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Notations

N is the set of natural numbers including 0.
N* is the set of positive natural numbers, namely N* = N\ {0}.
R is the set of real numbers.
R™T is the set of positive real numbers, namely RT = {z € R; = > 0}.
RY is the product R x --- x R (it will be always understood that N € N*).
—_———
N times
Rf is the product R x --- x RT.
—_—————
N times
If Q is an open set! in RY and « is a multi-index, namely a = (ay,- -+, ay), with
dlely
B -0a N
is the order of a. If N = 1 we use the notation v/, v” to denote, respectively, the
first and second order derivatives.

a; € N, we denote by D%u the partial derivative where |a| = ZZ]\L 1

Vu denotes the gradient of u, namely Vu := ((%Ll, S %).
N 52y
A denotes the Laplace operator, namely Au := 92
o
i=1 %

C*(Q), k € N, denotes the set of functions u : Q — R having all derivatives, of order
less or equal to k, continuous in 2.

C*(Q), k € N, denotes the set of functions u € C¥(Q) all of whose derivatives of

order less or equal to k£ have continuous extensions to 2.

C3°(€2) denotes the set of all infinitely-differentiable functions of compact support
in €.

We denote by [Q| the Lebesgue measure of Q and by [,u dx the integral of a
function w in €.

LP(Q), for 1 < p < 400, denotes the usual Lebesgue space endowed with the norm

lulp.o = ([ |ulP dz) P We will write also |ul, when the set of integration is
understood.

L*>(Q) is the Lebesgue space of essentially bounded functions endowed with the
norm |uleo,0 = esssupq |u|. We will write also |u|o, when € is understood.

'From now on it will be understood that Q is an open set in RY.
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HE(Q) denotes the usual Sobolev space endowed with the norm

1/2
lullo = (/ Vul? dx) .
Q

We will write also ||u|| when © is understood.

H'(2) denotes the usual Sobolev space endowed with the norm

1/2
lullog = </ uf? d:r—i—/ V2 da:> .
Q Q

We will write also ||u||;2 when € is understood.

DL2(RYN) denotes the completion of C§°(RY) with respect to the norm

1/2
g = </ V2 dx) .
RN

If X, Y are Banach spaces, we denote by £(X,Y") the space of bounded linear maps
from X to Y.



Introduction

In this PhD thesis we give contributions to some questions regarding the asymptotic anal-
ysis, the existence and nonexistence of sign-changing solutions for the Brezis—Nirenberg
problem.

The Brezis—Nirenberg problem is the following semilinear elliptic problem:

(0.0.1)

~Au=Xu+|u>2u in Q
u=20 on 0f2,

where Q ¢ R is a smooth bounded domain, N > 3, X is a real constant and 2* = J\%—]f

2
is the critical Sobolev exponent for the embedding of HE(Q) into LP(Q).

Solutions to Problem 0.0.1 corresponds to critical points of the functional

1 A 1 *
Ii(u) = 5 /Q \Vul|? dz — 2/Qu2 dx — o /Q lul*" dz. (0.0.2)

Since the embedding Hg(Q) < L2 () is not compact there are serious difficulties when
trying to find critical points of (0.0.2) with the standard variational methods.

We point out that weak solutions of (0.0.1) are classical solution. This is a conse-
quence of a well-known lemma of Brezis and Kato (see for instance [58]).

Problem 0.0.1 is connected to some variational problems in geometry and physics
where lack of compactness also occurs. The most known example is the Yamabe’s prob-
lem but also (0.0.1) is related to the problem of the existence of extremal functions for
isoperimetric inequalities (Hardy—Littlewood—Sobolev inequalities, trace inequalities, see
[42], [43]), as well as the existence of non-minimal solutions for Yang-Mills functionals
(see [61]). For more examples see [17] and the references therein.

For these reasons Problem 0.0.1 has been widely studied over the last decades, and
many results for positive solutions have been obtained.

The first existence result for positive solutions of (0.0.1) has been given by Brezis and
Nirenberg in their celebrated paper [17], where, in particular the crucial role played by
the dimension was enlightened. In fact they proved that:

(i) if N > 4 positive solutions exist for every A € (0, A1), where A\; = A1(Q) is the first
eigenvalue of —A in H{(Q).

(ii) if N = 3 there exists A\, = A«(€2) > 0 such that positive solutions exist for every
A€ (A, A1).

vii
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When Q = B C R3 is a ball they also proved that \.(B) = \1(B)/4 and a positive
solution of (0.0.1) exists if and only if A € (%, A1). Moreover, for any N > 3, there are
no positive solutions of (0.0.1) if A > Ay, and, if Q is strictly star-shaped, Problem (0.0.1)
has no solutions for A < 0. Hence, from now on we will assume that A\ > 0.

Concerning the case of sign-changing solutions of (0.0.1), several existence results
have been obtained if NV > 4. In this case one can get sign-changing solutions for every
A€ (0,A(2)), or even A > A1(Q2) (see [20, 23, 28, 29, 6, 24, 25, 54]). More precisely,
Capozzi, Fortunato and Palmieri in [20] showed that for N =4, A > 0 and A € o(—A)
(the spectrum of —A in H}(€2)) Problem 0.0.1 has a nontrivial solution. The same holds
if N >5 for all A > 0 (see also [35]).

The case N = 3 presents the same difficulties enlightened before for positive solutions
and even more. In fact, it is not yet known, when Q = B is a ball in R3, if there are
non radial sign-changing solutions of (0.0.1) when A is smaller than A\.(B) = A\;(B)/4. A
partial answer to this question posed by H. Brezis has been given in [14].

However, even in the case N = 4,5,6, some strange phenomenon appears for what
concerns radial sign-changing solutions in the ball. Indeed it was first proved by Atkinson,
Brezis and Peletier in [6] that for N = 4,5, 6 there exists A* = \*(V) such that there are
no sign-changing radial solutions of (0.0.1) for A € (0,\*). Later this result was proved
in [1] in a different way.

From the nonexistence result of [6] (and [1]) some question arise:

(Q1) Is it possible to extend, in some way, this result to other bounded domains? In
which sense? What are the solutions which play the same role as the radial nodal solu-
tions in the case of the ball?

Some related results which have connections with these questions were later obtained
by Ben Ayed, El Mehdi and Pacella who analyzed the asymptotic behavior of low energy
sign-changing solutions of (0.0.1) in general bounded domains 2 in dimension N = 3 (see
[14]) and N > 4 (see [13]) as the parameter A tends to the limit value for which nodal
solutions exist, which is a A > 0, if N =3, and A =0, if N > 4.

More precisely, they studied solutions uy of (0.0.1) whose energy converges to 25V /2
(S is the best Sobolev constant in for the embedding of D%?(RY) into L?"(RY)) and
proved that:

(i) if N = 3 the positive part uj and the negative part u, blow up and concentrate
at two different points of , as A — ), having each one the asymptotic profile of a
standard "bubble” in R? (i.e. of a positive solution of the equation —AU = U? ~! in
R3), where ) is the infimum of the values of A for which nodal low-energy solutions
exist.

(ii) if N > 4 and the "concentration speeds” of u} and u) are comparable (i.e. their
L*°-norms blow up with the same rate as A — 0) then again uj and v, concentrate
at two different points of €2, as A — 0, having each one the asymptotic profile of a
standard "bubble” in RY.

Since in ii) it was assumed that uj and u) blow up with the same rate, other questions
arise:
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(Q2) If N > 4 do there exist low-energy nodal solutions such that uj and u, concen-
trate and blow-up at the same point, as A — 07 In the affirmative case what is their limit
profile? Is there a difference between the case N = 4,5,6 and the case N > 77

In this PhD thesis we give answers to (Q1) and (Q2).

First, in order to understand what kind of results we could expect, we have ana-
lyzed the asymptotic behavior of sign-changing radial solutions in the ball with two nodal
regions, as A goes to some limit value obtained by studying the associated ordinary dif-
ferential equation. In view of the result of Atkinson, Brezis and Peletier the limit value
of the parameter \ is a strictly positive real number \ = S\(N), if N =4,5,6 and it is 0,
if N > 7, according with the existence result of Cerami, Solimini and Struwe (see [25]).

The results obtained from the analysis of radial sign-changing solutions in the ball,
are the following:

(R1) If N > 7, and (uy) is a family of radial sign-changing solutions of least energy (i.e.
such that |uy|| — 2572, as A — 0) then the positive part and the negative part, u}
and u) , concentrate and blow-up (with different speeds) at the same point, which is the
center of the ball, as A — 0, and each limit profile is that of a “standard bubble” 2 in R¥.
In other words the whole solution u) looks like a “tower of two bubbles”.

We point out that this result is the first existence result of “bubble towers” solutions
for the Brezis—Nirenberg problem, and it is contained in the paper [37].

In order to understand, in the low dimensions N = 4,5,6, what kind of asymptotic
profile we could expect for radial sign-changing solutions, by studying the associated dif-
ferential equation (as done by [8, 6]) and reasoning as in [37], we have:

(R2) If 3 < N <6, and (uy) is a family of radial sign-changing solutions of (1.1.2) in
the unit ball By of RY, having two nodal regions, such that uy(0) > 0, and denoting by
A = A(N) the limit value of the parameter A, then:

i) if N =3, then A = 9\ (B)), where \{(Bj) is the first eigenvalue of —A in H} (B,),
1 0
and u;\r concentrates and blows-up at the center of the ball having the limit profile
of standard bubble in R3, while u, converges to zero uniformly, as A — A.

(ii) if N = 4,5, then A = A\1(Bj) and u;\r , uy behave as in the case N = 3.

iii) if N =6, then \ € (0, \;(B)) and u, behaves as for N = 3 while u converges to
(iii) ) ) A > A g
the unique positive radial solution of (0.0.1) in By, as A — A.

In particular, for these dimensions, there cannot exist radial sign-changing solutions in
the ball having the asymptotic shape of a “tower of two bubbles”.

ZFor pu > 0, 2o € RY, we call “standard bubble” the function U, ,, : RY — R defined by

Uy INON = 2)p2 N/
wo,u(w) = 12+ |z — xo‘z}(zvf2)/2
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These results are collected in the paper [39].

The proof of the results (R1), (R2) are quite technically complicated and often rely
on the radial character of the problem. We would like to stress that the presence of the
lower-order term Au makes our analysis quite different from that performed in [15] for
low-energy sign-changing solution of an almost critical problem.

We also point out that, since we consider nodal solutions, our results cannot be ob-
tained by following the proofs for the case of positive solutions ([7], [8],[36], [52]).

In view of (R1) is natural to ask whether solutions of (0.0.1) which behave like the
radial ones exist in other bounded domains. In [40], we answer positively this question
at least in the case of symmetric domains of RY, for N > 7. More precisely, applying a
variant of of the Lyapunov-Schmidt reduction method, we show that:

(R3) If N > 7 and 2 C RY is any bounded smooth domain which is symmetric with

respect to x1,...,zx and such that the center of symmetry 0 € €0, then, for any A
sufficiently small, there exist sign-changing solutions of Problem 0.0.1 of the form
N-2 N-2
dy AV ’ do \ \NToD N5 ’
LAANT 2,
U)\(J,’) = ay —5— — 5 3N—10 + ), (003)
d? AV 4 [zf? d2 N -0N=8) 4 |2

where d; y — d;, for i = 1,2, as A — 0 and ®, is such that ®y — 0 in H(Q), as A — 0.

We point out that if one applies directly the finite dimensional reduction method,
looking for a sign-changing bubble tower solution of the form 0.0.3 for Problem 0.0.1,
then, when solving the associated finite dimensional problem one finds that the reduced
functional has not a critical point (see Section 1 of Chapter 3). In order to overcome
this difficulty, we have introduced a new idea based on the splitting of the remainder
term in two parts. Usually the remainder term is found by solving an infinite dimensional
problem, called “the auxiliary equation”, here, we look for a remainder term which is the
sum of two remainder terms, of different orders. These two functions are found by solving
a system of two equation, which is obtained by splitting the the auxiliary equation in
an appropriate way. At the end, when solving the finite dimensional problem, we get a
reduced functional which has a critical point.

We also observe that the symmetry assumption for €2 is due only in order to simplify
the computations which however, even in the symmetric context, are long and tough.
But there is no reason, a priori, for which the previous result should not hold in general
domains. Hence, reasoning as in [48], we believe that the symmetry assumption could be
removed.

We observe that, in (R3), the assumption N > 7 on the dimension is not only
technically crucial but it also is indeed necessary. In fact, by applying a Pohozaev’s
identity and fine estimates, we prove the following result:

(R4) If N = 4,5,6, for any smooth bounded domain Q C RY, for any ¢ € €, then, there
cannot exist solutions uy of Problem 0.0.1 of the form

uy = Ue s, — U5, + P,
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where §; = §;(\) for i = 1,2, are such that 61 — 0 and J = 0(d1), as A — 0, and D)
N

is such that 5 — 0 in H(Q), |®5| = 0(6; 2 ), [V®,| = 0o(6; ?) uniformly in compact
subsets of {2 as A — 0.

This result is hence the counterpart of the nonexistence theorem of Atkinson, Brezis
and Peletier if we think “bubble tower” solutions as the solutions which play the role, in
general bounded domains, of the radial ones in the ball. This result is contained in [38].

In view of (R2) and in order to complete our analysis it would be interesting, for
the dimensions N = 4,5, 6, to show that sign-changing solutions of Problem 0.0.1, having
an asymptotic profile similar to that of radial ones in the ball, exist in general bounded
domains. This is the content of a paper in preparation [41] in which we deal with the
cases N = 4,5. By applying a variant of the Lyapunov-Schmidt reduction method we
prove the following;:

(R5) Let Q be a smooth bounded domain, which is symmetric with respect to x1,...,xx
and such that the center of symmetry 0 € 2, then:

(i) if N = 4 there exists ¢y such that such that for any A\ € (A (2), A1(Q2) + €g) there
exists a sign-changing solution uy of (0.0.1) of the form

1
e 2 dl,)\

1
ux(z) = |ay —e MM (A= A)dgrer | + Pa(x) (0.0.4)

__2
IR + faf

where ay = 2v/2, d;  is a positive function depending on A such that d; y — cfj > 0,
for j = 1,2, as A — A\ and @, is such that ®y — 0 in H(Q), as A — ]

(ii) if N = 5 there exists €y such that such that for any A € (A1(Q2) — €9, A\1(£2)) there
exists a sign-changing solution u)y of (0.0.1) of the form

3

3
A — \)2d 2
( 1 )2 1,A ) _ (Al —)\)%d&)\el _|_(I))\(gj) (005)

UNT) = |
)\( ) 5 ((Al_)\)gdi)\—’_hjp

where a5 = 15v/15, d;  is a positive function depending on A such that d; y — c{j >
0, for j =1,2 as A — A], and @, is such that ®y — 0 in H(2), as A — \{.

We point out that (R5) agrees with the results of Arioli, Gazzola, Grunau, Sassone
[4] and Gazzola, Grunau [32]. In fact, analyzing radial sign-changing solutions of (0.0.1)
in the unit ball By, having two nodal regions, they proved that if N = 4 then A;(Bj)
is reached from above, while, if N = 5 then \(Bj) is reached from below. Actually, in
the case N = 4, Arioli, Gazzola, Grunau, Sassone in [4] proved more: they proved that
there are no radial sign-changing solutions in the ball for Problem 0.0.1 when A < A\;(Bjy).
Hence, in view of this result, it would be interesting to prove that, for a generic bounded
domain (2, sign-changing solutions of the form (0.0.4), cannot exist for A < \;(€2).

Moreover, we observe that the principal part of the solutions obtained in (R5) have
a negative part which converges in compact subsets of 2\ {0} (up to multiplication by a
vanishing function, as A — A1) to the first (normalized, positive) eigenfunction of —A in
HE(Q). Hence, if we could prove that the remainder term ®) is sufficiently small also in
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the L*°-norm, as A — A1, we could exhibit a family of solutions which verifies a conjecture
made by Atkinson, Brezis and Peletier in [6]. Indeed, they conjectured that, for N = 4,5,
if (uy) is a family of radial sign-changing solutions of (0.0.1) in the unit ball of RY, with
two nodal regions and such that uy(0) > 0, then, u) converges in compact subsets of
B\ {0}, as A — A, and up to multiplication to a vanishing function as A\ — Ay, to
the first eigenfunction of —A in the unit ball. We believe that this could be achieved by
working with weighted norms, as done in [27, 49].

The remaining case N = 6 has been only partially investigated and it is very interest-
ing. In fact, N = 6, is a sort of “borderline” dimension, since the corresponding solutions
have an asymptotic profile which is the middle between the distinct behaviors seen in
(R1) and (R2). This peculiarity is reflected also on the technical side since, even in the
radial context, there are difficulties when trying to get asymptotic results. By the way,
in [39] we have given a characterization of the limit value A\ which seems to be promising.

We conclude observing that these “bubble tower” solutions, found in (R1), (R3), have
interest also for the associated parabolic problem, since, as proved in [44], [22], [30], they
induce a peculiar blow-up phenomenon for the initial data close to them.

We now briefly describe the content of the thesis. We refer to the first section of each
chapter for a detailed description and for the statements of our results.

e Chapter 1 is devoted to the proof of (R1) (see Theorem 1.1.1) and other related
asymptotic results concerning radial sign-changing solutions for (0.0.1), when N > 7,
as A — 0. In particular, in Theorem 1.1.2 we determine the blow-up rate of ||u) ||cc,
as A — 0, and get an asymptotic relation between ||uj\|oo, A and the node r).
Moreover, in Theorem 1.1.3, we show that, up to a positive constant, u) converges,
in CL (B1\{0}), as A — 0, to G(-,0), where G = G(z,y) is the Green function of

loc

A for the unit ball By of RV,

e Chapter 2 is devoted to the proof of (R2) (see Theorem 2.3.2, Theorem 2.4.7,
Theorem 2.5.1) and other related asymptotic results concerning radial sign-changing
solutions for (0.0.1), with two nodal regions in the ball, when 3 < N < 6, as
A — A, where A = A\(N) > 0 is some limit value obtained by analyzing the ordinary
differential equation. We also determine (if N = 3,4, 5) and estimate (if N = 6) the
limit energy of these solutions (see Theorem 2.3.2 and Theorem 2.5.1 and Corollary
2.4.9). In Proposition 2.4.2 and in Theorem 2.5.1 we prove that there cannot exist,
in the low dimensions N = 3,4, 5, 6, radial sign-changing solutions of Problem 0.0.1,
in the ball, having the asymptotic shape of a “tower of two bubbles” (see also Remark
2.4.3). In Theorem 2.4.8 we give a characterization of the limit value A for N = 6.

e Chapter 3 is devoted to the proof of (R3) (see Theorem 3.1.1). Moreover, in
Theorem 3.1.2, under some additional assumptions, we prove that the solutions
obtained in Theorem 3.1.1, have the property that their nodal set does not touch
the boundary of 2, as A — 0.

e Chapter 4 is devoted to the proof of (R4) (see Theorem 4.1.1). In Theorem 4.5.1
we prove that if N > 7 when considering sign-changing bubble-tower solutions of
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Problem 0.0.1, then the concentration speeds found in (R3) are the only possible
ones.
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Chapter 1

Asymptotic analysis for radial
sign-changing solutions of the
Brezis-Nirenberg problem, N > 7.

1.1 Introduction

Here we present and prove the result (R1).

Let N >3, A > 0 and Q be a bounded open subset of RV with smooth boundary. We
consider the Brezis—Nirenberg problem

{—Au =u+ [u> 2u in Q (11.1)

u =0 on 0f2,
where 2* = 2 is the critical Sobolev exponent for the embedding of H{ () into LP(1).
Problem (1.1.1) has been widely studied over the last decades, and many results for
positive solutions have been obtained.

The first existence result for positive solutions of (1.1.1) has been given by Brezis and
Nirenberg in their classical paper [17], where, in particular, the crucial role played by the
dimension was enlightened. They proved that if N > 4 there exist positive solutions of
(1.1.1) for every A € (0, A1(2)), where A1(£2) denotes the first eigenvalue of —A on £ with
zero Dirichlet boundary condition. For the case N = 3, which is more delicate, Brezis
and Nirenberg [17] proved that there exists A.(€2) > 0 such that positive solutions exist
for every A € (A«(2), A1(£2)). When Q = B is a ball, they also proved that \.(B) = #

and a positive solution of (1.1.1) exists if and only if A € (’\1513) ,A1(B)). Moreover, for
more general bounded domains, they proved that if  C R3 is strictly star-shaped about
the origin, there are no positive solutions for A close to zero. We point out that weak
solutions of (1.1.1) are classical solution. This is a consequence of a well-known lemma of
Brezis and Kato (see for instance Appendix B of [58]).

The asymptotic behavior for N > 4, as A\ — 0, of positive solutions of (1.1.1), mini-
mizing the Sobolev quotient, has been studied by Han [36], Rey [52]. They showed, with
different proofs, that such solutions blow up at exactly one point, and they also determined
the exact blow-up rate as well as the location of the limit concentration points.

Concerning the case of sign-changing solutions of (1.1.1), several existence results
have been obtained if N > 4. In this case, one can get sign-changing solutions for every
A€ (0,A1(£2)), or even A > A\(2), as shown in the papers of Atkinson-Brezis—Peletier [6],

3



4 CHAPTER 1. ASYMPTOTIC ANALYSIS OF RADIAL NODAL SOL., N > 7

Clapp-Weth [24], Capozzi-Fortunato-Palmieri [20]. The case N = 3 presents the same
difficulties enlightened before for positive solutions and even more. In fact, differently
from the case of positive solutions, it is not yet known, when Q = B is a ball in R3, if
there are sign-changing solutions of (1.1.1) when A is smaller than \.(B) = A\(B)/4. A
partial answer to this question posed by H. Brezis has been given in [14].

The blow-up analysis of low-energy sign-changing solutions of (1.1.1) has been done
by Ben Ayed-El Mehdi—Pacella [14], [13]. In [14] the authors analyze the case N = 3.
They introduce the number defined by

M) := inf{X € R"; Problem (1.1.1) has a sign-changing solution wuy,

with [[ur[3 = Mux 3o < 2572},

where [luy|3 = [, |Vurl? da, \u/\@,Q = [ |uxl* dz and S is the best Sobolev constant
for the embedding of DV2(RY) into L?>"(R™). To be precise, they study the behavior
of sign-changing solutions of (1.1.1) which converge weakly to zero and whose energy
converges to 25%/2 as A — A(Q2). They prove that these solutions blow up at two different
points a1, @z, which are the limit of the concentration points a1, ay 2 of the positive and
negative part of the solutions. Moreover, the distance between ay; and ay 2 is bounded
from below by a positive constant depending only on 2 and the concentration speeds of
the positive and negative parts are comparable. This result shows that, in dimension 3,
there cannot exist, in any bounded smooth domain {2, sign-changing low-energy solutions
whose positive and negative part concentrate at the same point.

In higher dimensions (N > 4), the same authors, in their paper [13], describe the
asymptotic behavior, as A\ — 0, of sign-changing solutions of (1.1.1) whose energy con-
verges to the value 25™/2. Even in this case, they prove that the solutions concentrate
and blow up at two separate points, but they need to assume the extra hypothesis that the
concentration speeds of the two concentration points are comparable, while in dimension
three, this was derived without any extra assumption (see Theorem 4.1 in [14]). They
also describe in [13] the asymptotic behavior, as A — 0, of the solutions outside the limit
concentration points proving that there exist positive constants mi, ms such that

)\72%:28%\ — m1G(x,a1) — meG(x,az) in ClQOC(Q —{ay,as}), if N > 5,

||u/\Hoou)\ — mlG(a:,dl) — mgG(x,Ezg) in C?OC(Q — {al,fbg}), if N = 4,

where G(z,y) is the Green’s function of the Laplace operator in . So for N > 4 the
question of proving the existence of sign-changing low-energy solutions (i.e., such that
|ully converges to 25V/2 as A\ — 0) whose positive and negative part concentrate and
blow up at the same point was left open.

To the aim to contribute to this question as well as to describe the precise asymptotic
behavior of radial sign-changing solutions, we consider the Brezis—Nirenberg problem in
the unit ball By, i.e.,

_ 2% -2,
{—Au—)\u—i- |u|* ~u in By, (112)
u=20 on 0B,

It is important to recall that Atkinson-Brezis—Peletier [5], Adimurthi-Yadava [1]
showed, with different proofs, that for N = 3,4,5,6 there exists A* = A*(N) > 0 such
that there is no radial sign-changing solution of (1.1.1) for A € (0, \*). Instead, they do
exist if N > 7, as shown by Cerami—Solimini-Struwe in their paper [25]. In Proposition
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1.2.1 (see also Remark 1.2.2) we recall this existence result and get the limit energy of
such solutions as A — 0.

In view of these results, we analyze the case N > 7 and A — 0. More precisely, we
consider a family (u)) of least energy sign-changing solutions of (0.0.1). It is easy to see
that u) has exactly two nodal regions. We denote by ry € (0,1) the node of uy = uy(r)
and, without loss of generality, we assume uy(0) > 0, so that uj\r is different from zero in
B,, and u), is different from zero in the annulus A,, := {z € RY; r\ < |z| < 1}, where
u;\r := max(uy,0), u, := max(0, —uy) are, respectively, the positive and the negative part
of Uuy-

We set My = luflloes M = llux llsos B 1= 525, o = MY s, pa = M.
Moreover, for > 0, zg € RV, let Uy, , be the function Uy, , RN — R defined by

[NV — 2)2) N2
W7+ 1w — w272

Uz, u(x) := (1.1.3)
Proposition 1.3.1 states that both M, ; and M), _ diverge, u) weakly converge to 0 and
||u)\ 1%, — — SN/2 as A — 0. The main results of this chapter are the following:

Theorem 1.1.1. Let N > 7 and (uy) be a family of least energy radial sign-changing
solutions of (1.1.2) (i.e. ||u)\||B1 — SN2 as X — 0 ) and uy(0) > 0. Consider the

S N N VR W R B ST
rescaled functions i, (y) := T U (Mer) in By, and ), (y) := T Ua (Mf) in

A, , where By, := MB +Brys Ay, = Mf,_Am- Then:

(i) af — Uy, in CE.(RN) as X — 0, where Uy, is the function defined in (1.1.3) for
uw=+/N(N—2).

(if) @y — U,y in C2 (RN —{0}) as A — 0, where Uy, is the same as in (i).
From this theorem, we deduce that the positive and negative parts of u) concentrate at
the origin. Moreover, as a consequence of the preliminary results for the proof of Theorem

1.1.1, we show that M)  and M) _ are not comparable, i.e., AA? + — 400 as A — 0, which

implies that the speed of concentration and blowup of u)\ and u, are not the same, and
hence, the asymptotic profile of u) is that of a tower of two "bubbles.” Indeed, we are able
to determine the exact rate of M) _ and an asymptotic relation between M) ., M, _ and
the radius 7y (see also Remark 1.5.5).

Theorem 1.1.2. As A — 0 we have the following:
(1) M V72N = (),

(ii) Mi‘fﬁA — ¢(N),

2 25
(lll) W — ].7
>\ + 5Y

where ¢(N) = %, aa(N) == [7Us 7 (s)sV lds, eo(N) =2 [77 UG, (5)s™ ~ds, p =

N(N —-2).
The last result we provide in this chapter is about the asymptotic behavior of the

N—-2
functions u) in the ball Bj, outside the origin. We show that, up to a constant, A~ 2¥N=8u,
converges in C (B1 —{0}) to G(z,0), where G(x,y) is the Green function of the Laplace
operator in Bj.
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Theorem 1.1.3. As A — 0 we have
NI Sy > §(N)G(x,0) in CL (B — {0}),

where G(x,y) is the Green function for the Laplacian in the unit ball, ¢(N) is the constant
N—-2

defined by ¢(N) := chQ(N)#, wy 18 the measure of the (N —1)-dimensional unit sphere
c1(N)2ZN—8

SN=1 and ¢1(N), c2(N) are the constants appearing in Theorem 1.1.2.

We point out that in order to analyze the behavior of the negative part u, , which is
defined in an annulus, we prove a new uniform estimate (see Propositions 1.4.7), which is
of its own interest.

For the sake of completeness, let us mention that our results, as well as those of [15],
show a big difference between the asymptotic behavior of radial sign-changing solutions
in dimension N > 2 and N = 2. Indeed, in this last case, the limit problems as well as
the limit energies of the positive and negative part of solutions are different (see [34]).

We conclude observing that with similar proofs, it is possible to extend our results to
the case of radial sign-changing solutions of (1.1.2) with k£ nodal regions, & > 2, and such
that HU)\HQB1 — kSN/2 as X\ — 0. As expected, the limit profile will be that of a tower
of m bubbles with alternating signs. Moreover, with the same methods applied here, we
can deduce analogous asymptotic relations as those of Theorem 1.1.2.

The chapter is divided into 6 sections. In Sect. 1.2, we give some preliminary results
on radial sign-changing solutions. In Section 1.3, we prove estimates for solutions with
two nodal regions and, in particular, prove the new uniform estimate of Proposition 1.4.7.

In Sect. 1.4, we analyze the asymptotic behavior of the rescaled solutions and prove
Theorem 1.1.1. Section 1.5 is devoted to the study of the divergence rate of ||ui||so, as
A — 0 and to the proof of Theorem 1.1.2. Finally, in Sect. 1.6, we prove Theorem 1.1.3.

1.2 Preliminary results on radial sign-changing solutions

In this section, we recall or prove some results about the existence and qualitative prop-
erties of radial sign-changing solutions of the Brezis—Nirenberg problem (1.1.2).
We start with the following:

Proposition 1.2.1. Let N > 7, k € NT and X € (0,\1), where \y = \1(By) is the first
eigenvalue of —A in H&(Bl). Then, there exists a radial sign-changing solution uy ) of
(1.1.2) with the following properties:

(i) we(0) >0,

(ii) wg,n has exactly k nodal regions in By,

(iii) Iy(upn) = 1 (fBl Vg2 — Aug.a|? da:) — 3 f gl de = £SN2 a5 X 5 0,
where S is the best constant for the Sobolev embedding of DV2(RY) into L?" (RN).

Proof. The existence of radial solutions of (1.1.2) satisfying (i) and (ii) is proved in [25].
It remains only to prove (iii). To do this, we need to introduce some notations and recall
some facts proved in [25] and [17]. Let k € Nt and 0 =19 < r; < ... <7rp =1 any
partition of the interval [0, 1], we define the sets Q; := B,, = {z € By;|z| < r1} and, if
k>2 Q5:={x€Byrj_1 <l|z|<rj}forj=2,... k.
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Then, we consider the set

M\ = {u € H&,md(Bl); there exists a partition 0 =rg <r; < ... <rp =1
such that: u(r;) = 0,for 1 < j <k, (=1)7"tu(z) > 0,u # 0 in Q;, and

/ (Ve = w3 = ;") do =0, forlgjgk},
2

where H},..(B1) is the subspace of the radial functions in H}(B;) and u; is the function
defined by u; = u Xa, where Xo, denotes the characteristic function of €2;. Note that

for any k € N* we have My, \ # 0, so we define

ck(N) = /\i/lr}i I (u).

In [25] the authors prove, by induction on k, that for every k € NT there exists
upx € My such that Iy(uxy) = cx(A\) and uy ) solves (1.1.2) in By. Moreover, they
prove that

1
cri1(N) < (M) + NSN/Q' (1.2.1)

Note that for k& =1 uy ) is just the positive solution found in [17], since by the Gidas,
Ni and Nirenberg symmetry result [33] every positive solution is radial, and from [2] or
[56] we know that positive solutions of (1.1.2) are unique.

To prove (iii) we argue by induction. Since ¢1(0) = £S5V /2, by continuity we get that
c1(A) = £ SN2 as XA — 0, so that (iii) holds for k = 1.

Now assume that cg(A) — %SN/Q, and let us to prove that cxy1(A) = In(ups1,0) —
b+l GN/2

N

Let us observe that cy1(A) > (k+1)c1(N). In fact, w := ug41,\ achieves the minimum
for I over My1 ., so that, by definition, it has £ + 1 nodal regions and w; := WX,
belongs to H&,md(Bl) forall j =1,...,k+ 1. Since w € M} ) we have, depending on
the parity of j, that one between w and w; is not zero and belongs to M x, we denote
it by w;. Then, I)(w;) > c1(A) for all j =1,...,k+ 1 and hence

k+1
G (V) = D) = 30 D) > (k+ Der(V).
j=1

Combining this with (1.2.1) we get
1
k(A + 52 > (V) = (B + Der(V).
Since by induction hypothesis cx(\) — %SN/z as A — 0 and we have proved that ¢;(\) —
%SN/Q we get that cx1(\) — ELSN/2 and the proof is concluded. O

Remark 1.2.2. Let k € Nt and (uy) be a family of solutions of (1.1.2), satisfying (iii)
of Proposition 1.2.1, then |lu||h, = fB1 |Vuy|? dz — kSN2, as A — 0.

This comes easily from Proposition 1.2.1, and the fact that u) belongs to the Nehari
manifold N associated with (1.1.2), which is defined by

Ny = {u € Hy(By); ||ullB, — Nul3 g, = [ul3- 5,}-

The first qualitative property we state about any radial sign-changing solution wu)
of (1.1.2) is that the global maximum point of |uy| is located at the origin, which is a
well-known fact for positive solutions of (1.1.2), as consequence of [33].
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Proposition 1.2.3. Let uy be a radial solution of (1.1.2), then we have |ux(0)| = ||t co-

Proof. Since uy = uy(r) is a radial solution of (1.1.2), then it solves

{u;’ N=Lyf + Ay + [ua[* “2uy =0 in (0,1) 122)

wh(0) =0, up(1) =0.

Multiplying the equation by u) we get

ufuh, + Myl + Jun* Pupul, = — " (u))> <0

We rewrite this as ()2 ) e

d [ (u) uy o |uy

— A2 0.

dr [ p ARt
Which implies that the function

(uy)’ uf | fual*
E(r):= o
(r) 5 T A 5 T o
is not increasing. So E(0) > E(r) for all r € (0,1), where E(0) = A% (2)) + |“*(22)‘2 :
Assume that ro € (0, 1) is the global maximum for |uy|, so we have )\ (19) = 0, |ux(r0)| =
lualloo and E(r) = Alwalie 4 Il
Now we observe that, for all A > 0, the function g(z) := %1’2 + 2%1:2*, defined in

R* U {0}, is strictly increasing; thus, we have FE(rg) > E(0) and hence, E(rg) = E(0).
Since g is strictly increasing, we get |ux(0)| = |ux(ro)| = ||ur]|c and we are done. O

A consequence of the previous proposition is the following:

Corollary 1.2.4. Assume uy is a nontrivial radial solution of (1.1.2). If 0 < r; <rs < 1
are two points in the same nodal region such that [ux(r1)| < |ux(r2)|, u)(r1) ( 9) =
then necessarily r1 = ro.

Proof. Assume by contradiction r; < rg. By the assumptions and since the function
g(x) = %:c2 + 5-2% is a strictly increasing function (in R* U {0}), we have E(r) =
g(lux(r1)]) < g(Jux(re)|) = E(r2). But, as proved in Proposition 1.2.3, E(r) is a decreasing
function, so necessarily F(r1) = g(Jux(r1)]) = g(lua(r2)|) = E(r2) from which we get
|ux(r1)| = |ux(re)|. Since ri,ro are in the same nodal region from |uy(r1)| = |ux(r2)| we
have uy(r1) = ux(r2), and thus, there exists r, € (r1,r2) such that )\ (r.) = 0, and, since
E(r) is a decreasing function, we have E(r1) > E(r.) > E(re). From this, we deduce
g(lux(r1)]) = g(lur(r«)]) = g(lur(r2)|), and hence, uy(ry) = ux(rs) = ux(re). Therefore,
u) must be constant in the interval [r1,r2] and, being a solution of (1.1.2), it must be zero
in that interval. In fact, since (1.1.2) is invariant under a change of sign, we can assume
that uy = ¢ > 0. Then, by the strong maximum principle, u) must be zero in the nodal
region to which r1, o belong. This, in turn, implies that uy is a trivial solution of (1.1.2)
which is a contradiction. O

1.3 Asymptotic results for solutions with 2 nodal regions

1.3.1 General results

Let (uy) be a family of least energy radial, sign-changing solutions of (1.1.2) and such
that uy(0) > 0.
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We denote by 7\ € (0,1) the node, so we have uy > 0 in the ball B,, and u) < 0 in
the annulus A,, := {z € RV;r\ < |z < 1}. We write u} to indicate that the statements
hold both for the positive and negative part of uy.

Proposition 1.3.1. We have:
(i) HufHQB1 = fBl |Vuf|2 dr — SN/Q, as A — 0,

N 2N_
(ii) |uf|g*731 = fB1 \ufﬂN*? de — SN2 as X — 0,
(iii) uy — 0, as A — 0,
(iv) My 4 = I%axuj — 400, M) _ = max u, — +00, as A — 0.

1 1

Proof. This proposition is a special case of Lemma 2.1 in [13]. O

Let us recall a classical result, due to Strauss, known as "radial lemma”:

Lemma 1.3.2 (Strauss). There exists a constant ¢ > 0, depending only on N, such that
for allu € H! ,(RY)

1/2
[lull 13
lu(z)| < ¢ W e. on RY, (1.3.1)
where || - |12 is the standard H'-norm.
Proof. For the proof of this result see for instance [63]. O

We denote by sy € (0,1) the global minimum point of uy = uy(r) (the uniqueness of
sy follows from Corollary 1.2.4), so we have 0 < 7\ < sy, u) (sx) = M) _. The following
proposition gives an information on the behavior of r) and sy as A — 0.

Proposition 1.3.3. We have sy — 0 (and so ry — 0 as well), as A — 0.

Proof. Assume by contradiction that sy, > so for a sequence \,, — 0 and for some
0 < sgp < 1. Then, by Lemma 1.3.2 we get

lusnllis s luanlis s,

My, = ’,U’)\m(SAm)| <c (N-1)/2 = ¢ (N-1)/2 °
S S
Am 0

where ¢ is a positive constant depending only on N. Since ]Vu,\B’Bl —25N/2 as X = 0
it follows that M), _ is bounded, which is a contradiction. ]

We recall another well-known proposition:

Proposition 1.3.4. Let u € C2(RY) be a solution of

—Au = |ul>2u in RN
(1.3.2)
u—0 as |y| — +oo.

2 1

2, RN 2% |U

Assume that u has a finite energy Ip(u) == 1|Vu|
these assumptions:

g gy and u satisfies one of
(i) wu is positive (negative) in RV,
(ii) w is spherically symmetric about some point.

Then, there exist . > 0, xog € RY such that u is one of the functions Uzy,us defined in
(1.1.3).

Proof. A sketch of the proof can be found in [25], Proposition 2.2. O
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1.3.2 An upper bound for u, uy

In this section, we recall an estimate for positive solutions of (1.1.2) in a ball and we
generalize it to get an upper bound for ) in the annulus 4,, = {z € RV;r) < |z < 1}.

Proposition 1.3.5. Let N > 3 and u be a solution of

N+2
—Au=Mu+uN-2 in Bp
u>0 in Bgr (1.3.3)
u=20 on O0BRg,

for some positive \. Then, u(z) < w(x,u(0)) in Br, where

_ c_lf(c) —(N-2)/2
w(z, c) .—c{l—l—N(N_z)]m\z} ,

and f :[0,400) — [0,4+00) is the function defined by f(y) := Ay + y%

Proof. The proof is based on the results contained in the papers of Atkinson and Peletier
[7], [8]. Since the solutions of (1.3.3) are radial (see [33]) we consider the ordinary differ-
ential equation associated with (1.3.3) which, by some change of variable, can be turned
into an Emden—Fowler equation. For it is easy to get the desired upper bound. All details
are given in the next Proposition 1.3.7. 0

Remark 1.3.6. The previous proposition gives an upper bound for uj In fact, taking

into account that uj is defined and positive in the ball B,, and u;\r(()) = M, 4+, we have

_ —(N-2)/2
My f(M)\,-f-)‘ |2} w2

uy (x) < My {1 + TN(N=2) *
4 —(N-2)2 (1.3.4)
A4 M
= My Q1+ ——" |z

for all x € B,,.

Proposition 1.3.7. Let uy be as in Sect. 1.3.1 and € € (0,%52). There exist § = 6(¢) €
(0,1), 6(¢) = 1 as € — 0 and a positive constant X = \(€), such that for all X € (0, ) we
have

M= (M —(N-2)/2
uy (1) < My - {1 - Wc@w} , (1.3.5)

for all x € Agsy, where Asy = {z € RYN; 67 YNgy < || < 1}, c(e) = 525¢, sy is the
global minimum point of uy, My _ = u, (sx) and f is defined as in Proposition 1.3.5.

Proof of Proposition 1.8.7. Let vy the function defined by vy (s) := u) (s+sy), s € (0,1 —
s)). Since u), is a positive radial solution of (1.1.2) then vy is a solution of

S+S)\

o+ Fpvh A HeX =0 in (0,1 s)) (1.3.6)
v3(0) =0, vr(1—sy)=0. h
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To eliminate A from the equation We make the following change of variable, p := VA (s+
sy), and we define wy(p) := A\~ = ’L))\(% —8)) = )\_N42u)\ (ﬁ) By elementary compu-
tation, we see that w) solves

. 2*_1 .
{wx#ﬂ;lw;wwm =0 in (VAsn V) (137)

wh (VA sy) =0, wy(vA)=0.

N-2
Making another change of variable, precisely t := (%) , and setting y)(t) =

wy ( N2 ) we eliminate the first derivative in (1.3.7). Thus, we get

tN=2

Yty oyt

, (N72)N—2 _ 0 (N72)N—2 _ O
(585 -0 (2585) -0

-1_ in ((N2)N—2 (N—2)N—2

N-1 _o)N—
where k = 2 > 2. To simplify the notation, we set ¢ ) := %, ton 1=
N—-2 N_ A
(]]\\,7227)1\]2, In = (tin, t2n) and vy :=ya(tan) = A~ = M)\_ Observe also that 2* — 1 =
A2
2k — 3

We write the equation in (1.3.8) as y} + =k (y\ + yik 3) = 0, which is an Emden-
Fowler type equation 3" + ¢ *h(y) = 0 with h(y) := y + y?*=3. The first step to prove
(1.3.5) is the following inequality:

(A Ry Ry R oA Fyah(ya) <0, forall t € Iy, (1.3.9)

tk_ly)fk. Since ¥4+t *h(yy) = 0 we get

To prove (1.3.9) we differentiate v}
YA T A (R = DR = (R = 1)(5)%
= P g T A (R = DR = (R - 1))y

— *t_lyi k i 1 k— 2+y)\(k3*1)tk 2 1 k (k?*].)(yl)\)2tk_1y;k

= —2(k— 1)th=2y* <2( )t1 "R+ 3 2% 1)751 FyRh 2_%yky&+%t(y&)2)

= —2(k — 1)tk—2y ( st Uh(YA) — SUavh + %t(y&)z) :

Now, we add and subtract the number ﬁté_}\kwh(ﬁp\) inside the parenthesis, so we
have

(yxtk ly)\ )
= —2(k - 1)ty " <2(k1_1)t1_ky)\h(y>\) — At + 5t (Wh)? — ﬁté}kwh(%»
—th= 23/)\ té)\ YAR(7)-

Setting Lx(t) == gregyt' Funh(yn) — 39a0h + 5t (1A)% — gpqytan mh(1) we get
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(WAt Ty )+ Py Mk () = =20k = DMy ML),

If we show that Ly(t) > 0 for all ¢ € I, we get (1.3.9). By definition it is immediate to ver-
ify that Ly(t2,») = 0, also by direct calculation, we have L/ (t) = ﬁtl_kyi\ [yah/ (yx) —
(2k —3)h(yy)] = Q(kl_l)tl_kyf\[@ —2k)y,]. Since yy >0, ¥4 > 0in I, ! and k > 2 we have
L\ (t) <01in Iy, and from Ly(t2\) = 0 it follows Ly(t) > 0 for all ¢ € I.

As second step, we integrate (1.3.9) between ¢ and 3, for all ¢ € I). Then, since

yh(t2,n) = 0 we get

to \
O () + / =2y (5) 3P () ds < 0.
t

We rewrite this last inequality as
' k1, 1k 1k A o
BOFTO = ) [ 8 k) ds
t

Since uy < My _ by definition, it follows y7* > 7%, so
A ) A A

yh (Ot Ly R (t)

v

to X
t;;\k%l\fkh(w\) / sF=2 ds
t

_ k—1 k—1
Y FR(1) tay —t
_ k—1
k 1 t2,)\

'Yl_kh(’}/)\) ¢ k—1
TRl [1‘ () ]

Multiplying the first and the last term of the above inequality by t!=* we get

1 _ _ () (- 1
T2 O =) i) = A k—@ )
2,

for all t € I). Integrating this inequality between ¢ and t5 » we have

_ = _ T k=1
2—k 2—k k—1 S

_ 2—k _
n R (xR 4t
k-1 2—k 2-k 52 L)

S () I s 1Y) /t“ gk 1 )ds
t

We rewrite this last inequality as

QN G GV B A el U
k-2 k-2 ~ k—1 k=2 il k—2¢2

N VPSS I S AR T S O T
- k—1 k—2 to A k—2 (2B '

(1.3.10)

'44 > 0 because (u} )'(r) < 0 for sx < r <1 as we can easily deduce from Corollary 1.2.4.
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k—1
To the aim of estimating the last term in (1.3.10) we set s := (%) and study the

function g(s) := 25 + s — k—%sk I in the interval [0,1]. Clearly, g(0) = 15 = N=2 >0,

J
g(1) = 0 and g is a decreasing function because ¢'(s) = 1 — s FT < 0 in (0,1). In
particular, we have g(s) > 0 in (0,1). Let us fix e € (0,252), by the monotonicity
of g we deduce that there exists only one § = d(e) € (0,1) such that g(s) > € for all
k-1
0<s<d,g(0) =€eand 6 - 1 as € — 0. Now remembering that s = <%> , we have
k—1 ’

<&> < ¢ if and only if ¢t < 5ﬁt2’,\ and t1 ) < (5ﬁt27,\ if and only if 5{\\1—2 < (5ﬁ
which is true for all 0 < A\ < A, for some positive number A = (). Setting c(e) := (k—2)e,
from (1.3.10) and the previous discussion, we have

OERe k) 2% c(e), (1.3.11)

2
I\ |

for all t € (t1», 5ﬁt27)\), 0 < A < \. Now from (1.3.11) we deduce the desired bound
for uy . In fact, we have

1-k
h
’Y)\ (/y)\) t2_kc(e),

O 2+ A

from which, since k > 2, we get

1

ne) < (Wﬂikhm) t?’%(@)m

k—1
1 (1.3.12)
Y (W) o o
= 1 t
20\ ( + (€)
N-—2 —2
Now, by definition, we have yx(t) = A\™ "7 u, (%) =ATT u (s+s)), M = A" MA -,
N-2 N-2
k—Q—N 5, k—1= 5 2,t=<¥) :(ﬁjz]f ) ,inparticulartQ_k:t_m:
s+s
<ﬁjsfj2‘”)> = )‘((Jf:‘z*)é . Thus, we get
N-2 N-2 Ny2  NE2
_ AT M <)\‘4MA+/\‘4MN_‘2>
YA lh(%\) t2_kc(e) A ’ A ( ))\(8 + 5))
k-1 N (N —2)
N -2
My (MM + M2 —1)
N(N —2) (54 51)°
ML f (M)

= Wc(e)(s +53)2%,

. 1
where f(z) := Az+22 "1, Also, by direct computation, we see that the interval (¢ , 6512,

corresponds to the interval (5_%3,\, 1) for s+ sy = & = N=2

VA ﬁtﬁ

. Thus, from the previ-

ous computations and (1.3.12) we have

N- N- MY f(AM, -
AT 1 u/\(ers,\)g)\ M, <1+ )\N(f\f(— 2;\7 )c(e)(s+s>\)2>
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Finally, dividing each term by A~ and setting r := s + s, we have

Mt f (MM, -5
uy (1) < <1+ A}\_f(!j\f(—Q;’ )cer2> ,

for all r € (5_%3 - 1), which is the desired inequality since u, is a radial function. O

1.4 Asymptotic analysis of the rescaled solutions

1.4.1 Rescaling the positive part

As in Sect. 1.3, we consider a family (uy) of least energy radial, sign-changing solutions

of (1.1.2) with u)(0) > 0. Let us define 3 := 25, o) == M7

N ' Tx; consider the rescaled

function &;\r (y) = Mi +u§ ( 4 ) in By, . The following lemma is elementary but crucial.

B
M>\,+

Lemma 1.4.1. We have:

() ki, = 1%, .

) [, = 015,

Gy 2 1 a2
(iii) |uy ‘2,Br>\ = W‘u,\ ’2,BJA

Proof. To prove (i) we have only to remember the definition of @) and make the change of

variable 2 — —%—. Taking into account that by definition V@ (y) = —im5 (Voui)(=4—)
M.+ My My 4
and 2+ 28 =2 + 5 = N2 = NB = 2*, we get
2
lux i, = / Vouf (z)Pdz = 1/ Vauy <y> dy
T NpB B
A Bry M\ JBs, My .
2428
A+ ~ 2 ~
=20 [ WP =,
M)\,Jr X

The proof of (ii) is simpler:

* 1
uf (@) de = / —_—
| @l [

A

The proof of (iii) is similar:

1
ul(z)]?dx = / —_—
| @) [

LY DY A+

dy

+ Yy
pyun
/ 1 4 Y
= u
Boy MYT2 Moy \ My,

oA A+

~ = [l

2
dy




1.4. ASYMPTOTIC ANALYSIS OF THE RESCALED SOLUTIONS 15

O]

Remark 1.4.2. Obuviously, the previous lemma is still true if we consider any radial

function u € H}ad(D), where D is a radially symmetric domain in RN, and for any

rescaling of the kind a(y) := ﬁu (%), where M > 0 is a constant.

The first qualitative result concerns the asymptotic behavior, as A\ — 0, of the radius
o\ = Mf+ -7y of the rescaled ball B,,. From Proposition 1.3.3 we know that ry — 0 as
A — 0, so this result gives also information on the growth of M) ; compared to the decay
of r -

Proposition 1.4.3. Up to a subsequence, oy — +00 as A — 0.
Proof. Up to a subsequence, as A\ — 0, we have three alternatives:
(i) on — 0,

(ii) o = 1> 0,1 €R,

(iii) o) — +oo.

We will show that (i) and (ii) cannot occur. Assume, by contradiction, that (i) holds then
writing |uj\' 3* By, in polar coordinates we have

(5N
e e e
0

IN

X
WN Mi—k/ rN=1ldr
0

B8 \N Tﬁv

WN

W(M)\'B_,'_T‘)\)N*)O aS)\*)O.

But from Proposition 1.3.1 we know that |uf |2 ;  — S™?2 as A — 0, so we get a
k) ”’A
contradiction.
+

Next, assume, by contradiction, that (ii) holds. Since the rescaled functions ) are
solutions of

A 1.

—Au = Mfﬂu +u? 1 in B,

u >0 in By, (1.4.1)
u=20 on 0B, .

and (@) is uniformly bounded, then by standard elliptic theory, @ — @ in C? (By),
where B is the limit domain of B,, and u solves

(1.4.2)

—Au=u*¥"1 inB
u >0 in By.

Let us show that the boundary condition % = 0 on dB; holds. Since M) ; is the global

maximum of uy (see Proposition 1.2.3) then the rescaling uy(y) := Mi ) (M% ) of the
, v

whole function u) is a bounded solution of
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~Au=-22u+|u?2u inB,s
MP [l My

=0 0B .
u on Mf\j,+

2 (RYN), where @ is a solution of —Au = |u|? "2u
in RY. Obviously, by definition, we have @, (y) = @ (y) for all y € By, , @ (y) = 0 for all

y € 0By, and Uy(y) < 0 for all y € BM§3+ — By, . Passing to the limit as A — 0, since

So as before we get that @y — @ in C?

B is a compact set of RY we have @y — g in C?(B;), now since @ = g > 0 in B; and
g = 0 on 9By, it follows & = 0 on dB;. Since By is a ball, by Pohozaev’s identity, we
know that the only possibility is @ = 0 which is a contradiction since %(0) = 1. So the
assertion is proved. O

Proposition 1.4.4. We have:

1 —~(N-2)/2
iy 2} , (1.4.3)

< + —_—
for all y € RN

Proof. From (1.3.4) for all x € B,, we have

A (N-2)/2
A+ M)N?
n At 2
uA(w)SM/\,‘l‘ 1+ N(N—Q) ’.’L“
Dividing each side by M) 4 and setting = —%— = —4— we get
My, MA?

. —(N-2)/2
1 )\-‘rM ’7 2
Mo Ux <M% > < {1+4H\y’ }

A+

—(N-2)/2
= {1 + : ’y‘Q + N(]\1[_2) MQ}
M N(N-2)

—(N-2)/2
< {1+ g i*}

)

for all y € By,. Thus, we have proved (1.4.3) for all y € B,,. Since ﬂ;\r is zero outside

the ball B,, and the second term in (1.4.3) is independent of A, this bound holds in the
whole RV, O

1.4.2 An estimate on the first derivative at the node

In this subsection, we prove an inequality concerning (u{)'(ry) (or (uy)’(ry)) that will be
useful in the next sections.
Lemma 1.4.5. There exists a constant c1, depending only on N, such that

N-—2

(W) (ra)ry T < e ry T (1.4.4)

for all sufficiently small X > 0. Since (uy ) (rx) = —(uy) (ry) the same inequality holds

for (uy) (ry)-
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Proof. Since uy = uj (r) is a solution of —[(u)rV=1" = M rV=1 4+ (uf)? ~1rV-1 in
(0,7)) and (uy)'(0) = 0 by integration, we get

T T .
(u;\r),(T)\)?“i\P1 = - [/0 )\u;\rrN_ldr_i_/O (ui)Q —er—ldr}
A - 1 .
= — [— uv(x dl’—i-i U+ T 2% -1 dr ’
LN/BU Y@ dot o0 | )

where, as before, wy denotes the measure of the (N — 1)-dimensional unit sphere SV~

Using Hélder’s inequality and observing that |B,, | = <¥r{ we deduce

1 N—2 2" -1
S +2 >
(N w )% 2B, T~ N3 T [‘UA 2*,BTJ :
N N 2N Wy

_ A N
(ui‘)/(r)\)riv I < —y |uj\'

From Proposition 1.3.1 we know that both |u}

+2*
2,B,, 5 Uy 3+ B,, are bounded, moreover

from Proposition 1.3.3 we have ry — 0 as A — 0. So there exists a constant ¢; = ¢;(N)
such that for all sufficiently small A > 0 (1.4.4) holds. O

1.4.3 Rescaling the negative part

Now, we study the rescaled function ) (y) := ﬁu; <M%> in the annulus A4,, =
{y € RN;Mf_m <y < Mf_}, where py = Mf\a_m. This case is more delicate than
the previous one since the radius sy, where the minimum is achieved, depends on A. Thus,
roughly speaking, we have to understand how r) and sy behave with respect to the scaling
parameter M f _. This means that we have to study the asymptotic behavior of M f _TA

and M f _sx as A — 0. It will be convenient to consider also the one-dimensional rescaling

1 _ s
Z)\(S) = Wu)\ (3,\ + Mﬁ ) y

A,—

which satisfies

" N-—1 / A 2*—1 .
2y + z + z + z = 0 1m a b
A 5+Mf\375>\ A Mi’i A A ( A2 A)

4(0) =0, 2(0) =1,

(1.4.5)

where a) = Mff <(rx—s)) <0, by := Mfi (1 —s)) > 0. We define v := M/\Bis,\.
Since sy — 0as \— 0, we have by — +’oo; for the remaining parameters a), *,yA it will
suffice to study the asymptotic behavior of vy as A — 0.
Up to a subsequence, we have three alternatives:

(a) v — +o0,
(b) v — v >0,
(C) YN — 0.

Lemma 1.4.6. v, — 400 cannot happen.
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Proof. Assume vy, — +00; up to a subsequence, we have ay — a < 0, as A — 0, where
ac€RU{—o0}.

If @ < 0 or @ = —oo then passing to the limit in (1.4.5) as vy = Mf’_ -8y — +oo we
have that z) — z in Clloc(&, +00), where z solves the limit problem

{Z,, 21 in (a,-+o0) (1.4.6)

Z(0)=0, z(0)=1.

Since z) — z in CL (@, +oc) and being z) > 0, then by Fatou’s lemma we have

by 00
liminf/ [2(5))% ds > [+ [2(s)]? ds > ¢1 > 0.

A—0 ax a

In particular, being a) < 0, by the same argument it follows that for all small A > 0

b 00
/0 (22 ()] ds > /0+ [2(s)]? ds > ¢z > 0.

Now, we have the following estimate:

1 1
i, = v [ e ar > ol [ o) ar
LY SX
* 1 2* * b/\ *
= sziV 1M2_/ [M u)\(r)} dr = sziV 1M§ ﬁ/ [z2(5)]? ds
SX >\7_
N1 [ N
= WN7Y, 1/ [z/\(s)}2 ds > WNY, Leo,

S

B
M/\,_

having used the change of variable r = sy +

. Since |uy |2 — SN/2 wwhile —
[ux I3+, A

400, as A — 0, we get a contradiction.
If instead @ = 0 we consider the rescaled function u) which solves

—Aly =20y +a@ " ind
My A 7 (1.4.7)
=0 on 0A,,,

and is uniformly bounded. We observe that since ay — 0 then py = a) + v\ — +00. By
definition, we have @, (px) = 0, @, (y») =1, for all A € (0, A1). Thus, we have

i _ 1
N UA(7A)|:7—>+00 as A — 0.
o2 — 1l x|

From standard elliptic regularity theory, we know that @, is a classical solution, so
by the mean value theorem,

|ty (px) — @y ()]
lox — 1l

= (@) (&n)],

for some &y € (pa,va); thus, |(@, ) (€x)] = +o0 as A = 0. From Corollary 1.2.4 it follows
that (@, )’ > 0in (px,va) for all A > 0.
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By writing (1.4.7) in polar coordinates, we get:

_1 N )\ o ~—\2%_1
+ —=u, +(u =0.
) M2 »)

__ N
(ay)" + (ay
r
From this, since @, > 0 and (@, )" > 0 in (px,7x), we get (@, )" < 0 in (pr,vx). Thus,
(@y) (px) > (uy ) (€x) > 0, for all A > 0. In particular, () (pr) — +o0 as A = 0.
Since, by elementary computation, we have (i, ) (px) = ﬁ(u;)’(r,\), by Lemma
A,—

1.4.5 we get
1

(@) (o) < e—5—7
A M ;tﬁ riv/ 2
for a constant c¢ independent from A. Remembering that 14+ 8 =1+ % =4- %, and
the definition of py we have the following estimate

L 1
[(@y) (pa)] < “Ni2
P
Since py — 400, as A — 0, we deduce that (@, )'(px) is uniformly bounded, against

(@y)'(pr) — +oo as A — 0. Thus, we get a contradiction. O

Thanks to Lemma 1.4.6 we deduce that (7)) is a bounded sequence. The following
proposition states an uniform upper bound for ) .

Proposition 1.4.7. Let us fiz € € (0, N=2) and set M := supy . There exist h = h(e)
and X\ = X(€) > 0 such that

iy (y) < Un(y) (1.4.8)
for ally € RN, 0 < X\ < X, where
" 1 if lyl<h (1.49)
Unly) := —-(N-2)/2 1.4.9
[1+ wpbge(lyl? if lyl > h,

with c(€) = 325€.

Proof. We fix € € (0,%52), so by Proposition 1.3.7 there exist § = §(e) € (0,1) and
A(e) > 0 such that

_ —(N-2)/2
— M>\1_ (MA,—)
uy (z) < My - {1 + mc(f)fﬂf\Q )

for all # € Asy = {x € RY; § /N5y < |z < 1}, for all A € (0,)), where c(e) = e
The same proof of Proposition 1.4.4 shows that

—(N-2)/2
o) < {1+ gyoge@h?h

for all y € Aé,/\ = {y € RY, Mf_éil/NsA < |yl < Mf_} Now, since by definition
@, is uniformly bounded by 1, we get an upper bound defined in the whole annulus
A, ={yeRV; M)/i_r,\ <yl < Mfy_}; to be more precise ), (y) < Ux(y), where

1 if MY vy < |yl < M{_67YNsy

U = (N—-2)/2
W) . MY 67 UNgy < |yl < MY _.

X - (1.4.10)
[1 + vz c(e)lyl
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Since vy = Mf_S)\ < M, then setting h := S YNM we get that (5_1/NM§_8>\ < h.
Therefore, from (1.4.10), since %, is zero outside A, , we deduce (1.4.8). O

Lemma 1.4.8. v\ — v > 0, 70 € R, cannot happen.

Proof. Assume that v, — v > 0, 79 € R. Since 0 < r) < sy there are only two
possibilities for ay. To be precise, up to a subsequence we can have:

(i) ax—0,
(ii) ax »a<0,a€eR.

We will show that both (i) and (ii) lead to a contradiction.

If we assume (i) the same proof of Lemma 1.4.6 gives a contradiction. We point out
that now py — 70, as A — 0, so as before we get a contradiction since (@, )'(py) is
uniformly bounded, against (@, )'(px) — +00 as A — 0.

Assuming (ii) we have ay — a < 0 and ) — vy > 0. We define m := a + 7. Clearly,
we have 0 < m < 79 and py — m as A — 0. Assume m > 0 and consider the rescaling
@, in the annulus A,, defined as before. Since @, satisfies (1.4.7) and (@, ) is uniformly
bounded then passing to the limit as A — 0 we get @, — u in C? (II), where II is the

loc
limit domain IT := {y € RY; |y| > m} and 4 is a positive radial solution of

~Au=a*"1 inI (1.4.11)

By definition @, (7z) = 1, (4, )'(7x) = 0 for all A, so as X\ — 0 we get u(yp) = 1, @' (70) =0
because of the convergence of 4, — @ in C?(K), for all compact subsets K in II, and
Yo > m. In particular, we deduce that @ # 0. We now show that @ can be extended to
zero on O = {y € RY;|y| = m}. Thanks to Lemma 1.4.5 and since we are assuming
m > 0, which is the limit of py as A — 0, we get that (@, )'(py) is uniformly bounded by
a constant M, and by the monotonicity of (@, )" the same bound holds for (@, )’(s) for all
5 € (px,7r). It follows that in that interval i, (s) < M(s — py). Passing to the limit as
A — 0 we have 4(s) < M(s —m) for all s € (m,p) which implies 4 can be extended by
continuity to zero on JII. We use the same notation % to denote this extension.

Observe that @ has finite energy, in particular, using Fatou’s lemma and thanks to
Lemma 1.4.1, Remark 1.4.2, Proposition 1.3.1, we get

/ |Va|2dy < liminf/ Vi, |Pdy = liminf/ Vuy |Pde = SN2, (1.4.12)
I A—0 Ap)\ A—0 ATA

~ | 2% s ~— 2% s — 2% N/2
/HIUI dyﬁhgnﬁl(glf/% |y | dy:hlggf/% luy |**dz = SN2, (1.4.13)

Moreover, since 4y, — u in C’IQOC(H) and thanks to the uniform upper bound given by
Proposition 1.4.7, by Lebesgue’s theorem, we have

/ |a|**dy = lim/ juy [*de = SN2, (1.4.14)
11 A—0 AT)\

Since @ € H(IT) N C°(II) and is zero on OII, then @ € HZ(II) and thanks to (1.4.12),
(1.4.14) it follows that @ achieves the best constant in the Sobolev embedding on II, which
is impossible (see for instance [58], Theorem III.1.2). This ends the proof for the case
m > 0.
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Assume now m = 0, then @) converges in CZ,_(RY —{0}) to a radial function @ which
is a positive bounded solution of

~Au=a>"1 in RN —{0} (1.4.15)
Since  is a radial solution of (1.4.15), then integrating — (@' (r)r™ ~1)" = a2 =1 (r)rN =1
between § > 0 sufficiently small and vg we get

Yo N
&/(5)51\[_1 :/ a2 e N=lgp,
)

Since the right-hand side is a positive and decreasing function of §, we get @' (§)6V ! —
[>0asd— 0. Thus, @ (5) behaves as 01~ near the origin, and this is a contradiction
since [pn Va2 dy = wy f (r)|>rN—1dr is finite, and the proof is complete. O

As a consequence of Lemma 1.4.6 and Lemma 1.4.8 we have proved:

Proposition 1.4.9. Up to a subsequence, we have v5 — 0 as A — 0.

1.4.4 Final estimates and proof of Theorem 1.1.1

From Proposition 1.4.9 we know that, up to a subsequence, v\, = Mf \Sa — 0 as

A — 0. The rescaled function i, (y) := ﬁu;\ <M%> in the annulus A4,, = {y €
T A

RV, Mffr,\ <yl < Mff} solves (1.4.7) and the functions (@, ) are uniformly bounded.

Since vy — 0 as A — 0, in particular the limit domain of A, is RN — {0} and by standard
elliptic theory @, — @ in C? (RY — {0}), where @ is positive, radial and solves

~Au=u*"1 in RN — {0} (1.4.16)

As in the proof of Lemma 1 4.8 by Fatou’s Lemma, it follows that 4 has finite energy
Ip(a) = \Vu]QRN — o lufZ g~ Moreover, thanks to the uniform upper bound (1.4.8),
by Lebesgue S theorem we have

li ~—2*d: ~2*d
ti [ sy | Jiay,

so, by Lemma 1.4.1, Remark 1.4.2 and Proposition 1.3.1 we get

/ ‘U|2*dy SN/2
RN

The next two lemmas show that the function @ = @(s) can be extended to a C'*(]0, +00))
function if we set 4(0) := 1 and 4/(0) := 0.
Lemma 1.4.10. We have

lim a(s) = 1.

s—0

Proof. Since ) is a radial solution of (1.4.7) and @, < 1, then

[(ﬂ;)’sN_l]' — —M%BQX(S)SN_l—[ﬂ;(S)P*_lsN_l
> M>2\B SN—l SN—l

A%
|

)

@
r
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Integrating between 7, and s > vy (with s < M/\’B_) we get
s 2
(1)) (s)sV 7 > —2/ Nt > — =N,
T N

Hence, (@, )/(s) > —%s for all s € (’y)\,Mf_). Integrating again between «y, and s we
have

1 1
iy (s) — 1> ——(s2 —~3) > ——s2.
u)\ (8> - N(S 7)\) - NS
Hence, @, (s) > 1 — +sV for all s € (fy,\,Mﬁ ). Since ), — 0 and Mf_ — +o00, then,
passing to the limit as )\ — 0, we get u(s) > 1— %52, for all s > 0. From this inequality
and since @ < 1 we deduce limg_,o@(s) = 1. O

Lemma 1.4.11. We have
lim @' (s) = 0.

s—0

Proof. As before, from the radial equation satisfied by u, , integrating between v, and
s>y (with s < M/\B_) we get

)\ S S
—(ay)'(s)sN 7t = 25 / Nal 1dt+/ (ay)* 1Nt
M Jq, o)

Since @ < 1, and 7y, — 0 it follows that for all A > 0 sufficiently small
N

A s 5 5
5 / tNldt+/ tNldE < 27—
M>\7_ A I N

Passing to the limit, as A\ — 0, we get |@'(s)| < 2% for all s > 0, hence limg_,o@'(s) =
0. O

(@3 (s)sN 1| <

From Lemma 1.4.10 and Lemma 1.4.11 it follows that the radial function u(y) = a(|y|)
can be extended to a C'(RY) function. From now on, we denote by @ this extension. Next
lemma shows that 7 is a weak solution of (1.4.16) in the whole RY.

Lemma 1.4.12. The function 4 is a weak solution of
~Au=a> "1 in RN (1.4.17)

Proof. Let us fix a test function ¢ € C°(RY). If 0 ¢ supp(¢) the proof is trivial so from
now on we assume 0 € supp(¢). Let B(d) be the ball centered at the origin having radius
d > 0, with § sufficiently small such that supp(¢) CC B(1/9). Applying Green’s formula
to Q(8) := B(1/8) — B(9), since @ is a C2 (RN — {0}) solution of (1.4.16) and ¢ =0 on
0B(1/96), we have

Vi -V dy :/ ¢ u ! dy+/ ¢ <a“> do. (1.4.18)
aB(s) \Ov

We show now that f OB( 6) ( 8u) do — 0 as § — 0. In fact since @ is a radial function, we
have a“ “(y) = u/(0) for all y € OB(J), and from this relation, we get

ot
/83(5) ¢ <3’/> do |/ 9l do

wy ' (6) |5N 1.

Q(s)

IA

IN
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Thanks to Lemma 1.4.11 we have |@#/(6)|6V = — 0 as § — 0. To complete the proof, we
pass to the limit in (1.4.18) as § — 0. We observe that

V@ -Vl xa@ < VA xgvaps1y Vel + Vil xva<iy Vol (1.4.19)

N

< VAP xqvasnIVel + xqva<i V4l

Since [pn |Vii|2dy < SM/? and ¢ has compact support, the right-hand side of (1.4.19)
belongs to L!'(RY). Hence, from Lebesgue’s theorem, we have

lim/ Vii- Vo dy:/ Vi Vo dy. (1.4.20)
6—0 Q(5) RN

Since ¢ has compact support by Lebesgue’s theorem, we have

lim ¥ ldy :/ ¢ ¥ ! dy. (1.4.21)
—0 Q) RN

From (1.4.18), (1.4.20), (1.4.21) and since we have proved faB(é) o) (%) do—0asd—0

it follows that
/ Vi -V dy:/ ¢ a1t dy,
RN RN

which completes the proof. O
Now, we have all the tools to prove Theorem 1.1.1.

Proof of Theorem 1.1.1. We start proving (i). By Proposition 1.4.3, arguing as in the
previous proofs, we know that (&;\r) is an equi-bounded family of radial solutions of (1.4.1)
and converges in C?_(R™) to a function @ which solves —Au = v* ~! in RY. From (1.4.3)
we deduce that @ — 0 as |y| — +o00. To apply Proposition 1.3.4 we have to check that
@ has finite energy, but this is an immediate consequence of Fatou’s lemma and the
assumption that uy has finite energy (for the details see (1.4.12) and (1.4.13)). Thus,
U = Uy, for some zg € RN, 1 > 0. Since @ is a radial function, we have zy = 0.
Moreover, since %(0) = 1, by an elementary computation, we see that u = /N(N — 2).

Now we prove (ii). As we have seen at the beginning of this section, the equi-bounded
family (@) ) converges in C? (RY — {0}) to a function @ which solves (1.4.16). From
Lemma 1.4.10 and Lemma 1.4.11 we have that @ can be extended to a C*(RY) function
such that @(0) = 1, Va(0) = 0. Moreover, from Lemma 1.4.12 we know that 4 is a weak
solution of (1.4.17) and from Fatou’s lemma, as seen in (1.4.12), (1.4.13), we have that @
has finite energy. Also, from Proposition 1.4.7 we deduce that @ — 0 as |y| — +oc.

By elliptic regularity (see for instance Appendix B of [58]) since @ is a weak solution
of (1.4.17) we deduce that @ € C?(RY). Thanks to Proposition 1.3.4, since @ is a radial

function and @(0) = 1, we have 4 = Uy ,, where p > 0 is the same as in (i). O

1.5 Asymptotic behavior of M), , M), _ and proof of Theo-
rem 1.1.2

We know from Proposition 1.3.1 that My , M) _ — +oo as A — 0, in addition in the

last two sections we have proved that Mf\3+r)\ — 400 while Mf_m — 0, as A — 0. Thus,
My ¢
My,
section, we determine the order of infinity of M) _ as negative power of A and also an

asymptotic relation between M) ;, M) _ and the node 7).

— +00 as A — 0; in other words M) 4 goes to infinity faster than M, _. In this
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Proposition 1.5.1. As A — 0 we have

(i) My |(u) (ra)|ry ' = e (N);

(i) A1 Y (W) (ra)]? = ea(N);

(iii) MifﬁriV 2\ = ¢3(N),

where c1(N) = fooouo;_l(s)s]v_lds, ca(N) = 2f0002/{3’“(5)5N_1d8, c3(N) = AN

Proof. To prove (i) we integrate the equation —[(u})'rN=1) = AufrV=1 4 (uf)? 1N -1

between 0 and ry and multiply both sides by M, ;. Since (u})’(0) = 0 we have

) A
M>\7_~_\(u;\r)'(m\)|ri\[71 = >\M>\,+/ uj\rTN_l dr+M>\7+/ (uf)? “LN=Ldr (1.5.1)
0 0

We first prove that M) | fom uj\“rN_l dr — 0 as A = 0. In fact by the usual change of

variable r = —5— we have
M

A+

X 1 Mf,#"* 1 s
AM / uf)y rV"lar = )\*/ uy sV ds
*Jo A7) MZ 72 Myy *\ MmP

A+ ’ A+
8
1 MyY4mx _
= A\— af (s)s™ 1 ds
ME2 A
A+

Thanks to the uniform upper bound (1.4.3) we have

B B —(N—
1 MA, T 1 M/\, X 1 (N-2)/2
AM/ Taf SN lds < A/ " {1+52} sV tds
M+~ Jo 0 N(

Since M) 4 — +oo and fol sN=1ds = % it is obvious that Iy ; — 0, as A — 0. Now, we

show that the same holds for Iy 5. In fact, setting O1(N) := [N(N — 2)](N=2/2 we have

1 MA,-&-T)\
I)\72 = )\WC&(N) / s ds
My 1

A am (Mf,ﬁﬂi 1)
= ar2r—2 -1 T 9
M)\,-i- 2 :
Ci(N 1 Cy(N
= )\rf\ i )—/\ 75 it )—>0, as A — 0,
2 MA,Jr 2
since by definition, 28 = ﬁ = 2% — 2. To complete the proof of (i) we show that

My [ (whH)> =Nt dr — [ Ug;ﬁl(s)sN_lds as A\ — 0. In fact, as before, by the
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change of variable r = —5— we have
M

A+

B 2%—1
M /”[ +( )]2*—1 N-1 4 1 /MA’*TA + S N-1 4
At uy (r r r = — U S S
o M,\27+1 0 M

Mﬁ_‘_r)\ N N
_ / fif ()2 sV ds.
0

2 (RY), in particular we have [@} (s)]* 1 — [Uo,(s)]> "L as A — 0,
for all s > 0, and thanks to the uniform upper bound (1.4.3), by Lebesgue’s dominated
My . .
convergence theorem, it follows that [ At [ay (s)]* sVt ds — [° L{&lfl(s)sN_lds
so by (1.5.1) the proof of (i) is complete.
Now, we prove (ii). Applying Pohozaev’s identity to u;\r, which solves —Au = Au +

Since @} — Uy, in C}

*__ .
u? "1 in B,,, we have

)\/B ot (@) d = ;/BB (z-v) (%5)2 do,

A

where v is the exterior unit normal vector to 9dB,,. Since u;\r is radial, we have also

4\ 2
<88LV*) = [(u;\r)’(r)\)]2 so, passing to the unit sphere SV~ we get

/\/B [l (2))? dz = %ri\[—l /SN—1 T [(u;f)’(r,\)]2 dw

1

= v} (W)’

Thus, we have
Aflrf\v [(u;\")/(m)]2 =2 w&l/ [uj(x)]Q dx. (1.5.2)
BTA

Now, performing the same change of variable as in (i) we have

2
1 1 Y
/BU\ MA,—&- Bo, MA’J’_ Mf,+
1

= / @) (v)]° dy,
B,

252
My | -

Thus, we get
2 - 2
Mxi/ [u ()] do = / [} ()] dy. (1.5.3)
BTA BJ)\
As in (i) since @;\r — Up,y, in Cfoc(RN) and thanks to the uniform upper bound (1.4.3)
we have

/B [af )] dy - /R Mo u()? dy = w /0 Vo (F)PrN " dr.

I

From this, (1.5.2) and (1.5.3) we deduce that A_lMiﬁriv [(uj)’(m)]2 —2 f0+°°[lx{0,u(r)]2rN_1 dr,

and (ii) is proved.
The proof of (iii) is a trivial consequence of (i) and (ii). O
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Now, we state a similar result for M) _.
Proposition 1.5.2. As A — 0 we have the following:
(1) My —[(uy) (D] = er(N);
(i) A7 {[(uy Y (D] = [(uy ) (r)Prd ) = ea(N);
(iii) A ML () (ra)Prl = 0;
(iv) M7\ = es(N),
where c1(N), ca(N) and c3(N) are the constants defined in Proposition 1.5.1.

Proof. The proof of (i) is similar to the proof of (i) of Proposition 1.5.1. Here, we inte-
grate the equation —[(uy )'rV 1) = Ay rV =1 + (u))? 1N ~1 between sy and 1. Since
(uy)'(sx) = 0 we have

1 1
(u;)’(l) = )\/ uy PNy +/ (u;)Z*ferfl dr.

SX SX

By MfsA — 0 and thanks to the uniform upper bound (1.4.8), arguing like in the proof
of (i) of Proposition 1.5.1, we have

1
M,y )\/ uy Nl dr =0

S\

and

1 . M57 . +00 .
M/\y_/ (uy)? 1 N=L gy :/ , (iy)? “LsN=1 s H/ U&;lsN_l ds,
S\ M)\ _SX\ 0

as A — 0. The proof of (i) is complete.

The proof of (ii) is similar to the corresponding one of Proposition 1.5.1. This time
we apply Pohozaev’s identity to u) in the annulus A,, = {z € RY; r) < |z| < 1} whose
boundary has two connected components, namely {z € RY; |z| = 7\} and the unit sphere
SV=1. Thus, we have

1

= gon {{(x) WP = [(wy) ()P}

Thus, multiplying each member by Mf‘i and rewriting the previous equation, we have

MPE A {[(w3) (P — () ()P} = 2wyt / s (2) 2z

(DN
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M8
Since QIML?’_ [ﬂ;(s)f sVlds — 2 [° US#(S)SN_lds as A — 0 we are done.
X,—TA ’
To prove (iii) we write
19,2 -
AR [(uy) ()P

N
A28 T Y (e 2N = = Ao 1M2ﬁ 12N
L e Y AN L) ()P

M )
= 55 M) ()P =0
My,

since %ﬁ; — 0 and )\_IM/\zﬁ_[(u;\r)’(m)]Qrf\V — (V) as A — 0 (by (ii) of Proposition
1.51).

Finally, the proof of (iv) is trivial. In fact from (ii) and (iii) it immediately follows
that

MM [(uy ) (D)7 = ea(N).
From this and (i), we get (iv). O

Remark 1.5.3. By elementary computation 2 — 23 = 2 — ﬁ = 215_728 so by () of

N—2
Proposition 1.5.2 we have that My _ is an infinite of the same order as X\™ 2N=%8.

From (iii) of Proposition 1.5.1 and (iv) of Proposition 1.5.2 we deduce the following
result which gives an asymptotic relation between M)y i, M) _ and 7).

2-23
M
2-28 N—2

M7y

Proposition 1.5.4. — 1, as A —0.

Proof of Theorem 1.1.2. It suffices to sum up the results contained in Proposition 1.5.1,
Proposition 1.5.2 and Proposition 1.5.4. O

Remark 1.5.5. We point out that in order to determine the explicit rate of My 4 or,
equivalently, that of ry, some difficulties arise. The techniques used in the previous proofs
of integrating the equation and using the Pohozaev’s identity do not seem to be sufficient to
this purpose. Nevertheless, as a consequence of the methods applied in Chapter 3 we get,
for N > 7 and for all sufficiently small X\, the existence of radial sign-changing solutions

of (0.0.1) with the shape of a tower of two bubbles, and the pammeters w1, o of these two
bubbles are given. The lowest order bubble diverges as A\~ av-s 8, which s the same order

(3N—10)(N—2) .
of My _, while the other diverges as X\ CN-8\8=6) _ Moreover, in Chapter 4, we show,

under some additional hypotheses, that the previous speeds are the only possible ones, for
_ (3N—10)(N—2)
N > 7. Hence, we conjecture that My y ~ X CN-8)(N-6)

1.6 Proof of Theorem 1.1.3

This section is entirely devoted to the proof of Theorem 1.1.3.

Proof of Theorem 1.1.3. We want to prove that A~ 2N-s uy = ¢(N)G(z,0) in C} _(B1 —

N—
{0}). We begin from the local uniform convergence of A\~ 2~ & uy. The same argument
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with some modifications will work for the local uniform convergence of its derivatives.
Thanks to the representation formula, since —Auy = Auy + |u>\|2*_2uA in By, we have

_ N-2 _ N-2 _ N-2 9% _9
N By (2) = A A | Gloy)ualy) dy — A S | Gl )l 2uay) dy.
Bl Bl
(1.6.1)
N—-2 N—-6
Since A\”2N-8 A = A\2N-8_ gplitting the integrals we have
_N-2 N—6 N—6
AT2NBuy () = —AN-S G(z,y)uf (y) dy + A28 / G(z,y)u, (y) dy
B'r)\ A’I‘)\

- =2 +(,\125 1 -2 — (251
Sy Gle,y)[uf ) ' dy + A 2v-s i Gz, y)[uy ()]” " dy
A T

= L+ +1I3)+ Iy

Let K be a compact subset of By —{0}. We are going to prove that I x,Io x, I3y — 0
uniformly in K, as A — 0. We begin with I; ). For all z € K we have

|17 2

< |aevw /B G(z,y)ui (y) dy
X

. Y Y
= )\QN—8/ G (9: > uy () dy
NB Ve SV
MV JB 4 M} My |

At TPl ey o+

N-6 ] Y 5
< )\2N—8]\42*_1/ G(x, IV ) ay (y) dy.
A+ BMng A+
Since K is a compact subset of By — {0} and |M% | <) by an elementary computation,
Xt

we see that for all x € K, for all A > 0 sufficiently small ‘G <a:, M%)’ < ¢(K) for all
X+
y € Bys . where ¢ = ¢(K) is a positive constant depending only on K and N. Now,
A

thanks to the uniform upper bound (1.4.3) we have

G <z Mi) | it (y) dy
M)\7+T‘)\ A7+

. )27
14+ ————— 1y } dy
.y L v

IA
Q.
=
S—
>
2=
Lls
—_
—

2*—1
MA,—F ”
g (N-2)/2
N—6 1 My ra 1 VT
= c(K)A\2N-8 —— wN/ {1+82} sV ds
T Jy NV -
B 1 MA,+T>\ B 1 MA,+T>\
< CI(K))\;}]\_GS T / s IN=2)N=-1 gg — Cl(K))\QN*GS 1 / s ds
My Jo My Jo
N—6 1 28 o N—6 1 9
= c(K)A2N=8 —— M{" r{ = co(K)\2N-38 ry — 0, as A — 0.
( ) Mi+1 A+ ( ) M)\7+ A

Since this inequality is uniform respect to x € K we have ||} \|oo,kx — 0 as A — 0.
The proof that ||I3|lec,x — 0 is quite similar to the previous one, in fact with small
modifications we get the following uniform estimate:
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6 1 .
< )\27\/768 / G <x, 5 )| [u;\r (y)]2 Ly
A+ BM§7+U\ M/\7+
< (K))\2]>]\768 1 / {1+ | |2} (N+2)/ p
c -
= Mt s, N(N-2)" Y
1\/I>\7+r)\
e (N+2)/

< ¢(K)A\2N-8 / {1—!— } d

(K) A5 A= 0
= c S —— as A\ — 0.

: M+

The proof for I ) is more delicate since for all small A > 0 the Green function is not
bounded when z € K, y € A,,. We split the Green function in the singular part and the
regular part so that

N—6 _ N—6 _
12,)\ = \2N-38 /A Gsing(x7 y)u)\ (y) dy + A2N-8 A Greg('x7 y)u)\ (y) dy
T)\ 'V‘A

The singular part of the Green function is given by o= ]\II)WN |x_y1‘ ~—=, we want to show

that
)\217\1_—681/ #u—( ) dy — 0
@= Ny Ja, Jz—y8 22 Y

uniformly for € K. The usual change of variable gives

N N6 1 1 _ d
2N -8
2= Non /A =gz W)

AIN-S 1 / 1 S w ),
- * u w.
Mi_ (2— N)wy A |z — ﬁwfz A M§7

Let 1 be a positive real number such that 7 < mm{ 4(0 K) @}, where d(-, ) denotes
the Euclidean distance. It is clear that for all A > 0 sufﬁmently small, we have B(z,n) CC
A,,, for all z € K. Thus, B(Mﬁ_m,Mﬁ_n) CcC /Nlm, for all x € K, and we split the last
integral in two parts as indicated below:

AINF 1 / 1 (),
* u w
ME- @ N Ja, e 2 \ g

M/\’_

A2N=8 1 / 1 _ w d
= _ _— — w
M}%,_ (2 - N)WN \MfﬁszKMf’in ’CL‘ — ozt Mﬁ_

Mﬁ
N—-6
. A2N-8 1 / 1 _ w d
- U w
MEZ (2= N)on Jgard_o—wlzatf_ny 0 Ar, 10— 5[V v
AQZY\’_—S M)(\]\i_mﬁ o
= ST 2_ 3 ~ 5 (w) dw
M o')N \M _z—w|<M) _n ’MA,—‘T — w[
N—G (N-2)8
+ AP / MA7_ "N ( )dw—IA/\—i—IB,\
Mf* 12— N)wny (MY _z—w|>M{ _n} n A, |Mf_1: — w|N-2 A
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Let us show that I Ax — 0, uniformly for x € K, as A — 0. First, by making the
change of variable z :=w — M f _x we have

]~_~ )\27\1_—68 1 / Mij\iiZ)ﬁ ~ Mﬁ d
AN = *_ 77_’&_ (Z + _ac) Z.

Let us fix € € (0, 252) and set C = 325e. Thanks to the uniform upper bound (1.4.8),

since

d(0, K)

M3 @+ 2| > [M_|a| = |2l| = M} _|| = |2] = MY _(le| —n) > M} _ > My 1,
(1.6.2)
for all x € K, for all z such that |z| < nM f _, then for all sufficiently small A we have
N-6 (N-2)8 —(N—=2)/2
N \2N-8 1 My — 1 B2
Tan < e / —— [1—1— Clz+ My _x|
M)\27_ ! (N - 2)(.«]]\[ |z\<MB_77 ‘Z|N 2 N(N - 2) »
—6 N—2
. \IN—5 . Mﬁﬁ )8 NI R
= v g EbE A= ?
A,— |z|<M,\7_77
)\21}’\7_—68 K Mf\g,fn J )\213[\/_—68 i ]\4>\2’6_’I72
= ——C w rdr = ——¢ w .
e | TEE
)\2N168
= c3(K) — 0, as A — 0.

Thus, I Ax — 0, uniformly for x € K, as A — 0. Now, we prove that the same holds for
Ip ».

N—-6

dz

ool < oo | iy (w) du
My 7 (N = 2)on Jynf_a—wi>mf?_n} 0 A, 11
AZN—s _
< M/\Z*__lc K) /Am a, (w) dw
\IN=% \3N-8 1 ) —(N—-2)/2
< WG(K) /w<h 1 dw+ WC(K) /h<|w|<M§ [1 + mC\M
AZN-S AZN-§ My
< WQ(KH WCQ(K) . T
N6 N6 28
= J/\\;/\;?:icl( J/\\;/\;?:i@ K (Mé\_ — h;) — 0, as A — 0,

having used again (1.4.8). Since this estimate is uniform for z € K we have proved
that Ipx — 0 in C°(K) and from this and the analogous result for I A we have

AZN- J1 Gsing(z,y)uy (y) dy — 0 in C°(K). To complete the proof of Iy — 0 in
LPN
C°(K) it remains to prove that AZNS [1. Greg(z,y)u; (y) dy — 0 in CO(K). This is
LY

dw
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easy because the regular part of the Green function for the ball is uniformly bounded, to
be precise let [(K) := sup{d(0,z),x € K}, clearly, being K a compact subset of B; — {0},
we have [(K) < 1 and since it is well known that

1 1
2= NN |(|ally)2 +1— 22 -y| 7

I

Greg(2,y) = (

we have for all x € K, y € A,

1 1
<
N—-2 — N—2
24121y 2 1— 2179
[(lz[|y])? + x -y I( Iai“\ly) | (1.6.3)
11— UK

Thus we have

IN

N—6 B
A / Greg (@, y)us () dy
Ary

N—-6

N—6 _
(KA / s ()] dy
\2ZN-§
= c(K */
( )M)Q\’_ A

T
u)\ 3
M)\y_
N—-6

()3 [ Jinw)] d
= C w7 Uy (W w.
MET 4, A

dw

(PN

N—-6
\2N—s
As in the previous case, we see that C(K)W/ }ﬂ;(w)‘ dw — 0 and the proof of
)‘7_ AT)\

I — 0 in C°(K) is complete.
Now to end the proof, we need to show that Iy — ¢(N)G(z,0) in C°(K). We start
making the usual change of variable

_ 1 *
Ly = A 3N-% L /A G (m 7M“; > [y (w)]* Tt dw.
[ T\

A,—

We split the Green function in the singular and the regular part, so that

N—-2
]. )\_2N78 ]_ ~_ *
Iiy = / ‘N_Q [ay (w)]* ~F dw

(2—N)WN M>\7_ ATA _ w
My
—2
)\ 2N-8 w *
+ G, z, —— | [ay (w)]* ! dw
M- Ja, eg( M§_>[ A (w)

We begin with the singular integral which is more delicate. We want to show that

—2
A 2N-8 1 1 — *_ - .
o 2= Non /[1 N5 [@y (w)]2 Ldw — ¢(N)Gsing(x,0) in CO(K).
" TA w
-

(1.6.4)
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As in the previous case, we consider the ball B(Mf_:z:, Mf_n) cC flm, where 1 > 0 is
the same as before. Thus, we have

A

—2
A 2N-8 1 1 L 9% _1
- - @ d
My (2= Nwy /A ’N—Q L)l dw

_ N-2
- Uy (W w
My— 2=N)wy Jingf a-wiensf_y MYz —w|N-2"

N-—2
Aves 1 / o e
+ : [ay (w)] dw

My 2= N)wn Jymg w—wl>Mf o} 0 Ay | MYz — w]N-2 A

A,

= fc,,\ =+ fD,A-

We show that Iy — 0 in C°(K). As before, using the uniform upper bound (1.4.8) and
(1.6.2) we get

_ N-2 (N-2)8 *
ol = A= s, o [ (0 )]
My~ (N =2)wn Jizemf |2 ’
_N-2 (N-2)B —(N+2)/2
A\ 2N-8 1 / M)\, [ B8 2]
< —— 14+ ———C|2+ M} _z|
M (N — 2)an |z|<Mf\37_77 ]z\N—2 N(N —2) ’ A,
CER L My
< A N3 [Mx,f” ] dz
A— \z|<Mf’_77 |z’
_ N-2 B (N-2)8
A\ 2N-s My -n My~ —(N+2)8, N—1
= 02(K)/0 Tz My dr
A )L /Mf,n AT )] My
— Co T ar = C2 :
M, - MY Jo M), - M2
\- N—2 1
2N -8
= 03 K Y T a4 -
( ) M)Vf M)\Qﬁ_

_N=2 _
Since )‘MiN:S is bounded (see Proposition 1.5.2 (iv) and Remark 1.5.3) then Icyx — 0

uniformly for 2 € K. Now, we show that Ip y — &(N)Gying(2,0) in C°(K). We have

N—-2
- N av-8 1 1 .
Ipy = / iy (@) dw
My_ (2—N)wy {x_ . ZW}MU R
Y

The first step is to prove that for all w € RV — {0}

1 1 S 21 21
Me = A r— Y
X MP_

dz
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uniformly for « € K. First, observe that we need only to show that

1 ~— * __ ]_ * __ .
N3 [ (w)]2 L T’N—J/{O,u 1(w) in CO(K). (1.6.6)
r——% ‘
My

In fact, if we fix w € RY — {0}, and A > 0 is sufficiently small so that w € A,, and
d(0,K)

ﬁ < =5~ then we have |z — MZ‘%J >, for all x € K. Hence we get
xw)( C=xtwy oy =0,
{z—Mg >17} N Ary {x— Mf,, <77} UA%\
for all x € K, for all A > 0 sufficiently small, from which we deduce that
x(w) =1 in CUK).

Now, the proof of (1.6.6) is trivial if we show that, for any fixed w € RY — {0}

1 1 w
- < o(K) “ (1.6.7)
N—2 N—2 B
‘x . || M
M

A,—

for all x € K and for all A > 0 sufficiently small. This is an elementary computation but for

the sake of completeness, we give the proof. We observe that the segment o | z, 2 — —%
M

joining x and = — Mlg is an uniformly bounded set and stays away from the origin: In
A, —
fact for all z € K, t € [0,1] and for all A > 0 sufficiently small, we have

d(0, K
= t— | <ol + |t | =5 | < 4 405 (1.6.8)
My _ My _ 2
d(0, K d(0, K
Tt | > |w|—]t|’L5‘ > d(0, k) — XK o 40, K) (1.6.9)
My MY 2 2
Thus, setting g(z) := mﬁ, by the mean value theorem, we have

g <m = MZZ) —g(x) = Vg(&ra) - (—Mi;) ,

where &) , lies on o (x,x — M%’) By (1.6.8) and (1.6.9) we deduce that |[Vg(&x )| is

A,—
uniformly bounded? and (1.6.7) is proved.

To complete the first part of the proof, we apply Lebesgue’s theorem. For all z € K,
w € RY — {0} we have

by ||V gllo, r(r), Where R(K) is the compact annulus R(K) := {z € RY; % <lz|] <1+ W}
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1 1 *
—lay (w)*
Zn} N A, @ Noy [z — 5= [V-2 Uy

A,

1

1 ]. *
—(N—=2 2*—1
T O g e E )

w
T—
B
My

IN

= a(E)[Un(w)]*

where Uj, is the function defined in (1.4.9). Since (U,)* ~! € LY(RYM) and thanks
o (1.6.5), (iv) of Proposition 1.5.2, by Lebesgues theorem we deduce (1.6.4), where

Gsing(7,0) = mlzlﬁ’ ¢(N) = (limy_o MQiV 8 ) Jan Z/{2 ~“1(w) dw. It’s an elemen-

N—-2
tary computation to see that ¢(N) equals the expected constant wN”(N)#, where
c1(N)2ZN—8
c1(N),c2(N) are the constants defined in Proposition 1.5.1. And the proof of (1.6.4) is
done.

Finally, we prove that

M)\ ~ Greg ( lg) [y ()] ™! dw — &(N)Greg(x,0) in COK). (1.6.10)
_ My
Since
w 1 1
Cires (“7 M ) ~ (2 New T
"~ ‘y 2Ly ﬁ +1-22

)\,—

by the mean value theorem, repeating a similar argument as in the proof of (1.6.7), we
deduce that for any fixed w € RY — {0}

Greg % —5— | = Greg(2,0) in CO(K).
My

Thus, for any w € RY — {0} we have

w * * .
Greg (JJ, .Mﬁ> kN (w)]* 1 = Greg(x,O)U&M Yw) in CY(K).
A—

Thanks to (1.6.3) we know that Geq4 | 2, # is uniformly bounded, moreover, as we
A —

have done in the proof of (1.6.4), thanks to the upper bound (1.4.8), Proposition 1.5.2 we
deduce (1.6.10).

N—2
To prove the local uniform convergence of A\™ 2¥=8Vuy to ¢(IN)VG(x,0) we simply
derive (1.6.1) and repeat the previous proof, taking into account that for i =1,...,n we

have )
Ty — Yi
Op, Gsi JY) = ———.
Going 9 = -



Chapter 2

Asymptotic analysis for radial
sign-changing solutions of the
Brezis-Nirenberg problem, N < 7.

2.1 Introduction

In this chapter we present and prove the result (R2).

We consider the Brezis—Nirenberg problem

{—Au =M+ [u¥ 2u in B (2.1.1)

u=20 on 0B,
where A > 0, 2* = 2 and Bj is the unit ball of RV, N > 3.

The aim of this chapter is to get asymptotic results for radial sign-changing solutions
uy of (2.1.1) in dimensions N = 3,4,5,6. This will give the asymptotic profile of the
positive and negative part of u) as A tends to some limit value.

To motivate our analysis and to explain our results we need to recall a few known
results.

The first fundamental results about the existence of positive solutions were obtained
by H. Brezis and L. Nirenberg in 1983 in the celebrated paper [17]. From their results it
came out that the dimension was going to play a crucial role in the study of (2.1.1) in
a general bounded domain ). Indeed they proved that if NV > 4 there exists a positive
solution of (2.1.1) for every A € (0, A1(£2)), A1(£2) being the first eigenvalue of —A in Q
with Dirichlet boundary conditions, while if N = 3 positive solutions exist only for A away
from zero.

Since then several other interesting results were obtained for positive solutions, in
particular about the asymptotic behavior of solutions, mainly for N > 5, because also the
case N = 4 presents more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N > 4 both
for A € (0, A1(€2)) and A > A\1(2) as shown in [6], [20], [24].

The case N = 3 presents even more difficulties than in the study of positive solutions.
In particular in the case of the ball is not yet known what is the least value A\ of the
parameter ) for which sign-changing solutions exist, neither whether ) is larger or smaller
than A1(B7)/4. This question, posed by H. Brezis, has been given a partial answer in [14].

35
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However it is interesting to observe that in the study of sign-changing solutions even
the "low dimensions” N = 4,5, 6 exhibit some peculiarities. Indeed it was first proved by
Atkinson, Brezis and Peletier in [5] that if © is the ball B; there exists \* = A*(N) such
that there are no radial sign-changing solutions of (2.1.1) for A € (0, \*). Later this result
was proved in [1] in a different way.

Moreover, for N > 7 a recent result of Schechter and Zou [54] shows that in any
bounded smooth domain there exist infinitely many sign-changing solutions for any A > 0.
Instead if N = 4,5,6 only N + 1 pairs of solutions, for all A > 0, have been proved to
exist in [24] but it is not clear that they change sign.

Coming back to radial sign-changing solutions and to the question of existence or
nonexistence of them, according to the dimension, as shown by Atkinson, Brezis and
Peletier, it is interesting to understand in which way these results can be extended to
other bounded domains and to which kind of solutions.

In order to analyze this question let us divide the discussion in two cases: the first
one when the dimension N is greater or equal than 7 and the second one when N < 7.

In the first case (N > 7) radial sign-changing solutions wu) exist for all A > 0, if
the domain is a ball, and analyzing the asymptotic behavior of those of least energy, as
A — 0, it is proved in [37] that their limit profile is that of a "tower of two bubbles”.
This terminology means that the positive part and the negative part of the solutions wu)
concentrate at the same point (which is obviously the center of the ball) as A — 0 and
each one has the limit profile, after suitable rescaling, of a ”standard bubble” in RY | i.e.
of a positive solution of the critical exponent problem in RY. More precisely the solutions
can be written in the following way:

Uy = PU@;I — PU&(;Q + wy, (2.1.2)

where Pli¢s,, i = 1,2 is the projection on H}(Q) of the regular positive solution of
the critical problem in RY, centered at ¢ = 0, with rescaling parameter §; and wy is a
remainder term which converges to zero in H}(2) as A — 0.

Inspired by this result one could then search for solutions of type (2.1.2) in general
bounded domains since this kind of solutions can be viewed as the ones which play the
same role of the radial solutions in the case of the ball. This has been done recently in
[40], where solutions of the type (2.1.2) have been constructed for A close to zero in some
symmetric bounded domains (the symmetry makes their construction a bit easier, but
the same result should be true in any bounded domain).

On the contrary, coming to the case N < 7, in view of the nonexistence result of
nodal radial solutions of [6] it is natural to conjecture that, in general bounded domains,
there should not be solutions of the form (2.1.2) for A close to zero. Indeed this has been
recently proved in [38] if N = 4,5,6, the case N = 3 being obvious.

On the other side, if N < 7, radial nodal solutions exist for A bigger than a certain
value Ay which can be studied by analyzing the associated ordinary differential equation
(see [6], [4], [32]).

Therefore, to the aim of getting analogous existence results in other bounded domains,
the first step would be to analyze the asymptotic behavior of nodal radial solutions in
the ball, for A — Mg, in order to understand their limit profile and guess what kind of
solutions one can construct in other domains, and for which values of the parameter \.

This is the subject of this chapter.
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Denoting by uy a nodal radial solutions of (2.1.1) having two nodal regions and such
that uy(0) > 0 we get the following results:

(i): if N =6 then Ay € (0, A\;(B1)), A\1(B1) being the first eigenvalue of —A in H}(By),
and we have that, as A — Ao, u} concentrate at the center of the ball, ||u} || — +00,
and a suitable rescaling of u:\F converges to the standard positive solution of the
critical problem in RY. Instead u, converges to the unique positive solution of

(2.1.1) in By, as A — Ag;

(ii): if N = 4,5 then Ay = A(Bi) and u) behaves as for the case N = 6, while u
converges to zero uniformly in Bj;

(iii): if N = 3 then XAy = $\(B1) and uf behaves as for the case N = 6, while u}
converges to zero uniformly in Bj.

In view of these results we conjecture that, in general bounded domains 2, for some
“limit value” Ay = \o(N, Q) there should exist solutions with similar asymptotic profile as
A — A2. The number A should be A;(€2) in dimension N = 4, 5.

This chapter is divided in five sections. In Section 2.2 we mainly recall some prelimi-
nary results. In Section 2.3 we analyze the asymptotic behavior of the positive part of the
solutions, for all dimensions N = 3,4,5,6. In Section 2.4 we analyze the negative part in
the case N = 6 and in Section 2.5 we complete the cases N = 3,4, 5.

2.2 Some preliminary results

If uy is a radial sign-changing solution of (2.1.1) then we can write uy = uy(r), where
r = |z| and uy(r) is a solution of the problem

T

af Ml 4 Xy + [y PPy =0, in (0,1), (22.1)
W4(0) =0, up(1) =0. -

We consider the following transformation

N-2
T (N 2) uy = y(t) = ATV @2y, ( N2 ) . (2.2.2)

VAT e
It is elementary to see that since u) is a solution of the differential equation in (2.2.1)
then y = y(t) solves
y' Ry + YY) =0, (22.3)
N-2
in the interval (%) ,+oo>, where k := 2%. It is clear that the transforma-

tion (2.2.2) generates a one-to-one correspondence between solutions of the differential
equation in (2.2.1) and solutions of (2.2.3). Equation (2.2.3) is an Emden-Fowler type
equation and since k > 2 it is well known that, for any v € R the problem

{y"+tkf(y) =0, in (0,+oo0), (2.2.4)

y(t) — 7, as t — +oo,

where f(y) := y+|y|?> 2y, has a unique solution defined in the whole R* which we denote
by y(t;y). Let us recall some results on the functions y(¢;y) which are proved in [6].
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Lemma 2.2.1. Let y = y(t,7) be a solution of Problem (2.2.4), then:
(a) y is oscillatory near t = 0;
(b) the set {|y(t)]; t extremum point of y} is an increasing sequence with respect to t;

(c) the set {|y'(to)|; to zero of y} is a decreasing sequence with respect to t.

Proof. See Lemma 1 in [6]. O

Lemma 2.2.2. Let y = y(t,) be a solution of Problem (2.2.4) and let T > 0 be one of
its zeros, then

(@] <y (DT — 1),
forall0 <t <T.

Proof. See Lemma 2 in [6]. O
We shall denote the sequence of zeros of y(t;y) by T, (), ordered backwards, precisely:
e < T(y) < Ta(y) < Ti(y) < +oo.

We recall some results on the asymptotic behavior of the largest zero Ti(7y) and on the
slope y'(T1(v);7) as v — +o0.

Lemma 2.2.3. Let y be a solution of Problem (2.2.4) and Ti(v) its largest zero, then:
(a) if 2 < k < 3 (which corresponds to N > 4), then

Ti(y) = A(k:)'yG_%(l +o(1)) asy— +oo,

where A(k) = (k — 1)%F(3_k)/(’;g/)(l;(g;)l)/(k_m, I' is the Gamma function.

(b) if k =3 (which corresponds to N =4), then

Ti(y) = 2logy(1 4+ 0(1)) asy — +oo;

(c) if k = 4 (which corresponds to N = 3), then there exists vo € RT and two positive
constants A, B such that

A<Ti(y) < B forally > .

Proof. The proof of (a), (b) is contained in [6], Lemma 3 and the proof of (c) is contained
in [7], Theorem 3. O

Lemma 2.2.4. For any k > 2, let y be a solution of Problem (2.2.4) and Ty () its largest
zero, then

Y(Ti(7)) = (k= )F 2y (14 0o(1)), as v — +oo.

Proof. See [6], Lemma 4. O
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To prove the existence of radial sign-changing solutions of (2.1.1), with exactly two
nodal regions, we consider the second zero T»(7y) of y(t;). If we choose A = A\(7) so that

N—-2
Tr(y) = <%) , then the inverse transformation of (2.2.2) maps t =75 in r = 1 and

y — uy. Hence, for A\ = (N — 2)2T2(’y)7ﬁ, we obtain a function uy which is a radial
solution of (2.1.1) having exactly two nodal regions; moreover uy(0) = A/ =2y, We
observe also that thanks to the invertibility of (2.2.2) every radial sign-changing solution
uy of (2.1.1) with two nodal regions corresponds to a solution y = y(t;) of (2.2.4) with
7= AU D (0), Ty(y) = (852) "

We are interested in the study of the behavior of the map Xy : RT™ — R*, defined by
Ao(7y) == (N — 2)2T2('y)7%. Clearly this map is continuous. In [4] (see Proposition 2
and Remark 4), it is proved that for N = 4 it holds that lim,_,o A2(y) = A2(B1), where
A2(By) is the second radial eigenvalue of —A in H}(Bj). Moreover the authors observe
that this result holds for all dimensions N > 3. For the sake of completeness we give a
complete proof of this fact. We begin with a preliminary lemma.

Lemma 2.2.5. Let uy be a radial solution of (2.1.1), then we have |ux(0)| = ||ux||oc-
Proof. See Proposition 1.2.3 or Lemma 8 in [4]. O

Proposition 2.2.6. Let N > 3 and \y : RT™ — RT the function defined by Aa(7y) =

(N — 2)2T2(7)_ﬁ, where Ty(7y) is the second zero of the function y(t,~), y(t,7) is the
unique solution of (2.2.4). We have:

(a) Aa(y) < A2(Ba), for all v € RT;
(b) limy 50 A2(7) = A2(B1),
where A\a(By) is the second radial eigenvalue of —A in H}(By).

Proof. To prove (a) we observe that (a) is equivalent to show that T(y) > 7o for all
v € R, where 7 is the second zero of the function a : RT — R defined by a(t) :=

AV\/EJZ,(Zut_i), where 4, == v ' I(v+1), v:= 25 = %, Jy is the first kind (regular)

2 ‘ A
Bessel function of order v, namely J,(s) := Z]O‘io % (%)sz . In fact, by a
tedious computation, we see that a solves
o +t*Fa =0, in (0,+00),
( ) (2.2.5)
a(t) =1, as t — +oo.

Furthermore, let 7 be the second zero of «, then by elementary computations we see that

the function oy (z) := a(m|z|~ NV =2) solves

{—Aﬂpz = p2p2 in By (2.2.6)

p2 =0 on 0B,
with po = (N — 2)27'27%. Clearly po = Aa(Bi1). Hence Aa(y) < A2(Bip) if and only if
T (’)/) > To.
To show that Th(y) > 7 for all v € RT first observe that for all ¥ € RT we have
Ti(y) > 1. In fact, setting i () := (N — 2)2Ty (’y)_% as before we have that A;(v) <
A1(By) if and only if T7(y) > 7. Since we know from [17] that equation (2.2.1) has
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positive solutions only for A € (0,A1(By)) if N > 4, and only for A € (%,)\1(31)) if
N = 3, we deduce Ti(v) > 7 for all ¥ € RT. Now we apply the Sturm’s comparison
theorem to the functions y(¢; ), a(t), which are, respectively, solutions of the equations
n (2.2.4), (2.2.5). To this end we write y” + t *ga(t)y = 0 with g2(t) := 1 + |y/*> ~2 and
since o 4+t *a = 0 we set ¢1(t) := 1. Clearly q2(t) > q1(¢) for all ¢ > 0 (for all y¥ € RY),
thus y is a Sturm majorant for «, and applying the Sturm’s comparison theorem in the
interval [o, 71], since T () > 71 we deduce that Ta() € (72, 71). This concludes the proof
of (a).

Let us prove (b). We consider uy,(y) = t,(y)(7 ) which is a solution of (2.2.1) with
exactly one zero in (0,1), and uy,(,)(0) = [Aa(7)] 1/(2°=2)5 Setting p(z) 1= uy, (|z|) it is
clear that ¢ is the second radial eigenfunction of

(2.2.7)
p=0 on 0By,

{—A¢ = ¢+ [upy |2 20 in By
with eigenvalue A = A\y(7y). Let us denote by H(%,r 1q(B1) the subspace of radially symmetric

functions in H¢ (B). Thanks to the variational characterization of eigenvalues and Lemma
2.2.5 we have

A = min max / \% de—/ U -2 2dx>
o) = in s ([ 196 e [
dimv=2 |pl2=1

> i s ([ 9 de = a2 228)
By

VCHé raq(BL) PEV

dimV=2 lpl2=1
= Xa(B1) — Da())YF 242

Since A2(7y) is bounded (because by (a) we have A\a(y) < A2(B1) and by definition Aa(7y) >
0), from (2.2.8), we deduce that liminf,_,0 A2(7) > A2(B1). On the other hand, by the first
step we get that limsup,,_, A2(7) < A2(B1). Hence we deduce that limy o A2(7y) = A2(B1)
and the proof is concluded. O

More interesting is the behavior of \y(7y) as 7 — +00. The next result that we recall
shows how it strongly depends on the dimension N.

Theorem 2.2.7. Let Ay : Rt — R™T be the function defined by Ao(y) := (N—2)2T2(’y)_ﬁ,
where Ty (7y) is the second zero of the function y(t,~), being y(t,~) is the unique solution
(2.2.4), and let \1(B1) be the first eigenvalue of —A in H}(By), then:

(a) if N > 7 we have lim,_, 4o A2(y) = 0;

(b) if N =6 we have limy_, 1o Aa(7) = Ao, for some Ao € (0, A\1(B1));
(c) if N =4 or N =5 we have lim,_, o A2(7) = A1 (B1);

(d) if N =3 we have limy_, o0 A2(7) = $A1(By) = §72.

Proof. Statement (a) is a consequence of Theorem B in [25]. Statements (b), (c) are
proved in [6], Theorem B. In Section 2.4 we give an alternative proof of (b). Statement

(d) is proved in [8]. O

Let us define A% := inf{\2(7), v € RT}. Gazzola and Grunau proved in [32] that for
N = 5 it holds limy_ 4o A2(y) = Ai1(B1)~, in particular we deduce that for N = 5 we
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have A5 < A\1(B1) and hence A5 = X2(79) for some 7y € RT. In the same paper it is also
proved that for N = 4 lim,_, 1 X2(7y) = A1(B1)T. Recently Arioli, Gazzola, Grunau,
Sassone proved in [4] a stronger result: for N = 4 we have A2(y) > A1(By) for all vy € R,
Thus for N =4, we have A5 = A\;(B1) and A3 is not achieved.

The asymptotic behavior of A2(y) as v — +oo for N = 6 is still unknown. Nevertheless
in Section 2.3 we give a characterization of the number Ay appearing in (b) of Theorem
2.2.7.

2.3 Energy and asymptotic analysis of the positive part

Let uy,(4) be the radial solution with exactly two nodal regions of (2.1.1), for A = A2(7),
obtained in the previous section. To simplify the notation we omit the dependence on
v and write uy,. We recall that, by definition, for v € R™ we have u),(0) > 0 and we
denote by ry, € (0,1) its node.

The aim of this section is to compute the limit energy of the positive part u:\:, as
v — +00, as well as, to study the asymptotic behavior of a suitable rescaling of u;\;. We
begin with recalling an elementary but crucial fact:

Lemma 2.3.1. Let u € H& (B), where B is a ball or an annulus centered at the

origin of RN and consider the rescaling i(y) := MYPu(My), where M > 0 is a constant,
8= % We have:

rad

(i): Mullf = N5, 5

(i): W%:,B = |a gi,M—lB’
(iii): |ul3 p = M>[al3 )1 p-

Proof. Tt suffices to apply the formula of change of variable for the integrals in (i), (ii),
(iii). For the details see the proof of Lemma 1.4.1. O

In order to state the main result of this section we introduce some notation. We define
the rescaled functions

1 Y
~+ +
u,y (y) = U , Y€ By,
AQ( ) A2, » (Mfg +> i

where B 1= 25, o), = M52’+7">\2, My, + = Huj\;Hoo,By We observe that thanks to
Lemma 2.2.5 and since uy,(0) > 0 we have My, + = |[ux,|loo,B, = ur,(0). The following
theorem holds for all dimensions N > 3, here we discuss the case 3 < N < 6 (the case
N > 7 has been studied in Chapter 1).

Theorem 2.3.2. Let N = 3,4,5,6 and let uy, be the radial solution with exactly two
nodal regions of (2.1.1) with A = A\a(7y) obtained in the previous section. Then

(1):

1
J)\z (u:\:) — NSN/Q,

as y — 400, where Jy(u) := 3 (fBl |Vul? — Mul? dx) — 5 fB1 |u|>" dx is the energy

functional related to (2.1.1), S is the best Sobolev constant for the embedding of
DL2(RY) into L?" (RY).
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(ii): Up to a subsequence, the rescaled function @ converges in CE (RN) to Uy, as
v — 400, where Uy, is the solution of the critical exponent problem in RY centered
at xo = 0 and with concentration parameter j = /N(N — 2). We recall that such
functions are defined by

[N(N —2)p? N2/
(12 + |z — 2] (N-2/2

Uz () :=

Proof. We start by proving (i). Let (uy,) be this family of solutions. Since u;\: solves

—Au = du+u?"tin B,,, then, considering the rescaling ﬂ;; (y) :== r/l\éﬁuj\; (ra,y), where

2 ~+
B = §=5, we see that uy, solves

—Au = )\2r§\2u +u¥ 1 in By,
u> 0 in By, (2.3.1)
u=20 on 0B;.

Now we distinguish between two cases: N =4,5,6 and N = 3.

If N = 4,5,6, then, from Lemma 2.2.3 we deduce that ry, — 0 as 7y = +o0, in
particular this is true for )\27‘/2\2. From [2] we know that ﬂj\; is unique and it coincides
with the solution found in [17], which minimizes the energy J rord thus, since )\27‘/2\2 -0

as v — +oo we get that JA?’”K (ﬂj{z) — %SN/Q. Thanks to Lemma 2.3.1 we get that
2
J,\z(u;:) = J/\2T§2 (11;(2) — £ SN2 a5 4 — +o0.
Assume now that N = 3. As stated in Lemma 2.2.3 we have that r), is bounded

away from zero. From a well known result of Brezis and Nirenberg (see [17], Theorem 1)
we have that (2.3.1) has a positive solution if and only if )\27’/2\2 € (%2,79). As v — 400

1
v — +o00. As before thanks to Lemma 2.3.1 we have J), (u;:) =J,

we must have )\27"/2\2 - = Hence, the only possibility is that ‘]/\2T§ (a;\;) — %83/ 2 as
2
ot
ril? (ty,) and hence
I, (UL) — %53/2 as v — +o00. The proof of (i) is complete.
We now prove (ii). By definition the rescaled function ’11;; solves the following problem

~Au=—3u+u?"" in Bs,,,

Ao, +
u>0 in By, , (2.3.2)
u= on 9B, ,

where o), := Mir,\g.
Since the family (&L) is uniformly bounded, then by standard elliptic theory we get

that &;\; — @ in Cf (B,), where [ is the limit of oy, as v — +o0o. We want to show that

lim o), = +00
Y—+00 A2 ’

so that the limit domain is the whole RY. We can proceed in two different ways: one
is to apply directly the estimates contained in Section 2.1, the other one is to apply
the methods of Chapter 1. We choose the second approach: arguing as in the proof of
Proposition 1.4.3, taking into account that by (i) of Theorem 2.3.2, Jj, (u;\;) — %SN/{
as 7 — 400, we see that up to a subsequence it cannot happen that lim,_, o 0, is finite.
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Since )2‘[23 — 0, as v — 400, 71;\: converges in C’lQOC(]RN) to a positive solution 4 of

Ag,+

~Au = |[u* 2y in RV
u—0 as |y| — +oo.

Observe that this holds even in the case N = 3, in fact by definition and Remark 2.3.3
we have

M(Bsy,) w2 9 , 1 Ao
= 1 5 = 57 (1 + 0(1)) 1 = 1 (1 + 0(1)) — 0,
4 4M)\2’+7“)\2 4 M)\Q’Jr M>\27Jr
as y — +00.
Since 4 is radial and @(0) = 1 then @ = Uy, where = /N(N — 2) (see Proposition
2.2 in [25]). The proof is complete. O

Remark 2.3.3. We observe that for N = 3, since )\27'32 — %2 and (d) of Theorem 2.2.7

holds, then, we deduce that ry, — % On the contrary, if N =4,5,6, as seen in the proof
of Theorem 2.3.2, we have vy, — 0 as v — +oo (this also holds for N > 7, as seen in
Proposition 1.3.3).

2.4 Asymptotic analysis of the negative part in dimension
N =6

In this section we focus on the case N = 6 which means to take k = 5/2 in (2.2.4). As in
[6] we define

to(y) = mf{t e (0,40); ¥ >0 on (t,+00)},
yo(v) = ylto(v);7)-
We have the following:

(2.4.1)

Proposition 2.4.1. Assume k =5/2. Then
(a) yo(v) = —3(1+o0(1)), asy — +oo;

(b) to(y) = (37)*/*(1 +0(1)), as v — +oo.
Proof. See [6], Theorem 2. O

Let u) be any radial solution of (2.1.1) with exactly two nodal regions and without
loss of generality assume that uy(0) > 0. We denote by sy the global minimum point of
uy. As in the previous section we set M) ¢ = [[u}||oo, My — = |Ju} ||, where u], uy
are respectively the positive and the negative part of uy. Clearly, by definition, we have
uy (sx) = My _. In order to estimate the energy of such solutions we need the following
preliminary result.

Proposition 2.4.2. Let N = 6 and let (uy) be any family of radial sign-changing solutions
of (2.1.1) with exactly two nodal regions and such that ux(0) > 0 for all \. Assume that
there exists \g € RT such that My — 00 as A = Xg. Then

M- < 21+ 0(1)),

for all X sufficiently close to Ag.
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Proof. Let (uy) be such a family of solutions. Since N = 6, we have 2* —2 = 45 =1

and thanks to the transformation (2.2.2) we have
ux(r(t)) = A y(t; ), (2.4.2)

N-2
for t € <<A\[&2) ,+oo>, where v = A™' M, ;. We observe that the global minimum

point sy corresponds, through the transformation (2.2.2), to the number to(y) defined in
(2.4.1). In fact by definition we have u)(sx) = 0 so it suffices to show that u}(r) < 0 for
all r € (0,s5). By Corollary 1.2.4 we know that v/ (r) < 0 for all r € (0,r,), and for all
r € (rx, sx). Moreover since u} solves (2.1.1) in B,,, then, by Hopf lemma it follows that
uh(rx) < 0. Now, thanks to the assumptions, as A — Ao we have v = )FlM,\,Jr — 400
and the result follows immediately from (2.4.2) and Proposition 2.4.1. O

Remark 2.4.3. A straight important consequence of Proposition 2.4.2 is that M) _ is
uniformly bounded for all A sufficiently close to Ag. In particular there cannot exist radial
sign-changing solutions of (2.1.1) with the shape of a tower of two bubbles in dimension
N =6 (this fact also holds for the dimensions N = 3,4,5, as we will see later). This is
in deep contrast with the case of higher dimensions N > 7 as seen in Chapter 1.

Remark 2.4.4. In the case of the solutions obtained in the previous section, thanks to
Theorj_m 2.2.7 we deduce that My, - < %(1 +0(1)) < w for all sufficiently large
vyeRT.

In the previous section we have studied the limit energy (see Theorem 2.3.2) of the
positive part of the solutions wy,. Here we consider the negative part uy, and prove
that its energy .Jy, is uniformly bounded as v — +o0o0. This is the content of the next
proposition.

Proposition 2.4.5. Let N = 6. Let Ao = Xa(y) and uy, be the radial solution with exactly
two nodal regions of (2.1.1) described in Section 2.2. Let Jy(u) := 3 <fBl |Vul? — Nul? da:) —
L u|?" dx be the energy functional related to (2.1.1). Then

2+ JB

iy < 72 (MY

for all sufficiently large ~y.

Proof. Since uy, solves —Au = Au + u? 71 in the annulus Am27 in particular it belongs
to the Nehari manifold N, associated to that equation, which is defined by

Nog = {u € HY (A, ) Tl = olul} = [uf3 4 }. (2.4.3)
2 2 2
Hence we deduce that |
J)\Q (U;Q) = 6|U;\2 %*7AT‘A2 . (244)
Now, thanks to Proposition 2.4.2, (b) of Theorem 2.2.7 and Remark 2.4.4 we have
3 3
— (2% -3 -3 7 (A1 (B1)
N A e o T
2

for all sufficiently large . From (2.4.4) and (2.4.5) we deduce the desired relation and
the proof is complete. O
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Remark 2.4.6. Since A2 is a bounded function, by the same proof of Proposition 2.4.5,
but without using (b) of Theorem, 2.2.7 we deduce anyway that Jy,(uy,) is uniformly
bounded for all sufficiently large ~.

We are interested now in studying the asymptotic behavior of the family (u;Q) More
precisely we show that, as v — oo, the family (u),) converges in C? (By —{0}) to the
unique positive solution ug of (2.1.1) with A = Ao, for some \g € (0, A\;(B1)). We point
out that these results will improve the energy estimate of u, obtained before.

The pointwise convergence of (u,,) to ug is contained in Theorem 3 of [6], but here
we use a different approach which is based on the arguments of Chapter 1. Our result is
the following:

Theorem 2.4.7. Let N = 6, up to a subsequence, we have \a(7y) — Ao, as vy — 400,
for some Ao € (0, \1(B1)), and (uy,) converges in C? .(B1 —{0}) to the unique positive
solution ug of (2.1.1) with A = X.

Proof. Let us consider the family (u,,). These functions solve

—Au=Xu+u®> inA

TAg)
u>0 in A, (2.4.6)
u=20 on 8AU2.

Since A2 is bounded, up to a subsequence we have lim,_, ;o A2 = Ag. Thanks to Proposi-
tion 2.4.2 we have that u,  is uniformly bounded for all sufficiently large v and by Lemma
2.2.3 and the inverse transformation of (2.2.2) we have r), — 0. Hence by standard el-
liptic theory, up to a subsequence, for any 0 < § < 1, u, converges in C?(By — Bs) as
v — 400 to a solution ug of

—Au = Mu+u? in By — {0},
u=20 on OBj.

where Bs is the ball centered at the origin having radius 6. We now proceed in three
steps.

Step 1: we have
A
lim ug(r) = 22. (2.4.7)
r—0 2
Since uy, is a radial solution of (2.1.1) and thanks to Proposition 2.4.2, for all sufficiently

large v, we have

A
uy, < 50(1 +0(1)), (2.4.8)
and then we deduce that
[(uy,) ) = =Xauy (r)r® — [uy (r)]*r®

Ao 5 Ao 2 5
> A1+ oW)r® = R +o(1)] 7
= 0+ o) - 1+ o))
> —)\% .
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Integrating between sy, and r (with sy, <7 < 1) we get that
T A2
(U§2)/(7“)7“5 > —)\(2)/ odt > _EOTG'

SA2
2
Hence (u,,)'(r) > —%r for all r € (sy,,1). Integrating again between sy, and r we have

_ Ao Mo A5 2
uy, (r) — ?(1 +o(1)) = —E(T = Si,) 2 BT
Hence uy, (r) > %(1 +0(1)) — %72 for all sufficiently large v, for all r € (sy,,1). Since

Ao _ AG,2
5 T9r<, for all

0 < r < 1. From this inequality and (2.4.8) we deduce that lim,_,o ug(r) = ’\2—0. The proof
of Step 1 is complete.

Sy, — 0, then, passing to the limit as v — oo, we get that ug(r) >

Step 2: we have
lim ug(r) = 0. (2.4.9)

r—0

As in the previous step, integrating the equation between sy, and r, with sy, <r <1, we
get that

‘a T
—(ay,) (r)r® = )\2/ uy, t0dt + / (uy,)*t dt.
Sxg Sxg
Thanks to (2.4.8), for all sufficiently large v we have
-\ 5 Ao " 5 )\% 2 [T 5 570
|(u/\2) (r)r’| < Xa— (14 o(1)) t°dt + — (14 o(1)) tdt < \j—.
2 N 4 . 6
Dividing by 7° the previous inequality and passing to the limit, as v — 400, we get that
A2
uj(r)| < 20,
for all 0 < r < 1. Hence lim,_,o uj(r) = 0 and the proof of Step 2 is complete.

From Step 1 and Step 2 it follows that the radial function ug(z) = wo(|z|) can be
extended to a C'!(B;) function. We still denote by ug this extension.
Step 3: The function ug is a weak solution in By of

—Au = \u + u?. (2.4.10)

Let us fix a test function ¢ € C§°(By). If 0 ¢ supp(¢) the proof is trivial so from now
on we assume 0 € supp(¢). Applying Green’s formula to (J) := By — Bs, since uy is a
C?(B; — {0})-solution of (2.4.10) and ¢ = 0 on 9B, we have

Vug - Vo do = )\0/ b ugp da:—l—/ b ul dx—l—/ ) (8%) do.  (2.4.11)
Q(5) Q(6) Q(s) 9B v

We show now that | 0B; 10} (%) do — 0 as 6 — 0. In fact since ug is a radial function

we have %(:ﬁ) = uy(9) for all = € OBs, and hence we get that

0 / /
Lo (52) do| < @ [ 1ol do < ol @il
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Thanks to (2.4.9) we have |uf(8)[6°> — 0 as § — 0. To complete the proof we pass to the
limit in (2.4.11) as 6 — 0. We observe that

Vug - Vol xa@) < [Vuol X{vue>13/ Vel + [Vauo| X{jvuoi<13 V¢l (2.4.12)

IN

IVuol* X(9uol>13 VOl + X{|Tuol<1} V-

We point out that [ B, |Vug|?de is finite: this is an easy consequence of the fact that
uy, — ug in C3 (B —{0}), the family (uy,) is uniformly bounded, (2.4.3) and Lebesgue’s
theorem.

Thus, since || B, |Vuo|?dz is finite and ¢ has compact support, the right-hand side of

(2.4.12) belongs to L'(Bj). Hence from Lebesgue’s theorem we have

lim Vug - Vo de = Vug - Vo dx. (2.4.13)
6—0 Q(8) B

Since ¢ has compact support by Lebesgue’s theorem we have
lim/ ¢ ug dr = ¢ ug dx,
Q(0)

=0 By (2.4.14)
lim/ ¢ ul dx / ¢ ud du.
0—0 Q(5) B

From (2.4.11), (2.4.13), (2.4.14) and since we have proved faB(a) ¢(9%) do—0asd—0
it follows that

Vug-Védr=X | ¢upde+ | ¢udde,
B B B

which completes the proof of Step 3.

Thanks to Step 1 - Step 3 we get that ug € H& raq(B1) is a weak solution of

—Au= XNu+u? in By,
uw>0 in By, (2.4.15)
u=0 on 0Bj.

In particular, as a consequence of a well known result of Brezis and Kato (for instance
see Lemma 1.5 in [17]) it is possible to show that ug is a classical solution of (2.4.15) (see
Appendix B of [58]). Thanks to [2] we know that ug is the unique positive radial solution
of (2.4.15), which is the one found by Brezis and Nirenberg in [17]. Hence we must have
Ao < A1(B1) and Jy(uy,) < 153 O

Next result gives a characterization of the value Ay € (0, A\1(B1)) appearing in Theorem
2.4.7.

Theorem 2.4.8. Let N = 6. Let Ao := lim—,{oc A2(7y). We have that Ay is the unique
A€ (0,1 (B1)) such that uy(0) = %, where uy is the unique positive solution of

—Au =M u+u® in By,
u >0 in B, (2.4.16)
u=~0 on 0Bj.
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Proof. Thanks to Theorem 2.4.7 and (2.4.7) we have that the set
A . : .
r:= {A € (0, \(B1)); ur(0) = 5 where u) is the unique solution of (2.4.16)} ,

is not empty since \g € I'. We want to prove that I' = {A¢p}. To this end assume that
X €T and A # )\o. In particular the functions uy, and uy are different. Thanks to the
definition of I' and applying (2.2.2) (with 2* —2 = 1 because N = 6) we get that u), and
uy, are respectively transformed to a solution of (2.2.4) with v = %, but, for a given 7,
the solution of (2.2.4) is unique and this gives a contradiction. O

Now we have all the tools to estimate the energy of the solutions uy,. This is the
content of the next result.

Corollary 2.4.9. Let N = 6 and let uy, be the radial solution with ezxactly two nodal
regions of (2.1.1) with A = Aa(7y) obtained in Section 2.2. Then

1
J)\Q('LL)\Q) < gSS,
for all sufficiently large v € RY, where Jy(u) := 3 (fB1 |Vul? — Mul? dm) — 5 fB1 lu?” dx

is the energy functional related to (2.1.1), S is the best Sobolev constant for the embedding
of DV2(R) into L?" (RS).

Proof. Let (uy,) be this family of solutions. Observe that Jy,(uy,) = Jy, (uj\;) + Jx, (uy,)
hence it suffices to estimate separately the energy of the positive and negative part of wy,.
The energy of ujz has been determinated in Theorem 2.3.2, and in particular we have
J)Q(UL) — 353, as v — 4o0.

Now we estimate Jy, (uy, ). Since uy, solves —Au = Aou+u? ~1in the annulus 4;,,,in
particular it belongs to the Nehari manifold V), associated to this equation, (see (2.4.3)).

Hence we deduce that Jy,(uy,) = %|u;2 A - To complete the proof it will suffice to
) T 2

show that
_ 2* _ 2*
|u)\2|2*,A7./\2 - |UAO‘2*,BN
where wg is the unique solution of (2.4.15). In fact, thanks to Theorem 2.4.7 we know
that, up to a subsequence, (u, ) converges in C? (By — {0}) to the unique solution wug

of (2.4.15). Hence to prove our assertion it suffices to apply Lebesgue’s theorem, which
clearly holds since (u),) is uniformly bounded as v — +o0.

Now since Jy, (uy,) = Jxg(un,) and Jy,(uy,) < £5% we deduce the desired relation.
O

2.5 Asymptotic analysis of the negative part in dimension
N =3,4,5

Here we prove:

Theorem 2.5.1. Let N = 3,4,5 and let (uy) be any family of radial sign-changing
solutions of (2.1.1) with exactly two nodal regions and such that ux(0) > 0 for all A.
Assume that there exists X € Rt such that My 1 — oo, as X — . Then:
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(i): My_ —0, as X\ = \;
(it): (uy) converges to zero uniformly in By, as X\ — A.

Proof. We start by proving (i). Let (u)) be such a family of solutions. Thanks to the
transformation (2.2.2) we have

ua(r(t)) = AT y(t;7), (2.5.1)

VA
as A — A, we have v — +00. As in the proof of Proposition 2.4.2 we have that the global
minimum point sy corresponds, through the transformation (2.2.2), to the number ()
defined in (2.4.1).
Hence, thanks to Lemma 2.2.2, it holds

N-2
fort € <(N_2> ,—I—oo), where v = )\_ﬁMA7+ and y = y(t;y) solves (2.2.4). Clearly,

ly(to(v): I < 1y (T (T1(7) = to(y))- (2.5.2)

For N = 3, which corresponds to k = 4, by Lemma 2.2.3 we have that 71 () is uniformly
bounded for all sufficiently large ~, while, by Lemma 2.2.4 it holds ¢/ (T1(v)) = (k —
1)ﬁ'y*1(1 + o(1)). Thus, since 0 < to(y) < Ti(y), from (2.5.2), (2.5.1) we get that
My _ = )\ﬁy(to;'y) —0asA— A\

For N = 4, which corresponds to k = 3, by Lemma 2.2.3 we have that Ti(y) =
2log(y)(14o0(1)) for all sufficiently large 7, and hence as in the previous case, we get that
M, _ = )\ﬁy(tg;'y) — 0 as A — A\. The same happens for N = 5 (k = 8/3); in fact
by Lemma 2.2.3 we have that T1(v) = Ay*/3(1 + o(1)) for all sufficiently large ~y, where
A = A(k) is a positive constant depending only on k (see Lemma 2.2.3 for its definition).
The proof of (i) is complete.

Now we prove (ii). We recall that w, is nonzero in the annulus A, (0) = {z €
RY; 7y < |z| < 1} and vanishes outside. Thanks to (i), we have ||u} [lco,5, = My - — 0
as A — A and we are done. O
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Chapter 3

Sign-changing tower of bubbles for
the Brezis-Nirenberg problem

3.1 Introduction

Here we present and prove the result (R3).

In this chapter we are interested in the construction of solutions to the following problem

— = p—1 i
{ Au = eu+ |ulP~ u in Q (3.1.1)

u =0, on Jf)

where Q is a bounded smooth domain of RY with N > 7, ¢ is supposed to be small and
positive while p +1 = ]\2,71172 is the critical Sobolev exponent for the embedding of H{ ()

into LPT1(Q).

The pioneering paper on equation (3.1.1) was written by Brezis and Nirenberg [17] in
1983 where the authors showed that for N > 4 and e € (0, A1), the problem (3.1.1) has
at least one positive solution where Ay denotes the first eigenvalue of —A on Q.

In the case N = 3, a similar result was proved in [17] but only for e € (A*, A1) with
A* = A*(©2) > 0. Moreover by using a version of the Pohozaev Identity the authors showed
that A*(€2) = $A1 if Q is a ball and that no positive solutions exist for € € (0, $A1).

Note that, by using again Pohozaev Identity, it is easy to check that problem (3.1.1) has
no nontrivial solutions when € < 0 and €2 is star-shaped.

Since then, there has been a considerable number of papers on problem (3.1.1).

We briefly recall some of the main ones.

Han, in [36], proved that the solution found by Brezis and Nirenberg blows-up at a critical
point of the Robin’s function as € goes to zero. Conversely, Rey in [52] and in [51] proved
that any C'-stable critical point of the Robin’s function generates a family of positive
solutions which blows-up at this point as € goes to zero.

After the work of Brezis and Nirenberg, Capozzi, Fortunato and Palmieri [20] showed that
for N =4, ¢>0and € ¢ o(—A) (the spectrum of —A) problem (3.1.1) has a nontrivial
solution. The same holds if N > 5 for all € > 0 (see also [35]).

The first multiplicity result was obtained by Cerami, Fortunato and Struwe in [23], in
which they proved that the number of nontrivial solutions of (3.1.1), for N > 3, is
bounded below by the number of eigenvalues of (—A, Q) belonging to (e, e + S|Q|~2/N),

o1



52 CHAPTER 3. SIGN-CHANGING TOWER OF BUBBLES, N > 7

where S is the best constant for the Sobolev embedding DV2(R™) into LPT1(RY) and |9
is the Lebesgue measure of ).

Moreover, if N > 4, then for any ¢ > 0 and for a suitable class of symmetric domain €2,
problem (3.1.1) has infinitely many solutions of arbitrarily large energy (see Fortunato
and Jannelli [31]).

If N > 7 and Q is a ball, then for each ¢ > 0, problem (3.1.1) has infinitely many sign-
changing radial solutions (see Solimini [55]).

In the papers [31, 55], the radial symmetry of the domain plays an essential role, therefore
their methods do not work for general domains.

Concerning sign-changing solutions, Cerami, Solimini and Struwe showed in [25] that if
N > 6 and € € (0, A1), problem (3.1.1) has a pair of least energy sign-changing solution.
In the same paper the authors studied the multiplicity of nodal solutions proving the
existence of infinitely many radial solutions when € is a ball centered at the origin.

On the other side, for 3 < N < 6 and when € is a ball, it can be proved that there is a
A* > 0 such that (3.1.1) has no sign-changing radial solutions for € € (0, \*) (see Atkinson,
Brezis and Peletier [5]).

Moreover, Devillanova and Solimini in [28] showed that, if N > 7 and 2 is an open regular
subset of RV, problem (3.1.1) has infinitely many solutions for each € > 0.

For low dimensions, namely N = 4,5,6 and in an open regular subset of RY, in [29],
Devillanova and Solimini proved the existence of at least N 4 1 pairs of solutions provided
€ is small enough. In [24], Clapp and Weth extended this last result to all € > 0.

Neither in [28, 29] nor in [24] there is information on the kind of sign-changing solutions
obtained.

Recently, in [54], Schechter and Wenming Zou showed that in any bounded and smooth
domain, for N > 7 and for each fixed ¢ > 0, problem (3.1.1) has infinitely many sign
changing solutions.

Concerning the profile of sign-changing solutions some results have been obtained in

[14], [13] for low energy solutions, namely solutions u, such that / |Vue|? dz — 28 %, as
Q

e — 0, S being the Sobolev constant for the embedding of H{ () into LPT1(Q). More
precisely in [14] it is proved that for N = 3 these solutions concentrate and blow-up in two
different points of €2, as ¢ — 0, and have the asymptotic profile of two separate bubbles.
A similar result is proved in [13] for N > 4 but assuming that the blow-up rate of the
positive and negative part of u. is the same.

Existence of nodal solutions with two nodal regions concentrating in two different points
of the domain Q as ¢ — 0 has been obtained in [21], [45] and [12]. So none of these
solutions look like tower of bubbles, i.e. superposition of two bubbles with opposite sign
concentrating at the same point, as ¢ — 0. Such a type of solutions is shown to exist
for other semilinear problems like the almost critical Lane-Emden problem (see [13], [49],
[48]) but not, to our knowledge, for the Brezis-Nirenberg problem with the exception of
the case of the ball. If Q is a ball, and N > 7, in a recent paper [37] the asymptotic
behaviour as ¢ — 0 of the least energy nodal radial solution v, is analysed and among
other things, it is shown that the positive and negative part of ve concentrate at the ori-
gin. Moreover they have the asymptotic profile of a positive and negative solution of the
critical problem in RY and the concentration speeds are different.

Hence [37] provides the first example of bubble of towers for the Brezis-Nirenberg prob-
lem.

Then the natural question is whether these kind of solutions exist in bounded domains
other than the ball.
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In this chapter we answer positively this question constructing a sign-changing solution
of (3.1.1) in any bounded domain symmetric with respect to N orthogonal hyperplanes.

We next state our result.

Theorem 3.1.1. Let N > 7 and let Q be a smooth bounded domain in RY such that Q
is symmetric with respect to x1,...,xn and 0 € Q). There exists eg > 0 such that for any
e € (0,€) there exist positive numbers dje, j = 1,2 and a solution u. of problem (3.1.1)
of the form

d 1 71\12—2 d ( 3N)?10 ) =
N—42 N—4)(N—6
ue(z) = an (126 > — ( 2663 > + P, (3.1.2)
€

9 2 N-10
d2e€ (N-9)(N-6) |$’2

where ay = [N(N — 2)]¥, dje — dj >0, as e — 0, & — 0 in H(Q), as e — 0.
Moreover u. is even with respect to the variables x1,...,xN.

We remark that the assumption N > 7 in our proof is crucial. We believe that it is
possible to extend our result to a general domain €2 with some suitable modifications.

In the case the remainder term converges to zero also in LS (£2), then, the asymptotic
expansion and some energy estimates derived in the course of the proof allow to draw
interesting consequences concerning the number and shape of the nodal domains of the
solution ..

Theorem 3.1.2. Let N > 7 and assume that the remainder term ®., appearing in Theo-
rem 3.1.1, is such that ® — 0 uniformly in compact subsets of Q). Then, there exists eg >
0 such that for any € € (0,¢q), the solution ue constructed in Theorem 3.1.1 has precisely

1
two nodal domains Q}, Q? such that Q! contains the sphere S} := {:L“ ERN; |z| = em},

€
2
on Q2.

Consequently, 0 € Q2 and Q! is the only nodal domain of ue which touches OS).

3N—-10
02 contains the sphere S? := {:E ceRY: 2| = e(N*4>(N*6>} and ue > 0 on QL and uc <0

Remark 3.1.3. Under the assumptions of Theorem 3.1.2 it follows that the sign-changing
tower of bubble ue constructed in Theorem 8.1.1 has two nodal domains and its nodal set
does not touch 0L2. By this we mean that, denoting by

Ze ={x € Q; u(x) =0}
the nodal set of ue then Z. N 0N = 0.

The proof of Theorem 3.1.1 is based on the Lyapunov-Schmidt reduction.
To describe the procedure and explain the difficulties which arise when looking for bubble
towers of the Brezis-Nirenberg problem, we introduce the functions
Pl
(8 +1al?) T
with oy = [N(N — 2)]"7 . Is is well known (see [9], [19], [59]) that (3.1.3) are the
only radial solutions of the equation

—Au =uP in RY, (3.1.4)

Us(x) = an 0>0 (3.1.3)
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We define ¢s5 to be the unique solution to the problem

Aps =0 in
{ o on 600 (3.1.5)
and let
PUs = U5 — ps (3.1.6)
be the projection of Us onto H}(€2), i.e.
—APUs =UY in Q
{ PlUs =0 on 0f). (3.1.7)

Finally, let G(x,y) be the Green’s function associated to —A with Dirichlet boundary
conditions and H(zx,y) be its regular part, namely

1 1 1
7G("E’y)7 Vw,yEQ, with IN =

H(ry)= —— S
(z,y) =gV 2 oy N(N = 2wy’

where wy is the volume of the unit ball in RYV.
The function 7(x) := H(z,z), x € Q is called Robin’s function.

It is well-known that the following expansions holds (see [51])

ws(x) =and T H(0,z) + 00 )  asd— 0. (3.1.8)

Moreover, from elliptic estimates it follows that

N-—-2
0<ps(z)<cdz, in Q, (3.1.9)

_ 1
loslga <C6 2, qe (W;,er 1} (3.1.10)
and
N2

Vpslzn < Cro 2 (3.1.11)

see for instance [51], [62] and references therein.

We look for an approximate solution to problem (3.1.1) which is a superposition of two
standard bubbles with two different scaling parameters, namely we take §; > do and we
look for a solution to (3.1.1) of the form

ue(x) = PUs, — PUs, + ®c(z) (3.1.12)

where the remainder term ®. is a small function which is even with respect to the vari-
ables x1,...,xnN.

The Lyapunov-Schmidt reduction allows us to reduce the problem of finding blowing-up
solutions to (3.1.1) to the problem of finding critical points of a functional (the reduced
energy) which depends only on the concentration parameters.

As announced before in our case some difficulties arise which need some modification of
the standard procedure to be overcome.
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Indeed, first we remark that the solutions of problem (3.1.1) are the critical points of the
functional J, : H}(Q) — R defined as

/ |Vu\2dxf / Ju[PTt dz — /u2 dx, u € H}(Q). (3.1.13)

If we apply directly the reduction method looking for a solution of the form (3.1.12) we
get that the remainder term is such that

HQHZOG%%”) o >0

where || - || denotes the H}(€2)-norm, and that the reduced energy

N-—2

®> +HOLT.

Reduced Energy ~ J.(PUs, — PUs,) = C + C17(0)0 2 — Cped? + O3 (6
1

where C, C; are some known positive constants.

Since 41,02 are proper power of € of the form ¢; = €%d;, d; > 0 , after some easy

computations, in order to find a critical point of the reduced energy, we get that

No2 N9 9 do = N=2
Reduced Energy ~ C + eN=1 |C17(0)d} ~* — Cadi + C3 7 + o(eV-1)
1
with
b 3
Nn=N_x 2= N,

However the function

U(dy,dz) = C17(0)dy % — Cadi + Cs <d2>

has a critical point in d; but not in do and hence in this way we cannot find a solution of
our problem.

Hence we use a new idea. We split the remainder term ®. in two parts:

O (7) = d1,e(x) + P2.e()
such that
|p2.ell = o(||@1,ll), as e—0.

Usually, the remainder term &, solution of the auxiliary equation, is found with a
fixed point argument. Here we have to use the Contraction Mapping Theorem twice,
since we split the auxiliary equation in a system of two equations. The first one depends
only on ¢; while the second one depends on both ¢1, ¢2. So we solve the first equation
in ¢1 and then the second one finding ¢o. Then we obtain the remainder term ®,. which
consists of two terms of different orders. Then we study the finite-dimensional problem,
namely the reduced energy that consists of two functions of different orders. The lower
term depends only on dy while the term of higher order depends on dy, ds. At the end we
look for a critical point of this new type of reduced energy. We believe that our strategy
can be used also in other contexts.

The outline of the chapter is the following: in Section 3.2 we explain the setting of
the problem. In Section 3.3 we look for the remainder term ®. in a suitable space. In
Section 3.4 we study the reduced energy and finally Theorem 3.1.1 and Theorem 3.1.2 are
proved in Section 3.5.
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3.2 Setting of the problem

In what follows we let

1
(u,v) := / Vu - Voudz, |lul| := (/ |Vu]2dx) ’
Q Q

as the inner product in Hg(2) and its corresponding norm while we denote by (-, -) HI(RN)
and by || - ||; o gy the scalar product and the standard norm in H'(RY). Moreover we

denote by
1
fuly 1= (/ \u!’"dx)T
Q

the L"(Q)-standard norm for any r € [1,4+00). When A # Q is any Lebesgue measurable
subset of RY, or, when A = Q and we need to specify the domain of integration, we will
use the alternative notations |ull, |uly .

From now on we assume that € is a bounded open set with smooth boundary of RY,
symmetric with respect to x1,...,xny and which contains the origin. Moreover we assume
that N > 7.

We define then
Hgp = {u € H}(Q) ; u is symmetric with respect to each variable zy, k =1,... ,N} ,
and for ¢ € [1,400)

Lq

sim

:={u € LYQ) ; wuis symmetric with respect to each variable zy, k=1,...,N}.

N 2N
Let ¢* : L "2 _ZNHSim be the adjoint operator of the embedding i : Hgim (Q) — L2,
namely if v € Lﬁ then u = i*(v) in Hg;y, is the unique solution of the equation

—Au=v in u=20 on 0f).

By the continuity of ¢ it follows that

2N
li*(v)]| < C’]v|13712 Vv e LI+ (3.2.1)
for some positive constant C' which depends only on N.
Hence we can rewrite problem (3.1.1) in the following way

{ u=1"[f(u) + eu] (3.2.2)

u € Hgm

where f(s) = |s|P~s, p = {E2.

We next describe the shape of the solution we are looking for.
Let §; = d;(e), for j = 1,2 be positive parameters defined as proper powers of ¢, multiplied
by a suitable positive constant to be determined later, namely

(5]‘ = Eajdj with d]' >0 (323)
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1 . . __3N-10
and a1 = g @2 = m
Fixed a small n > 0 we impose that the parameters d; will satisfy

1
n<dj < " for j =1,2. (3.2.4)

Hence, it is immediate to see that

@:e%@—ﬂ) as ¢ — 0.

01 dq
We construct solutions to problem (3.1.1), as predicted by Theorem 3.1.1, which are su-
perpositions of copies of the standard bubble defined in (3.1.3) with alternating signs,
properly modified (namely we consider the projection of the original bubble into HE(2)),
centered at the origin which is the center of symmetry of Q with parameters of concen-
trations d;. Such an object has the shape of a tower of two bubbles.

Hence the solution to problem (3.1.1) will be of the form
ue(z) = Ve(x) + @ () (3.2.5)

where

V.(z) := PUs, (z) — PUs, (z). (3.2.6)

The term ®, has to be thought as a remainder term of lower order, which has to be
described accurately.
Let Z; the following functions

Zj(x) == 05,Us, (x) = an 57 I, =12 (3.2.7)
2

We remark that the functions Z; solve the problem (see [16])
—Az=plUs|Pz,  in RV, (3.2.8)

Let PZ; the projection of Z; onto Hj(€2). Elliptic estimates give

uniformly in Q.

Let us consider
K1 :=span{PZ1} C Hgjm; K :=span{PZ;; j =1,2} C Hgn
and
Ki=A{¢ € Haim; (¢ PZ1) =0};  K'={¢ € Hum; (,PZ;) =0, j =1,2}.

Let Iy : Hgm — K1, I @ Hgp, — K and Ui : Hgm — Ki, O+ @ Hgy — K+ be the
projections onto K1, I and /Cll, K, respectively.
In order to solve problem (3.1.1) we will solve the couple of equations

I {Ve + @ — i [f(Ve + ®) + e(Ve + )]} = 0 (3.2.10)
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I{V, + ®c — i* [f(Ve + @) + (Ve + @,)]} = 0. (3.2.11)

For any (dy, d) satisfying condition (3.2.4), we solve first the equation (3.2.10) in ®, € K+
which is the lower order term in the description of the ansatz.

We start with solving the auxiliary equation (3.2.10). As anticipated in the introduc-
tion, we split the remainder term as

(I)e = ¢1,6 + (25276

with
[P2,ell = o([[@1,ell), ase—0.

In order to find ¢, and ¢2 . we solve the following system of equations

Ri1+ L1(é1) + Ni(p1) =0

(3.2.12)
Ro + La(¢2) + Na(d1,¢2) =0

where
Ry =0 {PUs, — i* [f(PUs,) + €PU5, 1}, (3.2.13)
Ry i= T {=PlUs, — i* [f(Ve) — f(PUs,) — €PUs, )}, (3.2.14)
L1(¢1) =101 {p1 —i* [f(PlUr) 1 + en ]}, (3.2.15)
La(¢o) =TI {¢o —i* [/ (Vo) g + €¢2] } | (3.2.16)
Ni(¢1) =TI {=i*[f(PUs, + ¢1) — [(PUs,) — f'(PUs, )]}, (3.2.17)

and

Na(or, ¢2) v= TIH{=i*[f (Ve + 1 + ¢2) — F(Ve) — f/(Ve)da — f(PUs, + ¢1) + f(PE/’le)]}-)
3.2.18

We remark that it is not restrictive to consider Ry, £(¢1), N1(¢1) € Ki since only &;
appears and it is clear that a solution of (3.2.12) gives a solution of (3.2.10).

Therefore we solve the first equation in (3.2.12) finding a solution_ggl = ¢1(e,dv)
and after that we solve the second equation in (3.2.12) (with ¢1 = ¢1) finding also

d2 = ¢a(e, d1, da).

Finally let us recall some useful inequality that we will use in the sequel. Since these
are known results, we omit the proof.

Lemma 3.2.1. Let o be a positive real number. If o < 1 there holds
(z+y)* <2 +y°,
forallx,y > 0. If « > 1 we have
(z+y)* <227 @ +y%),

for all x,y > 0.
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Lemma 3.2.2. Let q be a positive real number. There exists a positive constant c, de-
pending only on q, such that for any a,b € R

in{|b]4, |a|?" b if 0 1
lla + b7 — |a|?| < c(q) m1n£|1 |7, al™"[b]} Z.f <gqg<l4 (3.2.19)
c(q)(lal=7[b] +[b]7) ifg>1.
Moreover if ¢ > 2 then
Ha +b|? — |a]? — q|a\q_2ab‘ <C (|a|q_2|b|2 + [b]7) . (3.2.20)

Lemma 3.2.3. Let N > 7. There exists a positive constant ¢, depending only on p, such
that for any a,b € R
|f(a+b) — f(a) — f'(a)b] < c|b?. (3.2.21)

Lemma 3.2.4. There exists a positive constant ¢, depending only on p, such that for any
a,beR

|f(a—b) = f(a) + F(O)] < c(p)(|al”~*[b] + [b]”), (3.2.22)

|[f(a—b) = f(a) + F(O)] < c(p)(IbIP~ ]al +|al?). (3.2.23)

Lemma 3.2.5. Let N > 7. There exists a positive constant ¢ depending only on p such
that for any a,by,bs € R we get

|fla+b1) = fla+bg) — f'(a)(br —b2)| < C (|br[P~" + [b2fP~1) by — b2l (3.2.24)

3.3 The auxiliary equation: solution of the system (3.2.12)

We first define

N -2 (N —2)?
0= —; 0y = .
N —14 (N —4)(N —-6)
We observe that 0 is well defined since N > 7. We also remark that having defined ¢; as
in (3.2.3), j = 1,2, the functions Us; depend on the parameters d;, j = 1,2.

(3.3.1)

In this section we solve system (3.2.12). More precisely, the aim is to prove the
following result.

Proposition 3.3.1. Let N > 7. For any n > 0, there exist ¢ > 0 and ¢ > 0 such
that for all € € (0,€0), for all (di,d2) € R?  satisfying (3.2.4), there exists a unique
b1 = ¢1(e,d1) € Ki solution of the first equation of (3.2.12) such that

_ 2]
f1]| < cezte

and there erists a unique solution P2 = Pale,di,ds) € Kt of the second equation of
(3.2.12) (with ¢1 = ¢1) such that

. oy
g2l < ce=,
for some positive real number o whose choice depends only on N. Furthermore, ¢1 does

not depend on dy and it is continuously differentiable with respect to di, ¢ is continuously
differentiable with respect to (dy,ds).
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In order to prove Proposition 3.3.1 let us first consider the linear operator
L1: K —Ki

defined as in (3.2.15).
The next result provides an a-priori estimate for solutions ¢ € IClL of L1(¢) = h, for some
right-hand side h with bounded || - ||— norm.

Lemma 3.3.2. Let N > 7. For anyn > 0, there exists g > 0 and ¢ > 0 such that for all
di € RT satisfying (3.2.4) for j =1, for all ¢ € Ki- and for all € € (0, o) it holds

1£1(@)] = cllol|

Proof. For the proof it suffices to repeat with small changes the proof of Lemma 3.1 of
[48]. O

Next result states the invertibility of the operator £ and provides a uniform estimate
on the inverse of the operator L.

Proposition 3.3.3. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that
the linear operator Ly is invertible and ||L7Y|| < ¢ for all € € (0,¢), for all dy € RT
satisfying (3.2.4) for j = 1.

Proof. For the proof it suffices to repeat with small changes the proof of Proposition 3.2
of [48]. O
For the linear operator £, we state analogous results.

Lemma 3.3.4. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that for all
(d1,d2) € Ri satisfying (3.2.4), for all € K+ and for all € € (0,¢q) it holds

1L2(0)] = cllol
Proof. For the proof see Lemma 3.1 of [48]. O
Proposition 3.3.5. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that

the linear operator Lo is invertible and ||L5|| < ¢ for all € € (0,€), for all (di,d2) € R
satisfying (3.2.4).

Proof. For the proof see Proposition 3.2 of [48]. O
The strategy is to solve the first equation of (3.2.12) by a fixed point argument, finding
a unique ¢; and then, substituting ¢; in the second equation of (3.2.12), we obtain an

equation depending only on the variable ¢o. Hence, using again a fixed point argument,
we solve the second equation of (3.2.12) uniquely.

3.3.1 The solution of the first equation of (3.2.12)

The aim is to prove the following proposition.

Proposition 3.3.6. Let N > 7. For anyn > 0, there exists g > 0 and ¢ > 0 such that for
all € € (0,¢€0), for all di € RT satisfying condition (3.2.4) for j =1, there exists a unique
solution ¢1 = ¢1(e,d1), ¢1 € Ki- of the first equation in (3.2.12) which is continuously
differentiable with respect to di and such that

_ 2
61| < ce= 7, (3.3.2)

where 01 is defined in (3.3.1) and o is some positive real number whose choice depends
only on N.
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In order to prove Proposition 3.3.6 we have to estimate the error term R, defined in
(3.2.13). It holds the following result.

Proposition 3.3.7. Let N > 7. For any n > 0, there exists g > 0 and ¢ > 0 such that
for all € € (0,¢€), for all dy € R satisfying condition (3.2.4) for j = 1, we have

0
IRi|| < ez,

for some positive real number o whose choice depends only on N.

Proof. By continuity of II{, by using (3.2.1) and since Pls, weakly solves —APUs, = u§1
in Q, it follows that

IRill = M5 {PUs, —i* [f(PUs,) + €PUs, ]} || < CrllPUs, — i* [f(PUs,) + €PUs, |
< ColfUs,) = f(PUs,) — Plsy| ax < C|fUs,) = f(PUsy )| 25, + €[ PUs, | 2 -

(1) (I1)

Let us fix n > 0. We estimate the terms (1), (II).

Claim 1: Mo
(I) = O(e2-9), (3.3.3)

By using (3.1.9), (3.1.10) and by elementary inequalities we get

2N _ 2N
J sy~ e e < [ e P e [ s e
Q Q Q

IN

5%1\27712 < 5% >1312 ’ |p+1
c3 — dx + co|ps
1 a (5% + |x|2)2 11p+1,Q

5 [ (0 ) Lo+ s
= ¢3 — T+ cq407 .
VNG ERERE 1

Now for N > 7 we have

2N

B\ Lo
S — dz = .
/Q<<6%+|x\2>2) v 0(1 )

Indeed:

2N
5% >N+2 AN 1 AN 1
T R S Y
/Q ((5% + |2]2)? Yo (82 4 a2y W b Ja g ais

and the last integral is finite since N > 6, which implies % < N. Finally, since
2
% > N, for any N > 4, we deduce that

2N
A|<Pual>Pu§1|N+2 dz =0 (8),

and hence

N2
(P~ 0, =0 (57°). (3.3.4)
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N+2
Since §; = dleﬁ and d satisfies (3.2.4), we get that [(PUs, )P — Uy | 2x = O (62<N—4>>
N+2
and Claim 1 is proved.

Claim 2:

N

(IT) = O(eN—1). (3.3.5)

M

N(N-2)
JgiN 1\2]71\7 1\2{71\7 5; N+2
12 +2 — +2
/9771/151 der < /ﬂudl dr = ay N 4T

© (14|

=ay?d] /]RN . )N<N72) dy+o0(6{""*).  (3.3.6)
+ 1y

2\ T NF2

1

Thus, since 01 = d1e¥-1 and d; satisfies (3.2.4), we get that
/ U dr = O (ervedinn )

and hence
N+2

(/p N+2d)”:6o(gz):o(6%z).

The proof of Claim 2 is complete.

Hence, by (3.3.3) and (3.3.5), we deduce that there exist a constant ¢ = ¢(n) > 0 and
€0 = €0(n) > 0 sufficiently small such that, for all € € (0, ¢) and d; € RY satisfying (3.2.4)
(with j =1)

Rl < o (5 1 ) <ot

with o such that 0 < o < ﬁ. O

We are ready to prove Proposition 3.3.6.

Proof of Proposition 3.3.6. Let us fix n > 0 and define 77 : Ki* — K as

Ti(¢r) := =L [Ni(¢1) + Ra)-

Clearly solving the first equation of (3.2.12) is equivalent to solving the fixed point equa-

tion 73(@251) = gbl.
Let us define the ball

]
Biei={¢1 € Ki; o] <r et} C Kt

with r > 0 sufficiently large and o > 0.
We want to prove that, for € small, 77 is a contraction in the proper ball B; ¢, namely we
want to prove that, for e sufficiently small

1. 7-1(31,6) C Bl,e;

2 |1Till < 1.
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By Lemma 3.3.2 we get:

1Ti(@)]l < (V@) + [ Rall) (3.3.7)
and
ITi(é1) = Ta(@)ll < e([N1(¢1) = Ni(eb)]), (3.3.8)
for all ¢1,1 € Ki. Thanks to (3.2.1) and the definition of A; we deduce that
N (@) < elf (PUs, + d1) = f(PUs,) = f'(PUs, )1 2, (3.3.9)
and

N1 (1) = Ni(@)l| < el f(PUs, + 1) = f(PUs, + 1) — f'(PUs, ) (61 — 1) 2 - (3.3.10)

Now we estimate the right-hand term in (3.3.7). Thanks to Lemma 3.2.3 we have the
following inequality:

\f(PUs, + 1) — f(PUs,) — f'(PUs, ) 1] < c|dr P (3.3.11)

Since pNJr2 = % and \(ﬁ’f]% = ]gbﬂ’%, from (3.3.11) and the Sobolev inequality we

deduce the following:
|f(PUs, + ¢1) — f(PUs, ) — f’(PU&)W% < 1|1y < callonlP (3.3.12)
2 N—2

Thanks to (3.3.7), Proposition 3.3.7, (3.3.9), (3.3.12) and since p > 1, then, there exist
c=c(n) >0 and ey = €p(n) > 0 such that

0 ]
1] < et = || Ti(p1)] < cez e,

for all € € (0,¢€p), for all d; € RT satisfying (3.2.4) (with j = 1), for some positive real
number o, whose choice depends only on N. In other words 7; maps the ball By . into
itself and (1) is proved.

We want to show that 77 is a contraction. By using Lemma 3.2.5 we get that for any

¢1,9%1 € By
| F(PUs, + ¢1) — f(PUs, + 1) — f'(PUs, ) (¢ — 1) < C (|oafP~" + [a P~ [ — wn .

8N : (p—1) 225 (p—1) 25
By direct computation (p— 1)NJr2 (N2) (N3 SO, since |1 N+Z, [oh| iz €

N+2

1, ¢ — ¢1]W €LPand 1= N+2 + N+§ by Hoélder inequality we get that

(91~ + [r ™) (61— ) o < [<'¢1 W) (- >]

N—2 N—2 N—2

= (|¢1 x| Nz&) |1 — | o (3.3.13)

N
Hence by (3.3.8), (3.3.10), (3.3.13) and Sobolev inequality we get that there exists
L € (0,1) such that

61l < ceF 7, ]| < ee 3+ = (| Ti(gn) = Ta(6n)] < Llln — vl

Hence by the Contraction Mapping Theorem we can uniquely solve 71 (¢1) = ¢1 in By .
We denote by ¢; € Bj . this solution. A standard argument shows that d; — ¢1(d1) is a
C'-map (as a map from Rt to H}(2)) (see also [48], [3]). The proof is then concluded. [
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3.3.2 The proof of Proposition 3.3.1

Before proving Proposition 3.3.1 we need some preliminary results, in particular we need
to improve the estimate on the solution ¢; of the first equation of (3.2.12) found in Propo-
sition 3.3.6.

The first preliminary result is an estimate on the error term R defined in (3.2.14).

Proposition 3.3.8. For any n > 0, there exists ¢¢ > 0 and ¢ > 0 such that for all
€ € (0,¢€), for all (di,ds) € R? satisfying (3.2.4), we have

b2
[Raoll < ez,
for some positive real number o, whose choice depends only on N.

Proof. By continuity of II+ and by using (3.2.1) we deduce that

”R2” < C|f(u52) + f(PZ/{51 - PZ/[52) - f(Pu51) - 6PU52|%

< C|f(73u51 - PU52) - f(Puél) + f(PU52)| 2N +C|f(PU52) f(u52)|

N+2
(€] (1)
—{—C€|’Pz/{52|1\2771\12 . (3.3.14)
—_—
(111)

Let us fix n > 0. We begin estimating (7). Let p > 0 so that B(0, p) C Q. We decompose
the domain Q as Q = Ag U A; U Ay, where Ay := Q\ B(0, p), A1 := B(0, p) \ B(0,9152)
and Ay := B(0,1/0102). We evaluate (I) in every set of this decomposition.

Thanks to Lemma 3.2.4 there exists a positive constant ¢ (depending only on p) such
that

|f(PUs, — PUs,) — f(PUs,) + f(PUs,)| < c(PULPUs, + PUL). (3.3.15)

Integrating on Ay and using the usual elementary inequalities (see Lemma 3.2.1) we get
that

[ VP, ~ Pts) - £PUs ) + $PUs)| ¥ da

e / (Pul N F Py | pypty g
Ao

5{3% 5: v &y (3.3.16)
< 02/ _ d:r+03/ %2y
A (62 |x\ )N{ZQ (52 + ]m|2)%+22> Ap (5% + |$’2)N
]\%N N§VN7
gNHE 5 N2 5N
< 04 8N N(N-2) +C5p2

pN+2 p N+2

and hence we deduce that (recall the choice of 41,02 (see (3.2.3)))

3N2_12N—4

|f(PUs, — PUs,) — f(PUs,) + f(PUs,)| an_ EIP 2NN < e B+ (3.3.17)
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where ¢ depends on 7 (and also on 2, p, N), ¢ is some positive real number (to be precise
we can choose 0 < o < %).
We evaluate now (/) in A;. By (3.3.15) and the usual elementary inequalities we

deduce the following:

2N
/A | (PUs, —PUs, ) — f(PUs, )+ (PUs, ) | ¥72 da < ¢ / (Pl F Py Pyt
1

Ay
(3.3.18)
Let us estimate every term:
732/{; )(N”)PU&N“d:C
Ay
S / Mél )(N+2)Z/{6N+2dx
Ay
4N N(N-2)
6N+2 5 N+2
= aﬁ,ﬂ/ L Yoy 4@
A1 (63 + |z)? )N+2 (63 + |z|? ) w7z
AN N(N-2)
P 5N+2 (S N+2
= cl/ 2 ) Nl
VAT (57 + 1) 53 (8 4 12) "N
, N{(N-2)
%2 5N+2 5, N7 N N-1
= 5 5 5 N(N-2) (5 dS
V5 (67 + 83 82)N+2 (1+ s2) 2 (3.3.19)
AN
P
@ 5 N+2 6N+2 B
= 5 AN N(N-2) 2 S s lds
By o] o
N+2
N—
) i
\/7 1+ s2) NF2
4N N2_6N N2_6N
N+2 52 N+2 52 2(N+2) 52 (N¥2)
< / T N2_5N42 ds =cz | = " s
51 s N+2 51 51 p
5 N
2
< ¢ <2>
1
Moreover
5 N
2
PUL d < / ULt de < 0y / dr < Cy <2> . (3.3.20)
Ay \/7 1+7’2 51
Thanks to the choice of §1, do we have
N
6o\ 2 _N(N-2)
(6) = O(eN-HN-9)), (3.3.21)
1

Hence, from (3.3.18), (3.3.19), (3.3.20) and (3.3.21) we deduce that

(N—-2)(N+2)

|F(PUs, — PUs,) — F(PUs,) + F(PUs,)| a4, < ce® 000 < ce7, (3.3.22)
+ bl

where ¢ depends on 7, o is some positive real number (to be precise we can choose

2(N—-2
0<0’§W).
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Now we evaluate (/) in As. To do this we apply (3.2.23) of Lemma 3.2.4, so there
exists a constant ¢ > 0 such that

|f(PUs, — PUs,) — f(PUs,) + f(PUs,)| < c(PUL "PUls, + PUL). (3.3.23)
Thanks to (3.3.23) and the usual elementary inequalities we deduce the following:

2N (r=1)(#3)., 743 p+1
N | f(PUs, —PUs,)— f (PUs, )+ f (PUs, )| N2 dx < ¢ AZ(PU@ PUs, " +PUs,") d.
(3.3.24)
We estimate the first term

_ 2N 2N _ 2N 2N
pul VR py gy < [y Ry g

AQ AQ
AN N(N-2)
521\7+2 51 N+2

p+1
— aN / — dx
s (3 4 2 V52 (83 + faf?) N

AN _ N(N-2)

55 AN
E 6N+2 5 N+2 B
— cl/ 2 1 5{V5N Lds
0

IN N(N-2)
(62 + 63s2)N+2 (14 s2) ~+2

5 AN _ 4N

32 (52N+2 5, N+2

= a IN N(N-2)

0 (62)2+52]N+2(1+32) N+2

sV 1ds

=

'S
2
2

VAN

A%y
7N
>

IN
o
S,
7N\
‘Oq
— (V)
N~ N~
2
+
(V)
c\
2
—
+ | @
»
\[B 2
+
[ V)
=
pal
no
QL
0

IN

o

A,
7N
0'1‘0':
= no

4N N2_6N
B 02\ N2 [ 9\ 2(V+2) B 53
- C2<51) <5l> - <51>

By making similar computations as before we get that

5
PULH dz < c3 <2> . (3.3.26)

Ao o1

So from (3.3.24) and (3.3.25) we deduce that

(N+2)(N—2) 09

[ (PUs, = Pldsy) = [ (PUsy) + (PUs,)| g g, S c¥0000 S e, (3.3.27)

where ¢ depends on 7, o is some positive real number (to be precise we can choose
0 <0 < ). Hence from (3.3.17), (3.3.22) and (3.3.27) we deduce that
2
(I) < cezt, (3.3.28)

for some positive constant ¢, for some positive real number o depending only on N.
Now by making similar computations as for (I) of Proposition 3.3.7 (see (3.3.4)) we get

that
Ni2
o).
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and hence we deduce that
(3N—10)(N+2) 0o
(II) < ce 2N-DN-6) < ce2 17,

where ¢, 0 < 0 < %.

It remains to estimate (111).

From (3.3.6), exchanging ¢; with dy we get:

2N 2N 4N 1
Q RN (14 |y[2) 72

Hence we deduce that (III) < ¢ ed5, and thanks to the choice &2, by an elementary
computation, we get that:

(N—2)2 0o
(III) < c eV-DWN=6) < cez T7,

where ¢, 0 < 0 < 2(]\[(]_\[4%)(21)\[2_6). Finally, putting together all these estimates we deduce

that there exist a positive constant ¢ = ¢(n) > 0 and €y = €p(n) > 0 such that for all
€ € (0,¢€), for all (dyi,ds) € R? satisfying (3.2.4)

0
IRs| < ce 7,

for some positive real number o (whose choice depends only on V). The proof is complete.
O

Now we prove a technical result on the behavior of the L>-norm of ¢, which will be
useful in the sequel.

Lemma 3.3.9. Let n be a small positive real number and let ¢1 € lClL be the solution of
the first equation in (3.2.12), found in Proposition 3.5.6. Then, as ¢ — 0T, we have

_ _ N-2
1] = o€ 2N=T),
uniformly with respect to dy satisfying (3.2.4) for j = 1.

Proof. Let us fix a small n > 0 and remember that 6; = eﬁdl (see (3.2.3)), with d;
satisfying (3.2.4) for j = 1. We observe that by definition, since ¢; € Ki solves the first
equation of (3.2.12), then, for all € > 0 sufficiently small, there exists a constant ¢, (which
depends also on dy) such that ¢; weakly solves

—A¢1 = €dy + €PU5s, + f(PUs, + ¢1) — f(Us,) — ceAPZy. (3.3.29)

Testing (3.3.29) with PZ;, taking into account that ¢, € Ki and the definition of PZ;,
we have that

e / pUL "PZ1Zyde = —e / $1PZydx — e / PlUs, PZy dx
Q Q Q
- [ 17(PUs)  Fts) P21 do (3.3.30)

- /ﬂ [/(PUs, + é1) — [(PUs,)| PZy de.



68 CHAPTER 3. SIGN-CHANGING TOWER OF BUBBLES, N > 7

By definition, if we set v := Z; — PZ1, then ¢ is an harmonic function and ¢ = Z;
on 0f2, therefore, by elementary elliptic estimates, for all sufficiently small ¢ > 0, for
N—4
any di €]n, %[ we have that |¢] o < C6,* , for some positive constant C' = C(NN, Q)

depending only on NV and €2, and hence

/ pUL P21 2y do = / pUL " 23 da — / pUL 21 do.

Now
- - 1 (|lz]* = 67)?
pU? 12de = enol 452/ dx
/n ol b o (2?2 (63 + [N
2 1 2

ry (14 [y[?)V+2

= Anx6;%+o0(1), ase— 0.

N—-4

By using the property [¢|s.0 < Cd; 2 , by the same computations, we see that
/ﬂpUg)l_ll/JZl dr =0 ™*), ase—0.
Therefore, we get that
/QprflPZlZl dr = A2 +o(1), ase— 0. (3.3.31)

Moreover, reasoning as before, we have

2 _52)2
Z2dr = ¢ 5N_4/(‘x|1d:v
/Q ! NI o (82 + 22N

(Jy[* — 1) N—2
_ W=D 4 08

o [ (s 00N
= By +o(l), ase—0,

and, by an analogous computation

N-2

2

N(N-4) 2 _ 52 %
|Zl|ﬂ SCN /51 N—-2 ||.%" 1| —

N—2 LA
“ (6% + [a?) V=2

and hence, since PZ; = Z1 —1, by elementary estimates, we get that for all sufficiently
small € > 0

dx < Onoyt,

[PZ15 < 2B, |PZi] ax, <206 (3.3.32)

Thanks to (3.3.32), applying Holder inequality, Poincaré inequality, taking into account of
(3.3.4), the asymptotic expansion of [Pls, |2 (see Lemma 3.4.6 and its proof), the choice
of 61 (see (3.2.3)) and since ¢; € Bj ., we have the following inequalities

_ _ _ 0
6/ 61||PZ1| dx < €|612|PZi|2 < crel|gi[||[PZ1]2 < cae T4
Q
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6/ PZ/{51|P21| dx < 6|PU§1|2’P21|2 < 6651,
Q

Tl

N+t2
| 15PUs) = £ 1P 21| do < 1F(PUs,) = £ ) P g < 8,7 67" =5

Moreover, taking into account of Lemma 3.2.3 and Sobolev inequality, we get that

/Q F(PUs, + 61) — F(PUs, )P 21| do

< [f(PUs, er_n)*!)‘1(737/151)|]\2;752|7321|137§2

< |f(PUs, + é1) — f(PUs,) — f/(,Pu&)QEl’%’PZl‘% + \f’(Pchl)(Z;ll%lPZl\%
< C“le\p‘%wzﬂ% + \f’(PU&)@ﬂ%!PZﬂ%

<

N+2
<|¢1 2N |PZ1| 2N + |'PZ/[51| |(J51| 2N |’PZl‘ 2N )

< <||¢1HN2|792112N+I7’U51| Hmnmm)

1 1
< c3€ 2 +0(5 1 0462(N 4)+ N-1 < cqe2.

Thus, from (3.3.30), (3.3.31) and the previous estimates, we get that for all sufficiently
small € > 0

|ce

/ o1 P2y dx| +

e/ PUs, PZ1 dx
Q

< - -
- A5;2+ [

_l’_

/Q F(PUs,) — F(Us)) P2y da| +

/Q [f(PUs, + ¢1) — f(PUs,)] da

|

(3.3.33)

[NIE

< cenit )
uniformly with respect to d; satisfying n < d; < %

We observe that ¢; is a classical solution of (3.3.29). This comes from the fact that
$1 € HL () weakly solves (3.3.29), taking into account the smoothness of PUs, , Us, , P Z1,
from standard elliptic regularity theory and the application of a well-known lemma by
Brezis and Kato.

We consider the quantity sup,, il (Illa |‘ > which is defined for all € € (0, ¢), where
N

€o > 0 is given by Proposition 3.3.6. We want to prove that

lim sup < 9100 > = 0. (3.3.34)

eaO‘*‘de] 1[ |U51‘oo

It is clear that (3.3.34) implies the thesis. In fact, we recall that, thanks to the definition
(3.1.3) and the choice of 47 (see (3.2.3)), for any d; €]n, [ we have

N—2 _ _N—-2 N—-2 N-—2
ann 2 € -0 < |Us oo < ann™ 2 € N4,
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Hence, by this estimate and (3.3.34), we get that

] ) y ] )
0< sup Plo (\¢1|oo_ | ilvr_c?)S . <|¢1rm>awgz%0,

di€ln, e T-D  di€]n, 5| Usiloo  ~2tv—n dy€]n, 3 [ U5, o0

as € — 07, and we are done.

In order to prove (3.3.34) we argue by contradiction. Assume that (3.3.34) is false.
Then, there exists a positive number 7 € RT, a sequence (e;)r C R", e, — 0 as k — +o0,

such that B
sup LINIES > T, (3.3.35)
dreln b \ o1l

_ _ 1
for any k € N, where, ¢y := ¢1(ex,d1) € Bie, and d1y = € "d;. We observe that

3.3.35) contemplates the possibility that sup 1 [rlee ) _ 4o00. From (3.3.35),
d1€]n,= [
'y

‘utgl’kloo

for any k € N, thanks to the definition of sup, we get that there exists d;  €]7, %[ such

that B
\¢1 k|oo
’ (de) >
<‘u51,k |oo

‘él,k'oo
|Z/{61’k ‘oo

(O

Hence, if we consider the sequence < (d1,k)) , then, up to a subsequence, as k —
k

400, there are only two possibilities:

b1,k oo )
(a) ‘L{;lzl‘oo (dl,k) — +00;

(b) |lj;1,k‘oo (dix) — I, for some [ > 7 > 0.
51,k|°° )

We will show that (a) and (b) cannot happen.

Assume (a). We point out that, since > 0 is fixed, then, dy; €], %[ for all k, in
particular this sequence stays definitely away from 0 and from +o0o. Hence, in order to
simplify the notation of this proof, we omit the dependence from d; ; in ¢1 (d1 ) and in

1 _
01,k(d1 k) = € ~"di ) and thus we simply write ¢y 4, 01 4. In particular, we observe that,
for any fixed k, ¢1 1 is a function depending only on the space variable x € €.
Then, for any k € N, let a;, € Q such that |¢1 (ar)| = |P1,k]|cc and set My, := [d1 koo

_N-2 __N-2 = N-2
Thanks to the assumption (a), since [Us, ,|oo = and; ;. * = ane; AN dyy? , we get

that M — +o00, as k — 4+00. We consider the rescaled function

~ 1 - 9
Pre(y) = mqﬁl,k <ak + ]\/.3;6> ; p= N3

k

- 2
defined for y € Q, := M, *(Q — a;). Moreover let us set

— 1 » 1
73ul,k:(?/) = mpuél,k (ak + ]\i/[ﬁ> ; Lﬁ,k(y) = mu(;l,k (ak + ]\36> :
k k
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1 Y
PZi(y) == —57 P21k (ak+> :
B+1 8
My, My,

Since we are assuming (a) it is clear that |51j11,k|007§k,\1/717k\007§k — 0, as k — +o0.
Moreover, thanks to the definition of Z, and since PZ; = Z1 — ¢, with |[¢]| 0 < C(Fl]v%,
we have that |[PZ) k|loc =~ |Z1 k|oc =~ 5;,?, and hence, thanks to (a), we have W =
0(61]??”), which implies that |ﬁ17k|oo,ﬁk — 0, as k — +oo. In particular, thanks to
(3.3.33), the same conclusion holds for ¢, (dNLk)PZLk. Taking into account that 25+1 = p,
by elementary computations, we see that ¢ j solves

—~—

~ Plls, ~ — o~
—Ad1k = Mz@ b1 s + € 25 + f(PUs, , + d14) — FUs,,) + o (drp)PZ 1 in Q,

¢~517k =0 on 8§k.
- (3.3.36)
Let us denote by II the limit domain of 2. Since My — +o0, as k — +o00, we have
that II is the whole RY or an half-space. Moreover, since the family (¢1x)x is uniformly
bounded and solves (3.3.36), then, by the same proof of Lemma 2.2 of [13], we get that
0 € IT (in particular 0 ¢ OII), and, by standard elliptic theory, it follows that, up to a
subsequence, as k — +o00, we have that ¢ converges in C’lzo .(IT) to a function w which
satisfies

—Aw = f(w)inII, w(0) =1 (or w(0) =—1), |w| <1inIl, w=0on Il (3.3.37)

We observe that, thanks to the definition of the chosen rescaling, by elementary com-

putations (see Lemma 1.4.1), it holds ”¢1 kHQ = ||¢1.x]|3. Now, since ||¢1 x| < 662 o ,

where ¢ depends only on 7 and o is some posmve number (see Proposition 3.3.6), w
have ||gb1/<;||%v2 = ||¢1xll3 — 0, as k — +oo. Hence, since ¢ — w in CZ (II), by Fatou’s
k

lemma, it follows that
2 e T (12
<1 f = =0. 3.3.38
lwlliy < lim inf oy 5, (3.3.38)
Therefore, since ||w||%} = 0 and w is smooth, it follows that w is constant, and from

w(0) =1 (or w(0) = —1) we get that w =1 (or w = —1) in II. But, since w is constant
and solves —Aw = f(w) in II, then necessarily f(w) = 0 in II, and hence w must be the

null function, but this contradicts w =1 (or w = —1).
Alternatively, if IT is an half-space, by using the boundary condition w = 0 on 911, we
contradicts w = 1 (or w = —1). Hence, the only possibility is IT = R". In this case, since

w solves (3.3.37) and ||w||3; < 28M/2, it is well known that w cannot be sign-changing and
hence, assuming without loss of generality that w(0) = 1, w must be a positive function of
the form Us,, (see (3.1.3)), for some 0 such that Us, (0) = 1, and this contradicts w = 1.
Hence (a) cannot happen.

Assume (b). Using the same convention on the notation as in previous case, we deduce
that there exist two positive uniform constants c1, co such that

N-2 N2

51 k = < |¢1 k‘oo < 0251 ko (3339)
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for all sufficiently large k. In particular, it still holds that M) — +o0, as k — +o00. We
consider the same rescaled functions ¢ as in (a) and, as before, we denote by II the
limit domain of Qk -

Now, up to a subsequence, since Pl j and Z/N{Lk are uniformly bounded we see that they
converge in CZQOC(H) to a bounded function which we denote, respectively, by PU and U
(one of them or both could be eventually the null function). In fact Zjll,k is uniformly

bounded and solves —ALN{M = Z]f p on ﬁk, and so by standard elliptic theory we get
that Z:il,k converges in C? _(II) to some non-negative bounded function & which solves
—AU =U" in TI. Now, taking into account that Ui — U in C?

 o(IT), the same argument

applies to Pl , which solves

—A'jD\Zx/{Lk = L?f,k in ﬁk,
PUi =0 on aﬁk,

and hence 752//{1,13 converges in C’IQOC(H) to some non-negative bounded function PU satis-
fying —APU =U" in I, PU = 0 on III.

We point out that as in (a), but using (3.3.39), we still have cgk(de)\ﬁLk\ooﬁk — 0,
as k — +00. Moreover, by the proof of Lemma 2.2 of [13], it also holds that 0 € II.

Hence, by standard elliptic theory, we have that 517/g converges in CZQOC(H) to a function
w which solves

—Aw = f(PU+w) — f(U)  inTIl,
w=0 on OII, (3.3.40)

w(0) =1 (or w(0) = —1).

As in (3.3.38) we have ||w||} = 0 and hence, since w is smooth, the only possibility is

w =1 (or w = —1) because of the condition w(0) = 1 (or w(0) = —1). Moreover, thanks to

the definition of the chosen rescaling, it also holds |¢1 x| an_ G, = |p1,k| 2n ¢, (for the proof
N_2’ N—2’

, _ (41
see that of Lemma 1.4.1). Therefore, since |1 x| 2nv o — 0 (because [|¢1 || < ce;? +07
N-=-27

where ¢ > 0 depends only on 7) and ngglJc — w in C2 (1), as k — +o0, then, by Fatou’s
Lemma, it follows that |w| 2x ; = 0, and thus it cannot happen that w =1 (or w = —1).
N—2°

Hence (a) and (b) cannot happen, and the proof is then concluded. O
We are now in position to prove Proposition 3.3.1.
Proof of Proposition 3.3.1. Let us fix n > 0 and let ¢; € Ki N By be the unique solution
of the first equation of (3.2.12) found in Proposition 3.3.6. We define the operator 7z :
Kt — Kt as
Ta(¢2) = =Ly [Na(61, 62) + Ral.

In order to find a solution of the second equation of (3.2.12) we solve the fixed point
problem T2(¢2) = ¢2. Let us define the proper ball

0
Bo.i={¢o € KL ||da] <7 ez ¥}
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for » > 0 sufficiently large and ¢ > 0 to be chosen later.
From Lemma 3.3.4, there exists €9 = €p(n) > 0 and ¢ = ¢(n) > 0 such that:

[T2(62)Il < e(IIN2(01, 82) + [R2l), (3.3.41)

and

[ Ta(p2) — Ta(v2)|| < c(|Na(P1, d2) — Na(or, ¥a)]]), (3.3.42)

for all ¢o, 102 € K1, for all (di,ds) € R% satisfying (3.2.4) and for all € € (0, ¢).
We begin with estimating the right hand side of (3.3.41).
Thanks to Proposition 3.3.8 we have that

0
IR < ce 7,

for all € € (0, €9), for all (d1,dz) € R? satisfying (3.2.4). Thus it remains only to estimate
| N2(é1, p2)|. Thanks to (3.2.1) and the definition of Ny we deduce:

IN2(¢1, d2) || < el f(Vetr+g2) = F(Ve) = f'(Ve)po— f (PUs, +1) +f (PUs, )| 2n . (3.3.43)

N+2

We estimate the right-hand side of (3.3.43):
[f(Vet 1+ 62) = F(Ve) = ['(Ve) o — f(PUs, + b1) + f(PUs, )| 2.
< Vet i+ 62) = f(Vet d1) = f/(Ve+ S1)2l an +[(f(Ve+ 61) = f'(Ve)) g2 2n.
Hf(Vet 01) = F(Ve) = [(PUs, + 61) + [ (PUs, )| 2,

In order to estimate the last three terms, by Lemma 3.2.2 and Lemma 3.2.3 we deduce
that:
[f(Ve+ 1+ ¢2) = f(Ve + 1) — f' (Ve + d1) b2l < cla? (3.3.44)

and

(f' (Ve + ¢1) = £/ (Vo)) 2| < clgn [P~ [l (3.3.45)
Since ]\2,—% -p=p+1 we get that

% iy - 2N_
/ [ (Vet d1+ d2) = f(Ve+ d1) = [/ (Ve d1)ga| 2 da < c/ (6ol de,
@ Q
and applying Sobolev inequality we deduce that

[f(Vet 1+ d2) = f(Ve+ 1) = f'(Ve + 01)d2] an < el (3.3.46)

y (3.3.45) we get that

/ (F(Ve+ &) = [ (V)al V7 do < / 61| PN gy V2
Q

2N
We observe that gf)g D c L1, é\]” € L and p, &2 are conjugate exponents in
Holder inequality. Moreover (p — 1) ]\%JXQ NE2 — p+1s0

(Ve + G1) — V)6l 3R < clba| T oo 512,

N+2
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and hence by Sobolev inequality we deduce that
- i
(' (Ve + 61) = (V) dal 2n < cllon]|F=2 | 2] (3.3.47)

It remains to estimate the last term. As in the proof of Proposition 3.3.8 we make the
decomposition of the domain 2 as 2 = Ag LI A1 L As. Hence we get that:

|f(Ve+¢1) = F(Ve) — f(PUs, +<Z>1)+f(7>u51)\ N A
< Vet 1) = f(PUs, + )l any, + (Ve f(PUal)! 2N A

Then, by using the definition of 1, do, the usual elementary inequalities, the compu-
tations made in (3.3.16) and Sobolev inequality, we get that

|f(Ve + QEI) — f(PUs, + ¢1)‘ 2N Ao

< a (|7>u52\§+1,A0 + \Pug— Pu52y%7A0 + "él‘Pflpu@

2N )
Ntz-Ao

N+2 9 N=2 _ 1 N-2
< o (622 LT 4 i 622)

]
< czentO,

for some o > 0.

Moreover, as in the previous estimate, we get that

100 = PUs gy 0y < n (1PUS PUs gy g + P )

b2
é Co€2 +0’

In A; we argue as in the previous case. The various terms now can be estimated as done
n (3.3.19) and (3.3.20) and hence the same conclusion holds.

For A, by using the usual elementary inequalities, Lemma 3.3.9 and remembering the
choice of 41, d2, we have:

|f(Ve+¢1) — f(Ve) — f(PUs, + ¢1) + f(PUs, )| 2n 2N Ay

< [f(Vet o) = F(Ve) = £/( e)¢1\%,,42+\f(7’u51+<Z>1)—f(Pual)—f'(Puél)éll%AQ
+I[f'(Ve) = f’(PUal)]qgl\ﬂ Ay
< || |p —l—C"PUp_ ¢1‘ 2N Ay
N
_ 2N _ 82N %
< c|¢1|p< 1dw> + |1 oo (/ Us, 4dfv)
Aa
N2 AN 42
_ N-2 V6162 2N B SN+2
< d 2 P / rN=ldy + 2|01 |00 / Q—Mdm
0 ta (83 + laf2) 2
N2
N+2 N+2 1 2N
< 36 2 (60162) % + caldi]ools / —— dz
A

2 \x!m
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B Vo2 S
52 P _N-2 9 102 N2_on_o
< | = +cad; 05 r Nt2  dr
01 0
0 % N—2 5 #
Xz — )
< a2 Fesdy 7 02 (0082) T =g | 2 < cre 3t
51 (51
Hence, from these estimates, we have
— — 0
[f(Ve+01) = f(Ve) = f(PUs, + d1) + f(PUs, )| 20 < cer . (3.3.48)

Since ¢ € By and thanks to (3.3.43), (3.3.46), (3.3.47) and (3.3.48) we get that

2]
[Ta(¢2)|| < cezto,  o>0

and hence T, maps B3 . into itself .

It remains to prove that 72 : Ba . — Ba ¢ is a contraction. Thanks to (3.3.42) it suffices
to estimate ||N2(¢1, ) —Na2(¢1,12)| for any 2, ¢2 € Ba . To this end, thanks to (3.2.1),
the definition of A5 and reasoning as in the proof of Proposition 3.3.6 we have:

HN2<(517¢2) _N2((517¢2)H S eaH(bQ - /(/}2“7

for some o > 0.

At the end we get that there exists L € (0,1) such that

[T2(@2) — Ta(v2)|| < Llp2 — |-

Finally, taking into account that dy — #1(dy1) is a C'-map, a standard argument shows
that also (dy,ds) — ¢2(dy,ds) is a Cl-map. The proof is complete. O

3.4 The reduced functional

We are left now to solve (3.2.11). Let (¢1,¢2) € Ki x K+ be the solution found in
Proposition 3.3.1. Hence V. + ¢1 + ¢2 is a solution of our original problem (3.1.1) if we
can find d. = (di, doc) which satisfies condition (3.2.4) and solves equation (3.2.11).

To this end we consider the reduced functional Ji : ]Ri — R defined by:

Je(dy, d) := Je(Ve + ¢1 + ¢o),

where J, is the functional defined in (3.1.13).

Our main goal is to show first that solving equation (3.2.11) is equivalent to finding critical
points (JLE, d_27€) of the reduced functional J, (d1,d2) and then that the reduced functional
has a critical point. These facts are stated in the following proposition:

Proposition 3.4.1. The following facts hold:

(i) If (die,day) is a critical point of Je, then the function Vi + ¢1 + ¢o is a solution of
(3.1.1).
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(ii) For anyn > 0, there exists €9 > 0 such that for all € € (0, €g) it holds:

2
Je(dly d2) NSN/Q + 691 [alT(O)djlv_Q - agdﬂ + 0(691+U)?

(3.4.1)
with

N-2
as7(0) (Zf) D +o(692), (3.4.2)

for some function g depending only on dy (and uniformly bounded with respect to €),

where 01,02 are defined in (3.3.1), o is some positive real number (depending only
on N ), T is the Robin’s function of the domain Q at the origin and

0(691+U) = 691+Ug(d1) + 2

1 / 1 1 1

p+1 2

al = -« ———dy; a2 := -« / > dy;
2N Jry (14 y2) 2 Jav (14 [yP)N-2

1

p+1

a3 = Q) / dy.
RN [y [N=2(1 4+ |y[2) "

The expansions (3.4.1), (3.4.2) are CY-uniform with respect to (dy,ds) satisfying
condition (3.2.4).

Remark 3.4.2. We point out that the term g appearing in (3.4.2) does not depend on do
and this will be used in the sequel, in particular in (3.5.5).
The aim of this section is to prove Proposition 3.4.1. First we prove two lemmas
about the C’O—expans_ion of the reduced functional J.(di,ds) := J(Ve + ¢1 + ¢2), where
¢1 € ICf- N B and ¢o € K+n By . are the functions given by Proposition 3.3.1.

Lemma 3.4.3. For any n > 0 there exists g > 0 such that for any € € (0, ¢€q) it holds:

J(Ve+ ¢1) = J.(Vo) + O(e" 1),
with

O(e+7) = mtogy(dr) + 0 (4

(3.4.3)
for some function g1 depending only on dy (and uniformly bounded with respect to €),

where 61,02 are defined in (3.3.1), o is some positive real number (depending only on N ).
These expansion are C°-uniform with respect to (dy,ds) satisfying condition (3.2.4).

Proof. Let us fix n > 0. By direct computation we immediately see that

JE(Ve + &1) — Je(‘/;) = %fQ ’V(231|2 dl’ + fQ VV; . Vggl dl‘ — %fQ ’(51|2 dl‘ — 6fQ ‘/;(231 d.%'

— o Jo(IVe + [P+ — VPt da.
(3.4.4)
By definition we have

[ Ve o= [ V(PUs,~PUs) Va1 do = [ @ -t4h)0r do = [ [FUs)~ W) do
Q Q Q

moreover, since F'(s) = ﬁ]s]”“ is a primitive of f, we can write (3.4.4) as
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Je(Vetd1) = Je(Vo) = 5ld1l* = 51013 — € [o Veor du + [o[f Us,) — f(Us,)|o1 du
— [olF (Ve + ¢1) — F(Ve)] dw
= 501l = 51015 — € o Veor da + [o[f Us,) — fUs,) — F(Vo)]or da
— JolF(Ve+ ¢1) = F(Ve) — f(Ve) ] da

A+B+C+ D+ E.
(3.4.5)

A,B: Thanks to Proposition 3.3.1, for all sufficiently small €, we have ||¢1|| < 06971+",
for some ¢ > 0 and for some o > 0 depending only on N. Hence we deduce that
A = O(e"1729) ) B = O(e?1129+1). We point out that, since only ¢; is involved in A and
B, these terms depend only on d;.

C: By definition we have

e/ Vign dx:e/ PUs, ¢ dx—e/ PUs, 1 dz = Ij + I».
Q Q Q

We observe that in the estimate I; only d; and Q_Sl are involved. Hence I; depends only
on d;. Thanks to Holder inequality, we have the following:

[I1| < elUs, | 2n_|d1] 2n
N+2 N—-2
Since N > 7 we have |Us,| ax = O(6?), for i = 1,2, so from our choice of §; (see (3.2.3))
N+2
— 6
and since |[¢1]| < ce2 7 we deduce that
|| < ce(eN 1e2N-1) +a) < ¢t (3.4.6)

for all sufficiently small €. For I5, with similar computations, we get that

_ 2(3N—10) N—2
I < eltdsy] o |G1] 2w < ce PR A0+
N+2 N—2

Since N > 7 it is elementary to see that 1 + 0 N(gg( ]\}0) 6+ 2(%_24) > 5. From this we

deduce that

|I| < ce?2t,

for all sufficiently small e.
D: we have

/Q[f(?/ﬂsl) — [Us,) = f(VO)ler da = / [f(PUs,) — f(PUs,) — f(Ve)]dr dz +

Q

~~

) h ) (3.4.7)
+ / F(Us,) — F(PUs, )|y de + / F(PUs,) — F(Us,)]dr de
Q (9] g
12 13

We evaluate separately the three terms.
We divide Q into the three regions Ag, A1, A2 (see the proof of Proposition 3.3.8 for their
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definition). Then

1
/ F(PUs,) — [(PUs,) — f(VO)ln dz =S / F(PUs,) — F(VO)By da
Q —Ja;

I

1
_;/AJ f(PZ/I52)¢_51,d:E+/A2[f(PZ/{51) — f(PUs,) — f(V)]oy dx:

7
" 1
Il

Now, writing f(Puél) - f(‘/e) - f(,Puél) - f(‘/;) + f/(Pu51 )732/{52 - fl(pu51)Pu527 ap-
plying the usual elementary inequalities, Holder inequality and taking into account the
computations made in (3.3.16) , (3.3.19), (3.3.20), we get that

111l < dPUs [ an g |01] on o)+ c|PUs |2 4 |61] 2 o,

+c|PUs, |p

) " _
o o[ PUs| 230 a0 |01] 23 gy + c[PUS Pl | 2 g 10n] 2x s,

N+2

N+2 gy 52 1 01 N=2 ¢y
cl<522 €2+U+< €27 4 675,% e2 1

IN

o1

N+42

(B ([ e) " o
\/W
NE2 o0y 92 Y g N=2 6y 02 ) Y
co 522 62+U—|—<5> 62+a+51522 €2+0+<5> 5) 62+a
1 1 1

1) 4 01
< c3 <2 217 < gqe2te,

IN

As before we have

1
7 0
TS D (PUs e 1], < 077
j:
Now, by Holder inequality and reasoning as in (3.3.24), (3.3.25), (3.3.26), we get that
1] < 1P~ FPUs) — FVDl g 1] s,

_]_ -
e (|7’U§’1\]3—12,A2 +[PUs, 7’”61|N2—f2,A2) |01] 280 4,

IN

IN
Q
)
7N
‘ =
N
\_/
.J;
A
w‘f?
+
Q
N
o
N
>
[
+
Q

At the end we conclude that
1| < ce¥?te.

For the remaining two terms of (3.4.7), reasoning as in the proof of Proposition 3.3.7,
we get that

N+2

|f(PUs,) = f(Us,)| 2x < cd;

N+2
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Hence

_ N+2 6
(Lo < [ f(Us,) — F(PUs,)| 2 [61] 2n < ceTN-T 3T < et
+ —

for all sufficiently small e. We remark that I5 depends only on d; and hence it is sufficient
that it is of order 67 + o.
At the end B

[Is] < [f(Us,) = f(PUs, )| 2 [d1] 2 < ce”t7,

for all sufficiently small e.
E: We decompose (2 in the three regions A;, j =0, 1,2 used before.
For j = 0,1 we have

/ Ve + &P — VAP — (o + DIVAP ' Ved] da

J

= / [1PUs, — PUs, + ¢1 [P — [PUs, + ¢1[PT + (p + 1)[PUs, + &1 P~ (PUs, + ¢1)PUs, | dz

Aj

I

— / [|7>u51 — PlUs, "™ — PULT + (p+ 1)7>u§17>u52] dx

J

Iz

+ / [|7>u51 + o [P = PUET — (p+ 1)791/13;1&1] da

J

-~

I3
o)) [ [IPUs — PUs (PUs, — PUs) — PUL | 61 do

J

~~

Iy
~(p+1) / (1PUs, + 6117 (PUs, + 61) — PUE, | PUs, da

J

Is
(3.4.8)

In order to estimate Iy, Is, Iy and I5, applying the usual elementary inequalities, we see
that

|I1|§c< /A PULT dx + / PULPUE, d + /A |¢>1!p17>u§2dx>
. i J

J J

|| <c /Pu§2+1dx+/ PUL PUS, dx
A; Aj

|I4‘ <c (/A PU&MEH dx —l-/A PU§1_1PU52’§51| dx)
J J

|I5‘ <c </ \<Z>1|p732/{52 dx —I-/ PUgI_I'PU(;Q‘(Z_)ﬂ dx) .
Aj Aj
Now, as seen in the proof of (3.3.16) and thanks to (3.3.20), we have
55 if j=0

/ Pugjl dr <c 5 .
A - if j=1,
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PUS,PUE" da < e PU, (071 4 [PUs, o1 4y < 0705 2.
Ao

Moreover, by analogous computations, we get that

N
2

o
p—1 < < 2
” PZ/{(;QPU dx C1 <51> / 1 T‘N 3 dr Co <51) s

SN 2ep=1)(F+0) it j =0
PUs, |61 P~ da < e PUs, 2y a I IP7 < No2
(Aj 5ol @117 da < e[ Pl [p11,a, 10177 < € ()% o0+ it j=1,
N2
[ Pl < P, 1500 < 0] o e
PUS |p1| dae < c|PUs ol <e N+2

N=2 ¢
/ Pls, PUL 1] dc < ¢ PUsy 1,40 [PUs, 271 4, [ 01]] < €676, €277,
and, thanks to (3.3.19), we have

1,7 1 -
/Alpuafugl (Prlde < [PUPUS | ax o 101] 250 o,

IN

2 2
c1 / %~ dx e3+o
A\ (62 + |z)? ) (52+\x| )2

B 5722 572 e 921+U_ @ T%_"_U
< C9 5 5 € = Cy 5 €

T _ N—2 g
Pls, |61[" diw < e1[PUs, 1,40 91 [1P < 26, % 27
Ao

and, by using Lemma 3.3.9, we get that

At the end

N+2
2N

PUs,|p1Pdz < cifga]B 1[/ PU5N+2 df‘f} D1 lps1,4,
N+2

2 2N
—N245N—2 o,
N+2 (dr €217

Aq

IN

CQE N— 462[

fh

0 )
< ¢4 <52 €2t
1

In order to estimate I3 we observe that

< e (16112 PUs, [ + 19171 < eae+,
(3.4.9)

[ [P+ auptt =gt — o+ 0PU 1] do
0
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which is sufficient since this term does not depend on ds.
Moreover

/A [|7>u(;1 + o P —PULT — (p+ 1)Pu§’1¢31] da

1

= [ [Pt 8 =P P ] s
P

- /A [|73u51 + @ [P —PUET — (p+ 1)7>u§1¢‘>1] da.
2

We observe that the first integral in the right-hand side of the previous equation depends
only on d;. Hence, as in (3.4.9), we have

< cehte,

/B o [|7>u§1 + ¢ P — Pugjl —(p+ 1)7>u§1q31} dx
5P

Furthermore, by using Lemma 3.3.9, we get that

/A [ypugl + @ P —PUltt — (p+ 1)79143;’1@51} dx
2

IN

-1 7 T p+l
€1 (’PU51|§+1,A2|¢1‘;2)+1,A2 + |¢1‘£+1,A2>

2

2

/ R P [ rae] " e [ 1
c2 TN Y lloo €z 1loo €z
B0,\/2) (14 lyH)N As Ag

IN

IN
&

2
— = 2
%2 N _ V0102 p+1 0102
51 N_1 _ N-2 N_1 N v No1
r dr € N-4 T dr + e N4 r dr
0 0

< ¢y <§26_—4((51(52)N2 +e€ N4 (5152)1;[)
< C5€02+U.

(3.4.10)

Now, it remains only to estimate the left-hand side of (3.4.8) for j = 2. Hence, thanks
to the usual elementary inequalities, we get that

/ Ve + 3P — VP — (p 4 DIVEPVedt] da
Aa

<o( [ wpdtans [ 1ot a)
A2 A2

§c</ PUL 6} daz+/ PUL 6} daz+/ |y [PF1 dx)
A2 A2 A2

For the first and third integrals in the last right-hand side we can reason as in (3.4.10).
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For the second integral, using Lemma 3.3.9, we have

1< - 53
PUL Plde < 2/ 2 d
8o ¢1 L > Cl|¢1|oo Ay (5%+|.I’|2)2 €L

_(N— 1
S 0251 (N 2)53/‘4 W dx
2

Az

0102

< g0y NP3 / N=5q
>~ 3 1 2 r r
0

5o\ 2
o (3)

Finally, summing up all the estimates, we conclude that |E| = ¢/177g(d;) + O(e217).

O
Lemma 3.4.4. For any n > 0 there exists g > 0 such that for any € € (0, ¢€y) it holds:
Je(Ve+ é1+ ¢2) = Je(Ve + ¢1) + O(e”17),

CY-uniformly with respect to (dy,ds) satisfying condition (3.2.4), for some positive real
number o depending only on N.

Proof. As we have seen in the proof of Lemma 3.4.3, by direct computation we get that
J(Ve+ b1+ ¢2) = J(Ve + 61) = 5 [ IVal* dz + [ V(Ve+ 1) - Vo da
—5 Jo02? dz — € [o(Ve + 1)z dz — 7 [o(IVe + b1+ @2P T — [V + 1 PF1) dx
= —Ldol®+ §lo2l3 + Jo V(Ve + @1 + ¢2) - Vo dx
—€ Jo(Ve+ é1+ ¢2)d2 dx — [o f(Ve + ¢1)d2 dx
— JQ[F(Ve + ¢1 + ¢2) — F(Ve + ¢1) — f(Ve + ¢1)d2] dx

o (3.4.11)
Since ¢1 + ¢2 is a solution of (3.2.10) we have

I {Ve + ¢1 + o — i*[e(Ve + ¢1 + ¢2) + f(Ve + b1 + ¢2)]} =0,
hence, for some v € K, we get that V. + ¢ + ¢2 weakly solves
~A(Ve + 01+ d2) + AY — [e(Ve + b1 + d2) + f(Ve + ¢1 + ¢2)] = 0. (3.4.12)
Choosing ¢, as test function, since ¢o € K+, ¢ € K we deduce that
/QV(VE+¢1+¢2)-V¢2 daz—e/Q(VE—l-¢1+¢2)¢2 dx = /Qf(ve+¢1 +¢2)po dr (3.4.13)

Thanks to (3.4.13) we rewrite (3.4.11) as

Je(Ve + é1+ ¢2) — Je(Ve + ¢1) —%H%HQ + §|¢32\% + /Q[f(Ve + 1+ d2) — (Ve + 61)]d2 da

—/Q[F(‘/E-i-tﬁl+<Z52)—F(Ve+¢1)—f(ve+¢1)¢2] dx
— A+B+C+D. (3.4.14)
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+o
)

— 0
A, B: Thanks to Proposition 3.3.1, for all sufficiently small e, we have ||¢s|| < ce3
for some ¢ > 0 and for some o > 0 depending only on N. Hence we deduce that
A = O(e2120) B = O(el2120+1),
C: By Lemma 3.2.2 we get

/Q Vet G1+82) — F(Vet 31162 da| < / BafP i + / Vit i e

clbalPH! + el Vel i1 Id2lp i + clnlpialdalpia

< C€92+U

IN

for all sufficiently small e.
D: Applying Lemma 3.2.2 and Holder inequality we get that

/Q[F(V; +d1+ d2) — F(Ve+ 61) — F(Ve+ b1)o] da| < | Vel 11a 21+l dr [Py |dal2 i+l dalol ).

Since all the terms from A to D are high order terms with respect to %2 the proof is
complete.
O

In order to prove Proposition 3.4.1 some further preliminary lemmas are needed.

Lemma 3.4.5. Let 6; as in (3.2.3) for j = 1,2 and N > 7. For any n > 0 there exists
€0 > 0 such that for any € € (0, ), it holds

1 1 1
Q Q

Y_uniformly with respect to (d1,dz) satisfying condition (3.2.4), where ay := pH Jan W dy
1+
and 7(0) is the Robin’s function of the domain Q at the origin.

Proof. By using (3.1.6), (3.1.7) and (3.1.8) we have that
1/ IVPU de—l/PuP“dx:l/uPPu da:—l/Pu”+1 da
2 Ja % p+1Jog T 2 Jo 0% p+1Jg %

1 1
_ +1
= 3 /ngj Us; — ps;) dz — P (L{g]. — 5P dx

1 1 1 -
= 2/Qu§,+1 dg;_/ug’%j dx—/ug’_“ dx+/U§,<p5j dx+0(/gu§j Yo, dfv>
1
- (2_p+1>/w’+1dm+ /uf;’goa dx+0</blp Y3, d-’L‘)

Now it is easy to see that

+1 Oép !
P - . 4.
/ Z/l(;j dx / TENTE ) dy + 0(5 ), (3.4.15)
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while
P p 2 32
/Quéj‘)pt?j dex = /Ql/léj (aN(Sj H(0,z) + O(4; )) dx
N—2 » N+2 »
= and;”’ /ngjH(o,x) dx + O (5]- 2 /QZ/{JJ, d:n)
1
= o270 6N2/ ———dy+ 0 DAY 3.4.16
RO [ g WO (a0

Moreover

0] </ng—1<p§j d:c) = 0N ™). (3.4.17)

Indeed, we get

p—1 2 _ p—1 2 p—1 2
/Quéj 05, dr = / (o)u6j cp(;jdw—k/QB Z/{éj @5, d

B\/@ \ \/@(0)
p—1
pF1
< 015?72/ ug’ﬂfl dx + |305j|12)+1 / z,[g’]fl dx
B\/@(O) Q\B\/@(O)
p—1
L N-1 400 ,.N-1 prl
aN—4 [V T N-2 r
< 025]‘ | 7(1—%7“2)2 dr—l—c;z,éj /1 7(1%—7"2)1\’ dr
j
3N—-4
< 645]' 2 +C5(5jv_1 < 065;»\[_1.
Hence, from (3.4.15), (3.4.16), (3.4.17) we get the thesis. O

Lemma 3.4.6. Let §; as in (3.2.3) for j = 1,2 and N > 7. For any n > 0 there exists
€0 > 0 such that for any € € (0,€p), it holds

€ N

3 /QPUC;QJ_ dx = a265J2 +O(ed ),
CO-uniformly with respect to (dy, ds) satisfying condition (3.2.4), where ag := %a?\, S W dy.
Proof. From (3.1.6) we get that

€ 2 € 2 € 2 € 2
2/9(772/{5].) dr = 2/{;(2/{5]. —g05j) dr = 2/(22/{5], d:c—e/ﬂutsjgogj dx+2/ﬂt,05j dx.

(3.4.18)
The principal term is the first one, in fact we have:

€ € o2 € 57V
u?d_?/Jd_?/ J d
2/9 T RN @ )N T 2 Y o (T e )N
5f(N*2) 1
€ 9 J N € 92 9
2aN/Q/5j 1+ vz 2““/@ T+ vz

(3.4.19)
+o0 N-—1
2 T
+0 (eéj /1/6j 7(1 N2 dr)

€

1
_ € 9 o9 1 N-2
= 5 ano; /RN AT PN dy—i—O(e(SJ )




3.4. THE REDUCED FUNCTIONAL 85

For the remaining terms, by using also (3.1.10), we deduce that

N
e/ Us;ps; dx < elUs,|2|ps; |2 < ced;d; = < ced) (3.4.20)
Q
Moreover by using again (3.1.10)
€ 2 _ € 2 N—2
and the lemma is proved. O

Lemma 3.4.7. Let §; as in (3.2.3) for j = 1,2 and N > 7. For any n > 0 there exists
€0 > 0 such that for any € € (0,¢€p) it holds

N-2
6/PU51PU52dx:O e(2) 7 52,
Q 01

CP-uniformly with respect to (dy,ds) satisfying condition (3.2.4).
Proof. From (3.1.6) we get that

€ /Q PUls, PUs, dz = e /Q Us, — ps,)(Us, — ps,) da

(3.4.21)
= e/ Us, Us, d.Z‘—E/Z/{(;lngQ da:—e/ Us, 5, d;v—l—e/ Vs, Ps, d.
Q Q Q 9

We analyze every term.

N-—-2
5T
6/2/1511/{5261:16—6&/ 5 2 7 do
Q Q +]a:/51 (05 +|:c\)
N+2 N-—2
o2, / 5
= €
/61 1+\yy L(52+52\yy
N-2 2
2 5 T2
= ea?\,/ ( 1| |2)N72 2 v— dy
Q/61 (1+ |y 2(<62 2 , N-2
2) + 1y
-2
S\ 2 1 3.4.22
< e ()T e o
1 /6 (14 |y|?) 72 |y|V -2
—2
02 2 1
dy
N

N2
Hence e [, Us,Us, dx = O | € (5—2) : > Thanks to (3.4.20) we deduce that € [, Us, ps, do =

0
N-2 N-2 N-2 N-2
@) <e 5% 0,2 >, € JoUsyps, dz = O <e 6% 0y > Moreover it is clear that € [, 5, @5, dz =
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N—2 N-2

O <e 6,2 6,2 > . Since these last three terms are high order terms compared to € (g—f) 7 01,

we deduce the thesis, and the proof is complete. O

We are ready to prove Proposition 3.4.1.

Proof of Proposition 3.4.1.  (i): One can reason as Part 1 of Proposition 2.2 of [48].

(ii): Let us fix n > 0. From Lemma 3.4.3 and Lemma 3.4.4, for all sufficiently small e,
we get that

Je(Ve+ é1 + ¢2) = Je(Ve) + €179 (dy) + O(e”17),

for some o > 0. We evaluate J.(V¢) = J.(PUs, — PUs,).

1 1
Je(PUs, = PlUs,) = /Q IV (PUs, — PUs,)|? dx — 1 /Q [PUs, — Pls, [P da

€
- 3 / (PUs, — PUs,)*dx

1
= 3 / \VPU5, |* dx + = / \VPUS5, | dz — / VPU5, - VPUs, dx

— p—l—l/ |PUs, — PUs, [P dz:—2/(73u51) dm—2/(732/l52) dx

+ o€ / PUs, PUs, da
Q

+ 6/ PUs, PUs, dx — / V'PUs, V'PUs, dx
Q Q

(II1) (Iv)
1

A [1PUs, — PUs, 7! — PUET — PUET |

(v)

By Lemma 3.4.5, Lemma 3.4.6 and Lemma 3.4.7 we get

() = %sN/uan(ow{V—?+an<0>6N‘2+0<5iV‘1>+O<5év -

m\z

([I) = CLQE(S%—FGQG(;%—I—O((S

(II1) = O (e (2)%2 5%) :

)+O(652)
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Now since —APUs, = Uy, then [, VPUs, VPUs, dx = [, U5 PUs, dx and hence

1
) = =/ [1PUs, = PUs, [P = PUET = PUEF + (p + 1)UL, PUs, | da

-~

Iy

+ /Q Pug, - g | Pus, de

N~

I

By (3.1.6) and Lemma 3.2.2 we deduce that
|| < C/QZ/{§72_1305277L{51 dr + C’/Q @5, PUs, dz.

Now let p > 0 such that B(0, p) C Q.

/ <p§2771/{51 dr < / g0§22/151 dr = / 90522451 dxr + / 90522451 dx
Q Q MN\B(0,p) B(0,p)

1

p p+1 o 2 1

< \g052|p+1 / Us " dx + 09,2 / vz dz
Q\B(0,p) B(0,p) 2 2
<1+ z )

N+2 N-— 2 ﬁ rPN-1

< G186, 6,7 4 Oy, 5{V/ v dr
o 1+
N+4+2 N-2 ) M N
< O [52 6,7 +6,° 5{“2} < C! ((;) 57
1

N-2
Moreover, since [, L[fj dr=0(4; % ), we get

N-2 _
/Q UL 05, PUs, dz < [leps, lloo /Q UL s, dz < C6, 7 / ug s, da
N—2
Co, ? (/ U, dac) (/ Uy da:)
Q
—2)
0162]\]22?;312312 51<21(\7Ni2) — Cl <62> (62> N+2 5{\[—2

01 01
1)
< <5i> (5N_2.

Now let p > 0 and we decompose the domain 2 as 2 = Ag U A; U Ay where
Ao =Q\ B(0,p), A1 = B(0,p) \ B(0,/0102), A2 = B(0,+/6102). Then we define

IN

IN

1
Li=-—v ], [1PUs, — PUs, [P = PUET = PUEF + (p + 1)PUE, PUs, | da
J

for j =0,1,2.
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Now, by using Lemma 3.2.2 and Hoélder inequality, we see that

1
< _ p+l _ pyptl p+1 P
Lol = o [/AO (|73u(51 PUs, | PUL )der . PULT dx + . PUL PUs, dx

IN

C ( PUE PUs, dx + Pul’“ de+ [ PUE PUs, dm)

Ao

( / U3 Us, dz + / u”“ dx + / Ul Us, da:)
Ao
1
+1 1 +o0 TN—l
C(/ Z/lp+1dx> (/ Z/{p+1dx) +Cl/ —_dr
Ag o Ao 02 % (1+7,2)N
ey T
p+ p
+C </ L{fjl dm) </ Z/{f;rl da:)
A() AO
“+00 TN_I ﬁ “+o00 TN_l piil N
—_d — 5
2 / 1+2N 7 / TR LA R
o1 L)
+oo  N-1 p+1 oo N1 ﬁ
— 4 — . d
+C2 /f Tron 7 , ArN Y
2

N+2 N-—2
04 <512 522

IN

IN

IN

IN

N+522 512

[ V]
+
(o9
[NV
£
[ V]
‘2
1
IN
52
PR
ISs
~_
.
[«
—z

Now
1

o= — [1PUs, = PUs, [P = PUET" + (p + 1YPUE PUs, | de
1

1 1
+ [ Put pus, dr — / PUL PUs, di — —— | PUPT dz.
Aq & : Aq & ! p 1 Aq %2

Applying Lemma 3.2.2 we get

/A 1 [|7Du51 — PUs, [P — PUET! + (p + 1)732451732/152] dx

IN

c( PULT PUS, dx + / PULT d:c>
Aq

((3) [ [fvam o) <o (3)

Thanks to (3.1.6) and Lemma 3.2.2 we have

N
2

IA

PUs, Pls, dx - = / Uus, PUs, dz + O < / Uy 05, PUs, d:z:> +0 ( / o} PUs, da:)
Ar Aq Ay

/ UL Us, dz + O ( / U s, dm) +0 ( / UL s, PUs, dm) +
A Q Q
+0 < /Q o} Plis, da:)

By definition we have:

Ay



3.4. THE REDUCED FUNCTIONAL

89

/Z/{§IU52dl‘
1 _Nt2 _N-2
2 2
Aq = 2 2 = 2 2
(1+]2]) (1+ &)
ph1 5= 4N _< > / 1 Lo <5 )N
= « y+o
v Baplsy (1+[y2) s W z
5\ 7 5
_ %2 2
_ a3<51> —1—0((51) )
Moreover by using (3.1.9) we get
N—-2 N-2

N2
/ L{§14p52 dx < Co, * /
Q Q

and by using again (3.1.9) we have

/Q UL s, PUs, d < /Q UL s, Us, d
N-2 i = p+l w1 N-2 N-2
Q Q
Finally
P PUs, de < P Us., do = P Us., dx + P Us., dx
()061 02 — @51 02 8051 02 9051 02
Q Q B(0,p) Q\B(0,p)
1
N2 _N-2 £ N-1 P+
< C(Sl 2 (52 2 +N/52 ! N_2 dr + ‘3051 ’§+1 / U§2+1 dx
0 (1+r2)7=2 Q\B(0,p)
N+2 N2 N+2 —+00 T’N_l %
S 0512 (522 +01512 /p md?“
3y
N+2 N-2 ’
< 00,7 657 .
At the end
_Nt2 N _N-2 1 1
,Pug)Q,Pual dr < 041])\7—1—1(52 ? 61 ’ / 1 p 2
A 5y i< <1+ 8 2) (L+yl?)
01
< C 52%2/52 M <o ()
= 1 %(1+r2)¥ =72\

UP dz < C10, 7 6,7
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Finally, thanks to Lemma 3.2.2 we get that

1
Ly < {

p+1

. [1PUs, — PUs, 71 = PUET + (p + 1YPUE PUs, | der| +

Pup“ d:c}

< c( PULTPUS, dx + / Pug’jldx)gc( / U dr + / p+1dx>
Ao
i i
c o ((2) [ e [
2 o2 o9
<o (@) [ ra [T <02<62)
01/ Jo 0 o1

From Lemma 3.4.5 to Lemma 3.4.7 summing up all the terms we get that

2
J.(PUs, — PUs,) = NSN/Q + a17(0)6N 2 + a1 7(0)0Y "2+ O8N ) + 06X Y

so(()7 ) o(2)) o) o

aged? + O (65{\[72) — aed3 + O (659772) )

1 1
where a1 = p+ f]R oy ‘ )N+2 dy7 ay = O[?V flRN W Cly, ag = a?\;r fRN m dy
Recalling the choice of 65, 7 = 1,2 we get

(3N—10)(N—2)

2 BN_10)(N-2)
J.(PUs, — PUs,) = NSN/2+a17( 0)dN 285 + a1 7(0)dY ~2¢ (VDN -5

N-1 (BN-10)(N-1) N42 (NN __
+ O (6m> +0 <6 (N-4)(N-6) > +0 (61\7 6) +0 <€(N—4)(N—6)>

-2 N-2)2 N—2 2(N—3) (N—2)2
+ as (32) e (N-4)(N-6) a2d1 eN=2 + 0O <6 N—14 ) — a2d§€(N—4)(N—6)
2(2N2 13N 122) (3.4.24)
+ O <6(N4)(N6))>
2 N2 N1
= NSN/Q + [a17(0)dY "2 — aadi]eN=3 + O <€N—4)

N-—2
— 2
dq

We point out that the term O( ) depends only on d;.

3.5 proof of Theorems 3.1.1 and 3.1.2

Proof of Theorem 3.1.1. Let us set G1(dy) := CL17'(O)dJI\L2 — apd?, where ay, a are the
positive constants appearing in Proposition 3.4.1 and 7(0) is the Robin’s function of the
domain  at the origin, so by definition it follows that 7(0) is positive. It’s elementary
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to see that the function G; : RT — R has a strictly local minimum point at d; =
1

Since d; is a strictly local minimum for G, then, for any sufficiently small v > 0 there
exists an open interval I; ,, such that 71101 C R, I1 », has diameter o1, dy € I 5, and
for all di € 0114,

Gi(d1) > Gi(dy) + 7. (3.5.1)

Clearly as v — 0 we can choose o1 so that o; — 0.
N-2

We set Ga(dy,ds) := as7(0) (%) P —apd3, Gy R? — R, where az > 0 is the same
constant appearing in Proposition 3.4.1. If we fix d; = d; then @g(dg) := G(dy,ds) has
2

N-2
Qazdl 2

a strictly local minimum point at do := (‘BT(O)NEQ

N—6
> . As in the previous case there

exists an open interval I5,, such that 72702 C R, I+, has diameter o2, dy € I s, and
for all dy € 014, )
Gg(dg) > G2(d2) + 7. (3.5.2)

As v — 0 we can choose g9 so that oo — 0.
Let us set K := I 4, X I35, and let 7 > 0 be small enough so that K C]n, %[x]n, %[

Thanks to Proposition 3.3.1, for all sufficiently small e, J : Ri — R is defined and it is
of class C'. By Weierstrass theorem we know there exists a global minimum point for J,
in K. Let (dy,da,) be that point, we want to show that there exists €; such that, for all
€ < €1, (di,, dae) lies in the interior of K.

Assume by contradiction there exists a sequence €, — 0 such that for all n € N

(di,e,,d2e,) € OK.
There are only two possibilities:
(a) die, €014y, dag, € I20,,
(b) die, € I14,, dae, € Ola4,.
Thanks to (ii) of Proposition 3.4.1 we have the uniform expansion

Je(dy,d2) = Je(dy,da) = € [Gi(dr) — G1(d1)] + 0 (601> : (3.5.3)

for all € < €, (d1,d2) € K. We point out that we have incorporated the other high order
terms in o (€”1). Thanks to (3.5.1) and (3.5.3), for all sufficiently small ¢ we have

jg(dl, d2) — je(cil, dg) > 0, (354)

for all dy € 0l14,, for all dy € 7%02. So for n sufficiently large if (a) holds, since by
definition Je,, (d1,e,,d2,e,) = ming Jc,, then

jen (dl,eny d2,sn) < jsn (le d2,sn)a

which contradicts (3.5.4). Assume (b). Thanks to (ii) of Proposition 3.4.1 (see also
Remark 3.4.2) we have the uniform expansion

je(dl, dg) — je(dl, d_Q) = 692 [Gz(dl, dg) — Gg(dl, JQ)] 4+ o0 (602> R (3.5.5)
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for all € € (0,¢), for all (di,ds) € K.
For n sufficiently large so that €, < ¢y we have

Jeoo (die,rdoe,) — Je, (die,,d2) = € (Ga(d e, d2.e,) — G2(die,,d2)] + 0 (692)

= 692[(;2(d1¢n7d2@n) _'(JQ(diad2¢n) *‘(;2(&i,d2ﬁn) _‘(;Q(di,dé)

Ga(di,d2) — Ga(d e, d2)] + 0 (692)

xe [ 1 . o
= ” |agr(0)dy? | =5 — —=z | + G2(d1,dae,) — Ga(dy, do)
di 2 dy?

7&53 1 1 02
+ a37(0)d, —~=5 — =~z || to° (% )

(3.5.6)
We observe now that, up to a subsequence, dy., — dy as n — +oo. This is a
consequence of the uniform expansion given by (ii) of Proposition 3.4.1, in fact

Jen(d1 e, d2,c,) = Je, (d1, do) = €} [Ga(dre,) — Gi(dh)] + o (67%1) : (3.5.7)

Since (di,,d2.,) is the minimum point we have je(dl,en, dae,) — J;(Jl, d2) < 0, hence,
0

dividing (3.5.7) by €2, for all sufficiently large n we get that G1(d1,c,) —G1(d1) < ——4
€

On the other side, since d; is the minimum of G, we get that Gy (di,e,) —G1 (d1) > 0. So
we have proved that

— 91
0 < Gi(die,) — Gi(dr) < -2 (e, )7

0
€nt

and passing to the limit we deduce that lim, 4 G1 (de,) = Gy (dy). Hence, up to a
subsequence, since d; is a strict local minimum, the only possibility is d1 ., — di.
Since we are assuming (b), from (3.5.2) we get that

Go(dy,day,) — Ga(dy, d2) > 7.

From this last inequality, (3.5.6) and since (da,)» is bounded, then, choosing 7 suffi-

N—-2

N—-2
1 1 T3
= — —~—z | and GBT(O)dQ 2
d, 2 d, 2
1

len

1 1
N2 N—2
d, 2 d, 2

Lien

are small

ciently large so that az7(0)d

2,€n

enough, we deduce that

Jen (d175n7d275n) - Jen (dl,env JZ) >0,

for all n > 7. Since (di,,d2,,) is the minimum point it also holds

Jen (dl,ena d2,en) - Jen (dl,ena d2) S 07

and we get a contradiction.
To complete the proof we point out that, as observed before, up to a subsequence
die — di as € — 0. With a similar argument we prove that da . — dz. In fact, from the
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same argument of (3.5.6), since dj  — d; and (da,e)e is bounded, we have

jﬁ(d1,67 d2,5) — j€(d1757 Jg) - o 662
0> 02 = Ga(die, doe) — Ga(die,do) + 202 )
N-2 1 1 - ) .
= a37(0)dy? | 5= — —x=z | + Galdi,d2) — G2(di,d2)
dl € d1 2
N—2 1 1 o (b2
+ a37(0)d, > ]+ (92 )
dl ’ d162 €

= 0(1) + Gz(dl, d276) — Gg(dl, dz).
(3.5.8)
Since d» is a local maximum point for dy — Gg(dg) we have Ga(dy, doc) — Gy(dy,d3) >0
and so from (3.5.8) we get that

0 < Go(dy,da) — Ga(dr,d2) < —o(1).

Passing to the limit as € — 0 we deduce that GQ(dZE) — ég(Jg). Hence, up to a subse-
quence, since dy is a strict local minimum, the only possibility is do e — ds.

Hence by (i) of Proposition 3.4.1 we have that V, + ¢; + ¢2 is a solution of (3.1.1). More-
over, taking into account of (3.1.6), (3.1.10) and (3.1.11), we get that solution obtained
is of the form (3.1.2) and the proof is complete. O

We are ready also to prove Theorem 3.1.2. We reason as in [49].

Proof of Theorem 3.1.2. Let ue be a solution of (3.1.1) as in Theorem 3.1.1 and assume
that ®. — 0 uniformly in compact subsets of 2. We set

N-2

1 % 3N—-10 5
o dy eV d1 eI
uE(a;) = 22— - 9__3N-10
di eN-1 4 |z|? 42 € T-DWN=0) 4 |2

N—-2 N—-2

1 2 1 2
= 1 1 - —3N-10 ] —_BN_10 _
dleeN*‘l + dle € N—1 ‘33|2 d2€€(N—4)(N76) + d;e e (N—4)(N-6) |$|2

Then, by Theorem 3.1.1 and by using the assumption on the remainder term ®. we get

ue(z) = ante(z)(1+ o(1)), x € Q, (3.5.9)

where o(1) — 0 uniformly on compact subsets of (.
We consider the spheres

Sl:={zecRY; |z| :eﬁ}

and
3N—-10
S2:={z eRY; |z| = -9 },

We may fix a compact subset K C ) such that Sl c K , 7 =1,2 and € > 0 sufficiently
small.
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For x € S} we get

N-2 N—2
1 : 1 :
ue(x) = 1 1 1 - 3N—10 | — _Ni2
dIEGN—4 + dle eN—14 dQEG(N—4)(N—6) + d2_5 € (N—4)(N-6)
[ 4 52
— ik < 1 ) 2 1
= € - —_— J—
-1 2(N—2) _ s
die + dy, doce -DW=0) 4 dle” =00
- N-—2
__N-2 1 2
= v |[(—— +o(1)
L dle + dle

as € — 0. Hence @i > 0 on S! for € small.
Analogously if z € 82 then
N—-2

( ) _ (3N—10)(N—2) < 1 >2 ( )
Ue(x) = —€ 2(N-4)(N-6) _ +o(1
‘ d26 + d2_61

as € — 0 and hence @, < 0 on S? for € small.

Since (3.5.9) holds, this implies that u. > 0 on S} and u. < 0 on S? for € small. '
Then u. has at least two nodal domains 21,{) such that ); contains the sphere S,
j=12.

Next we show that u. has not more than two nodal domains for € small.

We remark that by (ii) of Proposition 3.4.1 and by Lemmas 3.4.3, 3.4.4 it follows that

2
Je(ue) — NS%, ase— 0 (3.5.10)

where J¢ is defined in (3.1.13) and S is the best Sobolev constant for the embedding of
H(Q) into LPTL(Q), namely

2
d
S = inf Jo [Vuldx —.
u€Hg (2)\{0} ([, lulptt da) 71

We set ¢, := inf . J, where N is the Nehari manifold, which is defined by

Ne = {UEHé(Q); /|Vu’2dx:/|u|pﬂdx+e/u2dx}.
Q Q Q

It is easy to see that cc = cp = %S% as € — 0 and therefore, by (3.5.10), we get that
Je(ue) < 3ce (3.5.11)

for € small enough.

We now suppose by contradiction that u. has at least 3 pairwise different nodal domains
01,09, Q3.

Let x; be the characteristic function corresponding to the sets €2;.

Then ucx; € HE(Q) (see [46]). Moreover

[Vl = [ VuTon = - [ Auluo) ds
9] Q Q
= / |ue|p(ueXi) dm"‘f/ Ue - Ue X3 dx
Q Q
= / ‘ueXi’p+1 dx"i_e/(ueXi)de
Q Q
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so that ucy; € Ne. Since also u, € N, we obtain

1 1
= (- — p+1
Je(ue) <2 e 1) /Q |ue|P da

contrary to (3.5.11). The contradiction shows that u. has at most two nodal domains for
€ small.
This completes the proof. O
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Chapter 4

A nonexistence result for
sign-changing solutions of the
Brezis-Nirenberg problem in low
dimensions

4.1 Introduction

Here we present and prove the result (R4).

In this chapter we study the semilinear elliptic problem:

A — 22,
{ Au= M+ |ul* "u inQ (411)

u=20 on 012,

where € is a smooth bounded domain in RY, N > 3, X is a positive real parameter and
2% = % is the critical Sobolev exponent for the embedding of H{(Q) into L2 (Q).

This problem is known as “the Brezis-Nirenberg problem” because the first fundamen-
tal results about the existence of positive solutions were obtained by H. Brezis and L.
Nirenberg in 1983 in the celebrated paper [17]. From their results it came out that the
dimension was going to play a crucial role in the study of (4.1.1). Indeed they proved
that if N > 4 there exists a positive solution of (4.1.1) for every A € (0, A\1(£2)), A1(Q2)
being the first eigenvalue of —A in 2 with Dirichlet boundary conditions, while if N = 3
positive solutions exists only for A away from zero. In particular, in the case of the ball
B they showed that there are no positive solutions in the interval (0, AliB)).

Since then several other interesting results were obtained for positive solutions, in
particular about the asymptotic behavior of solutions, mainly for N > 5 because also the
case N = 4 presents more difficulties compared to the higher dimensional ones.

Concerning the case of sign-changing solutions, existence results hold if N > 4 both
for A € (0,A1(2)) and A > A;(€2) as shown in [20], [24], [6].

The case N = 3 presents even more difficulties than in the study of positive solutions.
In particular in the case of the ball is not yet known what is the least value A\ of the
parameter \ for which sign-changing solutions exist, neither whether ) is larger or smaller
than A\ (B)/4. This question, posed by H. Brezis, has been given a partial answer in [14].
However it is interesting to observe that in the study of sign-changing solutions even the
"low dimensions” N = 4,5,6 exhibit some peculiarities. Indeed it was first proved by

97
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Atkinson, Brezis and Peletier in [5] that if 2 is a ball there exists A* = A*(IN) such that
there are no radial sign-changing solutions of (4.1.1) for A € (0, A\*). Later this result was
reproved in [1] in a different way.

Moreover for N > 7 a recent result of Schechter and Zou [54] shows that in any
bounded smooth domain there exist infinitely many sign-changing solutions for any A > 0.
Instead if N = 4,5,6 only N + 1 pairs of solutions, for all A > 0, have been proved to
exist in [24] but it is not clear that they change sign.

Coming back to the nonexistence result of [5] and [1] an interesting question would be
to see whether and in which way it could be extended to other bounded smooth domains.

Since the result of [5] and [1] concerns nodal radial solutions in the ball the first issue
is to understand what are, in general bounded domains, the sign-changing solutions which
play the same role as the radial nodal solutions in the case of the ball. A main property
of a radial nodal solution in the ball is that its nodal set does not touch the boundary
therefore, a class of solutions to consider, in general bounded domains, could be the one
made of functions which have this property.

Moreover, in analyzing the asymptotic behavior of least energy nodal radial solutions
uy in the ball, as A — 0, in dimension N > 7 (in which case they exist for all A € (0, A\1(B)),
see [25]) one can prove (see [37]) that their limit profile is that of a "tower of two bubbles”.
This terminology means that the positive part and the negative part of the solutions wu)
concentrate at the same point (which is obviously the center of the ball) as A — 0 and
each one has the limit profile, after suitable rescaling, of a "standard” bubble in R i.e.
of a positive solution of the critical exponent problem in RY. More precisely the solutions
u) can be written in the following way:

Uy = 'Pu(shg — 732/[5275 + wy, (4.1.2)

where Pls, ¢, i = 1,2 is the projection on H}(Q) of the regular positive solution of
the critical problem in RY, centered at ¢ = 0, with rescaling parameter §; and wy is a
remainder term which converges to zero in H}(f2).

It is also interesting to observe that, thanks to a recent result of [40], sign-changing
bubble-tower solutions exist also in bounded smooth symmetric domains in dimension
N > 7 for A close to zero, and they have the property that their nodal set does not touch
the boundary of the domain.

In view of all these remarks we are entitled to assert that in general bounded domains
sign-changing solutions which behave as the radial ones in the ball, at least for A close
to zero, are the ones which are of the form (4.1.2). Hence a natural extension of the
nonexistence result of [5] and [1] would be to show that, in dimension N = 4, 5,6, sign-
changing solutions of the form (4.1.2) do not exist in any bounded smooth domain.

This is indeed the main aim of this chapter. Let us also note that in the 3-dimensional
case a similar nonexistence result was already proved in [14]. Indeed, in studying the
asymptotic behavior of low-energy nodal solutions it was shown in [14] that their positive
and negative part cannot concentrate at the same point, as A tends to a limit value A > 0.
In the case N > 4 this question was left open in [13]. Therefore our results also complete
the analysis made in these last two papers.

To state precisely our result let us recall that the functions

U&(s(l‘) = apn RECR 0>0, €€ RN, (4.1.3)
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ay = [N(N — 2)]¥, describe all regular positive solutions of the problem

~AU=UN3 inRY,
U(x) — 0, as |x| — 4o0.

Then, denoting by PUs their projection on H§(f2), and by |ju| := [, |Vul* dz for any
u € HL(S), we have:

Theorem 4.1.1. Let N = 4,5,6 and £ a point in the domain Q. Then, for X close to
zero, Problem (4.1.1) does not admit any sign-changing solution uy of the form (4.1.2)
_N=2
with 0; = 6;(\), i = 1,2, such that 62 = o(61), ||lwirll = 0 and |wx| =0(d; 2 ), |[Vwy| =
_N
o(6; ) uniformly in compact subsets of 1, as A — 0.

The previous notations mean that 7‘“]@12 , | jﬁ' converge to zero as A — 0 uniformly

5% 6 2

in compact subsets of 2.

The proof of the above theorem is based on a Pohozaev identity and fine estimates
which are derived in a different way in the case N = 4 or N = 5,6. We would like to
point out that it cannot be deduced by the proof of Theorem 3.1 of [14] which holds only
in dimension three.

Concerning the assumption on the C''-norm in compact subsets of 2 of the remainder
term wy, whose gradient is only required not to blow up too fast, in Section 4.4 we show
that it is almost necessary.

Note that we do not even require that wy — 0 uniformly in ) neither that it remains
bounded as A — 0, but only a control of possible blow-up of |wy| and |Vw,|. We delay
to the next sections some further comments and comparisons with the case N > 7.

Finally in the last section we show that in dimension N > 7 if (uy) is a family of
solutions of type (4.1.2) with |w)|, |[Vwy| as in Theorem 4.1.1 and §; = d;\*, for some
positive numbers d; = d;(\) with 0 < ¢; < d; < ¢g, for all sufficiently small A\, and
0 < a1 < a9, then necessarily:

1 3N — 10
= — Qo = .
N—4" 27 (N—4)(N—6)

a1

(4.1.4)

In other words we prove that if the concentration speeds are powers of A then neces-
sarily the exponent must be as in (4.1.4). Note that these are exactly the type of speeds
assumed in Chapter 3 to construct the tower of bubbles in higher dimensions.

4.2 Some preliminary results

Lemma 4.2.1. Let 2 be a smooth bounded domain of RN and let (£,0) € Q x RT. As
0 — 0 it holds:

N—-2

Pl 5(x) = U 5(x) — and 2 H(z,€) +o(6° 2 ), 2 €Q

C-uniformly on compact subsets of 2, where H is the reqular part of the Green function
for the Laplacian. Moreover, setting ¢¢ 5(x) := Ug s(x) — PlUe 5(x), the following uniform
estimates hold:

(1) 0<pes <Ues,
(i) lpesl* =0 ((HV?),
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where d = d(&,09) is the euclidean distance between & and the boundary of Q.

Proof. See [51], Proposition 1 and its proof. O

Lemma 4.2.2. Let N > 4 and (uy) be a family of sign-changing solutions of (4.1.1)
satisfying
ual> = 25N/2 as A — 0.

Then, for all sufficiently small X\ > 0, the set Q\ {x € Q; wuy(z) = 0} has ezxactly two
connected components.

Proof. Let us consider the nodal set Z) := {z € ; ux(x) = 0} and let ©; be a connected
component of Q\ Z,. Multiplying (4.1.1) by u) and integrating on €21, we get that
/ [Vup|? dz > SN2(1 4 0(1)),
941

where we have used the Sobolev embedding and the fact that A — 0 and A1(€;) le u?\ dr <
le |Vuy|? dz, where \(£2;) is the first Dirichlet eigenvalue of —A on €.

Since |luy|> — 25M/2, as A — 0, then for all sufficiently small A > 0 we deduce that
Q\ Z) can have only two connected components. O

We recall now the Pohozaev identity for solutions of semilinear problems which are
not necessarily zero on the boundary. Let D be a bounded domain in RY, N > 3, with
smooth boundary and consider the equation

—Au = f(u) in D, (4.2.1)

where s — f(s) is a continuos function. Denoting F(s) := [ f(t) dt, we have:

Proposition 4.2.3. Let u be a C2-solution of (4.2.1), then

/ {NF(u)—N;2uf(u)} dx
D
N 1 ou L N-2 du (4.2.2)

where v denotes the outer normal to the boundary and ug, s the partial derivative
with respect to x; of u.

Proof. For the proof see [64]. O

The following lemma gives information on the asymptotic behavior of the nodal set
Zy of solutions of (4.1.1) as A — 0.

Lemma 4.2.4. Let N > 4, £ € Q and let (uy) be a family of solutions of (4.1.1), such
that uy = PUe 5, — Pl 5, + wx, with 61 = 01(A\) and 62 = d2(\) satisfying

d2 =0(01) and |Jwyrl]| — 0, as A — 0.

N-—-2

Moreover, assume that wy satisfies |wy| = o(8; 2 ) uniformly in compact subsets of Q.
Then, for all small € > 0 there exists A¢ > 0 such that the nodal set Zy is contained in
the annular region Ay, ,,(§) == {x € Q; r < |x —&| < ra}, for all X € (0, ), where

1 1 1 1
._ s3 €sgte . sateco—€
T = 51 52 , Ty 1= 51 52 .
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Proof. Without loss of generality we assume that £ = 0. Let us fix a small € > 0 and a
compact neighborhood of the origin K. Thanks to the assumptions and Lemma 4.2.1, we

have the following expansion uy(z) = Us, (x) — Us,(z) + 0(§; 2 ), which is uniform with
respect to z € K and to all small A > 0. By definition, for all sufficiently small A > 0, we
have that A, ,,(0) C K. For z such that |z| = we have:

N-2 _N-2

0, 2 6, 2

Us () = an ! — =an L -
1 (62 + 517202 [+ (%2)1+29 75

_N=2 _9 _N-2 1+2¢ N2 1+2¢
= any o * —OéNN 251 = (2 +old, 2 %2 ,
2 51 51

and
507 5aT o T TN AR (N 2)e
U52(33) = an 2 1_2¢ c112e\ N2 = an 5 N—2
(63 4 817 %6572 [+
_N-2 —(N—2)e
a (8

L+ ()27

1

— 2 4 _ 2 _4 2 =
= an d (51> apn 5 0, <(51> +o|9d <51) .

Hence, for x € K, such that |x| = r;, we have

_N-2 52 —(N—Q)E _N—2
U)\(l’):aN 51 2 1—<> +0(51 2 )<0

01

for all sufficiently small A > 0. On the other hand, by similar computations (just changing
the sign of € in every term of the previous equations), for « such that |z| = ro we have

_N-2 6o\ TV =2)e _N-2
ur(z) = ay 0, 2 1—((51> +o(6; * )>0

for all sufficiently small A > 0.
From Lemma 4.2.2 and since uy is a continuos function we deduce that Z C A, ,,(0)
for all sufficiently small A > 0. O

4.3 Proof of the nonexistence result

We begin considering the case N = 5,6 since the case N = 4 requires different estimates.

Proof of Theorem 4.1.1 for N=5,6. Arguing by contradiction let us assume that such
a family of solutions exists and, without loss of generality set & = 0. Defining r := /6102,
we apply the Pohozaev formula (4.2.2) to uy in the ball B, = B,(0). Since u) is a solution
of (4.1.1) we set f(u) := Au+ |uP~ u, where p := 2* — 1, and hence, using the notation of
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1

Proposition 4.2.3, we have F(u) = Ju® + #WPH. By elementary computations - (see

the footnote) we get that the left-hand side of (4.2.2) reduces to

)\/ u3 dr.

For the right-hand side

ou ou N 2 Ou
2 A AL A
/BBT {Z%%( uy) — *’VU,\| ) Z o T UA } do,

since 0B, is a sphere, we have y;(x) = \:vl for all x € 9B,, i = 1,..., N, and hence

ZZ‘JL x;v; = |z|. Furthermore since %T = Vuy - % and ZZ 1T 1%? = (VuA \xl) |z| we
get that

N 2
6U)\ 8u,\ T Ouy _ z
Z 6$1 (VUA . |x> 2 xlaixi = (VU)\ |x|> |$|,

Thus (4.2.2) rewrites as

A u3 dx
By

1 9 z\? N -2 x
_ / 2 () — 219ua?) + (Vun- ) 2+ 220y (vuy - 5 ) o
8B, 2 | 2 Ed

(4.3.1)
We estimate the left-hand side of (4.3.1). Let us fix a compact subset K C §2; for A > 0
sufficiently small we get that B, C K. Thanks to Lemma 4.2.1 we have PUs;, = Us, — 5,

N-2

where @5, = O (53'2)’ for j = 1,2, and this estimate is uniform for x € K, in particular

_N=2 _ A2y b o) SN 2002 0 et
NF(u) uf(u) = N(zu +p+1|u\ 3 (Au” + |uP™)

N N-2 ) N  N-=2\, ,n
(2 2 >Au+(p+1 2 )M

=
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for x € B,. Thus, as A — 0, we get that

_N—2 \2
)\/B ui de = A PUs, — PUs, + o(5;, ° )> da

N2 \?
Us, —Us, — o5, + ps, + 0(5 2 )> dx

N2 \2
U51 L{52+05 2 )) dr

N-2

— _N=2 _N=2
U2 U2 — s, + o8, T Usy) + 06, T Usy) +ol5, 7 >) da

2

(
i
(
(

= A+B+C+D+E+F.

We estimate every term of the previous decomposition.

. N
A = A ——————d = A d
S o A, T e
1
/01

N
= CN)\(;% (%) 2 ;

where we have set cy := a%\,“’WN, wy is the measure of the (N — 1)-dimensional unit sphere
SN-L

sN-2 52—(1\7 —2)

B = )\ 272 gy = /\/ d
/B,.‘“N<6§+|wr2w—2 TN L Ut e/
1
2 2
= « )\6/ —————dy
N2 f s (L [yP)N 2

9 9 1 +o00 Nfl
= Ao ————d O [ 162 7d
ddf [ e /(> (= &

N-4
- a1A5§+0<A55 (%2) ; )

where we have set a1 := a?v fRN W dy. We point out that since N =5or N =6

; € LY(RY) while this is not true when N = 4.

ion — L
the function (ETBLE
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N-—2
5T
IC] = Mok / 2 > dz

. 52+\x| (52+1x\ )

N+2 N-2
2

= ok / % — dy
By /81 1+|y\ (52+52|y! )

= )\a / |\
Br/(Sl 14+ |y 2 2
((ﬁf) +\y|2>

N—-2

0o\ 2 1
2) 52/ L - dy
1 Br/6y (14 [y?) 2 |y|V~

(

N2 5\ 1/2 _
()7 [ )
(

IN
>~
Q

AN

N-—-2
_N-2 5 2
|E| = 0 >\51 2 / 2—1\1—2 dﬂf
B: (03 + [2[?) 2

Now we estimate the right-hand side of (4.3.1). Remembering that F(uy) = %ui +
Iﬁhﬂ‘p“ we get that the first term is equal to

A 1 1
/ || (21& + oy 1\u)\\p+1 — 2\Vu)\\2> do.




4.3. PROOF OF THE NONEXISTENCE RESULT 105

We observe that by definition of r it is immediate to see that

u51 (Hf) = Z/[52 (x)v

for all x € 9B,., and hence we have

Ay A _n-2)\ )\ 2
—uy |z|do = = Us, —Us, +o |6, |z| do
0B, 2 2 Jon,
_n—2\72
= /\/ [0(51 2 ﬂ |z| do
2 Jon,
_ ()(A@(N'”L/ p4d0>
OB,

()"

As in the previous case we have

1 1 _N=2
PR . luPz| do = PR Us, —Us, +0(6; % )P |z| do
1

N2
= %1 s lo(6; % )P || do

:oeﬂé?mm)
()

To complete the estimate of the first term it remains to analyze

1
—/ |Vuy|?|z| do.
2 JoB,

As before, writing PUs, = Us; — ps; for j = 1,2 we have

\Vuy|? = |VUs, — Vs, — Vs, + Vs, + Vs> = |[VUs, — Vs, + VO, %,

where we have set @) := —ps, + p5, + wy. Hence, we get that
1 2
—~ [ IVurPlal do
2 Jos,
1

1
—/ Vs, 2 |2 da—/ Vs, 2 |2 da+/ VU, - Vi, |2| do
2 Jom, 2 JoB, OB,

1
~ VMﬁ‘V@AMMbﬁi/ Y%@-V@AM\mw—/)]VQﬂQMMm
8B, 8B, 2 JoB,

A1+ B1+Cy+ Dy + Ey + Fi.
(4.3.3)
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By elementary computations, for all i =1,..., N, j = 1,2 we have:
oUs. N-2 .
Vo) = —an(N =257 —
or (02 + =) *
2
IVUs, |> = ay (N — 2)25N—2L. (4.3.4)

Thus, we get that

Al = —ay
2 s \1Y Jos,
[1 + <6i(2v}+2)
N — 2)2 57 N+2 N+2
. ?V( ) N 1 51 2 52 2

o (N —2)26) 26, VoY

B, = —ay 5 T /BB lz|® do
()]
L (N—22 (&) T 5o\ 2

N

N—-2 N-2 N_ﬂ _N

62 0,2 0770, 20y 2

1 2 1 1 2 |:U|3d0'
0B,

e (8))" [+ ()"

C, = o%(N—-2)?

Taking into account the assumptions on the remainder term w) and thanks to Lemma
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S

4.2.1 we have |[V®,| = o(6; ?), uniformly on dB,. Thus we have the following:

| D1

IN

/ Vs, [V Py 2] do
0B,

N-2
612 _% 2
= o| ——4; |z|* do
(5% + (5152)7 OBy

N-2
0; * 51_N -3 2
= ol ——x0 2/ |z|* do
2 0B,

(%)
()7

B < /a VU, |V o] do

Now we analyze the term

/BT <v“A ' |§|>2 |z| do. (4.3.5)

As before we write uy = Us, — Us, + P, and we have

(vor |)2' = (v ||>2'$’+<W‘” ||>2" 2 (e ) (v )
w2 (v \2 (v 7)ot =2 (vt 1) (72 7
+<V<I>A-|;> ]

By elementary computations we see that for j = 1,2

2
X
<VU5 2 |> ] — Vs e,

(vu(ﬁ H)(W&Q-,;) @] = —2AVUs, - VUs,) o,

(4.3.6)
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and for the remaining terms we have

=2 (v ) (o )
(i)

Thus, in order to estimate (4.3.5) it suffices to apply the estimates of the previous

case, and hence we get that
N-2
@ 2
o) 5 .

2
/ <vuA . f”) |z| do = % (N — 2)%wn <52>
9B, |z] 1

To complete our analysis of (4.3.1) it remains only to study the term

]\]_2/ U <VU)\ . .1:) do.
2 JoB, |z

IN

2|VUs, [[V®,||z],

IA

VD[ |-

2

/ (VuA LU) do
OB, |z]

N—2
- / (Us, — Us, + ) |:(VU51 — VU, + Vdy) - ’ﬂ do
0B,
N—2 N_—2
- / 'S <vu51.$> da—/ ) (vu@l‘) do (437
o8, || 2 Jom, |z
N2 D (vqu-x) do
2 Jam, ||
= As+ By +(Cy
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N—2 N N
N —2)26,2 6, 26, 2
R e i e S L
512 "
1+ (3)]
_N-2
= 0 0y° 0 52ﬁ - 0, * |x| do
5\ 12 .
1+ (3)]
(52 N2
= (0] —_
1
N —2
oo < )/ ]|V do
2 9B,

_N-2 _N N-1 N-1
- 0<61 2(512612622>

-o(®)7).

Summing up all the estimates, from (4.2.2), for all sufficiently small A > 0, we deduce
the following equation

N
N —2)?
a3 + o ()\53) = a%!w]v <52>

o (8) T o((B)7). s

agdtﬂ1+dn):a%“VQQVngtW1+ou», (4.3.9)

From (4.3.8) we deduce that

for all sufficiently small A > 0. Since N = 5,6 it is clear that (4.3.9) is contradictory, in
fact, passing to the limit as A — 0, the left-hand side goes to zero while the right-hand
side goes to a constant, when N = 6 and diverges to +oco when N = 5. The proof is
complete. ]

Now we turn to the case N =4

Proof of Theorem 4.1.1 for N=4. Again, without loss of generality we assume that
& = 0. We repeat the scheme of the proof for the previous case, but some modification is
needed. In fact, since N = 4, we have to change the estimate of the term B in (4.3.2):

62 552
B, = {/a22m:a%/ ——2 5 dy
B, (03 + |z[2)2 ! B /5, (14 [y[?)? 2

1 (52) 3
2y 52 2 2
= oz)\5/ dy—aw)\é/ dr
2 s, (L+ [y[2)? 2 (1+72)2

It’s elementary to see that

[ g ar=o (e (%))
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B.,=0 <A5§ log (?)) : (4.3.10)
2

Thus, summing up (4.3.10) with the other estimates made in the previous case (in which
we take N = 4), from (4.2.2), we deduce the following asymptotic relation

O ( 63 log 0 B 63 log o = 202w, AN A (4.3.11)
5 5 51 5

It is clear that (4.3.11) gives a contradiction. In fact, dividing each side of (4.3.11) by
(g—f) we have

O </\51(52 log <§1>> +o0 ()\51(52 log <§1>> = 20@«14 +o(1). (4.3.12)
2 2

Passing to the limit as A — 0 in (4.3.12), taking into account that dy = 0(d1), we deduce
that 0 = 2a3ws which is a contradiction. O

and hence we have that

Remark 4.3.1. In [13] sign-changing solutions uy of (4.1.1) with low energy were studied,
namely solutions such that

/ IVuy|? dao — 25N/2,
Q

For this kind of solutions it is not difficult to show (see [13], Theorem 1.1) that there exist
two points a1 = a1(N), az = az(\) in Q (one of them is the global maximum point of |uy|)
and two positive real numbers 61 = 01(\), 02 = d2(N), such that for N >4, as A — 0, we
have

[un — PUay 5, + Plags,]| = 0, &; 'd(a;, 09Q) = +oo, fori=1,2,

where d(a;, 0) is the euclidean distance between a; and the boundary of Q). Hence these
solutions are of the form (4.1.2) but with possibly different concentration points. In [13],
assuming that the concentration speeds of uj\r and uy were comparable, it was proved that
the positive and the negative part of uy had to concentrate in two different points.

Since here we assume that the concentration speeds are different, our result also com-
pletes the study made in [13].

4.4 About the estimate on the C'-norm of w,

Here we show that the hypotheses of Theorem 4.1.1 on the C'-norm of the remainder
term w) are almost necessary. Indeed we have:

Theorem 4.4.1. Let Q be a bounded open set of RN with smooth boundary, N > 4, and
let £ € Q. Let uy a solution of (4.1.1) of the form

un = Pl — Plg s, + wy,

with d3 = 0(d1) as A — 0. Assume that the remainder term wy is uniformly bounded with
respect to X\ in compact subsets of Q. Then for any open subset Q" CC Q such that £ € Q"
and for all sufficiently small € > 0, there exists a positive constant C = C(e, N,Q") such
that

_N-2 _ .
lwaller@n < €8 2 6, 7O

9

for all sufficiently small A > 0.
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Proof. Without loss of generality we assume that £ = 0. By definition w) satisfies the
following:

{N@:AMAAUW&P%J+Mi%l“mpu%kinﬂ

(4.4.1)
wy =0 on 0f).

Let us set fy := Awy + AM(PUs5, — PUs,) —H/lf;; - Z/lgl + |ux|? ~2uy. Since wy and uy are
smooth, applying the Calderén-Zygmund inequality we deduce that for any p € (1,00),
for any Q" cc Q' cc Q it holds:

p,&Y + |f)\’p,Q’)7 (442)

where C depends on €, N, p, Q”. Thanks to the Sobolev imbedding theorem, for any
€ >0, if p = N + ¢ we have that W2P(Q) is continuously imbedded in C17(Q), where
v =1- N]\fre. Let us consider two open subsets Q”, ' of Q such that 0 € Q” and
Q" cc ' cC Q. Thanks to (4.4.1) and (4.4.2), in order to estimate [|wy||c1(qr) we have
to estimate the following quantities: |wx|n4e0/s [fAlN+e0 -

Thanks to the assumptions on wy we deduce immediately that |wy|yyeo = O(1),
uniformly with respect to A. For the other term we argue as it follows: we set g(s) :=

5|2 =25, @) == w) + p2 — 1, where @, = Us; — PUs;, for j = 1,2, and we write

Jwall2p.0r < C(lwa

|| Ne,0r

IN

AMwx|Nyeqr + ANPUs, INver + NPUsy | Nter + US| Neor

+|g(u51 - u52 + (I)A) - g(_u(sz)’N-l—e,Q’

IN

AMwx|Nyeq + ANPUs, N veor + NPUsy I Nter + US I N e
+lg(Us, —Us, + Pr) — g(~Us,) — g'(—Us,) Us, + PA) Nt + 19/ (—Us,) Us, + )| Ntec

= A+B+C+D+E+F.

The term A has been estimated before, and hence A\|wy|nte o = O(A). For B and C
we use the following estimates:

%(NJre)

0. 5.
N+e J N+e J
« — dr =« / dy
/ R Y Jarss (14 [y TN
N

1
= ay 9; / dy
RN(1+ﬂy! R

NN No2 -1
+0 N dr].
1/6; (1+ 7"2 T3 (Nto)

Thus, for all € > 0 sufficiently small we have

—N=2(N+e)+N

1
22Nt e
|PU5‘N+€,Q,

A
S
Q
zz
S
>
©
+m
B8

2 %(N-i—e)
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. S8 40(e) ~4+0(e) .
From this we deduce that B = O(\6, * ), C = O()\é 7 ). Concerning the term
D, with similar computations we see that
N2 (1) ¥

N+2(N+e) (51
PU ey < / a i
" o (62 + [af2) "2 (NVFO)

1
ﬂ € W €
= a§v5;2+o()</ L dy) —|—0<(5 2+O()>,
RV (14 [y[2)"2 (VO

_Nio
and hence D = O(¢; ? * (6)). In order to estimate 2 we remember that by elementary

inequalities we have |g(u + v) — g(u) — ¢'(u)v] < c|v|P, for all u,v € R, for some constant
depending only on p, and hence we get that

E < c||®PAP|Nte,r = O(1).

For the last term we have the following:

5%%(%6 5. N22(N+te)

dx
(62 + af2) 72 "5 (VH9) (82 4 |f2) 2 (V)

N2
N N 5= (N+e)
|g/(Z/{52 )Z/[51 ’NiE,Q’ = p +e /, aN2

sT2(N+e) — 72 (N+e)

N42

— N+e 2 (N+€)/ 2 51

= p'‘a — dx
N o (14 [2/622)2NF9 (1 4 13/5,|2) 5 (V+o)

IN

N+2 N-—2
N+e 5= (N+€) (—=5=(N+e€) (—2(N+e)+N 1
PV Fea ) ) / dy
" ' ? /5y (L [2/85[2)2N+0)

N+2 N-—2
N-+e ) (N+e) o— 3 (N+e) —N—QE/ 1
P T« ) ) dy
N ' ? /s, (1+[y[?)20V+e)

¢ XE2(Nte) —N=2(Nte) o N_oe 1
— pN+ aNQ ( )51 2 ( )62 N—-2 / ( " |y| ) N+6) dy
~NZ2(N4) N9 / oo M
O|o, ? 1) —|.
+ (1 2 16, (14 72)2(N+9)

1

NEz NZ2 140(e 1 Nte _N=2 o0
e ()(/]RN (1+|y|2)2(N+e)dy> +0<51 "% ()>'

By the same computations we see that

9" (Us, ) PAINter = O<52_1+0(E)>_

IN

Hence we get that

Thus, we get that
_N-2
|F| < ¢(N,p)s, 2 6,70,
Summing up all these estimates, from (4.4.2) and Sobolev imbedding theorem we deduce

that Neo
lwaller@m < O, 2 6, O,

where C'is a positive constant depending on ¢, N, Q" €. O
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A straightforward consequence of the previous theorem is the following result:

Corollary 4.4.2. Under the assumptions of Theorem 4.4.1, for all sufficiently smalle > 0

we have
s\
/ IVw,|?|z| do < C(e, N) <2> 590,
OB, 01

for all sufficiently small X > 0, where B, is the ball centered at & having radius r = +/9102.

4.5 Concentration speeds for N > 7

We consider as in the previous sections sign-changing solutions of Problem 4.1.1 which are
of the form uy = PUs, ¢ — PUs, ¢ + wy, with 61 = 61(X), d2 = d2(N) satisfying do = o(d1)
as A — 0. In addition we assume that d;, for ¢ = 1,2, is of the form

5; = di\*, (4.5.1)

where d; = d;()\) is a strictly positive function such that d; — d; >0, as A = 0, and the
exponents «; satisfy 0 < a1 < ag. Following the ideas contained in [51] and applying the
asymptotic relation (4.3.8), found in the proof of Theorem 4.1.1, we determine precisely
the exponents aq, as in the case N > 7. We observe that these speeds are exactly the
same used in [40] to construct solutions of (4.1.1) of the form (4.1.2).

Theorem 4.5.1. Let Q be a bounded open set of RN with smooth boundary, N > 7, and
let§ € Q. Letuy a solution of (4.1.1) such that uy is of the form uy = PUs, ¢ —PUs, ¢+wy,
where &;, for i = 1,2, is of the form (4.5.1) with aa > oy > 0, wy € Vyg, V¢ is the
subspace of H}(Q):

oUs, .
V>\7£ = {’U c }I&((Z)7 (U?’Pu&,{)H(}(Q) = <U”Pag“§> o) =0, 2= 1,2} .
i JHl©

N—2 N
2

Moreover assume that |wy| = o(d; * ), |Vwy| = o(d;
N-10

of Q. Then oy = 5, ag = m-

In order to prove Theorem 4.5.1 we need some preliminary lemmas. Without loss of
generality we assume that £ = 0. The first one is the following:

), uniformly in compact subsets

Lemma 4.5.2. Let Q be a bounded open set of RN with smooth boundary and assume
that 0 € Q, N > 5. Then, as § — 0, we have

2
(Y =07,

for some positive real number as, depending only on N and §2.

Proof. We multiply the equation —APUs = leg’ by Zf\il x; 3;):35 and we integrate on (2.
On one hand, integrating by parts we obtain

N
OPUS5
Bn dx

/ —APUs >

Q i—1 i

— _ 0 _Z . 4.5.2
(1 5 ) /Q |\VPUs |~ dx 5 /652 < 5 ) (x-v) do ( )

B N » 1 OPU5 2
= (1 2)/92/{6772/{5(1:17 2/@9( 5 ) (x-v) do.
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On the other hand, we have

N

N
8732/15 —10Us
P _ P 24P
/QZ/{ E " dr = E / (Z/{(S + pxUs > PUs dx

=1 (453)
. o1 0U;
= —N u PUs dz —pz iUk —Pu(; da.

By elementary computations we see that

au N -2 au
p—1 5 ols
Z itls 5 Us T 055

and hence from (4.5.3) we get that

N

/ Z 6771/{5

N —2
_ N / UPPUy i+ p™ / UPPUs di + ps / w Moy g (45.4)
Q Q

00
N
= (1-— /ngu(s dx+p5/l/{§’ 162/[5732/{5 dz.
2 ) ) o s

We analyze the last term of (4.5.4). Applying Lemma 4.2.1 and since it is well known

that
» OU5

o o5 4 =0,
we have
5/up 18u57>u dr = 5/2/11’ 13%14; dx — paynd> /ug 16;’;‘51{( ,0) dz

N — (91/{5

0 52/Z/Ip Y22 H(z,0 dm)

(0% [ Gy e
aU(; N 181/{5
e — P70 P— H
po RN\QZ/{5 9 dx — pano2 /(21/{5 9 (2,0) drx

au,
p—1 5
+o <5 /U5 5 H(z,0) d:v),
(4.5.5)

where H denotes, the regular part of the Green function for the Laplacian. By definition
it is easy to see that

N2 R R el | P R
N
2 e (24 22)F (24 [22)?

ap+1N+2/ SNHL ||zf? — 62
N2 Jema [N [N

oUs
—pd P—2d
p RN\QZ/{6 85 v

dzx

‘dx

IN

= O(6N*).
(4.5.6)
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Moreover, by the usual change of variable and applying the mean value theorem, we
have

_ 2 Sz 2 _52
paNég/Ug’lauéH(x,O) dx = pa‘?\,ﬂév/ 5 0 Y T (o = )H(:L",O) dx
Q 95 o (02 +[z)° (52 4 |22)>
Pl gN=2 52 8T e (IER 1)

(
= pa 6 2
) o 0t (1+15P) 6V (14 |22)

_ p+15N2/ 1 (‘y|2 -
- paN 2\2
/6 (1+1yl*)” (1 + |y|?

_ ap+15N—2/ 1 (ly]* —
= Py N2
/s (L+1[yl*)™ (1 + |y|?

N—1 1 (Iyl* - 1) )
+ 0 (5 /9/5 TP 4 ) § (VH(ny,0) - y) dy)

1 21
= pafjl(sN?/ " (v 2VH(0,0) dy
RY (L4 [yl*)" (1 + |y2)2

+oo N-1 2_1
+ 0 5N2/ A r LH(O,O) dr
o (L4+72)7 (1412)2

+ O(dN‘l/Q ! (! _12 (VH(ny,0) -y) dy>

/5 (L4 [y12)% (1 + [y]2)
2
-1
- pag’V“H(o,o)éN—?/ (w1 o dy +O(sNh).
BN (14 Jy|?) 2

(4.5.7)
Finally from (4.5.2)-(4.5.7) we get that

2 2
~1
/89 (‘955’5) (z-v) da_2pa§’V+1H(0,0)5N—2/R (=) N)+4 dy + O(s" 1),

and the proof is complete. O

Another preliminary lemma is the following:

Lemma 4.5.3. Under the assumptions of Theorem 4.5.1, as A — 0, we have

o

Proof. The first step is the following:

() e

= O(N\267) + o(6]72).

IA
os\
>
A

Q
Q
t‘§
~
[\]

)

=

QL

R)

A
S~
o)
~

g
ty
~_

[N}

8

Q.

Q)
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0
Thus we need to estimate / <w>\
o0 81/

such that 0 < ¢ < 1, ((z) = 0 for |z| < § and ((z) = 1 for |z] > 1. We set n(z) =
¢ (m). It’s elementary to see that nw, is a solution of the following problem

2
> do. Let us consider a smooth function ¢ : RY — R

(4.5.8)

—A(qwy) = Anwy + gy in Q
nwy =0 on 012,

where gy =7 <)\PU51 — APUs, — U§1 + Ug; + |u,\|2*_2u>\> —2Vn-Vwy —wyAn. Since nw)y,
is a solution of (4.5.8), the following inequality holds (see Appendix C in [51]):

2 2

owy

< Clgal? , 4.5.9
o~ B = O (45.9)

0

— (qw
5 o) .
where C' is a positive constant depending only on 2 and N. Hence, in order to complete
the proof, it suffices to estimate the L%(Q)—norm of gxn. We point out that, thanks to
the multiplication by the cut-off function 7, what occurs around the origin does not count
anymore and this will make the boundary estimate sharper. By elementary inequalities
we get that

191 < ep)n (Aehs, + N, + U, + U3, + [wn]”) + 2/ Vn||Veon| + |An] .
Thus we have to estimate the following quantities:
Alnls;| ax_ o, [1Us, | 2x o, for j = 1,2, and [nfwx”| ax o, [IVnl[Vws| | 2x o, [ [An|lwa] | 25 o

This is a long computation already made by O. Rey (see Appendix C of [51]), in the case
of positive solutions of the form uy = PlUs + wy. In that paper it is shown that

My P o =0 (6772) Iy, Pax = O (X26)77).

N+1°

2

2
oON o 0 (HwAH ) . (4.5.10)
Nt1

=0 (llwal®),  [1anwn]

2
2N
N+1°

TN

Moreover, by the same computations of Appendix C in [51] we see that

2
N-2
W o= o(6; 79).

N+1°

)U\W\p

In order to complete the proof we need to estimate the quantities in (4.5.10), and hence
we have to study the asymptotic behavior of ||w)||. An estimate for ||w,]| is contained in
[13]; in particular, by the proof of Lemma 3.3 of [13] we see that

7

[wall < ¢ [Z (A5§N*2V 4+ 55—2) + e12(log 6;21)<N2>/N] , (4.5.11)

02

(2—N)/2
| 62) . Since & — 0 as A — 0 we see that

where €19 is defined by €19 := (g +§

N-2 N-2

(N 7 5\ 2
€12 = (61> +o <51> .
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Moreover by the assumptions on the growth of Vw, and wy, and thanks to (4.3.8) we get
that €12 is of the same order as \d3, hence, since 62 = 0(61) as A — 0, we have that

era(log ez ) NN = o(A5)).
Thus, from (4.5.11), and since N > 7, we deduce that for all sufficiently small \ it holds
wall < (6N 2+ \6%). (4.5.12)
Summing up all these estimates we deduce the desired relation. O

Lemma 4.5.4. Let Q be a bounded open set of RN with smooth boundary and assume
that 0 € Q, N > 5. Then, as § — 0, we have

OPUs\® | No
/(99( 31/) do =0(5" 7).

Proof. We consider a smooth function 7 : RY — R having the same properties as the one
considered in the previous proof. By elementary computation we see that nPU; satisfies

—A(nPUs) = —(An)PUs — V- VPUs +nldy  in Q (45.13)
nPUs =0 on 9N. o
Since nPU;s is a solution of (4.5.13), the following inequality holds:
0 2 IPUs | 2
’ (nPU5) = ‘ d < C’]An\PUg + |V - VPUs| + |, (4.5.14)
ov 2,0Q ov 2,0Q Nt

where C' is a positive constant depending only on 2 and N. In order to complete the
proof we have to estimate the quantities: [(An)PUs| sn 2 (V- VPUs %N o InUE % 0
N+1 7 N+1> N+1°

Using the same computations made by O. Rey in [51], and since n = 0 in a neighborhood
of the origin we get that

2
2 _ N-2 _ 2
P o =0 (N72) . [IValIVPUs| = O (IPUslraummien)

2 N (4.5.15)
2
o =0 (HPUstmsupp(W)> '

N+1°

[1an1Pus|

Applying Lemma 4.2.1 and taking account of (4.3.4), since Vi = 0 in an open neighbor-
hood of the origin, we have

1PUs o) = / VUs — 05) da
Nsupp(Vn) Onsupp(Vn)

</ Vs +2 [ VU5 [V sl
QNsupp(Vn) QNsupp(Vn) (4.5.16)
+/ |Vg05|2d:v
QnNsupp(Vn)
= 06N 72).
From (4.5.14), (4.5.15) and (4.5.16) we deduce that
2
'8731/{5 _ O(5N*2),
ov 2,00

and the proof is complete. O
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Proof of Theorem 4.5.1. We apply the Pohozaev’s identity to uy = PUs, — PUs, +w.
Since u), is a solution of Problem 4.1.1 we have

Ao dr= Ous ) d 4.5.17
QuA z =3 o\ O (z-v) do. (4.5.17)

For the left-hand side of (4.5.17), as in the previous proofs we set ®y := wx — s, +¢s,,
where s, = Us; — PUs,; for j = 1,2, and we have

)\/ui de = )\/(PU(;l — PUs, + wy)? dz
Q Q

— )\/(Z/{(;l —Us, + ®y)? da
Q

(4.5.18)
= A /Q U3 + U3, — 2Us,Us, + 2Us, @\ — 2Us, @5 + ©3) da
= A+B+C+D+FE+F.
In order to estimate A and B we use the following
—(N=-2) s-(N=2)
M de = vad | e e =Nk [ e

1 +o0o 7,N—1 4
Y 252/ L o )\52./ Y4519
N Jon (L4 |yH)N—2 v ( 7 Jiys, (Lr2)N=2 '

1
- A2 52/ S dy+O<A5N’2> :
N Jan T TPV J
We point out that since we are assuming that N > 5, the first integral in the last line
of (4.5.19) converges. To estimate C' we apply the following

N+2 N—2
A/uu dx )\a2/ 0 % ° dy
616 = N — —
@ /i (1+[y2) "= (33 +aly2) "=
5_¥ 5¥
= )\a?\,/ L — 2 ~—5 4y

/e (1+[y2)" 2 [ /52
() br)

2
52/
Vo (14 y2)"5 [N -2 (4.5.20)

IN
>~
Q
AN
7 N\
ISs

=9

N=2
%/ L dy+0()\ (52) ’ 5{V—2>.
BN (14 [y[2) 77 |y|V-2 01

In order to estimate D, E, F, thanks to (4.5.12), Holder’s inequality and Poincaré’s
inequality we get that

/ wi < erflwa]? < e2(07 2 4+ A1) (4.5.21)
Q
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N=2
We observe that, by Lemma 4.2.1 and since N > 5, we have |¢5;[2.0 = O <5j 2 ) = 0(6;).
Thus, by definition of ®) and (4.5.21) we deduce that

/ D3 do = / (W + @5, — 05,)° dz = 0(63), (4.5.22)
Q Q
and hence

F = o(\63). (4.5.23)
Moreover, by the same computations of (4.5.19) we have [, Z/I(;Q]_ = a1(5]2- + 0((5]2-), for some
positive constant a;. Hence by Hoélder’s inequality and (4.5.22) we get that

|D| = o(Ad}),

and
|E| = 0(\3102) = o(\6?).

We analyze now the right-hand side of (4.5.17): by definition we have

1 Auy \ 2 1 OPUs,  IPUs,  Owy\>
2/89<ay> (@-v)do = 2/89< o aw T ) @

1 (0PUs L[ (9PUs, )\’
= 2/89( 5 ) (z-u)da+2/89< 5 > (z-v)do

_ OPU5, OPUSs, OPUs, %
/(9981/ 5, (x-v) do—l—/may ey (z-v)do

8772/{52 811})\ 1 w) 2
) &/(x-u)da+2/89(al/) (x-v) do

= A4 +B1+Ci+Di+E+ Fy.

(4.5.24)
Thanks to Lemma 4.5.2 we have:
A = 26400 ),
a (4.5.25)
B = 555*%0(5%2).
Thanks to Lemma 4.5.4 and applying Holder inequality we get that
OPU5, | | 9PU;
C < 1 2 . d
’1_/,99 8V‘8I/ - v| do
1 1
2 2 2 2
< diam(09Q) / OPUs, do / OPUs, do (4.5.26)
i) ov a0 ov

N-2 N-2
= 0(512 5y 2 >

Thanks to (4.5.9), Lemma 4.5.3, Lemma 4.5.4 and applying Holder inequality we get that

OPU;5, %

D < . d
’ 1’ = /8(2 v o ]a: I/’ o
1 1
2 2 2 2
< diam(99) / L / owy |* (4.5.27)
o0 ov 90 ov

= o(A}) +o(d172).
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OPU5, | | Ow,
< GO 12 -
|Ey| < /89 5 5 |z - v| do
1 1
2 3 2 7
< diam(09) / OPUs, do / % do (4.5.28)
oq | Ov oq | Ov
= o(A}) +o(d172).
2
B = ;/a <%“;A) (z-v)do = o(As}) +o(d12). (4.5.29)
Q

Summing up all the estimates, from (4.5.17) and since dy = 0(d1) as A — 0, we deduce
the following equality:

a1 A2 + 0(A62) = aze "2 + 0 (5{V —2) . (4.5.30)
Since §; is of the form (4.5.1), we deduce that o must satisfy the equation
14201 = (N —2)ay,

and hence we get that a; = ﬁ. Moreover, from (4.3.8) we deduce that oy, as must
satisfy the following algebraic equation

N -2

14 2a9 = 5

(g — ). (4.5.31)

Thus, combining this result with (4.5.31), we get that ag = % and the proof is

complete. O
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