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The exponential growth of the new technologies and the development of hardware
in modern computers are due to multi-core CPU1 and powerful GPU2. The High
Performance Computing greatly improved the performance in solving several prob-
lems. I discuss in this thesis three different problems:

1) Factorization problem
General Number Field Sieve (GNFS) is known to be the perfect candidate for the
factorization task. The procedure is dominated by a step called sieving. Due to the
size of the number we want to factor (ex: RSA modulus), the procedure needs to per-
form the same operation on a large set (Single Instruction Multiple Data). For this
purpose, we exploit the features of the GPU to handle this operation, implementing
the sieving procedure to run on the GPU. A benchmark that measure the perfor-
mance of GPU Tesla P100 compared to the CPU (serial and parallel) is provided.
We obtained a speed-up of the algorithm which is parameterized by the features
of the GPU (amount of cache memory) and the size of the input (cardinality of the
factor-base). This experiment is implying a proof of concept which shows that the
procedure can benefit from the new generation GPU.
2) Numerical methods in statistical mechanics
The problem of describing the phase transition for the 2D Ising model is approached
numerically. As a Markov Chain, the dynamics of this model can be simulated by
means of Probabilistic Cellular Automata. Recently, dynamic known as shaken dy-
namics was introduced on two layers of square lattice. Using this dynamics we are
able to estimate numerically the critical curve which separates the ordered and dis-
ordered phases on the parameter region (J, q). Furthermore, it induces a procedure
suitable for a parallel environment to simulate in real-time the dynamics on GPU.
Our experiment can be generalized as a study of the numerical aspect of shaken dy-
namics. In particular, we compare it with the alternate dynamics on the critical line
(bisector J = q), also we are able to evaluate numerically the equilibrium distribu-
tion of the dynamics in a given region (J, q).
3) Machine learning
Machine learning is one of our daily life applications which causes the fast develop-
ment of dedicated hardware for High Performance Computing. Image classification
belongs to the intersection between machine learning and computer vision which
aims to detect the features from input pixel images in an elegant and fast way. As a
fact, Deep Convolutional Neural Networks is among the best preforming techniques
when dealing with this task. We applied this technique on architectural images to
provide a light model with a good performance that can be used in a mobile device.
The project can be seen as an instruction guide, starting from scratch for the build-
ing of mobile applications. It can be considered as a proposal for the interaction of
Artificial Intelligence(AI) with the urban context, a starting point that leads to more
complicated tasks in architecture that can be faced by means of AI.

1Central Processing Unit.
2Graphics Processing Unit.
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La crescita esponenziale di nuove tecnologie e lo sviluppo dell’hardware nei mod-
erni computer sono dovuti alle CPU multi-core e alla potenza delle GPU. L’High Per-
formance Computing ha ampiamente migliorato le performance nella risoluzione di
molti problemi. In questa tesi, discuto tre diversi problemi:

1) Il problema della fattorizzazione
Il General Number Field Sieve (GNFS) è ritenuto un perfetto candidato per il prob-
lema della fattorizzazione. La procedura è dominata da un passaggio chiamato siev-
ing. A causa della dimensione del numero che si vuole fattorizzare (RSA modu-
lus ad esempio), la procedura deve ripetere la stessa operazione su un ampio in-
sieme (Single Instruction Multiple Data). A questo fine, si sfruttano le caratteris-
tiche della GPU per gestire l’operazione, implementando la procedura di sieving su
GPU. Si fornisce un benchmark per misurare la performance di una GPU Tesla P100
rispetto alla CPU (seriale e parallela). Si ottiene un’accelerazione dell’algoritmo che
dipende dalle caratteristiche della GPU (quantità di memoria cache) e dalla dimen-
sione dell’input (cardinalità della factor-base). L’esperimento prevede una proof of
concept per mostrare come la procedura possa beneficiare della nuova generazione
di GPU.
2) Metodi numerici in meccanica statistica
Si affronta numericamente il problema della descrizione della transizione di fase
per il modello di Ising bidimensionale. Poiché il modello è una catena di Markov,
la dinamica può essere simulata attraverso automi cellulari probabilistici. Di re-
cente, dinamiche conosciute come shaken dynamics sono state introdotte su un reti-
colo quadrato a due livelli. Usando queste dinamiche è possibile stimare numeri-
camente la curva critica che separa le fasi ordinata e disordinata nella regione di
parametri (J, q). Inoltre, si introduce una procedura per simulare le dinamiche in
tempo reale in ambiente parallelo su GPU. Gli esperimenti condotti possono es-
sere generalizzati come studio degli aspetti numerici delle shaken dynamics. In
particolare, queste sono messe a confronto con dinamiche alternative sulla retta
critica (bisettrice J = q) e si può inoltre calcolare numericamente la distribuzione
d’equilibrio delle dinamiche in una data regione (J, q).
3) Machine Learning
Il machine learning è una delle applicazioni che producono il rapido sviluppo di
hardware dedicato per l’High Performance Computing. Il riconoscimento di im-
magine fa parte dell’intersezione tra machine learning e computer vision, finalizzata
a individuare features in una immagine raster di input in maniera elegante e veloce.
Di fatto, i modelli Deep Convolutional Neural Networks sono tra le tecniche che
mostrano le migliori performance nell’affrontare questi problemi. Queste tecniche
sono applicate a immagini con soggetto d’architettura, al fine di ottenere un modello
leggero che possa essere usato con buone performance su un dispositivo mobile. Il
progetto può essere visto come una guida che parte da zero per la costruzione di
applicazioni mobili. Lo stesso può essere considerato una proposta per l’interazione
dell’Artificial Intelligence (AI) con il contesto urbano, un punto d’inizio che conduca
a più complessi problemi nel campo dell’architettura affrontati con AI.
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1. Introduction
Computer Science is a field of mathematics which studies algorithms to be imple-
mented on computers. The properties of an algorithm depend both on the problem
and the hardware available. There are two main approaches: adapting the algorithm
to a given hardware architecture or designing a realizable hardware which can han-
dle the given computation. Many problems known to be computationally hard can
be solved using both techniques. Here I focus on the first approach, trying to adapt
the algorithms on a given hardware and exploit all its features to obtain a computa-
tional speed-up.

A general purpose CPU 1 of last generation has more than one core (multi-thread).
To exploit this multiple processor technology, parallel computing approach is nec-
essary, i.e., the design of algorithms and data structures that can be processed in par-
allel. This research field is often referred as High Performance Computing, boosting
the performance of the computational power for solving computationally complex
problems. In principle, this involves both the property of the hardware and the ar-
chitecture of the optimized algorithm.

In this thesis, I explore parallel algorithms design and optimization in three different
scientific fields, cryptography, statistical mechanics and machine learning, assum-
ing that a High Performance Computer is available, that is a dedicated hardware
which can be used to speed-up computation. I used last generation GPU2, which
was originally designed to accelerate the graphic operations to produce output on
a graphic display. Recently GPUs have been used in scientific computing to obtain
important results in several scientific domains. During this project I had the oppor-
tunity to use Nvidia workstations DGX-1 occupied by 2× 40 cores Intel Xeon CPU
and 8 Nvidia Tesla P100 16 Gb of video memory GPU.

I address three different projects: the first is about the factorization problem from
which I describe the fastest known algorithm for factorization [BLP92] and provide a
possible improvement of its dominant steps. The second is about statistical mechan-
ics, I exploit several numerical simulation methods to study the planar Ising model.
This contribution is described in [DNT19]. Finally, I consider machine learning. I
explore deep learning methods for classification problems. This work is collected in
[ADP19].
The three projects have no direct interaction between them although the common
feature is that I treated them by means of High Performance Computing.

In cryptography, security depends on a hard mathematical problem. For instance,
given a one-way function3 the challenge is that observing a random output it is dif-
ficult to figure out the input. However brute force can break this by enumerating all
the possible solutions (note that using random procedure takes the same complexity
in the worst cases). An option to overcome this problem is to use an infinite domain
however this possibility is not feasible on a computer. Indeed, this level of security

1Central Processing Unit
2Graphics Processing Unit
3non invertible, easy to compute.
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must rely on the size of the domain of such functions. A Cryptographic system is
said to be computationally secure when any known generic attack is practically un-
feasible. More precisely, a cryptosystem is computationally secure when any known
generic attack has a complexity bigger than the brute force (or equivalent). Other-
wise the cryptosystem is said to be breakable.
Since the running time is a function of the size of the key (private input) it is ex-
pected that the brute force has exponential complexity over this size. In this thesis, I
discuss a cryptosystem for a problem in Number Theory which has been studied for
millenniums, the factorization problem. Euclid proved the Fundamental theorem of
Arithmetic: every positive integer greater than 1 can be decomposed as a product
of primes. The task is to compute explicitly the prime decomposition. In practice,
this is difficult in theory and in application, as well as deciding if a given number is
prime or not.
Many theories have been developed and studied to find a computer algorithm to
tackle these problems and several attempts have been made to combine determinis-
tic and probabilistic strategies. Probabilistic algorithms based on deterministic tech-
niques offer good running time. For testing primality, the algorithms often belong
to the Monte Carlo 4 class, unlike for factorization where Las-Vegas 5 is used. Here,
I go through a probabilistic algorithm for factorization, exploiting the parallelism of
the dominant step of the Gneral Number Field Sieve so that we can expect a factor
speed up of the procedure using the dedicated hardware latest GPU.

One of the challenging problems in Statistical mechanics is the description of the
phase transitions together with the equilibrium probability measure (state) of the
particles system. The Ising model is a mathematical model that was used to deal
with this task.
The problem can be approached algorithmically by simulating the evolution of the
state of the particle system using Markov Chains. A general problem for simulations
is that the equilibrium distribution is difficult to compute. A fruitfull approach is to
use statistical sampling techniques as Monte Carlo, Gibbsian sampling, etc[H0̈0].
Based on the recent results in [ADS+19b] and [ADS+19a], I use parallel computing
techniques both on multi-CPU and GPU to develop parallel numerical simulation
of a large class of 2-dimensional Ising models. Numerically, We recover the critical
curve which separates the two phases on the region (J, q), and verify some of the
results proved in [ADS+19b, ADS+19a].

Machine learning (ML) is a set of methods in Artificial Intelligence (AI) that aim to
teach an artificial agent to perform a particular task. It is based mainly on probability,
statistics and algorithmic techniques. ML has extremely vast applications that can
be classified in three subjects, supervised learning, unsupervised learning and recur-
rent learning. In this thesis, I explore the supervised learning, that is the ML-agent
learn from a labeled dataset to be able to predict the label of unseen data, using deep
learning, a technique in ML based on Artificial Neural Networks (ANNs). Nowa-
days, deep learning has become a very active research area in several domains. For

4Deterministic strategy, probabilistic correctness of the output.
5Always output correct, probabilistic running time.
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instance in computer vision traditional methods have been replaced by deep neu-
ral networks and offer optimal result on qualitative (good) and quantitative (fast)
aspects(see [HGDG17] for example). The principal task on using this kind of tech-
nique is the training of the network. The challenge is to train an efficient model with
a good latency that can be used in mobile phones.
For training the model, powerful resources are required. I used GPU to handle this
step, together with parallel computing techniques that exploit the power of multi-
core processors and modern graphic cards for high computing. As a result of our
experiment, we have trained a model that can be used to recognized architectural
objects, implemented in a mobile phone. This work is collected in [ADP19].
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Part I

Factorization algorithms
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2. Introduction

2.1 Problem definition

In this part, we explore an important algorithm in Number Theory. The factoriza-
tion problem is a big challenge in number theory and its application. To this purpose
many approaches have been exploited by means of techniques derived from mathe-
matics and computational science. Without mentioning the quantum algorithm, the
General Number Field Sieve (GNFS) revealed to be the best candidate for this pur-
pose. It uses some theoretical ideas from mathematics and sophisticated algorith-
mic techniques. It can be considered as an improvement of the sieving algorithm, a
technique suggested for the first time in 1975 [AMB75]. The goal is to find a partic-
ular pair of integer which can be used to factorize the input number N. Instead of
randomly extracting this pair we generate different candidates, called smooth can-
didates. This is indeed the heart of the algorithm.

2.2 Current state of the art and contributions

There are many existing implementations of the General Number Field Sieve, for
instance the cado-nfs [Tea17]. As we discuss through this thesis the GNFS algorithm
benefits of the hardware architecture design for a parallel environment. This proce-
dure consists of a sequences of steps in which the dominant term is the sieving.
In principle, the sieving step consists of finding a sufficient number of smooth can-
didates to perform a prime decomposition. These candidates are supposed to be
much smaller than the original input number N so that we can use trial division or
other deterministic or probabilistic algorithm to handle the factorization. Basically,
the sieve is done in a given interval parameterized by N. Checking for smoothness
is independent per each candidate.
The number of sufficient candidates is approximately the running time of the algo-
rithm. Each candidate analysis can be performed at each node in a parallel system.
This can be done in any implementation of GNFS since the sieving itself is an em-
barrassingly parallel problem. In particular, we check the implementation in [Tea17],
where the sieve is implemented to run on a multi-thread processor.

The contribution of the candidate is a proposal of an implementation for the sieving
step of the GNFS on GPU by means of lattice sieve. We experiment our implementa-
tion of the procedure on GPU and CPU. We try to verify the expected speed-up we
observed from the theoretical analysis of the algorithm.

2.3 Preamble

Computing a non trivial divisor for a given N is a fundamental problem in arith-
metic. More precisely, the prime decomposition of an integer (as well as giving a
witness to confirm that it is indeed prime [LN15]) has been addressed by means
of different number theory techniques, and is considered a difficult computational
problem. In some cryptographic systems such as RSA, the security relies on the
hardness of the factorization problem.
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The most difficult case in the factorization problem is when the number N is com-
posed by two prime numbers of similar size, exactly the case in RSA. The main
reason of the active contribution of cryptanalisys on the improvements of the factor-
ization techniques. The use of trials is computationally impracticable. The method
discussed in this thesis suggests a less computationally expensive procedure than
the trial division. The improvement of the algorithm using a dedicated device and
a distributed system, plays the most important role exploiting the independence of
computation and data so that the running time can be parameterized by the number
of processors or nodes used. The sieving methods is the best candidate among such
algorithms. It is intended to sieve a B-smooth1 number in a bounded interval of Z

(B and the bound of the interval are parameterized by the input N).
For this tasks, a randomized algorithm is always the best choice because it offers a
realistic running time even if it still depends on the size of the input. The Number
Field Sieve [Pol93a] is a probabilistic algorithm, the theory behind the procedure is
deterministic but the running time rely on the distribution of B-smooth integers in a
given interval.
The procedure took advantage of the arithmetic on a Number Field, i.e., one works
on polynomials over an algebraic number. The method was first introduced by Pol-
lard [Pol93a] for a specific number. Later, it was generalized for an arbitrary number
in [BLP92]. The procedure is composed of four principal steps: polynomial genera-
tion, sieve, linear algebra and GCD computation. Every step has an important role
in the algorithm as it can be seen as a succession of procedures which determine
the success of its successor. For instance the success of the GCD computation relies
hardly on the choice of the number field (polynomial), the sieve and the linear alge-
bra.
On the other hand, such algorithm can be classified as a sieving algorithm, where
the running time is dominated by the sieving procedure, finding a sufficient number
of B-smooth candidates. An intuitive observation is that one can proceed the sieving
by using an iterative search over the given interval. Given a positive bound B, we
extract the list of primes less than B. We mark each element in the candidates if it
is divisible by one prime. The candidates which have more marks are likely to be
B-smooth. Such technique is known as line sieve.
The sieving for the NFS algorithm is different from other technique in factorization
algorithm. The candidates must be smooth simultaneously in two domains, rational
and algebraic, more precisely, its polynomial evaluation. According to this property,
the elements of the factor-base are prime ideal and can be approached by means of
line sieve. On the other side, the element of the factor-base can be seen as two di-
mensional lattice. Pollard [Pol93b] presented a method called lattice sieve which is
designed to handle the sieving step for NFS which exploits this form of factor-base.
Looking closer (chapter 4) at this procedure, one can exploit quite easily its parallel
properties.
This part addresses the lattice sieve. The main goal is understanding whether an im-
plementation of the procedure on GPU may yield a significant speed-up of the siev-
ing step and hence of the NFS algorithm. This part is planned as follow: In Chapter
3, we have an overview of the Number Field Sieve algorithm and its improvement.
In Chapter 4, The lattice sieve, we give the theoretical description of this procedure,
followed by the current state of the art and the discussion of our proposed parallel
implementation. In Chapter 5, we summarize this part with a possible extension of
the project.

1All its prime divisor are less than B



7

3. Literature review

3.1 The Number Field Sieve

The following description is based on [LHWL93]. This contains several papers re-
lated to the Number Field Sieve algorithm (NFS), and some improvements. Indeed,
the algorithm was first proposed by John Pollard [Pol93a], who suggested its use, by
using the property of an algebraic number, and illustrate that method on the seventh
Fermat number. Later on, the method was used in [LLMP93a] who succeed to factor
the ninth Fermat number. Basically the algorithm is done using the arithmetic on the
Number Field. In [LLMP93b] a detailed description of the procedure for a special
form integer is given. However, the number sieve algorithm could be generalized
for an arbitrary integer. We refer to [BLP92] for this procedure, a such algorithm
usually called the General Number Field Sieve (GNFS).

3.1.1 Theoretical description

The Number Field Sieve algorithm depends on the properties of an algebraic num-
ber. We construct the number field, by assuming that we have a monic irreducible
polynomial f of degree d, which has a root m in the ring ZN . Let α be a complex root
of f , and consider the following homomorphism

Φ : Z[α] −→ ZN
α 7−→ m

Assumption 3.1.2. Z[α] is an unique factorization domain.

Most of the time, the assumption (3.1.2) does not occur, or Z[α] is not even an
order, although the following description is still valid where the algorithm tries to
reduce this amount of error. The case when it is not an order is discussed in the
generalization of the Number Field Sieve algorithm.
The elements of Z[α] are polynomial of degree d− 1 in Z, and the operation is simi-
lar in any ring of polynomial modulo f .

In the Number Field Sieve, the generation of the couple (x, y) is different from the
other methods based on the difference of squares (quadratic sieve [Pom82]). Here,
we need a set S of coprime (a, b) such that a − bm and a − bα are simultaneously
smooth in Z and Z[α] respectively. For a− bα, we refer to the ideal of Z[α] gener-
ated by this element, the smoothness of an ideal stands when it can be written as a
product of prime ideals (UFD). This means that we compute the norm and verify its
smoothness in Z, because the prime ideals of Z[α] are those one which have norm
to be a power of prime numbers.
Before giving the detailed description of the algorithm, we give a notification on the
factor-base. We consider the two cases for ZN and Z[α].

1. The rational side ZN
Let B be a positive integer and set

Fb(B) = {p prime : p ≤ B}
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Let a− bm the element we defined before, for p ∈ Fb(B) divides a− bm implies
that a

b
≡ m mod (p)

thus one can define our factor base as

Fb(B) = {(r, p) : p ≤ B prime , r ≡ m mod (p)}

This motivates the choice of (a, b) to be coprime, the sieve procedure is done

by checking the congruence matching between
a
b

and r modulo p, for each

p ∈ Fb(B).

2. The algebraic side Z[α]
Under the assumption (3.1.2). We set β = a − bα ∈ Z[α] , and let σi, for i =
1, . . . , d, the d-conjugates of α in Q[α], we have

N(βZ[α]) = NormK/Q(β)

= NormK/Q(a− bα)

=
d

∏
i=1

σi(a− bα)

=
d

∏
i=1

(a− bσi(α))

= bd
d

∏
i=1

(
a
b
− σi(α)

= bd f (
a
b
)

Let B be a positive integer and define the factor-base by

Fb(B) = {p : prime ideal , N(p) ≤ B}

Since Z[α]/p is a finite extension of Zp with degree ep with p prime number
such that N(p) = pep .

Now, let consider only the extension of degree 1, it means that p is a prime
ideal with [Z[α]/p : Zp] = 1, define the homomorphism

Φp : Z[α] −→ Z[α]/p
α 7−→ α + p

The element of the kernel of Φp can be presented by r mod (p) where f (r) = 0
in Zp. This rise to the definition of the algebraic factor-base as follows,

Fb(B) = {(r, p) : p ≤ B prime , f (r) ≡ 0 mod (p)}

and since
N((a− bα)Z[α]) = bd f (

a
b
)

thus we need to verify the congruence matching of r and
a
b

modulo p during
the sieving.
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Notices that the positive integer B has a very important contribution of the running
time in the algorithm. In the last section, we give the expression of B, which is a
parameter that depends on the input N. The algorithm 1 presented below can be
seen as the base description of the Number Field Sieve, all the improvements of this
are those which deals with the non-occurrence of the assumption (3.1.2).

Algorithm 1 The number field Sieve

Input integer N that we want to factor.
Output a proper factor of N.

1: Choose m and compute f such that f (m) = 0 mod (N) or mod (kN) for a
chosen positive integer k.

2: Compute the bound B and the two factor-base.
3: Find a sufficient number of candidates a− bm and a− bα B−smooth by sieving.

4: Compute the matrix M of the exponents in F2, each column represents the list of
candidates and each row for the exponents.

5: Compute the kernel v of M in F2 (Mv = 0).
6: X ← ∏i∈I(ai − bim) , Y ← ∏i∈I(ai − biα) such that I = {i : vi = 1}
7: x ←

√
X, y←

√
Y

8: Return gcd(x± y, N)

In general, the algorithm 1 can be summarized as follows:
Polynomial Selection (step 1), Sieving (step 2,3), Linear algebra (step 4,5), Square Root (step
6,7), and GCD. Throughout this chapter, we give a description of some existing ap-
proach for each of these steps and their improvements.

The assumption (3.1.2) is actually a strong assumption on f , considered in [Pol93a]
and [LLMP93b] for particular form of N. Also we assumed in the algorithm that
those elements in Z[α] with even inertial degree are square in Z[α]. In [BLP92], the
authors generalized these by a four obstructions.

Let consider the set S to be the set of coprime (a, b) found in the step 5 in the al-
gorithm above, which verify

∑
(a,b)∈S

ep(a− bα) ≡ 0 mod (2)

for all p ∈ Fb(B). Here we consider the algebraic side,

1. The ideal ∏(a,b)∈S(a− bα)OK may not be a square of an ideal. Due to the prop-
erty that this is an ideal of OK where one works in Z[α].

2. The ideal ∏(a,b)∈S(a− bα)OK is a square of an ideal but may not be a principal
ideal.

3. The ideal ∏(a,b)∈S(a − bα)OK is a square of a principal ideal but the element
∏(a,b)∈S(a− bα) is not square.

4. The ideal ∏(a,b)∈S(a− bα)OK is a square of a principal ideal and the element
∏(a,b)∈S(a− bα) is square but its square root is not in Z[α].

These four obstructions have been estimated for Number Field algorithm. We give
an improvement of the procedure by taking care of these obstructions.
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The first obstruction is the more occurring case, which says that Z[α] is not the max-
imal order of Q[α]. An attempt is to minimize the quantity [OK : Z[α]] during poly-
nomial selection. An other idea is to estimate the difference and making sure that the
element we found has better chance to be in the order Z[α] rather than only OK, this
is based on a probabilistic strategy.

In [BLP92] the authors gave a bound for the amount of this obstruction. Indeed,
for any order A of K, and for all prime p ideal of A, let the group homomorphism
ep : K∗ −→ Z. The existence of ep is showed in [BLP92] and it satisfies the following
conditions,

1. ep(x) ≥ 0 for all x 6= 0 ∈ A.

2. If x is non-zero in A, then ep(x) > 0 if and only if x ∈ p.

3. For each x ∈ K∗ one has ep(x) = 0 for all but finitely many p, and

∏
p
(N(p))ep(x) = |Norm(x)|

p ranges over the primes ideal of A.

In our case, where A = OK, ep is the inertial degree. Now by letting

VA =
{

x ∈ K∗ : ep(x) ≡ 0 mod 2 , ∀p primes ideal of A
}

which is a subgroup of K∗, an upper bound of its quotient with the group of square
element K∗2 of K∗ gives an estimation of the above difference. It is given in the
following theorem

Theorem 3.1.3 ([BLP92]). Let n, d be integers with d ≥ 2 and d2d2
< n, and let m, f be as

produced by the base m algorithm1. Given a number field K and V as defined above, we have
dimF2(V/K∗2) < log(n)/ log(2).

Notices that the assumption of this theorem (3.1.3) can be used in the first step of
the number field sieve algorithm to generate f , the polynomial selection. The proof
of theorem (3.1.3) is based on algebraic techniques, it deals fundamentally on the
discriminant of f and is based on the first three obstruction. In practice, if we use
these arguments, in the polynomial selection, then it requires a computation of the
discriminant of f and factor it, follow by the computation of the Ideal Class Group of
the number field. To summarize, we try to make the maximal order to be a Principal
Ideal Domain(PID) and this can handle all the first three obstructions. However, this
is very expensive in terms of running time and we do not want the algorithm to be
dominated by the polynomial selection.

On the other hand, Adleman [Adl91] idea to deal with the second and third ob-
structions was to add more rows (rows of character) in the linear algebra steps. The
methods was also used in [BLP92], and has been shown that it also can be used to
handle the first obstruction. The idea is to design a probabilistic strategy, saying
that if the Legendre symbol of the candidate we found is 1 for a sufficient number of
prime then the candidate has more chances to be square, otherwise it is definitely

1This is a digits extension of N in the base m
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not square for a given set of an ideal (Quadratic character factor-base). According to
these properties, The following theorem was exploited to improve the algorithm

Theorem 3.1.4. Let S be a finite set of coprime integer (a, b) with the property that

∏
(a,b)∈S

(a− bα)

is the square of an element in K. Further let q be an odd prime number and s with f (s) ≡ 0
mod (q) such that a − bs 6= 0 mod (q) for each (a, b) ∈ S and f ′(s) 6= 0 mod (q).
Then

∏
(a,b)∈S

(
a− bs

q

)
= 1

The modification of the Number Field Sieve algorithm uses the converse of this the-
orem, one reason makes the procedure to be probabilistic, saying that the candidate
is not only of the even ep but has its Legendre symbol equal to 1. We can add the
following steps in the linear algebra (step 4 in algorithm 1),

1. Define a Quadratic character factor-base Qb(B1) for a given bound B1 (B1 is
a parameter to the probability of the element we get from the linear algebra
to be a square), and for every (q, s) ∈ Qb(B1), q is prime such that f (s) ≡ 0
mod (q), f ′(s) 6= 0 mod (q) and (q, s) /∈ Fb(B).

2. In the Matrix used in the linear algebra, the entries of the character columns is

0 if
(

a− bs
q

)
= 1 and 1 if

(
a− bs

q

)
= −1.

For the forth obstruction, we use f ′(α)∏(a,b)∈S(a− bα) in the square root part, and
this is indeed in Z[α].

3.2 The General Number Field Sieve

The procedure introduced [Pol93a] by Pollard was used to factor the F7 seventh
Fermat number. More precisely, the number field was an extension of the root of
f (X) = X3 + 2. In [LLMP93b], a number of particular form N = re − s (where r and
|s| are a small positive integer with a large e) was presented. These methods were
based on the fact that it is possible to construct a monic irreducible polynomial with
small size easily and has a better chance to overcome the four obstructions we gave
before.
In [BLP92] the generalization of the Number Field Sieve was suggested. It intro-
duces the homogeneous polynomial which extends the procedure to be valid for an
arbitrary number. Let

f (X) = adXd + . . . + a0 ∈ Z[X]

and
F(X, Y) = adXd + ad−1Xd−1Y + . . . + a1XYd−1 + a0Yd

its homogenized polynomial. We assume that F(X, Y) is irreducible over Z[X, Y]
(otherwise we find a factor and consider the irreducible factor), and let (m1, m2) be
a couple of integer such that

F(m1, m2) ≡ 0 mod (N)
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let α be a complex root of F(X, 1) and consider Φ the homomorphism defined by

Φ : Z[α] −→ ZN
α 7−→ m1

m2

Notices first that Z[α] is not even an order here. As in the original procedure, we
have defined the first degree prime ideal over an order, and used it to describe the
algebraic factor-base.
Let ω be a complex root of F(X, ad), obviously w is an algebraic integer, and set
α = ω

ad
a complex root of F(X, 1).

Proposition 3.2.1. [BLP92]

Let β0, . . . , βn−1 ∈ Z[α] such that
n−1

∑
i=0

βiXi =
F(X, 1)
(X− α)

. Define

A = Z +
n−1

∑
i=0

Zβi

we have A is an order in the number field Q(α) with A = Z[α] ∩Z[α−1]

Using the order A defined above, we can give a description for the first degree
prime ideal. Let

Φp : A −→ A/p
γ 7−→ γ + p

where p is a prime ideal such that [A/p : Zp] = 1 with p prime number.
The element γ + p in the kernel of Φp can be seen as a projective line (r1 : r2) such
that F( r1

r2
, 1) = 0 in Zp, more precisely we do have the following two cases,

case r2 6= 0 , we take the kernel intersects with Z[α].

case r2 = 0 , we take the kernel intersects with Z[α−1], in here an is divisible by p, we refer
this as the point at infinity.

During sieving, as we will consider the couple (a, b) the exponent in the norm be-
comes

exp(a− bα) =

{
ep(a− bα) if r2 6= 0

ep(a− bα) + vp(an) if r2 = 0

The algebraic factor-base is given by,

Fb(B) =
{
[(r : 1), p] ∈ P1(Zp) : p ≤ B, F(r, 1) ≡ 0 mod (p)

}
∪
{
[∞, p] ∈ P1(Zp) : p ≤ B, an ≡ 0 mod (p)

}
Let N be an integer we want to factor, we give the following algorithm 2 as the gen-
eralization of the Number Field Sieve:

In this algorithm 2, we have the polynomial selection in the steps 1, 2 and 3, the opti-
mal choice of m1, m2 and the construction of F are given in the next section. The Sieve
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Algorithm 2 GNFS

Input integer N that we want to factor.
Output a proper factor of N.

1: Choose an optimum m1, m2.
2: Compute F(X, Y) = adXd + ad−1Xd−1Y + . . . + a0Yd such that F(m1, m2) ≡ 0

mod (N)
3: Set G(X, Y) = m2X−m1Y.
4: Compute the bounds for the factor-base (rational, algebraic).
5: Find a sufficient number of candidates (a, b) with F(a, b)G(a, b).
6: Compute the character factor-base and construct the matrix M of exponent in

F2.
7: v← kernel(M).
8: I ← {i : vi = 1}.

9: γ←
(

FX(ω, ad)

ad

)2

∏
i∈I

(adai −ωbi), σ← √γ =
n−1

∑
i=0

viω
i

10: s←
d−1

∑
i=0

viai
dmi

1md−1−i
2 , e← m

#I
2

2 , h← a(d−2)+ #I
2

d FX(m1, m2) in ZN .

11: X2 ←∏
i∈I

(m2ai −m1bi)

12: Return gcd(hX± es, N)

part are composed by the steps 4 and 5. Linear algebra, the steps 6, 7. Notices that the
character factor-base should not have an intersection with the algebraic factor base,
the construction of the matrix M can be seen as follows

• The first row is the sign of G

• The next rows are the exponent of the prime in the factor-base rational and
algebraic.

• The next rows are the contents of the character factor-base, here we have 0 if(
a− bs

q

)
= 1 and 1 otherwise.

• A last row which assigned to 1.

The need of the last row is because we want the cardinal of I to be even. The steps
8,9,10 and 11 are the setting for the square root part, here FX represents the partial
derivative of F with respect the variable X. The setting of these variables are given
as follows, since γ is square in Z[ω], and we have

Φ(
ω

ad
) =

m1

m2
mod (N)

which implies

Φ(ω) = ad
m1

m2
mod (N)

and
Φ(md−1

2 σ) = s mod (N)

therefore,
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e2s2 = Φ(m2(d−1)+#I
2 σ2)

= Φ(m2(d−1)+#I
2 γ)

= Φ

([
md−1

2
FX(ω, ad)

ad

]2

∏
i∈I

m2(adai −ωbi)

)

= Φ

([
FX(adm2α, m2ad)

ad

]2

∏
i∈I

ad(aim2 −m2biα)

)
= a2(d−2)

d FX(m1, m2)
2a#I

d X2 mod (N)

= h2X2 mod (N)

and this proved the GCD from the last step of the algorithm 2.

3.3 Steps of the Number Fields Sieve

All the steps presented in the algorithm 2 have been improved to make the GNFS
to be the fastest known algorithm for factorization on classical computers. The tech-
niques used are based on the mathematical properties of the algorithm. The ex-
ploitation of the independence of the steps in the algorithm makes it to be suitable
for parallel environment. In this section, we give a description of each steps of the
NFS and some of their improvements.

3.3.1 Polynomial Selection

Let d be the degree of the polynomial, and m ≈ N
1
d , the base-m expansion was the

first candidate. From [BLP92], a wise choice of d could result a monic polynomial f
for the NFS. However, for 0 ≤ i ≤ d− 2 we have ai ≤ m, the coefficients can not be
controlled even making a few manipulation on them.
In [BLP92], the author suggest the homogeneous polynomial especially for the GNFS,
an optimization for the coefficients of the polynomial is also introduced. This later is
due to the fact that small polynomial produces small number which are more likely
to be smooth. The authors suggested three methods based on improvements of the
polynomial selection.
Let assume that we have an integer N as input, and let ad be the leading coefficient
of the degree d polynomial, m1 and m2 the pair root of the polynomial F modulo N,
by considering three cases, the generation of F(X, Y) is given as follows

case m2 = 1 : The procedure is exactly the base-m1 expansion (with m1 ≈ N
1

d+1 ).

case ad = 1 : Let m1 ≈ N
1

d+1 , m1 ≈ N
1

d+1 such that (m1, m2) = 1 and N − md
1 be a

multiple of m2. The rest of the coefficients ai of F can be deduced by

N −md
2

m2
= ad−1md−1

1 + . . . + a0md−1
2

modulo mi
2 for 1 ≤ i ≤ d− 2.
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case ad 6= 1 and m2 6= 1 : We consider the lattice

L =

{
(xi)

d
i=0 :

d

∑
i=0

ximi
1md−i

2 ≡ 0 mod (N)

}

with a trivial basis (0, 0, . . . , N) and (0, . . . , 1,−m2
m1

mod (N), . . . , 0). All the
coefficients of the polynomial are given by a short vector basis such that

d

∑
i=0

ximi
1md−i

2 6= 0

Notice that m1 is far smaller than N so if we find a divisor of N the procedure
is unnecessary.

An attempt is to manipulate the coefficients, also one allows the use of a positive in-
teger multiplier k and apply the same procedure for kN. This technique is similar to
the continued fraction [AMB75] methods. In fact, the multiplier k is not only needed to
prevent the short period but also to induce a parameter to quantify the smoothness
of the Q’s candidate, the same purpose for the multi-polynomial quadratic sieve [DS87].
By defining the Knuth-Schroppel function, one deduces k from the maximum of a
such function.

B. Murphy [Mur99] in his Ph.D thesis, used the same approach to quantify the
smoothness of the polynomial used in the Number Field Sieve. The idea is to de-
fine a new parameter that will quantify the root property of the chosen polynomial.
This is due to the fact that, if a polynomial has many roots modulo small prime then
it has a large chance to be smooth.
In principle, Murphy’s idea was to compare, for the sieving interval, the behavior of
the polynomial value with a random integer with the mean of its smoothness.

Definition. Let S be a sample of value, and v ∈ S, p a prime and B a positive integer.
Define ordp(v) the largest power of p which divides v and contp(v) is the expected
value of ordp(v)

For a chosen v in the sample S, we have

log(v) = ∑
p≤B

contp(v) log(p)

If we set S to be a sample of F-value (resp. f ), for an homogenized polynomial F
(resp. for a polynomial f (X) = F(x, 1)), we give an estimate for the value log(F)
(resp. log( f )) which are given by

contp(ir) =
1

p− 1

contp( f ) =
rp

p− 1

contp(F) =
rp p

p2 − 1

which are the expected values of the ordp for each case, where rp represent the num-
ber of distinct roots of f (or F) modulo p. By considering the difference between the
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F and a random i value we have

log(ir)− log(F) = ∑
p≤B

(
1−

rp

p + 1

)
log(p)
p− 1

From this we define a new parameter α(F), which for f -value it is given by

α( f ) = ∑
p≤B

(
1− rp

) log(p)
p− 1

This parameter is used as an adjustment of the property of the polynomial F (or
f ) used during the sieving. One observes that for a negative α(F) the value of the
polynomial f is more likely to be smoother than the random integer. This parameter
is called the root property since it depends on the root of the polynomial, if the number
of distinct roots of F modulo p is big then the value of α(F) is negative.
Murphy described a procedure to use this quantifier, a pre-sieving alike procedure,
assuming that we can use one of the algorithm above to produce the polynomial
F and G. The algorithm takes a pair of polynomials (F, G) and a bound B, and
computes the root property for several polynomial rotated by an affine polynomial
j1x− j0 with |j0| < J0 and |j1| < J1 , where J0, J1 are a fixed bound such that J0 � J1.
For a given polynomial F, G and f , g their dehomogenized polynomials, we refer the
rotated polynomial with ux− v by

fu,v = f (x) + (ux− v)g(x)

This procedure can be coded as follows.

Algorithm 3 Murphy root property

Input Polynomial f , g, B, J1 .
Output List Globalα( f j0,j1)

1: Globalα( f j0,j1)← List()
2: Partialcontpk ← List()
3: for each (k, p) : pk < B do
4: for each j1 < J1 do
5: for each l < pk do
6: j0 ← solve(Mod( f j1 j0(l) ≡ 0, pk))
7: update(Partialcontpk( f j1 j0)
8: end for
9: end for

10: merging(Globalα( f j0,j1))
11: end for
12: Return Globalα( f j0,j1)

Using the algorithm 3, we identify the good root property polynomial from a two-
dimensional list. Shi Bai [ShI11] gave an improvement of this procedure, by observ-
ing that the complexity of the Murphy algorithm is heavy. His idea is to be able to
lift the root for the power of prime which can be identified by the Hensel theorem.
The number of polynomials that we quantify can be very large, and depends on the
bound of the rotation, it is approximately pi − 1 for each pk

i ≤ B. The procedure
is done in two steps. The first one is to identify the polynomial which has many
roots modulo small prime (this can be done for each small prime and using Chinese
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Reminder Theorem to construct one polynomial). The second step, is to use the ro-
tation with a given large bound.

On the other hand, one needs to quantify the size of the polynomial. Let F(x, y)
be the homogenized of f we use in GNFS. In [BLP92], the degree d is chosen using
the complexity of the algorithm given in section 3.5.2. We assume to sieve on a rect-
angle (a, b) so that the probability of the polynomial is y−smooth (using the same
notation as in the study of complexity in chapter 3.5) and is given by

ρ

(
log(|F(a, b)|)

log(y)

)
the same for the affine polynomial in the rational side G

ρ

(
log(|G(a, b)|)

log(y)

)
Therefore the number of candidates (a, b) we are expecting will be approximately

6
π2

x

(−u,u)×(0,u)

ρ

(
log(|F(a, b)|)

log(y)

)
ρ

(
log(|G(a, b)|)

log(y)

)
dadb (3.3.1)

The constant 6
π2 comes from the fact that we collect coprime candidates, also notice

the G− value does not really affect (3.3.1) much this expression. We will assume that
the F-value contributes more, the optimization of the size of F is the size property .

To summarize, the polynomial selection generates many polynomials and we clas-
sify them using the root and size property, by assuming that we can find one can-
didate which are simultaneously passed the root and size property, we can perform
the next step considering this polynomial.
We give a technique mainly used to optimize the size of the polynomial. Notices
that in the original description of the General Number Field Sieve [BLP92] the coef-
ficients of the polynomial were adjusted. The authors claimed that for a particular
choice of m, the base-m algorithm gives a monic polynomial which is intended to
minimize the absence of the assumption (3.1.2). The same idea could be used for
size property. We keep the rotation and add a translation by some amount on the
root of polynomial. To obtain a polynomial with good size property, we use a simi-
lar gradient descent over the amount t. In Murphy [Mur99] the quantification of the
size is done before the root property.

The following idea is used for the size property, more precisely by computing the
quantity (3.3.1). Let u1 and u2 be the respective bound on a and b in the sieving
region, to make everything in harmony, u1 and u2 will have the same magnitude
as the optimal choice in section 3.5.2. We define a skewness s, a constant equal to

s = u2
u1

. The rectangle of the sieving becomes ((−u
√

s, u
√

s)× (0,
u√

s
)), by using the

Log L2−norm (3.3.1) can be written as,

1
2

log
(

s−d
∫ 1

−1

∫ 1

−1
F2(as, b)dadb

)
and we now have more variables to find a minimization of the expression.
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Bai [ShI11] used a quadratic rotation wx2 + ux + v, a translation t, and uses a lo-
cal gradient descent over the fives w, u, v, t, s variables to quantify the size fo the
polynomial. Assume that we have a polynomial of good root property, we could try
to compute an optimal candidate polynomial in size generated by translation since it
keeps the root property. The use of the parameter s changes the shape of the sieving
area, which are obtained from the size quantifying algorithm.

To summarize, the search for a good polynomial in size and root can be approached
by rotation and translation, also the use of skewness s is important since it changes
the shape of area in which we can control the upper bound of the polynomial value.
The following procedure can be used for the polynomial selection step, the algo-
rithm is based on Murphy and Montgomery idea.
Given a number N , degree d and ad,max a bound for the leading term, we start by
choosing ad = 1,

Algorithm 4 Polynomial selection

Input Integer N, d, ad,max .
Output Polynomial ( f , g)

1: choose ad {a product of prime, ≤ ad,max}

2: m←
[

d

√
N
ad

]
3: ai ← basem(N)
4: if ad−2 is not sufficiently small then
5: go to 1
6: else
7: f ← adxd + . . . + a0
8: g← x−m
9: end if

10: f , g← Rootproperty( f , g)
11: f , g← Sizeproperty( f , g)
12: if Sizeproperty fails then
13: go to 1
14: else
15: Return ( f , g)
16: end if

Remarks.

- In steps 1 and 4, we have already an optimization of the coefficients, this makes
the step 11 less heavy.

- In steps 10 and 11, we applied all the methods we have discussed above, also
we can combine the optimal check for the root and size by keeping the follow-
ing small

α(F) +
1
2

log
(

s−d
∫ 1

−1

∫ 1

−1
F2(as, b)dadb

)

The idea behind the generation of the two homogeneous polynomials F and G for
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the GNFS is based on the algorithm 4. An improvement of this procedure was sug-
gested by Kleinjung [Kle06]. It was a modification on the choice of m to control the
coefficients ad−1 and ad−2. This idea can be seen as follow.
Assume N, d and ad given, we choose m2 to be a product of small prime, and m1 is
the solution of

adxd ≡ N mod (m2)

with the constraint m1 ≈
(

N
ad

) 1
d

by defining the following recursive relationship for

d− 1 ≥ i ≥ 0, we construct the base-(m1, m2) expansion algorithm to get the rest of
the coefficients of F and G(X) = m2X−m1

ri =
ri+1 − ai+1mi+1

1
m2

ai =
ri

mi
1
+ δi

where 0 ≤ δi ≤ m2 , ri ≡ aimi
1 mod (m2) and rd = N. It is a generalization of the

case 2 of the suggestion in [BLP92].
In this procedure, we have a parameter to adjust the amount of coefficient generated.

For instance the error term in m1 ≈
(

N
ad

) 1
d

plays an important rule, as well as the

δi. The main objective is to have as much polynomials, pre-optimized size on the
coefficients. We consider a bound to control ad, and by the base-(m1, m2) algorithm
it can be used over the other coefficients. Also in [Kle06], the author suggest the use
of Log L∞−norm over the coefficients. In fact, let M < N

1
d+1 , the skewness s such

that ads
d
2 < M and define the log L∞−norm as follow,

log(L∞(F)) = log(max
0≤i≤d

|aisi− d
2 |)

Their practice results showed that an optimal skewness s could be chosen in
(m0

M

) 2
d−2 ≤

s ≤
(

M
ad

) 2
d

with m0 =
(

N
ad

) 1
d . Therefore ad is in the range ad ≤

(
M2d−2

N

) 1
d−3 . Accord-

ing to this ad−1 is bounded by
(

M2

m0

)
, even though a good choice of m1 will produce

a small ad−1. The coefficient ad−2 is bounded by

(
M2d−6

md−4
0

) 1
d−2

.

To make this in practice, the following are the formal technique behind Kleinjung
algorithm.

Setup :

- Set m0 =

(
N
ad

) 1
d

and m2 = ∏l
i=1 m2,i where m2,i are small primes with

m2,i ≡ 1 mod (d)

and
adxd ≡ N mod (m2)
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has d solutions.

- We write each solution as

xµ =
l

∑
i=1

xi,µi

with µi = 1, . . . , d. We have (i, xi,j) , 1 ≤ j ≤ d the d solutions of

N ≡ adxd mod (m2,i)

with 0 ≤ xi,j ≤ m2

- Set m0 = [m0] , for m2 divides m0, we define

mi,j =

{
m0 + xi,j i = 1

xi,j i > 1

For each µ such that

mµ =
l

∑
i=1

= m0 + xµ

we perform the base-(m1,µ, m2) to generate the other coefficients. The ad−1,µ
and ad−2,µ can be written in function of xi,µi using the following lemma.

Lemma 3.3.2 ([Kle06]). Given N, m2, d, ad, µ and m1,µ, there exist an integer 0 ≤ ei,j ≤
m2 for 1 ≤ i ≤ l and 1 ≤ j ≤ d such that

ad−1,µ =
l

∑
i=1

ei,µi

satisfy

ad−1,µmd−1
1,µ ≡

N − admd
1,µ

m2
mod (m2)

with 
e1,j ≡ ad−1,(j,1,...,1) mod (m2)
ei,1 ≡ 0 for i > 1
ei,j ≡ (ad−1,(1,...,j,...,1) − ad−1,(1,...,1)) mod (m2), i > 1, j > 1

From this lemma, for 1 ≤ k ≤ l with a fixed d, the difference (ad−1,µ − ad−1,µ′)
mod (m2) depends on xk,µ − xk,µ′ with µ 6= µ′ for all i 6= k where µ = (µ1, . . . , µl)

and µ′ = (µ′1, . . . , µ′l). The dl coefficient ad−1,µ now can be expressed in O(ld) vari-
ables. A similar idea can be applied for ad−2,µ by defining a new parameter in which
we express ad−2,µ as 

f0 =
N − adm0

d

m0
d−1m2

2

fi,j = −
dadxi,j

m2
2
−

ei,j

m2

where 1 ≤ i ≤ l and 1 ≤ j ≤ d, also notices that the dl ad−2,µ coefficients generated
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could be expressed again in O(ld) variables from the estimates

ad−2,µ

m1,µ
≈ f0 +

l

∑
i=1

fi,µi

However, this procedure does not optimize the other coefficients, for example a0, a1, a2
in a polynomial of degree d = 5. Putting this together we could summarize as the
following procedure:

Polynomial generation
Given N , degree d, l number of primes in m2 and a bound B for these primes as
inputs, the algorithm generates many polynomial with an optimized coefficients,

1. Compute M ≤ N
1

d+1 , and cd,max ≤
(

M2d−3

N

) 1
d−3

2. For each ad in the range of ad,max

(a) Construct m2 by finding all m2,i < B prime such that asxd ≡ N mod (m2,i)
has d solutions.

(b) Compute m0 =

(
N
ad

) 1
d

, ad−1,max =
M2

m0
and ad−2,max =

(
M2d−6

md−4
0

) 1
d−2

(c) For each subset of the primes m2,i of cardinality l , Compute m2 ∏l
i=0 m2,i

such that
m2 ≤ ad−1,max

Compute xi,j, mi,j, ei,j, f0 and fi,j.

(d) Set ε =
ad−2,max

m0
, identify µ such that f0 +∑l

i=1 fi,µi lies in the ε− neighbor-

hood of an integer, continue the base (m1,µ, m2,µ) and add the two poly-
nomials F and G in the output list.

The output of this polynomial can pass in the size and root properties in the algo-
rithm 4 given by Murphy and Montgomery. Originally [Kle06] was a preparation of
[KAF+10] the RSA-768 bits challenge, in the same paper [Kle06] Kleinjung proposed
an other variant for the polynomial of degree less than d = 5.

3.3.3 Sieving

The sieving part of the algorithm is the dominant step in the algorithm based on
the sieve methods. For GNFS, we have an approximate attempt on the number of
candidates expected which allows to perform the next step. According to the defini-
tion of the factor-base, the sieving over the two sides can be done in a similar way.
Given two polynomial F and G we are searching for (a, b) such that F(a, b)G(a, b)
is smooth. The preferable procedure was described as the line sieve. It consists of
sieving each candidates over the sieving region (rectangular) inline using a serial
method or in parallel.

An algorithm based on the sieving method uses line sieve to handle this part, it sieves
over a given area and marks the candidate which more likely to be smooth, try to
factor it into its prime factors. This process is repeated until we found a sufficient
candidates (depending on the size of the factor-base) for the next step.
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The first version of GNFS uses the same procedure. This can be done in two steps,
for each (a, b) relatively prime in the sieving area. First, we mark those which have
small value after subtracting their polynomial value by the prime in the factor base
(in practice, log is used to save memory). Second, we use probabilistic or a deter-
ministic factorization algorithm (this is fast for a small number) on these marked
candidates. From the study of the complexity we use trial division on the second
steps, although we could use some probabilistic algorithm to factor or to test the
primality of some large factor. This procedure can be formalized as follows.

Line sieve

1. We start from an empty two dimensional list C,

2. For each (a, b) relatively prime in (−A
√

s, A
√

s)× (1, B√
s )

- C[a, b] = log(|G(a, b)|) or F

- for each (p, r) in the factor base if a ≡ rb mod (p) then C[a, b]← C[a, b]−
log(p)

3. For each (a, b) relatively prime in (−A
√

s, A
√

s)× (1, B√
s )

- if C[a, b] is small enough for some bound, factorize G(a, b)

During sieving, as suggested from the improvement of an algorithm based on siev-
ing method such as continued fraction and quadratic sieve, one allows large prime
in the factor-base. This makes sense for the use of a modified probabilistic primality
test in the sub-step 3. However it is not allowed to be in the quadratic character
factor-base.

This technique was improved for the GNFS by Pollard [Pol93b]. The idea is to con-
sider these large prime referred as special prime, and the sieving is performed over
the lattice (a, b) generated by this special prime. We give more detail about this
improvement in chapter 4 which is the main contribution of the author of this thesis.

3.3.4 Linear algebra

After collecting a sufficient number of candidates from the sieving, a further step
consists of finding a correspondences over these candidates. In fact we assume that
we have a matrix of the exponents as described in algorithm 2 modulo 2, in which
we want to compute its kernel. The Gaussian methods could be used to handle this
kind of problems, although the choice of the optimized parameter studied in the
running time of the GNFS, the Gaussian is not an option, since the sieving part is the
dominant term in the complexity of the algorithm.

Given the matrix A we want to find a vector x such that Ax = 0. Using an ele-
mentary result from linear algebra, if we assume that A is square with determinant
zero and f the characteristic polynomial of A, there exist a polynomial h such that
Xh(X) = f (X). Then by Cayley-Hamilton we can construct our x by means of h(A).
The purpose is not to compute the characteristic polynomial of A but try to con-
struct a polynomial with the same property. Before describing the method used
to tackle the linear algebra part in the algorithm, we give the following procedure
called Berlekamp-Massey, originally used to find the minimal polynomial of linearly
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Algorithm 5 Berlekamp-Massey

Input Linear sequence (si) for 0 ≤ i < 2n.
Output Polynomial generator of si

1: u0 ← x2n

2: u1 ← ∑2n−1
i=0 sixi

3: v0 ← 0
4: v1 ← 1
5: while deg(u1 ≥ 1) do
6: q, r ← QuoRem(u0, u1)
7: u0 ← u1
8: u1 ← r
9: tmp← v0 − qv1

10: v0 ← v1
11: v1 ← tmp
12: end while
13: d← max(deg(v1), deg(u1) + 1)
14: P← xdv1(

1
x )

15: Return Normal(P)

recurrent sequence, especially linear Feed Back Register.
The QuoRem is an Eucludian division between polynomials, the algorithm output
a normalization of the coefficient of P, by dividing with its leading coefficient. To
make use of the algorithm 5, we give more theory that will be used to describe the
linear algebra part of GNFS.

Definition (Krylov subspace [Wik18]). Given a non singular matrix A ∈ Kn×n and
b 6= 0 ∈ Kn the order-r Krylov subspace Kr(A, b) generated by A and b is given by

Kr(A, b) := span(b, Ab, . . . , Ar−1b)

Our goal is to find the solution of the system AX = b. Using the Krylov subspace
Kr(A, b), we construct the solution by a similar method inspired by the fixed point
iteration. In fact, there exist a non trivial linear dependency relation between the
first (k + 1) vectors of Kr(A, b) say

a0b + a1Ab + . . . + ak Akb = 0

where a0, . . . , ad ∈ K with k ≤ r and a0 = 1 then

b = −A(a1b + a2Ab + . . . + ak Ak−1b)

therefore the solution is

x = −(a1b + a2Ab + . . . + ak Ak−1b)

Wiedemann [Wie86] used a similar approach where we construct a generator f of
the Krylov sequence such that

f (X) = a0 + a1X + . . . + adXd
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and define

f ∗(X) =
f (X)− f (0)

X
the solution is given by

x = − f ∗(A)b

The algorithm uses Berlekamp-Massey algorithm. Unlike the linear dependency
relation from the Krylov sequence we consider the generator of a sequence of scalar
element in K. Let u be a random vector, and consider the sequence

{
(u, Aib)

}
i≥0 of

the inner product of u with Aib, if we assume that f is a polynomial generator of
this sequence, since this is not necessarily minimal, let fu the minimal polynomial
generator, we have that fu| f , by Berlekamp-Massey we can compute fu by the first
2n element from the sequences, now suppose f = fu then we construct the solution
of the system by

x =
d

∑
i=1

f [i]Ai−1b

where f [i] is the coefficient of f . The procedure can be described as follows

Algorithm 6 Wiedemann[Wie86]

Input Matrix A, vector b.
Output Vector x such that Ax = b.

1: k← 0
2: b0 ← b
3: y0 ← 0
4: d0 ← 0
5: while bk 6= 0 do
6: uk ← random vector.
7: f ← Berlekamp(

{
(uk+1, Aib)

}
) {2(n− dK) terms are enough}

8: yk+1 ← yk + f ∗k+1(A)bk
9: bk+1 ← b0 + Ayk+1

10: dk+1 = dk + deg( fk+1)
11: k← k + 1
12: end while
13: x = −yk+1

Remarks.

1. This algorithm is probabilistic, in [Wie86] it is proved that it will stop after
three passes (while step 5-12) with probability at least 70%, although letting uk
to be the k−unit vector will turn the algorithm into deterministic.

2. In step 7, we only needs to compute 2(n− dk), in fact, for k = 1 at b1 we got
f1 with fu1 its minimal polynomial such that fu1 | f1 and deg( f1) = deg( f ) −
deg( f1) ≤ n − deg( f1) which actually means that we can run Berlekamp-
Massey by only 2(n− deg( f1)) elements of the sequences

{
(uk+1, Aib)

}
to ob-

tain fu1 .

3. The equality
yk = ( fk . . . f1)

∗(A)b
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can be shown by induction, for k = 1 then y1 = f ∗1 (A)b, let suppose that its
hold for k, and

yk+1 = yk + f ∗k+1(A)bk

= ( fk . . . f1)
∗(A)b + f ∗k+1(A)( fk . . . f1)(A)b

= ( fk . . . f1)
∗(A)b + ( fk+1 fk . . . f1)

∗(A)b− ( fk . . . f1)
∗(A)b

= ( fk+1 fk . . . f1)
∗(A)b

4. The same for
b0 + Ayk+1 = fk+1 . . . f1(A)b

Indeed, for k = 1,

b0 + Ay1 = b0 + A(y0 + f ∗1 (A)b0)

= b0 + Ay0 + f1(A)b0 − b0

= f1(A)b

by assuming that the equality holds for k, and we have for k + 1,

b0 + Ayk+1 = b0 + A(yk + f ∗k+1(A)bk)

= b0 + Ayk + fk+1(A)bk − bk

= fk+1(A)(b0 + Ayk)

= fk+1 fk . . . f1(A)b

Recall that the aim is to find a solution for Ax = 0. Most of the time, the matrix A is
non-square and we consider the matrix to have a dimension (n× n + 1). The vector
b can be obtained by the last column. We can perform the algorithm 6.
The case where A is singular has been discussed in [Wie86]. It might happen that
a0 = 0, from the original idea using Krylov subspace, a solution can be deduced
from A(c1b + . . . + cd Ad−1b) = 0 otherwise the algorithm fails.

This means that there is some dependency between the rows or columns of the ma-
trix. We could erase these columns or rows and reduce the problem in the remaining
matrix. For GNFS in particular, we need to keep trace if the column is part of the
factor base.
In practice, we are dealing with a huge sparse2 matrix, which is very suitable for
parallel environment. Coppersmith [Cop94] gave a parallel variant of the idea pro-
posed by Wiedmann, called the Block of Wiedmann. Using a version of the Berlekamp-
Massey procedure which can be used in a polynomial with matrix coefficient, before
we give the procedure of Coppersmith, we state some details about the improve-
ment.
The goal is to find a non zero solution w of Aw = 0. We begin with two random
vectors u, z, and we set y = Az
For 0 ≤ i ≤ 2N, we compute a(i) = uT Aiy and let

a(X) =
2N

∑
i=0

a(i)Xi

2most of the element are zero.
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a generator of the sequence
{

a(i)
}

i
can be deduced from Berlekamp-Massey, there

are f and g such that

f (X)a(X) ≡ g(X) mod (X2N+1) (3.3.2)

If f̂ is the minimal polynomial of A then

f̂ rev(X) = Xdeg( f̂ ) f̂ (
1
X
)

Similar to the the original procedure of Weidmann, we construct f̂ by the least com-
mon multiple of some f rev and set

f ∗(X) =
f̂ (X)

Xk

for k the highest possible power of X. We apply a power of A in f ∗(A)z for any z
until

Ai f ∗(B)z = 0

then
w = Bi−1 f ∗(B)z

This procedure is based on the fact that we constructed a linear generator of
{

Aiy
}

which is orthogonal to
{

uT Ai}. Coppersmith suggested to view the Berlekamp-
Massey algorithm as the extended Euclidian algorithm. Which means that we per-
form an Euclidian division between the polynomial a(X) and X2N+1 until the poly-
nomial f in (3.3.2) has a degree N. More precisely, we have

f (X)a(X) + g(X) = e(X)X2N+1

with deg(e) = N − 1 the process decreases deg(a) and increases f and g. Now if we
replace X with 1

X and multiply it by X3N the equality becomes

f (X)arev(X) + g(X)X2N = e(X)

Using the initial value deg( f ) = 0 and deg(g) = 0, the algorithm output an f if
deg( f ) = N. This method can be used when the coefficients of the polynomial are
matrices. Coppersmith idea supposes that the coefficients are vectors in Fn

2 where
n is the width of the block, applying the improvement of Wiedmann with a ran-
dom matrix for u and z. A detail of this step is described in [Cop94]. The block of
Wiedmann algorithm is again probabilistic, although it is very well suited for par-
allel environment. A detailed analysis of this method was given in [Kal95]. There
are many improvement of this algorithm and other application in many field. For
instance, the linear algebra in GNFS, Thomé [Tho02] gave an improvement of this
technique, it was proposed to be a speed-up of Coppersmith method.
On the other side, we can work in the orthogonal subspace of the Krylov to solve the
linear system. Lanczos introduced a procedure to solve a system Ax = b in [Lan52]
for a matrix symmetric square A in KN×N and b ∈ KN . The idea is to construct the
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sequences {wn}n≥0 as follows
w0 = b

wn+1 = Awn −
n

∑
i=0

(Awi)
T Awn

(Awi)Twi
wi

From this definition, (Awi)
Twj = 0 for i 6= j, thus for j < n− 1

(Awj)
T Awn =

(
wj+1 +

j

∑
i=0

(Awi)
T Awj

(Awi)Twi
wi

)
Awn

= (Awj+1)
Twn +

j

∑
i=0

ci(Awi)
Twn

= 0

for a constant ci, the computation of the sequences could be simplified as follows,
w0 = b

wn+1 = Awn −
(Awn)T Awn

(Awn)Twn
wn −

(Awn−1)
T Awn

(Awn−1)Twn−1
wn−1

and stops when for wn = 0. Indeed, if n > N, then w0, . . . , wn are linearly dependent,
which means there are ai 6= 0 such that

n

∑
i=0

aiwi = 0

so that
n

∑
i=0

ai(Awn)
Twi = 0

which implies wn = 0. There were many variants of this technique, not only focus-
ing in solving system but for several problem in linear algebra [CW85].

Now, if we assume that m is the smallest index which verify wm−1 = 0, we set

x =
wT

0 b
(Ab)Tb

b +
m−1

∑
i=0

(wi)
Tb

(Awi)Twi
wi

so that

Ax = b + A
m−1

∑
i=1

(wi)
Tb

(Awi)Twi
wi

and therefore Ax − b ∈ span{Aw0, . . . , Awm−1} Since (Awi)
Tx = (Awi)

Tb for i ≤
m− 1 we have

Ax− b = 0.

Again, we want to solve the system Ax = 0 for a rectangular matrix A. Similar idea
as in Wiedmann modified algorithm could be used to transform this system into
Ax = b. To make the matrix symmetric, we multiply it by its transposed. Originally,
Lanczos algorithm was used with K = R, for the sieving based algorithm we work
in K = F2. The conversion into a symmetric matrix is not always working, since it
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might be orthogonal with itself. To avoid this we can embed F2 into F2k for 2k ≥ N.
Also P. Montgomery [Mon95] pointed out that the expression (Awi)

Twi in the de-
nominator can be equal to zero even if wi 6= 0.

Coppersmith gave an improvement of Lanczos algorithm using block in [Cop93],
the Block of Lanczos algorithm. There were many variant of a such technique, dedi-
cated to a very large sparse matrix and for an arbitrary domain K [CW85].

In [Mon95] Montgomery inspired from these ideas, proposed an implementation
of the block Lanczos algorithm. Instead of producing the sequences {wi}i≥0 in the
original algorithm, one constructs a sequences of subspace {Wi}m−1

i≥0 of KN which
are pairwise A−orthogonal.
Indeed, given the matrix B ∈ MN1×N2(F2) from the sieving step, with N1 < N2,
there are at least N2 − N1 linearly independent vectors X ∈ F

N2
2 which satisfy BX =

0, the improvement of Lanczos proposed by Montgomery needs symmetric matrix
say A = BTB in MN×N(F2) for N = N2. Let nb be the size of block, we select a
random matrix Y ∈ MN×nb(F2) and by trying to find a matrix X ∈ MN×nb(F2)
such that AX = AY, therefore the column vectors of X − Y are in the null space of
A, and if rank(A) is at least rank(B)− nb + 1 a null space of B can be formed from
the combination of the vector in the null space of A. To give a detail of this technique
we start from the following definition.

Definition. A subspaceW ⊆ KN is A− invertible if it has a basis ω of column vector
such that ωT Aω is invertible, the choice of the basis is arbitrary.

Let u ∈ KN andW ⊆ KN is A−invertible. u can be written as v0 + v1 with v1 ∈ W
such that v1 =

ω

ωT Aω
ωT Au andWT Av0 = {0}. The theory behind the construction

for the sequence of subspace can be seen as follows

Wi A− invertible
WT

j AWi = {0}, for i 6= j
AW ⊆ W , with W =W0 + . . . +Wm−1

So given b ∈ W , we construct x ∈ W such that Ax = b. In fact, we set x = ∑m
j=0 v1j

for v1j ∈ Wj with Av1j − b is orthogonal to allWi. By taking a ωj basis forWj we set

x =
m−1

∑
j=0

ωj

ωT
j Aωj

ωT
j b

Based on this, we give the sketch-procedure of the block Lanczos algorithm sug-
gested by Montgomery [Mon95].
Let V0 be a N × nb a matrix, one defines the following recurrences

ωi = ViSi

Vi+1 = AωiST
i + Vi −

i

∑
j=0

ωjCi+1,j

for i ≥ 0, until VT
i AVi = 0 andWi =< ωi >.
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- Si is a nb × ni projection matrix such that ωT
i Aωi is invertible which making

ni ≤ nb as large as possible.

- The elements of Si are all zero except for exactly one 1 per column and at most
one 1 per row. This is done to ensure that ST

i Si = Ini and SiST
i a sub-matrix of

Inb reflecting the vector selected from Vi.

- Ci+1,j =
1

ωT
j Aωj

ωT
j A(AωiST

i + Vi).

Indeed we would construct the subspaceWi A−invertible by selecting the basis ωi
as many as the column of Vi. The Ci+1,j is the constraint to ensure that ωT

j Aωi+1 =

{0} as in the original idea.
Let m be the first index which makes VT

i AVi = 0, then the above procedure can be
used to construct the sequence of subspace defined in the general idea, and ωT

j AVi =

0 for 0 ≤ j < i ≤ m thereforeWT
j AWi = {0} for i 6= j.

To reduce the computation, we rewrite the expression to generate Vi. For j < i we
have that

ωT
j A2ωi = (ST

j Sj)(ω
T
j A2ωi)

= ST
j (AωjST

j )
T Aωi

= ST
j (Vj+1 −Vi + O(ω0 + . . . + ωj))

T Aωi

= ST
j VT

i+1Aωi −ωT
j Aωi

= ST
j VT

j+1Aωi

and if Sj+1 = Inb then ωj+1 = Vj+1 thus ωT
j A2ωi = 0, since the choice of Si is free.

We have
Vi+1 = AωiST

i + Vi −ωiCi+1,i −ωi−1Ci+1,i−1 −ωiCi+1,i−2

To make this valid for j ≤ i − 3, Vj+1 must be A−orthogonal to ωj+1 through ωm.
That is

< Vj+1 >⊆ W0 + . . . +Wj+2

for j ≥ −1.
To simplify the notation, we set

ωinv
i =

Si

ωT
i Aωi

ST
i =

Si

(ViSi)T AViSi
ST

i

hence

Vi+1 = AViSiST
i +Vi−Viω

inv
i VT

i (AViSiST
i +Vi)−Vi−1ωinv

i−1VT
i−1A2ViSiST

i −Vi−2ωinv
i−2VT

i−2A2ViSiST
i

Manipulating this expression,

Vi+1 = AViSiST
i + ViDi+1 + Vi−1Ei+1 + Vi−2Fi+1

for i ≥ 0 with

Di+1 = Inb −ωinv
i (VT

i A2ViSiST
i + VT

i AVi)

Ei+1 = −ωinv
i−1Vi AViSiST

i

Fi+1 = −ωinv
i−2(Inb −VT

i−1AVi−1ωinv
i−1)(Vi−1A2Vi−1Si−1ST

i−1 + VT
i−1AVi−1)SiST

i
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for i < 0, we define ωinv
j and Vj to be zero and Sj to be Inb .

To use this procedure, we start by the initial value V0 = AY and construct the se-
quence of subspace until VT

i AVi = 0 at i = 0, computes

X =
m−1

∑
i=0

ωi

ωT
i Aωi

ωT
i V0 =

m−1

∑
i=0

Viω
inv
i VT

i V0

By the property of the sequences of subspace generated, if we setW = W0 + . . . +
Wm−1 andWm =< Vm > whereWm is A-orthogonal toW and to itself, then AX −
V0 ∈ W +Wm and if Vm = 0 we have AX = AY.

Remarks.

1. Most of the time, the procedure stops when VT
m AVm = 0 with Vm 6= 0, so that

the vector of the null space of A is not only the combination of X−Y. Indeed,
Vm is A-orthogonal to ωj for j < m and we have that AWm ⊂ Wm such that ωj
is S−invertible for j < m, which makes ωj = 0 therefore AVm ∈ Wm. A vector
which span the kernel of A can be obtained by the linear combination of X−Y
and Vm. Montgomery[Mon95] claimed that the total rank of X − Y and Vm is
at most 2nb so that one can use Gaussian algorithm to find a such vector. To
get back to B, one let Z to be a N× 2nb matrix (the concatenation of X−Y and
Vm), and a matrix U of size at most 2nb × 2nb such that BZU = 0, then a basis
of ZU can be used for the output of the algorithm.

2. This procedure can be generalized as a generation of Si and Vi+1 or more pre-
cise ωinv

i . Montgomery gave a strategy to generate this recursively at each
iteration, it output VT

i AVi and Si−1, the methods is a similar as Gaussian pivot
algorithm, from the property of Si it constructs the diagonal for Si and ωinv

i .

The algorithm can be summarized as the following,
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Algorithm 7 Block of Lanczos algorithm

Input B ∈ MN1×N(F2), with N > N1.
Output Matrix kernel of B.

1: A← BTB ∈ MN×N
2: Y ← random(MN×nb)
3: V0 ← AY
4: T ← V0ATV0
5: S0 ← Inb

6: i← 1
7: while T 6= 0 do
8: (ωinv

i , diag(Si))← Montgomery(T, Si−1)
9: Compute(Vi)

10: T ← VT
i AVi

11: end while
12: m← i
13: Compute(X)
14: Z ← X−Y||Vm
15: U ← Gaussian(BZ)
16: Return ZU

Chronologically the Coppersmith Block of Lanczos was suggested one year before
the Block of Wiedmann, the goal is the same, to be able to use the property of the
large matrix of being sparse. In computer science, this has been studied so that the
operations on such kind of data is faster. Working in F2 makes the use of block
natural since we are dealing on bits operation. Both techniques are probabilistic and
output nb vectors of the null space of B.
The implementation [Mon95] of Montgomery with an improvement of the block
of Lanczos can be used for linear algebra step in the number field sieve, although
most of the literature in this area still utilizes the block of Wiedmann, this has a
huge advantage in parallel and distributed environment. However, Thomé [Tho16]
suggested a parallel version of the block of Lanczos.

3.3.5 The square roots algorithm

After finding a sufficient dependencies I from the linear algebra step, we have nb
probable solutions that we could use. On the algebraic side we have

γ =

(
FX(ω, an)

an

)2

∏
i∈I

(anai −ωbi)

and we would like to compute its square root. In [BLP92] the author suggested a
method using factorization of polynomial over the number field. Choosing an odd
prime q such that F reduced modulo q is still irreducible (inert prime), so that one can
compute a δ0 such that δ2

0γ ≡ 1 mod (q) where q is the ideal qZ[ω], (we assume it,
otherwise we must add more ideals in the quadratic factor base). By giving a bound
estimation of the coefficient of this square root as polynomial in ω say B. The lifting
root method by Newton [Lip76] iteration gives

δi =
δi−1(3− δ2

i−2γ)

2
mod (q2i)
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We observe that the coefficient of this element as polynomial in ω is bounded by q2i

2
so that the algorithm stops when q2i is twice larger than B, by hoping that we reach
the coefficient in Z[ω].
This technique is known as p-adic approximation, often used in computational alge-
bra. A detail description of the application of such strategy could be found in many
literature for instance([GCL92] chap 6).

The above method is very efficient, the only drawback is the size of the number
we are attempting to compute. In fact, from the form of γ, the cardinality of the in-
dex interval I is roughly the same as the complexity of the algorithm. This concerns
every step in the procedure, the computation of γ, the factorization of x− γ and the
lifting operation over a huge size number.

In [Cou93], Couveignes suggested an improvement of this method to avoid the prob-
lem of size, more precisely his procedure consider a several inert prime modulo qi,
and construct the solution by using CRT3. As well as the first method, the existence
of such qi inert is probabilistic. On the bright side the complexity seems to be im-
proved and the algorithm can be done in parallel. Indeed, the running time is in the
order of the size of qki

i (which is determined by the bound of the coefficient of the
square root as polynomial in γ). The method requires a square root for every qki

i and
to be sure that it has exactly two different positive and negative roots, also we need
the further assumption that the degree of the number field must be odd.

Thomé [Tho12] gave a variant of this technique. It is an improvement of the two
suggested methods above. The procedure works for any degree number field and
the existence of inert prime is no longer required. It could be considered as a com-
bination of the two methods, using lifting and CRT. Without loss of generality we
consider f to be a monic polynomial and using the same notation as in [Tho12]. Let
α be an algebraic integer, and σi is the embedding of the Q[α] for i = 1, . . . , d. We
have S(α) and we aim to compute its square root T(α) and

log |σi(T(α))| =
1
2

log |σi(S(α))|

can be used to compute the bound over the coefficient of T(α) since for i = 1, . . . , d

log |σi(S(α))| = ∑
j∈J

log |σi(aj − bjα)|

If we assume that a such bound can be computed, say M, one can give a precision
for the lifting stop steps by setting k = dlogp Me for pk modulo.

Thomé new CRT-based lifting strategy
Assuming the above hypothesis, let P be a set of l primes which totally splits f ,

set P = ∏p∈P p and λ = d log(M/ε)

log P
e where ε ≤ 1 and so M < εPλ we denote

B = λ
l log2 P the bit-size of pλ for each p ∈ P .

For each pi one has ri,j roots for j = 1, . . . , d and by lifting that root modulo pλ
i

we obtain ri,j. We next compute the pi−adic lift of
√

S(ri,j) with precision λ (as in
the first suggested method), and say T′i,j be the result after lifting. So that we have

3Chinese Remainder Theorem.
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T′i,j ≡ si,jTi,j mod (pλ
i ) where si,j is the sign of the square root. A CRT-similar is used

to obtain T(x). Indeed, let ,

Qi :=
(

P
pi

)λ

= ∏
p∈P, p 6=pi

pλ

and

Hi,j(x) :=
f (x)

(x− ri,j)
= ∏

j′ 6=j
(x− ri,j)

so then

T(x) =

(
∑
i,j

Qi Hi,j(x)Ti,j
1

Qi f ′(ri,j)

)
mod (Pλ)

Remarks.

- The algorithm uses l = t× r so that one can partitionP into subset of r element.

- The introduction of the parameter ε interacts directly on the sign si,j. Let con-
sider the last expression constructed T(x), we shall analyze its coefficients.
Without loss of generality we could consider the leading coefficient and one
will deduce a generalization for all, one has

[xd−1]T(x) := ∑
i,j

QiTi,j
1

Qi f ′(ri,j)
mod (Pλ)

then

1
Pλ

[xd−1]T(x) := ∑
i,j

1
pλ

i

(
Ti,j

1
Qi f ′(ri,j)

mod (pλ
i )

)
mod (1)

we set the two real number

xi,j =
1
pλ

i

(
Ti,j

1
Qi f ′(ri,j)

mod (pλ
i )

)
yi,j =

1
pλ

i

(
T′i,j

1
Qi f ′(ri,j)

mod (pλ
i )

)
where xi,j and yi,j are in [0, 1] and yi,j ≡ ±xi,j mod (1), the choice of ε ≤ 1 is
arbitrary and | 1

Pλ T(x)| ≤ MP−λ ≤ ε then ∑i,j xi,j and ∑i,j si,jyi,j are in [−ε, ε] +
Z which rise to a combinatorial problem. In [Tho12], the author claimed that
for a modest number of primes this could be solved in practice.
Assume now that si,j are computed, so the closer integer to ∑i,j xi,j say ed−1 and
Ti,j = si,jT′i,j therefore

1
Pλ

[xd−1]T(x) := ∑
i,j

1
pλ

i

(
T′i,j

1
Qi f ′(ri,j)

mod (pλ
i )

)
− ed−1

and we could generalize the procedure by defining the following,
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ci,j,k = [xk]

(
T′i,j

Hi,j(x)
Qi f ′(ri,j)

mod (pλ
i )

)

c∗i,j,k = si,jci,j,k

Thus
T(x) = ∑

i,j,k
xk
(

Qisi,jci,j,k − ekPλ
)

and use xi,j =
c∗i,j,k
pλ

i
and yi,j =

ci,j,k

pλ
i

to compute si,j.

This procedure could be seen as follows, using the same hypothesis described in
[Tho12] where f is monic.
Thomé Algorithm

Input: f monic irreducible, N, m and the indexes I.

Output: T(m) mod (N)

Parameter: l = t× r

1. Choose a set P1, . . . ,Pt of r primes (totally splits) and partition I into t disjoints
subsets I1, . . . , It

2. For k = 1, . . . , t

- Computes λ and M

- Sk(x) = ∏i∈Ik
(ai − xbi)

3. For i = 1, . . . , l

- Computes pλ
i , Qi,

1
Qi

mod pλ
i

3-1. For j = 1, . . . , d

- Computes ri,j and its lifted ri,j

-
Hi,j(x)
f ′(ri,j)

4. For τ = 1, . . . , t

- Computes Sσ(x) mod Pτ for σ = 1, . . . , t

4-1. For pi in Pτ

- For j = 1, . . . , d
- one computes Sσ(ri,j) mod pλ

i for σ = 1, . . . , t
- the product S(ri,j) and T′i,j

- ci,j,k,
ci,j,k

pλ
i

and ci,j,kmk mod (N) for k = 0, . . . , d− 1

1. Combinatorial to find si,j and ek

2. return ∑
i,j,k

Qisi,jci,j,kmk − ekPλ mod (N)
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3.4 Notes

So far, we have given the main steps for the GNFS, with some of their improvement.
However in practice, after sieving and decompose each candidate into its prime fac-
tor, we notice that some candidate can be sieved more than once especially when
using lattice sieve. Also, the sieving step does not guaranty that each element of the
factor base will appear in all the candidates (it may appear only in one candidate).
Of course, we need to take care of these problems before feeding the data into the
linear algebra step. Such a procedure is very relevant, for example when we do not
need a trivial vector in the kernel.

Filtering. This step is applied before the linear algebra. In fact, it does more than
taking care of the above restriction, it reduces the size of the matrix much smaller in
which the sparse property is held.
This procedure can be sketched as, first, it eliminates all the candidate with the prob-
lem mentioned above (duplicates, ...), after reducing the exponent matrix into F2, it
eliminates all the column zeros and the same for zero rows (free relation). A more
detailed description of this method can be found in [Cav00].

3.5 Running time analysis

Definition. Let Fb = {p1, · · · , pm} be a set of prime (preferably small), Fb is called
the factor-base. We say that an integer x is smooth over Fb if all of the primes which
divide x are in Fb. We say that an integer x is B-smooth for a positive integer B if all
its primes factor are less than B, in this case, the factor-base is given by

Fb(B) = {p prime : p < B}

We mentioned that the factorization algorithm based on the sieving is probabilistic.
For instance, the Fermat difference of square method applied in a naive way relies
upon the distribution of the square on the interval [1, N], and the running time ap-
proximates the effort needed to find the couple (x, y). This gives an explicit running
time for the Lehmer [Leh28] suggestion since we have approximately

√
N of squares

in the interval [1, N]. The use of smooth number was introduced in [AMB75], it did
give an improvement of the complexity of the algorithm.

Definition. Let B be a positive integer, for a given X positive integer we define
ψ(X, B) be the number of B−smooth integer in the interval [1, X], that is

ψ(X, B) = # {n : 1 ≤ n ≤ X , n is B-smooth}

This function has a very important implication in algorithmic number theory. We
can deduce from this that the probability of random integers taken from [1, X] to be
B-smooth is equal to

ψ(X, B)
X



3. Literature review 36

Karl Dickman studied this function, in [Dic30]. He showed the existence of a positive
function ρ(u) named after him "Dickman function" which satisfy

ψ(x, x
1
u )

x
≈ ρ(u)

where x tends to infinity and u bounded.

More precisely, ψ(x, x
1
u ) = ρ(u)x + O(

x
log(x)

) for any U ≥ 0 s.t 0 ≤ u ≤ U and all

x > 2, ρ(u) has the following property on (0, ∞),{
uρ′(u) = −ρ(u− 1) u > 1

1 o/w

In particular, ρ tends to zero rapidly as u goes to infinity.

Further results about ρ can be found in [Bru51],[Dic30]. In fact, Bruijn [Bru51] got an
asymptotic approximation on ρ

ρ(u) = exp
(
−u
{

log(u) + log log(u)− 1− 1
log(u)

+
log log(u)

log(u)
+ O(

(log log(u))2

(log(u))2 )

})
where x −→ ∞ and u −→ ∞.
In [CEP83] a new approximation obtained by Canfield, Paul Erdös and Carl Pomer-
ance is given:

ρ(u) = u−u(1+o(1))

where x −→ ∞ and u −→ ∞.

An algorithm complexity is usually expressed in term of Big O-notation, it gives
an approximation of the time spent by the algorithm in the worst case. In [Pom82],
Carl Pomerance used a different notation known as L-notation to express the run-
ning time of the quadratic sieve algorithm. It became the reference notation for the
new factorization algorithm based on the sieve technique. The L-notation has a very
good behavior by carefully choosing its variable parameters. A new promising on
the computational side since Factorization was considered to be a hard problem.

Definition (L-Notation). Let 0 ≤ a ≤ 1, and c ∈ R>0. The L-function for the param-
eters a and c is defined by

LN(a, c) = exp[c log(N)a(log log(N))1−a]

In our purpose, N is the number we want to factor. Notices for a = 0,

LN(0, c) = (log(N))c

is equivalent to a polynomial running time, and for a = 1 we have

LN(1, c) = Nc

equivalents to an exponential running time. The case LN(a, c) subexponential when
0 < a < 1 is between the above two classes.
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Theorem 3.5.1 ([BLP92]). Suppose g is a function defined for all y ≥ 2 which satisfies
g(y) ≥ 1 and g(y) = y1+o(1) for y −→ ∞. Then as x −→ ∞

xg(y)
ψ(x, y)

≥ Lx

[
1
2

,
√

2 + o(1)
]

uniformly for for all y ≥ 2.
In particular, for x −→ ∞

xg(y)
ψ(x, y)

= Lx

[
1
2

,
√

2 + o(1)
]

if and only if

y = Lx

[
1
2

,

√
2

2
+ o(1)

]

The above theorem (3.5.1) gives the lower bound for the running time of the sieving
steps. Indeed, the left hand side is the number of efforts we need to make on the
interval [1, x] to obtain a sufficient y-smooth numbers. The function g can be seen as
the order of the number of operations we perform to each of the smooth candidates
to obtain its prime decomposition.

3.5.2 The Complexity of the GNFS

Here we consider the setup for the GNFS algorithm. We chose a unique bound
on the two factor-base, say y. Often the bound of the rational is smaller than the
algebraic side so that here we consider y to be the maximum. We sieve on a two
dimensional area defined by (a, b) relatively prime, such that |a| < u and 0 < b < u
with a positive integer u. The asymptotic running time of the algorithm has been
conjectured by Pomerance [BLP92], it uses the following lemmas 3.5.3 and 3.5.4 with
the approximation from theorem 3.5.1.

Lemma 3.5.3. For a real number k ≥ e and l ≥ 1. we set v = v(k, l) such that

v2

log(v)
= kv + l

for v ≥ e, then we have

2v = (1 + o(1))
(

k log(k) +
√
(k log(k))2 + 2l log(l)

)
as k + l goes to infinity.

Lemma 3.5.4. For each pair of positive integer n, d satisfying n > d2d2
> 1, Let

consider the real number u = u(n, d) ≥ 2, y = y(n, d) ≥ 2 and x = x(n, d) =
2dn2dud+1 which satisfies

u2ψ(x, y)
x

≥ g(y)

for g(y) ≥ 1 and g(y) = y1+o(1) as y→ ∞ then

2 log(u) ≥ (1 + o(1))
(

d log(d) +
√
(d log(d))2 + 4 log(n1/d) log log(n1/d)

)
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for n→ ∞ uniformly in d.

Notices that the last lemma 3.5.4 is equivalent to the theorem in 3.5.1, the square in
u is due to the fact that we sieve on a two-dimensional area. This rises to a lower
bound for the running time of the algorithm.

Conjectured running time of the GNFS[BLP92]
For any integer input N > 256, the running time of the general number field sieve is
given asymptotically by

LN

[
1
3

,
(

64
9

) 1
3

+ o(1)

]
for N → ∞ with

u = y = LN

[
1
3

,
(

8
9

) 1
3

+ o(1)

]
and

d =
(

3
1
3 + o(1)

)( log(n)
log log(n)

1
3
)

is the degree which minimize the running time such that N > d2d2
> 1.

In here, one tries to find g(y) which satisfy the condition in lemma 3.5.4. The degree
d is the value which minimizes the complexity, which means that the lower bound
is reached. A recent result which describes more details about this expression can be
found in [LV18].
However, the above given asymptotic complexity is the reason which makes the
General Number Field Sieve(GNFS) to be the best-known factorization algorithm .



39

4. The lattice sieve
In Quadratic Sieve [Pom85], the technique of sieving has been improved. The idea
is inspired by Eratosthenes technique, but applied over the roots of the quadratic
polynomial. This step was originally implemented as the traditional line sieve to
perform the sieve at each element in the sieve interval. As we have mentioned, this
step can be implemented differently by using data parallelism. Indeed, we broadcast
the elements of the factor-base over the available nodes and each node can handle
independently each element over the sieving area.
On the other hand, the General Number Field Sieve [BLP92] benefits from the form
of its two sides factor-base. Each element of the factor-base can be expressed as
a lattice point generator, finding a short basis which can be used as a pattern to
construct all the elements of the lattice. This technique was first proposed by Pollard
[Pol93b], and used to address the sieving step of the NFS algorithm. In this chapter,
we give a theoretical description followed by the practical discussion of the lattice
sieve.

4.1 Theoretical description

4.1.1 General idea

Pollard [Pol93b] first used the lattice sieve technique on the NFS to factor the seventh
Fermat number. The sieving technique has been later used in the GNFS algorithm.
The main goal is finding sufficiently many pair of candidate coprime (a, b) which
satisfy

1. a− bm smooth.

2. N(a− bα) smooth.

For this purpose, we give the following setup over the factor-base, inspired from
[DHS85]. Let B0, B1 be two positive integers such that B0

B1
∈ [0.1, 0.5], and let B be a

positive bound of the factor-base as Fb(B). We split Fb(B) as follows:

S small prime p ≤ B0

M medium prime B0 ≤ p ≤ B1

L large prime B1 ≤ p ≤ B

A prime in M is often called a special prime. The lattice sieve strategy can be de-
scribed as follows:

1. Choose a regionR of the (a, b) candidates to be sieved.

2. Choose a fixed prime q in M, and sieve only those (a, b) with

a− bm ≡ 0 mod (q)

we sieve those as

(a) Sieve the numbers a− bm with the primes p < q including p ∈ S.

(b) Sieve the numbers N(a− bα) with the set which have more elements than
the rational side (due to the size).
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For the both sides factor-base rational and algebraic, one or few large primes up to
B are allowed. In general we do not need all of the elements in the region R to be
sieved on the set L since we tried to keep the sieving region as small as the G and F
values.
It was pointed in [Pol93b] that the number of element sieved is reduced with respect
to the traditional line sieve used in NFS. Precisely by a factor

∑
q∈M

1
q
≈ log(B2/B1)

log(B1)
.

4.1.2 Sieving procedure

The techniques used to sieve over the rational and algebraic sides are similar accord-
ing to the definition of the two factor-base, without loss of generality. Let q ∈ M and
(a, b) inR such that

a− brq ≡ 0 mod (q) (4.1.1)

A trivial solution of this equation is (rq, 1) and (q, 0), thus any point (ai, bi) in the
lattice

(rq, 1)Z2 ⊕ (q, 0)Z2 (4.1.2)

satisfies the equation (4.1.1).
The lattice sieve technique starts by looking for a short basis which generates the
defined lattice in (4.1.2) (notice that finding a short basis for a 2-dimensional lattice
is equivalent to an extended Euclidean algorithm on rq, q). Let us assume that U =
(u1, u2) and V = (v1, v2) are a short basis, we sieve over the elements (ai, bi) in the
intersection of this lattice withR, that is:

ai = cu1 + dv1

bi = cu2 + dv2

where c, d determine the new index of the sieving area. In fact, the sieve is done on
(c, d) coprime to conserve the hypothesis from the description of GNFS. Formally,
we want ai − rpbi ≡ 0 mod (p) for each (ai, bi) where (rp, p) is in the factor-base,
thus

c(u1 − rpu2) + d(v1 − rpv2) ≡ 0 mod (p)

Now let C and D be two positive integers, and consider the rectangleR = [−C, C]×
[0, D] the sieve region. In [Pol93b] the author used this setup to avoid negative
candidate by changing the sign of a given point from the Lattice.
For (rp, p) element of the factor base, set

ω1 = u1 − rpu2

and
ω2 = v1 − rpv2

If ω1 ≡ 0 mod (p) then we need to check for the whole row with p (respectively if
ω2 ≡ 0 mod (p)).
When (ω1, p) = 1 the following two methods could be used during the sieve:

Sieving by rows. This method could be seen as, at each row (fixed c in L(rq,q))
checking for cω1 + dω2 ≡ 0 mod (p). This is good for small primes but bad
for large primes.
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Sieving by vectors. This method is based on the fact that taking a couple (c, d)
we construct a sub-lattice L(rp, p) of L(rq, q), where p < q. This is where the
plane (c, d) intersects with the lattice L(rp, p). This lattice can be written as(

v1 − rpv2

rpu2 − u1
mod (p), 1

)
Z2 ⊕ (p, 0)Z2

and one computes again the short basis of this lattice.

In [Pol93b], to factor the seventh Fermat number1, the lattice sieve was used where
both methods succeed. However, in practice sieving by vectors requires less memory
than the sieving by rows as we will better explain in the next section. Therefore,
a first criterion for choosing between the two methods is the amount of memory
available on the hardware.

4.2 Practical description

4.2.1 Current state of the art

A practical use of lattice sieve can be found in this implementation of GNFS [BL93],
where an analysis of the time and space used by the lattice sieve is also given. In
their implementation, sieving by rows was used with a parallel variant. In [GLM94],
sieving by vectors was used with a parallel version, their suggestion was a work in
progress of an improvement for the sieving part of the GNFS. Moreover these two
implementations were designed for MIMD system. In [FK], a new variant of the
lattice sieve was presented with a parallel suggestion of the strategy, this can be seen
as an improvement of the sieving by rows.

4.2.2 Motivation

We present an implementation of the lattice sieve on a SIMD system. In particular,
we exploit the performance of modern GPU (Graphic Processing Units) to face the
sieving part of GNFS. The two versions of the lattice sieve are very suitable for par-
allel environment, in fact they can be illustrated as in the two algorithms 8 and 9.

Algorithm 8 Sieving by rows

1: for q ∈ M do
2: Computes a short basis for Lq
3: for (a, b) ∈ Lq do
4: for p ∈ S do
5: Update location [a, b]
6: end for
7: end for
8: end for

In algorithm 9, we assume that we can split the set of small primes into SL (large in
the small) and SS (small in the small).
We observe that in algorithm 9, the splitting of the small prime is a reduction of the
number of ideals we used to sieve for every lattice point. This confirms the fact that
the sieving by vector is used when the system does not have sufficient memory to

1Fn = 22n
+ 1
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Algorithm 9 Sieving by vectors

1: for q ∈ M do
2: Computes a short basis for Lq
3: for p ∈ SL do
4: Compute a sort basis for Lpq
5: for (a, b) ∈ Lpq do
6: for p ∈ SS do
7: Update location [a, b]
8: end for
9: end for

10: end for
11: end for

fit these small prime ideals. In our attempt we give a description of the two sieving
by row and vector trying to figure out their differences and limitation with respect
to the hardware.

4.2.3 Observations

For the following we consider a original square sieving area [−u/2, u/2]× [1, u].

• Parallel line sieve
The steps preformed by the normal line sieve can be approximated by

T = Sint× A× f

where Sint = # sieve interval, f = # factor-base and A is the average of steps
performed to check the congruence and updating the location at each candi-
date coordinate. Indeed, for each candidate we need to perform A× f steps. A
parallel implementation on a m processors system can split the sieve interval
in m piece in which we gain a factor of m on the speed-up of the algorithm.

• Sieving by rows
Algorithm 8 describes the serial version of the sieve by rows. The number of
steps performed by this procedure is roughly given by

T = Mp× e× Sint× Sp× A

where Mp = #M, e is the average cost of the lattice reduction, A is the average
number of steps performed to check the congruence and update the location
at candidate coordinates, Sp = #S and Sint the sieve interval which is not the
same as for the line sieve, Razvan in [Bar16] showed that this can be estimated
as 2i× 2i where u = 2i× q

1
2 . Notice that e is the same as the cost of an extended

Euclidean algorithm.
In our proposal, we split the sieve interval into pieces (with respect to the avail-
able amount of memory). Each piece can be referred as run, which means that
each run performs a part of the sieve interval (we assume to work on a single
GPU). For each run, one element in the sieve intervals handled by one thread,
and one element in M is handled by a group of threads (thread-blocks). For
this parallel purpose the factor Mp in T disappears and Sint is reduced by
factor of the number of runs (or the number of GPUs since in a multi-GPU sys-
tem each run can be performed independently). Apparently we gain speed-up
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using this suggested parallel sieve by rows even though it misses some candi-
dates found by the line sieve, those are the smooth number with respect to the
small factor-base.

• Sieving by vectors
Algorithm 9 describes the serial version of the sieve by vectors. An obvious
difference between the two lattice sieves is that here the procedure tries to
break the factor Sp and hence the Sint since we now work on a lattice point
of an intersection Lpq. In fact, we can consider a similar analysis as the sieve
by rows,

T = Mp× e1 × Sl × e2 × Sint× Ss× A

Where Mp = #M, ei is the cost of the lattice reduction, Sl = #SL, Sint the
sieving area and Ss = #SS. In our proposal, Mp and Sl disappear however, we
have one additional factor: the cost of the reduction for the lattice Lpq. Notice
that the sieve by vectors miss more candidates than the sieve by rows.

4.2.4 Configuration and implementation details

Note. Here, we followed the setup used in the cado-nfs implementation from [Tea17]
since we use this software to generate the polynomial and the factor-base. According
to the sieve properties of the GNFS, we sieve over (a, b) such that F(a, b) is smooth.
That is, let p be a prime such that F(a, b) ≡ 0 mod (p), we have the two following
cases in the factor-base:

case 1: f ( a
b ) ≡ 0 mod (p) with b 6≡ 0 mod (p). The root of F(X, Y) in a projective

notation is (a : b) ∈ P1(Fp). This is referred as the root of the dehomogenized
polynomial f of F in the factor-base and represented as (r, p) i.e,

a− br ≡ mod (p)

.

case 2: F(a, b) ≡ 0 mod (p) with b ≡ 0 mod (p). This root is written as (1 : 0) in a
projective notation (the point at infinity). This is referred as the projective root
in the factor-base and represented as (v + p, p) i.e,

F(1, b) ≡ 0 mod (p)

for b ≡ v mod (p).

We use the outputs from cado-nfs and feed them to our lattice sieve implementation,
as well as the cado-nfs parameters since these are optimized from the polynomial se-
lection (skewness, bounds on the factor base, etc).
We present in Appendix A.1 the properties of the Tesla P100 GPU we used. Such
device memory architecture is important since the difference with respect its level
between the number of cycles has a huge interaction in the algorithm and should be
set carefully.

In the experiment, we have an implementation of the Lattice sieve for 8 bytes signed
integer (int64). For this we divided the factor-base into two sets, the compatible
factor-base (those which can be fitted in a 64 bits) and the large factor-base. From
now one, we refer to the compatible factor-base Fb.
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Let qmin and qrange the parameter generated by cado-nfs. We split the factor-base Fb
into Sq = {(r, p) : p < qmin}, the small factor-base and M = Fb \ Sp. We split M
into qrange pieces and serialize each slice Mp as mentioned in the above description,
however the qrange can be modified depending on the properties of the device.

Sieving by rows

Our implementation of the sieve by row (Algorithm 8) consists of two steps: it com-
putes the short basis of the lattice generated by each element in the medium prime
(Mp) interval, followed by the sieve over the small prime Sp. This could be detailed
as follows:

1. Compute a short basis for each two dimensional lattices generated by the el-
ements (rq, q) of M. That is, the lattices (rq, 1)Z2 ⊕ (q, 0)Z2. This step can be
done by using Lagrange’s method which is similar to the extended Euclidean
algorithm.

2. For each lattice, for a given sieving interval we perform the sieve over the small
prime Sq.

In 1. we set each lattice on one thread. We implemented an optimized lattice reduc-
tion which computes the short basis on the GPU. In our experiments we design this
to work with double precision. This is implemented in one kernel. The drawback
for this kernel is one may run out of register memory in one multiprocessor which
may slow down the code.
In 2. we are given the sieving interval (two dimensional array depending on a offset
as the entire interval can not be fitted on the memory), we set the dimension of the
thread-block equal to that size so that the index of each thread corresponds to the
index of the sieve interval, each block handles one lattice. Note that it is not the same
interval for each lattice, and the sieving interval is considered for all case in which
the coprime test is done during the computation of the polynomial value after the
sieve.

Sieving by vectors

In sieving by rows, we sieve for each element in the small prime interval. We tried to
fit the small factor-base (root on constant, prime on texture) on the cached memory.
This later is limited depending on the GPU we then have to perform the sieve by
vectors.
We implemented the sieve by vectors within the sieve by rows, that is the code runs
on the sieve by rows unless the number of small prime does not fit on the cached
memory. It contains two kernels as above but in this case we run the lattice reduction
one more time for each of the lattices Lpq. This can be described as follows:

1. Compute a short basis for each two dimensional lattices generated by the el-
ements (rq, q) of M. That is, the lattices (rq, 1)Z2 ⊕ (q, 0)Z2, and we output a
short basis by the Lagrange’s method say (u1, u2) , (v1, v2).

2. For each output from 1., compute the short basis of Lpq, a sub-lattice of Lq:
where (rp, p) ∈ SL.

Lpq =

(
v1 − rpv2

u1 − rpu2
mod (p), 1

)
Z2 ⊕ (p, 0)Z2
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3. For each of these Mp× Sl lattices and a given sieving interval we perform the
sieve over the small prime SS.

A similar setup and configuration as in the sieving by rows can be applied here.

Implementation issue

In the experiment, we used Tesla P1002. Some configuration parameters of the code
may be different for a different hardware.
For both sieve, the small factor-base must be accessed on the global memory, sorted
with respect to the prime coordinates and divided into two arrays where the root is
copied into the constant memory and the difference of the primes into the texture
memory as the whole factor-base cannot fit into the constant or texture memory.

We use the implementation in [Tea17] to generate the polynomial within some pa-
rameters. In fact, we are given: two polynomials, skew, factor-base, qmin and qrange,
bound which control the bits of the elements in the sieving area.
The qmin is needed to determine the value which splits the factor-base. We need to
sieve over the candidates divisible by all primes q > qmin, which means that qmin is
optimized so that the proportion of the candidates which are not divisible by those
primes q are negligible [Bar16]. The qrange is obtained by the optimization of our
code, in fact it can be omitted and the lattice sieve is applied as long as the sieving
area can fit on the global memory. The detailed description of the implementation is
the following :

Lattice reduction:
Consists of one kernel, the input is (a part of) the medium factor-base where
q > qmin, and the output is the reduced basis with the same dimension. The
principal key here is the function which computes the short basis, our imple-
mentation worked on a 64 bits integer. After tracking the amount of memory
in runtime used in the function, we calculate the occupancy estimation of the
kernel to figure out the dimension of grid and block. This is the reason why
the parameters used in the kernel are different for different hardware.

Lattice sieve:
Consists of one kernel, the input is the reduced basis and the output is the ar-
ray indexed by the candidates which contains their smooth marks. It follows
a similar process as in the lattice reduction, the occupancy estimation is calcu-
lated to obtain the dimension of the grid and block.
Other parameters are given as input, the attempt is that each block sieve over
the same area but with different lattice. Indeed, we use square sieving area

[−u/2, u/2]× [1, u]

depending on the bound u > 0 we provide an x0 and y0 to determine the start
point of the sieve. Also we sieve over all the element on the square without
checking coprime to avoid thread divergence. This procedure is shown in Fig-
ure 4.1 where the coordinates in red indicate the thread indexes, and in black
the sieve interval. The black filled squares indicate the value where we do not
have coprime coordinates while the blue represents one piece of sieving area
handled by one threads-block. The arrow indicates that in this case the sieve

2https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf

https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
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is done in 4 times by assuming that the blue area is handled by one launch
(notice that the the area is the same but the candidates differs depending of the
lattice). Each piece of the sieve area is mapped into a file so that we can reuse
the memory (mmap).

CPU code:
Using the similar indexed area as above we use CPU to compute the logarithm
of the polynomial value of the candidates. We skip the non-coprime indexes
(can be seen as a pre-filter). The list of this value is mapped to a memory file.

Smoothness test:
This kernel takes two inputs, the two sieving area GPU and CPU. These two
arrays are the results from the GPU sieving which contains the logarithm con-
tribution of the prime and from the CPU code which contains the logarithm
value of each polynomials. It outputs the difference between the two arrays.

Trial division:
Finally we make the trial division by walking through the sieving area. Also
this step is done on the CPU and consists of collecting the potential candidates
(with respect to a given threshold) followed by a trial division on the rational
factor-base, for the case when it is smooth we perform the trial division on the
other side.

FIGURE 4.1: A grid of threads which perform the sieving.

Remarks.
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• This is a standard configuration for the two side (rational and algebraic). For
the trial division we always tried to factor the other side polynomial and allow
some large prime factor not included in the factor-base but controlled by the
user (referring to the command line in cado-nfs[Tea17], these are the mfb0 and
mfb1).

• Theses sequences of configuration can be used in a multi-GPU system. This
is very useful when the grid-dimension of the GPU does not fit the medium
prime interval for a fixed dimension of the thread-block (the sieving area).
However the main challenge here is setting the parameters such that the small
prime interval can be fitted in the constant memory. It confirms the fact that
sieving by vectors is recommended for large number of factor-bases. Further-
more a similar configuration can be used for the sieve by vectors. The CPU
codes are used to handle large number, the polynomial value (compute the
logarithm and factorization), since this requires multi-precision operation.

Experiment results

We have accessed the setup, steps and results from the cado-nfs [Tea17] but the code
is impossible to read line by line. For instance for each given range of medium prime
factor-base, the software computes the lattice reduction followed by the detection of
smooth and the factorization of the candidates (over the sieving area parameterized
by these medium factor-base) in one launch. In this we are able to find the same total
number but different value of candidates.
The main purpose of this task was to propose an implementation of the sieving step
over the GPU by means of lattice sieve. The overview of this work can be detailed
as the following Table 4.1; An usual drawback of GPU code due the memory struc-

Procedure GPU CPU
Lattice reduction X
Sieving X
Polynomial-value X
Detect smooth X
Trial division X

TABLE 4.1: Overview.

ture compared to CPU, we have to perform the operation on large number over the
CPU. To give a benchmark in this task, it is enough to compare the sieving step on
GPU and CPU. The full implementation (from lattice reduction to trial division) is
to verify the correctness of our procedure. We compare the two implementations of
the lattice sieve (lattice reduction and sieving) CPU and GPU by their running time
proportional to the area of sieving as this depends mainly on the sieve area. In this
way we also could experiment on the parameters used on the kernel function, this
is detailed in Appendix 5.A.

For the sieve by vectors, the pre-processing for the basis of the second lattice Lpq
is performed on the CPU and its reduction is done on GPU, this is done for each ele-
ment of the medium factor-base, also we save the reduced basis into a file to be used
in the next step (trial division). Due to these, our implementation of the sieving by
vectors is much slower than the sieving by rows. Notices that the size of factor-base
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type vectors rows
contents • basis reduction

• sieving

• basis reduction level 1

• basis reduction level 2

• sieving
CPU (pre-processing) No Yes
Sieving area S× Sint S× Sl × Sint
Sint large small
non-coprime candidates w.r.t Sint 49% 47%

TABLE 4.2: Summary.

does not affect much on the sieving part, this steps is mainly depend on the size of
small factor-base. The two lattice sieve can be summarized as in the Table 4.2

Benchmark

To measure the performance of our implementation of the lattice sieve on GPU, we
compare the time taken by the two implementations GPU and CPU. For the CPU, we
have a parallel implementation of the sieving using Multithreading in C++. This is
presented in Figure 4.2. The fluctuation at the 70-digits number is due to the cardinal
of its small factor-base. In Figure 4.3, we have single-GPU vs single-CPU.
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5. Summary and future work
During this project, we explored the lattice sieve procedure, a proposal algorithm for
the sieving steps of the General Number Field Sieve. In which, we highlighted that
it is the dominant step of this algorithm. Using parallel computing resources we are
able to gain a speed-up of the algorithm.
From the property of the lattice sieve, we can observe an independence of the data
and its computation, that makes the procedure to be easy to implement in a paral-
lel environment. In fact, there are many parallel version of this step implemented
on a multi-core CPU for example in [Tea17]. In our interest, we exploited the latest
graphic card oriented for high performance computing by the help of CUDA (paral-
lel computing platform and programming model invented by NVIDIA) to deal with
this task.

In the present work, we have implemented the two lattice sieve methods, by rows
and vectors on GPU. We gave the benchmark of the implementation for the sieving
by rows with respect to the CPU version.
For the sieve by vectors, we are not able to give a benchmark as our implementation
is slow (both CPU and GPU) which needs to be optimized. Indeed, according to the
structure of sieve by vectors procedure, we process the sieve over the (e, f )−plane
that requires two level of the basis reduction on the lattice and sublattice. On the
second reduction, the original basis needed a pre-processing phase where we per-
form these operations on the CPU. For the number of operations, we have per each
lattice Lq overall its sub-lattice Lpq (#M× #SL). Also, the sieve is performed on large
candidates as we pointed in our experiment (Appendix 5.A).
To summarize, we are able to confirm that the sieving part of the GNFS can be im-
plemented on the GPU. However, as the implementation we presented here requires
the use of cache memory which are limited, we try to use this limit to be our param-
eter on the choice between the two procedures (rows and vectors). Some of the
operations are still performed on the CPU, in general when one needs to perform an
operation on large number.

The implementation presented in this thesis can be considered as one of the ini-
tiative to the exploitation of the GPU performance in factorization algorithm. Doing
this project, we met several constraints that some of them have been handled.

There are possibility of an extension of this project. A combination of the two lat-
tice sieve procedures to speed up the algorithm, i.e if we can reduce the amount of
SL factor-base (only the elements which have higher probability to be appear in the
smooth candidates) then we apply the sieve by rows for the remains part of SL by
adding them in the SS. Also, the prime power in the SS factor-base can be omit-
ted but we estimate the threshold T used in the smooth-checker (| log(F(a, b)) −
∑p log(p)| < T). In this way, we do not miss any candidates as we mentioned that
the candidates which are smooth only over the M and SS factor-base are apparently
missed in the sieve by vectors.
An other issue is the operation on large number. Regarding to the available register
memory on one processor, an optimized fixed length multi-precision operation is
needed to avoid the use of CPU and the transfer of data between the GPU and CPU.
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Appendices

5.A Implementation issue of the lattice sieve

We have implemented two methods for the lattice sieve, by rows and vectors. In
fact, the two methods are chosen depending on the GPU features with respect the
size of the factor-base. In our experiment, we used the GPU Tesla P100 occupied by
64Kb of constant memory so that we have c = 8192 of 8 byte integer at most (this
number is can be reduced in constraint of the memory for some variable used in
running time). If the size of small factor-base is more than this number then we split
the small factor-base into two sets SS and SL and use the sieving by vectors.

5.A.1 Configuration of the sieving by rows

Let S and M be the small and medium factor-base respectively. We assume that
#S < c (taking care the other use of constant memory for the cuda kernel). We first
pre-process the set S in which we copy the roots on the constant memory and the
difference of prime on the texture memory.
Let (q, rq) ∈ M, we have the lattice Lq defined by (rq, 1)Z2 ⊕ (q, 0)Z2. The sieving
by rows is composed by two kernels:

• basis reduction
In here, we performs the lattice reduction per each Lq handled by one thread.
The Lagrange’s method is implemented for a two-dimensional lattice of 64 bits
which requires 31 registers memory. We deduced the dimension of the block-
thread by calculating the warps occupancy of the code with respect the features
of our GPU, see Figure 5.A.1.

• sieve
Let I > 0 such that u < 2I and the sieving area is defined by [−u/2, u/2] ×
[1, u] in which we sieve over the (c, d)−plane. We consider #M pieces of the
sieving area, in this way we could perform the sieve for all lattice Lq for q ∈ M
in one launch (notice that each piece are equal but for different value (a, b) 6=
(c, d)). Each piece is handled by one block-thread of dimension u × u (we
prefer to sieve over a square). The code uses 32 registers memory, the value of
u is deduced by calculating the warp occupancy Figure 5.A.2.
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FIGURE 5.A.1: warps occupancy for the basis reduction.

FIGURE 5.A.2: warps occupancy for the sieve (sieving by rows).

The source codes of the kernel used in sieve by rows is presented in the following,

/∗
============================================================================
Name : k e r n e l s r o w s . cu
Author : L o u i s
V e r s i o n :
C o p y r i g h t :
D e s c r i p t i o n : CUDA i m p l e m e n t a t i o n o f t h e L a t t i c e s i e v e by rows f o r GNFS
============================================================================
∗ /

# include " i n l i n e t o o l s . cuh "

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗ k e r n e l r e d u c e b a s i s ∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

__global__ void ker_reducebas is ( myInteger ∗o_basis ,
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VecArray<myInteger > primes ,
VecArray<myInteger > r o o t s )

{
i n t indx = threadIdx . x + blockIdx . x∗blockDim . x ;
i n t s t r i d e = blockDim . x∗gridDim . x ;

for ( i n t i = indx ; i < primes . _ s i z e ; i += s t r i d e )
{
myInteger u_reg [ 2 ] , v_reg [ 2 ] ;
u_reg [ 0 ] = ∗ ( r o o t s . _array + i ) ;
u_reg [ 1 ] = 1 ;
v_reg [ 0 ] = ∗ ( primes . _array + i ) ;
v_reg [ 1 ] = 0 ;
LLL ( u_reg , v_reg ) ;
∗ ( o_bas is + 4∗ i ) = u_reg [ 0 ] ;
∗ ( o_bas is + 4∗ i + 1 ) = u_reg [ 1 ] ;
∗ ( o_bas is + 4∗ i + 2 ) = v_reg [ 0 ] ;
∗ ( o_bas is + 4∗ i + 3 ) = v_reg [ 1 ] ;
}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗ k e r n e k s i e v e ∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

__global__ void ker_s ieve ( double ∗ candidates ,
myInteger ∗prime ,

i n t x_0 , i n t y_0 ,
i n t s ize , myInteger ∗medium ,
i n t dim_s )

{
i n t tx = threadIdx . x ;
i n t ty = threadIdx . y ;

__shared__ double l a t t i c e [ maxthreads ] [ maxthreads ] ;
__shared__ myInteger u [ 4 ] ;
__shared__ myInteger reg_c [ maxthreads ] ;
__shared__ myInteger reg_d [ maxthreads ] ;

l a t t i c e [ tx ] [ ty ] = log ( ( double ) ∗ ( prime + blockIdx . x ) ) ;
u [ 0 ] = ∗ (medium + 4∗ blockIdx . x ) ;
u [ 1 ] = ∗ (medium + 4∗ blockIdx . x + 1 ) ;
u [ 2 ] = ∗ (medium + 4∗ blockIdx . x + 2 ) ;
u [ 3 ] = ∗ (medium + 4∗ blockIdx . x + 3 ) ;
reg_c [ tx ] = tx + x_0 ;
reg_d [ ty ] = ty + y_0 ;
__syncthreads ( ) ;

myInteger reg_p = 0 ;
myInteger reg_r ; / / r eg_c , r eg_d ;
for ( i n t s_idx = 0 ; s_idx < dim_s ; s_idx ++)
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{
reg_r = Smallroot [ s_idx ] ;
reg_p += ( myInteger ) tex1Dfetch ( Smallptex , s_idx ) ;
l a t t i c e [ tx ] [ ty ] +=

( ( ( ( reg_c [ tx ]∗u [ 0 ]
+ reg_d [ ty ]∗u [ 2 ] ) − reg_r ∗ ( reg_c [ tx ]∗u [ 1 ]
+ reg_d [ ty ]∗u [ 3 ] ) ) % reg_p ) == 0)
? log ( ( double ) reg_p ) : 0 . 0 ;

}
__syncthreads ( ) ;

i n t l i n t h r e a d = tx + ty ∗blockDim . y + blockIdx . x∗blockDim . x∗blockDim . y ;
i f ( l i n t h r e a d < s i z e )

{
∗ ( candidates + l i n t h r e a d ) = l a t t i c e [ tx ] [ ty ] ;
}

}

5.A.2 Configuration of the sieving by vectors

We assume that #S > c, we split S into SS and SL. Let assume again that the two
factor-bases does not share the same prime. Similar steps as in the sieving by rows
except that here the sieve part is done in two phases: lattice reduction and sieve.
In fact, from 4 we have a description of this process saying that given the lattice
Lq for all (q, rq) ∈ M we convert the sieve part over the (c, d)-plane. The idea is
to sieve over the set of small factor-base which are accessible on the global cache
memory, this procedure is good as far as the small factor-base could be fitted on
these memories (constant and texture). Now for each lattice Lq we define the sub-
lattice (

v1 − rpv2

rpu2 − u1
mod (p), 1

)
Z2 ⊕ (p, 0)Z2

where (p, rp) ∈ SL and (u1, u2); (v1, v2) is a short basis for Lq. The sieve is converted
on the (e, f )-plane, more precisely over the lattice point of Lpq.
This function is composed by two kernels as in the sieving by rows: basis reduction
and sieve. The arguments configuration of the lattice reduction is the same as in
Figure 5.A.1.

• sieve
According to the property of sieving by vectors, we now sieve over the (e, f )-
plane. This is done as in the following. For a each lattice Lq we do a pre-
processing over the basis of the sub-lattice Lpq for all p ∈ SL, per each of these
basis we compute their reduction. And finally we perform the sieve step.

Notice first that Lpq may not be defined
(

v1 − rpv2

rpu2 − u1
mod (p) = 0

)
in which

we skip these prime p ∈ SL. Second, we need to control the size of the lattice
point (a, b) as we have a fixed size (8 bytes) for all the arithmetic operations.
This is due to the fact that we now sieve over an element in the sub-lattice
Lpq which are technically the candidates divisible by p and q simultaneously,
which imply that the sieving area must be controlled by an optimized bound.
The kernel uses 37 registers memory, the sieving area bound is given by the
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blockthreads dimension. With the above remark, we may obtain the smooth
candidates in a small area for instance [−2, 2]× [1, 6] and this occupied 50% on
the warp-threads, the variation of this choice can be seen in Figure 5.A.3.

FIGURE 5.A.3: warps occupancy for the sieve (sieving by vectors).
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In the following source code, we present our kernel implementation of the sieve
by vectors,

/∗
============================================================================
Name : k e r n e l s v e c t o r s . cu
Author : L o u i s
V e r s i o n :
C o p y r i g h t :
D e s c r i p t i o n : CUDA i m p l e m e n t a t i o n o f t h e L a t t i c e s i e v e by v e c t o r s in GNFS
============================================================================
∗ /

# include " i n l i n e t o o l s . cuh "

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗ b a s i s r e d u c t i o n ∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

__global__ void ker_reducebas is ( myInteger ∗o_basis ,
VecArray<myInteger > primes ,

VecArray<myInteger > r o o t s )
{
i n t indx = threadIdx . x + blockIdx . x∗blockDim . x ;
i n t s t r i d e = blockDim . x∗gridDim . x ;

for ( i n t i = indx ; i < primes . _ s i z e ; i += s t r i d e )
{
myInteger u_reg [ 2 ] , v_reg [ 2 ] ;
u_reg [ 0 ] = ∗ ( r o o t s . _array + i ) ;
u_reg [ 1 ] = 1 ;
v_reg [ 0 ] = ∗ ( primes . _array + i ) ;
v_reg [ 1 ] = 0 ;
LLL ( u_reg , v_reg ) ;
∗ ( o_bas is + 4∗ i ) = u_reg [ 0 ] ;
∗ ( o_bas is + 4∗ i + 1 ) = u_reg [ 1 ] ;
∗ ( o_bas is + 4∗ i + 2 ) = v_reg [ 0 ] ;
∗ ( o_bas is + 4∗ i + 3 ) = v_reg [ 1 ] ;
}

}

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗ s i e v e k e r n e l ∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

__global__ void ker_s ieve_v2 ( double ∗ candidates ,
myInteger prime ,
myInteger f _ b a s i s [ 4 ] ,
VecArray<myInteger > _prime ,
myInteger ∗ s_bas i s ,
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i n t dim_s ,
i n t s i z e )

{
i n t tx = threadIdx . x ;
i n t ty = threadIdx . y ;

__shared__ double l a t t i c e [ maxthreadsX ] [ maxthreadsY ] ;
__shared__ myInteger s h _ s b a s i s [ 4 ] ;

l a t t i c e [ tx ] [ ty ] = log ( ( double ) prime ) ;
l a t t i c e [ tx ] [ ty ] += log ( ( double ) ∗ ( _prime . _array + blockIdx . x ) ) ;

s h _ s b a s i s [ 0 ] = ∗ ( s _ b a s i s + 4∗ blockIdx . x ) ;
s h _ s b a s i s [ 1 ] = ∗ ( s _ b a s i s + 4∗ blockIdx . x + 1 ) ;
s h _ s b a s i s [ 2 ] = ∗ ( s _ b a s i s + 4∗ blockIdx . x + 2 ) ;
s h _ s b a s i s [ 3 ] = ∗ ( s _ b a s i s + 4∗ blockIdx . x + 3 ) ;

__syncthreads ( ) ;

myInteger reg_p = 0 ;
myInteger reg_r ;

myInteger reg_c = f _ b a s i s [ 0 ] ∗ ( tx − 2) + f _ b a s i s [ 2 ] ∗ ( ty + 1 ) ;
myInteger reg_d = f _ b a s i s [ 1 ] ∗ ( tx − 2) + f _ b a s i s [ 3 ] ∗ ( ty + 1 ) ;

myInteger reg_a = reg_c ∗ s h _ s b a s i s [ 0 ] + reg_d∗ s h _ s b a s i s [ 2 ] ;
myInteger reg_b = reg_c ∗ s h _ s b a s i s [ 1 ] + reg_d∗ s h _ s b a s i s [ 3 ] ;

for ( i n t s_idx = 0 ; s_idx < dim_s ; s_idx ++)
{
reg_r = Smallroot [ s_idx ] ;
reg_p += ( myInteger ) tex1Dfetch ( Smallptex , s_idx ) ;
l a t t i c e [ tx ] [ ty ] +=

( ( ( reg_a − reg_b∗ reg_r ) % reg_p ) == 0)
? log ( ( double ) reg_p ) : 0 . 0 ;

}
__syncthreads ( ) ;

i n t l i n t h r e a d = tx + ty ∗blockDim . y + blockIdx . x∗blockDim . x∗blockDim . y ;
i f ( l i n t h r e a d < s i z e )

{
∗ ( candidates + l i n t h r e a d ) = l a t t i c e [ tx ] [ ty ] ;
}

}
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Part II

Statistical Mechanics
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6. Studied topic: planar Ising
In this chapter, we give the detail of the procedure we carried out in this part in
which we present our numerical results. We start by introducing the theoretical
backgrounds we utilized throughout this project, these information were taken from
[ADS+19b], [ADS+19a]. The results of the following chapter are part of my contri-
bution in the paper [DNT19].

6.1 Introduction

The Gibbs sampling of lattice spin models is a major task for statistical mechanics.
The numerical techniques developed for its realization are based mainly on Markov
chain dynamics for single and cluster spin flip [Gla63][SW87][Wol89], and can be
easily implemented by means of random mapping representation [H0̈0] techniques.
A theory of parallel Markov chains as a Probabilistic Cellular Automaton (PCA)
dates back to 1989 [GKLM89]. These processes are characterized by a factorized
transition matrix on the configuration space, and their simulation updating all spins
by means of the same random map [ADS+19b]. More recently a class of PCAs where
transition probabilities are defined in terms of a pair Hamiltonian and where the spins
are simultaneously updated at each time step has been the subject of several works,
e. g., [LS13, DSS12] where PCA are exploited to study the Ising model on planar
graphs.
We explore the computational possibilities of this pair Hamiltonian model to gen-
eralize the random sampling algorithms for Ising spin systems on a set of two-
dimensional lattices.

Formally a PCA is a Markov Chain (Xn)n∈N whose transition probabilities are such
that given two generic configurations τ = (τ1, . . . , τk) and σ = (σ1, . . . , σk)

P{Xn = τ|Xn−1 = σ} =
k

∏
i=1

P{(Xn)i = τi|Xn−1 = σ} (6.1.1)

so that for each time n, the components of the “configuration” are independently
updated. From a computational point of view, the evolution of a Markov Chain of
this type is well suited to be simulated on parallel processors and GPUs.
In this framework, a new PCA parameterized by J and q, called shaken dynamics has
recently been introduced [ADS+19b]. The equilibrium measure of the shaken dy-
namics has been extensively investigated in [ADS+19a] and a critical curve in the
plane (q, J) has been explicitly determined.
In particular in [ADS+19a] a model has been proposed where the configurational
variables are split into two groups τ = (τ1, . . . , τk) and σ = (σ1, . . . , σk), where
τi, σi ∈ {−1, 1} for each i, and are arranged on a bipartite graph. Different interac-
tions among the τ and σ variables give rise to the possibility of interpolation among
different lattice geometries.
The PCA we take into account is a parallel and irreversible version of the heath bath
dynamics and is obtained by concatenating two different update rules [ADS+19b].
By means of the Hamiltonian defined in [ADS+19a], which depends on the (J, q)
parameters, we identify numerically two regions of the space (J, q) characterized by
different behaviors of the dynamics.
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In this framework, a new PCA parameterized by J and q, called shaken dynamics,
has recently been introduced in [ADS+19b]. The equilibrium measure of the shaken
dynamics has been extensively investigated in [ADS+19a] and a critical curve in the
plane (q, J) has been explicitly determined.
The elementary step of the shaken dynamics is naturally defined on the a finite sub-
set Λ of the square lattice Z2 and consists of a sequence of two inhomogeneous
half steps. However, in both [ADS+19b, ADS+19a] it has been pointed out that the
shaken dynamics can be seen as an alternate dynamics on a subset of the honeycomb
lattice.
The proposed dynamics, although not faster than ad hoc dynamics for specific mod-
els, allows to simulate a whole class of statistical mechanics models spanning from
the one-dimensional Ising model to the square lattice and hexagonal one across all
the intermediate models.
Depending on the values of J and q, the shaken dynamics “formalism” defined on
the square lattice can be used to simulate a class of Ising models on the honeycomb
lattice (as pointed out in [ADS+19a]). Some of the values of J and q are particularly
interesting because they allow to use the shaken dynamics to simulate

• the Ising model on the isotropic hexagonal lattice for J = q

• (an approximation to) the Ising model on the square lattice for q >> 1

• the Ising model on a collection of weakly interacting unidimensional systems
for small values of q.

The numerical investigation we put forward is aimed at:

• illustrating a simple heuristic method to numerically determine the critical
curve

• evaluating the mixing time of the chain as a function of J and q

• studying the spin-spin correlations as a function of J and q.

Further, for J = q we compare the mixing time of the shaken dynamics with that
of a single spin flip dynamics for the Ising model on the hexagonal lattice and, for
q >> 1 we also compare the mixing time of the shaken dynamics with that of a
single spin flip and an alternate parallel dynamics for the Ising model on the square
lattice and evaluate the distance between the equilibrium measure of the shaken
dynamics from the Gibbs measure for the Ising model on the square lattice.

6.2 The model

Consider the Ising Hamiltonian on a graph G(V, E)

HG(σ) = − ∑
(x,y)∈E

Jxyσxσy (6.2.1)

where σx ∈ {−1, 1} for all the x ∈ V and Jxy ∈ R+.

We assume that V = Λ1 ∪ Λ2, where Λ1 and Λ2 are finite squared subsets of the
square lattice with L2 sites and periodic boundary conditions

Λ = Λ1 = Λ2 = (Z/LZ)2 (6.2.2)
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and all edges in E have one endpoint in Λ1 and the other in Λ2. The σ and τ variables
denote the Ising configuration on the vertices of Λ1 and Λ2. Each σu, with u ∈ Λ1,
can be put in a one-to-one correspondence with τu with the same index u ∈ Λ2.

Let x = (i, j) be a vector of coordinate on the torus (Z/LZ)2. Then

x↑ = (i, j + 1), x→ = (i + 1, j), x↓ = (i, j− 1), x← = (i− 1, j) (6.2.3)

are the coordinates of the four points at unit distance from x. Set Jxy = J for all
(x, u) ∈ E with x 6= u and Jxy = q if x = y.
With this notation we obtain the Hamiltonian studied in [ADS+19a, ADS+19b]

H(σ, τ) = − ∑
x∈Λ

[Jσx(τx↑ + τx→) + qσxτx]

= − ∑
x∈Λ

[Jτx(σx↓ + σx←) + qτxσx]
(6.2.4)

on the pairs of Ising configurations σ on Λ1 and τ Λ2. The interactions of this Hamil-
tonian can be visualized on the induced bipartite graph represented in Figure 6.1
and 6.3. The parameter q is also referred to as the self interaction parameter.

τx

τx↑

τx→

σx
Λ1

Λ2

FIGURE 6.1: The lattices Λ1, Λ2 with the q (red) and J (black) interac-
tions.

As pointed out in [ADS+19a] a careful look to the Hamiltonian (6.2.4) and to the
graph of Figure 6.1 shows that the bipartite graph is isomorphic to the hexagonal
lattice G9(V, E) with edges J and q on whose vertices are arranged the variables σ
and τ as shown in Figure 6.2.
The Gibbs measure at temperature 1/β for the Hamiltonian (6.2.4) is

π2(σ, τ) =
e−βH(σ,τ)

∑(σ,τ)∈X×X e−βH(σ,τ)
(6.2.5)

where X × X = {−1, 1}|Λ| × {−1, 1}|Λ| is the configuration space of the variable
(σ, τ). The critical value of βc separates the ordered phase where all the spin have
the same probability to take the values +1 or −1 from the ordered phase where the
measure is polarized [Gal72].
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σx

τx

τx→ τx↑

q
J J

FIGURE 6.2: The hexagonal graph G9(Λ1 ∪Λ2, {J, q})

q

J
J

Λ1

Λ2

FIGURE 6.3: A representation of the hexagonal graph
G9(Λ1 ∪ Λ2, {J, q}) that highlights the relation with the two square

lattices Λ1 and Λ2

Rescaling the interactions J and q by β

βJ → J, βq→ q (6.2.6)

it has been proven in [ADS+19a] that there exists a function Jc(q), shown in Figure
6.4, which separate the ordered phase from the disordered one.

The partition function of the Ising model on the honeycomb lattice G9 is

Z(J, q) = ∑
(σ,τ)∈X×X

∏
u∈Λ

cosh2 J cosh q
(
1+σxτx↑ tanh J

)(
1+σxτx→ tanh J

)(
1+σxτx tanh q

)
(6.2.7)

The graph G9 is a weighted planar graph, non degenerate, finite and doubly peri-
odic. The periodic boundary conditions for Λ1 and Λ2 guarantee that the graph G9

is immersed in the torus.
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FIGURE 6.4: The critical curve Jc(q)

Introducing the following notation on the hexagonal lattice

Je ≡
{

J if e = (x, x↑) or e = (x, x→)
q otherwise

(6.2.8)

the critical curve Jc(q) for the Hamiltonian (6.2.4) is the unique solution for J, q > 0
of the equation

∑
γ∈E0(G)

∏
e∈γ

tanh Je = ∑
γ∈E1(G)

∏
e∈γ

tanh Je (6.2.9)

where E0(G) is the set of even subgraphs of G9 winding an even number of times
around each direction of the torus, and E1(G) = E(G) \ E0(G) [ADS+19a][CDC13].
The explicit form of the equation (6.2.9) is

1 = 2 tanh J tanh q + tanh2 J (6.2.10)

The solution of equation (6.2.10) with respect to the J

Jc(q) = tanh−1 (√tanh2 q + 1− tanh q
)

(6.2.11)

is plotted in Figure 6.4. We observe that

lim
q→∞

Jc(q) = tanh−1(
√

2− 1) = 0.4406867 (6.2.12)

is the critical value of β for the Ising model on the lattice square, while on the point
Jc(q) = q the equation (6.2.11) gives the critical value for the Ising model on the
hexagonal lattice J = q = 0.6585. If q → 0, J → ∞ there are no phase transitions as
in the unidimensional Ising model. Following [ADS+19b] we let the system evolve
as a Markov chain where the spins in Λ1 and in Λ2 are alternatively updated with a
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probability proportional to the exponential of the Hamiltonian of the target configu-
ration in X ×X .
More precisely, using the notation

−→
hx (σ) = J(σx↑ + σx→) + qσx
←−
hx (σ) = J(σx↓ + σx←) + qσx

(6.2.13)

we consider a Markov chain on X ×X with transition probabilities given by

P((σ, τ), (σ, τ′)) =
e−H(σ,τ′)

Zσ
=

e−∑u∈Λ
←−
hu (σ)τ′u

Zσ
= ∏

u∈Λ

e
←−
hu (σ)τ′u

2 cosh
←−
hu (σ)

(6.2.14)

at odd times and

P((σ, τ), (σ′, τ)) =
e−H(σ′,τ)

Zτ
=

e−∑u∈Λ
−→
hu (τ)σ′u

Zτ
= ∏

u∈Λ

e
−→
hu (τ)σ′u

2 cosh
−→
hu (τ)

(6.2.15)

at even times where Zσ = ∑η∈X e−H(σ,η) and Zτ = ∑η∈X e−H(η,τ).
The factorization in Equation (6.2.14) and (6.2.15) and the mutual dependence of the
variables σ and τ makes it quite easy the parallel numerical implementation of this
dynamics. In particular, to simulate the evolution of the chain it is possible to sample

the value ζ ∈ {−1, 1} of the spin at site u with probability P(τ′u = ζ|σ) = eζ
←−
hu(σ)

2 cosh
←−
hu (σ)

at odd times and P(σ′u = ζ|τ) = eζ
−→
hu(τ)

2 cosh
−→
hu (τ)

at even times independently for all u ∈ Λ.

In this framework, the shaken dynamics introduced in [ADS+19b] is obtained by
looking at the evolution of the spin configuration in Λ1. In other words, the shaken
dynamics is the marginal of the alternate dynamics defined by Equations (6.2.14)
and (6.2.15) and the shaken transition probabilities are

P�(σ, σ′) = ∑
τ

e−H(σ,τ)

Zτ

e−H(σ′,τ)

Zτ

In [ADS+19b] it has been proven that the equilibrium measure of this dynamics is

πs(σ) =
Zσ

Z

and Z = ∑σ Zσ.
In the remainder of the paper, we use the wording shaken dynamics when we are
interested in the evolution on the sub–lattice Λ1 whereas we call the dynamics on
the hexagonal lattice subject to the transition probabilities (6.2.14) and (6.2.15) the
alternate parallel dynamics (on the hexagonal lattice).

6.3 Simulation results

6.3.1 Numerical estimation of critical curve

As stated before, the critical curve (6.2.11) is the function that separates the ordered
and the disordered phases. Above this line the values of the spins tend to be highly
correlated whereas on the opposite side the value assumed by each spin is weakly
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dependent on the values taken by other spins. To determine whether the system is in
the ordered or disordered phase we compute, over a large number of iterations, the
average and the variance of the magnetization on one of the two layer Λi is where
the magnetization m is defined as

m =
1
|Λi| ∑

x∈Λi

σx (6.3.1)

By Theorem 2.1 in [ADS+19a] πs(m) = π2(m), that is, the average magnetization (in
Λ1) of the shaken dynamics is the same as the average magnetization of the parallel
alternate dynamics (on the hexagonal lattice Λ1 ∪Λ2).
We take Λ to be a 200× 200 torus and simulate the evolution of the shaken dynamics
starting from configuration σ0 = {−1,−1, . . .− 1} for (J, q) ∈ {(0, 2)× (0, 2)} on a
80 × 80 grid. We first let the system run for a warm-up time of 300000 steps and
then record the average and the variance of the magnetization for 300000 additional
steps.
Figure 6.5 shows the average and the variance of the magnetization as a function of
J for q = 0.6585. It is evident that the average magnetization has a sharp transition
around the point J = 0.6585 which is the critical value of J for the Ising model on the
honeycomb lattice.
Around the same point the variance of the magnetization has a spike whereas it is
negligible for values of J far from the critical point.
The results obtained on the whole grid (q, J) are summarized in Figure 6.6.

0.6585
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FIGURE 6.5: Average (a) and variance (b) of the magnetization as a
function of J for q = 0.6585

It is known that, at equilibrium, the average value of the magnetization fluctuates
heavily only close to the critical value of the interactions (see [Rue99] for a reference).
Figure 6.7 shows that the variance of the magnetization is significantly different from
zero only for points of the (q, J) plane in the vicinity of the pins on the curve (6.2.11).
This show that, even for a small lattice, the magnetization fluctuates only close to
the critical line and for the whole class of Ising models that can be described tuning
the values of J and q.

6.3.2 Coalescence times and perfect sampling

To assess whether the number of steps for which a Markov chain run is large enough
for its distribution to be close to the equilibrium distribution, it is convenient to look
at its mixing time. For a Markov chain (Xn)n∈N with state space X and stationary
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FIGURE 6.6: Average (a) and variance (b) of the magnetization on the
whole (q, J) grid
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FIGURE 6.7: The bars are centered at those points in the (q, J) plane
for which the variance of the magnetization is sufficiently large (≥
0.03). The length of the bars is proportional to the variance of the

magnetization.

distribution π, the mixing time is defined as

Tmix = Tmix(ε) = min{n > 0 : ‖µn
σ − π‖TV < ε ∀ σ ∈ X}

where µn
σ is the distribution of Xn conditioned on X0 = σ, ‖µ− ν‖TV denotes the total

variation distance between the probability measures µ and ν and ε is some “small”
number (for instance e−1). For a reference on mixing times see, for instance, [LP17].
Determining useful bounds for the mixing time of a Markov chain is, in general, a
quite challenging task. However, indication on the mixing time of a Markov chain
can be gathered looking at the coalescence times (see [H0̈0] for a reference).
Consider two Markov chains (Xn)n∈N and (Yn)n∈N living on the same state space
X and consider the coupling (Zn)n∈N = (Xn, Yn) obtained by letting Xn and Yn to
evolve with the same update function and the same sequence of random numbers
(for an introduction on the coupling method see [Lin12]). Further assume that the
update function is chosen is a way such that PZ(Xn = Yn)→ 1 as n→ ∞.
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We define the coalescence time T between Xn and Yn as T = min{n ∈N : Xn = Yn}.
Note that, since Xn and Yn evolve with the same update function and the same se-
quence of random numbers Xn = Yn for all n > T. This definition extends naturally
to a collection of K chains Xk

n with k ∈ 1 . . . K.
The mixing time of the chain (Xn)n∈N is estimated by the coalescence time of the
chains (Xk

n)n∈N for k = 1 . . . |X |, all defined on the state space X , where chain Xk
n

has initial distribution concentrated on state k.
To effectively determine the coalescence time of the shaken dynamics, however, it
is not necessary to run 2|Λ| copies of the Markov chains, but it is possible to use the
so called sandwiching technique since the shaken dynamics preserves the partial or-
dering between configurations1 . In other words, it can be directly checked that if
Xk

0 ≤ Xl
0 then Xk

n ≤ Xl
n for all n > 0 (see, again, [H0̈0], for a reference). To determine

the coalescence time it is therefore sufficient to look at the coalescence times of two
chains starting, respectively, from σtop = {1, 1, . . . , 1} (the largest possible configu-
ration) and σbot = {−1,−1, . . . ,−1} (the smallest possible one).
Further note that, leveraging on coupling between Markov chains it is possible to
perform an unbiased sampling from the equilibrium distribution of a Markov chain
using the Propp–Wilson algorithm, introduced in [PW96], which requires two copies
of the Markov chain to be run with the same update function and the same sequence
of random numbers.
We studied the coalescence times of the shaken dynamics. The simulations were run
taking Λ to be a 32× 32 square lattice. This means that the induced hexagonal lattice
Λ1 ∪Λ2 has 32× 32× 2 points.
We computed the average coalescence time for values of J and q close to the critical
line Jc(q). The results obtained are summarized in Figure 6.8.

������

5.0 7.5 10.0 12.5 15.0 17.5

FIGURE 6.8: Logarithm of the average coalescence time for values of
J and q close to the critical curve

For J = q, the shaken dynamics is the marginal of the alternate dynamics on the
isotropic hexagonal lattice. More properly, pairs of configurations (σ, τ) with τ the
configuration obtained from σ by performing the first half step of the shaken dynam-
ics can be regarded as spin configurations on the honeycomb lattice. The equilibrium

1σ ≥ η if, for all u ∈ Λ, {ηu = +1} ⇒ {σu = +1}
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distribution of these pairs is the Gibbs measure of the Ising model on the isotropic
hexagonal lattice (see Theorem 2.1 in [ADS+19b]). Therefore it makes sense to com-
pare the mixing time of the shaken dynamics with the mixing time of a single spin
flip dynamics defined on the hexagonal lattice and whose stationary distribution is
the Gibbs measure. As a reference we take the heat bath dynamics defined as fol-
lows:

P(σ, σ′) =


1
|Λ|

ehx(σ)σi

2 cosh(ehx(σ))
if σ′ = σx

1−∑x∈Λ P(σ, σ′) if σ = σ′

0 otherwise

where σx is the configuration obtained from σ by flipping the spin at site u and
hu(σ) = ∑y∼x Jσy. Also the heat bath dynamics preserves the partial ordering be-
tween configurations and, hence, also in this case it is sufficient to simulate the evo-
lution of two chains one starting from all spins set to +1 and one starting from all
spins set to −1.
Note that it is possible to argue that the parallel alternate dynamics studied here is a
parallel version of the single spin flip heat bath described above.
The results obtained, for several values of J (and, consequently, q) are presented in
Figure 6.9. Note that for the single spin flip dynamics the value shown in the chart is
the number of steps divided by 2|Λ| so that, for both algorithms, we are comparing
the total number of “attempted spin flips”.
It appears that the parallel alternate dynamics is faster than the single spin flip one
even if the single spin flip one is “renormalized” with the volume of the box as de-
scribed above.
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FIGURE 6.9: Sample average of the coalescence time for J = q (hexag-
onal lattice)

In [ADS+19b], Theorem 2.3 it has been shown that, for large values of q, the equi-
librium distribution of the shaken dynamics approaches the Gibbs measure for the
Ising model on the square lattice. More precisely it has been proven that, if

lim
|Λ|→∞

e−2q|Λ| = 0,
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then, for J sufficiently large,

lim
|Λ|→∞

‖πs − πG‖TV = 0,

where πG is the Gibbs measure for the Ising model on the square lattice. There-
fore it makes sense to evaluate numerically the goodness of this approximation as
q increases. To this purpose we consider two observable: the magnetization m and
the energy H(σ). For both observable we compare their sample mean and sam-
ple standard deviation over samples drawn from the equilibrium distribution of the
shaken dynamics with the sample mean and the sample standard deviation of two
other reference dynamics having the Gibbs measure as stationary distribution. One
of the two reference dynamics taken into account is, again, the heat bath dynamics.
The other dynamics is a parallel version of the heat bath dynamics that updates, al-
ternatively, the spins on the odd and the even sites of the lattice. The latter is the
equivalent for the square lattice of the alternate parallel dynamics on the hexagonal
lattice defined by equations (6.2.14) and (6.2.15). Theorem 2.2 in [ADS+19b] states
that the equilibrium measure of this dynamics is, indeed, the Gibbs measure on the
square lattice. For all these dynamics, samples are drawn using the Propp-Wilson al-
gorithm introduced above. Several values of J close to the critical value for the Ising
model on the square lattice and the results obtained are summarized in Figures 6.10,
6.11, 6.12 and 6.13.
The data suggests that, for q ≥ 2.5 the approximation provided by the shaken dy-
namics is quite good.
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FIGURE 6.10: Sample average of the magnetization for several values
of J

On the other hand, we also estimated the time required to approach the equilibrium
distribution by comparing the coalesce time of the shaken dynamics with those of
the two other reference dynamics. Also in this case the number of steps required
by the single spin flip dynamics is renormalized with the volume of the box Λ. The
result obtained are summarized in Figure 6.14. It is apparent that, though more
flexible, the shaken dynamics becomes slower than “specialized” algorithms as the
accuracy of the approximation increases.
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FIGURE 6.11: Sample standard deviation of the magnetization for
several values of J

Parts (b) of Figures 6.15, 6.16 and 6.17 show configurations drawn from the equilib-
rium distribution of the alternate parallel on the hexagonal whereas parts (a) show
the corresponding sub-configurations on the sublattice Λ1. These sub-configurations
are, therefore, drawn from the equilibrium distribution of the shaken dynamics. In
Figure 6.15 it is possible to observe that the spins linked by a q-edge have almost
always the same value. This is in good accordance with the fact that stationary mea-
sure of the shaken dynamics is close to the Gibbs measure for the Ising model on the
square lattice. On the other side, Figure 6.17 is consistent with the fact that for q very
small the equilibrium measure of the shaken dynamics tends to that of a collection
of weakly dependent unidimensional Ising models.

6.3.3 Correlations

Theorem 2.4 in [ADS+19a] establishes that, if q is sufficiently small, π(σ0,0, σ`,`) <
π(σ0,`, σ`,0) where π is the equilibrium measure of the shaken dynamics and σ is,
therefore, a spin configuration living on Λ1. In words, the theorem states that the
SW-NE correlations are weaker than the NW-SE ones if the self interaction is weak.
On the other hand, we expect that the SW-NE and the NW-SE correlations tend to
be similar for large values of q, that is for those values of the pair (q, J) for which the
equilibrium distribution of the shaken dynamics approaches the Gibbs measure of
the Ising model on the square lattice.
We study the SW-NE and the NW-SE correlations as ` varies with Λ a 32× 32 square
box. The results are shown in Table 6.1.

All pairs (q, J) taken into account correspond to points of the q, J plane close to the
critical curve Jc(q). It is possible to observe that, as q decreases, the SW-NE corre-
lations become, indeed, smaller than the NW-SE ones, whereas, for q large the two
are quite similar. Further, if the pair (q, J) is below the critical curve the correla-
tions decay quite rapidly. On the other hand, if (q, J) is above Jc the correlations are
significant also for larger values of `.
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q J supercritical direction
`

1 2 4 8 16

0.05 1.7
NW-SE 0.821 0.765 0.7 0.481 0.425

SW-NE 0.313 -0.063 -0.051 0.195 0.454

0.05 1.855 X
NW-SE 0.916 0.852 0.767 0.704 0.726

SW-NE 0.618 0.316 0.124 0.081 0.739

0.2 1.05
NW-SE 0.566 0.463 0.444 0.38 -0.016

SW-NE 0.4 0.203 0.002 -0.037 0.041

0.2 1.175 X
NW-SE 0.84 0.7 0.624 0.584 0.54

SW-NE 0.54 0.54 0.52 0.5 0.685

0.4 0.82
NW-SE 0.65 0.507 0.462 0.356 0.426

SW-NE 0.398 0.279 0.119 0.103 0.218

0.4 0.86 X
NW-SE 0.68 0.644 0.541 0.679 0.538

SW-NE 0.6 0.431 0.59 0.485 0.566

0.6 0.67
NW-SE 0.74 0.646 0.4 0.378 0.167

SW-NE 0.622 0.401 0.36 0.321 0.283

0.6 0.7 X
NW-SE 0.855 0.772 0.763 0.732 0.664

SW-NE 0.654 0.677 0.61 0.593 0.578

0.65 0.65
NW-SE 0.701 0.472 0.477 0.503 0.475

SW-NE 0.56 0.501 0.4 0.279 0.481

0.663 0.663 X
NW-SE 0.749 0.646 0.6 0.544 0.477

SW-NE 0.65 0.52 0.442 0.578 0.642

0.8 0.58
NW-SE 0.68 0.627 0.281 0.243 0.245

SW-NE 0.609 0.522 0.307 0.444 0.433

0.8 0.61 X
NW-SE 0.66 0.661 0.62 0.581 0.52

SW-NE 0.74 0.52 0.581 0.52 0.524

1.0 0.52
NW-SE 0.581 0.56 0.258 -0.019 0.103

SW-NE 0.541 0.299 0.341 0.221 0.04

1.0 0.55 X
NW-SE 0.602 0.606 0.398 0.441 0.599

SW-NE 0.58 0.58 0.561 0.54 0.532

2.5 0.43
NW-SE 0.462 0.456 0.27 0.194 0.164

SW-NE 0.541 0.42 0.221 0.26 0.201

2.5 0.46 X
NW-SE 0.658 0.701 0.74 0.701 0.699

SW-NE 0.761 0.739 0.654 0.538 0.654

TABLE 6.1: Spin-spin correlations. The check-markXin
the supercritical column identifies pairs (q, J) above the critical curve

Jc
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FIGURE 6.12: Sample average of the energy H(σ) for several values
of J

6.4 Implementation details

To approximate numerically the critical curve Jc(q), we take samples for different
values of J and q. The code used for the simulation written in Julia [BEKS14] and
simulations are performed through 80 thread processors running, in parallel, the
simulation on 80 couples of values (q, J) in the range of (q, J) ∈ (0, 2)× (0, 2). The
Hamiltonian is defined on a square 200 × 200 lattice. Statistics are collected over
300,000 iterations. Figure 6.6 shows that the chosen simulation parameter is good
enough to approximate the critical curve.
The elementary step of the shaken dynamics described in the previous section has
been simulated by the Algorithm 12. A spin configuration is updated via a sequence
of two similar half steps. The computation of the vector of local fields h that drives
the transition probabilities of each spin is alternatively carried out using the func-
tions collectUR and collectDL which determine the up-right and down-left con-
tribution as in Equation (6.2.13).

Algorithm 10 collectUR

Input xσ, J, q
Output f

1: f ← J(σx↑ + σx→) + qσx
2: Return f

Algorithm 11 collectDL

Input xσ, J, q
Output f

1: f ← J(σx↓ + σx←) + qσx
2: Return f

The algorithm 12 is the complete update in two steps of the shaken dynamics, which
is more general than the one used in [LS13]. The choice of collecting the statistics
over 300,000 time steps (after a warm up time of 300,000 additional time steps)
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FIGURE 6.13: Sample standard deviation of the energy H(σ) for sev-
eral values of J

Algorithm 12 Shaken dynamics

Input initial spin configuration σ
Output updated spin configuration τ

1: for each xσ do
2: h← collectUR(xσ, J, q)
3: p← exp(h)/2 cosh(h)
4: if rand() < p then
5: xτ ← 1
6: else
7: xτ ← −1
8: end if
9: end for

10: σ← τ
11: for each xσ do
12: h← collectDL(xσ, J, q)
13: p← exp(h)/2 cosh(h)
14: if rand() < p then
15: xτ ← 1
16: else
17: xτ ← −1
18: end if
19: end for

turned out to be good enough, and the results show, unmistakably,the separation
of the two phases (ordered and disordered).
We implemented the algorithm 12 in two parallel ways. A CUDA 2 implementation
of a parallel heat bath for large dimension Lattice spin, and a Julia [BEKS14] imple-
mentation on a single CPU to be used on a multiprocessor systems (trivial parallel
on a multi data input). Both have been optimized to handle our problem, and used

2Compute Unified Device Architecture, parallel platform and programming model to make use of
the Graphic Processing Units general purpose computing simple and elegant.
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FIGURE 6.14: Sample average of the coalescence time (number of
steps) for several values of J

(a) (b)

FIGURE 6.15: J = 0.44, q = 3.0

to simulate the shaken dynamics of the PCA, a quasi-similar behavior was observed
during our experiment.

Parallel single-GPU code

The general heat bath procedure has been implemented on SIMD (Single Instruction
Multiple Data) system. To optimize the code exploiting the CUDA memory archi-
tecture we implemented three kernels for the functions collectUR, collectDL and
for updating the configuration. We used the default random generator from curand
library.
The collect function computes the transition probabilities in the given direction.
Each thread handles one spin on the lattice field. The principal use of the global
memory is the four square spin lattice, the two configuration sigma (σ) and tau (τ),
the fields which handles the Hamiltonian computation and the random-unit con-
tains random uniform variables.
In our implementation all the operation are performed on register cache memory.
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(a) (b)

FIGURE 6.16: J = 0.6585, q = 0.6585

(a) (b)

FIGURE 6.17: J = 2.0, q = 0.03

We did not use shared memory for the random-unit. The code was written to run
on the Nvidia-GPU Tesla P100 using by 16GB video memory, using 4 matrices of
dimension L× L, two for the lattice spin field (single byte), and two for the collected
fields and for the random uniform (four byte). All the matrices are allocated on the
global memory.
For the management of the memory, before allocating the memory of the 4 ma-
trices, the code used approximately 303 MB, leaving 15973.250000 MB. We used
2 ∗ 4 ∗ L ∗ L + 2 ∗ L ∗ L bytes, but we can not go beyond 105 for this GPU.
The purpose of the CUDA implementation is to work on large dimension which al-
lows us to observe the statistical behavior of the shaken dynamic, also for real time
simulation.
Figure (6.18) shows a state of configuration captured at 60-th iteration on a simula-
tion of the shaken dynamics for PCA lattice square with dimension 512× 512, under
the temperature J = 0.99 and the external field q = 0.5.
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FIGURE 6.18: GPU sample: L = 512, J = 0.99, q = 0.5, iteration= 60th

Benchmarking

To measure the performance of our GPU code it is not fair to compare it with the
single-CPU implementation from Julia. We have implemented a serial version of the
shaken dynamics in a lower level language, a captured sample for a square lattice
spins of size 512× 512 with J = 0.99 and q = 0.5 is given in Figure 6.19. For our
simple measurement, we set the parameters J = 0.44 and q = 0.66 and to have more
significant value we measure it in milliseconds. We compare the two implementa-
tion for different dimension L, hence the size of the square lattice which is L2. For
this benchmark (Figure 6.20), we used an Nvidia graphic card Tesla P-100 vs single
core of the CPU Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz. We measure the time
for one update execution. As we have mentioned the GPU memory is limited so that
we did the experiment under this condition for the size of the square lattice spin.
We observe that the GPU is much faster than the CPU with a factor of 500 as far as
the lattice size grows. We can see that the CPU time looks linear while the case for
GPU is when the size is more than 2048× 2048.
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FIGURE 6.19: CPU sample: L = 512, J = 0.99, q = 0.5, iteration= 60th
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FIGURE 6.20: Running-time in function of the size L.
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7. Summary
In the present work, we concentrated particularly on the two dimensional Ising
model by means of Probabilistic Cellular Automata (PCA) [DSS12]. This model can
be seen as a Markov Chain of a lattice square configuration spins, and studied its
dynamics by an algorithmic approach.
We based our experiment on the dynamics and its simulation algorithm suggested
in [ADS+19b], a new dynamics called shaken dynamics. We discussed the practical
perspective of this dynamics especially its parallel implementation. We discuss an
implementation of the algorithm on the GPU that can be used to simulate the shaken
dynamics in real-time.
We retrieved numerically the critical curve of the PCA dynamics which has been
found in [ADS+19a] using the shaken dynamics, by the help of the parallel imple-
mentation on a multi-core processors. Also we give indications of the convergence
of the dynamics to its equilibrium distribution. In summary, the present work is a
numerical exploration ot the results of the papers [ADS+19b, ADS+19a].

We have implemented all the codes in Julia [BEKS14]. The codes contains two classes
of lattices squares and hexagonal with their methods, serial and parallel. This can
be collected into a library for studying the 2D Ising model especially the shaken
dynamics.
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Appendices

7.A Codes for the shaken dynamics

7.A.1 Julia implementation

The main purpose of the Julia [BEKS14] implementation is to provide a library that
can be used in statistical mechanics for academic purpose. Since Julia is a high level
language that have a comparable running time with low level language, and it facil-
itate the use of high performance, we would like to exploit this to solve algorithmic
problem like the one we faced in this project.
At the moment, the code is under development, it contains the definition of the Lat-
tice square and hexagonal with all the methods that have used doing this project, for
instance the coupling from the past [PW96].

7.A.2 Cuda implementation

We have implemented the shaken dynamics in cuda to be used as a library for the
above julia project. In our experiment, we have the Nvidia-GPU Tesla P100 occu-
pied by 16GB Video memory. For this particular device, we give some detail on the
parameter used for our simulation.

We have presented in the benchmark that we could go between L = 104 and L = 105.
Indeed, on the global memory we have to allocate 4 matrices of size L× L such that
2 is for the configuration σ and τ which can be represented by a single byte, the two
other is for the fields computation and the random uniform that are represented by
a four byte (double precision). In total, we used 2× 4× L× L + 2× L× L bytes. A
simple computation leads to us that we can not go beyond 105.
For the occupancy, the two collect kernel functions requires 28 register, the thread-
block size was deduced from the Figure 7.A.1 while the update kernel requires 38
registers and the warp-occupancy in function of the thread-block size is presented
Figure 7.A.2.

FIGURE 7.A.1: warps occupancy for the collectUR and collectDL.
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FIGURE 7.A.2: warps occupancy for the update.

The three kernels function is given in the following source codes,

/∗
============================================================================
Name : k e r n e l . cuh
Author : L o u i s
V e r s i o n :
C o p y r i g h t :
D e s c r i p t i o n : k e r n e l sha k e n dynamics
============================================================================
∗ /

__global__ void co l lec tDL ( double ∗ f i e l d s ,
i n t 8 _ t ∗sigma ,
double J ,
double q ,
double lambda ,
i n t length )

{

i n t x_0 = threadIdx . x + blockDim . x∗blockIdx . x ;
i n t y_0 = threadIdx . y + blockDim . y∗blockIdx . y ;

i n t s t r i d e _ c o l = blockDim . x∗gridDim . x ;
i n t str ide_row = blockDim . y∗gridDim . y ;

for ( i n t y = y_0 ; y < length ; y += str ide_row )
{
for ( i n t x = x_0 ; x < length ; x += s t r i d e _ c o l )

{
const double reg_c =

( double ) ∗ ( sigma + Index2D ( y , x , length ) ) ;
const double reg_d =

( double ) ∗ ( sigma + Index2D (Modn( y+1 , length )
, x , length ) ) ;

const double r e g _ l =
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( double ) ∗ ( sigma + Index2D ( y
,Modn( x−1, length ) , length ) ) ;

∗ ( f i e l d s + Index2D ( y , x , length ) ) =
J ∗ ( reg_d + r e g _ l ) + q∗ ( reg_c ) + lambda ;

}
}

}

__global__ void col lec tUR ( double ∗ f i e l d s ,
i n t 8 _ t ∗sigma ,
double J ,
double q ,
double lambda ,
i n t length )

{

i n t x_0 = threadIdx . x + blockDim . x∗blockIdx . x ;
i n t y_0 = threadIdx . y + blockDim . y∗blockIdx . y ;

i n t s t r i d e _ c o l = blockDim . x∗gridDim . x ;
i n t str ide_row = blockDim . y∗gridDim . y ;

for ( i n t y = y_0 ; y < length ; y += str ide_row )
{
for ( i n t x = x_0 ; x < length ; x += s t r i d e _ c o l )

{
const double reg_c =

( double ) ∗ ( sigma + Index2D ( y , x , length ) ) ;
const double reg_u =

( double ) ∗ ( sigma + Index2D (Modn( y − 1 , length ) ,
x , length ) ) ;

const double reg_r =
( double ) ∗ ( sigma + Index2D ( y ,

Modn( x +1 , length ) , length ) ) ;

∗ ( f i e l d s + Index2D ( y , x , length ) ) =
J ∗ ( reg_u + reg_r ) + q∗ ( reg_c ) + lambda ;

}
}

}
__global__ void update_config ( i n t 8 _ t ∗ tau ,

double ∗ f i e l d s ,
double ∗ randunit ,
i n t length )

{
i n t x_0 = threadIdx . x + blockDim . x∗blockIdx . x ;
i n t y_0 = threadIdx . y + blockDim . y∗blockIdx . y ;

i n t s t r i d e _ c o l = blockDim . x∗gridDim . x ;
i n t str ide_row = blockDim . y∗gridDim . y ;
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for ( i n t y = y_0 ; y < length ; y += str ide_row )
{
for ( i n t x = x_0 ; x < length ; x += s t r i d e _ c o l )

{
const double r e g _ f i e l d = ∗ ( f i e l d s +

Index2D ( y , x , length ) ) ;
∗ ( tau + Index2D ( y , x , length ) ) =

( ∗ ( randunit + Index2D ( y , x , length ) ) <=
exp ( r e g _ f i e l d )/(2∗ cosh ( r e g _ f i e l d ) ) ) ?

1 : −1;
}

}

}
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Part III

Artificial Intelligence
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8. Introduction
The term Artificial Intelligence (AI) describes the possible "intelligent behavior" of
machines, in contrast to the natural intelligence shown by humans and other ani-
mals. It was founded as an academic discipline in 1956 [KH19]. Computer science
often use this word to mean the teaching of an intelligent agents (training a devices
to be able to perform a task by maximizing the change). Machine learning is a subset
of the AI mainly based on statistics and probabilistic techniques. This field is inter-
disciplinary in terms of the techniques and their applications.

On the other hand, Computer Vision is a field in computer science which partic-
ularly deals with images and video. It utilizes many others academics disciplinary
such as, mathematics, physics and engineering. Its main task is to apply several
methods such as machine learning algorithms to be able to interpret and understand
digital images. This lead to an automatic system which made the computer vision
to be one of the principal component of AI.

In this work, we apply the image classification technique on monuments and archi-
tectural images. Our goal is to integrate the deep learning technique used in com-
puter vision on urban data. The idea is to provide a facility for the user to gather
information from an inaccessible environment. This information can be seen as a set
of linked database in which we are able to put them into one system.
A typical method to consume these data is to identify them by an "id" or a "key-
word", our idea is to use a pixels images of an object. Using a mobile device, one
can takes the picture of the desired object and process the query of all the related
information of the object.
The raise of the new technology, especially in mobile device, allows us to perform
this task easily. The integration of a new device component that make the process of
machine learning algorithm fast and easy to use.
The methods proposed here is the exploitation of the capacity to learn from experi-
ence, the model can interpret an input object and assign it to a category. Formally,
this corresponds to the construction of a function from a sample of (input, output)
pairs. In general, we have multidimensional data and we also assume that the func-
tion to construct is a multivariate non-linear function. We use a type of artificial
neural network, Convolutional Neural Networks (CNNs) which is largely applied
to deal with images input [RW17]. This kind of network are currently applied in
many computer vision tasks and performed better than the traditional techniques,
for instance image analysis for medicine and biology [HPQ+18]. This technique
takes advantage from the fast development of the new technology in many issues.
By training the network on modern graphic card dedicated for high performance
computing and use the inference model on mobile devices.
This work is a contribution of the candidate on the Shazarch project [ADP19] which
is a complete mobile application on iOS [Pal19].
We plan this part as follows: In Chapter 9, we introduce a general background in
Artificial Neural Networks and Deep Learning that motivate the details steps of the
methodology we have processed during this project. And we conclude with a sum-
mary and an overview of a working in progress that will be the extension of this task
in Chapter 10.
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9. The project : Image classification
This project is a complete mobile application that has been initiated by the Shazarch
Project, it was an architecture initiative which are based on the Foro Romano. The
main goal is to facilitate the navigation of people (tourists) visiting monuments in
the Museum of Roma. Hundreds of monuments are difficult to remembered or rec-
ognized, apparently they look similar. The full application contains a model which
recognize the monument, then it gives every information about the object ,and also
links it into a 3D model that is very useful to visualize the architectural structure of
the object [Pal19]. My contribution of this project is the first part, building the model
which is used to recognize the monument from its picture.

9.1 Artificial Neural network (ANN)

Inspired from the biological properties of neurons, McCulloch and Pitts [MP43] in-
troduced the perceptron. This is considered the first conceptual model of an artificial
neural network. As well as the human nervous systems neural networks, the ANN
is intended to be a block of perceptron (neurons). A neuron can be seen as cell living
in a network of cells, it receives inputs and process it to generates an output. Amit
[Ami89] gave a detailed description of this concept (from the biological behavior of
the nervous systems, how the neurons transmits signal (information), where the sig-
nals are processed and outputted). To summarize, the neurons are represented as
processing unit (body for the neurons). Several input signals are connected to the
processing unit to be processed and outputted (this can be an activate signal or not).
This can be represented as in figure 9.1.

...

P.U
O

s1

s2

s3

s4

Signals Body Ouput

FIGURE 9.1: Perceptron. In the left, the sets of input signals (s0, . . . sn)
from other perceptron which are connected into the processing unit.

On the right, the outputs O = {y0, y1}.

As we presented on figure 9.1, in a neural network the neurons interacts by sending
signals. In other words, the signal activates the other neurons. The sets of outputs
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O can be seen as a conditional value depending on the result from P.U. Formally, let
P be the processing application then the P.U is a function given by P(s1, . . . , s4). We
define T be a threshold so the output is given by

y =

{
y0 if output(x) > T
y1 o/w

A little modification is needed to redefine this function to be an Activation. There are
several activation used in perceptron (ANNs), for instance the ReLU1, a non linear
activation function which is the closest to the biological property of neurones, that
means it send an activate signal when it is under the threshold T.

9.1.1 Universal approximation theorem

An artificial neural network is a block of perceptrons, which can be represented as
a graph. The edges which connects the inputs signal to be processed into other
perceptron (edge) represents the weight, We assigned a bias each perceptron (node)
in which will replace the role of threshold.

Input
layer

Hidden
layer

Output
layer

Ouput

FIGURE 9.2: Artificial neural network.

Figure 9.2 presents a typical ANN with one hidden layer. All the edges possess
a weight that we call w those which connect input to the hidden layer and v for
hidden to output layer. The input nodes represent the assigned parameters, that
means each node takes one coordinate of the input. The nodes in the hidden layers
possesses each a bias that we have discussed before.
According to this configuration, the above ANN can be expressed as

Output =
3

∑
i=1

vi × ϕ(wi × x + bi)

1Rectified Linear Unit f (x) = max(0, x)
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This can be generalized by considering a k > 0 processing units in the hidden layers,
so an ANN can be expressed as

F(x) =
k

∑
i=1

vi × ϕ(wi × x + bi)

here ϕ is the activation function. The activation function plays an important rule
both in theory (for the demonstration) and in practice (fine tuning the ANN).

Let X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , ym) ∈ Rm. Let D be a set of data,
we want to find a function

f : Rn −→ Rmx1
...

xn

 7−→
y1

...
ym


Formally, we can find a compact K subset of Rn containing the finite dataset D. The
goal is to find a function f ∈ C(K), here C(K) is the set of continuous function on
K.
Let define

∑
n

ϕ =

{
F : X −→

k

∑
i=1

vi × ϕ(wi × x + bi) , wi ∈ Rn , bi, yi ∈ R , k finite

}

the set of all the possible output of the ANN.

Theorem 9.1.2 (Universal Approximation Theorem). ∑n ϕ is uniformally dense in
C(K).

Remarks.

• The activation function ϕ needs the following properties

– Continuous, non-constant, bounded, monotonically increasing.

– ϕ ∈ L∞
Loc.

– non-polynomial.

• There are many approaches to prove this theorem, which is related to its appli-
cation on ANN, for instance Cybenko in [Cyb89] and Kurt Hornick in [Hor91].

9.1.3 ANN in application

The training of a ANNS is the process of finding a proper approximation of the given
function f by means of an artificial neural network. We use classical calculus to re-
duce the amount of error E = X − F(X) the difference between the desired output
with the ANN predicted output. This technique called Backpropagation. It has to be
utilized carefully to obtain algorithms which learn in quick and good way.
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To have a clear pictures of this procedure, let X, Y and B be a real vector, B rep-
resent the bias, and the weight can be expressed as a matrix

W =

w1,1 · · · w1,c
...

. . .
wr,1 · · · wr,c


such that wr,c is the weight connecting the node r to c. This representation shows
that all the operation in ANN are between tensors. Each layer has its own output,
we need to fix one layer say l. The result can be applied for all the other layers. The
output on the layer l is given by

yl
i = ϕ

(
∑

k
wi,k × yl−1

k + bi

)

here k runs over the number of neurons at layers l − 1. The goal is to minimize the
value

G(W, B) =
1

2N

N

∑
i=1

(yi − yl
i)

2 (9.1.1)

where N is the cardinality of the dataset. We can deduce from this the amount of the
error ∆W and ∆B affected by W and B respectively.
Once computed ∆W, ∆B, we can update the value of weight and bias over the ANNs.
The terms backpropagation means that we always start this process from the last
layers and go backward for the update of each previous layer (due to the fact that
only the last layer has the desired output from the dataset). Notices that the equation
9.1.1 suggest to compute its value over all the dataset. Mostly this is very large and
computationally infeasible. In practice, the update is done on a random batch of
the data, this technique is refereed as the Stochastic Gradient Descent (SGD). This
procedure is repeated until the equation 9.1.1 is minimized, the ANN learns fast if
its converges quickly to zero.

9.1.4 Deep neural network

From theorem 9.1.2, a single hidden layer ANN can approximate any continuous
function. This kind of ANN is usually referred as feed forward neural network.
We also notice that the architecture of the feed forward neural network is a very im-
portant challenge in Machine learning. The universal approximation theorem guar-
anties the existence of the the ANN which can approximate but does not provide
any methods neither an indication on how they ANN are constructed.

The input signals which connects to all the processing unit in the hidden layer and
each unit output the result after applying the activation function. There are several
activation function that could be used, for instance RELU, sigmoid, tanh but the
choice depends on the requirement of the problem. From the hidden layer, the sig-
nals are feed to the last layer and again output the result after applying an activation
function. For classification problem it is preferable to use the softmax.

On the other hand, there is no preference to easily decide the number of process-
ing unit in the hidden layer. However, to have a better approximation, there is an
exponential approximation bound with respect to the size of input given in [Bar93].
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This means that the number of the variables weight and bias which controls the er-
ror function (equation 9.1.1) is very large. To omit this we may break down this one
block of perceptron into many layers, this reduces the degree of freedom of the er-
ror and helps the neural network to learn correctly. The number of the new hidden
layer is referred as the depth of the ANN and a such ANNs are called Deep feed
forward neural network. This was first used in Hiton paper [SH08] and has been
proved that it has a good approximation of the desired function. In [Mon13], it is
estimated the number of the hidden layers (the depth of the ANN) with respect to
the input size although the better choice is still obtained via experimentation. This
new architecture is then used for machine learning problem and referred as Deep
Learning technique.
Deep neural network can be seen as a composition of function, i.e each output layer
become the input of the next layers, therefore the backpropagation algorithm can be
generalized.

9.1.5 Convolutional neural network

The seep neural network have an extensive applications area in Machine Learning,
one of its application is classification, in particular image recognition. The idea is
by extracting the features from the three layers RGB (Read, Green, Blue) pixels of an
image to predict its description. This technique has been an important subject as it
can be extended in many field, for instance the popular modern technique used in
image computer vision can be seen as an extension of a such techniques.
The convolution neural networks (CNN) is a class of deep neural networks. This
method is used in traditional image processing, signal processing, and is based on
the mathematical operation of convolution defined by

( f ∗ g)(t) =
∫ +∞

−∞
f (x)g(t− x)dx (9.1.2)

where f and g are function well defined on (−∞,+∞).
The application of this operation in signal processing is to minimize the noise on a
given signal, f represents the signal and g a probability distribution. Equation (9.1.2)
can be given in a discrete time.

( f ∗ g)[n] =
+∞

∑
m=−∞

f [m]g[n−m] (9.1.3)

This is often used in practice. For instance in image processing, represents f the
pixels images and g is the filter (kernel) to extract some particular features (edge,
etc). This can be defined for any dimensional data input f as the case for color RGB
images (which is 3D), the operation can be illustrated as in Figure 9.3.
Notice that in the 2D convolution in Figure 9.3, the dimension of the output is re-
duced. In fact, the dimension can be kept by using a zero-padded on the boundary
of the input depending on the shape of the kernel. This make sense in the operation
as for signal one can assume that it is zero at initial and at the end.
Figure 9.3 can be expressed as follows

(I ∗ K)[i, j] =
k−1

∑
r=0

k−1

∑
c=0

I[i + r, j + c]K[r, c] (9.1.4)
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FIGURE 9.3: 2D Convolution operation.

Inspiring from this operation, the use of discrete convolution in a neural network
was suggested in [Lec89]. By looking closely to the structure of the convolutional
layer we have the property of sharing weights, unlike the feed forward neural net-
work where each neuron has separate weight. This technique reduces the number
of parameters to be trained (space and time complexity). In practice, convolutional
layer is composed by the convolution operation, followed by a non-linear function
ReLU and a pooling operation (down sampling). The ReLU can be seen as a cancella-
tion of negative values over the output where the pooling is to reduce the dimension
since one usually uses it right before the fully connected layer.
There are few hyper-parameters that we have to provide to characterize the convo-
lutional layer, to control the shape of the output in function of the input:

• Depth : is the number of kernels we want to use in the convolutional layers.
One assume that each kernel extracts different features. For example, in image
processing it can be seen as an extraction of the edges shared into piece of
kernels. Referring to the feed forward neural network this is the activated
neurons by the input pixels.

• Stride : is the amount of step the kernel slides. In Figure 9.3, we have a stride
1.

• Zero-padding : is the number of padded zero to control the output size.

For an input of size W, kernel of size K of stride S and padding P, the dimension of
the output can be computed as

W − K + 2P
S

+ 1

In image processing, we are dealing with three layers pixels, say of shape Wi × Hi ×
Ci. Let K be the kernel of shape Kw×Kh× d, S and P are the stride and zero-padding.
The output shape is given by

W2 × H2 × C2
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where

W2 =
W1 − Kw + 2P

S
+ 1

H2 =
H1 − Kh + 2P

S
+ 1

C2 = d

Training a CNNs is tuning the kernel parameters, similar strategy as in a feed-
forward networks the backpropagation is used.

Depth separable convolution layers [KGC17]

We explore a specific type of convolutional layer that are often used to optimize the
operation on the neural network. The use of convolutional layers reduces the space
complexity with respect to the feed forward neural networks especially for large
dimensional input data. One can observe that the convolution operation is similar
to a tensor product, a sliding dot product.
Some applications of deep learning requires less operation, for example the inference
used in a mobile device, Inspired by the spatial separable convolution technique
used in image processing, that is a division of the kernel into two smaller kernels
of size. One obtain a computational complexity reduction but only applied when
the kernel can be factorized as in the case for color image processing. The depth
separable convolution layers is used when the input of the convolution has a depth
dimension. The operation treats the spatial and depth dimension of the inputs by
factorizing the normal convolutional layer into two convolution:

• depth-wise convolution: it can be seen as normal convolution but keeps the
depth of the input. Each kernel slides over one layer of the input.

• point-wise convolution: after the depth-wise convolution, we have a spatial
reduction while the depth is kept. We want to obtain the same number of out-
put as in the normal convolution operation (depth d of the kernel), we apply
the point-wise 1× 1 as much as the number of the kernels.

For instance, we illustrate this operation by considering an input image of shape
224× 224× 3. For a kernel of shape 3× 3× 3× 32, the normal convolution outputs
112× 112× 32 for stride 2.
For the depth separable convolution, we use a depth-wise convolution 3 × 3 × 1
within stride 2 to obtain 112× 112× 3, for an output which have the same dimension
as the normal convolution we use a point-wise convolution of shape 1× 1× 3× 32.

Remarks.

• The point-wise convolution is only relevant when the input have a third di-
mension (depth).

• The number of operation is indeed reduced in the depth separable convolu-
tion compared to the normal convolution. We can observe that in the above
example,

1. normal convolution: We have 32 kernels of size 3× 3× 3 that are applied
112× 112 times. The total operation is given by

32× 3× 3× 3× 112× 112 = 10838016
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2. depth- separable convolution: We have 3 of 3× 3× 1 depth-wise kernels
sliding on 112 × 112. The operation performed is equal to 3 × 3 × 3 ×
112 × 112. For the point-wise, we have 32 of 1 × 1 × 3 kernels which
moves over the 112× 112. We have an operation equals to 32× 1× 1×
3× 112× 112. The total operation is the sum of these two number, given
by

(3× 3 + 32)(3× 112× 112) = 1542912

The purpose of the CNNs is to reduce the number of trained parameters in the net-
works. This is often used when the dimension of the input is very large. The general
structure of CNNs can be seen as a sequence of convolutional layers and one dense
layer. The role of the sequence of convolutional layers is a coordinate transforma-
tion of the input of the fully connected layer at the end of the network. This can be
illustrated in Figure 9.4.

FIGURE 9.4: An general structure of a deep CNNs in image process-
ing.

9.2 Methodology description

In this section, we give a details of the steps and methodology we have followed
through this project.

9.2.1 Data preparation

We started by preparing the dataset for the training of the model.

• Data collection
For a given lists of monuments, we collect the pictures on the fields. We try to
get all the possible angles and access of the objects, using mobile phone camera
and a normal camera.
Once the pictures of each monuments are collected, we perform a modifica-
tion by hand, its aim is to let the model learn correctly on a difficult data (ex:
monument with other monuments in the background).
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• Data augmentation
All the pictures we have collected are from the accessible location, per each
classes we possessed approximately 15 or 25 pictures. In our experiment, we
estimated at least 500 pictures for each monuments are needed to train the
model (400 train, 100 validation). Of course, this problem can be handled dur-
ing the training. For instance Keras [C+15] offers a function that generate ran-
dom data during the training but we decided to do this separately. Indeed,
as the black-box generator performs a random generation so that we are not
sure if the data generated is not duplicated and may cause an overfitting. Also
as an experiment, we want to understand the type of data augmentation tech-
nique which is dedicated for our task. For this purpose, we use the following
operation for the data augmentation:

– Rotation (clockwise and counter-clockwise as we work on a small range
of angle).

– Crop (this is used by given an estimation of the area occupied by the mon-
uments in the pictures)

– Flip (top-bottom and left-right)

– Distortion (simple and Gaussian)

– Zoom

– Histogram equalization

– Invert

– Resize (here 224× 224)

Each of this operation is done randomly.

• Data cleaning
Before feeding the data to the training step we delete all the duplicated pic-
tures. After this we also need to control the number as we want that each
monument have the same amount of data.

9.2.2 Training the model

We have to choose the architecture of the network we are going to use. Our choice is
made experimentally. After several trials of the popular existing models we decided
to use the MobileNets [HZC+17] architecture. This model is developed for mobile
devices due to its fast characteristics and has a good accuracy.
The Mobilenets was developed by Google’s team to reduce the size of the trained
parameter in the convolutional layer, they introduce the use of depth separable con-
volution layers. Each of these layers is followed by a batch normalization suggested
in [IS15] to normalize the output from the separable convolution with respect the
online batch of data, before feeding into the non-linear transfer function ReLU6 (see
[Kri10]). And the pooling layer is applied only once before the dense layer.
The main purpose of Mobilenets is to give a trade off on the performance (accuracy)
and resources (latency), there is a parameter input α called depth multiplier that is
used to reduced the depth of the depth-wise convolution kernel. According to the
need of our model we choose α = 1.0. There are three versions of the MobileNets
characterized by the shape of the inputs Images, we use the 224 in our project. An
overview of this architecture is presented in the Table 9.1
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convolution type kernel shape input shape
normal 3× 3× 3× 32 224× 224× 3

depthwise 3× 3× 32 112× 112× 32
pointwise 1× 1× 32× 64 112× 112× 32
depthwise 3× 3× 64 112× 112× 64
pointwise 1× 1× 64× 128 56× 56× 64
depthwise 3× 3× 128 56× 56× 128
pointwise 1× 1× 128× 128 56× 56× 128
depthwise 3× 3× 128 56× 56× 128
pointwise 1× 1× 128× 256 28× 28× 128
depthwise 3× 3× 256 28× 28× 256
pointwise 1× 1× 256× 256 28× 28× 256
depthwise 3× 3× 256 28× 28× 256
pointwise 1× 1× 256× 512 14× 14× 256

5 ×depthwise 3× 3× 512 14× 14× 512
pointwise 1× 1× 512× 512 14× 14× 512

depthwise 3× 3× 512 14× 14× 512
pointwise 1× 1× 512× 1024 7× 7× 1024
depthwise 3× 3× 1024 7× 7× 1024
pointwise 1× 1× 1024× 1024 7× 7× 1024

averagePool2D 7× 7 7× 1024
fully connected 1024×N 1× 1× 1024

TABLE 9.1: MobileNet-224

9.3 Operations and tools

In this section, we give the description of the operations done and the tools we used.

9.3.1 Data preparation

The main procedure in the data preparation is the augmentation step since it needs
more resources than the other steps. We use Augmentor [BRH19], a Python library
which is easy to use and quite fast for our task. The profiling of the memory and
running time is given in Figure 9.5. This profile (Figure 9.5) was taken to generates

FIGURE 9.5: The memory size occupied by each class running in se-
rial in function of the time.
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2000 images per each classes running in serial, each run is processed on a 80 threads
CPU. One can observe that each run requires approximately 40GB of memory and
160 seconds to finish the task. For this example, we need around 2 hours for a 46
classes. The detection and cleaning of the duplicated images can be done very fast.

9.3.2 Training

In here, we used the known technique called Transfer Learning, this is a common
technique used in machine learning, which means that instead of training the model
from zero-knowledge of the dataset we can start the training with a weighted model.
That is we use the weighted MobileNets-1 implementation from Keras [C+15], since
the model has been used on the Imagenet2 database. The reason why this work is
that the input dataset have the same features RGB pixels.
We use the network architecture presented in Table 9.1. We initialize the weights of
the fully connected layer by random uniform that are regularized by the L2 func-
tion. The categorical cross entropy loss function is used for the Stochastic Gradient
Descent back-propagation optimizer.
The training is performed on one Nvidia graphic card Tesla P 100 (Table A.1). The
time spent depends on the epochs numbers, batch size and number of classes. In our
experiment, we warp-up the network for 500 or 1000 epochs for two or more runs,
and start the fine-tuning on the weight of the model which have a good performance.

9.4 Convergence and accuracy

The principal task in debugging neural network model is the convergence of the er-
ror. There are two main issues, the underfitting and overfitting. Underfitting is easy
to observe since it shows a very week performance on the training data. From the
experimental point of view, the cause of this problem is that the model has a dif-
ficulty to learn from the training data and a trial with other model is the common
solution to overcome this issue. This is one of the reason why we have picked up
the MobileNets model.
On the other hand, the overfitting is difficult to detect. The model has very rich
performance on the training data but poor accuracy on the test data. To overcome
the overfitting, we provide good training data so that the model can learn their con-
ceptual feature. During the training an usual tools is to apply a random dropout
(turning off neurons) in the network.

On our dataset, we did a simple comparison by showing graphically the conver-
gence of the loss and accuracy for two weighted networks random uniform and
ImageNet. The purpose is to show the performance of the two techniques transfer
learning and zero-knowledge.
We can observe that the train accuracy overlap, which means that if we choose
the model from its accuracy then both are good. However, the loss of the zero-
knowledge model is trapped in a local minimum for both train and validation. This
model needs more effort for the fine tuning, time and training data.

In Figure 9.7, we have a convergence of the loss for 1000 epochs. The model was
trained for 32 hours on one GPU Tesla P100 (16 GB), the weight was initialized from
the ImageNet which has already trained on less classes for a different training data.

2http://image-net.org/

http://image-net.org/
http://image-net.org/
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FIGURE 9.6: Comparison between a warm-up 500 epochs of the net-
work initialized by the ImageNet and random weight.

The model performs well on a separate data test with a high accuracy 0.9988086 and
lower loss 0.013294586775122288.

For the model initialized by the random uniform weight, 2000 epochs of a fine-
tuning took around 63 hours on the same GPU as above. Evaluated on the same
data test as above, we obtain a score of 0.98757046 and loss of 0.06327599759058634,
we gain a reduction 0.02 of the loss in 2000 epochs. The convergence of the loss
function is shown in Figure 9.8. We can observe that the error is converging but very
slow.
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FIGURE 9.7: Convergence of the loos trained on 1000 epochs (Ima-
geNet weight).

FIGURE 9.8: Convergence of the loos trained on 2000 epochs (Ran-
dom weight).
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10. Summary and work in progress
In this part, we described the detail steps we followed by creating a machine learn-
ing model that can be used in mobile platform. The model is trained on architectural
images. The main purpose of this part is to give an overview of the experiment we
have done for this project.
A simple prototype Android application was developed to test the model. The full
application for iOS mobile is described in [Pal19].

This project was initiated for the site Foro Romano, historical monuments in Roma.
In this moment, we are working on the historical architecture for Torino. Also we
would like to extend the computer vision technique based on deep learning we have
used here, such as image segmentation. The model should be flexible in vary type
of inputs (pixels images, point clouds 3D, . . . ).
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Appendix A. Software tools

A.1 GPU programming

The Graphic Processing Unit (GPU) is a dedicated hardware to accelerate graphic
rendering. In 3D-graphic transformation (geometry operation) all the operations are
based on floating-point, vector and matrix manipulation. In modern graphic appli-
cations (gaming) these operations are a huge amount and require to be performed
very fast (w.r.t to real time), although they have the property of being able to be
processed independently. The GPU is responsible of the processing and the visual
output in real time. For this reason it needs to have a very good resolution and
framework.
At the same time, the improvement of the algorithm architecture, especially in term
of parallel computing evolved very fast. Many scientific computational problems
meets their limit of time and memory. The GPU was suggested to handle this prob-
lem, for instance, for real time simulations, solving numerical calculation, machine
learning and so on. Unlike the CPU (Central Unit Processor), the GPU possesses a
huge number of transistors (so many threads). This is of purpose of doing the same
operations in parallel. This architecture is referred to the SIMD (Single Instruction
Multiple Data) system.
In 2008, with the family Tesla Nvidia Graphic Card, the CUDA (Compute Unified
Device Architecture) has been introduced, a parallel computing platform and pro-
gramming model that makes using the GPU for general purpose computing simple
and elegant1. Precisely, this general purpose can be seen as, software to program
the GPU and allow an efficient and scalable execution on it. In term of hardware,
it exploits the parallelism of the GPU via its number of multiprocessors endowed
with cores and memory hierarchy. At a low level programming language, CUDA is
an extension of C language. The program is written (in C with some specification)
in on single threads but it executes automatically in bunch of threads in parallel. In
CUDA, the keyword Device is to refer to the GPU where Host for the CPU.

A.1.1 Host and Device

The CUDA-C principle is to allow heterogeneous computing between host and de-
vice. In general, the code contains the host instruction that control and access the
device. The device instruction consists of a specifics function for the device and a
global codes that are basically a set of routing supported by the two sides.
The device can be seen as a co-processor of of the host, CUDA controls each part of
the code that are executed on the GPU and CPU, as well as the access of the data.
This later is important since both sides have a different storage which are referred
respectively the system memory (ex DDR) and video memory (ex GDDR) for the
host and device respectively. The two memory is relied by a PCI bus.
CUDA-C comes with a compiler called NVCC, it is an extension of gcc which can be
used to compile a host code. The control of the access of the device and its memory
is made automatically once the CUDA code is written carefully by the programmer.
This is the principal routine seen in a cuda code, the allocation of memory and the
transfer of data between device and host.

1https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2

https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2/
https://blogs.nvidia.com/blog/2012/09/10/what-is-cuda-2
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A.1.2 CUDA hardware design

To have a better code in a low level language, coder should understand the design
of the hardware. Especially for CUDA hardware model, the study of the design is
very important, it has a huge impact on the execution time and the correctness of
the result. We give a a rough description of a general concept on CUDA hardware
model, further information can be seen in [Wil13].

GPU hardware

a GPU consists of bunch of multiprocessors (referred as SMs), each of SM contains
many cores (the stream processors), the total number of cores in a GPU is the number
of multiprocessor multiply by the number of stream processors. Each multiproces-
sor has shared and register memory, the cache (read-only) memory which are the
constant and the (traditional graphic) texture memory. Due to the improvement of
the new generation of GPU, with the number of transistors increments, the introduc-
tion of the L1 improved to L2 cache memory, the width of the address bus that can
fit up to 64-bit precision, floating (double) point operation (fp64), the warp sched-
uler. There are features that are supported (cuda program and graphic application)
by each GPU, this is mainly depend on the architecture of device, it is referred as
cuda compute capability. Notices that, of course, more performance consumes more
energy power.
For example, the following tabular presents the specification of the Tesla P1002

Architecture NVIDIA Pascal (Tesla P100)
Time frame 2016
Transistors 15300 Million
Compute capability 6.0
Multiprocessors 56
cores per multiprocessor 64
Total cores 3584
fp64 cores 1792
Clock frequency 1491 MHz (1.48 GHz)
Double precision performance 4.7 TFLOPS
Video memory (bandwidth) 16G (720 GB/s)
Memory technology 4096-bit HBM2
Register per multiprocessor 65536
Shared memory per multiprocessor 64 KB
L2 cache 4096 KB

TABLE A.1: GPU Tesla P100.

Memory architecture

In CUDA, there are essential keywords Grid which is composed by some number of
Block, and each Block is set of threads. Warp is a set of 32 threads, the granularity
of the scheduler for issuing threads to the execution units. In CUDA programm,
each multiprocessor (hardware) processes batches of blocks (software) in serial, that

2https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf

https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
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means one SMs may handle many blocks. During execution, all the blocks executed
by each multiprocessor called the actives blocks hence the actives threads. The di-
mension of the block and grid is explicitly given by the programmer, this can be 1D,
2D or 3D. An illustration of a 2D grid of blocks is presented in Figure A.1

Grid
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Block
(1,0)

Block
(0,1)
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Thread
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(3,3)

Thread
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(2,0)

Thread
(3,0)

FIGURE A.1: A grid of threads example in 2D (grid and blocks).

The GPU hardware is occupied by a video memory which is referred to the global
memory, all multiprocessors have an access on it. The constant memory is a cache
memory which can be accessed by all multiprocessors. The texture memory, the
traditional cache memory of the graphic card (used to render image). The shared
memory is private for each multiprocessor as well as the register memory for each
processor. The L1 cache memory is the cache memory used for each multiprocessor
in parallel with the shared memory, the L2 cache for all the multiprocessor in paral-
lel with the global memory.
From the hardware design we have two classes of memory all within the graphic
card, the on-chip and the attached on the GPU chip. Shared and register memory
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are on-chip while the constant, texture within the global memory (un-cached) are
outside of the graphic card. The L1 and L2 cached memory are used to accesses
global memory so that they are not accessible from the cuda code. This architecture
is shown in Figure A.2.

SM N

SM 2

  SM 1

Proc 1 Proc 2 Proc m

register register register

Shared memory

Constant memory (cached)

Texture memory (cached)

Global memory

L1 cache

L2 cache

FIGURE A.2: GPU memory architecture.

The global memory is a huge amount of memory, used to be faster than the system
memory of CPU but much slower (500 cycles) than the shared memory, L1 and L2
memory are small amount of cache memory used to accesses element on the global
memory, their location is different. The texture and constant memory are some small
amount of memory on the global memory but cached, the shared memory is a pri-
vate memory for each Multiprocessor (SM) and the register is private for each pro-
cessor. The velocity of the memory is with respect to its location, close to processor
fast to access.
In the cuda code, one multiprocessor can handle more than one block, the shared
memory is divided between those blocks, so one often consider that each block have
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its private part of shared memory, as well as the register for thread since one proces-
sor may have more than one threads.

A.1.3 Cuda

The function that run on the GPU is referred as kernel, the code is implemented
as one process but executed in a block of threads simultaneously. Simultaneously
is not always the case, because it runs simultaneously on the active thread. There
is a scheduler which schedule the execution of some bunch of threads. In fact, the
kernel is launched on the grid, each SM execute the block that belongs to it, could be
concurrent or sequential without synchronization. The scheduler execute a number
of threads multiple of the dimension of the warp, as we have mentioned, that block
may contain more than one warp. One of the reason we use dimension of block as
multiple of the dimension of warp is to avoid the waste of threads. The block can be
synchronized explicitly from the code. The kernel has further arguments referred as
the execution configuration: the dimension of the block, grid and the shared memory
allocated dynamically.

Optimization

For each kernel function, the dimension of grid and block is given. This number
must be optimized with respect to the features of the device to obtain a better perfor-
mance. There are two main components that needs to be taken care when optimizing
cuda codes, the memory usage and thread occupancy. Regarding to the different hi-
erarchies of the memory on the GPU, each has its number of cycles for accessing its
address. For the thread occupancy, since each SMs is composed by more than or
equal to one warps, each SM launched is equivalent to a multiple of warp-size acti-
vated threads. For example, if the dimension of the block-threads is not multiple of
the warp-size then the offset threads are wasted, which imply the warp occupancy is
weak. This is not the only issue that limit the potential occupancy of a CUDA code,
there are the registers memory, shared memory and the block size.
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