the G-compatible equivalent
relation defined in the previous lemma (in the sense of §1.3.2).

We will denote by ps : § — G7 the epimorphism given by (p;)y(x) := 27 and (ps);,» = id
for all x € W.

Example 3.1.4. Let g = sl3 and J = {sq} C 8 = {sq,s3}. Then Example 1.3.1 describes
the parabolic Bruhat graph G’ as quotient of the regular one (see Evample 3.1.2).

3.2 The affine setting

We want now to focus our attention on the affine case.
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Let A be a generalised Cartan matrix of affine type of order [ + 1 and rank [. Let us
enumerate its rows and columns from 0 to [ (as Kac in [[26], §6.1 | does), and denote by

A the matrix obtained from A by deleting the 0-th row and the 0-th column. Then the
Weyl group W? of g = g(A) is the affinization of the (finite) Weyl group W/ of 9= g(A)

(cf. [26], Chapter 1). Take A to be the root system of 8, and T and A the corresponding
set of simple and of positive roots, respectively. It turns out that the set of real roots of g

has a nice description in terms of the root system of §. Let § € h* be such that A5 = 0
and 6 = Y ;_,ajo;, where II = {a;}i—o,..» and the a; € Z~q are relatively prime (such an
element exists and it is unique by point b) of Theorem 5.6 in [26]). Then (cf. [26], Proposition
6.3)

Are:{a—i—mﬂaeA,nEZ} (3.4)

and
Af:{a+n5a€A,n€Z>o}UA+ (3.5)

It follows that W is generated by the set of affine reflections
T4 ={sp|B €AY} ={Sam|a €A, n€EZLsg}U{sap|aecAy}.

Explicitly, the action of W* on h* @0C is given by
sa,n(()\,r)) = (8a(A), —n{\, oY) + 1) (3.6)

For a given real root « 4+ nd, we want now to describe the corresponding coroot (« + 5)v. We
have a decomposition of the Cartan subalgebra as h :[:) ®Cc & Cd, while h* = f) ®Cd & CAq (cf.
[[26], §6.2]), where (5,6 ®Cc) = 0. Because g is symmetrizable, by [[26], Lemma 2.1|, there is a

. .k
bilinear form (,) that induces an isomorphism v :h— b such that we may identify o and 2%

(a0
Then,
2 2
(a+n5)v:av+(az)c: (@ a) (a+mnc). (3.7

3.2.1 The affine Weyl group and the set of alcoves

We recall briefly a description of W* as a group of affine transformations of Ij r, the R-span

of ay,...,q. This is obtained by identifying b r with the affine space b _1 mod Ré, where

b _={\eb;

(M) = —1}

Namely, it is possible to define an action of the affine Weyl group on h r as follows

@ina)> a =340\ +na” (3.8)

San(A) = — ((A,av> -
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.V . Y
Denote by @ the coroot lattice of g and by T}, the translation by p € @ , that is the linear
transformation defined as T),(A\) = A + p for any X € [) r- This is an element of the affine Weyl

Y
group, since Thov = SqnSq- It is easy to check that for any w € W* and for any p € @ we have

wl,w ! = w(u)s SO the group of translations by an element of the coroot lattice turns out to be a

.V
normal subgroup. A well known fact is that W = W/x @ (cf.[[22], Proposition 4.2]).

If 0 is the (unique) highest root of A, then a minimal set of generators for W* is given by
8% = {Sa;,0}ti=1,....1 U {sg1}, where 8§/ .= {Sa;,0}i=1,...1 is the set of simple reflections of WS, Let
us set s := sp,1 and call it the affine simple reflection.

Denote by

Howi= {e s Iy =2 b = e s fv) =}

and observe that the affine reflection s, , fixes pointwise such a hyperplane. We call alcoves the
connected components of

G*R\ U Hoc,n

OéEA+
neZ

and denote by A the set of all alcoves.
The dominant -or fundamental- (Weyl) chamber is

et ={Aeh g | (\haY)>0VacA,)

and an element A € CT is called dominant weight. We denote by A™ the set of all alcoves contained
in €* and by

Hoz{/\ef)R 10 < (A aY) < VaeH}:{AeﬁR |0<()\,a)<1VaeH}

2
(a,q)
the fundamental bozx.

We state now a 1-1 correspondence between W* and A (cf. [[22], Theorem 4.8]). In order to
do that, we fix an alcove AT, that is the unique alcove in AT which contains the null vector in its
closure. AT is usually called fundamental alcove and it has the property that every element A € A™

is such that 0 < (A, a) < 1 for all @ €A (cf. [[22], §4.3]).
The affine Weyl group W* acts on the left (by (3.8)) simply transitively on A (cf. [22],§4.5)
and so we obtain
N

w = wAt. (3.9)

Example 3.2.1. Let g = sly. By (3.5), we know that A™¢ = {*a +nd|n € Zso} U {a}, where o
is the (unique) positive root of sly and (a, ) = 2. The corresponding Bruhat graph is an infinite
graph, whose vertices are given by the words in two letters (s1 := s, and so) without repetitions.
Two elements are connected if and only if the difference between their lengths is odd and in this
case the edge is oriented from the shorter to the longer one. Thanks to the correspondence (3.9),



33

we may identify the set of vertices with the set of alcoves of g. If we restrict the Bruhat graph to
the interval [AY, s15051], we get the following

—a+2c¢ —a+tc a+2c¢

I | |
818081A+ 8150A+ 1A+ A 0A+ 8081A+

w

—a+tc 5] a+tc

We observe here that each wall of AT is fixed by exactly one reflection s € §%. We say that
such a wall is the s-wall of A*. In general every A € A has one and only one wall in the W¢-orbit
of the s-wall of AT. This is called s-wall of A.

The affine Weyl group acts on itself by right multiplication, so it makes sense to define a right
action of W® on A. It is of course enough define such an action for the generators of the group.
Thus for each alcove A let As be the unique alcove having in common with A the s-wall.

Two partial orders on the set of alcoves

Here we want to provide the set of alcoves with two partial orders (cf. [37]).
First of all, the Bruhat order on 'W® induces a partial order on A. Indeed, for all alcoves
A, B c Awith A=zAT, B=yA", 2,y € W* we may set

A<B < xz<y.

We still call it Bruhat order.
We observe that in general if we look at two fixed alcoves it is not obvious at all if they are
comparable with respect to the Bruhat order without knowing the corresponding elements in 'W¢.
Now, we recall Lusztig’s definition of a nicer partial order < on A, in the sense that for all pair
of alcoves we will be able to say if they are comparable and, in case, to establish which one is the
bigger one.

Each H € U H, , divides [) g in two half spaces: b zp= H+ U H U H~, where Ht is
nGZ
the half space that intersects every translate of C*. Let A € A, if H is the reflecting hyperplane
between A and As, s € 8§, we consider the partial order generated by
A< As ifAe H™.

We notice that it is not clear in general how < and < are related. Actually, denoting by X the
lattice of (finite) integral coweights, that is

Vi={Ae b s | (\a)€ZVaeAl, (3.10)

we have
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Proposition 3.2.1 (|40],claim 4.4). Far enough inside A*, < and < coincide, that is for all
A€ XVNECT, A, B <€ A the following are equivalent:

1. AXB
2. nA+A<n\A+ B forn>>0.

Because of this result we call < generic Bruhat order. Remark that < is invariant under
translation by coweights.

The periodic moment graph

In section 3.1, we associated to any simmetrisable Kac-Moody algebra g with Weyl group W its
regular Bruhat graph G(g). If g is moreover affine, that is its Weyl group is an affine Weyl group
We  we may give the following definition.

Definition 3.2.1. The periodic moment graph GP¢" = GP¢"(g) = (V, &, X, 1) associated to W* is a
moment graph on QV and it is given by

(i) V= A, the set of alcoves of W*
(ii) &€= {zA" = yA" |zAT < yAT, Ja€ AT such that y = sax}
(i1i) l(xAT — s AT) == aV

Remark 3.2.1. We identified W* and A by (3.9) and so G(W*) and GP"(W*?) coincide as labeled
unoriented graphs.

Example 3.2.2. Letg = g[\g If we restrict the corresponding periodic moment graph to the interval
[s15081, S051AT], we get the following moment graph.

«

~a+2c —a+c a+2c¢

/’\/\/\/\/\

| | | \
818081A+ 5150A+ 81A+ A SoA+ 8081A+

T >l

—a+c o a+tc

3.2.2 Parabolic moment graphs associated to the affine Grassmannian

We consider in this section a very important class of parabolic moment graphs: the ones asso-
ciated to the Affine Grassmannians, that is G/, where W = W is an affine Weyl group and .J is the
corresponding set of finite simple reflections, that is we are modding out by the finite Weyl group.

There are actually two descriptions of this graph: one identifies the set of vertices with the

Ry
coroot lattice @ , while the other identifies the set of vertices with AT, the set of alcoves in the
fundamental chamber. Hereafter, we will denote this graph by GP2".
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Since W; = Staby(0) and W.0 = QV, ‘W is in bijection with the coroot lattice via the mapping
w +— w(0) and clearly there exist an element w € W; and a reflection ¢ € T such that x; = tyjw if
and only if 2 7(0) = ty;(0). And we get in this way the first description.

On the other hand, W/ is evidently in bijection with W \ W via the mapping w’ ~ (w”)~!
modulo W;. The set of minimal representatives for the equivalence classes, under the correspon-
dence (3.9), is given by the set A1 of the alcoves in the fundamental chamber. Moreover, we will
connect AT, yA" € AT if and only if there exist an element of the finite Weyl group w € W and
an affine reflection ¢ € T such that = = wyt, that is 2~! = ty~tw™!.

Example 3.2.3. Let g = 5/[3 Let us consider the interval [e, sgsqSpso] C W7 then the two
descriptions of GP" are as follows (we omit the labels).

(i) Description via the coroot lattice

(ii) Description via the set of alcoves in €T

As we can see in the previous example, in the description of GP?' via the alcoves in the fun-
damental chamber, the set of edges seems to have a very complex structure, while in the other
one the order on the set of vertices is hard to understand. Since we are interested in the study of
intervals, the description via the coroot lattice turns out to be not that useful for our purposes,
unless g = 5/[\2 We will show later that finite intervals of GP®" "far enough" in €T have surprisingly
a very regular structure.
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The ;E case

Ifg= 5’[;, it is actually possible to give a very explicit description of GP#'. In this case we may
identify the finite root with the finite coroot lattice and then the set of vertices is V = Za. For any
pair n,m € Z, it is easy to check that

Sa,n+m(na) = ma, (3.11)

then GP?' is a fully connected graph. Notice that, even if (3.11) holds for any pairs of integers n
and m, we do not allow loops, so n # m always. Moreover, by (3.7) and (3.11), it follows

lna —ma) :{ ?Ifnﬁi”ﬁrf)c im0 (812)
Finally, observe that a = s¢(0) and —a = 5,50(0). In particular,
e — { (80:50)™(0) %f n<0
50(Sas0)""1(0) ifn>0
We conclude that, for any pair of n # m € Z, na < ma if and only if [n| < |m| or n = —m > 0.

Example 3.2.4. The interval [0, —2a] of GP" looks like in the following picture

—a+2c a—+2c

3.2.3 Parabolic intervals far enough in the fundamental chamber

In this paragraph, we will consider only the description of GP?" in which the set of vertices
coincides with A™. Our goal is to study the structure of finite intervals of GP#" far enough in the
fundamental chamber. In this section, k is any field of characteristic zero.

Definition 3.2.2. Let \,u € . We say that
(i) X is strongly linked to p if A = p+ za, for some z € R and « €A+

(i) X is linked to p if A = w(p + na), for somen € R, a €Ay and w € WF

Remark that the fundamental chamber €' is a fundamental domain with respect to the left
action of the finite Weyl group (cf. [22], §1.12), so the element in point (%) is unique.

Proposition 3.2.2. There exists a K > 0, depending only on the root system A, such that if
A € CF and dy is the minimum of distances from X to the borders of €%, then all u € C* linked to
A and such that |A — p| < K - dy are strongly linked to \.
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Proof. For any A € " and any positive finite root « €A+ we denote by 7y o the line {A +

azr|x € R} C f) r- 1t is clear that the set of dominant weights strongly linked to A corresponds to
J Tx,a) [1CT. On the other hand, we may describe the set of u € €* linked to A as follows.

Fix o €A+ and consider the line 7y . Each time that such a line hits a wall of € reflects it off
the wall and goes on this way. Denote by 7y , the piecewise linear path inside of C* so obtained.
Now A Th,a is the set of dominant weights linked to A.

acA4

aEA+

Thus it is enough to show that there exists a K > 0 such that if u € 7y o and |A\—pu| < K-dy, then

It € 7). Notice that the finite Weyl group acts on [) r as a group of orthogonal transformations,
hence we may reduce to show that for all w € W'\ {e, s, }, the distance of the weight w(\) from the
line r) o is not less then than K - dy. Moreover, one may think of this reduction as an "unfolding"
back Ty o to 7y, and considering the conjugates of A instead of A.

Since the distance of w(\) from the line ry o is the minimum of the distances of w(A) from
A+ za for x € R, we have to show that |\ —za — w(\)[?> > K2d3 for all z € R. Computing the
square norm, and denoting A* := A — w(A), we have:

la?2? + 2\, )z + [A\Y|* + K?d3 >0 Yz eR

Hence this is equivalent to showing that the discriminant D* = (A%, «)? —|a*|\¥ |2+ |a|? K2d3 < 0.
First notice that D% = D" since A*¢¥ = XA —w(A) + (w(A),a¥)a = A¥ 4+ (w(\), a¥)a, hence:

DSew  — ()\saw ) |a| |>\Sa ‘2+‘OL|2K2d2 _
= (M4 (), a)a, a)? = a2 (X" +(w(X), @), XY + (w(N), @¥)a) + |a? K?dX =
= (\",a)?+ <w(A)7aV>|al2(A“’, a) + (w(A), a¥)?|al'+
— af? IA“’I2 2|04| ((w(N),@)a, A?) = (w(A),a")?|al* + |a? K2d5 =

(A, )? = [a?|AY[? + |a? K?d} = D"

Now if w=!(a) is a finite negative root, then clearly (sqw) () €A, hence, using the invariance

property just proved, in what follows we may assume that w € W¥\ {e, s, } is such that w=!(a) €A,
- W

Denote now by A . the set of positive roots sent to negative roots by w™!, let C* be the

(closed convex rational) cone { Aw+>R+ generated by the elements of Aw+ and notice that « is
not in £C". Indeed, « is not in C'* since all elements of this cone are sent to non-negative linear
combination of negative roots by w™! and, on the other hand, « is a positive root while all elements
n —C" are non-negative linear combinations of negative roots.

Let L* be the set of weights A, where A runs in €T and fix a reduced expression s;, ...s;,,

with s;; = Sai, for €I1. Then we have w(A) = A—(a15;, ...a.fBs, ), where B; = s;, ... si,_, (i)

for j = 1,...,r. Notice that a;;, > 0 for all j since A € €% and, moreover, {3;,,...,8;,} = Aw+.
This shows that LY Cccv.

.k
Let 7 : b = \{0} % IP( ) the quotient map to the projective space of b . Given two non-

zero vectors u,v € h g we denote by [u,v] the angle between them; clearly this symbol depends
only on the lines generated by w and v up to sign to change and up to supplementary angles. In

particular, the map P( h z)? — R defined by ([u], w[v]) > cos?[u, v] is well-defined.
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Since C" is a closed convex rational cone we have that w(C*\{0}) is closed in P( b r)- Hence the
map 7(C™ \ {0}) — R sending 7(p) — cos?[i, ] achieves a maximal value M*® and this maximal
value is less than 1 since m(a) € m(C™ \ {0}). In particular we have cos?[A\*,a] < M*% < 1 for all
A€ €T\ {0} since LW C C™.

Finally, since there are only a finite number of pairs («, w), we have M := max M** < 1. Now
notice that w(\) € €T, because w # e, so [\”| > d,, as the segment from A to w(\) must cross a
wall of C*.

We are now in a position to conclude the proof. We have to show D* < 0. Since
(A, ) = |A?|a] cos[]AY, a],

our inequality becomes cos?[A\¥,a] < 1 — K?d35/|A¥|?. But we have cos?[A\%,a] < M < 1 and
1 — K2d3/|]A*|?> > 1 — K?2. Hence it is enough to choose K such that M < 1 — K?. This finishes
the proof.

O

Let p be half the sum of the finite positive coroots, that is p = % > aV. Moreover, for any

(XEAJr
alcove A € A, let us denote by c4 its centroid.

By using Proposition 3.2.2, together with the identification o = 2a/(cv, @) for all a €A, we
get the following characterisation of finite intervals of GP?" that are far enough from the walls of
the dominant chamber.

Lemma 3.2.1. Let A,B € A", then there erists an integer ng = no(A, B) such that for any
A€ XNnp+Cr , withn > ngy, for any pair C,D € [A+ X\, B+ )] there is an edge C — D if and
only if

(i) either D = Ct for somet € T

(ii) or D = C + aa for some a € Z\ {0} and a €A

Proof. Observe first that the statement is true for g = sl;. Indeed, from §3.2.2, it follows that
ng = 0 satisfies already the requirements.

We may then suppose g # sla. The claim will follow once we prove that there exists an ng € Z
such that for all n € Z, n > ng and for all pair E, F € [A + np, B + np], we have

‘CE—CF| <K'ch

where K > 0 was defined in Proposition 3.2.2. Indeed, the statement is equivalent to show that for
all n > ng, for any o €A 4 we have (A4+np+Ra¥)Nw([A+np, B+np]) = ) unless w = e, 54, but this

is the case if and only if for all n > ng, for any o €A we have (A+np+Rw(a”))N[A+np, B+np] = 0
unless w = e, Sq.-

For any finite simple root « Ef[, let us denote by d., » the distance between cp and the
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hyperplane H, . Let ¢, be the angle between p and o, then we get the following picture

As we can see in the picture above, we have

dCD+np,a - dCD,Q + n|p| : COS(SDO()

Moreover for all D € [A, B]

ch+'er = mam{dCDJrnp,a}

Let us denote r := maxp ge[a,p) |cp—cp|andlet H € [A, B] and €11 such that minpera,p) dep,, =
dey g+ |plcos g (that is minpera, g ey, = deyy,p + n|p| cospp for all n > 0). Since g # sy, for

any -y €11 it holds cos ¢y # 0 and we may set

,
m: = ——
Klp| - cospp

Define ng = [m]. Now, for any pair of alcoves E, F' € [A, B] and for any n € Z, n > ng

‘CE+np - CF+np| = |cg —cF|
< r
= Kl cos g
< ng-Klp|-cospg
< no-Klp|-cospg+ K -dey g
= K- -minpeja p)dep,,,,
< K- dCE+ngp
< K-de,,

O

We say that the edges of type (i), that is given by reflections, are stable, while the ones of type
(ii), that is given by translations, are non-stable. We denote the corresponding sets Eg, resp. Eng.

Example 3.2.5. Let g = sly and A = A+, B = sos15051A%. Then in the interval [A, B] of Gro"
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there are edges that are neither stable nor non-stable, as the one between A and C = sqs1 AT.

It is enough to translate the interval of o+ [ to get the structure described in Lemma 3.2.1.

Lemma 3.2.2. For any pair A, B € AT, B < A and for any pair \y = n1p, Ao = nap € XNnp+CT
par par . . .

(n1,n9 > no(A, B)) then 9|[AM1’BM1] and 9\A+x2,3+x2] are isomorphic as oriented graphs.

Proof. Set pn:= Ay — A1. The isomorphism we are looking for is given by C' — C'+ u. Observe that,

by Proposition 3.2.1, the Bruhat order coincides in the fundamental chamber with the generic one

and so it is invariant by weight translation; then the map we have just defined is an isomorphism

of posets. Moreover C is connected to D in P ] if and only if C'+ p is connected to D + p

[A421,B+2;
par

[A+2p.B4+2s]’

(i) D = Ct for some t € T if and only if D = rC for some r € T, that is if and only if there exist

o €A, and n € Z such that D = San(C). It is now easy to check that this is the case if and only
if D+ p1 = San4(u,a0)(C 4 p), that is there exists a reflection ¢’ € T such that D + p = (C + p)t’.

(iil) D=C+aaifand only if D4+ p=C+aa+p=(C+ p)+ aa. O

in§ indeed:
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Remark 3.2.2. We want to stress the fact that in Lemma 3.2.2 we are not proving the existence
of an isomorphism of moment graphs, but only between the underlying oriented graphs, that is we
are not considering labels. Our first hope was that we could find a collection of {fi.c}ce[a+a:, B+
satisfying condition (MORPh2a) and (MORPH2b). In the next two paragraphs, we will see that
it 1s not the case. In particular, it turns out that the labels of stable edges are invariant by coroot
translation (cf. Lemma 3.2.1), while the ones of non-stable edges are not (c¢f. Lemma 3.2.4).

From now one we will denote by w € W® the corresponding alcove wA+ € A, thanks to the
identification (3.9) of the affine Weyl group with the set of alcoves. In particular, if wA™ is contained
in the fundamental chamber, we will write w € AT.

Stable edges

Let |8%| = n and fix a numbering of the simple reflections. We define the permutation o4, € S,

.V
for Ae Aand p € X , in the following way: 04 ,(i) = j if the image under the translation by p of
the s;~th wall of A is the s;—th wall of A+ p (cf.§3.2.1). Let W the extended affine Weyl group,

. ) Y
that is We = W% x Q, where  := XV/ Q (cf. [38]).

v
Lemma 3.2.3. For any p € X the permutation defined above is independent on A € A, i.e. there
exists 0, € Sy, such that o, = o, for any alcove A.

Proof. We know that Tjov = 84,5500 for any o €A. Since we are reflecting twice in the same
direction (orthogonal to «), the walls of A + ka" have the same numbering as the ones of A.

.V
Thus for any 4 € X there exists an element w €  and roots ai,...a, € R such that
Ty = WSay k1 Say - - - Say k. Sa, and the numbering of the walls of A + p only depends on w. O

We get the following lemma.
Corollary 3.2.1. Let x € W/, t € T, p € XV be such that x,xt, Ty, Tyat € A*. Then, [(T,x —
— Tyat) = o, (l(x — at)).
Non-stable edges

Now we describe how labels of non-stable edges change. In order to do that we need the
following result

.V
Proposition 3.2.3 ([22],Proposition 4.1). Let z = T, (oyv, where z2(0)€ Q and veW/S. Then, for
any « €A+ and for any n € Z,

28an? L = Shy(a)r  with T = £((2(0),v(a)’) +n), (3.13)
where the signs are such that v >0 or r =0 and +v(a) €A, .

We may now prove

Lemma 3.2.4. Let z € AT and x = Ty yw, where w € W/,
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i) If « €Ay and Tyovx € AT, then
() + ’

(x — Tpovz) = Fw (") F ((z(0),a¥) +a)c, (3.14)

(a,q)
where F((z(0),a") +a) > 0 or ({(z(0),a¥) + a) =0 and tw™*(a) eA,.

. .V
(11) Let y = Tyovx, for some a € Z and o €EAy. Let moreover p € XV, w e Q and vy € Q be such
that T), = wT,. Then, if y,T,z, T,y € CT,

(T — Toy) = o, (e — y) F oL, (3.15)

where F((y +2(0),a) +a) > 0 or ((y+2(0),a") +a) =0 and o, (w™ ' (a)) EA.

Proof.

(i) Since TyavZ = Sq,aSq,0%, We have to determine the positive root corresponding to the reflection
1‘715047080(76180470%.
Since $4,050,a84,0 = Sa,—a, Dy Proposition 3.2.3 with z = 271, v = w™!, 2(0) = —w ™ (x(0))
and n = —a, we get

1'71504,050:,0,50:,0:6 = Stw1(a),2(—w=1(z(0)),w=1(a)V)—a)

= Stwl(a),F(2(0),aV)+a)
The result follows from (3.7) and the fact that w(a)” = w(a) for all @ €A and w € W/,

(ii) Observe that T2 — T,y = Toav (Typx). If 2 = Tpyw, then Tz = T, 0)w = Wl z0)w and
we may apply point (i) of this Lemma with T},z instead of z. So, if Tw™!(«a) €A+, n = —a, we get

UTpyve — Tpvy) = Lou(w(aY))F 2 ({(y +2(0),av) +a)c
= o,(l(z—uy)F o) ¢

Stable moment graphs

Let GP*' be the same moment graph as before. We define here the stable moment graph G%%2" as
follows. This is the moment graph having as set of vertices the alcoves in the fundamental chamber
(that we identify with the corresponding elements of the Weyl group), equipped with the Bruhat
order (that here coincides with the generic one); we connect two vertices if and only if there exists
a reflection ¢ € T% such that y = «t, and in this case we set [(z — zt) := oy V.

Then we have:

Lemma 3.2.5. For any interval [y, w] and for any p € XV there exists an isomorphism of k-

moment graphs Sﬂfj‘j] — Sfé“iHH for all k.
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Proof. Since the order on the set of vertices of G5*#P is invariant by weight translation, we have
an isomorphism of posets induced by the mapping z — 2z 4+ p. This map induces also a bijection
between set of edges, as we have already seen in the proof of Lemma 3.2.2.

The permutation of Lemma 3.2.3 gives an automorphism of the root system and then an induced
automorphism of the coweight lattice. Since it depends only on the (finite intergral) coweight p,
we can set f; , = o, for any = and this gives us an isomorphism of k-moment graphs for any k. [
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Chapter 4

Modules over the parabolic structure
algebra

Let Z be the structure algebra (see §2.1.1) of a regular Bruhat graph G. In [13], Fiebig defined
translation functors on the category Z-mod, that is the category of Z-graded Z-modules that are
torsion free and finitely generated over Sy. Using it, he defined inductively a full subcategory H
of Z-mod and he proved that J, in characteristic zero, is equivalent to a category introduced by
Soergel in [41]. In [18], Fiebig showed that H categorifies the Hecke algebra H (and the periodic
module M), using translation functors. The aim of this chapter is to define translation functors in
the parabolic setting and to extend some results of [18].

4.1 Translation functors

Let W be a Weyl group, let 8 be its set of simple reflections and let J C §. Hereafter we will
keep the notation we used in §3.1.2.

For all s € 8, Fiebig defined in [13] an involutive automorphism o of the structure algebra of a
regular Bruhat graph. In a similar way, we will define an involution ;o for a fixed simple reflection
s € 8 on the structure algebra 27 of the parabolic Bruhat (k-moment) graph G”. In this chapter,
we suppose that (G7, k) is a GKM-pair (see Definition 1.1.3).

Let x,y € W/, Notice that I(x — y) = ;" if and only if I(sx — sy) = s(a;"), because
sxw(sy)~! = szwy~ls = sts, where w € W;. From now on, if z € W, we will write T instead of
x’.

Denote by 75 the automorphism of the symmetric algebra Sy induced by the mapping A — s(A)
for all A € QY. For any (z,),ews € 27, we set s0((22)zews) = (2)zewv, Where 2}, = 74(257).
This is again an element of the structure algebra from what we have observed above.

Let us denote by *Z” the space of invariants with respect to the automorphism o and by ~527
the space of anti-invariants. We denote moreover by o,V the element of 27 whose components are
all equal to a,Y. We obtain the following decomposition of Z7 as *Z7-module.

Lemma 4.1.1. 27 =27 @ o,V -°27.

45
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Proof. (We follow [13], Lemma 5.1). Because so is an involution and char(k) # 2, we get 27 =
$27 @527, Since @; € 27 and s(aY) = —ayV, it follows so(a,Y) = —a,¥ and so a,V -527 C 527
and we now have to prove the other inclusion, that is every element z € ~*Z” is divisible by a,V in
-5z,

If 2 = (2,) € °27, then, for all + € W/, 2z, = —74(253) = —2sz (mod ;") and 2z, = 2z (
mod a;"). It follows that 2z, = 0 (mod a,"), that is o, divides z, in Sk, as char(k) # 2. We
have now to verify that 2’ := (as¥)~! -z € Z, that is z;, — 2.~ = 0(mod «") for any = € W7 and
t € T. If tx = 57, there is nothing to prove; on the other hand, if tx # 5%, we get the following.

o’ (2, — 7)) = 2p — 2z = 0(mod ay)

Since (§7, k) is a GKM-pair, a,¥ # 0 (mod ;") and we obtain 2}, — z— = 0(mod a;").

4.1.1 Left translation functors
In order to define translation functors, we need an action of S on 2”7 and Z”.

Lemma 4.1.2. For any A € QV and any x € W/, let us set

W= > zz;(\). (4.1)

ryEW s
Then c(\)” = (c(\))gews € 527.

Proof. It is clear that, if ¢()\)” € 27, then it is invariant. So we only have to prove that c¢(\)’ € 27,

that is c(\)] — c()\)% = 0( mod o). Since for any z; there exists an element y; such that
xxy =ttxyy (cf. Lemma 3.1.4), then
2iasew, B8IA) = 2 ew, tras(N) = 3 cw, trys(A) = X2y cw, By (A)

t (ZyJGW,} EQJ(A)) =3, e, Ty
(ZyJEWJ <at75yJ()\)>> gV

= 0(mod oY),
since oV is a multiple of «. O

For any € W, denote by 7, the automorphism of the symmetric algebra S}, induced by the
mapping A — ¢(\)7 for all A € QY. Now, by Lemma 4.1.2, the action of S on Z7 given by

P-(22)sews = (1:(p)2) pE Sk, 2 €27, (4.2)

preserves *Z7. Thus any Z7-module and any *Z7-module has an Sj-module structure as well. Let
Z7-mod, resp. *Z7-mod, be the category of Z-graded Z”-modules, resp. *Z7-modules, that are
torsion free and finitely generated over Sj.

The translation on the wall is the functor *°"0 : Z7 -mod — *Z7-mod defined by the mapping
M Res;%‘].

The translation out of the wall is the functor ®°“*g : *Z7 -mod — Z7-mod defined by the
mapping N > Ind;’V}J. Observe that this functor is well-defined thanks to Lemma 4.1.1.

By composition, we get a functor *0 := *°%f o *°"§ : Z7/-mod— Z”/-mod that we call (left)
translation functor.
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Remark 4.1.1. We want to stress the fact that, if J = 0, the translation functor we defined does
not coincide with the one defined by Fiebig in [13]. Indeed, we are twisting the action of Sy, while
in [13] Sk acts in the usual way, that is p.(z5) = (D 2zx).

The following proposition describes the first properties of °6.

Proposition 4.1.1. (1) The functors from *Z7-mod to *Z-mod mapping M + 27{2} .5, M and
M +— Hom:4(27, M) are naturally equivalent.

(2) The functor *0 = 27 ®:90 — : 27 — mod — 27 — mod is selfadjoint up to a shift.

Proof. (cf. [41], Proposition 5.10, and [13], Proposition. 5.2) By Lemma 4.1.1, {1, a3} is a *2”7-basis
for 27. Let T°,@;* € Hom.ys(Z7,%27) a 527-basis dual to T and @;. We have an isomorphism
of *Z7-modules Z7{2} = Hom.ys(27,%2”) defined by the mapping 1 +— @;* and @; + 1*, since
deg(1) — 2 = —2 = deg(a;*) and deg(@;) —2 = 0 = degT". Now statement (1) follows from the
fact that 27 is of finite rank over *Z” and so Hom:y (27, —) = Homs s (27,527) @:q0 —.

Now the second claim follows easily, since 27 ®.5s — and Hom:ys (27, —) are, resp., left and

right adjoint to the restriction functor.
O

Using the selfadjointness of °6, we get the following corollary.

Corollary 4.1.1. *0: Z7 —mod — Z7 —mod is ezact.

4.1.2 Parabolic special modules

As in [13], we define, inductively, a full subcategory of Z7-mod.
Let B. € Z7-mod be the free Sp-module of rank one on which z = (2;),ew~ acts via multipli-
cation by z..

Definition 4.1.1.

(i) The category of special Z/-modules is the full subcategory H’ of 27-mod whose objects are
isomorphic to a direct summand of a direct sum of modules of the form *160 o ... 0 %r0(B,){n},
where s;,,...,8;,. €8 andn € Z.

(ii) The category of special *Z”-modules is the full subcategory *H”’ of *Z7-mod whose objects are
isomorphic to a direct summand of *°"0(M) for some M € H”’.

Let Q be a finite subset of W7. Then, we set

Jron . Zy = 2y (mod ayY)
29 = {(21) € gzsk if Jw e Wy Zt ywr l=teT }

If O C WY is s-invariant with respect to the left multiplication by s, that is sQ = Q, we may
restrict 4o to it. We denote by *Z7(Q2) C 27(Q) the space of invariants and, using Lemma 4.1.1,
we get a decomposition Z7(Q) = *27(Q) ® o, - *27(Q).

In the following lemma we prove, the finiteness of the special Z/-modules, as Fiebig does in
[18] for special Z-modules.

Lemma 4.1.3.
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(i) Let M € H’. Then there exists a finite subset @ C W’ and an action of Z7 () such that 27
acts on M wia the canonical map 27 — 27(Q).

(ii) Let s € 8 and let N be an object in *H”’. Then there exists a finite s-invariant subset @ C WY
and an action of *Z7 () on N such that *2”7 acts on N wvia the canonical map 27 — 27(Q).

Proof. (we follow [18]) We prove(i) by induction. It holds clearly for B,, since Z” acts on it via
the map 27 — Z7({e}). Now we have to show that if the claim is true for M € K, then it holds
also for *0(M). Suppose Z7 acts via the map Z7 — Z7(Q) over M. Observe that we may assume
) s-invariant, as we can eventually consider Q U s, that is still finite. In this way the *2”-action
on *0M via *Z7 — *27(2) and so we obtain *0M := 27 ®.55 M = Z7(Q) @s2(q) M.

Claim (%) follows directly from claim (). O

4.1.3 Decomposition and subquotients of modules on 2’

We recall some notation from [14]. Let S? := Sp[a~'|a € A] and, for any M € 27 — mod,
M := M ®s, S?. By [[18], Lemma 3.1], there is a decomposition M? := M N @D.crps M?* and so
a canonical inclusion M C @IEW , M%2_ For all subset Q C W/ , we may define:

Mg = MnN @ MO
zeN

M := M/Mys g = im (M - M =P MM> )
zeN

For any € W/, we define
M) = ker (M{Zﬂc} - M{>3:})
If x # 57 and = < s, we set moreover
Myy gy 1= kor (M2} ArZanes)

Lemma 4.1.5 describes the action of *¢ on the subquotients M,;’s. This is important in order
to show that H” categorifies the parabolic Hecke algebra. Actually, to prove Lemma 4.1.5, we need
a combinatorial result.

Lemma 4.1.4. Let x ¢ W/ and t € 8. Iftx ¢ W/, then tx = x.

Proof. If tx ¢ W”, then there exists a simple reflection € J such that tzr < tz and, since z € W7,
ar > x. Using (the left version of) Lemma 3.1.2 (i) with s = ¢, v = xr and u = tz, we get tor < x.
Applying Lemma 3.1.2 (i) with s = r, v = x and u = tzr it follows tz > z. Finally, from Lemma
3.1.2 (ii) we obtain tzr < x, that, together with x < zr, gives tar = x. O

Lemma 4.1.5. Let s € 8§ and x € W/, then

Myg{—2} ® Mgo{—2} if szeW' sz>ux
(FOM)2) = § M) © Mgy if steW sz<ux
M{-2} & M, if sz g W/
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Proof. (cf. [18]) By Lemma 4.1.4, if sz ¢ W, then 57 =  and M|, € *ZP*"-mod, so by Lemma
4.1.1 we get z7 Qs g7 M[w] = M[ﬂ{*Q} &® M[m]

If z # sz, we have a short exact sequence 0 — M, — M, 0] — Mg, — 0 and, since *¢
is exact (see Corollary 4.1.1), *0My s = (*0M)[3,.52) = *0Mz) © *0Mg,). Moreover *0M, o0 =
27 ({x, s2})®: 2.7 ({2,501) M[s,52) and the two isomorphisms follow by taking in mind that 2”7 ({z, sz}) 4]
S{—2} if x a sz, while Z7 ({z, sx})(y] = S, if x> sz

Using induction, we get the following corollary

Corollary 4.1.2. Let M € H’. Then for any x € W, M) is isomorphic to a finite direct sum
of shifted copies of Sk.

4.2 Special modules and Hecke algebras

In the first part of this section we recall the definition, due to Deodhar, of the parabolic Hecke
algebra H” and of its canonical basis. To the Bruhat order on WY we associate, as in [[18], §4.5] a
character map and in this way we get a map from the Grothendieck group of H” to H”. Finally,
we extend Proposition 4.3 of [18] to the parabolic setting, describing the action of the translation
functors on the character (up to a shift) via the multiplication by elements of the canonical basis.

4.2.1 Hecke algebras

We start by giving the definition of the Hecke algebra associated to a Coxeter system (W, §),
that is a quantisation of the group algebra of W. We adopt the notation (and the renormalisation)
of Soergel [40].

Denote by £ := Z[v,v™!] the ring of Laurent polynomials in the variable v over Z.

Definition 4.2.1. Let (W,8) be a Cozeter system, then its Hecke algebra H = H(W) is the free
L-module having basis {H, |x € W}, subject to the following relations:

H,, if sx>s
HsHy = { (v'—v)H, + Hy, if sx<a (4.3)
It is well known that there exists exactly one such an associative L-algebra (cf.[6] or [22]).
It is easy to verify that H, is invertible for any z € W and this allows us to define an involution
on H. This is the unique ring homomorphism — : H — H such that v = v~ and H, = (H,-1)"!.
In [29] Kazhdan and Lusztig showed the existence of a nicer basis for H, the so-called canonical
basis, that they used to define complex representations of the Hecke algebra. The entries of the
change of basis matrix were given by a family of polynomials in Z[v]: the Kazhdan-Lusztig poly-
nomials. In [9] Deodhar generalised this construction to the parabolic setting. Kazhdan-Lusztig
polynomials and their parabolic analog will be the object of the next chapter.

Parabolic Hecke algebra and Kazhdan-Lusztig polynomials

Let us take J C 8. We recall Deodhar’s construction, following [[40], §3]. Let H = H(W) be the
Hecke algebra of W, then for any simple reflection s €8, by (4.3), we have (Hs)? = (v"! —v)Hg+ H.,
that is (Hs +v)(Hs —v™1) = 0. If u € {v~!, —v} and H; := H(W}) is the Hecke algebra of W,

~
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then we may define a map of £-modules ¢, : H; — £ by H, +— u. This provides a structure of H;
-bimodule to £, that we denote by L(u).
Consider now M’ := L(v™!) @, H and N7 := £(—v) ®g, H. It is easy to verify that the
map — : £(u) ®u, H — £(u) @, H sending a ® H — a ® H :=a® H is a ring homomorphism.
For u € {v~!, —v} denote by H/* := 1® H,, € £L(u)®m, H. We are now able to state Deodhar’s
result.

Theorem 4.2.1 (|9]). 1. For all w € W/ there exists a unique element ﬁif’AE M such that:

@ i =y
(i) H' =3 evs mi

where the m? . are such that miw =1 and m; ,, € VZ[v] if y # w.

y,w

2. For allw € W there exists a unique element ﬂ;i’fve N7 such that:

(i) H " = Hy

——w

(i) Hp ™" =3 ewsny o H ™,

Yy, wry

where the n;) , are such that ny, ,, =1 and n; ,, € VZ[v] if y # w.

Y, w

The polynomials my » and niw are called parabolic Kazhdan-Lusztig polynomials with respect
to the parameter v~!, resp. —v, while {ﬂif’il}wewJ is the canonical basis.

IfJ =190, then M’ = N’ = H and, for any pair of elements y,w € W, we will denote
hyw = mgw = ny » the corresponding regular Kazhdan-Lusztig polynomial.

We end this paragraph by recalling that the left multiplication by H, for s € §, on H” is given
by (cf. [[40].§3])

H;];C“il + UH;]’W1 if szeW! s>z
H,-HlY = H;’ag“_l + v’ng’”_l if szeW! sz<a (4.4)
(v+ o HyH it szg W’

4.2.2 Character maps

Let M be a Z-graded, free and finitely generated Sy-module; then M = @ | Si{j;}, for some
ji € Z. We can associate to M its graded rank, that is the following Laurent polynomial.

n
kM = Zviji € Zv,v™ .
i=1
This is well-defined, because the j;’s are uniquely determined, up to the order.

Let (3”7) be the Grothendieck group of H”’
and let M € H’, then by Corollary 4.1.2, we may define a map h : (H’) — M as follows.

= Y W@k My HF e MY
zeWJ



4.3. LOCALISATON OF SPECIAL ZPAR_MODULES 51

Proposition 4.2.1. For each M € H”’ and for any s € 8 we have h(0M{1}) = H_ - h(M), that
is the following diagram is commutative

(37) ==
Seo{l}l iHé-
(3) —> M
Proof. (cf. [18], Proposition 4.3) By Lemma 4.1.5, for any € W/ we have

v? (gM[w] —&-mM[w]) if sxeW/,sx>z

tk(*OM )z = § tkMy) + 1k M, if sxeW/ sx<a
v° + 1)rk M, i sz
241 kM, if wJ
Then,
s _ O(x)—1 s Jo~t
R(POMA{1}) = > ewsv rk(*OM ), H;
= ZzGWJ’iwewJ vl(w)-‘,—l (&M[z] +¢M[sz]) Hn‘c]’vil
ST _ ,L),l
T Dacw? gaevor VO (Mg + 1Moy HY
sSr<x
+ e gy (VT + 0 @M B
Finally,
H,-h(M) = > cwr ac)) (xkM,))H, - HIv™ 3 -
= ZxGW‘]sxGWJ vé(l‘) (gM[l’])(H.;]m’U + UH:;]7U )

sr>x

+ ZwEW",swEW'I UE(I) (mM[w])(H;];)71 + ’U_lH;ULU71)

srx<x
+ ZwEW",sw&W" vé(m)mM[x] (U + vil)Hi]’v_l
= ZxEWJ,ixEWJ {(Ug(z)ng[l]) + (UK(SI)gM[sl])} H},]’v_

-1

T Loew? soew? (0 @0t kM) + (0D kM) | HE®
+ erwJ sz W (’l}é(m)—"_l + ’UZ(I)_I)gM[I]Hj’U71
= h(*0M{1})

4.3 Localisaton of special ZP?"-modules

In this section, we focus our attention on the affine Grassmannian case. In particular, we
consider finite intervals of GP*" far enough in the fundamental chamber, whose description has been
given in §3.2.3. Hereafter, we denote by WP?* the set of minimal representatives for the equivalence
classes of W?/W/ and by ZP2" the structure algebra corresponding to this parabolic setting.

Let g € A+, we consider the following localisation of the symmetric algebra Sy:

SP = Sil(a+nd) ' e €Ay \{B}, n € Z] (4.5)
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Fiebig used this localisation in [18], in order to relate the category of regular special modules
to a category introduced by Andersen, Jantzen and Soergel in [1].

Let us denote by Wg the subgroup of W* generated by the affine reflections sg ., for n € Z,
and by W# the set of orbits for the left action of W5 on WP¥. Remark that the group Wp

is isomorphic to 5/[\2, the Weyl group of :4: . For any subset Q@ C WP?2' et us write moreover
Zpanf(Q) := 2P (Q) ®g, Sk 5. We get then an analog of the decomposition we used in §4.1.3.

Lemma 4.3.1 (cf. [18], Lemma 3.1). Let Q C WP be finite, then

Zpar,B(Q) _ (Z ) c @SB ‘ Ry = Zy ( mod (6 + TL(S)\/) _ @ Zpar,B(Q A @)
z Flif3weW/ neZ st ywa™l =55,
€N ’ 0cWg
Proof. Omitted, since Fiebig’s proof of [[18], Lemma 3.1] works exactly the same in this parabolic
setting too. O

For M € HP we set MP := M @g, Sk . Because any special module is a module on Z(12) for
some ) C WP finite (see Lemma 4.1.3), the decomposition of the previous Lemma gives us the
following decomposition.

M= @ mMPe (4.6)
SIS

In the following Lemma we show that this localisation procedure preserves special modules.
In particular, we prove that, under the localisation, a special module having support on a finite
interval far enough in the fundamental chamber splits in a direct sum of special modules for the
parabolic structure algebra of the Bruhat graph of Aj;.

Lemma 4.3.2. Let M € HP" such that ZP*" acts on it via ZP*(J), for J a finite interval far enough
in CT and MP = Docws MP®© . Then, for any © € WP, MP® is isomorphic to a ZP*"(sl,)-special
module.

Proof. We prove by induction that any M#?© is a special module for the structure algebra of Sﬁ;lr.
If M = B., there is nothing to prove. Suppose the lemma holds for M € HP?"; we have to show
that it is true also for *6(M) = @gcrps “0(M)7©.

Thus it is enough to show it for an M#®©. In order to do this, we follow the proof of [[18],
Lemma 3.5]. If © = Os, then *0(M)*© = MP© @. 50 g) ZP*#(0), since, by Lemma 4.1.3, the
inclusion *ZP*#(Q) C ZPa™A () contains *ZP*"7(Q) C ZP*+#(O) as a direct summand. Otherwise,
© # Os and the inclusion *ZP¥4 (0 U ©s) C ZP¥F(O) @ ZP*#(Os) is an isomorphism on each
direct summand. It follows, *9(M)Par8 = M5O @ MP©s. In both cases, we get the claim by
induction because ZP*"# acts on M?© via ZP¥#(J N O) and clearly ZP*#(JNO) = ZP¥* (TN O).

Now the statement follows since by Lemma 3.2.1, for any finite interval J far enough in the
fundamental chamber and any © € W? 7N © is isomorphic (as moment graph) to a finite interval

of the parabolic Bruhat graph of :4V1 O



Chapter 5

Categorification of Kazhdan-Lusztig
equalities

In 1979 Kazhdan and Lusztig ([29]) introduced a family of polynomials {h ,} indexed by pairs
of elements in a Coxeter group W with 8, the set of simple reflections. Some years later, Deodhar
generalised this notion to the parabolic setting, defining two families of polynomials {mgy} and
{niy}, where x and y are now varying in W/, for J C 8 (see §4.2.1). If W was a Weyl group, these
polynomials were related to the intersection cohomology of the corresponding (partial) Schubert
variety (cf. Appendix A of [29] and [30]) and to the representation theory of the complex Lie
algebras (cf.[29]), resp. of the semisimple, simply connected, reductive algebraic groups over a field
of positive characteristic (cf.[36]), whose Weyl group is W.

The following conjecture motivates this chapter.

Conjecture 5.0.1 ([16], Conjecture 4.4). Let y,w € W’ and let k be such that (Sﬁy w],k) is a
GKM-pair. Then rk(AB(w)’)Y = v*®)—Hw) “m,

This conjecture is proved in characteristic zero and in this case it is equivalent to Kazhdan-
Lusztig’s conjecture (cf.[14]). In characteristic p it is proved for p bigger than a huge (but explicit)
lower bound and it implies Lusztig’s conjecture (cf.[18],[16]). Anyway, this conjecture motivates
this chapter: we try to interpret combinatorial properties of Kazhdan-Lusztig polynomials in term
of Braden-MacPherson sheaves. We have already presented the results of Sections 5.2 and 5.3 in
the preprint [35].

5.1 Short-length intervals

We try here to illustrate the philosophy of this chapter by computing the stalks of the canonical
sheaves on Bruhat intervals having length < 2.

For any pair of elements y,w € W such that y < w and £(w) — £(y) < 2, it is know that
By = 0! =W Tf conjecture 5.0.1 is true, then rk Z(w)Y = 1, that is B(w)Y = Sy, if (G, k) is a
GK M-pair. Clearly, there is nothing to prove if y = w. If £(y) = ¢(w) — 1, then y = tw for some
t € T and the associated moment graph is a subgeneric graph with the edge labeled by ;. In this
case, it is clear that % (w)% = S}, /a; Sy, whose projective cover is obviously Sj.
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Suppose now ¢(w) — ¢(y) = 2. Then the Bruhat graph restricted to the interval J = [y, w] has
to be of the following shape (cf. [[5], Lemma 2.7.3]).

w
Saly SBY
Y
For some «, 8,7,0 € A,

By Proposition 2.1.2, showing that #(w)* = S, for all z € [y, w] is equivalent to showing that
the corresponding structure sheaf is flabby. We know already that Z(w)* = Sy, for z € (y, w], so we
have only to prove Z(w)¥ = Si. In particular, the claim will follow once we prove that all sections
2 = (2w, Zs,ys Zsay) € I'(J\ {y}, A) are extensible. By definition, there exist p, g1, g2 € Sk such that

2w =Dy Zsay =P+ @, Zsyy =P+0 @
Clearly, there exists an element z, € S; extending z if and only if there exist g3, g4 € Sy such that
Zsay + 0V @3 = 25,y + B8 - qa
Now, by hypothesis, 5,5, = 5553, that is sg = 555,54, so, for all A € by,
A=\ aYa=X—(\B)8 = (s5(N),8)8 — (sssg(A\), 7" )y

Because of the GKM-property, § # fa, £d and so it is always possible to find a p € by such
that

(1, 8Y) =0, (p,Y) #0, (s5(1),6") = (p,55(8")) # 0
Then, we might write & = a1 + asy with a1,a3 € R and a; # 0. Analogously, we get
B =010 + byy with by,b2 € R and by # 0. Thus, if ag = 0, it is easy to check that
gs=a; (@2 —biby'q1)  @a=b'q
satisfy the requirements. While, for as # 0, we set
a3 =a3" (1 —boaray ' (by +b2) ")gr —ba(b1 +b2) 'q2) g1 = a5 ' (b1 +b2) Harq1 + azq2)
Thus we get the following lemma.

Lemma 5.1.1. Lety,w € W be such that y < w and {(w) —L(y) < 2. If (S, .. k) is a GKM-pair,

then B(w)Y = Sy.

y,w]

5.2 Technique of the pullback

Let ¢ O b O t be a symmetrisable KacMoody algebra, a Borel subalgebra and a Cartan
subalgebra. Let II, resp. IIY, be the corresponding set of simple roots, resp. of simple coroots.
From now on, we denote by § = (V, €,1, <) the regular Bruhat graph we defined in §3.1.1.

In this section, we apply Lemma 2.2.2 in order to lift some equalities concerning KL-polynomials
to the moment graph setting. In particular, we will define isomorphisms of k-moment graphs to get
isomorphisms between stalks of the corresponding Braden-MacPherson sheaves.
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5.2.1 Inverses

Kazhdan and Lusztig gave an inductive formula to calculate the KL-polynomials ((2.2.c) of
[29]). From such a formula it follows easily (cf. Exercise 12, Chap.5 of [5]) that, for any pair
y,w € W, one has

hyw = hy—1 1. (5.1)

We translate this equality to an isomorphism of stalks of indecomposable canonical sheaves.

Lemma 5.2.1. Let W be a Weyl group. The anti-involution on W defined by the mapping x — "
induces an automorphism of the k-moment Bruhat graph G for any k.

Proof. fy : V — V defined by the mapping = + 2~ ! is obviously a bijection. Moreover, for each
pair of elements z,y € W, x < y if and only if z7! < y~!. So fy : V = V is a bijection of posets.
Observe that there exists a reflection ¢ € T such that y = tz if and only if y~! = raz~!, where
r=x"r €T Sox—ye€€ifandonlyif ™! —y 1€ €.
Thus, for every z € W and any A € QV, we set f;,(\) == 271()\). Let E : 2 — y = tz and
recall that, for any w € W and a € A™, w(a)” = w(a") (cf. [26], §5.1). Then we get the following.
() fro(l(x — tx)) = 2 (o) = 27 (aY) = £l(z~' — y~ 1), where 271 (a;) € A%, because
7 ay) = Fag-14, (cf. [26], §5.1).
(b)
fl,y()\) = y_l()‘)
= a7 Y(t))
= 27 () = (e, Ve )
271(\) (modz ay)")
fre(\)  (modzHay)")

This proves that we have an automorphism of the k-moment graph G for any k. O

From the lemma above we get the following corollary.

Corollary 5.2.1. Let w € W. Denote by G the corresponding Bruhat graph and let f be as in
Lemma 5.2.1. Then B(w) = f*B(w=") as k-sheaves on G for any k.

Proof. First observe that y £ w if and only if y=! £ w™!. So if y £ w, B(w)¥ =0 = %’(w_l)yﬂ.
By Lemma 5.2.1, fy :  — 2~ ! induces a k-isomorphism between the two complete subgraphs
Sw and G,,-1, so we may apply Lemma 2.2.2; the statement follows. O

5.2.2 Multiplying by a simple reflection. Part I

Let y,w € W and s € § such that y < w, ws < w and y £ ws. In these hypotheses Kazhdan
and Lusztig observed (proof of Theor. 4.2 of [29]) that

hfy,w = hys,ws- (52)

In order to interpret (5.2) in our moment graph setting we will use the lifting Lemma, to define an
isomorphism of k-moment graphs.

Lemma 5.2.2. Let y,w € W and s € § such that y < w, ws < w and y £ ws, then for any k there
is an isomorphism of k-moment graphs 9|[y,w L)QH

ys,ws]

]



56 CHAPTER 5. CATEGORIFICATION OF KAZHDAN-LUSZTIG EQUALITIES

Proof. We show that fy : [y,w] — [ys,ws], © — xs is a bijection of posets inducing the identity
map on the labels.

We verify that if € [y, w] then xs € [ys,ws|. We see that xs < z; indeed, if it were not the
case, by Lemma 3.1.2 (ii) « < ws, but this implies that y < ws. In particular, this holds for y, that
is ys < y. Now, by Lemma 3.1.2 (i);

rs<x,ws<w = xs < ws

yYs<y,xrs<xT = Yys < Ts.
We now show that if z € [ys,ws] then zs € [y,w]. Observe that zs > z; indeed, ys < z,
y = (ys)s > ys and if zs < z, then by Lemma 3.1.2 (ii), with u = ys and v = z, we would get
y=(ys)s <z < ws.
Moreover, z < ws < w and, by Lemma 3.1.2 (ii),

28>z, ws<w = z2s < w.

y=(ys)s >ys, 2= (28)s < zs => y < zs.

This completes the proof that fy maps [y, w] to [ys, ws].

Let x, z € [y, w], then z < z if and only if xs < zs. Indeed, we have already proved that xs < x
and zs < z so, by Lemma 3.1.2 (i), with v = « and v = 2z, we have zs < zs. On the other hand,
x = (xs)s > xs and it follows from Lemma 3.1.2 (ii) with v = zs and v = z that z = (xs)s < z.

Finally from what we proved above, for each t € T we have that x,tz € [y, w] if and only if
xs,txs € [ys,ws]. This means that we have a bijection between sets of edges such that fe(z Btz) =
rs Bixs.

Therefore f = (fv,{Idy, }zev) is an isomorphism of k-moment graphs for any k.
O

So we have:

Corollary 5.2.2. Consider y,w € W such that ws < w, y £ ws for some s € 8. Let f be as in
Lemma 5.2.2, then %(w) = f*%(ws) as k-sheaves on G| . for any k.

Proof. The statement follows by combining Lemma 5.2.2 and Lemma 2.2.2 . O

We recollect the results of this section:

Theorem 5.2.1. Let y,w € W, then
(i) Bw) = Blw ).
Let s € 8§ be such that ws < w and y £ ws, then
(i) B(w)Y = B(ws)v*
All isomorphisms are isomorphisms of (finitely generated, Z-graded) Si-modules, for any k.
Proof.
(i) This follows from Corollary 5.2.1, since two k-sheaves are isomorphic only if their stalks are
pairwise isomorphic.

(ii) As before, the isomorphism descends from the isomorphism of k-sheaves we obtained in Corollary

5.2.2.
O



5.3. INVARIANTS o7

5.3 Invariants

Clearly not all equalities concerning Kazhdan-Lusztig polynomials come from k-isomorphisms
of the underlying Bruhat graphs. In this section we develop another technique and, as in the
previous section, we apply it in order to categorify two well-known properties of these polynomials.

5.3.1 Multiplying by a simple reflection. Part II

Another property that Kazhdan and Lusztig in [29] (2.3.g) proved is that if y,w € W and s € §
are such that y < w and ws < w, then

hy w = vhys w, (5.3)

where ¢ = 1 if sy > y and ¢ = —1 otherwise.

It is clear that in this case there is no hope of finding any k-isomorphism of moment graphs,
since the two Bruhat intervals [y, w] and [ys, w] obviously have different cardinality.

The goal of this section is to prove the following theorem.

Theorem 5.3.1. For any pair y,w € W and for any s € 8§ such that ws < w and ys,y < w, there
exist

e an isomorphism of Sk-modules @Y : B(w)Y — B(w)v*

o a family of isomorphisms of Sy-modules ¥ : B(w)¥ — B(w)EF*, where E 1y — x € & and
Es:ys— xs€ €

such that the following diagram commutes

Y

B(w)Y —— B(w)Y*® (5.4)

/Jy-,Ei ipys,Es
E

and such that @¥s = (¥)~1.

5.3.2 Two preliminary lemmata

In order to prove our claim, we need two combinatorial lemmata.
Recall that
T={sa|la€ R} ={wsw ' |weWw,sc8}

and, for all z,y € W, denote
Gr(z,y) == {t € T|tz € (z,y]}

Lemma 5.3.1. Let w,y € W and s € 8§ be such that y < w, ws < w and ys < y, then

Gr(ys,w) = Gp(y,w) U {ysyil}.
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Proof. We show that for all t € G, (y, w) we have ys < tys < w as well, i.e. t € Gp(ys,w). Indeed,
if tys > ty, then ys < y < ty < tys and, by Lemma 3.1.2 (ii) with v = ty and v = w, tys < w .
Otherwise, tys < ty < w, y < ty, ys < y and, by Lemma 3.1.2 (i) with u = y and v = ty, we obtain
ys < tys.

Clearly, ysy~! € G (ys,w) and this completes the proof that the set on the right hand side is
a subset of the one on the left.

Now we verify that if t € T, tys € [ys,w] and ty & [y, w], then t = ysy~!. Indeed, by Lemma
3.1.2 with u = tys and v = w, tys < w and, if ty & [y, w], then ty < y. Moreover, ys < y and
so, by Lemma 3.1.2 (ii) with v = ty and v = y, tys < y. So ys < tys < y and we know that
[ys,y] = {ys,y}. Thus tys =y, that is, t = ysy L. O

Lemma 5.3.2. Let w,y € W and s € 8§ be such that y < w, ys < y and ws < w, then the set
lys,w] \ {ys,y} is stabilised by the mapping x — xs.

Proof. Notice that ys < y < w, so it makes sense to write [ys,w]. Let J:= [ys,w] \ {ys,y} and let
x € J. If s > x, then obviously ys < xs and, by Lemma 3.1.2 (ii) with u = z and v = w, s < w.
On the other hand, if zs < x, then xs < w and, by applying Lemma 3.1.2 (ii) with v = ys and
v =z, ys < xs. Then, in both cases xs € [ys,w]| and, since xs # y and zs # ys, we get x € J.
Finally, if € J, then xs # y. Indeed xs = y if and only if z = ys ¢ J. O

5.3.3 Proof of the main theorem

We will prove Theorem 5.3.1 by induction on n = ¢(w) — £(y).

If n = 0, then y = w and there is nothing to prove. If n > 0 and ys > y, then {(w)—£{(ys) = n—1
and by induction we get the desired isomorphisms.

Now, we may suppose n > 0 and ys < y. Let J = [ys,w] \ {y,ys}. From the inductive
hypothesis, for any = € J we get

e an isomorphism of Sg-modules ¢® : B(w)* — B(w)**

e a family of isomorphisms of Sy-modules ¢t : B(w)F — %(w)F*, where F : 2 — 2z € €%
and F's:as — zs € £%°

such that the following diagram commutes

z

B(w)® —2> B(w)™ (5.5)

px,F\L \prs,Fs
F

and such that ¢ = (p*)~ L.

Observe that our claim will follow, once we prove that there is an isomorphism of Si-modules
¥ Bw)Y — B(w)¥® compatible with the restriction maps. Indeed, for E : y — x € &g, there
exists exactly one Es : ys — xs € 5,5, and ¥ would already have been given. If E : ys — v,
then we could set ¥ = Id. Finally, for 2 # ys, there exists an edge E :  — y € € if and only
if there is F's : s — ys € € (cf. Lemma 5.3.1) and in this case Z(w)¥ = B(w)Y/I(E) - B(w)Y =
B(w)¥s JI(Es) - B(w)¥, since E = Es.



59

We will get ¥ by defining a surjective map from Z(w)? to B(w)%*. Since ZB(w)¥® is the
projective cover of the Sg-module % (w)%*, and, since rkg, Z(w)? < rkg, Z(w)?* (cf. Lemma 3.12.
of [15]), Theorem 5.3.1 will follow from the unicity of the projective cover.

Invariants

By Lemma 5.3.2, J is invariant with respect to the right multiplication by s and we may define
an automorphism o, of the set of local sections of the Braden-MacPherson sheaf on J as follows.
Let m = (m,) € T'(J, B(w)), then we set o4(m) = (m/,), where m/, := ©**(mys). Since the ¢’s
are, by definition, compatible with the restriction maps (see Diagram (5.5)), os(m) € T'(J, Z(w)).
Moreover, for any z € J, ¢ = (¢®)~! and so o, is an involution.

Let us denote by I'* the submodule of os-invariant elements of I'(J, Z(w)), and by I'~° the
elements m € I'(J, Z(w)) such that os(m) = —m.

Let us consider ¢, := (¢s.0) € @,y Sk, Where ¢, == z(as"); then ¢y € Z and so it acts on
(7, B(w)) via componentwise multiplication.

Lemma 5.3.3. Let (G),,k) be a GKM-pair, then we have I'(J, B(w)) =T © cs - T°.

Proof. (We follow [18], Lemma 2.4).

By definition, o, is an involution and 2 is an invertible element in k, then we get I'(J, Z(w)) =
I'"eI'~s.

Let m € T'*, then o5(cs - m) = —(cs - m), i.e. ¢s-I'* CT7%. Indeed, s(asY) = —a;" and so for
any z €J we have

(Cs,w . mw)/ = xs(aSV) My = x(—asv) "My = —Cs,z - Mg

We have to prove the other inclusion, that is, every element m € I'"° can be divided by
(z(asY))zes in T'(J, B(w)).

If m = (mg) € I'™° then my; = —@™ (Mys) and S0 Pus sz (Mes) = —Puws—a(My), since the
following diagram commutes:

xs

B(w)** PB(w)*
Pzs,zs—x Pz, I‘ .
v
(@(w)xs%z > (w)zsﬁm

But m is a section S0 pgs zs—z(Mas) = Pazs—a(My). It follows that 2p, 4s—q(my) = 0; moreover,
by definition of the canonical sheaf, ker p; ys—z = a;/s:c,l,%’(w)”“', that is, a;/sx,l divides m, in

Notice that oe,-1Y = ta(as”) = e q, e 7t -m € @, o9 B(w)”. We have to verify that
Pua—tz(Cs 1mg;) = Piz,o—ta(Cy, L my,) for all t € T

(Cs,txcs,z)(ptz,z-tz (c;%zmtz) px r‘tz( mz)) (56)
= Csx (ptr,m—tac (mtz)) Cs tx (PT :c—tr( 'r)) (57)
= (Cs,a: - Cs,tw)ptw,a:—tw(mtw) + cs,ta:(pta:,m—tw(mta:) Pz, $—ta:( z)) (58)
The term on line (5.8) is divisible by «;¥; indeed, ¢ z—Cs 12 = (s ) —x (s )+(au, x(asY )V =

0 (HlOd Cth) and ptz,a:Atm(mtz) - pw,a:Atz(ma:) =0.
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Using the GKM-property cs 15¢s» = tx(as”)-z(as") is a multiple of oV if and only if zsz ™! =

t, that is s = tz. So, my = —** (M), Cs it —¢s,» and, considering that diagram (5.3.3)
commutes, we obtain
-1 _ -1
pz,m—tx(cs,tmr) = _Cs,tmpx,m-tﬂc(mr)

—Cy tn (=ptag—ta(miz))
= Ptog—ta(Cs M)

. _ . . 1 _
Otherwise, zsz ™! # t and oy divides pre,o— 12 (€5 12Mtx) = Po,o—ta(C5 3 Me) and so

pz,m—tm(csialgmm) = ptat,m—tz(cs_’gzmtm)-

Building %(w)%*
Let us denote

(I, B(w))—> B,y Bw)” —> DBy, B0)" L B pee, Bw)”

™1

Recall that B(w)% = u,(T({> y}, B(w))), where u, was defined as the composition of the

following maps

F({> y}7 %<w))c—) @z>y%(w>w — @IGVay‘%(w)r M GBEEE&;@(U))E
w

Remark 5.3.1. Since B(w) is flabby and I and {> y} are both open sets, we get
m(L(J, B(w))) = uy(C({> y}, B(w))) = B(w)’ (5.9)
Now, let us denote
@Bpas,Es s
(3, B(w)— P, csB(w)* —— P, cvsy B(w)** e L @Ee&;y B(w)F

™2

—_~—

and define Z(w)%vs := mo(I'(J, B(w))).

Lemma 5.3.4.
(i) B(w)’ =m (LI, B(w))) = m(T*)

(i1) P(w)ovs = mo(T(J, B(w))) = ma(I')

Proof.
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(i) Let m € T'(J,%(w)). Then, by Lemma 5.3.3, m = m’ + ¢; - m”, with m’,m” € T'* and, if
/

m' = (mg), m

T <m> = (pa:vE(m;))zeV:y—)xGE + (paj’E(’r(asv) ’ mﬁ))zé\?:y—)zeﬂ

If £:y — x € &, then there exists a reflection ¢ € T such that x = ty and we have
w(as”) = ty(as”) = ylas") + (ar, ylas"))ar” (5.10)

But, by definition, p, g is a surjective map whose kernel is I(E) - Z(w)* = oY - B(w)* and

pa,p(@(as”) -my) = pap(ylas”) - mg) + (o, y(as”)) po,e(an” - my) = pop(y(as”) - mg)
We conclude that 71 (m) = w1 (m’ + y(asY) - m”), where y(a,V) is the element of the structure

algebra, whose components are all equal to y(a;"). Clearly, m’ + y(asY) - m” € T'* and we get the
claim.

(ii) Asin (i). =

—_~—

Lemma 5.3.5. There is an isomorphism of Sp-modules T : B(w)® — ZB(w)¥* given by (mp)pee;, —
(¢ (mE))Eee,,, that is for allm € T, 7o i (m) = m2(m).

Proof. (mg)gee;, € #(w)® if and only if there exists an element m € T'({> y}, #(w)) such that
uy(m) = (mp)eee,,- We have already noticed that this is the case if and only if there is an element
m' € T'(J, B(w)) such that 7 (m’) = (mg)pee;,. From the previous lemma, we know that this is
equivalent to the existence of an m € I'* such that m,(m) = (mg)pee;,. But, since the squares in
the following diagram are all commutative,

1| ps

r DPpPaE
s ——-— @zevéy 93(11}) L> @EGS&J %’(w)E
|

Id erI Bp”
r° —— D.ecv,, Zw)™ mﬁaEe&;y B(w)"*
T2|ps

—_~

we get (07 (mp))pee,, = @7 o mi (M) = my(ih) € B(w)ovs.

—_~—

AnalOgoqu’a (mES)EEc‘lay € ‘%(w)éys if and Only if ((@E)_1<mEs)>E€85y € %(w)éy-

Let us denote by p : B(w)Y — B(w)Y/as” - B(w)Y the canonical quotient map.
Lemma 5.3.6. We have

—_~—

%’(w)éys = {(T o Wl(my),p(my)) € B(w)%vs @ (%(w)y/asv-ﬂ(w)y)} (5.11)
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Proof.

Bw)v = (1 ), 2(0)
= uys ({(mmy) €T, 2(w)) & B |uy(m ) = dy(m,) })

by Remark 5.3.1

)

ys({(m,my) € T(J, B(w)) ® B(w)Y | m1(m) = dy(my)}
):dy( )}

= {{(ma(m). p(my)) | m € DI, B(w)), my € By, m(m

by Lemma 5.3.4

= {(ﬂg(m),p(my)) |m e, my, € B(w)Y, m(m) = dy(my)}
by Lemma 5.3.5

={(rom(m),p(my)) |m € T*, m, € B(w)?, m(m) = dy(m,)}
= {(rody(my), p(my)) |m, € B(w)"}

O

From the lemma above, it follows immediately, that there is a surjective map of Si-modules
B(w)Y — B(w)%* given by m, + (1 od,(m,), p(m,)) and this concludes the proof of Theorem
5.3.1.

5.3.4 Rational smoothness and p-smoothness of the flag variety.

We have an easy corollary of Theorem 5.3.1. Recall that if W is finite, then there exists a unique
element of maximal length (cf. [[22], §1.8]) and we denote it by wy.

Corollary 5.3.1. Let W be a finite Weyl group and wq its longest element. Let k be such that
(G(W), k) is a GKM-pair. Then ZB(wo)¥ = Sk, for any y € W and any k.

Proof. We proceed by induction on n = £(wg) — £(y). If n = 0, by definition, B(wg)™° = S. If
n > 1 then there exists a simple reflection s € 8 such that ys > y (so, £(wo) — £(ys) = n — 1).

Actually, wgs < wg for any s € 8 and, by Theorem 5.3.1 and inductive hypothesis, we have
%(wo)y = %(wo)ys = Sk. D

Remark 5.3.2. If k = Q the result above corresponds to the (rational) smoothness of flag varieties,
while if k is a field of characteristic p it gives their p-smoothness (cf. [19]). Our proof is based only
on the definition of canonical sheaf; we do not use Fiebig’s multiplicity one results (see [17]), nor
the geometry of the corresponding flag varieties.

5.3.5 Parabolic setting

Let J C 8 be such that W; = (J) is finite with longest element w;. Let W’/ be the set of
minimal representatives of the equivalence classes W/W . For w € WY, denote by %(ww;), resp.
P’ (w), the corresponding indecomposable canonical sheaf on G, resp. on G7. It is now easy to see
that:
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Lemma 5.3.7. Let W; and w; be as above and consider x,w € W’ such that y < w, then
B(wwy)* =2 Blwwy)™ for any u € Wy.

Proof. We proceed by induction on ¢(u). Clearly there is nothing to prove if £(u) = 0. If £(z) > 0
then there exists an s € 8 such that us < u and so by the inductive hypothesis, we get B(ww;)* =
PB(wwy)*™. Now for any s € J, wwys < wwy and by Theorem 5.3.1 we obtain the claim. O

Theorem 5.3.2. Let (Syw,,k) be a GKM-pair and let W and wy be as above. If y,w € W/ and
y < w, then there is an isomorphism of Si-modules

B(ww )7 = BT (w)Y.

Proof. We proceed by induction on n = ¢(w) — £(y). If n =0 the statement is trivial. Suppose we
have a collection of isomorphisms of Si-modules 7, : %7 (w)* — B(ww;)*” for any = such that
L(w) —L(z) < n.

There is a natural injective homomorphism,
j:T{>y} Bw)”) = T({> yws}, Blww,)),

defined by setting (mx)xe(y,w]CWJ = (@)ze(wa,wa]CW7 where m, = Y*(nz(m,)) if 2 € W,
and ¢* : B(wwy)® — B(wwy)? denotes the isomorphism in Lemma 5.3.7.

We will show that such a homomorphism induces an isomorphism % (ww )oY’ = %7 (w)%Y.
Then, by the unicity of the projective cover, the statement will follow.

Let 2 € (ywys,wwy], 2 = zu, for some z > y € W/, v € Wy and u = s1...5, a re-
duced expression with s; € J for every i. Moreover, let (n,) € T'({> yws}, Z(wwy)). We
prove by induction on ¢(u) = r that there exists a section (p,) € T'({> yw,}, Z(wwy)) such
that pes,..s; = 1% (ny(my)) for some m, € B7(w)® for any i = 0,...,r and such that
uwa((pv)) = uwa((nv))-

For the base step we have » = 0 and there is nothing to prove.

If z = (xs152...8r—1)s, then, by the inductive hypothesis, there exists a section (g,) € T'({>

uy((ny)) for ¢ =0,...,r — 1. Thus, by Lemma 5.3.4, the element (p,) € @ PB(w)Y such that

v>Yw g
— (AYS1..-Spr—1
Pysi...sp—15. = @ ! (pysl---sr_l)

and
pCESl...Si = q:ESl...Si = wwSIH.Si (nz(ml’)) v/L < r

is a section on {> yw;} and verifies Uy, ((1y)) = Uyw, ((10))-
Finally, from the proof of Lemma 5.3.7 it follows that

Wyslmsr_l(pyﬁ---sra) = ‘Pyslmsr_l(wyslmsT_l(no:(mw)) = qpPetr (nw(mw))
O

Corollary 5.3.2. Let (9\9,“,,’[“) be a GKM-pair and let py : G — G7 the quotient map we defined
in §3.1.3. Then, psB(w)’ = B(wwy).
The theorem above is just the categorification of the following theorem, due to Deodhar:

Theorem 5.3.3 ([9]). Let W be a Weyl group with 8, the set of simple reflections, and J C 8 such
that W is finite. Let wy be the longest element of Wy and y,w € WY, then m;’w = hyw; wwy-
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5.4 Affine Grassmannian for A;

Using the inductive formula (2.2.c) of [29], it is easy to show that, if W is the infinite dihedral
group, then hy ,, = '@ =) for all y,w € W. Let us consider J = {54}, then, from Theorem 5.3.3,
it follows mi’w = o'W =) for any pair y,w € W/, In this section we categorify this property. In
particular, we prove that the structure sheaves on all finite intervals of the moment graph associated
to the affine Grassmannian of 5/[\2 (cf. §3.2.2) are flabby. As in §3.2.2, we will denote by SP*" the
corresponding moment graph, while, for a vertex w € W7, %P (w) is the indecomposable canonical
sheaf.

Recall that the set of vertices is in this case totally ordered, so we may enumerate the vertices
as follows, once identified the finite root o with the corresponding coroot a¥: vy = 0, v; = a,
Vg = —Q, ... , Up = (_1)h+1[%}a’ e

From now on we denote the edges as Ej, i : (v, — vi) and the labels as Iy := [(Epx); we
write moreover lj, ;, = o+ np c. Actually, the label of an edge Ej, i, is by definition %[}, 1; however,
there exists an isomorphic k-moment graph with same sets of vertices and edges, but this other label
function and, by Lemma 2.2.2, the corresponding indecomposable canonical sheaves are isomorphic.

We will prove in several steps that, if v; < v; and (Sﬁjr o k) is a GKM-pair, then (%P2 (v;))vi =2

i

Sk by induction on 7 — j.
Fix once and for all I = {v;,v;_1,...,vj41}.

Lemma 5.4.1. Letr € N be such thatr < i—j. If (§7*", k) is a GKM-pair, and z € T'(J, B (v)) (7},
then z is uniquely determined by its first r+1 components, that is the restriction map I'(J, BP*"(v;)) (ry —
L({vis Vi1, -+, Vi }, BPY(0;)) ry is injective.

Proof. Let z € T'(J, " (v;)){ry such that z,, = z,,_, = ... = 2,,_, = 0. Observe that for any
j+1<h<i—r<k<ionehas z, =z, =0(mod a+ n,c).

By the GKM-property it follows that all the polynomials M CD(a+ny, ¢, a+np c) = 1 for any
i—r <k #1<1. Since Sy is an UFD, z,, has to be divisible by (a+n i—rc)(a+npi—ryi1€) ... (a+
ny;c). This is a polynomial of degree r 4+ 1 while z,, was a polynomial of degree r, so z,, = 0.

O

Lemma 5.4.2. Let 7 € N be such that r <i— j. We have dimy.I'(J, 7" (v;))ry = (r;r?).

Proof. By Lemma 5.4.1, dimyI'(J, P (v;)) (} = dimpI'({vs, viz1, ..., vimp ), BP¥ (03)) {1} -

Clearly, D({vi, Vi1, -+, Vi }, B2 (03)) (ry C Dy (Sk) (y and dimy @G (Sk) gy = (r + 1)

By definition an element m € @q(Sk)(ry is in D({vi, vic1, ..., Vi }, B (v;))(ry if it satisfies
some (linear) conditions given by the labels of the edges. If we prove that such conditions are
linearly independent, then we know that

dimg ' ({vi, viz1, - - Vi }, B (03)) iy = dimy @(Sk){r} — f edges.
0

We noticed in §3.2.2 that in the 5/[\2 case all the vertices are connected, so the number of vertices
is equal to the number of pairs of different elements in a set with r + 1 elements, that is (Tgl).

Then,

dimy D ({05, vio1, - vy}, B (0)) 1y = (r + 1) — <T72Ll> _ (’";2)
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Hence now we show that the conditions are linearly independent.
Let i —r < h < k <1 and define the element (m"*)) € @ (Sk)(,y in the following way:

mhk) . { CHme{i,i—l,...,i—r}\{h,k}(a + Np,mC) if1=h

i 0 otherwise
Now mg}’k) = mgﬁlk) for any {,m # h and c[[(a + npme) = 0(mod o + np me). By the
GKM-property, l;, ; does not divides m(h’k), while m{™" = 0.

So for any condition coming from the edge E; ,, we built a r41-tuple which verifies all conditions
except the Fj n,,-th. It follows that all conditions are linearly independent.
O

Denote by mq,m. € I'(J, Z**(v;)){1) the constant sections mq,, = @, mc, = c for all v € J.
Denote moreover by wu,,; := ®py, B, >, where py, g, ; : Sk — Si/(En,j - Sk) are just the canonical
quotient maps.

Lemma 5.4.3. Let v € N and let (§?, k) be a GKM-pair. The vector subspace of (ABE")s
generated by

Me) - Uy, (Mol ), Uy, (M)

Uy, (Tg,), U, (2, c

«

has dimension equal to r + 1 if r < i — j or dimension equal to i — j otherwise.

Proof. As first notice that (2P (v;))¥i+ = Sy /(1% - Sk) = k[c] by the mapping a — —n c. Then

k, t—k k k k
wy, (mpmy ") = ((=n;.0)", (=nja-1)", .. (=nf j10))e
We obtain the following matrix
1 1 - 1
Ny —Nji—1 N —Nj+1
N=| () (Fngi-)? oo (Fnyge)
(=nz)" (nja-)t o (Fngga)t

By the GKM-property it follows that n;, # n;p for all pair j +1 <k # h < iand N is a
Vandermonde matrix. In particular, such a matrix is not singular and so it has maximal rank, i.e.
rk(N)=t+1ift <i—j and rk(N) =i — j otherwise. O

Lemma 5.4.4. There exists a section mg € I'(J, B (v;)) (1} such that u,; (mo) = 0 and mg, # 0
forallv e 7.

Proof. Let v; = ra. Define mg,, = (r — s)ljn = (1 — s)(a + (r + s)c) if v, = sa.
Notice that (mg) € T'(J, 8P (v;)); indeed for any pair of vertices v, = sa, vy = ta, one has
Ihe =a+ (s+t)cand
Mo, — Mo, = (1 —8)(a+ (r+s)c) — (r—t)(a+ (r+t)c) =
= —sa— s’c+ta+tic=a(t —s) +c(t* —s*) =
=(t—s)(a+(s+t)c)=0 (mod a+ (s+t)e).

Moreover, by definition mq,, # 0 for any v, € J and wu,,((mo)) = 0.
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Lemma 5.4.5. Let r € N be such that r < i— j. The collection of monomials {mLm"mk |1 h, k>
0, +h+k=r}is a basis of I'(J, BPY (v3)) {r} -

Proof. Since the number of monomials in three variables of degree r is (T;Q) and by Lemma 5.4.2
dim, (T, P (v;)) = (TJQF2) as well, it is enough to prove that all monomial in mg, m., mg are
linearly independent. We prove the claim by induction on r.

Let r = 1. If xmy + yme + zmo = 0, then clearly 0 = u,, (xmq + yme + 2mo) = 2y, (M) +
YUy, (Me) + 2y, (Mmg). By Lemma 5.4.4 u,, (mg) = 0, 50 2uy,; (Ma) + Yty (M) = 0. But by Lemma
5.4.3 uy,; (Mq) and u,,; (m.) generate a vector space of dimension 2, then x = y = 0. Finally, from
zmo = 0 and Lemma 5.4.4 it follows z = 0.

Now let » > 1. Let 2 = Zl+m+n:r a:l,m,nmflmgnmg = 0. We can write z = z1 + zgmy, z1 is such
that mgo does not appear. Then by Lemma 5.4.3 w,,(2) = ty, (21) + Uy, (20)ty; (Mo) = Uy, (21) = 0.

From Lemma 5.4.3 we know that all u,, (ml,m.~!) are linearly independent and so

0 = uy, (21) = uvj( Z xl,mﬁmlamzn) = Z Li,m,0Uv; (mfxm::n)

l+m=r l+m=r

implies x; ,,,0 = 0 for all pair [, m, i.e. ¢; = 0. Thus we obtain cymo = 0 and we conclude by Lemma
5.4.4 that ¢g = 0. Finally, 0 = ¢y = ZlerJrn:rfl a:lym7n+1mlam£”m6l is a linear combination of
monomials in mg, M., Mo of degree » — 1 and so by the inductive hypothesis we have x; , 41 =0

for all I, m, n.
O

Theorem 5.4.1. Ifv; <w; and (§7"" k) is a GKM-pair, then (87" (v;))" = Si.

|['vj ,v5]

Proof. We prove that (%P (v;))%% coincides with the u,, image of the ring generated by m, and
me. If 1 <i—j, by 5.4.5, ['(J, 8P (v;)){,} is generated by {mLmhmf [I,h,k > 0,14+ h+k=r}.
From 5.4.4 it follows (P (v;))°"" = uy, (D(J, 2P (v;)){,}) is contained in the ring generated by
ty, ((Ma)) and wy, ((me)). o

Otherwise, 7 > ¢ — j and Py (BP (v;))Fir 22 k[e]*~7, having dimension i — j. Then by
Lemma 5.4.3 u,, (mg) and u,, (m.) generate (ZP* (v;))°v

Thus we have a surjective map Sy — @p,  ce,,. (%P2 (v;))Fi+ by the mapping o + m,, and
¢ — me. Then (AP (v;))7 =2 Sy. ' O

1,k EEsu;

Remark 5.4.1. If k = Q, this result corresponds to the rational smoothness of the corresponding
(partial) Richardson variety.



Chapter 6

The stabilisation phenomenon

In [37], Lusztig proved that the affine parabolic Kazhdan-Lusztig polynomials stabilise. Quoting
Soergel’s reformulation (cf.[[40],Theorem 6.1]), the parabolic Kazhdan-Lusztig polynomials mif B
indexed by pairs of alcoves far enough in the fundamental chamber stabilise, in the sense that, for
any pair of alcoves A, B, there exists a polynomial ¢4 5 with integer coefficients such that

li s _

Jim 0 = 04
The qa,p’s are called generic polynomials and turn out to have a realisation very similar to the
one of the regular Kazhdan-Lusztig polynomials. Indeed, Lusztig in [37] associated to every affine
Weyl group W* its periodic module M, that is the free £ = Z[v, v~!]-module with set of generators
-or standard basis- indexed by the set of all alcoves A. It is possible to define an involution and
to prove that there exists a self-dual basis of M: the canonical basis. In this setting, the generic
polynomials are the coefficients of the change basis matrix. Our interest in the periodic module is
motivated by the fact that M governs the representation theory of the affine Kac-Moody algebra,
whose Weyl group is W*, at the critical level (cf. [3]).

The aim of this chapter is to study the behaviour of indecomposable Braden-MacPherson

sheaves on finite intervals of the parabolic Bruhat graph far enough in €T (cf. §3.2.3).

6.1 Statement of the main theorem

Let GP?" denote the parabolic moment graph associated to the affine Grassmannian, whose set
of vertices we identify with the set of alcoves in the fundamental chamber (cf. §3.2.2), and let
J = [B, A] be an interval far enough in the fundamental chamber. Inspired by [[37], Proposition
11.15], we claim that, for all p € XV NET,

B(A)B = B(A+ )P (6.1)

s ‘[B+H=A+#]
we cannot use the pullback technique we developed in §5.2 to get the isomorphism of Si-modules

above. On the other hand, we proved in Lemma 3.2.5 that, for all 4 € XV, there is an isomorphism
of k-moment graphs

We showed in §3.2.3 that SEZYA] is in general not isomorphic to § as moment graph, so

. cstab stab
T - 9\[B,A] - 9\[B+M,A+m

67
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Thus, by Lemma 2.2.2, we get an isomorphism between the indecomposable canonical sheaf %(A)
on SStabA and 7; #(A+ p), the pullback of the indecomposable Braden-MacPherson sheaf %(A+ )

Sstab
l(B+u At
For any finite interval J far enough in the fundamental chamber, consider the monomorphism

: Ssmb 9par, given by (ig)y = idy and ij,;, = id for all z € J. We get the functor -staP :
Shgpu — Shgmb defined by the setting F s Fstab .= 4 5(F). The goal of this chapter is to prove
J

the following rebult

Theorem 6.1.1. For all finite intervals far enough in the fundamental chamber, the functor -5t :

Shgfmr — Shgff“b preserves indecomposable Braden-MacPherson sheaves.
J

We will prove this theorem via explicit calculations in the ;[; case, while for the general case
we will need deep results and methods developed by Fiebig in [18].
Once proved Theorem 6.1.1, we get Equality 6.1 by applying Lemma 3.2.5.

6.2 The subgeneric case

In this section, Gstab resp. GP denote the parabolic moment graph, resp. the stable moment
graph, for the A; root system. Moreover, we suppose that k has characteristic zero and we write S
instead of Sg.

We have already proved that for any two vertices v, w with v < w the stalk of the Braden-
MacPherson sheaf on G2, is Z(w)” = S, that is equivalent to the flabbiness of the structure sheaf

on 9par In order to show that the functor st2P

preserves indecomposable canonical sheaves, it is in
this case enough to verify that, for any vertex w, the structure sheaf A on S“ab is still flabby.

Recall that the set of vertices of GP2* (and so of G5*2P) can be identified with the finite (co)root
lattice, that is Za, where o = «V is the positive (co)root of A;. Moreover, §P*' is a complete
graph and the label function is given, up to a sign, by {(haw — ka) = a + (h + k)c. By definition,
we get G%%P from GP by deleting the non-stable edges, then ha — ka € €52 if and only if
sgn(h) = —sgn(k) (where, by convention, we set sgn(0) = —).

Lemma 6.2.1. Letr € Z~q. If n € Z, set, for any h € Z, with ha < na,

0 1 if bl €lln] —r+1,|n]
oo =\ Hicg [(—a+(nl=h=ie)(n| ~h—i)] & h € (0,|n| -]
[T [(a+(n|+h—=dc)(In|+h—10)]  if h € [r—|n|,0]

Then °z),, = (°2] o) € T{< nat, A)

na,ha
Proof. We verify that, for any h, k € Z such that ha, ka < na, if ha — ka is an edge, then
Znoha — Znake =0 (mod a4 (h+k)c) (6.2)

We may clearly suppose h > 0 and k£ < 0.
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Let at first consider h € [|n| —r +1,n]. If —k € [|n| — 7+ 1,n], then °z], ,,, = 2], o = 0 and

there is nothing to prove. Otherwise, k € [r — |n|,0] and
r—1
nena — Zhoke =0~ [ [ [(e+ (In|+ & —i)e) (In] + &k — )] (6.3)
i=0

Now, a + (h + k)c divides szl [(oz + (In] + k — i)c)(In| + k — i)] if and only if there exists an
i € [0, — 1] such that |n| —i = h, i.e. h —|n| = —i. But we supposed h € [|n| — r + 1, n] that is,
precisely, h — |n| € [-r + 1,0].

Let consider the case h € (0, |n| —r]. If —k € [|n]| — r + 1,n], then

r—1

oo = Zhaka = || [(—a+(In| =h —i)e)(jn] = h —)] 0. (6.4)

=0

Now, a + (h + k)c divides H:& [(—a+ (In| — h—i)c)(In| — h — )] if and only if there exists an
i € [0,7 — 1] such that |n| —i = —k, i.e. —k — |n| = —i. But we supposed —k € [|n| —r + 1,|n]]
that is, precisely, —k — |n| € [-r + 1,0].

Otherwise, k € [r — |n|,0] and

e~ Zhaka = icol(=a+(nl —h—ie)(In| —h— 1)

—ITizol(a+ (k + Il = i)e) (k + [n] — i)

[T 20 [(k+h+|n| = h—i)(|n| — h—i)c]

T~k —h+k+n|—i)(n| +k—i)] =  (mod a+ (h+ k)
(c)r 1.0 [(k + [n| — i) (In| — h— i) — (=h+ |n| — )(In| + &k — )]

Lemma 6.2.2. Letr € Z~qg. If n € Z, for any h € Z, such that ha < na, we set

U if |hl € lln]—r+2,n]]
°z =9 [Ty [(—a+(In|—h—i))(n|—h—i+1)] if he(0,|n] —r+1]
[T [(a+(|n\+h—z+1)c)(\n|+h—i)] if helr+n—1,0]

Then °z;,, = (°2) 4 na) € TS nat, A) -

na,ha

Proof. The proof is very similar to the one of the previous lemma and therefore we omit it. O

Define °2Y,, = (1)ha<na-
Lemma 6.2.3. Letr € Z>o, n € Z andm € 7Z be such that ma < na. For all z € T'([ma, nal, A)
there exist Os}wesff € Spiy, with i € [0,7], j € (0,7] and k such that ka € [ma, nal, such that

T T

Z = Z esi( Zk;j)kae[ma,na] + Z Osz(ozlza)kae[ma,na} (65)
j=1 =0
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Proof. Let ha be the maximal vertex in [ma, na] such that zpo # 0. We prove the statement by
induction on | = f[ma, ha].

If such a vertex does not exists, that is [ = 0, then z = (0) and there is nothing to prove.

We should consider four cases: n >0and ! >0;n>0and [ <0;n<0and! > 0; n <0 and
[ < 0. Actually, we will verify only the first case, since the others can be proven in a very similar
way.

Let n > 0 and h > 0. If h = n, then we set 2’ = z — 2820  and the result follows from the
inductive hypothesis. Otherwise, h < n and then [[/-)" " (—a + (n — h — i)¢) divides 2,4 in S and
we may set

n—h—1
esp = [ [(—e+(n—h+i)e)(n—h—i)]"" zha € Sironiny- (6.6)
=0

e r—n+th+1 (c n—h

Now 2’ := z —°s}, Zpn " kaglma,na] € I'([ma,nal, A)¢y has the property that z;,, = 0 for
all k € [ha,na] and we get the statement from the inductive hypothesis.
O

Corollary 6.2.1. For any n € Z, the structure sheaf A on G is flabby.

<na

Proof. We have to show that every local section z € I'(J,A), with J open can be extended to a
global section z € T'(G%%2P | A). Since the set of vertices of G5%2P is totally ordered, then any open

set of G¥2P is actually an interval, that is there exists an m € Z such that J = [ma, nal.

Suppose z € I'(J,A){ry, then by Lemma 6.2.3, we can write

r

= Z esi (eZ£;j>ka€[maana] + Z OS;'C (022a)ka€[ma,na} . (67)
i=0

j=1

By Lemma 6.2.1 and Lemma 6.2.2, z is a sum of extensible sections, and so it is extensible as
well.

O

Finally, we get the following theorem.

Theorem 6.2.1. Let g = sly. In this case, for all finite intervals I, the functor -5t

indecomposable canonical sheaves.

preserves

6.3 General case

In order to prove our claim, we have to show that, for any interval J far enough in the fun-
damental chamber, if % is an indecomposable Braden-MacPherson sheaf on SPJM, then 2% is
indecomposable and satisfies properties (BMP1),(BMP2),(BMP3),(BMP4). Observe that proper-
ties (BMP1), (BMP2) are trivial and (BMP4) comes from the fact that T'(J,F) — T'(J, F*P) for
any F € Sh(Siar), so we only have to show that %P is a flabby indecomposable sheaf on Sf;ab.
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6.3.1 Flabbiness

It is possible to define a functor -P** : Sh(§) — Sh(GP®") in a very easy way. Let F =
({F*}, {FPH pe.r}), then we set (FP)® = F2 for any x € V, (FP)F = FEfor any E € & and
pii{; = pz. - A fundamental step in the proof of the flabbiness of %2 consists in showing that
-P" maps canonical shaves to flabby sheaves. In order to get this, we will combine several results
of Fiebig that we are going to recall.

Hereafter we will consider translation functors on the category of Z-modules, where Z is the
structure algebra of §. From now on 6, will denote the translation functor defined by Fiebig in [13].
The definition is analogous to the one we have given in Chapter 4. We will moreover denote by H
the corresponding category of special modules. Thus the following theorem holds.

Theorem 6.3.1 ([13]). Let M € Z—mod. Then M € 3 if and only if it is isomorphic to the space
of global sections of a BradenMacPherson sheaf on G.

In [14], Fiebig defined the localisation functor . : Z(X) — mod — Sh(X), for all k-moment
graphs K, that is left adjoint to the functor of global section I' : Shy — Z(X) — mod (cf. [[14],
Theorem 3.5]).

Using Fiebig’s terminology, we may now say that an object M € Z — mod is flabby if the
corresponding sheaf .Z(M) is flabby. So our claim is equivalent to the fact that £ (T'(FP")) =
Z(T(F))rer is flabby if F is a Braden MacPherson sheaf. We will prove it using translation functors.

When we defined translation functors, we did not use the partial order on the set of vertices, since
the structure algebra does not depend on it. Thus it makes sense to speak of the translation functor
grer : Z(GP")-mod — Z(GP°")-mod and this clearly coincides with 65 : Z(G)-mod — Z(§)-mod.
Then also the corresponding categories of special modules (see §4) coincide, but, because of this
different order, we get a different topology on the set of vertices and so M € H = HP could be
such that £ (M) is flabby in Sh(G), while Z(M)P*" is not in Sh(GP"). In [13]| Fiebig proved the
following fact (used actually in the proof of Theorem 6.3.1).

Theorem 6.3.2 ([13]). 0, : Z(9) — mod — Z(G) — mod preserves flabby objects.

The proof of the theorem above is rather long, so we omit it. However we want to point out the
fact that in order to get the previous result Fiebig used only three properties of the Bruhat order,
namely

(1) The elements w and tw are comparable for all w € W* and ¢ € T%. The relations between all
such pairs w, tw generate the partial order.

(2) We have [w,ws] = {w,ws} for all w € W* and s € 8 such that w < ws.

(3) For z,y € W* such that < xs and y < xs we have ys < zs. For z,y € W such that zs < x
and xzs < y we have zs < ys.

Since Lusztig in [37] proved that the generic order has also these properties, we get
Theorem 6.3.3. 0, : Z(5P¢") — mod — Z(GP¢") — mod preserves flabby objects.
We are now ready to conclude.

Proposition 6.3.1. Let F be a Braden-MacPherson sheaf on G then FP¢" is a flabby sheaf on GP".
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Proof. We want to show that F = I'(¥F) is flabby. By Theorem 6.3.1, we know that F € H, so we
may prove our result by induction. If F' = B,, there is nothing to prove. We have to show now that,
if the claim is true for M € H, then it holds also for 65(M), that, again by Theorem 6.3.1, is still
isomorphic to the global sections of a Braden-MacPherson sheaf on §. But now by the inductive
hypothesis we get that M is a flabby object in Z(GP°")-mod and so, by applying Theorem 6.3.3,
0s(M) = 62" (M) is also a flabby object in Z(GP°")-mod.

O

Decomposition of the functor -stab

The functor -5*2P may be obtained as composition of the five following functors.

per

Sh(grer) — > Sh(§7") > Sh(gt=")

ls

Sh(GP™) —“> Sh(grer) "o Sh(G)

e

stab

Where
° i: S‘I’fr — GPA and j : ST:ab < Gstab are the inclusions of subobjects
® Do § — GP? is the quotient homomorphism we defined in §3.1.3
P

e -°PP ig the pullback of the isomorphism of moment graphs f : ST:ab — Sf’;’r defined as fy = id

.V
and f;,(\) = 27Y(\) for all z € J and A € Q (this is proved to be an isomorphism in
Lemma 5.2.1).

Now, it is clear that i, and j* map flabby sheaves to flabby sheaves. Moreover, pg,., resp. -°PP, by
Corollary 5.3.2, resp. Lemma 2.2.2, preserves Braden-MacPherson sheaves, and so, in particular,
the flabbiness. Finally, Proposition 6.3.1 tells us that also the functor -P°" preserves the flabbiness.
It follows that if we apply -5*2P to a Braden-MacPherson sheaf we get a flabby sheaf on S‘S;ab, as we
wished. Thus we obtain the following result.

Theorem 6.3.4. Let T € Sh(G'*") be a Braden-MacPherson sheaf, then FP¢" € Sh(G5'? is a flabby
heaf ls ED)
sheaf.

6.3.2 Indecomposability
Here we prove the only step missing in the proof of Theorem 6.1.1.

Proposition 6.3.2. Let J be a finite interval of GP°" far enough in C and let B € Sh(Sﬁ”) be an

indecomposable Braden-MacPherson sheaf. Then 9% is also indecomposable as sheaf on 9|Sjt“b.

Proof. Since £ is indecomposable, by Theorem 2.1.1, Z = Z(w) for some w € J, that implies
B(w)* =0 = 5P forallz > w (x € J) and B(w)¥ = S = 2> Suppose that £ = CaD,
then for what we have just observed, we may take € and D such that C* = D* = 0 for all > w,
C¥ = S and D* = 0. Let y € J be a maximal vertex such that D¥ # 0. For any E : y — z € &5y, by
definition of Braden-MacPherson sheaf, p, g : Z(w)* = #%%>% = 07 — BF = 3P is surjective
with kernel [(E) - %% = I(E)C* and this implies D¥ = 0.
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We now localise T'(4) at a finite simple root 8, as we have done in §4.3. Remark that, since we
are representing the parabolic Bruhat graph using alcoves, we are taking the quotient of G°PP instead
of §. It means that we have to twist the action of S on any vertex = by x—!. However, once the action
of the symmetric algebra is twisted, all the results in §4.3 still work in the same way. By combining
Theorem 6.3.1 and Lemma 4.3.2 we know that .#(I'(#)?) is a direct sum of Braden-MacPherson
sheaves on certain moment graphs, each one of them isomorphic to a finite interval of the parabolic
Bruhat graph for A;. From the definition of .Z, it follows that .Z(T'(#**")#) = (Z(I'(#)?))st2b.

We have already proved that p, g(DY) = 0 for any E € &5, N Eg and we want to show that
py,E(DY) =for any E € E;,. If it were not the case, there would be a non-stable edge F' € £5,NEns

such that p, z(DY) # 0. Let 8 €A, be such that [(F) = 3 + nd for some n € Z. Localising at 3,
we would get pgyF(ﬂy’ﬁ) # 0 and from the A; case, it follows that pgyE(Dy’ﬁ) # 0 for all E € &g,y
in B-direction, but we proved that this is not the case.
We are now ready to conclude. From what we showed, it follows that u, (CY) = 2°Y and this
implies DY = 0, since (%Y, u,) is a projective cover of %Y.
O
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