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A B S T R A C T

In this Thesis we present some results obtained recently about the in-
tegrability properties of the multi-affine partial difference equations
Consistent Around the Cube classified by R. Boll. We review some
known result and we present for the first time the non-autonomous
form on the lattice of some of these equations. Using the so-called Al-
gebraic Entropy test we conjecture that two sub-families of the equa-
tions found by Boll, namely the trapezoidal H4 equations and the H6

equations are linearizable. By computing the Generalized Symmetries
of the trapezoidal H4 equations and the H6 equations we propose a
non-autonomous generalization of the QV equation. Finally we prove
the linearizability of these equation by showing that they are Darboux
integrable equations and we show how to use this property in order
to obtain general solutions.

S O M M A R I O

In questa Tesi presentiamo alcuni risultati recentemente ottenuti sul-
le proprietà di ingregrabilità delle equazioni alle differenze parziali
multiaffini Consistenti sul Cubo classificate da R. Boll. Passiamo in
rassegna alcuni risultati nuovi e presentiamo la forma nonautonoma
sul reticolo di alcune di queste equazioni per la prima volta. Usan-
do il cosiddetto metodo dell’Entropia Algebrica congetturiamo che le
due sottofamiglie delle equazioni trovate da Boll, ossia le equazioni
H4 trapezoidali e le equazioni H6, siano linearizzabili. Calcolando le
Simmetrie Generalizzate delle equazioni H4 trapezoidali e delle equa-
zioni H6 proponiamo una generalizzazione nonautonoma dell’equa-
zione QV. Per ultima cosa dimostriamo come queste equazioni siano
linearizzabili mostrando che sono Darboux integrabili e che tramite
questa proprietà è possibile scrivere le soluzioni generali.
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I N T R O D U C T I O N

The main object of this Thesis are the multi-affine partial difference equa-
tions defined on a quad graph, i.e. equations for an unknown function
un,m of the two discrete variables (n,m) ∈ Z2, which are multi-affine
polynomial in the unknown function and its shifts in a way that the
corresponding points on the Z2 plane lie on the vertices of a quadri-
lateral figure. The most known example of this kind of equations is
the discrete wave equation:

un+1,m+1 − un+1,m − un,m+1 + un,m = 0,

i.e. the lattice analogue of the wave equation in the light-cone coordi-
nates uxt = 0. Indeed the partial difference equations defined on a
quad graph are the lattice analogue of the hyperbolic partial differential
equations.

The property of the multi-affine partial difference equations de-
fined on a quad graph we are interested in is their integrability. The
most accepted definition of integrability for nonlinear equations (of
any kind) is that of the existence of a Lax pair [97]. A Lax pair is
a linear representation of a nonlinear problem which yield, through
the method of the Inverse Scattering Transform the solution of the
original nonlinear equation.

Finding a Lax pair for a nonlinear equation is a non-trivial and
non-algorithmic task so a preeminent rôle in the theory of Integrable
Systems is given to the so-called integrability criteria [100, 172]. In-
tegrability criteria are algorithmic procedure that permit to say if a
given equation is integrable or not. Integrability criteria are therefore
particularly useful in applications.

In the case of the nonlinear multi-affine partial difference equa-
tions defined on a quad graph a particularly useful integrability crite-
rion has been discovered: the so-called Consistency Around the Cube.
Roughly speaking a multi-affine partial difference equations defined
on a quad graph is said to possess the Consistency Around the Cube
if it can be extended in an agreeing way on a three dimensional lattice.
This means that a single equation is replaced by a sextuple of equa-
tions assigned on the faces of a cube, which explains the name, see
Chapter 1 for a more formal definition. The usefulness of the Con-
sistency Around the Cube relays in the fact that it provides for an
equation possessing it Bäcklund transforms and as a consequence a
Lax pair [120, 122].

Beyond its rôle as integrability criterion, i.e. as a method to estab-
lish if a given equation is or not integrable, the Consistency Around
the Cube has been also used for classification purposes in a program
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2 introduction

aimed to find all the equations possessing it up to some chosen group
of transformations. Indeed, since if an equation possess the Consis-
tency Around the Cube we can find its Lax pair, to classify all the
equations with this property means to classify a subset of the in-
tegrable multi-affine partial difference equations defined on a quad
graph. The classification using the Consistency Around the Cube was
done in [2]. In [2] were used two technical assumptions: that the given
equation possesses the discrete symmetries of the square and the tetrahe-
dron property. An equation possesses the discrete symmetries of the
square if the multi-affine polynomial defining it is symmetric under
a particular exchange of its entries, while it possess the tetrahedron
property if the equation on the top of the cube does not contains
the field un,m. In the following years many authors dealt with the
problem of weakening the hypothesis in [2] and extending the classi-
fication therein made, e.g. [81, 82]. Most notably the paper [3] opened
the way for a complete classification, using as only technical hypoth-
esis the tetrahedron property. A complete classification of the quad
graph equations possessing the Consistency Around the Cube and
the tetrahedron property was then accomplished by R. Boll in a se-
ries of papers culminating in his PhD thesis [20–22]. The result of the
classification made by Boll was that there exist three families of equa-
tions possessing the Consistency Around the Cube: the Q equations,
the H4 equations, divided in rhombic and trapezoidal, and the H6 equa-
tions. Let us notice that the Q family was introduced in [2] and their
integrability properties are well established. A detailed study of all
the lattice equations derived from the rhombic H4 family, including
the construction of their three-leg forms, Lax pairs, Bäcklund trans-
formations and infinite hierarchies of generalized symmetries, was
presented in [166].

In this Thesis we deal with two families of equations of the Boll’s
classification possessing the Consistency Around the Cube which
were still unstudied, namely the trapezoidal H4 equations and the
H6 equations. The main result is that these two classes of equations
consist of linearizable equations. We will go through the various steps
which were made to understand their deep structure in a series of pa-
pers. The plan of the Thesis is the following:

chapter 1 : We introduce the concept of integrability for finite and
infinite dimensional systems with particular attention to the par-
tial difference equations case. In particular we introduce the con-
cept of integrability indicators and we present in a rigorous way
the concept of Consistency Around the Cube and its historical
development. We present then the explicit construction of the
lattice equations from the single-cell equations in the case when
the equations on the side of the cube are different. We discuss
then how the classification at the single-cell level is preserved
when passing to the lattice by introducing explicitly the group
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n,m. The original part of this Chapter is mainly based on
[67].

chapter 2 : We introduce the Algebraic Entropy to study the trape-
zoidal H4 and the H6 equation. The fact that the trapezoidal H4

and the H6 equations are non-autonomous requires a modifica-
tion of the usual definition of Algebraic Entropy for lattice equa-
tion [155]. We then present the results of the calculation of the
Algebraic Entropy for the trapezoidal H4 and the H6 equations.
To support this evidence we present two examples of direct lin-
earization and an example of the fact that Lax pairs obtained
from Consistency Around the Cube for linearizable equations
can be fake [27, 77]. The original part of this Chapter is mainly
based on [67, 68].

chapter 3 : We introduce the Generalized Symmetry method for
partial difference equations on the quad graph. We then present
the three-point Generalized Symmetries of the trapezoidal H4

and the H6 equations and put them in relation with particular
cases of the Yamilov discretization of the Kriechever-Novikov
equation [168]. Stimulated by the results of these computations
we introduce a new partial difference equation which we con-
jecture to be integrable due to Algebraic Entropy test. We show
that this new partial difference equation is a non-autonomous
generalization of the so-called QV equation [156]. The original
part of this Chapter is mainly based on [65, 66].

chapter 4 : We present a rigorous proof of the fact that the H4 and
the H6 equations are linearizable based on the concept of Dar-
boux integrability for partial difference equations [5]. This en-
ables us also to construct the general solutions of these equa-
tion by solving some linear non-autonomous ordinary differ-
ence equations or some non-autonomous discrete Riccati equa-
tions. This fact can be taken to be a confirmation of the Alge-
braic Entropy conjecture [84]. The original part of this Chapter
is mainly based on [70, 71].

In the Conclusions we make some comments on the results ob-
tained in the various Chapters of this Thesis and we discuss some
open problems and further developments.





1
I N T E G R A B I L I T Y A N D T H E C O N S I S T E N C Y
A R O U N D T H E C U B E

Here we introduce the main concepts we will deal with. In particular
we will introduce the main ingredients in order to construct the lattice
representation of the trapezoidal H4 and H6 equations, object of this
Thesis.

We begin in Section 1.1 by introducing the concept of integrability.
The in Section 1.2 we introduce the basis of one of the most pro-
lific integrability indicators of the last years: the Consistency Around the
Cube. In Section 1.3 we will give an account of how the Consistency
Around the Cube has been used in order to find and classify inte-
grable systems. In particular in Subsection 1.3.2 we will introduce the
Boll’s classification [20–22] and present and discuss in the following
Subsection 1.3.3 the equations yet not studied. In Section 1.4 we will
discuss the problem of the embedding in the 2D and 3D lattices. In
Section 1.5 we give the proof of how the classification at the level of
single cell is preserved once embedded in the full lattice, given origi-
nally in [67]. Finally in Section 1.6 we will present the explicit lattice
form of the trapezoidal H4 and H6 equations as given in [67] which
will used everywhere throughout the Thesis.

1.1 the meaning of integrability

In this Thesis we will focus mainly on two-dimensional partial difference
equations defined on a square lattice for an unknown function un,m

with (n,m) ∈ Z2, i.e. relations of the form:

Q (un,m,un+1,m,un,m+1,un+1,m+1) = 0, (n,m) ∈ Z2. (1.1)

If the function Q is a multi-affine irreducible polynomial of its argu-
ments we say that (1.1) is a quad-equation. This will be the kind of
two-dimensional partial difference equation we will consider mostly.

We wish to study the integrability of these equations. The notion
of integrability comes from Classical Mechanics and roughly means
the existence of a “sufficiently” high number of first integrals. Indeed
given an Hamiltonian system with Hamiltonian H = H (p,q) with
N degrees of freedom we say that this system is integrable if there
exists N integrals of motions, i.e. N functions Hi i = 1, . . . ,N, well de-
fined on the phase space, i.e. analytic and single-valued, which Poisson-
commutes with the Hamiltonian:

{Hi,H} = 0. (1.2)

5



6 integrability and the consistency around the cube

The Hamiltonian, which commutes with itself, is included in the list
as H1 = H. These first integrals must be well defined functions on the
phase space and in involution:{

Hi,Hj
}
= 0, i 6= j = 1, . . . ,N (1.3)

and finally they should be functionally independent:

rank
∂(H1, . . . ,Hn)

∂(p1, . . . ,pn,q1, . . . ,qn)
= N. (1.4)

Indeed the knowledge of these integrals provides the remainingN−1

integrals and this is the content of the famous Liouville theorem [112,
161]. When more than N independent integrals exists, we say that the
system is superintegrable [44, 140]. Note that in this case the additional
integrals will not be in involution with the previous ones. Integrabil-
ity in Classical Mechanics means that the motion is constrained on
subspace of the full phase space. With some additional assumptions
on the geometric structure of the first integral it is possible to prove
that the motion is quasi-periodic on some tori in the phase space [12,
13]. Note that in the classical case is possible to have some regularity
on the behaviour of the system even when there exists M < N first
integrals. This situation is called partial integrability [49, 50, 119].

In the infinite dimensional case, i.e. for partial differential equa-
tions, the notion of integrability have been studied and developed in
the second half of the XXth Century. In this case one should be able
to find infinitely many conservation laws. These infinitely many conser-
vations laws can be obtained, for example, from the so-called Lax pair
[97], that is an overdetermined linear problem whose compatibility
is ensured if and only if the nonlinear equation is satisfied. A bona
fide Lax pair can be used to produce the required conservations laws,
with the associated generalized symmetries. The form of the Lax pair
will be different depending on the kind of equation we are consider-
ing. It is worth to note that Lax pairs can be used also in Classical
Mechanics [40] and that there exist examples of Lax pairs which are
not bona fide [27, 77, 104, 109, 114, 115, 143, 144], the so-called fake
Lax pairs. These fake Lax pairs cannot provide the infinite sequence
of first integrals, so they are useless in proving integrability.

In the case of the partial difference equation (1.1) a Lax Pair is
the overdetermined system of linear equations for a field vector function
Φn,m ∈ RK:

Φn+1,m = Ln,m (un,m,un+1,m)Φn,m, (1.5a)

Φn,m+1 =Mn,m (un,m,un,m+1)Φn,m, (1.5b)
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where Ln,m and Mn,m are K× K matrices, depending possibly on
some spectral parameter λ1. The compatibility of the two equations in
(1.5) is:

Ln,m+1Mn,m =Mn+1,mLn,m, (1.6)

which must be satisfied if and only if we are on the solution of our
nonlinear partial difference equation (1.1) for any value of λ. Remark
that in (1.6) we have to consider the shifts also in the dependent
variable upon which the matrices Ln,m and Mn,m depend. That is if
Ln,m = Ln,m (un,m,un+1,m) then Ln,m+1 = Ln,m+1 (un,m+1,un+1,m+1)

and ifMn,m =Mn,m (un,m,un,m+1) thenMn+1,m =Mn+1,m (un+1,m,un+1,m+1).
This notation will be employed everywhere.

The vector function Φn,m is usually called, for historical reasons,
the wave function. This is because in the case of the Korteweg-deVries
equation [92], which is the first example of Lax pair ever produced,
the spatial part of the Lax pair is a one-dimensional Schrödinger equa-
tion [97].

Example 1.1.1. Let us consider the following couple of equations from
[76]:

xn+1,m+1

xn,m+1
+ yn,m =

xn+1,m+1

xn+1,m
, (1.7a)

xn+1,m

xn,m
+ yn+1,m =

xn,m+1

xn,m
. (1.7b)

This is a couple of equations for the unknown functions xn,m and
yn,m defined on a Z2 lattice. This is not a quad equation in the form
(1.1), but written as a single equation it is defined on a rectangle.
However we can see that the following 2× 2 matrices:

Ln,m =

(
xn+1,m/xn,m λ

λ 0

)
, (1.8a)

Mn,m =

(
xn,m+1/xn,m λ

λ yn,m

)
, (1.8b)

yield the system (1.7) as compatibility condition (1.6). Indeed by com-
puting (1.6) we obtain: 0 λ

(
xn+1,m+1

xn,m+1
+ yn,m −

xn+1,m+1

xn+1,m

)
−λ

(
xn+1,m

xn,m
+ yn+1,m −

xn,m+1

xn,m

)
0

 =

(
0 0

0 0

)
.

(1.9)

That is the couple of matrices (1.8) is a Lax pair for the system (1.7).
�

1 In the case of 2× 2 matrices it was proved that any Lax pair where a non-trivial
spectral parameter cannot be inserted [104] is fake [75, 76].
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If by integrability we mean the existence of a Lax pair (1.5) then the
prove of the integrability of an equation is a highly non-trivial task.
Indeed there is no general algorithm to produce a Lax pair. For this
reason in the years many Integrability detectors have been developed.
Integrability detectors are algorithmic procedures which are sufficient
conditions for integrability, or in some cases alternative definition of
integrability. In the next Section we will introduce one of the most
fruitful integrability detector developed in the past years: the Consis-
tency Around the Cube. Its primary importance comes from the fact
that it can produces algorithmically a Lax pair. In Chapter 2 we will
introduce another integrability detector the Algebraic Entropy which
can also discriminate between integrable and linearizable equations.
Also Generalized Symmetries which we will introduce in Chapter 3 can
be used as a definition of integrability. The key importance of Alge-
braic Entropy and Generalized Symmetries is that they avoid the need
of prove (or disprove) the existence of a Lax pair, at difference from
the Consistency Around the Cube technique.

As a final important remark we want to stress that integrability is a
property affecting the regularity of the solutions. In the case of discrete
equations given an initial condition we can compute the whole set of
solutions with machine precision. The question of regularity can seem
futile, but in fact what we want is to understand the behavior of the
given equation without having to compute a full sequence of iterates!

It is worth to note that the concept of integrability and the concept
of solvability are very different. This can be easily explained on the
example of the famous logistic map:

un+1 = 4un (1− un) . (1.10)

Given the initial condition through u0 = sin2 (c0/2) the solution of
this equation is given by [145]:

un = sin2
(
c02

n−1
)

. (1.11)

Equation (1.11) is sensitive to the initial condition. Indeed computing
the derivative with respect to the initial condition we have:

dun
dc0

= 2n sin
(
c02

n−1
)

cos
(
c02

n−1
)

. (1.12)

Thus we see that the error grows exponentially with n, one of the
indicators of “chaos”. So the system (1.11) is solvable, but not inte-
grable.

1.2 the consistency around the cube

Here we discuss the basic properties of the so-called Consistency
Around the Cube technique, following mainly the exposition in [83].
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Let us now to have a quad equation defined on the quad graph de-
pending also on some parameters p and q:

Q (un,m,un+1,m,un,m+1,un+1,m+1,p,q) = 0 (1.13)

as it is shown in Figure 1.1.

un,m

un+1,m

un,m+1

un+1,m+1

p

p

qq

Figure 1.1: A quad-graph.

We say that this equation is Consistent Around the Cube if it can
be extended to an equation defined on a three dimensional lattice in
a coherent way. To do so first add a third direction un,m → un,m,p

and the new three dimensional lattice is depicted in Figure 1.2.

un,m,p un+1,m,p

un,m+1,p

un,m,p+1

un+1,m+1,p

un+1,m,p+1

un,m+1,p+1 un+1,m+1,p+1

A

Ā

B B̄

C

C̄

Figure 1.2: The extension of the 2D lattice to a 3D lattice when the equation
on the edges are the same.

Then on this new lattice we consider the following equations:

A = Q
(
un,m,p,un+1,m,p,un,m+1,p,un+1,m+1,p,p,q

)
= 0,

(1.14a)

Ā = Q
(
un,m,p+1,un+1,m,p+1,un,m+1,p+1,un+1,m+1,p+1,p,q

)
= 0,

(1.14b)

B = Q
(
un,m,p,un,m+1,p,un,m,p+1,un,m+1,p+1,q, r

)
= 0,

(1.14c)

B̄ = Q
(
un+1,m,p,un+1,m+1,p,un+1,m,p+1,un+1,m+1,p+1,q, r

)
= 0,

(1.14d)
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C = Q
(
un,m,p,un+1,m,p,un,m,p+1,un+1,m,p+1, r,p

)
= 0,

(1.14e)

C̄ = Q
(
un,m+1,p,un+1,m+1,p,un,m+1,p+1,un+1,m+1,p+1, r,p

)
= 0,

(1.14f)

There is a natural consistency problem: Given the values un,m,p,
un+1,m,p, un,m+1,p, un,m,p+1 as in Figure 1.2 we can compute val-
ues at un+1,m+1,p, un+1,m,p+1, un,m+1,p+1 uniquely using the equa-
tions on the bottom, front and left sides (1.14a,1.14e,1.14c), respec-
tively. Then un+1,m+1,p+1 can be computed from the equations on
the top, right and back side equations (1.14b,1.14f,1.14d), and they
should all agree. This is the consistency condition.

The Consistency Around the Cube technique represents a rather
high level of integrability. Indeed it can be thought as three dimen-
sional version of the multi-dimensional consistency introduced in
[35]. In fact it is a kind of Bianchi identity, and was observed to hold
for a sequence of Moutard transforms [124]. In its form it was pro-
posed as a property of maps in [122].

The main consequence of the Consistency Around the Cube is that
it allows the immediate construction of Lax pair [123] via Bäcklund
transformations. We will now give this construction in the way as pre-
sented in [120]. The idea is to take the third direction as a spectral di-
rection and generate the fieldΦn,m in (1.5) from the shifts in the third
direction. To do so we first solve (1.14e) with respect to un+1,m,p+1

and (1.14c) with respect to un,m+1,p+1 and relabel the third direc-
tion parameter r = λ. We can rewrite un+1,m,p+1, un,m+1,p+1 and
un,m,p+1 introducing the inhomogeneous projective variables:

un,m,p+1 =
fn,m

gn,m
, un+1,m,p+1 =

fn+1,m

gn+1,m
,

un,m+1,p+1 =
fn,m+1

gn,m+1
.

(1.15)

Then, due to the multi-linearity assumption, we can write down (1.14e)
and (1.14c) as:

un+1,m,p+1 =
l1,1un,m,p+1 + l1,2

l2,1un,m,p+1 + l2,2
, (1.16a)

un,m+1,p+1 =
m1,1un,m,p+1 +m1,2

m2,1un,m,p+1 +m2,2
, (1.16b)

where li,j = li,j (un,m,un+1,m) and mi,j = mi,j (un,m,un,m+1) with
i, j = 1, 2 are the coefficients with respect to un,m,p+1. Introducing
(1.15) into (1.16) we then obtain the following couple of equations:

fn+1,m

gn+1,m
=
l1,1fn,m + l1,2gn,m

l2,1fn,m + l2,2gn,m
, (1.17a)

fn,m+1

gn,m+1
=
m1,1fn,m +m1,2gn,m

m2,1fn,m +m2,2gn,m
, (1.17b)
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Then if we introduce the vector function:

Φn,m =

(
fn,m

gn,m

)
, (1.18)

we can write interpret (1.17) as matrix relation of the form (1.5) with
the matrix L and M given by:

Ln,m = γn,m

(
l1,1 l1,2

l2,1 l2,2

)
, Mn,m = γ ′n,m

(
m1,1 m1,2

m2,1 m2,2

)
, (1.19)

where γn,m = γn,m (un,m,un+1,m) and γ ′n,m = γ ′n,m (un,m,un,m+1)

are the so-called separation constants. These separation constants arise
from the fact that the coefficients in (1.17) are defined in projective
sense, i.e. up a common multiple. The determination of the separation
constants is crucial in the application of the method [23]. To deter-
mine the separation constants it is always possible to impose some
restrictions on Ln,m and Mn,m, e.g. they can be taken as matrices
with unit determinant (members of the special linear group). How-
ever this kind of restrictions usually introduces square roots which
can make the expressions unmanageable. Therefore usually it is eas-
ier to consider a single separation constant τn,m. From (1.19) writing
Ln,m = γn,mLn,m and Mn,m = γ ′n,mMn,m and taking into account
the compatibility condition (1.6), we can write:

τn,mLn,m+1Mn,m = Mn+1,mLn,m (1.20)

where we now have a unique separation constant:

τn,m =
γn,m+1γ

′
n,m

γn,mγ
′
n+1,m

. (1.21)

Note that a priori τn,m = τn,m (un,m,un+1,m,un,m+1,un+1,m+1). This
kind of reasoning is sufficient if we want to prove that (1.19) gives a
Lax pair for the quad equation (1.1) consistent on the cube. On the
other hand, if we want to use the obtained Lax pair for constructing
soliton solutions or for the usual Inverse Scattering machinery, we
need to have the precise form of the separation constants. Separation
constants are needed also if we want to prove that a Lax pair is fake,
as showed in [68] and will be discussed in Subsection 2.4.1.

At the end we can state the following result given a quad equation
(1.1) compatible around the cube, given the matrices Ln,m and Mn,m con-
structed according to (1.19) we can find a Lax pair together with the sep-
aration constant τn,m such that the compatibility condition (1.20) holds
identically on the solutions of (1.1).

1.3 the consistency around the cube as a search method

The Consistency Around the Cube is an algorithmic tool: given a
quad equation (1.1) by a few calculations it is possible to tell if it is or



12 integrability and the consistency around the cube

it is not consistent around the cube. In the affirmative case it is possi-
ble to construct its Lax pair using (1.19). However it is also possible
to reverse the reasoning and assume to be given a generic quad equa-
tion (1.1) which possesses the Consistency Around the Cube property
and the derive the form the equation must have. This means to use
the Consistency Around the Cube as a search method, and, in principle,
obtain equations with the desired properties. From the Consistency
Around the Cube have been obtained two kinds of results. In a first in-
stance by the papers [2, 81, 82], were produced autonomous equations.
In a second instance by the papers [3, 20, 22] and in R. Boll Ph.D.
Thesis [21], a more general situation was studied and non-autonomous
equations were produced. We will now list the main findings of these
researches, especially we will discuss the generalization introduced
in the second phase and, following [67] we will give the explicit for-
mulæ for the construction of the lattice equations in Section 1.4.

1.3.1 Original attempts

The first attempt of using the Consistency Around the Cube as a
classifying tool for quad equations was made in [2]. The authors used
the following hypothesis:

1. The quad equation (1.13) possess the tetrahedron property: un+1,m+1,p+1

is independent of un,m,p.

2. The quad equation (1.13) possess the discrete symmetries of the
square, i.e. it has the following invariance property:

Q (un,m,un+1,m,un,m+1,un+1,m+1,p,q)

= µQ (un,m,un,m+1,un+1,m,un+1,m+1,q,p)

= µ ′Q (un+1,m,un,m,un+1,m+1,un,m+1,p,q) ,

(1.22)

where µ,µ ′ ∈ {±1 }.

The outcome of this classification, up to Möbius transformations,
are the celebrated ABS equations, namely two families of autonomous
quad equations. The first one is the H family with three members:

H1 : (un,m − un+1,m+1)(un,m+1 − un+1,m) −α+β = 0,

(1.23a)

H2 : (un,m − un+1,m+1)(un,m+1 − un+1,m) −α2 +β2

+ (β−α)(un,m + un,m+1 + un+1,m + un+1,m+1) = 0,
(1.23b)

H3 : α(un,mun,m+1 + un+1,mun+1,m+1)

−β(un,mun+1,m + un,m+1un+1,m+1) + δ(α
2 −β2) = 0,

(1.23c)
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while the second one is the Q family consisting of four members:

Q1 : α(un,m − un+1,m)(un,m+1 − un+1,m+1)

−β(un,m − un,m+1)(un+1,m − un+1,m+1)

+δ2αβ(α−β) = 0,

(1.24a)

Q2 : α(un,m − un+1,m)(un,m+1 − un+1,m+1)

−β(un,m − un,m+1)(un+1,m − un+1,m+1)

+αβ(α−β)(un,m + un,m+1 + un+1,m + un+1,m+1)

−αβ(α−β)(α2 −αβ+β2) = 0,
(1.24b)

Q3 : (β2 −α2)(un,mun+1,m+1 + un,m+1un+1,m)

+β(α2 − 1)(un,mun,m+1 + un+1,mun+1,m+1)

−α(β2 − 1)(un,mun+1,m + un+1,m+1un+1,m+1)

−
δ2(α2 −β2)(α2 − 1)(β2 − 1)

4αβ
= 0,

(1.24c)

Q4 : k0un,mun+1,mun,m+1un+1,m+1

− k1(un,mun+1,mun,m+1 + un+1,mun,m+1un+1,m+1

+ un,mun,m+1un+1,m+1 + un,mun+1,mun+1,m+1)

+ k2(un,mun+1,m+1 + un+1,mun,m+1)

− k3(un,mun+1,m + un,m+1un+1,m+1)

− k4(un,mun,m+1 + un+1,mun+1,m+1)

+ k5(un,m + un+1,m + un,m+1 + un+1,m+1) + k6 = 0

(1.24d)

with

k0 = α+β, k1 = αν+βµ, k2 = αν
2 +βµ2,

k3 =
αβ(α+β)

2(ν− µ)
−αν2 +β(2µ2 −

g2
4
),

k4 =
αβ(α+β)

2(µ− ν)
−βµ2 +α(2ν2 −

g2
4
),

k5 =
g3
2
k0 +

g2
4
k1, k6 =

g22
16
k0 + g3k1,

(1.25)

where

α2 = r(µ), β2 = r(ν), r(z) = 4z3 − g2z− g3. (1.26)

Here α and β are the parameters associated to the edges of the cell
presented in Figure 1.1.

The Q4 equation given by (1.24d) is in the so-called Adler’s form,
first found in [1]. This equation possesses two other reparametrizations,
one in terms of points on a Weierstraß elliptic curve [120] called the
Nijhoff’s form, and one in terms of Jacobi elliptic functions [82], called
the Hietarinta’s form.
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In [2] a third family of equations consisting of two members is pre-
sented, namely theA family. However it was proved in the same paper
that such family is included in a sub-family of the Q one through a
non-autonomous Möbius transformation. From the discussion in Sec-
tion 1.4 and in Section 1.5 it will be clear why we can safely omit such
family.

After the introduction of the ABS equations J. Hietarinta tried to
weaken its hypotheses. First in [81] he made a new classification with
no assumption about the symmetry and the tetrahedron property.
Therein he found the following new equation:

J1 :
un,m + e2
un,m + e1

un+1,m+1 + o2
un+1,m+1 + o1

=
un+1,m + e2
un+1,m + o1

un,m+1 + o2
un,m+1 + e1

, (1.27)

where ei and oi are constants.
Later in [82] he released just the tetrahedron property, maintaining

the symmetries of the square and he found the following equations:

J2 : un,m + un+1,m + un,m+1 + un+1,m+1 = 0, (1.28a)

J3 : un,mun+1,m+1 + un+1,mun,m+1 = 0, (1.28b)

J4 : un,mun+1,mun,m+1 + un,mun+1,mun+1,m+1

+ un,mun,m+1un+1,m+1 + un+1,mun,m+1un+1,m+1

+ un,m + un+1,m + un,m+1 + un+1,m+1 = 0.

(1.28c)

It is worth to note that all these J equations, namely (1.27) and (1.28),
are linear or linearizable [138]. Furthermore it was proved in [69] that
the J equations (1.28) are also Darboux integrable, shedding light on
the origin of integrability. This property will be discussed in Chapter
4, and its discovery was a crucial step which led to a better under-
standing of the relations between Consistency Around the Cube and
linearizability.

1.3.2 Boll’s classification: non-autonomous lattices

New classes of equations where introduced by a generalization of the
Consistency Around the Cube technique given in [3]. Let us astray
from the quad equation as equation embedded on a lattice, and just
think it as multi-affine relation between some a priori independent
fields x, x1, x2, x12 with edge parameters α1 and α2:

Q (x, x1, x2, x12,α1,α2) = 0. (1.29)

The situation is that pictured in Figure 1.3, where the cell is single
and yet not embedded in any lattice.

In [3] the authors considered then a more general perspective in the
classification problem. They assumed that on faces of the consistency
cube, A, B, C and Ā, B̄ and C̄ are different quad equations of the form
(1.29). Furthermore they made no assumption either of the symmetry
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x

x1

x2

x12

α1

α1

α2α2

Figure 1.3: The purely geometric quad graph not embedded in any lattice.

of the square (1.22) nor of the tetrahedron property. They considered
six-tuples of (a priori different) quad equations assigned to the faces
of a 3D cube:

A (x, x1, x2, x12;α1,α2) = 0, (1.30a)

Ā (x3, x13, x23, x123;α1,α2) = 0, (1.30b)

B (x, x2, x3, x23;α3,α2) = 0, (1.30c)

B̄ (x1, x12, x13, x123;α3,α2) = 0, (1.30d)

C (x, x1, x3, x13;α1,α3) = 0, (1.30e)

C̄ (x2, x12, x23, x123;α1,α3) = 0, (1.30f)

see Figure 1.4. Such a six-tuple is then defined to be 3D consistent
if, for arbitrary initial data x, x1, x2 and x3, the three values for x123
(calculated by using Ā = 0, B̄ = 0 and C̄ = 0) coincide. As a result
in [3] the authors obtained the same Q family equations of [2]. In
addition some new quad equations of type H. These new equations
turned out to be deformations of those present up above (1.23).

x x1

x2

x3

x12

x13

x23 x123

A

Ā

B B̄

C

C̄

Figure 1.4: Equations on a Cube

The new equations were the rhombic H4 equations which possess the
symmetries of the rhombus:

Q(x, x1, x2, x12,α1,α2) = µQ(x, x2, x1, x12,α2,α1)

= µ ′Q(x12, x1, x2, x,α2,α1),
(1.31)
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with µ,µ ′ ∈ {±1 } and are given by:

rH
ε
1 : (x− x12)(x1 − x2) − (α1 −α2) (1+ εx1x2) , (1.32a)

rH
ε
2 : (x− x12)(x1 − x2) + (α2 −α1)(x+ x1 + x2 + x12)

+ ε(α2 −α1)(2x1 +α1 +α2)(2x2 +α1 +α2)

+ ε(α2 −α1)
3 −α21 +α

2
2

(1.32b)

rH
ε
3 : α1(xx1 + x2x12) −α2(xx2 + x1x12)

+ (α21 −α
2
2)

(
δ+

εx1x2
α1α2

) (1.32c)

Note that as ε → 0 these equations reduce to the H family (1.23)
discussed before.

As these equations do not possess anymore the symmetry of the
square (1.22) they cannot be embedded in a lattice with a fundamen-
tal cell of size one, but the size of the elementary cell should be bigger,
equal to two. This implies that the corresponding equation on the lat-
tice will be a non-autonomous equation [3]. The explicit form of the
non-autonomous equation was displayed in [166]. We will postpone
to Section 1.4 the discussion on how this reasoning is carried out since
we will present a more general case.

In [20–22], Boll, starting from [3], classified all the consistent equa-
tions on the quad graph possessing the tetrahedron property only
The results were summarized by Boll in [21] in a set of theorems,
from Theorem 3.9 to Theorem 3.14, listing all the consistent six-tuples
configurations (1.30) up to Möb8, the group of independent Möbius
transformations of the eight fields on the vertexes of the consistency
three dimensional cube, see Figure 1.4. The essential tool used in the
classification where the bi-quadratics, i.e. the expression:

hij =
∂Q

∂xk

∂Q

∂xl
−Q

∂2Q

∂xk ∂xl
, (1.33)

where the pair {k, l} is the complement of the pair {i, j} in {0, 1, 2, 12}2.
A bi-quadratic is called degenerate if it contains linear factors of the
form xi − c, with c ∈ C a constant, otherwise a bi-quadratic is called
non-degenerate. The three families are classified depending on how
many bi-quadratics are are degenerate:

• Q family: all the bi-quadratics are non-degenerate,

• H4 family: four bi-quadratics are degenerate,

• H6 family: all of the six bi-quadratics are degenerate.

Let us notice that the Q family is the same as presented in [2, 3]. The
H4 equations are divided into two subclasses: the rhombic one, which

2 Here x0 = x.
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we discussed above, and the trapezoidal one The rhombic symmetry is
given by (1.31), whereas the trapezoidal one is given by [3]:

Q(x, x1, x2, x12,α1,α2) = Q(x1, x, x12, x2,α1,α2). (1.34)

The trapezoidal symmetry is an invariance with respect to the axis
parallel to (x1, x12). There might be a trapezoidal symmetry also with
respect to the reflection around an axis parallel to (x2, x12), but this
can be reduced to the previous one by a rotation. So there is no need
to treat such symmetry but it is sufficient to consider (1.34).

We remark that a simplest trapezoidal equation appeared, without
purpose of classification already in [3].

1.3.3 The equations on the single cell

In Theorems 3.9 – 3.14 [21], Boll classified up to the action of the
group Möb8 every consistent six-tuples of equations with the tetra-
hedron property. Here we consider all independent quad equations
defined on a single cell not of type Q (Qε1, Qε2, Qε3 and Q4) or rhom-
bic H4 (rHε1, rHε2 and rH

ε
3) as these two families have been already

studied extensively [2, 3, 102, 139, 166]. By independent we mean that
the equations are defined up to the action of the group Möb4 on the
fields, rotations, translations and inversions of the reference system.
By reference system we mean those two vectors applied on the point
x which define the two oriented directions i and j upon which the
elementary square is constructed. The vertex of the square lying on
direction i (j) is then indicated by xi (xj). The remaining vertex is then
called xij. In Fig. 1.3 one can see an elementary square where i = 1

and j = 2 or viceversa.
The list we present in the following expands the analogous one

given by Theorems 2.8–2.9 in [21], where the author does not distin-
guish between different arrangements of the fields xi, over the four
corners of the elementary square. Different choices reflects in differ-
ent bi-quadratics patterns and, for any system presented in Theorems
2.8–2.9 in [21], it is easy to see that a maximum of three different
choices may arise up to rotations, translations and inversions.

The list obtain consists of nine different representatives, three of
H4-type and six of H6-type. We list them with their quadruples of
discriminants, as defined by equation (1.33) and we identify the six-
tuple where the equation appears by the theorem number indicated
in [21] in the form 3.a.b, where b is the order of the six-tuple into the
Theorem 3.a.

The independent trapezoidal equations of type H4 are:

tH
ε
1 ,
(
ε2 , ε2 , 0 , 0

)
: Eq. B of 3.10.1.

(x− x2) (x3 − x23) −α2(1+ ε
2x3x23) = 0. (1.35a)
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tH
ε
2 , (1 + 4εx , 1 + 4εx2 , 1 , 1) : Eq. B of 3.10.2.

(x− x2) (x3 − x23) +α2(x+ x2 + x3 + x23)

+
εα2
2

(2x3 + 2α3 +α2) (2x23 + 2α3 +α2)

+ (α2 +α3)
2 −α23 +

εα32
2

= 0.

(1.35b)

tH
ε
3 ,
(
x2 − 4δ2ε2 , x22 − 4δ

2ε2 , x23 , x223
)

: Eq. B of 3.10.3.

e2α2 (xx23 + x2x3) − (xx3 + x2x23)

− e2α3
(
e4α2 − 1

)(
δ2 +

ε2x3x23
e4α3+2α2

)
= 0.

(1.35c)

The independent equations of type H6 are:

D1 , (0 , 0 , 0 , 0) : Eq. A of 3.12.1 and 3.13.1.

x+ x1 + x2 + x12 = 0. (1.36a)

This equation is linear and invariant under any exchange of the
fields.

1D2 ,
(
δ21 , (δ1δ2 + δ1 − 1)

2 , 1 , 0
)

: Eq. A of 3.12.2.

δ2x+ x1 + (1− δ1) x2 + x12 (x+ δ1x2) = 0. (1.36b)

D3 , (4x , 1 , 1 , 1) : Eq. A of 3.12.3.

x+ x1x2 + x1x12 + x2x12 = 0. (1.36c)

This equation is invariant under the exchange x1 ↔ x2.

1D4 ,
(
x2 + 4δ1δ2δ3 , x21 , x212 , x22

)
: Eq. A of 3.12.4.

xx12 + x1x2 + δ1x1x12 + δ2x2x12 + δ3 = 0. (1.36d)

This equation is invariant under the simultaneous exchanges
x1 ↔ x2 and δ1 ↔ δ2.

2D2 ,
(
δ21 , 0 , 1 (δ1δ2 + δ1 − 1)

2
)

: Eq. C of 3.13.2.

δ2x+(1− δ1) x3+x13+x1 (x+ δ1x3 − δ1λ)−δ1δ2λ = 0. (1.36e)

3D2 ,
(
δ21 , 0 , (δ1δ2 + δ1 − 1)

2 , 1
)

: Eq. C of 3.13.3.

δ2x+ x3 + (1− δ1) x13 + x1 (x+ δ1x13 − δ1λ) − δ1δ2λ = 0.

(1.36f)
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2D4 ,
(
x2 + 4δ1δ2δ3 , x21 , x22 , x212

)
: Eq. A of 3.13.5.

xx1 + δ2x1x2 + δ1x1x12 + x2x12 + δ3 = 0. (1.36g)

This equation is invariant under the simultaneous exchanges
x2 ↔ x12 and δ1 ↔ δ2

Let us note that at difference from the rhombic H4 equations (1.32),
which as stated above are ε-deformations of the H equations in the
ABS classification [2] the trapezoidal H4 equations in the limit ε→ 0

keep their discrete symmetry. Such class is then completely new with
respect the ABS classification and the “deformed” and the “unde-
formed” equations share the same discrete symmetry.

Up to now we have written the result of the classification on a
single cell and no dynamical system over the entire lattice yet exists.
Therefore we pass now to the discussion of the embedding in the 2D
and 3D lattices.

1.4 construction of the 2d/3d lattice in the general

case

Let us assume to have a geometric quad equation in the form (1.29).
We need to embed it into into a Z2 lattice with an elementary cell of
size greater than one. To do so we have to impose a lattice structure
which preserves the properties of the quad equation (1.29). Following
[20], one reflects the square with respect to the normal to its right and
to the top and then complete a 2× 2 cell by reflecting again one of
the obtained equation with respect to the other direction. Let us note
that, whatsoever side we reflect, the result of the last reflection is the
same. Such a procedure is graphically described in Figure 1.5, and at
the level of the quad equation this corresponds to constructing the
three equations obtained from (1.29) by flipping its arguments:

Q = Q(x, x1, x2, x12,α1,α2) = 0, (1.37a)

|Q = Q(x1, x, x12, x2,α1,α2) = 0, (1.37b)

Q = Q(x2, x12, x, x1,α1,α2) = 0, (1.37c)

|Q = Q(x12, x2, x1, x,α1,α2) = 0. (1.37d)

By paving the whole Z2 with such equations we get a partial dif-
ference equation, which we can in principle study with the known
methods. Since a priori Q 6= |Q 6= Q 6= |Q the obtained lattice will be
a four stripe lattice, i.e. an extension of the Black and White lattice
considered for example in [3, 85, 166].

Let us notice that if the quad-equation Q possess the symmetries
of the square given by (1.22), one has:

Q = |Q = Q = |Q (1.38)
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x x1 x

x2
x12

x2

x x1 x

Q |Q

Q |Q

Figure 1.5: The “four colors” lattice

implying that the elementary cell is actually of size one, and one falls
into the case of the ABS classification.

On the other hand in the case of the rhombic symmetry as given by
(1.31), we can see from the explicit form of the rhombic equations
themselves (1.32) that holds the relation:

Q = |Q, Q = |Q. (1.39)

This means that in the case of the equations with rhombic symmetries
this construction yields the Black and White lattice considered in [3,
85, 166]. The geometric picture of this case is given in Figure 1.6.

x x1 x

x2
x12

x2

x x1 x

Q |Q

|Q Q

Figure 1.6: Rhombic Black and White lattice

Lastly in the case of quad equations invariant under trapezoidal sym-
metry as given by (1.34) we have the following equality:

Q = |Q, Q = |Q. (1.40)

This means that in the case of the equations with trapezoidal symme-
tries this construction yields the Black and White lattice considered
as stated in [21]. The geometric picture of this case is given in Figure
1.7.
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x x1 x

x2
x12

x2

x x1 x

Q Q

Q Q

Figure 1.7: Trapezoidal Black and White lattice

Now by paving the whole Z2 with the elementary cell defined in
Figure 1.5 and choosing the origin on the Z2 lattice in the point x we
obtain a lattice equation of the following form:

Q̃ [u] =



Q(un,m,un+1,m,un,m+1,un+1,m+1) n = 2k,m = 2k, k ∈ Z,

|Q(un,m,un+1,m,un,m+1,un+1,m+1) n = 2k+ 1,m = 2k, k ∈ Z,

Q(un,m,un+1,m,un,m+1,un+1,m+1) n = 2k,m = 2k+ 1, k ∈ Z,

|Q(un,m,un+1,m,un,m+1,un+1,m+1) n = 2k+ 1,m = 2k+ 1, k ∈ Z,

(1.41)

We could have constructed Q̃ [u] starting from any other point in Fig-
ure 1.5 as the origin, but such equations would differ from each other
only by a translation, a rotation or a reflection. So in the sense of the
discussion made in Subsection 1.3.3 they will be equivalent to (1.41)
and we will not discuss them.

Example 1.4.1. In the case of rHε1 (1.32a) we have:

rH̃
ε
1 =


(un,m − un+1,m+1)(un+1,m − un,m+1)

−(α1 −α2)(1+ ε
2un+1,mun,m+1),

|n|+ |m| = 2k, k ∈ Z,

(un,m − un+1,m+1)(un+1,m − un,m+1)

−(α1 −α2)(1+ ε
2un,mun+1,m+1),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.42)

where we have used the symmetry properties of the equation rH
ε
1.

This result coincide with that presented in [166]. �

We shall now consider quad equations which possess the Consis-
tency Around the Cube, since we are concerned about integrability.
So let us consider six-tuples of quad equations (1.30) assigned to the
faces of a 3D cube as displayed in Figure 1.4.

First let us notice that, without loss of generality, we can assume
that, if Q is the consistent quad equation we are interested in, then
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we may assume that Q is the bottom equation i.e. Q = A. Indeed if
we are interested in an equation on the side of the cube of Figure 1.4
and these equations are different from A (once made the appropriate
substitutions) we may just rotate it and re-label the vertices in an
appropriate manner, so that our side equation will become the bottom
equation. In this way following again [20] and taking into account
the result stated above we may build an embedding in Z3, whose
points we shall label by triples (n,m,p), of the consistency cube. To
this end we reflect the consistency cube with respect to the normal
of the back and the right side and then complete again with another
reflection, just in the same way we did for the square. Using the same
notations as in the planar case we see which are the proper equations
which must be put on the sides of the “multi-cube”. Their form can
therefore be described as in (1.41). As a result we end up with Figure

x
x1

x2

x3

x12

x13

x23
x123

x

x

x2

xx1

x3

x3

x23

x3
x13

A |A

A |A

Ā |Ā

Ā |Ā

B B̄ B

B B̄ B

C

C̄

C

|C

|C̄

|C

Figure 1.8: The extension of the consistency cube.

1.8, where the functions appearing on the top and on the bottom can
be defined as in (1.41)3 while on the sides we shall have:

B(x, x2, x3, x23) = B(x2, x, x23, x3), (1.43a)

B̄(x1, x12, x13, x123) = B̄(x12, x1, x123, x13), (1.43b)

|C(x, x1, x3, x13) = C(x1, x, x13, x3), (1.43c)

|C̄(x2, x12, x23, x123) = C̄(x12, x2, x123, x23). (1.43d)

3 Obviously in the case of Ā one should traslate every point by one unit in the p
direction.
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From (1.43) we obtain the extension to Z3 of (1.41). We have a new
consistency cube, see Figure 1.8, with equations given by4:

˜̄A [u] =



Ā(un,m,p+1,un+1,m,p+1,un,m+1,p+1,un+1,m+1,p+1),

|Ā(un,m,p+1,un+1,m,p+1,un,m+1,p+1,un+1,m+1,p+1),

Ā(un,m,p+1,un+1,m,p+1,un,m+1,p+1,un+1,m+1,p+1),

|Ā(un,m,p+1,un+1,m,p+1,un,m+1,p+1,un+1,m+1,p+1),
(1.44a)

B̃ [u] =



B(un,m,p,un,m+1,p,un,m,p+1,un,m+1,p+1),

B̄(un,m,p,un,m+1,p,un,m,p+1,un,m+1,p+1),

B(un,m,p,un,m+1,p,un,m,p+1,un,m+1,p+1),

B̄(un,m,p,un,m+1,p,un,m,p+1,un,m+1,p+1),

(1.44b)

˜̄B [u] =



B̄(un+1,m,p,un+1,m+1,p,un+1,m,p+1,un+1,m+1,p+1),

B(un+1,m,p,un+1,m+1,p,un+1,m,p+1,un+1,m+1,p+1),

B̄(un+1,m,p,un+1,m+1,p,un+1,m,p+1,un+1,m+1,p+1),

B(un+1,m,p,un+1,m+1,p,un+1,m,p+1,un+1,m+1,p+1),
(1.44c)

C̃ [u] =



C(un,m,p,un+1,m,p,un,m,p+1,un+1,m,p+1),

|C(un,m,p,un+1,m,p,un,m,p+1,un+1,m,p+1),

C̄(un,m,p,un+1,m,p,un,m,p+1,un+1,m,p+1),

|C̄(un,m,p,un+1,m,p,un,m,p+1,un+1,m,p+1),
(1.44d)

˜̄C [u] =



C̄(un,m+1,p,un+1,m+1,p,un,m+1,p+1,un+1,m+1,p+1),

|C̄(un,m+1,p,un+1,m+1,p,un,m+1,p+1,un+1,m+1,p+1),

C(un,m,p,un+1,m+1,p,un,m+1,p+1,un+1,m+1,p+1),

|C̄(un,m+1,p,un+1,m+1,p,un,m+1,p+1,un+1,m,+1p+1),
(1.44e)

Formula (1.44) means that the “multi-cube” of Figure 1.8 appears as
the usual consistency cube of Figure 1.2 with the following identifica-
tions:

A Ã, Ā ˜̄A, B B̃, B̄ ˜̄B, C C̃, C̄ ˜̄C. (1.45)

4 For the sake of the simplicity of the presentation we have left implied when n and
m are even or odd integers. They are recovered by comparing with (1.41).
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Example 1.4.2. Let us consider again the equation rH
ε
1 (1.32a). This

equation comes from the six-tuple [3]:

A = (x− x12)(x1 − x2) + (α1 −α2)(1+ εx1x2), (1.46a)

Ā = (x3 − x123)(x13 − x23) + (α1 −α2)(1+ εx3x123), (1.46b)

B = (x− x23)(x2 − x3) + (α2 −α3)(1+ εx2x3), (1.46c)

B̄ = (x1 − x123)(x12 − x13) + (α2 −α3)(1+ εx1x123), (1.46d)

C = (x− x13)(x1 − x3) + (α1 −α3)(1+ εx1x3), (1.46e)

C̄ = (x2 − x123)(x12 − x23) + (α1 −α2)(1+ εx2x123), (1.46f)

therefore from (1.44, 1.45) we get the following consistent system on
the “multi-cube”:

A =


(un,m,p − un+1,m+1,p)(un+1,m,p − un,m+1,p)

−(α1 −α2)(1+ ε
2un+1,m,pun,m+1,p),

|n|+ |m| = 2k, k ∈ Z,

(un,m,p − un+1,m+1,p)(un+1,m,p − un,m+1,p)

−(α1 −α2)(1+ ε
2un,m,pun+1,m+1,p),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.47a)

Ā =


(un,m,p+1 − un+1,m+1,p+1)(un+1,m,p+1 − un,m+1,p+1)

−(α1 −α2)(1+ ε
2un,m,p+1un+1,m+1,p+1),

|n|+ |m| = 2k, k ∈ Z,

(un,m,p+1 − un+1,m+1,p+1)(un+1,m,p+1 − un,m+1,p+1)

−(α1 −α2)(1+ ε
2un+1,m,p+1un,m+1,p+1),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.47b)

B =


(un,m,p − un,m+1,p+1)(un,m+1,p − un,m,p+1)

−(α2 −α3)(1+ ε
2un,m+1,pun,m,p+1),

|n|+ |m| = 2k, k ∈ Z,

(un,m,p − un,m+1,p+1)(un,m+1,p − un,m,p+1)

−(α2 −α3)(1+ ε
2un,m,pun,m+1,p+1),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.47c)

B̄ =


(un+1,m,p − un,m+1,p+1)(un+1,m+1,p − un+1,m,p+1)

−(α2 −α3)(1+ ε
2un+1,m,pun+1,m+1,p+1,

|n|+ |m| = 2k, k ∈ Z,

(un+1,m,p − un+1,m+1,p+1)(un+1,m+1,p − un+1,m,p+1)

−(α2 −α3)(1+ ε
2un+1,m+1,pun+1,m,p+1),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.47d)

C =


(un,m,p − un+1,m,p+1)(un+1,m,p − un,m,p+1)

−(α1 −α3)(1+ ε
2un+1,m,pun,m,p+1),

|n|+ |m| = 2k, k ∈ Z,

(un,m,p − un+1,m,p+1)(un+1,m,p − un,m,p+1)

−(α1 −α3)(1+ ε
2un,m,pun+1,m,p+1),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.47e)

C̄ =


(un,m+1,p − un+1,m+1,p+1)(un+1,m+1,p − un,m+1,p+1)

−(α1 −α3)(1+ ε
2un,m+1,pun+1,m+1,p+1),

|n|+ |m| = 2k, k ∈ Z,

(un,m+1,p − un+1,m+1,p+1)(un+1,m+1,p − un,m+1,p+1)

−(α1 −α2)(1+ ε
2un+1,m+1,pun,m+1,p+1),

|n|+ |m| = 2k+ 1, k ∈ Z,

(1.47f)

The reader can easily check that the equations in (1.47) possess the
Consistency Around the Cube in the form presented in Section 1.2. �
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Up to now we showed how, given a quad equation of the form (1.29)
which possess the property of the Consistency Around the Cube, it
is possible to embed it into a quad equation in Z2 given by (1.41).
Furthermore we showed that this procedure can be extended along
the third dimension in such a way that the consistency is preserved.
This have been done following [20] and filling the details (which are
going to be important).

The quad difference equation (1.41) is not very manageable since
we have to change equation according to the point of the lattice we
are in. It will be more efficient to have an expression which “knows”
by itself in which point we are. This can obtained by going over to
non-autonomous equations as was done in the BW lattice case [166].

We shall present here briefly how from (1.41) it is possible to con-
struct an equivalent non-autonomous system, and moreover how to
construct the non-autonomous version of CAC (1.44).

We take an equation Q̂ constructed by a linear combination of the
equations (1.37) with n and m depending coefficients:

Q̂ = fn,mQ(un,m,un+1,m,un,m+1,un+1,m+1)+

+ |fn,m |Q(un,m,un+1,m,un,m+1,un+1,m+1)+

+ fn,mQ(un,m,un+1,m,un,m+1,un+1,m+1)+

+ |fn,m |Q(un,m,un+1,m,un,m+1,un+1,m+1).

(1.48)

We require that it satisfies the following conditions:

1. The coefficients are periodic of period 2 in both directions, since,
in the Z2 embedding, the elementary cell is a 2× 2 one.

2. The coefficients are such that they produce the right equation
in a given lattice point as specified in (1.41).

Condition 1 implies that any function f̃n,m in (1.48), i.e. either fn,m

or |fn,m or fn,m or |fn,m, solves the two ordinary difference equations:

f̃n+2,m − f̃n,m = 0, f̃n,m+2 − f̃n,m = 0, (1.49)

whose solution is:

f̃n,m = c0 + c1 (−1)
n + c2 (−1)

m + c3 (−1)
n+m (1.50)

with ci constants to be determined.
The condition 2 depends on the choice of the equation in (1.41) and

will give some “boundary conditions” for the function f̃, allowing us
to fix the coefficients ci. For fn,m, for example, we have, substituting
the appropriate lattice points, the following conditions:

f2k,2k = 1, f2k+1,2k = f2k,2k+1 = f2k+1,2k+1 = 0, (1.51)
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which yield:

fn,m =
1+ (−1)n + (−1)m + (−1)n+m

4
. (1.52a)

In an analogous manner we obtain the form of the other functions in
(1.48):

|fn,m =
1− (−1)n + (−1)m − (−1)n+m

4
, (1.52b)

fn,m =
1+ (−1)n − (−1)m − (−1)n+m

4
, (1.52c)

|fn,m =
1− (−1)n − (−1)m + (−1)n+m

4
. (1.52d)

Then inserting (1.52) in (1.48) we obtain a non-autonomous equation
which corresponds to (1.41). Note that finally this quad equation is a
quad equation in the form (1.1) with non-autonomous coefficients. We
can say that these kind of equations are weakly non-autonomous, since
as we will see in Chapter 2 and in 4 this kind of non-autonomicity
can be easily removed by introducing more components.

If the quad-equation Q possess some discrete symmetries, the ex-
pression (1.48) greatly simplify. If an equation Q possess the sym-
metries of the square, we trivially have, using (1.38), Q̂ = Q. This
result states that an equation with the symmetry (1.38) is defined on
a monochromatic lattice, as expected since we are in the case of the
ABS classification [2]. If the equation Q has the symmetries of the
rhombus, namely (1.39), we get:

Q̂ = (fn,m + |fn,m)Q+ (|fn,m + fn,m)|Q. (1.53)

Using (1.52):

fn,m + |fn,m = F
(+)
n+m, |fn,m + fn,m = F

(−)
n+m. (1.54)

where:

F
(±)
k =

1± (−1)k

2
, k ∈ Z, (1.55)

we obtain:

Q̂ = F
(+)
n+mQ+ F

(−)
n+m|Q. (1.56)

This obviosly match with the results in [166].
In the case of trapezoidal symmetry (1.40) one obtains:

Q̂ = (fn,m + |fn,m)Q+ (fn,m + |fn,m)Q. (1.57)

Therefore using that:

fn,m + |fn,m = F
(+)
m , fn,m + |fn,m = F

(−)
m , (1.58)

we obtain:

Q̂ = F
(+)
m Q+ F

(−)
m Q. (1.59)
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Example 1.4.3. As an example of such construction let us consider
again rH

ε
1 (1.32a). Since we are in the rhombic case [166] we use for-

mula (1.54) and get:

rĤ
ε
1 = (un,m − un+1,m+1)(un+1,m − un,m+1) − (α1 −α2)

+ (α1 −α2)ε
2
(
F
(+)
n+m un+1,mun,m+1 + |F

(−)
n+m un,mun+1,m+1

)
= 0,

(1.60)

which corresponds to the case σ = 1 of [166]. The discussion of the
absence of the parameter σ introduced in [166] from our theory is
postponed to the end this Section. �

The consistency of a generic system of quad equations is obtained
by considering the consistency of the tilded equations as displayed in
(1.45). We now construct, starting from (1.45), the non autonomous
partial difference equations in the (n,m) variables using the weights
f̃n,m, as given in (1.48), applied to the relevant equations. Carrying
out such construction, we end with the following six-tuple of equa-
tions:

Â(un,m,p,un+1,m,p,un,m+1,p,un+1,m+1,p) = fn,mA+ |fn,m|A

+ fn,mA+ |fn,m|A = 0,
(1.61a)̂̄A(un,m,p+1,un+1,m,p+1,un,m+1,p+1,un+1,m+1,p+1) = fn,mĀ+ |fn,m|Ā+

+ fn,mĀ+ |fn,m|Ā = 0,
(1.61b)

B̂(un,m,p,un,m+1,p,un,m,p+1,un,m+1,p+1) = fn,mB+ |fn,m|B̄+

+ fn,mB+ |fn,m|B̄ = 0,
(1.61c)̂̄B(un+1,m,p,un+1,m+1,p,un+1,m,p+1,un+1,m+1,p+1) = fn,mB̄+ |fn,m|B+

+ fn,mB̄+ |fn,m|B = 0,
(1.61d)

Ĉ(un,m,p,un+1,m,p,un,m,p+1,un+1,m,p+1) = fn,mC+ |fn,m|C+

+ fn,mC̄+ |fn,m|C̄ = 0,
(1.61e)̂̄C(un,m+1,p,un+1,m,p,un,m+1,p+1,un+1,m+1,p+1) = fn,mC̄+ |fn,m|C̄+

+ fn,mC+ |fn,m|C = 0,
(1.61f)

where all the functions on the right hand side of the equality sign
are evaluated on the point indicated on the left hand side.

We note that a Lax pair obtained by making use of equations (1.61)
will be effectively a pair, since the couples (B̂, ̂̄B) and (Ĉ, ̂̄C) are related
by translation so they are just two different solutions of the same
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equation. Indeed by using the properties of the functions f̃n,m we
have:

̂̄B = TnB̂, ̂̄C = TmĈ, (1.62)

where Tn is the operator of translation in the n direction, and Tm
the operator of translation in the m direction. This allow us to con-
struct Bäcklund transformations and Lax pair in the way explained
in Section 1.2 [19, 123].

Example 1.4.4. As a final example we shall derive the non-autonomous
side equations forHε1 and its Lax pair. We will then confront the result
with that obtained in [166]. Considering (1.46, 1.61, 1.62) and using
the fact that the equation is rhombic (1.54) we get the following result:

Â = (un,m,p − un+1,m+1,p)(un+1,m,p − un,m+1,p) − (α1 −α2)·

·
[
1+ ε2

(
F
(+)
n+m un+1,m,pun,m+1,p + F

(−)
n+m un,m,pun+1,m+1,p

)]
= 0,

(1.63a)̂̄A = (un,m,p+1 − un+1,m+1,p+1)(un+1,m,p+1 − un,m+1,p+1) − (α1 −α2)·

·
[
1+ ε2

(
F
(−)
n+m un+1,m,p+1un,m+1,p+1 + F

(+)
n+m un,m,p+1un+1,m+1,p+1

)]
= 0,

(1.63b)

B̂ = (un,m,p − un,m+1,p+1)(un,m+1,p − un,m,p+1) − (α2 −α3)·

·
[
1+ ε2

(
F
(+)
n+m un,m+1,pun,m,p+1 + F

(−)
n+m un,m,pun,m+1,p+1

)]
= 0,

(1.63c)

Ĉ = (un,m,p − un+1,m,p+1)(un+1,m,p − un,m,p+1) − (α1 −α3)·

·
[
1+ ε2

(
F
(+)
n+m un+1,m,pun,m,p+1 + F

(−)
n+m un,m,pun+1,m,p+1

)]
= 0,

(1.63d)

From the equations B̂ and Ĉ we find, the following Lax pair:

Ln,m =

(
un,m α1 −α3 − un,mun+1,m

1 −un+1,m

)

+ (α1 −α3)ε
2

(
F
(+)
n+mun+1,m 0

0 −F
(−)
n+mun,m

) (1.64a)

Mn,m =

(
un,m α2 −α3 − un,mun,m+1

1 −un,m+1

)

+ (α2 −α3) ε
2

(
F
(+)
n+mun,m+1 0

0 −F
(−)
n+mun,m

)
,

(1.64b)
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Ln,m+1 =

(
un,m+1 α1 −α3 − un,m+1un+1,m+1

1 −un+1,m+1

)

+ (α1 −α3)ε
2

(
F
(−)
n+mun+1,m+1 0

0 −F
(+)
n+mun,m+1

)
(1.64c)

Mn+1,m =

(
un+1,m α2 −α3 − un+1,mun+1,m+1

1 −un+1,m+1

)

+ (α2 −α3) ε
2

(
F
(−)
n+mun+1,m+1 0

0 −F
(+)
n+mun+1,m

)
,

(1.64d)

with the following separation constant (1.21):

τ =
1+ ε2

(
F
(−)
n+mun,m + F

(+)
n+mun+1,m

)
1+ ε2

(
F
(−)
n+mun,m + F

(+)
n+mun,m+1

) . (1.65)

This is a Lax pair since L̄ = TmL and M̄ = TnM. �

Remark 1.4.1. The Lax pair (1.64) is gauge equivalent to that obtained
in [166] with gauge:

G =

(
0 1

−1 0

)
. (1.66)

A calculation similar to that of Example 1.4.4 can be done for the
other two rhombic equations. Up to gauge transformations, this cal-
culation gives, as expected, the same Lax pairs as in [166]. Indeed the
gauge transformations (1.66) is needed for Hε1 and Hε2 whereas for Hε3
we need the gauge:

G̃ =

(
0 (−1)n+m

−(−1)n+m 0

)
. (1.67)

Now notice that at the level of the non-autonomous equations the
choice of origin of Z2 in a point different from x in (1.41) would have
led to different initial conditions in (1.51), which ultimately lead to
the following form for the functions f:

fσ1,σ2
n,m =

1+ σ1 (−1)
n + σ2 (−1)

m + σ1σ2 (−1)
n+m

4
, (1.68a)

|fσ1,σ2
n,m =

1− σ1 (−1)
n + σ2 (−1)

m − σ1σ2 (−1)
n+m

4
, (1.68b)

fσ1,σ2
n,m =

1+ σ1 (−1)
n − σ2 (−1)

m − σ1σ2 (−1)
n+m

4
, (1.68c)

|fσ1,σ2
n,m =

1− σ1 (−1)
n − σ2 (−1)

m + σ1σ2 (−1)
n+m

4
, (1.68d)
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where the two constants σi ∈ {±1 } depends on the point chosen.
Indeed if the point is x we have σ1 = σ2 = 1, whereas if we choose x1
we have σ1 = 1, σ2 = −1, if we choose x2 then σ1 = −1 and σ2 = 1

and finally if we choose x12 we shall put σ1 = σ2 = −1. It is easy to
see that in the rhombic and in the trapezoidal case the functions (1.68)
collapse to the σ version of the functions F(±)k as given by (1.55):

F
(±,σ)
k =

1± σ(−1)k

2
. (1.69)

The final equation will then depend on σ1 or σ2, only if rhombic or
trapezoidal.

It was proved in [166] that the transformations:

vn,m = un+1,m, wn,m = un,m+1, (1.70)

map a rhombic equation with a certain σ into the same rhombic equa-
tion with −σ. In [166] this fact was used to construct a Lax Pair and
Bäcklund transformations. An analogous result can be easily proven
for trapezoidal equations: using the transformation wn,m = un,m+1

we can send a trapezoidal equation with a certain σ into the same
equation with −σ. A similar transformation in the n direction would
just trivally leave invariant the trapezoidal equation, since there is no
explicit dependence on n. However in general, if an equation does
not posses discrete symmetries, as it is the case for a H6 equation,
no trasformation like (1.70) would take the equation into itself with
different coefficents. We can anyway construct a Lax pair with the
procedure explained above, which is then slightly more general than
the approach based on the transformations (1.70).

We end this Section by remarking that the choice of the embed-
ding is crucial to determine the integrability properties of the quad
equations. Indeed this was proved in [85] where it was shown that
is possible to produce many Black and White lattices of consistent
yet non-integrable equations. Here we shall give just a very simple
example to acquaint the reader about this fact. Let us consider again
the (1.32a) equation. Suppose one makes the trivial embedding of such
equation into a lattice given by the identification:

x→ un,m, x1 → un+1,m, x2 → un,m+1, x12 → un+1,m+1.

(1.71)

Then equation (1.32a) with the identification (1.71) becomes the fol-
lowing lattice equation:

(un,m−un+1,m+1)(un+1,m−un,m+1)−(α1−α2)(1+ε
2un+1,mun,m+1) = 0.

(1.72)
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We apply the algebraic entropy test5 to (1.72) and we find the follow-
ing growth in the Nord-East (−,+) direction of the degrees:

{ d−,+ } = { 1, 2, 4, 9, 21, 50, 120, 289 . . . } . (1.73)

This sequence has generating function

g−,+ =
1− s− s2

s3 + s2 − 3s+ 1
(1.74)

and therefore has a non-zero algebraic entropy given by:

η−,+ = log
(
1+
√
2
)

, (1.75)

corresponding to the entropy of a non-integrable lattice equation. For
more complex examples the reader may refer to [85].

1.5 classification tools on the 2D lattice

We have addressed in the previous Section the problem of the con-
struction of the lattices out of single cells equations. In this Section
we present a proof of the fact that the classification carried out at the
level of single cell is preserved when passing to the lattice.

First of all recall that the classification of quad equations presented
in Section 1.3.2, has been carried out up to a Möbius transformations
in each vertex:

M : (x, x1, x2, x12) 7→
(
a0x+ b0
c0x+ d0

,
a1x1 + b1
c1x1 + d1

,
a2x2 + b2
c2x2 + d2

,
a12x12 + b12
c12x12 + d12

)
.

(1.76)

As in the usual Möbius transformation we have here (ai,bi, ci,di) ∈
CP4 \ V (aidi − bici) ' PGL(2, C) with i = 0, 1, 2, 12, i.e. each set
of parameters is defined up to to a multiplication by a number [36].
Obviously as the usual Möbius transformations these transformations
will form a group under composition and we shall call such group
Möb4 [14].

On the other hand when dealing with equations defined on the lat-
tice we have to follow the prescription of Section 1.4 and use the rep-
resentation given by (1.48), i.e. we will have non-autonomous lattice
equations. In this Section we prove a result which extends the group
Möb4 to the level of the transformations of the non autonomous lat-
tice equations, and shows that the classification made at the level
of single cell equation is preserved up to the action of this group
for the equation on the 2D lattice. We will call such group the non-

autonomous lifting of Möb4, and denote it by M̂öb
4

. The group M̂öb
4

5 For more details on degree of growth, algebraic entropy and related subjects see
Chapter 2 and references therein.
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Q̂

Q M(Q)

M̂(Q) ≡ M̂(Q̂)
M̂ ∈ (̂Möb)

4

M ∈ (Möb)4

1
:1

Figure 1.9: The commutative diagram defining M̂öb
4

.

is the non-autonomous counterpart of the group Möb4 on the four-
color lattice and its existence shows that the classification at the level
of single cell is preserved passing to the full lattice. Our proof is con-
structive: we will first construct a candidate transformation and then we
will prove that this is object we are looking for. What we will do is to
fill the entries in the commutative diagram given by Figure (1.9): we
prove that the result that we get by acting with a group of transfor-

mations M̂öb
4

is the same of that we obtain if we first transform a
single cell equation using M ∈ Möb4 and then we construct the non-
autonomous quad equation with the prescription of Section 1.4 or
viceversa if we first construct the non-autonomous equation and then
we transform it using the “non-autonomous lifting” of M, M̂.

Let us first construct, a transformation which will be the candidate
of the non-autonomous lifting of M ∈Möb4. Given M ∈Möb4 using
the same ideas of Section 1.4 we can construct the following transfor-
mation:

Mn,m ∈ M̂öb
4
: un,m 7→ fn,m

a0un,m + b0
c0un,m + d0

+ |fn,m
a1un,m + b1
c1un,m + d1

+fn,m
a2un,m + b2
c2un,m + d2

+ |fn,m
a12un,m + b12
c12un,m + d12

.

(1.77)

where the functions f̃n,m are defined by (1.52).
Equation (1.77) gives us a mappingΦ between the group Möb4 and

a set of non-autonomous transformations of the field un,m. Moreover
there is a one to one correspondence between an element M ∈ Möb4
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(1.76) and one Mn,m ∈ M̂öb
4

(1.77). This correspondence is given by:

Φ :



ax+ b

cx+ d
a1x1 + b1
c1x1 + d1
a2x2 + b2
c2x2 + d2
a12x12 + b12
c12x12 + d12



T

7−→
fn,m

aun,m + b

cun,m + d
+ |fn,m

a1un,m + b1
c1un,m + d1

+ fn,m
a2un,m + b2
c2un,m + d2

+ |fn,m
a12un,m + b12
c12un,m + d12

,

(1.78a)

and its inverse is given by:

Φ−1 :

fn,m
α(0)un,m +β(0)

γ(0)un,m + δ(0)
+ |fn,m

α(1)un,m +β(1)

γ(1)un,m + δ(1)

+ fn,m
α(2)un,m +β(2)

γ(2)un,m + δ(2)
+ |fn,m

α(3)un,m +β(3)

γ(3)un,m + δ(3)

7−→



α(0)x+β(0)

γ(0)x+ δ(0)

α(1)x1 +β
(1)

γ(1)x1 + δ(1)

α(2)x2 +β
(2)

γ(2)x2 + δ(2)

α(3)x12 +β
(3)

γ(3)x12 + δ(3)



T

.

(1.78b)

We have now to prove that M̂öb
4

is a group and that the mapping
(1.78) is actually a group homomorphism.

Using the computational rules given in Table 1.1 we obtain a new

representation of the generic element of the group M̂öb
4

:

Mn,m (un,m) =

{ (
a0fn,m + a1|fn,m + a2fn,m + a12|fn,m

)
un,m

+ b0fn,m + b1|fn,m + b2fn,m + b12|fn,m

}
{ (

c0fn,m + c1|fn,m + c2fn,m + c12|fn,m
)
un,m

+ d0fn,m + d1|fn,m + d2fn,m + d12|fn,m

} .

(1.79)

This form of the elements of M̂öb
4

shows immediately that M̂öb
4

is
a subset of the general non-autonomous Möbius transformation:

Wn,m : un,m 7→
an,mun,m + bn,m

cn,mun,m + dn,m
. (1.80)

From the general rule of composition of two Möbius transformations
(1.80) we get:

W1
n,m

(
W0
n,m (un,m)

)
=

(a0n,ma
1
n,m + b1n,mc

0
n,m)un,m + a1n,mb

0
n,m + b1n,md

0
n,m

(a0n,mc
1
n,m + c0n,md

1
n,m)un,m + b0n,mc

1
n,m + d0n,md

1
n,m

.

(1.81)
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Its inverse is given by

W−1
n,m(un,m) =

dn,mun,m − bn,m

−cn,mun,m + an,m
, (1.82)

Using the computational rules given in Table 1.1, the formula for
the composition (1.81) and the representation (1.79) we find that the

composition of two elements M(1)
n,m,M(2)

n,m ∈ M̂öb
4

with parameters
(a

(i)
j ,b(i)j , c(i)j ,d(i)j ), j = 0, 1, 2, 12 and i = 1, 2, gives:

M2
n,m

(
M1
n,m (un,m)

)
=


(
a
(2)
0 fn,m + a

(2)
1 |fn,m + a

(2)
2 fn,m + a

(2)
12 |fn,m

)
un,m

+ b
(2)
0 fn,m + b

(2)
1 |fn,m + b

(2)
2 fn,m + b

(2)
12 |fn,m


(
c
(2)
0 fn,m + c

(2)
1 |fn,m + c

(2)
2 fn,m + c

(2)
12 |fn,m

)
un,m

+ d
(2)
0 fn,m + d

(2)
1 |fn,m + d

(2)
2 fn,m + d

(2)
12 |fn,m


,

(1.83)

where the new coefficients (a(2)j ,b(2)j , c(2)j ,d(2)j ) with j = 0, 1, 2, 12 are
given by:

a
(2)
0 = a

(0)
0 a

(1)
0 + b

(1)
0 c

(0)
0 , a

(2)
1 = a

(0)
1 a

(1)
1 + b

(1)
1 c

(0)
1 ,

a
(2)
2 = a

(0)
2 a

(1)
2 + b

(1)
2 c

(0)
2 , a

(2)
12 = a

(0)
12 a

(1)
12 + b

(1)
12 c

(0)
12 ,

b
(2)
0 = a

(1)
0 b

(0)
0 + b

(1)
0 d

(0)
0 , b

(2)
1 = a

(1)
1 b

(0)
1 + b

(1)
1 d

(0)
1 ,

b
(2)
2 = a

(1)
2 b

(0)
2 + b

(1)
2 d

(0)
2 , b

(2)
12 = a

(1)
12 b

(0)
12 + b

(1)
12 d

(0)
12 ,

c
(2)
0 = a

(0)
0 c

(1)
0 + c

(0)
0 d

(1)
0 , c

(2)
1 = a

(0)
1 c

(1)
1 + c

(0)
1 d

(1)
1 ,

c
(2)
2 = a

(0)
2 c

(1)
2 + c

(0)
2 d

(1)
2 , c

(2)
12 = a

(0)
12 c

(1)
12 + c

(0)
12 d

(1)
12 ,

d
(0)
0 = b

(0)
0 c

(1)
0 + d

(0)
0 d

(1)
0 , d

(0)
1 = b

(0)
1 c

(1)
1 + d

(0)
1 d

(1)
1 ,

d
(0)
2 = b

(0)
2 c

(1)
2 + d

(0)
2 d

(1)
2 , d

(0)
12 = b

(0)
12 c

(1)
12 + d

(0)
12 d

(1)
12 .

(1.84)

The inverse of (1.79) is given by:

M−1
n,m(un,m) =

{
(fn,md+ |fn,md1 + fn,md2 + |fn,md12)un,m

− (fn,mb0 + |fn,mb1 + fn,mb2 + |fn,mb12)

}
{

− (fn,mc0 + |fn,mc1 + fn,mc2 + |fn,mc12)un,m

+ (fn,ma0 + |fn,ma1 + fn,ma2 + |fn,ma12)

} .

(1.85)

Thus one has proved that M̂öb
4

is a group and in fact it is a subgroup
of the general autonomous Möbius transformations (1.80).

Let us show that the maps Φ and Φ−1 given in (1.78) represent
a group homomorphism. They preserve the identity, and from the
formula of composition of Möbius transformations in Möb4 (1.83) we
derive the required result.
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· fn,m |fn,m fn,m |fn,m

fn,m fn,m 0 0 0

|fn,m 0 |fn,m 0 0

fn,m 0 0 fn,m 0

|fn,m 0 0 0 |fn,m

Table 1.1: Multiplication rules for the functions f̃n,m as given by (1.52).

Let us now check if the diagram of Figure 1.9 is satisfied. Let us
consider (1.76) and (1.77) and a general multi-linear quad equation:

Qgen (x, x1, x2, x12) = A0,1,2,12xx1x2x12

+B0,1,2xx1x2 +B0,1,12xx1x12

+B0,2,12xx2x12 +B1,2,12x1x2x12

+C0,1xx1 +C0,2xx2 +C0,12xx12

+C1,2x1x2 +C1,12x1x12 +C2,12x2x12

+D0x+D1x1 +D2x2 +D12x12 +K

(1.86)

where A0,1,2,12, Bi,j,k, Ci,j, Di and K with i, j,k ∈ { 0, 1, 2, 12 } are
arbitrary complex constants. The proof that ̂Q(M(x, x1, x2, x12)) =

Q̂(Mn,m(un,m)) where M ∈ Möb4 and Mn,m = Φ(M) ∈ M̂öb
4

is
a computationally very heavy calculation due to the high number of
parameters involved (twelve in the transformation6 and fifteen in the
equation (1.86), twenty-seven paramerters in total) and to the fact that
rational functions are involved. To simplify the problem it is sufficient
to recall that every Möbius

m(z) =
az+ b

cz+ d
, z ∈ C (1.87)

transformation can be obtained as a superposition of a translation:

Ta(z) = z+ a, (1.88a)

dilatation:

Da(z) = az (1.88b)

and inversion:

I(z) =
1

z
, (1.88c)

6 Using that Möbius transformations are projectively defined one can lower the num-
ber of parameters from sixteen to twelve, but this implies to impose that some pa-
rameters are non-zero and thus all various different possibilities must be taken into
account.
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i.e.

m(z) =
(
Ta/c ◦D(bc−ad)/c2 ◦ I ◦ Td/c

)
(z). (1.89)

As the group Möb4 is obtained by four copies of the Möbius group
each acting on a different variable we can decompose each entry
M ∈ Möb4 as in (1.89). Therefore we need to check 34 = 81 transfor-
mations, depending at most on four parameters.We can automatize
such proof by making a specific computer program to generate all
the possible fundamental transformations in Möb4 and then check
them one by one reducing the computational effort. To this end we
used the Computer Algebra System (CAS) sympy [150]. This ends the
proof of the preservation of the classification when we pass from the
cell equation to the lattice equation. The details of this calculation are
contained in Appendix A.

1.6 independent equations on the 2D-lattice

In this last Section of this Chapter we present the explict form on
the 2D-lattice of the all the independent systems listed in Subsection
1.3.3. The construction of these systems is carried out according to
the prescription given in Section 1.4. In light of the preceding Sec-
tion independence is now understood to be up to the action of the

group M̂öb
4

and rotations, translations and inversions of the refer-
ence system. The transformations of the reference system are acting
on the discrete indices rather than on the reference frame. For sake
of compactness and as the equations are on the lattice we shall omit
the hats on the Möbius transformations when clear. Obviously, as in
the single lattice case we have nine non-autonomous representatives,
three of trapezoidal H4-type and six of H6-type. These equations are
non-autonomous with two-periodic coefficients which can be given
in terms of the functions:

F
(±)
k =

1± (−1)k

2
. (1.90)

The H4 type equations are:

tH1 : (un,m − un+1,m) · (un,m+1 − un+1,m+1)−

−α2ε
2
(
F
(+)
m un,m+1un+1,m+1 + F

(−)
m un,mun+1,m

)
−α2 = 0,

(1.91a)
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tH2 : (un,m − un+1,m) (un,m+1 − un+1,m+1)

+α2 (un,m + un+1,m + un,m+1 + un+1,m+1)

+
εα2
2

(
2F

(+)
m un,m+1 + 2α3 +α2

)(
2F

(+)
m un+1,m+1 + 2α3 +α2

)
+
εα2
2

(
2F

(−)
m un,m + 2α3 +α2

)(
2F

(−)
m un+1,m + 2α3 +α2

)
+ (α3 +α2)

2 −α23 − 2εα2α3 (α3 +α2) = 0

(1.91b)

tH3 : α2 (un,mun+1,m+1 + un+1,mun,m+1)

− (un,mun,m+1 + un+1,mun+1,m+1) −α3
(
α22 − 1

)
δ2+

−
ε2(α22 − 1)

α3α2

(
F
(+)
m un,m+1un+1,m+1 + F

(−)
m un,mun+1,m

)
= 0,

(1.91c)

These equations arise from the B equation of the cases 3.10.1, 3.10.2
and 3.10.3 in [21] respectively. We remark that we have passed to the
rational form of the tHε3 (1.91c) by making the identification:

e2α2 → α2, e2α3 → α3. (1.92)

The H6 type equations are:

D1 : un,m + un+1,m + un,m+1 + un+1,m+1 = 0. (1.93a)

1D2 :
(
F
(−)
n+m − δ1F

(+)
n F

(−)
m + δ2F

(+)
n F

(+)
m

)
un,m

+
(
F
(+)
n+m − δ1F

(−)
n F

(−)
m + δ2F

(−)
n F

(+)
m

)
un+1,m+

+
(
F
(+)
n+m − δ1F

(+)
n F

(+)
m + δ2F

(+)
n F

(−)
m

)
un,m+1

+
(
F
(−)
n+m − δ1F

(−)
n F

(+)
m + δ2F

(−)
n F

(−)
m

)
un+1,m+1+

+ δ1

(
F
(−)
m un,mun+1,m + F

(+)
m un,m+1un+1,m+1

)
+ F

(+)
n+mun,mun+1,m+1 + F

(−)
n+mun+1,mun,m+1 = 0,

(1.93b)

2D2 :
(
F
(−)
m − δ1F

(+)
n F

(−)
m + δ2F

(+)
n F

(+)
m − δ1λF

(−)
n F

(+)
m

)
un,m

+
(
F
(−)
m − δ1F

(−)
n F

(−)
m + δ2F

(−)
n F

(+)
m − δ1λF

(+)
n F

(+)
m

)
un+1,m

+
(
F
(+)
m − δ1F

(+)
n F

(+)
m + δ2F

(+)
n F

(−)
m − δ1λF

(−)
n F

(−)
m

)
un,m+1

+
(
F
(+)
m − δ1F

(−)
n F

(+)
m + δ2F

(−)
n F

(−)
m − δ1λF

(+)
n F

(−)
m

)
un+1,m+1

+ δ1

(
F
(−)
n+mun,mun+1,m+1 + F

(+)
n+mun+1,mun,m+1

)
+ F

(+)
m un,mun+1,m + F

(−)
m un,m+1un+1,m+1 − δ1δ2λ = 0,

(1.93c)
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3D2 :
(
F
(−)
m − δ1F

(−)
n F

(−)
m + δ2F

(+)
n F

(+)
m − δ1λF

(−)
n F

(+)
m

)
un,m

+
(
F
(−)
m − δ1F

(+)
n F

(−)
m + δ2F

(−)
n F

(+)
m − δ1λF

(+)
n F

(+)
m

)
un+1,m

+
(
F
(+)
m − δ1F

(−)
n F

(+)
m + δ2F

(+)
n F

(−)
m − δ1λF

(−)
n F

(−)
m

)
un,m+1

+
(
F
(+)
m − δ1F

(+)
n F

(+)
m + δ2F

(−)
n F

(−)
m − δ1λF

(+)
n F

(−)
m

)
un+1,m+1

+ δ1

(
F
(−)
n un,mun,m+1 + F

(+)
n un+1,mun+1,m+1

)
+ F

(−)
m un,m+1un+1,m+1 + F

(+)
m un,mun+1,m − δ1δ2λ = 0,

(1.93d)

D3 : F
(+)
n F

(+)
m un,m + F

(−)
n F

(+)
m un+1,m + F

(+)
n F

(−)
m un,m+1

+ F
(−)
n F

(−)
m un+1,m+1 + F

(−)
m un,mun+1,m

+ F
(−)
n un,mun,m+1 + F

(−)
n+mun,mun+1,m+1+

+ F
(+)
n+mun+1,mun,m+1 + F

(+)
n un+1,mun+1,m+1

+ F
(+)
m un,m+1un+1,m+1 = 0,

(1.93e)

1D4 : δ1

(
F
(−)
n un,mun,m+1 + F

(+)
n un+1,mun+1,m+1

)
+

+ δ2

(
F
(−)
m un,mun+1,m + F

(+)
m un,m+1un+1,m+1

)
+

+ un,mun+1,m+1 + un+1,mun,m+1 + δ3 = 0,
(1.93f)

2D4 : δ1

(
F
(−)
n un,mun,m+1 + F

(+)
n un+1,mun+1,m+1

)
+

+ δ2

(
F
(−)
n+mun,mun+1,m+1 + F

(+)
n+mun+1,mun,m+1

)
+

+ un,mun+1,m + un,m+1un+1,m+1 + δ3 = 0.
(1.93g)

The equations 1D2, 1D4, 2D4 and D3 arise from the A equation in
the cases 3.12.2, 3.12.3, 3.12.4 and 3.13.5 respectively. The equations
2D2 and 3D2 arise from the C equation in the cases 3.13.2 and 3.13.3
respectively.

To write down the explicit form of the equations in (1.93) we used
(1.54, 1.58) and the following identities:

fn,m = F
(+)
n F

(+)
m , |fn,m = F

(−)
n F

(+)
m ,

fn,m = F
(+)
n F

(−)
m , |fn,m = F

(−)
n F

(−)
m .

(1.94)

As mentioned in Section 1.4 if we apply this procedure to an equation
of rhombic type we get a result consistent with [166].

We note that the explicit lattice form of these equations was first
given in [67], being absent in the works of Boll [20–22].

For the rest of the thesis we will study the integrability properties
of the trapezoidal H4 and H6 equations in their lattice avatars given
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by (1.91) and (1.93). The main result, i.e. the proof of the fact that
they are linearizable equation, will be first stated by considering the
heuristic test of the Algebraic Entropy in the Chapter 2, whereas in
Chapter 4 we will give a formal proof of the linearizability based on
the concept of Darboux integrability.





2
A L G E B R A I C E N T R O P Y A N D D I R E C T
L I N E A R I Z AT I O N

In this Chapter we will focus on the integrability detector called Al-
gebraic Entropy. The first part of this Chapter, consisting of Section
2.1 and of Section 2.2, is mainly a review of known concepts and
it is essentially based on the exposition given in [63]. In Section 2.1
we will expand the intuitive idea given in the example of the logis-
tic map (1.10) we presented in 1.1 in order to explain the difference
between solvability and integrability. Motivated by the discussion of
this example we will introduce the precise definition of Algebraic En-
tropy for difference equation, differential equations and quad equa-
tions. We note that the definition of Algebraic Entropy for quad equa-
tions is taken from [67] which is a generalization of that given in [155].
We will address the problem from the theoretical point of view dis-
cussing mainly the setting. Then we will derive the main properties of
Algebraic Entropy and discuss briefly the geometric meaning of the
Algebraic Entropy. In Section 2.2 we will discuss the computational
tools that allow us to extract the value of the Algebraic Entropy from
finite sequences. The implementation of such algorithm in python, in-
troduced in [64], is discussed in Appendix B. The second part of the
Chapter, consisting of Section 2.3 and of Section 2.4, is instead an orig-
inal part based on [67, 68]. In Section 2.3 is presented and discussed
the Algebraic Entropy test applied to the trapezoidal H4 equations
(1.91) and to the H6 equations (1.93). This result shows that the trape-
zoidal H4 equations (1.91) and to the H6 equations (1.93) should be
linearizable equations. To support the statement made in Section 2.3 in
Section 2.4 we present some examples of explicit linearization. In par-
ticular we will treat the tHε1 equation (1.91a) and the 1D2 equation.
In the case of the tHε1 equation (1.91a) we also present a proof of the
fact that its Lax pair obtained with procedure presented in Chapter 1

is fake, according to the definition of [77, 78]. Hence the Lax obtained
from the Consistency Around the Cube is useless in discussing the
integrability of the tHε1 equation (1.91a). This proof was first given in
[68].

2.1 definition and basic properties

As we saw in the example of the logistic equation (1.10) the notion
of chaos is related with the exponential growth of the solution with
respect to the initial condition. Equation (1.10) possess an explicit so-
lution therefore it is easy to understand a posteriori its properties. Let

41
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us now consider the general logistic map with an arbitrary parameter
r ∈ R:

un+1 = run (1− un) . (2.1)

We wish to understand how this equation evolves, therefore we fix an
initial condition u0 and we compute the iterates:

u1 = −ru20 + ru0, (2.2a)

u2 = −r3u40 + 2r
3u30 −

(
r3 + r2

)
u20 + r

2u0, (2.2b)

u3 = −r7u80 + 4r
7u70 −

(
6r7 − 2r6

)
u60 + l.o.t., (2.2c)

u4 = −r15u160 + 8r15u150 − (28r15 + 4r14)u140 + l.o.t, (2.2d)

where by l.o.t. we mean terms with lower powers in u0. Then it is
clear that there is a regularity in how the degree of the polynomial
un in u0, dn, grows. Indeed one can guess that dn = 2n and check
this guess for successive iterations. This is a clear indication that our
system is chaotic as it was in the solvable case r = 4. This should be
no surprise since the generic r case is even more general!

This simple example shows how examining the iterates of a recur-
rence relation can be a good way to extract information about integra-
bility even if we cannot solve the equation explicitly. However in more
complicated examples it is usually impossible to calculate explicitly
these iterates by hand or even with any state-of-the-art formal calcu-
lus software, simply because the expressions one should manipulate
are rational fractions of increasing degree of the various initial condi-
tions. The complexity and size of the calculation make it impossible
to calculate the iterates.

It was nevertheless observed that “integrable” maps are not as com-
plex as generic ones. This was done primarily experimentally, by an
accumulation of examples, and later by the elaboration of the con-
cept of Algebraic Entropy for difference equations [18, 33, 39, 141, 153].
In [152, 155] the method was developed in the case of quad equa-
tions and then used as a classifying tool [84]. Finally in [32] the same
concept was introduced for differential-difference equation and later
[157] to the very similar case of differential-delay equations. In our
review we will mainly follow [60].

The basic idea, given a rational map, which can be an ordinary dif-
ference equation, a differential difference equation or even a partial
difference equation, is to examine the growth of the degree of its iter-
ates as we did for (2.1), and extract a canonical quantity, which is an
index of complexity of the map. This will be the algebraic entropy (or
its avatar the dynamical degree). We will now introduce formally this
subject by considering before the case of the ordinary difference equa-
tions and of the differential-difference equations. The case of the ordinary
difference equations here is mainly intended to be preparatory for the
case of the partial difference equations, but in Chapter 3 we will also see
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the application of the Algebraic Entropy to the differential-difference
case.

2.1.1 Algebraic entropy for ordinary difference equations and differential-
difference equations

In this Section we will consider ordinary difference equations i.e. expres-
sions of the form:

un+l = fn (un+l−1, . . . ,un+l ′) , l ′, l,n ∈ Z, l ′ < l (2.3)

where the unknown function un is a function of the discrete integer
variable n ∈ Z. The difference equation (2.3) is said to be of order
l− l ′ if ∂fn/∂un+l ′ 6= 0 identically. We will also discuss differential-
difference equations, i.e. equations where the unknown is a function
un (t) of two variables, one continuous t ∈ R and one discrete n ∈ Z.
A differential-difference equations is then given by an expression of
the form:

u
(p)
n = fn

(
un+l, . . . ,un+l ′ ;u ′n, . . . ,u(p−1)n

)
, (2.4)

where we used the prime notation for derivatives, u(p)n = dpu/dtp .
Furthermore l ′, l,n ∈ Z, with the conditions l ′ < l and finally p ∈N,
p > 1 otherwise we fall back into the case of ordinary difference
equations. A differential-differential equation of the form (2.4) is said
to have differential order p and difference order l− l ′ provided that

∂fn

∂un+l

∂fn

∂un+l ′
6= 0. (2.5)

Typical example of such equations are the so called Volterra-like equa-
tions:

u ′n = fn (un+1,un,un+1) , n ∈ Z, (2.6)

or Toda-like equations:

u ′′n = fn
(
u ′n,un+1,un,un+1

)
. n ∈ Z, (2.7)

Volterra-like equations are first order differential-difference equations
in the differential order, while Toda-like equations are second order
differential-difference equations in the differential order. Both these
classes are second order in the difference order provided that the
functions in the right hand side of (2.6) and (2.7) satisfy the condition
(2.5).

For theoretical purposes it is usual to consider maps in a projective
space rather than in the affine one. One then transforms its recurrence
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relation into a polynomial map in the homogeneous coordinates of
the proper projective space over some closed field1:

xi 7→ ϕi (xk) , (2.8)

with xi, xk ∈ IN where IN is the space of the initial conditions. The
recurrence is then obtained by iterating the polynomial map ϕi. It is
usual to ask that the map ϕi be bi-rational, i.e. it possesses an inverse
which is again a rational map. In the affine setting the bi-rationality of
the map means that we can solve the relation also for the lower-index
variable, e.g. un+l ′ in (2.3) and (2.4). This fact is of crucial theoretical
importance, as it will be explained at the end of this Subsection.

Example 2.1.1. To clarify the concept of how we can translate a recur-
rence relation into a projective map we present a very simple example
which, however gives the flavor of the method. Let us a consider the
most general bilinear first order recurrence relation of the form (2.3):

un+1 =
aun + b

cun + d
, (2.9)

where we are assuming a,b, c,d constants such that ad − bc 6= 0.
Since (2.9) is a first order difference equations we must convert it into
a bi-rational map of P1 into itself. To this end we can introduce the
projective coordinates:

un =
x

y
, un+1 =

X

y
. (2.10)

From (2.9) we obtain then:

X = y
ax+ by

cx+ dy
. (2.11)

Since the recurrence relation in the projective plane is given by:

ϕ : (x,y) ∈ P1 7→ (X,y) ∈ P1 (2.12)

using (2.11) we obtain:

(X,y) =
(
y
ax+ by

cx+ dy
,y
)
' (ax+ by, cx+ dy) . (2.13)

Therefore we have converted the recurrence relation (2.9) into the
following map of P1 into itself:

ϕ : (x,y) 7→ (ax+ by, cx+ dy) . (2.14)

This is a linear map. The inverse is the clearly given by:

ϕ−1 : (x,y) 7→ (dx− by,−cx+ ay) , (2.15)

and can also be obtained directly from (2.9) using the substitution
(2.10) and then solving with respect to x. �

1 The reader can think this field to be the complex one C, but we will see in Subsection
2.2 that in practice finite fields can be useful.
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Now to proceed further we need to specify the space of the initial
conditions IN. The space of the initial condition depends on which
type of recurrence relation we are considering. Let us enumerate the
various cases.

1. If we are dealing with a l− l ′ order difference equation in the
form (2.3) the initial conditions will be just the starting l− l ′-
tuple:

IN = {ul ′ ,ul ′+1, . . . ,ul−2,ul−1} . (2.16)

To obtain the map we just need to pass to homogeneous coor-
dinates in (2.3) and in (2.16). Note that the logistic map we con-
sidered above (2.1) is a polynomial map, but it is not bi-rational,
since its inverse is algebraic.

2. If we are dealing with a differential-difference equation of the
discrete l − l ′-th order and of the p-th continuous order, the
space of initial conditions is infinite dimensional. Indeed, in the
case the order of the equation is l− l ′, we need the initial value
of l− l ′-tuple as a function of the parameter t, but also the value
of all its derivatives:

IN =
{
u
(j)
l ′ (t),u

(j)
l ′+1(t), . . . ,u

(j)
l−2(t),u

(j)
l−1(t)

}
j∈N0

, (2.17)

where by u(j)i (t) we mean the j–derivative of ui(t) with respect
to t. We need all the derivatives of ui (t) and not just the first
p because at every iteration the order of the equation is raised
by p. To obtain the map one just need to pass to homogeneous
coordinates in the equation and in (2.17).

For both kind of equations we are in the position to define the
concept of Algebraic Entropy. Indeed if we factors out any common
polynomial factors we can say that the degree with respect to the
initial conditions is well defined, in a given system of coordinates,
although it is not invariant with respect to changes of coordinates.
We can therefore form the sequence of degrees of the iterates of the
map ϕ and call it dk = degϕk:

1, . . . 1︸ ︷︷ ︸
l−l ′

,d1,d2,d3,d4,d5, . . . ,dk, . . . . (2.18)

The degree of the bi-rational projective map ϕ have to be understood
as the maximum of the total polynomial degree in the initial conditions
IN of the entries of ϕ. The same definition in the affine case just
translates to the maximum between the degree of the numerator and of the
denominator of the kth iterate in terms of the affine initial conditions.
Degrees in the projective and in the affine setting can be different, but
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the global behavior will be the same due to the properties of homog-
enization and de-homogenization which is an invertible procedure.
Then the entropy of such sequence is defined to be:

η = lim
k→∞ 1k logdk. (2.19)

Such limit exists since from the elementary property of any pair of
bi-rational maps ϕ and ψ:

deg (ψ ◦ϕ) 6 degψdegϕ. (2.20)

Furthermore the inequality (2.20) proves that there is an upper bound
for the Algebraic Entropy:

η 6 degϕ. (2.21)

An equation whose Algebraic Entropy is equal to degϕ is said to satu-
rate the bound. Indeed from (2.20) applied toϕk we obtain deg

(
ϕk
)
6

kdegϕ from which (2.21) follows using the definition (2.19). We see
then that if η = 0 we must have

dk ∼ kν, with ν ∈N0, as k→∞. (2.22)

We will then have the following classification of equations according
to their Algebraic Entropy [84]:

linear growth : The equation is linearizable.

polynomial growth : The equation is integrable.

exponential growth : The equation is chaotic.

Furthermore it is easy to see that the Algebraic Entropy is a bi-
rational invariant of such kind of maps. Indeed if we suppose that we
have two bi-rationally equivalent maps ϕ and ψ then there exists a bi-
rational map χ such that:

ψ = χ−1 ◦ϕ ◦ χ (2.23)

implying:

degψk 6MdegϕK, (2.24)

where M = degχdeg
(
χ−1

)
∈ N. Since we can obtain an analogous

equation as ϕ = χ ◦ψ ◦ χ−1 we conclude that ηψ = ηϕ.
To clarify the theory we presented we now give three very simple

examples of calculation of the Algebraic Entropy of difference equa-
tions2.

2 We will consider the degrees always computed in the affine setting.
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Example 2.1.2 (Hénon map [79]). In this example we consider the so
called Hénon map of the plane [79]. It relates the iterates of a two
component vector (xn,yn) via the recurrence3:

xn+1 = 1−αx
2
n + yn, (2.25a)

yn+1 = βxn. (2.25b)

It can be written as a second order difference equation:

un+1 = 1−αu
2
n +βun−1 (2.26)

Computing the degrees of the iterates for any non-zero value of the
coefficients α and β we get:

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 . . . (2.27)

The Hénon map is of degree 2. The sequence it is not only bounded
by 2k, but it saturates its bound. The sequence is exactly fitted by 2k

and its entropy will be log 2.

−1.5 −1 −0.5 0 0.5 1 1.5

−0.4

−0.2

0

0.2

0.4

x

y

Figure 2.1: The Hénon map in the plane (x,y) with a = 1.4 and b = 0.3 and
the initial conditions (x0,y0) = (0.6, 0.2).

The trajectory of the map (2.25) in the plane are displayed in Figure
2.1, which clearly shows the “chaoticity” of the system. �

3 In the original work Hénon used the particular choice of parameters α = 1.4 and
β = 0.3
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Example 2.1.3 (Non saturating exponential difference equation). Con-
sider the second order nonlinear difference equation:

un+1 = αunun−1 +βun + γun−1, (2.28)

where α, β and γ are real constants. Computing the degrees of the
iterates for any non-zero choice of the parameters α, β and γ we get:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 . . . (2.29)

Also this map is of degree 2, but now its growth is different. We
see that from the second iterate there is a drop in the degree, so
dk < 2k asymptotically. The reader may recognize in this sequence
the Fibonacci sequence. The Fibonacci sequence is known to solve the
second order linear difference equation:

dk+1 = dk + dk−1. (2.30)

This means that we have asymptotically:

dk ∼

(
1+
√
5

2

)k
(2.31)

and the algebraic entropy of the recurrence relation (2.28) will be:

η = log

(
1+
√
5

2

)
, (2.32)

i.e. the logarithm of the Golden Ratio. �

Example 2.1.4 (Hirota-Kimura-Yahagi equation [86]). Consider the non-
linear second order difference equation:

un+1un−1 = u
2
n +β2. (2.33)

This equation possess the first integral [86]:

K (un,un−1) =
2unun−1

u2n + u2n−1 +β
2

, (2.34)

i.e.:

K (un+1,un) −K (un,un−1) = 0, (2.35)

along the solutions of (2.33). First integrals are a constraint to the
motion of a system, so in this case we expect a great drop in the
degrees. Indeed we have for every value of the parameter β:

1, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 . . . (2.36)

The degrees appear to grow linearly: dk = 2k and the discrepancy
from the saturation start from the third iterate. �
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(1)

(2) (3)(4)

Figure 2.2: Regular and non-regular staircases.

2.1.2 Algebraic entropy for quad equations

Now we introduce the concept of Algebraic Entropy for quad equa-
tions which was introduced in [152]. We will follow mainly the ex-
position presented in [155] with some generalizations which were
given in [67]. These generalization where introduced explicitly with
the scope of calculating the Algebraic Entropy of the trapezoidal H4

(1.91) and H6 equations (1.93), due to the peculiar behavior of these
equations.

In the case of quad equations the situation is more complicated
than in the case of one-dimensional equations. First of all in the one-
dimensional case we have to worry only about the evolution in two
opposite directions. This was the meaning of the bi-rationality con-
dition as explained in the preceding Subsection. In the two dimen-
sional case we have to worry about four possible directions of evolu-
tion corresponding to the four ways we can solve the quad equation.
In general, initial conditions can be given along straight lines in the
four direction. However usually is preferred to give initial conditions
on staircase configurations. Examples of staircase-like arrangements
of initial values are displayed in Figure 2.2. The evolution from any
staircase-like arrangement of initial values is possible in the quadri-
lateral lattice. This in principle does not rules out configurations in
which are present hook-like configurations (see (4) in Figure 2.2).
These kind of configurations will require compatibility conditions on
the initial data, since they give more than one way to calculate the
same value for the dependent variable which is not ensured to be
the equal. The staircases need to go from (n = −∞,m = −∞) to
(n = ∞,m = ∞), or from (n = −∞,m = +∞) to (n = ∞,m = −∞)
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because the space of initial conditions is infinite. We will restrict our-
selves to regular diagonals which are staircases with steps of constant
horizontal length, and constant vertical height. Figure 2.2 shows four
staircase-like configurations. The ones labeled (1) and (2) are regular
diagonals. The one labeled (3) would be acceptable, but we will not
consider such configurations. Line (4) is excluded since it may lead
to incompatibilities.

Given a line of initial conditions, it is possible to calculate the val-
ues un,m all over the two-dimensional lattice. We have a well defined
evolution, since we restrict ourselves to regular diagonals. Moreover,
and this is a crucial point, if we want to evaluate the transformation for-
mula for a finite number of iterations, we only need a regular diagonal of
initial conditions with finite extent.

For any positive integerN, and each pair of relative integers [λ1, λ2],
we denote by ∆(N)

[λ1,λ2]
, a regular diagonal consisting of N steps, each

having horizontal size l1 = |λ1|, height l2 = |λ2|, and going in the
direction of positive (resp. negative) nk, if λk > 0 (resp. λk < 0), for
k = 1, 2. For examples see Figure 2.3.

∆
(3)
[1,1]

∆
(2)
[−1,3] ∆

(4)
[−3,−2]

∆
(3)
[2,−1

Figure 2.3: Varius kinds of restricted initial conditions.

Suppose we fix the initial conditions on ∆(N)
[λ1,λ2]

. We may calculate
u over a rectangle of size (Nl1+ 1)× (Nl2+ 1). The diagonal cuts the
rectangle in two halves. One of them uses all initial values, and we
will calculate the evolution only on that part. See Figure 2.4.

Figure 2.4: The range covered by the initial conditions ∆(3)
[−2,1].
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We are now in position to calculate “iterates” of the evolution.
Choose some restricted diagonal ∆(N)

[λ1,λ2]
. The total number of ini-

tial points is q = N(l1 + l2) + 1. For such restricted initial data, the
natural space where the evolution acts is the projective space Pq of
dimension q. We may calculate the iterates and fill Figure 2.4, consid-
ering the q initial values as inhomogeneous coordinates of Pq. Eval-
uating the degrees of the successive iterates, we will produce double
sequences of degrees d(l)k . The simplest possible choice is to apply
this construction to the restricted diagonals ∆(N)

[±1,±1], which we will

denote ∆(N)
++ , ∆(N)

+− , ∆(N)
−+ and ∆(N)

−− . We will call them fundamental di-
agonals (the upper index (N) is omitted for infinite lines). The four
principal diagonals are shown in Figure 2.5.

∆−,−

∆+,− ∆+,+

∆−,+

Figure 2.5: The four principal diagonals.

Assuming for example that we are given the ∆+,− principal diago-
nal the pattern of degrees is of the form:

1 d
(N−1)
1 d

(N−2)
2 . . . d

(2)
N−1 d

(1)
N

1 1 d
(N−2)
1 d

(3)
2 . . . d

(1)
N−1

1 1 d
(3)
1 d

(2)
2 . . .

1 1 d
(2)
1 d

(1)
2

1 1 d
(1)
1

1 1

(2.37)

Therefore to each choice of indices [±1,±1] we associate a double se-
quence of degrees d(l)k,±±.

We shall call the sequence

1,d(1)1,±±,d(1)2,±±,d(1)3,±±,d(1)4,±±, . . . (2.38)
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the principal sequence of growth. A sequence as

1,d(i)1,±±,d(i)2,±±,d(i)3,±±,d(i)4,±±, . . . (2.39)

with i = 2will be a secondary sequence of growth, for i = 3 a third, and
so on. The fundamental entropies of the lattice equation are given by:

η
(i)
±± = lim

k→∞ 1k logd(i)k,±,±. (2.40)

The existence of this limit can be proved in an analogous ways as for
one dimensional systems [18]. We note that a priori the degrees along
the diagonals of a quad equation do not need to be equal, however
in most cases they are. In the cases in which the degrees along the
diagonals are not equal it is important to isolate repeating patterns in
(2.37), i.e. if there exists a positive integer κ ∈N such that:

d
(i+κ)
k,±,± = d

(i)
k,±,±, i = 1, . . . , κ− 1. (2.41)

If we can find such κ we can describe the rate of growth of the quad
equation through a finite number of sequences and define its Alge-
braic Entropy of the quad equation as:

ηTOT
±± = max

i=1,...,κ−1
η
(i)
±±. (2.42)

The definition given in [155] corresponds to (2.42) with κ = 1, i.e. the
degrees are assumed a priori equal. For the moment the only known
examples of equations with κ > 1 are the trapezoidal H4 equations
(1.91) and the H6 equations (1.93). The discussion of the Algebraic
Entropy of these equation is postponed to Section 2.3.

2.1.3 Geometric meaning of the Algebraic Entropy

One may wonder about the origin of the drop of the degrees which
is observed in integrable and linearizable equations. It is actually geo-
metrically very simple, and comes from the singularity structure. We
will discuss this problem in the case of difference equations, since the
other cases are essentially the same, but they are less intuitive. We
recall that to a difference equation (2.3) of order n = l− l ′ we can as-
sociate a map projective map ϕ : Pn → Pn. A point of homogeneous
coordinates [x] = [x0, x1, . . . , xn] is singular if all the homogeneous
coordinates of the image by ϕ vanish. The set of these points is thus
given by n + 1 homogeneous equations This set has co-dimension
at least 2: it will be points in P2, complex curves and points in P3,
and so on. One important point is that, as soon as the map is non-
linear, and this is the case we will be mainly interested in, there are
always singular points. Without singular points the drop of degrees
just cannot happen! The vanishing of all homogeneous coordinates
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means that there is no image point in Pn. The mere vanishing of a
few, but not all coordinates, means that the image “goes to infinity”,
but this is harmless, contrary to what happens in affine space. This
is what projective space has been invented for: to cope with points
at infinity, which are not to be forgotten when one consider algebraic
varieties and rational maps. Moreover, using projective space over
closed fields simplifies a lot the counting of intersection points by
Bezout theorem. The maps we consider are almost invertible. They
are diffeomorphisms on a Zariski open set, i.e. they are invertible ev-
erywhere except on an algebraic variety. Suppose the map ϕ and its
inverse ψ = ϕ−1 are written in terms of homogeneous coordinates.
The composed maps ϕ ◦ψ and respectively ψ ◦ϕ are then just multi-
plication of all coordinates by some polynomial κϕ and respectively
κψ:

ϕ ◦ψ ([x]) = κϕ ([x]) Id ([x]) , ψ ◦ϕ ([x]) = κψ ([x]) Id ([x]) , (2.43)

The map ϕ is clearly not invertible on the image of the variety of
equation κϕ ([x]). What may happen is that further action of ϕ on
these points leads to images in the singular set of ϕ. This means
that κϕ ([x]) (or a piece of it if it is decomposable) has to factorize
from all the components of the iterated map. This is the origin of
the drop of the degree! This is the link between singularity (in the
projective sense) and the degree sequence. A graphical explanation
of this procedure is illustrated schematically in Figure 2.6. Figure 2.6
can be explained as follows: the equation of the surface Σ is κ = 0

and the factor κ appears anew in ϕ ◦ ϕ(4). The fifth iterate ϕ(5) is
then regular of κ = 0.

Σ

Γ

Π Π ′

Γ ′

Σ ′

Figure 2.6: A possible blow-down blow-up scheme in P3.

This is a link to the method of singularity confinement [61, 89, 137].
If for all components of the variety κϕ ([x]) = 0 one encounters sin-
gular points of ϕ in such a way that some finite order iterate of ϕ
define non ambiguously a proper image in Pn, we have “singularity
confinement”.
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The relation of the notion of Algebraic Entropy with the structure
of the singularities of maps and lattice equations have been used also
as a computational tool. Examples of such approach are given in [34,
142, 151] and more recently in [158].

2.2 computational tools

Now that we have introduced the definition of Algebraic Entropy and
discussed the origin of the dropping of the degrees, it is time to turn
to the computational tools which help us to calculate it.

First of all it is clear from our first example with the logistic map
that the complexity of the calculations grow more and more iterates
we compute. A good way to reduce the computational complexity of
the problem is to consider a particular set of initial condition given by
straight lines in the appropriate projective space Pq. This correspond
to the following choice of inhomogeneous coordinates:

ui =
αit+βi
α0t+β0

, ui ∈ IN, (2.44)

where αi and βi are the constant parameters describing the straight
line and t is the “time” parameter i.e. the curve parametrization. In
the case differential-difference equation we will assume that the pa-
rameter t is the same as the evolution parameter of the problem.

A useful simplification consists in using only integer numbers in
the computations. Moreover we want to avoid, accidental cancellations
i.e. factorizations due numerical substitution. Using generic integers
to this end is not recommended, since due to prime number factoriza-
tion they can introduce such kinds of cancellations. E.g. let us assume
that we are given the rational function:

R =
α1t+β1
α0t+β0

P(t)

Q(t)
, (2.45)

where P and Q are polynomials in t of degree p and q respectively
and with no common factors and αi, βi with i = 0, 1 are real or
complex numbers. Therefore the degree of the numerator of R is p+ 1
and the degree of its denominator is q+ 1. For generic values of the
constants αi and βi with i = 0, 1 obviously there is no factorization. If
however to evaluate the polynomial R numerically we choose, maybe
randomly, the αi and the βi with i = 0, 1 as integer it may happen
that:

α1 = λα0, β1 = λβ0, or α0 = λα1, β0 = λβ1, λ ∈ Z, (2.46)

due to integer number factorization. Then in this situation we have in
(2.45):

R = λ
P(t)

Q(t)
, or R =

1

λ

P(t)

Q(t)
, (2.47)
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so in both cases the degrees of numerator and denominator drop by
one. This is the mechanism of an accidental cancellation. So since we
want to avoid accidental cancellation as in equation (2.47), the best
way is to consider only prime numbers. If we had chosen the αi and
the βi with i = 0, 1 as prime numbers the situation displayed in equa-
tion (2.46) couldn’t have happened. This means that we must choose
the αi,βi in (2.44) and the eventual parameters appearing in the equa-
tion as prime numbers. A final simplification which can speed up the
calculations is to consider the factorization of the iterates on a finite
field Kp, with p prime. This is particularly useful since otherwise we
need to perform factorization over the integer domain and the most
common algorithms for factorization over integer domain actually at
first compute factorization over finite fields [159]. Therefore using the
factorization over finite fields we can speed up the evaluation of the
iterates.

With these choices we should be able to avoid eventual accidental
cancellations and therefore to have a bona fide sequence of degrees.
Since the result is experimental it is still better to do it more than
once, with different initial data, to be sure of the result. In Appendix
B a python implementation of these ideas is given, including also
other useful tools for the post evolution analysis. Let us just mention
the fact that the prime number p is chosen adaptively as the first
prime after the square plus one of the biggest prime in αi, βi and the
equation parameters. This program is also presented in [64].

Now let us assume that we have computed our iterations and we
are given the finite sequence:

d0,d1, . . . ,dN. (2.48)

To get the information on the asymptotic behavior of the sequence
(2.48) we calculate its generating function [95], i.e. a function g =

g (s) such that its Taylor series coincides with the elements of the
series. To look for such functions it is important to use the minimum
number of dk possible. It is reasonable to suppose that such generating
function is rational even if it is known that it is not alway the case
[15]. Such generating function can therefore be calculated by using
Padé approximants [17, 135].

In the Padé approximant we represent a function as the ratio of two
polynomials, i.e. as a rational function, an idea which dates back to
the work of Frobenius [45]. Let us assume that we are given a function
f = f (s) analytic in some domain D ⊂ C containing s = 04. Therefore
the function f can be represented as power series centered at s = 0:

f (s) =

∞∑
k=0

dks
k. (2.49)

4 This is always possible to be done up to a translation.
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To find the Padé approximant of order [L : M] for the function f

means to find a rational function:

[L :M] (s) =
P[L:M] (s)

Q[L:M] (s)
=
a0 + a1s+ . . . aLs

L

1+ b1s+ . . . bMsM
, (2.50)

such that its Taylor series centered at s = 0 coincides with (2.49) as
much as possible. Notice that the choice of b0 = 1 into the denomina-
tor (i.e. in the polynomial Q[L:M] (s)) is purely conventional, since the
ratio of the two polynomial P[L:M] (s) and Q[L:M] (s) is defined up to
a common factor. A Padé approximant of order [L : M] has a priori
L+ 1 independent coefficients in the numerator and M independent
coefficients in denominator, i.e. L +M + 1 independent coefficients.
This means that given a full Taylor series (2.49) and a Padé approx-
imant of order [L : M] we will have a precision of order sL+M+1:

f (s) = [L :M] (s) + O
(
sL+M+1

)
. (2.51)

In the same way as a polynomial is its own Taylor series, a ratio-
nal function is its own Padé approximant for the correct choice of L
and M. This is why the best approach in the search for rational gen-
erating functions is the use of Padé approximants. By computing a
sufficiently high number of terms if the generating function is ratio-
nal we will eventually find it.

Without going into the details of such beautiful theory we note that
the simplest way to compute the Padé approximant of order [L : M]

(2.50) is from Linear Algebra by computing two determinants:

Q[L:M] (s) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dL−M+1 dL−M+2 . . . dL dL+1

dL−M+2 dL−M+3 . . . dL+1 dL+2
...

...
...

...

dL−1 dL . . . dL+M−2 dL+M−1

dL dL+1 . . . dL+M−1 dL+M

sM sM−1 . . . s 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.52a)

P[L:M] (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dL−M+1 dL−M+2 . . . dL+1

dL−M+2 dL−M+3 . . . dL+2
...

...
...

dL−1 dL . . . dL+M−1

dL dL+1 . . . dL+M
L−M∑
k=0

dks
M+k

L−M+1∑
k=0

dks
M+k−1 . . .

L∑
k=0

dks
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(2.52b)
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The Padé approximant of order [L :M] is then given by [88]:

[L :M] (s) =
P[L:M] (s)

Q[L:M] (s)
. (2.53)

The interested reader can consult the reference [17] for a complete
exposition.

Let us suppose now we have obtained a generating function using
a subset of the elements in (2.48). Such generating function is a pre-
dictive tool, since we can confront the next terms in (2.48) with the
successive terms of the Taylor expansion of the generating function.
If they agree we are almost surely on the right way. This is the reason
why it is important to find the generating function with the minimum
number of dk possible. If we used all the terms in the sequence (2.48)
then we need to compute more iterates in order to have a predictive
result. Notice that since the sequence (2.48) is a series of degrees, i.e.
of positive integers, if the Taylor series of the generating functions
give raise to rational numbers it can be immediately discarded as
non bona fide generated function. A reasonable strategy for finding
rational generating functions with Padé approximants is to use Padé
approximants of equal order [j : j] which, as stated above, need 2j+ 1
point to be determined. This kinds of computational issues are dis-
cussed practically in Appendix B following [64]. Let us remark, that
the Taylor coefficients of a rational generating function satisfy a finite
order linear recurrence relation [37].

Once we have a generating function we need to calculate the asymp-
totic behavior of the coefficients of its Taylor series. To do this we will
use the inverse Z-transform [31, 37, 90]. Indeed let f(τ) be a function
expressible as Laurent series of negative powers of its argument:

f(τ) =

∞∑
k=0

dkτ
−k. (2.54)

The inverse Z-transform of f, which we denote by Z−1, is then defined
to be [90]:

Z−1 [f(τ)]k =
1

2πi

∫
C

f(τ)τk−1dτ, k ∈N (2.55)

where C is a simple closed path outside of which f(τ) is analytic. If
f is a rational function, C can be taken as a circle of radius R in the
complex τ plane enclosing all the singularities of f(τ). By the residue
theorem [28, 162], this implies, as the rational functions have only a
finite numbers of poles τj ∈ C, j ∈ { 1, . . . ,P }:

Z−1 [f(τ)] =

P∑
j=1

Resτ=τj
{
f(τ)τk−1

}
. (2.56)
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Given the generating function g which is expressed as the Taylor
series

g(s) =

∞∑
k=0

dks
k (2.57)

i.e. a series of positive powers of s, we have by the definition (2.55):

dk = Z−1
[
g(τ−1)

]
k

. (2.58)

Since we suppose our generating function to be rational, g
(
τ−1

)
is

again a rational function and we can easily compute it using the
residue approach (2.56).

Formula (2.56) will be valid asymptotically, and for rational f (τ)
we can estimate for which k it will be valid. Assume that f(τ) =

P̂(τ)/Q̂(τ) with P̂, Q̂ ∈ C[τ], i.e. polynomials in τ. Indeed if τ = 0 is a
root of Q̂ of order k0 we must distinguish the cases when k > k0 + 1
and k 6 k0 + 1. For k 6 k0 + 1 we will have a pole in τ = 0 of order
k0 + 1− k. So the general formula (2.56) will be valid only for n >
k0 + 1. In the case of rational generating functions g(s) = P(s)/Q(s),
with P,Q ∈ C[s] we will introduce a spurious τ = 0 singularity in
g
(
τ−1

)
if we will have degP > degQ.

From the generating function we can get the Algebraic Entropy, de-
fined by formula (2.19). Recalling the notion of radius of convergence
R of a power series [162]:

R−1 = lim
k→∞ |dk|

1
k (2.59)

and the continuity of the logarithm function we have from (2.19) that
the Algebraic Entropy can be always given by the logarithm of the
inverse of the smallest root of the denominator of g:

η = min
{ s∈C |Q(s)=0 }

log |s|−1. (2.60)

To conclude this Subsection we examine the growths of Examples
2.1.2, 2.1.3 and 2.1.4 using the generating functions in order to have a
more rigorous proof of their growth.

Example 2.2.1 (Growth of the Hénon map). The first and very triv-
ial example is to consider the growth of the Hénon map (2.25) (or
equation (2.26)) as given by (2.27). We see that computing the Padé
approximant with the first three points, i.e. [1 : 1](s) we obtain:

[1 : 1](s) =
1− s

1− 2s
. (2.61)

This first Padé approximant is already predictive since

[1 : 1](s) = 1+ s+ 2s2 + 4s3 + 8s4 + 16s5 + 32s5 + O
(
s6
)

. (2.62)
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So we can conclude g (s) = [1 : 1](s). This obviously gives the growth
as dk = 2k−1 for every k > 15. The only pole of g(s) is then s0 = 1/2

which according to (2.60) yields η = log 2. �

Example 2.2.2 (Growth of the map (2.28)). We see that in this case the
Padé approximant [1 : 1](s) gives exactly the same result as (2.61),
therefore it does not describes the series. The next one [2 : 2](s) in-
stead gives:

[2 : 2] (s) =
1

1− s− s2
, (2.63)

which is predictive. We conclude that in this case g (s) = [2 : 2](s).
This gives the growth:

dk =
5+ 3

√
5

10

(
1+
√
5

2

)k
+
5− 3

√
5

10

(
1−
√
5

2

)k
, (2.64)

which, as we said before, has the asymptotic behavior (2.31). The
poles of (2.63) are then:

s± =
−1±

√
5

2
(2.65)

and as |s+| > |s−| the algebraic entropy is given by (2.32). �

Example 2.2.3 (Growth of the Hirota-Kimura-Yahagi equation). We
now consider the very slow growth of equation (2.33) given by (2.36).
Again the [1 : 1](s) is the same as in (2.61) and therefore does not
describes (2.36) as well as [2; 2](s). On the other hand [3 : 3](s) gives:

[3 : 3](s) =
s3 + s2 − s+ 1

(1− s)2
(2.66)

and again this approximant is predictive. So we conclude that g (s) =
[3 : 3](s) and that dk = 2k− 2. Since the only pole lays on the unit
circle we have that the entropy is zero. �

2.3 algebraic entropy test for (1 .91 , 1 .93)

Before considering the Algebraic Entropy of the equations presented
in Section 1.6 we discuss briefly the Algebraic Entropy for the rhom-
bic H4 equations 1.32, which are well known to be integrable [166].
Running the program ae2d.py from [64], which is contained in Ap-
pendix B, on these equations one finds that they possess only a prin-
cipal sequence with the following isotropic sequence of degrees:

1, 2, 4, 7, 11, 16, 22, 29, 37, . . . . (2.67)

5 We note that in terms of the iterations the first 1 in (2.27) have to be interpreted as
d−1, but this is just matter of notation.
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Equation Growth direction

−,+ +,+ +,− −,−

tH
ε
1 L1,L2 L1,L2 L3,L4 L3,L4

tH
ε
2 L5,L6 L5,L6 L7,L8 L7,L8

tH
ε
3 L5,L6 L5,L6 L7,L8 L7,L8

D1 L0,L0 L0,L0 L0,L0 L0,L0

1D2 L9,L10 L9,L10 L9,L10 L9,L10

2D2 L14,L15 L14,L15 L15,L14 L15,L14

3D2 L16,L17 L16,L17 L17,L16 L17,L16
D3 L11,L12 L11,L12 L11,L12 L11,L12

1D4 L13,L8 L13,L8 L13,L8 L13,L8

2D4 L18,L8 L18,L8 L19,L20 L19,L20

Table 2.1: Sequences of growth for the trapezoidalH4 andH6 equations. The
first one is the principal sequence, while the second the secondary.
All sequences Lj, j = 0, · · · , 20 are presented in Table 2.3.

To this sequence corresponds the generating function:

g =
s2 − s+ 1

(1− s)3
, (2.68)

which gives, through the application of the Z-transform (2.55), the
asymptotic fit of the degrees:

dk =
k(k+ 1)

2
+ 1. (2.69)

Since the growth is quadratic η = 0 or it can be seen directly from
(2.67) using (2.60). This result is a confirmation by the Algebraic En-
tropy approach of the integrability of the rhombic H4 equations. Let
us note that the growth sequences (2.67) are the same in the Rhom-
bic H4 equations also when ε = 0, i.e. if we are in the case of the H
equations of the ABS classification (1.23).

For the trapezoidal H4 and H6 equations the situation is more com-
plicated. Indeed those equations have in every direction two different
sequence of growth, the principal and the secondary one, as the co-
efficients of the evolution matrix (2.37) are two-periodic. The most
surprising feature is however that all the sequences of growth are lin-
ear. This means that all such equations are not only integrable due to
the fact that they possess the Consistency Around the Cube property,
but also linearizable.

Instead of presenting here the full evolution matrices (2.37), which
would be very lengthily and obscure, we present two tables with the
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relevant properties. The interested reader will find the full matrices
in Appendix C. In Table 2.1 we present a summary of the sequences
of growth of both trapezoidal H4and H6 equations. The explicit se-
quence of the degrees of growth with generating functions, asymp-
totic fit of the degrees of growth and entropy is given in Table 2.3.
Following the convention in [84] we labeled the different sequences
by Lj, with j ∈ {1, 2, . . . , 20}.

Observing Table 2.1 and Table 2.3 we may notice the following
facts:

• The trapezoidal H4 equations are not isotropic: the sequences in
the (−,+) and (+,+) directions are different from those in the
(+,−) and (−,−) directions. These results reflect the symmetry
of the equations.

• The H6 equations, except from 2D4 which has the same be-
haviour as the trapezoidal H4, are isotropic. Equations 2D2 and
3D2 exchange the principal and the secondary sequences from
the (−,+), (+,+) directions and the (+,−), (−,−) directions.

• All growths, except L0, L3, L4, L7, L8, L12 and L17, exhibit a
highly oscillatory behaviour. They have generating functions of
the form:

g(s) =
P(s)

(s− 1)2(s+ 1)2
, (2.70)

with the polynomial P(s) ∈ Z[s]. We may write

g(s) = P0(s) +
P1(s)

(s− 1)2(s+ 1)2
, (2.71)

with P0(s) ∈ Z[s] of degree less than P and P1(s) = αs3+βs2+
γs+ δ. Expanding the second term in (2.71) in partial fractions
we obtain:

g(s) = P0(s) +
1

4

[
β+ δ−α− γ

(s+ 1)2
+
α+ γ+β+ δ

(s− 1)2

+
2α+β− δ

s− 1
+
2α−β+ δ

s+ 1

]
.

(2.72)

Expanding the term in square parentheses in Taylor series we
find that:

g(s) = P0(s) +

∞∑
k=0

[
A0 +A1(−1)

k +A2k+A3(−1)
kk
]
sk,

(2.73)

with Ai = Ai(α,β,γ, δ) constants. This means the dk = A0 +

A1(−1)
k + A2k + A3(−1)

kk for k > degP0(s), and therefore
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it asymptotically solves a fourth order difference equation. As
far as we know, even if some example of behaviour containing
terms like (−1)k are known [84], this is the first time that we
observe patterns with oscillations given by k (−1)k.

We remark that the usage of the Algebraic Entropy as integrability
indicator is actually justified by the existence of of finite order recur-
rence relations between the degrees dk. Indeed the existence of such
recurrence relations means that from a local property (the sequence
of degrees) we may infer a global one (chaoticity/integrability/lin-
earizaribilty) [158].

We finally note that at the moment no other quad equation is
known to possess an analogous growth property as the trapezoidal
H4 and H6 equations. Furthermore is also unknown if more compli-
cated behavior, with higher order periodicities are possible. We note
that the existence of two sequence of growth is coherent with the fact
that the trapezoidal H4 and H6 equations have two-periodic coeffi-
cients. So we can conjecture that the existence of multiples growth
patterns is linked with the periodicity of the coefficients. In literature
equations with higher periodicity have been introduced e.g. in [53],
but are still unstudied from the point of view of Algebraic Entropy.
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Table 2.2: Sequences of growth, generating functions, analytic expression of the degrees and entropy for the trapezoidal H4and H6equations

Name Degrees Generating function Degree fit Entropy

{ dk } g(s) dk η

L0 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 . . .
1

1− s
1 0

L1 1, 2, 2, 5, 3, 8, 4, 11, 5, 14, 6, 17, 7 . . .
s3 + 2s+ 1

(s− 1)2(s+ 1)2
(−1)k

4
(−2k+ 1) + k+

3

4
0

L2 1, 2, 4, 3, 7, 4, 10, 5, 13, 6, 16, 7, 19 . . .
−s3 + 2s2 + 2s+ 1

(s− 1)2(s+ 1)2
(−1)k

4
(2k− 1) + k+

5

4
0

L3 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7 . . .
−s2 + s+ 1

s3 − s2 − s+ 1
−
(−1)k

4
+
k

2
+
5

4
0

L4 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19 . . .
s2 + s+ 1

s3 − s2 − s+ 1

(−1)k

4
+
3k

2
+
3

4
0

L5 1, 2, 4, 6, 11, 10, 19, 14, 27, 18, 35, 22, 43 . . .
s6 + 4s4 + 2s3 + 2s2 + 2s+ 1

(s− 1)2(s+ 1)2
(−1)k

(
k−

5

2

)
+ 3k−

5

2
0

L6 1, 2, 4, 7, 8, 15, 12, 23, 16, 31, 20, 39, 24 . . .
3s5 + s4 + 3s3 + 2s2 + 2s+ 1

(s− 1)2(s+ 1)2
(−1)k

(
−k+

5

2

)
+ 3k−

5

2
0

L7 1, 2, 4, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43 . . .
s4 + s3 + s2 + 1

(s− 1)2
4k− 5 0

Continued on next page
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Table 2.2 – Continued from previous page

Name Degrees Generating function Degree fit Entropy

{ dk } g(s) dk η

L8 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 . . .
s2 + 1

(s− 1)2
2k 0

L9 1, 2, 2, 5, 3, 8, 4, 11, 5, 14, 6, 17, 7, . . .
s3 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k

4
(−2k+ 1) + k+

3

4
0

L10 1, 2, 3, 5, 5, 8, 7, 11, 9, 14, 11, 17, 13, . . .
s3 + s2 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k

4
(−k+ 1) +

5k

4
+
3

4
0

L11 1, 2, 4, 5, 10, 8, 16, 11, 22, 14, 28, 17, 34, . . .
3s4 + s3 + 2s2 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k

4
(3k− 5) +

9k

4
−
3

4
0

L12 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, . . .
s2 + s+ 1

(s− 1)2 (s+ 1)

(−1)k

4
+
3k

2
+
3

4
0

L13 1, 2, 4, 6, 11, 10, 18, 14, 25, 18, 32, 22, 39, . . .
4s4 + 2s3 + 2s2 + 2s+ 1

(s− 1)2 (s+ 1)2
3 (−1)k

4
(k− 2) +

11k

4
−
3

2
0

L14 1, 2, 3, 3, 6, 4, 9, 5, 12, 6, 15, 7, 18, . . .
s4 − s3 + s2 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k

4
(2k− 3) + k+

3

4
0

L15 1, 1, 3, 3, 6, 5, 9, 7, 12, 9, 15, 11, 18, . . .
s4 + s3 + s2 + s+ 1

(s− 1)2 (s+ 1)2
k

4

(
(−1)k + 5

)
0

Continued on next page
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Table 2.2 – Continued from previous page

Name Degrees Generating function Degree fit Entropy

{ dk } g(s) dk η

L16 1, 2, 3, 2, 5, 2, 7, 2, 9, 2, 11, 2, 13, . . .
−2s3 + s2 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k

2
(k− 1) +

k

2
+
3

2
0

L17 1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, . . .
s2 + 1

(s− 1)2 (s+ 1)

(−1)k

2
+ k+

1

2
0

L18 1, 2, 4, 5, 11, 9, 19, 13, 27, 17, 35, 21, 43, . . .
s6 + s5 + 4s4 + s3 + 2s2 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k (k− 2) + 3k− 3 0

L19 1, 2, 4, 6, 11, 10, 19, 14, 27, 18, 35, 22, 43, . . .
s6 + 4s4 + 2s3 + 2s2 + 2s+ 1

(s− 1)2 (s+ 1)2
(−1)k

(
k−

5

2

)
+ 3k−

5

2
0

L20 1, 1, 3, 2, 6, 3, 9, 4, 12, 5, 15, 6, 18, . . .
s4 + s2 + s+ 1

(s− 1)2 (s+ 1)2
(−1)k

4
(2k− 1) + k+

1

4
0
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2.4 examples of direct linearization

In this Section we considers in detail the tHε1 (1.91a) and 1D2 (1.93b)
equations and shows the explicit form of the quadruple of matrices
coming from the Consistency Around the Cube, the non-autonomous
equations which give the consistency on Z3 and the effective Lax pair.
Finally we confirm the predictions of the algebraic entropy analysis
showing how they can be explicitly linearized looking directly at the
equation.

2.4.1 The tHε1 equation

To construct the Lax Pair for (1.91a) we have to deal with Case 3.10.1
in [21]. The sextuple of equations we consider is:

A = α2 (x− x1) (x2 − x12) −α1 (x− x2) (x1 − x12)

+ ε2α1α2 (α1 −α2) ,

(2.74a)

B = (x− x2) (x3 − x23) −α2
(
1+ ε2x3x23

)
= 0, (2.74b)

C = (x− x1) (x3 − x13) −α1
(
1+ ε2x3x13

)
= 0, (2.74c)

Ā = α2 (x13 − x3) (x123 − x23) −α1 (x13 − x123) (x3 − x123) ,
(2.74d)

B̄ = (x1 − x12) (x13 − x123) −α2
(
1+ ε2x13x123

)
= 0, (2.74e)

C̄ = (x2 − x12) (x23 − x123) −α1
(
1+ ε2x23x123

)
= 0, (2.74f)

In this sextuple (1.91a) originates from the B equation.
We now make the following identifications

A : x→ up,n x1 → up+1,n x2 → up,n+1 x12 → up+1,n+1

B : x→ un,m x2 → un+1,m x3 → un,m+1 x23 → un+1,m+1

C : x→ up,m x1 → up+1,m x3 → up,m+1 x13 → up+1,m+1

(2.75)

so that in any equation we can suppress the dependence on the ap-
propriate parametric variables. On Z3 we get the following triplet of
equations:

Ã = α2
(
up,n − up+1,n

) (
up,n+1 − up+1,n+1

)
−α1

(
up,n − up,n+1

) (
up+1,n − up+1,n+1

)
+ ε2α1α2 (α1 −α2) F

(+)
m ,

(2.76a)

B̃ = (un,m − un+1,m) (un,m+1 − un+1,m+1) −α2

−α2ε
2
(
F
(+)
m un,m+1un+1,m+1 + F

(−)
m un,mun+1,m

)
,

(2.76b)

C̃ =
(
up,m − up+1,m

) (
up,m+1 − up+1,m+1

)
−α1

−α1ε
2
(
F
(+)
m up,m+1up+1,m+1 + F

(−)
m up,mup+1,m

)
.

(2.76c)
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Then with the method in Section 1.4 we find the following Lax Pair6:

L̃n,m =

(
un,m+1 −un,mun,m+1 +α1

1 −un,m

)

− ε2α1

(
−F

(−)
m un,m 0

0 F
(+)
m un,m+1

)
,

(2.77a)

M̃n,m = α1 (un,m − un+1,m)

(
1 0

0 1

)

+α2

(
un+1,m −un,mun+1,m

1 −un,m

)

− ε2α1α2 (α1 −α2) F
(+)
m

(
0 1

0 0

)

(2.77b)

and the separation constant (1.21) is given by:

τn,m = α2
1+ ε2

(
F
(−)
m u2n,m + F

(+)
m u2n,m+1

)
(un,m − un,m+1)

2 + ε2α22F
(+)
m

. (2.78)

With a highly non-trivial computation it is however possible to show
that the separation constant (2.78) arise from the following rational
separation constants:

γn,m =
1

1+ iε
(
F
(−)
m un,m − F

(+)
m un,m+1

) , (2.79a)

γ ′n,m =
1

un,m − un+1,m + iα2F
(−)
m

. (2.79b)

Therefore the Lax pair for the tH
ε
1 equation (1.91a) is completely

characterized from the Consistency Around the Cube.
Let us now turn to the linearization procedure. In (1.91a) we must

have α2 6= 0, otherwise the equation becomes

(un,m − un+1,m) (un,m+1 − un+1,m+1) = 0, (2.80)

which is factorizable and therefore degenerate. Let us define two new
fields for the even and odd values of m in order to write the tH

ε
1

equation (1.91a) as an autonomous system:

un,2k = wn,k, un,2k+1 = zn,k. (2.81)

Then the tHε1 equation (1.91a) becomes the following system of cou-
pled autonomous difference equations

(wn,k −wn+1,k) (zn,k − zn+1,k) = ε
2α2zn,kzn+1,k +α2,

(2.82a)

6 In this case for simplicity of calculations the rôle of the L and M matrices are in-
verted.
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(wn,k+1 −wn+1,k+1) (zn,k − zn+1,k) = ε
2α2zn,kzn+1,k +α2.

(2.82b)

Subtracting (2.82b) to (2.82a), we obtain

(wn,k −wn+1,k −wn,k+1 +wn+1,k+1) (zn,k − zn+1,k) = 0. (2.83)

At this point the solution of the system bifurcates depending on
which factor in (2.83) we choose to annihilate.

case 1 : zn ,k = fk Let us assume that zn,k = fk where fk is an
arbitrary function of its argument. Then the second factor in (2.83) is
satisfied and from (2.82a) or (2.82b) we have that ε 6= 0 and, solving
for fk, one gets

fk = ± i
ε

. (2.84)

This is essentially a degenerate case, since this solution holds for ev-
ery value of wn,k.

case 2 : wn ,k = gn + hk Let us assume that wn,k = gn + hk
where gn and hk are arbitrary functions of their argument and that
zn,k 6= fk. Hence (2.82) reduces to the equation:

ε2zn,kzn+1,k + κn (zn,k − zn+1,k) + 1 = 0, , (2.85)

where κn = (gn+1 − gn)/α2. Depending on the value of ε we can
distinguish two different cases:

case 2 .1 : ε = 0 If ε = 0, (2.85) implies that κn 6= 0, so that we have:

zn+1,k − zn,k =
1

κn
. (2.86)

Solving this equation we get:

zn,k =


jk +

n−1∑
l=n0

1

κl
, n > n0 + 1,

jk −

n0−1∑
l=n

1

κl
, n 6 n0 − 1,

(2.87)

where jk = zn0,k is an arbitrary function of its argument.

case 2 .2 : ε 6= 0 If ε 6= 0, then (2.85) is a discrete Riccati equation
which can be linearized through the Möbius transformation

zn,k =
i
ε

yn,k − 1

yn,k + 1
(2.88)
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to

(iκn − ε)yn+1,k = (iκn + ε)yn,k. (2.89)

Note that (2.89) implies that κn 6= ±iε because otherwise yn,k =

0 and zn,k = −i/ε. Therefore equation (2.89) implies that we
have the following solution:

yn,k =


jk

n−1∏
l=n0

iκl + ε
iκl − ε

, n > n0 + 1,

jk

n0−1∏
l=n

iκl − ε
iκl + ε

, n 6 n0 − 1,

(2.90)

where jk = yn0,k is another arbitrary function of its argument.

In conclusion we have always completely integrated the original
system.

Remark 2.4.1. Let us note that in the case ε = 0 the (1.91a) can be
linearized also without the need to introduce the transformation sep-
arating the even and the odd part in m (2.81). Indeed by putting ε in
(1.91a) we obtain:

(un,m − un+1,m) (un,m+1 − un+1,m+1) −α2 = 0, (2.91)

and it is easy to see that the Möbius-like transformation depending
on the field and on its first order shift

un+1,m − un,m =
√
α2
1−wn,m

1+wn,m
, (2.92)

brings (1.91a) into the following first order linear equation:

wn,m+1 +wn,m = 0, . (2.93)

Therefore we can write the solution to (2.91) as:

un,m =


km +

√
α2

l=n−1∑
l=n0

1− (−1)mwl
1+ (−1)mwl

, n > n0 + 1,

km −
√
α2

l=n0−1∑
l=n

1− (−1)mwl
1+ (−1)mwl

, n 6 n0 − 1.

(2.94)

Here km = un0,m and wn, are two arbitrary integration functions.

Now we prove that the Lax pair of the tHε1 equation (1.91a) given
by equation (2.77) is fake. This was presented for the first time in
[68]. Indeed we recall that according to the definition in [77, 78] a
Lax pair is called G-fake if, on solutions of the equation appearing in
its compatibility condition, one can remove all dependent variables
in the associated nonlinear system from the Lax pair by applying
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a gauge transformations. A gauge transformation for a Lax pair in the
form (1.5) is a K×K invertible matrix Gn,m, possibly dependent on the
unknown un,m and its shifts, acting at the level of the wave function
Φn,m in the following way:

Φn,m = Gn,mΨn,m. (2.95)

The transformation (2.95) yields a new Lax pair of the form (1.5) for
the new wave function Ψn,m with new matrices:

Ln,m = G−1
n+1,mLn,mGn,m, (2.96a)

Mn,m = G−1
n,m+1Mn,mGn,m. (2.96b)

We note that a Gauge transformation in the sense of equation (2.95)
is a particular kind of symmetry of the Lax pair.

Now that we have stated the required definition, let us return to
the Lax pair for the tHε1 equation (1.91a) as given by equation (2.77).
First we separate the even and odd part in m in (2.77) defining:

Ξn,k = Ψn,2k, Θn,k = Ψn,2k+1. (2.97)

Substituting m odd into the spectral problem defined from (2.77) we
obtain the following constraint:

Θn,k =
1

i − εzn,k

(
zn,k α1 −wn,kzn,k

1 wn,k − ε
2α1zn,k

)
Ξn,k. (2.98)

Then using (2.98) and its difference consequences we can write down
a Lax pair involving only the field wn,k and the wave function Ξn,k:

Ξn,k+1 = L
(1)
n,kΞn,k, Ξn+1,k =M

(1)
n,kΞn,k, (2.99)

where:

L
(1)
n,k = −α1

(
1 wn,k+1 −wn,k

0 1

)
, (2.100a)

M
(1)
n,k =

α1 (wn,k −wn+1,k)

wn,k −wn,k+1 + iεα2

(
1 0

0 1

)

+
α2

wn,k −wn,k+1 + iεα2

(
wn+1,k −wn,kwn+1,k

1 −wn,k

)

−
ε2α1α2 (α1 −α2)

wn,k −wn,k+1 + iεα2

(
0 1

0 0

)
.

(2.100b)

The compatibility conditions of (2.99) yields the linear equation:

wn+1,k+1 −wn,k+1 −wn+1,k +wn,k = 0. (2.101)
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Therefore we have incidentally given another proof of the lineariza-
tion using the Lax pair.

Finally we see that applying the following gauge transformation:

Gn,k = (−α1)
k αn1

(
1 wn,k

0 1

)
(2.102)

yields the new matrices obtained from (2.96):

L
(1)
n,k =

(
1 0

0 1

)
, (2.103a)

M
(1)
n,k =

wn,k −wn+1,k

wn,k −wn+1,k + iεα2

(
1 wn,k −wn+1,k

α2/α1 1

)

+
α2

wn,k −wn+1,k + iεα2

(
0 −ε2 (α1 −α2)

1/α1 0

)
.

(2.103b)

Since (2.103a) is independent on the field wn,k we conclude that the
Lax pair (2.100) is a G-fake Lax pair according to the above definition.

We recall that a fake Lax pair do not provide the infinite number of
conservation laws needed by the definition of integrability [27, 77, 78].
Since we proved that the tHε1 is linearizable this have to be expected.
Indeed linear equations possess a finite number of conservation laws
[169] and therefore any Lax pair for a linear equation must be fake.
Ultimately this example shows that a Lax pair produced from the
Consistency Around the Cube property is not bona fide in advance,
but its properties must be thoroughly checked.

2.4.2 The 1D2 equation

Now we consider the equation 1D2 (1.93b). The 1D2 equation (1.93b)
is given by the sextuple of equations given by Case 3.12.2 in [21]:

A = δ2x+ x1 + (1− δ1) x2 + x12 (x+ δ1x2) , (2.104a)

B = (x− x3) (x2 − x23)

+ λ [x+ x3 − δ1 (x2 + x23)] + δ1λ,

(2.104b)

C = (x− x3) (x1 − x13) + δ1 (δ1δ2 + δ1 − 1) λ
2

− λ [(δ1δ2 + δ1 − 1) (x+ x3) + δ1 (x1 + x13)] ,

(2.104c)

Ā = δ2x3 + x13 + (1− δ1) x23 + x123 (x+ δ1x23) , (2.104d)

B̄
= (x1 − x13) (x12 − x123)

+ λ [2δ2 (δ1 − 1) + (δ1 − 1− δ1δ2) − 2δ1x12x123] ,
(2.104e)

C̄ = (x1 − x23) (x12 − x123) − λ (2δ2 + x12 + x123) . (2.104f)
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The triplet of consistent dynamical systems on the 3D-lattice is:

Ã =
(
F
(−)
p+n − δ1F

(+)
p F

(−)
n + δ2F

(+)
p F

(+)
n

)
up,n

+
(
F
(+)
p+n − δ1F

(−)
p F

(−)
n + δ2F

(−)
p F

(+)
n

)
up+1,n

+
(
F
(+)
p+n − δ1F

(+)
p F

(+)
n + δ2F

(+)
p F

(−)
n

)
up,n+1

+
(
F
(−)
p+n − δ1F

(−)
p F

(+)
n + δ2F

(−)
p F

(−)
n

)
up+1,n+1

+ δ1

(
F
(−)
n up,nup+1,n + F

(+)
n up,n+1up+1,n+1

)
+ F

(+)
p+nup,nup+1,n+1 + F

(−)
p+nup+1,nup,n+1,

(2.105)

B̃ = λ
{[

(δ1 − 1) F
(+)
n − δ1

]
F
(+)
p + (δ1 − 1− δ1δ2) F

(−)
p F

(−)
n

}
(un,m + un,m+1)

+ λ
{[

(δ1 − 1) F
(−)
n − δ1

]
F
(+)
p + (δ1 − 1− δ1δ2) F

(−)
p F

(+)
n

}
(un+1,m + un+1,m+1)

− 2δ1λF
(−)
p

(
F
(−)
n un,mun,m+1 + F

(+)
n un+1,mun+1,m+1

)
+ (un,m − un,m+1) (un+1,m − un+1,m+1)

+ δ1λ
2F

(+)
p + 2 (δ1 − 1) δ2λF

(−)
p ,

(2.106)

C̃ = λ
{[

(1− δ1δ2) F
(+)
p − δ1

]
F
(+)
n + F

(−)
p F

(−)
n

} (
up,m + up,m+1

)
+ λ
{[

(1− δ1δ2) F
(−)
p − δ1

]
F
(+)
n + F

(+)
p F

(−)
n

} (
up+1,m + up+1,m+1

)
+
(
up,m − up,m+1

) (
up+1,m − up+1,m+1

)
+ 2δ2λF

(−)
n + δ1 (δ1 − 1+ δ1δ2) λ

2F
(+)
n .

(2.107)

We leave out the Lax pair for 1D2 as it is too complicate to write
down and not worth while the effort for the reader. If necessary one
can always write it down using the standard procedure outlined in
Section 1.4.

Let us now turn to the linearization procedure. Notice that there
is no combination of the parameters δ1 and δ2 such that (1.93b) be-
comes non-autonomous. So we are naturally induced to introduce the
following four fields:

ws,t = u2s,2t, ys,t = u2s+1,2t,

vs,t = u2s,2t+1 zs,t = u2s+1,2t+1.
(2.108)

which transform (1.93b) into the following system of four coupled
autonomous difference equations:

(1− δ1) vs,t + δ2ws,t + ys,t + (δ1vs,t +ws,t) zs,t = 0, (2.109a)

(1− δ1) vs+1,t + δ2ws+1,t + ys,t

+ (δ1vs+1,t +ws+1,t) zs,t = 0,
(2.109b)

(1− δ1) vs,t + δ2ws,t+1 + ys,t+1

+ (δ1vs,t +ws,t+1) zs,t = 0,
(2.109c)
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(1− δ1) vs+1,t + δ2ws+1,t+1 + ys,t+1

+ (δ1vs+1,t +ws+1,t+1) zs,t = 0.
(2.109d)

Let us solve (2.109a) with respect to ys,t:

ys,t = −(1− δ1) vs,t − δ2ws,t − (δ1vs,t +ws,t) zs,t (2.110)

and let us insert ys,t into (2.109b) in order to get an equation solvable
for zs,t. This is possible iff δ1vs,t +ws,t 6= ft, with ft an arbitrary
function of t, since in this case the coefficient of zs,t is zero. Then the
solution of the system (2.109) bifurcates.

case 1 : δ1vs ,t + ws ,t 6= ft Assume that δ1vs,t +ws,t 6= ft, then
we can solve with respect to zs,t the expression obtained inserting
(2.110) into (2.109b). We get:

zs,t = −
(1− δ1) (vs+1,t − vs,t) + δ2 (ws+1,t −ws,t)

δ1 (vs+1,t − vs,t) +ws+1,t −ws,t
. (2.111)

Now we can substitute (2.110) and (2.111) together with their differ-
ence consequences into (2.109c) and (2.109d) and we get two equa-
tions for ws,t and vs,t:

(δ1δ2 + δ1 − 1)
[
ws+1,t+1vs,t+1ws,t + vs+1,t+1ws,t+1ws+1,t

− vs+1,t+1ws,t+1ws,t +ws,t+1vs,tws+1,t+1

+ vs,tws+1,t+1ws+1,t −ws,t+1vs+1,tws+1,t+1

−w2s,t+1vs,t +w
2
s,t+1vs+1,t

−ws+1,t+1vs,t+1ws+1,t − vs,tws+1,t+1ws,t

− vs,tws,t+1ws+1,t + vs,tws,t+1ws,t

− δ1(vs,tvs,t+1ws+1,t +ws,t+1vs,tvs,t+1

−ws+1,t+1vs,t+1vs,t +ws+1,t+1vs,t+1vs+1,t

+ vs,tvs+1,t+1ws,t − vs,tvs+1,t+1ws+1,t

− vs,tvs,t+1ws,t −ws,t+1vs+1,tvs,t+1)
]

(2.112a)

(δ1δ2 + δ1 − 1)
[
w2s+1,t+1vs+1,t +ws+1,t+1vs,t+1ws+1,t

−ws+1,t+1vs,t+1ws,t −w
2
s+1,t+1vs,t

−ws,t+1vs+1,tws+1,t+1 +ws,t+1vs,tws+1,t+1

− vs+1,t+1ws,t+1ws+1,t + vs+1,tws,t+1ws+1,t

+ vs+1,t+1ws,t+1ws,t − vs+1,tws+1,t+1ws+1,t

+ vs+1,tws+1,t+1ws,t − vs+1,tws,t+1ws,t+

δ1(−vs+1,tvs+1,t+1ws+1,t + vs+1,tvs+1,t+1ws,t

−ws+1,t+1vs,tvs+1,t+1 − vs+1,tvs,t+1ws,t

− vs+1,t+1ws,t+1vs+1,t +ws+1,t+1vs+1,tvs+1,t+1

+ vs+1,tvs,t+1ws+1,t + vs+1,t+1ws,t+1vs,t)
]

(2.112b)
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If

δ1(1+ δ2) = 1, (2.113)

then (2.112) are identically satisfied. If δ1 (1+ δ2) 6= 1, adding (2.112a)
and (2.112b), we obtain:

(ws,t −ws+1,t −ws,t+1 +ws+1,t+1) · (vs+1,t − vs,t) (δ1 + δ1δ2 − 1) = 0.

(2.114)

Therefore we are in front of a new factorization. Since δ1 + δ1δ2 6= 1

we can divide by δ1 + δ1δ2 − 1 and annihilate alternatively the first
or the second factor.

If set equal to zero the second factor in (2.114), we get vs,t = gt with
gt arbitrary function of t alone. Substituting this result into(2.112a)
or (2.112b), we obtain gt = g0, with g0 constant. Since we do not
have any other condition we have that ws,t is an arbitrary function
satisfying ws,t 6= ft − g0 while from (2.111) we obtain zs,t = −δ2 and
finally from (2.115) we have:

ys,t = −(1− δ1 − δ1δ2)g0. (2.115)

Therefore the only non-trivial case is when δ1 + δ1δ2 6= 1, and
vs,t 6= gt. In this case we have that ws,t solves the discrete wave
equation, i.e. ws,t = hs + lt. Substituting ws,t into (2.112) we get a
single equation for vs,t:

(hs − hs+1)
[
(vs+1,t+1 − vs+1,t) (hs + lt+1)

− (vs,t+1 − vs,t) (hs+1 + lt+1)

+ δ1 (vs,tvs+1,t+1 − vs+1,tvs,t+1)
]
= 0.

(2.116)

which is identically satisfied if hs = h0, with h0 a constant. Therefore
we have a non-trivial cases only if hs 6= h0.

case 1 .1 : δ1 = 0 We have a great simplification if in addition to
hs 6= h0 we have δ1 = 0. In this case (2.116) is linear:

(vs+1,t+1 − vs+1,t) (hs + lt+1)

− (vs,t+1 − vs,t) (hs+1 + lt+1) = 0.
(2.117)

Eq. (2.117) can be easily integrated twice to give:

vs,t =

{
js +
∑t−1
k=t0

(hs + lk+1) ik, t > t0 + 1,

js −
∑t0−1
k=t (hs + lk+1) ik, t 6 t0 − 1,

(2.118)

with it and js = vs,t0 arbitrary integration functions.
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case 1 .2 : δ1 6= 0 , but lt = l0 Now let us suppose hs 6= h0, δ1 6= 0
but let us choose lt = l0, with l0 a constant. Performing the
translation θs,t = vs,t + (hs + l) /δ1, from (2.116) we get:

θs,tθs+1,t+1 − θs+1,tθs,t+1 = 0. (2.119)

Eq. (2.119) is linearizable via a Cole-Hopf transformation Θs,t =

θs+1,t/θs,t as vs,t cannot be identically zero. This linearization
yields the general solution θs,t = SsTt with Ss and Tt arbitrary
functions of their argument.

case 1 .3 : δ1 6= 0 , lt 6= l0 Finally if hs 6= h, δ1 6= 0 and lt 6= l0, we
perform the transformation

θs,t =
1

δ1
[(lt − lt+1) vs,t − hs − lt+1] . (2.120)

Then from (2.116) we get:

θs,t (1+ θs+1,t+1) − θs+1,t (1+ θs,t+1) = 0, (2.121)

which, as vs,t cannot be identically zero, is easily linearized
via the Cole-Hopf transformation Θs,t = (1 + θs,t+1)/θs,t to
Θs+1,s −Θs,t = 0 which yields for θs,t the linear equation:

θs,t+1 − ptθs,t + 1 = 0, (2.122)

where pt is an arbitrary integration function. Then the general
solution is given by:

θs,t =



us − t−1∑
l=t0

l∏
j=t0

p−1j

 t−1∏
k=t0

pk, t > t0 + 1,

us

t0−1∏
k=t

p−1k +

t0−1∑
l=t

l∏
j=t

p−1j , t 6 t0 − 1,

(2.123)

where us = θs,t0 is an arbitrary integration function.

case 2 : δ1vs ,t + ws ,t = ft Let us suppose:

ws,t = ft − δ1vs,t, (2.124)

where ft is an arbitrary function of its argument. Inserting (2.110) and
(2.124) and their difference consequences into (2.109), we get:

(vs+1,t − vs,t) (δ1 + δ1δ2 − 1) = 0, (2.125)

and the two relations:

ft+1zs,t+1 + [δ1 (vs,t − vs,t+1) − ft+1] zs,t

+ (δ1 − 1) (vs,t − vs,t+1) = 0,
(2.126a)
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ft+1zs,t+1 + [δ1 (vs+1,t − vs+1,t+1) − ft+1] zs,t

+ (δ1 − 1) (vs+1,t − vs,t+1)

+ δ1δ2 (vs+1,t+1 − vs,t+1) = 0.

(2.126b)

Hence in (2.125) we have a bifurcation depending on the factor we
choose to annihilate.

case 2 .1 : δ1 (1 + δ2) = 1 If we annihilate the second factor in (2.125)
we get δ1 (1+ δ2) = 1, i.e. δ1 6= 0. Then adding (2.126a) and
(2.126b) we obtain:

(vs,t − vs+1,t − vs,t+1 + vs+1,t+1) (1− δ1 + δ1zs,t) = 0. (2.127)

It seems that we are facing a new bifurcation. However anni-
hilating the second factor, i.e. setting zs,t = 1− 1/δ1 is trivial,
since (2.126) are identically satisfied.

Therefore we may assume that zs,t 6= 1− 1/δ1. This implies that
vs,t solves a discrete wave equation whose solution is given by:

vs,t = hs + kt, (2.128)

where hs and kt are generic integration functions of their ar-
gument. Inserting (2.128) in (2.126) we can obtain the following
linear equation for zs,t:

ft+1zs,t+1 + (δ1jt − ft+1) zs,t + (δ1 − 1) jt = 0, (2.129)

with jt = kt+1 − kt. This equation can is solved by:

zs,t = (−1)t (δ1 − 1)

t−1∏
t ′=0

δ1jt ′ − ft ′+1
ft ′+1

·
t−1∑
t ′′=0

jt ′′ (−1)
t ′′

ft ′′+1

t ′′∏
t ′=0

δ1jt ′ − ft ′+1
ft ′+1

+ (−1)t zs,0

t−1∏
t ′=0

δ1jt ′ − ft ′+1
ft ′+1

(2.130)

case 2 .2 : vs ,t = lt Now we annihilate the first factor in (2.125) i.e.
δ1 (1+ δ2) 6= 1 and vs,t = lt, where lt is an arbitrary function of
its argument. From (2.126) we obtain (2.129) with jt = lt+1 − lt.

In conclusion we have always integrated the original system us-
ing an explicit linearization through a series of transformations and
bifurcations.

As a final remark we observe that every transformation used in the
linearization procedure both for the tHε1 (1.91a) equation and for the



2.4 examples of direct linearization 77

1D2 (1.93b) equation is bi-rational in the fields and their shifts (like
Cole-Hopf-type transformations). This, in fact, has to be expected,
since the Algebraic Entropy test is valid only if we allow transfor-
mations which preserve the algebrogeometric structure underlying
the evolution procedure [158]. Indeed there are examples on one-
dimensional lattice of equations chaotic according to the Algebraic
Entropy, but linearizable using some transcendental transformations
[62]. So exhibiting the explicit linearization and showing that it can
be attained by bi-rational transformations is indeed a very strong con-
firmation of the Algebraic Entropy conjecture [84].

Indeed this does not prevent the fact that in some cases such equa-
tions can be linearized through some transcendental transformations.
In fact if ε = 0 the 1Hε1 equation (2.91) can be linearized through the
transcendental contact transformation:

un,m − un+1,m =
√
α2e

zn,m , (2.131)

i.e.

zn,m = log
un,m − un+1,m√

α2
, (2.132)

with log standing for the principal value of the complex logarithm
(the principal value is intended for the square root too). The transfor-
mation (2.131) brings (1.91a) into the following family of first order
linear equations:

zn,m+1 + zn,m = 2iπκ, κ = 0, 1. (2.133)

However this kind of transformation does not prove the result of the
Algebraic Entropy, as it involves exponential transformations. There-
fore the method explained in Subsection 2.4.1 should be considered
the correct one.





3
G E N E R A L I Z E D S Y M M E T R I E S O F T H E
T R A P E Z O I D A L H 4 A N D H 6 E Q U AT I O N S A N D T H E
N O N - A U T O N O M O U S Y D K N E Q U AT I O N

In this Chapter we introduce the concept of Generalized Symmetries
for quad equations. We present the main computational tools for find-
ing a specific class of Generalized Symmetries. Then we will use
the developed tools to compute the Generalized Symmetries of the
trapezoidal H4 equations (1.91) and of the H6 equations (1.93). The
main result will then be the fact that all the symmetries we computed
are related to a well-known differential-difference equation, the non-
autonomous Yamilov discretization of the Krichever-Novikov (YdKN)
equation. This identification led us to conjecture and prove, using the
Algebraic Entropy test, the existence of a new non-autonomous inte-
grable quad equation which is a generalization of the QV equation
[156].

The material is structured as follows: In the first part of the Chap-
ter we will introduce the concept needed, in particular in Section 3.1
we will discuss the relationship of the Generalized Symmetries with
integrability properties, which is one of the reason for interest in the
Generalized Symmetries. To do so we will treat the well known exam-
ple of the Korteweg-deVries equation. In Section 3.2 we will construct
three-point generalized symmetries for quad equations. We will give
in particular a method for finding three-point generalized symme-
tries in the case of equation with two-periodic coefficients. In this
second part of the Chapter we present some original results bases on
[65, 66, 68]. In particular in Section 3.3 we will present the symme-
tries of the trapezoidal H4 equations (1.91) and of the H6 equation
(1.93) constructed with the method explained in 3.2. This Section is
mainly based on the exposition in [66, 68]. Then in Section 3.4 we
identify the three-point generalized symmetries computed in Section
(3.3) with some particular sub-cases of the non-autonomous YdKN
equation. Since an analogous result, which for sake of completeness is
stated in Appendix E, was known for the rhombic H4 equation [166],
we conclude that the three-point Generalized Symmetries of all the
equations belonging to the classification of Boll [3, 20–22], discussed
in Chapter 1, are all sub-cases of the YdKN equation. This result ex-
tends what was previously known for three-point Generalized Sym-
metries of the ABS equations [2] which were known to be particular
sub-cases of the autonomous YdKN equation [102]. In Section 3.5 we
discuss the integrability properties of the obtained three-point gener-
alized symmetries seen as differential-difference equations, both with

79
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the Master Symmetries approach and with the Algebraic Entropy test.
These two last Sections are is essentially based on the results given in
[66]. In the last Section 3.6 based on the considerations made in Sec-
tion 3.4 and on the results of [165] about the QV equation [156] and
its relation to the autonomous YdKN equation we conjecture the ex-
istence of a non-autonomous generalization of this equation. We then
find the appropriate candidate for such an extension by providing
a non-autonomous extension of the Klein symmetries used in [156]
to find the QV equation. We then prove the integrability using the
Algebraic Entropy test and finally we discuss the three-point general-
ized symmetries of the obtained equation and their relation with the
non-autonomous YdKN equation. This last Section is based on [65].

3.1 generalized symmetries and integrability

At the time of the Franco-Prussian war in 1870 the Norwegian math-
ematician Sophus Lie considered the question of the invariance of
differential equations with respect to continuous infinitesimal trans-
formation, i.e. transformations which can be seen as continuous de-
formations of the identity. In the successive 30 years Lie developed
a theory which includes all the implications of such invariance. The
summa of the work of Sophus Lie on the subject is contained in [111].

Lie’s works on differential equation had a brief moment of success,
but soon they were forgotten due to the complexity of the calcula-
tions. They were subsequently rediscovered around the middle of
the XXth century by Russian mathematicians under the leadership
of Ovsiannikov [133, 134]. On the other hand Lie work on continu-
ous groups was a powerful tool in the development of Quantum Me-
chanics where they were used to show unexpected results about the
atomic spectra [160]. However the “physicists” theory of Lie groups
turns out to be completely separated from the application of continu-
ous groups to differential equations in such a way that it was possible
that somebody knew much of one and completely ignore the other.

The original idea of Sophus Lie was to unify the various methods of
solution for differential equations uncovering the underlying geomet-
rical structure in the same spirit as it was done by Evariste Galois for
algebraic equations. Lie’s theory of infinitesimal point transformation
is linear, and one is able to reconstruct the full group of transforma-
tion by solving some differential equations.

In his work Lie [110] considered infinitesimal transformations de-
pending also on the first derivatives of the dependent variables, the
so-called contact transformations [11, 87]. Later Bäcklund considered
transformations depending on finitely many derivatives of the depen-
dent variables adding some closure relations in order to preserve the
geometrical structure of the transformations [16]. The first to recog-
nize the possibility of considering also transformations depending
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on higher order derivatives without additional conditions was Emmy
Noether in her fundamental paper [125]. The mathematical objects
Noether considered was what now we call Generalized Symmetries.

In modern times due to their algorithmic nature generalized sym-
metry have been used both as tools for the study of given systems
[11, 41, 48, 87, 91, 93, 94, 130, 132] and as a tool to classify integrable
equations. The symmetry approach to integrability has mainly been
developed by a group of researchers belonging to the scientific school
of A.B. Shabat in Russia. It has been developed in the continuum case
[4, 73, 116–118, 146, 147], in the differential-difference case [57, 105,
167, 168] and more recently also in the completely discrete case [106,
107].

Let us start discussing the relation between integrability and gener-
alized symmetries in the case of partial differential equations in two
independent variables and one dependent variable. Let us assume we
are given a partial differential equation (PDE) of order k in evolution-
ary form for an unknown function u = u (x, t):

ut = f(u,u1, . . . ,uk), (3.1)

where ut = ∂u/∂t and uj = ∂ju/∂xj for any j > 0.
A generalized symmetry of order m for (3.1) is an equation of the

form:

uτ = g(u,u1,u2, . . . um) (3.2)

compatible with (3.1). Here τ plays the role of the group parameter and
of course we are assuming u = u (x, t, τ). The compatibility condition
between (3.1) and (3.2) implies the following PDE for the functions f
and g:

∂2u

∂t∂τ
−
∂2u

∂τ∂t
= Dtg−Dτf = 0 , (3.3)

where Dt, Dτ are the operators of total differentiation corresponding
to (3.1, 3.2), defined, together with the operator of total x-derivative
D, by

D =
∂

∂x
+
∑
i>0

ui+1
∂

∂ui
, (3.4a)

Dt =
∂

∂t
+
∑
i>0

Dif
∂

∂ui
, (3.4b)

Dτ =
∂

∂τ
+
∑
i>0

Dig
∂

∂ui
. (3.4c)

When (3.3) is satisfied we say that (3.2) is a generalized symmetry of
order m for (3.1).
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We will now see in a concrete example how from the integrabil-
ity properties is possible to obtain an infinite sequence of general-
ized symmetries of the form (3.2). Let us consider the well known
Korteweg-de Vries equation (KdV equation) [92]:

ut = 6uu1 + u3. (3.5)

It is known [97] that the KdV equation (3.5) possess the following
linear representation:

Lt = [L,M] , (3.6)

where L and M are differential operators given by:

L = −∂xx + u, (3.7a)

M = 4∂xxx − 6u∂x − 3∂x(u). (3.7b)

and by [, ] we mean the commutator of two differential operators.
We look for a chain of differential operators Mj which correspond to
different equations associated with the same L:

Ltj =
[
L,Mj

]
, (3.8)

Since Lt = ut is a scalar operator one must have [L,M] = V with V
scalar operator. If there exists another equation associated to L then
there must exists another M̃ such that[

L, M̃
]
= Ṽ (3.9)

where Ṽ is another scalar operator.
Now one can relate M and M̃. Noting that the equation ut = ux

can be written in the form (3.8) with Mj = ∂x we see that the opera-
tors Mj are characterized from the power of the operator ∂x and that
the relation between one and the other is of order two, as the order
of the operator L. We can therefore make the general assumption:

M̃ = LM+ F∂x +G, (3.10)

where F and G are scalar operators. Using the ansatz (3.10) and im-
posing to the coefficients of the various differential operators in (3.9)
we find that:

Ṽ = LV + ux, (3.11)

where:

LV = −
1

4
Vxx + uV −

1

2
ux

∫∞
x

V(y)dy. (3.12)

This yields an infinite family of equations for any entire function F(z),

ut = F (L)ux. (3.13)
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The equations (3.13) are associated to the same L operator and, by
solving the Spectral Problem associated to it [26], they are shown to
be commuting with the original KdV equation (3.5). The operator L

is called recursion operator or Lénard operator [51, 98, 129]. In particular
for F (L) = Ln we find a whole hierarchy of generalized symmetries
for the KdV equation (3.5). The operator (3.12) is called the recursion
operator for the KdV equation (3.5).

In general any evolution equation possessing a recursion operator
has an infinite hierarchy of equations and if they commute they with
the evolution equation are generalized symmetries for the evolution
equation, and, then, in an appropriate sense, an evolution equation
is integrable. We therefore have a symmetry-based definition of in-
tegrability: An evolution equation is called integrable if it possesses non-
constant generalized symmetries of any order m [131]. Note that this
definition a priori does not distinguish between C-integrable and S-
integrable equations. Indeed both C-integrable and S-integrable equa-
tions possess the property of having recursion operators like (3.12),
but C-integrable equations are linearizable [25]. The most famous C-
integrable equation, the Burgers equation, also possesses a recursion
operator. The difference between C-integrable and S-integrable equa-
tions is in the fact that the S-integrable equations possess infinitely
many conservation laws of any order whereas the C-integrable ones
only up to the order of the equation itself. Finally we note that since
integrable equations in this sense comes in hierarchies and the ele-
ments of a hierarchy commute between themselves also the general-
ized symmetries of an integrable equation are integrable.

3.2 three-point generalized symmetries for quad equa-
tion

un−1,m−1 un,m−1 un+1,m−1

un−1,m
un,m

un+1,m

un−1,m+1 un,m+1 un+1,m+1

Figure 3.1: The extended square lattice with 9 points.
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In this Section we discuss the construction of the most simple gener-
alized symmetries for quad equations (1.1)1. Symmetries of this kind
were first considered in [139]. The exposition here is mainly based on
the original papers [52, 106, 107] and on the review in [63], where
a different approach to that used in [139] was developed. The most
simple Generalized Symmetries for a quad equation in the form (1.1)
are those depending on nine points defined on a square of vertices
un−1,m−1, un−1,m+1, un+1,m+1 and un+1,m−1 as depicted in Fig-
ure 3.1. A priori the symmetry generator can depend on all these
points, however by taking into account the difference equation (1.1),
we can express the extremal points un−1,m−1, un−1,m+1, un+1,m+1

and un+1,m−1 in terms of the remaining five points un−1,m, un+1,m,
un,m, un,m−1 and un,m+1. In general this means that we are tak-
ing as independent variables those laying on the coordinate axes, i.e.
un+j,m and un,m+k with j,k ∈ Z. This choice of independent vari-
able is acceptable, since these points do not lie on squares. In this
way the most general nine points generalized symmetry generator is
represented by the infinitesimal symmetry generator

X̂ = g(un−1,m,un+1,m,un,m,un,m−1,un,m+1)∂un,m . (3.14)

As in the case of the differential difference equation the function g is
called the characteristic of the symmetry. We note that this is not the only
possible choice for the independent variables. Another viable choice
of independent variables is given by an appropriate restriction of an
infinite staircase, e.g. to consider the points un+1,m−1, un,m−1, un,m,
un−1,m and un−1,m+1. This was the choice we made in the case of the
Algebraic Entropy, but for the calculation of symmetries the choice of
the independent variables on the axes is more convenient.

Now we need to prolong the operator (3.14) in order to apply it
on the quad equation (1.1) and construct the determining equations.
This prolongation is naturally given by:

prX̂ = g(un−1,m,un+1,m,un,m,un,m−1,un,m+1)∂un,m

+ g(un,m,un+2,m,un+1,m,un+1,m−1,un+1,m+1)∂un+1,m

+ g(un−1,m+1,un+1,m+1,un,m+1,un,m−1+1,un,m+2)∂un,m+1

+ g(un,m+1,un+2,m+1,un+1,m+1,un+1,m,un+1,m+2)∂un+1,m+1
.

(3.15)

Applying the prolonged vector field to equation (1.1), we get:

g
∂Q

∂un,m
+ [Tng]

∂Q

∂un+1,m

+ [Tmg]
∂Q

∂un,m+1
+ [TnTmg]

∂Q

∂un+1,m+1
= 0,

(3.16)

1 This kind of reasoning in fact can hold for every kind of partial difference equations
on the square which are solvable with respect to all its variables.
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where Tnfn,m = fn+1,m and Tmfn,m = fn,m+1. A priori (3.16) con-
tains un+i,m+j with i = −1, 0, 1, 2, j = −1, 0, 1, 2.

The invariance condition requires that (3.16) be satisfied on the so-
lutions of (1.1). To be consistent with our choice of independent vari-
ables, which now include also un,m+2 and un+2,m, we must use (1.1)
and its shifted consequences to express:

• un+2,m+1 = un+2,m+1(un+2,m,un+1,m+1,un+1,m),

• un+1,m+1 = un+1,m+1(un+1,m,un,m+1,un,m),

• un−1,m+1 = un−1,m+1(un−1,m,un,m+1,un,m),

Doing so we reduce the determining equation (3.16) to an equation,
written just in terms of independent variables, which thus must be
identically satisfied. Differentiating (3.16) with respect to un,m+2 and
to un+2,m, we get

∂2TnTmg

∂un+2,m+1∂un+1,m+2
= TnTm

∂2g

∂un+1,m∂un,m+1
= 0. (3.17)

Consequently the symmetry coefficient g is the sum of two simpler
functions,

g = g0(un−1,m,un+1,m,un,m,un,m−1)

+ g1(un−1,m,un,m,un,m−1,un,m+1).
(3.18)

Introducing this result into the determining equation (3.16) and dif-
ferentiating it with respect to un,m+2 and to un−1,m, we have that g1
reduces to

g1 = g10(un−1,m,un,m,un,m−1) + g11(un,m,un,m−1,un,m+1).

(3.19)

In a similar way, if we differentiate the resulting determining equation
with respect to un+2,m and to un,m−1, we have that g0 reduces to

g0 = g00(un−1,m,un,m,un,m−1) + g01(un−1,m,un+1,m,un,m).

(3.20)

Combining these results and taking into account the property sym-
metrical to (3.17), i.e. ∂2g/(∂un−1,m∂un,m−1) = 0, we obtain the fol-
lowing form for g:

g = g0(un,m−1,un,m,un,m+1)+g1(un−1,m,un,m,un+1,m). (3.21)

So, the infinitesimal symmetry coefficient is the sum of functions that either
involve shifts only in n with m fixed or only in m with n fixed [106, 139].

Let us consider the subcase when the symmetry generator is given
by

dun,m

dε
= g1(un−1,m,un,m,un+1,m). (3.22)
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This is a differential-difference equation depending parametrically on
m. Setting un,m = un and un,m+1 = ũn, the compatible partial dif-
ference equation (1.1) turns out to be an ordinary difference equation
relating un and ũn:

Q(un,un+1, ũn, ũn+1) = 0, (3.23)

i.e. a Bäcklund transformation [102] for (3.22). A similar result is ob-
tained in the case of g0. This result was first presented in [139].

We note that higher order symmetries, i.e. symmetries depending
on more lattice points, have the same splitting in simpler symmetries
in the two directions [52]. However such higher order symmetries
will no longer yield Bäcklund transformations.

To find the specific form of g1 we have to differentiate the deter-
mining equation (3.16) with respect to the independent variables and
get from these some further necessary conditions on its shape. Let us
discuss the case in which the symmetry is given in terms of shifts in
the n direction, since the m direction shift case can be treated analo-
gously2:

X = g (un+1,m,un,m,un−1,m)∂un,m . (3.24)

We don’t impose restrictions on the explicit dependence of g on the
lattice variables, so in principle g = gn,m.

To obtain gwe have to solve the equation (3.16) which is a functional
equation since it must be evaluated on the four-tuples (un,m,un+1,m,un,m+1,un+1,m+1)

such that the quad equation (1.1) holds. The best way to so is to get
some consequences of (3.16) and convert them into a system of lin-
ear partial differential equation, which we can solve. This will impose
restrictions on the form of g and will allow us to solve the functional
equation (3.16). Using the assumption that Q is multi-linear we can
express un+1,m+1 as:

un+1,m+1 = f (un+1,m,un,m,un,m+1) , (3.25)

therefore the determining equation takes the form:

TnTmg = Tng
∂f

∂un+1,m
+ Tmg

∂f

∂un,m+1
+ g

∂f

∂un,m
(3.26)

Let us start to differentiate (3.26) with g given by (3.24) with respect
to un+2,m which is the higher order shift appearing in (3.26):

TnTm
∂g

∂un+1,m
Tn

∂f

∂un+1,m
=

∂f

∂un+1,m
Tn

∂g

∂un+1,m
. (3.27)

2 In fact the most convenient way for treating the symmetries in the m direction is
to consider the transformation n ↔ m and make the computations in the new n

direction. Performing again the same transformation in the obtained symmetry will
yield the result.
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Define:

z = log
∂g

∂un+1,m
(3.28)

then we can rewrite (3.27) in the form of a conservation law:

Tmz = z+
(
T−1n − Id

)
log

∂f

∂un+1,m
(3.29)

We also have another representation for (3.26) which will be useful
in deriving another relation similar to (3.29). Let us apply T−1n to
(3.26) then solving the resulting equation for T−1n Tmg we obtain a
equivalent representation for (3.26):

T−1n Tmg =− T−1n

(
∂f

∂un,m

/
∂f

∂un,m+1

)
T−1n g

+ T−1n

(
1

/
∂f

∂un,m+1

)
Tmg

− T−1n

(
∂f

∂un+1,m

/
∂f

∂un,m+1

)
g.

(3.30)

Differentiating (3.30) with respect to un−2,m we obtain:

T−1n Tm
∂g

∂un−1,m

∂un−2,m+1

∂un−2,m
= −T−1n

(
∂f

∂un,m

/
∂f

∂un,m+1

)
T−1n

∂g

∂un−1,m
.

(3.31)

From the implicit function theorem we get:

∂un−2,m+1

∂un−2,m
= T−1n

∂un−1,m+1

∂un−1,m
= −T−2n

(
∂f

∂un,m

/
∂f

∂un,m+1

)
. (3.32)

So introducing

v = log
∂g

∂un−1,m
(3.33)

we obtain from (3.31) a new equation written in conservation law
form:

Tmv = v+ (Tn − Id) log
(

∂f

∂un,m

/
∂f

∂un,m+1

)
. (3.34)

The equations (3.29) and (3.34) are still functional equations, but
we can derive from them a system of first order PDEs. Indeed let s be
a function such that s = s (un+1,m,un,m,un−1,m). Then the function
Tms = s (un+1,m+1,un,m+1,un−1,m+1) can be annihilated applying
the differential operator:

Y−1 =
∂

∂un,m
−

∂f/∂un,m

∂f/∂un,m+1

∂

∂un+1,m

− T−1n

(
∂f/∂un+1,m

∂f/∂un,m

)
∂

∂un−1,m
.

(3.35)



88 generalized symmetries and the na ydkn equation

On the other hand the function T−1m s = s (un+1,m−1,un,m−1,un−1,m−1)

is annihilated by the operator:

Y1 =
∂

∂un,m
− T−1m

∂f

∂un,m+1

∂

∂un+1,m

− T−1n T−1m

(
∂f

∂un,m+1

)−1
∂

∂un−1,m
.

(3.36)

Therefore we can apply the operator Y−1 as given by (3.35) to (3.29)
and this will give us the linear PDE:

Y−1z = −Y−1
(
T−1n − Id

)
log

∂f

∂un+1,m
. (3.37)

Analogously by applying T−1m to (3.29) we can write

T−1m z = z− T−1m
(
T−1n − Id

)
log

∂f

∂un+1,m
(3.38)

which applying Y1 gives us the linear PDE:

Y1z = Y1T
−1
m

(
T−1n − Id

)
log

∂f

∂un+1,m
. (3.39)

Since z is independent from un,m±1, whereas the coefficients in (3.37,3.39)
may depend on it, we may write down a system for the function z:

Y1z = Y1T
−1
m

(
T−1n − Id

)
log

∂f

∂un+1,m
, (3.40a)

Y−1z = −Y−1
(
T−1n − Id

)
log

∂f

∂un+1,m
, (3.40b)

∂z

∂un,m+1
=

∂z

∂un,m−1
= 0. (3.40c)

The system (3.40) may not be closed in the general case. If the system
(3.40) happens to be not closed it is possible to add an extra equation
using Lie brackets:

[Y1, Y−1] z = −
[
Y1Y−1T

−1
m − Y−1Y1

] (
T−1n − Id

)
log

∂f

∂un+1,m
. (3.41)

Applying the same line of reasoning we deduce a system of equa-
tions also for v:

Y1v = Y1T
−1
m (Tn − Id) log

(
∂f

∂un,m

/
∂f

∂un,m+1

)
, (3.42a)

Y−1v = −Y−1(Tn − Id) log
(

∂f

∂un,m

/
∂f

∂un,m+1

)
, (3.42b)

∂v

∂un,m+1
=

∂v

∂un,m−1
= 0. (3.42c)
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As before if the system is not closed we may add the equation ob-
tained using the Lie bracket:

[Y1, Y−1] z = −
[
Y1Y−1T

−1
m − Y−1Y1

] (
T−1n − Id

)
log
(

∂f

∂un,m

/
∂f

∂un,m+1

)
,

(3.43)

Once we have solved the systems (3.40) and (3.42) (eventually with
the aid of the auxiliary equations (3.41) and (3.43)) we insert the ob-
tained values of z and v into (3.29) and (3.34). In this way we can fix
the dependency on the explicit functions of the lattice variables n, m.
We can then solve the potential-like equation:

∂g

∂un+1,m
= ez,

∂g

∂un−1,m
= ev. (3.44)

Therefore if the compatibility condition

∂ez

∂un−1,m
=

∂ev

∂un+1,m
. (3.45)

is satisfied we can write:

g =

∫
ezdun+1,m + g(1) (un,m) . (3.46)

It only remains to determine the function g(1) (un,m). This can be eas-
ily done by plugging g as defined by (3.46) into the determining equa-
tions (3.26). This determining equation will still be a functional equa-
tion, but the only implicit dependence will be in g(1) (f (un+1,m,un,m,un,m+1))

and can be annihilated by applying the operator

S =
∂

∂un,m
−

∂f/∂un,m

∂f/∂un+1,m

∂

∂un+1,m
. (3.47)

Differentiating in an appropriate way the resulting equation we can
determine g(1) (un,m) and check its functional form by plugging it
back into (3.26).

To conclude this discussion we present two examples of calcula-
tions of three-point generalized symmetries using the procedure pre-
sented above.

Example 3.2.1 (The H1 equation (1.23a)). In this example we will con-
sider the H1 equation as given by (1.23a). We will compute its au-
tonomous three-point symmetries in the n direction using the method
we outlined above. These symmetries were first derived with a differ-
ent technique in [163, 164]. These symmetries appeared also in many
other papers, see [139] and references therein for a complete list.

We first have to find the function z = log∂g/∂un+1,m. Using the
definition we can write down (3.40a) with f given by solving (1.23a):

(un,m−1 − un+1,m)2
∂z

∂un+1,m
+ (α1 −α2)

∂z

∂un,m

+ (un−1,m − un,m−1)
2 ∂z

∂un−1,m
= 2 (2un,m−1 − un+1,m − un−1,m) .



90 generalized symmetries and the na ydkn equation

(3.48)

(3.40c) implies that we can take the coefficients with respect to un,m−1

in (3.48):

u2n+1,m
∂z

∂un+1,m
+ (α1 −α2)

∂z

∂un,m

+ u2n−1,m
∂z

∂un−1,m
= −2 (un+1,m + 2un−1,m) ,

(3.49a)

un+1,m
∂z

∂un+1,m
+ un−1,m

∂z

∂un−1,m
= −2, (3.49b)

∂z

∂un−1,m
+

∂z

∂un+1,m
= 0 (3.49c)

This equations can be easily solved to give the form of z:

z = log
[
C1 (un+1,m − un−1,m)−2

]
, (3.50)

being C1 a constant.
We do the same computations for v we obtain that v have to solve

exactly the same equations as z, therefore we conclude that:

v = log
[
C2 (un+1,m − un−1,m)−2

]
. (3.51)

being C2 a new constant of integration. Using the compatibility con-
dition (3.45) we obtain that C2 = −C1 and integrating (3.44) we have:

g =
C1

un−1,m − un+1,m
+ g(1) (un,m) . (3.52)

Inserting this form of g into the determining equations (3.26) and
applying the operator S (3.47) we obtain the following equation:

un,m+1
dg(1)

dun,m+1
(un+1,m) − un,m+1

dg(1)

dun,m
(un,m)

+ 2g(1) (un+1,m) − un+1,m
dg(1)

dun+1,m
(un+1,m)

+ un+1,m
dg(1)

dun,m
(un,m) − 2g(1) (un,m+1) = 0.

(3.53)

Differentiating it with respect to un,m we obtain d2g(1) (un,m)
/

du2n,m =

0 which implies g(1) = C3un,m +C4. Substituting this result in (3.53)
we obtain the restriction C3 = 0.

In conclusion we have found:

g =
C1

un−1,m − un+1,m
+C4, (3.54)

which satisfy identically the determining equations (3.26). This shows
that (3.54) is the most general three-point symmetry in the n direction.
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Note that whereas the coefficient of C1 is a genuine generalized sym-
metry, the coefficient of C4 is in fact a point symmetry. Since the H1
equation (1.23a) is invariant under the exchange of variables n ↔ m

we have the symmetry in the m direction:

g̃ =
C̃1

un,m−1 − un,m+1
. (3.55)

Therefore equations (3.54, 3.55) represent the most general autonomous
five point symmetries of the H1 equation (1.23a) [139].

It is worth to note that the differential difference equation defined
by the equations (3.54) and (3.55) i.e:

duk
dt

=
1

uk+1 − uk−1
, k ∈ Z, (3.56)

is a spatial discretization of the KdV equation [101, 121].
We will return to the symmetry (3.54) in Example 3.2.3 concerning

symmetry reduction. �

Example 3.2.2 (Autonomous equation with non-autonomous general-
ized symmetries). Let us consider the quad equation:

un+1,m+1un,m(un+1,m − 1)(un,m+1 + 1)

+(un+1,m + 1)(un,m+1 − 1) = 0
(3.57)

It was proved in [107] that (3.57) does not admit any autonomous
three point generalized symmetry, but it was conjectured there that it
might have a non-autonomous symmetry. This conjecture was proved
in [52] and we will shall give here such a proof.

We first have to construct the function z = log∂g/∂un+1,m. Using
its definition we can write down (3.40) with f obtained from (3.57) as:

u2n−1,m − 1

2un,m

∂z

∂un−1,m
+

∂z

∂un,m

+
2un+1,m

u2n,m − 1

∂z

∂un+1,m
=
u2n,m − 2un,m − 1

un,m(u2n,m − 1)
,

(3.58a)

2un−1,m

u2n,m − 1

∂z

∂un−1,m
−

∂z

∂un,m
+
u2n+1,m − 1

2un,m

∂z

∂un+1,m

=
u2n,mun+1,m + 2u2n,m − un+1,m

un,m(1− u2n,m)
.

(3.58b)

Since in (3.58) there is no dependence on un,m±1 we can omit the
equations concerning these variables. The system (3.58) is not closed.
To close this system one has to add the equation for the Lie bracket
(3.41). Solving the obtained system of three equations with respect to
the partial derivatives of z we have:

∂z

∂un−1,m
= 0, (3.59a)
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∂z

∂un+1,m
= −

2(un,m + 1)

un+1,m(un,m + 1) + 1− un,m
, (3.59b)

∂z

∂un,m
=

1

un,m
+

1

un,m + 1
+

1

un,m − 1
,

−
2(un+1,m − 1)

un+1,m(un,m + 1) + 1− un,m
.

(3.59c)

These three equations form an overdetermined system of equations
for z which is consistent because is closed. Hence its general solution
z is easily found. It contains arbitrary function C1n,m depending on
both discrete variables:

z = log
C1n,mun,m(u2n,m − 1)

(un,mun+1,m + un+1,m − un,m + 1)2
. (3.60)

Substituting (3.60) into the conservation law (3.29) we get:

log
−C1n,m+1

C1n,m
= 0. (3.61)

The last equation is solved by C1n,m = (−1)mC2n where C2m is an
arbitrary function of one discrete variable.

Therefore by solving equation z = log∂g/∂un+1,m we find:

g =
−(−1)nC2nun,m(un,m − 1)

un,mun+1,m + un+1,m − un,m + 1
+g2(un−1,m,un,m). (3.62)

with g2 possibly dependent on the lattice variables n,m. For the
further specification consider v(un−1,m,un,m) = log∂g/∂un−1,m =

log∂g2/∂un−1,m which putted into (3.42) for v gives:

u2n−1,m − 1

2un,m

∂v

∂un−1,m
+

∂v

∂un,m
=
2u2n,m − 2un,mun−1,m + un−1,m

un,m(u2n,m − 1)
,

(3.63a)

2un−1,m

u2n,m − 1

∂v

∂un−1,m
−

∂v

∂un,m
= −

1− u2n,m − 2un,m

un,m(u2n,m − 1)
. (3.63b)

The solution of the system (3.63) is given by:

v = log
C3n,mun,m(u2n,m − 1)

(un,mun−1,m − un−1,m + un,m + 1)2
. (3.64)

Substituting (3.64) in the conservation law (3.34) we obtain the rela-
tion

log
−C3n,m+1

C3n,m
= 0, (3.65)

whose solution is C3n,m = (−1)mC4n, where C4n is an arbitrary func-
tion of n.
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As a result function g takes the form;

g =
−(−1)mC2nun,m(un,m − 1)

un,mun+1,m + un+1,m − un,m + 1

+
−(−1)mC4nun,m(un,m + 1)

un,mun−1,m − un−1,m + un,m + 1
+ g(1)(un,m).

(3.66)

Substituting (3.66) into (3.26), applying the operator S defined by
(3.47) then dividing by the factor

2un,m
(
u2n+1,m − 1

) (
u2n,m+1 − 1

)
(un+1,m + 1+ un,mun+1,m − un,m)

(3.67)

and finally differentiating with respect to un,m we obtain:

d2g(1)

du2n,m
−

1

un,m

dg(1)

dun,m
+
g(1)

u2n,m
=

(−1)m
(
u2n+1,m + 1

) (
C2n −C4n+1

)
(un,mun+1,m − un,m + un+1,m + 1)2

.

(3.68)

This equation implies:

d2g(1)

du2n,m
−

1

un,m

dg(1)

dun,m
+
g(1)

u2n,m
= 0, C2n = C4n+1. (3.69)

Therefore g(1) = C5n,mun,m + C6n,mun,m logun,m, where the coeffi-
cients do not depend on un,m but might depend on the lattice vari-
ables n,m. Substituting this result again into the determining equa-
tions, applying the operator S and taking the coefficients with respect
to the independent functions un,m+1, un,m, logun+1,m, un+1,m we
obtain the three equations:

C6n+1,m = 0, 2C5n+1,m +
(
C4n+2 −C

4
n+1

)
(−1)m = 0,

2C5n+1,m −
(
3C4n+1 +C

4
n+2

)
(−1)m = 0,

(3.70)

which, when solved, give us:

C4n,m = C (−1)n , C5n,m = C (−1)n+m , C6n,m = 0. (3.71)

By plugging these results into (3.66) we obtain:

g =
(−1)m+nCun,m(u2n,m − 1)(un+1,mun−1,m + 1)

(un,mun+1,m + un+1,m − un,m + 1)(un,mun−1,m − un−1,m + un,m + 1)
.

(3.72)

From the direct substitution into (3.26) we obtain that (3.72) is a sym-
metry. �
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Generalized symmetries can be used to provide symmetry reductions.
Suppose we have a three-point generalized symmetry in the form
(3.24). We can consider its flux which we recall is the solution of the
differential difference equation

dun,m

dε
= g (un+1,m,un,m,un−1,m) (3.73)

and we can consider its stationary solutions, i.e. the solutions such that
dun,m/dε ≡ 0:

g (un+1,m,un,m,un−1,m) = 0. (3.74)

In this equation m plays the rôle of a parameter and we can consider
contemporaneous solutions of the stationary equation (3.74) and of
the original quad equation (3.25). This will give raise to families of
particular solutions which are known as symmetry solutions.

We conclude this Subsection presenting an example of symmetry
reduction.

Example 3.2.3 (Reduction of the H1 equation (1.23a)). Consider the H1
equation as given by formula (1.23a). In Example 3.2.3 we derived its
three point generalized symmetries in both directions. Here we will
use the symmetry (3.54) to derive a family of symmetry solutions [24,
136]. First we start by observing that if we assume C4 ≡ 0 we cannot
have any stationary solution to the equation

C1

un−1,m − un+1,m
+C4 = 0, (3.75)

so we must assume C4 6= 0 and then we can take without loss of gen-
erality C4 = 1. This means that the we will have the linear stationary
equation:

un+1,m − un−1,m = C1. (3.76)

This equation has solution:

un,m = U
(0)
m (−1)n +U

(1)
m +

1

4
C1((−1)n − 1+ 2n), (3.77)

which substituted into (1.23a) gives us two equations for the coeffi-
cients of (−1)n:

U
(0)
m+1 +U

(0)
m +

C1

2
= 0, (3.78a)(

U
(0)
m+1 +U

(0)
m

)2
−
(
U

(1)
m+1 −U

(1)
m

)2
+

(C1)2

2
+C1U

(0)
m +C1U

(0)
m+1 = α1 −α2.

(3.78b)

The solution of (3.78a) is given by:

U
(0)
m = K1(−1)

m −
1

4
(1+ (−1)m)C1, (3.79)
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which substituted in (3.78b) gives to the equation:

U
(1)
m+1 −U

(1)
m = ±1

2

√
−4α1 + 4α2 + (C1)2 (3.80)

whose solution is given by:

U
(1)
m = K2 ±

m

2

√
−4α1 + 4α2 + (C1)2. (3.81)

So inserting (3.79) and (3.81) into (3.77) we obtain:

un,m = (−1)n+m
(
K1 +

C1

4

)
+K2

±
√
(C1)2 − 4α1 + 4α2m−

C1

4
+
C1

4
n

(3.82)

This is our symmetry solution. �

To end this Section we present a convenient way to compute the
three-point generalized symmetries in the case of quad equations
with two-periodic coefficients:

F
(+)
n F

(+)
m Q(+,+) + F

(+)
n F

(−)
m Q(+,−)

+F
(−)
n F

(+)
m Q(+,+) + F

(−)
n F

(−)
m Q(−,−) = 0,

(3.83)

where Q(±,±) = Q(±,±) (un,m,un+1,m,un,m+1,un+1,m+1) and F(±)k

is given by (1.90). Whereas the method outlined above in principle
apply to quad equations with two-periodic coefficients (3.83) the com-
putations readily become very cumbersome. So we will give a brief
account on how these difficulties can be avoided following the expo-
sition in [63]. The necessity of treating equations like (3.83) as simply
as possible comes from the fact that we wish to study the trapezoidal
H4 and H6 equations which have two-periodic coefficients as shown
by their explicit form given in Section 1.6. The three-point generalized
symmetries of these equations were first presented in [66] and were
computed with the ideas presented above. We recall that the three-
point generalized symmetries of the rhombic H4 equations, which
again have two-periodic coefficients, were studied in [166].

Now let us consider a quad equation with two-periodic coefficients
of the form (3.83). Since any point (n,m) on the lattice have coordi-
nates which can be even or odd we can derive the equations (3.40,3.42)
for the functions z and v and then use the decomposition:

z = F
(+)
n F

(+)
m z(+,+) + F

(+)
n F

(−)
m z(+,−)

+ F
(−)
n F

(+)
m z(+,+) + F

(−)
n F

(−)
m z(−,−),

(3.84a)

v = F
(+)
n F

(+)
m v(+,+) + F

(+)
n F

(−)
m v(+,−)

+ F
(−)
n F

(+)
m v(+,+) + F

(−)
n F

(−)
m v(−,−).

(3.84b)
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The decomposition (3.84) reduces the problem to the solution of four
decoupled systems for the functions z(±,±) = z(±,±) (un+1,m,un,m,un−1,m)

and v(±,±) = v(±,±) (un+1,m,un,m,un−1,m) by considering the even/odd
combinations of discrete variables.

The same decomposition can be used for the function g:

g = F
(+)
n F

(+)
m g(+,+) + F

(+)
n F

(−)
m g(+,−)

+ F
(−)
n F

(+)
m g(+,+) + F

(−)
n F

(−)
m g(−,−),

(3.85)

with g(±,±) = g(±,±) (un+1,m,un,m,un−1,m), and the relative com-
patibility conditions (3.45). This will yield the following form for g:

g = Ωn,m (un+1,m,un,m,un−1,m)

+ F
(+)
n F

(+)
m ϕ(+,+) + F

(+)
n F

(−)
m ϕ(+,−)

+ F
(−)
n F

(+)
m ϕ(−,+) + F

(−)
n F

(−)
m ϕ(−,−),

(3.86)

where Ωn,m is a known function derived from z and v and ϕ(±,±) =

ϕ(±,±) (un,m). These functions can be found rewriting the determin-
ing equations with the same decomposition.

3.3 three-point generalized symmetries of the trape-
zoidal H4 and H6 equations

In this Section we apply the method discussed in Section 3.2, espe-
cially in its final part, to compute the three-point generalized sym-
metries of the trapezoidal H4 equations as given by (1.91) and H6

equations as given by (1.93). These three-point generalized symme-
tries were first computed in [66] except for the tHε1 equation whose
symmetries were first presented in [68]. Since the computations are
very long and tedious we omit them and we present only the final re-
sult. The interested reader may refer to Appendix D where we present
two examples carried out in the details: the tHε1 in them direction and
the D3 equation. The three-point generalized symmetries of the other
trapezoidal H4 and H6 equation can be computed in an analogous
way.

3.3.1 Trapezoidal H4 equations

We now consider the trapezoidal H4 equations as given by equation
(1.91).
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We present first the three-point generalized symmetries of the equa-
tions tHε2 (1.91b) and of equations tHε3 (1.91c) are found to be:

X̂t
Hε2
n =

[
(un,m + εα22F

(+)
m )(un+1,m + un−1,m) − un+1,mun−1,m

un+1,m − un−1,m
−

−
u2n,m − 2εF

(+)
m α22un,m −α22 + 4εF

(+)
m α32 + 8εF

(+)
m α22α3 + ε

2F
(+)
m α42

un+1,m − un−1,m

]
∂un,m ,

(3.87a)

X̂t
Hε2
m =


[
1

2
− ε(α2 +α3)F

(+)
m

]
(un,m+1 + un,m−1) − εF

(+)
m un,m+1un,m−1

un,m+1 − un,m−1
−

−
εF

(−)
m u2n,m −

[
1− 2ε(α2 +α3)F

(−)
m

]
un,m +α3 + ε (α2 +α3)

2

un,m+1 − un,m−1

∂un,m ,

(3.87b)

X̂t
Hε3
n =

 12α2(1+α22)un,m(un+1,m + un−1,m) −α22un+1,mun−1,m

un+1,m − un−1,m
−

−
α22u

2
n,m + ε2δ2(1−α22)

2F
(+)
m

un+1,m − un−1,m

]
∂un,m ,

(3.87c)

X̂t
Hε3
m =

 12α3un,m(un,m+1 + un,m−1) − ε
2F

(+)
m un,m+1un,m−1

un,m+1 − un,m−1
−

−
ε2F

(−)
m u2n,m +α23δ

2

un,m+1 − un,m−1

]
∂un,m ,

(3.87d)

The symmetries in the n and m directions and the linearization of
the tHε1 equation (1.91a) were first presented in [68]. Their peculiarity
is that they are written in term of two arbitrary functions of one con-
tinuous variable and one discrete index and by arbitrary functions of
the lattice variables. This fact is related to the property of the tHε1 of
being Darboux integrable with integrals of the first and second order
[5] as it was first found in [69] and we will discuss in Chapter 4.
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In the direction n we have that the tHε1 possess the following three-
point generalized symmetries:

X̂t
Hε1
n,1 =

{
F
(+)
m

(un+1,m − 2un,m + un−1,m) (un+1,m − un−1,m)

·

[(
(un,m − un−1,m)2 + ε2α22

)
Bn

(
α2

un+1,m − un,m

)

−
(
(un+1,m − un,m)2 + ε2α22

)
Bn−1

(
α2

un,m − un−1,m

)]

+ F
(−)
m

(un+1,m − un,m)2 (un,m − un−1,m)2
(
2− 2un+1,mε

2un−1,m
)
un,m

+ε2 (un−1,m + un+1,m)u2n,m

−un+1,m − un−1,m

 (un−1,m − un+1,m) (1+ un,m2ε2)

·
[
Bn

(
un+1,m − un,m

1+ ε2un+1,mun,m

)
−Bn

(
un,m − un−1,m

1+ ε2un,mun−1,m

)]}
∂un,m ,

(3.88a)

X̂t
Hε1
n,2 =

{
F
(+)
m

[
un,m −

((un+1,m − un,m)2 + ε2α2)(un,m − un−1,m)

(un+1,m − 2un,m + un−1,m)(un+1,m − un−1,m)

]

−F
(−)
m

[
un,mun−1,m + un+1,mun,m − un,m

2 − un+1,mun−1,m

(un,m2ε2 + 1) (−2un+1,m + 2un−1,m)

+
(un+1,m − un,m) (un,m − un−1,m)(
2ε2 (un−1,m + un+1,m)u2n,m

+
(
4− 4un+1,mε

2un−1,m
)
un,m − 2un+1,m − 2un−1,m

)]}∂un,m ,

(3.88b)

where Bn = Bn (ξ) is an arbitrary function of its argument. There-
fore the most general symmetry in the n direction is given by the
combination:

X̂t
Hε1
n = X̂t

Hε1
n,1 +αX̂t

Hε1
n,2 (3.89)

where α is an arbitrary constant.
The general symmetry in the m direction is:

X̂t
Hε1
m =

[
F
(+)
m Bm

(
un,m+1 − un,m−1

1+ ε2un,m+1un,m−1

)

+ F
(−)
m

(
1+ ε2u2n,m

)
Cm (un,m+1 − un,m−1)

]
∂un,m .

(3.90)

where Bm = Bm (ξ) and Cm = Cm (ξ) are arbitrary functions of the
lattice variable m and of their arguments.

Furthermore the tHε1 equation (1.91a) possesses the following point
symmetry:

ŶtH
ε
1 =

[
F
(+)
m κm + F

(−)
m λm

(
1+ ε2u2n,m

)]
∂un,m , (3.91)
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where κm and λm are arbitrary functions of the lattice variable m.
On the contrary both the tHε2 equation (1.91b) and the tHε3 equation
(1.91c) do not possess point symmetries.

3.3.2 H6 equations

In this Subsection we consider the H6 equations as given by formula
(1.93).

The three forms of the equation D2 (1.93b,1.93c,1.93d), which we
will collectively call iD2 assuming i in { 1, 2, 3 }, possess the follow-
ing three points generalized symmetries in the n direction and three-
points generalized symmetries in the m direction:

X̂1D2n =


(
F
(+)
n F

(−)
m − δ1F

(+)
n F

(+)
m

)
(un,m+1 + un−1,m)

un+1,m − un−1,m
+

+

(
F
(+)
n F

(−)
m − δ1F

(+)
n F

(+)
m − δ1δ2

)
F
(−)
n F

(+)
m un−1,m

un+1,m − un−1,m
+

+
(F

(+)
n+m − δ1F

(+)
m − δ1δ2F

(+)
n F

(+)
m )un,m + δ2F

(−)
m

un+1,m − un−1,m

]
∂un,m ,

(3.92a)

X̂1D2m =

[
δ1F

(−)
n F

(+)
m un,m+1un,m−1 + F

(−)
n+m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
δ1F

(+)
m un,m+1 + δ1δ2F

(−)
n F

(+)
m un,m−1 + δ1F

(−)
n F

(−)
m u2n,m

un,m+1 − un,m−1
+

+

[
F
(+)
n+m + δ1

(
F
(+)
n F

(−)
m − F

(−)
n F

(−)
m

)
+ δ1δ2F

(−)
n F

(−)
m

]
un,m

un,m+1 − un,m−1
−

−
δ2(δ1 − 1)F

(−)
n

un,m+1 − un,m−1

]
∂unm,

(3.92b)

X̂2D2n =


(
F
(−)
n F

(−)
m δ1 + F

(−)
n F

(−)
m δ1δ2 − F

(−)
n F

(−)
m

)
un+1,m

un+1,m − un−1,m
+

+

(
F
(+)
n F

(+)
m δ1 − F

(+)
n F

(−)
m

)
un−1,m

un+1,m − un−1,m

+

(
δ1F

(−)
n+m − F

(−)
m + δ1δ2F

(+)
n F

(−)
m

)
un,m − (δ1 − 1)F

(+)
m

un+1,m − un−1,m

∂un,m ,

(3.92c)
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X̂2D2m

F(−)
n F

(−)
m δ1un,m+1un,m−1 +

(
δ1δ2F

(−)
n F

(−)
m + F

(+)
n F

(−)
m

)
un,m+1

un,m+1 − un,m−1
+

+
+
(
δ1F

(+)
n F

(+)
m + F

(−)
n F

(−)
m − δ1F

(−)
n F

(−)
m

)
un,m−1

un,m+1 − un,m−1
+

+
δ1F

(−)
n F

(+)
m u2n,m +

[
F
(+)
n F

(−)
m + (δ2 − 1)F

(−)
n F

(+)
m + F

(+)
m

]
un,m

un,m+1 − un,m−1
+

+
δ2(1− δ2)F

(−)
n − δ1λF

(+)
n

un,m+1 − un,m−1

]
∂un,m ,

(3.92d)

X̂3D2n =


(
δ1F

(+)
n F

(−)
m + δ1δ2F

(+)
n F

(−)
m − F

(+)
n F

(−)
m

)
un+1,m

un+1,m − un−1,m
+

+

(
F
(+)
n F

(+)
m δ1 − F

(−)
n F

(−)
m

)
un−1,m

un+1,m − un−1,m
+

+

(
δ1F

(−)
n F

(−)
m δ2 + F

(−)
n δ1 − F

(−)
m

)
un,m + (1− δ1)F

(+)
m

un+1,m − un−1,m

∂un,m,

(3.92e)

X̂3D2m =

[
(1− δ1 − δ1δ2) F

(+)
n F

(−)
m un,m+1

un,m+1 − un,m−1
+

+

(
F
(−)
n F

(−)
m − F

(+)
n F

(+)
m δ1

)
un,m−1 + δ2F

(−)
n

un,m+1 − un,m−1
+

+

(
F
(+)
m − δ1F

(+)
n − δ1δ2F

(+)
n F

(+)
m

)
un,m

un,m+1 − un,m−1
−

−
λδ1(1− δ1 − δ1δ2)F

(+)
n

un,m+1 − un,m−1

]
∂unm.

(3.92f)

Furthermore the equations iD2 possess also the following point
symmetries:

Ŷ1D21 =
(
F
(+)
n F

(+)
m + F

(+)
n F

(−)
m + F

(−)
n F

(+)
m

)
un,m∂un,m , (3.93a)

Ŷ1D22 =
[
δ1F

(+)
n F

(+)
m + [1− δ1(1+ δ2)]F

(−)
n F

(+)
m + F

(+)
n F

(−)
m

]
∂un,m ,

(3.93b)

Ŷ2D21 =
[(
F
(+)
n F

(+)
m + F

(+)
n F

(−)
m + F

(−)
n F

(+)
m

)
un,m−

−λF
(+)
n F

(−)
m + λ[1− δ1(1+ δ2)]F

(−)
n F

(−)
m

]
∂un,m ,

(3.93c)

Ŷ2D22 =
[
δ1F

(+)
n F

(+)
m + F

(+)
n F

(−)
m [1− δ1(1+ δ2)]F

(−)
n F

(−)
m

]
∂un,m ,

(3.93d)
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Ŷ3D21 =
[(
F
(+)
n F

(+)
m + F

(+)
n F

(−)
m + F

(−)
n F

(+)
m

)
un,m−

−λF
(−)
n F

(−)
m + λ[1− δ1(1+ δ2)]F

(−)
n F

(−)
m

]
∂un,m ,

(3.93e)

Ŷ3D22 =
[
δ1F

(+)
n F

(+)
m + [1− δ1(1+ δ2)]F

(+)
n F

(−)
m − F

(−)
n F

(−)
m

]
∂un,m ,

(3.93f)

The D3 equation (1.93e) admits the following three-point general-
ized symmetries:

X̂D3n =

F(+)
n F

(+)
m un+1,mun−1,m +

1

2

(
F
(−)
m − F

(−)
n F

(+)
m

)
un,m(un+1,m + un−1,m)

un+1,m − un−1,m
+

+
F
(−)
n F

(+)
m u2n,m +

(
F
(−)
m − F

(+)
n F

(+)
m

)
un,m

un+1,m − un−1,m

∂un,m ,

(3.94a)

X̂D3m =

F(+)
n F

(+)
m un,m+1un,m−1 +

1

2

(
F
(−)
n − F

(+)
n F

(−)
m

)
un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
F
(+)
n F

(−)
m u2n,m +

(
F
(−)
n − F

(+)
n F

(+)
m

)
un,m

un,m+1 − un,m−1

∂un,m

(3.94b)

and the point symmetry:

ŶD3 =
[
F
(+)
n

(
2F

(+)
m + F

(−)
m

)
+ F

(−)
n

]
un,m∂un,m . (3.95)

Remark 3.3.1. The equation D3 (1.93e) is invariant under the exchange
n ↔ m so the symmetry XD3m (3.94b) can be obtained from the sym-
metry XD3n (3.94b) performing such exchange.

Finally the two forms of D4 possess the following three-point gen-
eralized symmetries:

X̂1D4n =

−δ1F(+)
n un+1,mun−1,m −

1

2
un,m(un+1,m + un−1,m)

un+1,m − un−1,m
+

+
−δ1F

(−)
n u2n,m + δ2δ3F

(+)
m

un+1,m − un−1,m

]
∂un,m ,

(3.96a)
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X̂1D4m =

F(−)
m un,m+1un,m−1 +

1

2
un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
δ2F

(+)
m u2n,m − δ1δ3F

(+)
n

un,m+1 − un,m−1

]
∂un,m ,

(3.96b)

X̂2D4n =

−δ1δ2F(+)
n F

(+)
m un+1,mun−1,m +

1

2
un,m(un+1,m + un−1,m)

un+1,m − un−1,m
+

+
−δ1δ2F

(−)
n F

(+)
m u2n,m + δ3

un+1,m − un−1,m

]
∂un,m ,

(3.96c)

X̂2D4m =

δ2F(+)
n+mun,m+1un,m−1 +

1

2
un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
δ2F

(−)
n+mu

2
n,m − δ1δ3F

(+)
n

un,m+1 − un,m−1

]
∂un,m ,

(3.96d)

and no point symmetries.

3.4 the non-autonomous ydkn equation

In 1983 Ravil I. Yamilov [167] classified all differential-difference equa-
tions of the Volterra class (2.6) using the generalized symmetry method.
From the generalized symmetry method one obtains integrability con-
ditions which allow to check whether a given equation is integrable.
Moreover in many cases these conditions enable us to classify equa-
tions, i.e. to obtain complete lists of integrable equations belonging
to a certain class. As integrability conditions are only necessary con-
ditions for the existence of generalized symmetries and/or conserva-
tion laws, one then has to prove that the equations of the resulting
list really possess generalized symmetries and conservation laws of
sufficiently high order. One mainly construct them using Miura-type
transformations, finding Master Symmetries (see Section 3.5, or prov-
ing the existence of a Lax pair [167–169]. The result of Yamilov clas-
sification, up to Miura transformation, is the Toda equation and the
so called Yamilov discretization of the Krichever-Novikov equation
(YdKN), a differential-difference equation for the unknown function
qk = qk (t), with k ∈ Z and t ∈ R, depending on six arbitrary coeffi-
cients:

dqk
dt

=
A(qk)qk+1qk−1 +B(qk)(qk+1 + qk−1) +C(qk)

qk+1 − qk−1
, (3.97)
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where:

A(qk) = aq
2
k + 2bqk + c, (3.98a)

B(qk) = bq
2
k + dqk + e, (3.98b)

C(qk) = cq
2
k + 2eqk + f. (3.98c)

The integrability of (3.97) is proven by the existence of point symme-
tries [108] and of a Master Symmetries [169] from which one is able to
explicitly write down an infinite hierarchy of generalized symmetries.
The problem of finding the Bäcklund transformation and Lax pair in
the general case, where all the six parameters are different from zero,
seems to be still open. Some partial results are contained in [6].

In [105] the authors constructed a set of five conditions necessary
for the existence of generalized symmetries for a class of differential-
difference equations depending only on nearest neighbouring inter-
action. They used the conditions to propose the integrability of the
following non-autonomous generalization of the YdKN:

dqk
dt

=
Ak(qk)qk+1qk−1 +Bk(qk)(qk+1 + qk−1) +Ck(qk)

qk+1 − qk−1
, (3.99)

where the now k-dependent coefficients are given by:

Ak(qk) = aq
2
k + 2bkqk + ck, (3.100a)

Bk(qk) = bk+1q
2
k + dqk + ek+1, (3.100b)

Ck(qk) = ck+1q
2
k + 2ekqk + f, (3.100c)

with bk, ck and ek 2-periodic functions. The equation (3.99) was
shown to possess non-trivial conservation laws of second and third
order and two generalized local symmetries of order i and i+ 1, with
i < 4.

As it was discussed in Section 3.2 the symmetry generator associ-
ated to a three-point symmetry of a quad equation is a differential-
difference equation depending parametrically on the other lattice vari-
able, see equation (3.22). Therefore once the generalized symmetries
of an equation, or of a class of equations are computed, it is nat-
ural to ask if the associated differential-difference equations are of
a known type [105, 167–169]. For example let us consider the equa-
tions belonging to the ABS classification [2], i.e. the H equations (1.23)
and the Q equations (1.24), whose three-point generalized symme-
tries where computed systematically in [139]. In [102] it was proved
that these symmetries are all particular cases of the YdKN equation
(3.97). Moreover it was showed in [166] that the three-point gener-
alized symmetries of the rhombic H4 equations (1.32) are particular
instances of the non-autonomous YdKN equation (3.99).

In the previous Section we presented following [66] the three-point
generalized symmetries of the trapezoidal H4 (1.91) and of the H6

equations, which were previously unknown. It is then natural to ask
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if there is any relation between these three-point generalized symme-
tries and the non-autonomous YdKN equation (3.99). The answer is
that all the three-point generalized symmetries are somehow related
to the non-autonomous YdKN (3.99). For the rest of this Section we
will discuss the kind of identification needed for the various equa-
tions.

In the case of the tHε1 equation we have symmetries depending on
arbitrary functions given by (3.89) and by (3.90). However it can be
readily showed that in (3.89) if and only if

Bn (ξ) = −
1

ξ
, α = 0, (3.101)

we get a symmetry of YdKN type (3.99):

X̂t
Hε1
n =

(un+1,m − un,m) (un,m − un−1,m) − F
(+)
m ε2α22

un+1,m − un−1,m
∂un,m . (3.102)

In the same way we can notice that the symmetry in the direction m
(3.90) if and only if

Bm(ξ) =
1

ξ
, Cm(ξ) =

1

ξ
, (3.103)

becomes a symmetry of the non-autonomous YdKN type (3.99):

X̂t
Hε1
m =

F
(+)
m

(
1+ ε2un,m+1un,m−1

)
+ F

(−)
m

(
1+ ε2u2n,m

)
un,m+1 − un,m−1

∂un,m .

(3.104)

On the other hand we have that the symmetries of the tHε2 equation
(1.91b) and of the tHε3 equation (1.91c) as given by equations (3.87)
are naturally identified as particular cases of the non-autonomous
YdKN equations (3.99). It is worth to note that, since the only non-
autonomous coefficients in the trapezoidal H4 equations are depend-
ing on the lattice variable m, the symmetries in the n direction of
these equations actually are sub-cases of the autonomous YdKN equa-
tion (3.97).

Turning to the H6 equations it is easy to check that the symmetries
of the iD2 equations (1.93b,1.93c,1.93d) as given by equation (3.92)
are not in the form of the YdKN equation (3.99). However a linear
combination with point symmetries (3.93):

ẐiD2j = X̂iD2j +KiD21,j Ŷ
iD2
1 +KiD22,j Ŷ

iD2
2 , j = n,m; i = 1, 2, 3 (3.105)

for prescribed values of KiD21,j and KiD22,j is in the non-autonomous
YdKN form (3.99), i.e.

K1D21,j = K2D21,j = −K3D21,j =
1

2
,

K1D22,j = K2D22,j = K3D22,j = 0.
(3.106)
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We notice that we are allowed to consider (3.105) as bona fide three-
point generalized symmetries since choosing them as new generators
just corresponds to choose a new basis for the linear space of the
three-point generalized symmetries. On the other hand the symme-
tries of the D3 equation (1.93e) as given by equation (3.94) are already
sub-cases of the non-autonomous YdKN equation (3.99). Finally we
have that also the symmetries of the iD4 equations (1.93f,1.93g) are
sub-cases of the non-autonomous YdKN equation (3.99).

Taking into account the result presented in [166], reproduced for
sake of completeness in Appendix E, we can then state that all the
three-point generalized symmetries of the equations belonging to the clas-
sification made by R. Boll [20–22] are sub-cases of the non-autonomous
YdKN equation (3.99). This result extend what was obtained in [102]
for the ABS class of equations. We can then build Table 3.1 where we
can show the explicit form of the coefficients of the non-autonomous
YdKN equation corresponding to the aforementioned three-point gen-
eralized symmetries.
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Table 3.1: Identification of the coefficients in the symmetries of the rhombic H4 equations, trapezoidal H4 equations and H6 equations with those of
the non autonomous YdKN equation. Here the symmetries of tHε1 in the m direction are the subcase (3.104) of (3.90) while those in the
n direction are the subcase (3.102) of (3.89). The symmetries of the iD2 equations (3.92) are combined with the point symmetries (3.93)
according to the prescriptions (3.105) and the coefficients given by (3.106).

Eq. k a bk ck d ek f

rH
ε
1

n 0 0 −εF
(+)
n+m 0 0 1

m 0 0 −εF
(+)
n+m 0 0 1

rH
ε
2

n 0 0 −4εF
(+)
n+m 0 1− 4εαF

(−)
n+m 2α− 4εα2

m 0 0 −4εF
(+)
n+m 0 1− 4εβF

(−)
n+m 2β− 4εβ2

rH
ε
3

n 0 0 −
εF

(+)
n+m

α

1

2
0 δα

m 0 0 −
εF

(+)
n+m

β

1

2
0 δβ

tH
ε
1

n 0 0 −1 1 0 −ε2α22F
(+)
m

m 0 0 ε2F
(+)
m 0 0 2

tH
ε
2

n 0 0 −1 1 εα22F
(+)
m α22 − εα

2
2

(
4α2 + 8α3 + εα

2
2

)
F
(+)
m

m 0 0 −εF
(+)
m 0

1

2
− ε(α2 +α3)F

(−)
m −α3 − ε (α2 +α3)

2

Continued on next page
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Table 3.1 – Continued from previous page
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tH
ε
3

n 0 0 −α22
1

2
α2(1+α

2
2) 0 −ε2δ2F

(+)
m (1−α22)

2

m 0 0 −ε2F
(+)
m

1

2
α3 0 −α23δ

2

1D2
n 0 0 0 0

1

2
[δ1(1+ δ2) − 1]F

(+)
n F

(+)
m

+
1

2
F
(−)
n F

(+)
m −

1

2
F
(−)
n F

(−)
m

−δ2F
(−)
m

m 0 0 −F
(−)
n F

(+)
m δ1 0

1

2
(δ1(1− δ2 − 1)F

(−)
n F

(−)
m

−
1

2
F
(+)
n F

(+)
m −

1

2
δ1F

(−)
n F

(+)
m

δ2(δ1 − 1)F
(−)
n

2D2
n 0 0 0 0

1

2
[1− δ1(1+ δ2)]F

(+)
n F

(−)
m

+
1

2
F
(−)
n F

(−)
m −

1

2
δ1F

(−)
n F

(+)
m

(δ1 − 1)F
(+)
m

m 0 0 −δ1F
(−)
n F

(−)
m 0

1

2
[δ1(1− δ2) − 1]F

(−)
n F

(+)
m

−
1

2
F
(+)
n F

(+)
m −

1

2
δ1F

(−)
n F

(+)
m

δ2 [δ1 − 1] F
(−)
n + λδ1F

(+)
n

Continued on next page
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Table 3.1 – Continued from previous page

Eq. k a bk ck d ek f

3D2
n 0 0 0 0

1

2
[δ1(1+ δ2) − 1]F

(−)
n F

(−)
m

+
1

2
F
(+)
n F

(−)
m +

1

2
δ1F

(−)
n F

(+)
m

(1− δ1)F
(+)
m

m 0 0 0 0

1

2
[δ1(1− δ2) − 1]F

(+)
n F

(+)
m

−
1

2
F
(+)
n F

(−)
m +

1

2
δ1F

(−)
n F

(+)
m

δ1λ[−δ1(1+ δ2)]F
(+)
n − δ2F

(−)
n

D3
n 0 0 F

(+)
n F

(+)
m 0

1

2

(
F
(+)
n F

(−)
m + F

(−)
n F

(−)
m − F

(+)
n F

(+)
m

)
0

m 0 0 F
(+)
n F

(+)
m 0

1

2

(
F
(−)
n F

(+)
m + F

(−)
n F

(−)
m − F

(+)
n F

(+)
m

)
0

1D4
n 0 0 −δ1

(
F
(+)
n F

(+)
m + F

(+)
n F

(−)
m

)
−
1

2
0 δ2δ3F

(+)
m

m 0 0 δ2

(
F
(+)
n F

(+)
m + F

(−)
n F

(+)
m

) 1

2
0 −δ1δ3F

(+)
n

2D4
n 0 0 −F

(+)
n F

(+)
m δ1δ2

1

2
0 δ3

m 0 0 δ2

(
F
(+)
n F

(+)
m + F

(−)
n F

(−)
m

) 1

2
0 −δ1δ3F

(+)
n
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3.5 integrability properties of the non autonomous ydkn

equation and its sub-cases .

In the previous Section we saw that the fluxes of all the generalized
three point symmetries of the H4 and H6 equations are eventually
related either to the YdKN (3.97) or to the non autonomous YdKN
equation (3.99). In this Section we extend those results by considering
the ideas in [102] We will use the Master Symmetries approach. Mas-
ter Symmetries are particular kind of symmetries which can generate
the whole hierarchy of symmetries of a given equation starting from
the given symmetry. The notion of master symmetry has been intro-
duced in [43], see also [42, 46, 47, 126]. In the continuous case master
symmetries usually are non-local, i.e. they contain terms involving
integrations. In the semi-discrete and discrete case this would corre-
spond to the presence of operators like (T − Id)−1, where T is a lattice
translation operator, which give raise to infinite summations. Fortu-
nately enough in the semi-discrete and discrete case there are many
local master symmetries [4, 7, 102, 127, 128, 139, 166, 170, 171, 173], i.e.
master symmetries with no such dependence.

Here we will not discuss the general method to find Master Sym-
metries for differential-difference or quad equation, but we will just
present the method we can use to construct the Master Symmetries of
the non-autonomous YdKN equation and its sub-cases following [4,
54, 102, 169]. Let us consider differential-difference equations of the
form

un,τ = ϕn(τ,un+k,un+k−1, . . . ,un+k ′+1,un+k ′), k ′ < k. (3.107)

Now let us suppose we have two such equations (3.107), namely two
functions ϕ(1)

n and ϕ
(2)
n depending on different “times” τ1 and τ2,

and depending on uα for n+ k > α > n+ k ′ and n+ l > α > n+ l ′

respectively. We can then require that the two equations commute:

un,τ1,τ2 − un,τ2,τ1 = Dτ2ϕ
(1)
n −Dτ1ϕ

(2)
n , (3.108)

where Dτi is the total derivative with respect to τi and it is defined as:

Dτi =
∂

∂τi
+
∑
j∈Z

ϕ
(i)
n+j

∂

∂un+j
. (3.109)

Let us define a Lie algebra structure on the set of functions ϕn of the
form (3.107). For any functions ϕ(1)

n and ϕ(1)
n , we introduce the equa-

tions un,τ1 = ϕ
(1)
n and un,τ2 = ϕ

(2)
n and the corresponding total

derivatives Dτi as in (3.109). Then we can define the following opera-
tion on the functions ϕ(1)

n and ϕ(2)
n :

[ϕ
(1)
n ,ϕ(2)

n ] = Dτ2ϕ
(1)
n −Dτ1ϕ

(2)
n . (3.110)
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The result of this operation is a new function ϕ(3)
n depending on a

finite number of shifts of un. We prove that the operation [, ] is a
Lie bracket, i.e. that is bilinear, skew-symmetric and satisfies the Jacobi
identity:

[[ϕ
(1)
n ,ϕ(2)

n ],ϕ(3)
n ] = [[ϕ

(1)
n ,ϕ(3)

n ],ϕ(2)
n ] + [ϕ

(1)
n , [ϕ(2)

n ,ϕ(3)
n ]]. (3.111)

Bilinearity follows from the fact that the total derivative operators
(3.109) are linear. It is obviously skew-symmetric:

[ϕ
(1)
n ,ϕ(2)

n ] = −
(
Dτ1ϕ

(2)
n −Dτ2ϕ

(1)
n

)
= −[ϕ

(2)
n ,ϕ(1)

n ]. (3.112)

Finally Jacobi identity (3.111) can be checked by direct computation.
A differential-difference equation of the form

un,τ = gn(un+k,un+k−1, . . . ,un+k ′+1,un+k ′), k ′ < k. (3.113)

is called a generalized symmetry for a Volterra-like equation (2.6) if its
right hand side commutes with the right hand side of the Volterra-
like equation, i.e. [gn, fn] = 0. This generalized symmetry is called
non-trivial if k > 1 and k ′ < −1.

A differential-difference of the first differential-order of the form

un,τ = ϕn(τ,un+1,un,un−1), (3.114)

where the dependence on τ and on the lattice variable n may be
explicit, is called a Master Symmetry for a Volterra-like equation (2.6)
if the function

gn = [ϕn, fn] (3.115)

is the right hand side of a generalized symmetry. This generalized
symmetry must be nontrivial, i.e. in (3.113) k > 1 and k ′ < −1. The
function ϕn satisfies then the following equation:

[[ϕn, fn], fn] = 0. (3.116)

Any generalized symmetry (3.113) has a trivial solution: ϕn = gn.
The Master Symmetry corresponds to a nontrivial solution of (3.116).

A practical way of computing Master Symmetries is as follows: Sup-
pose that we are given a Volterra-like equation (2.6). Suppose that
there exists a Master Symmetry of the form:

un,τ = nfn (un+1,un,un−1) (3.117)

where fn is the right hand side of (2.6). Then assume that fn depends
on some constants, say ki, i = 1, . . . ,K, let us replace such constants
by functions of the master symmetry “time” τ:

ki → κi = κi (τ) , i = 1, . . . ,M. (3.118)
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We can impose the conditions (3.115) and (3.116) so that (3.117) is
actually a Master Symmetry. When imposing (3.115) due to the def-
inition of the total derivative Dτ (3.109) we get a set of first order
differential equations for the κi functions with the initial conditions
given by the original constants:

κ ′i (τ) = Gi (κ1 (τ) , . . . , κM (τ)) , i = 1, . . . ,M, (3.119a)

κi (0) = ki. (3.119b)

Then we can derive the symmetries for the original equation (2.6) at
any order from the master symmetry (3.117) by putting τ = 0 in the
resulting symmetry.

Let us construct the Master Symmetries of the non-autonomous
YdKN equation (3.99). Then we can proceed with the method we
discussed above. Using the fact that bk, ck and ek are two periodic:

bk = b+ (−1)kβ, ck = c+ (−1)kγ, ek = e+ (−1)kε. (3.120)

and substituting the coefficients a, b, c, γ, d, e, ε and f with function
of τ we obtain the following expression for (3.100):

Ak(qk, τ) = a(τ)q2k + 2
[
b(τ) + (−1)kβ(τ)

]
qk

+ c(τ) + (−1)kγ(τ),

(3.121a)

Bk(qk, τ) =
[
b(τ) − (−1)kβ(τ)

]
q2k + d(τ)qk

+ e(τ) − (−1)kε(τ),

(3.121b)

Ck(qk, τ) =
[
c(τ) − (−1)kγ(τ)

]
q2k

+ 2
[
e(τ) + (−1)kε(τ)

]
qk + f(τ).

(3.121c)

From (3.121) we build up the τ-dependent version of (3.99):

dqk
dt

=
Ak(qk, τ)qk+1qk−1 +Bk(qk, τ)(qk+1 + qk−1) +Ck(qk, τ)

qk+1 − qk−1
.

(3.122)

We make the ansatz (3.117) for the Master Symmetry:

dqk
dτ

= n
Ak(qk, τ)qk+1qk−1 +Bk(qk, τ)(qk+1 + qk−1) +Ck(qk, τ)

qk+1 − qk−1
.

(3.123)

Commuting the flows of Dt and Dτ we must obtain a five point sym-
metry, g(1)n according to (3.115). This obtained function has a purely
three point part which is of the same form as (3.122), but with differ-
ent coefficients. Annihilating this part we obtain some equations for
the coefficients a, b, β, c, γ, d, e, ε, f:

da
dτ

(τ) = a (τ)d (τ) + 2β2 (τ) − 2b2 (τ) , (3.124a)
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db
dτ

(τ) = −b (τ) c (τ) +β (τ)γ (τ) + a (τ) e (τ) , (3.124b)

dβ
dτ

(τ) = c (τ)β (τ) − b (τ)γ (τ) − a (τ) ε (τ) , (3.124c)

dc
dτ

(τ) = 2b (τ) e (τ) − d (τ) c (τ) − 2β (τ) ε (τ) , (3.124d)

dγ
dτ

(τ) = 2β (τ) e (τ) − d (τ)γ (τ) − 2ε (τ)b (τ) , (3.124e)

dd
dτ

(τ) = −c2 (τ) + a (τ) f (τ) + γ2 (τ) , (3.124f)

de
dτ

(τ) = −c (τ) e (τ) − γ (τ) ε (τ) + b (τ) f (τ) , (3.124g)

dε
dτ

(τ) = γ (τ) e (τ) −β (τ) f (τ) + c (τ) ε (τ) , (3.124h)

df
dτ

(τ) = f (τ)d (τ) − 2e2 (τ) + 2ε2 (τ) . (3.124i)

If the coefficients satisfy the system (3.124) then it is easy to show
that the obtained g(1)n is a generalized symmetry depending on five-
points. We remark that the system (3.124) in its generality it is impos-
sible to solve, but since the right hand is polynomial we are ensured
by Cauchy’s theorem [162] that such solution always exists in a neigh-
bourhood of τ = 0.

The solutions with the initial conditions given by Table 3.1 will
then yield explicit form of the Master Symmetries in all the relevant
sub-cases. By using the master symmetry constructed above we can
construct infinite hierarchies of generalized symmetries of the H4 and
H6 equations in both directions. Furthermore since for every H4 and
H6 equation we have a = b = β = 0 we can in fact use the simpler
system where a (τ) = b (τ) = β (τ) = 0:

dc
dτ

(τ) = −d (τ) c (τ) , (3.125a)

dγ
dτ

(τ) = −d (τ)γ (τ) , (3.125b)

dd
dτ

(τ) = −c2 (τ) + γ2 (τ) , (3.125c)

de
dτ

(τ) = −c (τ) e (τ) − γ (τ) ε (τ) , (3.125d)

dε
dτ

(τ) = γ (τ) e (τ) + c (τ) ε (τ) , (3.125e)

df
dτ

(τ) = f (τ)d (τ) − 2e2 (τ) + 2ε2 (τ) . (3.125f)

As an example in Table 3.2 we list the form of the τ-dependent
coefficients in the case of the trapezoidal H4 equations (1.91). The
remaining cases can be computed analogously.
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tH
ε
1

n
−1

τ+ 1
0

1

τ+ 1

m
ε2

2

ε2

2
0

tH
ε
2

n
−1

τ+ 1
0

1

τ+ 1

m −
ε

2
−
ε

2
0

tH
ε
3

n
α22
(
α22 − 1

)
e−

1
2τα2(α

2
2−1)

e−τα2(α
2
2−1) −α22

0
1

2

α2
(
1−α22

) [
e−τα2(α

2
2−1) +α22

]
+e−τα2(α

2
2−1) −α22

m −
ε2e−

1
2α3τ

2
−
ε2e−

1
2α3τ

2

α3
2

Eq. Dir. e (τ) η (τ) f (τ)

tH
ε
1

n 0 0 −ε2α22F
(+)
m (τ+ 1)

m 0 0 2

tH
ε
2

n εα2
2F

(+)
m (τ+ 1) 0 −α22

[
−1+α2

2F
(+)
m (τ+ 1)2 ε2 + 4F

(+)
m (α2 + 2α3) ε

]
(τ+ 1)

m
1

2
+
1

4
(τ− 2α2 − 2α3) ε −

1

4
(τ− 2α2 − 2α3) ε −

1

4
(τ− 2α2 − 2α3)

2 ε−α3 −
1

2
τ

tH
ε
3

n 0 0
ε2δ2F

(+)
m

(
α22 − 1

) (
e−τα2(α

2
2−1) −α2

2
)

e−1/2τα2(α
2
2−1)

m 0 0 −α23δ
2e

1
2α3τ

Table 3.2: The value of the coefficients of the Master Symmetry (3.123) obtained by solving the system (3.125) in the case of the trapezoidal H4 equations (1.91).
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Now it is a known fact that Master Symmetries can exists also for
linearizable (C-integrable) equations, e.g. the Burgers equation [103],
as infinite hierarchies of generalized symmetries exists both for C and
S integrable equations. So to end this Section we apply the Algebraic
Entropy test, as discussed in Chapter 2, which shows heuristically
that the relevant sub-cases of the non-autonomous YdKN equation
(3.99) have quadratic growth and therefore are genuine integrable
equations.

We look for the sequence of degrees of the iterate map for the non-
autonomous YdKN equation (3.99) and in its particular cases found
in the previous section. We find for all the cases, except for rHε1, i.e.
for the symmetries (3.102, 3.104) of tHε1 and for iD2 equations, the
following values:

1, 1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133, 157 . . . (3.126)

This sequence has the following generating function:

g(z) =
1− 2z+ 3z2

(1− z)3,
(3.127)

which gives the quadratic fit for the sequence (3.126):

dl = l(l− 1) + 1. (3.128)

Therefore the Algebraic Entropy is zero.
For the three-point generalized symmetry in the n direction (E.1a)

of the equation rHε1 we have the somehow different situation that the
sequence growth is different depending if we consider the even or
odd values of the m variable:

m = 2k 1, 1, 3, 7, 10, 17, 23, 33, 42, 55, 67, 83, 98, 117 . . .
(3.129a)

m = 2k+ 1 1, 1, 3, 4, 9, 13, 21, 28, 39, 49, 63, 76, 93, 109 . . . .
(3.129b)

These sequences have the following generating functions and asymp-
totic fits:

m = 2k,
g(z) =

2z5 − 3z4 + 3z3 + z2 − z+ 1

(1− z)3(z+ 1)
,

dl =
3

4
l2 − l−

5(−1)l − 21

8
,

(3.130a)

m = 2k+ 1,
g(z) =

(z2 + z+ 1)(2z2 − 2z+ 1)

(1− z)3(z+ 1)
,

dl =
3

4
l2 −

3

2
l−

5(−1)l − 19

8
.

(3.130b)

The symmetry in the m direction (E.2b) of the equation rH
ε
1 has the

same behavior, obtained by exchanging m with n in formulæ (3.129-
3.130).
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The three-point generalized symmetry of the equation tH
ε
1 in the

n direction has almost the same growth as that obtained for m odd
(3.129b, 3.130b) with fit given by:

dl =
3

4
l2 −

5

4
l+ (−1)l

l

4
+

(−1)l + 15

8
. (3.131)

Notice the presence of a highly oscillatory term l(−1)l, which, at our
knowledge it is observed for the first time. For m even we have the
same growth as (3.126). The three-point generalized symmetry of the
equation tHε1 in the m direction has the same growth as the even one
of tHε1 (3.129a, 3.130a).

For the three-point generalized symmetries (3.92) of the iD2 equa-
tion we have different growth according to the even or odd values of
the m and n variables. These sequences are slightly lower than in the
case of equations Hε1, however always corresponding to a quadratic
asymptotic fit.

This shows that the whole family of the non autonomous YdKN is
integrable (S-integrable) according to the Algebraic Entropy test and
they should not be linearizable (C-integrable) even if the equations of
which they are symmetries are linearizable.

We conclude this Section by giving an example on how the gen-
eralized symmetries criterion of integrability [169] and the Algebraic
Entropy give the same result on a non-integrable equation, i.e. an
example of how two definitions of integrability coincide. As the sym-
metries of the tHε1 equation depend on arbitrary functions, not all of
them will produce an integrable flux. Let us consider the case of the
flux (3.89) when ε = 0, Bn(ξ) = −1/ξ and α = 1. This corresponds to
the following symmetry:

X̂Pn =
un+1,mun−1,m − u2n,m

un+1,m − 2un,m + un−1,m
∂un,m . (3.132)

Following [169], necessary condition for the flux of (3.132) dun,m
dt =

X̂Pnun,m to be integrable is that, given

p1 = log
∂fn

∂un+1
= 2 log

(
un,m − un−1,m

un+1,m − 2un,m + un−1,m

)
(3.133)

we must have

dp1
dt

=
−2u2n,m + 4un,mun+1,m − 2u2n+1,m

(un+2,m − 2un+1,m + un,m) (−un+1,m + 2un,m − un−1,m)

−
2 (un−1,m − un+1,m) (−un+1,m + un,m)

(un+1,m − 2un,m + un−1,m)2

+
2u2n,m − 2un,mun+1,m − 2un−1,mun,m + 2un−1,mun+1,m

(un,m − 2un−1,m + un−2,m) (−un+1,m + 2un,m − un−1,m)

= (T − 1)gn
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(3.134)

for any function gn defined on a finite portion of the lattice, for ex-
ample such that gn = gn(un+1,m,un,m,un−1,m,un−2,m). We search
the function gn using the partial sum method [169] and we find an ob-
struction at the third passage. Then the function gn does not exists
and therefore we conclude that the flux of (3.132) is a non integrable
differential-difference equation.

Using the algebraic entropy test on the flux of (3.132) we find the
following values for the degrees of the iterates:

1, 1, 3, 9, 27, 81, 273, 729 . . . (3.135)

which gives us the following generating function:

g(s) =
1− 2s

1− 3s
, (3.136)

and the entropy is clearly non-vanishing η = log 3. So the non-integrability
result obtained by the Algebraic Entropy test agrees with those ob-
tained by applying the formal generalized symmetry method.

3.6 a non-autonomous generalization of the QV equa-
tion

Up to now we constructed the three-point generalized symmetries
of the trapezoidal H4 equations (1.91) and of the H6 equation (1.93).
We then showed that these three-point generalized symmetries are
related to some sub-cases of the non-autonomous YdKN equation
[105]. Taking into account the results about the rhombic H4 equa-
tions in [166], we were able to produce Table 3.1 where it shown
that the three-point generalized symmetries of any quad equation
coming from the Boll’s classification [20–22] is in the form of the
non-autonomous YdKN equation [105]. We then showed how, using
known methods, we can construct the Master Symmetries of these
equations, generating a hierarchy of equations and that according
to the Algebraic Entropy test these are genuine integrable equations
since their growth is quadratic.

We finally note that, as was proven in [102] for the YdKN (3.97), no
equation belonging to the Boll classification has a generalized symme-
try which corresponds to the general non-autonomous YdKN equa-
tion (3.99). In all the cases of the Boll classification one has a = bk = 0

as is displayed by Table 3.1.
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In [166] it was shown that the QV equation, introduced in [156]:

QV =a1un,mun+1,mun,m+1un+1,m+1

+a2,0 (un,mun,m+1un+1,m+1 + un+1,mun,m+1un+1,m+1

+un,mun+1,mun+1,m+1 + un,mun+1,mun,m+1)

+a3,0 (un,mun+1,m + un,m+1un+1,m+1)

+a4,0 (un,mun+1,m+1 + un+1,mun,m+1)

+a5,0 (un+1,mun+1,m+1 + un,mun,m+1)

+a6,0 (un,m + un+1,m + un,m+1 + un+1,m+1)

+a7 = 0

(3.137)

admits a symmetry in the direction n

dun,m

dt
=

hn

un+1,m − un−1,m
−
1

2
∂un+1,mhn. (3.138)

where:

hn(un,m,un+1,m) = QV∂un,m+1
∂un+1,m+1

QV

−
(
∂un,m+1

QV
) (
∂un+1,m+1

QV
) (3.139)

and a symmetry in the direction m

dun,m

dt
=

hm

un,m+1 − un,m−1
−
1

2
∂un,m+1

hm. (3.140)

where:

hm(un,m,un,m+1) = QV∂un+1,m∂un+1,m+1
QV

−
(
∂un+1,mQV

) (
∂un+1,m+1

QV
) (3.141)

which are of the same form as the YdKN (3.97).
The connection formulæ i.e. the relations between the coefficient

of QV and the coefficients of its YdKN generalized symmetry (3.97)
in the n direction YdKN are:

a = a3,0a1 − a
2
2,0, (3.142a)

b =
1

2
[a2,0(a3,0 − a5,0 − a4,0) + a6,0a1], (3.142b)

c = a2,0a6,0 − a4,0a5,0, (3.142c)

d =
1

2
[a23,0 − a

2
4,0 − a

2
5,0 + a1a7], (3.142d)

e =
1

2
[a6,0(a3,0 − a4,0 − a5,0) + a2,0a7], (3.142e)

f = a3,0a7 − a
2
6,0. (3.142f)

The connection formulæ between the coefficient of QV and the m
direction YdKN (3.97) are:

a = a5,0a1 − a
2
2,0, (3.143a)



118 generalized symmetries and the na ydkn equation

b =
1

2
[a2,0(a5,0 − a3,0 − a4,0) + a6,0a1], (3.143b)

c = a2,0a6,0 − a4,0a3,0, (3.143c)

d =
1

2
[a25,0 − a

2
4,0 − a

2
3,0 + a1a7], (3.143d)

e =
1

2
[a6,0(a5,0 − a4,0 − a3,0) + a2,0a7], (3.143e)

f = a5,0a7 − a
2
6,0. (3.143f)

The connection formulæ (3.142,3.143) can be seen as a set of cou-
pled nonlinear algebraic equations between the seven parameters a1,
a2,0, a3,0, a4,0, a5,0, a6,0 and a7 of the QV (3.137) and the six ones
a, b, c, d, e and f of the YdKN equation (3.104). This tells us that
the YdKN equation (3.104) with coefficients given by (3.142,3.143) is
a three-point generalized symmetry of the QV equation (3.137). If a
solution of (3.142,3.143) exists, i.e. one is able to express the a1, a2,0,
a3,0, a4,0, a5,0, a6,0 and a7 in term of a, b, c, d and f, then the QV

equation (3.137), maybe after a reparametrization, turns out to be a
Bäcklund transformation of the YdKN [6, 99] as explained in Section
3.2. We furthermore remark that in general a and b will be non-zero,
so that the three-point generalized symmetries of the QV equation
(3.137) belong to the class of the general YdKN equation (3.97).

From the results obtained in Section 3.4 and the above remarks we
are lead to conjecture the existence a non autonomous generalization
of the QV equation. To obtain such generalizations we first have to
recall how the QV equation (3.137) was obtained in [156]. In [156] was
showed that the QV equation (3.137) is the most general multi-linear
equation on a quad graph possessing Klein discrete symmetries, i.e.
such that:

Q (un+1,m,un,m,un+1,m+1,un,m+1) =

τQ (un,m,un+1,m,un,m+1,un+1,m+1) ,

Q (un,m+1,un+1,m+1,un,m,un,m+1) =

τ′Q (un,m,un+1,m,un,m+1,un+1,m+1) ,

(3.144)

where τ, τ′ = ±1.
We have many possible ways of searching for a generalization of

the QV equation (3.137). Since we want to generalize the QV equation
(3.137) to a non-autonomous equation let us consider the most gen-
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eral multi-linear equation in the lattice variables with two-periodic
coefficients:

p1un,mun+1,mun,m+1un+1,m+1

+p2un,mun,m+1un+1,m+1 + p3un+1,mun,m+1un+1,m+1

+p4un,mun+1,mun+1,m+1 + p5un,mun+1,mun,m+1

+p6un,mun+1,m + p7un,m+1un+1,m+1 + p8un,mun+1,m+1

+p9un+1,mun,m+1 + p10un+1,mun+1,m+1 + p11un,mun,m+1

+p12un,m + p13un+1,m + p14un,m+1 + p15un+1,m+1 + p16 = 0

(3.145)

i.e. such that the coefficients pi have the following expression:

pi = pi,0 + pi,1(−1)
n + pi,2(−1)

m+ pi,3(−1)
n+m, i = 1, . . . , 16.

(3.146)

We will denote the left hand side of (3.145) byQ (un,m,un+1,m,un,m+1,un+1,m+1, (−1)n, (−1)m).
A possibility is to require that the functionQ (un,m,un+1,m,un,m+1,un+1,m+1, (−1)n, (−1)m)

to respect a strict discrete Klein symmetry (3.144) and to require that
the connection forumulæ provide a non-autonomous YdKN equation
(3.99). The requirement of the Klein symmetries gives us:

p1 ≡ a1, p2 = p3 = p4 = p5 ≡ a2,

p6 = p7 ≡ a3, p8 = p9 ≡ a4, p10 = p11 ≡ a5,

p12 = p13 = p14 = p15 ≡ a6, p16 = a7

(3.147)

where the ai are still two-periodic functions of the lattice variables.
Choosing the coefficients for example as

a1 = 1+ (−1)n, a2 = (−1)n,

a3 = −1+ (−1)n, a5 = (−1)n, a4 = 1+ 2(−1)
n,

a6 = 1+ (−1)n, a7 = 4+ 2(−1)
n,

(3.148)

the we have such properties, but this is not the only possible choice.
In this case, performing the Algebraic Entropy test the equation turns
out to be integrable. Its generalized symmetries, however, are not nec-
essarily in the form of a non-autonomous YdKN equation (3.99). A
different non-autonomous choice of the coefficients of (3.145), such
that (3.142) is satisfied for the coefficients of the non-autonomous
YdKN (3.99), gives, by the algebraic entropy test, a non integrable
equation.

A further possibility is to generalize the original Klein symmetry
by considering the discrete symmetries possessed by all the equa-
tions belonging to the Boll’s classification. It is easy to see that all the
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equations belonging to the Boll’s classification possess the following
discrete symmetry:

Q (un+1,m,un,m,un+1,m+1,un,m+1; (−1)n, (−1)m) =

τQ (un,m,un+1,m,un,m+1,un+1,m+1;−(−1)n, (−1)m) ,

Q (un,m+1,un+1,m+1,un,m,un+1,m; (−1)n, (−1)m) =

τ ′Q (un,m,un+1,m,un,m+1,un+1,m+1; (−1)n,−(−1)m) .

(3.149)

when τ = τ′ = 1. Furthermore it is possible to show that if the quad
equation Q is autonomous then the condition (3.149) reduces to the
usual Klein discrete symmetry (3.144). Therefore we will say that if
a non-autonomous quad equation Q of the form (3.145) satisfies the
discrete symmetries (3.149) that Q admits a non-autonomous discrete
Klein symmetry.

If we impose the non autonomous Klein symmetry condition (3.149)
with τ = τ ′ = 1 the 64 coefficients of (3.145) turn out to be related
among themselves and we can choose among them 16 independent
coefficients. In term of the 16 independent coefficients (3.145) reads:

a1un,mun+1,mun,m+1un+1,m+1

+
[
a2,0 − (−1)n a2,1 − (−1)m a2,2 + (−1)n+m a2,3

]
un,mun,m+1un+1,m+1

+
[
a2,0 + (−1)n a2,1 − (−1)m a2,2 − (−1)n+m a2,3

]
un+1,mun,m+1un+1,m+1

+
[
a2,0 + (−1)n a2,1 + (−1)m a2,2 + (−1)n+m a2,3

]
un,mun+1,mun+1,m+1

+
[
a2,0 − (−1)n a2,1 + (−1)m a2,2 − (−1)n+m a2,3

]
un,mun+1,mun,m+1

+ [a3,0 − (−1)m a3,2]un,mun+1,m

+ [a3,0 + (−1)m a3,2]un,m+1un+1,m+1

+
[
a4,0 − (−1)n+m a4,3

]
un,mun+1,m+1

+
[
a4,0 + (−1)n+m a4,3

]
un+1,mun,m+1

+ [a5,0 − (−1)n a5,1]un+1,mun+1,m+1

+ [a5,0 + (−1)n a5,1]un,mun,m+1

+
[
a6,0 + (−1)n a6,1 − (−1)m a6,2 − (−1)n+m a6,3

]
un,m

+
[
a6,0 − (−1)n a6,1 − (−1)m a6,2 + (−1)n+m a6,3

]
un+1,m

+
[
a6,0 + (−1)n a6,1 + (−1)m a6,2 + (−1)n+m a6,3

]
un,m+1

+
[
a6,0 − (−1)n a6,1 + (−1)m a6,2 − (−1)n+m a6,3

]
un+1,m+1

+a7 = 0

(3.150)

Upon the substitution a2,1 = a2,2 = a2,3 = a3,2 = a4,3 = a5,1 =

a6,1 = a6,2 = a6,3 = 0 (3.150) reduces to the QV equation (3.137).
Therefore we will call (3.150) the non autonomous QV equation.

If we impose the non-autonomous Klein symmetry condition (3.149)
with the choice τ = 1 and τ ′ = −1 we get an expression which re-
duces to (3.150) by multiplying it by (−1)n and redefining the coef-
ficients. In an analogous manner the two remaining cases τ = −1,
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τ ′ = 1 and τ = τ ′ = −1 can be identified with the case τ = τ ′ = 1

multiplying by (−1)n and (−1)n+m respectively and redefining the
coefficients. Therefore the only equation belonging to the class of the
lattice equation possessing the non autonomous Klein symmetries is
just the non-autonomous QV equation (3.150).

We note that the non-autonomous QV equation contains as partic-
ular cases the rhombic H4 equations, the trapezoidal H4 equations
and the H6 equations. The explicit identification of the coefficients of
such equations is given in Table 3.3.

In order to establish if (3.150) is integrable we use the Algebraic En-
tropy integrability test as explained in Chapter 2, using the program
ae2d.py, see Appendix B. Applying it to the non autonomous QV

equation we find in all directions the following sequence of degrees:

1, 3, 7, 13, 21, 31, 43, 57, 73, 91, 111, 133 . . . , (3.151)

which is the same as for the autonomous QV equation [156]. The
generating function for the sequence (3.151) is:

g(z) =
1+ z2

(1− z)3
, (3.152)

which implies that we have the following quadratic fit for the growth:

dk = k(k+ 1) + 1, (3.153)

and thus the Algebraic Entropy is zero. This is a strong indication of
the integrability of the non autonomous QV equation (3.150).

Using (3.138, 3.139) or (3.140, 3.141) with QV substituted by its non-
autonomous version we get a version of the non-autonomous YdKN
(3.99) however the proof that this is effectively a generalized sym-
metry of the non-autonomous QV encounters serious computational
difficulties.

We can prove by a direct computation its validity for the following
sub-cases:

• When Qv equation is non autonomous with respect to one di-
rection only, either n or m. All the trapezoidal tH4 equations
belong to these two sub-classes;

• For all the H6 equations, which are non autonomous in both
directions.

Its validity for the autonomous QV and for all the rhombic rH4 equa-
tions was already showed respectively in [165] and [166]. However
we cannot prove its validity for the general case (3.150).

Here in the following we compute the connection formulæ for the
general non autonomous case (3.150). For the n directional symmetry
we have:

a = a1a3,0 − a
2
2,0 + a

2
2,1 − a

2
2,2 + a

2
2,3

− (−1)m(2a2,0a2,2 − 2a2,1a2,3 + a1a3,2),

(3.154a)



122 generalized symmetries and the na ydkn equation

b =
1

2
a2,0(a3,0 − a5,0 − a4,0)

+
1

2
(a1a6,0 + a2,2a3,2 − a2,3a4,3 − a2,1a5,1)

−
1

2
(−1)ma2,2(a5,0 + a3,0 + a4,0)

+
1

2
(−1)m(a2,3a5,1 + a1a6,2 + a2,0a3,2 + a2,1a4,3),

(3.154b)

β =
1

2
a2,1(a3,0 − a4,0 + a5,0)

+
1

2
(a2,3a3,2 − a2,2a4,3 + a2,0a5,1 − a1a6,1)

+
1

2
(−1)ma1a6,3 − a2,3(a3,0 + a4,0 − a5,0)

−
1

2
(−1)m(a2,1a3,2 + a2,0a4,3 − a2,2a5,1),

(3.154c)

c = a2,0a6,0 − a4,0a5,0 − a2,1a6,1 − a2,3a6,3 + a2,2a6,2

− (−1)m[a2,2a6,0 − a4,3a5,1 − a2,3a6,1 + a2,0a6,2 − a2,1a6,3],
(3.154d)

γ = a4,0a5,1 + a2,1a6,0 − a2,0a6,1 + a2,3a6,2 − a2,2a6,3

+ (−1)m[a2,2a6,1 − a4,3a5,0 − a2,3a6,0 − a2,1a6,2 + a2,0a6,3],
(3.154e)

d =
1

2
(a23,0 − a

2
4,0 − a

2
5,0 + a1a7 − a

2
3,2 + a

2
4,3 + a

2
5,1)

− 2(−1)m(a2,2a6,0 + a2,3a6,1 + a2,0a6,2 + a2,1a6,3],

(3.154f)

e =
1

2
a6,0(a3,0 − a4,0 − a5,0)

+
1

2
(a2,0a7 + a5,1a6,1 − a3,2a6,2 + a4,3a6,3)

+
1

2
(−1)m(a3,2a6,0 + a4,3a6,1 + a5,1a6,3 − a2,2a7)

−
1

2
(−1)ma6,2(a3,0 + a4,0 + a5,0),

(3.154g)

ε =
1

2
a6,1(a3,0 − a4,0 + a5,0)

−
1

2
(a5,1a6,0 − a4,3a6,2 + a3,2a6,3 + a2,1a7)

+
1

2
(−1)m[a4,3a6,0 + a3,2a6,1 − a5,1a6,2 + a2,3a7

+
1

2
(−1)ma6,3(a5,0 − a3,0 − a4,0),

(3.154h)

f = a3,0a7 − a
2
6,0 − a

2
6,2 + a

2
6,3 + a

2
6,1

− (−1)m(2a6,0a6,2 − 2a6,1a6,3 − a3,2a7).

(3.154i)

The non-autonomous QV is not symmetric in the exchange of n and
m so its symmetries in the m direction are different from those in the
n direction and so are the connection formulæ. However, for the sake
of simplicity, as they are not essentially different from those presented
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in equation (3.154), we do not write them here but present them in
Appendix F.



Table 3.3: Identification of the coefficients of the non autonomous QV equation with those of the Boll’s equations. Since a1 = a2,i = 0 for all equations
considered in this Table these coefficients absent.

Eq. a3,0 a3,2 a4,0 a4,3 a5,0 a5,1 a6,0 a6,1 a6,2 a6,3 a7

rH
ε
1 1 0 1

2 ε(α−β) 1
2 ε(α−β) −1 0 0 0 0 0 β−α

rH
ε
2 1 0 2ε (β−α) 2ε (β−α) −1 0 −(α−β) (εα+ 1+ εβ) 0 0 ε

(
β2 −α2

)
−(α−β)

(
2εα2 +α+ 2εβ2 +β

)
rH
ε
3 α 0 1

2

ε
(
β2−α2

)
αβ

1
2

ε
(
β2−α2

)
αβ −β 0 0 0 0 0 δ

(
α2 −β2

)
tH
ε
1 − 12α2ε

2 − 12α2ε
2 −1 0 1 0 0 0 0 0 −α2

tH
ε
2 εα2 εα2 −1 0 1 0 1

2α2 [2+ ε(2α2 +α3)] 0 εα2α3 + 1
2 εα2

2 0 α2

[
α2 + 2α3 + ε (α2 +α3)

2
]

tH
ε
3

1
2

ε2
(
1−α2

2
)

α3α2

1
2

ε2
(
1−α2

2
)

α3α2
α2 0 −1 0 0 0 0 0 δ2α3

(
1−α22

)
1D2

1
2 δ1

1
2 δ1

1
2 − 12 0 0 1

2 − 1
4 (δ1 − δ2)

1
4 (δ2 − δ1) − 14 (δ1 + δ2)

1
2 − 1

4 (δ1 + δ2) 0

2D2
1
2 − 12

1
2 δ1

1
2 δ1 0 0 1

2 − 1
4 (δ1 − δ2 + δ1λ)

1
4 (δ1λ− δ1 + δ2)

1
2 − 1

4 (δ1 − δ1λ+ δ2) − 14 (δ1 + δ1λ+ δ2) −δ1δ2λ

3D2
1
2 − 12 0 0 1

2 δ1 − 12 δ1
1
2 − 1

4 (δ1 − δ2 + δ1λ)
1
4 (δ1 + δ1λ+ δ2)

1
2 − 1

4 (δ1 − δ1λ+ δ2)
1
4 (δ1 − δ1λ− δ2) −δ1δ2λ

D3
1
2

1
2

1
2

1
2

1
2 − 12

1
4

1
4 − 14 − 14 0

1D4
1
2 δ2

1
2 δ2 1 0 1

2 δ1 − 12 δ1 0 0 0 0 δ3

2D4 1 0 1
2 δ2

1
2 δ2

1
2 δ1 − 12 δ1 0 0 0 0 δ3



4
D A R B O U X I N T E G R A B I L I T Y A N D G E N E R A L
S O L U T I O N S

In this Chapter we will discuss the concept of Darboux integrability
and its relation with the Consisency Around the Cube. In particu-
lar in Section 4.1 we will introduce a definition of Darboux integra-
bility based on the existence of the first integrals. We will state the
definition using the analogy with the continuous case. Then we will
discuss a practical method for finding first integrals in the case of non-
autonomous equations with two periodic coefficients proposed in the
original work [71] as a generalization of the method proposed in [55,
56, 72]. In Section 4.2 we prove that the three equations found by J.
Hietarinta in [82], which are linearizable [138], solving the problem
of the Consistency Around the Cube are actually Darboux integrable
equations. This was observed in [69] and it was the starting point
of the research on the relation between the Consistency Around the
Cube and the Darboux integrability. Then in Section 4.3 we show the
main result obtained in [71], i.e. that the trapezoidal H4 equations
(1.91) and the H6 equations (1.93) are Darboux integrable, by report-
ing their first integrals. We underline that this result can be thought as
a formal proof of the heuristic result obtained in Chapter 2 using the
Algebraic Entropy, since as it will be discussed in Section 4.1 Darboux
integrable equations are naturally linearizable. Finally in Section 4.4
we show how to use the first integrals obtained in Section 4.1 in order
to obtain the general solution of the trapezoidal H4 (1.91) and of the
H6 equations (1.93). This material is based on the discussion made in
[70].

4.1 darboux integrability

A nonlinear hyperbolic partial differential equation (PDE) in two vari-
ables

uxt = f (x, t,u,ut,ux) (4.1)

is said to be Darboux integrable if it possesses two independent first
integrals depending only on derivatives with respect to one variable:

T = T (x, t,u,ut, . . . ,unt) s.t
dT
dx

∣∣∣∣
uxt=f

≡ 0,

X = X (x, t,u,ux, . . . ,umx) s.t
dX
dt

∣∣∣∣
uxt=f

≡ 0,
(4.2)
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where ukt = ∂ku/∂tk and ukx = ∂ku/∂xk for every k ∈ N. The
method is based on the linear theory developed by Euler and Laplace
[38, 96] extended to the nonlinear case in the 19th and early 20th
century [29, 30, 58, 59, 154]. The method was then used at the end
of the 20th century mainly by Russian mathematicians as a source of
new exactly solvable PDEs in two variable [148, 174–179].

We note that there exists an alternative definition of Darboux in-
tegrability. This definition is based on the stabilization to zero of the
Laplace chain of the linearized equation. However it can be proved
that the two definitions are equivalent [8–10, 179].

The most famous Darboux integrable equation is the Liouville equa-
tion [113]:

uxt = e
u (4.3)

which possesses the first integrals:

X = uxx −
1

2
u2x, T = utt −

1

2
u2t . (4.4)

We remark that the first integrals (4.4) defines two Riccati equations.
In the discrete setting Darboux integrability was introduced in [5]

and used to obtain a discrete analogue of the Liouville equation (4.3),
namely the Adler-Startsev discretization of the Liouville equation:

un,mun+1,m+1

(
1+

1

un+1,m

)(
1+

1

un,m+1

)
= 1. (4.5)

Similarly as in the continuous case we shall say that an equation on
the quad graph, possibly non-autonomous, i.e.:

Qn,m (un,m,un+1,m,un,m+1,un+1,m+1) = 0, (4.6)

is Darboux integrable if there exist two independent first integrals, one
containing only shifts in the first direction and the other containing
only shift in the second direction such that:

(Tn − Id)W2 = 0, (4.7a)

(Tm − Id)W1 = 0, (4.7b)

where

W1 =W1,n,m(un+l1,m,un+l1+1,m, . . . ,un+k1,m), (4.8a)

W2 =W2,n,m(un,m+l2 ,un,m+l2+1, . . . ,un,m+k2), (4.8b)

holds true on the solution of (4.6). Here l1, l2,k1,k2 are integers, such
that l1 < k1, l2 < k2, and Tn, Tm are the shifts operators in the
first and second direction, respectively: Tnhn,m = hn+1,m, Tmhn,m =

hn,m+1. Finally Id denotes the identity operator Idhn,m = hn,m.
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We notice that the existence of first integrals implies that the fol-
lowing two transformations:

un,m → ũn,m =W1,n,m, (4.9a)

un,m → ûn,m =W2,n,m (4.9b)

bring the quad-equation (4.6) into trivial linear equations given by (4.7)
[5], namely:

ũn,m+1 − ũn,m = 0, (4.10a)

ûn+1,m − ûn,m = 0. (4.10b)

Therefore any Darboux integrable equation is linearizable in two
different ways. This is the relationship between the Darboux integra-
bility and linearization.

The transformations (4.9) along with the relations (4.10) imply the
following relations:

W1 = ξn, W2 = λm, (4.11)

where ξn and λm are arbitrary functions of the lattice variables n
and m respectively. The relations (4.11) can be seen as ordinary differ-
ence equations which must be satisfied by any solution un,m of (4.6).
The transformations (4.9) and the ordinary difference equations (4.11)
may be quite complicated. For this reason we define the order of the
first integral to be the difference equation obtained from it using
(4.11).

Example 4.1.1 (Discrete Liouville equation (4.5)). In the case of the
discrete Liouville equation (4.5) the first integrals presented in [5] are:

W1 =

[
1+

un,m (1+ un−1,m)

un−1,m

] [
1+

un,m

un+1,m (1+ un,m)

]
,

(4.12a)

W1 =

[
1+

un,m (1+ un,m−1)

un,m−1

] [
1+

un,m

un,m+1 (1+ un,m)

]
.

(4.12b)

These two first integrals are both two-points, second order first inte-
grals.

From its introduction in [5], various papers were devoted to the
study of Darboux integrability for quad-equations [55, 56, 72, 74, 149].
In particular in [55, 56, 72] were developed computational methods
to compute the first integrals. In [72] was presented a method to
compute the first integrals with fixed li, ki of a given autonomous
equation. Then in [55] this method was slightly modified and ap-
plied to autonomous equations with non-autonomous first integrals.
Finally in [56] it was applied to equations with two-periodic coeffi-
cients. For the rest of this Section we present a further modification of
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this method which allows to treat in a simpler way non-autonomous
equations with two periodic coefficients. This new modification was
first presented in [71].

If we consider the operator

Y−1 = Tm
∂

∂un,m−1
T−1m (4.13)

and apply it to the first integral in the n direction (4.7b) we obtain:

Y−1W1 ≡ 0. (4.14)

The application of the operator Y−1 is to be understood in the fol-
lowing sense: first we must apply T−1m and then we should express,
using equation (4.6), un+i,m−1 in terms of the variables un+j,m and
un,m−1 which for this problem are independent variables. Then we
can differentiate with respect to un,m−1 and safely apply Tm [55].

Taking in (4.14) the coefficients at powers of un,m+1, we obtain a
system of PDEs for W1. If this is sufficient to determine W1 up to
arbitrary functions of a single variable, then we are done, otherwise
we can add similar equations by considering the “higher-order” op-
erators

Y−k = Tkm
∂

∂un,m−1
T−km , k ∈N, (4.15)

which annihilate the difference consequence of (4.7b) given by TkmW1 =
W1:

Y−kW1 ≡ 0, k ∈N, (4.16)

with the same computational prescriptions as above. We can add
equations until we find a non-constant function1 W1 which depends
on a single combination of the variables un,m+j1 , . . . , un,m+k1 .

If we find a non-constant solution of the equations generated by
(4.13) and possibly (4.15) we can insert such solution into (4.7b). In
fact given a non-constant W1 which satisfies (4.16), but does not sat-
isfy (4.7b), we can always construct a first integral out of it. In order
to construct a bona fide first integral in [55] it was proposed to look if
the first integral and its shifted version can be related through some
Möbius transformation:

TmW1 =
aW1 + b

cW1 + d
. (4.17)

This ansatz was applied with success on all the examples therein con-
tained.

In the same way the m-integral W2 can be found by considering
the operators

Z−k = Tkn
∂

∂un−1,m
T−kn , k ∈N (4.18)

1 Obviously constant functions are trivial first integrals.
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which are such that:

Z−kW2 ≡ 0, k ∈N. (4.19)

In the case of non-autonomous equations with two-periodic coeffi-
cients we can assume the decomposition:

Wi = F
(+)
n F

(+)
m W

(+,+)
i + F

(−)
n F

(+)
m W

(−,+)
i

+ F
(+)
n F

(−)
m W

(+,−)
i + F

(−)
n F

(−)
m W

(−,−)
i

(4.20)

with:

F
(±)
k =

1± (−1)k

2
(4.21)

and derive from (4.16,4.19) a set of equations for the function W(±,±)
i

by considering the even/odd points on the lattice. The final form of
the function Wi will be then fixed explicitly by substituting in (4.7)
and separating again.

We note that, when successful, the above procedure gives first inte-
grals depending on arbitrary functions. However this fact has to be
understood as a restatement of the trivial property that any function
of a first integral is again a first integral. So, in general, one does
not need first integrals depending on arbitrary functions. Therefore
we can take as the first integral simply a linear function of the argu-
ments of the functions we obtain from a successful application of the
above procedure. If there is more than one arbitrary function in the
same direction then it sufficient for our purposes to consider linear
combination of the arguments of such functions. The reader can find
in Appendix G an example carried out in the details.

4.2 darboux integrability and consistency around the

cube

Before discussing the Darboux integrability of the trapezoidal H4

equations (1.91) and of the H6 equations (1.93) in this Section we
would like to underline that previously known linearizable quad equa-
tions possessing the Consistency Around the Cube are Darboux inte-
grable by showing their first integrals. In this Section we will con-
sider the three quad equations found by J. Hietarinta in [82] given
in formula (1.28). We recall that these equations were found to be
linearizable in [138] and were found to be Darboux integrable in [69].

Indeed let us consider the J2 equation as given by (1.28a) (which is
indeed the same as theD1 equation) is linear and Darboux integrable,
being its first integrals given by:

W1 = (−1)m (un+1,m + un,m) , (4.22a)

W2 = (−1)n (un,m+1 + un,m) . (4.22b)
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These two first integrals are first-order, two-point, meaning that the
equation itself a first integral.

In the same way the J3 equation (1.28b) is linearizable and Darboux
integrable being its first integrals given by:

W1 = (−1)m
un+1,m

un,m
, (4.23a)

W2 = (−1)n
un,m+1

un,m
. (4.23b)

These two first integrals are first-order, two-point, meaning that the
equation itself a first integral.

Finally the J4 equation (1.28b) is linearizable and Darboux inte-
grable being its first integrals given by:

W1 = (−1)m
un+1,m + un,m

1+ un,mun+1,m
, (4.24a)

W2 = (−1)n
un,m+1 + un,m

1+ un,mun,m+1
, (4.24b)

These two first integrals are first-order, two-point, meaning that the
equation itself a first integral.

The idea that these equations should have been Darboux integrable
comes from the fact that they admit Generalized Symmetries depend-
ing on arbitrary functions [69], like the tHε1 equation (1.91a). Indeed
it was shown in [5] that Darboux integrable equations always possess
Generalized Symmetries depending on arbitrary functions of order
at least equal to the first integrals. Therefore following [69] we tried
to reverse the reasoning and prove that these equations were Dar-
boux integrable, knowing their Generalized Symmetries. In this way
in [69] it was proved that also the tHε1 equation is Darboux integrable
by showing its first integrals.

This observations together with the result of Algebraic Entropy, as
reported in Chapter 2, led us to conjecture that every quad equation
possessing the Consistency Around the Cube and linear growth is Darboux
integrable, This encouraged us to check the Darboux integrability of
the remaining trapezoidal H4 and H6 equations. In Section 4.3 we
show how this intuition has been proved by showing all the first
integrals of the H4 equations (1.91) and of the H6 equations.

We conclude this Section noting that no result about the Darboux
integrability of the J1 equation (1.27) is known. Indeed it is possible
to prove using the procedure outlined in Section 4.1 that a candidate
two-point first integral in the n direction for the J1 equation is given
by:

W1 = Fm

(
(un,m + e2)(un+1,m + o1)

(un,m + e1)(un+1,m + e2)

)
. (4.25)
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However plugging (4.25) into the definition of first integral (4.7b) we
obtain that the function Fm becomes a trivial constant. Defining

In =
(un,m + e2)(un+1,m + o1)

(un,m + e1)(un+1,m + e2)
(4.26)

we note that the candidate three-point first integral is given by:

W1 = Fm (In, In−1) . (4.27)

However also in this case it is possible to show that plugging (4.27)
into (4.7b) the function Fm becomes a trivial constant.

Due to computational issues we were not able to prove or disprove
the existence of a first integral in the n direction for the J1 equation
(1.27). In fact we conjecture that the solution of hierarchy of equations
(4.16) for the J1 equation (1.27) is given by:

W1 = Fm (. . . , In+1, In, In−1, . . . ) (4.28)

and that there exists an order N at which this relation defines a first
integral for the J1 equation (1.27), but this kind of computations are
too demanding and we were not able to conclude it for technical
reasons. The only estimate we know is that N > 1. However we note
that the dynamical system given constructed for the J1 equation (1.27)
do not respect the prescription of Chapter 1.

4.3 first integrals for the trapezoidal h4 and h6 equa-
tions

In this Section we show the explicit form of the first integrals for the
trapezoidal H4 equations (1.91) and the H6 equations (1.93). This inte-
grals are computed with the method presented in Section 4.1. We will
not present the details of the calculations since they are algorithmic
and they can be implemented in any Computer Algebra System avail-
able (we have implemented these conditions in Maple). The interested
reader can find a worked out example in Appendix G.

We have the following general result:

• The H4 equations (1.91) possess one first integral in the n direc-
tion and two first integrals in the m direction.

• The H6 equations (1.93) possess two first integrals in the n di-
rection and two first integrals in the m direction.

We believe that these general properties reflect the fact that the H4

equations (1.91) are two-periodic only in the m direction whereas the
H6 equations (1.93) are two-periodic in both directions.

4.3.1 Trapezoidal H4 equations

We now present the first integrals of the trapezoidal H4 equations
(1.91) in both directions.
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4.3.1.1 tH
ε
1 equation

Consider the tHε1 equation as given by (1.91a). It has a two-point, first
order integral in the n direction:

W1 = F
(+)
m

α2
un+1,m − un,m

+ F
(−)
m

un+1,m − un,m

1+ ε2un,mun+1,m
, (4.29a)

and a three-point, second order integral in the m-direction:

W2 = F
(+)
m α

1+ ε2un,m+1un,m−1

un,m+1 − un,m−1

+ F
(−)
m β (un,m+1 − un,m−1) ,

(4.29b)

The integrals (G.8) were first found in [69] from direct computation
and later re-derived in [71] using the method explained in Section
4.1. The interested reader will find all the details of its derivation in
Appendix G.

4.3.1.2 tH
ε
2 equation

Consider the tH
ε
2 equation as given by (1.91b). It has a four-point,

third order integral in the n direction:

W1 = F
(+)
m

(−un+1,m + un−1,m) (un,m − un+2,m)

ε2α42 + 4εα
3
2 + [(8α3 − 2un,m − 2un+1,m) ε− 1]α22 + (un,m − un+1,m)2

− F
(−)
m

(−un+1,m + un−1,m) (un,m − un+2,m)

(−un−1,m + un,m +α2) (un+1,m +α2 − un+2,m)

(4.30a)

and a five-point, fourth order integral in the m-direction:

W2 = F
(+)
m α

(un,m−1 − un,m+1)
2 (un,m+2 − un,m) (un,m − un,m−2)[

(α2 +α3 + un,m−1)
2 ε− un,m−1 +α3 − un,m

]
·[

(α3 +α2 + un,m+1)
2 ε− un,m+1 +α3 − un,m

]

+ F
(−)
m β



(un,m−1 − un,m+2 − un,m+1 + un,m−2)un,m

−ε (un,m−2 − un,m+2)u
2
n,m

−(α3 +α2)
2 (un,m−2 − un,m+2) ε

−2 (un,m−2 − un,m+2) (α3 +α2) εun,m

+(−α3 + un,m+1)un,m−2 + un,m+2 (α3 − un,m−1)


(un,m+2 − un,m) (un,m+1 − un,m−1) (un,m − un,m−2)

(4.30b)
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Remark 4.3.1. We note that tHε2 equation possesses an autonomous
sub-case when ε = 0. We denote this sub-case by tHε=02 . In this sub-
case the equations defining the first integrals become singular and so
the first integrals become simpler:

Wε=0
1 = (−1)m

2α2 − un−1,m + 2un,m − un+1,m

un−1,m − un+1,m
, (4.31a)

Wε=0
2 =

(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m + un,m+1 −α3
. (4.31b)

The first integral in the n-direction (4.31a) is still non-autonomous,
although the equation is autonomous, but now it is a three-point,
second order first integral. On the contrary, the first integral in the
m-direction (4.31b) is a four-point, third order first integral.

Finally we note that the tHε=02 equation is related to the equation
(1) from List 3 in [55]:

(ûn+1,m+1 − ûn+1,m) (ûn,m − ûn,m+1)+ ûn,m+ ûn+1,m+ ûn,m+1+ ûn+1,m+1 = 0

(4.32)

through the transformation:

un,m = −α2ûm,n +
1

4
α2 +

1

2
α3. (4.33)

Note that in this formula (4.33) the two lattice variables are exchanged.
So it was already known in the literature that the tHε=02 equation was
Darboux integrable.

4.3.1.3 tH
ε
3 equation

Consider the tH
ε
2 equation as given by (1.91c). It has a four-point,

third order integral in the n direction:

W1 = F
(+)
m

(un−1,m − un+1,m) (−un+2,m + un,m)
α2
4ε2δ2 −α2

3un+1,mun,m

+
(
un,m

2 + u2n+1,m − 2ε2δ2
)
α2
2

−α2un,mun+1,m + ε2δ2


+ F

(−)
m

(un+1,m − un−1,m) (un+2,m − un,m)

α2 (un+2,m −α2un+1,m) (α2un,m − un−1,m)

(4.34a)
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and a five-point, fourth order integral in the m-direction:

W2 = F
(+)
m α

(un,m+2 − un,m) (un,m+1 − un,m−1)
2 (un,m − un,m−2)(

δ2α23 + u
2
n,m−1ε

2 −α3un,m−1un,m
)
·(

δ2α23 + u
2
n,m+1ε

2 −α3un,mun,m+1

)

− F
(−)
m β


α3u

2
n,m (un,m+1 − un,m−1)

−ε2u2n,m (un,m+2 − un,m−2)

+α3un,m (un,m+2un,m−1 − un,m+1un,m−2)

−δ2α3
2un,m+2 + δ

2α3
2un,m−2


(un,m+2 − un,m) (un,m+1 − un,m−1) (un,m − un,m−2)

(4.34b)

Remark 4.3.2. With the same notation as in Remark 4.3.1, we note
that also the tHε3 equation has an autonomous sub-case of the equa-
tion tH

ε
3 if ε = 0, namely, the tHε=03 equation. In this sub-case the

equations defining the first integrals become singular and so the first
integrals become simpler:

Wε=0
1 = (−1)m

[
α2un,m − un−1,m

un+1,m − un−1,m
+
1

2

]
, (4.35a)

Wε=0
2 =

(un,m+2 − un,m)un,m−1 − un,m+1un,m+2 +α3δ
2

α3δ2 − un,mun,m+1
.

(4.35b)

The first integral in the n-direction (4.35a) is still non-autonomous,
although the equation is autonomous, but now it is a three-point,
second order first integral. On the contrary, the first integral in the
m-direction (4.35b) is a four-point, third order first integral.

Finally we note that the tHε=03 equation is related to equation (2)
from List 3 in [55]:

ûn+1,m+1 (ûn,m + b2ûn,m+1)+ ûn+1,m (b2ûn,m + ûn,m+1)+ c4 = 0

(4.36)

through the inversion of two lattice parameters un,m = ûm,n and the
choice of parameters:

b2 = −
1

α2
, c4 =

δ2α3
(
1−α22

)
α2

. (4.37)

So it was already known in the literature that the tHε=03 equation was
Darboux integrable.

Remark 4.3.3. As a final remark we can say that the tH
ε
2 equation

(1.91b) and tHε3 equation (1.91c) possess first integrals of the same or-
der in each direction. Furthermore the first integrals of all the trape-
zoidalH4 equations share the important property that in the direction
m, which is the direction of the non-autonomous factors F(±)m , the W2
integrals are built up from two different “sub”-integrals.
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4.3.2 H6 equations

In this Subsection we present the first integrals of the H6 equations
(1.93) in both direction.

4.3.2.1 1D2 equation

In the case of the 1D2 equation (1.93b) we have the following second
order three-point integrals:

W1 = F
(+)
n F

(+)
m α

[(1+ δ2)un,m + un+1,m] δ1 − un,m

δ1 {[(1+ δ2)un,m + un−1,m] δ1 − un,m}

+ F
(+)
n F

(−)
m α

1+ (un+1,m − 1) δ1
(1+ (un−1,m − 1) δ1) δ1

+ F
(−)
n F

(+)
m β (un+1,m − un−1,m)

− F
(−)
n F

(−)
m β

(un+1,m − un−1,m) [1− (1− un,m) δ1]

δ2 + un,m
,

(4.38a)

W2 = F
(+)
n F

(+)
m α

un,m+1 − un,m−1

un,m + δ1un,m−1

+ F
(+)
n F

(−)
m β (un,m+1 − un,m−1)

− F
(−)
n F

(+)
m α

un,m+1 − un,m−1

1+ (δ1 − 1)un,m+1

− F
(−)
n F

(−)
m β

un,m+1 − un,m−1

δ2 + un,m
.

(4.38b)

Remark 4.3.4. We remark that, when δ1 → 0, the first integral (4.38a)
is singular, since the coefficient at α approaches a constant. In this
particular case, it can be shown that the first integrals are given by:

W
(0,δ2)
1 = F

(+)
n F

(+)
m α

un+1,m − un−1,m

un,m

− F
(+)
n F

(−)
m α (un+1,m − un−1,m)

+ F
(−)
n F

(+)
m β (un+1,m − un−1,m)

+ F
(−)
n F

(−)
m β

un−1,m − un+1,m

δ2 + un,m
,

(4.39a)

W
(0,δ2)
2 = F

(+)
n F

(+)
m α

un,m+1 − un,m−1

un,m

+ F
(+)
n F

(−)
m β (un,m+1 − un,m−1)

− F
(−)
n F

(+)
m α (un,m+1 − un,m−1)

− F
(−)
n F

(−)
m β

un,m+1 − un,m−1

δ2 + un,m
.

(4.39b)

Note that, as the limit in (4.38b) is not singular, then (4.39b) can be
obtained directly from (4.38b).
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If δ1 → (1+ δ2)
−1, then the limit of the first integral (4.38b) is not

singular. However, it can be seen from equations defining the first
integral in the m-direction that, in this case, there might exist a two-
point, first order first integral. Carrying out the computations, we
obtain that if δ1 = (1+ δ2)

−1, the first integrals are given by:

W
((1+δ2)

−1,δ2)
1 = F

(+)
n F

(+)
m α

un+1,m

un−1,m

+ F
(+)
n F

(−)
m α

δ2 + un+1,m

δ2 + un−1,m

+ F
(−)
n F

(+)
m β (un+1,m − un−1,m)

− F
(−)
n F

(−)
m β

(un+1,m − un−1,m)

δ2 + 1
,

(4.40a)

W
((1+δ2)−1,δ2)
2 = F

(+)
n F

(+)
m α [(1+ δ2)un,m + un,m+1]

+ F
(+)
n F

(−)
m β

un,m + (1+ δ2)un,m+1

δ2 + 1

− F
(−)
n F

(+)
m α

(δ2 + 1)un,m

δ2 + un,m+1

− F
(−)
n F

(−)
m β

un,m+1

δ2 + un,m
.

(4.40b)

So, unlike the case δ1 6= (1+ δ2)
−1, the first integral in the m-

direction (4.40b) is a two-point, first order first integral. On the con-
trary, the first integral in the n-direction (4.40a) is still a three-point,
second order first integral, which can be obtained from the complete
form (4.38a) by substituting δ1 = (1+ δ2)

−1.

4.3.2.2 2D2 equation

In the case of the 2D2 equation (1.93c) we have the following second
order three-point integrals:

W1 = F
(+)
n F

(+)
m α

δ2 + un+1,m

δ2 + un−1,m

+ F
(+)
n F

(−)
m α

(1− (1+ δ2) δ1)un,m + un+1,m

(1− (1+ δ2) δ1)un,m + un−1,m

+ F
(−)
n F

(+)
m β

(un+1,m − un−1,m) (un,m + δ2)

1+ (−1+ un,m) δ1

− F
(−)
n F

(−)
m β (un+1,m − un−1,m)

(4.41a)

W2 = F
(+)
n F

(+)
m α (un,m+1 − un,m−1)

− F
(+)
n F

(−)
m β

un,m+1 − un,m−1

(λ− un,m) δ1 − un,m−1

− F
(−)
n F

(+)
m α

un,m+1 − un,m−1

1+ (−1+ un,m) δ1

− F
(−)
n F

(−)
m β

un,m+1 − un,m−1

un,m+1 + δ2

(4.41b)
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Remark 4.3.5. We remark that if δ1 → 0, the first integral (4.41a) is
not singular. However it can be seen from equations defining the first
integral in the n-direction that in this case there might exist a two-
point, first order first integral. Carrying out the computations, we
obtain that if δ1 = 0, the first integrals are given by:

W
(0,δ2)
1 = F

(+)
n F

(+)
m α (δ2 + un+1,m)un,m

− F
(+)
n F

(−)
m α (un+1,m + un,m)

+ F
(−)
n F

(+)
m β (δ2 + un,m)un+1,m

− F
(−)
n F

(−)
m β (un+1,m + un,m) ,

(4.42a)

W
(0,δ2)
2 = F

(+)
n F

(+)
m α (un,m+1 − un,m−1)

+ F
(+)
n F

(−)
m β

un,m+1

un,m−1

− F
(−)
n F

(+)
m α (un,m+1 − un,m−1)

− F
(−)
n F

(−)
m β

un,m+1 − un,m−1

un,m+1 + δ2
.

(4.42b)

So, differently from the case δ1 6= 0, the first integral in the n-
direction (4.42a) is a two-point, first order first integral. On the con-
trary, the first integral in the m-direction (4.42b) is still a three-point,
second order first integral, which can be obtained from the complete
form (4.41b) by substituting δ1 = 0.

Moreover we note that if δ1 → (1+ δ2)
−1, the limit of the first

integral (4.41b) is not singular. However, it can be seen from equations
defining the first integral in the m-direction that in this case there
might exist a two-point, first order first integral. Carrying out the
computations, we obtain that if δ1 = (1+ δ2)

−1, the first integrals are
given by:

W
((1+δ2)−1,δ2)
1 = F

(+)
n F

(+)
m α

δ2 + un+1,m

δ2 + un−1,m

+ F
(+)
n F

(−)
m α

un+1,m

un−1,m

− F
(−)
n F

(+)
m β (un−1,m − un+1,m)

− F
(−)
n F

(−)
m β

un+1,m − un−1,m

1+ δ2
,

(4.43a)

W
((1+δ2)−1,δ2)
2 = F

(+)
n F

(+)
m α [(1+ δ2)un,m + un,m+1]

+ F
(+)
n F

(−)
m β [un,m + (1+ δ2)un,m+1]

+ F
(−)
n F

(+)
m α

δ2λ− (1+ δ2)un,m+1 + λun,m

un,m + δ2

+ F
(−)
n F

(−)
m β

δ2λ− (1+ δ2)un,m + λun,m+1

un,m+1 + δ2
.

(4.43b)

So, differently from the case δ1 6= (1+ δ2)
−1, the first integral in

the m-direction (4.43b) is a two-point, first order first integral. On
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the contrary, the first integral in the n-direction (4.43a) is still a three-
point, second order first integral, which can be obtained from the
complete form (4.41a) by substituting δ1 = (1+ δ2)

−1.

4.3.2.3 3D2 equation

In the case of the 3D2 equation (1.93d) we have the following second
order three-point integrals:

W1 = F
(+)
n F

(+)
m α

(un−1,m + δ2) [1+ (un+1,m − 1) δ1]

(un+1,m + δ2) [1+ (un−1,m − 1) δ1]

+ F
(+)
n F

(−)
m α

un,m + (1− δ1 − δ1δ2)un−1,m

un,m + (1− δ1 − δ1δ2)un+1,m

+ F
(−)
n F

(+)
m β (un+1,m − un−1,m) (δ2 + un,m)

− F
(−)
n F

(−)
m β (un+1,m − un−1,m) ,

(4.44a)

W2 = F
(+)
n F

(+)
m α (un,m+1 − un,m−1)

− F
(+)
n F

(−)
m β

un,m+1 − un,m−1

λ (1+ δ2) δ1
2 − [(1+ δ2)un,m−1 + un,m + λ] δ1 + un,m−1

+ F
(−)
n F

(+)
m α (un,m−1 − un,m+1) [1+ (un,m − 1) δ1]

+ F
(−)
n F

(−)
m β

un,m+1 − un,m−1

(δ2 + un,m+1) [1+ (1− δ1)un,m−1]
.

(4.44b)

Remark 4.3.6. We remark that if δ1 → 0, the first integral (4.44a) is
not singular. However, it can be seen from equations defining the
first integral in the n-direction that in this case there might exist a
two-point, first order first integral. Carrying out the computations,
we obtain that if δ1 = 0, the first integrals are given by:

W
(0,δ2)
1 = F

(+)
n F

(+)
m αun,m (δ2 + un+1,m)

− F
(+)
n F

(−)
m α (un+1,m + un,m)

+ F
(−)
n F

(+)
m βun+1,m (δ2 + un,m)

− F
(−)
n F

(−)
m β (un+1,m + un,m) ,

(4.45a)

W
(0,δ2)
2 = F

(+)
n F

(+)
m α (un,m+1 − un,m−1)

+ F
(+)
n F

(−)
m β

un,m+1

un,m−1

− F
(−)
n F

(+)
m α (un,m+1 − un,m−1)

+ F
(−)
n F

(−)
m β

δ2 + un,m−1

δ2 + un,m+1
.

(4.45b)

So, differently from the case δ1 6= 0, the first integral in the n-
direction (4.45a) is a two-point, first order first integral. On the con-
trary, the first integral in the m-direction (4.45b) is still a three-point,
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second order first integral, which can be obtained from the complete
form (4.44b) by substituting δ1 = 0.

Moreover we remark that if δ1 → (1+ δ2)
−1, the first integral

(4.44a) is singular, since the coefficient at α approaches a constant.
In this particular case the first integrals are given by:

W
((1+δ2)−1,δ2)
1 = F

(+)
n F

(+)
m α

un+1,m − un−1,m

(δ2 + un+1,m) (δ2 + un−1,m)

+ F
(+)
n F

(−)
m α

un+1,m − un−1,m

(δ2 + 1)un,m

− F
(−)
n F

(+)
m β (un−1,m − un+1,m) (δ2 + un,m)

− F
(−)
n F

(−)
m β (un+1,m − un−1,m) ,

(4.46a)

W
((1+δ2)−1,δ2)
2 = F

(+)
n F

(+)
m α (un,m+1 − un,m−1)

+ F
(+)
n F

(−)
m β

un,m+1 − un,m−1

un,m

− F
(−)
n F

(+)
m α

(un,m+1 − un,m−1) (δ2 + un,m)

δ2 + 1

+ F
(−)
n F

(−)
m β

un,m+1 − un,m−1

(δ2 + un,m+1) (un,m−1 + δ2)
.

(4.46b)

We point out that the first integral in the m-direction (4.46b) can be
obtained from the complete form (4.44b) in the limit δ1 → (1+ δ2)

−1.

4.3.2.4 D3 equation

In the case of the D3 equation as given by (1.93e) we have the follow-
ing third order four-point integrals:

W1 = F
(+)
n F

(+)
m α

(un+1,m − un−1,m) (un+2,m − un,m)

u2n+1,m − un,m

+ F
(+)
n F

(−)
m α

(un+1,m − un−1,m)
(
un+2,m−un,m

)
un,m + un−1,m

− F
(−)
n F

(+)
m β

(un+1,m − un−1,m) (un+2,m − un,m)

un+1,m − u2n,m

+ F
(−)
n F

(−)
m β

(un+1,m − un−1,m) (un+2,m − un,m)

un+1,m + un+2,m

(4.47a)

W2 = F
(+)
n F

(+)
m α

(un,m+1 − un,m−1) (un,m+2 − un,m)

u2n,m+1 − un,m

− F
(+)
n F

(−)
m β

(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m+1 − u2n,m

+ F
(−)
n F

(+)
m α

(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m + un,m−1

+ F
(−)
n F

(−)
m β

(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m+1 + un,m+2

(4.47b)
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Remark 4.3.7. The equation D3 is invariant under the exchange of
lattice variables n ↔ m. Therefore its W2 integral (4.47b) can be ob-
tained from theW1 one (4.47a) simply by exchanging the index n and
m.

4.3.2.5 1D4 equation

In the case of the 1D4 equation as given by (1.93f) we have the follow-
ing third order four-point integrals:

W1 = F
(+)
n F

(+)
m α

u2n+1,mδ1 + un+1,mun+2,m + un−1,m (un,m − un+2,m) − δ2δ3

un+1,m (δ1 + un,m) − δ2δ3

+ F
(+)
n F

(−)
m α

(un,m − un+2,m + δ1un+1,m)un−1,m + un+1,mun+2,m

(un,m + δ1un−1,m)un+1,m

+ F
(−)
n F

(+)
m β

(un+1,m − un−1,m) (un+2,m − un,m)

u2n,mδ1 + un+1,mun,m − δ2δ3

+ F
(−)
n F

(−)
m β

(un+1,m − un−1,m) (un+2,m − un,m)

un,m (un+2,mδ1 + un+1,m)

(4.48a)

W2 = F
(+)
n F

(+)
m α

(un,m+2 − un,m)un,m−1 + δ1δ3 − δ2u
2
n,m+1 − un,m+1un,m+2

δ1δ3 − un,mun,m+1 − δ2u
2
n,m+1

− F
(+)
n F

(−)
m β

(un,m+1 − un,m−1) (un,m+2 − un,m)

δ1δ3 − δ2un,m2 − un,mun,m+1

+ F
(−)
n F

(+)
m α

(un,m − un,m+2 + δ2un,m+1)un,m−1 + un,m+1un,m+2

(un,m + δ2un,m−1)un,m+1

+ F
(−)
n F

(−)
m β

(un,m+1 − un,m−1) (un,m+2 − un,m)

un,m (un,m+2δ2 + un,m+1)

(4.48b)

Remark 4.3.8. The equation 1D4 possesses an autonomous sub-case
when δ1 = δ2 = 0. In this case the equations defining the first inte-
grals become singular and the first integrals become simpler. If δ3 6= 0
we have:

W
(0,0,δ3)
1 = (−1)m

un+1,m − un−1,m

un,m
, (4.49a)

W
(0,0,δ3)
2 = (−1)n

un,m+1 − un,m−1

un,m
. (4.49b)

They are both non-autonomous, three-point, second order first inte-
grals. Notice that, since this sub-case is such that the equation has the
discrete symmetry n↔ m, the first integral W(0,0,δ3)

2 can be obtained
from W

(0,0,δ3)
1 by using such transformation.

Moreover we notice that the case δ1 = δ2 = 0 δ3 6= 0 is linked to
the equation (4) with b3 = 1 of List 3 in [55]:

ûn+1,m+1ûn,m + ûn+1,mûn,m+1 + 1 = 0 (4.50)
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through the transformation un,m =
√
δ3ûn,m.

We finally notice that the sub-case where δ1 = δ2 = δ3 = 0 pos-
sesses two two-point, first order, non-autonomous first integrals:

W
(0,0,0)
1 = (−1)m

un+1,m

un,m
, W

(0,0,0)
2 = (−1)n

un,m+1

un,m
. (4.51)

The resulting equation is linked to one of the linearizable and Dar-
boux integrable cases presented in [69, 82].

4.3.2.6 2D4 equation

In the case of the 2D4 equation as given by (1.93g) we have the fol-
lowing four-point integrals:

W1 = F
(+)
n F

(+)
m α

[
(un,m − un+2,m − δ1δ2un−1,m)u2n+1,m

+un+1,mun+2,mun−1,m + δ3un−1,m

]
(
δ2u

2
n+1,mδ1 − δ3 − un,mun+1,m

)
un−1,m

− F
(+)
n F

(−)
m α

un+2,mun−1,m + (−un+2,m + un,m)un+1,m + δ3
un−1,mun,m + δ3

− F
(−)
n F

(+)
m β

(un+1,m − un−1,m) (un+2,m − un,m)un,m

un+2,m (δ2δ1un,m2 − un,mun+1,m − δ3)

+ F
(−)
n F

(−)
m β

(un+1,m − un−1,m) (un+2,m − un,m)

un+1,mun+2,m + δ3
(4.52a)

W2 = F
(+)
n F

(+)
m α

(un,m+2 − un,m)un,m−1 + δ1δ3 − δ2u
2
n,m+1 − un,m+1un,m+2

δ1δ3 − δ2u
2
n,m+1 − un,mun,m+1

− F
(+)
n F

(−)
m β

(un,m+1 − un,m−1) (un,m+2 − un,m)

δ1δ3 − δ2u2n,m − un,mun,m+1

+ F
(−)
n F

(+)
m α

un,m+2δ2un,m + un,m−1un,m + un,m+1un,m+2 − un,mun,m+1

un,m+2 (δ2un,m + un,m−1)

+ F
(−)
n F

(−)
m β

(un,m+1 − un,m−1) (un,m+2 − un,m)

(δ2un,m+1 + un,m+2)un,m−1

(4.52b)

Remark 4.3.9. The equation 2D4 possesses an autonomous sub-case
when δ1 = δ2 = 0. In this case the equations defining the first inte-
grals become singular and the first integrals become simpler:

W
(0,0,δ3)
1 = (−1)m

(
un,mun+1,m +

δ3
2

)
, W

(0,0,δ3)
2 =

(
un,m+1

un,m−1

)(−1)n

.

(4.53)

Therefore this particular sub-case possesses a two-point, first order
integral W1 and a three-point, second order integral W2. Both inte-
grals are non-autonomous despite the equation is autonomous. The
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limit δ3 → 0 is in this case regular both in the first integrals and in
the equations defining them.

Finally we have that the case δ1 = δ2 = 0 corresponds to the equa-
tion (9) of List 4 in [55]:

ûn,mûn+1,m + ûn,m+1ûn+1,m+1 + c4 = 0, (4.54)

with the identification un,m = ûn,m and c4 = δ3.

Remark 4.3.10. Besides the general remarks on the structure of the first
integrals for the H6 equations which were given at the beginning of
the this Section we would like to note that the first integrals of the H6

equations are of the same order in both directions at difference of the
trapezoidal H4 equations (except that in the degenerate cases). Fur-
thermore we note that the three forms of the iD2 equations possess
first integrals of the second order. In the same way we have that the
D3 and the iD4 equations possess first integrals of the fourth order.
This different properties will be important when looking for general
solution in Section 4.4.

We conclude this Section noting that together with the results ob-
tained in Section 4.2 we can state that any quad equation possessing
the Consistency Around the Cube with linear growth constructed according
to the prescriptions of Chapter 1 is Darboux integrable. As pointed out in
Section 4.2 the J1 equation (1.27) is not constructed using the prescrip-
tions of Chapter 1, therefore it is different from all the other equations
considered. Since no definitive result about the Darboux integrability
of the J1 equation (1.27) is known we cannot say if this result can
expand to a wider class of equations including the J1 equation (1.27).

4.4 general solutions through the first integrals

In Section 4.3 we showed that the trapezoidal H4 equations (1.91)
and the H6 equations (1.93) are Darboux integrable in the sense of lat-
tice equations, see Section 4.1. In this Section we show that from the
knowledge of the first integrals and from the properties of the equa-
tions it is possible to construct, maybe after some complicate algebra,
the general solutions of the trapezoidal H4 equations (1.91) and of the
H6 equations (1.93). By general solution we mean a representation of
the solution of any of the equations in (1.91) and (1.93) in terms of
the right number of arbitrary functions of one lattice variable n or m.
Since the trapezoidal H4 equations (1.91) and the H6 equations (1.93)
are quad equations, i.e. the discrete analogue of second order hyper-
bolic partial differential equations, the general solution must contain
an arbitrary function in the n direction and another one in the m
direction.

To obtain the desired solution we will need only the W1 integrals
we presented in Section 4.3 and the relation (4.11), i.e. W1 = ξn with
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ξn an arbitrary function of n. The equation W1 = ξn can be inter-
preted as an ordinary difference equation in the n direction depend-
ing parametrically on m. Then from every W1 integral we can derive
two different ordinary difference equations, one corresponding to m
even and one corresponding to m odd. In both the resulting equation
we can get rid of the two-periodic terms by considering the cases n
even and n odd and using the general transformation:

u2k,2l = vk,l, u2k+1,2l = wk,l, (4.55a)

u2k,2l+1 = yk,l, u2k+1,2l+1 = zk,l. (4.55b)

This transformation brings both equations to a system of coupled differ-
ence equations. This reduction to a system is the key ingredient in the
construction of the general solutions for the trapezoidal H4 equations
(1.91) and for the H6 equations (1.93).

We note that the transformation (4.55) can be applied to the trape-
zoidal H4 equations2 and H6 equations themselves. This casts these
non-autonomous equations with two-periodic coefficients into autonomous
systems of four equations. We recall that in this way some examples of
direct linearization (i.e. without the knowledge of the first integrals)
were produced in [67]. Finally we note that if we apply the even/odd
splitting of the lattice variables given by equation (4.55) to describe a
general solution we will need two arbitrary functions in both direc-
tions, i.e. we will need a total of four arbitrary functions.

In practice to construct these general solutions, we need to solve
Riccati equations and non-autonomous linear equations which, in
general, cannot be solved in closed form. Using the fact that these
equations contain arbitrary functions we introduce new arbitrary func-
tions so that we can solve these equations. This is usually done reduc-
ing to total difference, i.e. to ordinary difference equations which can
be trivially solved. Let us assume we are given the difference equation:

un+1,m − un,m = vn, (4.56)

depending parametrically on another discrete index m. Then if I can
express the function vn as a discrete derivative:

vn = wn+1 −wn, (4.57)

then the solution of equation (4.56) is simply:

un,m = wn + υm, (4.58)

where υm is an arbitrary function of the discrete variable m. This is
the simplest possible example of reduction to total difference. The

2 In fact, in the case of the trapezoidal H4 equations (1.91), we use a simpler transfor-
mation instead of (4.55), see Section 4.4.3.
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general solutions will then be expressed in terms of these new arbi-
trary functions obtained reducing to total differences and in terms of
a finite number of discrete integrations, i.e. the solutions of the simple
ordinary difference equation:

un+1 − un = vn, (4.59)

where un is the unknown and vn is an assigned function. We note
that the discrete integration (4.59) is the discrete analogue of the dif-
ferential equation u ′ (x) = v (x).

To summarize, in this Section we prove the following result:

The trapezoidal H4 equations (1.91) and H6 equations (1.93)
are exactly solvable and we can represent the solution in terms
of a finite number of discrete integration (4.59).

The Section is structured in Subsections. In Subsection 4.4.1 we
treat the 1D2, 2D2 and 3D2 equations. In this case the construction
of the general solution is carried out from the sole knowledge of the
first integral. The equation acts only as a compatibility condition for
the arbitrary functions obtained in the procedure. The solution ob-
tained is explicit. In Subsection 4.4.2 we treat the D3, 1D4 and 2D4
equations. In this case the construction of the general solution is car-
ried out through a series of manipulations in the equation itself and
from the knowledge of the first integral. The key point will be that the
equations of the first integrals can be reduced to a single linear equa-
tion. The solution is obtained up to two discrete integrations, one in
every direction. In Subsection 4.4.3 we treat the trapezoidal H4 equa-
tions (1.91). The tHε1 equation (1.91a) is trivial since in the direction
n it possess the first integral (4.29a) which is two-point, second order.
This is trivial, since possessing a first integral of order one means that
the equation itself is a first integral. For the tHε2 equation (1.91b) and
the tHε3 equation (1.91c) the construction of the general solution is
carried out reducing the equation to a partial difference equation de-
fined on six points and then using the equations defined by the first
integrals. The equations defined by the first integrals are reduced to
discrete Riccati equations. The solution will be be given in terms of
four discrete integrations.

4.4.1 The iD2 equations i = 1, 2, 3

In this Subsection we construct the general solution of the three forms
of the D2 equation, which we denote collectively as iD2 with i =

1, 2, 3 and are given by equations (1.93b), (1.93c) and (1.93d).

4.4.1.1 1D2 equation

From Section 4.3 we know that the 1D2 equation (1.93b) possesses
a three-point, second order first integral W1 (4.38a). As stated at the
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beginning of this Section from the relation W1 = ξn this integral de-
fines a three-point, second order ordinary difference equation in the
n direction which depends parametrically onm. From the parametric
dependence we find two different three-point non-autonomous ordi-
nary difference equations corresponding to m even and m odd. We
treat them separately.

case m = 2l : If m = 2l we have the following non-autonomous or-
dinary difference equation:

F
(+)
n

[(1+ δ2)un,2l + un+1,2l] δ1 − un,2l

[(1+ δ2)un,2l + un−1,2l] δ1 − un,2l

+ F
(−)
n (un+1,2l − un−1,2l) = ξn,

(4.60)

where without loss of generality α = δ1 and β = 1. We can
easily see, that once solved for un+1,2l the equation is linear:

un+1,2l +
F
(+)
m (δ1 + δ1δ2 − 1− ξnδ1 − ξnδ1δ2 + ξnδ1)un,2l

δ1

−
(
F
(+)
m ξn + F

(−)
m

)
un−1,2l − F

(−)
m ξn = 0.

(4.61)

Tackling this equation directly is very difficult, but we can sepa-
rate again the cases when n is even and odd and convert (4.61)
into a system using the standard transformation (4.55a):

wk,l − ξ2kwk−1,l =
δ

δ1
(1− ξ2k) vk,l, (4.62a)

vk+1,l − vk,l = ξ2k+1, (4.62b)

where:

δ = 1− δ1δ2 − δ1. (4.63)

Now we have two first order ordinary difference equations. Equa-
tion (4.62b) is uncoupled from equation (4.62a). Furthermore,
since ξ2k and ξ2k+1 are independent functions we can write
ξ2k+1 = ak+1 − ak. So the second equation possesses the triv-
ial solution3:

vk,l = αl + ak. (4.64)

Now introduce (4.64) into (4.62a) and solve the equation for
wk,l:

wk,l − ξ2kwk−1,l =
δ

δ1
(1− ξ2k) (αl + ak) . (4.65)

3 From now on we use the convention of naming the arbitrary functions depending
on k with Latin letters and the functions depending on l by Greek ones.
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We define ξ2k = bk/bk−1 and perform the change of dependent
variable: wk,l = bkWk,l. Then Wk,l solves the equation:

Wk,l −Wk−1,l =
δ

δ1

(
1

bk
−

1

bk−1

)
(αl + ak) . (4.66)

The solution of this difference equation is given by:

Wk,l = βl +
δ

δ1

αl
bk

+ ck, (4.67)

where ck is such that:

ck − ck−1 =
δ

δ1

(
1

bk
−

1

bk−1

)
ak. (4.68)

Equation (4.68) is not a total difference, but it can be used to
define ak in terms of the arbitrary functions bk and ck:

ak = −
δ1
δ

bkbk−1
bk − bk−1

(ck − ck−1) . (4.69)

This means that we have the following solution for the system
(4.62):

vk,l = αl −
δ1
δ

bkbk−1
bk − bk−1

(ck − ck−1) . (4.70a)

wk,l = bk (βl + ck) +
δ

δ1
αl, (4.70b)

case m = 2l + 1 : Ifm = 2l+1we have the following non-autonomous
ordinary difference equation:

F
(+)
m
1+ (un+1,2l+1 − 1) δ1
1+ (un−1,2l+1 − 1) δ1

+ F
(−)
m

(un−1,2l+1 − un+1,2l+1) [1− δ1 (1− un,2l+1)]

δ2 + un,2l+1
= ξn,

(4.71)

We can easily see that the equation is genuinely nonlinear. How-
ever we can separate the cases when n is even and odd and
convert (4.71) into a system using the standard transformation
(4.55b):

zk,l − ξ2kzk−1,l =

(
1−

1

δ1

)
(1− ξ2k) , (4.72a)

yk+1,l − yk,l =
ξ2k+1
δ1

δ− 1+ δ1 (1− zk,l)

1− δ1 (1− zk,l)
, (4.72b)

where we used the definition (4.63). This is a system of two
first order difference equation, and equation (4.72a) is linear and
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uncoupled from (4.72b). As ξ2k = bk/bk−1 we have that (4.72a)
is a total difference:

zk,l

bk
−
zk−1,l

bk−1
=

(
1−

1

δ1

)(
1

bk
−

1

bk−1

)
. (4.73)

Hence the solution of (4.73) is given by:

zk,l = 1−
1

δ1
+ bkγl. (4.74)

Inserting (4.74) into (4.72b) and using the definition of ξ2k+1 in
terms of ak, i.e. ξ2k+1 = ak+1 − ak we obtain:

yk+1,l − yk,l = −

(
1

δ1
+

δ

δ21bkγl

)
(ak+1 − ak) . (4.75)

We can then represent the solution of (4.73) as:

yk,l = δl +
δdk

δ21γl
−
ak
δ1

, (4.76)

where dk satisfies the first order linear difference equation:

dk+1 − dk =
ak+1 − ak

bk
. (4.77)

Inserting the value of ak given by (4.69) inside (4.77) we obtain
that this equation is a total difference. Then dk is given by:

dk = −
(ck − ck−1)bk−1δ1

(bk − bk−1)δ
−
δ1ck
δ

. (4.78)

This means that finally we have the following solutions for the
fields zk,l and yk,l:

zk,l = 1−
1

δ1
+ bkγl, (4.79a)

yk,l = δl −
(ck − ck−1)bk−1
(bk − bk−1)δ1γl

−
ck
δ1γl

+
1

δ

bkbk−1 (ck − ck−1)

bk − bk−1
.

(4.79b)

Equations (4.70,4.79) provide the value of the four fields, but we
have too many arbitrary functions in the m direction, namely αl,
βl, γl and δl. Introducing (4.70,4.79) into (1.93b) and separating the
terms even and odd in n andmwe obtain two independent equations:

(αl + δ1δl)γl +βl = 0, (αl+1 + δ1δl)γl +βl+1 = 0, (4.80)

which allow us to reduce by two the number of independent func-
tions in the m direction. Solving equations (4.80) with respect to γl
and δl we obtain:

γl = −
βl+1 −βl
αl+1 −αl

, δl =
1

δ1

βlαl+1 −βl+1αl
βl+1 −βl

. (4.81)
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Therefore the general solution for the 1D2 equation (1.93b) is given
by:

vk,l = αl −
δ1
δ

bkbk−1
bk − bk−1

(ck − ck−1) , (4.82a)

wk,l = bk (βl + ck) +
δ

δ1
αl, (4.82b)

zk,l = 1−
1

δ1
− bk

βl+1 −βl
αl+1 −αl

, (4.82c)

yk,l =
1

δ1

βlαl+1 −βl+1αl
βl+1 −βl

+
1

δ

bkbk−1 (ck − ck−1)

bk − bk−1

+

[
(ck − ck−1)bk−1
(bk − bk−1)δ1

+
ck
δ1

]
αl+1 −αl
βl+1 −βl

.

(4.82d)

Remark 4.4.1. It is easy to see that the solution (4.82) is ill-defined if
δ1 = 0 or δ = 0. We will treat these two particular cases separately.

case δ = 0 : If δ = 0 we can solve (4.63) with respect to δ1:

δ1 =
1

1+ δ2
. (4.83)

The first integral (4.38a) is not singular for δ1 given by (4.83). The
procedure of solution will become different only when we arrive to
the systems of ordinary difference equations (4.62) and (4.72). So we
will present the solution of the systems in this case.

case m = 2k : If δ1 is given by equation (4.83) the system (4.62) be-
comes:

wk,l − ξ2kwk−1,l = 0, (4.84a)

vk+1,l − vk,l = ξ2k+1. (4.84b)

The system (4.84) is uncoupled and imposing ξ2k = ak/ak−1
and ξ2k+1 = bk+1 − bk it is readily solved to give:

wk,l = akαl, (4.85a)

vk,l = bk +βl. (4.85b)

case m = 2k + 1 : If δ1 is given by equation (4.83) the system (4.72)
becomes:

δ2 + zk,l

ak
=
δ2 + zk−1,m

ak−1
, (4.86a)

−
yk+1,l − yk,l

1+ δ2
= bk+1 − bk, (4.86b)
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where we used the fact that ξ2k = ak/ak−1 and ξ2k+1 =

bk+1 − bk. The solution to this system is immediate and it is
given by:

zk,l = akγl − δ2, (4.87a)

yk,l = (1+ δ2) (δl − bk) . (4.87b)

As in the general case we obtained the expressions of the four fields,
but we have too many arbitrary functions in the l direction, namely
αl, βl, γl and δl. Substituting the obtained expressions (4.85,4.87) in
the equation 1D2 (1.93b) with δ1 given by equation (4.83) separating
the even and odd terms we obtain two compatibility conditions:

αl + γlβl + γlδl = 0, αl+1 + γlβl+1 + γlδl = 0. (4.88)

We can solve this equation with respect to γl and δl and we obtain:

γl = −
αl+1 −αl
βl+1 −βl

, δl = −
βlαl+1 −βl+1αl

αl+1 −αl
. (4.89)

Therefore the general solution for the 1D2 equation (1.93b) if δ1 is
given by (4.83) is:

wk,l = akαl, (4.90a)

vk,l = bk +βl. (4.90b)

zk,l = −ak
αl+1 −αl
βl+1 −βl

− δ2, (4.90c)

yk,l = −(1+ δ2)

(
βlαl+1 −βl+1αl

αl+1 −αl
+ bk

)
. (4.90d)

case δ1 = 0 : If δ1 = 0 the first integral (4.38a) is singular. Then
following Remark 4.3.4 the 1D2 equation (1.93b) possesses in the di-
rection n three-point, second order integral W(0,δ2)

1 (4.39a). In order
to solve the 1D2 in this case equation (1.93b) we use the first integral
(4.39a). We start separating the cases even and odd in m.

case m = 2k : If m = 2k we obtain from the first integral (4.39a):

F
(+)
n
un+1,2l − un−1,2l

un,2l
+ F

(−)
n (un+1,2l − un−1,2l) = ξn, (4.91)

where we have chosen without loss of generality α = β = 1.
This equation is non-linear. Applying the transformation (4.55a)
we transform equation (4.91) into the system:

wk,l −wk−1,l = ξ2kvk,l, (4.92a)

vk+1,l − vk,l = ξ2k+1. (4.92b)
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The system (4.92) is linear and equation (4.92b) is uncoupled
from equation (4.92a). If we put ξ2k+1 = ak+1 − ak then equa-
tion (4.92b) has the solution:

vk,l = ak +αl. (4.93)

Substituting into (4.92a) we obtain:

wk,l −wk−1,l = ξ2k(ak +αl). (4.94)

Equation (4.94) becomes a total difference if we set:

ξ2k = bk − bk−1, ak =
ck − ck−1
bk − bk−1

(4.95)

and then the solution of the system (4.84) is given by:

vk,l =
ck − ck−1
bk − bk−1

+αl, (4.96a)

wk,l = ck +αlbk +βl. (4.96b)

case m = 2k + 1 : If m = 2k + 1 we obtain from the first integral
(4.39a):

F
(+)
n (un−1,2l+1 − un+1,2l+1)− F

(−)
n

(un+1,2l+1 − un−1,2l+1)

δ2 + un,2l+1
= ξn,

(4.97)

where we have chosen without loss of generality α = β = 1.
This equation is non-linear. Applying the transformation (4.55b)
we transform equation (4.97) into the system:

zk−1,l − zk,l = bk − bk−1, (4.98a)

yk,l − yk+1,l = (ak+1 − ak)(δ2 + zk,l), (4.98b)

where we used the values of ξ2k and ξ2k+1. The system is now
linear and equation (4.98a) can be already solved to give:

zk,l = γl − bk. (4.99)

Substituting into (4.98b) we obtain:

yk,l − yk+1,l = (ak+1 − ak)(δ2 + γl − bk). (4.100)

Then we have that yk,l is given by:

yk,l = δl − (γl + δ2)ak + dk, (4.101)

where dk solves the ordinary difference equation:

dk+1 − dk = bk+1
ck+1 − ck
bk+1 − bk

− ck+1 − bk
ck − ck−1
bk − bk−1

+ ck.
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(4.102)

In (4.102) we inserted the value of ak according to (4.95). Equa-
tion (4.102) is a total difference and then dk is given by:

dk = bk
ck − ck−1
bk − bk−1

− ck. (4.103)

Then the solution of the system (4.98) is:

zk,l = γl − bk, (4.104a)

yk,l = δl − (γl + δ2)
ck − ck−1
bk − bk−1

+ bk
ck − ck−1
bk − bk−1

− ck.

(4.104b)

As in the general case we obtained the expressions of the four fields,
but we have too many arbitrary functions in the l direction, namely
αl, βl, γl and δl. Substituting the obtained expressions (4.96,4.104) in
the equation 1D2 (1.93b) with δ1 = 0 separating the even and odd
terms we obtain two compatibility conditions:

(γl+ δ2)αl+ δl+βl = 0, (γl+ δ2)αl+1+βl+1+ δl = 0. (4.105)

We can solve equation (4.105) with respect to γl and δl and to obtain:

γl = −δ2 −
βl+1 −βl
αl+1 −αl

, δl =
βl+1αl −αl+1βl

αl+1 −αl
. (4.106)

Therefore the general solution for the 1D2 equation (1.93b) if δ1 = 0

is:

vk,l =
ck − ck−1
bk − bk−1

+αl, (4.107a)

wk,l = ck +αlbk +βl. (4.107b)

zk,l = −δ2 −
βl+1 −βl
αl+1 −αl

− bk, (4.107c)

yk,l =
βl+1αl −αl+1βl

αl+1 −αl
+
βl+1 −βl
αl+1 −αl

ck − ck−1
bk − bk−1

+ bk
ck − ck−1
bk − bk−1

− ck.

(4.107d)

This discussion exhausts the possible cases. For any value of the
parameters we have the general solution of the 1D2 equation (1.93b).

4.4.1.2 2D2 equation

From Section 4.3 we know that the 2D2 equation (1.93c) possesses a
three-point, second order first integral W1 (4.41a). As stated at the
beginning of this Section from the relation W1 = ξn this integral de-
fines a three-point, second order ordinary difference equation in the n
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direction which depends parametrically on m. From this parametric
dependence we find two different three-point non-autonomous ordi-
nary difference equations corresponding to m even and m odd. We
treat them separately.

case m = 2l : If m = 2l we have the following non-autonomous
nonlinear ordinary difference equation:

F
(+)
n α

δ2 + un+1,2l

δ2 + un−1,2l

− F
(−)
n β

(un−1,2l − un+1,2l) (un,2l + δ2)

1+ (un,2l − 1) δ1
= ξn.

(4.108)

Without loss of generality we set α = 1 and β = δ1. Then mak-
ing the transformation

un,2l = Un,2l − δ2 (4.109)

and putting

δ =
1− δ1 − δ1δ2

δ1
(4.110)

equation (4.108) is mapped to:

F
(+)
n
Un+1,2l

Un−1,2l
− F

(−)
n

(Un−1,2l −Un+1,2l)Un,2l

Un,2l + δ
= ξn. (4.111)

From the definition (4.55a) applied to Un,2l instead of un,2l
4

we can separate again the even and the odd part in (4.111). We
obtain the following system of two coupled first-order ordinary
difference equations:

Wk,l − ξ2kWk−1,l = 0, (4.112a)

Vk+1,l − Vk,l = ξ2k+1

(
1+

δ

Wk,l

)
. (4.112b)

Putting ξ2k = ak/ak−1 the solution to (4.112a) is immediately
given by:

Wk,l = akαl. (4.113)

Inserting the value of Wk,l from (4.113) into (4.112b) we obtain:

Vk+1,l − Vk,l = ξ2k+1

(
1+

δ

akαl

)
. (4.114)

If we define

ξ2k+1 = bk+1 − bk, ak =
bk+1 − bk
ck+1 − ck

, (4.115)

4 We will denote the corresponding fields with capital letters.
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then (4.114) becomes a total difference. So we obtain the follow-
ing solutions for the Wk,l and the Vk,l fields:

Wk,l = αl
bk+1 − bk
ck+1 − ck

, (4.116a)

Vk,l = bk +βl + δ
ck
αl

. (4.116b)

Inverting the transformation (4.109) we obtain for the fields
wk,l and vk,l:

wk,l = αl
bk+1 − bk
ck+1 − ck

+
1

δ1
− 1− δ, (4.117a)

vk,l = bk +βl + δ
ck
αl

+
1

δ1
− 1− δ. (4.117b)

case m = 2l + 1 : Ifm = 2l+1we have the following non-autonomous
ordinary difference equation:

F
(+)
n
δδ1un,2l+1 + un+1,2l+1

δδ1un,2l+1 + un−1,2l+1
+F

(−)
n δ1 (un−1,2l+1 − un+1,2l+1) = ξn,

(4.118)

where we already substituted δ as defined in (4.110). Using the
standard transformation to get rid of the two-periodic factors
(4.55b) we obtain:

δδ1yk,l + zk,l

δδ1yk,l + zk−1,l
= ξ2k, (4.119a)

δ1 (yk,l − yk+1,l) = ξ2k+1. (4.119b)

Both equations in (4.119) are linear in zk,l yk,l and their shifts.
As ξ2k+1 = bk+1 − bk we have that the solution of equation
(4.119b) is given by:

yk,l = γl −
bk
δ1

. (4.120)

As ξ2k = ak/ak−1 and yk,l given by (4.120) we obtain:

zk,l

ak
−
zk−1,l

ak−1
=

(
1

ak
−

1

ak−1

)
(δbk − δδ1γl) . (4.121)

Recalling the definition of ak in (4.115) we represent zk,l as:

zk,l = δbk +
bk+1 − bk
ck+1 − ck

(δl − δck) − δδ1γl. (4.122)

Equations (4.117,4.120,4.122) provide the value of the four fields,
but we have too many arbitrary functions in the m direction, namely
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αl, βl, γl and δl. Inserting (4.117,4.120,4.122) into (1.93c) and separat-
ing the terms even and odd in n and m we obtain two independent
equations:

δ1δl +αlδ
2
1γl − δ1

2λαl +βlαlδ1 + δαlδ1 −αl +αlδ1 = 0,
(4.123a)

δ1δl +αl+1δ
2
1γl − δ

2
1λαl+1 +βl+1αl+1δ1 + δαl+1δ1 −αl+1 +αl+1δ1 = 0,

(4.123b)

which allow us to reduce by two the number of independent func-
tions in the m direction. Solving (4.123) with respect to γl and δl we
find:

γl = −
βl+1δ1 − 1− δ

2
1λ+ δδ1 + δ1

δ21
−
αl (βl+1 −βl)

(αl+1 −αl) δ1
, (4.124a)

δl = αl (βl+1 −βl) +
α2l (βl+1 −βl)

αl+1 −αl
(4.124b)

Therefore the general solution of the 2D2 equation (1.93c) is given
by:

vk,l = bk +βl + δ
ck
αl

+
1

δ1
− 1− δ. (4.125a)

wk,l = αl
bk+1 − bk
ck+1 − ck

+
1

δ1
− 1− δ. (4.125b)

zk,l = δbk + δ
βl+1δ1 − 1− δ

2
1λ+ δδ1 + δ1

δ1

+
bk+1 − bk
ck+1 − ck

[
αl (βl+1 −βl) +

α2l (βl+1 −βl)

αl+1 −αl
− δck

]
+
δαl (βl+1 −βl)

αl+1 −αl
,

(4.125c)

yk,l = −
βl+1δ1 − 1− δ

2
1λ+ δδ1 + δ1

δ21

−
αl (βl+1 −βl)

(αl+1 −αl) δ1
−
bk
δ1

.

(4.125d)

Remark 4.4.2. It is easy to see that the solution of the 2D2 equation
(1.93c) given by (4.125) is ill-defined if δ1 = 0. Therefore we have to
threat this case separately. Following Remark 4.3.5 we have the 2D2
equation (1.93c) with δ1 = 0 possesses the following two-point, first
order first integral in the direction n W(0,δ2)

1 (4.42a) To solve the 2D2
equation (1.93c) with δ1 = 0 we use the first integral (4.42a). Again
we start separating the cases m even and odd in (4.42a).

case m = 2k : If m = 2k we obtain from the first integral (4.42a):

F
(+)
n (δ2 + un+1,2l)un,2l + F

(−)
n (δ2 + un,2l)un+1,2l = ξn,
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(4.126)

where we have chosen without loss of generality α = β = 1.
Applying the transformation (4.55a) equation (4.126) becomes
the system:

vk,l(δ2 +wk,l) = ξ2k, (4.127a)

vk+1,l(δ2 +wk,l) = ξ2k+1. (4.127b)

In this case the system (4.127) do not consist of purely differ-
ence equations. Indeed from (4.127a) we can derive immediately
the value of the field wk,l:

wk,l = −δ2 +
ξ2k
vk,l

. (4.128)

Inserting (4.128) into (4.127b) we obtain that vk,l solves the equa-
tion:

vk+1,l −
ξ2k+1
ξ2k

vk,l = 0. (4.129)

Defining:

ξ2k+1 =
ak+1
ak

ξ2k, (4.130)

we have that (4.129) becomes a total difference. So we have that
the system (4.127) is solved by:

vk,l = akαl, (4.131a)

wk,l = −δ2 +
ξ2k
akαl

. (4.131b)

case m = 2k + 1 : If m = 2k + 1 we obtain from the first integral
(4.42a):

F
(+)
n (un+1,2l+1 + un,2l+1)+ F

(−)
n (un+1,2l+1 + un,2l+1) = −ξn.

(4.132)

Applying the transformation (4.55b) equation (4.132) becomes
the system:

yk,l + zk,l = −ξ2k, (4.133a)

zk,l + yk+1,l = −
ak+1
ak

ξ2k, (4.133b)

where ξ2k+1 is given by (4.130). Equation (4.133a) is not a dif-
ference equation and can be solved to give:

zk,l = −ξ2k − yk,l, (4.134)
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which inserted in (4.133b) gives:

yk+1,l − yk,l =

(
1−

ak+1
ak

)
ξ2k. (4.135)

Defining:

ξ2k = −ak
bk+1 − bk
ak+1 − ak

(4.136)

equation (4.135) becomes a total difference. Therefore we can
write the solution of the system (4.133) as:

yk,l = bk +βl, (4.137a)

zk,l = ak
bk+1 − bk
ak+1 − ak

− bk −βl. (4.137b)

In this case we have the right number of arbitrary functions in both
directions. So the solution of the 2D2 equation with δ1 = 0 is given
by:

vk,l = akαl, (4.138a)

wk,l = −δ2 −
1

αl

bk+1 − bk
ak+1 − ak

, (4.138b)

yk,l = bk +βl, (4.138c)

zk,l = ak
bk+1 − bk
ak+1 − ak

− bk −βl. (4.138d)

Inserting (4.138) into the 2D2 equation (1.93c) and separating the
even and odd terms we verify that it is a solution.

4.4.1.3 3D2 equation

From Section 4.3 we know that the 2D2 equation (1.93c) possesses a
three-point, second order first integral W1 (4.41a). As stated at the
beginning of this Section from the relation W1 = ξn this integral de-
fines a three-point, second order ordinary difference equation in the n
direction which depends parametrically on m. From this parametric
dependence we find two different three-point non-autonomous ordi-
nary difference equations corresponding to m even and m odd. We
treat them separately.

case m = 2l : If m = 2l we have the following non-autonomous
nonlinear ordinary difference equation:

F
(+)
n

(un−1,2l + δ2) [1+ (un+1,2l − 1) δ1]

(un+1,2l + δ2) [1+ (un−1,2l − 1) δ1]

+ F
(−)
n (un+1,2l − un−1,2l) (δ2 + un,2l) = ξn

(4.139)
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where we have chosen without loss of generality α = β = 1. We
can apply the usual transformation (4.55a) in order to separate
the even and odd part in (4.139):

1+ (wk,l − 1) δ1
wk,l + δ2

= ξ2k
1+ (wk−1,l − 1) δ1

wk−1,l + δ2
, (4.140a)

vk+1,l − vk,l =
ξ2k+1

(δ2 +wk,l)
. (4.140b)

This system of equations is still non-linear, but the equation
(4.140a) is uncoupled from (4.140b). Moreover equation (4.140a)
is a discrete Riccati equation which can be linearized through
the Möbius transformation:

wk,l = −δ2 +
1

Wk,l
, (4.141)

into:

Wk,l − ξ2kWk−1,l =
δ1
δ

(ξ2k − 1) , (4.142a)

vk+1,l − vk,l = ξ2k+1Wk,l. (4.142b)

where δ is given by equation (4.63).Putting ξ2k = ak/ak−1 we
have the following solution for (4.142a):

Wk,l = akαl −
δ1
δ

. (4.143)

Plugging (4.143) into equation (4.142b) and defining

ξ2k+1 = bk+1 − bk, ak =
ck+1 − ck
bk+1 − bk

, (4.144)

we have that equation (4.142b) becomes a total difference. Then
the solution of (4.142b) can be written as:

vk,l = −
δ1
δ
bk + ckαl +βl. (4.145)

So using (4.141) we obtain the following solution for the original
system (4.140):

wk,l =
δ1 − 1+ δ

δ1
+

δ(bk+1 − bk)

δαm(ck+1 − ck) − (bk+1 − bk)δ1
,

(4.146a)

vk,l = −
δ1
δ
bk + ckαl +βl. (4.146b)

case m = 2l + 1 : Ifm = 2l+1we have the following non-autonomous
ordinary difference equation:

F
(+)
n
un,2l+1 + δun−1,2l+1

un,2l+1 + δun+1,2l+1
− F

(−)
n (un+1,2l+1 − un−1,2l+1) = ξn.
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(4.147)

where without loss of generality α = β = 1 and δ is given by
(4.63). Solving with respect to un+1,2l+1 it is immediate to see
that the resulting equation is linear. Then separating the even
and the odd part using the transformation (4.55b) we obtain
the following system of linear, first-order ordinary difference
equations:

zk,l −
1

ξ2k
zk−1,l =

1

δ

(
1−

1

ξ2k

)
yk,l, (4.148a)

yk+1 − yk = −ξ2k+1. (4.148b)

As ξ2k+1 = bk+1 − bk we obtain immediately the solution of
equation (4.148b) as:

yk,l = −bk + γl. (4.149)

Substituting yk,l given by (4.149) into equation (4.148a) being
ξ2k = ak/ak−1, we obtain:

akzk,l − ak−1zk−1,l =
ak − ak−1

δ
(bk − γl) . (4.150)

Then, in the usual way, we can represent the solution as:

zk,l =
bk − γl
δ

+
bk+1 − bk
ck+1 − ck

(
δl −

ck
δ

)
, (4.151)

where we have used the explicit definition of ak given in (4.144).
So we have the explicit expression for both fields yk,l and zk,l.

Equations (4.146,4.149,4.151) provide the value of the four fields,
but we have too many arbitrary functions in the m direction, namely
αl, βl, γl and δl. Inserting (4.146,4.149,4.151) into (1.93d) and sepa-
rating the terms even and odd in n and m we obtain we obtain two
equations:

δlδ
2αl + (βl − δ1λ) δ− δ1γl = 0, (4.152a)

δlδ
2αl+1 + (βl+1 − δ1λ) δ− δ1γl = 0, (4.152b)

which allow us to reduce by two the number of independent func-
tions in the m direction. Indeed solving (4.152) with respect to γl and
δl we find:

γl =
δ

δ1

(
βl − λδ1 −αl

βl+1 −βl
αl+1 −αl

)
, (4.153a)

δl = −
1

δ

βl+1 −βl
αl+1 −αl

. (4.153b)
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Therefore the general solution of the 3D2 equation (1.93d) is given
by:

vk,l = −
δ1
δ
bk + ckαl, (4.154a)

wk,l =
δ1 − 1+ δ

δ1
+

δ(bk+1 − bk)

δαl(ck+1 − ck) − (bk+1 − bk)δ1
, (4.154b)

zk,l =
bk
δ

−
1

δ1

(
βl − λδ1 −αl

βl+1 −βl
αl+1 −αl

)
+
1

δ

bk+1 − bk
ck+1 − ck

(
βl+1 −βl
αl+1 −αl

+ ck

)
,

(4.154c)

yk,l = −bk +
δ

δ1

(
βl − λδ1 −αl

βl+1 −βl
αl+1 −αl

)
. (4.154d)

Remark 4.4.3. It is easy to see that the solution (4.82) is ill-defined if
δ1 = 0 and if δ = 0. We will treat these two particular cases separately.

case δ = 0 : If δ = 0 we have that δ1 is given by equation (4.83).
In this case the first integral (4.44a) is singular since the coefficient of
α goes to a constant. Following Remark 4.3.6 we have that the 3D2
equation with δ1 given by (4.83) the first integral in the direction n is

given by W((1+δ2)−1,δ2)
1 (4.46a). This first integral is a three-point, sec-

ond order first integral. As in the general case we consider separately
the m even and odd cases.

case m = 2k : If m = 2k then the first integral (4.46a) becomes the
following non-linear three-point, second order difference equa-
tion:

F
(+)
n

un+1,2l − un−1,2l

(δ2 + un+1,2l) (δ2 + un−1,2l)

− F
(−)
n (un−1,2l − un+1,2l) (δ2 + un,2l) = ξn,

(4.155)

where without loss of generality α = β = 1. If we separate the
even and the odd part using the general transformation given
by (4.55a) we obtain the system:

wk,l −wk−1,l

(wk,l + δ2)(wk−1,l + δ2)
= ξ2k, (4.156a)

(vk+1,l − vk,l)(wk,l + δ2) = ξ2k+1. (4.156b)

This is a system of first order non-linear difference equations.
However (4.156a) is uncoupled from (4.140b), and it is a discrete
Riccati equation which can be linearized through the Möbius
transformation (4.141). This linearize the system (4.156) to:

Wk,l −Wk−1,l = ξ2k, (4.157a)

vk+1,l − vk,l = ξ2k+1Wk,l. (4.157b)
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Defining ξ2k = ak − ak−1 equation (4.157a) is solved by:

Wk,l = ak +βl. (4.158)

Introducing (4.158) into equation (4.157b) we have:

vk+1,l − vk,l = ξ2k+1 (ak +αl) . (4.159)

Equation (4.159) becomes a total difference if:

ξ2k+1 = bk+1 − bk, ak =
ck+1 − ck
bk+1 − bk

. (4.160)

This yields the following solution of the system (4.156):

vk,l = ck + bkαl +βl, (4.161a)

wk,l = −δ2 +
bk+1 − bk

ck+1 − ck +αl (bk+1 − bk)
. (4.161b)

case m = 2k + 1 : If m = 2k + 1 the first integral (4.46a) becomes
the following nonlinear, three-point, second order difference
equation:

F
(+)
n
un+1,2l+1 − un−1,2l+1

(δ2 + 1)un,2l+1
− F

(−)
n (un+1,2l+1 − un−1,2l+1) = ξn,

(4.162)

where without loss of generality α = β = 1. As usual we can
separate the even and odd part in n using the transformation
(4.55b). This transformation brings equation (4.162) into the fol-
lowing linear system:

zk,l − zk−1,l = (δ2 + 1)yk,l

(
ck − ck−1
bk − bk−1

−
ck+1 − ck
bk+1 − bk

)
,

(4.163a)

yk+1,l − yk,l = −bk+1 + bk, (4.163b)

where we used (4.160) and the definition ξ2k+1 = ak+1 − ak.
Equation (4.163b) is readily be solved and gives:

yk,l = γl − bk. (4.164)

Inserting (4.164) into (4.163a) we obtain:

zk,l− zk−1,l = (δ2+ 1) (γl − bk)

(
ck − ck−1
bk − bk−1

−
ck+1 − ck
bk+1 − bk

)
.

(4.165)

We can then write for zk,l the following expression:

zk,l = −(δ2 + 1)

(
γl
ck+1 − ck
bk+1 − bk

+ dk

)
+ δl, (4.166)
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where dk solves the equation:

dk − dk−1 = −bk

(
ck − ck−1
bk − bk−1

−
ck+1 − ck
bk+1 − bk

)
. (4.167)

Equation (4.167) is a total difference with dk given by:

dk = bk+1
ck+1 − ck
bk+1 − bk

− ck+1. (4.168)

Therefore we have the following solution to the system (4.163):

yk,l = γl − bk, (4.169a)

zk,l = −(δ2 + 1)

[
(γl + bk+1)

ck+1 − ck
bk+1 − bk

− ck+1

]
+ δl.

(4.169b)

Equations (4.161,4.169) provide the value of the four fields, but we
have too many arbitrary functions in the m direction, namely αl, βl,
γl and δl. Inserting (4.161,4.169) into (1.93d) with δ1 given by (4.83)
and separating the terms even and odd in n and m we obtain we
obtain two equations:

γl(δ2 + 1)αl − λ+ δl +βl(δ2 + 1) = 0, (4.170a)

γl(δ2 + 1)αl+1 − λ+ δl +βl+1(δ2 + 1) = 0. (4.170b)

Solving this compatibility condition with respect to γl and δl we
obtain:

γl = −
βl+1 −βl
αl+1 −αl

, (4.171a)

δl = (δ2 + 1)
βl+1αl −αl+1βl

αl+1 −αl
+ λ. (4.171b)

Inserting then (4.171) into (4.161,4.169) we obtain the following ex-
pression for the solution of the 3D2 when δ1 is given by (4.83):

vk,l = ck + bkαl +βl, (4.172a)

wk,l = −δ2 +
bk+1 − bk

ck+1 − ck +αl (bk+1 − bk)
, (4.172b)

yk,l = −
βl+1 −βl
αl+1 −αl

− bk, (4.172c)

zk,l = −(δ2 + 1)

[(
bk+1 −

βl+1 −βl
αl+1 −αl

)
ck+1 − ck
bk+1 − bk

− ck+1

]
+ (δ2 + 1)

βl+1αl −αl+1βl
αl+1 −αl

+ λ.

(4.172d)
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case δ1 = 0 : The first integral (4.44a) is not singular when insert-
ing δ1 = 0. Therefore the procedure of solution will become different
only when we arrive to the systems of ordinary difference equations
(4.140) and (4.148). So we will present the solution of the systems in
this case.

case m = 2k : If δ1 = 0 the system (4.140) becomes:

wk,l + δ2 =
wk−1,l + δ2

ξ2k
, (4.173a)

vk+1,l − vk,l =
ξ2k+1

(δ2 +wk,l)
. (4.173b)

The system (4.173) is nonlinear, but equation (4.173a) is uncou-
pled from equation (4.173a). Defining ξ2k = ak−1/ak equation
(4.173a) is solved by

wk,l = −δ2 + akαl. (4.174)

Substituting wk,l given by (4.174) into equation (4.173b):

vk+1,l − vk,l =
ξ2k+1
akαl

. (4.175)

Defining:

ξ2k+1 = −ak (bk+1 − bk) , (4.176)

we have that equation (4.175) is a total difference. Therefore we
have the following solution of the system (4.173):

vk,l = βl +
bk
αl

, (4.177a)

wk,l = −δ2 + akαl. (4.177b)

case m = 2k + 1 : If δ1 = 0 the system (4.72) becomes:

zk,l −
ak
ak−1

zk−1,l =

(
ak
ak−1

− 1

)
yk,l, (4.178a)

yk+1,l − yk,l = −ak (bk+1 − bk) , (4.178b)

where we used (4.176) and ξ2k = ak−1/ak. The system is linear
and equation (4.178b) is uncoupled from (4.178a). If we put

ak = −
ck+1 − ck
bk+1 − bk

, (4.179)

then equation (4.178a) becomes a total difference whose solu-
tion is:

yk,l = ck + γl. (4.180)
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Substituting yk,l given by (4.180) into equation (4.178a) we ob-
tain:

bk+1 − bk
ck+1 − ck

zk,l−
bk − bk−1
ck − ck−1

zk−1,l =

(
bk − bk−1
ck − ck−1

−
bk+1 − bk
ck+1 − ck

)
(ck + γl) .

(4.181)

We can therefore represent the solution as

zk,l =
ck+1 − ck
bk+1 − bk

(dk + δl) − γl (4.182)

where dk solves the equation:

dk−dk−1 = bk+1−
bk+1 − bk
ck+1 − ck

ck+1−bk−1+
bk − bk=1
ck − ck−1

ck−1.

(4.183)

Equation (4.183) is a total difference and dk is given by:

dk = bk −
bk+1 − bk
ck+1 − ck

ck. (4.184)

Therefore we have that the solution of the system (4.178) is given
by:

yk,l = ck + γl, (4.185a)

zk,l =
ck+1 − ck
bk+1 − bk

δl − γl +
bkck+1 − ckbk+1

bk+1 − bk
. (4.185b)

Equations (4.177,4.185) we have the value of the four fields, but we
have too many arbitrary functions in the m direction, namely αl, βl,
γl and δl. Inserting (4.177,4.185) into (1.93d) with δ1 = 0 and sepa-
rating the terms even and odd in n and m we obtain we obtain two
equations:

βlαl − δl = 0, βl+1αl+1 − δl = 0. (4.186a)

We can solve this compatibility conditions with respect to βl and δl
we obtain:

βl =
δ0
αl

, δl = δ0, (4.187a)

where δ0 is a constant. Inserting then (4.187) into (4.177,4.185) we
obtain the following expression for the solution of the 3D2 when δ1 =
0:

vk,l =
bk + δ0
αl

, (4.188a)

wk,l = −δ2 −αl
ck+1 − ck
bk+1 − bk

, (4.188b)
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yk,l = ck + γl, (4.188c)

zk,l =
ck+1 − ck
bk+1 − bk

δ0 − γl +
bkck+1 − ckbk+1

bk+1 − bk
. (4.188d)

This discussion exhausts the possible cases. So for any value of the
parameters we have the general solution of the 3D2 equation (1.93d).

4.4.2 The D3 and the iD4 equations, i = 1, 2

In this Subsection construct the general solution of the D3 equation
and of the two forms of theD4 equation, which we denote collectively
as iD4 with i = 1, 2. These equations are given by (1.93e), (1.93f) and
(1.93g). The procedure we will follow will make use of the first inte-
grals, but in a different way with respect to that used in Subsection
4.4.1 for the iD2 equations since, as explained in the beginning of this
Section, we will need to extract some information from the equations.

4.4.2.1 D3 equation

From Section 4.3 we know that the first integrals of the D3 equa-
tion (1.93e) in the n direction is a four-point, third order first integral
(4.47a). Therefore as stated at the beginning of Section this integral
defines a three-point, third order ordinary difference equation from
the relation W1 = ξn. However to tackle the problem of finding the
general solution in this case we do not start directly from the first
integral W1 (4.47a), but instead we start by looking to the equation it-
self (1.93e) written as a system. Applying the general transformation
(4.55) we obtain the following system:

vk,l +wk,lyk,l +wk,lzk,l + yk,lzk,l = 0, (4.189a)

vk,l+1 + yk,lwk,l+1 + zk,lwk,l+1 + yk,lzk,l = 0, (4.189b)

vk+1,l +wk,lyk+1,l +wk,lzk,l + zk,lyk+1,l = 0, (4.189c)

vk+1,l+1 + yk+1,lwk,l+1 + zk,lwk,l+1 + zk,lyk+1,l = 0. (4.189d)

From the system (4.189) we have four different way for calculating
zk,l. This means that we have some compatibility conditions. Indeed
from (4.189a) and (4.189c) we obtain the following equation for vk+1,l:

vk+1,l =
(wk,l + yk+1,l)vk,l

wk,l + yk,l
+

(yk,l − yk+1,l)w
2
k,l

wk,l + yk,l
, (4.190)

while from (4.189b) and (4.189d) we obtain the following equation for
vk+1,l+1:

vk+1,l+1 =
(wk,l+1 + yk+1,l)vk,l+1

wk,l+1 + yk,l
+

(yk,l − yk+1,l)w
2
k,l+1

wk,l+1 + yk,l
. (4.191)
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Equations (4.190) and (4.191) give rise to a compatibility condition
between vk+1,l and its shift in the l direction vk+1,l+1 which is given
by: (

yk,lwk,l+1 + yk+1,l+1wk,l+1 + yk+1,l+1yk,l

− yk,l+1wk,l+1 − yk+1,lwk,l+1 − yk+1,lyk,l+1

)
·

(vk,l+1 −w
2
k,l+1) = 0.

(4.192)

Discarding the trivial solution yk,l = w2k,l we obtain the following
value for the field wk,l:

wk,l = −
yk+1,lyk,l−1 − yk+1,l−1yk,l

yk+1,l + yk,l−1 − yk+1,l−1 − yk,l
, (4.193)

which makes (4.190) and (4.191) compatible. Then we have to solve
the equation with respect to vk+1,l:

vk+1,l =
yk+1,l − yk+1,l−1

yk,l − yk,l−1
vk,l

+
(yk+1,l−1yk,l − yk+1,lyk,l−1)

2

(yk+1,l−1 + yk,l − yk+1,l − yk,l−1)(yk,l − yk,l−1)
.

(4.194)

Making the transformation

vk,l = (yk,l − yk,l−1)Vk,l + y
2
k,l−1 (4.195)

we can reduce (4.194) to the equation:

Vk+1,l = Vk,l +
(yk,l−1 − yk+1,l−1)

2

yk+1,l−1 + yk,l − yk+1,l − yk,l−1
. (4.196)

To go further we need to specify the form of the field yk,l. This
can be extracted from the first integrals. Consider the equation W1 =
ξn with W1 given as in (4.47a). This relation defines a third order,
four-point ordinary difference equation in the n direction depending
parametrically on m. In particular if we choose the case when m =

2l+ 1 we have the equation:

F
(+)
n

(un+1,2l+1 − un−1,2l+1) (un+2,2l+1 − un,2l+1)

un,2l+1 + un−1,2l+1

+ F
(−)
n

(un+1,2l+1 − un−1,2l+1) (un+2,2l+1 − un,2l+1)

un+1,2l+1 + un+2,2l+1
= ξn

(4.197)

where we have chosen without loss of generality α = β = 1. Using the
transformation (4.55b) equation (4.197) is converted into the system:

(yk+1,l − yk,l)(zk,l − zk−1,l) = ξ2k(yk,l + zk−1,l), (4.198a)

(yk+1,l − yk,l)(zk+1,l − zk,l) = ξ2k+1(yk+1,l + zk+1,l). (4.198b)

This system is nonlinear, but if we solve (4.198b) with respect to
zk+1,l and we substitute it together with its shift in the k direction
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into (4.198a) we obtain a linear second order, ordinary difference equation
involving only the field yk,l:

ξ2k−1yk+1,m − (ξ2k + ξ2k−1)yk,m

+ ξ2kyk−1,m + ξ2kξ2k−1 = 0.
(4.199)

First we can lower the order of this equation by one with the potential
transformation:

Yk,l = yk+1,l − yk,l. (4.200)

Indeed we have that Yk,l solves the equation:

Yk,l −
ξ2k
ξ2k−1

Yk−1,l + ξ2k = 0. (4.201)

Defining:

ξ2k = −ak (bk − bk−1) , ξ2k−1 = −ak−1 (bk − bk−1) (4.202)

we obtain that Yk,l can be expressed as:

Yk,l = ak (bk +αl) . (4.203)

From (4.200) we have that:

yk+1,l − yk,l = ak (bk +αl) . (4.204)

Setting:

ak = ck+1 − ck, bk =
dk+1 − dk
ck+1 − ck

, (4.205)

we have:

yk,l = αlck + dk +βl. (4.206)

Inserting now the obtained value of yk,l from (4.206) into the equa-
tion (4.196) we obtain:

Vk+1,l = Vk,l −
(dk +αl−1ck − dk+1 −αl−1ck+1)

2

(αl −αl−1)(ck+1 − ck)
(4.207)

So we get the following solution for Vk,l

Vk,l = γl −αl−1
αl−1ck + 2dk
αl −αl−1

+
ek

αl −αl−1
(4.208)

up to a quadrature for the function ek:

ek+1 = ek −
(dk+1 − dk)

2

ck+1 − ck
. (4.209)



4.4 general solutions through the first integrals 167

Plugging the obtained value of vk,l we can compute wk,l from (4.193)
and finally zk,l from the original system (4.189). In this case we obtain
a single compatibility condition given by:

(αl+1 −αl)γl+1 − (αl −αl−1)γl

−αl−1βl−1 +αlβl +αlβl−1 −αl−1βl = 0,
(4.210)

which can be expressed as

γl = −
αl−1βl−1 + δl
αl −αl−1

(4.211)

with δl given by the following first order difference equation:

δl+1 = δl +αlβl−1 −αl−1βl. (4.212)

We underline that this first order difference equation is the discrete
analogue of a quadrature A ′(x) = f(x).

So, the function Vk,l is given by (4.208-4.212), where ek and δl are
defined implicitly and can be found by discrete integration. Then the
general solution of (1.93e) is constructed explicitly by successive sub-
stitution in (4.206), (4.195), (4.193) and (4.189a).

4.4.2.2 1D4 equation

From Section 4.3 we know that the first integrals of the 1D4 equa-
tion (1.93f) in the n direction is a four-point, third order first integral
(4.48a). Therefore this integral defines a three-point, third order or-
dinary difference equation from the relation W1 = ξn. However to
find the general solution in this case again we do not start directly
from the first integral W1 (4.48a), but instead we start by looking to
the equation itself (1.93f) written as a system. Applying the general
transformation (4.55) to (1.93f) we obtain the following system:

vk,lzk,l +wk,lyk,l + δ1wk,lzk,l + δ2yk,lzk,l + δ3 = 0, (4.213a)

yk,lwk,l+1 + zk,lvk,l+1

+ δ1zk,lwk,l+1 + δ2yk,lzk,l + δ3 = 0,
(4.213b)

wk,lyk+1,l + vk+1,lzk,l

+ δ1wk,lzk,l + δ2zk,lyk+1,l + δ3 = 0,
(4.213c)

zk,lvk+1,l+1 + yk+1,lwk,l+1

+ δ1zk,lwk,l+1 + δ2zk,lyk+1,l + δ3 = 0.
(4.213d)

From the equations (4.213) we have four different way for calcu-
lating zk,l. This means that we have some compatibility conditions.
Indeed from (4.213a) and (4.213c) we obtain the following equation
for vk+1,l:

vk+1,l =
δ3 +wk,lyk+1,l

δ3 +wk,lyk,l
vk,l+

(yk+1,l − yk,l)(δ1w
2
k,l − δ2δ3)

δ3 +wk,lyk,l
(4.214)
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while from (4.213b) and (4.213d) we obtain the following equation for
vk+1,l+1:

vk+1,l+1 =
δ3 + yk+1,lwk,l+1

δ3 + yk,lwk,l+1
vk,l+1

+
(yk+1,l − yk,l)(δ1w

2
k,l+1 − δ2δ3

(yk,lwk,l+1 + δ3
.

(4.215)

Equations (4.214) and (4.215) give rise to a compatibility condition
between vk+1,l and its shift in the l direction vk+1,l+1, given by:[

(yk+1,l+1yk,l − yk+1,lyk,l+1)wk,l+1

+ δ3 (yk+1,l+1 + yk,l − yk,l+1 − yk+1,l)

]
·

(vk,l+1wk,l+1 − δ2δ3 + δ1w
2
k,l+1) = 0.

(4.216)

Discarding the trivial solution

vk,l = −δ1wk,l +
δ2δ3
wk,l

we obtain for wk,l:

wk,l = δ3
yk+1,l−1 − yk+1,l − yk,l−1 + yk,l

yk+1,lyk,l−1 − yk+1,l−1yk,l
(4.217)

which makes (4.214) and (4.215) compatible. Then we have to solve
the following equation for vk,l:

vk+1,l =
yk+1,l − yk+1,l−1

yk,l − yk,l−1
vk,l

+
δ1δ3(yk+1,l−1 − yk,l−1 − yk+1,l + yk,l)

2

(yk+1,l−1yk,l − yk+1,lyk,l−1)(yk,l − yk,l−1)

−
δ2(yk+1,l−1yk,l − yk+1,lyk,l−1)

yk,l − yk,l−1

(4.218)

Making the transformation:

vk,l = (yk,l − yk,l−1)Vk,l +
δ1δ3
yk,l−1

− δ2yk,l−1. (4.219)

we obtain that Vk,l satisfied the difference equation:

Vk+1,l = Vk,l+
δ1δ3(yk,l−1 − yk+1,l−1)

2

yk,l−1yk+1,l−1(yk+1,l−1yk,l − yk+1,lyk,l−1)
(4.220)

At this point without any knowledge of the field yk,l we cannot go
further. However as in the D3 case we can recover the missing infor-
mation using the first integral W1 as given in (4.48a). This integral
provide us the relation W1 = ξn which is a third order, four-point
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ordinary difference equation in the n direction depending parametri-
cally on m. In particular if we choose the case when m = 2l+ 1 we
have the equation:

F
(+)
n

(un,2l+1 − un+2,2l+1 + δ1un+1,2l+1)un−1,2l+1 + un+1,2l+1un+2,2l+1

(un,2l+1 + δ1un−1,2l+1)un+1,2l+1

+ F
(−)
n

(un+1,2l+1 − un−1,2l+1) (un+2,2l+1 − un,2l+1)

un,2l+1 (un+2,2l+1δ1 + un+1,2l+1)
= ξn.

(4.221)

where we set without loss of generality α = β = 1. Using the trans-
formation (4.55b) then (4.221) is converted into the system:

(yk,l − yk+1,l + δ1zk,l)zk−1,l + yk+1,lzk,l

(yk,l + δ1zk−1,l)zk,l
= ξ2k (4.222a)

(yk,l − yk+1,l)(zk,l − zk+1,l)

zk,l(zk+1,lδ1 + yk+1,l)
= ξ2k+1 (4.222b)

It is quite easy to see that if we solve (4.222b) with respect to zk+1,l

and then substitute the result into (4.222a) we obtain a linear, second
order ordinary difference equation for yk,l:

ξ2k−1yk+1,l+(1−ξ2k−ξ2kξ2k−1)yk,l−(1−ξ2k)yk−1,l = 0. (4.223)

We can solve this equation as in the case of the D3 equation. First of
all let us introduce Yk,l = akyk,l + bkyk−1,l such that Yk+1,l − Yk,l is
equal to the left hand side of (4.223). Then we define:

ξ2k = −
bk+1 − bk − ak

ak+1
, (4.224a)

ξ2k−1 =
−bk + ak+1 + bk+1 − ak

bk
. (4.224b)

Therefore yk,l must solve the first order equation:

akyk,l + bkyk−1,l = αl. (4.225)

The equation (4.225) can be solved if we choose:

ak =
1

ck

1

dk − dk−1
, bk = −

1

ck−1

1

dk − dk−1
. (4.226)

Then the solution of (4.225) is:

yk,l = ck (αldk +βl) . (4.227)

Inserting (4.227) into (4.220) we obtain:

Vk+1,l = Vk,l −
δ1δ3

βl−1αl −βlαl−1

(ck − ck+1)
2

c2kc
2
k+1(dk+1 − dk)

+
δ1δ3αl−1

βl−1αl −βlαl−1

[
1

(αl−1dk+1 +βl−1)c
2
k+1

−
1

(αl−1dk +βl−1)c
2
k

]
.

(4.228)
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This means that we can represent the solution of Vk,l as:

Vk,l = γl +
δ1δ3

βl−1αl −βlαl−1

[
αl−1

c2k(αl−1dk +βl−1)
+ ek

]
(4.229)

where ek is defined from the quadrature:

ek+1 = ek −
(ck − ck+1)

2

c2kc
2
k+1(dk+1 − dk)

. (4.230)

Using the obtained value of vk,l we can compute wk,l from (4.217)
and finally zk,l from the original system (4.213). In this case we obtain
a single compatibility condition for the arbitrary functions given by:

(βlαl+1 −βl+1αl)γl+1−(βl−1αl −βlαl−1)γl = (βl−1αl −βlαl−1) δ2.

(4.231)

This condition can be expressed also as

γl =
δlδ2

βl−1αl −βlαl−1
. (4.232)

with δl given by solving the following quadrature:

δl+1 = δl +αlβl−1 −αl−1βl. (4.233)

Let us note that δl is the same as in (4.212).
So, the auxiliary function Vk,l is given by (4.229-4.233), where ek

and δl are defined implicitly and can be found by discrete integra-
tion. Then the general solution of (1.93f) is constructed explicitly by
successive substitution in (4.227), (4.219), (4.217) and (4.213a).

4.4.2.3 2D4 equation

From Section 4.3 we know that the first integrals of the 2D4 equa-
tion (1.93g) in the n direction is a four-point, third order first integral
(4.52a). Therefore this integral defines a three-point, third order ordi-
nary difference equation from the relation W1 = ξn. However to find
the general solution in this case we do not start directly from the first
integral W1 (4.52a), but we start instead by looking to the equation it-
self (1.93g) written as a system. Applying the general transformation
(4.55) to (1.93g) we obtain the following system:

vk,lwk,l + δ2wk,lyk,l + δ1wk,lzk,l + yk,lzk,l + δ3 = 0, (4.234a)

vk,l+1wk,l+1 + δ2yk,lwk,l+1

+ δ1zk,lwk,l+1 + yk,lzk,l + δ3 = 0,
(4.234b)

wk,lvk+1,l + δ2wk,lyk+1,l

+ δ1wk,lzk,l + zk,lyk+1,l + δ3 = 0,
(4.234c)

wk,l+1vk+1,l+1 + δ2yk+1,lwk,l+1

+ δ1zk,lwk,l+1 + zk,lyk+1,l + δ3 = 0.
(4.234d)
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From the equations (4.234) we have, in principle, four different way
for calculating zk,l. This means that we have some compatibility con-
ditions. Indeed from (4.234a) and (4.234c) we obtain the following
equation for vk+1,l:

vk+1,l =
δ1wk,l + yk+1,l

δ1wk,l + yk,l
vk,l

−
(yk+1,l − yk,l)(δ2w

2
k,lδ1 − δ3)

(δ1wk,l + yk,l)wk,l

(4.235)

while from (4.234b) and (4.234d) we obtain the following equation for
vk+1,l+1:

vk+1,l+1 =
δ1wk,l+1 + yk+1,l

δ1wk,l+1 + yk,l
vk,l+1

−
(yk+1,l − yk,l)(δ2w

2
k,l+1δ1 − δ3)

(δ1wk,l+1 + yk,l)wk,l+1
.

(4.236)

Equations (4.235) and (4.236) give rise to a compatibility condition
between vk+1,l and vk+1,l+1 is given by:[

yk+1,l+1yk,l + δ1 (yk,lwk,l+1 + yk+1,l+1wk,l+1)

− yk+1,lyk,l+1 − δ1 (yk+1,lwk,l+1 − yk,l+1wk,l+1)

]
·(

vk,l+1wk,l+1 + δ3 − δ1δ2w
2
k,l+1

)
= 0.

(4.237)

Discarding the trivial solution

vk,l = δ1δ2wk,l −
δ3
wk,l

we obtain:

wk,l =
1

δ1

yk+1,l−1yk,l − yk+1,lyk,l−1

yk,l−1 + yk+1,l − yk,l − yk+1,l−1
(4.238)

which makes (4.235) and (4.236) compatible. Then we have to solve
the following equation for vk,l:

vk+1,l =
yk+1,l − yk+1,l−1

yk,l − yk,l−1
vk,l −

δ1δ3(yk,l−1 − yk+1,l−1)
2(yk,l − yk,l−1)

(yk+1,lyk,l−1 − yk+1,l−1yk,l)y
2
k,l−1

+
y2k,l−1yk+1,lδ2 − δ3yk+1,lδ1 + δ1δ3yk+1,l−1 − yk+1,l−1δ2y

2
k,l−1

(yk,l − yk,l−1)yk,l−1

−
yk+1,l−1δ2y

2
k,l−1 + δ1δ3yk+1,l−1 − 2yk,l−1δ3δ1)

y2k,l−1
.

(4.239)

Making the transformation:

vk,l = (yk,l − yk,l−1)Vk,l +
δ1δ3
yk,l

− δ2yk,l. (4.240)
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we obtain that Vk,l satisfied the first order difference equation:

Vk+1,l = Vk,l −
δ1δ3(yk,l − yk+1,l)

2

yk,lyk+1,l(yk+1,l−1yk,l − yk+1,lyk,l−1)
. (4.241)

At this point without any knowledge of the field yk,l we cannot
go further. However as in the previous two cases we can recover the
missing information using the first integral W1 as given in (4.52a).
This integral defines the relation W1 = ξn, a third order, four-point
ordinary difference equation in the n direction depending parametri-
cally on m. In particular if we choose the case when m = 2l+ 1 we
have the equation:

− F
(+)
n
un+2,2l+1un−1,2l+1 + (−un+2,2l+1 + un,2l+1)un+1,2l+1 + δ3

un−1,2l+1un,2l+1 + δ3

+ F
(−)
n

(un+1,2l+1 − un−1,2l+1) (un+2,2l+1 − un,2l+1)

un+1,2l+1un+2,2l+1 + δ3
= ξn.

(4.242)

where we choose without loss of generality α = β = 1. Using the
transformation (4.55b) the equation (4.242) is converted into the sys-
tem:

(yk+1,l − yk,l)zk,l − yk+1,lzk+1,l − δ3
(zk+1,lyk,l + δ3)

= ξ2k (4.243a)

(yk+1,l − yk,l)(zk+1,l − zk,l)

(yk+1,lzk+1,l + δ3)
= ξ2k+1 (4.243b)

Now if we solve (4.243b) with respect to zk+1,l and then substitute
into (4.243a) we obtain a linear, second order ordinary difference equa-
tion for yk,l:

ξ2k−1yk+1,l−(1+ξ2k−ξ2kξ2k−1)yk,l+(1+ξ2k)yk−1,l = 0. (4.244)

We solve this equation using the freedom provided by the functions
ξ2k and ξ2k+1 similarly as we did in the case of the 1D4 equation.
Indeed let us introduce the field Yk,l = akyk,l+bkyk−1,l and assume
that Yk+1,l− Yk,l equals the left hand side of (4.244). Then we choose:

ξ2k =
bk+1 − bk +−ak

ak+1
, (4.245a)

ξ2k−1 = −
bk+1 − bk + ak+1 − ak

bk
, (4.245b)

so that yk,l solves the first order equation

akyk,l + bkyk−1,l = αl. (4.246)

If we define

ak =
1

ck

1

dk − dk−1
, bk = −

1

ck−1

1

dk − dk−1
, (4.247)
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(4.246) is solved by:

yk,l = ck (αldk +βl) . (4.248)

Inserting (4.248) into (4.241) we obtain:

Vk+1,l = Vk,l +
δ3δ1(ck+1 − ck)

2

(dk+1 − dk)(βlαl−1 −βl−1αl)c
2
kc
2
k+1

−
αlδ1δ3

βlαl−1 −βl−1αl

[
1

(αldk+1 +βl)c
2
k+1

−
1

(αldk +βl)c
2
k

]
,

(4.249)

whose solution is:

Vk,l = γl −
αlδ1δ3

(αldk +βl)c
2
k(βlαl−1 −βl−1αl)

+
δ3δ1ek

βlαl−1 −βl−1αl
,

(4.250)

where ek satisfies the quadrature:

ek+1 = ek +
(ck+1 − ck)

2

(dk+1 − dk)c
2
kc
2
k+1

. (4.251)

Using the obtained value of vk,l we can compute wk,l from (4.217)
and finally zk,l from the original system (4.234). In this case we obtain
a single compatibility condition for the arbitrary functions given by:

(βlαl+1−βl+1αl)γl+1−(βl−1αl−βlαl−1)γl = (βlαl+1−βl+1αl)δ2.

(4.252)

i.e.:

γl =
δlδ2

βl−1αl −βlαl−1
. (4.253)

with δl satisfying the following quadrature:

δl+1 = δl +αl+1βl −αlβl+1. (4.254)

So, the auxiliary function Vk,l is given by (4.250-4.254), where ek
and δl are defined implicitly by (4.251) and (4.254) and can be found
by discrete integration. Then the general solution of (1.93g) is then
constructed explicitly by successive substitution in (4.248), (4.240),
(4.238) and (4.234a).
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4.4.3 The trapezoidal H4 equations

In this Subsection we construct the general solution of the trapezoidal
H4 equations (1.91). The procedure we will follow will make use of
the first integrals, as in the cases presented in Section 4.4.2. The main
difference is that since the H4 are non-autonomous only in the di-
rection m with the two-periodic non-autonomous factors F(±)m given
by (1.90) instead of the general transformation (4.55) we can use the
simplified transformation:

un,2l = pn,l, un,2l+1 = qn,l. (4.255)

Then to describe the general solution of a H4 we only need three
arbitrary functions: one in the n direction and two in the m direction.

4.4.3.1 The tHε1 equation

Let us start from the first integral W1 (4.29a), which is a two-point,
first order first integral. This implies that the tHε1 equation (1.91a) can
be written as a conservation law. Indeed we can carefully rearrange
the terms in (1.91a) and use the properties of the functions F(±)m to
rewrite (1.91a) as:

(Tm − Id)
(
F
(+)
m

α2
un+1,m − un,m

+ F
(−)
m

un+1,m − un,m

1+ ε2un,mun+1,m

)
= 0,

(4.256)

i.e. as a conservation law in the form (4.7b). From (4.256) we can
derive the general solution of (1.91a) itself. In fact (4.256) implies:

F
(+)
m

α2
un+1,m − un,m

+ F
(−)
m

un+1,m − un,m

1+ ε2un,mun+1,m
= λn, (4.257)

where λn is an arbitrary function of n. This is a first order difference
equation in the n direction in which m plays the rôle of a parameter.
For this reason we can safely separate the two cases m even and m
odd.

case m = 2k In this case (4.257) reduces to the first order linear
equation:

un+1,2k − un,2k =
α2
λn

(4.258)

which has solution:

un,2k = θ2k +ωn (4.259)

where θ2k is an arbitrary function and ωn is the solution of the
simple ordinary difference equation

ωn+1 −ωn =
α2
λn

, ω0 = 0. (4.260)
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case m = 2k + 1 In this case (4.257) reduces to the discrete Riccati
equation:

λnε
2un,2k+1un+1,2k+1−un+1,2k+1+un,2k+1+ λn. (4.261)

Using the Möbius transformation:

un,2k+1 =
i
ε

1− vn,2k+1

1+ vn,2k+1
, (4.262)

this equation reduce to the linear equation

(i + ελn) vn+1,2k+1 − (i − ελn) vn,2k+1 = 0. (4.263)

If we define:

λn =
i
ε

κn − κn+1
κn + κn+1

(4.264)

then we have that the general solution of (4.263) is expressed as:

vn,2k+1 = κnθ2k+1. (4.265)

Using (4.262) we then obtain:

un,2k+1 =
i
ε

1− κnθ2k+1
1+ κnθ2k+1

. (4.266)

So we have the general solution to (1.91a) in the form:

un,m = F
(+)
m (θm +ωn) + F

(−)
m

i
ε

1− κnθm
1+ κnθm

, (4.267)

where ωn is defined by (4.260) and λn is defined by (4.264). This is
another proof, different from that given in Subsection 2.4.1, following
[67, 69], of the linearization of the equation (1.91a).

It is worth to note that in the case of the tHε1 equation (1.91a) is
possible to give simple proof of the linearization also using the first
integral in the m direction (4.29b). This kind of linearization was pre-
sented in [71] and it is important since it was the first example of
linearization obtained using a higher-order fist integral. We leave this
discussion to Appendix H.

4.4.3.2 The tHε2 equation

From Section 4.3 we know that the first integrals of the tHε2 equation
(1.91b) in the n direction is four-point, third order first integral (4.30a).
Therefore this integral defines a three-point, third order ordinary dif-
ference equation W1 = ξn. However this integral is particularly com-
plex, so we start first by inspecting the tH

ε
2 equation (1.91b) itself.
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If we apply the transformation (4.255) we can write down the tHε2
equation (1.91b) as the following system of two coupled equations:

(pn,l − pn+1,l)(qn,l − qn+1,l)

−α2(pn,l + pn+1,l + qn,l + qn+1,l)

+
εα2
2

(2qn,l + 2α3 +α2)(2qn+1,l + 2α3 +α2)

+
εα2
2

(2α3 +α2)
2 + (α2 +α3)

2

−α23 − 2εα2α3(α2 +α3) = 0,

(4.268a)

(qn,l − qn+1,l)(pn,l+1 − pn+1,l+1)

−α2(qn,l + qn+1,l + pn,l+1 + pn+1,l+1)

+
εα2
2

(2qn,l + 2α3 +α2)(2qn+1,l + 2α3 +α2)

+
εα2
2

(2α3 +α2)
2 + (α2 +α3)

2 −α23

− 2εα2α3(α2 +α3) = 0.

(4.268b)

We have that equation (4.268a) depends on pn,l and pn+1,l and that
equation (4.268b) depends on pn,l+1 and pn+1,l+1. So we apply the
translation operator Tl to (4.268a) to obtain two equations in terms of
pn,l+1 and pn+1,l+1:

(pn,l+1 − pn+1,l+1)(qn,l+1 − qn+1,l+1)

−α2(pn,l+1 + pn+1,l+1 + qn,l+1 + qn+1,l+1)

+
εα2
2

(2qn,l+1 + 2α3 +α2)(2qn+1,l+1 + 2α3 +α2)

+
εα2
2

(2α3 +α2)
2 + (α2 +α3)

2

−α23 − 2εα2α3(α2 +α3) = 0,

(4.269a)

(qn,l − qn+1,l)(pn,l+1 − pn+1,l+1)

−α2(qn,l + qn+1,l + pn,l+1 + pn+1,l+1)

+
εα2
2

(2qn,l + 2α3 +α2)(2qn+1,l + 2α3 +α2)

+
εα2
2

(2α3 +α2)
2 + (α2 +α3)

2 −α23

− 2εα2α3(α2 +α3) = 0.

(4.269b)

The system (4.269) is equivalent to the original system (4.268). We
can solve (4.269) with respect to pn,l+1 and pn+1,l+1:

pn,l+1 =



(qn,l+1 −α3)qn+1,l − (qn,l −α3)qn+1,l+1

−(α2 +α3) (qn,l+1 − qn,l) − εα
2
3 (qn,l+1 − qn,l)

+ε
[
α3
2 + 2α3 (qn,l +α2) − (qn,l+1 − qn,l)qn+1,l

]
qn+1,l+1

+ε (α2 + qn,l+1) (α2 + qn,l)qn+1,l+1

−εqn+1,l
[
α3
2 − 2 (qn,l+1 +α2)α3 + (α2 + qn,l+1) (α2 + qn,l)

]


qn+1,l+1 − qn,l+1 + qn,l − qn+1,l

(4.270a)
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pn+1,l+1 =



(qn+1,l −α3)qn,l+1 + (α3 − qn+1,l+1)qn,l

−(α2 +α3) (qn+1,l − qn+1,l+1) + εα
2
3 (qn+1,l+1 − qn+1,l)

+εqn,l+1
[
(qn+1,l+1 − qn+1,l)qn,l −α

2
3 − 2α3 (qn+1,l +α2)

]
−εqn,l+1 (α2 + qn+1,l+1) (α2 + qn+1,l)

+εqn,l
[
α23 + 2 (α2 + qn+1,l+1)α3 + (α2 + qn+1,l+1) (α2 + qn+1,l)

]


qn+1,l+1 − qn,l+1 + qn,l − qn+1,l

(4.270b)

We see that the right hand sides of (4.270) are functions only of qn,l,
qn+1,l, qn,l+1 and qn+1,l+1. Moreover (4.270a) and (4.270b) must be
compatible. Therefore applying T−1l to (4.270b) and imposing to the
obtained expression to be equal to (4.270a) we find that qn,l must
solve the following equation:

α2 (qn−1,l+1 − qn−1,l − qn+1,l+1 + qn+1,l)

+ (qn,l − qn+1,l)qn−1,l+1

−(qn,l − qn−1,l)qn+1,l+1

+qn,l+1 (qn+1,l − qn−1,l)

+εα22 (qn+1,l+1 − qn+1,l + qn−1,l − qn−1,l+1)

+εα2 (qn+1,l+1 − qn+1,l + qn−1,l − qn−1,l+1) (qn,l+1 + 2α3 + qn,l)

+ε (qn+1,l − qn−1,l)qn+1,l+1qn−1,l+1

+ε (qn,l+1 − qn,l + qn+1,l)qn−1,lqn−1,l+1

+ε [2α3qn+1,l − (qn,l+1 + 2α3)qn,l]qn−1,l+1

+ε (qn,l+1 + 2α3)qn,lqn+1,l+1

−ε (2α3 + qn+1,l)qn−1,lqn+1,l+1

−ε (qn,l+1 − qn,l)qn+1,lqn+1,l+1

−ε (2α3 + qn,l) (qn+1,l − qn−1,l)qn,l+1 = 0.
(4.271)

This partial difference equation for qn,l is not defined on a quad
graph, but it is defined on the six-point lattice shown in Figure 4.1.

(n− 1, l)

(n− 1, l+ 1)

(n, l)

(n, l+ 1) (n+ 1, l+ 1)

(n+ 1, l)

Figure 4.1: The six-point lattice.
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Remark 4.4.4. Let us note that if the field qn,l satisfies the following
equation, known as the discrete wave equation:

qn+1,l+1 + qn,l − qn+1,l + qn,l+1 = 0 (4.272)

we cannot define pn,l+1 and pn+1,l+1 as given in (4.270). In this case
we have first to solve equation (4.272) with respect to qn,l and then
use the system (4.268) to specify pn,l. The discrete wave equation
(4.272) is a trivial linear Darboux integrable equation, since it pos-
sesses the following two-point, first order first integrals:

W1 = qn+1,l − qn,l, (4.273a)

W2 = qn,l+1 − qn,l. (4.273b)

As remarked in the Introduction the existence of a two-point, first or-
der first integral means that the equation is itself a first integral. There-
fore the discrete wave equation (4.272) can be alternatively written as
(Tl − Id)W1 or (Tn − Id)W2 withW1 andW2 given by (4.273). The so-
lution is readily obtained from (4.273a) which implies qn+1,l−qn,l =

ξn. This equation becomes a total difference setting ξn = an+1 − an,
and we get the general solution of equation (4.272):

qn,l = an +αl, (4.274)

where both an and αl are arbitrary functions of their argument. This
is the discrete analogue of d’Alembert method of solution of the con-
tinuous wave equation. Substituting (4.274) into (4.269) we obtain the
compatibility condition:

αl+1 −αl = 0, (4.275)

i.e. αl = α0 = constant and the system (4.268) is now consistent.
Therefore we are left with one equation for pn,l, e.g. (4.268a). There-
fore inserting (4.274) with αl = α0 in (4.268a) and solving with re-
spect to pn+1,l we obtain:

pn+1,l =
an+1 − an +α2
an+1 − an −α2

pn,l +
α2 (α2 − an + 2α3 − 2α0 − an+1)

α2 + an − an+1

+

α2ε

[
α22 + (2α0 + an+1 + 2α3 + an)α2

+ 2 (an+1 +α0 +α3) (α3 + an +α0)

]
α2 + an − an+1

.

(4.276)

Defining through discrete integration a new function bn such that:

an+1 − an +α2
an+1 − an −α2

=
bn+1
bn

, (4.277)
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we have that pn,l solves the equation:

pn+1,l

bn+1
=
pn,l

bn
+

(an +α0 −α3)bn+1 + bn (α2 +α3 −α0 − an)

bnbn+1

− ε

[
(α2 +α0 + an +α3)

2 bn+1 − bn (α3 + an +α0)
2
]

bnbn+1
.

(4.278)

Equation (4.278) is solved by:

pn,l = bn (βl + cn) , (4.279)

where cn is given by the discrete integration:

cn+1 = cn +
(an +α0 −α3)bn+1 + bn (α2 +α3 −α0 − an)

bnbn+1

− ε

[
(α2 +α0 + an +α3)

2 bn+1 − bn (α3 + an +α0)
2
]

bnbn+1
.

(4.280)

This yields the solution of the tHε2 equation (1.91b) when qn,l satisfy
the discrete wave equation (4.272).

In the general case we have proved that the tHε2 equation (1.91b)
is equivalent to the system (4.268) which in turn is equivalent to the
solution of equations (4.270a) and (4.271). However (4.270a) merely
defines pn,l+1 in terms of qn,l and its shifts. Therefore if we find the
general solution of equation (4.271) the value of pn,l will follow. To
find such solution we turn to the first integrals. Like in the case of the
H6 equations (1.93) we will find an expression for qn,l using the first
integrals, and then we will insert it into (4.271) to reduce the number
of arbitrary functions to the right one.

We consider the equation W1 = ξn, where W1 is given by (4.30a),
with k = 2l+ 1:

(un−1,2l+1 − un+1,2l+1) (un+2,2l+1 − un,2l+1)

(un,2l+1 − un−1,2l+1 +α2) (un+1,2l+1 − un+2,2l+1 +α2)
= ξn.

(4.281)

Using the substitutions (4.255) we have:

(qn−1,l − qn+1,l) (qn+2,l − qn,l)

(qn,l − qn−1,l +α2) (qn+1,l − qn+2,l +α2)
= ξn. (4.282)

This equation contains only qn,l and its shifts. From equation (4.282)
it is very simple to obtain a discrete Riccati equation. Indeed the trans-
formation:

Qn,l =
qn,l − qn−1,l +α2
qn+1,l − qn−1,l

(4.283)
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brings (4.282) into:

Qn+1,l +
1

ξnQn,l
= 1 (4.284)

which is a discrete Riccati equation. Let us assume an to be a partic-
ular solution of (4.284), then we express ξn as:

ξn =
1

an (1− an+1)
. (4.285)

Using the standard linearization of the discrete Riccati equation:

Qn,l = an +
1

Zn,l
(4.286)

from (4.285) we obtain the following equation for Zn,l:

Zn+1,l =
anZn,l + 1

1− an+1
. (4.287)

Introducing:

an =
bn−1

bn + bn−1
(4.288)

we obtain:

Zn+1,l−
bn−1bn+1 + bn−1bn
bnbn+1 + bn−1bn+1

Zn,l =
bn−1bn+1 + bn−1bn + bnbn+1 + b

2
n

bnbn+1 + bn−1bn+1
.

(4.289)

If we assume that (4.289) can be written as a total difference, i.e.:

(Tn − Id) (dnZn,l − cn) = 0, (4.290)

we obtain:

bn = cn+1 − cn, dn =
(cn+1 − cn)(cn − cn−1)

cn+1 − cn−1
. (4.291)

So bn must be a total difference and therefore we can represent Zn,l

as:

Zn,l =
(cn+1 − cn−1)(cn +αl)

(cn+1 − cn)(cn − cn−1)
. (4.292)

From (4.286) and (4.288) we obtain the form of Qn,l:

Qn,l =
(cn − cn−1)(cn+1 +αl)

(cn +αl)(cn+1 − cn−1)
. (4.293)

Introducing the value of Qn,l from (4.293) into (4.283) we obtain the
following equation for qn,l:

qn+1,l − qn−1,l

qn,l − qn−1,l +α2
=

(cn +αl)(cn+1 − cn−1)

(cn − cn−1)(cn+1 +αl)
. (4.294)
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Performing the transformation:

Rn,l = (cn +αl)qn,l (4.295)

we obtain the following second order ordinary difference equation
for the field Rn,l:

Rn+1,l −
cn+1 − cn−1
cn − cn−1

Rn,l

+
cn+1 − cn
cn − cn−1

Rn−1,l −α2(cn +αl)
cn+1 − cn−1
cn − cn−1

= 0.
(4.296)

Then we can represent the solutions of the equation (4.296) as:

Rn,l = Pn,l +αlen + fn, (4.297)

where en and fn are particular solutions of:

en+1 −
cn+1 − cn−1
cn − cn−1

en

+
cn+1 − cn
cn − cn−1

en−1 = α2
cn+1 − cn−1
cn − cn−1

,
(4.298a)

fn+1 −
cn+1 − cn−1
cn − cn−1

fn

+
cn+1 − cn
cn − cn−1

fn−1 = α2cn
cn+1 − cn−1
cn − cn−1

.
(4.298b)

Pn,l will be then solve the following equation:

Pn+1,l −
cn+1 − cn−1
cn − cn−1

Pn,l +
cn+1 − cn
cn − cn−1

Pn−1,l = 0. (4.299)

The equations (4.298a) and (4.298b) are not independent. Indeed
defining:

An =
encn−1 − en−1cn − fn + fn−1

cn − cn−1
, (4.300)

and using (4.298) it is possible to show that the function An lies in the
kernel of the operator Tn − Id. This implies that An = A0 = constant.
We can without loss of generality assume the constant A0 to be zero,
since if we perform the transformation:

en = ẽn −A0, (4.301)

the equation (4.300) is mapped into:

ẽncn−1 − ẽn−1cn − fn + fn−1
cn − cn−1

= 0. (4.302)

Furthermore since (4.298a) is invariant under the transformation (4.301)
we can safely drop the tilde in (4.302) and assume that the functions
en and fn are solutions of the equations:

en+1 −
cn+1 − cn−1
cn − cn−1

en +
cn+1 − cn
cn − cn−1

en−1 −α2
cn+1 − cn−1
cn − cn−1

= 0,

(4.303a)
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fn − fn−1 = encn−1 − cnen−1. (4.303b)

Finally we note that the function en can be obtained from (4.303a) by
two discrete integrations. Indeed defining:

En =
en+1 − en
cn+1 − cn

, (4.304)

and substituting in (4.303a) we obtain that En must solve the equation:

En − En−1 = α2

(
1

cn+1 − cn
+

1

cn − cn−1

)
. (4.305)

Note that the right hand side of (4.305) is not a total difference. So the
function en can be obtained by integrating (4.305) and subsequently
integrating (4.304). This provides the value of en. The obtained value
can be plugged in (4.303b) to give fn after discrete integration. This
reasoning shows that we can obtain the non-arbitrary functions en
and fn as result of a finite number of discrete integrations.

Now we turn to the solution of the homogeneous equation (4.299).
We can reduce (4.299) to a total difference using the potential substi-
tution Tn,l = Pn,l − Pn−1,l:

Tn+1,l

cn+1 − cn
−

Tn,l

cn − cn−1
= 0. (4.306)

This clearly implies:

Pn,l − Pn−1,l

cn − cn−1
= βl, (4.307)

where βl is an arbitrary function. The solution to this equation is
given by5:

Pn,l = (cn +αl)βl + γl, (4.308)

where γl is an arbitrary function. Using (4.295,4.297,4.308) we obtain
then the following expression for qn,l:

qn,l = βl +
γl +αlen + fn

cn +αl
, (4.309)

where en and fn are solutions of (4.303).
Now since the solution we obtained in (4.309) depends on three ar-

bitrary functions in the l direction, namely αl, βl and γl, there must
be a constraint between these functions. This constraint is readily ob-
tained by plugging (4.309) into (4.271). Factorizing the n dependent
part away we are left with:

γl+1 − γl = −(αl+1 −αl)

(
α2 +βl+1 +βl + 2α3 −

1

ε

)
. (4.310)

5 The arbitrary functions are taken in a convenient way.
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This equation tells us that the function γl can be expressed after a
discrete integration in terms of the two arbitrary functions αl and
βl. So the function qn,l is defined by (4.303,4.309,4.310) where the
functions en, fn and γl are defined implicitly and can be found by
discrete integration. The value of pn,l now can be recovered by substi-
tuting (4.303,4.309,4.310) into (4.270a) and applying T−1l . This yields
the general solution of the tHε2 equation (1.91b).

Remark 4.4.5. Let us notice that in the case ε = 0 formula (4.310)
is singular. However in this case we just express the compatibility
condition as αl+1−αl = 0, i.e. αl = α0 = constant. It is easy to check
that the obtained value of qn,l through formula (4.309) is consistent
with the substitution of ε = 0 in (4.268). This means that in the case
ε = 0 the value of qn,l is given by

qn,l = βl +
γl +α0en + fn

cn +α0
, (4.311)

where the functions en and fn are defined implicitly and can be
found by discrete integration from (4.303). As in the general case the
value of pn,l now can be recovered by substituting (4.303,4.309) into
(4.270a) and applying T−1l . This yields the general solution of the tHε2
equation (1.91b) if ε = 0.

4.4.3.3 The tHε3 equation

From Section 4.3 we know that the first integrals of the tH
ε
3 equa-

tion (1.91c) in the n direction is a four-point, third order first integral
(4.34a). Therefore this integral defines a four-point, third order ordi-
nary difference equation from W1 = ξn. This integral is particularly
complex, so we start first by inspecting the tHε3 equation (1.91c) itself.
If we apply the transformation (4.255) we can write the tHε3 equation
(1.91c) as the following system of two coupled equations:

α2(pn,lqn+1,l + pn+1,lqn,l)

− pn,lqn,l − pn+1,lqn+1,l

−α3(α
2
2 − 1)

(
δ2 + ε2

qn,lqn+1,l

α23α2

)
= 0,

(4.312a)

α2(qn,lpn+1,l+1 + qn+1,lpn,l+1)

− qn,lpn,l+1 − qn+1,lpn+1,l+1

−α3(α
2
2 − 1)

(
δ2 + ε2

qn,lqn+1,l

α23α2

)
= 0.

(4.312b)

As in the case of the tH
ε
2 equation (1.91b) we have that equation

(4.312a) depends on pn,l and pn+1,l and that equation (4.312b) de-
pends on pn,l+1 and pn+1,l+1. So we can apply the translation op-
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erator Tl to (4.312a) to obtain two equations in terms of pn,l+1 and
pn+1,l+1:

α2(pn,l+1qn+1,l+1 + pn+1,l+1qn,l+1)

− pn,l+1qn,l+1 − pn+1,l+1qn+1,l+1

−α3(α
2
2 − 1)

(
δ2 + ε2

qn,l+1qn+1,l+1

α23α2

)
= 0,

(4.313a)

α2(qn,lpn+1,l+1 + qn+1,lpn,l+1)

− qn,lpn,l+1 − qn+1,lpn+1,l+1

−α3(α
2
2 − 1)

(
δ2 + ε2

qn,lqn+1,l

α23α2

)
= 0.

(4.313b)

The system (4.313) is equivalent to the original system (4.312). Then
since we can assume α2,α3 6= 06 we can solve (4.313) with respect to
pn,l+1 and pn+1,l+1:

pn,l+1 =


α2 (qn+1,l+1 − qn+1,l)

(
ε2qn,lqn,l+1 + δ

2α3
2
)

+δ2α22α
2
3 (qn,l − qn,l+1)

+ε2qn+1,l+1qn+1,l (qn,l − qn,l+1)


(qn+1,l+1qn,l − qn+1,lqn,l+1)α3α2

,

(4.314a)

pn+1,l+1 =


α2
(
ε2qn+1,l+1qn+1,l + δ

2α3
2
)
(qn,l − qn,l+1)

+δ2α22α
2
3 (qn+1,l+1 − qn+1,l)

+ε2qn,lqn,l+1 (qn+1,l+1 − qn+1,l)


(qn+1,l+1qn,l − qn+1,lqn,l+1)α3α2

.

(4.314b)

We see that the right hand sides of (4.314) are functions only of qn,l,
qn+1,l, qn,l+1 and qn+1,l+1. Moreover (4.314a) and (4.314b) must be
compatible. Therefore applying T−1l to (4.314b) and imposing to the
obtained expression to be equal to (4.314a) we find that qn,l must
solve the following equation:

δ2α22α
2
3 [qn+1,l+1qn,l − qn,lqn−1,l+1 + qn,l+1 (qn−1,l − qn+1,l)]

−α2
(
ε2qn,lqn,l+1 + δ

2α23
)
(qn+1,l+1qn−1,l − qn−1,l+1qn+1,l)

+ε2 [qn,lqn+1,l+1 (qn−1,l − qn+1,l) − qn,l+1qn−1,lqn+1,l]qn−1,l+1

+ε2qn+1,l+1qn+1,lqn,l+1qn−1,l = 0.
(4.315)

As in the case of the tHε2 equation (1.91b) the partial difference equa-
tion for qn,l is not defined on a quad graph, but it is defined on the
six-point lattice shown in Figure 4.1.

6 If α2 = 0 or α3 = 0 in (4.312) we have that the system becomes trivially equivalent
to qn,l = 0 and pn,l is left unspecified. Therefore we can discard this trivial case.
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Remark 4.4.6. Let us note that if

qn+1,l+1qn,l − qn+1,lqn,l+1 = 0 (4.316)

we cannot define pn,l+1 and pn+1,l+1 as in (4.314). In this case we
first solve equation (4.316) with respect to qn,l and then use the sys-
tem (4.312) to specify pn,l. Indeed equation (4.316) is a trivial Dar-
boux integrable equation, since it possesses the following two-point,
first order first integrals:

W1 =
qn+1,l

qn,l
, (4.317a)

W2 =
qn,l+1

qn,l
. (4.317b)

As remarked in the Introduction the existence of a two-point, first or-
der first integral means that the equation is itself a first integral. There-
fore the equation (4.316) can be alternatively written as (Tl − Id)W1
or (Tn − Id)W2 with W1 and W2 given by (4.317). From (4.317a) we
obtain qn+1,l/qn,l = ξn. This equation is immediately solved by
defining ξn = an+1/an, and we get the general solution of equation
(4.316):

qn,l = anαl, (4.318)

where both an and αl are arbitrary functions of their argument. Let
us note that equation (4.316) is the logarithmic discrete wave equation,
since it can be mapped into the discrete wave equation (4.272) expo-
nentiating (4.272) and then taking qn,l → eqn,l , and it is a discretiza-
tion of the hyperbolic partial differential equation:

uuxt − uxut = 0, (4.319)

which is obtained from the wave equation vxt = 0 using the trans-
formation v = logu. Since the transformation connecting (4.272) and
(4.316) is not bi-rational, it does not preserves a priori its properties
[62] (in this case linearization and Darboux integrability). Substitut-
ing (4.318) into (4.313) we obtain the compatibility condition:

αl+1 −αl = 0, (4.320)

i.e. αl = α0 = constant and the system (4.312) is now consistent.
Therefore we are left with one equation for pn,l, e.g. (4.312a). There-
fore inserting (4.318) with αl = α0 in (4.312a) and solving with re-
spect to pn+1,l we obtain:

pn+1,l =
α2an+1 − an
an+1 −α2an

pn,l+(α22−1)
δ2α23α2 + ε

2anα
2
0an+1

α3α2α0(α2an − an+1)
. (4.321)

Defining

α2an+1 − an
an+1 −α2an

=
bn+1
bn

, (4.322)
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we have that pn,l solves the equation:

pn+1,l

bn+1
=
pn,l

bn
+
δ2α23α

2
2bn − bn+1

(
δ2α23 + ε

2a2nα
2
0

)
α2 + ε

2a2nα
2
0bn

bnanα0α2α3bn+1
.

(4.323)

Note that bn in (4.322) is given in terms of an and an+1 through
discrete integration. Equation (4.323) is solved by:

pn,l = bn (βl + cn) , (4.324)

where cn is given by the discrete integration:

cn+1 = cn+
δ2α23α

2
2bn − bn+1

(
δ2α23 + ε

2a2nα
2
0

)
α2 + ε

2a2nα
2
0bn

bnanα0α2α3bn+1
.

(4.325)

This yields the solution of the tHε3 equation (1.91c) when qn,l satisfy
equation (4.316).

In the general case we have proved that the tHε3 equation (1.91c)
is equivalent to the system (4.312) which in turn is equivalent to the
solution of equations (4.314a) and (4.315). However equation (4.314a)
merely defines pn,l+1 in terms of qn,l and its shifts. Therefore if we
find the general solution of (4.315) the value of pn,l will follow. To
find such solution we turn to the first integrals. Like in the case of the
tH
ε
2 equation (1.91b) we will find an expression for qn,l using the first

integrals, and then we will insert it into (4.315) to reduce the number
of arbitrary functions to the right one.

We consider the equation W1 = ξn/α2
7, where W1 is given by

(4.34a), with k = 2l+ 1:

(un+1,2l+1 − un−1,2l+1) (un+2,2l+1 − un,2l+1)

(α2un,2l+1 − un−1,2l+1) (un+2,2l+1 −α2un+1,2l+1)
= ξn. (4.326)

Using the substitutions (4.255) we have:

(qn+1,l − qn−1,l) (qn+2,l − qn,l)

(α2qn,l − qn−1,l) (qn+2,l −α2qn+1,l)
= ξn. (4.327)

This equation contains only qn,l and its shifts. By the transformation:

Qn,l =
α2qn,l − qn−1,l

qn+1,l − qn−1,l
(4.328)

equation (4.327) becomes:

Qn+1,l +
1

ξnQn,l
= 1, (4.329)

7 The extra α2 is due to the arbitrariness of ξn and is inserted in order to simplify the
forumulæ.
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which is the same discrete Riccati equation as in (4.284). This means
that the solution of (4.329) is given by (4.293) with the appropriate def-
initions (4.285,4.288,4.291). We can substitute into (4.328) the solution
(4.293):

qn+1,l − qn−1,l

α2qn,l − qn−1,l
=

(cn +αl)(cn+1 − cn−1)

(cn+1 +αl)(cn − cn−1)
(4.330)

and we obtain an equation for qn,l. Introducing:

Pn,l = (cn +αl)qn,l (4.331)

we obtain that Pn,l solves the equation:

Pn+1,l −α2
cn+1 − cn−1
cn − cn−1

Pn,l +
cn+1 − cn
cn − cn−1

Pn−1,l. = 0. (4.332)

Using the transformation:

Pn,l =
Rn,l

Rn−1,l
, (4.333)

we can cast equation (4.332) in discrete Riccati equation form:

Rn+1,l +
cn+1 − cn
cn − cn−1

1

Rn,l
= α2

cn+1 − cn−1
cn − cn−1

. (4.334)

Let dn be a particular solution of equation (4.334):

dn+1 +
cn+1 − cn
cn − cn−1

1

dn
= α2

cn+1 − cn−1
cn − cn−1

. (4.335)

Assuming dn as the new arbitrary function we can express cn as the
result of two discrete integrations. Indeed introducing zn = cn− cn−1
in (4.335) we have:

zn+1
zn

=
(dn+1 −α2)dn
α2dn − 1

. (4.336)

Equation (4.336) represents the first discrete integration, whereas the
second one is given by the definition:

cn − cn−1 = zn. (4.337)

Now we can linearize the discrete Riccati equation (4.334) by the trans-
formation:

Rn,l = dn +
1

Sn,l
. (4.338)

and we get the following linear equation for Sn,l:

Sn+1,l −
d2n(cn − cn−1)

cn+1 − cn
Sn,l =

dn(cn − cn−1)

cn+1 − cn
. (4.339)
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Defining:

dn =
en

en−1
, (4.340a)

fn − fn−1 =
cn − cn−1
enen−1

, (4.340b)

the solution of (4.339) is:

Sn,l =
(fn−1 +βl)e

2
n−1

cn − cn−1
. (4.341)

Inserting (4.341) and (4.340) into (4.338) we obtain:

Rn,l =
en(fn +βl)

en−1(fn−1 +βl)
. (4.342)

Inserting the definition of Rn,l (4.333) into (4.342) we obtain:

Pn,l

en(fn +βl)
=

Pn−1,l

en−1(fn−1 +βl)
, (4.343)

i.e.:

Pn,l = γlen(fn +βl). (4.344)

Introducing (4.344) into (4.331) we obtain:

qn,l =
γlen(fn +βl)

cn +αl
, (4.345)

where fn is defined by (4.340b), and cn is given by (4.336) and (4.337),
i.e. cn is the solution of the equation:

cn+1 − cn
cn − cn−1

=
en+1 −α2en
α2en − en−1

, (4.346)

and en is an arbitrary function.
Now since the solution we obtained in (4.345) depends on three ar-

bitrary functions in the l direction, namely αl, βl and γl, there must
be a constraint between these functions. This constraint is readily ob-
tained by plugging (4.345) into (4.315). Factorizing the n dependent
part away we are left with:

αl+1 −αl =
ε2

α2δ2α
2
3

γl+1γl(βl+1 −βl) (4.347)

This equation tells us that the function αl can be expressed after a
discrete integration in terms of the two arbitrary functions βl and
γl. So the function qn,l is defined by (4.340b,4.345–4.347) where the
functions cn, fn and αl are defined implicitly and can be found by
discrete integration. The value of pn,l now can be recovered by substi-
tuting (4.340b,4.345–4.347) into (4.314a) and applying T−1l . This yields
the general solution of the tHε3 equation (1.91c).
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Remark 4.4.7. Let us notice that when δ = 0 equation (4.347) is singu-
lar. However in this case the compatibility condition is replaced by
βl+1 − βl = 0, i.e. βl = β0 = constant. It is easy to check that the
obtained value of qn,l through formula (4.345) is consistent with the
substitution of δ = 0 in (4.312). This means that in the case δ = 0 the
value of qn,l is given by

qn,l =
γlen(fn +β0)

cn +αl
, (4.348)

where the functions cn and fn are defined implicitly and can be
found by discrete integration from (4.340b) and (4.346) respectively.
As in the general case the value of pn,l now can be recovered by
substituting (4.340b,4.345,4.346) into (4.314a) and applying T−1l . This
yields the general solution of the tHε3 equation (1.91c) if δ = 0.





C O N C L U S I O N S

In this Thesis we gave a comprehensive account of recent findings
about the equations possessing the Consistency Around the Cube. In
particular our main objective was the study of the trapezoidal H4

equation (1.91) and of the H6 equations (1.93). Apart from their in-
troduction and classification in [3, 20–22] before the studies of the
author and his collaborators little was known about the integrability
properties of these equation. These integrability properties were stud-
ied from different points of view, since as it was claimed in Section
(1.1) does not exists a universal definition of integrability. Therefore
in each Chapter of this thesis we gave a self-contained introduction
to the methods we used, namely the Consistency Around the Cube in
Chapter 1, the Algebraic Entropy in Chapter 2, Generalized Symmetries
in Chapter 3 and the Darboux integrability in Chapter 4. Therefore
we can say that the primary object of this Thesis is to consider the
trapezoidal H4 equation (1.91) and of the H6 equations (1.93) from
the standpoint of different forms of integrability, as each form sheds
a different light on the nature of the equations dealt with.

Our main result was stated in Chapter 2 and it is the heuristic
proof of the fact that, according to Algebraic Entropy, the trapezoidal
H4 equation (1.91) and of the H6 equations (1.93) are actually lin-
earizable equations. This shows how different tests of integrability
can provide different outcomes, and they must be considered as com-
plementary to each other. To support this heuristic statement we gave
some examples of explicit linearization.

In Chapter 3 we showed that the three-point Generalized Sym-
metries of the trapezoidal H4 equation (1.91) and of the H6 equations
(1.93) are particular instances of the non-autonomous YdKN equation
(3.99). This result completed the identification of the three-point Gen-
eralized Symmetries belonging to the ABS and Boll’s classification
started in [102] and in [166] respectively. Furthermore based on the
observation that the most general case of the non-autonomous YdKN
(3.99) was not covered by such symmetries we conjectured the exis-
tence of a new integrable equations which encloses all the equations
coming from the Boll’s classification. We then found a candidate equa-
tion namely (3.150), which is a non-autonomous generalization of the
QV equation (3.137) introduced in [156]. This new non-autonomous
QV equation (3.150) passes the Algebraic Entropy test, but unfortu-
nately we were not able, due to the computational complexity, to
prove that its three-point symmetries are given by the general case
of the non-autonomous YdKN equation (3.99). The main significance
of this new equation is that that all the equations from Boll’s classifi-

191
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cation [20–22] can be seen as particular cases of a single equation. A
complete understanding of this equation will result in better compre-
hension of all its particular cases.

In Chapter 4 we started by showing the Darboux integrability of
the equations possessing the Consistency Around the Cube, but not
the tetrahedron property found by J. Hietarinta in [82]. These equa-
tions were known to be linearizable [138] and this observation, along
with the peculiar symmetry structure of the tHε1 equation (1.91a) led
us to conjecture that the trapezoidal H4 equations (1.91) and the H6

equations (1.93) are Darboux integrable equations. The Darboux inte-
grability of the trapezoidal H4 equations (1.91) and the H6 equations
(1.93) was then established using a modification of the method pro-
posed in [55]. In the final part of Chapter 4 we showed how from
Darboux integrability we can obtain linearization and the general so-
lutions of the trapezoidal H4 equations (1.91) and of the H6 equa-
tions (1.93). The construction of the general solutions for the trape-
zoidal H4 equations and for the H6 equations is a consequence of the
Darboux integrability property and it is something that cannot be in-
ferred from the method used in classify them. These general solutions
were obtained in three different ways, but the common feature is that
they can be found through some linear or linearizable (discrete Riccati)
equations. This is the great advantage of the first integral approach
with respect to the direct one which was pursued in [67]. The Dar-
boux integrability therefore yields extra information that it is useful
to get the final result, i.e. the general solutions. Moreover linearization
arises very naturally from first integrals also in the most complicated
cases, whereas in the direct approach can be quite tricky, see e.g. the
examples in [67]. The linearization of the first integrals is another
proof of the intimate linear nature of the H4 and H6 equations. This
result is even more stronger than Darboux integrability alone, since a
priori the first integrals do not need to define linearizable equations.
We also note that our procedure of construction of the general solu-
tion, based on the ideas from [56], is likely to be the discrete version
of the procedure of linearization and solutions for continuous Dar-
boux integrable equations presented in [178]. The preeminent rôle of
the discrete Riccati equation in the solutions is reminiscent of the im-
portance of the usual Riccati equation in the continuous case. Recall
e.g. that the first integrals of the Liouville equation (4.3) are Riccati
equations (4.4).

Now, although our knowledge of the trapezoidal H4 equations
(1.91) and of the H6 equations (1.93) is more deep than before, we
would like to end this Thesis mentioning some problems which are
still open.

• Prove (or disprove) that the J1 equation, i.e. the first of the Hi-
etarinta’s (1.28) is Darboux integrable. Since it linearizable and
possess the Consistency Around the Cube in Chapter 4 we con-
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jectured that it should be Darboux integrable, but it is possible
to prove that its first integrals (4.7) must be of order higher than
two.

• Prove the validity of the connection formulæ (3.154) and (F.4)
and directly compute the three-point Generalized Symmetries
of the non-autonomous QV equation.

• Find and classify all the non-autonomous equations satisfying
the “strict” Klein symmetries (3.144) according to their integra-
bility properties. We believe that in studying such equations
both the Algebraic Entropy approach and the Generalized Sym-
metries approach can be very fruitful. However we remark that,
as showed with an example in Chapter 3 the Generalized Sym-
metries of these equations can depend on more than on three
points.

• As mentioned in Chapter 4, Darboux integrable equations ad-
mit Generalized Symmetries depending on arbitrary functions
[5]. However for the trapezoidal H4 equations (1.91) and for the
H6 equations (1.93) the explicit form of the symmetries depend-
ing on arbitrary functions is known only for the tHε1 equation
(1.91a). This poses the challenging problem of finding the ex-
plicit form of such generalized symmetries. These symmetries
will be highly non-trivial, especially in the case of the tHε2 equa-
tion (1.91b) and of the tHε3 equation (1.91c) were the order of
the first integrals is particularly high.

As a final remark we note that the majority of the open problems orig-
inates directly from the original researches reported in this Thesis.





A
F I N A L PA RT O F T H E P R O O F O F T H E
C O M M U TAT I V E D I A G R A M 1 . 9

In this Appendix we conclude the proof of fact that the diagram 1.9
is commutative, by checking all the fundamental Möbius transforma-
tions. To this end we have written a python module mobgen.py which
contains python functions in order to generate all possible Möb4 and

M̂öb
4

transformations and compare between the results:

generate_mob4 Generate an element of Möb4 with prescribed trans-
formations type acting on the four vertices. Types are classified
as translations, T , dilation, D, and inversions I.

generate_mobnm Generate an element of M̂öb
4

with prescribed trans-
formations type acting on the four vertices. As abobe types are
classified as translations, T , dilation, D, and inversions I.

tilde_eq_der Generate the equation on the lattice (1.48) starting
from an abstract equation on the geometrical quad graph (1.29).

equality_check Checks if the result of the application of an ele-

ment of Möb4 and of an element of M̃öb
4

is the same. The
output is a boolean value.

generate_type Generate all possible combinations (with repetition)
of four Möbius transformations.

The content of mobgen.py is the following:

1 from sympy import *
2

3 def generate_type():

4 "Generate al l possible combinations (with repetition ) of four
Moebius transformations . "

5 TT= [ ’T’, ’D’, ’ I ’]
6 TF = []

7 for t1 in TT:

8 for t2 in TT:

9 for t3 in TT:

10 for t4 in TT:

11 TE = [t1,t2,t3,t4]

12 TF = TF + [TE]

13 return TF

14

15 def generate_mob4(TT,u):

16 "Generate an element of Mob4 with prescribed transformations
type acting on the four vertices . "

195
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17 var( ’a ’)
18 Mob4 = {}

19 Ind = [0,1,2,12]

20 for i in range(len(TT)):

21 if TT[i] == ’T’:
22 MobT = u(Ind[i])+a(Ind[i])

23 elif TT[i] == ’ I ’:
24 MobT = 1/u(Ind[i])

25 elif TT[i] == ’D’:
26 MobT = a(Ind[i])*u(Ind[i])

27 else:

28 raise ValueError( ’Not a fundamental type Moebius
transformation ’)

29 Mob4[u(Ind[i])] = MobT

30 return Mob4

31

32 def generate_mobnm(TT,EM,u):

33 "Generate an element of Mobnm with prescribed transformations
type acting on the four vertices . "

34 var( ’a ’)
35 var( ’n m’, integer=True)

36 f0 = (1+EM[0]*(-1)**n+EM[1]*(-1)**m+EM[0]*EM[1]*(-1)**(n+m))

/4

37 f1 = (1-EM[0]*(-1)**n+EM[1]*(-1)**m-EM[0]*EM[1]*(-1)**(n+m))

/4

38 f2 = (1+EM[0]*(-1)**n-EM[1]*(-1)**m-EM[0]*EM[1]*(-1)**(n+m))

/4

39 f12 = (1-EM[0]*(-1)**n-EM[1]*(-1)**m+EM[0]*EM[1]*(-1)**(n+m))

/4

40 F = [f0,f1,f2,f12]

41 Mobnm = {}

42 Ind = [0,1,2,12]

43 Mob0=0

44 for i in range(len(TT)):

45 if TT[i] == ’T’:
46 MobT = u(0)+a(Ind[i])

47 elif TT[i] == ’ I ’:
48 MobT = 1/u(0)

49 elif TT[i] == ’D’:
50 MobT = a(Ind[i])*u(0)

51 else:

52 raise ValueError( ’Not a fundamental type Moebius
transformation ’)

53 Mob0 += F[i]*MobT

54 Mob0=(Mob0.expand()).simplify()

55 Mobnm[u(0)]=Mob0

56 Mob1 = Mob0.subs({n: n+1,u(0): u(1)},simultaneous=True)

57 Mobnm[u(1)]=Mob1

58 Mob2 = Mob0.subs({m: m+1,u(0): u(2)},simultaneous=True)

59 Mobnm[u(2)]=Mob2

60 Mob12 = Mob0.subs({n: n+1,m: m+1, u(0): u(12)},simultaneous=

True)
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61 Mobnm[u(12)]=Mob12

62 return Mobnm

63

64 def tilde_eq_der(Q,EM,u):

65 bQsub = {u(0): u(1), u(1): u(0), u(2): u(12), u(12): u(2)}

66 Qbsub = {u(0): u(2), u(1): u(12), u(2): u(0), u(12): u(1)}

67 bQbsub = {u(0): u(12), u(1): u(2), u(2): u(1), u(12): u(0)}

68

69 f0 = (1+EM[0]*(-1)**n+EM[1]*(-1)**m+EM[0]*EM[1]*(-1)**(n+m))

/4

70 f1 = (1-EM[0]*(-1)**n+EM[1]*(-1)**m-EM[0]*EM[1]*(-1)**(n+m))

/4

71 f2 = (1+EM[0]*(-1)**n-EM[1]*(-1)**m-EM[0]*EM[1]*(-1)**(n+m))

/4

72 f12 = (1-EM[0]*(-1)**n-EM[1]*(-1)**m+EM[0]*EM[1]*(-1)**(n+m))

/4

73

74 Qt = ((f0*Q+f1*Q.subs(bQsub,simultaneous=True)\

75 +f2*Q.subs(Qbsub,simultaneous=True)\

76 +f12*Q.subs(bQbsub,simultaneous=True)).expand()).simplify()

77

78 return Qt

79

80 def equality_check(Q,TT,E,u):

81 Mob4sub=generate_mob4(TT,u)

82 Mobnmsub=generate_mobnm(TT,E,u)

83

84 Qhat=Q.subs(Mob4sub)

85 Qhattilde=tilde_eq_der(Qhat,E,u)

86

87 Qtilde=tilde_eq_der(Q,E,u)

88 Qtildehat=Qtilde.subs(Mobnmsub)

89

90 DQ = ((Qhattilde-Qtildehat).expand()).simplify()

91 if DQ == 0:

92 return True

93 else:

94 return False

All the functions described above are used in following program
which generates the most general quad equation as shown in (1.86)
and checks if the action of all the possible elements of Möb4 and

M̂öb
4

yields the same equation.

1 from sympy import *
2 import time

3 from mobgen import *
4

5 def seconds_to_hours(s):

6 if s >= 3600:

7 si, sd = divmod(s, 1)

8 si = int(si)

9 h = si/3600
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10 m = (si/60) % 60

11 ss = si % 60

12 return str(h)+ ’h ’+str(m)+ ’m’+str(ss+sd)[:5]+ ’ s ’
13 elif s < 3600 and s >= 60:

14 si, sd = divmod(s, 1)

15 si = int(si)

16 m = (si/60) % 60

17 ss = si % 60

18 return str(m)+ ’m’+str(ss+sd)[:5]+ ’ s ’
19 elif s < 60 and s >10:

20 return str(s)[:5]+ ’ s ’
21 else:

22 return str(s)[:4]+ ’ s ’
23

24 def main():

25 #generate all possible Moebius transformations

26 MTot = generate_type()

27 #generic quad-equation

28 var( ’A B C D K u’)
29 #constant part

30 Qconst = K

31 #linear part

32 Qlin = D(0)*u(0)+D(1)*u(1)+D(2)*u(2)+D(12)*u(12)

33 #quadratic part

34 Qquadr = C(0,1)*u(0)*u(1)+C(0,2)*u(0)*u(2)+C(0,12)*u(0)*u(12)

\

35 +C(1,2)*u(1)*u(2)+C(1,12)*u(1)*u(12)+A(2,12)*u(2)*u(12)

36 #cubic part

37 Qcub = B(0,1,2)*u(0)*u(1)*u(2)+B(0,1,12)*u(0)*u(1)*u(12)+B

(1,2,12)*u(1)*u(2)*u(12)

38 #quartic part

39 Qquart = A(0,1,2,12)*u(0)*u(1)*u(2)*u(12)

40 #the equation

41 Q = Qconst + Qlin + Qquadr + Qcub + Qquart

42 print Q

43 #various possible embeddings

44 R = [-1,1]

45 EM = []

46 for r in R:

47 for s in R:

48 EP = [r,s]

49 EM += [EP]

50 for E in EM:

51 print E

52 #taking trace of the transformation

53 N=0

54 #taking trace of eventual ‘‘errors’’

55 Nerr = []

56 dt =float(0)

57 fo= open( ’quad_equation_check_ ’+str(E[0])+ ’_ ’+str(E[1])+ ’
. out ’, ’w’)
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58 fo.write( ’We check the equation\n’+latex(Q, mode= ’
equation ’)+ ’\n ’)

59 for TT in MTot:

60 N += 1

61 t0 = time.time()

62 test = equality_check(Q,TT,E,u)

63 dt0 = time.time()-t0

64 print N, test, dt0

65 dt += dt0

66 fo.write(str(N)+ ’ : ’+str(TT)[1:-1]+ ’ is ’+str(test)+ ’
\n ’)

67 if test == False:

68 Nerr += [N]

69

70 fo.write( ’Operations take ’+seconds_to_hours(dt)+ ’ , with
average time ’+seconds_to_hours(dt/81)+ ’ .\n ’)

71

72 if Nerr != []:

73 fo.write( ’There were errors at ’+str(Nerr)[1:-1]+ ’ .
Check carefully what happened! ’)

74

75 if __name__ == ’__main__ ’:
76 main()

Running the above program has resulted in a complete verification
of the equivalence of the two actions.





B
PYTHON P R O G R A M S F O R C O M P U T I N G A L G E B R A I C
E N T R O P Y

In this Appendix we discuss some python programs which can com-
pute the iterates of various kind of discrete an semi-discrete equations.
In particular in Section B.1 we present the python module ae2d.py

which can be used to compute the degrees of iterates of systems of
quad equations, this was presented in [64]. In Section B.2 we present
the python module ae_differential_difference.py which can be
used to compute the degrees of the iterates of systems of difference
equations and/or differential-difference of arbitrary order. Finally in
Section B.3 we present some python utilities for the analysis of the
obtained sequences. All the proposed modules extensively uses the
classes defined by the pure python Computer Algebra System sympy

[150], so to be used they require a basic knowledge of it.
Following the development guidelines of sympy [150] all the mod-

ule are written using the python3 standards, but they maintain the
python2 compatibility. To this end is used the module __future__ to
redefine the division function and the printing system. All the mod-
ules were tested on both python versions.

b.1 algebraic entropy of systems of quad equations with

ae2d.py

In this Section we give a brief description of the functions contained
in the python module ae2d.py. The scope of the functions in ae2d.py

is to calculate the degree of the iterates of a system of quad equa-
tions. We underline that ae2d.py uses the multiprocessing module
which permit to take advantage of modern multi-core architectures
to evaluate simultaneously the degrees along the diagonals.

b.1.1 Description of the content of ae2d.py

The ae2d.py module contains the following functions1:

up_or_anti_diagonal Creates a diagonal or anti-diagonal matrix. This
is an auxiliary function used in constructing the evolution matri-
ces (2.37).

evolution_matrix Construct an evolution matrix starting from the
degrees of the iterates. This representation relies on the matrix

1 The names of the functions follow the naming convention adopted by sympy devel-
opers.
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class defined by sympy. This is an auxiliary function automat-
ically used by the evol function in case there is the need of
displaying the results in the form of an evolution matrix (2.37).

analyze_evolution_matrix This function analyze an evolution ma-
trix (2.37) searching for repeating patterns. This is a user-level
function and it accepts a single argument M which must be a
sympy matrix. The user has no need to specify which is the direc-
tion of the evolution. The function detect the kind of evolution
matrix from the fact that an evolution matrix (or it transposed
matrix) is a Hessenberg matrix [80]. Then the matrix is trans-
formed into a list of lists eliminating the zero entries and or-
dering the list from the longest to the shortest. Then a pairwise
comparison of the lists is carried out by comparing appropriate
slice of the two lists. Equal (slice of) lists are then removed. The
result of this procedure are the unequal sequences of degrees.

gen_ics This function generates the set of the initial conditions for
a system of quad equations. The main advantage of ae2d.py

is that this function, can also handle arbitrary constants and
arbitrary functions of the lattice variables including shifts. Fol-
lowing the remarks given in Section 2.2 it generate a staircase
of initial values linearly parametrized (2.44). Assuming that we
have a system of M quad equations and that we have chosen
to perform N iterations we will have the following number of
initial conditions needed:

Nini = 4M (N+ 1) . (B.1)

We assign to those values prime numbers.

Next the function has a list F of the arbitrary functions, possibly
with their shifts. Then we operate in the following way:

1. Taken an element f ∈ F check on how many variables it de-
pends. Then we proceed in isolating all the other elements
g ∈ F which has the same symbol, i.e.:

fl+1 → f,gl+1 → g . . . (B.2)

2. Now consider the case when f ∈ F depends only upon a
single variable. At the end of the preceding step we have
formed a list of the form:

Ff =
{
fq+j1 , . . . , fq+jkf

}
. (B.3)

Then we define:

jm = min
k=1,...,kf

jk, jM = min
k=1,...,kf

jk. (B.4)
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We then form a list Fs of all the triples

(f, jm, jM) . (B.5)

So finally we have that to evaluate the functions of a single
variable along the evolution we then need to evaluate them
on the following number of points:

Ns =

|Fs|∑
k=1

(N+ 1+ jMi
− jmi

) . (B.6)

We choose as values for those functionsNs prime numbers.

3. Now we consider the case in which g ∈ F depends on two
variables. Again from 1 we have a list of the form:

Fg =
{
gl+j1,m+z1 , . . . ,gl+jkg ,m+zwg

}
. (B.7)

Now we define:

im = min
k=1,...,kf,w=1,...,wg

{ jk, zw } , (B.8a)

iM = max
k=1,...,kf,w=1,...,wg

{ jk, zw } . (B.8b)

We then form a list Fd of all the triples:

(g, im, iM). (B.9)

So finally we have that to evaluate the functions of a two
variables along the evolution we then need to evaluate
them on the following number of points:

Nd =

|Fd|∑
k=1

[N+ 1+ 2 (iMk
− imk

)] [N+ 2+ 2 (iMk
− imk

)]

2

+

|Fd|∑
k=1

[N+ 2 (iMk
− jmk

)]

(B.10)

We choose as values for those functions Nd prime num-
bers.

Remark B.1.1. The proposed procedure for the evaluation of the
functions of two variables may result in considering more points
than needed. However a more accurate procedure of evaluation
will be much more complicated, and above all this procedure is
quite cheap in term of resource usage.

We needed the following amount of prime numbers

NTOT = Nini +Nac +Ns +Nd. (B.11)



204 python programs for computing algebraic entropy

where Nac is the number of arbitrary constants. The prime num-
bers are generated with the sympy function sieve and shuffled
before being assigned, so that running the program on the same
equation more than once will result in different initial condi-
tions and different values of the arbitrary functions and arbi-
trary constants.

We underline that the gen_ics function is not intended for a
user-level usage, but is used automatically by the evol function.

evol evol is the principal user-level function in ae2d.py. Its scope
is to output a degree sequence or an evolution matrix. Since
the whole program is supposed to work at the affine level it
returns the degree sequence of each dependent variable. Now
we describe carefully its input, its operations and the possible
form of its output.

The function evol needs two mandatory arguments:

EQ The system of quad equations under considerations. It can
be entered as a python list, or as a python dictionary. In the
case of a single scalar equation it can be entered plainly.

Y The dependent variables. They can be entered as a python list,
or as a python dictionary. In the case of a single dependent
variable it can be entered plainly. The entries of the list
must be sympy Functions of two lattice variables, e.g.:

Y = [u(n, m), v(n, m)]. (B.12)

Remark B.1.2. The function evol can handle only well-determined
systems of quad equations so it will check that the number of
equations is equal to the number of dependent variables. In neg-
ative case it will raise an error. To reduce a system of quad equa-
tion to a well-determined one is the up to the user.

Moreover the function evol support four optional parameters:

NI Defines the number of iterations. It must be a positive inte-
ger, and error is returned otherwise. The default value is
NI=8.

direction Direction defines the principal diagonal of evolution
as shown in Figure 2.5. The possible choices are:

direction="mp" perform the evolution from the ∆−,+ prin-
cipal diagonal, this is the default argument,

direction="pm" perform the evolution from the ∆+,− prin-
cipal diagonal,

direction="mm" perform the evolution from the ∆−,− prin-
cipal diagonal,

direction="pp" perform the evolution from the ∆+,+ prin-
cipal diagonal,
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direction="all" performs the evolution in all directions. If
the evolution in one of the four direction is not possi-
ble [64] then the direction is skipped.

If an argument different from the listed ones is used then
the program falls back to the default one.

matrix_form This is a boolean parameter. By default it is false,
and it is automatically activated by the program if it finds
different degrees along the diagonals. Setting it to true ab
initio will cause the result to be outputted in matrix form
regardless of the need of such representation.

verbosity_level This parameter sets how much output will be
displayed on the stout by the program. It has three possi-
ble values:

verbosity_level=0 The function displays nothing on the stout.

verbosity_level=1 The function displays on the stout only
the progression of the iterates in the form i/NI, where
i is the i-th iterate, this is the default value.

verbosity_level=2 The function displays nothing the stout.

If the value of verbosity_level is not an integer then it
falls back to the default value.

The function then accepts keyword arguments. Keyword argu-
ments in this context can be used to set some parameters to a
fixed (not arbitrary in the sense of the function gen_ics) value.
Keyword arguments are immediately substituted into EQ.

The function then starts by checking that the given equations are
rational quad equations and search for arbitrary constants and
functions. Anything not-appearing in the list Y is considered
here arbitrary. Then the system is solved in the chosen direction,
and the function gen_ics is recalled in order to generate the
initial conditions and the values of the arbitrary functions and
constants.
Remark B.1.3. A continuous variable t is defined as in (2.44).
This implies that it is not possible to call one of the two discrete
variable t.

Now the actual evolution begins. The function value_deg of
step evaluation is defined. This function encloses all the rele-
vant step-wise substitutions and degree calculations. The main
point is the fact that after the substition a factorization in the
finite field KP is carried out. The prime number P is chosen to
be the first prime after p2MAX, where pMAX is the biggest prime
generated by gen_ics. The number of points on the diagonal
to be evaluated is then divided by the number of CPU at dis-
posal. The function evol then exectute the value_deg function
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in chuncks each one of lenght equal to the number of CPU. This
procedure is repeated until the NI-th iteration.

At this point the evolution is ended. It is checked if there is the
need of a matrix form. If not the result is returned as a list of
tuples whose first element is the name of the dependent variable
(e.g. u(l,m) is returned as u) and whose second member is the
list of the degrees or an evolution matrix. In the case of scalar
equation, since there is no ambiguity, just the list of degrees or
an evolution matrix is returned.

b.1.2 Code

The content of the file ae2d.py is the following:

1 from __future__ import print_function, division

2

3 from sympy.core.symbol import Symbol, Wild

4 from sympy.core.relational import Equality

5 from sympy.core.add import Add

6 from sympy.core.mul import Mul

7 from sympy.simplify import simplify, numer, denom

8 from sympy.solvers import solve

9 from sympy.polys.polytools import degree, factor

10 from sympy.functions.elementary.miscellaneous import Max

11 from sympy.ntheory.generate import sieve,nextprime

12 from sympy.matrices import Matrix

13 from sympy.functions.elementary.integers import ceiling

14 from array import array

15 from random import shuffle

16 from warnings import warn

17 from itertools import chain

18 from multiprocessing import Queue, Process,cpu_count

19

20 class WellDefinitenessError(Exception):

21 pass

22

23 def up_or_anti_diagonal(dim,n,V,Anti=False):

24 """Create a matrix which is different from 0 only on an upper

25 or lower diagonal."""

26 if len(V) !=dim-abs(n):

27 raise ValueError("Vector must be of the appropriate
lenght %s" % str(dim-abs(n)))

28 if Anti:

29 k1 = 0

30 k2 = 1

31 else:

32 k1 = 1

33 k2 = 0

34 def f(i,j):

35 if i == k1*(j-n) + k2*(dim - 1 - n -j):

36 if n>0:



B.1 algebraic entropy of systems of quad equations with ae2d.py 207

37 return V[i]

38 else:

39 return V[k1*j+k2*(j+n)]

40 else:

41 return 0

42 return Matrix(dim,dim,f)

43

44 def evolution_matrix(VV,DIR):

45 """Generate an evolution matrix on

46 in all the the possible directions."""

47 if type(VV) != list:

48 raise TypeError("Argument %s must be a l i s t . " % str(VV))

49 NI = len(VV)

50 for i in range(NI):

51 if type(VV[i]) != list:

52 raise TypeError("Elements of the argument must be
l i s t s : %s is not . " % str(VV[i]))

53 if DIR[0]*DIR[1] == 1:

54 adiag = True

55 else:

56 adiag = False

57 M = up_or_anti_diagonal(NI+1,0,[1]*(NI+1),adiag)+

up_or_anti_diagonal(NI+1,-DIR[1],[1]*NI,adiag)

58 for i in range(len(VV)):

59 M += up_or_anti_diagonal(NI+1,DIR[1]*(i+1),VV[i],adiag)

60 return M

61

62 def analyze_evolution_matrix(M):

63 if not type(M) == MutableDenseMatrix or type(M) ==

ImmutableMatrix:

64 return TypeError("%s expected to be a matrix" % str(M))

65

66 if not M.is_square:

67 raise ValueError("Matrix expected to be square . ")
68

69 W = []

70 K = M.cols

71 for i in range(K):

72 W.append(list(M[:, i]))

73 if M.is_upper_hessenberg:

74 for i in range(K):

75 W[i].reverse()

76 W[i] = W[i][K-1-i:]

77 elif M.is_lower_hessenberg:

78 for i in range(K):

79 W[i] = W[i][i:]

80 else:

81 M = Matrix([list(M[:, K-1-i]) for i in range(K)]).

transpose()

82 if M.is_upper_hessenberg:

83 for i in range(K):

84 W[i].reverse()
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85 W[i] = W[i][i:]

86 elif M.is_lower_hessenberg:

87 for i in range(K):

88 W[i] = W[i][K-1-i:]

89 else:

90 raise ValueError("Matrix is not an evolution matrix . "
)

91

92 T = []

93 for i in range(K):

94 T.append((len(W[i]),W[i]))

95 S = [sorted(T, key = lambda couple: couple[0], reverse=True)[

i][1] for i in range(K-1)]

96 patterns = S[:]

97 for i in range(len(S)):

98 for j in range(i+1,len(S)):

99 if S[i][:K-j] == S[j]:

100 if S[j] in patterns:

101 patterns.remove(S[j])

102

103

104 return patterns

105

106 def gen_ics(NI,DIR,s,VARS,y,CA=[],CAF=[]):

107 """Generate the necessary initial conditions for the

calculation of

108 the algebraic entropy. If necessary substitute arbitrary

constants

109 and functions with prime numbers."""

110 l = VARS[0]

111 m = VARS[1]

112 NN = 2*NI

113 NEQ = len(y)

114 Fl = []

115 Fm = []

116 Flm = []

117 q = Wild("q", exclude=(l,))

118 p = Wild("p", exclude=(m,))

119 if CAF != []:

120 CAFC = CAF[:]

121 for C in CAF:

122 if not C in CAFC:

123 continue

124 CL = [K for K in CAF if K.func == C.func]

125 CLargs = [K.args for K in CL]

126 CAFC = [ K for K in CAFC if K.func != C.func]

127 if len(set([len(K.args) for K in CL])) > 1:

128 raise ValueError("Arbitray function %s can\’ t be
function of different number of arguments . " %

str(C.func))

129 if len(CLargs[0]) == 1:
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130 CLatom = list(set([list(Ka[0].atoms(Symbol))[0]

for Ka in CLargs]))

131 if len(CLatom) > 1:

132 raise ValueError("Arbitrary function %s can\’
t be function of different arguents . " %

str(C.func))

133 if CLatom == [l]:

134 qv = []

135 for arg in CLargs:

136 qs = arg[0].match(l+q)

137 qv.append(qs[q])

138 Fl.append((C.func,min(qv),max(qv)))

139 elif CLatom == [m]:

140 pv = []

141 for arg in CLargs:

142 ps = arg[0].match(m+p)

143 pv.append(ps[p])

144 Fm.append((C.func,min(pv),max(pv)))

145 else:

146 raise ValueError("Unknown variable %s in
function %s . " % (str(CLatom[0]), str(C.

func)))

147 if len(CLargs[0]) == 2:

148 CLatom = list(set([list(Ka[0].atoms(Symbol))[0]

for Ka in CLargs]))+\

149 list(set([list(Ka[1].atoms(Symbol))[0] for Ka

in CLargs]))

150 if CLatom == [l,m]:

151 qpv = []

152 for arg in CLargs:

153 qs = arg[0].match(l+q)

154 qpv.append(qs[q])

155 ps = arg[1].match(m+p)

156 qpv.append(ps[p])

157 qpvm = min(qpv)

158 qpvM = max(qpv)

159 if qpvm == qpvM:

160 if qpvm < 0:

161 Flm.append((C.func,qpvm,0))

162 else:

163 Flm.append((C.func,0,qpvM))

164 else:

165 Flm.append((C.func,qpvm,qpvM))

166 else:

167 raise ValueError("Unknown variables %s in
function %s . " % (str(CLatom)[1:-1], str(C

.func)))

168 if len(CLargs[0]) > 2:

169 raise ValueError("Wrong number of arguments, %s ,
in arbitrary function %s . " \

170 % (str(len(CLargs[0])), str(C.func)))

171
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172 NFl = sum(NI+1+fl[2]-fl[1] for fl in Fl)

173 NFm = sum(NI+1+fm[2]-fm[1] for fm in Fm)

174 NFlm = sum((NI+1+2*(flm[2]-flm[1]))*(NI+2+2*(flm[2]-flm

[1]))/2+NI+2*(flm[2]-flm[1]) for flm in Flm)

175 NTOT = int(NEQ*(2*NN+4)+len(CA)+NFl+NFm+NFlm)

176 if len(sieve._list) < NTOT:

177 sieve.extend_to_no(NTOT)

178 rp = sieve._list[:NTOT]

179 P = nextprime(max(rp)**2)

180 print( ’a big prime ’,P)
181 else:

182 NTOT = NEQ*(2*NN+4)+len(CA)

183 if len(sieve._list) < NTOT:

184 sieve.extend_to_no(NTOT)

185 rp=list(sieve._list[:])[:NTOT]

186 P = nextprime(max(rp)**2)

187 print( ’a big prime ’,P)
188 shuffle(rp)

189 al = []

190 be = []

191 for i in range(NEQ):

192 al.append(rp.pop())

193 be.append(rp.pop())

194 s1 = DIR[0]

195 s2 = DIR[1]

196 repl = {}

197 for i in range(NEQ):

198 for j in range(NN+1):

199 ll = int((2*j - (-1)**j + 1)/4)

200 mm = int((2*j + (-1)**j - 1)/4)

201 ci = (rp.pop()+rp.pop()*s)/(al[i]+be[i]*s)

202 repl[y[i](s1*ll,s2*mm)]=ci

203

204 CAs = {}

205 for i in range(len(CA)):

206 CAs[CA[i]] = rp.pop()

207

208 replfunc = {}

209

210 for fl in Fl:

211 for i in range(NI+1+fl[2]-fl[1]):

212 replfunc[fl[0](s1*(i+fl[1]))] = rp.pop()

213 for fm in Fm:

214 for i in range(NI+1+fm[2]-fm[1]):

215 replfunc[fm[0](s2*(i+fm[1]))] = rp.pop()

216 for flm in Flm:

217 for i in range(2*(NI+2*(flm[2]-flm[1]))+1):

218 ll = int((2*i - (-1)**i + 1)/4)

219 mm = int((2*i + (-1)**i - 1)/4)

220 if s1 == 1:

221 l_s = s1*(ll+flm[1])

222 else:
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223 l_s = s1*(ll-flm[2])

224 if s2 == 1:

225 m_s = s2*(mm-(flm[2]-2*flm[1]))

226 else:

227 m_s = s2*(mm-(2*flm[2]-flm[1]))

228 replfunc[flm[0](l_s,m_s)] = rp.pop()

229 for i in range(NI+2*(flm[2]-flm[1])+1):

230 for j in range(NI+2*(flm[2]-flm[1])-i):

231 if s1 == 1:

232 l_s = s1*(j+flm[1])

233 else:

234 l_s = s1*(j-flm[2])

235 if s2 == 1:

236 m_s = s2*(j+i+1-(flm[2]-2*flm[1]))

237 else:

238 m_s = s2*(j+i+1-(2*flm[2]-flm[1]))

239 replfunc[flm[0](l_s,m_s)] = rp.pop()

240 return repl,CAs,replfunc,P

241

242 def evol(EQ, Y, NI=8, direction="mp", matrix_form = False,

verbosity_level=1,modfact=True, **kwargs):

243 if not type(NI) == int:

244 NI = 8

245 if type(EQ) == set or type(EQ) == tuple:

246 EQ = list(EQ)

247 if type(Y) == set or type(Y) == tuple:

248 Y = list(Y)

249 if not type(EQ) == list:

250 EQ = [EQ]

251 if not type(Y) == list:

252 Y = [Y]

253 if not type(verbosity_level) == int:

254 verbosity_level = 1

255

256 NEQ = len(EQ)

257 if NEQ != len(Y):

258 if NEQ > len(Y):

259 raise ValueError("Overdetermined system of equations .
")

260 else:

261 raise ValueError("Underdetermined system of equations
. ")

262 for i in range(NEQ):

263 if isinstance(EQ[i],Equality):

264 EQ[i] = EQ[i].lhs - EQ[i].rhs

265 if kwargs:

266 EQ[i] = EQ[i].subs(kwargs)

267

268 y = []

269

270 if not Y[0].is_Function:

271 raise TypeError("%s is expected to be function . " % Y[0])
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272 if len(Y[0].args) != 2:

273 raise ValueError("The dependent variable %s must be
function of two discrete variables . " % str(Y[0].func)

)

274 l = Y[0].args[0]

275 m = Y[0].args[1]

276 y.append(Y[0].func)

277

278 for i in range(1,NEQ):

279 if not Y[i].is_Function:

280 raise TypeError("%s is expected to be function . " %

str(Y[i]))

281 if len(Y[i].args) != 2:

282 raise ValueError("The dependent variable %s must be
function of two discrete variables . " % str(Y[i].

func))

283 if Y[i].args[0] != l or Y[i].args[1] != m:

284 raise ValueError("The dependent variable %s must be
function of (%s,%s ) . " % (str(Y[i]), str(l), str(m

)))

285 y.append(Y[i].func)

286

287 N_core = cpu_count()

288

289 CA = set([])

290 CAF = set([])

291

292 Ymp = [yf(l+1,m+1) for yf in y]

293 Ypp = [yf(l,m+1) for yf in y]

294 Ypm = [yf(l,m) for yf in y]

295 Ymm = [yf(l+1,m) for yf in y]

296 Ymon = Ymp+Ypp+Ypm+Ymm

297

298 for e in EQ:

299 if not e.is_rational_function(str(Ymon)[1:-1]):

300 raise TypeError("The equation %s must be a rational
function of the dependent variables . " % str(e))

301 e = numer(e.expand()).expand()

302 for g in Add.make_args(e):

303 for h in Mul.make_args(g):

304 h = h.as_base_exp()

305 print(h)

306 for w in [ w for w in h if abs(w) != 1 ]:

307 if w.is_Function:

308 if w.func in y:

309 if not w in Ymon:

310 raise ValueError("The function
must be defined on the square
, got instead %h", str(w))

311 else:

312 CAF = CAF.union(set([w]))

313 else:
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314 CA = CA.union(w.atoms(Symbol))

315 if l in CA:

316 CA.remove(l)

317 if m in CA:

318 CA.remove(m)

319 CA = list(CA)

320 CAF = list(CAF)

321

322 if direction == "mp":
323 s1 = -1

324 s2 = 1

325 print( ’rank ’,(Matrix(EQ).jacobian(Ymp)).rank())
326 print( ’n eqs ’, NEQ)

327 if (Matrix(EQ).jacobian(Ymp)).rank() < NEQ:

328 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

329 ySol = solve(EQ,Ymp,dict=True)

330 if not len(ySol) == 1:

331 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

332 ySol = ySol[0]

333 ySub = [ySol[s] for s in Ymp]

334 lmSub = lambda i,j: {l: s1*(j+1), m: s2*(j+i)}

335 elif direction == "pp":
336 s1 = 1

337 s2 = 1

338 print( ’rank ’,(Matrix(EQ).jacobian(Ypp)).rank())
339 if (Matrix(EQ).jacobian(Ypp)).rank() < NEQ:

340 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

341 ySol = solve(EQ,Ypp,dict=True)

342 if not len(ySol) == 1:

343 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1),str(s2)))

344 ySol = ySol[0]

345 ySub = [ySol[s] for s in Ypp]

346 lmSub = lambda i,j: {l: s1*j, m: s2*(j+i)}

347 elif direction == "pm":
348 s1 = 1

349 s2 = -1

350 if (Matrix(EQ).jacobian(Ypm)).rank() < NEQ:

351 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

352 ySol = solve(EQ,Ypm,dict=True)

353 if not len(ySol) == 1:
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354 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

355 ySol = ySol[0]

356 ySub = [ySol[s] for s in Ypm]

357 lmSub = lambda i,j: {l : s1*j, m: s2*(j+i+1)}

358 elif direction == "mm":
359 s1 = -1

360 s2 = -1

361 if (Matrix(EQ).jacobian(Ymm)).rank() < NEQ:

362 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

363 ySol = solve(EQ,Ymm,dict=True)

364 if not len(ySol) == 1:

365 raise WellDefinitenessError("The system has not well
defined evolution in the %s,%s direction . " % (str

(s1), str(s2)))

366 ySol = ySol[0]

367 ySub = [ySol[s] for s in Ymm]

368 lmSub = lambda i,j: {l: s1*(j+1), m: s2*(j+i+1)}

369 elif direction == " a l l ":
370 alldirs = ["mp", "pp", "pm", "mm"]
371 ALL = []

372 for dire in alldirs:

373 try:

374 print("Direction "+dire)
375 ALL.append((dire,evol(EQ, Y, NI, dire,

matrix_form, verbosity_level, **kwargs)))

376 except WellDefinitenessError:

377 print("Evolution is not well defined in the "+
dire+" direction : continuing to the following
. ")

378 continue

379 if len(ALL) == 4:

380 if matrix_form:

381 return tuple([seq[1] for seq in ALL])

382 for E in ALL:

383 for F in ALL:

384 if E[1] != F[1]:

385 return tuple([seq[1] for seq in ALL])

386 return ALL[0][1]

387 return tuple(ALL)

388 else:

389 warn("Direction not detected , switching to default . ")
390 return evol(EQ, Y, NI, "mp", matrix_form, **kwargs)

391

392 t = Symbol(" t ", real=True)

393 #bug if a discrete variable is called t!

394 CIm = dict()

395 CI,CAsub,CAFsub,P = gen_ics(NI,[s1,s2],t,(l,m),y,CA,CAF)

396 EQ = [e.subs(CAsub) for e in EQ]
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397 ySub = [ys.subs(CAsub) for ys in ySub]

398 if verbosity_level > 1:

399 print(CI,CAsub,CAFsub)

400

401 DS = [[] for i in range(NEQ)]

402

403 #Internal evaluation function

404 def value_deg(i,j,k,CIm,CI,outEQ):

405 step = (s1*j,s2*(j+i+1))

406 ev = factor((((ySub[k].subs(lmSub(i,j))).subs(CIm,

simultaneous=True)).subs(CI,simultaneous=True)).subs(

CAFsub,simultaneous=True),modulus=P)

407 d1 = degree(numer(ev),t)

408 d2 = degree(denom(ev),t)

409 d = Max(d1,d2)

410 if verbosity_level > 1:

411 print(ev)

412 print(d)

413 outEQ.put((k,step,ev,d))

414 return True

415

416

417 #Actual evolution algorithm

418 for i in range(NI):

419 outd = Queue()

420 out = Queue()

421 if verbosity_level > 0:

422 print(str(i+1)+"/"+str(NI))
423 processes = [ Process(target=value_deg, args=(i,j,k,CIm,

CI,out)) for k in range(NEQ) for j in range(NI-i)]

424 N_proc = (NI-i)*NEQ

425 Cal = ceiling(len(processes)/N_core)

426 for h in range(Cal+1):

427 for i in range(h*N_core,min((h+1)*N_core,len(

processes))):

428 processes[i].start()

429 for i in range(h*N_core,min((h+1)*N_core,len(

processes))):

430 processes[i].join(1)

431 OutC = sorted(sorted([out.get() for p in processes], key=

lambda op: op[1][1]), key=lambda op: op[0])

432 CIm = dict(CI)

433 CI.clear()

434 for k in range(len(OutC)):

435 CI[y[OutC[k][0]](OutC[k][1][0],OutC[k][1][1])] = OutC

[k][2]

436

437 for k in range(NEQ):

438 DK = [OutC[q][3] for q in range(len(OutC)) if OutC[q

][0] == k]

439 print( ’k,d_k ’,k,DK)
440 if [s1,s2] != [-1,1]:
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441 DK.reverse()

442 if matrix_form == False:

443 for i in range(len(DK)):

444 for j in range(i+1,len(DK)):

445 if DK[i] != DK[j]:

446 matrix_form = True

447 break

448 if matrix_form:

449 break

450 DS[k].append(DK)

451

452 if matrix_form:

453 if NEQ == 1:

454 return evolution_matrix(DS[0],[s1,s2])

455 return [(y[k],evolution_matrix(DS[k],[s1,s2])) for k in

range(NEQ)]

456

457 if NEQ == 1:

458 return [1]+[d[0] for d in DS[0]]

459

460 return [(y[k],[1]+[d[0] for d in DS[k]]) for k in range(NEQ)]

b.2 algebraic entropy for systems of ordinary differ-
ence equations and differential difference equa-
tions of arbitrary order with ae_differential_difference.py

In this Section we give a brief description of the functions contained
in the python module ae_differential_difference.py. This module
contains only the function evol (not to be confused with the function
of the same name in ae2d.py) that can be used to compute the se-
quence of the degrees for systems of ordinary difference equations or
systems of differential-difference equations of arbitrary order.

Remark B.2.1. The function evol cannot automatically treat systems of
mixed ordinary difference equations and differential-difference equa-
tions. If this is the case under consideration we suggest to the user to
consider the purely difference variables as implicitly depending on
“time”: un → un (t). For this reason from now on we will address to
the systems under study as one-dimensional discrete systems.

The function evol needs two mandatory arguments:

f: The system of one-dimensional discrete equations under consider-
ations. It can be entered as a python list, or as a python dictio-
nary. In the case of a single scalar equation it can be entered
plainly.

y: The dependent variables. They can be entered as a python list, or
as a python dictionary. In the case of a single dependent variable
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it can be entered plainly. The entries of the list must be sympy

Functions of one lattice variables, e.g.:

y = [u(n), v(n)], (B.13)

or of one lattice variable and one continuous variable:

y = [u(n, t), v(n, t)]. (B.14)

The continuous variable is, by convention, the second one.

Remark B.2.2. The function evol can handle only well-determined sys-
tems of one-dimensional discrete equations so it will check that the
number of equations is equal to the number of dependent variables.
In negative case it will raise an error. To reduce a system of one-
dimensional discrete equations to a well-determined one is the up to
the user.

The function evol also accepts an optional argument NI. NI defines
the number of iteration to be performed. Its default value is NI=8.

The function then accepts keyword arguments. Keyword arguments
in this context can be used to set some parameters to a fixed value.
Keyword arguments are immediately substituted into f.

First of all the function evol analyze the equation f in order to
determine the order with respect to every variable. Furthermore any
symbol (not function) different from those of the dependent variables
contained in y is considered an arbitrary constant. Arbitrary functions
are not supported by evol.

At this point the system, if consistent, is solved with respect to the
highest shifts, otherwise an error is raised. Then the initial conditions
in the form (2.44) are generated. If we denote by ∂e the discrete order,
as defined in Section (2.1), of an equation e in f we have that we need,
if M is the number of equations:

Nini = 2

M∑
k=1

(∂ek + 1) (B.15)

prime numbers to evaluate them. Then if Nac is the number of arbi-
trary constants we need:

NTOT = Nini +Nac (B.16)

prime numbers. The prime numbers are generated with the sympy

function sieve and shuffled before being assigned, so that running
the program multiple times will yield different initial conditions.

Remark B.2.3. In principle evol cannot perform the evolution in the
direction of the smallest shifts. However this can be simply obtained
by the user performing the change n→ −n into f.
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Now the actual evolution begins, and the iterates are computed.
The main point is the fact that after the substition a factorization
in the finite field KP is carried out. The prime number P is chosen
to be the next prime after p2MAX, where pMAX is the biggest prime
number generated to evaluate the initial conditions and the arbitrary
constants.

The output of the function evol is then a dictionary whose key-
words are the elements of y and whose values are the sequences of
degrees.

The content of the file aedifferential_difference_systems.py is
the following:

1 from __future__ import print_function, division

2

3 from sympy import *
4 from random import shuffle

5 from collections import defaultdict

6

7 def evol(f,y,NI=8, **kwargs):

8 if not type(NI) == int:

9 NI = 8

10 if type(f) == set or type(f) == tuple:

11 f = list(f)

12 if type(y) == set or type(y) == tuple:

13 y = list(y)

14 if not type(f) == list:

15 f = [f]

16 if not type(y) == list:

17 y = [y]

18

19 NEQ = len(f)

20 if NEQ != len(y):

21 if NEQ > len(y):

22 raise ValueError("Overdetermined system of equations .
")

23 else:

24 raise ValueError("Underdetermined system of equations
. ")

25

26 #Convert equalities to single side equations

27 #and substitute keywords arguments into the equations

28 for i in range(NEQ):

29 if isinstance(f[i],Equality):

30 f[i] = f[i].lhs - f[i].rhs

31 if kwargs:

32 f[i] = f[i].subs(kwargs)

33

34 if not y[0].is_Function:

35 raise TypeError("%s is expected to be function . " % Y[0])

36 if len(y[0].args) == 1:

37 n = y[0].args[0]

38 s = var( ’ s ’)
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39 elif len(y[0].args) == 2:

40 n, s = y[0].args

41 else:

42 raise ValueError("%s must be function of maximum two
variables . " % y[0])

43 Y = [y[0].func]

44

45 for i in range(1,NEQ):

46 if not y[i].is_Function:

47 raise TypeError("%s is expected to be function . " %

str(y[i]))

48 if y[i].args != y[0].args:

49 raise ValueError("The dependent variable %s must be
function of\

50 (%s,%s ) . " % (str(y[i]), str(n), str(s)))

51 Y.append(y[i].func)

52

53 k = Wild( ’k ’, exclude=(n,))

54

55 f = [ numer(simplify(fs,ratio=oo)).expand() for fs in f]

56 pprint(f)

57

58 CA = set([])

59 kv = {yf : set([]) for yf in Y}

60

61 for fs in f:

62 for g in Add.make_args(fs):

63 coeff = S.One

64 kspec = None

65 for q in Mul.make_args(g):

66 q = q.as_base_exp()

67 for h in q:

68 if h.is_Derivative:

69 h = h.args[0]

70 if h.is_Function:

71 if h.func in Y:

72 result = h.args[0].match(n + k)

73 if result is not None:

74 kspec = int(result[k])

75 kv[h.func]=kv[h.func] = kv[h.func

].union(set([kspec]))

76 else:

77 raise ValueError(

78 "’%s(%s+k) ’ expected , got ’%s
’ " % (y, n, h))

79 else:

80 raise ValueError(

81 "’%s ’ expected , got ’%s ’ " % (Y, h

.func))

82 else:

83 coeff *= h

84 CA = CA.union(coeff.atoms(Symbol))
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85

86 if n in CA:

87 CA.remove(n)

88 if s in CA:

89 CA.remove(s)

90 if CA:

91 CA = list(CA)

92

93 N = {yf : max(kv[yf]) for yf in Y}

94 M = {yf : min(kv[yf]) for yf in Y}

95 ORD = {yf : N[yf]-M[yf] for yf in Y}

96

97 svars = [y[i].subs(n,n+N[Y[i]]) for i in range(NEQ)]

98

99 if (Matrix(f).jacobian(svars)).rank() < NEQ:

100 raise ValueError(

101 "’%s ’ must be of maximal rank with respect
102 to ’%s ’ " % (f, svars))

103 K = 2*sum(ORD[yf] for yf in Y)+2*NEQ

104 NTOT = K + len(CA)

105 sieve.extend_to_no(NTOT)

106 rp = sieve._list[:NTOT]

107 P = nextprime(max(rp)**2)

108 shuffle(rp)

109

110 rp0 = rp[0:2*NEQ]

111 rp = rp[2*NEQ:]

112

113 CI = {}

114 for i in range(NEQ):

115 den = rp0.pop()*s+rp0.pop()

116 for k in range(M[Y[i]],N[Y[i]]):

117 CI[y[i].subs(n,k)] = (rp.pop()*s+rp.pop())/den

118 CAs = {}

119 for i in range(len(CA)):

120 CAs[CA[i]] = rp.pop()

121

122 #Evolution in the right direction.

123 if CAs:

124 f = [f[al].subs(CAs) for al in range(len(f))]

125 ySol = solve(f,svars,dict=True)

126 if not len(ySol) == 1:

127 raise ValueError(

128 "’%s ’ must be single−valued . " % (f))

129 ySol = ySol[0]

130 yN = [ySol[yks] for yks in svars]

131

132

133 ds = {y[i] : [1] for i in range(NEQ)}

134

135 for i in range(NI):

136 print(str(i)+ ’/’+str(NI))
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137 val = [factor((yN[k].subs(n,i).subs(CI)).doit(),modulus=P

) for k in range(NEQ)]

138 for k in range(NEQ):

139 CI[y[k].subs(n,i+N[Y[k]])] = val[k]

140 del CI[y[k].subs(n,i+M[Y[k]])]

141 vq = numer(val[k])

142 d1 = degree(vq, s)

143 vq = denom(val[k])

144 d2 = degree(vq,s)

145 d = max(d1,d2)

146 ds[y[k]] += [d]

147

148 return ds

b.3 analysis of the degree sequences

Once obtained a finite sequence of degrees it must be analyzed us-
ing e.g. the methods presented in Section 2.2. To this end we com-
plement the programs for calculating the sequences of degrees with
some python functions which can compute Padé approximants and
the inverse Z-transform. This need comes from the fact that the an-
alytic evaluation of the Padé approximants and of the inverse Z-
transform is not yet implemented in sympy. We present then three
modules: the pade.py module which defines the calculation of the
Padé approximants, the pade_rat_gfunc.py module which computes
the generating function of a sequence using Padé approximants and
the z_transform.py which defines the Z-transform for rational func-
tions and functions to find the coefficients and the algebraic entropy
of a given generating function.

b.3.1 The pade.py module

The pade.py contains a single function: pade_expansion. This func-
tion computes the Padé approximant of order [L :M] using the for-
mula (2.52). It has four arguments, all of them mandatory:

vect This argument must be a list of numbers or a function. If the
argument is a function its Taylor expansion of order L+ M+ 1

with respect to z is computed.

L This argument must be a positive integer and it is the degree of the
numerator of the Padé approximant (2.50).

M This argument must be a positive integer and it is the degree of
the denominator of the Padé approximant (2.50).

z This argument is the independent variable.
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vect can be a list and not a polynomial since it is obvious that to any
list of numbers [a0, a1, . . . , aN] we can associate the polynomial

p(z) = a0 + a1z+ . . . aNz
N (B.17)

The content of the file pade.py is the following:

1 from __future__ import print_function, division

2

3 from sympy.core.expr import Expr

4 from sympy.polys.polytools import factor

5 from sympy.matrices import Matrix

6

7

8 def pade_expansion(vect,L,M,z):

9 """Calculate the Pade expasion [L/M] of a given function or

vector

10 in the variable z."""

11 #Check if the first argument is a list of values. If not it

is assumed

12 #to be a symbolic expression.

13 if not type(vect) is list:

14 taylp=vect.series(z,0,L+M+1).removeO()

15 if M==0:

16 return taylp

17 vect = [taylp.coeff(z,i) for i in range(L+M+1)]

18 #Check that we have enough terms in the initial vector

19 #to carry out the computations needed for the L/M

20 #Pade approximant.

21 else:

22 if len(vect) != L+M+1:

23 raise ValueError("Pade expansion cannon ’ t be computed
: length of vector and of degree don’ t match. ")

24 if L == 0 and M ==0:

25 return vect[0]

26

27 def c(i):

28 if i<0 or i >= len(vect):

29 return 0

30 else:

31 return vect[i]

32

33 if M == 0:

34 return Poly([c(i) for i in range(0,L+M+1)],z).simplify()

35 def cfP(i):

36 if M-i>L:

37 return 0

38 else:

39 S = c(0)

40 for k in range(1,max(L-M+i+1,1)):

41 S += c(k)*z**k

42 return (S*z**(M-i)).simplify()

43 vzP = Matrix([[cfP(i) for i in range(M+1)]])



B.3 analysis of the degree sequences 223

44 vzQ = Matrix([[z**(M-i) for i in range(M+1)]])

45 A = Matrix([[c(L-M+i+j) for i in range(M+1)] for j in range

(1,M+1)])

46 QMat = A.col_join(vzQ)

47 PMat = A.col_join(vzP)

48 QLM = ((QMat).det()).simplify()

49 PLM = ((PMat).det()).simplify()

50 PA = (PLM/QLM).simplify()

51

52 return factor(PA)

b.3.2 The pade_rat_gfunc.py module

The pade_rat_gfunc.py contains a single function: find_rat_gen_function.
This function has two arguments, both of them mandatory:

V A list of numbers.

s The independent variable of the generating function.

The algorithm runs as follows: it start with a slice V ′ of the list V

with three elements, and compute the Padé approximant g = [1 : 1]

through the association (B.17). Then computes the Taylor expansion
of g up to the length of V. If its coefficients agrees with V then g is
returned. If not we take a slice with two more elements V ′ and com-
pute the Padé approximant g = [2 : 2] through the association (B.17).
If its coefficients agrees with V then g is returned. This is repeated
until one of the two following condition is reached:

1. The coefficients of the Taylor expansion of the Padé approxi-
mant g agree with V.

2. We cannot form a slice with two elements more than the previ-
ous.

In the case 1 g is returned since it is the desired generating function.
In the case 2 it is not possible to find a generating function, so the
boolean value False is return.

The content of the file pade_rat_gfunc.py is the following:

1 from __future__ import print_function, division

2

3 from sympy.series import series

4 from sympy.core.symbol import Symbol

5 from sympy.functions.elementary.integers import floor

6 from pade import pade_expansion

7 import warnings

8

9 def find_rat_gen_func(V,s):

10 """

11 Find a rational generating function by using the Pade

approximant method:
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12 taking a slice of the input vector V finds a Pade approximant

using

13 pade_expansion then check if it reproduces the exact

behaviour of the following

14 elements of V. If not it takes a bigger slice until the

vector V is finished.

15 """

16 if not type(V) is list:

17 raise TypeError("Argument %s expected to be l i s t . " % str(

V))

18 if not s.is_Symbol:

19 raise TypeError("Argument %s expected to be symbol. " %

str(s))

20 M = len(V)

21 N = floor((M-1)/2)

22 j = 1

23 while(j<N+1):

24 R = pade_expansion(V[:2*j+1],j,j,s)

25 ret = True

26 Rv = [R.series(s,0,M+1).removeO().coeff(s,i) for i in

range(M)]

27 if Rv == V:

28 return R

29 else:

30 j = j + 1

31 return False

b.3.3 The z_transform.py module

The z_transform.py module contains the following functions:

inverse_z_transform This function computes the inverse Z-transform
of a rational function. It needs three mandatory arguments:

f A sympy rational function. If another kind of function is given
the program raise an error.

z The independent variable of the function z.

n The discrete target variable.

The Z-transform of f is then computed using equation (2.56).
Remark B.3.1. Due to some limitations in sympy this program
may misbehave in case of high order polynomials in the de-
nominator.

find_coefficients This function compute the asymptotic form of the
coefficients of a given ration function. It needs three mandatory
arguments:

f A sympy rational function. If another kind of function is given
the program raise an error.

z The independent variable of the function z.
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n The discrete target variable.

Using formula (2.58) and the function z_transform the asymp-
totic form of the coefficients are reconstructed.

find_entropy This function compute the Algebraic Entropy defined
by a ration generating function. It needs two mandatory argu-
ments:

f A sympy rational function. If another kind of function is given
the program raise an error.

z The independent variable of the function z.

Using formula (2.60) the value of the Algebraic Entropy is com-
puted.

The content of the file z_transform.py is the following:

1 from __future__ import print_function, division

2

3 from sympy.core.symbol import Symbol

4 from sympy.simplify import simplify

5 from sympy.functions.elementary.miscellaneous import Max

6 from sympy.functions.elementary.complexes import Abs

7 from sympy.functions.elementary.exponential import log

8 from sympy.polys.polytools import div, degree

9 from sympy.solvers import solve

10 from sympy.series import residue

11

12 def inverse_z_transform(f,z,n):

13 if not f.is_rational_function(z):

14 raise TypeError("Function %s expected to be rational . " %

str(f))

15 if not z.is_Symbol:

16 raise TypeError("Input variable %s must be of type symbol
. " % str(z))

17 if not n.is_Symbol:

18 raise TypeError("Output variable %s must be of type
symbol. " % str(n))

19 if not n.is_integer:

20 n = Symbol(str(n),integer=True)

21 f = f.as_numer_denom()

22 if degree(f[0],z) >= degree(f[1],z):

23 quot,rem = div(f[0],f[1])

24 f = (rem,)+f[1:]

25 sing = solve(f[1],z)

26 transf = 0

27 for z0 in sing:

28 s=residue((f[0]/f[1]*z**(n-1)).simplify(),z,z0)

29 transf = transf + s

30 return transf.simplify()

31

32 def find_coefficients(f,z,n):

33 if not f.is_rational_function(z):
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34 raise TypeError("Function %s expected to be rational . " %

str(f))

35 if not z.is_Symbol:

36 raise TypeError("Input variable %s must be of type symbol
. " % str(z))

37 if not n.is_Symbol:

38 raise TypeError("Output variable %s must be of type
symbol. " % str(n))

39 if not n.is_integer:

40 n = Symbol(str(n),integer=True)

41 f = f.subs(z,1/z).simplify()

42 dn = inverse_z_transform(f,z,n)

43 return dn

44

45 def find_entropy(f,z):

46 if not f.is_rational_function(z):

47 raise TypeError("Function %s expected to be rational . " %

str(f))

48 if not z.is_Symbol:

49 raise TypeError("Input variable %s must be of type symbol
. " % str(z))

50 f = f.as_numer_denom()

51 sing = solve(f[1],z)

52 m = 0

53 for z0 in sing:

54 m = Max(1/Abs(z0),m)

55 return log(m).simplify()



C
E V O L U T I O N M AT R I C E S

In this Appendix we give the explicit form of the evolution matrices
for the trapezoidal H4 equations (1.91) and H6 equations (1.93). Us-
ing the program ae2d.py contained in Appendix B we performed 32

iterations in each of the four possible direction of growth.
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c.1 trapezoidal H4 equations (1 .91)

c.1.1 tH
ε
1 equation (1.91a)

direction −+ :
1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17

1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 46 47

0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16

0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44

0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15

0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41

0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14

0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38

0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13

0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35

0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12

0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32

0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3 4 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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direction ++ :

17 17 16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1

47 46 44 43 41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1

16 16 15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0

44 43 41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0

15 15 14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0

41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0

14 14 13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0

38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0

13 13 12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0

35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0

12 12 11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0

32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0

11 11 10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0

29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 10 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 6 5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 5 4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 4 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.2)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0

12 31 11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0 0 0

12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0

13 34 12 31 11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0 0 0

13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0

14 37 13 34 12 31 11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0 0 0

14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0

15 40 14 37 13 34 12 31 11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0 0 0

15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0

16 43 15 40 14 37 13 34 12 31 11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1 0 0

16 44 15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0

17 46 16 43 15 40 14 37 13 34 12 31 11 28 10 25 9 22 8 19 7 16 6 13 5 10 4 7 3 4 2 1 1

17 47 16 44 15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1

(C.3)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11

0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11

0 0 0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11 31 12

0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12

0 0 0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11 31 12 34 13

0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13

0 0 0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11 31 12 34 13 37 14

0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14

0 0 0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11 31 12 34 13 37 14 40 15

0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15

0 0 1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11 31 12 34 13 37 14 40 15 43 16

0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15 44 16

1 1 2 4 3 7 4 10 5 13 6 16 7 19 8 22 9 25 10 28 11 31 12 34 13 37 14 40 15 43 16 46 17

1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15 44 16 47 17

(C.4)
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c.1.2 tH
ε
2 equation (1.91b)

direction −+ :

1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107 111 115 119 123

1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107 111 115

0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107

0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91

0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83

0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.5)



2
3

4
e

v
o

l
u

t
i
o

n
m

a
t

r
i
c

e
s

direction ++ :

123 119 115 111 107 103 99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1

115 111 107 103 99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0

58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0

107 103 99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0

54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0

99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0

91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0

46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0

83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0

75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.6)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0

83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0

87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0

91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0

95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0

99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0

103 52 95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0

107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0

111 56 103 52 95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0

115 58 107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0

119 60 111 56 103 52 95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1

123 62 115 58 107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1

(C.7)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75

0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79

0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83

0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87

0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91

0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95

0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99

0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95 52 103

0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107

0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95 52 103 56 111

0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107 58 115

1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95 52 103 56 111 60 119

1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107 58 115 62 123

(C.8)
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direction −+ :

1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107 111 115 119 123

1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107 111 115

0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99 103 107

0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91

0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83

0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43 47 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35 39 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27 31 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19 23 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11 15 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.9)



2
3

8
e

v
o

l
u

t
i
o

n
m

a
t

r
i
c

e
s

direction ++ :

123 119 115 111 107 103 99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1

115 111 107 103 99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0

58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0

107 103 99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0

54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0

99 95 91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0

91 87 83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0

46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0

83 79 75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0

75 71 67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

67 63 59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 55 51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 47 43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 39 35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 31 27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 23 19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 15 11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.10)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0 0 0

83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0

87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0 0 0

91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0

95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0 0 0

99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0

103 52 95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0 0 0

107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0

111 56 103 52 95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1 0 0

115 58 107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0

119 60 111 56 103 52 95 48 87 44 79 40 71 36 63 32 55 28 47 24 39 20 31 16 23 12 15 8 7 4 2 1 1

123 62 115 58 107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1

(C.11)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75

0 0 0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79

0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83

0 0 0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87

0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91

0 0 0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95

0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99

0 0 0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95 52 103

0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107

0 0 1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95 52 103 56 111

0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107 58 115

1 1 2 4 7 8 15 12 23 16 31 20 39 24 47 28 55 32 63 36 71 40 79 44 87 48 95 52 103 56 111 60 119

1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107 58 115 62 123

(C.12)
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c.2 H6 equations (1 .93)

c.2.1 1D2 equation (1.93b)

direction −+ :
1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15 44 16 47 17

1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38 27 41 29 44 31 47

0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15 44 16

0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38 27 41 29 44

0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15

0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38 27 41

0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14

0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38

0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13

0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35

0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12

0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32

0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.13)
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direction ++ :

17 47 16 44 15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1

47 31 44 29 41 27 38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1

16 44 15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0

44 29 41 27 38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0

15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0

41 27 38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0

14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0

38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0

13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0

35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0

12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0

32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0

11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0

29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.14)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0

32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0 0 0

12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0 0 0

35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0 0 0

13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0 0 0

38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0 0 0

14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0 0 0

41 27 38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0 0 0

15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0 0 0

44 29 41 27 38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1 0 0

16 44 15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1 1 0

47 31 44 29 41 27 38 25 35 23 32 21 29 19 26 17 23 15 20 13 17 11 14 9 11 7 8 5 5 3 2 1 1

17 47 16 44 15 41 14 38 13 35 12 32 11 29 10 26 9 23 8 20 7 17 6 14 5 11 4 8 3 5 2 2 1

(C.15)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29

0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11

0 0 0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32

0 0 0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12

0 0 0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35

0 0 0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13

0 0 0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38

0 0 0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14

0 0 0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38 27 41

0 0 0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15

0 0 1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38 27 41 29 44

0 1 1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15 44 16

1 1 2 3 5 5 8 7 11 9 14 11 17 13 20 15 23 17 26 19 29 21 32 23 35 25 38 27 41 29 44 31 47

1 2 2 5 3 8 4 11 5 14 6 17 7 20 8 23 9 26 10 29 11 32 12 35 13 38 14 41 15 44 16 47 17

(C.16)
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c.2.2 2D2 equation (1.93c)

direction −+ :

1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39 27 42 29 45 31 48

1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39 15 42 16 45 17

0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39 27 42 29 45

0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39 15 42 16

0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39 27 42

0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39 15

0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39

0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14

0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36

0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13

0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33

0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12

0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.17)
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direction ++ :

48 31 45 29 42 27 39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1

17 45 16 42 15 39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1

45 29 42 27 39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0

16 42 15 39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0

42 27 39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0

15 39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0

39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0

14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0

36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0

13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0

33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0

12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0

30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.18)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0

21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0

33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0 0 0

23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0 0 0

36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0 0 0

25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0 0 0

39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0 0 0

27 39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0 0 0

42 15 39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0 0 0

29 42 27 39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1 0 0

45 16 42 15 39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1 1 0

31 45 29 42 27 39 25 36 23 33 21 30 19 27 17 24 15 21 13 18 11 15 9 12 7 9 5 6 3 3 1 1 1

48 17 45 16 42 15 39 14 36 13 33 12 30 11 27 10 24 9 21 8 18 7 15 6 12 5 9 4 6 3 3 2 1

(C.19)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19

0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30

0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21

0 0 0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33

0 0 0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23

0 0 0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36

0 0 0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25

0 0 0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39

0 0 0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39 27

0 0 0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39 15 42

0 0 1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39 27 42 29

0 1 1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39 15 42 16 45

1 1 1 3 3 6 5 9 7 12 9 15 11 18 13 21 15 24 17 27 19 30 21 33 23 36 25 39 27 42 29 45 31

1 2 3 3 6 4 9 5 12 6 15 7 18 8 21 9 24 10 27 11 30 12 33 13 36 14 39 15 42 16 45 17 48

(C.20)
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c.2.3 3D2 equation (1.93d)

direction −+ :

1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29 29 31 31 33

1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2 29 2 31 2

0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29 29 31

0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2 29 2

0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29

0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2

0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27

0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2

0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25

0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2

0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23

0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2

0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.21)
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direction ++ :

33 31 31 29 29 27 27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1

2 31 2 29 2 27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1

31 29 29 27 27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0

2 29 2 27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0

29 27 27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0

2 27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0

27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0

2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0

25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0

2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0

23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0

2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0

21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0

2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.22)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0 0 0

21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0

23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0 0 0

23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0 0 0

25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0 0 0

25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0 0 0

27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0 0 0

27 27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0 0 0

29 2 27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0 0 0

29 29 27 27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1 0 0

31 2 29 2 27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1 1 0

31 31 29 29 27 27 25 25 23 23 21 21 19 19 17 17 15 15 13 13 11 11 9 9 7 7 5 5 3 3 1 1 1

33 2 31 2 29 2 27 2 25 2 23 2 21 2 19 2 17 2 15 2 13 2 11 2 9 2 7 2 5 2 3 2 1

(C.23)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19

0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21

0 0 0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21

0 0 0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23

0 0 0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23

0 0 0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25

0 0 0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25

0 0 0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27

0 0 0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27

0 0 0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2 29

0 0 1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29 29

0 1 1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2 29 2 31

1 1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 17 17 19 19 21 21 23 23 25 25 27 27 29 29 31 31

1 2 3 2 5 2 7 2 9 2 11 2 13 2 15 2 17 2 19 2 21 2 23 2 25 2 27 2 29 2 31 2 33

(C.24)
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c.2.4 D3 equation (1.93e)

direction −+ :

1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88 54 95 58 102 62 109

1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88 54 95 58 102

0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88 54 95

0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88

0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81

0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74

0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.25)
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109 62 102 58 95 54 88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1

102 58 95 54 88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0

58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0

95 54 88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0

54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0

88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0

81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0

46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0

74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0

67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.26)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0

74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0

46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0

81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0 0 0

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0

88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0 0 0

54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0

95 54 88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0 0 0

58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0

102 58 95 54 88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1 1 0

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1

109 62 102 58 95 54 88 50 81 46 74 42 67 38 60 34 53 30 46 26 39 22 32 18 25 14 18 10 11 6 4 2 1

(C.27)
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67

0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74

0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 0 0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81

0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 0 0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88

0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

0 0 0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88 54 95

0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

0 1 1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88 54 95 58 102

1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

1 2 4 6 11 10 18 14 25 18 32 22 39 26 46 30 53 34 60 38 67 42 74 46 81 50 88 54 95 58 102 62 109

(C.28)
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c.2.5 1D4 equation (1.93f)

direction −+ :

1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76 41 82 44 88 47 94

1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 46 47

0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76 41 82 44 88

0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44

0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76 41 82

0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41

0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76

0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38

0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70

0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35

0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64

0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

(C.29)
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94 47 88 44 82 41 76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1

47 46 44 43 41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1

88 44 82 41 76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0

44 43 41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0

82 41 76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0

41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0

76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0

38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0

70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0

35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0

64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0

32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0

58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.30)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0

64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0 0 0

35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0 0 0

70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0 0 0

38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0 0 0

76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0 0 0

41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0 0 0

82 41 76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0 0 0

44 43 41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1 0 0

88 44 82 41 76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1 1 0

47 46 44 43 41 40 38 37 35 34 32 31 29 28 26 25 23 22 20 19 17 16 14 13 11 10 8 7 5 4 2 1 1

94 47 88 44 82 41 76 38 70 35 64 32 58 29 52 26 46 23 40 20 34 17 28 14 22 11 16 8 10 5 4 2 1

(C.31)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58

0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32

0 0 0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64

0 0 0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35

0 0 0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70

0 0 0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38

0 0 0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76

0 0 0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41

0 0 0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76 41 82

0 0 1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44

0 1 1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76 41 82 44 88

1 1 2 4 5 7 8 10 11 13 14 16 17 19 20 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 46 47

1 2 4 5 10 8 16 11 22 14 28 17 34 20 40 23 46 26 52 29 58 32 64 35 70 38 76 41 82 44 88 47 94

(C.32)



C
.
2
H
6

e
q

u
a

t
i
o

n
s

(
1.

9
3)

2
6

1

c.2.6 2D4 equation (1.93g)

direction −+ :

1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107 58 115 62 123

1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57 60 61

0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107 58 115

0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53 56 57

0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99 54 107

0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49 52 53

0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91 50 99

0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45 48 49

0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83 46 91

0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41 44 45

0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75 42 83

0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37 40 41

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67 38 75

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33 36 37

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59 34 67

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51 30 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25 28 29

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43 26 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21 24 25

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35 22 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17 20 21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27 18 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19 14 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9 12 13

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11 10 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 8 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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direction ++ :

123 62 115 58 107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1

61 60 57 56 53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1

115 58 107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0

57 56 53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0

107 54 99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0

53 52 49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0

99 50 91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0

49 48 45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0

91 46 83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0

45 44 41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0

83 42 75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0

41 40 37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0

75 38 67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

37 36 33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

67 34 59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

33 32 29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 30 51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

29 28 25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 26 43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

25 24 21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 22 35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

21 20 17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 18 27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 16 13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 14 19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 12 9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 10 11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 8 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(C.34)
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direction +− :

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0

75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0

42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0 0 0

83 41 75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0 0 0

46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0 0 0

91 45 83 41 75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0 0 0

50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0 0 0

99 49 91 45 83 41 75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0 0 0

54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0 0 0

107 53 99 49 91 45 83 41 75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0 0 0

58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1 0 0

115 57 107 53 99 49 91 45 83 41 75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1 1 0

62 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 1 1

123 61 115 57 107 53 99 49 91 45 83 41 75 37 67 33 59 29 51 25 43 21 35 17 27 13 19 9 11 5 4 2 1

(C.35)
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direction −− :

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67

0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0 0 0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75

0 0 0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

0 0 0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75 41 83

0 0 0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

0 0 0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75 41 83 45 91

0 0 0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

0 0 0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75 41 83 45 91 49 99

0 0 0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

0 0 0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75 41 83 45 91 49 99 53 107

0 0 1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

0 1 1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75 41 83 45 91 49 99 53 107 57 115

1 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

1 2 4 5 11 9 19 13 27 17 35 21 43 25 51 29 59 33 67 37 75 41 83 45 91 49 99 53 107 57 115 61 123

(C.36)
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In this Appendix we give two examples of explicit calculations of the
three-points generalized symmetries in the case of equation with two
periodic coefficients as explained in Section 3.2. The two examples
we will give are the D3 equation (1.93e), which is quite simple, and
the tHε1 equation (1.91a) in the direction m, which is instead a more
difficult one. These detailed calculations were presented in [63].

d.1 three-points generalized symmetries of the D3 equa-
tion

Consider the D3 equation as given by formula (1.93e). We wish to
compute its three-points generalized symmetries in the direction n.
To do so we can apply the method explained in Subsection 3.2. We
then first find the system for the function z from (3.40). Considering
the case in which n = 2k and m = 2l we find from (3.40) two equa-
tions for z(+,+):

un+1,m + un,m−1

un,m − u2n,m−1

∂z(+,+)

∂un+1,m
+
∂z(+,+)

∂un,m

+
un−1,m + un,m−1

un,m − u2n,m−1

∂z(+,+)

∂un−1,m
=
2un,m−1un−1,m + u2n,m−1 + un,m

(un,m − u2n,m−1)(un,m − u2n−1,m)
,

(D.1a)

un+1,m + un,m+1

u2n,m+1 − un,m

∂z(+,+)

∂un+1,m
−
∂z(+,+)

∂un,m

+
un−1,m + un,m+1

u2n,m+1 − un,m

∂z(+,+)

∂un−1,m
=
u2n,m+1 + 2un−1,mun,m+1 + un,m

(un,m − u2n−1,m)(un,m − u2n,m+1)
.

(D.1b)

Taking the coefficients with respect to un,m±1 and solving we obtain:

z(+,+) = log

[
C
(+,+)
1

(
un,m − u2n−1,m

(un+1,m − un−1,m)2

)]
. (D.2)

In an analogous way we obtain the solutions for z(+,−), z(−,+) and
z(−,−):

z(−,+) = log

[
C
(−,+)
1

(
u2n,m − un−1,m

(un+1,m − un−1,m)2

)]
, (D.3a)
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z(+,−) = log
[
C
(+,−)
1

(
un,m + un−1,m

(un+1,m − un−1,m)2

)]
, (D.3b)

z(−,−) = log
[
C
(−,−)
1

(
un,m + un−1,m

(un+1,m − un−1,m)2

)]
. (D.3c)

Inserting the resulting value for z (3.84a) obtained from (D.3) into
the conservation law (3.29) we derive the following relation between
the constants:

C
(+,−)
1 = −C

(+,+)
1 , C

(−,−)
1 = C

(−,+)
1 . (D.4)

Proceeding in the same way we can derive the values of the func-
tions v(±,±) from (3.42):

v(+,+) = log

[
C
(−,+)
2

(
un,m − u2n+1,m

(un+1,m − un−1,m)

)]
, (D.5a)

v(−,+) = log

[
C
(−,+)
2

(
u2n,m − un+1,m

(un+1,m − un−1,m)2

)]
, (D.5b)

v(+,−) = log
[
C
(+,−)
2

(
un+1,m + un+1,m

(un+1,m − un−1,m)2

)]
, (D.5c)

v(−,−) = log
[
C
(−,−)
2

(
un+1,m + un,m

(un+1,m − un−1,m)2

)]
. (D.5d)

Inserting the resulting value for v (3.84b) obtained from (D.5) into
the conservation law (3.34) we derive the following relation between
the constants:

C
(+,−)
2 = −C

(+,+)
2 , C

(−,−)
2 = C

(−,+)
2 . (D.6)

We can now insert z and v into the compatibility conditions in order
to find g. From these compatibility conditions we obtain the following
relations between the remaining constants:

C
(+,+)
2 = −C

(+,+)
1 , C

(−,+)
2 = −C

(−,+)
1 . (D.7)

Integrating the equation for g (3.44) we get:

g = F
(+)
n F

(+)
m

[
C
(+,+)
1

(
u2n−1,m − un,m

un+1,m − un−1,m
+ un−1,m

)
+Φ(+,+)

]

+ F
(−)
n F

(+)
m

[
C
(−,+)
1

un−1,m − u2n,m

un+1,m − un−1,m
+Φ(−,+)

]

+ F
(+)
n F

(−)
m

[
C
(+,+)
1

un,m + un−1,m

un+1,m − un−1,m
+Φ(+,−)

]
+ F

(−)
n F

(−)
m

[
C
(−,+)
1

un,m + un−1,m

un−1,m − un+1,m
+Φ(−,−)

]
.

(D.8)
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1 in direction m 267

Inserting it in the determining equations (3.26) and applying the op-
erator (3.47) we obtain a system of four equations which have to be
identically satisfied. The result is C(−,+)

1 = −C
(+,+)
1 and:

Φ(+,+) = K1un,m, Φ(−,+) =
1

2
K1un,m −

1

2
C
(+,+)
1 ,

Φ(+,−) =
1

2
K1un,m +

1

2
C
(+,+)
1 , Φ(−,−) =

1

2
K1un,m +

1

2
C
(+,+)
1 ,

(D.9)

where K1 is another arbitrary constant. Note that the symmetry gen-
erated by K1 is a point symmetry, so the equation (1.93e) in the di-
rection n possess only the genuine three-points symmetry given by:

g =
F
(+)
n F

(+)
m un+1,mun−1,m +

1

2

(
F
(−)
m − F

(−)
n F

(+)
m

)
un,m(un+1,m + un−1,m)

un+1,m − un−1,m

+
F
(−)
n F

(+)
m u2n,m +

(
F
(−)
m − F

(+)
n F

(+)
m

)
un,m

un+1,m − un−1,m
,

(D.10)

As a sub-product of these computation we obtain then also the
point symmetry given by the coefficients of K1:

gP =
[
F
(+)
n

(
2F

(+)
m + F

(−)
m

)
+ F

(−)
n

]
un,m. (D.11)

Note that since (1.93e) is invariant under the exchange n ↔ m

the symmetry in the m direction is given simply by performing such
exchange in (D.10), which then gives:

g̃ =
F
(+)
n F

(+)
m un,m+1un,m−1 +

1

2

(
F
(−)
n − F

(+)
n F

(−)
m

)
un,m(un,m+1 + un,m−1)

un,m+1 − un,m−1
+

+
F
(+)
n F

(−)
m u2n,m +

(
F
(−)
n − F

(+)
n F

(+)
m

)
un,m

un,m+1 − un,m−1
.

(D.12)

Clearly these results match with those presented without all the
details in Section 3.3.

d.2 three-points generalized symmetries of the tH
ε
1 in

direction m

Now we consider another interesting example: the tHε1 equation. We
will show how to compute the three-points generalized symmetries
of the tHε1 equation as given by (1.91a) in the m direction. To safely
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apply the methods discussed in Section 3.2 we have to perform the
exchange of the discrete indices n ↔ m and then compute the sym-
metries in the n direction. Applying such exchange to tHε1 equation
(1.91a) we obtain:

(un,m − un,m+1)(un+1,m − un+1,m+1) −α2

− ε2α2(F
(+)
n un+1,m+1un+1,m + F

(−)
n un,mun,m+1)

(D.13)

Since there are only two two-periodic functions in (D.13) a function
w decompose as:

w = F
(+)
n w(+) + F

(−)
n w(−) (D.14)

instead of the most general decomposition (3.85). Applying the method
explained in Subsection 3.2 we can find the system for the function z
decomposed as in (D.14) from (3.40). Considering the case n = 2k we
find from (3.40) the system for z(+):

−
α2

(
1+ ε2u2n+1,m

)
(un,m − un,m−1)

2 + ε2α22

∂z(+)

∂un+1,m
+
∂z(+)

∂un,m

+
α2

(
1+ ε2u2n−1,m

)
(un,m − un,m−1)

2 + ε2α22

∂z(+)

∂un−1,m
=

2ε2un+1,m

(un,m − un,m−1)
2 + ε2α22

(D.15a)

−
α2

(
1+ ε2u2n+1,m

)
(un,m − un,m+1)

2 + ε2α22

∂z(+)

∂un+1,m
+
∂z(+)

∂un,m

+
α2

(
1+ ε2u2n−1,m

)
(un,m − un,m+1)

2 + ε2α22

∂z(+)

∂un−1,m
=

2ε2un+1,m

(un,m − un,m+1)
2 + ε2α22

(D.15b)

Taking the coefficients with respect to un,m±1 we can solve this sys-
tem. This time the system is not overdetermined, but it is underdeter-
mined:

z(+) = − log
(
1+ ε2u2n+1,m

)
+ logZ(+)

n,m

(
ε(un+1,m − un−1,m)

1+ ε2un+1,mun−1,m
.
) (D.16)

The same holds true for z(−):

z(−) = log
(
1+ ε2u2n,m

)
+ logZ(−)

n,m(−un+1,m + un−1,m).
(D.17)

Using (3.41) we just add equations which are identically satisfied,
so all the differential conditions on z are satisfied. Inserting into the
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conservation law (3.29) the only condition we get is Z(±)
n,m = Z

(±)
n i.e.

the two arbitrary functions can depend only on one lattice variable.
For v we can proceed in the same way and we obtain:

v(+) = log

[
(1+ ε2un+1,mun−1,m)2

1+ ε2u2n+1,m

]

+ logV(+)
n,m

(
ε(un+1,m − un−1,m)

1+ ε2un+1,mun−1,m

)
,

(D.18a)

v(−) = log
[
(1+ ε2u2n,m)V

(−)
n,m(−un+1,m + un−1,m)

]
. (D.18b)

Using (3.43) we just add equations which are identically satisfied, so
we have satisfied all the differential conditions on v. Inserting v into
the conservation law (3.34) the only condition we get is V(±)

n,m = V
(±)
n

i.e. the two arbitrary functions depend only on one lattice variable.
Inserting z and v into the compatibility conditions (3.45) we can

reduce the number of independent functions from four to two, since
we find the following relations:

Z
(+)
n (ξ) = C

(1)
n −

(
1+ ξ2

)
V
(+)
n (ξ), (D.19a)

V
(−)
n (ξ) = C

(2)
n −Z(−)(ξ). (D.19b)

Then defining:

G
(+)
n (ξ) =

∫
V
(+)
n (ξ)dξ, G

(−)
n (ξ) =

∫
Z
(−)
n (ξ)dξ, (D.20)

we can write the solution for g from (3.44):

g =
−F

(+)
n

ε
Gn

(
ε(un+1,m − un−1,m)

1+ ε2un+1,mun−1,m]

)
+ F

(+)
n

[
C
(1)
n

ε
arctan(εun+1,m) +Φ(+)

]
− F

(−)
n (1+ ε2u2n,m)G

(−)
n (−un+1,m + un−1,m)

+ F
(−)
n

[
(1+ ε2u2n,m)C

(2)
n un−1,m +Φ(−)

]
,

(D.21)

with Φ(±)
n,m = Φ

(±)
n,m(un,m) functions to be determined.

Inserting this form of g into the determining equations we find the
following restrictions:

C
(1)
n = C

(2)
n = 0, Φ(+) = C

(3)
n , Φ(−) = C

(4)
n (1+ ε2u2n,m), (D.22)

where C(3)
n and C(4)

n are arbitrary functions of the lattice variable n.
This means that (D.13) the three-points generalized symmetries are
generated by the following function::

g = F
(+)
n

[
−1

ε
G

(+)
n

(
ε(un+1,m − un−1,m)

1+ ε2un+1,mun−1,m

)
+C

(3)
n

]
+ F

(−)
n

[
−(1+ ε2u2n,m)G

(−)
n (−un+1,m + un−1,m) + (1+ ε2u2n,m)C

(4)
n

]
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(D.23)

which depends on arbitrary functions. Note that we can separate the
true generalized symmetry part from the point part noting that the
coefficients of C(3)

n and C(4)
n only depend on un,m and not from its

shifts. Therefore we have the three-points generalized symmetry part:

gGS = F
(+)
n

[
−1

ε
G

(+)
n

(
ε(un+1,m − un−1,m

(1+ ε2un+1,mun−1,m])

)]
+ F

(−)
n

[
−(1+ ε2u2n,m)G

(−)
n (−un+1,m + un−1,m)

] (D.24)

and in the purely point part:

gP = F
(+)
n C

(3)
n + F

(−)
n (1+ ε2u2n,m)C

(4)
n . (D.25)

Reversing the transformation n ↔ m we obtain the result displayed
in Section 3.3.

We underline that the property of possessing generalized symme-
tries depending on arbitrary functions is linked with the fact that
(1.91a) is Darboux integrable [5] as it was proved in [69] and is dis-
cussed in Chapter 4.



E
T H R E E - P O I N T S G E N E R A L I Z E D S Y M M E T R I E S O F
T H E R H O M B I C H 4 E Q U AT I O N S

e.1 the rhombic H4 equations

In Chapter 1 we presented the single-cell form of the rhombic H4

equations in formula (1.32). Applying the prescription of [3, 21, 67] we
have (with the identification α1 = α and α2 = β) that the equations
(1.32) once written on the Z2(n,m) lattice have the form:

rH
ε
1 : (un,m − un+1,m+1) (un+1,m − un,m+1) − (α − β)

+ ε(α−β)
(
F
(+)
n+m un+1,mun,m+1 + F

(−)
n+m un,mun+1,m+1

)
= 0,

(E.1a)

rH
ε
2 : (un,m − un+1,m+1)(un+1,m − un,m+1)+

+ (β−α)(un,m + un+1,m + un,m+1 + un+1,m+1) −α
2 +β2

− ε (β−α)3 − ε (β−α)
(
2F

(−)
n+mun,m + 2F

(+)
n+mun+1,m +α+β

)
·

·
(
2F

(−)
n+mun+1,m+1 + 2F

(+)
n+mun,m+1 +α+β

)
= 0,

(E.1b)

rH
ε
3 : α(un,mun+1,m + un,m+1un+1,m+1)

−β(un,mun,m+1 + un+1,mun+1,m+1) + (α2 −β2)δ

−
ε(α2 −β2)

αβ

(
F
(+)
n+m un+1,mun,m+1 + F

(−)
n+m un,mun+1,m+1

)
= 0,

(E.1c)

where F(±)k is still given by formula (1.90). Obviously this formula
agrees with that presented in [166].

e.2 three-points generalized symmetries of the rhom-
bic H4 equations

The three-points generalized symmetries of the rhombicH4 equations
as given by (E.1) can be computed with the methods presented in
Chapter 3 and were first presented in [166]. Their expression is the
following:

X̂r
Hε1
n =

1− ε
(
F
(+)
n+mun+1,mun−1,m + F

(−)
n+mu

2
n,m

)
un+1,m − un−1,m

∂un,m , (E.2a)
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X̂r
Hε1
m =

1− ε
(
F
(+)
n+mun,m+1un,m−1 + F

(−)
n+mu

2
n,m

)
un,m+1 − un,m−1

∂un,m ,

(E.2b)

X̂r
Hε2
n =


(
1− 4εαF

(−)
n+m

)
(un+1,m + un−1,m) − 4εF

(+)
n+mun+1,mun−1,m

un+1,m − un−1,m
+

+
2α− 4εα2 − 4εF

(−)
n+mu

2
n,m +

(
1− 4εαF

(−)
n+m

)
un,m

un+1,m − un−1,m

∂un,m

(E.2c)

X̂r
Hε2
m =


(
1− 4εβF

(−)
n+m

)
(un,m+1 + un,m−1) − 4εF

(+)
n+mun,m+1un,m−1

un,m+1 − un,m−1
+

+
2β− 4εβ2 − 4εF

(−)
n+mu

2
n,m +

(
1− 4εβF

(−)
n+m

)
un,m

un,m+1 + un,m−1

∂un,m

(E.2d)

X̂r
Hε3
n =

[
1

2

un,m (un+1,m + un−1,m) + 2δα

un+1,m − un−1,m
−

−
ε

α

(
F
(+)
n+mun+1,mun−1,m + F

(−)
n+mu

2
n,m

)
un+1,m − un−1,m

∂un,m

(E.2e)

X̂r
Hε3
m =

[
1

2

un,m (un,m+1 + un,m−1) + 2δβ

un,m+1 + un,m−1
−

−
ε

β

(
F
(+)
n+mun,m+1un,m−1 + F

(−)
n+mu

2
n,m

)
un,m+1 + un,m−1

∂un,m

(E.2f)

As stated in [166] the fluxes of the symmetries (E.2) are readily iden-
tified with the corresponding cases of the non autonomous YdKN
equation (3.99). The explicit coefficients of the corresponding non-
autonomous YdKN equation (3.99) are displayed in Table 3.1.



F
C O N N E C T I O N F O R M U L Æ B E T W E E N T H E
N O N - A U T O N O M O U S QV A N D T H E
N O N - A U T O N O M O U S Y D K N I N T H E m D I R E C T I O N .

For the sake of completeness let us write down the non autonomous
YdKN in the m direction:

dum
dt

=
Am(um)um+1um−1 +Bm(um)(um+1 + um−1) +Cm(um)

um+1 − um−1
.

(F.1)

Here the m-dependent coefficients are given by:

Am(um) = au2m + 2bmum + cm, (F.2a)

Bm(um) = bm+1u
2
m + dum + em+1, (F.2b)

Cm(um) = cm+1u
2
m + 2emum + f, (F.2c)

where bm, cm and em are 2-periodic functions, i.e.

bm = b+β(−1)m, cm = c+ γ(−1)m,

em = e+ ε(−1)m.
(F.3)

The correlation formulæ read:

a = a1a5,0 − a
2
2,0 − a

2
2,1 + a

2
2,2 + a

2
2,3

+ (−1)n(2a2,0a2,1 − 2a2,2a2,3 + a1a5,1),

(F.4a)

b =
1

2
a2,0(a5,0 − a3,0 − a4,0)

+
1

2
(a1a6,0 − a2,2a3,2 − a2,3a4,3 + a2,1a5,1)

+
1

2
(−1)na2,1(a5,0 + a3,0 + a4,0)

+
1

2
(−1)n(a2,3a3,2 + a1a6,1 + a2,0a5,1 + a2,2a4,3),

(F.4b)

β =
1

2
a2,2(a4,0 − a3,0 − a5,0)

−
1

2
(a2,3a5,1 − a2,1a4,3 + a2,0a3,2 − a1a6,2)

+
1

2
(−1)na2,3(a3,0 − a4,0 − a5,0)

+
1

2
(−1)n(a1a6,3 + a2,1a3,2 − a2,0a4,3 − a2,2a5,1),

(F.4c)

c = a2,0a6,0 − a4,0a3,0 + a2,1a6,1 − a2,3a6,3 − a2,2a6,2

− (−1)n[a2,2a6,3 + a4,3a3,2 + a2,3a6,2 − a2,0a6,1 − a2,1a6,0],
(F.4d)
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γ = a2,1a6,3 − a4,0a3,2 + a2,0a6,2 − a2,3a6,1 − a2,2a6,0−

− (−1)n[a2,2a6,1 + a4,3a3,0 + a2,3a6,0 − a2,1a6,2 − a2,0a6,3],
(F.4e)

d =
1

2
(a25,0 − a

2
4,0 − a

2
3,0 + a1a7 + a

2
3,2 + a

2
4,3 − a

2
5,1)

+ 2(−1)n(a2,1a6,0 + a2,0a6,1 + a2,3a6,2 + a2,2a6,3),

(F.4f)

e =
1

2
a6,0(a5,0 − a4,0 − a3,0)

+
1

2
(a2,0a7 − a5,1a6,1 + a3,2a6,2 + a4,3a6,3)

−
1

2
(−1)n(a3,2a6,3 + a4,3a6,2 + a5,1a6,0 − a2,1a7)

−
1

2
(−1)na6,1(a3,0 + a4,0 + a5,0),

(F.4g)

ε =
1

2
{a6,2(a4,0 − a5,0 − a3,0)

+
1

2
(a3,2a6,0 − a4,3a6,1 + a5,1a6,3 + a2,2a7)

+
1

2
(−1)n(a4,3a6,0 − a3,2a6,1 + a5,1a6,2 + a2,3a7)

+
1

2
(−1)na6,3(a3,0 − a5,0 − a4,0),

(F.4h)

f = a5,0a7 − a
2
6,0 + a

2
6,2 + a

2
6,3 − a

2
6,1

− (−1)n(2a6,2a6,3 − 2a6,0a6,1 + a5,1a7).

(F.4i)



G
C A L C U L AT I O N O F T H E F I R S T I N T E G R A L S O F T H E
tH 1 E Q U AT I O N

In this Appendix we present a full developed example of calculation
of the first integrals of an quad equation using the method discussed
in Section 4.1. We will discuss the example of the tHε1 equation (1.91a).
We note that the first integrals were first presented in [69] where they
were found by direct inspection.

Before proceeding we note that since the H4 equations in general,
and therefore the tHε1 in particular, are non-autonomous only in the
direction m though the factors F(±)m we can consider a simplified ver-
sion of (4.20), in the same spirit of what was done with the General-
ized Symmetries, see Appendix E:

Wi = F
(+)
m W

(+)
i + F

(−)
m W

(−)
i . (G.1)

If we assume W1 = W1 (un+1,m,un,m) separating the even and
odd terms with respect tom in (4.14) we find the following equations:

∂W
(+)
1

∂un+1,m
+
∂W

(+)
1

∂un,m
= 0, (G.2a)

(
1+ ε2u2n+1,m

) ∂W
(−)
1

∂un+1,m
+
(
1+ ε2u2n,m

) ∂W(−)
1

∂un,m
= 0. (G.2b)

whose solution is:

W1 = F
(+)
m F (un+1,m − un,m)+ F

(−)
m G

(
un+1,m − un,m

1+ ε2un,mun+1,m

)
(G.3)

Inserting (G.3) into the functional equation (4.7b) we obtain that F
and G must satisfy the following identity:

G (ξ) = F

(
α2
ξ

)
. (G.4)

This yields:

W1 = F
(+)
m F

(
α2

un+1,m − un,m

)
+F

(−)
m F

(
un+1,m − un,m

1+ ε2un,mun+1,m

)
. (G.5)

For the m direction we may also suppose our first integral to be
two-point: W2 = W2 (un,m+1,un,m). It easy to see from (4.19) with
k = 1 that this yields only the trivial solution W2 = constant. There-
fore we consider the case where the integral is three-point: W2 =

275
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W2 (un,m+1,un,m,un,m−1). From (4.19) with k = 1, separating the
even and odd terms, we obtain:

α2
(
1+ ε2u2n,m+1

) ∂W
(+)
2

∂un,m+1

−
[
(un,m − un+1,m)2 + ε2α22

] ∂W(+)
2

∂un,m

+α2
(
1+ ε2u2n,m−1

) ∂W
(+)
2

∂un,m−1
= 0,

(G.6a)

α2
(
1+ ε2u2n+1,m

) ∂W
(−)
2

∂un,m+1

− (un,m − un+1,m)2
∂W

(−)
2

∂un,m

+α2
(
1+ ε2u2n+1,m

) ∂W
(−)
2

∂un,m−1
= 0.

(G.6b)

Taking the coefficients with respect to un+1,m and then solving we
have:

W2 = F
(+)
m F

(
1+ ε2un,m+1un,m−1

un,m+1 − un,m−1

)
+ F

(−)
m G (un,m+1 − un,m−1) .

(G.7)

Inserting (G.7) into (4.7a) we don’t have any further restriction on the
form of the first integral. So we conclude that we have two indepen-
dent first integrals in the m direction, as it was observed in [69].

As explained in Section 4.1 since the application of the method was
fruitful we obtained first integrals depending on arbitrary functions,
which is of course redundant. We can then apply the simplifying
assumptions discussed in Section 4.1 and consider the first integrals
for the tHε1 as given by linear functions of their arguments:

W1 = F
(+)
m

α2
un+1,m − un,m

+ F
(−)
m

un+1,m − un,m

1+ ε2un,mun+1,m
, (G.8a)

W2 = F
(+)
m α

1+ ε2un,m+1un,m−1

un,m+1 − un,m−1

+ F
(−)
m β (un,m+1 − un,m−1) .

(G.8b)

Here α and β are two arbitrary constants coming from the fact that
in the m direction we found two independent arbitrary functions.

The first integrals for the tHε1 equation (1.91a) were first presented
in the form (G.8) in [69]. In Section 4.3 we show these first integrals
again in this form.



H
L I N E A R I Z AT I O N O F T H E tH

ε
1 E Q U AT I O N

T H R O U G H T H E F I R S T I N T E G R A L I N T H E
D I R E C T I O N m

In this Appendix we consider the linearization of the tHε1 equation
(1.91a) through the integral in the direction m, namely W2 given by
formula (4.29b). Note that this case is more interesting since now we
are dealing with a three-point, second order integral. Let us assume,
without loss of generality that α = β = 1. Our starting point is the
relation W2 = ρm from which we can derive two different equations,
one for the even and one for the odd m component of un,m. This will
give a priori a coupled system. However in this case it easy to see that
choosing m = 2k and m = 2k+ 1 we obtain the two equations:

1+ ε2un,2k+1un,2k−1 = ρ2k (un,2k+1 − un,2k−1) , (H.1a)

un,2k+2 − un,2k = ρ2k+1. (H.1b)

Therefore the system consists of two uncoupled equations.
The first one (H.1a) is a discrete Riccati equation which can be

linearized through the non-autonomous Möbius transformation:

un,2k−1 =
1

vn,k
+αk, ρ2k =

1+ ε2αk+1αk
αk+1 −αk

(H.2)

from which we obtain:(
1+ ε2α2k+1

)
vn,k+1 + ε

2αk+1 =
(
1+ ε2α2k

)
vn,k + ε

2αk. (H.3)

This equation is a total difference and therefore its solution is given
by:

vn,k =
θn − ε2αk

1+ ε2α2k
. (H.4)

Putting αk = κ2k−1 we obtain the solution for un,2k−1 as:

un,2k−1 =
1+ κ2k−1θn
θn − ε2κ2k−1

. (H.5)

The second equation is just a linear ordinary difference equation
which can be written as a total difference performing the substitution
ρ2k+1 = κ2k+2 − κ2k:

un,2k = ωn + κ2k. (H.6)

Therefore we obtain:

un,m = F
(+)
m (ωn + κm) + F

(−)
m

1+ κmθn
θn − ε2κm

. (H.7)
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ε
1 equation with the m integral

(H.7) depends on three arbitrary function. This is because we started
from a second order integral, which is a consequence the discrete
equation. This means that there must be a relation between θn and
ωn. This relation can be retrieved by inserting (H.7) into (1.91a). So
we obtain the following relation:

ωn −ωn+1 = α2
ε2 + θnθn+1
θn+1 − θn

, (H.8)

which gives us the final expression for the solution of (1.91a) up to
the integration given by (H.8). The general solutions obtained from
different first integrals are the same in the sense that one of them can
easily be transformed into the other.
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