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Kazhdan-Lusztig Kombinatorik
und Impulsgraphen

Zusammenfassung

Impulsgraphen, sowie Kazhdan-Lusztig-Polynome, liegen an der Schnittstelle von alge-
braischer Kombinatorik, Darstellungstheorie und geometrischer Darstellungstheorie. Während
die Kombinatorik der Kazhdan-Lusztig Theorie schon seit dem grundlegenden Artikel von
Kazhdan und Lusztig (1979), das diese Polynome definiert, untersucht wurde, wurden Im-
pulsgraphen noch nicht als kombinatorische Objekte betrachtet.

Das Ziel dieser Arbeit ist, zuerst eine axiomatische Theorie über Impulsgraphen und
Garben auf ihnen zu entwickeln und anschließend diese auf die Untersuchung einer funda-
mentalen Klasse von Impulsgraphen, nämlich die -regulären und parabolischen- Bruhat–
Impulsgraphen, anzuwenden. Sie sind mit jeder symmetrisierbaren Kac–Moody Algebra
verbunden und die zugehörigen Braden–MacPherson Garben beschreiben die projektiven
unzerlegbaren Objekten der - regulären oder singulären- Kategorie O. Dies ist für uns
der wichtigste Grund, zusammen mit ihrem inneren kombinatorischen Interesse, Bruhat–
Impulsgraphen zu untersuchen.

Im ersten Kapitel definieren und beschreiben wir die Kategorie der k-Impulsgraphen auf
einem Gitter. Zentraler Punkt dieses Teils ist die Definition des Begriffs von Morphismus.

Das zweite Kapitel ist über die Kategorie der Garben auf einem k-Impulsgraph. Wir
definieren die Pullback und Push-Forward Funktoren und wir beweisen, dass sie gute Eigen-
schaften haben. Wie in der klassischen Garbentheorie ist der Pullback links-adjungiert
zum Push-Forward. Außerdem zeigen wir, dass der Pullback eines Isomorphismus die
wichtigste Klasse von Garben auf einem k-Impulsgraph, genauer die unzerlegbaren Braden-
MacPherson Garben, erhält. Dieses Ergebnis wird ein grundlegendes Instrument im Kapitel
5 werden.

Im folgenden Kapitel betrachten wir die Familie von Bruhat k-Impulsgraphen, die mit
einer symmetrisierbaren Kac-Moody-Algebra verbunden sind. Das interessanteste Ergebnis
des ersten Teils dieses Kapitels ist die Realisierung von parabolischen Bruhat–Impulsgraphen
als Quotienten - im Sinne von Kapitel 1 - des regulären Bruhat–Impulsgraph. Im zweiten
Teil des Kapitels untersuchen wir den affinen Fall. Insbesondere bekommen wir eine ex-
plizite Beschreibung von gewissen endlichen Intervallen des Bruhat–Impulsgraphs die zur
affine Grassmannschen assoziiert sind.

In Kapitel 4 verallgemeinern wir eine Kategorifizierung von Fiebig der Hecke-Algebra
auf den parabolischen Fall. Der grundlegende Schritt ist die Definition eines involutiven
Automorphismus der Strukturalgebra des parabolischen Bruhat-Impulsgraphen.

In den letzten zwei Kapiteln kategorifizieren wir gewisse Eigenschaften der Kazhdan–
Lusztig-Polynome durch Garben auf Impulsgraphen. Insbesondere werden die Ergebnisse
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aus Kapitel 5 über die Kombinatorik und Eigenschaften der unzerlegbaren Braden-MacPherson
Garbe sowie die Aussagen aus Kapitel 1 über den Pullback Funktor angewendet. Der Beweis
des Hauptergebnisses des Kapitels 6 ist ziemlich aufwendig und benutzt neben Ergebnissen
von Fiebig die bis dahin entwickelten Techniken aus den vorherigen Kapiteln.
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Kazhdan-Lusztig combinatorics
in the moment graph setting

Abstract

Moment graphs, as well as Kazhdan-Lusztig polynomials, straddle the intersection of
algebraic combinatorics, representation theory and geometric representation theory. While
the combinatorial core of the Kazhdan-Lusztig theory has been investigated for thirty years,
after the seminal paper of Kazhdan-Lusztig (1979) where these polynomials were defined,
moment graphs have not yet been studied as combinatorial objects.

The aim of this thesis is first to develop an axiomatic theory of moment graphs and
sheaves on them and then to apply it to the study of a fundamental class of moment
graphs: the -regular and parabolic- Bruhat (moment) graphs. They are attached to any
symmetrisable Kac-Moody algebra and the associated indecomposable Braden-MacPherson
sheaves describe the indecomposable projective objects in the corresponding deformed -
regular or singular- category O. This is for us the most important reason to consider
Bruhat graphs, together with their intrinsic combinatorial interest.

In the first chapter, we define and describe the category of k-moment graphs on a lattice.
The fundamental point of this part is the definition of the notion of morphism.

The second chapter is about the category of sheaves on a k-moment graphs. We give
the definition of the pullback and push-forward functors and we prove that they have nice
properties. In particular, as in classical sheaf theory, the pullback ist left adjoint to the
push-forward. Moreover, we show that the pullback of an isomorphism preserves the most
important class of sheaves on a k-moment graph: the indecomposable Braden-MacPherson
sheaves. This result will be a fundamental tool in Chapter 5.

In the following chapter we study the family of Bruhat (k-moment) graphs associated
to a simmetrisable Kac-Moody algebra. The most interesting result of the first part of this
chapter is the realisation of parabolic Bruhat graphs as quotients - in the sense of Chapter
1- of the regular one. The second part of the chapter is devoted to the study of the affine
case. In particular, we describe certain finite intervals of the Bruhat graph corresponding
to the Affine Grassmannian in a very precise way.

In Chapter 4 we generalise to the parabolic setting a categorification, due to Fiebig, of
the Hecke algebra. The fundamental step is the definition of an involutive automorphism
of the structure algebra of parabolic moment Bruhat graphs.

In the last two chapters we categorify some properties of Kazhdan-Lusztig polynomials
via sheaves on moment graphs. In particular, the techniques we use in Chapter 5 play only
with combinatorics, intrinsic properties of the indecomposable Braden-MacPherson sheaf
and the pullback property we proved in Chapter 1. The proof of the main result of Chapter
6 is quite complicated. We need to use almost all the machinery we developped in the
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previous chapters together with results due to Fiebig.
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Introduction

Moment graphs appeared for the first time in 1998, in the remarkable paper of Goresky,
Kottwitz and MacPherson (cf.[20]). Their aim was to describe the equivariant cohomology
of a "nice" projective algebraic variety X, where "nice" means that an algebraic torus T
acts equivariantly formally (cf.[[20], §1.2]) on X with finitely many 1-dimensional orbits
and finitely many fixed points (all isolated). In these hypotheses, they proved that HT (X)
can be described using data coming from the 1-skeleton of the T -action. In particular, such
data were all contained in a purely combinatorial object: the associated moment graph.
After Goresky, Kottwitz and MacPherson’s paper, several mathematicians, as Lam, Ram,
Shilling, Shimozono, Tymozcko, used moment graphs in Schubert calculus (cf.[33], [34],
[42], [43], [44]).

In 2001, Braden and MacPherson gave a combinatorial algorithm to compute the T -
equivariant intersection cohomology of the variety X, having a T -invariant Whitney strat-
ification (cf. [7]). In order to do that, they associated to any moment graph an object that
they called canonical sheaf ; we will refer hereafter to it also as Braden-MacPherson sheaf.
Even if their algorithm was defined for coefficients in characteristic zero, it works in positive
characteristic too. In this case, Fiebig and Williamson proved that, under certain assump-
tions, it computes the stalks of indecomposable parity sheaves (cf.[19]), that are a special
class of constructible (with respect to the stratification of X) complexes in Db

T (X; k), the
T -equivariant bounded derived category of X over the local ring k. Parity sheaves have
been recently introduced by Juteau, Mautner and Williamson (cf.[25]), in order to find
a class of objects being the positive characteristic counterpart of intersection cohomology
complexes. Indeed, intersection cohomology complexes play a very important role in geo-
metric representation theory thanks to the decomposition theorem, that in general fails in
characteristic p, while for parity sheaves holds.

The introduction of moment graph techniques in representation theory is due to the
fundamental work of Fiebig. In particular, he associated a moment graph to any Coxeter
system and defined the corresponding category of special modules, that turned out to be
equivalent to a combinatorial category defined by Soergel in [41] (cf.[13]). The advantage
of Fiebig’s approach is that, as we have already pointed out, the objects he uses may be
defined in any characteristic and so they may be applied in modular representation the-
ory. In particular, they provided a totally new approach to Lusztig’s conjecture (cf.[37]) on

vii
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the characters of irreducible modules of semisimple, simply connected, reductive algebraic
groups over fields of characteristic bigger than the corresponding Coxeter number (cf.[18]).
This conjecture was proved to be true if the characteristic of the base field is big enough
(by combining [31], [27] and [1]), in the sense that it is true in the limit, while Fiebig’s
work provided an explicit -but still huge!- bound (cf.[16]). The characteristic zero analog of
Lusztig’s conjecture, stated by Kazhdan and Lusztig a year before in [29], and proved a cou-
ple of years later, independently, by Brylinski-Kashiwara (cf.[8]) and Beilinson -Bernstein
(cf.[4]), admits a new proof in this moment graph setting (cf.[14]). In an ongoing project
Fiebig and Arakawa are working on the Feigin-Frenkel conjecture on the restricted category
O for affine Kac-Moody algebras at the critical level via sheaves on moment graphs (cf.[2],
[3]). A very recent paper of Shan, Varagnolo and Vasserot uses moment graphs to prove the
parabolic/singular Koszul duality for the category O of affine Kac-Moody algebras (cf.[39]),
showing that the role played by these objects in representation theory is getting more and
more important.

The aim of this thesis is first to develop an axiomatic theory of moment graphs and
sheaves on them and then to apply it to the study of a fundamental class of moment
graphs: the -regular and parabolic- Bruhat (moment) graphs. They are attached to any
symmetrisable Kac-Moody algebra and the associated indecomposable Braden-MacPherson
sheaves give the indecomposable projective objects in the corresponding deformed -regular
or singular- category O (cf.[[14],§6]). This is for us the most important reason to consider
Bruhat graphs, together with their intrinsic combinatorial interest.

Thesis organisation

Here we describe the structure of our dissertation and present briefly the main results.
From now on, Y will denote a lattice of finite rank, k a local ring such that 2 ∈ k× and

Yk := Y ⊗Z k.
In the first chapter, we develop a theory of moment graphs. In order to do that, we

first had to choose if we were going to work with moment graphs on a vector space (as
Goresky-Kottwitz and MacPherson do in [20]) or on a lattice. The first possibility would
enable us to associate a moment graph to any Coxeter system (cf.[13]), while the second
one has the advantage that a modular theory could be developed (cf. [18]). We decided to
work with moment graphs on a lattice, because our results of Chapter 5 and Chapter 6 in
characteristic zero categorify properties of Kazhdan-Lusztig polynomials, while in positive
characteristic they give also information about the stalks of indecomposable parity sheaves
([19]). Thus, from now on we will speak of k-moment graphs, where k is any local ring
with 2 ∈ k×. However, our proofs can be adapted to moment graphs on a vector space, by
slightly modifying some definitions.

After recalling the definition of k-moment graph on a lattice Y , following [16], we in-
troduce the new concept of homomorphism between two k-moment graphs on Y . This is
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given by nothing but an order-preserving map of oriented graphs together with a collection
of automorphisms of the k-module Yk, satisfying some technical requirements (see §1.2).
In this way, once proved that the composition of two homomorphisms of k-moment graphs
is again a homomorphism of k-moment graphs (see Lemma 1.2.1), we get the category
MG(Yk) of k-moment graphs on the lattice Y and in the rest of the chapter we describe
some properties of it.

The following chapter is about the category Shk(G), of sheaves on the k-moment graph
G. We start with recalling some concepts and results from [7], [14], [15], [19]; in particular,
the definition of canonical or Braden-MacPherson sheaves. Even if these objects are not
sheaves in the algebro-geometric sense but only combinatorial and commutative algebraic
objects, we define pull-back and push-forward functors (see §2.2). Let f : G → G′ be a
homomorphism of k-moment graphs on Y , then we are able to prove that, as in algebraic
geometry, the adjunction formula holds.

Proposition 0.0.1. Let f ∈ HomMG(Yk)(G,G
′), then f∗ is left adjoint to f∗, that is for all

pairs of sheaves F ∈ Shk(G) and H ∈ Shk(G′) the following equality holds

HomShk(G)(f
∗H,F) = HomShk(G′)(H, f∗F) (1)

We end the chapter with proving a fundamental property of canonical sheaves, namely
we show that, if f : G → G′ is an isomorphism, then the pullback functor f∗ preserves
indecomposable Braden-MacPherson sheaves (see Lemma 2.2.2). This result will provide
us with an important technique to compare indecomposable canonical sheaves on different
k-moment graphs, that we will use in Chapter 5.

Let g be a Kac-Moody algebra, then there is a standard way to associate to g certain
k-moment graphs on its coroot lattice (cf. [15]), the corresponding regular and parabolic
(k-moment) Bruhat graphs. Denote by W the Weyl group of g, that it is in particular a
Coxeter group. Let S be its set of simple reflections, then, for any subset J ⊂ S there
is exactly one parabolic Bruhat graph, that we denote GJ . These are the main objects
of Chapter 3. After giving some examples, we prove that all parabolic k-moment Bruhat
graphs associated to g are nothing but quotients of its regular Bruhat graph (see Corollary
3.1.2). We then focus our attention on the case of g affine Kac-Moody algebra. The most
interesting parabolic Bruhat graph attached to g is the one corresponding to the Affine
Grassmannian, that we denote Gpar = Gpar(g), and we consider it in §3.2.2. Once showed
that the set of vertices of Gpar may be identified with the set of alcoves in the fundamental
Weyl chamber C+, we study finite intervals of Gpar far enough in C+. We are able to describe
these intervals in a very precise way (see Lemma 3.2.1, Lemma 3.2.2, Lemma 3.2.1, Lemma
3.2.4). In particular, we notice that the set of edges is naturally bipartite and this gives
rise to the definition of a new k-moment graph attached to g: the stable moment graph
(see §3.2.3), that is a subgraph of Gpar.

In Chapter 4, we generalise a construction of Fiebig. Let g be a Kac-Moody algebra,
then we may consider the attached Bruhat graphs. In the case of the regular Bruhat graph



x CONTENTS

G = G∅(g), Fiebig defined translation functors on the category of Z-graded Z-modules, where
Z is the structure algebra (see §2.1.1) of G. Moreover, in [18] he considered a subcategory
H of the category of Z-graded Z-modules and proved that it gives a categorification of the
Hecke algebra H of W. In a similar way, for any parabolic moment graph GJ attached
to g, we are able to define translation functors {sθ}s∈S and the category HJ . Actually, if
HJ is the parabolic Hecke algebra defined by Deodhar in [9], this admits an action of the
regular Hecke algebra H. Recall that Kazhdan and Lusztig in [29] defined the canonical
basis of H, that we denote, following Soergel’s notation, by {Hx}x∈W. Then, if 〈HJ〉 is the
Grothendieck group of HJ , we may define a character map h : 〈HJ〉 → HJ (see §4.2.2) and,
for any simple reflection s ∈ S, we get the following commutative square (see Proposition
4.2.1).

〈HJ〉 h //

sθ◦{1}
��

MJ

Hs·
��

〈HJ〉 h //MJ

,

where {1} denotes the degree shift functor on the Z-graded category HJ .
In Chapter 5 we report and expand results that have been already presented in our

paper [35]. We were motivated by the multiplicity conjecture (cf. [16]), a conjectural
formula relating the stalks of the indecomposable Braden-MacPherson sheaves on a Bruhat
graph GJ to the corresponding Deodhar’s parabolic Kazhdan-Lusztig polynomials for the
parameter u = −1 (cf. [9]), that we denote {mJ

x,y} as Soergel does in [40]. The aim of this
chapter is then to lift properties of the mJ

x,y’s to the level of canonical sheaves, that is to
categorify some well-know equalities concerning Kazhdan-Lusztig polynomials. We mainly
use three strategies to get our claims:

• Technique of the pullback. We look for isomorphisms of k-moment graphs and then,
via the pullback functor (see Lemma 2.2.2), we get the desired equality between stalks
of Braden-MacPherson sheaves (see §5.2).

• Technique of the set of invariants. For any s ∈ S we define an involution σs of the
set of local sections of a canonical sheaf on an s-invariant interval of G. In this case,
the study of the space of the invariants gives us the property we wanted to show (see
§5.3).

• Flabbiness of the structure sheaf. It is known (cf. [17]) that the so-called structure
sheaf (see Example 2.1.1) is isomorphic to an indecomposable Braden-MacPherson
sheaf if and only if it is flabby and this is the case if and only if the corresponding
Kazhdan-Lusztig polynomials evaluated in 1 are all 1. We prove in a very explicit way
that the structure sheaf is flabby to categorify the fact that the associated polynomials
evaluated in 1are 1 (see§5.1 and §5.4).
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The aim of the last chapter is to describe indecomposable canonical sheaves on finite
intervals of Gpar far enough in C+. Our motivation comes from the multiplicity conjecture
together with a result, due to Lusztig (cf. [37]), telling us that for any pair of alcoves
A,B ⊂ C+ there exists a polynomial qA,B, called the generic polynomial of the pair A,B,
such that

lim−−−→
µ∈C+

mpar
A+µ,B+µ = qA,B. (2)

Actually, this result relates the Hecke algebra of the affine Weyl group Wa to its pe-
riodic module M. Our interest in M is motivated now by the fact that M governs the
representation theory of the affine Kac-Moody algebra, whose Weyl group is Wa, at the
critical level.

Suppose that A,B,A + µ,B + µ are alcoves far enough in the fundamental chamber.
Then results of §3.2.2 show that the two moment graphs Gpar

|[A,B]
and G

par
|[A+µ,B+µ]

are in general

not isomorphic, while there is always an isomorphism of moment graphs between Gstab
|[A,B]

and

Gstab
|[A+µ,B+µ]

. Since the stable moment graph is a subgraph of Gpar, there is a monomorphism

Gstab ↪→ Gpar. The following diagram summarises this situation:

G
par
|[A,B]

G
par
|[A+µ,B+µ]

Gstab
|[A,B]

?�
i

OO

// Gstab
|[A+µ,B+µ]

?�

iµ

OO

We then get a functor ·stab := i∗ : ShG
par
|[A,B]

→ ShGstab
|[A,B]

. The main theorem of this

chapter is the following one.

Theorem 0.0.1. The functor ·stab : Shk(G
par
|[A,B]

) → Shk(Gstab
|[A,B]

) preserves indecomposable
Braden-MacPherson sheaves.

The stabilisation property, that is the categorification of Equality (2), follows by apply-
ing the technique of the pullback to the previous result.

In the case of g = ŝl2, we are able to prove the claim via the third technique we quoted
above, that is, for any finite interval of Gstab, we show that in characteristic zero its structure
sheaf is flabby, so it is invariant by weight translation for all integral weights µ ∈ C+. On
the other hand, we know already that the structure sheaf for the affine Grassmannian is
flabby (see §5.4) and this concludes the sl2-case.

For the general case, we apply a localisation technique due to Fiebig (that we recall in
Chapter 4), which enables us to use the sl2-case, together with results of [18].



xii CONTENTS

Perspectives

Since the theory of sheaves on moment graphs is related to geometry, representation
theory and algebraic combinatorics, we briefly present three possible applications or devel-
opments of this theory on which we are interested in, one for each of these fields.

Equivariant cohomology of affine Bott-Samelson varieties.

In a joint project with Stéphane Gaussent and Michael Ehrig (cf.[12]), we try to gen-
eralise to the affine setting the paper [21] of Härterich, where the author describes the T -
equivariant cohomology of Bott-Samelson varieties in terms of Braden-MacPherson sheaves
on the corresponding Schubert varieties.

Periodic patterns and the Feigin-Frenkel conjecture.

The Feigin-Frenkel conjecture provides a character formula involving Lusztig’s periodic
polynomials (cf.[37]). In [28], Kato related these polynomials to the generic polynomials. In
particular, he showed that generic polynomials are sum of periodic polynomials with certain
multiplicities. We believe that a natural development of the results we got in Chapter 5 is
to prove an analog of this periodicity property for canonical sheaves. It should correspond
to a filtration of the space of global sections of the indecomposable Braden-MacPherson
sheaf. In an ongoing project with Peter Fiebig we try to understand this phenomenon
and to apply it to get a further step in the proof of the Feigin-Frenkel conjecture. The
representation theory of affine Kac-Moody algebras at the critical level is very complicated
and, thanks to the fundamental work of Frenkel and Gaitsgory, it is related to the geometric
Langlands correspondence.

Moment graphs and Littelmann path model.

In 2008, during the Semester " Combinatorial Representation Theory" at the MSRI
of Berkeley, Ram conjectured a connection between the Littelmann path model and affine
Kazhdan-Lusztig polynomials (the so–called "Théorève"). Since in characteristic zero the
multiplicity conjecture is proved, our hope is that we may get a better understanding of
this connection via the study of indecomposable Braden-MacPherson sheaves, by applying
results we obtained in this thesis.
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Chapter 1

The category of k-moment graphs on
a lattice

Moment graphs were introduced by Goresky, Kottwitz and MacPherson in 1998, in
order to give a combinatorial description of the T -equivariant cohomology of a complex
algebraic variety X equipped with an action of a complex torus T , satisfying some technical
assumptions (cf.[20]). A couple of years later, Braden and MacPherson, in [7], used moment
graphs to compute the T -equivariant intersection cohomology of X. Since 2006, thanks
to the seminal work of Fiebig (cf.[13],[14],[18],[16],[17]), moment graphs have become a
powerful tool in representation theory as well. Even if in the last years moment graphs
appeared in several papers, a proper "moment graph theory" has not been developped yet.
The aim of this section is to define the category of moment graphs on a lattice and to
discuss some examples and properties of it.

1.1 Moment graphs

In [20] and [7], moment graphs were constructed from a geometrical datum, but it is
actually possible to give an axiomatic definition.

Definition 1.1.1 ([16]). Let Y be a lattice of finite rank. A moment graph on the lattice
Y is given by (V,E,E, l), where:

(MG1) (V,E) is a directed graph without directed cycles nor multiple edges,

(MG2) E is a partial order on V such that if x, y ∈ V and E : x→ y ∈ E, then x E y,

(MG3) l : E→ Y \{0} is a map called the label function.

Following Fiebig’s notation ([16]), we will write x −−− y if we are forgetting about the
orientation of the edge.

1
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Studying complex algebraic varieties, Braden, Goresky, Kottwitz and MacPherson con-
sidered moment graphs only in characteristic zero, while they turned out to be very impor-
tant in prime characteristic (see [18], [19]).

From now on, k will be a local ring such that 2 is an invertible element. Moreover, for
any lattice Y of finite rank, we will denote by Yk := Y ⊗Z k.

Definition 1.1.2. Let G be a moment graph on the lattice Y . We say that G is a k-moment
graph on Y if all labels are non-zero in Yk

Definition 1.1.3. [19] The pair (G, k) is called a GKM -pair if all pairs E1, E2 of distinct
edges containing a common vertex are such that k · l(E1) ∩ k · l(E2) = {0}.

1.1.1 Examples

Example 1.1.1. The empty k-moment graph is given by the graph having empty set of
vertices. All the other data are clearly uniquely determined. We will denote it by ∅.

Example 1.1.2 (cf.[16]). A generic k-moment graph is a moment graph having a unique
vertex. As in the previous example, all the other data are uniquely determined.

Example 1.1.3 (cf.[16]). A subgeneric k-moment graph on Y is a moment graph having
two vertices and an (oriented) edge, labelled by a non-zero element χ ∈ Y , such that χ⊗ 1
is non-zero in Yk too.

Example 1.1.4. We recall here the construction, due to Braden an MacPherson, appeared
in [7]. Let G be an irreducible complex projective algebraic variety, with an algebraic action
of a complex torus T ∼= (C∗)d. Denote moreover by X∗(T ) the character lattice of the torus.
If G has a T -invariant Whitney stratification by affine spaces and the action of T is nice
enough (see [7], §1.1), then the associated moment graph is defined as follows. Thanks to
the technical assumptions made by Braden and MacPherson, any 1-dimensional orbit turns
out to be a copy of C∗, whose closure contains exactly two fixed points. Thus, it makes
sense to declare that the set of vertices, resp. of edges, of the associated moment graph is
given by the set of fixed points, resp. of 1-dimensional orbits, with respect this T -action.
Moreover, the assumptions on the variety imply that any stratum contains exactly one fixed
point. Then, taken any two (distinct) fixed points, x, y, that is two vertices of the graph
we are building, we set x ≤ y if and only if the closure of the stratum corresponding to y
contains the stratum corresponding to x.

Now, we want to label all edges of the graph, in order to record more informations about
the torus action. Let E be an edge. Any point z of the one-dimensional orbit E has clearly
the same stabilizer StabT (z) in T , that is the kernel of a character χ ∈ X∗(T ). We then
set l(E) := χ. We obtain in this way a moment graph on X∗(T ).

In Chapters 3, 4, 5 and 6 we will focus our attention on a class of moment graphs
associated to a symmetrisable Kac-Moody algebra: the Bruhat graphs. These graphs are
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nothing but an example of the Braden-MacPherson construction for the associated flag
variety that we described above (cf.[19], §7).

1.2 Morphisms of k-moment graphs

In this section, we give the definition of morphism between two k-moment graphs. Since
a k-moment graph is an ordered graph, whose edges are labeled by (non-zero) elements of
Y having non-zero image in Yk, a morphism will be given by a morphism of oriented graphs
together with a family of automorphisms of Yk.

Definition 1.2.1. A morphism between two k-moment graphs

f : (V,E,E, l)→ (V′,E′,E′, l′)

is given by (fV, {fl,x}x∈V), where

(MORPH1) fV : V → V′ is any map of posets such that, if x −−− y ∈ E, then either
fV(x)−−−fV(y) ∈ E′, or fV(x) = fV(y). For a vertex E : x−−−y ∈ E such that fV(x) 6= fV(y),
we will denote fE(E) := fV(x)−−− fV(y).

(MORPH2) For all x ∈ V, fl,x : Yk → Yk ∈ Autk(Yk) is such that, if E : x −−− y ∈ E and
fV(x) 6= fV(y), the following two conditions are verified:

(MORPH2a) fl,x(l(E)) = h · l′(fE(E)), for some h ∈ k×

(MORPH2b) π◦fl,x = π◦fl,y, where π is the canonical quotient map π : Yk → Yk/l
′(fE(E))Yk.

If f : G = (V,E,E, l) → G′ = (V′,E′,E′, l′) and g : G′ → G′′ = (V′′,E′′,E′′, l′′) are two
morphisms of k-moment graphs, then there is a natural way to define the composition.
Namely, g ◦ f := (gV′ ◦ fV, {gl′,fV(x) ◦ fl,x}x∈V).

Lemma 1.2.1. The composition of two morphisms between k-moment graphs is again a
morphism, and it is associative.

Proof. The only conditions to check are (MORPH2a) and (MORPH2b). Suppose that E :
x−−−y ∈ E and gV′ ◦fV(x) 6= gV′ ◦fV(y), that is fV(x) 6= fV(v) and gV′(fV(x)) 6= gV′(fV(v)).
If fl,x(l(E)) = h′ · l′(fE(E)) and gl′,fV(x)(l

′(fE(E))) = h′′ · l′′(gE′ ◦ fE(E)), with h′, h′′ ∈ k×,
then

(gl′,fV(x) ◦ fl,x)(l(E)) = gl′,fV(x)(h
′ · l′(fE(E))) = h′ · h′′ · l′′(gE′ ◦ fE(E)) = h̃ · l′′(gE′ ◦ fE(E)),

and clearly h̃ = h′ · h′′ ∈ k×.
Moreover,

(gl′,fV(x) ◦ fl,x)(λ) =

= gl′,fV(x)(fl,y(λ) + n′l′(fE(E)) =

= gl′,fV(x)(fl,y(λ)) + n′ · h′′ · l′′(gE′ ◦ fE(E)) =

= gl′,fV(y)(fl,y(λ)) + n′′′ · l′′(gE′ ◦ fE(E)) + n′ · h′′ · l′′(gE′ ◦ fE(E))



4 CHAPTER 1. THE CATEGORY OF K-MOMENT GRAPHS ON A LATTICE

where n, n′′ ∈ k.
Finally, the associativity follows from the definition.

For any k-moment graph G = (V,E,E, l), we set idG = (idV, {idYk}x∈V). Thus we may
give the following definition

Definition 1.2.2. We denote by MG(Yk) the category whose objects are the k-moment
graphs on Y and whose morphisms are as in Def.1.2.1.

1.2.1 Mono-, epi- and isomorphisms

Here we characterise some particular morphisms of k-moment graphs: monomorphisms,
epimorphisms and isomorphisms in MG(Yk).

Lemma 1.2.2. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk) and f ∈ HomMG(Yk)(G,G
′).

(i) f is a monomorphism if and only if fV is an injective map of sets (satisfying condition
(MORPH1))

(ii) f is an epimorphism if and only if fV is a surjective map of sets (satisfying condition
(MORPH1))

Proof.

(i) f is a monomorphism if and only if, for any pair of parallel morphisms g1, g2 : H → G,
f ◦ g1 = f ◦ g2 implies g1 = g2. Then, f is a monomorphism if and only if fV is a
monomorphisms in the category of sets and, for any x ∈ V, fl,x is a monomorphism in the
category of the k-modules, but by definition it is an automorphism of Yk, so this condition
is empty.

(ii) As in (i), we conclude easily that f is an epimorphism if and only if fV s a surjective
map of sets.

Example 1.2.1. Consider the following map between graphs

y • //_______ •w

z •

++VVVVVVVVVVVV

x•

α

FF














//_______ •u

α

EE��������������
•v

α

YY22222222222222

If we set fl,x = fl,y = fl,w = idYk , we get an homomorphism of k-moment graphs that is, by
Lemma 1.2.2, a monomorphism and an epimorphism.
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A map between sets, that is both injective and bijective, is an isomorphism. Here, we
show that such a property does not hold for a homomorphism of k-moment graphs, even
if it is given by a map between the sets of vertices and an automorphism of Yk. This is
actually not surprising, since k-moment graphs will play in our theory (see next chapter)
the role that topological spaces play in sheaf theory and not all bijective continuous maps
between topological spaces are homeomorphisms.

Lemma 1.2.3. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk) and f = (fV, {fl,x}x∈V) ∈
HomMG(Yk)(G,G

′). f is an isomorphism if and only if the following two conditions hold:

(ISO1) fV is an isomorphism of posets

(ISO2) for all u → w ∈ E′, there exists an edge x → y ∈ E such that fV(x) = u and
fV(y) = w.

Proof. At first, we show that a homomorphism satisfying (ISO1) and (ISO2) is invertible.
Denote by f−1 := (f ′V′ , {f ′l′,u}u∈V′), where we set f ′V′ := f−1V and f ′l′,u := f−1

l,f−1
V

(u)
. We have

to verify that f−1 is well-defined, that is we have to check conditions (MORPH2a) and
(MORPH2b). Suppose there exists an edge F : u → w ∈ E′, then, by (iii), there is an
edge E : x → y ∈ E such that fV(x) = u and fV(y) = w. Since f satisfies (MORPH2a),
fl,x(l(E)) = h · l′(F ) for h ∈ k× and we get

f ′l′,u(l′(F )) = f−1
l,f−1

V
(u)

(l′(F )) = f−1l,x (l′(F )) = h−1 · l(E)

Now, let µ ∈ YK and take λ := f−1l,y (µ). By (MORPH2a), µ = fl,y(λ) = fl,x(λ) + r · l′(F )
for some r ∈ k. It follows

f ′l′,u(µ) = f−1l,x (µ) = f−1l,x (fl,x(λ) + rl′(F )) =

= λ+ r · f−1l,x (l′(F )) = f−1l,y (µ) + r · h−1 · l(E) =

= f ′l′,w(µ) + r′ · l(E)

Suppose f is an isomorphism. If (ISO1) is not satisfied, then fV, and hence f , is not
invertible. Moreover, (ISO1) implies that for all u → v ∈ E′, there exists at most one
x→ y ∈ E such that fV(x) = u and fV(y) = v (otherwise fV would not be injective). Now,
let f be the following homomorphism, (we do not care about the fl,x’s)

y • //_______ •w

x• //_______ •u

α
<<zzzzzzzz

Condition (ISO1) holds, but f is not invertible, since f−1V (u) 6= f−1V (w) but f−1V (u) −−−
f−1V (w) 6∈ E (this contradicts (MORPH1)).
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Example 1.2.2. All the generic k-moment graphs are in the same isomorphism class in
MG(Yk). Then, we will say in the sequel the generic k-moment graph and we will denote
it by {pt}.

Example 1.2.3. If k is a field, then all the subgeneric k-moment graphs are isomorphic.

Example 1.2.4. The homomorphism in Ex. 1.2.1 is surjective and injective but is not an
isomorphism.

Example 1.2.5. Let α, β be a basis of Yk. Consider the following morphism of graphs
(fV, fE):

x1• //____________________ y1•

x2•

β
iiRRRRRRRRRRRRRRRR

//__________________ y2•

β

hhQQQQQQQQQQQQQQQQ

x3•

α

EE���������������
//____________________ y3•

α

GG���������������

x4•
β

iiRRRRRRRRRRRRRRRR

α

EE���������������
//__________________ y4•

α+β

ggOOOOOOOOOOOOO

α

EE���������������

Define

fl,x1 :=

{
α 7→ α
β 7→ β

fl,x2 :=

{
α 7→ α
β 7→ β

fl,x3 :=

{
α 7→ α
β 7→ α+ β

fl,x4 :=

{
α 7→ α
β 7→ α+ β

We have to show that these data define a morphism of k-moment graphs. Condition
(MORPH2a) is trivially satisfied. Moreover, for any pair a, b ∈ k,

fl,x1(aα+ bβ)− fl,x2(aα+ bβ) = 0
fl,x3(aα+ bβ)− fl,x4(aα+ bβ) = 0
fl,x1(aα+ bβ)− fl,x3(aα+ bβ) = −bα = −b · l(x3 → x1)
fl,x2(aα+ bβ)− fl,x4(aα+ bβ) = −bα = −b · l(x4 → x2)

Then, condition (MORPH2b) holds too. Since the fl,x are all automorphisms of Yk, f is an
isomorphism.

Lemma 1.2.4. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈MG(Yk). Then, any isomorphism
f = (fV, {fl,x}) ∈ HomMG(Yk)(G,G

′) can be written, in a unique way, as composition of two
isomorphisms f = g ◦ t with g = (fV, {idYk}) and t = (idV, {fl,x}).
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Proof. We have to show that there exists a k-moment graphH such that t ∈ HomMG(Yk)(G,H),
g ∈ HomMG(Yk)(H,G

′) and the following diagram commutes

G
f //

t ��???????? G′

H

g

??~~~~~~~

(1.1)

Define H as the k-moment graph, whose set of vertices, set of edges and partial order are
the same as G and, for any edge x→ y ∈ E, the label function is defined as follows

lH(x→ y) := l′(fV(x)→ fV(y))

Now, it is easy to check that t ∈ HomMG(Yk)(G,H) and g ∈ HomMG(Yk)(H,G
′). Clearly,

Diagram (1.1) commutes. Observe that H is not the only k-moment graph having the
desired properties, but this does not affect the uniqueness of the decomposition of f .

1.2.2 Automorphisms

For any G ∈MG(Yk), denote by Aut(G) the automorphisms group of G. Moreover, we
set

T := {f ∈ Aut(G) | f = (idV, {fl,x})} (1.2)

G := {f ∈ Aut(G) | f = (fV, {idYk})} (1.3)

Lemma 1.2.5. Let G ∈ MG(Yk), then T and G is are normal subgroups of (Aut(G), ◦).
Moreover, Aut(G) = T ×G.

Proof. For any f ∈ Aut(G) and t ∈ T ,

f−1tf = (f−1V ◦ idV ◦ fV, {f−1l,fV(x) ◦ tl,fV(x) ◦ fl,x}) = (idV, {f−1l,fV(x) ◦ tl,fV(x) ◦ fl,x) ∈ T

For any f ∈ Aut(G) and g ∈ G,

f−1gf = (f−1V ◦ gV ◦ fV, {f−1l,fV(x) ◦ idYk ◦ fl,x}) = (f−1V ◦ gV ◦ fV, {idYk}) ∈ G

Now, T ∩G = {idG} and the second statement follows by Lemma 1.2.1.

1.3 Basic constructions in MG(Yk)

1.3.1 Subgraphs and subobjects

Definition 1.3.1. Let G = (V,E,E, l),G′ = (V′,E′,E′, l′) ∈ MG(Yk). We say that G′ is a
k-moment subgraph of G if
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(SUB1) V′ ⊆ V

(SUB2) E′ ⊆ E

(SUB3) E′=E|V′
(SUB4) l′ = l|E′

Lemma 1.3.1. Any k-moment subgraph of G is a representative of a subobject of G.

Proof. We have to show that, for any G′, k-moment subgraph of G, there exists a monomor-
phism i : G′ → G. Define i as iV′(x) := x and il′,x = idYk for any x ∈ V′. From Lemma1.2.2
(i), it follows that i is a monomorphism.

1.3.2 Quotient graphs

Definition 1.3.2. Let G = (V,E,E, l) ∈MG(Yk) and ∼ an equivalence relation on V. We
say that ∼ is G-compatible if the following conditions are satisfied:

(EQV1) x1 ∼ x2 implies x1 ∼ x for all x1 E x E x2
(EQV2) for all x1, y1 ∈ V, if x1 6∼ y1 and x1 → y1 ∈ E, then for any x2 ∼ x1 there exists a
unique y2 ∈ V such that y2 ∼ y1, x2 → y2 and l(x1 → y1) = l(x2 → y2).

Definition 1.3.3. Let G = (V,E,E, l) ∈MG(Yk) and let ∼ be a G-compatible equivalence
relation. We define the oriented labeled graph quotient of G by ∼, and we denote it by
G/∼= (V∼,E∼,E∼, l∼), in the following way

(QUOT1) V∼ is a set of representatives of the equivalence classes

(QUOT2) E∼ = {([x]→ [y]) |x 6∼ y, ∃x1 ∼ x, y1 ∼ y with x1 → y1}
(QUOT3) E∼ is the transitive closure of the relation [x] E∼ [y] if [x]→ [y] ∈ E∼

(QUOT4) If [x] → [y] and x1 ∼ x, y1 ∼ y are such that x1 → y1, we set l∼([x] → [y]) =
l(x1 → y1).

Lemma 1.3.2. The graph G/∼ is a k-moment graph on Y .

Proof. The only condition to be checked is that G/∼ has no oriented cycles, but it follows
easily from (EQV1) and (EQV2). Indeed, suppose there were an oriented cycle

[x1]→ [x2]→ . . .→ [xn]→ [x1]

By (QUOT2) and (EQV2), this means that there exists the following path on the graph G:

x1 → x′2 → . . .→ x′n → x′1,

for certain x′i ∼ xi. But now we would get a sequence x1 E x′2 E . . . E x′n E x′1, with
x1 ∼ x′1 and , by (EQV1), it would follow [x1] = [xi] for all i.



9

Lemma 1.3.3. Let G ∈ MG(Yk) and let ∼ be a G-compatible equivalence relation. Then
the quotient of G by ∼ is a representative of a quotient of G.

Proof. Suppose G′ = G/∼ and define p = (pV, pE, {pl,x}) ∈ HomMG(Yk)(G,G
′) as pV(x) :=

[x], where [x] is the representative of the equivalence class of x and pl,x = idYk for any
x ∈ V. By Lemma1.2.2 (ii), this is an epimorphism.

Example 1.3.1. Consider the following map of graphs

• //____________ •

•

α

66mmmmmmmmmmmmmmmm

,,YYYYYYYYYYYYYYYYYYYYY

α+β •

β

WW//////////////

;;w
w

w
w

w
w

w
w

w
w

w •

α

OO

•

β

DD																

α+β

33ffffffffffffffffffffffffffffffff

--ZZZZZZZZZZZZZZZZZZZZZZZZZZ

α+β •

α

GG���������������

[[6666666666666666666666666

88qqqqqqqqqqqqqq •

β

OO α+β

[[

•

α

ZZ5555555555555555 β

66nnnnnnnnnnnnnnnn

HH��������������������������������������

22eeeeeeeeeeeeeeeeeeeee

Set fl,x = idYk for any vertex x. This is an epimorphism of k-moment graphs and it is
clear that the graph on the right is a quotient of the left one by the (compatible) relation
x ∼ y if and only if x and y are connected by an edge having the following direction

__???????

1.3.3 Initial and terminal objects

Remark 1.3.1. For any G ∈ MG(Yk), |HomMG(Yk)(∅,G)| = 1, then ∅ is an initial object.

Lemma 1.3.4. If |Autk(Yk)| > 1, there are no terminal objects in MG(Yk).

Proof. Since in the category of sets the terminal objects are the singletons, all k-moment
graphs with more than one vertex cannot be terminal. Let G ∈ MG(Yk) be a k-moment
graph with at least one vertex and let f ∈ HomMG(Yk)(G, {pt}). Then, fV is uniquely
determined, but, for any vertex x of G, fl,x can be any automorphism of Yk. Indeed, since
{pt} does not have edges, conditions (MORF3a) and (MORF3b) are empty.
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It follows

Corollary 1.3.1. MG(Yk) is not an additive category.

Proof. This is because there are no zero objects in MG(Yk). Observe, that this is true also
if Y ∼= Z0. Indeed, in this case the generic graph is the (unique) terminal object but it is
not initial.

Products

Lemma 1.3.5. If |Autk(Yk)| > 1, MG(Yk) has no products.

Proof. Suppose MG(Yk) had products. Then, for any G = (V,E,E, l) ∈MG(Yk) it would
exist the product (G×G, {p1, p2}). In particular, there would exist a g ∈ HomMG(Yk)(G,G×
G) such that the following diagram commutes

G
idG

||zzzzzzzzz
idG

""DDDDDDDDD

g

��
G G× Gp1
oo

p2
// G

(1.4)

Let G be the generic graph and let x be unique vertex. Then, from (1.4), we would get
the following commutative diagram

Yk
idYk

~~}}}}}}} idYk

  AAAAAAA
gl,x

��
Yk Yk
p1
l′,gV(x)

oo
p2
l′,gV(x)

// Yk

(1.5)

(where we denoted pi = (piV′ , p
i
E′ , {pil′,y}) ). The commutativity of the triangles in (1.5)

implies gl,x = (p1l′,gV(x))
−1 = (p2l′,gV(x))

−1, that is p1l′,gV(x) = p2l′,gV(x) =: pl′,gV(x).
Now, choose f ∈ HomMG(Yk)(G,G) such that fl,x 6= idYk (such an fl,x exists, since we

have by hypothesis |Autk(Yk)| > 1). There would exists an h ∈ HomMG(Yk)({pt}, {pt} ×
{pt}) such that the following diagram commutes

{pt}
id{pt}

yyrrrrrrrrrr
f

%%LLLLLLLLLL

h
��

{pt} {pt} × {pt}p1
oo

p2
// {pt}
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But this is impossible; indeed, the diagram above would give us the following commutative
diagram

Yk
idYk

~~}}}}}}} fl,x

  AAAAAAA

hl,x
��

Yk Ykpl′,gV(x)

oo
pl′,gV(x)

// Yk

Coproducts

Definition 1.3.4. Let {Gj = (Vj ,Ej ,Ej , lj)}j∈J be a family of objects in MG(Yk). Then∐
j∈J Gj = (V,E,E, l)) is defined as follows:

(PROD1) V is given by the disjoint union
∐
j∈J Vj =

⋃
j∈J{(v, j) | v ∈ Vj}

(PROD2) (x, j)−−− (y, i) if only if i = j and x−−− y ∈ Ei

(PROD3) (x, j) E (y, i) if and only if i = j and x Ej y

(PROD4) l ((x, j)−−− (y, j)) := lj(x−−− y)

We get:

Lemma 1.3.6. MG(Yk) has finite coproducts

Proof. Denote by ij : Gj →
∐
j∈J Gj the morphism given by ijV(v) = (v, j) and fl,x = idYk

for any x ∈ Vj . Then, for any H ∈MG(Yk) with a family of morphisms fj : Gj → H there
exists a unique morphism f :

∐
j∈J Gj → H such that fj = f ◦ ij . In particular, f is given

by f∐
j∈J Vi((x, j)) = fj(x) and fl,(x,j) = (fj)l,x.



12 CHAPTER 1. THE CATEGORY OF K-MOMENT GRAPHS ON A LATTICE



Chapter 2

The category of sheaves on a
k-moment graph

The notion of sheaf on a moment graph is due to Braden and MacPherson (cf.[7]) and it
has been used by Fiebig in several papers (cf. [13],[14],[18],[16],[17]). In the first part of this
chapter, we recall the definition of category of sheaves on a k-moment graph and we present
two important examples, namely, the structure sheaf and the canonical sheaf (cf.[7]). In
the second part, for any homomorphism of k-moment graphs f , we define the pullback
functor f∗ and the push-forward functor f∗. These two functors turn out to be adjoint (see
Proposition 2.2.1). We prove that, if f is a k-isomorphism, then the canonical sheaf turns
out to be preserved by f∗. This result will be an important tool in the categorification of
some equalities coming from Kazhdan-Lusztig theory (see Chapter 5).

2.1 Sheaves on a k-moment graph

For any finite rank lattice Y and any local ring k (with 2 ∈ k∗), we denote by S =
Sym(Y ) its symmetric algebra and by Sk := S ⊗Z k its extension. Sk is a polynomial ring
and we provide it with the grading induced by the setting (Sk){2} = Yk. From now on, all
the Sk-modules will be finitely generated and Z-graded. Moreover, we will consider only
degree zero morphisms between them. Finally, for j ∈ Z and M a graded Sk-module we
denote by M{j} the graded Sk-module obtained from M by shifting the grading by j, that
is M{j}{i} = M{j+i}.

Definition 2.1.1 ([7]). Let G = (V,E,E, l) ∈MG(Yk), then a sheaf F on G is given by the
following data ({Fx}, {FE}, {ρx,E})

(SH1) for all x ∈ V, Fx is an Sk-module;

(SH2) for all E ∈ E, FE is an Sk-module such that l(E) · FE = {0};

13
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(SH3) for x ∈ V, E ∈ E, ρx,E : Fx → FE is a homomorphism of Sk-modules defined if x is
in the border of the edge E.

Remark 2.1.1. We may consider the following topology on G (cf. [7],§1.3 or [24], §2.4).
We say that a subgraph H of G is open, if whenever a vertex x is H, then also all the edges
adjacent to x are in H. With this topology, the object we defined above is actually a proper
sheaf of Sk-modules on G. Anyway, we will not work with this topology in what follows.

Example 2.1.1 (cf. [7], §1). Let G = (V,E,E, l) ∈MG(Yk), then its structure sheaf Z is
given by

• for all x ∈ V, Z x = Sk

• for all E ∈ E, Z E = Sk/l(E) · Sk

• for all x ∈ V and E ∈ E, such that x is in the border of the edge E, ρx,E : Sk →
Sk/l(E) · Sk is the canonical quotient map

Definition 2.1.2. [15] Let G = (V,E,E, l) ∈ MG(Yk) and let F = ({Fx}, {FE}, {ρx,E}),
F′ = ({F′x}, {F′E}, {ρ′x,E}) be two sheaves on it. A morphism ϕ : F −→ F′ is given by the
following data

(i) for all x ∈ V, ϕx : Fx → F′x is a homomorphism of Sk-modules

(ii) for all E ∈ E, ϕE : FE → F′E is a homomorphism of Sk-modules such that, for any
x ∈ V on the border of E ∈ E, the following diagram commutes

Fx

ϕx

��

ρx,E // FE

ϕE

��
F′x

ρ′x,E //
F′E

Definition 2.1.3. Let G ∈MG(Yk). We denote by Shk(G) the category, whose objects are
the sheaves on G and whose morphisms are as in Def.2.1.2.

Remark 2.1.2. If G = {pt}, then Shk(G) is equivalent to the category of finitely generated
Z-graded Sk-modules.

2.1.1 Sections of a sheaf on a moment graph

Even if Shk(G) is not a category of sheaves in the topological meaning, we may define,
following [14], the notion of sections.

Definition 2.1.4. Let G = (V,E,E, l) ∈MG(Yk), F = ({Fx}, {FE}, {ρx,E}) ∈ Shk(G) and
I ⊆ V. Then the set of sections of F over I is denoted Γ(I,F) and defined as

Γ(I,F) :=

{
(mx)x∈I ∈

⊕
x∈I

Fx | ∀x−−− y ∈ E ρx,E(mx) = ρy,E(my)

}
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We will denote Γ(F) := Γ(V,F), that is the set of global sections of F.

Example 2.1.2. A very important example is given by the set of global sections of the
structure sheaf Z (cf. Ex. 2.1.1). In this case, we get the structure algebra:

Z := Γ(Z ) =

{
(zx)x∈V ∈

⊕
x∈V

Sk | ∀E : x−−− y ∈ E zx − zy ∈ l(E) · Sk

}
(2.1)

Goresky, Kottwitz and MacPherson proved in [20] that, if G is as in Ex. 1.1.4, i.e. it
describes the algebraic action of the complex torus T on the irreducible complex variety
X, then Z is isomorphic, as graded Sk-module, to the T -equivariant cohomology of X. It
is easy to check that, for any F ∈ Shk(G), the k-structure algebra Z acts on Γ(F) via
componentwise multiplication. We will focus our attention on a subcategory of the category
of Z-graded Z-modules from Chapter 4.

2.1.2 Flabby sheaves on a k-moment graph

After Braden and MacPherson ([7]), we define a topology on the set of vertices of a
k-moment graph G. We state a result about a very important class of flabby (with respect
to this topology) sheaves: the BMP -sheaves. This notion, due to Fiebig and Williamson
(cf. [19]), generalizes the original construction of Braden and MacPherson.

Definition 2.1.5. ([7]) Let G = (V,E,E, l) ∈MG(Yk), then the Alexandrov topology on V

is the topology, whose basis of open sets is given by the collection {D x} := {y ∈ V | y D x},
for all x ∈ V.

A classical question in sheaf theory is to ask if a sheaf is flabby, that is whether any
local section over an open set extends to a global one or not. In order to characterise the
objects in Shk(G) having this property, we need some notation.

Let G = (V,E,E, l) ∈MG(Yk). For any x ∈ V, we denote (cf. [14], §4.2)

Eδx :=
{
E ∈ E | E : x→ y

}
Vδx :=

{
y ∈ V | ∃E ∈ Eδx such that E : x→ y

}
Consider F ∈ Shk(G) and define Fδx to be the image of Γ({.x},F) under the composition

ux of the following maps

Γ({.x},F) � � //

ux

44

⊕
y.xF

y //
⊕

y∈VδxF
y ⊕ρy,E //

⊕
E∈EδxF

E (2.2)

Moreover, denote
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dx := (ρx,E)TE∈Eδx : Fx //
⊕

E∈EδxF
E

Observe that m ∈ Γ({.x},F) can be extended, via mx, to a section m̃ = (m,mx) ∈
Γ({D x},F) if and only if dx(mx) = ux(m). This fact motivates the following result, due
to Fiebig, that gives a characterization of the flabby objects in Shk(G).

Proposition 2.1.1 ([14], Prop. 4.2). Let F ∈ Shk(G). Then the following are equivalent:

(i) F is flabby with respect to the Alexandrov topology, that is for any open I ⊆ V the
restriction map Γ(F)→ Γ(I,F) is surjective.

(ii) For any vertex x ∈ V the restriction map Γ({D x},F)→ Γ({.x},F) is surjective.

(iii) For any vertex x ∈ V the map ⊕E∈Eδxρx,E : Fx →
⊕

E∈Eδx F
E contains Fδx in its

image.

2.1.3 Braden-MacPherson sheaves

We introduce here the most important class of sheaves on a k-moment graph. We recall
the definition given by Fiebig and Williamson in [19].

Definition 2.1.6 ([19], Def. 6). Let G ∈MG(Yk) and let B ∈ Shk(G). We say that B is
a Braden-MacPherson sheaf if it satisfies the following properties:

(BMP1) for any x ∈ V, Bx is a graded free Sk-module

(BMP2) for any E : x→ y ∈ E, ρy,E : By → BE is surjective with kernel l(E) ·By

(BMP3) for any open set I ⊆ V, the map Γ(B)→ Γ(I,B) is surjective

(BMP4) for any x ∈ V, the map Γ(B)→ Bx is surjective

Hereafter, Braden-MacPherson sheaves will be referred to also as BMP -sheaves or
canonical sheaves. An important theorem, characterising Braden-MacPherson sheaves, is
the following one.

Theorem 2.1.1 ([19], Theor. 6.3). Let G ∈MG(Yk)

(i) For any w ∈ V, there is up to isomorphism unique Braden-MacPherson sheaf B(w) ∈
Shk(G) with the following properties:

(BMP0) B(w) is indecomposable in Shk(G)

(BMP1a) B(w)w ∼= Sk and B(w)x = 0, unless x ≤ w

(ii) Let B be a Braden-MacPherson sheaf. Then, there are w1, . . . , wr ∈ V and l1 . . . lr ∈ Z
such that

B ∼= B(w1)[lr]⊕ . . .⊕B(wr)[lr]
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If B is an indecomposable BMP -sheaf, that is B = B(w) for some w ∈ V, then condi-
tions (BMP3) and (BMP4) may be replaced by the following condition (cf. [7], Theor.1.4)

(BMP3’) for all x ∈ V, with x / w, dx : B(w)x → B(w)δx is a projective cover
in the category of graded Sk-modules

Remark 2.1.3. If X is a complex irreducible algebraic variety with an algebraic action
of a torus T , as in Ex. 1.1.4, the associated k-moment graph turns out to have a unique
maximal vertex, that we denote by w. For k = C, Braden and MacPherson proved in [7]
that the space of global sections of the sheaf B(w) can be identified with the T -equivariant
intersection cohomology of X. In positive characteristic, Fiebig and Williamson related
B(w) to a (very special) indecomposable object in the T -equivariant constructible bounded
derived category of sheaves on X with coefficients in k: a parity sheaf. Parity sheaves
have been recently defined by Juteau, Mautner and Williamson (cf. [25]) and they have
applications in many situations arising in representation theory.

Remark 2.1.4. Canonical sheaves are strictly related to important conjectures in represen-
tation theory. We will (briefly) discuss this connection in Chapter 5.

We end this section with a result, that connects structure sheaves and canonical sheaves.

Proposition 2.1.2 ([17], Prop). Let G ∈MG(Yk)
+ and let w be its highest vertex. Then

B(w) ∼= Z if and only if Z is flabby.

Remark 2.1.5. The structure sheaf of a k-moment graph G is not in general flabby. Ac-
tually, if G is as in Ex.1.1.4, the flabbiness of its structure sheaf is equivalent to the k-
smoothness of the variety X (cf. [19]). Indeed, if X is rationally smooth, its intersection
cohomology coincides with its ordinary cohomology.

2.2 Direct and inverse images

Let f = (fV, {fl,x}) : G = (V,E,E, l) → G′ = (V,E,E, l) be a homomorphism of k-
moment graphs. We want to define, in analogy with classical sheaf theory, two functors

Shk(G)

f∗

88
Shk(G′)

f∗

xx

From now on, for any ϕ ∈ Autk(Yk), we will denote by ϕ also the automorphism of Sk
that it induces.

We need a lemma, in order to make consistent the definitions we are going to give.
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Lemma 2.2.1. Let s ∈ Sk, f ∈ HomMG(Yk)(G,G
′), F ∈ Shk(G) and H ∈ Shk(G′). Let

E : x−−− y ∈ E and F : fV(x)−−− fV(y) ∈ E′, then

(i) the twisted actions of Sk on FE defined via s�mE := f−1l,x (s)·mE and s�mE := f−1l,y (s)·mE

coincide on FE/l′(F ) � FE (· denotes the action of Sk on FE before the twist). Moreover,
l′(F ) � FE = {0} in both cases.

(ii) the twisted actions of Sk on HF defined via s �nF := fl,x(s) ·nF and s �nF := fl,y(s) ·nF
coincide on HF /l(E)HF (· denotes the action of Sk on FE before the twist). Moreover,
l(E) �HF = {0} in both cases.

Proof. It is enough to prove the claim for s ∈ (Sk){2} = Yk, since Sk is a k-algebra generated
by Yk.

(i) The statement follows from (MORPH2a), (MORPH2b) and the computations we made
in the proof of Lemma 1.2.3.

(ii) It is an immediate consequence of conditions (MORPH2a), (MORPH2b).

If ϕ is an automorphism of Sk, for any Sk-module M , we will denote Twϕ : M → M
the map sending M to M and twisting the action of Sk on M by ϕ.

2.2.1 Definitions

Definition 2.2.1. Let F ∈ Shk(G), then f∗F ∈ Shk(G′) is defined as follows

(PUSH1) for any u ∈ V′,
(f∗F)u := Γ(f−1V (u),F)

and the structure of Sk-module is given by s � (mx)x∈f−1
V

(u) := (s ·mx)x∈f−1
V

(u)

(PUSH2) for any u ∈ V′,
(f∗F)F :=

⊕
E:fE(E)=F

FE

and the action of Sk is twisted in the following way: s � (mE)E:fE(E)=F := (f−1l,x (s) ·
mE)E:fE(E)=F , where x is on the border of E

(PUSH3) for all u ∈ V′ and F ∈ E′, such that u is in the border of the edge F ,(f∗ρ)u,F is
defined as the composition of the following maps:

Γ(f−1V (u),F)
� � //

⊕
x:fV(x)=u

Fx
⊕ρx,E//

⊕
E:fV(E)=F FE

Tw //
⊕

E:fV(E)=F FE ,

where Tw = ⊕Twf−1
l,x

. We call f∗ direct image or push-forward functor.

Definition 2.2.2. Let H ∈ Shk(G′), then f∗H ∈ Shk(G) is defined as follows

(PULL1) for all x ∈ V, (f∗H)x := HfV(x) and s ∈ Sk acts on it via fl,x(s)
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(PULL2) for all E : x−−− y ∈ E

(f∗H)E =

{
HfV(x)/l(E)HfV(x) if fV(x) = fV(y)

HfE(E) otherwise

and of s ∈ Sk acts on (f∗H)E via fl,x(s).

(PULL3) for all x ∈ V and E ∈ E, such that x is in the border of the edge E,

(f∗ρ)x,E =

{
canonical quotient map if fV(x) = fV(y)
Twf−1

l,x
◦ ρfV(x),fE(E) ◦ Twf−1

l,x
otherwise

We call f∗ inverse image or pullback functor.

Example 2.2.1. Let G ∈MG(Yk) and let p : G→ {pt} be the homomorphism of k-moment
graphs having pl,x = idYk for all x, vertex of G. Then, for any F ∈ Shk(G) p∗(F) = Γ(F).
Moreover p∗(Sk) = Z , the structure sheaf of G.

2.2.2 Adjunction formula

Proposition 2.2.1. Let f ∈ HomMG(Yk)(G,G
′), then f∗ is left adjoint to f∗, that is for all

pair of sheaves F ∈ Shk(G) and H ∈ Shk(G′) the following equality holds

HomShk(G)(f
∗H,F) = HomShk(G′)(H, f∗F) (2.3)

Proof. Take ϕ ∈ HomShk(G)(f
∗H,F), that is ϕ = ({ϕx}x∈V, {ϕE}E∈E) such that, for all

x ∈ V and E ∈ E such that x is on the border of E, the following diagram commutes

(f∗H)x

(f∗ρ′)x,E
��

ϕx // Fx

ρx,E

��
(f∗H)E

ϕE
// FE

(2.4)

We want to show that there is a bijective map γ : HomShk(G)(f
∗H,F)→ HomShk(G′)(H, f∗F)

and it is given by ϕ = ({ϕx}x∈V, {ϕE}E∈E) 7→ ψ = ({ψu}u∈V′ , {ψF }F∈E′), where

ψu := (⊕x∈f−1
V

(u) ϕ
x)T , ψF := ⊕E∈f−1

E
(F ) ϕ

E

We start with verifying that this map is well-defined. We have to show that for any h ∈
Hu, ψu(h) ∈ (f∗F)u = Γ(f−1V (u),F), that is, for any x, y ∈ f−1V (u) such that E : x−−−y ∈ E,
ρx,E(ϕy(h)) = ρy,E(ϕy(h)).
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From Diagram (2.4), we get the following commutative diagram

(f∗H)x = HfV(x) = Hu

(f∗ρ′)x,E
��

ϕx // Fx

ρx,E

��
(f∗H)E = Hu/l(E)Hu ϕE // FE

(f∗H)y = HfV(y) = Hu

(f∗ρ′)y,E

OO

ϕy // Fy

ρx,E

OO

(2.5)

But (f∗ρ′)y,E = (f∗ρ′)x,E by definition (they are both the canonical projection) and we
obtain

ρx,E ◦ ϕx = ϕE ◦ (f∗ρ′)x,E = ϕE ◦ (f∗ρ′)y,E = ρy,E ◦ ϕy

It is clear that the map γ : HomShk(G)(f
∗H,F) → HomShk(G′)(H, f∗F) we defined is

injective. To conclude our proof, we have to show the surjectivity of γ.
Suppose ψ = ({ψu}u∈V′ , {ψF }F∈E′) ∈ HomShk(G′)(H, f∗F), where, for all u ∈ V′ and

F ∈ E′ such that u is on the border of F , the following diagram commutes

Hu

ρ′u,F
��

ψx // Γ(f−1V (u),F)

⊕(Twfl,x◦ρx,E)
��

(f∗H)F
ψE
//
⊕

E∈f−1
E

(F ) F
E

(2.6)

We claim that there exist ϕ = ({ϕx}) ∈ HomShk(G)(f
∗H,F) such that γ(ϕ) = ψ.

For any x ∈ V, let us consider u := fV(x) and define ϕx as the composition of the
following maps

Hu
ψy //

ϕx

44Γ(f−1V (u),F)
� � //

⊕
y∈f−1

V
(u) F

y // // Fx

For any E : x −−− y ∈ E such that fV(x) 6= fV(y), that is there exists an edge F ∈ E′

such that fE(E) = F , we define ϕE as the composition of the following maps

HF
ψF //

ϕE

44
⊕

L∈f−1
E

(F ) F
L

Twfl,y //
⊕

L∈f−1
E

(F ) F
L // // FE

Now, it is clear that γ(ϕ) = ψ. Indeed, if u 6∈ fV(V), then ψu = 0 and the claim is
trivial. Otherwise, u ∈ fV(V) and we get the following diagram, with Cartesian squares
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Hu

ρ′u,F

��

ψy //

ϕx

**
Γ(f−1V (u),F)

(f∗ρ)y,F
��

� � //
⊕

y∈f−1
V

(u) F
y

⊕ρz,L
��

// // Fx

ρx,E

��
HF

ψF //

ϕE

44

⊕
L∈f−1

E
(F ) F

L
Twfl,y //

⊕
L∈f−1

E
(F ) F

L // // FE

As application of the previous proposition, we get the following corollary.

Corollary 2.2.1. Let G ∈ MG(Yk) and let Z , resp. Z, be its structure sheaf, resp. its
structure algebra. Then the functors Γ(−),HomShk(G)(Z ,−) : Shk(G) → Z − modules are
naturally equivalent. In particular, we get the following isomorphism of Sk-modules

Z ∼= EndShk(G)(Z ).

Proof. Consider the homomorphism p : G→ {pt}, where we set pl,x = idYk for all x, vertex
of G. The structure sheaf of {pt} is just a copy of Sk and, for all F ∈ Shk(G), by Prop.
2.2.1, we get

HomShk(G)(p
∗Sk,F) = HomShk({pt})(Sk, p∗F)

Bu we have already noticed in Example 2.2.1 that p∗Sk ∼= Z and p∗F = Γ(F). Moreover,
that HomSk(Sk,Z) ∼= Z and we get the claim.

2.2.3 Inverse image of Braden-MacPherson sheaves.

The following lemma tells us that the pullback functor f∗ preserves canonical sheaves
if f is an isomorphism.

Lemma 2.2.2. Let G,G′ ∈ MG(Yk)
+. Let w, resp. w’, be the (unique) maximal vertex

of G, resp. G′, and let f : G −→ G′ be an isomorphism. If B(w) and B′(w′) are the
corresponding indecomposable BMP-sheaves, then B(w) ∼= f∗B′(w′) in Shk(G).

Proof. Let G = (V,E,E, l), G′ = (V′,E′,E′, l′) and f = (fV, {fl,x}).
Notice that I ⊆ V is an open subset if and only if I′ := fV(I) ⊆ V′ is an open subset.

We prove that B(w)|I
∼= f∗B′(w′)|I′ by induction on |I| = |I′|, for I open.

If |I| = |I′| = 1, we have I = {w} and I′ = {w′}. In this case B(w)w = Sk, B′(w′)w
′

=
Sk and the isomorphism ϕw : B(w)w → B′(w′)w

′ is just given by the twisting of the
Sk−action, coming from the automorphism of Sk, induced by the automorphism fl,w of Yk.
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Now let |I| = |I′| = n > 1 and y ∈ I be a minimal element. Obviously, y′ := fV(y) is
also a minimal element for I′. Moreover, for any E ∈ E we set E′ := fE(E).

First of all, observe that z ∈ Vδy if and only if z′ := fV(z) ∈ V′δy′ . By the inductive
hypothesis, for all x . y there exists an isomorphism ϕx : B(w)x →∼ B′(w′)x

′ such that
ϕx(s · m) = fl,x(s) · ϕx(m), for s ∈ Sk and m ∈ B(w)x. Moreover, if E 6∈ Eδy and x
is on the border of E with x . y, by the inductive hypothesis we have an isomorphism
ϕE : B(w)E →∼ B′(w′)E

′ such that ϕE(s · n) = fl,x(s) · ϕE(n), for s ∈ Sk and n ∈ B(w)E

and such that the following diagram commutes

B(w)x

ϕx

��

ρx,E // B(w)E

ϕE

��
B′(w′)x

′
ρ′
x′,E′ // B′(w′)E

′

Now, if E : y −→ x and E′ : y′ −→ x′, then

B(w)E ∼= B(w)x/l(E)B(w)x and B(w′)′E
′ ∼= B′(w′)x

′
/l′(E′)B′(w′)x

′
.

By assumption, fl,x(l(E)) = h·l′(E′) for some invertible element h ∈ k× and ϕx(l(E)B(w)x) =

fl,x(l(E)) ·B′(w′)x
′

= l′(E′)B′(w′)x
′
. Thus the quotients are also isomorphic and so there

exists ϕE : B(w)E →∼ B′(w′)E
′ such that the following diagram commutes:

B(w)x

ϕx

��

ρy,E // B(w)E

ϕE

��
B′(w′)x

′
ρ′
y′,E′ // B′(w′)E

′

Now we have to construct B(w)δy and B′(w′)δy
′ . Observe that (ϕx)x.y induces an

isomorphism of Sk-modules between the sets of sections Γ({.y},B(w)) ∼= Γ({.′y′},B′(w′))
and, from what we have observed above, the following diagram commutes:

Γ({.y},B(w))

⊕x.yϕx

��

//

uy

,,⊕
x.y B(w)x

⊕x.yϕx

��

//
⊕

x∈Vδy B(w)x
⊕ρx,E //

⊕x∈Vδyϕx
��

⊕
E∈Eδy B(w)E

⊕E∈Eδyϕ
E

��

Γ({.′y′},B′(w′)) // //

u′
y′
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⊕
x′.′y′ B

′(w′)x
′ //

⊕
x′∈Vδy′

B′(w′)x
′

⊕ρ′
x′,E′

//
⊕

E∈Eδy′
B′(w′)E

′
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It follows that there exists an isomorphism of Sk-modules B(w)δy ∼= B′(w′)δy
′ and by

the unicity of the projective cover we obtain B(w)y ∼= B′(w′)y
′ . This proves the statement.

The lemma above will be a very useful tool in Chapter 5.
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Chapter 3

Moment graphs associated to a
symmetrisable Kac-Moody algebra

The aim of this chapter is to recall standard notions related to the theory of Weyl
groups and to study some classes of moment graphs coming from this theory. At first, we
will define regular and parabolic Bruhat graphs associated to a symmetrisable Kac-Moody
algebra. In particular, we will see that parabolic Bruhat graphs are quotients of the regular
ones in the sense of §1.3.2. The second part of this section is devoted to the affine and
affine Grassmannian cases. The main result of this chapter is a characterisation of finite
intervals of the moment graph associated to the affine Grassmannian (see §3.2.2 and §3.2.3)
that motivates the definition of the stable moment graph.

3.1 Bruhat graphs

Here, we define a very important class of moment graphs: the Bruhat graphs. As
unlabelled oriented graphs, moment graphs were introduced by Dyer in 1991 (cf.[10]) in
order to study some properties of the Bruhat order on a Coxeter group; already in 1993, he
considered them as edge–labelled oriented graphs. Actually, he was labelling the edges by
reflections of the Coxeter group (cf.[11]), instead of the corresponding positive coroots (see
Def.3.1.1). Even if his definition seems equivalent to ours, the extra structure coming from
the whole root lattice turns out to be fundamental when we are considering morphisms be-
tween two Bruhat (k-moment) graphs (see §1.2). An important (and still open) conjecture,
the so-called combinatorial invariance conjecture (due to Lusztig and Dyer, independently),
states that the Kazhdan-Lusztig polynomial hx,y (see §4.2.1) only depends on the interval
[x, y] in the Bruhat graph. As moment graphs, Bruhat graphs constitute a very important
example and in fact they have been introduced already in [7].

We start by recalling some notation from [26]. Let g be a symmetrisable Kac-Moody al-
gebra, that is the Lie algebra g(A) associated to a symmetrisable generalised Cartan matrix

25
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A, and h its Cartan subalgebra. Let Π = {αi}i=1,...,n ⊂ h∗, resp. Π∨ = {αi∨}i=1,...,n ⊂ h,
be the set of simple roots, resp. coroots; let ∆, resp. ∆+, resp. ∆re

+ be the root system,
resp. the set of positive roots, resp. the set of positive real roots; and let Q =

∑n
i=1 Zαi,

resp. Q∨ =
∑n

i=1 Zαi∨, be the root lattice, resp. the coroot lattice. For any α ∈ ∆, we
denote by sα ∈ GL(h∗) the reflection, whose action on v ∈ h∗ is given by

sα(v) = v − 〈v, α∨〉α (3.1)

LetW = W(A) be the Weyl group associated to A, that is the subgroup ofGL(h∗) generated
by the set of simple reflections S = {sα|α ∈ Π}. Recall that (W, S) is a Coxeter system (cf.
[26], §3.10).

However, W can be seen also as subgroup of GL(h), by the setting, for any λ ∈ h

sα(λ) := λ− 〈α, λ〉α∨ (3.2)

We will denote by T ⊂W the set of reflections, that is

T =
{
sα |α ∈ ∆re

+

}
=
{
wsw−1 |w ∈W, s ∈ S

}
(3.3)

Hereafter we will write αt to denote the positive real root corresponding to the reflection
t ∈ T. Finally, denote by ` : W → Z≥0 the length function and by ≤ the Bruhat order on
W.

3.1.1 Regular Bruhat graphs

Definition 3.1.1. Let (W, S) be as above. Then the regular Bruhat (moment) graph G =
G(g) = (V,E,≤, l) associated to g is a moment graph on Q∨ and it is given by

(i) V = W, that is the Weyl group of g

(ii) E =
{
x→ y |x < y , ∃α∈∆re

+ such that y = sαx
}

= {x→ y |x < y , ∃ t ∈ T such that y = tx}

(iii) l(x→ sαx) := α∨

Remark 3.1.1. Such a moment graph has an important geometric meaning. If G is the
Kac-Moody group, whose Lie algebra is g, and B ⊂ G is a standard Borel subgroup, then
there is an algebraic action of a maximal torus T ⊂ B on the flag variety B = G/B (cf.
[32]). Moreover, the stratification coming from the Bruhat decomposition is T -invariant
and satisfies all the assumptions of [[7],§1]. It turns out that this is a particular case of
Example 1.1.4. In fact, the vertices are the 0-dimensional orbits with respect to the T -action,
while the edges represent the 1-dimensional orbits (cf.§2.1 of [19]). The partial order on
the set of vertices is induced by the Bruhat decomposition B =

⊔
w∈WXw, where, indeed,

Xw =
⊔
y≤wXy.
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Example 3.1.1. If g = sl2, then the corresponding root system is A1 = {±α} and W = S2.
The associated Bruhat moment graph is the following subgeneric graph (see Example

1.1.3 ).

e • α∨ // •sα

For any local ring k, this graph is clearly a k-moment graph and (G(sl2), k) is trivially a
GKM-pair.

Example 3.1.2. If g = sl3, then the corresponding root system is A2 = {±α,±β,±(α+β)},
W = S3. In this case, we get the following Bruhat graph.

sαsβsα = sα+β = sβsαsβ

sβsα

α∨
55kkkkkkkkkkkkkkk

sαsβ

β∨
iiSSSSSSSSSSSSSSS

sα

(α+β)∨jjjjjjjj

44jjjjjjjjjjjjjjjjjjjjjjjjj
β∨

OO

sβ

(α+β)∨TTTTTTTT

jjTTTTTTTTTTTTTTTTTTTTTTTTT
α∨

OO

e
α∨

iiSSSSSSSSSSSSSSSSSSS
β∨

55kkkkkkkkkkkkkkkkkkk

(α+β)∨

OO

3.1.2 Parabolic Bruhat graphs

We introduce a class of Bruhat graphs, that generalises the one we described in §3.1.1.
In order to do this, we need some combinatorial results.

Let W be a Weyl group and let S be its set of simple reflections. For any subset J ⊆ S,
we denote WJ := 〈J〉 and WJ = {w ∈W |ws > w ∀s ∈ J}. The following results hold.

Proposition 3.1.1 ([5], Prop. 2.4.4).

(i) Every w ∈W has a unique factorization w = wJ ·wJ such that wJ ∈WJ and wJ ∈WJ .

(ii) For this factorization, `(w) = `(wJ) + `(wJ).

Corollary 3.1.1 ([5], Cor. 2.4.5). Each left coset wWJ has a unique representative of
minimal length.

It follows that WJ is a set of representatives for the equivalence classes in W/WJ .
In order to make consistent Definition 3.1.2, we prove the following lemma.

Lemma 3.1.1. Let W, S, J be as before. Let x, y, z ∈ W and let yJ = zJ 6= xJ . If there
exist α, β ∈ ∆re

+ such that x = sαy = sβz, then α = β and so y = z.
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Proof. Take v ∈ h∗ such that WJ = StabW(v) (such a v exists thanks to [[26], Prop. 3.2(a)).
By hypothesis, zJ = yJ and then there exists a w ∈WJ such that z = yw. It follows

sαy(v) = x(v) = sβyw(v) = sβy(v)

That is

y(v)− 〈y(v), α∨〉α = y(v)− 〈y(v), β∨〉β

This equality holds if and only if 〈y(v), α∨〉α = 〈y(v), β∨〉β. But this is the case if and only
if 〈y(v), α∨〉 = 〈y(v), β∨〉 = 0 or α is a multiple of β.

If it were 〈y(v), α∨〉 = 0, then 〈v, y−1(α)
∨〉 = 0 too. But this would imply that sy−1(α) =

y−1sαy ∈ StabW(v) = WJ , that is there would exist a u ∈WJ such that sα = yuy−1. But
then we would get x = sαy = (yuy−1)y = yu, that is xJ = yJ . This contradicts the
hypotheses.

If α is a multiple of β, then α = ±β and, since α, β ∈ ∆re
+ , we get α = β.

Definition 3.1.2. Let W, S and J be as above. Then the parabolic Bruhat (moment)
graph GJ = G(WJ) = (V,E,≤, l) associated to WJ is a moment graph on Q∨ and it is given
by

(i) V = WJ

(ii) E =
{
x→ y |x < y , ∃α∈∆re

+ , ∃w ∈WJ such that ywx−1 = sα
}

(iii) l(x→ sαxw
−1) := α∨, well–defined by Lemma 3.1.1.

Remark 3.1.2. Clearly, G(W∅) = G(g).

Remark 3.1.3. The moment graph we defined describes a geometric situation similar to
the one of Remark 3.1.1, once replaced the flag variety with the corresponding partial flag
variety (cf. [32]).

Example 3.1.3. Let g = sl4. In this case, ∆ = A3, Π = {α, β, γ}, W = S4 and S =
{sα, sβ.sγ}, where sαsγ = sγsα. If we chose J = {sα, sγ}, the associated parabolic Bruhat
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graph GJ is the following octahedron.

sβsαsγsβ

sαsγsβ

β∨
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sαsβ
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99rrrr
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(α+β)∨

XX2222222222222222222222α∨KKKK
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α∨LLLLL

eeLLLL
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99ssss

(α+β+γ)∨

VV

e

β∨

OO

(α+β)∨

YY2222222222222222222222

(β+γ)∨

EE����������������������

(α+β+γ)∨

HH

3.1.3 Parabolic graphs as quotients of regular graphs

Here we show that, if W, S and J are as in the previous section, then GJ is a quotient of
G by a G-compatible relation (cf. §1.3.2). To give this characterisation of parabolic Bruhat
graphs, we recall two well-known results.

The first one is the so-called lifting Lemma and it is a classical tool in combinatorics of
Coxeter groups.

Lemma 3.1.2 ([22], Lemma 7.4). Let (W, S) be a Coxeter system. Let s ∈ S and v, u ∈W

be such that vs < v and u < v.

(i) If us < u, then us < vs.

(ii) If us > u, then us ≤ v and u ≤ vs. Thus, in both cases, us ≤ v.

We will use this lemma several times in what follows.
The following proposition tells that the poset structure of W is preserved in WJ .

Proposition 3.1.2 ([5], Prop.2.5.1). Let (W, S) be a Coxeter system, J ⊆ S and x, y ∈W.
If x ≤ y, then xJ ≤ yJ .

Using the previous results, we get

Lemma 3.1.3. Let (W, S) be a Coxeter system and J ⊆ S. If yJ ∈ WJ , yJ ∈ WJ , t ∈ T

are such that (yJ)−1tyJ 6∈WJ . Then, tyJ < yJ if and only if tyJyJ < yJyJ .
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Proof. We prove the lemma by induction on `(yJ). If l(yJ) = 0, there is nothing to prove.
Suppose tyJ ≤ yJ and let `(yJ) > 0. Then there exists a simple reflection s ∈ J such

that yJs < yJ , that is yJyJs < yJyJ . Now, by the inductive hypothesis t(yJyJs) < yJyJs
and, from Lemma 3.1.2, it follows tyJyJ = (tyJyJs)s ≤ yJyJ .

Viceversa, suppose tyJyJ ≤ yJyJ and `(yJ) > 0. Then there exists a simple reflection
s ∈ J such that yJs < yJ , that is yJyJs < yJyJ . By hypothesis, tyJyJ < yJyJ . If
tyJyJs < tyJyJ , by Lemma 3.1.2 (i), we get tyJyJs < yJyJs and the claim follows from the
inductive hypothesis. Otherwise, tyJyJs > tyJyJ and, by Lemma 3.1.2 (ii), tyJyJs ≤ yJyJ
and tyJyJ ≤ yJyJs. If it were tyJyJs 6< yJyJs, then tyJyJs > yJyJs (because they are
comparable) and so yJyJs < tyY yJs ≤ yJyJ , that would imply tyJyJs = yJyJ . But this
is a contradiction, since they are not even in the same equivalence class. Thus we get
tyJyJs < yJyJs and hence, from the inductive hypothesis, the statement.

Lemma 3.1.4. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with S, the
set of simple reflections, and let J ⊆ S. Let G be the Bruhat graph associated to g, then
the equivalence relation on its set of vertices V, given by x ∼ y if and only if xJ = yJ , is
G-compatible.

Proof. We have to check conditions (EQV1) and (EQV2).

(EQV1) From Proposition 3.1.2, if x ≤ y and xJ = yJ , then for all z ∈ [x, y], xJ ≤ zJ ≤
yJ = xJ , that is zJ = xJ .

(EQV2) Let x1, y1 ∈W and t ∈ T be such that x1 6∼ y1WJ and x1 → y1 = tx1 ∈ E. If x2 ∼
x1, that is x2 = x1w for some w ∈WJ , then we set y2 := y1w, clearly x2 −−− y2 = tx2 ∈ E

and l(x2 −−− y2) = l(x1 → y1) = αt. By Lemma 3.1.1, y2 is the only element equivalent to
y1 and connected to x2. Finally, from Lemma 3.1.3, it follows that x2 < y2.

Corollary 3.1.2. Let g be a symmetrisable Kac-Moody algebra, W its Weyl group with S,
the set of simple reflections, and let J ⊆ S. Let G be the Bruhat graph associated to g and
GJ the one associated to WJ . Then GJ is the quotient of G by the G-compatible equivalent
relation defined in the previous lemma (in the sense of §1.3.2).

We will denote by pJ : G→ GJ the epimorphism given by (pJ)V(x) := xJ and (pJ)l,x = id
for all x ∈W.

Example 3.1.4. Let g = sl3 and J = {sα} ⊂ S = {sα, sβ}. Then Example 1.3.1 describes
the parabolic Bruhat graph GJ as quotient of the regular one (see Example 3.1.2).

3.2 The affine setting

We want now to focus our attention on the affine case.
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Let A be a generalised Cartan matrix of affine type of order l + 1 and rank l. Let us
enumerate its rows and columns from 0 to l (as Kac in [[26], §6.1 ] does), and denote by
�
A the matrix obtained from A by deleting the 0-th row and the 0-th column. Then the

Weyl group Wa of g = g(A) is the affinization of the (finite) Weyl group Wf of
�
g= g(

�
A)

(cf. [26], Chapter 1). Take
�

∆ to be the root system of
�
g, and

�
Π and

�
∆+ the corresponding

set of simple and of positive roots, respectively. It turns out that the set of real roots of g
has a nice description in terms of the root system of

�
g. Let δ ∈ h∗ be such that Aδ = 0

and δ =
∑r

i=0 aiαi, where Π = {αi}i=0,...,r and the ai ∈ Z>0 are relatively prime (such an
element exists and it is unique by point b) of Theorem 5.6 in [26]). Then (cf. [26], Proposition
6.3)

∆re =

{
α+ nδ |α ∈

�
∆, n ∈ Z

}
(3.4)

and
∆re

+ =

{
α+ nδ |α ∈

�
∆, n ∈ Z>0

}
∪

�
∆+ (3.5)

It follows that Wa is generated by the set of affine reflections

Ta = {sβ
∣∣β ∈ ∆re

+} = {sα,n |α ∈
�

∆, n ∈ Z>0} ∪ {sα,0
∣∣α ∈ �

∆+}.

Explicitly, the action of Wa on
� ∗
h ⊕δC is given by

sα,n
(
(λ, r)

)
= (sα(λ),−n〈λ, α∨〉+ r) (3.6)

For a given real root α + nδ, we want now to describe the corresponding coroot (α+ δ)
∨. We

have a decomposition of the Cartan subalgebra as h =
�
h ⊕Cc⊕ Cd, while h∗ =

� ∗
h ⊕Cδ ⊕ CΛ0 (cf.

[[26], §6.2]), where 〈δ,
�
h ⊕Cc〉 = 0. Because g is symmetrizable, by [[26], Lemma 2.1], there is a

bilinear form (, ) that induces an isomorphism ν :
�
h→

� ∗
h such that we may identify α∨ and 2α

(α,α) .
Then,

(α+ nδ)
∨

= α∨ +
2n

(α, α)
c =

2

(α, α)
(α+ n c) . (3.7)

3.2.1 The affine Weyl group and the set of alcoves

We recall briefly a description of Wa as a group of affine transformations of
� ∗
h R, the R-span

of α1, . . . , αl. This is obtained by identifying
� ∗
h R with the affine space

� ∗
h −1 mod Rδ, where

� ∗
h −1:=

{
λ ∈ h∗R

∣∣〈λ, c〉 = −1
}

Namely, it is possible to define an action of the affine Weyl group on
� ∗
h R as follows

sα,n(λ) = λ−
(
〈λ, α∨〉 − 2n

(α, α)

)
α = sα,0(λ) + nα∨ (3.8)
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Denote by
� ∨
Q the coroot lattice of

�
g and by Tµ the translation by µ ∈

� ∨
Q , that is the linear

transformation defined as Tµ(λ) = λ + µ for any λ ∈
� ∗
h R. This is an element of the affine Weyl

group, since Tnα∨ = sα,nsα. It is easy to check that for any w ∈Wa and for any µ ∈
� ∨
Q we have

wTµw
−1 = Tw(µ), so the group of translations by an element of the coroot lattice turns out to be a

normal subgroup. A well known fact is that Wa = Wfn
� ∨
Q (cf.[[22], Proposition 4.2]).

If θ is the (unique) highest root of
�

∆, then a minimal set of generators for Wa is given by
Sa = {sαi,0}i=1,...,l ∪ {sθ,1}, where Sf := {sαi,0}i=1,...,l is the set of simple reflections of Wf . Let
us set s0 := sθ,1 and call it the affine simple reflection.

Denote by

Hα,n :=

{
λ ∈

� ∗
h R | 〈λ, α∨〉 = 2

n

(α, α)

}
=

{
λ ∈

� ∗
h R | (λ, α) = n

}
and observe that the affine reflection sα,n fixes pointwise such a hyperplane. We call alcoves the
connected components of

� ∗
h R \

⋃
α∈

�
∆+

n∈Z

Hα,n

and denote by A the set of all alcoves.
The dominant -or fundamental - (Weyl) chamber is

C+ := {λ∈
� ∗
h R | 〈λ, α∨〉 > 0 ∀α ∈

�
∆+}

and an element λ ∈ C+ is called dominant weight. We denote by A+ the set of all alcoves contained
in C+ and by

Π0 =

{
λ ∈

� ∗
h R | 0 < 〈λ, α∨〉 <

2

(α, α)
∀α ∈ Π

}
=

{
λ ∈

� ∗
h R | 0 < (λ, α) < 1 ∀α ∈ Π

}
the fundamental box.

We state now a 1-1 correspondence between Wa and A (cf. [[22], Theorem 4.8]). In order to
do that, we fix an alcove A+, that is the unique alcove in A+ which contains the null vector in its
closure. A+ is usually called fundamental alcove and it has the property that every element λ ∈ A+

is such that 0 < (λ, α) ≤ 1 for all α ∈
�

∆+ (cf. [[22], §4.3]).
The affine Weyl group Wa acts on the left (by (3.8)) simply transitively on A (cf. [22],§4.5)

and so we obtain
Wa −→1−1 A

w 7→ wA+.
(3.9)

Example 3.2.1. Let g = ŝl2. By (3.5), we know that ∆re
+ = {±α + nδ |n ∈ Z>0} ∪ {α}, where α

is the (unique) positive root of sl2 and (α, α) = 2. The corresponding Bruhat graph is an infinite
graph, whose vertices are given by the words in two letters (s1 := sα and s0) without repetitions.
Two elements are connected if and only if the difference between their lengths is odd and in this
case the edge is oriented from the shorter to the longer one. Thanks to the correspondence (3.9),
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we may identify the set of vertices with the set of alcoves of g. If we restrict the Bruhat graph to
the interval [A+, s1s0s1], we get the following

|
s1s0s1A

+
|

s1s0A
+
|

−α+2c

}}
s1A

+
|

−α+c

}}

α+c

99A+
|

α

}}

α+c

!!

−α+c

ee
s0A

+
|

α+2c

!!

α

ee
s0s1A

+
|

α

zz

We observe here that each wall of A+ is fixed by exactly one reflection s ∈ Sa. We say that
such a wall is the s-wall of A+. In general every A ∈ A has one and only one wall in the Wa-orbit
of the s-wall of A+. This is called s-wall of A.

The affine Weyl group acts on itself by right multiplication, so it makes sense to define a right
action of Wa on A. It is of course enough define such an action for the generators of the group.
Thus for each alcove A let As be the unique alcove having in common with A the s-wall.

Two partial orders on the set of alcoves

Here we want to provide the set of alcoves with two partial orders (cf. [37]).
First of all, the Bruhat order on Wa induces a partial order on A. Indeed, for all alcoves

A,B ∈ A with A = xA+, B = yA+, x, y ∈Wa we may set

A ≤ B ⇐⇒ x ≤ y.

We still call it Bruhat order.
We observe that in general if we look at two fixed alcoves it is not obvious at all if they are

comparable with respect to the Bruhat order without knowing the corresponding elements in Wa.
Now, we recall Lusztig’s definition of a nicer partial order 4 on A, in the sense that for all pair

of alcoves we will be able to say if they are comparable and, in case, to establish which one is the
bigger one.

Each H ∈
⋃
α∈

�
∆+

n∈Z

Hα,n divides
� ∗
h R in two half spaces:

� ∗
h R= H+ ∪ H ∪ H−, where H+ is

the half space that intersects every translate of C+. Let A ∈ A, if H is the reflecting hyperplane
between A and As, s ∈ Sa, we consider the partial order generated by

A 4 As if A ∈ H−.

We notice that it is not clear in general how ≤ and 4 are related. Actually, denoting by X the
lattice of (finite) integral coweights, that is

X∨ := {λ ∈
� ∗
h R | (λ, α) ∈ Z ∀α ∈

�
∆}, (3.10)

we have
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Proposition 3.2.1 ([40],claim 4.4). Far enough inside A+, ≤ and 4 coincide, that is for all
λ ∈ X∨ ∩ C+, A,B ∈ A the following are equivalent:

1. A 4 B;

2. nλ+A ≤ nλ+B for n >> 0.

Because of this result we call 4 generic Bruhat order. Remark that 4 is invariant under
translation by coweights.

The periodic moment graph

In section 3.1, we associated to any simmetrisable Kac-Moody algebra g with Weyl group W its
regular Bruhat graph G(g). If g is moreover affine, that is its Weyl group is an affine Weyl group
Wa, we may give the following definition.

Definition 3.2.1. The periodic moment graph Gper = Gper(g) = (V,E,4, l) associated to Wa is a
moment graph on Q∨ and it is given by

(i) V = A, the set of alcoves of Wa

(ii) E =
{
xA+ → yA+ |xA+ 4 yA+ , ∃α∈∆re

+ such that y = sαx
}

(iii) l(xA+ → sαxA
+) := α∨

Remark 3.2.1. We identified Wa and A by (3.9) and so G(Wa) and Gper(Wa) coincide as labeled
unoriented graphs.

Example 3.2.2. Let g = ŝl2. If we restrict the corresponding periodic moment graph to the interval
[s1s0s1, s0s1A

+], we get the following moment graph.

|
s1s0s1A

+
|

α

$$
−α+2c

!!

−α+c

99
s1s0A

+
|

−α+c

!!

α

99
s1A

+
|

α+c

99

α

!!

A+
|

α+c

!!
s0A

+
|

α+2c

!!
s0s1A

+
|

3.2.2 Parabolic moment graphs associated to the affine Grassmannian

We consider in this section a very important class of parabolic moment graphs: the ones asso-
ciated to the Affine Grassmannians, that is GJ , where W = Wa is an affine Weyl group and J is the
corresponding set of finite simple reflections, that is we are modding out by the finite Weyl group.

There are actually two descriptions of this graph: one identifies the set of vertices with the

coroot lattice
� ∨
Q , while the other identifies the set of vertices with A+, the set of alcoves in the

fundamental chamber. Hereafter, we will denote this graph by Gpar.
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SinceWJ = StabW(0) andW.0 =
� ∨
Q , WJ is in bijection with the coroot lattice via the mapping

w 7→ w(0) and clearly there exist an element w ∈WJ and a reflection t ∈ T such that xJ = tyJw if
and only if xJ(0) = tyJ(0). And we get in this way the first description.

On the other hand, WJ is evidently in bijection with WJ \W via the mapping wJ 7→ (wJ)−1

modulo WJ . The set of minimal representatives for the equivalence classes, under the correspon-
dence (3.9), is given by the set A+ of the alcoves in the fundamental chamber. Moreover, we will
connect xA+, yA+ ∈ A+ if and only if there exist an element of the finite Weyl group w ∈WJ and
an affine reflection t ∈ T such that x = wyt, that is x−1 = ty−1w−1.

Example 3.2.3. Let g = ŝl3. Let us consider the interval [e, sβsαsβs0] ⊂ WJ then the two
descriptions of Gpar are as follows (we omit the labels).

(i) Description via the coroot lattice
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• •

• •
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(ii) Description via the set of alcoves in C+
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As we can see in the previous example, in the description of Gpar via the alcoves in the fun-
damental chamber, the set of edges seems to have a very complex structure, while in the other
one the order on the set of vertices is hard to understand. Since we are interested in the study of
intervals, the description via the coroot lattice turns out to be not that useful for our purposes,
unless g = ŝl2. We will show later that finite intervals of Gpar "far enough" in C+ have surprisingly
a very regular structure.
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The ŝl2 case

If g = ŝl2, it is actually possible to give a very explicit description of Gpar. In this case we may
identify the finite root with the finite coroot lattice and then the set of vertices is V = Zα. For any
pair n,m ∈ Z, it is easy to check that

sα,n+m(nα) = mα, (3.11)

then Gpar is a fully connected graph. Notice that, even if (3.11) holds for any pairs of integers n
and m, we do not allow loops, so n 6= m always. Moreover, by (3.7) and (3.11), it follows

l(nα−−−mα) =

{
α+ (n+m)c if n+m ≥ 0
−α− (n+m)c if n+m < 0

(3.12)

Finally, observe that α = s0(0) and −α = sαs0(0). In particular,

nα =

{
(sαs0)n(0) if n ≤ 0
s0(sαs0)n−1(0) if n > 0

We conclude that, for any pair of n 6= m ∈ Z, nα < mα if and only if |n| < |m| or n = −m > 0.

Example 3.2.4. The interval [0,−2α] of Gpar looks like in the following picture

•
−2α

•
−α

−α+3cyy

α+c

;;
•
0

α+c %%−α+cyy

−α+2c

{{

α+2c

##
•
α

α+3c %%

α

cc

α−c

dd
•
2α

α

zz

3.2.3 Parabolic intervals far enough in the fundamental chamber
In this paragraph, we will consider only the description of Gpar in which the set of vertices

coincides with A+. Our goal is to study the structure of finite intervals of Gpar far enough in the
fundamental chamber. In this section, k is any field of characteristic zero.

Definition 3.2.2. Let λ, µ ∈ C+. We say that

(i) λ is strongly linked to µ if λ = µ+ xα, for some x ∈ R and α ∈
�

∆+

(ii) λ is linked to µ if λ = w(µ+ nα), for some n ∈ R, α ∈
�

∆+ and w ∈Wf

Remark that the fundamental chamber C+ is a fundamental domain with respect to the left
action of the finite Weyl group (cf. [22], §1.12), so the element in point (ii) is unique.

Proposition 3.2.2. There exists a K > 0, depending only on the root system
�

∆, such that if
λ ∈ C+ and dλ is the minimum of distances from λ to the borders of C+, then all µ ∈ C+ linked to
λ and such that |λ− µ| < K · dλ are strongly linked to λ.
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Proof. For any λ ∈ C+ and any positive finite root α ∈
�

∆+ we denote by rλ,α the line {λ +

αx |x ∈ R} ⊆
� ∗
h R. It is clear that the set of dominant weights strongly linked to λ corresponds to

(
⋃
α∈

�
∆+

rλ,α)
⋂
C+. On the other hand, we may describe the set of µ ∈ C+ linked to λ as follows.

Fix α ∈
�

∆+ and consider the line rλ,α. Each time that such a line hits a wall of C+ reflects it off
the wall and goes on this way. Denote by r̃λ,α the piecewise linear path inside of C+ so obtained.
Now

⋃
α∈

�
∆+

r̃λ,α is the set of dominant weights linked to λ.

Thus it is enough to show that there exists aK > 0 such that if µ ∈ r̃λ,α and |λ−µ| < K ·dλ, then

µ ∈ rλ,α. Notice that the finite Weyl group acts on
� ∗
h R as a group of orthogonal transformations,

hence we may reduce to show that for all w ∈Wf \{e, sα}, the distance of the weight w(λ) from the
line rλ,α is not less then than K · dλ. Moreover, one may think of this reduction as an "unfolding"
back r̃λ,α to rλ,α and considering the conjugates of λ instead of λ.

Since the distance of w(λ) from the line rλ,α is the minimum of the distances of w(λ) from
λ + xα for x ∈ R, we have to show that |λ − xα − w(λ)|2 ≥ K2d2

λ for all x ∈ R. Computing the
square norm, and denoting λw := λ− w(λ), we have:

|α|2x2 + 2(λw, α)x+ |λw|2 +K2d2
λ ≥ 0 ∀x ∈ R

Hence this is equivalent to showing that the discriminant Dw = (λw, α)2−|α|2|λw|2 +|α|2K2d2
λ ≤ 0.

First notice that Dsαw = Dw, since λsαw = λ−w(λ) + 〈w(λ), α∨〉α = λw + 〈w(λ), α∨〉α, hence:

Dsαw = (λsαw, α)2 − |α|2|λsαw|2 + |α|2K2d2
λ =

= (λw + 〈w(λ), α∨〉α, α)2 − |α|2(λw + 〈w(λ), α∨〉α, λw + 〈w(λ), α∨〉α) + |α|2K2d2
λ =

= (λw, α)2 + 2〈w(λ), α∨〉|α|2(λw, α) + 〈w(λ), α∨〉2|α|4+
− |α|2|λw|2 − 2|α|2(〈w(λ), α∨〉α, λw)− 〈w(λ), α∨〉2|α|4 + |α|2K2d2

λ =
= (λw, α)2 − |α|2|λw|2 + |α|2K2d2

λ = Dw

Now if w−1(α) is a finite negative root, then clearly (sαw)−1(α) ∈
�

∆+, hence, using the invariance

property just proved, in what follows we may assume that w ∈Wf\{e, sα} is such that w−1(α) ∈
�

∆+.

Denote now by
�w
∆ + the set of positive roots sent to negative roots by w−1, let Cw be the

(closed convex rational) cone 〈
�w
∆ +〉R+ generated by the elements of

�w
∆ + and notice that α is

not in ±Cw. Indeed, α is not in Cw since all elements of this cone are sent to non-negative linear
combination of negative roots by w−1 and, on the other hand, α is a positive root while all elements
in −Cw are non-negative linear combinations of negative roots.

Let Lw be the set of weights λw, where λ runs in C+ and fix a reduced expression si1 . . . sir ,
with sij := sαij , for αj ∈

·
Π. Then we have w(λ) = λ− (a1βi1 . . . arβir ), where βj = si1 . . . sij−1

(αij )

for j = 1, . . . , r. Notice that aij ≥ 0 for all j since λ ∈ C+ and, moreover, {βi1 , . . . , βir} =
�w
∆ +.

This shows that Lw ⊆ Cw.
Let π :

� ∗
h R \{0} → P(

� ∗
h R) the quotient map to the projective space of

� ∗
h R. Given two non-

zero vectors u, v ∈
� ∗
h R we denote by [u, v] the angle between them; clearly this symbol depends

only on the lines generated by u and v up to sign to change and up to supplementary angles. In

particular, the map P(
� ∗
h R)2 → R defined by (π[u], π[v]) 7→ cos2[u, v] is well–defined.
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Since Cw is a closed convex rational cone we have that π(Cw\{0}) is closed in P(
� ∗
h R). Hence the

map π(Cw \ {0})→ R sending π(µ) 7→ cos2[µ, α] achieves a maximal value Mα,w and this maximal
value is less than 1 since π(α) 6∈ π(Cw \ {0}). In particular we have cos2[λw, α] ≤Mα,w < 1 for all
λ ∈ C+ \ {0} since Lw ⊆ Cw.

Finally, since there are only a finite number of pairs (α,w), we have M := maxMα,w < 1. Now
notice that w(λ) 6∈ C+, because w 6= e, so |λw| ≥ dλ, as the segment from λ to w(λ) must cross a
wall of C+.

We are now in a position to conclude the proof. We have to show Dw ≤ 0. Since

(λw, α) = |λw||α| cos[λw, α],

our inequality becomes cos2[λw, α] ≤ 1 − K2d2
λ/|λw|2. But we have cos2[λw, α] ≤ M < 1 and

1 −K2d2
λ/|λw|2 > 1 −K2. Hence it is enough to choose K such that M ≤ 1 −K2. This finishes

the proof.

Let ρ be half the sum of the finite positive coroots, that is ρ = 1
2

∑
α∈

�
∆+

α∨. Moreover, for any

alcove A ∈ A, let us denote by cA its centroid.

By using Proposition 3.2.2, together with the identification α∨ = 2α/(α, α) for all α ∈
�

∆, we
get the following characterisation of finite intervals of Gpar that are far enough from the walls of
the dominant chamber.

Lemma 3.2.1. Let A,B ∈ A+, then there exists an integer n0 = n0(A,B) such that for any
λ ∈ X ∩ nρ+ C+ , with n ≥ n0, for any pair C,D ∈ [A+ λ,B + λ] there is an edge C −−−D if and
only if

(i) either D = Ct for some t ∈ T

(ii) or D = C + aα for some a ∈ Z \ {0} and α ∈
�

∆+.

Proof. Observe first that the statement is true for g = sl2. Indeed, from §3.2.2, it follows that
n0 = 0 satisfies already the requirements.

We may then suppose g 6= sl2. The claim will follow once we prove that there exists an n0 ∈ Z
such that for all n ∈ Z, n ≥ n0 and for all pair E,F ∈ [A+ nρ,B + nρ], we have

|cE − cF | < K · dcE

where K > 0 was defined in Proposition 3.2.2. Indeed, the statement is equivalent to show that for

all n > n0, for any α ∈
�

∆+ we have (A+nρ+Rα∨)∩w([A+nρ,B+nρ]) = ∅ unless w = e, sα, but this

is the case if and only if for all n > n0, for any α ∈
�

∆+ we have
(
A+nρ+Rw(α∨)

)
∩[A+nρ,B+nρ] = ∅

unless w = e, sα.

For any finite simple root α ∈
�
Π, let us denote by dcD,α the distance between cD and the
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hyperplane Hα,0. Let ϕα be the angle between ρ and α, then we get the following picture

///////////////////////////
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t
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/
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/

Hα,0

•cD

cD + nρ

ϕα

As we can see in the picture above, we have

dcD+nρ,α
= dcD,α + n|ρ| · cos(ϕα)

Moreover for all D ∈ [A,B]

dcD+nρ
= min

α
{dcD+nρ,α}

Let us denote r := maxD,E∈[A,B] |cD−cE | and letH ∈ [A,B] and β ∈
�
Π such that minD∈[A,B] dcD+ρ

=
dcH ,β + |ρ| cosϕβ (that is minD∈[A,B] dcD+nρ

= dcH ,β + n|ρ| cosϕβ for all n > 0). Since g 6= sl2, for

any γ ∈
�
Π it holds cosϕγ 6= 0 and we may set

m :=
r

K|ρ| · cosϕβ

Define n0 = dme. Now, for any pair of alcoves E,F ∈ [A,B] and for any n ∈ Z, n > n0

|cE+nρ − cF+nρ| = |cE − cF |
≤ r
= m ·K|ρ| · cosϕβ
≤ n0 ·K|ρ| · cosϕβ
≤ n0 ·K|ρ| · cosϕβ +K · dcH ,β
= K ·minD∈[A,B] dcD+n0ρ

≤ K · dcE+n0ρ

< K · dcE+nρ

We say that the edges of type (i), that is given by reflections, are stable, while the ones of type
(ii), that is given by translations, are non-stable. We denote the corresponding sets ES , resp. ENS .

Example 3.2.5. Let g = ŝl2 and A = A+, B = s0s1s2s1A
+. Then in the interval [A,B] of Gpar



40 CHAPTER 3. MOMENT GRAPHS OF A SYMMETRISABLE KM ALGEBRA

there are edges that are neither stable nor non-stable, as the one between A and C = s0s1A
+.
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It is enough to translate the interval of α+ β to get the structure described in Lemma 3.2.1.
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Lemma 3.2.2. For any pair A,B ∈ A+, B ≤ A and for any pair λ1 = n1ρ, λ2 = n2ρ ∈ X∩nρ+C+

(n1, n2 ≥ n0(A,B)) then G
par
|[A+λ1,B+λ1]

and G
par
|A+λ2,B+λ2]

are isomorphic as oriented graphs.

Proof. Set µ := λ2−λ1. The isomorphism we are looking for is given by C 7→ C+µ. Observe that,
by Proposition 3.2.1, the Bruhat order coincides in the fundamental chamber with the generic one
and so it is invariant by weight translation; then the map we have just defined is an isomorphism
of posets. Moreover C is connected to D in G

par
|A+λ1,B+λ1]

if and only if C + µ is connected to D+ µ

in G
par
|A+λ2,B+λ2]

, indeed:

(i) D = Ct for some t ∈ T if and only if D = rC for some r ∈ T, that is if and only if there exist

α ∈
�

∆+ and n ∈ Z such that D = sα,n(C). It is now easy to check that this is the case if and only
if D + µ = sα,n+(µ,α)(C + µ), that is there exists a reflection t′ ∈ T such that D + µ = (C + µ)t′.

(ii) D = C + aα if and only if D + µ = C + aα+ µ = (C + µ) + aα.
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Remark 3.2.2. We want to stress the fact that in Lemma 3.2.2 we are not proving the existence
of an isomorphism of moment graphs, but only between the underlying oriented graphs, that is we
are not considering labels. Our first hope was that we could find a collection of {fl,C}C∈[A+λ1,B+λ1]

satisfying condition (MORPh2a) and (MORPH2b). In the next two paragraphs, we will see that
it is not the case. In particular, it turns out that the labels of stable edges are invariant by coroot
translation (cf. Lemma 3.2.1), while the ones of non-stable edges are not (cf. Lemma 3.2.4).

From now one we will denote by w ∈ Wa the corresponding alcove wA+ ∈ A, thanks to the
identification (3.9) of the affine Weyl group with the set of alcoves. In particular, if wA+ is contained
in the fundamental chamber, we will write w ∈ A+.

Stable edges

Let |Sa| = n and fix a numbering of the simple reflections. We define the permutation σA,µ ∈ Sn,
for A ∈ A and µ ∈

� ∨
X , in the following way: σA,µ(i) = j if the image under the translation by µ of

the si–th wall of A is the sj–th wall of A+ µ (cf.§3.2.1). Let W̃a the extended affine Weyl group,

that is W̃a = Wa n Ω, where Ω :=
� ∨
X /

� ∨
Q (cf. [38]).

Lemma 3.2.3. For any µ ∈
� ∨
X the permutation defined above is independent on A ∈ A, i.e. there

exists σµ ∈ Sn such that σA,µ = σµ for any alcove A.

Proof. We know that Tkα∨ = sα,ksα,0 for any α ∈
�

∆. Since we are reflecting twice in the same
direction (orthogonal to α), the walls of A+ kα∨ have the same numbering as the ones of A.

Thus for any µ ∈
� ∨
X there exists an element ω ∈ Ω and roots α1, . . . αr ∈ R such that

Tµ = ωsα1,k1sα1 . . . sαr,krsαr and the numbering of the walls of A+ µ only depends on ω.

We get the following lemma.

Corollary 3.2.1. Let x ∈ Wf , t ∈ T, µ ∈ X∨ be such that x, xt, Tµx, Tµxt ∈ A+. Then, l(Tµx −
−− Tµxt) = σµ(l(x−−− xt)).

Non-stable edges

Now we describe how labels of non-stable edges change. In order to do that we need the
following result

Proposition 3.2.3 ([22],Proposition 4.1). Let z = Tz(0)v, where z(0)∈
� ∨
Q and v∈Wf . Then, for

any α ∈
�

∆+ and for any n ∈ Z,

zsα,nz
−1 = s±v(α),r with r = ±

(
〈z(0), v(α)

∨〉+ n
)
, (3.13)

where the signs are such that r > 0 or r = 0 and ±v(α) ∈
�

∆+.

We may now prove

Lemma 3.2.4. Let x ∈ A+ and x = Tx(0)w, where w ∈Wf .
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(i) If α ∈
�

∆+ and Taα∨x ∈ A+, then

l(x−−− Taα∨x) = ±w−1(α∨)∓ 2

(α, α)
(〈x(0), α∨〉+ a) c, (3.14)

where ∓
(
〈x(0), α∨〉+ a

)
> 0 or

(
〈x(0), α∨〉+ a

)
= 0 and ±w−1(α) ∈

�
∆+.

(ii) Let y = Taα∨x, for some a ∈ Z and α ∈
�

∆+. Let moreover µ ∈ X∨, ω ∈ Ω and γ ∈
� ∨
Q be such

that Tµ = ωTγ . Then, if y, Tµx, Tµy ∈ C+,

l(Tµx−−− Tµy) = σµ(l(x−−− y))∓ 2〈γ, α∨〉
(α, α)

c, (3.15)

where ∓
(
〈γ + x(0), α∨〉+ a

)
> 0 or

(
〈γ + x(0), α∨〉+ a

)
= 0 and ±σµ(w−1(α)) ∈

�
∆+.

Proof.

(i) Since Taα∨x = sα,asα,0x, we have to determine the positive root corresponding to the reflection
x−1sα,0sα,asα,0x.

Since sα,0sα,asα,0 = sα,−a, by Proposition 3.2.3 with z = x−1, v = w−1, z(0) = −w−1(x(0))
and n = −a, we get

x−1sα,0sα,asα,0x = s±w−1(α),±(〈−w−1(x(0)),w−1(α)∨〉−a)

= s±w−1(α),∓(〈x(0),α∨〉+a).

The result follows from (3.7) and the fact that w(α)
∨

= w(α∨) for all α ∈
�

∆ and w ∈Wf .

(ii) Observe that Tµx−−− Tµy = Taα∨(Tµx). If x = Tx(0)w, then Tµx = Tµ+x(0)w = ωTγ+x(0)w and

we may apply point (i) of this Lemma with Tµx instead of x. So, if ±w−1(α) ∈
�

∆+, n = −a, we get

l(Tkγ∨x−−− Tkγ∨y) = ±σµ(w−1(α∨))∓ 2
(α,α) (〈γ + x(0), α∨〉+ a)c

= σµ(l(x−−− y))∓ k〈γ,α∨〉
(α,α) c.

Stable moment graphs

Let Gpar be the same moment graph as before. We define here the stable moment graph Gstab as
follows. This is the moment graph having as set of vertices the alcoves in the fundamental chamber
(that we identify with the corresponding elements of the Weyl group), equipped with the Bruhat
order (that here coincides with the generic one); we connect two vertices if and only if there exists
a reflection t ∈ Ta such that y = xt, and in this case we set l(x−−− xt) := αt

∨.
Then we have:

Lemma 3.2.5. For any interval [y, w] and for any µ ∈ X∨ there exists an isomorphism of k-
moment graphs Gstab

|[y,w]
−→ Gstab

|[y,w]+µ
for all k.
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Proof. Since the order on the set of vertices of Gstab is invariant by weight translation, we have
an isomorphism of posets induced by the mapping z 7→ z + µ. This map induces also a bijection
between set of edges, as we have already seen in the proof of Lemma 3.2.2.

The permutation of Lemma 3.2.3 gives an automorphism of the root system and then an induced
automorphism of the coweight lattice. Since it depends only on the (finite intergral) coweight µ,
we can set fl,x = σµ for any x and this gives us an isomorphism of k-moment graphs for any k.



44 CHAPTER 3. MOMENT GRAPHS OF A SYMMETRISABLE KM ALGEBRA



Chapter 4

Modules over the parabolic structure
algebra

Let Z be the structure algebra (see §2.1.1) of a regular Bruhat graph G. In [13], Fiebig defined
translation functors on the category Z-mod, that is the category of Z-graded Z-modules that are
torsion free and finitely generated over Sk. Using it, he defined inductively a full subcategory H

of Z-mod and he proved that H, in characteristic zero, is equivalent to a category introduced by
Soergel in [41]. In [18], Fiebig showed that H categorifies the Hecke algebra H (and the periodic
module M), using translation functors. The aim of this chapter is to define translation functors in
the parabolic setting and to extend some results of [18].

4.1 Translation functors

Let W be a Weyl group, let S be its set of simple reflections and let J ⊆ S. Hereafter we will
keep the notation we used in §3.1.2.

For all s ∈ S, Fiebig defined in [13] an involutive automorphism σs of the structure algebra of a
regular Bruhat graph. In a similar way, we will define an involution sσ for a fixed simple reflection
s ∈ S on the structure algebra ZJ of the parabolic Bruhat (k-moment) graph GJ . In this chapter,
we suppose that (GJ , k) is a GKM-pair (see Definition 1.1.3).

Let x, y ∈ WJ . Notice that l(x −−− y) = αt
∨ if and only if l(sx −−− sy) = s(αt

∨), because
sxw(sy)−1 = sxwy−1s = sts, where w ∈ WJ . From now on, if x ∈ W, we will write x instead of
xJ .

Denote by τs the automorphism of the symmetric algebra Sk induced by the mapping λ 7→ s(λ)
for all λ ∈ Q∨. For any (zx)x∈WJ ∈ ZJ , we set sσ

(
(zx)x∈WJ

)
= (z′x)x∈WJ , where z′x := τs(zsx).

This is again an element of the structure algebra from what we have observed above.
Let us denote by sZJ the space of invariants with respect to the automorphism sσ and by −sZJ

the space of anti-invariants. We denote moreover by αs∨ the element of ZJ whose components are
all equal to αs∨. We obtain the following decomposition of ZJ as sZJ -module.

Lemma 4.1.1. ZJ = sZJ ⊕ αs∨ · sZJ .

45
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Proof. (We follow [13], Lemma 5.1). Because sσ is an involution and char(k) 6= 2, we get ZJ =
sZJ⊕−sZJ . Since αs ∈ ZJ and s(αs∨) = −αs∨, it follows sσ(αs∨) = −αs∨ and so αs∨ ·sZJ ⊆−sZJ
and we now have to prove the other inclusion, that is every element z ∈−sZJ is divisible by αs∨ in
−sZJ .

If z = (zx) ∈ −sZJ , then, for all x ∈ WJ , zx = −τs(zsx) ≡ −zsx ( mod αs
∨) and zx ≡ zsx (

mod αs
∨). It follows that 2zx ≡ 0 ( mod αs

∨), that is αs∨ divides zx in Sk, as char(k) 6= 2. We
have now to verify that z′ := (αs∨)−1 · z ∈ Z, that is z′x − z′tx ≡ 0(mod αt

∨) for any x ∈ WJ and
t ∈ T. If tx = sx, there is nothing to prove; on the other hand, if tx 6= sx, we get the following.

αs
∨ · (z′x − z′tx) = zx − ztx ≡ 0 ( mod αt

∨)

Since (GJ , k) is a GKM-pair, αs∨ 6≡ 0 (mod αt
∨) and we obtain z′x − z′tx ≡ 0 ( mod αt

∨).

4.1.1 Left translation functors
In order to define translation functors, we need an action of Sk on sZJ and ZJ .

Lemma 4.1.2. For any λ ∈ Q∨ and any x ∈WJ , let us set

c(λ)Jx :=
∑

xJ∈WJ

xxJ(λ). (4.1)

Then c(λ)J := (c(λ)Jx)x∈WJ ∈ sZJ .

Proof. It is clear that, if c(λ)J ∈ ZJ , then it is invariant. So we only have to prove that c(λ)J ∈ ZJ ,
that is c(λ)Jx − c(λ)J

tx
≡ 0 ( mod αt∨). Since for any xJ there exists an element yJ such that

xxJ = t tx yJ (cf. Lemma 3.1.4), then∑
xJ∈WJ

xxJ(λ)−
∑
xJ∈WJ

tx xJ(λ) =
∑
yJ∈WJ

t tx yJ(λ)−
∑
yJ∈WJ

tx yJ(λ)

= t
(∑

yJ∈WJ
tx yJ(λ)

)
−
∑
yJ∈WJ

tx yJ(λ)

=
(∑

yJ∈WJ

〈
αt, tx yJ(λ)

〉)
αt
∨

≡ 0 ( mod αt∨),

since α∨ is a multiple of α.

For any x ∈ WJ , denote by ηx the automorphism of the symmetric algebra Sk induced by the
mapping λ 7→ c(λ)Jx for all λ ∈ Q∨. Now, by Lemma 4.1.2, the action of Sk on ZJ given by

p.(zx)x∈WJ = (ηx(p)zx) p ∈ Sk , z ∈ ZJ , (4.2)

preserves sZJ . Thus any ZJ -module and any sZJ -module has an Sk-module structure as well. Let
ZJ -mod, resp. sZJ -mod, be the category of Z-graded ZJ -modules, resp. sZJ -modules, that are
torsion free and finitely generated over Sk.

The translation on the wall is the functor s,onθ : ZJ -mod → sZJ -mod defined by the mapping
M 7→ Res

sZJ

ZJ .
The translation out of the wall is the functor s,outθ : sZJ -mod → ZJ -mod defined by the

mapping N 7→ Ind
sZJ

ZJ . Observe that this functor is well-defined thanks to Lemma 4.1.1.
By composition, we get a functor sθ := s,outθ ◦ s,onθ : ZJ -mod→ ZJ -mod that we call (left)

translation functor.
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Remark 4.1.1. We want to stress the fact that, if J = ∅, the translation functor we defined does
not coincide with the one defined by Fiebig in [13]. Indeed, we are twisting the action of Sk, while
in [13] Sk acts in the usual way, that is p.(zx) = (p · zx).

The following proposition describes the first properties of sθ.

Proposition 4.1.1. (1) The functors from sZJ -mod to sZ-mod mapping M 7→ ZJ{2}⊗sZJM and
M 7→ HomsZJ (ZJ ,M) are naturally equivalent.

(2) The functor sθ = ZJ ⊗sZJ − : ZJ −mod→ ZJ −mod is selfadjoint up to a shift.

Proof. (cf. [41], Proposition 5.10, and [13], Proposition. 5.2) By Lemma 4.1.1, {1, αs} is a sZJ -basis
for ZJ . Let 1

∗
, αs
∗ ∈ HomsZJ (ZJ , sZJ) a sZJ -basis dual to 1 and αs. We have an isomorphism

of sZJ -modules ZJ{2} ∼= HomsZJ (ZJ , sZJ) defined by the mapping 1 7→ αs
∗ and αs 7→ 1∗, since

deg(1) − 2 = −2 = deg(αs
∗) and deg(αs) − 2 = 0 = deg 1

∗. Now statement (1) follows from the
fact that ZJ is of finite rank over sZJ and so HomsZJ (ZJ ,−) = HomsZJ (ZJ , sZJ)⊗sZJ −.

Now the second claim follows easily, since ZJ ⊗sZJ − and HomsZJ (ZJ ,−) are, resp., left and
right adjoint to the restriction functor.

Using the selfadjointness of sθ, we get the following corollary.

Corollary 4.1.1. sθ : ZJ −mod → ZJ −mod is exact.

4.1.2 Parabolic special modules

As in [13], we define, inductively, a full subcategory of ZJ -mod.
Let Be ∈ ZJ -mod be the free Sk-module of rank one on which z = (zx)x∈WJ acts via multipli-

cation by ze.

Definition 4.1.1.

(i) The category of special ZJ -modules is the full subcategory HJ of ZJ -mod whose objects are
isomorphic to a direct summand of a direct sum of modules of the form si1 θ ◦ . . . ◦ sir θ(Be){n},
where si1 , . . . , sir ∈ S and n ∈ Z.

(ii) The category of special sZJ -modules is the full subcategory sHJ of sZJ -mod whose objects are
isomorphic to a direct summand of s,onθ(M) for some M ∈ HJ .

Let Ω be a finite subset of WJ . Then, we set

ZJ(Ω) :=

{
(zx) ∈

∏
x∈Ω

Sk

∣∣∣ zx ≡ zy ( mod αt
∨)

if ∃w ∈WJ s.t. y w x−1 = t ∈ T

}
If Ω ⊆ WJ is s-invariant with respect to the left multiplication by s, that is sΩ = Ω, we may

restrict sσ to it. We denote by sZJ(Ω) ⊆ ZJ(Ω) the space of invariants and, using Lemma 4.1.1,
we get a decomposition ZJ(Ω) = sZJ(Ω)⊕ αs∨ · sZJ(Ω).

In the following lemma we prove, the finiteness of the special ZJ -modules, as Fiebig does in
[18] for special Z-modules.

Lemma 4.1.3.
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(i) Let M ∈ HJ . Then there exists a finite subset Ω ⊂ WJ and an action of ZJ(Ω) such that ZJ
acts on M via the canonical map ZJ → ZJ(Ω).

(ii) Let s ∈ S and let N be an object in sHJ . Then there exists a finite s-invariant subset Ω ⊂WJ

and an action of sZJ(Ω) on N such that sZJ acts on N via the canonical map sZJ → sZJ(Ω).

Proof. (we follow [18]) We prove(i) by induction. It holds clearly for Be, since ZJ acts on it via
the map ZJ → ZJ({e}). Now we have to show that if the claim is true for M ∈ HJ , then it holds
also for sθ(M). Suppose ZJ acts via the map ZJ → ZJ(Ω) over M . Observe that we may assume
Ω s-invariant, as we can eventually consider Ω ∪ sΩ, that is still finite. In this way the sZJ -action
on sθM via sZJ → sZJ(Ω) and so we obtain sθM := ZJ ⊗sZJ M = ZJ(Ω)⊗sZJ (Ω) M .

Claim (ii) follows directly from claim (i).

4.1.3 Decomposition and subquotients of modules on ZJ

We recall some notation from [14]. Let S∅k := Sk[α−1 |α ∈ ∆] and, for any M ∈ ZJ − mod,
M∅ := M ⊗Sk S∅k . By [[18], Lemma 3.1], there is a decomposition M∅ := M ∩

⊕
x∈WJ M∅,x and so

a canonical inclusion M ⊆
⊕

x∈WJ M∅,x. For all subset Ω ⊆WJ , we may define:

MΩ := M ∩
⊕
x∈Ω

M∅,x,

MΩ := M/MWJ\Ω = im

(
M →M∅ =

⊕
x∈Ω

M∅,x

)
.

For any x ∈WJ , we define

M[x] := ker
(
M{≥x} →M{>x}

)
If x 6= sx and x < xs, we set moreover

M[x,sx] := ker
(
M{≥x} →M{≥x}\{sx}

)
Lemma 4.1.5 describes the action of sθ on the subquotients M[x]’s. This is important in order

to show that HJ categorifies the parabolic Hecke algebra. Actually, to prove Lemma 4.1.5, we need
a combinatorial result.

Lemma 4.1.4. Let x ∈WJ and t ∈ S. If tx 6∈WJ , then tx = x.

Proof. If tx 6∈WJ , then there exists a simple reflection r ∈ J such that txr < tx and, since x ∈WJ ,
xr > x. Using (the left version of) Lemma 3.1.2 (i) with s = t, v = xr and u = tx, we get txr < x.
Applying Lemma 3.1.2 (i) with s = r, v = x and u = txr it follows tx > x. Finally, from Lemma
3.1.2 (ii) we obtain txr ≤ x, that, together with x < xr, gives txr = x.

Lemma 4.1.5. Let s ∈ S and x ∈WJ , then

(sθM)[x]
∼=

 M[x]{−2} ⊕M[sx]{−2} if sx ∈WJ , sx > x
M[x] ⊕M[sx] if sx ∈WJ , sx < x
M[x]{−2} ⊕M[x] if sx 6∈WJ
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Proof. (cf. [18]) By Lemma 4.1.4, if sx 6∈ WJ , then sx = x and M[x] ∈ sZpar-mod, so by Lemma
4.1.1 we get ZJ ⊗sZJ M[x] = M[x]{−2} ⊕M[x].

If x 6= sx, we have a short exact sequence 0 → M[x] → M[x,sx] → M[sx] → 0 and, since sθ
is exact (see Corollary 4.1.1), sθMx,sx = (sθM)[x,sx] = sθM[x] ⊕ sθM[sx]. Moreover sθM[x,sx] =
ZJ({x, sx})⊗sZJ ({x,sx})M[x,sx] and the two isomorphisms follow by taking in mind that ZJ({x, sx})[x]

∼=
S{−2} if x / sx, while ZJ({x, sx})[x]

∼= Sk if x . sx.

Using induction, we get the following corollary

Corollary 4.1.2. Let M ∈ HJ . Then for any x ∈ WJ , M[x] is isomorphic to a finite direct sum
of shifted copies of Sk.

4.2 Special modules and Hecke algebras

In the first part of this section we recall the definition, due to Deodhar, of the parabolic Hecke
algebra HJ and of its canonical basis. To the Bruhat order on WJ we associate, as in [[18], §4.5] a
character map and in this way we get a map from the Grothendieck group of HJ to HJ . Finally,
we extend Proposition 4.3 of [18] to the parabolic setting, describing the action of the translation
functors on the character (up to a shift) via the multiplication by elements of the canonical basis.

4.2.1 Hecke algebras

We start by giving the definition of the Hecke algebra associated to a Coxeter system (W, S),
that is a quantisation of the group algebra of W. We adopt the notation (and the renormalisation)
of Soergel [40].

Denote by L := Z[v, v−1] the ring of Laurent polynomials in the variable v over Z.

Definition 4.2.1. Let (W, S) be a Coxeter system, then its Hecke algebra H = H(W) is the free
L-module having basis {Hx |x ∈W}, subject to the following relations:

HsHw =

{
Hsx if sx > s
(v−1 − v)Hx +Hsx if sx < x

(4.3)

It is well known that there exists exactly one such an associative L-algebra (cf.[6] or [22]).
It is easy to verify that Hx is invertible for any x ∈W and this allows us to define an involution

on H. This is the unique ring homomorphism − : H→ H such that v = v−1 and Hx = (Hx−1)−1.
In [29] Kazhdan and Lusztig showed the existence of a nicer basis for H, the so-called canonical

basis, that they used to define complex representations of the Hecke algebra. The entries of the
change of basis matrix were given by a family of polynomials in Z[v]: the Kazhdan-Lusztig poly-
nomials. In [9] Deodhar generalised this construction to the parabolic setting. Kazhdan-Lusztig
polynomials and their parabolic analog will be the object of the next chapter.

Parabolic Hecke algebra and Kazhdan-Lusztig polynomials

Let us take J ⊆ S. We recall Deodhar’s construction, following [[40], §3]. Let H = H(W) be the
Hecke algebra of W, then for any simple reflection s∈S, by (4.3), we have (Hs)

2 = (v−1−v)Hs+He,
that is (Hs + v)(Hs − v−1) = 0. If u ∈ {v−1,−v} and HJ := H(WJ) is the Hecke algebra of WJ ,
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then we may define a map of L-modules ϕu : HJ → L by Hs 7→ u. This provides a structure of HJ

-bimodule to L, that we denote by L(u).
Consider now MJ := L(v−1) ⊗HJ

H and NJ := L(−v) ⊗HJ
H. It is easy to verify that the

map − : L(u)⊗HJ
H→ L(u)⊗HJ

H sending a⊗H 7→ a⊗H := a⊗H is a ring homomorphism.
For u ∈ {v−1,−v} denote by HJ,u

w := 1⊗Hw ∈ L(u)⊗HJ
H. We are now able to state Deodhar’s

result.

Theorem 4.2.1 ([9]). 1. For all w ∈WJ there exists a unique element HJ,v−1

w ∈MJ such that:

(i) HJ,v−1

w = HJ,v−1

w

(ii) HJ,v−1

w =
∑
y∈WJ mJ

y,wH
J,v−1

y ,

where the mJ
y,w are such that mJ

w,w = 1 and mJ
y,w ∈ vZ[v] if y 6= w.

2. For all w ∈WJ there exists a unique element HJ,−v
w ∈NJ such that:

(i) HJ,−v
w = HJ,−v

w

(ii) HJ,−v
w =

∑
y∈WJ nJy,wH

J,−v
y ,

where the nJy,w are such that nJw,w = 1 and nJy,w ∈ vZ[v] if y 6= w.

The polynomials mJ
y,w and nJy,w are called parabolic Kazhdan-Lusztig polynomials with respect

to the parameter v−1, resp. −v, while {HJ,v−1

w }w∈WJ is the canonical basis.
If J = ∅, then MJ = NJ = H and, for any pair of elements y, w ∈ W, we will denote

hy,w = m∅y,w = n∅y,w the corresponding regular Kazhdan-Lusztig polynomial.
We end this paragraph by recalling that the left multiplication by Hs for s ∈ S, on HJ is given

by (cf. [[40],§3])

Hs ·HJ,v−1

x =


HJ,v−1

sx + vHJ,v−1

x if sx ∈WJ , sx > x

HJ,v−1

sx + v−1HJ,v−1

x if sx ∈WJ , sx < x

(v + v−1)HJ,v−1

x if sx 6∈WJ

(4.4)

4.2.2 Character maps

Let M be a Z-graded, free and finitely generated Sk-module; then M ∼=
⊕n

i=1 Sk{ji}, for some
ji ∈ Z. We can associate to M its graded rank, that is the following Laurent polynomial.

rkM :=

n∑
i=1

v−ji ∈ Z[v, v−1].

This is well-defined, because the ji’s are uniquely determined, up to the order.
Let 〈HJ〉 be the Grothendieck group of HJ

and let M ∈ HJ , then by Corollary 4.1.2, we may define a map h : 〈HJ〉 →MJ as follows.

h(M) :=
∑
x∈WJ

v`(x)rkM[x]H
J,v−1

x ∈MJ
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Proposition 4.2.1. For each M ∈ HJ and for any s ∈ S we have h(sθM{1}) = Hs · h(M), that
is the following diagram is commutative

〈HJ〉 h //

sθ◦{1}
��

MJ

Hs·

��
〈HJ〉 h //MJ

Proof. (cf. [18], Proposition 4.3) By Lemma 4.1.5, for any x ∈WJ we have

rk(sθM)[x] =

 v2
(
rkM[x] + rkM[sx]

)
if sx ∈WJ , sx > x

rkM[x] + rkM[sx] if sx ∈WJ , sx < x
(v2 + 1)rkM[x] if sx 6∈WJ

Then,
h(sθM{1}) =

∑
x∈WJ v`(x)−1rk(sθM)[x]H

J,v−1

x

=
∑
x∈WJ ,sx∈WJ

sx>x

v`(x)+1
(
rkM[x] + rkM[sx]

)
HJ,v−1

x

+
∑
x∈WJ ,sx∈WJ

sx<x

v`(x)−1
(
rkM[x] + rkM[sx]

)
HJ,v−1

x

+
∑
x∈WJ ,sx6∈WJ (v`(x)+1 + v`(x)−1)rkM[x]H

J,v−1

x

Finally,

Hs · h(M) =
∑
x∈WJ v`(x)(rkM[x])Hs ·HJ,v−1

x

=
∑
x∈WJsx∈WJ

sx>x
v`(x)(rkM[x])(H

J,v−1

sx + vHJ,v−1

x )

+
∑
x∈WJ ,sx∈WJ

sx<x

v`(x)(rkM[x])(H
J,v−1

sx + v−1HJ,v−1

x )

+
∑
x∈WJ ,sx6∈WJ v`(x)rkM[x](v + v−1)HJ,v−1

x

=
∑
x∈WJ ,sx∈WJ

sx>x

[
(v`(x)v rkM[x]) + (v`(sx)rkM[sx])

]
HJ,v−1

x

+
∑
x∈WJ ,sx∈WJ

sx<x

[
(v`(x)v−1 rkM[x]) + (v`(sx)rkM[sx])

]
HJ,v−1

x

+
∑
x∈WJ ,sx6∈WJ (v`(x)+1 + v`(x)−1)rkM[x]H

J,v−1

x

= h(sθM{1})

4.3 Localisaton of special Zpar-modules
In this section, we focus our attention on the affine Grassmannian case. In particular, we

consider finite intervals of Gpar far enough in the fundamental chamber, whose description has been
given in §3.2.3. Hereafter, we denote by Wpar the set of minimal representatives for the equivalence
classes of Wa/Wf and by Zpar the structure algebra corresponding to this parabolic setting.

Let β ∈
�

∆+, we consider the following localisation of the symmetric algebra Sk:

Sβk := Sk[(α+ nδ)−1 |α ∈
�

∆+ \{β}, n ∈ Z] (4.5)
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Fiebig used this localisation in [18], in order to relate the category of regular special modules
to a category introduced by Andersen, Jantzen and Soergel in [1].

Let us denote by Wβ the subgroup of Wa generated by the affine reflections sβ,n, for n ∈ Z,
and by Wβ the set of orbits for the left action of Wβ on Wpar. Remark that the group Wβ

is isomorphic to ŝl2, the Weyl group of Ã1. For any subset Ω ⊆ Wpar, let us write moreover
Zpar,β(Ω) := Zpar(Ω)⊗Sk Sk,β . We get then an analog of the decomposition we used in §4.1.3.

Lemma 4.3.1 (cf. [18], Lemma 3.1). Let Ω ⊂Wpar be finite, then

Zpar,β(Ω) =

{
(zx) ∈

⊕
x∈Ω

Sβk

∣∣∣ zx ≡ zy ( mod (β + nδ)
∨

)
if ∃w ∈Wf , n ∈ Z s.t. y w x−1 = sβ,n

}
=
⊕

Θ∈Wβ

Zpar,β(Ω ∩Θ)

Proof. Omitted, since Fiebig’s proof of [[18], Lemma 3.1] works exactly the same in this parabolic
setting too.

For M ∈ Hpar, we set Mβ := M ⊕Sk Sk,β . Because any special module is a module on Z(Ω) for
some Ω ⊂ Wpar finite (see Lemma 4.1.3), the decomposition of the previous Lemma gives us the
following decomposition.

Mβ =
⊕

Θ∈Wβ

Mβ,Θ (4.6)

In the following Lemma we show that this localisation procedure preserves special modules.
In particular, we prove that, under the localisation, a special module having support on a finite
interval far enough in the fundamental chamber splits in a direct sum of special modules for the
parabolic structure algebra of the Bruhat graph of Ã1.

Lemma 4.3.2. LetM ∈ Hpar such that Zpar acts on it via Zpar(I), for I a finite interval far enough
in C+ and Mβ =

⊕
Θ∈Wβ Mβ,Θ. Then, for any Θ ∈Wβ, Mβ,Θ is isomorphic to a Zpar(sl2)-special

module.

Proof. We prove by induction that any Mβ,Θ is a special module for the structure algebra of Gpar
|Θ .

If M = Be, there is nothing to prove. Suppose the lemma holds for M ∈ Hpar; we have to show
that it is true also for sθ(M) =

⊕
Θ∈Wβ

sθ(M)β,Θ.
Thus it is enough to show it for an Mβ,Θ. In order to do this, we follow the proof of [[18],

Lemma 3.5]. If Θ = Θs, then sθ(M)β,Θ = Mβ,Θ ⊗sZparβ(Θ) Z
par,β(Θ), since, by Lemma 4.1.3, the

inclusion sZpar,β(Ω) ⊂ Zpar,β(Ω) contains sZpar,β(Θ) ⊂ Zpar,β(Θ) as a direct summand. Otherwise,
Θ 6= Θs and the inclusion sZpar,β(Θ ∪ Θs) ⊂ Zpar,β(Θ) ⊕ Zpar,β(Θs) is an isomorphism on each
direct summand. It follows, sθ(M)par,β = Mβ,Θ ⊕ Mβ,Θs. In both cases, we get the claim by
induction because Zpar,β acts on Mβ,Θ via Zpar,β(I ∩Θ) and clearly Zpar,β(I ∩Θ) = Zpar(I ∩Θ).

Now the statement follows since by Lemma 3.2.1, for any finite interval I far enough in the
fundamental chamber and any Θ ∈Wβ , I ∩Θ is isomorphic (as moment graph) to a finite interval
of the parabolic Bruhat graph of Ã1.



Chapter 5

Categorification of Kazhdan-Lusztig
equalities

In 1979 Kazhdan and Lusztig ([29]) introduced a family of polynomials {hx,y} indexed by pairs
of elements in a Coxeter group W with S, the set of simple reflections. Some years later, Deodhar
generalised this notion to the parabolic setting, defining two families of polynomials {mJ

x,y} and
{nJx,y}, where x and y are now varying in WJ , for J ⊆ S (see §4.2.1). If W was a Weyl group, these
polynomials were related to the intersection cohomology of the corresponding (partial) Schubert
variety (cf. Appendix A of [29] and [30]) and to the representation theory of the complex Lie
algebras (cf.[29]), resp. of the semisimple, simply connected, reductive algebraic groups over a field
of positive characteristic (cf.[36]), whose Weyl group is W.

The following conjecture motivates this chapter.

Conjecture 5.0.1 ([16], Conjecture 4.4). Let y, w ∈ WJ and let k be such that (GJ|[y,w]
, k) is a

GKM-pair. Then rk (B(w)J)y = v`(y)−`(w) ·mJ
y,w.

This conjecture is proved in characteristic zero and in this case it is equivalent to Kazhdan-
Lusztig’s conjecture (cf.[14]). In characteristic p it is proved for p bigger than a huge (but explicit)
lower bound and it implies Lusztig’s conjecture (cf.[18],[16]). Anyway, this conjecture motivates
this chapter: we try to interpret combinatorial properties of Kazhdan-Lusztig polynomials in term
of Braden-MacPherson sheaves. We have already presented the results of Sections 5.2 and 5.3 in
the preprint [35].

5.1 Short-length intervals
We try here to illustrate the philosophy of this chapter by computing the stalks of the canonical

sheaves on Bruhat intervals having length ≤ 2.
For any pair of elements y, w ∈ W such that y ≤ w and `(w) − `(y) ≤ 2, it is know that

hy,w = v`(w)−`(y). If conjecture 5.0.1 is true, then rkB(w)y = 1, that is B(w)y ∼= Sk if (G, k) is a
GKM -pair. Clearly, there is nothing to prove if y = w. If `(y) = `(w) − 1, then y = tw for some
t ∈ T and the associated moment graph is a subgeneric graph with the edge labeled by αt∨. In this
case, it is clear that B(w)δy = Sk/αtSk, whose projective cover is obviously Sk.

53
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Suppose now `(w) − `(y) = 2. Then the Bruhat graph restricted to the interval I = [y, w] has
to be of the following shape (cf. [[5], Lemma 2.7.3]).

w

sαy

γ∨
=={{{{{{{{

sβy

δ∨
aaCCCCCCCC

y
α∨

aaCCCCCCCC β∨

=={{{{{{{{

For some α, β, γ, δ ∈ ∆re
+ .

By Proposition 2.1.2, showing that B(w)x ∼= Sk for all x ∈ [y, w] is equivalent to showing that
the corresponding structure sheaf is flabby. We know already that B(w)x ∼= Sk for x ∈ (y, w], so we
have only to prove B(w)y ∼= Sk. In particular, the claim will follow once we prove that all sections
z = (zw, zsαy, zsαy) ∈ Γ(I \ {y},A) are extensible. By definition, there exist p, q1, q2 ∈ Sk such that

zw = p, zsαy = p+ γ∨ · q1, zsβy = p+ δ∨ · q2

Clearly, there exists an element zy ∈ Sk extending z if and only if there exist q3, q4 ∈ Sk such that

zsαy + α∨ · q3 = zsβy + β∨ · q4

Now, by hypothesis, sγsα = sδsβ , that is sβ = sδsγsα, so, for all λ ∈ h∗R,

λ− 〈λ, α∨〉α = λ− 〈λ, β∨〉β − 〈sβ(λ), δ∨〉δ − 〈sδsβ(λ), γ∨〉γ

Because of the GKM-property, β 6= ±α,±δ and so it is always possible to find a µ ∈ h∗R such
that

〈µ, β∨〉 = 0, 〈µ, α∨〉 6= 0, 〈sβ(µ), δ∨〉 = 〈µ, sβ(δ
∨

)〉 6= 0

Then, we might write α = a1δ + a2γ with a1, a2 ∈ R and a1 6= 0. Analogously, we get
β = b1δ + b2γ with b1, b2 ∈ R and b2 6= 0. Thus, if a2 = 0, it is easy to check that

q3 = a−1
1 (q2 − b1b−1

2 q1) q4 = b−1
1 q1

satisfy the requirements. While, for a2 6= 0, we set

q3 = a−1
2

(
(1− b2a1a

−1
2 (b1 + b2)−1)q1 − b2(b1 + b2)−1q2

)
q4 = a−1

2 (b1 + b2)−1(a1q1 + a2q2)

Thus we get the following lemma.

Lemma 5.1.1. Let y, w ∈W be such that y ≤ w and `(w)− `(y) ≤ 2. If (G|[y,w]
, k) is a GKM-pair,

then B(w)y ∼= Sk.

5.2 Technique of the pullback
Let g ⊇ b ⊇ t be a symmetrisable KacMoody algebra, a Borel subalgebra and a Cartan

subalgebra. Let Π, resp. Π∨, be the corresponding set of simple roots, resp. of simple coroots.
From now on, we denote by G = (V,E, l,≤) the regular Bruhat graph we defined in §3.1.1.

In this section, we apply Lemma 2.2.2 in order to lift some equalities concerning KL-polynomials
to the moment graph setting. In particular, we will define isomorphisms of k-moment graphs to get
isomorphisms between stalks of the corresponding Braden-MacPherson sheaves.
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5.2.1 Inverses
Kazhdan and Lusztig gave an inductive formula to calculate the KL-polynomials ((2.2.c) of

[29]). From such a formula it follows easily (cf. Exercise 12, Chap.5 of [5]) that, for any pair
y, w ∈W, one has

hy,w = hy−1,w−1 . (5.1)

We translate this equality to an isomorphism of stalks of indecomposable canonical sheaves.

Lemma 5.2.1. Let W be a Weyl group. The anti-involution on W defined by the mapping x 7→ x−1

induces an automorphism of the k-moment Bruhat graph G for any k.

Proof. fV : V → V defined by the mapping x 7→ x−1 is obviously a bijection. Moreover, for each
pair of elements x, y ∈W, x ≤ y if and only if x−1 ≤ y−1. So fV : V→ V is a bijection of posets.

Observe that there exists a reflection t ∈ T such that y = tx if and only if y−1 = rx−1, where
r = x−1tx ∈ T. So x−−− y ∈ E if and only if x−1 −−− y−1 ∈ E .

Thus, for every x ∈ W and any λ ∈ Q∨, we set fl,x(λ) := x−1(λ). Let E : x −−− y = tx and
recall that, for any w ∈W and α ∈ ∆re, w(α)

∨
= w(α∨) (cf. [26], §5.1). Then we get the following.

(a) fl,x(l(x −−− tx)) = x−1(αt)
∨

= x−1(αt
∨) = ±l(x−1 −−− y−1), where ±x−1(αt) ∈ ∆re

+ , because
x−1(αt) = ±αx−1tx (cf. [26], §5.1 ).

(b)
fl,y(λ) = y−1(λ)

= x−1(tλ)

= x−1(λ)− 〈αt, λ〉x−1(αt)
∨

≡ x−1(λ) (modx−1(αt)
∨

)

= fl,x(λ) (modx−1(αt)
∨

)

This proves that we have an automorphism of the k-moment graph G for any k.

From the lemma above we get the following corollary.

Corollary 5.2.1. Let w ∈ W. Denote by G the corresponding Bruhat graph and let f be as in
Lemma 5.2.1. Then B(w) ∼= f∗B(w−1) as k-sheaves on G for any k.

Proof. First observe that y 6≤ w if and only if y−1 6≤ w−1. So if y 6≤ w, B(w)y = 0 = B(w−1)y
−1

.
By Lemma 5.2.1, fV : x 7→ x−1 induces a k-isomorphism between the two complete subgraphs

Gw and Gw−1 , so we may apply Lemma 2.2.2; the statement follows.

5.2.2 Multiplying by a simple reflection. Part I
Let y, w ∈ W and s ∈ S such that y ≤ w, ws < w and y 6≤ ws. In these hypotheses Kazhdan

and Lusztig observed (proof of Theor. 4.2 of [29]) that

hy,w = hys,ws. (5.2)

In order to interpret (5.2) in our moment graph setting we will use the lifting Lemma, to define an
isomorphism of k-moment graphs.

Lemma 5.2.2. Let y, w ∈W and s ∈ S such that y ≤ w, ws < w and y 6≤ ws, then for any k there
is an isomorphism of k-moment graphs G|[y,w]

−→∼ G|[ys,ws] .
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Proof. We show that fV : [y, w] → [ys, ws], x 7→ xs is a bijection of posets inducing the identity
map on the labels.

We verify that if x ∈ [y, w] then xs ∈ [ys, ws]. We see that xs < x; indeed, if it were not the
case, by Lemma 3.1.2 (ii) x ≤ ws, but this implies that y ≤ ws. In particular, this holds for y, that
is ys < y. Now, by Lemma 3.1.2 (i);

xs < x , ws < w ⇒ xs ≤ ws

ys < y , xs < x ⇒ ys ≤ xs.
We now show that if z ∈ [ys, ws] then zs ∈ [y, w]. Observe that zs > z; indeed, ys < z,

y = (ys)s > ys and if zs < z, then by Lemma 3.1.2 (ii), with u = ys and v = z, we would get
y = (ys)s ≤ z ≤ ws.

Moreover, z ≤ ws < w and, by Lemma 3.1.2 (ii),

zs > z , ws < w ⇒ zs ≤ w.

y = (ys)s > ys , z = (zs)s < zs ⇒ y ≤ zs.
This completes the proof that fV maps [y, w] to [ys, ws].
Let x, z ∈ [y, w], then x ≤ z if and only if xs ≤ zs. Indeed, we have already proved that xs < x

and zs < z so, by Lemma 3.1.2 (i), with u = x and v = z, we have xs ≤ zs. On the other hand,
x = (xs)s > xs and it follows from Lemma 3.1.2 (ii) with u = xs and v = z that x = (xs)s ≤ z.

Finally from what we proved above, for each t ∈ T we have that x, tx ∈ [y, w] if and only if
xs, txs ∈ [ys, ws].This means that we have a bijection between sets of edges such that fE(x→γ tx) =
xs→γ txs.

Therefore f = (fV, {IdYk}x∈V) is an isomorphism of k-moment graphs for any k.

So we have:

Corollary 5.2.2. Consider y, w ∈ W such that ws < w, y 6≤ ws for some s ∈ S. Let f be as in
Lemma 5.2.2, then B(w) ∼= f∗B(ws) as k-sheaves on G|[y,w]

for any k.

Proof. The statement follows by combining Lemma 5.2.2 and Lemma 2.2.2 .

We recollect the results of this section:

Theorem 5.2.1. Let y, w ∈W, then

(i) B(w)y ∼= B(w−1)y
−1

.
Let s ∈ S be such that ws < w and y 6≤ ws, then

(ii) B(w)y ∼= B(ws)ys

All isomorphisms are isomorphisms of (finitely generated, Z-graded) Sk-modules, for any k.

Proof.

(i) This follows from Corollary 5.2.1, since two k-sheaves are isomorphic only if their stalks are
pairwise isomorphic.

(ii) As before, the isomorphism descends from the isomorphism of k-sheaves we obtained in Corollary
5.2.2.
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5.3 Invariants

Clearly not all equalities concerning Kazhdan-Lusztig polynomials come from k-isomorphisms
of the underlying Bruhat graphs. In this section we develop another technique and, as in the
previous section, we apply it in order to categorify two well-known properties of these polynomials.

5.3.1 Multiplying by a simple reflection. Part II

Another property that Kazhdan and Lusztig in [29] (2.3.g) proved is that if y, w ∈W and s ∈ S

are such that y ≤ w and ws < w, then

hy,w = vchys,w, (5.3)

where c = 1 if sy > y and c = −1 otherwise.
It is clear that in this case there is no hope of finding any k-isomorphism of moment graphs,

since the two Bruhat intervals [y, w] and [ys, w] obviously have different cardinality.
The goal of this section is to prove the following theorem.

Theorem 5.3.1. For any pair y, w ∈W and for any s ∈ S such that ws < w and ys, y ≤ w, there
exist

• an isomorphism of Sk-modules ϕy : B(w)y → B(w)ys

• a family of isomorphisms of Sk-modules ϕE : B(w)E → B(w)Es, where E : y −−− x ∈ E and
Es : ys−−− xs ∈ E

such that the following diagram commutes

B(w)y
ϕy //

ρy,E

��

B(w)ys

ρys,Es

��
B(w)E

ϕE // B(w)Es

(5.4)

and such that ϕys = (ϕy)−1.

5.3.2 Two preliminary lemmata

In order to prove our claim, we need two combinatorial lemmata.
Recall that

T = {sα |α ∈ R+} = {wsw−1 |w ∈W, s ∈ S}

and, for all x, y ∈W, denote
GL(x, y) :=

{
t ∈ T | tx ∈ (x, y]

}
Lemma 5.3.1. Let w, y ∈W and s ∈ S be such that y ≤ w, ws < w and ys < y, then

GL(ys, w) = GL(y, w) ∪
{
ysy−1

}
.
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Proof. We show that for all t ∈ GL(y, w) we have ys < tys ≤ w as well, i.e. t ∈ GL(ys, w). Indeed,
if tys > ty, then ys < y < ty < tys and, by Lemma 3.1.2 (ii) with u = ty and v = w, tys ≤ w .
Otherwise, tys < ty ≤ w, y < ty, ys < y and, by Lemma 3.1.2 (i) with u = y and v = ty, we obtain
ys < tys.

Clearly, ysy−1 ∈ GL(ys, w) and this completes the proof that the set on the right hand side is
a subset of the one on the left.

Now we verify that if t ∈ T, tys ∈ [ys, w] and ty 6∈ [y, w], then t = ysy−1. Indeed, by Lemma
3.1.2 with u = tys and v = w, tys ≤ w and, if ty 6∈ [y, w], then ty < y. Moreover, ys < y and
so, by Lemma 3.1.2 (ii) with u = ty and v = y, tys ≤ y. So ys < tys ≤ y and we know that
[ys, y] = {ys, y}. Thus tys = y, that is, t = ysy−1.

Lemma 5.3.2. Let w, y ∈ W and s ∈ S be such that y ≤ w, ys < y and ws < w, then the set
[ys, w] \ {ys, y} is stabilised by the mapping x 7→ xs.

Proof. Notice that ys < y ≤ w, so it makes sense to write [ys, w]. Let I := [ys, w] \ {ys, y} and let
x ∈ I. If xs > x, then obviously ys < xs and, by Lemma 3.1.2 (ii) with u = x and v = w, xs ≤ w.
On the other hand, if xs < x, then xs < w and, by applying Lemma 3.1.2 (ii) with u = ys and
v = x, ys ≤ xs. Then, in both cases xs ∈ [ys, w] and, since xs 6= y and xs 6= ys, we get x ∈ I.

Finally, if x ∈ I, then xs 6= y. Indeed xs = y if and only if x = ys 6∈ I.

5.3.3 Proof of the main theorem

We will prove Theorem 5.3.1 by induction on n = `(w)− `(y).
If n = 0, then y = w and there is nothing to prove. If n > 0 and ys > y, then `(w)−`(ys) = n−1

and by induction we get the desired isomorphisms.
Now, we may suppose n > 0 and ys < y. Let I = [ys, w] \ {y, ys}. From the inductive

hypothesis, for any x ∈ I we get

• an isomorphism of Sk-modules ϕx : B(w)x → B(w)xs

• a family of isomorphisms of Sk-modules ϕF : B(w)F → B(w)Fs, where F : x −−− z ∈ Eδy

and Fs : xs→ zs ∈ Eδys

such that the following diagram commutes

B(w)x
ϕx //

ρx,F

��

B(w)xs

ρxs,Fs

��
B(w)F

ϕF // B(w)Fs

(5.5)

and such that ϕxs = (ϕx)−1.
Observe that our claim will follow, once we prove that there is an isomorphism of Sk-modules

ϕy : B(w)y → B(w)ys compatible with the restriction maps. Indeed, for E : y → x ∈ Eδy there
exists exactly one Es : ys → xs ∈ Eδys, and ϕE would already have been given. If E : ys → y,
then we could set ϕE = Id. Finally, for x 6= ys, there exists an edge E : x → y ∈ E if and only
if there is Es : xs → ys ∈ E (cf. Lemma 5.3.1) and in this case B(w)E ∼= B(w)y/l(E) ·B(w)y ∼=
B(w)ys/l(Es) ·B(w)ys, since E = Es.
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We will get ϕy by defining a surjective map from B(w)y to B(w)δys. Since B(w)ys is the
projective cover of the Sk-module B(w)δys, and, since rkSkB(w)y ≤ rkSkB(w)ys (cf. Lemma 3.12.
of [15]), Theorem 5.3.1 will follow from the unicity of the projective cover.

Invariants

By Lemma 5.3.2, I is invariant with respect to the right multiplication by s and we may define
an automorphism σs of the set of local sections of the Braden-MacPherson sheaf on I as follows.
Let m = (mx) ∈ Γ(I,B(w)), then we set σs(m) = (m′x), where m′x := ϕxs(mxs). Since the ϕx’s
are, by definition, compatible with the restriction maps (see Diagram (5.5)), σs(m) ∈ Γ(I,B(w)).
Moreover, for any x ∈ I, ϕxs = (ϕx)−1 and so σs is an involution.

Let us denote by Γs the submodule of σs-invariant elements of Γ(I,B(w)), and by Γ−s the
elements m ∈ Γ(I,B(w)) such that σs(m) = −m.

Let us consider cs := (cs,x) ∈
⊕

x∈W Sk, where cs,x := x(αs
∨); then cs ∈ Z and so it acts on

Γ(I,B(w)) via componentwise multiplication.

Lemma 5.3.3. Let (G|I , k) be a GKM-pair, then we have Γ(I,B(w)) = Γs ⊕ cs · Γs.

Proof. (We follow [18], Lemma 2.4).
By definition, σs is an involution and 2 is an invertible element in k, then we get Γ(I,B(w)) =

Γs ⊕ Γ−s.
Let m ∈ Γs, then σs(cs ·m) = −(cs ·m), i.e. cs · Γs ⊆ Γ−s. Indeed, s(αs∨) = −αs∨ and so for

any x∈I we have

(cs,x ·mx)′ = xs(αs
∨) ·mx = x(−αs∨) ·mx = −cs,x ·mx.

We have to prove the other inclusion, that is, every element m ∈ Γ−s can be divided by
(x(αs

∨))x∈I in Γ(I,B(w)).
If m = (mx) ∈ Γ−s then mx = −ϕxs(mxs) and so ρxs,xs→x(mxs) = −ρx,xs→x(mx), since the

following diagram commutes:

B(w)xs
ϕxs //

ρxs,xs→x

��

B(w)x

ρx,xs→x

��
B(w)xs→x

ϕxs→x
// B(w)xs→x

But m is a section so ρxs,xs→x(mxs) = ρx,xs→x(mx). It follows that 2ρx,xs→x(mx) = 0; moreover,
by definition of the canonical sheaf, ker ρx,xs→x = α∨xsx−1B(w)x, that is, α∨xsx−1 divides mx in
B(w)x.

Notice that αxsx−1
∨ = ±x(αs

∨) = ±cs,x, i.e. c−1
s ·m ∈

⊕
x∈I B(w)x. We have to verify that

ρx,x−−−tx(c−1
s,xmx) = ρtx,x−−−tx(c−1

s,txmtx) for all t ∈ T:

(cs,txcs,x)(ρtx,x−−−tx(c−1
s,txmtx)− ρx,x−−−tx(c−1

s,xmx)) (5.6)

= cs,x(ρtx,x−−−tx(mtx))− cs,tx(ρx,x−−−tx(mx)) (5.7)
= (cs,x − cs,tx)ρtx,x−−−tx(mtx) + cs,tx(ρtx,x−−−tx(mtx)− ρx,x−−−tx(mx)). (5.8)

The term on line (5.8) is divisible by αt∨; indeed, cs,x−cs,tx = x(αs
∨)−x(αs

∨)+〈αt, x(αs
∨)〉αt∨ ≡

0 ( mod αt
∨) and ρtx,x−−−tx(mtx)− ρx,x−−−tx(mx) = 0.
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Using the GKM-property cs,txcs,x = tx(αs
∨) ·x(αs

∨) is a multiple of αt∨ if and only if xsx−1 =
t, that is xs = tx. So, mx = −ϕxs(mtx), cs,tx = −cs,x and, considering that diagram (5.3.3)
commutes, we obtain

ρx,x−−−tx(c−1
s,tmx) = −c−1

s,tx ρx,x−−−tx(mx)

= −c−1
s,tx (−ρtx,x−−−tx(mtx))

= ρtx,x−−−tx(c−1
s,txmtx)

Otherwise, xsx−1 6= t and αt∨ divides ρtx,x−−−tx(c−1
s,txmtx)− ρx,x−−−tx(c−1

s,xmx) and so

ρx,x−−−tx(c−1
s,xmx) = ρtx,x−−−tx(c−1

s,txmtx).

Building B(w)δys

Let us denote

Γ(I,B(w)) //

π1

22
� � //

⊕
x∈IB(w)x //

⊕
x∈Vδy B(w)x

⊕ρx,E //
⊕

E∈Eδy B(w)E

Recall that B(w)δy = uy(Γ({> y},B(w))), where uy was defined as the composition of the
following maps

Γ({> y},B(w)) � � //

uy

22

⊕
x>yB(w)x //

⊕
x∈VδyB(w)x

⊕ρx,E //
⊕

E∈EδyB(w)E

Remark 5.3.1. Since B(w) is flabby and I and {> y} are both open sets, we get

π1(Γ(I,B(w))) = uy(Γ({> y},B(w))) = B(w)δy (5.9)

Now, let us denote

Γ(I,B(w)) //

π2

22
� � //

⊕
x∈IB(w)x //

⊕
x∈Vδy B(w)xs

⊕ρxs,Es//
⊕

E∈Eδy B(w)Es

and define B̃(w)δys := π2(Γ(I,B(w))).

Lemma 5.3.4.

(i) B(w)δy = π1(Γ(I,B(w))) = π1(Γs)

(ii) B̃(w)δys = π2(Γ(I,B(w))) = π2(Γs)

Proof.
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(i) Let m ∈ Γ(I,B(w)). Then, by Lemma 5.3.3, m = m′ + cs · m′′, with m′,m′′ ∈ Γs and, if
m′ = (m′x), m′′ = (m′′x),

π1(m) =
(
ρx,E(m′x)

)
x∈V:y→x∈E +

(
ρx,E(x(αs

∨) ·m′′x)
)
x∈V:y→x∈E

If E : y → x ∈ Eδy, then there exists a reflection t ∈ T such that x = ty and we have

x(αs
∨) = ty(αs

∨) = y(αs
∨) + 〈αt, y(αs

∨)〉αt∨ (5.10)

But, by definition, ρx,E is a surjective map whose kernel is l(E) ·B(w)x = αt
∨ ·B(w)x and

ρx,E(x(αs
∨) ·m′′x) = ρx,E(y(αs

∨) ·m′′x) + 〈αt, y(αs
∨)〉ρx,E(αt

∨ ·m′′x) = ρx,E(y(αs
∨) ·m′′x)

We conclude that π1(m) = π1(m′ + y(αs∨) ·m′′), where y(αs∨) is the element of the structure
algebra, whose components are all equal to y(αs

∨). Clearly, m′ + y(αs∨) ·m′′ ∈ Γs and we get the
claim.

(ii) As in (i).

Lemma 5.3.5. There is an isomorphism of Sk-modules τ : B(w)δy → B̃(w)δys given by (mE)E∈Eδy 7→
(ϕE(mE))E∈Eδy , that is for all m ∈ Γs, τ ◦ π1(m) = π2(m).

Proof. (mE)E∈Eδy ∈ B(w)δy if and only if there exists an element m ∈ Γ({> y},B(w)) such that
uy(m) = (mE)E∈Eδy . We have already noticed that this is the case if and only if there is an element
m′ ∈ Γ(I,B(w)) such that π1(m′) = (mE)E∈Eδy . From the previous lemma, we know that this is
equivalent to the existence of an m̃ ∈ Γs such that π1(m̃) = (mE)E∈Eδy . But, since the squares in
the following diagram are all commutative,

Γs

Id

��

π1|Γs

++

//
⊕

x∈Vδy B(w)x
⊕ρx,E //

⊕ϕx

��

⊕
E∈Eδy B(w)E

⊕ϕx

��
Γs //

π2|Γs

33

⊕
x∈Vδy B(w)xs

⊕ρxs,Es
//
⊕

E∈Eδy B(w)Es

we get (ϕE(mE))E∈Eδy = ϕE ◦ π1(m̃) = π2(m̃) ∈ B̃(w)δys.

Analogously, (mEs)E∈Eδy ∈ B̃(w)δys if and only if ((ϕE)−1(mEs))E∈Eδy ∈ B(w)δy.

Let us denote by ρ : B(w)y → B(w)y/αs
∨ ·B(w)y the canonical quotient map.

Lemma 5.3.6. We have

B(w)δys =
{(
τ ◦ π1(my), ρ(my)

)
∈ B̃(w)δys ⊕ (B(w)y/αs

∨ ·B(w)y)
}

(5.11)
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Proof.

B(w)δys = uys
(
Γ({> ys},B(w))

)
= uys

({
(m,my) ∈ Γ(I,B(w))⊕B(w)y |uy(m|{>y}) = dy(my)

})
by Remark 5.3.1

= uys
(
{(m,my) ∈ Γ(I,B(w))⊕B(w)y |π1(m) = dy(my)}

)
=
{(
π2(m), ρ(my)

)
|m ∈ Γ(I,B(w)), my ∈ By

w, π1(m) = dy(my)
}

by Lemma 5.3.4

=
{(
π2(m), ρ(my)

)
|m ∈ Γs, my ∈ B(w)y, π1(m) = dy(my)

}
by Lemma 5.3.5

=
{(
τ ◦ π1(m), ρ(my)

)
|m ∈ Γs, my∈B(w)y, π1(m) = dy(my)

}
=
{(
τ ◦ dy(my), ρ(my)

)
|my∈B(w)y

}

From the lemma above, it follows immediately, that there is a surjective map of Sk-modules
B(w)y → B(w)δys given by my 7→ (τ ◦ dy(my), ρ(my)) and this concludes the proof of Theorem
5.3.1.

5.3.4 Rational smoothness and p-smoothness of the flag variety.
We have an easy corollary of Theorem 5.3.1. Recall that if W is finite, then there exists a unique

element of maximal length (cf. [[22], §1.8]) and we denote it by w0.

Corollary 5.3.1. Let W be a finite Weyl group and w0 its longest element. Let k be such that
(G(W), k) is a GKM-pair. Then B(w0)y ∼= Sk for any y ∈W and any k.

Proof. We proceed by induction on n = `(w0) − `(y). If n = 0, by definition, B(w0)w0 ∼= Sk. If
n ≥ 1 then there exists a simple reflection s ∈ S such that ys > y (so, `(w0) − `(ys) = n − 1).
Actually, w0s < w0 for any s ∈ S and, by Theorem 5.3.1 and inductive hypothesis, we have
B(w0)y ∼= B(w0)ys ∼= Sk.

Remark 5.3.2. If k = Q the result above corresponds to the (rational) smoothness of flag varieties,
while if k is a field of characteristic p it gives their p-smoothness (cf. [19]). Our proof is based only
on the definition of canonical sheaf; we do not use Fiebig’s multiplicity one results (see [17]), nor
the geometry of the corresponding flag varieties.

5.3.5 Parabolic setting
Let J ⊆ S be such that WJ = 〈J〉 is finite with longest element wJ . Let WJ be the set of

minimal representatives of the equivalence classes W/WJ . For w ∈ WJ , denote by B(wwJ), resp.
BJ(w), the corresponding indecomposable canonical sheaf on G, resp. on GJ . It is now easy to see
that:



63

Lemma 5.3.7. Let WJ and wJ be as above and consider x,w ∈ WJ such that y ≤ w, then
B(wwJ)x ∼= B(wwJ)xu for any u ∈WJ .

Proof. We proceed by induction on `(u). Clearly there is nothing to prove if `(u) = 0. If `(x) > 0
then there exists an s ∈ S such that us < u and so by the inductive hypothesis, we get B(wwJ)x =
B(wwJ)xus. Now for any s ∈ J , wwJs < wwJ and by Theorem 5.3.1 we obtain the claim.

Theorem 5.3.2. Let (GwwJ , k) be a GKM-pair and let WJ and wJ be as above. If y, w ∈WJ and
y ≤ w, then there is an isomorphism of Sk-modules

B(wwJ)ywJ ∼= BJ(w)y.

Proof. We proceed by induction on n = `(w)− `(y). If n = 0 the statement is trivial. Suppose we
have a collection of isomorphisms of Sk-modules ηx : BJ(w)x → B(wwJ)xwJ for any x such that
`(w)− `(x) < n.

There is a natural injective homomorphism,

j : Γ({> y},B(w)J)→ Γ({> ywJ},B(wwJ)),

defined by setting (mx)x∈(y,w]⊂WJ 7→ (m̃z)z∈(ywJ ,wwJ ]⊂W, where m̃z := ψz(ηx(mx)) if z ∈ xWJ

and ψz : B(wwJ)x → B(wwJ)z denotes the isomorphism in Lemma 5.3.7.
We will show that such a homomorphism induces an isomorphism B(wwJ)δ ywJ ∼= BJ(w)δy.

Then, by the unicity of the projective cover, the statement will follow.
Let z ∈ (ywJ , wwJ ], z = xu, for some x > y ∈ WJ , u ∈ WJ and u = s1 . . . sr a re-

duced expression with si ∈ J for every i. Moreover, let (nv) ∈ Γ({> ywJ},B(wwJ)). We
prove by induction on `(u) = r that there exists a section (pv) ∈ Γ({> ywJ},B(wwJ)) such
that pxs1...si = ψxs1...si(ηx(mx)) for some mx ∈ BJ(w)x for any i = 0, . . . , r and such that
uywJ ((pv)) = uywJ ((nv)).

For the base step we have r = 0 and there is nothing to prove.
If z = (xs1s2 . . . sr−1)sr then, by the inductive hypothesis, there exists a section (qv) ∈ Γ({>

ywJ},B(wwJ)) and an elementmx ∈ BJ(w)x such that qxs1...si = ψxs1...si(ηx(mx)) and uy((qv)) =
uy((nv)) for i = 0, . . . , r − 1. Thus, by Lemma 5.3.4, the element (pv) ∈

⊕
v>ywJ

B(w)y such that

pys1...sr−1sr = ϕys1...sr−1(pys1...sr−1)

and
pxs1...si = qxs1...si = ψxs1...si(ηx(mx)) ∀i < r

is a section on {> ywJ} and verifies uywJ ((ñv)) = uywJ ((nv)).
Finally, from the proof of Lemma 5.3.7 it follows that

ϕys1...sr−1(pys1...sr−1
) = ϕys1...sr−1(ψys1...sr−1(ηx(mx)) = ψxs1...sr (ηx(mx)).

Corollary 5.3.2. Let (G|≤wwJ , k) be a GKM-pair and let pJ : G→ GJ the quotient map we defined
in §3.1.3. Then, p∗JB(w)J ∼= B(wwJ).

The theorem above is just the categorification of the following theorem, due to Deodhar:

Theorem 5.3.3 ([9]). Let W be a Weyl group with S, the set of simple reflections, and J ⊆ S such
that WJ is finite. Let wJ be the longest element of WJ and y, w ∈WJ , then mJ

y,w = hywJ ,wwJ .
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5.4 Affine Grassmannian for A1

Using the inductive formula (2.2.c) of [29], it is easy to show that, if W is the infinite dihedral
group, then hy,w = vl(y)−l(w) for all y, w ∈W. Let us consider J = {sα}, then, from Theorem 5.3.3,
it follows mJ

y,w = vl(y)−l(w) for any pair y, w ∈ WJ . In this section we categorify this property. In
particular, we prove that the structure sheaves on all finite intervals of the moment graph associated
to the affine Grassmannian of ŝl2 (cf. §3.2.2) are flabby. As in §3.2.2, we will denote by Gpar the
corresponding moment graph, while, for a vertex w ∈WJ , Bpar(w) is the indecomposable canonical
sheaf.

Recall that the set of vertices is in this case totally ordered, so we may enumerate the vertices
as follows, once identified the finite root α with the corresponding coroot α∨: v0 = 0, v1 = α,
v2 = −α, ... , vh = (−1)h+1[h+1

2 ]α, . . . .
From now on we denote the edges as Eh,k : (vh −−− vk) and the labels as lh,k := l(Eh,k); we

write moreover lh,k = α+nh,kc. Actually, the label of an edge Eh,k is by definition ±lh,k; however,
there exists an isomorphic k-moment graph with same sets of vertices and edges, but this other label
function and, by Lemma 2.2.2, the corresponding indecomposable canonical sheaves are isomorphic.

We will prove in several steps that, if vj ≤ vi and (Gpar
|[vj,vi]

, k) is a GKM-pair, then (Bpar(vi))
vj ∼=

Sk by induction on i− j.
Fix once and for all I = {vi, vi−1, . . . , vj+1}.

Lemma 5.4.1. Let r ∈ N be such that r < i−j. If (Gpar, k) is a GKM-pair, and z ∈ Γ(I,Bpar(vi)){r},
then z is uniquely determined by its first r+1 components, that is the restriction map Γ(I,Bpar(vi)){r} −→
Γ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} is injective.

Proof. Let z ∈ Γ(I,Bpar(vi)){r} such that zvi = zvi−1 = . . . = zvi−r = 0. Observe that for any
j + 1 ≤ h < i− r ≤ k ≤ i one has zvh ≡ zvk = 0 ( mod α+ nh,kc).

By the GKM-property it follows that all the polynomialsMCD(α+nh,kc, α+nh,lc) = 1 for any
i−r ≤ k 6= l ≤ i. Since Sk is an UFD, zvh has to be divisible by (α+nh,i−rc)(α+nh,i−r+1c) . . . (α+
nh,ic). This is a polynomial of degree r + 1 while zvh was a polynomial of degree r, so zvh = 0.

Lemma 5.4.2. Let r ∈ N be such that r < i− j. We have dimkΓ(I,Bpar(vi)){r} =
(
r+2

2

)
.

Proof. By Lemma 5.4.1, dimkΓ(I,Bpar(vi)){r} = dimkΓ({vi, vi−1, . . . , vi−r},Bpar(vi)){r}.
Clearly, Γ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} ⊆

⊕r
0(Sk){r} and dimk

⊕r
0(Sk){r} = (r + 1)2.

By definition an element m ∈
⊕r

0(Sk){r} is in Γ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} if it satisfies
some (linear) conditions given by the labels of the edges. If we prove that such conditions are
linearly independent, then we know that

dimkΓ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} = dimk

r⊕
0

(Sk){r} − ] edges.

We noticed in §3.2.2 that in the ŝl2 case all the vertices are connected, so the number of vertices
is equal to the number of pairs of different elements in a set with r + 1 elements, that is

(
r+1

2

)
.

Then,

dimkΓ({vi, vi−1, . . . , vi−r},Bpar(vi)){r} = (r + 1)2 −
(
r + 1

2

)
=

(
r + 2

2

)
.
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Hence now we show that the conditions are linearly independent.
Let i− r ≤ h < k ≤ 1 and define the element (m(h,k)) ∈

⊕r
0(Sk){r} in the following way:

m(h,k)
vl

:=
{ c

∏
m∈{i,i−1,...,i−r}\{h,k}(α+ nh,mc) if l =h

0 otherwise

Now m
(h,k)
vl = m

(h,k)
vm for any l,m 6= h and c

∏
(α + nh,mc) ≡ 0(mod α + nh,mc). By the

GKM-property, lh,k does not divides m(h,k)
h , while m(h,k)

k = 0.
So for any condition coming from the edge El,m we built a r+1-tuple which verifies all conditions

except the El,m-th. It follows that all conditions are linearly independent.

Denote by mα,mc ∈ Γ(I,Bpar(vi)){1} the constant sections mα,v = α, mc,v = c for all v ∈ I.
Denote moreover by uvj := ⊕ρvh,Eh,j , where ρvh,Eh,j : Sk → Sk/(Eh,j · Sk) are just the canonical
quotient maps.

Lemma 5.4.3. Let r ∈ N and let (Gpar, k) be a GKM-pair. The vector subspace of (Bpar
vi )cvj

generated by
uvj (m

r
α), uvj (m

r−1
α mc) . . . uvj (mαm

r−1
c ), uvj (m

r
c)

has dimension equal to r + 1 if r < i− j or dimension equal to i− j otherwise.

Proof. As first notice that (Bpar(vi))
Ej,k = Sk/(lj,k ·Sk) ∼= k[c] by the mapping α 7→ −nj,kc. Then

uvj (m
k
αm

t−k
c ) = ((−nj,i)k, (−nj,i−1)k, . . . , (−nkj,j+1))c.

We obtain the following matrix

N =


1 1 . . . 1
−nj,i −nj,i−1 . . . −nj,j+1

(−nj,i)2 (−nj,i−1)2 . . . (−nj,j+1)2

...
...

...
(−nj,i)t (−nj,i−1)t . . . (−nj,j+1)t


By the GKM-property it follows that nj,k 6= nj,h for all pair j + 1 ≤ k 6= h ≤ i and N is a

Vandermonde matrix. In particular, such a matrix is not singular and so it has maximal rank, i.e.
rk(N) = t+ 1 if t < i− j and rk(N) = i− j otherwise.

Lemma 5.4.4. There exists a section m0 ∈ Γ(I,Bpar(vi)){1} such that uvj (m0) = 0 and m0,v 6= 0
for all v ∈ I.

Proof. Let vj = rα. Define m0,vh := (r − s)lj,h = (r − s)(α+ (r + s)c) if vh = sα.
Notice that (m0) ∈ Γ(I,Bpar(vi)); indeed for any pair of vertices vh = sα, vk = tα, one has

lh,k = α+ (s+ t)c and

m0,vh −m0,vk = (r − s)(α+ (r + s)c)− (r − t)(α+ (r + t)c) =

= −sα− s2c+ tα+ t2c = α(t− s) + c(t2 − s2) =

= (t− s)(α+ (s+ t)c) ≡ 0 ( mod α+ (s+ t)c).

Moreover, by definition m0,vh 6= 0 for any vh ∈ I and uvj ((m0)) = 0.



66 CHAPTER 5. CATEGORIFICATION OF KAZHDAN-LUSZTIG EQUALITIES

Lemma 5.4.5. Let r ∈ N be such that r < i− j. The collection of monomials {ml
αm

h
cm

k
0 | l, h, k ≥

0, l + h+ k = r} is a basis of Γ(I,Bpar(vi)){r}.

Proof. Since the number of monomials in three variables of degree r is
(
r+2

2

)
and by Lemma 5.4.2

dimkΓ(I,Bpar(vi)) =
(
r+2

2

)
as well, it is enough to prove that all monomial in mα, mc, m0 are

linearly independent. We prove the claim by induction on r.
Let r = 1. If xmα + ymc + zm0 = 0, then clearly 0 = uvj (xmα + ymc + zm0) = xuvj (mα) +

yuvj (mc) + zuvj (m0). By Lemma 5.4.4 uvj (m0) = 0, so xuvj (mα) + yuvj (mc) = 0. But by Lemma
5.4.3 uvj (mα) and uvj (mc) generate a vector space of dimension 2, then x = y = 0. Finally, from
zm0 = 0 and Lemma 5.4.4 it follows z = 0.

Now let r > 1. Let z =
∑
l+m+n=r xl,m,nm

l
αm

m
c m

n
0 = 0. We can write z = z1 +z0m0, z1 is such

that m0 does not appear. Then by Lemma 5.4.3 uvj (z) = uvj (z1) + uvj (z0)uvj (m0) = uvj (z1) = 0.
From Lemma 5.4.3 we know that all uvj (ml

αm
r−l
c ) are linearly independent and so

0 = uvj (z1) = uvj (
∑

l+m=r

xl,m,0m
l
αm

m
c ) =

∑
l+m=r

xl,m,0uvj (m
l
αm

m
c )

implies xl,m,0 = 0 for all pair l,m, i.e. c1 = 0. Thus we obtain c0m0 = 0 and we conclude by Lemma
5.4.4 that c0 = 0. Finally, 0 = c0 =

∑
l+m+n=r−1 xl,m,n+1m

l
αm

m
c m

n
0 is a linear combination of

monomials in mα,mc,m0 of degree r − 1 and so by the inductive hypothesis we have xl,m,n+1 = 0
for all l,m, n.

Theorem 5.4.1. If vj ≤ vi and (Gpar
|[vj,vi]

, k) is a GKM-pair, then (Bpar(vi))
vj ∼= Sk.

Proof. We prove that (Bpar(vi))
δvi coincides with the uvi image of the ring generated by mα and

mc. If r < i− j, by 5.4.5, Γ(I,Bpar(vi)){r} is generated by {ml
αm

h
cm

k
0 | l, h, k ≥ 0, l + h+ k = r}.

From 5.4.4 it follows (Bpar(vi))
δvi = uvi(Γ(I,Bpar(vi)){r}) is contained in the ring generated by

uvi((mα)) and uvi((mc)).
Otherwise, r ≥ i− j and

⊕
Ei,k∈Eδvi

(Bpar(vi))
Ei,k ∼= k[c]i−j , having dimension i− j. Then by

Lemma 5.4.3 uvi(mα) and uvi(mc) generate (Bpar(vi))
δvi

Thus we have a surjective map Sk →
⊕

Ei,k∈Eδvi
(Bpar(vi))

Ei,k by the mapping α 7→ mα and
c 7→ mc. Then (Bpar(vi))

vj ∼= Sk.

Remark 5.4.1. If k = Q, this result corresponds to the rational smoothness of the corresponding
(partial) Richardson variety.



Chapter 6

The stabilisation phenomenon

In [37], Lusztig proved that the affine parabolic Kazhdan-Lusztig polynomials stabilise. Quoting
Soergel’s reformulation (cf.[[40],Theorem 6.1]), the parabolic Kazhdan-Lusztig polynomials mSf

A,B

indexed by pairs of alcoves far enough in the fundamental chamber stabilise, in the sense that, for
any pair of alcoves A,B, there exists a polynomial qA,B with integer coefficients such that

lim
µ∈C+

mSf

A+µ,B+µ = qA,B

The qA,B ’s are called generic polynomials and turn out to have a realisation very similar to the
one of the regular Kazhdan-Lusztig polynomials. Indeed, Lusztig in [37] associated to every affine
Weyl group Wa its periodic module M, that is the free L = Z[v, v−1]-module with set of generators
-or standard basis- indexed by the set of all alcoves A. It is possible to define an involution and
to prove that there exists a self-dual basis of M: the canonical basis. In this setting, the generic
polynomials are the coefficients of the change basis matrix. Our interest in the periodic module is
motivated by the fact that M governs the representation theory of the affine Kac-Moody algebra,
whose Weyl group is Wa, at the critical level (cf. [3]).

The aim of this chapter is to study the behaviour of indecomposable Braden-MacPherson
sheaves on finite intervals of the parabolic Bruhat graph far enough in C+ (cf. §3.2.3).

6.1 Statement of the main theorem
Let Gpar denote the parabolic moment graph associated to the affine Grassmannian, whose set

of vertices we identify with the set of alcoves in the fundamental chamber (cf. §3.2.2), and let
I = [B,A] be an interval far enough in the fundamental chamber. Inspired by [[37], Proposition
11.15], we claim that, for all µ ∈ X∨ ∩ C+,

B(A)B ∼= B(A+ µ)B+µ. (6.1)

We showed in §3.2.3 that Gpar
|[B,A]

is in general not isomorphic to G
par
|[B+µ,A+µ]

as moment graph, so
we cannot use the pullback technique we developed in §5.2 to get the isomorphism of Sk-modules
above. On the other hand, we proved in Lemma 3.2.5 that, for all µ ∈ X∨, there is an isomorphism
of k-moment graphs

τµ : Gstab
|[B,A]

→ Gstab
|[B+µ,A+µ]

67
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Thus, by Lemma 2.2.2, we get an isomorphism between the indecomposable canonical sheaf B(A)
on Gstab

|[B,A]
and τ∗µB(A+µ), the pullback of the indecomposable Braden-MacPherson sheaf B(A+µ)

on Gstab
|[B+µ,A+µ]

.
For any finite interval I far enough in the fundamental chamber, consider the monomorphism

iI : Gstab
|I ↪→ G

par
|I , given by (iI)V = idV and iI,l,x = id for all x ∈ I. We get the functor ·stab :

ShG
par
|I
→ ShGstab

|I
, defined by the setting F 7→ Fstab := i∗I(F). The goal of this chapter is to prove

the following result.

Theorem 6.1.1. For all finite intervals far enough in the fundamental chamber, the functor ·stab :
ShG

par
|I
→ ShGstab

|I preserves indecomposable Braden-MacPherson sheaves.

We will prove this theorem via explicit calculations in the ŝl2 case, while for the general case
we will need deep results and methods developed by Fiebig in [18].

Once proved Theorem 6.1.1, we get Equality 6.1 by applying Lemma 3.2.5.

6.2 The subgeneric case

In this section, Gstab, resp. Gpar, denote the parabolic moment graph, resp. the stable moment
graph, for the Ã1 root system. Moreover, we suppose that k has characteristic zero and we write S
instead of Sk.

We have already proved that for any two vertices v, w with v ≤ w the stalk of the Braden-
MacPherson sheaf on G

par
≤w is B(w)v ∼= S, that is equivalent to the flabbiness of the structure sheaf

on G
par
≤w. In order to show that the functor stab preserves indecomposable canonical sheaves, it is in

this case enough to verify that, for any vertex w, the structure sheaf A on Gstab
≤w is still flabby.

Recall that the set of vertices of Gpar (and so of Gstab) can be identified with the finite (co)root
lattice, that is Zα, where α = α∨ is the positive (co)root of A1. Moreover, Gpar is a complete
graph and the label function is given, up to a sign, by l(hα−−− kα) = α+ (h+ k)c. By definition,
we get Gstab from Gpar by deleting the non-stable edges, then hα −−− kα ∈ Estab if and only if
sgn(h) = −sgn(k) (where, by convention, we set sgn(0) = −).

Lemma 6.2.1. Let r ∈ Z>0. If n ∈ Z, set, for any h ∈ Z, with hα ≤ nα,

ezrnα,hα :=


0 if |h| ∈ [|n| − r + 1, |n|]∏r−1
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i)

]
if h ∈ (0, |n| − r]∏r−1

i=0

[(
α+ (|n|+ h− i)c

)
(|n|+ h− i)

]
if h ∈ [r − |n|, 0]

Then ezrnα = (ezrnα,hα) ∈ Γ({≤ nα},A){r}.

Proof. We verify that, for any h, k ∈ Z such that hα, kα ≤ nα, if hα−−− kα is an edge, then

ezrnα,hα −e zrnα,kα ≡ 0 (mod α+ (h+ k)c) (6.2)

We may clearly suppose h > 0 and k ≤ 0.
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Let at first consider h ∈ [|n| − r+ 1, n]. If −k ∈ [|n| − r+ 1, n], then ezrnα,hα = ezrnα,kα = 0 and
there is nothing to prove. Otherwise, k ∈ [r − |n|, 0] and

ezrnα,hα −e zrnα,kα = 0−
r−1∏
i=0

[(
α+ (|n|+ k − i)c

)
(|n|+ k − i)

]
. (6.3)

Now, α + (h + k)c divides
∏r−1
i=0

[(
α + (|n| + k − i)c

)
(|n| + k − i)

]
if and only if there exists an

i ∈ [0, r − 1] such that |n| − i = h, i.e. h − |n| = −i. But we supposed h ∈ [|n| − r + 1, n] that is,
precisely, h− |n| ∈ [−r + 1, 0].

Let consider the case h ∈ (0, |n| − r]. If −k ∈ [|n| − r + 1, n], then

ezrnα,hα −e zrnα,kα =

r−1∏
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i)

]
− 0. (6.4)

Now, α+ (h+ k)c divides
∏r−1
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i)

]
if and only if there exists an

i ∈ [0, r − 1] such that |n| − i = −k, i.e. −k − |n| = −i. But we supposed −k ∈ [|n| − r + 1, |n|]
that is, precisely, −k − |n| ∈ [−r + 1, 0].

Otherwise, k ∈ [r − |n|, 0] and

ezrnα,hα −e zrnα,kα =
∏r−1
i=0

[(
−α+(|n| − h− i)c

)
(|n| − h− i)

]
−
∏r−1
i=0

[(
α+(k + |n| − i)c

)
(k + |n| − i)

]
≡

∏r−1
i=0 [(k + h+ |n| − h− i)(|n| − h− i)c]
−
∏r−1
i=0 [(−k − h+ k + |n| − i)(|n|+ k − i)c] = (mod α+ (h+ k)c)

= cr
∏r−1
i=0 [(k + |n| − i)(|n| − h− i)− (−h+ |n| − i)(|n|+ k − i)]

= 0

Lemma 6.2.2. Let r ∈ Z>0. If n ∈ Z, for any h ∈ Z, such that hα ≤ nα, we set

ozrnα,hα :=


0 if |h| ∈ [|n| − r + 2, |n|]∏r−1
i=0

[(
− α+ (|n| − h− i)c

)
(|n| − h− i+ 1)

]
if h ∈ (0, |n| − r + 1]∏r−1

i=0

[(
α+ (|n|+ h− i+ 1)c

)
(|n|+ h− i)

]
if h ∈ [r + n− 1, 0]

Then ozrnα = (ozrnα,hα) ∈ Γ({≤ nα},A){r}.

Proof. The proof is very similar to the one of the previous lemma and therefore we omit it.

Define ez0
nα := (1)hα≤nα.

Lemma 6.2.3. Let r ∈ Z≥0, n ∈ Z andm ∈ Z be such thatmα ≤ nα. For all z ∈ Γ([mα,nα],A){r},
there exist osik,

esjk ∈ S{i}, with i ∈ [0, r], j ∈ (0, r] and k such that kα ∈ [mα,nα], such that

z =

r∑
j=1

esjk(ezr−jkα )kα∈[mα,nα] +

r∑
i=0

osik(ozrkα)kα∈[mα,nα]. (6.5)
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Proof. Let hα be the maximal vertex in [mα,nα] such that zhα 6= 0. We prove the statement by
induction on l = ][mα, hα].

If such a vertex does not exists, that is l = 0, then z = (0) and there is nothing to prove.
We should consider four cases: n > 0 and l > 0; n > 0 and l ≤ 0; n ≤ 0 and l > 0; n ≤ 0 and

l ≤ 0. Actually, we will verify only the first case, since the others can be proven in a very similar
way.

Let n > 0 and h > 0. If h = n, then we set z′ = z − ze
nαz

0
nα and the result follows from the

inductive hypothesis. Otherwise, h < n and then
∏n−h−1
i=0 (−α+ (n− h− i)c) divides zhα in S and

we may set

esr−n+h
h :=

n−h−1∏
i=0

[(−α+ (n− h+ i)c)(n− h− i)]−1 · zhα ∈ S{r−n+h}. (6.6)

Now z′ := z− esr−n+h+1
h · (ezn−hkα )kα∈[mα,nα] ∈ Γ([mα,nα],A){r} has the property that z′kα = 0 for

all k ∈ [hα, nα] and we get the statement from the inductive hypothesis.

Corollary 6.2.1. For any n ∈ Z, the structure sheaf A on Gstab
≤nα is flabby.

Proof. We have to show that every local section z ∈ Γ(I,A), with I open can be extended to a
global section z̃ ∈ Γ(Gstab

≤nα,A). Since the set of vertices of Gstab is totally ordered, then any open
set of Gstab

≤nα is actually an interval, that is there exists an m ∈ Z such that I = [mα,nα].
Suppose z ∈ Γ(I,A){r}, then by Lemma 6.2.3, we can write

z =

r∑
j=1

esjk(ezr−jkα )kα∈[mα,nα] +

r∑
i=0

osik(ozrkα)kα∈[mα,nα]. (6.7)

By Lemma 6.2.1 and Lemma 6.2.2, z is a sum of extensible sections, and so it is extensible as
well.

Finally, we get the following theorem.

Theorem 6.2.1. Let g = sl2. In this case, for all finite intervals I, the functor ·stab preserves
indecomposable canonical sheaves.

6.3 General case

In order to prove our claim, we have to show that, for any interval I far enough in the fun-
damental chamber, if B is an indecomposable Braden-MacPherson sheaf on G

par
|I , then Bstab is

indecomposable and satisfies properties (BMP1),(BMP2),(BMP3),(BMP4). Observe that proper-
ties (BMP1), (BMP2) are trivial and (BMP4) comes from the fact that Γ(I,F) ↪→ Γ(I,Fstab) for
any F ∈ Sh(Gpar

|I ), so we only have to show that Bstab is a flabby indecomposable sheaf on Gstab
|I .
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6.3.1 Flabbiness

It is possible to define a functor ·per : Sh(G) → Sh(Gper) in a very easy way. Let F =
({Fx}, {FE}{ρx,E}), then we set (Fper)x = Fx for any x ∈ V, (Fper)E = FEfor any E ∈ E and
ρper
x,E = ρx,E . A fundamental step in the proof of the flabbiness of Bstab consists in showing that
·per maps canonical shaves to flabby sheaves. In order to get this, we will combine several results
of Fiebig that we are going to recall.

Hereafter we will consider translation functors on the category of Z-modules, where Z is the
structure algebra of G. From now on θs will denote the translation functor defined by Fiebig in [13].
The definition is analogous to the one we have given in Chapter 4. We will moreover denote by H

the corresponding category of special modules. Thus the following theorem holds.

Theorem 6.3.1 ([13]). Let M ∈ Z−mod. Then M ∈ H if and only if it is isomorphic to the space
of global sections of a BradenMacPherson sheaf on G.

In [14], Fiebig defined the localisation functor L : Z(K) − mod → Sh(K), for all k-moment
graphs K, that is left adjoint to the functor of global section Γ : ShK → Z(K) − mod (cf. [[14],
Theorem 3.5]).

Using Fiebig’s terminology, we may now say that an object M ∈ Z − mod is flabby if the
corresponding sheaf L (M) is flabby. So our claim is equivalent to the fact that L (Γ(Fper)) =
L (Γ(F))per is flabby if F is a Braden MacPherson sheaf. We will prove it using translation functors.

When we defined translation functors, we did not use the partial order on the set of vertices, since
the structure algebra does not depend on it. Thus it makes sense to speak of the translation functor
θper
s : Z(Gper)-mod → Z(Gper)-mod and this clearly coincides with θs : Z(G)-mod → Z(G)-mod.
Then also the corresponding categories of special modules (see §4) coincide, but, because of this
different order, we get a different topology on the set of vertices and so M ∈ H = Hper could be
such that L (M) is flabby in Sh(G), while L (M)per is not in Sh(Gper). In [13] Fiebig proved the
following fact (used actually in the proof of Theorem 6.3.1).

Theorem 6.3.2 ([13]). θs : Z(G)−mod→ Z(G)−mod preserves flabby objects.

The proof of the theorem above is rather long, so we omit it. However we want to point out the
fact that in order to get the previous result Fiebig used only three properties of the Bruhat order,
namely

(1) The elements w and tw are comparable for all w ∈ Wa and t ∈ Ta. The relations between all
such pairs w, tw generate the partial order.

(2) We have [w,ws] = {w,ws} for all w ∈Wa and s ∈ Sa such that w < ws.

(3) For x, y ∈Wa such that x < xs and y ≤ xs we have ys ≤ xs. For x, y ∈Wa such that xs < x
and xs ≤ y we have xs ≤ ys.

Since Lusztig in [37] proved that the generic order has also these properties, we get

Theorem 6.3.3. θs : Z(Gper)−mod→ Z(Gper)−mod preserves flabby objects.

We are now ready to conclude.

Proposition 6.3.1. Let F be a Braden-MacPherson sheaf on G then Fper is a flabby sheaf on Gpar.
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Proof. We want to show that F = Γ(F) is flabby. By Theorem 6.3.1, we know that F ∈ H, so we
may prove our result by induction. If F = Be, there is nothing to prove. We have to show now that,
if the claim is true for M ∈ H, then it holds also for θs(M), that, again by Theorem 6.3.1, is still
isomorphic to the global sections of a Braden-MacPherson sheaf on G. But now by the inductive
hypothesis we get that M is a flabby object in Z(Gper)-mod and so, by applying Theorem 6.3.3,
θs(M) = θper

s (M) is also a flabby object in Z(Gper)-mod.

Decomposition of the functor ·stab

The functor ·stab may be obtained as composition of the five following functors.

Sh(Gpar
|I )

i∗ //

·stab

22
Sh(Gpar)

p∗par // Sh(G)
·per
// Sh(Gper)

j∗ // Sh(Gper
|I ) ·opp

// Sh(Gstab
|I )

Where

• i : Gpar
|I ↪→ Gpar and j : Gstab

|I ↪→ Gstab are the inclusions of subobjects

• ppar : G→ Gpar is the quotient homomorphism we defined in §3.1.3

• ·opp is the pullback of the isomorphism of moment graphs f : Gstab
|I → G

per
|I defined as fV = id

and fl,x(λ) = x−1(λ) for all x ∈ I and λ ∈
� ∨
Q (this is proved to be an isomorphism in

Lemma 5.2.1).

Now, it is clear that i∗ and j∗ map flabby sheaves to flabby sheaves. Moreover, p∗par, resp. ·opp, by
Corollary 5.3.2, resp. Lemma 2.2.2, preserves Braden-MacPherson sheaves, and so, in particular,
the flabbiness. Finally, Proposition 6.3.1 tells us that also the functor ·per preserves the flabbiness.
It follows that if we apply ·stab to a Braden-MacPherson sheaf we get a flabby sheaf on Gstab

|I , as we
wished. Thus we obtain the following result.

Theorem 6.3.4. Let F ∈ Sh(Gpar
|I ) be a Braden-MacPherson sheaf, then Fper ∈ Sh(Gstab

|I) is a flabby
sheaf.

6.3.2 Indecomposability
Here we prove the only step missing in the proof of Theorem 6.1.1.

Proposition 6.3.2. Let I be a finite interval of Gpar far enough in C+ and let B ∈ Sh(Gpar
|I ) be an

indecomposable Braden-MacPherson sheaf. Then Bstab is also indecomposable as sheaf on Gstab
|I .

Proof. Since B is indecomposable, by Theorem 2.1.1, B = B(w) for some w ∈ I, that implies
B(w)x = 0 = Bstab,x for all x > w (x ∈ I) and B(w)w ∼= S ∼= Bstab,w. Suppose that Bstab = C⊕D,
then for what we have just observed, we may take C and D such that Cx = Dx = 0 for all x > w,
Cw ∼= S and Dw = 0. Let y ∈ I be a maximal vertex such that Dy 6= 0. For any E : y → z ∈ Eδy, by
definition of Braden-MacPherson sheaf, ρz,E : B(w)z = Bstab,z = Cz → BE = Bstab,E is surjective
with kernel l(E) ·Bz = l(E)Cz and this implies DE = 0.
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We now localise Γ(B) at a finite simple root β, as we have done in §4.3. Remark that, since we
are representing the parabolic Bruhat graph using alcoves, we are taking the quotient of Gopp instead
of G. It means that we have to twist the action of S on any vertex x by x−1. However, once the action
of the symmetric algebra is twisted, all the results in §4.3 still work in the same way. By combining
Theorem 6.3.1 and Lemma 4.3.2 we know that L (Γ(B)β) is a direct sum of Braden-MacPherson
sheaves on certain moment graphs, each one of them isomorphic to a finite interval of the parabolic
Bruhat graph for Ã1. From the definition of L , it follows that L (Γ(Bstab)β) = (L (Γ(B)β))stab.

We have already proved that ρy,E(Dy) = 0 for any E ∈ Eδy ∩ ES and we want to show that
ρy,E(Dy) = for any E ∈ Eδy. If it were not the case, there would be a non–stable edge F ∈ Eδy∩ENS
such that ρy,E(Dy) 6= 0. Let β ∈

�
∆+ be such that l(F ) = β + nδ for some n ∈ Z. Localising at β,

we would get ρβy,F (Dy,β) 6= 0 and from the Ã1 case, it follows that ρβy,E(Dy,β) 6= 0 for all E ∈ Eδy
in β-direction, but we proved that this is not the case.

We are now ready to conclude. From what we showed, it follows that uy(Cy) = Bδy and this
implies Dy = 0, since (By, uy) is a projective cover of Bδy.
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