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Introduction

The Standard Model (SM) is the modern theory that best describes the
fundamental interactions among particles. So far the SM has allowed physi-
cists to obtain outstanding agreement between experimental data and the-
oretical predictions, the latest example being the discovery at ATLAS and
CMS of a new particle [1, 2], which turned out to be the Higgs Boson [3].

Despite the success in describing fundamental particle physics, we know
that the SM is not the final theory of interactions, but just a low-energy
approximation of a more general theory. The fact that the SM doesn’t
provide a description of gravitational interaction is probably the most evident
of its limits. Other problems in the SM are the hierarchy problem, the lack
of a mechanism explaining the bariogenesis, the hierarchy of quark masses,
the absence of a candidate for dark matter, the dark energy and finally its
failure to precisely unify the strong and the electroweak forces together.

Many of these problems involve flavor physics, i.e. the branch of physics
that studies the transitions between quarks of different flavors. It is thus
of crucial importance to determine the fundamental parameters of flavor
physics, which in the quark sector are the quark masses and the CKM ma-
trix elements. These quantities, being quarks confined into the hadrons, are
non directly measurable in the experiments. On the other hand, being funda-
mental free parameters of the SM, they aren’t even predictable from theory
alone. Therefore, a combination of experimental and theoretical inputs is
required in order to determine these parameters.

The experimental inputs needed to calculate the elements of the CKM
matrix are the decay rates of leptonic and semileptonic decays of pseudoscalar
mesons. The theoretical expressions for these decay rates in fact depend on
hadronic quantities and on the CKM matrix element. In the case of leptonic
decays the relevant hadronic quantity is the decay constant, while in the
case of semileptonic decay it is the vector form factor at zero 4-momentum
transfer. Calculating numerically with lattice QCD (LQCD) these hadronic
quantities and comparing with the experimental measurements allows us to
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determine the CKM matrix elements. In the determination of these quanti-
ties, LQCD plays a primary role, being a non-perturbative approach based
only on first principles. It consists in simulating QCD itself by formulating
the action on a discrete and finite Euclidean space-time which allows for a
numerical computation of the path integrals via Montecarlo methods.

In this thesis we present an accurate determination of the CKM matrix
elements Vus, Vcd and Vcs, through the leptonic and semileptonic decays of K
and D mesons. To this purpose we used the gauge configurations produced
by the European Twisted Mass (ETM) Collaboration with four flavors of
dynamical quarks (Nf = 2 + 1 + 1), which include in the sea, besides the
light up and down quarks, assumed to be degenerate, also the strange and
the charm quarks with masses close to their physical values. These gauge
configurations were generated using the Iwasaki gauge action and the Twisted
Mass action at maximal twist. We considered three different values of the
lattice spacing and pion masses as low as ' 210MeV. The plan of this thesis
is as follows:

• in Chapter 1 we will provide a brief description of the CKM matrix
and of the pseudoscalar mesons decays studied to extract Vus, Vcd and
Vcs.

• In Chapter 2 we will provide a brief description of Lattice QCD, and
then we will describe the Twisted Mass action used in this work.

• In Chapter 3 we will descibe the first part of the original work of
this thesis, namely the computation of leptonic decay constants f+

K ,
fDs and fDs/fD. Lattice data of decay constants was extracted from
the two-point correlation functions of the mesons at rest. We then
performed a chiral and continuum extrapolation of fK , fDs/MDs and
(fDs/fD)/(fK/fπ) to get to the physical point. By combining these
results we found

fK+ = 154.4(2.0) MeV,

fK+/fπ+ = 1.184(16),

fDs = 247.2(4.1) MeV,

fDs/fD = 1.192(22),

fD = 207.4(3.8) MeV.

This quantities are then combined with the experimental results for
K and D mesons leptonic decays in order to calculate |Vus|, |Vcd| and
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|Vcs|. For the CKM matrix elements we obtain

|Vus|lep = 0.2271(31),

|Vcd|lep = 0.2221(67),

|Vcs|lep = 1.014(24).

• In Chapter 4 we will descibe the second part of the original work of
this thesis, namely the computation of semileptonic decay form factors
of K and D mesons as functions of the 4-momentum transfer q2. The
main novelty of the analysis is the fact that we didn’t limit ourselves to
study the vector form factor at zero 4-momentum transfer, i.e. f+(0),
instead we managed to study the whole dependence on q2 of both f+

and f0 for all the decays we studied. Lattice data of the form factors
was extracted from a combination of three-point correlation functions
of the vector and scalar currents in the case of the K`3 decay, while we
used only the vector current in the case of D → π`ν and D → K`ν
decays. We then performed global fits of the form factors, analyzing
their dependence on the lattice spacing, the light quark mass and the
4-momentum transfer in order to have a determination at the physical
point of the form factors throughout the physical cinematical range
accessible in experiments. Specifically, at q2 = 0 we found the following
results:

f+(0)(K→π) = 0.9684(66),

f+(0)(D→π) = 0.610(23),

f+(0)(D→K) = 0.747(22).

(1)

This quantities are then combined with the experimental results for K
and D mesons semileptonic decays in order to calculate |Vus|, |Vcd| and
|Vcs|, for which we found

|Vus|semilep = 0.2234(16),

|Vcd|semilep = 0.2336(93),

|Vcs|semilep = 0.975(29).

(2)

• In the conclusive chapter we will summarize our work and present some
future perspectives.
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Chapter 1

The CKM matrix and how to
calculate its elements

The Cabibbo Kobayashi Maskawa Matrix

In this section we will describe the CKM matrix, and explain why it plays
a crucial role in flavor physics.

In the Standard Model, we can easily see the necessity of the CKMmatrix
by studying the Lagrangian terms of the interaction between the Higgs field
and the quark fields (expressed as interaction eigenstates):

LY = −λijd Q̄iLφd
j
R − λiju Q̄iLφ̄u

j
R + h.c. (1.1)

where QiL represents the left-handed up-down quark doublet for a given gen-
eration, uiR and diR are respectively the up and down right-handed spinors,
λu and λd are the Yukawa couplings and φ is the higgs doublet, which in the
unitary gauge is of the form

φ(x) =
1√
2

(
0

v + h(x)

)
, (1.2)

where v is the vacuum expectation value of the field and h(x) is the field
responsible for the excitation corresponding to the physical Higgs boson. The
complex-valued matrices λu and λd are not necessarily hermitian and i, j =
1, 2, 3 are generation indices; unless one don’t ask for a flavor conserving
symmetry, the interactions with Higgs field are flavor changing.

It is always possible to diagonalize λu and λd by means of a redefinition
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2 The CKM matrix and how to calculate its elements

of the quark fields: a generic, complex valued matrix can be rewritten as

λu = UuDuW
†
u,

λu = UdDdW
†
d ,

(1.3)

where the matrices D are diagonal with positive eigenvalues while U and
W are unitary matrices. By rescaling the left-handed and the right-handed
quark fields with the relation

uiL → U iju u
j
L

diL → U ijd d
j
L

uiR →W ij
u u

j
R

diR →W ij
d d

j
R

(1.4)

the Yukawa lagrangian becomes

L(q)
Y = −mi

dd̄
i
Ld

i
R

(
1 +

h

v

)
−mi

uū
i
Lu

i
R

(
1 +

h

v

)
, (1.5)

where
mi
u,d =

1√
2
Dii
u,dv. (1.6)

Proceeding this way, we have diagonalized the mass matrix in flavor space,
i.e. the rescaled quark fields represent the mass eigenstates.

It is then interesting to see how the charged current changes under the
rescaling of the quark fields,

Jµ† =
1√
2
ūiLγ

µdiL →
1√
2
ūiLγ

µV ij
CKMd

j
L, (1.7)

where VCKM is the Cabibbo-Kobayashi-Maskawa (CKM) [4, 5] flavor mixing
matrix, defined as

VCKM = U †uUd. (1.8)

This matrix connects the interaction eigenstates (d′, s′, b′) with the mass
eigenstates (d, s, b): d′

s′

b′

 =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 d
s
b

 (1.9)
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Therefore, the mass eigenstates are different from the interaction ones and
the charged current interaction mixes different flavors with weight Vij in
the mass eigenstates basis. It is worthwhile to underline that within the
Standard Model the only flavor changing mechanism is represented by this
matrix and that the VCKM unitarity guarantees that there are no flavor
changing neutral currents (FCNC) to first order in the weak interactions.
The suppression of FCNC at higher orders, the so called GIM mechanism
[6], is also a consequence of the unitarity of VCKM and well represents what
has been experimentally observed in nature.

In the case of 3 quark generations the CKM matrix is a 3 × 3 complex-
valued matrix. Unitarity constraints and the possibility of arbitrarily choos-
ing the quark fields phases allow us to remove many degrees of fredoom.
Thus, we only need four real numbers, three angles and one phase, to de-
scribe the matrix. Once the number of independent physical parameters is
known, one can introduce different equivalent parametrizations for that ma-
trix. Each one of these parametrizations can be written as a product of three
matrices. The most standard choice is the one which writes the matrix as
follows:

VCKM =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 ,

(1.10)
which leads to

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12c23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c13c23

 ,

(1.11)
where sij = sinθij , cij = cosθij (θ12 being the Cabibbo angle) and δ is the
phase. It’s important to emphasize that if δ = 0 the matrix becomes real and
there is no CP violation in the quark sector (besides the possible tiny strong
CP violation). Another interesting feature to notice is that CP violation is
possible only in the case of three or more generations of quarks. In the old
Cabibbo version of the theory, which involved only the first two generations
of quarks, the mixing was a real rotation in flavor space and no CP violation
was allowed. Moreover in order for CP violation to occur it is necessary that
up-like and down-like quark masses are different because if this is not the
case, by means of suitable unitary transformation, one could redefine the
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Figure 1.1: In this figure we show the hierarchy of charged currents flavor
mixing transitions

quark fields in order to simplify the CP violating phase. It can be shown, in
fact, that the necessary condition for having CP violation is

(m2
t −m2

c)(m
2
t −m2

u)(m2
u −m2

c)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
d −m2

s)× JCP 6= 0,
(1.12)

where JCP is the Jarlskog parameter [7, 8]

JCP = |Im(VijVklV
∗
ilV
∗
jk)|, (i 6= k, j 6= l), (1.13)

which provides a quantitative measurement of the amount of violation. As
one can clearly see the amount of CP violation can be traced back to the
quark mass hierarchy problem: fermion masses are in fact free parameters
in the Standard Model.

The weak interaction mixes flavors according to a specific hierarchy: the
diagonal elements of the CKM matrix describe transitions within the same
generation and are bigger (∼ O(1)) than off diagonal elements (from ∼
O(10−3) to ∼ O(10−1) ), which represent transitions between generations.
This can be visually represented as in fig. (1.1) where transitions within
the same generation are represented with bold black lines, while transitions
between different generations are represented with dashed and dotted lines of
different colors. This hierarchy in the CKM matrix can be seen more clearly
in the Wolfenstein parametrization [9], which can be obtained by making the
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substitutions

s12 = λ, s23 = Aλ2, s13e
−iδ = Aλ3(ρ− iη), (1.14)

and expanding in povers of λ, thus obtaining

VCKM =

 1− 1
2λ

2 λ Aλ3(ρ− iη)
−λ 1− 1

2λ
2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.15)

As we already noted, the CKM matrix is unitary, i.e. it satisfies the
relation

V †CKMVCKM = VCKMV
†
CKM = 1. (1.16)

If expressed in terms of matrix elements, eq. (1.16) consists of nine rela-
tions, six of orthogonality and three of normalization. The former can be
represented as six triangles in a complex plane, all having the same area
A∆ = JCP /2; using Wolfenstein parametrization for the CKM elements, it
can be realized that only the triangles coming from the orthogonality of the
first and third row and first and third column have sides of the same order
of magnitude, O(λ3); the two relations are

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0.

(1.17)

Actually, eqs. (1.17) are equivalent at order O(λ3), which can be easily veri-
fied by substituting the expressions of the matrix elements in the Wolfenstein
parametrization. Therefore at this order one has only one independent tri-
angle and we will choose in the following the first one from the relations in
eq. (1.17), which is known as the unitary triangle of CKM matrix. It is also
possible to define the barred parameters (ρ̄, η̄) [?] in the following way

ρ+ iη =

√
1−A2λ4

1− λ2

ρ̄+ iη̄

1−A2λ4(ρ̄+ iη̄)
, (1.18)

which represent the coordinates in the complex plane of the triangle apex.
The associated triangle is shown in fig. (1.2), where sides and angles are
defined as

α = φ2 = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
(1.19)
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Figure 1.2: The unitary triangle

β = φ1 = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
(1.20)

γ = φ3 = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
(1.21)

Rb =
|VudV ∗ub|
|VcdV ∗cb|

'
(

1− λ2

2

)
1

λ

∣∣∣∣VubVcb

∣∣∣∣ (1.22)

Rt =
|VtdV ∗tb|
|VcdV ∗cb|

' 1

λ

∣∣∣∣VtdVcb
∣∣∣∣ (1.23)

Leptonic decays of pseudoscalar mesons

Charged mesons can decay leptonically, i.e. into a charged lepton (anti-
lepton) and the corresponding anti-neutrino (neutrino). In fig. (1.3) we show
the Feynman diagram describing the process in which a generic pseudoscalar
meson P decays into a lepton `+ and a neutrino ν`. Experiments can measure
the decay rate, which is related to the product of the relevant CKM matrix
element and a strong interaction parameter related to the overlap of the
quark and antiquark wave-functions in the meson, called the decay constant.
Let us consider the leptonic decay of a meson P ; to lowest order in the
electroweak interactions, we can write the decay rate as

Γ(P → `ν) =
G2
F

8π
f2
Pm

2
`MP

(
1− m2

`

M2
P

)
|Vq1q2 |2 (1.24)
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P
W+

νℓ

ℓ+

Figure 1.3: An example of a typical leptonic decay P → `+ν` in the Standard
Model

Here MP is the P mesons mass, m` is the lepton mass, Vq1q2 is the CKM
matrix element between the valence quarks q1 and q2 in the P meson, and
GF is the Fermi coupling constant. The parameter fP is the decay constant,
proportional to the matrix element of the axial current between the one-P -
meson state and the vacuum,

ifP qµ = 〈0|Aµ(0)|P (q)〉 . (1.25)

The decay P → `ν starts with a spin-0 meson, and ends up with a left-handed
neutrino or right-handed antineutrino. By angular momentum conservation,
the `+(`−) must then also be left-handed (right-handed) if we neglect the
small neutrino mass. In the m` = 0 limit, the decay is forbidden, and can
only occur as a result of the finite ` mass. This helicity suppression is the
origin of the m2

` dependence of the decay width.
Measurements of purely leptonic decay branching fractions and lifetimes

allow an experimental determination of the product |Vq1q2 |fP . If the CKM
element is known from other measurements, then fP can be measured. If,
on the other hand, the CKM element is not known, a theoretical input for
fP allows a determination of the CKM element. As Vud is quite accurately
measured in super allowed β decays [10], measuremets of Γ(π+ → µ+νµ)
yeld a determination of fπ, which has been used to set the scale in the
lattice calculation presented in this thesis.

Semileptonic decays of pseudoscalar mesons

Semileptonic decays are processes in which the final state is composed by
leptons and hadrons. A tipical semileptonic process involving a pseudoscalar
meson P is the one in which it decays into a lighter meson P ′, a lepton (anti-
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P P ′

ℓ+

ν

W+

q q′

Figure 1.4: An example of semileptonic decay of a pseudoscalar meson P →
P ′`+ν`

lepton) and an anti-neutrino (neutrino). In fig. (1.4) we show the Feynman
diagram of the process P → P ′`+ν`. In this case the situation is more
complicated with respect to the leptonic case, because of the composition of
the final state. The Feynman amplitude for the process at lowest order in
the weak interactions can be written as

A(P → P ′`−ν̄`) = −GF√
2
V ∗q′q

〈
`−ν̄`|ν̄`γµ(1− γ5)`|0

〉 〈
P ′|q̄γµ(1− γ5)q′|P

〉
(1.26)

where Vq′q represents the CKM matrix element corresponding to the two
quarks involved in the transition. Limiting our attention to the case in
which the JP of the initial state is the same of the final state, i.e. a 0− → 0−

decay, the hadronic matrix element receives only the vector contribution and
we obtain

A(P → P ′`−ν̄`) = −GF√
2
V ∗q′qV

µLµ, (1.27)

where
V µ =

〈
P ′(k)|q̄γµq′|P (p)

〉
, (1.28)

Lµ =
〈
`ν̄`|¯̀γµ(1− γ5)ν`|0

〉
. (1.29)

The current describing the transition between the two mesons is a 4-vector.
Thus it can be parametrized in terms of the only two independent 4-vectors
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we have, i.e. the 4-momenta of the two mesons:〈
P ′(k) |Vµ|P (p)

〉
= (kµ + pµ)f+(q2) + (pµ − kµ)f−(q2), (1.30)

where f+ is the vector form factor. It’s also possible to define a scalar form
factor as

f0(q2) = f+(q2) +
q2

M2
P −M2

P ′
f−(q2), (1.31)

and qµ = kµ − pµ is the 4-momentum transfer.
The exclusive semileptonic decay rate of a process P → P ′`ν` can be

written as

Γ(P → P ′`ν`) =
G2
FM

5
P

192π3
C2
K |Vqq′ |2f+(0)2IP`, (1.32)

where CK is a Clebsch-Gordan coefficient, f+(0) is the vector form factor
calculated at zero 4-momentum transfer and IP` is a phase-space integral
that is sensitive to the momentum dependence of the form factors. If this
integral is measured in the experiment, the knowledge of f+(0) allows us to
determine the corresponding CKM matrix element.
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Chapter 2

Lattice QCD

2.1 Lattice regularization

In 1974 Kenneth Wilson proposed a formulation of QCD on a lattice
[11]. This intuition paved the way for non perturbative numerical calculation
in particle physics. The QCD formulation that is useful to regularize on
the lattice is based on path integrals, which allow us to identify correlation
functions and physical observables with infinite-dimensional integrals. In
lattice QCD space-time is discretized so that path integrals become finite-
dimensional, and thus computable numerically. The presence of a lattice
represents a regularization of QCD, i.e. it automatically gets rid of the
divergencies which are so rampant in QFT. Moreover, performing a rotation
from a Minkowskian space-time to a Euclidean one transforms Feynman
integrals into something that looks exactly like a partition function of a
statistical mechanics system.

Lattice QCD simulations are performed at finite values of the lattice
spacing a and of the Volume V . Thus any quantity calculated on the lattice
must be studied in the limits a → 0 and V → ∞ so that it represents
the corresponding physical quantity in a continuum space-time. Practically
speaking, simulations are performed at several values of a and V in order to
extrapolate to the continuum limit and to evaluate finite size effects through
the use of Chiral Perturbation Theory.

2.1.1 Gauge action

In order to discretize the gauge action it’s necessary to introduce an
object called Link :

Uµ(n) = Un,n+µ = eig0aAµ(n), (2.1)

11



12 Lattice QCD

where n represents the lattice point considered, µ is the direction of the link
and g0 is the bare coupling of our theory. The quantity Aµ(n) can be written
as

Aµ(n) =
∑
c

AcµTc, (2.2)

where c is the color index and Tc are the SU(3) generators in the adjoint
representation. Links can then be used to define the gauge field action in a
theory with a SU(N) simmetry:

S
(SU(N))
G = β

∑
P

[
1− 1

2N
Tr(UP + U †P )

]
, (2.3)

where N is the number of colors considered, β = 2N
g20

and P is the index
corresponding to a specific plaquette, which is defined as

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) = eig0a
2Fµν(n) +O(a3), (2.4)

with µ < ν and

Fµν(n) =
1

a
[(Aν(n +µ̂)−Aν(n))− (Aµ(n+ ν̂)−Aµ(n))]

+ ig0(a)[A(n+ µ), A(n+ ν)].
(2.5)

It’s very easy to verify that eq. (2.3) reduces to the usual continuum gauge
action in the limit a→ 0

UP + U †P = eig0a
2Fµν(n) + e−ig0a

2Fµν(n) ' 1 + ig0a
2Fµν(n)

− 1

2
g2

0a
4(Fµν(n))2 + 1− ig0a

2Fµν(n)− 1

2
g2

0a
4(Fµν(n))2

(2.6)

Eq. (2.3) then becomes

S
(SU(N))
G =

2N

g2
0

∑
P

[
1− 1

2N
Tr(2− g2

0a
4(Fµν(n))2)

]
=

a4
∑
P

Tr((Fµν(n))2),
(2.7)

and if we substitute the sum with an integral sign we obtain

S
(SU(N))
G =

∫
d4x

1

2
Tr(Fµν(x)Fµν(x)) +O(a2), (2.8)
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where we have a factor 1/2 by summing on all the values µ and ν.

2.1.2 Fermionic action

For a massive fermionic field of spin 1/2 the naive discretization of the
action is of the form

a4
∑

n,m,α,β

ψ̄α(n)Kαβψβ(m), (2.9)

where the n,m indices represent the lattice points, α, β are the spinorial
indices of the fields and a represents the lattice spacing. The quantity Kαβ

is defined as

Kαβ(n,m) =
∑
µ

1

2a
(γµ)αβ [δm,n+µ̂ − δm,n−µ̂] +m0δmnδαβ, (2.10)

wherem0 is the bare fermion mass and the Euclidean γµ matrix has the form

γ0 = γm0 γi = −iγmi , (2.11)

where the apex m indicates the γ matrices of a Minkowskian space. This
action allows us to calculate the fermionic two-point correlation function〈

ψα(n)ψ̄β(m)
〉

= K−1
αβ (n,m). (2.12)

This expression, although it reduces to the usual fermionic action in the
continuum limit, has a problem. In fact, the discretized expression of the
inverse of the fermionic propagator in the momentum space has the form

S−1(p) = m0 +
i

a
γµsin(pµa), (2.13)

which suffers of what is usually called the doubling problem: in eq. (2.13)
there are 16 regions in which 1

asin(pµa) remains finite when a → 0. Of all
these regions, 15 exist only because of the lattice, and have no corresponding
physical particle in the continuum. Wilson proposed a way to solve the
doubling problem [11], which consists in adding a term to expression (2.13)

SWF = a4
∑

n,m,α,β

ψ̄α(n)KW
αβψβ(m), (2.14)
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where

K
(W )
αβ (n,m) =

(
m0 +

4r

a

)
δnmδαβ−

1

2a

∑
µ

[(r − γµ)αβδm,n+µ̂ + (r + γµ)αβδm,n−µ̂] ,

(2.15)
the quantity r is called Wilson parameter. It can be easily verified that in
the case r = 0 we obtain eq. (2.9). This action solves the doubling problem
because if we write the inverse of the fermionic propagator in the momentum
space we obtain

S−1(p) = MP +
i

a
γµsin(pµa), (2.16)

where
MP = m0 +

2r

a
sin(

pµa

2
). (2.17)

What happens now is that for any finite value of r the mass of the 15 addi-
tional particles, i.e. the doublers, gets larger and larger with the decreasing
of the lattice spacing, and eventually decouples from the system in the con-
tinuum. In particular, setting r = 1, in a typical lattice simulation with an
inverse lattice spacing of roughly 2GeV the 15 doublers have a mass of at
least 4GeV, so their presence can be safely ignored in the computation.

Even though eq. (2.14) solves the doubling problem, it explicitly breaks
chiral simmetry that is restored once r = 0 and m0 = 0. This behavior is
actually not specific of the Wilson action, but comes from a general property
of QCD, expressed by the No-Go Nielsen and Ninomiya theorem [12], which
states that it is impossible to define a discretization of QCD simultaneously
free from the fermion doubling problem which reproduces the correct chiral
limit when the mass parameter m is set to zero.

Because of the chiral simmetry breaking, the quark field renormalization
is not only multiplicative, but it has the form

mR = mqZm, (2.18)

where mR is the renormalized quark mass and

mq = m0 −mcr, (2.19)

where mcr represents the parameter called critical mass.

Just like in continuum QFT, to make the fermionic action gauge invari-
ant it’s necessary to include in the action the interaction between fermions
and gauge bosons. Gauge transformations on the lattice are defined in the
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following way
ψ(n)→ G(n)ψ(n), (2.20)

ψ̄(n)→ ψ̄(n)G−1(n), (2.21)

Uµ(n)→ G(n)Uµ(n)G−1(n+ µ̂). (2.22)

Once gauge fields are included in the fermionic action, eq. (2.14) becomes

S
(W )
F = a4

(
m0 +

4r

a

)∑
n

ψ̄(n)ψ(n)− a3

2

∑
n,µ

[ψ̄(n)(r − γµ)Un,n+µψ(n+ µ)

+ ψ̄(n+ µ)(r + γµ)U †n,n+µψ(n)].

(2.23)

Through some manipulations this expression can be written as

SWF =
a3

2κ

∑
n,m

ψ̄(n)K̃nm[U ]ψ(m), (2.24)

where κ is called the hopping parameter

κ =
1

8r + 2m0a
, (2.25)

and K̃nm is

K̃nm = δnm − κ
∑
µ

[
(r − γµ)Uµ(n)δm,n+µ̂ + (r + γµ)U †µ(n− µ̂)δm,n−µ̂

]
.

(2.26)

2.1.3 Quenched approximation and dynamical fermions

Let us consider a gauge theory with Wilson fermions. We can compute
the expectation value of a physical observable as

〈F 〉 =

∫
dUdψdψ̄e−SQCDF [U,ψ, ψ̄]∫

dUdψdψ̄e−SQCD
= Z−1

∫
dUdψdψ̄e−SQCDF [U,ψ, ψ̄],

(2.27)
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where SQCD is the total action:

SQCD = SWF + S
(SU(3))
G =

= a4
∑

n,m,α,β

ψ̄α(n)KW
αβψβ(m) + β

∑
P

[
1− 1

2N
Tr(UP + U †P )

]
.

(2.28)

By integrating over the fermionic Grassmann variables we obtain∫
dψdψ̄e−S

W
F = det(KW ) = det(K), (2.29)

∫
dψdψ̄ψ(x1)ψ̄(x2)e−S

W
F = det(KW )(KW )−1

x1x2 = det(K)Sx1x2 , (2.30)

where Sx1x2 represents the fermionic propagator between the points x1 and
x2.

Let us then assume that the quantity F is of the form

F = ψx1ψ̄y1ψx2ψ̄y2 ...ψxnψ̄ynA[U ]. (2.31)

We can then use the properties (2.29) and (2.30) of fermionic integrals to
write eq. (2.27) as

〈F 〉 = Z−1

∫
dUe−SeffA[U ]εz1z2...zny1y2...ynSz1x1Sz2x2 ...Sznxn , (2.32)

where εz1z2...zny1y2...ynSz1x1 ...Sznxn represents the sum over all possible combinations
of fermionic propagators (with the proper sign due to the anticommuting
properties of the fermionic fields) and Seff is the effective action

Seff = SWF − log(det(K)). (2.33)

It’s possible to demonstrate that the term det(K) is the one generating
fermionic loops. Specifically it’s the exponential of the sum over n of the di-
agrams representing a fermionic loop with n gauge propagators connected to
it. Up to a decade ago the available computing power didn’t allow us to com-
pute the fermionic determinant in the simulations, therefore old calculations
were performed in the quenched approximation, i.e. by approximating

det(K) = constant, (2.34)

which corresponds physically to neglect vacuum polarization effects. Today
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it has become possible to consider the contribution of the fermionic determi-
nant. A simulation performed with a given numberNf of dynamical fermions
is called unquenched.

2.1.4 Monte Carlo Simulations

As said before, space-time discretization makes path integrals finite-
dimensional and thus numerically computable. The problem with this idea is
that the number of integrations that one should perform is simply enormous.
Let us consider the expectation value of the operator O [U ]:

〈O〉 =

∫
dUO[U ]e−S[U ]∫
dUe−S[U ]

. (2.35)

Using a 104 space-time lattice, the number of link variables is approximately
4× 104. For the case of SU(3), each of these link variables is a function of 8
real parameters; hence there are 320000 integrations to be done. If we wanted
a rough estimate and use, for example, only ten points for evaluating each
integral, the multiple integral would be approximated by a sum of 10320000

terms.
It is thus clear the necessity to use the so called importance sampling

procedure, i.e. a method that samples the gauge configurations with the
proper weight in the integral. The choice of these configurations is done by
Monte Carlo simulations: given the initial state of a system, pseudo-random
modifications to the link variables are performed so that the probability of
obtaining a configuration C is

p(C) ∝ e−S(C), (2.36)

as required by eq. (2.35). The most simple algorithm to do so is called Heat
bath, which consists in substituting the value of every link variable with a
pseudo-random one, thus obtaining a new configuration. The probability for
a link to have a value x is proportional to the Boltzmann factor containing
S(x), i.e. the action calculated in the configuration in which only the given
link changed its value to x and all the others didn’t change.

The Heat Bath algorithm is an example of Markov Chain, i.e. a chain of
events in which the probability of obtaining configuration C only depends
on the previous configuration C ′ and doesn’t depend on the history of the
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system. This allows us to write the relation

e−S(C) =
∑
C′

P (C ′ → C)e−S(C′), (2.37)

where P (C ′ → C) is the probability of getting to configuration C from
configuration C ′. Moreover, if a chain of events satisfies the relation of
detailed balance

p(C)P (C ′ → C) = p(C ′)P (C → C ′), (2.38)

then it’s a Markov Chain. When an algorithm generating a Markov Chain is
applied to an ensemble, the result is always closer to the equilibrium state.
The important feature of Markov Chains is that for N enough large, where
N is the number of the elements of the chain, it is possible to approximate
eq. (2.35) with a finite sum

〈O〉 =
1

N

N∑
n=1

O[Un], (2.39)

with an uncertainty O(1/
√
N), where Un represents the gauge configuration

of the n−th element of the Markov chain.

2.1.5 Hybrid Monte Carlo

The Hybrid Monte Carlo algorithm is used to compute the fermionic
determinant. The main idea of this algorithm is the following

• We pass from a configuration C to a new one, C ′, with a certain prob-
ability P (C → C ′), through a procedure that satisfies the detailed
balance condition.

• We accept the new configuration, or reject it, going back to the previous
configuration, according to an acceptance probability

PA(C → C ′) = min{1, p(C ′)P (C ′ → C)/p(C)P (C → C ′)}. (2.40)

The passage from a configuration to another one is performed by introducing
conjugate momenta of U fields, called π, which follow a gaussian distribution.
The next step is to make the system evolve in a deterministic way through
the hamiltonian

H(φ, π) =
1

2
π2 + SG, (2.41)
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for a certain amount of time, and the resulting configuration is accepted or
rejected according to eq. (2.40).

If we perform an unquenched simulation with Nf dynamical flavors the
fermionic determinant is of the form

[det(K)]Nf . (2.42)

It’s easy to demonstrate that det(K) = det(K†) > 0, and that K satisfies
the relation

det(K) =
√
det(Q) Q = K†K. (2.43)

It is thus possible to write the determinant as an integral on scalar variables

[det(Q)]Nf/2 = [det(Q−1)]−Nf/2 =

∫
dφdφ∗e−Nf

∑
n,m φ∗nQ

−1
n,mφm , (2.44)

where n,m are the lattice points we’re considering. The φ fields are called
pseudofermions, they follow Bose-Einstein statistics but they have color and
Dirac indexes. In eq. (2.44) enters the quantity Q−1 = [K†K]−1, so it’s nec-
essary to calculate the inverse of the Dirac matrix. This makes unquenched
simulations computationally more expensive compared to quenched ones.

2.2 Improvement

In lattice QCD any physical observable has a dependence on the lattice
spacing a, i.e. if we consider the expectation value of an operator 〈O〉 we
can write it as

〈O〉Latt = 〈O〉continuum +O(a) + ... (2.45)

where 〈O〉Latt represents the expectation value calculated on the lattice,
〈O〉continuum is its continuum counterpart and the last term on the r.h.s. of
eq. (2.45) are discretization effects. The latter, depending on the quantity
and on the action, can be as high as 20−30%. In order to decrease discretiza-
tion effects it’s possible to use a procedure called improvement proposed by
Symanzik [13], which consists in adding to the action and to the operators
counterterms, aimed to cancel discretization effects up to some power of the
lattice spacing. The coefficients of these counterterms are not known a pri-
ori, but have to be calculated either in perturbation theory or with some
non-perturbative approach. Under specific conditions it’s possible to obtain
automatic improvement, which gives automatically O(a2) discretization ef-
fects without the need of additional counterterms in the action or in the
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fields.

As far as regards the work treated in this thesis, in order to obtain
automatic improvement in a theory with massive fermions we used the action
called Twisted Mass (with only one tuned parameter) [14], which consists in
adding to the lagrangian a mass term of the form

iµqχ̄γ5τ
3χ, (2.46)

where τ3 is the third Pauli matrix, µq is the quantity called Twisted Mass
and χ and χ̄ are fermionic fields in a basis which is commonly called twisted
basis.

2.2.1 Symanzik procedure

For small enough values of the lattice spacing it’s possible to write the
lattice action as in an effective theory:

Seff = S0 + aS1 + a2S2 + ... (2.47)

where every term in the expansion satisfies the theory simmetries on the
lattice. The term S0 represents the continuum action, while the other terms
are written as

Sk =

∫
d4yLk(y), (2.48)

where Lk(y) is a linear combination of operators of dimension 4 + k. The
dependence on the lattice spacing is not only explicit in eq. (2.47), but there
is a dependence also in the local operators entering the correlation functions
of interest. Let us consider a gauge invariant field φ(x), which comprises both
fermion and gluon fields; we can write the renormalized n-points correlation
function as

G(x1, ...xn) = Znφ 〈φ(x1).......φ(xn)〉 , (2.49)

which has a finite continuum limit once the renormalization constant is
choosen correctly and if

x1 6= x2 6= ... 6= xn. (2.50)

The renormalized field Zφφ = Φ can be also represented in terms of the
expression

Φeff (x) = Φ0 + aΦ1(x) + a2Φ2(x) + ... (2.51)
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where, if Φ0 has dimension d, the generic term Φk is an operator of dimension
d+ k. We can thus write eq. (2.49) at O(a) in the following way:

G(x1, ...xn) = 〈Φ0(x1)...Φ0(xn)〉0 − a
∫
d4y 〈Φ0(x1)...Φ0(xn)L1(y)〉0 +

+a
n∑
k=1

〈Φ0 (x1)...Φ1(xk)...Φ0(xn)〉0 ,

(2.52)

where the index 0 indicates the expectation value computed using the action
S0 of the continuum limit. The second term in the r.h.s. comes from the
corrections to the action, is of O(a) and can generate divergent contact
terms when y = xk. It’s thus necessary to define a subtraction prescription.
The way in which this subtraction is implemented is not important because
different choices correpond to different redefinitions of the field Φ. Other
dependences on a can arise from the field Φ1(x), which is a linear combination
of basis fields. While the other fields are not a dependent, the coefficients
can depend on the lattice spacing. In perturbation theory these coefficiencies
are polynomials function of ln a.

2.2.2 Twisted Mass

The twisted mass action in the continuum is of the form

SF [χ, χ̄,G] =

∫
d4xχ̄(γµDµ +mq + iµqγ5τ

3)χ, (2.53)

where Dµ is the covariant derivative relative to a specific gauge field G and
χ is a degenerate quark doublet in the twisted basis. We can define the polar
mass M and write the mass term of the action as

mq + iµqγ5τ
3 = Meiαγ5τ

3
, (2.54)

M =
√
m2
q + µ2

q . (2.55)

In the continuum case, it’s easy to go from the twisted mass action to the
canonical one through the transformation

ψ = eiωγ5τ
3/2χ, (2.56)

ψ̄ = χ̄eiωγ5τ
3/2, (2.57)
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where ψ and ψ̄ represent the fields in the standard physical basis. By making
this substitution in eq. (2.53) the mass term becomes

Mei(α−ω)γ5τ3 . (2.58)

Moreover, if we impose the condition ω = α, which is equivalent to

tanω = µq/mq, (2.59)

we obtain the usual continuum fermionic action

SF [ψ, ψ̄,G] =

∫
d4xψ̄(γµDµ +M)ψ. (2.60)

The possibility of passing from eq. (2.53) to (2.60) with a chiral transfor-
mation indicates that physically the two actions are the same. This is made
possible by the fact that the action has a chiral simmetry when the mass goes
to zero; if we decide to use some kind of regularization that breaks chiral
simmetry, like Wilson fermions, the twisted mass term can’t be reabsorbed
and the ω angle parametrizes a family of inequivalent regularizations. We
will show that on the lattice, for a specific choice of the angle ω, it’s possible
to eliminate discretization effects up to O(a).

If we discretize eq. (2.53) we have Wilson twisted mass action of the
form

S
(Wtm)
F = a4

∑
n

χ̄(n)

(
m0 + iµqγ5τ

3 +
4r

a

)
χ(n)− a3

2

∑
n,µ

[χ̄(n)(r − γµ)Un,n+µχ(n+ µ)

+χ̄(n+ µ)(r + γµ)U †n,n+µχ(n)].

(2.61)

2.2.3 Automatic improvement

In this section we’ll discuss a fundamental property of the wilson twisted
mass action in the case of maximal twist, i.e. when ω = π

2 . From eq.
(2.59) we see that the maximal twist condition is equivalent to mq = 0. It
can be demonstrated that correlation functions of positive parity fields and
renormalizable in a multiplicative way don’t have any O(a) discretization
effects when calculated atmq = 0. Thus there is no need of any improvement
coefficient [15]. For this demonstration we can use a massless theory, i.e. with
m0 = mcr and µq = 0, in a finite volume, but it can be easily generalized
for the massive case in infinite volume. As in the Symanzik procedure, eq.
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(2.47) is true, where S0 is the continuum action

S0 =

∫
d4xχ̄(x) [γµDµ]χ(x). (2.62)

In applying the Symanzik procedure, it’s necessary to specify the O(a) cor-
rection to the effective action. Tipically, there is only one operator needed

L1 = c1O1, (2.63)

where
O1 = iχ̄σµνFµνχ, (2.64)

If we consider a generic renormalizable field that can be expanded as in eq.
(2.51), eq. (2.52) is valid.

For an operator expectation value to be different from zero it’s necessary
that the operator has the same simmetries of the action. The action (2.62)
has a simmetry with respect to the chiral transformation

R1,2
5 :

{
χ(x0,x)→ iγ5τ

1,2χ(x0,x)

χ̄(x0,x)→ χ̄(x0,x)iγ5τ
1,2

, (2.65)

while the O1 operator is odd with respect to this transformation. For this
reason the second term in the r.h.s. of eq. (2.52) is zero. To demonstrate
that also the last term of eq. (2.52) is zero we notice that the dimension
of Φ1 is one more of the one of operator Φ0. We can thus use the property
stating that if an operator like Φ1 has the same simmetries of Φ0 then it must
have opposite chirality. To show this we can then define the transformation

D :


Uµ(x)→ U †µ(−x− aµ̂)

χ(x)→ e3iπ/2χ(−x)

χ̄(x)→ χ̄(−x)e3iπ/2

(2.66)

so that the lattice action is invariant under R1,2
5 ×D. Φ0 is simmetric under

R1,2
5 so it must be simmetric under D too. When D acts on Φ1 the field

acquires an extra eiπ = −1 factor, so to have a non-zero expectation value it
must be odd under R1,2

5 . In other words Φ0 and Φ1 have opposite chirality
under R1,2

5 , which is a simmetry of the continuum action used to calculate
the expectation value. This implies that in eq. (2.51) there can’t be the Φ1

term. Thus we have demonstrated the presence of automatic improvement
in the case of maximal twist.
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2.2.4 Non-degenerate quarks

The Wilson twisted mass action can be extended to the case of non-
degenerate quarks, which is useful in the case of unquenched simulations
in which not only the u − d quarks are included in the sea (which can be
reasonably considered to be degenerate) but also the strange and charm
quarks, as in the case of the work presented in this dissertation. For non
degenerate quarks the action can be written as

Sh(Wtm) =
∑
n

χ̄h(n)a4

(
m0,h + iµσγ5τ

1 + µδτ
3 +

4r

a

)
χh(n)

−a
3

2

∑
n,µ

[χ̄h(n)(r − γµ)Un,n+µχh(n+ µ) + χ̄h(n+ µ)(r + γµ)U †n,n+µχh(n)],

(2.67)

where

χh =

(
χs
χc

)
, (2.68)

m0,h is the bare Wilson mass of the doublet, µσ is the twisted mass, this time
twisted in the τ1 direction, and µδ is a splitting term along the τ3 direction.
To get to the physical base from the twisted one we can use a transformation
similar to the one used in the degenerate case:

ψh = eiωhγ5τ
1/2χh, (2.69)

ψ̄h = χ̄he
iωhγ5τ

1/2. (2.70)

Once again, the maximal twist condition corresponds to ω = π
2 .

2.3 What to compute in Lattice QCD

The basic idea of Lattice QCD is to calculate correlation functions numer-
ically and to extract useful information from the behavior of these correlators
at large values of the euclidean time t. In this section we will shortly describe
how it’s possible to extract data from two-point and three-point correlation
functions.
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2.3.1 Two-point correlation functions

The euclidean two-point correlation function, for two generic operators
O1 and O2 can be written as

G(x) = G(~x, t) = 〈0|T{O1(x)O†2(0)} |0〉 , (2.71)

where T represents the time-ordered product. By choosing t > 0 and per-
forming the Fourier transform with respect to spatial coordinates we obtain

C(~p, t) =
1

L3

∑
~x

G(x)ei~p·~x =
1

L3

∑
~x

〈0|O1(x)O†2(0) |0〉 ei~p·~x, (2.72)

where we have a sum instead of an integral because of space-time discretiza-
tion. Let us then insert between O1 and O2 a complete set of covariantly
normalized energy eigenstates with definite momentum |n, ~pn〉

〈n, ~pn|m, ~pm〉 = 2Enδn,m, (2.73)∑
n,~pn

|n, ~pn〉
1

2En
〈n, ~pn| = 1. (2.74)

Eq. 2.72 thus becomes

C(~p, t) =
1

L3

∑
~x

∑
n,~pn

1

2En
〈0|O1(x) |n, ~pn〉 〈n, ~pn|O†2(0) |0〉 ei~p·~x. (2.75)

Thanks to translation properties of operators we can write

O1(x) = eHt+i~p·~xO1(0)e−Ht−i~p·~x, (2.76)

so that eq. 2.75 becomes

C(t) =
1

L3

∑
~x

∑
n,~pn

1

2En
〈0|O1(0) |n, ~pn〉 〈n, ~pn|O†2(0) |0〉 e−Ent−i(~pn−~p)·~x.

(2.77)
Moreover, given the identity

∑
~x e
−i(~pn−~p)·~x = L3δn,m we obtain

C(t) =
∑
n

〈0|O1(0) |n, ~p〉 〈n, ~p|O†2(0) |0〉
2En

e−Ent. (2.78)
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In the case of single particle states En can be written as

En =

√
m2
n + |~p|2. (2.79)

For large enough t values only the ground state contributes significally to
expression (2.78). Thus we obtain

C(t) ' 〈0|O1(0) |m0, ~p〉 〈m0, ~p|O†2(0) |0〉
2E0

e−E0t. (2.80)

Moreover, if T is the finite temporal size of the lattice eq. 2.80 should
be corrected consequently. By assuming periodic boundary conditions and
using the notation

√
ZO1 = 〈0|O1(0) |m0, ~p〉 and

√
ZO2 = 〈m0, ~p|O†2(0) |0〉

the previous relation becomes

C(t) '
√
ZO1ZO2

2E0

(
e−E0t + ηe−E0(T−t)

)
, (2.81)

where η is the eigenvalue of the two-point green function with respect to the
transformation t → T − t. In the specific case in which O1 = O2 = O eq.
(2.81) can be written as

C(t) ' ZO
E0

e−E0T/2cosh

[
E0

(
t− T

2

)]
. (2.82)

The simplest bilinear operators in the quark fields are of the form

OΓ(x) = q̄a1(x)Γqa2(x), (2.83)

where q̄a1 and qa2 represent fermionic quark fields, a is a color index which
is summed over, Γ is one of the 16 Dirac matrices and Dirac indices have
been omitted for the sake of simplicity. The choice of Γ determines the
eigenvalues of the mesonic operator with respect to spin J , parity P and
charge conjugation C (see table 2.1). Specifically, in this work we studied
pseudoscalar mesons, i.e. states corresponding to the Dirac matrices iγ5 or
γ5γ0.

An important quantity constructed in terms of the two-point function is
the so called effective mass.

meff (t) = ln

[
C(t)

C(t+ 1)

]
, (2.84)
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Matrix Γ JPC

1 0++

γ0 0+−

γ5γ0 0−+

iγ5 0−+

σoi 1−−

γk 1−−

γ5γk 1++

σik 1+−

Table 2.1: We show the JPC quantum numbers of the physical state corre-
sponding to the choice of Γ matrix in a bilinear quark operator.

This quantity, if studied for large values of time, reaches a plateaux in cor-
respondence of the mass of the ground state of the operator present in the
two-point function.

2.3.2 Three-point correlation functions

Another basic ingredient of Lattice QCD calculations are three-point
correlation functions. Studying the behavior of these function for large values
of the time t allows us to extract the matrix elements of currents connecting
two external states. Let us consider a three-point function in the Fouries
space

CBAΓ (t, ts; ~p, ~p′) =
1

L3

∑
~x, ~xs

〈0|B(xs)OΓ(x)A(0) |0〉 ei~ṗ~xs+i~p′̇~x (2.85)

where A and B are operators interpolating two hadrons A and B, and OΓ

is a generic operator. Following the same manipulation steps used for the
two-point function case we can insert the completeness relation twice

CBAΓ (t, ts; ~p, ~p′) =
1

L3

∑
~x, ~xs

∑
n,~pn

∑
n′,~p′n

〈
0|B(xs)|n′, ~p′n

〉 1

2En′

〈
n′, ~p′n|OΓ(x)|n, ~pn

〉
1

2En′
〈n, ~pn|A(0)|0〉 ei~ṗ~xs+i~p′̇~x

(2.86)
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Using again the translation law to shift the operators in the origin and the
Kronecker delta to eliminate the spatial volume integration we obtain

CBAΓ (t, ts; ~p, ~p′) =
∑
n,n′

√
ZA
√
ZB

4EnEn′
e−En′ (ts−t)e−Ent

〈
Bn′ , ~p|OΓ(0)|An, ~p+ ~p′

〉
,

(2.87)
where the An(Bn′) states belong to the subset of the states n(n′) which have
the right quantum numbers to interpolate the A(B) operator and ZA(B)

indicates the square modulus of the matrix elements

ZA = | 〈0|A(0)|An, ~pn〉 |2

ZB = | 〈0|A(0)|Bn′ , ~pn′〉 |2.
(2.88)

If we consider a time interval in which both t and ts − t are large enough
only the ground states of A and B will contribute to the sum. Thus we can
write the correlation function as

CBAΓ (t, ts; ~p, ~p′)
t→∞ (ts−t)→∞−−−−−−−−−−−→

√
ZA
√
ZBe

−EB(ts−t)e−EAt

4EAEB

〈
B, ~p|OΓ(0)|A, ~p+ ~p′

〉
.

(2.89)
It should be now clear that the general strategy is based on extracting,
from the corresponding two-point functions, the energies and the matrix
elements ZA and ZB and then, from the large time behavior of the three-
point correlator the relevant matrix element of the operator OΓ.

2.4 The non-perturbative renormalization method
RI-MOM

Lattice simulations makes it possible to use non-perturbative renormal-
ization procedures, which have the advantage of not having the uncertainty
induced by the truncation of the perturbative series. In this section we will
describe the RI-MOM renormalization method [16], the one used in this work
for the bilinear quark operators. This method consists in studying Green
functions of a given operator and in imposing that for a fixed value of the
external momenta p2 = µ2 and in a fixed (Landau) gauge, the renormalized
green function is equal to its tree level value. By choosing the renormaliza-
tion scale µ2 so that it lies in the perturbative regime , µ2 � Λ2

QCD, it’s
possible to connect the renormalization scheme imposed on the lattice with
other perturbative schemes such as MS. Moreover, in order to simultaneously
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avoid large cutoff effects the condition on the scale µ becomes

1

a
� µ� ΛQCD. (2.90)

Let us consider an operator of the form (2.83) and define the following Green
function in the continuum

GΓ(p) =

∫
d4xd4ye−ip(x−y)

〈
q̂(x)OΓ(0)ˆ̄q(y)

〉
, (2.91)

where q̂(x) and ˆ̄q(y) represent renormalized fields. The corresponding am-
putated green function is defined as

ΛΓ(p) = Ŝ(p)−1GΓ(p)Ŝ(p)−1, (2.92)

where Ŝ(p) is the renormalized fermionic propagator. The function ΛΓ(p) is
a matrix in Dirac and color spaces. To impose the renormalization condition
it’s useful to project it in the following way

ΩΓ(p) =
1

12
Tr [PΓΛΓ(p)] , (2.93)

where the trace is taken over Dirac and color indices and PΓ is a projector
chosen so that ΩΓ(p) = 1 at the tree level. The RI-MOM renormalization
scheme consists in imposing the condition

[ΩΓ(p)R]p2=µ2 =
1

Z−1
q
ZΓΩΓ(µ) = 1, (2.94)

which allows us to determine the renormalization constant ZΓ once the
fermionic field renormalization constant Zq is known. A possible way to
calculate Zq uses the quark propagator. The RI-MOM renormalization con-
dition on the propagator reads:

i

12
Tr

[
/pŜ(p)−1

p2

]
p2=µ2

= Z−1
q

i

12
Tr

[
/pS(p)−1

p2

]
p2=µ2

= 1, (2.95)

An alternative approach to compute non-perturbatively (some of) the lattice
renormalization constants is based on Ward identities
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2.5 Twisted boundary conditions

Tipically when one studies quantum field theory on a finite volume
chooses periodic boundary conditions in the spatial directions, i.e. the
fermionic field satisfies the relation

ψ(xi + L) = ψ(xi) i = 1, 2, 3... (2.96)

In this case, the allowed momenta of the field ψ are of the form

ki =
2π

L
ni, ni = 1, 2, 3... (2.97)

where L is the lattice size. For a lattice spacing a−1 = 2.3 GeV, as the
smallest one introduced in our simulation, and a lattice size L/a = 24 this
results in 2π/L = 0.6 GeV which is very restrictive, considering that we are
interested in simulating particles with momenta much smaller than that. In
particular, for physical observables that need to be studied as functions of
momenta, having the possibility of simulating an arbitrary value of momen-
tum is of crucial importance.

To cope with this problem one has to notice that physically there is no
reason for having single value fields. The only quantities that should be single
valued are the physical observables, and thus the action of our theory. For
this reason, we can define a quark field ψ̃ that satisfies boundary conditions
in the space directions like

ψ̃(xi + L) = Uiψ̃(xi) (2.98)

where Ui is a generic global transformation which is a simmetry of the action.
The most generic Ui is a diagonal transformation in the flavor space of the
form

Ui = e2πiΘi (2.99)

Thus the quark field satisfies twisted boundary conditions, i.e.

ψ̃(xi + L) = exp(2πiθi)ψ̃(xi), (2.100)

which in Fourier space is equivalent to impose

exp

[
i

(
ki −

2πθfi
L

)
L

]
= 1 ⇐⇒ ki =

2π

L
(θfi + ni) i = 1, 2, 3, ni ∈ Z

(2.101)
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When the quark field satisfies the twisted BCs (2.100), the corresponding
quark propagator S̃(x, 0) ≡ 〈ψ̃(x) ψ̃(0)〉 satisfies the standard Dirac equa-
tion but with different BCs. From a computational point of view it might be
convenient to work always with periodic BCs on the fields. Therefore, follow-
ing Refs. [17, 18], one can define a new quark field as ψ~θ(x) = e−2πi~θ·~x/Lψ̃(x),
which obviously satisfies periodic boundary conditions. In such a way the
new quark propagator S~θ(x, 0) ≡ 〈ψ~θ(x) ψ~θ(0)〉 satisfies the following equa-
tion ∑

y

D
~θ(x, y) S

~θ(y, 0) = δx,0 (2.102)

with a modified Dirac operator D~θ(x, y) but periodic BCs. The new Dirac
operator is related to the untwisted one by simply rephasing the gauge links

Uµ(x)→ U
~θ
µ(x) ≡ e2πiaθµ/L Uµ(x) (2.103)

with the four-vector θ given by (0, ~θ). Note that the plaquette Pµν(x) is left
invariant by the rephasing of the gauge links. In terms of S~θ(x, y), related
to the quark fields ψ~θ(x) with periodic BCs, the quark propagator S̃(x, y),
corresponding to the quark fields ψ̃(x) with twisted BCs, is simply given by

S̃(x, y) = e2πi~θ·(~x−~y)/L S
~θ(x, y) . (2.104)

2.6 Simulation details

In this section the simulation details will be discussed. We will start
presenting the action used in the simulation and then give some details on
the gauge ensembles considered in this analysis.

The work presented in this dissertation is based on the Nf = 2 + 1 +
1 gauge configurations generated by the ETM Collaboration [19] with the
action

S = Sg + Sltm + Shtm. (2.105)

The terms in the r.h.s. of eq. (2.105) represent respectively the Iwasaki
gluonic action [20], the Wilson twisted mass action at maximal twist for the
degenerate u, d doublet [14] and for the heavy doublet s, c [21]. The fermionic
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terms read

Sltm = a4
∑
x

ψ̄(x)

{
1

2

∑
µ

γµ(∇µ +∇∗µ)− iγ5τ
3

[
M0 −

a

2

∑
µ

∇µ∇∗µ

]
+ µl

}
ψ(x)

(2.106)

Shtm = a4
∑
x

ψ̄(x)

{
1

2

∑
µ

γµ(∇µ +∇∗µ)− iγ5τ
1

[
M0 −

a

2

∑
µ

∇µ∇∗µ

]
+ µσ + µδτ

3

}
ψ(x)

(2.107)
where ∇µ and ∇∗µ are nearest-neighbor forward and backward covariant
derivative, µl is the bare light quark mass and M0 is the untwisted bare
mass tuned to its critical valueMcr as discussed in [19] in order to guarantee
the automatic O(a) improvement at maximal twist [15, 22]. The parame-
ters µσ and µδ are related to the renormalized strange and charm sea quark
masses [22] via the relation

mc,s =
1

ZP

(
µσ ±

ZP
ZS

µδ

)
(2.108)

where ZP and ZS are respectively the pseudo-scalar and the scalar renor-
malization constants. The twisted-mass action (2.105) is known to lead to a
mixing in the strange and charm sectors [23]. In order to avoid the mixing of
K and D meson states in the correlation functions we adopted a non unitary
setup in which the valence quarks are simulated as Osterwalder-Seiler (OS)
fermions [24]. The action for each valence quark flavor qf (f = ll′, ss′, cc′)
reads as

SfOS = a4
∑
x

q̄f (x)

{
1

2

∑
µ

γµ(∇µ +∇∗µ)− iγ5rf

[
M0 −

a

2

∑
µ

∇µ∇∗µ

]
+ µf

}
qf (x).

(2.109)
Each valence doublet is mass-degenerate (µl = µl′ , µs = µs′ and µc = µc′),
and their Wilson parameters rf are always chosen such that the two valence
quarks in a PS meson have opposite r− values. This choice guarantees that
the squared PS meson mass, M2

PS , differs from its continuum counterpart
only by terms O(a2µ) [15].

2.7 Lattice setup used in this analysis

The details of our simulation are collected in Table 2.2, where the number
of gauge configurations correspond to a separation of 20 trajectories. At
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ensemble β V/a4 aµsea = aµ` aµσ aµδ Ncfg aµ
(local)
s aµ

(local)
c aµ

(smeared)
s aµ

(smeared)
c

A30.32 1.90 323 × 64 0.0030 0.15 0.19 150 0.0145, 0.1800,0.2200, 0.0180, 0.21256, 0.25000,
A40.32 0.0040 90 0.0185, 0.2600,0.3000 0.0220, 0.29404, 0.34583
A50.32 0.0050 150 0.0225 0.3600,0.4400 0.0260
A40.24 1.90 243 × 48 0.0040 0.15 0.19 150
A60.24 0.0060 150
A80.24 0.0080 150
A100.24 0.0100 150

B25.32 1.95 323 × 64 0.0025 0.135 0.170 150 0.0141 0.1750,0.2140 0.0155, 0.18705, 0.22000,
B35.32 0.0035 150 0.0180 0.2530,0.2920 0.0190, 0.25875, 0.30433
B55.32 0.0055 150 0.219 0.3510,0.4290 0.0225
B75.32 0.0075 75
B85.24 1.95 243 × 48 0.0085 0.135 0.170 150

D15.48 2.10 483 × 96 0.0015 0.12 0.1385 60 0.0118 0.1470,0.1795 0.0123, 0.14454, 0.17000,
D20.48 0.0020 90 0.0151 0.2120,0.2450 0.0150, 0.19995, 0.23517
D30.48 0.0030 90 0.0184 0.2945,0.3595 0.0177

Table 2.2: Values of the simulated sea and valence quark bare masses for each
ensemble used in this work. The apex local or smeared indicates the valence
strange and charm masses used respectively in the calculation of local and
smeared operators.

each lattice spacing different values of the light sea quark masses have been
simulated. In the light sector the valence quark mass and the sea quark
one are always equal. On the contrary the masses of the strange and charm
sea quarks are fixed at each β to a value chosen to be close to its physical
one [19]. Effects on observables induced by a possible mistuning of the sea
strange and charm quark masses will be estimated in sec. 3.1.1. To be able
to analyse mesons in the strange and charm sectors we have simulated three
values of the valence strange quark mass (which are reasonably close to the
physical value) and six values (4 values in the case of smeared operators)
of the valence heavy quark mass, which are needed for the interpolation in
the physical charm regime as well as to possibly extrapolate to the b-quark
sector. In particular, in the light sector the masses were simulated in a range
0.1mphys

s ≤ µl ≤ 0.5mphys
s , in the strange sector 0.7mphys

s ≤ µs ≤ 1.2mphys
s ,

while for the charm sector in 0.7mphys
c ≤ µc ≤ 1.2mphys

c . Quark propagators
with different valence masses are computed using the so-called multiple mass
solver method [25, 26], which allows to invert the Dirac operator for several
quark masses at a relatively low computational cost. The values of the lattice
spacing were calculated in [27] and are

a|β=1.90,1.95,2.10 = {0.0885(36), 0.0815(30), 0.0619(18)}fm. (2.110)
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ensemble β L(fm) Mπ(MeV) MπL

A30.32 1.90 2.84 245 3.53
A40.32 282 4.06
A50.32 314 4.53
A40.24 1.90 2.13 282 3.05
A60.24 344 3.71
A80.24 396 4.27
A100.24 443 4.78
B25.32 1.95 2.61 239 3.16
B35.32 281 3.72
B55.32 350 4.64
B75.32 408 5.41
B85.24 1.95 1.96 435 4.32
D15.48 2.10 2.97 211 3.19
D20.48 243 3.66
D30.48 296 4.46

Table 2.3: Values of the pion mass and of the quantity MπL for the various
gauge ensembles used in this work. The values ofMπ are already extrapolated
to the continuum and infinite volume limits.

Lattice volumes go from ' 2 to ' 3 fm. In table 2.3 we show the values of
the pion masses Mπ and of the quantity MπL, where the values of Mπ are
already extrapolated to the continuum and infinite volume limits.

The statistical accuracy of the correlators is significantly improved by
using the so-called “one-end” stochastic method, implemented in [28], which
includes spatial stochastic sources at single time slice chosen randomly. Sta-
tistical errors on the quantities directly extracted from the correlators are
evaluated using the jackknife procedure, while statistical errors on data ob-
tained from independent ensembles of gauge configurations, like the errors
of the fitting procedures, are evaluated using a bootstrap sampling in order
to take properly into account cross-correlations.The sampling structure will
be described in details in each section covering a specific analysis.

Once correctly sampled, the uncertainty on an observable was calculated
considering the results coming from a number of different analyses.

We assign to all these analyses the same weight and therefore we assume
that the observable x has a distribution f(x) given by f(x) = (1/N)

∑N
i=1 fi(x),

where N is the number of different analyses, fi(x) is the distribution pro-
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vided by the bootstrap sample of the i-th analysis characterized by central
value xi and standard deviation σi. Thus we estimate the central value and
the error for the observable x through the mean value and the standard
deviation of the distribution f(x), which are given by

x =
1

N

N∑
i=1

xi ,

σ2 =
1

N

N∑
i=1

σ2
i +

1

N

N∑
i=1

(xi − x)2 . (2.111)

The second term in the r.h.s. of Eq. (2.111), accounting for the spread among
the results of the different analyses, is one of the sources of systematic error
in the calculation.
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Chapter 3

Leptonic decay constants

In this chapter we present our determination of the decay constants
fK+ , fDs , fD and the ratios fK+/fπ+ and fDs/fD. This quantities are use-
ful because when combined with experimental data concerning the leptonic
decay rates of the K and D mesons they allows us to determine with good
accuracy the CKM matrix elements |Vus|, |Vcd| and |Vcs|. This analysis has
already been published in [29] .

3.1 Calculation of the kaon decay constant

The first step in the dermination of the kaon decay constant is the
extraction of the pseudoscalar meson mass MK and the matrix element
ZK = |〈K|uγ5s|0〉|2 from the two-point correlation function. At large time
distances the two point correlation function of the operator interpolating the
Kaon has the form

CK(t) −−−−−−−−−−−→
t�a, (T−t)�a

ZK
2MK

(
e−MKt + e−MK(T−t)

)
, (3.1)

so that the kaon mass and the matrix element ZK can be extracted from the
exponential fit given in the r.h.s. of Eq. (3.1). The time intervals [tmin, tmax]
adopted for the fit are the same used in our paper on the quark masses [27].
These intervals were determined by requiring that the changes in the meson
masses and decay constants due to a modification in the value of tmin by one
or two lattice units are well below the statistical uncertainty.

For maximally twisted fermions, the non-singlet axial Ward Identity al-
lows a determination of the kaon decay constant fK from the matrix element

37
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ZK without the need of any renormalization constant [15, 14], namely

afK = a(µ` + µs)

√
a4ZK

aMK sinh(aMK)
. (3.2)

The statistical uncertainty of the decay constant has been calculated
using a jackknife procedure with 15 samples. In order to properly take
into account the correlation with our results for the quark masses and the
lattice spacing we formed a bootstrap sampling of 100 measurements and
then associated it with each of the 8 analyses performed for the quark masses
following the same structure used in [27].

Specifically we have used the values of the RCs ZP corresponding to the
methods M1 and M2 and considered 4 different approaches in the analysis, so
that we end up with 8 analyses, which are referred to as analyses A1, B1, C1,
D1 and A2, B2, C2, D2, respectively. The 4 analyses for each determination
of RCs differ because of the use of either a chiral fit or a polynomial one, and
for the use of r0 or Mss (the mass of a pseudoscalar meson with two strange
valence quarks) as scaling variable.

The next step consisted in performing a small interpolation of lattice
data to the value of the strange quark mass, ms, given in ref. [27] for each
analysis and corresponding to the average value ms = 99.6(4.3) MeV. Then,
we analyzed the dependence of the kaon decay constant on the (renormalized)
light quark mass m` ≡ (aµ`)/(aZP ) and on the lattice spacing, using fitting
procedures based either on ChPT or on a polynomial expansion as in the
corresponding analysis of [27].

The first fit ansatz we used is the next-to-leading order (NLO) SU(2)
ChPT prediction for fK , including discretization and finite size effects. The
formula reads

fK = P1

(
1− 3

4
ξ` log ξ` + P2ξ` + P4a

2

)
·KFSE

f , (3.3)

where ξ` = 2Bm`/16π2f2, with B and f being the SU(2) low-energy con-
stants (LECs) entering the LO chiral Lagrangian, whose values have been
determined in [27]. The term proportional to a2 in Eq. (3.3) takes into ac-
count discretization effects. The factor KFSE

f represents the correction for
finite size effects (FSE) in the kaon decay constant, which are at most at the
level of 3%, and are well computed according to the formula by Colangelo,
Durr and Haefeli [30].

The second fit ansatz we used for the combined chiral and continuum



Calculation of the kaon decay constant 39

extrapolation is based on a polynomial expression of the form

fK = P ′1
(
1 + P ′2ξ` + P ′3ξ

2
` + P ′4a

2
)
·KFSE

f . (3.4)

The (combined) chiral and continuum extrapolation of fK is shown in
Figs. 3.1-3.2 in units of either r0 or the massMs′s′ of the fictitious PS meson
made of two strange-like valence quarks with mass fixed at r0ms′ = 0.22.
The impact of discretization effects using r0 as scaling variable is at the level
of ' 3%1, while the use of Ms′s′ , which is affected by cutoff effects similar
to the ones of the K-meson mass (without having however any significant
dependence on the light quark mass), reduces the lattice artefacts down to
' −1.5%.

We followed the same strategy adopted in [27] to identify the various
contributions to the systematic error. The sources are the choice of using
either r0 or Ms′s′ as scaling variable (labelled as Disc in the error budget),
the use of a chiral or polynomial fit to extrapolate to the physical light quark
mass mu/d (labelled as Chiral) and the difference between the two methods
M1 and M2 for computing the RCs ZP (labelled as ZP ). As for the FSE
we compared the results obtained by applying the correction with those ob-
tained without correcting for FSE. Finally, the error on our determination
of the strange quark mass, as well as of the other input parameters in the
fit, has been included in the (stat+fit) error, which includes also the statis-
tical uncertainty and the error associated with the fitting procedure (i.e. the
amplification of the pure statistical error due to the chiral and continuum
extrapolation).

Notice in Figs. 3.1-3.2 that after taking the continuum limit the kaon
decay constant has been extrapolated to two different values of the light
quark mass, namely the isospin symmetric, average up/down quark mass
mud = 3.70(17) MeV and the up quark mass mu = 2.36(24) MeV [27]. These
two values of fK have been used to evaluate the isospin breaking effect, in-
duced by the differencemu 6= md. This effect will be described and evaluated
in sec. 3.1.2.

In the isospin symmetric limit we get for fK the value

fK = 155.0 (1.4)stat+fit(0.4)Chiral(1.1)Disc(0.1)ZP (0.4)FSE MeV

= 155.0 (1.9) MeV , (3.5)

which can be compared with the FLAG averages [31]: fK = 158.1(2.5) MeV

1The impact of discretization effects is quantified here by the distance between the
data at the finest lattice spacing and the continuum limit curve.



40 Leptonic decay constants

10 20 30 40 50
m

l
(MeV)

0,3

0,35

0,4

0,45

f K
r 0

β=1.90 V/a
4
=32

3
x64

β=1.90 V/a
4
=24

3
x48

β=1.95 V/a
4
=32

3
x64

β=1.95 V/a
4
=24

3
x48

β=2.10 V/a
4
=48

3
x96

Continuum Limit

10 20 30 40 50
m

l
(MeV)

0,2

0,22

0,24

0,26

0,28

f K
/M

s´
s´ β=1.90 V/a

4
=32

3
x64

β=1.90 V/a
4
=24

3
x48

β=1.95 V/a
4
=32

3
x64

β=1.95 V/a
4
=24

3
x48

β=2.10 V/a
4
=48

3
x96

Continuum Limit

Figure 3.1: Chiral and continuum extrapolation of fKr0 (left) and fK/Ms′s′

(right) based on the NLO ChPT fit of Eq. (3.3). Lattice data have been
corrected for FSE following Ref. [30]. The green diamond represents the
continuum limit evaluated at the average up/down quark mass mud =
3.70(17) MeV, while the open diamond corresponds to the up-quark mass
mu = 2.36(24) MeV [27].

10 20 30 40 50
m

l
(MeV)

0,3

0,35

0,4

0,45

f K
r 0

β=1.90 V/a
4
=32

3
x64

β=1.90 V/a
4
=24

3
x48

β=1.95 V/a
4
=32

3
x64

β=1.95 V/a
4
=24

3
x48

β=2.10 V/a
4
=48

3
x96

Continuum Limit

10 20 30 40 50
m

l
(MeV)

0,2

0,22

0,24

0,26

0,28

f K
/M

s´
s´ β=1.90 V/a

4
=32

3
x64

β=1.90 V/a
4
=24

3
x48

β=1.95 V/a
4
=32

3
x64

β=1.95 V/a
4
=24

3
x48

β=2.10 V/a
4
=48

3
x96

Continuum Limit

Figure 3.2: The same as in Fig. 3.1, but using for the chiral and continuum
extrapolation the polynomial fit of Eq. (3.4).



Calculation of the kaon decay constant 41

at Nf = 2 from Ref. [32] and fK = 156.3(0.9) MeV at Nf = 2 + 1 from
Refs. [33, 34, 35]. Dividing the result (3.5) by the experimental value of the
pion decay constant, fπ+ = 130.41(20) MeV [36], which has been used as
input to set the lattice scale [27], we get for the ratio fK/fπ the value

fK/fπ = 1.188 (11)stat+fit(4)Chiral(9)Disc(1)ZP (4)FSE(2)fπ+

= 1.188 (15) . (3.6)

3.1.1 Mistuning of the strange and charm sea quark masses

In Ref. [27] we calculated the strange and charm sea quark masses cor-
responding to the bare masses adopted for generating the ETM gauge en-
sembles at the three values of the lattice spacing. This was done by com-
paring data obtained using the OS and the unitary setups for the valence
quarks. For the strange sea quark mass msea

s we got the values msea
s =

{99.2 (3.5), 88.3 (3.8), 106.4 (4.6)} MeV at β = {1.90, 1.95, 2.10} re-
spectively, which differ from the determination of the physical strange quark
mass, ms = 99.6(4.3) MeV, by ≈ 10% at most, with the largest difference
occurring at β = 1.95.

The mistuning between the msea
s and ms is a source of systematic effect

in possibly any observable. To estimate the effect of the mistuning of the
strange sea quark mass on fK we used the partially quenched SU(3) ChPT
predictions at NLO developed in Refs. [37]-[38] for arbitrary values of sea
and valence quark masses. In this way one obtains

∆fK ≡ fK(m`,ms;m
sea
s )− fK(m`,ms;ms)

=
2

f0

{
4Lr4(µ) (χseas − χs)−

1

12
A(χseaη )

(χs − χ`)2(χseaη − χseas )

(χseaη − χs)2(χseaη − χ`)
− 3

8
A(χη)

− 1

12
A(χs)

(χseas − χ`)(χs − χseaη )− (χs − χ`)(χs − χseas )

(χs − χseaη )2
+

1

4
A(χs)

+
1

4

[
A

(
χ` + χseas

2

)
−A

(
χ` + χs

2

)
+A

(
χs + χseas

2

)
−A(χs)

]
− 1

12

∂A(χs)

∂χs

(χs − χ`)(χs − χseas )

χs − χseaη

}
, (3.7)
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where

χ` ≡ 2B0m` , χs ≡ 2B0ms , χη ≡
1

3
(χ` + 2χs) ,

χseas ≡ 2B0m
sea
s , χseaη ≡ 1

3
(χ` + 2χseas ) ,

A(χ) ≡ − χ

16π2
log
(
χ

µ2

)
(3.8)

and B0 and f0 are the SU(3) LECs at LO, while Lr4(µ) is a NLO LEC
evaluated at the renormalization scale µ. Taking the values B0/f0 = 19 (2)
and Lr4(µ) = 0.04 (14) · 10−3 at µ = Mρ = 0.770 GeV from Ref. [31], the
correction (3.7) is found to be below the 0.4% level at our simulated light-
quark masses and decreases toward the physical point. We checked that by
applying the correction (3.7) to the lattice data the changes observed in the
predictions for fK at the physical point are smaller than 0.3 MeV.

In a similar way the charm sea quark mass msea
c has been determined in

Ref. [27], obtaining the valuesmsea
c = {1.21(5), 1.21(5), 1.38(4)}GeV at β =

{1.90, 1.95, 2.10}. These values should be compared with the determination
of the physical charm quark massmc = 1.176 (39) GeV. It follows that, while
there is a good agreement at β = 1.90 and 1.95, a ≈ 18% mistuning is present
at β = 2.10. Since scaling distortions are not visible in our data, we expect
that in the continuum limit the mistuning of the charm sea quark mass has a
negligible effect compared to the one of the strange sea quark and, therefore,
it does not affect our determination of decay constants in a significant way.

3.1.2 Isospin breaking effect on the kaon decay constant

In this Section we discuss the estimate of the isospin breaking (IB) effects
on the charged kaon decay constant fK+ . As is known, IB effects are gen-
erated by the up and down quark electric charges and by the up and down
quark mass difference. While in the case of hadron masses both QED and
QCD IB effects have been determined using a variety of approaches on the
lattice, the situation for the decay constant is different. Indeed it is not even
possible to give a physical definition of the decay constant in the presence of
QED interactions [39]. The corresponding matrix element is both infrared
divergent and (QED) gauge dependent. QED effects on the decay rate of
a charged pseudoscalar meson have been only evaluated so far relying on
ChPT and model-dependent approximations. A promising approach for a
lattice determination of QED corrections to generic hadronic processes has
recently proposed in Ref. [40].
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In what follows we limit ourselves to the IB effect on fK+ due to the up
and down quark mass difference in pure QCD, i.e. switching off the QED
interactions.

Let us consider the dependence of the decay constant fK+ on the sea
u- and d-quark masses, msea

u and msea
d , and on the valence u-quark mass,

mval
u . For the sake of simplicity we will not indicate the dependence on the

strange and charm quark masses. At leading order in the mass differences
(msea

u − mud), (msea
d − mud) and (mval

u − mud), where mud is the isospin
symmetric, average up/down quark mass, one has

fK+ = fK(msea
u ,msea

d ;mval
u ) = fK(mud,mud;mud) +

[
∂fK
∂msea

u

]
mud

(msea
u −mud)

+

[
∂fK
∂msea

d

]
mud

(msea
d −mud) +

[
∂fK
∂mval

u

]
mud

(mval
u −mud) + ... , (3.9)

where all derivatives are evaluated at the isospin symmetric point msea
u =

msea
d = mval

u = mud and the ellipsis represents terms of higher order. Since
msea
u +msea

d = 2mud and [∂fK/∂m
sea
u ]mud = [∂fK/∂m

sea
d ]mud , it follows

fK+ − fK =

[
∂fK
∂mval

u

]
mud

(mval
u −mud) + ... , (3.10)

which means that the leading IB correction to fK is obtained from the partial
derivative of the decay constant with respect to the valence light-quark mass.

The IB slope
[
∂fK/∂m

val
u

]
mud

can be determined with high precision
using the method of Refs. [41, 42], which is based on the insertion of the
isovector scalar density in the correlators of the isospin symmetric theory.
This calculation is in progress and will be presented in a future publication.

For the time being we derive an estimate of the partial derivative (3.10)
following two methods:

• using partially quenched SU(3) ChPT developed in Refs. [37]-[38]

• by studying numerically in the lattice simulation the dependence of
the decay constant fK on the light-quark mass.

The first method relies on partially quenched SU(3) ChPT, which predicts
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at NLO [37]-[38][
∂fK
∂mval

u

]
mud

=
4B0

f0

{
2Lr5(µ)− 1

128π2

[
1 + 2log

(
2B0

mud

µ2

)
+

+ log
(
B0
ms +mud

µ2

)
+ log

(
2ms +mud

3mud

)]}
(3.11)

Using the values B0/f0 = 19 (2) and Lr5(µ) = 0.84 (38) · 10−3 at µ = Mρ =
0.770 GeV from Ref. [31], as well as the values of mud and ms determined
in Ref. [27], the partial derivative of fK with respect to the valence light-
quark mass is estimated to be equal to 0.37(7) in the MS(2 GeV) scheme.
Combined with the determination of mu −mud from [27]. This leads to

fK+ − fK = −0.49 (13) MeV , (3.12)

where the error does not include any estimate of the impact of ChPT orders
higher than the NLO one.

In the second method we use our non-perturbative results for fK at
m` = mu and at m` = mud, presented in Figs. 3.1-3.2. In our simulations,
however, the sea and valence light-quark masses are taken to be degenerate
and therefore the difference between the two results for fK at m` = mu and
at m` = mud does not provide directly an estimate for (fK+ − fK). Rather
we have

fK+ − fK = fK(mu,mu;mu)− fK(mud,mud;mud) + ∆fK (mu −mud) + ... ,
(3.13)

where the ellipsis stands for higher order terms and the correction ∆fK is
given by

∆fK =

[
∂fK(msea

` ,msea
` ;mval

` )

∂mval
`

− dfK(m`,m`;m`)

dm`

]
mval` =msea` =m`=mud

= −
[
∂fK(msea

` ,msea
` ;mval

` )

∂msea
`

]
mval` =msea` =mud

. (3.14)

We estimate the derivative of the decay constant with respect to the sea light-
quark mass using again the prediction of partially quenched SU(3) ChPT at
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NLO [37]-[38], which gives

∆fK =
4B0

f0

{
−8Lr4(µ) +

1

64π2

[
3 + log

(
2B0

mud

µ2

)
+ log

(
B0
ms +mud

µ2

)
− 1

2

ms + 2mud

ms −mud
log
(

2ms +mud

3mud

)]}
(3.15)

Using the values B0/f0 = 19 (2) and Lr4(µ) = 0.04 (14) · 10−3 at µ = Mρ =
0.770 GeV, the derivative ∆fK in the MS(2 GeV) scheme is estimated to be
equal to ∆fK = −0.38(10), which leads to ∆fK (mu−mud) = 0.51(17) MeV.

From the lattice data (see Figs. 3.1-3.2) we find fK(mu,mu;mu)−fK(mud,mud;mud) =
−1.25(31) MeV. Therefore, using Eq. (3.13) we get the estimate

fK+ − fK = −0.74 (35) MeV , (3.16)

which is consistent with the estimate of the direct method (3.12) within the
errors.

Finally we average the two determinations (3.12) and (3.16) obtaining
our final result

fK+ − fK = −0.62 (29) MeV . (3.17)

Using Eq. (3.5) we also get

fK+ − fK
fK

= −0.0040 (19) , (3.18)

which is quite close to the more precise determination (fK+ − fK)/fK =
−0.0040(4) obtained with Nf = 2 in Ref. [42] using a dedicated approach.

In conclusion for the charged kaon decay constant fK+ we quote the value

fK+ = 154.4 (1.5)stat+fit(0.4)Chiral(1.1)Disc(0.1)ZP (0.4)FSE(0.3)(fK+−fK) MeV

= 154.4 (2.0) MeV (3.19)

and, after dividing by the experimental value of the pion decay constant, we
get

fK+/fπ+ = 1.184 (12)stat+fit(3)Chiral(9)Disc(1)ZP (3)FSE(2)fπ+ (3)(fK+−fK)

= 1.184 (16) . (3.20)

The result (3.20) can be compared with the FLAG averages [31]: fK+/fπ+ =
1.205(18) at Nf = 2 from Refs. [32, 41], fK+/fπ+ = 1.192(5) at Nf = 2 + 1
from Refs. [33, 34, 35, 43] and fK+/fπ+ = 1.194(5) at Nf = 2 + 1 + 1 from
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orations as reported in [31] classified by the number of dynamical flavors
considered in the simulations. The solid green points represent the values
that are considered in the computation of the FLAG average
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Refs. [44, 45]. In fig. 3.3, which is taken from the 2015 update of FLAG, our
result is indicated by a green solid point, meaning that it has been considered
for the computation of the FLAG average value for fK+/fπ+ . The FLAG
group follows very strict criteria that collaborations need to satisfy for their
results to be included in the averages [31]. Specifically, the results indicated
by green solid points are the ones whose systematic uncertainties (induced
by chiral and continuum extrapolations, FSEs, renormalization and running
of scaling variables) are well evaluated and under control.

3.1.3 Determination of |Vus|
The next step in our analysis consisted in combining the result of eq.

(3.20) with the experimental data on |Vus/Vud| fK+/fπ+ = 0.2760(4) [46]
and |Vud| = 0.97417(21) from superallowed nuclear β decay [10] in order to
obtain a determination of the CKM matrix element |Vus|. We find

|Vus| = 0.2271 (4)exp(29)fK+/fπ+
= 0.2271 (31) , (3.21)

where the first error comes from the experimental uncertainties, while the
second is due to the uncertainty on fK+/fπ+ .

Since the CKM matrix is unitary in the Standard Model, the elements
of the first row should obey the constraint

|Vud|2 + |Vus|2 + |Vub|2 = 1 . (3.22)

The contribution from |Vub| is very tiny, being |Vub| = 4.13(49) · 10−3 [36],
and can be neglected. Using our result (3.21) we obtain

|Vud|2 + |Vus|2 + |Vub|2 = 1.0007 (5)exp(13)fK+/fπ+
= 1.0007 (14) , (3.23)

which confirms the first-row CKM unitarity at the permille level.

3.2 Calculation of fD, fDs
and fDs

/fD

In this Section we present our determinations of the decay constants
fD and fDs , as well as of the ratio fDs/fD. Our analysis is based on the
study of the quark mass dependence of two dimensionless ratios, namely
fDs/MDs and (fDs/fD)/(fK/fπ). This choice is motivated by the following
observations:

• the ratio fDs/MDs is affected by smaller discretization effects with re-
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Figure 3.4: Chiral and continuum extrapolation of (fDs/MDs)M
exp
Ds

based
on Eq. (3.24), assuming P3 = 0 (left) and P3 6= 0 (right). The diamond
represents the continuum limit evaluated at the average up/down quark mass
mud = 3.70(17) MeV [27].

spect to other quantities like fDsr0 or fDs
√
MDsr

3/2
0 (see also Ref. [47]);

• the double ratio (fDs/fD)/(fK/fπ) exhibits a very mild dependence
on the light quark mass [48] at variance with the ratio fDs/fD.

As in the case of fK , at first we performed a jackknife sampling and then
a bootstrap sampling of 100 events. We then associated our data with each
one of the 8 analyses performed in ref. [27] following the same structure
used for the charm sector. For each bootstrap event we performed a small
interpolation of the lattice data for fDs/MDs and (fDs/fD)/(fK/fπ) to the
strange and charm quark masses determined in [27]. The dependences of
fDs/MDs on the light-quark mass m` and on the lattice spacing turn out
to be well described by the simple polynomial expression. As is known, the
Heavy Meson ChPT (HMChPT) predicts the absence of chiral logarithms at
NLO for both fDs andMDs . Therefore we have adopted for fDS/MDs either
a linear (P3 = 0) or a quadratic (P3 6= 0) extrapolation in m`, supplemented
with a linear term in a2,

fDs/MDs = P1(1 + P2m` + P3m
2
` + P4a

2) . (3.24)

The chiral and continuum extrapolations of (fDs/MDs)M
exp
Ds

, obtained
according to Eq. (3.24) and using the experimental valueM exp

Ds
= 1.969 GeV,

are shown in Fig. 3.4, where it can be seen that a simple a2-scaling behavior
fits nicely our data on fDs/MDs .
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The systematic uncertainty associated with the chiral extrapolation has
been estimated by comparing the results obtained using a linear (P3 = 0)
or a quadratic (P3 6= 0) fit in m`, while the one related to discretization
effects has been taken from the difference of the results corresponding to the
continuum limit and to the finest lattice spacing. Lattice data corresponding
to the same β and light quark mass, but different lattice volumes show that
FSE are well within the statistical uncertainty. Finally, in the (stat+fit) error
(quoted below) we have included the errors induced by the uncertainties on
the light, strange and charm quark masses as well as on the input parameters
related to the scale setting and to the chiral extrapolation.

Our final result for fDs reads

fDs = 247.2 (3.9)stat+fit(0.7)Chiral(1.2)Disc(0.3)ZP .MeV

= 247.2 (4.1) MeV (3.25)

This value can be compared with the FLAG averages [31]: fDs = 250(7) MeV
at Nf = 2 from Ref. [49] and fDs = 248.6(2.7) MeV at Nf = 2 + 1 from
Refs. [50, 51]. Moreover, our result (3.25) agrees very well with the recent
determination fDs = 249.0(0.3)(+1.1

−1.5) MeV obtained by the FNAL/MILC
Collaboration [52] with Nf = 2 + 1 + 1.

We fit the double ratio (fDs/fD)/(fK/fπ) by combining the ChPT pre-
dictions for fπ and fK with the HMChPT prediction for fDs/fD, obtaining

fDs/fD
fK/fπ

= P ′1

[
1 + P ′2m` +

(
9

4
ĝ2 − 1

2

)
ξ` log ξ`

]
KFSE
fπ

KFSE
fK

, (3.26)

where for the HMChPT coupling constant ĝ we adopt the value ĝ = 0.61(7)
[36]. The latter, among the presently available determinations of ĝ, maxi-
mizes the impact of the chiral log in Eq. (3.26). Notice that discretization
effects have not been included in Eq. (3.26), since within the statistical errors
no cutoff dependence is visible in the lattice data, see Fig. 3.5. As a further
check of the impact of discretization effects we perform the fit (3.26) without
including the data at the coarsest lattice spacing (this corresponds roughly
to keep half of the data), obtaining for the double ratio the same final result.

In Eq. (3.26) we have included the FSE corrections for both fπ and fK
taken from Ref. [53] and Ref. [30], respectively. The former accounts also
for the effects of the π0 − π+ mass splitting. In this way the FSE observed
in the data at the same light quark mass and lattice spacing but different
lattice volumes are accurately reproduced [27].
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An alternative fit without no chiral logs has been performed in order to
evaluate the systematic error associated to chiral extrapolation, namely

fDs/fD
fK/fπ

= P 1

(
1 + P 2m`

) KFSE
fπ

KFSE
fK

. (3.27)

The chiral extrapolations for the double ratio (fDs/fD)/(fK/fπ), using either
the ChPT (3.26) or the linear (3.27) fit, are shown in Fig. 3.5, where it can
be seen that the two fits provide compatible results for all pion masses within
the statistical uncertainties.
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Figure 3.5: Chiral and continuum extrapolation of the double ratio
(fDs/fD)/(fK/fπ) using both the ChPT fit (3.26) (solid line) and the poly-
nomial expansion (3.27) (dashed line) in the light quark mass m`. The full
and open diamonds represent the corresponding continuum limit evaluated at
the average up/down quark mass mud, respectively. Lattice data have been
corrected for FSE using Ref. [30] for fK and Ref. [53] for fπ.

The result for the double ratio (fDs/fD)/(fK/fπ) can be finally used to
get a determination of fDs/fD. The most relevant source of systematic errors
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for the double ratio (fDs/fD)/(fK/fπ) is the chiral extrapolation, while for
fDs/fD also the discretization error coming from fK/fπ is important. On
the other hand, the errors on the strange and charm quark masses, as well
as the uncertainty on the RC ZP , contribute negligibly.

Our final results for (fDs/fD)/(fK/fπ) and fDs/fD are

fDs/fD
fK/fπ

= 1.003 (13)stat+fit(5)Chiral(3)FSE

= 1.003 (14) , (3.28)

fDs/fD = 1.192 (19)stat+fit(8)Chiral(8)Disc(1)ZP
= 1.192 (22) . (3.29)

The latter one can be compared with the FLAG averages [31]: fDs/fD =
1.20(2) at Nf = 2 from Ref. [49] and fDs/fD = 1.187(12) at Nf = 2+1 from
Refs. [51, 54]. Notice the remarkable precision for the double ratio (3.28),
which also indicates that SU(3) breaking effects in the ratio of PS meson
decay constants are the same in the light and charm sectors within a percent
accuracy.

Finally we combine our results for fDs and fDs/fD to obtain for fD the
value

fD = 207.4 (3.7)stat+fit(0.6)Chiral(0.7)Disc(0.1)ZP MeV

= 207.4 (3.8) MeV . (3.30)

The FLAG averages [31] are: fD = 212(8) MeV at Nf = 2 from Ref. [49]
and fD = 209.2(3.3) MeV at Nf = 2 + 1 from Refs. [51, 54].

Our data have been extrapolated to the average up/down quark mass
mud and therefore our results for fD, fDs , fDs/fD and (fDs/fD)/(fK/fπ)
correspond to the isospin symmetric limit of QCD.

In the case of the D-meson decay constant an estimate of the leading IB
effects due to the up- and down-quark mass difference may be obtained in a
way similar to the one adopted for the kaon decay constant in Section 3.1.2.
Using the results of the partially quenched Heavy Meson ChPT (HMChPT)
of Refs. [55, 56] to correct for the derivative of the D-meson decay constant
with respect to the sea light-quark mass, we obtain from our lattice data
the rough estimate fD+ − fD = −0.4 ± 0.8 MeV, which is not inconsistent
with the more precise result fD+ − fD = 0.47+25

−06 MeV obtained recently in
Ref. [52]. However, because of the large error of the above numerical result
and of the uncertainty related to the use of an effective field theory valid
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only in the static limit, we do not provide in this dissertation any estimate
for fD+ , which is left to a future work, where the method of Refs. [41, 42]
will be applied.

For the leptonic decay rates of D- and Ds-mesons we use the latest exper-
imental results fD|Vcd| = 46.06(1.11) MeV and fDs |Vcs| = 250.66(4.48) MeV,
obtained in Ref. [57] by averaging the electron and muon channels and by
including an estimate of structure-dependent Bremsstrahlung effects. Ne-
glecting other electroweak corrections (see Ref. [52] for a first estimate), our
results for fD and fDs provide the following determinations of the second-row
CKM matrix elements:

|Vcd| = 0.2221 (53)exp(41)fD = 0.2221 (67) ,

|Vcs| = 1.014 (18)exp(16)fDs = 1.014 (24) . (3.31)

Using |Vcb| = 0.0413(49) [36], the sum of the squares of the second-row
CKM elements turns out to be equal to

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.08 (5) , (3.32)

showing good agreement with unitarity.



Chapter 4

Vector and scalar form factors
of K and D semileptonic decays

In this chapter we present our determination of the CKMmatrix elements
|Vus|, |Vcd| and |Vcs| by means of the vector and scalar form factors of the
K and D semileptonic decays combined with experimental data on the K`3,
D → π`ν and D → K`ν decay rates.

The main novelty of the present analysis is the fact that we didn’t limit
ourselves to study the vector form factor at zero 4-transfer momentum, i.e.
f+(0), instead we managed to study the whole dependence on q2 of both
f+ and f0 and then we compared our result with those obtained by several
experimental collaborations.

4.1 Vector and scalar form factors of K`3 decay

4.1.1 Preliminary analysis

The matrix element of the vector current between two pseudoscalar mesons
decomposes into two Lorentz invariant form factors, f+ and f0:〈

π(p′) |Vµ|K(p)
〉

= (p′µ + pµ)f+(q2) + (pµ − p′µ)f−(q2), (4.1)

where with 〈π(p′) |Vµ|K(p)〉 we represent the renormalized vector current,
which depends on the 4-momentum transfer qµ = pµ − p′µ. The scalar form
factor f0 is defined as

f0(q2) = f+(q2) +
q2

M2
K −M2

π

f−(q2), (4.2)

53
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and therefore satisfies the relation f+(0) = f0(0). The matrix element in eq.
(4.1) can be derived from the time dependence of a convenient combination
of Euclidean three-point correlation functions in lattice QCD. As it is well
known at large time distances the renormalized three-point function can be
written as

CKπµ (tx, ty, ~p, ~p
′)

tx�a (ty−tx)�a−−−−−−−−−−−→ ZV

√
ZKZπ

4EKEπ

〈
π(p′) |Vµ|K(p)

〉
0
e−Etx−E

′(ty−tx)

(4.3)
where with 〈π(p′) |Vµ|K(p)〉0 we represent the bare vector current. Three
point correlation functions can then be combined calculating the ratios Rµ

Rµ(t, ~p, ~p′) =
CKπµ (t, T/2, ~p, ~p′)CπKµ (t, T/2, ~p′, ~p)

Cππµ (t, T/2, ~p′, ~p′)CKKµ (t, T/2, ~p, ~p)
(4.4)

which is independent of the vector renormalization constant ZV and on the
matrix elements Zπ and ZK . In our simulation setup we used the same
momentum in all three spatial directions for a specific quark, so the identity
〈R1〉 = 〈R2〉 = 〈R3〉 is valid up to statistical uncertainties. With 〈Ri〉 we
thus denote the numerical average of the spatial components of Rµ.

The matrix elements 〈V0〉 and 〈Vi〉 can then be extracted with a constant
fit of the Rµ(t, ~p, ~p′) plateaux around T/4 through the relations

〈V0〉 =
〈
π(p′) |V0|K(p)

〉
= 2
√
R0

√
EE′

〈Vi〉 =
〈
π(p′) |Vi|K(p)

〉
= 2
√
Ri
√
pp′.

(4.5)

We can then use the matrix elements to extract the form factors through the
relations

f+(q2) =
(E − E′) 〈Vi〉 − (pi − p′i) 〈V0〉

2Ep′i − 2E′pi

f−(q2) =
(pi + p′i) 〈V0〉 − (E + E′) 〈Vi〉

2Ep′i − 2E′pi

(4.6)

The energies appearing in eq. (4.6) are calculated through the dispersion
relation E =

√
p2 +M2 with the masses obtained fitting the same two-

points correlation functions of pseudoscalar mesons at zero momentum that
we used in the previous chapters to study the decay constants of K and D
mesons. The scalar form factor f0 can then be extracted from eq. (4.2).

In order to decrease statistical errors we decided to calculate f0 also from
the three point correlation functions of the scalar current S. This method is
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based on the Ward identity relating the matrix element of a vector current
to that of the corresponding scalar current

qµ
〈
π(p′) |Vµ|K(p)

〉
= (ms −ml)

〈
π(p′) |S|K(p)

〉
, (4.7)

where 〈π(p′) |S|K(p)〉 represents the renormalized scalar current andms and
ml are the renormalized strange and light quark masses . Once obtained
〈π(p′) |S|K(p)〉 we can easily calculate the scalar form factor as

f0(s)(q
2) =

ms −ml

M2
K −M2

π

〈
π(p′) |S|K(p)

〉
, (4.8)

where MK and Mπ are respectively the kaon and the pion meson masses.
With the Twisted mass actions it’s possible to demonstrate that the RC
of the quark mass is the inverse of the one of the scalar density (with the
chosen values of the Wilson parameters) so that the r.h.s. of eq. (4.8) doesn’t
depend on any renormalization constant and it can be written as

f0(s)(q
2) =

µs − µl
M2
K −M2

π

〈
π(p′) |S|K(p)

〉
0
, (4.9)

where 〈π(p′) |S|K(p)〉0 represents the bare matrix element of the scalar cur-
rent. Similarly to the vector current, we can obtain the matrix element 〈S〉0
by studying the large time behaviour of the three-point correlation function
CKπS (tx, ty, ~p, ~p

′), thus obtaining f0(s)(q
2) from the ratio

f0(s)(q
2) =

µs − µl
M2
K −M2

π

(
4EE′

ZKZπ

)√
CKπS (tx, ty, ~p, ~p′)CπKS (tx, ty, ~p′, ~p)

e−(E+E′)T/2
,

(4.10)
where the pseudoscalar meson matrix elements ZK and Zπ were extracted, as
in the case of the masses, from the time behavior of the two-point correlators.
The time interval chosen for the fit of the matrix elements 〈V0〉, 〈Vi〉 and
f0(s) was [T/2 − 2, T/2 + 2], and it was determined by requiring that the
changes in the matrix elements due to a modification of the interval by one
or two lattice units were well below the statistical uncertainty. By having
numerical data of the quantities 〈V0〉, 〈Vi〉 and f0(s), i.e. the scalar form
factor obtained by analysing the scalar three-point correlation function, we
can perform an overconstrained fit according to eqs. (4.6) and (4.8) in order
to obtain both the vector and the scalar form factors as function of q2 with
greater accuracy compared to the one we would have obtained by using only
the vector current. In fig. 4.1 an example of the extraction of 〈V0〉, 〈Vi〉 and
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Figure 4.1: Example of the extraction of the matrix elements 〈V0〉, 〈Vi〉
and of the scalar form factor f0(s) obtained from the three-point correlation
functions in the interval [T/2−2, T/2+2]. The data corresponds to β = 1.90,
aµl = 0.0040, L/a = 32, aµs = 0.0185 and p′ = −p ' 151MeV

f0(s) is shown.

The next step was a selection of good quality data, i.e. we excluded data
points that were too noisy or had a very big statistical error, i.e. they were
irrelevant in the fits. The excluded data points are those with at least one
meson having the largest momentum simulated. This allowed us to use the
exact same criteria of exclusion for all the ensembles of our simulation. In
fig. 4.2 an example of data selection is presented. It should be noted in
fig. 4.2 that the selected data includes both points belonging to the physical
range, i.e. from q2 = 0 to q2 = (MK −Mπ)2, and points with q2 < 0. This
allowed us to determine the q2 dependence of our data with good accuracy.
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Figure 4.2: An example of the selection performed on our data of the form
factors. In the figure we show data of f+(q2) corresponding to the ensemble
A32.40 where the different color correspond to different kinematical condi-
tions. The dashed data points correspond to the excluded data. The selected
data, plotted with solid, shows a very smooth dependence on q2.
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Selected data was sampled using the jackknifing procedure with 15 sam-
ples. We then performed a bootstrap sampling of 800 events, which were
associated with the 800 events corresponding to our determinations of lat-
tice input parameters, namely the light quark mass, the strange quark mass
and the lattice spacing. The gauge ensembles used for the present analysis
are the same used for the determination of the quark masses and the values
of the lattice spacing. After the selection, every data point corresponding to
a specific value of the lattice spacing, q2 and µl was analysed as a function of
the strange quark mass in order to perform the interpolation to the physical
strange quark mass, which was obtained in ref. [27].

4.1.2 Global fits

The next step consisted in performing a global fit of both the vector
and the scalar form factors analysing simultaneously their dependences on
a2,µl and q2 in order to determine the form factors at the physical point as
functions of q2.

Different functional forms have been considered to this purpose. The
first ansatz that we used was based on SU(2) ChPT, and was obtained by
expanding in x = M2

π/M
2
K the SU(3) NLO expressions for the form factors

obtained by Gasser and Leutwyler [58, 59]. As shown in ref. [60] the result
of the expansion is

f+(s) = F+(s)

{
1 + C+(s)x+

M2
K

(4πf)2

[
−3

4
x log x− xT+

1 (s)− T+
2 (s)

]}
,

f0(s) = F0(s)

{
1 + C0(s)x+

M2
K

(4πf)2

[
−3

4
x log x+ xT 0

1 (s)− T 0
2 (s)

]}
,

(4.11)
where s = q2/M2

K . The terms in the brackets of eq. (4.11) are obtained
from the kaon and pion loop contributions expanded in x, keeping only the
O(x),O(x log x) and O(log (1− s)) terms. The functions T 0,+

1,2 (s) are then
given by

T+
1 (s) = [(1− s) log (1− s) + s(1− s/2)]3(1 + s)/4s2

T+
2 (s) = [(1− s) log (1− s) + s(1− s/2)](1− s)2/4s2

T 0
1 (s) = [log (1− s) + s(1 + s/2)](9 + 7s2)/4s2

T 0
2 (s) = [(1− s) log (1− s) + s(1− s/2)](1− s)(3 + 5s)/4s2

.

(4.12)
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It can be seen that the coefficients of the pion chiral log in eq. (4.11) are
in agreement with those predicted by SU(2) ChPT, both at q2 = 0 and
q2 = q2

max [61]. At q2 = 0 the leading chiral log has the coefficient −3/4,
while close to q2 = q2

max, i.e. for s ' (1 − √x)2, the functions T 0
1,2(s) also

contribute to the chiral log leading, for f0(s), to an overall coefficient equal
to −11/4.

The functions F+,0 and C+,0 are not predicted by Chiral Perturbation
Theory, therefore we used some phenomenological arguments to estabilish
their behavior. Inspired by the vector-meson dominance we considered a
pole behavior corrected by a polynomial formula in q2 and a2 for F+,0(s)
and a simple quadratic formula in q2 for C0,+(s), namely

F0,+(s) =
F (1 +A0,+q

2 +B0,+a
2)

1− q2(1 + P0,+M2
π)/M2

S,V

,

C0,+(s) = C + C
(1)
0,+(s) + C

(2)
0,+s

2,

(4.13)

where MS,V represent the mass of the scalar (K∗0 (1430)) and the vector
resonance (K∗(892)) respectively. These two masses were expressed as

MS,V = MK + ∆S,V (4.14)

where MK is the kaon mass calculated on the lattice and ∆S,V is the differ-
ence between the experimental value of the scalar (vector) resonance mass,
taken from the PDG, and the isospin symmetric kaon mass. In this way we
avoided the use in our analysis of lattice data ofMV andMS , which are tipi-
cally very noisy, still maintaining a dependence on the light quark mass in
the pole sector of our formulas. It should be noticed that while for the vector
form factor a pole parametrization with the dominance of the K∗(892) is in
good agreement with the data, for the scalar form factor such dominance is
less clear. For this reason, we also tried a global fit in which we removed the
pole parametrization for f0 replacing it with a polynomial dependence in q2.

Further constraints used in the analysis are the equality f+(0) = f0(0),
which holds for any value of the light quark mass and the lattice spacing,
and the Callan-Treiman theorem (ref. [62]), which relates in the chiral limit
the scalar form factor calculated at the unphysical q2

CT = M2
K −M2

π to the
ratio of the decay constants fK/fπ. Specifically, we imposed the relation

F (s = 1) =
f0
K

f
, (4.15)
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where f0
K and f are respectively the kaon and the pion decay constants in

the SU(2) chiral limit.
The second fit ansatz that we considered is a modified version of the

z-expansion, in the formulation proposed by Bourrely, Caprini and Lellouch
[63]. The modification of the original formula consists in considering the
coefficients of the z-expansion and of the slope in q2 as functions of µl and
a2. Specifically, by truncating the expansion at O(z) we considered the
ansatz

f+(q2) =
a0(M2

π , a
2) + a1(M2

π , a
2)
[
z + 1

2z
2
]

1− q2(1 + P+M2
π)/M2

V

f0(q2) =
b0(M2

π , a
2) + b1(M2

π , a
2)
[
z + 1

2z
2
]

1− q2(1 + P0M2
π)/M2

S

z =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

(4.16)

where t+ = (MK +Mπ)2 and t0 = (MK +Mπ)(
√
MK−

√
Mπ)2. We adopted

linear dependences on µl and a2 for all the coefficients, i.e.

ai = Ai +BiM
2
π + Cia

2,

bi = Di + EiM
2
π + Fia

2,
(4.17)

where i = 0, 1. Resonance masses MV and MS were calculated in the same
way as in the SU(2) ChPT fit ansatz. In the case of the modified z-expansion
an additional term to the χ2 was added in order to implement the constraint
f+(0) = f0(0).

As discussed, in this analysis we have studied the dependences of the
form factors data. Judging the goodness of the fit just by the final result
can be misleading. Rather it’s useful to plot the data by keeping everything
fixed except for one variable. We fixed the light quark mass and the lattice
spacing in ordert to check how the q2 dependence of our data was fitted. As
can be seen from fig. 4.3 the agreement between the data and fit result as a
function of q2 is good. Moreover, in fig. 4.6 we check the dependence of our
data on a2.

Once reassured that the data are in agreement with the fit results we
extrapolated to the physical point, obtaining the curves shown in fig. 4.4.

4.1.3 FSE evaluation

An investigation of ensembles A40.24 and A40.32, which share the same
pion mass at different volumes, shows the presence of non negligible FSE in
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Figure 4.3: Data points of f+(q2) and f0(q2) corresponding to several lattice
ensembles. The solid curves represent the results of the SU(2) χPT global
fit (left panel) and of the modified z expansion (right panel), together with
their uncertainties (indicated by dashed curves). It can be seen that there
is good agreement between data and the results of the fit
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Figure 4.4: Final results of f+(q2) and f0(q2) at the physical point obtained
by the global fit using SU(2) χPT (left panel) and the modified z-expansion
(right panel)

the slope of the form factors. This is illustrated in fig. 4.5. Following the
strategy used in ref. [64] for FSE corrections in the pion electromagnetic
form factor we adopted the following phenomenological ansatz for the slope:(

q2

M2
S,V

)
Vinf

=

(
q2

M2
S,V

)
Vfin

(
1 + PM2

π

e−MπL

(MπL)αeff

)
(4.18)

where P is a free parameter determined in the global fit and αeff is an
effective fractional power. Typically it’s possible to calculate the parameters
of FSE expressions in ChPT, but so far there has been no computation of
the finite size effects for the form factors with out lattice setup.

For this reason, as a phenomenological approach, we decided to test dif-
ferent values of αeff and noticed that a good estimate of the systematic
uncertainty associated to the FSE is given by the spread on the final results
found with αeff = 0 (which is considered for the central value of our deter-
mination of the form factors) and αeff = 3/2, which is the exponent that
can be found in other physical observables affected by FSE, e.g. the decay
constant fK .

4.1.4 Discretization effects evaluation

Another important systematic uncertainty to take into account is the
one induced by discretization effects. In order to evaluate this effect we
interpolated our lattice data of f+ and f0 for different values of q2/M2

K , at
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Figure 4.5: Lattice data points of f+(q2) corresponding to the ensembles
A40.24 and A40.32, which share the same pion mass but different volumes,
specifically L = 24 and L = 32

the physical strange quark mass and at a reference value of the light quark
mass. We then plotted the results of these interpolations, together with the
result of the SU(2) ChPT fit, as a function of a2 as shown in fig. 4.6. It
can be seen from fig. 4.6 that the behavior of the data in a2 is very mild
and thus we can reasonably assume a linear dependence on the square of
the lattice spacing. Judging from the slope of the SU(2) ChPT fit we can
estimate discretization effects to be at the permille level.

4.1.5 Dispersive parametrization and experimental results

By having obtained results for the form factors at the physical point, we
compare them with those obtained by the experimental collaborations. Ex-
periments tipically measure the ratio between the differential and the total
semileptonic decay rate, and perform a fit of the normalized form factors
through what is called a dispersive parametrization, in the formulation pro-
posed in ref. [65]. This parametrization is basically a polynomial formula,
for both f̄+(q2) = f+(q2)/f+(0) and f̄0(q2) = f0(q2)/f+(0), in which specific
relations among the coefficients of the expansion are imposed by unitarity.
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This parametrization can be written as follows:

f+,0(q2) = f+(0)

[
1 + λ′+,0

q2

M2
π

+
1

2
λ′′+,0

(
q2

M2
π

)2

+
1

6
λ′′′+,0

(
q2

M2
π

)3
]

(4.19)

where the expansion parameters are related by

λ′0 =
M2
π

q2
CT

[lnC −G(0)],

λ′′0 = (λ′0)2 − 2
M4
π

q2
CT

G′(0),

λ′′′0 = (λ′0)3 − 6
M4
π

q2
CT

G′(0)λ′0 − 3
M6
π

q2
CT

G′′(0),

λ′+ = Λ+,

λ′′+ = (λ′+)2 + 2M2
πH
′(0),

λ′′′+ = (λ′+)3 + 6M2
πH
′(0)λ′+ + 3M4

πH
′′(0).

(4.20)

The constant C represents the scalar form factor calculated at the Callan-
Treiman point q2

CT = (MK −Mπ)2

C = f̄0(q2
CT ) =

fK
fπ

1

f+(0)
+ ∆CT (4.21)

where the correction ∆CT = O(mud/4πfπ) can be evaluated in ChPT. At
NLO, in the isospin symmetric limit, ∆CT = (−3.5± 8)× 10−3.

The functions G and H are defined as

G(q2) =
q2
CT (q2

CT − q2)

π
×
∫ ∞
q2lim

ds

s

φ0(s)

(s− q2
CT )(s− q2 − iε)

H(q2) =
M2
πq

2

π

∫ ∞
q2lim

ds

s2

φ+(s)

(s− q2 − iε)

(4.22)

where the phases φ0(s) and φ+(s) are determined by respectively the S-wave
(Kπ)I=1/2 scattering and the P-wave (Kπ)I=1/2 elastic scattering. Numer-
ical estimates of these functions and its derivatives at q2 = 0 can be found
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in literature [66]:

G(0) = 0.0398(44)

− 2
M4
π

q2
CT

G′(0) = 4.16(56)× 10−4,

− 3
M6
π

q2
CT

G′′(0) = 2.72(21)× 10−5,

(4.23)

2M2
πH
′(0) = 5.79(97)× 10−4,

3M4
πH
′′(0) = 2.99(21)× 10−5.

(4.24)

Reading (4.19) and (4.20) it is evident that the only parameters that
need to be determined are lnC and λ+. This can be done by fitting data
coming either from experiments or simulations. In a recent review from M.
Moulson [46] experimental results on the kaon semileptonic decay rate from
KTeV [67], KLOE [66, 68], NA48/2 [69] and ISTRA+ [70] were combined
together in order to perform a global fit and determine average values of lnC
and Λ+. The results are

Λ+ = 25.75(36)× 10−3

lnC = 0.1985(70)
(4.25)

Combining the experimental results (4.25) and the FLAG average of
f+(0) at Nf = 2 + 1 [31] we can construct the full q2 dependence of the
form factors f+(q2) and f0(q2) and compare it with our lattice results at the
physical point.

This comparison is presented in fig. 4.7. In order to obtain a deter-
mination of f+(0),Λ+ and lnC we generated some “synthetic” data points
starting from our global fit results in correspondence of 8 different values of
q2 in the physical range, and to fit them using eq. (4.19).

Our final results are

f+(0) = 0.9684(59)stat+fit(29)syst = 0.9684(66)

lnC = 0.1937(113)stat+fit(90)syst = 0.1937(138)

Λ+ = 25.2(1.2)stat+fit(1.1)syst × 10−3 = 25.2(1.6)× 10−3

(4.26)

• The ()stat+fit error includes the statistical uncertainties, the total error
on the light and strange quark masses and the uncertainties due to the
fitting procedure.
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Figure 4.7: Final results for f+(q2) and f0(q2) at the physical point ob-
tained by the global fit using SU(2) χPT (left panel) and the modified z-
expansion (right panel). Results obtained by combining the experimental
measurements [46] and the FLAG average of f+(0) [31] are also shown for
comparison.
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Figure 4.8: Same as fig. (4.7) but with the lattice results represented by the
synthetic data points.
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• The error denoted as ()syst in eq. (4.26) takes into account the system-
atic errors induced by the chiral extrapolation, evaluated comparing
the results obtained with the SU(2) ChPT formula with the ones ob-
tained with the modified z-expansion; the uncertainty induced by FSE,
which are mainly relevant for the slope of the form factors; the system-
atic error induced by discretization effects, which has been evaluated
comparing our main fit with a fit in which all the data corresponding
to the coarsest lattice spacing were removed.

Using the determinations in eq. (4.26) to construct the full curves for f+(q2)
and f0(q2) gives the result shown in fig. 4.9, which can be seen to be very
compatible with the combination of the experimental result and the average
value of f+(0) given by FLAG.

We thus think that a future perspective of this work, and of phenomeno-
logical lattice QCD calculations in general, should be to compute this quan-
tities with a greater accuracy, i.e. trying to decrease both the statistical and
systematic errors, the most relevant source in our analysis coming from the
chiral extrapolation.

Finally, we can combine our result of f+(0) with experimental data for
f+(0)|Vus| [71] in order to obtain the value of the CKM matrix element |Vus|:

|Vus| = 0.2234(16). (4.27)

As we have already done in the case of the Vus determination fromK`2 we can
perform a unitarity test using the |Vud| determination from the superallowed
β nuclear decay [10] and neglecting the contribution from |Vub|, obtaining

|Vud|2 + |Vus|2 + |Vub|2 = 0.9991(8), (4.28)

in good agreement with the unitarity expectation.

4.2 Smearing with heavy quark masses

As can be seen from ref. [27], the time intervals chosen to fit the two
points correlation functions relative to mesons containing a heavy quark are
shorter compared to light-light and light-strange mesons. This has a clear
physical reason: the more the valence quarks are heavier, the smaller the
gap between the lowest energy state and the first excited state is. Thus,
when dealing with heavy quarks, one has to go to larger times to isolate the
ground state. For this reason, in some quantities if the signal to noise ratio
is too low or if there is too much excited states contamination the evaluation
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of the ground state matrix element might be impossible. When computing
correlation functions we basically create out of the vacuum the state we’re
interested in, |s〉, (which we assume to be a single particle state), together
with all the other state sharing the same quantum numbers, through an
operator O:

O |0〉 = |s〉+
∣∣∣s(1)

〉
+
∣∣∣s(2)

〉
+ ... (4.29)

Ideally we would like to find a combination of operators Os built in such
a way that when acting on the vacuum it creates only the ground state.
This must exist, in fact it can be expressed as Os = |s〉 〈s|O. The operator
Os generally will be a non-local combination of operators at different lat-
tice points, corresponding to the wave function of the state. Knowing the
distribution of such fields, one could build this interpolating operator and
compute correlation functions containing just the state s, thus improving the
quality of the signal.

In order to build an operator that approximates Os and have a better
overlap with the state |s〉, one has to make some kind of guess on the shape of
the hadron wave function. The general criteria relies on the observation that
the wave function of a hadron with mass M extends over a spatial region of
dimension ∼ 1

M . Increasing the spatial extent of operators one can achieve
better overlap with the lower lying state and thus obtain correlation functions
with minor excited states contamination. One can assume the shape of the
wave function to be Gaussian-like, and build a creation operator with such
form.

4.2.1 Gaussian Smearing

One possibility called Gaussian smearing is to substitute the creation
operator O with

Os = Gn(k)O, G(k) =
1 + kH

1 + 6k
, (4.30)

where H is given by

Hx,y =
∑

µ=1,2,3

(Ux;µδy,x+µ̂ + U †x−µ̂;µδy,x−µ̂), (4.31)

where k is a real number and n an integer number called the smearing level.

Let us consider a two points correlation function C~x,t =
〈
O†s2(x)Os1(0)

〉
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of smeared operators:

Osi = Gni(ki)Oi = Gni(ki)ψ̄Γiψ, i ∈ 1, 2. (4.32)

The correlation function is given by the contraction

C~x,t = −
〈
Tr
[
Γ2(MSS)−1

x,0Γ1(MSS)−1
0,x

]〉
, (4.33)

where we have defined the sink and source smeared (SS) propagator (MSS)−1,
which can be expressed in terms of the usual propagator as

(MSS)−1
x,0 = Gn2(k2)x,y(My,z)

−1Gn1(k1)z,0. (4.34)

In order to compute the correlator, let us define a vector ηx = δx,0 and apply
to it the source smearing operator

φy = Gn1(k1)y,zηx. (4.35)

Let us then solve for the vector χ the system

Mx,yχy = φy (4.36)

and apply the sink smearing operator so that

(MSS)−1
x,0 = Gn2(k2)x,yχy. (4.37)

The effect of smearing the source operator is to build an extended source φ on
which to invert the fermionic matrix. If the original source η is a Kronecker
delta at the origin, the extended or smeared source φ is a Gaussian-like source
distributed in space:

|φ|2x ∝ e
−
(
|~x|
2σ

)2
δt,0, (4.38)

where the parameter σ is a function of k and n which must be tuned in order
to obtain the desired Gaussian width. Increasing the number of iteration n
and decreasing at the same time the smearing strenght k one can have an
approximately constant source width σ. The smearing of the sink operator
acts in a very similar way, enhancing the overlap of operator O2 between
the vacuum and the state s. This discussion is also valid when working with
stochastic sources with (or without) the one-end trick.
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β = 1.90 β = 1.95 β = 2.10

ZV 0.5920(4) 0.6095(3) 0.6531(2)

Table 4.1: Values of the vector renormalization constant ZV for each lattice
spacing of the simulation. These values were used to extract the renormalized
vector current matrix element from the smeared-smeared three point correla-
tion functions of the D → π`ν and D → K`ν decays.

4.3 Vector and scalar form factors of the D semilep-
tonic decay

In this section we’ll describe our preliminary study of the vector and
scalar form factors of the semileptonic decay of D meson. The first step
of the analysis has been the study of the time dependence of three point
smeared-smeared correlators connecting the two mesons (a pion and a D or
a kaon and a D) through a local vector current. The latter, similarly to the
K`3 decay case, has the following time behavior:

CDM(SS)
µ (tx, ty, ~p, ~p

′)
tx�a (ty−tx)�a−−−−−−−−−−−→ ZV

√
Z

(SS)
D Z

(SS)
M

4EDEM

〈
M(p′) |Vµ|D(p)

〉
0
e−Etx−E

′(ty−tx).

(4.39)
where M represents either a π or a K meson. At variance with the Kaon
case, for the D meson we found that precise results are obtained by extracting
the matrix element using only the three point function, i.e. without the need
of introducing double ratios:

〈
M(p′) |Vµ|D(p)

〉
= ZV

〈
M(p′) |Vµ|D(p)

〉
0

= ZV
lim

tx�a (ty−tx)�a−−−−−−−−−−−→ C
DM(SS)
µ (tx, ty, ~p, ~p

′)√
Z

(SS)
D Z

(SS)
M

4EDEM
e−Etx−E

′(ty−tx)

(4.40)
It appears from this relation that the vector current renormalization constant
ZV is needed for the calculation of the matrix element. This quantity has
been calculated very precisely by the ETMC in ref. [27]. For this work we
used the set of ZV calculated through the Ward-Takahashi Identity method
collected in tab. 4.1.

From the matrix elements of the vector current we computed the vector
and the scalar form factors according to eqs. (4.6) and (4.2).
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Figure 4.10: q2 dependence of the vector form factor f+(q2) of the D → π`ν
decay. The data corresponds to the ensemble A30.32 with aµh = 0.21256.
Different values of the pion momentum are shown with different colors. The
“fishbone” problem (see text) is clearly visible in this plot.

4.3.1 The “fishbone” problem

The next step in the analysis consisted in studying the q2 dependence of
the form factors at fixed quark masses and lattice spaing. We then observed
the peculiar behavior shown in fig. 4.10 for the form factor f+. Namely,
there is a clear systematic difference between data corresponding to different
values of the momentum of the light meson. This effect proved to be more
relevant in the case of the D → π vector form factor than in the D → K
one.

The behavior shown in fig. 4.10 is clearly due to the breaking of Lorentz
invariance, and the discretization effects responsible for this behavior should
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be described by hypercubic invariants. In terms of the quantities q2
E =∑4

i=1 q
2
i and q̃

4
E =

∑4
i=1 q

4
i an example of such hypercubic invariant of O(a2)

is a4q̃4E
a2q2E

.

By looking at the values of a
4q̃4E
a2q2E

for all the ensembles we noticed that it is
very big in some cases. Thus we decided to apply a cut by selecting for further
analysis only those data that satisfied the condition 1

a2
a4q̃4E
a2q2E

< 2.5 GeV2. In
fig. 4.11 we show the effect of this cut for a given ensemble. The full red
dots represent the data passing the cut condition. It is clear that the selected
data shows a much smoother dependence on q2.

4.3.2 Global fits

The next step in the analysis consisted in performing global fits of the
vector and scalar form factors analysing at the same time their dependences
on ml, a2 and q2 in a way similar to what was done in the case of the kaon
semileptonic decay. We used a simple polar expression with polynomial
corrections in ml, a2 and q2:

f+(q2) =
f+(0)

1− q2

M2
V

(1 +Aq2)(1 + P1ml + P2a
2)

f0(q2) =
f+(0)

1− q2

M2
S

(1 +Bq2)(1 + P1ml + P2a
2)

(4.41)

where MV and MS are the vector and scalar resonances that dominate the
polar expansion, i.e. the D∗(2010) and D∗0(2400), and are calculated as

MS,V = MD + ∆S,V (4.42)

where MD is the D meson mass calculated on the lattice and ∆S,V is the
difference between the experimental value of the scalar (vector) resonance
mass, taken from the PDG, and the isospin symmetric D mass.

The comparison between lattice data and the results of the fits, in the
case of both D → π`ν and D → K`ν is shown in fig. 4.12 and we can see
that the agreement is good.

In figs. 4.13 and 4.14 we show our results for the form factors extrapolated
at the physical point together with experimental data from the Belle [72],
Babar [73, 74] and Cleo [75, 76] experiments. Our results for the quantity
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Figure 4.13: Result of the vector and scalar form factors of the Dπ`ν decay
at the physical point as functions of q2. We also show for comparison the
results of the Belle [72], Babar [74] and Cleo [75, 76] experiments.

f+(0) are
f+(0)(D→π) = 0.610(23),

f+(0)(D→K) = 0.747(22),
(4.43)

where the uncertainties are only statistical. The estimate of the systematic
uncertainty is in progress. These results can be compared with the FLAG
averages f+(0)(D→π) = 0.666(29) and f+(0)(D→K) = 0.747(19).

4.3.3 Calculation of Vcd and Vcs

The results for the form factor at zero 4-momentum transfer can be com-
bined with the experimental averages f+(0)|Vcd| = 0.146(3) and f+(0)|Vcs| =
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0.728(5) [77] in order to calculate the CKM matrix elements. We obtain

|Vcd| = 0.2336(93),

|Vcs| = 0.975(29).
(4.44)

These results can then be used to perform a unitarity test of the second row
of the CKM matrix, which gives

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.007(57), (4.45)

,where |Vcb| = 0.0413(49) [36]. This result is in good agreement with the
unitarity expectation.
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Conclusions

In this work we have presented a lattice QCD calculation of the decay
constants of the leptonic decays and of the form factors of the semileptonic
decays for K and D mesons. We have used the gauge configurations gen-
erated by the European Twisted Mass collaboration with Nf = 2 + 1 + 1
dynamical quarks using the Iwasaki gauge action and the Twisted Mass ac-
tion at maximal twist. We considered three different values of the lattice
spacing and pion masses as low as ' 210MeV. We have extracted the de-
cay constants and the form factors at different values of the quark masses,
allowing us to extrapolate to the physical point through either ChPT or
a polynomial expansion. We also studied the q2 dependence of the form
factors, by performing a multi-combined fit of its a2, µ` and q2 dependences.

After calculating the decay constant fK at the phyisical point and eval-
uating the isospin symmetry breaking effects we combined our result

fK+/fπ+ = 1.184(16) (4.46)

with the experimental result for |Vus/Vud| fK+/fπ+ [46] and obtained

|Vus|
|Vud|

= 0.2331(32) (4.47)

Then we combined this result with the determination of |Vud| from the su-
perallowed nuclear beta decay, |Vud| = 0.97417(21) [10], to obtain

|Vus|K`2 = 0.2271(31). (4.48)

Taken together, the results for |Vus| and |Vud| satisfy the unitarity test of the
SM at the permille level.
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Our analysis of the form factors of the K`3 decay gave us the results

f+(0) = 0.9684(59)stat+fit(29)syst = 0.9684(66)

lnC = 0.1937(113)stat+fit(90)syst = 0.1937(138)

Λ+ = 25.2(1.2)stat+fit(1.1)syst × 10−3 = 25.2(1.6)× 10−3

(4.49)

for the form factor at zero 4-momentum transfer and the slope parameters.
Combining our determination of f+(0) with the experimental average of
f+(0)|Vus| [46] gave us

|Vus|K`3 = 0.2234(16), (4.50)

which, combined with the determination of |Vud| from the superallowed nu-
clear beta decay, |Vud| = 0.97417(21) [10], satisfies the unitarity test of the
SM at the permille level and is compatible with the result in eq. (4.48)
within approximately 1 standard deviation. To check more thorougly the
consistency betwen the results obtained in the two analyses, and to compare
them with other results in literature, we decided to combine the result of eq.
(4.47) with the one of eq. (4.50). This comparison is shown in fig. 4.15. As
far as regards the decay constants in the charm sector, we studied the de-
pendences on Mπ and a2 of the quantities fDs/MDs and (fDs/fD)/(fK/fπ).
Combining these quantities determined at the physical point with the ex-
perimental value of MDs , and our determination of fK/fπ of eq. (3.6), we
obtained

fDs = 247.2(4.1) MeV (4.51)

fDs/fD = 1.192(22), (4.52)

from which we also obtain

fD = 207.4(3.8) MeV . (4.53)

Eqs. (4.51) and (4.53) can then be combined with experimental data of
fDs |Vcs| and fD|Vcd| in order to get

|Vcd|lep = 0.2221(67),

|Vcs|lep = 1.014(24).
(4.54)

Using |Vcb| = 0.0413(49) [36], the sum of the squares of the second-row CKM
elements turns out to be equal to

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.08 (5) , (4.55)
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showing good agreement with unitarity.
Our preliminary study of the form factors of the D → π`ν and D → K`ν

decays gave the results

f+(0)(D→π) = 0.610(23),

f+(0)(D→K) = 0.747(22),
(4.56)

where the uncertainties are only statistical. The estimate of the system-
atic uncertainty is in progress. The results for the form factor at zero 4-
momentum transfer can be combined with the experimental averages f+(0)|Vcd| =
0.146(3) and f+(0)|Vcs| = 0.728(5) [77] in order to calculate the CKM matrix
elements. We obtain

|Vcd|semilep = 0.2336(93),

|Vcs|semilep = 0.975(29).
(4.57)

These results can then be used to perform a unitarity test of the second row
of the CKM matrix, which gives

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1.007(57), (4.58)

where |Vcb| = 0.0413(49) [36]. This result is in good agreement with the
unitarity expectation.

In conclusion, there are still several issues that will be interesting to
address. During the last few years some collaborations published the first
results of lattice calculations with pion masses equal (or very close) to the
physical one. Simulating at the physical point, and thus decreasing the
systematic uncertainty induced by the chiral extrapolation, is one of the pri-
orities in order to improve the present work. Another systematic effect that
could be further addressed is the one induced by the continuum extrapolation
by simulating at lower values of the lattice spacing.

Other improvements concerning the present analysis of the semileptonic
decays form factors are: (i) a more thorough and detailed study of the “fish-
bone” problem, described in sec. 4.3.1,(ii) a study of alternative ways to
combine the vector and the scalar current matrix elements in order to de-
crease statistical errors of lattice data, and lastly (iii) the inclusion in the
analysis of the tensor current form factor in order to study processes like
K → π`+`− and B → K`+`−. These decays, being suppressed by the GIM
mechanism, are possible sources of New Physics and thus worth studying.
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