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Summary

Chapter 1 The first chapter smoothly prepares the reader for the next stages by familiar-
izing with the main background of the study. The reader will understand the
main goal of spintronics and why usage of spin-current has more advantages
than the charge current.

Chapter 2 In Chapter 2 the reader can discover the mechanisms of spin-orbit in solid
state systems, starting from the Dirac equation and from the energy band
interaction in the Kane model.

Chapter 3 In this chapter, we enter in quasi-classical formalism in order to treat the
transport problems at a quantum level. It will be derived the Eilenberger
equation which is the background for understanding the result of the thesis.

Chapter 4 In this chapter we present our contribution - the result of the interplay of
spin-orbit couplings onto the inverse spin-galvanic effect, one of the most
relevant phenomena in spintronics that leads to charge-spin tunability. This
chapter contains the main study of this work, satisfying the aim presented in
the introduction.

Chapter 5 Here we describe how to generate synthetically spin-orbit coupling in a model
that is free of disorder but is charge-neutral - ultracold atoms.

Chapter 6 We present the analytical time-dependent exact and approximate solutions
to the anisotropic model of cold atoms with spin-orbit coupling and external
perturbations. These solutions show a great tunability and a much longer
life-time of the spin polarized states comparing to the one of a usual two-
dimensional electron gas.
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Chapter 1

Introduction

1.1 Spintronics

Spintronics is a rapidly-developing area of research that in the last decades has
investigated exciting effects based on the coupling of electron spin and charge, ma-
nipulating them by electro-magnetic fields in solid state systems. The key physical
quantity that underlines all the effects is the spin, the internal angular momentum
of a particle in quantum mechanics. Electrons possess a charge, as a source of
electricity, and a spin, as a source of magnetism. While common electronic devices
have been developed by making use of the charge currents, the study of spintronics
aims to develop an innovative functionality for high quality devices that operate
with spin currents, or flow of spins. The main difficulty that hinder its implemen-
tation is hidden in the challenge of driving the spin current in a device. Indeed,
only a limited number of proposals exists on how to generate it.

Studying the interaction between charge and spin and their behavior discloses
new opportunities for the creation of novel supersensitive devices, such as the
spin-exchange-relaxation-free atomic magnetometer (SERF), the most sensitive
approach for measuring scanty changes of the Earth’s magnetic fields [1]. This
device has already found applications in satellites or archeography. Moreover, ex-
ploiting the properties of the spin degree of freedom gives a range of advantages
with respect to circuits based on charge carriers: smaller size and greater versatil-
ity, higher speed and less power consumption. These devices can write and store
information through up and down spin orientation and send it along a wire thanks
to the long spin relaxation times. The birth of spintronics is considered the obser-
vation of giant magnetoresistance in the magnetic multilayers in 1988 [2, 3]. The
development of spintronics displayed many other phenomena which are capable
of spin current manipulations: spin transfer torque [4], spin Hall effect [5, 6, 7],
spin-galvanic effect [8, 9, 10], spintronics in semiconductors and graphene [11].

Carrying out research in spintronics and achieving an understanding in the
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1 – Introduction

interaction between the particle’s spin and its solid-state or ultracold atomic envi-
ronment promises to lead to more performant devices with respect to the classical
electronic ones, where the spin-orbit interaction is not able to control spin current
and spin polarization through the external fields.

1.1.1 Pseudospintronics

Spin is the key degree of freedom at the core of spintronics. However, as originally
observed by Heisenberg [12], any superposition of two-level quantum states can
ultimately act as an effective spin. When this happens, we refer to it as pseudospin.
As for the case of spin-1/2 particles, pseudospin is conveniently expressed using
the set of Pauli matrices σ = (σx, σy, σz). Nevertheless, being it not an internal
degree of freedom of a particle, pseudospin actually depends on the properties of
the physical system. In graphene, for instance, the honeycomb lattice of carbon
atoms can be interpreted as a superposition of two triangular sublattices formed
by the basis vectors [13]. And the states close to the Fermi energy lie near the K
and K ′ Fermi points at the opposite corners of the Brillouin zone that is a hexagon
in momentum space. The twofold degeneracy occurs at the Fermi momentum K
and K ′ of the corners of the Brillouin zone. The wave function is a four-component
slowly varying envelope function with the components marked at the Fermi points
as pseudospins ±1 [14]. They contribute to the spectrum of graphene but they have
nothing to do with the real spin. In this context, pseudospin is a superposition
of the two quantum states on the sublattices and is represented in terms of Pauli
matrices.

The analogy between spins and pseudospins is useful only in special circum-
stances, since pseudospins lifetimes are normally short, and the identified degrees
of freedom are often not continuous across sample boundaries. In nuclear physics
pseudospin doublets, proposed 50 years ago to describe the near degeneracy of shell-
model orbitals with non-relativistic quantum numbers, come from the division of
single-particle total angular momentum into pseudo-orbital part and pseudo-spin,
which are used to explain the features of deformed nuclei, identical bands and
the origins of supersymmetry in the shell-model [15]. The degree of freedom of
graphene sublattices can be viewed as a pseudospin and enters the continuum
model of the Dirac equation in the same manner that real spin enters Dirac equa-
tion for the surface states of topological insulators. In the pseudospin language,
the Hamiltonian consists only of a pseudospin-orbit coupling term with an effec-
tive magnetic field that is linear in momentum and points in the same direction
as momentum. The role of spin in topological-insulator surface states is crucial,
and it can be applied equally well to pseudospin in a single-layer graphene. Just
as for spin, we can expect that charge currents in single-layer graphene will be
accompanied by pseudospin currents. Another example of a two-valued degree of
freedom viewed as pseudospin are the two distinct hyperfine states of ultra-cold
atoms in external magnetic field. Such system can mimic magnetic systems of spin
1/2 particles [16].
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1.1 – Spintronics

1.1.2 A review of the main effects

Let us start by considering the spin Hall effect. This phenomenon can arise in
2D electron gases as a spin current flowing perpendicularly to the charge current.
According to the Onsager reciprocal relations the spin Hall effect has its inverse
version, where the spin current driven by electric field creates the charge current in
the perpendicular direction. The direct and inverse spin Hall effects are described
by spin conductivity, as it was done in the weak disorder limit of impurities in [5].
One can distinguish two mechanisms of spin Hall effect, respectively proposed by
D’yakonov and Perel [17] and by Sinova and Murakami independently [7, 18]. The
extrinsic spin Hall effect arises due to the scattering of charge carriers by impurities.
The intrinsic one is induced by the spin-orbit mechanism in the band structure of
the crystal. In the latter case, the electrons accelerate and undergo spin-precession
due to the induced electric field, as for Rashba spin-orbit coupling. This kind of
spin-orbit coupling was proposed firstly for non-centrosymmetric wurtzite semicon-
ductors [19] and later for 2D electron gases [20]. The ordinary spin-orbit interaction
appears as a coupling between the magnetic momentum of a quantum particle and
its spin. Spin-orbit interactions comes as a consequence of the corrections to the
second order Dirac equation for electron in special relativity. The peculiarity of
Rashba spin-orbit interaction is that this kind of interaction is symmetry depen-
dend and exists only in crystals without inversion symmetry. As we describe later,
Rashba spin-orbit coupling is related to the surface-induced asymmetry.

Rashba spin-orbit interaction became quite widespread since it was proposed
to realize spin transistors by Datta and Das in 1990 [21], whose realization depends
on the spin injection from a ferromagnetic electrode in a 2D electron gas and gate
controlled precession angle. Since that, Rashba spin-orbit interaction was detected
in new materials such as metal surfaces, bulk and interfaces materials of semicon-
ductors [22, 23], heavy metals [24] and topological insulators [25]. Moreover, the
effect takes place even in more exotic fields of physics, like with topological states
in the insulators and Majorana fermions [26, 27].

Another fundamental effect in spintronics, the Edelstein or inverse spin-galvanic
effect, was firstly proposed for gyrotropic crystals [28]. In the absence of external
magnetic field, the non-equilibrium generation of a spin polarization is perpendic-
ular to the applied electric field. The Onsager reciprocal of the Edelstein effect,
the spin-galvanic effect, can be observed as the charge current perpendicular to the
spin polarization injected into a non-magnetic material. In semiconductor materi-
als the Edelstein effect can be traced with the help of time-resolved Kerr rotation
or other gyroelectromagnetic effect like Faraday rotation. Both direct and inverse
spin-galvanic effects contain a linear coupling of the polar and axial vector, electric
current and spin polarization respectively. As we mentioned, in solids the spin-orbit
interaction can be extrinsic or intrinsic depending on its origins. In the situation
of broken symmetry, when the two splitted spin states appear due to the intrinsic
spin-orbit effect, the influence of disorder on the latter may slightly change the spin
transport dynamics. Usually, the mechanism of spin relaxation due to disorder ef-
fects can be described within the Dyakonov-Perel mechanism. In case of extrinsic
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spin-orbit interaction, the spin relaxation mechanism may have the spin-free and
spin-dependent contributions, where the latter is referred to as the Elliott-Yafet
theory of spin relaxation. The two mechanisms of spin-orbit coupling together
show up as interesting non-equilibrium dynamics of spin polarization in the in-
verse spin-galvanic effect. The generation of spin polarization in non-magnetic
materials can be applicable for spin-based information processing or controllability
of magnetization.

Both effects, spin Hall effect and Edelstein effect, have been described for "sand-
wich" materials with the asymmetric interfacial Rashba spin-orbit interaction in
[6]. The nonlinear Edelstein effect has been described analitically in the long-time
limit for the 2D electron gas with Rashba spin-orbit coupling without including the
impurity scattering of the electrons [9]. The inverse Edelstein effect was studied
in Ref. [29] and for the two different mechanisms was proposed in Ref. [30]. The
experiment for the In0.04Ga0.96As epilayers reported that the magnitude of the
current-induced spin polarization is smaller for crystal directions corresponding to
larger spin-orbit fields [31] in spite of the theoretical result that gives the opposite
image, the larger spin polarization corresponds to the larger spin-orbit fields.

1.1.3 Methods for detection
Usually magneto-optical techniques such as Kerr or Faraday effect, are most com-
monly used in research for detection spin trasport in semiconductors. These meth-
ods allow to characterize the properties of the materials such as magnetic domain
structure, spin density of states, dynamics of magnetic phase transitions.

Both effects are the result of the off-diagonal components of the dielectrical
tensor. These off-diagonal components give an anisotropic permittivity to the
magneto-optic material, meaning that this permittivity differs in different direc-
tions.

• Kerr effect
This magneto-optical method describes the changes of light reflected from
magnetized surface. The reflected light is characterized by changed polariza-
tion and reflected intensity comparing with the initial incident light. There
are three types of magneto-optical Kerr effect that are polar, longitudinal
and transversal.
Polar. The effect is called polar when the magnetization vector is perpen-
dicular to the reflection surface and parallel to the plane of incidence. To
simplify the analysis in the polar geometry it is usually used near-normal
incidence.
Longitudinal. In the longitudinal effect, the magnetization vector is parallel
to both the reflection surface and the plane of incidence.
Transversal. This configuration is used when the magnetization is perpen-
dicular to the plane of incidence and parallel to the surface. In this case
only a change of reflectivity r is measured, and the last is proportional to the
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component of magnetization that is perpendicular to the plane of incidence
and parallel to the surface. Then depending on where the magnetization
component points relatively the incident plane, we may have the intensity of
the reflected light as a summing or subtraction of Kerr vector and Fresnel
amplitude.

• Faraday effect
This effect describes changes of the transmitted light through a magnetic
material. Faraday effect causes a rotation of the plane of polarization which
is linearly proportional to the component of the magnetic field in the direc-
tion of propagation. It is caused by left and right circularly polarized waves
propagating at partly different speeds. As it is known a linear polarization
can be decomposed into the superposition of two circularly polarized compo-
nents of equal amplitude, with opposite handedness and different phase, the
phase shift effect rotates the orientation of a wave’s linear polarization. The
direction of polarization rotation depends on the properties of the material
through which the light is shone.

1.1.4 Application
• Spin transistor

The first spintronic device based on Rashba spin-orbit coupling was a spin
field-effect transistor proposed by Datta and Das [32]. The implementation
of this transistor relies on spin injection from a ferromagnetic electrode into a
two-dimentional electron gas and, subsequently, on gate controlled precession
angle of the injected electron’s spin.
One advantage over regular transistors is that these spin states can be de-
tected and altered without requiring the application of an electric current.
A second advantage of a spin transistor is that the electron spin is semi-
permanent and can be used to create cost-effective non-volatile solid state
storage that does not require a constant current to operate. It is one of the
technologies being explored for Magnetic Random Access Memory (MRAM) [33].

• Stern-Gerlach spin filter
This kind of a filter is based on a spatial gradient of the effective magnetic
field caused by Rashba spin-orbit coupling. This spatial gradient created a
Stern-Gerlach type of spin separation [34]. Stern-Gerlach spin filter can be
used for detection of electrical spin.

• Spin exchange relaxation-free (SERF) magnetometer
It is a type of magnetometer developed at Princeton University in the early
2000s. Spin polarization detection is still done by polarized rotation of the
light. And it still remains the most efficient and non-demolition technique.
SERF magnetometers measure magnetic fields using lasers and detect the in-
teraction between alkali metal atoms in a vapor and the magnetic field [35].
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The sensitivity of SERF magnetometers is improved in comparison with
the traditional atomic magnetometers by eliminating the dominant cause
of atomic spin decoherence that is created by spin-exchange collisions among
the alkali metal atoms. SERF magnetometers are one of the most sensitive
magnetic field sensors. Furthermore in some cases, they beat the supercon-
ducting quantum interferometric detectors (SQUID) of equivalent size [36].
The magnitude of sensitivity of atomic magnetometers are limited usually by
the number of atoms and their spin coherence lifetime.

1.2 Subject of the thesis
1.2.1 The spin-galvanic effect
First of all, let us give our attention to the symmetries that from now on play a
key role. In quantum mechanics, any energy state E for half-integer spin systems
is degenerate if their Hamiltonian is invariant for reversing of time t → −t, and
this is especially relevant for the ground state. This statement was formulated by
H.A. Kramers in 1930 [37] and is called the Kramers degeneracy theorem or time-
reversal symmetry. Basically, after the time-reversal operation the momentum p
changes its sign, and the same happens to the spin

E(p, ↑) = E(−p, ↓).

Besides, solids can possess a center of symmetry through which, upon space inver-
sion, the system of the crystalline structure shows the inversion symmetry. In that
case, the system is called centrosymmetric and mathematically the eigenenergy E
shows that only momentum p changes the sign, while the spin remains the same

E(p, ↑) = E(−p, ↑).

When both symmetries, time-reversal and space inversion, are present

E(p, ↑) = E(p, ↓)

the two electronic energy bands of a system, as for instance in the case of a two-
dimension free electron gas, would be degenarate for both spins. In the case when
one of the symmetries is absent and

E(p, ↑) /= E(p, ↓),

there is no longer spin degeneracy.
When the symmetry is broken we can observe the splitting of the energy bands,

and the degeneracy is removed. Usually, it happens when there is some perturba-
tion caused by external field, for instance by the Zeeman or Stark effects. However,
working on the two-dimensional electron gas in the wurtzite crystals, Rashba and
Bychkov [20] in 1984 showed that the twofold spin degeneracy is removed due to the
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1.2 – Subject of the thesis

perturbational term caused by the interaction between spin and momentum, even
in the absence of any external field. This kind of spin-orbit interaction between
the electron spin and electron motion linear in momentum, which is strong and
caused by the surface-induced asymmetry in the material, is the so-called Rashba
interaction.

by the dashed arrows in Fig. 1, which result in a current flow. This
means that a current is driven by a homogeneous spin polarization.
Below we describe the observation of such a current.

Phenomenologically, an electric current can be linked by general
symmetry arguments to the electron’s averaged spin S by

ja ¼
g

X
QagSg ð1Þ

where j is an electric current density, Q is a second-rank pseudo-
tensor, and a, g ¼ 1, 2 indicate coordinates. Non-vanishing tensor
components Qag can only exist in non-centrosymmetric systems
belonging to one of the gyrotropic classes6. In zinc-blende-based
heterojunctions with a 2DEG, non-zero components of Qag exist in
contrast to the corresponding bulk crystals7. In our (001)-grown
heterojunctions with the C 2n symmetry only two linearly indepen-
dent components, Q xy and Qyx , are different from zero (xk[11̄0]
and yk[110]) where x and y are cartesian coordinates. Hence, to
observe a spin-polarization-driven current a spin component lying
in the plane of the heterojunctions is required (for example, Sy in
Fig. 2).

To achieve an in-plane spin orientation in experiment one could
either use spin selective contacts8 (see Fig. 2a) or optical orientation9

by using circularly polarized light. Although significant progress
concerning electrical spin injecting has been made recently10–12,
reliable spin-injection into lateral low-dimensional electron sys-
tems—at room temperature—is still a challenge. Furthermore,
electrical spin injection causes, apart from the driving current, a
laterally inhomogeneous spin polarization and hence additional
driving forces for current flow which would hamper the unam-
biguous demonstration of the effect described here. Instead, we use
optical spin orientation, which ensures a homogeneous non-equili-
brium spin polarization and directly proves the spin-galvanic effect.
In this case of exciting electrons from the valence band to the
conduction band the conduction band gets selectively spin-popu-
lated owing to selection rules which allow transitions by circularly
polarized light only if the spin of the electron is changed by ^1. In
addition to this method we have also used circularly polarized
terahertz radiation causing intraband instead of interband exci-
tation. One interesting aspect of employing terahertz radiation is

that only one type of carriers, electrons or holes, is involved. In this
respect, the effect of intraband spin orientation13 is indeed very close
to electrical spin injection.

It has been shown before that irradiation of quantum wells with
circularly polarized light can result in a photocurrent caused by
non-uniformly distributing photoexcited carriers in k-space
according to optical selection rules and energy and momentum
conservation. This is the circular photogalvanic effect observed
recently in a 2DEG14. In order to achieve a uniform distribution in
spin sub-bands and to exclude this circular photogalvanic effect we
use the geometry depicted in Fig. 2b, where the photogalvanic
current is identical to zero for normal incidence of the light14. In this
geometry, optical excitation yields a steady-state spin orientation
S 0z in the z direction with the generation rate Ṡz proportional to the
intensity of the radiation. To obtain an in-plane component of the
spins, necessary for the effect we describe here, a magnetic field, B,
was applied (Fig. 2b). The field perpendicular to both the light-
propagation direction êz and the optically oriented spins rotates the
spins into the plane of the 2DEG owing to Larmor precession. With
the magnetic field oriented along the x axis we obtain a non-
equilibrium spin polarization Sy which reads, after time averaging7:

Sy ¼ 2
qLts’

1þ ðqLtsÞ
2 S0z ð2Þ

where ts ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tskts’
p

and t sk , t s’ are the longitudinal and transverse
electron-spin-relaxation times, qL ¼ gmBBx= �h is the Larmor fre-
quency, g is the in-plane effective electron g-factor, mB is the Bohr
magneton, and S0z ¼ tsk

_Sz is the steady-state electron spin polar-
ization in the absence of the magnetic field. Using the Larmor
precession we prepared the situation sketched in Fig. 1 where the
spin polarization Sy lies in the plane. The denominator in equation
(2) yielding the decay of Sy for qL exceeding the inverse spin-
relaxation time is well known from the Hanle effect15.

The experiments were carried out at room temperature
(T ¼ 293 K) and at liquid helium temperature on n-GaAs/AlGaAs
single quantum wells of 15-nm width and on GaAs single hetero-
junctions. The (001)-oriented samples grown by molecular beam
epitaxy contain 2DEG systems with electron densities ns . 2 £
1011 cm22 and mobilities m above 106 cm2 V21 s21 at T ¼ 4.2 K.
Two pairs of contacts were centred on opposite sample edges
along the directions xk[11̄0] and yk[110] (see inset in Fig. 3).
Complementary measurements were also carried out on p-GaAs
multiple quantum-well structures containing 20 wells of 15-nm
width with hole densities in each well p s ¼ 2 £ 1011 cm22 and m ¼
5 £ 105 cm2 V21 s21:

At room temperature a magnetic field of up to 1 T was generated
by an electromagnet. For the low-temperature measurements the
samples were placed in a cryostat with a split-coil superconducting
magnet yielding a field B of up to 3 T. For optical interband
excitation a continuous-wave Ti:sapphire laser was used at a
wavelength of l ¼ 0.777 mm. In order to extract the spin-galvanic
current the linearly polarized laser beam was transmitted through a

Figure 1 Microscopic origin of the spin-galvanic current in the presence of k-linear terms

in the electron hamiltonian. The jy k x term in the hamiltonian splits the conduction band

into two parabolas with the spin ^1=2 in the y direction. If one spin sub-band is

preferentially occupied, for example, by spin injection (the ðj21=2ly -states shown in the

figure) asymmetric spin-flip scattering results in a current in the x direction. The rate of

spin-flip scattering depends on the value of the initial and final k-vectors. There are four

distinct spin-flip scattering events possible, indicated by the arrows. The transitions

sketched by dashed arrows yield an asymmetric occupation of both sub-bands and hence

a current flow. If, instead of the spin-down sub-band, the spin-up sub-band is

preferentially occupied the current direction is reversed.

Figure 2 Two ways of generating an in-plane spin-polarization. a, The spin injection from

ferromagnetic contacts of magnetization M into the two-dimensional electron gas (2DEG).

b, The optical orientation in combination with an in-plane magnetic field Bx . Spins, initially

aligned along the z direction are rotated into the y direction by Bx .

letters to nature

NATURE | VOL 417 | 9 MAY 2002 | www.nature.com154 © 2002 Macmillan Magazines Ltd

Figure 1.1. Schematic representation of the inverse spin-galvanic effect onto the scheme
of splitting of the two energy sub-bands with the spin | ± 1/2〉y caused by spin-orbit cou-
pling in two-dimensional electron gas. The arrows in the circle are the spin-up and down.
With the grey colour is shown the sub-band that contains higher number of electrons,
spin-down electrons. The arrows indicate the possible spin-flip scattering. The dashed
arrows represent the assymetric distributions of the spin polarization between the two
sub-bands. kx± is the wave vector [38].

The lifted spin degeneracy of the two sub-bands with up and down spins for two-
dimensional electron gas is shown in Figure 1.1 taken from [38]. In the symmetric
case for the two sub-bands when there are equal numbers or spin-up and down,
there would not be any current flow. However in non-symmetric case when one
of the sub-bands has more spin-down electrons, as we can notice from Figure 1.1,
this situation can create an electric current. In other words, a non-equilibrium
distribution of a spin polarization on the energy sub-bands creates an electric
current, which is the spin-galvanic effect. To make non-equilibrium polarization
distribution one can add spin injection using externally driven electric fields, as it
was done with the two methods in [38]: from ferromagnetic contacts into the two-
dimensional electron gas, using optical orientation in combination with an in-plane
magnetic field. This external electric field generated a Zeeman effective magnetic
field proportional to the strength of spin-orbit coupling and the shift of the Fermi
spheric surface. And the shift caused by the external electric field creates the
asymmetry of the occupied states on the two sub-bands. The shift happens in the
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1 – Introduction

direction of motion of electrons perpendicularly to the external electric field.
Spin-galvanic effect and its inverse version mentioned before have been detected

in many materials that have a strong spin-orbit splitting. Both effects can be
explained with the linear dependence formulas

Ji =
∑
j

QijSj , (1.1)

Si =
∑
j

RijJj , (1.2)

which respectively represent the spin-galvanic effect and the inverse spin-galvanic
effect. Here Qij and Rij are pseudo-tensors. As we notice, the coupling is between
the polar and axial vectors, electrical current and spin polarization. In gyroscopic
media some components of the polar and axial vectors, that usually have different
symmetry properties, have the same symmetry transformation. These components,
electrical curent and average spin components, are linearly coupled in gyrotropic
point groups where both vectors transform equivalently under symmetry opera-
tions, as we can see in Figure 1.2 [39].

Feature

Article

Phys. Status Solidi B 251, No. 9 (2014) 1803

Table 1 Correspondence between growth-orientation dependent
x, y, z labels and crystallografic orientations. Note that in (001)-
grown III–V material-based QWs in a valuable number of works
aimed to SIA/BIA spin splitting cubic axes with x′ ‖ [100] and
y′ ‖ [010] are used.

growth plane

zinc-blende and SiGe wurtzite

bulk (001) (110) (111) (113)

x [100] [11̄0] [1̄10] [112̄] [11̄0] [112̄0]
y [010] [110] [001] [1̄10] [332̄] [11̄00]
z [001] [001] [110] [111] [113] [0001]

However, in the system lacking an inversion center, e.g.,
zinc-blende and wurtzite bulk semiconductors and 2DES, the
spin splitting can be present even in zero magnetic field. Such
a splitting is caused by SOI. The corresponding Hamiltonian
HSO is given by a sum of products of the Pauli matrices and
odd combinations of the wavevector components. In bulk III–
V semiconductors belonging to Td point group symmetry it is
described by the cubic in the wavevector k terms introduced
by Dresselhaus [1]:

Hbulk = γ[σxkx(k
2
y
− k2

z
) + σyky(k

2
z
− k2

x
)

+ σzkz(k
2
x
− k2

y
)]. (1)

Here, γ is the only one linearly-independent constant for the
Td point group and x, y, z are cubic axes. Note that here-
after the crystallographic orientation of x, y, z axes for each
considered system is given in Table 1. Despite this splitting
determines the Dyakonov–Perel spin relaxation rate, its value
can not be manipulated by an electric field and is determined
by the constant γ .

In 2D systems, confinement and symmetry lowering
result in a more rich SOI, which is described by new terms
in the Hamiltonian both, linear and cubic, in the electron 2D
wavevector. The corresponding spin–orbit splitting is sensi-
tive to external parameters like electric field, temperature,
structure design, crystallographic orientation, etc. Below we
consider one by one QW structures grown in various direc-
tions. The three point groups D2d , C2v, and Cs are particularly
relevant for zinc-blende structure-based QWs [28, 82, 83].
Hereafter, the Schönflies notation is used to label the point
groups. In the international notation, they are labeled as 4̄2m,
mm2, and m, respectively.

2.1 Rashba/Dresselhaus terms in (001)-grown
zinc-blende structure-based 2DES Quantum well
structures made of III–V semiconductors MBE grown
on (001)-oriented substrates are the most studied low-
dimensional systems. The point symmetry group of these
structures can be either D2d or C2v which both belong the
gyrotropic point groups [84] and, consequently allow linear
in wavevector spin splitting. The D2d symmetry corresponds
to (001)-oriented symmetrical QWs. In such QWs, only BIA
terms may exist. If an additional up-down asymmetry is

Figure 1 (a) Coordinate system used for (001)-grown III–V QWs,
(b) symmetry elements of the C2v point group: mirror planes m1 and
m2 and C2-axis in the QW grown along z ‖ [001]. Arrows in the
drawing (c) show that the reflection in the mirror plane m1 does not
change the sign of both the polar vector component kx and the axial
vector component Sy, demonstrating that a linear coupling between
kx and Sy is allowed under this symmetry operation. This coupling
is also allowed by the other symmetry operations (mirror reflection
by the plane m2 at which both components change their sign and
the C2 rotation axis) of the point group yielding the kxσy terms in
the effective Hamiltonian.

present due to, e.g., nonequivalent interfaces, asymmetric
doping, or electric field applied normally to QW plane, then
the symmetry is reduced to C2v giving rise to SIA. For these
QWs the tensor elements can be conveniently presented in the
coordinate system (xyz) with x ‖ [11̄0], y ‖ [110], z ‖ [001],
see Table 1 and Fig. 1a. The axes x and y lie in the reflection
planes m1 and m2 of both point groups and are perpendicular
to the principal twofold rotation axis C2, see Fig. 1b showing
symmetry elements for QWs of C2v point group.

For D2d point symmetry, the linear in k wavevector spin
splitting is given by

HBIA = β(σxky + σykx), (2)

where β is called the (2D) Dresselhaus constant. It follows
from Eq. (1) that the substantial contribution to β comes from
the bulk spin–orbit coupling, which, taking into account that
for confined electrons 〈kz〉 becomes zero but 〈k2

z
〉 does not,

yields β = −γ〈k2
z
〉. Here, the brackets mean averaging over

the size-quantized motion [2]. It is important to note, that
historically many authors use coordinate axes directed along
cubic axes, i.e., x′ ‖ [100] and y′ ‖ [010]. As in this coordinate
system x′ and y′ are tilted by 45◦ to the mirror planes, the
other spin and k components are mixed and the form of the
Hamiltonian changes. In this case, we have widely used in
the literature form of HBIA = β(σx′kx′ − σy′ky′ ).

In the asymmetric QWs, belonging to C2v point group and
having nonequivalent z and −z directions, SIA gives rise to
additional terms in HSO so that now HSO = HBIA + HSIA. The
form of HBIA remains unchanged, see Eq. (2), and the SIA
term assumes the form

HSIA = α(σxky − σykx) = α(σ × k)z, (3)

where α is called the Rashba constant. Obviously the form of
this term is independent of the orientation of Cartesian coor-
dinates in the plane of the QW. Equations (2) and (3) show
that linear in wavevector band spin splitting is possible for
in-plane spin components only. This fact can be illustrated

www.pss-b.com © 2014 The Authors. Phys. Status Solidi B is published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Figure 1.2. (a) Coordinate system used quantum wells(QWs), (b) symmetry elements
of the C2v point group. Two mirrow planes, m1 and m2 and C2-axis along z. (c) Arrows
indicate the reflection in the mirror plane m1 and show that it does not change the sign
of the polar vector component and the axial vector component, kx and Sy respectively,
which allows the coupling between them under this symmetry operation [39].

In this case, the linear coupling between polar and axial vectors has been proved
even experimentally. The two pseudotensors Qij and Rij can be in fact measured
experimentally. They can be decomposed into Rashba spin-orbit coupling and
Dresselhaus, similar to the first one but occurring in the bulk of the material, and
measured experimentally as it was done in [39].
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1.2 – Subject of the thesis

1.2.2 The spin-galvanic effect in quantum wells
The effect was firstly proposed by Ivchenko and Pikus in Ref. [28] in 1978. Later it
was theoretically explained by Edelstein [40] for a two-dimensional electron gas with
Rashba spin-orbit coupling and in [30]. The first experimental measurements of the
inverse spin-galvanic effect were carried out in the semiconductor heterostructures
as it was done in [41] by observing the change in the rotation rate of the plane of
light polarization in Te crystal. Besides, the experiments with the spin-galvanic
effect in quantum wells were carried out by Ganichev in Ref. [38, 42], where they
used optical spin orientation perpendicular to a quantum well and showed that
homogeneous non-equlibrium spin-polarization in semiconductor heterostructures
results in an electric current. In practice the results can be measured by optical
methods like Faraday or Kerr methods as we mentioned in subsection (1.1.3).

The spin-pumping technique for measuring the effects at interfaces was used for
Bi/Ag Rashba interface to inject a spin current from a NiFe layer into a Bi/Ag
bilayer [43]. The pump-probe technique in semiconductor epilayers was used in [31,
44], where the inverse spin-galvanic effect and the spin-orbit splitting along the
crystallographic axes [1, 1] and [1, −1] were measured . The results on the bulk
epilayers [44] show a negative differential relationship between the magnitude of the
inverse spin-galvanic effect and that of spin-orbit splitting, whereas the theoretical
results explains qualitatively such effect only in two-dimensional electron gas [45].
Also, in [31] the authors measured the magnitude and direction of the inverse
spin-galvanic effect and of the spin-orbit splitting in InGaAs, as a function of the
in-plane electric and magnetic fields in the experiment with the cross patterns and
four electrical contacts on the GaAs substrate (see Figure 1.3). By varying the
external magnetic field also the internal one was found to change, while remaining
in extrema along [1, 1] and [1, −1]. The experimental results showed that the
inverse spin-galvanic effect in InGaAs epilayers is stronger when the internal spin-
orbit coupling field is smaller and vice versa, in contrast to common understanding.

After this unexpected result, we desire to explain these recent fundings con-
cerning the inverse spin-galvanic effect in InGaAs epilayers. To this purpose we
consider various forms of the frequency-dependent inverse spin galvanic effect in
semiconductor quantum wells and epilayers. We take into account, besides the
linear spin-orbit coupling, also the cubic term in the electron momentum spin-
orbit coupling in the Rashba and Dresselhaus forms, concentrating on the inverse
spin-galvanic effect.

1.2.3 The spin-galvanic effect in cold gases
Another possibility for studying the spin-galvanic effect are ultracold atomic sys-
tems, that are the "clean" systems and avoid problem with disorder. However, for
an atomic system the spin-orbit interaction does not exist naturally as it was in the
2D electron gas. Hence, the first problem that we are facing is how to create Rashba
spin-orbit interaction for cold atomic systems. Experimentally, the difficulty is in
achieving a temperature as low as 0.1-10 µK. The first solution to synthesize a

9



1 – Introduction

HSO ¼ ðαky þ βkxÞσx − ðαkx þ βkyÞσy; (1)

where α represents the strength of the SIA-like field and β
represents the strength of the BIA-like field. It is observed
that β > 0 due to the known sign of the biaxial strain
coefficient. On the other hand, the uniaxial strain compo-
nent is inhomogeneous, and the sign of α changes across
the different samples studied from the wafer. We exploit
this inhomogeneity to obtain samples from the same wafer
that have different ratios of α=β. Figure 1(c) displays the
total SO field for α=β ¼ 2. The extremum SO fields occur
for k along [110] and ½11̄0�. The four-contact pattern allows
for continuous tuning between these extremes.
The experimental geometry is shown in Fig. 1(b). An

external electromagnet provides an applied magnetic field.
Samples are mounted in a liquid helium flow cryostat on a
rotation stage that allows for orientation of the magnetic
field to an angle θ with respect to the [100] crystal axis (x̂).
The voltages applied to the four contacts determine the
magnitude and orientation (ϕ) of the electric field. In this
way, current-induced spin polarization and the spin-orbit
fields can be measured while the external electric and
magnetic field directions are independently varied along
any direction in the (001) plane.
Measurements of the spin-orbit field are conducted by

using a pump-probe procedure [17]. A mode-locked Ti:

sapphire laser tuned to the band edge (λ ¼ 845 nm) is
split into pump and probe pulses. The circularly polarized
pump excites spin-polarized carriers into the conduction
band according to the optical selection rules [20]. A two-
axis steering mirror in the pump path allows for spatial
positioning of the pump-induced spin packet. A time-
delayed (Δt ¼ 13 ns) and spatially separated linearly
polarized probe pulse undergoes optical Kerr rotation
(KR) [Fig. 1(a)], the angle of which is proportional to
the ẑ component of the spin polarization [21] which will be
presented throughout in units of μrad. We estimate that
a Kerr rotation angle of 1 μ rad corresponds to a
degree of polarization of ∼1 × 10−4 [6]. The KR of the
probe pulse is described by

θK ¼ θop cos

�
gμBΔt
ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBext þ B∥Þ2 þ B2⊥

q �
; (2)

where μB is the Bohr magneton, ℏ is the reduced Planck’s
constant, g is the electron g factor, θop is the KR amplitude,
and B⊥ and B∥ are the components of the SO field
perpendicular and parallel to Bext, respectively.
Figure 2(a) shows a set of spin-orbit field measurements

for θ ¼ ϕ ¼ 15∘ at several voltages. For samples A and B, ϕ
is varied from −45∘ to þ45∘. We orient k∥Bext to extract
the components of Bint parallel and perpendicular to k. The
drift velocity (vd) of the spin packet is determined for each
applied voltage from the pump-probe spatial separation (xc)
at the maximum overlap amplitude [Fig. 2(b)]. The SO field
components as a function of vd [Fig. 2(e)] are extracted from
the magnitude of B⊥ [Fig. 2(c)] and B∥ [Fig. 2(d)] evaluated
at xc. We find that the SO field is proportional to the electron
drift velocity and use this proportionality constant (κ) to
characterize the strength of the SO field. The magnitude
and direction of the spin-orbit field are plotted in Figs. 2(f)
and 2(g), respectively. Lines are fits to the total SO field
described by Eq. (1). The deviation from the expected curve
may be due to an additional strain axis arising from strain
relaxation as the epilayer is grown beyond the critical
thickness. This underscores the importance of directly
measuring the spin-orbit field for each momentum direction
for comparison with the magnitude of current-induced spin
polarization.
We describe current-induced spin polarization phenom-

enologically by assuming a spin-dependent relaxation rate:

Γ↓ð↑Þ ¼ Γþ ð−Þγ; (3)

where Γ is the average spin relaxation rate and γ represents
the difference in scattering rates between up and down
spins. By using the semiclassical Boltzmann transport
equation [13] assuming a steady-state conduction band
population, the time dependence of the spin polarization is
described as follows:

∂S⃗
∂t ¼ −Γ

↔
· S⃗þ Ω⃗ × S⃗þ γ⃗; (4)

(a) (b)

(c)

(d)

FIG. 1 (color online). (a) InGaAs epilayer (blue) is etched into
cross patterns with four electrical contacts (orange) on the GaAs
substrate (gray). Kerr rotation measures the component of spin
polarization along the laser axis (ẑ). (b) Voltages applied to the

contacts determine the electron drift momentum k⃗, at angle ϕwith
respect to the [100] crystal direction. B⃗ext is oriented at angle θ by
rotating the cryostat. (c) Total SO field as a function of k⃗ from
SIA and BIA components with relative strength α=β ¼ 2 and
α > 0. (d) The SO field B⃗int makes an angle ξ with respect to the
external magnetic field B⃗ext. The steady-state in-plane spin
polarization S⃗xy is shifted from B⃗int by angle ζ. The measured

CISP is maximized when ζ þ ξ ¼ 90∘. We take γ⃗ ∥ B⃗int.

PRL 112, 056601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

7 FEBRUARY 2014

056601-2

Figure 1.3. (a) InGaAs epilayer (blue) is etched into cross patterns with four electrical
contacts (orange) on the GaAs substrate (gray). Kerr rotation measures the component
of spin polarization along the laser axis ez. (b) Voltages applied to the contacts determine
the electron drift momentum ~k at angle φ with respect to the [100] crystal direction. Bext
is oriented at angle θ by rotating the cryostat. (c) Total spin-orbit field as a function
of ~k from structure and bulk inversion asymmetries components with relative strength
α/β = 2 and α > 0. (d) The spin-orbit field Bint makes an angle ξ with respect to the
external magnetic field Bext. The steady-state in-plane spin polarization Sxy is shifted
from Bint by angle ζ. The measured inverse spin-galvanic effect is maximized when
ξ + ζ = π/2. The figure is taken from [31]

magnetic field for neutral atoms was experimentally demonstrated in [46]. Such
light-matter interaction can change the phase of the atomic wave function similarly
to the Aharonov-Bohm effect, as for a charged particle in the presence of a mag-
netic field. So, by inducing artificially gauge potential with different symmetry, we
are able to create a synthetic magnetic field [47, 48]. Creation of artificial gauge
fields in quantum gases gives a series of advantages. First, these gauge fields can be
controlled externally, so that they depend on coupling parameters between atoms
and light. Moreover a real field cannot influence the synthetic one in any way since
the last does not have dynamical degrees of freedom.

Recently it was proposed to create Rashba spin-orbit interaction via lasers of
Rabi frequencies as Raman coupling, experimentally with neutral atomic Bose-
Einstein condensate [49] and theoretically [50] with two-dimensional Fermi atomic
gas [51, 52, 53]. The coupling is provided between the motion of the atom and its
hyperfine spin states. In cold atoms these two hyperfine spin states form the two
1/2 pseudospin states. Here, pseudospin is described in terms of Pauli matrixes
for 1/2 spin and stands out as a coherent superposition of two quantum states.

The spin Hall effect has been already investigated theoretically [54] and exper-
imentally in cold atomic system [55, 49], where atoms show the spin-dependent
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1.2 – Subject of the thesis

trajectory separation. This separation leads to a spin current in the direction per-
pendicular to the effective electric field and gauge field. Nonetheless, the inverse-
spin galvanic effect was not considered yet in the literature.

Thus, in this thesis we build on very recent results by Vignale and Tokatly [9], on
non-linear effects in inverse SGE, to discuss the applicability with anisotropic spin-
orbit couplings with a Zeeman field. We demonstrate that adding this additional
term still allows for an analytical solution of the model, and its phenomenology
can be fully analyzed. In particular, we investigate the dynamics of the spins in
the adiabatic regime with Rashba spin-orbit coupling. To investigate the spin-
dependent evolution we directly solve the Schrödinger equation in terms of spinors
and present the analytical solutions. In addition, we describe the average non-
equilibrium spin polarization and tunability of the system for different values of
the two Rashba coefficients. And then we compare the result with the adiabatically-
approximated spin polarization.
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Chapter 2

Spin-orbit coupling in solid
state systems

In the general case of semiconductors the inversion and time-reversal symmetries
lead to the spin degeneracy of electron and hole states. This fact implies a twofold
degeneracy of single-particle energies. However, in materials with broken inversion
symmetry the spin-degeneracy is removed and we obtain the two branches of energy
dispersion. In some materials like heterostructures and quasi-2D quantum wells
in the absence of magnetic field the spin splitting can be a result of bulk and
structure inversion asymmetry and low microscopic symmetry at the interface.
Structure inversion asymmetry, considered a reason for Rashba effect, contributes
to a spin splitting in the presence of macroscopic and microscopic electric field
from the atoms, while bulk inversion asymmetry is due to the microscopic spin-
orbit interaction.

Below we show the two main types of spin-orbit interaction in solid systems,
where they exist and the mechanisms that cause the interaction.

Table 2.1. BIA: Bulk-Induced-Assymetry; SIA: Surface-Induced-Asymmetry.

Symmentry- Exists in crystals Mechanism

-independent of all types stem from SOI in atomic orbitals

-dependent no inversion symmetry
Dresselhaus interaction in bulk (BIA)

Bychkov-Rashba on surface (SIA)

Symmetry-dependent spin-orbit interaction often can be observed in non-centrosymmetric
crystals, as it was done in Ref. [20].
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2 – Spin-orbit coupling in solid state systems

2.1 Derivation from Dirac equation
In solids spin-orbit coupling leads to the well-known spin-splitting of electron states.
Here, spin-orbit interaction plays a key role since it strongly affects the atomic spec-
tra [56]. It appears in the Hamiltonian from the non-relativistic approximation in
the Dirac equation with an additional term that represents the spin-orbit inter-
action [57]. To make the wave equation satisfy the postulates of both quantum
mechanics and relativistic theory it is required to take the root of the Hamiltonian

H =
√

p2 c2 +m2 c4, (2.1)
where c is the speed of light, m is the effective mass of the quantum particle, and
the root must be linear in momentum p. This feature will preserve the symmetries
in time and space in the equations [58]. Dirac proposed in 1928 the following
equation

H = (αp)c+mc2 β, (2.2)
where the unknown quantities β and α must be found from the condition

p2c2 +m2c4 = ((αp)c+ βmc2)2

or
p2 c2 +m2 c4 = (αp)2 c2 + β2m2 c4 + (αβ + β α) pmc3.

Since this must hold true for any p,

p2 = (αp)2,

β2 = 1,
α β + β α = 0.

It follows that the α and β must be operators, i.e. matrices. Eventually the Dirac
equation looks like the Schrödinger equation and, specifically, it is invariant under
Lorenz transformations

i ~
∂ψ

∂t
= ((α̂p̂) c+ β̂ m c2)ψ. (2.3)

Then we choose the matrix γ̂µ (µ = 0, 1, 2, 3) with the components γ̂0 = β̂ and
γ̂i = β̂α̂i (i = 1,2,3) and coefficients

β̂ =

1 0
0 −1

 , α̂ =

0 σ

σ 0

 , (2.4)

where σ denotes Pauli matrices.
Now let us consider a particle with charge e in electromagnetic field and poten-

tial A and V, and make the expansion for 1/c2(
(α̂, p̂− eA/c) c+ e V + β̂ m c2

)
ψ = Eψ, (2.5)
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2.1 – Derivation from Dirac equation

with

ψ =

φ
χ

 ,

ˆ
(φ† φ+ χ† χ) = 1. (2.6)

After the expansion we have(
p̂− eA/c

2m + e V + ∆1 Ĥ + ∆2 Ĥ

)
ψ = E

′
ψ, (2.7)

where ∆1 Ĥ is the correction of the first-order expansion and ∆2 Ĥ is the correction
of the second-order expansion

∆2 Ĥ = − (σ̂p̂)
2m

E
′ − eV
2mc2

(σ̂p̂) + e

8m2c2
(p̂2V − V p̂2).

After the action of the operator p̂ we have

∆2 Ĥ = − i~
4m2c2

e(σ̂∇V ) (σ̂p̂)− E
′ − eV
2mc2

(σ̂p̂)2

2m − e~2

8m2c2
∇2V − i e ~

4m2 c2
(∇V p̂).

Then we can make the substitution

(E
′
− e V )p̂2 = p̂4

2m − e~
2∇2 V − 2ie~ (∇V p̂).

Finaly, the second correction to the Dirac equation is

∆2 Ĥ = − p̂4

8m3c2
+ ~ e

4m2c2
(σ̂[∇V p̂]) + e~2

8m2c2
∇2 V.

The first term in this expression is a correction to the dependence of the velocity
on the mass of a particle. The second term corresponds to the spin-orbit coupling,
that describes the interaction between the internal orbital momentum of an electron
with the magnetic field, generated by the core which is moving around it in this
reference system

HSO = − ~
4m2

0c
2σ · p× (∇V0), (2.8)

being ~ the Planck’s constant, m0 the mass of a free electron, c the speed of light,
p = −i~∇ the momentum operator, V0 the Coulomb potential of the atomic core
and σ = (σx, σy, σz) the vector of Pauli matrices. In solid-state physics of crystals
the motion of electrons is described by energy bands En(k), with band index n
and wave vector (k). In such systems the spin-orbit coupling affects the energy
band structure En(k) as well.

15



2 – Spin-orbit coupling in solid state systems

2.2 Kane model
In solids, when one wants to describe the motion of charge carriers taking into
account impurities due to disorder, external fields and spin-orbit interaction, the
k ·p method for the 8× 8 Kane model described in [59] satisfies the requirements.
In this case the p-like bands are partially split by spin-orbit coupling into four
degenerate levels: the light and heavy hole bands and two split-off levels. For
materials with large energy gaps between the valence and the conduction bands,
the effective Hamiltonian reduces to a 2×2 matrix and the solution is a conduction
band spinor. This model explains explicitly how the spin-orbit coupling appears
in solids.

All semiconductors with inversion-asymmetric zinc blende structure can be de-
scribed within the extended Kane model with up to 14 × 14 matrix Hamiltonian
using the second order perturbation theory. In this model the term with linear
order in momentum in the conduction band and structure inversion asymmetry is
presented by the Rashba term. The Rashba model with such spin splitting of 2D
electron states in conduction band can be solved fully analytically by the Lowding
partitioning [60] for the quasi-bulk Hamiltoninan and for the subband Hamilto-
nian. The same model in valence band is more complicated due to the fourfold
degeneracy, and it has been evaluated numerically in the Luttinger model. The
third mechanism for spin splitting in semiconductors, interface contributions, has
been studied for the heterointerfaces in quasi-2D systems.

2.3 Effective spin-orbit coupling in Kane model
The k ·p model gives the most accurate description of electronic band structure. In
Ref. [61] this method was used for III-V semiconductors from 40-band tight-binding
model.

The derivation of the k · p model starts with the Schödinder equation for the
Bloch functions in the microscopic lattice-periodic crystal potential V0(r) [60]

[
p2

2m0
+ V0(r)

]
eik·r Uνk(r) = Eν(k)eik·r Uνk(r), (2.9)

where m0 is the free-electron mass and ν is the band index. The Bloch functions
are eik·r Uνk(r) = eik·r〈r|νk〉, where Uνk(r) is the periodic function of the lattice.
Including the effect of the kinetic-energy on the plane wave part of the Bloch
functions and spin-orbit interaction derived from the Dirac equation, we have that
the lattice-periodic parts of the Bloch functions become the two-component spinors
|nk〉. In this case the modified Schrödinger equation is

Heff |nk〉 =
[
p2

2m0
+ V0(r) + ~2k2

2m0
+ ~
m0

k · π + ~
4m2

0c
2 p · σ × (∇V0)

]
|nk〉 = En(k) |nk〉,

(2.10)
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where

π = p+ ~
4m0c2

σ ×∇V0

with Pauli matrices σ = (σx, σy, σz). If we fix the wave vector k0, the set of
functions |nk0〉 forms a complete orthonormal basis for the Eqs. (2.10) and we can
expand |nk〉 in terms of band Bloch functions as

|nk〉 =
∑

ν′ , σ′=↑,↓

cn ν′ σ′ (k) |ν
′
σ
′
〉, (2.11)

where
|ν
′
σ
′
〉 = |ν

′
0〉 ⊗ |σ

′
〉,

and the set of fuctions |ν′0〉 form the complete and orthonormal basis similar to
Eq. (2.10), but without spin-orbit terms from the Dirac equation. This set was
chosen as a basis for the eigenvectors of the Hamiltonian without spin-orbit terms
since spin-orbit interactions can be treated as small perturbations [60].

Multiplying Eq. (2.10) by 〈νσ|, and using the eigenvalue equation for |νσ〉, we
get the equation for the dispersion En(k)

∑
ν′ ,σ′

(
[Eν′ (0) + ~2k2

2m0
] δνν′ δσσ′ + ~

m0
k ·Pνν′

σσ′
+ ∆νν′

σσ′

)
cn ν′σ′(k) = En(k) cn νσ(k),

(2.12)
where

Pνν′

σσ′
= 〈νσ|π|ν′σ′〉,

∆νν′

σσ′
= ~

4m2
0c

2 〈νσ|[p · σ × (∇V0)]|ν′σ′〉.

In the dispersion relation in Eq. (2.12) the off-diagonal terms ~
m0

k ·Pνν′

σσ′
rep-

resent the mixing of the band edge states |ν 0〉, which become stronger if the wave
vector k increases and the band edges Eν(0) get closer in energy [60]. The matrix
elements of ∆νν′

σσ′
represent a splitting of the degenerate energy levels Eν(k), also

when k = 0.
The k·p method and the spin-orbit interaction are more carefully taken into ac-

count when we considerN bands. In this case, the Hamiltonian contains some addi-
tional terms with higher-order wave vector k. In principle the extended Kane model
takes into account the spin-orbit interactions between the bands Γc8, Γc7, Γc6, Γv8 and
Γv7, while interactions with the other bands are described in a second-order pertur-
bation theory (see Figure 2.1).

The Hamiltonian of the extended Kane model is a 14× 14 matrix composed in
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Figure 2.1. Schematic band structure for the 14× 14 extended Kane model [60].

blocks

H14×14 =



H8c8c H8c7c H8c6c H8c8v H8c7v

H7c8c H7c7c H7c6c H7c8v H7c7v

H6c8c H6c7c H6c6c H6c8v H6c7v

H8v8c H8v7c H8v6c H8v8v H8v7v

H7v8c H7v7c H7v6c H7v8v H7v7v


(2.13)

The matrix elements of the momentum and spin-orbit interaction that are also
shown in Figure 2.1, are

P = ~
m0
〈S |px|X〉 , (2.14)

P ′ = ~
m0
〈S |px|X ′〉 , (2.15)

Q = ~
m0
〈X |py|Z ′〉 , (2.16)

∆0 = − 3i~
4m2

0c
2

〈
X
∣∣∣[(∇V0)× p]y

∣∣∣Z〉 , (2.17)

∆′0 = − 3i~
4m2

0c
2

〈
X ′
∣∣∣[(∇V0)× p]y

∣∣∣Z〉 , (2.18)

∆− = − 3i~
4m2

0c
2

〈
X
∣∣∣[(∇V0)× p]y

∣∣∣Z ′〉 , (2.19)

18



2.3 – Effective spin-orbit coupling in Kane model

where (X, Y, Z) correspond to the topmost bonding p-like valence band states
and the (X ′, Y ′, and Z ′) states are the antibonding s-like and p-like states in the
lowest conduction bands [60]. Besides, the real matrix elements are P, Q, ∆0, ∆′0,
the other two elements P ′ and ∆− are imaginary. The elements ∆0 and ∆′0 can
be considered as spin-orbit splitting between bands Γv8 and Γv7, Γc8 and Γc7, respec-
tively.

Summary
In this chapter I considered the various types of spin-orbit coupling in solid-state
systems. In particular, I derived the spin-orbit coupling in the Dirac equation as
a correction to the second-order expansion. Besides, I described the effective spin-
orbit coupling in Kane’s model. The results of this chapter will be used for further
calculations in the next chapters.
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Chapter 3

Quasi-classical formalism

In 2D electron gases with spin-orbit coupling, a spin current and spin polarization
can be evaluated as a response to the external field. To calculate the response
of a system to an external perturbation we can use the Green’s function to de-
rive the Kubo formula for various spin transport coefficients and, finally, to use
the impurity diagrammatic technique for disordered electron systems [6]. There is
however another way to obtain information about the spin polarization dynamics,
i.e. the quasi-classical formalism in the Keldysh representation [8, 45, 62], which
simplifies the complex non-equilibrium problem to the standard equilibrium prob-
lems with perturbative techniques. The Keldysh formalism is a general method for
describing the system and its quantum mechanical evolution when the system is
in a non-equilibrium state due to the presence of time varying fields [10, 63].

In this chapter I will consider a two-dimensional electron gas, one of the most
studied systems in spintronics, to study in particular the inverse-spin galvanic
effect. To this aim, I will briefly derive the Eilenberger equation using the Keldysh
Green’s function technique. The next chapter, where I am going to present my
original contribution, will start from the results of the current chapter.

3.1 Keldysh formalism
The non-equilibrium Green’s functions are the perfect tool to study perturbations
in non-equilibrium systems through closed time path diagrams. Since we would
like to have physical quantities in real time, below we will discuss an approach
that is specifically tailored for a real-time formalism. In the general case, the
non-equilibrium Green’s function can be defined as

Gσσ′ (x1, x2) = −i
〈
Ttψσ (x1)ψ†σ′ (x2)

〉
. (3.1)

Here the times t1 and t2 correspond to the different parts of the contour in (Fig-
ure 3.1), i.e. the upper and lower ones. The indices of the Green’s functions are
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3 – Quasi-classical formalism

related to the specific contour times: G12 means that t1 belongs to the upper con-
tour and t2 to the lower one, while G11 or G22 mean that both times belong to
the same contour, whether upper or lower. Hence, the Green’s functions define the
2× 2 configuration matrix

Ĝ =

 Ĝ11 Ĝ12

Ĝ21 Ĝ22

 . (3.2)

Now let us define the generalized Green’s functions as

Ĝ11 = −i
{
θ (t1 − t2)

〈
ψ (x1)ψ† (x2)

〉
− θ (t2 − t1)

〈
ψ† (x2)ψ (x1)

〉}
,

Ĝ12 = i
〈
ψ† (x2)ψ (x1)

〉
,

Ĝ21 = −i
〈
ψ (x1)ψ† (x2)

〉
,

Ĝ22 = −i
{
θ (t2 − t1)

〈
ψ (x1)ψ† (x2)

〉
− θ (t1 − t2)

〈
ψ† (x2)ψ (x1)

〉}
.

(3.3)

where ψ (x1) = ψ (r1, t1) and ψ (x2) = ψ (r2, t2), and ψ is the Heisenberg represen-
tation of the wave vector. Performing the Keldysh rotation

Ĝ→ 1√
2

[σ̂0 − iσ̂2] σ̂3 Ĝ
1√
2

[σ̂0 + iσ̂2] , (3.4)

the Keldysh Green’s function becomes

Ĝ = 1
2

 Ĝ11 − Ĝ12 + Ĝ21 − Ĝ22 Ĝ11 + Ĝ12 + Ĝ21 + Ĝ22

Ĝ11 − Ĝ12 − Ĝ21 + Ĝ22 Ĝ11 + Ĝ12 − Ĝ21 − Ĝ22

 . (3.5)

The components of the Green’s function are connected through the relation

Ĝ11 + Ĝ22 = Ĝ12 − Ĝ21, (3.6)
so that only three components are independent and we can rewrite Eq. (3.5) as

Ĝ =

 Ĝ11 − Ĝ12 Ĝ12 + Ĝ21

0 Ĝ11 − Ĝ21

 =

 ĜR ĜK

0 ĜA

 , (3.7)

with

ĜR(1,2) = −iθ (t1 − t2)
〈{
ψ (x1) , ψ† (x2)

}〉
,

ĜA(1,2) = iθ (t2 − t1)
〈{
ψ (x1) , ψ† (x2)

}〉
,

ĜK(1,2) = i
〈[
ψ (x1) , ψ† (x2)

]〉
.

(3.8)

Here, the last component ĜK is the Keldysh component, while the first two ĜR, ĜA
are, respectively, the retarded and advanced components.
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3.2 – Eilenberger equation

In order to illustrate the method, we apply it briefly to the case of the Fermi
gas, whose field operator is described by

ψσ(x) = 1√
V

∑
k

eik·re−iε(k)tckσ, (3.9)

where ckσ and c†kσ are the creation and annihilation operators for the spin σ, re-
spectively, we can write the anticommutator as

〈{
ψ (x1) , ψ† (x2)

}〉
= 1
V

∑
k1k2

eik1·r1−ik2·r2e−iε(k1)t1−iε(k2)t2
〈{
ck1σ1 , c

†
k2σ2

}〉
= 1
V

∑
kσ

eik·(r1−r2)e−iε(k)(t1−t2)

(3.10)
Now let us make a Fourier transform in space and time as

G (r1 − r2, t1 − t2) = 1
V

∑
k

eik·(r1−r2)
ˆ ∞
−∞

dω

2π e
−iω(t1−t2)G(k, ω), (3.11)

1
V

∑
k

≡
ˆ

dk
(2π~)d (3.12)

so we find the retarded and advanced Green’s functions for the Fermi gas as

GR/A(k, ω) = 1
~ω − ε(k)± i0+ (3.13)

For the component GK making the same steps we have〈[
ψ(1), ψ†(2)

]〉
= δσ1σ2δk1k2(1− 2f(ε(k))). (3.14)

And after Fourier transform for Keldysh Green function we have

GK(k, ω) =
[
GR(k, ω)−GA(k, ω)

]
(1− 2f(ε(k))) (3.15)

= −2πiδ(ω − ε(k))(1− 2f(ε(k))), (3.16)

where f(ε(k)) = tanh ε(k)
2T . It is worth to say that the retarded and advanced

Green functions carry an information about the spectrum of the excitations and
the Keldysh Green function can tell about statistical occupation.

3.2 Eilenberger equation
Here we provide the derivation of the Eilenberger equation following Ref. [63]. To
derive the quantum kinetic equation let us write the left-right subtracted Dyson
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3 – Quasi-classical formalism

Figure 3.1. Closed real-time contour [60].

equation as [
G−1

0 − Σ ⊗, G
]
− = 0, (3.17)

where self-energy Σ is

Σ =

 ΣR ΣK

0 ΣA

 (3.18)

The matrix multiplication is

[A ⊗, B]− = A⊗B −B ⊗A, [A ⊗, B]+ = A⊗B +B ⊗A. (3.19)

Then we find the kinetic equation for a general case from Eq. (3.17)

[
G−1

0 −<eΣ ⊗, GK]
−

[
ΣK ⊗, <eG

]
− = i

2
[
ΣK ⊗, A

]
+ −

i

2
[
Γ ⊗, GK

]
+ , (3.20)

where the spectral weight functions for the Green function and self-energy are

A (1,1′) ≡ i
(
GR (1,1′)−GA (1,1′)

)
, (3.21)

<eG (1,1′) ≡ 1
2
(
GR (1,1′) +GA (1,1′)

)
,

Γ (1,1′) ≡ i
(
ΣR (1,1′)− ΣA (1,1′)

)
,

<eΣ (1,1′) ≡ 1
2
(
ΣR (1,1′) + ΣA (1,1′)

)
.

To have a form of quantum kinetic equation that will be similar to the form of
classic kinetic equation let us introduce the Wigner coordinates as follows

R = x1 + x1′

2 , r = x1 − x1′ , (3.22)

and time variables

T = t1 + t1′

2 , t = t1 − t1′ . (3.23)

24



3.2 – Eilenberger equation

And the Dyson equation becomes

(i~∂T + ~2

m
∂r∂R)G(R, T ; r, t)− [Σ(R, T ; r, t), G(R, T ; r, t)] = 0. (3.24)

Here the pair of variables (r, t) describes the microscopic scale properties coming
from the characteristics of the system, the other pair of variables (R, T ) describes
the macroscopic scale properties that come from the non-equilibrium characteristics
of the state in the presense of external fields. Then for a Green function we
introduce the Fourier transform with respect to the relative coordinates as

G(X, p) ≡
ˆ
dx e−ipxG(X + x/2, X − x/2), (3.25)

where we used X, x as

X = (T,R) , x = (t, r), (3.26)
and p, xp as

p = (E,p) , xp = −Et+ p · r. (3.27)
Now the convolution C = A⊗B in the Wigner coordinates becomes

(A⊗B)(X, p) = e
i
2 (∂AX∂Bp −∂Ap ∂BX)A(X, p)B(X, p), (3.28)

where

∂AX = (−∂T ,∇R) , ∂Ap = (−∂E ,∇p) (3.29)

and

∂AX∂
B
p ≡ −∂

A

∂T
∂B

∂E + ∂A

∂R ·
∂B

∂p . (3.30)

The quantities with Wigner coordinates will be denoted as C̃(X,x) ≡ C(X +
x/2, X − x/2) = C (x1, x1′). And we write the convolution as

C (x1, x1′) ≡
ˆ
dx2A (x1, x2)B (x2, x1′) , (3.31)

putting it in the Wigner coordinates as

C̃(X,x) ≡
ˆ
dx2A (X + x/2, x2)B (x2, X − x/2) (3.32)

=
ˆ
dx2Ã

(
1
2 (X + x/2 + x2) , X + x/2− x2

)
× B̃

(
1
2 (x2 +X − x/2) , x2 − (X − x/2)

)
.
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3 – Quasi-classical formalism

Then setting x2 → x2 − (X − x/2) we rewrite the previous equation as

C̃(X,x) =
ˆ
dx2Ã (X + x2/2, x− x2) B̃ (X − x/2 + x2/2, x2) , (3.33)

and then in the Wigner coordinates we have

C(X, p) =
ˆ
dxe−ixp

ˆ
dx2Ã (X + x2/2, x− x2) B̃ (X − x/2 + x2/2, x2) (3.34)

=
ˆ
dxe−ixp

ˆ
dx2

ˆ
dp′

(2π)4 e
−ip′(x−x2)A (X + x2/2, p′)

×
ˆ

dp′′

(2π)4 e
−ip′′x2B (X − x/2 + x2/2, p′′) .

Then we can make an expansion and partial integration and we have

(A⊗B)(X, p) = A(X, p)B(X, p) + i

2 (∂XA(X, p)) ∂pB(X, p) (3.35)

− i

2 (∂pA(X, p)) ∂XB(X, p),

that is what we needed, the computed Eq. (3.28). Then the G−1
0 from Eq. (3.17)

becomes

G−1
0 (E,p,R, T ) = E − ξ − V (R, T ), (3.36)

with the applied potential V (R, T ), the single-particle energy ξ = ε − µ with the
chemical potential µ and dispersion ε = p2/2m. Now we define the quasi-classical
Green’s function making the ξ-integration [63]

ǧ (R, p̂, t1, t1′) = i

π

ˆ
dξǦ (R,p, t1, t1′) . (3.37)

This ξ-integration can be explained with the following scheme with the deforming
integration countour as in Figure 3.2. According to Figure 3.2 the ξ-integration

becomes ˆ +∞

−∞
dξ · · · = 1

2

ˆ
Clow

dξ · · ·+ 1
2

ˆ
Chigh

dξ . . . (3.38)

As we can notice the ξ-integration is separated into two contours, low and high
energy contribution. The one with low energy contribution is crucial for the kinetic
equation, because the upper one represents the high energy contribution which do
not contribute. The latter does not depend on the non-equilibrium state and is con-
stant. Thus, the high energy contribution vanishes from the left-right substracted
Dyson equation
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3.2 – Eilenberger equation

Figure 3.2. Splitting in high- and low-energy contributions [63].

i(∂t1 + ∂t1′ + p
m
· ∇R)G(R,p; t1, t1′) =

ˆ
dt2 [Σ(R,p; t1, t2)G(R,p; t2, t1′)

−G(R,p; t1, t2) Σ(R,p; t2, t1′)] (3.39)

and we can present physical quantities in terms of the quasi-classical Green’s fuction
gK (R, p̂, t1, t1′) as

[
∂̃t1 + ∂̃t1′ + vF p̂ · ∂̃R

]
ǧ(R, p̂, t1, t1′) = −i

[
Σ̌(R, p̂, t1, t1′), ǧ(R, p̂, t1, t1′)

]
,

(3.40)
where ∂̃µĝ = ∂µĝ + i [eAµ, ĝ] is the covariant derivatives.

As it will be shown in Chapter 4 the spin-density in the presence of spin-orbit
couplings can be computed through the Keldysh component of the quasi-classical
Green’s function as

Si = −n0

4

ˆ
dε
〈
gKi
〉
, (3.41)

where n0 = m/2π is the density of states for a two-dimensional electron gas with
quadratic dispersion and having set ~ = 1. Then, the cut-off energy of the semi-
circles Ec is chosen to be much greater than the Fermi energy.
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Chapter 4

Spin-orbit coupling in
quantum wells

This chapter focuses on our contribution in explaining theoretically the result of
the experiment in Ref. [44, 31] mentioned in Chapter 1, which observes a greater
inverse spin-galvanic effect when the spin-orbit coupling is smaller.

We start here from the Dyson equation derived in Chapter 3 for the case with
no disorder, but now an impurity potential is added. We take into account the
bulk level of the material, considering the Dresselhaus spin-orbit coupling contri-
bution up to the third power of the electron momentum besides the linear Rashba-
Dresselhaus spin-orbit couplings, which gave completely opposite result than the
experiment [40, 30]. Let us recall that when the electron system is confined in one
direction the Dresselhaus spin-orbit coupling remains only linear in momentum,
and the spin-polarization depends on the frequency of the driving electric field.
Thus, by varying the contributions of the linear and cubic Rashba-Dresselhaus
spin-orbit couplings, we estimate whose influence is the most significant along the
direction and magnitude of the inverse spin-galvanic effect. The combination of
these two spin-orbit couplings displays a situation with the inverse spin-galvanic
effect along the two crystallographic axes [1, −1, 0] and [1, 1, 0] where there are
also the minimum and maximum values of the internal magnetic field along these
axes. The effect depends on the strength of these two types of spin-orbit couplings.
Besides, we consider two regimes: diffusive and beyond diffusive. The latter corre-
sponds to the case when the spin precession rate caused by the spin-orbit coupling
is of the same order as impurity-determined scattering rate. The result of our
theoretical study can be found in Ref. [64].

Considering a semiconductor heterostructure as quantum well, the electrons are
confined in a two-dimensionl planeXY in the presence of impurity scattering. Such
model in the presence of a generic intrinsic spin-orbit coupling can be described
by the following Hamiltonian (for the sake of simplicity units are chosen so that
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4 – Spin-orbit coupling in quantum wells

~ = 1)

H = p2

2m + b · σ + V (r), (4.1)

where V (r) and p = (px, py) represent the impurity potential and the vector of
momentum, respectively. The random potential has zero average and

〈V (r)V (r′)〉 = δ(r− r′)niv2
0 ,

being v0 the single-impurity scattering amplitude and ni the impurity concen-
tration. The effective magnetic field b contains the combination of Rashba and
Dresselhaus spin-orbit couplings.

As we mentioned, in the following we will use the result derived in Chapter 3. By
adopting the Wigner coordinates and by making a Fourier transform of the relative
and center of mass coordinates, we obtain the following left-right subtracted Dyson
equation for the Keldysh Green function

∂tǦ+ 1
2

{ p
m

+ ∂

∂p (b · σ), ∂
∂x Ǧ

}
+ i[b · σ, Ǧ] = −i[Σ̌, Ǧ], (4.2)

where the self-energy Σ̌ includes disorder effects, while the curly brackets denote
the anticommutator. The quasi-classical Green function is defined as

ǧ = i

π

ˆ
dξǦ, (4.3)

where the energy, with respect to the chemical potential in the absence of spin-orbit
coupling, is ξ = p2/2 − µ. Now let us suppose the ansatz for the Green function
as for the spin Hall effect in Ref. [65]

Ǧ =

GR GK

0 GA

 = 1
2


GR0 0

0 −GA0

 ,
g̃R g̃K

0 g̃A

 , (4.4)

with GR0 and GA0 being, respectively, the retarded and advanced Green functions
in the absence of external perturbations

G
R(A)
0 = 1

(ε− ξ)σ0 − b · σ − ΣR(A) (4.5)

with the self-energy ΣR(A) due to the impurity potential, which will be devired
later. When the system is in equilibrium, considering the ansatz in Eq. (4.4) we
have

ˇ̃g =

1 2tanh(ε/2T )
0 −1

⊗ σ0, (4.6)
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where the identity matrix σ0 accounts for the spin structure. Then, let us expand
the effective magnetic field b around the small values of the energy ξ and, observing
that |ξ| � µ, we find that

b ≡ |b| ≈ b0 + ξ
∂b0
∂ξ

, (4.7)

|p±| ≈ pF ∓
|b0|
vF

, (4.8)

where b0 is the value taken at the Fermi surface and p± refers to the Fermi mo-
mentum in the ±-band. The limit is taken for small b comparing to the Fermi
energy. For the two subbands we have the two projection operators

P± = 1
2
(
σ0 ± b0 · σ

)
, b0 = b/b. (4.9)

Now let us rewrite the quasi-classical Green function ǧ as

ǧ =
∑
ν=±

(1− ν∂ξb0)1
2

{
Pν , ˇ̃g

}
≡
∑
ν=±

(1− ν∂ξb0)ˇ̃gν

= 1
2{σ

0 − ∂ξb0 · σ, ˇ̃g}. (4.10)

The last expression allows us to find

ˇ̃g = ǧ + 1
2{∂ξb0 · σ, ǧ}. (4.11)

from which, using Eq. (4.10), we can see that

ǧν = 1
2 {Pν , ǧ} , ǧ =

∑
ν=±

ǧν , (4.12)

and the expression for any function of momentum becomes as

i

π

ˆ
dξf(p)Ǧ =

∑
ν=±

f(pν)ǧν . (4.13)

Hence, we can integrate the last equation and Eq. (4.3) over the energy ξ and
obtain the Eilenberger equation as

∑
ν=±

[
∂tǧν + 1

2

{
pν
m

+ ∂

∂p (b · σ), ∂
∂x ǧν

}
+ i[b · σ, ǧν ]

]
= −i[Σ̌, ǧ], (4.14)

where the self-energy in the Born approximation limit is

Σ̌ = − i

2τ 〈ǧ〉 ,
1
τ

= 2πn0niv
2
0 (4.15)
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4 – Spin-orbit coupling in quantum wells

with τ the elastic scattering time at the Fermi level and n0 = m/2π the density
of states in the absence of spin-orbit coupling. The right-hand side of Eq. (4.14)
describes the spin-independent scattering by disorder, and it is a collision integral.
The quasi-classical Green function in Eq. (4.15) is taken as the angular average
over the momentum directions.

Since the retarded and advanced quasi-classical Green functions do not contain
information about spin, they are simply constant

ǧR = 1, ǧA = −1

and gR = σ0 − ∂ξ (b0 · σ). At the equilibrium we have that

gK = tanh
( ε

2T

) (
gR − gA

)
= (4.16)

2 tanh
( ε

2T

) (
σ0 − ∂ξ(b0 · σ)

)
≡ geq

[
σ0 − ∂ξ(b0 · σ)

]
,

which defines geq. We can write the Keldysh component of the collision integral as

[Σ̌, ǧ]K = ΣRgK + ΣKgA − gRΣK − gKΣA. (4.17)

while that of the Eilenberger equation, according to Eq. (4.14), has the form

(M0 +M1)gK = (N0 +N1)
〈
gK
〉
, (4.18)

where

M0 = gK + τ∂tg
K + vF τ p̂ · ∂xg

K + iτ [b0 · σ, gK ], (4.19)
1
τ
M1 = −1

2

{
b0 · σ
pF

p̂− ∂p(b0 · σ), ∂xg
K

}
− i
[
∂ξ(b0 · σ),

{
b0 · σ, gK

}]
(4.20)

− 1
2τ
{
∂ξ(b0 · σ), gK

}
,

N0
〈
gK
〉

=
〈
gK
〉
,

N1
〈
gK
〉

=
{
∂ξ(b0 · σ), gK

}
, (4.21)

and p̂ = p/|p|. The matrix expressions of the linear operators in Eqs. (4.21) and
(4.29) are

M0 =


L 0 0 0
0 L 0 −2τb0b̂y
0 0 L 2τb0b̂x
0 2τb0b̂y −2τb0b̂x L

 , (4.22)
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N0 +N1 =


1 −cb̂x −cb̂y 0
−cb̂x 1 0 0
−cb̂y 0 1 0

0 0 0 1

 . (4.23)

We can rewrite the angular average 〈gK〉 in the presence of spin-orbit coupling as
a system of four equations according to the spin structure of the quasi-classical
Green function as

gK = gK0 σ
0 + gKi σ

i, i = x, y, z. (4.24)

The internal magnetic field b = b(N)
R +b(N)

D = b
(N)
0 b̂(N) caused by the intrinsic

Rashba and Dresselhaus spin-orbit couplings can be classified by the power of
their momentum dependence N [66]. Thus, b̂ does not depend on the modulus of
the momentum and the retarded component of the Green function according to
Eqs. (4.12)-(4.16) can be shown as

gR = σ0 − cb̂(N) · σ, c = Nb
(N)
0

2εF
, (4.25)

with N = 1 or N = 3 for, respectively, the linear or cubic spin-orbit couplings.
When both linear and cubic spin-orbit couplings are present, the magnetic field
becomes b = b(1) + b(3).

Now we use the minimal substitution in the Eilenberger equation in the presence
of a time-dependent exernal electric field as

∂x → ∂x − |e|E Ê ∂ε (4.26)

where |e| and E are the absolute values of the electron charge and the applied
electric field, respectively; Ê ≡ (Êx, Êy) = (cosφ, sinφ) with φ the angle of the
field with respect to the x-axis.
Solving Eq. (4.18) for the system under the influence of a uniform time-dependent
electric field E = EÊ as

M0g
K = (N0 +N1)

〈
gK
〉

+ SE, (4.27)

with

SE = Ẽ



Ê · p̂

Ê · p̂N + 1
2

b0
EF

b̂x −
Ê · ∂p

vF
bx

Ê · p̂N + 1
2

b0
EF

b̂y −
Ê · ∂p

vF
by

0


. (4.28)
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4 – Spin-orbit coupling in quantum wells

we eventually get

gK = M−1
0 SE +M−1

0 (N0 +N1)
〈
gK
〉
. (4.29)

We can take the angular average of Eq. (4.29)

Si = −n0

4

ˆ
dε
〈
gKi
〉
. (4.30)

and rewrite the Eilenberger equation (4.29) and (4.27) as a linear system of the
components gK0 and gKi to finally obtain

(1−
〈
M−1

0 (N0 +N1)
〉
)
〈
gK
〉

=
〈
M−1

0 SE
〉
. (4.31)

In this equation we neglect the term N1 to a leading order in b0/εF , that allows to
decouple charge from spin. Besides, there is a decoupling between gz component
from gx and gy. This allows to reduce our in-plane spin dynamics problem to a
2× 2 matrix configuration.

4.1 Inverse spin-galvanic effect beyond the diffu-
sive regime in the linear Rashba-Dresselhaus
spin-orbit couplings

In this section we describe the computation of the inverse spin-galvanic effect in
the presence of the linear Rashba and Dresselhaus spin-orbit couplings. In the
diffusive regime the spin-orbit coupling is small compared to the disorder expansion
2τpα1 � 1, 2τpβ1 � 1, but we are going beyond the diffusive regime and the
magnitude of spin orbit couplings becomes significant 2τpα1 � 1, 2τpβ1 � 1. So
far the calculation was done only for the diffusive regime, hence we will now extend
the theory with our contribution beyond diffusive regime.

The effective magnetic field in the presence of linear Rashba and Dresselhaus
spin-orbit couplings is [60]

b(1) = p


α1p̂y + β1p̂x

−α1p̂x − β1p̂y

0

 , (4.32)

where α1 and β1 are the magnitudes of the linear Rashba and Dresselhaus spin-
orbit couplings, respectively, and p ≡ p (p̂x, p̂y). The multiplication product of the
effective magnetic field components is

b̂2x/y = p2
(
α2

1 + β2
1

2 ± cos 2φ
2 (−α2

1 + β2
1) + α1 β1 sin 2φ

)
, (4.33)

b̂x b̂y = −p2 ( sin 2φ
2 (α2

1 + β2
1) + α1 β1) (4.34)
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The terms of SE proportional to the uniform electric field are computed using Eq.
(4.28)

SE = Ẽ

s11 s12

s21 s22

Êx
Êy

 (4.35)

with Ẽ = −|e|E τ vF ∂εgeq and elements

s11 = p̂x (α1 sinφ+ β1 cosφ)− ∂px (α1 py + β1 px),
s12 = p̂y (α1 sinφ+ β1 cosφ)− ∂py (α1 py + β1 px),
s21 = −p̂x (α1 cosφ+ β1 sinφ) + ∂px (α1 px + β1 py),
s22 = −p̂y (α1 cosφ+ β1 sinφ) + ∂py (α1 px + β1 py). (4.36)

Now we can rewrite the previous equations as

s11 = α1 sin 2φ+ β1 cos 2φ,
s12 = −α1 cos 2φ+ β1 sin 2φ,
s21 = −α1 cos 2φ− β1 sin 2φ,
s22 = −α1 sin 2φ+ β1 cos 2φ. (4.37)

Taking the angular average of Eq. (4.28) we have

Γ̂
〈
gK
〉

=
〈
M−1

0 SE
〉
, (4.38)

where Γ̂ = 1−
〈
M−1

0 (N0 +N1)
〉
includes both the spin relaxation and the frequency

dependence effects. To solve this equation we need to compute the integrals that
will be done in the next steps, Eqs. (4.46, 4.103). Under the uniform electric field
we have

〈
M−1

0 (N0 +N1)
〉

= 1
L3 + La2(α2

1 + β2
1)

 M11 M12

M21 M22

 , (4.39)

where a = 2τpF and L = 1− iτΩ. Here, Ω comes from the Fourier transform with
respect to time t in Eq. (4.19). Since we are working beyond the diffusive regime,
let us rewrite the denominator from the previous equation as

1
L3 + La2(α2

1 + β2
1) = 1

L3 + L (α2
1 + β2

1) a2
1

1 + C sin 2φ,

with
C = a2 2α1β1L

L3 + La2(α2
1 + β2

1) . (4.40)

Then, the matrix elements in Eq.(4.39) can be computed as

35



4 – Spin-orbit coupling in quantum wells

M11 = M22 =
[
L2 + a2

2 (α2
1 + β2

1)
]

1√
1− C2

−a
2α1β1

C
1−
√

1− C2
√

1− C2
, (4.41)

M12 = M21 = a2α
2
1 + β2

1
2C

1−
√

1− C2
√

1− C2

−a2 α1β1√
1− C2

. (4.42)

We can evaluate numerically the integrals used for averaging over the momen-
tum direction in the calculations beyond the diffusive regime. For the combination
of linear Rashba and Dresselhaus spin-orbit coupling, one finds that

〈
1

1 + C sin 2φ

〉
= 1√

1− C2
(4.43)〈

sin 2φ
1 + C sin 2φ

〉
= 1
C

(
1− 1√

1− C2

)
(4.44)〈

cos 2φ
1 + C sin 2φ

〉
=
〈

sin 4φ
1 + C sin 2φ

〉
= 0 (4.45)〈

cos 4φ
1 + C sin 2φ

〉
= 1√

1− C2
+ 2
C2

(
1− 1√

1− C2

)
. (4.46)

The parameters aα1 and a β1 are dimensionless and, as we mentioned at the
beginning of this chapter, depending on their values we can identify two regimes.
The spin-orbit splitting and the disorder value are much smaller than the Fermi en-
ergy εF , as for example in the model with Rashba spin-orbit coupling it is assumed
that

εF �
1
τ
, εF � 2α1 pF . (4.47)

So, we can rewrite aα1 in terms of the two small parameters α1/vF and 1/εF τ as

aα1 = 2τα1 pF = 4α1

vF
εF τ. (4.48)

Thus, depending on the relation between α1/vF and 1/εF τ and considering Eq.
(4.47), one can have two different regimes: diffusive and beyond diffusive regimes.
The diffusive regime corresponds to a high impurity concentration, i.e. aα1 � 1.
The second, beyond diffusive regime is related to the condition aα1 � 1 and de-
scribes the system with the low concentration of impurities and with spin-relaxation
time close to τ . In the next sections both these regims will be considered for the
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4.1 – Inverse spin-galvanic effect beyond the diffusive regime in the linear Rashba-Dresselhaus spin-orbit couplings

different contribution of linear and cubic spin-orbit couplings. Until then, let us
focus on a model with only linear Rashba and Dresselhaus spin-orbit couplings.

When we have a diffusive regime at C, the terms with the higher-order Rashba
and Dresselhaus spin-orbit couplings can be neglected due to

√
1 + C2 − 1√

1 + C2
≈ C

2

2 � 1. (4.49)

and the second term in Eq. (4.41) and the first term in Eq. 4.42 vanish. Besides,
C = 0 when or α1 = 0, or β2 = 0. Now we can write a generalized Bloch equation
for the spin density using Eq. (4.30) as

Γ̂S = ŴE, (4.50)

where the matrix Ŵ , describing the spin generation torque in the right hand side
of the above equation, is given by

〈
M−1

0 SE
〉
and can be calculated as

〈
M−1

0 SE
〉

11 = pF

(
L2 + a2 b̂2x

)
(β1 cos 2φ+ α1 sin 2φ)− a2 pF b̂x b̂y (α1 cos 2φ+ β1 sin 2φ),〈

M−1
0 SE

〉
21 = a2 pF b̂x b̂y (β1 cos 2φ+ α1 sin 2φ)− pF

(
L2 + a2 b̂2x

)
(α1 cos 2φ+ β1 sin 2φ),〈

M−1
0 SE

〉
12 = pF

(
L2 + a2 b̂2x

)
(−α1 cos 2φ+ β1 sin 2φ) + a2 pF b̂x b̂y (−α1 sin 2φ+ β1 cos 2φ),〈

M−1
0 SE

〉
22 = a2 pF b̂x b̂y(−α1 cos 2φ+ β1 sin 2φ) + pF

(
L2 + a2 b̂2x

)
(−α1 sin 2φ+ β1 cos 2φ)

(4.51)

For the matrix Ŵ we can use Eq.(4.51) to get

ω11 = 1
2α1 β1 L

(α2
1 − β2

1)
(

C√
1− C2

−β1 pF
4 + α1 pF

2

(
−1 + 1√

1− C2

))
, (4.52)

ω21 = − 1
2α1 β1 L

(α2
1 − β2

1)
(

C√
1− C2

α1 pF
2 − β1 pF

2

(
−1 + 1√

1− C2

))
, (4.53)

ω12 = −ω21, (4.54)
ω22 = −ω11, (4.55)

where we used that the angular average for cos 2φ and sin 4φ are null. For simplicity
let us write

Ŵ = S0

2
β2

1 − α2
1

L3 + La2(α2
1 + β2

1)

ω11 ω12

ω21 ω22

 , (4.56)
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with S0 = −|e|τn0E and

ω11 = −ω22 = − β1a
2

√
1− C2

− α1δ, (4.57)

ω12 = −ω21 = α1a
2

√
1− C2

+ β1δ, (4.58)

and
δ = L2 1

(α2
1 + β2

1)C − 2α1β1

1−
√

1− C2
√

1− C2
. (4.59)

The matrix Γ̂ is responsible for the spin-relaxation torque, the resulting spin
density S comes from the balance between the generation and relaxation torques.
In the diffusive regime with C � 1, the value of δ is very small that retrieves
the Dyakonov-Perel spin relaxation. When α2

1 = β2
1 , the contributions from linear

spin-orbit couplings are canceled and we have a pure gauge configuration without
inverse spin-galvanic efect [67]. The contribution to the spin torque with δ and C
dependence occurs when the interaction of the Rashba and Dresselhaus spin-orbit
couplings is considered beyond the diffusive regime. The powers of L consider
terms relevant at high frequencies.

4.2 Inverse spin galvanic effect in the linear Rashba
model

In this section we consider the case of linear Rashba spin-orbit coupling and de-
scribe a numerical solution of the generalized Bloch equations (4.50) by varying
the Rashba parameter α1 and for Dresselhaus parameter β1 = 0 in Eq. (4.50). To
start, let us write the Bloch equations in the two-dimentional electron gas with
Rashba model

Sx
Sy

 = 1
2

Sα0 α
2
1a

2E

L3 − L2 + (L− 1/2) a2α2
1

Êy
Êx

 , (4.60)

with Sα0 = −|e|n0τα1. In the static limit when the frequency Ω is zero and L = 1,
the spin polarization would be

Sx
Sy

 = Sα0 E

Êy
Êx

 , (4.61)

which is the result found by Edelstein [40]. In the case when the inverse spin-
galvanic effect is frequency-dependent and L = 1 − iΩτ , from Eq.(4.60) we have
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that

−iΩτ (1− iΩτ )2 + (1
2 − iΩτ ) a2α2

1 = 0. (4.62)

The real part of the spin density becomes zero when

Ωτ = aα1

2 , (4.63)

while the imaginary part is zero when

Ωτ = 0;
√

1 + a2α2
1. (4.64)

This means that when one of the components is zero, whether real or imaginary,
the second one will be dominant. The same works in the opposite case. Thus,
inverse spin-galvanic effect is dependent on the field frequency Ωτ .

Now let us define the frequency-dependent spin-galvanic conductivity using
Eq. (4.60) as

Si(Ω) = χijEC(Ω)Ej(Ω), i, j = x, y. (4.65)
The charge current and the spin density in Eq. (4.65) are odd under time reversal
operation while the Onsager reciprocal relations intend the equality of the inverse
spin-galvanic and spin-galvanic responses and their conductivities. In the following
we will use the normalized absolute imaginary and real value of the conductivities
as

χij = χijSG(Ω)
χijSG(Ωmax)

, (4.66)

to Ωmax is the frequency at the maximum value of χijSG. The plots of the real
and imaginary parts and absolute value of the normalized conductivity χyx as a
function of frequency in units of Sα0 for different magnitudes of Rashba spin-orbit
coupling are shown in Figure 4.1. As we can notice when the frequencies are quite
high, the conductivity vanishes, according to Eqs. (4.63)-(4.64), and a significant
conductivity oscillation appears at Ω ∼ α1pF if one goes beyond the diffusive
regime, that is the condition α1 pF τ & 1 is satisfied.

4.3 Inverse spin-galvanic effect in the linear Rashba-
Dresselhaus spin-orbit coupling

In this section we compute the inverse spin-galvanic effect in the presence of linear
Rashba and Dresselhaus spin-orbit couplings. We work here in the diffusive regime,
i.e. aα1 � 1 and aβ1 � 1, which allows to neglect the terms with higher orders.
The generalized Bloch equation has the same form as Eq. (4.50) with Γ̂ and Ŵ
given by
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Figure 4.1. (a) Real part, (b) imaginary part and (c) absolute value of the normalized
inverse spin-galvanic effect conductivity χyx as a function of the frequency Ωτ . In all
plots: 2α1τpF = 0.5 (solid orange), and 2α1τpF = 1 (dashed green), and 2α1τpF = 3
(dotted red), and 2α1τpF = 5 (dot-dashed blue). Results are given in units of Sα0 .

Γ̂ = −iΩτ + a2

2

α2
1 + β2

1 2α1β1

2α1β1 α2
1 + β2

1

 , (4.67)

Ŵ = S0
a2

2 (β2
1 − α2

1)

−β1 α1

−α1 β1

 . (4.68)
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Figure 4.2. Absolute value of the normalized inverse spin-galvanic effect conductivity
(χij = χxx (solid orange): χyx(dashed green)) as a function of frequency in the presence
of linear Rashba and Dresselhaus spin-orbit couplings. From the left to the right: (a), (b)
conductivity in diffusive regime and (c), (d) conductivity beyond the diffusive regime. The
linear spin-orbit coupling coefficients from the top to the bottom: (a) 2α1τpF = 0.1 and
2β1τpF = 0.5; (c) 2α1τpF = 1 and 2β1τpF = 5; (b) 2α1τpF = 0.3 and 2β1τpF = 0.5;
(d) 2α1τpF = 3 and 2β1τpF = 5. Results are given in units of Sα0 .

In the limit of spin helix regime, where Rashba and Dresselhaus spin-orbit
couplings are comparable, we can write the spin polarization of Eq. (4.50) as

Sx(Ω)
Sy(Ω)

 = Sα1
0

a2∆2E

−2iΩτ + a2∆2

 Êx + Êy

−Êx − Êy

 , (4.69)

where ∆ = α1 − β1, |∆| � |α1| and Ωτ � 1. We notice that there is no effect for
∆ = 0, as expected, and the typical frequency scale is Ω ∼ a2∆2/2τ .

In Figure 4.2(a-b), we plot the normalized conductivities, χxx and χxy, as a
function of frequency for different values of α1 and β1 in the diffusive regime.
The different scale in the frequency behavior from top to bottom is related to the
difference between the two Rashba and Dresselhaus spin-orbit couplings, as shown
in Eq. (4.69). In the diffusive regime, there is no finite-frequency peak in the
conductivity, independent of the spin-orbit coupling details.
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4.4 Inverse Spin-Galvanic Effect in the cubic Rashba-
Dresselhaus Model

Now we take into account only the cubic Rashba-Dresselhaus spin-orbit coupling.
Hence, the Hamiltonian will contain p-cubic terms in addition to the p-linear
terms [68]. According to Refs. [59, 69], the effective Hamiltonian of the struc-
tural inverse asymmetry to the third order in the wave vector p reads

H
(3)
R = iα3

 0 (px − ipy)3

−(px + ipy)3 0

 ≡ b(3)
R · σ (4.70)

with b(3)
R being the effective internal magnetic field due to the cubic Rashba spin-

orbit copling, which can also be written as

b(3)
R = α3

3py p2
x − p3

y

3px p2
y − p3

x

 = α3p
3

 sin 3φ
− cos 3φ

 . (4.71)

Besides, there are terms occuring from the bulk of the material caused by the
presence of Dresselhaus spin-orbit coupling [70]

H
(3)
D = −β3

 0 (px − ipy)3

(px + ipy)3 0

 ≡ b(3)
D · σ (4.72)

or by

b(3)
D = β3

 3px p2
y − p3

x

−(3py p2
x − p3

y)

 = −β3p
3

cos 3φ
sin 3φ

 . (4.73)

The total effective internal magnetic field of the cubic Rashba-Dresselhaus spin-
orbit coupling is given [60]

b(3) = b(3)
R + b(3)

D = p3

 α3 sin 3φ− β3 cos 3φ
−α3 cos 3φ− β3 sin 3φ


≡ b

(3)
0 b̂(3). (4.74)

For the linear order in the external electric field, the source term SE has the
same form as in Eq. (4.35) with Eq. (4.37) replaced by

s11 = p2
Fα3 (2 sin 4φ− sin 2φ) + p2

Fβ3 (−2 cos 4φ+ cos 2φ) ,
s21 = p2

Fα3 (2 cos 4φ+ cos 2φ) + p2
Fβ3 (−2 sin 4φ+ sin 2φ) ,

s12 = −p2
Fα3 (2 cos 4φ+ cos 2φ)− p2

Fβ3 (2 sin 4φ+ sin 2φ) ,
s22 = −p2

Fα3 (2 sin 4φ+ sin 2φ) + p2
Fβ3 (2 cos 4φ+ cos 2φ) . (4.75)
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By using Eqs. (4.22)-(4.28) we obtain for the generalized Bloch equation that

Γ̂ =
L2 + 1

2a
2p4
F (α2

3 + β2
3)

L3 + La2p4
F (α2

3 + β2
3)σ0, (4.76)

ω̂ = 0. (4.77)

As we can see from Eq. (4.76) in the cubic Rashba and Dresselhaus spin-
orbit coupling model the spin generation torque ŴE vanishes, even though the
spin relaxation rate Γ̂ is non-zero. The latter contains the first harmonics of φ and
hence, the b field with the third harmonics does not contribute, as it firstly noticed
in Ref. [71].

4.5 Inverse spin galvanic effect in the linear and
cubic Rashba model

In this section we compute the inverse spin-galvanic effect in the presence of linear
and cubic Rashba spin-orbit couplings. From the previous section we know that
in the presence of cubic Rashba-Dresselhaus spin-orbit couplings only the spin
generation torque is zero. Let us then start with the internal magnetic field b,
which in this case reads

bR = p

 α1 sinφ+ α3 p
2 sin 3φ

−α1 cosφ− α3 p
2 cos 3φ

 , (4.78)

where α1 and α3 are the magnitudes of the linear and cubic Rashba spin-orbit
couplings, respectively. According to Eq. (4.28) we can write the components of
SE as

SEx = Ẽ


p̂x

p̂x
N+1

2
b0
EF

b̂x − ∂px
vF

bx

p̂x
N+1

2
b0
EF

b̂y − ∂px
vF

by

0

 , (4.79)

SEy = Ẽ


p̂y

p̂y
N+1

2
b0
EF

b̂x −
∂py
vF

bx

p̂y
N+1

2
b0
EF

b̂y −
∂py
vF

by

0

 .

Using the previous equations, the components of SE are
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s11 = 2 p̂x α1 sinφ+ p̂x 4 p2
F α3 sin 3φ− ∂px (α1 py + α3 p

3
F sin 3φ), (4.80)

s21 = −2 p̂x α1 cosφ− p̂x 4 p2
F α3 cos 3φ+ ∂px (α1 px + α3 p

3
F cos 3φ),

s12 = 2 p̂y α1 sinφ+ p̂y 4 p2
F α3 sin 3φ− ∂py (α1 py + α3 p

3
F sin 3φ),

s22 = −2 p̂y α1 cosφ− p̂y 4 p2
F α3 cos 3φ+ ∂py (α1 px + α3 p

3
F cos 3φ).

Notice that it was used cos 3φ = −(3 px p2
y + p3

x) and sin 3φ = 3 py p2
x − p3

y. After a
short computation the components become

s11 = 2p2
F α3 sin 4φ+ (α1 − p2

Fα3) sin 2φ,
s21 = −2p2

F α3 cos 4φ+ (−α1 + p2
Fα3) cos 2φ,

s12 = −2p2
F α3 cos 4φ− (α1 + p2

Fα3) cos 2φ,
s22 = −2p2

F α3 sin 4φ− (α1 + p2
Fα3) sin 2φ. (4.81)

Now let us calculate the product of the components of the effective magnetic
field b as

a2 b2x = 1
2 (a2

1 + a2
3 + [2 a1a3 − a2

1] cos 2φ− 2 a1a3 cos 4φ− a2
3 cos 6φ), (4.82)

a2 b2y = 1
2 (a2

1 + a2
3 + [2 a1a3 + a2

1] cos 2φ+ 2 a1a3 cos 4φ+ a2
3 cos 6φ), (4.83)

a2 bxby = −1
2 (a2

1 sin 2φ+ a2
3 sin 6φ+ 2 a1a3 sin 4φ), (4.84)

where a1 = aα1 and a3 = aα3p
2
F

The inverse of the matrix in Eq. (4.22) is

M̂−1
0 = 1

L3 + L (a2
1 + a2

3)
1

1 + C cos 2φ

L2 + a2 b2x a2 bxby

a2 bxby L2 + a2 b2y

 . (4.85)

Since we are working beyond the diffusive regime we need to keep all the compo-
nents.

By using Eqs. (4.22) and (4.23), the matrix 〈M0(N0 +N1)〉 can be written as

〈M0(N0 +N1)〉 = 1
L3 + L(a2

1 + a2
3)

M11 0
0 M22

 , (4.86)

with a1 = aα1 and a3 = ap2
F α3 and

M11 = (L2 + a2 b2x)
(
cos 2φ [α1 + α3 p

2
F ] + 2α3p

2
F cos 4φ

)
(4.87)

+ a2 bxby (sin 2φ [α1 + α3 p
2
F ] + 2α3p

2
F sin 4φ),

M22 = (L2 + a2 b2y)
(
cos 2φ [α1 − α3 p

2
F ] + 2α3p

2
F cos 4φ

)
+ a2 bxby (sin 2φ [α3 p

2
F − α1]− 2α3p

2
F sin 4φ), (4.88)
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which eventually become, after a short calculation,

M11 = (L2 + 1
2(a2

1 + a2
3))A0 (4.89)

+ 1
2(−a2

1 + 2a1a3)A2 − a1a3A4 −
1
2a

2
3A6,

M22 = (L2 + 1
2(a2

1 + a2
3))A0 (4.90)

+ 1
2(a2

1 + 2a1a3)A2 + a1a3A4 + 1
2a

2
3A6,

Here, all the coefficients An with n = 0 . . . 6 are

An =
〈

cos(nφ)
1 +D cos 2φ

〉
, (4.91)

and
D = 2La1a3

L3 + L(a2
1 + a2

3) . (4.92)

They have been calculated numerically for further usage.
When a1 � 1 and a3 � 1, the diffusive regime occurs, and for this regime we

have also D � 1. In this case, all the integrals except the first one in Eqs. (4.89)
and (4.90) can be neglected. Furthermore, we have that D = 0 when either a1 = 0
or a3 = 0. Then, we can use Eqs. (4.22) and (4.28) to compute the matrix Ŵ , it
appears on the right hand side of Eq. (4.50) and can be written as

Ŵ = S0

L3 + L(a2
1 + a2

3)

 0 w12

w21 0

 , (4.93)

with the components of the matrix as

ω12 = 〈M−1
0 SEy 〉11, (4.94)

ω21 = 〈M−1
0 SEx〉22.

(4.95)

By computing the angular average of the product between the inverse matrixM−1
0 ,

Eq. (4.85), and the matrix SE, Eq. (4.81), we find the components of the generation
spin torque Eq. (4.93)

w12 = α1

2

(
a2

1 + 3a2
3

)
A0

+
[
−L2(α1 + p2

Fα3) + α1

2 (a2
1 + 2a2

3 + 6a1a3) + 2α3p
2
Fa

2
3

]
A2

+ 1
4
(
α1a

2
1 − α3p

2
Fa

2
1 + 2α3p

2
Fa

2
3
)
A4 − α1a

2
3A6, (4.96)
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and

w21 = α1

2
(
−a2

1 + 3a2
3
)
A0

+
[
L2(α1 + p2

Fα3) + α1

2 (a2
1 + a2

3)− α3p
2
F

2 (3a2
1 + a2

3)
]
A2

+α3p
2
F

2
(
4L2 + 3a2

1 + a2
3
)
A4 − α3p

2
Fa1a3A6. (4.97)

In the presence of both the linear and cubic Rashba spin-orbit coupling, we
have the following angular averages:〈

sin(2nφ)
1 +D cos 2φ

〉
=

〈
sin((2n+ 1)φ)
1 +D cos 2φ

〉
= 0 (4.98)〈

cos((2n+ 1)φ)
1 +D cos 2φ

〉
= 0, n = 0,1,2, · · · (4.99)〈

1
1 +D cos 2φ

〉
= −1√

1−D2
(4.100)〈

cos 2φ
1 +D cos 2φ

〉
= 1
D

(
1 + 1√

1−D2

)
(4.101)〈

cos 4φ
1 +D cos 2φ

〉
= 1
D2

(
−2− −2 +D2

√
1−D2

)
(4.102)〈

cos(6φ)
1 +D cos 2φ

〉
= 1
D3

(
4−D2 + 4− 3D2

√
1−D2

)
(4.103)

Notice that when the cubic Rashba spin-orbit coupling goes to zero (α3 = 0),
Eq. (4.93, 4.96, 4.97) reproduces the result derived in Eq. (4.61). Furthermore,
Eq. (4.96, 4.97) becomes zero when α1 = 0, independently of α3. As a result, we
found that when the linear and cubic Rashba spin-orbit couplings are present, the
inverse spin-galvanic effect is changed due to few new terms in the spin relaxation
and the spin generation torques.

4.6 The effects of the linear Rashba and Dres-
selhaus with the cubic Dresselhaus spin-orbit
couplings

Here we take into account not only the linear Rashba-Dresselhaus coupling but
also the cubic Dresselhaus spin-orbit coupling to evaluate the inverse spin-galvanic
effect, and to compare our result with the experiment for InGaAs epilayers [31]. In
this case we consider a diffusive regime. Starting again with the effective magnetic
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field from the Hamiltonian in Eq.(4.1), taking into account terms for linear and
cubic Rashba-Dresselhaus spin-orbit couplings, we write it as

b = p

 α1 sinφ+ β1 cosφ− p2β3 cos 3φ
−(α1 cosφ+ β1 sinφ+ p2β3 sin 3φ),

 (4.104)

where α1, β1 and β3 are the above magnitudes of the linear Rashba and Dresselhaus
and cubic Dresselhaus spin-orbit couplings, respectively. Then, as we did in the
previous subsections, we find the product of the components of the magnetic field
b and use them after to compute the matrix Ŵ . The b2x, b2y and bxby are

b2x = 1
2 (α2

1 + β2
1 + β2

3 p
4) + cos 2φ

2 (−α2
1 + β2

1 − 2β1β3 p
2) + β2

3 p
4

2 cos 6φ (4.105)

+ sin 2φα1 (β1 + β3 p
2)− α1β3 p

2 sin 4φ− β1β3 p
2 cos 4φ,

b2y = 1
2 (α2

1 + β2
1 + β2

3 p
4) + cos 2φ

2 (α2
1 − β2

1 + 2β1β3 p
2)− β2

3 p
4

2 cos 6φ (4.106)

+ sin 2φα1 (β1 + β3 p
2) + α1β3 p

2 sin 4φ− β1β3 p
2 cos 4φ,

bxby = −
(

sin 2φ
2 (α2

1 + β2
1 + 2β1β3 p

2)− α1β3 p
2 cos 4φ− β2

3 p
4

2 sin 6φ+ α1β1

)
.

(4.107)

According to Eq. (4.28) and using Eq. (4.50) we can write the components of
SE as

s11 = 2 p̂x (α1 sinφ+ β1 cosφ)− 4p̂x p2
F β3 cos 3φ− ∂px (α1 sinφ+ β1 cosφ− β3 p

2
F cos 3φ),

s21 = 2 p̂x (−α1 cosφ− β1 sinφ)− 4p̂x p2
F β3 sin 3φ+ ∂px (α1 cosφ+ β1 sinφ+ β3 p

2
F sin 3φ),

s12 = 2 p̂y (α1 sinφ+ β1 cosφ)− 4p̂y p2
F β3 cos 3φ− ∂py (α1 sinφ+ β1 cosφ− β3 p

2
F cos 3φ),

s22 = 2 p̂y (−α1 cosφ− β1 sinφ)− 4p̂y p2
F β3 sin 3φ+ ∂py (α1 cosφ+ β1 sinφ+ β3 p

2
F sin 3φ).

(4.108)

After some calculation, the components of the matrix SE become

s11 = α1 sin 2φ+ (β1 + β3p
2
F ) cos 2φ− 2β3p

2
F cos 4φ

s21 = −α1 cos 2φ− (β1 − β3p
2
F ) sin 2φ− 2β3p

2 sin 4φ
s12 = −α1 cos 2φ+ (β1 − β3p

2
F ) sin 2φ− 2β3p

2
F sin 4φ

s22 = −α1 sin 2φ+ (β1 + β3p
2
F ) cos 2φ+ 2β3p

2
F cos 4φ. (4.109)

To evaluate the inverse spin-galvanic effect in the diffusive regime, we need to
expand in Eq. (4.29) the denominator M−1

0 (with M0 presented in Eq. (4.22)) in

47
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terms of the spin-orbit field

M−1
0 = 1

L3 + L (b2x + b2y) a2

L2 + a2 b̂2x a2b̂xb̂y

a2b̂xb̂y L2 + a2b̂2y

 , (4.110)

For all the off-diagonal terms in the matrix M−1
0 we can neglect b2x + b2y in the

denominator with respect to L, whereas for the diagonal terms one must expand
the denominator, which becomes

1
L3 + L (b2x + b2y) a2 = 1

1− 3iΩ τ + (b2x + b2y) a2 ≈ 1+3iΩ τ−(b2x+b2y) a2, (4.111)

where L = 1− iΩτ .
After this expansion, considering Eq.(4.111) we can rewrite Eq.(4.110) and the

matrix M−1
0 as

M−1
0 ≈

1 + iΩτ − a2b̂2y a2b̂xb̂y

a2b̂xb̂y 1 + iΩτ − a2b̂2x

 . (4.112)

The left-hand side of Eq. (4.50) has a matrix Γ̂ which, for the case of linear
Rashba-Dresselhaus and cubic Dresselhaus spin-orbit coupling, can be written as

Γ̂ = 1−
〈
M−1

0
〉

= a2α1β1 p
2
F σx − (iΩτ − a2

2 p2
F [α2

1 + β2
2 + β2

3 p
2
F ]σ0) (4.113)

or simply as

Γ̂ = −iΩτ + Γ̂1 + Γ̂3, (4.114)

where the Dyakonov-Perel spin relaxation for the linear Rashba and Dresselhaus
spin-orbit coupling (Γ̂1) and the cubic Dresselhaus spin-orbit coupling (Γ̂3) are
given by

Γ̂1 = a2

2
[
(α2

1 + β2
1)σ0 + 2α1β1σ

x
]
, (4.115)

Γ̂3 = a2

2 β
2
3p

4
Fσ

0. (4.116)

Hence, in the static limit where Ω = 0 the Bloch equations in Eq. (4.50) can
be rewritten as

(Γ̂1 + Γ̂3)S = (ω̂1 + δω̂1,3)E, (4.117)
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The right-hand side of Eq. (4.50) contains a product
〈
M−1

0 SE
〉
, which can be

computed as a product of Eq.(4.112) at a static limit with Ω = 0 and Eq.(4.109),
and it becomes

〈
M−1

0 SE
〉

= 1
L3 + L(a2

1 + a2
3)

(1− a2 b2y) s11 + a2 b̂xb̂y s21 (1− a2 b2y) s12 + a2 b̂xb̂y s22

a2 b̂xb̂y s11 + (1− a2 b2x) s21 a2 b̂xb̂y s12 + (1− a2 b2x) s22


(4.118)

or, after some manipulation,

〈
M−1

0 SE
〉

= S0a
2

2 p2
F

2α2
1 β3 p

2
F + β1 (α2

1 + 4β2
3 p

2
F − β2

1) α1 (β2
1 − α2

1 − p2
F (5β3 + 2β1β3))

α1 (α2
1 − β2

1 + p2
F (5β3 + 2β1β3)) −2α2

1 β3 p
2
F − β1 (α2

1 + 4β2
3 p

2
F − β2

1)


(4.119)

The right hand side of the Bloch equation can be rewriten with
〈
M−1

0 SE
〉
like

〈
M−1

0 SE
〉Ex

Ey

 =

w11 −w21

w21 −w11

Ex
Ey

 (4.120)

where the indices correspond to the linear (1) and cubic parts (3) of the spin-orbit
coupling and to their interplay (1, 3). Then the matrices for the generation spin
torque from Eq. (4.117) are

ω̂1 = S0a
2

2 (α2
1 − β2

1)

β1 −α1

α1 −β1

 , (4.121)

ω̂1,3 = S0a
2

2

β̃1 −α̃1

α̃1 −β̃1

 , (4.122)

with

β̃1 = 2p2
Fβ3(2β1p

2
Fβ3 + α2

1), (4.123)
α̃1 = α1p

2
Fβ3(5p2

Fβ3 + 2β1). (4.124)

The matrix ω̂1 corresponds to the linear Rashba-Dresselhaus spin-orbit coupling,
while ω̂1, 3 presents the interaction between the linear and cubic spin-orbit cou-
plings.

The whole matrix Ŵ can be rewritten in terms of Pauli matrices as

Ŵ = S0 a
2
(

1
2(β1 p

2
F [α2

1 − β2
1 ] + β̃1)σz −

i

2 (α1 p
2
F [α2

1 − β2
1 ] + α̃1)σy

)
(4.125)
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or simply

Ŵ = S0
a2

2 (Aσz − i B σy) , (4.126)

where the coefficients A, B are

A = β1 p
2
F [α2

1 − β2
1 ] + β̃1,

B = α1 p
2
F [α2

1 − β2
1 ] + α̃1

To calculate the inverse spin-galvanic effect from Eq. (4.117) we need to find
the inverse matrix of the generation spin torque, Γ̂−1, using Eq. (4.113). The
matrix Γ̂−1 is given by

Γ̂−1 = 2
a2

(α2
1 + β2

1 + β2
3 p

4
F )σ0 − 2α1β1σ

x

(α2
1 + β2

1 + β2
3 p

4
F )2 − 4α2

1β
2
1

. (4.127)

Now we multiply the inverse matrix Γ̂−1 and the spin generation torque matrix
Ŵ as

Γ̂−1 Ŵ = Ẽ

4 vF p2
F

(−2α1β1σx + (α2
1 + β2

1 + β2
3 p

4
F )σ0)

(α2
1 + β2

1 + β2
3 p

4
F )− 4 (α1β1)2

×
(
[β̃1 + 2β1(α2

1 − β2
1) p2

F ]σz − iσy [α̃1 + 2α1(α2
1 − β2

1) p2
F ]
)

(4.128)

Finally, the spin polarization is defined by

S = S0

(
−(α1iσ

y + β1σ
z)(α2

1 − β2
1)2

(α2
1 + β2

1 + β2
3 p

4
F )2 − 4α2

1β
2
1

+ 2β3p
2 (ξiσy + 2 ζσz)

(α2
1 + β2

1 + β2
3 p

4
F )2 − 4α2

1β
2
1σ

z

)
Ê, (4.129)

where

ξ = α1

[(
−1

2β3 p
2
F + 2β1

)
(α2

1 − β2
1) + β3 p

2
F (3β2

1 − 5α2
1)

−β2
3 p

4
F (2β1 + 5β3 p

2
F )
]
, (4.130)

ζ = (α2
1 − β2

1)
(
α2

1 + 1
4β1β3 p

2
F

)
+ β3 p

2
Fβ1(2β2

1 − 3α2
1)

+β2
3 p

4
F (α2

1 + 2β1β3 p
2
F ). (4.131)

In the equation for the spin polarization Eq. (4.129), the first term is responsi-
ble for the linear Rashba-Dresselhaus spin-orbit coupling, whereas the second one
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represents not only the contribution of the cubic Dresselhaus spin-orbit coupling
but also the interaction between the linear and cubic spin-orbit couplings.

At last, to compare our theoretical results with the ones experimentally mea-
sured in Ref. [31, 44], first we start by considering the simple case where there
is only the linear spin-orbit coupling and β3 = 0. So, Eq. (4.129) gives a result
equivalent to Eqs. (4.67) and (4.68), and the spin polarization is given by

S = |e|τN0(β1σ
z + α1iσ

y)E,

= N0

2 Bint, (4.132)

where Bint is the spin-orbit field induced by the electric current.
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Figure 4.3. Absolute value of the normalized conductivity as a function of the fre-
quency in diffusive regime. The components (a) χxx and (b) χyx are induced by
the external electric field along x-direction. The linear spin-orbit coupling coefficients
are fixed: 2α1τpF = 0.1, 2β1τpF = 0.3. For (a), (b) 2β3τp3

F = 0.1 solid orange,
2β3τp3

F = 0.2 dashed green, 2β3τp3
F = 0.3 dotted red and 2β3τp3

F = 0.4 dot-dashed
blue. Results are given in units of Sα0 .
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In Figure 4.3 we plot the normalized conductivities, χxx and χyx, as a function
of frequency for different values of the cubic Dresselhaus spin-orbit coupling 2β3τp

3
F

and fixed linear Rashba and Dresselhaus spin-orbit couplings, 2α1τpF = 0.1 and
2β1τpF = 0.3 (values are dimensionless). As one can see from the plots, in the
presence of the linear Rashba-Dresselhaus and cubic Dresselhaus spin-orbit cou-
plings the conductivities χxx and χyx are the result of the interplay of these two
mechanisms. The anisotropic feature of the spin polarization can be controlled
by changing the strength of the cubic Dresselhaus spin-orbit coupling besides the
present linear Rashba and Dresselhaus spin-orbit couplings.

Furthermore, we present the vector plot of the spin polarization S as a function
of the electric field direction E for different values of the cubic Dresselhaus spin-
orbit coupling while the linear couplings are fixed in Figure 4.4. The vector plot
representation will help us to analyze the anisotropy of the inverse spin-galvanic
effect. The black arrows within the empty circular sector correspond to the vector
plot of the in-plane spin polarization (Sx, Sy) from Eq. (4.132) and the red arrows
in the orange background correspond to the direction and the magnitude of the
magnetic field Bint, where the value is represented by the background color, from
low (light) to high (dark). Thus, in the two upper diagrams the inverse spin-
galvanic effect is shown in the absence (β3 = 0, top) and in the presence (2β3τp

3
F =

0.1, middle) of a weak cubic Dresselhaus spin orbit coupling. We can notice from
Figure 4.4 that the largest magnitude of the inverse spin-galvanic effect arises
for the electric field and the current along the crystallographic direction [1,1],
which represents the effective linear spin-orbit coupling α1 + β1. At the same
time, the smallest effect appears for the field along the [1,-1] direction, that is
responsible for the effective linear spin-orbit couplings α1 − β1. Lastly, on the
bottom plot of Figure 4.4 the inverse spin-galvanic effect is shown in the presence
of a cubic Dresselhaus spin-orbit coupling with the strength greater than the linear
coupling. We can see that the increase in β3 (2β3τp

3
F = 0.2) significantly changes

the anisotropy of the inverse spin-galvanic effect. It shows that the strongest
polarization occurs for the spin along the [1,-1] direction and the smallest one
appears for the field along [1,1] direction. Ultimately, the bottom figure explains
the experimental result in Ref. [31, 44].

Summary and perspectives
In this chapter we described the model of quantum well in the presence of Rashba-
Dresselhaus spin-orbit couplings, whether linear, cubic or both. To this purpose,
we used the Keldysh formalism. First, we derived the kinetic Eilenberger equa-
tion from subtracted left-right Dyson equation. Then, by integrating the Keldysh
component of quasi-classical Green’s function we obtained the spin polarization.
Specifically, for all the above countributions to the spin-orbit coupling we plotted
the spin-galvanic conductivity. Finally, for the case of linear Rashba-Dresslhaus
and cubic Dresselhaus terms we presented the vector diagram with varying cubic
and fixed linear coefficients. A direct comparison with the experimental results in
literature is also reported.
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(a)

(b)

(c)

Figure 4.4. Black arrows correspond to the vector plot of the in-plane spin polarization
(Sx, Sy). Red arrows correspond to the direction and the magnitude of the magnetic
field Bint, where the greatest value is shown by the darkest color of the background.
Results are given in units of S0; Ex, Ey are the components of the electric field E. Linear
Rashba-Dresselhaus parameters are 2α1τpF = 0.12 and 2β1τpF = 0.125. (a) Cubic
Dresselhaus effect is absent for 2β3τp3

F = 0; (b) cubic Dresselhaus effect, 2β3τp3
F = 0.05,

is comparable with the linear Rashba-Dresselhaus effects; (c) cubic Dresselhaus effect,
2β3τp3

F = 0.2, is greater than the linear Rashba-Dresselhaus effects.
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Chapter 5

Synthetic spin-orbit coupling
in cold gases

5.1 Gauge fields in ultracold atomic system
We focus on the gauge field engineered in ultracold neutral atomic systems. Here
the description of the system is guided by effective gauge potentials that are gen-
erated within a configuration of atoms coupling to the lasers’ fields. Laser induced
gauge potentials in neutral atoms can imitate the action of an electron gas under-
going a magnetic field.

There are plenty of methods to create gauge potentials, some of them work bet-
ter in Abelian or non-Abelian cases. The difference between them will be discussed
below, for now let us concentrate on the main techniques realised or proposed. As
we know, quantum atomic gases such as Bose-Einstein condensates [72] and degen-
erate Fermi gases [73], cannot be influenced by any external electromagnetic field
being electrically neutral.

The coupling between spin and orbital angular momentum has been theoreti-
cally studied in Ref. [74]. Here, the authors generated it for Bose-Einstein conden-
sates on a ring trap with fixed radius using Raman coupling through the two co-
propagating laser beams with higher-order Laguerre-Gauss. The coupling happens
via a two-photon Raman process. The authors studied the ground state proper-
ties of such coupling on phase diagrams, showing strong effects of the transitions
from non-degenerate ground states to multi-degenerate with a different strength of
Raman coupling and with interactions. Besides, they propose a study of the cou-
pling between spin and orbital angular momentum adding an external potential,
gravitational potential and anisotropic trapping.

A theoretical study of a generalized scheme for Raman coupling in ultracold
atoms mentioned above was proposed in [75]. There the authors address a general
case using the resonance coupling when N atomic internal ground states couple to
some additional excited state or sublevel of the atomic ground state, via N laser
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5 – Synthetic spin-orbit coupling in cold gases

beams, for generating Rashba-Dresselhaus spin-orbit coupling for spins larger than
1/2. In this case there are N−1 dark eigenstates. A particular case was considered
with 4 laser beams and alkali-metal atoms.

Spin-orbit coupling in ultracold atomic systems was studied in Ref. [76] using
homogeneus SU(N) non-Abelian model in square optical lattice. This model in
the case N = 3 already gives a non-trivial state. Here, instead of the usual Pauli
matrices in SU(2) systems, the authors applied Gell-Mann matrices for SU(3) sys-
tems. Furthermore, Ref. [77] contains a comprehensive collection of experimental
schemes that have been implemented for studying spin-orbit coupling with ultra-
cold atoms and optical lattices: the Raman scheme with an optical lattice with
86Rb atoms and counter-propagating laser beams, the scheme of Raman assisting
tunneling using atoms with the two internal states in a double-well potential, and
schemes with Zeeman lattice and periodically driven lattice.

Experimental studies include 87Rb Bose-Einstein condensate with a crossed
dipole trap and two laser beams [78]. The coupling is created between the different
spin states and laser field. Besides, they present the images of the vortices changing
the detuning gradient. Their approach of optically generated magnetic fields avoids
problems such as heating. In addition, the experimental and theoretical comparison
of the results for Zitterbewegung in Bose-Einstein condensate was made in Ref.
[79]. Other theoretical studies of synthetical spin-orbit coupling in real atomic
Bose-Einstein condensates were proposed in Ref. [80] using four ground states. All
four states are coupled cyclically at the same time by Raman transitions.

5.1.1 Berry’s connection and the adiabatic principle

Gauge potentials can appear in cold atomic systems when the motion of the center
of mass is coupled to atomic internal degrees of freedom or spin. The full time-
dependent atomic Hamiltonian with state-independent trapping potential V ≡
V (r, t) reads as follows

ˆ̃H(r, t) = ( p2

2m + V )Î + M̂, (5.1)

where r and p = −i~∇ are respectively the atomic center of mass coordinate that
denotes atomic position and the momentum operator, Î is the identity operator
acting on the internal atomic degrees of freedom and M̂ = f(r, t) includes the
Hamiltonian for the atomic internal motion and the atom-light interaction term.
The diagonalization of the operator M̂ gives a set of eigenstates, dressed states,
and a set of eigenenergies dependent on r and t. We can expand any atomic
state through a position dependent basis with a wave-function for the center of
mass motion. The atomic basis states are connected through a position-dependent
unitary transformation that diagonalises the operator M̂

R̂†M̂(r, t)R̂ = ε̂, (5.2)
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5.1 – Gauge fields in ultracold atomic system

where ε̂ is the set of eigenenergies. The final replacement of the original state
vector with the transformed one gives a transformed Hamiltonian

Ĥ = R̂† ˆ̃H(r, t)R̂− i~R̂†∂tR̂. (5.3)

It can be shown that Eq. (5.3) can be recast into

Ĥ = (p− Â)2

2m + V + ε̂+ Φ̂ (5.4)

by introducing the following quantities

Â = i~ R̂†∇R̂ =
N∑

n,m=1
|n〉Anm〈m|, Anm = i~ 〈ηn|∇|ηm〉, (5.5)

Φ̂ = i~ R̂†∂tR̂ =
N∑

n,m=1
|n〉Φnm〈m|, Φ̂nm = −i~ 〈ηn|∂t|ηm〉. (5.6)

Here, the spatial dependence of the atomic dressed states causes the appearance of
the vector operator Â, and the time dependence - the scalar operator Φ̂. Referring
to the adiabatic approximation, if a subset with q ≤ N number of dressed states
is well distinct in energy from the other states, we can reduce the dynamic of
the system by projecting it onto the cropped space of the internal states. To this
purpose we act on our Hamiltonian Ĥ with the operator P̂ (q) = P̂ (q)ĤP̂ (q) as

P̂ (q) = (p− Â(q))2

2m + V
(q)
tot , (5.7)

V
(q)
tot = V + ε̂(q) + Φ̂(q) + Ŵ (q), (5.8)

where the projections of the operators from the Hamiltonian Ĥ on the cropped
subspace are ε̂(q), Φ̂(q) and Ŵ (q), and the action of the operator P̂ (q) on the mo-
mentum p and potential V was skipped. An additional potential Ŵ (q) arises from
projecting A2 on the cropped subspace of the internal dressed states. This extra
term can be justified as the kinetic energy of the atomic micro-trembling owing to
off-resonance non-adiabatic transitions to the omitted dressed states

Ŵ (q) = 1
2mP̂ (q)Â

(
Î − P̂ (q)

)
ÂP̂ (q), (5.9)

Wnm = 1
2m

N∑
l=q+1

AnlAlm, n,m = 1, . . . , q. (5.10)

On one hand, the vector potential Â(q) and the scalar potential Ŵ (q) appear
from spatial dependence of the atomic dressed states. On the other hand, the
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5 – Synthetic spin-orbit coupling in cold gases

potential Φ̂(q) occurs from their time dependence and describes the population
transfer between the atomic levels caused by the time dependence of the external
fields. In case the reduced subspace contains only one dressed state, q = 1, well
separated in energy from the others, both the vector and the scalar potentials
reduce to commuting vector and scalar fields. Only in this case the resulting
synthetic electric and magnetic fields have the standard form E = −∇Vtot − ∂tA
and B = ∇×A.

5.1.2 Abelian and non-Abelian cases
The vector and scalar potentials can lead to the common magnetic and electric
fields. The problem in the quantum domain is that these two potentials are op-
erators, and it is not always true that the scalar potential commutes with the
Cartesian components of the vector potential. To this purpose, let us recollect the
Heisenberg equation of motion operating the projected dynamics

v̂ = − i
~

[r, Ĥ(q)] = 1
m

(p− Â(q)). (5.11)

Here, the second derivative of the Heisenberg velocity, acceleration

˙̂v = − 1
m
∂tÂ(q) − im

2~ [v̂, υ̂2]− i

~
[v̂, V̂ (q)

tot ], (5.12)

then the Cartesian components of the acceleration are

˙̂vk = − 1
m
∂tÂ(q)

k −
im

2~ (v̂l [v̂k, v̂l] + [v̂k, v̂l] v̂l)−
i

~

[
v̂k, V̂

(q)
tot

]
. (5.13)

If we write the velocity commutators as m2 [v̂k, v̂l] = i~F̂kl in terms of antsymmet-
ric tensor

F̂kl = ∂kÂ(q)
l − ∂lÂ

(q)
k −

i

~

[
Â(q)
k , Â(q)

l

]
, (5.14)

the equation of motion becomes

m ˙̂υ = 1
2(v̂× B̂(q) − B̂(q) × v̂) + Ê(q). (5.15)

The vector operator

B̂(q) = ∇× Â(q) − i

~
Â(q) × Â(q), (5.16)

represents the artificial magnetic field (Berry curvature) providing the Lorenz force,
with components B̂(q)

j = 1
2εjklF̂kl. The Berry curvature is not zero only for the

reduced dynamics of the atomic system, q < N , when some states vanish. The
same is valid for the scalar potential Wnm.

When all the Cartesian components of the vector potential Â(q) commute with
each other, the vector potential is called Abelian. This situation happens when
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5.1 – Gauge fields in ultracold atomic system

q = 1. If some components do not commute for some j and l, [Â(q)
j , Â

(q)
l ] /= 0, it

is called non-Abelian gauge potential [81].

5.1.3 Raman induced spin-orbit coupling
In many experimental works, alkali atoms like 87Rb and 40K are used for gener-

ating spin-orbit coupling via Raman coupling. Raman induced spin-orbit coupling
is generated by two counter-propagating laser beams along the x̂ direction. Each
laser beam is polarized: one is π polarized along the ẑ direction and the other one
is polarized linearly along the ŷ direction. The spin quantization axes are set by a
magnetic field along ẑ. Then, the atom will be affected by a two-photon process:
first, by absorbing a π polarized (or linearly polarized, since it can be decomposed
as σ+/− polarized beams) it gets excited to some intermediate excited state be-
tween 2P1/2 and 2P3/2, then it returns to the ground state of the spin system
through emission of a σ+/− (or π).

Mathematically, the process is described by a rank-2 tensor and it can be de-
composed in the sum of irreducible scalar, vector and tensor part. Experimental
results showed that if we neglect the effect of fine structure splitting ∆FS between
2P1/2 and 2P3/2, the scalar part is different from zero and this issue creates a
spin-independent scalar potential. The vector and tensor parts are proportional to
∆FS .

Usually one describes the motion of a single particle along x̂ by the Hamiltonian
Ĥ0, defining the two states of the vector term as two spin up and down.

Ĥ0 =

 k2
x

2m + δ
2

Ω
2 e

2ik0x

Ω
2 e
−2ik0x k2

x

2m −
δ
2

 , (5.17)

where Ω/2 is the strength of Raman coupling and k0 is the wave vector of the laser.
Here the spin flipping process together with the momentum trasfer 2k0 along x̂
direction is described by off-diagonal terms. Besides, it is assumed that the other
spin states are far enough and do not resonate in our two-photon process. In
particular we have δ = ωz − δω, where ωz is the Zeeman energy difference between
our two spin states and δω is the frequency difference between the two laser beams.

Following the standard procedure, we define a unitary transformation as φ =
Uψ, where the matrix U is

U =

e−ik0x 0
0 eik0x

 . (5.18)

The Hamiltonian Ĥ0 after diagonalization that is defined as UĤ0U
†, is

Ĥ ′0 =

 (k2
x+k0)2

2m + δ
2

Ω
2

Ω
2

(k2
x+k0)2

2m − δ
2

 (5.19)
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5 – Synthetic spin-orbit coupling in cold gases

or in the Pauli matrices representation

Ĥ ′0 = (k2
x + k0σz)2

2m + δ

2σz + Ω
2 σx. (5.20)

After a rotation of the spin axes along ŷ by the angle π
2 in the way that σx → σz

and σz → −σx, the Hamiltonian becomes

Ĥ ′′0 = (k2
x − k0σx)2

2m − δ

2σx + Ω
2 σz. (5.21)

It looks like mixing of Rashba and Dresselhaus spin-orbit couplings with addi-
tional Zeeman field in the xz spin plane. The standard procedure used here will
be shown in detail for our model in 5.2.

5.1.4 Rashba spin-orbit coupling
Rashba spin-orbit coupling with a single-particle Hamiltonian can be written as [82]

Ĥ0 = (kx − k0σx)2

2m + (ky − k0σy)2

2m . (5.22)

Theoretical proposals about implementation of such a spin-orbit coupling experi-
mentally can be devided intro three categories:

• Dark-state scheme. It is Lambda or tripod-scheme of laser coupling that is
used to generate dark states. This kind of scheme is used for the experimental
synthetic generation scheme for gauge potential in 2D Fermi gas in [51].
The dark states have a nontrivial spacial dependence and are considered as
pseudospins. The operator of kinetic energy projected onto the subspace
formed by the dark states, holds nontrivial abelian or non-abelian gauge field
term. Usually the gauge fields created under such a configuration lead to the
spin-orbit with the Hamiltonian mentioned above.
The disadvantage of this scheme is that there is always a state with eigenen-
ergy lower than a subspace of the dark states. This means that with time
collisions between particles will lead to a decay to the lowest state, which
sets a threshold for the system lifetime.

• Generalized Raman scheme. An example of such scheme was used in [52].
Comparing to the previous approach to generate a Rashba spin-orbit cou-
pling, here one requires more laser beams. The main advantage is that the
subspace for projection consists of the lowest energy and the collisional prob-
lem loses its relevance. It could seem a perfect option if it was not for the
heating problem, which increases with the number of lasers.

• Magnetic scheme. This kind of scheme was proposed for avoiding the above
heating problem. It was proposed to make a 2D and 3D Rashba-type spin-
orbit coupling without using light in Ref. [83] with the method of pulsed
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inhomogeneous magnetic fields that stamp appropriate phase gradients on
the atoms. For 2D Rashba spin-orbit they used chip implementation and
pulsed fields in two directions, while for 3D Rashba one more pulses should
be added along the missing direction [83]. They found that for short pulses,
the form of the interactions is not modified. The atomic spins point in the
same direction of the magnetic field, which gives rise to an effective gauge
potential. However, the strength of the gauge field depends on the size of the
condensated atomic gas. Usually it is very weak.

5.2 System under investigation for our model
In this section it is shown in detail how to generate spin-orbit coupling synthetically
for our original Hamiltonian following the method proposed in [9, 51]. We consider
a cold atomic system with the external magnetic field which is described by the
Hamiltonian

H(p, t) = H0 +HSO +HE +Hext, (5.23)

where H0 = 1
2m [p + eA]2 with A = −E t x̂ corresponds to the kinetic part, HSO

is the Rashba spin-orbit interacting term that is HSO = α1 σx py − α2 σy px with
px,y that are the in-plane components of the momentum operator and σx,y - the
Pauli matrices associated to the spin degree of freedom. Let us notice also, that
the coupling constants α1 = α+β, α2 = α−β correspond to the mixing of Rashba
and Dresselhaus spin-orbit couplings. Besides, the presence of the electric field
gives the Edelstein term HE = α2eEt σy. Furthermore, the last term corresponds
to the Zeeman coupling with an external magnetic field Hext = −µBB · σ. But
before moving on let us show how to get a spin-orbit coupling term HSO.

So, for the generation of synthetic Rashba coupling we consider a non-interacting
ultracold atomic gas trapped by lasers in the xy-plane. The atoms with an internal
three-level (tripod) scheme are coupled to the laser radiation with Rabi frequen-
cies Ω1 and Ω2 [51]. In a general two-level case, the Rabi frequency quantifies the
interaction between resonant laser radiation and atomic dipole moment, since it is
related to the frequency of oscillation of the population in the excited level [84,
85]. In the tripod scheme the two lower atomic states |1〉 and |2〉 represent the
hyperfine ground states (Zeeman splitting components) while the upper one |0〉
represents the excited state with laser detuning ∆. The two hyperfine states |1〉
and |2〉, taken as pseudo-spin states, are coupled to the excited state |0〉 through
the transition |1〉 → |0〉, |2〉 → |0〉. And the single-particle Hamiltonian has the
expression

H = H0 +Hint + V (r), (5.24)

where H0 = p2/2m represents the kinetic part with momentum p, V (r) is the
position-dependent trapping potential and Hint is the laser-atom interaction with
laser detuning ∆ to the excited state |0〉. The interation term of the Hamiltonian
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5 – Synthetic spin-orbit coupling in cold gases

has the form of a 3× 3 matrix

Hint =


~∆ −~Ω1 −~Ω2

−~Ω∗1 0 0
−~Ω∗2 0 0

 . (5.25)

Following the model introduced in Ref. [51], the two Rabi frequencies can be writ-
ten as Ω1(r) = Ω0 cos θ eiΦ(r) and Ω2(r) = Ω0 sin θ eiΦ(r) with position-dependent
phase Φ(r) = k1y and an angle 2θ between the two laser beams, with θ = k2x.
The diagonalization of the interacting part of the Hamiltonian gives eigenvalues
λ1 = 0, λ2,3 = ~

2 (∆±
√

∆2 + 4Ω2
0) while the eigenvectors would be Vi = (a, b, c)

for i = 1 . . . 3. To find the first eigenvector that corresponds to λ1 we solve the
system {

∆ |a〉 − Ω1 |b〉 − Ω2 |c〉 = 0,
−Ω∗1 |a〉 = 0

(5.26)

Assuming that the first component of the eigenvector is |a〉 = 0 we get

−Ω1 |b〉 − Ω2 |c〉 = 0,
− cos θ|b〉 − sin θ|c〉 = 0.

Solving the last equation, the eigenvector for λ1 is |V1〉 = sin θ|b〉 − cos θ |c〉. Using
λ2 the system of equations for |V2〉 is{

(∆− 1
2 (∆ +

√
∆2 + 4Ω2

0))|a〉 − Ω0 e
iΦ(cos θ |b〉+ sin θ |c〉) = 0,

−Ω0 cos θ e−iΦ |a〉 − 1
2 (∆ +

√
∆2 + 4Ω2

0) |b〉 = 0
(5.27)

Let us set the components of the eigenvector as

|V2〉 =


−|c1|

e−iΦ cos θ |c2|
e−iΦ sin θ |c2|

 .

The remaining equation to solve is

|c1| = |c2|
∆ +

√
∆2 + 4Ω2

0
2Ω0

.

Then, to ensure the normalization we can choose |c1| and |c2| functions of the pa-
rameter α as |c1| = cosα and |c2| = sinα. Thus, the eigenvector corresponding to
the eigenvalue λ2 would be |V2〉 = − cosα |a〉+e−iΦ cos θ sinα |b〉+e−iΦ sin θ sinα |c〉.
Finally, the equations for the last eigenvalue λ3 are

{
(∆− 1

2 (∆−
√

∆2 + 4Ω2
0)) |a〉 − eiΦ(cos θ |b〉+ sin θ |c〉) = 0

−Ω0 cos θ e−iΦ |a〉 − 1
2 (∆−

√
∆2 + 4Ω2

0) |b〉 = 0.
(5.28)
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and we choose the components of the eigenvector |V3〉 as

|V3〉 =


eiΦ |d1|

cos θ |d2|
sin θ |d2|

 .

The remaining equation to solve is

|d2| = |d1|
∆ +

√
∆2 + 4Ω2

0
2Ω0

.

Here we can write |d1| and |d2| as |d1| = sinα and |d2| = cosα, considering
the ortogonality condition. Thus, we get the eigenvector corresponding to the
eigenvalue λ3 as |V3〉 = eiΦ sinα |a〉+ cos θ cosα |b〉+ sin θ cosα |c〉 and the matrix
of eigenvectors becomes

U =


0 sin θ − cos θ

− cosα e−iΦ cos θ sinα e−iΦ sin θ sinα
eiΦ sinα cos θ cosα sin θ cosα


where

cotα = ∆ +
√

∆2 + 4Ω0

2Ω0
.

By assuming ∆2 � Ω2
0, we can decompose the previous expession as

tanα = 2 Ω0

∆
1

1 +
√

1 + 4 Ω2
0

∆2

' Ω0

∆

The degenerate dark states are |V1〉 and |V3〉, which correspond to the lower energy
levels, and the state |V2〉, which is the atomic non-degenerate bright state related
to the higher energy level. In this case, the laser-dressed up and down states yield a
synthetic spin-half system, so that we define the two pseudo-spin states as ↑= |V1〉,
↓= |V3〉, stable under atomic spontaneous emission and almost degenerate in case
of large detuning.

The projection of the Hamiltonian onto the subspace of the two dark states
manifold |V1, V3〉 gives the additional term due to the non-abelian gauge potential
Ã. To this aim, we apply the unitary transformation U on the Hamiltonian (5.24)
as it was mentioned in Chapter 5

H̃ = U†H U, (5.29)
where the Hamiltonian H̃ is diagonalized and becomes

H̃ = U†H0 U +Hdiag
int + U† V (r)U,
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with Hdiag
int = U†Hint U . Let us now see in detail the first component U†H0 U of

the new Hamiltonian

U† p2 U = (U† p) (Up) + (U† p) (pU) + U† Up2 + U† (pU) p + U† (p2 U).

Since we know that divA = 0, it decomposes as

U† (pU) p = −U† p2 U − (pU†)(pU).

Thus, the previous equation becomes

U† p2 U = (U† p) (Up) + (U† p) (pU) + U† Up2 − (pU†)(pU)
= p2 − 2i~U†∇Up + ~2(U†∇U)(U†∇U)

Hereby, the new Hamiltonian after diagonalization reads

H̃ = p2

2m −
~A · ~p
m

+ A2

2m +Hdiag
int + Ṽ (r), (5.30)

or

H̃ = 1
2m (−i~∇− Ã)2 + λ Î + Ṽ (r) (5.31)

where Ã =
∑
σ Aσ = i~〈Vσ|∇|Vσ〉, where Vσ is the eigenvector corresponding to

σ = 1..3, Î is the identity matrix, λ is the eigenvalues matrix and Ṽ (r) = U† V (r)U .
The two lower eigenstates |V1〉 and |V3〉 are well separated from the upper one |V2〉,
so that we can neglect the latter due to the adiabatic condition. This observation
implies that we can reduce our problem to a 2 × 2 configuration, taking into ac-
count only terms H̃ij , i = (1, 3) and j = (1, 3). In this way, by projecting the
Hamiltonian (5.24) onto the subspace |V1, V3〉 we obtain the components of the
vector potential as

Ã11 = i 〈V1|∇ |V1〉 = 0,
Ã13 = i 〈V1|∇ |V3〉 = −ik2 cosα ex,

Ã31 = i 〈V3|∇ |V1〉 = k2 cosα ex,

Ã33 = i 〈V3|∇ |V3〉 = −k1 sin2 α ey,

and the 2× 2 matrix of the vector potential is

Ã =

 0 −ik2 cosα ex

ik2 cosα ex −k1 sin2 α ey

 . (5.32)

The values of sin2 α and cosα with α = arctan Ω0
∆ are
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sinα =
Ω0
∆√

1 + (Ω0
∆ )2

' Ω0

∆

(
1− Ω2

0
2∆2 + . . .

)
≈ Ω0

∆ , (5.33)

cosα = 1√
1 + (Ω0

∆ )2
' 1− 1

2
Ω2

0
∆2 + · · · ≈ 1. (5.34)

From this configuration, by rotating around the y-axis of an angle θ = π
2 , the

rotational matrix is

Ryθ =

 cos θ2 sin θ
2

− sin θ
2 cos θ2


The rotation does not influence the momentum but the vector potential, so that
the first term of the projected Hamiltonian

H̃ ′ = (Ryπ/2)−1 H̃ Ryπ/2

becomes

(Ryπ/2)−1 (p− Ã)2Ryπ/2 = p2 − 2Ã′ · p + (Ã′)2, (5.35)

where Ã′ is

Ã′ = (Ryπ/2)−1 ÃRyπ/2. (5.36)

Now, using the rotation matrix Ryθ for θ = π/2 and the matrix of the projected
vector potential Ã from Eq. (5.32) we have

Ã′ = 1
2

 1 1
−1 1

 0 −ik2 cosα ex

ik2 cosα ex −k1 sin2 α ey

1 −1
1 1

 =

= 1
2

 −k1 sin2 α ey −2ik2 cosα ex − k1 sin2 α ey

2ik2 cosα ex − k1 sin2 α ey −k1 sin2 α ey

 .

We can rewrite the gauge potential Ã′ in terms of Pauli matrices as

Ã′ = −k1

2 sin2 α Î ey + k2 cosασy ex −
k1

2 sin2 ασx ey,

or, using the expressions (5.33 - 5.34)

Ã′ = −k1

2
Ω2

0
∆2 Î ey + k2 σy ex −

k1

2
Ω2

0
∆2σx ey. (5.37)
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Other components of the projected Hamiltonian are

−A′ · p
m

= α1 pyσx − α2 pxσy + α1Îpy, (5.38)

(Ã′)2 = m (α2
1 + α2

2
2 ) Î . (5.39)

As we can see, Eq. (5.38) contains the Rashba spin-orbit interaction term

HSO = α1 py σx − α2 px σy (5.40)

with α1 = ~ k1 Ω2
0

2m∆2
0

and α2 = ~ k2
m . We see that this last operation leads us to the

spin-orbit part as in the Hamiltonian in Eq. (5.23).
Let us then focus on the Hamiltonian of Eq. (5.23). As we know, the rotations

of the pseudo-spin axes does not change the real ones. Let us choose the rotation
matrix as P̂ = 1√

2 (σz + σy) and apply it onto H(p, t) as

H(p, t)′′ = P̂ †H(p, t) P̂ = H0 + P̂ † (HSO +HE +Hext) P̂ ,
where

H ′′int+ext = P̂ † (α1 σx py − α2 σy px + α2eEt σy − µBB · σ) P̂ , (5.41)

where σ = (σx, σy, σz). The HamiltonianH ′′int+ext = P̂ †Hint+ext P̂ withHint+ext =
HSO +HE +Hext. Basically, the influence of the rotation P̂ onto the pseudo-spin
axes is

σx → −σx,
σy → σz,

σz → −σy.

Then

H ′′int+ext = −α1 σx py −α2 σz px +α2eEt σz +µB (Bx σx−By σz −Bz σy), (5.42)

or in matrix form

H ′′int+ext =

−α2 p cos θ + α2 eEt− µBy −α1 p sin θ + µ(Bx + iBz)
−α1 p sin θ + µ(Bx − iBz) α2 p cos θ − α2 eEt+ µBy

 .

(5.43)
This Hamiltonian has the same form as the one of the Landau-Zener model (Chap-
ter 6).

Let us now look at the effect of two different Rashba coefficients, namely α1 /=
α2. Without any external fields, the eigenvalues of the spin-orbit contribution to
the Hamiltonian have the following expression

E1,2 = p2

2m ∓
√
α2

1p
2
y + α2

2p
2
x (5.44)
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5.2 – System under investigation for our model

where px = p cos θ and py = p sin θ. The fact that the two coefficients are different
breaks the circular symmetry of the constant energy contour of the pure Rashba
spin-orbit coupling. Specifically, the magnitude of the momentum becomes a func-
tion of θ, the angle between the x axis and p̂, which gives an elongated shape to
the contours:

p1,2(θ, p0) =
√
m2α2(θ) + p2

0 ±mα(θ) (5.45)

where α(θ) =
√
α2

1 sin2(θ) + α2
2 cos2(θ) and p2

0/2m define, respectively, the energy
of the contour and the Fermi momentum without spin-orbit coupling.

The effect of this asymmetry for the spin polarization dynamics is described
by the Schrödinger equation for the Hamiltonian in Eq. 5.23. Given a Fermi
momentum p0 = pF , since levels with p < p2(θ, pF ) have both spin states occupied
they do not contribute to the spin dynamics. For this reason, we will focus only
on the states with momentum p2(θ, pF ) < p < p1(θ, pF ). The interacting and free
parts of the Hamiltonian are described by a 2 × 2 matrix, with the y axis as the
quantization direction for spin [9, 86].

The Fermi surface with anisotropic spin-orbit coupling is shown in Figure 5.1.
The two ellipses correspond to the lower-energy momentum p1 (θ, pF ), and to the
higher-energy momentum p2 (θ, pF ) from Eq.(5.45) with the fixed spin-orbit pa-
rameters as mα2 = 0.1 pF , and α1/α2 = 1/4. Notice that all the states below
p2 (θ, pF ) are fully occupied that is shown with the dark blue region within the
ellipse. Hence, we consider only the region with the light blue colour. As a conse-
quence, the helicity of the spin eigenstates does not point anymore perpendicular
to the momentum.

This expression is related to the Landau-Zener problem [87, 88, 89], where the
difference of the energies between two coupled levels changes linearly in time. The
term α2 eEt enters as an effective magnetic field and is called Edelstein field [9].
The two energy scales of interest are p2/2m, the kinetic energy, and eELSOC , the
voltage present over the spin-orbit length LSOC = ~(2mα2)−1. In the present
anisotropic spin-orbit coupling, its length points in the same direction as the ap-
plied field. In the following, for simplicity, we will choose units such that ~ = 1
and we will introduce an adiabaticity parameter γp, which is

γp = eELSOC
p2/2m = γ0

p2
0
p2 , (5.46)

where γ0 = eE
α2p2

0
. The γp controls how fast the spin system reacts to an applied

electric field. Using the natural units of energy α2p
√
γp, we also define the following

dimensionless quantities

τ = α2p
√
γp t, τp = cos θ

√
γp
,

∆p = sin θ
√
γp

α1

α2
, ξx,y,z = µBBx,y,z

α2 p
√
γp
.

(5.47)
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Figure 5.1. Fermi surfaces with anisotropic spin-orbit coupling, that are associated to
the lower-energy momentum p1 (θ, pF ), and to the higher-energy momentum p2 (θ, pF ),
are shown as a function of the momentum components in units of pF . The parameters are
mα2 = 0.1 pF , and α1/α2 = 1/4. States below p2 (θ, pF ) are fully occupied - dark blue
region within the circle, thus it is considered only the region with the light blue colour.

These new quantities contain the momentum p, that is a function of θ in our
anisotropic case. This makes the principle difference between our model and the
two-dimensional electron gas model in [9], where the momentum p in Eq. (5.47)
was a constant Fermi momentum pF and the model was studied for the homoge-
nious case in the absence of magnetic field. By inserting these definitions, the
Hamiltonian takes the new form

Hp(τ) =

 τ − τp − ξy −∆p + ξx + iξz

−∆p + ξx − iξz −(τ − τp − ξy)

 . (5.48)

The solution of the Schrödinger equation with the above Hamiltonian will be
derived in Chapter 6.

Summary and perspectives
In this chapter we reported a general description of the methods for artificial gen-
eration of spin-orbit coupling in ultracold atomic systems. We presented a brief
mathematical derivation of how this can be achieved through diagonalization of
Hamiltonian and using the adiabatic principle. Besides, we considered the two
symmetries in the Abelian and non-Abelian cases. Finally, we have described the
three main schemes for inducing spin-orbit coupling through laser interactions.
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5.2 – System under investigation for our model

Furthermore, we propose how to generate spin-orbit coupling synthetically in
the system we investigated, namely using the internal tripod configuration in elec-
trically neutral atoms and two lasers with Rabi frequencies. Using the adiabatic
condition we projected the Hamiltonian onto the subspace of the two lower eigen-
vectors, neglecting the upper one. One of the terms that appear after this operation
is the vector potential, which contains the asymmetric Rashba spin-orbit coupling
and, hence, it is responsible for the asymmetry in the Fermi surfaces.
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Chapter 6

Solution for the anisotropic
spin-orbit coupling in cold
gases

6.1 Landau-Zener problem
The Landau-Zener model [87, 89], known as a standard representation of a two-
level system in quantum physics, describes the probability of transition between
two quantum states. This model is used in quantum optics, solid-state physics,
atomic collisions, nuclear physics.

The two quantum states are coupled by an external field with a constant am-
plitude and a time-dependent frequency. The last one experiences the resonance
with the frequency of the transition. The level crossing in the diabatic basis can
be seen as an avoided crossing in the adiabatic basis, where diabatic is called the
basis formed of the two bare states (eigenstates in the absence of interaction) and
adiabatic stands for the basis containing the two eigenstates of the Hamiltonian in
the presence of interaction.

The Schrödinger equation of a coherently driven two-state quantum system
is [90]

i
d

dt

c1(t)
c2(t)

 =

−∆(t) Ω(t)
Ω(t) ∆(t)

c1(t)
c2(t)

 , (6.1)

where c1(t) and c2(t) are the probabilities amplitude of quantum states ψ1 and
ψ2. The coupling between the two states Ω(t) and ∆(t) is a half of the difference
between the system transition frequency and the field frequency. In the Landau-
Zener model these functions are
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6 – Solution for the anisotropic spin-orbit coupling in cold gases

Ω(t) = const, ∆(t) = β2t, (6.2)

where β and Ω have a dimension of frequency, they are real and positive the same as
β2. The coupling Ω(t) is assumed to start at t→ −∞ and be arriving to t→ +∞.
The dimensionless time τ and coupling ω are

τ = βt, ω = Ω
β
. (6.3)

It was shown that the transitional probability Pd(τ) = c2(τ) 2 at the diabatic
basis from the initial state ψ1 to the state ψ2 at time τ

Pd(τ) = ω2

2 e−πω
4/4 |D−1+iω2

2
(τ
√

2e3iπ/4)|2, (6.4)

where Dν(z) with ν = −1 + iω2/2 is the parabolic cylinder function [91].
The Hamiltonian of the model that we study in Eq. (5.48) has a form similar

to the one of Landau-Zener in Eq. (6.1). This feature will be used in the next
steps.

6.2 Solution in our model
We will now look for the solution of the time-dependent Schrödinger equation
with the Hamiltonian in Eq. 5.48, in the shape of a spinor with the amplitudes
U(τ − τp − ξy) and V (τ − τp − ξy)

Ψ(τ) = U(τ − τp − ξy) | ↑ 〉+ V (τ − τp − ξy) | ↓ 〉. (6.5)

Using these quantities, the Schrödinger equation becomes{
iU̇(τ) = τU(τ)− ∆̃p V (τ),
iV̇ (τ) = −τV (τ)− ∆̃∗p U(τ),

(6.6)

where ∆̃p = ∆p − (ξx + iξz). Rescaling the time variable τ as z =
√

2e−i 3π
4 τ we

obtain the system of equations

{
U̇(z) + z

2 U(z)− 1√
2 e
−i 3π

4 ∆̃V (z) = 0,
V̇ (z)− z

2 V (z) + 1√
2 e

iπ4 ∆̃∗ U(z) = 0,
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6.2 – Solution in our model

which, by introducing the parameters

ν+ = ∆̃p√
2
e−i

3π
4 ,

ν− =
∆̃∗p√

2
ei
π
4 ,

ν = ν+ν− = − i2 |∆̃p|2,

take the new form  U̇(z) + z

2U(z)− ν+V (z) = 0,

V̇ (z)− z

2V (z) + ν−U(z) = 0.
(6.7)

The solutions to the above non-linear system of differential equations can be found
in terms of parabolic cylinder functions by choosing

U(z) = D(ν, z),
V (z) = ν−D(ν − 1, z),

(6.8)

which represent the anisotropic extension to the solutions originally found in Ref.
[9]. In the normalized form, two mutually orthogonal solutions can be written as

U (1)(τ) = e−π|∆̃p|2/8D(ν, z),

V (1)(τ) = e−π|∆̃p|2/8ν−D(ν − 1, z),
U (2)(τ) = −[V (1)(τ)]∗,
V (2)(τ) = [U (1)(τ)]∗.

(6.9)

By solving the Hamiltonian at τ = 0, and by defining τ̃p = τp + ξy, we impose on
the general solution the initial conditions

U(−τ̃p) = U0 ≡

√√√√√1
2

1 + τ̃p√
τ̃2
p + |∆̃p|2

,
V (−τ̃p) = V0 ≡ e−iArg(∆̃p)

√√√√√1
2

1− τ̃p√
τ̃2
p + |∆̃p|2

,
(6.10)

described by a linear combination of the two independent solutions with the coef-
ficients Ap and Bp (6.9)

U(τ − τp − ξy) = Ap U
(1)(τ − τp − ξy) +Bp U

(2)(τ − τp − ξy), (6.11)
V (τ − τp − ξy) = Ap V

(1)(τ − τp − ξy) +Bp V
(2)(τ − τp − ξy). (6.12)
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6 – Solution for the anisotropic spin-orbit coupling in cold gases

To find these coefficients we can use Eq. (6.11, 6.12) at time τ = 0, so that{
U0 = Ap U

(1)(−τ̃p) +Bp U
(2)(−τ̃p),

V0 = Ap V
(1)(−τ̃p) +Bp V

(2)(−τ̃p),
(6.13)

or, using Eq. (6.9), {
U0 = Ap U

(1)(−τ̃p)−Bp [V (1)(−τ̃p)]∗,
V0 = Ap V

(1)(−τ̃p) +Bp [U (1)(−τ̃p)]∗
(6.14)

which give the coefficients

Ap = U0[U (1)(−τ̃p)]∗ + V0[V (1)(−τ̃p)]∗

Bp = V0 U
(1)(−τ̃p)− U0 V

(1)(−τ̃p).
(6.15)

The full solution can be obtained by combining Eqs. (6.5, 6.9 - 6.12, 6.15). The
main difference from the solution of G. Vignale and I. Tokatly [9] is its dependence
on the momentum, since we are focusing on the anisotropic case with two different
Rashba coefficients α1 and α2. We note that the dimensionless time variable τ is
proportional to α2, only one of the Rashba coefficients, differently from Ref. [9]
where τ ∝ α. Besides, the external magnetic field B modifies the initial conditions
and the detuning ∆̃p through the dimensionless components ξx, ξy, ξz.

6.3 Spin polarization
The spin polarization and the analytical solution of the system are given respec-
tively by Sy = Ψ†σyΨ and Eq. (6.6), for a spin quantization axis along the y
direction [86]. Thus, for a given magnitude of the momentum in Eq.(5.45), and for
θ = π

2 , the spin along the y direction reads Syp(τ, p, θ) = |U(τ − τp + ξz)|2− 1
2 . The

numerical computation of Syp as a function of the dimensionless time τ in different
regimes is shown in Figure 6.1.

In the adiabatic regime (Figure 6.1a) when γ0 = 0.1 the spin polarization com-
ponent Syp relaxes slowly, depending on the relative value of α1 and α2, which also
dictate the frequency of the oscillations. In the quasi-adiabatic or non-adiabatic
regimes (Figure 6.1b) with, respectively, γ0 = 1 and γ0 = 10, relaxation occurs
instead more rapidly, with the same qualitative differences due to the different α1
and α2.

We now turn our attention to the total spin polarization. Differently from the
analysis of Vignale and Tokatly [9], who kept the momentum from Eq. (5.45) fixed
at the Fermi level, assuming that the difference between p1 and p2 is small, we do
not fix the momentum in our computation. In other words, the anisotropic case
that we consider has the additional variable p. We consider the integration within
the asymmetric region limited by the energies E1(p(θ, pF )) and E2(p(θ, pF )), and
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6.3 – Spin polarization
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Figure 6.1. Spin polarization component Syp in different regimes. Spin polarization
y-component as a function of dimensionless time τ from the solutions of Eq.6.6 at fixed
momentum pF and θ = π

2 . The z-component of magnetic field is Bz = 0.3. (a) Spin
polarization Syp in adiabatic regime with γ0 = 0.1. The varying Rashba coefficients
(α1, α2) are: orange (1, 2), green (2, 1), purple (1.05, 0.95) and gray (1, 4). (b) Spin
polarization Syp in quasiadiabatic regime (γ0 = 1) for orange and green, in non-adiabatic
regime (γ0 = 10) for purple an gray. The Rashba coefficients (α1, α2) are: for orange and
purple (2, 1); for green and gray (1, 2).

the Fermi level lays in this region. Thus, the total spin polarization must be
integrated as

Sy(τ) =
∑
s=1,2

ˆ
d2p

(2π)2 (−1)s−1 Syp(τ)Θ
(
p2
F

2m − Es(p)
)

(6.16)
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6 – Solution for the anisotropic spin-orbit coupling in cold gases

where Θ
(
p2
F

2m − Es(p)
)

is the Heaviside step function. This means that the to-
tal spin polarization can be computed by integrating Syp over all the angles and
averaging over the momentum p(θ, p0) as

Sy(τ) =
ˆ 2π

0

dθ

2π

ˆ p1(θ,p0)

p2(θ,p0)

p dp

2π Syp(τ, p, θ). (6.17)
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Figure 6.2. Total spin polarization Sy(τ) in the adiabatic regime (γ0 = 0.1) as a
function of the dimensionless time τ for a cold atomic system in the presence of spin-
orbit coupling. The upper figure corresponds to α1 > α2, and from the upper to the
lower curve Rashba coefficients are (α1, α2): blue (1.00001, 0.99999), orange (1.05,
0.95), green (2, 1), red (3, 1) and purple (4, 1). The bottom figure corresponds to
α1 < α2, and from the upper to the lower curve Rashba coefficients are (α1, α2): blue
(0.99, 1.01), orange (1, 1.5), green (1, 2), red (1, 3) and purple (1, 4). The external
magnetic field is B = (0.1, 0.2, 0.3).
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Figure 6.2 reports the total spin polarization Sy for the two ratios of Rashba
coefficients α1 > α2 (Figure 6.2 upper) and α1 < α2 (Figure 6.2 bottom) in the
adiabatic regime γ0 = 0.1. To evaluate Eq.(6.16) we consider m = 1, pF = 2 and
B=(0.1, 0.2, 0.3). The blue and orange curves in the upper plot of Figure 6.2,
corresponding to the case α1 ' α2, reach a steady condition early, meaning that
the spin direction follows that induced by the electric field. Besides, it confirms
the theoretical prediction of the spin polarization for two-dimensional electron gas
with Rashba spin-orbit and inverse spin-galvanic effect [9]. The purple, red and
green curves are the total spin polarizations for (α1 = 4, α2 = 1), (α1 = 3, α2 = 1),
and (α1 = 2, α2 = 1), respectively: they respond very slowly to the influence of an
external electric field E, hence the steady state of the atomic spin takes longer to
build up, again depending on the ratio of Rashba coefficients. From the second plot
in Figure 6.2 we observe that all curves respond faster than in the case α1 < α2,
since saturation occurs in shorter times: only the blue (α1 = 0.99, α2 = 1.01),
orange (α1 = 1, α2 = 1.5) and green (α1 = 1, α2 = 2) curves have a longer
build-up time.

6.4 Approximate solution

Now let us consider the adiabatic approximation and compare it to the exact
solutions in the adiabatic regime of weak electric field E. Note that we calculate
the spin polarization Syp,add with respect to the lower eigenstate of the system,
which means that for all times the system under adiabatical process of the external
electric field remains in the instantaneous lower eigenstate. This approach allows to
retrieve the evolution considering time τ as a parameter in the calculations. To this
purpose, we solve the system of Eqs. (6.6) taking into account only the eigenvalue
for the lowest state. The component of the approximated spin polarization in the
adiabatic regime can be found from

 τ − τ̃p − λ −∆p + ξx + iξz

−∆p + ξx − iξz −(τ − τ̃p)− λ

U
V

 = 0. (6.18)

From the system of equations we find that

U2 = 1−

(
τ − τ̃p +

√
|∆̃p|2 + τ̃2

p

)2

|∆̃p|2 +
(
τ − τ̃p +

√
|∆̃p|2 + τ̃2

p

)2 (6.19)
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and Syp,ad = U2 − 1
2 , so that

Syp,ad = 1
2

|∆̃p|2 −
(
τ − τ̃p +

√
|∆̃p|2 + τ̃2

p

)2

|∆̃p|2 +
(
τ − τ̃p +

√
|∆̃p|2 + τ̃2

p

)2 . (6.20)

Figure 6.3 shows the evolution of total spin polarization for a cold atomic system
together with that in two-dimensional electron gas (blue) with B = 0 and α1 = α2
with k = α1

α2
, retrieved by integrating numerically over the angles and averaging

over the momentum p as in Eq.(6.17) with the substitution of Syp(τ, p, θ) with its
adiabatic expression Syp,ad.
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Figure 6.3. The approximated total spin polarization Sy
ad

(τ) is shown as a function
of the dimensionless time τ . The adiabatic parameter is fixed at γ0 = 0.1, the external
magnetic field B = (0.1, 0.2, 0.3). The ratios of Rashba coefficients k = α1

α2
are: purple

(k = 0.98), red (k = 2), orange (k = 3), green (k = 0.5) and yellow (k = 4) curves. The
blue curve is taken at B = 0 and α1 = α2, which corresponds to the characteristic result
for a two-dimensional electron gas.

As we can see from Figure 6.3 the blue curve for large times coincides with
the purple one (k = 0.98), while for short times the presence of magnetic field
B = (0.1, 0.2, 0.3) caused by Rashba spin-orbit coupling effect makes the latter
lay higher than the one for the two-dimensional electron gas. The green curve
(k = 0.5) saturates quite fast for short times, even slightly faster than the one
for two-dimentional electron gas, which means that the Edelstein field is more
significant than the Rashba field. The red (k = 2), orange (k = 3) and yellow
curve (k = 4) decrease more slowly and their saturation occurs much later than for
the purple and green curves, showing that in this condition the Rashba field still
prevails.
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6.4 – Approximate solution

The results obtained from the adiabatic approximation qualitatively coincide
with the results calculated from the exact solution, and have the identical subsiding
behavior in both small and large ratio of spin-orbit coupling parameters k. The
artificial pseudospin states in cold atoms with Rashba spin-orbit coupling show a
longer lifetime, highlighting their better tunability compared with two-dimentional
electron gas.

Summary and perspectives
In this chapter we described the Landau-Zener model, whose Hamiltonian has
an expression similar to the one of our model. By solving analytically our time-
dependent Schrödinger equation we found the exact solutions in terms of cylinder
parabolic functions. Integrating the component over both momentum and angle
we have found the total spin polarization, which we plotted for different Rashba
coefficients α1, α2. Results show that when α1 > α2 the spin polarized state re-
sponds very slowly to the external perturbations compared to the two-dimentional
electron gas. Finally, we presented an adiabatic approximated solution for the to-
tal spin polarization, which has qualitatively similar behaviour to the exact one we
retrieved.

Our results can be used for generating spin polarized states with given param-
eters in theory and experiments, controlling them by means of external perturba-
tions.
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Conclusions

In the thesis we studied the inverse-spin galvanic effect, one of the most interesting
effects in spintronics. This phenomenon occurs under the influence of an external
electric field onto the symmetric spin distribution of the splitted energy sub-bands,
and as a result the asymmetry produces a non-equilibrium spin-polarization. By
Onsager reciprocal relation, also the opposite effect, the spin-galvanic effect, can
occur as a charge current due to non-equilibrium spin polarization. Both effects
are possible if we restrict the symmetry conditions, so that the polar and axial
vectors, i.e. the charge current and spin polarization, are coupled. In solid-state
systems with symmetry broken the degeneracy of the energy sub-bands is lifted due
to Rashba spin-orbit coupling in the absence of the external perturbations. While
Rashba spin-orbit coupling is the surface effect, Dresselhaus spin-orbit coupling
comes from the bulk of the material. Theoretically the effects that generate a spin
current are well studied in solid-states materials as heterostructures, an example
being the two-dimensional electron gas with linear Rashba spin-orbit coupling. In
particular, from the theory we expect that with large spin-orbit magnetic fields the
inverse spin-galvanic effect is large as well. However, experimental investigations
carried out for InGaAs epilayers have shown that the spin polarization increases
when the effective magnetic field decreases along the crystallographic axes.

In addition to solid-state systems, also ultracold atoms are promising candidates
for studying spin current effects. As a counterweight to the solid state case, systems
based on ultracold atoms are "clean": free of disorder and not affected by external
electromagnetic fields, being them electrically neutral. Nevertheless, the spin-orbit
coupling in such systems can be generated artificially with the laser beams due to
the Raman process.

As a first step during my research project, I have carefully reviewed the experi-
mental result and found the missing part in the theory that explains the mismatch
with the experimental results. To this purpose, I added a spin-orbit coupling cu-
bic in momentum besides the linear one in a quantum well system. Then, using
the real-time formalism we have derived the kinetic Eilenberger equation from the
subtracted left-right Dyson equation by introducing the Wigner coordinates and
making a Fourier transform. The Keldysh component of quasi-classical Green’s
function from the quantum kinetic equation has been computed as spin polar-
ization. We have described the model with the separate contributions of linear
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6 – Solution for the anisotropic spin-orbit coupling in cold gases

and cubic Rashba-Dresselhaus spin-orbit couplings within diffusive and beyond-
diffusive regimes, respectively corresponding to small or large spin-orbit coupling
with respect to the disorder. For all the cases considered, we plotted the spin-
galvanic conductivity as a function of the frequency. Besides, we showed that, in
the presence of only cubic Rashba and Dresselhaus spin-orbit couplings, the spin
generation torque vanishes and the inverse spin-galvanic effect indeed does not
show up. Finally, we have constructed the vector diagrams of the in-plane spin
polarization and spin-orbit magnetic field versus electric current with the fixed
linear Rashba-Dresselhaus and varying cubic Dresselhaus spin-orbit couplings. In
particular, the vector diagram built for the case where the cubic Dresselhaus con-
tribution is greater than the linear Rashba-Dresselhaus spin-orbit couplings shows
that the smallest magnetic field and the greatest spin polarization coexist along the
crystallographic axis [1, -1], and vice versa along [1, 1]. This result qualitatively
coincides with the experimental measurements.

As for my second contribution, I have investigated the ultracold atomic system
in the presence of Rashba spin-orbit coupling. The latter effect, arising from the
gauge potential, was generated artificially through an internal tripod scheme and
two lasers with Rabi frequencies. Unlike two-dimentional electron systems, the
presence of synthetic spin-orbit coupling leads to a twofold value for the Rashba
coefficients. Hence, the Fermi surface becomes now asymmetric, entailing that the
magnitude of the momentum has an angular dependence. To study this aspect,
I solved analitically the time-dependent Schrödinger equation in terms of spinors
and parabolic cylinder functions. Then, the spin polarization has been estimated
numerically by averaging over the directions of the momentum and angles, and for
different values of the two Rashba coefficients in the adiabatic regime. Results have
shown that the spin polarized states respond much more slowly when the Rashba
coeffiecients satisfy α1 > α2. Finally, I derived the adiabatic approximation of
spin polarization for weak electric fields, and I numerically compared it with the
above-mentioned exact solution, showing that both qualitatively exhibit the same
behavior.

The obtained results provide a complete picture of the tunability for the spin
relaxation times in quantum wells and cold atomic system with Rashba and Dres-
selhaus spin-orbit couplings. The result can be used for spin polarization control,
for instance by choosing the most efficient values of the Rashba and Dresselhaus
parameters by externally-driven fields, and can guide further investigations on spin
current manipulations.
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