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Notations

• N is the set of natural numbers including 0.

• N+ is the set of positive natural numbers, namely N+ = N \ {0}.

• R is the set of real numbers.

• R+ is the set of positive real numbers, namely R+ = {x ∈ R; x > 0}.

• RN is the product R× · · · × R︸ ︷︷ ︸
N times

(it will be always understood that N ∈ N+).

• RN+ is the product R+ × · · · × R+︸ ︷︷ ︸
N times

.

• If Ω is an open set1 in RN and α is a multi-index, namely α = (α1, · · · , αN ), with

αi ∈ N, we denote by Dαu the partial derivative ∂|α|u
∂x
α1
1 ···∂x

αN
N

, where |α| =
∑N

i=1 αi

is the order of α. If N = 1 we use the notation u′, u′′ to denote, respectively, the
first and second order derivatives.

• ∇u denotes the gradient of u, namely ∇u :=
(
∂u
∂x1

, · · · , ∂u
∂xN

)
.

• ∆ denotes the Laplace operator, namely ∆u :=
N∑
i=1

∂2u

∂x2
i

.

• Ck(Ω), k ∈ N, denotes the set of functions u : Ω→ R having all derivatives, of order
less or equal to k, continuous in Ω.

• Ck(Ω), k ∈ N, denotes the set of functions u ∈ Ck(Ω) all of whose derivatives of
order less or equal to k have continuous extensions to Ω.

• C∞0 (Ω) denotes the set of all infinitely-differentiable functions of compact support
in Ω.

• We denote by |Ω| the Lebesgue measure of Ω and by
∫

Ω u dx the integral of a
function u in Ω.

• Lp(Ω), for 1 ≤ p < +∞, denotes the usual Lebesgue space endowed with the norm

|u|p,Ω :=
(∫

Ω |u|
p dx

)1/p
. We will write also |u|p when the set of integration is

understood.

• L∞(Ω) is the Lebesgue space of essentially bounded functions endowed with the
norm |u|∞,Ω = ess supΩ |u|. We will write also |u|∞ when Ω is understood.

1From now on it will be understood that Ω is an open set in RN .

v



vi CONTENTS

• H1
0 (Ω) denotes the usual Sobolev space endowed with the norm

‖u‖Ω =

(∫
Ω
|∇u|2 dx

)1/2

.

We will write also ‖u‖ when Ω is understood.

• H1(Ω) denotes the usual Sobolev space endowed with the norm

‖u‖1,2,Ω =

(∫
Ω
|u|2 dx+

∫
Ω
|∇u|2 dx

)1/2

.

We will write also ‖u‖1,2 when Ω is understood.

• D1,2(RN ) denotes the completion of C∞0 (RN ) with respect to the norm

‖u‖RN =

(∫
RN
|∇u|2 dx

)1/2

.

• If X, Y are Banach spaces, we denote by L(X,Y ) the space of bounded linear maps
from X to Y .



Introduction

In this PhD thesis we give contributions to some questions regarding the asymptotic anal-
ysis, the existence and nonexistence of sign-changing solutions for the Brezis–Nirenberg
problem.

The Brezis–Nirenberg problem is the following semilinear elliptic problem:{
−∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω,
(0.0.1)

where Ω ⊂ RN is a smooth bounded domain, N ≥ 3, λ is a real constant and 2∗ = 2N
N−2

is the critical Sobolev exponent for the embedding of H1
0 (Ω) into Lp(Ω).

Solutions to Problem 0.0.1 corresponds to critical points of the functional

Jλ(u) :=
1

2

∫
Ω
|∇u|2 dx− λ

2

∫
Ω
u2 dx− 1

2∗

∫
Ω
|u|2∗ dx. (0.0.2)

Since the embedding H1
0 (Ω) ↪→ L2∗(Ω) is not compact there are serious difficulties when

trying to find critical points of (0.0.2) with the standard variational methods.

We point out that weak solutions of (0.0.1) are classical solution. This is a conse-
quence of a well-known lemma of Brezis and Kato (see for instance [58]).

Problem 0.0.1 is connected to some variational problems in geometry and physics
where lack of compactness also occurs. The most known example is the Yamabe’s prob-
lem but also (0.0.1) is related to the problem of the existence of extremal functions for
isoperimetric inequalities (Hardy–Littlewood–Sobolev inequalities, trace inequalities, see
[42], [43]), as well as the existence of non-minimal solutions for Yang-Mills functionals
(see [61]). For more examples see [17] and the references therein.

For these reasons Problem 0.0.1 has been widely studied over the last decades, and
many results for positive solutions have been obtained.

The first existence result for positive solutions of (0.0.1) has been given by Brezis and
Nirenberg in their celebrated paper [17], where, in particular the crucial role played by
the dimension was enlightened. In fact they proved that:

(i) if N ≥ 4 positive solutions exist for every λ ∈ (0, λ1), where λ1 = λ1(Ω) is the first
eigenvalue of −∆ in H1

0 (Ω).

(ii) if N = 3 there exists λ∗ = λ∗(Ω) > 0 such that positive solutions exist for every
λ ∈ (λ∗, λ1).

vii
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When Ω = B ⊂ R3 is a ball they also proved that λ∗(B) = λ1(B)/4 and a positive
solution of (0.0.1) exists if and only if λ ∈ (λ1

4 , λ1). Moreover, for any N ≥ 3, there are
no positive solutions of (0.0.1) if λ ≥ λ1, and, if Ω is strictly star-shaped, Problem (0.0.1)
has no solutions for λ < 0. Hence, from now on we will assume that λ > 0.

Concerning the case of sign-changing solutions of (0.0.1), several existence results
have been obtained if N ≥ 4. In this case one can get sign-changing solutions for every
λ ∈ (0, λ1(Ω)), or even λ > λ1(Ω) (see [20, 23, 28, 29, 6, 24, 25, 54]). More precisely,
Capozzi, Fortunato and Palmieri in [20] showed that for N = 4, λ > 0 and λ 6∈ σ(−∆)
(the spectrum of −∆ in H1

0 (Ω)) Problem 0.0.1 has a nontrivial solution. The same holds
if N ≥ 5 for all λ > 0 (see also [35]).

The case N = 3 presents the same difficulties enlightened before for positive solutions
and even more. In fact, it is not yet known, when Ω = B is a ball in R3, if there are
non radial sign-changing solutions of (0.0.1) when λ is smaller than λ∗(B) = λ1(B)/4. A
partial answer to this question posed by H. Brezis has been given in [14].

However, even in the case N = 4, 5, 6, some strange phenomenon appears for what
concerns radial sign-changing solutions in the ball. Indeed it was first proved by Atkinson,
Brezis and Peletier in [6] that for N = 4, 5, 6 there exists λ∗ = λ∗(N) such that there are
no sign-changing radial solutions of (0.0.1) for λ ∈ (0, λ∗). Later this result was proved
in [1] in a different way.

From the nonexistence result of [6] (and [1]) some question arise:

(Q1) Is it possible to extend, in some way, this result to other bounded domains? In
which sense? What are the solutions which play the same role as the radial nodal solu-
tions in the case of the ball?

Some related results which have connections with these questions were later obtained
by Ben Ayed, El Mehdi and Pacella who analyzed the asymptotic behavior of low energy
sign-changing solutions of (0.0.1) in general bounded domains Ω in dimension N = 3 (see
[14]) and N ≥ 4 (see [13]) as the parameter λ tends to the limit value for which nodal
solutions exist, which is a λ̄ > 0, if N = 3, and λ̄ = 0, if N ≥ 4.

More precisely, they studied solutions uλ of (0.0.1) whose energy converges to 2SN/2

(S is the best Sobolev constant in for the embedding of D1,2(RN ) into L2∗(RN )) and
proved that:

(i) if N = 3 the positive part u+
λ and the negative part u−λ blow up and concentrate

at two different points of Ω, as λ → λ̄, having each one the asymptotic profile of a
standard ”bubble” in R3 (i.e. of a positive solution of the equation −∆U = U2∗−1 in
R3), where λ̄ is the infimum of the values of λ for which nodal low-energy solutions
exist.

(ii) if N ≥ 4 and the ”concentration speeds” of u+
λ and u−λ are comparable (i.e. their

L∞-norms blow up with the same rate as λ→ 0) then again u+
λ and u−λ concentrate

at two different points of Ω, as λ → 0, having each one the asymptotic profile of a
standard ”bubble” in RN .

Since in ii) it was assumed that u+
λ and u−λ blow up with the same rate, other questions

arise:
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(Q2) If N ≥ 4 do there exist low-energy nodal solutions such that u+
λ and u−λ concen-

trate and blow-up at the same point, as λ→ 0? In the affirmative case what is their limit
profile? Is there a difference between the case N = 4, 5, 6 and the case N ≥ 7?

In this PhD thesis we give answers to (Q1) and (Q2).

First, in order to understand what kind of results we could expect, we have ana-
lyzed the asymptotic behavior of sign-changing radial solutions in the ball with two nodal
regions, as λ goes to some limit value obtained by studying the associated ordinary dif-
ferential equation. In view of the result of Atkinson, Brezis and Peletier the limit value
of the parameter λ is a strictly positive real number λ̄ = λ̄(N), if N = 4, 5, 6 and it is 0,
if N ≥ 7, according with the existence result of Cerami, Solimini and Struwe (see [25]).

The results obtained from the analysis of radial sign-changing solutions in the ball,
are the following:

(R1) If N ≥ 7, and (uλ) is a family of radial sign-changing solutions of least energy (i.e.
such that ‖uλ‖ → 2SN/2, as λ → 0) then the positive part and the negative part, u+

λ

and u−λ , concentrate and blow-up (with different speeds) at the same point, which is the
center of the ball, as λ→ 0, and each limit profile is that of a “standard bubble” 2 in RN .
In other words the whole solution uλ looks like a “tower of two bubbles”.

We point out that this result is the first existence result of “bubble towers” solutions
for the Brezis–Nirenberg problem, and it is contained in the paper [37].

In order to understand, in the low dimensions N = 4, 5, 6, what kind of asymptotic
profile we could expect for radial sign-changing solutions, by studying the associated dif-
ferential equation (as done by [8, 6]) and reasoning as in [37], we have:

(R2) If 3 ≤ N ≤ 6, and (uλ) is a family of radial sign-changing solutions of (1.1.2) in
the unit ball B1 of RN , having two nodal regions, such that uλ(0) > 0, and denoting by
λ̄ = λ̄(N) the limit value of the parameter λ, then:

(i) if N = 3, then λ̄ = 9
4λ1(B1), where λ1(B1) is the first eigenvalue of −∆ in H1

0 (B1),
and u+

λ concentrates and blows-up at the center of the ball having the limit profile
of standard bubble in R3, while u−λ converges to zero uniformly, as λ→ λ̄.

(ii) if N = 4, 5, then λ̄ = λ1(B1) and u+
λ , u−λ behave as in the case N = 3.

(iii) if N = 6, then λ̄ ∈ (0, λ1(B1)) and u+
λ behaves as for N = 3 while u−λ converges to

the unique positive radial solution of (0.0.1) in B1, as λ→ λ̄.

In particular, for these dimensions, there cannot exist radial sign-changing solutions in
the ball having the asymptotic shape of a “tower of two bubbles”.

2For µ > 0, x0 ∈ RN , we call “standard bubble” the function Ux0,µ : RN → R defined by

Ux0,µ(x) :=
[N(N − 2)µ2](N−2)/4

[µ2 + |x− x0|2](N−2)/2
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These results are collected in the paper [39].

The proof of the results (R1), (R2) are quite technically complicated and often rely
on the radial character of the problem. We would like to stress that the presence of the
lower-order term λu makes our analysis quite different from that performed in [15] for
low-energy sign-changing solution of an almost critical problem.

We also point out that, since we consider nodal solutions, our results cannot be ob-
tained by following the proofs for the case of positive solutions ([7], [8],[36], [52]).

In view of (R1) is natural to ask whether solutions of (0.0.1) which behave like the
radial ones exist in other bounded domains. In [40], we answer positively this question
at least in the case of symmetric domains of RN , for N ≥ 7. More precisely, applying a
variant of of the Lyapunov-Schmidt reduction method, we show that:

(R3) If N ≥ 7 and Ω ⊂ RN is any bounded smooth domain which is symmetric with
respect to x1, . . . , xN and such that the center of symmetry 0 ∈ Ω, then, for any λ
sufficiently small, there exist sign-changing solutions of Problem 0.0.1 of the form

uλ(x) = αN


 d1,λλ

1
N−4

d2
1,λλ

2
N−4 + |x|2

N−2
2

−

 d2,λλ
3N−10

(N−4)(N−6)

d2
2,λλ

2 3N−10
(N−4)(N−6) + |x|2

N−2
2

+ Φλ, (0.0.3)

where di,λ → d̄i, for i = 1, 2, as λ→ 0 and Φλ is such that Φλ → 0 in H1(Ω), as λ→ 0.

We point out that if one applies directly the finite dimensional reduction method,
looking for a sign-changing bubble tower solution of the form 0.0.3 for Problem 0.0.1,
then, when solving the associated finite dimensional problem one finds that the reduced
functional has not a critical point (see Section 1 of Chapter 3). In order to overcome
this difficulty, we have introduced a new idea based on the splitting of the remainder
term in two parts. Usually the remainder term is found by solving an infinite dimensional
problem, called “the auxiliary equation”, here, we look for a remainder term which is the
sum of two remainder terms, of different orders. These two functions are found by solving
a system of two equation, which is obtained by splitting the the auxiliary equation in
an appropriate way. At the end, when solving the finite dimensional problem, we get a
reduced functional which has a critical point.

We also observe that the symmetry assumption for Ω is due only in order to simplify
the computations which however, even in the symmetric context, are long and tough.
But there is no reason, a priori, for which the previous result should not hold in general
domains. Hence, reasoning as in [48], we believe that the symmetry assumption could be
removed.

We observe that, in (R3), the assumption N ≥ 7 on the dimension is not only
technically crucial but it also is indeed necessary. In fact, by applying a Pohozaev’s
identity and fine estimates, we prove the following result:

(R4) If N = 4, 5, 6, for any smooth bounded domain Ω ⊂ RN , for any ξ ∈ Ω, then, there
cannot exist solutions uλ of Problem 0.0.1 of the form

uλ = Uξ,δ1 − Uξ,δ2 + Φλ,
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where δi = δi(λ) for i = 1, 2, are such that δ1 → 0 and δ2 = o(δ1), as λ → 0, and Φλ

is such that Φλ → 0 in H1(Ω), |Φλ| = o(δ
−N−2

2
1 ), |∇Φλ| = o(δ

−N
2

1 ) uniformly in compact
subsets of Ω as λ→ 0.

This result is hence the counterpart of the nonexistence theorem of Atkinson, Brezis
and Peletier if we think “bubble tower” solutions as the solutions which play the role, in
general bounded domains, of the radial ones in the ball. This result is contained in [38].

In view of (R2) and in order to complete our analysis it would be interesting, for
the dimensions N = 4, 5, 6, to show that sign-changing solutions of Problem 0.0.1, having
an asymptotic profile similar to that of radial ones in the ball, exist in general bounded
domains. This is the content of a paper in preparation [41] in which we deal with the
cases N = 4, 5. By applying a variant of the Lyapunov-Schmidt reduction method we
prove the following:

(R5) Let Ω be a smooth bounded domain, which is symmetric with respect to x1, . . . , xN
and such that the center of symmetry 0 ∈ Ω, then:

(i) if N = 4 there exists ε0 such that such that for any λ ∈ (λ1(Ω), λ1(Ω) + ε0) there
exists a sign-changing solution uλ of (0.0.1) of the form

uλ(x) =

α4
e
− 1
λ−λ1 d1,λ

e
− 2
λ−λ1 d2

1,λ + |x|2
− e−

1
λ−λ1 (λ− λ1)d2,λe1

+ Φλ(x) (0.0.4)

where α4 = 2
√

2, dj,λ is a positive function depending on λ such that dj,λ → d̄j > 0,
for j = 1, 2, as λ→ λ+

1 and Φλ is such that Φλ → 0 in H1(Ω), as λ→ λ+
1 .

(ii) if N = 5 there exists ε0 such that such that for any λ ∈ (λ1(Ω) − ε0, λ1(Ω)) there
exists a sign-changing solution uλ of (0.0.1) of the form

uλ(x) =

α5

(
(λ1 − λ)

3
2d1,λ

(λ1 − λ)2d2
1,λ + |x|2

) 3
2

− (λ1 − λ)
3
4d2,λe1

+ Φλ(x) (0.0.5)

where α5 = 15
√

15, dj,λ is a positive function depending on λ such that dj,λ → d̄j >
0, for j = 1, 2 as λ→ λ−1 , and Φλ is such that Φλ → 0 in H1(Ω), as λ→ λ−1 .

We point out that (R5) agrees with the results of Arioli, Gazzola, Grunau, Sassone
[4] and Gazzola, Grunau [32]. In fact, analyzing radial sign-changing solutions of (0.0.1)
in the unit ball B1, having two nodal regions, they proved that if N = 4 then λ1(B1)
is reached from above, while, if N = 5 then λ1(B1) is reached from below. Actually, in
the case N = 4, Arioli, Gazzola, Grunau, Sassone in [4] proved more: they proved that
there are no radial sign-changing solutions in the ball for Problem 0.0.1 when λ ≤ λ1(B1).
Hence, in view of this result, it would be interesting to prove that, for a generic bounded
domain Ω, sign-changing solutions of the form (0.0.4), cannot exist for λ ≤ λ1(Ω).

Moreover, we observe that the principal part of the solutions obtained in (R5) have
a negative part which converges in compact subsets of Ω \ {0} (up to multiplication by a
vanishing function, as λ→ λ1) to the first (normalized, positive) eigenfunction of −∆ in
H1

0 (Ω). Hence, if we could prove that the remainder term Φλ is sufficiently small also in
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the L∞-norm, as λ→ λ1, we could exhibit a family of solutions which verifies a conjecture
made by Atkinson, Brezis and Peletier in [6]. Indeed, they conjectured that, for N = 4, 5,
if (uλ) is a family of radial sign-changing solutions of (0.0.1) in the unit ball of RN , with
two nodal regions and such that uλ(0) > 0, then, u−λ converges in compact subsets of
B1 \ {0}, as λ → λ1, and up to multiplication to a vanishing function as λ → λ1, to
the first eigenfunction of −∆ in the unit ball. We believe that this could be achieved by
working with weighted norms, as done in [27, 49].

The remaining case N = 6 has been only partially investigated and it is very interest-
ing. In fact, N = 6, is a sort of “borderline” dimension, since the corresponding solutions
have an asymptotic profile which is the middle between the distinct behaviors seen in
(R1) and (R2). This peculiarity is reflected also on the technical side since, even in the
radial context, there are difficulties when trying to get asymptotic results. By the way,
in [39] we have given a characterization of the limit value λ̄ which seems to be promising.

We conclude observing that these“bubble tower” solutions, found in (R1), (R3), have
interest also for the associated parabolic problem, since, as proved in [44], [22], [30], they
induce a peculiar blow-up phenomenon for the initial data close to them.

We now briefly describe the content of the thesis. We refer to the first section of each
chapter for a detailed description and for the statements of our results.

• Chapter 1 is devoted to the proof of (R1) (see Theorem 1.1.1) and other related
asymptotic results concerning radial sign-changing solutions for (0.0.1), whenN ≥ 7,
as λ→ 0. In particular, in Theorem 1.1.2 we determine the blow-up rate of ‖u−λ ‖∞,
as λ → 0, and get an asymptotic relation between ‖u+

λ ‖∞, λ and the node rλ.
Moreover, in Theorem 1.1.3, we show that, up to a positive constant, uλ converges,
in C1

loc(B1 \ {0}), as λ → 0, to G(·, 0), where G = G(x, y) is the Green function of
∆ for the unit ball B1 of RN .

• Chapter 2 is devoted to the proof of (R2) (see Theorem 2.3.2, Theorem 2.4.7,
Theorem 2.5.1) and other related asymptotic results concerning radial sign-changing
solutions for (0.0.1), with two nodal regions in the ball, when 3 ≤ N ≤ 6, as
λ→ λ̄, where λ̄ = λ̄(N) > 0 is some limit value obtained by analyzing the ordinary
differential equation. We also determine (if N = 3, 4, 5) and estimate (if N = 6) the
limit energy of these solutions (see Theorem 2.3.2 and Theorem 2.5.1 and Corollary
2.4.9). In Proposition 2.4.2 and in Theorem 2.5.1 we prove that there cannot exist,
in the low dimensions N = 3, 4, 5, 6, radial sign-changing solutions of Problem 0.0.1,
in the ball, having the asymptotic shape of a“tower of two bubbles”(see also Remark
2.4.3). In Theorem 2.4.8 we give a characterization of the limit value λ̄ for N = 6.

• Chapter 3 is devoted to the proof of (R3) (see Theorem 3.1.1). Moreover, in
Theorem 3.1.2, under some additional assumptions, we prove that the solutions
obtained in Theorem 3.1.1, have the property that their nodal set does not touch
the boundary of Ω, as λ→ 0.

• Chapter 4 is devoted to the proof of (R4) (see Theorem 4.1.1). In Theorem 4.5.1
we prove that if N ≥ 7 when considering sign-changing bubble-tower solutions of



CONTENTS 1

Problem 0.0.1, then the concentration speeds found in (R3) are the only possible
ones.
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Chapter 1

Asymptotic analysis for radial
sign-changing solutions of the
Brezis-Nirenberg problem, N ≥ 7.

1.1 Introduction

Here we present and prove the result (R1).

Let N ≥ 3, λ > 0 and Ω be a bounded open subset of RN with smooth boundary. We
consider the Brezis–Nirenberg problem{

−∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω,
(1.1.1)

where 2∗ = 2N
N−2 is the critical Sobolev exponent for the embedding of H1

0 (Ω) into Lp(Ω).
Problem (1.1.1) has been widely studied over the last decades, and many results for
positive solutions have been obtained.

The first existence result for positive solutions of (1.1.1) has been given by Brezis and
Nirenberg in their classical paper [17], where, in particular, the crucial role played by the
dimension was enlightened. They proved that if N ≥ 4 there exist positive solutions of
(1.1.1) for every λ ∈ (0, λ1(Ω)), where λ1(Ω) denotes the first eigenvalue of −∆ on Ω with
zero Dirichlet boundary condition. For the case N = 3, which is more delicate, Brezis
and Nirenberg [17] proved that there exists λ∗(Ω) > 0 such that positive solutions exist

for every λ ∈ (λ∗(Ω), λ1(Ω)). When Ω = B is a ball, they also proved that λ∗(B) = λ1(B)
4

and a positive solution of (1.1.1) exists if and only if λ ∈ (λ1(B)
4 , λ1(B)). Moreover, for

more general bounded domains, they proved that if Ω ⊂ R3 is strictly star-shaped about
the origin, there are no positive solutions for λ close to zero. We point out that weak
solutions of (1.1.1) are classical solution. This is a consequence of a well-known lemma of
Brezis and Kato (see for instance Appendix B of [58]).

The asymptotic behavior for N ≥ 4, as λ → 0, of positive solutions of (1.1.1), mini-
mizing the Sobolev quotient, has been studied by Han [36], Rey [52]. They showed, with
different proofs, that such solutions blow up at exactly one point, and they also determined
the exact blow-up rate as well as the location of the limit concentration points.

Concerning the case of sign-changing solutions of (1.1.1), several existence results
have been obtained if N ≥ 4. In this case, one can get sign-changing solutions for every
λ ∈ (0, λ1(Ω)), or even λ > λ1(Ω), as shown in the papers of Atkinson–Brezis–Peletier [6],

3
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Clapp–Weth [24], Capozzi–Fortunato–Palmieri [20]. The case N = 3 presents the same
difficulties enlightened before for positive solutions and even more. In fact, differently
from the case of positive solutions, it is not yet known, when Ω = B is a ball in R3, if
there are sign-changing solutions of (1.1.1) when λ is smaller than λ∗(B) = λ1(B)/4. A
partial answer to this question posed by H. Brezis has been given in [14].

The blow-up analysis of low-energy sign-changing solutions of (1.1.1) has been done
by Ben Ayed–El Mehdi–Pacella [14], [13]. In [14] the authors analyze the case N = 3.
They introduce the number defined by

λ̄(Ω) := inf
{
λ ∈ R+; Problem (1.1.1) has a sign-changing solution uλ,

with ‖uλ‖2Ω − λ|uλ|22,Ω ≤ 2S3/2
}
,

where ‖uλ‖2Ω =
∫

Ω |∇uλ|
2 dx, |uλ|22,Ω =

∫
Ω |uλ|

2 dx and S is the best Sobolev constant

for the embedding of D1,2(RN ) into L2∗(RN ). To be precise, they study the behavior
of sign-changing solutions of (1.1.1) which converge weakly to zero and whose energy
converges to 2S3/2 as λ→ λ̄(Ω). They prove that these solutions blow up at two different
points ā1, ā2, which are the limit of the concentration points aλ,1, aλ,2 of the positive and
negative part of the solutions. Moreover, the distance between aλ,1 and aλ,2 is bounded
from below by a positive constant depending only on Ω and the concentration speeds of
the positive and negative parts are comparable. This result shows that, in dimension 3,
there cannot exist, in any bounded smooth domain Ω, sign-changing low-energy solutions
whose positive and negative part concentrate at the same point.

In higher dimensions (N ≥ 4), the same authors, in their paper [13], describe the
asymptotic behavior, as λ → 0, of sign-changing solutions of (1.1.1) whose energy con-
verges to the value 2SN/2. Even in this case, they prove that the solutions concentrate
and blow up at two separate points, but they need to assume the extra hypothesis that the
concentration speeds of the two concentration points are comparable, while in dimension
three, this was derived without any extra assumption (see Theorem 4.1 in [14]). They
also describe in [13] the asymptotic behavior, as λ→ 0, of the solutions outside the limit
concentration points proving that there exist positive constants m1,m2 such that

λ−
N−2
2N−8uλ → m1G(x, ā1)−m2G(x, ā2) in C2

loc(Ω− {ā1, ā2}), if N ≥ 5,

‖uλ‖∞uλ → m1G(x, ā1)−m2G(x, ā2) in C2
loc(Ω− {ā1, ā2}), if N = 4,

where G(x, y) is the Green’s function of the Laplace operator in Ω. So for N ≥ 4 the
question of proving the existence of sign-changing low-energy solutions (i.e., such that
‖uλ‖2Ω converges to 2SN/2 as λ → 0) whose positive and negative part concentrate and
blow up at the same point was left open.

To the aim to contribute to this question as well as to describe the precise asymptotic
behavior of radial sign-changing solutions, we consider the Brezis–Nirenberg problem in
the unit ball B1, i.e., {

−∆u = λu+ |u|2∗−2u in B1,

u = 0 on ∂B1,
(1.1.2)

It is important to recall that Atkinson–Brezis–Peletier [5], Adimurthi–Yadava [1]
showed, with different proofs, that for N = 3, 4, 5, 6 there exists λ∗ = λ∗(N) > 0 such
that there is no radial sign-changing solution of (1.1.1) for λ ∈ (0, λ∗). Instead, they do
exist if N ≥ 7, as shown by Cerami–Solimini–Struwe in their paper [25]. In Proposition
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1.2.1 (see also Remark 1.2.2) we recall this existence result and get the limit energy of
such solutions as λ→ 0.

In view of these results, we analyze the case N ≥ 7 and λ → 0. More precisely, we
consider a family (uλ) of least energy sign-changing solutions of (0.0.1). It is easy to see
that uλ has exactly two nodal regions. We denote by rλ ∈ (0, 1) the node of uλ = uλ(r)
and, without loss of generality, we assume uλ(0) > 0, so that u+

λ is different from zero in
Brλ and u−λ is different from zero in the annulus Arλ := {x ∈ RN ; rλ < |x| < 1}, where
u+
λ := max(uλ, 0), u−λ := max(0,−uλ) are, respectively, the positive and the negative part

of uλ.
We set Mλ,+ := ‖u+

λ ‖∞, Mλ,− := ‖u−λ ‖∞, β := 2
N−2 , σλ := Mβ

λ,+rλ, ρλ := Mβ
λ,−rλ.

Moreover, for µ > 0, x0 ∈ RN , let Ux0,µ be the function Ux0,µ : RN → R defined by

Ux0,µ(x) :=
[N(N − 2)µ2](N−2)/4

[µ2 + |x− x0|2](N−2)/2
. (1.1.3)

Proposition 1.3.1 states that both Mλ,+ and Mλ,− diverge, uλ weakly converge to 0 and
‖u±λ ‖

2
B1
→ SN/2, as λ→ 0. The main results of this chapter are the following:

Theorem 1.1.1. Let N ≥ 7 and (uλ) be a family of least energy radial sign-changing
solutions of (1.1.2) (i.e. ‖u±λ ‖

2
B1
→ SN/2, as λ → 0 ) and uλ(0) > 0. Consider the

rescaled functions ũ+
λ (y) := 1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)
in Bσλ, and ũ−λ (y) := 1

Mλ,−
u−λ

(
y

Mβ
λ,−

)
in

Aρλ, where Bσλ := Mβ
λ,+Brλ, Aρλ := Mβ

λ,−Arλ. Then:

(i) ũ+
λ → U0,µ in C2

loc(RN ) as λ → 0, where U0,µ is the function defined in (1.1.3) for

µ =
√
N(N − 2).

(ii) ũ−λ → U0,µ in C2
loc(RN − {0}) as λ→ 0, where U0,µ is the same as in (i).

From this theorem, we deduce that the positive and negative parts of uλ concentrate at
the origin. Moreover, as a consequence of the preliminary results for the proof of Theorem
1.1.1, we show that Mλ,+ and Mλ,− are not comparable, i.e.,

Mλ,+

Mλ,−
→ +∞ as λ→ 0, which

implies that the speed of concentration and blowup of u+
λ and u−λ are not the same, and

hence, the asymptotic profile of uλ is that of a tower of two ”bubbles.” Indeed, we are able
to determine the exact rate of Mλ,− and an asymptotic relation between Mλ,+, Mλ,− and
the radius rλ (see also Remark 1.5.5).

Theorem 1.1.2. As λ→ 0 we have the following:

(i) M2−2β
λ,+ rN−2

λ λ→ c(N),

(ii) M2−2β
λ,− λ→ c(N),

(iii)
M2−2β
λ,−

M2−2β
λ,+ rN−2

λ

→ 1,

where c(N) :=
c21(N)
c2(N) , c1(N) :=

∫∞
0 U

2∗−1
0,µ (s)sN−1ds, c2(N) := 2

∫∞
0 U

2
0,µ(s)sN−1ds, µ =√

N(N − 2).

The last result we provide in this chapter is about the asymptotic behavior of the

functions uλ in the ball B1, outside the origin. We show that, up to a constant, λ−
N−2
2N−8uλ

converges in C1
loc(B1−{0}) to G(x, 0), where G(x, y) is the Green function of the Laplace

operator in B1.
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Theorem 1.1.3. As λ→ 0 we have

λ−
N−2
2N−8uλ → c̃(N)G(x, 0) in C1

loc(B1 − {0}),

where G(x, y) is the Green function for the Laplacian in the unit ball, c̃(N) is the constant

defined by c̃(N) := ωN
c2(N)

N−2
2N−8

c1(N)
4

2N−8
, ωN is the measure of the (N−1)-dimensional unit sphere

SN−1 and c1(N), c2(N) are the constants appearing in Theorem 1.1.2.

We point out that in order to analyze the behavior of the negative part u−λ , which is
defined in an annulus, we prove a new uniform estimate (see Propositions 1.4.7), which is
of its own interest.

For the sake of completeness, let us mention that our results, as well as those of [15],
show a big difference between the asymptotic behavior of radial sign-changing solutions
in dimension N > 2 and N = 2. Indeed, in this last case, the limit problems as well as
the limit energies of the positive and negative part of solutions are different (see [34]).

We conclude observing that with similar proofs, it is possible to extend our results to
the case of radial sign-changing solutions of (1.1.2) with k nodal regions, k > 2, and such
that ‖uλ‖2B1

→ kSN/2, as λ → 0. As expected, the limit profile will be that of a tower
of m bubbles with alternating signs. Moreover, with the same methods applied here, we
can deduce analogous asymptotic relations as those of Theorem 1.1.2.

The chapter is divided into 6 sections. In Sect. 1.2, we give some preliminary results
on radial sign-changing solutions. In Section 1.3, we prove estimates for solutions with
two nodal regions and, in particular, prove the new uniform estimate of Proposition 1.4.7.

In Sect. 1.4, we analyze the asymptotic behavior of the rescaled solutions and prove
Theorem 1.1.1. Section 1.5 is devoted to the study of the divergence rate of ‖u±λ ‖∞, as
λ→ 0 and to the proof of Theorem 1.1.2. Finally, in Sect. 1.6, we prove Theorem 1.1.3.

1.2 Preliminary results on radial sign-changing solutions

In this section, we recall or prove some results about the existence and qualitative prop-
erties of radial sign-changing solutions of the Brezis–Nirenberg problem (1.1.2).

We start with the following:

Proposition 1.2.1. Let N ≥ 7, k ∈ N+ and λ ∈ (0, λ1), where λ1 = λ1(B1) is the first
eigenvalue of −∆ in H1

0 (B1). Then, there exists a radial sign-changing solution uk,λ of
(1.1.2) with the following properties:

(i) uk,λ(0) > 0,

(ii) uk,λ has exactly k nodal regions in B1,

(iii) Iλ(uk,λ) = 1
2

(∫
B1
|∇uk,λ|2 − λ|uk,λ|2 dx

)
− 1

2∗

∫
B1
|uk,λ|2

∗
dx → k

N S
N/2 as λ → 0,

where S is the best constant for the Sobolev embedding of D1,2(RN ) into L2∗(RN ).

Proof. The existence of radial solutions of (1.1.2) satisfying (i) and (ii) is proved in [25].
It remains only to prove (iii). To do this, we need to introduce some notations and recall
some facts proved in [25] and [17]. Let k ∈ N+ and 0 = r0 < r1 < . . . < rk = 1 any
partition of the interval [0, 1], we define the sets Ω1 := Br1 = {x ∈ B1; |x| < r1} and, if
k ≥ 2, Ωj := {x ∈ B1; rj−1 < |x| < rj} for j = 2, . . . , k.
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Then, we consider the set

Mk,λ :=
{
u ∈ H1

0,rad(B1); there exists a partition 0 = r0 < r1 < . . . < rk = 1

such that: u(rj) = 0, for 1 ≤ j ≤ k, (−1)j−1u(x) ≥ 0, u 6≡ 0 in Ωj , and∫
Ωj

(
|∇uj |2 − u2

j − |uj |2
∗
)
dx = 0, for 1 ≤ j ≤ k

}
,

where H1
0,rad(B1) is the subspace of the radial functions in H1

0 (B1) and uj is the function
defined by uj := u χΩj

, where χΩj
denotes the characteristic function of Ωj . Note that

for any k ∈ N+ we have Mk,λ 6= ∅, so we define

ck(λ) := inf
Mk,λ

Iλ(u).

In [25] the authors prove, by induction on k, that for every k ∈ N+ there exists
uk,λ ∈ Mk,λ such that Iλ(uk,λ) = ck(λ) and uk,λ solves (1.1.2) in B1. Moreover, they
prove that

ck+1(λ) < ck(λ) +
1

N
SN/2. (1.2.1)

Note that for k = 1 u1,λ is just the positive solution found in [17], since by the Gidas,
Ni and Nirenberg symmetry result [33] every positive solution is radial, and from [2] or
[56] we know that positive solutions of (1.1.2) are unique.

To prove (iii) we argue by induction. Since c1(0) = 1
N S

N/2, by continuity we get that

c1(λ)→ 1
N S

N/2, as λ→ 0, so that (iii) holds for k = 1.

Now assume that ck(λ) → k
N S

N/2, and let us to prove that ck+1(λ) = Iλ(uk+1,λ) →
k+1
N SN/2.

Let us observe that ck+1(λ) ≥ (k+1)c1(λ). In fact, w := uk+1,λ achieves the minimum
for Iλ over Mk+1,λ, so that, by definition, it has k + 1 nodal regions and wj := wχΩj

belongs to H1
0,rad(B1) for all j = 1, . . . , k + 1. Since w ∈ Mk+1,λ we have, depending on

the parity of j, that one between w+
j and w−j is not zero and belongs toM1,λ, we denote

it by w̃j . Then, Iλ(w̃j) ≥ c1(λ) for all j = 1, . . . , k + 1 and hence

ck+1(λ) = Iλ(w) =
k+1∑
j=1

Iλ(w±j ) ≥ (k + 1)c1(λ).

Combining this with (1.2.1) we get

ck(λ) +
1

N
SN/2 > ck+1(λ) ≥ (k + 1)c1(λ).

Since by induction hypothesis ck(λ)→ k
N S

N/2 as λ→ 0 and we have proved that c1(λ)→
1
N S

N/2 we get that ck+1(λ)→ k+1
N SN/2, and the proof is concluded.

Remark 1.2.2. Let k ∈ N+ and (uλ) be a family of solutions of (1.1.2), satisfying (iii)
of Proposition 1.2.1, then ‖uλ‖2B1

=
∫
B1
|∇uλ|2 dx→ kSN/2, as λ→ 0.

This comes easily from Proposition 1.2.1, and the fact that uλ belongs to the Nehari
manifold Nλ associated with (1.1.2), which is defined by

Nλ := {u ∈ H1
0 (B1); ‖u‖2B1

− λ|u|22,B1
= |u|2∗2∗,B1

}.

The first qualitative property we state about any radial sign-changing solution uλ
of (1.1.2) is that the global maximum point of |uλ| is located at the origin, which is a
well-known fact for positive solutions of (1.1.2), as consequence of [33].
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Proposition 1.2.3. Let uλ be a radial solution of (1.1.2), then we have |uλ(0)| = ‖uλ‖∞.

Proof. Since uλ = uλ(r) is a radial solution of (1.1.2), then it solves{
u′′λ + N−1

r u′λ + λuλ + |uλ|2
∗−2uλ = 0 in (0, 1)

u′λ(0) = 0, uλ(1) = 0.
(1.2.2)

Multiplying the equation by u′λ we get

u′′λu
′
λ + λuλu

′
λ + |uλ|2

∗−2uλu
′
λ = −N − 1

r
(u′λ)2 ≤ 0.

We rewrite this as
d

dr

[
(u′λ)2

2
+ λ

u2
λ

2
+
|uλ|2

∗

2∗

]
≤ 0.

Which implies that the function

E(r) :=
(u′λ)2

2
+ λ

u2
λ

2
+
|uλ|2

∗

2∗

is not increasing. So E(0) ≥ E(r) for all r ∈ (0, 1), where E(0) = λ (uλ(0))2

2 + |uλ(0)|2∗

2∗ .
Assume that r0 ∈ (0, 1) is the global maximum for |uλ|, so we have u′λ(r0) = 0, |uλ(r0)| =
‖uλ‖∞ and E(r0) = λ‖uλ‖

2
∞

2 + ‖uλ‖2
∗
∞

2∗ .

Now we observe that, for all λ > 0, the function g(x) := λ
2x

2 + 1
2∗x

2∗ , defined in
R+ ∪ {0}, is strictly increasing; thus, we have E(r0) ≥ E(0) and hence, E(r0) = E(0).
Since g is strictly increasing, we get |uλ(0)| = |uλ(r0)| = ‖uλ‖∞ and we are done.

A consequence of the previous proposition is the following:

Corollary 1.2.4. Assume uλ is a nontrivial radial solution of (1.1.2). If 0 ≤ r1 ≤ r2 < 1
are two points in the same nodal region such that |uλ(r1)| ≤ |uλ(r2)|, u′λ(r1) = u′λ(r2) = 0,
then necessarily r1 = r2.

Proof. Assume by contradiction r1 < r2. By the assumptions and since the function
g(x) := λ

2x
2 + 1

2∗x
2∗ is a strictly increasing function (in R+ ∪ {0}), we have E(r1) =

g(|uλ(r1)|) ≤ g(|uλ(r2)|) = E(r2). But, as proved in Proposition 1.2.3, E(r) is a decreasing
function, so necessarily E(r1) = g(|uλ(r1)|) = g(|uλ(r2)|) = E(r2) from which we get
|uλ(r1)| = |uλ(r2)|. Since r1, r2 are in the same nodal region from |uλ(r1)| = |uλ(r2)| we
have uλ(r1) = uλ(r2), and thus, there exists r∗ ∈ (r1, r2) such that u′λ(r∗) = 0, and, since
E(r) is a decreasing function, we have E(r1) ≥ E(r∗) ≥ E(r2). From this, we deduce
g(|uλ(r1)|) ≥ g(|uλ(r∗)|) ≥ g(|uλ(r2)|), and hence, uλ(r1) = uλ(r∗) = uλ(r2). Therefore,
uλ must be constant in the interval [r1, r2] and, being a solution of (1.1.2), it must be zero
in that interval. In fact, since (1.1.2) is invariant under a change of sign, we can assume
that uλ ≡ c > 0. Then, by the strong maximum principle, uλ must be zero in the nodal
region to which r1, r2 belong. This, in turn, implies that uλ is a trivial solution of (1.1.2)
which is a contradiction.

1.3 Asymptotic results for solutions with 2 nodal regions

1.3.1 General results

Let (uλ) be a family of least energy radial, sign-changing solutions of (1.1.2) and such
that uλ(0) > 0.
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We denote by rλ ∈ (0, 1) the node, so we have uλ > 0 in the ball Brλ and uλ < 0 in
the annulus Arλ := {x ∈ RN ; rλ < |x| < 1}. We write u±λ to indicate that the statements
hold both for the positive and negative part of uλ.

Proposition 1.3.1. We have:

(i) ‖u±λ ‖
2
B1

=
∫
B1
|∇u±λ |

2 dx→ SN/2, as λ→ 0,

(ii) |u±λ |
2∗
2∗,B1

=
∫
B1
|u±λ |

2N
N−2 dx→ SN/2, as λ→ 0,

(iii) uλ ⇀ 0, as λ→ 0,

(iv) Mλ,+ := max
B1

u+
λ → +∞, Mλ,− := max

B1

u−λ → +∞, as λ→ 0.

Proof. This proposition is a special case of Lemma 2.1 in [13].

Let us recall a classical result, due to Strauss, known as ”radial lemma”:

Lemma 1.3.2 (Strauss). There exists a constant c > 0, depending only on N , such that
for all u ∈ H1

rad(RN )

|u(x)| ≤ c
‖u‖1/21,2

|x|(N−1)/2
a.e. on RN , (1.3.1)

where ‖ · ‖1,2 is the standard H1-norm.

Proof. For the proof of this result see for instance [63].

We denote by sλ ∈ (0, 1) the global minimum point of uλ = uλ(r) (the uniqueness of
sλ follows from Corollary 1.2.4), so we have 0 < rλ < sλ, u−λ (sλ) = Mλ,−. The following
proposition gives an information on the behavior of rλ and sλ as λ→ 0.

Proposition 1.3.3. We have sλ → 0 (and so rλ → 0 as well), as λ→ 0.

Proof. Assume by contradiction that sλm ≥ s0 for a sequence λm → 0 and for some
0 < s0 < 1. Then, by Lemma 1.3.2 we get

Mλm,− = |uλm(sλm)| ≤ c
‖uλm‖

1/2
1,2,B1

s
(N−1)/2
λm

≤ c
‖uλm‖

1/2
1,2,B1

s
(N−1)/2
0

,

where c is a positive constant depending only on N . Since |∇uλ|22,B1
→ 2SN/2 as λ → 0

it follows that Mλm,− is bounded, which is a contradiction.

We recall another well-known proposition:

Proposition 1.3.4. Let u ∈ C2(RN ) be a solution of{
−∆u = |u|2∗−2u in RN

u→ 0 as |y| → +∞.
(1.3.2)

Assume that u has a finite energy I0(u) := 1
2 |∇u|

2
2,RN −

1
2∗ |u|

2∗

2∗,RN and u satisfies one of
these assumptions:

(i) u is positive (negative) in RN ,

(ii) u is spherically symmetric about some point.

Then, there exist µ > 0, x0 ∈ RN such that u is one of the functions Ux0,µ, defined in
(1.1.3).

Proof. A sketch of the proof can be found in [25], Proposition 2.2.
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1.3.2 An upper bound for u+
λ , u−λ

In this section, we recall an estimate for positive solutions of (1.1.2) in a ball and we
generalize it to get an upper bound for u−λ in the annulus Arλ := {x ∈ RN ; rλ < |x| < 1}.

Proposition 1.3.5. Let N ≥ 3 and u be a solution of
−∆u = λu+ u

N+2
N−2 in BR

u > 0 in BR

u = 0 on ∂BR,

(1.3.3)

for some positive λ. Then, u(x) ≤ w(x, u(0)) in BR, where

w(x, c) := c

{
1 +

c−1f(c)

N(N − 2)
|x|2
}−(N−2)/2

,

and f : [0,+∞)→ [0,+∞) is the function defined by f(y) := λy + y
N+2
N−2 .

Proof. The proof is based on the results contained in the papers of Atkinson and Peletier
[7], [8]. Since the solutions of (1.3.3) are radial (see [33]) we consider the ordinary differ-
ential equation associated with (1.3.3) which, by some change of variable, can be turned
into an Emden–Fowler equation. For it is easy to get the desired upper bound. All details
are given in the next Proposition 1.3.7.

Remark 1.3.6. The previous proposition gives an upper bound for u+
λ . In fact, taking

into account that u+
λ is defined and positive in the ball Brλ and u+

λ (0) = Mλ,+, we have

u+
λ (x) ≤ Mλ,+

{
1 +

M−1
λ,+ f(Mλ,+)

N(N − 2)
|x|2
}−(N−2)/2

= Mλ,+

1 +
λ+M

4
N−2

λ,+

N(N − 2)
|x|2

−(N−2)/2

,

(1.3.4)

for all x ∈ Brλ.

Proposition 1.3.7. Let uλ be as in Sect. 1.3.1 and ε ∈ (0, N−2
2 ). There exist δ = δ(ε) ∈

(0, 1), δ(ε)→ 1 as ε→ 0 and a positive constant λ = λ(ε), such that for all λ ∈ (0, λ) we
have

u−λ (x) ≤Mλ,−

{
1 +

M−1
λ,− f(Mλ,−)

N(N − 2)
c(ε)|x|2

}−(N−2)/2

, (1.3.5)

for all x ∈ Aδ,λ, where Aδ,λ := {x ∈ RN ; δ−1/Nsλ < |x| < 1}, c(ε) = 2
N−2ε, sλ is the

global minimum point of uλ, Mλ,− = u−λ (sλ) and f is defined as in Proposition 1.3.5.

Proof of Proposition 1.3.7. Let vλ the function defined by vλ(s) := u−λ (s+sλ), s ∈ (0, 1−
sλ). Since u−λ is a positive radial solution of (1.1.2) then vλ is a solution of{

v′′λ + N−1
s+sλ

v′λ + λvλ + v2∗−1
λ = 0 in (0, 1− sλ)

v′λ(0) = 0, vλ(1− sλ) = 0.
(1.3.6)
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To eliminate λ from the equation, we make the following change of variable, ρ :=
√
λ (s+

sλ), and we define wλ(ρ) := λ−
N−2

4 vλ( ρ√
λ
− sλ) = λ−

N−2
4 u−λ ( ρ√

λ
). By elementary compu-

tation, we see that wλ solves{
w′′λ + N−1

ρ w′λ + wλ + w2∗−1
λ = 0 in (

√
λ sλ,

√
λ)

w′λ(
√
λ sλ) = 0, wλ(

√
λ) = 0.

(1.3.7)

Making another change of variable, precisely t :=
(
N−2
ρ

)N−2
, and setting yλ(t) :=

wλ

(
N−2

t
1

N−2

)
we eliminate the first derivative in (1.3.7). Thus, we get


y′′λ t

k + yλ + y2∗−1
λ = 0 in

(
(N−2)N−2

λ
N−2

2

, (N−2)N−2

λ
N−2

2 sN−2
λ

)
,

y′λ

(
(N−2)N−2

λ
N−2

2 sN−2
λ

)
= 0, yλ

(
(N−2)N−2

λ
N−2

2

)
= 0.

(1.3.8)

where k = 2
N − 1

N − 2
> 2. To simplify the notation, we set t1,λ := (N−2)N−2

λ
N−2

2

, t2,λ :=

(N−2)N−2

λ
N−2

2 sN−2
λ

, Iλ = (t1,λ, t2,λ) and γλ := yλ(t2,λ) = λ−
N−2

4 Mλ,−. Observe also that 2∗ − 1 =

2k − 3.
We write the equation in (1.3.8) as y′′λ + t−k(yλ + y2k−3

λ ) = 0, which is an Emden–
Fowler type equation y′′ + t−kh(y) = 0 with h(y) := y + y2k−3. The first step to prove
(1.3.5) is the following inequality:

(y′λt
k−1y1−k

λ )′ + tk−2y−kλ t1−k2,λ γλh(γλ) ≤ 0, for all t ∈ Iλ. (1.3.9)

To prove (1.3.9) we differentiate y′λt
k−1y1−k

λ . Since y′′λ + t−kh(yλ) = 0 we get

y′′λt
k−1y1−k

λ + y′λ(k − 1)tk−2y1−k
λ − (k − 1)(y′λ)2tk−1y−kλ

= −t−k(yλ + y2k−3
λ )tk−1y1−k

λ + y′λ(k − 1)tk−2y1−k
λ − (k − 1)(y′λ)2tk−1y−kλ

= −t−1y2−k
λ − t−1yk−2

λ + y′λ(k − 1)tk−2y1−k
λ − (k − 1)(y′λ)2tk−1y−kλ

= −2(k − 1)tk−2y−kλ

(
1

2(k−1) t
1−ky2

λ + 1
2(k−1) t

1−ky2k−2
λ − 1

2yλy
′
λ + 1

2 t(y
′
λ)2
)

= −2(k − 1)tk−2y−kλ

(
1

2(k−1) t
1−kyλh(yλ)− 1

2yλy
′
λ + 1

2 t(y
′
λ)2
)
.

Now, we add and subtract the number 1
2(k−1) t

1−k
2,λ γλh(γλ) inside the parenthesis, so we

have

(y′λt
k−1y1−k

λ )′

= −2(k − 1)tk−2y−kλ

(
1

2(k−1) t
1−kyλh(yλ)− 1

2yλy
′
λ + 1

2 t(y
′
λ)2 − 1

2(k−1) t
1−k
2,λ γλh(γλ)

)
−tk−2y−kλ t1−k2,λ γλh(γλ).

Setting Lλ(t) := 1
2(k−1) t

1−kyλh(yλ)− 1
2yλy

′
λ + 1

2 t(y
′
λ)2 − 1

2(k−1) t
1−k
2,λ γλh(γλ) we get
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(y′λt
k−1y1−k

λ )′ + tk−2y−kλ t1−k2,λ γλh(γλ) = −2(k − 1)tk−2y−kλ Lλ(t).

If we show that Lλ(t) ≥ 0 for all t ∈ Iλ we get (1.3.9). By definition it is immediate to ver-
ify that Lλ(t2,λ) = 0, also by direct calculation, we have L′λ(t) = 1

2(k−1) t
1−ky′λ[yλh

′(yλ)−
(2k− 3)h(yλ)] = 1

2(k−1) t
1−ky′λ[(4− 2k)yλ]. Since yλ > 0, y′λ ≥ 0 in Iλ

1 and k > 2 we have

L′λ(t) ≤ 0 in Iλ, and from Lλ(t2,λ) = 0 it follows Lλ(t) ≥ 0 for all t ∈ Iλ.
As second step, we integrate (1.3.9) between t and t2,λ, for all t ∈ Iλ. Then, since

y′λ(t2,λ) = 0 we get

−y′λ(t)tk−1y1−k
λ (t) +

∫ t2,λ

t
sk−2y−kλ (s) t1−k2,λ γλh(γλ) ds ≤ 0.

We rewrite this last inequality as

y′λ(t)tk−1y1−k
λ (t) ≥ t1−k2,λ γλh(γλ)

∫ t2,λ

t
sk−2y−kλ (s) ds.

Since u−λ ≤Mλ,− by definition, it follows y−kλ ≥ γ−kλ , so

y′λ(t)tk−1y1−k
λ (t) ≥ t1−k2,λ γ

1−k
λ h(γλ)

∫ t2,λ

t
sk−2 ds

=
γ1−k
λ h(γλ)

k − 1

tk−1
2,λ − t

k−1

tk−1
2,λ

=
γ1−k
λ h(γλ)

k − 1

[
1−

(
t

t2,λ

)k−1
]
.

Multiplying the first and the last term of the above inequality by t1−k we get

1

2− k
(y2−k
λ )′(t) = y′λ(t) y1−k

λ (t) ≥
γ1−k
λ h(γλ)

k − 1

(
t1−k − 1

tk−1
2,λ

)
,

for all t ∈ Iλ. Integrating this inequality between t and t2,λ we have

γ2−k
λ

2− k
−
y2−k
λ (t)

2− k
≥

γ1−k
λ h(γλ)

k − 1

∫ t2,λ

t

(
s1−k − 1

tk−1
2,λ

)
ds

=
γ1−k
λ h(γλ)

k − 1

(
t2−k2,λ

2− k
− t2−k

2− k
− 1

tk−2
2,λ

+
t

tk−1
2,λ

)
.

We rewrite this last inequality as

y2−k
λ (t)

k − 2
−
γ2−k
λ

k − 2
≥

γ1−k
λ h(γλ)

k − 1

(
t2−k

k − 2
+

t

tk−1
2,λ

− k − 1

k − 2

1

tk−2
2,λ

)

≥
γ1−k
λ h(γλ)

k − 1
t2−k

[
1

k − 2
+

(
t

t2,λ

)k−1

− k − 1

k − 2

(
t

t2,λ

)k−2
]
.

(1.3.10)

1y′λ ≥ 0 because (u−λ )′(r) ≤ 0 for sλ < r < 1 as we can easily deduce from Corollary 1.2.4.
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To the aim of estimating the last term in (1.3.10) we set s :=
(

t
t2,λ

)k−1
and study the

function g(s) := 1
k−2 + s− k−1

k−2s
k−2
k−1 in the interval [0, 1]. Clearly, g(0) = 1

k−2 = N−2
2 > 0,

g(1) = 0 and g is a decreasing function because g′(s) = 1 − s−
1

k−1 < 0 in (0, 1). In
particular, we have g(s) > 0 in (0, 1). Let us fix ε ∈ (0, N−2

2 ), by the monotonicity
of g we deduce that there exists only one δ = δ(ε) ∈ (0, 1) such that g(s) > ε for all

0 ≤ s < δ, g(δ) = ε and δ → 1 as ε → 0. Now remembering that s =
(

t
t2,λ

)k−1
, we have(

t
t2,λ

)k−1
< δ if and only if t < δ

1
k−1 t2,λ and t1,λ < δ

1
k−1 t2,λ if and only if sN−2

λ < δ
1

k−1

which is true for all 0 < λ < λ, for some positive number λ = λ(ε). Setting c(ε) := (k−2)ε,
from (1.3.10) and the previous discussion, we have

y2−k
λ (t)− γ2−k

λ ≥
γ1−k
λ h(γλ)

k − 1
t2−kc(ε), (1.3.11)

for all t ∈ (t1,λ, δ
1

k−1 t2,λ), 0 < λ < λ. Now from (1.3.11) we deduce the desired bound
for u−λ . In fact, we have

y2−k
λ (t) ≥ γ2−k

λ +
γ1−k
λ h(γλ)

k − 1
t2−kc(ε),

from which, since k > 2, we get

yλ(t) ≤

(
γ2−k
λ +

γ1−k
λ h(γλ)

k − 1
t2−kc(ε)

)− 1
k−2

= γλ

(
1 +

γ−1
λ h(γλ)

k − 1
t2−kc(ε)

)− 1
k−2

(1.3.12)

Now, by definition, we have yλ(t) = λ−
N−2

4 u−λ

(
ρ√
λ

)
= λ−

N−2
4 u−λ (s+sλ), γλ = λ−

N−2
4 Mλ,−,

k−2 = 2
N−2 , k−1 = N

N−2 , t =
(
N−2
ρ

)N−2
=
(

N−2√
λ(s+sλ)

)N−2
, in particular t2−k = t−

2
N−2 =(√

λ(s+sλ)
N−2

)2
= λ(s+sλ)2

(N−2)2 . Thus, we get

γ−1
λ h(γλ)

k − 1
t2−kc(ε) =

λ
N−2

4 M−1
λ,−

(
λ−

N−2
4 Mλ,− + λ−

N+2
4 M

N+2
N−2

λ,−

)
N

N − 2

c(ε)
λ(s+ sλ)2

(N − 2)2

=
M−1
λ,−

(
λMλ,− +M2∗−1

λ,−

)
N(N − 2)

c(ε)(s+ sλ)2

=
M−1
λ,− f (Mλ,−)

N(N − 2)
c(ε)(s+ sλ)2,

where f(z) := λz+z2∗−1. Also, by direct computation, we see that the interval (t1,λ, δ
1

k−1 t2,λ),

corresponds to the interval (δ−
1
N sλ, 1) for s+ sλ = ρ√

λ
= N−2
√
λ t

1
N−2

. Thus, from the previ-

ous computations and (1.3.12) we have

λ−
N−2

4 u−λ (s+ sλ) ≤ λ−
N−2

4 Mλ,−

(
1 +

M−1
λ,− f (λMλ,−)

N(N − 2)
c(ε)(s+ sλ)2

)−N−2
2

.
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Finally, dividing each term by λ−
N−2

4 and setting r := s+ sλ we have

u−λ (r) ≤

(
1 +

M−1
λ,− f (λMλ,−)

N(N − 2)
c(ε)r2

)−N−2
2

,

for all r ∈ (δ−
1
N sλ, 1), which is the desired inequality since u−λ is a radial function.

1.4 Asymptotic analysis of the rescaled solutions

1.4.1 Rescaling the positive part

As in Sect. 1.3, we consider a family (uλ) of least energy radial, sign-changing solutions

of (1.1.2) with uλ(0) > 0. Let us define β := 2
N−2 , σλ := Mβ

λ,+ · rλ; consider the rescaled

function ũ+
λ (y) = 1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)
in Bσλ . The following lemma is elementary but crucial.

Lemma 1.4.1. We have:

(i) ‖u+
λ ‖

2
Brλ

= ‖ũ+
λ ‖

2
Bσλ

,

(ii) |u+
λ |

2∗
2∗,Brλ

= |ũ+
λ |

2∗
2∗,Bσλ

,

(iii) |u+
λ |

2
2,Brλ

= 1

M2∗−2
λ,+

|ũ+
λ |

2
2,Bσλ

Proof. To prove (i) we have only to remember the definition of ũλ and make the change of
variable x→ y

Mβ
λ,+

. Taking into account that by definition∇yũ+
λ (y) = 1

M1+β
λ,+

(∇xu+
λ )( y

Mβ
λ,+

)

and 2 + 2β = 2 + 4
N−2 = N 2

N−2 = Nβ = 2∗, we get

‖u+
λ ‖

2
Brλ

=

∫
Brλ

|∇xu+
λ (x)|2dx =

1

MNβ
λ,+

∫
Bσλ

∣∣∣∣∣∇xu+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2

dy

=
M2+2β
λ,+

MNβ
λ,+

∫
Bσλ

|∇yũλ(y)|2 dy = ‖ũ+
λ ‖

2
Bσλ

.

The proof of (ii) is simpler:∫
Brλ

|u+
λ (x)|2∗dx =

∫
Bσλ

1

MNβ
λ,+

∣∣∣∣∣u+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2∗

dy

=

∫
Bσλ

|ũ+
λ (y)|2∗dy.

The proof of (iii) is similar:∫
Brλ

|u+
λ (x)|2dx =

∫
Bσλ

1

MNβ
λ,+

∣∣∣∣∣u+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2

dy

=

∫
Bσλ

1

MNβ−2
λ,+

∣∣∣∣∣ 1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)∣∣∣∣∣
2

dy

=
1

M2∗−2
λ,+

∫
Bσλ

|ũ+
λ (y)|2dy.
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Remark 1.4.2. Obviously, the previous lemma is still true if we consider any radial
function u ∈ H1

rad(D), where D is a radially symmetric domain in RN , and for any
rescaling of the kind ũ(y) := 1

M u
( y
Mβ

)
, where M > 0 is a constant.

The first qualitative result concerns the asymptotic behavior, as λ→ 0, of the radius
σλ = Mβ

λ,+ · rλ of the rescaled ball Bσλ . From Proposition 1.3.3 we know that rλ → 0 as
λ→ 0, so this result gives also information on the growth of Mλ,+ compared to the decay
of rλ.

Proposition 1.4.3. Up to a subsequence, σλ → +∞ as λ→ 0.

Proof. Up to a subsequence, as λ→ 0, we have three alternatives:

(i) σλ → 0,

(ii) σλ → l > 0, l ∈ R,

(iii) σλ → +∞.

We will show that (i) and (ii) cannot occur. Assume, by contradiction, that (i) holds then
writing |u+

λ |
2∗
2∗,Brλ

in polar coordinates we have

|u+
λ |

2∗
2∗,Brλ

= ωN

∫ rλ

0
[u+
λ (r)]2

∗
rN−1dr

≤ ωN M2∗
λ,+

∫ rλ

0
rN−1dr

= ωN (Mβ
λ,+)N

rNλ
N

=
ωN
N

(Mβ
λ,+ rλ)N → 0 as λ→ 0.

But from Proposition 1.3.1 we know that |u+
λ |

2∗
2∗,Brλ

→ SN/2 as λ → 0, so we get a

contradiction.
Next, assume, by contradiction, that (ii) holds. Since the rescaled functions ũ+

λ are
solutions of 

−∆u = λ

M2β
λ

u+ u2∗−1 in Bσλ

u > 0 in Bσλ
u = 0 on ∂Bσλ .

(1.4.1)

and (ũ+
λ ) is uniformly bounded, then by standard elliptic theory, ũ+

λ → ũ in C2
loc(Bl),

where Bl is the limit domain of Bσλ and ũ solves{
−∆u = u2∗−1 in Bl

u > 0 in Bl.
(1.4.2)

Let us show that the boundary condition ũ = 0 on ∂Bl holds. Since Mλ,+ is the global

maximum of uλ (see Proposition 1.2.3) then the rescaling ũλ(y) := 1
Mλ,+

uλ

(
y

Mβ
λ,+

)
of the

whole function uλ is a bounded solution of
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−∆u = λ

M2β
λ

u+ |u|2∗−2u in B
Mβ
λ,+

u = 0 on ∂B
Mβ
λ,+
.

So as before we get that ũλ → ũ0 in C2
loc(RN ), where ũ0 is a solution of −∆u = |u|2∗−2u

in RN . Obviously, by definition, we have ũλ(y) = ũ+
λ (y) for all y ∈ Bσλ , ũλ(y) = 0 for all

y ∈ ∂Bσλ and ũλ(y) < 0 for all y ∈ B
Mβ
λ,+
− Bσλ . Passing to the limit as λ → 0, since

Bl is a compact set of RN we have ũλ → ũ0 in C2(Bl), now since ũ = ũ0 > 0 in Bl and
ũ0 = 0 on ∂Bl, it follows ũ = 0 on ∂Bl. Since Bl is a ball, by Pohozaev’s identity, we
know that the only possibility is ũ ≡ 0 which is a contradiction since ũ(0) = 1. So the
assertion is proved.

Proposition 1.4.4. We have:

ũ+
λ (y) ≤

{
1 +

1

N(N − 2)
|y|2
}−(N−2)/2

, (1.4.3)

for all y ∈ RN .

Proof. From (1.3.4) for all x ∈ Brλ we have

u+
λ (x) ≤Mλ,+

1 +
λ+M

4
N−2

λ,+

N(N − 2)
|x|2

−(N−2)/2

.

Dividing each side by Mλ,+ and setting x = y

Mβ
λ,+

= y

M
2

N−2
λ,+

we get

1
Mλ,+

u+
λ

(
y

Mβ
λ,+

)
≤

{
1 +

λ+M
4

N−2
λ,+

M
4

N−2
λ,+ N(N−2)

|y|2
}−(N−2)/2

=

{
1 + λ

M
4

N−2
λ,+ N(N−2)

|y|2 + 1
N(N−2) |y|

2

}−(N−2)/2

≤
{

1 + 1
N(N−2) |y|

2
}−(N−2)/2

,

for all y ∈ Bσλ . Thus, we have proved (1.4.3) for all y ∈ Bσλ . Since ũ+
λ is zero outside

the ball Bσλ and the second term in (1.4.3) is independent of λ, this bound holds in the
whole RN .

1.4.2 An estimate on the first derivative at the node

In this subsection, we prove an inequality concerning (u+
λ )′(rλ) (or (u−λ )′(rλ)) that will be

useful in the next sections.

Lemma 1.4.5. There exists a constant c1, depending only on N , such that

|(u+
λ )′(rλ)rN−1

λ | ≤ c1 r
N−2

2
λ (1.4.4)

for all sufficiently small λ > 0. Since (u−λ )′(rλ) = −(u+
λ )′(rλ) the same inequality holds

for (u−λ )′(rλ).
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Proof. Since u+
λ = u+

λ (r) is a solution of −[(u+
λ )′rN−1]′ = λu+

λ r
N−1 + (u+

λ )2∗−1rN−1 in
(0, rλ) and (u+

λ )′(0) = 0 by integration, we get

(u+
λ )′(rλ)rN−1

λ = −
[∫ rλ

0
λu+

λ r
N−1dr +

∫ rλ

0
(u+
λ )2∗−1rN−1dr

]

= −

[
λ

ωN

∫
Brλ

u+
λ (x) dx+

1

ωN

∫
Brλ

[u+
λ (x)]2

∗−1 dx

]
,

where, as before, ωN denotes the measure of the (N − 1)-dimensional unit sphere SN−1.
Using Hölder’s inequality and observing that |Brλ | =

ωN
N rNλ we deduce

∣∣∣(u+
λ )′(rλ)rN−1

λ

∣∣∣ ≤ λ

(N ωN )
1
2

r
N
2
λ |u

+
λ |2,Brλ +

1

N
N−2
2N ω

N+2
2N
N

r
N−2

2
λ

[
|u+
λ |

2∗
2∗,Brλ

] 2∗−1
2∗

.

From Proposition 1.3.1 we know that both |u+
λ |2,Brλ , |u+

λ |
2∗
2∗,Brλ

are bounded, moreover

from Proposition 1.3.3 we have rλ → 0 as λ → 0. So there exists a constant c1 = c1(N)
such that for all sufficiently small λ > 0 (1.4.4) holds.

1.4.3 Rescaling the negative part

Now, we study the rescaled function ũ−λ (y) := 1
Mλ,−

u−λ

(
y

Mβ
λ,−

)
in the annulus Aρλ :=

{y ∈ RN ;Mβ
λ,−rλ < |y| < Mβ

λ,−}, where ρλ := Mβ
λ,−rλ. This case is more delicate than

the previous one since the radius sλ, where the minimum is achieved, depends on λ. Thus,
roughly speaking, we have to understand how rλ and sλ behave with respect to the scaling
parameter Mβ

λ,−. This means that we have to study the asymptotic behavior of Mβ
λ,−rλ

and Mβ
λ,−sλ as λ→ 0. It will be convenient to consider also the one-dimensional rescaling

zλ(s) :=
1

Mλ,−
u−λ

(
sλ +

s

Mβ
λ,−

)
,

which satisfies z
′′
λ + N−1

s+Mβ
λ,−sλ

z′λ + λ

M2β
λ,−
zλ + z2∗−1

λ = 0 in (aλ, bλ)

z′λ(0) = 0, zλ(0) = 1,
(1.4.5)

where aλ := Mβ
λ,− · (rλ − sλ) < 0, bλ := Mβ

λ,− · (1− sλ) > 0. We define γλ := Mβ
λ,−sλ.

Since sλ → 0 as λ→ 0, we have bλ → +∞; for the remaining parameters aλ, γλ it will
suffice to study the asymptotic behavior of γλ as λ→ 0.

Up to a subsequence, we have three alternatives:

(a) γλ → +∞,

(b) γλ → γ0 > 0,

(c) γλ → 0.

Lemma 1.4.6. γλ → +∞ cannot happen.
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Proof. Assume γλ → +∞; up to a subsequence, we have aλ → ā ≤ 0, as λ → 0, where
ā ∈ R ∪ {−∞}.

If ā < 0 or ā = −∞ then passing to the limit in (1.4.5) as γλ = Mβ
λ,− · sλ → +∞ we

have that zλ → z in C1
loc(ā,+∞), where z solves the limit problem{

z′′ + z2∗−1 = 0 in (ā,+∞)

z′(0) = 0, z(0) = 1.
(1.4.6)

Since zλ → z in C1
loc(ā,+∞) and being zλ > 0, then by Fatou’s lemma we have

lim inf
λ→0

∫ bλ

aλ

[zλ(s)]2
∗
ds ≥

∫ +∞

ā
[z(s)]2

∗
ds ≥ c1 > 0.

In particular, being aλ < 0, by the same argument it follows that for all small λ > 0∫ bλ

0
[zλ(s)]2

∗
ds ≥

∫ +∞

0
[z(s)]2

∗
ds ≥ c2 > 0.

Now, we have the following estimate:

|u−λ |
2∗
2∗,Arλ

= ωN

∫ 1

rλ

[u−λ (r)]2
∗
rN−1dr ≥ ωNs

N−1
λ

∫ 1

sλ

[u−λ (r)]2
∗
dr

= ωNs
N−1
λ M2∗

λ,−

∫ 1

sλ

[
1

Mλ,−
u−λ (r)

]2∗

dr = ωNs
N−1
λ M2∗−β

λ,−

∫ bλ

0
[zλ(s)]2

∗
ds

= ωNγ
N−1
λ

∫ bλ

0
[zλ(s)]2

∗
ds ≥ ωNγ

N−1
λ c2,

having used the change of variable r = sλ + s

Mβ
λ,−

. Since |u−λ |
2∗
2∗,Arλ

→ SN/2 while γλ →
+∞, as λ→ 0, we get a contradiction.

If instead ā = 0 we consider the rescaled function ũ−λ which solves−∆ũλ = λ

M2β
λ,−
ũλ + ũ2∗−1

λ in Aρλ

ũ = 0 on ∂Aρλ ,
(1.4.7)

and is uniformly bounded. We observe that since aλ → 0 then ρλ = aλ + γλ → +∞. By
definition, we have ũ−λ (ρλ) = 0, ũ−λ (γλ) = 1, for all λ ∈ (0, λ1). Thus, we have

|ũ−λ (ρλ)− ũ−λ (γλ)|
|ρλ − γλ|

=
1

|aλ|
→ +∞ as λ→ 0.

From standard elliptic regularity theory, we know that ũ−λ is a classical solution, so
by the mean value theorem,

|ũ−λ (ρλ)− ũ−λ (γλ)|
|ρλ − γλ|

= |(ũ−λ )′(ξλ)|,

for some ξλ ∈ (ρλ, γλ); thus, |(ũ−λ )′(ξλ)| → +∞ as λ→ 0. From Corollary 1.2.4 it follows
that (ũ−λ )′ > 0 in (ρλ, γλ) for all λ > 0.
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By writing (1.4.7) in polar coordinates, we get:

(ũ−λ )′′ +
N − 1

r
(ũ−λ )′ +

λ

M2β
λ,−

ũ−λ + (ũ−λ )2∗−1 = 0.

From this, since ũ−λ > 0 and (ũ−λ )′ > 0 in (ρλ, γλ), we get (ũ−λ )′′ < 0 in (ρλ, γλ). Thus,
(ũ−λ )′(ρλ) > (ũ−λ )′(ξλ) > 0, for all λ > 0. In particular, (ũ−λ )′(ρλ)→ +∞ as λ→ 0.

Since, by elementary computation, we have (ũ−λ )′(ρλ) = 1

M1+β
λ,−

(u−λ )′(rλ), by Lemma

1.4.5 we get

|(ũ−λ )′(ρλ)| ≤ c 1

M1+β
λ,− r

N/2
λ

for a constant c independent from λ. Remembering that 1 + β = 1 + 2
N−2 = β · N2 , and

the definition of ρλ we have the following estimate

|(ũ−λ )′(ρλ)| ≤ c 1

ρ
N/2
λ

.

Since ρλ → +∞, as λ → 0, we deduce that (ũ−λ )′(ρλ) is uniformly bounded, against
(ũ−λ )′(ρλ)→ +∞ as λ→ 0. Thus, we get a contradiction.

Thanks to Lemma 1.4.6 we deduce that (γλ) is a bounded sequence. The following
proposition states an uniform upper bound for ũ−λ .

Proposition 1.4.7. Let us fix ε ∈ (0, N−2
2 ), and set M̄ := supλ γλ. There exist h = h(ε)

and λ̄ = λ̄(ε) > 0 such that
ũ−λ (y) ≤ Uh(y) (1.4.8)

for all y ∈ RN , 0 < λ < λ̄, where

Uh(y) :=

1 if |y| ≤ h[
1 + 1

N(N−2)c(ε)|y|
2
]−(N−2)/2

if |y| > h,
(1.4.9)

with c(ε) = 2
N−2ε.

Proof. We fix ε ∈ (0, N−2
2 ), so by Proposition 1.3.7 there exist δ = δ(ε) ∈ (0, 1) and

λ(ε) > 0 such that

u−λ (x) ≤Mλ,−

{
1 +

M−1
λ,− f(Mλ,−)

N(N − 2)
c(ε)|x|2

}−(N−2)/2

,

for all x ∈ Aδ,λ = {x ∈ RN ; δ−1/Nsλ < |x| < 1}, for all λ ∈ (0, λ), where c(ε) = 2
N−2ε.

The same proof of Proposition 1.4.4 shows that

ũ−λ (y) ≤
{

1 +
1

N(N − 2)
c(ε)|y|2

}−(N−2)/2

,

for all y ∈ Ãδ,λ = {y ∈ RN ; Mβ
λ,−δ

−1/Nsλ < |y| < Mβ
λ,−}. Now, since by definition

ũ−λ is uniformly bounded by 1, we get an upper bound defined in the whole annulus

Ãρλ = {y ∈ RN ; Mβ
λ,−rλ < |y| < Mβ

λ,−}; to be more precise ũ−λ (y) ≤ Uλ(y), where

Uλ(y) :=

1 if Mβ
λ,−rλ < |y| ≤M

β
λ,−δ

−1/Nsλ[
1 + 1

N(N−2)c(ε)|y|
2
]−(N−2)/2

if Mβ
λ,−δ

−1/Nsλ < |y| < Mβ
λ,−.

(1.4.10)



20 CHAPTER 1. ASYMPTOTIC ANALYSIS OF RADIAL NODAL SOL., N ≥ 7

Since γλ = Mβ
λ,−sλ ≤ M̄ , then setting h := δ−1/NM̄ we get that δ−1/NMβ

λ,−sλ ≤ h.

Therefore, from (1.4.10), since ũ−λ is zero outside Ãρλ , we deduce (1.4.8).

Lemma 1.4.8. γλ → γ0 > 0, γ0 ∈ R, cannot happen.

Proof. Assume that γλ → γ0 > 0, γ0 ∈ R. Since 0 < rλ < sλ there are only two
possibilities for aλ. To be precise, up to a subsequence we can have:

(i) aλ → 0,

(ii) aλ → ā < 0, ā ∈ R.

We will show that both (i) and (ii) lead to a contradiction.

If we assume (i) the same proof of Lemma 1.4.6 gives a contradiction. We point out
that now ρλ → γ0, as λ → 0, so as before we get a contradiction since (ũ−λ )′(ρλ) is
uniformly bounded, against (ũ−λ )′(ρλ)→ +∞ as λ→ 0.

Assuming (ii) we have aλ → ā < 0 and γλ → γ0 > 0. We define m := ā+ γ0. Clearly,
we have 0 ≤ m < γ0 and ρλ → m as λ → 0. Assume m > 0 and consider the rescaling
ũ−λ in the annulus Aρλ defined as before. Since ũ−λ satisfies (1.4.7) and (ũ−λ ) is uniformly
bounded then passing to the limit as λ → 0 we get ũ−λ → ũ in C2

loc(Π), where Π is the
limit domain Π := {y ∈ RN ; |y| > m} and ũ is a positive radial solution of

−∆ũ = ũ2∗−1 in Π (1.4.11)

By definition ũ−λ (γλ) = 1, (ũ−λ )′(γλ) = 0 for all λ, so as λ→ 0 we get ũ(γ0) = 1, ũ′(γ0) = 0
because of the convergence of ũ−λ → ũ in C2(K), for all compact subsets K in Π, and
γ0 > m. In particular, we deduce that ũ 6≡ 0. We now show that ũ can be extended to
zero on ∂Π = {y ∈ RN ; |y| = m}. Thanks to Lemma 1.4.5 and since we are assuming
m > 0, which is the limit of ρλ as λ→ 0, we get that (ũ−λ )′(ρλ) is uniformly bounded by
a constant M , and by the monotonicity of (ũ−λ )′ the same bound holds for (ũ−λ )′(s) for all
s ∈ (ρλ, γλ). It follows that in that interval ũ−λ (s) ≤ M(s − ρλ). Passing to the limit as
λ → 0 we have ũ(s) ≤ M(s −m) for all s ∈ (m, γ0) which implies ũ can be extended by
continuity to zero on ∂Π. We use the same notation ũ to denote this extension.

Observe that ũ has finite energy, in particular, using Fatou’s lemma and thanks to
Lemma 1.4.1, Remark 1.4.2, Proposition 1.3.1, we get∫

Π
|∇ũ|2dy ≤ lim inf

λ→0

∫
Aρλ

|∇ũ−λ |
2dy = lim inf

λ→0

∫
Arλ

|∇u−λ |
2dx = SN/2, (1.4.12)

∫
Π
|ũ|2∗dy ≤ lim inf

λ→0

∫
Aρλ

|ũ−λ |
2∗dy = lim inf

λ→0

∫
Arλ

|u−λ |
2∗dx = SN/2. (1.4.13)

Moreover, since ũ−λ → ũ in C2
loc(Π) and thanks to the uniform upper bound given by

Proposition 1.4.7, by Lebesgue’s theorem, we have∫
Π
|ũ|2∗dy = lim

λ→0

∫
Arλ

|u−λ |
2∗dx = SN/2. (1.4.14)

Since ũ ∈ H1(Π) ∩ C0(Π̄) and is zero on ∂Π, then ũ ∈ H1
0 (Π) and thanks to (1.4.12),

(1.4.14) it follows that ũ achieves the best constant in the Sobolev embedding on Π, which
is impossible (see for instance [58], Theorem III.1.2). This ends the proof for the case
m > 0.
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Assume now m = 0, then ũ−λ converges in C2
loc(RN −{0}) to a radial function ũ which

is a positive bounded solution of

−∆ũ = ũ2∗−1 in RN − {0} (1.4.15)

Since ũ is a radial solution of (1.4.15), then integrating −(ũ′(r)rN−1)′ = ũ2∗−1(r)rN−1

between δ > 0 sufficiently small and γ0 we get

ũ′(δ)δN−1 =

∫ γ0

δ
ũ2∗−1rN−1dr.

Since the right-hand side is a positive and decreasing function of δ, we get ũ′(δ)δN−1 →
l̃ > 0 as δ → 0. Thus, ũ′(δ) behaves as δ1−N near the origin, and this is a contradiction
since

∫
RN |∇ũ|

2dy = ωN
∫ +∞

0 |ũ′(r)|2rN−1dr is finite, and the proof is complete.

As a consequence of Lemma 1.4.6 and Lemma 1.4.8 we have proved:

Proposition 1.4.9. Up to a subsequence, we have γλ → 0 as λ→ 0.

1.4.4 Final estimates and proof of Theorem 1.1.1

From Proposition 1.4.9 we know that, up to a subsequence, γλ = Mβ
−,λsλ → 0 as

λ → 0. The rescaled function ũ−λ (y) := 1
Mλ,−

u−λ

(
y

Mβ
λ,−

)
in the annulus Aρλ := {y ∈

RN ;Mβ
λ,−rλ < |y| < Mβ

λ,−} solves (1.4.7) and the functions (ũ−λ ) are uniformly bounded.

Since γλ → 0 as λ→ 0, in particular the limit domain of Aρλ is RN −{0} and by standard
elliptic theory ũ−λ → ũ in C2

loc(RN − {0}), where ũ is positive, radial and solves

−∆ũ = ũ2∗−1 in RN − {0} (1.4.16)

As in the proof of Lemma 1.4.8 by Fatou’s Lemma, it follows that ũ has finite energy
I0(ũ) = 1

2 |∇ũ|
2
2,RN −

1
2∗ |ũ|

2∗

2∗,RN . Moreover, thanks to the uniform upper bound (1.4.8),
by Lebesgue’s theorem, we have

lim
λ→0

∫
Aρλ

|ũ−λ |
2∗dy =

∫
RN
|ũ|2∗dy,

so, by Lemma 1.4.1, Remark 1.4.2 and Proposition 1.3.1 we get∫
RN
|ũ|2∗dy = SN/2.

The next two lemmas show that the function ũ = ũ(s) can be extended to a C1([0,+∞))
function if we set ũ(0) := 1 and ũ′(0) := 0.

Lemma 1.4.10. We have
lim
s→0

ũ(s) = 1.

Proof. Since ũ−λ is a radial solution of (1.4.7) and ũ−λ ≤ 1, then

[(ũ−λ )′sN−1]′ = − λ

M2β
λ,−
ũ−λ (s)sN−1 − [ũ−λ (s)]2

∗−1sN−1

≥ − λ

M2β
λ,−
sN−1 − sN−1

≥ −2sN−1.
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Integrating between γλ and s > γλ (with s < Mβ
λ,−) we get

(ũ−λ )′(s)sN−1 ≥ −2

∫ s

γλ

tN−1dt ≥ − 2

N
sN .

Hence, (ũ−λ )′(s) ≥ − 2
N s for all s ∈ (γλ,M

β
λ,−). Integrating again between γλ and s we

have

ũ−λ (s)− 1 ≥ − 1

N
(s2 − γ2

λ) ≥ − 1

N
s2.

Hence, ũ−λ (s) ≥ 1 − 1
N s

N for all s ∈ (γλ,M
β
λ,−). Since γλ → 0 and Mβ

λ,− → +∞, then,

passing to the limit as λ→ 0, we get ũ(s) ≥ 1− 1
N s

2, for all s > 0. From this inequality
and since ũ ≤ 1 we deduce lims→0 ũ(s) = 1.

Lemma 1.4.11. We have
lim
s→0

ũ′(s) = 0.

Proof. As before, from the radial equation satisfied by ũ−λ , integrating between γλ and

s > γλ (with s < Mβ
λ,−) we get

−(ũ−λ )′(s)sN−1 =
λ

M2β
λ,−

∫ s

γλ

ũ−λ t
N−1dt+

∫ s

γλ

(ũ−λ )2∗−1tN−1dt.

Since ũ ≤ 1, and γλ → 0 it follows that for all λ > 0 sufficiently small

|(ũ−λ )′(s)sN−1| ≤ λ

M2β
λ,−

∫ s

γλ

tN−1dt+

∫ s

γλ

tN−1dt ≤ 2
sN

N
.

Passing to the limit, as λ → 0, we get |ũ′(s)| ≤ 2
s

N
for all s > 0, hence lims→0 ũ

′(s) =

0.

From Lemma 1.4.10 and Lemma 1.4.11 it follows that the radial function ũ(y) = ũ(|y|)
can be extended to a C1(RN ) function. From now on, we denote by ũ this extension. Next
lemma shows that ũ is a weak solution of (1.4.16) in the whole RN .

Lemma 1.4.12. The function ũ is a weak solution of

−∆ũ = ũ2∗−1 in RN (1.4.17)

Proof. Let us fix a test function φ ∈ C∞0 (RN ). If 0 /∈ supp(φ) the proof is trivial so from
now on we assume 0 ∈ supp(φ). Let B(δ) be the ball centered at the origin having radius
δ > 0, with δ sufficiently small such that supp(φ) ⊂⊂ B(1/δ). Applying Green’s formula
to Ω(δ) := B(1/δ) − B(δ), since ũ is a C2

loc(RN − {0}) solution of (1.4.16) and φ ≡ 0 on
∂B(1/δ), we have∫

Ω(δ)
∇ũ · ∇φ dy =

∫
Ω(δ)

φ ũ2∗−1 dy +

∫
∂B(δ)

φ

(
∂ũ

∂ν

)
dσ. (1.4.18)

We show now that
∫
∂B(δ) φ

(
∂ũ
∂ν

)
dσ → 0 as δ → 0. In fact since ũ is a radial function, we

have ∂ũ
∂ν (y) = ũ′(δ) for all y ∈ ∂B(δ), and from this relation, we get∣∣∣∣∣

∫
∂B(δ)

φ

(
∂ũ

∂ν

)
dσ

∣∣∣∣∣ ≤ |ũ′(δ)|
∫
∂B(δ)

|φ| dσ

≤ ωN |ũ′(δ)|δN−1||φ||∞.
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Thanks to Lemma 1.4.11 we have |ũ′(δ)|δN−1 → 0 as δ → 0. To complete the proof, we
pass to the limit in (1.4.18) as δ → 0. We observe that

|∇ũ · ∇φ| χΩ(δ) ≤ |∇ũ|2 χ{|∇ũ|>1}|∇φ|+ |∇ũ| χ{|∇ũ|≤1}|∇φ|

≤ |∇ũ|2 χ{|∇ũ|>1}|∇φ|+ χ{|∇ũ|≤1}|∇φ|.
(1.4.19)

Since
∫
RN |∇ũ|

2dy ≤ SN/2 and φ has compact support, the right-hand side of (1.4.19)
belongs to L1(RN ). Hence, from Lebesgue’s theorem, we have

lim
δ→0

∫
Ω(δ)
∇ũ · ∇φ dy =

∫
RN
∇ũ · ∇φ dy. (1.4.20)

Since φ has compact support by Lebesgue’s theorem, we have

lim
δ→0

∫
Ω(δ)

φ ũ2∗−1 dy =

∫
RN

φ ũ2∗−1 dy. (1.4.21)

From (1.4.18), (1.4.20), (1.4.21) and since we have proved
∫
∂B(δ) φ

(
∂ũ
∂ν

)
dσ → 0 as δ → 0

it follows that ∫
RN
∇ũ · ∇φ dy =

∫
RN

φ ũ2∗−1 dy,

which completes the proof.

Now, we have all the tools to prove Theorem 1.1.1.

Proof of Theorem 1.1.1. We start proving (i). By Proposition 1.4.3, arguing as in the
previous proofs, we know that (ũ+

λ ) is an equi-bounded family of radial solutions of (1.4.1)
and converges in C2

loc(RN ) to a function ũ which solves −∆u = u2∗−1 in RN . From (1.4.3)
we deduce that ũ → 0 as |y| → +∞. To apply Proposition 1.3.4 we have to check that
ũ has finite energy, but this is an immediate consequence of Fatou’s lemma and the
assumption that uλ has finite energy (for the details see (1.4.12) and (1.4.13)). Thus,
ũ = Ux0,µ for some x0 ∈ RN , µ > 0. Since ũ is a radial function, we have x0 = 0.
Moreover, since ũ(0) = 1, by an elementary computation, we see that µ =

√
N(N − 2).

Now we prove (ii). As we have seen at the beginning of this section, the equi-bounded
family (ũ−λ ) converges in C2

loc(RN − {0}) to a function ũ which solves (1.4.16). From
Lemma 1.4.10 and Lemma 1.4.11 we have that ũ can be extended to a C1(RN ) function
such that ũ(0) = 1, ∇ũ(0) = 0. Moreover, from Lemma 1.4.12 we know that ũ is a weak
solution of (1.4.17) and from Fatou’s lemma, as seen in (1.4.12), (1.4.13), we have that ũ
has finite energy. Also, from Proposition 1.4.7 we deduce that ũ→ 0 as |y| → +∞.

By elliptic regularity (see for instance Appendix B of [58]) since ũ is a weak solution
of (1.4.17) we deduce that ũ ∈ C2(RN ). Thanks to Proposition 1.3.4, since ũ is a radial
function and ũ(0) = 1, we have ũ = U0,µ, where µ > 0 is the same as in (i).

1.5 Asymptotic behavior of Mλ,+, Mλ,− and proof of Theo-
rem 1.1.2

We know from Proposition 1.3.1 that Mλ,+,Mλ,− → +∞ as λ → 0, in addition in the

last two sections we have proved that Mβ
λ,+rλ → +∞ while Mβ

λ,−rλ → 0, as λ→ 0. Thus,
Mλ,+

Mλ,−
→ +∞ as λ → 0; in other words Mλ,+ goes to infinity faster than Mλ,−. In this

section, we determine the order of infinity of Mλ,− as negative power of λ and also an
asymptotic relation between Mλ,+, Mλ,− and the node rλ.
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Proposition 1.5.1. As λ→ 0 we have

(i) Mλ,+|(u+
λ )′(rλ)|rN−1

λ → c1(N);

(ii) λ−1M2β
λ,+r

N
λ |(u

+
λ )′(rλ)|2 → c2(N);

(iii) M2−2β
λ,+ rN−2

λ λ→ c3(N),

where c1(N) =
∫∞

0 U
2∗−1
0,µ (s)sN−1ds, c2(N) = 2

∫∞
0 U

2
0,µ(s)sN−1ds, c3(N) =

c21(N)
c2(N) .

Proof. To prove (i) we integrate the equation −[(u+
λ )′rN−1]′ = λu+

λ r
N−1 + (u+

λ )2∗−1rN−1

between 0 and rλ and multiply both sides by Mλ,+. Since (u+
λ )′(0) = 0 we have

Mλ,+|(u+
λ )′(rλ)|rN−1

λ = λMλ,+

∫ rλ

0
u+
λ r

N−1 dr +Mλ,+

∫ rλ

0
(u+
λ )2∗−1rN−1 dr. (1.5.1)

We first prove that λMλ,+

∫ rλ
0 u+

λ r
N−1 dr → 0 as λ → 0. In fact by the usual change of

variable r = s

Mβ
λ,+

we have

λMλ,+

∫ rλ

0
u+
λ (r) rN−1 dr = λ

1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0

1

Mλ,+
u+
λ

(
s

Mβ
λ,+

)
sN−1 ds

= λ
1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0
ũ+
λ (s)sN−1 ds

Thanks to the uniform upper bound (1.4.3) we have

λ
1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0
ũ+
λ sN−1 ds ≤ λ

1

M2∗−2
λ,+

∫ Mβ
λ,+rλ

0

{
1 +

1

N(N − 2)
s2

}−(N−2)/2

sN−1ds

≤ λ
1

M2∗−2
λ,+

∫ 1

0
sN−1ds

+ λ
1

M2∗−2
λ,+

[N(N − 2)](N−2)/2

∫ Mβ
λ,+rλ

1
s−(N−2)sN−1ds

= Iλ,1 + Iλ,2.

Since Mλ,+ → +∞ and
∫ 1

0 s
N−1ds = 1

N it is obvious that Iλ,1 → 0, as λ → 0. Now, we

show that the same holds for Iλ,2. In fact, setting C1(N) := [N(N − 2)](N−2)/2 we have

Iλ,2 = λ
1

M2∗−2
λ,+

C1(N)

∫ Mβ
λ,+rλ

1
s ds

= λ
1

M2∗−2
λ,+

C1(N)

(
M2β
λ,+r

2
λ

2
− 1

2

)
= λr2

λ

C1(N)

2
− λ 1

M2∗−2
λ,+

C1(N)

2
→ 0, as λ→ 0,

since by definition, 2β = 4
N−2 = 2∗ − 2. To complete the proof of (i) we show that

Mλ,+

∫ rλ
0 (u+

λ )2∗−1rN−1 dr →
∫∞

0 U
2∗−1
0,µ (s)sN−1ds as λ → 0. In fact, as before, by the
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change of variable r = s

Mβ
λ,+

we have

Mλ,+

∫ rλ

0
[u+
λ (r)]2

∗−1 rN−1 dr =
1

M2∗−1
λ,+

∫ Mβ
λ,+rλ

0

[
u+
λ

(
s

Mβ
λ,+

)]2∗−1

sN−1 ds

=

∫ Mβ
λ,+rλ

0
[ũ+
λ (s)]2

∗−1sN−1 ds.

Since ũ+
λ → U0,µ in C2

loc(RN ), in particular we have [ũ+
λ (s)]2

∗−1 → [U0,µ(s)]2
∗−1 as λ→ 0,

for all s ≥ 0, and thanks to the uniform upper bound (1.4.3), by Lebesgue’s dominated

convergence theorem, it follows that
∫Mβ

λ,+rλ
0 [ũ+

λ (s)]2
∗−1sN−1 ds →

∫∞
0 U

2∗−1
0,µ (s)sN−1ds

so by (1.5.1) the proof of (i) is complete.
Now, we prove (ii). Applying Pohozaev’s identity to u+

λ , which solves −∆u = λu +
u2∗−1 in Brλ , we have

λ

∫
Brλ

[u+
λ (x)]2 dx =

1

2

∫
∂Brλ

(x · ν)

(
∂u+

λ

∂ν

)2

dσ,

where ν is the exterior unit normal vector to ∂Brλ . Since u+
λ is radial, we have also(

∂u+
λ

∂ν

)2

=
[
(u+
λ )′(rλ)

]2
so, passing to the unit sphere SN−1, we get

λ

∫
Brλ

[u+
λ (x)]2 dx =

1

2
rN−1
λ

∫
SN−1

rλ
[
(u+
λ )′(rλ)

]2
dω

=
1

2
ωNr

N
λ

[
(u+
λ )′(rλ)

]2
.

Thus, we have

λ−1rNλ
[
(u+
λ )′(rλ)

]2
= 2 ω−1

N

∫
Brλ

[u+
λ (x)]2 dx. (1.5.2)

Now, performing the same change of variable as in (i) we have∫
Brλ

[u+
λ (x)]2 dx =

1

M2∗−2
λ,+

∫
Bσλ

[
1

Mλ,+
u+
λ

(
y

Mβ
λ,+

)]2

dy

=
1

M2∗−2
λ,+

∫
Bσλ

[
ũ+
λ (y)

]2
dy,

Thus, we get

M2β
λ,+

∫
Brλ

[u+
λ (x)]2 dx =

∫
Bσλ

[
ũ+
λ (y)

]2
dy. (1.5.3)

As in (i) since ũ+
λ → U0,µ in C2

loc(RN ) and thanks to the uniform upper bound (1.4.3)
we have ∫

Bσλ

[
ũ+
λ (y)

]2
dy →

∫
RN

[U0,µ(y)]2 dy = ωN

∫ +∞

0
[U0,µ(r)]2rN−1 dr.

From this, (1.5.2) and (1.5.3) we deduce that λ−1M2β
λ,+r

N
λ

[
(u+
λ )′(rλ)

]2 → 2
∫ +∞

0 [U0,µ(r)]2rN−1 dr,
and (ii) is proved.

The proof of (iii) is a trivial consequence of (i) and (ii).
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Now, we state a similar result for Mλ,−.

Proposition 1.5.2. As λ→ 0 we have the following:

(i) Mλ,−|(u−λ )′(1)| → c1(N);

(ii) λ−1M2β
λ,−
{

[(u−λ )′(1)]2 − [(u−λ )′(rλ)]2rNλ
}
→ c2(N);

(iii) λ−1M2β
λ,−[(u−λ )′(rλ)]2rNλ → 0;

(iv) M2−2β
λ,− λ→ c3(N),

where c1(N), c2(N) and c3(N) are the constants defined in Proposition 1.5.1.

Proof. The proof of (i) is similar to the proof of (i) of Proposition 1.5.1. Here, we inte-
grate the equation −[(u−λ )′rN−1]′ = λu−λ r

N−1 + (u−λ )2∗−1rN−1 between sλ and 1. Since
(u−λ )′(sλ) = 0 we have

(u−λ )′(1) = λ

∫ 1

sλ

u−λ rN−1 dr +

∫ 1

sλ

(u−λ )2∗−1rN−1 dr.

By Mβ
λ sλ → 0 and thanks to the uniform upper bound (1.4.8), arguing like in the proof

of (i) of Proposition 1.5.1, we have

Mλ,− λ

∫ 1

sλ

u−λ rN−1 dr → 0

and

Mλ,−

∫ 1

sλ

(u−λ )2∗−1rN−1 dr =

∫ Mβ
λ,−

Mβ
λ,−sλ

(ũ−λ )2∗−1sN−1 ds→
∫ +∞

0
U2∗−1

0,µ sN−1 ds,

as λ→ 0. The proof of (i) is complete.
The proof of (ii) is similar to the corresponding one of Proposition 1.5.1. This time

we apply Pohozaev’s identity to u−λ in the annulus Arλ = {x ∈ RN ; rλ < |x| < 1} whose
boundary has two connected components, namely {x ∈ RN ; |x| = rλ} and the unit sphere
SN−1. Thus, we have

λ

∫
Arλ

[u−λ (x)]2dx =
1

2

∫
∂Arλ

(x · ν)

(
∂u−λ
∂ν

)2

dσ

=
1

2
ωN
{

[(u−λ )′(1)]2 − [(u−λ )′(rλ)]2rNλ
}
.

Thus, multiplying each member by M2β
λ,− and rewriting the previous equation, we have

M2β
λ,−λ

−1
{

[(u−λ )′(1)]2 − [(u−λ )′(rλ)]2rNλ
}

= 2ω−1
N M2β

λ,−

∫
Arλ

[u−λ (x)]2dx

= 2ω−1
N M2β

λ,−
1

MNβ
λ,−

∫
Aσλ

[
u−λ

(
y

Mβ
λ,−

)]2

dy

= 2

∫ Mβ
λ,−

Mβ
λ,−rλ

[
ũ−λ (s)

]2
sN−1ds.
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Since 2
∫Mβ

λ,−

Mβ
λ,−rλ

[
ũ−λ (s)

]2
sN−1ds→ 2

∫∞
0 U

2
0,µ(s)sN−1ds as λ→ 0 we are done.

To prove (iii) we write

λ−1M2β
λ,−[(u−λ )′(rλ)]2rNλ =

λ−1M2β
λ,−[(u−λ )′(rλ)]2rNλ

λ−1M2β
λ,+[(u+

λ )′(rλ)]2rNλ
· λ−1M2β

λ,+[(u+
λ )′(rλ)]2rNλ

=
M2β
λ,−

M2β
λ,+

· λ−1M2β
λ,+[(u+

λ )′(rλ)]2rNλ → 0

since
Mλ,−
Mλ,+

→ 0 and λ−1M2β
λ,+[(u+

λ )′(rλ)]2rNλ → c2(N) as λ → 0 (by (ii) of Proposition

1.5.1).

Finally, the proof of (iv) is trivial. In fact from (ii) and (iii) it immediately follows
that

λ−1M2β
λ,−[(u−λ )′(1)]2 → c2(N).

From this and (i), we get (iv).

Remark 1.5.3. By elementary computation 2 − 2β = 2 − 4
N−2 = 2N−8

N−2 so by (iv) of

Proposition 1.5.2 we have that Mλ,− is an infinite of the same order as λ−
N−2
2N−8 .

From (iii) of Proposition 1.5.1 and (iv) of Proposition 1.5.2 we deduce the following
result which gives an asymptotic relation between Mλ,+, Mλ,− and rλ.

Proposition 1.5.4.
M2−2β
λ,−

M2−2β
λ,+ rN−2

λ

→ 1, as λ→ 0.

Proof of Theorem 1.1.2. It suffices to sum up the results contained in Proposition 1.5.1,
Proposition 1.5.2 and Proposition 1.5.4.

Remark 1.5.5. We point out that in order to determine the explicit rate of Mλ,+ or,
equivalently, that of rλ, some difficulties arise. The techniques used in the previous proofs
of integrating the equation and using the Pohozaev’s identity do not seem to be sufficient to
this purpose. Nevertheless, as a consequence of the methods applied in Chapter 3 we get,
for N ≥ 7 and for all sufficiently small λ, the existence of radial sign-changing solutions
of (0.0.1) with the shape of a tower of two bubbles, and the parameters µ1, µ2 of these two

bubbles are given. The lowest order bubble diverges as λ−
N−2
2N−8 , which is the same order

of Mλ,−, while the other diverges as λ
− (3N−10)(N−2)

(2N−8)(N−6) . Moreover, in Chapter 4, we show,
under some additional hypotheses, that the previous speeds are the only possible ones, for

N ≥ 7. Hence, we conjecture that Mλ,+ ' λ
− (3N−10)(N−2)

(2N−8)(N−6) .

1.6 Proof of Theorem 1.1.3

This section is entirely devoted to the proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. We want to prove that λ−
N−2
2N−8uλ → c̃(N)G(x, 0) in C1

loc(B1 −
{0}). We begin from the local uniform convergence of λ−

N−2
2N−8uλ. The same argument
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with some modifications will work for the local uniform convergence of its derivatives.
Thanks to the representation formula, since −∆uλ = λuλ + |uλ|2

∗−2uλ in B1, we have

λ−
N−2
2N−8uλ(x) = −λ−

N−2
2N−8λ

∫
B1

G(x, y)uλ(y) dy − λ−
N−2
2N−8

∫
B1

G(x, y)|uλ|2
∗−2uλ(y) dy.

(1.6.1)

Since λ−
N−2
2N−8λ = λ

N−6
2N−8 , splitting the integrals we have

λ−
N−2
2N−8uλ(x) = −λ

N−6
2N−8

∫
Brλ

G(x, y)u+
λ (y) dy + λ

N−6
2N−8

∫
Arλ

G(x, y)u−λ (y) dy

−λ−
N−2
2N−8

∫
Brλ

G(x, y)[u+
λ (y)]2

∗−1 dy + λ−
N−2
2N−8

∫
Arλ

G(x, y)[u−λ (y)]2
∗−1 dy

= I1,λ + I2,λ + I3,λ + I4,λ.

Let K be a compact subset of B1−{0}. We are going to prove that I1,λ, I2,λ, I3,λ → 0
uniformly in K, as λ→ 0. We begin with I1,λ. For all x ∈ K we have

|I1,λ| ≤

∣∣∣∣∣λ N−6
2N−8

∫
Brλ

G(x, y)u+
λ (y) dy

∣∣∣∣∣
=

∣∣∣∣∣∣λ N−6
2N−8

1

MNβ
λ,+

∫
B
M
β
λ,+

rλ

G

(
x,

y

Mβ
λ,+

)
u+
λ

(
y

Mβ
λ,+

)
dy

∣∣∣∣∣∣
≤ λ

N−6
2N−8

1

M2∗−1
λ,+

∫
B
M
β
λ,+

rλ

∣∣∣∣∣G
(
x,

y

Mβ
λ,+

)∣∣∣∣∣ ũ+
λ (y) dy.

Since K is a compact subset of B1−{0} and | y

Mβ
λ,+

| < rλ by an elementary computation,

we see that for all x ∈ K, for all λ > 0 sufficiently small

∣∣∣∣G(x, y

Mβ
λ,+

)∣∣∣∣ ≤ c(K) for all

y ∈ B
Mβ
λ,+rλ

, where c = c(K) is a positive constant depending only on K and N . Now,

thanks to the uniform upper bound (1.4.3) we have

λ
N−6
2N−8

1

M2∗−1
λ,+

∫
B
M
β
λ,+

rλ

∣∣∣∣∣G
(
x,

y

Mβ
λ,+

)∣∣∣∣∣ ũ+
λ (y) dy

≤ c(K)λ
N−6
2N−8

1

M2∗−1
λ,+

∫
B
M
β
λ,+

rλ

{
1 +

1

N(N − 2)
|y|2
}−(N−2)/2

dy

= c(K)λ
N−6
2N−8

1

M2∗−1
λ,+

ωN

∫ Mβ
λ,+rλ

0

{
1 +

1

N(N − 2)
s2

}−(N−2)/2

sN−1 ds

≤ c1(K)λ
N−6
2N−8

1

M2∗−1
λ,+

∫ Mβ
λ,+rλ

0
s−(N−2)sN−1 ds = c1(K)λ

N−6
2N−8

1

M2∗−1
λ,+

∫ Mβ
λ,+rλ

0
s ds

= c2(K)λ
N−6
2N−8

1

M2∗−1
λ,+

M2β
λ,+r

2
λ = c2(K)λ

N−6
2N−8

1

Mλ,+
r2
λ → 0, as λ→ 0.

Since this inequality is uniform respect to x ∈ K we have ‖I1,λ‖∞,K → 0 as λ → 0.
The proof that ‖I3,λ‖∞,K → 0 is quite similar to the previous one, in fact with small
modifications we get the following uniform estimate:
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|I3,λ| ≤ λ
N−6
2N−8

1

Mλ,+

∫
B
M
β
λ,+

rλ

∣∣∣∣∣G
(
x,

y

Mβ
λ,+

)∣∣∣∣∣ [ũ+
λ (y)]2

∗−1 dy

≤ c(K)λ
N−6
2N−8

1

Mλ,+

∫
B
M
β
λ,+

rλ

{
1 +

1

N(N − 2)
|y|2
}−(N+2)/2

dy

≤ c(K)λ
N−6
2N−8

1

Mλ,+

∫
RN

{
1 +

1

N(N − 2)
|y|2
}−(N+2)/2

dy

= c1(K) λ
N−6
2N−8

1

Mλ,+
, as λ→ 0.

The proof for I2,λ is more delicate since for all small λ > 0 the Green function is not
bounded when x ∈ K, y ∈ Arλ . We split the Green function in the singular part and the
regular part so that

I2,λ = λ
N−6
2N−8

∫
Arλ

Gsing(x, y)u−λ (y) dy + λ
N−6
2N−8

∫
Arλ

Greg(x, y)u−λ (y) dy.

The singular part of the Green function is given by 1
(2−N)ωN

1
|x−y|N−2 , we want to show

that

λ
N−6
2N−8

1

(2−N)ωN

∫
Arλ

1

|x− y|N−2
u−λ (y) dy → 0

uniformly for x ∈ K. The usual change of variable gives

λ
N−6
2N−8

1

(2−N)ωN

∫
Arλ

1

|x− y|N−2
u−λ (y) dy

=
λ
N−6
2N−8

M2∗
λ,−

1

(2−N)ωN

∫
Ãrλ

1

|x− w

Mβ
λ,−
|N−2

u−λ

(
w

Mβ
λ,−

)
dw.

Let η be a positive real number such that η < min{d(0,K)
2 ; d(K,∂B1)

2 }, where d(·, ·) denotes
the Euclidean distance. It is clear that for all λ > 0 sufficiently small, we have B(x, η) ⊂⊂
Arλ , for all x ∈ K. Thus, B(Mβ

λ,−x,M
β
λ,−η) ⊂⊂ Ãrλ , for all x ∈ K, and we split the last

integral in two parts as indicated below:

λ
N−6
2N−8

M2∗
λ,−

1

(2−N)ωN

∫
Ãrλ

1

|x− w

Mβ
λ,−
|N−2

u−λ

(
w

Mβ
λ,−

)
dw

=
λ
N−6
2N−8

M2∗
λ,−

1

(2−N)ωN

∫
|Mβ

λ,−x−w|<M
β
λ,−η

1

|x− w

Mβ
λ,−
|N−2

u−λ

(
w

Mβ
λ,−

)
dw

+
λ
N−6
2N−8

M2∗
λ,−

1

(2−N)ωN

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

1

|x− w

Mβ
λ,−
|N−2

u−λ

(
w

Mβ
λ,−

)
dw

=
λ
N−6
2N−8

M2∗−1
λ,−

1

(2−N)ωN

∫
|Mβ

λ,−x−w|<M
β
λ,−η

M
(N−2)β
λ,−

|Mβ
λ,−x− w|N−2

ũ−λ (w) dw

+
λ
N−6
2N−8

M2∗−1
λ,−

1

(2−N)ωN

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

M
(N−2)β
λ,−

|Mβ
λ,−x− w|N−2

ũ−λ (w) dw := ĨA,λ + ĨB,λ.
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Let us show that ĨA,λ → 0, uniformly for x ∈ K, as λ → 0. First, by making the

change of variable z := w −Mβ
λ,−x we have

ĨA,λ =
λ
N−6
2N−8

M2∗−1
λ,−

1

(2−N)ωN

∫
|z|<Mβ

λ,−η

M
(N−2)β
λ,−
|z|N−2

ũ−λ

(
z +Mβ

λ,−x
)
dz.

Let us fix ε ∈ (0, N−2
2 ) and set C = 2

N−2ε. Thanks to the uniform upper bound (1.4.8),
since

|Mβ
λ,−x+ z| ≥ |Mβ

λ,−|x| − |z|| = Mβ
λ,−|x| − |z| ≥M

β
λ,−(|x| − η) > Mβ

λ,−
d(0,K)

2
≥Mβ

λ,−η,

(1.6.2)

for all x ∈ K, for all z such that |z| < ηMβ
λ,−, then for all sufficiently small λ we have

|ĨA,λ| ≤
λ
N−6
2N−8

M2∗−1
λ,−

1

(N − 2)ωN

∫
|z|<Mβ

λ,−η

M
(N−2)β
λ,−
|z|N−2

[
1 +

1

N(N − 2)
C|z +Mβ

λ,−x|
2

]−(N−2)/2

dz

≤ λ
N−6
2N−8

M2∗−1
λ,−

c1

∫
|z|<Mβ

λ,−η

M
(N−2)β
λ,−
|z|N−2

[
M2β
λ,−η

2
]−(N−2)/2

dz

=
λ
N−6
2N−8

M2∗−1
λ,−

c2(K)ωN

∫ Mβ
λ,−η

0
r dr =

λ
N−6
2N−8

M2∗−1
λ,−

c2(K)ωN
M2β
λ,−η

2

2

= c3(K)
λ
N−6
2N−8

Mλ,−
→ 0, as λ→ 0.

Thus, ĨA,λ → 0, uniformly for x ∈ K, as λ → 0. Now, we prove that the same holds for
ĨB,λ.

|ĨB,λ| ≤
λ
N−6
2N−8

M2∗−1
λ,−

1

(N − 2)ωN

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

1

|η|N−2
ũ−λ (w) dw

≤ λ
N−6
2N−8

M2∗−1
λ,−

c(K)

∫
Ãrλ

ũ−λ (w) dw

≤ λ
N−6
2N−8

M2∗−1
λ,−

c(K)

∫
|w|≤h

1 dw +
λ
N−6
2N−8

M2∗−1
λ,−

c(K)

∫
h<|w|<Mβ

λ,−

[
1 +

1

N(N − 2)
C|w|2

]−(N−2)/2

dw

≤ λ
N−6
2N−8

M2∗−1
λ,−

c1(K) +
λ
N−6
2N−8

M2∗−1
λ,−

c2(K)

∫ Mβ
λ,−

h
r dr

=
λ
N−6
2N−8

M2∗−1
λ,−

c1(K) +
λ
N−6
2N−8

M2∗−1
λ,−

c2(K)

(
M2β
λ,−
2
− h2

2

)
→ 0, as λ→ 0,

having used again (1.4.8). Since this estimate is uniform for x ∈ K we have proved
that ĨB,λ → 0 in C0(K) and from this and the analogous result for ĨA,λ we have

λ
N−6
2N−8

∫
Arλ

Gsing(x, y)u−λ (y) dy → 0 in C0(K). To complete the proof of I2,λ → 0 in

C0(K) it remains to prove that λ
N−6
2N−8

∫
Arλ

Greg(x, y)u−λ (y) dy → 0 in C0(K). This is
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easy because the regular part of the Green function for the ball is uniformly bounded, to
be precise let l(K) := sup{d(0, x), x ∈ K}, clearly, being K a compact subset of B1−{0},
we have l(K) < 1 and since it is well known that

Greg(x, y) =
1

(2−N)ωN

1

|(|x||y|)2 + 1− 2x · y|
N−2

2

,

we have for all x ∈ K, y ∈ Arλ
1

|(|x||y|)2 + 1− 2x · y|
N−2

2

≤ 1

|(1− |x||y|)2|
N−2

2

≤ 1

|1− l(K)|N−2
.

(1.6.3)

Thus we have∣∣∣∣∣λ N−6
2N−8

∫
Arλ

Greg(x, y)u−λ (y) dy

∣∣∣∣∣ ≤ c(K)λ
N−6
2N−8

∫
Arλ

|u−λ (y)| dy

= c(K)
λ
N−6
2N−8

M2∗
λ,−

∫
Ãrλ

∣∣∣∣∣u−λ
(

w

Mβ
λ,−

)∣∣∣∣∣ dw
= c(K)

λ
N−6
2N−8

M2∗−1
λ,−

∫
Ãrλ

∣∣ũ−λ (w)
∣∣ dw.

As in the previous case, we see that c(K)
λ
N−6
2N−8

M2∗−1
λ,−

∫
Ãrλ

∣∣ũ−λ (w)
∣∣ dw → 0 and the proof of

I2,λ → 0 in C0(K) is complete.
Now to end the proof, we need to show that I4,λ → c̃(N)G(x, 0) in C0(K). We start

making the usual change of variable

I4,λ = λ−
N−2
2N−8

1

Mλ,−

∫
Ãrλ

G

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 dw.

We split the Green function in the singular and the regular part, so that

I4,λ =
1

(2−N)ωN

λ−
N−2
2N−8

Mλ,−

∫
Ãrλ

1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
[ũ−λ (w)]2

∗−1 dw

+
λ−

N−2
2N−8

Mλ,−

∫
Ãrλ

Greg

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 dw

We begin with the singular integral which is more delicate. We want to show that

λ−
N−2
2N−8

Mλ,−

1

(2−N)ωN

∫
Ãrλ

1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
[ũ−λ (w)]2

∗−1 dw → c̃(N)Gsing(x, 0) in C0(K).

(1.6.4)
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As in the previous case, we consider the ball B(Mβ
λ,−x,M

β
λ,−η) ⊂⊂ Ãrλ , where η > 0 is

the same as before. Thus, we have

λ−
N−2
2N−8

Mλ,−

1

(2−N)ωN

∫
Ãrλ

1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
[ũ−λ (w)]2

∗−1 dw

=
λ−

N−2
2N−8

Mλ,−

1

(2−N)ωN

∫
|Mβ

λ,−x−w|<M
β
λ,−η

M
(N−2)β
λ,−

|Mβ
λ,−x− w|N−2

[ũ−λ (w)]2
∗−1 dw

+
λ−

N−2
2N−8

Mλ,−

1

(2−N)ωN

∫
{|Mβ

λ,−x−w|≥M
β
λ,−η} ∩ Ãrλ

M
(N−2)β
λ,−

|Mβ
λ,−x− w|N−2

[ũ−λ (w)]2
∗−1 dw

:= ĨC,λ + ĨD,λ.

We show that ĨC,λ → 0 in C0(K). As before, using the uniform upper bound (1.4.8) and
(1.6.2) we get

|ĨC,λ| =
λ−

N−2
2N−8

Mλ,−

1

(N − 2)ωN

∫
|z|<Mβ

λ,−η

M
(N−2)β
λ,−
|z|N−2

[
ũ−λ

(
z +Mβ

λ,−x
)]2∗−1

dz

≤ λ−
N−2
2N−8

Mλ,−

1

(N − 2)ωN

∫
|z|<Mβ

λ,−η

M
(N−2)β
λ,−
|z|N−2

[
1 +

1

N(N − 2)
C|z +Mβ

λ,−x|
2

]−(N+2)/2

dz

≤ λ−
N−2
2N−8

Mλ,−
c1

∫
|z|<Mβ

λ,−η

M
(N−2)β
λ,−
|z|N−2

[
M2β
λ,−η

2
]−(N+2)/2

dz

=
λ−

N−2
2N−8

Mλ,−
c2(K)

∫ Mβ
λ,−η

0

M
(N−2)β
λ,−
rN−2

M
−(N+2)β
λ,− rN−1 dr

=
λ−

N−2
2N−8

Mλ,−
c2(K)

1

M4β
λ,−

∫ Mβ
λ,−η

0
r dr =

λ−
N−2
2N−8

Mλ,−
c2(K)

1

M4β
λ,−

M2β
λ,−η

2

2

= c3(K)
λ−

N−2
2N−8

Mλ,−

1

M2β
λ,−

.

Since λ
− N−2

2N−8

Mλ,−
is bounded (see Proposition 1.5.2 (iv) and Remark 1.5.3) then ĨC,λ → 0

uniformly for x ∈ K. Now, we show that ĨD,λ → c̃(N)Gsing(x, 0) in C0(K). We have

ĨD,λ =
λ−

N−2
2N−8

Mλ,−

1

(2−N)ωN

∫{∣∣∣∣∣x− w

M
β
λ,−

∣∣∣∣∣≥η
}
∩ Ãrλ

1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
[ũ−λ (w)]2

∗−1 dw

The first step is to prove that for all w ∈ RN − {0}

χ(w){∣∣∣∣∣x− w

M
β
λ,−

∣∣∣∣∣≥η
}
∩ Ãrλ

1

(2−N)ωN

1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
[ũ−λ (w)]2

∗−1 → Gsing(x, 0)U2∗−1
0,µ (w),

(1.6.5)
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uniformly for x ∈ K. First, observe that we need only to show that

1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
[ũ−λ (w)]2

∗−1 → 1

|x|N−2
U2∗−1

0,µ (w) in C0(K). (1.6.6)

In fact, if we fix w ∈ RN − {0}, and λ > 0 is sufficiently small so that w ∈ Ãrλ and
w

Mβ
λ,−

< d(0,K)
2 then we have |x− w

Mβ
λ,−
| ≥ η, for all x ∈ K. Hence we get

∣∣∣∣∣∣∣χ(w){∣∣∣∣∣x− w

M
β
λ,−

∣∣∣∣∣≥η
}
∩ Ãrλ

− 1

∣∣∣∣∣∣∣ = χ(w){∣∣∣∣∣x− w

M
β
λ,−

∣∣∣∣∣<η
}
∪Ãcrλ

= 0,

for all x ∈ K, for all λ > 0 sufficiently small, from which we deduce that

χ(w){∣∣∣∣∣x− w

M
β
λ,−

∣∣∣∣∣≥η
}
∩ Ãrλ

→ 1 in C0(K).

Now, the proof of (1.6.6) is trivial if we show that, for any fixed w ∈ RN − {0}∣∣∣∣∣∣∣∣∣
1∣∣∣∣x− w

Mβ
λ,−

∣∣∣∣N−2
− 1

|x|N−2

∣∣∣∣∣∣∣∣∣ ≤ c(K)

∣∣∣∣∣ w

Mβ
λ,−

∣∣∣∣∣ (1.6.7)

for all x ∈ K and for all λ > 0 sufficiently small. This is an elementary computation but for

the sake of completeness, we give the proof. We observe that the segment σ

(
x, x− w

Mβ
λ,−

)
joining x and x − w

Mβ
λ,−

is an uniformly bounded set and stays away from the origin. In

fact for all x ∈ K, t ∈ [0, 1] and for all λ > 0 sufficiently small, we have∣∣∣∣∣x− t w

Mβ
λ,−

∣∣∣∣∣ ≤ |x|+ |t|
∣∣∣∣∣ w

Mβ
λ,−

∣∣∣∣∣ < 1 +
d(0,K)

2
(1.6.8)

∣∣∣∣∣x− t w

Mβ
λ,−

∣∣∣∣∣ ≥
∣∣∣∣∣|x| − |t| |w|Mβ

λ,−

∣∣∣∣∣ ≥ d(0,K)− td(0,K)

2
≥ d(0,K)

2
. (1.6.9)

Thus, setting g(x) := 1
|x|N−2 , by the mean value theorem, we have

g

(
x− w

Mβ
λ,−

)
− g(x) = ∇g(ξλ,x) ·

(
− w

Mβ
λ,−

)
,

where ξλ,x lies on σ

(
x, x− w

Mβ
λ,−

)
. By (1.6.8) and (1.6.9) we deduce that |∇g(ξλ,x)| is

uniformly bounded2 and (1.6.7) is proved.
To complete the first part of the proof, we apply Lebesgue’s theorem. For all x ∈ K,

w ∈ RN − {0} we have

2by ‖∇g‖∞,R(K), where R(K) is the compact annulus R(K) := {x ∈ RN ; d(0,K)
2
≤ |x| ≤ 1 + d(0,K)

2
}



34 CHAPTER 1. ASYMPTOTIC ANALYSIS OF RADIAL NODAL SOL., N ≥ 7

∣∣∣∣∣∣∣χ{∣∣∣∣∣x− w

M
β
λ,−

∣∣∣∣∣≥η
}
∩ Ãrλ

1

(2−N)ωN

1

|x− w

Mβ
λ,−
|N−2

[ũ−λ (w)]2
∗−1

∣∣∣∣∣∣∣
≤ η−(N−2) 1

(N − 2)ωN

1

|x|N−2
[Uh(w)]2

∗−1

= c1(K)[Uh(w)]2
∗−1,

where Uh is the function defined in (1.4.9). Since (Uh)2∗−1 ∈ L1(RN ) and thanks
to (1.6.5), (iv) of Proposition 1.5.2, by Lebesgue’s theorem we deduce (1.6.4), where

Gsing(x, 0) = 1
(2−N)ωN

1
|x|N−2 , c̃(N) = (limλ→0

λ
− N−2

2N−8

Mλ,−
)
∫
RN U

2∗−1
0,µ (w) dw. It’s an elemen-

tary computation to see that c̃(N) equals the expected constant ωN
c2(N)

N−2
2N−8

c1(N)
4

2N−8
, where

c1(N), c2(N) are the constants defined in Proposition 1.5.1. And the proof of (1.6.4) is
done.

Finally, we prove that

λ−
N−2
2N−8

Mλ,−

∫
Ãrλ

Greg

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 dw → c̃(N)Greg(x, 0) in C0(K). (1.6.10)

Since

Greg

(
x,

w

Mβ
λ,−

)
=

1

(2−N)ωN

1∣∣∣∣|x|2 |w|2M2β
λ,−

+ 1− 2x · w

Mβ
λ,−

∣∣∣∣N−2
2

by the mean value theorem, repeating a similar argument as in the proof of (1.6.7), we
deduce that for any fixed w ∈ RN − {0}

Greg

(
x,

w

Mβ
λ,−

)
→ Greg(x, 0) in C0(K).

Thus, for any w ∈ RN − {0} we have

Greg

(
x,

w

Mβ
λ,−

)
[ũ−λ (w)]2

∗−1 → Greg(x, 0)U2∗−1
0,µ (w) in C0(K).

Thanks to (1.6.3) we know that Greg

(
x, w

Mβ
λ,−

)
is uniformly bounded, moreover, as we

have done in the proof of (1.6.4), thanks to the upper bound (1.4.8), Proposition 1.5.2 we
deduce (1.6.10).

To prove the local uniform convergence of λ−
N−2
2N−8∇uλ to c̃(N)∇G(x, 0) we simply

derive (1.6.1) and repeat the previous proof, taking into account that for i = 1, . . . , n we
have

∂xiGsing(x, y) =
1

ωN

xi − yi
|x− y|N

.



Chapter 2

Asymptotic analysis for radial
sign-changing solutions of the
Brezis-Nirenberg problem, N < 7.

2.1 Introduction

In this chapter we present and prove the result (R2).

We consider the Brezis–Nirenberg problem{
−∆u = λu+ |u|2∗−2u in B1

u = 0 on ∂B1,
(2.1.1)

where λ > 0, 2∗ = 2N
N−2 and B1 is the unit ball of RN , N ≥ 3.

The aim of this chapter is to get asymptotic results for radial sign-changing solutions
uλ of (2.1.1) in dimensions N = 3, 4, 5, 6. This will give the asymptotic profile of the
positive and negative part of uλ as λ tends to some limit value.

To motivate our analysis and to explain our results we need to recall a few known
results.

The first fundamental results about the existence of positive solutions were obtained
by H. Brezis and L. Nirenberg in 1983 in the celebrated paper [17]. From their results it
came out that the dimension was going to play a crucial role in the study of (2.1.1) in
a general bounded domain Ω. Indeed they proved that if N ≥ 4 there exists a positive
solution of (2.1.1) for every λ ∈ (0, λ1(Ω)), λ1(Ω) being the first eigenvalue of −∆ in Ω
with Dirichlet boundary conditions, while if N = 3 positive solutions exist only for λ away
from zero.

Since then several other interesting results were obtained for positive solutions, in
particular about the asymptotic behavior of solutions, mainly for N ≥ 5, because also the
case N = 4 presents more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N ≥ 4 both
for λ ∈ (0, λ1(Ω)) and λ > λ1(Ω) as shown in [6], [20], [24].

The case N = 3 presents even more difficulties than in the study of positive solutions.
In particular in the case of the ball is not yet known what is the least value λ̄ of the
parameter λ for which sign-changing solutions exist, neither whether λ̄ is larger or smaller
than λ1(B1)/4. This question, posed by H. Brezis, has been given a partial answer in [14].

35
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However it is interesting to observe that in the study of sign-changing solutions even
the ”low dimensions”N = 4, 5, 6 exhibit some peculiarities. Indeed it was first proved by
Atkinson, Brezis and Peletier in [5] that if Ω is the ball B1 there exists λ∗ = λ∗(N) such
that there are no radial sign-changing solutions of (2.1.1) for λ ∈ (0, λ∗). Later this result
was proved in [1] in a different way.

Moreover, for N ≥ 7 a recent result of Schechter and Zou [54] shows that in any
bounded smooth domain there exist infinitely many sign-changing solutions for any λ > 0.
Instead if N = 4, 5, 6 only N + 1 pairs of solutions, for all λ > 0, have been proved to
exist in [24] but it is not clear that they change sign.

Coming back to radial sign-changing solutions and to the question of existence or
nonexistence of them, according to the dimension, as shown by Atkinson, Brezis and
Peletier, it is interesting to understand in which way these results can be extended to
other bounded domains and to which kind of solutions.

In order to analyze this question let us divide the discussion in two cases: the first
one when the dimension N is greater or equal than 7 and the second one when N < 7.

In the first case (N ≥ 7) radial sign-changing solutions uλ exist for all λ > 0, if
the domain is a ball, and analyzing the asymptotic behavior of those of least energy, as
λ → 0, it is proved in [37] that their limit profile is that of a ”tower of two bubbles”.
This terminology means that the positive part and the negative part of the solutions uλ
concentrate at the same point (which is obviously the center of the ball) as λ → 0 and
each one has the limit profile, after suitable rescaling, of a ”standard bubble” in RN , i.e.
of a positive solution of the critical exponent problem in RN . More precisely the solutions
can be written in the following way:

uλ = PUξ,δ1 − PUξ,δ2 + wλ, (2.1.2)

where PUξ,δi , i = 1, 2 is the projection on H1
0 (Ω) of the regular positive solution of

the critical problem in RN , centered at ξ = 0, with rescaling parameter δi and wλ is a
remainder term which converges to zero in H1

0 (Ω) as λ→ 0.

Inspired by this result one could then search for solutions of type (2.1.2) in general
bounded domains since this kind of solutions can be viewed as the ones which play the
same role of the radial solutions in the case of the ball. This has been done recently in
[40], where solutions of the type (2.1.2) have been constructed for λ close to zero in some
symmetric bounded domains (the symmetry makes their construction a bit easier, but
the same result should be true in any bounded domain).

On the contrary, coming to the case N < 7, in view of the nonexistence result of
nodal radial solutions of [6] it is natural to conjecture that, in general bounded domains,
there should not be solutions of the form (2.1.2) for λ close to zero. Indeed this has been
recently proved in [38] if N = 4, 5, 6, the case N = 3 being obvious.

On the other side, if N < 7, radial nodal solutions exist for λ bigger than a certain
value λ̄2 which can be studied by analyzing the associated ordinary differential equation
(see [6], [4], [32]).

Therefore, to the aim of getting analogous existence results in other bounded domains,
the first step would be to analyze the asymptotic behavior of nodal radial solutions in
the ball, for λ → λ̄2, in order to understand their limit profile and guess what kind of
solutions one can construct in other domains, and for which values of the parameter λ.

This is the subject of this chapter.
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Denoting by uλ a nodal radial solutions of (2.1.1) having two nodal regions and such
that uλ(0) > 0 we get the following results:

(i): if N = 6 then λ̄2 ∈ (0, λ1(B1)), λ1(B1) being the first eigenvalue of −∆ in H1
0 (B1),

and we have that, as λ→ λ̄2, u+
λ concentrate at the center of the ball, ‖u+

λ ‖∞ → +∞,
and a suitable rescaling of u+

λ converges to the standard positive solution of the
critical problem in RN . Instead u−λ converges to the unique positive solution of
(2.1.1) in B1, as λ→ λ̄2;

(ii): if N = 4, 5 then λ̄2 = λ1(B1) and u+
λ behaves as for the case N = 6, while u−λ

converges to zero uniformly in B1;

(iii): if N = 3 then λ̄2 = 9
4λ1(B1) and u+

λ behaves as for the case N = 6, while u−λ
converges to zero uniformly in B1.

In view of these results we conjecture that, in general bounded domains Ω, for some
“limit value” λ̄2 = λ̄2(N,Ω) there should exist solutions with similar asymptotic profile as
λ→ λ̄2. The number λ̄2 should be λ1(Ω) in dimension N = 4, 5.

This chapter is divided in five sections. In Section 2.2 we mainly recall some prelimi-
nary results. In Section 2.3 we analyze the asymptotic behavior of the positive part of the
solutions, for all dimensions N = 3, 4, 5, 6. In Section 2.4 we analyze the negative part in
the case N = 6 and in Section 2.5 we complete the cases N = 3, 4, 5.

2.2 Some preliminary results

If uλ is a radial sign-changing solution of (2.1.1) then we can write uλ = uλ(r), where
r = |x| and uλ(r) is a solution of the problem{

u′′λ + N−1
r u′λ + λuλ + |uλ|2

∗−2uλ = 0, in (0, 1),

u′λ(0) = 0, uλ(1) = 0.
(2.2.1)

We consider the following transformation

r 7→
(
N − 2√
λ r

)N−2

, uλ 7→ y(t) := λ−1/(2∗−2)uλ

(
N − 2
√
λ t

1
N−2

)
. (2.2.2)

It is elementary to see that since uλ is a solution of the differential equation in (2.2.1)
then y = y(t) solves

y′′ + t−k(y + |y|2∗−2y) = 0, (2.2.3)

in the interval

((
N−2√
λ

)N−2
,+∞

)
, where k := 2N−1

N−2 . It is clear that the transforma-

tion (2.2.2) generates a one-to-one correspondence between solutions of the differential
equation in (2.2.1) and solutions of (2.2.3). Equation (2.2.3) is an Emden-Fowler type
equation and since k > 2 it is well known that, for any γ ∈ R the problem{

y′′ + t−kf(y) = 0, in (0,+∞),

y(t)→ γ, as t→ +∞,
(2.2.4)

where f(y) := y+|y|2∗−2y, has a unique solution defined in the whole R+ which we denote
by y(t; γ). Let us recall some results on the functions y(t; γ) which are proved in [6].
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Lemma 2.2.1. Let y = y(t, γ) be a solution of Problem (2.2.4), then:

(a) y is oscillatory near t = 0;

(b) the set {|y(t̄)|; t̄ extremum point of y} is an increasing sequence with respect to t;

(c) the set {|y′(t0)|; t0 zero of y} is a decreasing sequence with respect to t.

Proof. See Lemma 1 in [6].

Lemma 2.2.2. Let y = y(t, γ) be a solution of Problem (2.2.4) and let T > 0 be one of
its zeros, then

|y(t)| < |y′(T )|(T − t),

for all 0 < t < T .

Proof. See Lemma 2 in [6].

We shall denote the sequence of zeros of y(t; γ) by Tn(γ), ordered backwards, precisely:

· · · < T3(γ) < T2(γ) < T1(γ) < +∞.

We recall some results on the asymptotic behavior of the largest zero T1(γ) and on the
slope y′(T1(γ); γ) as γ → +∞.

Lemma 2.2.3. Let y be a solution of Problem (2.2.4) and T1(γ) its largest zero, then:

(a) if 2 < k < 3 (which corresponds to N > 4), then

T1(γ) = A(k)γ6−2k(1 + o(1)) as γ → +∞,

where A(k) := (k − 1)
k−3
k−2

Γ(3−k)/(k−2)Γ((k−1)/(k−2))
Γ(2/(k−2)) , Γ is the Gamma function.

(b) if k = 3 (which corresponds to N = 4), then

T1(γ) = 2 log γ(1 + o(1)) as γ → +∞;

(c) if k = 4 (which corresponds to N = 3), then there exists γ0 ∈ R+ and two positive
constants A,B such that

A < T1(γ) < B for all γ ≥ γ0.

Proof. The proof of (a), (b) is contained in [6], Lemma 3 and the proof of (c) is contained
in [7], Theorem 3.

Lemma 2.2.4. For any k > 2, let y be a solution of Problem (2.2.4) and T1(γ) its largest
zero, then

y′(T1(γ)) = (k − 1)
1

k−2γ−1(1 + o(1)), as γ → +∞.

Proof. See [6], Lemma 4.
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To prove the existence of radial sign-changing solutions of (2.1.1), with exactly two
nodal regions, we consider the second zero T2(γ) of y(t; γ). If we choose λ = λ(γ) so that

T2(γ) =
(
N−2√
λ

)N−2
, then the inverse transformation of (2.2.2) maps t = T2 in r = 1 and

y 7→ uλ. Hence, for λ = (N − 2)2T2(γ)−
2

N−2 , we obtain a function uλ which is a radial
solution of (2.1.1) having exactly two nodal regions; moreover uλ(0) = λ1/(2∗−2)γ. We
observe also that thanks to the invertibility of (2.2.2) every radial sign-changing solution
uλ of (2.1.1) with two nodal regions corresponds to a solution y = y(t; γ) of (2.2.4) with

γ = λ−1/(2∗−2)uλ(0), T2(γ) =
(
N−2√
λ

)N−2
.

We are interested in the study of the behavior of the map λ2 : R+ → R+, defined by

λ2(γ) := (N − 2)2T2(γ)−
2

N−2 . Clearly this map is continuous. In [4] (see Proposition 2
and Remark 4), it is proved that for N = 4 it holds that limγ→0 λ2(γ) = λ2(B1), where
λ2(B1) is the second radial eigenvalue of −∆ in H1

0 (B1). Moreover the authors observe
that this result holds for all dimensions N ≥ 3. For the sake of completeness we give a
complete proof of this fact. We begin with a preliminary lemma.

Lemma 2.2.5. Let uλ be a radial solution of (2.1.1), then we have |uλ(0)| = ‖uλ‖∞.

Proof. See Proposition 1.2.3 or Lemma 8 in [4].

Proposition 2.2.6. Let N ≥ 3 and λ2 : R+ → R+ the function defined by λ2(γ) :=

(N − 2)2T2(γ)−
2

N−2 , where T2(γ) is the second zero of the function y(t, γ), y(t, γ) is the
unique solution of (2.2.4). We have:

(a) λ2(γ) < λ2(B1), for all γ ∈ R+;

(b) limγ→0 λ2(γ) = λ2(B1),

where λ2(B1) is the second radial eigenvalue of −∆ in H1
0 (B1).

Proof. To prove (a) we observe that (a) is equivalent to show that T2(γ) > τ2 for all
γ ∈ R+, where τ2 is the second zero of the function α : R+ → R defined by α(t) :=

Aν
√
tJν(2νt−

1
2ν ), where Aν := ν−νΓ(ν+1), ν := 1

k−2 = N−2
2 , Jν is the first kind (regular)

Bessel function of order ν, namely Jν(s) :=
∑∞

j=0
(−1)j

Γ(j+1)Γ(j+ν+1)

(
s
2

)ν+2j
. In fact, by a

tedious computation, we see that α solves{
α′′ + t−kα = 0, in (0,+∞),

α(t)→ 1, as t→ +∞.
(2.2.5)

Furthermore, let τ2 be the second zero of α, then by elementary computations we see that
the function ϕ2(x) := α(τ2|x|−(N−2)) solves{

−∆ϕ2 = µ2ϕ2 in B1

ϕ2 = 0 on ∂B1,
(2.2.6)

with µ2 = (N − 2)2τ
− 2
N−2

2 . Clearly µ2 = λ2(B1). Hence λ2(γ) < λ2(B1) if and only if
T2(γ) > τ2.

To show that T2(γ) > τ2 for all γ ∈ R+ first observe that for all γ ∈ R+ we have

T1(γ) > τ1. In fact, setting λ1(γ) := (N − 2)2T1(γ)−
2

N−2 as before we have that λ1(γ) <
λ1(B1) if and only if T1(γ) > τ1. Since we know from [17] that equation (2.2.1) has
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positive solutions only for λ ∈ (0, λ1(B1)) if N ≥ 4, and only for λ ∈ (λ1(B1)
4 , λ1(B1)) if

N = 3, we deduce T1(γ) > τ1 for all γ ∈ R+. Now we apply the Sturm’s comparison
theorem to the functions y(t; γ), α(t), which are, respectively, solutions of the equations
in (2.2.4), (2.2.5). To this end we write y′′ + t−kq2(t)y = 0 with q2(t) := 1 + |y|2∗−2 and
since α′′ + t−kα = 0 we set q1(t) :≡ 1. Clearly q2(t) ≥ q1(t) for all t > 0 (for all γ ∈ R+),
thus y is a Sturm majorant for α, and applying the Sturm’s comparison theorem in the
interval [τ2, τ1], since T1(γ) > τ1 we deduce that T2(γ) ∈ (τ2, τ1). This concludes the proof
of (a).

Let us prove (b). We consider uλ2(γ) = uλ2(γ)(r) which is a solution of (2.2.1) with

exactly one zero in (0, 1), and uλ2(γ)(0) = [λ2(γ)]1/(2
∗−2)γ. Setting ϕ(x) := uλ2(|x|) it is

clear that ϕ is the second radial eigenfunction of{
−∆ϕ = λϕ+ |uλ2(γ)|2

∗−2ϕ in B1

ϕ = 0 on ∂B1,
(2.2.7)

with eigenvalue λ = λ2(γ). Let us denote byH1
0,rad(B1) the subspace of radially symmetric

functions inH1
0 (B1). Thanks to the variational characterization of eigenvalues and Lemma

2.2.5 we have

λ2(γ) = min
V⊂H1

0,rad(B1)

dimV=2

max
ϕ∈V
|ϕ|2=1

(∫
B1

|∇ϕ|2 dx−
∫
B1

|uλ2(γ)|2
∗−2ϕ2 dx

)

> min
V⊂H1

0,rad(B1)

dimV=2

max
ϕ∈V
|ϕ|2=1

(∫
B1

|∇ϕ|2 dx− [λ2(γ)]2/(2
∗−2)γ2

)
= λ2(B1)− [λ2(γ)]2/(2

∗−2)γ2.

(2.2.8)

Since λ2(γ) is bounded (because by (a) we have λ2(γ) < λ2(B1) and by definition λ2(γ) >
0), from (2.2.8), we deduce that lim infγ→0 λ2(γ) ≥ λ2(B1). On the other hand, by the first
step we get that lim supγ→0 λ2(γ) ≤ λ2(B1). Hence we deduce that limγ→0 λ2(γ) = λ2(B1)
and the proof is concluded.

More interesting is the behavior of λ2(γ) as γ → +∞. The next result that we recall
shows how it strongly depends on the dimension N .

Theorem 2.2.7. Let λ2 : R+ → R+ be the function defined by λ2(γ) := (N−2)2T2(γ)−
2

N−2 ,
where T2(γ) is the second zero of the function y(t, γ), being y(t, γ) is the unique solution
(2.2.4), and let λ1(B1) be the first eigenvalue of −∆ in H1

0 (B1), then:

(a) if N ≥ 7 we have limγ→+∞ λ2(γ) = 0;

(b) if N = 6 we have limγ→+∞ λ2(γ) = λ0, for some λ0 ∈ (0, λ1(B1));

(c) if N = 4 or N = 5 we have limγ→+∞ λ2(γ) = λ1(B1);

(d) if N = 3 we have limγ→+∞ λ2(γ) = 9
4λ1(B1) = 9

4π
2.

Proof. Statement (a) is a consequence of Theorem B in [25]. Statements (b), (c) are
proved in [6], Theorem B. In Section 2.4 we give an alternative proof of (b). Statement
(d) is proved in [8].

Let us define λ?2 := inf{λ2(γ), γ ∈ R+}. Gazzola and Grunau proved in [32] that for
N = 5 it holds limγ→+∞ λ2(γ) = λ1(B1)−, in particular we deduce that for N = 5 we
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have λ?2 < λ1(B1) and hence λ?2 = λ2(γ0) for some γ0 ∈ R+. In the same paper it is also
proved that for N = 4 limγ→+∞ λ2(γ) = λ1(B1)+. Recently Arioli, Gazzola, Grunau,
Sassone proved in [4] a stronger result: for N = 4 we have λ2(γ) > λ1(B1) for all γ ∈ R+.
Thus for N = 4, we have λ?2 = λ1(B1) and λ?2 is not achieved.

The asymptotic behavior of λ2(γ) as γ → +∞ for N = 6 is still unknown. Nevertheless
in Section 2.3 we give a characterization of the number λ0 appearing in (b) of Theorem
2.2.7.

2.3 Energy and asymptotic analysis of the positive part

Let uλ2(γ) be the radial solution with exactly two nodal regions of (2.1.1), for λ = λ2(γ),
obtained in the previous section. To simplify the notation we omit the dependence on
γ and write uλ2 . We recall that, by definition, for γ ∈ R+ we have uλ2(0) > 0 and we
denote by rλ2 ∈ (0, 1) its node.

The aim of this section is to compute the limit energy of the positive part u+
λ2

, as

γ → +∞, as well as, to study the asymptotic behavior of a suitable rescaling of u+
λ2

. We
begin with recalling an elementary but crucial fact:

Lemma 2.3.1. Let u ∈ H1
0,rad(B), where B is a ball or an annulus centered at the

origin of RN and consider the rescaling ũ(y) := M1/βu(My), where M > 0 is a constant,
β := 2

N−2 . We have:

(i): ‖u‖2B = ‖ũ‖2M−1B,

(ii): |u|2∗2∗,B = |ũ|2∗2∗,M−1B,

(iii): |u|22,B = M2|ũ|22,M−1B.

Proof. It suffices to apply the formula of change of variable for the integrals in (i), (ii),
(iii). For the details see the proof of Lemma 1.4.1.

In order to state the main result of this section we introduce some notation. We define
the rescaled functions

ũ+
λ2

(y) :=
1

Mλ2,+
u+
λ2

(
y

Mβ
λ2,+

)
, y ∈ Bσλ2

,

where β := 2
N−2 , σλ2 = Mβ

λ2,+
rλ2 , Mλ2,+ := ‖u+

λ2
‖∞,B1 . We observe that thanks to

Lemma 2.2.5 and since uλ2(0) > 0 we have Mλ2,+ = ‖uλ2‖∞,B1 = uλ2(0). The following
theorem holds for all dimensions N ≥ 3, here we discuss the case 3 ≤ N ≤ 6 (the case
N ≥ 7 has been studied in Chapter 1).

Theorem 2.3.2. Let N = 3, 4, 5, 6 and let uλ2 be the radial solution with exactly two
nodal regions of (2.1.1) with λ = λ2(γ) obtained in the previous section. Then

(i):

Jλ2(u+
λ2

)→ 1

N
SN/2,

as γ → +∞, where Jλ(u) := 1
2

(∫
B1
|∇u|2 − λ|u|2 dx

)
− 1

2∗

∫
B1
|u|2∗ dx is the energy

functional related to (2.1.1), S is the best Sobolev constant for the embedding of
D1,2(RN ) into L2∗(RN ).
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(ii): Up to a subsequence, the rescaled function ũ+
λ converges in C2

loc(RN ) to U0,µ, as
γ → +∞, where U0,µ is the solution of the critical exponent problem in RN centered
at x0 = 0 and with concentration parameter µ =

√
N(N − 2). We recall that such

functions are defined by

Ux0,µ(x) :=
[N(N − 2)µ2](N−2)/4

[µ2 + |x− x0|2](N−2)/2
.

Proof. We start by proving (i). Let (uλ2) be this family of solutions. Since u+
λ2

solves

−∆u = λ2u+u2∗−1 in Brλ2
then, considering the rescaling û+

λ2
(y) := r

1/β
λ2

u+
λ2

(rλ2y), where

β := 2
N−2 , we see that ũ+

λ2
solves
−∆u = λ2r

2
λ2
u+ u2∗−1 in B1,

u > 0 in B1,

u = 0 on ∂B1.

(2.3.1)

Now we distinguish between two cases: N = 4, 5, 6 and N = 3.

If N = 4, 5, 6, then, from Lemma 2.2.3 we deduce that rλ2 → 0 as γ → +∞, in
particular this is true for λ2r

2
λ2

. From [2] we know that û+
λ2

is unique and it coincides

with the solution found in [17], which minimizes the energy Jλ2r2
λ2

; thus, since λ2r
2
λ2
→ 0

as γ → +∞ we get that Jλ2r2
λ2

(û+
λ2

) → 1
N S

N/2. Thanks to Lemma 2.3.1 we get that

Jλ2(u+
λ2

) = Jλ2r2
λ2

(û+
λ2

)→ 1
N S

N/2 as γ → +∞.

Assume now that N = 3. As stated in Lemma 2.2.3 we have that rλ2 is bounded
away from zero. From a well known result of Brezis and Nirenberg (see [17], Theorem 1)

we have that (2.3.1) has a positive solution if and only if λ2r
2
λ2
∈ (π

2

4 , π
2). As γ → +∞

we must have λ2r
2
λ2
→ π2

4 . Hence, the only possibility is that Jλ2r2
λ2

(û+
λ2

) → 1
3S

3/2 as

γ → +∞. As before thanks to Lemma 2.3.1 we have Jλ2(u+
λ2

) = J
λ2r

1/β
λ2

(û+
λ2

) and hence

Jλ2(u+
λ2

)→ 1
3S

3/2 as γ → +∞. The proof of (i) is complete.

We now prove (ii). By definition the rescaled function ũ+
λ2

solves the following problem
−∆u = λ2

M2β
λ2,+

u+ u2∗−1 in Bσλ2
,

u > 0 in Bσλ2
,

u = 0 on ∂Bσλ2
,

(2.3.2)

where σλ2 := Mβ
λ2
rλ2 .

Since the family (ũ+
λ2

) is uniformly bounded, then by standard elliptic theory we get

that ũ+
λ2
→ ũ in C2

loc(Bl), where l is the limit of σλ2 as γ → +∞. We want to show that

lim
γ→+∞

σλ2 = +∞,

so that the limit domain is the whole RN . We can proceed in two different ways: one
is to apply directly the estimates contained in Section 2.1, the other one is to apply
the methods of Chapter 1. We choose the second approach: arguing as in the proof of
Proposition 1.4.3, taking into account that by (i) of Theorem 2.3.2, Jλ2(u+

λ2
) → 1

N S
N/2,

as γ → +∞, we see that up to a subsequence it cannot happen that limγ→+∞ σλ2 is finite.
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Since λ2

M2β
λ2,+

→ 0, as γ → +∞, ũ+
λ2

converges in C2
loc(RN ) to a positive solution ũ of

{
−∆u = |u|2∗−2u in RN

u→ 0 as |y| → +∞.

Observe that this holds even in the case N = 3, in fact by definition and Remark 2.3.3
we have

λ1(Bσλ2
)

4
=

π2

4M4
λ2,+

r2
λ2

=
9

4
π2(1 + o(1))

1

M4
λ2,+

=
λ2

M4
λ2,+

(1 + o(1))→ 0,

as γ → +∞.
Since ũ is radial and ũ(0) = 1 then ũ = U0,µ where µ =

√
N(N − 2) (see Proposition

2.2 in [25]). The proof is complete.

Remark 2.3.3. We observe that for N = 3, since λ2r
2
λ2
→ π2

4 and (d) of Theorem 2.2.7

holds, then, we deduce that rλ2 → 1
3 . On the contrary, if N = 4, 5, 6, as seen in the proof

of Theorem 2.3.2, we have rλ2 → 0 as γ → +∞ (this also holds for N ≥ 7, as seen in
Proposition 1.3.3).

2.4 Asymptotic analysis of the negative part in dimension
N = 6

In this section we focus on the case N = 6 which means to take k = 5/2 in (2.2.4). As in
[6] we define

t0(γ) := inf{t ∈ (0,+∞); y′ > 0 on (t,+∞)},
y0(γ) := y(t0(γ); γ).

(2.4.1)

We have the following:

Proposition 2.4.1. Assume k = 5/2. Then

(a) y0(γ) = −1
2(1 + o(1)), as γ → +∞;

(b) t0(γ) = (2
9γ)2/3(1 + o(1)), as γ → +∞.

Proof. See [6], Theorem 2.

Let uλ be any radial solution of (2.1.1) with exactly two nodal regions and without
loss of generality assume that uλ(0) > 0. We denote by sλ the global minimum point of
uλ. As in the previous section we set Mλ,+ := ‖u+

λ ‖∞, Mλ,− := ‖u−λ ‖∞, where u+
λ , u−λ

are respectively the positive and the negative part of uλ. Clearly, by definition, we have
u−λ (sλ) = Mλ,−. In order to estimate the energy of such solutions we need the following
preliminary result.

Proposition 2.4.2. Let N = 6 and let (uλ) be any family of radial sign-changing solutions
of (2.1.1) with exactly two nodal regions and such that uλ(0) > 0 for all λ. Assume that
there exists λ0 ∈ R+ such that Mλ,+ →∞ as λ→ λ0. Then

Mλ,− ≤
λ

2
(1 + o(1)),

for all λ sufficiently close to λ0.
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Proof. Let (uλ) be such a family of solutions. Since N = 6, we have 2∗ − 2 = 4
N−2 = 1

and thanks to the transformation (2.2.2) we have

uλ(r(t)) = λ y(t; γ), (2.4.2)

for t ∈
((

N−2√
λ

)N−2
,+∞

)
, where γ = λ−1Mλ,+. We observe that the global minimum

point sλ corresponds, through the transformation (2.2.2), to the number t0(γ) defined in
(2.4.1). In fact by definition we have u′λ(sλ) = 0 so it suffices to show that u′λ(r) < 0 for
all r ∈ (0, sλ). By Corollary 1.2.4 we know that u′λ(r) < 0 for all r ∈ (0, rλ), and for all
r ∈ (rλ, sλ). Moreover since u+

λ solves (2.1.1) in Brλ , then, by Hopf lemma it follows that
u′λ(rλ) < 0. Now, thanks to the assumptions, as λ → λ0 we have γ = λ−1Mλ,+ → +∞
and the result follows immediately from (2.4.2) and Proposition 2.4.1.

Remark 2.4.3. A straight important consequence of Proposition 2.4.2 is that Mλ,− is
uniformly bounded for all λ sufficiently close to λ0. In particular there cannot exist radial
sign-changing solutions of (2.1.1) with the shape of a tower of two bubbles in dimension
N = 6 (this fact also holds for the dimensions N = 3, 4, 5, as we will see later). This is
in deep contrast with the case of higher dimensions N ≥ 7 as seen in Chapter 1.

Remark 2.4.4. In the case of the solutions obtained in the previous section, thanks to
Theorem 2.2.7 we deduce that Mλ2(γ),− ≤ λ0

2 (1 + o(1)) ≤ λ1(B1)
2 for all sufficiently large

γ ∈ R+.

In the previous section we have studied the limit energy (see Theorem 2.3.2) of the
positive part of the solutions uλ2 . Here we consider the negative part u−λ2

and prove
that its energy Jλ2 is uniformly bounded as γ → +∞. This is the content of the next
proposition.

Proposition 2.4.5. Let N = 6. Let λ2 = λ2(γ) and uλ2 be the radial solution with exactly

two nodal regions of (2.1.1) described in Section 2.2. Let Jλ(u) := 1
2

(∫
B1
|∇u|2 − λ|u|2 dx

)
−

1
2∗

∫
B1
|u|2∗ dx be the energy functional related to (2.1.1). Then

Jλ2(u−λ2
) ≤ π3

36

(
λ1(B1)

2

)3

,

for all sufficiently large γ.

Proof. Since u−λ2
solves −∆u = λ2u+ u2∗−1 in the annulus Arλ2

, in particular it belongs
to the Nehari manifold Nλ2 associated to that equation, which is defined by

Nλ2 := {u ∈ H1
0 (Arλ2

); ‖u‖2Arλ2

− λ2|u|22,Arλ2

= |u|2∗2∗,Arλ2

}. (2.4.3)

Hence we deduce that

Jλ2(u−λ2
) =

1

6
|u−λ2
|2∗2∗,Arλ2

. (2.4.4)

Now, thanks to Proposition 2.4.2, (b) of Theorem 2.2.7 and Remark 2.4.4 we have

|u−λ2
|2∗2∗,Arλ2

=

∫
Arλ2

|u−λ2
|3 dx ≤ |B1|‖u−λ2

‖3∞ ≤
π3

6

(
λ1(B1)

2

)3

, (2.4.5)

for all sufficiently large γ. From (2.4.4) and (2.4.5) we deduce the desired relation and
the proof is complete.
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Remark 2.4.6. Since λ2 is a bounded function, by the same proof of Proposition 2.4.5,
but without using (b) of Theorem, 2.2.7 we deduce anyway that Jλ2(u−λ2

) is uniformly
bounded for all sufficiently large γ.

We are interested now in studying the asymptotic behavior of the family (u−λ2
). More

precisely we show that, as γ → ∞, the family (u−λ2
) converges in C2

loc(B1 − {0}) to the
unique positive solution u0 of (2.1.1) with λ = λ0, for some λ0 ∈ (0, λ1(B1)). We point
out that these results will improve the energy estimate of u−λ2

obtained before.

The pointwise convergence of (u−λ2
) to u0 is contained in Theorem 3 of [6], but here

we use a different approach which is based on the arguments of Chapter 1. Our result is
the following:

Theorem 2.4.7. Let N = 6, up to a subsequence, we have λ2(γ) → λ0, as γ → +∞,
for some λ0 ∈ (0, λ1(B1)), and (u−λ2

) converges in C2
loc(B1 − {0}) to the unique positive

solution u0 of (2.1.1) with λ = λ0.

Proof. Let us consider the family (u−λ2
). These functions solve

−∆u = λ2u+ u2 in Arλ2
,

u > 0 in Arλ2
,

u = 0 on ∂Arλ2
.

(2.4.6)

Since λ2 is bounded, up to a subsequence we have limγ→+∞ λ2 = λ0. Thanks to Proposi-
tion 2.4.2 we have that u−λ2

is uniformly bounded for all sufficiently large γ and by Lemma
2.2.3 and the inverse transformation of (2.2.2) we have rλ2 → 0. Hence by standard el-
liptic theory, up to a subsequence, for any 0 < δ < 1, u−λ2

converges in C2(B1 − Bδ) as
γ → +∞ to a solution u0 of{

−∆u = λ0u+ u2 in B1 − {0},
u = 0 on ∂B1.

where Bδ is the ball centered at the origin having radius δ. We now proceed in three
steps.
Step 1: we have

lim
r→0

u0(r) =
λ0

2
. (2.4.7)

Since u−λ2
is a radial solution of (2.1.1) and thanks to Proposition 2.4.2, for all sufficiently

large γ, we have

u−λ2
≤ λ0

2
(1 + o(1)), (2.4.8)

and then we deduce that

[(u−λ2
)′r5]′ = −λ2u

−
λ2

(r)r5 − [u−λ (r)]2r5

≥ −λ2
λ0
2 (1 + o(1))r5 −

[
λ0
2 (1 + o(1))

]2
r5

= −λ2
0

2 (1 + o(1))2r5 − λ2
0

4 (1 + o(1))2r5

≥ −λ2
0 r

5.
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Integrating between sλ2 and r (with sλ2 < r < 1) we get that

(u−λ2
)′(r)r5 ≥ −λ2

0

∫ r

sλ2

t5dt ≥ −λ
2
0

6
r6.

Hence (u−λ2
)′(r) ≥ −λ2

0
6 r for all r ∈ (sλ2 , 1). Integrating again between sλ2 and r we have

u−λ2
(r)− λ0

2
(1 + o(1)) ≥ −λ

2
0

12
(r2 − s2

λ2
) ≥ −λ

2
0

12
r2.

Hence u−λ2
(r) ≥ λ0

2 (1 + o(1)) − λ2
0

12 r
2 for all sufficiently large γ, for all r ∈ (sλ2 , 1). Since

sλ2 → 0, then, passing to the limit as γ → ∞, we get that u0(r) ≥ λ0
2 −

λ2
0

12 r
2, for all

0 < r < 1. From this inequality and (2.4.8) we deduce that limr→0 u0(r) = λ0
2 . The proof

of Step 1 is complete.

Step 2: we have
lim
r→0

u′0(r) = 0. (2.4.9)

As in the previous step, integrating the equation between sλ2 and r, with sλ2 < r < 1, we
get that

−(ũ−λ2
)′(r)r5 = λ2

∫ r

sλ2

u−λ2
t5dt+

∫ r

sλ2

(u−λ2
)2t5dt.

Thanks to (2.4.8), for all sufficiently large γ we have

|(u−λ2
)′(r)r5| ≤ λ2

λ0

2
(1 + o(1))

∫ r

sλ2

t5dt+
λ2

0

4
(1 + o(1))2

∫ r

sλ2

t5dt ≤ λ2
0

r6

6
.

Dividing by r5 the previous inequality and passing to the limit, as γ → +∞, we get that

|u′0(r)| ≤ λ2
0

6
r,

for all 0 < r < 1. Hence limr→0 u
′
0(r) = 0 and the proof of Step 2 is complete.

From Step 1 and Step 2 it follows that the radial function u0(x) = u0(|x|) can be
extended to a C1(B1) function. We still denote by u0 this extension.
Step 3: The function u0 is a weak solution in B1 of

−∆u = λ0u+ u2. (2.4.10)

Let us fix a test function φ ∈ C∞0 (B1). If 0 /∈ supp(φ) the proof is trivial so from now
on we assume 0 ∈ supp(φ). Applying Green’s formula to Ω(δ) := B1 − Bδ, since u0 is a
C2(B1 − {0})-solution of (2.4.10) and φ ≡ 0 on ∂B1, we have

∫
Ω(δ)
∇u0 · ∇φ dx = λ0

∫
Ω(δ)

φ u0 dx+

∫
Ω(δ)

φ u2
0 dx+

∫
∂Bδ

φ

(
∂u0

∂ν

)
dσ. (2.4.11)

We show now that
∫
∂Bδ

φ
(
∂u0
∂ν

)
dσ → 0 as δ → 0. In fact since u0 is a radial function

we have ∂u0
∂ν (x) = u′0(δ) for all x ∈ ∂Bδ, and hence we get that∣∣∣∣∫

∂Bδ

φ

(
∂u0

∂ν

)
dσ

∣∣∣∣ ≤ |u′0(δ)|
∫
∂Bδ

|φ| dσ ≤ ω6|u′0(δ)|δ5||φ||∞.
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Thanks to (2.4.9) we have |u′0(δ)|δ5 → 0 as δ → 0. To complete the proof we pass to the
limit in (2.4.11) as δ → 0. We observe that

|∇u0 · ∇φ| χΩ(δ) ≤ |∇u0|2 χ{|∇u0|>1}|∇φ|+ |∇u0| χ{|∇u0|≤1}|∇φ|

≤ |∇u0|2 χ{|∇u0|>1}|∇φ|+ χ{|∇u0|≤1}|∇φ|.
(2.4.12)

We point out that
∫
B1
|∇u0|2dx is finite: this is an easy consequence of the fact that

uλ2 → u0 in C2
loc(B1−{0}), the family (uλ2) is uniformly bounded, (2.4.3) and Lebesgue’s

theorem.

Thus, since
∫
B1
|∇u0|2dx is finite and φ has compact support, the right-hand side of

(2.4.12) belongs to L1(B1). Hence from Lebesgue’s theorem we have

lim
δ→0

∫
Ω(δ)
∇u0 · ∇φ dx =

∫
B1

∇u0 · ∇φ dx. (2.4.13)

Since φ has compact support by Lebesgue’s theorem we have

lim
δ→0

∫
Ω(δ)

φ u0 dx =

∫
B1

φ u0 dx,

lim
δ→0

∫
Ω(δ)

φ u2
0 dx =

∫
B1

φ u2
0 dx.

(2.4.14)

From (2.4.11), (2.4.13), (2.4.14) and since we have proved
∫
∂B(δ) φ

(
∂ũ
∂ν

)
dσ → 0 as δ → 0

it follows that ∫
B1

∇u0 · ∇φ dx = λ0

∫
B1

φ u0 dx+

∫
B1

φ u2
0 dx,

which completes the proof of Step 3.

Thanks to Step 1 - Step 3 we get that u0 ∈ H1
0,rad(B1) is a weak solution of

−∆u = λ0u+ u2 in B1,

u > 0 in B1,

u = 0 on ∂B1.

(2.4.15)

In particular, as a consequence of a well known result of Brezis and Kato (for instance
see Lemma 1.5 in [17]) it is possible to show that u0 is a classical solution of (2.4.15) (see
Appendix B of [58]). Thanks to [2] we know that u0 is the unique positive radial solution
of (2.4.15), which is the one found by Brezis and Nirenberg in [17]. Hence we must have
λ0 < λ1(B1) and Jλ0(uλ0) < 1

6S
3.

Next result gives a characterization of the value λ0 ∈ (0, λ1(B1)) appearing in Theorem
2.4.7.

Theorem 2.4.8. Let N = 6. Let λ0 := limγ→+∞ λ2(γ). We have that λ0 is the unique
λ ∈ (0, λ1(B1)) such that uλ(0) = λ

2 , where uλ is the unique positive solution of
−∆u = λu+ u2 in B1,

u > 0 in B1,

u = 0 on ∂B1.

(2.4.16)
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Proof. Thanks to Theorem 2.4.7 and (2.4.7) we have that the set

Γ :=

{
λ ∈ (0, λ1(B1)); uλ(0) =

λ

2
, where uλ is the unique solution of (2.4.16)

}
,

is not empty since λ0 ∈ Γ. We want to prove that Γ = {λ0}. To this end assume that
λ̄ ∈ Γ and λ̄ 6= λ0. In particular the functions uλ0 and uλ̄ are different. Thanks to the
definition of Γ and applying (2.2.2) (with 2∗− 2 = 1 because N = 6) we get that uλ0 and
uλ̄ are respectively transformed to a solution of (2.2.4) with γ = 1

2 , but, for a given γ,
the solution of (2.2.4) is unique and this gives a contradiction.

Now we have all the tools to estimate the energy of the solutions uλ2 . This is the
content of the next result.

Corollary 2.4.9. Let N = 6 and let uλ2 be the radial solution with exactly two nodal
regions of (2.1.1) with λ = λ2(γ) obtained in Section 2.2. Then

Jλ2(uλ2) <
1

3
S3,

for all sufficiently large γ ∈ R+, where Jλ(u) := 1
2

(∫
B1
|∇u|2 − λ|u|2 dx

)
− 1

2∗

∫
B1
|u|2∗ dx

is the energy functional related to (2.1.1), S is the best Sobolev constant for the embedding
of D1,2(R6) into L2∗(R6).

Proof. Let (uλ2) be this family of solutions. Observe that Jλ2(uλ2) = Jλ2(u+
λ2

) +Jλ2(u−λ2
)

hence it suffices to estimate separately the energy of the positive and negative part of uλ2 .
The energy of u+

λ2
has been determinated in Theorem 2.3.2, and in particular we have

Jλ2(u+
λ2

)→ 1
6S

3, as γ → +∞.

Now we estimate Jλ2(u−λ2
). Since u−λ2

solves −∆u = λ2u+u2∗−1 in the annulus Arλ2
, in

particular it belongs to the Nehari manifold Nλ2 associated to this equation, (see (2.4.3)).
Hence we deduce that Jλ2(u−λ2

) = 1
6 |u
−
λ2
|2∗2∗,Arλ2

. To complete the proof it will suffice to

show that
|u−λ2
|2∗2∗,Arλ2

→ |u−λ0
|2∗2∗,B1

,

where u0 is the unique solution of (2.4.15). In fact, thanks to Theorem 2.4.7 we know
that, up to a subsequence, (u−λ2

) converges in C2
loc(B1 − {0}) to the unique solution u0

of (2.4.15). Hence to prove our assertion it suffices to apply Lebesgue’s theorem, which
clearly holds since (u−λ2

) is uniformly bounded as γ → +∞.

Now since Jλ2(u−λ2
) → Jλ0(uλ0) and Jλ0(uλ0) < 1

6S
3 we deduce the desired relation.

2.5 Asymptotic analysis of the negative part in dimension
N = 3, 4, 5

Here we prove:

Theorem 2.5.1. Let N = 3, 4, 5 and let (uλ) be any family of radial sign-changing
solutions of (2.1.1) with exactly two nodal regions and such that uλ(0) > 0 for all λ.
Assume that there exists λ̄ ∈ R+ such that Mλ,+ →∞, as λ→ λ̄. Then:
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(i): Mλ,− → 0, as λ→ λ̄;

(ii): (u−λ ) converges to zero uniformly in B1, as λ→ λ̄.

Proof. We start by proving (i). Let (uλ) be such a family of solutions. Thanks to the
transformation (2.2.2) we have

uλ(r(t)) = λ
1

2∗−2 y(t; γ), (2.5.1)

for t ∈
((

N−2√
λ

)N−2
,+∞

)
, where γ = λ−

1
2∗−2Mλ,+ and y = y(t; γ) solves (2.2.4). Clearly,

as λ→ λ̄, we have γ → +∞. As in the proof of Proposition 2.4.2 we have that the global
minimum point sλ corresponds, through the transformation (2.2.2), to the number t0(γ)
defined in (2.4.1).

Hence, thanks to Lemma 2.2.2, it holds

|y(t0(γ); γ)| < |y′(T1(γ))| (T1(γ)− t0(γ)). (2.5.2)

For N = 3, which corresponds to k = 4, by Lemma 2.2.3 we have that T1(γ) is uniformly
bounded for all sufficiently large γ, while, by Lemma 2.2.4 it holds y′(T1(γ)) = (k −
1)

1
k−2γ−1(1 + o(1)). Thus, since 0 < t0(γ) < T1(γ), from (2.5.2), (2.5.1) we get that

Mλ,− = λ
1

2∗−2 y(t0; γ)→ 0 as λ→ λ̄.
For N = 4, which corresponds to k = 3, by Lemma 2.2.3 we have that T1(γ) =

2 log(γ)(1+o(1)) for all sufficiently large γ, and hence as in the previous case, we get that

Mλ,− = λ
1

2∗−2 y(t0; γ) → 0 as λ → λ̄. The same happens for N = 5 (k = 8/3); in fact
by Lemma 2.2.3 we have that T1(γ) = Aγ2/3(1 + o(1)) for all sufficiently large γ, where
A = A(k) is a positive constant depending only on k (see Lemma 2.2.3 for its definition).
The proof of (i) is complete.

Now we prove (ii). We recall that u−λ is nonzero in the annulus Arλ(0) = {x ∈
RN ; rλ < |x| < 1} and vanishes outside. Thanks to (i), we have ‖u−λ ‖∞,B1 = Mλ,− → 0
as λ→ λ̄ and we are done.
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Chapter 3

Sign-changing tower of bubbles for
the Brezis-Nirenberg problem

3.1 Introduction

Here we present and prove the result (R3).

In this chapter we are interested in the construction of solutions to the following problem{
−∆u = εu+ |u|p−1u in Ω
u = 0, on ∂Ω

(3.1.1)

where Ω is a bounded smooth domain of RN with N ≥ 7, ε is supposed to be small and
positive while p + 1 = 2N

N−2 is the critical Sobolev exponent for the embedding of H1
0 (Ω)

into Lp+1(Ω).

The pioneering paper on equation (3.1.1) was written by Brezis and Nirenberg [17] in
1983 where the authors showed that for N ≥ 4 and ε ∈ (0, λ1), the problem (3.1.1) has
at least one positive solution where λ1 denotes the first eigenvalue of −∆ on Ω.
In the case N = 3, a similar result was proved in [17] but only for ε ∈ (λ∗, λ1) with
λ∗ = λ∗(Ω) > 0. Moreover by using a version of the Pohozaev Identity the authors showed
that λ∗(Ω) = 1

4λ1 if Ω is a ball and that no positive solutions exist for ε ∈ (0, 1
4λ1).

Note that, by using again Pohozaev Identity, it is easy to check that problem (3.1.1) has
no nontrivial solutions when ε ≤ 0 and Ω is star-shaped.
Since then, there has been a considerable number of papers on problem (3.1.1).
We briefly recall some of the main ones.
Han, in [36], proved that the solution found by Brezis and Nirenberg blows-up at a critical
point of the Robin’s function as ε goes to zero. Conversely, Rey in [52] and in [51] proved
that any C1-stable critical point of the Robin’s function generates a family of positive
solutions which blows-up at this point as ε goes to zero.
After the work of Brezis and Nirenberg, Capozzi, Fortunato and Palmieri [20] showed that
for N = 4, ε > 0 and ε 6∈ σ(−∆) (the spectrum of −∆) problem (3.1.1) has a nontrivial
solution. The same holds if N ≥ 5 for all ε > 0 (see also [35]).

The first multiplicity result was obtained by Cerami, Fortunato and Struwe in [23], in
which they proved that the number of nontrivial solutions of (3.1.1), for N ≥ 3, is
bounded below by the number of eigenvalues of (−∆,Ω) belonging to (ε, ε + S|Ω|−2/N ),

51
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where S is the best constant for the Sobolev embedding D1,2(RN ) into Lp+1(RN ) and |Ω|
is the Lebesgue measure of Ω.
Moreover, if N ≥ 4, then for any ε > 0 and for a suitable class of symmetric domain Ω,
problem (3.1.1) has infinitely many solutions of arbitrarily large energy (see Fortunato
and Jannelli [31]).
If N ≥ 7 and Ω is a ball, then for each ε > 0, problem (3.1.1) has infinitely many sign-
changing radial solutions (see Solimini [55]).
In the papers [31, 55], the radial symmetry of the domain plays an essential role, therefore
their methods do not work for general domains.
Concerning sign-changing solutions, Cerami, Solimini and Struwe showed in [25] that if
N ≥ 6 and ε ∈ (0, λ1), problem (3.1.1) has a pair of least energy sign-changing solution.
In the same paper the authors studied the multiplicity of nodal solutions proving the
existence of infinitely many radial solutions when Ω is a ball centered at the origin.
On the other side, for 3 ≤ N ≤ 6 and when Ω is a ball, it can be proved that there is a
λ∗ > 0 such that (3.1.1) has no sign-changing radial solutions for ε ∈ (0, λ∗) (see Atkinson,
Brezis and Peletier [5]).
Moreover, Devillanova and Solimini in [28] showed that, if N ≥ 7 and Ω is an open regular
subset of RN , problem (3.1.1) has infinitely many solutions for each ε > 0.
For low dimensions, namely N = 4, 5, 6 and in an open regular subset of RN , in [29],
Devillanova and Solimini proved the existence of at least N+1 pairs of solutions provided
ε is small enough. In [24], Clapp and Weth extended this last result to all ε > 0.
Neither in [28, 29] nor in [24] there is information on the kind of sign-changing solutions
obtained.
Recently, in [54], Schechter and Wenming Zou showed that in any bounded and smooth
domain, for N ≥ 7 and for each fixed ε > 0, problem (3.1.1) has infinitely many sign
changing solutions.

Concerning the profile of sign-changing solutions some results have been obtained in

[14], [13] for low energy solutions, namely solutions uε such that

∫
Ω
|∇uε|2 dx→ 2S

N
2 , as

ε → 0, S being the Sobolev constant for the embedding of H1
0 (Ω) into Lp+1(Ω). More

precisely in [14] it is proved that for N = 3 these solutions concentrate and blow-up in two
different points of Ω, as ε → 0, and have the asymptotic profile of two separate bubbles.
A similar result is proved in [13] for N ≥ 4 but assuming that the blow-up rate of the
positive and negative part of uε is the same.
Existence of nodal solutions with two nodal regions concentrating in two different points
of the domain Ω as ε → 0 has been obtained in [21], [45] and [12]. So none of these
solutions look like tower of bubbles, i.e. superposition of two bubbles with opposite sign
concentrating at the same point, as ε → 0. Such a type of solutions is shown to exist
for other semilinear problems like the almost critical Lane-Emden problem (see [13], [49],
[48]) but not, to our knowledge, for the Brezis-Nirenberg problem with the exception of
the case of the ball. If Ω is a ball, and N ≥ 7, in a recent paper [37] the asymptotic
behaviour as ε → 0 of the least energy nodal radial solution vε is analysed and among
other things, it is shown that the positive and negative part of vε concentrate at the ori-
gin. Moreover they have the asymptotic profile of a positive and negative solution of the
critical problem in RN and the concentration speeds are different.
Hence [37] provides the first example of bubble of towers for the Brezis-Nirenberg prob-
lem.
Then the natural question is whether these kind of solutions exist in bounded domains
other than the ball.
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In this chapter we answer positively this question constructing a sign-changing solution
of (3.1.1) in any bounded domain symmetric with respect to N orthogonal hyperplanes.

We next state our result.

Theorem 3.1.1. Let N ≥ 7 and let Ω be a smooth bounded domain in RN such that Ω
is symmetric with respect to x1, . . . , xN and 0 ∈ Ω. There exists ε0 > 0 such that for any
ε ∈ (0, ε0) there exist positive numbers djε, j = 1, 2 and a solution uε of problem (3.1.1)
of the form

uε(x) = αN

( d1εε
1

N−4

d2
1εε

2
N−4 + |x|2

)N−2
2

−

(
d2εε

3N−10
(N−4)(N−6)

d2
2εε

2 3N−10
(N−4)(N−6) + |x|2

)N−2
2

+ Φε, (3.1.2)

where αN := [N(N − 2)]
N−2

4 , djε → d̄j > 0, as ε → 0, Φε → 0 in H1(Ω), as ε → 0.
Moreover uε is even with respect to the variables x1, . . . , xN .

We remark that the assumption N ≥ 7 in our proof is crucial. We believe that it is
possible to extend our result to a general domain Ω with some suitable modifications.

In the case the remainder term converges to zero also in L∞loc(Ω), then, the asymptotic
expansion and some energy estimates derived in the course of the proof allow to draw
interesting consequences concerning the number and shape of the nodal domains of the
solution uε.

Theorem 3.1.2. Let N ≥ 7 and assume that the remainder term Φε, appearing in Theo-
rem 3.1.1, is such that Φε → 0 uniformly in compact subsets of Ω. Then, there exists ε0 >
0 such that for any ε ∈ (0, ε0), the solution uε constructed in Theorem 3.1.1 has precisely

two nodal domains Ω1
ε , Ω2

ε such that Ω1
ε contains the sphere S1

ε :=
{
x ∈ RN ; |x| = ε

1
N−4

}
,

Ω2
ε contains the sphere S2

ε :=
{
x ∈ RN ; |x| = ε

3N−10
(N−4)(N−6)

}
and uε > 0 on Ω1

ε and uε < 0

on Ω2
ε .

Consequently, 0 ∈ Ω2
ε and Ω1

ε is the only nodal domain of uε which touches ∂Ω.

Remark 3.1.3. Under the assumptions of Theorem 3.1.2 it follows that the sign-changing
tower of bubble uε constructed in Theorem 3.1.1 has two nodal domains and its nodal set
does not touch ∂Ω. By this we mean that, denoting by

Zε := {x ∈ Ω ; uε(x) = 0}

the nodal set of uε then Zε ∩ ∂Ω = ∅.

The proof of Theorem 3.1.1 is based on the Lyapunov-Schmidt reduction.
To describe the procedure and explain the difficulties which arise when looking for bubble
towers of the Brezis-Nirenberg problem, we introduce the functions

Uδ(x) = αN
δ
N−2

2

(δ2 + |x|2)
N−2

2

, δ > 0 (3.1.3)

with αN := [N(N − 2)]
N−2

4 . Is is well known (see [9], [19], [59]) that (3.1.3) are the
only radial solutions of the equation

−∆u = up in RN . (3.1.4)
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We define ϕδ to be the unique solution to the problem{
∆ϕδ = 0 in Ω
ϕδ = Uδ on ∂Ω,

(3.1.5)

and let

PUδ := Uδ − ϕδ (3.1.6)

be the projection of Uδ onto H1
0 (Ω), i.e.{
−∆PUδ = Upδ in Ω
PUδ = 0 on ∂Ω.

(3.1.7)

Finally, let G(x, y) be the Green’s function associated to −∆ with Dirichlet boundary
conditions and H(x, y) be its regular part, namely

H(x, y) =
1

|x− y|N−2
− 1

γN
G(x, y), ∀ x, y ∈ Ω, with γN =

1

N(N − 2)ωN
,

where ωN is the volume of the unit ball in RN .
The function τ(x) := H(x, x), x ∈ Ω is called Robin’s function.

It is well-known that the following expansions holds (see [51])

ϕδ(x) = αNδ
N−2

2 H(0, x) +O(δ
N+2

2 ) as δ → 0. (3.1.8)

Moreover, from elliptic estimates it follows that

0 < ϕδ(x) < cδ
N−2

2 , in Ω, (3.1.9)

|ϕδ|q,Ω ≤ Cδ
N−2

2 , q ∈
(
p+ 1

2
, p+ 1

]
(3.1.10)

and

|∇ϕδ|2,Ω ≤ C1δ
N−2

2 (3.1.11)

see for instance [51], [62] and references therein.

We look for an approximate solution to problem (3.1.1) which is a superposition of two
standard bubbles with two different scaling parameters, namely we take δ1 > δ2 and we
look for a solution to (3.1.1) of the form

uε(x) = PUδ1 − PUδ2 + Φε(x) (3.1.12)

where the remainder term Φε is a small function which is even with respect to the vari-
ables x1, . . . , xN .

The Lyapunov-Schmidt reduction allows us to reduce the problem of finding blowing-up
solutions to (3.1.1) to the problem of finding critical points of a functional (the reduced
energy) which depends only on the concentration parameters.
As announced before in our case some difficulties arise which need some modification of
the standard procedure to be overcome.
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Indeed, first we remark that the solutions of problem (3.1.1) are the critical points of the
functional Jε : H1

0 (Ω)→ R defined as

Jε(u) =
1

2

∫
Ω
|∇u|2 dx− 1

p+ 1

∫
Ω
|u|p+1 dx− ε

2

∫
Ω
u2 dx, u ∈ H1

0 (Ω). (3.1.13)

If we apply directly the reduction method looking for a solution of the form (3.1.12) we
get that the remainder term is such that

‖Φε‖ = O
(
ε
N−2
N−4

+σ
)

σ > 0

where ‖ · ‖ denotes the H1
0 (Ω)-norm, and that the reduced energy

Reduced Energy ∼ Jε(PUδ1 −PUδ2) = C +C1τ(0)δN−2
1 −C2εδ

2
1 +C3

(
δ2

δ1

)N−2
2

+H.O.T.

where C,Ci are some known positive constants.
Since δ1, δ2 are proper power of ε of the form δj = εγjdj , dj > 0 , after some easy
computations, in order to find a critical point of the reduced energy, we get that

Reduced Energy ∼ C + ε
N−2
N−4

[
C1τ(0)dN−2

1 − C2d
2
1 + C3

(
d2

d1

)N−2
2

]
+ o(ε

N−2
N−4 )

with

γ1 :=
1

N − 4
; γ2 :=

3

N − 4
.

However the function

Ψ(d1, d2) = C1τ(0)dN−2
1 − C2d

2
1 + C3

(
d2

d1

)N−2
2

has a critical point in d1 but not in d2 and hence in this way we cannot find a solution of
our problem.

Hence we use a new idea. We split the remainder term Φε in two parts:

Φε(x) = φ1,ε(x) + φ2,ε(x)

such that
‖φ2,ε‖ = o(‖φ1,ε‖), as ε→ 0.

Usually, the remainder term Φε, solution of the auxiliary equation, is found with a
fixed point argument. Here we have to use the Contraction Mapping Theorem twice,
since we split the auxiliary equation in a system of two equations. The first one depends
only on φ1 while the second one depends on both φ1, φ2. So we solve the first equation
in φ1 and then the second one finding φ2. Then we obtain the remainder term Φε which
consists of two terms of different orders. Then we study the finite-dimensional problem,
namely the reduced energy that consists of two functions of different orders. The lower
term depends only on d1 while the term of higher order depends on d1, d2. At the end we
look for a critical point of this new type of reduced energy. We believe that our strategy
can be used also in other contexts.

The outline of the chapter is the following: in Section 3.2 we explain the setting of
the problem. In Section 3.3 we look for the remainder term Φε in a suitable space. In
Section 3.4 we study the reduced energy and finally Theorem 3.1.1 and Theorem 3.1.2 are
proved in Section 3.5.
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3.2 Setting of the problem

In what follows we let

(u, v) :=

∫
Ω
∇u · ∇v dx, ‖u‖ :=

(∫
Ω
|∇u|2 dx

) 1
2

as the inner product in H1
0 (Ω) and its corresponding norm while we denote by (·, ·)H1(RN )

and by ‖ · ‖1,2,RN the scalar product and the standard norm in H1(RN ). Moreover we
denote by

|u|r :=

(∫
Ω
|u|r dx

) 1
r

the Lr(Ω)-standard norm for any r ∈ [1,+∞). When A 6= Ω is any Lebesgue measurable
subset of RN , or, when A = Ω and we need to specify the domain of integration, we will
use the alternative notations ‖u‖A, |u|r,A.

From now on we assume that Ω is a bounded open set with smooth boundary of RN ,
symmetric with respect to x1, . . . , xN and which contains the origin. Moreover we assume
that N ≥ 7.

We define then

Hsim :=
{
u ∈ H1

0 (Ω) ; u is symmetric with respect to each variable xk, k = 1, . . . , N
}
,

and for q ∈ [1,+∞)

Lqsim := {u ∈ Lq(Ω) ; u is symmetric with respect to each variable xk, k = 1, . . . , N} .

Let i∗ : L
2N
N+2

sim → Hsim be the adjoint operator of the embedding i : Hsim(Ω) → L
2N
N−2

sim ,

namely if v ∈ L
2N
N+2

sim then u = i∗(v) in Hsim is the unique solution of the equation

−∆u = v in Ω u = 0 on ∂Ω.

By the continuity of i it follows that

‖i∗(v)‖ ≤ C|v| 2N
N+2

∀v ∈ L
2N
N+2

sim (3.2.1)

for some positive constant C which depends only on N .
Hence we can rewrite problem (3.1.1) in the following way{

u = i∗ [f(u) + εu]
u ∈ Hsim

(3.2.2)

where f(s) = |s|p−1s, p = N+2
N−2 .

We next describe the shape of the solution we are looking for.
Let δj = δj(ε), for j = 1, 2 be positive parameters defined as proper powers of ε, multiplied
by a suitable positive constant to be determined later, namely

δj = εαjdj with dj > 0 (3.2.3)
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and α1 := 1
N−4 ; α2 := 3N−10

(N−4)(N−6) .
Fixed a small η > 0 we impose that the parameters dj will satisfy

η < dj <
1

η
for j = 1, 2. (3.2.4)

Hence, it is immediate to see that

δ2

δ1
= ε

2(N−2)
(N−4)(N−6)

d2

d1
→ 0 as ε→ 0.

We construct solutions to problem (3.1.1), as predicted by Theorem 3.1.1, which are su-
perpositions of copies of the standard bubble defined in (3.1.3) with alternating signs,
properly modified (namely we consider the projection of the original bubble into H1

0 (Ω)),
centered at the origin which is the center of symmetry of Ω with parameters of concen-
trations δj . Such an object has the shape of a tower of two bubbles.

Hence the solution to problem (3.1.1) will be of the form

uε(x) = Vε(x) + Φε(x) (3.2.5)

where
Vε(x) := PUδ1(x)− PUδ2(x). (3.2.6)

The term Φε has to be thought as a remainder term of lower order, which has to be
described accurately.
Let Zj the following functions

Zj(x) := ∂δjUδj (x) = αN
N − 2

2
δ
N−4

2
j

|x|2 − δ2
j(

δ2
j + |x|2

)N
2

, j = 1, 2. (3.2.7)

We remark that the functions Zj solve the problem (see [16])

−∆z = p|Uδ|p−1z, in RN . (3.2.8)

Let PZj the projection of Zj onto H1
0 (Ω). Elliptic estimates give

PZj(x) = Zj(x)− αN
N − 2

2
δ
N−4

2
j H(0, x) +O(δ

N
2
j ), j = 1, 2, (3.2.9)

uniformly in Ω.

Let us consider

K1 := span {PZ1} ⊂ Hsim; K := span {PZj ; j = 1, 2} ⊂ Hsim

and

K⊥1 := {φ ∈ Hsim ; 〈φ,PZ1〉 = 0} ; K⊥ := {φ ∈ Hsim ; 〈φ,PZj〉 = 0, j = 1, 2} .

Let Π1 : Hsim → K1, Π : Hsim → K and Π⊥1 : Hsim → K⊥1 , Π⊥ : Hsim → K⊥ be the
projections onto K1, K and K⊥1 , K⊥, respectively.
In order to solve problem (3.1.1) we will solve the couple of equations

Π⊥ {Vε + Φε − i∗ [f(Vε + Φε) + ε(Vε + Φε)]} = 0 (3.2.10)
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Π {Vε + Φε − i∗ [f(Vε + Φε) + ε(Vε + Φε)]} = 0. (3.2.11)

For any (d1, d2) satisfying condition (3.2.4), we solve first the equation (3.2.10) in Φε ∈ K⊥
which is the lower order term in the description of the ansatz.

We start with solving the auxiliary equation (3.2.10). As anticipated in the introduc-
tion, we split the remainder term as

Φε = φ1,ε + φ2,ε

with

‖φ2,ε‖ = o(‖φ1,ε‖), as ε→ 0.

In order to find φ1,ε and φ2,ε we solve the following system of equations
R1 + L1(φ1) +N1(φ1) = 0,

R2 + L2(φ2) +N2(φ1, φ2) = 0,
(3.2.12)

where

R1 := Π⊥1 {PUδ1 − i∗ [f(PUδ1) + εPUδ1 ]} , (3.2.13)

R2 := Π⊥ {−PUδ2 − i∗ [f(Vε)− f(PUδ1)− εPUδ2 ]} , (3.2.14)

L1(φ1) := Π⊥1
{
φ1 − i∗

[
f ′(PU1)φ1 + εφ1

]}
, (3.2.15)

L2(φ2) := Π⊥
{
φ2 − i∗

[
f ′(Vε)φ2 + εφ2

]}
, (3.2.16)

N1(φ1) := Π⊥1 {−i∗[f(PUδ1 + φ1)− f(PUδ1)− f ′(PUδ1)φ1]}, (3.2.17)

and

N2(φ1, φ2) := Π⊥{−i∗[f(Vε + φ1 + φ2)− f(Vε)− f ′(Vε)φ2 − f(PUδ1 + φ1) + f(PUδ1)]}.
(3.2.18)

We remark that it is not restrictive to consider R1,L(φ1),N1(φ1) ∈ K⊥1 since only δ1

appears and it is clear that a solution of (3.2.12) gives a solution of (3.2.10).

Therefore we solve the first equation in (3.2.12) finding a solution φ̄1 = φ̄1(ε, d1)
and after that we solve the second equation in (3.2.12) (with φ1 = φ̄1) finding also
φ̄2 = φ̄2(ε, d1, d2).

Finally let us recall some useful inequality that we will use in the sequel. Since these
are known results, we omit the proof.

Lemma 3.2.1. Let α be a positive real number. If α ≤ 1 there holds

(x+ y)α ≤ xα + yα,

for all x, y > 0. If α ≥ 1 we have

(x+ y)α ≤ 2α−1(xα + yα),

for all x, y > 0.
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Lemma 3.2.2. Let q be a positive real number. There exists a positive constant c, de-
pending only on q, such that for any a, b ∈ R

||a+ b|q − |a|q| ≤

{
c(q) min{|b|q, |a|q−1|b|} if 0 < q < 1,

c(q)(|a|q−1|b|+ |b|q) if q ≥ 1.
(3.2.19)

Moreover if q > 2 then∣∣|a+ b|q − |a|q − q|a|q−2ab
∣∣ ≤ C (|a|q−2|b|2 + |b|q

)
. (3.2.20)

Lemma 3.2.3. Let N ≥ 7. There exists a positive constant c, depending only on p, such
that for any a, b ∈ R

|f(a+ b)− f(a)− f ′(a)b| ≤ c|b|p. (3.2.21)

Lemma 3.2.4. There exists a positive constant c, depending only on p, such that for any
a, b ∈ R

|f(a− b)− f(a) + f(b)| ≤ c(p)(|a|p−1|b|+ |b|p), (3.2.22)

or

|f(a− b)− f(a) + f(b)| ≤ c(p)(|b|p−1|a|+ |a|p). (3.2.23)

Lemma 3.2.5. Let N ≥ 7. There exists a positive constant c depending only on p such
that for any a, b1, b2 ∈ R we get∣∣f(a+ b1)− f(a+ b2)− f ′(a)(b1 − b2)

∣∣ ≤ C (|b1|p−1 + |b2|p−1
)
|b1 − b2|. (3.2.24)

3.3 The auxiliary equation: solution of the system (3.2.12)

We first define

θ1 :=
N − 2

N − 4
; θ2 :=

(N − 2)2

(N − 4)(N − 6)
. (3.3.1)

We observe that θ2 is well defined since N ≥ 7. We also remark that having defined δj as
in (3.2.3), j = 1, 2, the functions Uδj depend on the parameters dj , j = 1, 2.

In this section we solve system (3.2.12). More precisely, the aim is to prove the
following result.

Proposition 3.3.1. Let N ≥ 7. For any η > 0, there exist ε0 > 0 and c > 0 such
that for all ε ∈ (0, ε0), for all (d1, d2) ∈ R2

+ satisfying (3.2.4), there exists a unique
φ̄1 = φ̄1(ε, d1) ∈ K⊥1 solution of the first equation of (3.2.12) such that

‖φ̄1‖ ≤ cε
θ1
2

+σ

and there exists a unique solution φ̄2 = φ̄2(ε, d1, d2) ∈ K⊥ of the second equation of
(3.2.12) (with φ1 = φ̄1) such that

‖φ̄2‖ ≤ c ε
θ2
2

+σ,

for some positive real number σ whose choice depends only on N . Furthermore, φ̄1 does
not depend on d2 and it is continuously differentiable with respect to d1, φ̄2 is continuously
differentiable with respect to (d1, d2).
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In order to prove Proposition 3.3.1 let us first consider the linear operator

L1 : K⊥1 → K⊥1
defined as in (3.2.15).
The next result provides an a-priori estimate for solutions φ ∈ K⊥1 of L1(φ) = h, for some
right-hand side h with bounded ‖ · ‖− norm.

Lemma 3.3.2. Let N ≥ 7. For any η > 0, there exists ε0 > 0 and c > 0 such that for all
d1 ∈ R+ satisfying (3.2.4) for j = 1, for all φ ∈ K⊥1 and for all ε ∈ (0, ε0) it holds

‖L1(φ)‖ ≥ c‖φ‖.

Proof. For the proof it suffices to repeat with small changes the proof of Lemma 3.1 of
[48].

Next result states the invertibility of the operator L1 and provides a uniform estimate
on the inverse of the operator L1.

Proposition 3.3.3. Let N ≥ 7. For any η > 0, there exists ε0 > 0 and c > 0 such that
the linear operator L1 is invertible and ‖L−1

1 ‖ ≤ c for all ε ∈ (0, ε0), for all d1 ∈ R+

satisfying (3.2.4) for j = 1.

Proof. For the proof it suffices to repeat with small changes the proof of Proposition 3.2
of [48].

For the linear operator L2 we state analogous results.

Lemma 3.3.4. Let N ≥ 7. For any η > 0, there exists ε0 > 0 and c > 0 such that for all
(d1, d2) ∈ R2

+ satisfying (3.2.4), for all φ ∈ K⊥ and for all ε ∈ (0, ε0) it holds

‖L2(φ)‖ ≥ c‖φ‖.

Proof. For the proof see Lemma 3.1 of [48].

Proposition 3.3.5. Let N ≥ 7. For any η > 0, there exists ε0 > 0 and c > 0 such that
the linear operator L2 is invertible and ‖L−1

2 ‖ ≤ c for all ε ∈ (0, ε0), for all (d1, d2) ∈ R2
+

satisfying (3.2.4).

Proof. For the proof see Proposition 3.2 of [48].

The strategy is to solve the first equation of (3.2.12) by a fixed point argument, finding
a unique φ̄1 and then, substituting φ̄1 in the second equation of (3.2.12), we obtain an
equation depending only on the variable φ2. Hence, using again a fixed point argument,
we solve the second equation of (3.2.12) uniquely.

3.3.1 The solution of the first equation of (3.2.12)

The aim is to prove the following proposition.

Proposition 3.3.6. Let N ≥ 7. For any η > 0, there exists ε0 > 0 and c > 0 such that for
all ε ∈ (0, ε0), for all d1 ∈ R+ satisfying condition (3.2.4) for j = 1, there exists a unique
solution φ̄1 = φ̄1(ε, d1), φ̄1 ∈ K⊥1 of the first equation in (3.2.12) which is continuously
differentiable with respect to d1 and such that

‖φ̄1‖ ≤ cε
θ1
2

+σ, (3.3.2)

where θ1 is defined in (3.3.1) and σ is some positive real number whose choice depends
only on N .
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In order to prove Proposition 3.3.6 we have to estimate the error term R1 defined in
(3.2.13). It holds the following result.

Proposition 3.3.7. Let N ≥ 7. For any η > 0, there exists ε0 > 0 and c > 0 such that
for all ε ∈ (0, ε0), for all d1 ∈ R+ satisfying condition (3.2.4) for j = 1, we have

‖R1‖ ≤ c ε
θ1
2

+σ,

for some positive real number σ whose choice depends only on N .

Proof. By continuity of Π⊥1 , by using (3.2.1) and since PUδ1 weakly solves −∆PUδ1 = Upδ1
in Ω, it follows that

‖R1‖ = ‖Π⊥1 {PUδ1 − i∗ [f(PUδ1) + εPUδ1 ]} ‖ ≤ C1‖PUδ1 − i∗ [f(PUδ1) + εPUδ1 ] ‖
≤ C2 |f(Uδ1)− f(PUδ1)− εPUδ1 | 2N

N+2
≤ C |f(Uδ1)− f(PUδ1)| 2N

N+2︸ ︷︷ ︸
(I)

+ ε |PUδ1 | 2N
N+2︸ ︷︷ ︸

(II)

.

Let us fix η > 0. We estimate the terms (I), (II).

Claim 1:

(I) = O(ε
N+2

2(N−4) ). (3.3.3)

By using (3.1.9), (3.1.10) and by elementary inequalities we get∫
Ω
|(PUδ1)p − Upδ1 |

2N
N+2 dx ≤ c1

∫
Ω
|Up−1
δ1

ϕδ1 |
2N
N+2 dx+ c2

∫
Ω
|ϕδ1 |p+1 dx

≤ c3δ
N−2

2
2N
N+2

1

∫
Ω

(
δ2

1

(δ2
1 + |x|2)2

) 2N
N+2

dx+ c2|ϕδ1 |
p+1
p+1,Ω

= c3δ
N(N−2)
N+2

1

∫
Ω

(
δ2

1

(δ2
1 + |x|2)2

) 2N
N+2

dx+ c4δ
N
1 .

Now for N ≥ 7 we have ∫
Ω

(
δ2

1

(δ2
1 + |x|2)2

) 2N
N+2

dx = O

(
δ

4N
N+2

1

)
.

Indeed:∫
Ω

(
δ2

1

(δ2
1 + |x|2)2

) 2N
N+2

dx = δ
4N
N+2

1

∫
Ω

1

(δ2
1 + |x|2)

4N
N+2

dx ≤ δ
4N
N+2

1

∫
Ω

1

|x|
8N
N+2

dx,

and the last integral is finite since N > 6, which implies 8N
N+2 < N . Finally, since

4N2(N−2)
(N+2)2 > N , for any N > 4, we deduce that∫

Ω
|(PUδ1)p − Upδ1 |

2N
N+2 dx = O

(
δN1
)
,

and hence

|(PUδ1)p − Upδ1 | 2N
N+2

= O

(
δ
N+2

2
1

)
. (3.3.4)
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Since δ1 = d1ε
1

N−4 and d1 satisfies (3.2.4), we get that |(PUδ1)p − Upδ1 | 2N
N+2

= O
(
ε

N+2
2(N−4)

)
and Claim 1 is proved.

Claim 2:

(II) = O(ε
N−2
N−4 ). (3.3.5)

∫
Ω
PU

2N
N+2

δ1
dx ≤

∫
Ω
U

2N
N+2

δ1
dx = α

2N
N+2

N

∫
Ω

δ
−N(N−2)

N+2

1

(1 + | xδ1 |
2)

N(N−2)
N+2

dx

= α
2N
N+2

N δ
4N
N+2

1

∫
RN

1

(1 + |y|2)
N(N−2)
N+2

dy + o(δ
4N
N+2

1 ). (3.3.6)

Thus, since δ1 = d1ε
1

N−4 and d1 satisfies (3.2.4), we get that∫
Ω
PU

2N
N+2

δ1
dx = O

(
ε

4N
(N+2)(N−4)

)
,

and hence

ε

(∫
Ω
PU

2N
N+2

δ1
dx

)N+2
2N

= εO
(
ε

2
N−4

)
= O

(
ε
N−2
N−4

)
.

The proof of Claim 2 is complete.

Hence, by (3.3.3) and (3.3.5), we deduce that there exist a constant c = c(η) > 0 and
ε0 = ε0(η) > 0 sufficiently small such that, for all ε ∈ (0, ε0) and d1 ∈ R+ satisfying (3.2.4)
(with j = 1)

‖R1‖ ≤ c (ε
N+2

2(N−4) + ε
N−2
N−4 ) ≤ cε

θ1
2

+σ,

with σ such that 0 < σ < 2
N−4 .

We are ready to prove Proposition 3.3.6.

Proof of Proposition 3.3.6. Let us fix η > 0 and define T1 : K⊥1 → K⊥1 as

T1(φ1) := −L−1
1 [N1(φ1) +R1].

Clearly solving the first equation of (3.2.12) is equivalent to solving the fixed point equa-
tion T1(φ1) = φ1.
Let us define the ball

B1,ε := {φ1 ∈ K⊥1 ; ‖φ1‖ ≤ r ε
θ1
2

+σ} ⊂ K⊥1

with r > 0 sufficiently large and σ > 0.
We want to prove that, for ε small, T1 is a contraction in the proper ball B1,ε, namely we
want to prove that, for ε sufficiently small

1. T1(B1,ε) ⊂ B1,ε;

2. ‖T1‖ < 1.
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By Lemma 3.3.2 we get:

‖T1(φ1)‖ ≤ c(‖N1(φ1)‖+ ‖R1‖) (3.3.7)

and
‖T1(φ1)− T1(ψ1)‖ ≤ c(‖N1(φ1)−N1(ψ1)‖), (3.3.8)

for all φ1, ψ1 ∈ K⊥1 . Thanks to (3.2.1) and the definition of N1 we deduce that

‖N1(φ1)‖ ≤ c|f(PUδ1 + φ1)− f(PUδ1)− f ′(PUδ1)φ1| 2N
N+2

, (3.3.9)

and

‖N1(φ1)−N1(ψ1)‖ ≤ c|f(PUδ1 + φ1)− f(PUδ1 +ψ1)− f ′(PUδ1)(φ1 −ψ1)| 2N
N+2

. (3.3.10)

Now we estimate the right-hand term in (3.3.7). Thanks to Lemma 3.2.3 we have the
following inequality:

|f(PUδ1 + φ1)− f(PUδ1)− f ′(PUδ1)φ1| ≤ c|φ1|p. (3.3.11)

Since p 2N
N+2 = 2N

N−2 and |φp1| 2N
N+2

= |φ1|p2N
N−2

, from (3.3.11) and the Sobolev inequality we

deduce the following:

|f(PUδ1 + φ1)− f(PUδ1)− f ′(PUδ1)φ1| 2N
N+2
≤ c1|φ1|p2N

N−2

≤ c2‖φ1‖p. (3.3.12)

Thanks to (3.3.7), Proposition 3.3.7, (3.3.9), (3.3.12) and since p > 1, then, there exist
c = c(η) > 0 and ε0 = ε0(η) > 0 such that

‖φ1‖ ≤ cε
θ1
2

+σ ⇒ ‖T1(φ1)‖ ≤ cε
θ1
2

+σ,

for all ε ∈ (0, ε0), for all d1 ∈ R+ satisfying (3.2.4) (with j = 1), for some positive real
number σ, whose choice depends only on N . In other words T1 maps the ball B1,ε into
itself and (1) is proved.

We want to show that T1 is a contraction. By using Lemma 3.2.5 we get that for any
φ1, ψ1 ∈ B1,ε∣∣f(PUδ1 + φ1)− f(PUδ1 + ψ1)− f ′(PUδ1)(φ1 − ψ1)

∣∣ ≤ C (|φ1|p−1 + |ψ1|p−1
)
|φ1 − ψ1|.

By direct computation (p−1) 2N
N+2 = 8N

(N−2)(N+2) , so, since |φ1|(p−1) 2N
N+2 , |ψ1|(p−1) 2N

N+2 ∈

L
N+2

4 , |φ1 − ψ1|
2N
N+2 ∈ Lp and 1 = 4

N+2 + N−2
N+2 by Hölder inequality we get that

∣∣(|φ1|p−1 + |ψ1|p−1
)

(φ1 − ψ1)
∣∣

2N
N+2
≤

[(
|φ1|

4
N−2
2N
N−2

+ |ψ1|
4

N−2
2N
N−2

) 2N
N+2

(
|φ1 − ψ1|

2N
N−2
2N
N−2

)N−2
N+2

]N+2
2N

=

(
|φ1|

4
N−2
2N
N−2

+ |ψ1|
4

N−2
2N
N−2

)
|φ1 − ψ1| 2N

N−2
. (3.3.13)

Hence by (3.3.8), (3.3.10), (3.3.13) and Sobolev inequality we get that there exists
L ∈ (0, 1) such that

‖φ1‖ ≤ cε
θ1
2

+σ, ‖ψ1‖ ≤ cε
θ1
2

+σ ⇒ ‖T1(φ1)− T1(ψ1)‖ ≤ L‖φ1 − ψ1‖.

Hence by the Contraction Mapping Theorem we can uniquely solve T1(φ1) = φ1 inB1,ε.
We denote by φ̄1 ∈ B1,ε this solution. A standard argument shows that d1 → φ̄1(d1) is a
C1-map (as a map from R+ to H1

0 (Ω)) (see also [48], [3]). The proof is then concluded.
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3.3.2 The proof of Proposition 3.3.1

Before proving Proposition 3.3.1 we need some preliminary results, in particular we need
to improve the estimate on the solution φ̄1 of the first equation of (3.2.12) found in Propo-
sition 3.3.6.

The first preliminary result is an estimate on the error term R2 defined in (3.2.14).

Proposition 3.3.8. For any η > 0, there exists ε0 > 0 and c > 0 such that for all
ε ∈ (0, ε0), for all (d1, d2) ∈ R2

+ satisfying (3.2.4), we have

‖R2‖ ≤ c ε
θ2
2

+σ,

for some positive real number σ, whose choice depends only on N .

Proof. By continuity of Π⊥ and by using (3.2.1) we deduce that

‖R2‖ ≤ c|f(Uδ2) + f(PUδ1 − PUδ2)− f(PUδ1)− εPUδ2 | 2N
N+2

≤ c|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)| 2N
N+2︸ ︷︷ ︸

(I)

+ c|f(PUδ2)− f(Uδ2)| 2N
N+2︸ ︷︷ ︸

(II)

+ cε|PUδ2 | 2N
N+2︸ ︷︷ ︸

(III)

. (3.3.14)

Let us fix η > 0. We begin estimating (I). Let ρ > 0 so that B(0, ρ) ⊂ Ω. We decompose
the domain Ω as Ω = A0 tA1 tA2, where A0 := Ω \B(0, ρ), A1 := B(0, ρ) \B(0,

√
δ1δ2)

and A2 := B(0,
√
δ1δ2). We evaluate (I) in every set of this decomposition.

Thanks to Lemma 3.2.4 there exists a positive constant c (depending only on p) such
that

|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)| ≤ c(PUp−1
δ1
PUδ2 + PUpδ2). (3.3.15)

Integrating on A0 and using the usual elementary inequalities (see Lemma 3.2.1) we get
that∫
A0

|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)|
2N
N+2 dx

≤ C1

∫
A0

(PU
(p−1)( 2N

N+2
)

δ1
PU

2N
N+2

δ2
+ PUp+1

δ2
) dx

≤ C2

∫
A0

δ
4N
N+2

1

(δ2
1 + |x|2)

4N
N+2

δ
N(N−2)
N+2

2

(δ2
2 + |x|2)

N(N−2)
N+2

dx+ C3

∫
A0

δN2
(δ2

2 + |x|2)N
dx

≤ C4
δ

4N
N+2

1

ρ
8N
N+2

δ
N(N−2)
N+2

2

ρ2
N(N−2)
N+2

+ C5
δN2
ρ2N

(3.3.16)

and hence we deduce that (recall the choice of δ1, δ2 (see (3.2.3)))

|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)| 2N
N+2

,A0
≤ cε

3N2−12N−4
2(N−4)(N−6) ≤ cε

θ2
2

+σ (3.3.17)
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where c depends on η (and also on Ω, ρ, N), σ is some positive real number (to be precise

we can choose 0 < σ ≤ N2−4N−4
(N−4)(N−6)).

We evaluate now (I) in A1. By (3.3.15) and the usual elementary inequalities we
deduce the following:∫
A1

|f(PUδ1−PUδ2)−f(PUδ1)+f(PUδ2)|
2N
N+2 dx ≤ c

∫
A1

(PU
(p−1)( 2N

N+2
)

δ1
PU

2N
N+2

δ2
+PUp+1

δ2
) dx.

(3.3.18)
Let us estimate every term:∫

A1

PU
(p−1)( 2N

N+2
)

δ1
PU

2N
N+2

δ2
dx

≤
∫
A1

U
(p−1)( 2N

N+2
)

δ1
U

2N
N+2

δ2
dx

= αp+1
N

∫
A1

δ
4N
N+2

1

(δ2
1 + |x|2)

4N
N+2

δ
N(N−2)
N+2

2

(δ2
2 + |x|2)

N(N−2)
N+2

dx

= c1

∫ ρ

√
δ1δ2

δ
4N
N+2

1

(δ2
1 + r2)

4N
N+2

δ
N(N−2)
N+2

2

(δ2
2 + r2)

N(N−2)
N+2

rN−1dr

= c1

∫ ρ
δ2√
δ1
δ2

δ
4N
N+2

1

(δ2
1 + δ2

2s
2)

4N
N+2

δ
−N(N−2)

N+2

2

(1 + s2)
N(N−2)
N+2

δN2 s
N−1ds

= c1

∫ ρ
δ2√
δ1
δ2

δ
− 4N
N+2

1[
1 +

(
δ2
δ1

)2
s2

] 4N
N+2

δ
4N
N+2

2

(1 + s2)
N(N−2)
N+2

sN−1ds

≤ c1

(
δ2

δ1

) 4N
N+2

∫ ρ
δ2√
δ1
δ2

1

(1 + s2)
N(N−2)
N+2

sN−1ds

≤ c1

(
δ2

δ1

) 4N
N+2

∫ ρ
δ2√
δ1
δ2

1

s
N2−5N+2

N+2

ds = c2

(
δ2

δ1

) 4N
N+2

(δ2

δ1

)N2−6N
2(N+2)

−
(
δ2

ρ

)N2−6N
(N+2)


≤ c3

(
δ2

δ1

)N
2

.

(3.3.19)

Moreover∫
A1

PUp+1
δ2

dx ≤
∫
A1

Up+1
δ2

dx ≤ C1

∫ ρ
δ2√
δ1
δ2

rN−1

(1 + r2)N
dr ≤ C2

(
δ2

δ1

)N
2

. (3.3.20)

Thanks to the choice of δ1, δ2 we have(
δ2

δ1

)N
2

= O(ε
N(N−2)

(N−4)(N−6) ). (3.3.21)

Hence, from (3.3.18), (3.3.19), (3.3.20) and (3.3.21) we deduce that

|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)| 2N
N+2

,A1
≤ cε

(N−2)(N+2)
2(N−4)(N−6) ≤ cε

θ2
2

+σ, (3.3.22)

where c depends on η, σ is some positive real number (to be precise we can choose

0 < σ ≤ 2(N−2)
(N−4)(N−6)).
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Now we evaluate (I) in A2. To do this we apply (3.2.23) of Lemma 3.2.4, so there
exists a constant c > 0 such that

|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)| ≤ c(PUp−1
δ2
PUδ1 + PUpδ1). (3.3.23)

Thanks to (3.3.23) and the usual elementary inequalities we deduce the following:∫
A2

|f(PUδ1−PUδ2)−f(PUδ1)+f(PUδ2)|
2N
N+2 dx ≤ c

∫
A2

(PU
(p−1)( 2N

N+2
)

δ2
PU

2N
N+2

δ1
+PUp+1

δ1
) dx.

(3.3.24)
We estimate the first term∫

A2

PU
(p−1)( 2N

N+2
)

δ2
PU

2N
N+2

δ1
dx ≤

∫
A2

U
(p−1)( 2N

N+2
)

δ2
U

2N
N+2

δ1
dx

= αp+1
N

∫
A2

δ
4N
N+2

2

(δ2
2 + |x|2)

4N
N+2

δ
N(N−2)
N+2

1

(δ2
1 + |x|2)

N(N−2)
N+2

dx

= c1

∫ √
δ2
δ1

0

δ
4N
N+2

2

(δ2
2 + δ2

1s
2)

4N
N+2

δ
−N(N−2)

N+2

1

(1 + s2)
N(N−2)
N+2

δN1 s
N−1ds

= c1

∫ √
δ2
δ1

0

δ
4N
N+2

2[(
δ2
δ1

)2
+ s2

] 4N
N+2

δ
− 4N
N+2

1

(1 + s2)
N(N−2)
N+2

sN−1ds

≤ c1

(
δ2

δ1

) 4N
N+2

∫ √
δ2
δ1

0

1

s
8N
N+2 (1 + s2)

N(N−2)
N+2

sN−1ds

≤ c1

(
δ2

δ1

) 4N
N+2

∫ √
δ2
δ1

0

s
N2−7N−2

N+2

(1 + s2)
N(N−2)
N+2

ds

≤ c1

(
δ2

δ1

) 4N
N+2

∫ √
δ2
δ1

0
s
N2−7N−2

N+2 ds

= c2

(
δ2

δ1

) 4N
N+2

(
δ2

δ1

)N2−6N
2(N+2)

= c2

(
δ2

δ1

)N
2

.

(3.3.25)
By making similar computations as before we get that∫

A2

PUp+1
δ1

dx ≤ c3

(
δ2

δ1

)N
2

. (3.3.26)

So from (3.3.24) and (3.3.25) we deduce that

|f(PUδ1 − PUδ2)− f(PUδ1) + f(PUδ2)| 2N
N+2

,A2
≤ cε

(N+2)(N−2)
2(N−4)(N−6) ≤ cε

θ2
2

+σ, (3.3.27)

where c depends on η, σ is some positive real number (to be precise we can choose

0 < σ ≤ 2(N−2)
(N−4)(N−6)). Hence from (3.3.17), (3.3.22) and (3.3.27) we deduce that

(I) ≤ cε
θ2
2

+σ, (3.3.28)

for some positive constant c, for some positive real number σ depending only on N .
Now by making similar computations as for (I) of Proposition 3.3.7 (see (3.3.4)) we get
that

(II) = O

(
δ
N+2

2
2

)
,
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and hence we deduce that

(II) ≤ cε
(3N−10)(N+2)
2(N−4)(N−6) ≤ cε

θ2
2

+σ,

where c, 0 < σ ≤ N2−12
(N−4)(N−6) .

It remains to estimate (III).

From (3.3.6), exchanging δ1 with δ2 we get:∫
Ω
PU

2N
N+2

δ2
dx ≤ α

2N
N+2

N δ
4N
N+2

2

∫
RN

1

(1 + |y|2)
N(N−2)
N+2

dy.

Hence we deduce that (III) ≤ c εδ2
2 , and thanks to the choice δ2, by an elementary

computation, we get that:

(III) ≤ c ε
(N−2)2

(N−4)(N−6) ≤ cε
θ2
2

+σ,

where c, 0 < σ ≤ (N−2)2

2(N−4)(N−6) . Finally, putting together all these estimates we deduce

that there exist a positive constant c = c(η) > 0 and ε0 = ε0(η) > 0 such that for all
ε ∈ (0, ε0), for all (d1, d2) ∈ R2

+ satisfying (3.2.4)

‖R2‖ ≤ cε
θ2
2

+σ,

for some positive real number σ (whose choice depends only on N). The proof is complete.

Now we prove a technical result on the behavior of the L∞-norm of φ̄1, which will be
useful in the sequel.

Lemma 3.3.9. Let η be a small positive real number and let φ̄1 ∈ K⊥1 be the solution of
the first equation in (3.2.12), found in Proposition 3.3.6. Then, as ε→ 0+, we have

|φ̄1|∞ = o(ε
− N−2

2(N−4) ),

uniformly with respect to d1 satisfying (3.2.4) for j = 1.

Proof. Let us fix a small η > 0 and remember that δ1 = ε
1

N−4d1 (see (3.2.3)), with d1

satisfying (3.2.4) for j = 1. We observe that by definition, since φ̄1 ∈ K⊥1 solves the first
equation of (3.2.12), then, for all ε > 0 sufficiently small, there exists a constant cε (which
depends also on d1) such that φ̄1 weakly solves

−∆φ̄1 = εφ̄1 + εPUδ1 + f(PUδ1 + φ̄1)− f(Uδ1)− cε∆PZ1. (3.3.29)

Testing (3.3.29) with PZ1, taking into account that φ̄1 ∈ K⊥1 and the definition of PZ1,
we have that

cε

∫
Ω
pUp−1

δ1
PZ1Z1 dx = −ε

∫
Ω
φ̄1PZ1 dx− ε

∫
Ω
PUδ1PZ1 dx

−
∫

Ω
[f(PUδ1)− f(Uδ1)]PZ1 dx

−
∫

Ω

[
f(PUδ1 + φ̄1)− f(PUδ1)

]
PZ1 dx.

(3.3.30)
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By definition, if we set ψ := Z1 − PZ1, then ψ is an harmonic function and ψ = Z1

on ∂Ω, therefore, by elementary elliptic estimates, for all sufficiently small ε > 0, for

any d1 ∈]η, 1
η [ we have that |ψ|∞,Ω ≤ Cδ

N−4
2

1 , for some positive constant C = C(N,Ω)
depending only on N and Ω, and hence∫

Ω
pUp−1

δ1
PZ1Z1 dx =

∫
Ω
pUp−1

δ1
Z2

1 dx−
∫

Ω
pUp−1

δ1
ψZ1 dx.

Now ∫
Ω
pUp−1

δ1
Z2

1 dx = cNδ
N−4
1 δ2

1

∫
Ω

1

(δ2
1 + |x|2)2

(|x|2 − δ2
1)2

(δ2
1 + |x|2)N

dx

= cNδ
−2
1

∫
RN

(|y|2 − 1)2

(1 + |y|2)N+2
dy +O(δN−2

1 )

= ANδ
−2
1 + o(1), as ε→ 0.

By using the property |ψ|∞,Ω ≤ Cδ
N−4

2
1 , by the same computations, we see that∫

Ω
pUp−1

δ1
ψZ1 dx = O(δN−4

1 ), as ε→ 0.

Therefore, we get that∫
Ω
pUp−1

δ1
PZ1Z1 dx = ANδ

−2
1 + o(1), as ε→ 0. (3.3.31)

Moreover, reasoning as before, we have∫
Ω
Z2

1 dx = cNδ
N−4
1

∫
Ω

(|x|2 − δ2
1)2

(δ2
1 + |x|2)N

dx

= cN

∫
RN

(|y|2 − 1)2

(1 + |y|2)N
dy +O(δN−2

1 )

= BN + o(1), as ε→ 0,

and, by an analogous computation

|Z1| 2N
N−2
≤ cN

∫
Ω
δ
N(N−4)
N−2

1

||x|2 − δ2
1 |

2N
N−2

(δ2
1 + |x|2)

N2

N−2

dx

N−2
2N

≤ CNδ−1
1 ,

and hence, since PZ1 = Z1−ψ, by elementary estimates, we get that for all sufficiently
small ε > 0

|PZ1|22 ≤ 2BN , |PZ1| 2N
N−2
≤ 2CNδ

−1
1 . (3.3.32)

Thanks to (3.3.32), applying Hölder inequality, Poincaré inequality, taking into account of
(3.3.4), the asymptotic expansion of |PUδ1 |2 (see Lemma 3.4.6 and its proof), the choice
of δ1 (see (3.2.3)) and since φ̄1 ∈ B1,ε, we have the following inequalities

ε

∫
Ω
|φ̄1||PZ1| dx ≤ ε|φ̄1|2|PZ1|2 ≤ c1ε‖φ̄1‖|PZ1|2 ≤ c2ε

θ1
2

+1+σ
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ε

∫
Ω
PUδ1 |PZ1| dx ≤ ε|PUδ1 |2|PZ1|2 ≤ cεδ1,∫

Ω
|f(PUδ1)− f(Uδ1)||PZ1| dx ≤ |f(PUδ1)− f(Uδ1)| 2N

N+2
|PZ1| 2N

N−2
≤ cδ

N+2
2

1 δ−1
1 = cδ

N
2

1 .

Moreover, taking into account of Lemma 3.2.3 and Sobolev inequality, we get that∫
Ω
|f(PUδ1 + φ̄1)− f(PUδ1)||PZ1| dx

≤ |f(PUδ1 + φ̄1)− f(PUδ1)| 2N
N+2
|PZ1| 2N

N−2

≤ |f(PUδ1 + φ̄1)− f(PUδ1)− f ′(PUδ1)φ̄1| 2N
N+2
|PZ1| 2N

N−2
+ |f ′(PUδ1)φ̄1| 2N

N+2
|PZ1| 2N

N−2

≤ c
∣∣|φ̄1|p

∣∣
2N
N+2
|PZ1| 2N

N−2
+ |f ′(PUδ1)φ̄1| 2N

N+2
|PZ1| 2N

N−2

≤ c1

(
|φ̄1|

N+2
N−2
2N
N−2

|PZ1| 2N
N−2

+ |PUδ1 |
4

N−2
2N
N−2

|φ̄1| 2N
N−2
|PZ1| 2N

N−2

)

≤ c2

(
‖φ̄1‖

N+2
N−2 |PZ1| 2N

N−2
+ |PUδ1 |

4
N−2
2N
N−2

‖φ̄1‖|PZ1| 2N
N−2

)
≤ c3ε

θ1
2

+σδ−1
1 = c4ε

N−2
2(N−4)

+σ− 1
N−4 ≤ c4ε

1
2 .

Thus, from (3.3.30), (3.3.31) and the previous estimates, we get that for all sufficiently
small ε > 0

|cε| ≤
1

Aδ−2
1 + o(1)

[∣∣∣∣ε∫
Ω
φ̄1PZ1 dx

∣∣∣∣+

∣∣∣∣ε∫
Ω
PUδ1PZ1 dx

∣∣∣∣
+

∣∣∣∣∫
Ω

[f(PUδ1)− f(Uδ1)]PZ1 dx

∣∣∣∣+

∣∣∣∣∫
Ω

[
f(PUδ1 + φ̄1)− f(PUδ1)

]
dx

∣∣∣∣]
≤ cε

2
N−4

+ 1
2 ,

(3.3.33)
uniformly with respect to d1 satisfying η < d1 <

1
η .

We observe that φ̄1 is a classical solution of (3.3.29). This comes from the fact that
φ̄1 ∈ H1

0 (Ω) weakly solves (3.3.29), taking into account the smoothness of PUδ1 , Uδ1 , PZ1,
from standard elliptic regularity theory and the application of a well-known lemma by
Brezis and Kato.

We consider the quantity supd1∈]η, 1
η

[

(
|φ̄1|∞
|Uδ1 |∞

)
, which is defined for all ε ∈ (0, ε0), where

ε0 > 0 is given by Proposition 3.3.6. We want to prove that

lim
ε→0+

sup
d1∈]η, 1

η
[

(
|φ̄1|∞
|Uδ1 |∞

)
= 0. (3.3.34)

It is clear that (3.3.34) implies the thesis. In fact, we recall that, thanks to the definition
(3.1.3) and the choice of δ1 (see (3.2.3)), for any d1 ∈]η, 1

η [ we have

αNη
N−2

2 ε
− N−2

2(N−4) < |Uδ1 |∞ < αNη
−N−2

2 ε
− N−2

2(N−4) .
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Hence, by this estimate and (3.3.34), we get that

0 ≤ sup
d1∈]η, 1

η
[

|φ̄1|∞
ε
− N−2

2(N−4)

= sup
d1∈]η, 1

η
[

(
|φ̄1|∞
|Uδ1 |∞

· |Uδ1 |∞
ε
− N−2

2(N−4)

)
≤ sup

d1∈]η, 1
η

[

(
|φ̄1|∞
|Uδ1 |∞

)
αNη

−N−2
2 → 0,

as ε→ 0+, and we are done.

In order to prove (3.3.34) we argue by contradiction. Assume that (3.3.34) is false.
Then, there exists a positive number τ ∈ R+, a sequence (εk)k ⊂ R+, εk → 0 as k → +∞,
such that

sup
d1∈]η, 1

η
[

(
|φ̄1,k|∞
|Uδ1,k |∞

)
> τ, (3.3.35)

for any k ∈ N, where, φ̄1,k := φ̄1(εk, d1) ∈ B1,εk and δ1,k := ε
1

N−4

k d1. We observe that

(3.3.35) contemplates the possibility that supd1∈]η, 1
η

[

(
|φ̄1,k|∞
|Uδ1,k |∞

)
= +∞. From (3.3.35),

for any k ∈ N, thanks to the definition of sup, we get that there exists d1,k ∈]η, 1
η [ such

that (
|φ̄1,k|∞
|Uδ1,k |∞

)
(d1,k) >

τ

2
.

Hence, if we consider the sequence

(
|φ̄1,k|∞
|Uδ1,k |∞

(d1,k)

)
k

, then, up to a subsequence, as k →

+∞, there are only two possibilities:

(a)
|φ̄1,k|∞
|Uδ1,k |∞

(d1,k)→ +∞;

(b)
|φ̄1,k|∞
|Uδ1,k |∞

(d1,k)→ l, for some l ≥ τ
2 > 0.

We will show that (a) and (b) cannot happen.

Assume (a). We point out that, since η > 0 is fixed, then, d1,k ∈]η, 1
η [ for all k, in

particular this sequence stays definitely away from 0 and from +∞. Hence, in order to
simplify the notation of this proof, we omit the dependence from d1,k in φ̄1,k(d1,k) and in

δ1,k(d1,k) = ε
1

N−4

k d1,k and thus we simply write φ̄1,k, δ1,k. In particular, we observe that,
for any fixed k, φ̄1,k is a function depending only on the space variable x ∈ Ω.

Then, for any k ∈ N, let ak ∈ Ω such that |φ̄1,k(ak)| = |φ̄1,k|∞ and set Mk := |φ̄1,k|∞.

Thanks to the assumption (a), since |Uδ1,k |∞ = αNδ
−N−2

2
1,k = αN ε

− N−2
2(N−4)

k d
−N−2

2
1,k , we get

that Mk → +∞, as k → +∞. We consider the rescaled function

φ̃1,k(y) :=
1

Mk
φ̄1,k

(
ak +

y

Mβ
k

)
, β =

2

N − 2

defined for y ∈ Ω̃k := M
2

N−2

k (Ω− ak). Moreover let us set

P̃U1,k(y) :=
1

Mk
PUδ1,k

(
ak +

y

Mβ
k

)
; Ũ1,k(y) :=

1

Mk
Uδ1,k

(
ak +

y

Mβ
k

)
;
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P̂Z1,k(y) :=
1

M2β+1
k

PZ1,k

(
ak +

y

Mβ
k

)
.

Since we are assuming (a) it is clear that |P̃U1,k|∞,Ω̃k , |Ũ1,k|∞,Ω̃k → 0, as k → +∞.

Moreover, thanks to the definition of Z1, and since PZ1 = Z1−ψ, with |ψ|∞,Ω ≤ Cδ
N−4

2
1 ,

we have that |PZ1,k|∞ ' |Z1,k|∞ ' δ
−N

2
1,k , and hence, thanks to (a), we have 1

M2β+1
k

=

o(δ
N+2

2
1,k ), which implies that |P̂Z1,k|∞,Ω̃k → 0, as k → +∞. In particular, thanks to

(3.3.33), the same conclusion holds for cεk(d1,k)P̂Z1,k. Taking into account that 2β+1 = p,

by elementary computations, we see that φ̃1,k solves


−∆φ̃1,k = εk

M2β
k

φ̃1,k + εk
P̃Uδ1,k
M2β
k

+ f(P̃Uδ1,k + φ̃1,k)− f(Ũδ1,k) + cεk(d1,k)P̂Z1,k in Ω̃k,

φ̃1,k = 0 on ∂Ω̃k.
(3.3.36)

Let us denote by Π the limit domain of Ω̃k. Since Mk → +∞, as k → +∞, we have
that Π is the whole RN or an half-space. Moreover, since the family (φ̃1,k)k is uniformly
bounded and solves (3.3.36), then, by the same proof of Lemma 2.2 of [13], we get that
0 ∈ Π (in particular 0 /∈ ∂Π), and, by standard elliptic theory, it follows that, up to a
subsequence, as k → +∞, we have that φ̃1,k converges in C2

loc(Π) to a function w which
satisfies

−∆w = f(w) in Π, w(0) = 1 (or w(0) = −1), |w| ≤ 1 in Π, w = 0 on ∂Π. (3.3.37)

We observe that, thanks to the definition of the chosen rescaling, by elementary com-

putations (see Lemma 1.4.1), it holds ‖φ̃1,k‖2Ω̃ε = ‖φ̄1,k‖2Ω. Now, since ‖φ̄1,k‖ ≤ cε
θ1
2

+σ

k ,

where c depends only on η and σ is some positive number (see Proposition 3.3.6), we
have ‖φ̃1,k‖2Ω̃k = ‖φ̄1,k‖2Ω → 0, as k → +∞. Hence, since φ̃1,k → w in C2

loc(Π), by Fatou’s

lemma, it follows that

‖w‖2Π ≤ lim inf
k→+∞

‖φ̃1,k‖2Ω̃k = 0. (3.3.38)

Therefore, since ‖w‖2Π = 0 and w is smooth, it follows that w is constant, and from
w(0) = 1 (or w(0) = −1) we get that w ≡ 1 (or w ≡ −1) in Π. But, since w is constant
and solves −∆w = f(w) in Π, then necessarily f(w) ≡ 0 in Π, and hence w must be the
null function, but this contradicts w ≡ 1 (or w ≡ −1).

Alternatively, if Π is an half-space, by using the boundary condition w = 0 on ∂Π, we
contradicts w ≡ 1 (or w ≡ −1). Hence, the only possibility is Π = RN . In this case, since
w solves (3.3.37) and ‖w‖2Π ≤ 2SN/2, it is well known that w cannot be sign-changing and
hence, assuming without loss of generality that w(0) = 1, w must be a positive function of
the form UδN (see (3.1.3)), for some δN such that UδN (0) = 1, and this contradicts w ≡ 1.
Hence (a) cannot happen.

Assume (b). Using the same convention on the notation as in previous case, we deduce
that there exist two positive uniform constants c1, c2 such that

c1δ
−N−2

2
1,k ≤ |φ̄1,k|∞ ≤ c2δ

−N−2
2

1,k , (3.3.39)
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for all sufficiently large k. In particular, it still holds that Mk → +∞, as k → +∞. We
consider the same rescaled functions φ̃1,k as in (a) and, as before, we denote by Π the

limit domain of Ω̃k.
Now, up to a subsequence, since P̃U1,k and Ũ1,k are uniformly bounded we see that they
converge in C2

loc(Π) to a bounded function which we denote, respectively, by PU and U
(one of them or both could be eventually the null function). In fact Ũ1,k is uniformly

bounded and solves −∆Ũ1,k = Ũp1,k on Ω̃k, and so by standard elliptic theory we get

that Ũ1,k converges in C2
loc(Π) to some non-negative bounded function U which solves

−∆U = Up in Π. Now, taking into account that Ũ1,k → U in C2
loc(Π), the same argument

applies to P̃U1,k, which solves{
−∆P̃U1,k = Ũp1,k in Ω̃k,

P̃U1,k = 0 on ∂Ω̃k,

and hence P̃U1,k converges in C2
loc(Π) to some non-negative bounded function PU satis-

fying −∆PU = Up in Π, PU = 0 on ∂Π.

We point out that as in (a), but using (3.3.39), we still have cεk(d1,k)|P̂Z1,k|∞,Ω̃k → 0,

as k → +∞. Moreover, by the proof of Lemma 2.2 of [13], it also holds that 0 ∈ Π.

Hence, by standard elliptic theory, we have that φ̃1,k converges in C2
loc(Π) to a function

w which solves 
−∆w = f(PU + w)− f(U) in Π,

w = 0 on ∂Π,

w(0) = 1 (or w(0) = −1).

(3.3.40)

As in (3.3.38) we have ‖w‖2Π = 0 and hence, since w is smooth, the only possibility is
w ≡ 1 (or w ≡ −1) because of the condition w(0) = 1 (or w(0) = −1). Moreover, thanks to
the definition of the chosen rescaling, it also holds |φ̃1,k| 2N

N−2
,Ω̃k

= |φ̄1,k| 2N
N−2

,Ω (for the proof

see that of Lemma 1.4.1). Therefore, since |φ̄1,k| 2N
N−2

,Ω → 0 (because ‖φ̄1,k‖ ≤ cε
θ1
2

+σ

k ,

where c > 0 depends only on η) and φ̃1,k → w in C2
loc(Π), as k → +∞, then, by Fatou’s

Lemma, it follows that |w| 2N
N−2

,Π = 0, and thus it cannot happen that w ≡ 1 (or w ≡ −1).

Hence (a) and (b) cannot happen, and the proof is then concluded.

We are now in position to prove Proposition 3.3.1.

Proof of Proposition 3.3.1. Let us fix η > 0 and let φ̄1 ∈ K⊥1 ∩B1,ε be the unique solution
of the first equation of (3.2.12) found in Proposition 3.3.6. We define the operator T2 :
K⊥ → K⊥ as

T2(φ2) := −L−1
2 [N2(φ̄1, φ2) +R2].

In order to find a solution of the second equation of (3.2.12) we solve the fixed point
problem T2(φ2) = φ2. Let us define the proper ball

B2,ε := {φ2 ∈ K⊥; ‖φ2‖ ≤ r ε
θ2
2

+σ}
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for r > 0 sufficiently large and σ > 0 to be chosen later.
From Lemma 3.3.4, there exists ε0 = ε0(η) > 0 and c = c(η) > 0 such that:

‖T2(φ2)‖ ≤ c(‖N2(φ̄1, φ2)‖+ ‖R2‖), (3.3.41)

and
‖T2(φ2)− T2(ψ2)‖ ≤ c(‖N2(φ̄1, φ2)−N2(φ̄1, ψ2)‖), (3.3.42)

for all φ2, ψ2 ∈ K⊥, for all (d1, d2) ∈ R2
+ satisfying (3.2.4) and for all ε ∈ (0, ε0).

We begin with estimating the right hand side of (3.3.41).
Thanks to Proposition 3.3.8 we have that

‖R2‖ ≤ cε
θ2
2

+σ,

for all ε ∈ (0, ε0), for all (d1, d2) ∈ R2
+ satisfying (3.2.4). Thus it remains only to estimate

‖N2(φ̄1, φ2)‖. Thanks to (3.2.1) and the definition of N2 we deduce:

‖N2(φ̄1, φ2)‖ ≤ c|f(Vε+φ̄1+φ2)−f(Vε)−f ′(Vε)φ2−f(PUδ1 +φ̄1)+f(PUδ1)| 2N
N+2

. (3.3.43)

We estimate the right-hand side of (3.3.43):

|f(Vε + φ̄1 + φ2)− f(Vε)− f ′(Vε)φ2 − f(PUδ1 + φ̄1) + f(PUδ1)| 2N
N+2

≤ |f(Vε + φ̄1 + φ2)− f(Vε + φ̄1)− f ′(Vε + φ̄1)φ2| 2N
N+2

+ |(f ′(Vε + φ̄1)− f ′(Vε))φ2| 2N
N+2

+|f(Vε + φ̄1)− f(Vε)− f(PUδ1 + φ̄1) + f(PUδ1)| 2N
N+2

In order to estimate the last three terms, by Lemma 3.2.2 and Lemma 3.2.3 we deduce
that:

|f(Vε + φ̄1 + φ2)− f(Vε + φ̄1)− f ′(Vε + φ̄1)φ2| ≤ c|φ2|p (3.3.44)

and
|(f ′(Vε + φ̄1)− f ′(Vε))φ2| ≤ c|φ̄1|p−1|φ2|. (3.3.45)

Since 2N
N+2 · p = p+ 1 we get that∫
Ω
|f(Vε + φ̄1 + φ2)− f(Vε + φ̄1)− f ′(Vε + φ̄1)φ2|

2N
N+2 dx ≤ c

∫
Ω
|φ2|p+1 dx,

and applying Sobolev inequality we deduce that

|f(Vε + φ̄1 + φ2)− f(Vε + φ̄1)− f ′(Vε + φ̄1)φ2| 2N
N+2
≤ c‖φ2‖p. (3.3.46)

By (3.3.45) we get that∫
Ω
|(f ′(Vε + φ̄1)− f ′(Vε))φ2|

2N
N+2 dx ≤ c

∫
Ω
|φ̄1|(p−1) 2N

N+2 |φ2|
2N
N+2 dx.

We observe that φ
(p−1) 2N

N+2

1 ∈ L
N+2

4 , φ
2N
N+2

2 ∈ Lp and p, N+2
4 are conjugate exponents in

Hölder inequality. Moreover (p− 1) 2N
N+2

N+2
4 = p+ 1 so

|(f ′(Vε + φ̄1)− f ′(Vε))φ2|
2N
N+2
2N
N+2

≤ c|φ̄1|
8N

(N+2)(N−2)

p+1 |φ2|
2N
N+2

p+1 ,
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and hence by Sobolev inequality we deduce that

|(f ′(Vε + φ̄1)− f ′(Vε))φ2| 2N
N+2
≤ c‖φ̄1‖

4
N−2 ‖φ2‖. (3.3.47)

It remains to estimate the last term. As in the proof of Proposition 3.3.8 we make the
decomposition of the domain Ω as Ω = A0 tA1 tA2. Hence we get that:

|f(Vε + φ̄1)− f(Vε)− f(PUδ1 + φ̄1) + f(PUδ1)| 2N
N+2

,A0

≤ |f(Vε + φ̄1)− f(PUδ1 + φ̄1)| 2N
N+2

,A0
+ |f(Vε)− f(PUδ1)| 2N

N+2
,A0

Then, by using the definition of δ1, δ2, the usual elementary inequalities, the compu-
tations made in (3.3.16) and Sobolev inequality, we get that

|f(Vε + φ̄1)− f(PUδ1 + φ̄1)| 2N
N+2

,A0

≤ c1

(
|PUδ2 |

p
p+1,A0

+ |PUp−1
δ1
PUδ2 | 2N

N+2
,A0

+
∣∣∣|φ̄1|p−1PUδ2

∣∣∣
2N
N+2

,A0

)
≤ c2

(
δ
N+2

2
2 + δ2

1δ
N−2

2
2 + ‖φ̄1‖p−1δ

N−2
2

2

)
≤ c3ε

θ2
2

+σ,

for some σ > 0.

Moreover, as in the previous estimate, we get that

|f(Vε)− f(PUδ1)| 2N
N+2

,A0
≤ c1

(
|PUp−1

δ1
PUδ2 | 2N

N+2
,A0

+ |PUδ2 |
p
2N
N+2

,A0

)
≤ c2ε

θ2
2

+σ.

In A1 we argue as in the previous case. The various terms now can be estimated as done
in (3.3.19) and (3.3.20) and hence the same conclusion holds.

For A2, by using the usual elementary inequalities, Lemma 3.3.9 and remembering the
choice of δ1, δ2, we have:

|f(Vε + φ̄1)− f(Vε)− f(PUδ1 + φ̄1) + f(PUδ1)| 2N
N+2

,A2

≤ |f(Vε + φ̄1)− f(Vε)− f ′(Vε)φ̄1| 2N
N+2

,A2
+ |f(PUδ1 + φ̄1)− f(PUδ1)− f ′(PUδ1)φ̄1| 2N

N+2
,A2

+|[f ′(Vε)− f ′(PUδ1)]φ̄1| 2N
N+2

,A2

≤ c
∣∣∣|φ̄1|p

∣∣∣
2N
N+2

,A2

+ c|PUp−1
δ2

φ̄1| 2N
N+2

,A2

≤ c|φ̄1|p∞
(∫

A2

1 dx

)N+2
2N

+ c|φ̄1|∞
(∫

A2

U
8N

N2−4

δ2
dx

)N+2
2N

≤ c1δ
−N−2

2
p

1

(∫ √δ1δ2
0

rN−1 dr

)N+2
2N

+ c2|φ̄1|∞

∫
A2

δ
4N
N+2

2

(δ2
2 + |x|2)

4N
N+2

dx

N+2
2N

≤ c3δ
−N+2

2
1 (δ1δ2)

N+2
4 + c2|φ̄1|∞δ2

2

(∫
A2

1

|x|
8N
N+2

dx

)N+2
2N
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≤ c3

(
δ2

δ1

)N+2
4

+ c4δ
−N−2

2
1 δ2

2

(∫ √δ1δ2
0

r
N2−7N−2

N+2 dr

)N+2
2N

≤ c3

(
δ2

δ1

)N+2
4

+ c5δ
−N−2

2
1 δ2

2 (δ1δ2)
N−6

4 = c6

(
δ2

δ1

)N+2
4

≤ c7ε
θ2
2

+σ.

Hence, from these estimates, we have

|f(Vε + φ̄1)− f(Vε)− f(PUδ1 + φ̄1) + f(PUδ1)| 2N
N+2
≤ cε

θ2
2

+σ. (3.3.48)

Since φ2 ∈ B2,ε and thanks to (3.3.43), (3.3.46), (3.3.47) and (3.3.48) we get that

‖T2(φ2)‖ ≤ cε
θ2
2

+σ, σ > 0

and hence T2 maps B2,ε into itself .

It remains to prove that T2 : B2,ε → B2,ε is a contraction. Thanks to (3.3.42) it suffices
to estimate ‖N2(φ̄1, φ2)−N2(φ̄1, ψ2)‖ for any ψ2, φ2 ∈ B2,ε. To this end, thanks to (3.2.1),
the definition of N2 and reasoning as in the proof of Proposition 3.3.6 we have:

‖N2(φ̄1, φ2)−N2(φ̄1, ψ2)‖ ≤ εα‖φ2 − ψ2‖,

for some α > 0.

At the end we get that there exists L ∈ (0, 1) such that

‖T2(φ2)− T2(ψ2)‖ ≤ L‖φ2 − ψ2‖.

Finally, taking into account that d1 → φ̄1(d1) is a C1-map, a standard argument shows
that also (d1, d2)→ φ̄2(d1, d2) is a C1-map. The proof is complete.

3.4 The reduced functional

We are left now to solve (3.2.11). Let (φ̄1, φ̄2) ∈ K⊥1 × K⊥ be the solution found in
Proposition 3.3.1. Hence Vε + φ̄1 + φ̄2 is a solution of our original problem (3.1.1) if we
can find d̄ε = (d̄1ε, d̄2ε) which satisfies condition (3.2.4) and solves equation (3.2.11).

To this end we consider the reduced functional J̃ε : R2
+ → R defined by:

J̃ε(d1, d2) := Jε(Vε + φ̄1 + φ̄2),

where Jε is the functional defined in (3.1.13).
Our main goal is to show first that solving equation (3.2.11) is equivalent to finding critical
points (d̄1,ε, d̄2,ε) of the reduced functional J̃ε(d1, d2) and then that the reduced functional
has a critical point. These facts are stated in the following proposition:

Proposition 3.4.1. The following facts hold:

(i) If (d̄1,ε, d̄2,ε) is a critical point of J̃ε, then the function Vε + φ̄1 + φ̄2 is a solution of
(3.1.1).
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(ii) For any η > 0, there exists ε0 > 0 such that for all ε ∈ (0, ε0) it holds:

J̃ε(d1, d2) =
2

N
SN/2 + εθ1

[
a1τ(0)dN−2

1 − a2d
2
1

]
+O(εθ1+σ), (3.4.1)

with

O(εθ1+σ) = εθ1+σg(d1) + εθ2

[
a3τ(0)

(
d2

d1

)N−2
2

− a2d
2
2

]
+ o

(
εθ2
)
, (3.4.2)

for some function g depending only on d1 (and uniformly bounded with respect to ε),
where θ1, θ2 are defined in (3.3.1), σ is some positive real number (depending only
on N), τ is the Robin’s function of the domain Ω at the origin and

a1 :=
1

2
αp+1
N

∫
RN

1

(1 + |y|2)
N+2

2

dy; a2 :=
1

2
α2
N

∫
RN

1

(1 + |y|2)N−2
dy;

a3 := αp+1
N

∫
RN

1

|y|N−2(1 + |y|2)
N+2

2

dy.

The expansions (3.4.1), (3.4.2) are C0-uniform with respect to (d1, d2) satisfying
condition (3.2.4).

Remark 3.4.2. We point out that the term g appearing in (3.4.2) does not depend on d2

and this will be used in the sequel, in particular in (3.5.5).

The aim of this section is to prove Proposition 3.4.1. First we prove two lemmas
about the C0-expansion of the reduced functional J̃ε(d1, d2) := Jε(Vε + φ̄1 + φ̄2), where
φ̄1 ∈ K⊥1 ∩B1,ε and φ̄2 ∈ K⊥ ∩B2,ε are the functions given by Proposition 3.3.1.

Lemma 3.4.3. For any η > 0 there exists ε0 > 0 such that for any ε ∈ (0, ε0) it holds:

Jε(Vε + φ̄1) = Jε(Vε) +O(εθ1+σ),

with

O(εθ1+σ) = εθ1+σg1(d1) +O
(
εθ2+σ

)
, (3.4.3)

for some function g1 depending only on d1 (and uniformly bounded with respect to ε),
where θ1, θ2 are defined in (3.3.1), σ is some positive real number (depending only on N).
These expansion are C0-uniform with respect to (d1, d2) satisfying condition (3.2.4).

Proof. Let us fix η > 0. By direct computation we immediately see that

Jε(Vε + φ̄1)− Jε(Vε) = 1
2

∫
Ω |∇φ̄1|2 dx+

∫
Ω∇Vε · ∇φ̄1 dx− ε

2

∫
Ω |φ̄1|2 dx− ε

∫
Ω Vεφ̄1 dx

− 1
p+1

∫
Ω(|Vε + φ̄1|p+1 − |Vε|p+1) dx.

(3.4.4)
By definition we have∫

Ω
∇Vε·∇φ̄1 dx =

∫
Ω
∇(PUδ1−PUδ2)·∇φ̄1 dx =

∫
Ω

(Upδ1−U
p
δ2

)φ̄1 dx =

∫
Ω

[f(Uδ1)−f(Uδ2)]φ̄1 dx,

moreover, since F (s) = 1
p+1 |s|

p+1 is a primitive of f , we can write (3.4.4) as
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Jε(Vε + φ̄1)− Jε(Vε) = 1
2‖φ̄1‖2 − ε

2 |φ̄1|22 − ε
∫

Ω Vεφ̄1 dx+
∫

Ω[f(Uδ1)− f(Uδ2)]φ̄1 dx

−
∫

Ω[F (Vε + φ̄1)− F (Vε)] dx

= 1
2‖φ̄1‖2 − ε

2 |φ̄1|22 − ε
∫

Ω Vεφ̄1 dx+
∫

Ω[f(Uδ1)− f(Uδ2)− f(Vε)]φ̄1 dx

−
∫

Ω[F (Vε + φ̄1)− F (Vε)− f(Vε)φ̄1] dx

A+B + C +D + E.
(3.4.5)

A,B: Thanks to Proposition 3.3.1, for all sufficiently small ε, we have ‖φ̄1‖ ≤ cε
θ1
2

+σ,
for some c > 0 and for some σ > 0 depending only on N . Hence we deduce that
A = O(εθ1+2σ), B = O(εθ1+2σ+1). We point out that, since only φ̄1 is involved in A and
B, these terms depend only on d1.

C: By definition we have

ε

∫
Ω
Vεφ̄1 dx = ε

∫
Ω
PUδ1 φ̄1 dx− ε

∫
Ω
PUδ2 φ̄1 dx = I1 + I2.

We observe that in the estimate I1 only δ1 and φ̄1 are involved. Hence I1 depends only
on d1. Thanks to Hölder inequality, we have the following:

|I1| ≤ ε|Uδ1 | 2N
N+2
|φ̄1| 2N

N−2

Since N ≥ 7 we have |Uδi | 2N
N+2

= O(δ2
i ), for i = 1, 2, so from our choice of δi (see (3.2.3))

and since ‖φ̄1‖ ≤ cε
θ1
2

+σ we deduce that

|I1| ≤ cε(ε
2

N−4 ε
N−2

2(N−4)
+σ

) ≤ cεθ1+σ, (3.4.6)

for all sufficiently small ε. For I2, with similar computations, we get that

|I2| ≤ ε|Uδ2 | 2N
N+2
|φ̄1| 2N

N−2
≤ cε1+

2(3N−10)
(N−4)(N−6) ε

N−2
2(N−4)

+σ
.

Since N ≥ 7 it is elementary to see that 1 + 2(3N−10)
(N−4)(N−6) + N−2

2(N−4) > θ2. From this we
deduce that

|I2| ≤ cεθ2+σ,

for all sufficiently small ε.

D: we have∫
Ω

[f(Uδ1)− f(Uδ2)− f(Vε)]φ̄1 dx =

∫
Ω

[f(PUδ1)− f(PUδ2)− f(Vε)]φ̄1 dx︸ ︷︷ ︸
I1

+

+

∫
Ω

[f(Uδ1)− f(PUδ1)]φ̄1 dx︸ ︷︷ ︸
I2

+

∫
Ω

[f(PUδ2)− f(Uδ2)]φ̄1 dx︸ ︷︷ ︸
I3

(3.4.7)

We evaluate separately the three terms.
We divide Ω into the three regions A0, A1, A2 (see the proof of Proposition 3.3.8 for their
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definition). Then∫
Ω

[f(PUδ1)− f(PUδ2)− f(Vε)]φ̄1 dx =
1∑
j=0

∫
Aj

[f(PUδ1)− f(Vε)]φ̄1 dx︸ ︷︷ ︸
I′1

−
1∑
j=0

∫
Aj

f(PUδ2)φ̄1, dx︸ ︷︷ ︸
I′′1

+

∫
A2

[f(PUδ1)− f(PUδ2)− f(Vε)]φ̄1 dx︸ ︷︷ ︸
I′′′1

Now, writing f(PUδ1) − f(Vε) = f(PUδ1) − f(Vε) + f ′(PUδ1)PUδ2 − f ′(PUδ1)PUδ2 , ap-
plying the usual elementary inequalities, Hölder inequality and taking into account the
computations made in (3.3.16) , (3.3.19), (3.3.20), we get that

|I ′1| ≤ c|PUpδ2 | 2N
N+2

,A0
|φ̄1| 2N

N−2
,A0

+ c|PUpδ2 | 2N
N+2

,A1
|φ̄1| 2N

N−2
,A1

+c|PUδ1 |
p−1
2N
N−2

,A0
|PUδ2 | 2N

N+2
,A0
|φ̄1| 2N

N−2
,A0

+ c|PUp−1
δ1
PUδ2 | 2N

N+2
,A1
|φ̄1| 2N

N−2
,A1

≤ c1

(
δ
N+2

2
2 ε

θ1
2

+σ +

(
δ2

δ1

)N+2
4

ε
θ1
2

+σ + δ2
1δ

N−2
2

2 ε
θ1
2

+σ

+

(
δ2

δ1

)2
(∫ ρ

δ2√
δ1
δ2

r
−N2+5N−2

N+2 dr

)N+2
2N

ε
θ1
2

+σ


≤ c2

(
δ
N+2

2
2 ε

θ1
2

+σ +

(
δ2

δ1

)N+2
4

ε
θ1
2

+σ + δ2
1δ

N−2
2

2 ε
θ1
2

+σ +

(
δ2

δ1

)2(δ2

δ1

)N−6
4

ε
θ1
2

+σ

)

≤ c3

(
δ2

δ1

)N+2
4

ε
θ1
2

+σ ≤ c4ε
θ2+σ.

As before we have

|I ′′1 | ≤
1∑
j=0

|f(PUδ2)| 2N
N+2

,Aj
|φ̄1| 2N

N−2
,Aj
≤ cεθ2+σ.

Now, by Hölder inequality and reasoning as in (3.3.24), (3.3.25), (3.3.26), we get that

|I ′′′1 | ≤ |f(PUδ1)− f(PUδ2)− f(Vε)| 2N
N+2

,A2
|φ̄1| 2N

N−2
,A2

≤ c1

(
|PUpδ1 | 2N

N+2
,A2

+ |PUp−1
δ2
PUδ1 | 2N

N+2
,A2

)
|φ̄1| 2N

N−2
,A2

≤ c2

(
δ2

δ1

)N+2
4

ε
θ1
2

+σ ≤ c3ε
θ2+σ.

At the end we conclude that
|I1| ≤ cεθ2+σ.

For the remaining two terms of (3.4.7), reasoning as in the proof of Proposition 3.3.7,
we get that

|f(PUδi)− f(Uδi)| 2N
N+2
≤ cδ

N+2
2

i .
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Hence

|I2| ≤ |f(Uδ1)− f(PUδ1)| 2N
N+2
|φ̄1| 2N

N−2
≤ cε

N+2
2(N−4) ε

θ1
2

+σ ≤ cεθ1+σ,

for all sufficiently small ε. We remark that I2 depends only on d1 and hence it is sufficient
that it is of order θ1 + σ.
At the end

|I3| ≤ |f(Uδ2)− f(PUδ2)| 2N
N+2
|φ̄1| 2N

N−2
≤ cεθ2+σ,

for all sufficiently small ε.
E: We decompose Ω in the three regions Aj , j = 0, 1, 2 used before.

For j = 0, 1 we have∫
Aj

[
|Vε + φ̄1|p+1 − |Vε|p+1 − (p+ 1)|Vε|p−1Vεφ̄1

]
dx

=

∫
Aj

[
|PUδ1 − PUδ2 + φ̄1|p+1 − |PUδ1 + φ̄1|p+1 + (p+ 1)|PUδ1 + φ̄1|p−1(PUδ1 + φ̄1)PUδ2

]
dx︸ ︷︷ ︸

I1

−
∫
Aj

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1
+ (p+ 1)PUpδ1PUδ2

]
dx︸ ︷︷ ︸

I2

+

∫
Aj

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx︸ ︷︷ ︸

I3

−(p+ 1)

∫
Aj

[
|PUδ1 − PUδ2 |p−1(PUδ1 − PUδ2)− PUpδ1

]
φ̄1 dx︸ ︷︷ ︸

I4

−(p+ 1)

∫
Aj

[
|PUδ1 + φ̄1|p−1(PUδ1 + φ̄1)− PUpδ1

]
PUδ2 dx︸ ︷︷ ︸

I5

.

(3.4.8)

In order to estimate I1, I2, I4 and I5, applying the usual elementary inequalities, we see
that

|I1| ≤ c

(∫
Aj

PUp+1
δ2

dx+

∫
Aj

PUp−1
δ1
PU2

δ2 dx+

∫
Aj

|φ̄1|p−1PU2
δ2 dx

)

|I2| ≤ c

(∫
Aj

PUp+1
δ2

dx+

∫
Aj

PUp−1
δ1
PU2

δ2 dx

)

|I4| ≤ c

(∫
Aj

PUpδ2 |φ̄1| dx+

∫
Aj

PUp−1
δ1
PUδ2 |φ̄1| dx

)

|I5| ≤ c

(∫
Aj

|φ̄1|pPUδ2 dx+

∫
Aj

PUp−1
δ1
PUδ2 |φ̄1| dx

)
.

Now, as seen in the proof of (3.3.16) and thanks to (3.3.20), we have∫
Aj

PUp+1
δ2

dx ≤ c

 δN2 if j = 0(
δ2
δ1

)N
2

if j = 1,
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A0

PU2
δ2PU

p−1
δ1

dx ≤ c|PUδ1 |
p−1
p+1,A0

|PUδ2 |2p+1,A0
≤ cδ2

1δ
N−2
2 .

Moreover, by analogous computations, we get that∫
A1

PU2
δ2PU

p−1
δ1

dx ≤ c1

(
δ2

δ1

)2 ∫ ρ
δ2√
δ1
δ2

1

rN−3
dr ≤ c2

(
δ2

δ1

)N
2

,

∫
Aj

PU2
δ2 |φ̄1|p−1 dx ≤ c|PUδ2 |2p+1,Aj‖φ̄1‖p−1 ≤ c

 δN−2
2 ε(p−1)(

θ1
2

+σ) if j = 0(
δ2
δ1

)N−2
2
ε(p−1)(

θ1
2

+σ) if j = 1,

∫
Aj

PUpδ2 |φ̄1| dx ≤ c|PUδ2 |
p
p+1,Aj

‖φ̄1‖ ≤ c

 δ
N+2

2
2 ε

θ1
2

+σ if j = 0(
δ2
δ1

)N+2
4
ε
θ1
2

+σ if j = 1,

∫
A0

PUδ2PU
p−1
δ1
|φ̄1| dx ≤ c|PUδ2 |p+1,A0 |PUδ1 |

p−1
p+1,A0

‖φ̄1‖ ≤ cδ2
1δ

N−2
2

2 ε
θ1
2

+σ,

and, thanks to (3.3.19), we have∫
A1

PUδ2PU
p−1
δ1
|φ̄1| dx ≤ |PUδ2PU

p−1
δ1
| 2N
N+2

,A1
|φ̄1| 2N

N−2
,A1

≤ c1

∫
A1

 δ
N−2

2
2 δ2

1

(δ2
2 + |x|2)

N−2
2 (δ2

1 + |x|2)2

 2N
N+2

dx


N+2
2N

ε
θ1
2

+σ

≤ c2

(
δ2

δ1

)2(δ2

δ1

)N−6
4

ε
θ1
2

+σ = c2

(
δ2

δ1

)N+2
4

ε
θ1
2

+σ

At the end ∫
A0

PUδ2 |φ̄1|p dx ≤ c1|PUδ2 |p+1,A0‖φ̄1‖p ≤ c2δ
N−2

2
2 εp(

θ1
2

+σ)

and, by using Lemma 3.3.9, we get that∫
A1

PUδ2 |φ̄1|p dx ≤ c1|φ̄1|p−1
∞

[∫
A1

PU
2N
N+2

δ2
dx

]N+2
2N

|φ̄1|p+1,A1

≤ c2ε
− 2
N−4 δ2

2

[∫ ρ
δ2√
δ1
δ2

r
−N2+5N−2

N+2 dr

]N+2
2N

ε
θ1
2

+σ

= c3ε
− 2
N−4 δ2

2

[(
δ2

δ1

)N−6
4

− δ
N−6

2
2

]
ε
θ1
2

+σ

≤ c4

(
δ2

δ1

)N+2
4

ε
θ1
2

+σ.

In order to estimate I3 we observe that∣∣∣∣∫
A0

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx

∣∣∣∣ ≤ c1

(
‖φ̄1‖2|PUδ1 |

p−1
p+1 + ‖φ̄1‖p+1

)
≤ c2ε

θ1+σ,

(3.4.9)
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which is sufficient since this term does not depend on d2.
Moreover ∫

A1

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx

=

∫
B(0,ρ)

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx

−
∫
A2

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx.

We observe that the first integral in the right-hand side of the previous equation depends
only on d1. Hence, as in (3.4.9), we have

∣∣∣∣∣
∫
B(0,ρ)

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx

∣∣∣∣∣ ≤ cεθ1+σ.

Furthermore, by using Lemma 3.3.9, we get that

∣∣∣∣∫
A2

[
|PUδ1 + φ̄1|p+1 − PUp+1

δ1
− (p+ 1)PUpδ1 φ̄1

]
dx

∣∣∣∣
≤ c1

(
|PUδ1 |

p−1
p+1,A2

|φ̄1|2p+1,A2
+ |φ̄1|p+1

p+1,A2

)
≤ c2

[∫
B(0,

√
δ2
δ1

)

1

(1 + |y|2)N
dy

] 2
N

|φ̄1|2∞
[∫

A2

1 dx

] 2
p+1

+ |φ̄1|p+1
∞

∫
A2

1 dx



≤ c3


∫ √

δ2
δ1

0
rN−1 dr

 2
N

ε−
N−2
N−4

[∫ √δ1δ2
0

rN−1 dr

] 2
p+1

+ ε−
N
N−4

∫ √δ1δ2
0

rN−1 dr


≤ c4

(
δ2

δ1
ε−

N−2
N−4 (δ1δ2)

N−2
2 + ε−

N
N−4 (δ1δ2)

N
2

)
≤ c5ε

θ2+σ.
(3.4.10)

Now, it remains only to estimate the left-hand side of (3.4.8) for j = 2. Hence, thanks
to the usual elementary inequalities, we get that

∣∣∣∣∫
A2

[
|Vε + φ̄1|p+1 − |Vε|p+1 − (p+ 1)|Vε|p−1Vεφ̄1

]
dx

∣∣∣∣
≤ c

(∫
A2

|Vε|p−1φ̄2
1 dx+

∫
A2

|φ̄1|p+1 dx

)
≤ c

(∫
A2

PUp−1
δ1

φ̄2
1 dx+

∫
A2

PUp−1
δ2

φ̄2
1 dx+

∫
A2

|φ̄1|p+1 dx

)

For the first and third integrals in the last right-hand side we can reason as in (3.4.10).
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For the second integral, using Lemma 3.3.9, we have∫
A2

PUp−1
δ2

φ̄2
1 dx ≤ c1|φ̄1|2∞

∫
A2

δ2
2

(δ2
2 + |x|2)2

dx

≤ c2δ
−(N−2)
1 δ2

2

∫
A2

1

|x|4
dx

≤ c3δ
−N+2
1 δ2

2

∫ √δ1δ2
0

rN−5 dr

≤ c4

(
δ2

δ1

)N
2

Finally, summing up all the estimates, we conclude that |E| = εθ1+σg(d1) +O(εθ2+σ).

Lemma 3.4.4. For any η > 0 there exists ε0 > 0 such that for any ε ∈ (0, ε0) it holds:

Jε(Vε + φ̄1 + φ̄2) = Jε(Vε + φ̄1) +O(εθ2+σ),

C0-uniformly with respect to (d1, d2) satisfying condition (3.2.4), for some positive real
number σ depending only on N .

Proof. As we have seen in the proof of Lemma 3.4.3, by direct computation we get that

Jε(Vε + φ̄1 + φ̄2)− Jε(Vε + φ̄1) = 1
2

∫
Ω |∇φ̄2|2 dx+

∫
Ω∇(Vε + φ̄1) · ∇φ̄2 dx

− ε
2

∫
Ω |φ̄2|2 dx− ε

∫
Ω(Vε + φ̄1)φ̄2 dx− 1

p+1

∫
Ω(|Vε + φ̄1 + φ̄2|p+1 − |Vε + φ̄1|p+1) dx

= −1
2‖φ̄2‖2 + ε

2 |φ̄2|22 +
∫

Ω∇(Vε + φ̄1 + φ̄2) · ∇φ̄2 dx

−ε
∫

Ω(Vε + φ̄1 + φ̄2)φ̄2 dx−
∫

Ω f(Vε + φ̄1)φ̄2 dx

−
∫

Ω[F (Vε + φ̄1 + φ̄2)− F (Vε + φ1)− f(Vε + φ̄1)φ̄2] dx

(3.4.11)
Since φ̄1 + φ̄2 is a solution of (3.2.10) we have

Π⊥{Vε + φ̄1 + φ̄2 − i∗[ε(Vε + φ̄1 + φ̄2) + f(Vε + φ̄1 + φ̄2)]} = 0,

hence, for some ψ ∈ K, we get that Vε + φ̄1 + φ̄2 weakly solves

−∆(Vε + φ̄1 + φ̄2) + ∆ψ̄ − [ε(Vε + φ̄1 + φ̄2) + f(Vε + φ̄1 + φ̄2)] = 0. (3.4.12)

Choosing φ̄2 as test function, since φ̄2 ∈ K⊥, ψ ∈ K we deduce that∫
Ω
∇(Vε+ φ̄1 + φ̄2) ·∇φ̄2 dx− ε

∫
Ω

(Vε+ φ̄1 + φ̄2)φ̄2 dx =

∫
Ω
f(Vε+ φ̄1 + φ̄2)φ̄2 dx (3.4.13)

Thanks to (3.4.13) we rewrite (3.4.11) as

Jε(Vε + φ̄1 + φ̄2)− Jε(Vε + φ̄1) = −1

2
‖φ̄2‖2 +

ε

2
|φ̄2|22 +

∫
Ω

[f(Vε + φ̄1 + φ̄2)− f(Vε + φ̄1)]φ̄2 dx

−
∫

Ω
[F (Vε + φ̄1 + φ̄2)− F (Vε + φ1)− f(Vε + φ̄1)φ̄2] dx

= A+B + C +D. (3.4.14)
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A, B: Thanks to Proposition 3.3.1, for all sufficiently small ε, we have ‖φ̄2‖ ≤ cε
θ2
2

+σ,
for some c > 0 and for some σ > 0 depending only on N . Hence we deduce that
A = O(εθ2+2σ), B = O(εθ2+2σ+1).

C: By Lemma 3.2.2 we get

∣∣∣∣∫
Ω

[f(Vε + φ̄1 + φ̄2)− f(Vε + φ̄1)]φ̄2 dx

∣∣∣∣ ≤ ∫
Ω
|φ̄2|p+1 dx+

∫
Ω
|Vε + φ̄1|p−1φ̄2

2 dx

≤ c‖φ̄2‖p+1 + c|Vε|p−1
p+1|φ̄2|2p+1 + c|φ̄1|p−1

p+1|φ̄2|2p+1

≤ cεθ2+σ

for all sufficiently small ε.

D: Applying Lemma 3.2.2 and Hölder inequality we get that∣∣∣∣∫
Ω

[F (Vε + φ̄1 + φ̄2)− F (Vε + φ̄1)− f(Vε + φ̄1)φ̄2] dx

∣∣∣∣ ≤ c|Vε|p−1
p+1|φ̄2|2p+1+c|φ̄1|p−1

p+1|φ̄2|2p+1+c|φ̄2|p+1
p+1.

Since all the terms from A to D are high order terms with respect to εθ2 the proof is
complete.

In order to prove Proposition 3.4.1 some further preliminary lemmas are needed.

Lemma 3.4.5. Let δj as in (3.2.3) for j = 1, 2 and N ≥ 7. For any η > 0 there exists
ε0 > 0 such that for any ε ∈ (0, ε0), it holds

1

2

∫
Ω
|∇PUδj |

2 dx− 1

p+ 1

∫
Ω
PUp+1

δj
dx =

1

N
SN/2 + a1τ(0)δN−2

j +O(δN−1
j ),

C0-uniformly with respect to (d1, d2) satisfying condition (3.2.4), where a1 := 1
2α

p+1
N

∫
RN

1

(1+|y|2)
N+2

2

dy

and τ(0) is the Robin’s function of the domain Ω at the origin.

Proof. By using (3.1.6), (3.1.7) and (3.1.8) we have that

1

2

∫
Ω
|∇PUδj |

2 dx− 1

p+ 1

∫
Ω
PUp+1

δj
dx =

1

2

∫
Ω
UpδjPUδj dx−

1

p+ 1

∫
Ω
PUp+1

δj
dx

=
1

2

∫
Ω
Upδj (Uδj − ϕδj ) dx−

1

p+ 1

∫
Ω

(Uδj − ϕδj )
p+1 dx

=
1

2

∫
Ω
Up+1
δj

dx− 1

2

∫
Ω
Upδjϕδj dx−

1

p+ 1

∫
Ω
Up+1
δj

dx+

∫
Ω
Upδjϕδj dx+O

(∫
Ω
Up−1
δj

ϕ2
δj
dx

)
=

(
1

2
− 1

p+ 1

)∫
Ω
Up+1
δj

dx+
1

2

∫
Ω
Upδjϕδj dx+O

(∫
Ω
Up−1
δj

ϕ2
δj
dx

)

Now it is easy to see that∫
Ω
Up+1
δj

dx =

∫
RN

αp+1
N

(1 + |y|2)N
dy +O(δNj ), (3.4.15)
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while ∫
Ω
Upδjϕδj dx =

∫
Ω
Upδj

(
αNδ

N−2
2

j H(0, x) +O(δ
N+2

2
j )

)
dx

= αNδ
N−2

2
j

∫
Ω
UpδjH(0, x) dx+O

(
δ
N+2

2
j

∫
Ω
Upδj dx

)
= αp+1

N τ(0)δN−2
j

∫
RN

1

(1 + |y|2)
N+2

2

dy +O(δN−1
j ). (3.4.16)

Moreover

O

(∫
Ω
Up−1
δj

ϕ2
δj
dx

)
= O(δN−1

j ). (3.4.17)

Indeed, we get∫
Ω
Up−1
δj

ϕ2
δj
dx =

∫
B√δj (0)

Up−1
δj

ϕ2
δj
dx+

∫
Ω\B√δj (0)

Up−1
δj

ϕ2
δj
dx

≤ c1δ
N−2
j

∫
B√δj (0)

Up−1
δj

dx+ |ϕδj |
2
p+1

∫
Ω\B√δj (0)

Up+1
δj

dx


p−1
p+1

≤ c2δ
2N−4
j

∫ 1√
δj

0

rN−1

(1 + r2)2
dr + c3δ

N−2
j

∫ +∞

1√
δj

rN−1

(1 + r2)N
dr


p−1
p+1

≤ c4δ
3N−4

2
j + c5δ

N−1
j ≤ c6δ

N−1
j .

Hence, from (3.4.15), (3.4.16), (3.4.17) we get the thesis.

Lemma 3.4.6. Let δj as in (3.2.3) for j = 1, 2 and N ≥ 7. For any η > 0 there exists
ε0 > 0 such that for any ε ∈ (0, ε0), it holds

ε

2

∫
Ω
PU2

δj
dx = a2εδ

2
j +O(εδ

N
2
j ),

C0-uniformly with respect to (d1, d2) satisfying condition (3.2.4), where a2 := 1
2α

2
N

∫
RN

1
(1+|y|2)N−2 dy.

Proof. From (3.1.6) we get that

ε

2

∫
Ω

(PUδj )
2 dx =

ε

2

∫
Ω

(Uδj − ϕδj )
2 dx =

ε

2

∫
Ω
U2
δj
dx− ε

∫
Ω
Uδjϕδj dx+

ε

2

∫
Ω
ϕ2
δj
dx.

(3.4.18)
The principal term is the first one, in fact we have:

ε

2

∫
Ω
U2
δj
dx =

ε

2
α2
N

∫
Ω

δN−2
j

(δ2
1 + |x|2)N−2

dx =
ε

2
α2
N

∫
Ω

δ
−(N−2)
j

(1 + |x/δ1|2)N−2
dx

=
ε

2
α2
N

∫
Ω/δj

δ
−(N−2)
j

(1 + |y|2)N−2
δNj dy =

ε

2
α2
Nδ

2
j

∫
RN

1

(1 + |y|2)N−2
dy+

+O

(
εδ2
j

∫ +∞

1/δj

rN−1

(1 + r2)N−2
dr

)
=

ε

2
α2
Nδ

2
j

∫
RN

1

(1 + |y|2)N−2
dy +O

(
εδN−2
j

)
.

(3.4.19)
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For the remaining terms, by using also (3.1.10), we deduce that

ε

∫
Ω
Uδjϕδj dx ≤ ε|Uδj |2|ϕδj |2 ≤ cεδjδ

N−2
2

j ≤ cεδ
N
2
j . (3.4.20)

Moreover by using again (3.1.10)

ε

2

∫
Ω
ϕ2
δj
dx =

ε

2
|ϕδj |

2
2 ≤ CεδN−2

j

and the lemma is proved.

Lemma 3.4.7. Let δj as in (3.2.3) for j = 1, 2 and N ≥ 7. For any η > 0 there exists
ε0 > 0 such that for any ε ∈ (0, ε0) it holds

ε

∫
Ω
PUδ1PUδ2 dx = O

(
ε

(
δ2

δ1

)N−2
2

δ2
1

)
,

C0-uniformly with respect to (d1, d2) satisfying condition (3.2.4).

Proof. From (3.1.6) we get that

ε

∫
Ω
PUδ1 PUδ2 dx = ε

∫
Ω

(Uδ1 − ϕδ1)(Uδ2 − ϕδ2) dx

= ε

∫
Ω
Uδ1Uδ2 dx− ε

∫
Ω
Uδ1ϕδ2 dx− ε

∫
Ω
Uδ2ϕδ1 dx+ ε

∫
Ω
ϕδ1ϕδ2 dx.

(3.4.21)

We analyze every term.

ε

∫
Ω
Uδ1Uδ2 dx = ε α2

N

∫
Ω

δ
−N−2

2
1

(1 + |x/δ1|2)
N−2

2

δ
N−2

2
2

(δ2
2 + |x|2)

N−2
2

dx

= ε α2
N

∫
Ω/δ1

δ
N+2

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2

(δ2
2 + δ2

1 |y|2)
N−2

2

dy

= ε α2
N

∫
Ω/δ1

δ
−N−6

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2((

δ2
δ1

)2
+ |y|2

)N−2
2

dy

≤ ε α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
Ω/δ1

1

(1 + |y|2)
N−2

2 |y|N−2
dy

= ε α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
RN

1

(1 + |y|2)
N−2

2 |y|N−2
dy

+ O

(
ε

(
δ2

δ1

)N−2
2

δ2
1

∫ +∞

1/δ1

rN−1

(1 + r2)
N−2

2 rN−2
dr

)

= ε α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
RN

1

(1 + |y|2)
N−2

2 |y|N−2
dy +O

(
ε

(
δ2

δ1

)N−2
2

δN−2
1

)
.

(3.4.22)

Hence ε
∫

Ω Uδ1Uδ2 dx = O

(
ε
(
δ2
δ1

)N−2
2
δ2

1

)
. Thanks to (3.4.20) we deduce that ε

∫
Ω Uδ1ϕδ2 dx =

O

(
ε δ

N−2
2

1 δ
N−2

2
2

)
, ε
∫

Ω Uδ2ϕδ1 dx = O

(
ε δ

N−2
2

1 δ
N−2

2
2

)
. Moreover it is clear that ε

∫
Ω ϕδ1ϕδ2 dx =
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O

(
ε δ

N−2
2

1 δ
N−2

2
2

)
. Since these last three terms are high order terms compared to ε

(
δ2
δ1

)N−2
2
δ2

1 ,

we deduce the thesis, and the proof is complete.

We are ready to prove Proposition 3.4.1.

Proof of Proposition 3.4.1. (i): One can reason as Part 1 of Proposition 2.2 of [48].

(ii): Let us fix η > 0. From Lemma 3.4.3 and Lemma 3.4.4, for all sufficiently small ε,
we get that

Jε(Vε + φ̄1 + φ̄2) = Jε(Vε) + εθ1+σg(d1) +O(εθ2+σ),

for some σ > 0. We evaluate Jε(Vε) = Jε(PUδ1 − PUδ2).

Jε(PUδ1 − PUδ2) =
1

2

∫
Ω
|∇(PUδ1 − PUδ2)|2 dx− 1

p+ 1

∫
Ω
|PUδ1 − PUδ2 |p+1 dx

− ε

2

∫
Ω

(PUδ1 − PUδ2)2dx

=
1

2

∫
Ω
|∇PUδ1 |2 dx+

1

2

∫
Ω
|∇PUδ2 |2 dx−

∫
Ω
∇PUδ1 · ∇PUδ2 dx

− 1

p+ 1

∫
Ω
|PUδ1 − PUδ2 |p+1 dx− ε

2

∫
Ω

(PUδ1)2 dx− ε

2

∫
Ω

(PUδ2)2 dx

+ ε

∫
Ω
PUδ1 PUδ2 dx

=

2∑
j=1

(
1

2

∫
Ω
|∇PUδj |

2 dx− 1

p+ 1

∫
Ω
PUp+1

δj
dx

)
︸ ︷︷ ︸

(I)

−
2∑
j=1

ε

2

∫
Ω
PU2

δj
dx︸ ︷︷ ︸

(II)

+ ε

∫
Ω
PUδ1PUδ2 dx︸ ︷︷ ︸

(III)

−
∫

Ω
∇PUδ1∇PUδ2 dx︸ ︷︷ ︸

(IV )

− 1

p+ 1

∫
Ω

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1
− PUp+1

δ2

]
dx︸ ︷︷ ︸

(IV )

.

By Lemma 3.4.5, Lemma 3.4.6 and Lemma 3.4.7 we get

(I) =
2

N
SN/2 + a1τ(0)δN−2

1 + a1τ(0)δN−2
2 +O(δN−1

1 ) +O(δN−1
2 ),

(II) = a2εδ
2
1 + a2εδ

2
2 +O(εδ

N
2

1 ) +O(εδ
N
2

2 ),

(III) = O

(
ε

(
δ2

δ1

)N−2
2

δ2
1

)
.
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Now since −∆PUδ2 = Upδ2 then
∫

Ω∇PUδ1∇PUδ2 dx =
∫

Ω U
p
δ2
PUδ1 dx and hence

(IV ) = − 1

p+ 1

∫
Ω

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1
− PUp+1

δ2
+ (p+ 1)PUpδ2PUδ1

]
dx︸ ︷︷ ︸

I1

+

∫
Ω

[
PUpδ2 − U

p
δ2

]
PUδ1 dx︸ ︷︷ ︸

I2

.

By (3.1.6) and Lemma 3.2.2 we deduce that

|I2| ≤ C
∫

Ω
Up−1
δ2

ϕδ2PUδ1 dx+ C

∫
Ω
ϕpδ2PUδ1 dx.

Now let ρ > 0 such that B(0, ρ) ⊂ Ω.∫
Ω
ϕpδ2PUδ1 dx ≤

∫
Ω
ϕpδ2Uδ1 dx =

∫
Ω\B(0,ρ)

ϕpδ2Uδ1 dx+

∫
B(0,ρ)

ϕpδ2Uδ1 dx

≤ |ϕδ2 |
p
p+1

(∫
Ω\B(0,ρ)

Up+1
δ1

dx

) 1
p+1

+ Cδ
N+2

2
2

∫
B(0,ρ)

1(
1 +

∣∣∣ xδ1 ∣∣∣2)
N−2

2

dx

≤ C1δ
N+2

2
2 δ

N−2
2

1 + C2δ
N+2

2
2 δN1

∫ ρ
δ1

0

rN−1

(1 + r2)
N−2

2

dr

≤ C3

[
δ
N+2

2
2 δ

N−2
2

1 + δ
N+2

2
2 δN−2

1

]
≤ C3

(
δ2

δ1

)N+2
2

δ
N
2

1 .

Moreover, since
∫

Ω U
p
δj
dx = O(δ

N−2
2

j ), we get

∫
Ω
Up−1
δ2

ϕδ2PUδ1 dx ≤ ‖ϕδ2‖∞
∫

Ω
Up−1
δ2
Uδ1 dx ≤ Cδ

N−2
2

2

∫
Ω
Up−1
δ2
Uδ1 dx

≤ Cδ
N−2

2
2

(∫
Ω
Upδ2 dx

) p−1
p
(∫

Ω
Upδ1 dx

) 1
p

≤ C1δ
N2+4N−12

2(N+2)

2 δ
(N−2)2

2(N+2)

1 = C1

(
δ2

δ1

)N−2
2
(
δ2

δ1

) 2(N−2)
N+2

δN−2
1

≤ C1

(
δ2

δ1

)N
2

δN−2
1 .

Now let ρ > 0 and we decompose the domain Ω as Ω = A0 ∪ A1 ∪ A2 where
A0 = Ω \B(0, ρ), A1 = B(0, ρ) \B(0,

√
δ1δ2), A2 = B(0,

√
δ1δ2). Then we define

Lj := − 1

p+ 1

∫
Aj

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1
− PUp+1

δ2
+ (p+ 1)PUpδ2PUδ1

]
dx

for j = 0, 1, 2.
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Now, by using Lemma 3.2.2 and Hölder inequality, we see that

|L0| ≤
1

p+ 1

[∫
A0

(
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1

)
dx+

∫
A0

PUp+1
δ2

dx+

∫
A0

PUpδ2PUδ1 dx
]

≤ C

(∫
A0

PUpδ1PUδ2 dx+

∫
A0

PUp+1
δ2

dx+

∫
A0

PUpδ2PUδ1 dx
)

≤ C

(∫
A0

Upδ1Uδ2 dx+

∫
A0

Up+1
δ2

dx+

∫
A0

Upδ2Uδ1 dx
)

≤ C

(∫
A0

Up+1
δ1

dx

) p
p+1
(∫

A0

Up+1
δ2

dx

) 1
p+1

+ C1

∫ +∞

ρ
δ2

rN−1

(1 + r2)N
dr

+C

(∫
A0

Up+1
δ2

dx

) p
p+1
(∫

A0

Up+1
δ1

dx

) 1
p+1

≤ C2

(∫ +∞

ρ
δ1

rN−1

(1 + r2)N
dr

) p
p+1
(∫ +∞

ρ
δ2

rN−1

(1 + r2)N
dr

) 1
p+1

+ C3δ
N
2

+C2

(∫ +∞

ρ
δ2

rN−1

(1 + r2)N
dr

) p
p+1
(∫ +∞

ρ
δ1

rN−1

(1 + r2)N
dr

) 1
p+1

≤ C4

(
δ
N+2

2
1 δ

N−2
2

2 + δN2 + δ
N+2

2
2 δ

N−2
2

1

)
≤ C5

(
δ2

δ1

)N−2
2

δN1 .

Now

L1 = − 1

p+ 1

∫
A1

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1
+ (p+ 1)PUpδ1PUδ2

]
dx

+

∫
A1

PUpδ1PUδ2 dx−
∫
A1

PUpδ2PUδ1 dx−
1

p+ 1

∫
A1

PUp+1
δ2

dx.

Applying Lemma 3.2.2 we get∣∣∣∣∫
A1

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ1
+ (p+ 1)PUpδ1PUδ2

]
dx

∣∣∣∣
≤ C

(∫
A1

PUp−1
δ1
PU2

δ2 dx+

∫
A1

PUp+1
δ2

dx

)
≤ C1

((
δ2

δ1

)2 ∫ ρ
δ2√
δ1
δ2

1

rN−3
dr +

∫ ρ
δ2√
δ2
δ1

rN−1

(1 + r2)N
dr

)
≤ C2

(
δ2

δ1

)N
2

.

Thanks to (3.1.6) and Lemma 3.2.2 we have

∫
A1

PUpδ1PUδ2 dx =

∫
A1

Upδ1PUδ2 dx+O

(∫
A1

Up−1
δ1

ϕδ1PUδ2 dx
)

+O

(∫
A1

ϕpδ1PUδ2 dx
)

=

∫
A1

Upδ1Uδ2 dx+O

(∫
Ω
Upδ1ϕδ2 dx

)
+O

(∫
Ω
Up−1
δ1

ϕδ1PUδ2 dx
)

+

+O

(∫
Ω
ϕpδ1PUδ2 dx

)
By definition we have:
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∫
A1

Upδ1Uδ2 dx

= αp+1
N

∫
A1

δ
−N+2

2
1(

1 +
∣∣∣ xδ1 ∣∣∣2)

N+2
2

δ
−N−2

2
2(

1 +
∣∣∣ xδ2 ∣∣∣2)

N−2
2

dx

= αp+1
N δ

−N+2
2

+N

1 δ
−N−2

2
2

(
δ2

δ1

)N−2 ∫√
δ2
δ1
≤|x|≤ ρ

δ1

1

(1 + |y|2)
N+2

2

1

|y|N−2
dy + o

((
δ2

δ1

)N−2
2

)

= a3

(
δ2

δ1

)N−2
2

+ o

((
δ2

δ1

)N−2
2

)

Moreover by using (3.1.9) we get

∫
Ω
Upδ1ϕδ2 dx ≤ Cδ

N−2
2

2

∫
Ω
Upδ1 dx ≤ C1δ

N−2
2

1 δ
N−2

2
2

and by using again (3.1.9) we have

∫
Ω
Up−1
δ1

ϕδ1PUδ2 dx ≤
∫

Ω
Up−1
δ1

ϕδ1Uδ2 dx

≤ Cδ
N−2

2
1

(∫
Ω
Up+1
δ1

dx

) p−1
p+1
(∫

Ω
U
p+1

2
δ2

dx

) 2
p+1

≤ C1δ
N−2

2
1 δ

N−2
2

2 .

Finally

∫
Ω
ϕpδ1PUδ2 dx ≤

∫
Ω
ϕpδ1Uδ2 dx =

∫
B(0,ρ)

ϕpδ1Uδ2 dx+

∫
Ω\B(0,ρ)

ϕpδ1Uδ2 dx

≤ Cδ
N+2

2
1 δ

−N−2
2

+N

2

∫ ρ
δ2

0

rN−1

(1 + r2)
N−2

2

dr + |ϕδ1 |
p
p+1

(∫
Ω\B(0,ρ)

Up+1
δ2

dx

) 1
p+1

≤ Cδ
N+2

2
1 δ

N+2
2

2 + C1δ
N+2

2
1

(∫ +∞

ρ
δ2

rN−1

(1 + r2)N
dr

)N−2
2N

≤ C2δ
N+2

2
1 δ

N−2
2

2 .

At the end∫
A1

PUpδ2PUδ1 dx ≤ αp+1
N δ

−N+2
2

+N

2 δ
−N−2

2
1

∫
√
δ1
δ2
≤|y|≤ ρ

δ2

1(
1 +

∣∣∣ δ2δ1 y∣∣∣2)
N−2

2

1

(1 + |y|2)
N+2

2

dy

≤ C1

(
δ2

δ1

)N−2
2
∫ ρ

δ2√
δ1
δ2

rN−1

(1 + r2)
N+2

2

dr ≤ C2

(
δ2

δ1

)N
2

.
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Finally, thanks to Lemma 3.2.2 we get that

|L2| ≤
1

p+ 1

{∣∣∣∣∫
A2

[
|PUδ1 − PUδ2 |p+1 − PUp+1

δ2
+ (p+ 1)PUpδ2PUδ1

]
dx

∣∣∣∣+

∫
A2

PUp+1
δ1

dx

}
≤ C

(∫
A2

PUp−1
δ2
PU2

δ1 dx+

∫
A2

PUp+1
δ1

dx

)
≤ C

(∫
A2

Up−1
δ2
U2
δ1 dx+

∫
A2

Up+1
δ1

dx

)

≤ C1

(δ2

δ1

)2 ∫ √
δ2
δ1

0

rN−5

(1 + r2)N−2
dr +

∫ √
δ2
δ1

0

rN−1

(1 + r2)N
dr


≤ C2

(δ2

δ1

)2 ∫ √
δ2
δ1

0
rN−5 dr +

∫ √
δ2
δ1

0
rN−1 dr

 ≤ C2

(
δ2

δ1

)N
2

.

From Lemma 3.4.5 to Lemma 3.4.7 summing up all the terms we get that

Jε(PUδ1 − PUδ2) =
2

N
SN/2 + a1τ(0)δN−2

1 + a1τ(0)δN−2
2 +O(δN−1

1 ) +O(δN−1
2 )

+ O

((
δ2

δ1

)N−2
2

δ2
1

)
+O

((
δ2

δ1

)N
2

)
+ a3

(
δ2

δ1

)N−2
2

− a2εδ
2
1 +O

(
εδN−2

1

)
− a2εδ

2
2 +O

(
εδN−2

2

)
,

(3.4.23)

where a1 = 1
2α

p+1
N

∫
RN

1

(1+|y|2)
N+2

2

dy, a2 = 1
2α

2
N

∫
RN

1
(1+|y|2)N−2 dy, a3 = αp+1

N

∫
RN

1

(1+|y|2)
N+2

2

dy.

Recalling the choice of δj , j = 1, 2 we get

Jε(PUδ1 − PUδ2) =
2

N
SN/2 + a1τ(0)dN−2

1 ε
N−2
N−4 + a1τ(0)dN−2

2 ε
(3N−10)(N−2)
(N−4)(N−6)

+ O
(
ε
N−1
N−4

)
+O

(
ε

(3N−10)(N−1)
(N−4)(N−6)

)
+O

(
ε
N+2
N−6

)
+O

(
ε

(N−2)N
(N−4)(N−6)

)
+ a3

(
d2
d1

)N−2
2
ε

(N−2)2

(N−4)(N−6) − a2d
2
1ε

N−2
N−4 +O

(
ε

2(N−3)
N−4

)
− a2d

2
2ε

(N−2)2

(N−4)(N−6)

+ O

(
ε

2(2N2−13N+22)
(N−4)(N−6))

)
=

2

N
SN/2 + [a1τ(0)dN−2

1 − a2d
2
1]ε

N−2
N−4 +O

(
ε
N−1
N−4

)
+

[
a3

(
d2

d1

)N−2
2

− a2d
2
2

]
ε

(N−2)2

(N−4)(N−6) +O
(
ε
N+2
N−6

)
.

(3.4.24)

We point out that the term O(ε
N−1
N−4 ) depends only on d1.

3.5 proof of Theorems 3.1.1 and 3.1.2

Proof of Theorem 3.1.1. Let us set G1(d1) := a1τ(0)dN−2
1 − a2d

2
1, where a1, a2 are the

positive constants appearing in Proposition 3.4.1 and τ(0) is the Robin’s function of the
domain Ω at the origin, so by definition it follows that τ(0) is positive. It’s elementary
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to see that the function G1 : R+ → R has a strictly local minimum point at d̄1 =(
2a2

(N−2)a1τ(0)

) 1
N−4

.

Since d̄1 is a strictly local minimum for G1, then, for any sufficiently small γ > 0 there
exists an open interval I1,σ1 such that I1,σ1 ⊂ R+, I1,σ1 has diameter σ1, d̄1 ∈ I1,σ1 and
for all d1 ∈ ∂I1,σ1

G1(d1) ≥ G1(d̄1) + γ. (3.5.1)

Clearly as γ → 0 we can choose σ1 so that σ1 → 0.

We set G2(d1, d2) := a3τ(0)
(
d2
d1

)N−2
2 − a2d

2
2, G2 : R2

+ → R, where a3 > 0 is the same

constant appearing in Proposition 3.4.1. If we fix d1 = d̄1 then Ĝ2(d2) := G(d̄1, d2) has

a strictly local minimum point at d̄2 :=

(
2a2d̄

N−2
2

1

a3τ(0)N−2
2

) 2
N−6

. As in the previous case there

exists an open interval I2,σ2 such that I2,σ2 ⊂ R+, I2,σ2 has diameter σ2, d̄2 ∈ I1,σ1 and
for all d2 ∈ ∂I2,σ2

Ĝ2(d2) ≥ Ĝ2(d̄2) + γ. (3.5.2)

As γ → 0 we can choose σ2 so that σ2 → 0.
Let us set K := I1,σ1 × I2,σ2 and let η > 0 be small enough so that K ⊂]η, 1

η [×]η, 1
η [.

Thanks to Proposition 3.3.1, for all sufficiently small ε, J̃ε : R2
+ → R is defined and it is

of class C1. By Weierstrass theorem we know there exists a global minimum point for J̃ε
in K. Let (d1,ε, d2,ε) be that point, we want to show that there exists ε1 such that, for all
ε < ε1, (d1,ε, d2,ε) lies in the interior of K.

Assume by contradiction there exists a sequence εn → 0 such that for all n ∈ N

(d1,εn , d2,εn) ∈ ∂K.

There are only two possibilities:

(a) d1,εn ∈ ∂I1,σ1 , d2,εn ∈ I2,σ2 ,

(b) d1,εn ∈ I1,σ1 , d2,εn ∈ ∂I2,σ2 .

Thanks to (ii) of Proposition 3.4.1 we have the uniform expansion

J̃ε(d1, d2)− J̃ε(d̄1, d2) = εθ1
[
G1(d1)−G1(d̄1)

]
+ o

(
εθ1
)
. (3.5.3)

for all ε < ε0, (d1, d2) ∈ K. We point out that we have incorporated the other high order
terms in o

(
εθ1
)
. Thanks to (3.5.1) and (3.5.3), for all sufficiently small ε we have

J̃ε(d1, d2)− J̃ε(d̄1, d2) > 0, (3.5.4)

for all d1 ∈ ∂I1,σ1 , for all d2 ∈ I2,σ2 . So for n sufficiently large if (a) holds, since by
definition J̃εn(d1,εn , d2,εn) = minK J̃εn , then

J̃εn(d1,εn , d2,εn) ≤ J̃εn(d̄1, d2,εn),

which contradicts (3.5.4). Assume (b). Thanks to (ii) of Proposition 3.4.1 (see also
Remark 3.4.2) we have the uniform expansion

J̃ε(d1, d2)− J̃ε(d1, d̄2) = εθ2
[
G2(d1, d2)−G2(d1, d̄2)

]
+ o

(
εθ2
)
, (3.5.5)
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for all ε ∈ (0, ε0), for all (d1, d2) ∈ K.

For n sufficiently large so that εn < ε0 we have

J̃εn(d1,εn , d2,εn)− J̃εn(d1,εn , d̄2) = εθ2
[
G2(d1,εn , d2,εn)−G2(d1,εn , d̄2)

]
+ o

(
εθ2
)

= εθ2
[
G2(d1,εn , d2,εn)−G2(d̄1, d2,εn) +G2(d̄1, d2,εn)−G2(d̄1, d̄2)

G2(d̄1, d̄2)−G2(d1,εn , d̄2)
]

+ o
(
εθ2
)

= εθ2

a3τ(0)d
N−2

2
2,εn

 1

d
N−2

2
1,εn

− 1

d̄
N−2

2
1

+G2(d̄1, d2,εn)−G2(d̄1, d̄2)

+ a3τ(0)d̄
N−2

2
2

 1

d̄
N−2

2
1

− 1

d
N−2

2
1,εn

+ o
(
εθ2n

)
(3.5.6)

We observe now that, up to a subsequence, d1,εn → d̄1 as n → +∞. This is a
consequence of the uniform expansion given by (ii) of Proposition 3.4.1, in fact

J̃εn(d1,εn , d2,εn)− J̃εn(d̄1, d̄2) = εθ1n
[
G1(d1,εn)−G1(d̄1)

]
+ o

(
εθ1n

)
. (3.5.7)

Since (d1,εn , d2,εn) is the minimum point we have J̃ε(d1,εn , d2,εn) − J̃ε(d̄1, d̄2) ≤ 0, hence,

dividing (3.5.7) by εθ1n , for all sufficiently large n we get that G1(d1,εn)−G1(d̄1) ≤ −
o
(
ε
θ1
n

)
ε
θ1
n

.

On the other side, since d̄1 is the minimum of G1, we get that G1(d1,εn)−G1(d̄1) ≥ 0. So
we have proved that

0 ≤ G1(d1,εn)−G1(d̄1) ≤ −
o
(
εθ1n
)

εθ1n
,

and passing to the limit we deduce that limn→+∞G1(d1,εn) = G1(d̄1). Hence, up to a
subsequence, since d̄1 is a strict local minimum, the only possibility is d1,εn → d̄1.

Since we are assuming (b), from (3.5.2) we get that

G2(d̄1, d2,εn)−G2(d̄1, d̄2) ≥ γ.

From this last inequality, (3.5.6) and since (d2,εn)n is bounded, then, choosing n̄ suffi-

ciently large so that a3τ(0)d
N−2

2
2,εn

∣∣∣∣∣ 1

d̄
N−2

2
1

− 1

d
N−2

2
1,εn

∣∣∣∣∣ and a3τ(0)d̄
N−2

2
2

∣∣∣∣∣ 1

d̄
N−2

2
1

− 1

d
N−2

2
1,εn

∣∣∣∣∣ are small

enough, we deduce that

J̃εn(d1,εn , d2,εn)− J̃εn(d1,εn , d̄2) > 0,

for all n > n̄. Since (d1,εn , d2,εn) is the minimum point it also holds

J̃εn(d1,εn , d2,εn)− J̃εn(d1,εn , d̄2) ≤ 0,

and we get a contradiction.

To complete the proof we point out that, as observed before, up to a subsequence
d1,ε → d̄1 as ε → 0. With a similar argument we prove that d2,ε → d̄2. In fact, from the
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same argument of (3.5.6), since d1,ε → d̄1 and (d2,ε)ε is bounded, we have

0 ≥ J̃ε(d1,ε, d2,ε)− J̃ε(d1,ε, d̄2)

εθ2
= G2(d1,ε, d2,ε)−G2(d1,ε, d̄2) +

o
(
εθ2
)

εθ2

= a3τ(0)d
N−2

2
2,ε

 1

d
N−2

2
1,ε

− 1

d̄
N−2

2
1

+G2(d̄1, d2,ε)−G2(d̄1, d̄2)

+ a3τ(0)d̄
N−2

2
2

 1

d̄
N−2

2
1

− 1

d
N−2

2
1,ε

+
o
(
εθ2
)

εθ2

= o(1) +G2(d̄1, d2,ε)−G2(d̄1, d̄2).
(3.5.8)

Since d̄2 is a local maximum point for d2 → Ĝ2(d2) we have G2(d̄1, d2,ε)−G2(d̄1, d̄2) ≥ 0
and so from (3.5.8) we get that

0 ≤ G2(d̄1, d2,ε)−G2(d̄1, d̄2) ≤ −o(1).

Passing to the limit as ε → 0 we deduce that Ĝ2(d2,ε) → Ĝ2(d̄2). Hence, up to a subse-
quence, since d̄2 is a strict local minimum, the only possibility is d2,ε → d̄2.
Hence by (i) of Proposition 3.4.1 we have that Vε + φ̄1 + φ̄2 is a solution of (3.1.1). More-
over, taking into account of (3.1.6), (3.1.10) and (3.1.11), we get that solution obtained
is of the form (3.1.2) and the proof is complete.

We are ready also to prove Theorem 3.1.2. We reason as in [49].

Proof of Theorem 3.1.2. Let uε be a solution of (3.1.1) as in Theorem 3.1.1 and assume
that Φε → 0 uniformly in compact subsets of Ω. We set

ũε(x) :=

(
d1εε

1
N−4

d2
1εε

2
N−4 + |x|2

)N−2
2

−

(
d1εε

3N−10
(N−4)(N−6)

d2
1εε

2 3N−10
(N−4)(N−6) + |x|2

)N−2
2

=

(
1

d1εε
1

N−4 + d−1
1ε ε
− 1
N−4 |x|2

)N−2
2

−

(
1

d2εε
3N−10

(N−4)(N−6) + d−1
2ε ε
− 3N−10

(N−4)(N−6) |x|2

)N−2
2

Then, by Theorem 3.1.1 and by using the assumption on the remainder term Φε we get

uε(x) = αN ũε(x)(1 + o(1)), x ∈ Ω, (3.5.9)

where o(1)→ 0 uniformly on compact subsets of Ω.
We consider the spheres

S1
ε := {x ∈ RN ; |x| = ε

1
N−4 }

and

S2
ε := {x ∈ RN ; |x| = ε

3N−10
(N−4)(N−6) }.

We may fix a compact subset K ⊂ Ω such that Sjε ⊂ K, j = 1, 2 and ε > 0 sufficiently
small.
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For x ∈ S1
ε we get

ũε(x) =

(
1

d1εε
1

N−4 + d−1
1ε ε

1
N−4

)N−2
2

−

(
1

d2εε
3N−10

(N−4)(N−6) + d−1
2ε ε
− N+2

(N−4)(N−6)

)N−2
2

= ε
− N−2

2(N−4)

( 1

d1ε + d−1
1ε

)N−2
2

−

 1

d2εε
2(N−2)

(N−4)(N−6) + d−1
2ε ε
− 8

(N−4)(N−6)

N−2
2


= ε

− N−2
2(N−4)

[(
1

d1ε + d−1
1ε

)N−2
2

+ o(1)

]
as ε→ 0. Hence ũε > 0 on S1

ε for ε small.
Analogously if x ∈ S2

ε then

ũε(x) = −ε−
(3N−10)(N−2)
2(N−4)(N−6)

[(
1

d2ε + d−1
2ε

)N−2
2

+ o(1)

]
as ε→ 0 and hence ũε < 0 on S2

ε for ε small.
Since (3.5.9) holds, this implies that uε > 0 on S1

ε and uε < 0 on S2
ε for ε small.

Then uε has at least two nodal domains Ω1,Ω2 such that Ωj contains the sphere Sjε ,
j = 1, 2.
Next we show that uε has not more than two nodal domains for ε small.
We remark that by (ii) of Proposition 3.4.1 and by Lemmas 3.4.3, 3.4.4 it follows that

Jε(uε)→
2

N
S
N
2 , as ε→ 0 (3.5.10)

where Jε is defined in (3.1.13) and S is the best Sobolev constant for the embedding of
H1

0 (Ω) into Lp+1(Ω), namely

S := inf
u∈H1

0 (Ω)\{0}

∫
Ω |∇u|

2 dx(∫
Ω |u|p+1 dx

) 2
p+1

.

We set cε := infNε Jε, where Nε is the Nehari manifold, which is defined by

Nε :=

{
u ∈ H1

0 (Ω) ;

∫
Ω
|∇u|2 dx =

∫
Ω
|u|p+1 dx+ ε

∫
Ω
u2 dx

}
.

It is easy to see that cε → c0 = 1
N S

N
2 as ε→ 0 and therefore, by (3.5.10), we get that

Jε(uε) < 3cε (3.5.11)

for ε small enough.
We now suppose by contradiction that uε has at least 3 pairwise different nodal domains
Ω1,Ω2,Ω3.
Let χi be the characteristic function corresponding to the sets Ωi.
Then uεχi ∈ H1

0 (Ω) (see [46]). Moreover∫
Ω
|∇(uεχi)|2 dx =

∫
Ω
∇uε∇(uεχi) = −

∫
Ω

∆uε(uεχi) dx

=

∫
Ω
|uε|p(uεχi) dx+ ε

∫
Ω
uε · uεχi dx

=

∫
Ω
|uεχi|p+1 dx+ ε

∫
Ω

(uεχi)
2 dx
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so that uεχi ∈ Nε. Since also uε ∈ Nε we obtain

Jε(uε) =

(
1

2
− 1

p+ 1

)∫
Ω
|uε|p+1 dx

≥
(

1

2
− 1

p+ 1

) 3∑
i=1

∫
Ω
|uεχi|p+1 dx

=

3∑
i=1

Jε(χiuε) ≥ 3cε

contrary to (3.5.11). The contradiction shows that uε has at most two nodal domains for
ε small.
This completes the proof.
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Chapter 4

A nonexistence result for
sign-changing solutions of the
Brezis-Nirenberg problem in low
dimensions

4.1 Introduction

Here we present and prove the result (R4).

In this chapter we study the semilinear elliptic problem:{
−∆u = λu+ |u|2∗−2u in Ω

u = 0 on ∂Ω,
(4.1.1)

where Ω is a smooth bounded domain in RN , N ≥ 3, λ is a positive real parameter and
2∗ = 2N

N−2 is the critical Sobolev exponent for the embedding of H1
0 (Ω) into L2∗(Ω).

This problem is known as “the Brezis-Nirenberg problem” because the first fundamen-
tal results about the existence of positive solutions were obtained by H. Brezis and L.
Nirenberg in 1983 in the celebrated paper [17]. From their results it came out that the
dimension was going to play a crucial role in the study of (4.1.1). Indeed they proved
that if N ≥ 4 there exists a positive solution of (4.1.1) for every λ ∈ (0, λ1(Ω)), λ1(Ω)
being the first eigenvalue of −∆ in Ω with Dirichlet boundary conditions, while if N = 3
positive solutions exists only for λ away from zero. In particular, in the case of the ball
B they showed that there are no positive solutions in the interval (0, λ1(B)

4 ).
Since then several other interesting results were obtained for positive solutions, in

particular about the asymptotic behavior of solutions, mainly for N ≥ 5 because also the
case N = 4 presents more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N ≥ 4 both
for λ ∈ (0, λ1(Ω)) and λ > λ1(Ω) as shown in [20], [24], [6].

The case N = 3 presents even more difficulties than in the study of positive solutions.
In particular in the case of the ball is not yet known what is the least value λ̄ of the
parameter λ for which sign-changing solutions exist, neither whether λ̄ is larger or smaller
than λ1(B)/4. This question, posed by H. Brezis, has been given a partial answer in [14].
However it is interesting to observe that in the study of sign-changing solutions even the
”low dimensions” N = 4, 5, 6 exhibit some peculiarities. Indeed it was first proved by

97
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Atkinson, Brezis and Peletier in [5] that if Ω is a ball there exists λ∗ = λ∗(N) such that
there are no radial sign-changing solutions of (4.1.1) for λ ∈ (0, λ∗). Later this result was
reproved in [1] in a different way.

Moreover for N ≥ 7 a recent result of Schechter and Zou [54] shows that in any
bounded smooth domain there exist infinitely many sign-changing solutions for any λ > 0.
Instead if N = 4, 5, 6 only N + 1 pairs of solutions, for all λ > 0, have been proved to
exist in [24] but it is not clear that they change sign.

Coming back to the nonexistence result of [5] and [1] an interesting question would be
to see whether and in which way it could be extended to other bounded smooth domains.

Since the result of [5] and [1] concerns nodal radial solutions in the ball the first issue
is to understand what are, in general bounded domains, the sign-changing solutions which
play the same role as the radial nodal solutions in the case of the ball. A main property
of a radial nodal solution in the ball is that its nodal set does not touch the boundary
therefore, a class of solutions to consider, in general bounded domains, could be the one
made of functions which have this property.

Moreover, in analyzing the asymptotic behavior of least energy nodal radial solutions
uλ in the ball, as λ→ 0, in dimensionN ≥ 7 (in which case they exist for all λ ∈ (0, λ1(B)),
see [25]) one can prove (see [37]) that their limit profile is that of a ”tower of two bubbles”.
This terminology means that the positive part and the negative part of the solutions uλ
concentrate at the same point (which is obviously the center of the ball) as λ → 0 and
each one has the limit profile, after suitable rescaling, of a ”standard” bubble in RN , i.e.
of a positive solution of the critical exponent problem in RN . More precisely the solutions
uλ can be written in the following way:

uλ = PUδ1,ξ − PUδ2,ξ + wλ, (4.1.2)

where PUδi,ξ, i = 1, 2 is the projection on H1
0 (Ω) of the regular positive solution of

the critical problem in RN , centered at ξ = 0, with rescaling parameter δi and wλ is a
remainder term which converges to zero in H1

0 (Ω).

It is also interesting to observe that, thanks to a recent result of [40], sign-changing
bubble-tower solutions exist also in bounded smooth symmetric domains in dimension
N ≥ 7 for λ close to zero, and they have the property that their nodal set does not touch
the boundary of the domain.

In view of all these remarks we are entitled to assert that in general bounded domains
sign-changing solutions which behave as the radial ones in the ball, at least for λ close
to zero, are the ones which are of the form (4.1.2). Hence a natural extension of the
nonexistence result of [5] and [1] would be to show that, in dimension N = 4, 5, 6, sign-
changing solutions of the form (4.1.2) do not exist in any bounded smooth domain.

This is indeed the main aim of this chapter. Let us also note that in the 3-dimensional
case a similar nonexistence result was already proved in [14]. Indeed, in studying the
asymptotic behavior of low-energy nodal solutions it was shown in [14] that their positive
and negative part cannot concentrate at the same point, as λ tends to a limit value λ̄ > 0.
In the case N ≥ 4 this question was left open in [13]. Therefore our results also complete
the analysis made in these last two papers.

To state precisely our result let us recall that the functions

Uξ,δ(x) = αN
δ
N−2

2

(δ2 + |x− ξ|2)
N−2

2

, δ > 0, ξ ∈ RN , (4.1.3)
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αN := [N(N − 2)]
N−2

4 , describe all regular positive solutions of the problem{
−∆U = U

N+2
N−2 in RN ,

U(x)→ 0, as |x| → +∞.

Then, denoting by PUδ their projection on H1
0 (Ω), and by ‖u‖ :=

∫
Ω |∇u|

2 dx for any
u ∈ H1

0 (Ω), we have:

Theorem 4.1.1. Let N = 4, 5, 6 and ξ a point in the domain Ω. Then, for λ close to
zero, Problem (4.1.1) does not admit any sign-changing solution uλ of the form (4.1.2)

with δi = δi(λ), i = 1, 2, such that δ2 = o(δ1), ‖wλ‖ → 0 and |wλ| = o(δ
−N−2

2
1 ), |∇wλ| =

o(δ
−N

2
1 ) uniformly in compact subsets of Ω, as λ→ 0.

The previous notations mean that |wλ|

δ
−N−2

2
1

, |∇wλ|

δ
−N2
1

converge to zero as λ→ 0 uniformly

in compact subsets of Ω.
The proof of the above theorem is based on a Pohozaev identity and fine estimates

which are derived in a different way in the case N = 4 or N = 5, 6. We would like to
point out that it cannot be deduced by the proof of Theorem 3.1 of [14] which holds only
in dimension three.

Concerning the assumption on the C1-norm in compact subsets of Ω of the remainder
term wλ, whose gradient is only required not to blow up too fast, in Section 4.4 we show
that it is almost necessary.

Note that we do not even require that wλ → 0 uniformly in Ω neither that it remains
bounded as λ → 0, but only a control of possible blow-up of |wλ| and |∇wλ|. We delay
to the next sections some further comments and comparisons with the case N ≥ 7.

Finally in the last section we show that in dimension N ≥ 7 if (uλ) is a family of
solutions of type (4.1.2) with |wλ|, |∇wλ| as in Theorem 4.1.1 and δi = diλ

αi , for some
positive numbers di = di(λ) with 0 < c1 < di < c2, for all sufficiently small λ, and
0 < α1 < α2, then necessarily:

α1 =
1

N − 4
, α2 =

3N − 10

(N − 4)(N − 6)
. (4.1.4)

In other words we prove that if the concentration speeds are powers of λ then neces-
sarily the exponent must be as in (4.1.4). Note that these are exactly the type of speeds
assumed in Chapter 3 to construct the tower of bubbles in higher dimensions.

4.2 Some preliminary results

Lemma 4.2.1. Let Ω be a smooth bounded domain of RN and let (ξ, δ) ∈ Ω × R+. As
δ → 0 it holds:

PUξ,δ(x) = Uξ,δ(x)− αNδ
N−2

2 H(x, ξ) + o(δ
N−2

2 ), x ∈ Ω

C1-uniformly on compact subsets of Ω, where H is the regular part of the Green function
for the Laplacian. Moreover, setting ϕξ,δ(x) := Uξ,δ(x)− PUξ,δ(x), the following uniform
estimates hold:

(i) 0 ≤ ϕξ,δ ≤ Uξ,δ,

(ii) ‖ϕξ,δ‖2 = O
(
( δd)N−2

)
,
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where d = d(ξ, ∂Ω) is the euclidean distance between ξ and the boundary of Ω.

Proof. See [51], Proposition 1 and its proof.

Lemma 4.2.2. Let N ≥ 4 and (uλ) be a family of sign-changing solutions of (4.1.1)
satisfying

‖uλ‖2 → 2SN/2, as λ→ 0.

Then, for all sufficiently small λ > 0, the set Ω \ {x ∈ Ω; uλ(x) = 0} has exactly two
connected components.

Proof. Let us consider the nodal set Zλ := {x ∈ Ω; uλ(x) = 0} and let Ω1 be a connected
component of Ω \ Zλ. Multiplying (4.1.1) by uλ and integrating on Ω1, we get that∫

Ω1

|∇uλ|2 dx ≥ SN/2(1 + o(1)),

where we have used the Sobolev embedding and the fact that λ→ 0 and λ1(Ω1)
∫

Ω1
u2
λ dx ≤∫

Ω1
|∇uλ|2 dx, where λ1(Ω1) is the first Dirichlet eigenvalue of −∆ on Ω1.

Since ‖uλ‖2 → 2SN/2, as λ → 0, then for all sufficiently small λ > 0 we deduce that
Ω \ Zλ can have only two connected components.

We recall now the Pohozaev identity for solutions of semilinear problems which are
not necessarily zero on the boundary. Let D be a bounded domain in RN , N ≥ 3, with
smooth boundary and consider the equation

−∆u = f(u) in D, (4.2.1)

where s 7→ f(s) is a continuos function. Denoting F (s) :=
∫ s

0 f(t) dt, we have:

Proposition 4.2.3. Let u be a C2-solution of (4.2.1), then

∫
D

{
NF (u)− N − 2

2
uf(u)

}
dx

=

∫
∂D

{
N∑
i=1

xiνi

(
F (u)− 1

2
|∇u|2

)
+
∂u

∂ν

N∑
i=1

xiuxi +
N − 2

2
u
∂u

∂ν

}
dσ,

(4.2.2)

where ν denotes the outer normal to the boundary and uxi is the partial derivative
with respect to xi of u.

Proof. For the proof see [64].

The following lemma gives information on the asymptotic behavior of the nodal set
Zλ of solutions of (4.1.1) as λ→ 0.

Lemma 4.2.4. Let N ≥ 4, ξ ∈ Ω and let (uλ) be a family of solutions of (4.1.1), such
that uλ = PUξ,δ1 − PUξ,δ2 + wλ, with δ1 = δ1(λ) and δ2 = δ2(λ) satisfying

δ2 = o(δ1) and ‖wλ‖ → 0, as λ→ 0.

Moreover, assume that wλ satisfies |wλ| = o(δ
−N−2

2
1 ) uniformly in compact subsets of Ω.

Then, for all small ε > 0 there exists λε > 0 such that the nodal set Zλ is contained in
the annular region Ar1,r2(ξ) := {x ∈ Ω; r1 < |x − ξ| < r2}, for all λ ∈ (0, λε), where

r1 := δ
1
2
−ε

1 δ
1
2

+ε

2 , r2 := δ
1
2

+ε

1 δ
1
2
−ε

2 .
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Proof. Without loss of generality we assume that ξ = 0. Let us fix a small ε > 0 and a
compact neighborhood of the origin K. Thanks to the assumptions and Lemma 4.2.1, we

have the following expansion uλ(x) = Uδ1(x)− Uδ2(x) + o(δ
−N−2

2
1 ), which is uniform with

respect to x ∈ K and to all small λ > 0. By definition, for all sufficiently small λ > 0, we
have that Ar1,r2(0) ⊂ K. For x such that |x| = r1 we have:

Uδ1(x) = αN
δ
N−2

2
1

(δ2
1 + δ1−2ε

1 δ1+2ε
2 )

N−2
2

= αN
δ
−N−2

2
1

[1 + ( δ2δ1 )1+2ε]
N−2

2

= αN δ
−N−2

2
1 − αN

N − 2

2
δ
−N−2

2
1

(
δ2

δ1

)1+2ε

+ o

(
δ
−N−2

2
1

(
δ2

δ1

)1+2ε
)
,

and

Uδ2(x) = αN
δ
N−2

2
2

(δ2
2 + δ1−2ε

1 δ1+2ε
2 )

N−2
2

= αN
δ
N−2

2
2 δ

−N−2
2

+(N−2)ε

1 δ
−N−2

2
−(N−2)ε

2

[1 + ( δ2δ1 )1−2ε]
N−2

2

= αN
δ
−N−2

2
1

(
δ2
δ1

)−(N−2)ε

[1 + ( δ2δ1 )1−2ε]
N−2

2

= αN δ
−N−2

2
1

(
δ2

δ1

)−(N−2)ε

− αN
N − 2

2
δ
−N−2

2
1

(
δ2

δ1

)1−Nε
+ o

(
δ
−N−2

2
1

(
δ2

δ1

)1−Nε
)
.

Hence, for x ∈ K, such that |x| = r1, we have

uλ(x) = αN δ
−N−2

2
1

(
1−

(
δ2

δ1

)−(N−2)ε
)

+ o(δ
−N−2

2
1 ) < 0

for all sufficiently small λ > 0. On the other hand, by similar computations (just changing
the sign of ε in every term of the previous equations), for x such that |x| = r2 we have

uλ(x) = αN δ
−N−2

2
1

(
1−

(
δ2

δ1

)+(N−2)ε
)

+ o(δ
−N−2

2
1 ) > 0

for all sufficiently small λ > 0.

From Lemma 4.2.2 and since uλ is a continuos function we deduce that Zλ ⊂ Ar1,r2(0)
for all sufficiently small λ > 0.

4.3 Proof of the nonexistence result

We begin considering the case N = 5, 6 since the case N = 4 requires different estimates.

Proof of Theorem 4.1.1 for N=5,6. Arguing by contradiction let us assume that such
a family of solutions exists and, without loss of generality set ξ = 0. Defining r :=

√
δ1δ2,

we apply the Pohozaev formula (4.2.2) to uλ in the ball Br = Br(0). Since uλ is a solution
of (4.1.1) we set f(u) := λu+ |u|p−1u, where p := 2∗− 1, and hence, using the notation of
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Proposition 4.2.3, we have F (u) = λ
2u

2 + 1
p+1 |u|

p+1. By elementary computations 1 (see
the footnote) we get that the left-hand side of (4.2.2) reduces to

λ

∫
Br

u2
λ dx.

For the right-hand side

∫
∂Br

{
N∑
i=1

xiνi

(
F (uλ)− 1

2
|∇uλ|2

)
+
∂uλ
∂ν

N∑
i=1

xi
∂uλ
∂xi

+
N − 2

2
uλ
∂uλ
∂ν

}
dσ,

since ∂Br is a sphere, we have νi(x) = xi
|x| for all x ∈ ∂Br, i = 1, . . . , N , and hence∑N

i=1 xiνi = |x|. Furthermore since ∂uλ
∂ν = ∇uλ · x|x| and

∑N
i=1 xi

∂uλ
∂xi

=
(
∇uλ · x|x|

)
|x| we

get that

∂uλ
∂ν

N∑
i=1

xi
∂uλ
∂xi

=

(
∇uλ ·

x

|x|

) N∑
i=1

xi
∂uλ
∂xi

=

(
∇uλ ·

x

|x|

)2

|x|,

uλ
∂uλ
∂ν

= uλ

(
∇uλ ·

x

|x|

)
.

Thus (4.2.2) rewrites as

λ

∫
Br

u2
λ dx

=

∫
∂Br

{
|x|
(
F (uλ)− 1

2
|∇uλ|2

)
+

(
∇uλ ·

x

|x|

)2

|x|+ N − 2

2
uλ

(
∇uλ ·

x

|x|

)}
dσ.

(4.3.1)
We estimate the left-hand side of (4.3.1). Let us fix a compact subset K ⊂ Ω; for λ > 0
sufficiently small we get that Br ⊂ K. Thanks to Lemma 4.2.1 we have PUδj = Uδj −ϕδj ,

where ϕδj = O

(
δ
N−2

2
j

)
, for j = 1, 2, and this estimate is uniform for x ∈ K, in particular

1

NF (u)− N − 2

2
uf(u) = N

(
λ

2
u2 +

1

p+ 1
|u|p+1

)
− N − 2

2
(λu2 + |u|p+1)

=

(
N

2
− N − 2

2

)
λu2 +

(
N

p+ 1
− N − 2

2

)
|u|p+1

= λu2.
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for x ∈ Br. Thus, as λ→ 0, we get that

λ

∫
Br

u2
λ dx = λ

∫
Br

(
PUδ1 − PUδ2 + o(δ

−N−2
2

1 )

)2

dx

= λ

∫
Br

(
Uδ1 − Uδ2 − ϕδ1 + ϕδ2 + o(δ

−N−2
2

1 )

)2

dx

= λ

∫
Br

(
Uδ1 − Uδ2 + o(δ

−N−2
2

1 )

)2

dx

= λ

∫
Br

(
U2
δ1 + U2

δ2 − 2Uδ1Uδ2 + o(δ
−N−2

2
1 Uδ1) + o(δ

−N−2
2

1 Uδ2) + o(δ
−N−2

2
1 )

)
dx

= A+B + C +D + E + F.
(4.3.2)

We estimate every term of the previous decomposition.

A = λ

∫
Br

α2
N

δN−2
1

(δ2
1 + |x|2)N−2

dx = α2
Nλ

∫
Br

δ
−(N−2)
1

(1 + |x/δ1|2)N−2
dx

= α2
Nλδ

2
1

∫
Br/δ1

1

(1 + |y|2)N−2
dy ≤ α2

Nλδ
2
1 |Br/δ1|

= cNλδ
2
1

(
δ2
δ1

)N
2
,

where we have set cN := α2
N
ωN
N , ωN is the measure of the (N−1)-dimensional unit sphere

SN−1.

B = λ

∫
Br

α2
N

δN−2
2

(δ2
2 + |x|2)N−2

dx = α2
Nλ

∫
Br

δ
−(N−2)
2

(1 + |x/δ2|2)N−2
dx

= α2
Nλδ

2
2

∫
Br/δ2

1

(1 + |y|2)N−2
dy

= α2
Nλδ

2
2

∫
RN

1

(1 + |y|2)N−2
dy +O

(
λδ2

2

∫ +∞(
δ1
δ2

) 1
2

rN−1

(1 + r2)N−2
dr

)

= a1λδ
2
2 +O

(
λδ2

2

(
δ2
δ1

)N−4
2

)
,

where we have set a1 := α2
N

∫
RN

1
(1+|y|2)N−2 dy. We point out that since N = 5 or N = 6

the function 1
(1+|y|2)N−2 ∈ L1(RN ) while this is not true when N = 4.
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|C| = λ α2
N

∫
Br

δ
N−2

2
1

(δ2
1 + |x|2)

N−2
2

δ
N−2

2
2

(δ2
2 + |x|2)

N−2
2

dx

= λ α2
N

∫
Br/δ1

δ
N+2

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2

(δ2
2 + δ2

1 |y|2)
N−2

2

dy

= λ α2
N

∫
Br/δ1

δ
−N−6

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2((

δ2
δ1

)2
+ |y|2

)N−2
2

dy

≤ λ α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
Br/δ1

1

(1 + |y|2)
N−2

2 |y|N−2
dy

= O

λ(δ2

δ1

)N−2
2

δ2
1

∫ (
δ2
δ1

)1/2

0

rN−1

(1 + r2)
N−2

2 rN−2
dr


= O

(
λ

(
δ2

δ1

)N
2

δ2
1

)
.

|D| = o

λδ−N−2
2

1

∫
Br

δ
N−2

2
1

(δ2
1 + |x|2)

N−2
2

dx


≤ o

(
λ

∫
Br

δ
−(N−2)
1 dx

)

= o

(
λδ2

1

(
δ2

δ1

)N
2

)
.

|E| = o

λδ−N−2
2

1

∫
Br

δ
N−2

2
2

(δ2
2 + |x|2)

N−2
2

dx


≤ o

λδ−N−2
2

1

∫
Br

δ
N−2

2
2

|x|N−2
dx


= o

(
λ

(
δ2

δ1

)N
2

)
.

|F | = o

(
λδ
−N−2

2
1 |Br|

)
= o

(
λ δ1 δ

N
2

2

)
.

Now we estimate the right-hand side of (4.3.1). Remembering that F (uλ) = λ
2u

2
λ +

1
p+1 |uλ|

p+1 we get that the first term is equal to∫
∂Br

|x|
(
λ

2
u2
λ +

1

p+ 1
|uλ|p+1 − 1

2
|∇uλ|2

)
dσ.
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We observe that by definition of r it is immediate to see that

Uδ1(x) = Uδ2(x),

for all x ∈ ∂Br, and hence we have

∫
∂Br

λ

2
u2
λ |x| dσ =

λ

2

∫
∂Br

(
Uδ1 − Uδ2 + o

(
δ
−N−2

2
1

))2

|x| dσ

=
λ

2

∫
∂Br

[
o

(
δ
−N−2

2
1

)]2

|x| dσ

= o

(
λδ
−(N−2)
1

∫
∂Br

|x| dσ
)

= o

(
λ

(
δ2

δ1

)N
2

δ2
1

)
.

As in the previous case we have

1

p+ 1

∫
∂Br

|uλ|p+1|x| dσ =
1

p+ 1

∫
∂Br

|Uδ1 − Uδ2 + o(δ
−N−2

2
1 )|p+1 |x| dσ

=
1

p+ 1

∫
∂Br

|o(δ−
N−2

2
1 )|p+1 |x| dσ

= o

(
δ−N1

∫
∂Br

|x| dσ
)

= o

((
δ2

δ1

)N
2

)
.

To complete the estimate of the first term it remains to analyze

−1

2

∫
∂Br

|∇uλ|2|x| dσ.

As before, writing PUδj = Uδj − ϕδj for j = 1, 2 we have

|∇uλ|2 = |∇Uδ1 −∇Uδ2 −∇ϕδ1 +∇ϕδ2 +∇wλ|2 = |∇Uδ1 −∇Uδ2 +∇Φλ|2,

where we have set Φλ := −ϕδ1 + ϕδ2 + wλ. Hence, we get that

−1

2

∫
∂Br

|∇uλ|2|x| dσ

= −1

2

∫
∂Br

|∇Uδ1 |2 |x| dσ −
1

2

∫
∂Br

|∇Uδ2 |2 |x| dσ +

∫
∂Br

∇Uδ1 · ∇Uδ2 |x| dσ

−
∫
∂Br

∇Uδ1 · ∇Φλ |x| dσ +

∫
∂Br

∇Uδ2 · ∇Φλ |x| dσ −
1

2

∫
∂Br

|∇Φλ|2 |x| dσ

= A1 +B1 + C1 +D1 + E1 + F1.
(4.3.3)
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By elementary computations, for all i = 1, . . . , N , j = 1, 2 we have:

∂Uδj
∂xi

(x) = −αN (N − 2)δ
N−2

2
j

xi

(δ2
j + |x|2)

N
2

,

|∇Uδj |
2 = α2

N (N − 2)2δN−2
j

|x|2

(δ2
j + |x|2)N

. (4.3.4)

Thus, we get that

A1 = −α2
N

(N − 2)2

2

δ
−(N+2)
1[

1 +
(
δ2
δ1

)]N ∫
∂Br

|x|3 dσ

= −α2
N

(N − 2)2

2
ωN

δ
−(N+2)
1[

1 +
(
δ2
δ1

)]N δN+2
2

1 δ
N+2

2
2

= −α2
N

(N − 2)2

2
ωN

(
δ2

δ1

)N+2
2

+O

((
δ2

δ1

)N+4
2

)
.

B1 = −α2
N

(N − 2)2

2

δN−2
2 δ−N1 δ−N2[
1 +

(
δ2
δ1

)]N ∫
∂Br

|x|3 dσ

= −α2
N

(N − 2)2

2
ωN

(
δ2

δ1

)N−2
2

+O

((
δ2

δ1

)N
2

)
.

C1 = α2
N (N − 2)2 δ

N−2
2

1 δ
N−2

2
2 δ−N1 δ

−N
2

1 δ
−N

2
2[

1 +
(
δ2
δ1

)]N
2
[
1 +

(
δ2
δ1

)]N
2

∫
∂Br

|x|3 dσ

= α2
N (N − 2)2ωN

(
δ2
δ1

)N
2[

1 +
(
δ2
δ1

)]N

= α2
N (N − 2)2ωN

(
δ2

δ1

)N
2

+O

((
δ2

δ1

)N+2
2

)
.

Taking into account the assumptions on the remainder term wλ and thanks to Lemma
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4.2.1 we have |∇Φλ| = o(δ
−N

2
1 ), uniformly on ∂Br. Thus we have the following:

|D1| ≤
∫
∂Br

|∇Uδ1 ||∇Φλ||x| dσ

= o

 δ
N−2

2
1

(δ2
1 + δ1δ2)

N
2

δ
−N

2
1

∫
∂Br

|x|2 dσ


= o

 δ
N−2

2
1 δ−N1[

1 +
(
δ2
δ1

)]N
2

δ
−N

2
1

∫
∂Br

|x|2 dσ


= o

((
δ2

δ1

)N+1
2

)
.

|E1| ≤
∫
∂Br

|∇Uδ2 ||∇Φλ||x| dσ

= o

δN−2
2

2 δ
−N

2
1 δ

−N
2

2[
1 +

(
δ2
δ1

)]N
2

δ
−N

2
1

∫
∂Br

|x|2 dσ


= o

((
δ2

δ1

)N−1
2

)
.

And finally the last term of (4.3.3) is trivial:

|F1| = o

((
δ2

δ1

)N
2

)
.

Now we analyze the term ∫
∂Br

(
∇uλ ·

x

|x|

)2

|x| dσ. (4.3.5)

As before we write uλ = Uδ1 − Uδ2 + Φλ and we have(
∇uλ ·

x

|x|

)2

|x| =

(
∇Uδ1 ·

x

|x|

)2

|x|+
(
∇Uδ2 ·

x

|x|

)2

|x| − 2

(
∇Uδ1 ·

x

|x|

)(
∇Uδ2 ·

x

|x|

)
|x|

+2

(
∇Uδ1 ·

x

|x|

)(
∇Φλ ·

x

|x|

)
|x| − 2

(
∇Uδ2 ·

x

|x|

)(
∇Φλ ·

x

|x|

)
|x|

+

(
∇Φλ ·

x

|x|

)2

|x|

(4.3.6)
By elementary computations we see that for j = 1, 2(

∇Uδj ·
x

|x|

)2

|x| = |∇Uδj |
2 |x|,

−2

(
∇Uδ1 ·

x

|x|

)(
∇Uδ2 ·

x

|x|

)
|x| = −2(∇Uδ1 · ∇Uδ2) |x|,
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and for the remaining terms we have

∣∣∣∣ ±2

(
∇Uδj ·

x

|x|

)(
∇Φλ ·

x

|x|

)
|x|
∣∣∣∣ ≤ 2|∇Uδj ||∇Φλ||x|,∣∣∣∣∣

(
∇Φλ ·

x

|x|

)2

|x|

∣∣∣∣∣ ≤ |∇Φλ|2 |x|.

Thus, in order to estimate (4.3.5) it suffices to apply the estimates of the previous
case, and hence we get that

∫
∂Br

(
∇uλ ·

x

|x|

)2

|x| dσ = α2
N (N − 2)2ωN

(
δ2

δ1

)N−2
2

+ o

((
δ2

δ1

)N−2
2

)
.

To complete our analysis of (4.3.1) it remains only to study the term

N − 2

2

∫
∂Br

uλ

(
∇uλ ·

x

|x|

)
dσ.

N − 2

2

∫
∂Br

uλ

(
∇uλ ·

x

|x|

)
dσ

=
N − 2

2

∫
∂Br

(Uδ1 − Uδ2 + Φλ)

[
(∇Uδ1 −∇Uδ2 +∇Φλ) · x

|x|

]
dσ

=
N − 2

2

∫
∂Br

Φλ

(
∇Uδ1 ·

x

|x|

)
dσ − N − 2

2

∫
∂Br

Φλ

(
∇Uδ2 ·

x

|x|

)
dσ

+
N − 2

2

∫
∂Br

Φλ

(
∇Φλ ·

x

|x|

)
dσ

= A2 +B2 + C2.

(4.3.7)

|A2| ≤ α2
N

(N − 2)2

2

δ
N−2

2
1 δ−N1[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

|Φλ| |x| dσ

= o

 δ
N−2

2
1 δ−N1[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

δ
−N−2

2
1 |x| dσ



= o

 δ−N1[
1 +

(
δ2
δ1

)]N
2

δ
N
2

1 δ
N
2

2


= o

((
δ2

δ1

)N
2

)
.
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|B2| ≤ α2
N

(N − 2)2

2

δ
N−2

2
2 δ

−N
2

1 δ
−N

2
2[

1 +
(
δ2
δ1

)]N
2

∫
∂Br

|Φλ| |x| dσ

= o

δN−2
2

2 δ
−N

2
1 δ

−N
2

2[
1 +

(
δ2
δ1

)]N
2

∫
∂Br

δ
−N−2

2
1 |x| dσ


= o

((
δ2

δ1

)N−2
2

)
.

|C2| ≤
(N − 2)

2

∫
∂Br

|Φλ||∇Φλ| dσ

= o

(
δ
−N−2

2
1 δ

−N
2

1 δ
N−1

2
1 δ

N−1
2

2

)

= o

((
δ2

δ1

)N−1
2

)
.

Summing up all the estimates, from (4.2.2), for all sufficiently small λ > 0, we deduce
the following equation

a1λδ
2
2 + o

(
λδ2

2

)
= α2

N

(N − 2)2

2
ωN

(
δ2

δ1

)N−2
2

+ o

((
δ2

δ1

)N−2
2

)
. (4.3.8)

From (4.3.8) we deduce that

a1λδ
N−2

2
1 (1 + o(1)) = α2

N

(N − 2)2

2
ωNδ

N−6
2

2 (1 + o(1)), (4.3.9)

for all sufficiently small λ > 0. Since N = 5, 6 it is clear that (4.3.9) is contradictory, in
fact, passing to the limit as λ → 0, the left-hand side goes to zero while the right-hand
side goes to a constant, when N = 6 and diverges to +∞ when N = 5. The proof is
complete.

Now we turn to the case N = 4

Proof of Theorem 4.1.1 for N=4. Again, without loss of generality we assume that
ξ = 0. We repeat the scheme of the proof for the previous case, but some modification is
needed. In fact, since N = 4, we have to change the estimate of the term B in (4.3.2):

B∗ = λ

∫
Br

α2
4

δ2
2

(δ2
2 + |x|2)2

dx = α2
4λ

∫
Br/δ2

δ−2
2

(1 + |y|2)2
δ4

2 dy

= α2
4λδ

2
2

∫
Br/δ2

1

(1 + |y|2)2
dy = α2

4ω4λδ
2
2

∫ (
δ1
δ2

)
0

r3

(1 + r2)2
dr

It’s elementary to see that∫ (
δ1
δ2

)
0

r3

(1 + r2)2
dr = O

(
log

(
δ1

δ2

))
,
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and hence we have that

B∗ = O

(
λδ2

2 log

(
δ1

δ2

))
. (4.3.10)

Thus, summing up (4.3.10) with the other estimates made in the previous case (in which
we take N = 4), from (4.2.2), we deduce the following asymptotic relation

O

(
λδ2

2 log

(
δ1

δ2

))
+ o

(
λδ2

2 log

(
δ1

δ2

))
= 2α2

4ω4

(
δ2

δ1

)
+ o

(
δ2

δ1

)
. (4.3.11)

It is clear that (4.3.11) gives a contradiction. In fact, dividing each side of (4.3.11) by(
δ2
δ1

)
we have

O

(
λδ1δ2 log

(
δ1

δ2

))
+ o

(
λδ1δ2 log

(
δ1

δ2

))
= 2α2

4ω4 + o (1) . (4.3.12)

Passing to the limit as λ→ 0 in (4.3.12), taking into account that δ2 = o(δ1), we deduce
that 0 = 2α2

4ω4 which is a contradiction.

Remark 4.3.1. In [13] sign-changing solutions uλ of (4.1.1) with low energy were studied,
namely solutions such that ∫

Ω
|∇uλ|2 dx→ 2SN/2.

For this kind of solutions it is not difficult to show (see [13], Theorem 1.1) that there exist
two points a1 = a1(λ), a2 = a2(λ) in Ω (one of them is the global maximum point of |uλ|)
and two positive real numbers δ1 = δ1(λ), δ2 = δ2(λ), such that for N ≥ 4, as λ→ 0, we
have

‖uλ − PUa1,δ1 + PUa2,δ2‖ → 0, δ−1
i d(ai, ∂Ω)→ +∞, for i = 1, 2,

where d(ai, ∂Ω) is the euclidean distance between ai and the boundary of Ω. Hence these
solutions are of the form (4.1.2) but with possibly different concentration points. In [13],
assuming that the concentration speeds of u+

λ and u−λ were comparable, it was proved that
the positive and the negative part of uλ had to concentrate in two different points.

Since here we assume that the concentration speeds are different, our result also com-
pletes the study made in [13].

4.4 About the estimate on the C1-norm of wλ

Here we show that the hypotheses of Theorem 4.1.1 on the C1-norm of the remainder
term wλ are almost necessary. Indeed we have:

Theorem 4.4.1. Let Ω be a bounded open set of RN with smooth boundary, N ≥ 4, and
let ξ ∈ Ω. Let uλ a solution of (4.1.1) of the form

uλ = PUξ,δ1 − PUξ,δ2 + wλ,

with δ2 = o(δ1) as λ→ 0. Assume that the remainder term wλ is uniformly bounded with
respect to λ in compact subsets of Ω. Then for any open subset Ω′′ ⊂⊂ Ω such that ξ ∈ Ω′′

and for all sufficiently small ε > 0, there exists a positive constant C = C(ε,N,Ω′′) such
that

‖wλ‖C1(Ω̄′′) ≤ Cδ
−N−2

2
1 δ

−1+O(ε)
2 ,

for all sufficiently small λ > 0.
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Proof. Without loss of generality we assume that ξ = 0. By definition wλ satisfies the
following:{

−∆wλ = λwλ + λ(PUδ1 − PUδ2) + Upδ2 − U
p
δ1

+ |uλ|2
∗−2uλ in Ω

wλ = 0 on ∂Ω.
(4.4.1)

Let us set fλ := λwλ + λ(PUδ1 − PUδ2) + Upδ2 − U
p
δ1

+ |uλ|2
∗−2uλ. Since wλ and uλ are

smooth, applying the Calderón-Zygmund inequality we deduce that for any p ∈ (1,∞),
for any Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω it holds:

‖wλ‖2,p,Ω′′ ≤ C(|wλ|p,Ω′ + |fλ|p,Ω′), (4.4.2)

where C depends on Ω′, N , p, Ω′′. Thanks to the Sobolev imbedding theorem, for any
ε > 0, if p = N + ε we have that W 2,p(Ω) is continuously imbedded in C1,γ(Ω̄), where
γ = 1 − N

N+ε . Let us consider two open subsets Ω′′, Ω′ of Ω such that 0 ∈ Ω′′ and
Ω′′ ⊂⊂ Ω′ ⊂⊂ Ω. Thanks to (4.4.1) and (4.4.2), in order to estimate ‖wλ‖C1(Ω̄′′) we have
to estimate the following quantities: |wλ|N+ε,Ω′ , |fλ|N+ε,Ω′ .

Thanks to the assumptions on wλ we deduce immediately that |wλ|N+ε,Ω′ = O(1),
uniformly with respect to λ. For the other term we argue as it follows: we set g(s) :=
|s|2∗−2s, Φλ := wλ + ϕ2 − ϕ1, where ϕj := Uδj − PUδj , for j = 1, 2, and we write

|fλ|N+ε,Ω′

≤ λ|wλ|N+ε,Ω′ + λ|PUδ1 |N+ε,Ω′ + λ|PUδ2 |N+ε,Ω′ + |Upδ1 |N+ε,Ω′

+|g(Uδ1 − Uδ2 + Φλ)− g(−Uδ2)|N+ε,Ω′

≤ λ|wλ|N+ε,Ω′ + λ|PUδ1 |N+ε,Ω′ + λ|PUδ2 |N+ε,Ω′ + |Upδ1 |N+ε,Ω′

+|g(Uδ1 − Uδ2 + Φλ)− g(−Uδ2)− g′(−Uδ2)(Uδ1 + Φλ)|N+ε,Ω′ + |g′(−Uδ2)(Uδ1 + Φλ)|N+ε,Ω′

= A+B + C +D + E + F.

The term A has been estimated before, and hence λ|wλ|N+ε,Ω′ = O(λ). For B and C
we use the following estimates:∫

Ω′
αN+ε
N

δ
N−2

2
(N+ε)

j

(δ2
j + |x|2)

N−2
2

(N+ε)
dx = αN+ε

N

∫
Ω′/δj

δ
−N−2

2
(N+ε)+N

j

(1 + |y|2)
N−2

2
(N+ε)

dy

= αN+ε
N δ

4−N
2
N−εN−2

2
j

∫
RN

1

(1 + |y|2)
N−2

2
(N+ε)

dy

+O

(
δ

4−N
2
N−εN−2

2
j

∫ +∞

1/δj

rN−1

(1 + r2)
N−2

2
(N+ε)

dr

)
.

Thus, for all ε > 0 sufficiently small we have

|PUδ|N+ε,Ω′ ≤

∫
Ω′
αN+ε
N

δ
N−2

2
(N+ε)

j

(δ2
j + |x|2)

N−2
2

(N+ε)
dx


1

N+ε

= αNδ
4−N

2
+O(ε)

j

(∫
RN

1

(1 + |y|2)
N−2

2
(N+ε)

dy

) 1
N+ε

+ o

(
δ

4−N
2

+O(ε)

j

)
.
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From this we deduce that B = O(λδ
4−N

2
+O(ε)

1 ), C = O(λδ
4−N

2
+O(ε)

2 ). Concerning the term
D, with similar computations we see that

|PUpδ1 |N+ε,Ω′ ≤

∫
Ω′
α
N+2

2
(N+ε)

N

δ
N+2

2
(N+ε)

1

(δ2
1 + |x|2)

N+2
2

(N+ε)
dx

 1
N+ε

= αpNδ
−N

2
+O(ε)

1

(∫
RN

1

(1 + |y|2)
N+2

2
(N+ε)

dy

) 1
N+ε

+ o

(
δ
−N

2
+O(ε)

1

)
,

and hence D = O(δ
−N

2
+O(ε)

1 ). In order to estimate E we remember that by elementary
inequalities we have |g(u+ v)− g(u)− g′(u)v| ≤ c|v|p, for all u, v ∈ R, for some constant
depending only on p, and hence we get that

E ≤ c||Φλ|p|N+ε,Ω′ = O(1).

For the last term we have the following:

|g′(Uδ2)Uδ1 |
N+ε
N+ε,Ω′ = pN+ε

∫
Ω′
α
N+2

2
(N+ε)

N

δ
4

N−2
N−2

2
(N+ε)

2

(δ2
2 + |x|2)

4
N−2

N−2
2

(N+ε)

δ
N−2

2
(N+ε)

1

(δ2
1 + |x|2)

N−2
2

(N+ε)
dx

= pN+εα
N+2

2
(N+ε)

N

∫
Ω′

δ
−2(N+ε)
2

(1 + |x/δ2|2)2(N+ε)

δ
−N−2

2
(N+ε)

1

(1 + |x/δ1|2)
N−2

2
(N+ε)

dx

≤ pN+εα
N+2

2
(N+ε)

N δ
−N−2

2
(N+ε)

1 δ
−2(N+ε)+N
2

∫
Ω′/δ2

1

(1 + |x/δ2|2)2(N+ε)
dy

≤ pN+εα
N+2

2
(N+ε)

N δ
−N−2

2
(N+ε)

1 δ−N−2ε
2

∫
Ω′/δ2

1

(1 + |y|2)2(N+ε)
dy

= pN+εα
N+2

2
(N+ε)

N δ
−N−2

2
(N+ε)

1 δ−N−2ε
2

∫
RN

1

(1 + |y|2)2(N+ε)
dy

+O

(
δ
−N−2

2
(N+ε)

1 δ−N−2ε
2

∫ +∞

1/δ2

rN−1

(1 + r2)2(N+ε)

)
.

Hence we get that

|g′(Uδ2)Uδ1 |N+ε,Ω′ ≤ pα
N+2

2
N δ

−N−2
2

1 δ
−1+O(ε)
2

(∫
RN

1

(1 + |y|2)2(N+ε)
dy

) 1
N+ε

+ o

(
δ
−N−2

2
1 δ

−1+O(ε)
2

)
.

By the same computations we see that

|g′(Uδ2)Φλ|N+ε,Ω′ = O
(
δ
−1+O(ε)
2

)
.

Thus, we get that

|F | ≤ c(N, p)δ−
N−2

2
1 δ

−1+O(ε)
2 .

Summing up all these estimates, from (4.4.2) and Sobolev imbedding theorem we deduce
that

‖wλ‖C1(Ω̄′′) ≤ Cδ
−N−2

2
1 δ

−1+O(ε)
2 ,

where C is a positive constant depending on ε,N,Ω′′,Ω′.
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A straightforward consequence of the previous theorem is the following result:

Corollary 4.4.2. Under the assumptions of Theorem 4.4.1, for all sufficiently small ε > 0
we have ∫

∂Br

|∇wλ|2|x| dσ ≤ C(ε,N)

(
δ2

δ1

)N−4
2

δ
O(ε)
2 ,

for all sufficiently small λ > 0, where Br is the ball centered at ξ having radius r =
√
δ1δ2.

4.5 Concentration speeds for N ≥ 7

We consider as in the previous sections sign-changing solutions of Problem 4.1.1 which are
of the form uλ = PUδ1,ξ − PUδ2,ξ + wλ, with δ1 = δ1(λ), δ2 = δ2(λ) satisfying δ2 = o(δ1)
as λ→ 0. In addition we assume that δi, for i = 1, 2, is of the form

δi = diλ
αi , (4.5.1)

where di = di(λ) is a strictly positive function such that di → d̄i > 0, as λ → 0, and the
exponents αi satisfy 0 < α1 < α2. Following the ideas contained in [51] and applying the
asymptotic relation (4.3.8), found in the proof of Theorem 4.1.1, we determine precisely
the exponents α1, α2 in the case N ≥ 7. We observe that these speeds are exactly the
same used in [40] to construct solutions of (4.1.1) of the form (4.1.2).

Theorem 4.5.1. Let Ω be a bounded open set of RN with smooth boundary, N ≥ 7, and
let ξ ∈ Ω. Let uλ a solution of (4.1.1) such that uλ is of the form uλ = PUδ1,ξ−PUδ2,ξ+wλ,
where δi, for i = 1, 2, is of the form (4.5.1) with α2 > α1 > 0, wλ ∈ Vλ,ξ, Vλ,ξ is the
subspace of H1

0 (Ω):

Vλ,ξ :=

{
v ∈ H1

0 (Ω); (v,PUδi,ξ)H1
0 (Ω) =

(
v,P

∂Uδi,ξ
∂δi

)
H1

0 (Ω)

= 0, i = 1, 2

}
.

Moreover assume that |wλ| = o(δ
−N−2

2
1 ), |∇wλ| = o(δ

−N
2

1 ), uniformly in compact subsets
of Ω. Then α1 = 1

N−4 , α2 = 3N−10
(N−4)(N−6) .

In order to prove Theorem 4.5.1 we need some preliminary lemmas. Without loss of
generality we assume that ξ = 0. The first one is the following:

Lemma 4.5.2. Let Ω be a bounded open set of RN with smooth boundary and assume
that 0 ∈ Ω, N ≥ 5. Then, as δ → 0, we have∫

∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ = a2δ
N−2 + o

(
δN−2

)
,

for some positive real number a2, depending only on N and Ω.

Proof. We multiply the equation −∆PUδ = Upδ by
∑N

i=1 xi
∂PUδ
∂xi

and we integrate on Ω.
On one hand, integrating by parts we obtain∫

Ω
−∆PUδ

N∑
i=1

xi
∂PUδ
∂xi

dx

=

(
1− N

2

)∫
Ω
|∇PUδ|2 dx−

1

2

∫
∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ

=

(
1− N

2

)∫
Ω
UpδPUδ dx−

1

2

∫
∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ.

(4.5.2)
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On the other hand, we have∫
Ω
Upδ

N∑
i=1

xi
∂PUδ
∂xi

dx = −
N∑
i=1

∫
Ω

(
Upδ + pxiUp−1

δ

∂Uδ
∂xi

)
PUδ dx

= −N
∫

Ω
UpδPUδ dx− p

N∑
i=1

∫
Ω
xiUp−1

δ

∂Uδ
∂xi
PUδ dx.

(4.5.3)

By elementary computations we see that

−
N∑
i=1

xiUp−1
δ

∂Uδ
∂xi

=
N − 2

2
Uδ + δ

∂Uδ
∂δ

,

and hence from (4.5.3) we get that

∫
Ω
Upδ

N∑
i=1

xi
∂PUδ
∂xi

dx

= −N
∫

Ω
UpδPUδ dx+ p

N − 2

2

∫
Ω
UpδPUδ dx+ pδ

∫
Ω
Up−1
δ

∂Uδ
∂δ
PUδ dx

=

(
1− N

2

)∫
Ω
UpδPUδ dx+ pδ

∫
Ω
Up−1
δ

∂Uδ
∂δ
PUδ dx.

(4.5.4)

We analyze the last term of (4.5.4). Applying Lemma 4.2.1 and since it is well known
that ∫

RN
Upδ
∂Uδ
∂δ

dx = 0,

we have

pδ

∫
Ω
Up−1
δ

∂Uδ
∂δ
PUδ dx = pδ

∫
Ω
Up−1
δ

∂Uδ
∂δ
Uδ dx− pαNδ

N
2

∫
Ω
Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

+o

(
δ
N
2

∫
Ω
Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

)
= −pδ

∫
RN\Ω

Upδ
∂Uδ
∂δ

dx− pαNδ
N
2

∫
Ω
Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

+o

(
δ
N
2

∫
Ω
Up−1
δ

∂Uδ
∂δ

H(x, 0) dx

)
,

(4.5.5)
where H denotes, the regular part of the Green function for the Laplacian. By definition
it is easy to see that∣∣∣∣∣−pδ

∫
RN\Ω

Upδ
∂Uδ
∂δ

dx

∣∣∣∣∣ ≤ αp+1
N

N + 2

2
δ

∫
RN\Ω

δ
N+2

2

(δ2 + |x|2)
N+2

2

δ
N−2

2

∣∣|x|2 − δ2
∣∣

(δ2 + |x|2)
N
2

dx

≤ αp+1
N

N + 2

2

∫
RN\Ω

δN+1

|x|N+2

∣∣|x|2 − δ2
∣∣

|x|N
dx

= O
(
δN+1

)
.

(4.5.6)
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Moreover, by the usual change of variable and applying the mean value theorem, we
have

pαNδ
N
2

∫
Ω
Up−1
δ

∂Uδ
∂δ

H(x, 0) dx = pαp+1
N δ

N−2
2

∫
Ω

δ2

(δ2 + |x|2)2

δ
N−2

2

(
|x|2 − δ2

)
(δ2 + |x|2)

N
2

H(x, 0) dx

= pαp+1
N δ

N−2
2

∫
Ω

δ2

δ4
(
1 + |xδ |2

)2 δN−2
2 δ2

(
|xδ |

2 − 1
)

δN
(
1 + |xδ |2

)N
2

H(x, 0) dx

= pαp+1
N δN−2

∫
Ω/δ

1

(1 + |y|2)2

(
|y|2 − 1

)
(1 + |y|2)

N
2

H(δy, 0) dy

= pαp+1
N δN−2

∫
Ω/δ

1

(1 + |y|2)2

(
|y|2 − 1

)
(1 + |y|2)

N
2

H(0, 0) dy

+ O

(
δN−1

∫
Ω/δ

1

(1 + |y|2)2

(
|y|2 − 1

)
(1 + |y|2)

N
2

(∇H(ηy, 0) · y) dy

)

= pαp+1
N δN−2

∫
RN

1

(1 + |y|2)2

(
|y|2 − 1

)
(1 + |y|2)

N
2

H(0, 0) dy

+ O

(
δN−2

∫ +∞

1/δ

rN−1

(1 + r2)2

(
r2 − 1

)
(1 + r2)

N
2

H(0, 0) dr

)

+ O

(
δN−1

∫
Ω/δ

1

(1 + |y|2)2

(
|y|2 − 1

)
(1 + |y|2)

N
2

(∇H(ηy, 0) · y) dy

)

= pαp+1
N H(0, 0)δN−2

∫
RN

(
|y|2 − 1

)
(1 + |y|2)

N+4
2

dy +O(δN−1).

(4.5.7)
Finally from (4.5.2)-(4.5.7) we get that∫

∂Ω

(
∂PUδ
∂ν

)2

(x · ν) dσ = 2pαp+1
N H(0, 0)δN−2

∫
RN

(
|y|2 − 1

)
(1 + |y|2)

N+4
2

dy +O(δN−1),

and the proof is complete.

Another preliminary lemma is the following:

Lemma 4.5.3. Under the assumptions of Theorem 4.5.1, as λ→ 0, we have∣∣∣∣∣
∫
∂Ω

(
∂wλ
∂ν

)2

(x · ν) dσ

∣∣∣∣∣ = O(λ2δ4
1) + o(δN−2

1 ).

Proof. The first step is the following:∣∣∣∣∣
∫
∂Ω

(
∂wλ
∂ν

)2

(x · ν) dσ

∣∣∣∣∣ ≤
∫
∂Ω

(
∂wλ
∂ν

)2

|x · ν| dσ

≤
∫
∂Ω

(
∂wλ
∂ν

)2

|x| dσ

≤ c(Ω)

∫
∂Ω

(
∂wλ
∂ν

)2

dσ.
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Thus we need to estimate

∫
∂Ω

(
∂wλ
∂ν

)2

dσ. Let us consider a smooth function ζ : RN → R

such that 0 ≤ ζ ≤ 1, ζ(x) = 0 for |x| ≤ 1
2 and ζ(x) = 1 for |x| ≥ 1. We set η(x) :=

ζ( x
d(0,∂Ω)). It’s elementary to see that ηwλ is a solution of the following problem{

−∆(ηwλ) = ληwλ + gλ in Ω

ηwλ = 0 on ∂Ω,
(4.5.8)

where gλ = η
(
λPUδ1 − λPUδ2 − U

p
δ1

+ Upδ2 + |uλ|2
∗−2uλ

)
−2∇η ·∇wλ−wλ∆η. Since ηwλ

is a solution of (4.5.8), the following inequality holds (see Appendix C in [51]):∣∣∣∣ ∂∂ν (ηwλ)

∣∣∣∣2
2,∂Ω

=

∣∣∣∣∂wλ∂ν

∣∣∣∣2
2,∂Ω

≤ C|gλ|22N
N+1

,Ω
, (4.5.9)

where C is a positive constant depending only on Ω and N . Hence, in order to complete

the proof, it suffices to estimate the L
2N
N+1 (Ω)-norm of gλ. We point out that, thanks to

the multiplication by the cut-off function η, what occurs around the origin does not count
anymore and this will make the boundary estimate sharper. By elementary inequalities
we get that

|gλ| ≤ c(p)η
(
λUδ1 + λUδ2 + Upδ1 + Upδ2 + |wλ|p

)
+ 2|∇η||∇wλ|+ |∆η||wλ|.

Thus we have to estimate the following quantities:

λ|ηUδj | 2N
N+1

,Ω, |ηU
p
δj
| 2N
N+1

,Ω, for j = 1, 2, and |η|wλ|p| 2N
N+1

,Ω, | |∇η||∇wλ| | 2N
N+1

,Ω, | |∆η||wλ| | 2N
N+1

,Ω.

This is a long computation already made by O. Rey (see Appendix C of [51]), in the case
of positive solutions of the form uλ = PUδ + wλ. In that paper it is shown that

|ηUpδj |
2
2N
N+1

,Ω
= o

(
δN−2
j

)
, |ηλUδj |

2
2N
N+1

,Ω
= O

(
λ2δN−2

j

)
,

∣∣∣|∇η||∇wλ|∣∣∣22N
N+1

,Ω
= O

(
‖wλ‖2

)
,
∣∣∣|∆η||wλ|∣∣∣22N

N+1
,Ω

= O
(
‖wλ‖2

)
. (4.5.10)

Moreover, by the same computations of Appendix C in [51] we see that∣∣∣η|wλ|p∣∣∣22N
N+1

,Ω
= o(δN−2

1 ).

In order to complete the proof we need to estimate the quantities in (4.5.10), and hence
we have to study the asymptotic behavior of ‖wλ‖. An estimate for ‖wλ‖ is contained in
[13]; in particular, by the proof of Lemma 3.3 of [13] we see that

‖wλ‖ ≤ c

[∑
i

(
λδ

(N−2)/2
i + δN−2

i

)
+ ε12(log ε−1

12 )(N−2)/N

]
, (4.5.11)

where ε12 is defined by ε12 :=
(
δ1
δ2

+ δ2
δ1

)(2−N)/2
. Since δ2

δ1
→ 0 as λ→ 0 we see that

ε12 =

(
δ2

δ1

)N−2
2

+ o

(
δ2

δ1

)N−2
2

.
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Moreover by the assumptions on the growth of ∇wλ and wλ, and thanks to (4.3.8) we get
that ε12 is of the same order as λδ2

2 , hence, since δ2 = o(δ1) as λ→ 0, we have that

ε12(log ε−1
12 )(N−2)/N = o(λδ2

1).

Thus, from (4.5.11), and since N ≥ 7, we deduce that for all sufficiently small λ it holds

‖wλ‖ ≤ c(δN−2
1 + λδ2

1). (4.5.12)

Summing up all these estimates we deduce the desired relation.

Lemma 4.5.4. Let Ω be a bounded open set of RN with smooth boundary and assume
that 0 ∈ Ω, N ≥ 5. Then, as δ → 0, we have∫

∂Ω

(
∂PUδ
∂ν

)2

dσ = O(δN−2).

Proof. We consider a smooth function η : RN → R having the same properties as the one
considered in the previous proof. By elementary computation we see that ηPUδ satisfies{

−∆(ηPUδ) = −(∆η)PUδ −∇η · ∇PUδ + ηUpδ in Ω

ηPUδ = 0 on ∂Ω.
(4.5.13)

Since ηPUδ is a solution of (4.5.13), the following inequality holds:∣∣∣∣ ∂∂ν (ηPUδ)
∣∣∣∣2
2,∂Ω

=

∣∣∣∣∂PUδ∂ν

∣∣∣∣2
2,∂Ω

≤ C
∣∣∣|∆η|PUδ + |∇η · ∇PUδ|+ ηUpδ

∣∣∣2
2N
N+1

,Ω
, (4.5.14)

where C is a positive constant depending only on Ω and N . In order to complete the
proof we have to estimate the quantities: |(∆η)PUδ| 2N

N+1

2
,Ω

, |∇η ·∇PUδ|22N
N+1

,Ω
, |ηUpδ |

2
2N
N+1

,Ω
.

Using the same computations made by O. Rey in [51], and since η ≡ 0 in a neighborhood
of the origin we get that

|ηUpδ |
2
2N
N+1

,Ω
= o

(
δN−2

)
,
∣∣∣|∇η||∇PUδ|∣∣∣22N

N+1
,Ω

= O
(
‖PUδ‖2Ω∩supp(∇η)

)
,∣∣∣|∆η||PUδ|∣∣∣22N

N+1
,Ω

= O
(
‖PUδ‖2Ω∩supp(∇η)

)
.

(4.5.15)

Applying Lemma 4.2.1 and taking account of (4.3.4), since ∇η ≡ 0 in an open neighbor-
hood of the origin, we have

‖PUδ‖2Ω∩supp(∇η) =

∫
Ω∩supp(∇η)

|∇(Uδ − ϕδ)|2 dx

≤
∫

Ω∩supp(∇η)
|∇Uδ|2dx+ 2

∫
Ω∩supp(∇η)

|∇Uδ||∇ϕδ|dx

+

∫
Ω∩supp(∇η)

|∇ϕδ|2dx

= O(δN−2).

(4.5.16)

From (4.5.14), (4.5.15) and (4.5.16) we deduce that∣∣∣∣∂PUδ∂ν

∣∣∣∣2
2,∂Ω

= O(δN−2),

and the proof is complete.
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Proof of Theorem 4.5.1. We apply the Pohozaev’s identity to uλ = PUδ1−PUδ2 +wλ.
Since uλ is a solution of Problem 4.1.1 we have

λ

∫
Ω
u2
λ dx =

1

2

∫
∂Ω

(
∂uλ
∂ν

)2

(x · ν) dσ. (4.5.17)

For the left-hand side of (4.5.17), as in the previous proofs we set Φλ := wλ−ϕδ1 +ϕδ2 ,
where ϕδj = Uδj − PUδj for j = 1, 2, and we have

λ

∫
Ω
u2
λ dx = λ

∫
Ω

(PUδ1 − PUδ2 + wλ)2 dx

= λ

∫
Ω

(Uδ1 − Uδ2 + Φλ)2 dx

= λ

∫
Ω

(
U2
δ1 + U2

δ2 − 2Uδ1Uδ2 + 2Uδ1Φλ − 2Uδ2Φλ + Φ2
λ

)
dx

= A+B + C +D + E + F.

(4.5.18)

In order to estimate A and B we use the following

λ

∫
Ω
U2
δj
dx = λ α2

N

∫
Ω

δ
−(N−2)
j

(1 + |x/δj |2)N−2
dx = λ α2

N

∫
Ω/δj

δ
−(N−2)
j

(1 + |y|2)N−2
δNj dy

= λ α2
Nδ

2
j

∫
RN

1

(1 + |y|2)N−2
dy +O

(
λδ2

j

∫ +∞

1/δj

rN−1

(1 + r2)N−2
dr

)
= λ α2

Nδ
2
j

∫
RN

1

(1 + |y|2)N−2
dy +O

(
λδN−2

j

)
.

(4.5.19)

We point out that since we are assuming that N ≥ 5, the first integral in the last line
of (4.5.19) converges. To estimate C we apply the following

λ

∫
Ω
Uδ1Uδ2 dx = λ α2

N

∫
Ω/δ1

δ
N+2

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2

(δ2
2 + δ2

1 |y|2)
N−2

2

dy

= λ α2
N

∫
Ω/δ1

δ
−N−6

2
1

(1 + |y|2)
N−2

2

δ
N−2

2
2((

δ2
δ1

)2
+ |y|2

)N−2
2

dy

≤ λ α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
Ω/δ1

1

(1 + |y|2)
N−2

2 |y|N−2
dy

= λ α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
RN

1

(1 + |y|2)
N−2

2 |y|N−2
dy

+ O

(
λ

(
δ2

δ1

)N−2
2

δ2
1

∫ +∞

1/δ1

rN−1

(1 + r2)
N−2

2 rN−2
dr

)

= λ α2
N

(
δ2

δ1

)N−2
2

δ2
1

∫
RN

1

(1 + |y|2)
N−2

2 |y|N−2
dy +O

(
λ

(
δ2

δ1

)N−2
2

δN−2
1

)
.

(4.5.20)

In order to estimate D, E, F , thanks to (4.5.12), Hölder’s inequality and Poincaré’s
inequality we get that ∫

Ω
w2
λ ≤ c1‖wλ‖2 ≤ c2(δN−2

1 + λδ2
1)2. (4.5.21)
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We observe that, by Lemma 4.2.1 and since N ≥ 5, we have |ϕδj |2,Ω = O

(
δ
N−2

2
j

)
= o(δj).

Thus, by definition of Φλ and (4.5.21) we deduce that∫
Ω

Φ2
λ dx =

∫
Ω

(wλ + ϕδ2 − ϕδ1)2 dx = o(δ2
1), (4.5.22)

and hence
F = o(λδ2

1). (4.5.23)

Moreover, by the same computations of (4.5.19) we have
∫

Ω U
2
δj

= a1δ
2
j + o(δ2

j ), for some

positive constant a1. Hence by Hölder’s inequality and (4.5.22) we get that

|D| = o(λδ2
1),

and
|E| = o(λδ1δ2) = o(λδ2

1).

We analyze now the right-hand side of (4.5.17): by definition we have

1

2

∫
∂Ω

(
∂uλ
∂ν

)2

(x · ν) dσ =
1

2

∫
∂Ω

(
∂PUδ1
∂ν

− ∂PUδ2
∂ν

+
∂wλ
∂ν

)2

(x · ν) dσ

=
1

2

∫
∂Ω

(
∂PUδ1
∂ν

)2

(x · ν) dσ +
1

2

∫
∂Ω

(
∂PUδ2
∂ν

)2

(x · ν) dσ

−
∫
∂Ω

∂PUδ1
∂ν

∂PUδ2
∂ν

(x · ν) dσ +

∫
∂Ω

∂PUδ1
∂ν

∂wλ
∂ν

(x · ν) dσ

−
∫
∂Ω

∂PUδ2
∂ν

∂wλ
∂ν

(x · ν) dσ +
1

2

∫
∂Ω

(wλ
∂ν

)2
(x · ν) dσ

= A1 +B1 + C1 +D1 + E1 + F1.
(4.5.24)

Thanks to Lemma 4.5.2 we have:

A1 =
a2

2
δN−2

1 + o(δN−2
1 ),

B1 =
a2

2
δN−2

2 + o(δN−2
2 ).

(4.5.25)

Thanks to Lemma 4.5.4 and applying Hölder inequality we get that

|C1| ≤
∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣ ∣∣∣∣∂PUδ2∂ν

∣∣∣∣ |x · ν| dσ
≤ diam(∂Ω)

(∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣2 dσ

) 1
2
(∫

∂Ω

∣∣∣∣∂PUδ2∂ν

∣∣∣∣2 dσ

) 1
2

= O

(
δ
N−2

2
1 δ

N−2
2

2

)
.

(4.5.26)

Thanks to (4.5.9), Lemma 4.5.3, Lemma 4.5.4 and applying Hölder inequality we get that

|D1| ≤
∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣ ∣∣∣∣∂wλ∂ν

∣∣∣∣ |x · ν| dσ
≤ diam(∂Ω)

(∫
∂Ω

∣∣∣∣∂PUδ1∂ν

∣∣∣∣2 dσ

) 1
2
(∫

∂Ω

∣∣∣∣∂wλ∂ν

∣∣∣∣2 dσ

) 1
2

= o
(
λδ2

1

)
+ o

(
δN−2

1

)
.

(4.5.27)
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|E1| ≤
∫
∂Ω

∣∣∣∣∂PUδ2∂ν

∣∣∣∣ ∣∣∣∣∂wλ∂ν

∣∣∣∣ |x · ν| dσ
≤ diam(∂Ω)

(∫
∂Ω

∣∣∣∣∂PUδ2∂ν

∣∣∣∣2 dσ

) 1
2
(∫

∂Ω

∣∣∣∣∂wλ∂ν

∣∣∣∣2 dσ

) 1
2

= o
(
λδ2

1

)
+ o

(
δN−2

1

)
.

(4.5.28)

|F1| =
1

2

∫
∂Ω

(
∂wλ
∂ν

)2

(x · ν) dσ = o
(
λδ2

1

)
+ o

(
δN−2

1

)
. (4.5.29)

Summing up all the estimates, from (4.5.17) and since δ2 = o(δ1) as λ → 0, we deduce
the following equality:

a1λδ
2
1 + o(λδ2

1) = a2δ
N−2
1 + o

(
δN−2

1

)
. (4.5.30)

Since δj is of the form (4.5.1), we deduce that α1 must satisfy the equation

1 + 2α1 = (N − 2)α1,

and hence we get that α1 = 1
N−4 . Moreover, from (4.3.8) we deduce that α1, α2 must

satisfy the following algebraic equation

1 + 2α2 =
N − 2

2
(α2 − α1). (4.5.31)

Thus, combining this result with (4.5.31), we get that α2 = 3N−10
(N−4)(N−6) and the proof is

complete.
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